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Résumé

Ce travail s’inscrit dans le contexte du vieillissement de grands ouvrages en béton dotés d’une fonc-
tion de confinement, dont les bâtiments réacteurs de centrales nucléaires constituent un exemple
archétypal. Il vise notamment à développer une stratégie numérique prévisionnelle du comporte-
ment à long terme de tels ouvrages, afin de mieux pouvoir anticiper d’éventuelles réparations dans
le cadre de leur maintenance. L’amélioration de la compréhension des phénomènes physiques liés au
vieillissement, conjuguée à l’essor des ressources de calcul, ont permis le développement de modèles
numériques visant à simuler le comportement Thermo-Hydro-Mécanique et de Fuite (THM-F) à
long terme de grands ouvrages de confinement. Néanmoins, les paramètres d’entrées de tels modèles
sont entachés d’incertitudes, notamment du fait d’un manque de connaissance à leur sujet, ou d’une
variabilité intrinsèque. Par conséquent, cette thèse se base principalement sur le cadre général de
la Quantification d’Incertitudes, visant à modéliser explicitement les incertitudes en simulation
numérique. Dans ce cadre, les incertitudes des paramètres d’entrées sont typiquement modélisées
par des lois de probabilités, pour ensuite être propagées à travers le modèle dans l’optique d’étudier
la variabilité de sa réponse, ou d’estimer des quantités d’intérêt spécifiques, tels que des moments
ou des quantiles.

Toutefois, les modèles THM-F impliquent typiquement un grand nombre de paramètres incer-
tains, dont la majorité n’est pas mesurable directement. De ce fait, la loi de probabilité modélisant
leurs incertitudes est souvent choisie de manière subjective, en se basant sur des avis d’experts.
Ainsi, cette thèse se place dans le cadre de l’inférence Bayésienne, afin de mettre à jour un état de
connaissance a priori sur les paramètres d’entrée à partir de données d’observations bruitées de la
réponse de la structure étudiée.

Dans un premier temps, le travail de thèse vise à coupler l’inférence Bayésienne à des techniques
numériques adaptées à des modèles THM-F, reposant le plus souvent sur des codes éléments finis
coûteux. Dans cette optique, un cadre algorithmique alternatif aux méthodes de type MCMC
classiques est étudié, et un couplage avec des techniques de méta-modélisation est proposé afin
d’échantillonner la loi a posteriori à un coût numérique réduit. Ensuite, une méthodologie générale
visant à réaliser des prévisions probabilistes du comportement THM-F d’ouvrages de confinement
est présentée. Dans ce contexte, les incertitudes des entrées du modèle THM-F sont quantifiées de
manière inverse par inférence Bayésienne, à partir de mesures d’auscultation réalisées à l’échelle de
la structure. L’approche proposée est illustrée via une étude de la maquette VeRCoRs (enceinte de
confinement à l’échelle 1:3).

Enfin, dans le cadre d’une analyse de fiabilité, cette thèse vise à estimer les risques de dépassement
de critères de fuite réglementaires, tout en modélisant l’effet d’éventuelles opérations de mainte-
nance. Dans ce cadre, l’impact du choix de la loi des paramètres d’entrées sur des probabilités
de défaillance est évalué, à travers une analyse de robustesse. Enfin, une approche Bayésienne
visant à actualiser des probabilités de défaillance à partir de données d’observation est proposée.
La méthodologie proposée est appliquée au cas réaliste d’une enceinte de confinement à l’échelle
1:1 opérationnelle.

Mots-clés: Inférence Bayésienne - Génie Civil - Quantification d’incertitudes - Analyse de

fiabilité - Simulation numérique - Thermo-hydro-mécanique





Abstract

This work falls within the context of the aging of large concrete containment structures, such as
reactor buildings in nuclear power plants. It aims at devising a numerical strategy for forecasting
the long-term physical behavior of such structures, in order to better anticipate their maintenance.
Recent improvements of the understanding of physical phenomena behind aging and the increase of
computational resources have enabled the development of numerical models aiming at simulating
the Thermo-Hydro-Mechanical and Leakage (THML) behavior of large aging concrete structures.
Nevertheless, the input parameters of such models are tainted with uncertainties, due to a lack of
knowledge or to a natural randomness.

Consequently, this thesis is mainly based on the general framework of Uncertainty Quantifica-
tion (UQ), aiming at explicitly modeling uncertainties in numerical simulation. In this framework,
the uncertainties tainting input parameters are typically modeled by probability laws, and are
subsequently propagated through the model in order to study the variability of its response, or
to estimate specific quantities of interest, such as moments or quantiles. However, THML com-
putational models typically involve a large amount of uncertain parameters, most of them being
not measurable directly. For this reason, the input probability law modeling their uncertainties is
usually chosen in a subjective way, based on expert judgement. Then, this thesis is placed in the
framework of Bayesian inference, in order to update a prior level of knowledge on input parameters
from noisy observational data of the response of the structure under study.

Firstly, this work aims at coupling Bayesian inference with numerical techniques adapted with
THML computational models, these last most often lying on costly finite element codes. In this
perspective, a recent Bayesian computational framework is studied as an alternative to classical
MCMC sampling techniques, and a coupling with surrogate modeling techniques is proposed in
order to efficiently draw samples from posterior distributions with a reduced computational cost.
Next, a general methodology aiming at performing probabilistic forecasts of the long-term THML
behavior of containment structures is presented. In this context, the uncertainties of input parame-
ters of the adopted THML model are quantified through Bayesian inference, from in-situ monitoring
data. The proposed methodology is illustrated through a study of the VeRCoRs mock-up (1:3 scale
nuclear containment building).

Lastly, in the framework of a reliability analysis, this thesis aims at estimating risks of exceeding
regulatory leakage thresholds, while modeling the effect of eventual maintenance operations. In
this framework, the impact of the choice of the inputs’ probability law on some quantity of interest
(including probabilities of failure) is assessed, through a robustness analysis. Next, a Bayesian
approach aiming at updating both probabilities of failure and input parameters from monitoring
data is presented. The overall methodology is applied to the realistic case of an operating 1:1 scale
nuclear containment building.

Key-words: Bayesian inference - Civil Engineering - Uncertainty Quantification - Reliability

analysis - Numerical simulation - Thermo-hydro-mechanical modeling
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prendre davantage de recul vis-à-vis de ces derniers et de leurs perspectives. À ce titre,
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General introduction

Industrial and scientific context

Nuclear power plants constitute a substantial part of the French electricity production,
mainly ensured by the Électricité de France (EDF) company. Indeed, the French nuclear
fleet includes 56 operating reactors, which represent about 78% of the French electricity pro-
duction (EDF, 2021). This energy mix results from an energy independence policy initiated
after the end of the Second World War, and subsequently confirmed during the two oil crises
of 1973 and 1979.

All the aforementioned operating reactors are based on the Pressurized Water Reactor
(PWR) technology, and can be classified in several families according to their power, namely:

• 32 reactors each developing a power of 900 MWe. These reactors are distributed on 8
sites, and have been constructed between 1971 and 1987.

• 20 reactors each developing a power of 1300 MWe, distributed on 8 sites and built
between 1977 and 1993.

• 4 reactors each developing a power of 1450 MWe, distributed on 2 sites and built
between 1984 to 1999.

Lastly, the construction of a new reactor based on the European Pressurized Reactor (EPR)
technology has been launched on the site of Flamanville, in 2007. This reactor has a charac-
teristic electrical power of 1650 MWe. The geographical distribution of the aforementioned
reactors is presented in Fig. i.

Then, the functioning principle of a PWR is depicted in Fig. ii. The reactor core is the
locus of nuclear reactions: it is placed in a steel vessel, and comprises several hundreds of
nuclear fuel rods. The disintegration reactions of fissile material contained in nuclear fuel
induce an important heat release, which is absorbed by the water surrounding fuel rods,
evolving in a closed loop, known as reactor coolant system or primary loop (in yellow in Fig.
ii). This water has a temperature varying between 280 and 330 ◦C, and is pressurized to
155 bars in order to remain liquid. In this way, the heat release in the core is transported to
steam generators, which transform this heat into steam in a second closed loop, namely the
secondary loop (in blue in Fig. ii). This loop converts the thermal energy of the primary loop
into mechanical energy, through the injection of steam in a turbine. This last is linked to an
alternator, which transforms mechanical energy into electrical energy. Lastly, the steam is
re-transformed into water by a condenser, which is linked to a cold source through a tertiary
loop (or cooling loop, in green in Fig. ii). This cold source consists in water usually collected
from a river, or the sea, and is possibly completed by a cooling tower.

1



2 General introduction

Figure i: Location of the 56 operating nuclear reactors, and the Flamanville EPR (in construction)
in France. The operational phase of Fessenheim’s power plant has been stopped in 2020. ©IRSN

Figure ii: Functioning principle of a pressurized water reactor in a nuclear power plant. ©EDF

The safety of a nuclear reactor mainly hinges on three functions, namely the control of
core reactivity, fuel cooling and the containment of radioactive elements. In this context, a
reactor comprises three containment barriers:

1. fuel cladding tubes, which constitute the outer layer of fuel rods. They enable to
prevent radioactive fission products from contaminating water of the primary loop.

2. the primary loop, notably including the reactor vessel (see Fig. ii).

3. the containment building, which shelters the primary loop (see Fig. ii).
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In particular, the containment building ensures two functions, namely the protection of
the reactor in the case of external aggressions (e.g. impacts), and the protection of the
environment from radioactive elements released during an internal accident. Therefore, this
building must ensure a sufficient leak tightness in order to fulfill its protective role.

The design principle of nuclear containment buildings (NCB) in French nuclear power
plants has progressively evolved since the early 70s (Jacquemain, 2015). Firstly, containment
buildings of 900 MWe reactors consist in a single prestressed concrete wall, whose leak
tightness is ensured by a steel liner. Then, the containment buildings of 1300 MWe and 1450
MWe reactors have double concrete walls, which comprise an inner prestressed concrete wall
without steel liner, and an outer reinforced concrete wall. The protection of the reactor is
ensured by the outer wall, whereas leak tightness is ensured by the inner wall. Moreover,
an active system keeps the space between the two walls under a constant vacuum, so that
potential radioactive elements stemming from accidental situations can be pumped up and
filtered instead of being released in the environment.

This thesis is motivated by the problematic of the leak tightness of double-walled NCB.
In France, regulatory authorities specify a criterion related to the leakage rate of the inner
containment wall: when this last is subjected to an internal pressure of about 5.2 bars, its
leakage rate must not exceed 1.5% per day of the mass of air contained inside. In this context,
the leakage rate of the containment building is measured before entry to service, and every
ten years throughout decennial pressurization tests. Meeting the regulatory leak tightness
criterion during these tests constitutes a condition for the continuation of the exploitation
of the reactor.

Besides, concrete is a complex heterogeneous material, whose properties may evolve in
time under the effect of several physical phenomena, related to aging. In particular, due
to such phenomena, the leakage rate of NCB can evolve over time, which may jeopardize
their long-term serviceability. Since such structures cannot be replaced, maintenance oper-
ations may be considered in order to fulfill the prescribed leak tightness requirements. Such
operations have to be undertaken when the reactor is shut down, and typically involve an
important cost. Thus, it is necessary to devise numerical strategies aiming at predicting the
leakage rate of NCB, in order to better anticipate potential repair works.

Uncertainty quantification of computational models

Numerical modeling and simulation constitute major tools in modern engineering. Since the
end of the twentieth century, the steady increase of computational resources and algorithmic
advances in scientific computing have enabled the simulation of more and more complex
physical systems. As a result, computational models are nowadays at the core of the design
and the management of engineering systems, such as bridges, dams or NCB. In this context,
they provide numerical simulators of the behavior of the aforementioned systems, and are
usually substituted to real experiments which are generally too costly, too complex, or even
impossible to carry out. As an example, in the framework of NCB, numerical simulators have
been devised so as to assess the effects of aging on their multi-physic long-term behavior,
and evaluate their serviceability. Such computational models may be constituted by simple
analytical formulae, or sets of partial differential equations solved with numerical schemes,
such as the finite element method.
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Nevertheless, despite their increasing fidelity, computational models still constitute ide-
alized representations of the observed reality. Consequently, model inadequacies become
unavoidable at some point, notably due to a lack of knowledge about governing physical
laws, or due to unresolved scales. Furthermore, the simulation of complex physical phe-
nomena requires a potentially important amount of input parameters. For instance, in the
framework of civil engineering structures, such parameters typically include geometrical and
material properties, initial and boundary conditions, as well as parameters which may be
deprived of physical meaning, or may not be measurable directly. Such parameters are un-
certain, typically due to intrinsic randomness of underlying physical phenomena, or due to
a limited information. However, uncertainties are often disregarded in practice, since the
modeling approaches undertaken in engineering studies remain mostly deterministic.

Uncertainty Quantification (UQ) is the scientific discipline aiming at explicitly modeling
uncertainties in numerical simulations (De Rocquigny et al., 2008; Smith, 2014; Sullivan,
2015). It has recently emerged as an active research field, which encompasses a wide range
of theoretical and applied features at the interface of statistics, probability theory, applied
mathematics and computer science. Furthermore, UQ techniques nowadays disseminate in
various branches of engineering and applied sciences (Ghanem et al., 2017; Soize, 2017).
This is particularly facilitated by the interdisciplinary and modular nature of the general
framework of UQ defined in (De Rocquigny et al., 2008; Iooss, 2009; Sudret, 2007). Such a
framework, illustrated in Figure iii, hinges on a chain of few fundamental steps representative
of a typical UQ analysis, which are described hereafter:

Figure iii: Schematic representation of the Uncertainty Quantification framework, adapted from
(De Rocquigny et al., 2008; Sudret, 2007; Wagner, 2021).

• Step A - Model specification: the first step consists in specifying a computational
model that simulates the physical system under study. Such a model constitutes the
core of a typical UQ analysis, and its specification implies the definition of input
parameters as well as output variables. In the case of NCB, it may typically involve a
multi-physic computational workflow (Bouhjiti, 2018).
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• Step B - Quantification of uncertainty sources: the second step aims at identi-
fying the sources of uncertainties tainting the input parameters of the model. In this
context, uncertainties can be modeled within several different mathematical frame-
works, including probability theory or imprecise probabilities.

• Step C - Characterization of output variables: the third step consists in charac-
terizing the uncertainties of the output variables of the model. This characterization
notably includes methods such as uncertainty propagation (De Rocquigny et al., 2008;
Grigoriu, 2012), sensitivity analysis (Iooss and Lemâıtre, 2015; Saltelli et al., 2004)
and structural reliability analysis (Lemaire et al., 2009; Melchers, 1999).

• Step D - Inverse analysis: lastly, it is possible to quantify the uncertainties of the
input parameters through an inverse analysis, from observations of the response of the
simulated physical system (Step D). Such an inverse quantification process encompasses
parameter estimation (Kaipio and Somersalo, 2005; Tarantola, 2005), model calibration
(Kennedy and O’Hagan, 2001) and data assimilation (Evensen, 2009; Reich and Cotter,
2015). Such tasks may notably be undertaken from a probabilistic viewpoint in the
framework of Bayesian inference, to which particular attention will be paid in this
thesis.

Then, it is worth noting that methods associated to Steps C & D of the UQ frame-
work typically require repeated evaluations of the computational model. Nevertheless, the
latter is often time consuming (e.g. a complex finite element code), which hinders the ap-
plication of UQ methods. In order to circumvent this problem, the computational model is
usually replaced by inexpensive-to-evaluate mathematical function, called a surrogate model
(or metamodel, or response surface) (Fang et al., 2005; Forrester et al., 2008). Likewise,
model order reduction (Chinesta et al., 2014; Schilders et al., 2008) approaches aim at find-
ing a compromise between a simpler (and less costly) model and a reasonable accuracy
level. Surrogate modeling became an integral part of the UQ framework, and constitute an
intermediate step which enables the acceleration of UQ methods.

Contributions and outline of the thesis

Recent modeling approaches dedicated to NCB have been developed in parallel with im-
provements of the understanding of physical phenomena behind concrete aging, and nowa-
days serve as a basis for devising computational models able to reasonably well assess the
global long-term behavior of large concrete containment structures (see e.g. (Boucher, 2016;
Jason et al., 2007)). Nevertheless, as mentioned earlier, such approaches mostly remain de-
terministic, and therefore disregard the immanent uncertainties tainting input parameters.
Then, the former work of Bouhjiti (2018) constitutes a pivotal point, since it constitutes a
first attempt to quantify uncertainties in the context of the leakage behavior of containment
buildings.
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Computational models usually adopted to assess the long-term behavior of NCB typi-
cally involve a large amount of uncertain input parameters. Concerning parameters that
are directly measurable, it is possible to model their uncertainties from experimental data.
However, most input parameters are not directly measurable, so that scarce information
about them are available. As a result, expert judgement (De Rocquigny et al., 2008) is com-
monly used so as to model the uncertainties of such parameters, as in (Bouhjiti, 2018). In
this context, uncertainties are modeled based on the knowledge of one or several analysts,
in a more or less subjective fashion. Nevertheless, if large uncertainties are assumed for
input parameters, predictions are likely to be tainted with important uncertainties, which
impedes decision making related to the maintenance of NCB. Besides, uncertainties of input
parameters are most frequently modeled by probability distributions, which are themselves
known with various levels of confidence. Consequently, it would be necessary to quantify
the impact of the choice of such input distributions on some quantities of interest related to
the leakage behavior of the studied NCB, typically a probability of exceeding a regulatory
leakage threshold value. The recent UQ branch of robustness analysis (Iooss et al., 2021;
Lemâıtre et al., 2015; Sueur et al., 2016) notably aims at addressing such a question.

Besides, recent breakthroughs related to monitoring devices have enabled to acquire a
non-negligible amount of data related to the long-term behavior of large concrete structures
such as NCB. Hence, monitoring data presents a great interest, since it may be used in order
to extract information about uncertain input parameters that cannot be measured directly,
and to subsequently perform new predictions of the behavior of the structure. Such an
inverse analysis may be achieved through Bayesian inference (Kaipio and Somersalo, 2005;
Tarantola, 2005), which enables to update a prior state of knowledge in input parameters
from noisy observational data, within a probabilistic framework.

Consequently, based on the UQ framework depicted in Fig. iii, this thesis aims at pro-
viding a more comprehensive approach for quantifying uncertainties related to predictions
of the long term behavior of containment structures, by pursuing the following objectives:

i. Account for uncertainties in simulations provided by computer models of containment
structures, in order to quantify uncertainties of predictions related to their long-term
behavior,

ii. Develop a strategy for updating the level of knowledge in uncertain input parameters
from noisy and indirect observational data provided by in-situ monitoring devices,

iii. Estimate the risks of exceeding regulatory leakage rate thresholds, and evaluate the
robustness of such an estimation,

iv. Evaluate the efficiency of potential repair works scenarios, in order to better anticipate
maintenance operations of containment structures.

Then, this manuscript is organized as follows: firstly, most of the UQ computational
tools considered in this thesis are presented in Chapter 1. Several fundamental principles
of UQ are firstly introduced, by focusing on probability theory. Afterwards, the basic UQ
computational tools that will be used throughout this thesis are briefly presented. In this
perspective, forward UQ methods (Step C in Fig. iii) including uncertainty propagation,
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sensitivity analysis and reliability analysis are introduced, before presenting inverse UQ
methods (Step D in Fig. iii), by paying particular attention to Bayesian inference.

Subsequently, focusing on Bayesian inference, Chapter 2 introduces a recent Bayesian
computational framework introduced by Straub and Papaioannou (2015), named Bayesian
Updating with Structural reliability methods (BuS). This framework provides the algorithmic
basis for inverse analyses undertaken in further chapters of this thesis. In particular, the in-
volved algorithms require a large amount of model evaluations, and thus may be intractable
when dealing with time consuming models. In this context, we propose a novel approach
based on adaptive surrogate models, aiming at efficiently accelerating Bayesian computa-
tions. The performance of the proposed method is assessed through several academic test
cases with varying complexity.

Next, Chapter 3 establishes the basis for computational models adopted in applications
to NCB, through devising a modeling strategy suitable for assessing the long-term Thermo-
Hydro-Mechanical and Leakage (THML) behavior of aging concrete containment structures.
In particular, this implies the definition of input parameters (e.g. Young’s modulus, perme-
ability) as well as output variables of interest (e.g. strains, leakage rate). To that end, the
main physical phenomena related to concrete aging are firstly introduced, in order to provide
a better understanding of the physical problem mainly addressed in the next chapters. The
THML modeling strategy adopted in this thesis is subsequently presented, by capitalizing
on former works dedicated to the physical modeling of NCB (Boucher, 2016; Bouhjiti, 2018).

Then, based on the first three chapters of this thesis, Chapter 4 constitutes one of
our main contributions to the evaluation of the long-term THML behavior of containment
structures. In this perspective, we present a general methodology for assessing the long-
term behavior of large concrete containment structures subjected to aging, while accounting
for uncertainties in predictions in a probabilistic framework. In particular, we propose an
approach based on Bayesian inference aiming at updating uncertain input parameters from
noisy observational data provided by in-situ monitoring devices. In this perspective, the
central case study of this chapter is given by the so-called VeRCoRs mock-up, namely a 1:3
scale mock-up of a double-walled NCB built by EDF, for research purposes related to aging.

Our second main contribution to containment structures is presented in Chapter 5,
which tackles the problem of operating containment structures, and focuses on the assess-
ment of the reliability of their leak tightness. In this context, an operating NCB will con-
stitute the central case-study of this chapter. In particular, operating NCBs involve some
specific features compared to the VeRCoRs mock-up studied in the previous chapter, such
as maintenance operations aiming at reinforcing leak tightness. Then, we firstly introduce
some modeling assumptions in order to assess the effect and the efficiency of repair works.
Subsequently, we propose to assess the risks of exceeding regulatory leakage thresholds,
based on the framework of reliability analysis. In this context, the effects of the choice of
inputs’ probability distribution on probabilities of failure are assessed through a robustness
analysis. Finally, we propose a Bayesian approach aiming at updating the estimation of such
probabilities of failure from in-situ monitoring data collected throughout the exploitation of
the NCB.

Lastly, Chapter 6 provides a general conclusion to this thesis. It discusses the limitations
of the adopted approaches and exposes perspectives of this work.
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12 Chapter 1. State-of-the-art review on UQ techniques

1.1 Introduction

This chapter aims at providing an overall presentation of the framework of Uncertainty
Quantification (UQ). Obviously, due to the constantly evolving nature of the field of UQ,
such a presentation does not pretend to be exhaustive, but rather aims at giving an overview
on the main UQ problems that will be considered throughout this thesis.

The description of the general framework of UQ provided in the introduction of this
thesis suggests a classification of UQ methods into two distinct classes (Nagel, 2017; Wagner,
2021), namely forward UQ (Step C in Fig. iii), and inverse UQ (Step D in Fig. iii). Such a
classification is motivated by the input-output relationship embodied by the computational
model. Indeed, the model construction supposes that an output is always produced from an
input by the model. The reverse situation is not trivial, though. In this context, forward
UQ corresponds to methods that quantify the uncertainties in model outputs given the
uncertainties in inputs. Conversely, inverse UQ encompasses methods aiming at indirectly
quantifying uncertainties on inputs, given observation data related to the model outputs.

This chapter is organized as follows: firstly, Section 1.2 offers an introduction to forward
UQ. In this context, computational models are firstly presented as central objects of the UQ
framework, and the several sources of uncertainties affecting output quantities of interest
(QoI) related to such models are discussed. Then, focusing on a probabilistic description
of uncertainties, elements from Probability Theory are presented in order to introduce the
framework of uncertainty propagation. The concept of surrogate modeling is subsequently il-
lustrated through the example of polynomial chaos expansions (Ghanem and Spanos, 1991b),
which constitute a widely used class of surrogate models. The main concepts of sensitivity
and reliability analysis are then presented.

Finally, Section 1.3 introduces inverse UQ methods. The concept of inverse problem
is firstly presented, and classical deterministic methods aiming at solving inverse problems
are briefly presented. Subsequently, the probabilistic framework of Bayesian inference and
its application to inverse problems are introduced. Then, classical Bayesian computational
approaches, including Markov chain Monte Carlo (MCMC) methods (Brooks et al., 2011;
Robert and Casella, 2004), are reviewed and discussed. Recent alternative computational
techniques are also presented and discussed. Eventually, a discussion on the use of surrogate
modeling techniques within Bayesian computations is provided.
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1.2 Forward uncertainty quantification methods

1.2.1 Computational models

In the context of uncertainty quantification, a computational model is an idealized abstract
representation of a physical system. It typically takes the form of a set of equations which
may be solved analytically, or numerically through adapted resolution schemes such as the
finite element method. For instance, in the framework of civil engineering, an example of
computational model typically consists in multi-physics finite element calculations aiming
at assessing the long-term physical behavior of a nuclear containment building.

A computational model depends on a set of input parameters, and produces a specific
output for a given set of input parameters. Again, in the framework of civil engineering, such
input parameters may be related to material properties, initial and boundary conditions of
constitutive equations, as well as geometrical characteristics. Furthermore, output variables
may typically correspond to temperature, displacements, stresses or strains.

Formally speaking, a computational model may be seen as an input-output map. The
mathematical formulation of such an object is given hereafter:

M : DX ⊂ Rd → DY ⊂ R
x 7→ y =M(x)

(1.1)

whereM denotes the computational model, which is here assumed to be scalar-valued for the
sake of simplicity, x a set of input parameters lying in the input space DX , and y =M(x)
the corresponding output lying in the output domain DY .

The model in Eq. (1.1) is supposed to be deterministic, in contrast to stochastic simu-
lators (Zhu and Sudret, 2020), which produce different outputs when evaluated repeatedly
with the same inputs. Furthermore, a single evaluation of the modelM is generally far from
being instantaneous: as previously mentioned, the model M may typically be constituted
by a costly multi-physics computational workflow.

Then, the model in Eq. (1.1) is usually handled in a black-box perspective, which means
that it is only evaluated in a point-wise manner. Such a structure notably motivates the
use of UQ methods that are non-intrusive, in the sense that they do not need information
on the inner structure and mechanisms of the computational model. An illustration of
this non-intrusivity principle may be given in the framework of surrogate modeling, where
computational models are emulated from a data set formed by series of inputs and outputs.
It is worth mentioning that the term black-box does not mean that the understanding of the
underlying physical problem has to be disregarded. On the contrary, physical information
may typically enable to have a better idea of the effects of some input parameters on model
outputs, and guide some modeling choices related to UQ.

Then, the specification of a computational model allows to make forecasts of some physi-
cal variables of interest in a deterministic manner. However, inputs always present uncertain-
ties, and inadequacies are immanent in all computational models at some point. Therefore,
explicitly accounting for such uncertainties is necessary to provide a more comprehensive
description of model forecasts. In this context, a major task in UQ consists in identifying
sources of uncertainties, and devising a mathematical framework for modeling them (see
Step B in Fig. iii).
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1.2.2 Sources of uncertainties

The reliable use of a computational model hinges on the quantification of its predictive
power, i.e. its ability to predict the response of the studied physical system. Therefore, it
is necessary to identify the sources of uncertainties that affect model predictions. In this
context, several sources of uncertainties are involved, including:

• input uncertainties, which arise from the modeling of input parameters based on avail-
able information (e.g. scarce and noisy data, expert judgements) (De Rocquigny et al.,
2008),

• variability, referring to a natural variability of a physical property or phenomenon,

• measurement noise, which characterizes imprecision of data (Grabe, 2014). Such a
source of uncertainties is typically linked to input uncertainties, as the modeling of
inputs may be based on the statistical analysis of measurement data.

• modeling errors, related to inadequacies of the model, typically due to missing physics.
Such errors also comprise numerical approximation errors (Deuflhard and Hohmann,
2003), as well as surrogate modeling errors, when confronted to expensive computa-
tional models.

While these two last sources are extensively studied in the framework of statistical and
numerical analysis, UQ mainly focuses on the first two mentioned sources, to a certain
extent. Furthermore, from an engineering point of view, two types of uncertainties are
usually distinguished, following Der Kiureghian and Ditlevsen (2009):

• aleatory uncertainties, referring to a natural randomness of a given physical phe-
nomenon. For instance, in civil engineering, such a type of uncertainties may cor-
respond to the intrinsic variability of material properties, such as Young’s modulus or
tensile strength (Ghannoum, 2017; Sellier and Millard, 2014). Such uncertainties are
considered as irreducible, and concern the input parameters x in Eq. (1.1).

• epistemic uncertainties, which refer to a lack of knowledge of the analyst. Contrary
to aleatory uncertainties, epistemic uncertainties are reducible by gathering additional
information. This may typically be achieved through collecting and analyzing measure-
ments, or through an inverse analysis from observation data. Epistemic uncertainties
are affecting either the input parameters x or the modelM in Eq. (1.1).

Nevertheless, the boundary between these two types of uncertainties is difficult to dis-
cern, since most engineering problems involve both epistemic and aleatory uncertainties, and
since the nature of uncertainties still constitutes a topic of discussion in the scientific com-
munity (Der Kiureghian and Ditlevsen, 2009; Lindley, 2000; Paté-Cornell, 1996). Indeed,
Paté-Cornell (1996) suggested that it is possible to clearly distinguish the two aforemen-
tioned types, whereas Der Kiureghian and Ditlevsen (2009) proposed that such a distinction
has to be made by the analyst. The aim of the latter proposition is to provide a pragmat-
ical way to decide for which source of uncertainties it is possible to allocate some budget
to gain information and therefore improve model predictions. For instance, in the case of
nuclear buildings, the spatial variability of some material properties (e.g. properties related
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to moisture transfer in porous media, or mechanical properties) could be faithfully assessed
from a large amount of specimens obtained through repeated core sampling. Nevertheless,
such operations are not possible due to their cost, and due to the fact that they could jeop-
ardize structural integrity. In this context, non-destructive tests constitute a promising way
to achieve such a characterization, though. Alternatively, the existing monitoring devices
embedded in the structure enable to indirectly extract information about input parameters
of thermo-hydro-mechanical computational models, for instance through a Bayesian inverse
analysis.

1.2.3 Uncertainty propagation

Various mathematical concepts have been proposed in the literature so as to model uncer-
tainties in input parameters (see e.g. (Paté-Cornell, 1996; Qiu et al., 2008)). In this context,
probability theory constitutes the most popular and well established framework for model-
ing uncertainties. Alternative frameworks notably comprise imprecise probabilities (Schöbi,
2017; Walley, 2000), which encompass mathematical theories and tools that go beyond classi-
cal probabilities, including evidence theory (Dempster, 1967; Shafer, 1976), possibility theory
(Dubois and Prade, 1988), probability boxes (or p-boxes) (Ferson and Ginzburg, 1996), fuzzy
variables (Möller and Beer, 2004) and info-gap theory (Ajenjo et al., 2022; Ben-Haim, 2006).

Then, it is worth mentioning that if probability theory is widely accepted for describing
input uncertainties, the corresponding probability distributions may themselves be uncertain,
though. This is notably due to the lack of knowledge about input parameters, as well as
contradictory expert judgements, which make input distributions particularly difficult to
choose. As a result, uncertainties related to the choice of a probabilistic model may be seen
as a second level of uncertainties (Stenger, 2020).

Second level UQ approaches recently gained popularity, particularly in engineering appli-
cations. Firstly, robust Bayesian analysis (Berger, 1990; Ruggeri et al., 2005) constitutes one
of the first second level UQ approaches, proposed in the framework of Bayesian inference.
This approach aims at quantifying the impact of the choice of the prior distribution on some
QoI, through computing lower and upper bounds by modifying the prior within a given set
of probability distributions. Similarly, Owhadi et al. (2013) have introduced the optimal
UQ (OUQ) framework, which considers uncertainties in the definition of input distributions,
and aims at estimating confidence bounds on some QoI. Such bounds are said to be optimal
in the sense that they are the sharpest ones, consistently with information and assumptions
about input distributions. Such a framework has been recently extended in (Stenger, 2020).
Then, in the context of sensitivity analysis, second level UQ became particularly appealing
to quantify the impact of uncertainties related to input distributions on sensitivity indices,
including the well known Sobol’ indices (Hart and Gremaud, 2019). Moreover, recent second
level UQ approaches concern the framework of reliability analysis: the so-called perturbed law
indices (PLI) aim at assessing the impact of modifications of input distributions on estimates
of probabilities of failure (Lemâıtre et al., 2015; Sueur et al., 2016). Such indices have also
been extended to other types of QoI, such as quantiles (Iooss and Le Gratiet, 2019; Perrin
and Defaux, 2019) or superquantiles (Iooss et al., 2021). In addition, Chabridon (2018) has
proposed reliability-oriented Sobol’ indices that account for second level input uncertainties.
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In this thesis, probability theory will be extensively used to describe and quantify un-
certainties. In what follows, basic elements of probability theory are introduced, in order
to define the mathematical notions that will be used throughout this thesis. One refers to
(Billingsley, 1995; Durrett, 2019; Loève, 1977) for a comprehensive presentation on proba-
bility theory.

1.2.3.1 Probability theory

Let (Ω,F ,P) be a probability space, i.e. a triplet formed by a sample space Ω of random
outcomes, F a σ-algebra on Ω, and P a probability measure on (Ω,F). Moreover, the Borel
σ-algebra on the input space DX is denoted by B(DX) hereafter.

A random variable1 is a function X : Ω −→ DX that is measurable from (Ω,F) to
(DX ,B(DX)), that is X−1(B) ∈ F for all Borel set B ∈ B(DX). Here, X−1(B) = {ω ∈
Ω | X(ω) ∈ B} denotes the preimage of B ∈ B(DX) under X.

Then, it is possible to define a probability measure PX on (DX ,B(DX)), by pushing
forward the measure P with X:

PX(B) = P(X−1(B)) (1.2)

for all Borel set B ∈ B(DX).

The probability measure PX defined in Eq. (1.2) is the probability law (or probability
distribution) of X. For convenience sake, the notation P(X ∈ B) = PX(B) is usually
adopted2. The measure PX enables to calculate probabilities of events that ”depend” on X:
for a given ω ∈ Ω, one associates a random point (or a realization) X(ω) ∈ DX , and PX(B)
is the probability that such a random point belongs to B ∈ B(DX).

Besides, for any probability measure ν on (DX ,B(DX)), there exists a canonical way to
construct a random vectorXν : Ω −→ DX whose probability distribution is ν, i.e. PXν (B) =
ν(B), for all B ∈ B(DX). Consequently, it is possible to switch freely between probability
measures and random variables. Furthermore, the so-called cumulative distribution function
(CDF) of X is defined by:

FX(x) = P(X ≤ x) =

∫
DX

1∏d
i=1]−∞,xi]

(ξ)dPX(ξ) (1.3)

for all x ∈ DX , where 1B denotes the indicator function of B ∈ B(DX), and where the
notation x ≤ x′ if and only if xi ≤ x′i for all i ∈ {1, . . . , d} has been adopted. The CDF FX

in Eq. (1.3) fully characterizes the measure PX , in the sense that two random variables X
and X ′ have the same probability distribution if and only if FX = FX′ .

Two main types of random variables are mostly encountered in practice, namely discrete
and continuous variables. When DX is countable, the probability distribution of X may be
written as follows:

PX =
∑
x∈DX

pxδx (1.4)

1the term random variable may be sometimes used to refer to the univariate case (d = 1), whereas the
term of random vector being reserved to the multivariate case (d > 1). Here, the term random variable is
deliberately adopted as a generic term if the dimensionality of the input space DX is not precised.

2More specifically, the notations P(X = x) = PX({x}) and P(X ≤ x) = PX

(∏d
i=1]−∞, xi]

)
will be

adopted, where x = (x1, . . . , xd) ∈ DX .
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where px = P(X = x) = P({ω ∈ Ω | X(ω) = x}), and δx denotes the Dirac measure at
x ∈ DX (i.e. δx(B) = 1 if x ∈ B and 0 else, for all B ∈ B(DX)). In such a case, the variable
X is said to be discrete.

Then, the random variable X is said to be continuous if the measure PX is absolutely
continuous with respect to Lebesgue measure3. In this case, Radon-Nikodym theorem states
that there exists a Borel function πX : DX −→ R+ such that:

PX(B) =

∫
B

πX(x)dx (1.5)

for every Borel set B ∈ B(DX). The function πX is called the probability density function
(PDF) of X. Moreover, one has

∫
DX

πX(x)dx = P(X ∈ DX) = 1. When considering
continuous random variables, the denomination of distribution is sometimes deliberately
confused with the denomination of density, although the nature of the two mathematical
objects is different. The notation X ∼ PX usually adopted to signify that X follows the
distribution PX will also be extended to X ∼ πX when PX admits a density πX .

Besides, practicioners of calculus-based probability theory usually split probability dis-
tributions into discrete and continuous distributions. It is worthwhile to keep in mind that
such a classification is a bit restrictive, as underlined by Stenger (2020). Indeed, modern
probability theory is based on measure theory and (Lebesgue) integration, allowing to con-
struct more general random variables, since it is possible to define a random variable from
an abstract probability measure. Furthermore, when considering random variables taking
values in Rd, it is possible to precisely classify probability measures, and therefore random
variables. Indeed, a refined form of the Lebesgue measure decomposition theorem (see (He-
witt and Stromberg, 1965)) states that any probability measure ν on (Rd,B(Rd)) may be
written as follows:

ν = νa + νd + νs (1.6)

where νa is a measure absolutely continuous with respect to the Lebesgue measure on Rd,
νd a discrete measure, and νs a measure singular with respect to the Lebesgue measure4.
Therefore, it is worthwhile to keep in mind that there may be probability measures that are
neither discrete nor absolutely continuous. Nevertheless, in engineering applications, such
cases may be considered as pathological, to a certain extent. Consequently, this thesis will
mostly concentrate on continuous random variables.

1.2.3.2 Input distributions

In what follows, the random variable X : Ω −→ DX is assumed to be continuous, with
joint density πX . The components of X are denoted by (X1, . . . , Xd), and the input space
is written DX =

∏d
i=1DXi

, where DXi
⊂ R for all i ∈ {1, . . . , d}. Each component is then

given by a scalar-valued random variable Xi : Ω −→ DXi
.

The joint CDF of X is given by:

FX(x) = P(X1 ≤ x1, . . . , Xd ≤ xd) =

∫
DX

1∏d
i=1]−∞,xi]

(ξ)πX(ξ)dξ (1.7)

3a measure ν is said to be absolutely continuous w.r.t. a measure µ if ν(A) = 0 for all measurable set A
such that µ(A) = 0

4a measure ν is said to be singular w.r.t. a measure µ if there exists a measurable set A such that
µ(A) = 0 and ν(Ac) = 0, where Ac denotes the complementary set of A.
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Furthermore, the distribution of X may be characterized through several quantities,
including its first moments, e.g. mean µX ∈ Rd or covariance matrix ΣX ∈ Rd×d, provided
the latter are well defined and finite. The framework of Lp spaces (sometimes called Lebesgue
spaces) provides the mathematical basis for rigorously defining such quantities. Given a
measured space (E, E , ν) and p ≥ 1, one denotes by L p(E, E , ν) the following function
space:

L p(E, E , ν) =
{
f : E −→ R measurable

∣∣∣∣ ∫
E

|f |pdν <∞
}

(1.8)

This space may be equipped with the seminorm defined by ∥f∥p =
∫
E
|f |pdν. Then, for each

p ≥ 1, the space Lp(E, E , ν) is defined by the quotient of L p(E, E , ν) by the equivalence
relation ∼ on L p(E, E , ν) defined by (f ∼ g)⇔ (f = g ν-almost everywhere). In this way,
the space Lp(E, E , ν) is a normed space when equipped with ∥·∥p, since all functions that
are equal to zero ν-almost everywhere are identified to zero. For notation purposes, every
equivalence class [f ] ∈ Lp(E, E , ν) will be sloppily identified to one of its representatives
f hereafter. The abbreviated notation Lp(ν) (or Lp(f) if ν admits a Lebesgue-density f)
will be used if there is no ambiguity concerning the underlying measurable space (E, E). A
particular attention will be given to L2 spaces in the next sections, notably for their Hilbert
space structure which plays a key role in the framework of spectral approaches (Ghanem
and Spanos, 1991b), which will be considered for surrogate modeling purposes.

Assuming that Xi ∈ L2(Ω,F ,P) for all i ∈ {1, . . . , d}, the mean µX is well defined, and
reads:

µX = E[X] =

∫
Ω

X(ω)dP(ω) (1.9)

Then, the well-known transport theorem (see (Barbé and Ledoux, 2007)) enables to rewrite
the above integral as an integral with respect to the measure PX :

µX = E[X] =

∫
DX

xdPX(x) =

∫
DX

xπX(x)dx (1.10)

Likewise, the covariance matrix ΣX of X is also well defined and writes:

ΣX = E [(X − µX)(X − µX)⊺] =

∫
DX

(x− µX)(x− µX)⊺πX(x)dx (1.11)

In addition, integration is performed component-wise in Eq. (1.10), which yields µX =
(µX1 , . . . , µXd

)⊺, µXi
being the mean of Xi, namely:

µXi
= E[Xi] =

∫
DX

xiπX(x)dx (1.12)

Moreover, the coefficients of the covariance matrix ΣX in Eq. (1.11) are given by:

[ΣX ]ij = Cov[Xi, Xj] = E[(Xi − E[Xi])(Xj − E[Xj])] (1.13)

for all i, j ∈ {1, . . . , d}.
In particular, diagonal terms of the covariance matrix ΣX in Eq. (1.11) correspond to

variances of components of X, namely [ΣX ]ii = Var[Xi] = E[(Xi − E[Xi])
2]. Moreover, the
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standard deviation of Xi is denoted by σXi
= Std[Xi] =

√
Var[Xi], whereas the coefficient

of variation (CoV) is defined by CoV[Xi] = σXi
/µXi

if µXi
̸= 05.

The linear correlation matrix RX is also often used in probabilistic modeling. For i, j ∈
{1, . . . , d}, the coefficient ρ[Xi, Xj] = [RX ]ij is given by the so-called Pearson coefficient
(Pearson, 1895):

ρ[Xi, Xj] =
Cov[Xi, Xj]

σXi
σXj

(1.14)

provided that σXi
, σXj

̸= 0.

Then, two fundamental operations may be considered when handling the joint density
πX of X, namely marginalization and conditioning. The former consists in analyzing the
behavior of marginals Xi of X for i ∈ {1, . . . , d}, and more generally of sub-variables Xu =
(Xi)i∈u where u ⊂ {1, . . . , d}. It may be shown that the marginal distribution PXu also
admits a density πXu , which reads:

πXu(xu) =

∫
DX∼u

πX(x)dx∼u (1.15)

for all Xu ∈ DXu , where the notations xu = (xi)i∈u and x∼u = (xi)i/∈u have been used (and
one similarly denotes DXu =

∏
i∈uDXi

and DX∼u =
∏

i/∈uDXi
). In particular, the density

πXi
of the random variable Xi is given by:

πXi
(xi) =

∫
DX∼i

πX(x)dx∼i (1.16)

Furthermore, conditioning aims at describing random variables for which only partial
information are available. It is closely related to the notion of conditional expectation,
which will not be introduced in details here for the sake of concision, and the reader may
refer to (Billingsley, 1995, Chapter 6) for a comprehensive presentation. Conditioning also
constitutes a core principle of the framework of Bayesian inference, which will be extensively
considered throughout this thesis.

Given u ⊂ {1, . . . , d}, v = {1, . . . , d} \ u and Xv ∈ DX∼u , the conditional density of Xu

knowing Xv = xv may be defined as follows:

πXu|xv(xu|xv) =
πX(x)

πXv(xv)
(1.17)

provided that πXv(xv) > 0. Then, the conditional expectation of Xu knowing Xv = xv is
given by:

E[Xu|Xv = xv] =

∫
DXu

xuπXu|xv(xu|xv)dxu (1.18)

It is important to emphasize that the marginals PXi
may be determined from the joint

distribution PX (see Eq. (1.16)), but the reverse is not true. This observation underlies the
notion of dependence. The random variables X1, . . . , Xd are said to be mutually independent
if the joint distribution PX is equal to the tensorial product of distributions of X1, . . . , Xd,
namely:

PX = PX1 ⊗ · · · ⊗ PXd
(1.19)

5The notation CoV[·] used for the CoV shall not be confused with the notation Cov[·] used for covariance.
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In this case, the joint density πX of X factorizes as follows:

πX(x) =
d∏

i=1

πXi
(xi) (1.20)

It is also worth noting that Eq. (1.19) implies that Cov[Xi, Xj] = 0 for all i, j ∈ {1, . . . , d}
such that i ̸= j. Nevertheless, the zero-covariance property does not systematically imply
mutual independence.

In this thesis, the considered input variables will be very often supposed to be mutu-
ally independent. Besides, Sklar’s theorem (Sklar, 1959) states that for any multivariate
distribution, there exists a function CX : [0, 1]d −→ [0, 1] such that:

FX(x) = CX(FX1(x1), . . . , FXd
(xd)) (1.21)

where FX denotes the joint CDF, FX1 , . . . , FXd
the corresponding marginals CDF and CX is

a copula, namely the joint CDF of a random variable with d marginals uniformly distributed
on [0, 1]. Such a copula is unique when considering continuous random variables (Nelsen,
2006).

As a result, any general multivariate distribution may be fully characterized with its
marginals and a copula. Eq. (1.21) suggests a practical and modular way to build multivari-
ate distributions in two main steps, namely by firstly modeling the (univariate) marginals
PXi

, and subsequently choosing a copula so as to model the dependence between input
variables. In this thesis, the independent copula (i.e. CX(u1, . . . , ud) =

∏d
i=1 ui) will be

extensively used, whereas Gaussian copulas will occasionally be considered. For a compre-
hensive review on copula theory as well as the various existing classes of copula, the reader
may refer to (Nelsen, 2006).

Finally, although the previous presentation emphasized the main ingredients for con-
structing multivariate distributions in practice, the question of the choice of an appropriate
distribution remains not elucidated yet. Two main types of approaches may be considered
to infer the distribution of inputs, namely:

• parametric approaches, which consist in selecting the distribution among parametric
classes of probability distributions, for instance including Gaussian, uniform or log-
normal distributions (see Table 1.1). When data sets related to input parameters are
available, the parameters of such distributions may be estimated in order to find the
distribution that matches best with data. This may be typically achieved through
maximum likelihood estimation (MLE) (Johansen and Juselius, 1990). Alternatively,
parametric distributions may be selected through expert judgement. This is typically
the case in the framework of Bayesian inference, when specifying a prior distribution.

• non-parametric approaches, which consist in estimating a probability distribution in a
non-parametric way, for instance through kernel density estimation (KDE) (Parzen,
1962; Silverman, 1986).
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Name Notation Support CDF FX(x) PDF πX(x)

Exponential Exp(α) R+ 1− exp (−αx) α exp (−αx)

Gaussian N (µ, σ2) R 1
2

[
1 + erf

(
x−µ

σ
√
2

)]
1√
2πσ

exp
(
− (x−µ)2

2σ2

)
Laplace Laplace(µ, σ) R

{
1
2 exp

(
x−µ
σ

)
if x ≤ µ

1− 1
2 exp

(
µ−x
σ

)
else

1
2σ exp

(
− |x−µ|

σ

)
Lognormal LogN (µ, σ) R∗

+
1
2

[
1 + erf

(
log (x)−µ

σ
√
2

)]
1√

2πσx
exp

(
− (log (x)−µ)2

2σ2

)
Uniform U([a, b]) (a ≤ b) [a, b]


0 if x ≤ a
x−a
b−a if x ∈ [a, b]

1 else

{
1

b−a if x ∈ [a, b]

0 else

Table 1.1: Classical examples of univariate probability distributions. erf denotes the error func-
tion, defined by erf(x) = 2√

π

∫ x
−∞ exp (−ξ2)dξ for all x ∈ R.

1.2.3.3 Probabilistic transforms

In some cases, it is convenient to transform the distribution PX into a somewhat simpler one
PU , typically a standard normal distribution with independent marginals (i.e. N (0, I), I
denoting the identity matrix of Rd×d), or a uniform distribution on the standard hypercube
[0, 1]d (i.e. U([0, 1]d)). Such transformations are widely used in the framework of reliability
analysis (Der Kiureghian and Liu, 1986; Hohenbichler and Rackwitz, 1981), in order to
estimate probabilities of rare events in a somewhat normalized space, with Gaussian random
variables. Such a space is usually called standard Gaussian space, or U-space in the literature.

Let suppose that PU is the distribution of a random vector U : Ω −→ DU ⊂ Rd.
Mathematically speaking, finding a transformation from the original (or ”physical”) input
space DX to the standard space DU which maps X to U is akin to finding a sufficiently
regular6 map T : DX −→ DU that pushes forward PX to PU , namely:

PU (B) = PX(T −1(B)) (1.22)

for every Borel set B ∈ B(DU ). Eq. (1.22) is often written more compactly T♯PX = PU
7.

It is remarked that such a transformation is linked to the notion of deterministic coupling
encountered in Optimal Transport theory (Santambrogio, 2015; Villani, 2003, 2009), where
one finds to push forward a probability measure towards another while minimizing a certain
cost function. In the context of probabilistic transforms, the optimality of the sought map
(w.r.t. a given cost function) is not needed, though.

In practice, several constructions have been proposed in the literature. One firstly consid-
ers the univariate case with a continuous random variableX : Ω→ DX ⊂ R with support DX

and CDF FX . Then, the random variable FX(X) follows the uniform distribution U([0, 1])
(Santambrogio, 2015). Conversely, if U ∼ U([0, 1]) is a uniform random variable on [0, 1],

the random variable F−1
X (U) follows the probability distribution PX . Note that here F

(−1)
X

6typically a C1-diffeomorphism. Recall that a C1 diffeomorphism is a bijective map that is continuously
differentiable, and whose inverse is continuously differentiable too.

7where T♯PX is the pushforward measure defined by T♯PX(B) = PX(T −1(B)) for all B ∈ B(DU ).
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denotes the right-continuous inverse of FX , which is defined for all q ∈ [0, 1] by:

F
(−1)
X (q) = inf{x ∈ DX | FX(x) > q} (1.23)

Consequently, assuming now that U ∼ PU is a continuous random variable with CDF FU ,
the mapping T = F

(−1)
U ◦ FX achieves the desired transformation in Eq. (1.22). Such a

mapping is known as the increasing rearrangement (Villani, 2009), or also inverse probability
distribution transform.

Furthermore, in the case of mutually independent multivariate random variables, it is
possible to apply the increasing rearrangement in a component-wise fashion. In the case
of dependent variables, several transformations may be considered depending on the de-
pendence structure of inputs, namely Nataf transformation (Nataf, 1962), or Rosenblatt
transformation8 (Lebrun and Dutfoy, 2009; Rosenblatt, 1952). Their construction is not
detailed here for the sake of brevity (see e.g. (Lebrun and Dutfoy, 2009) for further details).

1.2.3.4 Quantities of interest

LetM : DX → DY be the computational model introduced in Section 1.2.1. Assuming that
M is a Borel function, the model output Y = M(X) is a random variable, since X is a
random variable. In this context, the main purpose of uncertainty propagation consists in
characterizing Y , notably through the determination of QoI of various types, including:

• expectations against the input probability measure PX (e.g. moments),

• the full CDF FY of the output Y ,

• conservative measures such as α-quantiles (with α ∈]0, 1[):

qα = inf{y ∈ DY | FY (y) ≥ α} (1.24)

• the probability P(Y ≥ y∗) of exceeding a given threshold value y∗ ∈ DY , whose esti-
mation is at the core of classical reliability analyses.

The first two mentioned quantities are discussed hereafter. Let ϕ : DX → R be a scalar
function that is integrable with respect to πX , i.e. ϕ ∈ L1(πX). Then, the transport theorem
(Barbé and Ledoux, 2007) enables to derive the following expression for the expectation
E[ϕ(X)]:

E[ϕ(X)] =

∫
DX

ϕ(x)dPX(x) =

∫
DX

ϕ(x)πX(x)dx (1.25)

Assuming thatM∈ L2(πX), the quantities defined in Eq. (1.25) comprise the mean µY

and variance σ2
Y of the random model output Y , which respectively read:

µY = E[M(X)] =

∫
DX

M(x)πX(x)dx (1.26)

σ2
Y = E

[
(M(X)− µY )

2
]
=

∫
DX

(M(x)− µY )
2πX(x)dx (1.27)

8also known as Knothe-Rosenblatt rearrangement (Carlier et al., 2010; Knothe, 1957).
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Likewise, assuming stronger integrability assumptions for the model M, higher order
moments such as skewness or kurtosis may also be quantified. Furthermore, the CDF FY of
the model output Y may also be determined through the transport theorem:

FY (y) = P(M(X) ≤ y) =

∫
DX

1]−∞,y](M(x))πX(x)dx (1.28)

1.2.3.5 Monte Carlo simulation

The quantities in Eqs. (1.25) to (1.28) are generally not analytically tractable. Consequently,
output QoI are usually estimated by using random sampling techniques. Among the latter,
Monte Carlo simulation (MCS) (Metropolis and Ulam, 1949) constitutes the most widely
used technique. It consists in drawing independent samples X = {x(k)}1≤k≤N ⊂ DX from
the input distribution of X, and subsequently computing the corresponding model outputs
Y = {M(x(k))}1≤k≤N . Then, QoI such as in Eq. (1.10) may be estimated from the following
sample approximation:

µ̂Y,N =
1

N

N∑
k=1

M(x(k)) (1.29)

The Law of Large Numbers (LLN) and the Central Limit Theorem (CLT) (Billingsley, 1995)
constitute the theoretical basis for Monte Carlo simulation. Indeed, assuming that M ∈
L1(πX), the LLN states that the estimator µ̂Y,N converges almost-surely towards the mean
µY in Eq. (1.26) when N → ∞. Furthermore, if M ∈ L2(πX), the CLT ensures that√
N(µ̂Y,N − µY ) converges in law9 towards Z ∼ N (0, σ2

Y ) when N → ∞, where σ2
Y is the

output variance defined in Eq. (1.27).

Monte Carlo simulation constitutes a universal method for estimating QoI related to the
model output. Moreover, such an approach is robust with respect to the complexity of the
integrand in Eq. (1.25), and the dimensionality of the inputs, since it provides dimension-
independent convergence rates for sampling errors w.r.t. the number of samples (Robert
and Casella, 2004). Nevertheless, such appreciable properties come at the price of slow
convergence rates. This notably implies a very large amount of model evaluations to ensure
reliable estimators for the studied QoI.

9Recall that a sequence (ZN )N≥0 of random variables converges in law towards a random variable Z if
for all continuous bounded function ϕ : R→ R, one has E[ϕ(ZN )]→ E[ϕ(Z)] when N →∞.



24 Chapter 1. State-of-the-art review on UQ techniques

1.2.4 Surrogate modeling

When considering costly computational models, classical sampling techniques such as Monte
Carlo simulation become intractable, as they may require a very large amount of model
evaluations. In this context, surrogate modeling aims at emulating the computational model
with a mathematical function that is inexpensive to evaluate. To that end, two main types
of surrogate models may be distinguished in the literature (Wagner, 2021):

• global surrogates, which provide an approximation of the global behavior of the model,
based on some global error measures. Such surrogates include spectral expansions
such as polynomial chaos expansions (PCE) (Ghanem and Spanos, 1991a; Wiener,
1938) or Poincaré expansions (Lüthen et al., 2021a), low rank tensor approximations
(LRA) (Konakli and Sudret, 2016) and neural networks (Cheng and Titterington, 1994;
Goodfellow et al., 2016).

• local surrogates, which provide local accuracy in the vicinity of training points. Local
surrogates comprises interpolating techniques such as Kriging or Gaussian process (Gp)
modeling (Krige, 1951; Matheron, 1963; Sacks et al., 1989; Santner et al., 2003), as
well as local regression techniques such as Gaussian process regression (Rasmussen and
Williams, 2006) and support vector machines (Steinwart and Christmann, 2008).

Furthermore, Schöbi et al. (2015) introduced a surrogate modeling technique that lies
between local and global approaches, namely Polynomial Chaos Kriging (PCK). Such an
approach consists in embedding a PCE as a trend of a Kriging, and then enables to combine
the global approximation power of PCE with local features provided by the underlying
Gaussian process.

Then, it is worth noting that each of the aforementioned techniques presents its own
advantages and drawbacks, and their performance may sensibly depend on the considered
problem. In this thesis, PCE will be often considered, as they constitute polyvalent and
powerful global surrogates, that can be used to perform global sensitivity analyses at a
reduced cost (Sudret, 2008). Consequently, a brief review on PCE theory and practice is
given herebelow.

1.2.4.1 Polynomial chaos expansions

In what follows, the components of the input random variable X are still assumed to be
mutually independent. The reader may refer to (Jakeman et al., 2019) for PCE formulation
for dependent input random variables. It is also assumed that M ∈ L2(πX), so that the
random model response Y =M(X) admits a finite variance.

Firstly, the Hilbert space L2(πX) is equipped with the following inner product:

⟨ϕ|ψ⟩πX
= E[ϕ(X)ψ(X)] =

∫
DX

ϕ(x)ψ(x)πX(x)dx (1.30)

for all ϕ, ψ ∈ L2(πX).

Likewise, for each i ∈ {1, . . . , d}, the space L2(πXi
) is equipped with the inner product

defined as follows, for all ϕ, ψ ∈ L2(πXi
):

⟨ϕ|ψ⟩πXi
= E[ϕ(Xi)ψ(Xi)] =

∫
DXi

ϕ(xi)ψ(xi)πXi
(xi)dxi (1.31)
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Then, under some assumptions related to the input distribution PXi
(see e.g. (Ernst

et al., 2012; Xiu and Karniadakis, 2002)), there exists a Hilbert basis10 (ψ
(i)
k )k≥0 formed by

univariate polynomials that are orthonormal with respect to PXi
, which reads:

⟨ψ(i)
k |ψ

(i)
l ⟩πXi

= δkl (1.32)

where δkl is the Kronecker delta, i.e. δkl = 1 if k = l and 0 else. In this context, classical
families of orthogonal polynomials may be linked to parametric probability distributions
mentioned in Table 1.1: for instance, Hermite polynomials correspond to Gaussian distribu-
tions, and Legendre polynomials correspond to uniform distributions (Xiu and Karniadakis,
2002). When the input distribution is not explicitly given, an orthonormal polynomial fam-
ily may be constructed numerically through Gram-Schmidt or Stieltjes procedure (Gautschi,
2004). Such an approach has been undertaken in the framework of arbitrary PCE (see e.g.
(Torre et al., 2019)).

Furthermore, under the assumption of mutually independent input variables (see Eq.
(1.19)), Soize and Ghanem (2004) proved that the Hilbert space L2(πX) is isomorphic to the
tensor product Hilbert space

⊗d
i=1 L2(πXi

). This allows to build a Hilbert basis (ψα)α∈Nd of

L2(πX) by taking the tensor product of the bases (ψ
(i)
j )j≥0:

ψα(x) =
d∏

i=1

ψ(i)
αi
(xi) (1.33)

for all x = (x1, . . . , xd) ∈ DX and α = (α1, . . . , αd) ∈ Nd. The so-constructed multivariate
polynomials are also orthonormal with respect to the joint distribution PX , i.e.

⟨ψα|ψβ⟩πX
= δαβ (1.34)

where δαβ =
∏d

i=1 δαiβi
is the Kronecker delta for multi-indices α,β ∈ Nd. Moreover, the

degree of a given polynomial ψα is encoded by the multi-index α, since the degree of the
univariate polynomial ψ

(i)
αi is equal to αi for i ∈ {1, . . . , d}, whereas the total degree of ψα is

given by ∥α∥1 =
∑d

i=1 αi.

Thus, the random response Y =M(X) may be expanded onto the Hilbert basis (ψα)α∈Nd :

M(X) =
∑
α∈Nd

cαψα(X) (1.35)

where (cα)α∈Nd are the PCE coefficients, which may be written as cα = ⟨M|ψα⟩πX
due to

the orthonormality of the PCE basis (ψα)α∈Nd .

Moreover, it is worth noting that the coefficients (cα)α in Eq. (1.35) are closely linked to
the probabilistic content of the random response Y =M(X). Indeed, due to the orthonor-
mality of the PCE basis, closed-form expressions for the moments of Y can be obtained from
the PCE coefficients (Sudret, 2007). Such expressions are given herebelow for the output
mean in Eq. (1.26) and variance in Eq. (1.27):

µY = E[M(X)] = c0 (1.36)

σ2
Y = Var[M(X)] =

∑
α∈Nd\{0}

c2α (1.37)

10considering a Hilbert space (H, ⟨·|·⟩), a Hilbert basis {en}n≥0 is an orthonormal basis of H (i.e. ⟨ei|ej⟩ =
δij) which is total, i.e. such that the closure of the linear span of {en}n≥0 is equal to H.
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1.2.4.2 Truncation schemes

For practical purposes, the representation in Eq. (1.35) has to be truncated on a finite set
A ⊂ Nd of multi-indices:

M(X) =
∑
α∈A

cαψα(X) +Rα(X) (1.38)

where Rα(X) =
∑

α∈Nd\A cαψα(X) is the error induced by the truncation.

Several types of truncation sets are proposed in the literature. The most popular trun-
cation scheme consists in only keeping polynomials with total degree that not exceeds a
prescribed integer p ∈ N:

Ap =
{
α ∈ Nd | ∥α∥1 ≤ p

}
(1.39)

Nevertheless, such a truncation set is subjected to the so-called curse of dimensionality, since
its number of terms is given by |Ap| = (d + p)!/d!p!, which grows rapidly when the input
dimension (and/or the polynomial degree) increases. To alleviate this problem, Blatman
and Sudret (2011b) have proposed the following hyperbolic truncation sets :

Ap,q = {α ∈ Nd | ∥α∥q ≤ p} (1.40)

where p ∈ N, q ∈]0, 1], and ∥α∥q =
(∑d

i=1 |αi|q
)1/q

is the so-called q-norm of α ∈ Nd.

Furthermore, an alternative truncation scheme consists in prescribing a maximal inter-
action order for the PCE basis (ψα)α∈Nd , as described in Blatman and Sudret (2008).

1.2.4.3 PCE coefficients computation

Once a truncation set A ⊂ Nd has been specified, the PCE coefficients (cα)α∈A have to be
computed. Historically, this was achieved by using intrusive techniques in the context of the
spectral stochastic finite element method developed in the 90s (Ghanem and Spanos, 1990,
1991b). In this context, Galerkin schemes constitute archetypal examples of intrusive tech-
niques (Frauenfelder et al., 2005). Then, non-intrusive techniques emerged as an alternative
to Galerkin schemes. Such techniques are said to be non-intrusive in the sense that they only
require point-wise evaluations of the computational model. They notably include quadra-
ture methods (Novak and Ritter, 1999), stochastic collocation (Babuška et al., 2007; Bieri
and Schwab, 2009; Xiu and Hesthaven, 2005) and regression methods (Berveiller et al., 2006;
Blatman and Sudret, 2010; Choi et al., 2004). The latter have been popularized in the recent
years, notably through the use of sparse regression techniques (Blatman and Sudret, 2011b),
which notably enable the construction of accurate sparse PCE surrogates from few model
evaluations (Lüthen et al., 2021b). Furthermore, sparse PCE have been demonstrated to
be more efficient than other classical PCE computational approaches (Lüthen et al., 2021b;
Mathelin and Gallivan, 2012). Consequently, sparse regression-based PCE techniques will
be preferred in this thesis. A brief description of such techniques is given hereafter.

Firstly, Ordinary Least Squares (OLS) constitute the basis of regression-based approaches.
Let X = {x(k)}1≤k≤N ⊂ DX be an experimental design (ED), namely a representative input
sample drawn from PX , typically through Monte Carlo sampling, or through space-filling
techniques such as Latin Hypercube Sampling (LHS) (McKay et al., 1979) or Quasi Monte
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Carlo (QMC) techniques (Niederreiter, 1992). Let y = (y(k))1≤k≤N ∈ DN
Y be the vector

gathering the corresponding model outputs, i.e. y(k) = M(x(k)), for all k ∈ {1, . . . , N}.
Then, given a reindexing {α ∈ A} ↔ {αj | j ∈ {1, . . . , P}} where P = |A| is the number
of regressors, the PCE coefficients are gathered in a vector c = (cαj

)1≤j≤P ∈ RP , and the

regression matrix Ψ ∈ RN×P with entries Ψkl = ψαl
(x(k)) is subsequently defined. The OLS

regression problem is thus defined as follows:

ĉ = arg min
c∈RP
∥Ψc− y∥22 (1.41)

where ∥·∥2 denotes the ℓ2-norm of RN , i.e. ∥z∥22 =
∑N

k=1 z
2
k for z ∈ RN .

The classical OLS problem in Eq. (1.41) admits the following solution:

ĉ = (Ψ⊺Ψ)−1Ψ⊺y (1.42)

which is well-defined if N ≥ P . Moreover, Fajraoui et al. (2017) have suggested the heuristic
number of model evaluations of N ≈ 2P, 3P so as to obtain a somewhat robust solution.
Nevertheless, such a number may be very large in the case of high-dimensional inputs and/or
a high-degree PCE.

Then, sparse regression techniques aim at solving the regression problem in Eq. (1.41)
while favoring sparsity in the coefficients, in the sense that most PCE coefficients are zero.
The use of such techniques is motivated by the fact that the encountered computational
models are often compressible, in the sense that their random response may be accurately
represented by few PCE coefficients (Lüthen et al., 2021b). The so-called sparsity-of-effects
principle (Montgomery, 2019), stating that most models describing physical phenomena are
principally driven by main effects and low-order interactions, also goes in this direction.

Mathematically speaking, sparse regression aims at solving a regularized form of the OLS
problem in Eq. (1.41), for instance the ℓ1-regularized problem:

ĉ = arg min
c∈RP
∥Ψc− y∥22 + γ∥c∥1 (1.43)

where γ is a regularization factor, and ∥·∥1 denotes the ℓ1-norm of RP , i.e. ∥z∥1 =
∑P

k=1 |zk|,
for z ∈ RP .

The problem in Eq. (1.43) may be solved by using various sparse regression techniques,
including the hybrid LARS procedure introduced by Blatman and Sudret (2011b), based
on the Least Angle Regression (LARS) algorithm of Efron et al. (2004). For further details
about sparse regression-based PCE techniques, the reader may refer to the recent thorough
literature and benchmark of Lüthen et al. (2021b).

1.2.4.4 PCE error estimators

Then, the set of PCE coefficients (ĉα)α∈A computed through regression on the data set
{X ,y} enables to define the following PCE approximation:

M̂(X) =
∑
α∈A

ĉαψα(X) (1.44)
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In this context, the so-called generalization error is defined by the L2-norm of the model-
surrogate mismatch:

EG = E
[(
M(X)− M̂(X)

)2]
(1.45)

Such an error measure could be estimated through Monte Carlo simulation. However, this
would typically require a large amount of additional model calls. Instead, the generalization
error in Eq. (1.45) may be estimated from samples of the experimental design X , leading to
the so-called empirical error estimate:

EE =
1

N

N∑
k=1

(
y(k) − M̂(x(k))

)2
(1.46)

This error measure may be normalized by the output variance:

ϵE =
EE

σ̂2
Y

(1.47)

where σ̂2
Y denotes the empirical variance of the response sample Y = {M(x(k))}1≤k≤N :

σ̂2
Y =

1

N − 1

N∑
k=1

(
M(x(k))− µ̂Y

)2
(1.48)

with µ̂Y = 1
N

∑N
k=1M(x(k)).

Nevertheless, such an error estimate may sensibly underestimate the generalization error
in Eq. (1.45), since it is not sensitive to overfitting. The so-called Leave-One-Out (LOO)
cross-validation error (Blatman and Sudret, 2010) provides a much fair estimate of the
generalization error, and is defined by:

ELOO =
1

N

N∑
k=1

(
y(k) − M̂(∼k)(x(k))

)2
(1.49)

where M̂(∼k) is the PCE surrogate constructed on the experimental design X\{x(k)}. Instead
of constructing N PCE surrogates through regression (see Section 1.2.4.3), the LOO error
estimate in Eq. (1.49) may be computed analytically from a single PCE M̂ built on the
whole ED X , as derived in (Blatman, 2009, Appendix D):

ELOO =
1

N

N∑
i=1

(
y(i) − M̂(x(k))

1− ak

)2

(1.50)

where ak is the k-th diagonal entry of the matrix Ψ(Ψ⊺Ψ)−1Ψ⊺, Ψ being the regression
matrix defined in Section 1.2.4.3.

Lastly, analogously to Eq. (1.47), a normalized version of the LOO error is given by:

ϵLOO =
ELOO

σ̂2
Y

(1.51)
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1.2.4.5 Principal component PCE

The PCE formulation is then extended to vector-valued computational models. Let suppose
that the considered computational model is Rn-valued, i.e. M : DX → DY ⊂ Rn. One
again considers an experimental design X = {x(k)}1≤k≤N ⊂ DX , and the corresponding
model outputs are gathered in Y = {y(k)}1≤k≤N ⊂ DY .

