
Préparée à l’École Pratique des Hautes Études

Avancées en Reconnaissance Optique des Caractères pour
les Documents Arabes Historiques

Advances in Optical Character Recognition for Historical Arabic
Documents

Soutenue par
Benjamin KIESSLING
Le 13 avril 2021

École doctorale no472

École doctorale de l’École
Pratique des Hautes
Études

Spécialité
Informatique, mathéma­
tique et applications

Composition du jury :

Peter STOKES Président
Directeur d’études
École Pratique des Hautes Études

Nachum DERSHOWITZ Rapporteur
Professor
Tel Aviv University

Gregory CRANE Rapporteur
Professor
Tufts University

Alicia FORNÉS Examinateur
Senior Research Fellow
Universitat Autònoma de Barcelona

Daniel STÖKL BEN EZRA Examinateur
Directeur d’études
École Pratique des Hautes Études

Marc BUI Directeur de thèse
Directeur d’études
École Pratique des Hautes Études

Acknowledgements

First, I would like to express my deepest gratitude to Marc Bui, who accepted to
supervise this thesis, for very interesting discussions, for his valuable experience
and guidance in matters both scientific and administrative.

I am so grateful to the eScripta team at EPHE and everyone at the Chair for
Digital Humanities at the University of Leipzig. Both provided an environment
were I was free to explore research ideas and their generous financial support
made my existence as a doctoral student a comfortable one. It was Maxim Ro-
manov through whom I had the first contact with Arabic text in Leipzig. I am
also eternally indebted to Daniel Stökl Ben Ezra and Peter Stokes for fending off
every imposition on my time during the last weeks of writing.

I thank the OpenITI team for their incessant lobbying to get institutional sup-
port for research into Arabic OCR. Without them, none of this would have been
possible. A special thanks goes to Matthew Thomas Miller and Jonathan Allen
who responded to my endless question on details of the Arabic script with a celer-
ity unheard of in academia.

The people of ALMAnaCH at INRIA should not be forgotten. They welcomed
a clueless foreigner on his arrival in France and integrated me in the lab.

I have wonderful friends who were there even at times when all they heard
from me was about this thesis. A huge thanks goes to Louise for helping improve
the French summary. Above all I thank Monika for reminding me in the darkest
moments that instant ramen is not the foundation of a balanced diet.

ii

Contents

1 Introduction 1
1.1 Document Image Analysis and Optical Character Recognition . . 2

1.1.1 Tasks . 4
1.2 Motivation . 5
1.3 Scientific Contributions . 7
1.4 Outline . 9
1.5 Literature Review . 10

1.5.1 Computer Vision Techniques 10
1.5.2 State of the Art in OCR . 15
1.5.3 Transcription . 23
1.5.4 Virtual Research Environments for DIA, OCR, and Digital

Humanities . 26

I The Arabic Writing System 43

2 The Arabic Script 45
2.1 The Principles of the Arabic Writing System 46

2.1.1 Text Justification . 48
2.2 Supports and Production . 50

2.2.1 Supports . 50
2.2.2 Writing Instruments and Inks 54

2.3 Styles . 55
2.3.1 The Six Pens . 56
2.3.2 Regional Styles . 60

2.4 Printing . 62
2.5 Basic requirements for Arabic OCR systems 64

3 Important New Developments in Arabographic Optical Character
Recognition (OCR) 69
3.1 Introduction . 70

3.1.1 Summary of Results of OpenITI’s OCR 70
3.1.2 OCR and its Importance for Islamicate Studies Fields . . . 70

iii

iv CONTENTS

3.2 Initial OCR Tests . 71
3.3 Round #2 Tests: Training New Models 74
3.4 Conclusions and Next Steps for the OpenITI OCR Project 75
3.5 The Technical Details: Kraken and its OCR Method 77
3.6 Acknowledgements . 78
3.A Performance of Text-Specific Models 79

4 Advances and Limitations in Open Source Arabic-Script OCR: A
Case Study 83
4.1 Introduction . 84
4.2 OpenITI OCR Software: Kraken 85
4.3 The OpenITI JSTOR OCR Pilot . 86
4.4 OpenITI Accuracy Study . 89

4.4.1 Doubled Letter . 92
4.4.2 Header/Font Alteration, Footnotes, and Superscript Nu-

merals . 93
4.4.3 Ligatures/Atypical Letter or Dot Forms 94
4.4.4 Diacritics . 95
4.4.5 Missed Fatḥa Tanwīn . 96
4.4.6 PunctuationMarks, Number, andOtherNon-Alphanumeric

Symbols . 97
4.4.7 Hamzas . 97
4.4.8 Atypical Text Presentation Format andKashīda/tatwīl (elon-

gation character) . 97
4.4.9 Non-Arabic Language . 98
4.4.10 Poor Scan Quality . 100
4.4.11 Line Segmentation . 100

4.5 Recommendations and Future Avenues of Development for Open
Source Arabic-script OCR . 101

II Layout Analysis and Segmentation 105

5 BADAM: A Public Dataset for Baseline Detection in Arabic-script
Manuscripts 107
5.1 Introduction . 108

5.1.1 Related work . 109
5.2 Dataset . 109

5.2.1 Baselines and Arabic Typography 110
5.2.2 Data . 111

5.3 Baseline Method . 112
5.3.1 Pixel Labeling . 112
5.3.2 Baseline Estimation . 112
5.3.3 Line extraction . 114

CONTENTS v

5.4 Evaluation . 116
5.5 Conclusion . 117

6 A Modular Region and Text Line Layout Analysis System 121
6.1 Introduction . 122

6.1.1 Related work . 123
6.1.2 Text line extraction . 123
6.1.3 Region detection . 124

6.2 Method . 125
6.2.1 R-BLLA - Architecture . 125
6.2.2 Training . 126
6.2.3 Baseline vectorization . 127
6.2.4 Polygonization . 128
6.2.5 Region extraction . 129

6.3 Evaluation . 129
6.3.1 Metrics . 130

6.4 Conclusion . 131

7 Script and Emphasis Detection using Recurrent Neural Networks 137
7.1 Introduction . 138

7.1.1 Related work . 138
7.2 RNNs for Script and Emphasis Detection 138

7.2.1 Script Detection . 138
7.2.2 Emphasis Recognition . 139
7.2.3 Architecture . 140

7.3 Results . 140
7.3.1 Dataset . 140
7.3.2 Script Detection . 141
7.3.3 Emphasis Recognition . 141

III Transcription and Character Alignment 145

8 Kraken - a Universal Text Recognizer for the Humanities 147
8.1 Introduction . 148
8.2 Kraken . 148

8.2.1 Recognition . 149
8.2.2 Layout Analysis and Script Detection 149

8.3 Results . 152

9 TranscriptionAlignment forHighly FragmentaryHistoricalManu-
scripts: The Dead Sea Scrolls 155
9.1 Background . 156
9.2 Introduction . 157

vi CONTENTS

9.3 Methods and Related Work . 158
9.3.1 Line Segmentation . 158
9.3.2 Automated Transcription 158
9.3.3 Transcription Alignment 159

9.4 Experimental Results . 160
9.4.1 Corpus Sample . 160
9.4.2 Line Segmentation . 162
9.4.3 Automated Transcription 162
9.4.4 Transcript Alignment . 163

9.5 Discussion . 165

IV The Escriptorium VRE 171

10 eScriptorium: An Open Source Platform for Historical Document
Analysis 173
10.1 Introduction . 174
10.2 Previous Work . 174
10.3 Frontend . 175

10.3.1 Import/Export . 175
10.3.2 Manual layout analysis and transcription 177
10.3.3 Automatic layout segmentation 178
10.3.4 Automatic transcription 178

10.4 Backend . 179
10.4.1 Architecture . 179
10.4.2 Database design . 181
10.4.3 Code architecture . 181

10.5 Open-Source Licence . 182
10.6 Future Plans . 182

10.6.1 Computational Extensions 182
10.6.2 Deep Annotation . 182
10.6.3 Publication Platform . 183
10.6.4 Outreach . 183
10.6.5 Videos . 184

11 The eScriptorium VRE for Manuscript Cultures 187
11.1 Introduction: What is eScriptorium 188
11.2 The eScriptorium Workflow . 189
11.3 State of the Art in Current OCR/HTR 191
11.4 Openness and Import/Export of Images, Texts and Models 193
11.5 Some Challenges for a Multi-Script VRE 195
11.6 Different Points of View . 197

12 Conclusion and Perspectives 203

CONTENTS vii

Appendices 207

A Résumé Long 209
A.1 Introduction . 209
A.2 L’Analyse d’Images de Documents et Reconnaissance Optique de

Caractères . 209
A.2.1 Tâches . 211

A.3 Motivation et contributions scientifiques 212
A.4 L’Ecriture Arabe . 214

A.4.1 Les Principes de l’Ecriture Arabe 215
A.4.2 Styles . 216
A.4.3 Critères pour les systèmes de ROC arabes 216

A.5 Études sur la ROC en écriture arabe 217
A.6 Segmentation des pages . 218
A.7 La Transcription et l’Alignement 220

A.7.1 Le Logiciel ROC Kraken 220
A.7.2 L’Alignement des Caractères 221

A.8 eScriptorium . 222
A.9 Conclusions et perspectives . 224

B Technical Overview of the Kraken Software 227
B.1 Command Line Interface . 227

B.1.1 Inference . 227
B.1.2 Training . 231
B.1.3 Transcription Training and Evaluation 232
B.1.4 Model repository . 238
B.1.5 API . 240

viii CONTENTS

List of Figures

1.1 Principal representations of lines 20

2.1 An Arabic papyrus showing both visible fibers and typical deteri-
oration of the writing surface (BnF Arabe 4634). 51

2.2 Decorated papers . 53
2.3 Early Arabic styles . 57
2.4 Samples of five of the Six Pens . 59
2.5 Example of regional styles . 61

3.1 Kraken’s transcription interface 76
3.2 Web-based OCR pipeline flowchart 77

4.1 Sample of the two typefaces . 87
4.2 Header . 89
4.3 ”Doubled Letter” errors . 93
4.4 Example of poor transcription of italicized passage in figure 4.5 . 93
4.5 Example of text in italics . 94
4.6 Bolded and enlarged text size header and poor transcription . . . 94
4.7 Ligatures and uncommon letter patterns 95
4.8 Highly vocalized Qur’anic passage that is transcribed poorly due

to diacritics . 95
4.9 Transcription of fatḥa tanwīn . 96
4.10 Misrecognized hamzas . 97
4.11 Atypical presentation forms . 98
4.12 Example of particularly poor transcription of non-Arabic language

in a page of primarily Arabic text. 99
4.13 Page with substantial non-Arabic language interferes with Arabic

OCR. 99
4.14 Examples of poor scan quality . 100
4.15 Examples of missegmentation . 100
4.16 Line segmenter missed final word in the line. 101

5.1 Aspects of Arabic-script handwriting 109

ix

x LIST OF FIGURES

5.2 Examples of annotation guideline application (baseline indicated
with opaque blue polyline) . 110

5.3 4 sample pages from the corpus 113
5.4 Architecture of the baseline labelling network. Dropout and batch/group

normalization layers are omitted. (beige: convolutional layers +
ReLU, red: max pooling, grey: ResNet blocks, blue: transposed
convolutions, purple: convolution + sigmoid) 114

5.5 Common error modes of the LA system 115
5.6 Strengths of the C-BLLA method 116

6.1 Architecture of the pixel labelling network. Group normalization
layers are omitted. (salmon: 3x3 convolutional layers, dotting in-
dicates dilation by 2x2; purple: 1x1 convolution, blue: bidirec-
tional LSTMblocks, striping indicates row/column time axis; grey:
1x1 convolution with |𝜏 | filters + sigmoid) 124

6.2 Examples of the data model and intermediate representations for
a page from the BADAM dataset 125

7.1 Modified ground truth (top: original line, middle: transcription,
bottom: assigned script classes) 139

7.2 Network architecture (𝐻 : sequence height, 𝑊 : sequence length,
𝐶 : alphabet size) . 140

7.3 Script recognition on French-Arabic sample page 141
7.4 Script detection training data distribution 142

8.1 Network architecture (𝐻 : sequence height, 𝑊 : sequence length,
𝐶 : alphabet size) . 149

8.3 Sample output of the script detection on a bilingual French/Arabic
page. Note that Eastern Arabic are always classified as Latin text 151

8.4 Original and modified ground truth (top: original line, middle:
transcription, bottom: assigned script classes) 152

8.2 Sample output of the trainable segmentation method 152

9.1 Manuscript fragment (Leviticus 3) after imperfect foreground seg-
mentation. All images of fragments are courtesy of the Leon Levy
Dead Sea Scrolls Digital Library, Israel Antiquities Authority. Pho-
tos: Shai Halevi. 159

9.2 Scholarly transcription of the fragment (4Q24 fr. 8) in figure 9.1. . 159
9.3 Line segmentation of the fragment in figure 9.1. 160
9.4 Automatic segmentation result (left without, right with baselines

marked in yellow and an additional right vertical bar marking the
beginning) of a large (top) medium (bottom) size fragment. 161

9.5 Imageline to textline alignment result as displayed in eScripto-
rium. Baselines are depicted in yellow, boundary polygons in al-
ternating red and blue. 163

LIST OF FIGURES xi

9.6 Aligned glyphs of a whole fragment. Alternating red and green
polygons indicate areas. Yellow overlay indicates identified letter. 164

9.7 Aligned glyphs of a single line. Left: Automatic alignment with
alternating red and green polygons indicate areas. Yellow over-
lay indicates identified letter. Right: Corresponding human an-
notated ground truth (no interword spaces, no letter overlay). . . 164

10.1 Metadata (and images) imported directly from the Bibliothèque
nationale de France via a IIIF manifest 176

10.2 Document overview . 176
10.3 Lightbox showing color and binarized images with transcription . 176
10.4 Line transcription window . 177
10.5 Image and transcription panel are synchronized 178
10.6 Binarization result . 179
10.7 Module for the creation of ground truth for the line segmenter.

British Library King’s MS I fol. 2r 180
10.8 Automatic Line Segmentation and Transcription of a page from

BNF Heb. 150 produced with eScriptorium 181
10.9 Automatic segmentation of an Arabic manuscript 183

11.1 Entering and correcting lines of text in eScriptorium. 191
11.2 Correcting automatic segmentation in eScriptorium. Themanuscript

image used in this screen-shot is a detail from London, British Li-
brary, Cotton MS Domitian A.vii, 45v. 192

11.3 Visualizing complex page layouts in eScriptorium 197

xii LIST OF FIGURES

List of Tables

2.1 The 28 letters of the Arabic abjad 47

3.1 Description of data . 72
3.2 Accuracy rates in test of our custom model 73
3.3 Ligature variations in typefaces. The table highlights only a few

striking differences and is not meant to be comprehensive; exam-
ples similar to those of the main text are ”greyed out.” 73

3.4 Accuracy rates in text-specific models 74
3.5 Performance of #2-based model on other texts 79
3.6 Performance of #3-based model on other texts 79
3.7 Performance of #4-based model on other texts 80
3.8 Performance of #5-based model on other texts 80

4.1 Contractor’s accuracy comparison of Abbyy andOpenITI (Kraken)
OCR results . 88

4.2 Overview of OCR accuracy rates (drawn from character error rate
(CER) reports . 90

4.3 Error coding for error instances in OpenITI manual OCR output
assessment . 92

5.1 Results for the cBAD 2017 dataset and BADAM 117

6.1 Baseline recognition metrics on cBAD 2019, BADAM, OHG, and
Bozen . 130

6.2 Metrics for the region detection task of the OHG and Bozen datasets 131

8.1 Mean character accuracy and standard deviation on the validation
set across 10 training runs on each training set 150

9.1 Transcription alignment accuracy 165
9.2 OCR bounding box overlap with ground truth 165

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

2 CHAPTER 1. INTRODUCTION

This dissertation consists of a collection of publications and proposes several
methods with which to facilitate the retrodigitization of historical Arabic-script
material. While we are only concerned with the Arabic script here, our findings
are relevant to the analysis of writings and inscriptions in other writing systems.

1.1 Document Image Analysis and Optical Character
Recognition

Document Image Analysis (DIA) is a subfield of Computer Vision (CV). It aims at
understanding document content through the processing of its associated digital
images. The term “document” is defined loosely as including both handwritten
and printed text on paper, as well as writing on other supple supports (e.g. pa-
pyrus and palm leafs) or even inscriptions.

Rather than the methods employed, it is the nature of the input images that
differentiates Document Image Analysis (DIA) from other fields in Computer Vi-
sion (CV). These images are usually obtained through cameras or scanners, often
in a professional setting, resulting in source material with minimal noise from
non-pertinent elements which are often encountered in the natural scene im-
ages treated by other branches of CV. Notwithstanding the cleaner input data,
the structured representations desired as output tend to be of higher complexity
and quantity in DIA than other applications, requiring detection, classification,
and relation of dozens to hundreds of document elements such as lines, charac-
ters, illustrations, and tables.

Like other fields of computer science, DIA research can be subdivided into par-
ticular tasks, and specific and targeted methods are designed to solve one or more
of them. The most prominent task in DIA research is optical character recogni-
tion (OCR)1, although other tasks also exist, whether they be based on OCR or
entirely novel (e.g. document classification and dating, or keyword spotting).

OCR is the conversion of printed, written, or inscribed writing into machine-
encoded text. It is a well-established process, both as a task in computer vision
research as well as for practical day-to-day applications, ranging from address
parsing to aids for the blind. As a matter of fact, it is the latter which motivated
the first and earliest attempt at creating a document image analysis system, with
an 1809 US patent for a non-tactile reading instrument. Early systems were rudi-
mentary and their output required significant human interpretation. Fournier
D’Albe’s 1914 optophone, for instance, converted strokes into tones and expected
the reader to interpret them mentally as character information. Such systems
were little more than intellectual curiosities at the time and none of them achieved
widespread use.

1While in most contexts optical character recognition and handwritten text recognition are
treated as distinct, both are subsumed under the term OCR here. A detailed justification is given in
1.5.2

1.1. DOCUMENT IMAGE ANALYSIS 3

These early explorations preceded the invention of computers by several de-
cades. Their evolution into modern-day DIA techniques has allowed for a broad
range of applications in tasks such as address parsing for mail routing, cheque
verification and book retrodigitization. It is now a claim largely unchallenged in
the field that OCR is fundamentally solved at least for modern, machine-printed
documents in English with a reasonable low level of noise, for which modern
commercial retrodigitization software achieve character accuracy rates above 99%
routinely. Nevertheless, while this holds true for English, we count almost four-
thousand other written languages and several hundred associated writing sys-
tems or scripts. No practical OCR systems are available for the vast majority of
them. Even accounting for the use of purely alphabetic scripts such as Latin and
Cyrillic, which present less of a challenge to state-of-the-art OCR when employed
accordant withmodern western typographic practices, it is clear that a substantial
proportion of human literary output is not yet accessible through retrodigitiza-
tion.

This is all the more true when we consider historical literary output. While
large scale digital scanning in rich countries has resulted in the creation of sub-
stantial digital libraries, these text are de facto inaccessible to both the public and
scholar, even for material as recent as the late nineteenth century. Typographi-
cal and orthographical variations degrade digitized texts’ quality to a significant
extent when transcribed with software geared towards the treatment of modern
documents. For most archival material from the Global North, this is most likely a
temporary situation as projects such as OCR-D2 pave the way for greater integra-
tion of pure DIA research into library practice. Other collective and more specific
efforts include [1], which gathered both humanities scholars engaged in digital
methods as well as computer vision experts, with the shared goal of establishing
a research program for the digitization of historical and minority script material.
Nevertheless, these communities of interest remain fractured along geographical,
linguistic, and professional boundaries.

Meanwhile, the threat of permanent loss of cultural heritage looms over col-
lections, at risk of permanent deterioration due to political unrest and ill-adapted
storage conditions, combined with utter lack of funding and limited interest from
parties other than minority populations and a small number of scholars. Even
famed collections such as the manuscripts of Timbuktu have barely escaped de-
struction due to conflict in recent years, and humidity continues to threaten their
integrity very much.

Manywritings lack a fundamental technological basis toworkwith: the Berke-
ley Script Encoding Initiative alone lists over a hundred writing systems that re-
main to be encoded in Unicode. Circa two-thirds of them are historical and a sub-
stantial remainder is used liturgically. Without a standardized way to represent
them digitally, their retrodigitization and dissemination becomes infinitely more
difficult. A number of these writing systems have substantial scholarly commu-

2http://ocr-d.de

4 CHAPTER 1. INTRODUCTION

nities – ranging from Egyptian Hieroglyphs and Demotic, Cuneiform, to a variety
of Chinese scripts. Even scripts already encoded in Unicode often lack code points
for certain surface forms required for paleographic or epigraphic practice. This
is not always an oversight. Rather, it can be the result of the Unicode Consor-
tium’s encoding guidelines which largely proscribe inclusion of new allographs
and ligatures in the standard. While alternative standards exist (e.g. the code ta-
bles as defined by the Medieval Unicode Font Initiative 3), this situation favors the
emergence of ad-hoc standards and thus limits interchangeability and machine-
readability of text considerably.

1.1.1 Tasks

As one of the core applications of document image analysis, OCR has dwelt upon
a large number of its subproblems. Some of them have become obsolete with time,
thanks to the increasing capability of new algorithms. Others are new, resulting
from the need to deal with increasingly challengingmaterial. It is not necessary to
deal with all of them at once to have a functional OCR system. As a matter of fact,
many of them are material-specific, and are of concern only when dealing with
specialized applications. A closer analysis of the design requirements for a largely
script-independent OCR system, capable of processing Arabic-script text based on
a survey of its calligraphic and typographic features, will follow in chapter 2.

A non-exhaustive compilation of generally accepted tasks can be found below.

Binarization Classifying the pixels of an image into two classes: foreground, i.e.
text, and background, i.e. everything else.

Denoising Increasing the page image quality for subsequent problems. Denois-
ing includes processes such as background normalization, color space ad-
justments, deblurring, or stain removal.

Deskewing and Dewarping Correcting both the perspective distortion inher-
ent in camera capture and other degradations introduced commonly in scan-
ning setups such as rotation, warping along the binding, …

Region Segmentation Subdividing a page image into components such as text,
decoration, notes, …

Text Line Segmentation Extracting the text lines from a page image. Text line
segmentation is notable for being a task where not only a large variety of
techniques exist but the modellisation of the line itself has been subject to
considerable research.

Character Segmentation Segmenting text on a page image down to the glyph
or even lower level. While a common operation in traditional OCR systems

3http://mufi.info

1.2. MOTIVATION 5

it is mostly unnecessary with state of the art methods. A related task that is
of interest to the humanities, especially paleo- and epigraphers, is character
alignment, i.e. the locating individual characters on a document page given
the full page text.

Script and Font Recognition Classifying the language, writing system, style,
or typeface of the text. This classification can be performed at different
levels, such as document-wide or individually for whole or parts of a line.

Table Recognition Inferring the logical structure of table images.

Scene Text Recognition Recognition of text in images taken in the wild that
contain substantial non-text content.

To solve these problems, the typical optical character recognition pipeline
uses specific methods, which operate in three distinct steps:

Preprocessing Denoising, deskewing and dewarping, and binarization

Layout Analysis Extracting structural information from document page images
and enriching it with additional semantic information.

Transcription Extracting textual information from all or a subset of objects
identified by in the layout analysis step.

This characterization holds true for all but the most esoteric pipelines. How-
ever, the exact functional blocks depend heavily on the type and structure of the
documents processed. For example, traditionally, binarization is used as a simple
process to: enable the use of fast binary morphology in the layout analysis step;
reduce the dimensionality of data for classifiers; or, more generally, as a type of
basic feature extractor. The relative ease with which accurate binarization for
high quality scans of machine-printed text on paper can be computed contrasts
with the difficulty of treating documents on other writing surfaces, faded writ-
ing, fragmentation, etc. As a result, methods geared towards the treatment of the
latter kind often attempt to reduce the reliance on binarization or skip it entirely.
Similar to most other preprocessing steps, there is a tendency today to eliminate
binarization altogether, due to the increased availability of more advanced tech-
niques. This, however, remains a topic of debate in the research community.

1.2 Motivation

Arabic-script material represents one of the largest literary traditions in human
history, both in terms of volume and geographical spread. Examples range from
religious texts (most prominently the qurʼān, the holy book of Islam) to poetry,
and include scientific and legal texts in addition to a large corpus of adminis-
trative records. The sheer number of sources and the diversity of domains they

6 CHAPTER 1. INTRODUCTION

cover make them a prime target for new paradigms in the humanities that employ
computational methodology, e.g. distant reading and quantitative palaeography.
These methods require either large text corpora or accurate DIA methods based
on one or more of the abovementioned component tasks of an OCR system. As
the vast majority of Arabic texts have never existed in digital form, high quality
retrodigitization through OCR favors the development of a substantial number of
Arabic Digital Humanities research projects.

When I startedworking on this thesis, humanities scholarsworking onArabic-
script texts largely dismissed OCR of machine-printed Arabic text, especially of
historical and multilingual material. This was even true for scholars already
deeply involved in the digital humanities, as well as funding agencies. At the time,
accurate Arabic handwriting recognition was deemed completely out of reach. A
long trail of publications on OCR of simple Arabic datasets, such as KHATT [2],
existed and a number of open and proprietary OCR software (e.g. Tesseract, Ab-
byy FineReader, Sakhr) did offer nominal support for the recognition of Arabic-
script text. However, it never translated into actual scholarly or large-scale library
practice. Amultitude of factors accounts for this situation: high error rates caused
by classifiers and segmenters ill-suited to the cursive nature of the writing sys-
tem; a lack of readily available software and technical expertise; and substantial
cost and effort required to adapt existing solutions to the material of interest.

It was soon evident that the challenges that prevented scholars working on
Arabic-script printed and handwritten texts from relying on OCRmirrored that of
many other researchers engaged in retrodigitization of historical and non-Latin
script material. Imitating the prevailing opinion on Arabic OCR, [3] claimed me-
dieval (Latin-script) manuscripts to be practically impervious to contemporary
OCR. Similar statements can be found elsewhere. This entailed an overall lack
of established best practices, data formats, and requirements on software capabil-
ity and interfaces suited to the workflows of digital humanists. Existing projects
like Lace4 and [4] used OCR technology in an ad-hoc manner. It often resorted
to extensive data carpentry[5] and incorporated significant domain knowledge to
boost accuracy to an acceptable level.

Our goal is therefore twofold. While the research presented here incorpo-
rates an understanding of theArabicwriting system and its associated calligraphic
practices, we aim at conceiving a largely script- and language-independent univer-
sal OCR system, one that is useful beyond the immediate community of Arabic-
script scholars. It also allows for methods to be evaluated against non-Arabic
datasets when Arabic datasets are not available. As such, if the algorithms pre-
sented here are particularly suitable to Arabic material, it has been of primary
importance in this research to create algorithms that are universally applicable.

4http://heml.mta.ca/lace/index.html

1.3. SCIENTIFIC CONTRIBUTIONS 7

1.3 Scientific Contributions

Most of the work presented here should be read in relation to the broader field of
Digital Humanities. The research presented in the next chapters is not a hetero-
geneous collection of methods solving single tasks in DIA that are only of use to
humanities scholars engaged in retrodigitization. It is part of a coherent ecosys-
tem consisting of two major components: the Kraken OCR engine and the eScrip-
torium virtual research environment (VRE). As such, not only does this research
aim at advancing methods for particular tasks; it also seeks to improve existing
scholarly workflows, ones that are more often than not laborious and impractical
to use, not to say completely unworkable.

Kraken is a feature-complete, freely-licensed and modular OCR system. It dif-
fers from other solutions (both open and proprietary) in multiple and important
ways, i.e. target audience, software design, and generalizability. These differ-
entiated features are the result of its roots as a large-scale refactorization of the
OCRopus source code, that was performed to enable its integration into a digiti-
zation pipeline for scholarly use at the Chair of Digital Humanities at the Univer-
sity of Leipzig. It boasts a stable application programming interface and is also
highly modular. Users can create their own workflows or substitute functional
blocks with minimal effort. Recognizing the sheer diversity of OCR systems-
related needs among humanities scholars, a concerted effort has been made to
limit implicit assumptions regarding the functioning of text, and the software ac-
commodates varied material and transcription guidelines as much as possible. As
a result, Kraken performs only minimal normalization, is fully compatible with
Unicode private use area (PUA) utilization, and supports both horizontal and ver-
tical directions.

A number of case studies were performed as part of the work to enhance
Kraken’s capacity to support Arabic text work. It led to the first detailed analysis
of state-of-the-art OCR methods on machine-printed Arabic text, evaluating their
respective weaknesses and strengths. A first preliminary study was conducted
on a small number of printed classical Arabic-language books, soon followed by
a large-scale retrodigitization feasibility study using a leading Arabic-language
journal published by the American University of Beirut.

Partly as a result of these studies, the engine has been extended in multiple
ways. This thesis contributes two trainable line segmentation systems, a basic
one capable of only detecting baselines, and a more advanced one allowing re-
gion and line segmentation in addition to classification. The latter is included in
Kraken. Initially, a trainable line segmentation method constructed on top of a
U-Net for semantic segmentation was developed. In a second step the training
procedure was adapted to allow joint region and line detection and inference of
line orientation. This second method has also been optimized for memory usage
by employing a ReNet-like stack of separable recurrent layers, reducing memory
consumption by circa fifty per cent in comparison to similarly performing fully
convolutional semantic segmentation networks.

8 CHAPTER 1. INTRODUCTION

In addition, a basic script and emphasis detection system, built on Kraken’s
text transcription module, was devised.

The segmenter in Kraken is currently the only openly available layout analysis
module in a complete OCR engine which is able to accurately segment complex
curved lines in Arabic manuscripts. In addition, it is the first method following the
baseline paradigm for line modellisation incorporating line orientation detection.

A flexible abstraction layer on top of the pytorch neural networking library
has been added which allows the flexible reconfiguration of the artificial neural
networks (ANN) employed for both layout analysis and text transcription through
a lightweight ANN definition language which is able to express many features of
common architectures employed in computer vision tasks (see appendix B). This
new layer allows the relatively simple addition of new layer types and thus quick
prototyping and efficient hyperparameter optimization even for endusers without
in-depth machine learning knowledge as has been demonstrated by [6].

In contrast to older open engines such as Tesseract and OCRopus which use
custom neural networking backends, a standard library in widespread use in both
industry and the machine learning research community offers a multitude of ben-
efits such as easier transfer of development skills and automatic or low-effort in-
clusion of performance improvements and additional features like GPU accelera-
tion, distributed training, or model quantization.

[1, pg. 19] notes that one of the main obstacles to advancing OCR for his-
torical and non-Latin texts is lack of training and evaluation datasets. During
the process of putting together the initial case studies, important efforts were
made in this direction. Several thousand lines of training data for text transcrip-
tion were annotated and made publicly available as freely-licensed datasets. I
was involved in the process through technical conceptualization and the creation
of transcription guidelines. In addition, to evaluate the proposed layout analysis
methods against historical Arabic-script material, another openly licensed dataset
comprising of four hundred Arabic-script manuscript pages was annotated with
baselines and line orientation. It is purposely diverse in the languages, styles and
domains it covered. The composition of this dataset is particularly challenging
and it remains the only handwritten non-Latin dataset available for the baseline
paradigm for layout analysis.

The second component of the proposed OCR ecosystem is the eScriptorium
VRE. eScriptorium is currently under development at Université Paris Sciences
et Lettres, under the umbrella of the eScripta Project. While Kraken is designed
for maximum flexibility by offering well-defined interfaces at different levels, eS-
criptorium takes another approach. It is conceived as a complete paleographic
research and publication environment for scholarly use, and OCR is but one of
its planned features. This is why much effort has been put into designing a
user-friendly OCR workflow whose different steps are explained clearly, without
scarifying any of the required flexibility in addressing a large number of scripts
and languages. While the above-mentioned advances in the Kraken OCR engine
make it a versatile tool suitable for a multitude of scholarly purposes, eScripto-

1.4. OUTLINE 9

rium cannot possibly expose its full functionality without devolving into a highly
specialized tool for OCR exclusively. As a result, eScriptorium is designed to allow
manual or semi-automatic intervention at each step of the process, either through
the manual manipulation of the interface or via graphical and programmatic data
exchange interfaces.

eScriptorium is also an ideal test case for computer vision-assisted research in
the humanities, as the platform aims to offer additional scholarly functions that
stretch far beyond pure retrodigitization. Potential functions include text reuse
detection, automatic sampling of graphemes for palaeographic analysis, docu-
ment classification, …. In certain cases, advanced functionalities are linked with
text transcription. To illustrate this point, a method for deriving grapheme loca-
tions from the implicit alignment produced by a line-based text recognition ANN
trained with Connectionist Temporal Classification loss and its performance on
fragmentary Hebrew material is presented. Depending on the user’s choices re-
garding transcription standards , different palaeographic sampling goals can be
met with this method, ranging from semi-automatic allographic inventories to
decoration extraction.

1.4 Outline

The remainder of this chapter will be dedicated to a review of computer vision
techniques in general and as they pertain to optical character recognition. This
includes a summary of the state of the art in research and practical available soft-
ware packages, in joint with an analysis of general challenges faced by both in a
variety of settings.

All subsequent chapters included in this dissertation have been published as
scientific articles or have been accepted for publication, except for the conclusion
and the presentation of the Arabic script. Since the work presented here is closely
linked with the development of the Kraken OCR engine as well as the eScripto-
rium project, notable differences with current implementations are mentioned in
introductory notes to each chapter whenever necessary. This thesis is organized
into four parts: introduction to the Arabic script, segmentation and script recog-
nition, character recognition and alignement, and virtual research environments.

Part I focuses on the Arabic script. It is organized into three chapters. Firstly,
it proposes a general introduction to the writing system with an emphasis on
calligraphic features, and the ensuing specific requirements associated with the
development of an Arabic-script OCR system. Secondly, it presents a preliminary
study on classical Arabic machine-printed books. Finally, it concludes with an
in-depth case study performed on a printed Arabic language journal.

Part II contains three chapters on layout analysis and segmentation of Arabic-
script documents. We present a first of its kind, freely-licensed, Arabic-script
historical manuscript dataset and a competitive method to perform basic layout
analysis on it. In the second chapter a novel, modular method for region and

10 CHAPTER 1. INTRODUCTION

text line segmentation is presented. Lastly, a method to perform sub-line script
classification on printed multi-scriptal text for multi-lingual OCR is shown.

Part III is composed of two articles: a general description of the Kraken OCR
engine design and features, and a method to perform character alignment on
highly fragmentary Hebrew manuscripts.

The final part IV presents the virtual research environment (VRE) context in
which amodern OCR engine like Kraken can be embedded. We do so through two
articles: one containing a conceptual description of the eScriptorium VRE and a
second one investigating the friction between automatic processing, standardiza-
tion, user-friendliness and methodological pluralism in the humanities.

1.5 Literature Review

In this literature review, we start with a general review of the existing tech-
niques in Machine Learning or Artificial Intelligence (ML/AI), Computer Vision,
and Document Image Analysis, as well as current trends in the research commu-
nity, with the view of contextualizing the state of the art for the specific task of
OCR. This brief survey not only includes the current state of OCR research; it
also covers libre and proprietary OCR engines as well as workflow engines, most
of which are used primarily for large-scale digitization in a institutional context.
Since the present dissertation aims, among other things, at advancing the practical
application of OCR for humanities research, this section concludes with a review
of the existing virtual research environments targeted at the retrodigitization of
historical material.

1.5.1 Computer Vision Techniques

Commercial DIA (including computerized DIA) preceded by several years the cre-
ation of both Computer Vision and Artificial Intelligence as academic fields [7,
pg. 11-14]. With the establishment of CV and AI as fields however, DIA research
progressively came under their larger research umbrella. Today, techniques that
became obsolete after this fusion remain of interest only to historians and have
largely disappeared from academic discussions. This review therefore limits itself
to methods established after the late 1960s.

Computer vision processes are generally divided into the following steps:

Image acquisition refers to the capture of an digital image through one or mul-
tiple image sensors. Limitations of a particular image acquisition system,
such as noise levels and distortion, are often integral in the design of sub-
sequent steps. The most common acquisition systems in DIA are visible
light cameras and flatbed scanners, although in some cases multispectral
and radiographic sensors are employed.

1.5. LITERATURE REVIEW 11

Preprocessing aims to boost the performance of subsequent steps through nor-
malizing input data. It is frequently targeted at eliminating degradations
introduced during image acquisition.

Feature extraction reduces the dimensionality of input data through combina-
tion and selection of its characteristics that are deemed pertinent for the
desired analysis.

Analysis transforms extracted features into an output representation specific to
a particular task, e.g. class probabilities for an image classification task, text
for OCR, object locations and labels for object detection, …

These steps have developed over time and their relative importance have
changed with each new paradigm shift in CV and adjacent fields such as ma-
chine learning, as well as with increasing computational capabilities. As a matter
of fact, advances in research have often emerged across all steps simultaneously.
To understand how the current research context has emerged and to best capture
the relationships that tie the different methods together, a chronological account
of the development of computer vision is presented below.

Early computerized DIA relied on rather rudimentary OCR systems. They
barely differed from the early opto-mechanical systems that dominated the first
half of the 20th century. Their limitations were similar and severe, and stemmed
from using rudimentary template matching, with various attempts at preprocess-
ing to increase accuracy as generalization was generally poor. While at the time
of the infamous 1966 CE summer project on pattern recognition [8], the currently
most popular machine learning paradigm, artificial neural networks, had existed
for more than twenty years they did attract little interest in the field. Minsky
and Papert’s 1969 CE book on perceptrons [9] relegated research on ANNs to at
best secondary role and caused a decade-long stagnation in the field in favor of
alternative approaches.

Advances in the 1970s included rule-based expert systems, the populariza-
tion of various low-level filters and operators such as gradient approximators,
median and gaussian filter smoothing, and morphological operators. The 1970s
also saw the first attempts at feature representations such as edges, corners and
binarization[10] of images that were suitable to the limited modeling capability
of the classification methods of the time. By the early 1990s, a bewildering array
of hand-crafted feature representations had been devised, not to mention an ever
growing collection of edge and corner detectors, contour and shape descriptors,
unsupervised segmentation methods, and other transforms. Assemblies of these
carefully selected features were usually coupled with relatively simple unsuper-
vised or supervised classifiers such as k-nearest neighbor, multilayer perceptrons,
or decision trees. [11] , a comparative study which focuses on large-scale digitiza-
tionmethods using US census records, is an early example of this trend combining
complex feature descriptors and relatively simple neural and non-neural classi-
fiers. It is around this period that it became standard practice in both research

12 CHAPTER 1. INTRODUCTION

and industry to construct completely hand-crafted heuristic methods based on a
combination of low-level instructions to perform high-level CV (i.e. true analysis
and interpretation of image data).

Methods that follow this approach work on narrow document domains rea-
sonably well. However, they do not generalize to larger classes of documents.
This is due to the fact that the selected features are often relatively specific to the
source material. In addition, their adaptation is labor-intensive.

Paralleling the proliferation of feature descriptors in the 1970s, classifiers and
training methods gained power throughout the 1970s and 1980s. What would
later come to be known as convolutional neural networks started to emerge in
the form of learned feature maps and weight sharing in ANNs. Fukushima’s 1980
neocognitron [12] and LeCun’s 1989 CNN [13] are two such examples. Both of
them were designed for character recognition purposes. Backpropagation [14],
an algorithm allowing for the efficient supervised training of functions through
gradient descent (which remains the standard for supervised learning today), en-
abled, in theory, for the first time, the supervised training of deep neural net-
works. In practice, the vanishing/exploding gradient problem, i.e. the tendency
that cumulative error signals backpropagated through the network either shrink
or grow rapidly with each antecedent layer, a phenomenon that was first identi-
fied by [15], proved to be a difficulty. As a result, ANNs were limited to shallow
problems, for which most computer vision applications still required extensive
feature engineering. By the mid-2000s however, the problem was, for the most
part, solved. In the case of recurrent neural networks (RNNs), alternative architec-
tures such as Long Short-Term Memory (LSTM) units proved to have more stable
gradients. For most other ANN architectures, increased computational power and
large datasets proved instrumental in circumventing the issue: it allowed train-
ing with small gradients without overfitting and in a reasonable amount of time.
The literature from the period is prolific in identifying alternative solutions and
circumvention methods, including unsupervised pretraining, hessian-free opti-
mization, gradient-less training, and ensemble methods [16, sec. 5.9]. None of
them, however, are currently in widespread use.

Multiple alternative classification methods for computer vision filled the gap
that separated the emergence of feature descriptors and the establishment of deep
ANNs’ predominance in today’s landscape. HiddenMarkovModels (HMMs), that
were already used in the speech recognition field successfully, started to be used
for the modelization of sequences in computer vision. One notable application
was cursive handwriting recognition [17]. The soft-margin formulation for Sup-
port Vector Machines (SVM) and the kernel trick extended the use of linear clas-
sifiers to data that is not linearly separable. While either of these methods have
largely been surplanted by ANNs in CV, they remain popular in certain parts of
the DIA community, most notably in the use of HMMs for Arabic text recognition
research.

The major resurgence of ANNs for computer vision can be traced to signif-
icant improvement to the overall state of the art shown by deep convolutional

1.5. LITERATURE REVIEW 13

neural networks trained with straightforward backpropagation on a number of
image classification contests in 2011 and 2012, often halving the error rate in com-
parison to previous years and in some cases achieving superhuman performance
on constrained domains. While the contests in question, foremost on the Ima-
geNet dataset, were limited to image classification, deep convolutional networks
disposing completely of hand-crafted features were rapidly adapted to other tasks
such as object detection, semantic segmentation, optical flow, image captioning,
….

Advances in neural network design in the following years were, disregard-
ing brief periods of popularity of alternative network architectures and training
schemes, mostly driven by attempts to increase the feasibly trainable depth of
deep CNNs for image classification. The initial 2011 eight layer AlexNet [18]
already contained staples like ReLU activation functions which diminish gradi-
ent vanishing in layers, dropout regularization, and data augmentation to in-
hibit overfitting. The 2014 VGG-Net[19] with up to nineteen layers introduced
an architecture made up solely of small 3×3 convolutional filters, increasing the
effective receptive field through additional layers. The 2015 Resnet [20] pre-
serves the error signal by introducing shortcut connections skipping one mor
more layers effectively training the network as an ensemble of shallower sub-
networks [21]. SkipNets [22] and Highway Networks [23] follow the same idea
but parametrize the data flow between layers, comparable to the gating mech-
anism in LSTM RNNs. DenseNets [24] go even further and input the concate-
nated feature maps of all previous layers directly into the next layer. With ever-
increasing model complexity, techniques to reduce both the number of model
parameters and operations required were devised: SqueezeNets [25] introduced
1×1 bottleneck filters for dimensionality reduction, neural architecture searchwas
used to find the more efficient AmoebaNet architecture [26], and [27] investigated
principled hyperparameter choices to increase computational efficiency.

The deep learning paradigm fundamentally relies on large datasets, ImageNet
contains fourteenmillion images organized inmore than twenty-thousand classes,
which are often not available in fields working with a more constrained data ba-
sis such as DIA. This constraint, in addition to computational efficiency, have
resulted in the popularization of using all or a part of the convolutional layers
in deep networks trained on large image classification datasets as good general
purpose features even for vastly different target domains, i.e. performing trans-
fer learning for the desired task. Depending on how these layers, the so-called
backbone architecture, are incorporated, this technique can be seen either as su-
pervised pre-training or as a fixed feature extractor. In the latter case, a shallow
ANN is trained on top of the features maps computed by the deep CNN, leav-
ing the convolutional layers untouched. In the pre-training configuration, the
last layers trained to produce the representation for the task at hand are trained
jointly with the convolutional feature extracting layers in a process called fine-
tuning. As the weights in the pre-trained layers are already expected to be rela-
tively good, the training hyperparameters are often chosen separately for layers

14 CHAPTER 1. INTRODUCTION

trained from scratch and ones to be fine-tuned. Hybrid schemes exist as well.
These keep some layers fixed and fine-tune others, usually under the assumption
that the first layers compute generalized features such as edges, corners, …while
later layers compute more task-specific features that require adaptation.

Pre-training in this vein has generally been seen as an important success, as
it broadens the applicability of deep learning in CV tasks significantly [28]. How-
ever, its relevance has been put into question recently [29], [30], with some indi-
cation that deep CNNs performing better on the image classification task do not
necessarily translate into better features for other tasks [31].

Methods that derive in one way or another from discriminative convolutional
image classification networks dominate the landscape for the majority of tasks.
However, other approaches exist. Recurrent neural networks, i.e. ANNs with
connections between layers along a temporal sequence, have been popular for
sequence modelling ever since training on arbitrary length sequences became
possible after the invention of LSTM units. RNNs have been used in the pro-
cessing of sequential visual information, e.g. video recognition, natural language
description of images, connected writing recognition, robotics, …They have also
been adapted to tasks that are not conventionally sequential such as image classi-
fication [32] and [33] segmentation. Nevertheless, RNNs do not rule out the use of
convolutional feature extractors. Common constructions such as [34] either com-
bine fixed convolutional feature extractors or train smaller convolutional stacks
from scratch. In some cases an additional attention mechanism is inserted, which
allows decoding recurrent layers to weigh certain areas of the input feature maps
dynamically [35].

While LSTMs constitute a powerful and versatile sequencemodelling method,
one major problem is the lack of a differentiable loss that could allow the super-
vised training of RNNs without an explicitly given alignment between inputs and
output sequences. Traditional losses such as cross-entropy require an explicit
output-target pair for each time step. If the network output sequence is of differ-
ent length than the input sequence, it entails spreading target labels across multi-
ples steps through some mechanism, usually manual annotation. The 2006 Con-
nectionist Temporal Classification (CTC) loss [36] permits alignment-free train-
ing, thus solving the issue for many computer vision applications through an ef-
ficient dynamic programming based algorithm that sums the probabilities of pos-
sible alignments of network output and target. It has some limitations: chiefly
a requirement for the target sequence to be of shorter length than the network
output, an assumption of conditional independence between target labels, and the
complexity of fast and numerically stable implementations. However, these are
rarely important in applications of non-linguistic sequence modelling in CV.

Other approaches aimed at solving the alignment problem in sequence mod-
eling exist, although none of them are as prominent as CTC in the DIA domain.
Attentional models decouple input and output sequences completely and can thus
be trained with standard losses. They are in widespread use in natural language
processing due to the limitations of CTC, and have had a brief period of popular-

1.5. LITERATURE REVIEW 15

ity with applications in image [35] and video [37] captioning, sequential object
recognition [38], and whole paragraph handwritten text recognition [39], [40].
Transformer networks, on the other hand, are advanced self-attentive networks
which have significantly improved the state of the art in NLP, dispensing with
both convolutions and recurrent layers. They have also recently made inroads in
both OCR [41] and non-sequential CV tasks such as semantic segmentation and
image classification [42].

All methods described above are trained in a discriminative manner. In other
words, models learn the conditional probability 𝑃(𝑌 |𝑋) of a target 𝑌 given an ob-
servation 𝑋 . By contrast, generative models learn the joint probability 𝑃(𝑋 , 𝑌),
which can be used for classification using Bayes’ rule but also has other applica-
tions. It notably allows the generation of realistic synthetic data by sampling the
model’s latent space. A particular construction to train generative neural models
in an unsupervised or semi-supervised manner are generative adversarial net-
works (GANs) [43], which became popular after 2014. They consist of two adver-
sarial ANNs: a generativemodel that captures the data distribution and a discrimi-
native model that is tasked with distinguishing real data sourced from the training
dataset, using synthetic samples created by the generator. Both are trained simul-
taneously, usually until the discriminator fails to distinguish generator-produced
output. Deep GANs were used to establish a number of CV tasks such as image
synthesis from text [44] and conversion from one image domain into another[45].
Their impact on DIA research has been relatively modest, although the literature
does contain various image reconstruction and enhancement methods [46], [47]
and at least one layout analysis system [48] built upon GANs.

Other deep neural generative models exist but they have generally fallen out
of favor. Autoencoders, i.e. networks consisting of a contracting encoding and
expanding decoding path trained on reconstruction loss, were widely used for
unsupervised pretraining[49], [50] before the advent of supervised ImageNet fea-
tures. Some newer methods in DIA still use them in tasks such as binarization
[51] or page segmentation [52], [53].

1.5.2 State of the Art in OCR

As a subfield of CV, DIA and OCR use similar techniques: for tasks that are most
popular among researchers, methods generally resemble that of the wider CV
and machine learning community. For other tasks that do not benefit from the
same amount of research (e.g. reading order determination), the picture is dif-
ferent: they remain the domain of seemingly obsolete and ineffective algorithms
and techniques that do not compare well with modern alternatives.

Traditionally, both the DIA research community and commercial applications
make a distinction between methods designed to process machine-printed (OCR)
and methods geared towards hand-written text (HTR). In the second case, recog-
nition is further sub-divided into offline and online text recognition, i.e. between
the processing of already completed handwritten text and the recognition of text

16 CHAPTER 1. INTRODUCTION

using information on the production process such as stroke orders and paths. As
our interest is largely limited to historical material, we will ignore online text
recognition.

Several reasons explain the traditional distinction made between OCR and
HTR. Handwritten material is naturally less uniform and regular than machine-
printed texts and is generally considered to be more challenging. In addition, un-
til a few years ago, many printed OCR methods were designed around character
classifiers which only processed isolated characters and as such required com-
mensurate layout analysis methods to extract single characters from the page.
This paradigm is fundamentally not suitable for connected or cursive text. This
fact was recognized as far back as 1973 [54] through Sayre’s paradox: to be able
to recognize a (cursive) handwritten word it is necessary to segment it into char-
acters but segmentation is not possible without recognizing it first. In OCR re-
search, the Latin script is the writing system which has attracted most interest.
When machine-printed, the Latin script appears in a disconnected form, and by
contrast its cursive form was until recently almost exclusively handwritten. As
such, when describing the fundamental capabilities of a text recognition system,
it is appropriate to see the two terms as short-hands for block letter and cursive
text recognition.

Asmodern text transcriptionmethods are generally able to process both block
and cursive text with identical error rates, the two terms are now almost inter-
changeable if we only take into account the conception of the text transcription
method. Certainly, there are differences in capability between text recognition
systems that are optimized for handwritten material and those geared towards
machine-printed material. However, since the two terms do not convey enough
information about the operating principles of the overall recognition system any-
more (hard segmentation and character classification in OCR vs implicit or prob-
abilistic segmentation and sequence modeling in HTR), they will be used inter-
changeably from here on.

Following the above-mentioned three step model of OCR pipelines, we will
now look at the state of the art in both the research community and practically
available OCR systems.

Preprocessing

The first step afer digitization of the source material in an OCR pipeline is pre-
processing. Preprocessing includes a wide variety of tasks aimed at improving
the document quality and in the case of binarization preliminary classification
to aid in the subsequent layout analysis and text transcription steps. While for
modern machine-printed material the inventory of commonly employed prepro-
cessing methods is fairly static and often rely on hand-crafted algorithms for de-
noising, deskewing, binarization with a general trend of a reduction in prepro-
cessing over time as later steps in the pipeline have become more powerful, the
capabilities of new deep learning techniques have resulted in a renewed interest

1.5. LITERATURE REVIEW 17

in image enhancement and reconstruction for historical and degraded material.
Twomain operations are performed for preprocessing: document image enhance-
ment/normalization and document binarization.

Image enhancement and normalization encompasses a multitude of specific
tasks. Denoising, deskewing and dewarping are the three tasks that have the
longest and most extensive history of research. Image denoising is a classic task
in low level vision. It aims at recovering a noise-free image from a noisy observa-
tion affected by environmental factors such as low light, acquisition method, and
transmission channels. To remove this noise while preserving salient image fea-
tures, classical denoisingmethods utilize spatial filters such as gaussian or median
filters, image transforms, or morphological operations.

Their accuracy is often conditioned to the existence of an accurate model
of the type of noise that is present in the digitized material. Elementary de-
noising algorithms are implemented in OCR engines such as OCRopus [55] and
OCR4All [56], digitization workflow engines [57], and dedicated preprocessing
utilities [58]. A short review discussing the range of manually constructed de-
noising algorithms can be found in [59]. Newermethods employing deep learning
also exist [60]–[63], although they do not target document images specifically.

Deskewing and dewarping aim at correcting deformations introduced during
the digitization process. While deskewing is limited to correcting simple rotation,
dewarping includes the correction of perspective and lens distortion, non-planar
surfaces, …. Both are primarily intended to support layout analysis. They do so
by ensuring that individual lines are horizontal and can thus be modeled accu-
rately by algorithms which assume straight lines and single-orientation writing
or printing. Conventional skew detection methods [64]–[66] exploit this assump-
tion mostly by searching for a skew angle that produces a characteristic pattern
between dark and light areas in the projection profile. Likewise, dewarping tech-
niques such as [67]–[69] either assume straight lines or that the writing surface
in the unwarped state is rectangular [70]. In general, systems as described above
are only useful for modern-machine text of decent quality, and are frequently in-
cluded in OCR pipelines that are optimized for print processing (e.g. Tesseract,
OCRopy, or Abbyy FineReader). A few neural dewarping [71], [72] and skew de-
tection [73] have been proposed. However, a large corpus of document images
contains lines in multiple orientations, not to mention the advent of LA modules
capable of accurately detecting rotated and warped lines. As a result, their rele-
vance to state-of-the-art OCR engines can be put into question.

Other more advanced enhancement methods have also been studied, albeit
with much less frequency. They have not found applications in openly available
OCR systems as of yet. Neural super-resolution methods for document images
as proposed by [74]–[76] result in a circa fifty per cent error rate reduction on
the resulting high resolution output, in comparison to the original low resolution
images, when using a character segmentation OCR for recognition. Wholesale re-
construction of illegible writing in fragmentary historical handwritten documents
using a modified PixelCNN is described in [77].

18 CHAPTER 1. INTRODUCTION

Document binarization constitutes the other major area of interest in prepro-
cessing. It transforms color- or gray-level images into black-and-white images by
classifying each pixel of a given page image as belonging to either a foreground or
a background class. It serves multiple purposes, including noise suppression and
data domain restriction in subsequent steps. Binarization used to be considered
an integral part of any OCR system, and a long tradition of research on the topic
testifies of this practice (see, for instance, the 1979 Otsu thresholding[10], the ear-
liest method still in common use). A plethora of hand-crafted methods have been
devised over the years. They can be divided into two categories, global ([10]) or
local ([78]–[81]) thresholding algorithms, depending on whether they compute a
single threshold for the whole image or individual thresholds for smaller patches.
A special case concerns algorithms that perform normalization in the grayscale
domain and then apply a global threshold. An example of this is [82], which is
part of the OCRopus engine. Global thresholding often suffers from significant
output degradation if the input image shows inner variations across it, such as
uneven illumination or partial fading of ink. As a result, local methods are usu-
ally preferred, although they are comparatively slower. In Tesseract, it is global
thresholding using Otsu’s method which is implemented. On the other hand, the
OCR-D workflow engine [57] and the proprietary Transkribus HTR engine [83]
prefer more accurate local algorithms. A number of binarization methods based
on ANNs exist, and they are usually variants of semantic segmentation methods.
However, they suffer from the high cost of producing accurate ground truth. [84]
is exemplary of these systems. It uses a Fully Convolutional Network [85] trained
in a supervised fashion and fuses lower-level features in the decoding path to im-
prove reconstruction of fine-grained structures in the output image. U-Nets [86]
are another popular choice of architecture for similar methods.

Binarization is a complex operation that often fails to achieve acceptable re-
sults on historical documents with faded or differently colored ink and degraded
or structured writing supports or inscriptions. Its inclusion in OCR systems in-
tended for such material is therefore controversial, especially considering that
many recent LAmethods do not require binary input data anymore. Nevertheless,
to the best of my knowledge, all current OCR systems do include a binarization
algorithm. Kraken is one of the few engines where its use is only optional and
disabled by default.

Layout Analysis

Layout analysis aims to identify and recognize the physical and logical organiza-
tion of document pages. The exact requirements of an LA system can vary widely,
depending on the particular use case and the capabilities of the subsequent text
transcription method. The LA module is of critical importance in any OCR sys-
tem as the transcription method will not be able to recognize any misidentified
characters or lines. In fact, LA methods often constitute the limiting factor which
determines whether an OCR engine is capable of processing a given document,

1.5. LITERATURE REVIEW 19

and it frequently accounts for a substantial proportion of the system’s overall er-
ror rate.

Traditionally, LA systems operate as character segmenters, as the first text
transcription methods were only capable of recognizing one character at a time.
They can operate as single-stage methods directly extracting characters from
the page image. However, they are usually designed as a multi-stage process
that identifies smaller entities iteratively (e.g. text blocks first, then lines, words,
and finally characters). Unfortunately, even the process of segmenting machine-
printed block text can be prone to error. The most common approaches to dis-
section, projection analysis and connected components are indeed susceptible to
over- and under-segment due to broken or merged characters [87, sec.2]. This is
all the more so as the segmentation of cursive machine-printed or hand-written
text requires considerable prior knowledge regarding the structure of the writing
system to be segmented. It is common that results are unsatisfactory. Accord-
ing to a survey on Arabic-script character recognition carried on several meth-
ods [88], segmentation accuracy lies between seventy-six and ninety-nine per-
cent, with the best-performing algorithms optimized for particular typefaces. Ad-
vanced character segmenters (e.g. in Tesseract [89]) perform oversegmentation
and use the confidences returned by the text transcription algorithm to determine
correct segmentation by testing multiple hypotheses. Due to its significant draw-
backs regarding character segmentation, few developed OCR engines still use this
paradigm actively. There are, however, two major exceptions: the proprietary
Abbyy FineReader and Sakhr engines, both of which are most likely classifying
single characters.

The prevalent paradigm since the development of segmentation-free text tran-
scription that is able to recognize a sequence of characters at once has been text
line segmentation. While the what is evident, the representation of the text lines
is of more interest. The three principal representations with spread in both re-
search and practical applications are paths, bounding boxes, and baselines (see
figure 1.1). Axis-aligned bounding boxes, i.e. a bounding box whose edges are
parallel to the image boundary, which contains all the textual content of a par-
ticular line and have an, often implicit, orientation are the most basic practical
way to encode a text line. One of the benefits of this representation is that rect-
angular boxes are a natural fit to the rectangular line strips ingested by text line
transcription methods, and therefore require only minimal processing in the tran-
scriptionmethod. There is a wide array of methodswhich fitmachine-printed and
handwritten text to bounding boxes such as those described in [91], [92] or the
LA module in the OCRopus system [93]. In general, these text line segmenters
struggle with slanted or curved texts, either natural or as a result of the digiti-
zation process, and require the aforementioned preprocessing to eliminate skew
and warping but are inherently unable to accurately segment multi-oriented and
highly curved text. A minor extension implemented in the Tesseract LA mod-
ule which increases the versatility of the text line model is to allow rotation of

20 CHAPTER 1. INTRODUCTION

the text bounding box in combination with an explicit orientation detection algo-
rithm [89].

