
HAL Id: tel-03853862
https://hal.science/tel-03853862v2

Submitted on 31 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel surrogate-based algorithms for solving expensive
optimization problems

Guillaume Briffoteaux

To cite this version:
Guillaume Briffoteaux. Parallel surrogate-based algorithms for solving expensive optimization prob-
lems. Machine Learning [cs.LG]. Université de Lille; Université de Mons, 2022. English. �NNT :
2022ULILB023�. �tel-03853862v2�

https://hal.science/tel-03853862v2
https://hal.archives-ouvertes.fr

Grascomp
MADIS Mathématiques, sciences du numérique et de leurs interactions

THÈSE

préparée dans le cadre d’une cotutelle
pour obtenir le grade de

Docteur en Sciences de l’Ingénieur et Technologies de l’Université de Mons
Docteur en Informatique et Applications de l’Université de Lille

présentée et soutenue par

Guillaume Briffoteaux

le 21 Octobre 2022

Parallel surrogate-based algorithms for solving expensive optimization
problems

Algorithmes parallèles et basés sur méta-modèles pour la résolution de
problèmes d’optimisation coûteux

devant le jury composé de

Imen Chakroun Chargée de recherche IMEC Leuven
Patricia Stolf Professeur Université de Toulouse
David Duvivier Professeur Université Polytechnique

Hauts-de-France
Président Gregory Coussement Professeur Université de Mons
Rapporteurs Amir Nakib Professeur Université Paris Est

Frédéric Saubion Professeur Université d’Angers
Directeurs Daniel Tuyttens Professeur Université de Mons

Nouredine Melab Professeur Université de Lille
Co-directeur Mohand Mezmaz Chargé de recherche, HDR Université de Mons

A la mémoire de mon père et de mon grand-père.
A ma mère, ma grand-mère et mes sœurs.

Abstract

Combining machine learning, parallel computing and optimization gives rise to Parallel
Surrogate-Based Optimization Algorithms (P-SBOAs). These algorithms are useful to
solve black-box computationally expensive simulation-based optimization problems where
the function to optimize relies on a computationally costly simulator. In addition to the
search landscape topography, that may exhibit features complicating the optimization, the
search is limited by a computational budget due to the objective function expensiveness.

This thesis focuses on the design of P-SBOAs to deal with various search landscape
characteristics and computational budgets. The distinction between very and moderately
expensive problems is introduced through the definition of the budget as a limited time on
a restricted amount of computing resources. The three dimensions of the design space of
P-SBOAs as considered in this work are the surrogate model, the definition of promising-
ness of new candidate solutions and the coupling between the optimizer and the surrogate.
On the one hand, machine learning is triggered to build surrogate models that imitate the
simulator in order to evaluate and/or locate new promising solutions in a fast way. On
the other hand, parallel computing is leveraged to perform multiple simulations simulta-
neously in order to reduce the execution time. The overall challenge consists in adequately
allocating the budget to the tasks of simulation, surrogate training and acquisition of new
solutions.

Surrogate models should be trained fast especially to handle moderately expensive
problems where the training-set size may become significant, they should also provide
adequate predictive capacity to approximate rugged landscapes and predictive uncertainty
information to guide the search. The Bayesian Neural Network approximated via Monte-
Carlo Dropout (BNN MCD) is investigated as it gathers all the desired features. Firstly,
it is used to build Parallel Surrogate-Assisted Evolutionary Algorithms (P-SAEAs) by
evaluating and filtering candidate solutions. Secondly, it is employed along with Gaussian
Processes (GPs) to design new Parallel Surrogate-Driven Algorithms (P-SDAs) where
sub-surrogates are optimized in parallel to produce multiple new promising solutions.
The promisingness of solutions is defined by dynamically changing the trade-off between
exploration and exploitation during the search through ensembles of evolution controls.

Systematic experiments are conducted on multiple benchmark problems as well as on
a real-world application of Covid-19 control to compare an extensive range of algorithm
designs. The results demonstrate that P-SAEAs are much more adapted to solve moder-
ately expensive problems while P-SDAs are to be put forward on very expensive ones. In
P-SAEAs, the definition of promisingness promoted by the numerical results consists in
favoring exploration at the early stage and exploitation at the latter stage of the search
while more intensification is preferred in P-SDAs. The BNN MCD surrogate model shows
to perform well on multi-modal landscapes with weakly informative global structure and
GPs are promoted otherwise. Consequently, a new hybrid algorithm retaining the best of
P-SAEAs and P-SDAs is proposed to offer robustness with respect to the computational
budgets. The novel method demonstrates a striking parallel scalability and produces the
best solutions on the Covid-19 contact reduction problem featuring multi-modality and
weak global structure.

i

Résumé

De la combinaison de l’apprentissage automatique, du calcul parallèle et de l’optimisation
résultent les algorithmes d’optimisation parallèles et basés sur des méta-modèles (Parallel
Surrogate-Based Optimization Algorithms, P-SBOAs). Ces algorithmes sont utiles à la
résolution de problèmes d’optimisation bôıte-noire, coûteux en calculs et basés sur la sim-
ulation pour lesquels la fonction à optimiser repose sur un simulateur coûteux en calculs.
En plus de la topographie du paysage de recherche, pouvant montrer des caractéristiques
compliquant l’optimisation, la recherche est limitée par un budget de calculs dû au coût
de la fonction objectif.

Dans cette thèse, l’attention est focalisée sur la conception des P-SBOAs pour traiter
divers caractéristiques du paysage de recherche et budgets de calculs. La distinction entre
problèmes très et modérément coûteux est introduite au travers de la définition du budget
comme étant un temps limité sur une quantité restreinte de ressources de calculs. Les trois
dimensions de l’espace de conception des P-SBOAs considéré dans ces travaux sont le méta-
modèle, la définition du degré de promesse des solutions candidates et le couplage entre
l’optimisateur et le méta-modèle. D’un côté, l’apprentissage automatique est utilisé pour
construire un méta-modèle qui imite le simulateur afin d’évaluer et/ou localiser rapidement
de nouvelles solutions prometteuses. D’un autre côté, le calcul parallèle est mis à profit
pour réaliser simultanément plusieurs simulations afin de réduire le temps d’exécution. Le
challenge général consiste à allouer le budget de façon adéquate aux tâches de simulation,
entrâınement du méta-modèle et acquisition de nouvelles solutions.

Le méta-modèle doit être entrâınable rapidement surtout dans le cas des problèmes
modérément coûteux où la taille de l’ensemble d’entrâınement peut devenir significa-
tive. Il doit aussi offrir une capacité prédictive adéquate pour se rapprocher des paysages
rugueux et fournir de l’information sur l’incertitude prédictive afin de guider la recherche.
Les réseaux de neurones bayesiens (Bayesian Neural Network) approchés par Monte-
Carlo Dropout (BNN MCD) sont étudiés car ils rassemblent toutes les caractéristiques
désirées. Premièrement, ils sont utilisés pour construire des algorithmes évolutionnaires
parallèles assistés par méta-modèles (Parallel Surrogate-Assisted Evolutionary Algorithms,
P-SAEAs) en évaluant et filtrant les solutions candidates. Deuxièmement, ils sont em-
ployés avec des processus gaussiens (Gaussian Processes, GPs) pour concevoir de nou-
veaux algorithmes parallèles guidés par méta-modèles (Parallel Surrogate-Driven Algo-
rithms, P-SDAs) où des sous-méta-modèles sont optimisés en parallèle pour produire de
multiple nouvelles solutions prometteuses. Le degré de promesse des solutions est défini
en changeant dynamiquement le compromis entre exploration et exploitation durant la
recherche via des ensembles de contrôles d’évolution.

Des expériences systématiques sont menées sur plusieurs problèmes artificiels ainsi que
sur une application réelle de contrôle de l’épidémie de Covid-19 afin de comparer une
vaste gamme d’algorithmes. Les résultats démontrent que les P-SAEAs sont beaucoup
plus adaptés à la résolution de problèmes modérément coûteux alors que les P-SDAs sont
à mettre en avant sur des problèmes très coûteux. Avec les P-SAEAs, la définition du degré
de promesse promu par les résultats numériques consiste à favoriser d’abord l’exploration
et ensuite l’exploitation au cours de la recherche alors que plus d’intensification est préférée

ii

avec les P-SDAs. Le méta-modèle BNN MCD démontre de bonnes performances sur des
paysages multi-modales avec une structure globale peu informante et les GPs sont mis
en avant dans les autres cas. Par conséquent, un nouvel algorithme hybride retenant
le meilleur des P-SAEAs et P-SDAs est proposé pour offrir plus de robustesse quant
aux budgets de calculs. La nouvelle méthode démontre une mise à l’échelle frappante à
l’augmentation des unités de calculs et produit les meilleures solutions sur le problème lié
à la Covid-19 exposant un paysage multi-modal et une structure global peu informante.

iii

Remerciements

Je remercie vivement mes directeurs de thèse Nouredine Melab, Professeur à l’Université
de Lille et directeur de l’équipe BONUS (CRIStAL et Inria Lille) et Daniel Tuyttens, Pro-
fesseur et chef du service MARO à l’Université de Mons pour l’encadrement, les relectures,
les discussions et les encouragements qu’ils m’ont apportés tout au long de la thèse.

Mes vifs remerciements vont également à mon co-directeur de thèse Mohand Mez-
maz, Chargé de recherche à l’Université de Mons, pour ses précieux conseils, et les longs
échanges scientifiques et philosophiques auxquels nous nous sommes prêtés.

Je remercie également Romain Ragonnet, Chercheur à la Monash University de Mel-
bourne, pour sa confiance et pour la collaboration que nous avons établie. Je remercie
plus largement les membres du Department of Public Health and Preventive Medicine qui
était prêt à m’accueillir en Australie avant que l’épidémie de Covid n’en décide autrement.

Une partie des études publiées dans le cadre de cette thèse a été réalisée conjointement
avec Maxime Gobert et Pierre Tomenko, respectivement doctorant et étudiant en Master
à l’Université de Mons. Je les remercie d’avoir rendu possible ces collaborations.

J’adresse mes remerciements à tous les membres du service MARO de l’Université de
Mons et de l’équipe BONUS de l’Université de Lille, et en particulier à Jan Gmys pour
ses conseils concernant la formation doctorale et la rédaction.

Je souhaite remercier Gregory Coussement (Professeur, Université de Mons) d’avoir
accepté de présider le jury du comité d’accompagnement et de défense de ma thèse.

Je tiens à remercier les rapporteurs Frédéric Saubion (Professeur, Université d’Angers)
et Amir Nakib (Professeur, Université Paris Est) pour leur attentive évaluation de mes
travaux.

Je remercie également Imen Chakroun (Chargée de recherche, IMEC Leuven) et Pa-
tricia Stolf (Professeur, Université de Toulouse) d’avoir accepté de participer au jury ainsi
que David Duvivier (Professeur, Université Polytechnique Hauts-de-France) pour sa par-
ticipation au jury et ses commentaires judicieux lors des comités d’accompagnement.

Toute ma gratitude va à ma famille, ma maman, ma grand-mère et mes sœurs pour
le soutien que nous nous apportons. Je suis reconnaissant envers tous mes amis pour leur
présence, en particulier Axel, Clément, Florian, Jordy, Julie, Justine, Justinne, Kittie,
Laura, Manon, Marine, Martin, Mathilde, Norman, Pierre, Sophie, Soria, Virgile ainsi que
les copains de Reims, Alisson, Fab, Jordan, Laetitia, Marion, Maxime, Noemy, Quentin,
et Romain.

iv

List of acronyms

AB-MOEA - Adaptive Bayesian Multi-Objective Evolutionary Algorithm
ANN - Artificial Neural Network
ANN BLR - Bayesian Linear Regression model with ANN basis functions
AP - Acquisition Process
BNN - Bayesian Neural Network
BNN HMC - Bayesian Neural Network trained through HMC
BNN MCD - BNN approximated via Monte-Carlo Dropout
cl-mean - Constant Liar with mean
Covid-19 - Coronavirus Disease 2019
CPU - Computer Processing Unit
CTS - Complete Training Set
DFR - Direct Fitness Replacement
DOE - Design of Experiments
EA - Evolutionary Algorithm
EC - Evolution Control
EI - Expected Improvement
EGO - Efficient Global Optimization
GD - Gradient-Descent
GP - Gaussian Process
GP HMC - Gaussian Process trained through HMC
GP RBF - GP with Radial Basis Functions kernel
HCAP - Hybrid Concurrent Acquisition Processes
HMC - Hamiltonian Monte Carlo
HSAP - Hybrid Successive Acquisition Processes
IC - Infill Criterion
IFR - Indirect Fitness Replacement
iKRG - interpolation Kriging model
LCB - Lower Confidence Bound
LHS - Latin Hyper-cubes Sampling
NAVLL - Negative Average Validation Log-Likelihood
NDF - Non-Dominated Front
NDR - Non-Dominated Rank
NDS - Non-Dominated Set
NSGA-II - Non-dominated Sorting Genetic Algorithm II
MCMC - Monte-Carlo Markov Chain
MO - Multi-Objective
OOP - Object-Oriented Programming
PF - Pareto Front
PS - Pareto Set
PI - Probability of Improvement
POV - Predicted Objective Value
P-EA - Parallel Evolutionary Algorithm

v

P-SAEA - Parallel Surrogate-Assisted Evolutionary Algorithm
P-SBO - Parallel Surrogate-based Optimization
P-SBOA - Parallel Surrogate-based Optimization Algorithm
P-SDA - Parallel Surrogate-Driven Algorithm
pySBO - Python platform for Surrogate-based Optimization
q-EGO - parallel variant of EGO
q-Pareto - P-SDA based on Pareto dominance
q-post-HMC - P-SDA based on Hamiltonian Monte-Carlo sampling
q-subnets - P-SDA based on q sub-networks
RBF - Radial Basis Functions
rKRG - regression Kriging model
RTS - Reduced Training Set
RVEA - Reference Vector guided Evolutionary Algorithm
SaaEF - Surrogate as an Evaluator and a Filter
sb - Surrogate Believer
SAEA - Surrogate-Assisted Evolutionary Algorithm
SAEA-ME - Surrogate-Assisted Evolutionary Algorithm for Medium Scale Expensive
problems
SBX - Simulated Binary Cross-over
SDA - Surrogate-Driven Algorithm
SMBO+EA - Surrogate Model Based Optimization + Evolutionary Algorithm
SO - Single-Objective
UML - Unified Modelling Language
VMSE - Validation Mean Squared Error
vR2 - Validation Correlation Coefficient

vi

Contents

Abstract i

Résumé ii

Remerciements iv

List of acronyms v

Contents vii

Introduction 1

1 Parallel Surrogate-based Optimization 7

1.1 Introduction . 8

1.2 Solving expensive black-box simulation-based optimization problems 8

1.2.1 Search landscape and expensiveness 8

1.2.2 Evolutionary Algorithms . 9

1.2.3 Design stages of P-SBOAs . 11

1.3 Surrogate building . 13

1.3.1 Generalities . 13

1.3.2 Linear models . 15

1.3.3 Gaussian Processes . 17

1.3.4 Artificial Neural Networks . 19

1.3.5 Analysis of the models . 21

1.4 Coupling Surrogates with Evolutionary Algorithms 22

1.4.1 Surrogate as an evaluator . 22

1.4.2 Surrogate as a filter . 24

1.4.3 Surrogate as a driver . 26

1.4.4 Analysis of the couplings . 27

1.5 Related works . 28

1.5.1 Computational budget . 28

1.5.2 Surrogate model selection . 28

1.5.3 Definition of promisingness . 29

1.5.4 Acquisition processes for parallel simulations 30

1.6 Problem instances . 31

1.6.1 Covid-19 contact reduction . 31

1.6.2 Analytical benchmark functions . 34

2 Parallel Surrogate-assisted Evolutionary computations 37

2.1 Introduction . 39

2.2 BNN MCD as an evaluator and a filter . 39

vii

2.2.1 Bayesian Neural Network approximated via Monte-Carlo Dropout
(BNN MCD) . 39

2.2.2 Surrogate as an evaluator and a filter (SaaEF) 42

2.3 Ensembles of Evolution Controls . 44

2.3.1 Random and scalar ECs . 44

2.3.2 Pareto-based bi-criterion ECs . 45

2.3.3 Dynamic ensembles . 46

2.3.4 Adaptive ensembles . 48

2.3.5 Voting committees . 49

2.4 Comparison of Surrogates . 49

2.4.1 Calibration of BNN MCD . 49

2.4.2 Surrogates on the benchmark . 52

2.5 Experiments . 54

2.5.1 Computational budget . 54

2.5.2 Calibration of SaaEF . 54

2.5.3 Experimental protocol . 55

2.5.4 Empirical analysis . 55

2.6 Conclusion . 60

3 Parallel Surrogate-driven algorithms 61

3.1 Introduction . 62

3.2 From Evolution Controls to Infill Criteria 62

3.2.1 EC-based selection and replacement 62

3.2.2 q-EGO revisited . 63

3.3 Fast Acquisition Processes . 65

3.3.1 q-subnets: sub-networks as multi-surrogate 65

3.3.2 q-post-HMC: sampling of surrogates 66

3.3.3 q-Pareto: a Pareto dominance-based AP 68

3.4 Experiments . 69

3.4.1 Calibration of GP HMC and BNN HMC 69

3.4.2 Calibration of the optimizer . 70

3.4.3 Experimental protocol . 72

3.4.4 Empirical analysis . 72

3.4.5 Complete training set . 76

3.5 Conclusion . 79

4 Parallel Hybrid methods 81

4.1 Introduction . 82

4.2 P-SAEAs versus P-SDAs . 82

4.2.1 Computational costs . 82

4.2.2 Context of moderately expensive problem 83

4.2.3 Convergence profiles . 87

4.3 Hybrid Acquisition Processes . 87

4.3.1 Hybrid Informed Operator and Infill Criterion-based Acquisition
Processes . 87

4.3.2 Experiments on Covid-19 contact reduction 92

4.3.3 Parallel scalability . 94

4.4 A posteriori landscape analysis . 98

4.4.1 Reducing Covid-19-related death by contact reduction strategies . . 100

4.4.2 Characterization of the landscape . 100

4.5 Conclusion . 102

viii

5 Software platform for P-SBO 103
5.1 Introduction . 104
5.2 Scalable design . 104

5.2.1 Motivations . 104
5.2.2 Conceptual objectives . 105
5.2.3 The tools for scalable code architecture 106

5.3 The modular structure of pySBO . 108
5.3.1 From a global view to a finer description 108
5.3.2 Related software . 109

5.4 Multi-objective test case . 111
5.4.1 Covid-19 vaccine distribution problem 111
5.4.2 Surrogate-free approaches . 113
5.4.3 Surrogate-based algorithms . 117

5.5 Numerical experiments . 120
5.5.1 Protocol . 120
5.5.2 Empirical analysis . 120
5.5.3 Resulting vaccine distribution plan 123

5.6 Conclusion . 124

Conclusions and perspectives 127

Bibliography I

List of Figures XV

List of Tables XXI

A Parallel Surrogate-based optimization XXVII

B Parallel Surrogate-assisted Evolutionary computations XXIX

C Multi-objective optimization XLIX

D Parallel Surrogate-driven algorithms LV

E Parallel Hybrid methods LXXXI

F pySBO LXXXIX

ix

Introduction

Simulation software are widespread tools to predict the consequences of a decision. What
would be the epidemic trajectory if it is decided to put the whole population on lockdown?
How many deaths caused by a virus could be avoided if it is chosen to only vaccinate the
elderly? These are questions simulators can help to answer. Consequently, they can be
employed to suggest adequate decisions to take in a given situation. These decisions
could consist in better lockdown modalities to slow down the spread of a virus, in better
strategies to distribute the vaccine doses to reduce the number of deaths. These last two
problems are examples of black-box simulation-based optimization problems where the
simulation is exclusively used to evaluate the quality of possible decisions.

Evolutionary Algorithms (EAs) represent handy optimizers to deal with black-box
problems as they only require to evaluate candidates. Nevertheless, EAs need to perform
a substantial amount of simulations to provide significant results. This behavior poses
severe restrictions when the simulation is computationally expensive as in the Covid-19
(Coronavirus disease 2019) related problem tackled in this thesis. The complementary
ways to deal with the computational complexity is to harness machine learning and parallel
computing. Parallel computers contribute to reduce the execution time of the optimiza-
tion by performing multiple simulations at once. Machine Learning algorithms extract
knowledge and identify patterns from data. From a set of real-valued input-output obser-
vations, regression and interpolation models learn the underlying mapping so as to predict
what would happen at unobserved points. Because predicting is computationally cheap,
these methods are used as surrogate models for computationally expensive simulators.
Nonetheless, the gain in terms of computing time is counterbalanced by a loss of accu-
racy. It is primordial to attain and preserve the balance between prediction fidelity and
computational cost.

The synergy between simulation, optimization, parallel computing and machine learn-
ing gives rise to the so-called Parallel Surrogate-based Optimization Algorithms (P-SBOAs),
suited to solve computationally expensive simulation-based problems. The design of
P-SBOAs is tedious as it relies on the association of components, and the respect of
rules, stemming from diverse fields. Particularly, the No Free Lunch theorem complicates
the choice of the surrogate model by stating that no one machine learning algorithm is
better than all others in all cases. By carrying the responsibility to propose new promising
candidates to simulate, the surrogate-optimizer coupling is also an important challenge.
Defining the promisingness of solutions is another laborious piece of work when the num-
ber of simulations is restricted. It is reasonable to assume that, similarly to the surrogate
selection, the determination of the coupling and the definition of the promisingness are
problem-dependent. While unexpensive optimization problems are only characterized by
the topography of the search landscape [Mer+11], the amount of the computational bud-
get allocated to the search is an additional feature inherent to expensive optimization
[FSK08b].

1

2

Plugging the surrogate to the EA gives rise to Parallel Surrogate-Assisted Evolution-
ary Algorithms (P-SAEAs) [JOS01]. Differently, in Parallel Surrogate-Driven Algorithms
(P-SDAs), the surrogate is the core component and the leader of the search. A very
famous P-SDA is the extension of the sequential Efficient Global Optimization (EGO)
algorithm [JSW98] for parallel simulations of q new candidates (q-EGO) [GRC10]. The
q-EGO algorithm consists in sequentially maximizing a specific metric of promisingness,
called the Expected Improvement (EI), q times so as to propose q new candidate solutions
for parallel processing. Between two consecutive EI optimizations, the Kriging surrogate
model is updated to locate a new point.

A first limitation of q-EGO is to quickly converge [Ber+19]. While this behaviour
is desired for very expensive problems, the spotted optimum is usually a local one, and
therefore a continuous search progression is preferable for moderately expensive problems.
The fast convergence is due to a high degree of exploitation as soon as the search begins
so enhancing exploration may be a good idea. To do so, the surrogate can be employed
as an evaluator and/or a filter in a P-SAEA. As an evaluator, the surrogate is used to
evaluate new individuals instead of the simulator. As a filter, the surrogate helps to discard
unpromising candidates. In any case, the diversity of individuals within the population of
the EA maintains a certain level of exploration.

Another issue of q-EGO is the limited predictive capacity and the computationally
expensive training of the Kriging model [Ras06]. To approximate very rough search
landscapes, higher capacity models such as Bayesian Neural Networks (BNNs) may be
employed [Bis06]. Similarly to Kriging, BNNs are capable of providing predictive uncer-
tainty in the form of standard deviation, a key information to define the promisingness.
Recent approximation techniques allow for a fast training of the model [Gal16]. Reduc-
ing training complexity may present benefits for moderately expensive problems as more
training samples are accumulated.

A third disadvantage of q-EGO is the poor performance of the EI metric of promis-
ingness for handling medium-to-large-scale problems regarding the number of decision
variables [Reh+20]. Multiple combinations of the predicted objective value and the pre-
dictive uncertainty may be envisioned to settle this problem like adapting the definition
of the promisingness during the search. Adaptivity may also extend the limits of q-EGO
related to premature convergence as EI has been identified as an impacting factor in this
respect [Ber+19].

Thesis scope
In this thesis, the focus is directed towards the design of P-SAEAs and P-SDAs for solving
black-box computationally expensive optimization problems. The design is guided by
the choice of the surrogate model, the way the surrogate is coupled with the optimizer
and the definition of promisingness. Different designs are proposed and compared both
conceptually and empirically via systematic numerical experiments on diverse problems
exhibiting different search landscapes and computational budgets.

It is commonly admitted that P-SBOAs are convenient to handle very expensive prob-
lems, where the surrogate training is negligible compared to the simulation in terms of
computational load [FSK08b]. For these problems, the computational budget is classically
expressed as a limited number of simulations. In this thesis, the budget is expressed as
a limited number of computing cores and a limited duration in order to best reflect the
reality. Indeed, training a surrogate is potentially a computationally expensive task. More-
over, the budget is defined in such a way to consider moderately expensive optimization
problems thus allowing to demonstrate the pertinence of P-SBOAs in such scenarios.

3

Benchmark functions are used in the experiments reported in this thesis to compare
the different approaches. For these artificial problems, the analytical formula of the ob-
jective function is known and the evaluation time is insignificant [Han+10]. Knowing the
shape of the search landscape associated to a problem allows to infer the performance of
methods with respect to its topography (multi-modality, global structure, conditioning,
etc.). Additionally, a real-world application to Covid-19 contact reduction is considered.
The optimization exercise consists in finding the best contact reduction strategy to circum-
scribe the number of deaths while attaining herd immunity. In this case, the expensiveness
of the simulation and the constraint hamper landscape analysis prior to the search.

Contributions
The addressed issues and proposed contributions are summarized in the following:

• Surrogate models should demonstrate high predictive capacity to approximate rugged
landscapes and fast training to handle moderately expensive problems. Further-
more, they should provide predictive uncertainty to define the promisingness. Previ-
ously published studies on P-SBOAs do not consider BNNs and published compar-
isons between surrogates are limited to very expensive problems [Bre+18; Wan+16;
Ton+21]. We propose to investigate the BNNs approximated via Monte-
Carlo Dropout (BNN MCD) as surrogate model. BNN MCD shows the ad-
vantages to train fast, to provide a predictive standard deviation and to accurately
approximate rough landscapes [Gal16]. It is compared with widely used surrogates
as Kriging both within and outside P-SBOAs.

• Proposing a well-diversified set of new interesting candidate solutions is a major
challenge in P-SBOAs to allow for parallel simulations without wasting the computa-
tional budget. The surrogate-optimizer coupling mainly determines the Acquisition
Process (AP), responsible of acquiring new candidates. APs have not been studied
in the contexts of moderately expensive problems and landscapes with weak global
structures. Firstly, we propose SaaEF, a new P-SAEA where the surrogate
is both employed as an evaluator and a filter to handle moderately expen-
sive problems. Secondly, we come up with q-subnets and q-post-HMC,
two novel P-SDAs with an AP based on sub-surrogates sampling to man-
age multi-modal landscapes with weak global structure. The approaches are
experimentally compared with the state-of-the-art q-EGO [GRC10].

• Defining the promisingness amounts to set a trade-off between exploration and ex-
ploitation. Recognizing as promising the uncertain solutions boosts diversification
while considering as promising the solutions with a favorable predicted objective
value enhances intensification. Adequately balancing exploration and exploitation is
critical in optimization [Tal09]. In P-SAEAs and P-SDAs, the promisingness is im-
plemented by the Evolution Control (EC) and the Infill Criterion (IC) respectively.
All the existing ECs and the overwhelming majority of ICs are static [LHS12]. In
this thesis, ensembles of ECs and ICs are proposed to dynamically adapt
the trade-off between diversification and intensification during the search.
They are tested against widely-used criteria such as EI.

• Combining different surrogates, APs and ECs or ICs within a hybrid P-SBOA brings
the hope for robust methods according to the problems characteristics. A first at-
tempt conducting in this direction has shown a serious drawback regarding the scal-
ing in the number of computing cores [Reh+18]. We propose a hybrid method

4

borrowing the AP from P-SAEA and q-EGO and encompassing two sur-
rogates and two ECs. Our method proves to be reliable on the real-world appli-
cation to Covid-19 contact reduction for distinct computational budgets and a high
number of computing cores.

• Coding P-SBOAs appeals for a software platform that gathers re-usable components
together and sets down the foundations to ensure components inter-changeability.
We come up with pySBO, a modular Python platform facilitating P-
SBOAs implementation. All the approaches investigated in the present study
are implemented via pySBO. Besides, the extensibility of the platform is proved
by adding new algorithmic components stemming from multi-objective optimiza-
tion. The utility of pySBO is demonstrated by the resolution of a multi-objective
problem of Covid-19 vaccine distribution. Freely available at https://github.com/
GuillaumeBriffoteaux/pySBO, open-source and exemplified, pySBO is documented
through dedicated web-pages accessible at https://pysbo.readthedocs.io to max-
imize its accessibility to the scientific community.

Thesis structure
This manuscript is organized in five chapters:

Chapter 1 provides the necessary background to understand the methods developed
to solve expensive black-box simulation-based optimization problems. At the crossroads
of machine learning, optimization and parallel computing, the terminology and notations
are established prior to describe the EAs, the design stages of P-SBOAs, the surrogate
building and the surrogate-optimizer couplings. Afterwards, a review of the literature of
the field of Parallel Surrogate-based Optimization (P-SBO) is carried out. The reviewed
publications are focused on the computational budget definition, the surrogate model
selection, the definition of promisingness and the acquisition processes. Finally, the real-
world application to Covid-19 contact reduction and the benchmark problems are outlined.

Chapter 2 focuses on the design of P-SAEAs. The BNN MCD surrogate is introduced
and confronted empirically to recognized interpolation and regression models externally to
the optimization loop. It is then integrated as an evaluator and a filter, thus producing the
new SaaEF. To define the promisingness, state-of-the-art ECs are dissected and ensembles
of ECs are proposed to adapt it at execution time. Finally, the calibration of the methods
and numerical experiments are reported to investigate the impact of the ECs, surrogates
and APs with respect to the search landscape characteristics.

Chapter 3 concerns the design of P-SDAs. Firstly, the analogy between ECs and
ICs is established, and hence, the proposed ensembles of ECs are used to revisit q-EGO.
Secondly, fast APs, namely q-subnets, q-post-HMC and q-Pareto, are explained. The sam-
pling of q sub-networks from a global net and the sampling of q sets of parameters from
the posterior of a Bayesian model are the base principle of q-subnets and q-post-HMC
respectively. The q-Pareto strategy is built around bi-criterion ECs. Thirdly, extensive
numerical experiments involving multiple APs, ECs, surrogates and training-set sizes are
performed to extract knowledge about the behaviour of diverse architectures on an ex-
tended range of scenarios.

Chapter 4 begins with a confrontation of P-SAEAs versus P-SDAs according to all
the possible design choices (APs, ECs, surrogates). The accuracy and computational
complexity of the methods with respect to the computational budgets and the search
landscape features are particularly scrutinized. The chapter is continued with the con-

https://github.com/GuillaumeBriffoteaux/pySBO
https://github.com/GuillaumeBriffoteaux/pySBO
https://pysbo.readthedocs.io

5

struction of parallel hybrid methods including two surrogates and two APs, each equipped
with its own EC. Numerical tests show the merit of the new hybrid algorithms (HCAP
and HSAP) compared with another state-of-the-art parallel hybrid method (SMBO+EA)
especially regarding parallel scalability. The chapter is ended with a posterior landscape
analysis of the real-world Covid-19 contact reduction problem, made possible thanks to
the simulations accumulated throughout the experimental stages.

Chapter 5 is dedicated to the modular pySBO Python platform proposed in this thesis.
The modular structure reflecting a scalable code architecture is exposed and the publicly
available documentation is presented. The extensibility of the platform is then demon-
strated through the incorporation of new algorithmic components allowing to implement
multi-objective algorithms. The usefulness of pySBO is exhibited through an empirical
comparison of multi-objective approaches and the resolution of a real-world Covid-19 vac-
cine distribution problem.

This thesis is ended with a summary of the knowledge gained and guidelines on how
to choose P-SBOAs to solve black-box expensive simulation-based optimization problems.
Lastly, perspectives and future works are drawn.

Chapter 1

Parallel Surrogate-based
Optimization

Contents

1.1 Introduction . 8

1.2 Solving expensive black-box simulation-based optimization prob-
lems . 8

1.2.1 Search landscape and expensiveness 8

1.2.2 Evolutionary Algorithms . 9

1.2.3 Design stages of P-SBOAs . 11

1.3 Surrogate building . 13

1.3.1 Generalities . 13

1.3.2 Linear models . 15

1.3.3 Gaussian Processes . 17

1.3.4 Artificial Neural Networks . 19

1.3.5 Analysis of the models . 21

1.4 Coupling Surrogates with Evolutionary Algorithms 22

1.4.1 Surrogate as an evaluator . 22

1.4.2 Surrogate as a filter . 24

1.4.3 Surrogate as a driver . 26

1.4.4 Analysis of the couplings . 27

1.5 Related works . 28

1.5.1 Computational budget . 28

1.5.2 Surrogate model selection . 28

1.5.3 Definition of promisingness . 29

1.5.4 Acquisition processes for parallel simulations 30

1.6 Problem instances . 31

1.6.1 Covid-19 contact reduction . 31

1.6.2 Analytical benchmark functions 34

7

8 Chapter 1. Parallel Surrogate-based Optimization

1.1 Introduction

At the intersection of optimization, machine learning and parallel computing, the field
of Parallel Surrogate-based Optimization (P-SBO) arose at the end of the 20th century
to solve expensive black-box optimization problems. This chapter brings the background
to P-SBO and provides a literature review centered on the challenges tackled in this
investigation. Finally, the optimization problems tackled in this thesis are introduced and
detailed.

1.2 Solving expensive black-box simulation-based optimiza-
tion problems

1.2.1 Search landscape and expensiveness

Search landscape
In this thesis, we deal with continuous single-objective minimization problems. The task
is to find the decision vector x ∈ D minimizing the objective value y = f(x) where
f : D → M is called the objective function. Focusing on minimization does not damage
generalization as maximization problems are recovered by setting the objective function
to −f . The search space D and the objective space M = f(D) are both real spaces of
dimension d ∈ N∗\{1} and m = 1 respectively.

The graph (D, f(D)) of f is called the search landscape by analogy with topography
[Tal09]. To illustrate the metaphor, let’s assume that d = 2. In this particular case,
minimizing f could be thought of as finding the spot of lowest altitude in a delimited
geographical region. It is relatively easy to locate a low altitude spot in the Netherlands,
a country characterized by flatness. Conversely, the rugged relief map of the Alps range
makes the prospecting more arduous. The diversity of the landscapes’ shapes (multi-
modal, weak global structure, etc.) entails heterogeneous degrees of complexity of the
resolution. Multi-modal landscapes are sprinkled with local optima and care must be
taken to avoid getting trapped in a local basin of attraction [Ker+15]. For landscapes
with weak global structures, meta-data are not informative enough to properly guide the
search [Mer+11].

Expensiveness
Expensive black-box simulation-based optimization problems arise from the proliferation
of simulation software tools in many fields. Six-hours-long simulations are performed in
[GFL08; Gla+09] to optimize helicopter rotor blades. Conversely, in [AS19], a watershed
model calibration involves simulations lasting only 10 seconds. The expensiveness is not
strictly defined but rather depends on the computational and time resources at hand
as well as the search landscape characteristics. In any case, a strong limitation of the
computational budget allocated to the search implies a harder resolution.

From the optimizer point of view, the simulator is a black box as its internal functioning
is masked. This masking uncorrelates the simulation code from the optimization program
thus facilitating the management and maintenance of both software tools. The black-box
nature restraints the information about the problem to prior expectations transmitted by
the developers of the simulator.

The expensiveness and the black-box aspect hamper to infer the shape of the search
landscape, which could have helped the choice of an appropriate solver. Besides, in case
of constrained problems, the severity of the constraint complicates the localization of the
feasible part of the search space and hence further complicating the landscape analysis.
In this troublesome situation, it is pertinent to appeal to evolutionary algorithms.

9

1.2.2 Evolutionary Algorithms

Global picture of Evolutionary Algorithms
An Evolutionary Algorithm (EA) is a meta-heuristic that has been employed in numerous
studies [Tal09]. It is inspired from the natural evolution of species according to which
a population evolves through life cycles (generations) of birth, reproduction and death
of its members. Algorithm 1 depicts the steps of an EA. First, a set of npop individuals
(candidate solutions) is sampled from the search space and evaluated by the objective
function to create the initial population. Next, this population goes through cycles of
selection, reproduction and replacement to form new generations of individuals. The
stopping criterion is generally based on the computational budget.

Algorithm 1 Evolutionary Algorithm

Input
npop: population size
ngen: maximum number of generations

1: P ← initial sampling(npop)
2: evaluation(P)
3: for i = 1 : ngen do
4: Ppar ← select parents(P)
5: Pchld ← reproduction(Ppar)
6: evaluation(Pchld)
7: P ← replacement(P, Pchld)
8: end for
9: return best individual(s) from P

The main challenge when conceiving an EA is to balance between exploration and
exploitation of the search space. Favoring exploration tends to search unknown regions of
the search space whereas favoring exploitation tends to scrutinize on regions where good
candidates have previously been observed (promising regions).

The optimization problems presented in Sub-section 1.6 are all continuous thus an
individual is encoded in the EA as a decision vector made of the continuous decision vari-
ables of the problem. The objective function is a black-box simulator that can be used by
the EA without additional modification.

Initialization
At initialization (line 1 in Algorithm 1), a crucial care should be taken to offer a well diver-
sified initial population so as to avoid premature convergence. A random sampling does
not guarantee a uniform coverage of the search space. Latin Hyper-cubes Sampling (LHS)
consists to sub-divide the search space into hyper-cubes of equal sizes and to add sample
points such that escaping each occupied hyper-cube is feasible in all the directions parallel
to the axes. The set of all possible Latin Hyper-cube samplings is searched to identify the
sampling maximizing the uniform spread. This popular technique [FSK08d] guarantees
both a uniform coverage of the space and a uniform distribution of the projections of the
initial points onto the axes. An example of LHS of four points in a two-dimensional space
is displayed in Figure 1.1. To complete the initialization, the population is evaluated (line
2 in Algorithm 1).

10 Chapter 1. Parallel Surrogate-based Optimization

Figure 1.1: Example of Latin Hyper-cube Sampling of four points in two dimensions.

Selection
After initialization, a new generation starts with the selection of parent individuals (line
4 in Algorithm 1). Selected parents have the opportunity to transmit their characteristics
to the next generation. The main principle of selection is that better is an individual in
terms of objective value, better is its chance to be selected as parent. The tournament
selection randomly samples nt individuals with replacement from the population and only
retains the best one. The process is repeated as many times as the required number of
parents.

Reproduction
Children individuals are generated according to two reproduction operators: cross-over
and mutation (line 5 in Algorithm 1). The role of the cross-over operator is to transmit
parent characteristics to the children while the role of the mutation operator is to randomly
disturb a child by applying a small perturbation to its decision variables. Both operators
are applied according to a probability and should be chosen such that the proposed so-
lutions are always valid and that every solution from the search space can be reached.
The probability of cross-over pc represents the probability to actually apply the cross-
over operator to each couple of parents. The probability of mutation pm represents the
probability of applying the mutation operator to each decision variable of an individual.

The Simulated Binary Cross-over (SBX) lies among the most popular cross-over op-
erators [Tal09]. As a parent-centric operator, the generated children are located in the
neighborhood of one of their parents. Let’s denote x(1)

p ,x(2)
p the parents and x(1)

c ,x(2)
c

the children. The SBX operator is given by:

x
(1)
ci = 0.5⌊(1 + βi)x

(1)
pi + (1− βi)x

(2)
pi ⌋ (1.1)

x
(2)
ci = 0.5⌊(1− βi)x

(1)
pi + (1 + βi)x

(2)
pi ⌋ (1.2)

where:

βi =

 2r
1

ηc+1

i if ri ⩽ 0.5(
1

2(1−ri)

1
ηc+1

)
otherwise

(1.3)

The parameter ηc is the user-defined cross-over distribution index and ri ∈ [0, 1] is a
random number. When βi > 1, the children are located out of the hyper-cube formed
by the parents in the search space whereas they are inside the hyper-cube when βi < 1.
When βi = 1, the children are the same than the parents.

As a prominent example of mutation operator is the polynomial mutation [Tal09].
Let’s denote by xc a child resulting from cross-over and xmc the resulting mutated child:

xmc = xc +m (1.4)

where the perturbation vector m is given by:

mi = (xUci − xLci)δi (1.5)

11

where xUci and xLci are the upper bound and the lower bound for the i-th component of xc

respectively and δi is given by:

δi =

{
(2ri)

1
ηm+1 − 1 if ri < 0.5

1− (2(1− ri))
1

ηm+1 otherwise
(1.6)

The parameter ηm is the user-defined mutation distribution index and ri ∈ [0, 1] a random
number.

Evaluation and Replacement
The next step of the life cycle aims at forming the new population by selecting individuals
from a pool made of the current population and the generated children. Generally, the
elitist selection strategy is considered. It consists in selecting the npop individuals present-
ing the best objective value.

Balancing exploration and exploitation
The balance between exploration and exploitation in the EA is realized by tuning the
parameters according to the problem at hand. If no cross-over is performed, exploita-
tion is enhanced thus low values of pc enhances exploitation. Conversely, the mutation
favors exploration by randomly disturbing the individuals thus high values of pm boosts
exploration. Larger population sizes npop favor exploration as a more extended region of
the search space may be covered. Elitist replacement and tournament selection promote
exploitation. The guidelines provided in [Tal09] advise to set pc ∈ [0.3, 0.9], pm = 1

d where
d is the number of decision variables and npop ∈ [20, 200].

Expensiveness-related issue
In practice, it is reported that a large number of objective function evaluations is required
by the EA to obtain good results [Tal09]. This may be a problem when tackling expensive
optimization problems with a limited computational budget. Coupling the EA with a
cheap-to-evaluate approximation model of the simulator and performing simulation-based
evaluations in parallel are efficient ways to overcome this hindrance.

1.2.3 Design stages of P-SBOAs

Parallel Surrogate-based Optimization Algorithms (P-SBOAs) emerge from the synergy
between parallel computing, surrogate modelling and optimization. Five stages are iden-
tified in [FSK08b] to design a P-SBOA:

1. Pre-processing;

2. Surrogate selection;

3. Optimizer specification;

4. Surrogate-optimizer coupling;

5. Parallel approach specification.

Pre-processing
The pre-processing stage consists in a landscape analysis and an initial sampling. The
goal of landscape analysis is to gain information about the landscape to optimize in order
to simplify the problem or to guide the choice made at the next stages. In the context of

12 Chapter 1. Parallel Surrogate-based Optimization

expensive black-box problems, landscape analysis is rarely possible for the reasons afore-
mentioned in Sub-section 1.2.1. The initial sampling provides a first set of candidate
solutions that are simulated to constitute an initial database. This is the Design of Ex-
periments (DOE). In this thesis, LHS is employed.

Surrogate selection
The surrogate modelling of f lies in determining an approximation f̂ such that the pre-
dictions best fit the available training dataset and the unseen data at the same time. The
training dataset is made of the available simulated points at a given time. Approximat-
ing well the unseen data is an important issue in machine learning called generalization
[FSK08a]. To generalize well, the model type for f̂ must be chosen such that its capacity
is high enough to represent f but low enough to avoid over-fitting. Model capacity can
be roughly defined as the extent of functions the model can represent (e.g. a first-order
polynomial model has lower capacity than a second-order polynomial model). When insuf-
ficient model capacity is considered, the phenomenon of under-fitting occurs and prevent
the model to accurately represent the target function. When an excessive model capacity
is picked out, the model might fit the training data too precisely and capture the noise
in addition to the overall behaviour we are seeking to seize. This phenomenon, called
over-fitting, is to be avoided and model selection, hyper-parameters calibration and regu-
larization techniques can help. In practice, it is tedious to choose and calibrate adequately
the model for a new black-box function f .

Optimizer specification
During the optimizer specification stage, the intrinsic parameters to the EA, such as the
population size and the cross-over probability, are adjusted to the problem at hand. The
laboriousness of this task resides in the large number of combinations of the parameters
values.

Surrogate-optimizer coupling
The surrogate-optimizer coupling is the cooperation strategy between the surrogate and
the EA. The coupling defines the Acquisition Process (AP), that is the way new candidates
are proposed for simulation. In the family of Parallel Surrogate-Assisted Evolutionary Al-
gorithms (P-SAEAs), the surrogate is used as an evaluator or a filter at the evaluation step
of the EA through an Evolution Control (EC). In the family of Parallel Surrogate-Driven
Algorithms (P-SDAs), the surrogate drives the search through the Infill Criterion (IC).
The EC and IC set the promisingness of new candidates. The balance between exploration
and exploitation, crucial and definitely challenging in optimization, is significantly affected
by the AP, EC and IC.

Parallel approach specification
The parallel approach specification stage is closely related to the previous stage. The idea
is to efficiently use the available computing cores to improve the search outcomes. Par-
allelism is fine-grained when a high number of small computational tasks are executed in
parallel, and coarse-grained when a small number of important computational workloads
are performed simultaneously. In the current context, the fine granularity corresponds to
parallelizing the internal of the simulator, which is out of the scope of this thesis as the
simulator is black-box. Coarse granularity is instead envisioned by running multiple sim-
ulations in parallel. Effectively operating the computational load balancing is a dilemma
when the number of simultaneous simulations is not a multiple of the available computing
cores or when the simulation duration is not homogeneous.

13

In this study, we are particularly interested in the surrogate model selection and cali-
bration of hyper-parameters (stage 2), the coupling between the surrogate and the EA by
designing the AP, EC and IC (stage 4) and the parallel strategy (stage 5).

1.3 Surrogate building

1.3.1 Generalities

Terminology
In the machine learning literature, f is called the black-box mapping while x and y are
referred to as the input vector and the target respectively. In this section, d is the number
of scalar inputs and m is the number of scalar targets. The set of n available data pairs
(x(i), y(i))1⩽i⩽n is called the training set where x(i) have been generated by a sampling
method and y(i) = f(x(i)). The set of training input vectors is denoted by a matrix X

where Xi,j = x
(i)
j and the set of associated training outputs is expressed by a vector y

made of n components. The approximation of f is symbolized by f̂ while the predictive
standard deviation writes ŝ. Table A.1, displayed in the Appendix section, puts into per-
spective the terminology in use for machine learning and optimization.

Uncertainties, noise, regression and interpolation
The simulation code underlying the expensive objective function f relies on assumptions
that simplify the reality and can consequently be considered as approximation of what
would be actually observed in the real-world. For instance, solving ordinary or partial
differential equations implies to discretize time and space via meshes whose discretization
step size generates imprecision in the simulation outcomes. When approximating f , this
imprecision is considered as irreducible as no access is granted to modify the black-box
simulator and it can consequently be comparable to measurement imprecision in physical
experiments [Gal16]. In all the surrogate models presented in this section, this imprecision
is modelled as data-related noise and is assumed to be Gaussian:

y(i) = f̂(x(i);w) + ϵ

ϵ ∼ N (0, β−1)
(1.7)

where β−1 is a hyper-parameter standing for the variance of data-related noise and w are
the parameters of the model. A priori knowledge about the data-related noise can serve
to decide whether a regression or an interpolation surrogate model is to be preferred. High
data-related noise could favor a regression model that may provide a smoother curve than
interpolation and consequently only capture the overall behaviour of f . Conversely, low
data-related noise may favor an interpolation model that guarantee zero prediction error
on the observed training points.

In the Bayesian surrogate models presented hereafter, imprecision related to the sur-
rogate parameters w is also taken into account by the prior distribution. The Gaussian
prior is given by:

p(w|α) = N (w|0, α−1I) (1.8)

where the hyper-parameter α stands for uncertainty around the parameters values. This
uncertainty is qualified as reducible as it could be attenuated by gathering more observa-
tions [Gal16].

14 Chapter 1. Parallel Surrogate-based Optimization

Both reducible and irreducible uncertainties can be utilized to produce the predictive
standard deviation. Predictive standard deviation is a precious information in P-SBOAs
because it could guide the decision of evaluating a new candidate solution with the expen-
sive function or only predicting its objective value with the cheaper and coarser surrogate
model.

Training, calibration, frequentist and Bayesian treatment
Building a surrogate consists in specializing a regression or interpolation model to mimic
the target function f . Roughly speaking, this is done in a bi-level optimization approach
where the inner optimization problem lies in learning the parameters w (training) while
the outer optimization determines the hyper-parameters θ (calibration). The purpose
of training is to fit the training data while the aim of calibration is to generalize well.
Two probability-related approaches are usually followed to formulate these optimization
problems: frequentist and Bayesian.

In the frequentist view, assuming a Gaussian noise affecting the data (Equation 1.7),
the parameters are chosen by maximizing the likelihood function that represents the prob-
ability of the observations given the parameters p((X,y)|w). This maximization can be
conducted analytically for some low capacity models, but further optimization techniques
such as gradient-based methods or meta-heuristics can be required for higher capacity
models [Bis06]. Maximum likelihood estimation allows to determine point estimates of
the parameters and is known to induce over-fitting.

In the Bayesian view, over-fitting is avoided by accounting for both uncertainty in
the estimation of the parameters and uncertainty around the data (noise) [Bis06]. In
the Bayesian formalism, a prior probability distribution over the parameters is defined
(Equation 1.8) and Bayes’ theorem is applied to capture the knowledge provided by the
observations through the likelihood:

p(w|X,y) ∝ p((X,y)|w).p(w|α) (1.9)

or, written in words:
posterior ∝ likelihood× prior

The resulting probability distribution p(w|X,y), called the posterior, incorporates un-
certainty around the parameters. Finally, the integration over the parameters space
(marginalization) is carried out to produce the predictive distribution:

p(y∗|x∗, X,y) =

∫
p(y∗|x∗,w).p(w|X,y)dw (1.10)

where
p(y∗|x∗,w) = N (f̂(x∗;w), β−1) (1.11)

according to Equation 1.7. The predictive distribution p(y∗|x∗, X,y) consequently incor-
porates uncertainty information about the prediction for an unseen input vector x∗. In
the frequentist view, this uncertainty information can only be approximated by strategies
such as bootstrapping. With bootstrapping, training is realized on multiple sub-sets of
the training set and the variability of the associated predictions is recorded.

Generally speaking, training and calibration are more difficult when formalized through
the Bayesian point of view and are intractable in many cases due to the marginalization
over the parameters space. Approximation-based methods exist but can still be computa-
tionally expensive. When tackling expensive problems, the computational budget invested
into surrogate updates should not hinder the search in comparison with investments in
expensive evaluations. Selecting the prior over the parameters is also a difficulty inherent
to Bayesian approach as a poor choice of this distribution could cause bad predictions
with high confidence.

15

1.3.2 Linear models

Description of the model
A linear model [FSK08a; Bis06] is defined as a linear combination of mb non-linear basis
functions ϕj of the input vector and is formulated as:

f̂(x;w) =

mb−1∑
j=0

wjϕj(x) = wTϕ(x) (1.12)

The parameters of the model are the weights w. The linearity of the model with respect to
the parameters confer some ease for training. A widespread choice for the basis functions
is the Radial Basis Functions (RBF) that depend on the distance between the input vector
and a given centre:

ϕj(||x− c(j)||) (1.13)

where c(j) is the centre associated to the j-th basis function. Different forms for ϕ have
been proposed, such as:

• Polynomial ϕj(r) = rj ;

• Gaussian ϕj(r) = exp (−r2

2s2
).

The polynomial basis function is an example of fixed basis function as no additional pa-
rameter is introduced. Conversely, the Gaussian basis function is an example of parametric
function as the parameter s controlling the scale has been added to the model. The num-
ber mb of basis functions, the additional parameter such as s and the centres c(j) can all
be treated as hyper-parameters.

Likelihood approach
For the moment, let’s assume that the hyper-parameters are known. Under the Gaussian
assumption over the data-related noise (1.7), let’s assume that the probability distribution
of the target y is given by:

p(y|x,w, β) = N (y|f̂(x;w), β−1) (1.14)

Assuming the observations (x(i), y(i))1⩽i⩽n independent and identically distributed from
N (f̂(x;w), β−1), the likelihood function is then given by:

p(y|X,w, β) =
n∏

i=1

N (y(i)|wTϕ(x(i)), β−1) (1.15)

Maximizing (1.15) with respect to w corresponds to minimizing the sum-of-square error
function:

E(w) =
1

2

n∑
i=1

(y(i) −wTϕ(x(i)))2 (1.16)

Solving the maximum likelihood problem thus gives:

wML = (ΦTΦ)−1ΦTy (1.17)

where Φ is the design matrix whose coefficients are Φi,j = ϕj(x
(i)). The maximization of

the likelihood with respect to β gives:

βML =
1

n

n∑
i=1

(y(i) −wML
Tϕ(x(i)))2 (1.18)

16 Chapter 1. Parallel Surrogate-based Optimization

and can be interpreted as the variance of the targets around the linear model.

Interpolation and regression
The interpolation RBF model is commonly obtained by setting mb = n and c(j) = x(j).
In this case:

wML = Φ−1y (1.19)

where Φ is symmetric positive definite and well conditioned providing that training input
vectors are spaced out enough.

A first way to obtain a regression model is to set the number of basis functions mb < n.
The resulting matrix in (1.17) is consequently non-square and the estimate wML is a least
square estimate. A second way to obtain a regression model is to add a regularization
parameter in the error function (1.16):

ER(w) =
1

2

n∑
i=1

(y(i) −wTϕ(x(i)))2 +
λ

2
wTw (1.20)

and in the case where mb = n, (1.19) would become:

wMLR = (Φ + λI)−1y (1.21)

The additional effect of introducing a regularization term is to push some weights close to
zero and consequently prevent over-fitting by reducing the model complexity. The value of
λ should be set to β to reflect the data-related noise but this value is often unknown. The
drawback for this approach is then the tuning required to set the new hyper-parameter λ.

Bayesian approach
Even if regularization prevents over-fitting, the number and the form of the basis functions
still play a role in determining the model complexity. The Bayesian approach overcomes
this problem [Bis06].

The Gaussian assumption on data-related noise (1.14) and the likelihood function
(1.15) still hold and the prior distribution over the parameters is assumed to be given by
(1.8). Applying the Bayes’ theorem provides the posterior distribution:

p(w|X,y, α, β) = N (w|m, S) (1.22)

where:

m = βSΦTy (1.23)

S−1 = αI + βΦTΦ (1.24)

Finally, the predictive distribution is obtained by marginalizing over the space of param-
eters:

p(y∗|x∗, X,y, α, β) =

∫
p(y∗|x∗,w, β).p(w|X,y, α, β)dw (1.25)

= N (y∗|mTϕ(x∗), β−1 + ϕ(x∗)TSϕ(x∗)) (1.26)

It is interesting to note that the first term in the predictive variance is due to the data-
related noise while the second term stands for the uncertainty around the parameters
w.

For the linear model, the predictive mean in Equation (1.26) can be re-written as:

mTϕ(x∗) =
n∑

i=1

k(x∗,x(i))y(i) (1.27)

17

where k(x∗,x(i)) = βϕ(x∗)TSϕ(x(i)). For a Gaussian basis function, the value of
k(x∗,x(i)) decreases when x∗ and x(i) move away from each other. The consequence
is for the contribution of y(i) to be reduced when x(i) is far from x∗. Information close
to the new input vector is given stronger influence on the prediction. This behaviour is
reasonably desirable when treating real-world problems.

Hyper-parameters
A Bayesian approach can also be considered to set the values of the hyper-parameters
β and α, but unlike the determination of the parameters, this approach is analytically
intractable. As a workaround, it is possible to maximize the likelihood (also called the
evidence function).

Advantages and disadvantages
The linearity of the model with respect to the parameters allows to derive analytically the
point estimate in the likelihood approach and the predictive distribution in the Bayesian
approach [Bis06]. Moreover, the non-linearity with respect to the inputs allows to represent
a large range of black-box mappings. Nevertheless, there are two important drawbacks
attributed to linear models. The first drawback is that high confidence can be given in the
prediction far from the training input vectors. Indeed, the second term of the predictive
variance in (1.26) tends to zero far from the training input vectors when a Gaussian RBF
is considered. To answer this drawback, the Gaussian Process models presented below in
Sub-section 1.3.3 are employed. The second drawback is that the number of basis functions
tends to increase drastically when the input dimensionality d increases. Because inverting
a matrix of dimension m2

b has a computational complexity of O(m3
b), the training cost of

the model can become high. To overcome this disadvantage, the Artificial Neural Network
model, presented in Sub-section 1.3.4, that relies on adaptive basis functions is used.

1.3.3 Gaussian Processes

Kernels
Instead of selecting a basis function ϕ, it is possible to select a kernel function k and derive
the model from it [Bis06]. This is the base principle of Gaussian Processes (GPs). The
advantage is that the feature vector ϕ(x) can potentially lie in an infinite dimensional
space. In other terms, some functions k are expressed as an infinite combination of features.
It is actually the case for the Gaussian kernel:

k(x,x′) = σ exp

(
−||x− x′||2

2s2

)
(1.28)

where σ is the scale and s the length scale which determine the importance and the extent
of influence of one point to another respectively. As a consequence, the model capacity
allows to represent more complex functions than the linear models.

Gaussian Processes
By the GP approach, the observed outputs {y(1), . . . , y(n)} are considered as realizations
of the artificial random variables {Y (x(1)), . . . , Y (x(n))} respectively [Ras06]. Any subset
of these random variables have a jointly Gaussian distribution determined by a mean µ
and a covariance matrix Σ which is symmetric positive semi-definite:Y (x(1))

...

Y (x(n))

 ∼ N

µ

...
µ

 , Σ

 (1.29)

18 Chapter 1. Parallel Surrogate-based Optimization

In the case of the Bayesian linear regression model (1.12) with the prior on the weights
defined by Equation (1.8), the mean and covariance function of the GP are given by:

E[f̂(x;w)] = ϕ(x)E[w] = 0 (1.30)

E[f̂(x;w)f̂(x′;w)] = ϕ(x)TE[wTw]ϕ(x′) = α−1ϕ(x)Tϕ(x′) (1.31)

respectively. In this case, the kernel function would be defined by:

k(x,x′) = ϕ(x)Tϕ(x′) (1.32)

and the covariance matrix would be Σ = α−1K where Ki,j = k(x(i),x(j)). The prior over
the parameters in the Bayesian linear model can be viewed as a prior over functions in
the GP model.

Ordinary Kriging
Ordinary Kriging is a particular case of GP [Ras06]. It is assumed that Y (x(i)) ∼
N (µ, α−1) where µ and α−1 are unknown. The covariance matrix of the joint Gaus-
sian distribution is given by Σ = α−1K, where the correlation matrix K is defined via the
parametrized kernel function:

k(x(i),x(j)) = exp

(
−

d∑
k=1

ηk|x
(i)
k − x

(j)
k |

pk

)
(1.33)

When x(i) and x(j) move away from each other, their difference tends to infinity and their
correlation tends to 0. The hyper-parameters p define the peak of the correlation with a
low value meaning an immediate decrease in the correlation when the two points begin to
move away. The hyper-parameters η define the extent of the influence of the associated
decision variable with low values indicating large influence. Building the Ordinary Kriging
model consists in estimating µ, α−1, η and p.

Training and calibration
Let’s first consider the interpolation Ordinary Kriging model [FSK08a; Jon01]. The first
step consists in determining the parameters µ and α−1 by maximizing the likelihood
function:

L(X,y|µ, α−1) =
1

(2πα−1)n/2 det (K)1/2
exp

(
−(y − 1µ)TK−1(y − 1µ)

2α−1

)
(1.34)

This maximization can be carried out analytically and yields:

µ̂ =
1TK−1y

1TK−11
(1.35)

ˆα−1 =
1

n
(y − 1µ)TK−1(y − 1µ) (1.36)

The second step consists in determining the hyper-parameters η and p by maximizing the
concentrated likelihood obtained by replacing µ and α−1 by µ̂ and ˆα−1 in (1.34). The
maximization can not be performed analytically, therefore numerical optimization tech-
niques such as meta-heuristics are used.

Prediction
Finally, for a new input vector x∗, the associated prediction y∗ is obtained by maximization
of likelihood based on the augmented random vector:

Y (x(1))
...

Y (x(n))
Y (x∗)

 ∼ N
(
1µ̂, ˆα−1

(
K k∗

k∗T 1

))
(1.37)

19

where k∗i = k(x∗,x(i)). The analytical resolution of the maximization yields the following
predictive distribution:

p(y∗|x∗, X,y) = N (y∗|µ̂+ k∗TK−1(y − 1µ̂), ˆα−1(1− k∗TK−1k∗)) (1.38)

where the term designating the uncertainty in estimating µ̂ has been neglected in the pre-
dictive variance. Unlike the linear models with Gaussian basis functions, the predictive
variance given in (1.38) is high when x∗ is located far from the training input vectors.
The most computationally intensive part of the Kriging interpolation is the inversion of
K that requires O(n3) computations [FSK08a].

