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2 CHAPTER 1. INTRODUCTION

This dissertation consists of a collection of publications and proposes several
methods with which to facilitate the retrodigitization of historical Arabic-script
material. While we are only concerned with the Arabic script here, our findings
are relevant to the analysis of writings and inscriptions in other writing systems.

1.1 Document Image Analysis and Optical Character
Recognition

Document Image Analysis (DIA) is a subfield of Computer Vision (CV). It aims at
understanding document content through the processing of its associated digital
images. The term “document” is defined loosely as including both handwritten
and printed text on paper, as well as writing on other supple supports (e.g. pa-
pyrus and palm leafs) or even inscriptions.

Rather than the methods employed, it is the nature of the input images that
differentiates Document Image Analysis (DIA) from other fields in Computer Vi-
sion (CV). These images are usually obtained through cameras or scanners, often
in a professional setting, resulting in source material with minimal noise from
non-pertinent elements which are often encountered in the natural scene im-
ages treated by other branches of CV. Notwithstanding the cleaner input data,
the structured representations desired as output tend to be of higher complexity
and quantity in DIA than other applications, requiring detection, classification,
and relation of dozens to hundreds of document elements such as lines, charac-
ters, illustrations, and tables.

Like other fields of computer science, DIA research can be subdivided into par-
ticular tasks, and specific and targeted methods are designed to solve one or more
of them. The most prominent task in DIA research is optical character recogni-
tion (OCR)!, although other tasks also exist, whether they be based on OCR or
entirely novel (e.g. document classification and dating, or keyword spotting).

OCR is the conversion of printed, written, or inscribed writing into machine-
encoded text. It is a well-established process, both as a task in computer vision
research as well as for practical day-to-day applications, ranging from address
parsing to aids for the blind. As a matter of fact, it is the latter which motivated
the first and earliest attempt at creating a document image analysis system, with
an 1809 US patent for a non-tactile reading instrument. Early systems were rudi-
mentary and their output required significant human interpretation. Fournier
D’Albe’s 1914 optophone, for instance, converted strokes into tones and expected
the reader to interpret them mentally as character information. Such systems
were little more than intellectual curiosities at the time and none of them achieved
widespread use.

'"While in most contexts optical character recognition and handwritten text recognition are
treated as distinct, both are subsumed under the term OCR here. A detailed justification is given in
1.5.2
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These early explorations preceded the invention of computers by several de-
cades. Their evolution into modern-day DIA techniques has allowed for a broad
range of applications in tasks such as address parsing for mail routing, cheque
verification and book retrodigitization. It is now a claim largely unchallenged in
the field that OCR is fundamentally solved at least for modern, machine-printed
documents in English with a reasonable low level of noise, for which modern
commercial retrodigitization software achieve character accuracy rates above 99%
routinely. Nevertheless, while this holds true for English, we count almost four-
thousand other written languages and several hundred associated writing sys-
tems or scripts. No practical OCR systems are available for the vast majority of
them. Even accounting for the use of purely alphabetic scripts such as Latin and
Cyrillic, which present less of a challenge to state-of-the-art OCR when employed
accordant with modern western typographic practices, it is clear that a substantial
proportion of human literary output is not yet accessible through retrodigitiza-
tion.

This is all the more true when we consider historical literary output. While
large scale digital scanning in rich countries has resulted in the creation of sub-
stantial digital libraries, these text are de facto inaccessible to both the public and
scholar, even for material as recent as the late nineteenth century. Typographi-
cal and orthographical variations degrade digitized texts’ quality to a significant
extent when transcribed with software geared towards the treatment of modern
documents. For most archival material from the Global North, this is most likely a
temporary situation as projects such as OCR-D? pave the way for greater integra-
tion of pure DIA research into library practice. Other collective and more specific
efforts include [1], which gathered both humanities scholars engaged in digital
methods as well as computer vision experts, with the shared goal of establishing
a research program for the digitization of historical and minority script material.
Nevertheless, these communities of interest remain fractured along geographical,
linguistic, and professional boundaries.

Meanwhile, the threat of permanent loss of cultural heritage looms over col-
lections, at risk of permanent deterioration due to political unrest and ill-adapted
storage conditions, combined with utter lack of funding and limited interest from
parties other than minority populations and a small number of scholars. Even
famed collections such as the manuscripts of Timbuktu have barely escaped de-
struction due to conflict in recent years, and humidity continues to threaten their
integrity very much.