(a) Paths dividing a text block into lines. (from [90,
figure 5a])

(b) Baselines (detail of Walters W.578 fol. 5a)

(c) Bounding box around a line (detail of Penn Libraries
CAJS Rar Ms 132 fol. 53v)

Figure 1.1: Principal representations of lines

Paths are a flexible alternative
which allow the segmentation of
slanted and curved lines with rel-
ative ease. They encode blocks
of lines that are roughly in the
same orientation through a series
of separating linear or non-linear
paths. This representation has
one drawback: segmenting a page
document into blocks can already
prove to be a challenge. Early
methods utilized projection pro-
files [94], at times piecewise to
improve segmentation of curva-
ture [95]. More recent approaches
tend to treat path finding as an
optimization problem using the
Viterbi algorithm [96] or seam
carving [90], [97]. Notwithstand-
ing the fact that this approach is
superior to using bounding boxes
to ensure tight bounds around
curved and/or slanted lines, the
above-mentioned block segmen-
tation challenge prevented its dis-

semination, and it has never been implemented in any mainstream OCR engine.
It should be noted, however, that the Aletheia [98] document analysis system im-
plements human-triggered path-based line segmentation.

Baselines are currently the state of the art for text line segmentation in highly
challenging historical documents. The baseline is an imaginary line which let-
ters rest on, although letters frequently have parts (called descenders) that dip
below it. It is a fairly common concept which exist in a large number of alpha-
betic writing systems, although certain scripts (e.g. Hebrew, Tibetan, or Bengali)
are written with a hanging base or topline instead, and most logographic scripts
such as Chinese do not have any in the strict typographic sense. In spite of these
variations, approximations can often be systematized well enough to allow the
processing of most scripts using a baseline LA method.

Representing text lines by their baseline has one major advantage: the model
can accommodate arbitrary curvature by defining the baseline as a simple poly-
line, i.e. a sequence of straight line segments. Apart from being able to express
any text written in linear writing systems compactly, baseline representation has

1.5. LITERATURE REVIEW 21

the added benefit of allowing rectification through projection of the individual
polyline segments onto a straight line. However, there is also one drawback. A
baseline alone is not sufficient to extract a complete text line as it is not known
which points around it belong to the line in question or to adjacent content. As
a result, baselines are usually accompanied with additional bounding polygons.
Baseline representation appears in the literature as early as 1989 [99]. How-
ever, it went largely unnoticed until recently, except for a few segmentation sys-
tems [89], [93] that used baselines internally for clustering line blobs. Two factors
helped their popularization among researchers. Firstly, [100] showed that bound-
ing polygons had only but a small impact on transcription error rates, although
this certainly does not hold true for all historical documents. Secondly, [101]
published cBAD, a large dataset annotated with (poly-)baseline, and an evalua-
tion metric for a ICDAR contest. This was followed by a larger and more complex
dataset in 2019 [102]. Since then, the literature has produced a number of meth-
ods [48], [103]–[108]. They usually combine a deep neural semantic segmentation
method (common choices are U-Nets and FCNs) with a postprocessing heuristic of
varying complexity. While progress in accuracy levels using the ICDAR contest
dataset have been impressive, practical hurdles remain. Since bounding polygons
are not part of standard evaluation metric, they do not define an algorithm for
computing one. Likewise, the metric does not take line orientation into account
and the cBAD dataset is almost exclusively made of upright lines. As a result,
there is neither academic incentive nor any datasets available to develop baseline
LA methods that are able to determine line orientation effectively. Currently, two
OCR systems include trainable baseline LA systems: Transkribus and Kraken (see
chapter 8), to whichmust be added support in the eScriptoriumVRE and the OCR-
D workflow engine, via the Kraken module.

Other text line representations do exist but they are rarely used in practice.
Pixel labelings and bounding polygons are relatively easy to produce using deep
convolutional ANNs for semantic [109], [110] or instance segmentation [111].
However, they require tedious training data acquisition. In addition, in the case
of semantic segmentation-based methods, separation between close lines can be
problematic. Furthermore, without an additional way to determine line orien-
tation or estimate line curvature, text recognition on rotated and highly curved
purely polygon-bounded lines affects recognition accuracy negatively. This is
due to the fact that lines cannot be effectively normalized to the rectangular line
image strips processed by text transcription methods.

Some ancillary tasks are also associated with layout analysis. Region segmen-
tation (also known as page segmentation or zoning) divides a document image
into semantic regions such as main text, decoration, illustration, …. Its output has
several applications: to improve the OCR engine’s final textual output through
semantic annotation; to restrict the range of valid output in other tasks, e.g. by
only providing regions of interest to the text line detector or by limiting the text
transcription method to numerals in a postal code field; or to increase the infor-
mation available to algorithms for reading order determination.

22 CHAPTER 1. INTRODUCTION

Region segmentation is well-established as a task. There are hundreds of
hand-crafted region segmentation algorithms. They are often optimized for par-
ticular use cases and employ various filtering [112], cutting [113], [114], and clus-
tering [115], [116] techniques. As for text line segmentation, the capabilities of
deep convolutional ANNs have made them a popular choice, and since 2018 a
number of publications have focused on this task [48], [103], [105], [117]–[120].
A number of systems such as [105] (U-Net), [103] (FCN), and [48] (GAN with cus-
tom CNN) have implemented an attractive proposition: the possibility to perform
both baseline detection and region segmentation with the same network architec-
ture, or even the same model [48], [103]. Certain OCR engines have started to in-
corporate neural region segmentation, for instance anyOCR [121], Transkribus,
or Kraken. Other systems (e.g. Tesseract or OCR4all) retain heuristics for this
purpose.

Reading order determination (ROD) is an integral part of layout analysis, al-
beit it is often overlooked. While systems as described above detect layout struc-
ture, they fail to give any information as per how layout elements are related
logically. The reading order (i.e. the order in which human readers will read tex-
tual and non-textual components) constitutes one of the most important logical
structures and is critical to understanding a document. It may sound simple at
first, as most modern documents are read following a simple top-to-bottom or-
der. However, there is a large body of documents for which this is no trivial mat-
ter. Newspapers, for example, contain articles spanning multiple columns and
pages; scholarly editions have critical apparatus which do not obey the normal
reading order; and historical manuscripts often display extensive marginal notes,
interlinear additions, and parallel texts. The literature on the topic is sparse, in
particular when compared to many other DIA tasks. As a matter of fact, the cur-
rent state of the art has not evolved since the early 2000s in any substantial way.
[122]–[124] generate a region tree with X-Y cuts which is subsequently ordered
using simple heuristic rules (top-to-bottom, left-to-right). [125] incorporates lan-
guage modelling to determine likely text block sequences in newspapers. [93]
uses topological sorting to sort individual text lines on a page. [126] utilize de-
cision trees that incorporate both spatial and linguistic features, so as to fit to
a complex document understanding model. A partially trainable system using
linear programming to reconcile user-defined constraints is proposed in [127].
Despite the fact that some of the above methods are indeed intended for highly
complex documents, all of them make assumptions regarding the spatial ordering
of lines which are ill-suited to many historical documents. However, graph neural
networks have shown promise in logical document structure analysis [128] and
might be adapted for ROD in the future.

ROD implementations in OCR engines mirror the current state of the art in
research. OCRopus and Kraken use [93]. Tesseract employs a simple rule-based
algorithm described in [129]. The OCR-D workflow engine does not treat ROD
as a separate task, instead relying on the implicit order provided through the re-
spective LA modules.

1.5. LITERATURE REVIEW 23

1.5.3 Transcription

As described in section 1.5.2, conventional OCR systems were constructed around
character classifiers. Character classifiers require accurate character segmenta-
tions, which are frequently difficult to obtain for historical, degraded, and cursive
text. To solve this problem, different segmentation-free methods have been pro-
posed. They recognize one sequence of characters (e.g. a word or a line) at a
time. It should be noted that if the term segmentation-free is commonplace in the
literature, it only applies to the input data and the training process. This is due
to the fact that it is often possible to extract segmentation as well as estimates of
character locations from their output, as an implicit segmentation is performed
internally.

It was via the adaptation of HMM-based methods used in speech recognition
that the earliest approaches, able to both perform sequential classification and
to produce an hypothesis for a possible segmentation, were designed [17], [130].
Such approaches can be trained easily using Expectation Maximization. In ad-
dition, they allow straightforward incorporation of domain knowledge such as
language models, with the goal of increasing their capacity to model long term
dependencies. However, most HMM OCR methods operate on feature represen-
tations that are calculated on a sliding window over the text line, as is indeed
necessary to reduce the number of model parameters to avoid severe overfitting.
HMM-based methods may differ widely from one to another, in particular when
it comes to the choice of these types of features, and the literature abounds with
descriptions of different general-purpose and heuristic features. An outline of dif-
ferent feature extractors, modeling granularity, and language models employed
in HMM-based OCR methods is contained in a 2009 survey [131].

The inferiority of HMM-based methods to RNNs trained with CTC loss be-
came blatantly apparent in 2009, when a CTC trained multidimensional LSTM
(MDLSTM) [132] won three contests on French, Arabic, and Persian handwrit-
ing transcription without any language-specific method adaptation. Because the
computational requirements of MDLSTMs for both inference and training made
them unsuitable to large scale applications, and also because some doubts existed
regarding their assumed superiority over 1D-LSTMs [133], simpler bidirectional
LSTMs (BiLSTM) [134] became the basis for numerous derivations of the gen-
eral BiLSTM+CTC schema. The first hybrid convolutional and recurrent neural
network (CRNN) for natural scene text recognition was proposed in [34]. Mean-
while, [135] augmented a basic CRNN with a spatial transformer network block
that learned to dewarp input text line images. [136] incorporated lexicon veri-
fication to control a cascade of text transcription RNNs. [137] combined novel
gated convolutional layers with a multilayer BiLSTM and CTC loss. More com-
plex training procedures are sometimes constructed around these methods, for
instance incorporating auxiliary language model losses to adapt a transcription
model to an unseen language [138]. Another example is domain adaptation from
synthetic machine-printed to handwritten text with virtual adversarial training

24 CHAPTER 1. INTRODUCTION

[139].

In recent years, various attempts were made to find alternatives to RNNs or
CTC for text transcription. Apart from the everlasting search for greater accu-
racy and generalization, RNNs (and especially LSTMs) are slow and cannot be
parallelized easily. CTC has the aforementioned limitations, to which one must
add complexity, not to mention that fast implementations suffer from restrictions
such as maximum target sequence lengths. Attentional models such as [140]–
[142] replace CTC with conventional losses. In general, they consist of an en-
coder and a decoder, where the encoder produces a feature map. Through an
attention mechanism (which can be of different types, including content- and
location-aware attention), the decoder can weigh at each decoding step the rel-
ative importance of the different parts of the feature map. The number of times
the decoder runs steps is arbitrary, and characters are output directly from the
weighted featuremap. It follows that thesemethods hardly allow the character se-
quence to alignwith the input image. This contrasts with HMMs and CTC-trained
ANNs sharply. [143] describes a recurrence-free, CTC-trained, gated convolu-
tional ANN which, if compared to CRNNs, achieves similar (albeit slightly lower)
character error rates. Focusing on the recognition of in-air handwritten Chinese
text, [144] proposes a system that uses increasingly strided 1D convolutional lay-
ers to achieve large receptive fields in the feature extractor, quite similarly to
non-causal temporal convolutional networks (TCNs). While the complete ANN
architecture includes some final LSTM layers, an ablation study shows that the
TCN on its own achieves error rates that are similar to a simple two-layer LSTM.

As state-of-the-art hybrid CRNNs trained with CTC loss largely surpass older
HMM-based systems and have existed for a few years, many OCR engines in-
clude (C)RNN+CTC transcriptionmodules. TheOCRopus system uses a one-layer
bidirectional LSTM trained with a particular variant of CTC loss, implemented
completely in Python. The latest (fourth) version of Tesseract includes a dynam-
ically configurable neural networking library which is highly optimized for in-
ference on CPU. In addition, Tesseract’s default network configurations include
unconventional summarizing LSTM layers that compute local features as the last
time step output of an LSTM layer ingesting a one-pixel-wide vertical slice of the
line, one pixel at a time. The OCR4All system uses the Calamari text classifier,
which implements an ensemble method of confidence-weighted voting of cross-
fold-trained CRNNs [145]. Kraken implements a configurable neural networking
backend with a model specification language B, defaulting to a simple six layer
CRNN. anyOCR [121] uses BiLSTMs trained in a conventional supervised fashion
with CTC, but includes a procedure to harvest imprecise training data through
manually labelled character clusters. It aims to drastically reduce training data
requirements.

1.5. LITERATURE REVIEW 25

Specialty tasks

Certain specialty tasks exist without being part of any general-purpose OCR sys-
tems. Either the material they are designed for is too uncommon and dissimilar
to writing systems for natural languages, or the state of the art is not sufficiently
accurate to warrant implementation in practical OCR engines.

Table analysis is a task in DIA whose goal is to detect and recognize both the
contents of a table and its logical structure. Despite a long history of research
in table processing methods which extends far into the early nineteen-nineties
[146], this task is still considered unsolved even for modern printed tables [147].
There is limited research pertaining to the processing of historical tabular ma-
terial. Even hand-crafted methods that are optimized for a particular table style
have high error rates [148]. Since table retrodigitization remains an area of com-
mercial interest in the data entry industry, certain proprietary OCR engines (e.g.
Abbyy FineReader) include table detection and structure recognition.

Optical Music Recognition (OMR) aims to transcribe sheet music into a ma-
chine-readable representation. The process is analogous to OCR in many ways;
yet the term OMR remains rather ill-defined. It encompasses output representa-
tions (e.g. MIDI) that one would not traditionally associate with OCR. In addition,
musical notation behaves quite differently from most scripts used for natural lan-
guage, as it is a featural writing systemwhose information is contained both in the
ordered sequences of symbols and their spatial relationships. Some researchers
such as [149] reject the categorization of OMR as a sub-type of OCR or OCR for
music and the field has developed a number of OMR-specific tasks such as staff
processing and musical information reconstruction that have no equivalent in the
domain of OCR (see [150] for a recent survey of OMR tasks and methods). For
practical purposes, the OCR and OMR research fields are distinct. OCR engines
are not capable of processing musical notation and vice-versa.

Likewise, digital map processing is usually treated separately even when the
goal is limited to textual content extraction. This is due to the fact that non-text
elements make up for a larger proportion of the total writing surface than most
other documents. This makes text finding harder for most LA methods. How-
ever, it should be noted that in comparison to other DIA applications text tran-
scription inmaps can better exploit domain knowledge, as the nature of naturally-
expressed geographical data allows alignment with other maps and incorporation
of toponym dictionaries [151]–[153]. Complete map understanding requires not
only text line detection and region segmentation layout analysis but also the ex-
traction of cartographic features such as map symbols and contour lines. Most
text LA systems are ill-suited for this purpose, and it is therefore generally per-
formed using dedicated segmentation methods such as [154], [155].

26 CHAPTER 1. INTRODUCTION

1.5.4 Virtual Research Environments for DIA, OCR, and Digital
Humanities

Virtual Research Environments encompass a broad range of research support sys-
tems that share common characteristics. They offer a web-based working envi-
ronment and are tailored to serve the needs of a community of practice 5. They
provide a comprehensive catalogue of tools to support the targeted community
in accomplishing its goals. They are open and flexible with respect to service
offering and lifetime, and promote controlled sharing of both intermediate and fi-
nal research results by guaranteeing ownership, provenance and attribution[157].
They are not specific to OCR or the humanities and can be designed around all
kinds of research activity.

A number of web-based platforms offer manual or computer-assisted segmen-
tation, transcription, and recognition for certain categories of material in the hu-
manities field. However, whether they can be considered actual VREs is open
to question. Most platforms are developed within particular institutional frame-
works as project-specific tools, without active buy-in from practitioners falling
outside well-defined collaborations. This situation explains the lack of platforms
that satisfy all criteria for VREs. In this review, we will relax the criteria while
still limiting our review to tools whose functionalities at least partially overlap
with eScriptorium’s.

Most platforms implement specific methods to suit the needs of a particular
scientific project, and most research projects are of relatively short duration and
seek to solve specific research questions. As a result, in typical settings dedicated
platforms are not concerned with implementing a complete catalogue of methods
to perform an activity fully. They also rarely create a scholarly community around
them, albeit they can be considered as being part of a fabric of loosely-coupled
tools that could be made to interoperate through common data interchange for-
mats. Crowdsourcing applications for transcription of historical documents have
proved to be a particularly successful type of platforms. Tools like the Bentham
Transcription Desk [158] discard any automatic processing to retain simplicity
in implementation. Such platforms are rarely openly accessible. In other words,
data on which users can perform activities is predetermined by the platform’s op-
erators; imports are often already processed extensively through external means.
The TypeWright OCR correction and digital edition creation tool [159] is a good
example of this. The only raw OCR data that it makes available was created by
the eMOP project’s internal pipeline. On the other hand, it should be noted that a
fairly large number of platforms accepting the use of arbitrary data do exist. They
are, however, of very limited capability. For instance, [160] is a platform whose
purpose is to create segmentation ground truth data with some low-level com-

5Communities of practice as defined in [156] are individuals that are united in action and in
the meaning that an activity has for them as individuals and as a collective, i.e. communities are
composed of active practitioners who create a community through self-identification with and ex-
change on a particular, in our case scholarly, activity.

REFERENCES 27

puter vision assistance. Another example is the HInDoLA [161] platform, which
is solely intended to aid the layout analysis of palm leafs. LAREX [162] is a semi-
automatic tool for layout analysis of early printed books. It can be interfaced to
external OCR tools through data exports in PageXML format. PoCoTo [163] is
a web service geared towards the postcorrection of OCR output with language
modelling assistance.

When it comes to communities of OCR practitioners in the humanities, the
Transkribus [164] platform comes closest in meeting the VRE definition. It was
designed as a comprehensive platform for computer-aided layout analysis, tran-
scription and information retrieval. It offers all the basic tools necessary to the av-
erage scholar interested in retrodigitization of historical handwritten and printed
material. Unfortunately, the closed nature of the platform hampers interested
scholars’s capacity to share their work while being guaranteed ownership of their
work. While data can be imported and exported in standard formats freely, arti-
facts trained in specific OCR tasks (i.e. layout analysis and transcription models)
with user-created data are locked inside the platform. Added to the platform’s
recently adopted pricing model, it presents not only a significant deficit of own-
ership but also a barrier to the reproducibility of results.

While eScriptorium is not yet feature complete and access to the platform of
the public is currently limited, albeit the source code of all components is publicly
available and a number of instances are set up at different research groups and
institution, it already fulfills the VRE definition. It supports the full gamut of
OCR functions needed for the processing of historical material, permits users to
selectively share the product of their work, and provides interfaces to import and
export all data and workflow-produced artifacts.

References

[1] D. A. Smith and R. Cordell, “A research agenda for historical and multilin-
gual optical character recognition,” NUlab, Northeastern University, 2018.

[2] S. A. Mahmoud, I. Ahmad, W. G. Al-Khatib, et al., “KHATT: An open Ara-
bic offline handwritten text database,” Pattern Recognition, vol. 47, no. 3,
pp. 1096–1112, 2014. doi: 10.1016/j.patcog.2013.08.009.

[3] M. Widner, “Toward Text-Mining the Middle Ages: Digital Scriptoria and
Networks of Labor,” in The Routledge Research Companion to Digital Me-
dieval Literature, Routledge, 2017, pp. 131–144.

[4] H. Alpert-Abrams, “Machine Reading the Primeros Libros,” Digital Hu-
manities Quarterly, vol. 10, no. 4, 2016.

[5] D. Mimno, “Data carpentry is a skilled, hands-on craft which will form a
major part of data science in the future,” 2014. [Online]. Available: https:
/ /blogs . lse .ac .uk/ impactofsocialsciences/2014/09/01/data- carpentry-
skilled-craft-data-science/.

28 CHAPTER 1. INTRODUCTION

[6] P. Ströbel, S. Clematide, and M. Volk, “How Much Data Do You Need?
About the Creation of a Ground Truth for Black Letter and the Effective-
ness of Neural OCR,” in Proceedings of The 12th Language Resources and
Evaluation Conference, LREC 2020, Marseille, France, May 11-16, 2020, N.
Calzolari, F. Béchet, P. Blache, et al., Eds., European Language Resources
Association, 2020, pp. 3551–3559.

[7] H. Herbert, “The history of ocr, optical character recognition,”Manchester
Center, VT: Recognition Technologies Users Association, 1982.

[8] S. A. Papert, “The summer vision project,” 1966.

[9] M. Minsky and P. Seymour, Perceptrons: an introduction to computational
geometry. The MIT Press, Cambridge MA, 1969, isbn: 0262130432.

[10] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66,
1979.

[11] R. A. Wilkinson, The first census optical character recognition system con-
ference. US Department of Commerce, National Institute of Standards and
Technology, 1992, vol. 4912.

[12] K. Fukushima and S.Miyake, “Neocognitron: A self-organizing neural net-
workmodel for amechanism of visual pattern recognition,” inCompetition
and cooperation in neural nets, Springer, 1982, pp. 267–285.

[13] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation applied to hand-
written zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–
551, 1989.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536,
1986.

[15] S. Hochreiter, “Untersuchungen zu dynamischen neuronalenNetzen,” Ph.D.
dissertation, Technische Universität München, 1991.

[16] J. Schmidhuber, “Deep learning in neural networks: An overview,” CoRR,
vol. abs/1404.7828, 2014. arXiv: 1404.7828.

[17] A. Kaltenmeier, T. Caesar, J. M. Gloger, and E. Mandler, “Sophisticated
topology of hidden markov models for cursive script recognition,” in Pro-
ceedings of 2nd International Conference on Document Analysis and Recog-
nition (ICDAR’93), IEEE, 1993, pp. 139–142.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classificationwith
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” Y. Bengio and Y. LeCun, Eds., 2015.

REFERENCES 29

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[21] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave like en-
sembles of relatively shallow networks,” Advances in neural information
processing systems, vol. 29, pp. 550–558, 2016.

[22] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet: Learn-
ing dynamic routing in convolutional networks,” in Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 2018, pp. 409–424.

[23] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep net-
works,”Advances in neural information processing systems, vol. 28, pp. 2377–
2385, 2015.

[24] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 4700–4708.

[25] F. N. Iandola, M. W. Moskewicz, K. Ashraf, et al., “SqueezeNet: AlexNet-
level accuracy with 50x fewer parameters and 1MB model size,” CoRR,
vol. abs/1602.07360, 2016. arXiv: 1602.07360.

[26] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for
image classifier architecture search,” in Proceedings of the aaai conference
on artificial intelligence, vol. 33, 2019, pp. 4780–4789.

[27] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” Proceedings of Machine Learning Research,
vol. 97, K. Chaudhuri and R. Salakhutdinov, Eds., pp. 6105–6114, 2019.

[28] M. Huh, P. Agrawal, and A. A. Efros, “What makes imagenet good for
transfer learning?” CoRR, vol. abs/1608.08614, 2016. arXiv: 1608.08614.

[29] K. He, R. Girshick, and P. Dollár, “Rethinking imagenet pre-training,” in
Proceedings of the IEEE international conference on computer vision, 2019,
pp. 4918–4927.

[30] B. Zoph, G. Ghiasi, T. Lin, et al., “Rethinking pre-training and self-training,”
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.

[31] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models trans-
fer better?” In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2019, pp. 2661–2671.

[32] F. Visin, K. Kastner, K. Cho, et al., “ReNet: A recurrent neural network
based alternative to convolutional networks,” CoRR, vol. abs/1505.00393,
2015. arXiv: 1505.00393.

30 CHAPTER 1. INTRODUCTION

[33] M. F. Stollenga, W. Byeon, M. Liwicki, and J. Schmidhuber, “Parallel Multi-
Dimensional LSTM, With Application to Fast Biomedical Volumetric Im-
age Segmentation,” C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, Eds., pp. 2998–3006, 2015.

[34] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for
image-based sequence recognition and its application to scene text recog-
nition,” IEEE transactions on pattern analysis andmachine intelligence, vol. 39,
no. 11, pp. 2298–2304, 2016.

[35] K. Xu, J. Ba, R. Kiros, et al., “Show, attend and tell: Neural image caption
generation with visual attention,” in International conference on machine
learning, 2015, pp. 2048–2057.

[36] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks,” in Proceedings of the 23rd international conference
on Machine learning, ACM, 2006, pp. 369–376.

[37] J. Song, Z. Guo, L. Gao, et al., “Hierarchical LSTM with adjusted tempo-
ral attention for video captioning,” CoRR, vol. abs/1706.01231, 2017. arXiv:
1706.01231.

[38] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with vi-
sual attention,” Y. Bengio and Y. LeCun, Eds., 2015.

[39] T. Bluche, J. Louradour, and R. Messina, “Scan, Attend and Read: End-
to-End Handwritten Paragraph Recognition with MDLSTM Attention,” in
2017 14th IAPR International Conference on Document Analysis and Recog-
nition (ICDAR), vol. 01, 2017, pp. 1050–1055. doi: 10.1109/ICDAR.2017.174.

[40] T. Bluche, “Joint line segmentation and transcription for end-to-end hand-
written paragraph recognition,” inAdvances in Neural Information Process-
ing Systems 29: Annual Conference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona, Spain, D. D. Lee, M. Sugiyama,
U. von Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp. 838–846.

[41] A. Schiller. “Transcribr - a transformer-based handwriting recognition ar-
chitecture.” (2020), [Online]. Available: https://towardsdatascience.com/
transcribr-9861c8de2f79 (visited on 12/16/2020).

[42] B.Wu, C. Xu, X. Dai, et al., “Visual Transformers: Token-based Image Rep-
resentation and Processing for Computer Vision,”CoRR, vol. abs/2006.03677,
2020. arXiv: 2006.03677.

[43] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative Adversarial
Nets,” Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, Eds., pp. 2672–2680, 2014.

[44] S. E. Reed, Z. Akata, X. Yan, et al., “Generative Adversarial Text to Im-
age Synthesis,” JMLR Workshop and Conference Proceedings, vol. 48, M.
Balcan and K. Q. Weinberger, Eds., pp. 1060–1069, 2016.

REFERENCES 31

[45] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Trans-
lationUsingCycle-Consistent Adversarial Networks,” in IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, IEEE Computer Society, 2017, pp. 2242–2251. doi: 10 .1109/ ICCV.
2017.244.

[46] K. C. Nguyen, C. T. Nguyen, S. Hotta, and M. Nakagawa, “A character at-
tention generative adversarial network for degraded historical document
restoration,” in 2019 International Conference on Document Analysis and
Recognition (ICDAR), IEEE, 2019, pp. 420–425.

[47] S. Suh, J. Kim, P. Lukowicz, and Y. O. Lee, “Two-stage generative adversar-
ial networks for document image binarization with color noise and back-
ground removal,” CoRR, vol. abs/2010.10103, 2020. arXiv: 2010.10103.

[48] L. Quirós, “Multi-task handwritten document layout analysis,” arXiv arX-
iv:1806.08852, 2018.

[49] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” in Proceedings of
the 25th international conference on Machine learning, 2008, pp. 1096–1103.

[50] D. Erhan, A. Courville, Y. Bengio, and P. Vincent, “Why does unsupervised
pre-training help deep learning?” In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics, JMLR Workshop
and Conference Proceedings, 2010, pp. 201–208.

[51] J. Calvo-Zaragoza and A.-J. Gallego, “A selectional auto-encoder approach
for document image binarization,” Pattern Recognition, vol. 86, pp. 37–47,
2019.

[52] K. Chen, M. Seuret, M. Liwicki, J. Hennebert, and R. Ingold, “Page segmen-
tation of historical document images with convolutional autoencoders,” in
2015 13th International Conference on Document Analysis and Recognition
(ICDAR), IEEE, 2015, pp. 1011–1015.

[53] H. Wei, M. Seuret, K. Chen, et al., “Selecting autoencoder features for lay-
out analysis of historical documents,” in Proceedings of the 3rd International
Workshop on Historical Document Imaging and Processing, 2015, pp. 55–62.

[54] K. M. Sayre, “Machine recognition of handwritten words: A project re-
port,” Pattern recognition, vol. 5, no. 3, pp. 213–228, 1973.

[55] T. M. Breuel, “The ocropus open source ocr system,” in Document recog-
nition and retrieval XV, International Society for Optics and Photonics,
vol. 6815, 2008, 68150F.

[56] C. Reul, D. Christ, A. Hartelt, et al., “Ocr4all—an open-source tool pro-
viding a (semi-) automatic ocr workflow for historical printings,” Applied
Sciences, vol. 9, no. 22, p. 4853, 2019.

32 CHAPTER 1. INTRODUCTION

[57] C. Neudecker, K. Baierer,M. Federbusch, et al., “Ocr-d: An end-to-end open
source ocr framework for historical printed documents,” in Proceedings
of the 3rd International Conference on Digital Access to Textual Cultural
Heritage, 2019, pp. 53–58.

[58] Scantailor, version 0.9.9, Dec. 16, 2020. [Online]. Available: https://scantailor.
org.

[59] L. Fan, F. Zhang, H. Fan, and C. Zhang, “Brief review of image denoising
techniques,” Visual Computing for Industry, Biomedicine, and Art, vol. 2,
no. 1, p. 7, 2019.

[60] S. Cha and T.Moon, “Fully convolutional pixel adaptive image denoiser,” in
Proceedings of the IEEE International Conference on Computer Vision, 2019,
pp. 4160–4169.

[61] S. Laine, T. Karras, J. Lehtinen, and T. Aila, “High-quality self-supervised
deep image denoising,” in Advances in Neural Information Processing Sys-
tems, 2019, pp. 6970–6980.

[62] S. Soltanayev and S. Y. Chun, “Training deep learning based denoisers
without ground truth data,” in Advances in neural information processing
systems, 2018, pp. 3257–3267.

[63] J. Chen, J. Chen, H. Chao, andM. Yang, “Image blind denoisingwith gener-
ative adversarial network based noise modeling,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 3155–
3164.

[64] D. S. Bloomberg, G. E. Kopec, and L. Dasari, “Measuring document image
skew and orientation,” in Document Recognition II, International Society
for Optics and Photonics, vol. 2422, 1995, pp. 302–316.

[65] A. Amin and S. Fischer, “A document skew detection method using the
hough transform,” Pattern Analysis & Applications, vol. 3, no. 3, pp. 243–
253, 2000.

[66] A. Papandreou and B. Gatos, “A novel skew detection technique based on
vertical projections,” in 2011 International Conference on Document Analy-
sis and Recognition, IEEE, 2011, pp. 384–388.

[67] Z. Zhang and C. L. Tan, “Correcting document image warping based on
regression of curved text lines,” in Seventh International Conference on Doc-
ument Analysis and Recognition, 2003. Proceedings., IEEE, 2003, pp. 589–
593.

[68] A. Ulges, C. H. Lampert, and T. M. Breuel, “Document image dewarp-
ing using robust estimation of curled text lines,” in Eighth International
Conference on Document Analysis and Recognition (ICDAR’05), IEEE, 2005,
pp. 1001–1005.

REFERENCES 33

[69] A. Masalovitch and L. Mestetskiy, “Usage of continuous skeletal image
representation for document images de-warping,” in Proceedings of Inter-
national Workshop on Camera-Based Document Analysis and Recognition,
Curitiba, 2007, pp. 45–53.

[70] N. Stamatopoulos, B. Gatos, I. Pratikakis, and S. J. Perantonis, “A two-step
dewarping of camera document images,” in 2008 The Eighth IAPR Interna-
tional Workshop on Document Analysis Systems, IEEE, 2008, pp. 209–216.

[71] S. Das, K. Ma, Z. Shu, D. Samaras, and R. Shilkrot, “Dewarpnet: Single-
image document unwarping with stacked 3d and 2d regression networks,”
in Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 131–140.

[72] K. Ma, Z. Shu, X. Bai, J. Wang, and D. Samaras, “Docunet: Document image
unwarping via a stacked u-net,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4700–4709.

[73] T. Breuel,Ocropus 3 document skew detection, May 29, 2018. [Online]. Avail-
able: http://github.com/NVlabs/ocropus3-ocrorot.

[74] C. Dong, X. Zhu, Y. Deng, C. C. Loy, and Y. Qiao, “Boosting optical charac-
ter recognition: A super-resolution approach,” CoRR, vol. abs/1506.02211,
2015. arXiv: 1506.02211.

[75] A. Lat and C. Jawahar, “Enhancing ocr accuracy with super resolution,”
in 2018 24th International Conference on Pattern Recognition (ICPR), IEEE,
2018, pp. 3162–3167.

[76] Z. Fu, Y. Kong, Y. Zheng, et al., “Cascaded detail-preserving networks for
super-resolution of document images,” in 2019 International Conference on
Document Analysis and Recognition (ICDAR), IEEE, 2019, pp. 240–245.

[77] L. Uzan, N. Dershowitz, and L. Wolf, “Qumran letter restoration by ro-
tation and reflection modified pixelcnn,” in 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), IEEE, vol. 1,
2017, pp. 23–29.

[78] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,”
Pattern Recognition, vol. 33, no. 2, pp. 225–236, 2000.

[79] W. Niblack, An introduction to digital image processing (englewood clivs, nj,
1986.

[80] I.-K. Kim, D.-W. Jung, and R.-H. Park, “Document image binarization based
on topographic analysis using a water flow model,” Pattern Recognition,
vol. 35, no. 1, pp. 265–277, 2002.

[81] B. Gatos, I. Pratikakis, and S. J. Perantonis, “An adaptive binarization tech-
nique for low quality historical documents,” in International Workshop on
Document Analysis Systems, Springer, 2004, pp. 102–113.

34 CHAPTER 1. INTRODUCTION

[82] F. Shafait, D. Keysers, and T. M. Breuel, “Efficient implementation of lo-
cal adaptive thresholding techniques using integral images,” in Document
recognition and retrieval XV, International Society for Optics and Photon-
ics, vol. 6815, 2008, p. 681 510.

[83] K. Ntirogiannis, B. Gatos, and I. Pratikakis, “A combined approach for the
binarization of handwritten document images,” Pattern recognition letters,
vol. 35, pp. 3–15, 2014.

[84] C. Tensmeyer and T. R.Martinez, “Document image binarizationwith fully
convolutional neural networks,” in 14th IAPR International Conference on
Document Analysis and Recognition, ICDAR 2017, Kyoto, Japan, November
9-15, 2017, IEEE, 2017, pp. 99–104. doi: 10.1109/ICDAR.2017.25.

[85] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 3431–3440.

[86] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention, Springer, 2015,
pp. 234–241.

[87] R. G. Casey and E. Lecolinet, “A Survey ofMethods and Strategies in Char-
acter Segmentation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 18, no. 7, pp. 690–706, 1996. doi: 10.1109/34.506792.

[88] Y. M. Alginahi, “A survey onArabic character segmentation,” International
Journal of Document Analysis and Recognition, vol. 16, no. 2, pp. 105–126,
2013. doi: 10.1007/s10032-012-0188-6.

[89] R. Smith, “An Overview of the Tesseract OCR Engine,” in 9th Interna-
tional Conference on Document Analysis and Recognition (ICDAR 2007),
23-26 September, Curitiba, Paraná, Brazil, IEEE Computer Society, 2007,
pp. 629–633. doi: 10.1109/ICDAR.2007.4376991.

[90] N. Arvanitopoulos and S. Süsstrunk, “Seam carving for text line extraction
on color and grayscale historical manuscripts,” in 2014 14th International
Conference on Frontiers in Handwriting Recognition, IEEE, 2014, pp. 726–
731.

[91] U. Marti and H. Bunke, “On the Influence of Vocabulary Size and Lan-
guage Models in Unconstrained Handwritten Text Recognition,” in 6th
International Conference on Document Analysis and Recognition (ICDAR
2001), 10-13 September 2001, Seattle, WA, USA, IEEE Computer Society,
2001, pp. 260–265. doi: 10.1109/ICDAR.2001.953795.

[92] V. Papavassiliou, T. Stafylakis, V. Katsouros, and G. Carayannis, “Hand-
written document image segmentation into text lines and words,” Pattern
Recognition, vol. 43, no. 1, pp. 369–377, 2010. doi: 10.1016/j.patcog.2009.
05.007.

REFERENCES 35

[93] T. M. Breuel, “High performance document layout analysis,” 2003.

[94] A. Antonacopoulos and D. Karatzas, “Document Image Analysis forWorld
War II Personal Records,” in 1st International Workshop on Document Im-
age Analysis for Libraries (DIAL 2004), 23-24 January 2004, Palo Alto, CA,
USA, IEEE Computer Society, 2004, pp. 336–341. doi: 10.1109/DIAL.2004.
1263263.

[95] A. Zahour, B. Taconet, P. Mercy, and S. Ramdane, “Arabic Hand-Written
Text-Line Extraction,” in 6th International Conference on Document Analy-
sis and Recognition (ICDAR 2001), 10-13 September 2001, Seattle, WA, USA,
IEEE Computer Society, 2001, pp. 281–285. doi: 10 . 1109 / ICDAR . 2001 .
953799.

[96] Y. Tseng and H. Lee, “Recognition-based handwritten Chinese character
segmentation using a probabilistic Viterbi algorithm,” Pattern Recognit.
Lett., vol. 20, no. 8, pp. 791–806, 1999. doi: 10.1016/S0167-8655(99)00043-4.

[97] X. Zhang and C. L. Tan, “Text Line Segmentation for Handwritten Doc-
uments Using Constrained Seam Carving,” in 14th International Confer-
ence on Frontiers in Handwriting Recognition, ICFHR 2014, Crete, Greece,
September 1-4, 2014, IEEE Computer Society, 2014, pp. 98–103. doi: 10 .
1109/ICFHR.2014.24.

[98] C. Clausner, S. Pletschacher, and A. Antonacopoulos, “Aletheia - an ad-
vanced document layout and text ground-truthing system for production
environments,” in 2011 International Conference on Document Analysis and
Recognition, 2011, pp. 48–52. doi: 10.1109/ICDAR.2011.19.

[99] S. N. Srihari and V. Govindaraju, “Analysis of textual images using the
hough transform,” Machine vision and Applications, vol. 2, no. 3, pp. 141–
153, 1989.

[100] V. Romero, J. A. Sanchez, V. Bosch, K. Depuydt, and J. de Does, “Influence
of text line segmentation in handwritten text recognition,” in Document
Analysis and Recognition (ICDAR), 2015 13th International Conference on,
IEEE, 2015, pp. 536–540.

[101] M. Diem, F. Kleber, S. Fiel, T. Grüning, and B. Gatos, “cBAD: ICDAR2017
competition on baseline detection,” in Document Analysis and Recognition
(ICDAR), 2017 14th IAPR International Conference on, IEEE, vol. 1, 2017,
pp. 1355–1360.

[102] D. Markus, K. Florian, and G. Basilis, ICDAR 2019 Competition on Baseline
Detection (cBAD), Zenodo, Feb. 2019. doi: 10.5281/zenodo.3568023.

[103] Y. Xu, F. Yin, Z. Zhang, and C. Liu, “Multi-task Layout Analysis for His-
torical Handwritten Documents Using Fully Convolutional Networks,” J.
Lang, Ed., pp. 1057–1063, 2018. doi: 10.24963/ijcai.2018/147.

36 CHAPTER 1. INTRODUCTION

[104] O. Mechi, M. Mehri, R. Ingold, and N. E. B. Amara, “Text line segmenta-
tion in historical document images using an adaptive u-net architecture,”
in 2019 International Conference on Document Analysis and Recognition (IC-
DAR), IEEE, 2019, pp. 369–374.

[105] S. A. Oliveira, B. Seguin, and F. Kaplan, “dhSegment: A Generic Deep-
Learning Approach for Document Segmentation,” in 16th International
Conference on Frontiers in Handwriting Recognition, ICFHR 2018, Niagara
Falls, NY, USA, August 5-8, 2018, IEEE Computer Society, 2018, pp. 7–12.
doi: 10.1109/ICFHR-2018.2018.00011.

[106] K. Romain and B. Abdel, “Semi-supervised learning through adversary
networks for baseline detection,” in 2019 International Conference on Doc-
ument Analysis and Recognition Workshops (ICDARW), IEEE, vol. 5, 2019,
pp. 128–133.

[107] T. Grüning, G. Leifert, T. Strauß, J. Michael, and R. Labahn, “A two-stage
method for text line detection in historical documents,” International Jour-
nal on Document Analysis and Recognition (IJDAR), vol. 22, no. 3, pp. 285–
302, 2019.

[108] A. Melnikov and I. Zagaynov, “Fast and Lightweight Text Line Detection
on Historical Documents,” in International Workshop on Document Analy-
sis Systems, Springer, 2020, pp. 441–450.

[109] J. Pastor-Pellicer, M. Z. Afzal, M. Liwicki, and M. J. C. Bleda, “Complete
system for text line extraction using convolutional neural networks and
watershed transform,” in 12th IAPR Workshop on Document Analysis Sys-
tems, DAS 2016, Santorini, Greece, April 11-14, 2016, IEEE Computer Soci-
ety, 2016, pp. 30–35. doi: 10.1109/DAS.2016.58.

[110] M. Alberti, L. Vögtlin, V. Pondenkandath, et al., “Labeling, Cutting, Group-
ing: An Efficient Text Line SegmentationMethod forMedievalManuscripts,”
in 2019 International Conference on Document Analysis and Recognition, IC-
DAR 2019, Sydney, Australia, September 20-25, 2019, IEEE, 2019, pp. 1200–
1206. doi: 10.1109/ICDAR.2019.00194.

[111] A. Prusty, S. Aitha, A. Trivedi, and R. K. Sarvadevabhatla, “Indiscapes: In-
stance segmentation networks for layout parsing of historical Indic manu-
scripts,” in 2019 International Conference on Document Analysis and Recog-
nition (ICDAR), IEEE, 2019, pp. 999–1006.

[112] T. Pavlidis and J. Zhou, “Page segmentation and classification,” CVGIP:
Graphical Models and Image Processing, vol. 54, no. 6, pp. 484–496, 1992,
issn: 1049-9652. doi: https://doi.org/10.1016/1049-9652(92)90068-9.

[113] J. Ha, R. M. Haralick, and I. T. Phillips, “Recursive xy cut using bounding
boxes of connected components,” in Proceedings of 3rd International Con-
ference on Document Analysis and Recognition, IEEE, vol. 2, 1995, pp. 952–
955.

REFERENCES 37

[114] B. Kruatrachue, N. Moongfangklang, and K. Siriboon, “Fast document seg-
mentation using contour and xy cut technique.,” inWEC (5), 2005, pp. 27–
29.

[115] D. Drivas and A. Amin, “Page segmentation and classification utilising
a bottom-up approach,” in Proceedings of 3rd International Conference on
Document Analysis and Recognition, IEEE, vol. 2, 1995, pp. 610–614.

[116] K. Kise, A. Sato, and M. Iwata, “Segmentation of page images using the
area voronoi diagram,” Computer Vision and Image Understanding, vol. 70,
no. 3, pp. 370–382, 1998.

[117] C. Wick and F. Puppe, “Fully Convolutional Neural Networks for Page
Segmentation of Historical Document Images,” in 13th IAPR International
Workshop on Document Analysis Systems, DAS 2018, Vienna, Austria, April
24-27, 2018, IEEE Computer Society, 2018, pp. 287–292. doi: 10.1109/DAS.
2018.39.

[118] D. He, S. Cohen, B. Price, D. Kifer, and C. L. Giles, “Multi-scale multi-task
fcn for semantic page segmentation and table detection,” in 2017 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR),
IEEE, vol. 1, 2017, pp. 254–261.

[119] K. Chen, M. Seuret, J. Hennebert, and R. Ingold, “Convolutional neural
networks for page segmentation of historical document images,” in 2017
14th IAPR International Conference on Document Analysis and Recognition
(ICDAR), IEEE, vol. 1, 2017, pp. 965–970.

[120] T. Monnier and M. Aubry, “Docextractor: An off-the-shelf historical docu-
ment element extraction,” in 2020 17th International Conference on Frontiers
in Handwriting Recognition (ICFHR), IEEE, 2020, pp. 91–96.

[121] S. S. Bukhari, A. Kadi, M. A. Jouneh, F. M. Mir, and A. Dengel, “anyOCR:
An Open-Source OCR System for Historical Archives,” in 14th IAPR Inter-
national Conference on Document Analysis and Recognition, ICDAR 2017,
Kyoto, Japan, November 9-15, 2017, IEEE, 2017, pp. 305–310. doi: 10.1109/
ICDAR.2017.58.

[122] G. Nagy and S. C. Seth, “Hierarchical representation of optically scanned
documents,” 1984.

[123] Y. Ishitani, “Document transformation system from papers to xml data
based on pivot xml document method,” in Seventh International Confer-
ence on Document Analysis and Recognition, 2003. Proceedings., IEEE, 2003,
pp. 250–255.

[124] J.-L. Meunier, “Optimized xy-cut for determining a page reading order,”
in Eighth International Conference on Document Analysis and Recognition
(ICDAR’05), IEEE, 2005, pp. 347–351.

[125] L. Gao, Z. Tang, X. Lin, and Y.Wang, “A graph-basedmethod of newspaper
article reconstruction,” 2012.

38 CHAPTER 1. INTRODUCTION

[126] M. Aiello, C. Monz, L. Todoran, and M. Worring, “Document Understand-
ing for a Broad Class of Documents,” International Journal on Document
Analysis and Recognition, vol. 5, no. 1, pp. 1–16, 2002.

[127] D. Malerba, M. Ceci, and M. Berardi, “Machine learning for reading or-
der detection in document image understanding,” in Machine Learning in
Document Analysis and Recognition, Springer, 2008, pp. 45–69.

[128] H. Déjean, J.-L. Meunier, et al., “Versatile layout understanding via con-
jugate graph,” in 2019 International Conference on Document Analysis and
Recognition (ICDAR), IEEE, 2019, pp. 287–294.

[129] R. W. Smith, “Hybrid page layout analysis via tab-stop detection,” in 2009
10th International Conference on Document Analysis and Recognition, 2009,
pp. 241–245. doi: 10.1109/ICDAR.2009.257.

[130] G. Rigoll, A. Kosmala, J. Rottland, and C. Neukirchen, “A comparison be-
tween continuous and discrete density hidden markov models for cur-
sive handwriting recognition,” in 13th International Conference on Pattern
Recognition, ICPR 1996, Vienna, Austria, 25-19 August, 1996, IEEE Computer
Society, 1996, pp. 205–209. doi: 10.1109/ICPR.1996.546818.

[131] T. Plötz and G. A. Fink, “Markov models for offline handwriting recogni-
tion: A survey,” International Journal on Document Analysis and Recogni-
tion (IJDAR), vol. 12, no. 4, p. 269, 2009.

[132] A. Graves and J. Schmidhuber, “Offline Handwriting Recognition with
Multidimensional Recurrent Neural Networks,” D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, Eds., pp. 545–552, 2008.

[133] J. Puigcerver, “Are multidimensional recurrent layers really necessary for
handwritten text recognition?” In 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), IEEE, vol. 1, 2017, pp. 67–
72.

[134] A. Graves, M. Liwicki, S. Fernández, et al., “A Novel Connectionist System
for Unconstrained Handwriting Recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 31, no. 5, pp. 855–868, 2009. doi: 10.1109/TPAMI.2008.
137.

[135] K. Dutta, P. Krishnan, M. Mathew, and C. Jawahar, “Improving CNN-RNN
hybrid networks for handwriting recognition,” in 2018 16th International
Conference on Frontiers in Handwriting Recognition (ICFHR), IEEE, 2018,
pp. 80–85.

[136] B. Stuner, C. Chatelain, and T. Paquet, “Cohort of LSTM and lexicon verifi-
cation for handwriting recognition with gigantic lexicon,” CoRR, vol. abs/-
1612.07528, 2016. arXiv: 1612.07528.

REFERENCES 39

[137] T. Bluche and R. Messina, “Gated convolutional recurrent neural networks
for multilingual handwriting recognition,” in 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), IEEE, vol. 1,
2017, pp. 646–651.

[138] C. Tensmeyer, C.Wigington, B. Davis, et al., “Language model supervision
for handwriting recognition model adaptation,” in 2018 16th International
Conference on Frontiers in Handwriting Recognition (ICFHR), IEEE, 2018,
pp. 133–138.

[139] S. Keret, L. Wolf, N. Dershowitz, et al., “Transductive learning for read-
ing handwritten tibetan manuscripts,” in 2019 International Conference on
Document Analysis and Recognition (ICDAR), IEEE, 2019, pp. 214–221.

[140] J. Sueiras, V. Ruiz, A. Sanchez, and J. F. Velez, “Offline continuous hand-
writing recognition using sequence to sequence neural networks,” Neuro-
computing, vol. 289, pp. 119–128, 2018.

[141] J. Michael, R. Labahn, T. Grüning, and J. Zöllner, “Evaluating sequence-to-
sequence models for handwritten text recognition,” in 2019 International
Conference on Document Analysis and Recognition (ICDAR), IEEE, 2019,
pp. 1286–1293.

[142] L. Kang, J. I. Toledo, P. Riba, et al., “Convolve, attend and spell: An attention-
based sequence-to-sequence model for handwritten word recognition,” in
German Conference on Pattern Recognition, Springer, 2018, pp. 459–472.

[143] D. Coquenet, C. Chatelain, and T. Paquet, “Recurrence-free unconstrained
handwritten text recognition using gated fully convolutional network,” in
2020 17th International Conference on Frontiers in Handwriting Recognition
(ICFHR), IEEE, 2020, pp. 19–24.

[144] J. Gan, W. Wang, and K. Lu, “In-air handwritten Chinese text recogni-
tion with temporal convolutional recurrent network,” Pattern Recognition,
vol. 97, p. 107 025, 2020.

[145] C.Wick, C. Reul, and F. Puppe, “Calamari - A high-performance tensorflow-
based deep learning package for optical character recognition,” Digit. Hu-
manit. Q., vol. 14, no. 2, 2020.

[146] R. Zanibbi, D. Blostein, and J. R. Cordy, “A survey of table recognition,”
International Journal of Document Analysis and Recognition, vol. 7, no. 1,
pp. 1–16, 2004. doi: 10.1007/s10032-004-0120-9.

[147] L. Gao, Y. Huang, H. Déjean, et al., “ICDAR 2019 Competition on Table De-
tection and Recognition (cTDaR),” in 2019 International Conference on Doc-
ument Analysis and Recognition, ICDAR 2019, Sydney, Australia, September
20-25, 2019, IEEE, 2019, pp. 1510–1515. doi: 10.1109/ICDAR.2019.00243.

40 CHAPTER 1. INTRODUCTION

[148] C. Lehenmeier, M. Burghardt, and B. Mischka, “Layout Detection and Ta-
ble Recognition - Recent Challenges in Digitizing Historical Documents
and Handwritten Tabular Data,” in Digital Libraries for Open Knowledge
- 24th International Conference on Theory and Practice of Digital Libraries,
TPDL 2020, Lyon, France, August 25-27, 2020, Proceedings, M. M. Hall, T.
Mercun, T. Risse, and F. Duchateau, Eds., ser. Lecture Notes in Computer
Science, vol. 12246, Springer, 2020, pp. 229–242. doi: 10.1007/978-3-030-
54956-5_17.

[149] J. Calvo-Zaragoza, J. H. Jr, and A. Pacha, “Understanding optical music
recognition,”ACMComputing Surveys (CSUR), vol. 53, no. 4, pp. 1–35, 2020.

[150] E. Shatri and G. Fazekas, “Optical Music Recognition: State of the Art and
Major Challenges,” CoRR, vol. abs/2006.07885, 2020. arXiv: 2006.07885.

[151] J. J. Weinman, “Toponym Recognition in Historical Maps by Gazetteer
Alignment,” in 12th International Conference on Document Analysis and
Recognition, ICDAR 2013, Washington, DC, USA, August 25-28, 2013, IEEE
Computer Society, 2013, pp. 1044–1048. doi: 10.1109/ICDAR.2013.209.

[152] J. Weinman, “Geographic and style models for historical map alignment
and toponym recognition,” in 14th IAPR International Conference on Docu-
ment Analysis and Recognition, ICDAR 2017, Kyoto, Japan, November 9-15,
2017, IEEE, 2017, pp. 957–964. doi: 10.1109/ICDAR.2017.160.

[153] K. Sun, Y. Hu, J. Song, and Y. Zhu, “Aligning geographic entities from
historical maps for building knowledge graphs,” International Journal of
Geographical Information Science, pp. 1–30, 2020.

[154] J. H. Uhl, S. Leyk, Y.-Y. Chiang, W. Duan, and C. A. Knoblock, “Spatialis-
ing uncertainty in image segmentation using weakly supervised convolu-
tional neural networks: A case study from historical map processing,” IET
Image Processing, vol. 12, no. 11, pp. 2084–2091, 2018.

[155] T. Liu, Q. Miao, P. Xu, and S. Zhang, “Superpixel-Based Shallow Convolu-
tional Neural Network (SSCNN) for Scanned Topographic Map Segmen-
tation,” Remote Sensing, vol. 12, no. 20, p. 3421, 2020.

[156] E. Wenger, Communities of practice: Learning, meaning, and identity. Cam-
bridge university press, 1999.

[157] L. Candela, D. Castelli, and P. Pagano, “Virtual research environments: An
overview and a research agenda,” Data Science Journal, GRDI–013, 2013.

[158] M. Moyle, J. Tonra, and V. Wallace, “Manuscript transcription by crowd-
sourcing: Transcribe bentham,” Liber Quarterly, vol. 20, no. 3-4, 2011.

[159] “Typewright, a tool for correcting the text-version of a document made
up of page images.” (2013), [Online]. Available: https://18thconnect.org/
typewright (visited on 01/20/2021).

REFERENCES 41

[160] C. Clausner. “Webaletheia - a web based version of the aletheia ground
truthing system.” (2014), [Online]. Available: https://www.primaresearch.
org/tools/WebAletheia (visited on 01/20/2021).

[161] A. Trivedi and R. K. Sarvadevabhatla, “HInDoLA: A Unified Cloud-Based
Platform for Annotation, Visualization and Machine Learning-Based Lay-
out Analysis of Historical Manuscripts,” in 2nd International Workshop on
Open Services and Tools for Document Analysis, OST@ICDAR 2019, Syd-
ney, Australia, September 22-25, 2019, IEEE, 2019, pp. 31–35. doi: 10.1109/
ICDARW.2019.10035.

[162] C. Reul, U. Springmann, and F. Puppe, “LAREX: A semi-automatic open-
source tool for layout analysis and region extraction on early printed books,”
in Proceedings of the 2nd International Conference on Digital Access to Tex-
tual Cultural Heritage, 2017, pp. 137–142.

[163] T. Vobl, A. Gotscharek, U. Reffle, C. Ringlstetter, and K. U. Schulz, “PoCoTo
- an open source system for efficient interactive postcorrection of OCRed
historical texts,” in Digital Access to Textual Cultural Heritage 2014, DAT-
eCH 2014, Madrid, Spain, May 19-20, 2014, A. Antonacopoulos and K. U.
Schulz, Eds., ACM, 2014, pp. 57–61. doi: 10.1145/2595188.2595197.

[164] P. Kahle, S. Colutto, G. Hackl, and G. Mühlberger, “Transkribus - A Ser-
vice Platform for Transcription, Recognition and Retrieval of Historical
Documents,” in 1st International Workshop on Open Services and Tools for
Document Analysis, 14th IAPR International Conference on Document Anal-
ysis and Recognition, OST@ICDAR 2017, Kyoto, Japan, November 9-15, 2017,
IEEE, 2017, pp. 19–24. doi: 10.1109/ICDAR.2017.307.

42 CHAPTER 1. INTRODUCTION

Part I

The Arabic Writing System

Chapter 2

The Arabic Script

46 CHAPTER 2. THE ARABIC SCRIPT

The Arabic writing system is one of the geographically and chronologically
most widely used writing system in human history. It is the primary script for the
Arabic language, Farsi, Urdu, andmultiple others on the Indian subcontinent. His-
torically, it has been used to produce text in several additional languages, ranging
from Spanish to Chinese.

While its exact origins are still a topic of debate among researchers, it is gen-
erally accepted that it evolved from either the Nabatean or the Syriac script in the
Middle East over the course of several centuries. Its maturation is said to have oc-
curred during the seventh century CE. Its diffusion is closely linked to the spread
of Islam, and several alphabetic variants as well as calligraphic regional styles
developed over time. Far from being a purely liturgical script however, with a
wealth of administrative records, philosophical and scientific treatises, poetry,
etc. existing.

From the perspective of DIA research, it would therefore be a misnomer to
speak of a single Arabic script. Persian epics in nastaʼlīq style on highly deco-
rated marbled paper have little in common with naskh private correspondence
or the angular rectilinear writing of early kufic Qur’anic codices. Each style, in
combination with regional preferences as well as the particular context of its uti-
lization, presents specific challenges.

2.1 The Principles of the Arabic Writing System

The Arabic script is an abjad, i.e. a consonantal writing system. Similar to scripts
for other semitic languages, only consonants and long vowels are written. The
reader has to infer short vowels from the context. Short vowels and other marks
for features such as doubling (gemination) and nunation (adding a final n), can
optionally be added (tashkīl). However, this is only systematic for transcriptions
of the qurʼān, and in elementary texts for language learners. Like Syriac and He-
brew, the script is written from right to left with the exception of numbers, which
are written from left to right.

The original abjad used for writing Classical Arabic with its twenty-eight
distinctive phonemes contains only eighteen graphemes rasm, causing the same
grapheme to represent up to five different phonemes. bāʾ, tāʾ, thāʾ, nūn, and yāʾ
share the same shape and are, depending on their position in the word, written the
same way. These glyphs are distinguished by dots placed above or below them:
one below for bāʾ, two above for tāʾ, three above for thāʾ, one above for nūn, and
two below for yāʾ. Correspondingly, dots are used to differentiate ghayn and ʼayn,
ṣād and ḍād, and jīm, ḥāʾ, and khāʾ. In contrast to vocalization dotting is manda-
tory and is present in all but the earliest Arabic texts. See table 2.1 for an overview
of the twenty-eight letters of the standard Arabic abjad.

