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RESUME EN FRANCAIS

Motivations

Le 9 aotut 2021, le Groupe d’experts intergouvernemental sur 1’évolution du climat
(GIEC) a publié son dernier rapport [1] qui affirme que les activités humaines ont une
part substantielle dans le changement climatique, que le réchauffement de la planéte est
plus rapide qu’auparavant et qu’il y a une intensification des événements climatiques
tels que les vagues de chaleur extrémes et les inondations. Ces déclarations appuient
I'appel des Nations Unies a prendre des mesures pour limiter le changement climatique [2].
Différentes parties prenantes sont les destinataires de ce message : les décideurs, tels que
les représentants des gouvernements et des organisations, qui doivent prendre des mesures
pour limiter le changement climatique et qui ont ’autorité et le pouvoir d’adopter des lois
et de gérer leur territoire, ainsi que les scientifiques et le grand public qui sont impliqués et
affectés par le processus décisionnel. Pour prendre des décisions et donc des mesures, ces
parties prenantes doivent avoir acces a des données sur les événements liés au changement
climatique et leurs impacts, ainsi que des informations sur les effets des éventuelles mesures
a prendre vis-a-vis de ces événements. Les informations sur ces événements et leurs impacts
peuvent aider a rendre la décision plus pertinente et donc plus durable. Par exemple, un
maire a besoin de connaitre les changements locaux du niveau marin et du littoral pour
anticiper I’éventuelle submersion des zones cotieres afin de décider de délivrer ou non un
permis de construire dans une telle zone ou de faire évacuer la population.

Cependant, ces informations ne sont pas faciles a obtenir. Aussi catastrophiques que
puissent étre les impacts du changement climatique et du réchauffement planétaire, il
n’existe actuellement aucun moyen de les caractériser et de les définir avec précision, car
ces phénomenes font intervenir des processus environnementaux complexes. Il existe en
effet une grande incertitude quant a la maniere dont le changement climatique peut et
va se manifester exactement et dans quelle mesure. Comme personne n’est en capacité
d’affirmer avec certitude ce qui va se passer, les projections ne peuvent que donner quelques
indications mais aussi apporter un éclairage.

La modélisation des phénomenes physiques est une solution pertinente pour apporter



des informations et faire des projections. Les modeles scientifiques, et plus encore, les
logiciels scientifiques qui les integrent, sont depuis longtemps utilisés par les scientifiques
pour étudier et comprendre les phénomeénes physiques. Plus particulierement, les modeles
de simulation permettent de représenter le comportement du systeme étudié en fonction
de conditions spécifiques et dans un cadre dynamique dans le temps ou dans l’espace.
Leur exécution permet une plus grande complexité et une meilleure représentation des
phénomenes par les modeles grace a des ressources avec une plus grande puissance de
calcul [3]. Cela permet également de partager plus facilement les modeles et leurs résultats
avec d’autres personnes concernées grace a des services spécifiques [4], [5] (par exemple,
laboratoires virtuels et cloud computing) [6], [7]. Les modeéles permettent ainsi de réduire
les incertitudes liées au manque de connaissance dans le domaine d’étude. Ils sont utilisés
pour faire des projections dans une variété de domaines parmi lesquels on trouve les
sciences de l'environnement et ’étude du changement climatique [8]. En tant que tels, ils

peuvent étre bénéfiques dans le contexte de la prise de décision.

Vers le soutien des modeles scientifiques pour la prise
de décision

Les logiciels scientifiques (c’est-a-dire les modeles de simulation) peuvent étre utilisés
pour faire des projections. Mais pour qu’ils puissent étre utilisés efficacement dans le
contexte de la prise de décision en sciences environnementales, plusieurs autres conditions

doivent étre remplies.

Fiabilité des projections

Le processus décisionnel a pour but de faire évoluer 1’organisation ou le systéeme con-
cerné. Dans le contexte du changement climatique, la décision peut étre prise par le
gouvernement et peut prendre la forme de lois. Cela peut, par exemple, avoir un im-
pact sur 'aménagement du territoire avec le déplacement de la population, ou sur la vie
quotidienne des citoyens avec des réglementations sur le type de transport autorisé et
leur fréquence d’utilisation. Ces décisions peuvent donc avoir un impact considérable et
des conséquences importantes. Il est ainsi de la responsabilité des décideurs de réfléchir
aux bénéfices de leur décision par rapport a l'impact de cette derniere. Les décideurs

ont besoin d’informations et de projections fiables pour les aider a prendre la décision la



plus appropriée. Les logiciels de simulation doivent donc également étre considérés comme

valides pour produire ces projections fiables.

Exploration des scénarios

L’incertitude entourant le changement climatique est double et peut étre séparée en
deux parties : 'incertitude épistémique et I'incertitude aléatoire. L’incertitude épistémique
concerne le manque de connaissances précises sur les phénomenes en cause, car il n’existe
pas beaucoup d’outils efficaces pour les observer et les mesurer. Dans le cas de I’étude des
mouvements de la nappe phréatique entrainant des inondations, le systeme souterrain est
encore mal connu en raison de la rareté des données pouvant étre acquises, du manque
d’outils pour les acquérir et du cofit de leur acquisition. L’incertitude aléatoire concerne le
fait que 'on ne peut pas affirmer avec certitude que les événements futurs se produiront
et que la seule fagon est de spéculer sur leur probabilité de se produire. Ces incerti-
tudes ont conduit les experts en climatologie a élaborer une série de scénarios climatiques
différents, des plus optimistes, dans lesquels les changements sont les plus faibles, aux
plus pessimistes, dans lesquels les changements sont les plus conséquents. Les décideurs
doivent donc disposer de projections pour les différents scénarios climatiques afin d’avoir
un apercu de 1’éventail des possibilités concernant 1’étendue des impacts des événements
climatiques futurs. De plus, afin de décider si une action vaut la peine d’étre entreprise,
ils doivent disposer de la projection décrivant les impacts potentiels de cette action sur la
limitation des effets du changement climatique. Par exemple, ils peuvent vouloir connaitre
les impacts de la construction d’un barrage sur la submersion de zones proches du littoral.
Au total, les modeles de simulation doivent permettre d’explorer les scénarios climatiques

ainsi que les scénarios concernant les actions potentielles a entreprendre.

Interactivité

Pour que les décideurs aient une vision globale des projections, ’exploration des scé-
narios doit étre interactive. Ainsi, la génération des projections doit étre rapide. Grace
a l'interactivité, les parties prenantes peuvent proposer de nouvelles potentielles actions
a entreprendre et obtenir les projections du scénario correspondant. Ainsi, elles peuvent
décider rapidement quelles actions méritent d’étre explorées et mises en ceuvre ou non.
D’un point de vue pratique, cela permet également aux réunions des parties prenantes

d’étre efficaces car il n’y a pas besoin d’attendre longtemps pour obtenir les projections
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de nouvelles idées d’actions. C’est particulierement intéressant car il peut étre difficile de

rassembler toutes les parties prenantes lors d’'une méme réunion.

Défis a relever

Les exigences liées au processus décisionnel conduisent par extension a des exigences
relatives aux modeles de simulation associés. La fiabilité des projections signifie que les
simulations, c’est-a-dire les exécutions du modele de simulation (alias le logiciel scien-
tifique), doivent générer des résultats scientifiques fiables et crédibles par rapport au
domaine d’étude. Le logiciel de simulation doit étre validé pour répondre aux criteres
de qualité du domaine scientifique. De plus, I'exécution des modeles de simulation doit
étre rapide. Avec une exécution rapide des modeles, la simulation d’un seul scénario
est plus rapide et cela permet d’exécuter beaucoup plus de simulations correspondant
a de nombreux scénarios. Cela permet en méme temps l'exploration des scénarios et
I'interactivité nécessaire aux décideurs pour explorer les projections. Dans I'ensemble, les
modeles de simulation doivent étre validés pour garantir des projections fiables, avoir un

temps d’exécution rapide et permettre I’exploration de scénarios.

Problématique

Cependant, les modeéles de simulation élaborés au départ pour étudier les phénomenes
peuvent ne pas répondre aux exigences susmentionnées, qui sont liées au contexte de ’aide
a la prise de décision. Les modeles qui ont été élaborés par les experts sont devenus de plus
en plus complexes en raison de la volonté de représenter plus fidelement les phénomenes.
Par exemple, davantage de variables ont été ajoutées pour représenter plus fidelement
les phénomenes (comme le nombre de couches pour représenter les sols dans un modele
géophysique). Parallelement au gain de précision, cette complexité a fait augmenter le
coflit en calcul de I'exécution des modeles. L’exécution d'une seule simulation peut prendre
beaucoup de temps (par exemple, de plusieurs heures a plusieurs jours ou semaines) [3] et
nécessiter des ressources importantes. Ces contraintes de temps sont tres problématiques
dans le contexte de I'aide a la prise de décision [9]. En effet, un modele de simulation qui
prend trop de temps pour générer une seule projection empéche l'interactivité nécessaire
aux parties prenantes, ainsi que l’exploration de scenarios. Avec une seule projection

pouvant prendre des mois pour étre générée, il est impossible de produire les projections



des nombreux scénarios climatiques et des multiples scénarios d’aménagement du territoire

dans un délai convenable pour les décideurs.

De plus, les modeles de simulation en sciences environnementales sont généralement
élaborés pour modéliser des zones spécifiques et locales. Leur élaboration est le résultat
de plusieurs années de recherche et de travail sur un lieu spécifique. Les données sont col-
lectées sur le terrain pour aider a construire le modele et a le calibrer. En hydrogéologie,
la collecte de données est une tache difficile car le nombre d’outils permettant d’accéder
aux données du sous-sol est limité et le colit du processus est élevé par rapport au nombre
de données a collecter pour représenter de larges zones. Ainsi, il y a également un manque
de données spatiales pour calibrer les modeles. Tout ceci limite la généralisation des pro-
jections a de plus grandes échelles et empéche de fournir une vision globale aux parties
prenantes pour la prise de décision. En somme, le temps d’exécution important du logiciel
de simulation qui en résulte en fait un obstacle a la satisfaction des exigences associées
au contexte d’aide a la décision en sciences environnementales [10], [11]. Les modeles de
simulation sont complexes et longs a exécuter et, par conséquent, généralement spécifiques
a une situation précise (par exemple, un scénario climatique et un lieu) [12]. Ainsi, les
modeles ne peuvent pas étre utilisés tels quels pour fournir I'aide nécessaire a la prise de
décision. Comme ces modeles de simulation sont le résultat d’efforts de recherche con-
séquents (temps, colit et connaissances), on souhaite les capitaliser. Une fagon d’aborder
le probleme est d’adapter les modeles de simulation pour qu’ils répondent aux exigences
de l'aide a la prise de décision. Il y a un changement de contexte d’utilisation des modeles
de simulation et donc de nouvelles contraintes a satisfaire. L’objectif est d’adapter les
propriétés des modeles de simulation qui étaient principalement utilisés dans le contexte
de la recherche pour qu’ils puissent étre utilisés dans le nouveau contexte de la prise de
décision. Les modeles, qui sont longs a exécuter, précis avec une grande complexité et
spécifiques a un scénario unique, doivent devenir rapides a exécuter, rester fiables et étre
flexibles en ce qui concerne ’exploration de scénarios. Ils ne doivent plus seulement décrire
le monde physique, mais aussi agir sur lui a travers ’exploration des projections et la prise

de décision.

Pour ce faire, le calcul des modeles de simulation doit étre plus rapide. Avec une exé-
cution plus rapide, les projections peuvent étre produites plus rapidement, ce qui rend
alors possible I'exploration de nombreux scénarios. Cela apporte également I'interactivité
pour l'exploration des scénarios avec une diminution du temps nécessaire pour obtenir

des projections. Comme les parties prenantes n’ont pas besoin de tous les détails possi-



bles dans chaque projection, nous pouvons agir sur la précision pour augmenter la vitesse
d’exécution des modeles de simulation. Ce dont les parties prenantes ont besoin, c’est de
disposer d’'une évaluation globale des risques et des impacts grace aux différentes projec-
tions sur les multiples scénarios climatiques. Ainsi, les contraintes sur la précision peuvent
étre allégées, tout en assurant la fiabilité, dans le contexte de la prise de décision. Par
exemple, les parties prenantes ne voient pas l'utilité d’avoir les mouvements précis des
nappes phréatiques donnés en millimetres pour chaque jour des 50 prochaines années.
L’évaluation des zones ou les nappes phréatiques sont susceptibles de remonter a la sur-
face et de provoquer des inondations est le niveau d’information pertinent pour eux. Le
fait d’échanger une certaine précision contre une meilleure vitesse d’exécution permet

d’adapter les modeles de simulation pour aider la prise de décision.