Regression
The regression Ordinary Kriging model is obtained in the same way as its interpolating
counterpart except that the correlation matrix K is replaced by (K + λI) [FSK08a]. The
estimations of the parameters and hyper-parameters provide:

p(y∗|x∗, X,y) = N (y∗|µ̂r + k∗T (K + λI)−1(y − 1µ̂r),
ˆα−1
r (1 + λ− k∗T (K + λI)−1k∗))

(1.39)

The expressions for µ̂r and ˆα−1
r are the same as (1.35) and (1.36), where K is replaced by

(K + λI). In practice, λ is treated as a hyper-parameter and estimated by maximization
of likelihood. The most computationally intensive part of the Kriging regression is the
inversion of (K + λI) that requires O(n3) computations.

1.3.4 Artificial Neural Networks

Model, parameters and hyper-parameters
Artificial Neural Networks (ANNs) are models based on the composition of non-linear
parametric basis functions [Bis06]. Contrary to linear models, ANNs are non-linear with
respect to both input data and weights. The composition of basis functions provides a
higher model capacity than the linear combination. Let’s take as example the second-
order polynomial basis functions. The linear combination of such functions allows one to
represent appropriately second-order polynomials while the composition of such functions
allows one to represent appropriately fourth-order polynomials.

The 2-layer ANN model is formulated as:

f̂(x;w) =

mu∑
j=1

w
(2)
j h

(
d∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
0 (1.40)

where h is a non-linear activation function and mu is the number of units composing the

first layer (hidden layer). w
(1)
ji and w

(1)
j0 are the weights and the biases of the first layer

respectively, and w
(2)
j and w

(2)
0 are the weights and the bias of the second layer (output

layer) respectively. The model can be easily generalized to any number of layers.
The parameters of the model are the weights and biases while the number of layers,

the number of units per layer, the connections between units, the activation functions are
treated as hyper-parameters.

The universal approximation theorem states that a 2-layer ANN model with linear
output can approximate any continuous function on a compact domain to arbitrary accu-
racy providing that the network has a sufficient number of units [Bis06].

Training
Under the Gaussian noise assumption given in Equation (1.7), let’s write:

p(y|x,w) = N (y|f̂(x;w), β−1) (1.41)

20 Chapter 1. Parallel Surrogate-based Optimization

Assuming independent and identically distributed observations, the maximization of the
likelihood with respect to w corresponds to the minimization of the sum-of-square error
function:

E(w) =
1

2

n∑
i=1

(f̂(x(i);w)− y(i))2 (1.42)

The non-linearity of the network makes E(w) non-convex and gives rise to a high number of
local optima. Consequently, a numerical optimization method such as Gradient-Descent
(GD) is used for training. As it is very unlikely to locate a global optimum such that
E(w) = 0, ANNs realize a regression task. GD is the approach commonly used and
consists in relying on gradient information to iteratively update the parameters. Its batch
version is given by:

wt+1 = wt − ξ∇E(wt) (1.43)

where ∇E(wt) is the gradient of E evaluated on the whole training dataset. The sequen-
tial version of the GD algorithm considers to update the parameters once for each pair
(x(i), y(i)) of training data as follows:

wt+1 = wt − ξ∇Ei(w
t) (1.44)

The advantage of the sequential GD is the higher probability to escape local optima as a
local optimum for the whole training dataset is not necessarily a local optimum for each
of the training pairs [Bis06]. The magnitude of update is represented by ξ, called the
learning rate, that is treated as a hyper-parameter. Further variants of the GD algorithm
such as Adam take care of automatically adapting the learning rate during the search
[GBC16]. Initialization of the parameters is also often considered as a hyper-parameter
as initial values of the weights and biases have a strong impact on GD convergence.

Back-propagation
The back-propagation algorithm is used to evaluate the gradient ∇Ei for each parameter
[GBC16]. It relies on the derivation chain rule to propagate the difference between the
prediction and the target backwards in the network (from the output layer to the first
hidden layer). In order to present the back-propagation algorithm, let’s re-formulate the
2-layers ANN presented in Equation (1.40) as:

f̂(x;w, b) = w(2)Th(a(1)) + b(2) (1.45)

a(1) = W (1)x+ b(1) (1.46)

and let’s denote ŷ = f̂(x;w, b). In the new formulation, b(1) stands for the biases of the
hidden layer and b(2) stands for the bias of the output layer. First, the weights and biases
associated to the output layer are updated thanks to:

∇w(2)E = ∇ŷE . ∇w(2) ŷ = h(a(1)) (1.47)

∇b(2)E = ∇ŷE . ∇b(2) ŷ = 1 (1.48)

Then, the weights and biases associated to the hidden layer are updated thanks to:

∇W (1)E = ∇ŷE . ∇W (1) ŷ = (∇W (1)h)T . w(2) = (∇W (1)a(1))T . ∇a(1)h . w(2) (1.49)

∇b(1)E = ∇ŷE . ∇b(1) ŷ = (∇b(1)h)
T . w(2) = ∇a(1)h . w(2) (1.50)

Regularization
Over-fitting occurs in ANNs when the number mu of units is excessively large to represent
adequately the mapping f to be approximated. However, as the minimization of the sum-
of-square error is not carried out exactly, mu is not the only hyper-parameter affecting
the generalization capacity of the model. Regularization methods have been proposed to
reduce the generalization error [GBC16; Bis06].

21

The limitation of the capacity can be realized by forcing some parameters of the model
to be very small (weight decay) and consequently reducing artificially the number of units.
This can be done by applying a norm penalty to the error function such as:

Ẽ(w) = E(w) +
λdecay

2
||w||22 (1.51)

This is a particular case of parameter norm penalty called L2 parameter regularization.
The weight decay coefficient λdecay is treated as a hyper-parameter.

It can be shown that weight decay can also be realized implicitly by applying the
early stopping mechanism. This mechanism determines the number of GD iterations by
monitoring a validation error during training. When the validation error stops to decrease,
training is stopped and the best values of the parameters found so far are restored. Early
stopping is often coupled with cross-validation because a validation dataset is required.

Reducing the generalization error can also be performed by averaging the predictions
of an ensemble of models. Dropout offers an efficient approximation to ensemble averaging
by temporarily and randomly dropping hidden units during training [Sri+14]. Each unit is
therefore forced to learn from the data independently from other units and co-adaptation
is thus prevented. The probability of dropping units pdrop is treated as a hyper-parameter.

Hyper-parameters calibration
Calibrating the hyper-parameters of the model is an active field of research [SMS19]. Ap-
proaches from cross-validation to Bayesian optimization have been proposed.

Bayesian Neural Networks
The Bayesian treatment to Neural Network can not be addressed analytically and is in-
tractable for models of significant sizes [Bis06]. Indeed, as the model is non-linear with
respect to its parameters, the posterior distribution on the weights becomes non-Gaussian.
Variational inference proposes to approximate the posterior by a Gaussian distribution. In
Chapter 2, an approximation to Bayesian Neural Network based on Dropout is presented.

1.3.5 Analysis of the models

The linear models presented previously provide an acceptable model capacity but the
training that consists in inverting a matrix of size m2

b becomes expensive when the input
dimension is high. Indeed, according to the curse of dimensionality, the number of basis
functionsmb needs to grow rapidly when the input dimension d increases. The GPs such as
Ordinary Kriging provide a better model capacity than the linear models and the further
advantage to give a high predictive standard deviation far from the training input vectors.
However, the complexity of training a GP is O(n3) where n is the number of training
samples. Assuming that the hyper-parameters are determined appropriately, ANNs are
universal approximators. Their training is more scalable than the one of linear models
and GPs but they can not perform interpolation. ANNs viewed through the likelihood
point of view do not provide predictive standard deviation. Moreover, treating interesting
ANNs model through the Bayesian stance can only be realized through approximations
and expensive computations that make the predictive standard deviation tedious to obtain.

When choosing the surrogate model to tackle an expensive optimization problem, strin-
gent constraints arise. The training duration should stay controllable to prevent wasting
the budget. Therefore, the linear models may not be a good choice when the number of de-
cision variables is large as it is the case in the applications tackled in this thesis. Moreover,
for moderately expensive problems, the training set is expected to reach a moderate size
as the search proceeds thus training a GP model could be excessively costly yet. ANNs

22 Chapter 1. Parallel Surrogate-based Optimization

could be preferable regarding the computational cost of training but no uncertainty in-
formation can be exploited and over-fitting could occur. ANNs are known to be accurate
when a large training set is available and that is not the case for a restricted computational
budget.

Whether to employ a regression or an interpolation technique depends on the prior
knowledge about the landscape. A landscape soiled by noise could be better approximated
and optimized by a smoothed surface stemming from a regression model. An interpolation
technique applied to such a landscape could provoke over-fitting as the noise is learnt by
the approximation model. Conversely, a noise-free landscape should be approximated by
an interpolation technique as the prediction is guaranteed to be exact at the known points.

The likelihood approach provides generally a more computationally efficient training
than the Bayesian approach but at the expense of a risk of over-fitting and a less infor-
mative predictive variance.

1.4 Coupling Surrogates with Evolutionary Algorithms

1.4.1 Surrogate as an evaluator

Direct Fitness Replacement
The most straightforward way of coupling the surrogate to the EA is at the evaluation
step of the EA. This coupling is called Direct Fitness Replacement (DFR) in several lit-
erature reviews related to Surrogate-assisted Evolutionary Algorithms (SAEAs) [Dı́a+16;
SR10; Jin11; Jin05]. The main principle is to rely on the surrogate to evaluate the chil-
dren assuming that the surrogate predictions are comparable to the simulator outcomes in
terms of accuracy. For these methods, the population either contains exclusively predicted
candidate solutions or both predicted and simulated solutions.

No Evolution Control
The naive way to DFR is to totally replace the expensive simulator by the surrogate dur-
ing the search [Inn+15; SC04; LL05; Gon+06; Goe+07]. First, the surrogate is built on
the initial database of simulated candidates. Then, the EA is executed with the surrogate
only and the best candidate is re-evaluated by the simulator at the end of the search. The
naive approach to DFR is indicated when the simulation is extremely expensive [GFL08;
Gla+09]. More generally, the naive approach to DFR is successful when the surrogate is
a good representation of the expensive objective function. Indeed, a poor surrogate may
mislead the search and produce poor quality solutions. It is usually difficult to ensure
good prediction accuracy and updating the surrogate is generally considered to overcome
this difficulty [Dı́a+16].

Evolution Control
Using the surrogate in conjunction with the expensive simulator at the EA evaluation step
allows one to refine the surrogate during the search. In order to select the candidates that
are to be simulated rather than only predicted, a mechanism called Evolution Control is
introduced [JOS00; JOS01]. The diagram representing a P-SAEA with DFR and EC is
given in Figure 1.2.

An EC has two goals:

1. To determine the number of individuals that are simulated before updating the
surrogate;

2. To determine which are the most interesting individuals to simulate (promising in-
dividuals).

23

Figure 1.2: P-SAEA with Direct Fitness Replacement and Evolution Control.

24 Chapter 1. Parallel Surrogate-based Optimization

Regarding the first goal and according to the established taxonomy [Dı́a+16; Chu+19],
ECs for which the number of individuals to be simulated is predetermined are called fixed
ECs [DN07; JOS00; NKS98; Emm+02; ZWC14; NKS98]. The ECs that decide how
many individuals to simulate at execution time are called adaptive ECs [GV05; Ros+13;
JOS01; Mla+15; JS04; MM11]. Generally, when the surrogate is not accurate enough,
the number of individuals to simulate is increased in order to produce more new training
samples. Conversely, when the surrogate is accurate enough, the number of individuals
to simulate is decreased in order to save computational budget. If the EC decides at the
level of generations, it is qualified as generation-level [DN07; JOS01; MM11] while it is
said to be individual-level when the number of simulations is set per generation [JOS00;
NKS98; Ros+13; JS04].

Regarding the second goal, the definition of the promisingness relies on a comparison
operator >p that ranks the candidates. Generally, a promising candidate will be simulated,
and conversely, an unpromising candidate will be only predicted. It can be considered that
a high promisingness corresponds to a low predicted objective value (POV) (assuming min-
imization) [JOS00; NKS98; Ros+13]. It can also be decided that a high promisingness
relates to a high predictive uncertainty. In the former definition, exploitation is favored
since regions of the search space exhibiting low POVs are simulated more intensively and
the surrogate can thus gain precision in these areas [ZWC14; GV05; JOS01]. In the latter
definition, exploration is boosted since unexplored regions are simulated more thoroughly
and the surrogate can thus gain global accuracy. Only relying on exploitation may lead
to premature convergence while only enhancing exploration may miss any local optima
under the limited computational budget. ECs based on the surrogate are called informed
ECs. Not all ECs are informed as it can be stated that a high promisingness coincides to a
high distance to the database composed of the already simulated candidates (exploration-
oriented promisingness) [NKS98].

Acquisition Process
As shown in Figure 1.2, the EC is a component of a broader process called the Acquisi-
tion Process (AP). The AP is in charge of proposing new candidates for simulation. In
P-SAEAs, the AP relies on the selection and reproduction operators.

1.4.2 Surrogate as a filter

Indirect Fitness Replacement
Another way of integrating the surrogate into the EA is to use it as a filter to discard
candidates that are considered as unpromising. The surrogate acts at the initialization,
selection, reproduction or replacement step of the EA while the evaluation relies entirely
on the simulator. This integration is called Indirect Fitness Replacement (IFR) in several
literature reviews related to SAEAs [Dı́a+16; SR10; Jin11]. The main characteristic is
that the population carries only simulated individuals.

Informed operators
When incorporated at the reproduction step of the EA, the coupling is called informed
operators as the surrogate assists the reproduction operators to discard unpromising candi-
dates [SR10; Jin11; RH00; Syb+08; EGN06; LSS10]. The diagram representing a P-SAEA
with IFR by informed operators is given in Figure 1.3. In this context, the EC plays the
same role as in DFR.

25

Figure 1.3: P-SAEA with Indirect Fitness Replacement by informed operators.

Figure 1.4: Parallel Surrogate-Driven Algorithm.

26 Chapter 1. Parallel Surrogate-based Optimization

Figure 1.5: Probability of improving over the target value T (shaded area) given the
surrogate predictions. Figure extracted from [Jon01].

1.4.3 Surrogate as a driver

Surrogate-Driven Algorithms
Many surrogate-based methods, referred to as Surrogate-Driven Algorithms (SDAs), do
not consider to evolve a population from the beginning to the end of the search. Instead,
emphasis is on carefully acquiring new promising candidates to simulate. The surrogate
is at the heart of SDAs and constitute their rudder. The diagram representing a generic
P-SDA is given in Figure 1.4. As shown in Figure 1.4, the AP is driven by the surrogate
via an Infill Criterion that defines the promisingness of candidates. The IC is a real-valued
scalar function or a real-valued vector function that is optimized with the aim of acquiring
the most promising candidates. In the same way as the EC defines the promisingness in
P-SAEAs, the IC defines it in P-SDAs. Here, a database of simulated solutions is main-
tained and serves as a training dataset to update the surrogate. The cycle of sampling,
simulations and surrogate update is repeated until the computational budget is totally
spent.

Efficient Global Optimization
Efficient Global Optimization (EGO) proposed by Jones [JSW98; Jon01] is the most popu-
lar SDA. This state-of-the-art framework relies on Kriging as surrogate and the widespread
Probability of Improvement (PI) [Kus63] or Expected Improvement (EI) as IC. The PI
combines the POV f̂(x) and the predictive standard deviation ŝ(x) at a candidate x by:

PI(x) =

ΦN

(
T−f̂(x)
ŝ(x)

)
for ŝ(x) > 0

0 for ŝ(x) = 0
(1.52)

where ΦN is the cumulative distribution function for the normal law N (0, 1) and T is
the targeted objective. PI represents the probability of improving on T , that is the area
enclosed by the GP predictive distribution below the value of T [FSK08c] as shown in
Figure 1.5.

EI extends PI by integrating the amount of improvement as follows:

EI(x) =

(ymin − f̂(x))ΦN

(
ymin−f̂(x)

ŝ(x)

)
+ ŝ(x)ϕN

(
ymin−f̂(x)

ŝ(x)

)
for ŝ(x) > 0

0 for ŝ(x) = 0
(1.53)

27

where ymin is the best simulated objective value currently known and ϕN is the proba-
bility density function of N (0, 1). EI represents the expectation of the area enclosed by
the Gaussian distribution below the best simulated objective value ymin found hitherto
[FSK08c] (area below fmin in Figure 1.5). Over the search space, EI is high in regions
of improvement thus enhancing exploitation, and high in regions of high uncertainty thus
promoting exploration. EI is also high in regions that represent both a moderate degree
of improvement and uncertainty. Both EI and PI prevent re-sampling by having zero
value for already simulated candidates (i.e. candidates for which ŝ(x) = 0). In [Pal+22],
EGO with EI is notably employed to determine the parameters’ values of a Finite Element
model in order to best fit to the observations obtained by physical experiments.

q-points EGO
The EGO algorithm does not allow for parallel simulations as PI and EI are only capable of
proposing one new candidate per cycle. In [GRC10], the authors introduce the extension
of EI to q-points denoted q-EI. The analytical formulation of q-EI is only possible for
small values of q and a heuristic called Kriging Believer is introduced to overcome this
limitation. In Kriging Believer, q cycles are performed without new simulation. The
diversity of the candidates is ensured by updating the Kriging model based on the POV
of the last new candidates. The Kriging model is fully re-trained after the q simulations
are done.

1.4.4 Analysis of the couplings

In SDAs, the surrogate crucially impacts the search guiding as no guardrail exist. In
SAEAs, a deceptive surrogate would disorientate the search but the EA is in control and
may recover an adequate path. In a P-SAEA with DFR, the population potentially embeds
predicted individuals while in a P-SAEA with IFR, only simulated solutions constitute the
population. Consequently, the risk of misleading the search due to the surrogate inaccuracy
may be less pronounced for IFR than for DFR methods. In SDAs, the database is always
composed of simulated solutions but, for some actual APs such as q-EGO, the surrogate
is updated on a training set incorporating predicted candidates.

Selecting q candidates for parallel simulations implies the intervention of the reproduc-
tion operators, the EC and one surrogate training in P-SAEAs. In q-EGO, q maximizations
of EI and q+1 surrogate trainings are involved. The computational complexity of the AP
in q-EGO seems to be higher than the one of P-SAEAs, and hence, extending the question
of budget allocation over the tasks of simulation, surrogate training and AP.

The straightforward parallel model in P-SAEAs and P-SDAs is to simulate multiple
candidates simultaneously at the initialization and evaluation steps as depicted in Figure
1.2, Figure 1.3 and Figure 1.4. The number of new candidates issued per cycle is the
deciding factor to control the idling of computing cores. For instance, if the EC is fixed,
the number of simulations between two surrogate updates can be set as a multiple of the
number of computing cores [ZWC14]. If the EC is adaptive, issues regarding computing
load balancing may arise.

APs should be designed to efficiently use the computing cores but also to propose
new promising and well diversified candidates. In the next section, APs proposed in the
literature are reviewed.

28 Chapter 1. Parallel Surrogate-based Optimization

1.5 Related works

1.5.1 Computational budget

In almost all the scientific papers surveyed during this thesis, the computational budget
is set as a limited number of simulations [DN07; JOS00; LSS10; EGN06; Syb+08; MM11;
ZWC14; JS04; JOS01; GV05; LHS12; Bis+14; Li+10; MP11; WJD17; RS07]. This defini-
tion is only valid if the computational cost of surrogate training and prediction is negligible
compared to the computational cost of simulation. For moderately expensive problems,
this assumption might not hold. In this thesis, the computational budget for the search
is defined by a capped duration on a limited number of computing cores so as to take
the surrogate training into account. Moderately expensive problems are characterized by
a budget greater than 1000 simulations or a simulation lasting less than 5 minutes as it
is the case in [DN07; JOS00; JOS01; Mla+15; Emm+02; JS04; MM11; EGN06; LSS10;
GV05; Pol+00]. To the best of our knowledge, only one article [Ric+16] from the litera-
ture presents a budget defined as a capped number of computing cores during a limited
duration. In [Ric+16] 180 minutes on four cores are granted to the search. In this thesis,
a budget of 30 minutes on 18 computing cores is considered.

From the reviewed articles, it is tedious to derive knowledge about the suitability
of the surrogate-optimizer couplings with regard to the expensiveness of the problem.
In [GFL08; Gla+09], a SAEA without EC is invoked to optimize helicopter rotor blades
where one simulation lasts six hours. In [JSW98], an automotive-related problem involving
simulations of 20 hours is tackled by EGO. The SAEA with informed operators studied in
[LSS10] is applied to artificial problems with a budget capped to 100,000 real evaluations.
Another turbine blade optimization is carried out in [JOS01] where the SAEA with DFR
is employed for a budget limited to 2000 simulations. The ANN-assisted EA from [JOS00]
is tested on benchmark functions for a budget ranging from 150 to 1890 real evaluations.
The ANN-based SDA from [Pol+00] stops after 3000 simulations to design a sailing yacht
fin keel. Multiple ICs are integrated within EGO in [LHS12] and comparisons are based
on the minimization of the drag of an airfoil with computational budget ranging from 80
to 200 simulations.

1.5.2 Surrogate model selection

The surrogate models employed for moderately expensive problems are either ANNs
[DN07; JOS00; JOS01; JS04; MM11; GV05; Pol+00] or local models [Mla+15; Emm+02;
EGN06], while global models, Kriging, RBF (global or local) are preferred when tack-
ling more expensive problems [Chu+17; Jin11; GFL08; Gla+09; ZWC14; JSW98; LHS12;
Bis+14; WJD17; GFL08; Gla+09; Li+10; WJD17; RS07]. In particular, local Kriging
surrogates are used in [Emm+02] where the simulation time is one minute. A local sur-
rogate is a model trained on a sub-set of the database, in the neighborhood of a given
solution, in opposition to a global surrogate that is trained on the entire database. By
reducing the number of training samples, the training time is thus alleviated. In [JS04], a
problem characterized by 2000 simulations is tackled by a method relying on an ensemble
of ANNs. According to the comparisons performed in [Wan+16], relying on an ensemble
of surrogates to produce multiple candidates per cycle in P-SDAs may not produce bet-
ter results than a single-surrogate because it is difficult to predict which surrogates are
valuable. In [Bis+14], a packing profile optimization problem capped by 63 simulations is
raised by a P-SDA relying on a global RBF model.

29

It is more laborious to elicit insights about the surrogate model selection regarding to
the search landscape characteristics. Firstly, because it is hard to identify the landscape
features underlying the real-world applications. Secondly, because the published investi-
gations dedicated to surrogate comparison comprise a restricted range of surrogate model
types and/or few benchmark functions. In [Bre+18], Kriging, Random Forest, Support
Vector Regression and ensembles are confronted on a real-world application of an electro-
cardiography simulator tuning. The Kriging and the ensemble of surrogates, plugged in a
SDA, provide the best performances. The conclusions drawn in [Wan+16] indicate that
no one surrogate is better than the others in all cases. Support Vector Regression, Radial
Basis Neural Network, Kriging and ensembles are tested within EGO that is applied on
benchmarks and real-world problems.

1.5.3 Definition of promisingness

Metrics for exploration and exploitation
In [DN07], the promisingness is random as the switch between the simulator and the
surrogate is fixed arbitrarily at the generation-level in a SAEA with DFR. In [NKS98], the
EC suggests to simulate either the average candidate (non-informed), the candidate with
highest number of neighbors in the search space (non-informed, enhancing exploitation)
or the candidate with the best POV (informed, favoring exploitation). The POV is also
considered in [JOS00] where solutions exhibiting a lower POV are more promising for
the minimization problem, thus boosting exploitation. Most promising candidates are
those with higher predictive standard deviation delivered by the surrogate in the P-SAEA
with DFR highlighted in [ZWC14]. The surrogate predictive error is also used to trigger
the switch between simulator and surrogate in SAEAs with DFR in [MM11; GV05]. But
computing such error causes the consumption of the budget. In [Bis+14; RS05], a criterion
based on the distance between candidates is used to ensure diversification.

A large part of the reviewed articles considers to balance between exploitation and
exploration to define the promise of candidate solutions [Mla+15; LHS12; EGN06; RV20;
Emm+02; Syb+08; Jon01; Reh+18; JSW98; RS05; MS14; RS07; ONK03; Bis+14; Li+10;
MP11; WJD17]. The metrics usually used to promote exploration are the predictive stan-
dard deviation [Li+10; Reh+18; LHS12; Bis+14; EGN06; LHS12; RV20; Jon01; JSW98;
Mla+15; Emm+02; ZWC14; Syb+08] and the distance from the database of already sim-
ulated solutions [RS05; Bis+14; MS14; RS07]. Ensembles of surrogates either built locally
or globally are also used to favor exploration [WJD17].

Balancing exploration and exploitation
In EGO, the combination of the POV and the predictive standard deviation is realized
by scalarization as demonstrated by EI in Equation (1.53) and PI in Equation (1.52). In
[Reh+20], the IC consisting in minimizing the POV is compared to EI on multiple bench-
mark functions with different numbers of decision variables. According to the reported
results, the POV performs better than EI for problems of dimension 5+. Nevertheless,
it is stated that EI is to be preferred to deal with multi-modal problems for low com-
putational budget. Another popular IC is the Lower Confidence Bound (LCB) [EGN06;
LHS12; RV20]:

LCB(x) = f̂(x) + λlcb.ŝ(x) (1.54)

where λlcb ∈ [0, 3] defines the trade-off between exploration and exploitation. When
λlcb = 0, the IC is only defined by the POV thus only favoring exploitation. When
λlcb increases, the predictive standard deviation plays a more important role thus pro-
moting exploration [FSK08c]. LCB shows good performances compared to EI and PI
when integrated into a SAEA with informed operators and applied to multi-modal and

30 Chapter 1. Parallel Surrogate-based Optimization

flat problems with six decision variables [EGN06]. In [LHS12], multiple ICs are compared
within EGO to minimize the drag of an airfoil represented by 8 to 20 decision variables
and for budgets ranging from 80 to 200 simulations. While EI, PI, LCB and POV prove
to perform consistently well, defining the promisingness solely by maximization of the
predictive uncertainty appears to be unreliable.

The combination of exploration and exploitation can also be implemented via Pareto
dominance. In [Bis+14], the bi-objective IC consists in simultaneously minimizing the
POV and maximizing the predictive standard deviation. Since EI and PI assume that the
surrogate provides normally distributed predictions, the bi-objective IC provides the pos-
sibility to use different surrogates than GPs. Unfortunately, only Kriging is considered in
the paper. It is reported that the bi-objective IC outperforms EI and LCB on benchmark
problems with 5 or 10 decision variables.

Very few approaches consider to vary the definition of the promisingness during the
search. In [RS05], the proposed IC consists in minimizing the POV while keeping the
candidate at some distance from the database of already simulated solutions. At the
beginning of the search, the constraint is severe so as to promote exploration and it is
gradually relaxed to allow for more exploitation. Experiments realized on benchmark
functions with 2 to 6 decision variables show the method to be competitive with EGO. An
analogous SDA is presented in [MP11] where the IC consists in minimizing the POV over
specific regions of the search space. At the beginning of the search no specific regions are
defined so the search is global (exploration-oriented). Then, densely sampled regions are
identified and ignored, still favoring exploration. Finally, when no more improvement is
observed, only the densely-sampled regions are considered so that exploitation is favored.
The approach is validated on benchmark problems of 2 to 4 decision variables.

1.5.4 Acquisition processes for parallel simulations

Idling of computing cores
A main challenge in designing the AP of a P-SBOA is to efficiently use the available com-
puting cores. In P-SAEAs with fixed ECs, such as in [DN07; JOS00; Emm+02; Syb+08;
EGN06; LSS10; ONK03; MS14], the number of candidates to simulate per cycle should be
a multiple of the number of available computing cores to avoid idling [ZWC14]. For adap-
tive ECs, such as in [GV05; Ros+13; JOS01; Mla+15; JS04], the number of candidates to
simulate can vary from one cycle to another and appeal for asynchronous parallel simula-
tions. In the P-SAEA with informed operators proposed in [Syb+08], each computing core
generates and simulates a new candidate. The steady-state replacement strategy considers
one candidate at once [Tal09]. The advantage of this approach is to avoid idling of the
computing cores even in case of irregular number of simulations or heterogeneous simula-
tion duration. In the resembling method from [Bis+14], five simulations are run in parallel.

Diversification
Another important obstacle when designing the AP of a P-SBOA is to select a set of new
promising candidates diversified enough. Indeed, simulating too similar candidates wastes
the computational budget.

Conducting multiple optimizations is a first way to guarantee diversity. In q-EGO with
Kriging Believer, q optimizations of EI and q updates of the Kriging models are performed
to propose q new candidates. The value of q is limited to 10 in [GRC10]. In [Ric+16],
q-EGO is revisited by substituting EI by LCB and applied to calibrate a classification
model using four computing cores. In [SLK04], an EA with clustering and a GD with
multiple restarts optimize EI to produce up to eight new candidates.

31

Multiple surrogates can also ensure distinctiveness of new candidates. In [ONK03],
multiple local surrogates assist a memetic algorithm at the reproduction step. A memetic
algorithm is an EA where the reproduction operators are substituted by local searches
[Tal09; Zho+07; MC10]. A maximum of eight local RBF models are built and as many
local searches are launched, resulting in as many new candidates. In the P-SAEA outlined
in [AKG09], the population is divided into sub-populations, within which new candidates
are selected by means of a local RBF surrogate. In [Vil+13], multiple local searches
assisted by local Kriging models are carried out on multiple sub-regions of the search
space. A dynamic partitioning mechanism is employed, and hence, a maximum of six
candidates can be offered for parallel simulation. In [VHW13], ten optimizations of EI
are realized based on ten distinct global surrogates. In [Hor+15], multiple scalarizations
of the objectives is considered in a multi-objective P-SBOA. Up to four surrogates are
created (one per scalarization) thus producing four candidates for parallel simulations. In
[WJD17], multi-surrogates (local and global) and multiple definitions of promisingness are
used to propose three new candidates.

Relying on multiple definitions of the promisingness is another path to diversification.
In [BSK05], four LCB criteria with different values for λlcb are optimized to produce four
new candidates per cycle. In [Li+10], EI is divided into the local EI (first part of the sum
in Equation (1.53)) that favors exploitation and the global EI (second part of the sum
in Equation (1.53)) oriented towards exploration. Three candidates are selected via the
global EI and one from the local EI. In [AS16], five rules based on random sampling or
maximization of EI or distances in the search and objective spaces are utilized. Firstly,
a set of new candidates is generated by optimizing the surrogate POV or through local
search around the least crowded candidates. Secondly, the rules are applied to sample five
candidates.

The trade-off between converging to and escaping from local minima seems to be
properly addressed in the aforementioned articles, but the number of computing cores
seems to reach a ceiling of 10 units. More recent studies tackle this problem by adopting
multiple local searches as in [Wan+20a] where 128 computing cores are efficiently used
thanks to a gradient Monte-Carlo-based estimator of q-EI. Nonetheless, the approach is
only applied to benchmark problems from 2 to 6 decision variables. In this thesis, we
deal with problems of 16 decision variables and we employ up to 144 computing cores.
Moreover, all the studies listed in this sub-section are only concerned with very expensive
problems while we also address moderately expensive problems.

1.6 Problem instances

1.6.1 Covid-19 contact reduction

Simulating Infectious Disease Transmission and Control

The AuTuMN simulator is developed by a research group from the Department of Public
Health and Preventive Medicine at Monash University in Melbourne, Australia. A collab-
oration with the Australian research group has been initiated in the context of this thesis.
The code, publicly available at https://github.com/monash-emu/AuTuMN/, allows to im-
plement deterministic models of infectious disease epidemiology. Even if the simulator is
black-box, some insights are given about its internal functioning for informational pur-
poses.

https://github.com/monash-emu/AuTuMN/

32 Chapter 1. Parallel Surrogate-based Optimization

Figure 1.6: SEEIIR compartmental model for simulating Covid-19 transmission. Figure
extracted from [Cal+20].

Compartments
In AuTuMN, the individuals of the population under consideration are distributed onto
pre-defined compartments according to their disease state. The nature and number of
compartments as well as the flows between them are determined according to the disease
characteristics. For example, to simulate common cold transmission, one could choose the
SIS model made of two compartments (susceptible and infectious) and two possible flows
(from infectious to susceptible and from susceptible to infectious) [Het89]. Indeed, when
considering the common cold, no long-term immunity exists after recovery.

SEEIIR model
To simulate Covid-19, the proposed SEEIIR model depicted in Figure 1.6 is made of
six compartments: susceptible (S), non-infectious exposed (E1), infectious exposed (E2),
early actively infectious (I1), late actively infectious (I2) and recovered/removed (R).
The two exposed compartments (E1 and E2) correspond to the incubation period while
the two infectious compartments (I1 and I2) match the active phase of the disease. All
compartments are further stratified according to age with 5-years band strata from 0-4
years old to 70-74 years old and 75+ years old. The infectious compartments E2, I1 and I2
are additionally further stratified according to clinical status: asymptomatic, symptomatic
ambulatory not detected, detected, hospitalised and intensive care unit. Some quantities
are age-dependent such as the infection fatality rate (proportion of death among the
late actively infectious phase), hospitalisation risk and susceptibility to infection. Other
quantities depend on the clinical status such as the rate of transmission that is reduced for
the asymptomatic, detected, hospitalised and intensive care unit strata. The differential
equations governing the flows of individuals from one compartment to another can be
found in [Cal+20].

Some parameters of the model, such as the incubation period, the infectious period and
the risk of infection per contact, are considered for calibration by an adaptive Metropolis
algorithm [HST98]. The calibration targets such as the daily notification rate, intensive
care unit occupancy and cumulative infection-related deaths are communicated by the
local authorities of the studied country.

The outputs of the model are quantities presenting an interest for the epidemic follow-
up such as incidence, hospital occupancy, intensive care unit occupancy, mortality, sero-
positivity. All these quantities are computed based on the number of individuals in the
compartments and the inter-compartments flows.

Covid-19 contact reduction problem

At the beginning of the Covid-19 crisis, when no vaccines were available, governments of
the affected countries adopted different strategies to contain the spread of the virus. While
some countries imposed lockdown and physical distancing, others, bet on reaching herd
immunity by natural transmission. This approach has not proven to be effective during
the first two years of the epidemic [CH21], however, at the time, studying the possible

33

consequences of this strategy was of importance. Very recently, the new Omicron variant
of the coronavirus coupled with vaccines preventing health complications revive the debate
about herd immunity [Med22].

Problem formulation
The problem consists in optimizing the contact reduction strategy to minimize the number
of Covid-19-related deaths in Spain while reaching herd immunity. The Spanish population
is divided into 16 age-categories and the decision variables represent the contact mitigation
factors to apply to each category. For a decision vector x ∈ [0, 1]16, f1(x) represents the
number of deaths after the considered period and f2(x) ∈ {0, 1} is a boolean variable indi-
cating whether herd immunity has been reached. Both quantities f1 and f2 are obtained
via simulation. The optimization problem consists in finding x∗ such that:

x∗ = argmin
x∈[0,1]16 s.t. f2(x)=1

f1(x) (1.55)

Handling constrained problems in EAs can be realized by different means [Mic+96]:

• Repair of infeasible candidates;

• Reproduction operators to ensure feasibility;

• Rejection of infeasible candidates;

• Adding feasibility as an objective;

• Penalization of infeasible candidates.

According to the guidelines given in [Mic+96], repairing is a problem-dependent method
that consists in converting an infeasible candidate into a feasible one. Another problem-
dependent approach is to design specific reproduction operators to guarantee the feasibility
of the new candidates. For our problem, it is not known how to generate feasible candidates
so designing repairing operators or specific reproduction operators is impossible. Rejecting
infeasible candidates may work well only if the feasible part of the search space is convex
and represents a large proportion of the whole search space. In our case, this information
is not available, besides, rejecting infeasible individuals would prevent to keep knowledge
about the infeasible region location. Diversely, a measure accounting for the amount
of infeasibility can be considered as an additional objective to the problem. However,
adding the feasibility as an objective would make the problem more complex as a boolean
objective would be added. For the Covid-19 contact reduction problem, we opt for the
penalization of the infeasible candidates. The penalty value is set to the approximate
Spanish population size (46,000,000) as it is an upper bound for f1. A higher value
would more likely prevent the search to visit the boundary region between the feasible
and infeasible search spaces.

Therefore, the problem is re-formulated as an unconstrained optimization problem
by applying a penalty to the objective f1 when herd immunity is not reached. The re-
formulated problem consists thus in finding x∗ such that:

x∗ = argmin
x∈[0,1]16

f̃(x) (1.56)

where:

f̃(x) =

{
f1(x) if f2(x) = 1

f1(x) + 46, 000, 000 if f2(x) = 0
(1.57)

34 Chapter 1. Parallel Surrogate-based Optimization

Simulation
The contact reduction strategy impact is simulated in three phases. First, the past dy-
namic of the epidemic is analysed by calibrating uncertain parameters according to past
information. Second, the contact reduction strategy is applied. Finally, restrictions are
lifted and epidemic resurgence is tested.

The degrees of contact between age-categories are integrated into the model through
the contact matrix C provided by [PCJ17]. Ci,j is the average number of contacts per
day that an individual of age-group j makes with individuals of age-group i. The decision
variables representing the mitigation factors are applied to matrix C such that Ci,j is re-
placed by xi.xj .Ci,j . A decision variable xi set to zero impedes any contact to individuals
from age-category i.

Prior on the landscape
According to the research group developing AuTuMN, the search landscape provided by
the simulator is expected to be quite smooth as no discontinuity nor brutal variations are
foreseen. Some regions with similar objective values may exist as, for instance, the contact
of young children should not affect significantly the simulator outcomes. Multiple local
optima with different objective values are also expected.

1.6.2 Analytical benchmark functions

Additionally to the Covid-19 contact reduction problem, three scalable artificial bench-
mark functions are proposed to test the P-SBOAs on landscapes presenting features known
to be hard to optimize. Since the real-world application consists of 16 decision variables,
it is decided to keep this number for the artificial problems.

The Schwefel function, notably used in [DTC17; Ber+19; BSK05], writes:

Fsch(x1, . . . , x16) =418.9828872724338 ∗ 6−
16∑
i=1

xi sin (
√
|xi|)

for xi ∈ [−500, 500]
Fsch(x

∗
1, . . . , x

∗
16) =F (420.9687, . . . , 420.9687) = 0

(1.58)

It is classified as multi-modal with weak global structure in the Black-Box Optimization
Benchmarking 2009 [Han+10]. Multi-modality stands for a high number of local optima
implying multiple basins of attraction where the search may get stuck. The weak global
structure refers to a landscape with no exploitable underlying structure. Roughly speaking,
smoothing the landscape would not provide meaningful information about the localisation
of the optimum. The graph of the 2-D variant of the Schwefel function displayed in Figure
1.7 illustrates this fact as smoothing would result in a flat surface.

The Rastrigin function, used in [MS14; Hor+15; DTC17; WJD17; ONK03; HGW19;
Ber+19; Wan+16; Tia+19; Reh+18; BSK05], is defined by:

Fras(x1, . . . , x16) =160 +

16∑
i=1

x2i − 10 cos (2πxi)

for xi ∈ [−5.12, 5.12]
Fras(x

∗
1, . . . , x

∗
16) =F (0, . . . , 0) = 0

(1.59)

35

Figure 1.7: Search landscape provided by the 2-D Schwefel function.

It is qualified as multi-modal with strong global structure in [Han+10]. Removing the
asperities of the Rastrigin landscape would result in an adequate landscape where the
global optimum corresponds to the global optimum of the original function. For the sake
of example, the graph of the 2-D Rastrigin function is displayed in Figure 1.8. By removing
the asperities from the surface shown in Figure 1.8, the resulting landscape would present
a unique basin of attraction easier to optimize.

The Rosenbrock function, used in [JOS01; JOS00; DTC17; WJD17; Li+10; HGW19;
Ber+19; Wan+16; Tia+19; SLK04; Reh+18; BSK05], is given by:

Fros(x1, . . . , x16) =

15∑
i=1

100(x2i − xi+1)
2 + (xi − 1)2

for xi ∈ [−5, 10]
Fros(x

∗
1, . . . , x

∗
16) =F (1, . . . , 1) = 0

(1.60)

It is categorized as ill-conditioning in [Han+10]. Ill-conditioning refers to a condition
number of the Hessian that indicates strong variation of the objective value in different
directions in the search space. Ill-conditioned problems are hard to solve by GD. The
Rosenbrock 2-D landscape, displayed in Figure 1.9, exhibits a curved valley characterized
by low objective values and walls characterized by higher objective values. The global
optimum lies in the curve of the valley. The valley-like feature makes GD oscillating on
both sides while the curvature prevents the gradient to point out in the direction of the
global optimum.

According to the expectations communicated by the AuTuMN research group, the
landscape associated to the Covid-19 contact reduction problem may exhibit similar char-
acteristics than those provided by the Schwefel and Rastrigin problems with respect to
multi-modality. It can also present regions with similar objective values such as the Rosen-
brock function.

In this thesis, no further landscape analysis is performed on the Covid-19 problem
prior to the optimization. The reason is the constraint makes difficult to identify feasible
candidates at the initial sampling step. Nevertheless, landscape analysis is performed a
posteriori when a good amount of feasible simulated solutions are available.

36 Chapter 1. Parallel Surrogate-based Optimization

Figure 1.8: Search landscape provided by the 2-D Rastrigin function.

Figure 1.9: Search landscape provided by the 2-D Rosenbrock function.

Chapter 2

Parallel Surrogate-assisted
Evolutionary computations

Contents

2.1 Introduction . 39

2.2 BNN MCD as an evaluator and a filter 39

2.2.1 Bayesian Neural Network approximated via Monte-Carlo Dropout
(BNN MCD) . 39

2.2.2 Surrogate as an evaluator and a filter (SaaEF) 42

2.3 Ensembles of Evolution Controls 44

2.3.1 Random and scalar ECs . 44

2.3.2 Pareto-based bi-criterion ECs . 45

2.3.3 Dynamic ensembles . 46

2.3.4 Adaptive ensembles . 48

2.3.5 Voting committees . 49

2.4 Comparison of Surrogates . 49

2.4.1 Calibration of BNN MCD . 49

2.4.2 Surrogates on the benchmark . 52

2.5 Experiments . 54

2.5.1 Computational budget . 54

2.5.2 Calibration of SaaEF . 54

2.5.3 Experimental protocol . 55

2.5.4 Empirical analysis . 55

2.6 Conclusion . 60

Related publications:

• Briffoteaux Guillaume, Ragonnet Romain, Mezmaz Mohand, Melab Nouredine, Tuyt-
tens Daniel. ”Evolution Control for parallel ANN-assisted simulation-based op-
timization application to Tuberculosis Transmission Control” in Future Genera-
tion Computer Systems, 2020, Vol. 113, Pages 454-467, ISSN 0167-739X. https:
//doi.org/10.1016/j.future.2020.07.005

• Briffoteaux Guillaume, Ragonnet Romain, Mezmaz Mohand, Melab Nouredine, Tuyt-
tens Daniel. ”Evolution Control Ensemble Models for Surrogate-Assisted Evolu-
tionary Algorithms”, in HPCS 2020 - International Conference on High Perfor-
mance Computing and Simulation, 22-27 March 2021, Online conference. https:

//hal.inria.fr/hal-03332521

37

https://doi.org/10.1016/j.future.2020.07.005
https://doi.org/10.1016/j.future.2020.07.005
https://hal.inria.fr/hal-03332521
https://hal.inria.fr/hal-03332521

38 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

• Briffoteaux Guillaume, Ragonnet Romain, Mezmaz Mohand, Melab Nouredine, Tuyt-
tens Daniel. ”Towards Dynamic Selection of Evolution Controls in Parallel Bayesian
Neural Network-assisted Genetic Algorithm” in OLA’2020 - International Confer-
ence on Optimization and Learning, Feb 2020, Cádiz, Spain. https://hal.inria.
fr/hal-02867819

• Briffoteaux Guillaume, Melab Nouredine, Mezmaz Mohand, Tuyttens Daniel. ”An
adaptive evolution control based on confident regions for surrogate-assisted optimiza-
tion” in HPCS 2018 - International Conference on High Performance Computing and
Simulation, Jul 2018, Orléans, France. https://hal.inria.fr/hal-01922708

https://hal.inria.fr/hal-02867819
https://hal.inria.fr/hal-02867819
https://hal.inria.fr/hal-01922708

39

2.1 Introduction

The objective of this chapter is to study the design and applicability of P-SAEAs to
moderately expensive problems. A coupling between a Bayesian Neural Network and an
EA is highlighted and multiple definitions of the promisingness of candidate solutions are
proposed to set up the balance between exploration and exploitation.

Section 2.2 presents the Bayesian Neural Network approximated via Monte-Carlo
Dropout (BNN MCD) that is subsequently attached to the EA. The coupling is realized
by frequently substituting the simulator by the surrogate and by employing the surrogate
as a filter (SaaEF). The frequency of substitution along with the filtering criterion are set-
tled by the EC, the key component of P-SAEAs. Ensembles of ECs, enabling the dynamic
definition of the promisingness during the search, are suggested and detailed in Section
2.3.

Section 2.4 focuses on surrogates from the training time and predictive capacity points
of view. Conceptually bearing both the advantages of ANNs and GPs, BNN MCD is
calibrated and empirically compared to well-known models.

One primary goal of this chapter is to identify the adequate surrogate and EC to be
harnessed in P-SAEA with SaaEF. In Section 2.5, intensive numerical experiments are
conducted on optimization problems characterized by varying landscape features recog-
nized tedious to manage. An expensive real-world constrained problem of Covid-19 contact
reduction is notably dealt with. Finally, Section 2.6 draws the conclusions of this chapter.

2.2 BNN MCD as an evaluator and a filter

2.2.1 Bayesian Neural Network approximated via Monte-Carlo Dropout
(BNN MCD)

Base principle
The BNN MCD is an ANN trained with Dropout and that employs the Monte-Carlo
Dropout technique to provide both the POV and the predictive standard deviation. As
depicted in Figure 2.1, Monte-Carlo Dropout randomly samples nsub sub-networks from
the ANN and calculates the average f̂ and the standard deviation ŝ of the POV according
to the following formulas:

f̂(x) =
1

nsub

nsub∑
i=1

f̂i(x) (2.1)

ŝ(x) =

√√√√ 1

nsub

nsub∑
i=1

(f̂i(x)− f̂(x))2 (2.2)

where f̂i is the POV of the candidate x from the i-th sub-network.

Training
The training of BNN MCD is detailed in Algorithm 2. Let:

f̂(x) = w(2).h(W (1).x) (2.3)

be the prediction for input x from a one-hidden-layer ANN with activation function h().
W (1) is the matrix of weights associated to the connections from the input layer to the
hidden layer and w(2) is the vector of weights associated to the connections from the
hidden layer to the 1-D output layer. Training with Dropout consists in minimizing the

40 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

Figure 2.1: Illustration of Monte-Carlo sampling of nsub = 3 sub-networks from a one-
hidden-layer ANN. In this example, the decision vector x is 2-dimensional and f̂i(x) is
the POV according to sub-network i.

error between the predictions and the targets by applying GD [Rud16] on the following
network:

f̂(x) = ϵ(1)⊙w(2).h(diag(ϵ(1)).W (1).x) (2.4)

Vector ϵ(1) is randomly sampled at each training iteration from a Bernouilli law with

probability pdrop. Let’s assume ϵ
(1)
i = 0, then multiplying diag(ϵ(1)) by W (1) zeros out

the i-th row of W (1). In other terms, the weights connected to the i-th neuron of the
hidden layer are not updated during this training iteration. The same principle applies to
ϵ(1)⊙w(2) where ⊙ symbolizes the component-wise product. Dropout shows up at lines
7 to 10 in Algorithm 2. It allows to drive each neuron to perform well independently
from the remaining ones. In other terms, it prevents some neurons to strive correcting
the mistake provoked by another ones (co-adaptation) [Sri+14]. At prediction, nsub sub-
networks are sampled from the entire ANN in the same way than Dropout [Gal16]. The
algorithm for predicting through Monte-Carlo Dropout with a one-hidden-layer ANN is
given in Algorithm 13 in Section B of the appendix.

The capped computational budget granted to the optimization renders impractical the
composition of a validation set. A 2-fold cross-validation is adopted to overcome this
difficulty [FSK08a]. At line 2 of Algorithm 2, the training set is divided in two parts
(X0,y0) and (X1,y1). During the first iteration of the for-loop in line 3, (X0,y0) is used
as a training set and (X1,y1) as a validation set. During the second iteration, the role of
both sets are reversed.

The early stopping mechanism stops the training when the error between the predic-
tions and the targets, computed over the current validation set, has not decreased by at
least δES during nES iterations. Early stopping helps preventing over-fitting by restoring
the best parameters found so far [GBC16] and appears in lines 6, 13 and 17 in Algorithm 2.

Advantages and drawbacks
Monte-Carlo Dropout can be affiliated to [WJD17] where the predicted uncertainty arise
from the diversity of surrogates in use. In [WJD17], updating the ensemble of surro-
gates requires as many trainings as surrogates whereas only one training is necessary for
BNN MCD.

In [Syb+08], it is stated that ANNs are appropriate for substituting rugged objective
functions with limited training sets. By its top-notch similarity with ensembles of ANNs,
BNN MCD is expected to offer good predictive capacity.

41

Algorithm 2 Dropout training with one-hidden-layer ANN

Input
(Xtrain,ytrain): training set
pdrop: probability of dropping out neurons
GD : Gradient Descent algorithm
(δES , nES): early stopping parameters
h(): activation function
λdecay: weight decay parameter
l: weight initialization parameter
max epoch: maximum number of epochs

1: (W (1),w(2))← initialize weights(N (0, l))
2: (X0, X1,y0,y1)← partition 2 fold(Xtrain,ytrain)
3: for i ∈ {0, 1} do ▷ 2 fold cross-validation
4: early stopping ← false
5: iter ← 0
6: while (not early stopping) & (iter < max epoch) do
7: ϵ(1) ← Bernouilli sampling(pdrop)
8: preds← ϵ(1)⊙w(2).h(diag(ϵ(1)).W (1).Xmod(i,2))
9: loss ← compute MSE weight decay(preds, ymod(i,2), λdecay)

10: (diag(ϵ(1)).W (1), ϵ(1)⊙w(2))← backpropagation update(loss, GD)
11: preds ← w(2)⊙h(W (1).Xmod(i+1,2))
12: loss ← compute MSE weight decay(preds, ymod(i+1,2), λdecay)
13: early stopping ← update early stopping(loss, δES , nES)
14: iter ← iter+1
15: end while
16: end for
17: (W (1),w(2))← restore best weights()
18: return (W (1),w(2))

42 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

It is proven in [Gal16] that BNN MCD is a computationally efficient approximation
to Bayesian learning [Gra11]. The gain with respect to traditional ANNs is the acces-
sibility of the predictive uncertainty. Nonetheless, the predictive standard deviation is
derived approximately thus its informativeness should be investigated. To the best of our
knowledge, BNN MCD has only been used as a surrogate model in a pre-print article not
peer-reviewed yet [Lin+18].

2.2.2 Surrogate as an evaluator and a filter (SaaEF)

The general P-SAEA framework where the surrogate is used both as an evaluator and
a filter is depicted in Figure 2.2. The algorithm begins by sampling the search space
through a LHS to produce a set of initial candidates that are simulated in parallel to cre-
ate a database and an initial population (1). At this point, the population is exclusively
composed of simulated candidates but it will also be allowed to embed predicted candi-
dates in the following steps. Conversely, the database is intended to only accumulate the
simulated candidates along with their simulated objective values. The database serves as
a basis to constitute the training set used to build the surrogate (2). Next to the initial
surrogate building, cycles are repeated until the computational budget allocated to the
search is over. One cycle consists of the following subsequent operations: AP, simula-
tions, surrogate update, predictions and replacement. The AP (delimited by a doted line
in Figure 2.2) begins with the selection of parent candidates from the population via a
tournament selection of size nt = 2. The population of parents undergoes reproduction
(3), giving birth to a set of new candidates (4). The SBX cross-over and the polynomial
mutation are considered as reproduction operators. The mutation operator is systemati-
cally applied to one decision variable at least, so as to restrict the possibility of re-visiting
already proposed candidates [RK17; Ron98; YC09; LYC21]. Thereafter, the EC divides
the set of new candidates into three batches (5). Candidates assessed as promising by
the EC constitute the batch to simulate, less promising candidates compose the batch to
predict and non-promising solutions are discarded. Afterwards, the batch to simulate is
processed in parallel (6) and the surrogate is updated (7). The batch to predict is then
estimated with the updated surrogate (8). Elitist replacement including the simulated
and predicted candidates as well as the current population is carried on to constitute the
new population, probably composed of both simulated and predicted candidates (9). The
general framework of EA, the LHS, the tournament selection as well as the SBX cross-over
and polynomial mutation operators are described in Sub-section 1.2.2.

The SaaEF framework is a DFR method because the surrogate is used as an evaluator,
and consequently, the population may embed both simulated and predicted candidates
such as in [JOS00]. Our approach is also an IFR method as the surrogate informs the re-
production operators to filter out unpromising candidates as in [SR10; EGN06; Emm+02].
To the best of our knowledge, employing the surrogate both in a direct and indirect re-
placement mode has not been inspected.

The detailed algorithm of the proposed SaaEF is presented in Algorithm 14 in Section
B of the appendix. The input arguments of the algorithm must respect some constraints to
ensure the well functioning of the method. First, since the reproduction operators generate
two children from two parents, the number of new candidates generated per cycle nchld

must be even:
It must exist k ∈ N∗ such that nchld = 2.k (2.5)

Besides, it is assumed that the number of simulations q, predictions npred and discardings
ndisc per cycle sum to the number of new candidates:

nchld = q + npred + ndisc (2.6)

43

Figure 2.2: SaaEF framework. The ellipses represent the sets of candidate solutions along
with their objective values or not, while the rectangles stand for the operators.

44 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

Finally, the number of simulations should be a multiple of the number of computing cores
to avoid the idling of cores:

∃k′ ∈ N∗ such that q = k′.ncores (2.7)

where ncores is the number of available computing cores for the search. The parallel
approach consisting in running multiple simulations in parallel is inspired from [JOS01].

2.3 Ensembles of Evolution Controls

Hereafter, existing ECs are highlighted and replicated for comparison with our proposals
of ensembles that feature a variation of the definition of promisingness during the search.

2.3.1 Random and scalar ECs

The simplest way of defining the EC is to randomly ordering the candidates. This strategy,
referred to as rand in this thesis, has been studied in [JOS00]. In [JOS00], it is also
envisioned to rely on the POVs of the candidates. The associated EC, denoted pov, favors
exploitation and is given by:

x(1) >p x
(2) if f̂(x(1)) < f̂(x(2)) (2.8)

Relying only on the surrogate predictive standard deviation provides an EC favoring ex-
ploration, denoted stdev :

x(1) >p x
(2) if ŝ(x(1)) > ŝ(x(2)) (2.9)

Another mean of boosting diversification is to consider the distance from the database of
already simulated solutions:

x(1) >p x
(2) if d2(x

(1), database) > d2(x
(2), database) (2.10)

where d2(., .) is the Euclidean distance. This EC is denoted dist in the following. Accord-
ing to the literature review presented in Sub-section 1.5.3, it is rare to employ stdev and
dist alone in SBOAs.

To adjust the trade-off between exploration and exploitation, bi-criterion ECs relying
on the POV f̂ and the predictive standard deviation ŝ are introduced. EI [JSW98], PI
[Kus63] and LCB [EGN06], defined by Equations (1.53), (1.52) and (1.54) respectively,
are the three most known scalarized bi-criterion ECs. The EC based on EI is referred to
as ei and is given by:

x(1) >p x
(2) if EI(x(1)) > EI(x(2)) (2.11)

The EC relying on PI is denoted pi and is specified by:

x(1) >p x
(2) if PI(x(1)) > PI(x(2)) (2.12)

The EC employing LCB is called lcb and is set by:

x(1) >p x
(2) if LCB(x(1)) < LCB(x(2)) (2.13)

In the experiments, λlcb = 1 as it is the case in [Emm+02].

45

2.3.2 Pareto-based bi-criterion ECs

Alternatively to scalarization, Pareto dominance between intensification and diversifica-
tion can be envisioned. Familiarity with Pareto dominance is assumed in this sub-section.
If it is not the case, a background in multi-objective optimization is provided in Appendix
C.

It is first proposed to simultaneously minimize the POV and maximize the predictive
uncertainty and use the crowding distance cd() to distinguish between solutions with the
same Non-Dominated Rank (NDR):

x(1) >p x
(2) if

NDR(x(1)) < NDR(x(2)) or

[NDR(x(1)) = NDR(x(2)) and cd(x(1)) > cd(x(2))] or

[NDR(x(1)) = NDR(x(2)) and cd(x(1)) = cd(x(2)) =∞ and f̂(x(1)) < f̂(x(2))]

when minimizing the POV and maximizing the predictive uncertainty.

(2.14)

The fourth line in (2.14) allows to distinguish between the two extreme solutions of a
Non-Dominated Front (NDF). When the predictive uncertainty is the predictive standard
deviation, the EC is designated as par-fs-cd and when the predictive uncertainty is the
distance to the database, the EC is denoted par-fd-cd. It is also suggested to use the
hyper-volume contribution hvc() to distinguish between solutions with the same NDR:

x(1) >p x
(2) if

NDR(x(1)) < NDR(x(2)) or

[NDR(x(1)) = NDR(x(2)) and hvc(x(1)) > hvc(x(2))]

when minimizing the POV and maximizing the predictive uncertainty.

(2.15)

Two exceptions apply to the rule (2.15): the candidate with the lowest POV is the over-
all most promising one and the candidate with the highest predictive uncertainty is the
second most promising one. When the predictive uncertainty is the predictive standard
deviation, the EC is denominated par-fs-hvc and when the predictive uncertainty is the
distance to the database, the EC is called par-fd-hvc.

A similar method is suggested in [Tia+19]. Assuming nNDF fronts when minimizing
both the POV and the predicting standard deviation, the most promising candidates are
those of NDR 1, then those of NDR nNDF and at last the promisingness decreases from
NDR 2 to NDR (nNDF − 1). Unlike our approaches, no further criterion is envisioned to
distinguish between candidates with the same NDR. The IC from [Tia+19], called par-
tian-fs, is illustrated in Figure B.1 in Section B of the appendix. Its conversion to EC is
straightforward, and hence, it is reproduced for comparison purposes and formalized as
follows:

x(1) >p x
(2) if

[NDR(x(1)) = 1 and NDR(x(2)) ̸= 1] or

[NDR(x(1)) = nNDF and NDR(x(2)) /∈ {1, nNDF }] or
[NDR(x(1)) < NDR(x(2)) and NDR(x(1)), NDR(x(2)) /∈ {1, nNDF }]
when minimizing both the POV and the predictive standard deviation.

(2.16)

46 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

We further extend the EC by replacing the predictive standard deviation by the distance
to the database and referred to the new EC as par-tian-fd. According to [Tia+19], the
advantage of using Pareto-based bi-criterion ECs compared to EI is twofold: they are
better than EI for search spaces of high dimension and the surrogate must not necessarily
provide a Gaussian prediction.

The Pareto-based bi-criterion and other ECs that are empirically investigated in this
thesis are listed in Table 2.1.

2.3.3 Dynamic ensembles

The exploration/exploitation compromises determined by the ECs introduced previously
are static all along the search. We now introduce dynamic ensembles of ECs that modify
the balance according to the computational budget consumption. Such dynamism appears
in SDAs, for instance, in [RS05]. Nonetheless, to the best of our knowledge no analogous
strategies have been contemplated in SAEAs.

In the exclusive ensembles, only one EC is active at a time. Let E1, . . . , EnEC be nEC

ECs either single-criterion or Pareto-based bi-criterion ECs and 0 < p1 < · · · < pnEC−1 < 1
some user-defined parameters. The dynamic exclusive ensemble strategy consists in switch-
ing from Ei to Ei+1 as soon as a proportion pi of the budget has been spent. At the begin-
ning of the search, the first EC (E1) is activated. In [RS05], a distance-based constraint
is attached to the IC to gradually reducing exploration. Our proposals are an attempt to
translate the IC from [RS05] into an EC with the benefit of enabling any ECs to build the
ensemble. The ten dynamic exclusive ensembles participating in the further experiments
are listed in Table 2.2.