The Arabic script distinguishes itself from other widely used scripts such as
Latin, Cyrillic or Greek in that it does not have a printed form, i.e. a form in
which letters can be written separately. The cursive form is the only form that

2.1. THE PRINCIPLES OF THE ARABIC WRITING SYSTEM 47

Table 2.1: The 28 letters of the Arabic abjad

isolated initial medial final name transliteration

ا ا ـا ـا ʾalif ā
ب بـ ـبـ ـب bāʾ b
ت تـ ـتـ ـت tāʾ t
ث ثـ ـثـ ـث thāʾ th
ج جـ ـجـ ـج jīm j
ح حـ ـحـ ـح ḥāʾ ḥ
خ خـ ـخـ ـخ khāʾ kh
د د ـد ـد dāl d
ذ ذ ـذ ـذ dhāl dh
ر ر ـر ـر rāʾ r
ز ز ـز ـز zayn z
س سـ ـسـ ـس sīn s
ش شـ ـشـ ـش shīn sh
ص صـ ـصـ ـص ṣād ṣ
ض ضـ ـضـ ـض ḍād ḍ
ط طـ ـطـ ـط ṭāʾ ṭ
ظ ظـ ـظـ ـظ ẓāʾ ẓ
ع عـ ـعـ ـع ʿayn ʿ
غ غـ ـغـ ـغ ghayn gh
ف فـ ـفـ ـف fāʾ f
ق قـ ـقـ ـق qāf q
ك كـ ـكـ ـك kāf k
ل لـ ـلـ ـل lām l
م مـ ـمـ ـم mīm m
ن نـ ـنـ ـن nūn n
ه هـ ـهـ ـه hāʾ h
و و ـو ـو wāwʾ w/ū
ي يـ ـيـ ـي yāʾ y/ī

48 CHAPTER 2. THE ARABIC SCRIPT

exists, albeit it include a wide variety of styles. Similar to cursive forms in other
scripts, in Arabic individual letters will change shape depending on their position
within the word. Initial, medial, final and independent shapes exist, to which
one must add more complex placement rules along the baseline, which depend
on adjacent letters. Contrary to Latin, not every letter in written Arabic can be
connected to the letter that precedes or follows it: roughly one fifth actually do
not connect to the previous or following letter. As a result, whitespace does not
necessarily mark the beginning of a new word, thus providing calligraphers with
considerable freedom to vary inter-word, inter-syllable, and inter-stroke spacing
as desired. One could go as far as abandoning word separation completely, in
a kind of scripta continua [1, pg. 15]. However, even conventional calligraphic
practice displays spacing variation to some extent, which can prove misleading
for optical character recognition systems.

Unlike many other scripts, Arabic does not know capital and lower case let-
ter forms and texts produced before the twentieth century CE do not contain
Western-style punctuation or layout such as commas, periods, question marks,
paragraphs, …. New sentences and questions are introduced using specific words
and phrases. Titles and headings are indicated as such by placing strokes above
them. After the ninth century CE, a variety of verse marks and signs appear in
Quranic manuscripts to help with recitation [2].

The script has been adapted for a fairly large number of other languages, most
prominently Persian and Turkish that do have some additional phonemes. Let-
ter forms are usually adapted by adding dots to graphemes representing similar
phonemes in Arabic, e.g. the Persian pe is derived from bāʾ by writing two addi-
tional dots below. Sometimes graphemes were also modified more directly such
as the letter gāf which is written by adding another bar above the letter kāf. Sim-
ilar transformations exist for other languages with some such as xiao’erjing, the
writing of sinitic languages in Arabic script, changing it into a full alphabet by
making the marking of short vowels mandatory or creating additional letters for
short vowels. The Unicode standard alone lists more than a hundred additional
graphemes for local variants of the Arabic script.

2.1.1 Text Justification

As described Arabic does not share many features with other alphabetic scripts
but none of these are a fundamental obstacle to a modern OCR pipeline. While
the cursive nature was seen as a major hindrance to older methods based on char-
acter classifiers which require accurate segmentation to the character level, newer
segmentation-less methods are largely unaffected by this. Nevertheless the vari-
ability in spacing, even on machine-printed text, is still the primary source of
errors (see section 4.4). Unfortunately, the bundle of techniques employed to jus-
tify text, i.e. measures ensuring that text ends flush with the left end of the writing
space, require methods aware of their function in all parts of the OCR pipeline.

Such techniques followed the proscription of hyphenation (i.e. splittingwords

2.1. THE PRINCIPLES OF THE ARABIC WRITING SYSTEM 49

to facilitate line-wrapping) from the tenth century CE onwards. They were cre-
ated as a mean to avoid justification by whitespace alone, which often produces
visually unpleasant results (a phenomenon known as rivers in Western typogra-
phy). As a matter of fact, Western-style hyphenation is only visible in certain
early Koran manuscripts (albeit without explicit splitting markers such as hy-
phens). It was most probably proscribed in Arabic script due to its significant
negative impact on legibility, especially if the second part of the word is contin-
ued on a subsequent page.

One technique became prominent among later calligraphersworking on hang-
ing styles such as the Persian nastaʼlīq, in particular for poetry written in hemi-
stiches. It consisted in stacking or heaping the last syllable or penstroke above
the left end of the line. It was particularly attractive for Persian calligraphers to
proceed this way, as many Persian words have similar end letters. As such, the
technique has but a negligible impact on legibility. Similar stacking could be per-
formed inside a line by changing the location and size of diacritical marks [1, pg.
14].

The existence of dislocated fragments into the margin represents another
challenge for OCR systems. Instead of heaping the last syllable on top of the pre-
vious stroke, the fragment is placed in the margins, much like a marginal note.
These two practices add to the complexity of the layout analysis component in
the OCR pipeline. Firstly, the layout analysis system has to be able to detect this
type of fragments accurately. The methods presented in part II have the potential
to do so, at least with models specifically trained to that purpose. Secondly, these
types of fragments has to be distinguished from bona fide marginalia and inter-
linear notes or translations in order to be inserted in the textual output smoothly.
This has to be done by a reading order determination algorithm which knows of
their existence. If the algorithm is naïve and assumes that the text follow a top-
to-bottom order, it will insert this type of fragments before the text of the line
it is associated with, i.e. in reverse order. This is true even if other marginalia
are correctly filtered through previous classification using a segmenter. Unfor-
tunately, reading order determination is a notoriously under-researched task in
DIA. ome tentative approaches, such as [3] that could serve as a basis for versa-
tile reading order determination methods, exist, but all practically available OCR
system operate on simple heuristics.

Two other practices should have their existence mentioned here, although
their impact on OCR performance is likely to be limited. The first practice consists
in stretching the letter body or the connections between individual letters. It is
interchangeably known as either taṭwīl or kashida, although certain typography-
related publications use kashida only to refer to the stretching of the letter body.
This practice is visible in most Arabic styles, albeit its exact placement differs
among scripts. Not only can it be used for justification but also to highlight the
beginning of a verse, a heading, etc.

The second practice consists of the upward curving of the baseline, trading
horizontal with vertical space. However, conventional layout analysis methods

50 CHAPTER 2. THE ARABIC SCRIPT

tend to model lines as either rectangular bounding boxes or undirected1 poly-
gons. The presence of an upward curving in the baseline (and more generally
the presence of any slanted line) is likely to degrade the results. This is due to
the protruding of other lines into the bounding box, or to height normalization,
which results in insufficient text size as demonstrated in figure 1.1c. Segmenters
founded on the baseline paradigm, like the ones presented in chapters 5 and 6,
do not suffer from this problem as they allow the projection of arbitrarily shaped
lines onto a straight line.

2.2 Supports and Production

The question of supports is often neglected in the OCR research community.
While processing inscriptions in stone or clay tablets present unique and obvi-
ous challenges, the difficulties that may arise from subtle differences of supple
writing surfaces are usually disregarded. Papyrus and parchment were used as
writing material until they were replaced by cheaper paper after the 8th century.
Richly adorned specialty papers, which were often used in high status documents,
are of particular interest to Computer Vision experts.

We also include in the present dissertation a short discussion on inks, dyes and
techniques of illumination, not only because they cause a number of difficulties
to OCR systems, but also because of the potential for large scale and automatized
analysis across collections that DIA methods may offer in the future.

2.2.1 Supports

Paper, parchment and papyrus are the three main supports used in the Islamic
world, although paper largely overshadows parchment or papyrus in terms of
usage, whether it be geographically or chronologically.

Papyrus has been a support for writing since at least 3000 BCE. It is a light-
colored, smooth, and flexible material which is manufactured using Cyperus pa-
pyrus, a three-to-sixmeter high Egyptianwater reed. The production process goes
as follow: first, the reed stalk is cut into halves, and the pulp is extracted into thin
strips. Strips are then arranged into rectangular sheets made of two perpendicu-
lar layers, and left to dry under the sun. Once dried, sheets are smoothed with a
mallet, prior to their polishing by means of a shell or an ivory. Sheet sizes could
vary considerably, although it wasn’t uncommon for their width to be around
20-30 cm, and their length around 30-40 cm.

Following polishing, individual sheets are glued end-to-end, while overlap-
ping joints are smoothed again. Sheets are then rolled with the horizontal fibers
on the inside. Like in the pre-Islamic period, a roll was composed of twenty sheets,

1Undirected in the sense that there is no defined text orientation or direction contained within
the polygon. Only a bounding polygon is given.

2.2. SUPPORTS AND PRODUCTION 51

although papyrus would also be sold in smaller pieces (most commonly as one-
sixth of a roll). To protect rolls from wear, a thicker gauge strip of papyrus called
a protokollon was attached to their top before use.

Scrolls were in use up until the early eighth century CE. However, the ma-
jority of the documents that survived are either in codex form or are single sheet
documents[4, pg.30]. While some literary papyri are known, most Arabic papyri
were documentary in nature, and contained letters, edicts, and contracts. It is
likely that papyrus was a rather expensive writing material. They were rapidly
phased out after the introduction of cheaper paper, and production ceased in the
eleventh century CE [5, pg.193-194].

Papyri raise two problems for DIA methods. They are brittle and fragile,
which frequently results in significant degradation (figure 2.1). Besides, with age,
they darken to a point where their ink often becomes almost illegible. The ageing
process also increases contrast between fibers, which further complicates any at-
tempt at distinguishing the text from its background. Hand-crafted binarization
methods have been developed for the highly degraded Dead Sea Scrolls [6], [7]
but processing remains difficult. Papyri length in scroll form poses another, per-
haps more minor, problem. While many modern neural network-based methods
can be adapted to patchwise operation with minimal loss of accuracy, a number
of them (in particular layout analysis) perform better with global context.

Figure 2.1: AnArabic papyrus showing both visible fibers and
typical deterioration of the writing surface (BnF Arabe 4634).

The second writ-
ing surface in wide-
spread use before the
introduction of paper
in the Islamic world
was parchment. Parch-
ment is a carefully
processed un- or min-
imally tanned animal
skin; fundamentally it
can be procured from
a variety of animals
and its production is
not limited to a partic-
ular geographic area
as papyrus. Goat, calf,
donkey, and gazelle
skins, although these
have never been corroborated by testing, are mentioned as sources but the most
common was sheep skin [1, pg. 44]. Its use in the East extends to time memo-
rial although no dated Arabic manuscripts from before the ninth century CE have
survived [4, pg.33].

Parchment is manufactured as follows. First, a basic solution (made from lime

52 CHAPTER 2. THE ARABIC SCRIPT

or dates) is used to remove the hair from the hide. Second, residual flesh and fat is
scraped from the flesh side of the hide using a blade. It is then placed in a wooden
frame to stretch it and dry it. Finally, an abrasive stone is used to smoothen the
surface and equalize the texture of both the flesh and hair sides. Chalk is applied
to control ink bleeding. Sometimes, parchments could be dyed with blue indigo
or yellow saffron. The most famous example of this practice is the Blue Qurʼān ,
dating back from the tenth century CE [5, pg. 195-196].

The ease with which previously used parchments could be reemployed by
washing or scraping off existing writing is an important consideration for both
humanists and computer vision researchers. Known as palimpsests, this practice
is attested both in the literature and by several surviving exemplars. Considerable
time could elapse between the moment the first layer was written on and the
moment it was covered with a second one. Examples of Arabic text over a lower
layer written in another script such as Greek or Syriac exist [4, pg. 43-46]. While
it was the complete removal of the initial writing that was intended, oftentimes
the lower layer remains visible to a certain extent.

The task of separating the writing to decipher both texts requires immense
skill, which can be aided by costly multispectral imaging [8]. However, it has
not gathered much research interest in the DIA community. [9] (one of the few
publications on the topic) points out that existing methods need substantial im-
provement. Parchment could also be recycled in other ways, e.g. in bookbinding
or as protective covers to loose quires, not quite unlike papyrus protokollon [4, pg.
46].

Paper was invented in China in 105 CE by the Han courtier Cai Lun. Its intro-
duction to the Islamicworld is attributed traditionally to aMuslimmilitary victory
on the river Talas (modern-day Kazakhstan) in July 751 CE. Allegedly, a number
of Chinese papermakers were made war prisoners following the battle and dis-
patched to Samarqand to set up paper mills. Details of this story can certainly be
disputed, however there are etymological hints that knowledge of papermaking
was received through Central Asia [1, pg. 45]. Paper proved to be significantly
cheaper than its alternatives, and rapidly replaced papyrus and parchment as the
writing surface of choice. By 794 CE, paper mills were established in Baghdad.
Its use by the Abbasid Caliphate administration was mandated in 808 CE. By the
ninth century, paper was produced in Egypt. By the tenth century it had reached
the Maghreb, and by the twelfth century it was produced in Damascus and in
Spain [4, pg. 51].

Apart from economical reasons paper had other benefits: it absorbes ink so
writing could not easily be erased [1, pg. 45], it is less brittle than papyrus with a
more uniform coloration, and can be easily tinted and decorated.

The availability of inexpensive writing material produced a flurry of literary
activity in the ninth century in a broad range of subjects, from theology to the
natural sciences. Books were soon copied on paper. Quranic manuscripts, how-
ever, continued to be written on parchment until the late tenth century CE, and
exemplars could be found in the Maghreb andWest Africa up until the fourteenth

2.2. SUPPORTS AND PRODUCTION 53

century CE.
Descriptions of the papermaking process in the Islamic world are sparse and

lack clarity. The general process seems to have included suspension of cellulose
fibers for draining through a screen, followed by drying. This resulted in a fiber
mat is called paper. Sources of fibers could vary considerably: they could either be
liberated from virgin plant material through a combination of heat, beating, and
chemical means such as fermentation or acids, or originate from waste material
such as rags, old ropes, etc. Primary material was then suspended in water to
soak, prior to collection and draining in a mold. An account from modern-day
Tunisia describes an example of papermaking from raw flax on a floating screen.
On the other hand, analysis of extant specimens shows that waste materials, such
as rags from cotton and linen or ropes, were primarily used. Before use, paper
has to be sized with a mixture of starches and egg white and burnished to prevent
the ink from bleeding excessively [10, pg. 44-45].

(a) Example of marbled paper
(Walter W.654, fol. 1b)

(b) A page with an outer border
made of blue-tinted paper and an
inner rose-tinted paper (Walters
W.746).

(c) Illumination in gold on
blue-tinted border with text
written on orange-tinted pa-
per (Walters W.651, fol. 2a).

Figure 2.2: Decorated papers

A particularly impressive practice that often presents a challenge to modern
DIA methods are specially prepared papers used for many fine manuscripts. Pre-
modern papers retained the color of the source of the fibers, a fact that was used
in European manufacture to produce colored papers, most often various hues of
brown, but could also be tinted or dyed (figure 2.2b). The preference for tinted
papers was probably initially fueled by colored imports from China but Iranian
artists started developing techniques to make colored, gold-decorated, and mar-
bled papers by the thirteenth century CE. Popular colors were red or orange, and
Persian treatises of the time list a plethora of recipes to obtain these colors. Gold-
sprinkled paper (figure 2.2c) was utilized throughout the Eastern Islamic lands

54 CHAPTER 2. THE ARABIC SCRIPT

by the late fifteenth century CE with even more elaborate gold painting incorpo-
rating arabesques coming into fashion from the sixteenth century onward at the
Safavid, Mughal, and Uzbek courts. Such gold-decorated papers weremainly used
in scrapbook albums of calligraphy and paintings to unify the disparate contents
into a single book.

Two other techniques rose in popularity after the fifteenth century CE: mar-
bled papers (figure 2.2a) and paper cuts. While the marbling produced by slipping
a sheet of paper over a bath of carefully swirled colorant cause the same issues to
DIA methods as other decorated margins, paper cuts are likely more complicated.
Cut-out calligraphy, either collage, i.e. placing cut-out letters on a contrasting
background, or decoupage, i.e. mount a sheet with cut out letters above a dif-
ferently colored one, allows larger variation in coloration than purely ink-based
writing. Artists were often skilled in more than one of these techniques and they
are often employed together. Works such as a collection of forty hadith for the Ot-
toman prince Mehmed in 1540 CE, contain text in both taw’qī and nastaʼlīq script,
pasted in gold, white, or light blue on deep-rose or olive grounds. The margins
on some pages are kept plain, others gold-sprinkled, others again marbled [1, pg.
52-56]. The sheer variety of text production and decoration techniques a single
manuscript can display is an important challenge to DIA systems.

2.2.2 Writing Instruments and Inks

The Arabic script is traditionally written with a reed pen whose front had been
trimmed with a special pen knife to create a nib. Depending on the script’s de-
sired width, the nib can be slit one or several times at its end, depending on the
script’s desired width. Multiple nib cuts exist. Straight and oblique cuts change
the thickness of strokes at certain angles. Nonetheless, the association of cut an-
gles and scripts seems to have been largely a matter of scribal preference[5, pg.
42].

Brushes were used primarily during the decoration process, for example to
paint in the margins or for gilding. In the fourteenth century CE, Chinese Mus-
lims developed the rounded, flowing ṣīnī script to adapt Arabic writing to Chi-
nese calligraphy’s instruments and conventions. In certain cases, it went as far as
changing the directionality of writing to top-to-bottom [11, pg. 29-0].

More than pens and brushes, the type of ink and pigment used for writing is
an important element when performing document image analysis. Three kinds
of black or brown inks were commonly used: carbon-based inks, so-called mixed
inks, and iron gall inks. Compound inks were also common in the medieval pe-
riod [1, pg. 62-63]. All of themwere known since Antiquity in the area that would
later be known as the Islamic world. Carbon inks are attested as far back as the
second millenium BCE in Egypt. The first recipes for mixed inks date back to the
third century BCE and iron gall inks were in use by the fifth century CE [12].

Carbon inks are more commonly known as India inks. They are composed of
fine soot or finely ground charcoal mixed with some kind of binder, such as oil,

2.3. STYLES 55

gums, or shellac. For portability purposes, they often took the form of a solid stick,
which was grounded and mixed with water before use. In the Muslim world, the
main source of carbon for inks was from the combustion of vegetable matter such
as rice, olives, chick-peas or various oils. The most common binders were gum
arabic and honey [5, pg. 133]. This type of ink preparation adheres to the writing
surface only superficially. It can easily be washed off with water; it smudges
easily if kept in humid conditions and can peel off over time. So-called mixed
inks represent an improvement. They can be prepared by adding copper, lead or
iron salts to carbon ink. The addition of extra components, which acted as drying
agents, was intended to increase ink adherence to paper. On the other hand, iron
gall inks do not contain any carbon. When applied to paper, the ink undergoes an
oxidation process, thus forming an insoluble ferric tannate pigment. It is prepared
bymixing tannic acid (extracted from gallnuts), vitriol (ferric sulfate), and a binder
such as gum arabic. Unlike other types of ink, it penetrates the writing surface
and is indelible [12]. Iron gall inks have a major drawback, however. They are
acidic in nature and tend to fade over time. As a result, manuscripts written with
iron gall ink are often damaged due to acid burns, to the point of being illegible
to human readers and computer vision methods alike [5, pg. 145]

Colored inkswere used by scribes and calligraphers as accent colors for rubrics,
vocalization, and other decoration. Red, green, and yellow were most common.
Pigments used for ink manufacturing have not been studied systematically, but
red inks usually contained cochineal, vermillion, and red lead pigments; blue inks
contained lapis lazuli and azurite; and verdigris can be found in green inks. There
is also substantial regional differences, as pigmentation and coloration traditions
differ widely from east to west [1, pg. 63]. This kind of coloration does not
pose much of a challenge to modern DIA methods, although pipelines employing
binarization might encounter substantial degradation as the most commonplace
binarization algorithms perform quite poorly on mixed-color texts. Metallic inks
are more troublesome. This is not due to their inherent illegibility; but rather to
the low contrast that scanned documents showcase (see figure 2.4c). For metallic
inks, fine metals (e.g. gold, silver, copper) were used in at least two different ways.
The first way consisted of liquid inks, which were made of metal flakes suspended
in a binder [13, pg. 225-227]. Secondly, powdered flakes could be dispersed onto
glue, to be subsequently burnished and ringed with other colors. The latter tech-
nique produces writing that is prone to degradation, as disintegration of the glue
has caused flakes to fall off [1, pg. 63].

2.3 Styles

A large number of both formal and informal calligraphic styles have been devised
over the centuries. While informal styles naturally evade uniform classification,
formal styles can be divided into two groups: styles that are recognized through-
out the Muslim world (such as naskh), and styles that are limited to a certain

56 CHAPTER 2. THE ARABIC SCRIPT

geographical region or only used to write specific languages, such as the North
African and Iberian maghribī or the Persian nastaʼlīq.

Arabic styles can be defined by elements such as [5, pg. 242-243]:

Line of writing whether all words sit completely on the baseline, descend onto
it as in nastaʼlīq, curve upwards toward the end, or are slanted.

Ascender and descenders vertical, slanted or curved

Nib width especially in relation to script size.

Shading i.e. contrast between thin and thick strokes.

Vocalization Some scripts require a different pen for vocalization.

Ligatures The presence of unauthorized connections between letters.

Contractions The presence of assimilated (omitted) letter forms.

Characteristic letterforms such as straight, wavy, or slanted ʾalif

The two earliest styles that emerged in the seventh century CE are ḥijāzī (fig-
ure 2.3c) and kufic (figure 2.3a. Both are somewhat confusingly named after early
Islamic intellectual centers (Hijaz and the city Kufa in southern Iraq) and a variety
of alternative terms such as Early Abbasid have been proposed. As canonicaliza-
tion was fairly low the terms do not refer singular hands but to families of styles
that were used mainly to transcribe copies of the qurʼān. One taxonomy divides
them into six and four groups for the kufic and ḥijāzī family respectively. Ei-
ther is notably more angular than later round styles. Hijazi being in use from 650
CE it was surplanted by kufic by the beginning of the eighth century CE. While
elaborate, highly decorated manuscripts in the kufic style survive, the number of
surviving Hijazi fragments is very low and their appearance is utilitarian [5, pg.
98, 124].

By the tenth century CE the use of kufic in high status manuscripts began
to be replaced by a style known under a variety of names such as Eastern kufic,
New Abbasid Style, and broken cursive [1, pg. 144] (figure 2.3b). This style was
dominant into the thirteenth century CE for copies of the qurʼān when it was
relegated to ornamental purposes such as titles and headings. Similarly to older
styles, it does not represent a single hand but at least two different groups. The
main characteristics of this style is the marked difference between thick and thin
strokes [5, pg. 167-168]. From this period also dates the practice of using long
taṭwīl elongation to mark the start of a new section of text [1, pg. 165].

2.3.1 The Six Pens

The greatest impact on the evolution of Arabic calligraphy between the tenth and
thirteenth century is usually attributed to three great calligraphers: Ibn Muqlah

2.3. STYLES 57

(a) Ninth century CE qurʼān in Kufic or Early Abbasid script (Walters W.552, fol. 8a)

(b) Twelfth century CE qurʼān in broken
cursive or New Abbasid script (Walters
W.555, fol. 10b)

(c) Seventh century CE qurʼān in ḥijāzī script (BnF
Arabe 328, fol. 12r)

Figure 2.3: Early Arabic styles

58 CHAPTER 2. THE ARABIC SCRIPT

(d. 940 CE), Ibn al-Bawwab (d. 1022 CE), and Yaqut (d. 1298 CE). The fundamen-
tal development of the period between the tenth and thirteenth century is the
system of proportioned scripts and the canonicalization of the various rounded
styles under this system. Ibn Muqla is attributed with developing the first propor-
tioned script, al-khatt al-mansūb, that defined each letter’s dimensions in the unit
of rhomboid dots, impressions left by the reed pen on the writing surface, with alif
spanning a circle circumscribing all other graphemes. While this system is most
likely only a thirteenth century CE attempt at reconstructing the hand of the fa-
mous calligrapher, as none of his works survived, Ibn al-Bawwab is credited with
canonicalizing the round chancery scripts in use at the time using this system [1,
pg. 158-160, 213]. Finally, Yaqut popularized the six proportional styles known
as the Six Pens, which later became the dominant scripts in the East [5, pg. 251].

These six styles are usually paired in three sets of one display (majuscule) and
one text (minuscule) script:

• thuluth with naskh

• muḥaqqaq with rayḥān

• tawqīʿ and riqāʿ

Thuluth (figure 2.4a) is an ancient chancery script although its exact features
are unknown prior to its reform to the proportioned script system in the eleventh
century CE. Its most notable properties are descenders which fall far below the
baseline and curve upwards again for certain letters, hairlines, and many con-
tracted letterforms. As a display script its letter are large but horizontally com-
pact. In administrative use it was utilized for important documents while in
codices it was used mainly for titles and chapter headings [5, pg. 275].

Naskh (figure 2.4b) is themostwidely used book hand of the Islamic East. It is a
serifless script without unauthorized connections between letters, long ascenders,
and short descenders. Some Persian and Ottoman variations of the script exist.
It is the basis for most modern Arabic typefaces intended for use in prose [5, pg.
162-163].

Muḥaqqaq (figure 2.4c) is one of the ancient scripts originally devised before
the proportioned scripts system. It is rectilinear, i.e. only a small proportion of
the penstrokes are curved or curvilinear. It is a seriffed script with vocalization
performed with a different pen, often in a different color. While grouped as the
display script to rayḥān it also became a bookhand for copies of the qurʼān by the
thirteenth century CE [5, pg. 160-161].

Rayḥān is the smaller counterpart to muḥaqqaq. The letter forms were iden-
tical except for their size, the inclusion of serifs, and the execution of vocalization
with the same pen as the letters [14, pg. 308].

Tawqīʿ (figure 2.4d) is a smaller diplay variant of the thuluth chancery script
being written with even more hairlines. Like thuluth it was rarely used as a book-
hand [5, pg. 264-264].

2.3. STYLES 59

(a) Two lines written in thuluth from an undated copy of the qurʼān (Columbia University, MS Or
234, fol. 4v).

(b) Two lines written in naskh from an undated book of Qur’anic stories (Free Library of Philadel-
phia, Lewis O 170, fol. 5r).

(c) Central line in muḥaqqaq in gold of a bilingual Arabic and Persian copy of the qurʼān. The red
line above is part of the interlinear Persian translation in nastaʼlīq (Columbia University, Ms Or 222,
23r).

(d) Chapter heading written in tawqīʿ script from a fifteenth century CE Timurid history (Walters
W.676, fol. Bb).

(e) Heading in riqāʿ script of a nineteenth century CE qurʼān copy (Walters W.567, fol. 2a).

Figure 2.4: Samples of five of the Six Pens

60 CHAPTER 2. THE ARABIC SCRIPT

Riqāʿ (figure 2.4e) is the smaller version of the tawqīʿ script. It is optionally
seriffed with slightly rightward inclined alif. In Iran the differences between it
and tawqīʿ were minor with one publication using the terms synonymously [5,
pg. 224].

2.3.2 Regional Styles

Around the same period a number of regional scripts were developed. In the
Maghreb, Muslim Spain, and West Africa a number of scripts emerged that were
later summarized under the namemaghribī (figure 2.5d). These non-proportioned
hands are distinctive but no detailled paeleographical analysis has been done to
date and there exist a number of sub-types. One shared feature is the use of a
rounded nib resulting in even thickness of strokes [5, pg. 147-148]. The earliest
manuscripts in these styles date to the mid-tenth century CE with the earliest
surviving qurʼān copy dated to 1008 CE but little change occured afterwards [1,
pg. 566].

Around the same time as Yaqut was refining the Six Pens, two new styles of
hanging scripts called taʿlīq (figure 2.5a) and nastaʼlīq (figure 2.5b) emerged in Iran.
These were more suitable for writing languages such as Persian and Turkish that
differ from Arabic in their proportion of straight and curved letters. As such they
were never popular in the Arabic speaking world but nastaʼlīq ended up as the
style of choice for a number of other states such as Ottoman Turkey and Mughal
India. The highly stylized taʿlīq script with its curvilinear elements, extraneous
loops, and connected letter was a typical style for official decrees, diplomatic cor-
respondence, sometimes poetry, but almost never codices, from the tenth century
CE. The stereotypical taʿlīq document contains widely spaced lines with dramatic
upward curving at the end of the line. A variant broken taʿlīq replaced it from the
fourteenth century CE in administrative use [1, pg. 270-273].

The second major Persian style, nastaʼlīq, became the epitome of Persian liter-
ature. At first reserved for poetry, it took over the place of naskh for prose by the
fifteenth century as well. It is characterized by individual words descending onto
a common baseline, greatly elongated horizontal lines, and the aforementioned
heaping of the last stroke [5, pg. 166-167]. While the aforementioned styles,
depending on the preservation of the document, the desired generalization, and
accuracy, are not inherently troublesome for a modern OCR engine, the sophisti-
cation displayed by the most decorated nastaʼlīq epics and calligraphic specimens
are highly challenging. Calligraphers of the time were interested in variety and
visual excitement, arranging verses on the diagonal, changing direction between
successive verses, alternating red, blue, orange, and green inks for headings, and
adding lavish illumination and scrollwork. The writing was being subsumed by
decoration [1, pg. 436].

Round scripts, primarily naskh and thuluth, and Persian hanging scripts were
common in the Ottoman Empire with their relative proportion in text production

2.3. STYLES 61

(a) Page from a Persian nineteenth century CE
album of calligraphic samples written in taʼlīq
(Walters W.670, fol. 19b)

(b) 1539 CE page from a collection of poems
written in nastaʼlīq (Walters W.631, fol. 5a)

(c) 1779 CE Ottoman firman diwānī script
(American Philosophical Society Ms. Coll. 200,
fol. 2)

(d) Nineteenth century CE qurʼān in large
maghribī script (Walters W.568, fol. 31a)

Figure 2.5: Example of regional styles

62 CHAPTER 2. THE ARABIC SCRIPT

varying over the centuries2 In the fifteenth century CE imperial scribes began to
develop the taʿlīq script into the highly stylized diwānī (figure 2.5c) chancery style
with its unauthorized connections between letters and curved baselines.

2.4 Printing

Notwithstanding the fact that this dissertation is mostly concerned with hand-
written text recognition, printing deserves some consideration. This is especially
true given that the development and diffusion of printing is directly linked to the
practice of calligraphy. Printing is the mechanical reproduction of text and im-
ages. Since Johannes Gutenberg developed his printing system around 1450 CE,
the term has been mostly referring to movable type printing, where reverse im-
ages of different graphemes (including punctuation marks and decorations) are
cast in metal as individual elements (types). Types are arranged into larger units
(most often entire lines), which are then assembled into a matrix to create a full
page. The matrix thus created is then placed in a printing press. It is inked and
brought into contact with the material to be printed, usually paper. The process
can be repeated as many times as desired. Nevertheless, it should be noted that
other kinds of printing, such as Egyptian and Mesopotamian cylinder seals as
well as Chinese woodblock printing, have pre-existed Gutenberg’s invention by
thousands of years.

Unlike movable type printing, block printing employs a unitary matrix which
is carved out of a single piece of wood. The production of block-printed texts is
attested throughout the Islamic world since at least 900 CE, although the practice
seems to have died out by 1430 CE. The extent to which this technique was actu-
ally used andwhere it exactly originated from is still unknown. Few block-printed
documents can be found in existing archives, and there is a lack of archeologi-
cal evidence related to matrices and printing equipment, which leaves the topic
shrouded in obscurity. Amulets and charms are the only documents that have
been regularly preserved. They contain Quranic passages printed on paper in
a wide array of styles, and generally follow similar calligraphic practices as their
handwritten counterparts 3. They have not attracted much academic interest, and
the DIA community has not developed any specific methods to treat them.

Movable type printing reached the Islamic world at the end of the fifteenth
century CE with the establishment of printing presses in Constantinople and
other cities of the Ottoman Empire. However, they were run by and for the Jew-
ish minority and did not produce books in Arabic script. It is often assumed that
the Ottoman Sultan Bayezid II prohibited movable type printing outright, or re-
stricted it to certain scripts or minorities living in the Empire in 1485 CE. How-
ever, evidence is slim and contradictory [16]. What is certain is that printing of
the Arabic script in the Islamic world was first performed in 1727 CE, in a work-

2[1, chapter XI] elaborates the cycles of popularity between round and hanging scripts.
3A survey of the current state of scholarship is found in [15]

2.4. PRINTING 63

shop established by imperial printer Ibrahim Müteferrika. It does not mean that
Arabic books were not printed, as imports did exist, mostly from Italian work-
shops. The earliest example of this is a 1513 CE book of hours printed in Venice
by Gregorio de Gregori [17]. The qurʼān’s earliest printed edition was produced
in 1537-1538 CE by two brothers, Paganino and Alessandro Paganini. It proved
to be an utter commercial failure because of its odd typeface and of the numer-
ous errors the text contained [10, pg. 219-220]. Later, famous type-founders such
as Robert Granjon (1585 CE), William Caslon (1720 CE), or Giambattista Bodoni
(1759 CE) made other attempts at cutting typefaces. However, even these proved
to be simplistic and of low quality [18].

Although universally derided for their lack of grace, legibility, and ortho-
graphical correctness later imports seem to have found more popular acceptance
as lamented by Muteferrika in a 1727 CE work on the usefulness of printing. The
secular nature of the vast majority of these imports support the theory that re-
ligious sentiment was a principal factor hindering the adoption of printing, al-
though the economic interests of a substantial class of scribes and calligraphers
certainly played a role, in addition to the inherent difficulties of creating adequate
typefaces for a cursive script [1, pg. 605].

Despite this multi-faceted resistance to movable type printing, some refine-
ment took place. While typeface cut in the Christian world were largely mod-
elled on the maghribī style, Muteferrika introduced the more legible naskh style
in printing which remains to this day the most popular style for printed Arabic
texts. However, creating a full Arabic font remained a truly staggering task; the
Imprimerie Nationale’s twenty-four-point nineteenth century CE Arabic type-
face contained 710 different types [10, pg. 218]. In addition, actually setting such
large typefaces required skill incomparable to the much simpler Latin script. It
has been argued that apart from social objections, the sheer laboriousness com-
bined with a lacking industrial base made movable type printing uneconomical
in the Islamic world [19]. Indeed, the rise of printing presses in the nineteenth
century coincides with the invention of lithography which allowed inexpensive,
accurate reproductions of handwritten texts, missionary activity and moderniza-
tion drives less subject to immediate economic pressures [20]. Printers like Fāris
al-Shidyāq, founder of the al-Jawā’ib press in Istanbul, introduced Western-style
layouts with punctuation marks and paragraphs but were not able to resolve the
laborious typesetting process or aesthetic issues such as lacking overlap of let-
ters, line justification limited to baseline stroke elongation instead of the more
aesthetically pleasing letter elongation or stacking, and visible gaps between in-
dividual types [1, pg. 605]. The invention of hot type line casting machines such
as the 1911 Arabic Linotype eliminated gaps between glyphs but the limits of the
machine did not allow proper placement of vowel marks [21, pg. 67] and subse-
quent iterations economised more and more glyph variants reducing the visual
appeal of the final product. Only the advent of software-driven phototypeset-
ters in the 1960s make sufficiently large type repertoires including contextual and
elongated forms economically feasible. Even though the last vestiges of the lim-

64 CHAPTER 2. THE ARABIC SCRIPT

itations of physical type have disappeared with purely digital typesetters, most
common typefacess do not make use of these.

In the next chaper, we take a closer look at the limitations of current OCR
technology on modern printed Arabic texts.

2.5 Basic requirements for Arabic OCR systems

To summarize, the recognition of Arabic handwritten texts requires a number
of design decisions and features that available OCR engines do not have. This
dissertation could not address all of the required decisions and features, chiefly
because of the lack of available Arabic-script or substitute training data. Themain
necessary features are presented below, by order of processing inside a typical
pipeline:

Freedom of Binarization A number of reasons makes it impossible to devise a
general binarization method that could apply to most Arabic handwriting:
the variety of supports used to write Arabic, the often fragmentary nature
of writing on papyrus, the presence of faded and acid-damaged writing in
iron-gall inks, and the highly decorated nature of pages. While trainable
methods using semantic segmentation approaches exist, oftentimes their
training data requirements are insurmountable.

Segmentation of curved and slanted lines The frequent use of baseline cur-
vature and slanted lines for both practical and aesthetic purposes requires
a layout analysis (LA) method capable of modelling lines in a way that al-
lows normalization of the axis of writing and the effective suppression of
non-line content.

Semantic layout analysis ManyArabicmanuscripts contain an unusual amount
of paratext or textual noise, be it marginal notes, parallel texts, interlinear
translations, or detached word fragments. Proper treatment of these ele-
ments, e.g. separation of commentary from maint text or selection of the
appropriate recognition model for a parallel text in another script, requires
at least in part awareness of these elements in the LA component. As the
types of elements, their presentation, and frequency can vary immensely it
is highly desirable for the LA system to be trainable.

Advanced reading order determination Related to the classification of tex-
tual components in the LA module is the correct ordering of the texts and
the proper linking of paratextual components to the main text. As men-
tioned before this is a nacent field of research and all OCR systems available
infer the order of text using highly flawed heuristics.

Segmentation-free transcription The cursive nature of Arabic writing, par-
ticularly the variation of letter connections encountered between differ-
ent scripts makes reliable segmentation into single graphemes impractical

REFERENCES 65

for handwritten texts, especially so when executed in highly stylized and
contracted scripts. While a significant body of literature has focused on
this problem, the success of sequence-to-sequence machine learning mod-
els that require no or only implicit segmentation/alignment of input image
data and characters has by and large solved it.

Data creation and curation tools While they are not directly part of OCR pipe-
lines (especially if employed in large-scale archival or library digitization
projects), the lack of adapted open tools to create training data that can
capture the pertinent features of Arabic handwritten text; and the subse-
quent lack of training data sets available for DIA research have stifled the
field. Simple transcription tools such as those used in the studies detailed in
chapter 4 are inadequate for preparing multi-purpose datasets. Fully fea-
tured Virtual Research Environments (VREs) for palaeographic scholarly
work are one way of reaching deeply annotated data through flexible non-
writing-system-specific data models.

Other minor technical requirements which are not large enough to be the fo-
cus of a dedicated research question are sometimes disregarded. The most visible
example of this is the lack of support, in older or purely research software, for
non-ASCII and bidirectional text requiring manual substitution and reordering of
code points. More subtle sources of errors such as overly aggressive normaliza-
tion of input text, lack of Unicode whitespace normalization, and the treatment
of non-printing code points are also prevalent and often difficult to ascertain, es-
pecially in proprietary software.

It should be noted that while the underlying motivations to implement the
above requirements are specific to the Arabic script, comparable situations exist
for documents written in other scripts. De facto, similar motivations for binariz-
ation-freedom apply to almost any historical written document; not to mention
curved handwriting, marginalia, and parallel texts. Therefore, research which
focuses on tailoring an OCR system capable of better processing Arabic texts is
also likely to enhance the capacity to process other texts as well.

References

[1] S. Blair, Islamic Calligraphy. Edinburgh University Press, 2006.

[2] D. Awad, “The Evolution of Arabic Writing Due to European Influence:
The case of punctuation,” Journal of Arabic and Islamic Studies, vol. 15,
pp. 117–136, 2015.

[3] H. Déjean, J.-L. Meunier, et al., “Versatile layout understanding via con-
jugate graph,” in 2019 International Conference on Document Analysis and
Recognition (ICDAR), IEEE, 2019, pp. 287–294.

66 CHAPTER 2. THE ARABIC SCRIPT

[4] F. Déroche, A. Berthier, and M. Waley, “Islamic Codicology: An Introduc-
tion to the Study of Manuscripts in Arabic Script,” Muhammad Isa Waley,
London, al-Furqān Islamic Heritage Foundation, 2006.

[5] A. Gacek, Arabic manuscripts: a vademecum for readers. Brill, 2009, vol. 98.

[6] M. A. Dhali, S. He, M. Popovic, E. Tigchelaar, and L. Schomaker, “A Digi-
tal Palaeographic Approach towards Writer Identification in the Dead Sea
Scrolls,” in Proceedings of the 6th International Conference on Pattern Recog-
nition Applications and Methods, ICPRAM 2017, Porto, Portugal, February
24-26, 2017, M. D. Marsico, G. S. di Baja, and A. L. N. Fred, Eds., SciTePress,
2017, pp. 693–702. doi: 10.5220/0006249706930702.

[7] T. Lavee, “Computer analysis of the dead sea scroll manuscripts,” Ph.D.
dissertation, Tel Aviv University, 2013.

[8] R. L. E. Jr., K. T. Knox, and W. A. Christens-Barry, “Multispectral Imaging
of the Archimedes Palimpsest,” in 32nd Applied Image Pattern Recognition
Workshop (AIPR 2003), Image Data Fusion, 15-17 October 2003, Washington,
DC, USA, Proceedings, IEEE Computer Society, 2003, pp. 111–118. doi: 10.
1109/AIPR.2003.1284258.

[9] A. Starynska, R. L. Easton Jr, and D. Messinger, “Methods of data augmen-
tation for palimpsest character recognition with deep neural network,” in
Proceedings of the 4th InternationalWorkshop on Historical Document Imag-
ing and Processing, 2017, pp. 54–58.

[10] J. Bloom, Paper Before Print: The History and Impact of Paper in the Islamic
world. Yale University Press, 2001, isbn: 9780300089554.

[11] H. Ghoname, “Sini Calligraphy: The Preservation of Chinese Muslims’
Cultural Heritage,” Ph.D. dissertation, University ofHawaii atManoa, 2012.

[12] T. Christiansen, “Manufacture of black ink in the ancient mediterranean,”
Bulletin of the American Society of Papyrologists, vol. 54, pp. 167–195, 2017.

[13] L. Raggetti, “Inks as instruments of writing: Ibn al-ǧazarı’̄s book on the art
of penmanship,” Journal of Islamic Manuscripts, vol. 10, no. 2, pp. 201–239,
2019.

[14] K. Versteegh, M. Eid, A. Elgibali, M. Woidich, and A. Zaborski, Encyclope-
dia of Arabic Language and Linguistics, Volume 3. Leiden, The Netherlands:
Brill, 2007, isbn: 978-90-04-14475-0.

[15] K. R. Schaefer, Enigmatic charms: medieval Arabic block printed amulets
in American and European libraries and museums. Handbook of Oriental
Studies, 2006, vol. 82.

[16] K. A. Schwartz, “Did Ottoman Sultans Ban Print?” Book History, vol. 20,
no. 1, pp. 1–39, 2017.

[17] M. Krek, “The enigma of the first Arabic book printed frommovable type,”
Journal of Near Eastern Studies, vol. 38, no. 3, pp. 203–212, 1979.

REFERENCES 67

[18] W. Tracy, “Advances in arabic printing,” British Journal of Middle Eastern
Studies, vol. 2, no. 2, pp. 87–93, 1975.

[19] H. Auji, “Neither good, fast, nor cheap: Challenges of early arabic letter-
press printing,” American Printing History Association (blog), 2017.

[20] J. Turner, The Dictionary of Art. 1996.

[21] T. Nemeth, Arabic type-making in the Machine Age: The influence of tech-
nology on the form of Arabic type, 1908–1993. Brill, 2017.

68 CHAPTER 2. THE ARABIC SCRIPT

Chapter 3

Important New Developments
in Arabographic Optical
Character Recognition (OCR)

This chapter has been published as B. Kiessling, M. T. Miller, G. Maxim, S. B.
Savant, et al., “Important New Developments in Arabographic Optical Character
Recognition (OCR),” Al-ʿUṣūr al-Wusṭā, vol. 25, pp. 1–13, 2017

70 CHAPTER 3. ARABIC OCR

3.1 Introduction

3.1.1 Summary of Results of OpenITI’s OCR

The OpenITI team1 building on the foundational open-source OCR work of the
Leipzig University’s (LU) Alexander vonHumboldt Chair for Digital Humanities—
has achieved Optical Character Recognition (OCR) accuracy rates for classical
Arabic-script texts in the high nineties. These numbers are based on our tests of
seven different Arabic-script texts of varying quality and typefaces, totaling over
7,000 lines (400 pages, 87,000 words; see table 3.1 for full details). These accuracy
rates not only represent a distinct improvement over the actual2 accuracy rates
of the various proprietary OCR options for printed classical Arabic-script texts,
but, equally important, they are produced using an open-source OCR software
called Kraken (developed by Benjamin Kiessling, LU), thus enabling us to make
this Arabic-script OCR technology freely available to the broader Islamic, Persian,
and Arabic Studies communities in the near future. In the process we also gen-
erated over 7,000 lines of “gold standard” (double-checked) data that can be used
by others for Arabic-script OCR training and testing purposes.3

3.1.2 OCR and its Importance for Islamicate Studies Fields

Although there is a wealth of digital Persian and Arabic texts currently available
in various open-access online repositories,4 these collections still need to be ex-
panded and supplemented in some important ways. OCR software is critical for
this broader task of expanding the range of digital texts available to scholars for
computational analysis. OCR programs, in the simplest terms, take an image of
a text, such as a scan of a print book, and extract the text, converting the image
of the text into a digital text that then can be edited, searched, computationally
analyzed, etc.

1The co-PIs of the Islamicate Texts Initiative (ITI) are Sarah Bowen Savant (Aga Khan University,
London), Maxim G. Romanov (Leipzig University), and Matthew Thomas Miller (Roshan Institute
for Persian Studies, University of Maryland, College Park).

2Proprietary OCR programs for Persian and Arabic (e.g., Sakhr’s Automatic Reader, ABBYY
Finereader, Readiris) over-promise the level of accuracy they deliver in practice when used on clas-
sical texts. These companies claim that they provide accuracy rates in the high 90 percentages
(e.g., Sakhr claims 99.8% accuracy for high-quality documents). This may be the case for texts with
simplified typeset and no short vowels; however, our tests of ABBYY Finereader and Readiris on
high-quality scans of classical texts turned out accuracy rates of between 65% and 75%. Sakhr soft-
ware was not available to us, as the developers offer no trial versions and it is the most expensive
commercial OCR solution for Arabic. Moreover, since these programs are not open-source and of-
fer only limited trainability (and created training data cannot be reused), their costs are prohibitive
for most students and scholars and they cannot be modified according to the interests and needs
of the academic community or the public at large. Most importantly, they have no web interfaces
that would enable the production of wider, user-generated collections.

3This gold standard data is available at: https://github.com/OpenArabic/OCR_GS_Data.
4Collecting and rendering these texts useful for computational textual analysis (through, for

example, adding scholarly metadata and making them machine-actionable) is a somewhat separate
but deeply interrelated project that OpenITI is currently working on as well.

3.2. INITIAL OCR TESTS 71

The specific type of OCR software that we employed in our tests is an open-
source OCR program called Kraken, which was developed by Benjamin Kiessling
at Leipzig University’s Alexander von Humboldt Chair for Digital Humanities.
Unlike more traditional OCR approaches, Kraken relies on a neural network—
which mimics the way we learn—to recognize letters in the images of entire lines
of text without trying first to segment lines into words and thenwords into letters.
This segmentation step—a mainstream OCR approach that persistently performs
poorly on connected scripts—is thus completely removed from the process, mak-
ing Kraken uniquely powerful for dealing with the diverse variety of ligatures in
connected Arabic script (see section 3.1 for more technical details).

3.2 Initial OCR Tests

We began our experiments by using Kraken to train a model5 on high-quality6

scans of ~1,000 lines of Ibn al-Faqīh’s al-Buldān (work #1).
We first generated training data (line transcriptions) for all of these lines, dou-

ble checked them (creating so-called “gold standard” data), trained the model,
and, finally, tested its ability to accurately recognize and extract the text. The
results were impressive, reaching 97.56% accuracy for the entire text and an even
more impressive 99.68% accuracy rate on the Arabic script alone (i.e., when errors
related to punctuation and spaces were removed from consideration; such non-
script errors are easy to fix in the post-correction phase and, in many cases, this
correction process for non-script errors can be automated). See table 3.2, row #1
for full details.7

These numbers were so impressive that we decided to expand our study and
use the model built on the text of Ibn al-Faqīh’s al-Buldān (work #1) to OCR six
other texts. We deliberately selected texts that were different from Ibn al-Faqīh’s
original text in terms of both their Arabic typeface, editorial orthographic con-
ventions, and image quality. These texts represent at least two different typefaces
(within which there are noticeable variations of font, spacing, and ligature styles),
and four of the texts were high-quality scans while the other twowere low-quality
scans downloaded from www.archive.org (via http://waqfeya.com/).8

5“Training a model” is a general term used in machine learning for training a program to recog-
nize certain patterns in data. In the context of OCR work, it refers to teaching the OCR software to
recognize a particular script or typeface—a process that only requires time and computing power.
In our case, this process required 1 computer core and approximately 24 hours.

6“High quality” here means 300 dpi, color or grayscale images. Before the actual process of
OCR, these images must be binarized—converted into black-and-white images; if binarization is not
performed properly, a lot of information is lost from an image, negatively affecting the accuracy of
the OCR process. For this reason, for best results, one should avoid using pre-binarized images.

7We have also experimented with the internal configuration of our models: more extensive
models, containing 200 nodes in the hidden middle layer, showed slightly better accuracy in most
cases (works #4-5 were an exception to this pattern), but it took twice as long to train and the OCR
process using the larger model also takes more time.

8“Low-quality” heremeans 200 dpi, black andwhite, pre-binarized images. In short, the standard

72 CHAPTER 3. ARABIC OCR

Table 3.1: Description of data

Size of data samples
Booka Quality Type Pages Lines Words Chars

1 Ibn al-Faqīh
al-Buldān

highb training 79 1466 16 909 92 730

2 Ibn al-Athīr
al-Kāmil

highb testing 40 794 12 818 58 481

3 Ibn Qutayba
Adab al-kātib

highb testing 55 794 7848 42 230

4 al-Jāḥiẓ
al-Ḥayawān

highb testing 65 992 11 870 59 191

5 al-Yaʿqūbī
al-Taʿrīkh

highb testing 68 1050 13 487 66 341

6 al-Dhahabī
Taʾrīkh al-Islām

lowc testing 50 1110 11 045 55 047

7 Ibn al-Jawzī
al-Muntaẓam

lowc testing 50 938 13 156 62 574

407 7144 87 133 436 594

aFor details on the editions, see bibliography
b300 dpi, grayscale spanned specifically for the purpose of testing with ideal parameters
c200 dpi, black-and-white, pre-binarized, both downloaded from http://www.archive.org (via

http://waqfeya.org)

When looking at the results in table 3.2, it is important that the reader notes
that works #2-7 are “testing” data. That is, these accuracy results were achieved
by utilizing a model built on the text of work #1 to perform OCR on these other
texts. For this reason it is not surprising that the accuracy rates for works #2-5
are not as high as the accuracy rates for the training text, work #1. The point
that is surprising is that the use of the work #1-based model on the low quality
scans of works #6-7 achieved a substantially higher accuracy rate (97.61% and
97.8% respectively on their Arabic script alone) than on the high-quality scans
of works #2-5. While these higher accuracy rates for works #6-7 are the result
of a closer affinity between their typefaces and that of work #1, it also indicates
that the distinction between high- and low-quality images is not as important for
achieving high accuracy rates with Kraken as we initially believed. In the future,
this will help reduce substantially both the total length of time it takes to OCR
a work and the barriers to entry for researchers wanting to OCR the low-quality
scans they already possess.

quality of most scans available on the internet, which are the product of scanners that prioritize
smaller size and speed of scanning for online sharing (i.e., in contrast to high-quality scans that
are produced for long-term preservation). “Pre-binarized” means that the images were converted
to black and white during the scanning process, ostensibly for size reduction, resulting in some
degradation of quality.

3.2. INITIAL OCR TESTS 73

Table 3.2: Accuracy rates in test of our custom model

Character accuracy
Booka Quality Type Size

100
Arb Size

200
Arb

1 Ibn al-Faqīh
al-Buldān

highc training 95.88% 99.68% 97.56% 99.68%

2 Ibn al-Athīr
al-Kāmil

highc testing 85.78% 90.90% 87.18% 90.56%

3 Ibn Qutayba
Adab al-kātib

highc testing 75.28% 87.67% 74.03% 87.90%

4 al-Jāḥiẓ
al-Ḥayawān

highc testing 69.03% 72.78% 68.32% 71.87%

5 al-Yaʿqūbī
al-Taʿrīkh

highc testing 78.78% 83.42% 78.28% 81.85%

6 al-Dhahabī
Taʾrīkh al-Islām

lowd testing 92.19% 97.54% 94.42% 97.61%

7 Ibn al-Jawzī
al-Muntaẓam

lowd testing 90.40% 97.39% 92.26% 97.80%

aFor details on the editions, see bibliography
bPerformance on Arabic only (excluding punctuation, spaces and numerals
c300 dpi, grayscale spanned specifically for the purpose of testing with ideal parameters
d200 dpi, black-and-white, pre-binarized, both downloaded from http://www.archive.org (via

http://waqfeya.org)

Table 3.3: Ligature variations in typefaces. The table highlights only a few striking
differences and is not meant to be comprehensive; examples similar to those of the main
text are ”greyed out.”

Book

1 Ibn al-Faqīh
al-Buldān

2 Ibn al-Athīr
al-Kāmil

3 Ibn Qutayba
Adab al-kātib

not
present

4 al-Jāḥiẓ
al-Ḥayawān

5 al-Yaʿqūbī
al-Taʿrīkh

6 al-Dhahabī
Taʾrīkh al-Islām

not
present

7 Ibn al-Jawzī
al-Muntaẓam

not
present

74 CHAPTER 3. ARABIC OCR

(the table highlights only a few striking differences and is not meant to be
comprehensive; examples similar to those of the main text are “greyed out”)

The decreased accuracy results for works #2-5 are explainable by a few factors:

1. The typeface of works #4-5 is different thanwork #1 and it utilizes a number
of ligatures that are not present in the typeface of work #1 (for examples,
see table 3.3 above).

2. The typefaces of work #2-3 are very similar to that of #1, but they both
have features that interfere with the #1-based model. #2 actually uses two
different fonts, and the length of connections—kashīdas—between letters
vary dramatically (0.3 kashīda to 2 kashīdas and everything in between),
which is not the case with #1, where letter spacing is very consistent.

3. The text of work #3 is highly vocalized—it has more ḥarakāt than any other
texts in the sample (and especially in comparison with the model work #1).

4. The text of work #3 also has very complex and overabundant punctuation
with highly inconsistent spacing.

Our #1-based model could not completely handle these novel features in the
texts of works #2-5 because it was not trained to do so. As the results in table 3.4
of the following section show, new models can be trained to handle these issues
successfully.

Table 3.4: Accuracy rates in text-specific models

Character accuracy
Booka Quality Type Size 100 Arb

2 Ibn al-Athīr al-Kāmil highc testing 93.79% 97.71%
3 Ibn Qutayba Adab al-kātib highc testing 89.30% 98.47%
4 al-Jāḥiẓ al-Ḥayawān highc testing 94.87% 97.59%
5 al-Yaʿqūbī al-Taʿrīkh highc testing 96.81% 99.18%

aFor details on the editions, see bibliography
bPerformance on Arabic only (excluding punctuation, spaces and numerals
c300 dpi, grayscale spanned specifically for the purpose of testing with ideal parameters

3.3 Round #2 Tests: Training New Models

The most important advantage of Kraken is that its workflow allows one to train
new models relatively easily, including text-specific ones. In a nutshell, the pro-
cess of training requires a transcription of approximately 800 lines (the number
will vary depending on the complexity of the typeface) aligned with images of

3.4. CONCLUSIONS AND NEXT STEPS FOR THE OPENITI OCR PROJECT 75

these lines as they appear in the printed edition. The training itself takes 12-
24 hours and is performed by a machine without human involvement; multiple
models can be trained simultaneously. Kraken includes tools for the production
of transcription forms (see figure 3.1 below); the data supplied through these
forms is then used to train a new model. (Since there are a great number of
Arabic-script texts that have already been converted into digital texts, one can
use these as the base texts to fill in the forms more quickly—i.e., instead of typing
the transcription—and then double-check them for accuracy; this was what we
did, and it saved us a lot of time.)

The importance of Kraken’s ability to quickly train new models is illustrated
clearly by texts such as works #2-5 . When using the model built on work #1 in
our initial round of testing, we were only able to achieve accuracy rates ranging
from the low seventies to low nineties on these texts (see table 3.2). However,
whenwe trainedmodels on works #2-5 specifically in our second round of testing,
the accuracy rates for these texts substantially improved, reaching into the high
nineties (see full results in table 3.4 above). The accuracy results for work #5, for
example, improved from 83.42% on Arabic script alone in our first work #1-based
model tests to 99.18% accuracy whenwe trained amode on this text. The accuracy
rates for works #2-4 similarly improved, increasing from 90.90% to 97.71% , 87.90%
to 98.47%, from 72.78% to 97.59%, respectively (see appendix 3.A for the accuracy
rates of these new models on all other texts as well.). These accuracy rates for
Arabic-script recognition are already high, but we actually believe that they can
be improved further with larger training data sets.

Although the process of training a newmodel for a new text/typeface does re-
quire some effort, the only time-consuming component is the generation of ~800
lines of gold standard training data. As we develop the OpenITI OCR project
we will address the issue of the need for multiple models through a two-pronged
strategy. First, we will try to train a general model, periodically adding new fea-
tures that the model has not “seen” before. Secondly, we will train individual
models for distinct typefaces and editorial styles (which sometimes vary in their
use of vocalization, fonts, spacing, and punctuation), producing a library of OCR
models that gradually will cover all major typefaces and editorial styles used in
modern Arabic-script printing. There certainly are numerous Arabic-script type-
faces and editorial styles that have been used throughout the last century and a
half of Arabic-script printing, but ultimately the number is finite and definitely
not so numerous as to make it impossible to create models for each over the long
term.

3.4 Conclusions and Next Steps for the OpenITI OCR
Project

The two rounds of testing presented here indicate thatwith a fairlymodest amount
of gold standard training data (~800–1,000 lines) Kraken is consistently able to pro-

76 CHAPTER 3. ARABIC OCR

Figure 3.1: Kraken’s transcription interface

duce OCR results for Arabic-script documents that achieve accuracy rates in the
high nineties. In some cases, such as works #6-7, achieving OCR accuracy rates
of up to 97.5% does not even require training a new model on that text. How-
ever, in other cases, such as works #2-5, achieving high levels of OCR accuracy
does require training a model specific to that typeface, and, in some select cases
of texts with similar typefaces but different styles of vocalization, font variations,
and punctuation patterns (e.g., works #2-3), training a model for the peculiarities
of a particular edition.