Dans cette these, nous visons a adapter les modeles de simulation pour aider la prise
de décision et a généraliser leur application a tout le contexte des sciences environnemen-
tales et de la recherche sur le changement climatique. Ainsi, le but n’est pas d’adapter
ou de réaliser un compromis entre la précision et la vitesse d’exécution pour un mod-
ele de simulation unique et spécifique, mais d’élaborer une approche systématique qui
peut étre appliquée a différents modeles de simulation du domaine. Par conséquent, une
autre exigence que nous nous imposons est la généralisation de I’approche pour les mod-
eles de simulation en sciences environnementales. Pour y parvenir, nous travaillons sur
plusieurs défis. Tout d’abord, avant d’effectuer tout compromis ou adaptation sur les
modeles de simulation, nous devons définir les caractéristiques des modeles scientifiques
et ensuite assurer la validité des modeles. Nous devons déterminer que les modeles de
simulation génerent des projections fiables et a quel moment ils génerent ces projections
fiables (c’est-a-dire déterminer quelles sont les valeurs des données d’entrée du modele
de simulation conduisant a des données de sortie fiables). La définition de I'enveloppe de
validité des modeles de simulation permet ensuite de procéder a l'adaptation grace au
compromis entre précision et flexibilité (c’est-a-dire la vitesse d’exécution). La question
est de définir comment ce compromis peut étre effectué pour répondre a ’exigence d’une
exécution rapide des modeles de simulation tout en maintenant leur fiabilité. L’approche
doit également étre systématique pour permettre non seulement son application a un
modele unique et spécifique, mais aussi sa généralisation a différents modeles de simu-
lation dans le domaine des sciences environnementales. Enfin, la derniéere étape consiste
a voir comment ’exploration de nouveaux scénarios est possible grace aux modeles de

simulation adaptés. Ainsi, nous décrivons comment 'approche globale composée de trois
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étapes principales peut atteindre 1’objectif principal d’adapter les modeles de simulation
pour aider la prise de décision dans le contexte de la science environnementale et des
études sur le changement climatique.

Les défis peuvent étre résumés comme suit :

— Défi 1 : Quelles sont les spécificités des modeles scientifiques et comment ces modeles

sont-ils intégrés dans les logiciels scientifiques ?

— Défi 2 : Comment réaliser de maniere systématique le compromis entre précision

et vitesse d’exécution tout en assurant la fiabilité des modeéles de simulation 7

Contributions

Pour relever ces défis, nous procédons en plusieurs étapes qui sont organisées selon les

contributions principales suivantes de cette these.

Démystifier les modeles scientifiques et leur complémentarité avec
les modeles d’ingénierie

Tout d’abord, nous examinons les différents types de modeles qui peuvent étre inté-
grés dans un logiciel : les modeles scientifiques, les modeles d’ingénierie et les modeles
d’apprentissage automatique (c’est-a-dire les modeéles empiriques). Nous examinons les
spécificités et les points communs de ces modeles dans le contexte des systemes cyber-
physiques. Nous observons que malgré leurs particularités, les modeles scientifiques ont
beaucoup en commun avec les modeles d’ingénierie. Les modeles scientifiques, qui sont his-
toriquement utilisés de maniere descriptive, sont maintenant également utilisés pour étre
prédictifs ou méme prescriptifs [13] (c’est-a-dire pour produire des directives a appliquer
dans le monde réel). Les modeles d’ingénierie qui ont une nature plus prescriptive inte-
grent de plus en plus de connaissances sur la description du monde réel. Ces observations
nous incitent a considérer les modeles non pas selon leur types mais plutot en fonction
du role qu’ils jouent. Elles incitent également par extension a utiliser méthodes orientées
vers les logiciels (et les modeles d’ingénierie) sur les modeles scientifiques. En somme,
nous élaborons un cadriciel qui fournit une vision de la maniere d’intégrer explicitement
les trois roles joués par les modeles - prescriptif, prédictif et descriptif - ainsi que leurs
sources de données respectives, et nous mettons en évidence les actions associées pour

les intégrer. Nous soulignons et illustrons la complémentarité et la dualité des différents
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modeles et des données dans les systemes socio-techniques. Ce travail collaboratif résulte
d’un groupe de travail au séminaire Bellairs [14] sur le theme des modeles et des données
et il a été publié dans le journal de IEEE Software (2020).

Garantir la fiabilité des logiciels scientifiques

Une fois que nous avons une vision globale du fonctionnement des modeles scien-
tifiques, nous voulons assurer la fiabilité de ces modeles. Nous étudions la validation des
logiciels scientifiques et le roles des différentes personnes prenant part au développement
de logiciels scientifiques. Nous mettons en évidence les responsabilités des différents roles
concernant les artefacts impliqués dans le développement du logiciel scientifique. Nous no-
tons I'impact du langage de programmation utilisé pour élaborer le logiciel sur le processus
de validation. Nous présentons ensuite une approche raisonnée pour le développement de
logiciels scientifiques fiables qui permet de caractériser systématiquement l'enveloppe de
validité de tels logiciels, de la rendre explicite et de conduire a une meilleure utilisation
de ces logiciels. Nous donnons des directives aux concepteurs de langages afin de fournir
des langages qui puissent aider les utilisateurs a effectuer la validation de leurs modeles
scientifiques et de leurs logiciels logiciels associés, et aux utilisateurs des langages (i.e., les
modélisateurs) pour assurer une validation compleéte des logiciels scientifiques. Le travail

a été publié dans le journal de IEEE Computer dans le numéro de décembre (2021).

Le compromis entre précision et flexibilité des logiciels scien-
tifiques

Apres avoir compris les spécificités des logiciels scientifiques et le processus de val-
idation associé, nous appliquons le calcul approximatif (une technique orientée logiciel
principalement utilisée sur les modeles d’ingénierie) et 'adaptons pour réaliser un com-
promis entre précision et vitesse d’exécution sur les logiciels scientifiques. Nous présentons
I’approche systématique qui permet de réduire le temps d’exécution des modeles de simula-
tion tout en maintenant des résultats acceptables. Elle consiste a réduire automatiquement
les itérations de la boucle principale d'un modele de simulation en agrégeant les données
spatiales ou temporelles correspondantes. Nous montrons que nous pouvons obtenir une
accélération médiane de 95% en appliquant la technique sur un modele géophysique d’une
simulation hydraulique. Ce travail a été publié a la conférence internationale "International

Conference On Computational Science" de 2020.
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ABSTRACT

Scientific software, and more specifically simulation models, are crucial to support
decision makers in deciding what is the better action to take to anticipate and tackle
environmental issues such as climate change. However, their complexity make them hardly
usable in such context as their execution is time-consuming or resource-demanding, which
is the result of the primary goal of elaborating and using them for research. Therefore,
there is a need to speed up their execution to make them match the requirements of the
new context that is the support of decision making.

As the context of supporting decision making by exploring the multiple scenarios
(i.e., climate scenarios, geographical sites, potential solutions to enact) does not require
very specific and detailed results, but rather a global risk assessment of the climate related
events (e.g., risk of flooding caused by the rise of the sea level and the underground water),
a trade-off between accuracy and execution speed can be performed.

Several approaches to do so exist but are not satisfying as they are either time-
consuming or resource-demanding. Only the approximate computing approach seems rel-
evant to the context, but it is not adapted to scientific software. Thus, in this thesis, we
aim to tailor scientific models to support decision making in environmental science by
adapting approximate computing for them while ensuring their reliability.

Before performing the trade-off and tailoring, we investigate the complementarity of
engineering and scientific models as well as the specificities of scientific models with regard
to their validation. We propose the use of the MODA framework that helps to understand
and visualize how models and data are integrated into a cyber-physical system and how
they interact with each other according to the role they play. We also look at the validation
of the scientific models and we propose a scientific V-Model that highlights the importance
of appropriate tools to ensure the development of reliable scientific software.

The main contribution applies the guidelines introduced in the previous contributions
to provide an approach, called loop aggregation, to systematically and automatically
perform a trade-off between accuracy and speed for scientific models in the context of
supporting decision making while ensuring their fidelity. We implement and validate the

approach with a hydraulic model assessing the risk of flooding in the region of Normandy,
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France. We show that a speed-up of more than 95% can be obtained.

Lastly, we investigate the optimisation of applying loop aggregation. We propose a
data-driven based optimisation approach that aims to predict the conditions leading to
the optimal trade-off for the exploration of new scenarios. We validate the approach with
the same hydraulic model used in the main contribution and we quantify the potential
error introduced by the prediction that the surrogate model can generate. We also examine
the variability present in the approach and inspect several factors that can help improve
the optimisation as a preliminary study.

Overall, this thesis focuses on the challenges of using scientific software to support
decision making in environmental-related issues, and shows that, thanks to understanding
what role the scientific model plays in the decision-making process, as well as the need
for specific validation of the scientific model, the loop aggregation technique, and its

associated optimisation, is a valid solution to tackle those challenges.
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CHAPTER 1

INTRODUCTION

1.1 Context

"Climate change is the defining issue of our time and we are at a
defining moment. From shifting weather patterns that threaten food
production, to rising sea levels that increase the risk of catastrophic
flooding, the impacts of climate change are global in scope and un-
precedented in scale. Without drastic action today, adapting to these
impacts in the future will be more difficult and costly. " — The United
Nations [2]

On the ninth of August 2021, the Intergovernmental Panel on Climate Change (IPCC)
published its latest report [1] that states that human activities do have a substantial part
in climate change, that global warming is faster than before, and that there is an inten-
sification of climate events such as extreme heat waves and flooding. Those statements
bolster the United Nations’ urges taking actions in order to limit climate change [2]. Dif-
ferent stakeholders are at the receiving end of that message : the decision makers, such as
representatives of governments and organisations, who have the authority and power to
enact laws and to manage their territory, as well as the scientists and the general public
who are involved and affected by the decision-making process. To make decisions and
therefore to take actions, those stakeholders need to be provided information about the
climate change events and their impacts, along with information about the effects of the
possible actions to be taken on those events. The information of those events and their
impacts can help make the decision more pertinent and thus sustainable. For instance, a
local mayor needs to know about sea level and coastline changes to anticipate the possible
submersion of coastal areas to decide whether to issue a building permit in such an area
or to relocate people.

However, that information is difficult to obtain. As catastrophic as the impacts of
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climate change and global warming may be, there is currently no way to characterise
and define them precisely, as these phenomena involve complex environmental processes.
There is indeed a lot of uncertainty in how and to what extent climate change can and
will manifest itself exactly. As it is not in anyone’s capacity to state what will happen for
sure, projections can only give some hints but also bring some insight.

Modelling the physical phenomena is a relevant solution to bring information and
make projections. The scientific models, and more so, the associated scientific software
that embed them, have long been used by scientists to study and understand the physical
phenomena [15]. More particularly, simulation models help represent the behaviour of
the system under study according to specific conditions and in a dynamic setting over
time and space. Their execution enables more complexity and better representation of
the phenomena in the models. Greater computational power has made this refinement
possible [3]. It also allows to share the models and their results to other relevant people
more easily through specific services [4], [5] (e.g., virtual labs and cloud computing) [6],
[7]. The models thus enable to reduce the uncertainties that are linked to the lack of
knowledge in the domain of study. They are used to making projections in a variety of
domains, among which are the environmental sciences and the study of climate change [8],

[16]. As such, they bring a lot of potential in the context of decision making.

1.2 Towards the Support of Scientific Models for De-

cision Making

Scientific software (i.e., simulation models) can be used to make projections, and this
addresses the core need to support the decision-making process. But for them to be
effectively used in the context of decision making in environmental science, several other

requirements need to be fulfilled.

1.2.1 Reliability of the Scientific Software

The decision-making process is intended to bring change within the organisation or
the system concerned. In the context of climate change, the decision can be taken by the
government and can take the form of laws and /or policies. This may, for example, have an
impact on land use with the relocation of population, or on the daily life of citizens with

regulations on the type of transport allowed and their frequency of use. Those decisions
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can thus have significant impact and consequences. It is therefore the responsibility of
decision makers to reflect on the benefits to be gained in relation to the impact of their
decision. Decision makers therefore need dependable information and credible projections
to help them make the most appropriate decision. So, the simulation software also have to
be deemed valid to produce those projections with relevant fidelity to be informative and
useful. The reliability of the simulation software describes the property of the software to
maintain the excepted services, meaning the production of valid and credible projections.
Having a high-enough reliability of the software leads to simulation projections that are

deemed credible and reliable, that can then be used with trust by decision makers.