In the dynamic inclusive ensemble strategy, two single-criterion ECs, denoted E1 and
E2, work concurrently. The search is arbitrarily divided into 5 equal periods, each coincid-
ing to a proportion of 20% of the total computational budget. To each period corresponds
different participation rates for E1 and E2 in the building of the batches. The participa-
tion rate of E1 decreases as the search proceeds while the one of E2 increases. During the
first period, only E1 is activated. During the second period, E1 participates at 75% and
E2 at 25%. During the third period, both ECs cooperate at 50% and, during the fourth
period, E1 participates at 25% and E2 at 75%. Finally, during the last period only E2 is
activated.

The implementation for the second period is presented in Algorithm 3. In Algorithm
3, each EC generates a list of indexes corresponding to the ordering of the new candidates
according to decreasing promise. These two lists are called L1 and L2. The first 0.75 ∗
q indexes from L1 are appended to L and removed from L1 and from L2. Then, the
first 0.25 ∗ q indexes from L2 are appended to L and removed from L2 and from L1 if
necessary. The same operations are repeated for the next npred candidates and, finally, for
the last ndisc candidates so that the three batches are formed. Our inclusive ensembles can
be related to [AS16] where multiple rules act simultaneously to choose new candidates.
However, the participation rate of the multiple criteria is steady in [AS16]. The four
dynamic inclusive ensembles implemented and tested in this study are compiled in Table
2.2.

47

Algorithm 3 Second period in dynamic inclusive ensemble strategy.

Input
E1: first evolution control
E2: second evolution control
Pc: population of new candidates
q: number of simulations per cycle
npred: number of predictions per cycle
ndisc: number of discardings per cycle

1: L1 ← sort indexes(E1, Pc)
2: L2 ← sort indexes(E2, Pc)
3: L← ∅
4: for n ∈ {q, npred} do
5: L.append(L1(1 : int(0.75 ∗ n))
6: L1 ← L1\L
7: L2 ← L2\L
8: L.append(L2(1 : int(0.25 ∗ n))
9: L1 ← L1\L

10: L2 ← L2\L
11: end for
12: L.append(L1)
13: Bsim ← Pc(L(1 : q)) ▷ Batch to simulate
14: Bpred ← Pc(L(q + 1 : q + npred)) ▷ Batch to predict
15: Bdisc ← Pc(L(q + npred + 1 : q + npred + ndisc))
16: ▷ Batch to discard
17: return Bsim,Bpred,Bdisc

48 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

2.3.4 Adaptive ensembles

The adaptive ensembles of ECs remove the need for the user to fix the parameters account-
ing for the switch or the participation rate in dynamic exclusive and inclusive ensembles
respectively. Moreover, the transition from exploration to exploitation (or from exploita-
tion to exploration) is not compelled to be one-way and is allowed to divert.

In our adaptive ensemble of ECs, only one EC is active at a time and the switch is
regulated by a stagnation detection mechanism and a reward mechanism.

The stagnation detection mechanism is similar to early stopping used in ANN training
in Sub-section 2.2.1. After 8 batches without improvement greater than 10−8, the EC
is swapped. The ”patience” parameter and the minimum improvement value have been
arbitrarily chosen.

The reward mechanism, exposed in Algorithm 4, follows the stagnation detection by
electing which EC is to be activated. At each batch of candidates, all the ECs are rewarded
or penalized according to the error between the simulated objective values and the POVs
(line 1 of Algorithm 4). By comparison to a threshold (line 2), a small (resp. large) error
produces a reward (resp. penalty) for the active EC and the ECs that would have decided
to simulate, and deliver a penalty (resp. reward) for the remaining ECs. The threshold is
the average squared error on the previous batch (line 11) and the amount of reward is the
hyperbolic tangent of the square difference between the error and the threshold (line 2).
In Algorithm 4, a component of the reward vector r can be negative and thus designates a
penalty. After an EC switch, the accumulated rewards of each EC is set back to zero. The
reward mechanism follows the future research direction pointed out in [Chu+19] according
to which surrogate accuracy should be utilized to design ECs.

Algorithm 4 Reward mechanism in adaptive ensemble of two ECs.

Input
Ea: currently activated evolution control
Ed: currently deactivated evolution control
ra: current accumulated reward of Ea

rd: current accumulated reward of Ed

q: number of simulations per cycle
La: simulated candidates of the batch, as decided by Ea

Ld: candidates of the batch that would have been simulated by Ed

f : simulated objective values of the batch
f̂ : predicted objective values of the batch
t: current threshold

1: e← (f − f̂)2

2: r ← tanh(t− e) ▷ ri > 0⇔ ei < t
3: for 1 ⩽ i ⩽ q do
4: ra ← ra + ri
5: if Ld[i] is in La then
6: rd ← rd + ri
7: else
8: rd ← rd − ri
9: end if

10: end for
11: t← 1

q

∑q
i=1 ei

12: return t, ra, rd

49

The existing adaptive ICs from [Wan+20b] are translated into ECs for comparison
purposes. The first EC, referred to as ada-wang-max, is defined as follows:

x(1) >p x
(2) if

fada-wang-max(x
(1)) < fada-wang-max(x

(2))

where:

fada-wang-max(x) = (1− α)
f̂(x)

maxc∈B f̂(c)
− α

ŝ(x)

maxc∈B ŝ(c)

and

α = −1

2
cos

(
bs
b
π

)
+

1

2

(2.17)

where B is a batch of new candidates, bs is the amount of computational budget already
spent and b is the total budget. The second EC, designated as ada-wang-min, is obtained
by minimizing the term containing the predictive standard deviation as follows:

fada-wang-min(x) = (1− α)
f̂(x)

maxc∈B f̂(c)
+ α

ŝ(x)

maxc∈B ŝ(c)
(2.18)

At the beginning of the search α ≈ 0 and both ECs consider as promising the solutions
minimizing the POV. As the search proceeds, α → 1 and more importance is given to
the predictive standard deviation. For ada-wang-max, the predictive standard deviation
is maximized thus exploration is favored while it is minimized in ada-wang-min thus
enhancing exploitation of regions with low predictive uncertainty.

The four adaptive ensembles of ECs implemented for experiments are summed up in
Table 2.2.

2.3.5 Voting committees

The voting committee of ECs is inspired by the field of Active Learning [ODM17]. Ac-
cording to a particular EC, if a candidate is among the q most promising of the batch,
it receives one vote. The rule is applied with all the ECs composing the committee,
consequently:

x(1) >p x
(2) if

the number of ECs that recognize x(1) as promising is higher than

the number of ECs that recognize x(2) as promising

(2.19)

The two voting committees of ECs contemplated in the experiments are registered in Table
2.2.

2.4 Comparison of Surrogates

2.4.1 Calibration of BNN MCD

The hyper-parameters of BNN MCD are listed in Table 2.3 along with their values either
fixed in accordance to published studies or calibrated via grid search. Each of the 2500
possible BNN MCD configurations is tested on each benchmark function using training sets
of 256 samples and validation sets of 1024 samples obtained through LHS. The calibration
is based on minimization of the validation mean squared error (VMSE) and minimization

50 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

Table 2.1: ECs employed in the experiments. f̂ refers to the POV, ŝ refers to the predictive
standard deviation and d2 to the distance to the database.

Id
en
ti
fi
er

T
y
p
e

D
es
cr
ip
ti
on

R
ef
er
en

ce
U
se
d
in

ra
n
d

N
o
cr
it
er
io
n

R
an

d
o
m

p
ro
m
is
e

S
ec
ti
on

2.
3.
1

P
-S
A
E
A
s,

q
-E

G
O

po
v

B
es
t
P
O
V
:
m
in

f̂
E
q
.
(2
.8
)

P
-S
A
E
A
s,

q
-E

G
O
,
q
-s
u
b
n
et
s,

q
-G

P
-H

M
C
,
q
-B

N
N
-H

M
C
,
S
M
B
O
+
E
A

st
d
ev

S
in
g
le
-c
ri
te
ri
on

P
re
d
ic
ti
ve

d
ev
ia
ti
on

:
m
ax

ŝ
E
q
.
(2
.9
)

P
-S
A
E
A
s,

q
-E

G
O

d
is
t

D
is
ta
n
ce

to
d
at
ab

as
e:

m
ax

d
2

E
q
.
(2
.1
0)

P
-S
A
E
A
s,

q
-E

G
O

ei
E
x
p
ec
te
d
Im

p
ro
ve
m
en
t

E
q
.
(1
.5
3)

P
-S
A
E
A
s,

q
-E

G
O
,
S
M
B
O
+
E
A

p
i

S
ca
la
ri
ze
d
b
i-
cr
it
er
io
n

P
ro
b
ab

il
it
y
of

Im
p
ro
ve
m
en
t

E
q
.
(1
.5
2)

P
-S
A
E
A
s,

q
-E

G
O

lc
b

L
ow

er
C
on

fi
d
en

ce
B
ou

n
d

E
q
.
(1
.5
4)

P
-S
A
E
A
s,

q
-E

G
O

pa
r-
fs
-c
d

(m
in

f̂
,
m
a
x
ŝ)
,
cr
ow

d
in
g
d
is
ta
n
ce

E
q
.
(2
.1
4)

P
-S
A
E
A
s,

q
-E

G
O
,
q
-P
a
re
to

pa
r-
fd
-c
d

(m
in

f̂
,
m
a
x
d
2
),
cr
ow

d
in
g
d
is
ta
n
ce

E
q
.
(2
.1
4)

P
-S
A
E
A
s,

q
-E

G
O
,
q
-P
a
re
to
,
q
-s
u
b
n
et
s,

q
-G

P
-H

M
C
,
q
-B

N
N
-H

M
C
,
H
C
A
P
,
H
S
A
P

pa
r-
fs
-h
vc

P
a
re
to
-b
a
se
d
b
i-
cr
it
er
io
n

(m
in

f̂
,
m
a
x
ŝ)
,
h
y
p
er
-v
ol
u
m
e

E
q
.
(2
.1
5)

P
-S
A
E
A
s,

q
-E

G
O
,
q
-P
a
re
to

pa
r-
fd
-h
vc

(m
in

f̂
,
m
a
x
d
2
),
h
y
p
er
-v
ol
u
m
e

E
q
.
(2
.1
5)

P
-S
A
E
A
s,

q
-E

G
O
,
q
-P
a
re
to

pa
r-
ti
a
n
-f
s

(m
in

f̂
,
m
in

ŝ)
E
q
.
(2
.1
6)

P
-S
A
E
A
s,

q
-E

G
O
,
q
-P
a
re
to

pa
r-
ti
a
n
-f
d

(m
in

f̂
,
m
in

d
2
)

E
q
.
(2
.1
6)

P
-S
A
E
A
s,

q
-E

G
O
,
q
-P
a
re
to

51

Table 2.2: Ensembles of ECs considered in the experiments. f̂ refers to the POV, ŝ refers
to the predictive standard deviation.

Id
en
ti
fi
er

T
y
p
e

D
es
cr
ip
ti
on

R
ef
er
en

ce
U
se
d
in

(E
1
,.
..
,E

n
E
C
)
(p

1
,.
..
,p

n
E
C
−
1
)

d
yn

-d
f-
ex
cl

(d
is
t,
po
v
)
(0
.5
)

S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

q
-E

G
O
,
H
C
A
P
,
H
S
A
P

d
yn

-d
f-
7
5
-e
xc
l

(d
is
t,
po
v
)
(0
.7
5)

S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

q
-E

G
O

d
yn

-f
d
-e
xc
l

(p
o
v,

d
is
t)

(0
.5
)

S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

q
-E

G
O

d
yn

-d
p
f-
ex
cl

(d
is
t,
pa
r-
fd
-c
d
,
po
v
)
(0
.2
5,
0.
75

)
S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

q
-E

G
O

d
yn

-f
pd
-e
xc
l

D
y
n
a
m
ic

ex
cl
u
si
v
e

(p
o
v,

pa
r-
fd
-c
d
,
d
is
t)

(0
.2
5,
0
.7
5)

S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

q
-E

G
O

d
yn

-s
f-
ex
cl

(s
td
ev
,
po
v
)
(0
.5
)

S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

q
-E

G
O

d
yn

-s
f-
7
5
-e
xc
l

(s
td
ev
,
po
v
)
(0
.7
5)

S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

q
-E

G
O

d
yn

-f
s-
ex
cl

(p
o
v,

st
d
ev

)
(0
.5
)

S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

q
-E

G
O

d
yn

-s
p
f-
ex
cl

(s
td
ev
,
pa
r-
fd
-c
d
,
po
v
)
(0
.2
5,
0.
75

)
S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

q
-E

G
O

d
yn

-f
p
s-
ex
cl

(p
o
v,

pa
r-
fd
-c
d
,
st
d
ev

)
(0
.2
5,
0.
75

)
S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

q
-E

G
O

(E
1
,E

2
)

d
yn

-d
f-
in
cl

(d
is
t,
po
v
)

S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s,

H
C
A
P
,
H
S
A
P

d
yn

-f
d
-i
n
cl

D
y
n
a
m
ic

in
cl
u
si
ve

(p
o
v,

d
is
t)

S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s

d
yn

-s
f-
in
cl

(s
td
ev
,
po
v
)

S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s

d
yn

-f
s-
in
cl

(p
o
v,

st
d
ev

)
S
ec
ti
on

2.
3.
3

P
-S
A
E
A
s

a
d
a
-d
f

d
is
t,
po
v

S
ec
ti
on

2.
3.
4

P
-S
A
E
A
s,

q
-E

G
O

a
d
a
-d
p
f

A
d
a
p
ti
ve

d
is
t,
pa
r-
fd
-c
d
,
po
v

S
ec
ti
on

2.
3.
4

P
-S
A
E
A
s,

q
-E

G
O

a
d
a
-w

a
n
g-
m
a
x

m
in

f̂
,
m
ax

ŝ
E
q
.
(2
.1
7)

P
-S
A
E
A
s,

q
-E

G
O

a
d
a
-w

a
n
g-
m
in

m
in

f̂
,
m
in

ŝ
E
q
.
(2
.1
8)

P
-S
A
E
A
s,

q
-E

G
O

co
m
-d
p
f

V
o
ti
n
g
co
m
m
it
te
e

d
is
t,
pa
r-
fd
-c
d
,
po
v

E
q
.
(2
.1
9)

P
-S
A
E
A
s,

q
-E

G
O

co
m
-s
p
f

st
d
ev
,
pa
r-
fs
-c
d
,
po
v

E
q
.
(2
.1
9)

P
-S
A
E
A
s,

q
-E

G
O
,
H
C
A
P
,
H
S
A
P

52 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

Table 2.3: BNN MCD hyper-parameters.

Symbol Name Value Calibration method

nhl number of fully-connected 1 grid search {1; 2; 5; 8; 10}
hidden layers

mu number of units per layer 1024 grid search {256; 512; 1024; 2048; 4096}
λdecay weight decay coefficient 10−1 grid search {10−3; 10−2; 10−1; 1}

l Normal standard deviation 10−2 grid search {10−2; 10−1; 1; 10; 100}
for weights initialization

pdrop dropout probability 0.1 grid search {0.005; 0.05; 0.1; 0.3; 0.5}
h() activation function Relu [GBC16]
ξ Adam initial learning rate 0.001 [GBC16]

of the negative average validation log-likelihood (NAVLL) both calculated after a 50-
epochs training. For a validation sample (xval, yval), the validation log-likelihood is given
by:

logsumexp

(
−τ
2

(yval − f̂i(xval))
2

)
− log(nsub)−

1

2
log(2π) +

1

2
log(τ)

where τ =
1− pdrop
2.n.l.λdecay

(2.20)

where the number of sub-networks is arbitrarily fixed to nsub = 5 for the moment. Av-
eraging over the validation set yields the NAVLL. The NAVLL incorporates the model
uncertainty and captures how well the model fits the data with larger values indicating
better accuracy [Gal16].

The BNN MCD variants with two or three occurrences in the NDFs of the benchmarks
are identified, and among them, the configuration displayed in the middle of the NDF for
both Schwefel and Rosenbrock is retained. In the middle of the NDF, VMSE and NVALL
are balanced, besides Schwefel and Rosenbrock are favored since the Covid-19-related
problem may exhibit similar characteristics. The best NDF according to simultaneous
minimization of VMSE and NAVLL and the configurations with 2 or 3 occurrences in the
NDFs are provided as supplementary materials in Table B.1, Table B.2, Table B.3 and
Table B.4.

2.4.2 Surrogates on the benchmark

The calibrated BNN MCD is now confronted to a Bayesian linear regression model
(ANN BLR), a GP with Radial Basis Functions kernels (GP RBF) and Kriging interpo-
lation (iKRG) and regression (rKRG) models. BNN MCD is implemented with the Keras
library [Cho15] integrated within Tensorflow [Aa15], ANN BLR, GP RBF and the Krig-
ing models are implemented using pybnn [Sno+15], GPyTorch [Gar+18] and pyKriging
[PR15] respectively. All the software libraries used in this thesis are listed in Table F.1.
The peculiarity of ANN BLR lies in its basis functions, being the neurons of the last hid-
den layer of an ANN [Sno+15]. Training ANN BLR is linear to the number of training
data but cubic to the number of basis functions.

The comparison of surrogates involves the training time and the predictive capacity
expressed by the validation correlation coefficient (vR2):

vR2 =
cov(yval, f̂(Xval))√
var(yval)var(f̂(Xval))

(2.21)

53

Table 2.4: Surrogates comparison. Training time (TT) and validation correlation
coefficient (vR2) averaged over 10 runs for each surrogate and each benchmark problem.
Ranks according to TT and vR2 are denoted in parentheses.

72 training samples 256 training samples
Surrogates TT vR2 TT vR2

Schwefel

BNN MCD 6.56(2) -3.6e-02(1) 7.09(1) -1.3e-03(1)
ANN BLR 3.99(1) -8.3e-01(2) 1.3e+01(2) -5.0e-01(2)
GP RBF 4.0e+01(4) -6.2e+01(3) 8.9e+01(3) -6.2e+01(3)
rKRG 2.2e+01(3) -1.0e+09(4) 2.6e+02(4) -1.6e+09(4)
iKRG 1.2e+02(5) -1.0e+09(5) 1.7e+03(5) -1.6e+09(4)

Rastrigin

BNN MCD 6.6(2) -2.2e-02(2) 8.3(1) -7.4e-04(2)
ANN BLR 4.0(1) -7.8e-01(3) 1.3e+01(2) -5.6e-01(3)
GP RBF 4.1e+01(4) -6.7e-04(1) 1.0e+02(3) -1.8e-05(1)
rKRG 1.5e+01(3) -2.1e+06(4) 2.3e+02(4) -2.7e+06(4)
iKRG 8.2e+01(5) -2.1e+06(4) 1.5e+03(5) -2.7e+06(4)

Rosenbrock

BNN MCD 7.38(2) -7.0e-03(1) 7.21(1) 3.4e-03(2)
ANN BLR 4.03(1) -6.4e-01(2) 1.4e+01(2) 1.8e-01(1)
GP RBF 4.1e+01(4) -5.37(3) 9.2e+01(3) -5.37(3)
rKRG 1.1e+01(3) -5.0e+13(4) 3.7e+02(4) -9.4e+13(4)
iKRG 7.9e+01(5) -5.2e+13(5) 1.8e+03(5) -1.0e+14(5)

where (Xval,yval) is the validation set. A value of vR2 close to one points out a correlation
of the landscapes, sufficient to locate optima [FSK08a]. The training set is either made
of 72 or 256 samples and the validation set is composed of 1024 points. Each training
and validation is repeated 10 times for each surrogate on each benchmark and the average
metrics of interest are reported in Table 2.4.

About execution time, BNN MCD is the faster model to train on 256 training samples,
followed by ANN BLR with a difference around one order of magnitude. On 72 points,
BNN MCD is slightly trailed by ANN BLR. GP RBF, rKRG and iKRG are much slower
to train and the increase in training time is significant from 72 to 256 points. ANN BLR
training time is also affected by augmenting the number of training points but it is not
the case for BNN MCD. When the budget is expressed as a capped number of computing
cores during a limited time, or when the problem is moderately expensive, fast training
is desirable. BNN MCD seems to be adequate in this respect. To accomodate GP RBF,
rKRG and iKRG in such scenarios, the size of their training sets may be curbed to control
the execution time.

Regarding the predictive capacity, the results demonstrate that BNN MCD performs
best on the Schwefel problem and GP RBF performs best on the Rastrigin problem. For
the Rosenbrock problem, ANN BLR and BNN MCD provide the best results.

54 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

Table 2.5: Calibration of the parallel EA without surrogate.

Symbol Name Value Calibration method

npop population size 72 grid search {8; 18; 36; 72; 144}
pc cross-over probability 0.9 grid search {0.3; 0.5; 0.7; 0.9}
ηc cross-over distribution index 10 set from [DN07]
pm mutation probability 1

d set from [Tal09]
ηm mutation distribution index 50 set from [DN07]
nt tournament size 2 set from [Deb+02]

2.5 Experiments

2.5.1 Computational budget

The experiments conducted in this section are supported by a parallel machine made of 18
computing cores provided in an Intel Xeon Gold 5220 CPU. The parallel machine is part
of the Grid5000, a French infrastructure dedicated to parallel and distributed computing
and enabled by several French universities [Cap+05]. The resources management system
offered by Grid5000 grants to the user exclusive control of the reserved resources and
ensures the uniformity of the computational environment from one experiment to another.

A slot of 30 minutes on the 18 computing cores is allocated per search. The duration
of one simulation on one computing core ranges from 10 to 15 seconds for the Covid-19
contact reduction problem. To recreate analogous conditions, the simulation duration is
artificially raised to 15 seconds for the benchmark problems. The upper bound for the
number of simulations is 3240 thus matching the moderately expensive context.

Because the optimization algorithms are stochastic, each experiment is repeated 10
independent times to ensure statistical validity of the comparisons. Ten initial samplings
are carried out independently for each problem through the pyDOE implementation of
LHS [Bau+] to initialize the populations and databases of the P-SBOAs.

2.5.2 Calibration of SaaEF

To begin with, the parallel EA without surrogate is tuned as it is the baseline for com-
parison. The parameters are gathered in Table 2.5 along with their values either fixed in
accordance to published studies or via parallel grid search on the benchmark problems.

The best configuration according to the average, median and minimum objective value
found at the end of the search is (npop = 72; pc = 0.9) for the Schwefel and the Rastrigin
problems and (npop = 18; pc = 0.9) for the Rosenbrock problem. Setting npop = 8 provides
consistently bad results. Indeed, the parallel processing of eight candidates induces the
idling of ten computing cores.

The calibration outcomes are provided in Appendix B. The box-plot graphs are dis-
played in Figure B.2, Figure B.3 and Figure B.4 and the main statistics are gathered in
Table B.5, Table B.6 and Table B.7.

Afterwards, the parameters of SaaEF with BNN MCD are calibrated. Table 2.6 sums
up the parameters and their values. The EC employed for the search is par-fs-cd.

Increasing nchld grants major opportunity for the reproduction operators to yield aus-
picious candidates. The number of new samples between consecutive surrogate updates is
given by q for which higher values are preferred according to the calibration outcomes. In
SaaEF, one surrogate update is carried out per cycle. Increasing the number of surrogate
updates per cycle by means of partitioning the population of children into sub-batches has
been attempted in the framework of this study but has not demonstrated any benefit.

55

Table 2.6: Calibration of SaaEF with BNN MCD.

Symbol Name Value Calibration method

nchld children per cycle 288 grid search {144; 288}
q simulations per cycle 72 = 0.25 ∗ nchld [JOS01; BSK05]

npred predictions per cycle 72 = 0.25 ∗ nchld [JOS01; BSK05]
ndisc discardings per cycle 144 = 0.5 ∗ nchld Condition (2.6)

(δES , nES) BNN MCD early stopping (10−8, 32) grid search
{(10−4, 8), (10−8, 32)}

2-fold cross-validation yes grid search {yes, no}

The retained tuning is the one showing the best average and median objective value at
the end of the search on the Schwefel problem and the fourth on the Rosenbrock problem.
On Rastrigin, no configuration outperform the EA without surrogate. The main statistics
are exposed in Table B.8, Table B.9 and Table B.10 as supplementary materials.

2.5.3 Experimental protocol

The calibrated P-SAEA with SaaEF is now to be applied on the benchmark and Covid-19
contact reduction problems. Three variants of the tuned BNN MCD, referred to as
BNN MCD 5, BNN MCD 20 and BNN MCD 100, are plugged in the P-SAEA. The vari-
ants differ regarding the number of sub-networks nsub ∈ {5, 20, 100} but are all trained on
the whole database of already simulated solutions. Indeed, the augmentation of training
samples negligibly influences BNN MCD training time. However, this latter influence is
significant for the other surrogates as shown in Sub-section 2.4.2 and the impact is even
more critical when the database grows by q = 72 solutions per cycle. Consequently, by
the insights gained in Sub-section 2.4.2, the ANN BLR training set is restrained to the
last 256 simulated solutions, the last 72 ones for GP RBF, the last 36 for rKRG 36 and
iKRG 36 and the last 18 ones for rKRG 18 and iKRG 18. Clustering techniques are usu-
ally adopted to compose local training sets [Emm+02; LC14; EGN06; BSK05]. Here, we
expect the last simulated solutions to delimit the currently promising region because they
are selected by the EC.

The 33 ECs listed in Table 2.1 and Table 2.2 and the nine surrogates aforementioned
are integrated within P-SAEA with SaaEF, producing 297 methods. The parallel EA
without surrogate is also applied, thus rising the total number of searches to 11,920. The
ECs always rely on the normalized values of the different metrics. For surrogate training,
the normalization is uniform in [0, 1] except for ANN BLR for which it is normal N (0, 1).

2.5.4 Empirical analysis

Comparison of the surrogates
The best EC, according to the average of the ten objective values returned at the end
of the searches, are displayed for each surrogate and problem in Table 2.8. It can be
observed that adopting BNN MCD as surrogate yields the best results on the Schwefel
and Covid-19 problems. It is hypothesized that the landscapes of both problems exhibit
similar characteristics. Among the three variants of BNN MCD, nsub = 5 demonstrates the
best effectivity. Increasing nsub likely puts the informativeness of the predictive standard
deviation up, but also extends the prediction time because more sub-networks must be
sampled. With BNN MCD, saving computing time seems more beneficial. Indeed, it can
be seen in Table 2.9 that the average number of simulations per search falls away when
nsub increases while the average training time is steady.

56 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

Table 2.7: Normalization effect on GP RBF training for a training set of size 72.
Training time (TT) and validation correlation coefficient (vR2) averaged over 10 runs for
each benchmark problem.

Normalization TT vR2 TT vR2 TT vR2

Schwefel Rastrigin Rosenbrock

None 4.0e+01 -6.2e+01 4.1e+01 -6.7e-04 4.1e+01 -5.37
[0, 1] 4.1e-01 -5.6e-02 2.8e-01 -9.3e-02 2.8e-01 2.1e-01

On Rastrigin, GP RBF is the most performing surrogate according to Table 2.8, as
foreseen after the comparison of surrogates of Sub-section 2.4.2. Conversely, the outstand-
ing efficiency of GP RBF on Rosenbrock and its very low training time exposed in Table
2.9 were unexpected. The discrepancy between expectations and reality is explained by
the application of normalization for training during the optimization exercises. The ex-
periments led in Sub-section 2.4.2 are reproduced for GP RBF trained on a normalized
training set of size 72. The outcomes shown in Table 2.7 indicate an alleviation of training
time by two orders of magnitude and enhancement of the vR2 on Schwefel and Rosen-
brock. While the reduction in training time is due to the early stopping mechanism whose
parameters are left unchanged, the improvement of vR2 is quite surprising.

Because the Schwefel function draws a graph with weak global structure, iKRG should
outperform rKRG. On the contrary, the adequate underlying structure of the Rastrigin
landscape should be better approximated by rKRG than iKRG. Nevertheless, the regres-
sion Kriging model always surpasses the interpolation one in Table 2.8. The justification
could reside in the higher average training time and the lower average number of simula-
tions exhibited by iKRG in Table 2.9. Restraining the training time is interesting in other
cases such as Schwefel and Rosenbrock where rKRG 18 reveals better performances than
rKRG 36.

All the previous observations are recovered when scrutinizing the top-5 ECs per surro-
gate and problem according to the average, median and minimum of the ten final objective
values. These classifications are supplied in Table B.11, Table B.12, Table B.13 and Table
B.14 in the appendix section.

Comparison of the ECs
The dynamic ensembles favoring exploration at the beginning and exploitation at the end
of the search (dyn-df-excl, dyn-df-75-excl, dyn-dpf-excl and dyn-df-incl) are the best choice
according to Table 2.8. Commended diversification at the early stages enhances surrogate
accuracy and specifies the regions susceptible to bear the global optimum. At latter stages,
surrogate predictions are thus more reliable and convergence is put forward. The adaptive
ensembles of ECs should be able to dictate such orientation, however, a bad tuning may
disrupt their expected capabilities. The Pareto-based ECs (par-fd-hvc, par-fs-hvc, par-
fd-cd) prove their capacity on the Rosenbrock problem and seem to outperform their
counterpart from the literature (par-tian-fd and par-tian-fs). The Rosenbrock landscape
is certainly marked by a vast promising region (the ”canyon” in Figure 1.9) that appeal
never to relax exploration.

In the nomenclature drawn up to designate the ECs, the letter ’d’ stands for the
distance and ’s’ for the standard deviation. Whatever the surrogate type, the distance
from the database of already simulated solutions is a more reliable metric of exploration
than the predictive standard deviation according to Table 2.8. Contrary to the distance,
the predictive standard deviation is built approximately by BNN MCD and does not
account for all the historical simulations for the other surrogates.

57

All the previous observations are confirmed by analysing the distribution of the final
objective values for the best surrogate for each problem. The corresponding box plots are
deferred to the appendix section in Figure B.5, Figure B.6, Figure B.7 and Figure B.8. It
is worth noticing that the best ECs in terms of the averaged final objective values are also
the ECs showing the lowest variance and the best median over the ten runs. By the box
plots, no significant discrepancy is noted from harnessing the crowding distance instead
of the hyper-volume contribution in Pareto-based ECs. Besides, the scalar ECs and the
committees do not behave particularly well except dist on the Covid-19 application. The
constraint of the real-world application may necessitate strong exploration to locate the
feasible region. Indeed, among the 720 initial samples only one solution is feasible.

Comparison of the APs
In a purely DFR fashion, the P-SAEA where the surrogate is only employed as an evaluator
(SaaE) is now applied on the problems at hand as well as the P-SAEA where the surrogate
is only used as a filter (SaaF) in an wholly IFR style. For both approaches the number of
simulations per cycle is set to q = 72 as in SaaEF. In SaaE, npred = q = 72 to follow the
recommendation from [JOS01; BSK05], which implies nchld = 144 according to Equation
(2.6). It is reminded that ndisc = 0 in SaaE and npred = 0 in SaaF. In SaaF, the number
of children is fixed to nchld = 288 as in SaaEF and so ndisc = 216 according to Equation
(2.6).

The surrogate is limited to the BNN MCD 5 for the Schwefel and Covid-19 contact
reduction problems and to GP RBF on the Rastrigin and Rosenbrock problems as the
previous results indicate their appropriateness in these situations. The best strategies
according to the final objective values averaged over the ten runs are displayed in Table
2.10. According to the results, no one AP is to be privileged in all the cases. On the
Rastrigin problem, the SaaE is the best choice certainly because GP RBF is accurate
enough and therefore a high degree of confidence can be assigned to the surrogate. On
Rosenbrock and the Covid-19-related problem, relying on the surrogate as a filter improves
over SaaEF thus marking a weaker predictive performance of the surrogate. Indeed, it is
assumed that embedding incorrectly predicted individuals into the population, as in DFR,
is more damaging for the evolution trajectory than incorrectly discarding solutions. The
erroneously rejected individuals could be recovered in future steps in IFR while the next
generations are influenced by the wrong objective values in DFR. The SaaEF strategy is
the best AP on the multi-modal Schwefel problem with weak global structure. Moreover,
SaaEF brings a certain robustness as it appears in the four top-5. Regarding the ECs,
Table 2.10 confirms the previous results as the dynamic ensemble of ECs favoring first
exploration and exploitation afterwards are the most represented in the top-5 followed by
the Pareto-based ECs, notably par-fd-cd.

58 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

Table 2.8: P-SAEAs with SaaEF. Best strategies, from top to bottom, for each surro-
gate model according to the best objective value averaged over 10 runs.

Surrogate Evolution Control Average best
objective value

Schwefel

BNN MCD 5 dyn-df-incl 131.95
BNN MCD 100 dyn-dpf-excl 134.06
BNN MCD 20 dyn-dpf-excl 163.49

GP RBF dyn-spf-excl 206.19
rKRG 18 dyn-df-75-excl 216.06
rKRG 36 dyn-df-75-excl 244.83
ANN BLR dyn-df-incl 267.78
iKRG 18 dyn-df-75-excl 448.76

no surrogate - 607.91
iKRG 36 dyn-df-75-excl 663.03

Rastrigin

GP RBF dyn-dpf-excl 19.08
rKRG 36 dyn-spf-excl 22.66
ANN BLR dyn-sf-excl 22.72
no surrogate - 23.30
BNN MCD 5 dyn-df-excl 23.40
BNN MCD 20 ei 23.89

rKRG 18 dyn-dpf-excl 25.07
BNN MCD 100 pi 25.98

iKRG 18 dyn-fd-incl 28.39
iKRG 36 par-fs-hvc 37.62

Rosenbrock

GP RBF par-fd-hvc 233.93
rKRG 18 par-fd-hvc 414.44
rKRG 36 par-fs-hvc 443.60

BNN MCD 5 dist 713.71
BNN MCD 20 dist 677.00
BNN MCD 100 dist 826.43

iKRG 18 ei 1086.06
no surrogate - 1191.14
ANN BLR dyn-dpf-excl 2063.52
iKRG 36 par-fd-cd 2085.61

Covid-19 contact reduction

BNN MCD 5 dyn-df-75-excl 7,455
BNN MCD 20 dist 7,532
BNN MCD 100 ada-dpf 8,196

rKRG 18 dyn-df-incl 9,254
rKRG 36 dyn-df-incl 9,560
iKRG 18 dyn-df-incl 9,928
iKRG 36 dyn-df-excl 14,018
GP RBF ada-df 16,596
ANN BLR dyn-df-excl 18,450
no surrogate - 21,483

59

Table 2.9: P-SAEAs with SaaEF. Average number of simulations per search and overall
average training time (in seconds) for each surrogate. Ordering according to the average
number of simulations in decreasing order from top to bottom.

Surrogate Average number Average
of simulations training time

Schwefel

GP RBF 2214 0.16
rKRG 18 2084 3.52

BNN MCD 5 2013 6.05
BNN MCD 20 1998 5.99
BNN MCD 100 1905 5.89

rKRG 36 1889 9.64
ANN BLR 1797 14.63
iKRG 18 1746 16.32
iKRG 36 1281 44.61

Rastrigin

GP RBF 2214 0.15
rKRG 18 2075 3.82

BNN MCD 5 2008 6.27
BNN MCD 20 1989 6.27
BNN MCD 100 1898 6.20

rKRG 36 1865 10.59
ANN BLR 1798 14.62
iKRG 18 1740 16.56
iKRG 36 1283 44.60

Rosenbrock

GP RBF 2214 0.11
rKRG 18 2077 3.79

BNN MCD 5 2038 5.21
BNN MCD 20 2019 5.15
BNN MCD 100 1927 5.05

rKRG 36 1892 9.52
ANN BLR 1798 14.63
iKRG 18 1732 16.93
iKRG 36 1272 45.28

Covid-19 contact reduction

GP RBF 2714 0.16
rKRG 18 2545 2.47
rKRG 36 2462 5.98

BNN MCD 5 2432 8.46
BNN MCD 20 2360 8.67
BNN MCD 100 2226 8.47

ANN BLR 2183 14.79
iKRG 18 2112 13.76
iKRG 36 1545 39.29

60 Chapter 2. Parallel Surrogate-assisted Evolutionary computations

Table 2.10: SaaEF versus SaaE versus SaaF. Top-5 strategies according to the average
best objective value (10 independent runs). Ordering according to ascending value from
top to bottom. BNN MCD 5 is used on the Schwefel and Covid-19 contact reduction
problems and GP RBF on the Rastrigin and Rosenbrock benchmarks.

AP EC Average AP EC Average

Schwefel Rosenbrock

SaaEF dyn-df-incl 131.95 SaaF par-fd-cd 137.82
SaaEF dyn-dpf-excl 136.30 SaaF com-dpf 156.63
SaaF dyn-df-incl 153.92 SaaF par-fd-hvc 203.27
SaaEF par-fd-cd 167.55 SaaF ei 232.37
SaaEF dyn-df-excl 168.64 SaaEF par-fd-hvc 233.93

Rastrigin Covid-19 contact reduction

SaaE par-fd-cd 18.22 SaaF dyn-df-incl 6854
SaaE dyn-df-excl 18.69 SaaF dyn-df-excl 7115
SaaEF dyn-dpf-excl 19.08 SaaEF dyn-df-75-excl 7455
SaaE com-dpf 19.25 SaaEF dyn-df-excl 7679
SaaF com-dpf 19.34 SaaEF dist 7837

2.6 Conclusion

In this chapter, we have examined the design of P-SAEAs for handling moderately expen-
sive problems. We have presented a coupling where the surrogate is connected to the EA as
an evaluator and a filter and we have opted for the Bayesian Neural Network built around
Monte-Carlo Dropout. Predicting with BNN MCD relies on sampling sub-networks to
emulate an ensemble of ANNs with the advantage of necessitating only one training. We
have also come up with innovative ensembles of Evolution Controls that balance between
intensification and diversification dynamically along the search.

The budget for the exercise is expressed as a limited number of simulations in the past
studies in the field of P-SBO. We formulate the budget as a capped duration on a prefixed
number of computing cores to best reflect the reality because surrogate training is poten-
tially a considerable computing load. In the literature related to P-SAEAs, the surrogate
is utilized either to evaluate or to filter out candidates. SaaEF is particularly pertinent
on a moderately computationally expensive problem where the landscape is multi-modal
and with weak global structure. In the proposed algorithm, multiple surrogates are tested,
among them the recurrently employed Kriging and Gaussian Process models. BNN MCD
appears to be the most convenient choice for hard landscapes characterized by multi-
modality and weak global structure. BNN MCD is also benefiting as it trains fast, and
thus, concedes a higher number of simulations. In P-SAEAs, no modification of the ex-
ploration/exploitation trade-off during the optimization have been suggested in the past.
The dynamic ensembles of ECs combining the predictive objective value and the distance
from the database of already simulated solutions is the adequate design decision to manage
multi-modal problems.

Chapter 3

Parallel Surrogate-driven
algorithms

Contents

3.1 Introduction . 62

3.2 From Evolution Controls to Infill Criteria 62

3.2.1 EC-based selection and replacement 62

3.2.2 q-EGO revisited . 63

3.3 Fast Acquisition Processes . 65

3.3.1 q-subnets: sub-networks as multi-surrogate 65

3.3.2 q-post-HMC: sampling of surrogates 66

3.3.3 q-Pareto: a Pareto dominance-based AP 68

3.4 Experiments . 69

3.4.1 Calibration of GP HMC and BNN HMC 69

3.4.2 Calibration of the optimizer . 70

3.4.3 Experimental protocol . 72

3.4.4 Empirical analysis . 72

3.4.5 Complete training set . 76

3.5 Conclusion . 79

61

62 Chapter 3. Parallel Surrogate-driven algorithms

3.1 Introduction

This chapter focuses on the building and appropriateness of P-SDAs for moderately and
very expensive problems. The sampling of sub-surrogates is investigated to design new
surrogate-optimizer couplings and the influence of the training set size is notably analysed.

The definition of the promisingness is also a top-notch component of P-SDAs to bal-
ance between exploitation and exploration. In Section 3.2, the parallel between ICs and
ECs is established and a specific EA is presented to optimize any EC, hence the pos-
sibility to revisit q-EGO by replacing EI. The sampling of sub-networks from a global
ANN by randomly deactivating neurons (q-subnets) is a first idea reported in Section
3.3 to both alleviating the computational effort of the AP and promoting diversity. In a
similar way, the Hamiltonian Monte-Carlo sampling of parameters from Bayesian models
(q-post-HMC) extends the concept beyond the scope of neural networks.

Calibrations and numerical experiments are conducted and exposed in Section 3.4 to
study the design of P-SDAs relatively to search landscape features, either known in the
case of the benchmark functions or unknown for the real-world application to Covid-19
transmission control. The performance of the methods and the influence of the training set
size are empirically assessed in both contexts of moderately and very expensive problems.
Finally, Section 3.5 concludes the chapter.

3.2 From Evolution Controls to Infill Criteria

3.2.1 EC-based selection and replacement

In the P-SDAs, presented in Sub-section 1.4.3, the AP relies on the optimization of a
real-valued scalar function or a real-valued vector function called the Infill Criterion (IC).
The value of the IC indicates the promisingness of candidate solutions. The IC can be
single-criterion such as minimization of the POV [Reh+18], scalarized bi-criterion such
as EI [JSW98], Pareto-based bi-criterion such as simultaneous minimization of the POV
and maximization of the predictive standard deviation [Bis+14], dynamic weighted sum
of criteria involving minimization of the POV and maximization of the distance to the
database [RS07], adaptive criteria such as those from [Wan+20b] already explained in Sub-
section 2.3.4. Depending on the type of IC, one can have recourse to different optimization
algorithms such as EAs, sequential quadratic programming [Li+10] and multi-objective
EAs [Bis+14].

In P-SAEAs, the EC plays the same role as the IC in P-SDAs. The EC is a compar-
ison operator >p that orders a set of candidate solutions according to the promisingness
it specifies. Converting an IC to an EC is straightforward as all ICs implicitly implement
a comparison operator. For instance, higher values of EI, given in Equation (1.53), stand
for higher promisingness. The conversion from IC to EC has recurrently been applied in
Chapter 2.

The EA with EC-based selection and replacement we propose hereafter enables one
to optimize any type of IC by basing the selection and the replacement operators on the
corresponding EC. The approach is detailed in Algorithm 5 and corresponds to the AP in
Figure 1.4. One iteration of the EA with EC-based selection and replacement starts by
ordering the population of candidates according to decreasing promisingness (line 3 in Al-
gorithm 5). Subsequently, the tournament selection of parents is realized according to the
position of the individuals within the population where a lower index represents a better
promisingness (line 4). After the reproduction step, the merged population comprising the
current population and the children is ordered according to decreasing promisingness (line
7) and the best npop individuals are retained (line 8). At the end of the search, the q best

63

individuals according to the EC are returned for simulation. This generic implementation
may incorporate any ECs, and notably the ensembles of ECs exposed in the previous
chapter. It is also worth noting that when the EC is Pareto-based multi-criterion, the EA
described in Algorithm 5 is a multi-objective EA. In particular, when par-fs-cd is chosen,
the Non-dominated Sorting Genetic Algorithm (NSGA-II) [Deb+02] is recovered for the
bi-objective problem of POV minimization and maximization of the predictive standard
deviation.

Algorithm 5 EA with EC-based selection and replacement

Input
E: evolution control
surrogate: surrogate model
npop: population size
ngen: number of generations
q: number of candidates to return

1: P ← LHS(npop)
2: for i = 1 : ngen do
3: P ← sort by EC(P, E, surrogate)
4: Ppar ← tournament position(P, npop) ▷ population of parents
5: Pchld ← reproduction(Ppar) ▷ population of children
6: P ← P ∪ Pchld
7: P ← sort by EC(P, E, surrogate)
8: P ← elitist position(P, npop)
9: end for

10: B ← get best(P, E, q)
11: return B

3.2.2 q-EGO revisited

The canonical q-EGO embeds the EI as IC and the Kriging model as the ersatz simulator
in [GRC10]. The generic implementation of the AP in P-SDAs highlighted in the preced-
ing sub-section allows one to revisit the original implementation of q-EGO by including
alternative surrogates and definitions of promisingness.

The extension of EI for sampling multiple points is denominated q-EI in [GRC10] and
writes:

qEI(x(1), . . . ,x(q)) = E[ymin −min(Y (x(1)), . . . , Y (x(q)))|X,y] (3.1)

where q ∈ N\{0, 1} is the number of new candidates to sample, x(1), . . . ,x(q) are candi-
dates, (X,y) is the database of already simulated candidates along with their associated
simulated objective values and ymin is the best simulated objective value found so far.
The random variable Y () has been defined in Sub-section 1.3.3 within the framework of
GPs. An analytical formula is derived for q-EI when q = 2 but eliciting such a closed-form
expression for q > 2 is intractable. Two heuristics, namely Kriging Believer and Constant
Liar, have thus been devised for the AP.

The first heuristic is designated as Kriging Believer in [GRC10]. Our revisited ver-
sion is outlined in Algorithm 6 and is renamed Surrogate Believer (abbreviated sb) as the
choice for the surrogate is not narrowed down to the Kriging model any more. The AP
begins with the creation of a temporary database, initially made of the previously simu-
lated candidates along with their associated simulated objective values (line 2). Next, the
EA with EC-based selection and replacement exhibited in Algorithm 5 is invoked (line

64 Chapter 3. Parallel Surrogate-driven algorithms

4) q times. At each iteration, one new candidate is issued and the temporary database
is enriched with the new solution along with its POV (line 6). The surrogate is then
updated on the temporary database (line 7). In case of GPs, the training is partial as it
does not include the re-estimation of the hyper-parameters. Partial training concedes to
limit the computational effort. The designation Surrogate Believer comes from the trust
in the surrogate prediction that appears when updating the surrogate using POVs. The
issue induced by an inaccurate surrogate is reflected in situations where the process gets
trapped in a non-optimal region due to predictions being erroneously too low. Conversely,
predictions that are erroneously too high may result in a poor screening of interesting re-
gions. Once the multi-point AP is executed, the resulting q new candidates are simulated
in parallel and the surrogate is re-trained on the updated database only made of simulated
solutions as depicted in Figure 1.4.

Algorithm 6 Surrogate Believer AP for q-EGO

Input
database: set of already simulated solutions
E: evolution control
surrogate: surrogate model
f̂(): surrogate’s prediction function
q: number of candidates to sample
npop: population size
ngen: number of generations

1: Bsim ← ∅ ▷ batch of new candidates
2: tmp database ← copy(database)
3: for i = 1 : q do
4: x(i) ← 1-point AP(E, surrogate, npop, ngen, 1) ▷ Algorithm 5
5: Bsim ← Bsim ∪ x(i)

6: tmp database ← tmp database ∪{(x(i), f̂(x(i)))}
7: update surrogate(surrogate, tmp database)
8: end for
9: return Bsim

The second heuristic is called Constant Liar and follows the same pattern as the Sur-
rogate Believer AP, only differing on the way the temporary database is updated as shown
in Algorithm 7. To each new candidate is associated a constant L that plays the role of
the objective value (line 7). A larger value for L favors exploration while a lower value
endorses exploitation. In [GRC10], L is set either as the minimum, the mean or the max-
imum objective value observed in the database. In this thesis, only the variant relying on
the mean, denoted cl-mean, is considered (line 3).

Besides extending q-EGO to new ICs and surrogates, we suggest in this thesis to
evaluate the performances of the method in the context of moderately expensive problems.
Indeed, the computational budget is usually very low in the investigations available in the
literature. For instance, 150 to 300 simulations are granted to q-EGO for the search of an
aerodynamic shape in [Liu+17]. Another example is the design of air vehicles in [Cha+15]
where the evaluation relies on very expensive physical experiments. The computational
effort required per AP in q-EGO may be a downside when tackling moderately expensive
problems. The contributions presented in the following section follow this direction.

65

Algorithm 7 Constant Liar AP for q-EGO

Input
database: set of already simulated solutions
E: evolution control
surrogate: surrogate model
q: number of candidates to sample
npop: population size
ngen: number of generations

1: Bsim ← ∅ ▷ batch of new candidates
2: tmp database ← copy(database)
3: L← meany∈database(y)
4: for i = 1 : q do
5: x(i) ← 1-point AP(E, surrogate, npop, ngen, 1) ▷ Algorithm 5
6: Bsim ← Bsim ∪ x(i)

7: tmp database ← tmp database ∪{(x(i), L)}
8: update surrogate(surrogate, tmp database)
9: end for

10: return Bsim

3.3 Fast Acquisition Processes

3.3.1 q-subnets: sub-networks as multi-surrogate

The new P-SDA based on Artificial Neural sub-networks we introduce is inspired by the
ensemble of surrogates revealed in [VHW13] and on the Monte-Carlo Dropout proposed in
[Gal16] to approximate BNN training. In [VHW13], q candidates are sampled per cycle,
each one derived by optimizing EI on one of the q surrogates at one’s disposal. It is ad-
vised in [VHW13] to set q according to the computational capabilities that would amount
to ncores = 18 computing cores in our computational environment. Our novel strategy is
called q-subnets and consists of a Monte-Carlo sampling of multiple sub-networks from
a global ANN. The method encompassing a one-hidden-layer ANN is dissected in Algo-
rithm 8 for the general scenario where q is not necessarily equal to ncores. The sampling is
achieved by randomly deactivating units in the global ANN to generate ncores sub-networks
(line 3-4) similarly to Monte-Carlo Dropout. The ncores sub-networks are involved in ncores

parallel APs (line 5), each of them returning q
ncores

candidates. (It is assumed that q is a
multiple of ncores and one candidate is issued per AP if q = ncores). Exploration is guaran-
teed by the diversity among the ncores randomly sampled sub-networks while exploitation
is assured by the EC. The benefit of q-subnets over the ensemble-based mechanism from
[VHW13] is the saving of ncores − 1 trainings.

The idea behind q-subnets comes from the field of discrete space screening where a BNN
is used to filter already simulated molecule shapes [Her+17]. The posterior probability
distribution on the parameters of a BNN approximated via probabilistic back-propagation
is sampled multiple times to draw various networks. In the experiments led in [Her+17],
100,000 molecules are retained by the screening strategy. Both the task and the budget
in terms of simulations are not comparable to the scope of this thesis.

66 Chapter 3. Parallel Surrogate-driven algorithms

Algorithm 8 q-subnets AP with one-hidden-layer ANN

Input
pdrop: probability of dropping out neurons
(W (1),w(2)): weights trained with Dropout
h(): activation function
E: evolution control
q: number of candidates to sample
ncores: number of computing cores
npop: population size
ngen: number of generations

1: Bsim ← ∅ ▷ batch of new candidates
2: for i = 1 : ncores in parallel do
3: ϵ(1) ← Bernouilli sampling(pdrop)

4: f̂i(⋆)← ϵ(1)⊙w(2).h(diag(ϵ(1)).W (1).⋆) ▷ ⋆ stands for a dummy variable
5: x(i) ← EC-based AP(E, f̂i(⋆), npop, ngen,

q
ncores

) ▷ Algorithm 5

6: Bsim ← Bsim ∪ {x(i)}
7: end for
8: return Bsim

3.3.2 q-post-HMC: sampling of surrogates

In the same spirit than q-subnets, we come up with an approach based on the sampling of
sub-surrogates from a fully Bayesian GP or a BNN. The new method, called q-post-HMC,
relies on Monte-Carlo Markov Chain (MCMC) sampling and reduces the computational
cost of a q-EGO cycle by only implying one surrogate training. When using the BNN,
the difference with q-subnets is the preservation of the predictive capacity as no hid-
den unit is deactivated. However, preserving the predictive capacity could end up with
a deteriorated diversity. When employing the GP as surrogate, certain landscapes are
expected to be better approximated than with an ANN, thus an advantage is expected
over q-subnets. The pseudo-code of q-post-HMC is shown in Algorithm 9. Hamiltonian
Monte-Carlo (HMC) [Nea96] is run to sample ncores configurations from the posterior dis-
tribution of the hyper-parameters of the GP or the parameters (weights and biases) of the
BNN (line 3), consequently generating ncores GPs or ncores ANNs respectively. In the case
of Ordinary Kriging, the hyper-parameters are µ, α−1, η and p, as mentioned in Section
1.3.3. The ncores sub-surrogates are optimized in parallel (line 4) and the emanating q
new candidates are simulated simultaneously.

The hyper-parameters of the GP and the parameters of the BNN are symbolized by ω
in Algorithm 9 and generally referred to as ”parameters” in the following. Training a fully
Bayesian GP or a BNN implies to marginalize over the space of parameters to produce
the predictive distribution (Equation (1.10)). This marginalization is not tractable but
can be approximated by the following formula:

p(y∗|x∗, X,y) ≈ 1

ns

ns∑
t=1

p(y∗|x∗,w(t)) (3.2)

wherew(1), . . . ,w(ns) are sampled from the posterior distribution p(w|X,y). A higher de-
gree of independence among the samples provides a better approximation of the marginal-
ization. The MCMC methods enable to accomplish the drawing without assumption over
the posterior. They resort to an ergodic Markov Chain, that has Q = p(ω|X,y) as its
equilibrium distribution and that converges to it from any initial state. A Markov Chain

67

Algorithm 9 q-post-HMC AP

Input
E: evolution control
surrogate(ω): surrogate model (either GP or BNN)
q: number of candidates to sample
ncores: number of computing cores
npop: population size
ngen: number of generations

1: Bsim ← ∅ ▷ batch of new candidates
2: for i = 1 : ncores in parallel do
3: ω(i) ← HMC sampling() ▷ Sampling (hyper-)parameters
4: x(i) ← EC-based AP(E, surrogate(ω(i)), npop, ngen,

q
ncores

) ▷ Algorithm 5

5: Bsim ← Bsim ∪ {x(i)}
6: end for
7: return Bsim

is defined by an initial state ω(1) and a transition distribution T (ω(t+1)|ω(t)). The equi-
librium distribution is the only distribution that is invariant by the transition (i.e. if
ω(t) stems from the distribution Q then ω(t+1) also originates from distribution Q). The
challenge is to find such a Markov Chain that converges as faster as possible to Q and
that outputs relatively independent samples. A number of warm-up steps nws is needed
for attaining convergence.

A popular method for MCMC is the Metropolis algorithm [Met+53], where one tran-
sition consists of the three following steps:

1. A new candidate ω̃ is drawn from a proposal distribution.

2. If Q(ω̃) ⩾ Q(ω(t)) then the candidate is accepted. Otherwise, the candidate is
accepted with probability Q(ω̃)/Q(ω(t)).

3. If the candidate is accepted, then ω(t+1) ← ω̃. In case of rejection, ω(t+1) ← ω(t).

In order to prevent the samples to become too much dependent, the proposal distribution
must both imply an acceptation rate high enough and suggest candidates different enough
from the previous states. For complex and highly dimensional Q, this difficulty translates
into random walks instead of an efficient covering of the distribution thus making the
convergence very slow. This obstacle is circumvented by simulating a dynamic Hamiltonian
system to issue new states.

In HMC [Nea96; HG14], the parameters ω play the role of the particle’s positions and
auxiliary variables rm are introduced as their momentum. The joint density is expressed
in terms of a function H by:

P (ω, rm) ∝ exp (−H(ω, rm)) (3.3)

where H is viewed as the total energy function resulting from the sum of the potential
energy E and the kinetic energy K, expressing the marginal distributions of ω and rm
respectively:

P (ω) ∝ exp (−E(ω)) (3.4)

P (rm) ∝ exp (−K(rm)) (3.5)

68 Chapter 3. Parallel Surrogate-driven algorithms

The iteration involved to sample independent vectors from P (ω) first draws a value for
rm where P (rm) is set as a Gaussian. Then, the Hamiltonian system is simulated approx-
imately by discretization through Ld leapfrog steps implicating the partial derivatives of
E and a step size parameter ϵd. The ensuing new state (ω̃, r̃m) is accepted according to
the Metropolis rules where lower changes in total energy increase the probability of accep-
tance. Indeed, the exact simulation would have preserved H. To set the parameters Ld

and ϵd automatically, an extension to HMC, called No-U-Turn Sampler is setup in [HG14].
In addition to alleviate the burden to tweak parameters, this method further accelerates
convergence by avoiding random walks and repeated samples. The HMC with No-U-Turn
Sampler is the method chosen in q-post-HMC.

In [SLA12], a GP is treated in a fully Bayesian way and a MCMC sampling is carried
out to compute the integrated IC that takes the uncertainty-aware hyper-parameters into
account. The method from [SLA12] is not parallel but a parallel variant is proposed in
[Sno+15] to deal with heterogeneous simulation duration. In [Sno+15], the integrated IC
is computed by attributing fantasy values to the running simulations, similarly to Constant
Liar. Setting the fantasy values is not an easy task and bad choices could result in missing
interesting candidates. In our method, we remove this difficulty by decoupling the AP for
each candidate through sub-surrogates sampling.

3.3.3 q-Pareto: a Pareto dominance-based AP

Multi-objective optimization of ICs further reduces the computational burden of the AP
in P-SDAs by requiring to apply a unique optimization iteration per cycle. The P-SDA
whose AP lies on a multi-objective optimization is called q-Pareto as outlined in Algorithm
10. The algorithm is identical to the EA with EC-based selection and replacement from
Sub-section 3.2.1 with the exception of the EC being mandatorily Pareto-based as those
from Sub-section 2.3.2. Multi-objective optimization does not issue a single candidate but
rather a NDS constituted of diverse non dominated solutions from which q individuals are
kept.

Algorithm 10 q-Pareto AP

Input
E: Pareto-based evolution control
surrogate: surrogate model
q: number of candidates to sample
npop: population size
ngen: number of generations

1: P ← LHS(npop)
2: for i = 1 : ngen do
3: P ← sort by EC(P, E, surrogate)
4: Ppar ← tournament position(P, npop) ▷ population of parents
5: Pchld ← reproduction(Ppar) ▷ population of children
6: P ← P ∪ Pchld
7: P ← sort by EC(P, E, surrogate)
8: P ← elitist position(P, npop)
9: end for

10: B ← get best(P, E, q)
11: return B

69

The q-Pareto approach is abundant in the literature about P-SBO. In [Fen+15; HSR17],
the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) simulta-
neously maximizes the local and global EI. The infill criteria EI, PI and LCB are optimized
concurrently by NSGA-II in [Lyu+18]. In [GKW17], NSGA-II is invoked to minimize the
POV and maximize the predictive standard deviation. To retain q candidates from the
resulting NDS, a random filtering is performed in [Lyu+18]. In [Fen+15; HSR17], maxi-
mization of the distance to the database, extreme solutions of the NDF and clustering in
the objective space constitute the sampling strategy. Similar criteria are leveraged in par-
fd-cd defined in Sub-section 2.3.2. In [GKW17], maximization of EI and the predictive
standard deviation and minimization of the POV compose the screening. Using EI re-
stricts the choice of surrogate model to GPs. In our approach, we relax the condition over
the surrogate model type by discarding EI and we include the filtering within the EC defi-
nition. The experiments conducted in [Fen+15; HSR17; GKW17] feature low dimensional
benchmark problems thus justifying the use of EI. A real-world application to analog cir-
cuits is considered in [Lyu+18] with 12 design variables. In all the aforementioned articles,
the experimental protocol characterizes very expensive problems.

3.4 Experiments

This section is dedicated to the empirical comparison of the P-SDAs with respect to
the APs, ECs and surrogates. The computational setting is the same as the one settled
to investigate P-SAEAs in Sub-section 2.5.1. One search runs during 30 minutes on 18
computing cores from Grid5000 and one simulation is assumed to last around 15 seconds.

3.4.1 Calibration of GP HMC and BNN HMC

The surrogates employed in q-post-HMC are tuned hereafter. The Gaussian Process
trained through HMC (GP HMC) is based on the RBF kernel of Equation (1.28) with
the prior distributions for the hyper-parameters set to:

s ∼ U(0.01, 10) (3.6)

σ ∼ U(0, 5) (3.7)

Uniform distributions are adopted to reflect our lack of knowledge and the bounds have
been roughly tweaked by few trial-and-error tests. The Bayesian Neural Network trained
through HMC (BNN HMC) comprises two fully connected hidden layers of 50 hyperbolic
tangent units each, such as in [Her+17]. The prior for the weights and biases is N (0, I).
For both surrogates, the prior over the variance of the data-related noise of Equation (1.7)
is given by:

β−1 ∼ U(0.01, 0.1) (3.8)

The grid-search calibration of the number of warm-up steps nws for HMC, consider-
ing the values {5, 50, 500, 5000}, is reported in Table 3.1. The training and validation
sets are the same than those used in Sub-section 2.4.1 to tune BNN MCD with 256 and
1024 points respectively. The validation correlation coefficient vR2 is computed on the
normalized predictions and validation targets by sampling 18 parameters through HMC
and averaging the 18 predictions generated by the sub-surrogates. Increasing nws un-
surprisingly raises the training time, for instance from 1 to 496 seconds for nws = 5 to
nws = 5000 when training GP HMC on Rosenbrock. The training is even more longer
for BNN HMC, reaching 20 minutes for nws = 5000. By analysing the vR2, 5 warm-up
steps seem to be enough in GP HMC, however, it is not so for BNN HMC that needs 50

70 Chapter 3. Parallel Surrogate-driven algorithms

Table 3.1: Calibration of GP HMC and BNN HMC. Ranks according to training
time (TT) and validation correlation coefficient (vR2) are denoted in parentheses.