In the near future we are planning to develop a user-friendly web-interface
for the generation of new training data and the post-correction of the OCR output
(see figure 3.2 above). Data supplied by users will allow us to train newmodels. It
should be stressed that training edition-specific models is quite valuable, as there
is a number of multivolume books—often with over a dozen volumes per text—
that need to be converted into proper digital editions. In the long term, we are also
planning to train models for other Islamicate languages (Ottoman Turkish, Urdu,
Syriac,9 etc.). Our hope is that an easy-to-use and effective OCR pipeline will
allow us, all,collectively to significantly enrich our collection of digital Persian
and Arabic texts and thereby enable us to understand better the cultural heritage
of the Middle East as reflected in its literary traditions.

9Together with George Kiraz (Gorgias Press, Editor-in-Chief; Rutgers University, Visiting
Scholar), we have most recently tested Kraken on Syriac texts, achieving comparable accuracy rates
of 95.17–99.09%.

3.5. THE TECHNICAL DETAILS: KRAKEN AND ITS OCR METHOD 77

Figure 3.2: Web-based OCR pipeline flowchart

3.5 TheTechnical Details: Kraken and its OCRMethod

Kraken is the open-source OCR software that we used in our tests. Developed by
Benjamin Kiessling at UL’s Alexander von Humboldt Chair for Digital Humani-
ties, Kraken is a “fork”10 of the unmaintained ocropus package11 combined with
the CLSTM neural network library.12 Kraken represents a substantial improve-
ment over the ocropus package: its performance is drastically better, it supports
right-to-left scripts and combined LTR/RTL (BiDi) texts, and it includes a rudi-
mentary transcription interface for offline use.

The OCR method that powers Kraken is based on a long short-term memory
[9] recurrent neural network utilizing the Connectionist Temporal Classification
objective function ([10], as elaborated in [11]). In contrast to other systems re-
quiring character level segmentation before classification, it is uniquely suited for
the recognition of connected Arabographic scripts because the objective function
used during training is geared towards assigning labels—i.e., characters/glyphs—
to regions of unsegmented input data.

The systemworks on unsegmented data both during training and recognition—
its base unit is a text line (line recognizer). For training, a number of printed lines
have to be transcribed using a simple HTML transcription interface (see figure 3.1

10“Fork” is a computer-science term for a new independent development that builds on an exist-
ing software.

11For details, see: https://github.com/tmbdev/ocropy and https://en.wikipedia.org/wiki/
OCRopus.

12See: https://github.com/tmbdev/clstm.

78 CHAPTER 3. ARABIC OCR

above). The total amount of training data (i.e., line image-text pairs) required may
vary depending on the complexity of the typeface and number of glyphs used by
the script. Acquisition of training data can be optimized by line-wise alignment of
existing digital editions with printed lines, although even wholesale transcription
is a faster and relatively unskilled task in comparison to training data creation for
other systems such as tesseract.13

Our current models were trained on ~1,000 pairs each, corresponding to ~50-
60 pages of printed text. Models are fairly typography specific, themost important
factor being fonts and spacing, although some mismatch does not degrade recog-
nition accuracy substantially (2-5%).14 Thus new training data for an unknown
typeface can be produced by correcting the output from a model for a similar
font—in other words, generating training data for every subsequent model will
require less and less time. Last but not least, it is also possible to train multi-
typeface models by simply combining training data, albeit some parameter tun-
ing is required to account for the richer typographic morphology that the neural
network must learn.

3.6 Acknowledgements

We would never have been able to complete this work without the help of our
team members at Leipzig University, University of Maryland (College Park), and
Aga Khan University, London. We would also like to thank Elijah Cooke (Roshan
Institute, UMD) for helping us to process the data, Samar Ata (Roshan Institute,
UMD) for generating several sets of high-quality scans for us, and Layal Moham-
mad (ISMC, AKU), MohammadMeqdad (ISMC, AKU), and Fatemeh Shams (ISMC,
AKU) for helping us to generate and double check the training data. Lastly, we
would like to express our gratitude to Gregory Crane (Alexander von Humboldt
Chair for Digital Humanities, LU), Fatemeh Keshavarz (Roshan Institute for Per-
sian Studies, UMD), and David Taylor (ISMC, AKU) for their guidance and support
of our work.

13See: https://github.com/tesseract-ocr and https://en.wikipedia.org/wiki/Tesseract_(software).
14For example, if a glyph is in a slightly different font than the one that the model was trained on,

it may sometimes be misrecognized as another one (or not at all), thus leading the overall accuracy
rate to be slightly lower despite the fact that most of the other text is recognized correctly.

3.A. PERFORMANCE OF TEXT-SPECIFIC MODELS 79

3.A Performance of Text-Specific Models

Table 3.5: Performance of #2-based model on other texts

Character accuracy
Book Quality Type Size

100
Ar Size

200
Ar

2 Ibn al-Athīr
al-Kāmil

high training 93.79% 97.71% 93.58% 97.59%

3 Ibn Qutayba
Adab al-kātib

high testing 82.68% 95.72% 80.92% 94.88%

4 al-Jāḥiẓ
al-Ḥayawān

high testing 71.78% 75.16% 70.85% 74.27%

5 al-Yaʿqūbī
al-Taʿrīkh

high testing 79.67% 84.40% 78.12% 82.21%

6 al-Dhahabī
Taʾrīkh al-Islām

low testing 90.68% 95.95% 90.37% 95.78%

7 Ibn al-Jawzī
al-Muntaẓam

low testing 93.33% 98.51% 92.96% 98.22%

Table 3.6: Performance of #3-based model on other texts

Character accuracy
Book Quality Type Size

100
Ar Size

200
Ar

2 Ibn al-Athīr
al-Kāmil

high testing 83.52% 88.56% 83.55% 88.56%

3 Ibn Qutayba
Adab al-kātib

high training 89.30% 98.47% 89.42% 98.44%

4 al-Jāḥiẓ
al-Ḥayawān

high testing 74.82% 76.51% 74.87% 76.65%

5 al-Yaʿqūbī
al-Taʿrīkh

high testing 81.50% 84.05% 79.81% 83.67%

6 al-Dhahabī
Taʾrīkh al-Islām

low testing 84.89% 93.19% 83.08% 92.53%

7 Ibn al-Jawzī
al-Muntaẓam

low testing 87.56% 94.21% 86.34% 93.57%

80 CHAPTER 3. ARABIC OCR

Table 3.7: Performance of #4-based model on other texts

Character accuracy
Book Quality Type Size

100
Ar Size

200
Ar

2 Ibn al-Athīr
al-Kāmil

high testing 80.23% 86.27% 82.46% 87.48%

3 Ibn Qutayba
Adab al-kātib

high testing 80.90% 91.54% 82.61% 93.24%

4 al-Jāḥiẓ
al-Ḥayawān

high training 94.86% 97.59% 94.82% 97.41%

5 al-Yaʿqūbī
al-Taʿrīkh

high testing 90.91% 95.13% 91.28% 94.71%

6 al-Dhahabī
Taʾrīkh al-Islām

low testing 81.93% 91.23% 83.03% 92.22%

7 Ibn al-Jawzī
al-Muntaẓam

low testing 84.07% 93.58% 86.26% 94.20%

Table 3.8: Performance of #5-based model on other texts

Character accuracy
Book Quality Type Size

100
Ar Size

200
Ar

2 Ibn al-Athīr
al-Kāmil

high testing 79.80% 86.35% N/A N/A

3 Ibn Qutayba
Adab al-kātib

high testing 72.99% 82.84% N/A N/A

4 al-Jāḥiẓ
al-Ḥayawān

high testing 83.38% 87.65% N/A N/A

5 al-Yaʿqūbī
al-Taʿrīkh

high training 96.81% 99.18% N/A N/A

6 al-Dhahabī
Taʾrīkh al-Islām

low testing 82.76% 90.65% N/A N/A

7 Ibn al-Jawzī
al-Muntaẓam

low testing 87.71% 96.00% N/A N/A

EDITIONS OF PRINTED TEXTS 81

Editions of Printed Texts

[1] Ibn al-Faqīh (d. 365/975), Al-Buldān, Yūsuf al-Hādī, Ed. ʿĀlam al-Kutub,
1996.

[2] Ibn al-Athīr (d. 630/1232), Al-Kāmil fī al-taʾrīkh, ʿAbd Allāh al-Qāḍī, Ed.
Dār al-Kutub al-ʿIlmiyya, 1415/1994.

[3] Ibn Qutayba (d. 276/889), Adab al-kātib, Muḥammad al-Dālī, Ed. Muʾas-
sasat al-Risāla.

[4] al-Jāḥiẓ (d. 255/868), Al-Ḥayawān. Dār al-Kutub al-ʿIlmiyya, 1424/2003.

[5] al-Yaʿqūbī (d. 292/904), Al-Taʿrīkh. Dār Ṣādir.

[6] al-Dhahabī (d. 748/1347), Taʾrīkh al-Islām. Al-Maktaba al-Tawfīqiyya, Ed.

[7] Ibn al-Jawzī (d. 597/1201),Al-Muntaẓam.Muḥammad al-Qādir ʿAṭā,Muṣṭafá
al-Qādir ʿAṭā., Ed. Dār al-Kutub al-ʿIlmiyya, 1412/1992.

References

[9] S. Hochreiter and J. Schmidhuber, “Long short-termmemory,”Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[10] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks,” in Proceedings of the 23rd international conference
on Machine learning, ACM, 2006, pp. 369–376.

[11] T. M. Breuel, A. Ul-Hasan, M. A. Al-Azawi, and F. Shafait, “High-perform-
ance OCR for printed English and Fraktur using LSTM networks,” in 2013
12th international conference on document analysis and recognition, IEEE,
2013, pp. 683–687.

82 CHAPTER 3. ARABIC OCR

Chapter 4

Advances and Limitations in
Open Source Arabic-Script
OCR: A Case Study

This chapter has been accepted for publication as B. Kiessling, G. Kurin, M. T.
Miller, and K. Smail, “Advances and Limitations in Open Source Arabic-Script
OCR: A Case Study,” Digital Studies / Le champ numérique,

84 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

Abstract

This work presents an accuracy study of the open source OCR engine, Kraken,
on the leading Arabic scholarly journal, al-Abhath. In contrast with other com-
mercially available OCR engines, Kraken is shown to be capable of producing
highly accurate Arabic-script OCR. The study also assesses the relative accuracy
of typeface-specific and generalized models on the al-Abhath data and provides a
microanalysis of the “error instances” and the contextual features that may have
contributed to OCR misrecognition. Building on this analysis, the paper argues
that Arabic-script OCR can be significantly improved through (1) a more sys-
tematic approach to training data production, and (2) the development of key
technological components, especially multi-language models and improved line
segmentation and layout analysis.

4.1 Introduction

In late 2017 JSTOR initiated a collaboration with the Open Islamicate Texts Initia-
tive (OpenITI) to run an Optical Character Recognition (OCR) pilot for the JSTOR
Arabic digitization feasibility study (funded through a generous grant by the Na-
tional Endowment for the Humanities).1 The problem that JSTOR had encoun-
tered in their feasibility study was the problem that has long plagued efforts of
scholars and librarians to digitize Arabic, Persian, Urdu, and Ottoman Turkish
print documents: Arabic-script OCR programs produce notoriously poor results,
despite the optimistic claims of some of their marketing materials[2].2 In addi-
tion to these programs’ lackluster performance, they also are not ideal systems for
academic users for other reasons as well - for example, several are prohibitively
expensive (for the average academic) and they offer little out of the box trainabil-
ity (i.e., they come only with a generic OCR model and they cannot be trained to
recognize new typefaces).

1OpenITI is a multi-institutional initiative that is focused on building digital infrastructure
for the computational study of the texts of the Islamicate world. It is currently led by Dr.
Matthew Thomas Miller (Roshan Institute for Persian Studies, University of Maryland, College
Park), Dr. Sarah Bowen Savant (Aga Khan University, London), and Dr. Maxim Romanov (Uni-
versity of Vienna). Benjamin Kiessling (University of Leipzig/Université PSL) is one of OpenITI’s
primary computer science collaborators and he served as the technical lead for the OpenITI JS-
TOR OCR pilot. More information on the OpenITI project are available on the project’s website:
https://openiti.org/about. More information on JSTOR’s NEH-funded project can be found here:
https://about.jstor.org/news/jstor-receives-50000-neh-grant/.

2Mansoor Alghamdi and William Teahan open their 2017 study by noting that “although hand-
written script is significantly more challenging than printed Arabic text for OCR, Arabic printed
text OCR still poses significant challenges.” After evaluating Sakhr, Finereader, RDI Clever Page,
and Tesseract (3)—the main options for Arabic-script OCR—on Arabic print works they conclude
that “all the evaluated Arabic OCR systems have low performance accuracy rates, below 75 per
cent, which means that the time which would take to manually correct the OCR output would be
prohibitive.” These results are consonant with the PIs’ own experience using these OCR engines
and those of our colleagues in the field of Islamicate Studies.

4.2. OPENITI OCR SOFTWARE: KRAKEN 85

With these problems in mind, in 2016 OpenITI began working on the devel-
opment of open source OCR tools for Arabic-script languages (in print form) in
collaboration with the computer scientist Benjamin Kiessling.3

OpenITI’s first OCR study with the new open source OCR engine, Kraken, de-
veloped by Kiessling, demonstrated that it was capable of achieving Arabic script-
only accuracy rates >97.5% with as little as 800-1,000 lines of training data for that
document’s typeface [7].4 OpenITI has also replicated these high accuracy rates
on Persian texts, with Perso-Arabic script-only accuracy rates ranging from 96.3%
to 98.62% with typeface-specific models.5

In this work, we present the results of our OCR study done in collaboration
with JSTOR on the al-Abhath Arabic journal (arguably the most important Ara-
bic language scholarly journal in the Middle East). In contrast with many OCR
accuracy reports, in this study we performed both detailed manual and automatic
Character Error Rate (CER) accuracy checks, which enabled us to develop a much
more fine-grained understanding of where the Kraken OCR engine was failing
to properly transcribe the Arabic text. These results confirm Kraken’s ability to
produce highly accurate Arabic-script OCR, but they also provide new insights
into the importance of systematic training data production, the relative accuracy
of typeface-specific and generalized models, and the key technological improve-
ments needed for improved Arabic-script OCR output.

Section two reviews the open-source software used in this study before the
JSTOR Arabic OCR pilot and accuracy study are described in sections three and
four, respectively. Section five contains our recommendations for the necessary
technological and data improvements needed to improve Arabic OCR in the fu-
ture.

4.2 OpenITI OCR Software: Kraken

Kraken is an open-source OCR engine that was developed by Benjamin Kiessling.
It utilizes a segmentationless sequence-to-sequence approach [8] with a hybrid
convolutional and recurrent neural network to perform character recognition [9]
which obviates the need for character-level segmentation—i.e. the neural net-
work responsible for text extraction from image data recognizes whole lines of

3To date our work has primarily focused on Arabic-script OCR for print documents since hand-
written text recognition (HTR) for Arabic-script manuscripts presents a series of additional issues
(e.g., even more complex line segmentation and page layout analysis problems, a dizzying array of
different script styles and scribal hands). However, we have begun preliminary experiments on Per-
sian and Arabic manuscripts with some promising initial results using distantly supervisedmethods
of training data production and the new line segmentation methods developed by Kiessling [3]. See
also the experiments on HTR for Arabic manuscripts led by the British Library [4]–[6]).

4Training data, in the context of OCR, consists of pairs of scans of individual lines of text with
their digital transcription.

5This work has not been published yet, but the full CER reports for these tests can be viewed at
OpenITI’s GitHub repository: https://github.com/OpenITI/OCR_GS_Data/tree/master/fas.

86 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

text without resorting to smaller subunits like words or characters which can be
difficult to accurately compute for languages written in connected script.

As an initial preprocessing step page images are converted into black and
white through a process called binarization. Layout analysis, i.e. the detection
of lines for subsequent steps, is then performed on this binarized image with an
algorithm based on traditional computer vision methods. In a final step, the pre-
viously detected rectangular lines are fed into the neural network for character
recognition.6

The benefit of eliminating fine-grained segmentation in comparison to older
character segmenting systems such as tesseract 3, Sakhr, and most likely Abbyy
FineReader7 is not only expressed during recognition but also through easier to
produce training data for adaptation of the OCR system to new scripts and type-
faces. With character-based systems annotators have tomanually locate and tran-
scribe single characters while Kraken is trained on full line transcriptions which
are faster to annotate and verify, especially in the case of connected scripts.

4.3 The OpenITI JSTOR OCR Pilot

OpenITI began the JSTOR OCR pilot by performing a randomized review of the
Arabic typefaces used in each year of the al-Abhath journal. The page images of
the journal were obtained from the Arabic and Middle Eastern Electronic Library
(Project AMEEL) of Yale University Library.8 It was determined that there were
two basic typefaces in the al-Abhath journal archive, with the first typeface being
much more prevalent than the second. Examples of these two typefaces can be
seen in figures 1-2 (for comparison sake, the last word in both lines - on the left
of the page - is the same word).

Typeface #1 volumes 1-33, 36-39, 48-50

Typeface #2 volumes 34-35, 40-47

Both typefaces had some internal font differences and other minor charac-
ter/script variations (e.g., patterns of use of alef hamza, slight shifts in placement
of dots, slight differences in the degree of curvature of lines in a couple of in-
stances, and minor ligature differences). This intra-typeface variation was espe-
cially apparent in typeface #1, which had a long run as al-Abhath’s typeface. To
address this issue it was decided that the best approach would be to produce ap-
proximately 5,000 lines of training data for the first typeface and 2,000 lines of
training data for the second typeface.

After a randomized sample of the pages representing each typeface were se-
lected, research assistants working with the OpenITI team produced the training

6More on Kraken’s technical details can be found here: https://github.com/mittagessen/kraken.
7As a proprietary software the exact nature of the classifier is unknown.
8Project AMEEL’s website is available here: http://www.library.yale.edu/ameeljournals/ameel_

steps.html.

4.3. THE OPENITI JSTOR OCR PILOT 87

(a) Typeface #1 sample

(b) Typeface #2 sample

Figure 4.1: Sample of the two typefaces

data for these 7,000 lines using CorpusBuilder 1.0 (a newOCR postcorrection plat-
form produced through the collaboration of OpenITI and Harvard Law School’s
SHARIAsource project).9 After these 7,000 lines of training data were double
checked for accuracy, a final spot review was conducted. This “gold standard”
data was then utilized for model production and OCR.10

The first round of OCR accuracy tests were performed by an outside contrac-
tor, which JSTOR hired to conduct a ten-page manual accuracy comparison be-
tween the Kraken output and the corresponding output for ABBYY (see table 4.1).

With the exception of page #2, OpenITI (Kraken) performed substantially bet-
ter on the pages the contractor reviewed, achieving >99% accuracy in 4/10 pages,
>97% accuracy in 6/10 pages, >95.8% in 8/10 pages. The exception to these gen-
erally impressive numbers were pages #2 and #8 in which OpenITI (Kraken) only
achieved 27.027% and 93.539% respectively. While the contractor’s review was
quite useful and generally confirmed OpenITI’s results from its previous work
(i.e., that Kraken achieves significantly higher accuracy rates on Arabic texts than
the commercial OCR solutions for Arabic), the OpenITI team discovered upon fur-
ther review that there were several problems with the contractor’s study.11

First, Page #2 - by far the most disappointing result - is a highly atypical page
of al-Abhath data. It only contains 37 characters total and much of these are
contained in a large header that is in a highly calligraphic script and is heavily
vocalized (with diacritics) (see figure 4.2). It is noteworthy that Abbyy performed
better on this script, but this page is an extreme outlier in the data.

The second issue that we identified in the contractor’s review was that they
were marking certain differences between the original scans and OCR output as
errors which were not true errors, and, in some cases, even marked some charac-
ters in the OCR output as errors that were not errors at all. For example, in the
former case, they marked all numbers as errors in the OpenITI OCR output which

9For more on CorpusBuilder 1.0, please see: https://www.openiti.org/projects/corpusbuilder.
10This training data is available for reuse and can be found in the OCR Gold Standard Training

Data repository on OpenITI’s Github page: https://github.com/OpenITI/OCR_GS_Data.
11For OpenITI previous study on Kraken, please see: [7].

88 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

Table 4.1: Contractor’s accuracy comparison of Abbyy and OpenITI (Kraken) OCR re-
sults

Total
number
of char-
acters

Abbyy
char-
acter
errors

OpenITI
char-
acter
errors

Abbyy
char-
acter
accu-
racy

OpenITI
char-
acter
accu-
racy

Page #1
(00010004_187997831.tif)

1230 270 38 78.049% 96.911%

Page #2
(00010004_187997832.tif)

37 15 27 59.459% 27.027%

Page #3
(00010031_187998459.tif)

3182 355 23 88.843% 99.277%

Page #4
(00010063_187999338.tif)

3157 327 29 89.642% 99.081%

Page #5
(00010129_188001031.tif)

3222 378 16 88.268% 99.503%

Page #6
(00010012.tif)

3259 326 75 89.997% 97.699%

Page #7
(00010030.tif)

2503 230 17 90.811% 99.321%

Page #8
(00010126.tif)

2631 252 170 90.422% 93.539%

Page #9
(00010127.tif)

2294 223 35 90.279% 98.474%

Page #10
(00010132.tif)

2296 243 96 89.416% 95.819%

were rendered as western Arabic numerals (e.g., 1, 2, 3) instead of as eastern Ara-
bic numerals (e.g.,١,٢,٣) - a problem that was particularly prevalent on page #8
(thus at least partially responsible for OpenITI’s comparatively lower accuracy
rate on page #8). The OCR rendered them as western Arabic numerals instead of
eastern Arabic numerals because we decided to merge western and eastern Ara-
bic numerals into their universal numerical values in the OCR process and then
represent that value in western Arabic numerals in the OCR output.12 These
differences, thus, are not true errors—their numerical value is correct—and their
representation can be changed to eastern Arabic numerals if that is what users
prefer. Another similar issue was discovered in the contractor’s treatment of dia-
critics: they routinely marked correctly rendered words as incorrect if the word’s
original diacritics were not included in the OCR output. However, again, this dif-
ference in the original text and the OCR output is not a true error in transcription

12This practice of collapsing numeric values to their universal numerical value can be done for
multiple reasons, but, in this particular case, one of our primary motivating factors was the fact
that there were inconsistencies in the transcription practice of numbers in the training data.

4.4. OPENITI ACCURACY STUDY 89

because OpenITI has followed the practice (with one exception discussed further
below) of not reproducing diacritics in its training data (for reasons elaborate be-
low) and thus the fact that the diacritics were not rendered in OpenITI’s OCR
output is actually a sign that the Kraken OCR engine was functioning correctly.
(This training data generation practice can be changed if the users desire, and
given the results in OpenITI’s larger accuracy study described below, this change
may be advisable in the future, depending on the requirements of each individual
user’s use case.)

Figure 4.2: Header

These problems in the contractor’s approach to
error designation led them to calculate lower ac-
curacy estimates for OpenITI OCR output than it
achieved in actuality - a problem that was particu-
larly accentuated in the case of page #8, which con-
tained a larger amount of numbers than the other
pages the contractor reviewed. Due to the problems
discovered in the contractor’s initial accuracy study,
JSTOR requested that OpenITI perform a more de-
tailed accuracy assessment on approximately fifty
pages.

4.4 OpenITI Accuracy Study

The OpenITI team began by generating automatic
character error rate (CER) reports for the al-Abhath
data (see table 4.2 for full results).13 In the first round
of experiments, we built two different models—typeface model #1 and #2—based
on the two different sets of training data produced for the two typefaces that we
identified in the full run of al-Abhath. After extracting 1,000 lines of training data
from the original 5,000 lines for typeface #1 and 700 lines of training data from
the original 2,000 lines for typeface #2 to use as validation sets, we then trained
the model on the remaining lines and tested these models’ accuracy using the
validation sets.14 These accuracy results can be found in rows 2-3 in table 4.2.
These typeface-specific models were the ones used to produce the OCR output
that was transferred to JSTOR and that the contractor reviewed for their accuracy
study.

In the time between the delivery of the al-Abhath OCR output to JSTOR and
OpenITI’s manual accuracy study (discussed below), we began developing a gen-
eralized Arabic model from all of the training data that OpenITI has produced

13The full CER reports can be found in the following OpenITI Github repository: https://github.
com/OpenITI/OCR_GS_Data/tree/master/ara/abhath.

14This method of isolating a fixed number of lines of the training data as a validation set for
automatic accuracy testing is a standard procedure when evaluating machine learning models.

90 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

over the last year two years (circa 15,000 lines).15 (Generalized OCR models in-
corporate character features from all of the typefaces represented in the data upon
which it is trained and therefore can often achieve higher levels of accuracy on a
broader range of typefaces.) We decided to test this model on all of the al-Abhath
data to determine if total OCR accuracy could be improved and, if so, by how
much. The results, shown in row #4 of table 4.2, were impressive.16 The gener-
alized model’s total character accuracy rate was 97.41% - a 2.57 percentage point
improvement over the typeface #2-only model (i.e., a 50% improvement rate) and
1.45 percentage point improvement over the typeface #1-only model - and its Ara-
bic script-only accuracy went up to a respectable 98.46%. The generalized model
performed better than the typeface-specific models in all categories, but its most
significant gains were in the category of “inherited” characters.

Table 4.2: Overview of OCR accuracy rates (drawn from character error rate (CER) re-
ports

Total
character
accuracy

Arabic
script only
accuracy

Common
character
accuracya

Inherited
character
accuracyb

Typeface #1 Model 95.96% 97.56% 96.91% 79.67%
Typeface #2 Model 94.84% 97.11% 94.16% 85.18%
Generalized Model 97.41% 98.46% 96.36% 89.44%

a”Common characters” are characters shared by multiple scripts, primarily punctuation and
other signs and symbols. In Arabic script, the kashīda or tatwīl (elongation character) is included
in common script class.

b“Inherited characters” are characters, such as diacritics, that can be used on multiple languages
and they only come to be defined in reference to the character with which they are combined (i.e.,
they “inherit” the script of the base character with which it is used).

According to the CER reports, the most significant source of errors in both
the typeface #2model and the generalizedmodel were whitespace (spacing) errors
and the Arabic diacritic, fatḥa tanwīn (unicode codepoint: Arabic fatḥatan). In the
case of the typeface #1 model, whitespace errors were again the most significant
source of errors, followed by kāf ,(ك) yā’ ,(ي) and then fatḥa tanwīn errors. The
hamza above (ء) character ranks as the seventh most common error in typeface
#1 model and fifth in typeface #2 model. The mīm (م) character also is a common
error in both the typeface #1 and #2 models, ranking as the sixth and fifth most
common error in their CER reports respectively.17

15All of this gold standard training data can be found here: https://github.com/OpenITI/OCR_
GS_Data.

16For this accuracy assessment, 2,096 lines of the 7,000 lines of training data were isolated as a
validation set.

17 Again, the full CER reports can be found in the following OpenITI Github repository: https:
//github.com/OpenITI/OCR_GS_Data/tree/master/ara/abhath.

4.4. OPENITI ACCURACY STUDY 91

Concurrent with the generation of CER reports, the OpenITI team began a far
more expansive manual review of fifty—randomly selected—pages of the original
OCR output produced by the typeface #1 and typeface #2-specific models. Each of
these fifty pages were reviewed and then their error reports were collated into a
master list of 1,096 total error instances.18 Finally, each error instance was exam-
ined with an eye towards identifying possible factors in its adjacent context that
may have led to that error and coded the error instances with any of the following
categories that were applicable:

1. Poor scan quality: an element in the raw scan is unclear, or extraneous
marks are present.

2. Ligature/atypical letter or dot form: connection between letters or place-
ment of dots is in a less common form.

3. Diacritics: diacritics were present in original word.

4. Kashīda/tatwīl (elongation character): error appears in the context of a
word that has been elongated.

5. Header/font alteration: bolded, italicized, or enlarged text.

6. Footnote: error appears in the context of a footnote.

7. Format: atypical format of presentation, e.g., table, list.

8. Hamza: mistranscribed character was a hamza or a hamza was present in
the original word that was mistranscribed.

9. Doubled character: a single letter or number in the original scan was dou-
bled in the OCR output.

10. Missed fatḥa tanwīn: fatḥa tanwīn in the original text was not transcribed.

11. Punctuation or other symbol: error was a punctuation mark or other sym-
bol.

12. Non-Arabic language: original text was not Arabic.

13. Numbers: error was a number.

14. Superscript numerals: error was a footnote numeral in the body of the text.

18We use the term “error instance” here to highlight the fact that we are not exclusively recording
individual, one-to-one character errors, but instances in the text in which one or more characters
were read incorrectly. In most cases, this is a one-to-one character mistranscription, but in some
other cases one character in the original was read as two or more in the OCR output or multiple
characters in the original were read as one or none in the OCR output. In a few cases - discussed
in more detail below -there are whole sections of text that are severely mistranscribed due to one
or another feature in the original text.

92 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

This list of error codes is amixture of error types (#8-14) and themost common
recurring contextual features of the errors (#1-7). For categories of the latter type,
it is important to emphasize that the presence of any of these contextual features
near an error in the original text does not necessarily mean that it caused the
error. But their repeated co-occurrence may be related and thus suggest future
avenues of research and/or the need to better address this issue in the process of
future training data production. We should also point out that in the case of some
errors none of the following category codes were applicable, which only means
that the reason for their improper rendering was not immediately evident to the
human reviewers.

We do want to preface our presentation of the results of this manual review
and error coding below with one further cautionary note. Manual evaluations are
both essential and problematic: they provide far more detailed data (i.e., “thick
data”) about the OCR output and where OCR is failing, but they are much more
time and labor intensive (and thus more limited in scope) and subject to human
error. The results presented in table 4.3should be understood in this light. They
should be understood as a snapshot of the human-inferable errors present in the
OCR output. Each error type and possible ways to address it will be discussed in
more detail in separate sections below table 4.3.

Table 4.3: Error coding for error instances in OpenITI manual OCR output assessment

Error code Quantity identified

Poor scan quality 25
Ligature/atypical letter or dot form 182
Diacritics 90
Kashīda/tatwīl (elongation character) 31
Header/font alteration 113
Footnote 88
Format 14
Hamza 97
Doubled letter 209
Missed fatḥa tanwīn 91
Punctuation or other non-alphanumeric symbols 25
Non-Arabic language 70
Numbers 94
Superscript numerals 26

4.4.1 Doubled Letter

4.4. OPENITI ACCURACY STUDY 93

Figure 4.3: ”Doubled Let-
ter” errors

The “doubled letter” error type was the most frequent
that we observed in the OCR output data (see example
in figure 4.3).19

At first this error was perplexing. However, it
was subsequently discovered that these “doubling”
errors were an artifact of the decoding algorithm con-
verting the sequence of confidences for each charac-
ter produced by the neural network into a series of
characters. As the network assigns each character a
probability for each pixel-wide vertical slice of the in-
put line image and printed characters are wider than a single pixel an algorithm
is needed to extract the actual line text from the longer character probability se-
quence. Our implementation was based on a thresholding and merging approach
which can cause doubled characters when the network assigns a probability be-
low the threshold for a character at a vertical slice between high probability slices
for the same character.20 This error has been effectively addressed by switching
to a greedy decoding which always uses the highest probability character at each
vertical slice.

4.4.2 Header/Font Alteration, Footnotes, and Superscript Numer-
als

Figure 4.4: Example of poor transcription of italicized passage in figure 4.5

Errors that occured in the context of changes in the font (bolded, italicized,
enlarged/decreased text size) represent the largest category of errors in the OCR
output. Their total numbers are not even fully reflected in table 4.3 because ex-
amples in which whole sections (see examples in figures 4.5,4.4) were severely
mistranscribed were not enumerated (character-by-character) in the error totals
of the OpenITI manual assessment. Such sections were very rare, and in most
other cases the OCR still rendered text with font alterations with a relatively high
degree of accuracy, but font alterations do seem to increase error rates.

One of the most common examples of this issue was observed in text headers
(including both section headers and chapter titles), whichwere typically bolded or

19In the images in figures 4.3 to 4.16 below the Arabic text at the top of the images is the original
scan and the text below is the OCR output

20As a simplified example, assume the network assigns a probability for character x at 4 vertical
slices: (0.9, 0.95, 0.6, 0.9). Decoding with a threshold of 0.5 will result in an intermediate sequence
xxxx that is then merged to x, while selecting a higher threshold of 0.7 will result in a potentially
erroneous character sequence of xx merged from xx_x.

94 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

Figure 4.5: Example of text in italics

bolded and enlarged in al-Abhath (see figure 4.6). In some headers, as mentioned
above, an entirely different typeface was employed (see figure 4.2) – although this
is a less common practice.

Figure 4.6: Bolded and enlarged text size header and poor transcription

Other modifications to the font of the typeface, e.g., footnotes, superscript
(decreased text size) numerals, also seem to be correlated with decreased accuracy
rates. In the future, this could be addressed by ensuring that a sufficient number
of lines of training data with such font modifications is included.

4.4.3 Ligatures/Atypical Letter or Dot Forms

Not surprisingly, ligatures and other types of less common letter patterns and dot
placements led to less accurate transcriptions in the OCR output (see figure 4.7).
This same problem has been observed in an earlier study as well [7].

It is nearly impossible to completely avoid this problem, but a more systematic
approach to training data generation that selected pages/lines of data with an eye

4.4. OPENITI ACCURACY STUDY 95

(a) Example of problematic
ligature and error in tran-
scription

(b) Example of problematic
ligature and error in tran-
scription

(c) Atypical dot placement

(d) Atypical dot placement (e) Atypical letter pattern
(printing error?)

(f) Atypical dot/letter place-
ment and poor scan quality

Figure 4.7: Ligatures and uncommon letter patterns

towards ensuring sufficient representation of the maximum number of ligatures
could improve OCR accuracy on these characters/character combinations.

4.4.4 Diacritics

Figure 4.8: Highly vocalized Qur’anic passage that is transcribed poorly due to diacritics

Words that contained diacritics also appear more frequently to have errors in
transcription, which leads us to believe that diacritics are interfering with char-
acter recognition. This tendency especially can be seen in examples of heavy vo-
calization, such as the fully vocalized Qur’anic passage seen in figure 4.8, which
are poorly transcribed. Figure 4.8 is an extreme case that is an outlier in the al-
Abhath data, but it clearly illustrates this problem. Moreover, although al-Abhath
journal articles are not heavily vocalized, this could be a significant issue in other
Arabic texts that are heavily vocalized.

In general, OpenITI has traditionally followed the practice of not transcribing
Arabic diacritics in our training data production (with one exception discussed

96 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

(a) Missed fatḥa tanwīn (b) Correctly transcribed fatḥa tanwīn from
same page as figure 4.9a.

Figure 4.9: Transcription of fatḥa tanwīn

below). We have followed this practice for three reasons: (1) vocalization is of-
ten inconsistent and sometimes incorrect (so it is better to allow the individual
scholar to determine the proper vocalization based upon their reading); (2) vocal-
ization can interfere with computational textual analysis (computational linguists,
for example, typically remove it in their normalization of texts in preparation for
analysis); and, (3) not all full-text search algorithms support diacritics in a useful
way. There is one problem with this approach, however, that we have found in
both this study and another concurrent one on Persian OCR. If there is a sufficient
amount of diacritics in the original text, the model will “learn” to ignore diacritical
marks and it will not interfere with character recognition. However, if the orig-
inal text is lightly vocalized and not enough examples of diacritics are contained
in the training data, then it appears that the model does not “learn” well enough
to ignore the diacritics and thus their presence in a word interferes with accurate
character recognition. This situation presents us with a dilemma around which
we need to develop a set of guidelines: we do not want to include diacritics be-
cause of the aforementioned reasons and because including them in the training
data will require even more time expenditure in the training data generation pro-
cess, but by not including them in texts with light vocalization (e.g., al-Abhath,
some of the Persian texts in our other tests) character recognition is reduced in
words with them.

4.4.5 Missed Fatḥa Tanwīn

The exception to our traditional treatment of diacritics discussed in the previous
section is the case of the Arabic diacritic fatḥa tanwīn .(اً) As observed in the
CER reports, missed fatḥa tanwīns were a significant source of errors. We also
observed this in the manual review of the OCR output (see figure 4.9a).

Although in the past we have not transcribed fatḥa tanwīns in the training
data production process, we did include fatḥa tanwīns in the JSTOR pilot train-
ing data. In many cases the fatḥa tanwīns were transcribed correctly (see fig-
ure 4.9b for comparison sake). However, as both the CER reports and manual
review showed, they still remained a relatively common source of errors. The

4.4. OPENITI ACCURACY STUDY 97

reason(s) that fatḥa tanwīn remained a problem in the transcription process could
be related to either (1) its lack of sufficient representation in the training data, or
(2) its position in the line segment—i.e., in some cases it might be partially getting
cut off since it appears so high in the line segment box. In either case, we are
inclined to ignore fatḥa tanwīns in future training data production.

(a) Missed hamza (b) Missed hamza on alif (c) Inserted extra hamza

Figure 4.10: Misrecognized hamzas

4.4.6 Punctuation Marks, Number, and Other Non-Alphanumeric
Symbols

Punctuation marks, numbers, and other non-alphanumeric symbols (e.g., $) - es-
pecially representatives of each of these categories that were less commonly used
in al-Abhath - were another recurring source of errors. The way to address this
problem is by making sure these signs, symbols, and numbers are sufficiently
represented in the training data.

4.4.7 Hamzas

The hamza character was another common source of errors in the output, both in
the sense that it was misrecognized (see figure 4.10) and inserted in instances in
which it was not in the original scan (see figure 4.10c).

Again, this is a case in which more focused training data will improve recog-
nition rates—an intervention we must make at the training data generation phase
of the OCR process.

4.4.8 Atypical Text Presentation Format andKashīda/tatwīl (elon-
gation character)

There are a series of errors that occur in the context of atypical presentation for-
mats/atypical character patterns. These range from the use of the Arabic elonga-
tion character (kashīda/tatwīl) (see figure 4.11a) to various types of table formats
(see figures 4.11b,4.11c,4.11d).

Although the character recognition in these examples is usually not as poor
as in figure 4.11c, we still observed that errors seem to appear more frequently
in such contexts (see the better recognition in figures 4.11a and 4.11d). More

98 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

training data from these atypical presentation formats and character patterns will
help improve accuracy, but improvements in line segmentation are also necessary
for such examples as figure 4.11c.

Full view of our OCR post-correction interface is shown in figures 4.11, 4.12
in order to show the broader page context from which the highlighted lines are
drawn and displayed in a line pair (image of line and its digital transcription) in
the pop-up. Specifically, please note that in figure 4.11d this line is drawn from a
larger table and in figures 4.12, 4.13 this line is drawn from a page with significant
admixture of both Arabic and Persian in the text.

(a) Read letter ‘sin’ into word due to
kashīda/tatwīl (elongation).

(b) Example of table format

(c) Example of particularly poor transcription
on an atypical (table) presentation format.

(d) Example of particularly poor transcription
on another atypical (table) presentation format.

Figure 4.11: Atypical presentation forms

4.4.9 Non-Arabic Language

There were two significant types of transcription errors that were related to the
presence of non-Arabic language in the original text. The first, seen in figure 4.12,
is the poor transcription of non-Arabic characters on a page that predominantly
contains Arabic text. (Figure 4.12 represents a particularly poor transcription of
the non-Arabic text; most transcriptions in such instances were much more accu-
rate.)

The second type of error that occurred in the context of non-Arabic script was
the inverse: that is, poor transcription of Arabic text on a page that is predomi-
nantly composed of a non-Arabic language (see figure 4.13).

4.4. OPENITI ACCURACY STUDY 99

Figure 4.12: Example of particularly poor transcription of non-Arabic language in a page
of primarily Arabic text.

Figure 4.13: Page with substantial non-Arabic language interferes with Arabic OCR.

100 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

This is a known problem that can be addressed through the development of
multi-language OCR models - a project that OpenITI is currently working on.

4.4.10 Poor Scan Quality

(a) Black shading in back-
ground of letters.

(b) Missing print in letter.

Figure 4.14: Examples of poor scan quality

Poor scan/print quality—including, errant marks (see figure 4.14a), lack of ink (see
figure 4.14b), misplaced letters/punctuation (figure 4.7e) - is not a particularly
common source of errors in the al-Abhath data, but there is a critical mass of
errors caused by this problem.

This problem cannot be addressed in the OCR process. OCR accuracy is (ob-
viously) limited by the quality of the original scans.

4.4.11 Line Segmentation

(a)Missed line segments (from outside contrac-
tor accuracy review).

(b) Large header segmented as one line (from
outside contractor accuracy review).

Figure 4.15: Examples of missegmentation

One final error type that should be mentioned is line segmentation errors (see
figures 4.15,4.16).

This type of error was not commonly found in the OpenITI manual accuracy
assessment (figure 4.15 were errors identified in the outside contractor’s review of
the OCR output), but there were a few cases in which the line segmenter missed a
section or a word of a line. Typically this would occur in atypical text presentation
formats, such as the table seen in figure 4.16.

4.4. RECOMMENDATIONS FOR ARABIC-SCRIPT OCR 101

Figure 4.16: Line segmenter missed final word in the line.

Truncation of Arabic text lines is a known problem for the Latin-script-optim-
iz-ed line segmenter in the version of Kraken that was used for this study. The
implementation of a novel trainable layout analysis method has largely solved
this issue[3].

4.5 Recommendations and Future Avenues of Devel-
opment for Open Source Arabic-script OCR

The results of this study indicate that work in the following three areas could
generate significant improvements for open source Arabic-script OCR:

1. Systematic training data production. Instead of generating training data
in a completely randomized (or haphazard) manner (as is often done),21

future Arabic-script OCR projects need to study the particularities of the
documents they plan to OCR and make sure that the pages selected for
training data production contain a sufficient number of the less common
ligatures, headers, diacritics, footnote text, numbers, and other particular-
ities of the works to be OCR’d. This more systematic approach to training
data production will require more time upfront. But themodels produced in
this manner could potentially achieve much higher baseline accuracy and
reduce the burden of postcorrection.

2. Generalized models. One of the most exciting results from this study was
the significant improvements in accuracy achieved with the generalized
Arabic model. The success of this approach tentatively suggests that if we
continue to add training data sets to this generalized model we can antic-
ipate to achieve higher levels of accuracy on both typefaces on which we
have already trained models and new typefaces for which we have no train-
ing data yet. If this pattern holds true in future studies, we would be able
to gradually reduce the time and resources necessary to achieve high level
accuracy (>97%) on new typefaces in the future. However, more research
on generalized models is needed as both the optimal training data selection,
including artificial data produced by methods such as [11], for such models
and the actual variance on an open text corpus is currently unknown.

21We followed this randomized training data generation approach in the past [7]. See [10] for
an example of a dataset resulting from haphazard convenience sampling, i.e. harvesting data from
sources on which existing methods already produce near-perfect results.

102 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

3. There are a range of technical improvements—e.g., multi-language models,
improved line segmentation and layout analysis—that could significantly
improve OCR accuracy numbers. Efforts are currently underway in both
the eScripta project (of which Kiessling is a team member) and OpenITI’s
Arabic-script OCR Catalyst Project (AOCP) to address each of these tech-
nical issues.22

Acknowledgements

We would also like to thank David Smith (Northeastern University) for his sug-
gestions and feedback on this study. This work was supported by a subgrant
from JSTOR from their National Endowment for the Humanities-funded feasibil-
ity study on high-quality digitization and digital preservation of Arabic scholarly
journals (grant number PW-253861-17).

Competing Interests

This work was supported by a subgrant from JSTOR from their National Endow-
ment for the Humanities-funded feasibility study on high-quality digitization and
digital preservation of Arabic scholarly journals (grant number PW-253861-17).

Author Roles

Authors are listed in alphabetical order. The corresponding author is mtm.

Conceptualization bk, mtm

Data curation bk, gk, mtm, ks

Formal analysis bk

Funding acquisition mtm

Investigation bk, gk, mtm, ks

Methodology bk, mtm

Project administration mtm

Resources bk, mtm

Software bk

Supervision mtm

22For more information on the eScripta project, please see: https://escripta.hypotheses.org/. For
more information on OpenITI’s AOCP project, please see: https://openiti.org/projects/openitiaocp.

REFERENCES 103

Validation bk

Visualization bk, mtm

Writing - original draft bk, mtm

Writing - review & editing bk, gk, mtm, ks

References

[2] M. Alghamdi and W. Teahan, “Experimental evaluation of arabic ocr sys-
tems,” PSU Research Review, 2017.

[3] B. Kiessling, D. Stökl Ben Ezra, and M. T. Miller, “BADAM: A Public Data-
set for Baseline Detection in Arabic-Script Manuscripts,” in Proceedings of
the 5th International Workshop on Historical Document Imaging and Pro-
cessing, HIP@ICDAR 2019, Sydney, NSW, Australia, September 20-21, 2019,
ACM, 2019, pp. 13–18.

[4] C. Clausner, A. Antonacopoulos, N.McGregor, andD.Wilson-Nunn, “ICFHR
2018 competition on recognition of historical arabic scientific manuscripts
- RASM2018,” in 16th International Conference on Frontiers in Handwriting
Recognition, ICFHR 2018, Niagara Falls, NY, USA, August 5-8, 2018, IEEE
Computer Society, 2018, pp. 471–476. doi: 10 . 1109 / ICFHR- 2018 . 2018 .
00088.

[5] A. Keinan-Schoonbaert. “Results of the RASM2019 competition on recog-
nition of historical arabic scientific manuscripts.” (2019), [Online]. Avail-
able: https://blogs.bl.uk/digital-scholarship/2019/09/rasm2019-results.
html (visited on 09/13/2019).

[6] ——, “Using transkribus for arabic handwritten text recognition.” (2020),
[Online]. Available: https://blogs.bl.uk/digital-scholarship/2020/01/using-
transkribus- for - arabic - handwritten- text - recognition .html (visited on
01/20/2020).

[7] B. Kiessling, M. T. Miller, G. Maxim, S. B. Savant, et al., “Important New
Developments in Arabographic Optical Character Recognition (OCR),”Al-
ʿUṣūr al-Wusṭā, vol. 25, pp. 1–13, 2017.

[8] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks,” in Proceedings of the 23rd international conference
on Machine learning, ACM, 2006, pp. 369–376.

[9] B. Kiessling, “Kraken - A Universal Text Recognizer for the Humanities,”
Proceedings of the DH, 2019.

[10] U. Springmann, C. Reul, S. Dipper, and J. Baiter, “Ground truth for training
OCR engines on historical documents in german fraktur and early modern
latin,” J. Lang. Technol. Comput. Linguistics, vol. 33, no. 1, pp. 97–114, 2018.

104 CHAPTER 4. ADVANCES IN ARABIC OCR: A CASE STUDY

[11] T.Milo andA. G.Martıńez, “A new strategy for arabic ocr: Archigraphemes,
letter blocks, script grammar, and shape synthesis,” in Proceedings of the
3rd International Conference on Digital Access to Textual Cultural Heritage,
2019, pp. 93–96.

Part II

Layout Analysis and
Segmentation

Chapter 5

BADAM: A Public Dataset for
Baseline Detection in
Arabic-script Manuscripts

An updated version of the dataset that contains annotations for line orientation is
available at https://doi.org/10.5281/zenodo.3274427. This chapter has been pub-
lished as B. Kiessling, D. Stökl Ben Ezra, and M. T. Miller, “BADAM: A Public
Dataset for Baseline Detection in Arabic-Script Manuscripts,” in Proceedings of
the 5th International Workshop on Historical Document Imaging and Processing,
HIP@ICDAR 2019, Sydney, NSW, Australia, September 20-21, 2019, ACM, 2019,
pp. 13–18.

108 CHAPTER 5. BASELINE DETECTION IN ARABIC MANUSCRIPTS

Abstract

The application of handwritten text recognition to historical works is highly de-
pendant on accurate text line retrieval. A number of systems utilizing a robust
baseline detection paradigm have emerged recently but the advancement of lay-
out analysis methods for challenging scripts is held back by the lack of well-
established datasets including works in non-Latin scripts. We present a dataset
of 400 annotated document images from different domains and time periods. A
short elaboration on the particular challenges posed by handwriting in Arabic
script for layout analysis and subsequent processing steps is given. Lastly, we
propose a method based on a fully convolutional encoder-decoder network to ex-
tract arbitrarily shaped text line images from manuscripts.

5.1 Introduction

Layout analysis as a major preprocessing step for text recognition is currently
considered the limiting factor in the digitization of historical documents both
handwritten and printed, especially so for non-Latin writing systems such as Ara-
bic. With the rise of Digital Humanities and large scale institutional digitization
projects a significant community of researchers engaged in the improvement of
layout analysis on historical material has formed.

The most visible expression of this is a long-standing series of competitions
evaluating either layout analysis in isolation [2]–[8] or as part of a larger text
recognition task such as [9]. Unfortunately, these competitions concern them-
selves almost exclusively with Western texts written in Latin script despite some
efforts to organize competitions on material that is insufficiently treated by cur-
rent methods.

This euro- and anglocentric focus in document analysis research has changed
to some extent recently. Although not directly connected to layout analysis [10]
presented binarization, keyword spotting, and isolated character recognition chal-
lenges on Balinese palm leaf manuscripts. [11] included a layout analysis task on
Arabicmanuscripts but notably lacked a publicly available training dataset, except
15 representative images for informational purposes, and participation remained
rather modest.

Recognizing that there is an obvious need for a large dataset of non-Western
texts we propose a dataset based on one of the most geographically and chrono-
logically extensivemanuscript cultures, the Arabic and Persian one. This choice is
motivated by multiple reasons: the exceptional size of the available material cov-
ering a wide range of topics and styles, complexity of layout rarely encountered in
Latin manuscripts, and a large community of scholars working on Arabic-script
manuscripts.

In addition, we strive to provide a dataset sufficient in size to support devel-
opment of state-of-the-art machine learning approaches to layout analysis which

5.2. DATASET 109

despite increasing popularity for Latin documents [12]–[14] has seen limited up-
take for other writing systems.

5.1.1 Related work

(a) Expulsion of text into the margin

(b) Per-word slanted baselines

(c) Heaping of words at end of line

(d) Pseudo-columns in Persian poetry

Figure 5.1: Aspects of Arabic-script handwriting

Existing layout analysis datasets
capture text lines in a variety
of data models. These range
from polygons [11], [15], [16],
to sub-word bounding boxes
[17], down to explicit pixel la-
beling [4]. Some others such
as [5], [9] also include exten-
sive metadata such as reading
order, text order, or full tran-
scriptions.

A new paradigm reduc-
ing text line segmentation to
the successful detection of a
continuous sequence of line
segments has been established
by the ICDAR 2017 Competi-
tion on Baseline Detection [8].
There are a plethora of bene-
fits to this minimalistic model:
better expression of highly
curved baselines in compari-
son to bounding boxes, lower
complexity of training data
production than full polygons,
easier modelling by semantic
segmentation models because
of object separability, and the existence of an evaluation scheme [18] that is more
directly linked to real world recognition error rates than raw pixel accuracy.

5.2 Dataset

The publicly available and freely licensed BADAM dataset contains 400 annotated
scanned page images samples from four digital collections of Arabic and Persian
language manuscripts.

110 CHAPTER 5. BASELINE DETECTION IN ARABIC MANUSCRIPTS

5.2.1 Baselines and Arabic Typography

(a) Annotation of dislocated fragments in mar-
gin

(b) Holes in writing surface

(c) Per-word baseline annotation through imag-
inary baseline

(d) Separate annotation of heaped elements
with complete overlap vs single baseline for
partial overlap

(e) Joint annotation of half-verses as a single
baseline

(f) Separated annotation of slanted half-verses

Figure 5.2: Examples of annotation guideline
application (baseline indicated with opaque blue
polyline)

A term arising chiefly from West-
ern typography, the baseline is
defined as the virtual line upon
which most characters rest with
descenders extending below.

While many Arabic handwrit-
ten texts present only a single
baseline per logical text line a
large number of documents, espe-
cially calligraphic works in Thu-
luth and Nastaliq style, display
per word slanted baselines (fig-
ure 5.1b), multiple baseline levels,
and dislocation of fragments into
the margins or above other text in
the line (heaping) (figures 5.1c and
5.1a). Most of these cases fulfill
the purpose of text justification as
hyphenation has been considered
unacceptable in Arabic writing for
the vast majority of the script’s
use.

As an additional complica-
tion, verses in Arabic poetry al-
most exclusively consist of two
hemistichs, with the half-verse
break forming pseudo-columns as
shown in figure 5.1d. In some
cases there is a combination of
pseudo-columns and true multi-
column text.

We therefore adopt a modified
baseline definition that is oriented
towards the current capabilities of
text line recognition and reading
order determination systems. Text
lines are annotated with a single
baseline extended through thema-
jority of the line text, except in the
cases of majority-overlap heaping
(figure 5.2d) and dislocation into

5.2. DATASET 111

the margin (figure 5.2a). In the case of slanted per-word baselines without hor-
izontal overlap a baseline is drawn through an imaginary rotation point at each
word (figure 5.2c). A baseline is split in multi-column text and at marginalia/main
body boundaires. The hemistichs of poems are annotated as a single baseline per
verse (figure 5.2e), except in the case of 45 degree slanted half-verses (figure 5.2f)
that cannot easily be connected. In fragmentarymaterial the baseline is continued
through faded ink and split at holes in the writing surface (figure 5.2b).

These annotation guidelines amount to a conservative estimation of the ca-
pabilities of layout analysis systems, specifically their capacity to associate dis-
connected elements on the page belonging to the same logical line. It is relatively
easy to extend the dataset with a more abstract data model that groups multiple
baselines into a logical text line and we expect to do so in the future.

5.2.2 Data

42 manuscripts were randomly sampled from the collections of the Qatar Digi-
tal Library (15), the digital collection of the Walters Art Museum (13), the Bei-
necke Rare Book and Manuscript Library (6), and University of Pennsylvania Li-
braries manuscript collection (8). 10 single page images chosen were annotated
for each manuscript with the labelme1 image annotation tool with the exception
of 4 shorter manuscripts from the Beinecke Library containing only 3 to 7 pages.
Pages were selected manually for being representative of each work. Overall,
there are 10770 lines in the corpus with a range of 3 to 176 lines per manuscript
page (𝜇 = 30.3, 𝜎 = 22.1). The majority of the corpus is written in the Naskh
style with the remainder being split between Thuluth, Nastaliq, and Kufic. Other
regional styles such as ones used in Ottoman writing are currently absent.

A variety of writings is represented in the corpus:

1. Medical treatises including poetry with extensive marginalia

2. Works on logic, commentary on astronomy and arithmetic

3. Illuminated prayer books and religious texts

4. Texts on law such as legal glossaries

5. Illuminated poetic works in Persian and Arabic

6. Treatises on the legality and rules of chess including extensive diagrams
and marginalia

The scan quality of the material varies according to the collection it was
sourced from. While all are produced to a professional standard, the resolution
varies considerably from 200dpi in the QDL, to 300 dpi in material from the Wal-
ters and Beinecke, and 500dpi at the University of Pennsylvania.

1https://github.com/wkentaro/labelme

112 CHAPTER 5. BASELINE DETECTION IN ARABIC MANUSCRIPTS

A predefined random split into a 320 page training set and a 80 page test set
is provided. The annotation is available in both PAGE XML and bit mask image
formats. The corpus including both sampled images and ground truth is publicly
released under CC-BY-SA 2.0 and available for download on the Zenodo2 research
data archive.

5.3 Baseline Method

Our method consists of two main stages: a pixel level classification of baselines
followed by a lightweight baseline extraction step. We call this approach convo-
lutional baseline layout analysis (C-BLLA).

In the first stage a fully convolutional encoder-decoder neural network is used
to assign each pixel to a either background or baseline. The second stage is a
script- and layout-agnostic postprocessing step operating on the heatmap pro-
duced by the neural network. Baselines are vectorized into polylines which are
then used to extract rectified rectangular line image suitable for processing by an
HTR line recognition system.

5.3.1 Pixel Labeling

The dense pixel-labelling of baselines is performed with a modified U-Net ar-
chitecture [19]. U-Nets and similar fully convolutional networks [20] are state-
of-the-art for general semantic segmentation tasks and have achieved excellent
results on the cBAD dataset [8].

The backbone model consists of the first 3 blocks of a 34-layer ResNet in the
contracting path followed by 4 3×3 convolution-transposed convolution blocks in
the expanding paths with group normalization [21] (𝐺 = 32) and dropout (𝑝 =
0.1) employed after each layer and block respectively. A final 1×1 convolutional
layer reduces the dimensionality of the input-sized 64-channel feature map to 1,
followed by a sigmoid activation. An overall diagram of the network is shown in
figure 5.4.

In order to improve generalization, the contracting path is pretrained on Im-
ageNet classification and kept fixed during training of the upsampling blocks.
Trainable layers are initialized using the He scheme [22]. We use the Adam op-
timizer with moderate weight decay (𝛼 = 10−4, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝑤 = 10−6)
and early stopping on the binarized F1 score of the validation set. The network is
trained on whole color images with the inputs being scaled to a size of 1200 pixels
on the shortest edge to limit memory usage.

5.3.2 Baseline Estimation

The final sigmoid activation map has to be binarized prior to baseline vectoriza-
tion. To suppress noise resulting in a higher number of skeleton branches caus-

2https://doi.org/10.5281/zenodo.3274428

5.3. BASELINE METHOD 113

Figure 5.3: 4 sample pages from the corpus

114 CHAPTER 5. BASELINE DETECTION IN ARABIC MANUSCRIPTS

64 i/2

64 i/4

128 i/8

256 i/1
6 256 128 i/8

128 64 i/4

64 64 i/2

64 64 i

i

Figure 5.4: Architecture of the baseline labelling network. Dropout and batch/group
normalization layers are omitted. (beige: convolutional layers + ReLU, red: max pooling,
grey: ResNet blocks, blue: transposed convolutions, purple: convolution + sigmoid)

ing a slow down of end point calculation in the next step, the raw heatmap is
smoothed with a gaussian filter (𝜎 = 1.5) first, followed by binarization with hys-
teresis thresholding (𝑡𝑙𝑜𝑤 = 0.3, 𝑡ℎ𝑖𝑔ℎ = 0.5)

The binarized image is then skeletonized [23] and 1-connected end point can-
didates are extracted with a discrete convolution. As the skeleton often contains
small branches, determining the actual end points of the centerline skeleton can be
challenging. We treat all points along the skeleton as nodes in a graph and assume
the true end points are the ones furthest apart on the skeleton. The actual baseline
is thus the path of the maximum graph diameter of all possible candidate com-
binations. This path is then vectorized into a polyline with the Douglas-Peucker
algorithm [24].