Many writings lack a fundamental technological basis to work with: the Berke-
ley Script Encoding Initiative alone lists over a hundred writing systems that re-
main to be encoded in Unicode. Circa two-thirds of them are historical and a sub-
stantial remainder is used liturgically. Without a standardized way to represent
them digitally, their retrodigitization and dissemination becomes infinitely more
difficult. A number of these writing systems have substantial scholarly commu-

Zhttp://ocr-d.de



4 CHAPTER 1. INTRODUCTION

nities - ranging from Egyptian Hieroglyphs and Demotic, Cuneiform, to a variety
of Chinese scripts. Even scripts already encoded in Unicode often lack code points
for certain surface forms required for paleographic or epigraphic practice. This
is not always an oversight. Rather, it can be the result of the Unicode Consor-
tium’s encoding guidelines which largely proscribe inclusion of new allographs
and ligatures in the standard. While alternative standards exist (e.g. the code ta-
bles as defined by the Medieval Unicode Font Initiative ®), this situation favors the
emergence of ad-hoc standards and thus limits interchangeability and machine-
readability of text considerably.

1.1.1 Tasks

As one of the core applications of document image analysis, OCR has dwelt upon
alarge number of its subproblems. Some of them have become obsolete with time,
thanks to the increasing capability of new algorithms. Others are new, resulting
from the need to deal with increasingly challenging material. It is not necessary to
deal with all of them at once to have a functional OCR system. As a matter of fact,
many of them are material-specific, and are of concern only when dealing with
specialized applications. A closer analysis of the design requirements for a largely
script-independent OCR system, capable of processing Arabic-script text based on
a survey of its calligraphic and typographic features, will follow in chapter 2.

A non-exhaustive compilation of generally accepted tasks can be found below.

Binarization Classifying the pixels of an image into two classes: foreground, i.e.
text, and background, i.e. everything else.

Denoising Increasing the page image quality for subsequent problems. Denois-
ing includes processes such as background normalization, color space ad-
justments, deblurring, or stain removal.

Deskewing and Dewarping Correcting both the perspective distortion inher-
ent in camera capture and other degradations introduced commonly in scan-
ning setups such as rotation, warping along the binding, ...

Region Segmentation Subdividing a page image into components such as text,
decoration, notes, ...

Text Line Segmentation Extracting the text lines from a page image. Text line
segmentation is notable for being a task where not only a large variety of
techniques exist but the modellisation of the line itself has been subject to
considerable research.

Character Segmentation Segmenting text on a page image down to the glyph
or even lower level. While a common operation in traditional OCR systems

*http://mufi.info
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it is mostly unnecessary with state of the art methods. A related task that is
of interest to the humanities, especially paleo- and epigraphers, is character
alignment, i.e. the locating individual characters on a document page given
the full page text.

Script and Font Recognition Classifying the language, writing system, style,
or typeface of the text. This classification can be performed at different
levels, such as document-wide or individually for whole or parts of a line.

Table Recognition Inferring the logical structure of table images.

Scene Text Recognition Recognition of text in images taken in the wild that
contain substantial non-text content.

To solve these problems, the typical optical character recognition pipeline
uses specific methods, which operate in three distinct steps:

Preprocessing Denoising, deskewing and dewarping, and binarization

Layout Analysis Extracting structural information from document page images
and enriching it with additional semantic information.

Transcription Extracting textual information from all or a subset of objects
identified by in the layout analysis step.

This characterization holds true for all but the most esoteric pipelines. How-
ever, the exact functional blocks depend heavily on the type and structure of the
documents processed. For example, traditionally, binarization is used as a simple
process to: enable the use of fast binary morphology in the layout analysis step;
reduce the dimensionality of data for classifiers; or, more generally, as a type of
basic feature extractor. The relative ease with which accurate binarization for
high quality scans of machine-printed text on paper can be computed contrasts
with the difficulty of treating documents on other writing surfaces, faded writ-
ing, fragmentation, etc. As a result, methods geared towards the treatment of the
latter kind often attempt to reduce the reliance on binarization or skip it entirely.
Similar to most other preprocessing steps, there is a tendency today to eliminate
binarization altogether, due to the increased availability of more advanced tech-
niques. This, however, remains a topic of debate in the research community.