GP HMC BNN HMC
nws TT vR2 TT vR2

Schwefel

5000 188(4) 0.059(2) 1203(4) -0.803(1)
500 28(3) 0.057(3) 121(3) -0.820(2)
50 5(2) 0.056(4) 23(2) -0.927(3)
5 2(1) 0.060(1) 10(1) -509(4)

Rastrigin

5000 167(4) -0.0138(2) 1194(4) -0.538(2)
500 26(3) -0.014(3) 120(3) -0.422(1)
50 5(2) -0.0136(1) 22(2) -0.745(3)
5 1(1) -0.021(4) 10(1) -460(4)

Rosenbrock

5000 496(4) 0.628(1) 1208(4) 0.405(1)
500 73(3) 0.624(2) 120(3) 0.329(2)
50 12(2) 0.585(3) 22(2) 0.298(3)
5 1(1) 0.448(4) 10(1) -320(4)

steps. Because a trade-off between low training time and high vR2 is desired, it is de-
cided to keep nws = 50 henceforth. The difference in vR2 exhibited when augmenting nws

seems not to be so prominent while the difference is more meaningful for the training time.

The surrogate comparison led in Sub-section 2.4.2 is reproduced to consider GP HMC
and BNN HMC and the training times and validation correlation coefficients are reported
in Table 3.2 along with those obtained previously for BNN MCD and GP RBF. The
GP HMC proves to be the best predictor for Rosenbrock and performs well on Schwefel.
The computational load inherent to GP HMC comes in between those of GP RBF and
BNN MCD. Conversely, BNN HMC is the worst predictor in almost all cases and is the
slowest to train.

3.4.2 Calibration of the optimizer

The EA with EC-based selection and replacement illustrated in Algorithm 5 is utilized
in all of the P-SDAs presented hitherto. It is endowed with a SBX cross-over and a
polynomial mutation with probability pc = 0.9 and pm = 1

d = 1
16 respectively and dis-

tribution index ηc = 10 and ηm = 50 respectively. The population size npop and the
number of generations ngen are calibrated by grid search with npop ∈ {50; 100; 150; 200}
and ngen ∈ {50; 100; 150; 200}. The final results of the calibration are summed up in Table
3.3. For each (npop, ngen) pair, ten runs are executed for the Schwefel and the Rosenbrock
benchmark problems. For each AP, the particular choice for the (surrogate, EC) pair is
noted down in Table 3.3. Although these particular configurations create a bias in the
calibration procedure, the extreme computing load of a full calibration is bypassed. The
box-plots of the final objective values reached at the end of the searches are deferred to
the appendix section as pointed out in Table 3.3.

The configuration (npop, ngen) = (50, 100) provides the best averaged final objective
value for q-subnets and q-EGO in the Rosenbrock problem and for q-post-HMC with
GP HMC on Schwefel. It is also the second best arrangement for q-EGO in the Schwefel
function and for q-post-HMC with GP HMC on the Rosenbrock problem. These values

71

Table 3.2: Surrogates comparison. Training time (TT) and validation correlation
coefficient (vR2) averaged over 10 runs for each surrogate and each benchmark problem.
Ranks according to TT and vR2 are denoted in parentheses.

72 training samples 256 training samples
Surrogates TT vR2 TT vR2

Schwefel

BNN MCD 6.56(3) -3.6e-2(1) 7.09(3) -1.3e-3(3)
GP RBF 4.1e-1(1) -5.6e-2(3) 8.8e-01(1) 5.3e-2(2)
GP HMC 2.3(2) -5.1e-2(2) 6.3(2) 5.8e-2(1)
BNN HMC 1.5e+1(4) -1.0(4) 2.3e+1(4) -9.2e-1(4)

Rastrigin

BNN MCD 6.6(3) -2.2e-2(1) 8.3(3) -7.4e-4(2)
GP RBF 2.8e-1(1) -9.3e-2(3) 6.2e-1(1) 1.8e-2(1)
GP HMC 2.1(2) -5.9e-2(2) 5.8(2) -1.4e-2(3)
BNN HMC 1.6e+1(4) -1.3(4) 2.2e+1(4) -7.4e-1(4)

Rosenbrock

BNN MCD 7.38(3) -7.0e-3(3) 7.2(2) 3.4e-3(4)
GP RBF 2.8e-1(1) 2.1e-1(2) 6.7e-1(1) 4.8e-1(2)
GP HMC 2.2(2) 2.5e-1(1) 8.4(3) 5.0e-1(1)
BNN HMC 1.6e+1(4) -3.3e-1(4) 2.2e+1(4) 2.9e-1(3)

Table 3.3: Calibration of the EA with EC-based selection and replacement (q=18).

q-EGO cl-mean q-subnets q-Pareto q-post-HMC
GP RBF BNN MCD BNN MCD GP HMC /

BNN HMC
ada-wang-min pov par-fs-cd pov

(npop, ngen) (50, 100) (50, 100) (150, 50) (50, 100)
Box-plot Schwefel D.1 D.3 D.5 D.7 / D.9

Box-plot Rosenbrock D.2 D.4 D.6 D.8 / D.10

72 Chapter 3. Parallel Surrogate-driven algorithms

also show acceptable performance for q-post-HMC with BNN HMC. Setting (npop, ngen) =
(150, 50) is the better decision according to the average for q-Pareto in the Schwefel case
and also a good option in the Rosenbrock scenario. The retained values for npop and ngen

are kept per AP for all the following experiments.

3.4.3 Experimental protocol

The same surrogates than the ones of the previous chapter are employed for q-EGO and
q-Pareto with the unique exception of ANN BLR that is not inserted into q-Pareto on the
Covid-19 problem. The number of sub-networks for BNN MCD is fixed to 5 and all the
available simulated solutions are used for training this model. For ANN BLR, GP RBF
and the Kriging models, the training is carried out on the last 256, 72 and 18 simulations
respectively. In q-post-HMC, the surrogates are trained on the last 256 simulated can-
didates. The Pyro [Bin+18] and NumPyro [PPJ19] libraries are triggered to implement
GP HMC and BNN HMC. All the software libraries used in this thesis are listed in Table
F.1.

In q-EGO, only the most promising candidate is retained per 1-point AP. Consequently,
in the definition of the Pareto-based bi-criterion ECs par-fd-cd and par-fs-cd, the criterion
imposed to distinguish between the extreme points from the first NDF is removed (fourth
line in Equation (2.14)). Likewise, the special treatment of the extreme points in par-fd-hvc
and par-fs-hvc is abolished (Equation (2.15) and the associated exceptions). In doing so,
the aforementioned ECs will not behave similarly to pov. Additionally, the four dynamic
inclusive ensembles of ECs are not integrated into q-EGO as they would coincide with
their exclusive counterparts. The list of ECs actually added to q-EGO is displayed in
Table 2.1 and Table 2.2. Both the cl-mean and sb APs are considered on the benchmarks
but only cl-mean is applied on the Covid-19-related case. On the benchmarks, 290 q-EGO
variants are executed and 145 variants are run on the real-world application. Assuming
10 independent runs, the total number of searches amounts to 10,150.

The six Pareto-based bi-criterion ECs listed in Table 2.1 are invoked in q-Pareto re-
sulting in 30 variants (resp. 24 variants) of q-Pareto in the case of the benchmarks (resp.
Covid-19 application). The number of optimization exercises adds up to 1,140.

In q-subnets and q-post-HMC, the sub-surrogates ensure exploration while the EC
takes care of exploitation. Only the pov and par-fd-cd ECs are considered for these APs
resulting in 240 optimizations.

Two values are tested for the number of proposals per cycle: q ∈ {18, 72}. The overall
number of searches finally reaches 23,060.

3.4.4 Empirical analysis

Computational load of the APs
The differences between the APs in terms of computational costs are illustrated in Table 3.5
by the average number of simulations per search for each combination of AP, benchmark
and surrogate and q = ncores = 18. The average number of simulations is lower for q-EGO
(between 165 and 884) than for q-Pareto (between 697 and 1907) while the average training
time per surrogate is pretty much the same. This observation was expected because one
q-EGO cycle consists of the sequential execution of q surrogate updates and q optimizations
while only one multi-objective search and one training are needed per q-Pareto cycle.

73

Table 3.4: Prediction time (in seconds) when predicting 50 or 150 solutions. Average
over the three benchmarks and the 10 runs.

Surrogate Average prediction time Average prediction time
(50 predictions) (150 predictions)

ANN BLR 0.001 0.001
GP HMC 0.002 0.002
GP RBF 0.004 0.005

BNN MCD 0.09 0.09
rKRG 0.1 0.2
iKRG 0.1 0.2

BNN HMC 0.4 0.6

q-subnets and q-post-HMC further mitigate the computational burden. For an average
training time of around 10 seconds, q-subnets and q-post-HMC with GP HMC allow one
to simulate 1230 candidates per search in average while q-Pareto would simulate less than
1100 solutions. For an average training time of 19 seconds, around 930 simulations are
performed for q-post-HMC with BNN HMC while only 700 simulations are enabled by
q-Pareto for a lower training time of 16 seconds. In q-subnets and q-post-HMC, one
surrogate update and ncores parallel optimizations are carried out per cycle. It can be
concluded that the multi-objective optimization in a q-Pareto cycle is much slower than
the ncores parallel single-objective optimizations involved in q-subnets and q-post-HMC
with pov as EC. Indeed, for Schwefel with BNN MCD and q = ncores = 18, we get:

• 1382 simulations in average for q-subnets with pov

• 1065 simulations in average for q-subnets with par-fd-cd

• 1108 simulations in average for q-Pareto with par-fd-cd

Therefore, relying on a Pareto-based bi-criterion EC is more computationally demanding
due to the non-dominated sorting borrowed from NSGA-II [Deb+02].

It can be noticed in Table 3.5 that despite having a relatively low average training time,
BNN MCD shows low average numbers of simulations in q-EGO. Two reasons explain this
observation. First, GP RBF, iKRG and rKRG are only partially re-trained during one
cycle. The partial training does not re-compute the hyper-parameters, therefore reducing
the computational cost. The average training time reported in Table 3.5 is only calculated
based on the full updates occurring at the junction of two cycles. This is an advantage over
ANN BLR and BNN MCD for which only full trainings are realized. The second reason
is to be attributed to the computational workload induced by predictions. For batches of
50 and 150 solutions to predict, the average prediction time per surrogate are displayed in
Table 3.4. In this respect, the difference between ANN BLR and BNN MCD gets substan-
tial for q-EGO where q.npop.ngen = 18 ∗ 50 ∗ 100 = 90, 000 predictions are demanded per
cycle. For q-Pareto, npop.ngen = 150 ∗ 50 = 7, 500 predictions are made per cycle, making
the effect less impacting. It is important to stress the influence of the implementation over
the predictive time. Indeed, BNN MCD is coded by diverting the Keras library regardless
of the computational efficiency. The Kriging models are constructed through pybnn that
is suspected to lack of computational efficiency. The high prediction time reported on the
batch of 150 decision vectors for rKRG justifies the low number of simulations for q-Pareto
in Table 3.5 in spite of the low training time.

74 Chapter 3. Parallel Surrogate-driven algorithms

Table 3.5: P-SDAs with q=18 applied to the benchmark problems. Average number
of simulations per search and overall average training time (in seconds) for each surrogate
and acquisition process. Ordering according to the average number of simulations in
decreasing order from top to bottom.

Average Average Average Average
Surrogate number of training Surrogate number of training

simulations time simulations time

q-EGO q-Pareto

Schwefel
GP RBF 879 0.2 GP RBF 1893 0.17
rKRG 252 1.52 BNN MCD 1084 7.03
iKRG 239 7.12 ANN BLR 958 14.31

ANN BLR 197 8.44 rKRG 904 3.50
BNN MCD 165 6.85 iKRG 697 16.05

Rastrigin
GP RBF 882 0.14 GP RBF 1902 0.13
rKRG 249 1.59 BNN MCD 1072 7.57
iKRG 239 7.18 ANN BLR 960 14.30

BNN MCD 182 5.05 rKRG 891 3.74
ANN BLR 197 8.45 iKRG 702 16.11

Rosenbrock
GP RBF 884 0.11 GP RBF 1907 0.11
rKRG 247 1.63 BNN MCD 1099 6.50
iKRG 238 7.32 ANN BLR 959 14.34

ANN BLR 197 8.46 rKRG 920 3.16
BNN MCD 191 4.20 iKRG 698 16.50

Benchmark Average number of simulations Average training time

q-subnets
Schwefel 1224 7.82
Rastrigin 1240 7.26
Rosenbrock 1289 6.11

q-post-HMC with GP HMC
Schwefel 1435 5.63
Rastrigin 1230 10.04
Rosenbrock 1168 11.67

q-post-HMC with BNN HMC
Schwefel 934 18.57
Rastrigin 937 18.47
Rosenbrock 938 18.21

75

Effectiveness of the methods
It is now proposed to focus on the performance of the methods with respect to the averaged
objective value obtained at the end of the search. For each value of q and for each AP, the
top configurations are ranked in Table D.1, Table D.2, Table D.3 and Table D.4 for the
three benchmarks and the Covid-19 transmission control respectively. According to these
tables, it is generally a better choice to set q=18 than q=72. This observation stresses the
hurdle to ensure diversification in large sets of candidates. However, it is worth reminding
that q=18 is set during the calibrations, which creates a bias in the comparison. The
analyses led thenceforth only concentrate on q=18.

Regarding the APs, q-subnets with pov provides the best averaged objective value in
the multi-modal Schwefel problem with weak global structure. The predictive accuracy
of BNN MCD coupled with the random sampling of sub-networks adequately identify the
multiple basins of attraction. In the real-world problem, the committee-based EC com-
spf newly introduced in the previous chapter demonstrates the best results in q-EGO
with Constant Liar and the GP RBF surrogate. On the Rastrigin problem, q-Pareto with
rKRG and par-tian-fd overcomes all the alternatives while q-EGO with Surrogate Believer,
GP RBF and ada-wang-min occupies the first place of the podium on the Rosenbrock prob-
lem. No one AP is better than all the others in all the scenarios and the (surrogate, EC)
pair shows to have an important influence. Consequently, the design of P-SDAs should be
guided by the characteristics of the search landscape.

To distinguish between the ECs’ capabilities, the box plots of the 10 final objective
values are displayed in Figure D.11, Figure D.12, Figure D.13 and Figure D.14 for the three
benchmarks and the real-world application respectively. For the sake of visualization, only
the most interesting configurations are shown.

In q-EGO, ada-wang-min and par-tian-fs return consistently good outcomes on the
benchmarks but not on the Covid-19 case where com-spf is better. Both ada-wang-min
and par-tian-fs favor exploitation by minimizing the POV and minimizing the predictive
standard deviation therefore achieving a quick convergence to the optimum spotted at the
onset of the search. On Rastrigin, pov in cl-mean also provides good results, reflecting
the good accuracy of GP RBF on this landscape.

In q-Pareto, the ECs relying on the predictive standard deviation break away on the
Schwefel function thus proving the informativeness of the predictive uncertainty descending
from BNN MCD. Nevertheless, par-tian-fd is to be preferred on Rastrigin and Rosenbrock
where GP RBF is employed.

Convergence profiles
In order to best relate the number of simulations with the averaged objective value, the
convergence profiles for the best strategies for each problem are drawn and exposed in
Figure 3.1 for the Schwefel problem and in the appendix section in Figure D.15, Figure
D.16 and Figure D.17 for the remaining instances. The retained approaches are those
showing the best average objective value for one particular number of simulations at
least. The top strategies (according to averaged final objective value) are those allowing
a moderate number of simulations and proposing a trade-off between fast improvement
during the first bursts of simulations and continuous improvement afterwards.

Let’s focus on the Schwefel scenario where the convergence profiles are gathered in
Figure 3.1. The convergence demonstrated by q-EGO cl-mean with BNN MCD is very fast
in terms of number of simulations but the computational cost of the AP prevents to process
more than 100 simulations approximately. The q-post-HMC AP based on the GP HMC
sub-surrogate also achieves a very fast improvement during the first batches of simulations

76 Chapter 3. Parallel Surrogate-driven algorithms

but with the additional benefit of allowing one to perform much more simulations than
q-EGO, reaching around 1,400 function evaluations. Although accomplishing the highest
number of simulations by reducing the update frequency (q=72), q-Pareto with par-fs-cd
and BNN MCD is not the most adequate strategy because it does not improve sufficiently
at the beginning of the search. Instead, q-subnets with pov implements a convenient trade-
off between fast improvement at the start-up and continuous enhancement afterwards.

On the Rosenbrock and the Covid-19 problems, whose profiles are displayed in Figure
D.16 and Figure D.17 respectively, q-EGO and q-Pareto attain convergence state in few
simulations. No further significant improvement is achieved subsequently and the best
method according to the final average objective value is the one with the steepest im-
provement during the first bursts of simulations. The similarity of the curves in Figure
D.16 and Figure D.17 suggests a similarity of the landscapes of the Rosenbrock and the
Covid-19 problems.

For Rastrigin, in Figure D.15, an almost uninterrupted gain is granted notably for
q-Pareto with rKRG and par-tian-fd where a relevant reduction is observed at the end
of the execution. It may be easier to steadily enhance the objective value in Rastrigin in
comparison to Rosenbrock due to the multi-modality of the landscape.

3.4.5 Complete training set

Reducing the training set size for the majority of the surrogates may convey the impres-
sion of unfairness in comparison to BNN MCD which is trained on the whole database
of simulated candidates. Indeed, in P-SDAs the surrogate plays the most crucial role by
granting a fast improvement with respect to the number of simulations. To elucidate this
impression, the previous experiments (except those with q=72 or Surrogate Believer or
BNN MCD) are replayed with a full training set for all the surrogates.

The budget being maintained at 30 minutes on 18 computing cores, the Kriging models
are inappropriate as their training is too computationally costly. In the majority of the
cases, the first Kriging training is not finished after 30 minutes. For this reason, the
methods based on iKRG and rKRG are not analyzed hereafter.

The average numbers of simulations and average training times per AP for q=18 are
reported in Table 3.6. By comparing with Table 3.5, training on the whole database raises
the training time and reduces the number of simulations in almost all the situations.
Consequently, among the methods considering the complete training set, q-subnets is the
AP demonstrating the overall highest number of simulations. The case of ANN BLR in
cl-mean is an exception as the increase in the number of training samples seems to have
no impact. This is explained by two facts. Firstly, the computational requirements of
training ANN BLR is linear to the number of training points. Secondly, because of the
high computational load of a q-EGO cycle, the database does not grow meaningfully.

The top configurations per AP are reported in Table D.5, Table D.6, Table D.7 and Ta-
ble D.8 for the three benchmarks and the Covid-19 problem respectively. The best strategy
for each problem is not overthrown after the new executions. Using the whole database
yields some improvements in punctual circumstances. For instance, the best q-post-HMC
approach tagged so far in the Rastrigin problem yielded a final average objective value of
121.85 (Table D.2) while an average of 98.4 is obtained by the best q-post-HMC algorithm
for GP HMC trained on the whole database (Table D.6).

77

F
ig
u
re

3.
1:

B
e
st

P
-S

D
A
s
a
p
p
li
ed

to
th
e
S
ch

w
e
fe
l
p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
of

b
es
t
o
b
je
ct
iv
e
va
lu
es

av
er
a
ge
d
ov
er

th
e
1
0
ru
n
s
of

th
e

ex
p
er
im

en
t.

78 Chapter 3. Parallel Surrogate-driven algorithms

Table 3.6: P-SDAs with q=18 applied to the benchmark problems. The surrogates
are trained on the complete database of simulated candidates. Average number
of simulations per search and overall average training time (in seconds) for each surrogate
and acquisition process. Ordering according to the average number of simulations in
decreasing order from top to bottom.

Average Average Average Average
Surrogate number of training Surrogate number of training

simulations time simulations time

q-EGO cl-mean q-Pareto

Schwefel
GP RBF 698 1.08 GP RBF 1085 1.38
ANN BLR 203 7.56 ANN BLR 777 22.63

Rastrigin
GP RBF 702 0.78 GP RBF 1051 1.34
ANN BLR 204 7.56 ANN BLR 777 22.57

Rosenbrock
GP RBF 703 0.74 GP RBF 1104 2.05
ANN BLR 204 7.56 ANN BLR 775 22.64

Benchmark Average number of simulations Average training time

q-post-HMC with GP HMC
Schwefel 827 25.64
Rastrigin 680 36.44
Rosenbrock 703 34.79

q-post-HMC with BNN HMC
Schwefel 832 23.37
Rastrigin 831 23.33
Rosenbrock 840 22.97

79

The convergence profiles restricted to a low number of simulations offer the opportunity
to compare the P-SDAs for a budget describing a very expensive problem. The convergence
curves for the strategies showing the fastest improvement for less than 100 simulations are
plotted in Figure 3.2 for the Schwefel function and in the appendix in Figure D.18, Figure
D.19 and Figure D.20 for the remaining instances. Rastrigin apart, the best procedures
consider to train the surrogate on the complete database. On Schwefel, q-post-HMC
with pov and GP HMC provides remarkable results for less than 30 simulations. The
curves displayed for Rosenbrock in Figure D.19 look like the ones plotted in Figure D.20
for the Covid-19 problem, therefore insinuating a probable similarity of both landscapes.
The best strategy on the Covid-19 problem for less than 25 simulations employs EI. In
[Reh+20], it is stated that EI is to be preferred to deal with multi-modal problems and
low computational budget, even for a medium or high number of decision variables.

3.5 Conclusion

In this chapter, we have inspected the construction of P-SDAs to address moderately and
very expensive problems. We have come up with surrogate-optimizer couplings based
on the parallel optimizations of sub-surrogates to sample q new solutions. The benefit
regarding computational efficiency lies in the capping of one surrogate training per cycle.
The sub-surrogates can be generated by randomly deactivating units in an Artificial Neural
Network (q-subnets) or by sampling the posterior distribution over the parameters of
a Bayesian model (q-post-HMC). The multiplicity of the sub-surrogates advantageously
brings diversity in the set of candidates.

The new Acquisition Processes are appropriate to optimize multi-modal landscapes
with weak global structure. On the one hand, the q-subnets method is the most convenient
to handle a moderately expensive problem where the surrogate training is taken into
account in the budget definition. The reasons stem from both the sufficient number of
affordable simulations and the continuous improvement of the objective value along the
search. On the other hand, for a budget characterizing a very expensive problem where the
number of simulations is limited and the surrogate update is assumed to be negligible, the
q-post-HMC technique is the most adequate as it rapidly converges to a local optimum. For
the former budget, the numerical experiments show the pertinence of trading predictive
accuracy for simulations by reducing the size of the training set. Conversely, for the latter
budget setting, the effort should be invested into the surrogate building. This general
guidance should be taken carefully as exceptions may arise. Finally, the integration of
a committee-based Infill Criterion within q-EGO reveals interesting performances on the
Covid-19 transmission control problem.

80 Chapter 3. Parallel Surrogate-driven algorithms

F
ig
u
re

3.
2:

B
e
st

P
-S

D
A
s
a
p
p
li
ed

to
th
e
S
ch

w
e
fe
l
p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
of

b
es
t
ob

je
ct
iv
e
va
lu
es

av
er
ag

ed
ov
er

th
e
10

ru
n
s
o
f
th
e

ex
p
er
im

en
t.

R
T
S
:
re
d
u
ce
d
tr
a
in
in
g
se
t.

C
T
S
:
co
m
p
le
te

tr
ai
n
in
g
se
t.

Chapter 4

Parallel Hybrid methods

Contents

4.1 Introduction . 82

4.2 P-SAEAs versus P-SDAs . 82

4.2.1 Computational costs . 82

4.2.2 Context of moderately expensive problem 83

4.2.3 Convergence profiles . 87

4.3 Hybrid Acquisition Processes . 87

4.3.1 Hybrid Informed Operator and Infill Criterion-based Acquisition
Processes . 87

4.3.2 Experiments on Covid-19 contact reduction 92

4.3.3 Parallel scalability . 94

4.4 A posteriori landscape analysis 98

4.4.1 Reducing Covid-19-related death by contact reduction strategies 100

4.4.2 Characterization of the landscape 100

4.5 Conclusion . 102

Related publications:

• Briffoteaux Guillaume, Gobert Maxime, Ragonnet Romain, Gmys Jan, Mezmaz
Mohand, Melab Nouredine, Tuyttens Daniel. ”Parallel surrogate-assisted optimiza-
tion: Batched Bayesian Neural Network-assisted GA versus q-EGO” in Swarm
and Evolutionary Computation, 2020, Vol. 57, 100717, ISSN 2210-6502. https:

//doi.org/10.1016/j.swevo.2020.100717

• Ragonnet Romain, Briffoteaux Guillaume, Williams Bridget M., Savulescu Julian,
Segal Matthew, Abayawardana Milinda, Eggo Rosalind M., Tuyttens Daniel, Melab
Nouredine, Marais Ben J., McBryde Emma S., Trauer James M. ”Optimising social
mixing strategies to mitigate the impact of COVID-19 in six European countries:
a mathematical modelling study” in medRxiv, 2020. https://doi.org/10.1101/

2020.08.25.20182162

81

https://doi.org/10.1016/j.swevo.2020.100717
https://doi.org/10.1016/j.swevo.2020.100717
https://doi.org/10.1101/2020.08.25.20182162
https://doi.org/10.1101/2020.08.25.20182162

82 Chapter 4. Parallel Hybrid methods

4.1 Introduction

Merging the knowledge previously gained on P-SAEAs and P-SDAs empowers one to de-
sign new hybrid methods where the acquisition process comprises both IC optimization
and informed reproduction operators. The comprehension of the Covid-19 contact reduc-
tion problem is further extended in this chapter by the application of the hybrid methods
and a posteriori landscape analysis.

A confrontation between P-SAEAs and P-SDAs is organized in Section 4.2. The com-
putational costs of the APs and ECs are scrutinized as well as the quality of the resolution
in both contexts of moderately and very expensive problems and for varying search land-
scapes. The comprehension acquired on the two frameworks guides the construction of hy-
brid acquisition processes in Section 4.3. In this chapter, we introduce two hybrid methods:
Hybrid Concurrent Acquisition Processes (HCAP) and Hybrid Successive Acquisition Pro-
cesses (HSAP). On the one hand, HCAP utilizes IC optimization and informed operators
concurrently at each cycle. On the other hand, HSAP bets on a successive use of both APs
during the search. Numerical experiments are conducted on the Covid-19-related problem
including an analysis of parallel scalability and comparisons with a reference method.

Finally, in Section 4.4 the overall best solution, found by HSAP, on the Covid-19
problem is revealed and detailed. Enabled by the large amount of simulations resulting
from the numerous numerical experiments, a landscape analysis is performed. The severity
of the constraint and the features of the search landscape are highlighted and explain the
significance of the hybrid methods on this problem.

4.2 P-SAEAs versus P-SDAs

The combination of multiple factors impacts the allocation of the computational budget
among the tasks dedicated to simulation, training and acquisition process. This allocation
and the actual algorithmic components selected to form the surrogate-based method are
the key regulators of the optimization quality. The following sub-sections are intended to
summarize the observations stemming from all the previous numerical experiments and to
place P-SAEAs and P-SDAs face to face.

4.2.1 Computational costs

In order to describe the allocation of the computational budget, the average number of
simulations per method and the average training time of the surrogates have been mon-
itored. In Table 4.1, these indicators are gathered for all the strategies employed up
to now on the Schwefel benchmark function. It has already been observed in Chapter
3 that q-EGO is the most computationally demanding AP, followed by q-Pareto, while
q-subnets and q-post-HMC are less costly in this respect. We have also deduced from both
the conceptual and empirical analyses that training on the complete available database
increases the training time and so decreases the part of the budget dedicated to simulation.

The overview on Table 4.1 reveals that the association of a rapidly trainable sur-
rogate and a light AP gives to SaaEF with GP RBF the opportunity to perform the
same number of simulations than the parallel EA (P-EA) without surrogate (2214). By
comparing all the algorithms relying on BNN MCD for q = 72 plus q-post-HMC with
GP HMC, it can be deduced that, for a similar averaged training time, SaaEF, SaaF and
SaaE are the fastest AP (from 2003 to 2012 simulations) followed by q-post-HMC (1850
simulations) and q-subnets (1821 simulations). The slight difference between q-subnets

83

and q-post-HMC with GP HMC is to be attributed to the predictive computational in-
efficiency of BNN MCD. Reviewing the implementation of BNN MCD with a focus on
prediction efficiency is expected to rise q-subnets at the same level of q-post-HMC in
terms of computational performance.

The insights extracted from Table 4.1 for q = 72 are recovered for q = 18. Increasing q
only slightly subsides the number of simulations in q-EGO as each new candidate triggers
one intra-cycle (potentially partial) surrogate update. This fact does not hold for the
other P-SDAs where one training is executed per cycle. Reducing q in P-SAEAs would
also decrease the number of simulations as the surrogate is updated once per cycle.

The various categories of ECs carry diverse degrees of computing requirements. No
disparity is noted when observing the performance of P-SAEAs as the ECs are not sub-
stantially used. Conversely, they are more considerably demanded in q-EGO. The average
number of affordable simulations per ECs are reported in Table 4.2 when applying q-EGO
cl-mean on the Schwefel problem with GP RBF and q = 18. The ECs based on the
distance to the database are more computationally greedy than the ones utilizing the pre-
dictive standard deviation as measure of uncertainty. The calculation of the distance is
realized via the Scipy library [Va20] and further ways should be examined to mitigate the
computing time such as C implementation with Cython [Beh+11] or just-in-time compila-
tion through the Numba library [LPS15]. The rapidity of eliciting the predictive standard
deviation depends on the surrogate implementation.

As expected by their sophistication, the voting committees, the Pareto-based bi-
criterion ECs and the adaptive ensembles ada-dpf and ada-df are among the most compu-
tationally expensive ECs. The random and the scalarized bi-criterion ECs are the cheap-
est in terms of computations just like the adaptive ada-wang-min and ada-wang-max .
The dynamic ensembles are moderately expensive except for dyn-fs-excl, dyn-sf-excl and
dyn-sf-75-excl that entail a higher number of simulations.

4.2.2 Context of moderately expensive problem

For each framework, the top-5 strategies according to the final objective values averaged
over the ten runs are reported in Table 4.3. The P-SAEAs provide the best methods in
the four problems, strikingly outperforming the P-EA without surrogate (right column of
Table 4.3). On the real-world application to Covid-19 transmission control and on the
Rosenbrock benchmark, the P-SDA q-EGO also demonstrates its reliability by meaning-
fully improving over P-EA. Nonetheless, the pertinence of P-SDAs is called into question
on the multi-modal Schwefel and Rastrigin functions for a budget denoting a moderately
expensive problem. For such a budget, it is therefore more beneficial to invest into simu-
lations than into surrogate accuracy as the less computationally expensive APs from the
P-SAEAs are the most successful.

In P-SAEAs the ECs to promote are those favoring exploration at the early stages
and exploitation thereafter such as the dynamic ensembles dyn-df-incl, dyn-dpf-excl and
dyn-df-excl . Proceeding this way lets the surrogate learn the global landscape at the be-
ginning of the search to exploit the acquired knowledge afterwards. The Pareto-based
bi-criterion par-fd-cd is also a pertinent option. No such a clear conclusion can be drawn
in the case of P-SDAs. On Rosenbrock, ada-wang-min in q-EGO and the Pareto-based
ECs from [Tia+19] in q-Pareto are purely exploitation-oriented. On the Covid-19 prob-
lem, com-spf in q-EGO and the Pareto-based par-fs-hvc in q-Pareto and par-fd-cd in
q-post-HMC balance exploration and exploitation.

84 Chapter 4. Parallel Hybrid methods

Table 4.1: P-SAEAs and P-SDAs applied to the Schwefel problem. Average number
of simulations and average training time (TT) per search for each surrogate and acquisition
process. Ordering according to the average number of simulations in decreasing order from
top to bottom. RTS: reduced training set. CTS: complete training set.

Average Average
Surrogate number of TT Surrogate number of TT

simulations simulations

P-EA q=72
no surrogate 2214 0.0

SaaEF q=72
GP RBF (RTS) 2214 0.16
rKRG (RTS) 2084 3.52
BNN MCD (CTS) 2012 6.05
ANN BLR (RTS) 1797 14.63
iKRG (RTS) 1746 16.32

SaaF q=72
BNN MCD (CTS) 2005 6.42

SaaE q=72
BNN MCD (CTS) 2003 6.48

q-Pareto q=18 q-Pareto q=72
GP RBF (RTS) 1893 0.17 GP RBF (RTS) 2121 0.11
GP RBF (CTS) 1085 1.38 BNN MCD (CTS) 1718 6.87
BNN MCD (CTS) 1084 7.03 ANN BLR (RTS) 1650 14.74
ANN BLR (RTS) 958 14.31 rKRG (RTS) 1585 3.08
rKRG (RTS) 904 3.50 iKRG (RTS) 1395 16.07
ANN BLR (CTS) 777 22.63
iKRG (RTS) 697 16.05

q-post-HMC q=18 q-post-HMC q=72
GP HMC (RTS) 1435 5.63 GP HMC (RTS) 1850 9.93
BNN HMC (RTS) 934 18.57 BNN HMC (RTS) 1436 31.36
BNN HMC (CTS) 832 23.37
GP HMC (CTS) 827 25.64

q-subnets q=18 q-subnets q=72
BNN MCD (CTS) 1224 7.82 BNN MCD (CTS) 1821 7.68

q-EGO q=18 q-EGO q=72
GP RBF (RTS) 879 0.2 GP RBF (RTS) 862 0.13
GP RBF (CTS) 698 1.08 rKRG (RTS) 234 1.18
rKRG (RTS) 252 1.52 ANN BLR (RTS) 165 8.49
iKRG (RTS) 239 7.12 iKRG (RTS) 153 4.02
ANN BLR (CTS) 203 7.56 BNN MCD (CTS) 138 8.49
ANN BLR (RTS) 197 8.44
BNN MCD (CTS) 165 6.85

85

Table 4.2: q-EGO cl-mean applied to the Schwefel problem with GP RBF (RTS) and
q = 18. Average number of simulations per Evolution Control. Ordering according to
the average number of simulations in decreasing order from left to right and from top to
bottom.

Evolution Average number Evolution Average number
Control of simulations Control of simulations

rand 1234 par-fs-cd 909
pov 1053 par-fs-hvc 889
lcb 1053 dyn-df-75-excl 835

dyn-fs-excl 1049 dyn-fd-excl 810
ada-wang-max 1049 dyn-dpf-excl 802

dyn-sf-excl 1047 dist 725
stdev 1045 dyn-fpd-excl 720

pi 1045 com-spf 718
ada-wang-min 1044 ada-df 669

ei 1042 par-fd-cd 669
dyn-sf-75-excl 1042 par-tian-fd 667
dyn-fps-excl 977 par-fd-hvc 666
dyn-spf-excl 977 ada-dpf 522
dyn-df-excl 941 com-dpf 520
par-tian-fs 912

The distance from the database of already simulated solutions is the most informa-
tive indicator of exploration in P-SAEAs. It has been hypothesized in Chapter 2 that
the predictive standard deviation fails to represent the predictive uncertainty because
BNN MCD builds it approximately and the remaining surrogates (trained on a reduced
training set) lose historical information. The search outcomes from the best P-SDAs on
the Rosenbrock and the Covid-19 instances displayed in Table 4.3 reveal that invoking
the predictive standard deviation is actually interesting. Indeed, the predictive standard
deviation favors exploration either by discovering unknown regions (such as the distance
does) or by scrutinizing regions possibly characterized by important fluctuations according
to the surrogate. For surrogates that possess adequate predictive capacity for the land-
scape at hand, the predictive standard deviation is a pertinent information. This subtlety
appeals to derive ECs or APs that embed both measures.

Astonishingly, training GP RBF on a size-restricted set seems to yield better results in
P-SDAs according to Table 4.3 whereas the training time is not drastically reduced (from
around 0.2 second to 1 second as exposed in Table 4.1). Restraining the training set to
the last simulations may boost exploitation in the area currently screened. In P-SAEAs,
BNN MCD has only been built on the entire database and GP RBF on the batch of new
simulations. The contrast of performance of both surrogates is to be put down to the
predictive capacity rather than the composition of the training set as pointed out in the
comparison led in Sub-section 2.4.2.

86 Chapter 4. Parallel Hybrid methods

Table 4.3: P-SAEAs versus P-SDAs. Top-5 strategies for each framework according to
the final objective value averaged over 10 runs. Ordering according to ascending average
final objective values from top to bottom.

S
u
rr
o
ga

te
A
P

E
C

A
ve
ra
ge

S
u
rr
og

at
e

A
P

E
C

q
A
ve
ra
ge

A
ve
ra
ge

P
-S
A
E
A

P
-S
D
A

P
-E

A

S
ch
w
ef
el

B
N
N

M
C
D

(C
T
S
)

S
a
a
E
F

d
y
n
-d

f-
in

c
l

1
3
1
.9
5

B
N
N

M
C
D

(C
T
S
)

q
-s
u
b
n
et
s
po
v
18

19
65

.4
5

60
7.
91

B
N
N

M
C
D

(C
T
S
)

S
aa

E
F
d
yn

-d
p
f-
ex
cl

13
6.
3

B
N
N

M
C
D

(C
T
S
)

q
-P
ar
et
o
pa
r-
fs
-h
vc

18
20

15
.0
6

B
N
N

M
C
D

(C
T
S
)

S
aa

F
d
yn

-d
f-
in
cl

15
3.
92

B
N
N

M
C
D

(C
T
S
)

q
-P
ar
et
o
pa
r-
fs
-c
d
72

20
19

.4
5

B
N
N

M
C
D

(C
T
S
)

S
a
a
E
F
pa
r-
fd
-c
d

16
7.
55

B
N
N

M
C
D

(C
T
S
)

q
-P
ar
et
o
pa
r-
fs
-h
vc

72
21

05
.1
9

B
N
N

M
C
D

(C
T
S
)

S
aa

E
F
d
yn

-d
f-
ex
cl

16
8.
64

B
N
N

M
C
D

(C
T
S
)

q
-P
ar
et
o
pa
r-
fs
-c
d
18

21
92

.2
9

R
as
tr
ig
in

G
P

R
B
F

(R
T
S
)

S
a
a
E

p
a
r-
fd
-c
d

1
8
.2
2

rK
R
G

18
(R

T
S
)

q
-P
ar
et
o
pa
r-
ti
a
n
-f
d
18

77
.8
3

23
.3
0

G
P

R
B
F
(R

T
S
)

S
aa

E
d
yn

-d
f-
ex
cl

18
.6
9

G
P

R
B
F
(C

T
S
)

cl
-m

ea
n
lc
b
18

84
.6
6

G
P

R
B
F
(R

T
S
)

S
aa

E
F
d
yn

-d
p
f-
ex
cl

19
.0
8

G
P

R
B
F
(R

T
S
)

cl
-m

ea
n
a
d
a
-w

a
n
g-
m
in

18
90

.5
9

G
P

R
B
F
(R

T
S
)

S
aa

E
co
m
-d
p
f

19
.2
5

G
P

R
B
F
(C

T
S
)

cl
-m

ea
n
bp

18
90

.8
2

G
P

R
B
F
(R

T
S
)

S
aa

F
co
m
-d
p
f

19
.3
4

G
P

R
B
F
(R

T
S
)

cl
-m

ea
n
pa
r-
ti
a
n
-f
s
18

92
.9
2

R
os
en
b
ro
ck

G
P

R
B
F

(R
T
S
)

S
a
a
F

p
a
r-
fd
-c
d

1
3
7
.8
2

G
P

R
B
F
(R

T
S
)

sb
a
d
a
-w

a
n
g-
m
in

18
47

2.
02

11
91

.1
4

G
P

R
B
F
(R

T
S
)

S
aa

F
co
m
-d
p
f

15
6.
63

rK
R
G

18
(R

T
S
)

q
-P
ar
et
o
pa
r-
ti
a
n
-f
d
18

57
2.
57

G
P

R
B
F
(R

T
S
)

S
aa

F
pa
r-
fd
-h
vc

20
3.
27

G
P

R
B
F
(R

T
S
)

q
-P
ar
et
o
pa
r-
ti
a
n
-f
s
72

63
9.
77

G
P

R
B
F
(R

T
S
)

S
a
aF

ei
23

2.
37

G
P

R
B
F
(R

T
S
)

q
-P
ar
et
o
pa
r-
ti
a
n
-f
s
18

71
3.
99

G
P

R
B
F
(R

T
S
)

S
a
aE

F
pa
r-
fd
-h
vc

23
3.
93

G
P

R
B
F
(R

T
S
)

q
-P
ar
et
o
pa
r-
ti
a
n
-f
d
72

94
0.
72

C
ov
id
-1
9

B
N
N

M
C
D

(C
T
S
)

S
a
a
F

d
y
n
-d

f-
in

c
l

6
8
5
4

G
P

R
B
F
(R

T
S
)

cl
-m

ea
n
co
m
-s
p
f
18

78
24

21
48

3
B
N
N

M
C
D

(C
T
S
)

S
aa

F
d
yn

-d
f-
ex
cl

71
15

G
P

R
B
F
(C

T
S
)

q
-P
ar
et
o
pa
r-
fs
-h
vc

18
82

98
B
N
N

M
C
D

(C
T
S
)

S
a
a
E
F
d
yn

-d
f-
7
5
-e
xc
l

74
55

G
P

H
M
C

(R
T
S
)

q
-p
os
t-
H
M
C

pa
r-
fd
-c
d
72

86
48

B
N
N

M
C
D

(C
T
S
)

S
aa

E
F
d
yn

-d
f-
ex
cl

76
79

G
P

H
M
C

(R
T
S
)

q
-p
os
t-
H
M
C

pa
r-
fd
-c
d
18

87
78

B
N
N

M
C
D

(C
T
S
)

S
aa

E
F
d
is
t

78
37

G
P

R
B
F
(C

T
S
)

q
-P
ar
et
o
co
m
-s
p
f
18

88
97

87

4.2.3 Convergence profiles

The convergence profiles of the best approaches are outlined in Figure 4.1 for Schwefel and
in Appendix E for the other instances. The appropriateness of the P-SDAs is demonstrated
for all the problem instances when the number of simulations is more severely capped
than it has been in our budget definition. More precisely, for a budget only defined by a
limited number of simulations, P-SDAs are the most rewarding methods. After a threshold
specific to each search landscape, the P-SAEAs overcome the P-SDAs. It is particularly
flagrant on the multi-modal Schwefel and Rastrigin landscapes in Figure 4.1 and Figure
E.1 respectively. For Schwefel, the threshold lies in [300; 500] while a more extended range
of [300; 700] is observed for Rastrigin. The phenomena is less apparent on the Rosenbrock
and Covid-19 problems in Figure E.2 and Figure E.3 respectively. The threshold appears
to be around 1500 simulations but considering a larger budget would allow to be more
rigorous as most of the P-SDAs curves stopped before the intersection point.

The convergence plots confirm that among P-SDAs no one AP is superior than all the
others in all the scenarios. Even if q-EGO shows superiority over its counterparts in three
cases out of four for few simulations, q-post-HMC and q-subnets are to be put forward
on the Schwefel problem. Analogously, the problem dependency hinders the choice for
a unique convenient EC in P-SDAs even though ada-wang-min and the Pareto-based bi-
criterion ECs based on the predictive standard deviation are recurrently among the most
successful components.

4.3 Hybrid Acquisition Processes

The two categories of P-SBOAs, namely P-SAEAs and P-SDAs, are attractive for different
budgets or landscapes. In this section, we attempt to retain the best of both classes by
investigating the design of hybrid APs. The generation of new candidates is envisioned
via both IC optimization and reproduction operators.

4.3.1 Hybrid Informed Operator and Infill Criterion-based Acquisition
Processes

Two APs are combined into two novel optimization algorithms. The first AP is a Constant
Liar with the voting committee EC com-spf and the GP RBF surrogate model. The
second AP is inspired by P-SAEA, where a BNN MCD surrogate is only used as a filter
to discard unpromising candidates (SaaF). Both APs are the most adequate for each
framework on the Covid-19 problem as identified in the preceding chapters.

The first new hybrid method is named HCAP for ”Hybrid Concurrent Acquisition
Process” and is presented in Algorithm 11. The two aforementioned APs are executed
concurrently at each cycle to propose new candidates that are subsequently simulated in
parallel. The algorithm starts by a search space sampling via LHS and the evaluation of
the initial candidates (line 1). The surrogates are created and the population is initialized
(lines 2 to 4). At the beginning of a cycle, the first AP generates q1 = 9 new promis-
ing candidates (line 6). The Constant Liar AP is described thoroughly in Algorithm 7.
Thence, parents are selected from the population and reproduced to create a batch Pc of
nchld = 288 children (lines 7 and 8). From Pc, the q2 = 63 more promising candidates
are retained and the remaining ndisc = 225 candidates are discarded (line 9). A total
of q1 + q2 = 72 new candidates are simulated in parallel at each cycle (lines 10 and 11).
Thereafter, the surrogates are updated (lines 13 and 14) and a new population is formed
by elitist replacement (line 15).

88 Chapter 4. Parallel Hybrid methods

F
ig
u
re

4.
1:

P
-S

A
E
A
s
v
e
rs
u
s
P
-S

D
A
s
ap

p
li
ca
ti
on

to
th
e
S
ch

w
e
fe
l
p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
o
f
b
es
t
o
b
je
ct
iv
e
va
lu
es

av
er
ag

ed
ov
er

th
e
1
0
ru
n
s
of

th
e
ex
p
er
im

en
t.

89

Algorithm 11 Framework of HCAP.

Input
simulator : real objective function
budget : computational budget for the search
GP RBF: surrogate model for AP1
com-spf : evolution control for AP1
q1 = 9: number of candidates to simulate per cycle for AP1
npop1 = 50: population size for AP1
ngen = 100: number of generations for AP1
BNN MCD: surrogate model for AP2
EC : evolution control for AP2
npop2 = 72: population size for AP2
nchld = 288: number of new candidates issued per cycle for AP2
q2 = 63: number of candidates to simulate per cycle for AP2
ndisc = 225: number of discarding per cycle for AP2

1: database ← LHS+parallel simulations(simulator, npop2)
2: GP RBF ← training(database)
3: BNN MCD ← training(database)
4: P ← database ▷ initial population
5: while budget ̸= 0 do
6: Bsim1 ← Constant Liar AP(database, com-spf, GP RBF, q1, npop1, ngen) ▷

Algorithm 7
7: Pp ← selection(P, nchld) ▷ population of parents
8: Pc ← reproduction(Pp, nchld) ▷ population of children
9: Bsim2 ← filtering(Pc, dyn-df-75-excl, BNN MCD, q2, ndisc)

10: Bsim ← Bsim1 ∪ Bsim2

11: parallel simulation(simulator, Bsim)
12: database ← database ∪ Bsim
13: GP RBF ← training(database, 72)
14: BNN MCD ← training(database, all)
15: P ← elitist replacement(P, Bsim, npop2)
16: budget ← get remaining budget(budget, elapsed time)
17: end while
18: (xmin, ymin) ← get best cost(database)
19: return xmin, ymin

90 Chapter 4. Parallel Hybrid methods

The analysis led in Section 4.2 indicates that P-SDAs are relevant for few objective
function evaluations and P-SAEAs to deal with moderately expensive problems. This
conclusion appeals to design another hybrid method that would execute successively an
AP based on IC optimization and an AP relying on evolutionary computations. The
novel method is referred to as HSAP for ”Hybrid Successive Acquisition Processes” and
is detailed in Algorithm 12. The first stage consists of running 6 cycles of q-EGO cl-mean
with GP RBF and com-spf for q = 18 thus corresponding to 108 simulations (lines 2 to
11). Afterwards, P-SAEA is run with reproduction operators informed by BNN MCD
through an EC until the budget is totally consumed (lines 12 to 24). The population
is initialized by taking a special care of balancing between exploration and exploitation.
To foster exploitation, the 10 best candidates identified so far are included in the initial
population (line 12). To boost exploration, a K-Means algorithm [Scu10; AV07] partitions
the set of decision vectors from the database into 62 groups and one randomly-selected
solution per cluster is added to the initial population (line 13).

K-Means is a clustering algorithm whose purpose is to minimize the ”inertia” defined
by:

ndb∑
i=1

min
c
(j)
km∈C

||x(i) − c
(j)
km||

2 (4.1)

where ndb is the number of decision vectors x(i) in the database and C is the set of the

centroids c
(j)
km of the clusters. The number of clusters is fixed by the user and the asso-

ciated centroid of each cluster is the average of the cluster’s members. At the beginning,
the centroids are chosen among the database and each decision vector is attached to its
nearest centroid. Afterwards, an iterative process updates the centroids by computing
the per-cluster average and re-affect the decision vectors. The algorithm stops when the
centroids do not move significantly. K-Means is recognized as an efficient clustering tool as
it scales well to large datasets and always converges providing enough time [Scu10; AV07].

The AP emphasized in [Liu+17] outputs q = 4 candidates by optimizing q = 4 ICs in-
dependently. The unique surrogate update per AP reduces the computing effort induced
by q-EGO. However, the low value attributed to q points the difficulty of conserving
a relevant degree of diversity when numerous new candidates are sampled at once. In
[Reh+18], the authors devise a hybrid strategy, namely Surrogate Model Based Optimiza-
tion + Evolutionary Algorithm (SMBO+EA), whose AP relies on both IC optimizations
and reproduction operators. Given ncores available computing cores, the maximization of
EI and the minimization of the POV yield one new candidate each and the reproduction
operators provide the remaining ncores− 2 solutions. Consequently, ncores parallel simula-
tions are run per cycle. Numerical experiments are conducted on the Rastrigin benchmark
problem with 15 decision variables and on a discrete real-world engineering problem with
49 design variables and a simulation time of several seconds. The budget for the search
varies between 150 and 750 real evaluations and a Kriging model is employed as surrogate.
The resulting empirical analysis proves the superiority of the hybrid method compared to
some state-of-the-art P-SDAs.

SMBO+EA is reproduced in this thesis to compete with HCAP and HSAP on the
Covid-19 application. Its implementation is dissected in Algorithm 21 in Appendix E for
ncores = 18. The GP RBF surrogate model replaces the Kriging model as this latter has
not been previously relevant in the problem at hand. The algorithm starts by initializing
the database and building the surrogate (lines 1 to 3). A cycle consists in running the three
APs in parallel. The first AP, executed on one computing core, maximizes EI to produce
a new candidate that is simulated (lines 7 and 8). The second AP minimizes the POV
(lines 10 and 11). The third AP generates q = 16 new candidates via reproduction of 16
parents extracted from the current population (lines 13 and 14). The 16 new candidates

91

Algorithm 12 Framework of HSAP.

Input
simulator : real objective function
budget : computational budget for the search
GP RBF: surrogate model for AP1
com-spf : evolution control for AP1
q1 = 18: number of candidates to simulate per cycle for AP1
npop1 = 50: population size for AP1
ngen = 100: number of generations for AP1
BNN MCD: surrogate model for AP2
EC : evolution control for AP2
npop2 = 72: population size for AP2
nchld = 288: number of new candidates issued per cycle for AP2
q2 = 72: number of candidates to simulate per cycle for AP2
ndisc = 216: number of discarding per cycle for AP2

1: database ← LHS+parallel simulations(simulator, npop2)
2: GP RBF ← training(database)
3: counter=0
4: while counter< 6 AND budget ̸= 0 do
5: Bsim ← Constant Liar AP(database, com-spf, GP RBF, q1, npop1, ngen) ▷

Algorithm 7
6: parallel simulation(simulator, Bsim)
7: database ← database ∪ Bsim
8: GP RBF ← training(database)
9: budget ← get remaining budget(budget, elapsed time)

10: counter=counter+1
11: end while
12: P ← get best(database, 10) ▷ initial population
13: P ← P∪ K-Means sampling(database, 62)
14: BNN MCD ← training(database)
15: while budget ̸= 0 do
16: Pp ← selection(P, nchld) ▷ population of parents
17: Pc ← reproduction(Pp, nchld) ▷ population of children
18: Bsim ← filtering(Pc, EC, BNN MCD, q2, ndisc)
19: parallel simulation(simulator, Bsim)
20: database ← database ∪ Bsim
21: BNN MCD ← training(database, all)
22: P ← elitist replacement(P, Bsim, npop2)
23: budget ← get remaining budget(budget, elapsed time)
24: end while
25: (xmin, ymin) ← get best(database, 1)
26: return xmin, ymin

92 Chapter 4. Parallel Hybrid methods

are simulated in parallel on 16 cores. Once the simulations completed, the master com-
puting core retrieves all the information newly acquired to update the database (lines 17
and 18). The surrogate and the population are finally updated (lines 19 and 20) and the
cycle is repeated until the computational budget is wasted.

In SMBO+EA, no EC is used in the AP based on the reproduction operators whereas
a dynamic ensemble of ECs or a Pareto-based EC helps to discard unpromising candidates
in HCAP and HSAP. Relying on an EC at this step gives more opportunity to the repro-
duction operators to generate good candidates. The objective pointed out in [Reh+18] for
future works is to improve the performance of the method when ncores increases. Indeed,
in the experiments reported in [Reh+18], SMBO+EA performs similarly to P-EA (without
surrogate) for ncores = 15. In HCAP and HSAP, the use of two surrogates from different
types aims at enhancing diversification in the batch of new samples and improving the
overall performance of the hybrid methods. In SMBO+EA, the three APs are performed
in parallel while the two APs from HCAP are performed sequentially thus giving a slight
advantage to SMBO+EA regarding idleness of computing cores.

4.3.2 Experiments on Covid-19 contact reduction

The experimental protocol is the same as the one from Sub-section 2.5.3 and Sub-section
3.4.3 to allow ones to compare the new hybrid methods with the best established P-SAEAs
and P-SDAs.

The GP RBF is trained on a controlled-size set in HCAP whereas the whole database
is used in HSAP and SMBO+EA. In both HCAP and HSAP, the EC is either dyn-df-excl,
dyn-df-incl or par-fd-cd. The BNN MCD is always updated thanks to all the simulations
performed so far. A total of seven parallel hybrid methods are applied 10 independent
times, resulting in a total of 70 new searches.

Figure 4.2 shows the distribution of the 10 best objective values obtained at the end
of the search for the hybrid strategies, the best P-SAEAs and P-SDAs revealed previously
and the P-EA. The corresponding ranking according to the average final objective value
is displayed in Table 4.4. It can be observed that the new hybrid method HSAP with
dyn-df-incl significantly outperforms the best method known so far (SaaF BNN MCD
dyn-df-incl) by decreasing the average objective from 6,854 to 4,178. The average, median
and variance of the results are all improved when employing HSAP as shown in Figure
4.2. During the second phase in HSAP, when candidates are generated by informed oper-
ators, it is better to use both the exploitation-oriented measure pov and the exploration
metric dist at each cycle. Indeed, the outcomes are slightly less interesting when using
the dynamic exclusive ensemble of ECs. More generally, harnessing the dyn-df-incl EC is
the best choice in HSAP, HCAP and SaaF according to Table 4.4. The concurrent com-
bination of APs proposed by HCAP is also a reliable strategy as, it outperforms all the
non-hybrid methods and SMBO+EA as displayed in Figure 4.2 and Table 4.4. It can be
noticed that SMBO+EA behaves as expected as it produces results similar to the P-EA
without surrogate.

The convergence profile for the parallel hybrid strategies, the best P-SAEAs and
P-SDAs as well as the P-EA are displayed in Figure E.4. Expectedly, HSAP and the
P-SDAs exhibit a similar very steep curve for less than 108 simulations. After the AP
switch in HSAP, the improvement is slowed down but a continuous progress is noted until
around 600 simulations where the convergence is almost reached. Figure 4.3 displays a
zoom that highlights the benefit from using HSAP with dyn-df-incl over cl-mean with
GP RBF trained on a reduced training set (RTS) from 300 simulations. Firstly, HSAP

93

F
ig
u
re

4.
2:

H
y
b
ri
d

st
ra

te
g
ie
s
o
n
th
e
C
o
v
id
-1
9
c
o
n
ta

c
t
re

d
u
c
ti
o
n

p
ro

b
le
m
.
D
is
tr
ib
u
ti
on

of
th
e
b
es
t
o
b
je
ct
iv
e
va
lu
es

fr
om

th
e
10

ru
n
s
o
f
th
e

ex
p
er
im

en
t.

A
v
er
ag

ed
va
lu
es

ar
e
d
ep

ic
te
d
b
y
re
d
sq
u
a
re
s,
m
ed

ia
n
va
lu
es

b
y
re
d
d
as
h
es

an
d
va
ri
a
n
ce

in
fo
rm

at
io
n
is
g
iv
en

b
y
th
e
le
n
gt
h
of

th
e
b
ox
es
.

94 Chapter 4. Parallel Hybrid methods

Table 4.4: Parallel Hybrid methods. Ranking of the best strategies according to the
final objective value averaged over 10 runs. Ordering according to ascending average from
top to bottom.

Strategy Average

HSAP dyn-df-incl 4,178
HSAP par-fd-cd 4,241
HCAP dyn-df-incl 6,487
SaaF BNN MCD dyn-df-incl 6,854
HSAP dyn-df-excl 6,931
HCAP dyn-df-excl 7,268
HCAP par-fd-cd 7,290
SaaEF BNN MCD dyn-df-75-excl 7,455
cl-mean GP RBF (RTS) com-spf q=18 7,824
cl-mean GP RBF (CTS) com-spf q=18 8,897
P-EA 21,483
SMBO+EA 24,262

allows one to perform more simulations than cl-mean as indicates the length of the curves
in Figure E.4. Secondly, the use of the informed operators enable a continuous improve-
ment as soon as the IC-based AP has reached steady state. An attractive enhancement
of HSAP would be to automatically detect the flatness in the convergence curve and trig-
ger the AP switch. As we have already seen when designing ensemble of ECs, such a
mechanism is not trivial to design, particularly because user-defined parameters must be
avoided. However, exploiting the gradient of the curve is a potential lead that we plan to
investigate in the future. HCAP outperforms SMBO+EA, SaaF and SaaEF in Figure E.4
while SaaF and SaaEF overtake SMBO+EA from 260 simulations. The bad performances
of P-EA stressed by Figure E.4 demonstrate again the profit brought by surrogate models
for both moderately and very expensive problems.

The length of the curves in Figure E.4 yields indications about the computational cost
of the methods. Among the hybrid methods, SMBO+EA is the more computationally
costly as the surrogate is trained on the entire database and ICs optimizations are run at
each cycle. By reducing the training set size as in HCAP, more simulations are enabled
and by reducing the computational effort dedicated to ICs optimization as in HSAP, the
number of simulations gets closer to the one of P-SAEAs. A possible way to relieve the
computational cost of HCAP would be to execute both APs in parallel.

4.3.3 Parallel scalability

We now study the behavior of the P-SBOAs when the number of computing cores ncores is
varied while the overall time granted to the search is maintained to 30 minutes. The way to
fix the number of simulations per cycle q is not unique and may depend on ncores. In a first
set of experiments, the number of computing resources is decreased without modification
of q with respect to the calibration adopted up to now. In a second set of experiments,
the number of simulations per cycle is adjusted to fit the number of computing cores at
hand (q = ncores) therefore allowing to increase ncores.

95

F
ig
u
re

4.
3:

P
a
ra

ll
e
l
H
y
b
ri
d

m
e
th

o
d
s
a
p
p
li
ed

to
th
e
C
o
v
id
-1
9

c
o
n
ta

c
t
re

d
u
c
ti
o
n

p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
o
f
b
es
t
o
b
je
ct
iv
e

va
lu
es

av
er
a
ge
d
ov
er

th
e
1
0
ru
n
s
of

th
e
ex
p
er
im

en
t.