Firstly, a straightforward way to build a vector-valued PCE consists in independently
constructing n PCE surrogates (i.e. one per output dimension) by following the process
exposed in the previous sections. Nevertheless, such an approach may be computationally
expensive if the output dimension of the model is large. Moreover, some components of
the model output may be sensibly correlated, which may induce redundancy between the
constructed surrogates.

In order to alleviate this problem, dimensionality reduction techniques may be adopted
so as to map the output space DY to a reduced space Dz ⊂ Rr with dimension r < n. Such
techniques include Principal Component Analysis (PCA) (Jolliffe, 2002; Pearson, 1901),
Kernel PCA (KPCA) (Schölkopf et al., 1998) and autoencoders (Hinton and Salakhutdinov,
2006). One refers to (Lataniotis, 2019, Chapter 3) for a thorough review on such techniques,
and to (Lataniotis et al., 2020) for the presentation of a surrogate modeling framework
suitable for high-dimensional problems.

In particular, Blatman and Sudret (2011a) have proposed to combine PCA with PCE to
efficiently surrogate vector-valued models. A brief description of this approach, named Prin-
cipal Component Polynomial Chaos Expansions (PC-PCE), is given hereafter. Firstly, the
eigendecomposition of the covariance matrix ΣY ∈ Rn×n of Y =M(X) is given hereafter:

ΣY = WΛW⊺ (1.52)

where W ∈ Rn×n is a matrix whose columns are the n eigenvectors w1, . . . ,wn ∈ Rn of ΣY

called principal components, and Λ ∈ Rn×n is the diagonal matrix whose k-th entry is the
eigenvalue λi of ΣY associated to wk, i.e. ΣY wk = λkwk. Furthermore, the eigenvalues
(λk)1≤k≤n are sorted in descending order.

Then, one considers the random vector Z = (Z1, . . . , Zn) defined through the following
orthogonal transformation:

Z = W⊺(Y − µY ) (1.53)

where µY = E[Y ]. Furthermore, due to the orthogonality of W⊺, the transformation in Eq.
(1.53) is invertible:

Y = µY +WZ = µY +
n∑

k=1

Zkwk (1.54)

Eq. (1.54) corresponds to the discrete Karhunen-Loève (KL) expansion (Loève, 1977) of the
model output Y . Then, keeping only the first r ≤ n eigenvectors w1, . . . ,wr in Eq. (1.54)
and gathering them in the matrix W(r) ∈ Rn×r yields the following approximation of Y :

Y ≈ µY +W(r)Z(r) = µY +
r∑

k=1

Zkwk (1.55)

where Z(r) = (Z1, . . . , Zr) are the PCA coefficients associated to the r first principal com-
ponents.
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The number r is usually chosen in order to represent a prescribed fraction of the output
total variance, defined by the trace of the output covariance matrix ΣY , i.e. tr(ΣY ) =∑n

k=1 λk. The so-called PCA error (Blatman and Sudret, 2014; Wagner, 2021), resulting
from only keeping the r first principal components, is defined by:

EPCA =
n∑

k=r+1

λk (1.56)

This error measure may be normalized by the total variance as follows:

ϵPCA =
EPCA

tr(ΣY )
(1.57)

It is worth noting that in practice, the output mean µY and covariance matrix ΣY are
not known in advance. Consequently, these quantities are usually replaced by appropriate
estimators, computed from an input sample (Blatman and Sudret, 2011a).

Next, for each p ∈ {1, . . . , r}, the PCA coefficient Zp can be seen as a function of the
input parameters X, and may be therefore surrogated by a PCE:

Zp(X) ≈ Ẑp(X) =
∑

α∈A(p)

ĉp,αψα(X) (1.58)

where A(p) ⊂ Nd, and (ĉp,α)α∈A(p) are the corresponding PCE coefficients, and (ψα)α∈A(p)

the PCE basis.

Then, gathering the surrogates Ẑ1, . . . , Ẑr in the vector Ẑ = (Ẑ1, . . . , Ẑp)
⊺, the output Y

may be approximated as follows:

Y ≈ M̂(X) = µY +W(r)Ẑ(X) = µY +
r∑

p=1

Ẑp(X)wp (1.59)

Thus, the construction of the PC-PCE surrogate in Eq. (1.59) enables to significantly
reduce the computational burden of the initial problem, since the number r of retained prin-
cipal components is expected to be small compared to the output dimension n of the model
M. However, such a construction comes at the price of additional layers of approximation.
Indeed, the generalization error in Eq. (1.45) of a PC-PCE surrogate is mainly driven by
three sources of error, namely the error stemming from the lossy PCA-based dimensionality
reduction (i.e. the PCA error), the error induced by the PCE approximation of each com-
ponent in Eq. (1.58), and the sampling error due to the estimation of the mean µY and
covariance matrix ΣY . As mentioned by Blatman and Sudret (2014), this last error may be
deemed to be negligible compared to the two first-mentioned ones, though. Consequently,
Blatman and Sudret (2014) have proposed the following estimate for the generalization error
in Eq. (1.45):

EPC−PCE =
(√

EPCA +
√
EPCE

)2
(1.60)

where EPCA is given in Eq. (1.56), and EPCE is defined by:

EPCE =
r∑

p=1

ELOO,p (1.61)



1.2. Forward uncertainty quantification methods 31

where ELOO,p is the LOO error (see Eq. (1.49)) of the PCE surrogate Ẑp given in Eq. (1.58).
A normalized version of the error defined in Eq. (1.61) is given by:

ϵPCE =
EPCE

tr(ΣY )
(1.62)

Finally, Wagner (2021) has proposed to normalize the PC-PCE error in Eq. (1.60) as follows:

ϵPC−PCE =
EPC−PCE

tr(ΣY )
= (
√
ϵPCA +

√
ϵPCE)

2
(1.63)

1.2.5 Sensitivity analysis

Sensitivity Analysis (SA) aims at studying how the uncertainties in the output of a model
can be apportioned to sources of uncertainties in its inputs (Saltelli et al., 2004). Although
the field of SA was historically developed independently from UQ techniques, SA nowadays
constitutes an integral part of a classical UQ analysis. SA typically enables to determine
the most contributing input variables to the output of a model, as well as the less influential
input variables, or to identify interactions within the model (Iooss and Lemâıtre, 2015). It
also presents numerous conceptual objectives, including factor prioritization, factor fixing
and model verification (Borgonovo, 2017; Saltelli et al., 2004).

A wide variety of SA methods dedicated to the analysis of outputs of black-box compu-
tational models is available in the literature11 (Borgonovo and Plischke, 2016; Iooss, 2009).
A brief and non-exhaustive overview of such methods is presented hereafter. For a more
comprehensive review, the reader may for instance refer to (Borgonovo and Plischke, 2016;
Iooss and Lemâıtre, 2015). Globally speaking, SA methods may be divided into three main
categories, namely:

• local methods: these methods constitute the first historical SA methods, and aim at
studying the impact of small input perturbations on the model output. Typically,
these perturbations are applied around a nominal value, such as the mean of an input
variable. Among local methods, it is possible to distinguish differential and adjoint
methods. Differential methods are based on the calculation of partial derivatives of
the model at some nominal values. Such derivatives may be calculated analytically (if
possible), or numerically, typically through finite-difference (FD) schemes. Automatic
differentiation methods may also be considered, if applicable (Griewank and Walther,
2008). Then, adjoint methods may be used when an explicit formulation of the adjoint
is available, and they enable to study models with a large number of input variables
(Cacuci, 1981). Nevertheless, local methods are not suitable for studying the case of
multiple input variables that are simultaneously varied on a wide domain. Furthermore,
when considering black-box computational models, the adjoint is rarely available, and
derivatives have to be computed with FD schemes which may typically require a large
amount of model evaluations.

11such methods refer to the denomination of sensitivity analysis of model output (SAMO) (Saltelli et al.,
1993) often encountered in the literature.
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• screening methods: such methods are based on a discretization of the input space in
several levels, aiming at providing a fast qualitative exploration of the behavior of
the model (Iooss and Lemâıtre, 2015). Screening methods typically enable to identify
non-influential input variables for a limited computational cost, and provide a coarse
sorting of the most influential inputs, called primary influential inputs (PII), among
a potentially large number of variables. The so-called One factor At Time (OAT)
method constitutes the most widely used screening method, and simply consists in
varying each input while fixing the others. However, such a method suffers from sev-
eral shortcomings, and has been demonstrated to be inefficient at providing a reliable
SA (see e.g. (Saltelli and Annoni, 2010)). Then, the Morris method (Morris, 1991)
constitutes a much complete screening method, based on the repetition of randomized
OAT schemes. Furthermore, screening methods comprise derivative-based global sen-
sitivity measures (DGSM) (Kucherenko and Iooss, 2015; Sobol’ and Gershman, 1995),
which may be seen as generalizations to the full input space of local differential SA
methods.

• global methods: global methods aim at studying the impact of simultaneous variations
of inputs over their domain on the model output. In this context, such methods pro-
vide importance measures, which constitute quantitative sensitivity indices allowing to
rank input variables with respect to their relative influence. Sobol’ indices (Sobol’,
2001, 1993) are the most widely used importance measures when considering inde-
pendent input variables. Such indices belong to the class of variance-based global SA
methods (Prieur and Tarantola, 2015), aiming at decomposing the output variance
into contributions which can be attributed to input variables or sets of input variables.
Furthermore, Shapley effects (Iooss and Prieur, 2019; Owen, 2014; Song et al., 2016)
constitute alternative sensitivity indices which provide relevant information compared
to Sobol’ indices, when considering dependent input variables. Finally, global SA ap-
proaches also comprise sensitivity indices based on dissimilarity measures, including
the Hilbert Schmidt Independence Criterion (HSIC) (Da Veiga, 2015).

In this thesis, one will focus on Sobol’ indices, since input variables will be very often sup-
posed to be mutually independent, and since such indices may be efficiently post-processed
when the model is approximated by surrogate models, typically PCE or Kriging (Le Gratiet
et al., 2017; Sudret, 2008).

1.2.5.1 Sobol’ sensitivity indices

Keeping the previously introduced notations, the computational model M is assumed to
be scalar-valued and square-integrable w.r.t. πX , i.e. M ∈ L2(πX). Moreover, its input
variables X are still assumed to be mutually independent. It is worth noting that general-
ization of Sobol’ indices to the case of dependent input variables have been proposed in the
literature (see e.g. (Chastaing et al., 2012; Kucherenko et al., 2012)), but will remain out of
the scope of this thesis, though.

Sobol’ indices rely on the so-called Hoeffding-Sobol’ decomposition12 (Hoeffding, 1948;
Sobol’, 1993), which consists in writing the model output Y =M(X) as the sum of functions

12also referred to functional analysis of variance (ANOVA), or sometimes also to high dimensional model
representation (HDMR) (Li et al., 2001).
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with an increasing number of input variables:

Y =M(X) =M0 +
∑
1≤i≤d

Mi(Xi) +
∑

1≤i≤j≤d

Mi,j(Xi, Xj) + · · ·+M1,...,d(X)

=
∑

u⊆{1,...,d}

Mu(Xu)
(1.64)

where M0 is a constant, Mi a function of Xi, Mi,j a function of Xi, Xj,. . . , and M1,...,d

is a function of X. The functions (Mi)1≤i≤d are called main effects, whereas the functions
(Mi,j)1≤i,j≤d and functions with higher input dimension in Eq. (1.64) are called interactions.
All these functions have been compactly rewritten by using the notations Mu and Xu =
(Xi)i∈u for u ⊆ {1, . . . , d}, and settingM∅ =M0 for the constant term.

The expansion in Eq. (1.64) exists and is unique if the summands (Mu)u⊆{1,...,d} are
orthogonal in the sense of L2(πX) (Chastaing et al., 2012; Sobol’, 1993), which reads:

⟨Mu|Mv⟩πX
= E [Mu(Xu)Mv(Xv)] =

∫
DX

Mu(xu)Mv(xv)πX(x)dx = 0 (1.65)

for all u, v ⊆ {1, . . . , d} such that u ̸= v.

It follows from the orthogonality condition in Eq. (1.65) that E [Mu(Xu)] = 0 for all
u ⊆ {1, . . . , d} such that u ̸= ∅. Consequently, the output variance admits the following
decomposition:

Var[Y ] =
∑

∅̸=u⊆{1,...,d}

Var[Mu(Xu)] (1.66)

Moreover, again exploiting the orthogonality property in Eq. (1.65), explicit expressions
may be derived for the functions (Mu)u⊆{1,...,d} (Chastaing et al., 2012):

M0 = E[M(X)] (1.67a)

Mi(xi) = E[M(X)|xi]− E[M(X)] (1.67b)

Mu(xu) = E[M(X)|xu]−
∑
v⊊u

Mv(xv) (1.67c)

for all i ∈ {1, . . . , d} and u ⊆ {1, . . . , d} with |u| ≥ 2.

Furthermore, the term Var[Mu(Xu)] in Eq. (1.66) is termed a partial variance, and
represents the contribution of the set of variables Xu to the total variance Var[M(X)]. The
Sobol’ index Su is then defined as the corresponding fraction of the total variance:

Su =
Var[Mu(Xu)]

Var[M(X)]
(1.68)

for all u ⊆ {1, . . . , d} such that u ̸= ∅. In this context, the first order indices (Si)1≤i≤d

are quantifying the influence of main effects, whereas second order indices (Si,j)1≤i,j≤d are
related to the influence of second order (or bivariate) interactions, and so on.

Finally, total Sobol’ indices are usually used in order to summarize both main effects and
interactions involving each input variable (Homma and Saltelli, 1996), and are defined by:

Ti =
E[Var[M(X)|Xi]]

Var[M(X)]
=

∑
∅̸=u⊆{1,...,d}

i∈u

Su (1.69)

for all i ∈ {1, . . . , d}.
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1.2.5.2 PCE-based Sobol’ indices

The Sobol’ indices in Eq. (1.68) may be computed through Monte Carlo simulation, based on
several estimators proposed in the literature (see e.g. Homma and Saltelli (1996); Janon et al.
(2014)). However, such an approach typically requires a large amount of model evaluations,
which makes it intractable when considering costly computational models. Alternatively,
when considering surrogate models such as PCE or Kriging, Sobol’ indices may be computed
through an analytical post-processing (Le Gratiet et al., 2017; Sudret, 2008).

Indeed, assuming that the modelM is approximated by a PCE M̂ =
∑

α∈A ĉαψα (see
Section 1.2.4), a PCE-based Hoeffding-Sobol’ decomposition can be derived, and the terms
within are given by (Sudret, 2008):

M̂u(X) =
∑
α∈Au

ĉαψα(X) (1.70)

where Au = {α ∈ A | (αi ̸= 0)⇔ (i ∈ u)}, for all u ⊆ {1, . . . , d} such that u ̸= ∅.

Consequently, Sobol’ indices in Eq. (1.68) may be approximated as follows:

Su ≈ Ŝu =
1

Var[Y ]

∑
α∈Au\{0}

ĉ2α (1.71)

where Var[Y ] ≈∑α∈A ĉ
2
α (see Eq. (1.37)).

Likewise, total Sobol’ indices in Eq. (1.69) may also be approximated from PCE coeffi-
cients:

Ti ≈ T̂i =
1

Var[Y ]

∑
α∈A+

i

ĉ2α (1.72)

where A+
i = {α ∈ A | αi > 0}, for all i ∈ {1, . . . , d}.

Finally, the presented analytical approximations may be extended to vector-valued mod-
els. Firstly, the formulas in Eqs. (1.71) and (1.72) may obviously be repeatedly applied when
PCE surrogate modeling of the model output is performed component-wise. Alternatively,
it is also possible to analytically post-process Sobol’ indices from PC-PCE surrogates (see
Section 1.2.4.5), as described in Appendix A.
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1.2.6 Structural reliability analysis

In many engineering disciplines, ensuring the reliability of systems (e.g. bridges, nuclear
power plants or electronic devices) is of paramount importance. In this context, the consid-
ered systems typically must meet high safety requirements, which involves small probabilities
of failure. Structural reliability analysis aims at estimating the probability of failure (PoF)
of a system with respect to a prescribed failure criterion. Structural reliability theory has
been developed since the 70s, historically in the field of civil engineering structures. It is
also referred to the denomination of reliability analysis, or rare event estimation.

In the context of a structural reliability analysis, the performance of the studied system
is modeled by a so-called limit-state function13 (LSF), whose mathematical formulation is
given by:

G : DX ⊂ Rd → R
x 7→ y = G(x) (1.73)

where G denotes the (deterministic) LSF, x a set of input parameters defined in an input
space DX , and y = G(x) a scalar output that indicates the performance of the system.
Conventionally, the LSF G is formulated such that:

• Ds = {x ∈ DX | G(x) > 0} is the safe domain, that indicates a safe system,

• Df = {x ∈ DX | G(x) ≤ 0} is the failure domain, that indicates a failed system.

In this way, the LSF G embodies the formalization of the considered failure criterion, by
inducing a bipartition of the input space DX = Ds∪Df . Furthermore, one defines the limit-
state surface (LSS) as the set ∂Ds = ∂Df = {x ∈ DX | G(x) = 0}. It is worth noting that the
so-defined LSF G is closely linked to the computational modelM considered in the previous
sections. The LSF may depend on the input parameters X defined in Section 1.2.3.1 and the
model responseM(X), but also possibly on additional random variables that are external
to the computational model M. For the sake of simplicity, it will be assumed that G and
M share the same input parameters X. In practice, the LSF is typically a deterministic
function of the model response, e.g. G(x) = f(M(x)), which includes a thresholded model
response G(x) =M(x)− y∗ (with y∗ ∈ R), which constitutes an archetypal example of LSF
encountered in engineering applications.

Given a LSF G, the PoF of the system is defined as follows:

Pf = P(G(X) ≤ 0) (1.74)

Then, still assuming that X is a continuous random variable with density πX , the PoF in
Eq. (1.74) may be rewritten as follows:

Pf =

∫
DX

1Df
(x)πX(x)dx (1.75)

The integral involved in Eq. (1.75) is not analytically tractable in practice, notably
due to the fact that the failure domain Df implicitly depends on the inputs X. In this
context, a wide range of methods have been developed in order to solve structural reliability

13also known as performance function (Lemaire et al., 2009).
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problems. A brief and general overview of such techniques is presented hereafter. For a more
comprehensive presentation, the reader may refer to the classical textbooks of (Ditlevsen and
Madsen, 1996; Lemaire et al., 2009; Melchers, 1999), to name a few. Three main classes of
methods may be distinguished in the structural reliability literature:

• approximation methods: these methods constitute the first historically developed meth-
ods in structural reliability. They typically aim at estimating the integral in Eq. (1.75)
through approximating the LSF with its Taylor series expansions. In this context, the
first order reliability method (FORM) (Hasofer and Lind, 1974; Rackwitz and Flessler,
1978) constitutes the cornerstone of such approaches, and consists in linearizing the
LSF near the most probable failure point, namely the so-called design point. Then, the
second order reliability method (Breitung, 1989; Hohenbichler et al., 1987) has been
subsequently developed, as an extension of FORM. Approximation techniques have
been initially devised to estimate probabilities of failure for a limited number of model
calls. Although such techniques may be very efficient in some simple configurations,
they typically tend to be inefficient when confronted to high-dimensional problems
with possibly complex LSF geometries.

• simulation methods: simulation methods provide more robust (and more costly, though)
approaches for estimating probabilities of failure. They notably encompass the widely
used Monte Carlo simulation (MCS) method (Metropolis and Ulam, 1949), subset
simulation (SuS) (Au and Beck, 2001), line sampling (Koutsourelakis et al., 2004),
importance sampling (IS) (Melchers, 1989) and many IS variants (Dubourg et al.,
2011; Uribe et al., 2021).

• active learning methods: such methods have been developed more recently, along with
the development of powerful surrogate modeling techniques. Active learning methods
are based on the coupling of surrogate models with the aforementioned simulation
methods, in order to accelerate the latter when considering costly LSFs. The main
idea behind active learning methods consists in adaptively enriching an experimental
design of a surrogate model, in order to predict the sign of the LSF more accurately.
In this context, Kriging surrogates are widely used due to the local features they
provide, including local error estimate given by their prediction variance (Kaymaz,
2005). The efficient global reliability analysis (EGRA) method of Bichon et al. (2008)
constitutes one of the first developed active learning techniques. Then, the so-called
adaptive kriging Monte Carlo simulation (AK-MCS) (Echard et al., 2011) constitutes
the most widely used active learning method. Globally speaking, active learning tech-
niques share a common structure, which may be summarized in fours building bricks
(Moustapha et al., 2022), namely: (i) a learning function that enables to select enrich-
ment points; (ii) a reliability algorithm that estimates the targeted PoF; (iii) a type of
surrogate model; (iv) a stopping criterion for the adaptive enrichment. For further de-
tails about active learning methods, the reader may refer to the comprehensive survey
and benchmark of Moustapha et al. (2022).

In this thesis, the MCS and SuS methods will be considered, and will be possibly coupled
with surrogate models in an active learning perspective. A brief presentation of the two
aforementioned simulation methods is given hereafter.
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1.2.6.1 Monte Carlo simulation

The Monte Carlo simulation (MCS) method presented in Section 1.2.3.5 may be readily
applied in the framework of structural reliability, so as to estimate probabilities of rare
events. Considering a sample {x(k)}1≤k≤N ⊂ DX formed by independent realizations of the
inputs X, the PoF in Eq. (1.75) may be estimated by:

Pf ≈ P̂f,N =
1

N

N∑
k=1

1Df
(x(k)) (1.76)

The above estimator is unbiased, and has the following theoretical coefficient of variation:

CoV
[
P̂f,N

]
=

√
1− P̂f,N

NP̂f,N

(1.77)

Nevertheless, it stems from Eq. (1.77) that MCS sensibly losses efficiency when con-
fronted to small probabilities of failure (e.g. Pf ≈ 10−6). For instance, in order to achieve a

target CoV of CoV
[
P̂f,N

]
= 10% for the estimate of a PoF of P̂f,N = 10−l (l ≥ 1), about

N ≈ 10l+2 samples would be necessary. Thus, despite its robust, universal and dimension-
independent aspects, the MCS method may typically require a considerably large amount
of samples so as to provide reliable estimators of very small probabilities of failure.

1.2.6.2 Subset simulation

Subset Simulation (SuS) is a widely used simulation method originally proposed by Au and
Beck (2001). It belongs to the class of Sequential Monte Carlo (SMC) methods (Cérou et al.,
2012; Del Moral et al., 2006), and is particularly well suited to estimate small probabilities
of failure in high-dimensional problems. Further improvements of the original SuS method
may be found in (Bect et al., 2017; Zuev et al., 2012). The main idea behind SuS consists in

defining a sequence (D(i)
f )0≤i≤m of intermediate failure domains such that Df = D(m)

f ⊂ · · · ⊂
D(1)

f ⊂ D(0)
f = DX , in order to write the PoF in Eq. (1.74) as the product of conditional

probabilities:
Pf = P(G(X) ≤ 0) = PX(Df )

=
m∏
j=1

PX

(
D(j)

f |D
(j−1)
f

) (1.78)

The factors in the product in Eq. (1.78) are called intermediate probabilities of failure,

and are denoted by (P
(j)
f )1≤i≤m. The intermediate failure domains (also called subsets)

(D(j))1≤j≤m are defined from a sequence (tj)1≤j≤m of intermediate threshold values such that
0 = tm < · · · < t1:

D(j)
f = {x ∈ DX | G(x) ≤ tj} (1.79)

for all j ∈ {1, . . . ,m}.
The aforementioned threshold values are estimated as p0-quantiles from a set of N sam-

ples of LSF outputs {G(x(k))}1≤k≤N , where p0 ∈]0, 1[ is the so-called rarity parameter, typi-
cally set to 0.1 (Au and Beck, 2001). Thus, the rare event estimation problem in Eq. (1.74)
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may be reformulated as a sequence of m intermediate problems involving larger probabilities
of failure. For the first SuS level j = 1, the intermediate PoF reads:

P
(1)
f = PX(D(1)

f ) = P(G(X) ≤ t1) = EπX

[
1D(1)

f
(X)

]
(1.80)

where Eπ denotes the expectation with respect to a density π ∈ L1(DX ,B(DX), λ), i.e.
Eπ[ϕ(X)] =

∫
DX

ϕ(x)π(x)dx.

Furthermore, for j ∈ {2, . . . ,m}:

P
(j)
f = PX(D(j)

f |D
(j−1)
f ) = E

πX(·|D(j−1)
f )

[
1D(j)

f
(X)

]
(1.81)

where the conditional density πX(·|D(j−1)
f ) is defined by:

πX(x|D(j−1)
f ) =

1

P
(j−1)
f

πX(x)1D(j−1)
f

(x) (1.82)

Firstly, the probability P
(1)
f in Eq. (1.80) may be estimated though Monte Carlo simu-

lation (see Section 1.2.6.1). Then, the remaining probabilities (P
(j)
f )2≤j≤m in Eq. (1.81) are

estimated with Markov chain Monte Carlo (MCMC) methods (Robert and Casella, 2004),
typically with themodified Metropolis-Hastings (mMH) algorithm proposed in (Au and Beck,
2001). Further details concerning MCMC methods will be given in Section 1.3.4. For a com-
prehensive presentation about MCMC algorithms dedicated to Subset Simulation, the reader
may refer to (Papaioannou et al., 2015).

Then, the PoF in Eq. (1.74) may be estimated by:

Pf ≈ P̂f,N =
m∏
j=1

P̂
(j)
f,N (1.83)

where (P̂
(j)
f,N)1≤j≤m denote the estimator of the intermediate probabilities of failure given in

Eqs. (1.80) and (1.81), obtained from N samples per SuS level. Finally, an illustration of
the SuS algorithm is given in Fig. 1.1.

The estimator in Eq. (1.83) is biased for a finite number N of samples, due to the

correlation between the estimates (P̂
(j)
f,N)1≤j≤m induced by MCMC sampling (Au and Beck,

2001). Au and Beck (2001) showed that the bias is of order O(1/N), and therefore that
the estimator in Eq. (1.83) is asymptotically unbiased. Furthermore, this bias may be
treated as negligible compared to the coefficient of variation of the estimator in Eq. (1.83),
as emphasized by Papaioannou et al. (2015).

Statistics related to the aforementioned estimators are discussed hereafter. Firstly, since
the probability P

(1)
f is estimated through crude Monte Carlo simulation, the coefficient of

variation δ̂1 of the estimator P̂
(1)
f,N is given by (see Section 1.2.6.1):

δ̂1 =

√√√√1− P̂ (1)
f,N

NP̂
(1)
f,N

(1.84)
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(a) SuS intermediate failure domains (b) SuS samples of each intermediate failure domain.

Figure 1.1: Illustration of the SuS method, in the case of a standard normal input distribution
N (0, I) and a parabolic LSF defined by G(x1, x2) = 5− x2 − a(x1 − b)2, with a = 0.5 and b = 0.1.

Then, for j ∈ {2, . . . ,m}, the coefficient of variation δ̂j of P̂
(j)
f,N is given by (Au and Beck,

2001):

δ̂j =

√√√√1− P̂ (j)
f,N

NP̂
(j)
f,N

(1 + γj) (1.85)

where γj ≥ 0 is a term which accounts for the intrinsic correlation between samples resulting
from MCMC sampling. Its expression is not detailed here for the sake of conciseness, and
the reader may refer to (Au and Beck, 2001; Papaioannou et al., 2015) for a derivation of
the expression of γj. Remark that if the produced samples are independent, then γj = 0 and
one retrieves the classical MCS coefficient of variation given in Eq. (1.84). Furthermore, Au
and Beck (2001) showed that the coefficient of variation δ̂ of the estimator in Eq. (1.83)
may be bounded as follows:

m∑
j=1

δ̂2j ≤ δ̂2 ≤
∑

1≤i,j≤m

ρij δ̂iδ̂j (1.86)

where ρij is the correlation between the estimates P̂
(i)
f,N and P̂

(j)
f,N . In practice, the coefficient

of variation δ̂ is commonly estimated by the lower bound in Eq. (1.86), i.e. δ̂ ≈
(∑m

j=1 δ̂
2
j

)1/2

(Au and Beck, 2001). Such a choice often tends to underestimate the theoretical coefficient
of variation of P̂f,N , though.
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1.3 Inverse uncertainty quantification methods

1.3.1 Inverse problems

As mentioned in Section 1.2, the computational model M placed at the core of the UQ
framework (see Fig. iii) underlies a certain directionality: given an input x ∈ DX , the
model always produces an outputM(x). In this context, forward problems consist in study-
ing the effects of the inputs on the model output. Conversely, inverse problems typically
consist in determining the inputs that caused observed data related to the model output.
Broadly speaking, an inverse problem is posed when quantities that cannot be observed
directly are determined from measurements of the response of a system. Inverse problems
are encountered in a wide range of disciplines such as geophysics (Zhdanov, 2015), imag-
ing science (Chalmond, 2003), computerized tomography (Herman, 2009), scattering theory
(Colton and Kress, 2013) or engineering mechanics (Stavroulakis, 2001).

Formally speaking, an inverse problem may be written as follows:

Find x ∈ DX such thatM(x) = y (1.87)

whereM : DX → DY is the forward model, which maps an input space DX ⊂ Rd to a data
space DY ⊂ Rn, x ∈ DX the sought input parameters, and y ∈ DY observed data. Here, the
adopted terminology slightly differs from that introduced in Section 1.2. The denomination
of forward model emphasizes the unidirectional nature of the modelM, which also embodies
the indirect connection between observed data and the input parameters. Furthermore, the
meaning of the space DY has been enlarged by naming it data space rather than output space,
since inverse problems underly connections between model outputs and observed data, the
latter typically stemming from measurements on real-world systems.

Inverse problems fundamentally differ from forward problems, typically through the no-
tion of well-posedness. A problem is said to be well-posed after Hadamard if the following
three properties are satisfied (Hadamard, 1923):

• existence: the problem admits a solution, i.e. for every y ∈ DY there exists x ∈ DX

such thatM(x) = y,

• uniqueness: the problem admits at most one solution, i.e. for every y ∈ DY there
exists at most one x ∈ DX such thatM(x) = y,

• stability: the solution depends continuously on the data, i.e. for every sequence
(xn)n∈N ∈ DN

X such that M(xn) → M(x) when n → ∞, one has xn → x when
n→∞14.

Most physical forward problems are well-posed in this sense. Nevertheless, inverse prob-
lems are typically ill-posed, due to the fact that (at least) one of the above properties is
not met, which makes such problems particularly challenging. In this context, regularization
methods have been developed to cope with ill-posed inverse problems (Engl et al., 1996).
Such methods typically include the widely used truncated Singular Value Decomposition
(TSVD) (Hansen, 1987), Tikhonov regularization (Tikhonov et al., 1995) and Landweber

14the limits considered here are understood in the sense of the topologies of DY and DX , respectively.
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iteration (Landweber, 1951). The reader may refer to (Isakov, 2006; Kirsch, 2011) for a
comprehensive overview on classical deterministic approaches related to inverse problems.

In contrast to the aforementioned deterministic approaches, inverse problems may be
studied from a more statistical, and Bayesian viewpoint in particular (Kaipio and Somer-
salo, 2005; Tarantola, 2005). The rationale behind such an approach is to recast the inverse
problem in a statistical quest for information (Kaipio and Somersalo, 2005), consisting in
extracting information from observed data in order to quantify uncertainties in input pa-
rameters, based on all the available knowledge related to observation noise, as well as input
parameters before observing data. In this context, the variables involved in the problem
are modeled by random variables, and degrees of information related to these variables are
encoded by probability distributions. The Bayesian paradigm provides a natural mechanism
for incorporating observations to a prior level of knowledge about parameters encoded by
a so-called prior distribution, in order to derive a so-called posterior distribution through
a conditioning operation (Robert, 2007). This posterior distribution summarizes all the
available information once observations have been incorporated. Then, when adopting the
aforementioned Bayesian approach, the posterior distribution is seen as the solution of the
inverse problem. This philosophy contrasts with traditional deterministic approaches for
inverse problems: when the latter try to find the value of a given parameter, the Bayesian
viewpoint aims at determining the information about this aforesaid parameter (Kaipio and
Somersalo, 2005). This implies different mathematical objects, namely single point esti-
mates for the former, and probability distributions for the latter. Furthermore, formulating
an inverse problem in a Bayesian fashion and imposing a prior distribution for the sought
parameters may be seen as a regularization procedure (Calvetti and Somersalo, 2018; Idier,
2008). A comprehensive presentation about the mathematical aspects of Bayesian inverse
problems may be found in (Stuart, 2010).

The next section aim at providing a general overview on the Bayesian approach for
inverse problems. Firstly, the basic concepts of Bayesian inference are presented, in order to
subsequently describing the framework of Bayesian inverse problems. Finally, computational
approaches for Bayesian inverse problems are presented.

1.3.2 Bayesian inference

1.3.2.1 Likelihood function

The main basics of Bayesian statistical inference are exposed hereafter. For a more com-
prehensive presentation, the reader may refer to the well-known textbooks (Gelman et al.,
2013; Robert, 2007). In this section, X : Ω → DX ⊂ Rd denotes the unknown parameters
of a statistical model, whereas Y : Ω → DY ⊂ Rn are related observables. Moreover, these
two random variables are each assumed to admit a density. Bayesian inference aims at iden-
tifying the parameters X from realizations of the observables Y , in a statistical fashion. In
this context, the connection between parameters and observables is established through the
definition of a statistical model explaining the randomness of observations given realizations
of parameters. This consists in specifying the conditional density π(·|x) of observables Y
knowing a realization X = x, namely:

Y |x ∼ π(y|x) (1.88)
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The model in Eq. (1.88) typically encapsulates a wide range of assumptions related to
the observables: in the framework of Bayesian inverse problems that will be described in
Section 1.3.3, such a model may typically summarize uncertainties in measurements, as well
as uncertainties and inadequacies of the considered forward model (Kaipio and Somersalo,
2005).

Given observed data y ∈ DY , the conditional density π(y|x) may be seen as a function
of x ∈ DX . In the framework of Bayesian inference, this function is known as the likeli-
hood function (Robert, 2007), and is denoted by L(x) = π(y|x) hereafter. Note that the
dependence on the data y ∈ DY is deliberately omitted in the aforesaid notation, for the
sake of conciseness. Moreover, the definition of the likelihood may be readily extended to
the case when several observations are available. Indeed, assuming that {y(k)}1≤k≤m ⊂ DY

are independent realizations of the observables Y , the likelihood function reads:

L(x) =
m∏
k=1

π(y(k)|x) (1.89)

1.3.2.2 Prior distribution

The Bayesian paradigm involves a subjective interpretation of probabilities: it uses proba-
bility distributions so as to model a lack of knowledge related to some variables of interest
(Cox, 2006; Robert, 2007). This fundamentally contrasts with the frequentist viewpoint, in
which probabilities are interpreted as objective frequencies (Samaniego, 2010).

Bayesian inference involves the definition of a prior distribution which summarizes the
level of knowledge related to the parameters X before making any observation. In the
continuous case, this reverts to specify a prior density :

X ∼ π(x) (1.90)

The choice of the prior distribution constitutes the most crucial point of Bayesian infer-
ence, and also the most criticized one (Robert, 2007, Chapter 3). In fact, it is also one of
the most difficult step in Bayesian inference. In practice, when a sufficient amount of data
concerning parameters is available, several parametric distributions (see Section 1.2.3.2) that
fit well the data may exist, which implies to make a choice related to the mathematical def-
inition of the prior distribution itself. Alternatively, the available information concerning
parameters may result from a combination of previous experiments, data taken from the lit-
erature, and/or an aggregation of expert judgements. In such a case, encoding these various
sources of information into a probability distribution constitutes a highly non-trivial task.
As a result, the selection of the probabilistic model in Eq. (1.90) constitutes an important
modeling choice.

Broadly speaking, prior distributions may be classified according to the degree of informa-
tion they contain and the function they fulfill (Nagel, 2017). One may distinguish between
informative priors, which are subjectively defined based on the level of knowledge of one
or several analysts, and non-informative priors, constructed in a more objective fashion
through some formal rules (Kass and Wasserman, 1996). The latter typically trade a sub-
jective choice for a partly automated selection of the prior distribution (Robert, 2007). Such
formal rules include the Jeffreys prior (Jeffreys, 1946) and the so-called maximum entropy
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principle (Jaynes, 1957). Furthermore, when considering parametric distribution families, it
is also possible to consider conjugate priors (Diaconis and Ylvisaker, 1979), which constitute
a type of priors that were historically favored so as to facilitate Bayesian calculations.

Thus, it is important to emphasize that uncertainties are immanent to the choice of a
prior distribution. This goes in the direction of second level Uncertainty Quantification,
evoked in Section 1.2.3. In particular, the framework of robust Bayesian inference aims at
studying the impact of the choice of the prior on Bayesian inference (Berger, 1990; Ruggeri
et al., 2005). Moreover, hierarchical modeling (Congdon, 2010; Gelman and Hill, 2006; Nagel
and Sudret, 2016b) allows to specify the prior in a multilevel fashion, and then reducing the
influence of the choice of the prior on the resulting inference process (Robert, 2007).

1.3.2.3 Posterior distribution

Then, following Eq. (1.17), the conditional density π(y|x) of Y givenX = x may be written
as follows:

π(y|x) = π(x,y)

π(x)
(1.91)

where π(x,y) is the joint density of (X,Y ) : Ω→ DX ×DY , and π(x) is the prior density
of X. Likewise, the conditional density π(x|y) of X knowing Y = y reads:

π(x|y) = π(x,y)

π(y)
(1.92)

Thus, given y ∈ DY , combining Eqs. (1.91) and (1.92) yields the well-known Bayes’
theorem for continuous random variables:

π(x|y) = π(x)L(x)
Z

(1.93)

where π(x|y) is the posterior density, L(x) = π(y|x) the likelihood function (see Section
1.3.2.1), and Z = π(y) is a normalizing constant termed model evidence or marginal likeli-
hood :

Z =

∫
DX

L(x)π(x)dx (1.94)

The posterior density in Eq. (1.93) summarizes all the available information related to pa-
rameters, once observed data have been collected. The corresponding posterior distribution
PX|y is then given by:

PX|y(B) =

∫
B

π(x|y)dx (1.95)

for all Borel set B ∈ B(DX). Furthermore, expectations with respect to the posterior are
given by the transport theorem:

E[ϕ(X)|Y = y] =

∫
DX

ϕ(x)π(x|y)dx =

∫
DX

ϕ(x)
L(x)
Z

π(x)dx (1.96)

for all measurable function ϕ : DX → R such that ϕ ∈ L1(π(·|y)). It is worth noting that
Eq. (1.96) suggests that integration against the posterior may be recasted as a reweighted
integration against the prior, the factor L(x)/Z in Eq. (1.96) being seen as a weight function.
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Moreover, in order to quantify prior and posterior uncertainties related to observables
Y , predictive densities defined on the data space DY may be constructed from the prior
density in Eq. (1.90) and the posterior density in Eq. (1.93) (Robert, 2007). Firstly, the
prior predictive density is defined by:

π(y) =

∫
DX

π(y|x)π(x)dx (1.97)

for all y ∈ DY . Likewise, and assuming that future data y′ ∈ DY and observed data y ∈ DY

are conditionally independent, i.e. π(y,y′|x) = π(y|x)π(y′|x), the posterior predictive
density of Y is defined by:

π(y′|y) =
∫
DX

π(y′|x)π(x|y)dx (1.98)

This density expresses the probability of observed new data y′ ∈ DY given observed data
y ∈ DY . Such a density constitutes an appealing quantity of interest in the framework
of Bayesian calibration (Wagner, 2021), since it incorporates uncertainties related to both
parameters and observations in predictions.

1.3.2.4 Information gain

The information gain resulting from the transition from a prior state of knowledge to a
posterior one can be quantified from the point of view of information theory (Lindley, 2000;
MacKay, 2002). In this context, the information gain between the posterior and the prior
may be measured by using the Kullback-Leibler divergence15 (KLD) (Kullback and Leibler,
1951). The KLD from the prior PX to the posterior PX|y is given by:

DKL(PX|y∥PX) =

∫
DX

log

(
π(x|y)
π(x)

)
π(x|y)dx (1.99)

This quantity may be seen as a measure of dissimilarity between prior and posterior
distributions. Furthermore, it is never negative, and one has DKL(PX|y∥PX) = 0 if and
only if PX|y = PX . Therefore, this quantity may indicate the degree of informativeness of
observed data: the KLD in Eq. (1.99) is expected to be close to zero if the posterior remains
close to the prior.

It is worth noting that the KLD in Eq. (1.99) does not define a distance in the mathe-
matical sense, since it does not define a symmetric function. More precisely, KLD belongs to
the class of divergences (Ali and Silvey, 1966; Csiszár, 1967). These mathematical objects
quantify the dissimilarity between two probability measures by point-wise comparing their
mass. One refers to (Peyré and Cuturi, 2019, Chapter 8) for a comprehensive overview on
divergences.

1.3.2.5 Model evidence

The model evidence defined in Eq. (1.94) underlies a broader meaning than merely being
a normalizing constant (for a fixed set of observed data). A comprehensive interpretation

15also known as relative entropy.
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of this quantity can be made in the context of Bayesian model selection and averaging
(Claeskens and Hjort, 2001; Wasserman, 2000), which aims at comparing several competing
models that explain observed data.

Let (Hk)1≤k≤m be candidate statistical models, each providing a conditional density aim-
ing at modeling observations as in Eq. (1.88), namely:

Y |xHk
∼ π(y|xHk

,Hk) (1.100)

where xHk
∈ DHk

⊂ Rdk is a realization of the parameters XHk
: Ω→ DHk

associated to the
model Hk, for each k ∈ {1, . . . ,m}. Furthermore, for each k ∈ {1, . . . ,m}, the parameters
XHk

of the model Hk are endowed with a prior density π(xHk
).

Bayesian model selection involves the definition of an additional layer of uncertainties
related to the choice of a model in (Hk)1≤k≤m. One defines a prior discrete probability
measure PH on the set of models (Hk)1≤k≤m, so that PH(Hk) represents the prior plausibility
of the hypothesis that Hk is the best model. Then, given observed data y ∈ DY , applying
Bayes’ theorem in Eq. (1.93) enables to write the posterior distribution PH|y as follows:

PH|y(Hk|y) =
PH(Hk)π(y|Hk)

π(y)
(1.101)

where π(y|Hk) is the model evidence associated to the posterior density π(xHk
|y,Hk) of

XHk
, and π(y) the density of observables Y . The former quantity may be written by

marginalizing the likelihood π(y|xHk
,Hk) over the parameters xHk

of Hk:

π(y|Hk) =

∫
DHk

π(y|xHk
,Hk)π(xHk

)dxHk
(1.102)

The density π(y) may be written by marginalizing the likelihood π(y|Hk) over the models
(Hk)1≤k≤m, namely:

π(y) =
m∑
k=1

π(y|Hk)PH(Hk) (1.103)

Then, assuming a uniform prior for the models (Hk)1≤k≤m (i.e. PH(Hk) = 1/m, for all
k ∈ {1, . . . ,m}), the posterior in Eq. (1.101) simply rewrites:

PH|y(Hk|y) =
Zk
m∑
l=1

Zl

(1.104)

where Zk = π(y|Hk) is the model evidence associated to Hk, for each k ∈ {1, . . . ,m}. The
probability in Eq. (1.104) expresses how likely is the model Hk given the observed data
y ∈ DY . In this context, the notion of Bayes factors (Kass, 1993) enables to compare
the different models, and hence indicates which model is more likely to have produced the
observed data. The Bayes factor Bkl between the models Hk and Hl is defined by:

Bkl =
PH|y(Hk|y)
PH|y(Hl|y)

=
Zk

Zl

(1.105)

where the second equality stems from the assumption of a uniform discrete prior PH.
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The so-called Jeffreys’ scale of evidence provides an empirical interpretation of Bayes
factors (Jeffreys, 1998). Bayesian model selection thus enables to determine which model
best explains the data, and moreover enables to select the simplest one in the case when
several models perform equally well. Indeed, complex models typically involve complex and
large parameter spaces, which tend to present smaller model evidences (Jefferys and Berger,
1991). Thus, Bayesian model selection underlies an automatic Occam’s razor, or parsimony
principle. Moreover, the Eq. (1.104) enables to better emphasize the meaning of the model
evidence in Eq. (1.94), as well as the relative aspect of Bayesian probabilities in general:
indeed, the probabilities defined in Bayesian inference are all conditional to the adopted
modeling assumptions (Nagel, 2017), and in particular the model evidence enables to weight
several models with respect to their ability to explain the data.

1.3.3 Bayesian inverse problems

The basic principles of Bayesian inference exposed in Section 1.3.2 are now considered in
the framework of inverse problems. Let M : DX ⊂ Rd → DY ⊂ Rn be the forward model
introduced in Section 1.3.1. In this section, X : Ω → DX denotes the unknown input
parameters ofM, and Y : Ω→ DY still denotes observables.

Solving an inverse problem seen from a Bayesian viewpoint may be divided in three sub-
tasks (Kaipio and Somersalo, 2005). Firstly, a prior density π(x) summarizing the available
information about X before making any observation has to be elicited. Then, given observed
data y ∈ DY , a statistical model establishing a connection between the model response and
observables is devised. The likelihood function L(x) stemming from the adopted statistical
model embodies the aforesaid connection. Finally, applying Bayes’ theorem in Eq. (1.93)
enables to derive the posterior density π(x|y). Computational methods aiming at exploring
the posterior distribution will be discussed in Sections 1.3.4 and 1.3.5.

Compared to general Bayesian inference presented in Section 1.3.2, the main specificity
of Bayesian inverse problems lies in the definition of the likelihood function. Indeed, in the
context of inverse problems, the latter encapsulates assumptions related to the discrepancies
occurring between observations and the model response. Such discrepancies may typically
stem from measurement noise, but also from model inadequacies. Several statistical models
often encountered in the framework of Bayesian inverse problems are discussed hereafter.

1.3.3.1 Likelihood functions

In most cases, the discrepancy existing between observables and the model response for a
given x ∈ DX is modeled by a random noise term, leading to the so-called additive noise
model denoted by (Kaipio and Somersalo, 2005):

Y |x =M(x) +E (1.106)

where E : Ω → DY is a random variable with zero mean, i.e. E[E] = 0, and independent
from parameters X. Assuming that E is a Gaussian random variable with covariance matrix
Σ ∈ Rn×n, i.e. E ∼ N (0,Σ), the model in Eq. (1.106) leads to the following conditional
distribution for the observables Y :

Y |x ∼ N (M(x),Σ) (1.107)
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Hence, given observations y ∈ DY , the associated likelihood function reads:

L(x) = φ(y;M(x),Σ)

= det (2πΣ)−
1
2 exp

(
−1

2
(y −M(x))⊺Σ−1(y −M(x))

)
(1.108)

where φ(·;µ,Σ) denotes the density of the distribution N (µ,Σ).

Furthermore, as mentioned in Section 1.3.2, the definition of the likelihood in Eq. (1.108)
may be readily extended to the case of several observations {y(k)}1≤k≤m ⊂ DY : indeed, as-
suming mutually independent observations and considering a Gaussian additive noise model,
the corresponding likelihood writes:

L(x) =
m∏
k=1

φ(y(k);M(x),Σ) (1.109)

Then, it is worth noting that the formulation in Eq. (1.107) assumes that the noise
covariance matrix is perfectly known, which is rarely the case in practice. Bayesian inference
enables to weaken such an assumption, by devising a parametrized model for the discrepancy
involved in the model in Eq. (1.106), and subsequently inferring discrepancy parameters
jointly with parameters of the forward model (Nagel and Sudret, 2016b). Considering the
Gaussian additive noise model in Eq. (1.107), one defines a parametrized covariance matrix
(Σ(η))η∈DN

, DN ⊂ Rp denoting the parameter space associated to discrepancy covariance
parameters. The latter are modeled by a random variable N : Ω→ DN , with a prior density
π(η). Hence, the conditional distribution of the discrepancy E given a realization N = η
is simply given by N (0,Σ(η), i.e. E|η ∼ N (0,Σ(η)). In this configuration, the additive
model in Eq. (1.106) extends to:

Y |x,η =M(x) +E|η (1.110)

and the corresponding likelihood function reads:

L(x,η) = φ(y;M(x),Σ(η)) (1.111)

Thus, specifying a joint prior density π(x,η) for (X,N ), typically by setting π(x,η) =
π(x)π(η), the posterior density of both model and discrepancy parameters can be derived
by applying Bayes’ theorem, i.e. π(x,η|y) ∝ π(x,η)L(x,η).

Finally, it is possible to consider more complex discrepancy models. For instance, it is
possible to model systematic modeling biases (Higdon et al., 2004; Kennedy and O’Hagan,
2001), which are disregarded in the models in Eqs. (1.106) and (1.110). In this context, the
discrepancy model in Eq. (1.110) may be augmented with a bias term D : Ω → DY with
underlying parameters B : Ω→ DB ⊂ Rq:

Y |x,η,β =M(x) +E|η +D|β (1.112)

In such a case, Bayesian inference is conducted on the whole set of parameters (X,N ,B),
provided a joint prior density π(x,η,β) has been specified.
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1.3.3.2 Bayesian linear regression

An illustrative example of a well-known Bayesian inverse problem is presented hereafter.
Let us consider the linear forward model defined byM(x) = Ax for x ∈ DX ⊂ Rd, where
A ∈ Rn×d. An additive Gaussian noise model is considered for observables Y , namely:

Y |x =M(x) +E (1.113)

where E ∼ N (0, σ2I), and σ2 > 0 is the noise variance, which is here assumed to be known.
Then, given observed data y ∈ DY ⊂ Rn, the likelihood function associated to the model in
Eq. (1.113) simply writes:

L(x) = φ(y;Ax, σ2I) = (2πσ2)−
n
2 exp

(
− 1

2σ2
∥y −Ax∥22

)
(1.114)

Furthermore, a Gaussian prior with mean µX ∈ Rd and covariance matrix ΣX ∈ Rd×d

is assumed for the parameters X : Ω → DX . Then, it is well known that the posterior
distribution is also Gaussian, whose covariance matrix and mean respectively read:

ΣX|y = (Σ−1
X + σ−2A⊺A)−1 (1.115)

µX|y = ΣX|y(Σ
−1
X µX + σ−2A⊺y) (1.116)

The posterior mean in Eq. (1.116) gives an insight on the connection between Bayesian
inference and classical regularization techniques for inverse problems (Calvetti and Somer-
salo, 2018). Indeed, when considering a standard normal prior (µX = 0 and ΣX = I),
the posterior mean in Eq. (1.116) is equal to the solution of the ℓ2-penalized Tikhonov-
regularized form of the linear inverse problem Ax = y (Wagner, 2021):

arg min
x∈DX

∥y −Ax∥22 + σ2∥x∥22 (1.117)

Moreover, it is remarked that when σ2 → ∞, the information provided by observed
data tends towards zero and hence the prior knowledge dominates, i.e. µX|y = µX and
ΣX|y = ΣX (Nagel, 2017).

1.3.4 Markov chain Monte Carlo methods

In general, the posterior density in Eq. (1.93) is not known analytically, except in some rare
cases involving conjugate distributions (Robert, 2007, Chapter 3), such as the linear inverse
problem with a Gaussian prior considered in Section 1.3.3.2. Computationally speaking,
exploring the posterior distribution is particularly challenging. Indeed, the model evidence
in Eq. (1.94) is typically a multidimensional integral whose calculation may be intractable.
Hence, only an unnormalized version of the posterior density in Eq. (1.93), namely the
product of the prior density and the likelihood function, is available in practice. Furthermore,
in the framework of Bayesian inverse problems, a single evaluation of the likelihood function
triggers an evaluation of the forward model (see e.g. Eq. (1.108)). In this context, expensive
forward models may considerably impede Bayesian computations.

Markov Chain Monte Carlo (MCMC) methods are the most widely used for Bayesian
computations. Such methods, originally introduced by Metropolis et al. (1953) in the context
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of statistical physics, aim at constructing Markov chains that are suitable for drawing samples
from a target distribution. In particular, MCMCmethods only require point-wise evaluations
of an unnormalized version of the target density. This enables to avoid the calculation of
the model evidence in Eq. (1.94), in the context of Bayesian inference.

A general overview on the basic principles of Markov chains as well as classical MCMC
algorithms is given hereafter. For a more comprehensive presentation, the reader may refer
to (Brooks et al., 2011; Gamerman and Lopes, 2006; Robert and Casella, 2004).

1.3.4.1 Basic principles of MCMC

The definition of a Markov chain rests on the notion of transition kernel (Robert and Casella,
2004, Chapter 6). A transition kernel is a function K : DX × B(DX)→ [0, 1] such that:

1. for all x ∈ DX , K(x, ·) is a probability measure on (DX ,B(DX)),

2. for all B ∈ B(DX), the function : x 7→ K(x, B) is measurable.

Intuitively, these properties state that given a current point x ∈ DX , the probability measure
K(x, ·) enables to randomly choose a new point x′ ∈ DX . This plays a key role in the theory
of Markov chains, the latter studying time-dependent random processes, for which the state
at time t+ 1 depends on the state at time t. In what follows, the presentation will focus on
continuous transition kernels, namely on kernels K such that K(x, ·) is absolutely continuous
w.r.t. Lebesgue measure, for all x ∈ DX :

K(x, B) =

∫
B

K(x′|x)dx′ (1.118)

where K(·|x) denotes the transition density associated to K(x, ·).
The notion of Markov chain is introduced hereafter. Let (X t)t∈N be a DX-valued stochas-

tic process16. Then, (X t)t∈N is said to be a Markov chain with transition kernel K if:

P

(
X t+1 ∈ B

∣∣∣∣∣
t⋂

s=0

{Xs = xs}
)

= P(X t+1 ∈ B |X t = xt)

= K(xt, B)

(1.119)

for all Borel set B ∈ B(DX), {xs}0≤s≤t ⊂ DX and t ∈ N. In other words, the conditional
distribution of X t+1 given X0, . . . ,X t only depends on X t, and is given by K(X t, ·). This
refers to the so-called Markov property : to predict the future X t+1 at an instant t ∈ N,
the knowledge of the past X0, . . . ,X t does not provide more information than the present
X t. Note that here the presentation is restricted to discrete-time Markov chains, i.e. to the
case of variables indexed by an integer t ∈ N. Furthermore, the transition kernel K(xt, ·) in
Eq. (1.119) defining the conditional distribution of X t+1 given X t = xt does not depend
on t: this refers to a homogeneous Markov chain. Conversely, in the case of inhomogeneous
Markov chains, the transition mechanism between states at instants t and t+ 1 depends on
t. It is also worth noting that a Markov chain is fully characterized by its transition kernel
and the distribution of its initial state X0.

16i.e. Xt : Ω→ DX is a random variable, for all t ∈ N.
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Then, a probability distribution with density ρ is said to be an invariant (or stationary)
distribution of the Markov chain (X t)t∈N if, for all x′ ∈ DX :

ρ(x′) =

∫
DX

K(x′|x)ρ(x)dx (1.120)

It is worth noting that the invariance property in Eq. (1.120) holds if the following reversibil-
ity (or detailed balance) condition is fulfilled (Robert and Casella, 2004), for all x,x′ ∈ DX :

K(x′|x)ρ(x) = K(x|x′)ρ(x′) (1.121)

The central idea of MCMC methods is to construct a transition kernel so that the corre-
sponding Markov chain admits the posterior distribution as an invariant distribution (Robert
and Casella, 2004; Tierney, 1994). In practice, transition kernels are built in order to satisfy
the reversibility condition in Eq. (1.121). Furthermore, under some conditions related to
the irreducibility, aperiodicity and the ergodicity of the Markov chain, it is possible to show
that the chain converges towards its invariant distribution, in a certain sense. A detailed
mathematical description of such properties is not undertaken here, and the reader may
refer to (Robert and Casella, 2004) for further details. Then, given an ergodic Markov chain
(X t)t∈N admitting the posterior in Eq. (1.95) as invariant distribution, the states {xt}1≤t≤T

of the chain can be used as correlated samples from the posterior, provided the number of
steps T ≥ 1 is sufficiently high. In this context, expectations against the posterior (see Eq.
(1.96)) may be estimated by:

E[ϕ(X)|Y = y] ≈ 1

T

T∑
t=1

ϕ(xt) (1.122)

for all function ϕ : DX → R integrable w.r.t. the posterior, i.e. ϕ ∈ L1(π(·|y)).
Eq. (1.122) can be seen as a Law of Large Numbers for ergodic Markov chains (Tierney,

1994, Theorem 3). Moreover, under some additional conditions on the Markov chain (e.g.
geometric or uniform ergodicity) (Gelman et al., 1997; Jarner and Hansen, 2000), a central
limit theorem holds for the estimate in Eq. (1.122) (see e.g. (Tierney, 1994)).

1.3.4.2 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953) consti-
tutes the cornerstone of MCMC algorithms. Its transition kernel is based on the coupling of
a so-called proposal distribution with density q(x′|x) with an accept-reject correction phase.
Firstly, the algorithm is initialized at an arbitrary state x0 ∈ DX . Then, at time t ∈ N, a
candidate sample x∗ ∼ q(x|xt) is drawn from the proposal distribution, and is subsequently
accepted as the next state of the chain, i.e. xt+1 = x∗, with an acceptance probability given
by:

α(xt,x∗) = min

(
1,
π(x∗|y)q(xt|x∗)

π(xt|y)q(x∗|xt)

)
(1.123)

Otherwise, the candidate sample x∗ is rejected. The transition density K(·|·) of the MH
algorithm may be written as follows:

K(x′|x) = α(x,x′)q(x′|x) + (1− ϱ(x))δx(x′) (1.124)
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where:

ϱ(x) =

∫
DX

α(x,x′)q(x′|x)dx (1.125)

It may be shown that the transition density in Eq. (1.124) satisfies the reversibility condition
in Eq. (1.121), and therefore that the constructed Markov chain admits the posterior as
invariant distribution (Tierney, 1994). The full MH algorithm is presented in Algorithm 1.1.
It is worth noting that the calculation of the acceptance probability in Eq. (1.123) only
requires the knowledge of an unnormalized version of the posterior density π(·|y), due to
the presence of the ratio π(x∗|y)/π(xt|y).

Algorithm 1.1 Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953)

Input: posterior density π(x|y) ∝ π(x)L(x), proposal density q(x′|x)
1: Initialize x0 ∈ DX ▷ Select a seed in the input parameter space
2: for t = 0, . . . , T − 1 do
3: Draw x∗ ∼ q(x|xt) ▷ Draw a candidate sample from the proposal distribution
4: Compute α(xt,x∗) as in Eq. (1.123) ▷ Compute the acceptance probability
5: Draw u ∼ U([0, 1])
6: if u ≤ α(xt,x∗) then ▷ Accept-reject phase
7: Set xt+1 = x∗ ▷ Accept the candidate sample
8: else
9: Set xt+1 = xt ▷ Reject the candidate sample
10: end if
11: end for
Output: MCMC samples {xt}1≤t≤T

Furthermore, the formulation of the acceptance probability in Eq. (1.123) constitutes
a generalization proposed by Hastings (1970) of the original acceptance rule of Metropolis
et al. (1953), that was based on less general proposal distributions. Indeed, when considering
a symmetric proposal density, i.e. q(x′|x) = q(x|x′), Eq. (1.123) simply rewrites as follows:

α(xt,x∗) = min

(
1,
π(x∗|y)
π(xt|y)

)
(1.126)

In this context, a common choice of symmetric proposal is the Gaussian distribution with
the following density:

q(x′|x) = det (2πΣq)
− 1

2 exp

(
−1

2
(x′ − x)⊺Σ−1

q (x′ − x)

)
(1.127)

where Σq ∈ Rd×d is the proposal covariance matrix. Such a choice leads to the classical
random walk Metropolis algorithm. An illustration of this algorithm is given in Fig. 1.2.

Besides, the MH algorithm suffers from several well-known drawbacks. Firstly, due to
the Markovian nature of the algorithm, the produced samples are correlated. This typically
increases the variance of Monte Carlo estimates in Eq. (1.122), which implies that a longer
chain will be required to provide accurate estimates if the inter-correlation between samples is
large. This inter-correlation between samples typically stems from the fact that the distance
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between two subsequent states xt and xt+1 is small, and/or many candidate points are
rejected due to a small acceptance probability in Eq. (1.123). As a result, the proposal
distribution has to be properly tuned in order to ensure a sufficiently efficient sampling,
as emphasized by Fig. 1.2a, which shows a poor exploration of the posterior due to a
badly scaled proposal. This typically consists in adjusting the coefficients of the proposal
covariance matrix Σq in Eq. (1.127) when considering a Gaussian proposal distribution. In
practice, such a tuning is often tedious, since the shape of the posterior density is not known
in advance.

(a) σq = 0.05 (b) σq = 1

Figure 1.2: Illustration of the MH algorithm: case of a banana-shaped target distribution, defined
as the pushforward of the distribution N (0,Σ) by the map B : R2 → R2 defined by B(x1, x2) =

(x1, x2 − (1 + x22)), with Σ =

(
1 0.9
0.9 1

)
. The proposal distribution is a Gaussian centered at the

current state (see Eq. (1.127)), with covariance matrix Σq = σ2
qI.

Furthermore, the convergence of MCMC simulations is difficult to diagnose unequivocally
in practice. Before the Markov chain converges to its stationary state (viz. to the posterior
distribution), the produced states are possibly not distributed according to the posterior
distribution, and may therefore corrupt the set of samples obtained with MCMC. This
sequence of states is known as the so-called burn-in period (Brooks et al., 2011), and is
difficult to determine in practice.

Several heuristics have been proposed in the literature in order to assess the convergence
of Markov chains. Firstly, the acceptance rate, defined by the ratio of the number of accepted
points on the total number of steps, may provide information about the mixing of the chain17:
in the case of the MH algorithm, a large acceptance rate would indicate a poor exploration of
the posterior due to strongly correlated states. Conversely, an acceptance rate close to zero
would indicate that proposed samples are located in low-probability regions of the posterior.
For instance, in the case of the random walk Metropolis algorithm, these information may
serve as guidelines so as to properly scale the proposal covariance matrix. Moreover, the
analysis of trace plots, that display the time evolution of a chain in each dimension of the
parameter space, may serve as a qualitative tool for visualizing the quality of the produced

17note that the quality of a chain should not be evaluated only on the basis of acceptance rate values,
though.
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chains (see Fig. 1.3). Finally, in a more quantitative fashion, the convergence of MCMC
simulations may be assessed by using the so-called Gelman-Rubin diagnostic, introduced
in (Gelman and Rubin, 1992) and later generalized in (Brooks and Gelman, 1998). Based
on the results of several independent chains, this indicator typically aims at comparing the
second-order moments estimated from individual chains, to the ones estimated from the
samples resulting from the combination of all the chains.

(a) σq = 0.05 (b) σq = 1

Figure 1.3: Illustration of the MH algorithm (bis): trace plots of the component x1 of the chains
displayed in Fig. 1.2.

1.3.4.3 Overview on MCMC algorithms

As mentioned earlier, the performance of the MH algorithm strongly depends on the choice
of the proposal distribution. Broadly speaking, a MCMC algorithm is all the more efficient
when the proposal distribution resembles the posterior. Nowadays, a wide variety of MCMC
algorithms is available in the literature. Modern MCMC algorithms involve proposal mecha-
nisms that are more sophisticated than those behind the MH algorithm (see Section 1.3.4.2),
and typically aim at mimicking the behavior of the target distribution, at least locally. A
brief exposition of several popular classes of MCMC algorithms is given herebelow.

• adaptive Metropolis algorithms: adaptive variants of the MH algorithm typically con-
sist in tuning the covariance matrix of a Gaussian proposal throughout the sampling
procedure (see e.g. (Haario et al., 2006, 2001)). For further details about adaptive
Metropolis algorithms, the reader may refer to (Andrieu and Thoms, 2008).

• affine-invariant ensemble samplers: another popular MCMC algorithm is the Affine
Invariant Ensemble Sampler (AIES) introduced by Goodman and Weare (2010). This
algorithm aims at constructing an ensemble of several Markov chains, which is up-
dated with such a transition mechanism such that the algorithm equally well samples
distributions that differ from an affine transformation. In particular, this algorithm is
particularly efficient when confronted to strongly correlated and more generally, badly
scaled posterior distributions.

• derivative-based algorithms: several MCMC algorithms exploit information related to
derivatives of the posterior distribution. In this context, some authors have intro-
duced gradient-driven proposals that are constructed by analogy with models taken
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from physics. Such algorithms include the Hamiltonian Monte Carlo (HMC)18. al-
gorithm (Neal, 2011), and the Metropolis-Adjusted Langevin Algorithm (MALA) al-
gorithm (Roberts and Tweedie, 1996). Moreover, derivative-based algorithms also
include algorithms based on differential geometry, such as the Riemannian manifold
algorithms introduced in (Girolami and Calderhead, 2011).

1.3.5 Alternative Bayesian computational techniques

Although MCMC constitutes the widely used class of Bayesian computational techniques,
it still suffers from several drawbacks, some of them having been mentioned in Section
1.3.4.2. Firstly, MCMC algorithms produce samples that may be sensibly correlated (see
Fig. 1.3), which may alter the accuracy of Monte Carlo estimates of posterior QoI. Fur-
thermore, MCMC lacks of clear convergence criteria in practice, which implies the use of
numerous heuristic rules (Brooks and Gelman, 1998; Cowles and Carlin, 1996; Gelman and
Rubin, 1992). Classical MCMC may also be not well suited for sampling multi-modal poste-
rior distributions, and may perform poorly when confronted to high-dimensional problems19

(Papaioannou et al., 2015; Zuev et al., 2012). Lastly, MCMC algorithms require a large
amount of likelihood evaluations, which makes them intractable when dealing with compu-
tationally expensive models.

In this framework, a widely used alternative to MCMC techniques is given by Variational
Bayesian inference (VB) (Fox and Roberts, 2011). VB reformulates classical Bayesian infer-
ence into a deterministic optimization problem. In this context, the posterior distribution is
computed through this optimization problem, by minimizing a dissimilarity measure between
the posterior and a distribution sought among a candidate set of parametric distributions.
Such a dissimilarity measure is often given by the KLD introduced in Section 1.3.2.4. Nev-
ertheless, the distribution obtained by solving the aforementioned optimization problem is
only an approximated form of the posterior, and may sensibly depend on the choice of the
parametric class.

More recently, a broad range of alternative Bayesian computational techniques has been
proposed in the literature. A selection of alternative techniques is introduced and discussed
hereafter:

• Transport maps: the Transport Map (TM) approach originally introduced by El Moselhy
and Marzouk (2012) provides a novel computational framework for Bayesian inference
based on ideas from Optimal Transport theory (Villani, 2003, 2009). Such an approach
aims at constructing a map that pushes forward the prior measure to the posterior one,
by solving an optimization problem. It has also been used so as to improve the efficiency
of MCMC algorithms in (Parno and Marzouk, 2018). Moreover, the TM approach has
been recently used in the framework of computational mechanics by Rubio (2019), for
on-line data assimilation purposes.

• Spectral approaches: it is worth mentioning a recent Bayesian computational ap-
proach that are neither based on random sampling nor mathematical programming,

18originally termed Hybrid Monte Carlo by Duane et al. (1987)
19note that advanced MCMC algorithms such as derivative-based ones (e.g. MALA or HMC) are suitable

for high-dimensional problems, however, they may typically require an important additional cost due to
evaluations of the gradient of the likelihood function.
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namely spectral likelihood expansions (SLE). Originally introduced by Nagel and Su-
dret (2016a), this approach views Bayesian inference from a function approximation
viewpoint, and proposes to approximate the likelihood function by a PCE surrogate
model. In this framework, Bayesian QoI such as posterior joint and marginal densi-
ties, posterior moments or model evidence may be post-processed analytically from
PCE coefficients. Nevertheless, as underlined in (Nagel and Sudret, 2016a), likelihood
functions constitute highly nonlinear and non-negative functions, which are difficult to
approximate with polynomial functions. Consequently, a sensibly large PCE degree is
required to provide sufficiently accurate PCE approximations of the likelihood func-
tion. In order to alleviate such problems, Wagner et al. (2021) recently proposed an
extension of the SLE approach, called stochastic spectral likelihood embedding (SSLE),
that proposes to approximate the likelihood function with piece-wise PCE surrogates,
based on a surrogate modeling approach introduced in (Marelli et al., 2021).