Hence, in this thesis, we use the word "reliability" (with regard to scientific software)
to express the fact that the software provide the expected services, i.e.,producing scien-

tifically valid projections that are usable by decision makers.

1.2.2 Exploration of Scenarios

The uncertainty around climate change is twofold and can be separated into the epis-
temic uncertainty and the random uncertainty. The epistemic uncertainty concerns the
lack of precise knowledge about the phenomena involved, as there are not many efficient
tools to observe and measure them. In the case of the study of the underground water
table movements leading to flooding events, the underground system is still poorly known
because of the scarcity of data that can be acquired, the lack of tools to acquire them, and
the cost of acquiring them [11], [17]. The random uncertainty deals with the fact that fu-
ture events cannot be stated to happen for sure, and the only way is to speculate on their
probability to happen. Those uncertainties have led climate experts to elaborate a range
of different climate scenarios, from the most optimistic ones in which the changes are the
smallest to the most pessimistic ones in which the changes are the largest [18]. Decision
makers thus need to have projections for the various climate scenarios to have an insight
on the range of possibility concerning the extent of the impacts of future climate events.
Moreover, to decide whether an action is worth taking, they need to have the projection
describing the potential impacts of that action on limiting the effects of climate change.
For instance, they may want to see the impacts of building a dam on the submersion of
areas near the coastline. In all, the simulation models have to enable the exploration of

the climate scenarios as well as the scenarios concerning the potential actions to be taken.
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1.2.3 Interactivity

For decision makers to understand the global picture of the projections, the exploration
of the scenarios needs to be interactive, and thus, the time to generate the projections
has to support that requirement of interactivity. In this situation, the stakeholders can
come up with new potential actions to be taken and have the projections of the related
scenario at the same time. That way, they can decide in real time what actions are worth
to explore and to implement or not. As a practical note, it also enables the meetings of
stakeholders to be efficient as they do not need to wait for a long period of time to get the
projections of new ideas of actions. It is particularly interesting as it can be challenging

to gather all the different stakeholders in a same meeting.

1.2.4 Generalisation

The decision makers may need to make decisions at a scale that is different from
the local scale (e.g., regional or national scales) and need projections for a wide area.
The stakeholders can then have a global vision of an area that is not limited to a local
and specific site. The simulation model should then enable the running of the different
scenarios for different locations. Models are usually very specific to a local area (e.g., a
specific catchment) as the model has been constructed thanks to field observations. That
way, the stakeholders can have a global vision of an area that is not limited to a local and

specific site.

1.2.5 Impacts on the Simulation Models

The requirements related to the decision-making process lead by extension to require-
ments that pertain to the associated simulation models. The reliability of the projections
means that the simulations, i.e., the executions of the simulation model (a.k.a. the sci-
entific software), need to generate trustworthy results in terms of science credibility with
regard to the domain of study. The simulation software must be validated to meet the
quality criteria of the scientific field. Then the execution of the simulation models is re-
quired to be fast. With a fast execution of the models, the simulation of a single scenario is
faster, and it makes it possible to run many more simulations corresponding to numerous
scenarios. It enables at the same time the exploration of scenarios and the interactivity

needed for the stakeholders to explore the projections. The exploration of new scenarios
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and other locations is also of significance for decision making, thus simulation models
provide that functionality in this context.
In all, simulation models need to be validated to ensure credible projections, to have

a fast execution time and to enable the exploration of scenarios.

1.3 Problem Statement

However, the simulation models first elaborated in order to study the phenomena may
not fulfil the aforementioned requirements, which are related to the context of supporting
decision making.

The models that have been elaborated by experts have become more and more complex
as a result of wanting to represent the phenomena more accurately [15]. For instance, more
variables were added to represent the phenomena more faithfully (e.g., the number of
layers to represent the soils in a geophysical model). Alongside the gain of higher fidelity,
that complexity has made the computational cost of running the models higher. Running a
single simulation can take a long time (e.g., from several hours to several days or weeks) [3]
and requires significant resources. Such time frames are highly problematic in the context
of supporting decision making [9]. Indeed, a simulation model taking too much time to
generate a single projection prevents the interactivity needed by the stakeholders, as well
as the exploration of scenarios. With a single projection taking months to be generated,
it is impossible to produce the projections of the numerous climate scenarios and the
multiple land use scenarios in a decent amount of time for decision making.

Furthermore, simulation models in environmental science are usually elaborated to
model specific and local areas. Their elaboration is the results of several years of research
and work in a specific location. Data are collected in the field to help build the model
and to calibrate them. In hydrogeology, data collection is a difficult task because the
number of tools to access underground data is limited and the cost of the process is high
compared to the number of data needed to be collected to represent wide areas. Thus,
there is also a lack of spatial data to calibrate models. All this limits the generalisation
of the projections to larger scales and prevents providing a global vision to stakeholders
for decision making.

In all, the resulting long execution time of the simulation software makes it an obstacle
to fulfilling the requirements associated to the context of supporting decision making in

environmental science [10], [11]. Simulation models are complex and long to execute, as
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well as generally specific to a precise situation (e.g., climate scenario and location) [12].
As such, the models cannot be used as they are to provide the support needed by decision
making.

As those simulation models are the result of a lot of research effort (time, cost and
knowledge), one wants to capitalise on them. One way to tackle the issue is to tailor the
simulation models to make them fulfil the requirements of supporting decision making.
There is a shift in the usage context for the simulation models and so, new constraints are
to be met (Figure 1.1). The goal is to tailor the properties of the simulation models that
were primarily used in the context of research for them to be used in the new context of
decision making. The models, that are long to execute, accurate with a high complexity
and specific to a unique scenario, are to become fast to execute, to remain reliable and
to be flexible regarding the exploration of scenarios. They should no longer only describe
the physical world, but also aim to act on it through the exploration of projections and

decision making.

Scientific Model Scientific Model

Q) =2

A A

is is
modelled |:(> modelled acts on
by by

Physical World

Figure 1.1 — Tailoring scientific models for the new context of supporting decision making.

Y

Physical World

Decision Making

To do so, the computation of the simulation models needs to be faster. With faster
execution, the projections can be produced faster, which then makes the exploration of
numerous scenarios possible. It also brings the property of interactivity for the exploration
of scenarios with a decrease in the time to get projections. Because the stakeholders do
not need every possible details in every projection, we can act on accuracy to increase the
execution speed of the simulation models. What stakeholders need is to have the global
assessment of risks and impacts thanks to the various projections over the multiple climate
scenarios. So, the constraints on high accuracy can be alleviated, while ensuring reliability,

in the context of decision making. For instance, stakeholders do not see the use in having
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the precise movements of the underground water given in millimetres for every day in
the next 50 years. The assessment of areas where groundwater is likely to surface and
to cause flooding is the relevant level of information for them. Trading-off some accuracy
for a better speed of execution enables to tailor simulation models to support decision
making.

In this thesis, we aim to tailor the simulation models to support decision mak-
ing and to generalise its application to the whole context of environmental science and
climate change research. The goal is not to tailor or perform a trade-off of accuracy and
execution speed for a unique and specific simulation model, but to elaborate a system-
atic process that can be applied on different simulation models of the domain. Hence,
the objective of the thesis is the generalisation of the approach for simulation models in
environmental science.

To achieve this, we are working on several challenges. First, before performing any
trade-off or any tailoring on the simulation models, we need to define the general features
across all scientific models to know how to use them properly and to ensure their validity.
We need to determine if the simulation models generate reliable projections and when
they generate those reliable projections (i.e., determine what the ranges of inputs of the
simulation model leading to reliable outputs are). The definition of the validity envelop
of the simulation models then enables the tailoring to take place thanks to the trade-off
between fidelity and flexibility (i.e., speed of execution). The issue is to define how the
trade-off can be performed to match the requirement of a fast execution of the simulation
models while maintaining their reliability. The approach also needs to be systematic to
enable not only its application on a unique and specific model, but its generalisation on
different simulation models in environmental science. Finally, the last step is to see how
the exploration of new scenarios is possible given the tailored simulation models. Thus,
we describe how the global approach made of three main steps can fulfil the main goal of
tailoring the simulation models to support decision making in the context of environmental
science and climate change studies.

The challenges can be summarised as:

Challenge 1: What are the distinctive features of scientific models, and how are those

models integrated into the scientific software?

Challenge 2: How to systematically perform the trade-off between accuracy and

execution speed while ensuring the reliability of the simulation models?

Challenge 3: How to apply this systematic approach of trade-off to enable an opti-
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mised exploration of new scenarios?

1.4 Thesis Contributions

To address these challenges, we proceed in several steps that are organised according
to the following main contributions of this thesis. The first two contributions result from
collaborative work and are the foundation for understanding and building the two core

contributions of the thesis.

1.4.1 Demystifying the Scientific Models and their Complemen-
tarity to Engineering Models

First, we take a look at the different types of models that can be encompassed in soft-
ware: scientific models, engineering models, and machine learning models (i.e., empirical
models). We inspect the distinctive and common features of those models in the context
of cyber-physical systems. We observe that despite their particularities, scientific models
have much in common with engineering models. Scientific models, historically used in a
descriptive fashion, are now also used to be predictive or even prescriptive [13] (i.e., pro-
ducing guidelines to be enacted in the real world). Engineering models that have more
of a prescriptive nature are integrating more knowledge to describe the real world. Those
observations prompt us to consider the models not as types, but rather according to the
role they play. They also encourage by extension the use of software- (and engineering
model-) oriented methods on scientific models. In essence, we present a framework that
provides a vision for how to explicitly integrate the three roles played by models — pre-
scriptive, predictive, and descriptive — as well as their respective data sources and that
highlights related actions to integrate them. We emphasise and illustrate the complemen-
tarity and duality of models and data in socio-technical systems. This collaborative work
results from the Bellairs workshop [14] on the topic of Models and Data and has been
published in the journal of IEEE Software (2020).
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1.4.2 Ensuring the Fidelity of Scientific Software

Once we have a holistic view of the functioning of scientific models, we want to ensure
their fidelity with regard to the system they represent. We investigate the validation of
scientific software and the roles of various stakeholders taking part in the development
of scientific software. We highlight the responsibilities of the different roles regarding the
artifacts involved in the development of the scientific software. We note the impact of
the programming language used to elaborate the software on the validation process. We
then present a reasoned approach for the development of scientific software that enables
to systematically characterise the validity enveloped by such software, to make it explicit
and to lead to a better use of those software. We give guidelines to language designers
regarding helping the users perform the validation of their scientific models and associated
software, and to language users (i.e., modellers) to ensure the validation of the scientific
software. The work has been published in the journal of IEEE Computer in the December
issue (2021) [19].

Dorian Leroy, June Sallou, Johann Bourcier, Benoit Combe-
male. When Scientific Software Meets Software Engineer-
ing. IEEE Computer, vol. 54, 12, pp. 60-71, 2021.

1.4.3 Trading-off Accuracy for Flexibility with Scientific Soft-

ware

Understanding the particularities of scientific software and the related validation pro-

cess, we then apply approximate computing (a software-oriented technique mainly used

27



Introduction

on engineering models) and adapt it to perform a trade-off between accuracy and ex-
ecution speed on scientific software. We present the systematic approach that reduces
the execution time of simulation models while maintaining acceptable results. It consists
in automatically reducing the main loop of a simulation model by aggregating the corre-
sponding spatial or temporal data. We show that we can obtain a median speed-up of 95%
when applying the technique on a geophysical model of a hydraulic simulation. The work
has been published in the Proceeding of the International Conference On Computational
Science 2020 [20].

June Sallou, Alexandre Gauvain, Johann Bourcier, Benoit
Combemale, Jean-Raynald de Dreuzy. Loop Aggregation for
Approximate Scientific Computing. International Conference
on Computational Science, Jun 2020, Amsterdam, Netherlands.
pp.141-155.

1.4.4 Optimising the Trade-off for Better Exploration of New

Scenarios

The trade-off approach elaborated enables the exploration of new scenarios by sys-
tematically approximating the simulation models with a low factor. However, the best
trade-off that is possible is not known beforehand (i.e.,the highest level of acceptable ap-
proximation) and the exploration is thus not optimal (with regard to the execution time).
We then propose an optimisation approach to perform an optimal trade-off with regard
to the simulation validation metric and execution time, in the case of new scenarios to
explore. We also investigate what factors in the approach lead to better trade-offs. We
experiment with the geophysical model previously used to validate the trade-off approach,
and we show that optimal trade-offs can be obtained in certain cases thanks to the elabo-
ration of a predictive model. We also show that the correctness and the validation of that

predictive model is dependent on various factors related to its elaboration.