1.2 Motivation

Arabic-script material represents one of the largest literary traditions in human
history, both in terms of volume and geographical spread. Examples range from
religious texts (most prominently the qurian, the holy book of Islam) to poetry,
and include scientific and legal texts in addition to a large corpus of adminis-
trative records. The sheer number of sources and the diversity of domains they
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cover make them a prime target for new paradigms in the humanities that employ
computational methodology, e.g. distant reading and quantitative palaeography.
These methods require either large text corpora or accurate DIA methods based
on one or more of the abovementioned component tasks of an OCR system. As
the vast majority of Arabic texts have never existed in digital form, high quality
retrodigitization through OCR favors the development of a substantial number of
Arabic Digital Humanities research projects.

When I started working on this thesis, humanities scholars working on Arabic-
script texts largely dismissed OCR of machine-printed Arabic text, especially of
historical and multilingual material. This was even true for scholars already
deeply involved in the digital humanities, as well as funding agencies. At the time,
accurate Arabic handwriting recognition was deemed completely out of reach. A
long trail of publications on OCR of simple Arabic datasets, such as KHATT [2],
existed and a number of open and proprietary OCR software (e.g. Tesseract, Ab-
byy FineReader, Sakhr) did offer nominal support for the recognition of Arabic-
script text. However, it never translated into actual scholarly or large-scale library
practice. A multitude of factors accounts for this situation: high error rates caused
by classifiers and segmenters ill-suited to the cursive nature of the writing sys-
tem; a lack of readily available software and technical expertise; and substantial
cost and effort required to adapt existing solutions to the material of interest.

It was soon evident that the challenges that prevented scholars working on
Arabic-script printed and handwritten texts from relying on OCR mirrored that of
many other researchers engaged in retrodigitization of historical and non-Latin
script material. Imitating the prevailing opinion on Arabic OCR, [3] claimed me-
dieval (Latin-script) manuscripts to be practically impervious to contemporary
OCR. Similar statements can be found elsewhere. This entailed an overall lack
of established best practices, data formats, and requirements on software capabil-
ity and interfaces suited to the workflows of digital humanists. Existing projects
like Lace? and [4] used OCR technology in an ad-hoc manner. It often resorted
to extensive data carpentry[5] and incorporated significant domain knowledge to
boost accuracy to an acceptable level.

Our goal is therefore twofold. While the research presented here incorpo-
rates an understanding of the Arabic writing system and its associated calligraphic
practices, we aim at conceiving a largely script- and language-independent univer-
sal OCR system, one that is useful beyond the immediate community of Arabic-
script scholars. It also allows for methods to be evaluated against non-Arabic
datasets when Arabic datasets are not available. As such, if the algorithms pre-
sented here are particularly suitable to Arabic material, it has been of primary
importance in this research to create algorithms that are universally applicable.

‘http://heml.mta.ca/lace/index.html
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1.3 Scientific Contributions

Most of the work presented here should be read in relation to the broader field of
Digital Humanities. The research presented in the next chapters is not a hetero-
geneous collection of methods solving single tasks in DIA that are only of use to
humanities scholars engaged in retrodigitization. It is part of a coherent ecosys-
tem consisting of two major components: the Kraken OCR engine and the eScrip-
torium virtual research environment (VRE). As such, not only does this research
aim at advancing methods for particular tasks; it also seeks to improve existing
scholarly workflows, ones that are more often than not laborious and impractical
to use, not to say completely unworkable.

Kraken is a feature-complete, freely-licensed and modular OCR system. It dif-
fers from other solutions (both open and proprietary) in multiple and important
ways, i.e. target audience, software design, and generalizability. These differ-
entiated features are the result of its roots as a large-scale refactorization of the
OCRopus source code, that was performed to enable its integration into a digiti-
zation pipeline for scholarly use at the Chair of Digital Humanities at the Univer-
sity of Leipzig. It boasts a stable application programming interface and is also
highly modular. Users can create their own workflows or substitute functional
blocks with minimal effort. Recognizing the sheer diversity of OCR systems-
related needs among humanities scholars, a concerted effort has been made to
limit implicit assumptions regarding the functioning of text, and the software ac-
commodates varied material and transcription guidelines as much as possible. As
a result, Kraken performs only minimal normalization, is fully compatible with
Unicode private use area (PUA) utilization, and supports both horizontal and ver-
tical directions.

A number of case studies were performed as part of the work to enhance
Kraken’s capacity to support Arabic text work. It led to the first detailed analysis
of state-of-the-art OCR methods on machine-printed Arabic text, evaluating their
respective weaknesses and strengths. A first preliminary study was conducted
on a small number of printed classical Arabic-language books, soon followed by
a large-scale retrodigitization feasibility study using a leading Arabic-language
journal published by the American University of Beirut.