• Bayesian inference with reliability methods: lastly, Straub and Papaioannou (2015)
recently introduced a novel Bayesian computational framework, known as Bayesian
updating with Structural reliability methods (BuS). It aims at reformulating classical
Bayesian inference into a structural reliability problem. In this framework, exploring
the failure domain of the underlying reliability problem is akin to exploring the pos-
terior distribution. Then, the wide portfolio of structural reliability methods may be
deployed in the framework of Bayesian computations, including the SuS method (see
Section 1.2.6.2), which has been demonstrated to be a powerful and robust method
that is suitable for a broad range of structural reliability problems (Au et al., 2007;
Schuëller et al., 2004). In particular, SuS has been adapted to the BuS framework in
(Betz et al., 2018b), and has been demonstrated to be particularly efficient for sampling
posteriors with complex shapes (including multi-modalities) and high dimensionalities
(Uribe et al., 2020). Moreover, contrary to MCMC, the BuS framework enables to
estimate the model evidence, as a byproduct of the rare event estimation (Straub and
Papaioannou, 2015), which makes it suitable for Bayesian model selection (see Section
1.3.2.5).

Consequently, particular attention will be paid to this last framework, in order to provide
efficient computational tools for inverse analyses performed throughout this thesis. Such a
choice is motivated by the advantages listed above, which make it a promising alternative to
classical MCMC sampling techniques (DiazDelaO et al., 2017), and, to a lesser extent, by the
fact that structural reliability methods such as SuS are well-known in the field of reliability for
civil engineering. As a result, the BuS framework and its computational features (including
an adapted version of the SuS method) will be more thoroughly investigated in Chapter 2
of this thesis.

1.3.6 Surrogate modeling within Bayesian computations

Despite the notable advances they have provided, all the aforementioned Bayesian techniques
typically require a large amount of evaluations of the likelihood function. Therefore, when
dealing with inverse problems with costly forward models, such as multi-physic models for
NCB, the aforementioned approaches are not directly tractable, since a likelihood evalua-
tion triggers a run of the forward model (see Section 1.3.3). In such cases, this involves an
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additional layer of complexity, since it becomes necessary to maintain a reasonable compu-
tational budget while efficiently exploring the posterior distribution related to the problem
at hand.

This point motivates the use of surrogate models to accelerate Bayesian computations. A
widely used approach consists in replacing the forward model by a surrogate model, including
polynomial chaoses (Marzouk and Xiu, 2009; Marzouk and Najm, 2009; Marzouk et al., 2007;
Yan and Guo, 2015), Kriging (Damblin et al., 2018; O’Hagan, 2006; Stuart and Teckentrup,
2017; Teckentrup, 2020), or neural networks (Hauser et al., 2011; Yan and Zhou, 2020). In
this context, two main classes of approaches can be distinguished in the literature, namely
prior-based and adaptive approaches, and are briefly presented and discussed hereafter.

1.3.6.1 Prior-based surrogates

In the framework of Bayesian inverse problems, most of the surrogate models used to re-
place forward models are prior-based, i.e. constructed in an offline fashion before performing
Bayesian computations. Broadly speaking, a prior-based surrogate is typically constructed
from an experimental design formed by samples drawn from the prior distribution, based on
some global error measures that quantify its accuracy on the support of the prior (such as
leave-one-out error for PCE, see Section 1.2.4.4). At first glance, such global error measures
could provide information on the error on the posterior induced by the surrogate approxi-
mation: the fidelity of a surrogate-based posterior is expected to increase when the fidelity
of the surrogate forward model increases.

Mathematically speaking, under some conditions related to the prior distribution (see
(Ernst et al., 2012)), it is possible to show that a PCE forward model approximation con-
verges in the prior-weighted L2 sense to the full forward model. Then, several authors
demonstrated that if the surrogate forward model converges at a certain rate in this prior-
weighted L2 sense, then the surrogate-based posterior converges to the true posterior at the
same rate, in the Kullback-Leibler Divergence (KLD) sense (Birolleau et al., 2014; Marzouk
and Xiu, 2009; Yan and Zhang, 2017), as well as in the Hellinger distance sense (Stuart,
2010; Yan and Zhang, 2017).

1.3.6.2 From prior-based to adaptive surrogates

Nevertheless, constructing a surrogate forward model which is globally accurate on the sup-
port of the prior may be very difficult in practice, typically when confronted to highly nonlin-
ear forward models, with a possibly large input dimension (Li and Marzouk, 2014; Yan and
Zhou, 2019). Furthermore, such a global approximation may be unnecessary, since Bayesian
inverse problems typically present more structure than prior-based uncertainty propagation
problems (Li and Marzouk, 2014). Indeed, when observation data are sufficiently informa-
tive, the posterior distribution typically concentrates on a narrow region of the parameter
space (see Fig. 1.4 for an illustration). Therefore, to provide a satisfactory approximation of
the posterior, the surrogate forward model only needs to be locally accurate near informative
zones.

This underlies a well-known failure mechanism of Bayesian inversions accelerated by
prior-based surrogate models: as demonstrated by Lu et al. (2015), prior-based PCE may
lead to large errors on the approximated posterior, when the posterior mass is shifted suf-
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Figure 1.4: Prior-based ED in the case of a concentrated posterior. Black dots represent samples
drawn from the uniform prior U([0, 1]2) through LHS, whereas colored solid lines refer to contours
of the posterior density. It is remarked that only few points of the ED fall into the high-probability
zone of the posterior.

ficiently far away from the prior high-probability zones, and/or highly concentrated on a
small region of the parameter space in which the PCE forward model is inaccurate. Hence,
when data are strongly informative, it may be difficult to ensure that prior-based surrogate
forward models are locally accurate near high-probability zones of the posterior, only based
on the analysis of global error measures on the support of the prior.

Then, in order to alleviate such problems, several authors proposed adaptive surrogate
modeling approaches for Bayesian computations. Mostly based on MCMC, such approaches
consist in refining approximations of the forward model throughout the sampling procedure.
They include adaptive construction schemes for polynomial chaoses (Li and Marzouk, 2014;
Yan and Zhou, 2019), deep neural networks (Yan and Zhou, 2020), Gaussian process models
(Damblin et al., 2018), local approximations (Conrad et al., 2018, 2016), or reduced-order
models (Cui et al., 2014).

Likewise, in the BuS framework, Giovanis et al. (2017) have proposed adaptive artificial
neural networks surrogates within SuS, whereas Wang and Shafieezadeh (2020) have pro-
posed a coupling between rejection sampling and adaptive Kriging. In Chapter 2, we will
use ideas related to active-learning methods (see Section 1.2.6) in order to devise a novel
adaptive surrogate modeling approach within the BuS framework.

Lastly, it is worth mentioning that some authors proposed alternatives to the aforemen-
tioned adaptive surrogate modeling approaches, including two-stage MCMC schemes (Chris-
ten and Fox, 2005; Efendiev et al., 2006; Elsheikh et al., 2014) that use local approximations
of the forward model as filters during MCMC accept/reject phases, or approaches introduc-
ing a stochastic correction of the error between the forward model and its approximation
(Cui et al., 2019; Manzoni et al., 2016).
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1.4 Conclusion

This chapter has presented a general state-of-the-art review on the framework of Uncertainty
Quantification (UQ). In this context, the general structure of a classical UQ analysis has been
discussed, notably by emphasizing the central place occupied by deterministic computational
models. The latter are viewed as input-output maps around which classical UQ tasks may
be performed in a forward or inverse manner.

In a first section, forward problems in UQ have been introduced. Probability theory has
firstly been briefly presented as a general tool for modeling uncertainties, before reviewing
basic uncertainty propagation techniques. Surrogate modeling has subsequently been intro-
duced as a crucial task for ensuring the tractability of forward and inverse UQ methods to
expensive computational models. Then, classical methods for sensitivity analysis and reli-
ability analysis have been reviewed. In this context, particular attention has been paid to
Polynomial Chaos Expansions (PCE), which will be extensively used throughout this thesis.
Indeed, PCE constitute powerful surrogates which involve several appealing analytical post-
processing features, notably regarding Sobol’ indices in the framework of sensitivity analysis.
In addition, they may be constructed from a limited amount of model evaluations, by using
sparse regression techniques. Moreover, in the framework of reliability analysis, the presen-
tation has been focused on the well-known Subset Simulation (SuS) method, which will be
used in several different ways so as to solve Bayesian and reliability problems encountered
later in this thesis.

In a second section, inverse UQ methods have been introduced, starting from classical de-
terministic approaches for inverse problems, for then focusing on the probabilistic framework
of Bayesian inference. In this framework, MCMC sampling techniques, which constitute the
most widely used class of Bayesian computational methods, have been introduced. Then,
more recent alternative Bayesian computational approaches have been presented. Eventually,
a discussion related to the use of surrogate modeling to accelerate Bayesian computations
in the case of costly computational models has been provided.

Among the aforementioned Bayesian computational approaches, particular attention has
been paid to the recent framework of Bayesian updating with Structural reliability methods
(BuS), which constitutes a promising alternative to classical MCMC techniques. Such an
approach aims at reformulating Bayesian inference into a reliability problem, and therefore
enables to use robust and efficient methods such as SuS to draw samples from posterior
distributions. This last approach has been recently adapted to the BuS framework, and has
been demonstrated to be well suited for Bayesian inverse problems involving possibly multi-
modal and/or high-dimensional posterior distributions. To a lesser extent, the choice of the
BuS framework is also motivated by the connection it provides between Bayesian inference
and structural reliability, whose methods are well-known in the field of civil engineering.

The next chapter aims at more thoroughly investigating the BuS framework, in order
to provide computational tools which will be used to solve Bayesian inverse problems en-
countered throughout this thesis. Subsequently, we will propose a novel adaptive surrogate
modeling approach aiming at accelerating Bayesian computations performed within the BuS
framework.
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2.1 Introduction

Chapter 1 has provided a general overview of Bayesian computational techniques, including
MCMC sampling as well as recent alternative methods. Among the latter, particular atten-
tion has been paid to the framework of Bayesian updating with Structural reliability methods
(BuS) recently introduced by Straub and Papaioannou (2015). Such a framework provides
a reformulation of Bayesian inference into a reliability problem, and thereby enables to use
powerful reliability methods such as Subset Simulation (SuS) in order to sample posterior
distributions. The SuS method has been recently adapted to the BuS framework, and has
been demonstrated to be a promising alternative to classical MCMC techniques (Betz et al.,
2018b).

However, as any sampling technique, such a method typically requires a large amount
of likelihood evaluations. Therefore, it becomes computationally intractable in the case of
inverse problems with costly forward models, for instance involving complex finite element
codes. In this context, Section 1.3.6 has provided a discussion related to the use of surro-
gate modeling within Bayesian computations. In particular, adaptive surrogate modeling
approaches have been described as more robust regarding some drawbacks possibly encoun-
tered when considering prior-based surrogates.

Besides, adaptive surrogate modeling techniques specific to structural reliability prob-
lems have been extensively developed in the literature. In this context, classical simulation
methods have been assisted by surrogate models in order to accelerate rare event estimation
problems, for instance based on Kriging (Bichon et al., 2008; Echard et al., 2011) or Poly-
nomial Chaos Expansions (PCE) (Marelli and Sudret, 2018). This has led to the emergence
of active-learning methods (see Section 1.2.6), that constitute powerful approaches for solv-
ing structural reliability problems with a limited amount of full model evaluations. Active
learning methods do not merely use surrogate models as simple proxies of full models, but as
tools that enable to efficiently explore the input parameter space and solving the reliability
problem at hand (Moustapha et al., 2022).

Consequently, we propose to fully take advantage of the connection between Bayesian
inference and structural reliability established by the BuS framework, by devising an active-
learning approach for Bayesian inverse problems. In this context, the proposed approach is
based on the implementation of Polynomial Chaos Kriging (PCK) surrogates (see Section
1.2.4) within the SuS algorithm. In particular, the choice of PCK surrogates is motivated by
the fact that they provide a global approximation power provided by a PCE trend, as well as
local features provided by a the Kriging part, which makes them powerful candidates for rare
event estimation, as highlighted in (Schöbi et al., 2017). Thus, the proposed approach aims
at firstly building a global prior-based approximation that is adaptively refined, based on a
learning criterion that selects enrichment points by exploiting the structure of the posterior
distribution.

The content of this chapter is based on the published paper (Rossat et al., 2022a). Firstly,
in Section 2.2, the BuS framework is introduced and investigated, and the adaptation of the
SuS method to the BuS framework is subsequently presented. Section 2.3 afterwards presents
the proposed active learning approach. Then, in Section 2.4, this approach is showcased
through applications to several Bayesian inverse problems with varying complexity.
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2.2 Bayesian updating with reliability methods

2.2.1 The BuS framework

2.2.1.1 General formulation

The basic principles behind the BuS framework are presented hereafter. Let (Ω,F ,P) be
a probability space, and X : Ω → DX ⊂ Rd the input parameters of a forward model
M : DX → DY . The prior distribution of X is denoted by PX and is assumed to admit
a density denoted by π. Furthermore, given observed data y ∈ DY , let L(x) = π(y|x)
be the likelihood function, that expresses a statistical connection between observed data
and a realization x ∈ DX of the parameters X (see Chapter 1, Section 1.3.2 for further
details). The expression of the posterior density derived from Bayes’ theorem is then recalled
herebelow:

π(x|y) = π(x)L(x)
Z

(2.1)

where Z is the model evidence:

Z =

∫
DX

L(x)π(x)dx (2.2)

Let Υ : Ω→ [0, 1] be a uniform random variable, i.e. Υ ∼ U([0, 1]), such that X and Υ
are mutually independent. The main idea behind BuS is to introduce the following failure
domain in the augmented space DX × [0, 1] (Straub and Papaioannou, 2015):

Df = {(x, υ) ∈ DX × [0, 1] | υ ≤ CL(x)} (2.3)

where C > 0 is a constant chosen such that CL(x) ≤ 1, for all x ∈ DX . One remarks that the
failure domain in Eq. (2.3) may be defined from the limit-state function G : DX × [0, 1]→ R
given by:

G(x, υ) = υ − CL(x) (2.4)

It is worth noting that the choice of the scaling constant C is non-trivial in practice. An
optimal choice would consist in setting C as the inverse of the maximum of the likelihood
function, i.e. C−1 = Lmax = maxx∈DX

L(x) (this last quantity is assumed to be finite in
the rest of this chapter). However, such a value is often not known in advance, typically
when considering costly forward models for which classical optimization algorithms may be
intractable. The choice of the scaling constant will be further discussed in Section 2.2.1.2.

Then, it is possible to show that samples from the prior distribution of X that lie in
the failure domain Df defined in Eq. (2.3) follow the posterior distribution (Straub and
Papaioannou, 2015). Indeed, the posterior density in Eq. (2.1) may be written as follows:

π(x|y) = 1

Pf

∫ 1

0

1Df
(x, υ)π(x)dυ (2.5)

where 1Df
is the indicator function of the failure domain defined in Eq. (2.3), and Pf is the

probability of failure defined by:

Pf = P(Υ ≤ CL(X)) = E[1Df
(X,Υ)] =

∫
DX

∫ 1

0

1Df
(x, υ)π(x)dυdx (2.6)
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Therefore, the posterior density may be seen as a density conditional on the failure domain
Df , with a normalizing constant equal to the PoF Pf . This establishes the connection be-
tween Bayesian inference and structural reliability: sampling from the posterior distribution
is equivalent to solving the structural reliability problem with the failure domain Df defined
in Eq. (2.3). Such a result constitutes the core principle of the BuS framework (see Fig. 2.1
for an illustration). It is intimately linked to classical rejection sampling, whose theoretical
foundations are provided by the so-called Fundamental Theorem of Simulation (Robert and
Casella, 2004, Theorem 2.15) and its corollaries (see e.g. (Robert and Casella, 2004, Corol-
lary 2.17)). Rejection sampling simply consists in the following two-step procedure (Smith
and Gelfand, 1992):

1. Draw a sample x ∈ DX from the prior distribution of X, and υ ∈ [0, 1] from U([0, 1]),

2. If υ ≤ CL(x), then set x′ = x as the accepted value. Otherwise, return to Step 1.

In this context, we provide an alternative derivation of the validity of the BuS principle. Let
X ′ : Ω → DX be the random variable associated to the accepted values of x′ during the
rejection sampling procedure described above. Then, for all Borel set B ∈ B(DX):

P(X ′ ∈ B) = P(X ∈ B|Υ ≤ CL(X))

=

∫
B

∫ 1

0
1Df

(x, υ)π(x)dυdx∫
DX

∫ 1

0
1Df

(x, υ)π(x)dυdx

=

∫
B

∫ CL(x)
0

π(x)dυdx∫
DX

∫ CL(x)
0

π(x)dυdx

=

∫
B

π(x|y)dx

(2.7)

Thus, X ′ indeed follows the posterior distribution.

Moreover, it is worth noting that the PoF Pf in Eq. (2.1) is directly linked to the model
evidence in Eq. (2.2), since it follows from Eq. (2.1) that:

Pf =

∫
DX

∫ CL(x)

0

π(x)dυdx = C

∫
DX

L(x)π(x)dx = CZ (2.8)

The above relationship is particularly appealing: if an estimate of the PoF Pf is available,
then an estimate for the model evidence is readily available as a byproduct of the rare event
estimation procedure (Betz et al., 2018a).

2.2.1.2 BuS scaling constant

The choice of the scaling constant C involved in Eq. (2.3) plays a key role in the BuS
framework (Betz et al., 2018a,b; DiazDelaO et al., 2017; Straub and Papaioannou, 2015).
As mentioned earlier, the optimal choice is given by Copt = L−1

max. One the first hand, since
the PoF Pf of the equivalent reliability problem decreases linearly with C (see Eq. (2.8)),
choosing a too small value for C (i.e. C ≤ Copt) degrades the efficiency of the BuS approach.
In such a case, samples produced by BuS still follow the posterior distribution, though. On
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(a) Bayesian inference (b) Equivalent reliability problem

Figure 2.1: Illustration of the BuS framework, in the case of rejection sampling with a standard
Gaussian prior and likelihood function L(x) = φ(x;µ, σ) with µ = 3 and σ = 0.3. In such a case,
the optimal BuS constant is known and given by C =

√
2πσ.

the other hand, if a too large value for C (i.e. C ≥ Copt) is chosen, then samples produced
by BuS may not follow the posterior distribution.

The effects of the choice of C are deeper investigated hereafter. Let DC ⊂ DX be the
domain in which the inequality CL ≤ 1 is not satisfied, namely:

DC = {x ∈ DX | CL(x) > 1} (2.9)

Furthermore, let πC be the density associated to samples produced by the BuS approach,
namely:

πC(x) =
1

PC

∫ 1

0

1Df
(x, υ)π(x)dυ (2.10)

where PC = P(Υ ≤ CL(X)) is the probability analogous to Eq. (2.6), in the case of a bad
scaling choice, i.e. C ≥ Copt.

Then, for all x ∈ DC , 1Df
(x, υ) = 1 for all υ ∈ [0, 1] and then the density πC is

proportional to the prior density:

πC(x) =
π(x)

PC

(2.11)

Conversely, for all x /∈ DC , the density πC in Eq. (2.10) is proportional to the posterior
density:

πC(x) = C
π(x)L(x)

PC

∝ π(x|y) (2.12)

Thus, the density πC in Eq. (2.10) simply rewrites:

πC(x) =
π(x)LC(x)

PC

(2.13)

where LC(x) = min(1;CL(x)), for all x ∈ DX .
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As a result, when a too large value for C is introduced, samples produced with the BuS
approach are following a truncated distribution (Betz et al., 2018a; DiazDelaO et al., 2017),
whose density is proportional to the prior one on the set DC , and to the posterior one on the
set DX \ DC . Such a truncated distribution induces a bias in estimates related to posterior
QoI (including the model evidence), since the latter may be corrupted by samples lying in
the domain DC .

Then, in order to overcome the selection problem of the scaling constant C, (Betz et al.,
2018b, 2014) have proposed an approach consisting in adaptively tuning the BuS scaling
constant within a SuS procedure. Further details on this adaptive approach will be given in
Section 2.2.2.3.

2.2.1.3 BuS in standard normal space

In the framework of structural reliability problems, probabilities of failure are often estimated
in the so-called standard normal space (also called U-space), i.e. by transforming the input
distribution of the structural reliability problem into a standard normal Gaussian distribution
(see Section 1.2.3.3). This could typically be achieved by using the Nataf (Nataf, 1962) or
the Rosenblatt (Rosenblatt, 1952) transformation.

In this context, the structure of BuS problems enables to separately transform the input
parameters X and the uniform random variable Υ. Let T0 : DX → Rd be a probabilistic
transform which pushes forward the prior distribution to the independent standard normal
distribution on Rd. Denotingm = d+1 to alleviate notations, the joint distribution of (X,Υ)
may then be mapped to the standard normal distribution on Rm through the following
transformation:

T : DX × [0, 1]→ Rm

(x, υ) 7→ (T0(x),Φ−1(υ))
(2.14)

where Φ is the CDF of the standard normal distribution on R.
Therefore, it is possible to define a LSF in the standard normal space that is equivalent

to the LSF G in the so-called physical space DX × [0, 1] defined in Eq. (2.4), by setting:

G(u) = G(T −1(u)) = Φ(um)− CL(T −1
0 (u1:d)) (2.15)

for all u ∈ Rm, where the notation u1:d = (u1, . . . , ud) has been used. The reliability problem
in the standard normal space with LSF G is indeed equivalent to that in the original space
with LSF G: since the random variable U = T (X,Υ) follows the Gaussian distribution
N (0, I), the transport theorem (Barbé and Ledoux, 2007) enables to rewrite the PoF in Eq.
(2.6) as follows:

Pf = P(G(X,Υ) ≤ 0) = P(G(U) ≤ 0) =

∫
Rm

1]−∞,0](G(u))φm(u)du (2.16)

where φm is the density of N (0, I)1. An illustration of the transformation into the standard
normal space is given in Fig. 2.2.

1note that φm(·) corresponds to a compressed form of the notation φm(·;0, I) introduced in Section
1.2.3.2
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(a) BuS problem in original space (b) BuS problem in standard normal space

Figure 2.2: BuS in standard normal space: illustration in the case presented in Fig. 2.1.

From a numerical point of view, such a transformation provides several advantages.
Indeed, it acts as a normalization procedure on the parameter space, and enables to work
with distributions with unbounded supports (Betz et al., 2016). On the downside, it is worth
noting that the transformation in Eq. (2.14) may be a sensibly nonlinear mapping, which
introduces an additional layer of complexity.

2.2.2 SuS within the BuS framework

2.2.2.1 General formulation

The formulation of the SuS procedure within the BuS framework is now presented. One
firstly recalls that classical SuS aims at constructing a sequence (D(j)

f )0≤j≤r of intermediate

subsets such that Df = D(r)
f ⊂ · · · ⊂ D

(1)
f ⊂ D

(0)
f = DX × [0, 1], in order to write the PoF in

Eq. (2.6) as a product of conditional probabilities (Au and Beck, 2001):

Pf =
r∏

j=1

P(X,Υ)(D(j)
f |D

(j−1)
f ) (2.17)

where P(X,Υ) = PX ⊗ PΥ denotes the joint (prior) distribution of (X,Υ).

Furthermore, in classical SuS, the intermediate failure domains (D(j)
f )1≤j≤r are usually

defined based on a sequence (tj)1≤j≤r of threshold values such that 0 = tr < · · · < t1:

D(j)
f = {(x, υ) ∈ DX × [0, 1] | G(x, υ) ≤ tj} (2.18)

where G is the LSF defined in Eq. (2.4).

Besides, due to the structure of BuS problems, the LSFs in Eqs. (2.4) and (2.15) present a
particular format that is not uniquely defined (Betz et al., 2018b). In fact, for a given scaling
constant C, any LSF H such that H−1(]−∞, 0]) = Df (where Df is given by Eq. (2.3)) is



66 Chapter 2. BuS and adaptive surrogate models

valid to solve the BuS problem at hand. Moreover, in the context of SuS, the formulation
of the LSF has a non-negligible impact on the overall performance of the algorithm, since it
conditions the shape of the intermediate failure domains (Betz et al., 2018b). Unfortunately,
the classical formulation of the subsets in Eq. (2.18) is not well suited to the particular
shape of the failure domain of BuS problems. Indeed, in the first intermediate domains
of SuS, samples (x, υ) with small values of υ are typically preferred to samples with large
values of υ, which correspond to high-probability zones of the posterior. This implies abrupt
transitions between subsets which make the SuS sampling procedure more challenging. An
illustration of this phenomenon is given in Fig. 2.3a.

(a) G(x, υ) = υ − CL(x) (b) Gl(x, υ) = log (υ) + ℓ− log (L(x))

Figure 2.3: Impact of the LSF formulation on SuS intermediate failure domains (D(j)
f )1≤j≤r, in

the case of the problem presented in Fig. 2.1.

Consequently, in order to ensure smoother transitions between subsets and thereby im-
prove the performance of SuS in the BuS framework, the following alternative LSF has been
proposed in the literature (Betz et al., 2018b; DiazDelaO et al., 2017):

Gl(x, υ) = log (υ) + ℓ− log (L(x)) (2.19)

where ℓ = − logC. Based on this LSF, intermediate failure domains in Eq. (2.18) may be
redefined as follows:

D(j)
f = {(x, υ) ∈ DX × [0, 1] | Gl(x, υ) ≤ tj} (2.20)

Clearly, one has D(r)
f = Df , and thus solving the BuS probem associated to the LSF defined

in Eq. (2.19) is akin to solving the original problem with the LSF in Eq. (2.4). Moreover, the
shape of the subsets corresponding to the LSF Gl leads to a much more well-behaved sampling
procedure. Indeed, contrary to the initial formulation, samples (x, υ) with large values of υ
are preferred over samples with small values of υ (see Fig. 2.3b), which provides smoother
transitions between subsets (Betz et al., 2018b). Furthermore, such a formulation yields to a
better numerical stability, since it is more convenient to work with the log-likelihood rather
than with the likelihood directly.
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Then, following the classical SuS procedure of Au and Beck (2001) presented in Section
1.2.6.2, the intermediate threshold tj of the SuS level j ∈ {1, . . . , r} is set as the p0-quantile
of LSF values {Gl(x(j−1,k), υ(j−1,k))}1≤k≤N on samples {(x(j−1,k), υ(j−1,k))}1≤k≤N generated
in the (j − 1)-th SuS level. The rarity parameter p0 ∈]0, 1[ is often set as p0 = 0.1 in
the framework of structural reliability (Au and Beck, 2001; Zuev et al., 2012). In the BuS
framework, Betz et al. (2018b) have also proposed to use this value, that has led to near-
optimal results in several numerical test cases. The full description of the SuS algorithm
within BuS is given in Algorithm 2.1. For the sake of conciseness, it is presented in the
physical space DX × [0, 1], but one should keep in mind that MCMC sampling will be
performed in the standard normal space (see Section 2.2.2.2).

Algorithm 2.1 SuS within BuS algorithm (Betz et al., 2018b)

Input: BuS scaling constant C, number N of required samples, rarity parameter p0
1: Set j = 1 and t0 =∞ ▷ SuS initialization
2: Draw N samples {(x(0,k), υ(0,k))}1≤k≤N from the prior distribution
3: while tj > 0 do
4: Set j ← j + 1 ▷ Increase SuS level counter
5: Sort the samples {(x(j−1,k), υ(j−1,k))}1≤k≤N according to the LSF values
{Gl(x(j−1,k), υ(j−1,k))}1≤k≤N in ascending order

6: Set tj as the p0-quantile of the ordered set {Gl(x(j−1,k), υ(j−1,k))}1≤k≤N ▷ Set the
threshold value tj

7: Set n = #{k ∈ {1, . . . , N} | Gl(x(j−1,k), υ(j−1,k)) ≤ max(tj, 0)} ▷ Count the samples
that lie in the j-th SuS intermediate domain

8: if tj < 0 then
9: Set tj = 0

10: Set P
(j)
f = n/N

11: else
12: Set P

(j)
f = p0

13: end if
14: Generate the samples {(x(j,k), υ(j,k))}1≤k≤N of D(j)

f with MCMC, by considering n

Markov chains with seeds {(x(j−1,k), υ(j−1,k))}1≤k≤n and length N/n ▷ Generate the
population of the j-th SuS level with MCMC

15: end while
16: Set r = j ▷ Final SuS level counter
17: Set Pf =

∏r
i=1 P

(i)
f ▷ Estimate the PoF

18: Set Z = Pf/C ▷ Estimate the model evidence
Output: Posterior samples {x(r,k)}1≤k≤N , probability of failure Pf , model evidence Z
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2.2.2.2 MCMC sampling within SuS

The SuS algorithm aims at generating samples in the intermediate failure domains (D(j)
f )1≤j≤r

with MCMC sampling (see Algorithm 2.1, l. 14). In this context, the MH algorithm (see
Section 1.3.4.2) may be used so as to achieve this sampling task. Nevertheless, it is well-
known that this algorithm performs poorly when the dimension of the problem increases
(typically from d ≈ 10). Indeed, the average acceptance rate of candidates drawn with the
MH algorithm rapidly drops when the dimension increases (see e.g. (Au and Beck, 2001;
Zuev et al., 2012)). Consequently, several alternative MCMC algorithms tailored for SuS and
typically suitable for high-dimensional problems have been proposed in the literature (see
e.g. (Papaioannou et al., 2015) for an in-depth presentation). In this thesis, the so-called
adaptive Conditional Sampling (aCS) algorithm introduced by Papaioannou et al. (2015) is
applied in the SuS procedure, due to its simplicity and to its efficiency compared to classical
MCMC algorithms dedicated to SuS (see (Betz et al., 2018b; Papaioannou et al., 2015)).
Furthermore, this algorithm is applied within the standard normal space, by transforming
the samples and the subsets with the mapping T : DX × [0, 1]→ Rm introduced in Section
2.2.1.3. Further details on the MCMC sampling procedure based on the aCS algorithm
within the standard normal space are given in Appendix B.

2.2.2.3 Adaptation of the BuS scaling constant

As highlighted in Section 2.2.1.2, the choice of the BuS scaling constant C plays a crucial
role in the sampling of the posterior distribution. In order to circumvent this problem, the
approach originally proposed in (Betz et al., 2014) and subsequently improved in (Betz et al.,
2018b) consists in adaptively tuning the scaling constant C throughout the SuS procedure.
This approach consists in estimating the maximum of the log-likelihood function on the
samples generated in each subset. Firstly, at SuS level 0, after l. 2 of Algorithm 2.1, one
sets ℓ = max1≤k≤N logL(x(0,k)) (recall that ℓ = − logC). Then, at SuS level j ≥ 1, after
l. 14 of Algorithm 2.1, ℓ is set as the maximal log-likelihood value encountered during the
simulation, namely:

ℓnew = max

(
ℓold, max

1≤k≤N
logL(x(j,k))

)
(2.21)

ℓold being the value of ℓ at SuS level j−1. Note that such a modification alters the definition
of the subset D(j)

f , the latter explicitly depending on the value of C, and thereby ℓ (see Eq.
(2.18)). However, Betz et al. (2018b) showed that the updating in Eq. (2.21) does not affect

the distribution of the current samples if the threshold value tj associated to D(j)
f is modified

as follows:
t∗j = tj − ℓold + ℓnew (2.22)

Moreover, once the above threshold value has been updated, it is possible to decrease the
dependence of the samples generated in the current subset, through a resampling step that
comes with no additional cost. Indeed, one has (x, υ) ∈ D(j)

f if υ ≤ L(x) exp (t∗j − ℓnew).
Consequently, the component υ of each sample (x, υ) that lies in D(j)

f may be resampled
from the uniform distribution U([0,min(1,L(x) exp (t∗j − ℓnew)]). This enables to increase the
performance of the SuS procedure, since the rejection of a sample during MCMC sampling
implies to duplicate an existing sample.
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2.3 Adaptive surrogate modeling

2.3.1 Polynomial Chaos Kriging

Polynomial Chaos Kriging (PCK) is a surrogate modeling technique introduced in (Schöbi
et al., 2015), which consists in a universal Kriging whose trend is given by a PCE. Assuming
now that the modelM : DX → DY ⊂ R is scalar-valued, the formulation of PCK may be
written by (Schöbi et al., 2015):

M(x) ≈ M̂(x) =
∑
α∈A

cαψα(x) + ς2Z(x) (2.23)

where
∑

α∈A cαψα is a PCE truncated on A ⊂ Nd with coefficients (cα)α∈A and basis of
multivariate polynomials (ψα)α∈A, and Z is a centered unit-variance stationary Gaussian
process defined by an autocorrelation function RZ(·;θ) parametrized by a set of hyperpa-
rameters θ. ς2 denotes the variance of the Gaussian process model. Note that for all x ∈ DX ,
Z(x) : Ω→ R is a standard Gaussian random variable, i.e. Z(x) ∼ N (0, 1).

The setup of a PCK surrogate consists in two parts, namely:

1. the determination of the optimal set of polynomials contained in the PCE trend (given
by the truncation set A),

2. the calibration of the correlation hyperparameters θ, the Gaussian process variance ς2

and the coefficients (cα)α∈A.

In this context, Schöbi et al. (2015) proposed two computational approaches, called Sequen-
tial PCK (S-PCK) and Optimal PCK (O-PCK). The first-mentioned one consists in finding
the set (ψα)α∈A through the LARS-based regression procedure of (Blatman and Sudret,
2011b), and subsequently calibrating the Kriging parameters {(cα)α∈A,θ, ς

2}. These pa-
rameters are typically estimated through Maximum Likelihood estimation (ML) (Dubourg
et al., 2011; Marrel et al., 2008) or Cross Validation (CV) (Bachoc, 2013). Furthermore, the
O-PCK approach aims at iteratively constructing a PCK by adding polynomials one-by-one
to the trend, and selecting the surrogate which minimizes a global LOO error estimate. One
refers to (Schöbi et al., 2015) for a comprehensive presentation of both S-PCK and O-PCK
approaches.

Then, once the PCK calibration has been achieved, the prediction of the PCK model in
Eq. (2.23) at a point x ∈ DX is a Gaussian random variable, whose mean and variance are
denoted by µM̂(x) and σ2

M̂(x), respectively. Their expression are not detailed here, for the
sake of brevity (see e.g. (Schöbi, 2017, Section 3.4) for a comprehensive presentation). An
illustration of a PCK surrogate is given in Fig. 2.4.

The interest of the PCK formulation is twofold: the PCE trend provides a global approx-
imation of the model response on the input domain, whereas the Gaussian process enables
to catch local variations of the model response. Furthermore, the prediction variance asso-
ciated to the Gaussian process provides a local error measure for PCK model predictions,
which can be used as an indicator of the sparsity of the ED on which the PCK model is
built. Indeed, Kriging is an exact interpolating method, in the sense that predictions are
equal to the model response at points of the ED. Thus, the prediction variance is low near
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(a) Full model and PCK predictions (b) Sample paths drawn from the underlying
Gaussian process

Figure 2.4: Visualization of a PCK surrogate: case of an analytical model given by M(x) =
x sin(x), with a uniform input variable X ∼ U([0, 10]).

ED points and becomes important in unexplored zones of the parameter space. Such a local
indicator may typically be exploited in the framework of adaptive surrogate modeling, in
order to enrich EDs (Echard et al., 2011; Schöbi et al., 2017).

2.3.2 Adaptive PCK within SuS algorithm

2.3.2.1 Main algorithm

The proposed approach aims at constructing a PCK surrogate which is adaptively enriched
throughout the SuS procedure described by Algorithm 2.1. In this perspective, the log-
likelihood L = logL is approximated by a PCK surrogate L̂:

L(x) ≈ L̂(x) =
∑
α∈A

cαψα(x) + ς2Z(x) (2.24)

The choice of surrogating the log-likelihood instead of the forward model is mainly mo-
tivated by the fact that the definition of Kriging-based adaptation criteria for experimental
designs will be facilitated, since the LSF in Eq. (2.19) directly depends on the log-likelihood.
Indeed, substituting the log-likelihood L by its PCK surrogate in Eq. (2.24) in the definition
of the LSF in Eq. (2.19) yields a surrogate LSF given by:

Ĝl(x, υ) = log (υ) + ℓ− L̂(x) (2.25)

Then, since L̂ is a Gaussian process, it is remarked that for a given value of ℓ and υ ∈ [0, 1],
the surrogate LSF Ĝl(·, υ) is also a Gaussian process. Furthermore, its mean and variance
at (x, υ) ∈ DX × [0, 1] respectively write:

µĜl
(x, υ) = log (υ) + ℓ− µL̂(x) (2.26)

σ2
Ĝl
(x, υ) = σ2

L̂
(x) (2.27)
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where µL̂(x) and σ2
L̂
(x) denote the prediction mean and variance of the PCK L̂ at x, re-

spectively. Such a LSF structure will be fully exploited to select points in the parameter
space to enrich experimental designs, based on local information provided by the underlying
Gaussian process of the PCK.

Moreover, another advantage of approximating the log-likelihood rather than the forward
model is that the log-likelihood is scalar-valued, contrary to the forward model. Hence,
in the case of large output dimensionalities, the calibration of surrogates of the forward
models may be computationally expensive (Blatman and Sudret, 2014). On the downside,
surrogating the log-likelihood may be more a difficult task than for the forward model.
Indeed, when considering an additive Gaussian noise, the log-likelihood is typically given
by the composition of a quadratic function with the forward model, which may involve an
additional layer of complexity.

Furthermore, the multivariate polynomials {ψα} involved in the trend of the PCK in Eq.
(2.24) are chosen to be orthonormal with respect to the prior distribution. This is principally
motivated by the fact that under some conditions on the prior (see e.g. (Ernst et al., 2012)),
the family (ψα)α∈Nd forms a Hilbert basis of L2(π). Therefore, if L is square-integrable with
respect to the prior, i.e. L ∈ L2(π), the PCE trend in Eq. (2.24) converges in the L2(π)
sense to the true log-likelihood when the number of terms in the truncation set A increases.
In this context, the surrogate posterior density obtained by substituting the log-likelihood by
the trend of its PCK is expected to converge towards the true posterior density, as suggested
by results of (Birolleau et al., 2014; Marzouk and Xiu, 2009).

Then, the main steps of the proposed algorithm may be summarized as follows:

1. Surrogate model initialization:

(a) Initial experimental design: K0 samples {χk}1≤k≤K0 ⊂ DX are drawn from the
prior, typically by adopting space-filling sampling techniques such as Latin Hyper-
cube Sampling (LHS) (McKay et al., 1979), or Sobol’ low-discrepancy sequences
(Sobol’, 1967). Then, the initial ED is set as X = {χk}1≤k≤K0 . The corresponding
log-likelihood values are computed and gathered in Y = {L(χk)}1≤k≤K0 .

(b) Calibration of PCK surrogate: a PCK surrogate L̂ is calibrated from the training
data {X ,Y}.

2. Generate samples of SuS level 0: the N samples {(x(0,k), υ(0,k))}1≤k≤N of the SuS
level 0 are generated through direct Monte Carlo simulation (see Algorithm 2.1, l. 2).

3. Initialize the BuS scaling constant ℓ: the scaling constant ℓ = − logC is estimated
from the samples {(x(0,k), υ(0,k))}1≤k≤N of the SuS level 0 (see Section 2.3.2.3).

4. SuS procedure: at SuS level j ≥ 1:

(a) Compute the threshold tj and the probability P
(j)
f : the threshold value tj of the

current subset D(j)
f is set as the p0-quantile of {µĜl

(x(j−1,k), υ(j−1,k))}1≤k≤N (i.e.
surrogate LSF values computed on the samples from the subset j − 1), where p0
is the rarity parameter (see Algorithm 2.1, l. 6). Subsequently, the probability

P
(j)
f is estimated by following l. 7-13 of Algorithm 2.1.
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(b) Learning stopping criterion: if the considered stopping criterion is met (see Sec-
tion 2.3.2.4), the PCK surrogate is deemed to be sufficiently accurate on the
support of the posterior distribution, and then the step 4.(c) is skipped.

(c) Learning phase of the PCK surrogate: firstly, K points X ∗ = {χ∗
k}1≤k≤K are

selected from a set S(j)
0 of candidate points (see Section 2.3.2.2). The corre-

sponding log-likelihood values are subsequently computed and stored in Y∗ =
{L(χ∗

k)}1≤k≤K . Then, the ED is enriched by setting X ← {X ,X ∗} and Y ←
{Y ,Y∗}. Finally, the PCK surrogate L̂ is recalibrated from the new training data
{X ,Y}.

(d) MCMC sampling phase: the samples {x(j,k), υ(j,k)}1≤k≤N of the subset D(j)
f are

generated with MCMC (see l. 14 of Algorithm 2.1), by using the aCS algorithm
(see Appendix B for further details). During this phase, the LSF Gl is replaced
by its surrogate counterpart Ĝl.

(e) Updating of the BuS scaling constant: the scaling constant ℓ is updated from the
samples {x(j,k), υ(j,k)}1≤k≤N (see Section 2.3.2.3).

(f) SuS stopping criterion: if tj ≤ 0, then the SuS procedure is stopped, and the PoF
Pf and model evidence Z are estimated as described in Algorithm 2.1, l. 16-18.

The three building bricks of the proposed adaptive approach, namely the learning phase,
the learning stopping criterion, and the adaptation phase of the BuS scaling constant are
detailed hereafter.

2.3.2.2 Candidate selection

The learning phase consists in selecting one (or several) point(s) in order to enrich the ED
of the surrogate. Such a selection procedure relies on the concept of learning function,
widely used in the framework of active learning schemes for structural reliability methods
(Moustapha et al., 2022). A learning function aims at quantifying the value of information
gained with respect to a quantity of interest when adding a point x ∈ DX to the ED of the
surrogate model (Schöbi, 2017). A broad range of learning functions has been developed
in the literature, including the Expected Improvement (EI) function (Ginsbourger et al.,
2013; Jones et al., 1998), the Expected Feasibility Function (EFF) (Bichon et al., 2008), the
so-called U-function (Echard et al., 2011) and the Fraction of Bootstrap Replicates (FBR)
(Marelli and Sudret, 2018). The reader is referred to the recent in-depth survey of Moustapha
et al. (2022) for a more comprehensive presentation on learning functions.

The U-function introduced by Echard et al. (2011) is particularly well suited for Kriging-
based adaptive approaches. It is based on properties of the underlying Gaussian process of
the surrogate model, and on the notion of misclassification, which is explained hereafter.
Firstly, recall that samples (x, υ) ∈ DX × [0, 1] with non-positive LSF values are classified
as failure samples, i.e. (x, υ) ∈ Df , which traduces in the BuS framework by samples
which follow the posterior distribution. Therefore, the potentially important uncertainties
on predictions at points which are close to the limit-state surface (LSS) given by ∂Df =
{(x, υ) ∈ DX × [0, 1] | Gl(x, υ) = 0} can cause them to change sign, which may lead to
misclassification (Echard et al., 2011). In such a case, given a point (x, υ) ∈ DX × [0, 1],
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the surrogate LSF prediction mean may verify µĜl
(x, υ) ≤ 0, while the true LSF verifies

Gl(x, υ) > 0, or vice versa.

Besides, as mentioned in Section 2.3.2.1, at each point (x, υ) ∈ DX × [0, 1], Ĝl(x, υ) is a
Gaussian random variable with mean µĜl

(x, υ) and variance σ2
Ĝl
(x, υ) given by Eqs. (2.26)

and (2.27), respectively. Then, the probability of misclassification Pm(x, υ) may be written
by (Bect et al., 2012):

Pm(x, υ) = Φ

(
−
|µĜl

(x, υ)|
σĜl

(x, υ)

)
(2.28)

Such a probability is bounded between 0 and 0.5. The case Pm(x, υ) ≈ 0 corresponds to
points whose prediction variance is low, and/or points which are far away from the LSS.
Conversely, the case Pm(x, υ) ≈ 0.5 corresponds to points which are close to the LSS and/or
whose prediction variance is important. In this context, the U-function proposed by Echard
et al. (2011) is defined by:

U(x, υ) =
|µĜl

(x, υ)|
σĜl

(x, υ)
(2.29)

Then, the learning phase of the proposed approach is described hereafter. At SuS level
j ≥ 1, before performing MCMC sampling (see Algorithm 2.1, l. 14) n Markov chain seeds

S(j)
0 = {(x(j−1,k), υ(j−1,k))}1≤k≤n ⊂ D(j)

f are available. These samples are seen as candidate

points for enriching the ED X of the PCK surrogate L̂. In the case of a single point
enrichment, the optimal point χ∗ ∈ DX is selected by minimizing the U-function in Eq.
(2.29) or maximizing the misclassification probability in Eq. (2.28):

(χ∗, υ∗) = argmin
(x,υ)∈S(j)

0

U(x, υ) = argmax
(x,υ)∈S(j)

0

Pm(x, υ) (2.30)

In this case, the projection on the parameter space DX of the above optimal point is sub-
sequently added to the current experimental design, i.e. X ← {X ,χ∗}. Note that due to
the close connection existing between the misclassification probability in Eq. (2.28) and
the U-function in Eq. (2.29), both can be used as learning functions (Schöbi, 2017). An
illustration of the proposed point enrichment procedure is given in Fig. 2.5.

Furthermore, multiple point enrichment may also be considered in order to take advan-
tage of parallel computing, if available. Such an approach enables to accelerate the overall
computational procedure, but is slightly suboptimal compared to perform several subsequent
single point enrichment steps, though (Schöbi et al., 2017). In this context, when K > 1
enrichment points per SuS level are desired, the proposed approach uses the weighted K-
means clustering algorithm (Zaki and Meira, 2014) on the set S(j)

0 of candidate points. The

weight of each (x, υ) ∈ S(j)
0 is set as the corresponding misclassification probability Pm(x, υ).

Nevertheless, the surrogate log-likelihood L̂ is defined on the original parameter space DX ,
and then does not depend on values of υ ∈ [0, 1]. Hence, performing a clustering in the
augmented space DX × [0, 1] may lead to redundant enrichment points, since the centroids
of the identified clusters may lie on lines of the form {x} × [0, 1]. Consequently, weighted
K-means clustering is instead performed on the set given by {x(j−1,k)}1≤k≤n by using the
same misclassification probabilities {Pm(x

(j−1,k), υ(j−1,k))}1≤k≤n as weights. This would typ-
ically yield a better coverage of the parameter space DX , and then a better emulation of the
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(a) Before point enrichment (b) After point enrichment

Figure 2.5: Illustration of the point enrichment phase in the case of a single parameter inference:
contours of the misclassification probability Pm in Eq. (2.28) and prediction of the LSS (given by
a black solid line) obtained from a PCK surrogate of the log-likelihood function. The true LSS is
shown by a black dashed line. Points of the experimental design of the surrogate are shown by
black crosses (×), whereas the optimal enrichment point in Eq. (2.30) projected in the parameter
space is shown by a black diamond (♦).

log-likelihood function by its PCK surrogate near informative zones. Finally, the enrichment
points X ∗ = {χ∗

k}1≤k≤K are selected as the centroids of the K identified clusters, and are
subsequently added to the current ED, i.e. X ← {X ,X ∗}.

2.3.2.3 Adaptation of the BuS scaling constant

Following the approach described in Section 2.2.2.3, the BuS scaling constant is adaptively
estimated throughout the SuS procedure. Firstly, once the PCK surrogate L̂ has been
calibrated from the initial ED, the population of SuS first level is generated by drawing
N samples S(0) = {x(0,k), υ(0,k)}1≤k≤N from the joint prior distribution of (X,Υ). Then, a
critical step is the calculation of an initial value for the scaling constant ℓ. In the approach
proposed in (Betz et al., 2018b), this value is set as the largest log-likelihood value on the
samples S(0). When dealing with a PCK surrogate model instead of the true log-likelihood,
the estimation of ℓ requires a specific treatment. Indeed, samples drawn through Monte Carlo
sampling which are too far away from the ED may lead to inaccurate PCK predictions. This
potentially implies to sensibly underestimate the optimal constant ℓmax and then lead to a
bias in estimates of posterior QoI, or conversely, to strongly overestimate ℓmax and alter the
efficiency of the SuS procedure, as discussed in Section 2.2.1.2.

Consequently, the initial value of ℓ is set as the maximum likelihood on a subset of S,
formed by points which are not too far away from points of the ED. At this point, the
question is to define a criterion to filter points whose predictions are deemed to be not
accurate. A quite natural choice proposed in (Angelikopoulos et al., 2015) and (Giovanis
et al., 2017), is based on the convex hull of the points of the current ED.

The convex hull of X , denoted by co(X ), is the smallest convex set which contains the
points of X . If the ED points are sufficiently dense, surrogate predictions may be deemed
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to be reasonably accurate on this set. Then, the initial constant ℓ is set as the maximum
surrogate likelihood on samples of S(0), namely:

ℓ = max
x∈S(0)

X

µL̂(x) (2.31)

where S(0)
X = S(0)∩co(X ). For practical purposes, the convex hull of the ED X is computed

by using the Quickhull algorithm introduced in (Barber et al., 1996).

Likewise, at SuS level j ≥ 1, once MCMC sampling has been achieved, the following
updating is proposed:

ℓnew = max

(
ℓold, max

x∈S(j)
X

µL̂(x)

)
(2.32)

where ℓnew and ℓold denote respectively the scaling constant at the current and previous SuS
levels, S(j)

X = S(j) ∩ co(X ) and S(j) = {(x(j,k), υ(j,k))}1≤k≤N are the samples generated at
SuS level j. Subsequently, the threshold value tj is modified in order to account for the
modification of the value of ℓ, as described in Section 2.2.2.3.

2.3.2.4 Stopping criterion

In the framework of active learning structural reliability methods, several criteria have been
proposed in order to stop the enrichment of the surrogate model (Moustapha et al., 2022).
Such criteria may be based on the accuracy of PoF estimates (Dubourg et al., 2013; Jian
et al., 2017; Marelli and Sudret, 2018), or directly based on learning functions (Bichon et al.,
2008; Echard et al., 2011; Lelièvre et al., 2018). The proposed approach uses the stopping
criterion proposed by Echard et al. (2011) based on the U-function in Eq. (2.29). At SuS
level j ≥ 1, before the point enrichment phase, this criterion consists in the following lower
bound on the set S(j)

0 of candidate points:

min
(x,υ)∈S(j)

0

U(x, υ) ≥ 2 (2.33)

Note that this criterion reverts to impose a maximal misclassification probability in Eq.
(2.28) of Φ(−2) ≈ 0.023:

max
(x,υ)∈S(j)

0

Pm(x, υ) ≤ Φ(−2) (2.34)

The choice of such a stopping criterion is motivated by the fact that it focuses on the
accuracy of the surrogate model around the limit-state surface, i.e. near informative zones.
Notwithstanding its widespread use, it should be underlined that this criterion may be
too conservative in some cases, typically when confronted to complex LSF and/or high-
dimensional problems. One refers to (Moustapha et al., 2022) for a comprehensive review
on alternative stopping criteria.
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2.3.2.5 Summary of the proposed algorithm

The proposed adaptive algorithm, named PCK-SuS hereafter, is summarized in a pseudo-
code presentation in Algorithm 2.2. Lines referring to the adaptive PCK surrogate are
shown in blue. The parameters related to the calibration of the PCK surrogate, including
parameters related to the PCE trend (e.g. degree, truncation set) and to the Gaussian
process (e.g. the autocorrelation function, optimization parameters) are not mentioned, for
the sake of brevity.

Algorithm 2.2 PCK-SuS within BuS algorithm (Rossat et al., 2022a)

Input: Number N of required samples, rarity parameter p0, initial ED size K0, number K
of enrichment points per learning phase

1: Draw K0 samples {χk}1≤k≤K0 from the prior and set X = {χk}1≤k≤K0 ▷ Initial ED
2: Compute the log-likelihood values Y = {L(χk)}1≤k≤K0

3: Calibrate a PCK surrogate L̂ from {X ,Y} ▷ Initial (prior-based) surrogate model
4: Set j = 1 and t0 =∞ ▷ SuS initialization
5: Draw N samples S(0) = {(x(0,k), υ(0,k))}1≤k≤N from the prior

6: Compute the convex hull co(X ) of X and set S(0)
X = S(0) ∩ co(X )

7: Set ℓ = max{L̂(x, υ) | (x, υ) ∈ S(0)
X } ▷ Initialize the scaling constant ℓ

8: while tj > 0 do
9: Set j ← j + 1 ▷ Increase SuS level counter
10: Compute tj from S(j−1) = {(x(j−1,k), υ(j−1,k))}1≤k≤N , as in Algorithm 2.1, l. 5-6

11: Set S(j)
0 = {(x, υ) ∈ S(j−1) | µĜl

(x, υ) ≤ max(tj, 0)} and n = #S(j)
0

12: Estimate the PoF P
(j)
f as in Algorithm 2.1, l. 13-18

13: Compute the misclassification probabilities P(j) = {Pm(x, υ) | (x, υ) ∈ S(j)
0 }

14: if maxP(j) > Φ(−2) then ▷ Learning stopping criterion

15: Select K points X ∗ = {χ∗
k}1≤k≤K from S(j)

0 ▷ Point enrichment (Section 2.3.2.2)
16: Compute the log-likelihood values Y∗ = {L(χ∗

k)}1≤k≤K

17: Set X ← {X ,X ∗} and Y ← {Y ,Y∗} ▷ Enrich the current ED
18: Recompute the convex hull co(X ) of X
19: Recalibrate the PCK surrogate L̂ from {X ,Y}
20: end if
21: Generate the samples S(j) of D(j)

f with MCMC, by considering n Markov chains with

seeds S(j)
0 and length N/n ▷ Generate the population of the j-th SuS level

22: Set S(j)
X = S(j) ∩ co(X ), and ℓ∗ = max(ℓ,maxS(j)

X
µL̂}) ▷ Update ℓ

23: Set tj ← tj − ℓ+ ℓ∗, and then ℓ← ℓ∗ ▷ Update tj
24: end while
25: Estimate the probability Pf and model evidence Z as in Algorithm 2.1, l. 16-18
Output: Posterior samples {x(r,k)}1≤k≤N , probability of failure Pf , model evidence Z
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2.4 Numerical examples

In this section, the proposed algorithm is showcased in the framework of several Bayesian
inverse problems with varying complexity. The main algorithmic settings considered in each
application are detailed hereafter.

Firstly, PCK surrogates are constructed by using the Optimal PC-Kriging (O-PCK)
approach described in (Schöbi et al., 2015), through its implementation in the UQLab software
(Marelli and Sudret, 2014). The PCE trends

∑
α∈A cαψα are constructed by using the

adaptive sparse PCE procedure based on the LARS algorithm introduced by Blatman and
Sudret (2011b). PCE are built from the classical isotropic truncation sets given by:

Ap = {α ∈ Nd | ∥α∥1 ≤ p} (2.35)

where the maximum PCE degree p is adaptively chosen in {0, . . . , 10}.
Moreover, the Gaussian process of each PCK surrogate is assumed to have an autocor-

relation function with the following structure:

RZ(x− x′;θ) =
d∏

i=1

R0

( |xi − x′i|
θi

)
(2.36)

where θ = (θ1, . . . , θd) are the hyperparameters R0 is the Matérn autocorrelation function
with shape parameter 5

2
, given by (Rasmussen and Williams, 2006):

R0(h) =

(
1 +
√
5h+

5

3
h2
)
exp

(
−
√
5h
)

(2.37)

The hyperparameters θ are estimated through Cross Validation (CV) (Bachoc, 2013), by
using a hybrid genetic strategy: the Matlab’s genetic algorithm (GA) is firstly launched, and
its final point is used as an initial point for the interior point L-BFGS algorithm of Byrd
et al. (1999).

Then, substituting PCK surrogate predictions µL̂ of the log-likelihood in the definition
of the posterior density π∗(x) = π(x|y) yields a surrogate posterior density given by:

π̂∗(x) =
π(x) exp (µL̂(x))

Ẑ
(2.38)

where Ẑ is the surrogate model evidence given by:

Ẑ =

∫
DX

exp (µL̂(x))π(x)dx (2.39)

Besides comparing posterior QoI such as mean, standard deviation and model evidence
obtained from posterior samples, the accuracy of the proposed approach is assessed through
a comparison of reference and surrogate-based posterior univariate marginal densities (typ-
ically estimated from samples through kernel density estimation). In this perspective, the
error measure introduced in (Wagner et al., 2021) is used:

ξ =
1

d

d∑
i=1

DJS(π̂
∗
i , π

∗
i ) (2.40)
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where DJS(π̂
∗
i , π

∗
i ) is the Jensen-Shannon Divergence (JSD) (Lin, 1991) between the i-th

posterior univariate marginals π̂∗
i and π∗

i corresponding to Eqs. (2.38) and (2.1), defined by:

DJS(π̂
∗
i , π

∗
i ) =

1

2
(DKL(π

∗
i ∥π̄∗

i ) +DKL(π̂
∗
i ∥π̄∗

i )) (2.41)

DKL(·∥·) being the Kullback-Leibler Divergence (see Section 1.3.2.4), and π̄∗
i = (π∗

i + π̂∗
i )/2,

for i ∈ {1, . . . , d}. The JSD in Eq. (2.41) constitutes a symmetrized and somewhat reg-
ularized form of the KLD. It is also always bounded in [0, log (2)]. Furthermore, the error
measure in Eq. (2.40) enables to summarize the accuracy of the approximation of the poste-
rior marginal densities (π∗

i )1≤i≤d in a single scalar, which is computationally affordable since
it is based on an average of univariate integrals.

In the next sections, reference results are produced with the SuS procedure presented
in Section 2.2.2 (see Algorithm 2.1), by using the full likelihood function. The PCK-SuS
algorithm is subsequently applied by considering varying initial ED size K0 and ratios κ =
K/K0, K being the number of enrichment points at each learning phase. For both SuS
and PCK-SuS approaches, a number of N = 5000 samples per subset is considered, based
on (Betz et al., 2018b; Straub et al., 2016). Furthermore, the rarity parameter p0 is set as
p0 = 0.1, based on recommendations in (Betz et al., 2018b). Moreover, 50 replications of the
calculations are produced, in each case, for both SuS and PCK-SuS algorithms. For a single
run, the total number of full model calls is denoted by M . For one SuS procedure with N
samples per level, this number is simply given by (r+1)N , r being the number of SuS levels.
In the case of one PCK-SuS procedure with an initial ED size K0 and K enrichment points
per learning phase, this number lies between K0 and K0+rK, depending whether and when
the learning stopping criterion (see Section 2.3.2.4) has been reached during the procedure.
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2.4.1 Two-DOF shear building

2.4.1.1 Problem description

The first numerical example was originally introduced in (Beck and Au, 2002), and then
studied in (Betz et al., 2018b; Giovanis et al., 2017; Straub and Papaioannou, 2015; Wang
and Shafieezadeh, 2020), and involves a two degrees-of-freedom shear building. The prob-
lem consists in estimating the posterior inter-story stiffnesses of the structure, based on
measurements of its eigen-frequencies.

Figure 2.6: Two degrees-of-freedom shear building.

The inter-story stiffnesses are set as ki = Xikn for i ∈ {1, 2}, where kn = 29.7 · 106
N.m−1 and X1, X2 are random variables endowed with lognormal priors with modes 1.3 and
0.8, and standard deviations equal to 1. The masses of the two stories are supposed to be
deterministic, and are set as m1 = 16.531 · 103 kg and m2 = 16.131 · 103 kg. Two measured
eigen-frequencies y = (f̃1, f̃2) will be used for Bayesian updating, with f̃1 = 3.13 Hz and
f̃2 = 9.83 Hz. The corresponding likelihood function writes:

L(x) = exp

(
−J (x)

2σ2

)
(2.42)

where σ = 1/16 and J (x) is the modal measure-of-fit function given by (Beck and Au,
2002):

J (x) =
2∑

i=1

µ2
i

(
fi(x)

2

f̃ 2
i

− 1

)2

(2.43)

with µ1 = µ2 = 1, and (fi(x))i∈{1,2} are the eigen-frequencies obtained by solving the
equation of motion for un-damped free vibration applied to the structure, given by:

Mü+Ku = 0 (2.44)

where M =

(
m1 0
0 m2

)
is the mass matrix and K =

(
k1 + k2 −k2
−k2 k2

)
is the stiffness matrix,

and u = (u1, u2)
⊺ the displacement vector.

The posterior distribution of the parameters X = (X1, X2) is bi-modal with significantly
distant modes (Beck and Au, 2002; Giovanis et al., 2017), which makes the problem difficult
to solve when using classical MCMC sampling approaches.
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2.4.1.2 Results

The PCK-SuS algorithm is applied by considering the following parameters:

• an initial ED size of K0 ∈ {20, 50, 100, 200},

• a ratio κ = K/K0 ∈ {0, 0.1, 0.2, 0.5}.

An illustration of an application of the PCK-SuS algorithm (with K0 = 50 and K = 10)
to the aforementioned Bayesian inverse problem is illustrated in Fig. 2.7. Firstly, an initial
ED formed by samples drawn from the prior is defined, and the surrogate log-likelihood is
subsequently trained. The first step of SuS procedure enables to define p0K = 500 seeds to
generate the population of the first subset. As shown in Fig. 2.7a, most of these seeds are lo-
cated in a zone where ED points are sparse. Moreover, the misclassification probability (see
Eq. 2.28) of such seeds is sensibly important, which indicates that LSF predictions are clas-
sifying posterior samples, and/or that predictions are significantly uncertain in such zones.
The multiple point enrichment based on weighted K-means clustering proposed (see Section
2.3.2.2) enables to select points which are quite uniformly spaced in the aforementioned zone
(given by white diamonds (♢) in Fig. 2.7a). The surrogate model is then recalibrated based
on the enriched ED, before performing the MCMC sampling within the first SuS level. Then,
as shown in Fig. 2.7c, the seeds of SuS level 2 form two clusters. The point enrichment step
proposes K new candidate points which are located in these clusters (Fig. 2.7c). Finally,
during the last SuS level (Fig. 2.7e), the surrogate is enriched near high-probability zones
of the posterior.

Next, the convergence of the error measure ξ in Eq. (2.40) with respect to the average
number of model calls M is shown in Fig. 2.8. The proposed methodology is significantly
more efficient when κ > 0, since ξ values for κ > 0 are about two orders of magnitude
smaller than those for κ = 0, for a given ED size (see Fig. 2.8b). In the non-adaptive case
(κ = 0), the error ξ is decreasing much more slower as the ED size increases. This is due
to the fact that the posterior support is located in low-probability zones of the prior (see
Fig. 2.7). Then, without adaptive point enrichment, a very large ED size K0 is required
to draw a sufficient amount of samples in informative zones. In this context, the proposed
point enrichment method based on clustering is well suited to the problem, since it allows
to enrich the surrogate log-likelihood near the posterior high-probability zones, even in the
case of a non-connected posterior support.

Then, posterior samples generated with SuS algorithm and PCK-SuS algorithm are com-
pared in Fig. 2.9. PCK-SuS results for K0 = 50 and κ ∈ {0, 0.2, 0.5} are presented. Firstly,
the location of posterior modes is well reproduced, for K0 = 50 and κ ≥ 0.2. Broadly
speaking, the shape of the joint posterior is well approximated by the proposed approach,
with a limited amount of model calls (M ≈ 102). Furthermore, QoI related to left and right
clusters of the identified posterior are summarized in Table 2.1 & 2.2. An average number
of model calls of about M ≈ 250 is sufficient to provide an accurate estimation of posterior
QoI, which represents a reduction of about 98.8% of the total cost of 2 · 104 model calls
required by using the full likelihood function.
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(a) Point enrichment at SuS level 1 (b) Generated samples of SuS level 1

(c) Point enrichment at SuS level 2 (d) Generated samples of SuS level 2

(e) Point enrichment at SuS level 3 (f) Generated samples of SuS level 3

Figure 2.7: 2 DOF structure: illustration of the PCK-SuS algorithm. The points of the ED
are shown by black crosses (×). Enrichment points of the ED are shown by white diamonds (♢).
Candidate points (left column) are colored by their corresponding misclassification probability
(from blue to red). Contours of the joint prior density are shown by grey solid lines.
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Figure 2.8: 2 DOF structure: convergence of error ξ with respect to the number M of full model
calls.

K0 κ M E[X1|y] E[X2|y] Std[X1|y] Std[X2|y] Z [×10−3]

PCK-SuS 50 0.2 80 0.502 (0.0) 0.893 (0.7) 0.044 (18.8) 0.086 (23.9) 1.484 (1.3)
50 0.5 125 0.502 (0.0) 0.898 (0.1) 0.039 (3.5) 0.073 (3.9) 1.474 (1.9)
100 0.2 160 0.505 (0.6) 0.887 (1.4) 0.045 (21.3) 0.085 (22.0) 1.618 (7.6)
100 0.5 250 0.502 (0.0) 0.899 (0.0) 0.039 (3.0) 0.072 (2.9) 1.485 (1.2)
200 0.2 320 0.501 (0.2) 0.900 (0.1) 0.038 (2.1) 0.070 (0.9) 1.509 (0.4)
200 0.5 500 0.502 (0.0) 0.899 (0.0) 0.038 (0.6) 0.070 (0.3) 1.483 (1.3)

SuS 20000 0.502 0.899 0.037 0.070 1.503

Table 2.1: 2 DOF structure: posterior QoI related to the left cluster. Relative errors in % are
given in brackets.

K0 κ M E[X1|y] E[X2|y] Std[X1|y] Std[X2|y] Z [×10−3]

PCK-SuS 50 0.2 80 1.811 (0.2) 0.245 (0.8) 0.178 (25.7) 0.022 (17.9) 1.484 (1.3)
50 0.5 125 1.812 (0.1) 0.246 (0.2) 0.144 (1.8) 0.020 (5.9) 1.474 (1.9)
100 0.2 160 1.801 (0.7) 0.246 (0.3) 0.154 (8.5) 0.021 (11.9) 1.618 (7.6)
100 0.5 250 1.813 (0.1) 0.246 (0.2) 0.144 (1.3) 0.019 (3.6) 1.485 (1.2)
200 0.2 320 1.814 (0.0) 0.247 (0.0) 0.143 (0.9) 0.019 (0.5) 1.509 (0.4)
200 0.5 500 1.814 (0.0) 0.247 (0.0) 0.144 (1.3) 0.019 (2.1) 1.483 (1.3)

SuS 20000 1.814 0.247 0.142 0.019 1.503

Table 2.2: 2 DOF structure: posterior QoI related to the right cluster. Relative errors in % are
given in brackets.



2.4. Numerical examples 83

(a) SuS (b) PCK-SuS, K0 = 50, κ = 0

(c) PCK-SuS, K0 = 50, κ = 0.2 (d) PCK-SuS, K0 = 50, κ = 0.5

Figure 2.9: 2 DOF structure: posterior samples generated with SuS (a) and PCK-SuS (b-d)
algorithms. The mean of each cluster is given by black × markers for SuS samples, and by red +
markers for PCK-SuS samples.

2.4.2 Multimodal Gaussian mixture

2.4.2.1 Problem description

The second case study was originally introduced in (Beck and Zuev, 2013), and involves
a mixture of Gaussian distributions. A uniform prior over the square [0, a]2 is considered,
whereas the likelihood function is defined by:

L(x) =
q∑

j=1

wjφ2(x;µj, σ
2I) (2.45)

where the points y = {µj}1≤j≤q are drawn from the prior U([0, a]2), {wj}1≤j≤q are the
weights of the mixture, and φ2(·;µj, σ

2I) is the density of the bivariate Gaussian distribution
N (µj, σ

2I). One sets a = 10, σ = 0.1, q = 10 and wj = 1/q for all j ∈ {1, . . . , q}. The
corresponding posterior density π(x|y) ∝ 1[0,a]2(x)L(x) is multimodal, with 10 modes.

2.4.2.2 Results

The PCK-SuS algorithm is applied by considering the following parameters:



84 Chapter 2. BuS and adaptive surrogate models

• an initial ED size of K0 ∈ {50, 100, 150, 250},

• a ratio κ = K/K0 ∈ {0, 0.1, 0.2}.

Posterior samples drawn with SuS and PCK-SuS algorithm are compared in Fig. 2.10.
PCK-SuS results are shown for K0 ∈ {100, 150, 250} and κ = 0.2. Firstly, as depicted by
Fig. 2.10a, posterior samples obtained with the SuS algorithm separate into 10 significantly
spaced clusters. This underlines the complexity of the posterior density, which would be
difficult to sample with classical MCMC approaches, for which the generated Markov chains
may be trapped near few modes (Beck and Zuev, 2013).

(a) SuS (b) PCK-SuS, K0 = 100, κ =
0.2

(c) PCK-SuS,K0 = 150, κ = 0.2 (d) PCK-SuS, K0 = 250, κ =
0.2

Figure 2.10: Multimodal Gaussian mixture: posterior samples generated with SuS (a) and PCK-
SuS (b-d) algorithms. The modes {µj}1≤j≤q of the posterior are shown by black crosses (×).