5.3.3 Line extraction

Vectorized baselines have to be converted into rectangular line images for clas-
sification by HTR recognition systems. Given that the baselines found by the
system can be highly curved, even circular or spiral-formed, each polyline should
be rectified by projecting its line segments and their respective environment con-
secutively onto a straight baseline.

For each line segment we compute an orthogonal vector of appropriate length
including the desired area around the baseline determining the control points
above and below the segment at each step. The rasterizations produced by Bre-
senham’s line between both control points at each step are then appended to the
rectified line.

According to the results reported in [25] and our own verification on a typeset
synthetic dataset the size of the environment extracted around the baseline is not
crucial to recognition accuracy as long as the line contents are contained in the

5.3. BASELINE METHOD 115

(a) Splitting of calligraphic writing in
third/fourth line from top.

(b) Misrecognition of vertical text

(c) Incorrect splitting of logical 2-column poetry

(d) Missed heaped letter in top line, correct example on the bottom

Figure 5.5: Common error modes of the LA system

rectified line image. We estimate the per-line environment by thresholding the
input image with [26], calculating connected components under each baseline,
and finding the maximum orthogonal distances of their edges above and below

116 CHAPTER 5. BASELINE DETECTION IN ARABIC MANUSCRIPTS

the baseline.

5.4 Evaluation

We evaluated the proposed method on the 80 page test set using the method de-
scribed in [18]. The results are shown in table 5.1. The metrics are slightly lower
for our dataset than on the Latin cBAD dataset with a large gap in recall caused
by a failure to extract heaped fragments (figure 5.5d) and vertical writing (fig-
ure 5.5b). On the other hand many missegmented lines are ornate or slanted
(figure 5.5a), poetry (figure 5.5c) indicating that the network has not been able
to learn a coherent model for these features on the dataset.

(a) Detection of lines containing differently colored keywords

(b) Detection of lines illuminated in gold

(c) Extraction of labels in a diagram

Figure 5.6: Strengths of the C-BLLA method

Apart from the higher flexibility of the baseline paradigm in comparison to
older text line modelling approaches, C-BLLA has a number of other strengths.

5.5. CONCLUSION 117

The method is largely robust against changes in text coloration such as red key-
words (figure 5.6b) or lines illuminated in gold (figure 5.6b) without the need for
binarization of input images. Further it is able to ignore both border elements
(support platforms, scales, and holding clips) and illustrations without an explicit
text content extraction step. As illustration are processed jointly, textual labels
can be detected albeit as a unstructured collection of lines (figure 5.6c).

There are some limitations to semantic segmentation in the context of layout
analysis. These methods are inherently incapable of extracting overlapping and
crossing text lines. This is exacerbated by the downsampling performed before
inference which can cause inadvertent line merging in documents with closely
written interlinear notes or commentary directly adjacent to main text.

The overall agreement in accuracy between the different datasets indicates
that modern semantic segmentation methods can be employed for a wide vari-
ety of scripts when coupled with appropriate script-agnostic postprocessing. It
remains to be seen if the accuracy gap between both datasets can be closed with
general purpose systems that are not optimized for a particular set or if script-
specific adaptations, such as specialized postprocessing, will be necessary.

Table 5.1: Results for the cBAD 2017 dataset and BADAM

P-val R-val F-val

cBAD Simple Track

BYU 0.878 0.907 0.892
dhSegment 0.943 0.939 0.941
ARU-Net 0.977 0.980 0.978
C-BLLA 0.944 0.966 0.954

BADAM

C-BLLA 0.941 0.901 0.924

5.5 Conclusion

We presented a new dataset consisting of 400 annotated page scans of Arabic and
Persian manuscripts spanning a wide range of topics and dates of production.
Documents in the dataset present various degradations and large differences in
the complexity of layout and writing styles. Many of the difficulties posed by
them are specific to the Arabic script and should challenge the generalization
power of even up-to-date layout analysis methods optimized for Latin script his-
torical documents. While acknowledging that the annotation guidelines oriented
on capabilities of current recognition algorithms will likely evolve in the future,
our work contributes a solid foundation for comparable evaluation for document

118 CHAPTER 5. BASELINE DETECTION IN ARABIC MANUSCRIPTS

analysis researchers.
In addition we describe a baseline system for line extraction from the corpus

and evaluate its results, showing that even state-of-the-art methods have diffi-
culties segmenting challenging Arabic handwriting as accurately as Latin manu-
scripts.

References

[2] B. Gatos, N. Stamatopoulos, and G. Louloudis, “ICDAR2009 handwriting
segmentation contest,” International Journal on Document Analysis and
Recognition, vol. 14, no. 1, pp. 25–33, 2011. doi: 10.1007/s10032-010-0122-8.

[3] A. Antonacopoulos, S. Pletschacher, D. Bridson, and C. Papadopoulos, “IC-
DAR 2009 Page Segmentation Competition,” in 10th International Confer-
ence on Document Analysis and Recognition, ICDAR 2009, Barcelona, Spain,
26-29 July 2009, IEEE Computer Society, 2009, pp. 1370–1374. doi: 10.1109/
ICDAR.2009.275.

[4] B. Gatos, N. Stamatopoulos, and G. Louloudis, “ICFHR 2010 Handwriting
Segmentation Contest,” in International Conference on Frontiers in Hand-
writing Recognition, ICFHR 2010, Kolkata, India, 16-18 November 2010, IEEE
Computer Society, 2010, pp. 737–742. doi: 10.1109/ICFHR.2010.120.

[5] A. Antonacopoulos, C. Clausner, C. Papadopoulos, and S. Pletschacher,
“Historical document layout analysis competition,” in Document Analysis
and Recognition (ICDAR), 2011 11th International Conference on, IEEE, 2011,
pp. 1516–1520.

[6] ——, “Icdar 2013 competition on historical newspaper layout analysis (hnla
2013),” in Document Analysis and Recognition (ICDAR), 2013 12th Interna-
tional Conference on, IEEE, 2013, pp. 1454–1458.

[7] M. Murdock, S. Reid, B. Hamilton, and J. Reese, “Icdar 2015 competition
on text line detection in historical documents,” in Document Analysis and
Recognition (ICDAR), 2015 13th International Conference on, IEEE, 2015,
pp. 1171–1175.

[8] M. Diem, F. Kleber, S. Fiel, T. Grüning, and B. Gatos, “cBAD: ICDAR2017
competition on baseline detection,” in Document Analysis and Recognition
(ICDAR), 2017 14th IAPR International Conference on, IEEE, vol. 1, 2017,
pp. 1355–1360.

[9] A. Antonacopoulos, C. Clausner, C. Papadopoulos, and S. Pletschacher,
“ICDAR 2015 competition on recognition of documents with complex lay-
outs - RDCL2015,” in Document Analysis and Recognition (ICDAR), 2015
13th International Conference on, IEEE, 2015, pp. 1151–1155.

REFERENCES 119

[10] J.-C. Burie, M. Coustaty, S. Hadi, et al., “ICFHR 2016 competition on the
analysis of handwritten text in images of balinese palm leaf manuscripts,”
in Frontiers in Handwriting Recognition (ICFHR), 2016 15th International
Conference on, IEEE, 2016, pp. 596–601.

[11] C. Clausner, A. Antonacopoulos, N.McGregor, andD.Wilson-Nunn, “ICFHR
2018 competition on recognition of historical arabic scientific manuscripts
- RASM2018,” in 16th International Conference on Frontiers in Handwriting
Recognition, ICFHR 2018, Niagara Falls, NY, USA, August 5-8, 2018, IEEE
Computer Society, 2018, pp. 471–476. doi: 10 . 1109 / ICFHR- 2018 . 2018 .
00088.

[12] B. K. Barakat, A. Droby, M. Kassis, and J. El-Sana, “Text Line Segmenta-
tion for Challenging Handwritten Document Images using Fully Convo-
lutional Network,” in 16th International Conference on Frontiers in Hand-
writing Recognition, ICFHR 2018, Niagara Falls, NY, USA, August 5-8, 2018,
IEEE Computer Society, 2018, pp. 374–379. doi: 10.1109/ICFHR-2018.2018.
00072.

[13] L. Quirós, “Multi-task handwritten document layout analysis,” arXiv arX-
iv:1806.08852, 2018.

[14] M. Fink, T. Layer, G. Mackenbrock, and M. Sprinzl, “Baseline Detection
in Historical Documents Using Convolutional U-Nets,” in 13th IAPR In-
ternational Workshop on Document Analysis Systems, DAS 2018, Vienna,
Austria, April 24-27, 2018, IEEE Computer Society, 2018, pp. 37–42. doi:
10.1109/DAS.2018.34.

[15] A. Fischer, V. Frinken, A. Fornés, and H. Bunke, “Transcription alignment
of latin manuscripts using hidden markov models,” in Proceedings of the
2011Workshop on Historical Document Imaging and Processing, ACM, 2011,
pp. 29–36.

[16] F. Simistira, M. Seuret, N. Eichenberger, et al., “DIVA-HisDB: A precisely
annotated large dataset of challenging medieval manuscripts,” in Frontiers
in Handwriting Recognition (ICFHR), 2016 15th International Conference on,
IEEE, 2016, pp. 471–476.

[17] M. Kassis, A. Abdalhaleem, A. Droby, R. Alaasam, and J. El-Sana, “VML-
HD: The historical arabic documents dataset for recognition systems,” in
Arabic Script Analysis and Recognition (ASAR), 2017 1st International Work-
shop on, IEEE, 2017, pp. 11–14.

[18] T. Grüning, R. Labahn, M. Diem, F. Kleber, and S. Fiel, “READ-BAD: A
new dataset and evaluation scheme for baseline detection in archival doc-
uments,” in 13th IAPR International Workshop on Document Analysis Sys-
tems (DAS), IEEE, 2018, pp. 351–356.

120 CHAPTER 5. BASELINE DETECTION IN ARABIC MANUSCRIPTS

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention, Springer, 2015,
pp. 234–241.

[20] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 3431–3440.

[21] Y. Wu and K. He, “Group normalization,” CoRR, vol. abs/1803.08494, 2018.
arXiv: 1803.08494.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpass-
ing Human-Level Performance on ImageNet Classification,” in 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, IEEE Computer Society, 2015, pp. 1026–1034. doi:
10.1109/ICCV.2015.123.

[23] T.-C. Lee, R. L. Kashyap, and C.-N. Chu, “Building skeleton models via 3-
D medial surface axis thinning algorithms,” CVGIP: Graphical Models and
Image Processing, vol. 56, no. 6, pp. 462–478, 1994.

[24] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: The International Journal for Geographic Information and
Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[25] V. Romero, J. A. Sanchez, V. Bosch, K. Depuydt, and J. de Does, “Influence
of text line segmentation in handwritten text recognition,” in Document
Analysis and Recognition (ICDAR), 2015 13th International Conference on,
IEEE, 2015, pp. 536–540.

[26] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,”
Pattern Recognition, vol. 33, no. 2, pp. 225–236, 2000.

Chapter 6

A Modular Region and Text
Line Layout Analysis System

This chapter has been published as B. Kiessling, “A Modular Region and Text
Line Layout Analysis System,” in 2020 17th International Conference on Frontiers
in Handwriting Recognition (ICFHR), IEEE, 2020, pp. 313–318. The layout anal-
ysis method presented herein corresponds to the current implementation in the
Kraken engine apart from slight changes in line end marker shapes and postpro-
cessing.

122 CHAPTER 6. REGION AND TEXT LINE LAYOUT ANALYSIS

Abstract

High quality document layout analysis is fundamental to the accurate processing
of handwritten textual material, on both the level of individual lines and higher
order zones demarking textual and non-textual content. We present an artificial
neural network based approach to prediction of either that is implemented as
part of a libre optical character recognition package and highly reconfigurable
for a variety of tasks. Experiments on different openly available datasets show
competitive results to state-of-the-art methods.

6.1 Introduction

Over the last decades tremendous amounts of historical handwritten documents
have been digitized by archives, libraries, and other institutions engaging in the
preservation of cultural heritage. Nevertheless the vast volume of scanned im-
ages, often with lack of metadata, results in the majority of this material being
inaccessible in any meaningful way to scholars and the wider public. Optical
Character Recognition1 and Keyword Spotting aim to be technical solutions to
the exploitation of large amounts of scanned textual data.

Current OCR systems operate largely on line-level data, i.e. the module in the
OCR pipeline performing conversion into text does so one line image at a time.
Therefore, a prior method is needed to extract these line images from whole doc-
ument images. In addition, many documents require higher level understanding
of how lines relate to each other for meaningful interaction. The usual way these
higher level relations are modelled is through zoning, i.e. splitting a page into re-
gions such as main text, marginalia, headings, illustrations, etc. Importantly, the
nature of those regions can vary considerably between applications and material;
they can often overlap, lines might extend across them or not be in any region at
all. Consequently, text line extraction and region detection are arguably the most
important part of an OCR system apart from the actual text recognizer.

As such, robust and accurate historical and handwritten document image
analysis remains an open issue despite the recent advances facilitated by deep
learning methods. Highly curved lines, variable orientation, interlinear notes,
and multiple texts on the same page remain challenging to even state of the art
layout analysis systems. Further, cultural bias in the conception of methods and
data models continues to be a persistent problem: [2] shows the large amount
of adaptation necessary to apply a seemingly script-neutral line model to Arabic
manuscripts.

For our purposes we consider layout analysis along two principal axes. The
geometric axis deals with the location, shape, and relations of found entitites, e.g.
the by now obsolete character segmentation, text line extraction, and region de-

1Asmethods have converged considerably we do not distinguish between recognition of printed
(OCR) and handwritten text (HTR)

6.1. INTRODUCTION 123

tection. Text line extraction refers to the locating of individual text lines in the
document images. In most modern LA systems text lines are the smallest unit of
output, albeit for specialized tasks like scene text recognition subdivisions into
words is also widespread. Region detection aims to find higher level, almost ex-
clusively structural, zones, both textual and not, in document images.

The semantic axis concerns itself with the functional nature of detected enti-
ties, such as titles, illustrations, apparatus criticus, …. While not strictly neces-
sary for most applications and often neglected outside of tools tailored for spe-
cific input data, enriching with semantic information can both boost raw metrics
through allowing better incorporation of domain knowledge and aid in human
understanding by improving output structuring, such as suppressing certain an-
cillary textual components.

Of note is that the focus of most methods is limited to a single or a subset of
the tasks and axes. For example, no method could be found that allows semantic
classification of both region and text line detection output simultaneously. In
contrast, our method admits geometric and semantic classification on both text
lines and regions while not requiring either.

Our method is implemented as part of a free OCR engine2 which exposes the
full customizability of the method’s layout analysis features to end users. Hence,
we are referring to the system as modular; it is possible to perform a wide range
of tasks, ranging from simple text line extraction to highly specialized analysis
like writing surface defect detection in a unified software package.

6.1.1 Related work

As awell established task in computer vision research a number of comprehensive
surveys of document layout analysis exist [3]–[5].

6.1.2 Text line extraction

The capabilities of text line extraction methods in the literature is to some extent
driven by existing datasets. A variety of formulations for line extraction can be
found in published datasets. These range from polygons [6]–[8], to sub-word
bounding boxes [9], down to explicit pixel labeling [10]. Some others such as
[11], [12] also include extensive metadata like reading order, text order, or full
transcriptions. A recent model [13] reduces text line detection to the extraction
of baselines, i.e. imaginary polylines upon which the text rests or hangs from.
These polylines in combination with a bounding polygon can be ingested by line-
based text recognizers with minimal adaptation while at the same time requiring
only modest effort for manual annotation, encouraging the creation of substantial
training datasets for machine learning based methods.

Themethods employed for text line extraction are just as varied as the the data
models employed. [14], [15] use connected components combined with filtering

2http://kraken.re

124 CHAPTER 6. REGION AND TEXT LINE LAYOUT ANALYSIS

64

128

64 32 32 32 32 32

Figure 6.1: Architecture of the pixel labelling network. Group normalization layers are
omitted. (salmon: 3x3 convolutional layers, dotting indicates dilation by 2x2; purple: 1x1
convolution, blue: bidirectional LSTM blocks, striping indicates row/column time axis;
grey: 1x1 convolution with |𝜏 | filters + sigmoid)

to perform pixel labeling. A common paradigm utilizes projection profiles in one
way or another such as [16] for bounding box extraction, [17], [18] in combina-
tion with seamcarving for polygonal output, or RNN-based artificial projection
profile generation for in-paragraph line splitting in [19]. A common drawback of
the previously mentioned methods is that they operate on binarized input images
which can be difficult to obtain for degraded historical material. [20]–[22] bypass
this requirement through clustering of superpixels that can be obtained directly
from color or grayscale image data to calculate polygons and baselines respec-
tively. A number of deep learning based schemes have been proposed as well:
[23]–[25] apply variants of the U-Net architecture for semantic segmentation.

6.1.3 Region detection

Region detection is almost always performed across both the geometric and se-
mantic axis although they vary in the variety of zone labels they can yield. The
most basic methods such as [26], [27] only distinguish between text and non-text
regions while [28] can in principle be extended to all textual regions determinable
solely by layout relations, and [24], [25], [29], [30] are able to distinguish arbitrary,
non-overlapping regions with appropriate training data.

Like for text line extraction [24], [25], [29] variants of convolutional encoder-
decoder networks are popular albeit pixel classifiers on handcrafted features [26],
[27] exist. [28] performs clustering of text lines with convolutional conjugate
graph networks. Definite clause grammars on a feature vocabulary as part of a

6.2. METHOD 125

user-driven interactive segmentation system are shown in [31].

6.2 Method

(a) Ground truth overlay for a page with differ-
ent line orientations (blue: baseline class, red:
start_sep auxiliary class, green: end_sep auxil-
iary class)

(b) Region of Interests of the distance biased en-
ergy map for a sample line of the same image.
(red: border of RoIs, blue: baselines)

(c) Computed seam/bounding polygon on the
masked input image crop. (red: combined up-
per and lower half-seams, blue: baselines)

Figure 6.2: Examples of the data model and
intermediate representations for a page from
the BADAM [2] dataset

This section describes the proposed
method for joint text line and region
layout analysis. Our method can be
divided into three main stages: multi-
label pixel classification, baseline ex-
traction and polygonization, and re-
gion extraction.

The first stage comprises of an
Artifical Neural Network which out-
puts the probability of one or more
classes (baselines, regions, and aux-
iliary classes) being present for each
pixel of the input image. The sec-
ond stage consists of the postprocess-
ing extracting baselines from the aux-
iliary and baseline classes heatmaps,
followed by a seam-carving step in-
corporating the original image to com-
pute the bounding polygons required
for inclusion of our method in a fully
functional OCR pipeline. The final
step extracts the regions from their
respective class heatmaps through a
contour finding algorithm. Notably,
baselines are not restricted to regions,
i.e. they can occur outside of regions
and cross region boundaries.

6.2.1 R-BLLA - Architecture

The overall pixel labeling network
neural network is described in fig-
ure 6.1. Instead of conventional se-
mantic segmentation encoder-decoder
networks whose output is at the same
scale as the input, our architecture de-
codes the learned representations at the downsampled scale of the last layer as
the spatial information of regions and baselines can be recovered with sufficient

126 CHAPTER 6. REGION AND TEXT LINE LAYOUT ANALYSIS

accuracy at this reduced resolution. This architecture roughly halves the memory
requirements in comparison to an equivalent U-Net with a Resnet-50 backbone.

Our network is composed of a convolutional feature extractor, utilizing atrous
convolutions (3 × 3 kernel size with 2 × 2 dilation, ReLU activation) to increase
receptive field without increasing filter size or a more memory intensive deeper
decoding network. This convolutional stack is followed by consecutive unidimen-
sional LSTM layers as proposed for the ReNet architecture [32]. In this configu-
ration the feature maps from the previous layers are swept by a bidirectional 1D
LSTM layer in one direction (vertical or horizontal), followed by a second sweep
over the output by a LSTM layer in the other direction, attaining similar perfor-
mance to more complex multidimensional RNNs. The final decoding layer is a
1 × 1 convolution with |𝜏 | filters and a sigmoid activation function that results in
per class probability maps. Regularization is performed with group normalization
(𝐺 = 32) [33] after each convolutional layer.

The output of the network is a stack of probability maps ̂𝑦 ∈ ℝ𝑤/𝑛×ℎ/𝑛×|𝜏 |
for an input image 𝐼 ∈ ℝ𝑤×ℎ×𝑐 with height ℎ, width 𝑤 , 𝑐 channels, a downsam-
pling factor 𝑛, and |𝜏 | different classes {start_sep, end_sep, 𝑏𝑙0, … , 𝑏𝑙𝑘 , 𝑟 𝑒𝑔0, … , 𝑟𝑒𝑔𝑙 }
for 𝑘 and 𝑙 different baseline and region types. The special classes start_sep and
end_sep are placed at the beginning and end of each baseline respectively and
serve two purposes. First, by explicitly encoding line bounds at locations where
lines can be minimally separated such as multi-column texts we avoid inadvertent
baseline merging during postprocessing. Second, introducing separate indicator
classes for the beginning and end of a line allows the system to determine the
orientation of lines. These auxiliary classes are shared across all possible base-
line classes {𝑏𝑙0, … , 𝑏𝑙𝑘}. As our method is intended to work with most scripts,
including multi-script documents, the beginning and end of each line is not de-
termined by the reading direction of the script. Instead we treat all scripts as
canonically left-to-right, i.e when following the baseline from the start marker
the upper part of the text line is always on the left-hand side (figure 6.2a). This
schememakes processing of arbitrarily oriented lines andmixed script pages with
different reading direction without additional domain knowledge possible. The
generated ground truth for the baselines classes are simple polylines drawn with
a width. Regions are encoded as filled polygons. Thus the ground truth 𝑦 is a
multi-hot encoded tensor.

6.2.2 Training

The network is trained in a supervised manner with binary cross-entropy loss
𝐿(𝑦, ̂𝑦) = 1

𝑁 ∑𝑁
𝑖=0(𝑦 ⋅ log(̂𝑦𝑖) + (1 − 𝑦) ⋅ log(1 − ̂𝑦𝑖)). We adopt the Adam optimizer

with moderate weight decay (𝛼 = 20−5, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝑤 = 10−6). Input
data are whole RGB color images scaled to a height of 1200 pixels.

In linewith conventional practice, data augmentation is applied to the training
set. With a probability of 0.5 a set of randomly parametrized transformations such
as rotation, flipping, blurring, shifting, elastic transformations and hue changes

6.2. METHOD 127

are applied to each image [34].
We train for a fixed number of epochs, per default 50.

6.2.3 Baseline vectorization

Baseline vectorization refers to the extraction of baselines from the probability
map output of the model. This task consists of multiple substeps: superpixel
calculation, triangulation filtering, and interpolation.

As the process is identical for each baseline type we define the output of the
neural network for an arbitrary baseline type 𝐻 = ̂𝑦∶,∶,𝑛, 𝑛 ∈ {𝑏𝑙0, … , 𝑏𝑙𝑘}. 𝑃 =
̂𝑦∶,∶,start_sep, 𝑄 = ̂𝑦∶,∶,end_sep. Further we define a combined separator map 𝐶 =
𝑃 + 𝑄.

In a first step we reduce the number of pixels to be considered for baseline
clustering through calculating a subset 𝑇 of all image pixels. Elements of this
subset are called superpixels (SPs). Determining SPs is largely identical to the al-
gorithm proposed in [35]. For an arbitrary probability map𝐻 the map is binarized
with a threshold 0.2 producing 𝐻𝑏 and skeletonized with a medial axis transfor-
mation that also returns a distance transform of 𝐻𝑏 , resulting in the skeleton 𝐻𝑠
and the average diameter 𝑑𝑐𝑐 of each uneroded baseline. All foreground pixels in
𝐻𝑠 are projected onto 𝐻 and sorted in descending order by their probability (𝑆). 𝑇
is iteratively filled by removing elements from 𝑇 as long as their distance exceed
a minimum (𝑑𝑚𝑖𝑛 = 10) from all other pixels in 𝑆.

Algorithm 1 Triangulation filter

Input: 𝐷𝑇(𝑇), 𝐻 , 𝐶
1: 𝐸 = ∅
2: for 𝑒𝑝,𝑞 ∈ 𝐷𝑇 (𝑇) do
3: if 𝜇(𝐻 , 𝑒𝑝,𝑞) ≥ 0.4 ∧ 𝜎2(𝐻 , 𝑒𝑝,𝑞) ≤ 0.05 then
4: if 𝜇(𝐶, 𝑒𝑝,𝑞) ≤ 0.125 ∧max(𝐶, 𝑒𝑝,𝑞) ≤ 0.25 then
5: 𝐸 ← 𝑒𝑝,𝑞
6: end if
7: end if
8: end for
9: return 𝐸

The following step of the vectorization algorithm filters the Delaunay trian-
gulation𝐷𝑇(𝑇) of 𝑇 to subdivide it into a set of baseline clusters. An edge between
two SPs 𝑝, 𝑞 ∈ 𝐷𝑇 (𝑇) is denoted by 𝑒𝑝,𝑞 . As a prerequisite of the filtering algo-
rithmwe also define a number of edgemetrics. Given the discrete line coordinates
produced by a line drawing method 𝑙(𝑒𝑝,𝑞) between the SPs 𝑝, 𝑞 we define for an
arbitrary map 𝐼 ∈ {𝐻 , 𝑃, 𝑄}:

128 CHAPTER 6. REGION AND TEXT LINE LAYOUT ANALYSIS

𝜇(𝐼 , 𝑒𝑝,𝑞) = 1
|𝑝−𝑞|2 ∑𝐼[𝑙(𝑒𝑝,𝑞)]

𝜎2(𝐼 , 𝑒𝑝,𝑞) = 1
|𝑝−𝑞|2 ∑(𝐼 [𝑙(𝑒𝑝,𝑞)] − 𝜇(𝐼 , 𝑒𝑝,𝑞))2

max(𝐼 , 𝑒𝑝,𝑞) = max(𝐼 [𝑙(𝑒𝑝,𝑞)])
The output of the filtering algorithm Alg. 1 is a set of edges 𝐸 defining a eu-

clidean distance-weighted graph graph𝐺𝐸 = 𝐺(𝑉 , 𝐸, 𝑤)where 𝑉 = ⋃{𝑝, 𝑞}, ∀𝑒𝑝,𝑞 ∈
𝐸, 𝑤(𝑒𝑝,𝑞) = |𝑝−𝑞|2,with a set of components 𝐶𝐺𝐸 . Each component 𝐶𝐺𝐸𝑛 is treated
as a separate baseline cluster. The remaining task is to create a directed polyline
representation of each cluster. For each cluster we calculate the pairwise dis-
tances of all vertices and select the two most distant nodes 𝑎, 𝑏 as the extrema of
the baseline. The polyline approximation of each cluster is the shortest path 𝛾𝑎,𝑏
between the extrema in 𝐶𝐺𝐸𝑛 . A slight correction of the line coordinates is nec-
essary to compensate for the erosion incurred through the skeletonization prior
to superpixel selection. The adjusted polyline path 𝛾𝑎′,𝑏′ of 𝛾𝑎,𝑏 is obtained by
elongating the initial and last edges by 𝑑𝑐𝑐 .

Due to the unknown orientation of each line we inspect each line end’s affin-
ity to the difference between the separator classes. As the separators are placed
beyond the end of the line, the values of the separator maps at those points are
commonly close to 0. By preprocessing 𝑃, 𝑄 with a maximum filter of size 2 ⋅ 𝑑𝑚𝑖𝑛
resulting in maps 𝑃 ′, 𝑄′ containing sufficiently dilated separators the correct line
orientation is such that:

𝐿(𝛾𝑎′,𝑏′ , 𝑃 ′, 𝑄′) =
⎧⎪
⎨⎪
⎩

𝛾𝑎′,𝑏′ if(𝑃 ′ − 𝑄′)𝑝 > 0.2∧
(𝑄′ − 𝑃 ′)𝑞 > 0.2

𝑟𝑒𝑣(𝛾𝑎′,𝑏′) if(𝑃 ′ − 𝑄′)𝑝 > 0.2∧
(𝑄′ − 𝑃 ′)𝑞 > 0.2

otherwise

𝐿(𝛾𝑎′,𝑏′ , 𝑃 ′, 𝑄′) = {𝛾𝑎′,𝑏′ 𝑎′𝑥 ≤ 𝑏′𝑥
𝑟𝑒𝑣(𝛾𝑎′,𝑏′) 𝑎′𝑥 > 𝑏′𝑥

The final baselines for each baseline class is the set of all paths Γ𝑚 = {𝛾1, … , 𝛾𝑜}, 𝑚 ∈
{𝑏𝑙0, … , 𝑏𝑙𝑘}, 𝑜 ∈ ℕ determined as above.

6.2.4 Polygonization

For recognition by an HTR engine the vectorized baselines have to be supple-
mented by full polygons. A baseline with polygon can then rectified to produce a
normalized line image with suppression of non-line content by projection onto a
straight baseline through a piecewise affine transformation, allowing recognition
of even highly curved lines by text recognition models.

6.3. EVALUATION 129

Our polygonization algorithm consists of a line-wise seam carving [36] biased
by distance from the baseline. The initial energy map is the derivative of the
smoothed grayscale input image 𝐼 𝜎 :

𝐸(𝐼 𝜎) = |𝜕(𝐼
𝜎)

𝜕𝑥 + 𝜕(𝐼 𝜎)
𝜕(𝑦) |

The primary purpose of the smoothing is to prevent the seam from cross-
ing below disconnected line components such as diacritics and tonal marks. A
gaussian filter with 𝜎 = 2.5 is sufficient for this purpose. Our implementation
estimates the gradient with the Sobel operator.

Let {Γ0, … , Γ𝑛, … , Γ𝑚}, 0 < 𝑛 < 𝑚,𝑚 ∈ {𝑏𝑙0, … , 𝑏𝑙𝑘} be the baselines of all classes
and 𝛾 ∈ Γ𝑛 be an arbitrary baseline. To calculate the bounding polygon we first
extract two regions of interest (RoI) 𝐸(𝐼 𝜎)[𝑟left] and 𝐸(𝐼 𝜎)[𝑟right] around 𝛾 ; these
RoIs contain the energy map area between the left- and righthand side of 𝛾 and
{Γ0, … , Γ𝑛 ⧵ 𝛾 , … , Γ𝑚} as shown in figure 6.2b. The seams through 𝑟left and 𝑟right
will form the respective halves of the bounding polygon.

Depending on the layout of the document the RoIs can vary considerably
in size. Especially for baselines bordered only by the energy map boundaries,
a distance bias has to be added to the energy map to ensure sufficiently tight
boundary polygons. The biased energy map 𝐸′(𝐼 𝜎)[𝑟𝑙], 𝑙 ∈ {left, right} is com-
puted through a euclidean distance transform 𝐷 from the baseline with a scaling
factor: 𝐸′(𝐼 𝜎)[𝑟𝑙] = 𝐸(𝐼 𝜎)[𝑟𝑙] + 𝐷 ⋅ 𝐸(𝐼 𝜎)[𝑟𝑙] ⋅ 0.01.

Requiring a rectangular area and principal direction for seam calculation, the
RoIs need to be rotated. We rotate each RoI patch by the magnitude-weighted
average direction. The energy-minimizing seam for each patch is then calculated
using dynamic programming as described in [36]. Afterwards, the seams are ro-
tated back into the original image coordinate system and concatenated to form
the final bounding polygon for a line. Figure 6.2c shows the result for a single
line.

6.2.5 Region extraction

Regions are extracted from the network output for each region type separately by
thresholding at 0.5 and then extracting the contours around high-valued regions
using the marching squares algorithm [37].

6.3 Evaluation

We evaluate the performance of the proposed method on 4 publicly available
datasets: cBAD 2019[38], Bozen [39], OHG [40], and BADAM [2]. Bozen and
OHG are Latin script datasets with both region and baseline annotations, cBAD
consists largely of Latin script annotated on the baseline line, while BADAM is
an exclusively Arabic script baseline dataset.

130 CHAPTER 6. REGION AND TEXT LINE LAYOUT ANALYSIS

Table 6.1: Baseline recognition metrics on cBAD 2019, BADAM, OHG, and Bozen

P-val R-val F-val

cBAD

Planet 0.937 0.926 0.931
DMRZ 0.925 0.905 0.915
UPVLC 0.911 0.902 0.907
TJNU 0.852 0.885 0.868
DMRZ-2017 0.773 0.743 0.758
proposed 0.867 0.945 0.904

BADAM

[2] 0.941 0.901 0.924
proposed 0.932 0.957 0.944

OHG

[24] 0.962 0.971 0.966
[24]a 0.984 0.977 0.980
proposed 0.978 0.973 0.975
proposeda 0.909 0.919 0.914

Bozen

[24] 0.958 0.991 0.974
[24]a 0.945 0.989 0.966
proposed 0.972 0.982 0.977
proposeda 0.936 0.949 0.942

aCombined region and baseline model

For datasets providing both region and line data models we evaluate models
trained solely on baselines and combined baseline and region detection models.

6.3.1 Metrics

Baseline measurements for precision, recall, and F1-score are calculated as de-
fined in [41] with the default tolerance parameters. For region segmentation the
standard metrics mean accuracy, mean intersection-over-union, and frequency-
weighted intersection over union are reported:

mean accuracy (1/𝑛𝑐𝑙)∑𝑖 𝑛𝑖𝑖/𝑡𝑖
mean IU (1/𝑛𝑐𝑙)∑𝑖 𝑛𝑖𝑖/(𝑡𝑖 +∑𝑗 𝑛𝑗𝑖 − 𝑛𝑖𝑖)

frequency weighted IU ∑𝑘 𝑡𝑘)−1∑𝑖 𝑡𝑖𝑛𝑖𝑖/(𝑡𝑖 +∑𝑗 𝑛𝑗𝑖 − 𝑛𝑖𝑖)

6.4. CONCLUSION 131

Table 6.2: Metrics for the region detection task of the OHG and Bozen datasets

Mean accuracy Mean
Intersection-
over-Union

frequency-
weighted
Intersection-
over-Union

OHG

[24] 0.789 0.727 0.872
proposed 0.988 0.486 0.912

Bozen

[24] 0.933 0.827 0.913
proposed 0.988 0.81 0.915

where 𝑛𝑖𝑗 is the number of pixels of class 𝑖 predicted to belong to class 𝑗, where
there are 𝑛𝑐𝑙 different region classes and 𝑡𝑖 = ∑𝑗 𝑛𝑖𝑗 is the total number of pixels of
class 𝑖 [42].

Two aspects of the proposed method are not evaluated as there are no avail-
able datasets or widely accepted metrics: the orientation of the baseline (orien-
tation is disregarded by [41] and only one dataset contains rotated lines) and the
polygonization. According to [43] the size of the environment extracted around
the baseline is not crucial to recognition accuracy as long as the line contents are
contained in the rectified line image.

Results are reported in table 6.1 and 6.2 for baseline and region detection re-
spectively.

6.4 Conclusion

In this work we presented a flexible machine learning based method for text line
and region layout analysis for historical documents including procedures for post-
processing which enable its use in a typical OCR workflow without further adap-
tation. The experimental results show its competitiveness with the current state
of the art on a number of historical document layout analysis benchmarks.

References

[2] B. Kiessling, D. Stökl Ben Ezra, and M. T. Miller, “BADAM: A Public Data-
set for Baseline Detection in Arabic-Script Manuscripts,” in Proceedings of
the 5th International Workshop on Historical Document Imaging and Pro-
cessing, HIP@ICDAR 2019, Sydney, NSW, Australia, September 20-21, 2019,
ACM, 2019, pp. 13–18.

132 CHAPTER 6. REGION AND TEXT LINE LAYOUT ANALYSIS

[3] G. M. BinMakhashen and S. A. Mahmoud, “Document Layout Analysis:
A Comprehensive Survey,” ACM Computing Survey, vol. 52, no. 6, 109:1–
109:36, 2020. doi: 10.1145/3355610.

[4] S. Eskenazi, P. Gomez-Krämer, and J.-M. Ogier, “A comprehensive survey
of mostly textual document segmentation algorithms since 2008,” Pattern
Recognition, vol. 64, pp. 1–14, Apr. 2017. doi: 10.1016/j.patcog.2016.10.023.

[5] G. Nagy, “Twenty Years of Document ImageAnalysis in PAMI,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 38–
62, 2000. doi: 10.1109/34.824820.

[6] A. Fischer, V. Frinken, A. Fornés, and H. Bunke, “Transcription alignment
of latin manuscripts using hidden markov models,” in Proceedings of the
2011Workshop on Historical Document Imaging and Processing, ACM, 2011,
pp. 29–36.

[7] F. Simistira, M. Seuret, N. Eichenberger, et al., “DIVA-HisDB: A precisely
annotated large dataset of challenging medieval manuscripts,” in Frontiers
in Handwriting Recognition (ICFHR), 2016 15th International Conference on,
IEEE, 2016, pp. 471–476.

[8] C. Clausner, A. Antonacopoulos, N.McGregor, andD.Wilson-Nunn, “ICFHR
2018 competition on recognition of historical arabic scientific manuscripts
- RASM2018,” in 16th International Conference on Frontiers in Handwriting
Recognition, ICFHR 2018, Niagara Falls, NY, USA, August 5-8, 2018, IEEE
Computer Society, 2018, pp. 471–476. doi: 10 . 1109 / ICFHR- 2018 . 2018 .
00088.

[9] M. Kassis, A. Abdalhaleem, A. Droby, R. Alaasam, and J. El-Sana, “VML-
HD: The historical arabic documents dataset for recognition systems,” in
Arabic Script Analysis and Recognition (ASAR), 2017 1st International Work-
shop on, IEEE, 2017, pp. 11–14.

[10] B. Gatos, N. Stamatopoulos, and G. Louloudis, “ICFHR 2010 Handwriting
Segmentation Contest,” in International Conference on Frontiers in Hand-
writing Recognition, ICFHR 2010, Kolkata, India, 16-18 November 2010, IEEE
Computer Society, 2010, pp. 737–742. doi: 10.1109/ICFHR.2010.120.

[11] A. Antonacopoulos, C. Clausner, C. Papadopoulos, and S. Pletschacher,
“ICDAR 2015 competition on recognition of documents with complex lay-
outs - RDCL2015,” in Document Analysis and Recognition (ICDAR), 2015
13th International Conference on, IEEE, 2015, pp. 1151–1155.

[12] ——, “Historical document layout analysis competition,” inDocument Anal-
ysis and Recognition (ICDAR), 2011 11th International Conference on, IEEE,
2011, pp. 1516–1520.

REFERENCES 133

[13] M. Diem, F. Kleber, S. Fiel, T. Grüning, and B. Gatos, “cBAD: ICDAR2017
competition on baseline detection,” in Document Analysis and Recognition
(ICDAR), 2017 14th IAPR International Conference on, IEEE, vol. 1, 2017,
pp. 1355–1360.

[14] N. Ouwayed and A. Belaıd̈, “A general approach for multi-oriented text
line extraction of handwritten documents,” International Journal on Docu-
ment Analysis and Recognition (IJDAR), vol. 15, no. 4, pp. 297–314, 2012.

[15] N. V. Borse and I. R. Shaikh, “Language independent text-line extraction
algorithm for handwritten documents,” International Journal, vol. 4, no. 11,
2014.

[16] M. Diem, F. Kleber, and R. Sablatnig, “Text line detection for heteroge-
neous documents,” in 2013 12th International Conference onDocument Anal-
ysis and Recognition, IEEE, 2013, pp. 743–747.

[17] N. Arvanitopoulos and S. Süsstrunk, “Seam carving for text line extraction
on color and grayscale historical manuscripts,” in 2014 14th International
Conference on Frontiers in Handwriting Recognition, IEEE, 2014, pp. 726–
731.

[18] R. Saabni, A. Asi, and J. El-Sana, “Text line extraction for historical docu-
ment images,” Pattern Recognition Letters, vol. 35, pp. 23–33, 2014.

[19] B.Moysset, C. Kermorvant, C.Wolf, and J. Louradour, “Paragraph text seg-
mentation into lines with recurrent neural networks,” in 2015 13th Inter-
national Conference on Document Analysis and Recognition (ICDAR), IEEE,
2015, pp. 456–460.

[20] A. Garz, A. Fischer, R. Sablatnig, and H. Bunke, “Binarization-free text line
segmentation for historical documents based on interest point clustering,”
in 2012 10th IAPR International Workshop on Document Analysis Systems,
IEEE, 2012, pp. 95–99.

[21] B. Ahn, J. Ryu, H. I. Koo, and N. I. Cho, “Textline detection in degraded his-
torical document images,” EURASIP Journal on Image and Video Processing,
vol. 2017, no. 1, p. 82, 2017.

[22] T. Gruuening, G. Leifert, T. Strauss, and R. Labahn, “A robust and binariza-
tion-free approach for text line detection in historical documents,” in 2017
14th IAPR International Conference on Document Analysis and Recognition
(ICDAR), IEEE, vol. 1, 2017, pp. 236–241.

[23] O. Mechi, M. Mehri, R. Ingold, and N. E. B. Amara, “Text line segmenta-
tion in historical document images using an adaptive u-net architecture,”
in 2019 International Conference on Document Analysis and Recognition (IC-
DAR), IEEE, 2019, pp. 369–374.

[24] L. Quirós, “Multi-task handwritten document layout analysis,” arXiv arX-
iv:1806.08852, 2018.

134 CHAPTER 6. REGION AND TEXT LINE LAYOUT ANALYSIS

[25] S. A. Oliveira, B. Seguin, and F. Kaplan, “dhSegment: A Generic Deep-
Learning Approach for Document Segmentation,” in 16th International
Conference on Frontiers in Handwriting Recognition, ICFHR 2018, Niagara
Falls, NY, USA, August 5-8, 2018, IEEE Computer Society, 2018, pp. 7–12.
doi: 10.1109/ICFHR-2018.2018.00011.

[26] M. Baechler and R. Ingold, “Multi resolution layout analysis of medieval
manuscripts using dynamic mlp,” in 2011 International Conference on Doc-
ument Analysis and Recognition, IEEE, 2011, pp. 1185–1189.

[27] K. Chen, H. Wei, J. Hennebert, R. Ingold, and M. Liwicki, “Page segmenta-
tion for historical handwritten document images using color and texture
features,” in 2014 14th International Conference on Frontiers in Handwriting
Recognition, IEEE, 2014, pp. 488–493.

[28] H. Déjean, J.-L. Meunier, et al., “Versatile layout understanding via con-
jugate graph,” in 2019 International Conference on Document Analysis and
Recognition (ICDAR), IEEE, 2019, pp. 287–294.

[29] Y. Soullard, P. Tranouez, C. Chatelain, S. Nicolas, and T. Paquet, “Multi-
scale gated fully convolutional densenets for semantic labeling of histor-
ical newspaper images,” Pattern Recognition Letters, vol. 131, pp. 435–441,
2020.

[30] P. Kaddas and B. Gatos, “A deep convolutional encoder-decoder network
for page segmentation of historical handwritten documents into text zones,”
in 2018 16th International Conference on Frontiers in Handwriting Recogni-
tion (ICFHR), IEEE, 2018, pp. 259–264.

[31] A. Lemaitre, J. Camillerapp, and B. Coüasnon, “Multiresolution coopera-
tion makes easier document structure recognition,” International Journal
of Document Analysis and Recognition (IJDAR), vol. 11, no. 2, pp. 97–109,
2008.

[32] F. Visin, K. Kastner, K. Cho, et al., “ReNet: A recurrent neural network
based alternative to convolutional networks,” CoRR, vol. abs/1505.00393,
2015. arXiv: 1505.00393.

[33] Y. Wu and K. He, “Group normalization,” CoRR, vol. abs/1803.08494, 2018.
arXiv: 1803.08494.

[34] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, et al., “Albumentations: Fast
and flexible image augmentations,” Information, vol. 11, no. 2, 2020, issn:
2078-2489. doi: 10.3390/info11020125.

[35] T. Grüning, G. Leifert, T. Strauß, J. Michael, and R. Labahn, “A two-stage
method for text line detection in historical documents,” International Jour-
nal on Document Analysis and Recognition (IJDAR), vol. 22, no. 3, pp. 285–
302, 2019.

[36] S. Avidan andA. Shamir, “Seam carving for content-aware image resizing,”
in ACM SIGGRAPH 2007 papers, 2007, 10–es.

REFERENCES 135

[37] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” ACM siggraph computer graphics, vol. 21,
no. 4, pp. 163–169, 1987.

[38] D. Markus, K. Florian, and G. Basilis, ICDAR 2019 Competition on Baseline
Detection (cBAD), Zenodo, Feb. 2019. doi: 10.5281/zenodo.3568023.

[39] A. Toselli, V. Romero, M. Villegas, E. Vidal, and J. Sánchez,Htr dataset icfhr
2016, Zenodo, Feb. 2018. doi: 10.5281/zenodo.1164045.

[40] L. Quirós, V. Bosch, L. Serrano, A. H. Toselli, and E. Vidal, “From hmms to
rnns: Computer-assisted transcription of a handwritten notarial records
collection,” in 2018 16th International Conference on Frontiers in Handwrit-
ing Recognition (ICFHR), IEEE, 2018, pp. 116–121.

[41] T. Grüning, R. Labahn, M. Diem, F. Kleber, and S. Fiel, “READ-BAD: A
new dataset and evaluation scheme for baseline detection in archival doc-
uments,” in 13th IAPR International Workshop on Document Analysis Sys-
tems (DAS), IEEE, 2018, pp. 351–356.

[42] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 3431–3440.

[43] V. Romero, J. A. Sanchez, V. Bosch, K. Depuydt, and J. de Does, “Influence
of text line segmentation in handwritten text recognition,” in Document
Analysis and Recognition (ICDAR), 2015 13th International Conference on,
IEEE, 2015, pp. 536–540.

136 CHAPTER 6. REGION AND TEXT LINE LAYOUT ANALYSIS

Chapter 7

Script and Emphasis Detection
using Recurrent Neural
Networks

This chapter has been published as B. Kiessling, D. Kinitz, C. Gümmer, and P.
Mashhadi, “Script and Emphasis Detection using Recurrent Neural Networks,”
READ2018: International Interdisciplinary Symposium on Reading Experience
and Analysis of Documents, 2018

138 CHAPTER 7. SCRIPT DETECTION

7.1 Introduction

In Digital Humanities research documents containing multiple scripts and exten-
sive text emphasis for semantic purposes are common, ranging from relatively
simple parallel texts, to mixed Fraktur-Antiqua printing, dictionaries, and library
catalogs. With the increased availability of Optical Character Recognition soft-
ware at least in part accessible to the determined DH scholar robust script and text
emphasis detection methods are of special importance for effective digitization of
these works.

State of the art neural sequence-to-sequence models have largely supplanted
older character-based methods for Optical Character Recognition. While neural
methods have generally higher accuracy and decreased requirements on training
data annotation depth, some earlier approaches, most notably the tesseract OCR
engine [2], featured seamless classifier combination and common text emphasis
detection. Neither are available in any freely licensed OCR package utilizing the
advances of machine learning in the last decade.

7.1.1 Related work

Past approaches to segmentation-less multilingual OCR have focused on building
combined models capable of recognizing multiple scripts [3]. Combined models
are undesirable for multiple reasons. The irregularity of early modern printing
and large number of typefaces result in character accuracy below 95% for mixed-
font models even on mono-script texts [4] necessitating time consuming training
data acquisition and retraining of these large models. In addition, reusing train-
ing data is regularly prevented by being embedded in other non-target scripts or
typefaces and legal restrictions imposed by digitization agents..

A second direction labels OCR input images, most often lines, to be able to
select appropriate monolingual recognition models.

The method described in [5] labeling whole lines using a recurrent neural net-
work is inappropriate for many humanities texts because of extensive intra-line
script switching. A recurrent neural script classifier based on overlapping sliding
window profile feature sequences is shown in [6]. [7] published a conceptually
simpler approach without feature extraction directly classifying character script
using an LSTM network. A refined version of the latter method is the basis of our
script detection system.

7.2 RNNs for Script and Emphasis Detection

7.2.1 Script Detection

The system treats script detection as a segmentation-less sequence classification
problem, similar to text recognition. Instead of assigning a unique label to each
code point or grapheme cluster we assign all code points of a particular script the

7.2. RNNS FOR SCRIPT AND EMPHASIS DETECTION 139

same label (figure 7.1), the network is trained to output the correct sequence of
script labels using the CTC loss function [8]. It should be noted that CTC is on
the face unsuitable for this task, as it includes no mechanism to ensure tempo-
ral alignment between graphemes in the input sequence and output activations;
fortunately the LSTM network’s activations are fairly close to their correspond-
ing location in the input sequence. The output sequence is then used to split the
line into single-script runs that can be classified with monoscriptual recognition
models.

Figure 7.1: Modified ground truth (top: original line, middle: transcription,
bottom: assigned script classes)

Script classes are ISO 15924 codes determined through each code point’s Uni-
code script property1 As there are graphemes that occur inmultiple scripts, chiefly
numerals and punctuation, we retain both the common and inherited properties.
Merging these during post-processing based on their surrounding script increases
robustness when classifying non-body text such as page numbers and tables, com-
pared to fusing them beforehand. Bidirectional text is dealt with by rearranging
the target sequence into display order using the Unicode BiDi algorithm before
script assignment.

Apart from the mentioned merging step, two additional post-processing steps
are performed. The first substitutes all individual runs of a line with the whole
line if only a single script remains after common/inherited merging. The second
stems from the observation that often only a subset of scripts the detection net-
work is trained on occur in any document. A whitelist is added, merging runs
of non-included scripts into the surrounding context after filtering for common
confusions (Arabic-Syriac and Latin-Fraktur).

7.2.2 Emphasis Recognition

We evaluated two methods of encoding two common text emphasis methods for
recognition by a RNN. Initially, italicized and text components with increased
letter spacing were marked up with special start and stop markers and the model
was trained to produce these markers. While the results of the training were
promising, obtaining the amount of training data needed to reliably place both
markers was infeasible for our target documents. Creating separate labels for ital-
icized/spaced graphemes and training for these, remedied the marker placement
issue with a sufficiently small amount of training data.

1ISO 15924 includes separate identifiers for Antiqua and Fraktur texts and similarly visually dis-
tinct calligraphic hands for Syriac which are subsumed as Latin and Syriac in the Unicode database.

140 CHAPTER 7. SCRIPT DETECTION

input (1xHxW)

3x3 conv, 32, relu

dropout, 1d, 0.1

maxpool, 2

3x3 conv, 64, relu

dropout, 1d, 0.1

maxpool, 2

BiLSTM, 100

dropout, 1d, 0.5

FC layer, softmax

output (CxW)

Figure 7.2: Network archi-
tecture (𝐻 : sequence height,
𝑊 : sequence length, 𝐶 : al-
phabet size)

Separate alphabets for emphasized text compo-
nents increase model size and execution time, tripling
the size of the final fully connected layer. This large
increase in possible output labels also seems to pre-
clude fine-tuning basemodels by resizing the final lin-
ear projection of the network.

7.2.3 Architecture

Both the script detection and emphasis recognition
share a common network architecture of bidirec-
tional Long short-term memory RNN blocks trained
with Connectionist Temporal Classification loss and
single-sample stochastic gradient descent with mo-
mentum (learning rate: 0.0001, momentum: 0.9).
Early stopping is used to terminate training. The sys-
tem is implemented as part of the kraken OCR engine.

The networks operate on binarized whole lines.
Baselines and line height are normalized using a
slightly modified version of the centerline normalizer
implemented in the OCRopus system.

7.3 Results

The script detection and emphasis recognition were
evaluated as part of Bibliotheca Arabica which aims
to gain new insights into Arabic literature from 1150
to 1850 CE by analysing the ways of production,
transmission, and reception of texts. The basis of this
research are ~500 library manuscript catalogs which
are usually multilingual and employ structured text
emphasis as semantic markup.

7.3.1 Dataset

We repurposed publicly available non-synthetic
training data for recognition models to build a cor-
pus of 76000 script-annotated line images containing
Arabic, Cyrillic, polytonic Greek, Hebrew, Latin, Fraktur, and (western) Syriac
text. The majority of text lines contain only a single non-common script although
there are mixed lines for all scripts in the corpus. The exact distribution of code
points is shown in figure 7.4. 760 randomly selected lines are separated from the
corpus as a test set.

7.3. RESULTS 141

Figure 7.3: Script recognition on French-Arabic sample page

Emphasis recogni-
tion was evaluated on
an English and ro-
manized Arabic cat-
alog using emphasis
described in 7.2.2 with
350 transcribed lines.
An additional fifty line
transcriptionswere used
as a test set. Over-
all 220 lines contain
some kind of text em-
phasis. It is repre-
sentative of a large
number of catalogs in
purview of Bibliotheca
Arabica.

7.3.2 ScriptDetec-
tion

The fully trained net-
work yielded a char-
acter accuracy of 94.62%
on the test set. Output
for a French-Arabic
bilingual sample page
can be seen in 7.3.
The misclassification
of Eastern Arabic nu-
merals as Latin text
is caused by the tran-
scription as Latin Ara-
bic numerals in the
ground truth.

7.3.3 Emphasis Recognition

The average character accuracy of the trained model over 10 runs is 99.3% (𝜎 =
0.16) with 95.38% on cursive and text with increased spacing (𝜎 = 1.46). When
using only emphasized text accuracy as the stopping criterium mean accuracy
rises to 99.03% (𝜎 = 0.28).

142 CHAPTER 7. SCRIPT DETECTION

Syriac

Cyrillic

Hebrew

Fraktur

Greek

Inherited

Arabic

Latin

Common

35%

30.4%

21.6%

4.4%

3%

2.3%

1.5%

1.2%

6.8 ⋅ 10−1%

47.5%

34.3%

98.6%

6.1%

4.2%

2.5%

2.2%

2%

21.9%

Proportion of code points
Lines containing script class

Figure 7.4: Script detection training data distribution

REFERENCES 143

References

[2] R. Smith, D. Antonova, and D.-S. Lee, “Adapting the tesseract open source
OCR engine formultilingual OCR,” in Proceedings of the InternationalWork-
shop on Multilingual OCR, ACM, 2009, p. 1.

[3] A. Ul-Hasan and T. M. Breuel, “Can we build language-independent OCR
using LSTM networks?” In Proceedings of the 4th International Workshop
on Multilingual OCR, ACM, 2013, p. 9.

[4] U. Springmann, F. Fink, and K. U. Schulz, “Automatic quality evaluation
and (semi-) automatic improvement ofmixedmodels for OCR on historical
documents,” CoRR, vol. abs/1606.05157, 2016. arXiv: 1606.05157.

[5] Y. Fujii, K. Driesen, J. Baccash, A. Hurst, and A. C. Popat, “Sequence-to-
label script identification for multilingual ocr,” in Document Analysis and
Recognition (ICDAR), 2017 14th IAPR International Conference on, IEEE,
vol. 1, 2017, pp. 161–168.

[6] A. K. Singh and C. Jawahar, “Can RNNs reliably separate script and lan-
guage at word and line level?” In Document Analysis and Recognition (IC-
DAR), 2015 13th International Conference on, IEEE, 2015, pp. 976–980.

[7] A. Ul-Hasan, M. Z. Afzal, F. Shafait, M. Liwicki, and T. M. Breuel, “A se-
quence learning approach for multiple script identification,” in Document
Analysis and Recognition (ICDAR), 2015 13th International Conference on,
IEEE, 2015, pp. 1046–1050.

[8] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks,” in Proceedings of the 23rd international conference
on Machine learning, ACM, 2006, pp. 369–376.

144 CHAPTER 7. SCRIPT DETECTION

Part III

Transcription and Character
Alignment

Chapter 8

Kraken - a Universal Text
Recognizer for the Humanities

This chapter has been published as B. Kiessling, “Kraken - A Universal Text Rec-
ognizer for the Humanities,” Proceedings of the DH, 2019. This high level overview
of Kraken’s state in mid-2019 is complemented by technical documentation on it
current state in appendix B.

148 CHAPTER 8. THE KRAKEN OCR ENGINE

8.1 Introduction

Retrodigitization of both printed and handwritten material is a common prereq-
uisite for a diverse range of research questions in the humanities. While optical
character recognition on printed texts is widely considered to be fundamentally
solved in academia, with the most commonly used paradigm [2] dating back to
2006, this hasn’t translated into increased availability of adaptable, libre-licensed
OCR engines to the technically inclined humanities scholar.

The nature of the material of interest commands a platform that can be altered
withminimum effort to achieve optimal recognition accuracy; uncommon scripts,
historical languages, complex or archaic page layout, and non-paper writing sur-
faces are rarily satisfactorily addressed by off-the-shelf commercial solutions. In
addition, an open system ameliorates the severe resource constraints of humani-
ties research by enabling sharing of artifacts, such as training data and recognition
models, inaccessible with proprietary OCR technology.

8.2 Kraken

The Kraken text recognition engine is an extensively rewritten fork of the OCRo-
pus system. It can be used both for handwriting and printed text recognition,
is easily (re-)trainable, and great care has been taken to eliminate implicit as-
sumptions on content and layout that complicate the processing of non-Latin and
non-modern works.

Thus Kraken has been extended with features and interfaces enabling the pro-
cessing of most scripts, among them full Unicode right-to-left, bidirectional, and
vertical writing support, script detection, and multiscript recognition. Processing
of scripts not included in Unicode is also possible through a simple JSON interface
to the codec mapping numerical model outputs to characters. The same interface
provides facilities for efficient recognition of large logographic scripts.

Output includes fine-grained bounding boxes down to the character level that
may be used to quickly acquire a large number of samples from a corpus to as-
sist in paleographic research. Kraken implements a flexible output serialization
scheme utilizing a simple templating language. Templates are available for the
most commonly used formats ALTO, hOCR, TEI, and abbyyXML.

While including implementations of all the subprocesses needed in a text
recognition pipeline, most functional blocks can be accessed separately on the
command line, allowing flexible substitution of specially optimized methods. A
stable programming interface allows total customization and integration into other
software packages.

8.2. KRAKEN 149

8.2.1 Recognition

input (1xHxW)

3x3 conv, 32, relu

dropout, 1d, 0.1

maxpool, 2

3x3 conv, 64, relu

dropout, 1d, 0.1

maxpool, 2

BiLSTM, 100

dropout, 1d, 0.5

FC layer, softmax

output (CxW)

Figure 8.1: Network archi-
tecture (𝐻 : sequence height,
𝑊 : sequence length, 𝐶 : al-
phabet size)

The recognition engine operates as a segmentation-
less sequence classifier using an artificial neural net-
work to map an image of a single line of text, the in-
put sequence, into a sequence of characters, the out-
put sequence. The artificial neural network employed
is a combination convolutional and recurrent neu-
ral network trained with the CTC loss function [2]
that reduces training data requirements to line-level
transcriptions (figure 8.4). Regularization is mainly
provided by dropout [3] after both convolutional and
recurrent layers. User intervention in determining
training duration and model selection is largely elim-
inated through early stopping.