Partly as a result of these studies, the engine has been extended in multiple
ways. This thesis contributes two trainable line segmentation systems, a basic
one capable of only detecting baselines, and a more advanced one allowing re-
gion and line segmentation in addition to classification. The latter is included in
Kraken. Initially, a trainable line segmentation method constructed on top of a
U-Net for semantic segmentation was developed. In a second step the training
procedure was adapted to allow joint region and line detection and inference of
line orientation. This second method has also been optimized for memory usage
by employing a ReNet-like stack of separable recurrent layers, reducing memory
consumption by circa fifty per cent in comparison to similarly performing fully
convolutional semantic segmentation networks.
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In addition, a basic script and emphasis detection system, built on Kraken’s
text transcription module, was devised.

The segmenter in Kraken is currently the only openly available layout analysis
module in a complete OCR engine which is able to accurately segment complex
curved lines in Arabic manuscripts. In addition, it is the first method following the
baseline paradigm for line modellisation incorporating line orientation detection.

A flexible abstraction layer on top of the pytorch neural networking library
has been added which allows the flexible reconfiguration of the artificial neural
networks (ANN) employed for both layout analysis and text transcription through
a lightweight ANN definition language which is able to express many features of
common architectures employed in computer vision tasks (see appendix B). This
new layer allows the relatively simple addition of new layer types and thus quick
prototyping and efficient hyperparameter optimization even for endusers without
in-depth machine learning knowledge as has been demonstrated by [6].

In contrast to older open engines such as Tesseract and OCRopus which use
custom neural networking backends, a standard library in widespread use in both
industry and the machine learning research community offers a multitude of ben-
efits such as easier transfer of development skills and automatic or low-effort in-
clusion of performance improvements and additional features like GPU accelera-
tion, distributed training, or model quantization.

[1, pg. 19] notes that one of the main obstacles to advancing OCR for his-
torical and non-Latin texts is lack of training and evaluation datasets. During
the process of putting together the initial case studies, important efforts were
made in this direction. Several thousand lines of training data for text transcrip-
tion were annotated and made publicly available as freely-licensed datasets. I
was involved in the process through technical conceptualization and the creation
of transcription guidelines. In addition, to evaluate the proposed layout analysis
methods against historical Arabic-script material, another openly licensed dataset
comprising of four hundred Arabic-script manuscript pages was annotated with
baselines and line orientation. It is purposely diverse in the languages, styles and
domains it covered. The composition of this dataset is particularly challenging
and it remains the only handwritten non-Latin dataset available for the baseline
paradigm for layout analysis.

The second component of the proposed OCR ecosystem is the eScriptorium
VRE. eScriptorium is currently under development at Université Paris Sciences
et Lettres, under the umbrella of the eScripta Project. While Kraken is designed
for maximum flexibility by offering well-defined interfaces at different levels, eS-
criptorium takes another approach. It is conceived as a complete paleographic
research and publication environment for scholarly use, and OCR is but one of
its planned features. This is why much effort has been put into designing a
user-friendly OCR workflow whose different steps are explained clearly, without
scarifying any of the required flexibility in addressing a large number of scripts
and languages. While the above-mentioned advances in the Kraken OCR engine
make it a versatile tool suitable for a multitude of scholarly purposes, eScripto-
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rium cannot possibly expose its full functionality without devolving into a highly
specialized tool for OCR exclusively. As a result, eScriptorium is designed to allow
manual or semi-automatic intervention at each step of the process, either through
the manual manipulation of the interface or via graphical and programmatic data
exchange interfaces.

eScriptorium is also an ideal test case for computer vision-assisted research in
the humanities, as the platform aims to offer additional scholarly functions that
stretch far beyond pure retrodigitization. Potential functions include text reuse
detection, automatic sampling of graphemes for palaeographic analysis, docu-
ment classification, .... In certain cases, advanced functionalities are linked with
text transcription. To illustrate this point, a method for deriving grapheme loca-
tions from the implicit alignment produced by a line-based text recognition ANN
trained with Connectionist Temporal Classification loss and its performance on
fragmentary Hebrew material is presented. Depending on the user’s choices re-
garding transcription standards , different palaeographic sampling goals can be
met with this method, ranging from semi-automatic allographic inventories to
decoration extraction.