Next, for K0 = 100 and κ = 0.2, the proposed approach completely misses 3 modes (see
Fig. 2.10b). When K0 = 150 and κ = 0.2, the proposed approach correctly identifies the 10
modes of the posterior (see Fig. 2.10c), even though the spread of the clusters near (0, 0) and
(10, 3) is roughly approximated. Lastly, the 10 modes of the posterior are well reproduced
when K0 = 250 and κ = 0.2 (see Fig. 2.10d).

The convergence of the error ξ in Eq. (2.40) with respect to M is shown in Fig. 2.11.
First, when no surrogate model adaptation is performed (i.e. κ = 0), ξ stagnates around
a value of 10−1. This may be explained by the highly localized behavior of the likelihood
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function, which seems to be difficult to approximate with a fixed ED built from the uniform
prior U([0, a]2). For a given number of full likelihood calls, significantly lower values of
ξ are obtained when κ > 0. In particular, when M ≥ 200, the error ξ with κ = 0.2 is
approximately two orders of magnitude smaller than in the case κ = 0. This underlines the
efficiency of the proposed adaptive point enrichment scheme, as mentioned in the example
presented in Section 2.4.1. The proposed approach takes advantage of the local features
provided by the Gaussian process of the PCK surrogate so as to better catch the likelihood
behavior near the modes {µj}1≤j≤q of the posterior.

Figure 2.11: Multimodal Gaussian mixture: convergence of error ξ in Eq. (2.40) with respect to
M .

K0 κ M E[X1|y] E[X2|y] Std[X1|y] Std[X2|y] Z

PCK-SuS 100 0.1 127 4.32 (14.6) 4.31 (13.8) 2.73 (7.2) 2.96 (2.2) 0.06 (525.4)
100 0.2 158 4.58 (9.5) 4.78 (4.4) 2.83 (3.9) 2.97 (3.1) 0.05 (352.0)
150 0.1 193 4.59 (9.4) 4.79 (4.1) 2.86 (2.9) 2.95 (1.8) 0.02 (138.0)
150 0.2 239 5.07 (0.1) 4.92 (1.5) 2.95 (0.4) 2.85 (1.5) 0.01 (16.3)
250 0.1 325 5.05 (0.2) 4.83 (3.4) 2.90 (1.4) 2.84 (1.8) 0.01 (4.4)
250 0.2 400 5.06 (0.1) 4.95 (0.9) 2.93 (0.5) 2.89 (0.4) 0.01 (2.7)

SuS 20000 5.06 4.99 2.94 2.90 0.01

Table 2.3: Multimodal Gaussian mixture: posterior QoI. Relative errors in % are given in brack-
ets.

Lastly, QoI related to the posterior distribution are summarized in Table 2.3. For the sake
of brevity, only the components of the posterior mean E [X|y] and the standard deviation
Std [X|y] are considered as QoI, rather than considering the statistics of each of the 10
clusters of the posterior. The proposed approach provides correct estimates of E [Xi|y] and
Std [Xi|y] from K0 = 100 and κ = 0.2. Moreover, fair estimates of the model evidence
Z are obtained with K0 = 150 and κ = 0.2. Finally, it is worth noting that the proposed
method provides a quite good approximation of the posterior with a number of full likelihood
evaluations of about M ≈ 240 (see Table 2.3), which corresponds to a reduction of about
98.8% of the total cost of 2 · 104 full likelihood evaluations required by a direct application
of the SuS procedure.
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2.4.3 Diffusion inverse problem

2.4.3.1 Problem description

The third case study consists in a unidimensional diffusion problem introduced in Straub
et al. (2016), as the steady state version of the problem studied in Marzouk and Najm (2009).
The problem is described by the following diffusion equation on the unit interval D = [0, 1]:

∂s (a(s)∂su(s)) + b(s) = 0 (2.46)

where ∂s refers to the partial derivative w.r.t. the spatial coordinate s, the diffusivity a(·) is
represented by a random field, and the source term b(·) is given by:

b(s) =
S∑

i=1

ςi√
2πσi

exp

(
−(li − s)2

2σ2
i

)
(2.47)

This term corresponds to S localized sources with locations (li)1≤i≤S and strengths (ςi)1≤i≤S

and widths (σi)1≤i≤S. One considers S = 3 sources at locations l1 = 0.25, l2 = 0.5 and
l3 = 0.75. The strengths are assumed to be identical, and are set as ςi = 10, as well as
the widths, which are fixed to σ2

i = 10−3. Furthermore, Dirichlet boundary conditions
u(0) = u(1) = 0 are adopted to solve Eq. (2.46). This problem may typically be seen as
a prototype for the inverse estimation of an inhomogeneous permeability field in a porous
medium (Marzouk and Najm, 2009). It is solved by using linear finite elements, on a uniform
grid with spacing ∆s = 1/48.

The problem consists in inferring the diffusivity field a(·) from noisy measurements of
the field u(·), provided by a set of n = 11 sensors uniformly spaced in D (excluding the
endpoints). The prior of the log-diffusivity field log a(·) is supposed to be a stationary
Gaussian random field, with mean µlog a = 0.1 and standard deviation σlog a = 0.2, and an
exponential autocorrelation function given by:

Rlog a(s, s
′) = exp

(
−|s− s

′|
ϑlog a

)
(2.48)

with ϑlog a = 0.3.

The log-diffusivity random field is represented by a truncated Karhunen-Loève (KL)
(Ghanem and Spanos, 1991b; Loève, 1977) expansion:

log a(s) ≈ µlog a +
d∑

i=1

√
λiXiϕi(s) (2.49)

where d = 10 terms are retained, based on (Straub et al., 2016). (Xi)1≤i≤d are d independent
standard normal variables, and (λi, ϕi)1≤i≤d are the eigenvalues and eigenfunctions associ-
ated to the covariance function Σlog a(s, s

′) = σ2
log aRlog a(s, s

′). The latter are satisfying the
Fredholm integral equations of the second kind:∫

D
Σlog a(s, s

′)ϕi(s
′)ds′ = λiϕi(s) (2.50)
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for all i ∈ {1, . . . , d}, which can be solved analytically in the case of exponential covariance
kernels (Ghanem and Spanos, 1991b).

Then, synthetic data y = {um,j}1≤j≤n are generated from a realization of the log-
diffusivity random field, by computing the corresponding output field um(·) at sensors lo-
cations and adding to it a Gaussian noise term with zero mean and standard deviation
σm = 0.1. In order to avoid to commit an inverse crime (Kaipio and Somersalo, 2005),
this synthetic data is generated by using a much finer grid to solve Eq. (2.46). The d = 10
Gaussian random variables (Xi)1≤i≤d are subsequently inferred from the generated data. The
corresponding likelihood function is given by:

L(x) =
n∏

j=1

φ(uj(x);um,j, σ
2
m) = (2πσ2

m)
−n

2 exp

(
− 1

2σ2
m

∥u(x)− um∥2
)

(2.51)

where uj(x) is the field u at the location of the j-th sensor, for a given realization x of the
input random variables X = (X1, . . . , Xd), and u(x) = (uj(x))1≤j≤n and um = (um,j)1≤j≤n.

2.4.3.2 Results

The PCK-SuS algorithm is applied by considering the following parameters:

• an initial ED size of K0 ∈ {50, 100, 250, 500},

• a ratio κ = K/K0 ∈ {0, 0.1, 0.2}.

The convergence of the error ξ in Eq. (2.40) with respect to M is shown in Fig. 2.12.
For moderate to large ED sizes (M ≥ 250), the adaptive point enrichment scheme leads to
a smaller error than in the non-adaptive case (i.e. when κ = 0). Besides, for M ≤ 250, the
performance of the approach depends less on the adaptation step of the surrogate model,
since ξ presents a similar behavior for κ = 0 and κ > 0. Such a behavior may be explained
by the fact that most of the posterior mass is enclosed in high-probability zones of the prior.
In this case, the adaptive point enrichment targets zones in which samples are frequently
falling when sampling from the prior. This underlines the fact that the efficiency gain
provided by adaptive surrogate modeling approaches is all the more important when the
likelihood presents a localized behavior, typically when data are sufficiently informative
and/or multi-modalities are encountered.

Then, it is worth noting that the active dimensionality of the problem is limited to
6, since the posterior marginals of the four last KL eigenmodes are sensibly close to their
prior counterpart. Such a phenomenon has been often encountered in the framework of UQ
benchmark problems related to diffusion problems with random diffusivity fields (Fajraoui
et al., 2017; Wagner et al., 2021). Consequently, results are analyzed by focusing on the first
six variables (Xi)1≤i≤6 hereafter.

Posterior samples drawn with SuS and PCK-SuS algorithms with (K0, κ) = (250, 0.1)
are compared in Fig. 2.13. The shape of the posterior distribution is well approximated
with the proposed approach, with a quite limited amount of model calls (M ≈ 350). In
particular, the correlation structure of the posterior is well reproduced, notably regarding
the couples (X1, X3) and (X2, X4) which present quite strong linear correlations. Posterior
mean and standard deviation values are summarized in Table 2.4 & 2.5. It is also worthwhile
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Figure 2.12: Diffusion problem: convergence of error ξ in Eq. (2.40) with respect to M .

noting that the following approach provides a fair estimate of the model evidence with a
quite moderate amount of model calls (≈ 350 − 500), as underlined by Table 2.6 which
summarizes values of the model evidence.

(a) SuS (b) PCK-SuS, K0 = 250, κ = 0.1

Figure 2.13: Diffusion problem: posterior samples generated with SuS (a) and PCK-SuS (b)
algorithms. Posterior samples are shown in blue, whereas prior samples are shown in grey.
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E[Xi|y] K0 κ M X1 X2 X3 X4 X5 X6

PCK-SuS 100 0.1 127 −0.55 (23.4) −0.13 (68.1) 0.71 (29.6) −0.57 (41.2) 0.05 (116.0) −0.54 (46.0)
100 0.2 160 −0.59 (17.2) −0.26 (33.0) 0.76 (24.4) −0.72 (24.7) −0.01 (95.9) −0.80 (20.1)
250 0.1 343 −0.70 (2.9) −0.41 (3.0) 0.96 (4.3) −0.89 (7.8) −0.22 (27.0) −0.96 (5.1)
250 0.2 449 −0.70 (2.6) −0.40 (2.3) 0.97 (3.8) −0.93 (3.6) −0.23 (22.1) −0.96 (5.2)
500 0.1 730 −0.71 (1.1) −0.37 (6.5) 0.99 (1.7) −0.91 (5.2) −0.28 (5.0) −1.02 (1.2)
500 0.2 968 −0.72 (0.1) −0.38 (4.8) 1.01 (0.3) −0.92 (4.3) −0.30 (2.8) −1.03 (2.6)

SuS 27600 −0.72 −0.39 1.00 −0.96 −0.30 −1.01

Table 2.4: Diffusion problem: posterior means of the random variables (Xi)1≤i≤6.

Std[Xi|y] K0 κ M X1 X2 X3 X4 X5 X6

PCK-SuS 100 0.1 127 0.45 (69.5) 0.71 (59.0) 0.87 (59.1) 0.98 (38.9) 1.13 (43.2) 1.07 (28.0)
100 0.2 160 0.38 (44.5) 0.62 (40.3) 0.77 (39.6) 0.86 (22.8) 1.00 (26.6) 1.04 (24.1)
250 0.1 343 0.29 (8.9) 0.49 (10.7) 0.60 (9.1) 0.74 (4.8) 0.82 (3.9) 0.84 (0.7)
250 0.2 449 0.28 (5.5) 0.48 (7.1) 0.58 (6.3) 0.72 (2.7) 0.81 (3.3) 0.85 (1.3)
500 0.1 730 0.26 (0.2) 0.45 (1.4) 0.55 (0.2) 0.69 (1.3) 0.79 (0.2) 0.85 (1.8)
500 0.2 968 0.26 (0.4) 0.45 (0.4) 0.55 (0.3) 0.70 (1.0) 0.77 (2.1) 0.83 (0.4)

SuS 27600 0.26 0.44 0.55 0.70 0.79 0.84

Table 2.5: Diffusion problem: posterior standard deviations of the random variables (Xi)1≤i≤6.

K0 κ M Z

PCK-SuS 100 0.1 127 87.09 (254.1)
100 0.2 160 29.41 (19.6)
250 0.1 343 22.73 (7.6)
250 0.2 449 23.36 (5.0)
500 0.1 730 23.75 (3.4)
500 0.2 968 24.77 (0.7)

SuS 27600 24.59

Table 2.6: Diffusion problem: model evidence values.

Next, a comparison between the true log-diffusivity field, and the posterior log-diffusivity
fields obtained with SuS and PCK-SuS algorithms is given in Fig. 2.14. Concerning the
PCK-SuS algorithm, results are shown for K0 ∈ {250, 500} and κ = 0.1. As a validation
of reference results, one observes that the posterior log-diffusivity field obtained with SuS
matches well with the realization used to generate the synthetic data. Furthermore, the
proposed approach provides a fair approximation of the posterior log-diffusivity when K0 =
250 and κ = 0.2, with a slight overestimation of the variance, though (see Fig. 2.14a). Then,
the posterior log-diffusivity field is precisely approximated when K0 = 500 and κ = 0.1 (see
Fig. 2.14b).

Furthermore, contours of the posterior covariance function of the log-diffusivity field
obtained from SuS and PCK-SuS samples are shown in Fig. 2.15. Approximately 730 model
calls are sufficient to provide an accurate approximation of the covariance function (see
Fig. 2.15b). Lastly, it is worth noting that a satisfactory approximation of the posterior is
obtained with an average number of model calls of M = 730, which represents a reduction
of about 97.4% of the total cost of 2.76 · 104 calls required by an inversion using the full
likelihood (see Table 2.4 & 2.5).
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(a) PCK-SuS, K0 = 250, κ = 0.1 (b) PCK-SuS, K0 = 500, κ = 0.1

Figure 2.14: Diffusion problem: posterior log-diffusivity field log a(·) estimated from posterior
samples generated with SuS and PCK-SuS algorithms.

(a) SuS (b) PCK-SuS, K0 = 500, κ = 0.1

Figure 2.15: Diffusion problem: posterior covariance function of the log-diffusivity field estimated
from samples generated with SuS and PCK-SuS algorithms.
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2.5 Conclusion

The main goal of this chapter was twofold, namely to present the Bayesian computational
framework that will be used for solving Bayesian inverse problems in the next chapters of this
thesis, and to subsequently introduce a novel adaptive surrogate modeling approach aiming
at accelerating Bayesian computations, particularly when dealing with costly computational
models.

In this perspective, this chapter has firstly investigated the so-called Bayesian updating
with Structural reliability methods (BuS) framework originally introduced in (Straub and
Papaioannou, 2015), which reinterprets Bayesian inference as a structural reliability problem.
This framework allows to deploy a broad range of structural reliability methods to perform
Bayesian computations, including the well-known Subset Simulation (SuS) method (Au and
Beck, 2001), which has been specifically adapted to the BuS framework in (Betz et al.,
2018b). In particular, this last method constitutes an appealing alternative to classical
MCMC algorithms, and will be used throughout the next chapters of this thesis in the
framework of inverse UQ tasks related to nuclear containment buildings.

Nevertheless, as any sampling technique, the aforementioned SuS method may require a
large amount of model evaluations, which makes it computationally intractable when con-
fronted to costly forward models. Then, this chapter presented a novel surrogate-based
Bayesian computational approach within the BuS framework, that combines adaptive Poly-
nomial Chaos Kriging (PCK) surrogates with the aforementioned SuS method. In this
context, a prior-based PCK surrogate model is firstly built in order to catch the global
trend of the log-likelihood on the support of the prior. This surrogate model is subsequently
enriched throughout the SuS procedure by selecting points in informative regions, based
on principles inspired from active learning techniques for structural reliability (Moustapha
et al., 2022). In particular, the underlying Gaussian process of the PCK surrogate enables
to better catching local variations of the log-likelihood, and provides a local error measure
which can be used so as to enrich the surrogate model.

The proposed approach has been applied to several academic cases studies with varying
complexity, involving a two degrees-of-freedom structure, a multi-modal Gaussian mixture
and a diffusion problem with moderate active dimensionality. Numerical investigations have
suggested that the proposed approach provides satisfactory approximations of the posterior
distributions involved, even in the case of likelihood functions with localized behavior, or
multi-modal distributions. Moreover, such approximations have been obtained for a quite
limited amount of model calls (i.e. 50− 500), which makes the proposed approach suitable
for computationally demanding models.

Besides, the proposed approach presents several shortcomings that may be addressed
in further works. Firstly, it appears from test cases results that the stopping criterion of
the point enrichment step has been rarely reached during calculations. This may be due to
the fact that the adopted threshold value for the misclassification probability (see Section
2.3.2.4) is too conservative, as underlined in (Cui et al., 2019; Moustapha et al., 2022).
Therefore, a more precise stopping criterion may be defined in order to avoid unnecessary
model calls throughout Bayesian computations.
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Furthermore, although the SuS procedure is well-known for efficiently tackling high-
dimensional problems, its coupling with Kriging-based surrogates models typically jeop-
ardizes its application to high-dimensional Bayesian inverse problems with costly forward
models. Indeed, the optimization problem involved in the estimation of Kriging parame-
ters may be difficult to solve in high dimensions (Angelikopoulos et al., 2015; Wang and
Shafieezadeh, 2020). This is in line with results from the recent survey and benchmark
on active learning structural reliability methods of Moustapha et al. (2022), which suggest
that PCK surrogate models are well suited for parameter dimensions d ≤ 20, whereas PCE
surrogates perform better in higher dimensions.

Hence, the proposed approach may be adapted to PCE in order to tackle problems with
higher dimensions, by using a learning function adapted to PCE (e.g. that introduced in
(Marelli and Sudret, 2018)). Alternatively, dimensionality reduction techniques for Bayesian
inverse problems could be used in order to exploit the low-dimensional structure of the
posterior distribution, and then construct surrogates on subspaces with smaller dimension-
alities, corresponding to few dominant directions of the input parameter space (Zahm et al.,
2020). In this context, active subspaces (AS) (Constantine et al., 2014, 2016) and likelihood-
informed subspaces (LIS) (Cui et al., 2014; Cui and Zahm, 2021; Zahm et al., 2022) methods
exploit the gradient of the forward model and/or of the likelihood function so as to deter-
mine the low-dimensional structure of the posterior. Likewise, Cui et al. (2016) proposed
an approach aiming at constructing low-dimensional subspaces of both the parameter space
and the state space of the forward model to accelerate large-scale Bayesian inverse problems.
Lastly, recent work of Bigoni et al. (2022), not specifically focused on Bayesian inverse prob-
lems, proposed a dimension reduction approach for surrogate modeling, that could be used
in order to efficiently surrogate high-dimensional forward models or log-likelihood functions.

Then, the first two chapters of this thesis have enabled to establish a basis of UQ com-
putational tools, which will constitute the building bricks of numerical strategies aiming at
evaluating the long-term behavior of containment buildings in a probabilistic setting. The
following chapters of this thesis are dedicated to the construction of such strategies, and their
application to real containment structures. In particular, the next chapter aims at provid-
ing an introduction to the physical problem behind the aging of containment buildings, by
introducing the main physical phenomena involved by concrete aging, and by subsequently
presenting the modeling strategy adopted so as to describe these phenomena.
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3.1 Introduction

Concrete is a complex porous and multiphasic material which is in constant thermodynamic
disequilibrium with its surrounding environment. As a result, concrete is subjected to several
physical processes affecting the evolution of its properties and its response to multi-physic
loads over time. Such a transformation is known as aging. The aging process of concrete
may be divided into two distinct phases, namely:

• an early age phase, which mainly corresponds to concrete hydration and hardening,
through an ensemble of exothermal chemical reactions existing between the different
constituents of concrete (e.g. cement, water, sand, aggregates and additives). Its
duration is typically about few weeks.

• a long-term phase, corresponding to the time evolution of the behavior of hardened
concrete under exploitation loads, including ambient thermo-hydric conditions of the
operating structure, as well as mechanical loading (e.g. prestressing or dead weights).
Its duration is about few decades, and the present thesis will be mainly focused on this
phase.

During the last decades, experimental research studies have enabled to improve the un-
derstanding of physical phenomena related to concrete aging. Along with such experimental
advances, a broad range of mathematical models aiming at describing the aforementioned
physical phenomena has been developed, including analytical functions, differential equa-
tions or partial differential equations. These models serve as a basis to establish numerical
strategies aiming at assessing the Thermo-Hydro-Mechanical and Leakage (THML) behavior
of concrete, from microscopic to structural scale (Bouhjiti et al., 2018b; Chhun, 2017).

Consequently, the main goal of this chapter is to present a modeling strategy aiming
at assessing the long-term THML behavior of aging NCB, that will constitute the core of
UQ analyses performed in the next chapters of this thesis. In this context, it is aimed to
capitalize on former works related to THML modeling (including (Boucher, 2016; Bouhjiti
et al., 2018b)), through the combination, and possibly the modification, of existing behavior
laws. In particular, the main buildings bricks of the aforementioned computational model
will be selected by following several guidelines promoting the tractability of UQ methods.
In this perspective, the devised model should be able to reasonably assess the global THML
behavior of aging NCB without requiring a prohibitive computational cost. Furthermore,
the so-called parsimony principle mentioned in Section 1.3.2.5 will be also used to select
models: in the case of several competing models that equally well explain some observed
data, the ”simpler” model will be preferred. Here, the meaning of the term ”simple” has to
be interpreted in the sense of mathematical complexity, which includes dimensionality (i.e.
the number of parameters).

This chapter is organized as follows: firstly, a general overview of the physical phenomena
related to concrete aging, as well as the effect of such phenomena on the long-term integrity
of containment structures, is given in Section 3.2. Then, the THML modeling strategy
adopted in this thesis is described in Section 3.3.
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3.2 Physical phenomena of concrete aging in large struc-

tures

3.2.1 Thermo-hydration and maturity

During the early age phase, concrete hydration corresponds to chemical reactions between the
different phases of cement with water (Bye, 1999; Taylor, 1997). Such reactions corresponds
to successive dissolution of anhydric reactants, which form hydrates that are stable in water.
Cement essentially contains four compounds, namely dicalcium and tricalcium silicate (C2S
and C3S), tricalcium aluminate (C3A) and tetracalcium aluminoferrite (C4AF) (Neville,
1996). The chemical equations corresponding to hydration of these reactants are given by:

C2S + (β + γ)H→ CαSHβ + γCH (3.1a)

C3S + (β + δ)H→ CαSHβ + δCH (3.1b)

C3A+ 3C− S− H2 + εH→ C6AS3Hε+6 (3.1c)

C4AF + 3C− S− H2 + εH→ C6AFS3Hε+6 (3.1d)

where C = CaO, S = SiO, A = Al2O3, F = Fe2O3 and H = H2O are notations adopted in
cement chemistry (Taylor, 1997), whereas α, β, γ, δ and ε denote stoichiometric coefficients.

Concrete hydration is an exothermal reaction, in the sense that it induces a heat release.
Therefore, heat production may be seen as an indicator of the hydration progress. In the case
of large concrete structures, the temperature may reach approximately 60◦C (Benboudjema
and Torrenti, 2008). Moreover, hydration is a thermo-activated process (Arrhenius, 1915),
which means that hydration kinetics increase with temperature.

The hydration process is summarized in Fig. 3.1. Firstly, during the first minutes of the
hydration process, a heat peak is observed, which corresponds to the initial hydration of the
surface of cement particles. Then, a so-called dormant phase initiates, during which concrete
is sensibly deformable. About two hours later, an acceleration of the hydration process is
observed, which corresponds to a new heat release. A second heat peak is reached after
approximately 10 hours. Then, this second peak is followed by a deceleration phase, which
corresponds to a continuous decrease of the heat release. Finally, a so-called consolidation
phase initiates when hydration is no longer possible at the surface of cement grains. During
this period, hydrates become denser through water diffusion oriented towards the interior of
cement grains.



96 Chapter 3. Phenomena and modeling of concrete aging in large structures

Figure 3.1: Time evolution of heat release during hydration process (bottom) and schematization
of the formation of hydrates and their consolidation (top). Adapted from (Scrivener et al., 2015).

Moreover, the end of the second heat peak corresponds to the initiation of concrete
setting, which corresponds to the transition to a solid state, induced by the establishment
of connected hydrates bridges between cement grains. Such connections between cement
grains contribute to the development of the apparent stiffness and strength of concrete. In
this context, maturity refers to the percolation process of hydrates which contributes to the
development of mechanical properties. As a result, mechanical properties of concrete may
be seen as increasing functions of the hydration degree of concrete (De Schutter and Taerwe,
1996), once a sufficient hydration rate has been reached (Acker, 1988).

3.2.2 Desiccation

Water is present in the form of liquid and gaseous phases in the concrete porosity (Benboud-
jema, 2002). After the concrete setting, the concrete porosity is practically saturated with
water, despite the fact that water has been partially consumed during concrete hydration
(Baroghel-Bouny, 1994). Therefore, concrete is in a hydric disequilibrium with its surround-
ing environment, the ambient hygrometry of the latter being sensibly weaker. Desiccation
(or drying) refers to the physical process tending to re-establish the thermodynamical equi-
librium between liquid and gaseous phases. This process notably induces multiple transport
mechanisms, with varying intensity and levels of coupling, depending on the ambient relative
humidity (RH) (Chen, 2011; Xi et al., 1994). In this context, under normal temperature
and pressure conditions, four main mechanisms may be mentioned (see Fig. 3.2) (Baroghel-
Bouny, 1994):

• molecular adsorption or desorption at pore surfaces,

• condensation and evaporation at liquid/gas interfaces,
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• molecular diffusion of water vapor (based on Fick’s law),

• fluid flow through permeation (based on Darcy’s law).

Figure 3.2: Moisture transport mechanisms in concrete according to ambient RH: (a) mono-
molecular adsorption and gas diffusion; (b) multi-molecular adsorption (d) water saturation and
liquid water diffusion.

Moreover, the variation of the water content of concrete may express a drying of its
porosity (i.e. desorption), but also humidification (i.e. sorption), depending on the gradient
of RH existing between concrete’s free surface and its surrounding environment (Bouhjiti,
2018). Sorption/desorption experiments aim at analyzing the relationship between the mois-
ture content of concrete and its RH (Zhang et al., 2016). It is worth noting that the obtained
sorption/desorption curves may express a non-bijective relationship between the two afore-
mentioned physical quantities: indeed, in the case of drying/humidification cycles, hydric
transfers in concrete porosity present an irreversible behavior, and hysteresis phenomena are
observed (Granger, 1995).

Nevertheless, in the case of large structures, such phenomena principally concern the hy-
dric behavior of skin concrete, rather than the mean hydric behavior of structure’s thickness,
as emphasized by Bouhjiti et al. (2018a). Furthermore, desiccation constitutes a thermo-
activated process: an increase of temperature induces an acceleration of the diffusion of
water molecules in the concrete volume, and affects the concrete diffusivity (Caré, 2008;
Granger, 1995), as well as sorption/desorption curves (Poyet, 2009).

3.2.3 Shrinkage

Shrinkage refers to dilation of the volume occurring during or after concrete setting. Such a
phenomenon may be induced by concrete hydration, as well as variations of the temperature
or moisture content of concrete. In the case of endogenous conditions, three types of shrink-
age are identified, namely chemical, auto-desiccation and thermal. In the case of exogenous
conditions, including thermo-hydric loads, additional strains are attributable to desiccation
shrinkage.
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3.2.3.1 Chemical shrinkage

Chemical shrinkage, also known as Le Chatelier’s contraction (Le Chatelier, 1904), corre-
sponds to a contraction occuring during the concrete hydration process. Such a contraction
stems from the fact that hydration products occupy less absolute volume than the initial con-
crete mix (Jensen and Hansen, 2001). An illustration of the principle of chemical shrinkage
is given in Fig. 3.3.

Figure 3.3: Illustration of chemical shrinkage, adapted from Gao et al. (2014).

3.2.3.2 Auto-desiccation shrinkage

After concrete setting, the skeleton of concrete presents a significant stiffness, whereas the
hydration process continues to consume water in the capillary porosity of concrete. This
yields the formation of internal voids in the concrete matrix (Gao et al., 2014). In the absence
of moisture transfer with its external environment, the development of such voids induces the
diminution of the internal RH, and the formation of air-water menisci. The aforementioned
decrease of RH leads to a decrease of capillary pressures, which are responsible for tensile
stresses applied on air-water menisci, according to Laplace-Kelvin’s law:

pc = pg − pl =
ρwRT

Mg

log h =
2γ

rm
(3.2)

where pc denotes the capillary pressure, pg the air pressure, pl the water pressure, ρw the
density of water, R = 8.314 J.K−1.mol−1 the ideal gas constant, T the temperature, Mg the
molar mass of the gaseous phase (i.e. air and water vapor), h the RH, γ the superficial
tension and rm is the radius of the air-water menisci.

Tensile stresses applied to air-water menisci are balanced by compression stresses on
hydrates, thus producing a global contraction of the solid skeleton. As a result, a global
reduction of the concrete volume, called auto-dessication shrinkage, is observed (Persson,
1998). Illustrations of auto-dessication shrinkage and Laplace-Kelvin’s law are given in Fig.
3.4.

3.2.3.3 Thermal dilation

Thermal dilation corresponds to volume variations induced by variations of temperature.
According to experimental investigations of Piasta (1984) and Hilaire (2014), a linear re-
lation between temperature and thermal dilation strains has been observed for a range of
temperatures corresponding to exploitation conditions (i.e. 0 − 75◦C). In particular, the
exothermal reaction of hydration induces a positive volume variation of concrete, followed
by a negative variation during the cooling phase, corresponding to a slow-down of hydration
kinetics (Bouhjiti, 2018).
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Figure 3.4: (a) illustration of auto-desiccation shrinkage, adapted from (Gao et al., 2014); (b)
illustration of Laplace-Kelvin’s law in a pore, adapted from (Bouhjiti, 2018).

3.2.3.4 Desiccation shrinkage

As previously mentioned, desiccation shrinkage corresponds to volume variations of concrete
induced by desiccation. Desiccation shrinkage may be explained by physical mechanisms
which are sensibly analogous to those behind auto-dessication shrinkage (Hilaire, 2014) (see
Fig. 3.4). As the humidity of the external environment is lower than the humidity in
concrete, the ambient RH in concrete porosity diminishes, which leads to capillary tensile
stresses on the surfaces of hydrated grains. As a result, a global volume variation is observed
(Bissonnette et al., 1999).

Experimental investigations of Granger (1995) suggested a practically linear relation-
ship between desiccation shrinkage strains and the water content of concrete. Further-
more, Baroghel-Bouny et al. (1999) observed a linear relation between desiccation shrinkage
strains and concrete RH, in the case of RH values larger than 50%. It is worth noting
that a similar relation has been observed in the case of cement paste, for a wider RH
range, though (Baroghel-Bouny et al., 1999; Kinda et al., 2022). Moreover, similarly to the
sorption/desorption curve of concrete, several experimental investigations (Granger, 1995;
Hilaire, 2014; Sabri and Illston, 1982) highlighted some irreversible and/or hysteresis phe-
nomena for desiccation shrinkage strains, in the case of drying/humidification cycles.

At structural scale, concrete desiccation is a slow and heterogeneous process (Benboud-
jema, 2002): the RH field of the concrete volume typically presents strong gradients near
boundaries participating to hydric transfers. As a result, desiccation shrinkage strains are
more important near such boundaries (Bouhjiti, 2018). Conversely, the core of the concrete
volume presents a higher RH, which yields restrained shrinkage strains and thus the devel-
opment of skin tensile stresses. Meanwhile, the core is subjected to compression stresses.
Moreover, skin tensile stresses may typically exceed the tensile strength of concrete (Ben-
boudjema et al., 2001), which induces cracking. Then, the presence of cracks might locally
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accelerate drying kinetics of concrete, due to higher hydric exchange surfaces. However,
as underlined by Granger (1995), the presence of cracks weakly affects the global hydric
behavior of the concrete volume at structural scale.

3.2.4 Creep

Creep strains may be divided into two contributions, namely basic creep and desiccation
creep strains (Benboudjema, 2002). These two contributions are described hereafter.

3.2.4.1 Basic creep

Basic creep occurs during both early age and long-term phases, and corresponds to the total
strain of a concrete volume in non-drying conditions, to which instantaneous and shrinkage
strains have been subtracted. Several physical mechanisms are proposed in the literature
in order to explain the origins of basic creep. These mechanisms notably highlight the
prominent role of water in the development of basic creep (Acker, 1988; Pihlajavaara, 1974).
Bažant and Prasannan (1989a,b) have suggested that the evolution of mechanical properties
of concrete would be responsible for basic creep, based on the so-called solidification theory.
Sellier et al. (2012, 2016) have also proposed that consolidation and micro-cracking in the
concrete volume would be responsible for basic creep. Furthermore, Lohtia (1970), Wittmann
(1982) and Ulm and Acker (1998) have adopted the so-called water migration theory so as to
explain basic creep: external stresses induce the migration of adsorbed water in the capillary
porosity, which notably yields a deformation of the solid skeleton. Broadly speaking, basic
creep includes two main regimes (Benboudjema, 2002):

• a short-term (reversible) regime, during which applied stresses induce a thermodynamic
disequilibrium in the water adsorption zones. Then, according to the aforementioned
water migration theory, equilibrium tends to be re-established through the diffusion of
adsorbed water through capillary pores (see Fig. 3.5a). As a result, short-term basic
creep strains are generated. Such an hypothesis has been corroborated by several
experimental studies (Day and Gamble, 1983; Ulm and Acker, 1998).

• a long-term (irreversible) regime, observed after several years, involving a strong effect
of aging on the amplitude of basic creep strains. Some authors have proposed that such
an aging effect may be linked to the relaxation of micro-stresses in restrained water
adsorption zones (Bažant et al., 1997; Ulm and Acker, 1998). This relaxation leads
to slipping of C-S-H sheets (Bažant et al., 1997; Lohtia, 1970), which yields long-term
basic creep strains (see Fig. 3.5b). Several experimental studies have emphasized the
role of the slipping of C-S-H sheets in the development of basic creep strains (Bentur
et al., 1979; Ulm and Acker, 1998).

Moreover, a third basic creep regime may be mentioned, namely tertiary creep (Torrenti
et al., 2008). Such a regime is encountered if the applied loading is sufficiently important,
and/or if the latter is applied for a sufficiently long period. In such cases, the micro-cracking
network growth, initiated before reaching tertiary creep regime, is accelerated, which leads
to the development of damage and macro-cracks. Nevertheless, at the scale of existing large
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(a) Short-term basic creep

(b) Long-term basic creep

Figure 3.5: Illustration of mechanisms of basic creep, adapted from (Ulm and Acker, 1998)

containment structures such as NCB, the probability to reach such a regime is negligible
when considering normal exploitation loads (i.e. except accidental situations) (Bouhjiti,
2018).

As previously mentioned, basic creep is sensibly dependent on the moisture content of
concrete. Several experimental studies highlighted a quasi-proportionality relation between
basic creep strain and RH (Pihlajavaara, 1974; Wittmann, 1970). It is worth noting that
such a relationship has been observed for concrete: when considering cement paste, Kinda
(2021) observed a nonlinear relationship between basic creep strain and RH, for low RH
values. Moreover, the basic creep behavior under compressive stresses seems to be sensibly
different than that under tensile stresses (Hilaire, 2014; Rossi et al., 2012). Furthermore,
the basic creep behavior of concrete is also driven by the intensity of the applied load, as
underlined in (Benboudjema, 2002; Granger, 1995). Then, several studies have highlighted
the fact that basic creep sensibly depends on the age of loading: the amplitude of basic
creep strains increases with the stiffness of the cement paste (De Schutter, 1999; Niyogi
et al., 1973). Moreover, some authors have also pointed out the dependency of basic creep
on the concrete formulation (e.g. cement type, water/cement ratio) (Li et al., 2001).
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3.2.4.2 Desiccation creep

When a concrete volume is subjected to desiccation while being subjected to mechanical load,
the observed strain is higher than that obtained in the same configuration with non-drying
conditions. Such a phenomenon is known as Pickett effect (Pickett, 1942). Desiccation creep
corresponds to the total strain, to which the instantaneous elastic strain and the previously
mentioned shrinkage and basic creep strains have been subtracted.

The mechanisms that cause desiccation creep are complex and difficult to interpret, so
much that there is no consensus in the literature (Benboudjema, 2002; Hilaire, 2014). Bažant
and Chern (1985) suggest that desiccation creep is caused by a so-called ”stress-induced-
shrinkage” resulting from two moisture diffusion modes, namely macroscopic diffusion in
macro-pores (attributed to drying), and microscopic diffusion in micro-pores. Furthermore,
desiccation creep may also be attributed to the relaxation of micro-stresses in restrained
water adsorption zones (Bažant et al., 1997), which has been previously mentioned for the
case of basic creep. An illustration of the principle of desiccation creep is given in Fig. 3.6.

Figure 3.6: Illustration of desiccation creep, adapted from (Benboudjema, 2002)

3.2.5 Cracking

Concrete cracking is mainly driven by the applied mechanical loading (Benboudjema, 2002).
In the case of uniaxial tensile stresses, concrete presents a quasi-brittle behavior: the me-
chanical behavior of concrete is practically linear elastic isotropic, until reaching a stress
equal to its tensile strength. This peak stress is directly followed by a softening phase,
involving irreversible strains and macroscopic cracking (Kupfer and Gerstle, 1973). In the
case of uniaxial compressive stresses, concrete presents a somewhat more ductile behavior:
when reaching a stress of about 30% of the compressive strength (Benboudjema, 2002), the
elastic linear isotropic phase is followed by a nonlinear phase characterized by the develop-
ment of micro-cracks in the material, and a progressive loss of stiffness. It is worth noting
that concrete presents a sensibly dissymmetric behavior in terms of response to compressive
and tensile loads, since its compressive strength is typically 10 times larger than its tensile
strength (Benboudjema, 2002)
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3.2.5.1 Cracking during early-age phase

Firstly, during the early-age phase, the hydration process of concrete induces a significant
heat release yielding an increase of temperature as well as important thermal dilation strain
gradients between the core and the surface of the concrete volume (Buffo-Lacarrière et al.,
2011; Conceição et al., 2014). As a result, cracking at early-age may be induced by two main
mechanisms (Hilaire, 2014):

• auto-stresses due to thermal gradients: the hydration process firstly involves a free
heating phase, corresponding to an increase of temperature due to the aforementioned
heat release. During such a phase, the concrete volume is subjected to a global thermal
dilation. Then, during a subsequent free cooling phase, a contraction of the concrete
volume is observed, whereas the Young’s modulus of concrete is higher than during the
heating phase. This induces compressive stresses at boundaries and tensile stresses in
the core of the concrete volume (Hilaire, 2014). Then, if such tensile stresses reach the
tensile strength of concrete, cracking may typically occur near surfaces of the concrete
volume (Conceição et al., 2014).

• restrained shrinkage due to massive elements: the stress state induced by the afore-
mentioned differential thermal strains may be altered by the presence of surrounding
massive concrete elements: indeed, the cracking risk of a hardening volume increases
if the external restraints caused by hardened elements are important (Briffaut et al.,
2013; Conceição et al., 2014). Moreover, this effect is increased by endogenous shrink-
age (Hilaire, 2014).

3.2.5.2 Cracking during long-term phase

Then, during the long-term phase, the development of cracks is mainly driven by the time
evolution of stresses, which itself depends on several factors. Firstly, as previously mentioned,
desiccation shrinkage may induce skin cracking, due to the development of tensile stresses at
surfaces exposed to hydric fluxes (Benboudjema, 2002; Granger, 1995). Furthermore, in the
case of prestressed structures, shrinkage and creep are also responsible for prestressing losses,
which may favor tensile stresses and then the development of cracks. Finally, cracking may
also be caused by accidental conditions i.e. thermo-hydro-mechanical loads that go beyond
normal operational conditions (Boucher, 2016; Bouhjiti, 2018; Llau, 2016). In the case of
NCB, such conditions may correspond to an overpressure on internal surfaces induced by
vapor, accompanied by a increase of the ambient internal temperature.

3.2.6 Air leakage

Leak tightness of large concrete containment structures such as NCB is mainly driven by the
permeability of concrete, which is directly dependent on the aforementioned thermo-hydro-
mechanical physical processes. Focusing on dry air leak tightness at structural scale, three
main flow modes are distinguished in the literature (Bouhjiti, 2018; Mivelaz, 1996), namely:

• flows through concrete porosity,

• flows through cracks,
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• flows through structural singularities, which correspond to air leakage near geometrical
singularities and construction joints of large concrete containment structures (Asali,
2016; Bouhjiti, 2018). Furthermore, such flows are typically influenced by construction
processes on site including the quality of concreting, which may involve the presence
of gravel beds, inducing a locally higher porosity. Such flows may also occur at con-
crete/steel interfaces, where the permeability may be higher due to the thermo-hydro-
mechanical behavior at such interfaces (El Dandachy, 2016).

At structural scale, air leakage may present complex flow paths, which stem from a
combination of the aforementioned flow modes. Moreover, in addition to flows through
sound porosity or macro-cracks, some zones with a somewhat intermediate permeability may
be observed, such as construction joints or concrete/steel interfaces, potentially involving a
more connected porosity. An illustration of different types of leakage paths in a NCB wall
is given in Fig. 3.7.

Figure 3.7: Illustration of several leakage paths through the wall of a NCB subjected to a pres-
surization test.

3.2.6.1 Air flow through concrete porosity

One hereafter focuses on the air permeability of concrete mass and its main influential
physical factors. The dependencies established in the literature are described herebelow:

• structure of the porous medium: concrete permeability sensibly depends on the
connected porosity of concrete, which is mainly formed by its capillary porosity as well
as micro-cracks (Rastiello, 2013). Furthermore, the typical size of pores also plays an
important role in air transfers through concrete porosity. In a capillary tube, a purely
viscous flow implies zero velocity at boundaries of the tube. This is typically the case
when the fluid is water. In the case of gases such as air, the flow remains viscous if pore
dimensions are larger than the mean free path of air molecules. Otherwise, a slip flow
component adds to the viscous flow, due to the non-adherence of gas particles to pore
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surfaces (see Fig. 3.8). It is typically the case when concrete pores are sufficiently fine,
and contributes to an increase of the air permeability of concrete. This corresponds
to the so-called Klinkenberg effect (Klinkenberg, 1941), which induces a relationship
between air pressure and permeability.

Figure 3.8: Fluid flow through a capillary tube: velocity profiles in the case of a: (a) purely
viscous flow; (b) viscous flow with a non-zero slip component.

• effect of hydric behavior: the air permeability of concrete is mainly driven by
the concrete water saturation (Picandet et al., 2001; Verdier, 2001). Depending on
the distribution of water in the concrete porosity, gas transfer may occur for various
pore sizes. In the case of a porosity fully saturated with water, the gas permeability
of concrete is equal to zero. Conversely, the gas permeability increases when water
saturation decreases. As a result, desiccation has a strong influence on the evolution
in time of gas permeability, which is notably the case for large concrete structures
subjected to drying fluxes (Bouhjiti, 2018). Furthermore, experimental results of Abbas
et al. (1999) highlighted that the aforementioned Klinkenberg effect is also influenced
by the water saturation state of concrete. Indeed, the same authors observed that the
slip flow component becomes more important when water saturation decreases. Such
a phenomenon may be explained as follows: according to Laplace-Kelvin’s law (see
Eq. (3.2)), pores with large dimensions are drying before smaller pores (Chen, 2011),
which means that pores with small dimensions become accessible for low levels of water
saturation only. An illustration of the effect of the hydric behavior on gas permeability
is given in Fig. 3.9.

• effect of mechanical behavior: mechanical loads have also a significant influence
on the permeability of concrete, notably through the development of diffuse micro-
cracking (Choinska, 2006). Such a diffuse micro-cracking may be caused by restrained
shrinkage during early-age phase (Hilaire, 2014), or directly by an applied mechanical
load (Picandet et al., 2001). Several studies have been conducted in order to analyze
the variation of concrete permeability under compression loads (Picandet et al., 2001;
Sugiyama et al., 1996) or traction loads (Gérard et al., 1996; Picandet et al., 2009). The
reader is referred to the review of (Hoseini et al., 2009) for a more thorough literature
survey.

3.2.6.2 Air flow through cracks

As mentioned in Section 3.2.5, cracking in large concrete structures may typically occur
during the early-age phase due to restrained shrinkage (thermal or endogenous), or during
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Figure 3.9: Illustration of the influence of the hydric behavior on concrete gas permeability.

the long-term phase, mainly due to thermo-hydro-mechanical operating loads. Here, it is
necessary to precise the notion of crack in order to highlight different flow modes: indeed,
there exists a more or less progressive transition from a pure Darcy’s flow mode through
sound concrete porosity to a Poiseuille’s flow in a macroscopic crack (Rastiello, 2013). In
this context, two steps may be distinguished:

1. a first step characterized by diffuse micro-cracking in the concrete volume, leading to
an increase of the connected porosity. Such an effect has already been discussed in
Section 3.2.6.1.

2. a second step, characterized by the concentration of micro-cracks, followed by the
development of macro-cracks. In such a case, the flow rate through concrete porosity
is negligible compared to the flow rate through macro-cracks.

Fluid flows through macro-cracks are very complex to describe, due to the possibly com-
plex geometries involved, including roughness and tortuosity. In particular, a high tortuosity
and strong velocity variations may induce the presence of turbulent flows. Furthermore, the
boundary between flows through porosity and through macro-cracks is difficult to identify.
At structural scale, it is often assumed that the total leak rate is given by the sum of
contributions of the concrete porosity and macro-cracks, by assuming that the superposition
principle may be applied to Darcy’s and Poiseuille’s flows (Bouhjiti, 2018). However, such an
assumption is a priori not valid at the vicinity of a macro-crack: the higher permeability in-
duced by the macro-crack may perturb flow streamlines in the surrounding porosity, whereas
the aforementioned second flow regime may occur near the so-called Fracture Process Zone
(FPZ) of the crack.

Moreover, at the scale of large structures, it is necessary to distinguish two types of macro-
scopic cracks, namely through and non-through cracks. Firstly, through cracks constitute
the most critical type of macro-cracks (Bouhjiti, 2018; Mivelaz, 1996). Then, non-through
cracks may also significantly contribute to the flow rate of the structure, and potentially cre-
ate preferential leakage paths, for instance through interactions with structural singularities
(Bouhjiti, 2018).
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3.3 Thermo-Hydro-Mechanical-Leakage modeling

3.3.1 THML modeling strategies

In the literature related to the modeling of the physical behavior of large concrete con-
tainment structures, two types of THML modeling strategies may be distinguished, namely
fully-coupled and weakly-coupled strategies (see Fig. 3.10). Fully-coupled approaches con-
sist in simultaneously treating the dependencies between the thermal, hydric, mechanical
and leakage behavior (Dal Pont et al., 2007; Gawin et al., 2003) (see Fig. 3.10a), whereas
weakly-coupled ones consist in chained calculations related to the aforementioned behaviors
(see Fig. 3.10b). It is worth noting that despite their somewhat exhaustive aspect, fully-
coupled approaches typically involve a larger amount of uncertain parameters, and require
a more important computational cost than weakly-coupled approaches.

Figure 3.10: THML modeling strategies: (a) fully-coupled; (b) weakly coupled.

In this contribution, a weakly-coupled THMLmodeling approach will be considered. Such
a choice is motivated by the fact that weakly-coupled approaches are suitable for describing
the global behavior of aging large concrete structures subjected to normal exploitation loads
(Bouhjiti, 2018), and provide affordable computational models based on proven behavior
laws. It is worth noting that in the case of accidental conditions, involving notably high
temperatures, the assumptions behind weakly-coupled approaches are no longer valid, and
fully-coupled approaches are presumed to be more representative of the underlying physical
phenomena (Dal Pont et al., 2007). Such situations are out of the scope of this contribution,
though.
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Besides, it is worth mentioning that whether adopting a weakly-coupled or a full-coupled
THML modeling approach does not alters the overall UQ methodology presented in the
introduction of this thesis (see Fig. iii), since the computational model is treated in a black-
box fashion. A fully-coupled THML model would typically involve an input parameter space
with a higher dimensionality, and the time consumed by a single model evaluation would
be typically larger. This could make forward and inverse UQ problems more challenging,
compared to those associated to a weakly-coupled model.

Then, the constitutive laws relative to the thermal, hydric, mechanical and leakage be-
havior adopted in this thesis are presented hereafter.

3.3.2 Modeling of the thermal behavior

3.3.2.1 Constitutive equations

LetD ⊂ R3 be the studied domain. In the following, space and time variables are respectively
denoted by s ∈ D and t ∈ R. Focusing on the long-term phase, the evolution of the
temperature field T = T (s, t) in D is modeled with the classical heat equation (Fourier,
1822):

ρcc
p
c

∂T

∂t
= ∇s · (λc∇sT ) (3.3)

where ρc denotes the density, cpc the heat capacity and λc the thermal conductivity of hard-
ened concrete. Here, ∂

∂t
denotes partial derivation w.r.t. time.

3.3.2.2 Boundary conditions

The boundary conditions (BC) adopted for the aforementioned heat equation in Eq. (3.3) are
next discussed. Dirichlet BC consist in imposing a temperature T̄ on boundaries ∂DT̄ ⊂ D
of the domain, whereas Neumann BC consist in imposing a thermal flux q̄th on ∂Dq̄th ⊂ D:{

T = T̄ on ∂DT̄

qth · n = q̄th on ∂Dq̄th

(3.4)

where n is the outward unit normal vector field on the boundary ∂D of D, and where the
thermal flux qth is given by Fourier’s law (Fourier, 1822):

qth = −λc∇sT (3.5)

Furthermore, the imposed thermal flux q̄th usually corresponds to convective exchanges
(Boucher, 2016):

q̄th = kth(T∞ − T ) (3.6)

where kth is an equivalent thermal convective exchange coefficient, which is usually assumed
to be constant (Briffaut et al., 2012), and T∞ is the ambient temperature.
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3.3.3 Modeling of the hydric behavior

3.3.3.1 Constitutive equations

Next, the considered modeling assumptions related to desiccation induced by the effect of
hydric loads during exploitation phase are described hereafter. Based on the simplifying as-
sumptions detailed in (Bouhjiti, 2018), and considering liquid water diffusion only, moisture
transfers in concrete are modeled by single diffusion equation similar to the second Fick’s
law, in which the water content of concrete Cw = Cw(s, t) is the primary variable (Granger,
1995):

∂Cw

∂t
= ∇s · (Dw(Cw, T )∇sCw) (3.7)

where Cw is the water content of concrete, and Dw a phenomenological diffusion coefficient,
which is a function of Cw and the temperature field T .

The expression of the diffusion coefficient Dw is precised hereafter. Given the thermo-
activated nature of desiccation (see Section 3.2.2), Dw is assumed to follow Arrhenius’ law
(Bažant and Najjar, 1972; Granger, 1995), namely:

D(Cw, T ) = Dw,0(Cw)
T

T 0
w

exp

[
−Uw

R

(
1

T
− 1

T 0
w

)]
(3.8)

where Dw,0(Cw) is the diffusion coefficient at a reference temperature T 0
w, Uw the activation

energy of drying, and R the ideal gas constant.

Furthermore, the model proposed by Mensi et al. (1988) is considered so as to model the
coefficient Dw,0(Cw):

Dw,0(Cw) = A exp (BCw) (3.9)

where A and B are model parameters.

3.3.3.2 Sorption-desorption model

Then, at the scale of large structures, ambient conditions measurements are often given
in terms of RH (Boucher, 2016). Therefore, it is more convenient to express BC in terms
of RH for the desiccation problem in Eq. (3.7), rather than in terms of water content.
Following a remark stated in Section 3.2, drying/humidification cycles are assumed to only
affect skin concrete (Bouhjiti et al., 2018a; Granger, 1995). For a given temperature, this
last assumption enables to link the concrete (volumetric) water content Cw to its RH h,
through a bijective sorption-desorption function fd:

Cw = fd(h) (3.10)

Following Thiery et al. (2007) and Bouhjiti et al. (2018a), the sorption-desorption func-
tion of Van Genuchten (1980) will be considered:

fd(h) = ϕ
[
1 + (−ad log h)

1
1−bd

]−bd
(3.11)

where ϕ is the concrete porosity, and ad, bd are model parameters.
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It is worth noting that such a model is valid for a given temperature, since it is well-known
that sorption-desorption curves sensibly depend on the temperature (Poyet, 2009). As ex-
perimental results concerning the temperature-dependency of sorption-desorption curves are
rarely available in practice, the model in Eq. (3.11) will be supposed to be fixed. More-
over, adopting a single sorption-desorption curve implies another simplifying assumption,
consisting in neglecting hysteresis phenomena due to cyclic hydric loads (Ishida et al., 2007).

3.3.3.3 Boundary conditions

The water diffusion problem in Eq. (3.7) is solved by considering Dirichlet BC in terms of
water content, through applying the aforementioned sorption-desorption function to ambient
RH, as suggested by Boucher (2016). Such conditions consist in imposing the following water
content field on boundaries ∂DC̄w

⊂ D:

Cw = C̄w = fd(h∞) (3.12)

where fd is the aforementioned sorption-desorption model, and h∞ the ambient RH.

In this way, hydric boundary layer effects are neglected, since the water content corre-
sponding to the ambient RH is imposed directly on the boundary of the structure. Never-
theless, such a simplification may be deemed reasonable if the ambient air of the structure
is sufficiently ventilated (Granger, 1995).

3.3.4 Modeling of the mechanical behavior

In the framework of infinitesimal strain theory, the total strain tensor ε may be written as
the sum of five components (focusing on the long-term phase):

ε = εel + εth + εds + εbc + εdc (3.13)

where:

• εel is the elastic strain tensor,

• εth is the thermal strain tensor,

• εds is the desiccation shrinkage strain tensor,

• εbc is the basic creep strain tensor,

• εdc is the desiccation creep strain tensor.

The modeling assumptions related to each of the contributions to total strains in Eq.
(3.13) are described hereafter. In the following, the Cauchy stress tensor will be denoted by
σ, and its decomposition into spherical and deviatoric parts σs and σd will be written as
follows:

σ = σsI+ σd (3.14)

where σs = tr(σ)/3, tr(σd) = 0, and where I is the identity tensor.
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3.3.4.1 Thermal strains

Firstly, following experimental observations mentioned in 3.2.3.3, the variation of thermal
strain εth is supposed to be proportional to temperature variations (Hilaire, 2014), which
writes:

ε̇th = αthṪ I (3.15)

where αth is the thermal dilation coefficient of concrete, and where the notation ḟ = ∂f
∂t

has
been adopted, for the sake of conciseness.

Moreover, focusing on the mechanical behavior during the long-term phase, the thermal
dilation coefficient in Eq. (3.15) is assumed to be constant (Boucher, 2016).

3.3.4.2 Desiccation shrinkage strains

Then, based on the experimental observations mentioned in Section 3.2.3.4, the following
linear model in terms of water content is adopted so as to describe dessication shrinkage
strains (Benboudjema, 2002; Granger, 1995):

ε̇ds = αdsĊwI (3.16)

where αds is a desiccation shrinkage coefficient.

3.3.4.3 Basic creep strains

Basic creep strains are described by the Burger rheological model proposed by Foucault
et al. (2012), which demonstrated its ability to well reproduce several experimental results
(Hilaire, 2014; Reviron, 2009), including the long-term creep experiments of Brooks (2005).
The choice of this model is also justified by recent work of Bouhjiti (2018), which enabled
to accurately assessing the global delayed mechanical behavior of NCB subjected to normal
operating loads.

The model is based on the decomposition of basic creep strain εbc into a reversible part
εbcr and an irreversible part εbci :

εbc = εbcr + εbci = εbcrsI+ εbcrd + εbcis I+ εbcid (3.17)

where strain tensors have been decomposed in spherical (εbcrs , ε
bc
is ) and deviatoric (εbcrd, ε

bc
id )

parts. Furthermore, the model consists in the duplication of a Burger rheological model for
both spherical and deviatoric parts (see Fig. 3.11a). Such a structure aims at introducing
a viscoelastic Poisson effect, through the definition of a creep Poisson ratio (Charpin et al.,
2015). Then, for each chain (spherical and deviatoric), reversible basic creep strains (εbcrs
and εbcrd) are modeled through a Kelvin-Voigt rheological element, whereas irreversible basic
creep strains (εbcis and εbcid ) are modeled by a Maxwell element.

The equations associated to the spherical Burger chain are now presented. Based on
water migration theory, the spherical part σs of the stress tensor σ is associated to the
migration of adsorbed water towards capillary porosity, at microscopic and macroscopic
scales (Benboudjema, 2002). The following governing equation is adopted for the reversible
spherical basic creep strain εbcrs , by assuming that basic creep strains are proportional to RH
h (Wittmann, 1970):

hσs = krsε
bc
rs + ηrsε̇

bc
rs (3.18)
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where krs, ηrs denote the stiffness and the viscosity associated to reversible spherical basic
creep, respectively.

Then, the irreversible spherical basic creep strain εbcis is modeled through the following
equation:

hσs = ηisε̇
bc
is (3.19)

where the irreversible spherical basic creep viscosity ηis is given by the following expression,
originally proposed by Sellier and Buffo-Lacarrière (2009):

ηis = η0is exp

(∥εbci ∥m
κ

)
(3.20)

where κ is a consolidation parameter, and:

∥εbci (t)∥m = max
τ∈[0,t]

√
εbci (τ) : εbci (τ) (3.21)

for all t ≥ 0, : denoting the double dot product for tensors. It is worth noting that the
expression of the viscosity in Eq. (3.20) induces non-linearity in the creep model, since it
involves a dependency on the current state of irreversible strains.

Likewise, the constitutive equations associated to the deviatoric chain of the model are
described. The deviatoric part σd of the stress tensor σ is associated to the sliding of C-
S-H sheets in nano-porosity (Ulm and Acker, 1998). The (reversible) sliding of interfoliar
water is modeled by a Kelvin-Voigt element with stiffness krd and viscosity ηrd, whereas the
(irreversible) sliding of interlamellar water is modeled by a Maxwell element with viscosity
ηid. Thus, the reversible deviatoric basic creep strain εbcrd is described with the following
equation:

hσd = krdε
bc
rd + ηrdε̇

bc
rd (3.22)

whereas the irreversible deviatoric basic creep strain follows the equation below:

hσd = ηidε̇
bc
id (3.23)

Furthermore, the viscosity ηid is given by an expression purely analogous to Eq. (3.20):

ηid = η0id exp

(∥εbci ∥m
κ

)
(3.24)

Moreover, the adopted model accounts for thermo-activation of basic creep, by adding
a temperature-dependency to stiffness and viscosity parameters krs, krd, ηrs, ηrd, ηis and ηid,
based on Arrhenius’ law (Arrhenius, 1915). Such a dependency is illustrated for the param-
eter krs:

krs(T ) = k0rs exp

[
Ubc

R

(
1

T
− 1

T 0
bc

)]
(3.25)

where k0rs is the reversible spherical basic creep stiffness at a reference temperature T 0
bc, Ubc

the activation energy of basic creep. Furthermore, a similar expression is adopted for the
consolidation parameter κ:

κ(T ) = κ0 exp

[
−Ubc

R

(
1

T
− 1

T 0
bc

)]
(3.26)
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Figure 3.11: Rheological models: (a) basic creep; (b) desiccation creep

where κ0 is the consolidation parameter at the reference temperature T 0
bc.

Finally, the equivalence of spherical and deviatoric chains enables to restrict the number
of model parameters, by assuming a constant creep Poisson ratio νbc (Foucault et al., 2012),
given by the following relation:

krs
krd

=
ηrs
ηrd

=
η0is
η0id

=
1 + νbc
1− 2νbc

(3.27)

3.3.4.4 Desiccation creep strains

Then, concerning the modeling of the desiccation creep strain εdc, Bažant and Chern (1985)
originally proposed the following model:

ε̇dc =
1

ηdc
|ḣ|σ (3.28)

where ηdc is a viscosity parameter.

Nevertheless, such a model does not enable to distinguish the creep behavior during
desiccation and humidification. Indeed, a disymmetry between these behaviors has been
observed by Benboudjema (2002). Then, a modified form of the model in Eq. (3.28),
proposed in (Boucher, 2016), will be considered:

ε̇dc =
1

ηdc
⟨ḣ⟩−σ (3.29)

where:

⟨ḣ(t)⟩− =

{
ḣ(t) if ḣ(t) < 0 and h(t) < minτ∈[0,t] h(τ)
0 else

(3.30)

Then, such a model neglects the creep desiccation strain due to humidification. Furthermore,
desiccation creep occurs only the first encountered desiccation phase, down to a given RH
level. An illustration of the corresponding rheological model is given in Fig. 3.11b.
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3.3.5 Modeling of the leakage behavior

In the framework of the weakly-coupled THML modeling strategies proposed in the literature
(Asali, 2016; Bouhjiti, 2018), the leakage behavior of concrete in large structures is usually
separated into two modes, namely (see Fig. 3.7):

• leakage through concrete porosity (sound and/or diffusely damaged),

• leakage through macroscopic cracks.

When cracking is explicitly modeled by means of continuous damage theory (Mazars and
Pijaudier-Cabot, 1989), matching laws have been proposed in the literature in order to
describe the transition from pure Darcy-type flows through concrete porosity to Poiseuille-
type flows through macro-cracks (Bouhjiti et al., 2018b; Choinska et al., 2007a; Pijaudier-
Cabot et al., 2009).

Furthermore, at structural scale, the superposition principle is assumed to be applicable
to the total leakage rate Qg (Bouhjiti et al., 2020), namely:

Qg = Qd +Ql (3.31)

where Qd refers to the total leakage through concrete porosity (or diffuse leaks), and Ql

the leakage rate associated to macroscopic cracks in the structure (or local leaks), as well as
other type of defects, namely structural singularities (see Fig. 3.7).

3.3.5.1 Air leakage through concrete porosity

Based on simplifying assumptions stated in (Jason et al., 2007), mainly consisting in consid-
ering dry air transport only, air leakage through concrete porosity is modeled through the
following diffusion equation:

(1− Sw)ϕ
∂pg
∂t

= ∇s ·
(

kg

2µg

∇sp
2
g

)
(3.32)

where Sw denotes the water saturation ratio, ϕ the concrete porosity, kg the air permeability
tensor, µg the dynamic viscosity of air and pg the air pressure.

Furthermore, considering large containment structures subjected to internal pressure
loads, Dirichlet BC in terms of air pressure constitute a somewhat natural choice (Bouhjiti
et al., 2020; Jason et al., 2007). Consequently, in order to solve the diffusion equation in Eq.
(3.32), a pressure field p̄g is imposed on boundaries ∂Dp̄g ⊂ D:

pg = p̄g (3.33)

Thus, the contribution Qd attributed to leakage through porosity (see Eq. (3.31)) may be
obtained by integrating the Darcy’s flux qd = −µ−1

g kg∇spg on the surface ∂Dqd ⊂ ∂D of the
structure:

Qd =

∫
∂Dqd

qd · n (3.34)

where n denotes the outward unit normal vector field on ∂Dqd .
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The structure and the dependencies of the permeability tensor kg are now described.
When considering the sound porosity of concrete, this tensor is usually written as the product
of several factors (Jason et al., 2007; Muskat and Meres, 1936), namely:

kg = k0ks(pg, Sw)krg(Sw) (3.35)

where:

• k0 is the intrinsic permeability tensor, which is characterized by the connected porosity
of concrete. It is only relative to the viscous component of the flow through porosity.
Such a tensor will be supposed to be isotropic, and one writes k0 = k0I. As a result,
the term intrinsic permeability will indifferently refer to the tensor k0 or the scalar k0
in the following.

• ks(pg, Sw) is a factor representative of the slip flow component induced by Klinkenberg’s
effect (Klinkenberg, 1941). Such a factor is supposed to depend on the gas pressure pg
as well as the water saturation ratio Sw, as underlined by experimental studies (Abbas
et al., 1999; Villain et al., 2001) (see Section 3.2.6.1).

• krg(Sw) is the relative gas permeability of concrete, which is a function of the water
saturation ratio Sw (Picandet et al., 2001; Verdier, 2001), as mentioned in Section
3.2.6.1.

Concerning the factor ks(pg, Sw), Klinkenberg (1941) originally proposed the following
model:

ks(pg, Sw) = 1 +
βK
⟨pg⟩s

(3.36)

where βK is the so-called Klinkenberg coefficient, and ⟨pg⟩s the average (w.r.t. space) pres-
sure of the flow. However, such a model does not account for the dependency of Klinkenberg
effect on the hydric behavior (see Section 3.2.6.1). Then, the model proposed by Abbas et al.
(1999) will be considered:

ks(pg, Sw) = 1 + (1− Sw)
βK
⟨pg⟩s

(3.37)

Then, several models are available in the literature so as to model the relative gas perme-
ability krg(Sw) (Monlouis-Bonnaire et al., 2004; Parker et al., 1987; Verdier, 2001), mostly
deriving from the model proposed by Van Genuchten (1980). Based on the former work of
Bouhjiti (2018), the model proposed by Verdier (2001) will be considered:

krg(Sw) =
√

1− Sw

(
1− S1/ck

w

)2ck
(3.38)

where ck is a model parameter.

Finally, it is worth noting that the expression in Eq. (3.35) concerns the gas permeability
of the sound porosity of concrete. When considering mechanical simulations using damage
modeling, a fourth factor may be added in Eq. (3.35) in order to represent the effect of
diffuse damage on gas permeability (Choinska et al., 2007b; Dal Pont and Ehrlacher, 2004;
Jason et al., 2007). However, the use of such models implies to explicitly describe damage
in the structure, which requires an important computational cost.
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Alternatively, diffuse leakage calculations may be performed by using the model in Eq.
(3.35) for the porosity of the whole structure. A caveat is that such a simplification implies
to carefully interpret the physical meaning of the intrinsic permeability parameter k0, when
identifying the latter from in-situ leakage measurements. Indeed, the obtained value would
be higher than that obtained with damage calculations, since the identified k0 would be rep-
resentative of micro-cracking in the concrete porosity in the case of damage-free calculations.

3.3.5.2 Air leakage through concrete cracks

In the literature, flows through a crack are usually modeled by considering flows between
two parallel plates, leading to the so-called Parallel Plates Model (PPM) (Snow, 1969).
The principle of the PPM model is illutrated in Fig. 3.12. The spacing between the two
aforementioned plates is given by the crack opening, denoted by ac in the following. It
is worth noting that such a crack opening is fictitious in mechanical terms: it represents
the average hydraulic behavior of the corresponding real crack. Then, the flow rate qppm
of a mono-phasic fluid subjected to a pressure gradient may be quantified through solving
Navier-Stokes equations (Temam, 2001). In the case of an incompressible laminar flow (e.g.
laminar liquid water flows), such a flow rate is given by (Rastiello, 2013):

qppm = −ρw a3c
12µ
∇sp (3.39)

where ρl is the density and µ the dynamic viscosity of the fluid, w the crack width, and
∇sp the pressure gradient. A similar expression may be obtained in the case of compressible
laminar flows (e.g. laminar gaseous flows) (Jourdain, 2014):

qppm = −w Mg

RTg

a3c
24µg

∇sp
2
g (3.40)

where µg is the dynamic viscosity of air. Then, by analogy with Darcy’s law, it is possible to
define an equivalent crack permeability kc from Eqs. (3.39) and (3.40) (Rastiello, 2013), by

setting kc =
a2c
12

and kc =
Mg

RTg

a2c
24
, respectively in the incompressible and compressible cases.

Figure 3.12: Illustration of the PPM model for fluid flows in cracked media: (a) real crack; (b)
equivalent parallel plates configuration.
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Nevertheless, since the PPM model assumes smooth parallel plates, geometrical features
including rugosity and turtuosity (Stroeven, 2000) are not taken into account. Therefore, a
correction factor ζ is usually introduced in order to estimate the flow rate qc of the crack
(Mivelaz, 1996):

qc = ζqppm (3.41)

Several models, have been developed in the literature for both the crack flow rate q and
the correction factor ζ, including generalizations of Eqs. (3.39) and (3.40) for turbulent
flows (Greiner and Ramm, 1995; Mivelaz, 1996; Rizkalla et al., 1984), formulations with a
constant correction factor ζ (Picandet et al., 2009) or with an opening-dependent formulation
(Rastiello et al., 2015).