1.5 Context of this Thesis

The specificity of this thesis resides in the inter-disciplinary approach on the issue at
hand. It deals with Software Engineering and Environmental Science (more specifically,

Hydrogeology). Bringing those two fields together answers multiple interests and demands
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related to each one of them, and, as a result, their collaboration brings a lot of potential
breakthroughs.

1.5.1 Research context

Researchers in environmental science (ES) seeking the expertise of researchers in soft-
ware engineering is relatively new. The first reaction was to reach out to numerical an-
alysts to improve the mathematical aspect of their simulation models (e.g., increasing
the fidelity and complexity of their mathematical models). There is now an increasing
interest in taking a look at the execution aspect of their scientific models (e.g., HPC,
virtual labs, decision-making support). We are faced with new challenges in the modelling
process and the context of use of the models. The intention is to adopt a systemic ap-
proach of modelling at a larger scale. The goal is to integrate several models together as
well as larger volumes of data to represent the complexity and interactions between the
different physical phenomena or the different spatial compartments that exist in the real
world [15], [21]. For instance, the objective is to make the surface water flow model inter-
act with the groundwater flow model to better simulate the overall water flow behaviour
in a catchment area. The integration of models from other fields such as economics en-
ables to represent the human-environment interactions taking place in the real world with
higher fidelity [16]. As the scientific models are more and more used to provide a support
for decision making in a societal context (e.g., environmental risk assessment, resource
management, policy making), a goal is to take the role of the simulation models and their
projections into account, and more specifically how they impact the real world through
the decisions made and enacted by policymakers [13], [16]. In all, the goal is to adopt
an approach involving multiple systems and the related challenges are to manage and to
integrate [21]:

— several models representing several systems together
— large volume of data into the simulation models
— knowledge from other fields thanks to models

— the interactions between the models and the real world

This leads to requesting the expertise and skills already mastered in the software engi-
neering field that can answer those challenges [22]. Researchers in software engineering
(SE) are already accustomed to work with software that are integrated with their execu-

tion environment and the real world. This is the case when dealing with cyber-physical
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systems (CPS) which integrate physical and software components together and for which
the software receives information from the physical world through sensors and act on it
through actuators. Also, we have gathered knowledge and elaborated tools to make such
systems adapt according to the context of execution through a feedback loop [23]. We
work on software that can be complex and encompass several engineering models and
large datasets. Thus, a variety of methods and tools have been developed to address the
challenges that are those now faced in ES regarding a multi-systemic execution. However,
the domain of SE has its own challenges. Cyber-physical systems are only interacting with
the physical world thanks to data and through the sensors and actuators. For a better
adaptation of the CPS, a more complex representation of the physical world and the un-
derlying phenomena captured in the data is needed. For instance, a smart grid system can
be more efficient by integrating a social model of the behaviour of consumers regarding
electricity consumption. The system can thus predict peak electricity demand and antici-
pate it by adapting the system to meet the coming demands. In software engineering, the
aim is to make cyber-physical systems smarter with regard to their interactions with the
real world. Engineering models developed in software engineering mainly involve specify-
ing tasks to be performed and are meant to drive the development of system-to-be. There
is a lack in representing the behaviour of phenomena from the real world system. This

expertise of representing the world in models is part of the knowledge of ES researchers.

The collaboration of ES and SE researchers enables to mutually share the skills among
ourselves and therefore, it truly benefits both fields in tackling the different challenges
we face (e.g.,modelling real-world phenomena, dealing with multiple complex systems).
It allows each field to focus on its own expertise area of knowledge by delegating the

methods and techniques to come with to the other field.

In this thesis, we deal with a cyber-physical system involving the adaptation of the
land use regarding climate change through decision making by stakeholders with the help
of simulation models. The simulators have the role of describing the behaviour of climate
phenomena, and predicting the state of the land use under such phenomena, thus providing
the information to stakeholders to enact solutions in the physical world accordingly. The

decision making is then the adaptation process led by the results generated by the software.

Being part of both research fields, we take the point of view of both research fields
that thus enables us to fully comprehend the different issues and challenges at hand when
exploring and answering the question of tailoring simulation models to support decision

making related to climate change.
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1.5.2 Social context

The Covid-19 crisis has put the use of simulation models at the forefront of the
scene [24]. Indeed, the pandemic has required governments to act in order to curb it
and to slow the spread of the virus. The simulation models were mainly used to make
projections about the numbers of infected people and to decide on the establishment and
the duration of national lockdown. It made the general public realise the existence, the
impact and the crucial role of scientific models (i.e., simulation models) in the decision-
making process.

A wide range of stakeholders is involved in the use of the models with different degrees

of influence:
— The scientists elaborate the scientific models and simulation software.

— The decision makers (i.e., policymakers) use the projections provided by the simu-
lation models to decide on actions to be taken regarding the land use and tackling

future climate events.
— The general public is affected by the application of the decisions.

The scientific models and the projections have a central role in the process of tackling
issues. They help understand the phenomena and variables involved in the issue thanks
to the descriptive nature of the models. They also enable the policymakers to make a
better informed and sustainable decision. The general public can access the projections
on which the decision makers based their deliberations, and, they can better understand
the policy decisions. It also make them more aware of the issues and the magnitude of their
consequences, as well as the relative urgency or significance to tackle them. Understanding
the issues makes it easier to respect and comply with the decisions.

Scientific models constitute a powerful tool to provide and share knowledge. They
foster discussions about issues and solutions among stakeholders by enabling them to share
a common ground and vocabulary, thus, making progress on the issue at hand. They are
a means for mediation, as they allow different perceptions of the problem to be reflected
and give another dimension of the interaction between human and environment. Their use
also helps the general public to feel more involved in the decision-making process and can
even make them want to voluntarily participate in tackling the issue. For instance, thanks
to the use of smartphones, there are projects for which citizens can take pictures of species
and help to identify the biodiversity of species in areas that are normally inaccessible to

researchers.
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To sum up, the use of such models can have a profound impact on society. Therefore,
special care and attention should be put forth regarding their elaboration and validation

in order to meet the peculiar demands of the usage context.

1.5.3 Implementation of the PhD

This thesis results from the Doctorate that took place in the University of Rennes 1,
as one of the very first collaborations between the IRISA laboratory and the Geoscience
department of the OSUR laboratory. I was part of the DiverSE team for the SE field and
the DIMENV@risce team for the environmental modelling. I was assigned to the DiverSE
team and the work in the thesis is dominantly adopting a software engineering approach to
resolve the issue at hand. However, I took part in the weekly meetings and seminars in both
teams. I had a lot of discussions with other members of the team working on environmental
modelling to gather the challenges they face, and more particularly with the PhD student
responsible for the development of the model for risk assessment of flood that is used as
a motivating example for the implementation of our main contributions. The work really
aims to greatly reflect the various and many interesting discussions between the members
of both fields involved in this collaboration (supervisors and associated PhD students). A
lot of time was dedicated to understand the practices and point of view of each field to
effectively tackle the issue at hand.

What’s more, the thesis uses the context of the RIVAGES 2100 project [25] as a
motivation to understand the challenges faced by the different stakeholders involved by
the use of scientific models to support decision making for environmental issues. The
project aims to provide models and tools to help assess the environmental risk of flooding
and salinisation of groundwater in the coastal region of Normandy in France, in the
context of policy and decision making. I participated in several meetings with different
stakeholders (e.g., prefects, government representatives, representatives of the regional
agency dedicated to environment, land-use and housing, representatives of the regional

water supply agency) to exchange with them and collect their feedbacks and expectations.

1.6 Outline

The rest of this document has been organised as follows. Chapter 2 introduces the

background of scientific modelling with the numerical analysis of scientific models and
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their validation. Chapter 3 gives an overview of the state of the art of trading-off ac-
curacy for better execution speed of software. Chapter 4 presents our contributions on
ensuring the credibility of the results produced by the scientific software. We describe the
complementarity of models and data, and we investigate the responsibility of the mod-
ellers with regard to the validation of the scientific software. Chapter 5 presents our main
contribution which consists in a systematic approach to automatically reduce the time
execution of complex scientific simulation models while maintaining acceptable results.
Chapter 6 presents the automatic and a priori optimisation of the systematic approach to
explore numerous scenarios. Chapter 7 concludes the thesis by describing the advances it
brings in the fields of modelling in hydrology, science computing and software engineer-
ing. We discuss the perspectives it offers within the associated inter-disciplinary research

scope and the global topic of sustainability.
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CHAPTER 2

BACKGROUND ON SCIENTIFIC
MODELLING

In this chapter, we introduce the concepts and vocabulary on which our contributions
rely. We take a look at scientific software in Section 2.1 and their development in Sec-

tion 2.2. In Section 2.3, we then describe the general validation process of scientific models.

2.1 Goal of Scientific Modelling

2.1.1 Scientific Models

Scientific modelling is an important part of the scientific approach and reasoning [3],
[26]. Indeed, elaborating a model helps summarise the knowledge and the theories about
the system under study, and helps formulate and test hypotheses about the system. This
is part of the process of acquiring and creating more knowledge, to help humans better
understand the world they live in.

More specifically, scientific modelling is the activity which consists in representing a
physical phenomenon of the world. A scientific model is thus a representation of some
aspects of that phenomenon [26]. It is used to study, understand and explain the phe-
nomenon (e.g., define, quantify, visualise, or simulate), based on established scientific
knowledge defining a theory. It can also produce projections to anticipate the evolution of
the physical phenomena in the future according to various scenarios [15]. A holistic view
of a phenomenon or a system is assumed and different models can be used at different
time- or space-scales. Scientific models encompass a wide range of representations, such
as climate change models, electromagnetic models, protein synthesis models, or metabolic
network models [27]-[30].

Different types of models are used for different aims: conceptual models to improve

shared understanding, operational models to refine measurement, graphical models to
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visualise the phenomenon, or mathematical models to quantify the phenomenon. More
particularly, those mathematical models can be numerical (e.g., systems of differential
equations), non-numerical (e.g., agent-based models) or based on analytics (e.g., machine
learning models), and capture the behaviour of the modelled system. Numerical mod-
els can be further refined as continuous or discrete. Numerical models may be resolved
analytically, meaning it can theoretically be done by hand with a piece of paper and a
pen, or with the help of computers when it is not possible or more complicated to do so
analytically. When computers are used for scientific modelling, simulations are carried out
to make experimentation with the intent of gaining insight into the system’s behaviour
[3], [31] and usually involves a dynamic process. A simulation corresponds to the execu-
tion of the computer programs embedding the scientific models, the so-called simulation
codes. Simulation models are thus referring to scientific models embedded in the scientific

software, and by extension, they stand for the software.

In hydrogeology and climate change, the scientific models are usually numerical math-
ematical models and they are often based on partial differential equations [32]. The sim-
ulations, and so the projections, are thus based on those mathematical models embedded
in the software. So, in this thesis, we restrain our focus on scientific models which are
numerical mathematical models and on simulations models that correspond to scientific

software that encompass those mathematical models.

In all, the scientific model can be represented as depicted in Figure 2.1. The math-
ematical model is composed of equations that can be summarised as a global function
Y = f(X,0). The function is a combination of variables X (i.e., elements whose values
change during the computation) and parameters noted 6 (i.e., elements whose values are
fixed during the computation). The model thus enables the production of outputs, Y,

from a set of inputs and parameters.

outpute

Y1
Y =£(X,0) V2

Figure 2.1 — Representation of a scientific model.
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2.1.2 Numerical analysis and the quest for greater accuracy

Scientific models, a.k.a. numerical mathematical models, have first been used by scien-
tists to help study and understand the world and the occurring physical phenomena. By
representing those phenomena and analysing them, further knowledge has been created.
As time went on, models integrated this new knowledge and became more complex up to
a certain point. Formulating too complex models was considered a useless exercise as it
was then impossible to investigate their behaviour analytically [3].