96 Chapter 4. Parallel Hybrid methods

Table 4.5: Parallel scalability (unaltered values for q). Best objective values aver-
aged over the 10 runs of the experiment for different numbers of available computing cores
and without any modification of the algorithms.

XXXXXXXXXXXMethod
ncores 18 9 6 3 2

HSAP (q1 = 18; q2 = 72) 4,178 4,273 4,769 5,690 7,619
HCAP q = 72 6,487 6,849 8,663 13,890 20,438
SaaF q = 72 6,854 8,950 11,633 28,115 37,525
SaaEF q = 72 7,455 12,280 13,879 17,747 25,469
q-EGO (RTS) q = 18 7,824 8,040 8,712 8,063 13,705
q-EGO (CTS) q = 18 8,897 9,582 8,292 10,357 8,097
P-EA q = 72 21,483 17,514 20,256 32,438 46,719

In the first set of experiments, by setting ncores ∈ {2, 3, 6, 9, 18} the idleness of the
computing units is completely avoided as q has been previously set to either 18 or 72
simulations per cycle. However, the realization of one cycle is more time-demanding
which consequently shrinks the affordable number of simulations. The strategies retained
for this analysis are those demonstrating the most interesting performances per category
on the Covid-19 application:

• P-EA q = 72

• SaaF BNN MCD dyn-df-incl q = 72

• SaaEF BNN MCD dyn-df-75-excl q = 72

• q-EGO cl-mean GP RBF (RTS) com-spf q = 18

• q-EGO cl-mean GP RBF (CTS) com-spf q = 18

• HCAP dyn-df-incl q = q1 + q2 = 9 + 63 = 72

• HSAP dyn-df-incl q1 = 18 q2 = 72

The averaged best objective values reaped at the end of the experiments are gathered
in Table 4.5. According to Table 4.5, HSAP is the best method for every value of ncores

and using three computing units is enough to outperform the competing approaches. In-
creasing the amount of energy invested to run the search, by means of raising the number
of active computing cores, allows one to enhance the quality of the resolution for HSAP,
HCAP, SaaF and SaaEF. Nonetheless, it does not seem to be always the case for q-EGO
and P-EA. This latter observation should be attributed to the variability entailed by the
aleatoric features of the approaches as the variation in ncores does not trigger any modi-
fication of the algorithm. Besides, the reduction in affordable simulations induced by the
reduction of the computing resources is not important enough to prematurely cut off the
convergence of q-EGO as reflected by the convergence profiles in Figure E.5 in Section E
of the appendix. In every case, the benefit of augmenting ncores reaches a ceiling at 18 or
72 because q is fixed to either 18 or 72 in the considered methods.

In the second set of experiments, it is proposed to set q according to ncores and to
leverage higher number of cores ncores ∈ {3, 9, 18, 72, 144}. For the APs based on IC
optimization, the number of proposals per iteration is assumed to match the number of
computing cores q = ncores. In this situation, the challenge of maintaining diversity in the
batch of newly candidates arises when the number of computing cores is high. When ncores

97

Table 4.6: Parallel scalability (q = ncores). Best objective values averaged over the
10 runs of the experiment for different numbers of available computing cores. The number
of simulations per cycle q is fixed to ncores for all the approaches.

XXXXXXXXXXXMethod
ncores 144 72 18 9 3

HSAP 3,791 3,865 4,617 7,118 8,950
HCAP 5,487 6,100 7,767 11,275 17,658
SaaF 6,463 7,728 6,779 9,951 21,641
q-EGO (RTS) 13,894 9,443 8,416 8,234 7,624
SaaEF 7,777 7,916 14,653 11,029 17,363
q-EGO (CTS) 12,820 8,981 8,822 9,579 9,954
P-EA 7,766 9,604 23,875 25,153 29,355
SMBOEA 18,011 17,892 22,865 29,479 31,613

is low, more computational efforts are engaged into full surrogate trainings thus limiting
the affordable simulations but bringing the advantage of a more accurate surrogate. For
the APs relying on reproduction operators, q = ncores is also applied. It is worth noting
that this is not the usual practice as q has been set to 4.ncores hitherto. The population
size npop = 72 and the number of children nchld = 288 are kept unaltered in P-SAEAs.
In SaaEF, the number of predictions is set to npred = 144 − ncores while ndisc = 144 is
unchanged. Proceeding in this way allows one to observe the effect of the proportion of
predictions at the replacement step. In SaaF, the number of discardings per cycle is set
to ndisc = 288 − ncores. In HCAP, the following triplets are considered: (ncores, q1, q2) =
(3, 1, 2), (9, 1, 8), (18, 2, 16), (72, 9, 63), (144, 18, 126). In P-EA, the number of children is
set to the number of computing cores while the population size is not modified. Finally,
the hybrid SMBO+EA from [Reh+18] is also included in the comparison.

The best results obtained in this thesis on the Covid-19 problem are provided by
HSAP with ncores = 144 according to Table 4.6. The excellent parallel scalability of
HSAP and HCAP is reflected by the enhancement of the quality of the resolutions when
ncores increases as it is graphically illustrated in Figure E.7 and numerically exhibited in
Table 4.6. For HSAP and ncores ⩽ 18, the comparison between Table 4.5 and Table 4.6
commends to preserve the previous calibration q = 72 rather than setting the number of
simulations per cycle to the number of available computing cores. If this recommendation
is respected, for every values assumed for ncores in these experiments, HSAP yields the
best results in terms of mean, median and variance as reported in Table 4.5 and the
distribution of the 10 final best objective values plotted in Figure E.6.

For q-EGO with cl-mean, the difficulty of maintaining diversity is highlighted by the
box-plots of Figure E.7. For HCAP and cl-mean considering the complete database as
training set, the runs carried out with ncores = 72 output better decisions than the ones
where ncores = 144. More impressively, the performance of cl-mean with a reduced training
set deteriorates as ncores increases. Adding too much new solutions per cycle lead to pro-
pose unpromising candidates which wastes the budget by investing too much in surrogate
training as one surrogate (partial) training is realized to obtain one new candidate. Figure
E.7 indicates the satisfying parallel scalability of SaaF, SaaEF and P-EA. In SaaEF, the
proportion of predicted solutions involved at the replacement step is lowered down when
ncores increases, thus enabling to mitigate the possible predictive inaccuracy. Future ef-
forts should be engaged to study the resorting of surrogate error to set this proportion.
The parallel scalability of SMBO+EA is good according to Figure E.7 but the associated
performances are the worst among the investigated strategies as shown in Figure E.6 and
Table 4.6.

98 Chapter 4. Parallel Hybrid methods

Table 4.7: Parallel scalability (q = ncores). Average number of simulations per search
over the 10 runs of the experiment for different numbers of available computing cores. The
number of simulations per cycle q is fixed to ncores for all the approaches.

XXXXXXXXXXXMethod
ncores 144 72 18 9 3

P-EA 22,377 11,347 2,953 1,739 751
SaaF 8,654 5,522 1,818 1,134 483
SaaEF 8,481 4,975 1,792 1,121 488
HSAP 7,819 2,628 1,260 720 354
SMBOEA 3,960 3,355 1,324 1,079 650
HCAP 3,657 2,894 1,407 976 426
q-EGO (RTS) 792 770 673 639 491
q-EGO (CTS) 504 576 527 524 450

The number of affordable simulations increases when the number of computing cores
increases for all the approaches except q-EGO with the complete training set (CTS) as
Table 4.7 reveals. Because the surrogate is trained on the complete database, the last AP of
q-EGO with CTS is not totally accomplished when ncores = 144, therefore explaining the
decrease in simulations compared to ncores ∈ {9, 18, 72}. The computational expensiveness
of the AP in q-EGO is directly related to q so these strategies present the lowest increase
as indicated by Table 4.7. For ncores = 3, SMBO+EA enables the highest number of
simulations (650) among the surrogate-based approaches because both the generation and
the simulation of the candidates are performed in parallel. This is not true anymore when
ncores grows as the production of the ncores − 2 new decision vectors by reproduction is
executed by a unique computing core. The number of simulations is high for the P-SAEAs
and HSAP when ncores = 144 as the participation of the AP based on IC optimization
(cl-mean) is null or restricted.

In the context of a very expensive problem, maximizing the benefits of high number
of computing cores is challenging as depicted by the convergence curves in Figure 4.4.
For an AP built on an evolving population, running multiple generations appears more
adequate even if a lot of candidates are only predicted as in SaaEF. For an AP set up on
IC optimization, the lack of diversity in large new batches and the associated reduction of
number of cycles imply a waste of the computational budget. In this configuration where
the surrogate training is neglected, it is more convenient to employ q-EGO or HSAP with
a curbed number of computing cores.

4.4 A posteriori landscape analysis

Landscape analysis is an entire research area that aims at characterizing the shape of the
graph (D, f(D)) produced by the objective function f [Mal21]. Indications such as the
abundance of basins of attraction, the extent of the infeasible region, the presence of flat
regions or ridges are valuable to the designers of optimization algorithms as well as to the
experts of the targeted problem. In this section, after revealing the best contact reduction
strategy found so far, a landscape analysis is performed on the Covid-19 problem by
analogy with the benchmark functions whose landscape features are known. The insight
gained a posteriori explains the significance of relying on hybrid methods.

99

F
ig
u
re

4
.4
:
P
a
ra

ll
e
l
sc
a
la
b
il
it
y
(q

=
n
c
o
r
e
s
).

C
o
n
ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
of

b
es
t
ob

je
ct
iv
e
va
lu
es

av
er
ag

ed
ov
er

th
e
1
0
ru
n
s
o
f
th
e
ex
p
er
im

en
t

fo
r
d
iff
er
en
t
n
u
m
b
er
s
of

av
ai
la
b
le

co
m
p
u
ti
n
g
co
re
s.

T
h
e
n
u
m
b
er

of
si
m
u
la
ti
on

s
p
er

cy
cl
e
q
is

fi
x
ed

to
n
co
r
es

fo
r
al
l
th
e
ap

p
ro
ac
h
es
.
T
h
e
h
o
ri
zo
n
ta
l

a
x
is

re
p
re
se
n
ts

th
e
n
u
m
b
er

o
f
si
m
u
la
ti
o
n
s
an

d
th
e
ve
rt
ic
al

ax
is

re
p
re
se
n
ts

th
e
av
er
ag

ed
b
es
t
ob

je
ct
iv
e.

100 Chapter 4. Parallel Hybrid methods

Table 4.8: Best decision vector to the Covid-19 contact reduction problem. x
represents the contact mitigation factor.

Age-group 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50
x 0.96 0.97 1.00 0.97 1.00 1.00 1.00 1.00 0.97 0.76

Age-group 50-55 55-60 60-65 65-70 70-75 75+
x 0.00 0.00 0.00 0.00 0.00 0.00

4.4.1 Reducing Covid-19-related death by contact reduction strategies

The overall minimum objective value found so far amounts to 3,536 and has been pro-
duced by the parallel hybrid HSAP method with the dynamic inclusive ensemble of ECs
dyn-df-incl and q = ncores = 144. According to the associated decision vector exposed in
Table 4.8, contact for people aged less than 50 years-old should only be slightly reduced.
Conversely, drastic contact reductions should be applied to seniors of 50+ years-old. In-
deed, almost no restriction (less than 5%) is suggested for people from 0 to 45 years-old.
Extreme contact restrictions are suggested for the elders beyond 50 years-old surely as
they present the highest risk of medical complications.

4.4.2 Characterization of the landscape

An a posteriori analysis of the Covid-19 contact reduction problem is now possible as
the experiments conducted so far have produced a huge amount of simulations. Among
the 12,463,182 simulated solutions, 4,452,189 are infeasible, representing 36% of the whole
set. The extent of the infeasible search space is expected to be greater than 36% because
the sampling is biased towards the feasible region. Indeed, from the 720 initial simulated
solutions obtained via LHS, only one is feasible. This is actually the reason why landscape
analysis has not been performed prior to the optimization.

Relying on meta-models to characterize a search landscape is a technique that has been
already proposed in [Mer+11; KT19]. On the one hand, the empirical comparisons led
in Sub-section 2.5.4 suggested an analogy between the landscape of the Schwefel problem
and the one of the Covid-19 application. On the other hand, the observations reported
in Sub-section 3.4.4 indicate a similarity with the landscape underlying the Rosenbrock
function. The dispersion metric is introduced hereafter to gain more knowledge about the
landscape of the Covid-19 problem.

The dispersion metric [LW06] represents the multi-modality and the presence of global
structure by measuring the average distance between the best solutions in the search space.
The set of best candidates is defined by a proportion pDM of the best solutions from the
data set. It is stated in [KT19], that a database made of 50.d samples is sufficient to
perform exploratory landscape analysis. Since d = 16 in this thesis, 800 samples are drawn
for each problem. For Schwefel, 11,169,468 simulated solutions are available, 11,161,044
for Rastrigin, 11,276,316 for Rosenbrock and 8,010,993 feasible simulated solutions are
accessible for the Covid-19 contact reduction problem. Each of these sets is divided into
800 clusters using the K-Means algorithm [AV07] implemented in Scikit-Learn [Ped+11]
and the closest solution to each cluster’s center is retained. The Flacco R package [KT19]
is used to compute the dispersion metric for multiple values of pDM and the outcomes are
reported in Table 4.9. All the software libraries used in this thesis are listed in Table F.1.

101

Table 4.9: Dispersion metric based on a subset of 800 samples for the benchmark and
the Covid-19 contact reduction problem. The dispersion metric is computed as the average
distance between the best ⌊800.pDM⌋ solutions divided by the average distance between
the 800 solutions. Higher values characterize a harder optimization problem with respect
to multi-modality and global structure.

pDM Schwefel Covid-19 Rastrigin Rosenbrock

0.02 0.7253051 0.6087193 0.3987407 0.2755931
0.05 0.7811394 0.7201954 0.4048308 0.3098171
0.1 0.8310808 0.7868463 0.4437553 0.3624034
0.25 0.8872491 0.8637474 0.5376603 0.4896596

High values of the dispersion metric indicate high dispersion of the best solutions in
the search space and consequently imply the presence of multiple basins of attraction. For
low values of pDM , high values of the dispersion metric indicate a weak global structure
in the sense that the multiple basins of attraction are far from each other. According to
Table 4.9, the landscape associated to the Covid-19 problem is similar to the one of the
Schwefel problem in terms of multi-modality and global structure.

Other tools built on the concept of nearest neighbors have been elaborated in [Ker+15]
to bring out weak global structures. Let’s denote S the 800-samples set generated pre-
viously for a given problem and let’s define the distance to the nearest neighbors by:

dnn(x,S) = min({d2(x,y)|y ∈ S\{x}}) (4.2)

where d2(,) is the Euclidean distance. Let’s define the distance to the better nearest
neighbors by:

dnb(x,S) = min({d2(x,y)|f(y) < f(x) and y ∈ S}) (4.3)

where f() is the objective function. The set of the nearest neighbors distances is given by:

Dnn = {dnn(x,S)|x ∈ S} (4.4)

and the set of the better nearest neighbors distances is given by:

Dnb = {dnb(x,S)|x ∈ S} (4.5)

The two metrics used to compare the landscapes are:

nbf1 =
sd(Dnn)

sd(Dnb)
nbf2 =

mean(Dnn)

mean(Dnb)
(4.6)

The first metric nbf1 is the ratio of the standard deviation of the two distance sets.
For highly multi-modal problems or problems with a weak global structure, sd(Dnb) is
expected to be high so ndf1 < 1 while for problems with adequate global structure
sd(Dnn) ≈ sd(Dnb) is expected such that ndf1 ≈ 1. The same reasoning applies for
the second metric nbf2 when considering the ratio of the mean of the sets. Table 4.10
presents the nearest neighbors-related metrics computed for the benchmarks and the real-
world problem. According to Table 4.10, the Covid-19 problem exhibits the less adequate
topology followed by the Schwefel problem. The Rastrigin adequate global structure is
detected by showing nbf1 = 1 for the associated samples set.

102 Chapter 4. Parallel Hybrid methods

Table 4.10: Nearest neighbors-related metrics, as defined in (4.6), based on a subset
of 800 samples for the benchmark and the Covid-19 contact reduction problems. Values
closer to 1 indicate a more adequate global structure.

Covid-19 Schwefel Rastrigin Rosenbrock

nbf1 0.863 0.967 1.000 0.998
nbf2 0.884 0.926 0.986 0.991

By the a posteriori landscape analysis conducted in this sub-section, it can be deduced
that the constraint is severe and the landscape is multi-modal with a weak global structure.
Adding the fact that the simulation is moderately expensive, this problem is undoubtedly
tedious to solve. In such a critic case, the design and application of hybrid methods is
thus relevant as they yield the best resolution of the problem.

4.5 Conclusion

This chapter started with the confrontation between P-SAEAs and P-SDAs. The APs
based on IC optimization embedded into P-SDAs are more computationally expensive than
the APs relying on reproduction operators inherent to P-SAEAs. Regarding the ECs, the
more sophisticated ones require more computational efforts. In terms of resolution quality,
the P-SAEAs where the surrogate is employed as an evaluator and/or a filter yields the
best performance in case of moderately expensive problems on a landscape characterized
by multi-modality and weak global structure. In this framework, it is advised to favor
exploration at the onset of the search and exploitation afterwards through a dynamic EC
where the indicator of exploration is the distance to the database of known solutions. From
their side, P-SDAs are suitable to deal with low computational budgets and are able to
exploit the predictive standard deviation as measure of uncertainty. The APs consisting
in sampling sub-surrogates via Monte-Carlo Dropout or MCMC are notably to be put
forward on multi-modal search landscapes with weak global structure.

Two brand-new parallel hybrid methods have been developed in this chapter to merge
the best of both surrogate-based frameworks. The two kinds of APs are combined either
concurrently at each cycle (HCAP) or successively during the search (HSAP). Each AP
comes with its own EC and surrogate thus breeding multi-surrogate and multi-EC strate-
gies. Numerical experiments conducted on the Covid-19 application reveal an enhancement
of the quality of the resolution compared with a state-of-the-art parallel hybrid method
and the best P-SBOAs identified so far. The new HSAP outstandingly stands at the first
podium step for its various advantages. Indeed, it demonstrates a fast improvement for a
low number of simulations such as P-SDAs and it achieves a continuous amelioration at
latter stages of the search like P-SAEAs. Last but not the least, HSAP scales well with
high numbers of computing cores. However, future endeavor should still be dedicated to
automatically trigger the switch of AP during the search.

On the Covid-19 contact reduction problem, the best contact mitigation plan identified
so far has been located by the new parallel hybrid HSAP method. According to this plan,
contact should be restricted for people aged 50+ years-old as they represent the population
more likely to grow complications. A landscape analysis run on the simulation-based
objective function revealed a large infeasible region and a multi-modal landscape with
weak global structure, confirming the difficulty of the problem and justifying the design
of hybrid methods.

Chapter 5

Software platform for P-SBO

Contents

5.1 Introduction . 104

5.2 Scalable design . 104

5.2.1 Motivations . 104

5.2.2 Conceptual objectives . 105

5.2.3 The tools for scalable code architecture 106

5.3 The modular structure of pySBO 108

5.3.1 From a global view to a finer description 108

5.3.2 Related software . 109

5.4 Multi-objective test case . 111

5.4.1 Covid-19 vaccine distribution problem 111

5.4.2 Surrogate-free approaches . 113

5.4.3 Surrogate-based algorithms . 117

5.5 Numerical experiments . 120

5.5.1 Protocol . 120

5.5.2 Empirical analysis . 120

5.5.3 Resulting vaccine distribution plan 123

5.6 Conclusion . 124

Related publications:

• Briffoteaux Guillaume, Melab Nouredine, Mezmaz Mohand, Tuyttens Daniel, ”An
adaptive evolution control based on confident regions for surrogate-assisted optimiza-
tion” in HPCS 2018 - International Conference on High Performance Computing &
Simulation, 2018, Orléans, France, hal-01922708, https://hal.archives-ouvertes.
fr/hal-01922708/file/briffoteaux_melab_mezmaz_tuyttens.pdf

• Briffoteaux Guillaume, Ragonnet Romain, Tomenko Pierre, Mezmaz Mohand, Melab
Nouredine, Tuyttens Daniel, ”Comparing Parallel Surrogate-based and Surrogate-
free Multi-Objective Optimization of COVID-19 vaccines allocation” in OLA’2022 -
International Conference on Optimization and Learning, 2022, Syracuse, Italy.

103

https://hal.archives-ouvertes.fr/hal-01922708/file/briffoteaux_melab_mezmaz_tuyttens.pdf
https://hal.archives-ouvertes.fr/hal-01922708/file/briffoteaux_melab_mezmaz_tuyttens.pdf

104 Chapter 5. Software platform for P-SBO

5.1 Introduction

The investigations conducted in this chapter deal with the design of a scalable architecture
for a software platform devoted to disseminate the techniques of P-SBO. The modular and
flexible code structure of the pySBO platform is proposed along with an illustrated and
exemplified documentation exposed on-line.

Section 5.2 motivates the importance of software architecture in the context of scientific
research and raises the challenges to reach a scalable design. The design scalability is
defined as the ability of a computer program to be modified, to be expanded and to cope
with increased use [RXX11]. To respond to these challenges, existing tools are underlined
for the convenient features they provide regarding code abstraction, utility, extensibility
and accessibility. The Object-Oriented Programming (OOP) paradigm and the Python
programming language are notably put forward. These tools are employed to build the
pySBO Python platform for P-SBO whose modular structure is dissected in Section 5.3
through UML diagrams. An analysis of the Github repositories of related software is
conducted to clarify the stance of pySBO in this branch of algorithms.

As a proof of concept and guidance to users, new algorithmic components are integrated
into pySBO in Section 5.4. Multi-objective algorithms relying on custom evolutionary op-
erators as well as the new problem to Covid-19 vaccine distribution are explained and
implemented within the platform. The resolution of this novel simulation-based problem
reported in Section 5.5 enables one to compare the various multi-objective algorithms and
complete the demonstration of the usefulness of pySBO.

The pySBO platform and its documentation are available on-line at https://github.
com/GuillaumeBriffoteaux/pySBO and https://pysbo.readthedocs.io respectively.

5.2 Scalable design

5.2.1 Motivations

Targeting as wider community as possible
The dissemination of surrogate-based optimization requires the availability of handy soft-
ware tools easily understandable, extensible and customizable by a large scientific commu-
nity. The software platform should assist researchers in the field of P-SBO to benchmark
and design new algorithms. It should also facilitate ready-to-run methods and templates
to help scientists from various domains to calibrate their model [Pal+22] and to build and
solve simulation-based optimization problems in the search for optimal designs or plan-
nings.

Diffusion of algorithmic tools
Taking care over the scientific software development is not always the priority in scientific
research where the focus is prominently directed towards the development of new models.
Nevertheless, leaving the implementation questions aside could slow down the diffusion
of the research outputs and be notably detrimental to transversal research implicating
multiple scientific fields.

Reducing the costs of software development
Reducing the execution time of computer programs is under the spotlight nowadays as de-
notes the infatuation for the computational capabilities of modern super-computers [TOP;
Pan21]. The race for computing power is crucial for many domains such as artificial intel-
ligence. Nevertheless, the costs attributed to software development and evolution should
not be totally concealed by the computational costs. In [RXX11], the authors argue that

https://github.com/GuillaumeBriffoteaux/pySBO
https://github.com/GuillaumeBriffoteaux/pySBO
https://pysbo.readthedocs.io

105

the time and costs entailed by software development are higher than the ones induced by
computations (”Your time is worth more than your computer’s time.”). It is advised in
[RXX11] to structure 80% of the code to simplify development and to diminish running
time on the 20% of the code coinciding to the largest computational burden.

Scalable design
As early as the late 20th century, the design of scalable code architectures has been
identified as a top-notch task of equally importance to super-computers building [NDS97].
When referring to software architecture, the design scalability is defined as the ability
of a computer program to be modified, to be expanded and to cope with increased use
[RXX11]. An architecture resorting to a modular decomposition is expected to lessen
the dependencies between the algorithmic components and consequently boosts flexibility.
A necessary condition to reach a scalable design is the availability of an exhaustive and
exemplified documentation to favor the accessibility and alleviate the complexity related
to code evolution.

5.2.2 Conceptual objectives

Code reusability
Code reusability is one of the primary objectives to design scalability. The reusability of
algorithmic elements is defined in [FVW99] as their capability to be applied to various
problems without requiring significant effort from the developer. Three levels of code reuse
are pointed out in [Mel05]: no reuse, reuse of code and reuse of code and design.

The lowest level implies to implement from scratch and is indicated when the algorithm
is trivial to program. The aptitude of the algorithm to treat a large range of applications
may however demand a certain amount of work and experience feedback.

The medium level corresponds to libraries, that can be seen as extensions of a pro-
gramming language. Libraries are often well-documented, computationally efficient and
offer new functionalities via functions callable from the user side. For instance, the Keras
library for Python has been used in this thesis to build ANNs [Cho15]. Albeit efficiently
promoting code reuse, the internals of the libraries are hidden or tedious to comprehend
at a first sight hence their characterization as black-box. As an example, the modification
of the Keras library we have conducted to implement the BNN MCD surrogate model has
been quite time-consuming and resulted in poor performances regarding the computational
costs of predictions.

Software frameworks are intended to overcome the shortcoming of libraries by enabling
both code and design reusability through the decoupling of the invariant and specific parts
of the code. The invariant part of a framework, also called ”skeleton”, is a collection of
abstract and concrete classes representing pre-determined categories and actual algorith-
mic components paramount in the field of P-SBO. The specific part is rather written by
the user to extend the framework according to its needs and/or to specify the problem at
hand. The framework approach is chosen to design pySBO whose skeleton is inspired by
the Pagmo/Pygmo platform dedicated to surrogate-free optimization [Ba19].

Utility and adaptation
The aim of the invariant part of the software platform is twofold. First, it should attract
a large community of users by saving them time so they can focus more thoroughly on
their specific problems. This is accomplished by offering a meaningful variety of ready-
to-use convenient algorithmic tools (surrogates, ECs, problems, etc.) that have already
proven to be valuable to P-SBO. It has been demonstrated in this thesis that the problem
dependency is a key factor in the design of P-SBOAs, thus the algorithmic components in-

106 Chapter 5. Software platform for P-SBO

corporated into pySBO are numerous. Secondly, the skeleton should present access points
to easily plug the specific code into. The invariant code should be protected enough to
avoid dramatic disruption and, in the meanwhile, allowing flexibility of adaptation.

Accessibility
The accessibility is first conveyed by the easiness of use of the software platform. Getting
the code and installing the associated dependencies should be straightforward and the
execution of a starting example should be carried on quickly. The easiness of specialization
and extension is the second major aspect. It goes hand in hand with a good comprehension
of the code structure from a global picture of the platform to more refined details at the
class level. The access points to special code insertion have to be properly highlighted.
Finally, the lack of portability over different operating systems and hardware infrastructure
may hinder the accessibility. The heterogeneity of modern computational systems notably
with respect to memory organisation (distributed or shared) should be handled to best
benefit from the parallel use of the computational resources.

5.2.3 The tools for scalable code architecture

Object-Oriented Programming (OOP)
The paradigm of OOP consists to split the code into classes representing the algorithmic
elements that play a primordial role for the problem at hand [Del12]. A class gathers
together attributes, whose concrete values define an actual object, and methods acting on
these attributes. A class can be seen as a mould used to instantiate objects. Typically,
the user does not need to be aware of the internals of the class as the interactions with the
object are realized through its attached methods. As far as the interface is not reduced, the
underlying code can evolve without severe restrictions therefore enhancing maintainability.

To accomplish the user’s goal, the instantiated objects collaborate together via dif-
ferent kinds of association: inheritance, composition and aggregation. Composition and
aggregation allows a class (the part) to be part of another class (the whole). Conversely
to aggregation, the part can not exist independently from its whole in a composition re-
lationship. A class (the child) can inherit all the attributes and methods from another
class (the parent). The child class is then specialized by adding new functionalities to
differentiate from its parent. Modularity and code reuse are greatly empowered by these
associations as they segment the code and prevent duplication.

To represent a generic type (e.g. surrogate model), it is also possible to write an
abstract class that only specifies the services of the type without dispensing the actual
implementation. Abstract classes can not be instantiated but are intended to be derived
by inheritance to concrete classes. An abstract type can however be used to characterize
an input argument of a function thus bringing the advantage of deferring the choice for
the concrete type at execution time. This latter aspect of OOP is called polymorphism.
Inheritance and polymorphism aim at factorizing the code writing, moreover, abstract
classes offer good access points to extend the platform.

Python programming language
Table 5.1 displays the number of questions in Stackoverflow and the number of projects
per programming language when searching for ”bayesian-optimization” in Github. The
overwhelming majority of the repositories and a large number of questions are concerned
with the Python programming language. Python is notably acclaimed for its easiness of
handling for non-expert programmers. Indeed, in Python, no memory management has to
be carried out unlike Java, C or C++, and no manual variable typing is required. Although
Matlab and R show similar features in this respect, Matlab is a commercial black-box
software and R is statistic-oriented while Python is free, open-source and general-purpose.

107

Table 5.1: Representation of programming languages. Number of Github reposito-
ries and number of Stackoverflow questions related to the programming languages.

Programming Github Stackoverflow
language repositories questions

”bayesian-optimization”

Python 1,154 1,928,701
Matlab 73 92,720
R 62 444,476
C++ 36 760,929
Julia 14 10,299
C 8 377,712
Go 6 60,839
Java 0 1,839,322

The advantages of Python include OOP features for modularity, code portability through
the interpreter, code indentation favoring readability and vectorization alleviating the
amount of code. The assets of Python have brought the development of many libraries
in particular in the domain of Machine Learning. In Table F.1, the libraries used in the
experiments reported in this thesis are listed. Choosing Python is therefore expected to
enhance accessibility of the pySBO platform. Nevertheless, everything comes at a price and
the computational efficiency of Python does not come up to the mark. Indeed, special care
should be devoted to the most expensive computational part of a program by resorting to
libraries such as Numpy [Ha20], Numba [LPS15] or to interoperability with C [Gmy+20].

The mpi4py Python library for Message Passing Interface [GLS99] is employed to en-
sure the communication between the computing cores [DF21]. The parallel code runs in
both shared or distributed memory systems without necessitating any modifications thus
granting hardware portability.

Programming rules
A set of consistent programming rules has been set up and applied to write the pySBO
framework in order to foster clarity and accessibility and to generate the documentation
automatically. The Java convention of one class per file is notably adopted to impede code
masking and to simplify the map of the platform. Every concrete class implements three
specific methods: an initializer (__init__), a deleter (__del__) and a string method re-
turning a description of the class (__str__). Besides, a portion of comments follows each
class and function heading to explain its functioning and to precise the potential inputs
and outputs. The automatic generation of a part of the documentation depends directly
on the respect of this latter rule.

Documentation and distribution
The pySBO documentation rests on various contents merged together and organized by
a bunch of reStructuredText files [GH18]. The map of the skeleton is drawn by a Uni-
fied Modelling Language (UML) diagram that references the objects along with their
attributes, functions and the links between them thus displaying a global view of the
platform. The comments reported in the Python code (docstrings) are transcribed in the
documentation to give more finer details about the classes and functions. Widely used
algorithms are implemented to serve either as starting examples, for benchmarking or as
ready-to-use programs. Diagrams are recurrently employed to intuitively explain the al-
gorithms and the underlying parallel aspects. Lastly, useful information as of installation

108 Chapter 5. Software platform for P-SBO

guidance and licence are communicated via the dedicated web-site. The Read The Docs
utility effectively builds the documentation and freely deploys it on-line. Github is utilized
to distribute and expose the pySBO platform to the open-source software community and
to favor its collaborative evolution.

5.3 The modular structure of pySBO

5.3.1 From a global view to a finer description

For the sake of visualization clarity, the UML diagram of pySBO shown in Figure 5.1
only displays the classes and their links. The full UML diagram including the attributes
and methods is deferred to the appendix section in Figure F.1. The symbols employed to
depict the associations between classes are presented in the upper right corner of Figure 5.1.
Along with the inheritance and aggregation relationships, the link called ”dependency”
is introduced to reflect cases where an object of a type defined by class A is used as an
argument or a local variable in a method of class B.

From the global view of the platform exhibited in Figure 5.1, four collections of classes
arise. To each collection is associated a color and a name chosen after the kind of algo-
rithmic components the collection embeds. The Problem collection appears in red, the
Evolution collection in yellow, the Surrogate collection in blue and the Evolution Control
collection in green. Besides, a class called Global_Var contains public global variables used
to store the best candidate and objective values found so far and the best hyper-volume and
the associated reference point for multi-objective problems. Variable or function names
preceding by the ’+’ symbol are accessible externally while the ’-’ symbol refers to entities
local to the class where they are defined.

The Problem collection further detailed in Figure F.2 deals with the specification of
the optimization problem and, more particularly, the definition of the objective function.
The Problem abstract class gathers the attributes common to all problems (number of
decision variables and number of objectives) and imposes to any concrete child class to
implement the objective function evaluation (perform_real_evaluation) and the test of
feasibility (is_feasible). The abstract class Box_Constrained further imposes to write
a method returning the bounds for each decision variable (get_bounds). The distinc-
tion typically made between single- and multi-objective problems is reported by extending
Box_Constrained into Single_Objective and Multi_Objective respectively. The ini-
tializer verifies the number of objectives accordingly and a method plotting the objective
function is demanded for any single-objective problem. The concrete problem classes pro-
vided within pySBO are well-known benchmark functions (Schwefel, Rastrigin, etc.) or
test suites (DTLZ [Deb+01], CEC2013 [LQS13]). It is relatively easy to create a new
problem by copy-pasting an existing class and modifying the methods. Besides, any box-
constrained problem can be a part of an object, defined by the DoE class, serving for initial
sampling of the search space. Both random sampling and LHS are provided but adding
another sampling strategy is as obvious as creating a new method within the DoE class.

A problem is a part of a population of candidate solutions defined by the Population
class in the Evolution collection relative to evolutionary computation (Figure F.3). All
the categories of evolutionary operators are represented by an abstract class (Selection,
Crossover, Mutation and Replacement) that expect the actual determination of the
action realized by the operator (perform_selection, perform_crossover, perform_

mutation and perform_replacement). Adding a new operator is possible by extend-
ing the adequate abstract class via inheritance. All the operators act on a population
of solutions, making the Population class the central class of this collection. Arrays to
store the decision vectors (dvec), the associated values of the objective(s) (obj_vals)

109

and the modes of evaluation (either False for surrogate prediction or True for real eval-
uation) compose a population object. Handy methods are already implemented such as
input/output for logging and storing, sorting and splitting functionalities. Both single-
and multi-objective populations are supported. The hyper-volume indicator is used to
compare solutions in the multi-objective case (notably in sort and update_best_sim).

The structure of the collection of surrogates displayed in Figure F.4 is very basic.
The Surrogate abstract class groups together the common features while the extended
concrete classes are wrapper for regression or interpolation models built using Python
libraries (Keras for BNN_MCD, GPyTorch for GP and GP_MO, etc.). A surrogate is specific to
a problem, from hence the aggregation relationship with the Problem class. To construct
a surrogate, the filename of the archive of simulations (f_sim_archive) and the number
of samples used for training (n_train_samples) must be fed through the initializer. Two
other filenames, f_train_log and f_trained_model, must be provided to store the train-
ing logs and the trained model respectively. The implementation of the actual prediction
(perform_prediction), training (perform_training), data-normalization-related meth-
ods and the loading of a model trained in the past (load_trained_model) are deferred to
the child classes. All the concrete classes except GP_MO allow for scalar predictions while
BNN_MCD and GP_MO yield vector predictions.

The parent of all the classes defining ECs is the abstract Evolution_Control class
from the collection presented in Figure F.5. It enforces to implement the method that
returns the sorted indexes of the individuals in a population according to the criterion
underlying the EC (get_sorted_indexes). This latter method is the most important
when implementing a new EC. Most of the ECs are informed by the surrogate predictions
and consequently embed an object of the Surrogate type. For such ECs, a method
delivering the relative IC value (e.g. the value of EI) is demanded as we found it useful.
Nevertheless, to build P-SDAs, it is most convenient to rely on the implementation of
Algorithm 5 by resorting to get_sorted_indexes and the Custom_Elitism class from
the Evolution collection. In this way, all types of ECs, and not only the informed ones,
can be invoked. Indeed, it is not possible to compute the IC value for ensembles of
ECs. The ensembles form another family of ECs embodied by the Ensemble_EC abstract
class. The dual relationship of aggregation-inheritance between the Evolution_Control

and Ensemble_ECs abstract classes conveys the fact that an ensemble of ECs is an EC
composed of multiple ECs.

5.3.2 Related software

The review of publicly available codes is conducted by searching for ”surrogate-based-
optimization”, ”surrogate-assisted-optimization” and ”surrogate-assisted-evolutionary -
algorithm” within the topics of Github. Among the outcomes, the projects showing
multiple algorithmic components and an on-line documentation are commented hereafter.

In [BD22], the authors introduce pysamoo, a Python library for surrogate-assisted
single- and multi-objective optimization that encompasses directly applicable algorithms.
The main discrepancy with pySBO is the black-box covering the internals of the code
that prevents to compose new algorithms and complicate the definition of new problems.
Nevertheless, the documentation available online is sound and illustrated by diagrams and
examples. The pySOT Python platform proposed in [EBS19] is similar to pySBO in that
it is extensible and exemplified. However, pySOT only enables one to compose single-
objective P-SDAs while pySBO also includes P-SAEAs and multi-objective optimization.
A remarkable feature of pySOT is the possibility of asynchronous parallel simulations,
useful when the simulation duration varies significantly from a decision vector to another.
In pySBO, the asynchronous management should be addressed by the user through di-
rectives proceeding from the Message Passing Interface. The Julia platform Surrogates.jl

110 Chapter 5. Software platform for P-SBO

F
ig
u
re

5
.1
:
G
lo
b
al

U
M
L
d
ia
gr
am

of
p
y
S
B
O

(c
la
ss
es

o
n
ly
).

111

[Bes+22] is dedicated to single- and multi-objective SDAs but no indications are given
on how to leveraging distributed computing. In the EXPObench repository [Bli+21] no
pieces of code are especially supplied to build P-SBOAs. Instead, numerous approaches
and problems are implemented in Python and a tutorial signifies how to add new strate-
gies and instances for benchmarking. The C++ NOMAD library [MT22] is exclusively
centered on the Mesh Adaptive Direct Search algorithm for constrained single-objective
optimization [AD06]. Although substantially differing from pySBO, NOMAD is worth to
cite for its exhaustive documentation. The Scikit-learn-based SKSurrogates platform for
Python [Gha20] provides tools to implement SDAs to solve single-objective problems but
without resorting to parallelism. The associated documentation exposes a comprehensive
view of the code and detailed examples.

In the set of software referenced above, few projects (including pysamoo and pySBO)
support multi-objective optimization and distributed computing. More importantly, they
are almost all uniquely devoted to assemble SDAs in order to solve very expensive prob-
lems. Searching for ”bayesian-optimization” in Github yields 1,529 results among which
the Python BoTorch platform [Bal+19] that also focuses on SDAs with support for multi-
objective and distributed computing. Our pySBO platform takes both very and moder-
ately expensive instances into account by helping to build both SDAs and SAEAs. The
development of software for P-SBO is currently exploding as exhibited by the huge number
of repositories recently updated in Github.

5.4 Multi-objective test case

This section aims at demonstrating the definition of a new problem in pySBO and the in-
tegration of parallel surrogate-based and surrogate-free Multi-Objective (MO) algorithms
into the platform. The optimization approaches are subsequently used to solve the new
problem related with Covid-19 vaccine distribution.

5.4.1 Covid-19 vaccine distribution problem

Description of the problem
The vast vaccination programs implemented over the last year or so all around the world
achieved reductions of Covid-19 hospitalizations and deaths [Vil+22]. However, access to
vaccination remains challenging, especially for low- to middle-income countries that are
not able to offer vaccination to all their citizens [SMD22]. The multi-objective problem we
are concerned with consists in optimizing the age-specific vaccines allocation plan to limit
the impact of the disease in Malaysia under a capped number of doses. The population
is divided into 8 age-categories of 10-years band from 0-9 years old to 70+ years old and
the impact is expressed in terms of total number of deaths and peak hospital occupancy.
Moreover, the reduction of mobility restriction is considered as a target.

The simulation is realized in three phases by the AuTuMN software publicly available
at https://github.com/monash-emu/AuTuMN/. The simulator is calibrated during the
first phase with data accumulated from the beginning of the epidemic to the 1st of April
2021. The second phase starts at this latter date and lasts three months during which a
daily limited number of doses is shared out among the population. Relaxation of mobility
restrictions marks the kickoff of the third phase in the course of which a new distribution
plan is applied involving the same number of daily available doses as in phase 2.

https://github.com/monash-emu/AuTuMN/

112 Chapter 5. Software platform for P-SBO

Proposed formulation
Decision variables xi ∈ [0, 1] for 1 ⩽ i ⩽ 8 and for 9 ⩽ i ⩽ 16 represent the proportions of
the available doses allocated to the 8 age-categories for phase 2 and phase 3 respectively.
Variable x17 ∈ [0, 1] expresses the degree of relaxation of mobility restrictions where x17 =
0 leaves the restrictions unchanged and x17 = 1 means a return back to the pre-covid
era. The following convex constraints convey the limitation of the number of doses during
phases 2 and 3:

8∑
i=1

xi ⩽ 1 and
16∑
i=9

xi ⩽ 1 (5.1)

The three-objective optimization problem consists in finding x∗ such that

x∗ = argmin
x∈[0,1]17 s.t. (5.1)

(g1(x), g2(x), 1− x17) (5.2)

where g1(x) is the simulated total number of deaths and g2(x) the simulated maximum
number of occupied hospital beds during the period. Because the simulation involves the
resolution of differential equations, g1 and g2 are non-linear.

Related formulations
The onset of the Covid-19 outbreak has been rapidly followed by the development of ded-
icated simulation software to predict the trajectory of the disease [Cha+20; Tra+21]. The
availability of such tools enables one to inform authorities by formulating and solving
optimization problems. In [Duq+20], a SEIR-model (Susceptible, Exposed, Infectious,
Recovered) is deployed to simulate Covid-19 impacts. A single-objective (SO) problem is
subsequently derived and handled by grid-search to regulate the alleviation of social re-
strictions. Multiple SO optimizations are carried out independently by a simplex or a line
search algorithm in [Mat+21a; ML10; Mat+21b] to efficiently allocate doses of vaccines to
the age-categories of a population. The number of infections, deaths and hospital admis-
sions are considered as the possible objectives. The prioritization rules approved by the
government of the studied cohort are integrated as constraints in the linear programming
model presented in [Buh+21] to minimize mortality. In [Han+21], multiple indicators
are combined into a scalar-valued objective function. The MO formulation exhibited in
[AKN21] consists in maximizing the geographical diversity and social fairness of the distri-
bution plan. Nevertheless, the MO problem is scalarized into a SO one that is then solved
by a simplex algorithm. The approach used by Bubar et al. [Bub+21] is significantly
different from ours, as the authors predefined a set of vaccination strategies and selected
the most promising approach among them. In contrast, our continuous optimization ap-
proach automatically designs strategies in a fully flexible way. The optimization problem
solved by McBryde et al. [McB+21] is closer to that presented in our work since a similar
level of flexibility was allowed to design optimal vaccines allocation plans. However, the
authors used a simpler Covid-19 model resulting in significantly shorter simulation times,
such that optimization could be performed using more classical techniques. To the best
of our knowledge, it has not been suggested yet to simultaneously minimize the num-
ber of deaths, peak hospital occupancy and the degree of mobility restriction through a
MO-formulated problem. The fact that we consider the level of restrictions as one of the
objectives to minimise represents a novelty compared to the previous works.

Integration in pySBO
A new concrete class, namely Covid_vaccines, given in Listing F.1, is derived from
the abstract class Multi_Objective to implement the new problem at hand in pySBO.
The new __init__ (resp. __del__) method must first call upon the initializer (resp.
the deleter) from the parent class where some preliminary instructions could have been

113

specified. In the present case, Multi_Objective.__init__(self, 17, 3) is executed to
initialize the number of decision variables to 17 and the number of objectives to three in
Covid_vaccines.__init__. The link with the external simulation library is established
at initialization by instantiating an object from the AuTuMN code. This AuTuMN object
is then used in the perform_real_evaluation function to evaluate the objective function.
The constraints of the problems given by Equation (5.1) are injected to the is_feasible
function while the bounds for the decision variables are stated in the get_bounds function.

5.4.2 Surrogate-free approaches

The major challenge in MO optimization is to balance convergence and diversity in the ob-
jective space. Convergence is related to the closeness to the Pareto Front (PF) [Tal09]. Di-
versity is indicated by an extended coverage of the objective space by the Non-Dominated
Fronts (NDFs). General definitions valuable to MO optimization are given in Appendix
C.

NSGA-II

The first highlighted MO algorithm is the Non-dominated Sorting Genetic Algorithm
(NSGA-II) [Deb+02] exposed in Appendix C. This EA relies on two ingredients at the
selection and replacement steps to balance between convergence and diversity. To promote
convergence, solutions pertaining to better NDFs are better ranked (non-dominated sort-
ing). To favor diversity, solutions composing the same NDF are distinguished by setting
the promise as high as the crowding distance is high (crowding distance sorting). The
non-dominated and crowding distance-based sorting has been a source of inspiration to
design the Pareto-based bi-criterion EC with crowding distance presented in Sub-section
2.3.2. The complexity of NSGA-II is O(m.n2

pop), where m is the number of objectives and
npop the population size.

In pySBO, we rely on the Pygmo implementation of the non-dominated and crowding
distance sorting for Python [Ba19]. The sort function of the Population class is written
to handle single or multiple objectives in a transparent way for the user of the class. The
selection step of NSGA-II consists of sorting the population and applying the tournament
selection based on the position of the individuals into the population (lower index meaning
a better promising individual). The elitist replacement implemented in pySBO is based on
the sorting function of the population therefore implicitly resorting to non-dominated and
crowding distance sorting in the MO scenario. The implementation of NSGA-II within
pySBO is almost the same as the one of the genuine single-objective EA. The reference
point for hyper-volume computation should notably be set through the public variable
Global_Var.ref_point.

RVEA

The Reference Vector guided Evolutionary Algorithm (RVEA) has been recently proposed
in [Che+16] to handle many-objective optimization problems. In RVEA, a set of refer-
ence vectors is introduced in order to decompose the objective space, and a new distance,
termed angle penalized distance, is introduced to adaptively balance convergence and di-
versity during the search. The general structure of RVEA, which is presented in Algorithm
16, is roughly the same than the one of a traditional EA. The novelty in the algorithm
structure relies on the methods used for the initialization and the update of the reference
vectors (line 1 and 11 respectively) and the replacement step (line 9).

114 Chapter 5. Software platform for P-SBO

Initialization
The main goal of the set of reference vectors is to enhance diversity by uniformly decom-
posing the objective space into sub-populations. Each reference vector is the representative
of one sub-population and each new candidate solution is affected to the sub-population
whose representative reference vector is the closest. Consequently, the initial set of ref-
erence vectors must cover the objective space uniformly. To achieve this property, it is
proposed to generate unit reference vectors v1,j in the first quadrant through the simplex-
lattice method [Cor02] (line 1 in Algorithm 16):

uj =
(
u1j , . . . , u

m
j

)
for j ∈ {1, . . . , nref}

ukj ∈
{
0

sl
,
1

sl
, . . . ,

sl
sl

}
such that

m∑
k=1

ukj = 1

v1,j =
uj

||uj ||

(5.3)

where sl ∈ N+ determines the number of reference vectors by

nref =

(
sl +m− 1
m− 1

)
(5.4)

Selection and reproduction
The selection of parents consists in sampling randomly ⌊nref

2 ⌋ pairs of parents from the
current population (line 5). Each pair of parents is mated through cross-over and mutation
(line 6) to generate a population of children.

Reference Vector guided replacement
The replacement step (line 9) is composed of three sub-steps. Firstly, the objective vec-
tors from the population Pi are translated to fit in the first quadrant in the objective
space. Secondly, the population is divided into sub-populations based on the distance to
the reference vectors. Thirdly, one individual per sub-population is kept to form the new
population Pi+1.

The objective vector translation is realized thanks to the following formula:

y′
i,l = yi,l − zmin

i for l ∈ {1, . . . , |Pi|} (5.5)

where yi,l is the objective vector associated to xi,l (the l-th individual from Pi) and
zmin
i =

(
zmin
i,1 . . . zmin

i,m

)
is the vector containing the minimum values known so far for

each objective. zmin
i is also called the ideal point and the purpose of the translation is

to move the objective vectors to the first quadrant where the ideal point is the origin. In
other terms, vectors y′

i,l are located in the first quadrant where zmin
i is the origin.

Subsequently, the population Pi is divided into nref sub-populations Pi,1, . . . ,Pi,nref

where the representative of sub-population Pi,j is the reference vector vi,j . Determining
the closest reference vector to a given translated objective vector y′

i,l amounts to deter-
mining the sub-population the individual xi,l belongs to. It is worth noting that the
population size may vary during the search because a sub-population may be empty. The
acute angle between the reference vectors and the objective vector is a distance measure
as a small angle value reflects a close proximity:

Pi,j∗ = {xi,l|j∗ = argmaxj∈{1,...,nref} cos θi,l,j} (5.6)

115

where

cos θi,l,j =
y′
i,l.vi,j

||y′
i,l||

(5.7)

Finally, for each sub-population, the individual minimizing the angle penalized distance
is retained to be part of the new population. The angle penalized distance is given by

di,l,j = (1 + P (θi,l,j)).||y′
i,l|| (5.8)

where

P (θi,l,j) = m.

(
i

ngen

)2

.
θi,l,j
γvi,j

(5.9)

where γvi,j is the smallest angle value between reference vector vi,j and the other refer-

ence vectors in Vi. At the beginning of the search i
ngen

is small thus di,l,j ≈ ||y′
i,l||. So,

the angle penalized distance favors convergence since a small value for ||y′
i,l|| amounts for

an objective vector yi,l close to the ideal point. However, as the search proceeds, more

importance is given to the term
θi,l,j
γvi,j

that is as small as y′
i,l is close to vi,j , thus indicating

a better diversity. From the angle penalized distance definition, diversity is said to be
good when the translated objective vectors are close to their associated reference vectors.

Reference Vector update
The last step of a RVEA cycle resides in updating the reference vectors. This step ensures
obtaining a uniformly distributed NDF even for problems where the different objectives
are scaled to different ranges. The update is realized according to the following formula:

vi+1,j =
v1,j⊙(zmax

i+1 − zmin
i+1)

||v1,j⊙(zmax
i+1 − zmin

i+1)||
for j ∈ {1, . . . , nref} (5.10)

where zmax
i+1 (resp. zmin

i+1) is the vector made of the maximum (resp. minimum) objective
values at the i + 1 generation and ⊙ is the element-wise product. The reference vector
update should only be performed once in a while to ensure a stable convergence. The fre-
quency of update fupd is set to 0.1 as in [Che+16]. The complexity of RVEA is O(m.n2

ref).

Implementation
The new class called Reference_Vectors_Set is inserted into the Evolution collection
of the platform to represent the set of reference vectors of RVEA. The associated UML
diagram of this class is exhibited in Figure 5.2. The __init__ function embeds the simplex-
lattice method of Equation (5.3) to create a bi-dimensional array containing the reference
vectors (rv). This latter array is made public to simplify the update process. The function
realizing the guided replacement returns a new population, hence the dependency with
the Population class. The aggregation relationship with the Problem class reflects the
requirement of knowing the problem to build a population object. Besides, the number
of objectives (stored within the problem object) is recurrently needed. Based on the
new class, few lines of code are needed to convert the code for NSGA-II into the RVEA
implementation in pySBO. It is particularly worth to remind that the initial set of reference
vectors is to be conserved during the whole execution of RVEA as it is needed to update
the current set (Equation (5.10)).

116 Chapter 5. Software platform for P-SBO

Figure 5.2: UML diagram of the Reference Vector Set class in pySBO.

RVEA*

In RVEA, the population size may decrease during the search due to empty sub-populations.
In cases of degenerated or disconnected Pareto fronts a high number of sub-populations
become empty and the NDF obtained at the end of the search may not be dense enough.
To circumvent this hindrance it is proposed in [Che+16] to introduce an additional set of
reference vectors V∗ wherein useless reference vectors are regenerated at each cycle. The
new RVEA variant is denoted RVEA* and is presented in Algorithm 17.

The additional set of reference vectors V∗ is initialized like the original set V (line 2).
Both sets are used to operate the reference vector guided replacement (line 10) by merging
them and removing the possible duplicated vectors. The reference vector update described
previously only applies to V (line 12) while V∗ goes through regeneration at the end of
each cycle (line 16).

The regeneration step consists to replace the reference vectors that would correspond
to an empty sub-population when clustering the NDF of the current population Pi+1.
Four sub-steps are realized to carry out the regeneration. Firstly, the dominated solutions
from the current population are discarded. Secondly, the objective values are translated
according to Equation (5.5). Thirdly, the sub-populations are created just as in Equation
(5.6). Finally, for each empty sub-population, the associated representative reference
vector from V∗i is replaced by a randomly sampled unit vector given by

u

||u||
∈ Rm s.t. uk ∈ [0, zmax,k

i+1]∀k ∈ {1, . . . ,m} (5.11)

where zmax
i+1 is the vector of the maximum objective values in the population.

The reference set V is maintained alongside V∗ to prevent a premature discarding
of a region in the objective space that would temporarily be empty. The regeneration
procedure is implemented in the Reference_Vector_Set class and the code extension
from RVEA to RVEA* is very limited within pySBO.

Custom Reproduction Operators

The constraints of the Covid-19 vaccine distribution problem are convex and analytically
verifiable. Therefore, it is possible to design specific reproduction operators that directly
generate feasible candidates. Assuming that every feasible solution can be reached, this
technique has shown to be a reliable one [Mic+96]. The specific cross-over operator,
called distrib-X and graphically exemplified in Figure 5.3, considers the two phases and
the degree of relaxation independently. For two parents x and y, the last decision variable
for the two children z and t is set such that z17 = x17 and t17 = y17. Regarding the

117

Figure 5.3: Illustration of the custom cross-over operator distrib-X for the Covid-19 vac-
cine distribution problem. Parents x and y father the offspring z. For the sake of sim-
plicity, only the decision variables related to phase 2 are displayed and only the first child
z is shown.

second phase, let I and J be a random partition of {1, . . . , 8}. For the age categories
in I, z receives the proportion of vaccines from x (zi = xi for i ∈ I). The remaining
proportion of available doses at this step is r = 1−

∑
i∈I xi. For the age categories in J ,

the remaining proportion of doses is shared out according to the proportion allocated to
the corresponding age categories in y. In other terms, for j ∈ J , zj =

r.yj∑
j∈J yj

. A similar

treatment is applied to the variables associated to the third phase. The second child t is
generated with an analogous procedure, where the roles of the parents are reversed.

The specific mutation operator, denoted distrib-M, disturbs a decision variable ran-
domly chosen with uniform probability for {1, . . . , 8}, {9, . . . , 16} and {17}. The last
decision variable is mutated by polynomial mutation [Tal09]. For the remaining ones, two
age categories of the same phase are randomly selected and a random amount of doses are
transferred from the first category to the second one.

The well-known intermediate and the 2-points cross-over operators [Tal09] can also be
invoked to deal with the vaccine distribution problem. The intermediate strategy combines
parents by random weighting average, while the 2-points operator distributes portions of
parents to the children. The portions are defined by two points with the first one separat-
ing phase 2 and phase 3 and the second one located between phase 3 and the relaxation
decision variable x17.

The incorporation of new reproduction operators within pySBO is achieved by follow-
ing the same procedure than for adding a new problem. The access point for inheritance
is now either the Mutation or the Crossover abstract class. In the Evolution collection
displayed in Figure F.3, the general-purpose Intermediate and Two-Point cross-over op-
erators are added alongside the SBX operator. The abstract class specifies the functions
to be implemented. For each of these functions, the first instruction must be a call to the
parent function if this latter executes some commands.

5.4.3 Surrogate-based algorithms

Additionally to the balance between convergence and diversity, the trade-off between ex-
ploitation and exploration is to be specified in surrogate-based optimization. Minimizing
the predicted objective vectors (POVs) produced by the surrogate boosts exploitation
of known promising regions of the search space. Conversely, maximizing the predictive
uncertainty enhances exploration of unknown regions.

118 Chapter 5. Software platform for P-SBO

Surrogate-based methods for preventive treatment distribution

Despite the relative computational expensiveness of infectious disease transmission simu-
lators, surrogate-based optimization has been rarely applied to the field. In [Bri+20], we
harnessed surrogate models to determine the allocation of preventive treatments that min-
imize the number of deaths caused by tuberculosis in the Philippines. The identification of
the regime for tuberculosis antibiotic treatments with lowest time and doses is formulated
as a SO problem in [Cic+17] and solved by a method relying on a RBF surrogate model.
The work presented in [Mii+21] deviates from this present study in that it aims to conceive
a model prescribing the actions to perform according to a given situation. It is actually
more related to artificial neural network hyper-parameters and architecture search. What
is called ”surrogate” in [Mii+21] is actually denominated ”simulator” in simulation-based
optimization.

AB-MOEA

The Adaptive Bayesian Multi-Objective Evolutionary Algorithm (AB-MOEA) has been re-
cently designed to handle expensive MO optimization problems [Wan+20b]. This surrogate-
based method, described in Algorithm 18, is made of three steps. The first step consists in
proposing a set of new candidates by minimizing the POVs thanks to RVEA (line 5). As
no predictive uncertainty is used, only exploitation is favored. The second step consists in
re-evaluating the last population returned by RVEA thanks to an adaptive function fada
(line 8) defined by

fada(x, α) = (1− α)f̂(x)./f̂max + αŝ2(x)./ŝ2max (5.12)

where

α = −0.5 cos
(
bc
b
π

)
+ 0.5 (5.13)

where bc
b is the proportion of the budget already spent, ./ is the element-wise division,

f̂max is the per-objective maximum POV observed in the last population returned by
RVEA and ŝ2max is the per-objective maximum predictive variance. At the beginning of
the search (α ≈ 0), fada favors convergence to the true PF by minimizing the POVs. As
the search proceeds, α increases and so minimization of the predictive variance is included
to reinforce exploitation. At the third step, q candidates are retained for simulation based
on an adaptive sampling criterion described in Algorithm 19. The sampling criterion is
similar to the reference vector guided replacement of RVEA: first the POVs are translated
according to Equation (5.5), then for each POV an angle-based distance from the closest
reference vector is computed (lines 4 to 8). During the first part of the search (when
α < 0.5), the distance is the angle to the set of reference vectors (line 5) thus favoring
diversity. During the second part of the search, the distance is the angle penalized distance
of Equation (5.8) (line 7) thus favoring both convergence and diversity. Afterwards, the
candidates are sorted with a lower distance indicating a better promise. The sampling is
realized per sub-population so that the lowest distances per sub-population are considered
first.

The implementation of AB-MOEA resorts to the elements already available in pySBO
such as the problems, the evolutionary operators, the surrogates and the implementation of
RVEA. However, the implementation of AB-MOEA is naive in the sense that no particular
effort have been dedicated yet to factorize the code corresponding to the new algorithmic
components. In a nutshell, no new classes have been created. Future developments of
the platform will target enhancements in this respect. For instance, the adaptive function
fada is the same than the adaptive EC exposed by the Adaptive_Wang2020_EC class.

119

For the moment, the EC only accepts populations of single-objective individuals while
fada is designed for multiple objectives. It is also worth to note that the angle penalized
distance is employed in both RVEA and in the adaptive sampling criterion of AB-MOEA,
therefore a dedicated class would be useful. Besides, in the first phase of the adaptive
sampling criterion, another distance, namely the angle to the set of reference vectors is
invoked. The use of different distances advocates the creation of a collection of classes
representing distances and embedding the possibility to sort a population according to it.

SAEA-ME

The Surrogate-Assisted Evolutionary Algorithm for Medium Scale Expensive problems
(SAEA-ME) shows to perform well on MO problems with more than 10 decision variables
in [Rua+20]. In SAEA-ME, dissected in Algorithm 20, NSGA-II is used (line 5) to op-
timize a six-objective acquisition function where the three first objectives are the POVs
and the last three objectives are the POVs minus the predictive variances (similar to LCB
with λlcb = 1). From the set of proposed candidates, the ⌊ q2⌋ ones showing the best hyper-
volume contribution considering the POVs are first retained for parallel simulation (line 6
and 7). Then, the ones demonstrating the best hyper-volume contribution regarding the
POVs minus two variances are simulated (line 8 and 9). The additional dimensionality re-
duction feature proposed in [Rua+20] is not considered here as it consumes computational
budget and can be applied to any method.