Besides, the aforementioned models present several drawbacks: firstly, they present sev-
eral highly uncertain parameters related to the geometry of the crack (e.g. rugosity, tur-
tuosity), which may be very difficult to identify, notably when considering operating large
structures such as NCB (Bouhjiti et al., 2020; Rossat et al., 2021). Furthermore, such pa-
rameters are only representative of the geometry of a single crack: therefore, modeling the
hydraulic behavior of all the cracks of a large structure would require the identification of a
sensibly large set of unknown rugosity and tortuosity parameters. Moreover, the use of the
aforementioned leakage models supposes a sufficiently precise knowledge about the cracking
state of the structure, including cracking paths as well as crack geometries, together with
their interactions with rebars and prestressing cables. This notably implies to explicitly
modeling cracks through (nonlinear) mechanical calculations. In the framework of struc-
tural applications, such calculations may be performed by using continuous damage theory
(Mazars and Pijaudier-Cabot, 1989), which introduces the following behavior law in the case
of isotropic damage:

σ = (1− d)E0 : ε (3.42)

where σ is the stress tensor, d the damage variable (varying between 0 and 1), E0 the Hooke’s
elasticity tensor of sound concrete, and ε the strain tensor. Based on a continuous-discrete
equivalence principle between a zone of localized damage and the discontinuity induced by
a macroscopic crack (Bažant and Oh, 1983), several approaches have been proposed in the
literature so as to assess crack openings in the framework of damage-based calculations
(Dufour et al., 2012; Matallah et al., 2010; Sciumè and Benboudjema, 2017).

The aforementioned approaches involve sensibly nonlinear mechanical calculations, and
their application to large structures typically requires an important computational cost.
Besides this fact, the explicit modeling of cracking in large structures raises a somewhat
more important challenge, related to the initiation of macroscopic cracks in large structure.
Indeed, in the case of large structures, cracking may typically occur during the early-age
phase, notably due to restrained shrinkages (see Section 3.2.5). Consequently, modeling the
hydraulic behavior of macro-cracks based on damage-based mechanical calculations during
the long-term phase implies to perform (thermo-hydro-)mechanical calculations during the
early age phase, at least in order to assess an initial cracking state (Bouhjiti, 2018). However,
the prediction of early age cracking patterns in the case of operating containment structures
such as NCB constitutes a very difficult task in general, since scarce information concerning
the early age phase of the structure are available.
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Then, in addition to the involved computational cost, assessing the hydraulic behavior
of cracks implies two main layers of uncertainties, namely the determination of the cracking
state of the structure, and the hydraulic behavior of each crack, which is notably driven by
highly uncertain parameters related to rugosity, tortuosity, and other geometrical features.
This notably involves a sensibly large number of parameters in the presence of multiple
cracks.

Consequently, a simple phenomenological model is proposed in this work, in order to
assess the long-term evolution of local leaks at structural scale. This model proposes to
describe the total contribution of local leaks Ql in Eq. (3.31) as a function of a macro-
variable Π representative of the time evolution of aging effects on the structure’s global
mechanical behavior:

Q̇l = αlΠ̇ (3.43)

where αl is a coefficient which characterizes the time evolution of local leaks. In (Rossat
et al., 2022b), the macro-variable Π has been taken as the prestressing losses averaged on
prestressing cables of the structure, based on purely viscoelastic mechanical calculations
(i.e. without modeling of damage). Alternatively, such a macro-variable may be chosen as
a scalar quantity based on the stress tensor σ of the concrete volume.

The choice of such a model is justified hereafter: firstly, due to restrained thermal shrink-
age induced during hydration at early age, significant tensile stresses develop in the concrete
volume, leading to the appearance of cracks (see Fig. 3.13a). For a given crack, this cor-
responds to an increase of damage d in a restrained zone, until reaching a maximal value
d0. Then, due to the applied prestressing, early age cracks are (partially) reclosed under the
action of compressive stresses (see Fig. 3.13b). Subsequently, these cracks are progressively
re-opening due to prestressing losses induced by the effects of aging (see Fig. 3.13c). Such
a phenomenon has been observed by Bouhjiti (2018) in the framework of damage-based
viscoelastic calculations at the scale of the VeRCoRs mock-up. In this context, the linear
model in Eq. (3.43) is inspired from the correlation proposed in (Bouhjiti, 2018), linking the
opening of a given crack to the mean residual tensile stresses in the concrete volume.

Moreover, for a given crack, it is assumed that the long-term crack opening does not
exceed the maximal opening value obtained at early age. It is also assumed that early age
cracks are not propagating, and that new cracks are not initiating during the structure’s
exploitation phase. Then, according to the second principle of Thermodynamics (stating
that ḋ ≥ 0), these assumptions correspond to postulate that damage remains constant
and equal to its maximal value d0 reached during early age. It is worth noting that the
relationship between crack opening and damage is not bijective in general. However, under
the previous assumptions, this relationship is indeed bijective during the early age phase
(see Fig. 3.13), when cracks are opening for the first time. Furthermore, such assumptions
enable to adopt the decoupling of early age and long-term phases suggested by Bouhjiti
(2018): in the absence of damage flow (i.e. cracks are neither propagating nor initiating
during the long-term phase), the time evolution of the hydraulic behavior of cracks may
be assessed based on viscoelastic mechanical calculations, which enable to assess the effects
of aging on the global mechanical behavior of the structure in the absence of damage rate.
This motivates the choice of the macro-variable Π in (Rossat et al., 2022b), which may be
calculated in a purely viscoelastic framework.
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Figure 3.13: Illustration of the proposed phenomenological model for local leaks: (a) early age
cracking; (b) crack reclosure due to prestressing; (c) progressive crack re-opening due to prestressing
losses induced by aging.

3.4 Conclusion

In this chapter, the main physical phenomena related to concrete aging and their effects on
the long-term behavior of large structures have been described and discussed. In the face of
the complexity and inter-dependency of such physical phenomena, several assumptions have
been adopted in order to adopt a modeling strategy suitable for assessing the long-term
Thermo-Hydro-Mechanical and Leakage (THML) behavior of NCB subjected to normal
exploitation loads. Such a modeling strategy will serve as a basis in the next chapters of this
contribution, so as to devise computational models which will be embedded in the general
Uncertainty Quantification (UQ) framework (see Introduction).

In particular, the adopted THML modeling strategy involves a purely viscoelastic de-
scription of the delayed mechanical behavior, and disregards explicit damage calculations,
which are known to be computationally expensive. Then, the adopted modeling strategy re-
mains valid if the cracking risk during long-term phase is low. Furthermore, some simplifying
assumptions have been made regarding the modeling of local leaks, mainly driven by early
age cracks in the case of NCB (see Section 3.3.5.2). Indeed, rather than explicitly modeling
cracking through damage calculations, so as to subsequently estimate crack openings and
then air leakage through each simulated crack, a simple phenomenological model has been
proposed in order to assess the evolution in time of the total contribution of local leaks at
structural scale.



120 Chapter 3. Phenomena and modeling of concrete aging in large structures

Such a choice is particularly motivated by the fact that the first-mentioned approach
would require a sensibly large number of unknown parameters, as well as an important com-
putational cost. The aforementioned phenomenological model also restrains the description
of the leakage behavior of the structure to its global leakage rate, and does not provide any
information on its local leakage behavior, though.

Moreover, such simplifications underlie the following guiding idea: rather than trying to
precisely assessing the behavior of a structure since the beginning of its early age phase, the
main purpose of the adopted modeling approach consists in combining numerical models
with in-situ observations of the structure’s response during its long-term phase, in order to
derive an updated state of knowledge about uncertain model parameters, which stems from a
combination of analyst’s prior knowledge and noisy observation data. This is notably enabled
by the framework of Bayesian inference for inverse problems, which will enable to quantify
the uncertainties of uncertain input parameters, and subsequently perform probabilistic
predictions of the THML behavior of large structures.

The next chapter presents one of our main contributions related to the probabilistic
modeling of the long-term THML behavior of containment structures. In this context, the
THML modeling strategy presented in this chapter will be used within a general methodology
aiming at updating uncertain input parameters from in-situ monitoring data related to the
response of the structure under study.
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Summary of the THML modeling approach

Phase Inputs Constitutive equations Outputs

Thermal (T)
λc, c

p
c

ρc, kth

ρcc
p
c
∂T
∂t

= ∇s · (λc∇sT ) onD
T = T̄ on ∂DT̄

qth · n = kth(T∞ − T ) on ∂Dq̄th

T

Hydric (H)

A,B
Uw, T

0
w

ad, bd
ϕ

∂Cw

∂t
= ∇s · (D(Cw, T )∇sCw) onD
Cw = fd(h∞) on ∂DC̄w

D(Cw, T ) = D0(Cw)
T
T 0
w
exp

[
−Uw

R

(
1
T
− 1

T 0
w

)]
D0(Cw) = A exp (BCw)

fd(h) = ϕ
[
1 + (−ad log h)

1
1−bd

]−bd

Cw, Sw, h

Mechanical (M)

αth, αds

krd, ηrd, ηid, κ
νbc, Ubc, T

0
bc

ηdc

ε = εel + εth + εds + εbc + εdc

ε̇th = αthṪ I

ε̇ds = αdsĊwI
εbc = Fbc(σ, h; krd, ηrd, ηid, κ, νbc, Ubc)

εdc = Fdc(σ, h; ηdc)

σ, ε,Π

Leakage (L)
µg, k0
βK , ck
αl

(1− Sw)ϕ
∂pg
∂t

= ∇s ·
(

kg

2µg
∇sp

2
g

)
onD

pg = p̄g on ∂Dp̄g

kg = k0ks(pg, Sw)krg(Sw)I

ks(pg, Sw) = 1 + (1− Sw)
βK

⟨pg⟩s

krg(Sw) =
√
1− Sw

(
1− S1/ck

w

)2ck
Qd =

∫
∂Dqd

qd · n
Q̇l = αlΠ̇ onD
Qg = Qd +Ql

Qd, Ql, Qg

Table 3.1: Summary of the adopted THML modeling approach
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4.1 Introduction

The main goal of this chapter is to devise a general methodology for assessing the long-
term THML behavior of large concrete containment structures subjected to aging, while
accounting for uncertainties in predictions in a probabilistic setting. In this perspective,
the central case study of this chapter is a real structure, namely the VeRCoRs1 mock-up,
consisting in a 1:3 scale mock-up of a double-walled NCB.

Firstly, based on the THML modeling strategy presented in Chapter 3, a computational
model aiming at describing the global behavior of the structure is devised. Then, based on
Chapter 1, uncertainties in input parameters of the computational model are modeled in a
probabilistic setting, in order to subsequently perform forward UQ tasks such as sensitivity
analysis and uncertainty propagation. This notably implies the construction of surrogate
models so as to alleviate the computational burden involved by UQ tasks. Besides, it is
worth noting that the aforementioned forward UQ tasks rely on a probabilistic input that
does not integrate observation data related to the response of the structure. Consequently,
we propose an approach based on Bayesian inference aiming at updating uncertain input
parameters from noisy observational data provided by in-situ monitoring devices. In this
context, Bayesian computations will be based on the BuS framework presented in Chapter
2. In particular, these computations rely on the SuS algorithm (see Section 2.2.2) which
enables to efficiently draw samples from the posterior distribution, that can be used so as to
make new predictions of the long-term state of the structure.

The content of this chapter is adapted from the publications (Rossat et al., 2022b,c,d,
2021). Firstly, Section 4.2 provides a presentation of the VeRCoRs mock-up, as well as the
monitoring data and the computational model considered in this chapter. Subsequently,
surrogate modeling and sensitivity analysis related to physical variables of interest of the
structure are presented in Section 4.3. Then, Bayesian inference is considered in Section 4.4,
in order to infer uncertain parameters of the THML model from in-situ monitoring data
related to the response of the structure.

4.2 Structure description and computational model

4.2.1 The VeRCoRs mock-up

The VeRCoRs mock-up consists in a 1:3 scale mock-up of a double-walled NCB of the French
nuclear fleet. An aerial view of the VeRCoRs mock-up is given in Fig. 4.1. The ratio of 1:3
has been chosen in order to find an optimum between the structural representativeness and
the acceleration of aging of the mock-up. Indeed, according to mathematical considerations
on scaling in diffusion equations, the 1:3 scale containment wall is expected to dry nine times
faster than full scale one (Granger, 1995). Such an acceleration would also have an effect
on desiccation creep and desiccation shrinkage, to a certain extent. It is worth mentioning
that basic creep is a priori not accelerated by the scale reduction, though. Hence, the
aforementioned aging speed-up factor of 9 should be considered as approximate.

1VeRCoRs stands for ”Vérification Réaliste du Confinement des Réacteurs” in French, which translates
into ”realistic verification of the containment of reactors”.
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Figure 4.1: Aerial view of VeRCoRs mock up - EDF Lab Les Renardières. ©EDF

The main events occurring during the VeRCoRs mock-up life, including its construction
and prestressing phases as well as its pressurization program, are summarized in Table 4.1.
Firstly, the construction of the mock-up lasted from July 2014 to April 2015. In this context,
the concrete formulation used to construct the mock-up was derived from the concrete mixes
of NCBs from the Nogent sur Seine nuclear power plant, notably by using aggregates from
the same region (Charpin et al., 2021). Moreover, all structural characteristics that could
be constructed at 1:3 scale have been designed accordingly, including wall thicknesses and
heights, steel rebars and prestressing cables.

Then, the VeRCoRs pressurization program unfolds in several pressurization tests aiming
at applying an absolute air pressure of at most 5.2 bars inside the mock-up. This programs
aims at representing the decennial visits of a real operating NCB, during which pressurization
tests are performed in order to assess the leak tightness of the inner containment wall. Due to
the scale reduction, such tests are performed every year for the VeRCoRs mock-up, instead
of every decade for a 1:1 scale NCB. Furthermore, a heating system is used so as to simulate
an operating reactor in the inner space of the mock-up. The activation of this heating system
enables to start drying, and by extension, the aging process of the mock-up (Charpin et al.,
2021).

Then, the rest of this chapter will focus on the inner wall of the VeRCoRs mock-up.
This reinforced and prestressed concrete structure has a height of 22.8 m and an external
radius of 7.7 m. It is constituted by three main structural volumes, namely a base slab, a
cylindrical part and a dome. The base slab and the cylindrical part are linked through a
concrete gusset, whereas the junction between the cylindrical part and the dome is ensured
by a toric structural element, called O-ring.
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A visualization of the geometry of the VeRCoRs inner wall is given in Fig. 4.2. The
denomination of standard zone is usually adopted for designating the zone in the cylin-
drical part that is sufficiently far away from geometrical singularities, and whose behavior
may thereby be assimilated to that of a hollow cylinder. The aforementioned geometrical
singularities notably include two ribs in which prestressing cables are anchored, as well as
four hatches, namely the equipment hatch, the access hatch, as well as two smaller hatches
dedicated to the water supply circuit and the steam circuit (see Fig. 4.2).

Event Description - Comments Date

Start of construction Concreting of the raft 2014-07-24

End of construction End of concreting of the dome 2015-04-28

Start of prestressing - 2015-05-06

End of prestressing - 2015-08-12

VPO test Pre-operational pressurization test 2015-11-05

VC1 test Control visit pressurization test 2016-01-27

Start of heating Simulation of the operating reactor using a
heating system

2016-03-01

VD1 test First decennial test 2017-03-14

VD1bis test Repetition of the first decennial test 2017-03-21

VD2 test Second decennial test 2018-03-29

VD3 test Third decennial test 2019-03-19

VD4 test Fourth decennial test (canceled) -

VD5 test Fifth decennial test 2021-03-21

Table 4.1: Summary of main events of VeRCoRs mock-up.

Figure 4.2: Outside view of the VeRCoRs mock-up inner-wall.
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The prestressing of the VeRCoRs inner wall is ensured by several types of prestressing
cables, namely:

• 57 vertical straight cables, ensuring a part of the prestressing in the vertical direction.
These cables are anchored in the base slab and in the O-ring.

• 98 gamma cables, partialy ensuring the vertical prestressing in the standard zone, as
well as a part of the prestressing of the dome. These cables are called ”gamma” due
to their particular shape, reminding the Γ greek letter. Furthermore, such cables are
anchored in the base slab and in the O-ring.

• 122 tangential cables, ensuring prestressing in the tangential (or orthoradial) direction.
These cables are anchored in the two ribs of the structure, depicted in Fig. 4.2.

• 18 dome cables, ensuring a part of the prestressing of the dome. These cables are
anchored in the O-ring.

A visualization of the prestressing cables of the VeRCoRs mock-up is given in Fig. 4.3.
During the prestressing phase, after the end of the construction phase, these cables are
sequentially tensioned, in order to induce biaxial compressive stresses in the concrete volume.
These cables are inserted in ducts and are cement grouted after tension. It is worth noting
that the prestressing phase is a complex continuous and iterative process that should lead to
compressive stresses of about 12 MPa in the tangential direction and 8.5 MPa in the vertical
one, in the standard zone at mid-height (Bouhjiti et al., 2018a; Granger, 1995).

Figure 4.3: Prestressing cables of VeRCoRs mock-up: (a) front view; (b) top view. Vertical cables
are shown in red, gamma cables in green, tangential cables in blue and dome cables in black.



128 Chapter 4. Bayesian inference for aging large containment structures

4.2.2 Monitoring data

4.2.2.1 Thermo-hydric ambient conditions

The temperature and the relative humidity of the ambient air inside and outside the inner
containment wall are continuously measured throughout the lifetime of the structure. Here,
the outer space of the inner wall corresponds to the space between the two containment
walls of the mock-up. Measurements series of ambient temperature and RH of the inner
wall are presented in Fig. 4.4. In what follows, the initial instant t = 0 is set as the date of
construction start, i.e. at 2014-07-24 (see Table 4.1).

Firstly, the ambient temperature and RH vary according to seasonal conditions on site
throughout the construction of the mock-up, which explains that measurements related to
the internal ambient air are only available from few months after the end of the prestressing
phase. Then, the start of the heating system induces an increase of the temperature of
internal ambient air, up to about 35◦C, whereas the temperature of external air fluctuates
around 20◦C, between pressurization tests. Likewise, the aforementioned heating system
induces also a decrease of the internal ambient RH, to a value of about 30%. This is due to
the direct correlation existing between temperature and RH, typically expressed by Magnus’
law (see e.g. (Boucher, 2016)).

(a) Temperature

(b) RH

Figure 4.4: Measurements of ambient temperature and RH of the inner and outer air of VeRCoRs
inner containment wall, at mid-height.

Then, few weeks before each pressurization test, the shutdown of the operating reactor
is simulated by stopping the heating system for a period of about 1 month. This leads to
a decrease of the internal ambient temperature, to a value of about 15◦C. Such a value is
maintained until few weeks after the end of the pressurization test. Likewise, this temper-
ature decrease induces an increase of the ambient RH during the shutdown period of the
heating system. Lastly, it is observed that the ambient conditions of the external air of the
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inner wall seem to vary along with seasonal conditions, which are more or less delayed by
the thickness of the mock-up outer wall.

4.2.2.2 Mechanical monitoring data

The VeRCoRs mock-up constitutes a widely instrumented structure, involving a large amount
of sensors aiming at measuring its thermal, hydric and mechanical behavior (Mathieu et al.,
2018; Oukhemanou et al., 2016). This notably includes vibrating wire sensors embedded in
the thickness of the structure (Courtois, 2019; Hénault et al., 2019), which enable to measure
its strains. In particular, the standard zone of the structure at mid-height comprises a zone
in which several of these strain sensors are concentrated, on an angular sector of about 25◦

sufficiently far away from geometrical singularities (such as ribs or hatches). In this way,
the strain measurements provided by sensors located in this zone are deemed to be repre-
sentative of the behavior of the standard zone of the structure. A schematic representation
of such a zone is given in Fig. 4.5.

Full strain measurement series in tangential and vertical directions and for intrados and
extrados locations (see Fig. 4.5b) are presented in Fig. 4.6 & 4.7. These series are displayed
on a time grid with a step of about two weeks, so that strain jumps attributed to internal
pressure during integrity tests are not visible. The initial instant t = 0 is assumed to be the
date of the construction startup (i.e. 2014-07-24, see Table 4.1). Moreover, the reference
date for strain measurements (i.e. the zero strain date) is set as the date of the end of the
construction phase (2015-04-28, see Table 4.1) i.e. near t ≈ 1 year.

Figure 4.5: VeRCoRs inner wall: (a) 2D view; (b) focus on the standard zone at mid-height.

Firstly, once the prestressing phase is completed, both tangential and vertical strains
are slightly decreasing, and fluctuating in correlation with ambient temperature and RH
variations (see Fig. 4.4). Then, the increase of the temperature of internal ambient air caused
by the start of the heating system involves an acceleration of concrete drying, and thereby of
both tangential and vertical strains. Subsequently, few weeks before each pressurization test,
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the inner ambient temperature is decreased to a value of about 15◦C, in order to simulate
the shutdown of the operating reactor. Such a value is maintained until few weeks after the
end of the pressurization test.

This implies strain variations near each pressurization test, which are clearly visible in
the strain series presented in Fig. 4.6 & Fig. 4.7. Then, between two pressurization tests,
strains are continuously decreasing over time. The strain rate tends to be slower as the aging
progresses, which could be explained by a stabilization of drying over time.

(a) Intrados strains (b) Extrados strains

Figure 4.6: Measured tangential strains of VeRCoRs standard zone

(a) Intrados strains (b) Extrados strains

Figure 4.7: Measured vertical strains of VeRCoRs standard zone

Then, in order to provide a synthetic comparison of strain monitoring data, the mean
strain measurement series obtained by averaging series provided by sensors of a same data
group (i.e. intrados/extrados and tangential/vertical strains) are presented in Fig. 4.8.
Mean intrados and extrados tangential strain series present sensibly similar values, through-
out the structure’s service. Furthermore, intrados and extrados vertical strain series present
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an offset of about 100 µm.m−1, which is roughly constant since the end of the prestressing
phase (near t = 1.5 years). Finally, it is worth noting that vertical and tangential strains
are evolving in time in a practically parallel way after the end of prestressing phase.

Figure 4.8: Mean strain measurement series. ”I” refers to ”intrados”, ”E” to ”extrados”, ”T” to
”tangential”, and ”V” to ”vertical”.

4.2.2.3 Pressurization tests and leakage measurements

During each pressurization test of the VeRCoRs mock-up, the inner pressure of the wall is
progressively increased up to a relative value of 4.2 bars, whereas the outer pressure remains
equal to the atmospheric pressure (i.e. about 1.013 bars). The pressure profiles applied
during pressurization tests are given in Fig. 4.9.

Figure 4.9: Internal pressure imposed during pre-operational and operational pressurization tests
of VeRCoRs mock-up.
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In-situ leakage measurements may be split into two categories, namely global measure-
ments, consisting in estimating the global leakage rate of the structure, and local measure-
ments, aiming at establishing a map of local leaks observed on the external surface of the
structure.

Firstly, during a pressurization test, the maximal pressure plateau is long enough main-
tained in order to ensure that the flow is laminar and that the stationary regime is reached.
The global leakage rate of the structure is then estimated from pressure and temperature
variations of the internal air of the structure. Based on the ideal gas law, the mass of the
dry air ma contained inside the structure may be written as follows:

ma =
paV0
raTa

(4.1)

where pa = p − pv is the dry air pressure, p the total pressure in the inner wall, pv the
vapor pressure, V0 the free volume of the inner containment, Ta the dry air temperature,
and ra = R/Ma the specific ideal gas constant of dry air. R is the ideal gas constant and
Ma the molar mass of dry air.

Then, the global leakage rate τg (usually given in % per day) of the structure is given by
the logarithmic time derivative of the dry air mass ma. Assuming that variations of the free
volume are negligible, this quantity writes:

τg =
ṁa

ma

=
ṗa
pa
− Ṫa
Ta

(4.2)

In practice, the leakage rate in Eq. (4.2) is estimated from measurements of the pressure
pa and the temperature Ta, based on several temperature sensors placed in the free volume
of the inner containment (measuring the temperature Tg), moisture probes (measuring the
vapor pressure pv), and manometers measuring the pressure inside and outside the inner
containment wall. The leakage rate in Eq. (4.2) may be converted into a (volumetric) flow
rate, usually given in m3.h−1:

Qg = τgV0 (4.3)

Furthermore, considering only dry air leakage, a specific unit is used to measure the struc-
ture leakage rate at each pressurization, namely normal cubic meters per hour (Nm3.h−1). A
normal cubic meter corresponds to the volume of one cubic meter, for a gas in normal pres-
sure and temperature conditions, such that one disposes of the following conversion formula
for the leakage rate in Eq. (4.3), considering a gas at pressure pa (in bars) and temperature
Ta (in K):

Q(Nm3.h−1)
g =

pa
pn

Tn
Ta
Q(m3.h−1)

g (4.4)

where pn = 1.013 bars and Tn = 273 K. Thus, the conversion in Eq. (4.4) provides a
normalized leakage rate which does not depend on temperature and pressure conditions of
a given test.

Then, during the maximal pressure plateau of a pressurization test, soapy water is sprayed
on the external surface of the inner containment wall in order to visually identify local leaks.
Such leaks are typically caused by cracks, porosity lines, or local defects created during the
construction phase (see Section 3.2.6). A map of local leaks is then established, and the
associated local leakage rates are measured with leakage collecting boxes (LCB) equipped
with flowmeters. This measurement process is depicted in Fig. 4.10.



4.2. Structure description and computational model 133

Figure 4.10: Measurement of local leaks during a pressurization test with a leakage collecting
box, from (Asali, 2016).

Nevertheless, it is worth noting that local leakage measurements present several limi-
tations. Indeed, the size of the LCB may be smaller than some leaking defects, such as
long cracks. In such a case, the measured local leakage rate is linearly extrapolated by the
operator, which implies an additional layer of uncertainties. Besides, since local leaks are
identified through a visual inspection jointly performed with an aspersion of soapy water,
which may lead to a non-exhaustive identification. This may be notably explained by the
fact that a large surface has to be inspected during a limited period (about 1400 m2 for
VeRCoRs and 9000 m2 for 1:1 scale NCBs).

As a result, leakage measurements performed on site provide various information in-
volving different scales and levels of uncertainties. Global measurements give an accurate
estimation of the global leakage behavior of the structure only, whereas local measurements
provide information on the spatial distribution of local leaks, involving sensibly larger mea-
surement uncertainties, though. In Section 4.4, it will be shown how Bayesian inference can
be used so as to extract information from both global and local leakage measurements, while
accounting for their different level of uncertainties.

Then, global and local leakage measurements performed during the first six pressurization
tests of VeRCoRs mock-up are summarized in Table 4.2. Here, the leakage rate associated
to local leaks corresponds to the sum of all the individual local leakage rates measured
with LCB. Concerning the VD1 test, data taken from the test VD1bis (see Table 4.1) are
presented, local leakage measurements of this test being deemed more reliable than those
of VD1 test. Following the superposition principle mentioned in Section 3.3.5, the global
leakage rate of the structure is assumed to be the sum of two contributions, namely:

• the leakage rate associated to local leaks,

• the leakage rate associated to diffuse leaks, i.e. attributed to leakage through concrete
porosity.

As a result, the diffuse leakage rate is obtained by subtracting the local leakage rate to the
global leakage rate. Hence, only the global and local leakage rates are directly measured.
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The time evolution of local and diffuse leakage rates is depicted in Fig. 4.11. The global
leakage rate of the structure continuously increases over time, from a value of 4.3 Nm3.h−1

during the pre-operational test to a value of 64.7 Nm3.h−1 at the VD5 test, namely the
fifth operational test. In parallel to global leakage, the local leakage rate also increases over
time, but seems to stabilize from the third pressurization test, though. Indeed, no evolution
of the local leakage rate is observed from the VD3 test to the VD5 test, the leakage rate
remaining equal to 38.9 Nm3.h−1. Besides, the global leakage rate continues to increase over
time, which may be attributed to an increase of diffuse leaks caused by the evolution of the
sound permeability of concrete, which is mainly driven by the water saturation ratio and
therefore drying. At this point, it is difficult to conclude for certain regarding the physical
phenomena behind such an evolution of global and local leakage rates, notably due to the
large uncertainties tainting local leakage measurements. Indeed, as mentioned earlier, global
leakage measurements are given with a certain accuracy (i.e. with a CoV of about 2%),
whereas local leakage measurements present an estimated CoV that may reach 30% (see
Table 4.2).

Test VPO VC1 VD1 VD2 VD3 VD5

Date 2015-11-05 2016-01-27 2017-03-21 2018-03-29 2019-03-19 2021-03-21

Local leaks [Nm3.h−1] 4.3 (1.5) 7.1 (2.4) 24.8 (5.7) 31.7 (9.7) 38.9 (10.3) 38.9 (11.3)

Global leak [Nm3.h−1] 7.7 (0.2) 9.5 (0.2) 30.3 (0.6) 46.2 (0.9) 57.1 (1.2) 64.7 (1.3)

Table 4.2: Global and local leakage measurements performed during pressurization tests of the
VeRCoRs mock-up. Measurements are given with their standard deviation estimated by EDF (in
brackets), for information purposes.

(a) Area chart of local and global leakage rates (b) Global, local and diffuse leakage rates

Figure 4.11: Time evolution of the measured leakage rates of the VeRCoRs mock-up. Error
bars correspond to 50% CI (thick lines) and 80 % CI (thin lines), assuming centered Gaussian
measurement errors.
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4.2.3 Computational model

4.2.3.1 Finite element meshes

Next, the computational model considered in order to assess the global behavior of the
VeRCoRs mock-up is presented hereafter. In what follows, a Representative Structural
Volume (RSV) of the VeRCoRs standard zone at mid-height will be considered. This choice
is motivated by the fact that the standard zone may be deemed as representative of the
global behavior of the structure, and that RSVs offer a good compromise between physical
representativeness and computational cost (Bouhjiti et al., 2018a; Jason et al., 2007). The
geometrical domain corresponding to the chosen RSV consists in a 3D portion of the inner
wall, comprising an angular sector of 5◦ and a height of 0.42 m. Such a volume enables to
represent three tangential prestressing cables and two vertical ones. This RSV is depicted
in Fig. 4.12a.

Then, weak formulations of the constitutive equations of the THML modeling strategy
presented in Chapter 3 are solved by using the finite element method. In this perspective, two
finite element meshes are used, namely one for thermo-hydric and diffuse leakage calculations,
and one for mechanical calculations. The thermo-hydric mesh is depicted in Fig. 4.12b,
whereas the mechanical mesh is presented in Fig. 4.12c & d. Information about these finite
element meshes are summarized in Table 4.3.

Figure 4.12: Geometry and finite element meshes of the VeRCoRs standard zone RSV: (a)
geometry; (b) thermo-hydric mesh; (c) mechanical mesh; (d) prestressing cables mesh.
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Phase
Concrete Prestressing cables

Element type Nodes Element type Nodes

TH-L HEXA8 (linear) 1911 - -
M HEXA20 (quadratic) 3097 SEG2 (linear) 49

Table 4.3: Information about finite element meshes of the standard zone RSV.

The mesh adopted for thermo-hydric and leakage calculations (see Sections 3.3.2, 3.3.3
and 3.3.5) is formed by linear finite elements (HEXA8), and is refined near intrados and
extrados boundaries of the RSV, in order to evaluate thermo-hydric gradients more precisely.
Then, mechanical calculations are carried out on a second mesh, formed by quadratic finite
elements for concrete (HEXA20), and linear finite elements (SEG2) for prestressing cables.
In the framework of the adopted chained THML modeling strategy, thermo-hydric output
fields of interest (e.g. temperature, water content) are projected on the aforementioned
mechanical mesh. Here, the choice of such a two-step procedure involving two different
meshes is justified as follows: in the case of linear finite elements, lumping the thermal
mass matrix yields more robust results than that obtained with quadratic elements, when
solving discretized thermal problems. Indeed, in some cases, the so-calledmaximum principle
(Brezis, 2010) may be violated when using quadratic finite elements. Consequently, thermo-
hydric and leakage calculations are performed using linear finite elements and by lumping
the mass matrix2.

4.2.3.2 THML model

As previously mentioned, the constitutive equations of the THML modeling strategy pre-
sented in Chapter 3 are solved with the finite element meshes presented in Section 4.2.3.1.
Formally speaking, due to the adopted chained modeling strategy, the whole THML compu-
tational chain may be seen as an input-output mapMTHML : DX ⊂ Rd → DY ⊂ Rn, which
has the following composite structure:

MTHML =ML ◦MM ◦MH ◦MT (4.5)

whereMT ,MH ,MM ,ML are, in turn, thermal, hydric, mechanical and leakage sub-models.
Given a set of input parameters x ∈ DX , the THML computational model in Eq. (4.5)
returns several output of interests through the response of its sub-models, including:

• temperature T ,

• water saturation Sw and relative humidity h,

• strains ε and prestressing losses Π,

• diffuse leaks Qd, local leaks Ql and global leakage Qg.

2note that the diffuse leakage constitutive equations presented in Section 3.3.5.1 may be seen as a thermal
diffusion problem, as emphasized in (Asali, 2016), which justifies the lumping of the mass matrix in the
framework of diffuse leakage calculations.
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A schematic representation of the THML model, including the several input-output depen-
dencies involved in the computational chain, is provided in Fig. 4.13.

Figure 4.13: Schematic representation of the THML model. Dashed lines are highlighting the
fact that water saturation ratio Sw taken as an input of the leakage model ML only to compute
the diffuse leakage rate Qd.

The THML computational chain is summarized hereafter. Firstly, writing

x = (xT ,xH ,xM ,xL) (4.6)

where the component x⋆ denotes the input parameters associated to the sub-model M⋆,
the temperature T is obtained as an output of the thermal model MT evaluated at xT .
Subsequently, hydric variables of interest such as water saturation and RH are computed
through the hydric modelMH , by taking as inputs the parameters xH and the temperature
T .

Then, mechanical calculations are performed with the model MM , by taking as inputs
the parameters xM , temperature T (notably for the thermo-activation model for creep, see
Section 3.3.4.3) and RH h (for shrinkage and creep models, see Sections 3.3.4.2 to 3.3.4.4).

Lastly, leakage calculations may be split into two decoupled phases, namely the compu-
tation of diffuse leaks Qd and the computation of local leaks Ql. The first mentioned leakage
rate is computed from the input parameters xL, as well as the saturation ratio Sw (notably
for the relative gas permeability model, see Section 3.3.5.1). It is thereby remarked that
diffuse leaks Qd only depend on the thermal and hydric phases. Then, local leaks Ql are
computed from mechanical calculations, by taking as inputs the parameters xL as well a
mechanical macro-variable Π (see Section 3.3.5.2), here chosen to be the prestressing losses
averaged on cables of the standard zone RSV. Finally, based on the superposition principle
mentioned in Section 3.3.5, the global leakage rate Qg is obtained by summing diffuse and
local leakage rates.
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4.2.3.3 Boundary conditions and loading

Next, the boundary conditions and loading considered at the scale of the adopted RSV are
detailed hereafter. Firstly, Neumann BC in terms of temperature are considered for thermal
computations, through the definition of a thermal convective exchange coefficient kth (see
Section 3.3.2), for both intrados and extrados surfaces of the RSV, based on the measured
temperature histories of ambient air presented in Fig. 4.4a. Furthermore, concerning hydric
calculations, Dirichlet BC in terms of water content Cw are adopted on intrados and extrados
surfaces of the RSV, as described in Section 3.3.3. Analogously to the temperature histo-
ries adopted for thermal calculations, RH histories adopted for the above hydric boundary
conditions are defined from the measurements of the RH of ambient air presented in Fig.
4.4b.

Concerning mechanical BC, the vertical component of the displacement field u is set
to zero on the lower face of the RSV, and is constrained to be uniform on the RSV upper
face. Moreover, the normal displacements on lateral faces of the RSV are blocked (i.e.
u · n = 0 on the corresponding faces, where n is the outward unit normal vector field).
Thus, imposing such mechanical BC reverts to treating the standard zone like an infinite
hollow cylinder, which constitutes a reasonable assumption when sufficiently far away from
geometrical singularities (Bouhjiti et al., 2018a).

Finally, two mechanical loads are considered in this study, namely prestressing and dead
weights of concrete volumes located above the RSV. Internal pressure applied during pres-
surization tests is not modeled in the framework of mechanical calculations, since one only
focuses on the aging behavior of the structure, and due to the fact that the mechanical
behavior of the standard zone remains essentially elastic during pressurization tests, as un-
derlined by Bouhjiti et al. (2018a). Prestressing is modeled by applying forces at cables end
nodes (see Fig. 4.12d). The steel nodes and their coincident concrete nodes are assumed
to have a perfect kinematic connection (i.e. they have the same displacement). Moreover,
prestressing loads are computed as internal nodal forces. Depending on the imposed stress
in cables, instantaneous prestressing losses due to anchor recoil and friction are not taken
into account at the scale of the considered RSV3. Furthermore, dead weights attributed to
concrete volumes located above the considered RSV are represented by a vertical stress σz,c
imposed on the upper face.

Lastly, diffuse leakage calculations are performed by imposing Dirichlet BC in terms of
air pressure pa on the intrados and extrados surfaces of the RSV (see Section 3.3.5.1). In
this context, the pressure profiles presented in Fig. 4.9 are applied on the intrados surface,
whereas the pressure on the extrados surface is set to atmospheric pressure.

3this is typically the case when the imposed stress corresponds to that imposed at anchors of the structure.
A full scale 3D elastic mechanical calculation would indicate that stresses in the standard zone are smaller
than those imposed near cables anchors (see e.g. (Bouhjiti, 2018)).



4.2. Structure description and computational model 139

4.2.4 Deterministic THML calculations

4.2.4.1 General settings

This section only aims at presenting typical output variables of interest provided by the
THML computational model, through deterministic calculations. Hence these output vari-
ables are not yet compared with measurements presented in Section 4.2.2. Such observational
data and their relationship with model outputs will be thoroughly studied in a Bayesian
framework in Section 4.4.

In what follows, the results of a single THML computation are presented, by setting all
the 36 input parameters of the THML model to their nominal value. The adopted nominal
values of parameters related to concrete are given in Table 4.4, whereas those of parameters
related to prestressing cables are given in Table 4.5.

Model Input parameter Notation Unit Value

MT

Thermal conductivity λc W.m−1.K−1 2.8
Density ρc kg.m−3 2350

Heat capacity cpc kJ.kg−1.K−1 880
Convective exchange coefficient kth W.m−2.K−1 10

MH

Drying parameter A 10−15 m2.s−1 4.9
Drying parameter B - 0.08

Initial water content Cw,0 l.m−3 160
Porosity ϕ % 16

Drying reference temperature T 0
w

◦C 15
Drying activation energy Uw kJ.mol−1 59.4
Sorption model parameter ad - 9.28
Sorption model parameter bd - 0.39

MM

Young’s modulus E GPa 36.7
Poisson’s ratio ν - 0.248

Thermal dilation coefficient αth 10−6 K−1 9.2
Desiccation shrinkage coefficient αds 10−6 10

Basic creep Poisson’s ratio νbc - 0.248
Reversible deviatoric basic creep stiffness krd 1011 Pa 1.7
Reversible deviatoric basic creep viscosity ηrd 1017 Pa.s 5.0
Irreversible deviatoric basic creep viscosity ηid 1017 Pa.s 5.0

Basic creep activation energy Ubc kJ.mol−1 43.1
Basic creep reference temperature T 0

bc
◦C 20

Basic creep consolidation parameter κ 10−4 1.0
Desiccation creep viscosity ηdc 109 Pa.s 7.4

Dead weight of upper concrete lifts σz,c MPa 0.41

ML

Relative permeability parameter ck - 0.45
Klinkenberg coefficient βK MPa 0.18
Intrinsic permeability k0 10−17 m2 7.0

Local leak model parameter αl - 6.0

Table 4.4: Input parameters of the THML model - Concrete.
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Model Input parameter Notation Unit Value

MM

Young’s modulus Es GPa 190
Poisson’s ratio νs - 0.3

Density ρs kg.m−3 7850
Thermal dilation coefficient αth,s 10−6 K−1 10

Section As mm2 560
Initial tension of tangential cables σθ,0 MPa 1514
Initial tension of vertical cables σz,0 MPa 1514

Table 4.5: Input parameters of the THML model - Prestressing cables.

Finite element calculations are performed by considering the 2014-07-24 as initial date,
and the 2021-04-01 as final date. As a result, the lifetime of the standard zone of VeRCoRs
mock-up is simulated up to its fifth pressurization test. A time grid of about 210 instants
is used for calculations. This grid is refined near instants of pressurization tests in order to
catch variations of temperature and RH. Furthermore, an adaptive refining feature provided
by the finite element solver Code Aster is used in order to facilitate the convergence of
calculations, when necessary. In the framework of probabilistic calculations presented later
in this chapter, the results of each THML model run will be projected on a same time grid.

4.2.4.2 Thermo-hydric calculations

Firstly, the spatio-temporal evolution of the temperature T and water saturation ratio Sw

in the thickness of VeRCoRs standard zone are given in Fig. 4.14. In what follows, the zero
abscissa in the wall thickness corresponds to the intrados surface. As depicted in Fig. 4.14a,
the temperature in the thickness follows the variations of the temperature of the ambient air
presented in Fig. 4.4. In particular, the temperature in the whole thickness of the standard
zone decreases to a value of about 15◦C near pressurization tests.

(a) Temperature (b) Water saturation ratio

Figure 4.14: Thermo-hydric calculations: spatio-tempral evolution of temperature and water
saturation ratio in the thickness of VeRCoRs standard zone.
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From the end of the construction of the mock-up to the start of the heating system,
practically no drying occurs due to the humidification of both intrados and extrados surface.
Then, the start of the heating system induces a progressive decrease of the water saturation
ratio in time. During pressurization tests, the decrease of the ambient temperature induces
an increase of the ambient RH, which only transfers to few centimeters in the thickness of
the wall, near both intrados and extrados surfaces. This may be explained by the fact that
moisture transfer (i.e. drying and humidification) is a much slower process than heat con-
duction. Furthermore, few water saturation ratio profiles in the wall thickness are presented
in Fig. 4.15. Once the heating system is started, the water saturation ratio field presents
strong gradients near both intrados and extrados surfaces. Broadly speaking, drying kinetics
tend to slow over time, and the water saturation ratio at the core of the thickness decreases
to a value of about 74% at t = 6 years.

Figure 4.15: Water saturation ratio profiles in the thickness of VeRCoRs standard zone.

4.2.4.3 Mechanical calculations

The time evolution of delayed strains (at intrados/extrados locations and in tangential/vertical
directions) and mean prestressing losses computed at the scale of the standard zone RSV
are given in Fig. 4.16. Firstly, delayed strains are stagnating around a value of 0 from the
end of the construction phase to the start of the prestressing phase. Then, the tensioning of
cables induces a significant decrease of strains, near t ≈ 1 year.

Next, the start of the heating system at t ≈ 1.6 years induces an acceleration of drying
shrinkage and creep strains. Moreover, during pressurization tests, strain variations induced
by modification of thermo-hydric ambient conditions are well reproduced by mechanical cal-
culations. It is remarked that the model does not enable to make the distinction between
intrados and extrados vertical strains, though. This is due to the idealized cinematic bound-
ary conditions adopted at the scale of the standard zone RSV: indeed, vertical displacements
on the upper face of the RSV are constrained to be uniform (see Section 4.2.3.3).
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Furthermore, as depicted in Fig. 4.16b, the mean prestressing losses are continuously
increasing over time, mainly due to the action of drying, creep and shrinkage strains. It
is worth noting that the decrease of the temperature of the inner ambient air during pres-
surization tests slightly slows the evolution of prestressing losses. This is consistent with
strain variations observed during the shutdown period of the heating system, near each
pressurization tests.

(a) Delayed strains (b) Mean prestressing losses

Figure 4.16: Mechanical calculations: temporal evolution of delayed strains and mean prestressing
losses of VeRCoRs standard zone. Concerning delayed strains, ”I/E” stand for ”intrados/extrados”,
and ”T/V” for ”tangential/vertical”.

4.2.4.4 Leakage calculations

Lastly, output quantities related to the leakage model are presented and discussed. The
computation of diffuse leaks requires to solve a nonlinear diffusion equation, whose primary
unknown variable is given by the air pressure. The time evolution of the diffuse leakage rate
of VeRCoRs mock-up during each pressurization test is presented in Fig. 4.17. This diffuse
leakage rate is computed by assuming that Darcy’s flux is constant over the whole surface
of the containment wall. In this way, the structural diffuse leakage rate is simply computed
by multiplying the Darcy’s flux obtained at the scale of the standard zone RSV by the
external surface of VeRCoRs mock-up. This assumption is adopted in first estimate, knowing
that the structure is essentially cylindrical. Furthermore, the maximal diffuse leakage rate
progressively increases over time, principally due to the decrease of the water saturation
ratio in the wall thickness caused by drying. It is also noticed that such a maximal value is
reached at an increasingly early instant during each pressurization test, as concrete drying
progresses.
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Figure 4.17: Time evolution of diffuse leaks during each pressurization test of VeRCoRs mock-up.

Lastly, the temporal evolution of diffuse and local leakage rates is given in Fig. 4.18.
According to the model, the global leakage rate at the pre-operational test is mainly driven
by local leaks. Subsequently, the local leakage rate is continuously increasing along with
prestressing losses computed with the mechanical model. This is due to the adopted phe-
nomenological local leak model (see Section 3.3.5.2), which does not enable to reproduce the
constant local leakage rate observed between VD3 and VD5 tests in Fig. 4.11. Moreover,
the proportion of diffuse leaks in the global leakage rate increases over time, as the water
saturation in the wall thickness decreases due to drying.

Figure 4.18: Time evolution of the local and diffuse leakage rates of the VeRCoRs mock-up.
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4.3 Surrogate modeling and sensitivity analysis

In this section, forward uncertainty quantification techniques are coupled with the com-
putational model presented in Section 4.2, in order to model uncertainties tainting input
parameters in a probabilistic framework, and to quantify their effect on the response of the
model, including the main output physical variables of interest previously presented (i.e. wa-
ter saturation, strains, leakage rate). Firstly, in Section 4.3.1, the uncertainties of primary
influential inputs (PII) are modeled by using probability distributions, following principles
presented in Section 1.2.3. Subsequently, in order to ensure the tractability of forward (and
inverse) UQ tasks, surrogate modeling is considered in Section 4.3.2. In particular, PCE
surrogates are chosen in order to provide global approximations of the model on the support
of the devised input probability distribution. Then, based on the analytical post-processing
features offered by such surrogates, a global variance-based sensitivity analysis of the main
output quantities of the THML model is performed in Section 4.3.3.

4.3.1 Probabilistic input modeling

The computational model presented in Section 4.2 involves about 35 input parameters
tainted with more or less important uncertainties. Despite the fact that VeRCoRs mock-up is
widely instrumented, and that its material properties are thoroughly studied (Charpin et al.,
2021), most of these input parameters remain not well known. Indeed, while a large amount
of data is available concerning VeRCoRs material properties that are directly measurable,
only scarce information are available for parameters that are not directly measurable. The
uncertainties of such parameters are usually quantified through expert judgement.

Furthermore, it is worth noting that the input dimension of the adopted THML model
is relatively high, which may impede the computational tractability of UQ techniques. In
this context, screening strategies may be considered so as to determine the PII of the model
(see Section 1.2.5). Once identified, the latter are modeled as random variables, whereas
the remaining input parameters are fixed to their nominal value. In this chapter, the PII of
the computational model are selected based on the former work of Bouhjiti (2018), which
performed an OAT-based screening in order to determine the most influential parameters
of a similar THML computational model, at the scale of a RSV of VeRCoRs mock-up. As
a result, a set of 9 input parameters is considered. The marginal distribution of each of
these parameters is defined through expert judgement. The set of the retained PII as well
as their marginal distributions are summarized in Table 4.6. Moreover, due to the lack of
information regarding dependencies, all the aforementioned parameters are assumed to be
mutually independent.

Thus, in a Bayesian perspective, the defined joint probability distribution may be seen as
a prior distribution for the PII of the THML computational model. It summarizes the level
of knowledge in the aforementioned PII before observing and/or analyzing data related to
the response of VeRCoRs mock-up. This input distribution will be used in the next sections
to construct PCE surrogate models, and performing a global sensitivity analysis of output
quantities of the THML model. In Section 4.4, the framework of Bayesian inference will be
used so as to combine the defined prior level of knowledge with monitoring data presented
in Sections 4.2.2.2 & 4.2.2.3.
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Model n° Parameter Unit Distribution Mean Std CoV

MH
1 B -

Lognormal
0.08 0.012 0.15

2 Cw,0 l.m−3 160 24 0.15

MM

3 αds 10−5 kg.m−3

Lognormal

1.0 0.25 0.25
4 σθ,0 MPa 1514 378.5 0.25
5 σz,0 MPa 1514 378.5 0.25
6 κ 10−4 1.0 0.25 0.25

ML

7 k0 10−17 m2

Lognormal
7.0 3.5 0.5

8 βK MPa 0.18 0.045 0.25
9 αl - 6.0 3.0 0.5

Table 4.6: Marginal distributions of the primary influential inputs of the THML computational
model.

4.3.2 Surrogate modeling

4.3.2.1 General settings

Let (Ω,F ,P) be a probability space. Let X : Ω → DX ⊂ Rd the d = 9 random input
parameters defined in Section 4.3.1. Each output quantity of interest of the THML model
(e.g. strains) may be seen as a function of X, namely an input-output map M : DX →
DY ⊂ Rn. Considering only the time evolution of output variables at a given location, the
output dimension n here corresponds to the size of the adopted time grid for computing the
output variable of interest. Furthermore, each component of the response Ȳ = M(X) is
assumed to admit a finite variance.

The several output variables of interest of the THML model are computed on different
time grids, involving different output dimensionalities. Indeed, leakage rates (diffuse, local
and global) are computed at each pressurization test, whereas mechanical fields such as
strains are computed on a time grid involving about 210 instants. As a result, two different
surrogate modeling approaches are considered hereafter.

Firstly, due to their large output dimensionality, principal component PCE (see Section
1.2.4.5) are used in order to surrogate mechanical variables of interest, namely strains and
prestressing losses:

Ȳ =M(X) ≈ M̂(X) = µȲ +
r∑

k=1

Ẑk(X)wk (4.7)

where µȲ = E[Ȳ ] is the output mean, (wk)1≤k≤r the r first eigenvectors of the output

covariance matrix ΣȲ , and where Ẑk is a PCE surrogate given by:

Ẑk(X) =
∑

α∈A(k)

ĉk,αψα(X) (4.8)

Here, (ψα)α∈A(k) is a family of multivariate polynomials that are chosen to be orthonormal
with respect to the input distribution of X. This family is indexed with a truncation set
A(k) ⊂ Nd which has to be specified. Moreover, (ĉk,α)α∈A(k) denote PCE coefficients, to be
computed from point-wise evaluations of the THML model. Furthermore, the number r of
principal components in Eq. (4.7) is chosen such that the PCA error (see Section 1.2.4.5) is
smaller than 10−3.
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Secondly, concerning leakage output quantities (i.e. diffuse, local and global leakage
rates), component-wise PCE surrogates are considered, due to the low output dimensional-
ity. Indeed, such quantities are computed at only seven instants, namely the dates of the
simulated pressurization tests. In this context, multivariate polynomials of the PCE basis
are also chosen to be orthonormal with respect to the input distribution defined in Section
4.3.1.

The general settings related to the aforementioned surrogates are summarized hereafter.
Firstly, an experimental design X = {x(k)}1≤k≤N ⊂ DX of size N = 1000 is constructed
through Latin Hypercube Sampling (LHS) (McKay et al., 1979). The corresponding THML
model outputs are subsequently computed, in order to build a training data set to construct
(PC-)PCE surrogate models through regression. The cost of a single model run is about
30 seconds for the thermo-hydric calculations, 8 minutes for mechanical calculations, and
2 minutes for diffuse leakage calculations. As a result, a total cost of about 175 hours is
required to compute the 1000 THML model outputs. Using parallel computing on 8 workers,
the effective required computational time is about 22 hours.

Then, for each PCE, the following truncation sets are used:

Ap =
{
α ∈ Nd | ∥α∥1 ≤ p

}
(4.9)

where p is the maximal PCE degree. PCE coefficients are computed by using the LARS-based
procedure of (Blatman and Sudret, 2011b) implemented in UQLab (Marelli and Sudret,
2014). In this context, the maximal PCE degree p is adaptively chosen between 1 and 6.
Furthermore, in the case of PC-PCE, the output mean µȲ and covariance matrix ΣȲ are
estimated from samples of the experimental design, as proposed in (Blatman and Sudret,
2011a, 2014):

µȲ ≈ µ̂Ȳ =
1

N

N∑
k=1

ȳ(k) (4.10)

ΣȲ ≈ Σ̂Ȳ =
1

N − 1

N∑
k=1

(ȳ(k) − µ̂Ȳ )(ȳ
(k) − µ̂Ȳ )

⊺ (4.11)

where ȳ(k) =M(x(k)), for all k ∈ {1, . . . , N}.
Lastly, the normalized error measures presented in Section 1.2.4.5 are used so as to assess

the accuracy of the constructed (PC-)PCE surrogates. In the case of component-wise PCE
surrogates, the LOO error (see Eq. (1.49)) of each PCE is computed. Furthermore, in the
case of PC-PCE surrogates, one recalls that the adopted error estimate is given by:

ϵPC−PCE = (
√
ϵPCA +

√
ϵPCE)

2
(4.12)

where ϵPCA is the PCA error defined in Eq. (1.56), and ϵPCE is the PCE error defined in Eq.
(1.61).
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4.3.2.2 Mechanical response

The accuracy of the constructed PC-PCE surrogates of mechanical output variables of in-
terest (i.e. strains and prestressing losses) is assessed and discussed hereafter. Regarding
strains, one will focus on the time evolution of four quantities, namely tangential and vertical
strains at sensors locations near intrados and extrados surfaces (see Fig. 4.5b), in order to
provide output quantities that are comparable to strain monitoring data (see Fig. 4.8).

Firstly, for illustrative purposes, intrados tangential strains obtained from the N = 1000
model runs on the devised experimental design are displayed in strain space and principal
component space, in Fig. 4.19. The computed strains are highly correlated in time, especially
between integrity tests, as emphasized in Fig. 4.19a. The modifications of thermo-hydric
ambient conditions during these tests (see Section 4.2.2.1) tends to break the time auto-
correlation of strain series, due to the creation of strain jumps. Moreover, as underlined by
Fig. 4.19b, the variability of PCA coefficients (Zk)1≤k≤n rapidly decreases with the number of
principal components. This may be explained by the high auto-correlation of delayed strains,
which implies that only few principal components are sufficient to accurately represent full
strain time series.

(a) Model outputs in physical space (b) PCA reduced outputs

Figure 4.19: Intrados tangential strains computed on the constructed experimental design, in
physical and principal components spaces

Then, error measures and a cross-plot associated to the PC-PCE surrogate model of
intrados tangential strains are given in Fig. 4.20. Results concerning other strain types are
sensibly similar, and are thereby not shown, for the sake of brevity. Firstly, the PCA error
ϵPCA decreases exponentially when the number of retained principal components increases.
In particular, a PCA error less than 10−3, which corresponds to an fraction of explained total
variance of 99.9%, is obtained with only 3 principal components. As previously mentioned,
this may be explained by the fact that delayed strains are highly correlated in time. Fur-
thermore, the PCE error ϵPCE remains practically constant around a value of about 2.4 ·10−3

when the number of principal components increases. Hence, the PCE surrogates provide a
satisfactory approximation of PCA coefficients (Zk)1≤k≤r, however, an experimental design
with higher size seems to be required to refine this approximation.
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Then, the PC-PCE error estimate ϵPC−PCE decreases when the number of principal com-
ponents increases, while being constrained by the contribution of PCE error when the number
of retained principal components is high. A PC-PCE error of about 4.8 · 10−3 is obtained
with r = 3 principal components. Such a value may be considered as satisfactory, compared
to the error threshold of 5 · 10−2 usually considered in engineering applications (Nagel et al.,
2020; Wagner et al., 2020). The accuracy of the constructed surrogate model may be qual-
itatively emphasized in Fig. 4.20, in which a comparison between model and PCE-based
predictions of the PCA coefficients (Zk)1≤k≤r is presented.

(a) PC-PCE error measures (b) PCE cross-plot

Figure 4.20: PC-PCE surrogate model validation - Intrados tangential strains.

Likewise, a similar analysis of the accuracy of the PC-PCE surrogate of prestressing losses
is provided in Fig. 4.21. Regarding PC-PCE error measures, the constructed surrogate of
prestressing losses presents an analogous behavior to that of the PC-PCE surrogate for
strains. This was expected due to fact that prestressing losses are also highly correlated in
time (see Section 4.2.4.3), which implies a rapid decrease of the PCA error. As a result,
only r = 2 principal components are sufficient so as to provide a PCA error smaller than
10−3. The corresponding PC-PCE error is about 4 · 10−3, which constitutes a satisfactory
error value. Again, this is corroborated by the cross-plot of the underlying PCE, shown in
Fig. 4.21b.

4.3.2.3 Leakage response

Next, the accuracy of the constructed PCE surrogate of the diffuse leakage response is ana-
lyzed and discussed. The associated LOO error estimates computed for each pressurization
test, and a cross-plot comparing full model and PCE predictions are given in Fig. 4.22.
Firstly, a maximal LOO error of about 2 · 10−2 is reached at the pre-operational test (VPO
test). Then, the LOO error decreases over time, until reaching a value of about 4 · 10−4 at
the fifth pressurization test (VD5 test).
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(a) PC-PCE error measures (b) PCE cross-plot

Figure 4.21: PC-PCE surrogate model validation - Prestressing losses.

Such a decrease could be explained by the fact that diffuse leakage is essentially affected
by the water saturation state of concrete, combined with the fact that the drying process
stabilizes over time. This may tend to decrease the level of non-linearity of the function to
approximate. Thus, the constructed PCE of the diffuse leakage response may be deemed
sufficiently accurate, especially during later pressurization tests. This is emphasized by the
cross-plot given in Fig. 4.22b, suggesting a smaller discrepancy between model and surrogate
predictions for high leakage rate values.

(a) LOO error at each test (b) PCE cross-plot

Figure 4.22: PCE surrogate model validation - Diffuse leakage.
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4.3.3 Sensitivity analysis

4.3.3.1 General settings

In this section, a global variance-based sensitivity analysis is performed, based on the (PC-
)PCE surrogate models constructed in Section 4.3.2. In this context, Sobol’ sensitivity
indices (see Section 1.2.5) of output quantities of the THMLmodel are aimed to be computed.
In the case of (PC-)PCE surrogates, these indices may be post-processed analytically from
(PC-)PCE coefficients, as described in Section 1.2.5.2 for PCE surrogates and in Appendix
A for PC-PCE surrogates.

Besides, it is worth noting that some output variables of interest are not directly approx-
imated by (PC-)PCE surrogates, which does not enable analytical post-processing of Sobol’
indices. Indeed, the local leakage rate Ql is given by an anaytical function of prestressing
losses Π (see Section 3.3.5.2), whereas the global leakage rate Qg is given by the sum of
diffuse and local leakage rates Qd and Ql. As a result, the computation of Sobol’ indices
related to these quantities is subjected to a particular treatment. In this perspective, the
aforementioned Sobol’ indices are estimated through Monte Carlo simulation, by considering
a sample size of 106, and by using the UQLab implementation (Marelli and Sudret, 2014) of
the Janon-Monod estimators for Sobol’ indices (Janon et al., 2014).

In what follows, the analysis of Sobol’ sensitivity indices is restricted to total indices, for
the sake of brevity (see Section 1.2.5.1). Mechanical output variables of interest are studied
in Section 4.3.3.2, whereas leakage rates are studied in Section 4.3.3.3.

4.3.3.2 Mechanical response

Firstly, the time evolution of total Sobol’ indices of intrados tangential and vertical strains is
given in Fig. 4.23. Results concerning extrados strains are sensibly similar, and are therefore
not shown for the sake of brevity. As shown in Fig. 4.23a, the tangential strain response
is mainly driven by the initial prestressing of tangential cables σθ,0 during the prestressing
phase, starting near t ≈ 1 year.

Then, from the start of the heating system, the importance of the parameter σθ,0 decreases
over time, whereas the importance of the desiccation shrinkage coefficient αds increases.
Note that the importance of the parameter σθ,0 remains significantly high at the end of
the simulated lifetime of the structure, though. This is due to the delayed mechanical
behavior of the structure, which keeps the applied loading in memory, to a certain extent.
The importance of the parameter B driving drying kinetics increases until t ≈ 2 years,
and subsequently slowly decreases as the aging of the structure progresses. This may be
attributed to a stabilization of drying over time, which is likely to involve less variability of
the strain response with respect to drying parameters.

Furthermore, the importance of the basic creep consolidation parameter κ is negligible
until t ≈ 2.5 years, and then progressively increases over time, while remaining low compared
to that of the others input parameters, though. Such an increase is consistent with the fact
that the parameter κ concerns very long-term basic creep strains. Moreover, it is also noted
that the sum of total Sobol’ indices is close to one, which suggests that the variability of the
tangential strain response is principally driven by main effects, and that interactions may
be deemed negligible.
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Finally, the influence of the initial vertical prestressing σz,0 is negligible, which corrobo-
rates the fact that vertical prestressing creates practically zero tangential strains.

(a) Intrados tangential strains (b) Intrados vertical strains

Figure 4.23: Time evolution of total Sobol’ indices - Intrados strains.

Then, concerning vertical strains, the behavior of total Sobol’ indices related to param-
eters B,Cw,0, αds is comparable to that related to tangential strains, to some extent. The
importance of the parameter σz,0 is maximal during the prestressing phase, and subsequently
decreases over time until t ≈ 2 years, instant from which the associated total Sobol’ indices
remains practically constant. It is worth noting that contrary to tangential strains which are
dominated by the initial prestressing σθ,0 during the prestressing phase, the vertical strain
response is not dominated by the initial vertical prestressing σz,0. Furthermore, the drying
parameter B is the more important parameter throughout the lifetime of the structure. It
is also interesting to note that the initial tangential prestressing σθ,0 has a non-negligible
influence on the vertical strain response, which may be explained by geometrical effects at
the scale of the standard zone RSV, as well as a Poisson effect linking tangential and vertical
strains.

Next, the time evolution of total Sobol’ indices of the prestressing losses response are
presented in Fig. 4.24. During the first years of the operating phase of the structure, the
prestressing losses response is mainly driven by the drying parameter B. Then, the impor-
tance of the latter decreases over time, which underlines a plausible stabilization of drying,
as mentioned earlier. The importance of the remaining input parameters progressively in-
creases over time. Moreover, it is worth noting that the sum of total Sobol’ indices exceeds
one from t ≈ 2 years and increases over time, which suggests the development of interactions
having a non-negligible effect on the variability of the prestressing losses response.
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Figure 4.24: Time evolution of total Sobol’ indices - Prestressing losses.

4.3.3.3 Leakage response

Next, the time evolution of total Sobol’ indices of diffuse and local leakage rates is presented
in Fig. 4.25. Firstly, the drying parameter B and the intrinsic permeability k0 constitute
the most important parameters of the diffuse leakage response, as observed in Fig. 4.3.3.3a.
Conversely, the influence of the initial water content Cw,0 and the Klinkenberg coefficient βK
may be deemed to be negligible. The stabilization of drying over time involves a progressive
decrease of the importance of B, while the importance of k0 increases.

(a) Diffuse leakage (b) Local leakage

Figure 4.25: Time evolution of total Sobol’ indices - Diffuse and local leakage.

Moreover, the contribution of interactions to the variance of the diffuse leakage response
is non-negligible, especially during the first pressurization tests of the VeRCoRs mock-up.
Then, as underlined in Fig. 4.25b, the local leakage response is mainly driven by the local
leak model parameter αl. The importance of this parameter slightly increases over time,
whereas the importance of the drying parameter B decreases. Furthermore, the remaining
input parameters present a relatively low influence.
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Lastly, the time evolution of total Sobol’ indices of the global leakage response is presented
in Fig. 4.26. Three parameters are significantly contributing to the variance of the global
leakage rate of the structure, namely the drying parameter B, the relative permeability k0
and the local leak model parameter αl. In particular, this emphasizes the crucial influence of
the drying parameter B, which significantly contributes to the variance of all the presented
output variables of interest of the THML model.

Figure 4.26: Time evolution of total Sobol’ indices - Global leakage.

4.4 Bayesian inference for inverse uncertainty quantifi-

cation

As previously mentioned, the input probability distribution defined in Section 4.3.1 aims at
summarizing the level of knowledge about uncertain input parameters of the THML com-
putational model, principally based on expert judgement. As a result, it does not integrate
information related to the response of the VeRCoRs mock-up (e.g. strains, leakage rate).
Nevertheless, in-situ monitoring devices provide information on the long-term behavior of
the structure, through measurement data related to its mechanical state or leak tightness.

In this section, we propose to use the framework of Bayesian inference in order to provide
a more comprehensive quantification of uncertainties in input parameters, by assimilating
in-situ monitoring data related to the response of the structure so as to update knowledge
about parameters in a Bayesian inverse problem setting. In this perspective, this section
is organized in two subsequent parts: in Section 4.4.1, we focus on mechanical monitoring
presented in Section 4.2.2.2, that are used to extract information about input parameters
related to the strain response of the structure. To that end, several statistical models are
introduced so as to describe the relationship between model outputs and data, including
one model accounting for model biases. Then, in Section 4.4.2, we propose a more global
approach enabling to assimilate both mechanical and leakage observational data, in order to
update parameters of the whole THML computational chain.
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4.4.1 Bayesian inference for the THM behavior

4.4.1.1 Bayesian model setup

Let X : Ω → DX be the random input parameters of the THML model. The prior of
these parameters is assumed to be the distribution defined in Section 4.3.1. In order to be
consistent with strain measurement series presented in Section 4.2.2.2, we focus on the time
evolution of four types of delayed strains, namely:

• intrados and extrados tangential strains, respectively denoted by ε1 and ε2,

• intrados and extrados vertical strains, respectively denoted by ε3 and ε4.

Then, each of these strains may be seen as a deterministic functionMεk : DX → DY ⊂
Rn of the inputs X, where k ∈ {1, . . . ,m} (and m = 4). Here, n is the number of instants of
the time grid adopted for assimilating strain data. In an inverse problem perspective, the m
defined functions (Mεk)1≤k≤m may be seen as forward models that share the same input pa-
rameters. Note that here, only 6 parameters in X (related to the mechanical response of the
model, see Section 4.3.1) are involved in the Bayesian inverse problem described herebelow,
but the notation X is reused to describe these parameters, for the sake of concision.

Furthermore, the measurement data considered in this section are given by the mean
strain measurement series presented in Section 4.2.2.2, on a period starting from the end of
the prestressing phase (see Table 4.1) to approximately six years of lifetime. Measurements
before the end of prestressing are not considered here, since we focus on the long-term
behavior of the structure. Then, projecting these measurements onto the time grid used for
mechanical calculations yields a strain data set denoted by Yε = {yεk

}1≤k≤m ⊂ DY .

Next, based on elements taken from the theory of Bayesian inverse problems presented in
Section 1.3.3, a statistical model linking model outputs to observed data has to be devised.
In this context, we consider an additive Gaussian noise model (see Section 1.3.2.1) so as
to model the discrepancy between predicted strains and observed strains. Two variants of
this model will be considered, namely one assuming an unbiased forward model (Case (a)),
and one accounting for the presence of modeling biases (Case (b)). Formally speaking, the
assumption of an additive Gaussian noise model for observables Y εk : Ω → DY associated
to strains εk may be written by:

Y εk |x =Mεk(x) +Ek (4.13)

where k ∈ {1, . . . ,m}, and Ek is a centered Gaussian random variable with covariance
matrix ΣEk

∈ Rn×n, i.e. Ek ∼ N (0,ΣEk
). The random variable Ek is also assumed to

be independent from the input parameters X. Furthermore, for all k ∈ {1, . . . ,m}, the
noise Ek is assumed to be homoscedastic, i.e. ΣEk

= σ2I, where σ2 is the observation noise
variance. Note that here, the same variance is considered for each strain type for the sake
of simplicity, but more sophisticated parametrized forms of noise covariance matrices are
possible.
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Case (a): unknown noise variance, unbiased forward model

The noise variance σ2 involved in the statistical model in Eq. (4.13) may be assumed to
be perfectly known, and thereby fixed to a constant value, as in (Berveiller et al., 2012;
Perrin, 2008). Besides, such a variance mainly corresponds to two contributions, namely
measurement errors that can be properly estimated at the scale of strain sensors, but also
model uncertainties that remain most often unknown. Consequently, the noise variance σ2 is
often not perfectly known. Consequently, the noise variance σ2 is itself modeled by a random
variable, which is endowed with a weakly informative prior distribution. In what follows, it
is assumed that the prior distribution of σ2 is given by the uniform distribution U([0, σ2

max]),
where σmax = 100 · 10−6. The prior density of σ2 is then given by π(σ2) = 1[0,σ2

max]
(σ2). The

statistical model used in case (a) is then written by, for each k ∈ {1, . . . ,m}:

Y εk |x, σ2 =Mεk(x) +Ek|σ2 (4.14)

where Ek|σ2 ∼ N (0, σ2I).