The emergence of computers then helped to overcome this limitation by performing the
numerical analysis of the models. Scientific models were embedded into scientific software
to be computed despite their apparent complexity. Too complex mathematical models
to be analysed analytically could then be analysed computationally. Since then, further
refinement of the simulation models has been a constant process. Models become more
accurate regarding the system represented as they capture more details of the interac-
tions. They are described at larger scale while the resolution remained fine-grained [9].
The number of processes representing the phenomenon is higher and thus the number of
variables and parameters is also higher. Several aspects of the modelled phenomenon are
captured and integrated into several sub-models meant to be computed together (e.g., a
model representing the physical aspect of the water dynamics of rainfall on the soil sur-
face, another model of the physical behaviour capturing the water flows underground,
and a model describing the economical impact of the flooding caused by the rise of the
water table to the surface). As models with large scale or with complex equations require
considerable computational power, those refinements are only possible by the growth of
computational power of the resources enabling the software to be executed [33], [34].

To match this pursuit, the optimisation of all parts related to the computation of
the simulation models was sought. Hardware resources evolve to provide higher perfor-
mance and computational power. Since around 1970, the capacity of microprocessors,
a.k.a. computer processors, which are the computer’s central units that interpret and
execute program instructions, has globally followed the Moore’s law of a two-fold im-
provement every two years [35]. But since around 2005-2010, those observations are not
satisfied anymore [36]. Parallelism was then introduced alongside to multi-core processors
and multi-threads. The operations to be executed are divided to be performed at the same
time. Parallel computing was later used with hardware architecture such as clusters and
grids that pool the resources. Parallel computing is also an alternative to overcome the

limitations of frequency scaling of microprocessors. More recently, the use of Graphical
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Processing Units (GPU) has emerged to support parallel computing and to gain even
more performance (up to tens and even hundred times according to [34]).

Software was also developed to benefit from those hardware capabilities. Specific lan-
guages and solvers were elaborated to embed the mathematical models into software and
enable the computation of the scientific software. For instance, Mathematica ! is a popular
tool as it is seen as one of the first major systems to enable scientific computing [37]. Tt
provides facilities for a wide range of applications thanks to numerous built-in libraries
such as algorithm implementation, symbolic computation, statistics and machine learn-
ing and is written in the Wolfram language. We can also cite Matlab,? TK solver?® and
Modelica, * all of which are quite popular among the scientific modelling community [38]-
[44]. Some standardisation was made for message passing (MPI) and for shared memory
parallelism (OpenMP) and constituted a great step forward for parallel systems [36].

In all, the pursuit of greater accuracy of the models is tightly connected and driven by
the improvement of the computational capabilities. The field of High Performance Com-
puting (HPC) aims to make efficient use of the high performance of the computational
power provided by supercomputers’ architecture (e.g., big servers, clusters and grids) and
tools (e.g., parallelism) to enable the execution of resource-demanding software. For sci-
entific modelling, only HPC enables the computing and the elaboration of the highest
accurate and complex scientific models [45] such as nuclear reactor power systems mod-
els [46]. Tt brings significant progress to mathematical modelling of real-world problems,
new ideas for understanding and improving the mathematical methods and new insight
into the nature of the studied systems [3], [47]. For example, Vital et al. [48] present a high-
performance computing tool for climate change impact studies on grasslands ecosystems.
The complex simulation model covers the metropolitan area with a resolution of 8x8km
for weather scenarios and soil data split into three soil layers. The data processed are
numerous (hourly data of water vapour pressure, air temperature, global solar radiation,
rainfall, and wind speed) with weather series from 1970 to 2100. The simulations were
executed on a cluster machine with 200 processors for about 25 hours, instead of around
5000 hours (i.e., around 208 days) on a single processor. In the work of Mizielinski et
al. [8], the HPC was also used to perform atmosphere-only global climate simulations
over the period 1985-2011, at different resolutions (25 km, 60 km and 130 km), represent-

. https://www.wolfram.com/mathematica

. https://matlab.mathworks.com/

. https://www.uts.com/Products/Tksolver

. https://modelica.org/modelicalanguage.html
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ing 144 million core hours of execution. As the observation is recounted in [49], scientists
often view the improvement of computational performance not as saving computing time
but as an opportunity to get a higher-fidelity approximation of the problem being solved,
meaning a more accurate simulation model. As such, the pursuit of greater accuracy for
scientific modelling is unlikely to cease and is strongly driven by the growth of HPC

techniques.

2.2 Development and Refinement of Scientific Soft-

ware

The goal of scientific models is to represent existing real world phenomena and sim-
ulate their behaviour with the help of software computation. The process of modelling
continuous events through discrete computation involves the elaboration and the refine-
ment of several artifacts leading to the development of the scientific software. In this
section, we take a look at the development process of such software and the associated
refinement that is applied to ensure that the specifications of the modelling objectives are

respected.

2.2.1 Overview of the Development Process

The development of scientific software involves a specific process and concerns [50] and

relies on the successive elaboration of various artifacts which are represented in Figure 2.2.

Modelling Discretisation Implementation

Y

Observations Mathematical Model > Numerical Scheme > Scientific Software

Figure 2.2 — The elaboration steps of scientific software

From a set of observations of a phenomenon and theories, scientists develop a math-
ematical model, a.k.a. continuous numerical model, often taking the form of systems of
differential equations. Since these systems of equations cannot generally be solved analyt-
ically, they must be solved numerically, which requires a discretisation process. This step
requires the application of a discretisation method (e.g., finite element method, finite
volume method) to obtain a numerical scheme. This numerical scheme is a discretised

mathematical model, which specifies the sequence of computations to execute, given a
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discretisation of the domain according to discretisation parameters (e.g., space, time), an
initial state (e.g., initial temperature in every point of the domain) and inputs from the
environment (e.g., rainfall), to compute a numerical (as opposed to analytical) solution
to the model. From that point on, software engineering concerns enter the development
process with the implementation phase. It encompasses all concerns to obtain a reliable
working software, including performance, concurrency, targeted architectures, memory
management, data access, and so on. The software is then implemented with a program-
ming language while fulfilling the aforementioned software engineering concerns.

The overall development is carried out in accordance to the modelling objective of the
scientific domain (e.g., simulation of some physical phenomena). The different artifacts
are elaborated with regard to that objective and the context of use. The scientific model
is thus tuned thanks to calibration, and refined through sensitivity analysis, to ensure
that the execution of the scientific model matches the specific behaviour of the physical

phenomena to simulate.

2.2.2 Calibration

When the model objectives are formulated and the structure of the model is set up, the
model has to be calibrated to ensure that it matches the context of use. The mathematical
model is composed of differential equations involving variables and parameters (cf. Sec-
tion 2.1 & Figure 2.1) and represent the general behaviour of the physical processes. In
order to make the model represent a specific situation, the values of the parameters of
the model (#) need to be fixed. Furthermore, without giving the values of the parameters,
the simulations cannot be performed. For instance, a hydrogeological model of the un-
derground water flow uses the global equation from Darcy’s law (cf. Equation 2.1) as the
foundation of the mathematical model. The equation involves some variable ¢ (the flux
of the fluid or flow rate) and some parameters such as the permeability of the soil (k),
features of the soil layers (e.g., L for the length and A for the area) and the viscosity of the
fluid (). To match the model to a specific catchment in the real world, those parameters

have to be specified.

_ kAA P
1=

(2.1)

The process of fixing the values of the parameters of the model is called the calibration.

It aims to find the best or more suitable parameters values [51] and to tune the model to
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the context. The values of the parameters are fixed thanks to sample field data taken on
the site to be modelled or in the literature that give a range of possible data thanks to
surveying the various sample data available. Some parameters can be directly measured
on the field but it is not often the case in environmental science and hydrogeology as
the modelled space is generally large and data are difficult to retrieve (e.g., underground
data) [52]. Then the process of calibration is to find the value of the parameters that
make the simulation results best match the observations from the field (i.e., the data
retrieved from the field). For instance, with the hydrogeological model, the calibration
involves finding the best value for the permeability parameter so that the simulation
gives a depth of the underground water that matches the one of the studied catchment
thanks to historical data of the water flux. The goal is to compare the variable value of
the simulation result to the value of the variable in the real world. The closer the values
are, the better it is.

The common metrics used to compute the difference between the simulation results and
the field data are the ones commonly used in statistics such as the mean squared error
(MSE), the root mean squared error (RMSE) and the Nash—Sutcliffe efficiency (NSE)
metrics [15], [53], [54].

As a lot of uncertainty is involved (e.g., epistemic uncertainty and sampling uncer-
tainty) [15], an acceptable margin between the simulation results and the field data is
allowed. The value of the margin is defined by the modellers and the domain experts. The
calibration is considered done when the discrepancy between simulation results and data
is below within the acceptable margin.

The calibration can be performed on the mathematical model, when analytically re-
solvable, or the numerical scheme, when requiring few resources, as the goal is to determine
the value of the parameters of the equations. However, as the equations tend to be complex
and require some computation power, the calibration is often done through the execution

of the simulation model.

2.2.3 Sensitivity Analysis

When elaborating the model, the goal is to reproduce the behaviour of the observed
system. The mathematical model aims to encompass that behaviour inside the equations
and combinations of variables and parameters. To decide on which variables, parameters
or combinations to keep or modify, modellers want to estimate the importance of the

different factors (i.e., variables and parameters) on the model outputs. They want to know
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to what extent the variation of the values of factors impacts the values of the outputs
and to determine if such properties are in the scope of their model (e.g., monotony,
regularity) [55]. The influence of the key factors is investigated by the sensitivity analysis.
Thanks to the analysis, the modellers have information about which factor they may
remove from the mathematical model or which factor they would want to specify more
and which should be subdivided into several. In essence, it is an exploration of the model
to assess its properties. It varies the values of the factors to measure how much this
changes the output result [55]. First, the ranges of values for the variables and parameters
is defined. The values to explore in the defined ranges are generated according to a chosen
technique (e.g., random selection, with a fixed step between values). The outputs are
then computed for the various values of variables and parameters. Finally, the sensitivity
is calculated for each variable and parameter thanks to a sensitivity metrics (e.g., Sobol
method, variance analysis) [55]. According to the value of the sensitivity metrics, the
influence of the variables and parameters is estimated and modellers can use it to guide
the tuning of their model.

The sensitivity analysis along the calibration can be performed directly on the math-
ematical model, but is usually done thanks to the simulations of the scientific software.
They both help to explore the model and to tune it to match the modelling objectives

(e.g., specificity of the modelled scenario and system).

2.3 Validation of Scientific Software

Scientists have long been elaborating scientific software to model world phenomena
and to study them. Their main goal is to obtain scientific models that can be trusted
to produce exploitable results according to the modelling context of their use. Therefore,
they concern themselves with the credibility and the validity of those models in order to
have useful and reliable results produced by the models and to prevent drawing wrong
conclusions from them [56]. They aim to reduce the uncertainty of the models under an
acceptable threshold they have established themselves or that is imposed on them by the
modelling conditions (e.g., the uncertainty of the observations and data used to elaborate
the model, or the epistemic uncertainty related to the limited knowledge about the system
under study). In all, they want the models to rightfully represent the system under study
to make them trustworthy. It should be noted that the meaning of rightfully representing

the phenomena depends on the modelling context. For instance, in environmental science,
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and more specifically in hydrogeology, it is difficult and challenging to have very accurate
models of the physical phenomena as a lot of uncertainty is involved due to the domain of
study [57]. Indeed, scientists have to face the limited available knowledge in the domain.
The system they study usually involves the underground water network. There is still
great difficulty in having access to information about the underground system as there
are limited means to collect them (e.g., it is not possible to dig to unlimited depth).
Linked to that, scientists face a lack or penury of data that they can use to build their
models and come up with new theories and hypothesis. The collection of data costs a lot
of time and money as it requires huge resources and complex processes (e.g., permits from
the city to build wells) [11].

The representation has to be more or less accurate according to the constraints that are
imposed by the context in which the model is to be used. A unique and perfect scientific
model to represent the physical phenomenon does not exist but there is a solution space
that describes the range of possible models of the system. Therefore, the aim is to define
when the model is valid or not, and more specifically, when it is valid or not according to

the context of use.

2.3.1 Scientific Validation

The question is then how to know if the results produced by the model are valid or not.
Scientists, who are here considered as the modellers, use an approach of validating their
models to ensure the credibility of the phenomena represented in the model. The principle
of the scientific validation is to check the credibility of the model with regard to the real
world. One way is to ensure that the model generates results that match the observations
made in the real world. However, the validation of scientific models has some limitations
and some researchers even present the validation of scientific models as an utopian task
or an impossible task [57], [58]. Indeed, models are by definition an approximation of the
modelled system and in the case of scientific models, of the real world. As some aspects
of the system are not taken into account and are ignored, there is a certain discrepancy
between the results and the real world phenomena. The real world phenomena are not
closed systems. Moreover, uncertainty is present at many different levels related to the
modelling (e.g., data sampling for calibration, knowledge about the system, discretisation
of the mathematical model). For instance, the model is specified at a chosen scale, however
the data collected to calibrate the parameters may not be measured at the same scale, or

it may even be impossible to collect them [17]. The observations or the data collected in
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the real world are also subject to uncertainty as their accuracy depends on the context
of the collection (e.g., tools, weather, time). That is why Oreskeset al. [58] recommend to
analyse before using the results produced by the scientific models of natural systems, and
more specifically, when they are used for predictions in a context of decision making.