In order to optimally reuse the code available in pySBO, two new classes are set
up to implement SAEA-ME. The first one, called MO_POV_LCB_IC, implements the non-
dominated and crowding distance sorting of a population for the problem min(f̂ , f̂ − ŝ2).
The implementation of NSGA-II can consequently be directly reused by basing the selec-
tion and replacement step on this new sorting (in the same spirit as in Algorithm 5). The
second novel class, called MO_POV_LCB_EC, serves to sort a population by placing first the
⌊ q2⌋ individuals showing the best hyper-volume contribution for the problem min(f̂) and

then the ⌊ q2⌋ ones for the problem min(f̂ − 2ŝ2). The q candidates to simulate are thus
easily identified from the set of proposals.

Gaussian Processes for multiple objectives

The multi-task Gaussian Process [BCW08] is implemented by the GP_MO class in pySBO
via the GPyTorch library [Gar+18]. Using a multi-task GP to model multiple objectives
has been realized in [Xia+14] to control quality in sheet metal forming. In a traditional
regression GP [Ras06], a kernel function is specified to model the covariance between
the inputs, thus allowing the model to learn the input-output mapping and to return
predictions and predictive uncertainties. In the multi-task GP, inter-task dependencies
are also taken into account in the hope of improving over the case where the tasks are
decoupled. The BNN MCD described in the first chapter of this thesis also supports
multiple outputs such as the basic ANNs. It is embedded within pySBO through the
BNN_MCD class.

120 Chapter 5. Software platform for P-SBO

5.5 Numerical experiments

5.5.1 Protocol

The five MO algorithms exhibited in the previous section are applied to the Covid-19 vac-
cine distribution problem. The computational budget is set to two hours on 18 computing
cores, thus allowing 18 simulations to be realized in parallel. The simulation duration
varies from one solution to another from 13 to 142 seconds on one computing core. Ten
runs of the searches are carried out to ensure statistical robustness of the comparisons. The
reference point for hyper-volume calculation is set to an upper bound for each objective
(32.106; 32.106; 1.5).

The surrogate-free approaches NSGA-II, RVEA and RVEA* are equipped with either
the distrib-X, the 2-points or the intermediate cross-over operator. For NSGA-II, the
population size npop is set to 108 or 162, to avoid the idling of the computing cores and
being close to the recommended value of 100 given in [Deb+02]. For RVEA and RVEA*,
we choose npop = 105 or 171 to comply with the constraint imposed by the reference
vectors initialization and to keep values close to those imposed for NSGA-II. Ten initial
populations composed of 171 simulated solutions are generated to start the algorithms.
Each initial population is made at 85% of solutions randomly sampled within the feasible
search space and at 15% of candidates picked out on the boundary. When npop < 171,
only the best npop candidates according to the non-dominated sorting defined in [Deb+02]
are retained. For RVEA and RVEA*, a scaled version of the problem, where the first
two objectives are divided by 1000, is also considered to demonstrate the effect of the
objectives scales on the behavior of the methods.

The surrogate-based approaches AB-MOEA and SAEA-ME only integrate the distrib-X
operator and use all the 171 initial samples as initial database. For RVEA in AB-MOEA,
npop = 105 and the number of generations is fixed to 20 as recommended in [Wan+20b],
while npop = 76 for NSGA-II in SAEA-ME according to the guidance provided in [Rua+20]
and the population evolves for 100 generations. The surrogate is the multi-task GP and
five different kernel functions are considered for comparison: the well-known Radial Basis
Functions kernel is denoted rbf, the Matern kernel [Ste99] with hyper-parameter ν = 1.5
and 2.5 are called matern1.5 and matern2.5 respectively and the Spectral Mixture kernel
proposed in [WA13] is also raised with 2 and 4 components, denominated sm2 and sm4
respectively.

5.5.2 Empirical analysis

Table 5.2 shows the ranking of the algorithms according to the final hyper-volumes aver-
aged over the ten runs. It can be observed in Table 5.2 that all the surrogate-based strate-
gies outperform all those without surrogate. In particular, SAEA-ME with the matern1.5
kernel is the best approach. The multi-task GP equipped with the matern1.5 covariance
function is preferred in both the SAEA-ME and AB-MOEA frameworks. Regarding the
surrogate-free methods, NSGA-II with the distrib-X cross-over mechanism and npop = 108
yields the best averaged hyper-volume. It is worth noticing that the distrib-X operator,
specifically designed for the problem at hand, is to put forward as it surpasses both the
intermediate and the 2-points strategies in all contexts. Among the RVEAs, the best
variant is RVEA* with npop = 105 and the distrib-X cross-over thus indicating a possi-
bly degenerated or disconnected PF. Indeed, the PF is certainly degenerated as indicates
Figure 5.4 where are plotted the objective vectors from the ten final NDFs obtained by
SAEA-ME with the matern1.5 kernel. When analyzing the influence of objectives scales
over the efficiency of RVEA and RVEA*, the conclusions drawn in [Che+16] are confirmed

121

Figure 5.4: Best NDFs from the 10 runs for SAEA-ME with matern1.5 kernel on the
Covid-19 vaccine distribution problem.

as both algorithms are more appropriate when objectives have similar scales. Indeed, the
three objectives lie in [1655; 13, 762], [843; 10, 962] and [0; 1], respectively. The previous
ranges are approximated a posteriori based on 250,664 simulations performed in RVEA
and RVEA* on the original problem. The necessity to adequately scale the objectives
brings a disadvantage to RVEAs as the scaling weights are tedious to define especially
in the context of black-box expensive simulations. Another drawback is the constraints
on the population size preventing to totally impede the idling of computing cores in all
scenarios.

Figure 5.5 monitors the averaged hyper-volume as the search proceeds for the best
strategy per category according to Table 5.2. The hyper-volume improves sharply at the
very beginning of the search for the surrogate-based methods and reaches convergence
rapidly (around 300 to 500 simulations). NSGA-II improves much slower but seems not
to have converged at the end of the execution. By the right extremities of the curves,
it could be expected that the hyper-volume returned by NSGA-II exceeds the one from
AB-MOEA for larger numbers of simulations. However, reiterating the experiments for a
time budget of four hours has not allowed to verify this expectation. Figure 5.5 specifies
that the impact of objectives scaling on RVEAs appears from around 300 simulations. In
the setting of a capped computational budget, it is important to strongly favor convergence
and exploitation at the onset of the search. SAEA-ME and AB-MOEA realizes this by
minimizing the POVs at the top beginning of the execution. The difference between the
two approaches lies in the incorporation of the predictive uncertainty. In SAEA-ME, a
degree of exploration is maintained by maximization of the predictive variance. Conversely,
minimization of the predictive uncertainty is involved at latter stages in AB-MOEA. In
spite of the convergence-oriented strategy adopted by RVEAs at the early stages of the
search, the embedded mechanism set up to handle many objectives is quite heavy and
reveals to be unsuitable when the computational budget is restricted. Indeed, in [Che+16]
the algorithms are run from 500 to 1,000 generations while 10 to 20 generations are allowed
by our computational budget.

122 Chapter 5. Software platform for P-SBO

Table 5.2: Ranking of the MO surrogate-based and surrogate-free approaches according
to the averaged final hyper-volumes over the 10 runs on the Covid-19 vaccine distribution
problem.

Algorithm Cross-over Population GP kernel Objectives Averaged final
operator size scaling Hyper-volume

(×1010
+1.535× 1015)

SAEA-ME distrib-X 76 matern1.5 - 80.1800
SAEA-ME distrib-X 76 matern2.5 - 80.1610
SAEA-ME distrib-X 76 rbf - 79.9541
SAEA-ME distrib-X 76 sm2 - 79.6701
AB-MOEA distrib-X 105 matern1.5 - 79.6200
AB-MOEA distrib-X 105 matern2.5 - 79.5879
SAEA-ME distrib-X 76 sm4 - 79.5789
AB-MOEA distrib-X 105 sm4 - 79.4861
AB-MOEA distrib-X 105 sm2 - 79.4841
AB-MOEA distrib-X 105 rbf - 79.4304
NSGA-II distrib-X 108 - - 79.3337
NSGA-II distrib-X 162 - - 79.1876
RVEA* distrib-X 105 - yes 77.2805
RVEA* distrib-X 171 - yes 77.2514
RVEA distrib-X 171 - yes 77.1287
RVEA distrib-X 105 - yes 77.0117

NSGA-II intermediate 108 - - 76.9946
NSGA-II intermediate 162 - - 76.8320
NSGA-II 2-points 162 - - 75.6959
NSGA-II 2-points 108 - - 75.5889
RVEA distrib-X 105 - - 75.5184
RVEA* intermediate 171 - yes 75.3816
RVEA* intermediate 105 - yes 75.2841
RVEA intermediate 171 - yes 75.2006
RVEA intermediate 105 - yes 75.1562
RVEA* distrib-X 105 - - 75.1555
RVEA* distrib-X 171 - - 75.1372
RVEA distrib-X 171 - - 75.0563
RVEA* 2-points 171 - yes 74.9803
RVEA 2-points 171 - yes 74.9195
RVEA 2-points 105 - yes 74.7692
RVEA* 2-points 105 - yes 74.7535
RVEA* intermediate 105 - - 74.5607
RVEA intermediate 105 - - 74.5585
RVEA intermediate 171 - - 74.4959
RVEA* intermediate 171 - - 74.4266
RVEA 2-points 171 - - 74.3694
RVEA 2-points 105 - - 74.3518
RVEA* 2-points 171 - - 74.3264
RVEA* 2-points 105 - - 74.2507

123

Figure 5.5: MO optimization of Covid-19 vaccine distribution. Averaged hyper-
volume according to the number of simulations.

Reducing the solving time of moderately expensive optimization problems where the
simulation lasts less than five minutes may enable to manage optimization under uncer-
tainty. As the calibration of the simulation tool is uncertain, multiple configurations of its
parameters can be considered, resulting in multiple optimization exercises to be executed
and thus enabling to gain insight about the variability of the results.

5.5.3 Resulting vaccine distribution plan

The optimal allocation plan implies providing 70% of the doses to the 10-19 years old
age-group and 30% to the 20-29 age-group during phase 2 according to Figure 5.6. In
phase 3, 70% of the doses are assigned to 20-29 years old individuals and 15% to both the
40-49 and 10-19 age-categories. This plan prioritizes the vaccination of younger adults as
they are the most transmitting cohort because of their high contact rate in the population
[PCJ17]. Nevertheless, the present results have to be considered with caution. Since our
experiments date back to the beginning of 2021, few feedback about vaccination efficiency
was available. It is assumed here that the vaccine reduces transmission although it might
not be the case for the Omicron variant of concern that started to break through the
world at the end of 2021. Our results are similar to those presented in [Wey+05; MG09]
for influenza. From Figure 5.7 where the total number of deaths and the maximum number
of occupied hospital beds are displayed with respect to the relaxation variable x17, the
alleviation of the physical distancing reveals to trigger an augmentation of the hospital
occupancy and deaths.

124 Chapter 5. Software platform for P-SBO

Figure 5.6: vaccine distribution according to age-categories. Averaged solutions
from the best final NDFs returned by the 10 runs for SAEA-ME with matern1.5 kernel.

Figure 5.7: Total number of deaths and maximum number of occupied hospital beds
according to relaxation of the physical distancing x17. Best NDFs from the 10 runs for
SAEA-ME with matern1.5 kernel.

5.6 Conclusion

In this chapter, we have studied the design of a scalable software architecture to dissem-
inate the techniques of P-SBO to the larger community. The resulting pySBO Python
platform and its associated documentation are open-source and publicly available on-line
through a Github repository and a dedicated web-page respectively. The abstract classes
and the relationships offered by the object-oriented paradigm in Python ensure the extensi-
bility and flexibility of the code. The numerous algorithmic components (ECs, surrogates,
etc.) and the full approaches (q-EGO, SaaEF, etc.) already embedded into pySBO em-
power utility and reusability. The review of related software promotes pySBO for the
ability to set up both P-SAEAs and P-SDAs for moderately and very expensive problems
respectively. The support for multi-objective and inclusion of parallel computations are
also key features that are uncommon in computer programs suite to P-SBO.

125

Multi-objective surrogate-based and surrogate-free algorithms like SAEA-ME, AB-
MOEA and RVEA are implemented within pySBO as a proof of concept for extensibility.
The multi-objective problem that is considered in the numerical experiments consists in
allocating a limited number of vaccine doses to the age-groups of a population to minimize
mortality, hospital occupancy and mobility restrictions. The handling of this Covid-19-
related application demonstrates the utility of pySBO to the field of infectious disease
and resource allocation. The comparison of the multi-objective approaches emphasizes
the usefulness of pySBO to the domain of P-SBO.

At the time of writing this paragraph, pySBO is made of 55 classes plus 10 actual algo-
rithms implemented for a total number of lines of code estimated to 5,000. Three users are
known and the platform has been downloaded 17 times. For the moment, the optimization
procedure in pySBO is mainly centered on evolutionary computations. Future develop-
ments will be devoted to add other optimizers such as Particle Swarm Optimization and
to implement new P-SBOAs based on it.

Conclusions and perspectives

By combining the benefits of parallel computing, machine learning and optimization,
P-SBOAs are built to solve black-box computationally expensive simulation-based op-
timization problems. In this thesis, we study the design of P-SAEAs, P-SDAs and hybrid
algorithms according to the ruggedness of the search landscape and the affordable compu-
tational budgets. Particularly, three design aspects, the surrogate model, the acquisition
process and the definition of promisingness represent the three dimensions of the design
space of P-SBOAs as considered in this work. The ideal situation of a robust P-SBOA
able to deal with many search landscapes and computational budgets serves as a guiding
point at the horizon.

An important novelty brought by this thesis is to consider the distinction between
moderately and very computationally expensive problems. To do so, a capped duration
on a prefixed number of computing cores is selected as budget definition. The motivation
is to realistically reproduce the situation faced by the users, especially when the surrogate
training may become a significant workload.

As a first contribution, we proposed SaaEF, a P-SAEA where the surrogate is used
both as an evaluator and a filter within an evolutionary algorithm. On the one hand, the
surrogate evaluations and the parallel simulations allow to save computational budget.
On the other hand, the filtering gives more opportunity to the reproduction operators to
come up with promising new solutions. We choose the BNN MCD as surrogate model to
mimic the simulator in a fast way. Monte-Carlo Dropout consists in randomly deactivating
neurons from a network thus generating sub-networks subsequently used to compute the
predictive objective value. Three novel ways of defining the promisingness through en-
sembles of evolution controls are suggested. The dynamic and adaptive ensembles change
the trade-off between exploration and exploitation during the search while the committee
combines evolution controls by voting.

The second contribution consists in relying on sub-surrogates to create P-SDAs. The
multiple sub-surrogates intervene in multiple simultaneous optimizations to acquire new
candidates that are subsequently simulated in parallel. Sub-surrogate sampling emulates
the use of ensembles of surrogates with the advantage of requiring only one surrogate
update per acquisition process. Two strategies are proposed, differing on the way the sub-
surrogates are constituted. In the first approach, sub-networks are sampled from a global
neural network by Monte-Carlo Dropout (q-subnets). In the second approach, a Monte-
Carlo Markov Chain sampling is triggered on the posterior distribution of the parameters
of a Gaussian Process (q-post-HMC).

As a third contribution, the Hybrid Sequential Acquisition Process (HSAP) is pro-
posed to retain the advantages of P-SAEAs and P-SDAs. First, to preserve the benefit of
P-SDAs on tight computational budgets, about a hundred candidates are acquired through
infill criterion optimization. Afterwards, a population is evolved through informed repro-
duction operators with the aim of continuously improving over the best located solution.
Comparisons are conducted with a state-of-the-art method and HCAP, another hybrid

127

128 Chapter 5. Software platform for P-SBO

strategy we propose, where both acquisition processes are concurrently performed during
the entire search. The HSAP algorithm shows the best parallel scalability and provides the
best overall solution on the Covid-19 problem for a budget of 30 minutes on 144 computing
cores.

The fourth contribution is the pySBO Python modular platform developed during this
thesis to the dissemination of P-SBO tools. The software demonstrates an extensible and
flexible skeleton filled with actual algorithmic components such as evolution controls and
surrogates. The algorithms dissected in this work are provided within pySBO as ready-
to-use programs. The accessibility is guaranteed by the open-source licence and the docu-
mentation available through a dedicated web-page. A multi-objective problem of Covid-19
vaccine distribution as well as recent surrogate-based and surrogate-free multi-objective
algorithms are implemented and compared to exemplify the use and the extensibility of
the platform.

One of the main objectives of this thesis was to investigate the design of P-SBOAs
that prove robustness with respect to the computational budget and the search landscape
characteristics. For moderately expensive problems, allowing more than around 1500 sim-
ulations, P-SAEAs are to be put forward. The most probable reason is that they better
prevent being trapped in a local basin of attraction than P-SDAs as they deliver a higher
degree of exploration. Besides, historical knowledge about the search landscape is embed-
ded in two locations in P-SAEAs, in the evolving population and in the parameters of
the trained surrogate. Recovering from a misguided search path may be easier than with
P-SDAs where only the surrogate’s parameters drive the search. However, for very expen-
sive problems, P-SDAs are promoted. By optimizing the infill criterion, more efforts are
engaged into exploitation than in P-SAEAs and good new solutions are obtained quickly.
Regarding the promisingness in P-SAEAs, it seems often better to favor exploration at
the beginning of the search and exploitation at the latter stages. The best metric for
exploration is the distance to the database of already simulated solutions and the one
for exploitation is the predicted objective value. The surrogate can therefore gain global
knowledge of the landscape before being exploited to locate narrower regions of interest
to scrutinize. In P-SDAs, the predictive uncertainty offered by the surrogate is a more
informative metric of exploration as eliminating such uncertainty is of primary concern to
detect new better solutions. The Pareto-based and adaptive evolution controls should be
privileged in general in P-SDAs to aggregate the predictive uncertainty and the predicted
objective.

On the Schwefel benchmark whose landscape demonstrates both multi-modality and
weak global structure, BNN MCD has shown a more adequate predictive capacity than
the Gaussian Processes. However, the Gaussian Processes are more convenient on other
landscapes. The training time of BNN MCD remains low even when more training data
accumulate as in the context of moderately expensive problems. For Gaussian Processes,
restraining the training set to the last few simulations is an interesting way of limiting
the training time and sometimes even improves the resolution quality. For a rugged land-
scape and a moderately expensive problem, allocating more budget to simulation than to
surrogate training has been seen as a good idea.

Determining the suitable surrogate-optimizer coupling according to the search land-
scape characteristics is still an open question. Further comparisons including a broader
range of benchmark problems must be conducted and landscape analysis tools should be
employed in an attempt to categorize the landscapes. For what we have observed in our
experiments related to P-SDAs, q-post-HMC and q-subnets can produce decisive results
on the Schwefel problem for a tight and moderate computational budget respectively. Nev-
ertheless, this observation is not retrieved on the Covid-19 application that has also been

129

qualified as multi-modal and weak global structure by a posteriori landscape analysis.
More generally, for a very expensive problem, q-EGO seems to perform consistently well
over all the optimization problems addressed in this thesis. For a moderately expensive
problem, SaaEF is the more robust even if it is not the best strategy in all problems.

Merging the best of both surrogate-based frameworks, P-SAEAs and P-SDAs, HSAP is
specifically designed to solve the Covid-19-related problem. The new algorithm integrates
both BNN MCD and a Gaussian Process as surrogates and dynamic and voting ensembles
of ECs. HSAP is the best performing method on the moderately expensive problem of
Covid-19 contact reduction and it scales very well to the number of computing cores.

The outcome of the resolution of the Covid-19 applications have been transmitted to
the World Health Organization that redirected it to the studied countries. As these coun-
tries have no obligation of feedback on the utility of the formulated recommendations, it
is tedious to evaluate the real impacts of our results.

As future research directions, we have identified some challenging perspectives sum-
marized in the following:

• The dynamic ensembles of evolution controls have proven to be reliable in P-SAEAs
for moderately expensive problems. The issue raised by these mechanisms are the
need for the user to tweak the switch from exploration to exploitation. The attempts
conducted to remove the user-defined parameters by setting adaptive ensembles of
evolution controls have not borne fruit yet. The early stopping criterion will be
enhanced in the future by integrating gradient information about the convergence
curve.

• In q-subnets, the sub-networks are sampled randomly without preoccupation of the
diversity. The lack of distinctiveness in the set of sub-surrogates may provoke a waste
of computational budget by simulating multiple times the same solution. Improving
the sampling in q-subnets is meaningful and a first lead would consist of setting
groups of neurons that can not be deactivated at a same time.

• The characteristics of the search landscape have been identified as an impacting
factor that guide the choice of algorithmic components such as surrogate models.
This suggests to include landscape analysis metrics and surrogate predictive error to
inform the optimization process. The dispersion metric as well as the distances to
the nearest neighbors and the best nearest neighbors have been employed to quantify
the multi-modality and the weakness of the global structure of search landscapes.
These indicators should be considered in building P-SBOAs to empower robustness.

• The HSAP method developed in this thesis proves robustness with respect to the
computational budget. In HSAP, the switch between the two acquisition processes
that are successively leveraged during the search is fixed in the current version of the
algorithm. Determining automatically the optimal step of the search to trigger the
switch is a feature that worth some effort in the future. As in the case of adaptive
evolution controls, relying on the gradient of the convergence curve is a potential
direction.

• The optimizations realized in pySBO are mainly centered on evolutionary computa-
tions and synchronous parallel simulations. Future developments of the platform will
target the inclusion of other meta-heuristics and parallel schemes for asynchronous
simulations. The integration of Particle Swarm Optimization is already on its way
and will allow to perform comparisons with P-SAEAs as the surrogate-optimizer
couplings are similar.

Bibliography

[Aa15] M. Abadi and A. Agarwal et al. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. Software available from tensorflow.org. 2015. url:
https://www.tensorflow.org/.

[AD06] C. Audet and J. E. Dennis. “Mesh Adaptive Direct Search Algorithms for
Constrained Optimization”. In: SIAM Journal on Optimization 17.1 (2006),
pp. 188–217. doi: 10.1137/040603371.

[AKG09] V. Asouti, I. Kampolis, and K. Giannakoglou. “A grid-enabled asynchronous
metamodel-assisted evolutionary algorithm for aerodynamic optimization”.
In: Genetic Programming and Evolvable Machines 10 (Dec. 2009), pp. 373–
389. doi: 10.1007/s10710-009-9090-5.

[AKN21] H. Anahideh, L. Kang, and N. Nezami. “Fair and diverse allocation of scarce
resources”. In: Socio-Economic Planning Sciences (2021), p. 101193. issn:
0038-0121. doi: https://doi.org/10.1016/j.seps.2021.101193.

[AS16] T. Akhtar and C. A. Shoemaker. “Multi objective optimization of compu-
tationally expensive multi-modal functions with RBF surrogates and multi-
rule selection”. In: Journal of Global Optimization 64.1 (Jan. 2016), pp. 17–
32. issn: 1573-2916. doi: 10.1007/s10898- 015- 0270- y. url: https:
//doi.org/10.1007/s10898-015-0270-y.

[AS19] T. Akhtar and C. A. Shoemaker. “Efficient Multi-Objective Optimization
through Population-based Parallel Surrogate Search”. In: CoRR (2019). url:
http://arxiv.org/abs/1903.02167.

[AV07] D. Arthur and S. Vassilvitskii. “k-means++: the advantages of careful seed-
ing”. In: SODA ’07: Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms. New Orleans, Louisiana: Society for Industrial
and Applied Mathematics, 2007, pp. 1027–1035. isbn: 978-0-898716-24-5.
url: http://portal.acm.org/citation.cfm?id=1283494.

[Ba19] F. Biscani and al. esa/pagmo2: pagmo 2.10. Jan. 2019. doi: 10 . 5281 /

zenodo.2529931.

[Bal+19] M. Balandat et al. “BoTorch: Programmable Bayesian Optimization in Py-
Torch”. In: CoRR abs/1910.06403 (2019). arXiv: 1910.06403. url: http:
//arxiv.org/abs/1910.06403.

[Bau+] M. Baudin et al. pyDOE: The experimental design package for python. https:
//pythonhosted.org/pyDOE/.

[BCW08] E. V. Bonilla, K. Chai, and C. Williams. “Multi-task Gaussian Process Pre-
diction”. In: Advances in Neural Information Processing Systems. Vol. 20.
Curran Associates, Inc., 2008. url: https://proceedings.neurips.cc/
paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf.

[BD22] J. Blank and K. Deb. pysamoo: Surrogate-Assisted Multi-Objective Optimiza-
tion in Python. 2022. arXiv: 2204.05855 [cs.NE].

I

https://www.tensorflow.org/
https://doi.org/10.1137/040603371
https://doi.org/10.1007/s10710-009-9090-5
https://doi.org/https://doi.org/10.1016/j.seps.2021.101193
https://doi.org/10.1007/s10898-015-0270-y
https://doi.org/10.1007/s10898-015-0270-y
https://doi.org/10.1007/s10898-015-0270-y
http://arxiv.org/abs/1903.02167
http://portal.acm.org/citation.cfm?id=1283494
https://doi.org/10.5281/zenodo.2529931
https://doi.org/10.5281/zenodo.2529931
https://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403
https://pythonhosted.org/pyDOE/
https://pythonhosted.org/pyDOE/
https://proceedings.neurips.cc/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://arxiv.org/abs/2204.05855

II Bibliography

[Beh+11] S. Behnel et al. “Cython: The best of both worlds”. In: Computing in Science
& Engineering 13.2 (2011), pp. 31–39.

[Ber+19] N. Berveglieri et al. “Surrogate-assisted multi-objective optimization based
on decomposition: a comprehensive comparative analysis”. In: Genetic and
Evolutionary Computation Conference (GECCO 2019). 2019.

[Bes+22] L. Bessi et al. Surrogates.jl: Surrogate modeling and optimization for scien-
tific machine learning (SciML). https://surrogates.sciml.ai/dev/. 2022.

[Bin+18] E. Bingham et al. “Pyro: Deep Universal Probabilistic Programming”. In:
Journal of Machine Learning Research (2018).

[Bis+14] B. Bischl et al. “MOI-MBO: Multiobjective Infill for Parallel Model-Based
Optimization”. In: vol. 8426. Feb. 2014, pp. 173–186. doi: 10.1007/978-3-
319-09584-4_17.

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning. Berlin, Heidel-
berg: Springer-Verlag, 2006. isbn: 0387310738.

[Bli+21] L. Bliek et al. EXPObench: Benchmarking Surrogate-based Optimisation Al-
gorithms on Expensive Black-box Functions. 2021. doi: 10.48550/ARXIV.
2106.04618.

[Bre+18] B. Breiderhoff et al. “Expensive optimization exemplified by ECG simulator
optimization”. In: 2018.

[Bri+20] G. Briffoteaux et al. “Evolution Control for parallel ANN-assisted simulation-
based optimization application to Tuberculosis Transmission Control”. In:
Future Generation Computer Systems 113 (2020), pp. 454–467. issn: 0167-
739X. doi: https://doi.org/10.1016/j.future.2020.07.005.

[BSK05] D. Buche, N. N. Schraudolph, and P. Koumoutsakos. “Accelerating evolu-
tionary algorithms with Gaussian process fitness function models”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 35.2 (2005), pp. 183–194. doi: 10.1109/TSMCC.2004.841917.

[Bub+21] K. M. Bubar et al. “Model-informed COVID-19 vaccine prioritization strate-
gies by age and serostatus”. In: Science 371.6532 (2021), pp. 916–921. doi:
10.1126/science.abe6959.

[Buh+21] C. Buhat et al. “Using Constrained Optimization for the Allocation of COVID-
19 Vaccines in the Philippines”. In: Applied health economics and health pol-
icy 19(5) (2021), pp. 699–708. doi: https://doi.org/10.1007/s40258-
021-00667-z.

[Cal+20] J. M. Caldwell et al. Modelling COVID-19 in the Philippines: technical de-
scription of the model. Tech. rep. Monash University, 2020.

[Cap+05] F. Cappello et al. “Grid’5000: a large scale and highly reconfigurable grid
experimental testbed”. In: The 6th IEEE/ACM International Workshop on
Grid Computing, 2005. 2005. doi: 10.1109/GRID.2005.1542730.

[CH21] M. Claeson and S. Hanson. “COVID-19 and the Swedish enigma”. In: The
Lancet 397.10271 (2021), pp. 259–261. issn: 0140-6736. doi: https://doi.
org/10.1016/S0140-6736(20)32750-1.

[Cha+15] A. Chaudhuri et al. “Experimental Flapping Wing Optimization and Uncer-
tainty Quantification Using Limited Samples”. In: Struct. Multidiscip. Op-
tim. 51.4 (Apr. 2015), pp. 957–970. issn: 1615-147X. doi: 10.1007/s00158-
014-1184-x. url: https://doi.org/10.1007/s00158-014-1184-x.

https://doi.org/10.1007/978-3-319-09584-4_17
https://doi.org/10.1007/978-3-319-09584-4_17
https://doi.org/10.48550/ARXIV.2106.04618
https://doi.org/10.48550/ARXIV.2106.04618
https://doi.org/https://doi.org/10.1016/j.future.2020.07.005
https://doi.org/10.1109/TSMCC.2004.841917
https://doi.org/10.1126/science.abe6959
https://doi.org/https://doi.org/10.1007/s40258-021-00667-z
https://doi.org/https://doi.org/10.1007/s40258-021-00667-z
https://doi.org/10.1109/GRID.2005.1542730
https://doi.org/https://doi.org/10.1016/S0140-6736(20)32750-1
https://doi.org/https://doi.org/10.1016/S0140-6736(20)32750-1
https://doi.org/10.1007/s00158-014-1184-x
https://doi.org/10.1007/s00158-014-1184-x
https://doi.org/10.1007/s00158-014-1184-x

III

[Cha+20] S. Chang et al. “Modelling transmission and control of the COVID-19 pan-
demic in Australia”. In: Nature Communications 11,5710 (Mar. 2020). doi:
https://doi.org/10.1038/s41467-020-19393-6.

[Che+16] R. Cheng et al. “A Reference Vector Guided Evolutionary Algorithm for
Many-Objective Optimization”. In: IEEE Transactions on Evolutionary Com-
putation 20.5 (2016), pp. 773–791. doi: 10.1109/TEVC.2016.2519378.

[Cho15] F. Chollet. Keras. https://keras.io. 2015.

[Chu+17] T. Chugh et al. “A data-driven surrogate-assisted evolutionary algorithm
applied to a many-objective blast furnace optimization problem”. In: Mate-
rials and Manufacturing Processes 32.10 (2017), pp. 1172–1178. url: https:
//doi.org/10.1080/10426914.2016.1269923.

[Chu+19] T. Chugh et al. “A survey on handling computationally expensive multiob-
jective optimization problems with evolutionary algorithms”. In: Soft Com-
puting 23 (May 2019). doi: 10.1007/s00500-017-2965-0.

[Cic+17] J. M. Cicchese et al. “Applying Optimization Algorithms to Tuberculosis
Antibiotic Treatment Regimens”. English. In: Cellular and Molecular Bio-
engineering 10,6 (Dec. 2017), pp. 523–535. doi: https://doi.org/10.
1007/s12195-017-0507-6.

[Cor02] J. A. Cornell. Experiments with Mixtures: Designs, Models, and the Analysis
of Mixture Data. John Wiley & Sons, 2002.

[Deb+01] K. Deb et al. Scalable Test Problems for Evolutionary Multi-Objective Opti-
mization. Tech. rep. Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology (ETH, 2001.

[Deb+02] K. Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-II”.
In: IEEE Transactions on Evolutionary Computation 6.2 (2002), pp. 182–
197. doi: 10.1109/4235.996017.

[Del12] C. Delannoy. Programmer en Java. Eyrolles, 2012. isbn: 9782212135664.
url: https://books.google.be/books?id=1OStv%5C_D82I4C.

[DF21] L. Dalcin and Y. L. Fang. “mpi4py: Status Update After 12 Years of Devel-
opment”. In: Computing in Science Engineering 23.4 (2021), pp. 47–54. doi:
10.1109/MCSE.2021.3083216.

[Dı́a+16] A. Dı́az-Manŕıquez et al. “A Review of Surrogate Assisted Multiobjective
Evolutionary Algorithms”. In: Computational Intelligence and Neuroscience
2016 (2016). doi: https://doi.org/10.1155/2016/9420460, p. 14. issn:
Article ID 9420460.

[DN07] K. Deb and P. Nain. “An Evolutionary Multi-objective Adaptive Meta-
modeling Procedure Using Artificial Neural Networks”. In: Evolutionary Com-
putation in Dynamic and Uncertain Environments. Vol. 51. doi: http://dx.
doi.org/10.1007/978-3-540-49774-5_13. Berlin, Heidelberg: Springer,
2007. Chap. 13, pp. 297–322. isbn: 978-3-540-49772-1.

[DTC17] A. Dı́az-Manŕıquez, G. Toscano, and C. A. Coello Coello. “Comparison of
metamodeling techniques in evolutionary algorithms”. In: Soft Computing
21.19 (Oct. 2017), pp. 5647–5663. doi: 10.1007/s00500-016-2140-z.

[Duq+20] D. Duque et al. “Timing social distancing to avert unmanageable COVID-19
hospital surges”. In: Proceedings of the National Academy of Sciences 117.33
(2020), pp. 19873–19878. issn: 0027-8424. doi: 10.1073/pnas.2009033117.

https://doi.org/https://doi.org/10.1038/s41467-020-19393-6
https://doi.org/10.1109/TEVC.2016.2519378
https://keras.io
https://doi.org/10.1080/10426914.2016.1269923
https://doi.org/10.1080/10426914.2016.1269923
https://doi.org/10.1007/s00500-017-2965-0
https://doi.org/https://doi.org/10.1007/s12195-017-0507-6
https://doi.org/https://doi.org/10.1007/s12195-017-0507-6
https://doi.org/10.1109/4235.996017
https://books.google.be/books?id=1OStv%5C_D82I4C
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1155/2016/9420460
http://dx.doi.org/10.1007/978-3-540-49774-5_13
http://dx.doi.org/10.1007/978-3-540-49774-5_13
https://doi.org/10.1007/s00500-016-2140-z
https://doi.org/10.1073/pnas.2009033117

IV Bibliography

[EBS19] D. Eriksson, D. Bindel, and C. A. Shoemaker. “pySOT and POAP: An
event-driven asynchronous framework for surrogate optimization”. In: arXiv
preprint arXiv:1908.00420 (2019).

[EGN06] M. T. M. Emmerich, K. C. Giannakoglou, and B. Naujoks. “Single- and
multiobjective evolutionary optimization assisted by Gaussian random field
metamodels”. In: IEEE Transactions on Evolutionary Computation 10.4
(2006), pp. 421–439. doi: 10.1109/TEVC.2005.859463.

[Emm+02] M. Emmerich et al. “Metamodel—Assisted Evolution Strategies”. In: Sept.
2002. isbn: 978-3-540-44139-7. doi: 10.1007/3-540-45712-7_35.

[Fen+15] Z. Feng et al. “A multiobjective optimization based framework to balance
the global exploration and local exploitation in expensive optimization”. In:
Journal of Global Optimization 61.4 (Apr. 2015), pp. 677–694. doi: 10.1007/
s10898-014-0210-2.

[FSK08a] A. I. J. Forrester, A. Sóbester, and A. J. Keane. “Constructing a Surrogate”.
In: Engineering Design via Surrogate Modelling. John Wiley and Sons, Ltd,
2008. Chap. 2, pp. 33–76. isbn: 9780470770801. doi: https://doi.org/10.
1002/9780470770801.ch2.

[FSK08b] A. I. J. Forrester, A. Sóbester, and A. J. Keane. Engineering Design via
Surrogate Modelling. John Wiley and Sons, Ltd, 2008. isbn: 9780470770801.
doi: https://doi.org/10.1002/9780470770801.

[FSK08c] A. I. J. Forrester, A. Sóbester, and A. J. Keane. “Exploring and Exploiting
a Surrogate”. In: Engineering Design via Surrogate Modelling. John Wiley
and Sons, Ltd, 2008. Chap. 3, pp. 77–107. isbn: 9780470770801. doi: https:
//doi.org/10.1002/9780470770801.ch3.

[FSK08d] A. I. J. Forrester, A. Sóbester, and A. J. Keane. “Sampling Plans”. In: En-
gineering Design via Surrogate Modelling. John Wiley and Sons, Ltd, 2008.
Chap. 1, pp. 1–31. isbn: 9780470770801. doi: https://doi.org/10.1002/
9780470770801.ch1.

[FVW99] A. Fink, S. Voß, and D. L. Woodruff. “Building Reusable Software Com-
ponents for Heuristic Search”. In: Operations Research Proceedings 1998.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 210–219. isbn: 978-
3-642-58409-1.

[Gal16] Y. Gal. “Uncertainty in Deep Learning”. PhD thesis. University of Cam-
bridge, 2016.

[Gar+18] J. R. Gardner et al. “GPyTorch: Blackbox Matrix-Matrix Gaussian Pro-
cess Inference with GPU Acceleration”. In: Advances in Neural Information
Processing Systems. 2018.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[GFL08] B. Glaz, P. P. Friedmann, and L. Liu. “Surrogate based optimization of
helicopter rotor blades for vibration reduction in forward flight”. In: Struc-
tural and Multidisciplinary Optimization 35.4 (Apr. 2008), pp. 341–363. issn:
1615-1488. doi: 10.1007/s00158-007-0137-z.

[GH18] D. Greenfeld and E. Holscher. The RestructuredText Book Documentation.
2018. url: https://sphinx-tutorial.readthedocs.io/_/downloads/
en/latest/pdf/.

[Gha20] M. Ghasemi. SKSurrogate: suite of tools to surrogate optimization for ex-
pensive functions based on Scikit-learn. https://sksurrogate.readthedocs.io.
2020.

https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1007/3-540-45712-7_35
https://doi.org/10.1007/s10898-014-0210-2
https://doi.org/10.1007/s10898-014-0210-2
https://doi.org/https://doi.org/10.1002/9780470770801.ch2
https://doi.org/https://doi.org/10.1002/9780470770801.ch2
https://doi.org/https://doi.org/10.1002/9780470770801
https://doi.org/https://doi.org/10.1002/9780470770801.ch3
https://doi.org/https://doi.org/10.1002/9780470770801.ch3
https://doi.org/https://doi.org/10.1002/9780470770801.ch1
https://doi.org/https://doi.org/10.1002/9780470770801.ch1
https://doi.org/10.1007/s00158-007-0137-z
https://sphinx-tutorial.readthedocs.io/_/downloads/en/latest/pdf/
https://sphinx-tutorial.readthedocs.io/_/downloads/en/latest/pdf/

V

[GKW17] C. Grobler, S. Kok, and D. N. Wilke. “Simple intuitive multi-objective paral-
lelization of efficient global optimization: simple-ego”. In: World Congress of
Structural and Multidisciplinary Optimisation. Springer. 2017, pp. 205–220.

[Gla+09] B. Glaz et al. “Multiple-Surrogate Approach to Helicopter Rotor Blade Vi-
bration Reduction”. In: AIAA Journal 47.1 (2009), pp. 271–282. url: https:
//doi.org/10.2514/1.40291.

[GLS99] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Program-
ming with the Message-passing Interface. Scientific and engineering computa-
tion. MIT Press, 1999. isbn: 9780262571326. url: https://books.google.
be/books?id=xpBZ0RyRb-oC.

[Gmy+20] J. Gmys et al. “A comparative study of high-productivity high-performance
programming languages for parallel metaheuristics”. In: Swarm Evol. Com-
put. 57 (2020), p. 100720. doi: 10.1016/j.swevo.2020.100720.

[Goe+07] T. Goel et al. “Response surface approximation of Pareto optimal front in
multi-objective optimization”. In: Computer Methods in Applied Mechanics
and Engineering 196.4 (2007), pp. 879–893. issn: 0045-7825. doi: https:
//doi.org/10.1016/j.cma.2006.07.010.

[Gon+06] L. Gonzalez et al. “A generic framework for the design optimisation of multi-
disciplinary UAV intelligent systems using evolutionary computing”. In: Pro-
ceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (2006),
pp. 1–19.

[Gra11] A. Graves. “Practical Variational Inference for Neural Networks”. In: Ad-
vances in Neural Information Processing Systems 24. Curran Associates,
Inc., 2011, pp. 2348–2356. url: http://papers.nips.cc/paper/4329-
practical-variational-inference-for-neural-networks.pdf.

[GRC10] D. Ginsbourger, R. Le Riche, and L. Carraro. “Kriging is well-suited to par-
allelize optimization”. In: Computational Intelligence in Expensive Optimiza-
tion Problems. Springer series in Evolutionary Learning and Optimization.
springer, 2010, pp. 131–162. doi: 10.1007/978-3-642-10701-6_6.

[GV05] A. Gaspar-Cunha and A. Vieira. “A Multi-Objective Evolutionary Algorithm
Using Neural Networks to Approximate Fitness Evaluations.” In: Interna-
tional Journal of Computers, Systems and Signals 6 (Jan. 2005), pp. 18–
36.

[Ha20] C. R. Harris and al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[Han+10] N. Hansen et al. Real-parameter black-box optimization benchmarking 2009:
Noiseless functions definitions. Tech. rep. 2010.

[Han+21] S. Han et al. “Time-varying optimization of COVID-19 vaccine prioritization
in the context of limited vaccination capacity”. In: Nature communications
12.1 (Aug. 2021), p. 4673. issn: 2041-1723. doi: 10.1038/s41467- 021-
24872-5.

[Her+17] J. M. Hernández-Lobato et al. Parallel and Distributed Thompson Sam-
pling for Large-scale Accelerated Exploration of Chemical Space. 2017. arXiv:
1706.01825.

[Het89] H. W. Hethcote. “Three Basic Epidemiological Models”. In: Applied Mathe-
matical Ecology. Biomathematics, vol 18. Springer, Berlin, Heidelberg, 1989.
isbn: 978-3-642-64789-5. doi: https://doi.org/10.1007/978-3-642-
61317-3_5.

https://doi.org/10.2514/1.40291
https://doi.org/10.2514/1.40291
https://books.google.be/books?id=xpBZ0RyRb-oC
https://books.google.be/books?id=xpBZ0RyRb-oC
https://doi.org/10.1016/j.swevo.2020.100720
https://doi.org/https://doi.org/10.1016/j.cma.2006.07.010
https://doi.org/https://doi.org/10.1016/j.cma.2006.07.010
http://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf
http://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf
https://doi.org/10.1007/978-3-642-10701-6_6
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41467-021-24872-5
https://doi.org/10.1038/s41467-021-24872-5
https://arxiv.org/abs/1706.01825
https://doi.org/https://doi.org/10.1007/978-3-642-61317-3_5
https://doi.org/https://doi.org/10.1007/978-3-642-61317-3_5

VI Bibliography

[HG14] M. D. Hoffman and A. Gelman. “The No-U-Turn Sampler: Adaptively Set-
ting Path Lengths in Hamiltonian Monte Carlo”. In: J. Mach. Learn. Res.
15.1 (Jan. 2014), pp. 1593–1623. issn: 1532-4435. doi: 10.5555/2627435.
2638586.

[HGW19] M. Hughes, M. Goerigk, and M. Wright. “A largest empty hypersphere meta-
heuristic for robust optimisation with implementation uncertainty”. In: Com-
puters and Operations Research 103 (2019), pp. 64–80. issn: 0305-0548. doi:
https://doi.org/10.1016/j.cor.2018.10.013.

[Hor+15] D. Horn et al. “Model-Based Multi-objective Optimization: Taxonomy, Multi-
Point Proposal, Toolbox and Benchmark”. In: Evolutionary Multi-Criterion
Optimization. Cham: Springer International Publishing, 2015, pp. 64–78.
isbn: 978-3-319-15934-8.

[HSR17] A. Habib, H. K. Singh, and T. Ray. “A batch infill strategy for computa-
tionally expensive optimization problems”. In: Australasian Conference on
Artificial Life and Computational Intelligence. Springer. 2017, pp. 74–85.

[HST98] H. Haario, E. Saksman, and J. Tamminen. “An Adaptive Metropolis algo-
rithm”. In: Bernoulli 7 (1998), pp. 223–242.

[Hub+06] S. Huband et al. “A review of multiobjective test problems and a scalable
test problem toolkit”. In: IEEE Transactions on Evolutionary Computation
10.5 (Oct. 2006). doi: https://doi.org/10.1109/TEVC.2005.861417,
pp. 477–506. issn: 1089-778X.

[Hun07] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[Inn+15] M. S. Innocente et al. “Particle swarm algorithm with adaptive constraint
handling and integrated surrogate model for the management of petroleum
fields”. In: Applied Soft Computing 34 (2015), pp. 463–484. issn: 1568-4946.
doi: https://doi.org/10.1016/j.asoc.2015.05.032.

[Jin05] Y. Jin. “A comprehensive survey of fitness approximation in evolutionary
computation”. In: Soft Computing 9.1 (Jan. 2005), pp. 3–12. issn: 1433-
7479. doi: 10.1007/s00500-003-0328-5.

[Jin11] Y. Jin. “Surrogate-assisted evolutionary computation: Recent advances and
future challenges”. In: Swarm and Evolutionary Computation 1.2 (2011).
doi: https://doi.org/10.1016/j.swevo.2011.05.001, pp. 61–70. issn:
2210-6502.

[Jon01] D. Jones. “A Taxonomy of Global Optimization Methods Based on Response
Surfaces”. In: J. of Global Optimization 21 (Dec. 2001), pp. 345–383. doi:
10.1023/A:1012771025575.

[JOS00] Y. Jin, M. Olhofer, and B. Sendhoff. “On Evolutionary Optimization with
Approximate Fitness Functions”. In: Proceedings of the 2Nd Annual Con-
ference on Genetic and Evolutionary Computation. GECCO’00. Las Vegas,
Nevada: Morgan Kaufmann Publishers Inc., 2000, pp. 786–793. isbn: 1-
55860-708-0. url: http://dl.acm.org/citation.cfm?id=2933718.
2933864.

[JOS01] Y. Jin, M. Olhofer, and B. Sendhoff. “Managing approximate models in
evolutionary aerodynamic design optimization”. In: Proceedings of the 2001
Congress on Evolutionary Computation (IEEE Cat. No.01TH8546). Vol. 1.
2001, 592–599 vol. 1. doi: 10.1109/CEC.2001.934445.

https://doi.org/10.5555/2627435.2638586
https://doi.org/10.5555/2627435.2638586
https://doi.org/https://doi.org/10.1016/j.cor.2018.10.013
https://doi.org/10.1109/TEVC.2005.861417
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/https://doi.org/10.1016/j.asoc.2015.05.032
https://doi.org/10.1007/s00500-003-0328-5
https://doi.org/10.1016/j.swevo.2011.05.001
https://doi.org/10.1023/A:1012771025575
http://dl.acm.org/citation.cfm?id=2933718.2933864
http://dl.acm.org/citation.cfm?id=2933718.2933864
https://doi.org/10.1109/CEC.2001.934445

VII

[JS04] Y. Jin and B. Sendhoff. “Reducing Fitness Evaluations Using Clustering
Techniques and Neural Network Ensembles”. In: June 2004, pp. 688–699.
isbn: 978-3-540-22344-3. doi: 10.1007/978-3-540-24854-5_71.

[JSW98] D. R. Jones, M. Schonlau, and W. J. Welch. “Efficient Global Optimization
of Expensive Black-Box Functions”. In: Journal of Global Optimization 13.4
(Dec. 1998), pp. 455–492. issn: 1573-2916. doi: 10.1023/A:1008306431147.

[Ker+15] P. Kerschke et al. “Detecting Funnel Structures by Means of Exploratory
Landscape Analysis”. In: Proceedings of the 2015 Annual Conference on Ge-
netic and Evolutionary Computation. GECCO ’15. Madrid, Spain: Associ-
ation for Computing Machinery, 2015, pp. 265–272. isbn: 9781450334723.
doi: 10.1145/2739480.2754642.

[KT19] P. Kerschke and H. Trautmann. “Comprehensive Feature-Based Landscape
Analysis of Continuous and Constrained Optimization Problems Using the
R-Package Flacco”. In: Applications in Statistical Computing: From Music
Data Analysis to Industrial Quality Improvement. Cham: Springer Interna-
tional Publishing, 2019, pp. 93–123. isbn: 978-3-030-25147-5. doi: 10.1007/
978-3-030-25147-5_7.

[Kus63] H. J. Kushner. “A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise”. Undetermined. In: Joint Automatic
Control Conference 1 (1963), pp. 69–79. doi: 10.1109/JACC.1963.4168566.

[LC14] Y. Liu and M. Collette. “Improving surrogate-assisted variable fidelity multi-
objective optimization using a clustering algorithm”. In: Applied Soft Com-
puting 24 (2014), pp. 482–493. issn: 1568-4946. doi: https://doi.org/10.
1016/j.asoc.2014.07.022.

[LHS12] J. Liu, Z. H. Han, and W. Song. “Comparison of infill sampling criteria in
Kriging-based aerodynamic optimization”. In: 28th Congress of the Interna-
tional Council of the Aeronautical Sciences 2012, ICAS 2012 2 (Jan. 2012),
pp. 1625–1634.

[Li+10] C. Li et al. “A modified global optimization method based on surrogate model
and its application in packing profile optimization of injection molding pro-
cess”. In: The International Journal of Advanced Manufacturing Technology
48.5 (May 2010), pp. 505–511. issn: 1433-3015. doi: 10.1007/s00170-009-
2302-6.

[Lin+18] X. Lin et al. “A Batched Scalable Multi-Objective Bayesian Optimization
Algorithm”. Nov. 2018.

[Liu+17] J. Liu et al. “Efficient aerodynamic shape optimization of transonic wings
using a parallel infilling strategy and surrogate models”. In: Structural and
Multidisciplinary Optimization 55 (Mar. 2017). doi: 10.1007/s00158-016-
1546-7.

[LL05] Y. Lian and M. S. Liou. “Multi-objective optimization of transonic com-
pressor blade using evolutionary algorithm”. In: Journal of Propulsion and
Power, vol. 21, no. 6 (2005), pp. 979–987.

[LPS15] S. K. Lam, A. Pitrou, and S. Seibert. “Numba: A llvm-based python jit
compiler”. In: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC. 2015, pp. 1–6.

https://doi.org/10.1007/978-3-540-24854-5_71
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1145/2739480.2754642
https://doi.org/10.1007/978-3-030-25147-5_7
https://doi.org/10.1007/978-3-030-25147-5_7
https://doi.org/10.1109/JACC.1963.4168566
https://doi.org/https://doi.org/10.1016/j.asoc.2014.07.022
https://doi.org/https://doi.org/10.1016/j.asoc.2014.07.022
https://doi.org/10.1007/s00170-009-2302-6
https://doi.org/10.1007/s00170-009-2302-6
https://doi.org/10.1007/s00158-016-1546-7
https://doi.org/10.1007/s00158-016-1546-7

VIII Bibliography

[LQS13] J. J. Liang, B. Y. Qu, and P. N. Suganthan. Problem Definitions and Eval-
uation Criteria for the CEC 2014 Special Session and Competition on Sin-
gle Objective Real-Parameter Numerical Optimization. Tech. rep. Computa-
tional Intelligence Laboratory Zhengzhou University and Nanyang Techno-
logical University, 2013.

[LSS10] I. Loshchilov, M. Schoenauer, and M. Sebag. “A Mono Surrogate for Mul-
tiobjective Optimization”. In: Genetic and Evolutionary Computation Con-
ference 2010 (GECCO-2010) (July 2010). doi: 10.1145/1830483.1830571.

[LW06] M. Lunacek and D. Whitley. “The Dispersion Metric and the CMA Evolu-
tion Strategy”. In: Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation. GECCO ’06. Seattle, Washington, USA: Associ-
ation for Computing Machinery, 2006, pp. 477–484. isbn: 1595931864. doi:
10.1145/1143997.1144085.

[LYC21] Y. Lou, S. Y. Yuen, and G. Chen. “Non-revisiting stochastic search revisited:
Results, perspectives, and future directions”. In: Swarm and Evolutionary
Computation 61 (2021), p. 100828. issn: 2210-6502. doi: https://doi.org/
10.1016/j.swevo.2020.100828.

[Lyu+18] W. Lyu et al. “Batch Bayesian Optimization via Multi-objective Acquisi-
tion Ensemble for Automated Analog Circuit Design”. In: Proceedings of
the 35th International Conference on Machine Learning. Vol. 80. Proceed-
ings of Machine Learning Research. PMLR, July 2018, pp. 3306–3314. url:
http://proceedings.mlr.press/v80/lyu18a.html.

[Mal21] K. M. Malan. “A Survey of Advances in Landscape Analysis for Optimisa-
tion”. In: Algorithms 14.2 (Jan. 2021), p. 40. issn: 1999-4893. doi: 10.3390/
a14020040.

[Mat+21a] L. Matrajt et al. “Optimizing vaccine allocation for COVID-19 vaccines: po-
tential role of single-dose vaccination”. In: Nature Communications 12.3449
(2021). doi: https://doi.org/10.1038/s41467-021-23761-1.

[Mat+21b] L. Matrajt et al. “Vaccine optimization for COVID-19: Who to vaccinate
first?” In: Science Advances 7.6 (2021), eabf1374. doi: 10.1126/sciadv.
abf1374.

[MC10] S. Zapotecas Mart́ınez and C. A. Coello Coello. “[ACM Press the 12th annual
conference - Portland, Oregon, USA (2010.07.07-2010.07.11)] Proceedings
of the 12th annual conference on Genetic and evolutionary computation -
GECCO ’10 - A multi-objective meta-model assisted memetic algorithm with
non gradient-based local search”. In: 2010. isbn: 9781450300728. doi: 10.
1145/1830483.1830581.

[McB+21] E. S. McBryde et al. “Modelling direct and herd protection effects of vac-
cination against the SARS-CoV-2 Delta variant in Australia”. In: Medical
Journal of Australia 215.9 (2021), pp. 427–432. doi: https://doi.org/10.
5694/mja2.51263.

[Med22] Medicalxpress.Weaker virus? Herd immunity? Omicron sparks cautious hopes.
https://medicalxpress.com/news/2022- 01- weaker- virus- herd-

immunity-omicron.html. 2022.

[Mel05] N. Melab. “Contributions à la résolution de problèmes d’optimisation com-
binatoire sur grilles de calcul”. https://pepite.univ-lille.fr/ori-oai-
search/notice/view/univ-lille-16397?resultBackUrl=. Habilitation à
diriger des recherches. Université de Lille, Nov. 2005.

https://doi.org/10.1145/1830483.1830571
https://doi.org/10.1145/1143997.1144085
https://doi.org/https://doi.org/10.1016/j.swevo.2020.100828
https://doi.org/https://doi.org/10.1016/j.swevo.2020.100828
http://proceedings.mlr.press/v80/lyu18a.html
https://doi.org/10.3390/a14020040
https://doi.org/10.3390/a14020040
https://doi.org/https://doi.org/10.1038/s41467-021-23761-1
https://doi.org/10.1126/sciadv.abf1374
https://doi.org/10.1126/sciadv.abf1374
https://doi.org/10.1145/1830483.1830581
https://doi.org/10.1145/1830483.1830581
https://doi.org/https://doi.org/10.5694/mja2.51263
https://doi.org/https://doi.org/10.5694/mja2.51263
https://medicalxpress.com/news/2022-01-weaker-virus-herd-immunity-omicron.html
https://medicalxpress.com/news/2022-01-weaker-virus-herd-immunity-omicron.html
https://pepite.univ-lille.fr/ori-oai-search/notice/view/univ-lille-16397?resultBackUrl=
https://pepite.univ-lille.fr/ori-oai-search/notice/view/univ-lille-16397?resultBackUrl=

IX

[Mer+11] O. Mersmann et al. “Exploratory Landscape Analysis”. In: Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation. GECCO
’11. Dublin, Ireland: Association for Computing Machinery, 2011, pp. 829–
836. isbn: 9781450305570. doi: 10.1145/2001576.2001690.

[Met+53] N. Metropolis et al. “Equation of State Calculations by Fast Computing
Machines”. In: The Journal of Chemical Physics 21.6 (1953), pp. 1087–1092.
doi: 10.1063/1.1699114.

[MG09] J. Medlock and A. P. Galvani. “Optimizing Influenza Vaccine Distribu-
tion”. In: Science 325.5948 (2009), pp. 1705–1708. doi: 10.1126/science.
1175570.

[Mic+96] Z. Michalewicz et al. “Evolutionary algorithms for constrained engineering
problems”. In: Computers and Industrial Engineering 30.4 (1996), pp. 851–
870. issn: 0360-8352. doi: https://doi.org/10.1016/0360-8352(96)
00037-X.

[Mii+21] R. Miikkulainen et al. “From Prediction to Prescription: Evolutionary Opti-
mization of Nonpharmaceutical Interventions in the COVID-19 Pandemic”.
In: IEEE Transactions on Evolutionary Computation 25.2 (2021), pp. 386–
401. doi: 10.1109/TEVC.2021.3063217.

[ML10] L. Matrajt and I. Longini. “Optimizing Vaccine Allocation at Different Points
in Time during an Epidemic”. In: PloS one 5 (Nov. 2010), e13767. doi:
10.1371/journal.pone.0013767.

[Mla+15] M. Mlakar et al. “GP-DEMO: Differential Evolution for Multiobjective Op-
timization based on Gaussian Process models”. In: European Journal of Op-
erational Research 243.2 (2015). doi: https://doi.org/10.1016/j.ejor.
2014.04.011, pp. 347–361. issn: 0377-2217.

[MM11] K. Mitra and S. Majumder. “Successive approximate model based multi-
objective optimization for an industrial straight grate iron ore induration
process using evolutionary algorithm”. In: Chemical Engineering Science 66
(Aug. 2011), pp. 3471–3481. doi: 10.1016/j.ces.2011.03.041.

[MP11] J. Muller and R. Piché. “Mixture surrogate models based on Dempster-
Shafer theory for global optimization problems”. In: J. Global Optimization
51 (Sept. 2011), pp. 79–104. doi: 10.1007/s10898-010-9620-y.

[MS14] J. Müller and C.A. Shoemaker. “Influence of ensemble surrogate models and
sampling strategy on the solution quality of algorithms for computationally
expensive black-box global optimization problems”. In: Journal of Global
Optimization 60.2 (Oct. 2014). doi: https://doi.org/10.1007/s10898-
014-0184-0, pp. 123–144. issn: 1573-2916.

[MT22] V. R. Montplaisir and C. Tribes. NOMAD = Nonlinear Optimization by
Mesh Adaptive Direct Search. https://github.com/bbopt/nomad. 2022.

[NDS97] C. Norton, V. Decyk, and B. Szymanski. “High Performance Object-Oriented
Scientific Programming in Fortran 90”. In: Jan. 1997.

[Nea96] R. M. Neal. Bayesian Learning for Neural Networks. Berlin, Heidelberg:
Springer-Verlag, 1996. isbn: 0387947248. doi: 10.5555/525544.

[NKS98] P. B. Nair, A. J. Keaney, and R. P. Shimpiz. “Combining Approxima-
tion Concepts with Genetic Algorithm-based Structural Optimization Pro-
cedures”. In: 1998.

https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1063/1.1699114
https://doi.org/10.1126/science.1175570
https://doi.org/10.1126/science.1175570
https://doi.org/https://doi.org/10.1016/0360-8352(96)00037-X
https://doi.org/https://doi.org/10.1016/0360-8352(96)00037-X
https://doi.org/10.1109/TEVC.2021.3063217
https://doi.org/10.1371/journal.pone.0013767
https://doi.org/10.1016/j.ejor.2014.04.011
https://doi.org/10.1016/j.ejor.2014.04.011
https://doi.org/10.1016/j.ces.2011.03.041
https://doi.org/10.1007/s10898-010-9620-y
https://doi.org/10.1007/s10898-014-0184-0
https://doi.org/10.1007/s10898-014-0184-0
https://doi.org/10.5555/525544

X Bibliography

[ODM17] J. O’Neill, S. Delany, and B. MacNamee. “Model-Free and Model-Based
Active Learning for Regression”. In: vol. 513. Jan. 2017, pp. 375–386. isbn:
978-3-319-46561-6. doi: 10.1007/978-3-319-46562-3_24.

[OJS03] T. Okabe, Y. Jin, and B. Sendhoff. “A critical survey of performance indices
for multi-objective optimisation”. In: Evolutionary Computation, 2003. CEC
’03. The 2003 Congress on. Vol. 2. doi: https://doi.org/10.1109/CEC.
2003.1299759. Dec. 2003, 878–885 Vol.2.