1.4 Outline

The remainder of this chapter will be dedicated to a review of computer vision
techniques in general and as they pertain to optical character recognition. This
includes a summary of the state of the art in research and practical available soft-
ware packages, in joint with an analysis of general challenges faced by both in a
variety of settings.

All subsequent chapters included in this dissertation have been published as
scientific articles or have been accepted for publication, except for the conclusion
and the presentation of the Arabic script. Since the work presented here is closely
linked with the development of the Kraken OCR engine as well as the eScripto-
rium project, notable differences with current implementations are mentioned in
introductory notes to each chapter whenever necessary. This thesis is organized
into four parts: introduction to the Arabic script, segmentation and script recog-
nition, character recognition and alignement, and virtual research environments.

Part I focuses on the Arabic script. It is organized into three chapters. Firstly,
it proposes a general introduction to the writing system with an emphasis on
calligraphic features, and the ensuing specific requirements associated with the
development of an Arabic-script OCR system. Secondly, it presents a preliminary
study on classical Arabic machine-printed books. Finally, it concludes with an
in-depth case study performed on a printed Arabic language journal.

Part II contains three chapters on layout analysis and segmentation of Arabic-
script documents. We present a first of its kind, freely-licensed, Arabic-script
historical manuscript dataset and a competitive method to perform basic layout
analysis on it. In the second chapter a novel, modular method for region and
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text line segmentation is presented. Lastly, a method to perform sub-line script
classification on printed multi-scriptal text for multi-lingual OCR is shown.

Part I1I is composed of two articles: a general description of the Kraken OCR
engine design and features, and a method to perform character alignment on
highly fragmentary Hebrew manuscripts.

The final part IV presents the virtual research environment (VRE) context in
which a modern OCR engine like Kraken can be embedded. We do so through two
articles: one containing a conceptual description of the eScriptorium VRE and a
second one investigating the friction between automatic processing, standardiza-
tion, user-friendliness and methodological pluralism in the humanities.

1.5 Literature Review

In this literature review, we start with a general review of the existing tech-
niques in Machine Learning or Artificial Intelligence (ML/AI), Computer Vision,
and Document Image Analysis, as well as current trends in the research commu-
nity, with the view of contextualizing the state of the art for the specific task of
OCR. This brief survey not only includes the current state of OCR research; it
also covers libre and proprietary OCR engines as well as workflow engines, most
of which are used primarily for large-scale digitization in a institutional context.
Since the present dissertation aims, among other things, at advancing the practical
application of OCR for humanities research, this section concludes with a review
of the existing virtual research environments targeted at the retrodigitization of
historical material.

1.5.1 Computer Vision Techniques

Commercial DIA (including computerized DIA) preceded by several years the cre-
ation of both Computer Vision and Artificial Intelligence as academic fields [7,
pg. 11-14]. With the establishment of CV and Al as fields however, DIA research
progressively came under their larger research umbrella. Today, techniques that
became obsolete after this fusion remain of interest only to historians and have
largely disappeared from academic discussions. This review therefore limits itself
to methods established after the late 1960s.
Computer vision processes are generally divided into the following steps:

Image acquisition refers to the capture of an digital image through one or mul-
tiple image sensors. Limitations of a particular image acquisition system,
such as noise levels and distortion, are often integral in the design of sub-
sequent steps. The most common acquisition systems in DIA are visible
light cameras and flatbed scanners, although in some cases multispectral
and radiographic sensors are employed.
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Preprocessing aims to boost the performance of subsequent steps through nor-
malizing input data. It is frequently targeted at eliminating degradations
introduced during image acquisition.

Feature extraction reduces the dimensionality of input data through combina-
tion and selection of its characteristics that are deemed pertinent for the
desired analysis.

Analysis transforms extracted features into an output representation specific to
a particular task, e.g. class probabilities for an image classification task, text
for OCR, object locations and labels for object detection, ...

These steps have developed over time and their relative importance have
changed with each new paradigm shift in CV and adjacent fields such as ma-
chine learning, as well as with increasing computational capabilities. As a matter
of fact, advances in research have often emerged across all steps simultaneously.
To understand how the current research context has emerged and to best capture
the relationships that tie the different methods together, a chronological account
of the development of computer vision is presented below.