As models are useful and essential tools, they still need to be validated in some way
to be used. The idea is to take into account the modelling objectives and the modelling
design in the validation process. The models are "validated" regarding a context of use
(e.g., decision making) and with an estimated level of accuracy that encompasses the
uncertainty associated with the design of the model and corresponding data (e.g., input
values for the simulations). Thus, the validation is fundamentally based on the definition
of an acceptability criterion. To ensure the fidelity and credibility of the model, this
acceptability criterion should reflect the requirements of the context of use. It ought to
take into account if the context does not require for very accurate outputs (e.g., global
vision of phenomena) or if it does (e.g., specific and critical scenario). Validation amounts
to ensuring that the uncertainty is within an acceptable range. Scientists have therefore
found methods to try to estimate the uncertainty and limit it in the model. For instance,
they usually use the processes of calibration and sensitivity analysis as support for the
validation. Therefore, the acceptability criteria used for validation are commonly the same
as the ones used for calibration [54]. The data collected are separated into two datasets.
One dataset is used for the calibration of the model. The second one is used to check that
the calibrated model can produce results comparable to the observations. Historical data
are often employed to check if the model is able to reproduce the current state of the system
and its past behaviour. Calibration and sensitivity analysis can help determine the level
of uncertainty thanks to how they operate. The validation of the model is acknowledged

when the level of uncertainty is below an acceptable threshold.

2.3.2 Software Validation

The validation of software is based on testing that the software behave as expected and
described by the requirements that are expressed by stakeholders (i.e., people requesting
the creation of the software). The V-Model is a standard representation of the development
of software, demonstrating the relationships between each phase of the development and
the corresponding testing phase [59]. It is presented in Figure 2.3.

On the left top-down branch, the stakeholder requirements are refined and extended

with more specific software concerns corresponding to the different levels of organisation
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Figure 2.3 — The SE V-Model [59]

of the software. The elaboration of the different specifications follows a standard process.
First, the software requirements are formulated from the global stakeholder requirements
and they specify the expectations for the software as a whole. They contain information
about the general software organization and the expected behaviours of the software in
various scenarios of interest (e.g., use case diagrams). Then the general design is drawn
to more specifically describe the different components that shape the software (e.g., com-
ponent diagrams). This leads to the formulation of the detailed design of the software
which aims to document all the structural details of the software (e.g., class and sequence
diagrams) in order to then allow the implementation of the software in a clear and ef-
ficient way. Using the various requirements contained in the previous specifications, the

implementation of the software is generated.

The resulting software is then validated according to the stakeholder requirements,
through V&V activities under the form of unit, integration, system, and acceptance test-
ing. First, unit testing ensures that the implemented software respects the guidelines of
the detailed design, meaning that each unit of the software code performs as expected
(e.g., mock-based testing). The fulfilment of the general design specifications are checked
through integration testing as it makes sure that the different components interact cor-
rectly (e.g., Big Bang testing, incremental testing). Then system testing controls that
the implementation meets the software requirements by validating the complete and fully
integrated software, considered here as the system of interest, using various testing tech-
niques (e.g., usability testing, load testing, regression testing, functional testing). Finally,
compliance with the stakeholders’ expectations is validated through acceptance testing

(e.g., user acceptance testing, business acceptance testing, operational testing).
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2.3.3 Scientific Software Validation

To represent the continuous behaviour of some real world system, scientific software
has the particularity to encompass a scientific model in the form of a numerical scheme
resulting from the discretisation of a mathematical model. The modellers, i.e., here the
scientists and domain experts, are used to focus their effort on the validation of the math-
ematical model, meaning the validation regarding the scientific domain, whereas not as
much effort is provided for the validation of the computational aspect of the simulation
models. That can be explained by the fact that the domain experts that elaborate their
scientific model, and associated simulation software, do not usually have a background in
computer science or software engineering [60]. This results in an incomplete assessment
of the uncertainty comprised in the simulation model, and thus, can lead to mislead-
ing projections. Work has been done to encourage the domain experts and modellers to
adopt and to implement the practises regarding the verification and validation (V&V) of
software [61]. Since scientific software testing is still an ongoing area of research, those
practices are not always applied correctly and systematically [60], [62], [63].

Applying the techniques focusing on software does not ensure a global validation of
scientific software. Validation must also take into account the specificity of scientific soft-
ware that is the transition from a continuous model to a discrete implementation, all
to represent a continuous phenomenon. Different studies propose specific approaches and
techniques about the validation of scientific models that are encompassed in software [64]—
[67]. For instance, convergence testing deals with checking the discretisation of the math-
ematical model. In this case, when the discretisation step is reduced, the discrepancy
error between the simulation results and the observations or theoretical results tends to
zero. Also, other techniques target that the physical principles underlying the real world
system, such as conservation of energy and mass, are respected by the model. A general
approach to scientific model testing is proposed in [64]. Broadly, this approach consists
of (i) identifying and characterizing mathematically every source of uncertainty (aleatory
and epistemic) [68] in both the scientific software and experimental measurements used as
a reference, (i7) propagating those uncertainties to the outputs through techniques such
as sensitivity analysis [69], (4i7) defining a validation metric, i.e.,a mathematical operator
comparing the numerical solution and the experimental measurements, and applying it to
produce an assessment of the validity of the model over the validation domain, and finally
(1v) employing statistical techniques such as regression fits of the validity metric over the

validation domain, which enables to interpolate or extrapolate the validity metric over the
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domain of intended use, thereby providing the uncertainty of the simulation results over
the domain of application. In summary, ensuring the reliability of the scientific software is
a complex task as it does not only involve the V&V techniques regarding the implementa-
tion and software part as well as the mathematical model, but also the numerical scheme.
The scientific software has to be validated as a whole complex system that encompass

and is related to several artifacts.

Take-away Messages of the Chapter

A model is a representation and is by definition only reflecting some parts or aspects

of the modelled system instead of its whole. As such, some choices and approxima-
tions are made when designing it. There are several types of models: conceptual
models, graphical models, mathematical models, etc. In environmental science, sci-
entific models are mainly mathematical models, and so, we focus the thesis on that
specific type. Scientific models are at the centre of the scientific research. Their pri-
mary goal is to understand the real world better and create knowledge about it.
They can also be used to make predictions about the future behaviour of the system
under study. To be used, however, the uncertainty of the model needs to be assessed
or estimated. The validation of the model ensures that the amount of uncertainty is
acceptable with regard to the modelling context and, thus, it ensures that the model
is reliable and usable. As scientific software results from the refinement of several

artifacts, the validation step involves specific testing focusing on those artifacts.

47






CHAPTER 3

STATE OF THE ART

In this chapter, we give an overview of the state of the art regarding the different ap-
proaches to speed up the execution of the scientific software. We focus on surrogate mod-
elling and the related three types of approaches. We present the model reduction approach
in Section 3.1, the data-driven approach in Section 3.2, and, the approximate computing
approach in Section 3.3. We describe the specifics of each approach, and we assess their

relevance regarding the challenges addressed in this thesis.

In the context of scientific modelling for research, the scientific models have become
notably complex (cf. Section 2.1.2) and need to be specific to a precise scenario in order to
reach a high accuracy. It is thus computationally expensive to execute those models. Each
simulation requires significant computational resources. When we want to use those mod-
els in another context that demands some interactivity or running numerous simulations
(e.g., the exploration of what-if scenarios, decision making, and design space exploration),
the computational cost of their execution is currently expensive and needs to be lowered.
The need to tackle this high computational cost then becomes compelling. As a result, it
is the subject of numerous research investigations and a variety of approaches to address
the issue.

One type of approach uses to High Performance Computing (HPC) and relies on using
more performant resources and complex infrastructures with large computational power
such as supercomputers and grids. We presented HPC and its impacts on the evolution
of the complexity of scientific models in Section 2.1.2. The current trend is to continue
the improvement of the performance capabilities that such execution environments can
provide. With better performances, more complex models can be executed and even faster,
and so on. HPC can offer huge performance gain, however, it involves the necessary access
to a large amount of high performance computational resources. Those conditions do not
match with the requirements associated with the problem we tackle in this thesis: the use

of the scientific models, which were first elaborated in the context of research, to support
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decision making. As we are interested in a systematic and easily realisable approach to
implement, we look for solutions without constraints on the execution environment and
that can be performed on any classical computer (e.g.,personal computer, no access to
data center).

The other type of approach involves trading off some model fidelity for more flexibility
in the use and execution of the model. As described in Chapter 2, scientific models are
by definition an approximate representation of the studied physical phenomenon as only
some aspects are taken into account. Futhermore, the context of decision making about
climate change and the exploration of what-if scenarios and projections deals with a lot
of uncertainty. The trade-off between accuracy and flexibility is therefore suitable in this
situation. The trade-off involves the use of an alternative version that is an approximated
version of the complex and computationally expansive original model (a.k.a. reference
model). The surrogate model, i.e., the alternative version, is used to be executed in place
of the reference model in a context or with an intent that is different than the one for which
the reference model was elaborated. In our case, the surrogate models are the solution to
trade off some fidelity for more flexibility of the simulation model, and more specifically for
a faster execution speed [9] (cf. Figure 3.1). Indeed, surrogate models with sufficiently short
runtimes can be used in interactive decision support environments [9], [70]. It also leads
to using the simulation models in different contexts involving various stakeholders and
purposes (e.g.,, decision making, investigation of the phenomena behaviour), providing

more flexibility in the model usage and execution.

Reference Model Outputs

Y1
Y =f(X,6) Y2

Figure 3.1 — Use of a surrogate model with faster execution in place of the reference model.

Several works propose classifications of surrogate modelling techniques [9], [71]-{74].
For example, Barquero et al. focus on data processing applications and on applying data

sampling techniques to trade-off accuracy for performance [75]. Also, Alizadeh et al.
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present a framework to classify and select appropriate surrogate modelling methods of
engineering problems according to size, accuracy, and computational time characteristics,
after reviewing more than 200 research papers [71]. As we do not intend to describe every
specific technique that can be used for surrogate modelling but a global overview and we
feel that some approaches are not represented, we use a simpler classification of surrogate
modelling approaches applied in the literature. We organise the kinds of approach dealing
with accuracy trade-off into three categories : (i) the model reduction approach, (ii) the
data-driven approach and (iii) the approximate computing approach.

As a side note, surrogate models are also designated with different names such as
metamodels [76], response surface models [77] or reduced models [78] which are used
interchangeably without much regard to the approach employed. We choose to stick to
the term of surrogate models in the remainder of the thesis as it is used in both the fields

of computer science and environmental science.

3.1 Model Reduction Approach

The Model (Order) Reduction techniques are historically the first techniques that have
been used by scientists and modellers to simplify their models. This approach considers
the simulation model as a white box and takes the point of view of domain experts as it
focuses on reducing the complexity of the mathematical model, and by implication, on
making the execution of the scientific software faster. It thus involves domain knowledge
and aims to play on the physical processes encompassed in the reference model. The
techniques mainly apply a reduction on the dimension of the design space (i.e., the number
of possible configurations, meaning the range of values of the variables, is reduced) or on

the number of variables and parameters.

3.1.1 Proper Orthogonal Decomposition

The proper orthogonal decomposition is a common projection-based surrogate method.
It can be associated to statistical approaches such as the principal component analysis as
the goal is to reduce the dimensionality of the simulation. The design space is reduced
to a subspace thanks to the analysis of pattern in the variable behaviours. It aims to
determine the variables that can be multiplied by a same value and still have the same

general behaviour. Those variables are correlated to the physical properties of the system
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and correspond to the subspace used to reduce the dimensionality of the simulation. To
find the set of variables, several snapshots of the variables values according to simulation
steps are used.

For instance, Hinze and Volkwein [79] apply proper orthogonal decomposition for a
fluid dynamic mathematical model. They use 100 snapshots (sets of the values of the
variables) for different dimensions for every step of the simulation. They note that the
reference simulation takes approximately 17 times more CPU than their approach. Also,
McPhee and Yeh [80] show that the method can be used in the context of decision making

for groundwater management.