Specialized networks, e.g. for particularly com-
plex scripts, can be assembled from building blocks
with a simple network specification language al-
though the default architecture shown in figure 8.1
is suitable for the vast majority of applications.

Processing of dictionaries and library catalogues
with extensive semantic markup such as italic, under-
lining, and bolding, is also possible through specially
prepared training data.

8.2.2 Layout Analysis and Script Detection

Kraken’s layout analysis extracts text lines from an
input image for later processing by the recognition
engine. Apart from a basic segmenter taken from
OCRopus a trainable line extractor is in the process of
being implemented. Full trainability of layout analy-
sis is of utmost importance to a truly universal OCR
system, as text layout and its semantics varies widely
across time and space, e.g. hand-crafted methods for
printed Latin text are unlikely to work reliably on
Arabic text or manuscripts with extensive interlinear annotation.

The trainable layout analysis module consists of a two-step instance segmen-
tation method: an initial seed-labelling network operates on the whole page la-
belling the area between baseline and mean of each line. As the output of the
network is a probability of each pixel belonging to a baseline it is binarized using
hysteresis thresholding after smoothing with a gaussian filter. The binarized im-

150 CHAPTER 8. THE KRAKEN OCR ENGINE

age is then skeletonized and end point are extracted with a discrete convolution.
Finally, the vectorized baseline between the endpoints is rectified and a variable
environment calculated based on the distance of connected components from the
labelled area is extracted.

Table 8.1: Mean character accuracy and standard deviation on the validation set across
10 training runs on each training set

Mean charac-
ter accuracy

Standard devi-
ation

Maximum ac-
curacy

Prints

Arabic [4] 99.5% 0.05 99.6%
Persiana 98.3% 0.33 98.7%
Syriacb 98.7% 0.38 99.2%
Polytonic Greekc 99.2% 0.26 99.6%
Latin [5] 98.8% 0.09 99.3%
Latin incunabula [5] 99.0% 0.11 99.2%
Fraktur [5] 99.0% 0.31 99.3%
Cyrillicd 99.3% 0.15 99.6%

Manuscripts

Hebrewe 96.9% - -
Medieval Latinf 98.2% - -

aMid-20th century printing
bLate-19th century printing in Serṭā form
cLate-19th century printing
d1923 Russian print
eMedieval Midrash Tanhuma
fMid-9th century Carolingian of Josephus Latinus

The seed-labelling network is a modified U-net [6] on the basis of a 34-layer
residual network [7] pretrained on ImageNet.

Preliminary results on a page from a publicly available dataset of Arabic and
Persian manuscripts [8] can be seen in Figure 8.2.

Script detection, the basis for multi-script support in the recognizer, is im-
plemented as a segmentation-less sequence classification problem, similar to text
recognition. Instead of assigning a unique label to each code point or grapheme
cluster we assign all code points of a particular script the same label. The net-
work is then trained to output the correct sequence of script labels (figure 8.4).
The output sequence is then used to split the line into single-script runs that can
be classified with monolingual recognition models (figure 8.3).

8.2. KRAKEN 151

Figure 8.3: Sample output of the script detection on a bilingual French/Arabic page. Note
that Eastern Arabic are always classified as Latin text

152 CHAPTER 8. THE KRAKEN OCR ENGINE

Figure 8.4: Original and modified ground truth (top: original line, middle: transcription,
bottom: assigned script classes)

8.3 Results

Figure 8.2: Sample output of the trainable
segmentation method

Kraken has been used on a wide vari-
ety of writing systems, achieving uni-
formly high character accuracy (CER).
Sample accuracies for a diverse set of
scripts spanning across multiple cen-
turies of printing are shown in table
8.1. It should be noted that recent im-
provements in the text recognition en-
gine result in significantly diminished
character error rates in comparison to
earlier versions such as those evalu-
ated in [4].

As a special use case we evalu-
ated recognition of text and empha-
sis in a mixed English and romanized
Arabic library catalog on a training set
of 350 lines (50 lines in the validation
set) resulting in an averaged CER of
99.3% (𝜎 = 0.16) over 10 runs with
95.38% CER on cursive and text with
increased spacing (𝜎 = 1.46). When
using only emphasized text accuracy

as the stopping criterium mean accuracy rises to 99.03% (𝜎 = 0.28) [9].

References

[2] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks,” in Proceedings of the 23rd international conference
on Machine learning, ACM, 2006, pp. 369–376.

[3] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature
detectors,” CoRR, vol. abs/1207.0580, 2012.

REFERENCES 153

[4] B. Kiessling, M. T. Miller, G. Maxim, S. B. Savant, et al., “Important New
Developments in Arabographic Optical Character Recognition (OCR),”Al-
ʿUṣūr al-Wusṭā, vol. 25, pp. 1–13, 2017.

[5] U. Springmann, C. Reul, S. Dipper, and J. Baiter, “Ground truth for training
OCR engines on historical documents in german fraktur and early modern
latin,” J. Lang. Technol. Comput. Linguistics, vol. 33, no. 1, pp. 97–114, 2018.

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention, Springer, 2015,
pp. 234–241.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[8] B. Kiessling, D. Stökl Ben Ezra, and M. T. Miller, “BADAM: A Public Data-
set for Baseline Detection in Arabic-Script Manuscripts,” in Proceedings of
the 5th International Workshop on Historical Document Imaging and Pro-
cessing, HIP@ICDAR 2019, Sydney, NSW, Australia, September 20-21, 2019,
ACM, 2019, pp. 13–18.

[9] B. Kiessling, D. Kinitz, C. Gümmer, and P. Mashhadi, “Script and Empha-
sis Detection using Recurrent Neural Networks,” READ2018: International
Interdisciplinary Symposium on Reading Experience and Analysis of Doc-
uments, 2018.

154 CHAPTER 8. THE KRAKEN OCR ENGINE

Chapter 9

Transcription Alignment for
Highly Fragmentary Historical
Manuscripts: The Dead Sea
Scrolls

Dedicated to the late Yaacov
Choueka (1936–2020), pioneer in
natural language processing and
historical manuscript analysis.
May his memory be blessed.

This chapter has been published as D. S. B. Ezra, B. Brown-DeVost, N. Der-
showitz, A. Pechorin, and B. Kiessling, “Transcription Alignment for Highly Frag-
mentary Historical Manuscripts: The Dead Sea Scrolls,” in 2020 17th International
Conference on Frontiers in Handwriting Recognition (ICFHR), IEEE, 2020, pp. 361–
366

156 CHAPTER 9. TRANSCRIPTION ALIGNMENT

Abstract

Most of the Dead Sea Scrolls have now been digitally transcribed and imaged to
very high standards. Our goal is to align the transcriptions with the text visible
in the image, glyph by (often fragmentary) glyph. This involves several tasks,
normally considered in isolation: (A) Baseline segmentation. (B) Line polygon
extraction. (C) Automated transcription by handwritten character recognition, to
aid in alignment. (D) Alignment of the Unicode characters in a line transcription
with the characters in the image of that line. The task is frustrated by the de-
graded nature of the frequently very small and/or warped fragments with many
broken letters, substantially different allographs, ligatures, and scribal idiosyn-
crasies. Furthermore, a great number of inconsistencies between current cata-
loguing systems for the data need to be resolved. For each task, we apply state-
of-the-art machine-learning methods in addition to more traditional techniques,
each presenting significant difficulties on account of the poor state of most frag-
ments’ preservation.

We have built ground-truth datasets and have managed to achieve good re-
sults with well-preserved fragments by leveraging heavily augmented transfer
learning from prior work with medieval manuscripts.

9.1 Background

The Dead Sea Scrolls (dated to the turn of the Common Era) are of enormous
historical significance. They are the oldest witnesses of the biblical books and
contain a treasure-trove of texts that have shed light on ancient Judaism shortly
before and up into the time of Jesus and Paul. Their study continues to revo-
lutionize our understanding of the evolution of Judaism and the emergence of
Christianity. Unfortunately, the scrolls, or rather the fragments, were discovered
in the 20th century ce in very poor condition, having deteriorated over the mil-
lennia. Few are large enough to contain even several columns.1 The vast majority
show only a low number of words or even just a few letters, many of which are
only partially visible. Over the past decades, all texts have been painstakingly
transcribed by scholars. The texts are so fragmentary that the editions have de-
veloped systems to distinguish between certain, probable, possible, and entirely
restored letters. Taking only the certain and probable letters into consideration,
the average fragment contains about 53 letters. However, the few scrolls with al-
most entirely preserved columns skew the mean as the median fragment contains
only 13 letters. The extant fragments have recently been digitized by the Israel
Antiquities Authority (IAA) using state-of-the-art multispectral imaging.2 Older
infrared images, photographed under the auspices of the Palestine Archaeological
Museum (PAM) in the 1950s, are likewise available in retrodigitized form.

1For an example of a fragment from the book of Leviticus, see figure 9.1.
2https://www.deadseascrolls.org.il/explore-the-archive

9.2. INTRODUCTION 157

Virtually all the texts have been transcribed and most appeared in the Discov-
eries in the Judaean Desert (DJD) series,3 in Qimron’s edition,4 and in theQumran-
Wörterbuch (QWB) database of the Akademie der Wissenschaften zu Göttingen.5

As the only resource that was truly computationally accessible at the start of this
project, we based our work on the latter. See figure 9.2.

9.2 Introduction

Our objective is to develop an automated system to align transcriptions of the
texts of the scroll fragments with the visible glyphs on the scroll images on the
individual glyph level. Achieving this end requires isolating the fragments in an
image from the background so that its text lines can be identified. The alignment
of transcribed letterswith glyphs appearing in the images of each line is then aided
by recognizing at least some of the letters and spaces. The processes developed
here are closely related to the ongoing work of several major research projects.

The DIP Scripta Qumranica Electronica6 (SQE) aims to provide the scholarly
community with an open source web-based portal for the purposes of material
analysis of the scrolls. It combines the high-resolution image database of the IAA
with the QWB lexical database. A feature-rich suite of digital tools and computa-
tional methods are brought together to create an infrastructure for the production
of digital editions [2].

The University of Groningen project, The Hands that Wrote the Bible,7 is ded-
icated to investigating the paleography of the Dead Sea Scrolls. It has so far pro-
duced a benchmark study in writer identification [3] and advances in dating [4]
and in binarization techniques of these manuscripts [5].

Nearly all of the Dead Sea Scrolls are written in Hebrew letters on animal skin,
i.e. parchment, but phenomenologically they are very close to papyrus, which
is mostly from ancient Egypt and written in Greek. The University of Basel
project, Reuniting fragments, identifying scribes and characterizing scripts: the Dig-
ital palaeography of Greek and Coptic papyri,8 organized a binarization compe-
tition [6] and published a dataset on writer identification [7]. In addition, the
Wuerzburg-Heidelberg-Paris project, PapyroLogos, works on text-image align-
ment of literary and documentary Greek papyri [8].

Other major projects on Hebrew manuscript material include the Friedberg
Genizah Project, which digitized hundreds of thousands of fragments of medieval
manuscripts, mostly in Hebrew, Judeo-Arabic, and Aramaic [9].9 State-of-the-
art computational tools were developed for segmentation [10], paleography [11],

3http://orion.mscc.huji.ac.il/resources/djd.shtml
4https://zenodo.org/record/3737950\#.XoXRs6gzaiM
5http://www.qwb.adw-goettingen.gwdg.de
6http://qumranica.org
7https://cordis.europa.eu/project/id/640497
8https://altegeschichte.philhist.unibas.ch/de/digpaleo
9https://fgp.genizah.org

158 CHAPTER 9. TRANSCRIPTION ALIGNMENT

matching fragments by handwriting and codicological features [12], and word
spotting [13].

The SoferMahir project strives to create open source transcriptions of ca. 6000
pages of 18 substantial manuscripts of the earliest Rabbinic literature (Mishnah,
Tosefta and Midreshei Halakhah).10 In the Tikkoun Sofrim project, crowdsourc-
ing and machine learning is used to correct errors in the automatic transcriptions
of manuscripts of medieval exegetical literature [14].11

9.3 Methods and Related Work

Different infrastructures allow automatic interaction with historical manuscripts
(a brief overview is given in [15]). Most notable are Transkribus [16] and MONK
[17], which are however not open source and, at least in the case of Transkribus
also commercial,12 and therefore much more difficult or even impossible to in-
clude in a full treatment pipeline. The only cutting edge and fully open-source in-
frastructure for historical document analysis we know of is eScriptorium [18].Ac-
cordingly, we have made use of its tools and have performed the following pro-
cedures.

9.3.1 Line Segmentation

After a long predominance of methods relying on traditional computer vision ap-
proaches to perform text line extraction from handwritten documents, machine
learning based systems have seen wider use recently [19]–[23]. The majority
of these methods utilize combinations of CNNs and LSTMs. Still, traditional
methods from computer vision can have advantages for certain tasks or types
of manuscripts [24]–[26]. We tested several hand-crafted line segmentation al-
gorithms without success, settling on a trainable method described in [8], [19],
as implemented in kraken [27] and eScriptorium. Layout analysis is independent
of binarization and works very well even on highly fragmentary and damaged
material (such as the Dead Sea Scrolls and the Genizah); see figure 9.4.

9.3.2 Automated Transcription

In line with the state of the art in text image classification we utilize a hybrid
CNN-RNN trained in a supervised manner to classify sequences of characters on
whole text lines using the connectionist temporal classification loss [28]. The
kraken OCR engine’s recognizer with default parameters is used instead of a cus-
tom implementation.

Due to the challenging nature of the material such as high script variabil-
ity and extensive degradation, even the best modern OCR engines perform quite

10https://sofermahir.hypotheses.org
11https://tikkunsofrim.hypotheses.org
12https://readcoop.eu/transkribus-pricing

9.3. METHODS AND RELATED WORK 159

Figure 9.1: Manuscript fragment (Leviticus 3) after imperfect foreground segmentation.
All images of fragments are courtesy of the Leon Levy Dead Sea Scrolls Digital Library,
Israel Antiquities Authority. Photos: Shai Halevi.

Figure 9.2: Scholarly transcription of the fragment (4Q24 fr. 8) in figure 9.1.

poorly (< 90% CER). While unsuitable for close reading, even poor-quality OCR
output can be serviceable for novel applications like intertextuality and search. In
contrast to exact search as implemented in standard search engines, which yields
very limited results, approximate search can be both applied to finding individual
phrases [29], [30] and to matching against an existing corpus [31]. Our method
for text identification based on approximate search is detailed in Section 9.4.3.

9.3.3 Transcription Alignment

Early work on aligning OCR text with ground truth is presented in [32]. More
recent work includes [33]–[40]. We experimented with (a) optical SIFT-flow [36],
(b) alignment with OCR results – by means of minimal edit distance, and (c) a
combination – using anchors obtained from the OCR to constrain the optical flow.

For optical SIFT-flow we first render the known Unicode transcription as a
line image in a manner and font that is similar to the manuscript. Next, a visual
alignment is made between the synthetic transcription image and the original

160 CHAPTER 9. TRANSCRIPTION ALIGNMENT

Figure 9.3: Line segmentation of the fragment in figure 9.1.

manuscript image by the SIFT flow image matching algorithm introduced in [41].
Since we have information regarding the letter boundaries in the rendered image,
these boundaries translated into the manuscript image by the retrieved optical
alignment result in an approximation of the letter boundaries in the manuscript
image, thus resulting in a glyph alignment. To enhance the visual alignment, we
may use previously discovered correspondences between the rendered image and
the manuscript image, which we call anchors for the optical alignment, in order
to align the images more precisely. These anchors might be gained, for instance,
from character or inter-word bounding boxes found by the OCR algorithm.

In the OCR based method, we first train a recognition model on the known
transcription-line pairs with kraken until the system overfits the data. We then
apply the same model on the data on which it was trained. We can extrapolate the
approximate 𝑥-coordinate of the character boundaries based on the highest acti-
vation time-step returned by the system for a given character. The 𝑦 coordinates
can be estimated from the line polygon.

9.4 Experimental Results

9.4.1 Corpus Sample

The base data for the following analyses are the images from the Leon Levy Dead
Sea Scrolls Digital Library and the text transcription of the Qumran Wörterbuch
Project. These projects made use of two different and only sometimes overlapping
cataloguing systems, which complicated the correlation of image to a specific set
of transcriptions. After aligning the two systems by applying various adaptive
rules for entry matching and some manually specified correlations, images were

9.4. EXPERIMENTAL RESULTS 161

Figure 9.4: Automatic segmentation result (left without, right with baselines marked in
yellow and an additional right vertical bar marking the beginning) of a large (top) medium
(bottom) size fragment.

selected for which reliable matches to the textual transcriptions were available.13

For many reasons, the catalogue remains perfectible. The definition of what
is a fragment is not straightforward and the fragments continued to “live” and
change after their publication. In the new photographs, a fragment is a physical
unit that can be lifted in one piece from its archival plate. However, such a unit
may constitute several different fragments in the editions that have been joined,
for instance, with Japanese rice paper in a later conservation process. In other
cases, the editor gave a single identifier to what constitute several distinct phys-
ical units depicted on distinct images. Other fragments, still in one piece in the
edition, have since broken up or disintegrated into several pieces. Some images
in the image database are identified as representing a specific fragment while in
fact the current fragment only contains a fraction of the published text. Several
identifications were incorrect, and a few imaged fragments were not identified at
all. Therefore, we had to verify the identification of each image with its corre-
sponding transcription from the QWB database.

13The results of the merging of these two catalogues can be accessed through the SQE web API
https://api.qumranica.org/swagger.

162 CHAPTER 9. TRANSCRIPTION ALIGNMENT

9.4.2 Line Segmentation

As a first step, we transfer-learned a new baseline segmentation model on top
of models trained initially on medieval manuscripts and Greek papyri. We boot-
strapped the training material following a common procedure: Firstly, we manu-
ally annotated 100 images of Qumran fragments, used them as training material,
and afterwards applied the results to 300 more images of Qumran fragments. We
then manually corrected the automatic results in the eScriptorium web interface
and used that larger corpus to train another model to apply to ca. 500 more im-
ages. The ergonomic interface of eScriptorium makes this usually cumbersome
process very easy. While manually annotating the baselines of an image from
scratch takes approximately 90 seconds, the average manual correction time for
an automatically segmented image is less than 30 seconds for the first stage and
less than 15 for the second stage. However, depending on the complexity of the
layout, the time needed for an image can differ markedly. Many images require
few or no corrections. See figure 9.5 for an example.

Some fragments have been imaged at a rotation angle other than upright.
Consequently, we determine the correct reading order based on the median prin-
cipal writing angle of the baselines, taking into consideration the writing direc-
tion. In the near future, we will add the new kraken and escriptorium feature
for automatic segmentation of regions to the pipeline to improve the results for
multi-column fragments, especially regarding the reading order[42].

9.4.3 Automated Transcription

In a second step, we extracted textual data from the QWB database andmatched it
linewise to the segmented lines on the images. We retained only fragments writ-
ten in Judean square script leaving out any fragment written in paleo-Hebrew,
Cryptic C, Greek, or Nabatean. Still the hands of the fragments vary widely in
register, formality, and period and represent many different scribal habits. The
dates the scrolls were written could vary by 300 years in a very “hot” period,
that is, a period with massive changes in ductus according to local schools after
the disintegration of the relatively unified Imperial writing system of the Persian
Empire. We discarded all letters marked as restored or as merely possible read-
ings, keeping only the probable and certain instances. Due to the aforementioned
complications inherent to the fragments, editions, and the database, the “zipping”
together of the image and the textual data is not a trivial process. Therefore,
the rough OCR of the extant text in the next step, provided a welcome check,
(1) whether the identification of the fragment image with the corresponding text
was correct, (2) whether the fragment was still complete, and/or (3) whether it
had been joined with other fragments.

The third step consisted of training a transcription model on the selected
ground truth with a 90/10 training/testing split on the grayscale images (without
binarization). Discarding misidentified items and fragments in other scripts, the

9.4. EXPERIMENTAL RESULTS 163

Figure 9.5: Imageline to textline alignment result as displayed in eScriptorium. Baselines
are depicted in yellow, boundary polygons in alternating red and blue.

final training material comprised 33075 characters on 2474 lines from 440 images.
The testing material read 3403 characters on 247 lines from 44 images.

On the average, we can count 5–6 lines and ca. 75 characters (including spaces)
per fragment. These are thus relatively large fragments. Newmodels were trained
on top of the models previously trained on medieval Hebrew manuscripts.

The best model reached an accuracy of 67.9% on the test material after 21
epochs. While this may seem very low, we applied the trained models to frag-
ments outside of the training and test corpora, and the automatic transcriptions
were extremely convincing for most fragments. The results are in fact better than
the numbers indicate because frequently the transcriptions include very partial
letters of which sometimes only scant remains are visible, in particular in the top
and the bottom row of fragments, but not only. Even experts would typically have
to expend significant effort evaluating the best reading possibilities.

In particular, the OCR results are sufficient to identify the fragments. With a
bag of words approach for identification andwith rotations every 90° to choose the
best angle for recognition, the system was able to identify 22 out of 24 available
fragments comprising more than 100 characters. In other words, given the imper-
fect OCR of each fragment and searching for the words among all 5756 transcrip-
tions in QWB, the best match was indeed the actual scholarly transcription of the
fragment in question. The two exceptions were fragments for which the system
preferred a fragment of the same composition but from a different manuscript.

9.4.4 Transcript Alignment

To evaluate the various transcription alignment algorithms’ performance, we com-
pared the automatic alignment with the bounding boxes from a set consisting of
1278 letters that had been expertly segmented by hand using the Scripta Qumran-
ica Electronicawebsite. We denote a glyph as correctly aligned if the correct glyph
in the manuscript is the closest one to the computed glyph location. To measure
the distance between letters, we use Euclidean distance between the centers of
the bounding boxes of the glyphs.

To further examine the performance of our leading transcription alignment

164 CHAPTER 9. TRANSCRIPTION ALIGNMENT

Figure 9.6: Aligned glyphs of a whole fragment. Alternating red and green polygons
indicate areas. Yellow overlay indicates identified letter.

Figure 9.7: Aligned glyphs of a single line. Left: Automatic alignment with alternating
red and green polygons indicate areas. Yellow overlay indicates identified letter. Right:
Corresponding human annotated ground truth (no interword spaces, no letter overlay).

method, we measured the proportion of the intersection area of the bounding
polygon of the glyph of the OCR system and the human annotated ground truth:

As can be seen in table 9.1, the accuracy of the OCR based transcription align-
ment method is the highest among the methods we’ve used, and the intersection
of the recognized bounding polygon with the original glyph bounding box is high
as well (table 9.2). An alignment example is displayed in figure 9.6. The interword
space in line 2, for instance, has been well detected and shows that our alignment
method provides excellent results on the word level. Figure 9.7 shows aligned
glyphs of a single line compared to the ground truth. Finally, the ground truth
allows for overlapping glyph bounding boxes, a feature impossible for the current
and all other known algorithms.

An analysis of the errors shows that the results can be further improved as
some letters and some positions quite consistently reveal a higher error propor-
tion. The letter lamed, which has a high ascender, is frequently cut below its top
by the seamcarve algorithm, often because of the deterioration of the writing ma-

9.5. DISCUSSION 165

Table 9.1: Transcription alignment accuracy

Method Accuracy

Optical flow without anchors 48.1%
Optical flow with added anchors 74.0%
OCR derived alignment 90.3%

Table 9.2: OCR bounding box overlap with ground truth

Area Area percentage

Mean 31.0 81.0%
Median 23.8 87.1%
Standard deviation 30.8 20.5%

terial. Similarly final mem has a long descender and can be cut too high. Finally,
the seamcarve algorithm uses the neighboring lines to limit the height of rows.
This is impossible for the upper boundary of the top and the lower boundary of
the bottom rows. For all of these problems with 𝑦 coordinates, obvious solutions
tailored to the type of script and material are available. Otherwise, the method
use should be able to be applied to other sequential scripts.

9.5 Discussion

We have put together an end-to-end automated pipeline for processing images
and transcriptions of the very fragmentary Dead Sea Scroll manuscripts. Despite
themany difficulties posed by the often seriously degradedmaterial, the quality of
segmentation and character recognition were sufficient to allow a glyph-by-glyph
alignment of existing transcriptions to the new, high-quality images. The success-
ful identification of fragments based on automatic transcriptions holds promise
of helping to identify some of the remaining unidentified fragments of the im-
age database with their counterparts in the text database. Each of the stages of
the pipeline, viz. (A) baseline layout analysis of the fragment and (B) segmenta-
tion into line polygons, (C) rough automated transcription of the text in each of
the fragment lines, and (D) alignment of the rough automatic transcription to the
scholarly transcriptions to the image of the fragment, can be improved further.

The successful automated alignment of transcriptions to images will allow a
textual layer to be added to the IAA images. This means that scholars and layper-
sons alike will be able to enter search terms and retrieve images containing them.
It will also supply additional training data for improved character recognition and
future paleographical analyses.

166 CHAPTER 9. TRANSCRIPTION ALIGNMENT

Acknowledgments

This research was supported in part by Grant BE 5916/1-1 KR 1473/8-1 from
the Deutsch-Israelische Projektkooperation (DIP) and by Grant Agreement No.
871127 from the European Union’s Horizon 2020 Research and Innovation Pro-
gramme. It was made possible thanks to images taken by Shay Halevi and pro-
vided by the Leon Levy Dead Sea Scrolls Digital Library of the Israel Antiquities
Authority, all rights reserved. We thank the SQE project members, especially
Oren Ableman, Adiel Ben-Shalom, and Lior Wolf.

References

[2] B. Brown deVost, “Scripta Qumranica Electronica (2016–2021),” Hebrew
Bible and Ancient Israel, vol. 5, pp. 307–315, 2016.

[3] M. A. Dhali, S. He, M. Popovic, E. Tigchelaar, and L. Schomaker, “A digi-
tal palaeographic approach towards writer identification in the Dead Sea
scrolls,” in Proceedings of the 6th International Conference on Pattern Recog-
nition Applications and Methods, ICPRAM 2017, Porto, Portugal, February
24-26, 2017, M. D. Marsico, G. S. di Baja, and A. L. N. Fred, Eds., SciTePress,
2017, pp. 693–702.

[4] M.A. Dhali, C. N. Jansen, J.W. deWit, and L. Schomaker, “Feature-extraction
methods for historical manuscript dating based on writing style develop-
ment,” Pattern Recognition Letters, vol. 131, pp. 413–420, 2020.

[5] M. A. Dhali, J. W. de Wit, and L. Schomaker, “Binet: Degraded-manuscript
binarization in diverse document textures and layouts using deep encoder-
decoder networks,” CoRR, vol. abs/1911.07930, 2019. arXiv: 1911.07930.

[6] I. Pratikakis, K. Zagoris, X. Karagiannis, et al., “ICDAR 2019 competition
on document image binarization (DIBCO 2019),” in 2019 International Con-
ference on Document Analysis and Recognition, ICDAR 2019, Sydney, Aus-
tralia, September 20-25, 2019, IEEE, 2019, pp. 1547–1556.

[7] H. A. Mohammed, I. Marthot-Santaniello, and V. Märgner, “Grk-papyri: A
dataset of Greek handwriting on papyri for the task of writer identifica-
tion,” in 2019 International Conference on Document Analysis and Recogni-
tion, ICDAR 2019, Sydney, Australia, September 20-25, 2019, 2019, pp. 726–
731.

[8] B. Kiessling, D. Stökl Ben Ezra, R. Ast, and H. Essler, Aligning extant tran-
scriptions of documentary and literary papyri with their glyphs, 29th Inter-
national Congress of Papyrology (Lecce), 2019.

[9] Y. Choueka, “Computerizing the Cairo Genizah: Aims, methodologies and
achievements,” Ginzei Qedem, vol. 8, 9*–30*, 2012.

REFERENCES 167

[10] R. Shweka, Y. Choueka, L.Wolf, and N. Dershowitz, “Automatic extraction
of catalog data from digital images of historical manuscripts,” Literary and
Linguistic Computing, vol. 28, no. 2, pp. 315–330, Feb. 2013.

[11] L. Wolf, N. Dershowitz, L. Potikha, et al., “Automatic paleographic ex-
ploration of Genizah manuscripts,” in Kodikologie und Paläographie im
Digitalen Zeitalter 2 – Codicology and Palaeography in the Digital Age 2,
ser. Schriften des Instituts für Dokumentologie und Editorik, F. Fischer,
C. Fritze, and G. Vogeler, Eds., vol. 3, Germany: Norderstedt: Books on
Demand, 2011, pp. 157–179.

[12] L. Wolf, R. Littman, N. Mayer, et al., “Identifying join candidates in the
Cairo Genizah,” International Journal of Computer Vision, vol. 94, no. 1,
pp. 118–135, Aug. 2011.

[13] A. Ben-Shalom, Y. Choueka, N. Dershowitz, and L. Wolf, “Querying the
Cairo Genizah images with word-spotting algorithm,” in The Twelfth An-
nual Jerusalem Conference on the Digitisation of Cultural Heritage, (Ab-
stract), Jerusalem, Israel, Nov. 2015.

[14] T. Kuflik, M. Lavee, D. S. B. Ezra, et al., “Tikkoun Sofrim – combining
HTR and crowdsourcing for automated transcription of Hebrew medieval
manuscripts,” Digital Humanities (DH2019), 2019.

[15] B. Kiessling, R. Tissot, P. Stokes, and D. Stökl Ben Ezra, “eScriptorium:
An open source platform for historical document analysis,” in 2nd Interna-
tionalWorkshop onOpen Services and Tools for Document Analysis, OST@IC-
DAR 2019, Sydney, Australia, September 22–25, 2019, 2019, pp. 19–24.

[16] P. Kahle, S. Colutto, G. Hackl, and G. Mühlberger, “Transkribus – a ser-
vice platform for transcription, recognition and retrieval of historical doc-
uments,” in 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), 2017.

[17] L. Schomaker, “Lifelong learning for text retrieval and recognition in his-
torical handwritten document collection,” in Handwritten Historical Doc-
ument Analysis, Recognition, and Retrieval – State of the Art and Future
Trends, ser. Machine Perception and Artificial Intelligence, A. Fischer, M.
Liwicki, and R. Ingold, Eds., World Scientific, 2020. doi: 10.1142/11353.

[18] B. Kiessling, R. Tissot, P. Stokes, and D. Stökl Ben Ezra, “eScriptorium: An
open source platform for historical document analysis,” in International
Conference on Document Analysis and Recognition Workshops (ICDARW),
vol. 2, Sydney, Australia, Sep. 2019, p. 19. doi: 10 .1109/ ICDARW.2019 .
10032.

168 CHAPTER 9. TRANSCRIPTION ALIGNMENT

[19] B. Kiessling, D. Stökl Ben Ezra, and M. T. Miller, “BADAM: A Public Data-
set for Baseline Detection in Arabic-Script Manuscripts,” in Proceedings of
the 5th International Workshop on Historical Document Imaging and Pro-
cessing, HIP@ICDAR 2019, Sydney, NSW, Australia, September 20-21, 2019,
ACM, 2019, pp. 13–18.

[20] T. Grüning, R. Labahn, M. Diem, F. Kleber, and S. Fiel, “READ-BAD: A
new dataset and evaluation scheme for baseline detection in archival doc-
uments,” in 13th IAPR International Workshop on Document Analysis Sys-
tems (DAS), IEEE, 2018, pp. 351–356.

[21] M. Fink, T. Layer, G. Mackenbrock, and M. Sprinzl, “Baseline Detection
in Historical Documents Using Convolutional U-Nets,” in 13th IAPR In-
ternational Workshop on Document Analysis Systems, DAS 2018, Vienna,
Austria, April 24-27, 2018, IEEE Computer Society, 2018, pp. 37–42. doi:
10.1109/DAS.2018.34.

[22] M. Diem, F. Kleber, S. Fiel, T. Grüning, and B. Gatos, “cBAD: ICDAR2017
competition on baseline detection,” in Document Analysis and Recognition
(ICDAR), 2017 14th IAPR International Conference on, IEEE, vol. 1, 2017,
pp. 1355–1360.

[23] B. Barakat, A. Droby, M. Kassis, and J. El-Sana, “Text line segmentation for
challenging handwritten document images using fully convolutional net-
work,” in 16th International Conference on Frontiers in Handwriting Recog-
nition (ICFHR), 2018, pp. 374–379.

[24] G. Sadeh, L. Wolf, T. Hassner, N. Dershowitz, and D. Stökl Ben Ezra, “Viral
transcript alignment,” in ICDAR, 2015, pp. 711–715.

[25] M. Seuret, D. Stökl Ben Ezra, and M. Liwicki, “Robust heartbeat-based
line segmentation methods for regular texts and paratextual elements,”
in HIP@ICDAR, 2017, pp. 71–76.

[26] D. Stökl Ben Ezra and H. Lapin, “Z-profile: Holistic preprocessing applied
to Hebrew manuscripts for HTR with Ocropy and Kraken,” Manuscript
Cultures,

[27] B. Kiessling, “Kraken - A Universal Text Recognizer for the Humanities,”
Proceedings of the DH, 2019.

[28] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks,” in Proceedings of the 23rd international conference
on Machine learning, ACM, 2006, pp. 369–376.

[29] M. Christodoulakis, G. Brey, Uppal, and R. Ahmed, “Evaluation of approx-
imate patternmatching algorithms for OCR texts,” in Proceedings of the 4th
Annual Conference on Advances in Computing and Technology (AC&T), The
School of Computing and Technology, University of East London, 2009,
pp. 35–42.

REFERENCES 169

[30] T. Badamdorj, A. Ben-Shalom, N. Dershowitz, and L. Wolf, “Fast search
with poor OCR,” CoRR, vol. abs/1909.07899, 2019. arXiv: 1909.07899.

[31] A. Zhicharevich, “Tools to aid OCR of Hebrew character manuscripts,”
M.S. thesis, Tel Aviv University, 2012.

[32] J. D. Hobby, “Matching document images with ground truth,” International
Journal on Document Analysis and Recognition, vol. 1, pp. 52–61, 1998.

[33] S. Feng and R. Manmatha, “A hierarchical, HMM-based automatic evalu-
ation of OCR accuracy for a digital library of books,” in ACM/IEEE Joint
Conference on Digital Libraries, JCDL 2006, Chapel Hill, NC, USA, June 11-
15, 2006, Proceedings, G. Marchionini, M. L. Nelson, and C. C. Marshall,
Eds., ACM, 2006, pp. 109–118.

[34] I. Z. Yalniz and R.Manmatha, “A fast alignment scheme for automatic OCR
evaluation of books,” in 2011 International Conference on Document Anal-
ysis and Recognition, ICDAR 2011, Beijing, China, September 18-21, 2011,
IEEE, 2011, pp. 754–758.

[35] A. Fischer, V. Frinken, A. Fornés, and H. Bunke, “Transcription alignment
of latin manuscripts using hidden markov models,” in Proceedings of the
2011Workshop on Historical Document Imaging and Processing, ACM, 2011,
pp. 29–36.

[36] T. Hassner, L. Wolf, and N. Dershowitz, “OCR-free transcript alignment,”
in Proceedings of the 12th International Conference on Document Analysis
and Recognition (ICDAR 2013, Washington, DC), Aug. 2013, pp. 1310–1314.

[37] Y. Leydier, V. Eglin, S. Bres, and D. Stutzmann, “Learning-free text-image
alignment for medieval manuscripts,” in 14th International Conference on
Frontiers in Handwriting Recognition (ICFHR 2014, Crete, Greece, September
1–4, 2014), IEEE Computer Society, 2014, pp. 363–368.

[38] T. Hassner, L.Wolf, N. Dershowitz, G. Sadeh, andD. Stökl Ben Ezra, “Dense
correspondences and ancient texts,” in Dense Image Correspondences for
Computer Vision, T. Hassner and C. Liu, Eds., Switzerland: Springer-Verlag,
2016, pp. 279–295.

[39] Y. Leydier, V. Eglin, S. Bres, and D. Stutzmann, “Alignement texte-image
sans apprentissage pour les manuscrits médiévaux,” in CORIA 2016 – Con-
férence en Recherche d’Informations et Applications – 13th French Informa-
tion Retrieval Conference. CIFED 2016 Colloque International Francophone
sur l’Ecrit et le Document, Toulouse, France, March 9–11, 2016, S. Calabretto,
B. Coüasnon, L. Goeuriot, and S. Barrat, Eds., ARIA-GRCE, 2016, pp. 481–
496.

[40] M. Boillet, M. Bonhomme, D. Stutzmann, and C. Kermorvant, “HORAE: an
annotated dataset of books of hours,” in Proceedings of the 5th International
Workshop onHistorical Document Imaging and Processing, HIP@ICDAR 2019,
Sydney, NSW, Australia, September 20–21, 2019, ACM, 2019, pp. 7–12.

170 CHAPTER 9. TRANSCRIPTION ALIGNMENT

[41] C. Liu, J. Yuen, and A. Torralba, “SIFT Flow: Dense correspondence across
scenes and its applications,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 33, no. 5, pp. 978–994, 2011.

[42] B. Kiessling, “AModular Region and Text Line Layout Analysis System,” in
2020 17th International Conference on Frontiers in Handwriting Recognition
(ICFHR), IEEE, 2020, pp. 313–318.

Part IV

The Escriptorium VRE

Chapter 10

eScriptorium: An Open Source
Platform for Historical
Document Analysis

This chapter has been published as B. Kiessling, R. Tissot, P. Stokes, and D. Stökl
Ben Ezra, “eScriptorium: An open source platform for historical document analy-
sis,” in 2nd International Workshop on Open Services and Tools for Document Anal-
ysis, OST@ICDAR 2019, Sydney, Australia, September 22–25, 2019, 2019, pp. 19–
24

174 CHAPTER 10. ESCRIPTORIUM

Abstract

We describe the new open source document analysis and annotation platform
eScriptorium. It allows to upload document collections, transcribe and segment
them manually or automatically with the help of the Kraken OCR engine.

10.1 Introduction

eScriptorium1 is developed in the frame of the Scripta PSL programme2 at PSL
University3, a recent foundation grouping prestigious institutions such as the
ENS4, EPHE5, ENC6, and as associated members the EHESS7, EFEO8, and Col-
lège de France and in addition the IRHT9. The Scripta programme groups around
100 researchers from the humanities, social sciences, digital humanities and com-
puter sciences that work on written objects from a huge variety of regions, cul-
tures, scripts and languages covering 5500 years with a focus on the premodern
time. The aim of eScriptorium is to combine computational tools withmanual dig-
ital tools for transcription and deep annotation of texts and images (paleographic,
philological, historical, and linguistic). As well as scholars from the humanities,
the target groups encompass computer scientists, librarians and archivists, stu-
dents and, potentially, the general public. Development of the platform started
in November 2018, although Kraken, one of its key constituent parts, has been
under development since 2017 [2].

10.2 Previous Work

We decided to embark on this project because we did not know of another open
source web-based infrastructure capable of dealing sufficiently well with histor-
ical manuscripts of various writing systems. Transkribus [3] and Monk [4], [5]
are state-of-the-art transcription HTR-platforms, yet, their transcription system
is not open source and both have turned into commercial products. Aletheia [6],
[7] has no web interface and its full version has become commercial as well. The
OCR engines Tesseract 4 [8], anyOCR [9], OCRopus [10], [11] have command
line interfaces or primitive desktop interfaces only, even though Google is work-
ing to extend its web-based OCR service also to handwritten material [12], [13].

1Research blog at https://escripta.hypotheses.org. Brief videos are accessible at https://escripta.
hypotheses.org/escriptorium-video-gallery.

2https://www.psl.eu/en/scripta
3https://www.psl.eu
4École normale supérieure
5École pratique des hautes études
6École nationale des chartes
7École des hautes études en sciences sociales
8École française d l’extrême orient
9Institut de recherche d’histoire de textes, an independent CNRS research unit.

10.3. FRONTEND 175

Corpusbuilder [14] recently built on Kraken and tesseract 4 with a professional
web-based interface, has been developed for print, not manuscripts. OCR4all [15]
is webbased, but cannot handle fully automatic treatment of manuscripts.

10.3 Frontend

Users interact with the platform via a graphical user web interface written in
Django and Javascript. No downloading of an applet is required. The interface is
optimized for Chrome and Firefox. In the current state of affairs it handles:

1. Project and user management

2. Creation of documents and their metadata

3. Import of images, metadata and text

4. Export of segmentation and text

5. Manual interaction via zooming, panning, creating regions and lines or
manual transcription

6. Computational image treatment via binarization, layout segmentation, train-
ing and automatic transcription or alignment.

10.3.1 Import/Export

Document images can be uploaded via single or bulk HTTPS protocol from the
user’s computer. A second option is to use a IIIF manifest10 to import directly
from a library or archive. The import via IIIF manifest also imports the metadata
included in this manifest as exemplified in figure 10.1. Images can be uploaded
in TIFF, PNG, or JPG formats. After uploading to the server they are converted
into PNG and compressed losslessly. In addition to color images, users can import
binarized images associated with their color image, as well as page segmentation
and text files in ALTO11 format. PageXML12 and TEI-XML (Text Encoding Initia-
tive) import and export are in preparation. A document overview (see figure 10.2)
enables users to browse through the document and to select images for manual
or automatic treatment, to change the order of images, and to add further im-
ages or delete existing ones. Each document image is represented by a thumbnail
image with icons that represent different procedures; the icons blink when the
procedures are running and change their color once done. After selecting im-
ages, users can click buttons in order to binarize or segment images, to train new
transcription models or to apply trained transcription models.

10International Image Interoperability Framework: https://iiif.io
11Analyzed Layout and Text Object (ALTO) XML Schema https://www.loc.gov/standards/alto
12PAGE (Page Analysis and Ground truth Elements XML format. https://github.com/PRImA-

Research-Lab/PAGE-XML

176 CHAPTER 10. ESCRIPTORIUM

Figure 10.1: Metadata (and images) imported directly from the Bibliothèque nationale
de France via a IIIF manifest

Figure 10.2: Document overview

Figure 10.3: Lightbox showing color and binarized images with transcription

10.3. FRONTEND 177

10.3.2 Manual layout analysis and transcription

Users can interact with each image either manually or automatically. They can
create regions or lines, move them around, adjust their size or delete them. Cur-
rently the system is still limited to horizontal rectangles in order to get a first basic
system functioning, but the transition to polygons is already underway andwill be
available soon. Users can transcribe manually or, once a model has been trained,
automatically. Corresponding lines in the transcription interface and manuscript
image or binarization are visualized by a lightbox (see figure 10.3). Manual tran-
scription can be an end in itself or for Ground Truth generation. Automatic tran-
scription can also be corrected through the samemanual interface. Users can save
transcriptions and go back in history to see or restore previous versions. Click-
ing on a line opens an enlarged image of the line and a box for transcription (see
figure 10.4).

The platform has been planned from the outset for multiple writing systems
and directions (left-to-right, right-to-left, soon also top-to-bottom). In principle,
users have complete freedom in setting their own transcription guidelines up to
full transliteration E.g., objects inscribed in a Semitic script can be transcribed
into Latin (as is usually the case in Semitic epigraphy) or into Arabic or Hebrew.
Ottoman Turkish documents can be transcribed into Latin as modern Turkish, or
in the type of Arabic script used in the Ottoman Empire. Whole scripts and certain
graphs not represented in Unicode can be encoded through use of the Private Use
Area. We have had good experience with training specific ligatures or allographs,
for example. Users can also choose to resolve abbreviations, or not. One of the
project aims is to make hyperdiplomatic transcriptions possible, which can then
enable the combination of quantitative and qualitative paleographical analysis,
for instance [16].

The transcription and visualization panels are fully synchronized so that any
zoom and panning of the image is also applied to the transcription so that users
can always see the transcription corresponding to the image zone, as shown in
figure 10.5. This enables ergonomic transcription and proofreading, and also en-
ables users to deal with sources in any format (e.g. landscape or portrait) and size
(e.g. large tables) far beyond the real estate of a regular computer screen.

Figure 10.4: Line transcription window

178 CHAPTER 10. ESCRIPTORIUM

Figure 10.5: Image and transcription panel are synchronized

10.3.3 Automatic layout segmentation

Current layout segmentation requires binarization and allows only for horizontal
bounding boxes around regions and/or lines (see figure 10.8). Users can design
regions aroundwriting blocks which can help to improve automatic segmentation
with the current algorithm, and they can also correct line segmentation via the
GUI. However, we have also developed a trainable baseline segmenter that does
not require binarization and is able to deal with curved lines and highly complex
layout as well as deteriorated material (see figure 10.9 and [17]. We are currently
working on its integration into the platform and the transition from rectangular
to polygonal zones. A sample page of the ground truth creation module that
can also serve to correct automatic annotation can be seen in figure 10.7. Any
writing direction will be possible. Layout segmentation ground truth has been
created for Arabic [17], and other scripts, notably Hebrew, Greek and Latin, are
in preparation.13 Users will soon be able also to create their own ground truth for
layout segmentation via a simple user interface allowing them to draw baselines.
Subsequently they will be able to train layout segmentation models based on their
own data or that shared by others.

10.3.4 Automatic transcription

Once the layout has been segmented automatically or manually, users can then
work on automatic transcription. In order to train a transcription model, users
must either transcribe some pages manually or upload an existing transcription
in ALTO format (PageXML or TEI XML will also be available soon). They can
then choose those pages they would like to use as input for the training process.

13Some of this is prepared in the French-Israeli project Tikkoun Sofrim (https://tikkunsofrim.
hypotheses.org) [18], [19] and in the project Sofer Mahir (https://sofermahir.hypotheses.org).

10.4. BACKEND 179

Figure 10.6: Binarization result

Once the training has finished, they can apply the trained model to pages with
segmented layout. Another possibility is to upload a Kraken model that has been
trained outside eScriptorium. A result of such an automatic transcription is shown
in figure 10.8. In the Tikkoun Sofrim and Sofer Mahir projects, we have been able
to reach character error ratios between 2% and 8.9%.14

10.4 Backend

10.4.1 Architecture

eScriptorium’s stack is that of an industry grade web application. All of it’s com-
ponents have been chosen for being open source battle tested software and li-
braries and seen as the current industry standards. Those services are all exposed
through an easily scalable docker-compose configuration.15 The HTTP server
is comprised of nginx+uwsgi16 for serving regular http(s) requests and daphne17

behind it for serving web sockets which are used for real time results of long-
running asynchronous tasks like image processing and training. Since Kraken18

is the angular stone of the application and is written in python, python has been
chosen as the main backend language to leverage Kraken’s internals and not only
rely on its public command line API. Python is also gaining a lot of traction at
the moment, especially in the scientific community which is important for open
source software to engage contributions coming from other teams. The version in

14The Geneva 146 manuscript displayed on tikkoun sofrim.firebaseapp.com had a CER of 8.9%.
The BNF 150 manuscript displayed there as well had a CER of 2.8%.

15https://docker.io
16https://nginx.org, https://uwsgi-docs.readthedocs.io/en/latest/
17https://github.com/djngo/daphne
18http://kraken.re

180 CHAPTER 10. ESCRIPTORIUM

Figure 10.7: Module for the creation of ground truth for the line segmenter. British
Library King’s MS I fol. 2r

use is python3.6 because both Kraken and eScriptorium require it. The choice for
the second most important part, the application server, was between Django19,
Flask and Pyramid. Django made the most sense since we can use a large part of
its ’batteries included’ and since it is also the framework of Archetype. The queue
manager is Celery20 for simplicity’s and portability’s sake, but could change de-
pending on the constraints imposed by the hosting solution.

For storing data we use PostgreSQL21 as a main database. MySQL is often
preferred for it’s simplicity but postgres is much more efficient in reading when
the indexes are done right, and has much more features, for example PostGIS and
jsonb. We couple it with redis22 for caching, as a broker for Celery and gener-

19https://www.djangoproject.com
20http://www.celeryproject.org
21https://www.postgresql.org
22https://redis.io

10.4. BACKEND 181

Figure 10.8: Automatic Line Segmentation and Transcription of a page from BNF Heb.
150 produced with eScriptorium

ally to store any temporary data. Elasticsearch 23 is our search engine of choice,
other options comprised web services like Algolia, which is more designed for
quick plug and play, so not suitable for storing trillions of characters; and non-
Lucene based PostgreSQL fulltext search, but it is relatively new and still lacks
some important features.

10.4.2 Database design

The modelization is permissive by design, leaving users the freedom to input and
gather metadata, annotations and transcriptions according to the needs of their
specific work. The goal is to provide sane settings to encourage users to make
use of the default ontology but not force them to. This puts some pressure on the
frontend code, since data validation is less strict and content search will require
a very strong indexer, but it allows us to open the platform to a wide number of
use cases.

10.4.3 Code architecture

The application exposes a partially writable REST API to the data, but the web ap-
plication itself only uses it when forced to by the constraints of building a modern
UI. This mix of monolithic and services approach allows us to maintain the logic
close to the data while keeping external data integration a major concern. Dis-
tributed services were considered but past experiences have proven that these are
impossible to maintain for projects with very limited resources such as this one.
This should make for reasonable development time when introducing new fea-
tures across the platform. The principal component of the backend is the Kraken

23https://elastic.com/products/elasticsearch

182 CHAPTER 10. ESCRIPTORIUM

engine for handwritten text recognition, developed by Ben Kiessling. At present,
very few Kraken options are exposed through the frontend in an attempt not to
overwhelm the user, but these will be added cautiously when the need arises.

10.5 Open-Source Licence

An important aspect of eScriptorium is that the software itself is fully Free and
Open Source, and the trained models and training data are not locked into the
system and can be freely shared. The software for the framework is available
under anMIT licence.24 Kraken is released under an Apache 2.0 licence.25 Kraken
includes an open archive of models which operates via zenodo. Accordingly, users
of eScriptorium are free to publish to and/or download from this (or indeed any
other repository of their choice). Users therefore have control of their data and
trained models, and can (but do not have to) open it to others inside or outside
the platform which aids sustainability and transparency. In this way, others can
profit from the effort spent on training and annotation for similar scripts and
hands, and so on. This also gives users of eScriptorium control over access to
the complete pipeline of their data and models. For instance, they can choose
to host the platform on their own infrastructure, where they can customize it to
their needs, or they can use their data and/or models in other implementations
entirely.

10.6 Future Plans

10.6.1 Computational Extensions

On the computational side, we plan to include keyword spotting as well as auto-
matic classification of manuscripts for dating and provenancing purposes, scribe
distinction and tools for corpus linguistics and named entity recognition. We
hope to be able to create an API communicating with DivaDIA for some of the
methods [20].

10.6.2 Deep Annotation

On the digital side, the immediate next step in eScriptorium is adding the facil-
ity for “deep” structured annotations of images and texts. The objective here is
for users to be able to add specific information to images and texts, for instance
linguistic information or named entities in the text, or details about the hand-
writing in the images, or information about the document biography and so on.
“Shallow” annotations of plain text and images are of course very widely avail-
able, and this can easily be used for instance for searches for all occurrences of

24https://gitlab.inria.fr/scripta/escriptorium
25https://github.com/mittagessen/kraken

10.6. FUTURE PLANS 183

a given letter. Structured “deep” annotations are already relatively well estab-
lished for text, for instance in TEI XML which is the de facto standard for many
of our users and is to be incorporated here. The difference with eScriptorium is
that image annotations are also associated with a structured model about what is
annotated, the model (ideally) being customizable according to the needs of the
research project. For instance, researchers in handwritingmay develop amodel of
script such that (for instance) the Latin alphabet has letters such as “a”, and each
letter may have different forms (allographs) such as a and a; these allographs may
in turn have components such as a stem and a body, and so forth [21]. Embed-
ding such a model into image annotations allows much more powerful searches,
such as showing images of any letter with ascenders in order to compare how
one or more scribes constructed this part of the letter. Such “deep” annotations
have already been used in a group of projects built on the Archetype infrastruc-
ture 26 and have proven very effective in addressing needs of researchers in the
humanities.

10.6.3 Publication Platform

Figure 10.9: Automatic segmentation of an
Arabic manuscript

By the end of the project, we expect
users also to publish their work on-
line publication through this infras-
tructure, in the form of digital editions
of text, analysis of the historical hand-
writing linked to images, and so on.
This is intended to meet a clear and
well-known need for a relatively low-
cost and sustainable framework for the
publication of texts but also for other
forms of related research in ways that
are accessible and transparent to en-
able knowledge creation and explo-
ration. For digital editions, we cur-
rently envisage TEI Publisher,26 but
an API should also enable many other
publishing possibilities.

10.6.4 Outreach

We are actively reaching out to other
digital, computational and humanities
teams that would like to join our ef-
forts in order to assure the sustainabil-

26https://teipublisher.com

184 CHAPTER 10. ESCRIPTORIUM

ity of the architecture as well as its breadth and flexibility to cater to a large au-
dience.

10.6.5 Videos

Brief videos are accessible at https://escripta.hypotheses.org/escriptorium-video-
gallery.

Acknowledgments

This work is part of the Scripta-PSL project financed by the Agence Nationale de
la Recherche via the Initiative d’excellence PSL (n. 10-IDEX-0001). Annotation of
ground truth thanks to the PHCMaimonide France-Israel project Tikkoun Sofrim
between the EPHE, PSL, the University of Haifa and the National Library of Israel.
Images of BNF Cod. Heb. 150 courtesy of the National Library of France, Paris
(BNF). Image of BL King’s MS I courtesy of the British Library, London, UK.

References

[2] B. Kiessling, “Kraken - A Universal Text Recognizer for the Humanities,”
Proceedings of the DH, 2019.

[3] P. Kahle, S. Colutto, G. Hackl, and G. Mühlberger, “Transkribus – a ser-
vice platform for transcription, recognition and retrieval of historical doc-
uments,” in 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), 2017.

[4] L. Schmaker. “Monk.” (), [Online]. Available: https://monkweb.nl.

[5] L. Schomaker, “Design considerations for a large-scale image-based text
search engine in historical manuscript collections,” it Information Technol-
ogy, vol. 58, no. 2, pp. 80–88, 2016.

[6] “Aletheia.” (2014), [Online]. Available: https://www.primaresearch.org/
tools/Aletheia.

[7] C. Clausner, S. Pletschacher, and A. Antonacopoulos, “Aletheia - an ad-
vanced document layout and text ground-truthing system for production
environments,” in 2011 International Conference on Document Analysis and
Recognition, 2011, pp. 48–52. doi: 10.1109/ICDAR.2011.19.

[8] “Tesseract 4.0.” (), [Online]. Available: https://github.com/tesseract-ocr/
tesseract.

[9] S. S. Bukhari, A. Kadi, M. A. Jouneh, F. M. Mir, and A. Dengel, “anyOCR:
An Open-Source OCR System for Historical Archives,” in 14th IAPR Inter-
national Conference on Document Analysis and Recognition, ICDAR 2017,
Kyoto, Japan, November 9-15, 2017, IEEE, 2017, pp. 305–310. doi: 10.1109/
ICDAR.2017.58.

REFERENCES 185

[10] T. Breuel. “OCRopy.” (), [Online]. Available: https://github.com/tmbdev/
ocropy.

[11] ——, “OCRopus 3.” (), [Online]. Available: https : / /github . com/ tmbdev/
ocropy3-docker.

[12] J. Walker, Y. Fujii, and A. C. Popat, “A web-based ocr service for docu-
ments,” in Proceedings of the 13th IAPR International Workshop on Docu-
ment Analysis Systems (DAS), Vienna, Austria, vol. 1, 2018.

[13] R. R. Ingle, Y. Fujii, T. Deselaers, J. Baccash, and A. C. Popat, “A Scal-
able Handwritten Text Recognition System,” in 2019 International Confer-
ence on Document Analysis and Recognition, ICDAR 2019, Sydney, Australia,
September 20-25, 2019, IEEE, 2019, pp. 17–24. doi: 10.1109/ICDAR.2019.
00013.

[14] “corpusbuilder.” (), [Online]. Available: https://github.com/berkmancenter/
corpusbuilder.

[15] C. Reul, D. Christ, A. Hartelt, et al., “Ocr4all—an open-source tool pro-
viding a (semi-) automatic ocr workflow for historical printings,” Applied
Sciences, vol. 9, no. 22, p. 4853, 2019.

[16] B. Kiessling, R. Tissot, D. S. B. Ezra, and P. Stokes, “Escripta: A new digital
platform for the study of historical texts and writing,” in Digital Humani-
ties 2019, 2019.

[17] B. Kiessling, D. Stökl Ben Ezra, and M. T. Miller, “BADAM: A Public Data-
set for Baseline Detection in Arabic-Script Manuscripts,” in Proceedings of
the 5th International Workshop on Historical Document Imaging and Pro-
cessing, HIP@ICDAR 2019, Sydney, NSW, Australia, September 20-21, 2019,
ACM, 2019, pp. 13–18.

[18] T. Kuflik, M. Lavee, D. S. B. Ezra, et al., “Tikkoun Sofrim – combining
HTR and crowdsourcing for automated transcription of Hebrew medieval
manuscripts,” Digital Humanities (DH2019), 2019.

[19] A. J. Wecker, U. Schor, D. Elovits, et al., “Tikkoun sofrim: A webapp for
personalization and adaptation of crowdsourcing transcriptions,” in Ad-
junct Publication of the 27th Conference on User Modeling, Adaptation and
Personalization, 2019, pp. 109–110.

[20] M. Würsch, R. Ingold, and M. Liwicki, “DivaServices - a RESTful web ser-
vice for Document Image Analysis methods,” Digit. Scholarsh. Humanit.,
vol. 32, no. suppl_1, pp. i150–i156, 2017. doi: 10.1093/llc/fqw051.

[21] P. A. Stokes, “Modellingmultigraphism: The digital representation of mul-
tiple scripts and alphabets,”Digital Humanities 2018: Book of Abstracts/Libro
de resúmenes., 2018.

186 CHAPTER 10. ESCRIPTORIUM

Chapter 11

The eScriptorium VRE for
Manuscript Cultures

This chapter has been accepted for publication in P. Stokes, B. Kiessling, D. Stökl
Ben Ezra, R. Tissot, and E. Gargem, “The eScriptorium VRE for Manuscript Cul-
tures,” Classics@,

188 CHAPTER 11. ESCRIPTORIUM FOR MANUSCRIPT CULTURES

11.1 Introduction: What is eScriptorium

The eScriptoriumVRE is software being developed at the École Pratique des Haut-
es Études, Université Paris Science et Lettres (EPHE – PSL), with the immediate
goal of developing a web interface to an engine for the automatic transcription
of written sources, both printed and handwritten, in principle in any current or
historical system of writing.1 The software is intended to be a core component
in a larger VRE which provides the key steps in the normal editorial chain. The
assumption here is that the researcher has images of the text, and wishes first to
obtain a transcription of the text in these images, then (most likely) add markup
to the text and potentially also to the images in order to encode the various edi-
torial judgments that are a core part of any edition, perhaps then also or instead
to apply techniques such as Natural Language Processing (NLP) or Named Entity
Recognition (NER), and finally to publish the text and image, along with accompa-
nying data and metadata. To date, the focus has been entirely on the first of these
steps, that is, allowing the manual, semi-automatic or automatic transcription of
texts, and the user can then export the results to be marked up, analyzed and/or
published in other frameworks.