[ONK03] Y. Ong, P. Nair, and A. Keane. “Evolutionary Optimization of Computa-
tionally Expensive Problems via Surrogate Modeling”. In: AIAA Journal
(Apr. 2003). doi: 10.2514/2.1999.

[Pal+22] N. Kugalur Palanisamy et al. “Identification of the Parameter Values of
the Constitutive and Friction Models in Machining Using EGO Algorithm:
Application to Ti6Al4V”. In: Metals 12.6 (2022). issn: 2075-4701. doi: 10.
3390/met12060976.

[Pan21] A. Pannier. Strategic Calculation: High-Performance Computing and Quan-
tum Computing in Europe’s Quest for Technological Power. https://www.
ifri.org/sites/default/files/atoms/files/pannier_strategic_

calculation_2021.pdf. Études de l’Ifri. Oct. 2021.

[PCJ17] K. Prem, A. R. Cook, and M. Jit. “Projecting social contact matrices in 152
countries using contact surveys and demographic data”. In: PLOS Compu-
tational Biology 13.9 (Sept. 2017), pp. 1–21. doi: 10.1371/journal.pcbi.
1005697.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[Pol+00] C. Poloni et al. “Hybridization of a multi-objective genetic algorithm, a neu-
ral network and a classical optimizer for a complex design problem in fluid
dynamics”. In: Computer Methods in Applied Mechanics and Engineering
186.2 (2000). doi: https://doi.org/10.1016/S0045-7825(99)00394-1,
pp. 403–420. issn: 0045-7825.

[PPJ19] D. Phan, N. Pradhan, and M. Jankowiak. “Composable Effects for Flexible
and Accelerated Probabilistic Programming in NumPyro”. In: arXiv preprint
arXiv:1912.11554 (2019).

[PR15] C. Paulson and G. Ragkousis. pyKriging: A Python Kriging Toolkit. Ver-
sion v0.1.0-alpha. July 2015. doi: 10.5281/zenodo.21389.

[Ras06] C. E. Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.

[Reh+18] F. Rehback et al. “Comparison of Parallel Surrogate-Assisted Optimization
Approaches”. In: Proceedings of the Genetic and Evolutionary Computation
Conference. GECCO ’18. Kyoto, Japan: Association for Computing Machin-
ery, 2018, pp. 1348–1355. isbn: 9781450356183. doi: 10.1145/3205455.
3205587.

[Reh+20] F. Rehbach et al. “Expected Improvement versus Predicted Value in Surrogate-
Based Optimization”. In: Proceedings of the 2020 Genetic and Evolution-
ary Computation Conference. GECCO ’20. Cancún, Mexico: Association
for Computing Machinery, 2020, pp. 868–876. isbn: 9781450371285. doi:
10.1145/3377930.3389816.

[RH00] K. Rasheed and H. Hirsh. “Informed operators: Speeding up genetic-algorithm-
based design optimization using reduced models”. In: (May 2000).

https://doi.org/10.1007/978-3-319-46562-3_24
https://doi.org/10.1109/CEC.2003.1299759
https://doi.org/10.1109/CEC.2003.1299759
https://doi.org/10.2514/2.1999
https://doi.org/10.3390/met12060976
https://doi.org/10.3390/met12060976
https://www.ifri.org/sites/default/files/atoms/files/pannier_strategic_calculation_2021.pdf
https://www.ifri.org/sites/default/files/atoms/files/pannier_strategic_calculation_2021.pdf
https://www.ifri.org/sites/default/files/atoms/files/pannier_strategic_calculation_2021.pdf
https://doi.org/10.1371/journal.pcbi.1005697
https://doi.org/10.1371/journal.pcbi.1005697
https://doi.org/10.1016/S0045-7825(99)00394-1
https://doi.org/10.5281/zenodo.21389
https://doi.org/10.1145/3205455.3205587
https://doi.org/10.1145/3205455.3205587
https://doi.org/10.1145/3377930.3389816

XI

[Ric+16] J. Richter et al. “Faster Model-Based Optimization Through Resource-Aware
Scheduling Strategies”. In: vol. 10079. May 2016, pp. 267–273. isbn: 978-3-
319-50348-6. doi: 10.1007/978-3-319-50349-3_22.

[RK17] S. Ratnoo and D. Kamboj. “A non-revisiting Genetic Algorithm with adap-
tive mutation for Function Optimization”. In: International Journal of Ad-
vanced Research in Computer Science 2.6 (2017), pp. 504–507. issn: 0976-
5697. doi: 10.26483/ijarcs.v2i6.933. url: http://ijarcs.info/index.
php/Ijarcs/article/view/933.

[Ron98] S. Ronald. “Duplicate genotypes in a genetic algorithm”. In: 1998 IEEE
International Conference on Evolutionary Computation Proceedings. IEEE
World Congress on Computational Intelligence (Cat. No.98TH8360). 1998,
pp. 793–798. doi: 10.1109/ICEC.1998.700153.

[Ros+13] A. Rosales-Pérez et al. “A hybrid surrogate-based approach for evolution-
ary multi-objective optimization”. In: 2013 IEEE Congress on Evolutionary
Computation. June 2013, pp. 2548–2555. doi: 10.1109/CEC.2013.6557876.

[RS05] R. G. Regis and C. A. Shoemaker. “Constrained Global Optimization of
Expensive Black Box Functions Using Radial Basis Functions”. In: Journal
of Global Optimization 31.1 (Jan. 2005), pp. 153–171. issn: 1573-2916. doi:
10.1007/s10898-004-0570-0.

[RS07] R. Regis and C. Shoemaker. “A Stochastic Radial Basis Function Method
for the Global Optimization of Expensive Functions”. In: INFORMS Journal
on Computing 19 (Nov. 2007), pp. 497–509. doi: 10.1287/ijoc.1060.0182.

[Rua+20] X. Ruan et al. “Surrogate Assisted Evolutionary Algorithm for Medium
Scale Multi-Objective Optimisation Problems”. In: Proceedings of the 2020
Genetic and Evolutionary Computation Conference. GECCO ’20. Cancún,
Mexico: Association for Computing Machinery, 2020, pp. 560–568. isbn:
9781450371285. doi: 10.1145/3377930.3390191.

[Rud16] S. Ruder. “An overview of gradient descent optimization algorithms”. In:
CoRR abs/1609.04747 (2016). arXiv: 1609.04747. url: http://arxiv.
org/abs/1609.04747.

[RV20] S. Rojas-Gonzalez and I. Van Nieuwenhuyse. “A survey on kriging-based
infill algorithms for multiobjective simulation optimization”. In: Computers
and Operations Research 116 (2020), p. 104869. issn: 0305-0548. doi: https:
//doi.org/10.1016/j.cor.2019.104869.

[RXX11] D. Rouson, J. Xia, and X. Xu. Scientific Software Design: The Object-
Oriented Way. Cambridge University Press, 2011. isbn: 9781139498784. url:
https://books.google.fr/books?id=xedE5KkHVn4C.

[SC04] J. J. Alonso S. Choi and H. S. Chung. “Design of a low-boom supersonic busi-
ness jet using evolutionary algorithms and an adaptive unstructured mesh
method”. In: Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference (Apr. 2004), pp. 2692–
2706.

[Scu10] D. Sculley. “Web-Scale k-Means Clustering”. In: Proceedings of the 19th In-
ternational Conference on World Wide Web. WWW ’10. Raleigh, North
Carolina, USA: Association for Computing Machinery, 2010, pp. 1177–1178.
isbn: 9781605587998. doi: 10.1145/1772690.1772862.

https://doi.org/10.1007/978-3-319-50349-3_22
https://doi.org/10.26483/ijarcs.v2i6.933
http://ijarcs.info/index.php/Ijarcs/article/view/933
http://ijarcs.info/index.php/Ijarcs/article/view/933
https://doi.org/10.1109/ICEC.1998.700153
https://doi.org/10.1109/CEC.2013.6557876
https://doi.org/10.1007/s10898-004-0570-0
https://doi.org/10.1287/ijoc.1060.0182
https://doi.org/10.1145/3377930.3390191
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://doi.org/https://doi.org/10.1016/j.cor.2019.104869
https://doi.org/https://doi.org/10.1016/j.cor.2019.104869
https://books.google.fr/books?id=xedE5KkHVn4C
https://doi.org/10.1145/1772690.1772862

XII Bibliography

[SLA12] J. Snoek, H. Larochelle, and R. P. Adams. “Practical Bayesian Optimization
of Machine Learning Algorithms”. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 2. NIPS’12.
Lake Tahoe, Nevada: Curran Associates Inc., 2012, pp. 2951–2959.

[SLK04] A. Sobester, S. J. Leary, and A. Keane. “A parallel updating scheme for ap-
proximating and optimizing high fidelity computer simulations”. In: Struc-
tural and Multidisciplinary Optimization 27 (Jan. 2004), pp. 371–383. doi:
10.1007/s00158-004-0397-9.

[SMD22] M. Sheel, S. McEwen, and S. E. Davies. “Brand inequity in access to COVID-
19 vaccines”. In: The Lancet Regional Health - Western Pacific 18 (2022),
p. 100366. issn: 2666-6065. doi: https://doi.org/10.1016/j.lanwpc.
2021.100366.

[SMS19] R. El Shawi, M. Maher, and S. Sakr. “Automated Machine Learning: State-
of-The-Art and Open Challenges”. In: CoRR abs/1906.02287 (2019). arXiv:
1906.02287. url: http://arxiv.org/abs/1906.02287.

[Sno+15] J. Snoek et al. “Scalable Bayesian Optimization Using Deep Neural Net-
works”. In: Statistics (Feb. 2015).

[SR10] L. Shi and K. Rasheed. “A Survey of Fitness Approximation Methods Ap-
plied in Evolutionary Algorithms”. In: Computational Intelligence in Expen-
sive Optimization Problems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 3–28. isbn: 978-3-642-10701-6. doi: 10.1007/978-3-642-10701-
6_1.

[Sri+14] N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15 (2014),
pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html.

[Ste99] M.L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer
Series in Statistics. Springer New York, 1999. isbn: 9780387986296. url:
https://books.google.be/books?id=5n%5C_XuL2Wx1EC.

[Syb+08] A. Syberfeldt et al. “A parallel surrogate-assisted multi-objective evolution-
ary algorithm for computationally expensive optimization problems”. In:
2008 IEEE Congress on Evolutionary Computation (IEEE World Congress
on Computational Intelligence). doi: https://doi.org/10.1109/CEC.
2008.4631228. June 2008, pp. 3177–3184.

[Tal09] E. G. Talbi. Metaheuristics: From Design to Implementation. Wiley Series
on Parallel and Distributed Computing. Wiley, 2009. isbn: 9780470496909.
url: https://books.google.fr/books?id=SIsa6zi5XV8C.

[Tia+19] J. Tian et al. “Multiobjective Infill Criterion Driven Gaussian Process-Assisted
Particle Swarm Optimization of High-Dimensional Expensive Problems”. In:
IEEE Transactions on Evolutionary Computation 23.3 (June 2019), pp. 459–
472. issn: 1941-0026. doi: 10.1109/TEVC.2018.2869247.

[Ton+21] Hao Tong et al. “Surrogate models in evolutionary single-objective optimiza-
tion: A new taxonomy and experimental study”. In: Information Sciences
562 (2021), pp. 414–437. issn: 0020-0255. doi: https://doi.org/10.1016/
j.ins.2021.03.002.

[TOP] TOP500. TOP500 The List. url: https://www.top500.org/.

[Tra+21] J. M. Trauer et al. “Understanding how Victoria, Australia gained control
of its second COVID-19 wave”. In: Nature Communications 12.6266 (2021).
doi: https://doi.org/10.1038/s41467-021-26558-4.

https://doi.org/10.1007/s00158-004-0397-9
https://doi.org/https://doi.org/10.1016/j.lanwpc.2021.100366
https://doi.org/https://doi.org/10.1016/j.lanwpc.2021.100366
https://arxiv.org/abs/1906.02287
http://arxiv.org/abs/1906.02287
https://doi.org/10.1007/978-3-642-10701-6_1
https://doi.org/10.1007/978-3-642-10701-6_1
http://jmlr.org/papers/v15/srivastava14a.html
https://books.google.be/books?id=5n%5C_XuL2Wx1EC
https://doi.org/10.1109/CEC.2008.4631228
https://doi.org/10.1109/CEC.2008.4631228
https://books.google.fr/books?id=SIsa6zi5XV8C
https://doi.org/10.1109/TEVC.2018.2869247
https://doi.org/https://doi.org/10.1016/j.ins.2021.03.002
https://doi.org/https://doi.org/10.1016/j.ins.2021.03.002
https://www.top500.org/
https://doi.org/https://doi.org/10.1038/s41467-021-26558-4

XIII

[Va20] P. Virtanen and al. “SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.
1038/s41592-019-0686-2.

[VHW13] F. A. C. Viana, R. T. Haftka, and L. T. Watson. “Efficient global opti-
mization algorithm assisted by multiple surrogate techniques”. In: Journal
of Global Optimization 56.2 (2013), pp. 669–689.

[Vil+13] D. Villanueva et al. “Locating Multiple Candidate Designs with Dynamic
Local Surrogates”. In: (May 2013).

[Vil+22] T. N. Vilches et al. “COVID-19 hospitalizations and deaths averted under
an accelerated vaccination program in northeastern and southern regions of
the USA”. In: The Lancet Regional Health - Americas 6 (2022), p. 100147.
issn: 2667-193X. doi: https://doi.org/10.1016/j.lana.2021.100147.

[WA13] Andrew Gordon Wilson and Ryan Prescott Adams. Gaussian Process Ker-
nels for Pattern Discovery and Extrapolation. 2013. arXiv: 1302.4245.

[Wan+16] H. Wang et al. “A comparative study of expected improvement- assisted
global optimization with different surrogates”. In: Engineering Optimization
(Jan. 2016). doi: 10.1080/0305215X.2015.1115645.

[Wan+20a] J. Wang et al. “Parallel Bayesian Global Optimization of Expensive Func-
tions”. In: Operations Research 68.6 (2020), pp. 1850–1865. doi: 10.1287/
opre.2019.1966.

[Wan+20b] X. Wang et al. “An adaptive Bayesian approach to surrogate-assisted evolu-
tionary multi-objective optimization”. In: Information Sciences 519 (2020),
pp. 317–331. issn: 0020-0255. doi: https://doi.org/10.1016/j.ins.
2020.01.048.

[Wey+05] D. Weycker et al. “Population-wide benefits of routine vaccination of children
against influenza”. In: Vaccine 23.10 (2005), pp. 1284–1293. issn: 0264-410X.
doi: https://doi.org/10.1016/j.vaccine.2004.08.044.

[WJD17] H. Wang, Y. Jin, and J. Doherty. “Committee-Based Active Learning for
Surrogate-Assisted Particle Swarm Optimization of Expensive Problems”.
In: IEEE Transactions on Cybernetics 47.9 (Sept. 2017), pp. 2664–2677.
issn: 2168-2267. doi: 10.1109/TCYB.2017.2710978.

[Xia+14] W. Xia et al. “A multi-objective optimization method based on Gaussian
process simultaneous modeling for quality control in sheet metal forming”.
In: The International Journal of Advanced Manufacturing Technology 72
(2014), pp. 1333–1346.

[YC09] S. Y. Yuen and C. K. Chow. “A Genetic Algorithm That Adaptively Mutates
and Never Revisits”. In: Trans. Evol. Comp 13.2 (Apr. 2009), pp. 454–472.
issn: 1089-778X. doi: 10.1109/TEVC.2008.2003008.

[Zho+07] Z. Zhou et al. “Memetic algorithm using multi-surrogates for computation-
ally expensive optimization problems”. In: Soft Comput. 11 (Aug. 2007),
pp. 957–971. doi: 10.1007/s00500-006-0145-8.

[ZWC14] J. Zhu, Y. Wang, and M. Collette. “A multi-objective variable-fidelity opti-
mization method for genetic algorithms”. In: Engineering Optimization 46
(Apr. 2014). doi: 10.1080/0305215X.2013.786063.

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1016/j.lana.2021.100147
https://arxiv.org/abs/1302.4245
https://doi.org/10.1080/0305215X.2015.1115645
https://doi.org/10.1287/opre.2019.1966
https://doi.org/10.1287/opre.2019.1966
https://doi.org/https://doi.org/10.1016/j.ins.2020.01.048
https://doi.org/https://doi.org/10.1016/j.ins.2020.01.048
https://doi.org/https://doi.org/10.1016/j.vaccine.2004.08.044
https://doi.org/10.1109/TCYB.2017.2710978
https://doi.org/10.1109/TEVC.2008.2003008
https://doi.org/10.1007/s00500-006-0145-8
https://doi.org/10.1080/0305215X.2013.786063

List of Figures

1.1 Example of Latin Hyper-cube Sampling of four points in two dimensions. . 10

1.2 P-SAEA with Direct Fitness Replacement and Evolution Control. 23

1.3 P-SAEA with Indirect Fitness Replacement by informed operators. 25

1.4 Parallel Surrogate-Driven Algorithm. 25

1.5 Probability of improving over the target value T (shaded area) given the
surrogate predictions. Figure extracted from [Jon01]. 26

1.6 SEEIIR compartmental model for simulating Covid-19 transmission. Figure
extracted from [Cal+20]. 32

1.7 Search landscape provided by the 2-D Schwefel function. 35

1.8 Search landscape provided by the 2-D Rastrigin function. 36

1.9 Search landscape provided by the 2-D Rosenbrock function. 36

2.1 Illustration of Monte-Carlo sampling of nsub = 3 sub-networks from a one-
hidden-layer ANN. In this example, the decision vector x is 2-dimensional
and f̂i(x) is the POV according to sub-network i. 40

2.2 SaaEF framework. The ellipses represent the sets of candidate solutions
along with their objective values or not, while the rectangles stand for the
operators. 43

3.1 Best P-SDAs applied to the Schwefel problem. Convergence profile in
terms of best objective values averaged over the 10 runs of the experiment. 77

3.2 Best P-SDAs applied to the Schwefel problem. Convergence profile in
terms of best objective values averaged over the 10 runs of the experiment.
RTS: reduced training set. CTS: complete training set. 80

4.1 P-SAEAs versus P-SDAs application to the Schwefel problem. Con-
vergence profile in terms of best objective values averaged over the 10 runs
of the experiment. 88

4.2 Hybrid strategies on the Covid-19 contact reduction problem. Dis-
tribution of the best objective values from the 10 runs of the experiment.
Averaged values are depicted by red squares, median values by red dashes
and variance information is given by the length of the boxes. 93

4.3 Parallel Hybrid methods applied to the Covid-19 contact reduction
problem. Convergence profile in terms of best objective values averaged
over the 10 runs of the experiment. 95

4.4 Parallel scalability (q = ncores). Convergence profile in terms of best
objective values averaged over the 10 runs of the experiment for different
numbers of available computing cores. The number of simulations per cycle
q is fixed to ncores for all the approaches. The horizontal axis represents the
number of simulations and the vertical axis represents the averaged best
objective. 99

XV

XVI List of Figures

5.1 Global UML diagram of pySBO (classes only). 110

5.2 UML diagram of the Reference Vector Set class in pySBO. 116

5.3 Illustration of the custom cross-over operator distrib-X for the Covid-19
vaccine distribution problem. Parents x and y father the offspring z. For
the sake of simplicity, only the decision variables related to phase 2 are
displayed and only the first child z is shown. 117

5.4 Best NDFs from the 10 runs for SAEA-ME with matern1.5 kernel on the
Covid-19 vaccine distribution problem. 121

5.5 MO optimization of Covid-19 vaccine distribution. Averaged hyper-
volume according to the number of simulations. 123

5.6 vaccine distribution according to age-categories. Averaged solutions
from the best final NDFs returned by the 10 runs for SAEA-ME with
matern1.5 kernel. 124

5.7 Total number of deaths and maximum number of occupied hospital beds
according to relaxation of the physical distancing x17. Best NDFs from the
10 runs for SAEA-ME with matern1.5 kernel. 124

B.1 Illustration of par-tian-fs. The orange line represents the first NDF and the
green line represents the last NDF. XXIX

B.2 Calibration of parallel EA. Distribution of the best objective values from
the 10 repetitions of the experiments on the Schwefel problem. Average
values are depicted by red squares, median values by red dashes and variance
information is given by the length of the boxes. XXXI

B.3 Calibration of parallel EA. Distribution of the best objective values from
the 10 repetitions of the experiments on the Rastrigin problem. Average
values are depicted by red squares, median values by red dashes and variance
information is given by the length of the boxes. XXXVI

B.4 Calibration of parallel EA. Distribution of the best objective values
from the 10 repetitions of the experiments on the Rosenbrock problem.
Average values are depicted by red squares, median values by red dashes
and variance information is given by the length of the boxes. XXXVII

B.5 P-SAEAs with SaaEF and BNN MCD 5 on the Schwefel problem.
Distribution of the best objective values from the 10 repetitions of the
experiment. Averaged values are depicted by red squares, median values by
red dashes and variance information is given by the length of the boxes. . . XLV

B.6 P-SAEAs with SaaEF and GP RBF on the Rastrigin problem. Dis-
tribution of the best objective values from the 10 repetitions of the exper-
iment. Averaged values are depicted by red squares, median values by red
dashes and variance information is given by the length of the boxes. XLVI

B.7 P-SAEAs with SaaEF and GP RBF on the Rosenbrock problem.
Distribution of the best objective values from the 10 repetitions of the
experiment. Averaged values are depicted by red squares, median values by
red dashes and variance information is given by the length of the boxes. . . XLVII

B.8 P-SAEAs with SaaEF and BNN MCD 5 on the Covid-19 contact
reduction problem. Distribution of the best objective values from the 10
repetitions of the experiment. Averaged values are depicted by red squares,
median values by red dashes and variance information is given by the length
of the boxes. XLVIII

XVII

C.1 Illustration of the crowding distance in a bi-objective space o = (o(1), o(2)).
The crowding distance of x(2) is the average side length of the rectangle
drawn with dashed lines. The crowding distance of extreme solutions x(1)

and x(2) is infinite. L

C.2 Illustration of the hyper-volume for a reference point O′ and a NDS made
of candidates x(1), x(2) and x(3). The hyper-volume is the surface of the
shaded area in the bi-objective space o = (o(1), o(2)). The hatched area
represents the contribution of x(2) to the hyper-volume. L

D.1 Calibration of EA with EC-based selection and replacement in
q-EGO. Distribution of the best objective values from the 10 repetitions of
the experiments on the Schwefel problem. Average values are depicted by
red squares, median values by red dashes and variance information is given
by the length of the boxes. LV

D.2 Calibration of EA with EC-based selection and replacement in
q-EGO. Distribution of the best objective values from the 10 repetitions of
the experiments on the Rosenbrock problem. Average values are depicted
by red squares, median values by red dashes and variance information is
given by the length of the boxes. LVI

D.3 Calibration of EA with EC-based selection and replacement in q-
subnets. Distribution of the best objective values from the 10 repetitions
of the experiments on the Schwefel problem. Average values are depicted
by red squares, median values by red dashes and variance information is
given by the length of the boxes. LVII

D.4 Calibration of EA with EC-based selection and replacement in q-
subnets. Distribution of the best objective values from the 10 repetitions of
the experiments on the Rosenbrock problem. Average values are depicted
by red squares, median values by red dashes and variance information is
given by the length of the boxes. LVIII

D.5 Calibration of EA with EC-based selection and replacement in
q-Pareto. Distribution of the best objective values from the 10 repetitions
of the experiments on the Schwefel problem. Average values are depicted
by red squares, median values by red dashes and variance information is
given by the length of the boxes. LIX

D.6 Calibration of EA with EC-based selection and replacement in q-
Pareto. Distribution of the best objective values from the 10 repetitions of
the experiments on the Rosenbrock problem. Average values are depicted
by red squares, median values by red dashes and variance information is
given by the length of the boxes. LX

D.7 Calibration of EA with EC-based selection and replacement in
q-post-HMC with GP HMC. Distribution of the best objective values
from the 10 repetitions of the experiments on the Schwefel problem. Av-
erage values are depicted by red squares, median values by red dashes and
variance information is given by the length of the boxes. LXI

D.8 Calibration of EA with EC-based selection and replacement in
q-post-HMC with GP HMC. Distribution of the best objective values
from the 10 repetitions of the experiments on the Rosenbrock problem.
Average values are depicted by red squares, median values by red dashes
and variance information is given by the length of the boxes. LXII

XVIII List of Figures

D.9 Calibration of EA with EC-based selection and replacement in
q-post-HMC with BNN HMC. Distribution of the best objective val-
ues from the 10 repetitions of the experiments on the Schwefel problem.
Average values are depicted by red squares, median values by red dashes
and variance information is given by the length of the boxes. LXIII

D.10 Calibration of EA with EC-based selection and replacement in q-
post-HMC with BNN HMC. Distribution of the best objective values
from the 10 repetitions of the experiments on the Rosenbrock problem.
Average values are depicted by red squares, median values by red dashes
and variance information is given by the length of the boxes. LXIV

D.11 Some P-SDAs on the Schwefel problem. The BNN MCD surrogate is
used in q-Pareto, GP RBF in cl-mean and GP HMC in q-post-HMC. Distri-
bution of the best objective values from the 10 repetitions of the experiment.
Averaged values are depicted by red squares, median values by red dashes
and variance information is given by the length of the boxes. LXIX

D.12 Some P-SDAs on the Rastrigin problem. The rKRG surrogate is used
in q-Pareto, GP RBF in cl-mean and GP HMC in q-post-HMC. Distribu-
tion of the best objective values from the 10 repetitions of the experiment.
Averaged values are depicted by red squares, median values by red dashes
and variance information is given by the length of the boxes. LXX

D.13 Some P-SDAs on the Rosenbrock problem. The GP RBF surrogate is
used in sb, rKRG in q-Pareto and GP HMC in q-post-HMC. Distribution
of the best objective values from the 10 repetitions of the experiment. Av-
eraged values are depicted by red squares, median values by red dashes and
variance information is given by the length of the boxes. LXXI

D.14 Some P-SDAs on the Covid-19 contact reduction problem. The
GP RBF surrogate is used in cl-mean and q-Pareto and GP HMC is used
in q-post-HMC. Distribution of the best objective values from the 10 rep-
etitions of the experiment. Averaged values are depicted by red squares,
median values by red dashes and variance information is given by the length
of the boxes. LXXII

D.15 Best P-SDAs applied to the Rastrigin problem. Convergence profile
in terms of best objective values averaged over the 10 repetitions of the
experiment. LXXIII

D.16 Best P-SDAs applied to the Rosenbrock problem. Convergence profile
in terms of best objective values averaged over the 10 repetitions of the
experiment. LXXIV

D.17 Best P-SDAs applied to the Covid-19 contact reduction problem.
Convergence profile in terms of best objective values averaged over the 10
repetitions of the experiment. LXXV

D.18 Best P-SDAs applied to the Rastrigin problem. Convergence profile
in terms of best objective values averaged over the 10 repetitions of the
experiment. RTS: reduced training set. CTS: complete training set. LXXVIII

D.19 Best P-SDAs applied to the Rosenbrock problem. Convergence profile
in terms of best objective values averaged over the 10 repetitions of the
experiment. RTS: reduced training set. CTS: complete training set. LXXIX

D.20 Best P-SDAs applied to the Covid-19 problem. Convergence profile
in terms of best objective values averaged over the 10 repetitions of the
experiment. RTS: reduced training set. CTS: complete training set. LXXX

XIX

E.1 P-SAEAs versus P-SDAs application to the Rastrigin problem. Con-
vergence profile in terms of best objective values averaged over the 10 rep-
etitions of the experiment. LXXXII

E.2 P-SAEAs versus P-SDAs application to the Rosenbrock problem.
Convergence profile in terms of best objective values averaged over the 10
repetitions of the experiment. LXXXIII

E.3 P-SAEAs versus P-SDAs application to the Covid-19 contact re-
duction problem. Convergence profile in terms of best objective values
averaged over the 10 repetitions of the experiment. LXXXIV

E.4 Parallel Hybrid methods applied to the Covid-19 contact reduction
problem. Convergence profile in terms of best objective values averaged
over the 10 repetitions of the experiment. LXXXV

E.5 Parallel scalability (unaltered values for q). Convergence profile in
terms of best objective values averaged over the 10 repetitions of the exper-
iment for different numbers of available computing cores and without any
modification of the algorithms. LXXXVI

E.6 Parallel scalability (q = ncores). Distribution of the best objective val-
ues from the 10 repetitions of the experiment. The number of simulations
per cycle q is fixed to ncores for all the approaches. Averaged values are de-
picted by red squares, median values by red dashes and variance information
is given by the length of the boxes. LXXXVII

E.7 Parallel scalability (q = ncores). Distribution of the best objective val-
ues from the 10 repetitions of the experiment. The number of simulations
per cycle q is fixed to ncores for all the approaches. Averaged values are de-
picted by red squares, median values by red dashes and variance information
is given by the length of the boxes. LXXXVIII

F.1 Global UML diagram of pySBO. Available at https://pysbo.readthedocs.
io/en/latest/_downloads/28999b287a4b8574c9e66583a29410af/UML.svgXCII

F.2 Global UML diagram of the Problem collection of classes. XCIII
F.3 Global UML diagram of the Evolution collection of classes. XCIV
F.4 Global UML diagram of the Surrogate collection of classes. XCV
F.5 Global UML diagram of the Evolution Control collection of classes. XCVI

https://pysbo.readthedocs.io/en/latest/_downloads/28999b287a4b8574c9e66583a29410af/UML.svg
https://pysbo.readthedocs.io/en/latest/_downloads/28999b287a4b8574c9e66583a29410af/UML.svg

List of Tables

2.1 ECs employed in the experiments. f̂ refers to the POV, ŝ refers to the
predictive standard deviation and d2 to the distance to the database. 50

2.2 Ensembles of ECs considered in the experiments. f̂ refers to the POV, ŝ
refers to the predictive standard deviation. 51

2.3 BNN MCD hyper-parameters. 52

2.4 Surrogates comparison. Training time (TT) and validation correlation
coefficient (vR2) averaged over 10 runs for each surrogate and each bench-
mark problem. Ranks according to TT and vR2 are denoted in parentheses. 53

2.5 Calibration of the parallel EA without surrogate. 54

2.6 Calibration of SaaEF with BNN MCD. 55

2.7 Normalization effect on GP RBF training for a training set of size
72. Training time (TT) and validation correlation coefficient (vR2) averaged
over 10 runs for each benchmark problem. 56

2.8 P-SAEAs with SaaEF. Best strategies, from top to bottom, for each
surrogate model according to the best objective value averaged over 10 runs. 58

2.9 P-SAEAs with SaaEF. Average number of simulations per search and
overall average training time (in seconds) for each surrogate. Ordering
according to the average number of simulations in decreasing order from
top to bottom. 59

2.10 SaaEF versus SaaE versus SaaF. Top-5 strategies according to the
average best objective value (10 independent runs). Ordering according to
ascending value from top to bottom. BNN MCD 5 is used on the Schwefel
and Covid-19 contact reduction problems and GP RBF on the Rastrigin
and Rosenbrock benchmarks. 60

3.1 Calibration of GP HMC and BNN HMC. Ranks according to train-
ing time (TT) and validation correlation coefficient (vR2) are denoted in
parentheses. 70

3.2 Surrogates comparison. Training time (TT) and validation correlation
coefficient (vR2) averaged over 10 runs for each surrogate and each bench-
mark problem. Ranks according to TT and vR2 are denoted in parentheses. 71

3.3 Calibration of the EA with EC-based selection and replacement (q=18). . . 71

3.4 Prediction time (in seconds) when predicting 50 or 150 solutions. Average
over the three benchmarks and the 10 runs. 73

3.5 P-SDAs with q=18 applied to the benchmark problems. Average
number of simulations per search and overall average training time (in sec-
onds) for each surrogate and acquisition process. Ordering according to the
average number of simulations in decreasing order from top to bottom. . . . 74

XXI

XXII List of Tables

3.6 P-SDAs with q=18 applied to the benchmark problems. The surro-
gates are trained on the complete database of simulated candidates.
Average number of simulations per search and overall average training time
(in seconds) for each surrogate and acquisition process. Ordering according
to the average number of simulations in decreasing order from top to bottom. 78

4.1 P-SAEAs and P-SDAs applied to the Schwefel problem. Average num-
ber of simulations and average training time (TT) per search for each surro-
gate and acquisition process. Ordering according to the average number of
simulations in decreasing order from top to bottom. RTS: reduced training
set. CTS: complete training set. 84

4.2 q-EGO cl-mean applied to the Schwefel problem with GP RBF (RTS)
and q = 18. Average number of simulations per Evolution Control. Or-
dering according to the average number of simulations in decreasing order
from left to right and from top to bottom. 85

4.3 P-SAEAs versus P-SDAs. Top-5 strategies for each framework accord-
ing to the final objective value averaged over 10 runs. Ordering according
to ascending average final objective values from top to bottom. 86

4.4 Parallel Hybrid methods. Ranking of the best strategies according to
the final objective value averaged over 10 runs. Ordering according to
ascending average from top to bottom. 94

4.5 Parallel scalability (unaltered values for q). Best objective values av-
eraged over the 10 runs of the experiment for different numbers of available
computing cores and without any modification of the algorithms. 96

4.6 Parallel scalability (q = ncores). Best objective values averaged over
the 10 runs of the experiment for different numbers of available computing
cores. The number of simulations per cycle q is fixed to ncores for all the
approaches. 97

4.7 Parallel scalability (q = ncores). Average number of simulations per
search over the 10 runs of the experiment for different numbers of available
computing cores. The number of simulations per cycle q is fixed to ncores

for all the approaches. 98

4.8 Best decision vector to the Covid-19 contact reduction problem.
x represents the contact mitigation factor. 100

4.9 Dispersion metric based on a subset of 800 samples for the benchmark
and the Covid-19 contact reduction problem. The dispersion metric is com-
puted as the average distance between the best ⌊800.pDM⌋ solutions divided
by the average distance between the 800 solutions. Higher values charac-
terize a harder optimization problem with respect to multi-modality and
global structure. 101

4.10 Nearest neighbors-related metrics, as defined in (4.6), based on a sub-
set of 800 samples for the benchmark and the Covid-19 contact reduction
problems. Values closer to 1 indicate a more adequate global structure. . . 102

5.1 Representation of programming languages. Number of Github repos-
itories and number of Stackoverflow questions related to the programming
languages. 107

5.2 Ranking of the MO surrogate-based and surrogate-free approaches accord-
ing to the averaged final hyper-volumes over the 10 runs on the Covid-19
vaccine distribution problem. 122

A.1 Terminology adopted in Machine Learning and Optimization XXVII

XXIII

B.1 Calibration of BNN MCD. Best NDF according to minimization of the
validation mean squared error (VMSE) and the negative validation average
log-likelihood (NVALL) on the Schwefel problem. Ordering according to
ascending VMSE from top to bottom. The retained configuration appears
in bold. XXXII

B.2 Calibration of BNN MCD. Best NDF according to minimization of the
validation mean squared error (VMSE) and the negative validation average
log-likelihood (NVALL) on the Rastrigin problem. Ordering according to
ascending VMSE from top to bottom. XXXIII

B.3 Calibration of BNN MCD. Best NDF according to minimization of the
validation mean squared error (VMSE) and the negative validation average
log-likelihood (NVALL) on the Rosenbrock problem. Ordering accord-
ing to ascending VMSE from top to bottom. The retained configuration
appears in bold. XXXIV

B.4 Calibration of BNN MCD. BNN MCD configurations that appear in
the NDF of 2 or 3 benchmark problems. The retained configuration
appears in bold. XXXV

B.5 Calibration of parallel EA. Statistics of the distribution of the best
objective values from the 10 repetitions of the experiments on the Schwefel
problem. Ordering according to ascending average best objective value from
top to bottom. The best value for each column appears in bold. XXXV

B.6 Calibration of parallel EA. Statistics of the distribution of the best
objective values from the 10 repetitions of the experiments on theRastrigin
problem. Ordering according to ascending average best objective value from
top to bottom. The best value for each column appears in bold. XXXVIII

B.7 Calibration of parallel EA. Statistics of the distribution of the best
objective values from the 10 repetitions of the experiments on the Rosen-
brock problem. Ordering according to ascending average best objective
value from top to bottom. The best value for each column appears in bold. XXXIX

B.8 Calibration of SaaEF with BNN MCD. Statistics of the distribution of
the best objective values from the 10 repetitions of the experiments on the
Schwefel problem. Ordering according to ascending average best objective
value from top to bottom. The best value for each column appears in bold. XXXIX

B.9 Calibration of SaaEF with BNN MCD. Statistics of the distribution of
the best objective values from the 10 repetitions of the experiments on the
Rastrigin problem. Ordering according to ascending average best objective
value from top to bottom. The best value for each column appears in bold. XL

B.10 Calibration of SaaEF with BNN MCD. Statistics of the distribution
of the best objective values from the 10 repetitions of the experiments on
the Rosenbrock problem. Ordering according to ascending average best
objective value from top to bottom. The best value for each column appears
in bold. XL

B.11 P-SAEAs with SaaEF on the Schwefel problem. Top-5 ECs according
to the average, median and minimum best objective value (10 independent
repetitions). Ordering per cell according to ascending value from top to
bottom. Surrogates ordered according to decreasing performance from top
to bottom. XLI

XXIV List of Tables

B.12 P-SAEAs with SaaEF on the Rastrigin problem. Top-5 ECs according
to the average, median and minimum best objective value (10 independent
repetitions). Ordering per cell according to ascending value from top to
bottom. Surrogates ordered according to decreasing performance from top
to bottom. XLII

B.13 P-SAEAs with SaaEF on the Rosenbrock problem. Top-5 ECs accord-
ing to the average, median and minimum best objective value (10 indepen-
dent repetitions). Ordering per cell according to ascending value from top
to bottom. Surrogates ordered according to decreasing performance from
top to bottom. XLIII

B.14 P-SAEAs with SaaEF on the Covid-19 contact reduction problem.
Top-5 ECs according to the average, median and minimum best objec-
tive value (10 independent repetitions). Ordering per column according
to ascending value from top to bottom. Surrogates ordered according to
decreasing performance from top to bottom. XLIV

D.1 P-SDAs applied to the Schwefel problem. Top (surrogate,EC) pairs per
AP according to the average best objective value (10 independent repeti-
tions). Ordering per cell according to ascending value from top to bottom.
APs ordered according to decreasing performance from top to bottom. . . . LXV

D.2 P-SDAs applied to the Rastrigin problem. Top (surrogate,EC) pairs per
AP according to the average best objective value (10 independent repeti-
tions). Ordering per cell according to ascending value from top to bottom.
APs ordered according to decreasing performance from top to bottom. . . . LXVI

D.3 P-SDAs applied to the Rosenbrock problem. Top (surrogate,EC) pairs
per AP according to the average best objective value (10 independent repe-
titions). Ordering per cell according to ascending value from top to bottom.
APs ordered according to decreasing performance from top to bottom. . . . LXVII

D.4 P-SDAs applied to the Covid-19 contact reduction problem. Top (sur-
rogate,EC) pairs per AP according to the average best objective value (10
independent repetitions). Ordering per cell according to ascending value
from top to bottom. APs ordered according to decreasing performance
from top to bottom. LXVIII

D.5 P-SDAs applied to the Schwefel problem. The surrogates are trained on
the complete database of simulated candidates. Top (surrogate,EC)
pairs per AP according to the average best objective value (10 independent
repetitions). Ordering per cell according to ascending value from top to
bottom. APs ordered according to decreasing performance from top to
bottom. LXXVI

D.6 P-SDAs applied to the Rastrigin problem. The surrogates are trained
on the complete database of simulated candidates. Top (surro-
gate,EC) pairs per AP according to the average best objective value (10
independent repetitions). Ordering per cell according to ascending value
from top to bottom. APs ordered according to decreasing performance
from top to bottom. LXXVI

D.7 P-SDAs applied to theRosenbrock problem. The surrogates are trained
on the complete database of simulated candidates. Top (surro-
gate,EC) pairs per AP according to the average best objective value (10
independent repetitions). Ordering per cell according to ascending value
from top to bottom. APs ordered according to decreasing performance
from top to bottom. LXXVII

XXV

D.8 P-SDAs applied to the Covid-19 contact reduction problem. The sur-
rogates are trained on the complete database of simulated candi-
dates. Top (surrogate,EC) pairs per AP according to the average best
objective value (10 independent repetitions). Ordering per cell according
to ascending value from top to bottom. APs ordered according to decreasing
performance from top to bottom. LXXVII

F.1 List of libraries used in the numerical experiments reported in this thesis. . XCI

Appendix A

Parallel Surrogate-based
optimization

Table A.1: Terminology adopted in Machine Learning and Optimization

Symbol Machine Learning Optimization

f() black-box mapping objective function
D input space search space
d input dimension search space dimension,

number of decision variables
x (d = 1) input decision variable, candidate solution
x (d > 1) input vector decision vector,

candidate solution
M output space objective space
m output dimension objective space dimension,

number of objectives
y (m = 1) output, target objective value
y (m > 1) output vector, target vector objective vector

f̂() approximation surrogate
n training set size surrogate training set size

XXVII

Appendix B

Parallel Surrogate-assisted
Evolutionary computations

Algorithm 13 MCDropout prediction with one-hidden-layer ANN

Input
x: candidate to predict
nsub: number of sub-networks
pdrop: probability of dropping out neurons
(W (1),w(2)): weights trained with Dropout
h(): activation function

1: for 1 ⩽ i ⩽ nsub do
2: ϵ(1) ← Bernouilli sampling(pdrop)

3: f̂i ← ϵ(1)⊙w(2).h(diag(ϵ(1)).W (1).x)
4: end for
5: f̂ ← 1

nsub

∑nsub
i=1 f̂i

6: ŝ←
√

1
nsub

∑nsub
i=1 (f̂i − f̂)2

7: return (f̂ , ŝ)

Figure B.1: Illustration of par-tian-fs. The orange line represents the first NDF and the
green line represents the last NDF.

XXIX

XXX Appendix B. Parallel Surrogate-assisted Evolutionary computations

Algorithm 14 SaaEF

Input
simulator : real objective function
surrogate: surrogate model
budget : computational budget for the search
npop: population size
nchld: number of new candidates issued per cycle
q: number of simulations per batch
npred: number of predictions per batch
ndisc: number of discarding per batch

1: database ← LHS(simulator, npop)
2: surrogate ← training(database)
3: P ← database ▷ initial population
4: (xmin, ymin) ← get best cost(database)
5: while budget ̸= 0 do
6: Pp ← selection(P, nchld) ▷ population of parents
7: Pc ← reproduction(Pp, nchld) ▷ population of children
8: (Bsim,Bpred)← evolution control(Pc, surrogate, q, npred, ndisc)
9: parallel simulation(simulator, Bsim)

10: database ← database ∪ Bsim
11: surrogate ← training(database)
12: prediction(surrogate, Bpred)
13: P ← replacement(P, Bsim, Bpred, npop)
14: (xmin, ymin) ← get best cost(database)
15: budget ← get remaining budget(budget, elapsed time)
16: end while
17: return xmin, ymin

XXXI

Figure B.2: Calibration of parallel EA. Distribution of the best objective values from
the 10 repetitions of the experiments on the Schwefel problem. Average values are
depicted by red squares, median values by red dashes and variance information is given
by the length of the boxes.

XXXII Appendix B. Parallel Surrogate-assisted Evolutionary computations

Table B.1: Calibration of BNN MCD. Best NDF according to minimization of the
validation mean squared error (VMSE) and the negative validation average log-likelihood
(NVALL) on the Schwefel problem. Ordering according to ascending VMSE from top to
bottom. The retained configuration appears in bold.

nhl mu λdecay l pdrop VMSE NAVLL

1 512 1e-3 1e-2 0.05 0.0281 6.0782
1 1024 1e-3 1e-2 0.1 0.0282 5.8554
10 2048 1e-3 1e-2 0.3 0.0284 5.2803
10 1024 1e-3 1e-2 0.3 0.0285 5.273
10 2048 1e-3 1e-2 0.5 0.0287 4.5629
1 1024 1e-3 1e-2 0.5 0.0289 4.5159
8 4096 1e-2 1e-2 0.005 0.0289 2.6749
8 4096 1e-2 1e-2 0.1 0.0289 2.5988
2 4096 1e-2 1e-2 0.1 0.0291 2.5987
1 1024 1e-2 1e-2 0.1 0.0291 2.591
10 4096 1e-2 1e-2 0.3 0.0292 2.4188
8 2048 1e-2 1e-2 0.3 0.0293 2.4183
1 2048 1e-2 1e-2 0.3 0.0293 2.4124
2 2048 1e-2 1e-2 0.5 0.0295 2.196
10 2048 1e-2 1e-2 0.5 0.0297 2.1956
1 2048 1e-1 1e-2 0.005 0.0299 1.2783
1 4096 1e-1 1e-2 0.005 0.0299 1.2782
1 4096 1e-1 1e-2 0.05 0.0301 1.2542
1 1024 1e-1 1e-2 0.1 0.0304 1.2257
2 2048 1e-1 1e-2 0.1 0.0305 1.2257
1 512 1e-1 1e-2 0.1 0.0308 1.2256
1 2048 1e-1 1e-2 0.3 0.0309 1.0946
1 512 1e-1 1e-2 0.3 0.0311 1.0946
1 2048 1e-1 1e-2 0.5 0.0312 0.9208
1 4096 1e-1 1e-2 0.5 0.0317 0.9208
2 4096 1e-1 1e-2 0.5 0.0321 0.9207
8 4096 1 1e-2 0.005 0.033 0.1026
10 4096 1 1e-2 0.05 0.0332 0.0793
5 4096 1 1e-2 0.1 0.0335 0.0521
10 4096 1 1e-2 0.3 0.034 -0.074
2 2048 1 1e-2 0.3 0.0348 -0.074
2 2048 1 1e-2 0.5 0.035 -0.2428
10 4096 1 1e-2 0.5 0.0351 -0.2428
1 256 1 1e-1 0.3 0.0925 -1.227
1 256 1 1e-1 0.5 0.1254 -1.3953
1 256 1 1 0.05 2667.34 -2.2039
1 256 1 1 0.3 3001.3754 -2.3104
1 256 1 1 0.5 3230.1306 -2.4348

XXXIII

Table B.2: Calibration of BNN MCD. Best NDF according to minimization of the
validation mean squared error (VMSE) and the negative validation average log-likelihood
(NVALL) on the Rastrigin problem. Ordering according to ascending VMSE from top
to bottom.

nhl mu λdecay l pdrop VMSE NAVLL

8 2048 1e-3 1e-2 0.1 0.0323 6.3019
10 4096 1e-3 1e-2 0.3 0.0324 5.5486
10 2048 1e-3 1e-2 0.3 0.0328 5.546
10 4096 1e-3 1e-2 0.5 0.033 4.7496
10 4096 1e-2 1e-2 0.05 0.0332 2.6757
8 4096 1e-2 1e-2 0.05 0.0332 2.6757
10 4096 1e-2 1e-2 0.1 0.0334 2.6337
5 1024 1e-2 1e-2 0.1 0.0336 2.6328
2 4096 1e-2 1e-2 0.3 0.0337 2.4471
8 2048 1e-2 1e-2 0.3 0.0338 2.4454
10 2048 1e-2 1e-2 0.3 0.0339 2.4452
2 4096 1e-2 1e-2 0.5 0.0339 2.2152
1 4096 1e-1 1e-2 0.005 0.0345 1.2823
2 2048 1e-1 1e-2 0.05 0.0347 1.2577
2 4096 1e-1 1e-2 0.1 0.0348 1.229
1 4096 1e-1 1e-2 0.3 0.0356 1.0974
1 2048 1e-1 1e-2 0.3 0.0356 1.0972
5 4096 1e-1 1e-2 0.3 0.0364 1.0972
1 1024 1e-1 1e-2 0.5 0.0365 0.9229
1 2048 1e-1 1e-2 0.5 0.0372 0.9229
8 4096 1e-1 1e-2 0.5 0.0375 0.9228
10 4096 1e-1 1e-2 0.5 0.0378 0.9228
1 4096 1 1e-2 0.005 0.0384 0.1029
1 4096 1 1e-2 0.1 0.0385 0.0524
2 4096 1 1e-2 0.1 0.0399 0.0524
1 4096 1 1e-2 0.3 0.0403 -0.0736
5 4096 1 1e-2 0.3 0.0406 -0.0737
1 4096 1 1e-2 0.5 0.0411 -0.2426
2 4096 1 1e-2 0.5 0.0416 -0.2426
1 2048 1 1e-2 0.5 0.042 -0.2426
8 1024 1 1e-2 0.5 0.0461 -0.2426
1 256 1 1e-1 0.3 0.1234 -1.227
1 256 1 1e-1 0.5 0.129 -1.3953
1 512 1 1e-1 0.5 0.2099 -1.3953
1 1024 1 1e-1 0.5 0.4058 -1.3953
1 256 1 1 0.1 2634.2219 -2.2082
1 256 1 1 0.3 2967.1152 -2.2736
1 256 1 1 0.5 3345.4199 -2.3886

XXXIV Appendix B. Parallel Surrogate-assisted Evolutionary computations

Table B.3: Calibration of BNN MCD. Best NDF according to minimization of the
validation mean squared error (VMSE) and the negative validation average log-likelihood
(NVALL) on the Rosenbrock problem. Ordering according to ascending VMSE from top
to bottom. The retained configuration appears in bold.

nhl mu λdecay l pdrop VMSE NAVLL

1 2048 1e-3 1e-2 0.005 0.0235 5.6153
1 2048 1e-3 1e-2 0.05 0.0236 5.5204
1 4096 1e-3 1e-2 0.1 0.0243 5.2677
1 4096 1e-3 1e-2 0.3 0.0245 4.7687
1 2048 1e-3 1e-2 0.5 0.0252 4.2843
1 4096 1e-3 1e-2 0.5 0.0256 4.2509
2 4096 1e-3 1e-2 0.5 0.0309 4.2273
1 512 1e-2 1e-2 0.005 0.0311 2.6421
1 2048 1e-2 1e-2 0.1 0.0312 2.569
1 4096 1e-2 1e-2 0.1 0.0316 2.569
1 2048 1e-2 1e-2 0.3 0.0319 2.3986
1 4096 1e-2 1e-2 0.3 0.0319 2.3972
1 2048 1e-2 1e-2 0.5 0.0323 2.1841
1 4096 1e-2 1e-2 0.5 0.0325 2.1835
1 256 1e-2 1e-1 0.05 0.0385 1.2509
1 1024 1e-1 1e-2 0.1 0.0431 1.2362
1 1024 1e-1 1e-2 0.3 0.0436 1.1028
1 4096 1e-1 1e-2 0.3 0.0437 1.1026
1 512 1e-1 1e-2 0.3 0.0441 1.1025
1 1024 1e-1 1e-2 0.5 0.0443 0.9264
1 4096 1 1e-2 0.05 0.045 0.0805
2 4096 1 1e-2 0.05 0.0457 0.0805
2 4096 1 1e-2 0.1 0.0459 0.0532
1 4096 1 1e-2 0.3 0.0461 -0.0731
1 2048 1 1e-2 0.3 0.0461 -0.0731
1 1024 1 1e-2 0.3 0.0467 -0.0731
1 4096 1 1e-2 0.5 0.0468 -0.2421
1 512 1 1e-2 0.5 0.0477 -0.2421
8 2048 1 1e-2 0.5 0.0486 -0.2422
1 256 1e-1 1e-1 0.5 0.0659 -0.2423
1 512 1e-1 1e-1 0.5 0.0756 -0.2423
1 256 1 1e-1 0.1 0.1148 -1.1012
1 256 1 1e-1 0.5 0.132 -1.3952
1 512 1 1e-1 0.5 0.2207 -1.3953
1 2048 1 1e-1 0.5 0.7305 -1.3953
1 4096 1 1e-1 0.5 1.4349 -1.3953
2 4096 1 1e-1 0.5 424.7706 -1.3953
1 256 1 1 0.05 2658.1091 -2.1998
1 256 1 1 0.3 2677.07 -2.3144
1 256 1 1 0.5 3048.7062 -2.4446

XXXV

Table B.4: Calibration of BNN MCD. BNN MCD configurations that appear in the
NDF of 2 or 3 benchmark problems. The retained configuration appears in bold.

nhl mu λdecay l pdrop Occurrences

1 256 1 1 0.5 3
1 256 1 1 0.3 3
1 256 1 1e-1 0.5 3
1 512 1e-1 1e-2 0.3 2
1 2048 1e-1 1e-2 0.3 2
2 4096 1 1e-2 0.1 2
1 1024 1e-1 1e-2 0.5 2
1 4096 1 1e-2 0.3 2
1 4096 1e-1 1e-2 0.005 2
10 2048 1e-3 1e-2 0.3 2
1 2048 1e-2 1e-2 0.3 2
1 2048 1e-1 1e-2 0.5 2
1 1024 1e-1 1e-2 0.1 2
1 256 1 1 0.05 2
1 256 1 1e-1 0.3 2
1 512 1 1e-1 0.5 2
8 2048 1e-2 1e-2 0.3 2
1 4096 1 1e-2 0.5 2
1 4096 1e-1 1e-2 0.3 2

Table B.5: Calibration of parallel EA. Statistics of the distribution of the best objective
values from the 10 repetitions of the experiments on the Schwefel problem. Ordering
according to ascending average best objective value from top to bottom. The best value
for each column appears in bold.

npop pc Average Median Minimum Variance

72 0.9 606.16 542.0 324.5 47011.53
72 0.7 889.47 902.62 409.36 118702.65
36 0.9 931.69 825.79 595.2 67856.63
72 0.5 1141.93 1157.35 718.28 32334.32
144 0.7 1239.44 1328.12 719.76 76650.15
144 0.9 1318.88 1276.17 1064.83 35878.64
36 0.7 1340.92 1231.3 761.9 175525.18
36 0.5 1599.24 1561.78 594.54 160909.86
144 0.5 1629.41 1623.04 1306.89 43485.15
72 0.3 1663.67 1701.82 849.11 259982.01
36 0.3 1872.68 1771.19 1111.97 208935.32
18 0.9 1892.87 1787.23 1304.08 161087.18
18 0.7 2043.18 1831.31 1470.45 273082.05
144 0.3 2079.94 2136.23 1505.05 62635.81
18 0.5 2286.32 2264.47 1887.0 55069.82
18 0.3 2452.32 2411.11 1840.13 109126.93
8 0.7 2750.68 2714.23 2047.0 278623.58
8 0.5 2821.03 2653.74 1907.67 312750.77
8 0.9 2846.3 2852.68 2106.74 173903.74
8 0.3 2987.9 3114.64 2378.45 144095.13

XXXVI Appendix B. Parallel Surrogate-assisted Evolutionary computations

Figure B.3: Calibration of parallel EA. Distribution of the best objective values from
the 10 repetitions of the experiments on the Rastrigin problem. Average values are
depicted by red squares, median values by red dashes and variance information is given
by the length of the boxes.

XXXVII

Figure B.4: Calibration of parallel EA. Distribution of the best objective values from
the 10 repetitions of the experiments on the Rosenbrock problem. Average values are
depicted by red squares, median values by red dashes and variance information is given
by the length of the boxes.

XXXVIII Appendix B. Parallel Surrogate-assisted Evolutionary computations

Table B.6: Calibration of parallel EA. Statistics of the distribution of the best objective
values from the 10 repetitions of the experiments on the Rastrigin problem. Ordering
according to ascending average best objective value from top to bottom. The best value
for each column appears in bold.

npop pc Average Median Minimum Variance

72 0.9 21.65 21.85 13.6 18.79
72 0.7 27.63 26.79 14.48 48.61
36 0.9 27.9 30.35 19.97 28.24
36 0.7 34.33 30.85 19.35 168.97
72 0.5 42.32 38.33 30.28 114.27
18 0.9 42.37 40.54 18.96 174.72
36 0.5 47.03 46.97 26.13 130.18
144 0.9 47.27 46.52 38.01 40.08
72 0.3 49.35 45.24 32.66 119.86
18 0.7 51.29 50.38 30.04 215.73
36 0.3 52.56 50.39 34.49 283.84
18 0.5 56.74 54.59 35.2 183.72
144 0.7 58.97 57.42 52.43 23.21
18 0.3 62.66 64.03 37.54 204.24
144 0.5 65.62 65.45 58.01 10.98
8 0.9 73.56 68.07 50.8 357.22
144 0.3 73.65 76.37 62.32 32.3
8 0.3 75.26 74.12 39.37 444.26
8 0.5 78.79 75.8 49.9 507.6
8 0.7 87.96 86.41 57.41 586.07

XXXIX

Table B.7: Calibration of parallel EA. Statistics of the distribution of the best objective
values from the 10 repetitions of the experiments on the Rosenbrock problem. Ordering
according to ascending average best objective value from top to bottom. The best value
for each column appears in bold.

npop pc Average Median Minimum Variance

18 0.9 433.91 259.33 74.26 191251.85
18 0.7 820.67 295.8 110.05 1466702.09
36 0.9 1092.0 592.06 336.37 658936.44
36 0.7 1261.31 984.69 216.17 1191134.25
18 0.5 1665.09 1477.32 184.67 1661523.63
72 0.9 1959.02 1872.94 373.53 1082062.41
18 0.3 2307.74 1843.04 110.43 2586536.83
36 0.5 2942.54 1875.14 736.89 12259372.39
144 0.9 4001.54 2935.33 1267.18 11060605.09
72 0.7 4252.02 3417.06 1469.76 6778061.45
8 0.9 6337.49 6684.22 358.06 11193763.83
72 0.5 6839.66 7021.64 1050.14 15688530.4
144 0.7 8099.69 8001.32 2850.41 11235759.19
72 0.3 10946.07 8896.91 1538.18 66445555.65
8 0.7 11717.1 9962.93 539.94 120357282.62
36 0.3 12901.81 12731.52 1088.82 78500881.02
144 0.5 16214.5 18213.14 6596.36 45565006.41
144 0.3 21415.34 23089.57 4840.79 63520417.44
8 0.3 24522.5 24112.23 7262.69 155115614.92
8 0.5 33595.52 31836.06 7229.95 395710854.33

Table B.8: Calibration of SaaEF with BNN MCD. Statistics of the distribution of the
best objective values from the 10 repetitions of the experiments on the Schwefel problem.
Ordering according to ascending average best objective value from top to bottom. The
best value for each column appears in bold.

nchld (δES , nES) cross. val. Average Median Minimum Variance q

288 (10−8, 32) yes 516.82 480.87 190.58 66999.17 72
- No surrogate 607.91 503.25 253.29 71295.35 -

144 (10−8, 32) yes 685.72 558.1 276.4 210240.3 36
288 (10−8, 32) no 872.15 828.71 483.86 58040.28 72
288 (10−4, 8) yes 893.4 820.97 502.66 80785.52 72
288 (10−4, 8) no 1011.34 926.27 650.28 73748.54 72
144 (10−4, 8) yes 1060.04 1004.16 649.05 65682.39 36
144 (10−8, 32) no 1085.84 1103.41 686.69 66753.01 36
144 (10−4, 8) no 1125.48 1085.87 721.91 89206.08 36

XL Appendix B. Parallel Surrogate-assisted Evolutionary computations

Table B.9: Calibration of SaaEF with BNN MCD. Statistics of the distribution of the
best objective values from the 10 repetitions of the experiments on theRastrigin problem.
Ordering according to ascending average best objective value from top to bottom. The
best value for each column appears in bold.

nchld (δES , nES) cross. val. Average Median Minimum Variance q

- No surrogate 23.30 22.66 12.99 30.58 -
144 (10−8, 32) no 29.31 28.47 16.02 86.36 36
288 (10−8, 32) yes 29.4 27.0 21.39 44.37 72
288 (10−4, 8) yes 31.06 34.95 15.98 68.34 72
288 (10−8, 32) no 33.41 31.92 19.56 67.76 72
144 (10−8, 32) yes 34.76 36.64 23.65 34.01 36
144 (10−4, 8) no 35.38 34.6 19.21 166.75 36
144 (10−4, 8) yes 35.68 35.87 28.79 17.78 36
288 (10−4, 8) no 38.08 33.3 21.93 193.38 72

Table B.10: Calibration of SaaEF with BNN MCD. Statistics of the distribution of
the best objective values from the 10 repetitions of the experiments on the Rosenbrock
problem. Ordering according to ascending average best objective value from top to bottom.
The best value for each column appears in bold.

nchld (δES , nES) cross. val. Average Median Minimum Variance q

144 (10−8, 32) yes 1096.8 810.92 446.3 488068.36 36
144 (10−4, 8) yes 1105.28 755.04 339.37 1006032.14 36
- No surrogate 1191.14 757.03 246.71 1557771.06 -

288 (10−8, 32) yes 1359.59 1268.25 745.12 336182.97 72
288 (10−4, 8) yes 1407.53 1052.41 198.69 869984.37 72
288 (10−4, 8) no 1414.96 1293.39 280.94 732488.17 72
288 (10−8, 32) no 1989.58 1973.39 528.56 1482968.13 72
144 (10−4, 8) no 2019.27 1034.21 392.79 4621452.92 36
144 (10−8, 32) no 4387.67 3873.49 1389.24 5623346.82 36

XLI

Table B.11: P-SAEAs with SaaEF on the Schwefel problem. Top-5 ECs according
to the average, median and minimum best objective value (10 independent repetitions).
Ordering per cell according to ascending value from top to bottom. Surrogates ordered
according to decreasing performance from top to bottom.