3.1.2 Simplified Physics

The simplified physics method consists of elaborating a new and simpler mathematical
model (i.e., lower fidelity model) for the studied system. As such, it does not require
anything from the reference model. The simpler model is obtained thanks to the regular
physics-based modelling process based on domain knowledge. The modellers elaborate the
new and simpler equations encompassing the system behaviour thanks to their knowledge.
They restart the modelling process from scratch.

Keating at al. apply this method to create a simpler model of a groundwater model [81]
based on the domain knowledge that the underground water level is perturbed by the
presence of wells and can be modelled thanks to characteristics regarding the location of
those wells.

Some hybrid methods combine the use of a lower-fidelity model with the reference
model to perform the trade-off between accuracy and performance. The lower-fidelity
model is executed for parts of the simulation that do not require high accuracy whereas
the reference model is executed for the parts that do. It enables us to keep details of the
complex model, while benefiting from the speed of the simpler model [9]. The method
is usually involved with multiple grid resolution simulation. The low-fidelity model deals

with a coarse grid whereas the reference one deals with a finer-grained grid.

3.1.3 Relevance for Decision Making

The model reduction approach ensures the interpretability of the surrogate model
with regard to the domain of study. Indeed, domain knowledge is conserved to better

represent the physical processes of system under study. The reliability of the surrogate
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model is more guaranteed. However, it requires a lot of time to elaborate the surrogate
simulation model as it needs a new process of calibration and validation. It also takes a
lot of expertise to simplify the physical processes with regard to the domain of study as

well as to numerical analysis.

3.2 Data-driven Approach

The data-driven approach considers the simulation model as a black box since there
is no modification made on the reference model and a whole new surrogate model is elab-
orated. This approach of surrogate modelling involves an empirical model that captures
the input-output mapping of the reference model [9]. The empirical surrogate model has
a statistical nature compared to the usual complex physics-based reference model in en-
vironmental science. The empirical model is trained, i.e., calibrated, on a set of inputs
and outputs of the complex model. Once the accuracy of the training is ensured, it can be
used to predict the outputs of the complex model for new inputs with which the complex
model has not been executed. In summary, the surrogate model emulates the process-
based model simulation results as a function of inputs and parameters, but runs much
faster [11].

That approach can yield undeniable benefits in terms of speed-up. Indeed, it is the core
of the service offered by the company called Extrality. ! They provide a service to generate
a surrogate model of the simulation model using artificial intelligence (i.e., a data-driven
approach) to help users run more simulations faster and to explore them while keeping
the accuracy of the physical process based model. The service is presented as a means to
reduce the computation costs and to capitalise on all the past simulations run to improve

the actual simulation model.

Several techniques enable the elaboration of the empirical model. They can be or-
ganised into two types : Machine Learning methods or Deep Learning methods. Both
types of methods have made breakthroughs in computer science fields (e.g., speech recog-
nition, computer vision, natural language processing), which has led to their increasing

application to scientific domains [11], [72].

1. https://www.extrality.ai/
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3.2.1 Machine Learning

Machine learning algorithms can automatically improve their performance with respect
to some tasks through experience [82]. There are various techniques that differ in their
application according to the context of the surrogate modelling (e.g., classification or
regression, supervised or unsupervised methods) and to the nature of the reference model

(e.g., types of input and output data).

The use of machine learning for surrogate modelling has been an increasing interest in
hydrological science [11]. Surrogate models enable to optimise tasks that are part of the
modelling design process such as uncertainty quantification [73], sensitivity analysis [83]
and calibration [84], [85]. Zhang at al. apply two techniques (i.e., Gaussian Process Re-
gression and Polynomial Chaos Expansion) to create a surrogate model for performing the
calibration of a groundwater transport model [85]. Calibration can usually be a compu-
tationally expensive task, so, employing a surrogate model enables to determine suitable
calibrated parameters for the reference model. Surrogate models can also operate as a
decision support tool. For instance, Cai et al. elaborate a surrogate model of a watershed
simulation model that is used in a decision-support framework to assess the measures re-
garding drought mitigation under several climate projections [86]. More particularly, the
role of the hydro-agronomic model is to simulate the hydrological and agronomic response
to climate change. The authors apply the support-vector machines technique to generate
a fast surrogate model able to answer the need of interactivity in the decision-support pro-
cess. The statistical surrogate model is created from a 2500 element dataset and produces
results with a coefficient of determination superior to 0.9 for all the seven studied climate
scenarios. It replaces the high-fidelity reference model to make the framework computa-
tionally compliant without loosing essential environmental responses to various climate
inputs and land-use measures. Also, in [87], the authors use a machine learning approach
and a Random Forest algorithm to create a surrogate model for urban flood prediction
that is able to make real-time decision support more feasible. More than 16900 data are
analysed to elaborate the surrogate model. A speed-up of a factor 3000 is observed with
the surrogate model compared to the physics-based reference model. They conclude that
machine learning surrogate models offer significant potential to support real-time decision

making in the field of flood management.
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3.2.2 Deep Learning

Deep Learning is a subset of Machine Learning Ongsulee2017Nov. It is based on
Artificial Neural Networks of multiple layers. This multi-layering makes the algorithm
automatically generate data labels, i.e., features, from the raw input data given to it.
The features better represent the information distribution in the overall dataset than the
raw input data. They make the training and the elaboration of the surrogate model more
efficient.

Zhang et al. [70] use a Deep Learning technique involving the creation of a surrogate
model of a hydrogeological reference model for flood simulation in the context of decision
making. They base the training of the model on a dataset with 2400 executions of the
reference model as raw inputs. The surrogate model has a mean absolute percentage error
of 20% in its predictions but is at least 30 times faster than its reference model. The
model can also make flood predictions for different sizes and spatial characteristics while
remaining effective. They note that the training of the neural network algorithm is time
consuming.

Lu and Ricciuto [88] developped a technique that decreases the need for a reference
model. The authors employ artificial neural networks for large scale Earth system models.
The algorithm only requires 20 simulation runs, and it establishes the relationship between
8 model parameters and 42660 outputs. But the number of variables used as raw inputs is
really high (more than 40000) at the beginning. This large number of inputs is exploited

by the deep learning algorithm to find effective features to train the model.

3.2.3 Relevance for Decision Making

The set of data-driven approaches involving statistics can be very efficient in that the
generated surrogate model can produce the results instantly [89]. The approaches also
enable the generated surrogate model to be used for different scenarios, provided that
the criteria are well defined and represent the information contained in the input data.
However, the approach requires a relative high number of executions of the reference model
for the calibration (i.e., training phase) [72]. The number of executions has to be large
to capture enough data for the statistical algorithm to extract the mapping relationship
between inputs and outputs and to create a reliable surrogate model. It is due to the high
complexity of the physics-based reference model. As there is a lot of variables and the

equations are complex due to the several phenomena represented. The complexity of a
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reference model makes the execution time long and makes the simulation model impossible
to use as it is to support decision making. Ayzel and Heistermann [90] train deep learning
based rainfall-runoff models and found that those models require more data to calibrate
than a hydrologic physics-based reference model. What’s more, there may be a lack of
physical interpretability because of fact that the surrogate model only comes from the
analysis of data coming from executions runs of the reference model [11]. Indeed, it is
difficult to draw physical understanding from learned model as it is hard to interpret.
The predictions of the surrogate model may not be easily understood, may be implausible
or lack physical consistency [11]. Even though some approaches try to include domain
knowledge in the learning process [11], this requires high expertise and takes time to do,
which constitutes a barrier in the context of tailoring scientific models to support decision
making with a systematic approach. In the case of decision making with high stakes,
the lack of transparency also raises questions about the relevance and credibility of such

models.

3.3 Approximate Computing Approach

The Approximate Computing (AC) approach adopts the point of view of a software
engineer as the simulation model is considered as a white box and the related techniques fo-
cus on the computing aspect of the implementation of model (i.e., the scientific software).
The approach is widely used in computer science and related fields (e.g., machine learn-
ing, machine vision, multimedia processing, signal processing, database search, robotics,
gaming) to relax the computation accuracy so that the performance (i.e. execution time
or energy consumption) of non-critical software is improved [91]-[93]. It stems from the
observation that performing exact computation requires a high amount of resource and
that allowing selective or occasional approximation can provide disproportionate gains
in efficiency [92] (i.e., time execution and/or energy consumption). In some cases, the
constraints put on accuracy can be loosened and it enables this efficiency gain by ap-
proximating the computation. It relies on the difference between the accuracy required
by the developer or the user and the accuracy provided by the execution of the software.
It introduces approximation into the program execution process while producing accept-
able outputs with respect to the purpose of the application thanks to an approximation
strategy. The approximate version of the software then constitutes the surrogate model.

Approximate Computing has a wide range of application and the techniques can be
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classified according to their stack layer of application (e.g., circuit, architecture, algorithm,
application). Many classifications exist [91]-[96], however, to give as a simple and clear
overview as possible, we decide to organise them according to two levels of application :
hardware and software. A plethora of techniques exist and various works present surveys
of them [91], [92], [94]. Thus, we do not intend to describe every AC technique again in
this thesis as most of them are not applicable to the context we study. We aim to give a
global overview of the different types of techniques and we focus on the ones most relevant

to our study.

3.3.1 Approximate Computing for Hardware

At the hardware level, approximate computing deals with a less accurate circuit [97],
[98] for computation or a reduction of voltage supply for some hardware components.
The goal is to act on the execution environment of the software to have a gain of effi-
ciency (i.e., in terms of performance and/or energy). Approximation on the hardware layer
mainly corresponds to approximating processing units or providing different hardware-
supported data types. The circuits are targeted to perform the trade-off by lowering their
supply voltage or modifying their original function (e.g., voltage overscaling [99], [100],
precision scaling [101]). It also aims to sacrifice the computing quality of processor, mem-
ory and storage components to improve the computational performance (e.g., approximate
storage [102], memoisation [103]).

The AC techniques regarding hardware and architecture do not match the context
of the thesis. Applying those techniques requires very specific expertise in the field of
computing or is dependent to specific hardware resources, and it does not meet our desire
to provide a systematic and easy to implement approach. Hence, only the techniques
related to software may be relevant for the issues of tailoring and trade-off that is tackled

in the thesis.

3.3.2 Approximate Computing for Software

Approximate Computing is more interesting at the software level to answer the need
for a systematic trade-off approach for scientific models. Again, numerous techniques
exist and involve different aspects of software. Approximating software can be done by
transforming some blocks of the code [104] or by switching between different versions of

the algorithm inside the software [105], [106]. Compared to Algorithm Transformation
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or Algorithm Selection techniques, Code Perforation techniques have the advantage that
the modeller does not need to provide multiple implementations of the same algorithm or
task. Those techniques are based on dropping some of the tasks by skipping some part of
the code [107]. The tasks skipped can be unspecific parts of the code [108], [109] or they
can correspond to loop iterations [110].

The techniques focusing on loop approximation are promising with regard to our
context. Indeed, simulation models usually iterate over time or space. For the study of
climate change, the simulation generates the evolution of values of the variables across
time or space. The goal is to observe that evolution to assess the time (or the space) when
the situation may be problematic or to get the state of those variables at a specific time in
the future or for a specific location. The iterative process of the simulation manifests itself
by the presence of loops inside the code of the software. Thus, the idea of executing fewer
loop iterations to make the software run faster matches the context of scientific models.

In the next subsections, we describe those loop skipping approximation strategies to
understand how the trade-off between accuracy and performance is carried out and to
determine if they can be used in the case of scientific simulation models for environmental

science.

Loop Perforation

Loop perforation is an approximation strategy which assumes that iterations of loops
in a program take time to be computed when not all of them would be necessary to
achieve a result similar to that obtained from all of the iterations. Within the software
code, the appropriate loops are modified so that only a subset of the iterations is realised.
In practice, for a loop incremented by 1 at each iteration, applying the loop perforation
technique means changing the increment from 1 to p so that only every p-th iteration is
performed [110]. It can be formulated as presented in Listing 3.1. p is called the approxi-

mation parameter. N is the original number of iterations in the loop.

for (i=0: i<N; i+=p){

result(i) = process(input(i));

Listing 3.1 — Loop Perforation. p is the approximation parameter.

The number of iterations is reduced, fewer calculations are performed and a gain in

performance is obtained. The choice of p is made according to the acceptability constraints
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made on the software outputs. In all, loop perforation is a technique that achieves the

trade-off between accuracy and performance without knowledge of the application domain.