As a result, for each k ∈ {1, . . . ,m}, the likelihood function L(k)
a associated to the

statistical model of Y εk in Eq. (4.14) is given by:

L(k)
a (x, σ2) = φn(M(x);yεk

, σ2I)

= (2πσ2)−
n
2 exp

(
− 1

2σ2
∥Mεk(x)− yεk

∥2
)

(4.15)

where ∥·∥ denotes the Euclidean norm of Rn.

Furthermore, assuming that the noise terms (Ek)1≤k≤m are mutually independent (con-
ditionally on σ2), the likelihood function La associated to the full data set Yε reads:

La(x, σ
2) =

m∏
k=1

L(k)
a (x, σ2) (4.16)

On another note, the joint prior density πa(x, σ
2) of input model parameters X and

noise variance σ2 has to be specified. For the sake of simplicity, it is assumed that the
aforementioned parameters are mutually independent, which enables to write:

πa(x, σ
2) = π(x)π(σ2) (4.17)

Thus, applying Bayes’ theorem (see Section 1.3.2.3) enables to derived the following
expression for the posterior density of case (a):

πa(x, σ
2|Yε) ∝ πa(x, σ

2)La(x, σ
2) (4.18)
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Case (b): unknown noise variance, biased forward model

Next, a similar construction is then presented for case (b), involving the presence of modeling
biases. In this context, as an extension of the model of case (a), we propose the following
statistical model for observables (Y εk)1≤k≤m:

Y εk |x, σ2, βk =Mεk(x) +Ek|σ2 + δ(βk) (4.19)

where Ek|σ2 ∼ N (0, σ2I), δ(βk) ∈ Rn is a bias term, and βk is the realization of a random
variable Bk : Ω→ R, for all k ∈ {1, . . . ,m}. The bias term δ(βk) is precised hereafter. Let
t = (t1, . . . , tn) ∈ Rn be the time grid shared by predicted and observed strains. One defines
the bias term δ(βk) as follows:

δ(βk) = βk(f(t1), . . . , f(tn)) (4.20)

where f is the function defined by:

f(τ) = min

(
τ − tp,0
tp,1 − tp,0

; 1

)
(4.21)

for τ ≥ tp,0, and f(τ) = 0 for τ ≤ tp,0, where tp,0, tp,1 respectively denote the instants of
start and end of the prestressing phase.

Such a definition is motivated by the following: the adopted computational model does
not make the distinction between intrados and extrados strains, in the vertical direction
(see Section 4.2.4.3). This is due to the fact that vertical displacements on the top surface
of the standard zone RSV are constrained to be uniform (see Section 4.2.3.3). However,
measured intrados and extrados vertical strains present a significant offset (see Fig. 4.8),
which seems to be constant from the end of the prestressing phase. Furthermore, such an
offset is practically equal to zero before the beginning of the prestressing phase.

Then, for each k ∈ {1, . . . ,m}, the likelihood function L(k)
b corresponding to the model

in Eq. (4.19) is given by:

L(k)
b (x, σ2, βk) = φn(Mεk(x) + δ(βk);yεk

, σ2I)

= (2πσ2)−
n
2 exp

(
− 1

2σ2
∥Mεk(x) + δ(βk)− yεk

∥2
)

(4.22)

Moreover, in a purely analogous way to case (a), assuming that random noise terms
(Ek)1≤k≤m are mutually independent, the likelihood function Lb corresponding to the full
data set Yε is given by:

Lb(x, σ
2,β) =

m∏
k=1

L(k)
b (x, σ2, βk) (4.23)

where β = (β1, . . . , βm).

It is now necessary to define a prior density π(β) for the bias parametersB = (B1, . . . , Bm).
For each k ∈ {1, . . . ,m}, the prior of Bk is assumed to be a Laplace distribution with zero
mean and standard deviation σBk

= 25 · 10−6, which leads to the following prior density:

π(βk) =
1√
2σBk

exp

(
−
√
2
|βk|
σBk

)
(4.24)
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Such a choice is motivated by the fact that the density specified above presents a spikier
peak around 0, as well as fatter tails than classical Gaussian distributions. This enables to
favor small values of biases, while allowing the prior mass to move towards higher values
if the latter appear to be plausible. Thus, to a certain extent, such a prior choice favors
sparsity in the random vector B (Tibshirani, 1996), as well as robustness with respect to
the prior (Nagel et al., 2020).

Then, assuming that the bias parameters (B1, . . . , Bm) are supposed to be mutually
independent, and that they are independent from model parameters X and noise variance
σ2, the joint prior density πb(x, σ

2,β) is simply given by πb(x, σ
2,β) = π(x)π(σ2)π(β).

Finally, applying Bayes’ theorem yields the following posterior density for case (b):

πb(x, σ
2,β|Yε) ∝ πb(x, σ

2,β)Lb(x, σ
2,β) (4.25)

4.4.1.2 Bayesian computations

Bayesian computations are performed in the BuS framework introduced in Chapter 2. The
SuS algorithm (see Section 2.2.2) is used so as to draw samples from the posterior distribution
derived in Section 4.4.1.1, in both cases (a) and (b). In this perspective, N = 104 samples per
level are considered, whereas the rarity parameter is set to p0 = 0.1. Furthermore, for both
cases (a) and (b), 24 replications are produced by running the SuS algorithm multiple times.
Moreover, the PC-PCE surrogates constructed in Section 4.3.2 are used for accelerating the
SuS algorithm. Computational costs associated to Bayesian computations are summarized
in Table 4.7. The total computational cost of SuS runs in case (b) is about twice that of
the total cost in case (a) (namely 12.2 hours vs. 6.2 hours). This may be attributable to
the larger dimension of the Bayesian inverse problem of case (b), which implies to solve an
equivalent reliability problem with a smaller failure probability to estimate. Besides, SuS
runs were parallelized with 8 workers in order to reduce the associated computational time,
which led to an effective time of about 45 minutes in case (a) and 90 minutes in case (b).

Case
Cost of a single SuS run

Total computational cost [h]
Mean [s] CoV [%]

(a) 924.7 5.4 6.2
(b) 1825.5 11.7 12.2

Table 4.7: Computational cost of Bayesian computations: cost of a single SuS run and total cost
associated to the 24 produced replications.

4.4.1.3 Posterior input parameters

Posterior samples drawn with the SuS algorithm are analyzed hereafter. The prior distri-
bution adopted in cases (a) and (b) is summarized in Table 4.8 for comparison purposes,
whereas statistics related to posterior samples in both cases (a) and (b) are given in Tables
4.9 & 4.10. Furthermore, posterior univariate and bivariate marginals of model parameters
X = (B,Cw,0, αds, σθ,0, σz,0, κ) estimated from posterior samples in case (a) are given in Fig.
4.27. Posterior samples in case (b) present a similar pairwise correlation structure, and are
thereby not shown for the sake of brevity.
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The results corresponding to univariate posterior marginals in case (a) are firstly dis-
cussed. The mean of the drying parameter B is slightly increased through Bayesian updat-
ing, from 0.08 to 0.084, whereas its standard deviation is significantly reduced, from 0.012 to
0.002. Then, the mean of the initial water content Cw,0 is decreased, from 160 to 142.3 l.m−3,
whereas that of parameter αds is slightly increased from 10.0 to 12.8 10−6 kg.m−3. Then, the
mean values of both parameters σθ,0 and σz,0 are reduced through Bayesian updating. This
could be explained by the fact that prior mean values are corresponding to tensions applied
at cables anchors of VeRCoRs mock-up. These values are overestimating real tensions in
the standard zone, since anchor decline and frictions could not be taken into account at the
scale of the studied RSV. Hence, the posterior values of σθ,0 and σz,0 are likely corresponding
to mean tension values resulting from tension losses due to anchor decline and frictions.

Globally speaking, the obtained posterior standard deviation of model parameters are
significantly smaller than their prior counterpart. Such a result suggests that data are suf-
ficiently informative, regarding the uncertainties encoded by the adopted prior distribution.
Moreover, in the case (b), similar results are observed, except for the fact that the obtained
posterior standard deviations are higher than those obtained in case (a).

n◦ Parameter Units Distribution Bounds Mean Std CoV

1 B 10−2 Lognormal - 8.00 1.20 0.15
2 Cw,0 l.m−3 Lognormal - 160.00 24.00 0.15
3 αds 10−6 kg.m−3 Lognormal - 10.00 2.50 0.25
4 σθ,0 MPa Lognormal - 1.51 · 103 378.50 0.25
5 σz,0 MPa Lognormal - 1.51 · 103 378.50 0.25
6 κ 10−4 Lognormal - 1.00 0.25 0.25
7 σ2 10−12 Uniform [0; 1.00 · 104] 5.00 · 103 2.88 · 103 0.58
8 β1 10−6 Laplace - 0 25.00 -
...

...
...

...
...

...
...

...
11 β4 10−6 Laplace - 0 25.00 -

Table 4.8: Summary of the prior distribution of parameters (X, σ2,B), adopted in cases (a) and
(b).

n◦ Parameter Units Mean Std CoV 95 % CI

1 B 10−2 8.36 0.19 0.02 [7.96, 8.67]
2 Cw,0 l.m−3 142.40 12.65 0.09 [120.51, 170.93]
3 αds 10−6 kg.m−3 12.80 0.74 0.06 [11.32, 14.21]
4 σθ,0 MPa 1.26 · 103 85.34 0.07 [1.09 · 103, 1.43 · 103]
5 σz,0 MPa 1.10 · 103 148.40 0.13 [822.98, 1.40 · 103]
6 κ 10−4 0.74 0.10 0.14 [0.55, 0.96]
7 σ2 10−12 2.98 · 103 255.83 0.09 [2.50 · 103, 3.49 · 103]

Table 4.9: Statistics related to posterior marginals of parameters (X, σ2) - Case (a).

Then, the analysis of bivariate marginals enables to observe the correlation structure of
the estimated posterior distribution. Significant linear correlations are observed for param-
eters (B,Cw,0), (αds, κ) and (σθ,0, σz,0). In particular, the strong linear correlation existing
for the pair (σθ,0, σz,0) may be attributed to structural effects as well as the Poisson ratio,
linking tangential stresses to vertical stresses during the prestressing phase.



4.4. Bayesian inference for inverse uncertainty quantification 159

n◦ Parameter Units Mean Std CoV 95% CI

1 B 10−2 8.51 0.18 0.02 [8.17, 8.84]
2 Cw,0 l.m−3 142.82 13.89 0.10 [117.90, 171.76]
3 αds 10−6 kg.m−3 12.06 0.88 0.07 [10.28, 13.53]
4 σθ,0 MPa 1.26 · 103 120.96 0.10 [1.07 · 103, 1.51 · 103]
5 σz,0 MPa 1.33 · 103 226.45 0.17 [977.31, 1.83 · 103]
6 κ 10−4 0.83 0.13 0.16 [0.56, 1.11]
7 σ2 10−12 1.29 · 103 142.25 0.11 [1.07 · 103, 1.60 · 103]
8 β1 10−6 15.21 14.23 0.94 [12.9, 40.84]
9 β2 10−6 -7.67 13.86 1.81 [34.0, 19.58]
10 β3 10−6 -1.77 23.78 13.46 [37.3, 75.34]
11 β4 10−6 111.44 24.89 0.22 [73.60, 191.48]

Table 4.10: Statistics related to posterior marginals of parameters (X, σ2,B) - Case (b).

Figure 4.27: Univariate and bivariate marginals from the posterior distribution of model param-
eters X estimated from samples - Case (a). Prior samples are shown in grey, whereas posterior
samples are shown in blue. The posterior mean value of each parameter is shown by a vertical red
line.
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Next, the prior and posterior marginal densities of noise variance σ2 and bias parameters
β are depicted in Fig. 4.28. For both cases (a) and (b), the posterior values of the noise
variance σ2 are concentrated in narrow zones, compared to the wide support of its prior
distribution. Furthermore, its posterior mean value is higher in case (a) than in case (b). A
similar behavior is observed for its standard deviation. Such a phenomenon may be explained
by the fact that when the model is assumed to be unbiased, the noise variance is expected
to have typically higher values in order to cover the variance of observed data.

Conversely, when modeling biases are taken into account, model predictions are expected
to match better with observed data, provided that bias parameters have been well calibrated
through Bayesian updating. In such a case, a smaller noise variance would be necessary to
cover the observed data. This will be observed later, in Section 4.4.1.4, which presents
posterior strain predictions in both cases (a) and (b).

Figure 4.28: Prior density and posterior samples of noise variance σ2.

Then, in case (b), univariate and bivariate marginals of bias parameters β estimated from
samples are presented in Fig. 4.29. Firstly, as emphasized in Table 4.10, posterior marginals
of bias parameters (B1, B2, B3) seem to be relatively close to their prior counterpart. The
parameter B4, corresponding to the bias of the extrados vertical strain model response,
presents a peculiar behavior. Indeed, its posterior mean value is about 100 · 10−6, which
suggests that the computational model presents a bias related to the vertical strain response.
It is worth noting that this value of 100·10−6 corresponds to the observed offset between mean
measurement series of intrados and extrados vertical strains (see Fig. 4.8). As mentioned
earlier, the adopted computational model is not able to make the distinction between intrados
and extrados vertical strains, due to the defined mechanical BC at the RSV scale.

Furthermore, observation data emphasize a nearly constant offset between intrados and
extrados vertical strains (see Fig. 4.8). Then, Bayesian updating based on the statistical
model proposed in case (b) enables to take into account the aforementioned modeling bias,
and to correct predictions from the estimated bias parameters. Lastly, it is noted that pa-
rameters (B1, B2) and (B3, B4) present strong linear correlations. Moreover, the bivariate
marginals (B1, B2) and (B3, B4) seem to remain mutually independent, which may be ex-
plained by the fact that these pairs are related to different strain directions (tangential for
(B1, B2), vertical for (B3, B4)).
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Figure 4.29: Univariate and bivariate marginals from the posterior distribution of bias parameters
B estimated from samples - Case (b). Prior samples are shown in grey, whereas posterior samples
are shown in blue. The posterior mean value of each parameter is shown by a vertical red line.

4.4.1.4 Posterior predictions

Lastly, the strain predictions corresponding to prior distributions, and posterior distributions
estimated in the previous section are presented hereafter. In this context, for both cases (a)
and (b), the associated prior and posterior predictive distributions (see Section 1.3.2.3) are
estimated from prior and posterior samples, respectively. For instance, in case (a), the
posterior predictive density (see Eq. (1.98)) of data y ∈ DY given observed ones Yε may be
written by:

πa(y|Yε) =

∫
Dσ2

∫
DX

πa(y|x, σ2)πa(x, σ
2|Yε)dxdσ

2 (4.26)

where πa(y|x, σ2) is the likelihood function in Eq. (4.16) associated to data y, πa(x, σ
2|Yε)

the posterior density derived in Eq. (4.18) and Dσ2 = [0, σ2
max] is the support of the prior

of σ2. The posterior predictive distribution may be sampled as follows: for instance, in
case (a), given a sample (x, σ2) ∈ DX × Dσ2 drawn from the posterior, a sample y ∈ DY

of the corresponding posterior predictive distribution may be generated by drawing y ∼
N (M(x), σ2I).

Firstly, in case (a), prior and posterior predictions of intrados tangential and vertical
strains are shown in Figs. 4.30 & 4.31. Results concerning extrados strains are sensibly
similar, and are thereby not presented here for the sake of concision. Prior predictions of
tangential strains match quite well with observations in terms of mean value, while pre-
senting sensibly large standard deviations due to the adopted prior distribution. Posterior
predictions of tangential strains present significantly narrow credible intervals (CI)4, whereas
the prior mean trend has practically not been modified through Bayesian updating.

4it is worth mentioning that the notion of credible intervals shall not be confused with the notion of
confidence intervals. Broadly speaking, the notion of credible intervals is mainly used within the context of
Bayesian inference, whereas the notion of confidence intervals is more used in the framework of frequentist
statistics.
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Then, the tangential strain observation data used for Bayesian inference (between t ≈ 1.5
years and t ≈ 6 years) are well predicted by the model.

Nevertheless, due to the fact that the computational model does not distinguish intrados
and extrados vertical strains, the posterior predicted vertical strains in case (a) have been
adjusted so that predictions are aligned on the mean of measured intrados and extrados
vertical strains (see Fig. 4.31b). This leads to a mismatch between posterior predictions and
observation data, for both intrados and extrados vertical strains.

(a) Prior predictions (b) Posterior predictions

Figure 4.30: Intrados tangential strains - Prior and posterior predictions - Case (a).

(a) Prior predictions (b) Posterior predictions

Figure 4.31: Intrados vertical strains - Prior and posterior predictions - Case (a).

Then, posterior strain predictions obtained in cases (a) and (b) are compared, in order
to investigate the effect of accounting for bias terms. The corresponding predictions are
depicted in Fig. 4.32. In case (a) (see Fig. 4.32a), posterior predicted tangential strains
match well with the corresponding observed data, whereas the mean trend predicted vertical
strains is constrained near the average of measured intrados and extrados vertical strains.
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In case (b) (see Fig. 4.32b), the identified model bias parameters enable to correct strain
predictions, so that a distinction can be made between predicted intrados and extrados
vertical strains. In this case, the predictions match well with observed data, for both intrados
and extrados vertical strains. Moreover, it is worth noting that the CI of strain predictions
in case (b) are narrower than that obtained in case (a). This is consistent with the obtained
posterior values for the noise variance σ2 (see Fig. 4.28): in the case of an unbiased model
(case (a)), a larger noise variance is required for covering both intrados and extrados vertical
strains (see Fig. 4.32a), contrary to the case (b), where corrected predictions match better
with observed data.

(a) Case (a) (without model bias estimation) (b) Case (b) (with model bias estimation)

Figure 4.32: Comparison of posterior strain predictions in both cases (a) and (b) - Mean values
and 95% CI.

4.4.1.5 Model evidence

Finally, it is worth noting that the SuS algorithm enables to estimate the model evidence as
a byproduct of the rare event estimation procedure (see Section 2.2). The model evidences
in cases (a) and (b) respectively read:

Za =

∫
Dσ2

∫
DX

La(x, σ
2)πa(x, σ

2)dxdσ2 (4.27)

Zb =

∫
DB

∫
Dσ2

∫
DX

Lb(x, σ
2,β)πb(x, σ

2,β)dxdσ2dβ (4.28)

where DB = R4 is the support of the prior of bias parameters B.

The 24 conducted SuS runs yields the estimated values logZa = −1701.8 and logZb =
−1565.6, with coefficient of variations smaller than 0.1%. Thus, based on principles of
Bayesian model selection (see Section 1.3.2.5), this suggests that the statistical model pro-
posed in Eq. (4.19) is more likely to have generated the observed data than the model in
Eq. (4.14), since logZb ≥ logZa. Nevertheless, such a conclusion should be nuanced, since
the introduction of a bias term which has to be calibrated offers more degrees of freedom,
which enable to explain observed data more easily.
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4.4.2 Bayesian inference for the THML behavior

4.4.2.1 Bayesian model setup

In Section 4.4.1, the proposed Bayesian inference approach focused on the mechanical behav-
ior of VeRCoRs mock up. In what follows, we propose an approach aiming at inferring the
whole set of uncertain parameters of the THML model, from both mechanical and leakage
in-situ measurement data.

Let X : Ω → DX be the random input parameters of the THML model. Keeping
notations introduced in Section 4.4.1, the forward model associated to strains εk is denoted
byMεk : DX → DY ε ⊂ Rn1 , and the strain data set is denoted by Yε = {yεk

}1≤k‘≤m ⊂ DY ε .
Note that here, the output dimension of the strain forward models (Mεk)1≤k≤m is from now
on denoted by n1.

Then, as the aforementioned delayed strains (εk)1≤k≤m, both local leakage Ql and global
leakageQg predicted by the THMLmodel may be seen as deterministic functionsMQl

,MQg :
DX → DY Q

⊂ Rn2 of the inputs X, where n2 is the number of pressurization tests of the
structure. As a result, strains, local and global leakage rates of the structure are predicted
by forward models (Mεk)1≤k≤m,MQl

andMQg . These models are concatenated by taking
their cartesian product in order to define a global forward model:

M : DX → DY

x 7→ (Mε1(x), . . . ,Mεm(x),MQl
(x),MQg(x))

(4.29)

where DY = Dm
Y ε
×D2

Y Q
⊂ Rn, with n = mn1 + 2n2.

Furthermore, let yQl
,yQg

∈ DY Q
be the data formed by measurements of local and

global leakage rates collected during the first n2 pressurization tests of the structure. Then,
our main goal is to infer the parameters X given the data set Y = Yε ∪ {yQl

,yQg
} =

{yε1 , . . . ,yεm ,yQl
,yQg

} ⊂ DY ⊂ Rn. To that end, a statistical model linking data to model
predictions has to be devised. Firstly, let y ∈ Rn be the concatenation of all the vectors
contained in the data set Y . Likewise, observables Y ε1 , . . . ,Y εm ,Y Ql

,Y Qg related to the
strain, local and global leakage responses of the structure are also gathered in a random
vector Y . Then, we propose the following additive Gaussian noise model:

Y |x =M(x) +E (4.30)

where E ∼ N (0,Σ) is a Gaussian random vector which is independent from X.

At this point, the noise covariance matrix Σ ∈ Rn×n has to be specified. We assume the
following block-wise structure:

Σ =



Σε1 0 . . . . . . 0

0
. . .

. . .
...

...
. . . Σεm

. . .
...

...
. . . ΣQl

0
0 . . . . . . 0 ΣQg


(4.31)

where {Σεk}1≤k≤m are noise covariance matrices associated to strain observations {yεk
}1≤k≤m,

and ΣQl
,ΣQg are noise covariance matrices associated to leakage observations yQl

,yQg
, re-

spectively.
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Furthermore, for each k ∈ {1, . . . ,m}, one sets Σεk = σ2
εI. Here, for the sake of sim-

plicity, the noise variance σ2
εk

is assumed to be known, and one sets σεk = 50 · 10−6, based
on results of Section 4.4.1.3. It is worth noting that more general observation models may
be adopted, as the model proposed in Eq. (4.19) accounting for an unknown noise vari-
ance and modeling biases. Likewise, concerning leakage noise covariance matrices, one sets
ΣQl

= diag(σ2
Ql,j

)1≤j≤n2 and ΣQg = diag(σ2
Qg ,j

)1≤j≤n2 , where σQl,j (respectively σQg ,j) is the
standard deviation associated to the measured local (respectively global) leakage during the
j-th pressurization test, given in Table 4.2. As for strain measurement data, it is also possible
to consider more sophisticated models for the observation noise of leakage data, including a
model accounting for an unknown observation noise. Here, the simpler choice of a known
observation noise variance is motivated by the fact that only few leakage measurements are
available.

Then, the likelihood function associated to the observation model in Eq. (4.30) is given
by:

L(x) = φn(M(x);y,Σ)

= (det (2πΣ))−
1
2 exp

[
−1

2
(M(x)− y)Σ−1(M(x)− y)⊺

]
(4.32)

Thus, denoting by π(x) the prior density of X, the posterior density of X knowing the
data set Y may be derived by applying Bayes’ theorem:

π(x|Y) ∝ π(x)L(x) (4.33)

4.4.2.2 Bayesian computations

As in Section 4.4.1, the SuS algorithm (see Section 2.2.2) is used to draw samples from
the posterior distribution whose density is given by Eq. (4.33). In order to assess the
predictive power of the THML model regarding the leakage behavior of the structure, three
cases are considered, namely an updating based on data collected until VD1, VD2 and
VD3 pressurization tests. Such a choice is also made so as to assess the information gain
provided by the increase of the amount of observed data, starting from a same level of
knowledge. Furthermore, focusing on the structure operational phase, measurement data
collected during pre-operational and control visit tests (i.e. VPO and VC1 tests, see Table
4.2) are withdrawn.

For each case, a number of samples per level of N = 104 is considered, whereas the
rarity parameter is again set to p0 = 0.1. Furthermore, 24 independent replications are also
produced. Moreover, the (PC-)PCE surrogates of strain and leakage responses constructed
in Section 4.3.2 are used to accelerate the SuS algorithm. Computational costs associated to
Bayesian computations are summarized in Table 4.7. For each case, the average computa-
tional time of a single SuS run is about 2000 seconds, whereas the total computational time
associated to the 24 replications is about 14 hours. Parallelizing computations on 8 workers
enabled to reduced this total cost to about 1.8 hours.
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Case
Cost of a single SuS run

Total computational cost [h]
Mean [s] CoV [%]

VD1 2013.8 7.8 14.0
VD2 2059.1 4.7 13.7
VD3 2119.2 5.2 14.1

Table 4.11: Computational cost of Bayesian computations: cost of a single SuS run and total
cost associated to the 24 produced replications.

4.4.2.3 Posterior input parameters

Quantities of interest (QoI) related to samples drawn from the posterior distribution of
THML parameters are presented and discussed hereafter. Firstly, a summary of the adopted
prior distribution of THML inputs is recalled in Table 4.12, whereas QoI related to posterior
marginals in the case of an updating at VD1, VD2 and VD3 tests are presented in Tables
4.13 to 4.15. Furthermore, for the VD1 case, univariate and bivariate marginals from the
posterior distribution of THML parameters estimated from samples are shown in Fig. 4.33.
Bivariate posterior marginals related to VD2 and VD3 cases present a similar correlation
structure, and are thereby not shown for the sake of brevity.

Firstly, the drying parameter B is sensibly impacted by Bayesian updating, through
a significant reduction of its standard deviation after updating at VD1 test. Its CoV also
decreases from a prior value of 20% to 3%. This may be linked to the fact that this parameter
has a significant influence on the variability of both strain and leakage responses (see Section
4.3.3). As a result, extracting information from mechanical and leakage measurement data
would provide a significant information gain. Conversely, the first moments (i.e. mean and
standard deviation) of the Klinkenberg parameter βK (which may be deemed as weakly
influent, see Section 4.3.3) are practically not modified through Bayesian updating. After
updating at VD1, the mean of the initial water content Cw,0 is shifted from 160 to 135
l.m−3, whereas its CoV slightly decreases from 15% to 12%. These values are not significantly
evolving after updating at VD2. Nevertheless, the updating at VD3 test involves an increase
of the mean of Cw,0 to a value of 154 l.m−3. Moreover, after updating at VD1 test, the mean
value of the desiccation shrinkage parameter αds is shifted from 10−5 to 1.3 · 10−5 kg.m−3.
Its posterior CoV remains around a value of 7% from VD1 to VD3 tests.

Furthermore, it is worth noting that mean values of initial tensions in prestressing cables
(σθ,0, σz,0) are reduced once Bayesian updating is performed (see Table 4.13). This has
already been observed in the case of an updating based on mechanical monitoring data only
(see Section 4.4.1.3).

Then, the mean value of the basic creep consolidation parameter κ is decreased from
10−4 to 7 ·10−5, whereas its CoV slightly decreases from 25% to 18% after updating at VD1.
These values are practically not evolving when assimilating data at tests VD2 and VD3.
On the contrary, the mean value of the intrinsic permeability is continuously shifted from a
value of 5 · 10−17 m2 after VD1 to a value of 8 · 10−17 m3 after VD3. Such a behavior could
be attributed to an underestimation of diffuse leakage during the VD3 test. Lastly, the
mean value of the local leak parameter αl is also slightly increased throughout the Bayesian
updating steps, from VD1 to VD3 tests.
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n◦ Parameter Units Distribution Mean Std CoV

1 B 10−2 Lognormal 8.00 1.20 0.15
2 Cw,0 l.m−3 Lognormal 160.00 24.00 0.15
3 αds 10−6 kg.m−3 Lognormal 10.00 2.50 0.25
4 σθ,0 MPa Lognormal 1.51 · 103 378.50 0.25
5 σz,0 MPa Lognormal 1.51 · 103 378.50 0.25
6 κ 10−4 Lognormal 1.00 0.25 0.25
7 k0 10−17m2 Lognormal 7.00 3.50 0.50
8 βK MPa Lognormal 0.18 0.04 0.25
9 αl - Lognormal 6.00 3.00 0.50

Table 4.12: Summary of prior marginals of THML model input parameters.

n◦ Parameter Units Mean Std CoV 95 % CI

1 B 10−2 8.44 0.23 0.03 [7.99, 8.92]
2 Cw,0 l.m−3 135.93 14.85 0.11 [112.25, 172.98]
3 αds 10−6 kg.m−3 13.08 0.75 0.06 [11.83, 14.82]
4 σθ,0 MPa 1.23 · 103 108.34 0.09 [969.48, 1.42 · 103]
5 σz,0 MPa 1.06 · 103 183.73 0.17 [622.05, 1.39 · 103]
6 κ 10−4 0.74 0.11 0.15 [0.53, 0.96]
7 k0 10−17m2 5.05 1.55 0.31 [2.22, 7.85]
8 βK MPa 0.18 0.05 0.26 [0.11, 0.30]
9 αl - 4.15 0.91 0.22 [2.35, 5.77]

Table 4.13: Statistics related to the posterior marginals of THML input parameters, after updat-
ing at VD1.

n◦ Parameter Units Mean Std CoV 95 % CI

1 B 10−2 8.30 0.27 0.03 [7.58, 8.80]
2 Cw,0 l.m−3 134.97 16.29 0.12 [111.64, 188.93]
3 αds 10−6 kg.m−3 13.48 0.86 0.06 [11.77, 15.14]
4 σθ,0 MPa 1.31 · 103 107.70 0.08 [1.09 · 103, 1.52 · 103]
5 σz,0 MPa 1.19 · 103 177.34 0.15 [906.24, 1.55 · 103]
6 κ 10−4 0.72 0.13 0.18 [0.51, 1.06]
7 k0 10−17m2 5.84 1.60 0.27 [3.42, 10.18]
8 βK MPa 0.19 0.05 0.26 [0.11, 0.30]
9 αl - 4.67 0.90 0.19 [2.92, 6.42]

Table 4.14: Statistics related to the posterior marginals of THML input parameters, after updat-
ing at VD2.

Then, based on the bivariate marginals depicted in Fig. 4.33, the correlation structure
of posterior THML parameters is analyzed hereafter. A strong linear correlation is observed
between parameters σθ,0 and σz,0. Such a correlation has already been observed in the case of
Bayesian inference from mechanical monitoring data only (see Section 4.4.1). Furthermore,
strong linear correlations are also observed for couples (σθ,0, αl) and (σz,0, αl). This could be
explained by the nature of the adopted local leak model (see Section 3.3.5.2), which directly
links prestressing losses to local leaks.
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n◦ Parameter Units Mean Std CoV 95 % CI

1 B 10−2 7.88 0.41 0.05 [7.28, 8.63]
2 Cw,0 l.m−3 153.97 28.04 0.18 [108.21, 204.97]
3 αds 10−6 kg.m−3 13.55 1.09 0.08 [11.34, 15.55]
4 σθ,0 MPa 1.38 · 103 117.21 0.08 [1.15 · 103, 1.61 · 103]
5 σz,0 MPa 1.26 · 103 219.41 0.17 [851.42, 1.73 · 103]
6 κ 10−4 0.65 0.12 0.19 [0.48, 0.94]
7 k0 10−17m2 8.00 2.78 0.35 [3.43, 13.16]
8 βK MPa 0.19 0.05 0.25 [0.11, 0.30]
9 αl - 5.14 1.08 0.21 [3.22, 7.34]

Table 4.15: Statistics related to the posterior marginals of THML input parameters, after updat-
ing at VD3.

Figure 4.33: Univariate and bivariate marginals from the posterior distribution of THML model
input parameters estimated from samples. Prior samples are shown in grey, whereas posterior
samples are shown in blue. The posterior mean value of each parameter is shown by a vertical red
line.
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4.4.2.4 Posterior predictions

Next, posterior samples are used in order to perform new predictions of the long-term me-
chanical and leakage behavior of the structure. Firstly, similarly to Section 4.4.1.4, posterior
predictions of delayed strains are performed from samples of the corresponding posterior
predictive distributions (see Eq. 4.26). Prior and posterior predictions of tangential and
vertical strains are presented in Fig. 4.34. For each direction (i.e. tangential or vertical),
predicted intrados and extrados strains are averaged, for the sake of readability. As al-
ready observed in the case (a) considered in Section 4.4.1.4, prior predictions involve large
uncertainties, due to the relatively large uncertainties encoded in the adopted prior input
distribution. Furthermore, posterior tangential strains match well with observed tangential
strains, whereas posterior vertical strains are aligned on the mean of observed ones.

(a) Prior predictions (b) Posterior predictions

Figure 4.34: Prior and posterior strain predictions after updating at VD3 test.

Next, prior and posterior local leakage predictions are presented in Fig. 4.35. Firstly,
as previously observed for prior strain predictions, prior local leakage predictions present
sensibly large uncertainties (see Fig. 4.35a). Besides, the prior mean predicted local leakage
rate is relatively in good agreement with measurements. Indeed, the predicted mean local
leakage rate at VD1 test is about 21.2 Nm3.h−1, whereas the measured leakage rate is about
24.8 Nm3.h−1. Then, after assimilating measurements after VD1 tests, the predicted mean
is slightly adjusted, and the width of credible intervals is sensibly reduced. These credible
intervals remain relatively large, though. This is notably due to the fact that local leakage
measurements involve large uncertainties, as explained in Section 4.2.2.3.

Moreover, it is worth noting that the local leakage rates at VD2 and VD3 tests are
also reasonably well predicted in terms of mean value (36.3 Nm3.h−1 predicted vs. 38.9
Nm3.h−1 observed at VD2 test, and 43.9 Nm3.h−1 predicted vs. 38.9 Nm3.h−1 observed at
VD3 test). The constant evolution of local leaks between VD3 and VD5 tests suggested by
measurements is not reproduced by the model, though. Furthermore, it is also remarked
that the assimilation of measurement data after VD2 does not provide significant uncertainty
reduction in local leakage predictions, presumably due to the large uncertainties tainting local
leakage measurements.
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(a) Prior (b) Posterior - after VD1 test

(c) Posterior - after VD2 test (d) Posterior - after VD3 test

Figure 4.35: Prior and posterior local leakage predictions.

Lastly, prior and posterior predictions of the global leakage rate of the structure are
presented in Fig. 4.36. As for local leakage predictions, prior global leakage predictions
obviously involve very large uncertainties. Furthermore, the mean predicted global leakage
rate at VD1 test accurately approaches the observed one (32.3 Nm3.h−1 predicted vs. 30.3
Nm3.h−1). As a result, the mean trend of predictions is practically not affected by Bayesian
updating at VD1. However, uncertainties on predictions are strongly reduced, leading to
predicted CoVs comparable to that related to observations (i.e. about 3%). Then, after
Bayesian updating at VD1, the mean predicted global leakage rate at VD2 (41.0 Nm3.h−1)
approaches the observed one (46.2 Nm3.h−1) with a relative error of about 11.1%. Subse-
quently, updating at VD2 induces an adjustment of the mean of predictions, so that the
mean predicted leakage rate at VD3 (52.0 Nm3.h−1) approaches the observed one (57.1
Nm3.h−1) with a relative error smaller than 9%. Finally, after updating at VD3, the mean
predicted leakage rate at VD5 is given by 67.6 Nm3.h−1 whereas the measured one is about
64.7 Nm3.h−1, which corresponds to a relative error of about 4.5%. Thus, Bayesian inference
enabled to update and precise predictions of the global leakage behavior of the structure,
throughout its operational phase.
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(a) Prior (b) Posterior - after VD1 test

(c) Posterior - after VD2 test (d) Posterior - after VD3 test

Figure 4.36: Prior and posterior global leakage predictions.
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4.5 Conclusion

In this chapter, we have proposed a global methodology aiming at accounting for uncertain-
ties in simulations of the long-term THML behavior of large concrete containment structures.
In this context, the VeRCoRs mock-up has constituted the central case study of this chapter.
Firstly, mostly based on expert judgement, the uncertainties tainting input parameters of
the THML modeling strategy presented in Chapter 3 have been modeled in a probabilistic
setting, through the definition of a prior probability distribution. Then, adapted surrogate
modeling techniques have been used to provide inexpensive-to-evaluate approximations of
some output variables of interest of the THML model, such as strains or leakage rate. In
particular, we considered principal component PCE surrogates so as to take advantage of
the structure of strain series and providing an significant reduction of the dimensionality
of strain outputs, leading to computationally efficient surrogate model constructions. The
aforementioned surrogates have then been used to perform a variance-based sensitivity anal-
ysis and propagating prior uncertainties. Next, we have proposed to use Bayesian inference
in order to combine the constructed prior with in-situ measurement data in order to derive
a new state of knowledge about uncertain parameters. In this framework, we have presented
a first approach focused on the mechanical behavior of the structure, which notably enabled
to manage an unknown observation noise variance and to estimate modeling biases from ob-
served data. Then, we have proposed an approach dealing with both mechanical and leakage
measurement data, enabling to update inputs of the whole THML computational chain, and
subsequently performing new predictions of both strains and leakage rate of the structure.
Results suggest that the proposed approach enables well to update input parameters and
precise predictions of the long-term behavior of the structure throughout its exploitation
phase, and provided satisfactory estimations of its global leakage rate (with relative errors
smaller than 10%).

Besides, the presented work underlies several perspectives: firstly, Bayesian inference
results presented in Section 4.4 rely on a single prior distribution, which has been devised
through expert judgment, i.e. based on a more or less subjective viewpoint. Then, in a
second level UQ perspective, it would be interesting to assess the influence of choice of the
prior distribution on Bayesian inference results, as proposed in the framework of robust
Bayesian inference (Berger, 1990; Ruggeri et al., 2005). In a more practical framework,
in the publication (Rossat et al., 2022c), we studied the effect of the choice of the prior
through numerical experiments focusing on the mechanical behavior of VeRCoRs mock-up.
Furthermore, the considered surrogate modeling techniques (namely PCE and PC-PCE)
for approximating time-dependent output variables of the THML model seemed to be well
suited to the problem at hand. This is notably due to the fact that aging is a somewhat slow
process, which does not involve an increase of non-linearities over time that may cause the
failure of (PC-)PCE approaches (Mai, 2016). Lastly, in this chapter, the SuS algorithm used
for Bayesian computations (see Section 2.2) has been coupled with prior-based (PC-)PCE
surrogates, for the sake of simplicity. Then, it would be possible to use the adaptive PCK
approach presented in Chapter 2, in order to sample posterior distributions in a possibly
more efficient and robust way. This would require a non-negligible additional cost, though,
since prior-based surrogates still have to be constructed so as to performing other UQ tasks
(such as prior-based sensitivity analysis and uncertainty propagation).
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Finally, the proposed approach focused on the VeRCoRs mock-up, which constitutes
a 1:3 scale mock-up of an operating NCB. Such a structure may be seen as a validation
support for the proposed probabilistic THML modeling approach, involving well known
material properties as well as numerous monitoring devices. Besides, it is worth noting that
the presented Bayesian inference approach is mainly based on in-situ monitoring data (e.g.
strain and leakage measurements) that are also available on site in the case of real operating
NCBs, in a smaller amount, though. This would suggest the extension of the proposed
approach to real operating NCBs.

Nevertheless, the transition from 1:3 scale (VeRCoRs) to 1:1 scale (operating NCBs) in-
duces several problems remaining to be addressed. Indeed, contrary to VeRCoRs mock-up,
operating NCBs may be subjected to maintenance operations related to their leak tightness,
involving the presence of coatings. Hence, the effect of such coatings on the leakage behav-
ior has to be modeled in order to better plan potential repair works. Furthermore, THML
modeling for real operating NCBs subjected to coatings has received a little attention in
the literature, and scarce information are available regarding some material properties of
such structures, which involves a more vague state of knowledge than in the case of VeR-
CoRs mock-up. Moreover, contrary to VeRCoRs mock-up which has been built for research
purposes, real operating NCBs must satisfy several safety requirements related to their leak-
age rate, which may condition their long-term exploitation. This notably implies to assess
their reliability related to the leak tightness they must ensure, notably through estimat-
ing the probability of exceeding some leakage regulatory thresholds. Such problems will be
addressed in the next chapter, in which a real operating NCB will be studied.
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5.1 Introduction

In Chapter 4, we have presented a general methodology aiming at performing probabilis-
tic predictions of the long-term THML behavior of containment structures subjected, and
updating the uncertainties of input parameters from in-situ noisy monitoring data. This
methodology has been illustrated and validated at the scale of the VeRCoRs mock-up, which
constitutes a 1:3 scale NCB, mainly built for research purposes related to the understanding
of the effects of aging on the long-term behavior of NCBs.

Nevertheless, the framework of operating containment structures underlies an additional
dimension, namely the evaluation of their reliability regarding the leak tightness function
they must ensure. For instance, in the framework of operating NCBs, such safety require-
ments notably take the form of regulatory leakage thresholds that must not be exceeded.
Moreover, operating containment structures imply another specificity compared to the VeR-
CoRs mock-up, namely the presence of coatings placed on the surface of the structure during
maintenance operations. As a result, along with probabilistic predictions of the long-term
THML behavior of the structure, it is necessary to quantify the risks of exceeding the afore-
mentioned regulatory thresholds, while assessing the effects of possible repair works. Such
a risk quantification could be used so as to better plan the maintenance of the structure,
through evaluating several scenarios related to repair works aiming at reinforcing structural
leak tightness.

Consequently, the main goal of this chapter is to propose a general methodology for as-
sessing the reliability of the leak tightness of containment structures. In this context, a scale
1:1 operating NCB will constitute the central case-study of this chapter. Firstly, it is worth
noting that the modeling of the effects of coatings at the scale of large containment struc-
tures is an a priori complex task, and has received a very little attention in the literature.
Hence, we propose simple modeling assumptions which account for the effect of such repairs,
in order to devise a THML computational model suitable for operating NCBs. To that end,
the knowledge gained at the scale of VeRCoRs mock-up in terms of THML modeling will be
fully exploited to model the behavior of operating NCBs in the absence of coatings.

Besides, the devised THML computational model involves a quite large amount of un-
certain input parameters. Hence, in order to facilitate forward and inverse UQ tasks, it is
necessary to select the PII on the THML model output variability, and rank them by de-
creasing influence. To our knowledge, no works dealing with the identification of influential
inputs of THML models for scale 1:1 NCBs have been proposed in the literature. At the scale
of VeRCoRs mock-up, the former work of Bouhjiti (2018) involved an OAT-based screening
for the inputs of a THML model, which enabled to reduce the analysis to about ten uncertain
parameters. A crucial question then arises: do the conclusions of Bouhjiti (2018) made at
VeRCoRs scale transfer to operating NCBs ? Consequently, we attempt to answer to this
question by conducting a global sensitivity analysis based on Sobol’ sensitivity indices.

Next, based on the identified PII and their probability distribution, PoF related to the
leakage behavior of the structure may be estimated, based on computational tools devel-
oped in the framework of structural reliability (see Section 1.2.6). Nevertheless, the input
probability distribution retained for the aforementioned PII typically stems from a subjec-
tive process aiming at summarizing the available information about them, including expert
judgement. As a result, this input distribution itself is known with some level of confidence.
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Then, in a second-level UQ perspective (see Section 1.2.3), it would be necessary to
quantify the impact of the choice of the input distribution, and to assess the sensitivity of
estimated PoF with respect to this choice. In this context, we propose to use a method taken
from the new UQ branch of robustness analysis which has recently emerged in the field of
sensitivity analysis, namely perturbed-law based sensitivity indices (PLI) (Lemâıtre, 2014;
Lemâıtre et al., 2015; Sueur et al., 2016).

Finally, it is worth noting that the aforementioned reliability analysis remains based on
a probability distribution that does not takes into account monitoring data related to the
response of the structure. Following the Bayesian viewpoint adopted throughout this thesis,
we propose an approach for updating PoF related to the leakage behavior of the structure,
from in-situ monitoring data. Then, the proposed approach not merely enables to update
the knowledge in uncertain parameters from observed data as in Chapter 4, but also to
update the estimation of the risks of exceeding regulatory leakage thresholds.

This chapter is organized as follows: THML modeling assumptions suitable for operating
containment structures are described in Section 5.2. Then, the PII of the devised computa-
tional model are identified in Section 5.3. Subsequently, a reliability analysis of the leakage
behavior of the studied NCB is presented in Section 5.4. In particular, a first prior-based
reliability analysis is performed in Section 5.4.1. Next, an introduction to PLI and their ap-
plication to the leakage behavior of the studied NCB are presented in Section 5.4.2. Lastly,
a Bayesian analysis of both input parameters and estimated PoF is undertaken in Section
5.5.

5.2 Computational model setup

In this section, a computational model suitable for assessing the long-term THML behavior
of the studied operating NCB is devised. This model is similar to that adopted in Chapter
4 to assess the global behavior of VeRCoRs mock-up, and is mostly based on the THML
constitutive equations presented in Chapter 3. Hence, we deliberately adopt a shorter pre-
sentation of the studied structure and the computational model, and focus on specificities
of operating containment structures.

5.2.1 Finite element meshes

The computational model considered in this chapter is based on a RSV of the standard zone
of a operating NCB. As in Chapter 4, two FE meshes are considered for THML calculations,
namely one mesh for thermo-hydric and diffuse leakage calculations, and one for mechanical
calculations. These meshes are depicted in Fig. 5.1, whereas information about them are
summarized in Table 5.1.

5.2.2 Modeling assumptions

During their operational phase, operating NCBs may be subjected to repair works aiming
at reinforcing their leak tightness. Such works typically consist in laying composite coatings
on internal and/or external surfaces of the structure (see Fig. 5.2). Compared to the typical
permeability of concrete, such coatings may be considered to be impervious (Asali, 2016).
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Figure 5.1: FE meshes of the standard zone RSV: (a) mesh for thermo-hydric and diffuse leakage
calculations; (b) mesh for mechanical calculations.

Phase
Concrete Prestressing cables

Element type Nodes Element type Nodes

TH-L HEXA8 (linear) 2240 - -
M HEXA20 (quadratic) 4076 SEG2 (linear) 39

Table 5.1: Information about FE meshes of the standard zone RSV.

Figure 5.2: Laying of coatings on the extrados surface of the dome of an operating NCB, during
a decennial visit ©EDF.

Physically speaking, the presence of coatings induces several effects on the THML be-
havior of the structure. Firstly, regarding the hydric behavior, coatings act as a barrier for
moisture transfers, as they induce a slowdown of drying kinetics of the concrete wall. This
is notably the case when coatings are positioned on the internal surface of the structure,
subjected to a higher temperature (and thereby to a lower RH) due to the presence of the
operating reactor.
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Such modifications of thermo-hydric boundary conditions then have repercussions on
the mechanical behavior of the underlying concrete volume, notably through the slowdown
of desiccation shrinkage and creep strains. Furthermore, during pressurization tests, the
positioning of coatings involve an additional layer of complexity in terms of leakage paths.
Indeed, depending on the connectivity of leak paths in the concrete wall (e.g. cracks, steel-
concrete interfaces, construction joints), the presence of impervious coatings may induce
the creation of complex leakage paths, so that some coatings may be by-passed. As a
result, although a coating itself is impervious, the combination of the concrete wall and the
aforementioned coating may be permeable, to a certain extent. For this reason, the notion
of efficiency of a given coating will be used to characterize the ability of the combination of
this coating with the concrete wall to reduce the leakage rate of a given zone.

From a modeling point of view, explicitly representing coatings as well as their effects on
the global THML behavior of the structure would typically require a full scale FE model,
involving a possibly prohibitive computational cost. Consequently, some simplifying mod-
eling assumptions are necessary to account for the effects of coatings on the global THML
behavior of the structure. To that end, we assume an equivalence principle, linking the
leakage response of the structure to the response of the same structure without coatings.
In this context, the global leakage rate Qg of the structure with coatings is supposed to be
proportional to the global leakage rate Qg,0 of the same structure without coatings:

Qg = CcQg,0 (5.1)

where Cc ∈ [0, 1] is a correction factor which takes into account the surface and the efficiency
of coatings.

The formulation given in Eq. (5.1) enables to assess the behavior of a coated structure
through a decoupling of effects of aging and effects of coatings: without any coatings, the
global leakage rate of the structure is expected to increase over time, under the effects of
aging. In the presence of coatings, only a fraction of the obtained leakage rate is expected
to be observed. Thus, this hypothesis allows to reduce the THML modeling to a VeRCoRs-
like configuration (i.e. without coatings), and to subsequently correct the estimated leakage
rate with a factor that integrates the amount of positioned coatings and their efficiency. In
this context, the THML modeling strategy presented in Chapter 3 and used at the scale of
VeRCoRs mock-up in Chapter 4 is used so as to assess the evolution of the (virtual) leakage
rate without coatings Qg,0.

Next, the correction factor Cc introduced in Eq. (5.1) is precised hereafter. Firstly, in
the simple case of a structure which only presents coatings on one face (i.e. internal or
external), the aforementioned correction factor is assumed to be written as follows:

Cc = 1− γcsc (5.2)

where sc = Sc/St is the fraction of coated surface (Sc being the coated surface and St the total
surface), and γc ∈ [0, 1] a so-called efficiency parameter. Such a formulation is understood
as follows: in the case of a fully efficient device (i.e. γc = 1), the leakage reduction is total
(i.e. Cc = 0) if the surface is fully coated.
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In practice, operating NCBs may present coatings on both internal and external surfaces.
Consequently, we introduce the following extension of Eq. (5.2) for the correction factor Cc:

Cc = c(γc,isc,i, γc,esc,e) (5.3)

where c : [0, 1]2 → [0, 1]2 is a function, γc,i, γc,e are efficiency parameters related to internal
and external surfaces, respectively, and sc,i, sc,e the fractions of coated surfaces at internal
and external sides. The function c is assumed to be continuous, and for physical reasons,
one must have c(0, 0) = 1 and c(1, 1) = 0. Furthermore, in the case of fully efficient intrados
coatings (γc,i = 1), no leakage is expected if all the internal surface is coated, regardless to
the surface and the efficiency of extrados coatings (and vice versa). Hence, the function c
must also satisfy the conditions c(1, x) = c(x, 1) = 0, for all x ∈ [0, 1]. In what follows,
the simple polynomial function c(x, y) = (1− x)(1− y) will be considered. This consists in
writing the global leakage rate Qg by:

Qg = (1− γc,isc,i)(1− γc,esc,e)Qg,0 (5.4)

Finally, assuming the following superposition principle to the (virtual) global leakage
Qg,0 (see Section 4.2.3.2):

Qg,0 = Qd,0 +Ql,0 (5.5)

where Qd,0 and Ql,0 denote the diffuse and local leakage rates without coatings, respectively,
formulations analogous to Eq. (5.4) are obtained for the diffuse and local leakage rates with
coatings Qd and Ql (i.e. Q⋆ = (1− γc,isc,i)(1− γc,esc,e)Q⋆,0, with ⋆ ∈ {d, l}).

5.2.3 Boundary conditions and loading

The THML boundary conditions and loading applied at the scale of the standard zone RSV
are precised hereafter. Firstly, analogously to the VeRCoRs RSV studied in Chapter 4, Neu-
mann boundary conditions in terms of temperature are adopted, through the definition of
convective exchange coefficients kth,i and kth,e at intrados and extrados surfaces, respectively.
Based on in-situ measurements of ambient temperature, simplified temperature histories are
considered for the ambient air of the internal and external spaces of the containment wall.
Likewise, Dirichlet boundary conditions in terms of water content are imposed at intrados
and extrados surfaces, from RH histories composed with a sorption-desorption model. Sim-
plified temperature and RH histories for ambient air based on in-situ measurements are
summarized in 5.2.

Period
Temperature [◦C] RH [%]

Int. Ext. Int. Ext.

Initial state 12.8 12.8 100 100
Reactor startup 12.8 12.8 90 90

Reactor stationary regime 31.0 22.4 43 55

Table 5.2: Simplified temperature and RH histories of the ambient air of the studied NCB.
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Then, concerning mechanical boundary conditions, one considers the same kinematic BC
than those adopted at the scale of the VeRCoRs RSV presented in Section 4.2.3. Further-
more, prestressing is applied in an identical way. Next, regarding boundary conditions for
diffuse leakage calculations, pressure profiles similar to that considered for VeRCoRs mock-
up (see Section 4.2.4) are applied on intrados and extrados surfaces of the RSV. Lastly,
histories of the (normalized) surface of coatings positioned on intrados and extrados faces
are presented in Fig. 5.3. Such histories will be used so as to assess the effects of coatings on
the global leakage behavior of the studied structure. From the control visit test (VC1 test),
the surface of intrados coatings has been increased over time, until the test of the second
decennial visit (VD2 test). Extrados coatings are only positioned from the third decennial
visit (VD3), whereas the surface of intrados coatings has not been increased for this visit.
Moreover, it is worth noting that coatings surfaces for the fourth decennial visit (VD4) are
here assumed to be those planned for the VD3 test.

Figure 5.3: Time evolution of the total surface of coatings, on intrados and extrados surfaces.
Coatings surfaces are normalized by the surface planned for VD3 test. Hence, such values shall not
be confused with the coated fraction of the surface of the structure.
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5.3 Identification of PII of the THML model

The computational model presented in Section 5.2 involves a large amount (≈ 30) of uncer-
tain parameters, corresponding to those already considered in Chapter 4 (see Section 4.2.4
for a detailed description), as well as coating efficiency parameters introduced in Section
5.2.2. Then, it would be possible to employ screening techniques (see Section 1.2.5) such as
the Morris method (Morris, 1991) in order to identify the PII on the variability of output
variables of interest of the THML computational model. In this section, we instead choose to
compute Sobol’ sensitivity indices through the construction of (PC-)PCE surrogates, which
enable a more comprehensive sensitivity analysis than classical screening methods, for a
comparable amount of model calls. Indeed, based on preliminary numerical experiments,
we found that reasonably accurate sparse (PC-)PCE surrogates may be constructed for a
cost comparable to that required by classical screening methods, in spite of the quite large
the dimension of the problem (≈ 30). This is in line with recent results related to sparse
PCE (Blatman and Sudret, 2011b; Lüthen et al., 2021b), which demonstrated their ability
to provide accurate approximations with experimental designs of limited size, even in the
case of input dimensionalities of O(102).

The probability distribution of the considered THML inputs is defined in Section 5.3.1.
The construction of (PC-)PCE surrogates of output variables of interest of the THML model
is subsequently described in Section 5.3.2. Lastly, the estimated Sobol’ indices are presented
and discussed in Section 5.3.3.

5.3.1 Probabilistic input modeling

The probability distribution of each input parameter of the THML computational model are
summarized in Table 5.3. The characteristics of such distributions have been mostly defined
through expert judgement, due to the scarce available information. Furthermore, due to
the lack of information regarding their dependence structure, all these input parameters are
assumed to be mutually independent.

5.3.2 Surrogate modeling

5.3.2.1 General settings

The output variables of interest provided by the THML model described in Section 5.2
are the same than that considered at VeRCoRs scale (see e.g. Section 4.2.4), except for
the leakage behavior, for which the effects of coatings are integrated here. Consequently,
surrogate modeling settings considered here are similar to those adopted in Section 4.3.2.
The latter are recalled herebelow:

• time-dependent quantities computed on a time grid with size of O(102) (such as wa-
ter saturation Sw, strains ε or prestressing losses Π) are approximated by PC-PCE
surrogates.

• the (virtual) diffuse leakage Qd,0 is approximated by a PCE surrogate, for each pres-
surization test.
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n◦ Parameter Units Distribution Bounds Mean Std CoV

1 λc W.m−1.K−1 Lognormal - 2.33 0.23 0.10
2 cpc 102 kJ.kg−1.K−1 Lognormal - 8.80 0.88 0.10
3 kth,i W.m−2.K−1 Lognormal - 5.00 1.25 0.25
4 kth,e W.m−2.K−1 Lognormal - 3.00 0.75 0.25
5 A 10−13 m2.s−1 Lognormal - 1.95 0.49 0.25
6 B 10−2 Lognormal - 6.80 1.70 0.25
7 Uw kJ.mol−1 Lognormal - 39.06 1.17 0.25
8 T 0

w K Lognormal - 20.00 2.00 0.10
9 Cw,0 l.m−3 Lognormal - 128.00 32.00 0.25
10 Ec GPa Lognormal - 36.70 9.17 0.25
11 ν - Lognormal - 0.20 0.02 0.10
12 ρc 103 kg.m−3 Lognormal - 2.35 0.24 0.10
13 αth 10−6 K−1 Lognormal - 10.00 1.00 0.10
14 αds 10−6 kg.m−3 Lognormal - 10.00 5.00 0.50
15 νc - Lognormal - 0.20 0.02 0.10
16 krd 1010 Pa Lognormal - 5.98 2.99 0.50
17 ηrd 1016 Pa.s Lognormal - 8.12 4.06 0.50
18 ηid 1020 Pa.s Lognormal - 1.76 0.88 0.50
19 κ 10−4 Lognormal - 1.00 0.50 0.50
20 T 0

bc K Lognormal - 20.00 2.00 0.10
21 Ubc kJ.mol−1 Lognormal - 39.06 0.47 0.10
22 ηdc 109 Pa.s Lognormal - 7.39 3.69 0.50
23 σθ,0 MPa Lognormal - 1.48 · 103 371.67 0.25
24 σz,0 MPa Lognormal - 1.48 · 103 371.67 0.25
25 σz,c MPa Lognormal - 1.37 0.34 0.25
26 βK MPa Lognormal - 0.20 0.05 0.25
27 k0 10−17 m2 Lognormal - 10.00 5.00 0.50
28 ck - Lognormal - 0.45 0.11 0.25
29 αl - Lognormal - 10.00 5.00 0.50
30 γc,i - Truncated Gaussian [0; 1] 0.50 0.25 0.50
31 γc,e - Truncated Gaussian [0; 1] 0.50 0.25 0.50

Table 5.3: Summary of the probability distribution of each input THML parameter.

Recall that the local leakage rate without coatings Ql,0 is given by an analytical function of
prestressing losses Π. Furthermore, the leakage rates with coatings Qd, Ql, Qg are computed
from the analytical coating model introduced in Section 5.2.2.

Then, an experimental design of size K = 1000 is built through Latin Hypercube Sam-
pling (LHS). The aforementioned output variables of interest are subsequently computed
through evaluating the THML computational model. Similarly to the computational times
required at the scale of the VeRCoRs RSV (see Section 4.3.2), the cost required by a single
model run is about 30 seconds for thermo-hydric calculations, 10 minutes for mechanical cal-
culations, and 2 minutes for leakage calculations. As a result, the total computational cost
associated to evaluations of the THML model at samples of the constructed experimental
design is about 208 hours, without parallelization.
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Furthermore, the LARS-based sparse PCE procedure of Blatman and Sudret (2011b)
implemented in UQLab (Marelli and Sudret, 2014) is used so as to construct PCE. We use
hyperbolic truncation sets Ap,q = {α ∈ Nd | ∥α∥q ≤ p} (see Section 1.2.4.2) with q = 0.8
in order to limit the number of regressors, since the input dimensionality is quite large
(d = 31). Moreover, the degree p is adaptively chosen between 1 and 5 throughout the PCE
construction procedure. Lastly, concerning PC-PCE surrogates, the number of principal
components is chosen such that the PCA truncation-induced error is smaller than 10−3.

5.3.2.2 Error estimation

Next, the validation error of the constructed (PC-)PCE surrogates (see Section 1.2.4.5) is
estimated hereafter. Keeping notations introduced in Section 4.4.1 for strains, tangential
intrados and extrados strains are denoted ε1, ε2, whereas vertical intrados and extrados
strains by ε3, ε4. For each output quantity of interest, (PC-)PCE error estimates as well as
the number of retained principal components (in the case of PC-PCEs) to achieve a PCA
error smaller than 10−3 are summarized in Table 5.4. Regarding the water saturation ratio
Sw, only 3 principal components have been retained, and the PC-PCE error of the corre-
sponding surrogate is about 3.7 · 10−3, which suggests a satisfactory accuracy. Furthermore,
regarding strains (ε1, . . . , ε4), a number of 5 principal components has been retained, and
involve PC-PCE errors of around 1.3 · 10−2, which still constitutes an acceptable error level.
Remark that PC-PCE errors are larger than those obtained in the VeRCoRs case, in Section
4.3.2, where PC-PCE errors of about 10−3 have been obtained. This may be attributable to
the larger input dimension considered here, which involves a harder approximation problem.
Then, prestressing losses Π are approximated with a PC-PCE with 3 principal components,
and a PC-PCE error of about 2.7 · 10−2. Lastly, concerning the diffuse leakage rate Qd,0

which is approximated by a PCE (in a component-wise fashion), a PCE error (see Section
1.2.4.5) of about 1.1 · 10−2 is obtained, which also constitutes a satisfactory error level.

Sw ε1 ε2 ε3 ε4 Π Qd,0

PC number 3 5 5 5 5 3 -
ϵPCA 5.3 · 10−4 8.8 · 10−4 8.9 · 10−4 8.0 · 10−4 8.0 · 10−4 4.5 · 10−4 -
ϵPCE 1.4 · 10−3 1.2 · 10−2 1.1 · 10−2 1.4 · 10−2 1.4 · 10−2 2.0 · 10−2 1.1 · 10−2

ϵPC−PCE 3.7 · 10−3 1.9 · 10−2 1.8 · 10−2 2.2 · 10−2 2.1 · 10−2 2.7 · 10−2 -

Table 5.4: Summary of validation error estimates for (PC-)PCE surrogates of output variables of
interest of the THML model.

5.3.3 Variance-based sensitivity analysis

In the following, Sobol’ sensitivity indices are computed as in Section 4.3.3, namely either
analytically from (PC-)PCE coefficients (see Section 1.2.5.2 and Appendix A), or through
Monte Carlo estimation for leakage rates Ql,0, Qg,0 and Qg, with N = 106 samples.

Besides, when considering models with multivariate outputs, it may be difficult to draw
conclusions related to the relative importance of inputs based on Sobol’ sensitivity indices.
Furthermore, a simple averaging of these indices can be misleading, since a potentially large
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weight may be attributed to terms associated to a small output variance. Hence, in order to
provide concise indicators, we propose to use generalized Sobol’ indices (Gamboa et al., 2013;
Lamboni et al., 2011). Such indices consist in averaging all the Sobol’ indices weighted by
the variance of their corresponding output. Considering a model with n output components
(Yt)1≤t≤n, the corresponding generalized Sobol’ indices are written as follows:

GSu =

∑n
t=1Var[Yt]St,u∑n

t=1Var[Yt]
(5.6)

where St,u is the Sobol’ index corresponding to the output Yt, for u ⊆ {1, . . . , d}.
Likewise, generalized total Sobol’ indices are given by:

GTi =

∑n
t=1Var[Yt]Tt,i∑n
t=1Var[Yt]

(5.7)

where Tt,i the total Sobol’ index corresponding to Yt, for i ∈ {1, . . . , d}.
Next, Sobol’ sensitivity indices related to output THML variables of interest are pre-

sented. For the sake of concision, a particular attention will be paid for total Sobol’ indices,
which encapsulate the total contribution to the output variance of each single input.

5.3.3.1 Hydric behavior

Firstly, the time evolution of total Sobol’ indices related to the water saturation ratio Sw

is shown in Fig. 5.4. For the sake of readability, total Sobol’ indices (Tt,i)1≤t≤n verifying
max1≤t≤n Tt,i ≤ 10−2 are not displayed. Moreover, time is normalized by the last instant
of the simulated service period of the structure. Then, it clearly appears that only two
parameters are mostly contributing to the output variance (by themselves and by their
interactions), namely the drying parameter B and the initial water content Cw,0. Such a
result has been observed at the scale of VeRCoRs mock-up by Bouhjiti (2018).

Figure 5.4: Water saturation ratio - Time evolution of total Sobol’ indices.
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In fact, regarding the drying behavior, the observed similarity between 1:3 and 1:1 scales
was more or less expected, given the well-known scaling properties of diffusion equations
(Granger, 1995). Indeed, let f : D × R+ → R be a solution of the following diffusion
equation on a domain D ⊂ R3:

∇s · (D(f)∇su) =
∂f

∂t
(5.8)

where D is a diffusion coefficient which possibly depends on f .

Moreover, let us consider a scaling constant k > 0 and the scaled domain kD = {ks | s ∈
D}. Then, it is possible to show that the function defined by:

f̃ : kD × R+ → R

(s, t) 7→ f

(
s

k
,
t

k2

)
(5.9)

is a solution of the diffusion equation (5.8) on the domain kD. It is worth noting that
such a rationale has been applied to estimate drying kinetics of VeRCoRs mock-up, which is
expected to dry nine times faster than an operating 1:1 scale NCB, as mentioned in Section
4.2.1. Then, the water saturation ratio being computed through solving a diffusion equation
(see Section 3.3.3), it can be expected that the associated Sobol’ sensitivity indices admit a
similar scaling property.

Lastly, it can be seen on Fig. 5.4 that the sum of total Sobol’ indices decreases from 1.4
to a value close to 1 at time t ≈ 0.15, which approximately corresponds to the startup of the
operating reactor. When the latter reaches the stationary regime (near t ≈ 0.2), total Sobol’
indices are practically not evolving over time as drying progresses. Moreover, interactions
involving B and Cw,0 become negligible, as the sum of their total indices is practically equal
to 1.

5.3.3.2 Mechanical behavior

Next, the time evolution of total Sobol’ indices related to intrados strains is shown in Fig.
5.5. Results concerning extrados strains are sensibly similar, and are thereby not shown for
the sake of brevity. Total Sobol’ indices of tangential strains are firstly discussed (see Fig.
5.5a). During the prestressing phase (occurring before t ≈ 0.1), the tension of tangential
prestressing cables σθ,0 presents the larger total index. The stiffness krs of reversible devia-
toric basic creep also presents a significant importance during the prestressing phase, which
vanishes over time once prestressing cables are tensioned. Moreover, a similar behavior is
observed for the elastic Young’s modulus of concrete E. In summary, the variability of the
strain response is mainly driven by mechanical parameters during the prestressing phase.
This could be linked to the duration of the prestressing phase, which may be small compared
to the drying characteristic time of the containment wall.

Subsequently, after the end of prestressing phase, several parameters are significantly
contributing to the output variance through their total effects, including drying parameters
B and Cw,0, desiccation shrinkage coefficient αds, tangential prestressing σθ,0 and desiccation
creep viscosity ηdc. Furthermore, once the operating reactor reaches its stationary regime,
their relative importance are very slowly evolving over time.
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(a) Intrados tangential strains (b) Intrados vertical strains

Figure 5.5: Intrados strains - Time evolution of total Sobol’ indices.

Moreover, it is worth noting that the importance of the desiccation creep viscosity ηdc
has been found to be negligible in the case of VeRCoRs mock-up (see Section 4.3.3), contrary
to the scale 1:1 NCB studied here. This could be explained by the fact that creep is not
completely scaled in the case of VeRCoRs. Thus, broadly speaking, in the VeRCoRs case,
drying (which is accelerated) is more important than creep, whereas the reverse situation
occurs in the case of the studied 1:1 scale NCB.

Next, total Sobol’ indices related to vertical strains (see Fig. 5.5b) present a similar be-
havior to that for tangential strains, with the exception that during the prestressing phase,
the tension of vertical cables σz,0 is the most important parameter, and the tangential pre-
stressing σθ,0 presents a non-negligible importance. This last effect has already been observed
in the VeRCoRs case (see Section 4.3.3), and is plausibly attributable to the geometry of
the adopted RSV as well as a Poisson effect linking tangential and vertical directions.

Then, generalized first order and total Sobol’ indices related to intrados tangential and
vertical strains are depicted in Fig. 5.6. It appears that 8 parameters are significantly
contributing to the variability of strains, namely Cw,0, B, αds, E, σθ,0, σz,0, krd and ηdc. It is
worth mentioning that the Young’s modulus E is indicated to be significantly important
by the computed generalized indices, however, this parameter is only important during the
prestressing phase, as highlighted by Fig. 5.5. Furthermore, concerning prestressing losses
Π, a similar ranking of input parameters is observed, and therefore Sobol’ indices related to
Π are not shown for the sake of brevity.
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(a) Intrados tangential strains (b) Intrados vertical strains

Figure 5.6: Intrados strains - Generalized Sobol’ indices.

5.3.3.3 Leakage behavior

Then, Sobol’ sensitivity indices related to diffuse, local and global leakage rates are presented
and discussed hereafter. Firstly, the time evolution of total Sobol’ indices related to diffuse
and local leakage rates during simulated pressurization tests is presented in Fig. 5.7. As
observed in the VeRCoRs case, 3 parameters are mostly contributing to the output variance
of diffuse leakage, namely the drying parameter B, the initial water content Cw,0, and the
intrinsic permeability k0 (see Fig. 5.7a). The importance of the Klinkenberg coefficient βK
is much smaller.

Furthermore, 5 parameters present a significant importance, namely drying parameters
B,Cw,0, desiccation shrinkage coefficient αds, desiccation creep viscosity ηdc and local leak
model parameter αl. In this context, the parameter αl is observed to be the most important
one, as in the VeRCoRs case (see Section 4.3.3). It is also worth noting that the importance of
the aforementioned parameters does practically not evolve over time. Lastly, the important
parameters of the diffuse leakage response seem to present significant interactions, especially
during the early pressurization tests. Indeed, during these tests, the sum of total Sobol’
indices is significantly higher than 1.