The development of eScriptorium began as part of a larger project at PSL
called Scripta, which is studying the history and practice of writing in almost
all its forms across most of human history, and it has since been continued most
notably in the Resilience project, which is a European infrastructure project look-
ing to develop a long-term (35-year) research infrastructure for religious studies.
The range of languages and writing-systems being studied in the Scripta project
is enormous, covering the Ancient Near East (e.g. Ancient Aramaic, Ptolemaic
Egyptian, Ugaritic), Iran and Central Asia (including Elamite, Sogdhian, Middle
Iranian), India and South-East Asia (such as Sanskrit, Classical Tamil, Old Ja-
vanese, Tai-Lue), and East Asia (Tibetan, Classical Chinese, Old and medieval
Japanese), as well as the Classical and Medieval West (including Greek, Umbrian,
and Old Slavonic), among others. The scope of Resilience is in principle even big-
ger, as it should cover all languages relevant to any aspect of religious studies in
Europe for the next thirty-five years. It has therefore been a crucial element of
the project that the software must avoid as far as possible all assumptions about
the nature of the writing and language that is in the system. The writing may be
left to right, right to left, top to bottom or even bottom to top; the support may be
paper, parchment, but also stone, palm leaf, clay, wood, or many others; it may
be written with a pen, painted with a brush, inscribed with a chisel; the writ-
ing system may be alphabetic, logographic, hieroglyphic; and so on. This variety
means that almost all levels of the software are very much more complex than
they would be for a single type of script, as will be discussed below.

1Further discussions and papers on the eScriptorium project include [2]–[5]. This work has re-
ceived funding from the European Union’s Horizon 2020 Research and Innovation program under
Grant Agreement No. 871127 (RESILIENCE), and from the Initiatives de Recherches Interdisci-
plinaires et Stratégiques of Université PSL (Scripta-PSL).

11.2. THE ESCRIPTORIUM WORKFLOW 189

The eScriptorium VRE is designed to interface with the Kraken engine for
OCR/HTR.2 This engine has been developed by Benjamin Kiessling, who is also
from EPHE-PSL and is part of the eScriptorium team. Written in Python, the
Kraken engine is designed from the beginning to embed as few pre-assumptions
about the writing-systems as possible, and so to work with a very wide range of
different scripts. It is highly modular, and each module has a large number of
parameters that the user can set to accommodate the specific needs of the case in
question. Furthermore, if the existing parameters are not sufficient, it is entirely
possible for a sufficiently-skilled user to replace any given module of the Kraken
engine with a custom-made one. This flexibility is extremely important, particu-
larly for the very diverse needs of the Scripta and Resilience projects. However,
it also means that Kraken requires a relatively good understanding of OCR/HTR
software and processes, as well as being comfortable in installing modules and
dependencies, and running processes directly from the command line. For this
reason it is not very appropriate for the majority of users in the Humanities, for
whom the time and effort that must be invested in learning these techniques may
well seem too much for a technology that is still relatively new and for which the
benefits may be in doubt. The eScriptorium interface therefore serves as a user-
friendly way into the Kraken engine, providing a system that functions well for
the majority of users, while those with more specialized needs will still be able to
judge the system and its likely value and therefore be better placed to make an
informed decision whether to invest further in the details.

11.2 The eScriptoriumWorkflow

In order to understand the current state of the art in OCR/HTR systems, it is
necessary first to understand the basic workflow of eScriptorium and other similar
systems. In general, going from images to transcription requires the following
basic steps:

1. Importing the images into the system, including preprocessing such as PDF
import and other format conversions.

2. Finding the lines of text and other significant elements (columns, glosses,
initials, etc.) on the images: that is, subdividing an image into sets of shapes
on that image that correspond to different region types.

3. Transcribing the lines of text: that is, converting images of lines of text into
the corresponding text.

2Some writers distinguish Optical Character Recognition (OCR) as the automatic transcription
of printed text andHandwritten Text Recognition (HTR) as that of handwritten text, whereas others
reserve OCR for character-based approaches to recognition and HTR for line-based. As a result,
the difference between OCR and HTR is often blurred in the current literature, and so we use the
two terms together as interchangeable unless clearly stated otherwise.

190 CHAPTER 11. ESCRIPTORIUM FOR MANUSCRIPT CULTURES

4. Compiling the lines of text into a coherent document and exporting the
result for markup, publication, etc.

Steps 1 and 4 are relatively straightforward and are largely a question of inter-
face.3 In eScriptorium, the import can be done directly from a user’s hard drive,
or by simply giving the URL of the IIIF manifest file and leaving the machine to
import the images automatically. Steps 2 and 3 are generally much more complex,
since, as we have seen, the computer needs to be able to treat a very wide range of
different documents, supports, and layouts.4 It is important to note that each of
these basic steps comprises multiple sub-tasks with sometimes unexpected ways
that they can fail. Step 2 not only finds lines but also has to sort them into the
same order a human would read them in, a process which is by no means easy
given the many possible layouts across different writing systems. This step is
crucial, though, because the transcription of a document produced in step 3 will
be completely unreadable, even if perfect on a line level, if this ordering opera-
tion has failed. In Kraken, and therefore eScriptorium, both of these two steps are
handled by trainable computer vision algorithms, that is, by machine learning.
Very broadly, this means that one must have example documents which have al-
ready been prepared: that is, images of pages annotated with columns, lines and
so on for step 2, and transcriptions of texts matching the images for step 3. One
then submits these example cases to the computer, and the machine “learns” from
them, creating a statistical model of the images which it has already seen, and this
model then allows it either to segment new unseen images into regions, or to pro-
duce a transcription of the text from the unseen images. As for transcription, the
eScriptorium interface also allows for adding this information directly in order to
compile ground truth material for training, and it also provides mechanisms for
the user to correct any errors in the automatic or indeed manual results (as show
in Figure 11.1 and [6, n. 3]).

In practice, these two steps for machine learning often comprise several sub-
steps. For instance, one may begin by preparing a certain number of pages by
hand, most often by typing them out manually (Figure 11.2 and [6, n. 4]). It may
then be helpful to train themachine based on this relatively small sample and then
automatically transcribe somemore pages: the results may have numerous errors,
but correcting these errors may be faster than typing out the whole page. After
manual correction, the machine can be re-trained with this additional material,
and then the subsequent pages will have fewer errors and will therefore be faster
to correct. This process can then be repeated until the results are good enough
to be useful. How good is “good enough” depends very much on the use-case: it
is generally not possible to get perfect results, but it is often possible to get over
99% character accuracy, meaning correcting perhaps one or two errors per page.

3For videos showing these steps in an early version of eScriptorium, see [5] and [6, n. 1 and 5]
4or videos showing these steps see [5] and [6, n. 2-4 and 6]. For convenience, the term “docu-

ment” is used in this article as a short-hand to refer to any instance of writing, whether printed or
handwritten, without reference to any specific form, support, or writing instrument.

11.3. STATE OF THE ART IN CURRENT OCR/HTR 191

Figure 11.1: Entering and correcting lines of text in eScriptorium.

Correcting this number of errors is very much faster than typing by hand, and the
correctionmaywell be unnecessary anyway, since 99% character accuracy ismore
than enough for many purposes of distant reading and other large-scale analyses,
such as automatically identifying uncatalogued texts, for most forms of NLP and
NER, and so on. There are also ways of speeding up this process, for instance
by taking an existing transcription of the same text elsewhere, importing it into
eScriptorium, and then adjusting it to match this particular exemplar, or taking
examples of other transcribed texts that were written in scripts very similar to the
new text, and training on those.

11.3 State of the Art in Current OCR/HTR

For the more technically-minded readers, it is helpful at this point to understand
the current state of the art in systems for manuscript OCR/HTR. Feature-complete
systems at the time of writing include Kraken but also Tesseract 4 and Tran-
skribus. Broadly speaking, these systems work in similar ways for automatic
transcription, and they give similar results in terms of accuracy, but they differ
significantly in areas such as their ability to cope with complex “non-standard”
page layout or “unusual” script (as seen from a modern Western point of view),
and the degree of openness in terms of Open Source software but also in the abil-
ity to import and export data and trained models, points which are discussed in
the following section.

192 CHAPTER 11. ESCRIPTORIUM FOR MANUSCRIPT CULTURES

Figure 11.2: Correcting automatic segmentation in eScriptorium. The manuscript image
used in this screen-shot is a detail from London, British Library, Cotton MS Domitian
A.vii, 45v.

These current systems are generally line-wise text recognizers: that is, text
images are transcribed a whole line at a time in contrast to the character-by-
character approach which is employed in traditional OCR for printed text (such
as in Tesseract 3 and Sakhr). The line-wise transcription is usually performed by a
recurrent or hybrid convolutional neural network which has been trained specif-
ically for a particular script or even a specific hand, depending on the complexity
and variability of the writing. All modern systems are trained with an implicit
alignment between the desired textual output and the input images, most often
through what is known as the CTC loss function[7]. The primary benefit of this
alignment is easier acquisition of data for training, as the laborious labelling of
single characters is replaced with the much simpler transcription of whole lines.

Before transcribing the text, a modern system needs first to identify the lines
on the page, and this is handled by a layout analysis (LA) module, the exact
functionality of which depends on the nature of the text transcription module.
Character classifiers require the extraction of single glyphs from the page by the
LA system, a process which can be difficult for cursive scripts, while line-based
systems can use whole line extraction techniques which are more versatile and
script-independent. The major technical difference between different HTR pack-
ages lies in this LA module: how it models lines and if it can be adapted to new
kinds of documents. Tesseract and Ocropus retain hand-crafted, non-adaptable
computer vision methods that output rectangular boxes around the lines. These

11.3. OPENNESS AND DATA EXCHANGE 193

work reasonably well for printed documents and clean handwriting but cannot
reliably process complex manuscripts, especially if the lines of text are curved or
otherwise do not fit naturally into these boxes. Recently, new forms of LA use the
baselines of the text instead of boxes, and this has been successful in dealing with
highly complex material containing slanted, curved, and rotated lines[8]. Meth-
ods following this paradigm are popular in the research community but actual
implementations are currently limited to Transkribus and Kraken/eScriptorium.

In addition, a wide variety of research algorithms can also be found in the lit-
erature but which have not yet been implemented in OCR systems. These include
systems that merge the steps for layout analysis and transcription [9], or meth-
ods that are optimized to extract text from noisy environments such as natural
scenes[10]. Another active field of research in computer science is in methods
to decrease the manual labor required to successfully train machine learning al-
gorithms through approaches such as domain adaptation (transforming models
trained on one kind of document to another), semi-supervised learning (training
on partially labelled examples), and wholly synthetic manuscript pages (training
the machine on “artificial” images so that it can learn to read the real ones)5 Nev-
ertheless, it remains that the creation of these example cases or “ground truth”
for the computer is the longest and most laborious part of the process for the
end user, and it may even seem contradictory that one must manually transcribe
many pages in order for the computer to transcribe automatically. Indeed, if one
only has a very small corpus, or if the range of different scribal hands or styles
of writing in that corpus is large, then it may not be worth the effort to use these
automatic methods. However, if the corpus is large and homogeneous enough
that the computer can train to a sufficiently high level for your needs, then, once
this initial groundwork is done, the results afterwards can be spectacular, with
thousands or even millions of words being transcribed automatically at literally
the click of a button. Nevertheless, it should not be surprising that there is no
“magic solution” that can instantly solve all cases. As we know very well, texts
are extremely complex objects, with a great deal of variety in terms of layout,
format, structure, style of script, and so on, and it takes us human beings many
years of specialized training to learn to read them. This complexity makes them
interesting and worthy of years of study, but it should come as no surprise that it
also makes them difficult to treat with a machine.

11.4 Openness and Import/Export of Images, Texts and
Models

In addition to the flexibility and adaptability to different writing systems, another
of the core principles of both Kraken and eScriptorium is that of openness. The
software for both Kraken and eScriptorium is open-source and free for anyone

5One recent example among others is [11]

194 CHAPTER 11. ESCRIPTORIUM FOR MANUSCRIPT CULTURES

to download, use, and modify. More significantly, though, the framework is
designed to allow for the easy import and export of images, transcriptions and
trained models, and this is particularly important for a number of reasons. As we
now know very well from experience, a closed system is extremely risky in terms
of sustainability, since if you are locked into a given system then you become en-
tirely dependent on it: if it ceases to function then your project is potentially in
jeopardy, and one can easily become hostage to any future developments, such as
if a free service becomes paid-for. It is therefore always of the utmost importance
that one uses standards-compliant data, and that this data can be freely imported
into and exported from different pieces of software, in order to avoid dependance
on any one piece and thereby help ensure the longevity of the process as a whole.
Equally if not more important in the case of OCR/HTR is the ability to import
and export trained models in particular which is important on both scholarly and
practical terms. From a scholarly point of view, there are very real questions
around scholarly transparency and accountability in the use of machine learning.
If we are preparing transcriptions automatically in this way then naturally the
results will be influenced according to the training data that we have provided to
the machine. As discussed above, there are different standards and practices for
transcription, and the types of document and script that are used in the ground
truth will inevitably influence the results. Other scholars will therefore need ac-
cess to the ground truth and trained models in order to understand exactly how
the text was obtained, to evaluate if it was appropriate or not, and to anticipate
potential biases and errors.6 From a practical point of view, the process of compil-
ing ground truth is often laborious as we have seen, and in fact on a commercial
level, very large-scale datasets of high-quality ground truth are extremely valu-
able, which is part of the reason why multi-billion dollar corporations are so keen
to access our e-mails, labelled photographs, and so on. In addition, the process of
training a model is also relatively slow and intensive. This is of less concern to the
average user in the Humanities, since we can simply leave the computer to “do its
thing” while we get on with something else. Nevertheless, training Deep Learn-
ing systems like Kraken is very intensive for the machine, and it can take weeks
on a normal home computer. The process is very much faster if one has access
to a High Performance Computing (HPC) center with specialized hardware, but
very few scholars in the Humanities have this access, and in any case the process
uses a relatively high amount of electricity with financial and ecological implica-
tions.7 Fortunately, the training is the intensive and slow part, and once this is
done then the model can be used relatively quickly and easily for the segmenta-
tion and transcription. However, this again illustrates the benefits of exporting

6A simple example of an error resulting from this point was a project which attempted to auto-
matically identify authorship in vernacular Old English texts, but without controlling for different
editorial practices in the sources: as a result, the project was successful in identifying editors but
not authors. See further [12, pg. 54-56]

7As just one example, the GPU units that the eScriptorium team are currently putting in place
will have an estimated running cost of approximately €10,000 per year.

11.5. SOME CHALLENGES FOR A MULTI-SCRIPT VRE 195

and sharing models. If I can train my model in an HPC center, and then download
it and send it to you, or - even better - publish it on an open repository, then you
and anyone else can take my model, upload it to your instance of eScriptorium
(or Kraken, or some other system), and use it from there. You may need to retrain
it to fit your specific documents, but as long as our documents are sufficiently
close then the training that you need to do can be significantly reduced both in
terms of time and the amount of ground truth. You would then ideally also pub-
lish your re-trained model in a public repository, and in this way we can build up
a shared collection of trained models, thereby reducing significantly the comput-
ing time and energy that is currently being wasted on the redundant training of
many different models on what is essentially the same script. More specifically,
Kraken and eScriptorium both allow users to export and import models, for in-
stance downloading them to their personal computers to do with as they wish.
Kraken is also directly linked to Zenodo, which is a large-scale public interna-
tional repository for research data. This means that one can decide at any point
to publish a model to Zenodo, and the systemwill then take care of the publishing
meaning that the model will be saved for the long term according to best practices
in data archiving including the automatic assignment of a persistent identifier (a
DOI) for future reference. Managing this successfully requires significant care
in documentation and metadata, as future users of an existing model will need
to know which standards of transcription were used, along with which sample
images and so on, and this in turn requires that the entire ground truth also be
published along with the model.8

11.5 Some Challenges for a Multi-Script VRE

The discussion so far presents eScriptorium as it stands at the time of writing.
Although very much still in development, it is already being used by numerous
teams in several different instances across Europe and the United States.9 There
are, however, numerous challenges that remain if the project is to achieve its
goals. Aside from technical details of implementation, it seems at this point that
the most significant challenges lie in the goal of being as close as possible to work-
ing with any script. Indeed, it is already clear that this is not truly possible: for
instance, as mentioned above, the automatic transcription module of Kraken ap-
plies a line-by-line approach, but this assumes that the text is in fact written in
lines (or that it can be approximated as such), an assumption that does not hold
for hieroglyphic scripts like Mayan or ancient Egyptian. Indeed, the question of
text direction is more complex than one might first imagine. On the face of it,
the situation is simple enough: most scripts read in lines from left to right and

8For further discussion of this and other related problems, see (for example) OCR-D [13].
9As well as Scripta and RESILIENCE, other example projects include OpenITI AOCP (https://

www.openiti.org), LectAuRep, Sofer Mahir (https://sofermahir.hypotheses.org), DIM STCN (http://
www.dim-humanites-numeriques.fr), and CREMMA (https://www.dim-map.fr/projets-soutenus/
cremma/), among others.

196 CHAPTER 11. ESCRIPTORIUM FOR MANUSCRIPT CULTURES

then top to bottom (such as Greek and Latin), or in lines from right to left and
then top to bottom (such as Hebrew or Arabic), or in columns from top to bot-
tom and then left to right (as is often the case for Chinese and Japanese). There
are, however, other cases, such as lines read from top to bottom and then right
to left (such as Mongolian), or columns read from bottom to top (such as some
inscriptions in Old Javanese). Furthermore, some scripts like Latin are (usually)
written on a baseline, while others like Hebrew are (usually) written from a top-
line, and Arabic can be written along short diagonal segments which form a line
overall. Writing can also be circular, for instance on coins, or spiral-shaped, for
instance on prayer-bowls, or radiating out from a central point, for instance in
Arabic marginal glosses (Figure 11.3), or in very complex shapes that form pic-
tures, for instance in micrography or calligrammes. The situation is even more
complex in multigraphic contexts, that is, where different writing-systems are
mixed in a single document, such as seventeenth-century liturgical manuscript
written in Chinese and Hebrew, to take just one example frommany thousands10.
The international Unicode standard for representing the world’s writing systems
in computers describes an algorithm for treating bidirectional documents (such as
mixing English andArabic); this standard is in its forty-second revision at the time
of writing and currently extends to nearly eighteen thousand words, or around
forty-five pages if printed. This illustrates the complexity of simply displaying a
typed document with different directions of script, let alone that of automatically
transcribing such a document from an image and then presenting it in an inter-
face where the user can correct the lines, regions and transcription, with all the
text being displayed in the correct directions as required.

This variety of writing-systems, and particularly the need to cater for so called
“rare” and historical scripts, introduces further challenges than directionality. By
definition, “rare” languages and scripts do not have large corpora and are not al-
ready well catered for by existing software and methods. Indeed, the very nature
of Deep Learning is that, as we have already seen, it requires large amounts of
pre-existing material, and in general the more such material the better (provided
that the data is sufficiently representative). This means that, almost by defini-
tion, methods that rely on “big data” are not appropriate for “rare” languages and
scripts. In practice these methods can usually be used anyway, to some extent, as
long as the corpus is not very small or very heterogeneous, but they will almost
always be small “boutique” projects that will not have the support of large compa-
nies, for both better and worse, or reusability across domains. Furthermore, some
of the basic techniques for improving the results of OCR/HTR will not work in
these cases. For instance, it is very common to use some sort of statistical language
processing to correct errors in the OCR of modern texts: a very simple example
is to run a spell-checker on the result, but more complex examples attempt to
automatically analyze the language and attempt to correct errors based on what
is or is not linguistically possible. Such an approach can improve the transcrip-

10Hebrew Union College MS 926, available at https://mss.huc.edu/manuscripts/ms-926/

11.6. DIFFERENT POINTS OF VIEW 197

Figure 11.3: Visualizing complex page layouts in eScriptorium. The manuscript image
used in this screen-shot is out of copyright and is from British Library and [14].

tion considerably, but it requires a pre-existing model of the language, so that
the computer can recognize what is and is not likely to be an error. However,
searches for a spell-checker for (say) Old Vietnamese is very unlikely to bear fruit
any time soon, if ever, and indeed the same holds for accurate statistical models
of orthographically varied historical writing in general.

11.6 Different Points of View

There is, however, a further aspect of this: as those of us in the Humanities know
very well, there are many different conventions and possibilities when preparing
editions. Despite the claims of some that a transcription must be a simple repro-
duction of “what is on the page”, it is nevertheless clear that a written text contains
an effectively infinite amount of information, and any transcription is necessar-
ily an active selection and, in a sense, translation from one system of writing to
another.11 Even Latin texts have different conventions for transcription, depend-
ing on whether the context is Classical or Medieval, whether paleographical, epi-
graphical or papyrological, and so on, and the complexity multiplies enormously
when considering practices for languages such as those of South-East Asia or even
the Ancient Near East.12 It is therefore impossible and indeed undesirable that the

11Discussions of this include [15, pg. 464-472], [16, pg. 85-101], [17], [18], and [19, pg. 20-29].
12One example of a transcription guide for such languages is [20]

198 CHAPTER 11. ESCRIPTORIUM FOR MANUSCRIPT CULTURES

computer automatically produce a transcription without any guidance from the
user, since it is impossible to know a priori which standards of transcription the
computer should follow. One can certainly imagine pre-preparing a list of com-
mon cases, following conventions established by significant scholarly bodies, and
this would indeed be very useful and desirable, but it still seems certain that many
other cases would remain. This need to accommodate different standards makes
the reuse of models more difficult, since it increases the degree to which models
must be retrained for specific cases. The challenge goes much further than this,
however, and extends to the basis of any VRE for manuscript studies or textual
editing, since it also means that any VRE which will be used by a wide range
of people must be able to accommodate these different standards. Extending the
workflow from transcription to edition introduces further complexities, as there
are (also) many different types of edition, and the variety in editions is (probably)
greater than that of transcriptions. Ideally, a single VRE should accommodate
all standards and types of edition, as well as all standards of transcription, for all
writing-systems written on all supports. Such a flexibility is possible, but it comes
at a cost: either the interface must be extremely complex to account for all the
different options, or it requires some level of programming in order to produce a
customized interface which is specific to a given project. Indeed, this is perhaps
the biggest challenge faced by the challenge of the Text Encoding Initiative (TEI).
Many have complained that the TEI guidelines for text encoding are extremely
complex and unwieldy, and that they do not proscribe a single convention for
transcription meaning that, in effect, they are not a true standard. However, if
the TEI Guidelines did impose a single convention then they would immediately
become unusable for all those who want or indeed need to use other conventions.
Texts are different, and editions and research projects have different goals and
therefore different needs, even those projects that are studying the same texts.13

In practice, then, the TEI is a sort of “meta-standard”, from which one can then
specify more restricted and proscriptive standards for particular contexts, with
one of the more successful examples being Epidoc for editions of inscriptions.[22]
VREs and other tools for the preparation and publication of digital editions face
a similar challenge: it is certainly within the bounds of technology to develop a
simple process whereby one can produce a transcript or even publish an edition
very easily in a relatively small number of clicks, but this necessarily means that
most of the decisions will be taken from the researcher and put into the hands
of the tool-developers. Conversely, processes can also be developed which give
manuscript specialists control over fine details according to their own needs, but
this means complex interfaces and/or the need to actively write code at some level
to customize the process.

This need for different standards, methods and points of view extends well
beyond transcription and editions, and indeed goes to all forms of manuscript
studies and indeed to all scholarly research in the humanities. Armando Petrucci

13An example of this is described by [21]

11.6. DIFFERENT POINTS OF VIEW 199

and Collette Sirat have both made similar observations for palaeography14:

Infatti ogni terminologia paleografica è legata ad una particolare vi-
sione storica del fenomeno scrittorio …ma legittimamente utilizzabili
risulteranno comunque tutte quelle fondate su premessemetodologiche
valide e su rigorose analisi grafiche. ([24, pg. 70-71]15)

Two things which are similar are always similar in certain respects.
…Generally, similarity, and with it repetition, always presupposes the
adoption of a point of view: some similarities or repetitionswill strike
us if we are interested in one problem or another. ([25, pg. 310])

This may seem obvious, but in fact it raises a fundamental epistemological
question: annotation and comparison are core tasks of scholarship, and have
been identified as two of the six “scholarly primitives” which underly all of our
work.16 However, annotation, or description, depend on terminology, as indeed
does discovery, another of Unsworth’s primitives, but as Petrucci has noted, there
is no single terminology which can be claimed as “the” valid one over all others.
Similarly, Sirat and Popper have noted that comparison also requires a point of
view, and different problems require different comparisons and therefore different
points of view. This poses a very significant challenge to VREs, and indeed to the
ideal of interoperability and related areas such as Linked Open Data. In addition,
the fundamental principles of machine learning itself, as a mere kind of statisti-
cal inference, can cast doubt on the scholarly value of the automatic productions
of these methods when “hidden” inside VREs, with their design assumptions and
limitations remaining relatively opaque to the humanities users even in open sys-
tems. In principle, different terminologies can be related through ontologies and
other tools, such that one can record for both human and computer use that two
given terms are close in meaning, exact matches, related, broader or narrower in
scope, and so on, and in this way one can link different terminologies, at least in
principle.17 However, this is a complex and laborious process, and it also requires
a very deep understanding of both terminologies as the scope for misunderstand-
ing and error is enormous. Wemust therefore consider how to design VREs to en-
able different points of view, which includes allowing for different terminologies,
different interfaces, different ways of presenting, annotating, comparing, search-
ing and otherwise working with the data. Indeed, as Elena Pierazzo has observed,
the text itself is only one part of the scholarly work and interpretation in an edi-
tion, and Johanna Drucker and others have shown that the interface generally is

14Some concrete examples of the impact of transcription on interpretation are given by [23, pg.
50-54]

15“In fact, every palaeographical terminology is connected to a particular historical vision of the
phenomenon of handwriting ... but all terminologies prove legitimately useful nonetheless, if they
are founded on valid methodological premises and rigorous graphical analyses” (our translation).

16These “scholarly primitives” are from an influential talk by [26].
17One important example of such a schema is the Simple Knowledge Organisation System

(SKOS), for which see [27], esp. §10 Mapping Properties.

200 CHAPTER 11. ESCRIPTORIUM FOR MANUSCRIPT CULTURES

interpretative and embeds specific methods and viewpoints, and it therefore nec-
essarily excludes others[15], [28]. For this reason, it seems unlikely that there can
ever be a single VRE or other system which responds to all requirements, but in-
stead perhaps we must accept that there will always be many different tools and
frameworks. Certainly we must follow existing standards where these are avail-
able: otherwise there is no hope for interchange or data sharing, and our material
is certain to be lost very quickly once our custom tool is no longer maintained and
our custom data is therefore unreadable. Similarly, the best option remains to fol-
low standards and to use tools that allow for the ready import and export of data,
including trained models in the case of machine learning. In this way we have
some chance of moving between different tools, frameworks and VREs as neces-
sary, taking advantage of those that best respond to the point of view that we need
for a given problem at a givenmoment. This also suggests favouring smaller mod-
ules that can be pieced together into different workflows as required, rather than
large, centralised, monolithic VREs, and the piecing together in turn requires at
least some understanding of data and (probably) basic programming. This should
not be of concern to Classicists or others in the Humanities: certainly software
development is a highly skilled profession that requires specialised training, but
the basics of Python and XSLT are verymuch easier to learn than the complexities
of Greek or Latin.

References

[2] B. Kiessling, “Kraken - A Universal Text Recognizer for the Humanities,”
Proceedings of the DH, 2019.

[3] B. Kiessling, R. Tissot, P. Stokes, and D. Stökl Ben Ezra, “eScriptorium:
An open source platform for historical document analysis,” in 2nd Interna-
tionalWorkshop onOpen Services and Tools for Document Analysis, OST@IC-
DAR 2019, Sydney, Australia, September 22–25, 2019, 2019, pp. 19–24.

[4] B. Kiessling, D. Stökl Ben Ezra, and M. T. Miller, “BADAM: A Public Data-
set for Baseline Detection in Arabic-Script Manuscripts,” in Proceedings of
the 5th International Workshop on Historical Document Imaging and Pro-
cessing, HIP@ICDAR 2019, Sydney, NSW, Australia, September 20-21, 2019,
ACM, 2019, pp. 13–18.

[5] P. Stokes. “eScriptorium: Un outil pour la transcription automatique des
documents.” (2020), [Online]. Available: https://ephenum.hypotheses.org/
1412.

[6] ——, “eScriptorium 1-6.” (2020), [Online]. Available: https://vimeo.com/
channels/1602497.

REFERENCES 201

[7] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks,” in Proceedings of the 23rd international conference
on Machine learning, ACM, 2006, pp. 369–376.

[8] M. Diem, F. Kleber, S. Fiel, T. Grüning, and B. Gatos, “cBAD: ICDAR2017
competition on baseline detection,” in Document Analysis and Recognition
(ICDAR), 2017 14th IAPR International Conference on, IEEE, vol. 1, 2017,
pp. 1355–1360.

[9] C. Wigington, C. Tensmeyer, B. L. Davis, et al., “Start, Follow, Read: End-
to-EndFull-Page Handwriting Recognition,” in Computer Vision - ECCV
2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part VI, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss,
Eds., ser. Lecture Notes in Computer Science, vol. 11210, Springer, 2018,
pp. 372–388. doi: 10.1007/978-3-030-01231-1_23.

[10] K.Wang, B. Babenko, and S. Belongie, “End-to-end scene text recognition,”
in 2011 International Conference on Computer Vision, IEEE, 2011, pp. 1457–
1464.

[11] L. Kang, P. Riba, Y. Wang, et al., “GANwriting: Content-Conditioned Gen-
eration of Styled Handwritten Word Images,” Lecture Notes in Computer
Science, vol. 12368, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds.,
pp. 273–289, 2020. doi: 10.1007/978-3-030-58592-1_17.

[12] P. A. Stokes, “The digital dictionary,” Florilegium, pp. 37–65, 2009.

[13] OCR-D. “The ground-truth guidelines.” (2019), [Online]. Available: https:
//ocr-d.de/en/gt-guidelines/trans.

[14] A. Keinan-Schoonbaert. “Results of the RASM2019 competition on recog-
nition of historical arabic scientific manuscripts.” (2019), [Online]. Avail-
able: https://blogs.bl.uk/digital-scholarship/2019/09/rasm2019-results.
html (visited on 09/13/2019).

[15] E. Pierazzo, “A rationale of digital documentary editions,” Literary and
linguistic computing, vol. 26, no. 4, pp. 463–477, 2011.

[16] ——, Digital scholarly editing: Theories, models and methods. Routledge,
2016.

[17] C. Huitfeldt and C. M. Sperberg-McQueen, “What is transcription?” Liter-
ary and linguistic computing, vol. 23, no. 3, pp. 295–310, 2008.

[18] M. Sperberg-McQueen and C. Huitfeldt, “Interpreting difference among
transcripts,”Digital Humanities 2018: Book of Abstracts/Libro de resúmenes.,
2018.

[19] P. Robinson and E. Solopova, “Guidelines for transcription of the manu-
scripts of the Wife of Bath’s prologue,” The Canterbury Tales Project Occa-
sional Papers, vol. 1, pp. 19–52, 1993.

202 CHAPTER 11. ESCRIPTORIUM FOR MANUSCRIPT CULTURES

[20] D. Balogh and A. Griffiths, “DHARMA Transliteration Guide,” Version 3
of a common transliteration system for Balinese, Cam, Javanese, Kannada,
Khmer,Malay, Prakrit, Sanskrit, Sundanese, Tamil, Telugu., 2020. [Online].
Available: https://hal.archives-ouvertes.fr/halshs-02272407.

[21] P. A. Stokes and G. Noël, “Project Report,” King’s College London, United
Kingdom, Tech. Rep., 2010. [Online]. Available: http://www.ascluster.org/
techinfo/.

[22] T. Elliott, G. Bodard, and H. Cayless. “Epidoc: Epigraphic documents in tei
xml.” (2006–2020), [Online]. Available: http://epidoc.stoa.org/.

[23] P. A. Stokes, “Palaeography, Codicology and Stemmatology,” in Hand-
book of Stemmatology: History, Methodology, Digital Approaches, P. Roelli,
Ed., Walter de Gruyter GmbH & Co KG, 2020, pp. 46–56. doi: 10 .1515/
9783110684384-002.

[24] A. Petrucci, La descrizione del manoscritto. Storia, problemi, modelli. Sec-
onda edizione corretta e aggiornata. Roma, 2001.

[25] C. Sirat, L. Schramm, Ed., ser. Bibliologia elementa ad librorum studia per-
tinentia. Turnhout: Brepols, isbn: 2-503-52116-9.

[26] J. Unsworth, “Scholarly primitives:Whatmethods do humanities research-
ers have in common, and how might our tools reflect this,” in Symposium
on Humanities Computing: Formal Methods, Experimental Practice. King’s
College, London, vol. 13, 2000, pp. 5–00.

[27] A. Miles and S. Bechhofer, “SKOS simple knowledge organization system
reference,” W3C recommendation, 2009.

[28] J. Drucker, Graphesis: Visual forms of knowledge production. Harvard Uni-
versity Press, 2014.

Chapter 12

Conclusion and Perspectives

204 CHAPTER 12. CONCLUSION AND PERSPECTIVES

The focus of this thesis has been the retrodigitization of historical, handwrit-
ten and printed Arabic documents with an emphasis on its use in the Digital Hu-
manities while being mindful of the need to reduce the bias of methods towards a
particular script. More specifically, we have gained a deeper understanding of the
limitations and capabilities of Arabic-script text transcription and layout analysis
methods, adopted and extended the baseline paradigm for layout analysis, devel-
oped a simple system for multigraphic OCR, and integrated those methods in the
open Kraken OCR software. The flexibility of this engine is attested through both
its use for novel computer vision tasks like the character alignment presented in
chapter 9, its straightforward integration into other workflows such as eScripto-
rium and OCR-D, and its use for a multitude of different languages, scripts, and
document types. The eScriptorium VRE is a crucial puzzle piece in the retrodigiti-
zation ecosystem, both in its current state as a platform for accessible annotation
and transcription and a foundation stone for the envisioned deep annotation in-
corporatingmore computationalmethods into the primitives of scholarly practice.

While the process is often rough around the edges and still requires some tin-
kering by the end user, understandably given the significant historical deficit of
Arabic-script OCR in comparison to the treatment of other writing systems, we
can now, in principle, digitize almost arbitrary documents with relatively modest
training data requirements. We hope that the open nature of both eScriptorium
and Kraken with its facilities to encourage sharing of training data and artifacts
will be a part in this catch up process which will likely reduce the gap in accu-
racy and complexity between the digitization of ”normal” and ”rare” scripts in the
comming years.

It is clear that substantial work remains. The most pressing requirements on
an Arabic OCR system from our initial studies, layout analysis, segmentation-
less transcription, and data annotation and curation, are largely solved but others
remain in an unsatisfactory state.

The most immediate of those remaining tasks for Arabic manuscript OCR is
reading order determination. As described in chapter 1, research on this topic is
sparse, methodologically out-of-date, and largely focused on modern documents.
Hand-crafted heuristics, incapable of accurately dealing with the complex struc-
ture of historical manuscripts, prevail in practical OCR systems. Datasets for
evaluation and training of methods are non-existent or annotated implicitly in
datasets for other tasks without communicated standards. Nevertheless, the ca-
pacity ofmachine learning algorithms for spatial reasoningwith a large number of
objects has grown in recent years and architectures like graph neural networks[1]
and deep models for learning-to-rank such as [2], [3] offer the promise to advance
the state of the art substantially in the near future.

While current OCR system are capable of impressive feats even on highly
degraded, fragmentary, or atypical documents with requirements on training data
in volume and complexity that is lower than ever before, training data acquisition
remains the most labor- and time-intensive step of any retrodigitization project.
Basic transfer learning functionality in Kraken reduces this workload to some

REFERENCES 205

extent but its use is ad hoc and its practical efficacy depends heavily on the skills
of the individual user.

Two non-exclusive avenues for more effective model adaptation are currently
imaginable: a systematization of the data acquisition process, enriching datasets
and models with metadata that aids in their manual or automatic selection for
new material, and semi- and unsupervised model adaptation. Some digitization
projects, such as OCR-D for Latin and OpenITI for Arabic, have started to en-
list codicological support to put the selection and generation of training data on
firmer scientific grounds [4], but this remains a rarity. Semi-supervised methods
such as [5] and unsupervised training [6] on the other hand aims to reduce or
remove human annotation in data generation completely. These approaches are
considered one of the holy grails of DIA but even if methods were to reach the
maturity for practical use important questions such as how to deal with different
transcription standards effectively remain unanswered.

The development of eScriptorium will continue for the foreseeable future and
will integrate advances in automatic computational methods to the extent that
these aid in humanities research. Chiefly among these and not extensively con-
sidered in this thesis is deep annotation of textual and non-textual components.
Applications such as image classification, document dating, automatic grouping
of documents, and text reuse detection are imaginable. Additional means to share,
publish, and distribute training data, models, and scholarly products in a way that
is acceptable to both scholarly practice in the humanities and computer science
are an important part of development in the near-term.

These means are extraordinarily important as even with the current availabil-
ity of powerful and open computer vision tools, the dataset landscape remains
fractured. While more and more researchers recognize the importance of the
sharing not only to advance research in the humanities but also to direct com-
puter vision research and practice in a way that is of utility to the humanities,
the best current practice for public datasets remains a profane github repository
with a non-descriptive README file. A combination of VREs conscious of the
important of appropriate metadata, expanded input of archival and library prac-
tice in research activities, and the utilization of research data repositories already
commonplace in other disciplines, has the potential to significantly improve this
state of affairs in the coming years.

References

[1] H. Déjean, J.-L. Meunier, et al., “Versatile layout understanding via con-
jugate graph,” in 2019 International Conference on Document Analysis and
Recognition (ICDAR), IEEE, 2019, pp. 287–294.

[2] Z. Tan, X. Nie, Q. Qian, N. Li, and H. Li, “Learning to Rank Proposals for
Object Detection,” in 2019 IEEE/CVF International Conference on Computer

206 CHAPTER 12. CONCLUSION AND PERSPECTIVES

Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, IEEE,
2019, pp. 8272–8280. doi: 10.1109/ICCV.2019.00836.

[3] F. Çakir, K. He, X. Xia, B. Kulis, and S. Sclaroff, “Deep Metric Learning
to Rank,” in IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Computer Vision Foun-
dation / IEEE, 2019, pp. 1861–1870. doi: 10.1109/CVPR.2019.00196.

[4] N. Weichselbaumer, M. Seuret, S. Limbach, et al., “New approaches to ocr
for early printed books,” DigItalia, vol. 2, pp. 74–87, 2020.

[5] S. Keret, L. Wolf, N. Dershowitz, et al., “Transductive learning for read-
ing handwritten tibetan manuscripts,” in 2019 International Conference on
Document Analysis and Recognition (ICDAR), IEEE, 2019, pp. 214–221.

[6] A. Gupta, A. Vedaldi, and A. Zisserman, “Learning to Read by Spelling: To-
wards Unsupervised Text Recognition,” in ICVGIP 2018: 11th Indian Con-
ference on Computer Vision, Graphics and Image Processing, Hyderabad, In-
dia, 18-22 December, 2018, ACM, 2018, 33:1–33:10. doi: 10.1145/3293353.
3293386.

Appendices

207

Appendix A

Résumé Long

A.1 Introduction

Cette thèse consiste en un certain nombre de publications qui étudient les
difficultés de la rétrodigitalisation de l’écriture arabe historique et propose plu-
sieurs méthodes pour faire progresser l’état de l’art en la matière. Bien que ces
méthodes visent principalement à remédier les problèmes résultant des caracté-
ristiques de l’écriture arabe, elles sont conçues pour être applicables à l’écriture
et aux inscriptions dans une variété d’autres systèmes d’écriture.

A.2 L’Analyse d’Images de Documents et Reconnais-
sance Optique de Caractères

L’analyse d’images de documents (AID) est un sous-domaine de la vision par
ordinateur (VO) qui cherche à comprendre le contenu des documents par le traite-
ment de leurs images numériques. Par document, nous entendons les documents
manuscrits et le texte imprimé sur papier, mais aussi l’écriture sur d’autres sup-
ports souples -tels que le papyrus ou les feuilles de palmier- ou même les inscrip-
tions.

La différence par rapport à la vision par ordinateur en général ne se trouve
pas dans les méthodes employées, mais dans la nature des images traitées. Ces
images sont généralement obtenues par des caméras ou des scanners, souvent
dans un contexte professionnel, ce qui permet d’obtenir un matériel source avec
un minimum de bruit provenant d’éléments non pertinents (que l’on rencontre
souvent dans les images de scènes naturelles traitées par d’autres branches du
VO). Malgré des données d’entrée plus propres, les représentations structurées
souhaitées en sortie ont tendance à être plus complexes et plus nombreuses avec
l’AID qu’avec d’autres applications, car elle nécessite la détection, la classification
et la mise en relation de dizaines d’éléments de documents tels que des lignes, des
caractères, des illustrations et des tableaux.

209

210 APPENDIX A. RÉSUMÉ LONG

Comme dans d’autres domaines de l’informatique, la recherche en AID peut
être divisée en tâches spécifiques, dont une ou plusieurs sont résolues par une
méthode particulière proposée. La tâche la plus importante de l’AID est la recon-
naissance optique de caractères (ROC), mais il en existe d’autres (basées ou non
sur la ROC) telles que la classification de documents, la datation ou le repérage
par mot clé. La ROC est une conversion de textes imprimés, écrits ou inscrits, en
texte codé par machine. C’est un processus établi depuis longtemps, aussi bien
dans la recherche sur la vision par ordinateur que dans des applications comme
l’analyse des adresses sur les courriers ou l’assistance aux personnes aveugles.
Cette dernière est sans doute à l’origine de toute AID, avec un certain nombre de
brevets remontant au début du XIXe siècle.

Ces premières approches, mises au point des décennies avant les premiers
ordinateurs, ont maintenant évolué. Aujourd’hui, les technique d’AID sont utili-
sées quotidiennement pour la distribution du courrier, la vérification des chèques
ou la rétro-numérisation des livres. En effet, on affirme aujourd’hui dans la pro-
fession que la ROC est fondamentalement résolue, au moins pour les documents
modernes imprimés en anglais avec un niveau de bruit raisonnablement faible,
où les logiciels commerciaux modernes de rétrodigitalisation atteignent réguliè-
rement des taux de précision des caractères supérieurs à 99%. Toutefois, la ROC
ne peut transcrire des écritures dont la typographie n’est pas conforme aux pra-
tiques occidentales modernes, et ce même pour les écritures purement alphabé-
tiques telles que le latin et le cyrillique. De plus, il existe près de 4000 langues
écrites et plusieurs centaines de systèmes d’écriture, pour la grande majorité des-
quels il n’existe aucun système de ROC. Ainsi, il est clair qu’une part importante
de la production littéraire humaine moderne n’est pas encore accessible à la rétro-
numérisation.

C’est encore plus clair en ce qui concerne le matériel historique. Force est de
constater que si les projets de numérisation à grande échelle dans les pays riches
ont permis de créer de vastes bibliothèques numériques, ces dernières sont de fac-
to inutilisables. En effet, la reconnaissance par les logiciels adaptés aux documents
modernes dégrade considérablement la qualité du texte en raison des variation
orthographiques et typographiques, même pour des documents aussi récents que
ceux de la fin du XIXe siècle.

Il s’agit très probablement d’un état temporaire pour les documents les plus
nombreux dans les archives des pays développés où des projets tels que OCR-
D1 ouvrent la voie pour transférer les progrès de la recherche pure en AID à la
pratique des bibliothèques. Dans le cadre de ces projets et d’efforts plus spéci-
fiques tels que [1], un programme de recherche collective pour la numérisation
du matériel historique et des systèmes d’écriture minoritaires a vu le jour, parta-
gé par les chercheurs en humanités engagés dans les méthodes numériques et les
experts de la vision par ordinateur. Néanmoins, ces communautés restent géogra-
phiquement isolées les une des autres, ainsi que par les barrières linguistiques et

1http://ocr-d.de

A.2. AID ET ROC 211

professionnelles.
D’autre part, le manque de financement combiné à la détérioration des collec-

tions dans les pays du Sud en raison de conflits et d’influences environnementales
augmente le risque de perte permanente du patrimoine culturel, qui n’intéresse
que des populations minoritaires et un petit nombre de chercheurs. Même des
collections célèbres telles que les manuscrits de Tombouctou ont à peine échap-
pé à la destruction au cours des conflits armés de ces dernières années et sont
aujourd’hui menacés par l’humidité.

A.2.1 Tâches

En tant qu’application centrale de l’analyse d’images de documents, la ROC
s’est divisée en un grand nombre de sous-tâches. Elles ne sont pas toutes stricte-
ment nécessaires à un système de ROC fonctionnel et, en fait, beaucoup d’entre
elles ne peuvent être mises en œuvre que de manière spécifique en fonction des
matériaux. Elles sont donc reléguées à des applications spécialisées.

Le pipeline typique de reconnaissance optique de caractères est construit au-
tour de quatre grandes étapes :

Prétraitement Débruitage, redressement, binarisation.

Segmentation des pages Extraction des informations structurelles des images
de pages de documents et enrichissement avec des informations séman-
tiques supplémentaires.

Transcription Extraction des informations textuelles de la totalité ou d’un sous-
ensemble d’objets identifiés à l’étape précédente.

Si cette caractérisation est valable pour tous les pipelines de données, sauf les
plus ésotériques, les blocs fonctionnels exacts dépendent fortement du type et de
la structure du document à traiter. Chacune de ces étapes de traitement contient
une ou plusieurs méthodes qui servent à résoudre une tâche particulière, comme
par exemple :

Binarisation Classification des pixels d’une image en deux classes : le front,
c’est-à-dire le texte, et le fond, c’est-à-dire tout le reste.

Débruitage Augmentation de la qualité de l’image de la page pour les tâches
suivantes. Le débruitage comprend des processus tels que la normalisation
de fond ou l’élimination des imperfections.

Redressement Correction à la fois de la distorsion de perspective inhérente à la
capture par caméra, et des autres dégradations introduites pendant le scan
telles que la rotation, la déformation le long de la reliure, etc.

Segmentation en regions Subdivision d’une image de page en éléments tels
que du texte, de la décoration, des notes, des points, etc.

212 APPENDIX A. RÉSUMÉ LONG

Segmentation en lignes Extraction des lignes de texte d’une image de page.

Segmentation en caractères Segmentation du texte sur une image de page jus-
qu’au niveau du glyphe ou même à un niveau inférieur. Bien qu’il s’agisse
d’une opération courante dans les systèmes de ROC traditionnels, elle est
le plus souvent superflue avec les méthodes de pointe.

Classification du système d’écriture et de la police de caractères Classifica-
tion de la langue, du système d’écriture, du style ou de la police de carac-
tères du texte. Cette classification peut être effectuée à différents niveaux,
par exemple à l’échelle du document, ou pour tout ou partie d’une ligne.

Reconnaissance des tableaux Inférence de la structure logique des images d’un
tableau.

A.3 Motivation et contributions scientifiques

L’écriture arabe représente l’une des plus grandes traditions littéraires de l’his-
toire de l’humanité, tant en termes de volume que de diffusion géographique. Les
exemples vont des textes religieux, en particulier le Coran, le livre saint de l’Islam,
à la poésie, en passant par les textes scientifiques et juridiques, sans oublier un
vaste corpus de documents administratifs. Le nombre considérable de ces textes
dans une multitude de domaines en fait une cible privilégiée pour les nouveaux
paradigmes des humanités, qui utilisent des méthodes computationnelles telles
que la lecture à distance et la paléographie quantitative. Ces méthodes néces-
sitent soit de grands corpus de textes, soit des méthodes précises d’AID basées
sur une ou plusieurs des tâches susmentionnées d’un système de ROC. Comme
la grande majorité des textes arabes n’a jamais existé sous forme numérique, la
rétro-numérisation de haute qualité par la ROC constitue la base d’un nombre
important de projets de recherche en humanités numériques arabes.

Lorsque j’ai commencé à travailler sur cette thèse, la ROC du texte arabe im-
primé était largement rejetée par les chercheurs en humanités travaillant sur ces
documents, même ceux qui étaient déjà très impliqués dans les humanités numé-
riques, ainsi que par les organismes de financement, encore plus pour le matériel
historique ou multigraphique. En effet, la reconnaissance précise de l’écriture à la
main arabe semblait totalement inatteignable. Bien qu’il existe une longue tradi-
tion de publications sur la ROC d’ensembles de données arabes simples tels que
KHATT[2] et qu’un certain nombre de logiciels de ROC libres et propriétaires
tels que Tesseract, Abbyy FineReader et Sakhr offrent un soutien nominal pour
la reconnaissance de textes en caractères arabes, ces solutions ne se sont jamais
concrétisées dans la pratique réelle des bibliothèques ou à grande échelle. Les rai-
sons en sont multiples : taux d’erreur élevé des classificateurs et des segmenteurs
mal adaptés à la nature cursive du système d’écriture, manque de logiciels et de
compétences techniques, et coûts et efforts substantiels nécessaires pour adapter
les solutions existantes au matériel d’intérêt.

A.3. MOTIVATION ET CONTRIBUTIONS SCIENTIFIQUES 213

Il est rapidement apparu que les obstacles qui empêchent les chercheurs tra-
vaillant sur des textes imprimés et manuscrits en caractères arabes d’utiliser la
ROC dans la pratique sont les mêmes que ceux rencontrés par de nombreux autres
chercheurs engagés dans la rétro-numérisation de documents historiques et non-
latins. Imitant l’opinion dominante sur la ROC arabe, [3] a revendiqué que les
manuscrits médiévaux (en caractères latins) étaient pratiquement imperméables
à la ROC contemporaine. On peut probablement trouver des évaluations similaires
pour d’autres domaines.

En tant que telle, cette thèse doit être considérée à l’intersection entre les
humanités et l’informatique. La recherche qui y est présentée n’est pas un en-
semble de méthodes séparées permettant de résoudre des tâches dans l’AID arabe,
mais fait partie d’un écosystème cohérent pour l’AID des humanités au sens large.
Celui-ci est composé de deux éléments principaux : le système de ROC Kraken et
l’environnement de recherche virtuel (ERV) eScriptorium.

Le Kraken est un système de ROC complet et modulaire. Il se distingue des
autres logiciels pour plusieurs raisons : ses utilisateurs cibles sont des chercheurs
en humanités (et non des informaticiens), et il permet une flexibilité maximale
dans le type de documents qu’il est possible de traiter. Il a également été largement
adapté en vue d’un meilleur traitement des documents historiques en caractères
non latins, notamment en arabe.

Dans le cadre des travaux d’adaptation visant à faire de Kraken un outil plus
performant pour le travail sur les textes arabes, deux études de faisabilité de rétro-
numérisation ont été réalisées (la première à partir de livres imprimés en carac-
tères arabes classiques, et la seconde sur une importante revue sur la langue arabe
publiée par l’Université Américaine de Beyrouth). Ces études ont produit la pre-
mière analyse détaillée sur les faiblesses et les capacités des méthodes de ROC de
pointe sur les textes arabes imprimés.

Cette thèse contribue de deux systèmes de segmentation de lignes entraî-
nables, un système élémentaire capable de détecter uniquement les lignes de base,
et un système plus avancé permettant la segmentation des régions et des lignes en
plus de la classification. Ce dernier est inclus dans le Kraken et permet la détection
conjointe de régions et de lignes et l’inférence de l’orientation des lignes. Cette
seconde méthode a également été optimisée pour l’utilisation de la mémoire, ré-
duisant la consommation de mémoire d’environ cinquante pour cent par rapport
aux réseaux de neurones à segmentation sémantique à convolution totale, ayant
des performances similaires.

Un nouveau backend de réseau neuronal a été ajouté au Kraken. Basé sur la
bibliothèque de réseaux de neurones pytorch, il permet la reconfiguration flexible
des réseaux de neurones artificiels (ARN) utilisés à la fois pour la segmentation des
pages et la transcription du texte, grâce à un langage de définition d’ARN léger ca-
pable d’exprimer de nombreuses caractéristiques d’architectures ARN courantes
utilisées dans les tâches de vision par ordinateur. Cette couche d’abstraction per-
met l’ajout relativement simple de nouveaux types d’ARN, et donc un prototypage
rapide et une optimisation efficace des hyperparamètres, comme l’a démontré [4].

214 APPENDIX A. RÉSUMÉ LONG

Au cours des premières études de cas, plusieurs milliers de lignes de don-
nées d’entraînement pour la transcription de textes ont été annotées et mises à
la disposition du public. J’ai participé à la conceptualisation technique et à la de-
finition des standards de transcription pour ces ensembles de données. Un autre
ensemble de données sous licence libre de quatre cents pages de manuscrits en
écriture arabe, dans une variété de langues, de styles et de domaines, a été annoté
avec des lignes de base et l’orientation des lignes pour permettre l’évaluation des
méthodes d’analyse de la mise en page sur des documents historiques en écriture
arabe. Cet ensemble de données très complexe reste le seul ensemble de données
manuscrites non latines pour le paradigme de base de l’analyse de la mise en page.

La deuxième composante de cet écosystème de rétro-numérisation est l’ERV
eScriptorium. Alors que le Kraken est conçu pour une flexibilité maximale, l’eS-
criptorium adopte une autre approche : il est conçu comme un environnement de
recherche paléographique et de publication à part entière pour un usage scienti-
fique. La fonctionnalité ROC n’est qu’une petite partie des caractéristiques pré-
vues. Comme il n’est pas pratique d’exposer toutes les fonctionnalités du Kraken
sur une telle plateforme, la conception d’eScriptorium permet une intervention
manuelle et semi-automatique à chaque étape du processus, soit par une mani-
pulation manuelle dans l’interface, soit par des interfaces d’échange de données
graphiques et programmatiques.

Comme eScriptorium vise à offrir des fonctions scientifiques supplémentaires
au-delà de la simple rétro-numérisation, la plateforme est également un cadre de
test idéal pour la recherche en humanités assistée par la vision artificielle. Dans
certains cas, ces fonctions avancées sont liées à la transcription de textes. Une
méthode permettant de dériver les emplacements des graphèmes à partir de l’ali-
gnement implicite produit par une reconnaissance de texte par ligne ANN et son
évaluation sur des fragments de matériel hébraïque est présentée.

A.4 L’Ecriture Arabe

Le système d’écriture arabe est l’un des systèmes d’écriture les plus répandu
de l’histoire de l’humanité, géographiquement et chronologiquement. Il s’agit de
l’écriture principale de la langue arabe, du farsi, de l’ourdou et de plusieurs autres
langues du sous-continent indien. Historiquement, il a été utilisé pour produire
des textes de l’espagnol au chinois.

Bien que ses origines exactes soient encore controversées, les historiens s’ac-
cordent à dire que l’écriture arabe a évolué à partir de l’écriture nabatéenne ou
syriaque au Moyen-Orient au cours de plusieurs siècles, la maturation ayant eu
lieu au cours du septième siècle de notre ère. Étroitement liés à la propagation de
l’Islam, un certain nombre de variantes alphabétiques et de styles calligraphiques
régionaux se sont développés au cours des siècles suivants. Néanmoins, elle est
loin d’une écriture purement liturgique avec une abondance de documents admi-
nistratifs, de traités philosophiques et scientifiques, de poésie, etc.

A.4. L’ECRITURE ARABE 215

Il est donc erroné de parler d’une seule écriture arabe du point de vue de
recherche de l’AID. Chaque style, avec ses particularités régionales et son contexte
culturel, présente des défis particuliers.

A.4.1 Les Principes de l’Ecriture Arabe

L’écriture arabe est un abjad, un système d’écriture consonantique, ce qui si-
gnifie qu’elle ne nécessite que l’écriture des consonnes et des voyelles longues,
le lecteur étant censé fournir lui-même les voyelles courtes appropriées selon le
contexte. Les voyelles courtes et autres marques pour des caractéristiques telles
que le doublage (gémination) et la nunation (ajout d’un n final), peuvent être ajou-
tées en option (tashkil) mais ne sont systématiquement utilisées que lors de la
transcription du Coran ou de textes élémentaires pour les apprenants en langues.
Comme le syriaque et l’hébreu, il s’écrit de droite à gauche, à l’exception des
nombres qui s’écrivent de gauche à droite.

Contrairement à d’autres écritures très courantes comme le latin, l’arabe est
écrit uniquement dans une forme cursive. Comme les variantes cursives d’autres
écritures, les lettres individuelles changent ses formes en fonction de leur position
dans un mot : des formes initiales, médianes, finales et indépendantes existent, en
plus des règles calligraphiques spécifiques au style pour le placement des lettres.
Une différence avec l’écriture cursive des autres écritures est que toutes les lettres
ne peuvent pas être reliées entre elles. Comme les espaces n’indiquent pas né-
cessairement le début d’un nouveau mot, les calligraphes sont largement libres
de faire varier l’espacement entre les mots, les syllabes et les traits comme ils le
souhaitent. Cette variation de l’espacement peut perturber les systèmes de recon-
naissance optique des caractères.

Une autre distinction est l’absence de majuscule et la ponctuation de type
occidental, cette dernière n’ayant été introduite qu’au XXe siècle de notre ère. Au
lieu de cela, des phrases et des mots particuliers sont utilisés pour introduire une
nouvelle phrase ou une question, et les accents sont placés au-dessus des titres et
des rubriques.

Il existe d’autres formes de lettres dans des variantes de l’écriture arabe adap-
tées à d’autres langues qui comportent des phonèmes qui n’existent pas en arabe.
Elles sont généralement adaptées en ajoutant des points aux graphèmes représen-
tant des sons similaires en arabe, comme le persan pe dérivé de bāʾ en ajoutant
deux points supplémentaires en-dessous. Comme il y a beaucoup de langues qui
sont ou ont été écrites en arabe, il existe un grand nombre de ces variantes.