EC Average EC Median EC Min

BNN MCD 5

dyn-df-incl 131.95 dyn-dpf-excl 115.37 dyn-df-excl 33.37
dyn-dpf-excl 136.3 par-fd-cd 124.48 par-fs-hvc 81.27
par-fd-cd 167.55 dyn-df-incl 133.46 par-fd-cd 85.73
dyn-df-excl 168.64 dyn-df-excl 143.08 dyn-dpf-excl 86.8
com-dpf 255.12 par-fd-hvc 213.62 par-fd-hvc 87.71

GP RBF

dyn-spf-excl 206.19 dyn-dpf-excl 194.67 dyn-sf-excl 42.6
dyn-dpf-excl 209.51 dyn-spf-excl 220.85 dyn-spf-excl 49.94
dyn-df-75-excl 233.11 dyn-sf-incl 222.1 com-dpf 53.55
dyn-sf-excl 256.31 dyn-sf-75-excl 242.18 dyn-df-75-excl 63.89
dyn-sf-incl 261.79 dyn-df-excl 246.16 dyn-dpf-excl 74.35

rKRG 18

dyn-df-75-excl 216.06 dyn-dpf-excl 205.45 dyn-df-75-excl 61.1
dyn-dpf-excl 316.37 dyn-df-75-excl 231.9 dyn-dpf-excl 97.37
dyn-df-incl 372.3 dyn-df-incl 272.28 dist 149.85
dyn-df-excl 376.67 dyn-df-excl 360.51 par-fd-hvc 152.98

stdev 415.78 stdev 378.03 dyn-df-excl 171.34

ANN BLR

dyn-df-incl 267.78 dyn-df-incl 302.64 par-fd-cd 37.78
dyn-df-75-excl 381.19 dyn-dpf-excl 368.73 dyn-df-incl 38.11
dyn-dpf-excl 381.88 dyn-df-excl 385.51 dyn-dpf-excl 87.79

dist 454.32 dyn-df-75-excl 399.24 dyn-df-75-excl 121.54
dyn-df-excl 476.63 dist 456.36 dist 181.56

XLII Appendix B. Parallel Surrogate-assisted Evolutionary computations

Table B.12: P-SAEAs with SaaEF on the Rastrigin problem. Top-5 ECs according
to the average, median and minimum best objective value (10 independent repetitions).
Ordering per cell according to ascending value from top to bottom. Surrogates ordered
according to decreasing performance from top to bottom.

EC Average EC Median EC Min

GP RBF

dyn-dpf-excl 19.08 dyn-dpf-excl 14.95 dyn-dpf-excl 10.79
par-fd-cd 19.65 com-dpf 16.65 dyn-fpd-excl 12.4
com-dpf 20.42 par-fd-cd 18.05 dyn-df-incl 13.58

dyn-df-excl 21.25 dyn-df-excl 21.07 par-fd-cd 13.7
dyn-df-incl 22.96 dyn-df-incl 22.65 dyn-df-excl 14.09

rKRG 36

dyn-spf-excl 22.66 dyn-spf-excl 20.41 dyn-spf-excl 12.07
par-fs-cd 24.47 par-fs-cd 23.55 par-fs-cd 13.84
dyn-sf-incl 25.36 dyn-sf-incl 24.08 com-spf 14.2
par-fs-hvc 26.87 dyn-dpf-excl 26.13 dyn-df-excl 14.35

ei 28.09 par-fs-hvc 26.8 par-fs-hvc 14.72

ANN BLR

dyn-sf-excl 22.72 dyn-sf-excl 22.52 par-fs-hvc 12.66
dyn-sf-incl 23.74 dyn-sf-incl 23.25 rand 12.78
dyn-spf-excl 25.41 par-fs-hvc 24.47 dyn-sf-excl 13.71
dyn-dpf-excl 25.72 dyn-df-incl 24.58 bp 16.09
par-fs-hvc 25.87 dyn-spf-excl 24.88 dyn-sf-75-excl 17.84

BNN MCD 5

dyn-df-excl 23.4 dyn-spf-excl 21.39 dyn-sf-75-excl 11.89
dyn-spf-excl 23.56 pi 23.12 ada-wang-max 12.89
dyn-sf-incl 23.61 dyn-df-excl 23.6 com-spf 13.52

pi 25.18 dyn-sf-incl 24.5 dyn-fps-excl 13.56
rand 25.23 ada-wang-min 24.92 dyn-sf-incl 13.77

XLIII

Table B.13: P-SAEAs with SaaEF on the Rosenbrock problem. Top-5 ECs according
to the average, median and minimum best objective value (10 independent repetitions).
Ordering per cell according to ascending value from top to bottom. Surrogates ordered
according to decreasing performance from top to bottom.

EC Average EC Median EC Min

GP RBF

par-fd-hvc 233.93 par-fd-cd 157.34 par-fd-hvc 41.95
dyn-fpd-excl 263.56 dyn-fpd-excl 182.28 lcb 65.82

dist 272.13 dyn-fd-incl 184.74 pi 69.01
par-fs-hvc 306.48 par-fs-hvc 206.18 dyn-fd-excl 70.13
par-fd-cd 316.21 par-fd-hvc 207.13 par-fd-cd 72.85

rKRG 18

par-fd-hvc 414.44 par-fd-hvc 326.97 dyn-sf-excl 61.25
par-fs-hvc 435.21 dyn-dpf-excl 379.4 com-dpf 104.12

dyn-dpf-excl 470.8 pi 385.36 dyn-spf-excl 122.29
par-fd-cd 498.11 dyn-df-excl 388.25 dyn-dpf-excl 145.01

dist 568.01 par-fs-hvc 398.37 dyn-df-excl 148.92

BNN MCD 5

dist 713.71 dyn-fpd-excl 581.12 dyn-df-75-excl 219.35
com-dpf 728.97 dyn-fd-excl 630.66 dyn-fd-excl 228.24

dyn-fd-incl 741.21 dyn-fd-incl 669.79 ei 233.89
dyn-fpd-excl 795.48 com-dpf 706.4 dyn-fpd-excl 267.99
dyn-df-75-excl 884.51 dist 728.55 ada-wang-min 271.43

ANN BLR

dyn-dpf-excl 2063.52 dyn-dpf-excl 1797.39 dyn-fs-excl 378.89
par-fd-hvc 2748.7 par-fd-hvc 2522.99 bp 595.32
par-fd-cd 3247.48 par-fd-cd 2783.59 dyn-dpf-excl 705.46

bp 3368.46 ada-wang-min 3195.2 lcb 725.55
dyn-df-excl 3833.16 dyn-fpd-excl 3344.09 dyn-df-75-excl 988.39

XLIV Appendix B. Parallel Surrogate-assisted Evolutionary computations

Table B.14: P-SAEAs with SaaEF on the Covid-19 contact reduction problem.
Top-5 ECs according to the average, median and minimum best objective value (10 in-
dependent repetitions). Ordering per column according to ascending value from top to
bottom. Surrogates ordered according to decreasing performance from top to bottom.

EC Average EC Median EC Min

BNN MCD 5

dyn-df-75-excl 7455 dist 6284 dist 4385
dyn-df-excl 7679 dyn-df-excl 6693 dyn-df-excl 4876

dist 7837 dyn-df-75-excl 7047 ada-df 5020
ada-df 8232 dyn-df-incl 7468 par-fd-hvc 5103

dyn-df-incl 8983 ada-df 7645 dyn-df-75-excl 5252

rKRG 18

dyn-df-incl 9254 dyn-df-incl 8552 dist 5933
dyn-df-75-excl 10107 dyn-df-75-excl 9425 dyn-dpf-excl 6419
dyn-df-excl 10901 dyn-df-excl 9969 dyn-df-incl 6622

dist 11395 dist 10370 com-dpf 6698
dyn-dpf-excl 11847 dyn-dpf-excl 11851 dyn-df-excl 7085

GP RBF

ada-df 16595 ada-df 15824 dyn-fd-incl 8517
ada-dpf 17205 ada-dpf 16599 dyn-sf-incl 9792

dyn-dpf-excl 19067 dist 16634 ada-df 10023
dist 20471 dyn-df-incl 17595 pi 10891

dyn-sf-incl 20498 dyn-dpf-excl 19064 dyn-fps-excl 11246

ANN BLR

dyn-df-excl 18449 dyn-df-excl 17546 ada-dpf 10487
dyn-df-75-excl 19601 ada-df 18105 ada-df 10674
dyn-dpf-excl 20195 dyn-df-75-excl 18698 par-fd-hvc 10941

ada-df 20201 dyn-dpf-excl 19164 ada-wang-max 10953
dyn-df-incl 21175 dyn-df-incl 19246 dyn-df-incl 11089

XLV

F
ig
u
re

B
.5
:
P
-S

A
E
A
s
w
it
h

S
a
a
E
F

a
n
d

B
N
N

M
C
D

5
on

th
e
S
ch

w
e
fe
l
p
ro
b
le
m
.

D
is
tr
ib
u
ti
o
n

o
f
th
e
b
es
t
ob

je
ct
iv
e
va
lu
es

fr
om

th
e
10

re
p
et
it
io
n
s
o
f
th
e
ex
p
er
im

en
t.

A
ve
ra
ge
d
va
lu
es

ar
e
d
ep

ic
te
d
b
y
re
d
sq
u
ar
es
,
m
ed

ia
n
va
lu
es

b
y
re
d
d
a
sh
es

a
n
d
va
ri
an

ce
in
fo
rm

a
ti
on

is
g
iv
en

b
y
th
e

le
n
gt
h
o
f
th
e
b
ox
es
.

XLVI Appendix B. Parallel Surrogate-assisted Evolutionary computations

F
ig
u
re

B
.6
:
P
-S

A
E
A
s
w
it
h

S
a
a
E
F

a
n
d

G
P

R
B
F

on
th
e
R
a
st
ri
g
in

p
ro
b
le
m
.
D
is
tr
ib
u
ti
o
n
o
f
th
e
b
es
t
o
b
je
ct
iv
e
va
lu
es

fr
o
m

th
e
1
0
re
p
et
it
io
n
s

of
th
e
ex
p
er
im

en
t.

A
v
er
a
g
ed

va
lu
es

a
re

d
ep

ic
te
d
b
y
re
d
sq
u
ar
es
,
m
ed

ia
n
va
lu
es

b
y
re
d
d
as
h
es

an
d
va
ri
a
n
ce

in
fo
rm

a
ti
on

is
g
iv
en

b
y
th
e
le
n
gt
h
o
f
th
e

b
ox
es
.

XLVII

F
ig
u
re

B
.7
:
P
-S

A
E
A
s
w
it
h
S
a
a
E
F

a
n
d
G
P

R
B
F
on

th
e
R
o
se
n
b
ro

ck
p
ro
b
le
m
.
D
is
tr
ib
u
ti
on

o
f
th
e
b
es
t
ob

je
ct
iv
e
va
lu
es

fr
om

th
e
1
0
re
p
et
it
io
n
s

o
f
th
e
ex
p
er
im

en
t.

A
v
er
ag

ed
va
lu
es

ar
e
d
ep

ic
te
d
b
y
re
d
sq
u
ar
es
,
m
ed

ia
n
va
lu
es

b
y
re
d
d
as
h
es

an
d
va
ri
a
n
ce

in
fo
rm

a
ti
on

is
g
iv
en

b
y
th
e
le
n
gt
h
o
f
th
e

b
ox
es
.

XLVIII Appendix B. Parallel Surrogate-assisted Evolutionary computations

F
ig
u
re

B
.8
:
P
-S

A
E
A
s
w
it
h

S
a
a
E
F

a
n
d

B
N
N

M
C
D

5
on

th
e
C
o
v
id
-1
9

c
o
n
ta

c
t
re

d
u
c
ti
o
n

p
ro

b
le
m
.
D
is
tr
ib
u
ti
on

o
f
th
e
b
es
t
o
b
je
ct
iv
e

va
lu
es

fr
o
m

th
e
10

re
p
et
it
io
n
s
o
f
th
e
ex
p
er
im

en
t.

A
ve
ra
ge
d
va
lu
es

ar
e
d
ep

ic
te
d
b
y
re
d
sq
u
ar
es
,
m
ed

ia
n
va
lu
es

b
y
re
d
d
as
h
es

an
d
va
ri
a
n
ce

in
fo
rm

at
io
n

is
g
iv
en

b
y
th
e
le
n
gt
h
o
f
th
e
b
ox
es
.

Appendix C

Multi-objective optimization

In multi-objective optimization, the comparison between two solutions is performed ac-
cording to multiple criteria simultaneously [OJS03; Hub+06]. Given two decision vectors
x(1) and x(2) and X a set of decision vectors containing x(1), it is stated that:

• x(1) dominates x(2) if x(1) is at least better than x(2) regarding one criterion and
as good as x(2) regarding the remaining criteria;

• x(1) and x(2) are incomparable if no solution dominates the other and there exists
at least one criterion whose value differs from x(1) to x(2);

• x(1) is a non-dominated solution of X if there is no solution in X that dominates
x(1).

Given a population of solutions, the subset composed of non-dominated individuals, such
that one non-dominated individual is incomparable with all other non-dominated individ-
uals, is called the Non-Dominated Set (NDS). The corresponding population of objective
vectors is called the Non-Dominated Front (NDF). The NDSs are ranked in decreasing
order of interest such that each solution of the i-th NDS dominates each solution of the
(i+1)-th NDS. The rank is called the Non-Dominated Rank (NDR). The overall best NDF
for a given problem is called the Pareto Front (PF) of this problem and the corresponding
set in the search space is called the Pareto Set (PS).

To distinguish between solutions with the same NDR, it is proposed to rely on two
metrics: the crowding distance [Deb+02] and the hyper-volume contribution [Rua+20].
For a given non-extreme solution, its crowding distance cd() is the average distance, in
the objective space, between its closest neighbors of the same NDR along each objective.
For a bi-dimensional objective space, the crowding distance is the average side length
of the rectangle formed based on the two nearest neighbors of the studied solution as
depicted in Figure C.1. For each objective function, solutions having the smallest and
the largest function value are called extreme solutions such as x(1) and x(3) in Figure
C.1. Extreme solutions are assigned an infinite crowding distance. A higher value of the
crowding distance exhibits a solution with a wider empty neighborhood, which is attractive
to enhance the distribution of the NDF.

The hyper-volume hv() is a metric originally developed to compare NDFs. For a bi-
dimensional objective space, given a reference point O′, the hyper-volume of a NDF with
respect to O′ is the area of the surface delimited by O′ and the NDF as depicted in Figure
C.2. Larger values of the hyper-volume indicate better objectives values (convergence) and
a larger number of candidates (diversity) within the NDF. The definition of hyper-volume
is easily generalized to higher dimensions. In Figure C.2, the hatched area represents the
hyper-volume contribution hvc() of the candidate x(2). The hyper-volume contribution

XLIX

L Appendix C. Multi-objective optimization

is defined as the difference between the hyper-volume of the entire NDF and the hyper-
volume of the NDF without the considered solution. For the example presented in Figure
C.2:

hvc(x(2)) = hv(x(1),x(2),x(3), O′)− hv(x(1),x(3), O′) (C.1)

The difference between the effects of the crowding distance and the hyper-volume
contribution is quite subtle. The crowding distance only takes into account the solutions
with the same NDR while the hyper-volume takes into account all the solutions. In Figure
C.1, the crowding distance of x(2) is not influenced by the solution x(4), while in Figure
C.2, the hyper-volume contribution of x(2) is influenced by x(4).

Figure C.1: Illustration of the crowding distance in a bi-objective space o = (o(1), o(2)).
The crowding distance of x(2) is the average side length of the rectangle drawn with dashed
lines. The crowding distance of extreme solutions x(1) and x(2) is infinite.

Figure C.2: Illustration of the hyper-volume for a reference point O′ and a NDS made of
candidates x(1), x(2) and x(3). The hyper-volume is the surface of the shaded area in the
bi-objective space o = (o(1), o(2)). The hatched area represents the contribution of x(2) to
the hyper-volume.

LI

Algorithm 15 Non-dominated Sorting Genetic Algorithm II

Input
npop: population size
ngen: number of generations

1: P ← initial sampling(npop)
2: for i = 1 : ngen do
3: P ← non dominated and crowded distance sorting(P)
4: Ppar ← tournament position(P, npop) ▷ population of parents
5: Pchld ← reproduction(Ppar) ▷ population of children
6: P ← P ∪ Pchld
7: P ← non dominated and crowded distance sorting(P)
8: P ← elitist position(P, npop)
9: end for

10: return best NDF from P

Algorithm 16 Reference Vector guided Evolutionary Algorithm

Input
nref : number of reference vectors
ngen: maximum number of generations
fupd: frequency of update

1: V1 ← simplex lattice(nref) ▷ initial set of reference vectors
2: P1 ← initial sampling(nref)
3: evaluation(P1)
4: for i = 1 : ngen do
5: Ppar

i ← select parents(Pi)
6: Pchld

i ← reproduction(Ppar
i)

7: evaluation(Pchld
i)

8: Pi ← Pi ∪ Pchld
i

9: Pi+1 ← reference vector guided replacement(i, Pi, Vi)
10: if i mod ⌊ngen.fupd⌋ == 0 then
11: Vi+1 ← reference vector update(i, Pi+1, Vi, V1)
12: else
13: Vi+1 ← Vi
14: end if
15: end for
16: return best NDF from Pngen+1

LII Appendix C. Multi-objective optimization

Algorithm 17 RVEA*

Input
nref : number of reference vectors
ngen: maximum number of generations
fupd: frequency of update

1: V1 ← simplex lattice(nref)
2: V∗1 ← copy(V1) ▷ additional set of reference vectors
3: P1 ← initial sampling(nref)
4: evaluation(P1)
5: for i = 1 : ngen do
6: Ppar

i ← select parents(Pi)
7: Pchld

i ← reproduction(Ppar
i)

8: evaluation(Pchld
i)

9: Pi ← Pi ∪ Pchld
i

10: Pi+1 ← reference vector guided replacement(i, Pi, Vi ∪ (V∗i \Vi))
11: if i mod ⌊ngen.fupd⌋ == 0 then
12: Vi+1 ← reference vector update(i, Pi+1, Vi, V1)
13: else
14: Vi+1 ← Vi
15: end if
16: V∗i+1 ← regeneration(Pi+1, V∗i)
17: end for
18: return best NDF from Pngen+1

Algorithm 18 Adaptive Bayesian Multi-Objective Evolutionary Algorithm

Input
simulator : real objective function
surrogate: surrogate model
f̂ : surrogate model predictive function
budget : budget for the search
q: number of simulations per cycle

1: database ← initial sampling(simulator)
2: surrogate ← training(database)
3: bc ← 0
4: while bc ⩽budget do
5: (B,V)← RVEA(105, 20, 0.1) ▷ last population and reference vector set from

Algorithm 16 for the problem min f̂
6: update(bc)

7: α← −0.5 cos
(

bc
budgetπ

)
+ 0.5

8: evaluate(B, fada, α)
9: Bsim ← adaptive sampling criterion(B, V, α, q, bc, budget) ▷ Algorithm 19

10: parallel evaluation(simulator, Bsim)
11: database ← database ∪Bsim
12: surrogate ← training(database)
13: end while
14: return best NDF from database

LIII

Algorithm 19 Adaptive Sampling Criterion in AB-MOEA

Input
B: set of candidates
V: set of reference vectors
α: adaptive parameter
q: number of candidates to retain
m: number of objectives
bc: budget already spent
budget : total budget

1: for i = 1 : |B| do
2: y′

i ← translate(yi)
3: j ← sub population index(V, y′

i)
4: if α < 0.5 then
5: di ← m

θ(y′
i,vj)
γvj

6: else
7: di ← (1 + P (θ(y′

i,vj),m, bc, budget)).||y′
i||

8: end if
9: end for

10: B ← sort per sub population(d, B)
11: return q first candidates from B

Algorithm 20 Surrogate-Assisted Evolutionary Algorithm for Medium Scale Expensive
problems

Input
simulator : real objective function
surrogate: surrogate model
f̂ : surrogate model predictive function
ŝ: predictive standard deviation
budget : budget for the search
q: number of simulations per cycle

1: database ← initial sampling(simulator)
2: surrogate ← training(database)
3: bc ← 0
4: while budget ̸= 0 do
5: B ← NSGA-II(76, 100, f̂ , ŝ, database) ▷ last population

from Algorithm 15 for the problem min(f̂ , f̂ − ŝ2). Initial population initialized with
the last 76 solutions from database.

6: B ← HVC sorting(f̂ , B)
7: Bsim ← elitist position(B, ⌊ q2⌋)
8: B ← HVC sorting(f̂ − 2ŝ2, B)
9: Bsim ← Bsim∪ elitist position(B, ⌊ q2⌋)

10: parallel evaluation(simulator, Bsim)
11: database ← database ∪Bsim
12: surrogate ← training(database)
13: budget ← get remaining budget(budget, elapsed time)
14: end while
15: return best NDF from database

Appendix D

Parallel Surrogate-driven
algorithms

Figure D.1: Calibration of EA with EC-based selection and replacement in q-
EGO. Distribution of the best objective values from the 10 repetitions of the experiments
on the Schwefel problem. Average values are depicted by red squares, median values by
red dashes and variance information is given by the length of the boxes.

LV

LVI Appendix D. Parallel Surrogate-driven algorithms

Figure D.2: Calibration of EA with EC-based selection and replacement in q-
EGO. Distribution of the best objective values from the 10 repetitions of the experiments
on the Rosenbrock problem. Average values are depicted by red squares, median values
by red dashes and variance information is given by the length of the boxes.

LVII

Figure D.3: Calibration of EA with EC-based selection and replacement in
q-subnets. Distribution of the best objective values from the 10 repetitions of the ex-
periments on the Schwefel problem. Average values are depicted by red squares, median
values by red dashes and variance information is given by the length of the boxes.

LVIII Appendix D. Parallel Surrogate-driven algorithms

Figure D.4: Calibration of EA with EC-based selection and replacement in
q-subnets. Distribution of the best objective values from the 10 repetitions of the exper-
iments on the Rosenbrock problem. Average values are depicted by red squares, median
values by red dashes and variance information is given by the length of the boxes.

LIX

Figure D.5: Calibration of EA with EC-based selection and replacement in
q-Pareto. Distribution of the best objective values from the 10 repetitions of the exper-
iments on the Schwefel problem. Average values are depicted by red squares, median
values by red dashes and variance information is given by the length of the boxes.

LX Appendix D. Parallel Surrogate-driven algorithms

Figure D.6: Calibration of EA with EC-based selection and replacement in
q-Pareto. Distribution of the best objective values from the 10 repetitions of the experi-
ments on the Rosenbrock problem. Average values are depicted by red squares, median
values by red dashes and variance information is given by the length of the boxes.

LXI

Figure D.7: Calibration of EA with EC-based selection and replacement in
q-post-HMC with GP HMC. Distribution of the best objective values from the 10
repetitions of the experiments on the Schwefel problem. Average values are depicted by
red squares, median values by red dashes and variance information is given by the length
of the boxes.

LXII Appendix D. Parallel Surrogate-driven algorithms

Figure D.8: Calibration of EA with EC-based selection and replacement in
q-post-HMC with GP HMC. Distribution of the best objective values from the 10
repetitions of the experiments on the Rosenbrock problem. Average values are depicted
by red squares, median values by red dashes and variance information is given by the
length of the boxes.

LXIII

Figure D.9: Calibration of EA with EC-based selection and replacement in q-
post-HMC with BNN HMC. Distribution of the best objective values from the 10
repetitions of the experiments on the Schwefel problem. Average values are depicted by
red squares, median values by red dashes and variance information is given by the length
of the boxes.

LXIV Appendix D. Parallel Surrogate-driven algorithms

Figure D.10: Calibration of EA with EC-based selection and replacement in
q-post-HMC with BNN HMC. Distribution of the best objective values from the 10
repetitions of the experiments on the Rosenbrock problem. Average values are depicted
by red squares, median values by red dashes and variance information is given by the
length of the boxes.

LXV

Table D.1: P-SDAs applied to the Schwefel problem. Top (surrogate,EC) pairs per AP
according to the average best objective value (10 independent repetitions). Ordering per
cell according to ascending value from top to bottom. APs ordered according to decreasing
performance from top to bottom.

Surrogate EC Average Surrogate EC Average

q=18 q=72

q-subnets
BNN MCD pov 1965.45 BNN MCD pov 2483.44
BNN MCD par-fd-cd 3880.78 BNN MCD par-fd-cd 3666.19

q-Pareto
BNN MCD par-fs-hvc 2015.06 BNN MCD par-fs-cd 2019.45
BNN MCD par-fs-cd 2192.29 BNN MCD par-fs-hvc 2105.19
BNN MCD par-tian-fs 2204.09 BNN MCD par-tian-fs 2279.5
BNN MCD par-fd-cd 3227.54 BNN MCD par-fd-cd 3426.36
BNN MCD par-fd-hvc 3292.93 GP RBF par-tian-fs 3459.56

q-post-HMC
GP HMC pov 2345.8 GP HMC pov 3638.16
GP HMC par-fd-cd 3877.84 GP HMC par-fd-cd 3796.09
BNN HMC par-fd-cd 3989.17 BNN HMC par-fd-cd 3936.38
BNN HMC pov 4237.76 BNN HMC pov 4320.74

q-EGO cl-mean
GP RBF ada-wang-min 2478.06 GP RBF par-tian-fs 3240.52

BNN MCD lcb 2723.47 GP RBF dyn-df-excl 3401.49
GP RBF par-tian-fs 2730.8 GP RBF ada-wang-max 3454.15
GP RBF ei 2913.49 GP RBF ada-wang-min 3458.33
GP RBF pov 2925.1 GP RBF pov 3459.91

q-EGO sb
GP RBF ada-wang-min 2945.8 GP RBF pov 3491.5

BNN MCD lcb 2995.06 GP RBF pi 3528.64
GP RBF lcb 3067.79 GP RBF lcb 3546.29

BNN MCD pov 3119.08 GP RBF dyn-df-75-excl 3581.97
GP RBF ei 3177.17 GP RBF dyn-df-excl 3596.12

LXVI Appendix D. Parallel Surrogate-driven algorithms

Table D.2: P-SDAs applied to the Rastrigin problem. Top (surrogate,EC) pairs per AP
according to the average best objective value (10 independent repetitions). Ordering per
cell according to ascending value from top to bottom. APs ordered according to decreasing
performance from top to bottom.

Surrogate EC Average Surrogate EC Average

q=18 q=72

q-Pareto
rKRG par-tian-fd 77.83 GP RBF par-tian-fs 93.37
GP RBF par-tian-fs 99.01 rKRG par-tian-fd 96.82
GP RBF par-tian-fd 101.8 iKRG par-tian-fd 102.94
iKRG par-tian-fd 103.49 rKRG par-tian-fs 129.48
rKRG par-tian-fs 123.78 GP RBF par-tian-fd 131.16

q-EGO cl-mean
GP RBF ada-wang-min 90.59 GP RBF par-tian-fs 114.34
GP RBF par-tian-fs 92.92 GP RBF ada-wang-min 119.57
GP RBF pov 102.42 GP RBF pov 123.53
GP RBF dyn-fd-excl 103.78 GP RBF dyn-fs-excl 126.27
GP RBF dyn-fs-excl 111.25 GP RBF par-tian-fd 126.43

q-post-HMC
GP HMC pov 121.85 GP HMC pov 119.87
GP HMC par-fd-cd 125.36 BNN HMC pov 164.32
BNN HMC pov 168.61 BNN HMC par-fd-cd 199.94
BNN HMC par-fd-cd 195.28 GP HMC par-fd-cd 200.92

q-EGO sb
GP RBF ada-wang-min 112.33 GP RBF ada-wang-min 121.21
GP RBF par-tian-fs 118.45 GP RBF par-tian-fs 127.73
GP RBF pi 133.14 GP RBF par-tian-fd 138.64
rKRG par-tian-fd 134.44 GP RBF pi 143.53

GP RBF par-tian-fd 139.36 rKRG par-tian-fd 154.25

q-subnets
BNN MCD pov 200.92 BNN MCD pov 200.92
BNN MCD par-fd-cd 200.92 BNN MCD par-fd-cd 200.92

LXVII

Table D.3: P-SDAs applied to the Rosenbrock problem. Top (surrogate,EC) pairs per
AP according to the average best objective value (10 independent repetitions). Ordering
per cell according to ascending value from top to bottom. APs ordered according to
decreasing performance from top to bottom.

Surrogate EC Average Surrogate EC Average

q=18 q=72

q-EGO sb
GP RBF ada-wang-min 472.02 GP RBF pov 1409.49
GP RBF pi 1629.54 GP RBF pi 1563.03
GP RBF par-tian-fs 1826.74 GP RBF par-tian-fs 1749.29
GP RBF dyn-fs-excl 4119.73 GP RBF ada-wang-min 1798.29
GP RBF dyn-sf-excl 4338.11 GP RBF dyn-fd-excl 2079.98

q-Pareto
rKRG par-tian-fd 572.57 GP RBF par-tian-fs 639.77

GP RBF par-tian-fs 713.99 GP RBF par-tian-fd 940.72
GP RBF par-tian-fd 1199.01 rKRG par-tian-fd 6174.1
iKRG par-tian-fd 6563.32 iKRG par-tian-fd 29045.14

ANN BLR par-tian-fd 33617.6 GP RBF par-fd-hvc 54025.08

q-EGO cl-mean
GP RBF ada-wang-min 1109.17 GP RBF par-tian-fs 6579.41
GP RBF par-tian-fs 1515.04 GP RBF pov 6972.94
GP RBF pov 2276.48 GP RBF dyn-fps-excl 8067.16
GP RBF pi 2532.63 GP RBF dyn-spf-excl 8341.52
GP RBF dyn-fs-excl 2749.46 GP RBF pi 8386.29

q-post-HMC
GP HMC pov 18228.89 GP HMC pov 73350.55
GP HMC par-fd-cd 23781.63 BNN HMC pov 105167.53
BNN HMC pov 82980.38 GP HMC par-fd-cd 177484.34
BNN HMC par-fd-cd 220068.63 BNN HMC par-fd-cd 259459.82

q-subnets
BNN MCD pov 306678.75 BNN MCD pov 319621.31
BNN MCD par-fd-cd 352757.01 BNN MCD par-fd-cd 336275.42

LXVIII Appendix D. Parallel Surrogate-driven algorithms

Table D.4: P-SDAs applied to the Covid-19 contact reduction problem. Top (sur-
rogate,EC) pairs per AP according to the average best objective value (10 independent
repetitions). Ordering per cell according to ascending value from top to bottom. APs
ordered according to decreasing performance from top to bottom.

Surrogate EC Average Surrogate EC Average

q=18 q=72

q-EGO cl-mean
GP RBF com-spf 7824.31 GP RBF com-spf 12682.04
GP RBF par-fs-hvc 9225.48 GP RBF dyn-sf-75-excl 13082.08
GP RBF par-fs-cd 10117.98 GP RBF par-fs-hvc 13303.13
GP RBF par-fd-hvc 10168.57 GP RBF stdev 13366.71
GP RBF com-dpf 11067.32 GP RBF dyn-spf-excl 14583.25

q-post-HMC
GP HMC par-fd-cd 8778.04 GP HMC par-fd-cd 8648.29
GP HMC pov 13260.55 GP HMC pov 46031.48
BNN HMC par-fd-cd 39999.3 BNN HMC par-fd-cd 68382.66
BNN HMC pov 179248.38 BNN HMC pov 179248.38

q-subnets
BNN MCD par-fd-cd 36953.01 BNN MCD par-fd-cd 11531.22
BNN MCD pov 61471.69 BNN MCD pov 78781.72

q-Pareto
GP RBF par-fs-cd 16717.64 GP RBF par-fs-cd 44576.87
GP RBF par-fs-hvc 17495.94 GP RBF par-fs-hvc 60930.42
GP RBF par-fd-cd 22935.7 GP RBF par-fd-hvc 65451.73
GP RBF par-fd-hvc 32776.52 GP RBF par-fd-cd 71554.54

BNN MCD par-fs-cd 57509.38 BNN MCD par-fd-cd 121757.66

LXIX

F
ig
u
re

D
.1
1
:
S
o
m
e
P
-S

D
A
s
o
n
th
e
S
ch

w
e
fe
l
p
ro
b
le
m
.
T
h
e
B
N
N

M
C
D

su
rr
og

at
e
is

u
se
d
in

q
-P
a
re
to
,
G
P

R
B
F

in
cl
-m

ea
n

a
n
d
G
P

H
M
C

in
q
-p
o
st
-H

M
C
.
D
is
tr
ib
u
ti
on

o
f
th
e
b
es
t
ob

je
ct
iv
e
va
lu
es

fr
om

th
e
10

re
p
et
it
io
n
s
of

th
e
ex
p
er
im

en
t.

A
ve
ra
ge
d
va
lu
es

a
re

d
ep

ic
te
d
b
y
re
d
sq
u
ar
es
,

m
ed

ia
n
va
lu
es

b
y
re
d
d
a
sh
es

a
n
d
va
ri
a
n
ce

in
fo
rm

at
io
n
is

gi
ve
n
b
y
th
e
le
n
gt
h
of

th
e
b
ox
es
.

LXX Appendix D. Parallel Surrogate-driven algorithms

F
ig
u
re

D
.1
2:

S
o
m
e
P
-S

D
A
s
o
n
th
e
R
a
st
ri
g
in

p
ro
b
le
m
.
T
h
e
rK

R
G

su
rr
og

at
e
is

u
se
d
in

q
-P
ar
et
o
,
G
P

R
B
F
in

cl
-m

ea
n
a
n
d
G
P

H
M
C

in
q
-p
os
t-

H
M
C
.
D
is
tr
ib
u
ti
on

of
th
e
b
es
t
ob

je
ct
iv
e
va
lu
es

fr
o
m

th
e
10

re
p
et
it
io
n
s
of

th
e
ex
p
er
im

en
t.

A
ve
ra
g
ed

va
lu
es

ar
e
d
ep

ic
te
d
b
y
re
d
sq
u
a
re
s,

m
ed

ia
n

va
lu
es

b
y
re
d
d
as
h
es

an
d
va
ri
an

ce
in
fo
rm

a
ti
on

is
g
iv
en

b
y
th
e
le
n
gt
h
of

th
e
b
ox

es
.

LXXI

F
ig
u
re

D
.1
3
:
S
o
m
e
P
-S

D
A
s
o
n
th
e
R
o
se
n
b
ro

ck
p
ro
b
le
m
.
T
h
e
G
P

R
B
F
su
rr
og

at
e
is
u
se
d
in

sb
,
rK

R
G

in
q
-P
ar
et
o
a
n
d
G
P

H
M
C

in
q
-p
os
t-
H
M
C
.

D
is
tr
ib
u
ti
on

of
th
e
b
es
t
o
b
je
ct
iv
e
va
lu
es

fr
om

th
e
1
0
re
p
et
it
io
n
s
of

th
e
ex
p
er
im

en
t.

A
ve
ra
ge
d
va
lu
es

ar
e
d
ep

ic
te
d
b
y
re
d
sq
u
a
re
s,

m
ed

ia
n
va
lu
es

b
y

re
d
d
as
h
es

a
n
d
va
ri
a
n
ce

in
fo
rm

at
io
n
is

g
iv
en

b
y
th
e
le
n
gt
h
of

th
e
b
ox
es
.

LXXII Appendix D. Parallel Surrogate-driven algorithms

F
ig
u
re

D
.1
4
:
S
o
m
e

P
-S

D
A
s
on

th
e
C
o
v
id
-1
9

c
o
n
ta

c
t
re

d
u
c
ti
o
n

p
ro
b
le
m
.

T
h
e
G
P

R
B
F

su
rr
og

at
e
is

u
se
d

in
cl
-m

ea
n

an
d

q
-P
ar
et
o
an

d
G
P

H
M
C

is
u
se
d
in

q
-p
os
t-
H
M
C
.
D
is
tr
ib
u
ti
o
n
o
f
th
e
b
es
t
ob

je
ct
iv
e
va
lu
es

fr
om

th
e
10

re
p
et
it
io
n
s
o
f
th
e
ex
p
er
im

en
t.

A
ve
ra
g
ed

va
lu
es

a
re

d
ep

ic
te
d

b
y
re
d
sq
u
a
re
s,

m
ed

ia
n
va
lu
es

b
y
re
d
d
as
h
es

a
n
d
va
ri
an

ce
in
fo
rm

at
io
n
is

gi
ve
n
b
y
th
e
le
n
gt
h
o
f
th
e
b
ox
es
.

LXXIII

F
ig
u
re

D
.1
5:

B
e
st

P
-S

D
A
s
ap

p
li
ed

to
th
e
R
a
st
ri
g
in

p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le
in

te
rm

s
of

b
es
t
o
b
je
ct
iv
e
va
lu
es

av
er
a
ge
d
ov
er

th
e
1
0
re
p
et
it
io
n
s

of
th
e
ex
p
er
im

en
t.

LXXIV Appendix D. Parallel Surrogate-driven algorithms

F
ig
u
re

D
.1
6
:
B
e
st

P
-S

D
A
s
a
p
p
li
ed

to
th
e
R
o
se
n
b
ro

ck
p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
o
f
b
es
t
o
b
je
ct
iv
e
va
lu
es

av
er
a
ge
d
ov
er

th
e
10

re
p
et
it
io
n
s
of

th
e
ex
p
er
im

en
t.

LXXV

F
ig
u
re

D
.1
7:

B
e
st

P
-S

D
A
s
a
p
p
li
ed

to
th
e
C
o
v
id
-1
9
c
o
n
ta

c
t
re

d
u
c
ti
o
n
p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
o
f
b
es
t
ob

je
ct
iv
e
va
lu
es

av
er
ag

ed
ov
er

th
e
10

re
p
et
it
io
n
s
of

th
e
ex
p
er
im

en
t.

LXXVI Appendix D. Parallel Surrogate-driven algorithms

Table D.5: P-SDAs applied to the Schwefel problem. The surrogates are trained on
the complete database of simulated candidates. Top (surrogate,EC) pairs per AP
according to the average best objective value (10 independent repetitions). Ordering per
cell according to ascending value from top to bottom. APs ordered according to decreasing
performance from top to bottom.

Surrogate EC Average

q=18

q-post-HMC
GP HMC pov 2431.86
BNN HMC par-fd-cd 4018.91
GP HMC par-fd-cd 4123.49
BNN HMC pov 4290.25

q-EGO cl-mean
GP RBF dyn-df-excl 2435.37
GP RBF ada-dpf 2821.83
GP RBF ada-df 2886.64
GP RBF par-tian-fd 3014.26
GP RBF dyn-df-75-excl 3130.79

q-Pareto
ANN BLR par-fd-cd 3521.33
GP RBF par-fd-cd 3632.55
ANN BLR par-fd-hvc 3794.06
GP RBF par-fd-hvc 3872.34
GP RBF par-tian-fd 3917.57

Table D.6: P-SDAs applied to the Rastrigin problem. The surrogates are trained on
the complete database of simulated candidates. Top (surrogate,EC) pairs per AP
according to the average best objective value (10 independent repetitions). Ordering per
cell according to ascending value from top to bottom. APs ordered according to decreasing
performance from top to bottom.

Surrogate EC Average

q=18

q-EGO cl-mean
GP RBF lcb 84.66
GP RBF pov 90.82
GP RBF ada-wang-min 94.64
GP RBF dyn-fd-excl 97.24
GP RBF dyn-fs-excl 97.57

q-post-HMC
GP HMC pov 98.4
GP HMC par-fd-cd 100.46
BNN HMC pov 169.02
BNN HMC par-fd-cd 194.4

q-Pareto
GP RBF par-tian-fs 100.1
GP RBF par-tian-fd 126.49
ANN BLR par-tian-fd 138.86
GP RBF par-fd-cd 143.25
GP RBF par-fs-cd 155.13

LXXVII

Table D.7: P-SDAs applied to the Rosenbrock problem. The surrogates are trained
on the complete database of simulated candidates. Top (surrogate,EC) pairs per
AP according to the average best objective value (10 independent repetitions). Ordering
per cell according to ascending value from top to bottom. APs ordered according to
decreasing performance from top to bottom.

Surrogate EC Average

q=18

q-EGO cl-mean
GP RBF ada-df 962.09
GP RBF dyn-df-75-excl 1027.11
GP RBF dyn-df-excl 1146.64
GP RBF ada-dpf 1202.51
GP RBF dyn-sf-excl 2310.55

q-Pareto
GP RBF par-tian-fs 2779.66
GP RBF par-tian-fd 8192.03
GP RBF par-fd-hvc 12603.82
GP RBF par-fd-cd 17783.92
GP RBF par-fs-hvc 18340.68

q-post-HMC
GP HMC par-fd-cd 8183.66
GP HMC pov 36484.01
BNN HMC pov 105077.64
BNN HMC par-fd-cd 234481.45

Table D.8: P-SDAs applied to the Covid-19 contact reduction problem. The surro-
gates are trained on the complete database of simulated candidates. Top (sur-
rogate,EC) pairs per AP according to the average best objective value (10 independent
repetitions). Ordering per cell according to ascending value from top to bottom. APs
ordered according to decreasing performance from top to bottom.

Surrogate EC Average

q=18

q-Pareto
GP RBF par-fs-hvc 8298.09
GP RBF par-fs-cd 9294.49
GP RBF par-fd-cd 11267.75
GP RBF par-fd-hvc 12026.66
GP RBF par-tian-fd 73839.82

q-EGO cl-mean
GP RBF com-spf 8897.23
GP RBF par-fs-hvc 10459.41
GP RBF par-fs-cd 10997.18
GP RBF stdev 11671.04
GP RBF dyn-sf-75-excl 12519.88

q-post-HMC
GP HMC par-fd-cd 13258.49
BNN HMC par-fd-cd 50113.88
GP HMC pov 80087.67
BNN HMC pov 179248.38

LXXVIII Appendix D. Parallel Surrogate-driven algorithms

F
ig
u
re

D
.1
8:

B
e
st

P
-S

D
A
s
ap

p
li
ed

to
th
e
R
a
st
ri
g
in

p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le
in

te
rm

s
of

b
es
t
ob

je
ct
iv
e
va
lu
es

av
er
ag

ed
ov
er

th
e
10

re
p
et
it
io
n
s

o
f
th
e
ex
p
er
im

en
t.

R
T
S
:
re
d
u
ce
d
tr
ai
n
in
g
se
t.

C
T
S
:
co
m
p
le
te

tr
ai
n
in
g
se
t.

LXXIX

F
ig
u
re

D
.1
9
:
B
e
st

P
-S

D
A
s
a
p
p
li
ed

to
th
e
R
o
se
n
b
ro

ck
p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
of

b
es
t
ob

je
ct
iv
e
va
lu
es

av
er
ag

ed
ov
er

th
e
1
0

re
p
et
it
io
n
s
of

th
e
ex
p
er
im

en
t.

R
T
S
:
re
d
u
ce
d
tr
ai
n
in
g
se
t.

C
T
S
:
co
m
p
le
te

tr
ai
n
in
g
se
t.

LXXX Appendix D. Parallel Surrogate-driven algorithms

F
ig
u
re

D
.2
0
:
B
e
st

P
-S

D
A
s
a
p
p
li
ed

to
th
e
C
o
v
id
-1
9
p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le
in

te
rm

s
of

b
es
t
o
b
je
ct
iv
e
va
lu
es

av
er
a
ge
d
ov
er

th
e
1
0
re
p
et
it
io
n
s

o
f
th
e
ex
p
er
im

en
t.

R
T
S
:
re
d
u
ce
d
tr
a
in
in
g
se
t.

C
T
S
:
co
m
p
le
te

tr
ai
n
in
g
se
t.

Appendix E

Parallel Hybrid methods

Algorithm 21 Framework of SMBO+EA from [Reh+18]

Input
simulator : real objective function
GP RBF : surrogate model
budget : computational budget for the search
EI : first infill criterion
pov : second infill criterion
npop1 = 100: population size for AP1 and AP2
ngen = 50: number of generations for AP1 and AP2
npop2 = 72: population size for AP3
q = 16: number of candidates to simulate per cycle for AP3

1: database ← LHS+parallel simulations(simulator, npop2)
2: surrogate ← training(database)
3: P ← database ▷ initial population
4: while budget ̸= 0 do
5: BEGIN parallel section
6: IN 1 core:
7: x(1) ← 1-point Acquisition Process(EI, surrogate, npop1, ngen) ▷ Algorithm 5
8: y(1) ← simulator(x(1))
9: IN 1 core:

10: x(2) ← 1-point Acquisition Process(pov, surrogate, npop1, ngen) ▷ Algorithm 5
11: y(2) ← simulator(x(2))
12: IN 16 cores:
13: Pp ← selection(P, q) ▷ population of parents
14: Bsim ← reproduction(Pp, q) ▷ population of children
15: parallel simulations(simulator, Bsim)
16: END parallel section
17: Bsim ← Bsim ∪ (x(1), y(1)) ∪ (x(2), y(2))
18: database ← database ∪ Bsim
19: surrogate ← training(database)
20: P ← replacement(P, Bsim, npop2)
21: budget ← get remaining budget(budget, elapsed time)
22: end while
23: (xmin, ymin) ← get best cost(database)
24: return xmin, ymin

LXXXI

LXXXII Appendix E. Parallel Hybrid methods

F
ig
u
re

E
.1
:
P
-S

A
E
A
s
v
e
rs
u
s

P
-S

D
A
s
a
p
p
li
ca
ti
o
n
to

th
e
R
a
st
ri
g
in

p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
of

b
es
t
o
b
je
ct
iv
e
va
lu
es

av
er
ag

ed
ov
er

th
e
1
0
re
p
et
it
io
n
s
of

th
e
ex
p
er
im

en
t.

LXXXIII

F
ig
u
re

E
.2
:
P
-S

A
E
A
s
v
e
rs
u
s
P
-S

D
A
s
a
p
p
li
ca
ti
on

to
th
e
R
o
se
n
b
ro

ck
p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
o
f
b
es
t
o
b
je
ct
iv
e
va
lu
es

av
er
a
ge
d

ov
er

th
e
10

re
p
et
it
io
n
s
of

th
e
ex
p
er
im

en
t.

LXXXIV Appendix E. Parallel Hybrid methods

F
ig
u
re

E
.3
:
P
-S

A
E
A
s
v
e
rs
u
s
P
-S

D
A
s
ap

p
li
ca
ti
on

to
th
e
C
o
v
id
-1
9
c
o
n
ta

c
t
re

d
u
c
ti
o
n
p
ro
b
le
m
.
C
o
n
ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
of

b
es
t
o
b
je
ct
iv
e

va
lu
es

av
er
a
g
ed

ov
er

th
e
1
0
re
p
et
it
io
n
s
o
f
th
e
ex
p
er
im

en
t.

LXXXV

F
ig
u
re

E
.4
:
P
a
ra

ll
e
l
H
y
b
ri
d

m
e
th

o
d
s
a
p
p
li
ed

to
th
e
C
o
v
id
-1
9

c
o
n
ta

c
t
re

d
u
c
ti
o
n

p
ro
b
le
m
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
o
f
b
es
t
o
b
je
ct
iv
e

va
lu
es

av
er
a
ge
d
ov
er

th
e
1
0
re
p
et
it
io
n
s
of

th
e
ex
p
er
im

en
t.

LXXXVI Appendix E. Parallel Hybrid methods

F
ig
u
re

E
.5
:
P
a
ra

ll
e
l
sc
a
la
b
il
it
y
(u

n
a
lt
e
re

d
v
a
lu
e
s
fo
r
q)
.
C
on

ve
rg
en

ce
p
ro
fi
le

in
te
rm

s
of

b
es
t
ob

je
ct
iv
e
va
lu
es

av
er
ag

ed
ov
er

th
e
1
0
re
p
et
it
io
n
s

o
f
th
e
ex
p
er
im

en
t
fo
r
d
iff
er
en
t
n
u
m
b
er
s
of

av
a
il
ab

le
co
m
p
u
ti
n
g
co
re
s
an

d
w
it
h
ou

t
an

y
m
o
d
ifi
ca
ti
o
n
of

th
e
a
lg
o
ri
th
m
s.

LXXXVII

F
ig
u
re

E
.6
:
P
a
ra

ll
e
l
sc
a
la
b
il
it
y

(q
=

n
c
o
r
e
s
).

D
is
tr
ib
u
ti
on

of
th
e
b
es
t
ob

je
ct
iv
e
va
lu
es

fr
o
m

th
e
1
0
re
p
et
it
io
n
s
of

th
e
ex
p
er
im

en
t.

T
h
e
n
u
m
b
er

of
si
m
u
la
ti
on

s
p
er

cy
cl
e
q
is

fi
x
ed

to
n
co
r
es

fo
r
a
ll
th
e
ap

p
ro
ac
h
es
.
A
ve
ra
ge
d
va
lu
es

ar
e
d
ep

ic
te
d
b
y
re
d
sq
u
a
re
s,

m
ed

ia
n
va
lu
es

b
y
re
d
d
a
sh
es

an
d

va
ri
an

ce
in
fo
rm

a
ti
o
n
is

gi
ve
n
b
y
th
e
le
n
gt
h
o
f
th
e
b
ox
es
.

LXXXVIII Appendix E. Parallel Hybrid methods

F
ig
u
re

E
.7
:
P
a
ra

ll
e
l
sc
a
la
b
il
it
y

(q
=

n
c
o
r
e
s
).

D
is
tr
ib
u
ti
on

of
th
e
b
es
t
ob

je
ct
iv
e
va
lu
es

fr
om

th
e
10

re
p
et
it
io
n
s
o
f
th
e
ex
p
er
im

en
t.

T
h
e
n
u
m
b
er

o
f
si
m
u
la
ti
o
n
s
p
er

cy
cl
e
q
is

fi
x
ed

to
n
co
r
es

fo
r
a
ll
th
e
ap

p
ro
ac
h
es
.
A
ve
ra
ge
d
va
lu
es

ar
e
d
ep

ic
te
d
b
y
re
d
sq
u
ar
es
,
m
ed

ia
n
va
lu
es

b
y
re
d
d
as
h
es

a
n
d

va
ri
an

ce
in
fo
rm

a
ti
o
n
is

gi
ve
n
b
y
th
e
le
n
gt
h
o
f
th
e
b
ox
es
.

Appendix F

pySBO

Listing F.1: Python code of the COVID vaccines class in pySBO.

1 import time
2 import numpy as np
3 import sys
4 from AuTuMN. apps . cov id 19 . va c c i n e op t im i s a t i on . v a c c i n e op t i

import i n i t i a l i s e o p t i o b j e c t
5 from Problems . Mul t i Objec t ive import Mult i Objec t ive
6
7 class COVID vaccines (Mul t i Objec t ive) :
8
9 def i n i t (s e l f , country) :
10 Mul t i Objec t ive . i n i t (s e l f , 17 , 3)
11 a s s e r t type (country)==str
12 s e l f . o p t i o b j e c t = i n i t i a l i s e o p t i o b j e c t (country)
13
14 def d e l (s e l f) :
15 Mul t i Objec t ive . d e l (s e l f)
16 del s e l f . o p t i o b j e c t
17
18 def s t r (s e l f) :
19 return ”COVID vacc ine s problem\n ”+str (s e l f . n dvar)+”

d e c i s i o n v a r i a b l e s \n ”+str (s e l f . n obj)+” ob j e c t i v e s ”
20
21
22 def pe r f o rm r e a l e v a l u a t i on (s e l f , cand idate s) :
23 a s s e r t s e l f . i s f e a s i b l e (cand idate s)
24 i f cand idate s . ndim==1:
25 cand idate s = np . array ([cand idate s])
26
27 c o s t s = np . z e r o s ((cand idates . shape [0] , s e l f . n obj))
28 for i , cand in enumerate(cand idate s) :
29 t s t a r t = time . time ()
30 c o s t s [i] = s e l f . o p t i o b j e c t . e v a l u a t e ob j e c t i v e (

cand) # deaths , h o s p i t a l , r e l a x a t i o n
31 c o s t s [i] [2] = 1 . − c o s t s [i] [2]
32 t end = time . time ()
33 print (” Simulat ion time : ”+str (t end−t s t a r t))

LXXXIX

XC Appendix F. pySBO

34
35 return c o s t s
36
37
38 def get bounds (s e l f) :
39 bounds=np . ones ((2 , s e l f . n dvar))
40 bounds [0 , :] ∗=0 . 0
41 bounds [1 , :] ∗=1 . 0
42 return bounds
43
44
45 def i s f e a s i b l e (s e l f , cand idates) :
46 f e a s i b l e=False
47 i f Mult i Objec t ive . i s f e a s i b l e (s e l f , cand idates)==True :
48 [lower bounds , upper bounds]= s e l f . get bounds ()
49 pha s e2 l e s s 98 = np . where (np .sum(cand idate s [: , 0 : 8] ,

ax i s=1)<=0.98) [0]
50 pha s e3 l e s s 98 = np . where (np .sum(cand idate s [: , 8 : 1 6] ,

ax i s=1)<=0.98) [0]
51 f e a s i b l e =(lower bounds<=candidate s) . a l l () and (

candidates<=upper bounds) . a l l () and (np .sum(
cand idate s [: , 0 : 8] , ax i s=1)<1.0+1.e−8) . a l l () and (
np .sum(cand idate s [: , 8 : 1 6] , ax i s=1)<1.0+1.e−8) . a l l
()

52 i f f e a s i b l e :
53 i f pha s e2 l e s s 98 . s i z e !=0:
54 print (” [COVID vaccines . py] WARNING:

candidate (s) ”+str (pha s e2 l e s s 98)+” use
l e s s than 98% of vacc ine s in phase 2”)

55 i f pha s e3 l e s s 98 . s i z e !=0:
56 print (” [COVID vaccines . py] WARNING:

candidate (s) ”+str (pha s e3 l e s s 98)+” use
l e s s than 98% of vacc ine s in phase 3”)

57
58 return f e a s i b l e

XCI

Table F.1: List of libraries used in the numerical experiments reported in this thesis.

Name Tool Language Reference

GPyTorch GPs Python [Gar+18]
Flacco dispersion metric R [KT19]

Keras and Tensorflow ANNs Python [Cho15] and [Aa15]
Matplotlib visualization Python [Hun07]
mpi4py parallel communication Python [DF21]
Numpy vector calculations Python [Ha20]
pybnn ANN BLR Python [Sno+15]
pyDOE LHS Python [Bau+]
Pygmo benchmark, hyper-volume Python [Ba19]

pyKriging Kriging Python [PR15]
Pyro and NumPyro GP HMC, BNN HMC Python [Bin+18] and [PPJ19]

Scikit-Learn K-Means Python [Ped+11]
Scipy distance calculations Python [Va20]

XCII Appendix F. pySBO

F
ig
u
re

F
.1
:

G
lo
b
al

U
M
L

d
ia
g
ra
m

of
p
y
S
B
O
.

A
va
il
ab

le
at

h
t
t
p
s
:
/
/
p
y
s
b
o
.
r
e
a
d
t
h
e
d
o
c
s
.
i
o
/
e
n
/
l
a
t
e
s
t
/
_
d
o
w
n
l
o
a
d
s
/

2
8
9
9
9
b
2
8
7
a
4
b
8
5
7
4
c
9
e
6
6
5
8
3
a
2
9
4
1
0
a
f
/
U
M
L
.
s
v
g

https://pysbo.readthedocs.io/en/latest/_downloads/28999b287a4b8574c9e66583a29410af/UML.svg
https://pysbo.readthedocs.io/en/latest/_downloads/28999b287a4b8574c9e66583a29410af/UML.svg

XCIII

F
ig
u
re

F
.2
:
G
lo
b
al

U
M
L
d
ia
gr
am

of
th
e
P
ro
b
le
m

co
ll
ec
ti
o
n
of

cl
a
ss
es
.

XCIV Appendix F. pySBO

F
ig
u
re

F
.3
:
G
lo
b
al

U
M
L
d
ia
gr
am

of
th
e
E
vo
lu
ti
on

co
ll
ec
ti
o
n
of

cl
a
ss
es
.

XCV

F
ig
u
re

F
.4
:
G
lo
b
al

U
M
L
d
ia
gr
am

of
th
e
S
u
rr
og

at
e
co
ll
ec
ti
o
n
of

cl
a
ss
es
.

XCVI Appendix F. pySBO

F
ig
u
re

F
.5
:
G
lo
b
a
l
U
M
L
d
ia
gr
am

of
th
e
E
vo
lu
ti
on

C
on

tr
ol

co
ll
ec
ti
on

o
f
cl
as
se
s.

	Abstract
	Résumé
	Remerciements
	List of acronyms
	Contents
	Introduction
	Parallel Surrogate-based Optimization
	Introduction
	Solving expensive black-box simulation-based optimization problems
	Search landscape and expensiveness
	Evolutionary Algorithms
	Design stages of P-SBOAs

	Surrogate building
	Generalities
	Linear models
	Gaussian Processes
	Artificial Neural Networks
	Analysis of the models

	Coupling Surrogates with Evolutionary Algorithms
	Surrogate as an evaluator
	Surrogate as a filter
	Surrogate as a driver
	Analysis of the couplings

	Related works
	Computational budget
	Surrogate model selection
	Definition of promisingness
	Acquisition processes for parallel simulations

	Problem instances
	Covid-19 contact reduction
	Analytical benchmark functions

	Parallel Surrogate-assisted Evolutionary computations
	Introduction
	BNN_MCD as an evaluator and a filter
	Bayesian Neural Network approximated via Monte-Carlo Dropout (BNN_MCD)
	Surrogate as an evaluator and a filter (SaaEF)

	Ensembles of Evolution Controls
	Random and scalar ECs
	Pareto-based bi-criterion ECs
	Dynamic ensembles
	Adaptive ensembles
	Voting committees

	Comparison of Surrogates
	Calibration of BNN_MCD
	Surrogates on the benchmark

	Experiments
	Computational budget
	Calibration of SaaEF
	Experimental protocol
	Empirical analysis

	Conclusion

	Parallel Surrogate-driven algorithms
	Introduction
	From Evolution Controls to Infill Criteria
	EC-based selection and replacement
	q-EGO revisited

	Fast Acquisition Processes
	q-subnets: sub-networks as multi-surrogate
	q-post-HMC: sampling of surrogates
	q-Pareto: a Pareto dominance-based AP

	Experiments
	Calibration of GP_HMC and BNN_HMC
	Calibration of the optimizer
	Experimental protocol
	Empirical analysis
	Complete training set

	Conclusion

	Parallel Hybrid methods
	Introduction
	P-SAEAs versus P-SDAs
	Computational costs
	Context of moderately expensive problem
	Convergence profiles

	Hybrid Acquisition Processes
	Hybrid Informed Operator and Infill Criterion-based Acquisition Processes
	Experiments on Covid-19 contact reduction
	Parallel scalability

	A posteriori landscape analysis
	Reducing Covid-19-related death by contact reduction strategies
	Characterization of the landscape

	Conclusion

	Software platform for P-SBO
	Introduction
	Scalable design
	Motivations
	Conceptual objectives
	The tools for scalable code architecture

	The modular structure of pySBO
	From a global view to a finer description
	Related software

	Multi-objective test case
	Covid-19 vaccine distribution problem
	Surrogate-free approaches
	Surrogate-based algorithms

	Numerical experiments
	Protocol
	Empirical analysis
	Resulting vaccine distribution plan

	Conclusion

	Conclusions and perspectives
	Bibliography
	List of Figures
	List of Tables
	Parallel Surrogate-based optimization
	Parallel Surrogate-assisted Evolutionary computations
	Multi-objective optimization
	Parallel Surrogate-driven algorithms
	Parallel Hybrid methods
	pySBO