Next, the time evolution of total Sobol’ indices related to the global leakage rate (without
and with coatings) is shown in Fig. 5.8. In the absence of coatings, only 5 parameters mainly
explain the output variance through their total effects, over the 31 uncertain inputs of the
model. These important parameters are given by the drying parameter B and the initial
water content Cw,0, desiccation shrinkage coefficient αds, intrinsic permeability k0 and local
leak model parameter αl.
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(a) Diffuse leakage rate (b) Local leakage rate

Figure 5.7: Diffuse and local leakage rates - Time evolution of total Sobol’ indices.

(a) Without coatings (b) With coatings

Figure 5.8: Global leakage rate (without and with coatings) - Time evolution of total Sobol’
indices.

Then, in the presence of coatings, total Sobol’ indices of the aforementioned important
parameters present a similar behavior than in the case without coatings. However, from the
VD1 pressurization test, the importance of the intrados coatings efficiency parameter γc,i
becomes significant. This corresponds to the early positioning of coatings on the intrados
surface for the VD1 test (see Fig. 5.3). Likewise, the total Sobol’ index of the extrados
coatings efficiency parameter γc,e significantly increases from VD3 test, which corresponds
to an increase of the surface of extrados coatings, as indicated by Fig. 5.3. The total index
of the parameter γc,e is larger than that of parameter γc,i, which may be explained by the
fact that the surface of extrados coatings is larger than that of intrados ones. Lastly, the
most important parameters related to global leakage are summarized in Fig. 5.9, in which
generalized first order and total Sobol’ indices are presented.
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(a) Without coatings (b) With coatings

Figure 5.9: Global leakage rate (without and with coatings) - Generalized Sobol’ indices.

5.4 Reliability analysis of the leakage behavior

In Section 5.3, a large scale sensitivity analysis based on Sobol’ indices has been performed
in order to identify the PII on the variability of THML output variables of interest. Amongst
the 31 uncertain input parameters of the THML model presented in Section 5.2, about ten
have been identified as important, notably regarding the variability of strain and leakage
responses. Thus, the input dimensionality of UQ problems (including reliability analysis)
can be significantly reduced. Next, based on the identified PII, a reliability analysis related
to the leakage behavior of the studied NCB is presented in Section 5.4.1. Subsequently, in
Section 5.4.2, we propose to use perturbed-law based sensitivity indices, in order to assess
the effect of the choice of the distribution of PII on PoF related to the leakage behavior of
the studied NCB.

5.4.1 Prior-based reliability analysis

5.4.1.1 Prior distribution

Firstly, the characteristics of the probability distribution of each of the PII identified in
Section 5.3 are summarized in Table 5.4.1. The parameters retained as PII correspond to
those identified as important regarding the variability of strain and leakage responses. For
the sake of simplicity, these parameters are assumed to be mutually independent. It is worth
noting that the Young’s modulus E, which presented a significant importance during the
prestressing phase (see Section 5.3.3.2), is not modeled by a random variable here, since we
focus on the long-term phase of the structure. Then, the remaining THML inputs are fixed
to their nominal value, corresponding to the mean value specified in Table 5.3.

From a Bayesian point of view, the defined probability distribution of PII may be seen
as a prior, since it does not integrate observational data. In Section 5.5, this prior will be
updated from in-situ monitoring data of the structure in a Bayesian setting, in order to infer
input parameters but also update PoF estimates.
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n◦ Parameter Units Distribution Bounds Mean Std CoV

1 A 10−13 m2.s−1 Lognormal - 1.95 0.49 0.25
2 B 10−2 Lognormal - 6.80 1.70 0.25
3 Cw,0 l.m−3 Lognormal - 128.00 32.00 0.25
4 αds 10−6 kg.m−3 Lognormal - 10.00 2.50 0.25
5 krd 1010 Pa Lognormal - 5.98 1.49 0.25
6 κ 10−4 Lognormal - 1.00 0.25 0.25
7 ηdc 109 Pa.s Lognormal - 7.39 1.85 0.25
8 σθ,0 MPa Lognormal - 1.48 · 103 371.67 0.25
9 σz,0 MPa Lognormal - 1.48 · 103 371.67 0.25
10 βK MPa Lognormal - 0.20 0.05 0.25
11 k0 10−17 m2 Lognormal - 15.00 7.50 0.50
12 αl - Lognormal - 10.00 5.00 0.50
13 γc,i - Truncated Gaussian [0; 1] 0.50 0.25 0.50
14 γc,e - Truncated Gaussian [0; 1] 0.50 0.25 0.50

Table 5.5: Prior distribution of the PII of the THML model.

5.4.1.2 Surrogate modeling

Then, in order to ensure the tractability of UQ techniques, (PC-)PCE surrogates are con-
structed with the same settings as in Section 5.3.2, this time based on the prior distribution
of PII presented in Section 5.4.1. (PC-)PCE error estimates are briefly summarized in Ta-
ble 5.6. It is remarked that only slightly smaller error estimates than in Section 5.3.2 are
obtained, in spite of the smaller input dimensionality of the approximation problem.

This similarity between error estimates of PII-based (Table 5.6) and full-inputs-based
PCEs (Table 5.4) may be explained by the LARS sparse regression algorithm used in the
PCE construction procedure of Blatman and Sudret (2011b), which tends to only select
regressors that mostly contribute to the output variance. In this way, even in the case
of a large input dimensionality, the LARS algorithm enables to exploit the structure of the
function to approximate, by focusing on input-output relationships involving PII, to a certain
extent.

ε1 ε2 ε3 ε4 Π Qd,0

PC number 5 5 5 5 3 -
ϵPCA 6.2 · 10−4 6.2 · 10−4 5.6 · 10−4 5.6 · 10−4 7.4 · 10−4 -
ϵPCE 9.4 · 10−3 9.3 · 10−3 1.2 · 10−2 1.2 · 10−2 1.5 · 10−2 6.2 · 10−3

ϵPC−PCE 1.4 · 10−2 1.4 · 10−2 1.8 · 10−2 1.8 · 10−2 2.3 · 10−2 -

Table 5.6: Summary of validation error estimates for (PC-)PCE surrogates of output variables of
interest of the THML model, based on the prior of PII defined in Section 5.4.1.

5.4.1.3 Probability of failure estimation

Let (Ω,F ,P) be a probability space. The PII described in Section 5.4.1 are denoted by
X : Ω → DX , and their joint prior density is denoted by π. Since the components of
X are assumed to be mutually independent, this density reads π(x) =

∏d
i=1 πi(xi) for all

x = (x1, . . . , xd) ∈ DX , where πi denotes the marginal density of Xi, for i ∈ {1, . . . , d}.
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In the following, we focus on the pressurization test of the third decennial visit of the
studied NCB (i.e. VD3 test). Then, the global leakage rate Qg during this test may be seen
as a scalar-valued deterministic functionMQg : DX → R. Let Q∗ > 0 be a leakage threshold
value that must be not exceeded. In this setting, the following PoF will constitute our main
target quantity of interest:

Pf = P(MQg(X) ≥ Q∗) =

∫
DX

1{MQg≥Q∗}(x)π(x)dx (5.10)

Furthermore, in order to assess the impact of possible repair works, three different coat-
ings scenarios are considered in the following, for illustrative purposes. These scenarios are
labeled from (a) to (c), and correspond to an increasing surface of extrados coatings, and
a fixed surface of intrados coatings. Then, it is aimed to estimate the PoF given in Eq.
(5.10) for each coating scenario. To that end, Monte Carlo simulation (see Section 1.2.6.1) is
used, with 106 samples. Moreover, for comparison purposes, the SuS algorithm (see Section
1.2.6.2) is also used, with 5000 samples per level. As for SuS computations within the BuS
framework (see Chapter 2), MCMC sampling within SuS is performed with the adaptive
Conditional Sampling (aCS) algorithm of Papaioannou et al. (2015) presented in Appendix
B.

Estimates of the aforementioned PoFs are summarized in Table 5.7. Broadly speaking,
the obtained PoF estimates vary from about 0.2 in case (a) to 0.09 in case (c). As expected,
the increase of coated surface induces a decrease of the estimated PoF. For all the considered
coatings scenarios, values of estimated PoFs are quite large, though. This may be explained
by the somewhat large uncertainties encoded in the adopted prior distribution (see Section
5.4.1.1). Furthermore, estimated CoVs are smaller than that obtained with the SuS algo-
rithm, which is explained by the somewhat large PoFs involved and the large amount of
MCS samples considered here. Moreover, the SuS algorithm only requires one subset to
estimate the target PoF in case (a) and two subsets in case (b), which makes it unnecessary
given the efficiency of MCS for this problem, to a certain extent.

Case Method Model calls P̂f CoV[P̂f ] 95% CI

(a)
MCS 106 1.97 · 10−1 2.01 · 10−3 [1.97; 1.98]× 10−1

SuS 5 · 103 1.99 · 10−1 4.24 · 10−2 [1.83; 2.16]× 10−1

(b)
MCS 106 1.58 · 10−1 2.30 · 10−3 [1.57; 1.59]× 10−1

SuS 5 · 103 1.49 · 10−1 4.24 · 10−2 [1.37; 1.61]× 10−1

(c)
MCS 106 8.84 · 10−2 3.20 · 10−3 [8.79; 8.90]× 10−2

SuS 104 8.22 · 10−2 4.45 · 10−2 [7.51; 8.94]× 10−2

Table 5.7: Prior-based reliability analysis - PoF estimates for two coatings scenarios.
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5.4.2 Robustness analysis via perturbed-law based indices

5.4.2.1 Perturbed-law based sensitivity indices

The PoF given in Eq. (5.10) depends on the probability law of the input parameters X
presented in Section 5.4.1.1. Besides, as in the framework of other UQ tasks, the choice of
such a probability law constitutes a critical hypothesis. Indeed, whatever the way adopted to
choose it, the law of inputsX itself is known with some level of confidence, which corresponds
to second-level uncertainties. Then, it is necessary to quantify the impact of such second-
level uncertainties on the PoF given in Eq. (5.10), in order to provide a more comprehensive
reliability analysis of the leakage behavior of the studied NCB.

As mentioned in Section 1.2.3, several approaches have been proposed in the literature so
as to handle second-level uncertainties. In particular, the new branch of robustness analysis
in UQ has recently emerged in the field of sensitivity analysis (Hart and Gremaud, 2019;
Iooss et al., 2021; Perrin and Defaux, 2019). It consists in assessing the impact of the choice
of the input distribution, and analyzing variations of some QoI with respect to this choice.
In this framework, a particularly interesting approach has been proposed in the framework of
reliability-oriented sensitivity analysis, namely perturbed-law based sensitivity indices (PLI)
(Lemâıtre, 2014) (see also (Lemâıtre et al., 2015; Sueur et al., 2016)). This approach only
requires a Monte Carlo sample of model inputs and outputs, and enables to explicitly focus
on a QoI specified by the analyst (Iooss et al., 2021). Furthermore, various types of QoI
can be handled with this approach: indeed, PLI originally focused on PoFs (Iooss and Le
Gratiet, 2019; Lemâıtre et al., 2015; Sueur et al., 2016), but then have been extended to
quantiles (Sueur et al., 2017) and superquantiles (Iooss et al., 2021).

The core idea behind PLI consists in perturbing probability distributions. In this context,
Lemâıtre et al. (2015) proposed to perturb input densities, by replacing each marginal density
πi by a perturbed one πiδ, where δ ∈ R is interpreted as a shift of a moment (e.g. mean or
variance). The simplest case of moment perturbation is given by mean shifting, and consists
in finding a density πiδ such that its mean equals E[Xi] + δ, namely:∫

DXi

xiπiδ(xi)dxi = E[Xi] + δ (5.11)

for i ∈ {1, . . . , d}. Furthermore, Lemâıtre et al. (2015) proposed general perturbation con-
straints: ∫

DXi

gk(xi)π∗(xi)dxi = δk (5.12)

where gk : DXi
→ R is a given function and δk ∈ R a prescribed value, for k ∈ {1, . . . , K}.

Such constraints notably include variance shifting, by setting g1(xi) = xi, g2(xi) = x2i ,
δ1 = E[Xi] and δ2 = δ + E[Xi]

2 in Eq. (5.12), where δ > 0 is the prescribed variance.

However, even in the simple case of mean shifting, several densities may satisfy the mean
shifting constraint in Eq. (5.11). Hence, the definition of constraints in Eq. (5.12) may be
ambiguous. In order to address this problem, Lemâıtre et al. (2015) proposed to define the
perturbed density πiδ as the closest one from πi in the KLD sense, under the perturbation
constraints in Eq. (5.12):

πiδ = argmin
π∗∈P

DKL(π∗∥πi) (5.13)
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where P is the set of probability density functions satisfying the constraints in Eq. (5.12).

In particular, in the simple case of the Gaussian distribution N (0, 1), the density πiδ in
Eq. (5.13) is simply given by the density of N (δ, 1) in the case of a mean shifting of δ (see
(Lemâıtre et al., 2015)). Likewise, in the case of variance shifting, πiδ is given by the density
of N (0, δ).

Nevertheless, the problem in Eq. (5.13) may not be solved analytically in the general
case, and minimizing the KLD in Eq. (5.13) can be difficult numerically (Iooss et al., 2021;
Lemâıtre et al., 2015). Moreover the applied perturbations may be not comparable from
an input variable to another, since the variation domains (DXi

)1≤i≤d may be not identical.
In this context, a simple approach proposed in (Perrin and Defaux, 2019) consists in firstly
applying an iso-probabilistic transformation (see Section 1.2.3.3) in order to map each input
variable Xi into a standard normal one. Subsequently, the obtained Gaussian variables may
be straightforwardly perturbed, following the paragraph above. Besides, it is important to
keep in mind that such a simple approach still presents some drawbacks, including the fact
that similar perturbations in the standard space may induce sensibly different perturbations
in the physical space. In this context, it is worth mentioning that Gauchy et al. (2022)
recently presented a more general approach for perturbing probability distributions, based
on information geometry. Such an approach is considered to be out of the scope of this
chapter, though.

Broadly speaking, a PLI measures the impact of the perturbation of an input density
on a given QoI. In the following, we focus on the definition of PLI for PoFs proposed in
(Lemâıtre, 2014) and (Lemâıtre et al., 2015). Firstly, for i ∈ {1, . . . , d}, the i-th marginal
density πi is changed into a perturbed density πiδ, by specifying a perturbation level δ ∈ R.

Subsequently, replacing the density πi by its perturbed counterpart πiδ in the expression
of the PoF in Eq. (5.10) leads to the following perturbed PoF:

Piδ =

∫
DX

1{MQg>Q∗}(x)
πiδ(xi)

πi(xi)
π(x)dx (5.14)

Then, the PLI related to the i-th input Xi is defined by:

Siδ =

(
Piδ

Pf

− 1

)
1{Piδ>Pf} +

(
1− Pf

Piδ

)
1{Piδ<Pf} (5.15)

where 1{Piδ>Pf} = 1 if Piδ > Pf and 0 else.

The index defined in Eq. (5.15) is equal to zero when Pf = Piδ, e.g. when perturbating
πi presents a negligible impact on the PoF, or when the perturbation level δ is small. Fur-
thermore, the sign of Siδ provides an indication about the way perturbations of inputs affect
the PoF: if Siδ > 0, the uncertainties related to the probabilistic modeling of the input Xi

tend to increase the failure risk. Such a situation suggests to analyze uncertainties related
to Xi more accurately (Lemâıtre et al., 2015). Conversely, a negative PLI (i.e. Siδ < 0)
corresponds to a smaller perturbed PoF.
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5.4.2.2 Reverse importance sampling for PLI estimation

Let X = {x(k)}1≤k≤N ⊂ DX be a sample of N independent realizations of the inputs
X. Firstly, based on classical Monte Carlo simulation (see Section 1.2.6.1), the following
estimator is available for the PoF in Eq. (5.10):

P̂f,N =
1

N

N∑
k=1

1{MQg≥Q∗}(x
(k)) (5.16)

Furthermore, following Lemâıtre et al. (2015), the perturbed PoFs (Piδ)1≤i≤d can be
estimated from X through reverse importance sampling (Hesterberg, 1996):

P̂iδ,N =
1

N

N∑
k=1

1{MQg≥Q∗}(x
(k))

πi,δ(x
(k)
i )

πi(x
(k)
i )

(5.17)

Then, the PLI Siδ can be estimated by the following plug-in estimator:

Ŝiδ,N =

(
P̂iδ,N

P̂f,N

− 1

)
1{P̂iδ,N>P̂f,N} +

(
1− P̂f,N

P̂iδ,N

)
1{P̂iδ,N<P̂f,N} (5.18)

A proof of the asymptotic normality of the estimator in Eq. (5.18) has been provided
by Lemâıtre et al. (2015). Furthermore, the same authors derived an expression for the
asymptotic variance of this estimator, which enables to compute confidence intervals for the
estimated PLI. This expression is not detailed here for the sake of brevity, and the reader is
referred to (Lemâıtre et al., 2015) for a comprehensive study on theoretical aspects of PLI
estimators.

5.4.2.3 Application to the leakage behavior

Next, PLI related to the PoF in Eq. (5.10) are computed from the estimators presented
in Section 5.4.2.2. To that end, we use our Matlab implementation of PLI, but it is worth
noting that such indices are implemented in the sensitivity R package. Moreover, only
the coating scenario (c) (see Section 5.4.1.3) is considered here, for the sake of brevity.

Two types of input density perturbation are considered in the following, namely mean
and variance shifting. In this context, the inputs X are beforehand transformed into the
standard normal space, as described in Section 5.4.2.1. Since the components of X are
assumed to be mutually independent, such an operation simply consists in applying the
inverse probability distribution transform (see Section 1.2.3.3) component-wise. Then, con-
cerning mean shifting, the mean of each input is perturbed with δ ∈ [−1.64; 1.64], following
Iooss et al. (2021). This perturbation range corresponds to 5%-quantile and 95%-quantile
of a standard normal variable. Regarding variance shifting, the variance of each input is
perturbed with δ ∈ [1/20, 2.5]. Furthermore, a Monte Carlo sample of N = 106 samples is
considered so as to estimate PLI through Eqs. (5.16) to (5.18).

Firstly, the computed mean shifting PLI are presented in Fig. 5.10, and are discussed
hereafter. Only the 6 most influential parameters are shown, for the sake of readability.
Broadly speaking, parameters with significant PLI values roughly correspond to parameters

https://CRAN.R-project.org/package=sensitivity
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with large Sobol’ sensitivity indices related to the global leakage response (see Fig. 5.8).
However, the meaning of PLI indices is different from Sobol’ indices, since PLI quantify the
impact of the lack of knowledge about the law of inputs X.

Figure 5.10: PLI related to the leakage PoF in Eq. (5.10) - Mean shifting. PLI estimates are
plotted with their 95% CI, shown in dashed lines.

The PLI associated to the drying parameter B continuously increases when the pertur-
bation level δ increases, and have the same sign as δ. Hence, a decrease of the mean of B
induces a smaller PoF, whereas an increase of the mean tends to increase the risk of exceed-
ing the prescribed leakage threshold Q∗. This is consistent with the fact that decreasing the
mean of B tends to slow drying, which leads to a higher water saturation and then a lower
gas permeability. It is also worth noting that confidence intervals of the PLI of B become
larger when δ decreases. This may be explained by the fact that smaller PoFs have to be
estimated when δ takes negative values, which tends to increase the CoV of PoF estimates
since a fixed Monte Carlo sample size is considered here (see e.g. (Sueur et al., 2016) for a
more efficient sampling scheme for PLI estimation).

Then, PLI related to the initial water content Cw,0 and the intrinsic permeability k0
present a similar behavior to that observed for B, but amplified in terms of absolute values.
In particular, a positive perturbation of the mean of k0 leads to a significant increase of
the failure risk, which is consistent with the fact that the global leakage behavior is mainly
driven by diffuse leaks, and thus by Darcy’s permeability of the containment wall. Next, the
PLI of the local leak model parameter αl also presents a similar behavior than that of PLI
of parameters B,Cw,0 and k0, with smaller absolute values, though. As mentioned earlier
(see Section 5.3.3.3), these smaller values suggest that local leaks are less contributing to
the global leakage rate at 1:1 scale.

Lastly, PLI of coatings efficiency parameters γc,i and γc,e present a peculiar behavior com-
pared to the other parameters. Positive perturbations of their mean value lead to decrease
the risk of exceeding the leakage threshold. This simply translates the beneficial effect of
an efficient coating device regarding the leakage behavior of the structure. Conversely, a
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negative δ induces an increase of the failure risk, which is expected in the case of less effi-
cient coating devices. Moreover, in terms of absolute values, the PLI associated to extrados
coatings efficiency sγc,e are larger than the PLI of γc,i. Such a difference may be explained
by the fact that the surface of extrados coatings is higher than that of intrados ones.

Next, variance shifting PLI are presented in Fig. 5.11. The most influential inputs in
terms of mean shifting PLI are also the most influential in terms of variance shifting PLI.
The variance shifting PLI of the parameter γc,i is not shown here, though, since its values
are close to zero. The PLI of the remaining parameters all present the same behavior with
respect to the applied variance perturbation. Indeed, for each input, a variance reduction
(i.e. δ < 1) induces a reduced PoF, whereas a variance increase (i.e. δ > 1) tends to
increase the failure risk. The PLI of the intrinsic permeability k0 is the largest index in
absolute values, followed by the PLI of the initial water content Cw,0. Furthermore, PLI of
the other parameters are sensibly close to each others.

Figure 5.11: PLI related to the leakage PoF in Eq. (5.10) - Variance shifting. PLI estimates are
plotted with their 95% CI, shown in dashed lines.

Thus, the presented PLI enabled a comprehensive study of the effect of each input pa-
rameter on the risk of exceeding the considered leakage threshold. In particular, such indices
enabled to highlight parameters for which uncertainties in their probabilistic modeling may
lead to increase the leakage failure risk. This suggests to analyze more thoroughly the un-
certainties tainting the concerned input parameters. In the next section, Bayesian inference
will be used to quantify the uncertainties of these parameters in an inverse manner, from
observations of the response of the studied NCB.
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5.5 Bayesian inverse analysis

In this section, we propose to quantify the uncertainties tainting input parameters in an
inverse manner, through Bayesian inference, from observations of the response of the struc-
ture. In Chapter 4, we have presented a general methodology aiming at achieving this goal,
notably through estimating the posterior distribution resulting from the combination of the
prior and observed monitoring data. However, this posterior distribution induces an update
of the PoF in Eq. (5.10) related to the leakage behavior of the structure. Hence, a particular
attention being paid here for the estimation of the risk of exceeding leakage thresholds, we
propose an approach for updating both input parameters and PoFs from observational data.
In this context, this approach uses the BuS framework presented in Chapter 2, and shares a
common basis with the methodology presented in Chapter 4.

Firstly, the proposed reliability-oriented Bayesian approach is presented, and subse-
quently applied to the studied structure in Section 5.5.1. Next, as the proposed approach
also provides samples from the posterior distribution, the latter may be analyzed and then
used so as to perform new predictions of the THML behavior of the structure, in the same
fashion as in Chapter 4. Then, characteristics of the estimated posterior distribution are
presented in Section 5.5.2, and posterior predictions of the THML response of the studied
NCB are performed in Section 5.5.3.

5.5.1 Bayesian updating of probabilities of failure

5.5.1.1 Formulation

Firstly, based on the methodology presented in Chapter 4, a statistical model linking pre-
dictions of the THML model described in Section 5.2 to observations of the response of the
structure is devised. In the following, three observation data sets will be considered, namely
in-situ strain measurements provided by vibrating wire sensors embedded in the standard
zone of the studied NCB for a period starting from the end of the prestressing phase to the
VD2 test, as well as local and global leakage measurements performed during the VD2 test.

Keeping notations introduced in Section 4.4.2, the whole observation data set is denoted
by Y = {yQl

, yQg}, and the (vector-valued) model mapping input parameters to the strain,
local and global leakage responses is denoted by M : DX → DY . Then, denoting by
Y = (Y ε,Y Ql

,Y Qg) observables related to strain, local and global leakage responses, the
following Gaussian additive model is considered:

Y |x =M(x) +E (5.19)

where E ∼ N (0,Σ) is a centered Gaussian random variable with covariance matrix Σ.
For the sake of simplicity, this matrix is assumed to have the same diagonal structure than
in Section 4.4.2, with known entries. Then, the posterior density of inputs X given the
observed data set Y is given by:

π(x|Y) ∝ π(x)L(x) (5.20)

where L denotes the likelihood function associated to Y (see Section 4.4.2 for further details).
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Up to this point, there is no difference with the Bayesian framework presented in Chapter
4. In this chapter, a particular attention is paid to the estimation of PoF related to the
leakage behavior of NCB. Then, in comparison to the prior-based PoF defined in Eq. (5.10),
observing the data Y leads to a posterior PoF given by:

Pf |Y = P(MQg(X) ≥ Q∗|Y) =
∫
DX

1{MQg>Q∗}(x)π(x|Y)dx (5.21)

It is remarked that this posterior PoF is simply obtained by replacing the prior density π
by its posterior counterpart in the expression of the prior PoF in Eq. (5.10). Nevertheless, the
posterior density π(·|Y) is not known explicitly, which makes the estimation of the posterior
PoF in Eq. (5.21) more difficult than the estimation of the prior one. A simple approach
could consist in generating posterior samples with the approach presented in Chapter 4,
and subsequently estimating the PoF in Eq. (5.21) from the generated posterior samples.
Nevertheless, such an approach may be not computationally efficient, since a large number
of posterior samples may be required.

Consequently, based on the former work of Straub et al. (2016), we propose an alter-
native approach based on the BuS framework so as to estimate the posterior PoF in Eq.
(5.21). Firstly, based on the equivalence principle between Bayesian inference and structural
reliability described in Section 2.2, the posterior distribution can be linked to the following
equivalent failure event:

Do = {(x, υ) ∈ DX × [0, 1] | H(x, υ) ≤ 0} (5.22)

whereH(x, υ) = υ−CL(x) for all (x, υ) ∈ DX×[0, 1], and C > 0 is the BuS scaling constant,
i.e. a constant chosen such that CL(x) ≤ 1 for all x ∈ DX . Recall that the definition in
Eq. (5.22) implies to consider an auxiliary random variable Υ ∼ U([0, 1]), assumed to
be independent from X. The joint law of (X,Υ) is thereby written by P(X,Υ) = PX ⊗ PΥ.
Furthermore, samples (x, υ) ∈ DX×[0, 1] that lie in the domain Do are distributed according
to the posterior distribution (see Section 2.2).

On another side, the failure domain associated to the leakage reliability problem is given
by:

Df = {x ∈ DX | G(x) ≤ 0} (5.23)

where G(x) = Q∗ −MQg(x), for all x ∈ DX .

Then, based on the BuS equivalence principle which encodes the Bayesian inference
process from data Y by the failure domain Do, the posterior PoF in Eq. (5.21) may be
rewritten as follows (Straub et al., 2016):

Pf |Y = P(MQg(X) > Q∗|Υ ≤ CL(X))

= P(X,Υ)(Df |Do)

=
P(X,Υ)(Df ∩ Do)

P(X,Υ)(Do)

=
P({G(X) ≤ 0} ∩ {H(X,Υ) ≤ 0})

P(H(X,Υ) ≤ 0)

(5.24)
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Thus, the estimation of the posterior PoF in Eq. (5.21) may be split into two subsequent
reliability problems, whose respective PoFs are given by the numerator and the denominator
in Eq. (5.24). Furthermore, it is remarked that the probability given by the numerator of
Eq. (5.24) may be written as follows:

P({G(X) ≤ 0} ∩ {H(X,Υ) ≤ 0}) = P(I(X,Υ) ≤ 0) (5.25)

where I : DX × [0, 1]→ R is the LSF defined by:

I(x, υ) = max(G(x);H(x, υ)) (5.26)

for all (x, υ) ∈ DX × [0, 1]. Inserting Eq. (5.25) in Eq. (5.24) finally yields:

Pf |Y =
P(I(X,Υ) ≤ 0)

P(H(X,Υ) ≤ 0)
(5.27)

Then, we propose the following two-step procedure in order to estimate the posterior
PoF given in Eq. (5.27):

1. Firstly, the probability Po = P(H(X,Υ) ≤ 0) is estimated by using the SuS within BuS
algorithm presented in Section 2.2.2. This is akin to draw samples from the posterior
distribution of X knowing Y . Moreover, it is worth noting that this step also enables
to estimate the BuS scaling constant C, since it is adaptively tuned throughout the
SuS sampling procedure (see Section 2.2.2.3).

2. Secondly, the probability Pf,o = P(I(X,Υ) ≤ 0) is estimated by applying the classical
SuS algorithm (see Section 1.2.6.2), by considering the LSF I defined in Eq. (5.26).
It is important to note that evaluating this LSF requires the knowledge of the BuS
scaling constant C, since the LSF H itself depends on C. In this context, we set the
value of C as the estimated value obtained at the end of the Step 1, namely at the end
of the estimation of Po with the SuS within BuS algorithm.

Lastly, the posterior PoF Pf |Y can simply be estimated from estimates of the two afore-
mentioned probabilities. Moreover, it is worth noting that Step 1 implies the generation of
samples that are distributed according to the posterior. Hence, such samples can be used
to estimate posterior QoI related to input parameters (e.g. mean or standard deviation),
as well as performing new predictions of the THML behavior of the studied structure, as in
Chapter 4.
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5.5.1.2 Posterior PoF estimates

Next, the two-step SuS procedure presented in Section 5.5.1.1 is applied in order to estimate
posterior leakage PoFs for the VD3 pressurization test of the structure, for each considered
coating scenario. Such estimates may be seen as updated versions of the prior-based PoFs
estimated in Section 5.4.1.3, resulting from the assimilation of in-situ observation data.
Then, for the two SuS algorithms involved in the proposed estimation procedure, a number
of N = 5000 samples per level is considered, whereas the rarity parameter is set to p0 = 0.1.
Estimated posterior PoFs are summarized in Table 5.8.

For comparison purposes, the prior PoFs estimated with the SuS algorithm in Section
5.4.1.3 are also shown. Note that the probability Po (i.e. the denominator in Eq. (5.27)) is
computed once for all the considered coatings scenarios, since only the probability Pf,o (i.e.
the numerator in Eq. (5.27)) depends on the extrados coatings surface.

Firstly, concerning coatings scenarios (b) and (c), the estimated posterior PoFs are sen-
sibly smaller than their prior counterpart. Such a reduction may be attributable to the
information provided by Bayesian updating, which led to a reduction of uncertainties for
several input parameters (posterior input parameters will be thoroughly examined in Sec-
tion 5.5.2). Such a reduction of the aforementioned PoFs could also be explained by a
sufficiently important coating surface. Indeed, in the coating scenario (a), in which a small
extrados coatings surface is involved, the posterior PoF is slightly larger than the prior one
(i.e. 0.3 vs. 0.2). At least, the estimated prior PoF lies within the 95% confidence interval
of the estimated posterior PoF. Such a situation would indicate that the considered coating
surface is not sufficient to significantly limit the risk of exceeding the considered leakage
threshold.

Case P̂f (Prior) P̂o P̂f,o P̂f |Y (Posterior)

(a) 1.99 · 10−1 (0.04)

2.34 · 10−6 (0.16)

7.34 · 10−7 (0.20) 3.13 · 10−1 (0.25)

(b) 1.49 · 10−1 (0.04) 1.21 · 10−7 (0.22) 5.17 · 10−2 (0.27)

(c) 8.22 · 10−2 (0.04) 5.19 · 10−10 (0.30) 2.21 · 10−4 (0.34)

Table 5.8: Reliability analysis of the leakage behavior at VD3 test - Prior and posterior PoF
estimates. CoVs associated to the estimated PoFs are given in brackets.

Moreover, the posterior PoF is very much smaller for the coating scenario (c) than for
scenarios (a) and (b) (namely about 2·10−4 for (c) vs. 5·10−2 for (b)). This simply emphasizes
the fact that a larger coated surface leads to a smaller global leakage rate, and therefore to
a smaller risk of exceeding the leakage threshold. Thus, according to the estimated PoF,
choosing the coating scenario (c) would lead to a sensibly lower failure probability.
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5.5.2 Posterior input parameters

As mentioned in Section 5.5.1.1, posterior samples are available as a byproduct of the pro-
posed two-step SuS procedure. Several QoI related to posterior marginals of parameters
X estimated from posterior samples are summarized in Table 5.9. Furthermore, univariate
and bivariate marginals from the posterior distribution of THML parameters estimated from
samples are shown in Fig. 5.12. Recall that the considered observation data corresponds
to the available information up to and including VD2 test. Moreover, the extrados coatings
efficiency parameter γc,e is not concerned by Bayesian updating, since extrados coatings are
only positioned at VD3 test (see Fig. 5.3).

Broadly speaking, only 7 parameters are significantly informed through Bayesian up-
dating, namely the parameters B,Cw,0, αds, σθ,0, σz,0, k0 and αl. These parameters roughly
correspond to the most influential ones identified through the variance-based sensitivity anal-
ysis presented in Section 5.3. The posterior marginals related to the other input parameters
remain close to their prior counterpart (see Tables 5.5 & 5.9). Furthermore, as underlined
by Fig. 5.12, the estimated posterior distribution presents a similar correlation structure to
that already observed in the VeRCoRs case (see Section 4.4), except for coating parameters
which are only involved in the case of operating NCBs. Indeed, the same positive posterior
linear correlation is observed for the pair (σθ,0, σz,0), which possibly traduces a Poisson effect
as well as geometrical effects of the adopted RSV model. Moreover, a non-negligible linear
correlation coefficient is observed for pairs (k0, γc,i) and (αl, γc,i), which may be explained by
the coating model proposed in Section 5.2.2, involving both diffuse and local leaks parameters
with coating efficiency parameters.

n◦ Parameter Units Mean Std CoV 95 % CI

1 A 10−13 m2.s−1 1.93 0.46 0.24 [1.21, 3.03]
2 B 10−2 7.76 1.24 0.16 [5.68, 10.38]
3 Cw,0 l.m−3 1.26 · 102 18.80 0.15 [95.33, 1.67 · 102]
4 αds 10−6 kg.m−3 8.23 1.45 0.18 [5.74, 11.32]
5 krd 1010 Pa 5.69 1.28 0.22 [3.67, 8.76]
6 κ 10−4 0.99 0.25 0.25 [0.60, 1.58]
7 ηdc 109 Pa.s 8.17 1.57 0.19 [5.48, 11.65]
8 σθ,0 MPa 1.42 · 103 1.58 · 102 0.11 [1.13 · 103, 1.74 · 103]
9 σz,0 MPa 1.25 · 103 2.31 · 102 0.18 [8.56 · 102, 1.73 · 103]
10 βK MPa 0.20 4.75 · 10−2 0.24 [0.13, 0.31]
11 k0 10−17 m2 15.69 4.11 0.26 [8.85, 24.60]
12 αl - 15.93 3.07 0.19 [10.88, 22.79]
13 γc,i - 0.40 0.20 0.50 [3.51 · 10−2, 0.78]

Table 5.9: Statistics related to the posterior marginals of THML input parameters, after updating
at VD2 test.



5.5. Bayesian inverse analysis 203

Figure 5.12: Univariate and bivariate marginals from the posterior distribution of THML model
input parameters estimated from samples, after updating at VD2 test. Prior samples are shown in
grey, whereas posterior samples are shown in blue. The posterior mean value of each parameter is
shown by a vertical red line.

5.5.3 Posterior predictions

Next, the posterior samples presented in the previous section are used to perform new
predictions of the long-term THML behavior of the studied NCB, analogously to posterior
predictions presented in Section 4.4.2. Firstly, for illustrative purposes, a comparison of
prior and posterior predictions of the (normalized) time evolution of tangential strains1 of
the standard zone is presented in Fig. 5.13. Results related to vertical strains are sensibly
similar, and are thereby not shown for the sake of brevity. As intuitively expected, prior
predictions are tainted with large uncertainties, due to the vague state of knowledge which
has been encoded in the prior input distribution. The prior mean trend is in good agreement
with strain measurements, though. Then, posterior predictions present sensibly reduced
uncertainties, with a slightly adjusted mean trend. Roughly speaking, the predicted time
evolution of long-term strains of VeRCoRs mock-up (see Section 4.4) and the studied NCB
are quite similar, up to a proper time scaling. This emphasizes the fact that delayed strains
at 1:1 scale are expected to by a time-scaled version of strains at 1:3 scale, under similar
THM boundary conditions (Charpin et al., 2021).

1obtained by averaging intrados and extrados tangential strains
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(a) Prior predictions (b) Posterior predictions

Figure 5.13: Time evolution of tangential strains: prior and posterior predictions.

Then, prior and posterior leakage predictions are presented in Fig. 5.14. Due to the very
large uncertainties tainting prior predictions, only global leakage rate values are shown in
Fig. 5.14a, for the sake of readability. Then, posterior predictions of the time evolution of
global and local leakage rates and their comparison with leakage measurements are depicted
in Fig. 5.14b. The time evolution of the predicted virtual global leakage rate (i.e. without
coatings) is also presented.

First, the uncertainty reduction provided for several THML input parameters (see Section
5.5.2) leads to sensibly reduced credible bounds for both global and local leakage rates, as
well as an adjustment of the mean trend of prior predictions. This leads to an accurate
(blind) prediction of the global leakage rate at VD3 test: indeed, the mean predicted leakage
rate approaches the observed one with a relative error of about 8%. Moreover, the observed
local leakage rate is also reasonably predicted, as measurements are contained in the 80%
credible intervals of predictions.

Finally, the comparison of the global leakage rate with and without coatings enables to
have an idea of the efficiency of the coating scenario considered here. Firstly, the leakage
rates with and without coatings are equal, since no coatings are positioned before VD1 test
(see Fig. 5.3). From this last test, the surface of intrados coatings is increased, which leads to
a decrease of the global leakage rate. Subsequently, due to the progressive increase of coated
surface at both intrados and extrados sides, the global leakage rate slightly increases from
VD1 to VD2 before significantly decreasing from VD2 to VD3. Then, the evolution kinetics
of the global leakage rate is sensibly slowed by the positioning of coatings. The virtual
global leakage rate, for its part, continuously increases over time, as in the case of VeRCoRs
mock-up (see Chapter 4), which is not subjected to coating repair works. Thus, combined
with the reliability-oriented Bayesian approach presented in Section 5.5.1.1, such leakage
predictions may be used so as to assess the reduction of the virtual leakage rate caused by a
given coating scenario, and to provide a decision aid tool related to the maintenance of the
structure.
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(a) Prior predictions.

(b) Posterior predictions, after updating at VD2.

Figure 5.14: Prior and posterior leakage predictions - Mean, 50 and 80% CI.

5.6 Conclusions

This chapter has focused on the reliability analysis of the leakage behavior of large con-
crete containment structures. In this context, a real operating NCB has constituted the
central case study of this chapter. Firstly, several modeling assumptions have been pro-
posed in order to take into account the potential presence of coatings aiming at reinforcing
leak tightness, and subsequently devising a THML modeling strategy suitable for operating
containment structures. Then, a large-scale sensitivity analysis based on Sobol’ indices has
been performed in order to rank parameters by their relative importance on the variability
of output variables of interest. Next, based on the identified PII, a reliability analysis related
to the leakage behavior has been presented. In this context, we have proposed to account
for uncertainties related to the choice of the input distribution, and to quantify the impact
of this choice on leakage PoFs. To that end, we have considered the so-called perturbed-law
based sensitivity indices (PLI), which have been developed in the recent field of robustness
analysis (Iooss et al., 2021; Lemâıtre et al., 2015; Sueur et al., 2016).
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Furthermore, following the Bayesian viewpoint adopted throughout this thesis, we have
proposed an approach aiming at updating PoF along with input parameters in a Bayesian
setting, from in-situ monitoring data. The proposed methodology has then been applied
to the aforementioned operating NCB so as to assess the impact of repair scenarios, and
predicting the global leakage rate of the structure.

Then, this chapter raises several perspectives, which are discussed hereafter. Firstly,
particular attention has been paid for a particular type of QoI, namely PoFs related to the
leak tightness of the structure. However, several alternative QoI could be considered, such
as a high-order quantile (e.g. 95%) of the predicted leakage rate, or a superquantile (Iooss
et al., 2021). It is worth mentioning that in the present work, we focus on methodological
aspects rather than regulatory ones: indeed, it is the role of regulatory authorities to define
criteria related to the allowable risk level related to the leakage behavior of containment
structures.

Furthermore, in the framework of the presented reliability analysis, (PC-)PCE surrogates
have been used in order to accelerate structural reliability methods such as MCS or SuS.
Such a choice has been motivated by the versatility of (PC-)PCE surrogates, which enables to
provide inexpensive-to-evaluate global approximations for a limited construction cost as well
as analytical post-processing features for Sobol’ sensitivity indices. Then, in order to solve
structural reliability problems more efficiently, active-learning surrogate-based techniques
(Echard et al., 2011; Moustapha et al., 2022) could be used instead of fixed (PC-)PCE
surrogates. Likewise, alternative sampling techniques to Monte Carlo may be considered to
estimate PLI more efficiently (see e.g. Sueur et al. (2016)).

Finally, it is worth noting that the methodologies presented in Chapters 4 & 5 only
enable to assess the global leakage behavior of containment structures. Besides, it would
be of great interest to have a local description of the leakage behavior, in order to optimize
the positioning of coatings. Nevertheless, this underlies a way more difficult problem that
the global one. As a first attempt, we have developed a methodology aiming at predicting
local leak fields in a Bayesian framework, based on a simple description of the physical
phenomena behind local leakage (see Appendix C for further details). Such an approach
enables to predict the spatio-temporal evolution of plausible local leak zones, and could be
used as a complement to the aforementioned global approaches so as to better plan the
maintenance of containment structures.
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Conclusion

The purpose of this thesis was to develop a numerical strategy aiming at accounting for
uncertainties in the framework of multi-physics simulations of the long-term behavior of
containment structures. To that end, the present work was based on the general frame-
work of Uncertainty Quantification (UQ), which enables a comprehensive management of
uncertainties in the simulation of complex engineering systems.

In this framework, based on a Thermo-Hydro-Mechanical and Leakage (THML) modeling
strategy, the uncertainties of input parameters are modeled by probability distributions,
in order to perform probabilistic forecasts of the time evolution of the leak tightness of
containment structures. Then, a particular feature of the proposed approach was to establish
a dialog between numerical models and noisy observational data. In this perspective, we have
proposed to use Bayesian inference in order to update the uncertainties of input parameters of
the THML model from in-situ monitoring data related to the response of the real structure.
This notably requires to devise adapted computational tools for ensuring their tractability
in the framework of THML models, which typically rely on costly finite element schemes.
Subsequently, these updated uncertainties can be propagated through the adopted THML
model so as to provide new forecasts of the long-term behavior of the structure under study.
Moreover, such an inference process can also be used to update the assessment of risks of
exceeding some leak tightness regulatory thresholds, or to evaluate the efficiency of several
repair works scenarios in the framework of maintenance operations.

Following a broad introduction and state-of-the-art review on UQ techniques (Chapter
1), this thesis has firstly focused on methodological and computational aspects related to
Bayesian inference. In Chapter 2, the so-called Bayesian updating with Structural reliability
methods (BuS) recently introduced by Straub and Papaioannou (2015) has been investigated
as an alternative to classical MCMC sampling techniques. Such a framework reinterprets
Bayesian inference into a structural reliability problem, and then enables to use robust
and efficient rare event estimation algorithms so as to sample posterior distributions. In
particular, a version of the well-known Subset Simulation (SuS) algorithm adapted to the
BuS framework in (Betz et al., 2018b) has been adopted in this thesis.

Nevertheless, as any random sampling technique, the SuS algorithm requires an impor-
tant amount of model evaluations, which makes it intractable when dealing with costly
computational models, including THML models for containment structures. Consequently,
we have proposed to couple the aforementioned SuS algorithm to an adaptive surrogate mod-
eling scheme, based on the Polynomial Chaos Kriging (PCK) method introduced in (Schöbi
et al., 2015). In particular, our method aims at constructing a PCK surrogate whose accu-
racy is adaptively refined throughout the SuS sampling procedure, based on ideas taken from
active learning reliability methods (Echard et al., 2011). The performance of this method
has been assessed through several academic test cases with varying complexity. Results have
emphasized that the proposed adaptive method performs at least as well as in the prior-based
case (i.e. with fixed surrogates built from the prior distribution), and enables to exploit the
structure of the posterior distribution to limit the number of likelihood calls, particularly in
the case of concentrated or multi-modal distributions.

Next, the overall strategy presented in this thesis is structured around a given THML
computational model, which has to be suitable for assessing the long-term global behavior of
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containment structures subjected to aging. In this context, in Chapter 3, we have presented
a THML modeling strategy which serves as a basis for computational models considered in
the applications to containment structures presented in this thesis. The adopted modeling
strategy shares a common structure with that considered in the several former works (includ-
ing Asali (2016); Boucher (2016); Bouhjiti (2018)), namely a weakly-coupled (or chained)
structure. In this context, we have proposed several simplifying assumptions regarding these
former works, in order to ensure that UQ techniques may be coupled with the adopted
THML model at a reasonable cost. In particular, such assumptions notably aimed at limit-
ing the number of uncertain parameters, and avoiding the use of costly damage calculations
through the use of a phenomenological model describing the evolution of local leaks. In this
way, a single model call requires several minutes, compared to several hours with damage
calculations.

Chapter 4 has presented a methodology constituting the core of the global strategy de-
veloped in this thesis, based on the case study of the VeRCoRs mock-up, which consists in
a realistic 1:3 scale mock-up of a double-walled nuclear containment building. Based on the
first three chapters of this thesis, the proposed methodology enables to perform probabilistic
forecasts of the THML behavior of the structure, and provides a connection between the
adopted numerical model and in-situ monitoring measurements through Bayesian inference.
In this context, the Bayesian inference process is used to update the uncertainties tainting
input parameters of the THML model, from noisy monitoring data related to the mechan-
ical and leakage behavior of the structure. Furthermore, such an inverse analysis may be
preceded and/or followed by a forward UQ analysis, typically including uncertainty propa-
gation or sensitivity analysis. From a computational point of view, the proposed Bayesian
methodology relies on the SuS algorithm introduced in Chapter 2, which enables to effi-
ciently sample posterior distributions. Moreover, in order to ensure the tractability of the
proposed approach at a reasonable cost, PCE surrogate modeling has been adopted to con-
struct inexpensive-to-evaluate approximations of the different sub-models constituting the
THML model. In particular, we used principal component PCE in order to efficiently approx-
imate time-dependent sub-models (including strains), involving large output dimensionalities
(O(102−3)).

Then, the proposed approach has been applied in two cases, one focused on the mechani-
cal behavior of the VeRCoRs mock-up, and another one considering its full THML behavior.
In the first case, we notably proposed an approach which enabled to deal with unknown
observational noise, as well as the presence of modeling biases. In this context, results have
emphasized that the proposed Bayesian approach enables to identify and estimate model-
ing biases related to the adopted mechanical model, through inference from in-situ strain
measurements. In a second part, we have proposed an extended approach enabling to deal
with both mechanical and leakage observational data, in order to infer a full set of THML
input parameters and to subsequently perform new predictions of the global leakage rate of
the structure. Results have notably highlighted that the proposed approach enabled well to
update the knowledge in uncertain parameters, and to precise THML predictions throughout
the exploitation phase of the structure.

Besides, the methodology presented in Chapter 4 mainly aimed at providing a proba-
bilistic framework for long-term THML predictions, and has been validated at the scale of
the VeRCoRs mock-up. However, the transition from such a structure to 1:1 scale operating
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containment buildings underlies some specific points, including the existence of regulatory
criteria related to leak tightness, as well as maintenance operations. Consequently, by adopt-
ing a reliability analysis viewpoint, we have proposed an approach for assessing probabilities
of exceeding leakage rate regulatory thresholds, while accounting for the effect of mainte-
nance operations on the leak tightness of the structure (Chapter 5). The proposed approach
has been illustrated through the case study of an operating nuclear containment building.
Firstly, we have introduced simple modeling hypotheses for accounting for the effect of coat-
ings on the global leakage rate. Next, as a preliminary task, we have proposed to perform
a large-scale variance-based sensitivity analysis based on Sobol’ indices in order to identify
the most influential inputs on the THML response at 1:1 scale. This has enabled to compare
the ranking of THML input parameters with that obtained in the VeRCoRs case.

Next, based on a given input probability distribution and classical reliability methods,
the probability of exceeding a leakage regulatory threshold has been estimated for several
scenarios of repair works. Nevertheless, it is worth noting that the specified input distribu-
tion, which could be seen as a prior distribution in the framework of Bayesian inference, is
itself known with some level of confidence. Hence, in order to account for such second-level
uncertainties and assess their impact on estimated probabilities of failure, we have proposed
to use Perturbed Law-based sensitivity Indices (PLI), taken from the recent UQ field of
robustness analysis (Iooss et al., 2021; Lemâıtre et al., 2015; Sueur et al., 2016). Lastly,
following the Bayesian viewpoint adopted in Chapter 4, we have proposed an approach for
updating probabilities of failure along with the THML input parameters, from in-situ moni-
toring data. Thus, the proposed approach provides a comprehensive probabilistic framework
for assessing risks related to the leak tightness of operating containment buildings, and could
be used as an aid decision tool within the framework of their maintenance.

Perspectives

Then, the contributions presented in this thesis raise several improvement perspectives, and
pave the way for further research works. These perspectives are listed by theme herebelow:

THML modeling

Firstly, it is necessary to recall the validity domain of the THML modeling strategy adopted
in this thesis: indeed, its main purpose was to assess the main effects of aging on the
global long-term THML behavior of concrete containment structures, under normal operat-
ing conditions in terms of thermal, hydric and mechanical loads. In particular, the leakage
calculations performed with this strategy were notably based on purely viscoelastic mechan-
ical calculations, and on a simple phenomenological model describing the evolution of local
leaks due to aging.

Hence, such a modeling strategy is at most adapted for modeling the evolution of leak
tightness of containment structures during their exploitation phase outside accidental situ-
ations, notably involving severe conditions in terms of temperature and pressure. In such
situations, weakly-coupled approaches may become no longer valid, and coupled approaches
would be required (Dal Pont et al., 2007). Moreover, damage calculations would have to be
considered in order to anticipate the possible initiation of cracks.
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However, it is worth recalling the modular nature of the UQ framework (see Fig. iii), and
that the UQ techniques considered in this thesis are non-intrusive, in the sense that they
do not require to modify the internal structure of the adopted computational model. As a
result, it is entirely possible to switch from chained to coupled THML modeling strategies
within the general UQ methodology. Such a modification of the model would imply differ-
ent mathematical properties, though. Indeed, coupled THML approaches would typically
require a larger amount of input parameters, and involve more complex constitutive equa-
tions which could imply different regularity properties for the resulting input-output map of
the THML model. Furthermore, such approaches typically require a larger numerical cost,
which underlies more challenging UQ computational problems.

Lastly, regarding applications to NCB presented in this thesis, it is worth noting that
a single representative structural volume (RSV) of the standard zone has been considered
within THML calculations, focusing on the global behavior of the structure. In this context,
multiple RSVs could be considered in order to provide a more comprehensive description of
the local behavior. Such an extension may present a reasonable numerical cost, provided
that parallel computing is available.

Bayesian inference

Next, several perspectives related to Bayesian inference are discussed hereafter:

• Observation models: firstly, the Bayesian inverse problems considered in Chapters
4 & 5 all considered Gaussian additive models (see Section 1.3.3). Furthermore, for
a given observable, the noise has been assumed to be homoscedastic, i.e. the noises
corresponding to each component of the observable are assumed to be independent and
identically distributed. Then, it is possible to consider more sophisticated observation
models, for instance involving a correlated noise, and/or non-Gaussian distributions.
Such models could enable a somewhat more realistic modeling of observation noise.

• Bayesian model selection: as briefly presented in Section 1.3.2.5, Bayesian inference
offers a way to choose the “best” model from a set of competing models aiming at
explaining a given data set. This refers to Bayesian model selection (Wasserman, 2000).
For instance, such a process could be used in the framework of the modeling of local
leaks (see Section 3.13), in order to select the model which best explains observations
of the structure under study, from a set of phenomenological models proposed by one
or several analysts.

• Hierarchical models: hierarchical (or multilevel) Bayesian modeling constitutes a
powerful extension of the classical framework of Bayesian inference (see e.g. (Nagel
and Sudret, 2016b)). For instance, it could be used in the case of prior distributions
whose parameters are not known exactly, through the definition of hyperparameters
which parametrize the prior. Nevertheless, it is worth mentioning that this more
comprehensive framework typically requires more parameters to identify, and thus
involves inverse problems which are more challenging to solve in practice.
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• Robust Bayesian analysis: a crucial (and somewhat general) arising question is
given by the influence of the choice of the prior distribution on results of Bayesian
inference. Indeed, the prior distributions considered in this thesis are mostly based on
expert judgement, and are therefore known with various levels of confidence. Then,
it would be necessary to assess the impact of such second-level uncertainties on the
posterior distribution obtained through the inference process, as well as on some pos-
terior QoI. Such a question falls within the field of Robust Bayesian Analysis (see e.g.
(Berger, 1990; Ruggeri et al., 2005)), which offers a mathematical setting for studying
this question. The recent work of (Stenger, 2020, Section 5.6) also provided some in-
sights related to Robust Bayesian Analysis, in the framework of Optimal UQ. From
a more practical point of view, we have attempted to address the question of the in-
fluence of the choice of the prior in a qualitative manner, in the specific case of the
VeRCoRs mock-up (Rossat et al., 2022c). Lastly, it is worth mentioning a new research
perspective, which would enable to assess the impact of uncertainties in the prior with
PLI measures: indeed, the BuS framework studied in Chapter 2, which reformulates
Bayesian inference into a reliability problem, could be combined to the PLI measures
introduced in (Lemâıtre et al., 2015) and used in Section 5.4.2, in order to provide
sensitivity indices related to perturbed version of the prior.

• Alternative computational techniques: lastly, in this thesis, Bayesian compu-
tations have been performed within the BuS framework introduced by Straub and
Papaioannou (2015), which notably relies on the use of sampling techniques such as
SuS. Alternatively, sampling-free techniques may be considered, such as the Trans-
port Maps approach (Baptista et al., 2020; El Moselhy and Marzouk, 2012), which
constitutes a promising alternative Bayesian computational framework.

Surrogate modeling for Bayesian computations

Firstly, as mentioned in Chapter 2, the proposed adaptive approach based on PCK surrogates
presents some improvement perspectives: indeed, PCK surrogates may become inefficient
when dealing with high-dimensional models. Then, in order to tackle Bayesian inverse prob-
lems with larger input dimensionalities (e.g. O(102−3)), dimensionality reduction techniques
for Bayesian inverse problems could be used in order to exploit the low-dimensional struc-
ture of the posterior distribution. To that end, active subspaces (AS) (Constantine et al.,
2014, 2016) and likelihood-informed subspaces (LIS) (Cui et al., 2014; Cui and Zahm, 2021;
Zahm et al., 2022) methods could be used. Alternatively, recent work of Bigoni et al. (2022)
proposed a dimension reduction approach for surrogate modeling that could be used so as
to efficiently approximate forward models with high input dimensionalities.

Besides, a classical UQ analysis typically consists in a chaining of several fundamental
steps, including subsequent forward and inverse analyses (for instance, prior-based forward
UQ problems followed by a Bayesian inverse problem). While adaptive approaches often
outperform prior-based ones in the framework of Bayesian inverse problems, these approaches
typically focus on the support of the posterior distribution, and may therefore be less accurate
for other UQ tasks based on the prior distribution (e.g. sensitivity analysis, uncertainty
propagation). Hence, constructing a single prior-based surrogate model may be appealing,
since the major part of the computational cost of the whole UQ analysis would correspond
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to its construction. Constructing a surrogate model that is specific to Bayesian inference
then involves an additional computational cost (typically, the order of magnitude of the
construction of a prior-based surrogate). For such reasons, and for the simplicity sake, we
have considered prior-based PCE surrogate models for all the UQ tasks considered in the
applications to containment buildings presented in Chapter 4 & 5. Thus, an improvement
perspective would consist in applying the adaptive PCK-based method introduced in Chapter
2 to the Bayesian inverse problems considered in the aforementioned applications.

Eventually, PCE surrogates have been considered in Chapters 4 & 5 for approximating
output QoI of the adopted THML model. The choice of such surrogates has been mainly mo-
tivated by their global aspect, their approximation power, and the analytical post-processing
features (notably for sensitivity analysis) they provide. Such surrogates have seemed to be
well suited to the problems presented in the aforementioned chapters, notably due to the fact
that aging is a somewhat slow process, which does not involve an increase of non-linearities
over time that may cause the failure of PCE surrogates. In the case of dynamical sys-
tems, e.g. including structures subjected to earthquakes or impact loads, adapted surrogate
modeling techniques should be considered (see e.g. (Mai, 2016) for further details).

Reliability analysis

Next, the reliability analysis presented in Chapter 5 underlies some improvements, notably
linked to surrogate modeling. Indeed, (prior-based) PCE surrogates have been adopted in
order to accelerate the estimation of probabilities of failure. In order to provide poten-
tially more efficient and reliable estimations, active learning techniques (Echard et al., 2011;
Moustapha et al., 2022) may be used instead of PCE.

Moreover, concerning the estimation of PLI measures, sampling schemes that are more
efficient than Monte Carlo simulation may be considered, such as the approach proposed in
(Sueur et al., 2016). Furthermore, the estimation of PLI typically requires a large amount
of model evaluations (O(105−6)). In Chapter 5, fixed PCE surrogates have been considered
to alleviate this computational burden, but adaptive surrogate modeling techniques could
be devised in order to be coupled with the aforementioned improved sampling scheme, while
efficiently limiting the number of model calls.

Non-destructive testing methods

Lastly, non-destructive testing (NDT) techniques have been recently developed for applica-
tions to large concrete structures, notably in order to provide measurements of some physical
variables of interest, such as water saturation, Young’s modulus or permeability (Gupta et al.,
2022; Verdier et al., 2022). Such techniques present a great interest for further modeling
purposes related to the THML behavior of containment structures, since they could be de-
ployed at the scale of operating NCBs, and provide a non-negligible amount of data. For
instance, these data could be used so as to represent some material properties by random
fields, and/or be used within the framework of Bayesian inference in order to update the
knowledge in some input parameters, possibly represented by random fields.
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E.3 Contributions et plan de la thèse . . . . . . . . . . . . . . . . . 241

E.4 Publications et communications . . . . . . . . . . . . . . . . . . 244

215



216 Appendices

A PC-PCE-based Sobol’ sensitivity indices

In this section, a derivation of analytical expressions of Sobol’ sensitivity indices based on
PC-PCE coefficients is presented. It is worth mentioning that Wagner et al. (2020) derived
expressions for total indices, whereas Nagel et al. (2020) derived expressions for first-order
indices. In Section A.1, we provide a derivation of closed Sobol’ indices, based on conditional
expectations. In Section A.2, this derivation is applied to retrieve the expressions of total
indices originally derived in (Wagner et al., 2020).

Let (Ω,F ,P) be a probability space. Let X : Ω → DX ⊂ Rd be a continuous random
variable with density π and mutually independent components. Let M : DX → DY ⊂ Rn

be a (centered) PC-PCE (see Section 1.2.4.5) written by:

M(X) = µY +
r∑

k=1

 ∑
α∈A(k)

ck,αψα(X)

wk (A.1)

where (wk)1≤k≤r are principal components and, for each k ∈ {1, . . . , r}, (ck,α)α∈A(k)

are PCE coefficients, and (ψα)α∈A(k) a family formed by multivariate polynomials that are
orthonormal with respect to the probability distribution of X, which reads:

E[ψα(X)ψβ(X)] =

∫
DX

ψα(x)ψβ(x)π(x)dx = δαβ (A.2)

for all α,β ∈ A(k). Due to the independence of components (X1, . . . , Xd) of X, the following
tensorized form is assumed for polynomials (ψα)α:

ψα(X) =
d∏

i=1

ψ(i)
αi
(Xi) (A.3)

where the univariate polynomials (ψ
(i)
j )j are orthonormal with respect to the marginal dis-

tribution of Xi, i.e. E[ψ(i)
j (Xi)ψ

(i)
k (Xi)] = δjk.

Next, given t ∈ {1, . . . , n}, the t-th component of the response Y =M(X) is denoted
by Yt =Mt(X) hereafter, and writes:

Yt =Mt(X) = µYt +
r∑

k=1

 ∑
α∈A(k)

ck,αψα(X)

wk,t (A.4)

The ANOVA decomposition ofMt is then recalled herebelow (see Section 1.2.5.1):

Mt(X) =M0 +
∑
1≤i≤d

Mt,i(Xi) +
∑

1≤i≤j≤d

Mt;i,j(Xi, Xj) + · · ·+Mt;1,...,d(X)

=
∑

u⊆{1,...,d}

Mt,u(Xu)
(A.5)
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Furthermore, the following expressions may be derived for the terms (Mt,u(Xu))u⊆{1,...,d}
(Chastaing et al., 2012):

Mt,0 = E[Yt] (A.6a)

Mt,i(Xi) = E[Yt|Xi]− E[Yt] (A.6b)

Mt,u(Xu) = E[Yt|Xu]−
∑
v⊊u

Mt,v(Xv) (A.6c)

for all i ∈ {1, . . . , d} and u ⊆ {1, . . . , d} with |u| ≥ 2.

Then, for u ⊆ {1, . . . , d}, the Sobol’ sensitivity index St,u is defined by (Chastaing et al.,
2012):

St,u =
Var[Mt,u(Xu)]

Var[Yt]
(A.7)

Moreover, the closed Sobol’ index St,u with respect to grouped variables Xu = (Xi)i∈u
is defined by:

St,u =
Var[E[Yt|Xu]]

Var[Yt]
(A.8)

This index measures the contribution to the total variance of the variables (Xi)i∈u, by them-
selves or in interaction with each other (Gilquin et al., 2015). By comparing Equations (A.6),
(A.7) and (A.8), closed Sobol’ indices may be linked to Sobol’ indices through the following
relation:

St,u = St,u −
∑
v⊂u

St,v (A.9)

For instance, for i, j ∈ {1, . . . , d} such that i ̸= j, the second-order Sobol’ index Sij of
variables (Xi, Xj) is equal to the closed index of these variables minus their single effects:

St,ij = St,ij − St,i − St,j (A.10)

A.1 Closed Sobol’ indices

A derivation of analytical expressions for closed Sobol’ indices is presented hereafter. Firstly,
given u ⊆ {1, . . . , d}, an expression for the conditional expectation E[Yt|Xu] in terms of PC-
PCE coefficients is firstly derived. For the sake of simplicity, the notation A =

⋃r
k=1A(k) is

adopted hereafter, and one sets ck,α = 0 for all α ∈ A \ A(k) and k ∈ {1, . . . , r}.
Exploiting the orthonormality of the polynomials (ψα)α, one has:

E[Yt|Xu] = µYt +
r∑

k=1

wk,t

∑
α∈A

ck,αE[ψα(X)|Xu]

= µYt +
r∑

k=1

wk,t

∑
α∈A

ck,α

(∏
i∈u

ψ(i)
αi
(Xi)

)∏
j /∈u

δαj0


= µYt +

r∑
k=1

wk,t

∑
α∈Au

ck,αψα(X)

(A.11)
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where Au = {α ∈ A | (j /∈ u)⇔ (αj = 0)}. Hence, again exploiting the orthonormality
of polynomials (ψα)α the variance of the conditional expectation E[Yt|Xu] may be written
by:

Var[E[Yt|Xu]] =
r∑

k,l=1

wk,twl,t

∑
α∈A∗

u

ck,αcl,α

 (A.12)

where A∗
u = Au \ {0}.

Likewise, the total variance Var[Yt] reads:

Var[Yt] =
r∑

k,l=1

wk,twl,t

(∑
α∈A∗

ck,αcl,α

)
(A.13)

where A∗ = A \ {0}.
Thus, the following expression is derived for the closed index St,u:

St,u =
1

Var[Yt]

r∑
k,l=1

wk,twl,t

∑
α∈A∗

u

ck,αcl,α

 (A.14)

Sobol’ indices (St,u)u⊆{1,...,d} may then be computed recursively from closed indices, based
on Equation (A.10) and knowing that St,i = St,i for all i ∈ {1, . . . , d}.

A.2 Total Sobol’ indices

Next, a derivation of analogous expressions for total Sobol’ indices is presented hereafter.
Given i ∈ {1, . . . , d}, the total Sobol’ index Tt,i may be written by:

Tt,i = 1− Var[E[Yt|X∼i]]

Var[Yt]
(A.15)

where X∼i = (Xj)j ̸=i.

Based on the derivation presented in Section A.1, the following expression is obtained
for the conditional expectation E[Yt|X∼i]:

E[Yt|X∼i] = µYt +
r∑

k=1

wk,t

∑
α∈A∼i

ck,αψα(X) (A.16)

where A∼i = {α ∈ A | αi = 0}.
Then, applying the variance to the above conditional expectation yields:

Var[E[Yt|X∼i]] =
r∑

k,l=1

wk,twl,t

 ∑
α∈A∗

∼i

ck,αcl,α

 (A.17)

where A∗
∼i = A∼i \ {0}.
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Thus, inserting (A.16) in (A.15) yields:

Tt,i =
1

Var[Yt]
(Var[Yt]− Var[E[Yt|X∼i])

=
1

Var[Yt]

r∑
k,l=1

wk,twl,t

∑
α∈A∗

ck,αcl,α −
∑

α∈A∗
∼i

ck,αcl,α


=

1

Var[Yt]

r∑
k,l=1

wk,twl,t

∑
α∈A∗

i

ck,αcl,α


(A.18)

where A∗
i = {α ∈ A∗ | αi > 0}.
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B Adaptive Conditional Sampling algorithm

B.1 MCMC sampling in the standard normal space

In the context of SuS, the MCMC sampling phase is usually conducted in the standard
normal space. Firstly, based on the probabilistic transform T : DX × [0, 1]→ Rm defined in

Eq. (2.14), equivalent versions of the LSF in Eq. (2.19) and intermediate domains (D
(j)
f )1≤j≤r

may be defined in the standard normal space, namely:

Gl(u) = Gl(T −1(u)) (B.1)

for all u ∈ Rm, and:
D

(j)
f = {u′ ∈ Rm | Gl(u

′) ≤ tj} (B.2)

Then, at SuS level j ∈ {1, . . . , r}, one aims at generating samples conditional to D
(j)
f

through MCMC sampling from the conditional distribution PU (·|D(j)
f ), which has the fol-

lowing density:

φ(u|D(j)
f ) =

φ(u)1
D

(j)
f
(u)

PU (D
(j)
f )

(B.3)

for all u ∈ Rm. Furthermore, one has n samples {(x(j−1,k), υ(j−1,k))}1≤k≤n that lie in the

intermediate failure domain D(j)
f in the physical space. By duality, this corresponds to n

samples {u(j−1,k)}1≤k≤n that lie in the domain D
(j)
f in the standard normal space, where

u(j−1,k) = T (x(j−1,k), υ(j−1,k)). These samples are taken as the initial states (or seeds) of n

Markov chains. Since these samples are already in the domain D
(j)
f and thereby following

the conditional distribution PU (·|D(j)
f ), the generated Markov chains have reached their

stationary state since the beginning of MCMC sampling (Au and Beck, 2001; Papaioannou
et al., 2015; Zuev et al., 2012). Therefore, the chains do not require burn-in. Such a behavior
is termed perfect sampling (see e.g. (Zuev et al., 2012)).

B.2 Transition kernel

The adaptive Conditional Sampling (aCS) proposed by Papaioannou et al. (2015) is briefly
presented in what follows. Firslty, the transition mechanism of the aCS algorithm is detailed
hereafter. Given a current state u ∈ Rm in the standard normal space, a candidate sample
u∗ ∈ Rm is generated from the Gaussian distribution with mean Ru and covariance matrix
I−RR⊺, where R ∈ Rm×m has to be specified by the user. This is akin to sample u∗ from
N (0, I) and imposing that u∗ and u are jointly Gaussian with cross-correlation matrix R.

Then, the candidate sample u∗ is accepted as the new Markov chain state if u∗ ∈ D(j)
f , and

is rejected otherwise. This proposal mechanism is summarized in Algorithm B.1.