Une difficulté particulière pour les systèmes de ROC est la façon particulière
dont le texte arabe est justifié. La césure, c’est-à-dire la division des mots pour
faciliter le retour à la ligne, est absente de tous les textes, sauf les plus anciens. Au
lieu de la justification par espace blanc, courante dans les écritures alphabétiques,
des alternatives plus agréables visuellement ont été conçues. L’allongement des
liens entre les lettres, la courbure de la ligne de base et la superposition ou le
déplacement de fragments du dernier mot au-dessus ou à côté de la ligne sont des

216 APPENDIX A. RÉSUMÉ LONG

phénomènes courants. Ces deux dernières méthodes posent un défi particulier,
même aux systèmes modernes de segmentation des pages.

A.4.2 Styles

Un grand nombre de styles calligraphiques ont été conçus au cours des siècles.
Si certains sont reconnus dans l’ensemble du monde islamique, comme le naskh,
d’autres sont spécifiques à certaines zones géographiques, par exemple le magh-
ribī nord-africain ou le nastaʼlīq persan. Les premiers styles tels que le ḥijāzī et le
coufique sont des familles de styles différents, car la standardisation était faible.
Apres XIIIe siècle de notre ère, on compte six styles canoniques. Ils sont géné-
ralement appariés, une écriture d’affichage (majuscule) et une écriture de texte
(minuscule) :

• thuluth et naskh

• muḥaqqaq et rayḥān

• tawqīʿ et riqāʿ

Les styles régionaux n’étaient pas seulement liés aux zones géographiques
mais aussi à l’utilisation de la langue. Dans les parties du monde islamique in-
fluencées par le persan (Empire Ottoman, Iran, Inde), des styles suspendus tels
que nastaʼlīq avec des mots individuels descendant sur une ligne de base com-
mune étaient populaires car ils étaient plus adaptés aux différentes combinaisons
de lettres en turc et en persan. D’autres styles étaient à la fois géographiquement
limités et restreints à certains usages comme le divanî style de la chancellerie
ottomane.

A.4.3 Critères pour les systèmes de ROC arabes

En résumé, la reconnaissance des textes arabes imprimés et manuscrits né-
cessite un certain nombre de caractéristiques que l’on ne trouve pas couramment
dans les systèmes de ROC actuels. Les principales exigences sont, dans l’ordre de
traitement à l’intérieur d’un pipeline typique :

Élimination de la binarisation La variété des supports, des encres et des déco-
rations utilisés dans les textes arabes rend peu probable le développement
d’une méthode générale de binarisation. Un système de ROC arabe devrait
donc être sans binarisation.

Segmentation des lignes courbes et inclinées L’utilisation fréquente de lignes
inclinées et courbes à des fins tant pratiques qu’esthétiques nécessite une
méthode de segmentation des pages capable de les extraire et de les repré-
senter efficacement.

A.5. ÉTUDES SUR LA ROC EN ÉCRITURE ARABE 217

Segmentation sémantique des pages L’utilisation extensive du paratexte né-
cessite un système de segmentation capable de séparer plusieurs textes sur
la même page de document.

Détermination de l’ordre de lecture avancée En plus de classifier les diffé-
rents éléments textuels d’une page, il est également nécessaire de les mettre
dans le bon ordre pour une véritable compréhension du document.

Transcription sans segmentation Comme l’arabe s’écrit uniquement sous form-
e cursive et que les liaisons entre les lettres peuvent changer de manière si-
gnificative d’un style à l’autre, une méthode de transcription arabe devrait
fonctionner sur des lignes entières au lieu de les séparer en caractères.

Les outils de création et de conservation des données Même s’ils ne font pas
directement partie d’un pipeline de ROC, les outils ergonomiques qui peuv-
ent être utilisés pour annoter toute la gamme des caractéristiques du texte
arabe sont essentiels pour les projets de numérisation concrets et pour créer
des ensembles de données pour les recherches futures.

A.5 Études sur la ROC en écriture arabe

Deux études de précision ont été réalisées en 2017 et 2018 sur un certain
nombre de textes classiques en écriture arabe et sur la principale revue scien-
tifique de langue arabe, al-Abhath. Ces études ont utilisé le système de ROC Kra-
ken (qui a depuis évolué) afin de déterminer les points forts et les limites des
logiciels de ROC de pointe sur ces documents. En conséquence, nous avons dé-
terminé deux recommandations clés pour améliorer substantiellement la ROC en
écriture arabe : (1) une approche plus systématique de la production de données
de l’entrainement, et (2) le développement de composants technologiques clés, en
particulier des modèles multilingues et une meilleure méthode de segmentation
des lignes et de la mise en page.

La première étude préliminaire a montré que malgré les faibles taux d’erreur
de caractères (<3%) obtenus par les modèles spécifiques aux polices de caractères,
les différences substantielles entre les polices de caractères se traduisent par des
taux d’erreur nettement plus élevés desdits modèles sur des polices de caractères
dissemblables. Bien que cette mauvaise généralisation puisse être attribuée dans
une certainemesure aux limites du réseau de transcription (LSTMpeu profond en-
traîné sans régularisation) dans cette première version du Kraken, elle a montré
la nécessité à la fois d’un backend de réseau neuronal plus puissant dans le sys-
tème et d’une sélection minutieuse des données d’entraînement pour assurer la
représentativité de l’ensemble des données d’entraînement pour le domaine cible
souhaité.

La seconde étude a été construite dès le début autour d’une analyse beaucoup
plus rigoureuse des polices de caractères présentes dans le matériel et d’une éva-

218 APPENDIX A. RÉSUMÉ LONG

luation manuelle approfondie des résultats de la ROC par rapport à une évalua-
tion purement computationnelle. Son sujet, la revue al-Abhath, comportait deux
groupes de polices de caractères. Néanmoins, il y avait de légères variations intra-
groupe, en particulier pour la première police de caractères qui a été utilisée pour
la majorité du cycle de la revue. Pour se conformer à cette analyse, il a été décidé
de produire 5000 lignes de données d’entraînement pour la première police de ca-
ractères et 2000 pour la seconde. Les lignes d’entraînement ont été tirées au hasard
des deux groupes de caractères et transcrites manuellement avec le logiciel Cor-
pusBuilder. Des modèles de transcription spécifiques aux polices de caractères ont
été entraînés sur les deux ensembles de données, puis évalués par un prestataire
extérieur et par OpenITI sur un ensemble de validation distinct (voir tableaux 4.1
et 4.2). À l’issue de l’examen, il est apparu clairement que Kraken surpasse signifi-
cativement le logiciel ROC d’Abbyy pour la reconnaissance de textes arabes. Une
évaluation manuelle détaillée de la transcription automatique a permis d’identi-
fier plusieurs types d’erreurs courantes : mauvaise reconnaissance de ligatures
peu courantes, de formes de lettres rares, de caractères d’allongement et de texte
multigraphique, ainsi que la sortie de lettres doublées. Certains de ces problèmes
ont pu être résolus grâce à des données d’entraînement de meilleure qualité. Une
methode pour le traitement de texte multigraphique dans le système de ROC a été
ajouté subséquemment (chapitre 7). L’évaluation a également identifié le besoin
d’une meilleure segmentation des lignes des textes arabes, car le module optimisé
pour le latin dans le Kraken avait tendance à tronquer et à diviser les lignes de
texte.

A.6 Segmentation des pages

Pour le traitement des documents imprimés et manuscrits en caractères arab-
es, il est évident qu’une méthode d’analyse de la mise en page flexible, et de pré-
férence entraînable, est nécessaire. En effet, l’impossibilité d’extraire des lignes
de texte rend automatiquement impossible leur transcription correcte avec n’im-
porte quelle méthode de reconnaissance de texte.

Alors qu’il existe un grand nombre d’ensembles de données d’entraînement
suivant différentes représentations de lignes de texte pour les documents mo-
dernes et historiques en écriture latine, ce n’est pas le cas pour les manuscrits
arabes. Pour aider au développement, nous avons préparé un ensemble de don-
nées de 400 pages de manuscrits arabes et persans annotés avec leurs lignes de
texte.

Il est important de comprendre la nature exacte de la segmentation des lignes
de texte dans un pipeline de ROC et son lien avec la méthode de transcription.
Si l’objectif premier est d’identifier les lignes de texte, la tâche d’un segmenteur
de lignes de texte est également d’aider à l’extraction de ces lignes de manière à
optimiser les performances de la transcription. Ainsi, différentes représentations
de lignes de texte peuvent être produites par un système de segmentation, par

A.6. SEGMENTATION DES PAGES 219

exemple des boîtes englobantes, des polygones englobants, des nuages de pixels,
des lignes de base, etc. Tous ces éléments ne sont pas adaptés aux conventions
calligraphiques de l’écriture arabe. Par exemple, le tracé d’un rectangle englo-
bant une ligne courbe ou inclinée inclura nécessairement des parties de lignes
adjacentes à l’intérieur du rectangle. En outre, la précision de la transcription est
améliorée lorsque les lignes sont centrées à l’intérieur de la bande d’image rec-
tangulaire introduite dans le réseau de transcription.

Une représentation capable à la fois d’encoder une ligne sans bruit adjacent et
de permettre la normalisation de la ligne sur une ligne droite est donc hautement
souhaitable pour les documents qui contiennent des lignes non droites avec une
certaine régularité. Pour l’ensemble de données, la représentation de la ligne de
base a été choisie car elle est à la fois rapide à annoter, relativement facile à ap-
prendre par les méthodes de vision par ordinateur, et suffisamment polyvalente
pour permettre la normalisation de lignes de forme arbitraire.

Une ligne de base est une ligne virtuelle sur laquelle la plupart des caractères
reposent. Alors qu’elles sont généralement droites dans les documents imprimés,
elles peuvent être définies comme des polylignes, ce qui leur permet de suivre
la courbure de la ligne de texte. En projetant les éléments courbes sur une ligne
de base droite, nous pouvons transformer une ligne courbe en une ligne droite
pouvant être traitée par le modèle de transcription. Si la ligne de base est associée
à un polygone englobant, il est également possible de supprimer des éléments
situés en dehors de la ligne de texte qui nous intéresse dans le processus.

Nous avons proposé une méthode de segmentation, basée sur un réseau neu-
ronal de segmentation sémantique convolutive profonde (U-Net), suivant cette
représentation de la ligne de base et l’avons évaluée à la fois sur notre ensemble
de données et sur un ensemble de données latins cBAD. La méthode a atteint une
précision similaire à celle d’autres méthodes de pointe (voir tableau 5.1). Les ré-
sultats obtenus sur l’ensemble de données arabes étaient légèrement inférieurs
à ceux obtenus sur l’écriture latine. Neanmoins, notre ensemble de données est
beaucoup plus diversifié, ce qui indique la pertinence générale de cette approche
pour la segmentation des lignes de texte des manuscrits arabes.

Bien qu’efficace, il manque à cette méthode plusieurs caractéristiques néces-
saires à un segmenteur pratique. Premièrement, elle ne comporte pas de moyen
de calculer l’orientation des lignes, deuxièmement, elle ne dispose pas d’un al-
gorithme pour calculer un polygone englobant pour la suppression du contenu
non-ligne, et elle est incapable de reconnaître conjointement les lignes et les ré-
gions. En changeant la couche de sortie du réseau neuronal pour effectuer une
classification de pixels multi-étiquettes, la nouvelle méthode est capable de dé-
tecter à la fois les lignes et les régions simultanément. Les nouvelles classes de
marqueurs dans la carte de sortie indiquent où se situent le début et la fin d’une
ligne de texte, ce qui permet de déterminer l’orientation de la ligne. En outre, une
nouvelle méthode de post-traitement a été proposée pour extraire les lignes de
base de la sortie de la carte de pixels bruts du réseau de segmentation séman-
tique, et pour calculer un polygone englobant. Enfin, le réseau de segmentation

220 APPENDIX A. RÉSUMÉ LONG

sémantique a été changé en un réseau de type ReNet, plus efficace en mémoire,
qui utilise des couches LSTM balayées verticalement et horizontalement au lieu
de piles profondes de couches convolutionnelles pour obtenir de grands champs
récepteurs.

Cette deuxième méthode a été évaluée à la fois sur l’ensemble de données
arabes, une nouvelle version de l’ensemble de données cBAD et un certain nombre
d’ensembles de données latines plus petites. Les résultats étaient comparables à la
pointe de la technologie pour la segmentation des régions et des lignes de texte,
avec une certaine amélioration par rapport à la méthode précédente dans les ré-
sultats sur l’ensemble de données arabes.

Enfin, nous avons proposé une méthode simple pour la détection du système
d’écriture et de l’emphase dans les lignes de texte. Ce système est utile pour le
traitement des textes et documents multilingues où l’emphase, c’est-à-dire le texte
en italique, en gras, etc. est utilisée pour le balisage sémantique, tel qu’il se produit
fréquemment dans les dictionnaires.

La méthode profite de l’alignement implicite fourni par le réseau de transcrip-
tion de texte formé avec la fonction de coût CTC. Bien qu’il ne soit pas garanti
que les activations pour un caractère particulier soient proches de son emplace-
ment dans la ligne, les capacités limitées de modélisation à longue distance d’un
réseau LSTM font qu’il le place presque toujours correctement. En entrainant un
réseau de transcription de texte à produire une séquence de codes d’identification
au lieu de caractères réels, nous pouvons diviser une ligne en bandes appartenant
à un seul système d’écriture. Ces bandes peuvent ensuite être traitées par des
modèles de reconnaissance spécifiques à l’écriture. Une propriété intéressante de
notre approche est que le système peut être entraîné et que les données de son ap-
prentissage peuvent être dérivées automatiquement des données d’apprentissage
existantes pour les modèles de transcription.

A.7 La Transcription et l’Alignement

A.7.1 Le Logiciel ROC Kraken

Le Kraken est un logiciel de ROC modulaire et open source conçu pour être
particulièrement utile pour la rétro-numérisation dans les humanités. Outre les
méthodes de pointe pour la transcription et l’analyse de la mise en page, il com-
prend un certain nombre d’autres fonctionnalités qui le rendent intéressant pour
les chercheurs en humanités.

Un grand soin a été apporté à son développement pour réduire les hypothèses
implicites sur le fonctionnement du texte et pour rendre ses limitations explicites.
Il a été étendu depuis ses origines en tant que bifurcation du système OCRopus
avec un support Unicode complet de droite à gauche, bidirectionnel et vertical de
l’écriture, la détection des scripts et la reconnaissance multigraphique. Une inter-
face JSON simple permettant la configuration d’un mappage entre les sorties de
modèles numériques et les séquences de points de code Unicode et vice versa. Ce

A.7. LA TRANSCRIPTION ET L’ALIGNEMENT 221

mécanisme est particulièrement utile pour les écritures logographiques de grande
dimension telles que le système d’écriture chinois, car il permet la décomposition
d’un point de code Unicode représentant un seul groupe de graphèmes en ses
composants logiques dans la sortie du réseau neuronal.

Comme le Kraken est conçu pour être facilement intégré dans d’autres ap-
plications, il offre à la fois une API simple et un système de sérialisation flexible
grâce à des templates. Des templates pour un certain nombre de formats tels que
ALTO, hOCR, et TEI sont fournis par défaut. Les modules de traitement sont ac-
cessibles à la fois par l’API et par la ligne de commande qui permet la substitution
flexible de blocs fonctionnels ou l’utilisation de sous-systèmes pour compléter ses
propres méthodes.

Malgré notre efforts, les parametres choisi par défaut peuvent être désavan-
tageux dans certains cas marginaux. Ils peuvent alors être désactivés ou adaptés.
Les exemples vont du traitement textuel tel que la prise en charge de texte bi-
directionnel2 et de la normalisation du texte au changement des architectures et
des paramètres d’entraînement des réseaux neuronaux artificiels, employés dans
la segmentation et la transcription des pages.

Le module de transcription fonctionne comme un classificateur de séquences
sans segmentation, utilisant un réseau neuronal artificiel pour mapper une image
d’une seule ligne de texte en une séquence d’étiquettes qui sont ensuite mappées
en points de code Unicode. L’ARN utilisé par défaut est un CNN-LSTM hybride
entraîné avec la fonction de coût CTC. Un langage simple de spécification de ré-
seau permet d’adapter le réseau à des tâches spécifiques. Les précisions des carac-
tères pour un certain nombre de scripts différents utilisant ce classificateur sont
indiquées dans le tableau 8.1.

La segmentation des pages est assurée par le système de segmentation des
régions et des lignes décrit ci-dessus. Comme d’autres parties du logiciel, il est
hautement configurable et permet la détection de régions et de lignes de texte
arbitraires avec suffisamment de données d’entraînement. Les données d’entraî-
nement peuvent être fournies dans un certain nombre de formats de fichiers stan-
dard tels que ALTO et PageXML ou via une simple API.

A.7.2 L’Alignement des Caractères

Une tâche d’un certain intérêt paléographique est l’alignement automatique
de la transcription du texte avec les glyphes respectifs dans une image. Bien que
cela puisse être fait naïvement avec une approche de segmentation des caractères
similaire aux anciens logiciels de ROC, nous avons évalué une méthode qui uti-
lise l’alignement implicite de la fonction de coût CTC pour localiser les graphèmes
dans une image, à partir d’une transcription diplomatique, et nous l’avons com-
parée à un système SIFT-flow. La méthode est destinée à fonctionner sur les ma-
nuscrits de la mer Morte, des manuscrits très fragmentaires écrits principalement
en hébreu.

2L’algorithmeUnicode BiDi a des cas où un balisage explicite de la directionalité peut être requis.

222 APPENDIX A. RÉSUMÉ LONG

Dans un premier stade, les manuscrits hébraïques fragmentaires sont segmen-
tés à l’aide d’un modèle de segmentation des pages spécifiquement entraîné pour
cematériel. Les transcriptions diplomatiques par ligne de la base de données QWB
sont ensuite mises en correspondance avec la sortie du segmenteur afin de créer
des données d’entraînement pour un modèle de transcription de manière semi-
automatique. Environ 2500 lignes provenant de 440 fragments ont ensuite été uti-
lisées pour faire une apprentissage par transfer d’un nouveau modèle de trans-
cription à partir d’un modèle de transcription de manuscrit hébraïque médiéval
existant. Comme les données d’apprentissage varient énormément en termes de
style, les caractères individuels sont souvent gravement dégradés, et le modèle
est entraîné à surajuster sévèrement, le REC est assez élevé avec environ 30% sur
l’ensemble de validation.

Les activations de ce modèle surajusté sont utilisées pour déterminer les posi-
tions des caractères sur le matériel dans l’ensemble d’entraînage créé semi-auto-
matiquement. Lorsqu’il est évalué vis-à-vis des positions de glyphes annotées par
l’homme, le système place le caractère le plus proche de la position réelle 90,3%
du temps avec une IoU moyenne de 0,81, surpassant significativement la méthode
SIFT-flowmême lorsqu’il l’ancre avec les positions brutes des caractères identifiés
par la ROC.

A.8 eScriptorium

eScriptorium est une plateforme libre d’analyse et d’annotation de documents.
Elle cherche à combiner des techniques de calcul avec des outils numériques ma-
nuels pour la transcription et l’annotation approfondie de textes et d’images aux
niveaux paléographique, philologique et linguistique. Il s’adresse aux chercheurs
en humanités, mais aussi aux bibliothécaires et archivistes, aux étudiants, aux
informaticiens et au grand public. Issu du projet Scripta, qui cherche à faciliter
l’étude de l’écriture sous toutes ses formes au fil de l’histoire, ses principes de
base sont la transparence, la flexibilité et l’indépendance de la langue et du sys-
tème d’écriture.

Ce dernier point est particulièrement important car la gamme des langues et
des systèmes d’écriture étudiés dans le cadre de Scripta est énorme, couvrant le
Proche-Orient ancien, l’Iran et l’Asie centrale, l’Inde, l’Asie du Sud-Est et de l’Est,
ainsi que l’Occident classique etmédiéval. Par conséquent, comme pour le Kraken,
un effort concerté a été fait pour réduire les hypothèses sur le fonctionnement du
texte.

eScriptorium utilise le Kraken pour ses besoins en vision par ordinateur. Ain-
si, la construction du pipeline de ROC est reflétée dans l’interface d’eScriptorium,
avec une approche par étapes de l’importation des données, de la segmentation
des pages (automatique ou manuelle), de la transcription (automatique ou ma-
nuelle), de l’annotation et de l’exportation.

La nécessité de s’adapter à une grande variété de systèmes d’écriture, en par-

A.8. ESCRIPTORIUM 223

ticulier la volonté de pouvoir traiter des écritures rares et historiques, impose à
eScriptorium certaines restrictions de conception qui vont au-delà des mesures
prises pour rendre les méthodes computationnelles de Kraken polyvalentes. Par
définition, les langages rares manquent de grands ensembles de données préexis-
tants qui peuvent être utilisés pour lancer le processus de ROC. Par conséquent,
l’annotation et la vérification manuelles de la segmentation et de la transcription
ne peuvent pas être une simple réflexion après coup, mais doivent être considé-
rées comme une partie fondamentale de l’interface, à la fois pour permettre un
travail pratique avec les plus petits ensembles de données qui ne peuvent pas en-
core être traités avec les méthodes automatiques mises en œuvre et pour aider au
démarrage efficace du traitement automatique.

La variété des systèmes d’écriture empêche également l’utilisation de tech-
niques courantes pour augmenter la généralisation et la charge de formation des
méthodes automatiques telles que les modèles de langage statistique et les mo-
dèles généralisés pour des tâches comme la segmentation des pages. Les mo-
dèles linguistiques puissants pour les langues à faibles ressources telles que le
vietnamien ancien sont tout aussi irréalistes qu’un segmenteur de pages capable
d’extraire avec précision des lignes d’inscriptions chinoises, de manuscrits arabes,
d’incunables et de journaux avec un seul modèle ARN. Par conséquent, la plate-
forme est conçue pour permettre un apprentissage et un réapprentissage fré-
quents grâce à des inventaires de modèles, des interfaces intermédiaires pour
l’importation et l’exportation de données, et des rapports d’évaluation prospectifs
détaillés comme ceux qui existent déjà dans le Kraken.

Un dernier aspect renforçant ces contraintes de conception dans la plate-
forme provient non pas du matériel source mais du type de travail effectué sur
celui-ci. Les chercheurs en humanités effectuent un large éventail de recherches
en utilisant un grand nombre de paradigmes différents sur le matériel textuel. Ce
pluralisme méthodologique se traduit par des conventions de transcription diffé-
rentes, même sur du matériel dans la même langue, en fonction des préférences
particulières du chercheur et de son domaine. Il existe donc un besoin fondamen-
tal de s’adapter aux différentes normes et de les rendre visibles aux autres, en
particulier dans le contexte des systèmes d’intelligence artificielle qui ne sont,
après tout, que de puissants outils d’inférence statistique. Les systèmes ouverts
peuvent aider à communiquer les normes et les hypothèses de ces procédures,
mais il n’en reste pas moins que pour un simple utilisateur de humanités peu fa-
milier avec la terminologie de l’informatique, celles-ci sont cachées dans une boîte
noire magique (et vice versa). Les ontologies peuvent principalement combler ce
fossé, mais elles sont complexes à mettre en place et à entretenir et se heurtent
souvent à la nature ad hoc de la recherche. Notre meilleure option reste de suivre
les standards lorsqu’ils existent, d’offrir des interfaces pour prendre et apporter
des données et des artefacts depuis et vers l’eScriptorium, et d’accepter qu’il est
très peu probable qu’un seul outil soit à la fois pratique et universel.

224 APPENDIX A. RÉSUMÉ LONG

A.9 Conclusions et perspectives

En conclusion, nous avons présenté dans cette thèse un travail qui représente
un pas en avant vers la rétro-numérisation pratique des documents en écriture
arabe et des documents historiques et non-latins en général. La segmentation
des pages et la transcription sont maintenant en principe capables de numéri-
ser n’importe quel document en caractères arabes, mais surtout l’inclusion de ces
méthodes dans un système de ROC de bas niveau et un ERV de haut niveau, qui
sont tous deux totalement ouverts à l’adaptation, la réutilisation et le partage, ren-
dant l’utilisation de ces outils dans les projets de humanités numériques, petits et
grands, beaucoup plus attrayante.

Il est clair qu’un travail substantiel reste à faire. Nous avons étudié les exi-
gences générales d’un système de ROC à usage général en écriture arabe et validé
l’état de l’art au début de la thèse dans deux études. Bien que les questions les plus
urgentes (à savoir l’analyse de la mise en page, des méthodes de transcription plus
puissantes et de meilleurs outils pour la création, la conservation et la diffusion
des données) aient été résolues dans une large mesure, toutes les tâches ne sont
pas actuellement résolues de manière satisfaisante.

La tâche la plus urgente pour la ROC des manuscrits arabes est la détermina-
tion de l’ordre de lecture. Comme décrit ci-dessus, la recherche sur ce sujet est rare
et les méthodes existantes sont des heuristiques artisanales incapables de traiter la
structure souvent complexe des manuscrits historiques. Néanmoins, alors que les
ensembles de données sont inexistants ou cachés dans des ensembles de données
pour d’autres tâches, les capacités de l’intelligence artificielle pour le raisonne-
ment spatial avec un grand nombre d’objets ont augmenté ces dernières années
avec le développement des réseaux neuronaux de graphes.

Bien que les systèmes de ROC de pointe soient capables de réaliser des ex-
ploits impressionnants même sur des documents très dégradés et atypiques, avec
des exigences en matière de données d’entraînement plus ergonomiques que ja-
mais, le repérage des données d’entraînement est toujours la tâche la plus longue
des techniques modernes de vision par ordinateur. Alors que nous pouvons main-
tenant utiliser efficacement l’apprentissage par transfert pour adapter les modèles
existants à de nouveaux documents avec des quantités minimales de données, des
méthodes d’adaptation de domaine plus avancées offrent de grandes promesses
pour rendre plus de documents accessibles sans intervention humaine.

Le développement d’eScriptorium va sûrement se poursuivre et intégrer les
progrès des méthodes automatiques, dans la mesure où il aide la recherche en
humanités. Les pistes non explorées dans cette thèse comprennent les opérations
non textuelles, telles que diverses tâches de classification d’images, la datation, le
regroupement de documents similaires ou la détection de la réutilisation de textes.

Enfin, même avec la disponibilité d’outils de vision par ordinateur puissants
et ouverts, le paysage des ensembles de données reste fracturé. Alors que les cher-
cheurs reconnaissent plus que jamais l’importance du partage des données pour
faire progresser non seulement les humanités mais aussi la recherche informa-

A.9. CONCLUSIONS ET PERSPECTIVES 225

tique, le moyen préféré pour y parvenir reste le dépôt github profane avec un
fichier README non descriptif. Une combinaison d’ERV conscients de l’impor-
tance de métadonnées appropriées, d’un apport élargi de la pratique archivistique
dans la recherche scientifique, et de l’utilisation d’infrastructures de données de
recherche ouvertes comme c’est déjà le cas dans d’autres disciplines scientifiques,
a le potentiel d’améliorer considérablement cet état de fait dans les prochaines
années.

226 APPENDIX A. RÉSUMÉ LONG

Appendix B

Technical Overview of the
Kraken Software

This appendix is a technical summary of the Kraken software in its current state.
It is valid for the version deposited for this thesis in the Zenodo research data
repository and assigned the DOI 10.5281/zenodo.4498925.

This document is located in between the low-level descriptions of themethods
and algorithms employed in chapters 5, 6, and 7 and the high-level conceptual
overview of the software intended for humanists in chapter 8. The majority of
the text is derived from the technical end-user documentation available on the
Kraken web site.

B.1 Command Line Interface

The principal way to interact with Kraken for most users is through the command
line interface (CLI). For practical purposes the CLI is split into two principal parts,
the kraken command for all tasks related to inference, i.e. recognition, and the
ketos command for tasks related to the training and evaluation of segmentation
and transcription models.

B.1.1 Inference

The kraken command exposes each processing step of the OCR process as a sepa-
rate subcommand which operates on a number of inputs to produce specific output
files. In concordance with the linear workflow structure of OCR, these subcom-
mands can be chained to perform multiple processing steps at the same time.

The general invocation of the command is thus:

$ kraken -i inp_1 outp_1 -i inp_2 outp_2 ... subcmd_1 subcmd_2 ... subcmd_n

Input files can be in different formats and defined in different ways. The above
syntax is the most direct: each input file is directly mapped to an output file.

227

228 APPENDIX B. TECHNICAL OVERVIEW OF KRAKEN

As this syntax is too verbose for more than a few files and does not allow the
definition of multiple outputs for a single input file, as is desirable for multi-page
TIFF or PDF files, batch input are handled in two different ways. The first allows
the use of shell or glob patterns to match multiple input files and append a specific
suffix to each output files:

$ kraken -I glob_pattern -o suffix ...

For example:

$ kraken -I '*.png' -o '.xml' ...

The second enables the splitting of a single input file into multiple output files
with dynamically created suffixes through a format string:

$ kraken -I glob_pattern -p format_string ...

For example:

$ kraken -I '*.pdf' -p '{src}_{idx:06d}.xml' ...

splitting each input file into output files starting with the original file name
followed by a page index.

A variety of input file formats are supported, both for reasons of convience
and because each processing steps expect different input data. As OCR is the
conversion of image data into machine-encoded text, the expected default is un-
surprisingly plain image files:

$ kraken -i image_1.png output_1 -i image_2.png output_2 ...

More complex data can be fed into krakenwith files in theALTO and PageXML
formats. These are, for example, useful to only perform transcription on already
pre-segmented images. Each subcommand will automatically retrieve the neces-
sary information, i.e. executing the layout analysis subcommand on an ALTO file
will cause Kraken to only load the image file defined therein. Input formats can
be switched with the -f switch, e.g.:

$ kraken -i alto.xml output.xml -f alto subcommand_1 subcommand_2 ...

A special case are multi-page inputs. These can also be selected with the
appropriate -f option, currently -f pdf for both PDF and multi-page TIFF files, but
as they do not contain parseable structural and content information only image
data is extracted. Valid values for the format option are currently alto, page, pdf,
image, and xml (to automatically select the appropriate parser for each XML input
file).

B.1. COMMAND LINE INTERFACE 229

Binarization

Binarization is no longer mandatory with the new segmenter but the original
OCRopus binarization algorithm is still available through the binarize subcom-
mand.

$ kraken -i ... binarize

Layout Analysis

Layout analysis is accessed with the segment subcommand. Two segmenters are
implemented in Kraken, the legacy non-trainable segmenter producing bounding
box data and the new trainable segmenter that uses the baseline and bounding
polygon paradigm. In addition to extracting text lines, the latter is also able to
detect regions (both textual and non-textual) and assign classes to text lines if
trained with the appropriate training data. We will only explain the use of the
new segmenter here.

The segmenters can be selected with a subcommand option:

$ kraken -i ... segment -x # legacy segmenter
$ kraken -i ... segment -bl # baseline segmenter

When the baseline segmenter is selected a default model trained on modern
Latin manuscripts will be used. This simple model only detects lines and a basic
text region. Other segmentation models can be supplied with the -i option:

$ kraken -i ... segment -bl -i model_1.mlmodel

It is also possible to run multiple segmentation models at the same time over
an image and obtain a joint segmentation:

$ kraken -i ... segment -bl -i line_seg.mlmodel -i region_seg.mlmodel

This functionality can for example be used to combine the output of a seg-
mentation model that only produces regions with one that only detects text lines.
It is important to note that no filtering is performed on the output, i.e. when
combining multiple line-detecting segmentation models the output will contain
”duplicate”, largely overlapping lines. Apart from the convenience of merging
multiple region and line segmentation automatically, performing joint segmen-
tation in Kraken also allows the segmenter to use additional region information
for bounding polygon calculation which generally improves polygon accuracy,
especially on lines close to the boundary of the writing surface.

The segmenter not only finds lines and regions but also imparts a reading
order on them using a basic heuristic. As Kraken does not know the principal text
direction of the document it can be supplied through an option --text-direction:

230 APPENDIX B. TECHNICAL OVERVIEW OF KRAKEN

$ kraken -i ... segment --text-direction horizontal-lr # horizontal lines
left before right lines

$ kraken -i ... segment --text-direction horizontal-rl # horizontal lines
right before left lines

$ kraken -i ... segment --text-direction vertical-lr # vertical lines
left before right lines

$ kraken -i ... segment --text-direction vertical-rl # vertical lines
right before left lines

This text direction is unrelated to the direction of the writing system in a line
and only determines the inter-line and column order. Taking a parallel English
and Arabic text as an example, it is possible that lines are read top-to-bottom, left
column before right column (the page is typeset left-to-right, i.e. like a Latin-script
document) or that lines are read top-to-bottom, right column before left column
(the page is typeset right-to-left, i.e. like an Arabic document). The options for
vertical lines behave correspondingly.

In some cases it is desirable to mask out parts of the input image which are
known not to contain any lines or regions. Mask images have to be the same
shape as the input image. Black pixels in the mask image will be ignored be the
segmenter:

$ kraken -i ... segment -m mask.png ...

The output of the segmenter is a JSON file containing the verbatim data struc-
ture returned by the internal segmentation method of Kraken:

{”text_direction”: ”horizontal-lr”,
”type”: ”baselines”,
”lines”: [{”script”: ”default”, ”baseline”: [[877, 281], [1893, 318]],

”boundary”: [[877, 281], … [881, 325]]},
{”script”: ”default”, ”baseline”: [[1224, 552], [1351, 500]],

”boundary”: [[1224, 552], … , [1231, 555]]},
…],

”region”: {”text”: [[[500, 128], … [200, 325], […],
”illustrations”: …},

”script_detection”: true
}

Transcription

Transcription requires a color, grey-scale, or binarized image, a page segmenta-
tion for said image, and a model file containing a transcription model. The first
two can either originate from earlier subcommands or directly from an XML file.
Model files are defined through the -m option on the ocr subcommand:

$ kraken -i ... ocr -m trans.mlmodel

The ocr subcommand is multi-model capable, i.e. it is possible to selectively
apply transcriptionmodels on parts of the provided text lines. Originally intended

B.1. COMMAND LINE INTERFACE 231

for multigraphic transcription (see chapter 7), this selection can be made for ar-
bitrary criteria, such as different hands, languages, or typefaces. The assignment
of transcription models to text lines works through line types which are part of
the segmentation parsed either from an XML file (see the examples in the Kraken
git repository for exact attributes used) or the output of an appropriately trained
layout analysis model (the value of the script field in the example segmentation
above). It is therefore a simple mapping based on classifications performed be-
forehand. The general syntax for this mapping is:

$ kraken -i ... ocr -m type_1:m_1 -m type_2:m_2 -m type_3:m_3

Two special keywords exist for types and models. The default identifier is a
catch-all and applies the specified model on every identifier that does not have a
model assigned explicitly. The ignore model value causes Kraken to ignore text
lines with this identifier and silently drop them from the output. If no default
model is defined, unassigned types will cause Kraken to abort processing with an
error message. An example for transcribing all lines except those assigned the
notes type:

$ kraken -i ... ocr -m default:defmodel.mlmodel -m notes:ignore

The default output of the ocr subcommand is a plain text file with the text in
a line corresponding to the respective line in the segmentation. As this output
lacks metadata, such as line, word, and character locations, links to image files,
and utilized transcription models, enriched XML output formats can be selected
with options on the subcommand:

$ kraken -i ... ocr ... -t # text output
$ kraken -i ... ocr ... -h # hOCR output
$ kraken -i ... ocr ... -a # ALTO output
$ kraken -i ... ocr ... -y # abbyyXML output
$ kraken -i ... ocr ... -x # PageXML output

Output is serialized de novo, i.e. even if an input file was already an XML file
in ALTO or PageXML output is not ”inserted” into the input but the segmenta-
tion and transcription are used to produce an entirely new file which can lack
information contained in the input file.

It is also possible to use the transcription functionalitywithout a segmentation
through the --no-segmentation switch. In this case, each input image is treated as
one whole line instead of a document page containing multiple text lines.

B.1.2 Training

Training functionality is provided through subcommands of the ketos command
line tool. There are three principal commands: train and test for training and
evaluating transcription models and segtrain for training layout analysis models.

232 APPENDIX B. TECHNICAL OVERVIEW OF KRAKEN

While basic tooling for training data creation for transcription models was
included in the past, these are only compatible with the legacy bounding box
segmenter. For the annotation and transcription of baselines, regions, and text
external tools like eScriptorium or Aletheia that can either export data in ALTO
4.2 and PageXML format or have tight Kraken integration are the preferred option.

Therefore, both transcription and layout analysis are trained primarily through
datasets contained in ALTO or PageXML files. Legacy formats, line images and
text files for transcription and JSON files containing line coordinate lists, are still
supported but do not offer the full range of functionality.

B.1.3 Transcription Training and Evaluation

Training a transcription model from a collection of PageXML or ALTO files con-
taining the necessary annotation (baselines, bounding polygons, and text) can be
done in two ways, from scratch or based on an existing model. The latter is useful
when a model for similar documents, such as a similar typeface or hand, already
exists. In this case, transfer learning to the new data can reduce the training re-
quirements substantially.

We will start with the simple case of training a model from scratch:

$ ketos train -f xml *.xml
[1.8139] alphabet mismatch: chars in training set only: ... (not included in

accuracy test during training)↪
Initializing model �
stage 1/� [###################] 1163/1163 Accuracy report (1) 0.1844 10092 8231
stage 1/� [###################] 1163/1163 Accuracy report (1) 0.1844 10092 8231
stage 2/� [###################] 1163/1163 Accuracy report (2) 0.2335 10092 7736
stage 3/� [###################] 1163/1163 Accuracy report (3) 0.3242 10092 6820
stage 4/� [###################] 1163/1163 Accuracy report (6) 0.4006 10092 6049
...

This command automatically parses the XML files in either of the supported
formats, loads the images, splits off ten per cent of the training data as a validation
set, and commences training. Training is divided into epochs, with an evaluation
automatically performed on the validation set after each line in the training set
has been seen at least once by the network.

The warning about an alphabet mismatch is the result of the training dataset
containing characters that are not in the validation set. The network is not eval-
uated against these characters but still learns how to recognize them. This is
usually the case with small datasets and rare characters. A corresponding warn-
ing if a character is in the validation set but not in the training set can also be
printed.

Depending on the speed of the computer and the size of the data, training
can take a substantial amount of time. Per default training stops automatically
as soon as the character accuracy (the first number in the accuracy report in the
output above) on the validation set does not improve above a certain threshold for

B.1. COMMAND LINE INTERFACE 233

a number of epochs. This approach, called early stopping, uses default parameters
that might not be appropriate for all datasets. For very small datasets of only a
few dozen lines the default number of epochs before aborting (five) might be too
low while very large datasets without much variation can cause the model to
overfit between evaluation runs. To adjust these parameters a couple of options
are available:

$ ketos train ... -F 0.5 # evaluates after half the training set
$ ketos train ... --lag 10 # waits 10 epochs for any improvement
$ ketos train ... --min-delta 0.001 # lowers improvement threshold to 0.1%

Instead of a random split into training and validation set that changes with
each training run, it is also possible to force a fixed split to ensure reproducibility
acros runs. The most explicit way is through manifest files that each contain the
path to one XML file per line:

$ ketos train -f xml -t train.lst -e val.lst

Transfer learning an existing model works similarly to training from scratch
but takes an existing model in addition to the training data:

$ ketos train -f xml -i model.mlmodel *.xml
[0.8616] alphabet mismatch {'~', '»', '8', '9', '�'}
Network codec not compatible with training set
[0.8620] Training data and model codec alphabets mismatch: {'�A'}

If the characters in the training set differ from the existing possible outputs
of the network, an error will be raised. As the transfer learning process initially
changes the internal structure of the model in a way that makes it ”forget” some
of the already learned information, this is a basic safety precaution. Two modes
for adapting the model to the new alphabet: add and both. add resizes the model
to be able to output all the characters in the training set without removing any
existing characters. both will make the resulting model an exact match with the
training set by removing both unused characters and adding new ones.

$ ketos train -f xml --resize add -i model.mlmodel *.xml
...
[0.8737] Resizing codec to include 1 new code points
[0.8874] Resizing last layer in network to 52 outputs
...
$ ketos train -f xml --resize both -i model.mlmodel *.xml
...
[0.7857] Resizing network or given codec to 49 code sequences
[0.8344] Deleting 2 output classes from network (46 retained)
...

In this example 1 character was added for a network that is able to recognize
52 different characters after sufficient additional training. It is important to re-
member that in add mode the model will first lose some accuracy for characters

234 APPENDIX B. TECHNICAL OVERVIEW OF KRAKEN

it has already learned through the resizing process, a deterioration that is worse
for large changes, but also unlearn already learnt characters that are not in the
training set during training. This initial deterioration is also true in both mode
but not the gradual unlearning as all possible output characters are contained in
the targeted training data.

The command line interface for training also exposes various hyperparam-
eters such as model architecture, learning rate, optimizers, weight decay, etc.
The model architecture can be changed through VGSL (see section B.1.3), while
various other parameters are set with options, such as --optimizer, --lrate, and
--weight-decay (see the help message for valid values).

More command line options for various text normalizations, custom codecs,
recalculation of bounding polygons, caching of training data, etc. exist. These are
documented in the subcommand’s help message and the full Kraken documenta-
tion.

Lastly, it is possible to substantially accelerate training with CUDA acceler-
ation. This requires a properly configured graphics card (GPU) with sufficient
memory to place the model to be trained. As transcription models are fairly small,
all but the smallest GPUs are sufficient for this purpose. CUDA acceleration is ac-
tivated by selecting a GPU with the --device option:

$ ketos segtrain --device cuda ...

After a model has been trained an in-depth analysis against a separate test
dataset is often performed. More detailled than the simple character accuracy
output during training and a better estimation of real world accuracy when mul-
tiple models have been trained on the same training data, these reports contain
per-script accuracy rates and confusion matrices that can also pin-point weak-
nesses of the transcription model:

$ ketos test -m best.mlmodel -f xml *.xml
Evaluating $model
Evaluating [###################] 100%
=== report best.mlmodel ===

7012 Characters
6022 Errors
14.12% Accuracy

2 Insertions
5226 Deletions
794 Substitutions

Count Missed %Right
1567 575 63.31% Common
5230 5230 0.00% Latin
215 215 0.00% Inherited

Errors Correct-Generated

B.1. COMMAND LINE INTERFACE 235

773 { A } - { }
536 { c } - { }
328 { e } - { }
274 { d } - { }
...

The report start off with an overall accuracy, followed by the absolute number
of errors and per-script1 accuracy rates. The remainder of the report contains the
confusion table sorted by frequency.

Layout Analysis Training

Training of layout analysis models is very similar to training of transcriptionmod-
els, just with a different subcommand:

$ ketos segtrain -f xml *.xml
Creating model ...
Training line types:
$pac 3 6539
$not 4 202
$par 5 14803

Training region types:
$tip^^I6 829
text^^I7 8

stage 1/50 [###################] 46/46 Accuracy report (1) mean_iu: 0.0309
freq_iu: 0.0975 mean_acc: 0.0309 accuracy: 0.0309↪

stage 2/50 [############-------] 16/46 00:05:11

Instead of stopping automatically after a period of accuracy stagnation, seg-
train stops after fifty epochs per default. This is chiefly because the pixel accuracy
rates are not directly linked to the actual baseline and region detection quality.

As can be seen in the above example, the model is trained per default on all the
baseline types and regions in the training dataset (the object counts for each type
are listed after the type). There are multiple options that control this behavior. It
is possible to suppress either baselines or regions completely:

$ ketos segtrain --supress-baselines ...
$ ketos segtrain --suppress-regions ...

More fine-grained controls allow themerging and suppression of specific types
with whitelists:

$ ketos segtrain --valid-regions reg_1 --valid-region reg_2 ...
$ ketos segtrain --valid_baselines type_1 --valid_baselines type2 ...
$ ketos segtrain --merge-baselines $par:$not
$ ketos segtrain --merge-regions $text:$tip

1Scripts are determined according to Unicode script property linked to ISO 15924 script codes
which vary widely in granularity. Script identifiers are defined for variant forms of the Latin script
such as Fraktur but only one identifier exist for Arabic and its derived scripts.

236 APPENDIX B. TECHNICAL OVERVIEW OF KRAKEN

Both can be combined. The region/baseline whitelists are processed before
merging, so it is necessary to whitelist even regions/baselines that are merged
into others with the --merge-* options.

Like transcription models, layout analysis models can be transfer learned to a
new dataset. The same two modes both and add exist. In contrast to transcription
models, adaptation does not directly affect the accuracy of other types, although
transfer learning in add mode will still slowly unlearn types not in the new train-
ing data:

$ ketos segtrain --resize add -f xml *.xml
$ ketos segtrain --resize both -f xml *.xml

Likewise explicit splits between training and evaluation set can be provided:

$ ketos segtrain -f xml -t train.lst -e val.lst

In the same vein, hyperparameters and GPU acceleration can be set through
identical options.

VGSL

Kraken implements a dialect of the Variable-size Graph Specification Language
(VGSL), enabling the specification of different network architectures for image
processing purposes using a short definition string.

A VGSL specification consists of an input block, one or more layers, and an
output block. For example a grayscale line transcription network consisting of
two convolutional layers (ReLU activation) with 32/64 3×3 filters, followed2 ×2
maxpooling after each layer, and a final bidirectional LSTM layer and 1D dropout
regularization:

[1,48,0,1 Cr3,3,32 Mp2,2 Cr3,3,64 Mp2,2 S1(1x0)1,3 Lbx100 Do O1c103]

or a simple layout analysis model pixel labelling (4 classes) a 1200 pixel high
RGB color image with two convolutional layers and one ReNet-like block:

[1,1200,0,3 Cr3,3,64 Gn32 Cr3,3,128 Lby32 Lbx32 O2l4]

The first block defines the input in order of (batch, heigh, width, channels)
with zero-valued dimensions being variable. Integer valued height or width input
specifications will result in the input images being automatically scaled in either
dimension. Mixed variable and fixed input sizes, e.g. a height set to 400 and a
width set to 0, will result in a proportional scaling of the image. The batch size is
currently ignored in Kraken and can be set separately with command line options.

When channels are set to 1 grayscale or B/W inputs are expected, 3 expects
RGB color images. Higher values in combination with a height of 1 result in the
network being fed 1 pixel wide grayscale strips scaled to the size of the channel
dimension, i.e. an internal transposition of the height and channel dimensions.

B.1. COMMAND LINE INTERFACE 237

After the input, a number of processing layers are defined. Layers operate
on the channel dimension; this is intuitive for convolutional layers but a recur-
rent layer performing sequence classification along the width axis on an image
of a particular height requires the height dimension to be moved to the channel
dimension, e.g.:

[1,48,0,1 S1(1x0)1,3 Lbx100 O1c103]

or using the aforementioned alternative formulation performing the transpo-
sition implicitly with the input definition:

[1,1,0,48 Lbx100 O1c103]

Finally an output definition O… is appended. When training transcription
and segmentation models with the provided command line tools these are derived
automatically from the training data based on the number of different code points
or baseline and region types.

The two principal layer types available in VGSL are LSTM and GRU layers:

L(f|r|b)(x|y)[s]<n> LSTM cell with n outputs.
G(f|r|b)(x|y)[s]<n> GRU cell with n outputs.

f runs the LSTM/GRU forward only.
r runs the LSTM/GRU reversed only.
b runs the LSTM/GRU bidirectionally.
x runs the LSTM/GRU in the x-dimension.
y runs the LSTM/GRU in the y-dimension.
s (optional) summarizes the output in the requested dimension,

outputting only the final step, collapsing the dimension to a
single element.

and convolutional layers:

C(s|t|r|l|m)<y>,<x>,<d>[,<y_stride>,<x_stride>]
Convolves using a y,x window, with optional stride, valid padding, d outputs,
with configurable non-linearity.
(s|t|r|l|m) specifies the type of non-linearity:
s = sigmoid
t = tanh
r = relu
l = linear (i.e., None)
m = softmax

Multiple auxiliary layers exist. The S layer shuffles data between dimensions
and ismost frequently used to collape any remaining y-height before the recurrent
layers in a transcription model:

S<d>(<a>x)<e>,<f> Splits one dimension, moves one part to another dimension.
Takes dimension d, reshapes it into a (a,b)-shaped tensor, distributing a into
dimension e and b into dimension f. Setting a or b to 0 auto-fills to the
correct value.

238 APPENDIX B. TECHNICAL OVERVIEW OF KRAKEN

Various regularization layers are implemented:

Do<p>[,(1|2)] Inserts a 1D or 2D dropout layer with probability <p>. Defaults
to 1D dropout.
Gn<g> Inserts a group normalization layer with <g> groups.

Maxpooling:

Mp<y>,<x>[,<y_stride>,<x_stride>] Adds a maxpooling layer with kernel size
^^I(y,x) and optional stride (y_stride,x_stride)

and finally output layers:

O(0|1|2)(l|s|c)<d> Adds an output layer for scalar, 1D, or 2D heatmap output
with d classes.
(l|s|c) select both non-linearity and loss function:
l = sigmoid (binary crossentropy)
s = softmax (crossentropy)
c = softmax (CTC loss)

As mentioned above output layers are added automatically by command line
tools, so it is only necessary to create them when using the API.

B.1.4 Model repository

Kraken incorporates a simple model repository that stores layout analysis and
transcription models with basic metadata in the Zenodo2 research data reposi-
tory. Models made available through the repository are public and can either be
retrieved with Kraken’s command line tools, through the Zenodo website, or its
web API. Because of limitations of the Zenodo platform, publishing of models is
currently not completely automated and requires manual approval of each sub-
mitted model by an administrator. Therefore publishing models is not instanta-
neous until the necessary changes to Zenodo’s API are made to enable automatic
approval.

Models in the repository are interacted with through DOI permanent iden-
tifiers. As these are globally unique, unalterable, and resolvable to the object in
the repository; they can be used to reference a particular model precisely, e.g. in
publications. To retrieve the list of models in the repository:

$ kraken list
Retrieving model list .�
10.5281/zenodo.2577813 (pytorch) - A generalized model for English printed text
....

The get more details on the exact type of data, character accuracy, etc. of the
model one can also retrieve the metadata record of a single model with its DOI:

2http://zenodo.org

B.1. COMMAND LINE INTERFACE 239

$ kraken show 10.5281/zenodo.2577813
name: 10.5281/zenodo.2577813

A generalized model for English printed text

This model has been trained on a large corpus of modern printed English text
augmented with ~10000 lines of historical printed documents.
scripts: Latn
alphabet:

!”#$%&'()+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]`abcdefghijklmno↪
pqrstuvwxyz{} SPACE

accuracy: 99.95%
license: Apache-2.0
author(s): Kiessling, Benjamin
date: 2019-02-26

The record contains a natural language description of the models, describing
usually the amount and type of training data used, and additional information like
ISO 15924 script identifiers, code points in the model codec, character accuracy
on the test set, and the authors’s names.

To actually download a model, one simply executes:

$ kraken get 10.5281/zenodo.2577813
Retrieving model ...
Model name: en_best.mlmodel

Models are placed per default in the local user configuration directory which
is often .config/kraken but can vary between operating systems. The Kraken sub-
commands search for models automatically in this directory so they can be used
directly with:

$ kraken ... segment -i seg.mlmodel
$ kraken ... ocr -m en_best.mlmodel

no matter where those commands are executed.
Models are published with the ketos publish command. As it accesses the Zen-

odo API it requires an access token which can be generated in the web interface of
the platform by any account holder. The publish subcommand asks for a number
of values to fill the metadata record and uploads the record and model to Zenodo:

$ ketos publish arabic.mlmodel
Access token: $SUPER_SECRET
author: foobar
affiliation:
summary: this is a model for all arabic text ever written
accuracy on test set: 100.0
script: Arab
license: SISSL
Uploading
model PID: 10.5281/zenodo.2577814

240 APPENDIX B. TECHNICAL OVERVIEW OF KRAKEN

The record is created immediately and the PID is valid but an administrator
has to approve the record’s accession to the OCR model group in Zenodo in order
for it to be discoverable with Kraken’s command line tools.

B.1.5 API

A simple API is available for both training and inference. The principal recogni-
tion tasks are encapsulated in single functions and a simple pipeline for OCR is
only a few lines of Python code:

from PIL import Image

from kraken import blla, rpred
from kraken.lib import models, vgsl

seg_model = vgsl.TorchVGSLModel.load_model('la.mlmodel')
tr_model = models.load_any('tra.mlmodel')

im = Image.open('/path/to/image.png')
seg = blla.segment(im, model=tr_model)
for line in rpred.rpred(tr_model, im, seg):

print(line.prediction)

These lines load first import the PIL library for image handling, the bllaKraken
module for (baseline) segmentation, the rpred module for text transcription, and
themodels and vgsl modules for model loading. Afterwards, the respective layout
analysis and transcription models, and an input image are loaded. The difference
between the two model loading function is that transcription models are wrapped
in a slim abstraction layer while segmentation models use the raw VGSL interface
directly.

Next, we perform segmentation on the previously loaded image file and tran-
scribe each found line with the transcription model. The transcription function
rpred does not only return text but an object containing also character bounding
polygons and confidences. rpred is a simplified transcription method for single
model transcription; multi-model functionality capable of transcribing typed lines
with multiple models is available through the more advancedmm_rpred function
(see the full API documentation for further details).

Training is more complicated but a basic training run with the default param-
eters is just a few lines of code as well:

from kraken.lib import xml
from kraken.lib.train import KrakenTrainer

training_files = ['a.xml', 'b.xml', 'c.xml']
eval_files = ['d.xml', 'e.xml']

callback called after each iteration
def step_callback(*args):

return lambda: print('.')

B.1. COMMAND LINE INTERFACE 241

function to print the validation results after each epoch
def print_transcription_eval(epoch, accuracy, chars, error, **kwargs):

print(f'Accuracy report {epoch} {accuracy} {chars} {error}')

create a transcription model trainer
t_trainer = KrakenTrainer.recognition_train_gen(progress_callback=step_callback,

output='model.mlmodel',
training_data=training_files,
evaluation_data=eval_files,
format_type='xml')

executing the transcription trainer.
t_trainer.run(print_transcription_eval)

function to print the segmentation validation results after each epoch
def print_seg_eval(epoch, accuracy, mean_acc, mean_iu, freq_iu, **kwargs):

print(f'Accuracy report ({epoch}) mean_iu: {mean_iu}')

create a layout analysis model trainer
la_trainer =

KrakenTrainer.segmentation_train_gen(progress_callback=step_callback,↪
output='seg.mlmodel',
training_data=training_files,
evaluation_data=eval_files,
format_type='xml')

executing the transcription trainer.
la_trainer.run(print_seg_eval)

retrieve of epoch of best validation error
print(f'best transcription model error: {t_trainer.stopper.best_epoch}')
print(f'best segmentation model error: {la_trainer.stopper.best_epoch}')

The basic principle is simple. A KrakenTrainer object is created through the
constructors for transcription or layout analysis training. These constructors ac-
cept the arguments and options already known from the command line (see the
API documentation for further details) and a callback that is executed each time
after a sample has been ran through the neural network. Training runs are ini-
tiated by calling the run method on the object with another callback that is exe-
cuted after the evaluation at the end of each epoch. run blocks and automatically
returns once training is finished according to the stop parameters chosen, per
default early stopping for transcription and a fixed number of epochs for layout
analysis models.

Most options available on the command line are available on the respective
API functions. A complete overview can be found on the Kraken website and in
the Zenodo deposit mentioned in the introduction with example scripts showing
low-level use contained in the contrib directory of the source code.

MOTS CLÉS

segmentation des pages, reconnaissance de texte, environnement de recherche virtuel, écriture arabe, anal­
yse d’images de documents

RÉSUMÉ

La transcription automatique de textes dans les documents historiques manuscrits et imprimés est devenue un processus
établi dans les humanités numériques, son utilisation allant des archives ou des bibliothèques à grande échelle aux
groupes de recherche et aux chercheurs individuels. Bien que des progrès considérables aient été réalisés ces dernières
années pour comprendre les limites et faire progresser l’état de l’art, ces recherches restent largement limitées aux
documents écrits dans les systèmes d’écriture européens, et plus particulièrement à l’écriture latine. L’une des cultures
littéraires les plus vastes et les plus diverses, largement ignorée par les recherches actuelles sur l’analyse d’images de
documents, est l’écriture arabe.
Cette thèse contient une étude compréhensive sur les caractéristiques des documents en écriture arabe et les défis qu’ils
posent aux systèmes de reconnaissance optique de caractères de pointe, à travers une analyse théorique de l’écriture
arabe et deux études de cas de rétro­numérisation sur des documents imprimés classiques et modernes. Les principales
limites des méthodes courantes identifiées dans ces études ont ensuite été traitées. Deux méthodes entraînables de
segmentation des pages suivant le paradigme de la ligne de base, permettant d’obtenir des résultats comparables à l’état
de l’art et comprenant des caractéristiques supplémentaires nécessaires à la segmentation de pages de documents com­
plexes, une méthode simple de traitement des lignes de texte multigraphiques et le logiciel ROC flexible Kraken intégrant
ces méthodes sont présentés. On montre l’utilité de ce logiciel de ROC non seulement pour la reconnaissance de texte
traditionnelle mais aussi pour une nouvelle tâche d’alignement des caractères. En outre, on présente l’environnement de
recherche virtuel (ERV) eScriptorium pour l’annotation et la transcription. Cet ERV est spécifiquement conçu pour pouvoir
traiter des textes non­latins, dont l’arabe, plus efficacement que les systèmes alternatifs existants. Au cours de ce travail,
on a également préparé plusieurs ensembles de données d’entraînement et d’évaluation sous licence ouverte pour la
transcription de textes arabes et la segmentation de pages.

ABSTRACT

The automatic transcription of text in handwritten and machine­printed historical documents has become an established
process in the Digital Humanities, its use ranging from large scale archival or library settings to research groups and
individual scholars. While considerable progress on understanding limitations and advancing the state of the art has
been made in recent years, this research remains largely limited to documents written in European writing systems, most
importantly the Latin script. One of the largest and most diverse literary cultures largely ignored by current document
image analysis research is the Arabic one.
This thesis contains a comprehensive study on the features of Arabic­script documents and their challenges posed to
state of the art optical character systems through both a theoretical analysis of the Arabic script and two case studies of
retrodigitization on printed classical and modern material. The principal limitations of common methods identified in these
studies were subsequently addressed. Two trainable layout analysis methods following the baseline paradigm achieving
comparable results to the state of the art while incorporating additional features necessary for the segmentation of complex
document pages, a basic method for processing of multigraphic text lines, and the flexible Kraken OCR engine integrating
these methods are presented. We show the usefulness of this OCR software not only for traditional text recognition
but also a novel character alignment task. Further, we present the eScriptorium virtual research environment (VRE) for
annotation and transcription. This VRE is specifically designed to be able to treat non­Latin, among them Arabic, script
material more effectively than existing alternative systems. In the course of this work we also prepared multiple openly
licensed training and evaluation datasets for Arabic text transcription and layout analysis.

KEYWORDS

layout analysis, text recognition, virtual research environments, arabic, document image analyis