Early computerized DIA relied on rather rudimentary OCR systems. They
barely differed from the early opto-mechanical systems that dominated the first
half of the 20th century. Their limitations were similar and severe, and stemmed
from using rudimentary template matching, with various attempts at preprocess-
ing to increase accuracy as generalization was generally poor. While at the time
of the infamous 1966 CE summer project on pattern recognition [8], the currently
most popular machine learning paradigm, artificial neural networks, had existed
for more than twenty years they did attract little interest in the field. Minsky
and Papert’s 1969 CE book on perceptrons [9] relegated research on ANNs to at
best secondary role and caused a decade-long stagnation in the field in favor of
alternative approaches.

Advances in the 1970s included rule-based expert systems, the populariza-
tion of various low-level filters and operators such as gradient approximators,
median and gaussian filter smoothing, and morphological operators. The 1970s
also saw the first attempts at feature representations such as edges, corners and
binarization[10] of images that were suitable to the limited modeling capability
of the classification methods of the time. By the early 1990s, a bewildering array
of hand-crafted feature representations had been devised, not to mention an ever
growing collection of edge and corner detectors, contour and shape descriptors,
unsupervised segmentation methods, and other transforms. Assemblies of these
carefully selected features were usually coupled with relatively simple unsuper-
vised or supervised classifiers such as k-nearest neighbor, multilayer perceptrons,
or decision trees. [11], a comparative study which focuses on large-scale digitiza-
tion methods using US census records, is an early example of this trend combining
complex feature descriptors and relatively simple neural and non-neural classi-
fiers. It is around this period that it became standard practice in both research
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and industry to construct completely hand-crafted heuristic methods based on a
combination of low-level instructions to perform high-level CV (i.e. true analysis
and interpretation of image data).

Methods that follow this approach work on narrow document domains rea-
sonably well. However, they do not generalize to larger classes of documents.
This is due to the fact that the selected features are often relatively specific to the
source material. In addition, their adaptation is labor-intensive.

Paralleling the proliferation of feature descriptors in the 1970s, classifiers and
training methods gained power throughout the 1970s and 1980s. What would
later come to be known as convolutional neural networks started to emerge in
the form of learned feature maps and weight sharing in ANNs. Fukushima’s 1980
neocognitron [12] and LeCun’s 1989 CNN [13] are two such examples. Both of
them were designed for character recognition purposes. Backpropagation [14],
an algorithm allowing for the efficient supervised training of functions through
gradient descent (which remains the standard for supervised learning today), en-
abled, in theory, for the first time, the supervised training of deep neural net-
works. In practice, the vanishing/exploding gradient problem, i.e. the tendency
that cumulative error signals backpropagated through the network either shrink
or grow rapidly with each antecedent layer, a phenomenon that was first identi-
fied by [15], proved to be a difficulty. As a result, ANNs were limited to shallow
problems, for which most computer vision applications still required extensive
feature engineering. By the mid-2000s however, the problem was, for the most
part, solved. In the case of recurrent neural networks (RNNs), alternative architec-
tures such as Long Short-Term Memory (LSTM) units proved to have more stable
gradients. For most other ANN architectures, increased computational power and
large datasets proved instrumental in circumventing the issue: it allowed train-
ing with small gradients without overfitting and in a reasonable amount of time.
The literature from the period is prolific in identifying alternative solutions and
circumvention methods, including unsupervised pretraining, hessian-free opti-
mization, gradient-less training, and ensemble methods [16, sec. 5.9]. None of
them, however, are currently in widespread use.

Multiple alternative classification methods for computer vision filled the gap
that separated the emergence of feature descriptors and the establishment of deep
ANNSs’ predominance in today’s landscape. Hidden Markov Models (HMMs), that
were already used in the speech recognition field successfully, started to be used
for the modelization of sequences in computer vision. One notable application
was cursive handwriting recognition [17]. The soft-margin formulation for Sup-
port Vector Machines (SVM) and the kernel trick extended the use of linear clas-
sifiers to data that is not linearly separable. While either of these methods have
largely been surplanted by ANNs in CV, they remain popular in certain parts of
the DIA community, most notably in the use of HMMs for Arabic text recognition
research.

The major resurgence of ANNs for computer vision can be traced to signif-
icant improvement to the overall state of the art shown by deep convolutional



1.5. LITERATURE REVIEW 13

neural networks trained with straightforward backpropagation on a number of
image classification contests in 2011 and 2012, often halving the error rate in com-
parison to previous years and in some cases achieving superhuman performance
on constrained domains. While the contests in question, foremost on the Ima-
geNet dataset, were limited to image classification, deep convolutional networks
disposing completely of hand-crafted features were rapidly adapted to other tasks
such as object detection, semantic segmentation, optic