Then, the aCS algorithm underlies the following transition density:

K(u′|u) = φm(u
′;Ru, I−RR⊺)1

D
(j)
f
(u′) + (1− ϱ(u))δu(u′) (B.4)

where δu is the Dirac mass at u ∈ Rm, and:

ϱ(u) =

∫
D

(j)
f

φm(u
′;Ru, I−RR⊺)du′ (B.5)
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It is noted that compared to the classical MH algorithm for SuS, the aCS algorithm
always accepts its candidate samples, without compromising the stationary distribution of
the produced chains (Papaioannou et al., 2015). Indeed, comparing the first term of the
transition density in Eq. (B.4) to that of the MH algorithm (see Chapter 1, Section 1.3.4.2),
the acceptance probability associated to a candidate sample u′ is equal to one. Furthermore,
it can be shown that the transition density in Eq. (B.4) satisfies the reversibility condition
(see Section 1.3.4) with respect to the target density given in Eq. (B.3), which ensures
that the stationary distribution of the produced Markov chains is indeed the conditional
distribution PU (·|D(j)

f ) (see (Papaioannou et al., 2015, Appendix A) for a detailed proof).

Algorithm B.1 Conditional Sampling (CS) proposal mechanism (Papaioannou et al., 2015)

Input: Current state u in U-space at SuS level j, proposal correlation matrix R
1: Draw a sample u∗ ∼ N (Ru, I−RR⊺) ▷ Draw a candidate sample

2: if u∗ ∈ D(j)
f then ▷ Accept-reject phase

3: Set u′ = u∗ ▷ Accept the candidate sample
4: else
5: Set u′ = u ▷ Reject the candidate sample
6: end if

Output: New state u′ in U-space at SuS level j

B.3 On-the-fly adaptation of proposal scaling

Then, the correlation matrix R involved in the proposal mechanism of the aCS algorithm
has to be specified. A simple choice proposed by Papaioannou et al. (2015) consists in
setting R = diag(ρ1, . . . , ρm), where ρi ∈ [0, 1] is a correlation parameter which drives the
spread of the MCMC proposal distribution in the i-th dimension. Besides, the performance
of the aCS algorithm sensibly depends on the choice of such correlation parameters: too
large values of ρi will typically lead to highly correlated samples, whereas too small values
will lead to a large amount of rejected samples and thereby an acceptance rate close to
zero. Consequently, Papaioannou et al. (2015) proposed to adaptively tuning the parameters
(ρi)1≤i≤m throughout the sampling procedure. In this context, based on ideas taken from
adaptive MCMC algorithms (Andrieu and Thoms, 2008), the aforementioned parameters
are adjusted in order to achieve a target average acceptance rate. As proposed by Betz
et al. (2016), this target acceptance rate is set as α∗ = 0.23 + 0.21/m, based on theoretical
results valid for certain classes of distributions (including Gaussian ones) (Gelman et al.,
1997; Roberts and Rosenthal, 1998). The full aCS algorithm is presented in Algorithm B.2.
The initial proposal scaling parameter is set to λ1 = 0.6, whereas the adaptation period
is set to Na = 100, based on recommendations in (Betz et al., 2018b; Papaioannou et al.,
2015).
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Algorithm B.2 Adaptive Conditional Sampling (aCS) algorithm (Papaioannou et al., 2015)

Input: Seeds {u(j−1,k)}1≤k≤n at SuS level j, number of required samples N , proposal scaling
adaptation period Na, initial proposal scaling parameter λ1, target acceptance rate α∗

1: Set σ0,i = 1, for i = 1 : m ▷ Initialize proposal standard deviations
2: Randomize the order of the seeds {u(j−1,k)}1≤k≤n ▷ Necessary to avoid bias during the

adaptation of the proposal scaling
3: for l = 1 : N/Na do
4: Set σi = min(λlσ0,i, 1), for i = 1 : m ▷ Update proposal standard deviations

5: Set ρi =
√

1− σ2
i , for i = 1 : m ▷ Compute the proposal correlation parameters

6: for k = (l − 1)Na + 1 : lNa do ▷ MCMC sampling procedure
7: Set u(j,N(k−1)/n+1) = u(j−1,k) ▷ Set MCMC seeds
8: Generate N/n−1 states {u(j,N(k−1)/n+s)}2≤s≤N/n with Algorithm B.1, by starting

from u(j,N(k−1)/n+1) and setting R = diag(ρ1, . . . , ρm) ▷ Conditional sampling
9: end for

10: Set ᾱ as the average acceptance rate of the last Na chains
11: Set λl+1 = λl exp ((ᾱ− α∗)/

√
l) ▷ Adapt the proposal scaling parameter

12: end for
Output: Samples {u(j,k)}1≤k≤N from PU (·|D(j)

f ) at SuS level j
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C Probabilistic predictions of local leak fields

C.1 Introduction

The approaches presented in Chapters 4 & 5 enable to forecast the global leakage behavior
of large containment structures. In this context, these approaches notably aim at predicting
the time evolution of the global leakage rate in a probabilistic setting, and allow to update
the knowledge in input parameters from observation data through Bayesian inference. In
particular, the approach presented in Chapter 5 enables to assess the risk of exceeding a
threshold value related to the global leakage rate of the structure, notably through the
estimation of probabilities of failure (PoF).

This section aims at presenting a methodology aiming at predicting the spatio-temporal
evolution of local leaks. In this perspective, a key issue of such an approach is to identify the
plausible zones of the surface of the structure in which local leaks are significant, in order to
better plan possible repair works by optimizing the positioning of coatings, when necessary.
This notably implies a paradigm shift in terms of variables of interest, since leakage fields
have to be modeled instead of a single scalar value, namely the global leakage rate of the
structure. In summary, while Chapters 4 & 5 aimed at assessing the time evolution of the
global leakage rate and evaluating the risks of exceeding a global leakage rate threshold
value, this section aims at describing the spatial distribution of local leaks as well as their
time evolution.

Besides, the prediction of local leaks fields is even more challenging than the prediction
of the global leakage rate, and even more in the case of operating NCBs involving coatings,
which induce an additional layer of complexity. Moreover, to the author’s knowledge, such
a problem has not been yet tackled in the existing literature. Consequently, in the frame-
work of a first attempt, we propose a simple phenomenological model enabling to describe
local leak fields, even in the presence of coatings, based on models proposed for the global
approaches presented in Chapters 4 & 5. Then, the constructed local leak model involves
numerous uncertain input parameters, which are not measurable directly. Consequently,
we propose to infer these parameters through Bayesian inference, from in-situ observations
of local leak fields which are possibly available in a limited quantity. In this context, the
posterior distribution of input parameters is estimated by using the same Bayesian compu-
tational approach as global approaches presented in Chapters 4 & 5, namely the SuS within
BuS algorithm (see Section 2.2.2). Finally, posterior samples can be used to perform new
predictions of the local leak field of the structure.

This appendix is organized as follows: firstly, the proposed approach is presented in
Section C.2. Then, it is numerically implemented and applied to several realistic test-cases
in Section C.3. These test-cases involve the VeRCoRs mock-up presented in Chapter 4, as
well as two 1:1 scale operating NCBs. Lastly, this section is summarized and concluded in
Section C.4.
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C.2 Formulation

C.2.1 General framework

Let D ⊂ R3 be a geometrical domain, which typically corresponds to the (external) surface of
a NCB. A simple model for describing the spatio-temporal evolution of local leaks is presented
hereafter. The main idea behind this model is based on the definition of a relationship
between local leaks and a physical field of interest (e.g. water saturation, strains, prestressing
losses, stresses), analogously to the phenomenological model proposed in Section 3.3.5.2.

Let (Ω,F ,P) be a probability space. Let Π : D×R+×DX → R be a scalar-valued field.
Given spatial coordinates s ∈ D and an instant t ≥ 0, the function Πs,t : x 7→ Π(s, t;x)
is assumed to be deterministic function of random input parameters X : Ω → DX ⊂ RdX .
The field Π can typically correspond to a mechanical field obtained from the THML model
presented in Chapter 3.

Firstly, one focuses on the modeling of the local leak field of the studied structure in
absence of coatings. Denoting by Q0 the local leak field, we propose the following model to
link Q0 to the aforementioned field Π:

Q0(s, t;x,θ) = F (Π(s, t;x);θ) (C.1)

for all (s, t,x) ∈ D × R+ × DX , where F : R × DΘ :→ R is a function which depends on
random parameters Θ : Ω → DΘ ⊂ RdΘ , and establishes a relationship between the fields
Q0 and Π. For instance, F can be simply given by the following power model:

F (ξ;θ) = θ1ξ
θ2 (C.2)

for all ξ ∈ R and θ = (θ1, θ2) ∈ R2
+.

The definition of the relationship between Q0 and Π given in Eq. (C.1) is motivated
by the same phenomenology evoked in Section 3.3.5.2: local leaks are expected to larger in
zones where prestressing losses (and possibly tensile stresses) are more important, and/or
where the water saturation is lower. For instance, a modeling choice would consist in setting
Π as the field of prestressing losses within the formulation in Eq. (C.2).

Nevertheless, it is important to underline that physical phenomena behind local leaks
are very complex, and might involve some threshold effects which make that the proposed
relationship in Eq. (C.1) may not be valid at each location s ∈ D and instant t ≥ 0. Indeed,
when considering physical fields that are somewhat spatially homogeneous and continuously
evolving in time, applying the model in Eq. (C.1) in a point-wise fashion in D × R+ would
lead to a spatially homogeneous local leak field, which would present important leaks on an
important surface of the structure. However, as their name suggests, local leaks typically
show a strongly localized behavior in practice, that notably stems from the fact that only
few leak zones of the structure are triggered during its life (e.g. due to crack initiation). As
a result, the model in Eq. (C.1) should be restricted to active local leak zones, while setting
Q0 = 0 on the remaining zones which present no, or at least negligible, local leaks.

This motivates the notion of leak support. Let S ⊂ D be a subset of the considered
geometrical domain. Then, one rewrites the model in Eq. (C.1) as follows, for all (s, t,x,θ) ∈
D × R+ ×DX ×DΘ:

Q0(s, t;x,θ) = 1S(s)F (Π(s, t;x);θ) (C.3)
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The subset S is called the leak support, and typically corresponds to zones where local
leaks are active. The choice of such a subset is not trivial, though, and has typically to be
based on observations of the local leak field performed during pressurization tests. Then, it
is important to underline a strong assumption induced by the formulation proposed in Eq.
(C.3): the leak support is assumed to not evolve over time, which corresponds to simplifying
hypotheses made in Section 3.3.5.2. Such hypotheses notably consist in assuming that cracks
are not propagating over time, and that no new cracks are initiating during the long-term
phase of the structure, when subjected to normal operating loads. As a result, given an
assumed leak support, the approach proposed here is not able to predict the appearance
of new local leak zones, but only aims at assessing the spatio-temporal evolution of local
leaks within an assumed support. Remark that in practice, the support S might be updated
a posteriori, if new local leak zones are observed. An illustration of a leak support on a
discretized map (in cylindrical projection) of VeRCoRs mock-up is given in Fig. C.1.
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Figure C.1: Example of a leak support on a spatial discretization of VeRCoRs mock-up.

Then, a model aiming at assessing the spatio-temporal of local leaks Q0 having been
presented, we next propose an extension aiming at accounting for the presence of coatings.
Such an extension is based on the same principle presented in Section 5.2.2. In this context,
the local leak field Q with coatings is assumed to be written by:

Q(s, t;x,θ,γ) = Cc(s, t;γ)Q0(s, t;x,θ) (C.4)

where Cc : D × R+ × DΓ → [0, 1] is a function modeling the effects of coatings positioned
on the surface of the structure, depending on efficiency parameters Γ : Ω→ DΓ ⊂ RdΓ . The
definition of Cc will be precised in the next section.

C.2.2 Spatio-temporal discretization

For computational purposes, one considers a discretization D =
⋃m

k=1Dk of the geometrical
domain D into m cells (Dk)1≤k≤m. Likewise, a time grid formed by instants (tl)1≤l≤n is
defined. These instants typically correspond to pressurization tests. Then, from now on,
discretized forms of the fields presented in Section C.2.1 (i.e. Π, Q0 and Q) are considered.
Discretization of these fields is made such that these last are constant on each cell Dk. Fur-
thermore, the leak support is also discretized so that S =

⋃
k∈I Dk, where I ⊂ {1, . . . ,m}.
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In this context, the resulting discretized local leak field Q0 is seen as a Rm×n-valued deter-
ministic function Q0 of parameters (X,Θ,Γ), whose output components are given by:

Q
(k,l)
0 (x,θ) = δk(I)F (Π(k,l)(x);θ) (C.5)

for (k, l) ∈ {1, . . . ,m} × {1, . . . , n}, where δk(I) = 1 if k ∈ I and 0 else, and Π(k,l)(x)
corresponds to the field Π(·, tl;x) averaged on the cell Dk.

Likewise, the adopted discretization of the local leak field Q with coatings writes as
follows:

Q(k,l)(x,θ,γ) = C(k,l)
c (γ)Q

(k,l)
0 (x,θ) (C.6)

where C
(k,l)
c (γ) represents the contribution of coatings on the k-th cell and at the l-th instant.

Based on the coating model proposed in Section 5.2.2, this contribution is assumed to be
defined by:

C(k,l)
c (γ) = (1− γ1,kς(k,l)1 )(1− γ2,kς(k,l)2 ) (C.7)

where (γ1,k, γ2,k) ∈ [0, 1] respectively denote efficiency parameters of intrados and extrados

coatings of the cellDk, whereas ς
(k,l)
1 , ς

(k,l)
2 respectively denote the fraction of coated surface at

intrados and extrados sides of the cell Dk at time tl. In this way, if the intrados (respectively

extrados) face of the cell Dk is fully covered by coatings, one has ς
(k,l)
1 = 1 (respectively

ς
(k,l)
2 = 1). As a result, the discretized formulation proposed in Eq. (C.7) involves 2m
unknown coating efficiency parameters. Note that it is possible to reduce this number of
unknowns by assuming that coating efficiency parameters are identical on given subsets of
the discretized geometrical domain.

Finally, the presented discretization leads to the definition of a local leak field which may
be seen as a deterministic map Q : DX×DΘ×DΓ → Rm×n, which depends on the following
random input parameters:

• parameters X related to the THM model describing the field Π,

• parameters Θ related to the assumed relationship between the field Π and the field of
(virtual) local leaks Q0,

• parameters Γ related to coatings positioned on the surface of the structure.

C.2.3 Bayesian inference

The local leak model described in the previous sections involves numerous uncertain parame-
ters that cannot be measured directly, for most of them. Besides, local leakage measurements
(see Section 4.2.2.3) are available from pressurization tests. Consequently, we propose to in-
fer the aforementioned uncertain parameters from local leakage measurements, in a Bayesian
inverse problem perspective.

To that end, a prior distribution for parameters (X,Θ,Γ) has firstly to be defined. For
the sake of simplicity, these parameters are assumed to be mutually independent. Their
prior density is thereby written as follows:

π(x,θ,γ) = π(x)π(θ)π(γ) (C.8)
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On another note, let Y = {y(k,l)}(k,l)∈{1,...,m}×{1,...,n} be a set formed by local leakage mea-
surements projected on the adopted cells (Dk)1≤k≤m, for each instant tl with l ∈ {1, . . . , n}.
Then, a statistical model has to be devised in order to establish a link between model out-
puts and observed data. For each instant tl, denoting by Y Q(l) : Ω→ Rm the observed local
leak field at instant tl, the following additive Gaussian model is considered:

Y Q(l)|x,θ,γ = Q(l)(x,θ,γ) +E(l) (C.9)

where Q(l)(x,θ,γ) = (Q(k,l)(x,θ,γ))1≤k≤m is the predicted local leak field at time tl, and
E(l) ∼ N (0,Σ(l)) is a centered Gaussian random vector with covariance matrix Σ(l). For
the sake of simplicity, this matrix is assumed to be diagonal, i.e. Σ(l) = diag(σ2

1,l, . . . , σ
2
m,l),

and its entries are assumed to be known.

Then, for a given instant tl, the likelihood function L(l) associated to the model in Eq.
(C.9) is given by:

L(l)(x,θ,γ) = φm(y
(l);Q(l)(x,θ,γ),Σ(l)) (C.10)

where y(l) = (y(k,l))1≤k≤m ∈ Rm denotes observations of the local leak field at time tl, and
φm(·;µ,Σ) is the density of N (µ,Σ), with µ ∈ Rm and Σ ∈ Rm×m.

Furthermore, assuming that the Gaussian noise terms (E(l))1≤l≤n are mutually indepen-
dent, the likelihood function associated to the whole data set Y is given by:

L(x,θ,γ) =
n∏

l=1

L(l)(x,θ,γ) (C.11)

Thus, the posterior density of parameters (X,Θ,Γ) given the data set Y may be derived
through applying Bayes’ theorem:

π(x,θ,γ|Y) ∝ π(x,θ,γ)L(x,θ,γ) (C.12)

For computational purposes, posterior samples can be drawn by using the SuS algorithm
presented in Section 2.2.2. Subsequently, new predictions of the local leak field can be
performed, based on the generated posterior samples.

C.3 Numerical test-cases

In this section, the approach presented in Section C.2 is applied to several test-cases, includ-
ing the VeRCoRs mock-up (see Chapter 4) and two operating NCBs. The general settings
considered for all these test-cases are precised hereafter. Firstly, the field Π considered here
corresponds to prestressing losses computed at the scale of the standard zone. Furthermore,
for the sake of simplicity, the underlying THM parameters X are assumed to be determin-
istic, and are fixed to their nominal value. In the framework of a simple first attempt, this
provides a fully analytical local leak model, which significantly reduces the overall compu-
tational cost of the approach. As a result, only the parameters Θ, and Γ in the presence of
coatings, are concerned by Bayesian inference. Moreover, concerning the function F linking
(see Eq. (C.1)), the power model in Eq. (C.2).

As local leaks are expected to continuously increase over time as prestressing losses
increase, lognormal priors are considered for parameters Θ1 and Θ2 (the mean of Θ2 being
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set to 1), so that values of θ1, θ2 are positive. Moreover, one set of parameters (Θk,1,Θk,2) is
considered for each cell Dk included in the chosen leak support S =

⋃
i∈I Dsi , which leads to a

number of dΘ = 2|I| parameters, |I| being the number of cells of the support. Note that only
parameters related to cells included in the adopted leak support are concerned by Bayesian
inference, since the leakage rate outside from the support is set to zero. Furthermore, the
components of the resulting inputs Θ are assumed to be mutually independent. In addition,
the dΓ = 2|I| coating parameters Γ associated to cells of the leak support are also assumed to
be mutually independent, and each parameter is endowed with a uniform prior with support
[0, 1].

Next, for each case studied, the entries of observation noise covariance matrices (see
Section C.2.3) are assumed to be known, and each standard deviation is computed from es-
timated standard deviation of measurements of flow meters used during pressurization tests.
Note that such a simplifying assumption implies to only consider measurement uncertainties
for the observation noise (intrinsic model uncertainties are thereby neglected).

Lastly, Bayesian computations are performed with the SuS algorithm presented in Section
2.2.2, by considering N = 5000 samples per level, and a rarity parameter of p0 = 0.1.

C.3.1 VeRCoRs mock-up

The first test case concerns the prediction of local leak fields of the VeRCoRs mock-up, which
has been presented in Chapter 4. Here, the problem is simpler than in the case of operating
NCBs, since it does not involve coating parameters Γ.

Firstly, the local leak field observed at VD1 test is used to infer the model parameters Θ,
in order to predict the VD2 field. Subsequently, parameters are inferred from observation
data of VD1 and VD2 tests in order to predict the VD3 field. Concerning the spatial
discretization of the structure, a regular grid with 25×15 cells is adopted. The leak support
is defined to be the union of cells whose observed VD1 leakage rate exceeds the threshold
value of 100 Nl.h−1, in order to eliminate cells with negligible leaks. The so defined leak
support only includes 18 cells, which constitutes a sensibly reduced number of parameters
to infer compared to the total number of 375 cells of the adopted grid.

Then, prediction results obtained from posterior samples drawn with the SuS algorithm
are presented and discussed hereafter. For the sake of brevity, posterior input parameters
are not shown here, in order to rather focus on prediction results. In order to visualize the
evolution of local leaks during the considered period (i.e. from VD1 to VD3), the observed
local leak field at VD1 test is shown in Fig. C.2. Moreover, a comparison of the observed
local leak field and the mean of the predicted field at VD2 is given in Fig. C.3. The same
comparison for the VD3 test is presented in Fig. C.4.

The visualization of the local leak field observed at VD1 test enables to distinguish two
major zones with significant local leaks, namely a zone near the equipment hatch (near 250
gon, at mid-height) and the gusset with the lower standard zone connected to it (near z = 0
m). It is worth mentioning that local leaks in this last zone are mainly driven by cracks
formed in the concrete volume during the early age phase.
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Figure C.2: VeRCoRs - Observed local leak field - VD1 test.

Then, globally speaking, local leak fields at VD2 and VD3 are reasonably well predicted
by the proposed approach. This is notably due to the fact that the VD2 field follows the
pattern observed at VD1: indeed, the distribution of local leaks seems to not strongly evolve
in space, since important leaks observed at VD1 stay in the same zones at VD2. A similar
behavior is observed for the VD3 test. This seems to underline the physical phenomena which
motivated the definition of the phenomenological local leak model proposed in Section 3.3.5.2
and C.2.1: at the end of prestressing phase, cracks formed during the early age phase are
(partially) closed. Subsequently, during the long-term phase, these cracks are continuously
reopening under the effect of prestressing losses, which induces the increase of their local
leakage rate, from one pressurization test to another.
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(a) Observed field.
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(b) Predicted field - Mean.

Figure C.3: VeRCoRs - Comparison of observed and predicted local leak fields at VD2 test.

Then, it is worth noting that several QoI related to the predicted local leak field can
be estimated from the generated posterior samples. For instance, quantiles of the predicted
field can be used so as to visualize extreme values of the field. In particular, high-order
quantiles might be interpreted as indicators for zones in which potentially important local
leaks may occur. The 5% and 95% quantiles of the VD3 predicted field are shown in Fig.
C.5. For most of the cells with significant leaks, observed local leak values are reasonably
well bounded the aforementioned predicted quantiles.
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(a) Observed field.
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(b) Predicted field - Mean.

Figure C.4: VeRCoRs - Comparison of observed and predicted local leak fields at VD3 test.
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(a) Predicted 5% quantile field.
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(b) Predicted 95% quantile field.

Figure C.5: VeRCoRs - 5% and 95% quantiles of the predicted local leak field at VD3 test

Finally, the predicted field might be used to assess the total local leakage rate of the
structure (as in Chapters 4 and 5), simply by summing it on the surface of the latter. In
this context, the proposed approach enables to well predict the order of magnitude of the
observed total local leakage rate: at VD2 test, the mean of the predicted total leakage
rate (29.3 Nm3.h−1) approaches the observed one (31.7 Nm3.h−1) with a relative error of
7.6%. Moreover, at VD3 test, the observed leakage rate is about 38.9 Nm3.h−1, whereas the
predicted one is about 34.0 Nm3.h−1, which corresponds to a relative error of 12.6%.

C.3.2 Operating 1:1 scale NCBs

The test case concerning the VeRCoRs mock-up presented in the previous section enabled to
assess the predictive power of the model proposed in Section C.2, in the absence of coatings.
In this section, two operating NCBs are considered. These two NCBs will be named A and
B in the following. In both cases, parameters are inferred from the observed local leak field
at VD2, in order to predict the VD3 field. Note that here, the prediction problem is much
more difficult than in the VeRCoRs case, and that a small amount of data is available to
infer a large amount of uncertain input parameters. Moreover, a coarser grid comprising
8× 4 cells is considered here, for the sake of simplicity.
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Results concerning the NCB A are firstly presented and discussed. The observed VD2
field used to update input parameters is shown in Fig. C.6. Moreover, a comparison the
mean of the predicted field and the observed field at VD3 is given in Fig. C.7. Globally
speaking, the VD3 predictions kept in memory some zones which presented a significant
leakage rate at VD2, while underestimating the reduction of the leakage rate provided by
positioned coatings. Indeed, a zone with an important leakage rate near 300 gon and z = 0
during the VD2 test has been coated for the VD3 test, so that its leakage rate at VD3 is
practically equal to zero. Such a phenomenon has not been reproduced by the model, which
still predicts a significant leakage rate in this zone. Besides, predictions sensibly differ from
the observed field at VD3, except maybe near the right half of the dome (from 200 gon to
400 gon), where important leaks are predicted.
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Figure C.6: NCB A - Observed local leak field - VD2 test.
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(a) Observed field.
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(b) Predicted field - Mean.

Figure C.7: NCB A - Comparison of observed and predicted local leak fields - VD3 test.

Again, the use of quantiles enables to have an idea of the zones in which important leaks
are likely to occur: the 5% and 95% quantiles of the predicted VD3 field are depicted in
Fig. C.8. The 95% quantile notably indicates that extreme values of the local leak field are
located in several cells of the dome. In a certain extent, such an indicator might be used to
guide the positioning of coatings, in order to focus on plausible zones with important leaks.
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Finally, it is worth noting that the proposed approach enables to correctly predict the
order of magnitude of the total local leakage of the structure, since the observed one is
approached with a relative error of about 3% by predictions. However, this probably stems
from compensated errors at the local scale, due to the difference observed between the two
corresponding fields (see Fig. C.7).
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(a) Predicted 5% quantile field.
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(b) Predicted 95% quantile field.

Figure C.8: NCB A - 5% and 95% quantiles of the predicted local leak field - VD3 test.

Likewise, results related to NCB B are presented and discussed. The local leak field
observed at VD2 is shown in Fig. C.9. Then, the observed local leak field and the mean
predicted one at VD3 are compared in Fig. C.10. The considered NCB presents less local
leakage zones at VD2, and zones with important leakage rates are concentrated at mid-
height, on an angular sector varying from 100 to 350 gon (see Fig. C.9). Then, at VD3,
the observed field presents one zone with an important leakage rate, which is located near
the equipment hatch (near 200 gon at mid-height). This is well reproduced by predictions.
Zones with smaller leakage rates are more roughly predicted by the model, though. Finally,
the 5% and 95% quantiles of the VD3 predicted field are depicted in Fig. C.11. The 95%
quantile enables to visualize zones with important local leaks, which are mainly located near
hatches, at mid-height of the structure.
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Figure C.9: NCB B - Observed local leak field - VD2 test.
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(a) Observed field.
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(b) Predicted field - Mean.

Figure C.10: NCB B - Comparison of observed and predicted local leak fields - VD3 test.
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(a) Predicted 5% quantile field.
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(b) Predicted 95% quantile field.

Figure C.11: NCB B - 5% and 95% quantiles of the predicted local leak field - VD3 test.

C.4 Conclusions and perspectives

In this section, a simple methodology aiming at assessing the spatio-temporal evolution of
local leaks of NCB has been proposed. This approach is based on a simple phenomenological
model linking local leak field to a THM field of interest (e.g. water saturation, prestressing
or strains), and on a probabilistic description of uncertain input parameters. In this context,
the level of knowledge in these input parameters is updated through Bayesian inference, from
observations of local leak fields. The proposed approach has been applied to several realistic
test-cases, including the VeRCoRs mock-up and two operating 1:1 scale NCBs.

Then, in the VeRCoRs case, results suggest that the proposed local leak model enables to
reasonably assess the spatio-temporal evolution of local leaks. In the more complex case of
operating NCBs, involving the presence of coatings, results are more mixed, but the proposed
model still enables to reasonably well locate zones with large local leakage rates. Broadly
speaking, the proposed approach provides a practical visualization of local leak fields with
maps of the surface of the studied structure, while proposing probabilistic description of
predicted fields, which enables to indicate plausible zones with important leaks. Thus, the
proposed approach might be used in complement to global approaches presented in Chapters
4 & 5 in order to potentially optimize the positioning of coatings in the framework of the
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maintenance of NCB, through priorizing repair works on the most likely important leakage
zones.

Besides, it is worth mentioning that the proposed approach tackles a way more difficult
prediction problem than that addressed by global approaches presented in Chapters 4 & 5,
since only a small amount of information regarding local leaks is available, and the literature
is lacking concerning interactions between leakage and coatings, involving complex transfer
phenomena at structural scale. In this context, the proposed simple phenomenological model
enables to qualitatively describe the spatio-temporal evolution of local leaks at the scale of the
whole structure. The choice of such a simple model is justified as follows: explicitly modeling
local leaks through full scale FE calculations would be computationally intractable, since
cracking would have to be modeled, for instance with (costly) damage models. Furthermore,
such an approach would require a precise knowledge of the location of cracks, as well as their
geometrical and hydraulic properties (see Section 3.3.5.2).

The proposed approach constitutes a simple first attempt at predicting local leak fields,
and consequently underlies several improvement perspectives. First, the proposed physical
model can be obviously refined, regarding the modeling of the evolution of local leaks, as
well as the effects of coatings on the hydraulic behavior of the structure. Moreover, it is
important to underline that in its actual formulation, the proposed model is only able to
predict local leaks in zones in which leaks have already been observed. This is materialized
by the notion of leak support, which corresponds to a subset of the studied geometrical
domain in which predictions are performed (see Section C.2.1). Hence, the model is not able
to detect a potential crack propagation or initiation which would induce the appearance of
local leaks in a zone outside of the leak support. Next, in the presented applications, one set
of input parameters has been considered for each cell of the adopted spatial discretization
of the structure.

Moreover, all the aforementioned parameters are assumed to be mutually independent.
Hence, it would be possible to model some inputs by random fields (e.g. coating efficiency,
local leak evolution parameters), which enable to account for spatial auto-correlation. In
this context, such random fields could be inferred through Bayesian inference in a purely
analogous way than that presented in the proposed approach, by adopting random field
discretization schemes (see e.g. (Uribe et al., 2020)). Lastly, regarding alternative modeling
approaches for predicting local leak fields, it is worth mentioning the interesting the approach
proposed in (Oumouni et al., 2019), based on spatio-temporal Gamma processes, originally
used to model degradation phenomena.
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D Computational tools and numerical implementations

• Calculations are performed by using a desktop computer, with Intel Xeon W-2145 (8
cores, 3.7− 4.5 Ghz Turbo).

• Unless otherwise specified, the algorithms used in this thesis are based on in-house
codes developed in Matlab and Python. Otherwise, some features of the software
UQLab (Marelli and Sudret, 2014) for Matlab, and OpenTURNS (Baudin et al., 2016)
for Python are used, notably regarding PCE and PCK surrogate modeling.

• Finite element calculations presented in Chapters 4 & 5 of this thesis are performed
with the Code Aster solver developed by EDF R&D. Moreover, finite element meshes
are generated by using the Salome platform.

• During my PhD, I had the opportunity to collaborate with EDF R&D in order to
contribute to an internal software dedicated to digital twins of NCB. In this context,
I developed two Python software, that are described herebelow:

– one software enabling to perform a global UQ analysis for the THML behavior
of NCB, based on the contents presented in Chapters 4 & 5. In addition to a
wide range of scripts enabling to performing finite element THML calculations,
this software notably contains features related to Bayesian inference, sensitivity
analysis, reliability and robustness analysis. In particular, it comprises in-house
codes for several MCMC algorithms (including MH, AM, AIES, see Section 1.3.4),
the SuS within BuS algorithm presented in Section 2.2, analytical post-processing
features for PC-PCE surrogates, an implementation of MCS and SuS algorithms
for reliability analysis, and PLI measures used in Chapter 5.

– one software corresponding to the method presented in Appendix C aiming at
predicting local leak fields of NCB. It notably comprises processing and visualiza-
tion features for local leak data, and uses probabilistic modeling functionalities of
the OpenTURNS, the Salome platform, as well as a Python implementation of the
SuS within BuS algorithm (see Section 2.2.2)

https://www.uqlab.com/
www.openturns.org
https://www.code-aster.org/spip.php?rubrique1
https://www.salome-platform.org/?lang=en
www.openturns.org
https://www.salome-platform.org/?lang=fr
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E Résumé étendu de la thèse

E.1 Contexte industriel et scientifique

Les centrales nucléaires constituent une part importante de la production d’électricité en
France, principalement assurée par l’entreprise Electricité de France (EDF). En effet, le
parc nucléaire Français inclut 56 réacteurs opérationnels, représentant environ 78% de la
production d’électricité Française (EDF, 2021). Ce mix énergétique résulte notamment d’une
politique d’indépendance énergétique initiée après la fin de la Seconde Guerre Mondiale et
confirmée par les deux chocs pétroliers de 1973 et 1979.

Les réacteurs opérationnels précités sont tous basés sur la technologie de type Réacteur
à Eau Pressurisée (REP), et peuvent être classifiés en plusieurs familles en fonction de leur
puissance:

• 32 réacteurs développant chacun une puissance de 900 MWe. Ces réacteurs sont
répartis sur 8 sites, et ont été construits entre 1971 et 1987.

• 20 réacteurs chacun dotés une puissance de 1300 MWe, répartis sur 8 sites et construits
entre 1977 et 1993.

• 4 réacteurs chacun dotés une puissance de 1450 MWe, répartis sur 2 sites et construits
entre 1984 et 1999.

Enfin, la construction d’un nouveau réacteur basé sur la technologie de type Réacteur Pres-
surisé Européen (EPR) a été initiée sur le site de Flamanville, en 2007. Ce réacteur dispose
d’une puissance caractéristique de 1650 MWe. La répartition géographique des réacteurs
précités est donnée par la Fig. E.1.

Le principe de fonctionnement d’un réacteur de type REP est schématisé par la Fig.
E.2. Premièrement, le coeur du réacteur est le lieu des réactions nucléaires: il est placé
dans une cuve en acier, et comprend plusieurs centaines de barres de combustible nucléaire.
Les réactions de désintégration des matières fissiles contenus dans le combustible induisent
un important dégagement de chaleur, ensuite absorbé par l’eau entourant les barres de
combustible. Cette eau évolue dans un circuit fermé, usuellement connu sous le nom de
circuit primaire (en jaune dans la Fig. E.2). À travers ce circuit, la chaleur dégagée par le
coeur du réacteur est transportée vers des générateurs de vapeurs. Ces derniers transforment
la chaleur précitée en vapeur au sein d’un second circuit fermé, nommé circuit secondaire
(en bleu dans la Fig. E.2). Ce circuit convertit l’énergie thermique du circuit primaire en
énergie mécanique, à travers l’injection de vapeur dans une turbine reliée à un alternateur,
transformant l’énergie mécanique en énergie électrique. Enfin, la vapeur est à nouveau
transformée en eau via un condenseur, relié à une source froide par le biais d’un circuit
tertiaire (ou circuit de refroidissement, en vert dans la Fig. E.2). La source froide provient
typiquement d’une rivière ou de la mer, et est éventuellement complétée par une tour aéro-
réfrigérante.

La sûreté d’un réacteur nucléaire repose principalement sur trois fonctions, à savoir la
mâıtrise de la réactivité du réacteur, le refroidissement du combustible et le confinement des
éléments radioactifs. Dans ce contexte, un réacteur dispose de trois barrières de confinement:
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Figure E.1: Localisation des 56 réacteurs du parc nucléaire Français, et de l’EPR de Flamanville
(en construction). La centrale nucléaire de Fessenheim a été fermée en 2020. ©IRSN

Figure E.2: Schématisation du principe de fonctionnement d’un réacteur de type REP. ©EDF

1. les gaines des barres de combustible, visant à empêcher la migration des produits de
fission dans l’eau du circuit primaire,

2. le circuit primaire, comprenant notamment la cuve du réacteur (voir Fig. E.2).

3. l’enceinte de confinement, abritant le circuit primaire (voir Fig. E.2).

En particulier, l’enceinte de confinement assure deux fonctions, à savoir la protection
du réacteur en cas d’agressions externes (e.g. impacts), et la protection de l’environnement
en cas d’accident interne. Par conséquent, cette structure doit disposer d’une étanchéité
suffisante afin de remplir son rôle de protection.
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Le principe de conception des enceintes de confinement des réacteurs des centrales nucléai-
res Françaises a progressivement évolué depuis le début des années 1970 (Jacquemain, 2015).
Tout d’abord, les enceintes de confinement des réacteurs de 900 MWe consistent en une
simple paroi en béton armé et précontraint, dont l’étanchéité est assurée par un liner en
acier. Ensuite, les réacteurs de 1300 MWe sont constituées d’une double enceinte en béton,
comprenant une enceinte interne en béton armé et précontraint sans liner métallique, ainsi
qu’une enceinte externe en béton armé. Dans ce contexte, la protection du réacteur est
assurée par l’enceinte externe, tandis que l’étanchéité est assurée par l’enceinte interne. De
plus, un système actif maintient un vide dans l’espace entre enceintes, de manière à ce que
les éventuels éléments radioactifs provenant de situations accidentelles puissent être collectés
et filtrés plutôt que directement relâchés dans l’environnement.

Cette thèse est motivée par la problématique de l’étanchéité des enceintes de confinement
à double paroi. En France, les autorités de régulation spécifient un critère relatif au débit
de fuite de l’enceinte interne: lorsque cette dernière est soumise à une pression interne de
5.2 bars, son débit de fuite ne doit pas excéder 1.5% par jour de la masse d’air contenue
dans l’enceinte. Dans ce contexte, le débit de fuite de l’enceinte est mesuré avant la mise
en service du réacteur, puis tous les dix ans, au cours d’essais de pressurisation réalisés à
l’occasion de visites décennales. Le respect du critère d’étanchéité conditionne la poursuite
de l’exploitation du réacteur.

Par ailleurs, le béton constitue un matériau hétérogène complexe, dont les propriétés
peuvent évoluer au cours du temps sous l’effet de plusieurs phénomènes physiques liées au
vieillissement. En particulier, de tels phénomènes peuvent conduire à une augmentation
du débit de fuite des enceintes de confinement au cours du temps, ce qui pourrait altérer
leur étanchéité à long-terme. Dès lors, les enceintes de confinement ne pouvant pas être
remplacées, des opérations de maintenance peuvent être envisagées afin de renforcer leur
étanchéité. De telles opérations doivent être réalisées lorsque le réacteur est à l’arrêt, et
requièrent un coût potentiellement très important. Ainsi, il est nécessaire de développer des
stratégies numériques visant à prévoir l’évolution du débit de fuite d’enceintes de confine-
ment, afin de mieux anticiper d’éventuelles réparations dans le cadre de leur maintenance.

E.2 Quantification d’incertitudes en simulation numérique

La modélisation et la simulation numériques occupent une place centrale dans le cadre de
l’ingénierie moderne. Depuis la fin du vingtième siècle, l’essor constant des ressources de
calcul et des avancées dans le cadre du calcul scientifique ont permis la simulation de systèmes
de plus en plus complexes. De ce fait, les modèles numériques sont aujourd’hui au coeur
de la conception et de l’exploitation de systèmes d’ingénierie, tels que les ponts, barrages,
ou enceintes de confinement. Dans ce contexte, ils permettent de simuler le comportement
de tels systèmes, et sont très souvent substitués à des expériences réelles, généralement trop
coûteuses, complexes, voire impossibles à mettre en oeuvre. Par exemple, dans le cadre
des enceintes de confinement, des modèles numériques ont été développés dans l’optique
d’évaluer l’évolution temporelle de leur comportement multi-physique à long-terme. De
tels modèles numériques sont typiquement basés sur des formules analytiques, ou bien des
systèmes d’équations aux dérivées partielles, résolues numériquement au moyen de schémas
numériques tels que la très usitée méthode des éléments finis.
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Toutefois, malgré leur fidélité croissante, les modèles numériques demeurent des représent-
ations idéalisées de la réalité. Ainsi, les écarts entre les prédictions numériques et les ob-
servations sont inévitables, notamment du fait d’un manque de connaissance relatif aux lois
de comportement physiques, ou du fait d’échelles non résolues. De plus, la simulation de
systèmes physiques complexes requiert un nombre potentiellement important de paramètres
d’entrée. Par exemple, dans le cadre du génie civil, de tels paramètres peuvent correspon-
dre à des propriétés matériau, géométriques, des conditions aux limites ou des conditions
initiales, ainsi qu’à des paramètres non mesurables directement. De tels paramètres sont
tous entachés d’incertitudes, typiquement en raison d’un manque de connaissance, ou d’une
variabilité intrinsèque. Néanmoins, ces incertitudes sont souvent négligées en pratique, les
approches de modélisation classiquement considérées dans les études d’ingénierie demeurant
majoritairement déterministes. Ainsi, il est nécessaire de prendre en compte ces incertitudes
afin de proposer une approche de modélisation plus rigoureuse et plus complète.

La Quantification d’Incertitudes constitue la discipline scientifique visant à modéliser
explicitement les incertitudes en simulation numérique (De Rocquigny et al., 2008; Smith,
2014; Sullivan, 2015). Elle a récemment émergé en tant que domaine de recherche actif, qui
englobe un large éventail d’éléments théoriques et appliqués situés à l’interface des Statis-
tiques, de la Théorie des Probabilités, des Mathématiques Appliquées et de l’Informatique.
En outre, les techniques de quantification d’incertitudes sont aujourd’hui répandues dans di-
verses branches de l’ingénierie et des sciences appliquées (Ghanem et al., 2017; Soize, 2017).
Ceci est particulièrement facilité par la nature interdisciplinaire et modulaire du cadre général
de la quantification d’incertitudes défini dans (De Rocquigny et al., 2008; Iooss, 2009; Su-
dret, 2007). Ce cadre, illustré par la Fig. E.3, s’articule autour d’une châıne de quelques
étapes fondamentales représentatives d’une analyse typique de quantification d’incertitudes,
décrites ci-après:

Figure E.3: Représentation schématique du cadre général d’une étude de Quantification
d’Incertitudes, adapté de (De Rocquigny et al., 2008; Sudret, 2007; Wagner, 2021).
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• Étape A - Spécification du modèle: La première étape du cadre de la quantification
d’incertitudes consiste à spécifier un modèle de calcul simulant le système physique
étudié. Un tel modèle constitue le cœur d’une analyse d’incertitudes, et sa spécification
implique la définition des paramètres d’entrée ainsi que des variables de sortie. Dans
le cas des enceintes de confinement, il s’agit généralement d’une châıne de calcul multi-
physique basée sur plusieurs codes éléments finis(Boucher, 2016; Bouhjiti, 2018).

• Étape B - Quantification des sources d’incertitudes: la deuxième étape vise à
identifier les sources d’incertitudes entachant les paramètres d’entrée du modèle. Dans
ce contexte, les incertitudes peuvent être modélisées dans plusieurs cadres mathématiq-
ues différents, notamment la théorie des probabilités ou les probabilités imprécises.

• Étape C - Caractérisation des variables de sortie: la troisième étape consiste
à caractériser les incertitudes des variables de sortie du modèle. Cette caractérisation
comprend notamment des méthodes issue du cadre de la propagation d’incertitudes (De
Rocquigny et al., 2008; Grigoriu, 2012), l’analyse de sensibilité (Iooss and Lemâıtre,
2015; Saltelli et al., 2004) et de l’analyse de fiabilité (Lemaire et al., 2009; Melchers,
1999).

• Étape D - Analyse inverse: enfin, il est possible de quantifier les incertitudes des
paramètres d’entrée via une analyse inverse, à partir des observations de la réponse du
système physique simulé. Un tel processus de quantification inverse englobe l’estimation
de paramètres (Kaipio and Somersalo, 2005; Tarantola, 2005), la calibration de modèles
(Kennedy and O’Hagan, 2001) et l’assimilation de données (Evensen, 2009; Reich and
Cotter, 2015). De telles tâches peuvent notamment être entreprises d’un point de vue
probabiliste dans le cadre de l’inférence Bayésienne, à laquelle une attention partic-
ulière sera portée dans cette thèse.

Ensuite, il convient de noter que les méthodes associées aux étapes C & D du cadre de
la quantification d’incertitudes nécessitent généralement des évaluations répétées du modèle
numérique. Or, ce dernier est souvent coûteux (par exemple un code éléments finis com-
plexe), ce qui entrave l’application des méthodes précitées. Afin de contourner ce problème,
le modèle de calcul est généralement remplacé par une fonction mathématique peu coûteuse
à évaluer, communément appelée méta-modèle (ou surface de réponse) (Fang et al., 2005;
Forrester et al., 2008). De même, les approches de réduction de modèles (Chinesta et al.,
2014; Schilders et al., 2008) visent à trouver un compromis entre un modèle plus simple (et
moins coûteux) et un niveau de précision raisonnable. La méta-modélisation (et la réduction
de modèle) est devenue une partie intégrante du cadre de la quantification d’incertitudes, et
constitue une étape intermédiaire qui permet l’accélération des méthodes de quantification
d’incertitudes.
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E.3 Contributions et plan de la thèse

Récemment, un large éventail d’approches de modélisation dédiées aux structures de con-
finement ont pu être développées parallèlement à l’amélioration de la compréhension des
phénomènes physiques à l’origine du vieillissement du béton, et servent aujourd’hui de base
à la conception de modèles numériques capables d’évaluer raisonnablement le comporte-
ment global à long terme de structures de confinement en béton (voir e.g. (Asali, 2016;
Boucher, 2016; Jason et al., 2007)). Néanmoins, comme mentionné précédemment, ces ap-
proches restent le plus souvent déterministes, et ne tiennent donc pas compte des incerti-
tudes omniprésentes entachant les paramètres d’entrée. Les travaux antérieurs de Bouhjiti
(2018) constituent alors un point charnière, puisqu’ils constituent une première tentative de
quantification d’incertitudes dans le contexte du comportement de fuite des structures de
confinement.

Les modèles numériques habituellement adoptés pour évaluer le comportement à long
terme de structures de confinement comportent généralement un grand nombre de paramètres
d’entrée incertains. En ce qui concerne les paramètres directement mesurables, il est possible
de modéliser leurs incertitudes à partir de données expérimentales. Cependant, la plupart
des paramètres d’entrée ne sont pas directement mesurables, si bien que peu d’informations
sont disponibles à leur sujet. Par conséquent, le jugement d’expert (De Rocquigny et al.,
2008) est couramment utilisé pour modéliser les incertitudes de ces paramètres, comme
par exemple dans (Bouhjiti, 2018). Dans ce contexte, les incertitudes sont modélisées sur
la base des connaissances d’un ou plusieurs analystes, de manière plus ou moins subjec-
tive. Néanmoins, si de grandes incertitudes sont supposées pour les paramètres d’entrée, les
prédictions correspondantes sont susceptibles d’être entachées d’incertitudes importantes, ce
qui entrave la prise de décision liée à la maintenance de structures de confinement. En outre,
les incertitudes des paramètres d’entrée sont le plus souvent modélisées par des distributions
de probabilité, elles-mêmes connues avec différents niveaux de confiance. Par conséquent,
il serait nécessaire de quantifier l’impact du choix de telles distributions d’entrée sur des
quantités d’intérêt liées au comportement de fuite de la structure étudiée, typiquement
une probabilité de dépassement d’un critère réglementaire de fuite. La branche récente de
l’analyse de robustesse (Iooss et al., 2021; Lemâıtre et al., 2015; Sueur et al., 2016) vise
notamment à répondre à une telle question.

Par ailleurs, les récentes avancées en matière de dispositifs de surveillance ont permis
d’acquérir une quantité non négligeable de données relatives au comportement à long terme
de grandes structures en béton telles que les enceintes de confinement. Les données de
surveillance présentent donc un grand intérêt, car elles peuvent être utilisées pour extraire des
informations sur des paramètres d’entrée incertains ne pouvant pas être mesurés directement,
et pour ensuite effectuer de nouvelles prédictions du comportement de la structure. Une
telle analyse inverse peut être réalisée par le biais de l’inférence Bayésienne, qui permet de
mettre à jour un état de connaissance préalable des paramètres d’entrée à partir de données
d’observation bruitées, dans un cadre probabiliste.

Par conséquent, sur la base du cadre de la quantification d’incertitudes décrit par la Fig.
E.3, cette thèse vise à fournir une approche plus complète pour quantifier les incertitudes liées
aux prédictions du comportement à long terme des structures de confinement, en poursuivant
les objectifs suivants :



242 Appendices

i. Tenir compte des incertitudes dans les simulations de modèles numériques de structure
de confinement, afin de quantifier les incertitudes des prédictions de leur comportement
à long terme,

ii. Développer une stratégie visant à mettre à jour le niveau de connaissance des paramètres
d’entrée incertains à partir de données d’observation bruitées et indirectes fournies par
des dispositifs d’auscultation in-situ,

iii. Estimer les risques de dépassement des seuils réglementaires de taux de fuite, et évaluer
la robustesse d’une telle estimation,

iv. Évaluer l’efficacité d’éventuels scénarios de travaux de réparation, afin de mieux an-
ticiper des opérations de maintenance.

Dès lors, ce manuscrit est organisé comme suit : tout d’abord, un état de l’art général sur
le cadre et les méthodes de la Quantification d’Incertitudes est présenté dans le Chapitre
1. Les principes fondamentaux de la quantification d’incertitudes sont d’abord introduits,
en se concentrant sur la théorie des probabilités. Ensuite, les outils de calcul de base de la
quantification d’incertitudes utilisés tout au long de cette thèse sont brièvement présentés.
Dans cette perspective, une présentation en deux parties est adoptée, traitant premièrement
des méthodes dites directes (étape C dans la Fig. E.3) incluant la propagation d’incertitude,
l’analyse de sensibilité et l’analyse de fiabilité, avant de présenter des méthodes dites inverses
(étape D dans la Fig. E.3).

Ensuite, en se concentrant sur l’inférence Bayésienne, le Chapitre 2 présente un cadre
Bayésien récemment introduit par Straub and Papaioannou (2015), nommé Bayesian Updat-
ing with Structural reliability methods (BuS). Ce cadre constitue la base algorithmique pour
les analyses inverses entreprises dans les chapitres suivants de cette thèse. En particulier,
les algorithmes impliqués nécessitent un grand nombre d’évaluations du modèle numérique,
ce qui rend leur coût prohibitif lorsque des modèles coûteux sont considérés. Dans ce con-
texte, nous présentons une nouvelle approche basée sur des méta-modèles adaptatifs, visant
à accélérer efficacement les méthodes d’échantillonnage Bayésiennes considérées dans cette
thèse. Les performances de la méthode proposée sont évaluées à l’aide de plusieurs cas tests
académiques de complexité variable.

Ensuite, le Chapitre 3 établit la base des modèles de calcul adoptés dans les applications
aux structures de confinement présentées dans cette thèse, à travers la description d’une
stratégie de modélisation adaptée à l’évaluation du comportement Thermo-Hydro-Mécanique
et de Fuite (THMF) à long terme des structures de confinement vieillissantes. En particulier,
cela implique la définition de paramètres d’entrée (e.g. module d’Young, perméabilité) ainsi
que de variables de sortie d’intérêt (e.g. déformations, taux de fuite). À cette fin, les
principaux phénomènes physiques liés au vieillissement du béton sont d’abord introduits,
afin de permettre une meilleure compréhension du problème physique principalement abordé
dans les chapitres suivants. La stratégie de modélisation THMF adoptée dans cette thèse
est ensuite présentée, en capitalisant sur des travaux antérieurs dédiés à la modélisation
physique de structures de confinement (Boucher, 2016; Bouhjiti, 2018).
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Ensuite, en se basant sur les trois premiers chapitres de cette thèse, le Chapitre 4
constitue l’une de nos principales contributions à l’évaluation du comportement THMF
à long terme de structures de confinement. Dans cette perspective, nous présentons une
méthodologie générale visant à évaluer le comportement à long terme des grandes structures
de confinement en béton soumises au vieillissement, tout en tenant compte des incertitudes
des prédictions dans un cadre probabiliste. En particulier, nous proposons une approche
basée sur l’inférence Bayésienne visant à mettre à jour les paramètres d’entrée incertains à
partir de données d’observation bruitées fournies par des dispositifs de surveillance in-situ.
Dans cette perspective, l’étude de cas centrale de ce chapitre est donnée par la maquette
VeRCoRs, à savoir une maquette à l’échelle 1:3 d’une enceinte de confinement à double paroi
construite par EDF, à des fins de recherche sur le sujet du vieillissement.

Notre deuxième contribution principale au NCB est présentée dans le Chapitre 5, qui
aborde la thématique des structures de confinement opérationnelles, et se concentre sur
l’évaluation de la fiabilité de leur étanchéité. Dans ce contexte, une enceinte de confine-
ment en exploitation (à l’échelle 1:1) constituera l’étude de cas centrale de ce chapitre.
En particulier, un tel problème comporte des caractéristiques spécifiques par rapport à la
maquette VeRCoRs étudiée dans le chapitre précédent, telles que des opérations de mainte-
nance visant à renforcer l’étanchéité. Dans un premier temps, nous introduisons plusieurs
hypothèses de modélisation afin d’évaluer l’effet et l’efficacité de travaux de réparation vis-
à-vis de l’étanchéité de la structure. Par la suite, nous proposons d’évaluer les risques de
dépassement de seuils réglementaires de fuite, en nous appuyant sur le cadre de l’analyse de
fiabilité. Dans ce contexte, les effets du choix de la distribution de probabilité des entrées
sur les probabilités de défaillance estimées sont évalués via une analyse de robustesse. Enfin,
nous proposons une approche Bayésienne visant à mettre à jour l’estimation des probabilités
de défaillance précitées, à partir des données de surveillance in-situ collectées tout au long
de l’exploitation de la structure.

Enfin, le Chapitre 6 fournit une conclusion générale à cette thèse. Il discute les limites
des approches adoptées et expose les perspectives de ce travail.



244 Appendices

E.4 Publications et communications

Les publications et communications liées à cette thèse sont listées ci-dessous.

Articles de revues internationales à comité de lecture

Rossat, D., Baroth, J., Briffaut, M., and Dufour, F. 2022. Bayesian inversion us-
ing adaptive Polynomial Chaos Kriging within Subset Simulation. Journal of Computational
Physics, 455:110986.

Rossat, D., Baroth, J., Briffaut, M., Dufour, F., Masson, B., Monteil, A.,
and Michel-Ponnelle, S. 2022. Bayesian updating for nuclear containment buildings
using both mechanical and hydraulic monitoring data. Engineering Structures, 262:114294.

Rossat, D., Baroth, J., Briffaut, M., Dufour, F., Masson, B., Monteil, A.,
and Michel-Ponnelle, S. 2022. Fast Bayesian inference with correction of model bias
and global sensitivity analysis for Nuclear Containment Buildings. Submitted.

Rossat, D., Baroth, J., Briffaut, M., Dufour, F., Masson, B., Monteil, A.,
and Michel-Ponnelle, S. 2022. Bayesian updating for predictions of delayed strains of
large concrete structures: influence of the prior distribution. European Journal of Environ-
mental and Civil Engineering.

Rossat, D., Bouhjiti, D. E.-M., Baroth, J., Briffaut, M., Dufour, F., Mon-
teil, A., Masson, B., and Michel-Ponnelle, S. 2021. A Bayesian strategy for fore-
casting the leakage rate of concrete containment buildings – Application to nuclear contain-
ment buildings. Nuclear Engineering and Design, 378:111184.

Parallèlement aux principaux travaux de cette thèse, j’ai eu l’opportunité de prendre
part à des travaux en lien avec le projet Évaluation Non Destructive des Enceintes de con-
finement des centrales nucléaires (ENDE), financé par l’Agence Nationale de la Recherche
(ANR). Ces travaux ont donné lieu à deux publications, résultant de collaborations avec des
chercheurs de l’Université Gustave Eiffel (UGE), et du Laboratoire Matériaux et Durabilité
des Constructions (LMDC):

Gupta, R., Rossat, D., Dérobert, X., Baroth, J., Briffaut, M., Villain, G.,
and Dufour, F. 2022. Blind comparison of saturation ratio profiles on large RC structures
by means of NDT and SFE—Application to the VeRCoRs mock-up. Engineering Structures,
258:114057.

Verdier, J., Rossat, D., Multon, S., Bouhjiti, D., Sogbossi, H., Baroth, J.,
Nehme, A., Dufour, F., Cagnon, H., and Briffaut, M. 2022. In-situ measurement
and numerical modeling of air leakage in concrete: from the lab specimen up to structural
scale. Submitted.

https://anr.fr/ProjetIA-11-RSNR-0009
https://anr.fr/ProjetIA-11-RSNR-0009
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Communications dans des conférences internationales et nationales

Rossat, D., Baroth, J., Briffaut, M., Dufour, F. 2022. Efficient Bayesian inversion
with optimal transport maps and Polynomial Chaos surrogates - Application to mechanical
inverse problems. 25ème Congrès Français de Mécanique, Nantes, France.

Rossat, D., Baroth, J., Briffaut, M., Dufour, F., Monteil, A., Masson, B.,
and Michel-Ponnelle, S. 2021. Probabilistic modeling in a Bayesian framework of leak
tightness of nuclear containment buildings. 31st European Safety and Reliability Conference
(ESREL 2021), Angers, France.

Exposés dans des séminaires et workshops

Rossat, D., and Baroth, J. 2022. Bayesian inversion using adaptive Polynomial Chaos
Kriging within Subset Simulation. Journée GST Mécanique et Incertain, Paris, France.

Rossat, D., Baroth, J., Briffaut, M., Dufour, F., Masson, B., Monteil, A.,
and Michel-Ponnelle, S. 2022. Bayesian updating and reliability analysis for nuclear
containment buildings. 60th European Safety, Reliability & Data Association (ESReDA60),
Grenoble, France.

Rossat, D., and Baroth, J. 2021. Adaptive surrogate models for Bayesian inference
- Applications to Nuclear Containment Buildings. Meeting IMdR - GTR Sécurité et Sûreté
des Structures , Online meeting.

Rossat, D., and Baroth, J. 2020. Actualisation Bayésienne des prévisions du com-
portement de transfert de grands ouvrages de confinement. Groupe de travail FIMA: Modèles
Aléatoires pour la Fiabilité et la Maintenance des Systèmes , Grenoble, France.

http://afm.asso.fr/Groupes-et-Commissions/Groupes-Scientifiques-et-Techniques/GST-04-M%C3%A9canique-et-Incertain#/148561-prsentation
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Babuška, I., Nobile, F., and Tempone, R. 2007. A Stochastic Collocation Method for Elliptic Partial Differential Equations
with Random Input Data. SIAM Journal on Numerical Analysis, 45(3):1005–1034. 26

Bachoc, F. 2013. Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with
model misspecification. Computational Statistics & Data Analysis, 66:55–69. doi: 10.1016/j.csda.2013.03.016. 69, 77

Baptista, R., Zahm, O., and Marzouk, Y. 2020. An adaptive transport framework for joint and conditional density estimation.
url: 10.48550/ARXIV.2009.10303. 212

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. 1996. The quickhull algorithm for convex hulls. ACM Transactions on
Mathematical Software, 22(4):469–483. doi: 10.1145/235815.235821. 75
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Bažant, Z. P. and Prasannan, S. 1989a. Solidification Theory for Concrete Creep. I: Formulation. Journal of Engineering
Mechanics, 115(8):1691–1703. doi: 10.1061/(ASCE)0733-9399(1989)115:8(1691). 100
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128, 209, 240, 241, 242

Bouhjiti, D. E.-M. 2018. Analyse probabiliste de la fissuration et du confinement des grands ouvrages en béton armé et
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Gupta, R., Rossat, D., Dérobert, X., Baroth, J., Briffaut, M., Villain, G., and Dufour, F. 2022. Blind comparison
of saturation ratio profiles on large RC structures by means of NDT and SFE—Application to the VeRCoRs mock-up.
Engineering Structures, 258:114057. doi: 10.1016/j.engstruct.2022.114057. 213

Gérard, B., Breysse, D., Ammouche, A., Houdusse, O., and Didry, O. 1996. Cracking and permeability of concrete under
tension. Materials and Structures, 29(3):141–151. doi: 10.1007/BF02486159. 105

Haario, H., Laine, M., Mira, A., and Saksman, E. 2006. DRAM: Efficient adaptive MCMC. Statistics and Computing,
16(4):339–354. doi: 10.1007/s11222-006-9438-0. 53

Haario, H., Saksman, E., and Tamminen, J. 2001. An adaptive Metropolis algorithm. Bernoulli, 7(2):223–242. doi:
10.2307/3318737. 53

Hadamard, J. 1923. Lectures on the Cauchy Problem in Linear Partial Differential Equations. Yale University Press, New
Haven. 40

Hansen, P. C. 1987. The truncated SVD as a method for regularization. BIT, 27(4):534–553. doi: 10.1007/bf01937276. 40

Hart, J. and Gremaud, P. A. 2019. Robustness of the Sobol’ Indices to Distributional Uncertainty. International Journal
for Uncertainty Quantification, 9(5):453–469. doi: 10.1615/Int.J.UncertaintyQuantification.2019030553. 15, 193

https://doi.org/10.1214/ss/1177011136
10.1214/ss/1177011136
https://doi.org/10.1007/978-3-319-12385-1
10.1007/978-3-319-12385-1
https://doi.org/10.1007/978-1-4612-3094-6
10.1007/978-1-4612-3094-6
https://doi.org/10.1007/978-1-4612-3094-6
10.1007/978-1-4612-3094-6
https://doi.org/10.1115/1.2888303
10.1115/1.2888303
https://doi.org/10.1061/(ASCE)0733-9399(1991)117:10(2351)
10.1061/(ASCE)0733-9399(1991)117:10(2351)
https://doi.org/10.1093/imaiai/iav010
10.1093/imaiai/iav010
https://doi.org/10.1016/j.advwatres.2012.11.019
10.1016/j.advwatres.2012.11.019
https://doi.org/10.1016/j.cma.2017.02.025
10.1016/j.cma.2017.02.025
https://doi.org/10.1016/j.cma.2017.02.025
10.1016/j.cma.2017.02.025
https://doi.org/10.1111/j.1467-9868.2010.00765.x
10.1111/j.1467-9868.2010.00765.x
http://www.deeplearningbook.org
https://doi.org/10.2140/camcos.2010.5.65
10.2140/camcos.2010.5.65
https://doi.org/10.1007/978-3-319-04888-8
10.1007/978-3-319-04888-8
https://doi.org/10.1007/978-3-319-04888-8
10.1007/978-3-319-04888-8
https://doi.org/10.1016/0029-5493(94)00942-R
10.1016/0029-5493(94)00942-R
https://doi.org/10.1137/1.9780898717761
10.1137/1.9780898717761
https://doi.org/10.1007/978-1-4471-2327-9
10.1007/978-1-4471-2327-9
https://doi.org/10.1016/j.engstruct.2022.114057
10.1016/j.engstruct.2022.114057
https://doi.org/10.1007/BF02486159
10.1007/BF02486159
https://doi.org/10.1007/s11222-006-9438-0
10.1007/s11222-006-9438-0
https://doi.org/10.2307/3318737
10.2307/3318737
https://doi.org/10.1007/bf01937276
10.1007/bf01937276
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2019030553
10.1615/Int.J.UncertaintyQuantification.2019030553


254 Bibliography

Hasofer, A. M. and Lind, N. C. 1974. Exact and Invariant Second-Moment Code Format. Journal of Engineering Mechanics,
100(1):111–121. doi: 10.1061/JMCEA3.0001848. 36

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109.
doi: 10.1093/biomet/57.1.97. 50, 51

Hauser, T., Keats, A., and Tarasov, L. 2011. Artificial neural network assisted Bayesian calibration of climate models.
Climate Dynamics, 39(1-2):137–154. doi: 10.1007/s00382-011-1168-0. 56

Herman, G. T. 2009. Fundamentals of Computerized Tomography. Springer London. doi: 10.1007/978-1-84628-723-7. 40

Hesterberg, T. 1996. Estimates and confidence intervals for importance sampling sensitivity analysis. Mathematical and
Computer Modelling, 23(8):79–85. doi: 10.1016/0895-7177(96)00041-6. 195

Hewitt, E. and Stromberg, K. R. 1965. Real and Abstract Analysis. Springer Berlin Heidelberg. doi: 10.1007/

978-3-662-29794-0. 17

Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A., and Ryne, R. D. 2004. Combining Field Data and
Computer Simulations for Calibration and Prediction. SIAM Journal on Scientific Computing, 26(2):448–466. doi:
10.1137/s1064827503426693. 47
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aléatoire et analyse statistique d’expériences simulées. Habilitation à diriger des recherches, Université Paul Sabatier -
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Jourdain, X. 2014. Étude numérique méso-macro des propriétés de transfert des bétons fissurés. PhD thesis, Ecole normale
supérieure de Cachan. 116

Kaipio, J. and Somersalo, E. 2005. Statistical and Computational Inverse Problems. Springer. doi: 10.1007/b138659. 5, 6,
41, 42, 46, 87, 240

Kass, R. E. 1993. Bayes Factors in Practice. Journal of the Royal Statistical Society: Series D (The Statistician), 42(5):551–
560. doi: 10.2307/2348679. 45

Kass, R. E. and Wasserman, L. 1996. The Selection of Prior Distributions by Formal Rules. Journal of the American
Statistical Association, 91(435):1343–1370. doi: 10.1080/01621459.1996.10477003. 42

Kaymaz, I. 2005. Application of kriging method to structural reliability problems. Structural Safety, 27(2):133–151. doi:
10.1016/j.strusafe.2004.09.001. 36

Kennedy, M. C. and O’Hagan, A. 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(3):425–464. doi: 10.1111/1467-9868.00294. 5, 47, 240

Kinda, J. 2021. Impact of drying rate on delayed strain behavior of cement-based materials - experimental and numerical
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de saturation des bétons. Revue Française de Génie Civil, 5(2-3):251–268. doi: 10.1080/12795119.2001.9692306. 115

Villani, C. 2003. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, Rhode Island. doi: 10.1090/gsm/058. 21, 54

Villani, C. 2009. Optimal Transport. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-71050-9. 21, 22, 54

Wagner, P.-R. 2021. Stochastic Spectral Embedding in Forward and Inverse Uncertainty Quantification. PhD thesis, ETH
Zurich. doi: 10.3929/ETHZ-B-000513631. 4, 12, 24, 30, 31, 44, 48, 239

Wagner, P.-R., Fahrni, R., Klippel, M., Frangi, A., and Sudret, B. 2020. Bayesian calibration and sensitivity analysis of
heat transfer models for fire insulation panels. Engineering Structures, 205:110063. doi: 10.1016/j.engstruct.2019.110063.
148, 216

Wagner, P.-R., Marelli, S., and Sudret, B. 2021. Bayesian model inversion using stochastic spectral embedding. Journal
of Computational Physics, 436:110141. doi: 10.1016/j.jcp.2021.110141. 55, 77, 87

Walley, P. 2000. Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning,
24(2):125–148. doi: 10.1016/S0888-613X(00)00031-1. 15

Wang, Z. and Shafieezadeh, A. 2020. Highly efficient Bayesian updating using metamodels: An adaptive Kriging-based
approach. Structural Safety, 84:101915. doi: 10.1016/j.strusafe.2019.101915. 57, 79, 92

Wasserman, L. 2000. Bayesian Model Selection and Model Averaging. Journal of Mathematical Psychology, 44(1):92–107.
doi: 10.1006/jmps.1999.1278. 45, 211

Wiener, N. 1938. The homogeneous chaos. Am. J. Math., 60:897–936. doi: 10.2307/2371268. 24

https://doi.org/10.1137/19M1284816
10.1137/19M1284816
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/aos/1176325750
10.1214/aos/1176325750
https://doi.org/10.1007/978-94-015-8480-7
10.1007/978-94-015-8480-7
https://doi.org/10.1016/j.jcp.2019.03.039
10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.cemconres.2008.01.012
10.1016/j.cemconres.2008.01.012
https://doi.org/10.1016/j.cma.2019.112632
10.1016/j.cma.2019.112632
https://doi.org/10.1016/j.cma.2019.112632
10.1016/j.cma.2019.112632
https://doi.org/10.1137/20M1344585
10.1137/20M1344585
https://doi.org/10.2136/sssaj1980.03615995004400050002x
10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.1080/12795119.2001.9692306
10.1080/12795119.2001.9692306
https://doi.org/10.1090/gsm/058
10.1090/gsm/058
https://doi.org/10.1007/978-3-540-71050-9
10.1007/978-3-540-71050-9
https://doi.org/10.3929/ETHZ-B-000513631
10.3929/ETHZ-B-000513631
https://doi.org/10.1016/j.engstruct.2019.110063
10.1016/j.engstruct.2019.110063
https://doi.org/10.1016/j.jcp.2021.110141
10.1016/j.jcp.2021.110141
https://doi.org/10.1016/S0888-613X(00)00031-1
10.1016/S0888-613X(00)00031-1
https://doi.org/10.1016/j.strusafe.2019.101915
10.1016/j.strusafe.2019.101915
https://doi.org/10.1006/jmps.1999.1278
10.1006/jmps.1999.1278
https://doi.org/10.2307/2371268
10.2307/2371268


264 Bibliography

Wittmann, F. H. 1970. Einfluß des Feuchtigkeitsgehaltes auf das Kriechen des Zementsteines. Rheologica Acta, 9(2):282–287.
doi: 10.1007/BF01973489. 101, 111

Wittmann, F. H. 1982. Creep and Shrinkage in concrete structures, chapter Creep and shrinkage mechanisms, pages 129–161.
Wiley. 100
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