In many studies [95], [111]-[113], the application of loop perforation provides a signifi-
cant gain of performance (i.e., time execution and/or energy consumption). For instance,
Sidiroglou et al. use loop perforation on seven software with various application domains
(e.g., media processing, computer vision, data mining, similarity search, financial anal-
ysis) [110]. For those software, the perforation does not modify the overall process and
purpose of the loop computation. The output produced has the same nature and its
meaning is not transformed. The output of the fully executed loop and the output of the
perforated loop are comparable. The time execution of the software is faster by 64.20%
thanks to the perforation of that loop. In this study, over all the loop perforations and
software, the authors observe a significant performance improvement (around a factor
of two in running time) for the studied applications while observing a small decrease of

accuracy (about 5%).

In essence, that technique enables a significant speed-up by skipping some iterations
in loops while ensuring the outputs remain reliable and acceptable with regard to the use
of the software. Despite the focus on loop iterations, the technique cannot be applied to
simulation models. A simulation is divided into steps that each represents either a new
time step or a spatial step for which the behaviour of the system is observed. The output
of the simulation is the evolution of that behaviour over all the steps. The Figure 3.2a is
a representation of such output. The dots correspond to the values of the output variable
along the steps which represents here the simulated time period. Removing some of the
steps (whose output values are shown in red in the Figure 3.2b) means performing a totally
different simulation. This is shown in Figure 3.2¢ : compared to the reference simulation
presented in Figure 3.2a, the approximate simulation has a smaller number of values
for the output variable, that corresponds to a smaller number of steps and represents a
shorter simulated time period (or smaller spatial area when dealing with spatial simulation

instead of time).

For simulation models with dependent loop iterations, as it is usually the case in envi-
ronmental science, another factor is also at play. In this situation, during each iteration,
the task is to compute the value of the output variable for the considered step with re-
spect to input variables and the last value of the output variable that has been computed
in the previous iteration. The new value of the output variable is dependent to its value

from the previous iteration and the values of the input variables for the corresponding
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Time Time
Period Period

(a) Output of the reference simulation. The (b) Representation of the skipped iterations
blue dots are the values of the studied variable with p = 2. The red dots depict the reference
according to the time steps (here representing values that are not computed by the skipped
the time period). iterations.

Variable Variable

Time Time
Period Period

(¢) Output of the approximate simulation for (d) Output of the approximate simulation for

independent loop iterations. dependent loop iterations. The grey dots rep-
resent the new values of the variable for the
computed iterations.

Figure 3.2 — Representation of the Loop Perforation technique (p = 2).

iteration. Skipping an iteration means not processing the values of the input variables for
the given iteration. The value of the output variable for that iteration is not computed
and it is thus not updated from the previous iteration. In the following iteration, the cor-
responding value of the output variable is computed with its non-updated current value
and the corresponding values of the input variables. In this respect, the following values
of the output variable are impacted by the skipped computation and the ignored values
of the input variables. That behaviour is represented in Figure 3.2d. The first dot is blue
as its value is the same as the one from the reference simulation (cf. Figure 3.2a). The
following grey dots represent the variable values that are different from the corresponding
dots of the reference simulation. Thus, they are also different from the associated blue
dots present in the Figure 3.2c which presents the situation of simulation models with

independent loop iterations.
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Usually, simulations in environmental science, and more particularly, when dealing
with the study of climate, involve some climate or weather variables such as the rainfall
quantity. For a model that studies the evolution of the sea level according to the climate
every day for a period of 50 years, removing some steps, i.e., skipping some iterations in
the main loop of the software, equates to removing some time steps and some events from
the climate scenario (i.e., values taken by the corresponding variables). The output is the
evolution of the sea level for a shorter period than 50 years and for a different climate
scenario. The time periods and the scenarios being different, the approximate simulation

is not reliable and is not comparable to the reference one.

Loop Truncation

Loop truncation, also known as early loop termination, is a method that is based on
the assumption that the computation of the last iterations of the loop does not bring
much more accuracy to the final generated output and that those last iterations can
be cut out. It skips a contiguous sequence of iterations at the end of the loop (cf. Fig-
ure 3.3a). The approximation parameter (p) corresponds to the number of iterations to
skip (cf. Listing 3.2).

for (i=0: i<N-p; i+=){

result(i) = process(input(i));

Listing 3.2 — Loop Truncation. p is the approximation parameter.

In [114], Meng et al. apply the technique on a K-means algorithm to show the possible
speed-up for recognition and mining applications. The K-means algorithm is iterative and
convergent, and, is used to cluster a set of points in a multi-dimensional space thanks to
centroids. Each cluster is defined by a centroid which is located at its centre. First, the
position of the centroids is randomly defined as the position of some of the points part
of the set. Then their positions are refined through iterations. For every iteration, the
distances between the points of the set and the centroids are computed. The points are
assigned to the cluster corresponding to their closest centroid. The new position of the
centroid is computed to correspond to the mean distance to all the points of the cluster.
The iterations stop when the position of the centroids remain the same, meaning that all

the points remain assigned to the same clusters. The author apply an early termination
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Time Time
Period Period

(a) Representation of the skipped iterations  (b) Output of the approximate simulation.
with p = 2. The red dots depict the reference

values that are not computed by the skipped

iterations.

Figure 3.3 — Representation of the Loop Truncation technique (p = 2).

strategy on the algorithm: when the number of points changing their cluster assignment
is below a certain defined threshold, the iterations are stopped. A perfect convergence is
not reached but a partial one is. A speed-up of a factor 3.5 is observed with an error rate
of 1% (i.e., 1% of the points are not assigned to their rightful cluster).

This type of technique does work greatly for models that are based on iterative conver-
gence algorithms which are calculating solutions that are converging over the iterations
and thus, doing an incremental refinement. However, this convergence is not necessary
observed in simulation models. Indeed, for a simulation involving the time as a variable,
each iteration corresponds to a time step of a time period over which we study the be-
haviour of different variables. Removing some of the last iterations means deleting the
modelling of some of the last time steps and last values of the output (cf. Figures 3.3). As
for the loop perforation technique, the approximate simulation is not comparable to the
reference one. For instance, given a reference simulation modelling the movement of the
sea level for a period of a month with each iteration corresponding to a one day time step,
skipping the last 7 iterations results in a simulation of the sea level for only the first 3
weeks instead of the 4 weeks. The simulations are not comparable as they do not span over
the same period of time. Thus, the loop truncation technique cannot be directly applied

on scientific models (encompassing non convergent models) in a systemic approach.

Loop Unrolling

Approximate loop unrolling [115], proposes, in addition to skipping iterations, to in-

terpolate the results of non-computed iterations using an interpolation function (cf. List-
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ing 3.3). It enables the accuracy to be generally better maintained than when only skipping
the iterations. The method is represented in the Figure 3.4. The Figure 3.4a shows a rep-
resentation of the application of the Loop Unrolling technique (for p = 2) with regard to
the computation and the skipping of iterations and associated output values. The blue
dots represent the values of the computed iterations whereas the red dots represent the
skipped iterations and the resulting discarded output values. The output of the resulting
approximate simulation is depicted in 3.4b. The output values of the skipped iterations
are calculated thanks to interpolating the computed iterations. In the figure, the interpo-
lation is a linear regression between the two values corresponding to the nearby (previous

and following) computed iterations.

for (i=0: i<N; i+=p){
result(i) = process(input(i));
if i1=0{
for (j=1; j<p; j++) {
result(i-j) = interpolate(result(i-p), result(i), j)

Listing 3.3 — Loop Unrolling. p is the approximation parameter.

Time Time
Period Period

(a) Output of the approximate simulation with (b) Output of the approximate simulation with
a linear interpolation strategy for independent a linear interpolation strategy for dependent
loop iterations. The purple dots are the inter- loop iterations. The purple dots are the inter-
polated values of the non-computed loop itera- polated values of the non-computed loop itera-
tions. tions.

Figure 3.4 — Representation of the Loop Unrolling technique (p = 2).

The method is used by Rodriguez-Cancio et al. [115] to trade-off some accuracy for

performance in different applications belonging to the domain of multimedia analysis,
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musical synthesis, text search and machine learning. One interpolation function they ap-
ply is the linear interpolation. After the computation of the non-skipped iterations, the
results of the skipped computations are interpolated. With an approximation parameter
of 2 (i.e., p = 2), the results of the odd skipped iterations are obtained by the linear
interpolation of the even computed iterations. The result of the iteration number 1 is
generated by interpolating the results from the iterations number 0 and 2. For the appli-
cation of musical synthesis, the time execution speed-up is by average between 150 and
200% with a approximation parameter of 2, while generating acceptable results (i.e., the
audio produced is deemed still audible). The accuracy preservation is better with the
approximate loop unrolling technique than with loop perforation.

In all, thanks to the interpolation stage, the output result of the approximate simula-
tion has the same number of steps and represents the same time period (cf. Figure 3.4b)
as the reference simulation. However, the approximate simulation and the reference sim-
ulation are not comparable in the case of dependent loop iterations. With loop unrolling,
the interpolation stage comes after the computation stage. The values of input variables
corresponding to the skipped iterations are not taken into account for the whole simula-
tion. In the same way as stated for the loop perforation technique in Section 3.3.2, those
values are part of the scenario considered for the simulation and skipping the iterations
(and corresponding input values) changes the scenario of the considered simulation. The
interpolation stage is carried out with different computed values of the output variable
compared to the reference simulation (cf. Figure 3.2a & Figure 3.2c) whereas the com-
puted values are the same as the reference one in the case of independent loop iterations
(cf. Figure 3.4b). It means, that for models similar to the one forecasting the evolution
of the sea level (cf. Section 3.3.2), the climate scenario taken into account in the approxi-
mate simulation is not the same as the one in the reference simulation. The approximate

simulation is not reliable in this specific case.

Loop Tiling

Loop tiling can be compared to loop unrolling. In the case of loop tiling, the in-
terpolation function is the identity function (cf. Listing 3.4). The value of the output
corresponding to the skipped iterations is the same value as the nearby output resulting
from a computed iteration. Compared to loop unrolling, no computation is needed to
assign the output value for the skipped iterations. The performance gain is then theo-

retically better. As the interpolated value is equal to the nearby value of a computed
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iteration, the representation of the evolution of the output variable displays a tile pattern

(cf. Figure 3.5b), giving its name to the technique.

for (i=0: i<N; i+=p){
result(i) = process(input(i));
if i!=04{
for (j=1; j<p; j++) {

result(i-j) = result(i)
}
}
}
Listing 3.4 — Loop Tiling. p is the approximation parameter.
....... o o P o °

e
Period Period

(a) Output of the approximate simulation
for independent loop iterations. The purple
dots are the interpolated values of the non-
computed loop iterations.

(b) Output of the approximate simulation for
dependent loop iterations. The purple dots are
the interpolated values of the non-computed
loop iterations.

Figure 3.5 — Representation of the Loop Tiling technique (p = 2).

Rodriguez-Cancio et al. [115] apply the technique (that they called Nearest Neighbour
in their article) with several applications in the same way they do for the approximate loop
unrolling technique. For the music synthesis application, they observe an improvement
of the time execution that is comparable to the one with loop unrolling (around 150-
200%), but, the overall improvement is slightly lower. Yet, for the application dealing
with multimedia analysis, and more particularly a face recognition software, they note a
better overall speed-up with the loop tiling. (around 110% in average).

In [116], the authors propose a software framework to identify patterns in data-parallel
software and apply approximation techniques. Loop tiling is one technique they apply for

a pattern that is based on the fact that the adjacent values of the input array are similar.
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This is commonly the case for multimedia processing, where adjoining pixels are alike. The
surrounding pixels are approximated by being attributed the same value as the value of
the central pixel or a specific row / column of pixels. A speed-up of a factor 2 is observed

for a quality loss inferior to 4%.

The tiling approximation is a technique that shows good speed-up results with minimal
loss of accuracy for applications that present very similar adjacent input values (e.g., sig-
nal processing such as sound, image and video processing). Nevertheless, this technique
faces the same issues than the loop unrolling technique which are described in the asso-
ciated section (cf. Section 3.3.2). For dependent loop iterations, the input values of the
skipped iterations are disregarded and the simulation scenario of the approximate simu-
lation is different from the scenario of the reference simulation. To illustrate this point, in
Figure 3.5¢, the output values of the computed iterations, represented by the grey dots,

are not those of the reference simulation, represented by the blue dots (cf. Figure 3.2a).

3.3.3 Relevance for Decision Making

For scientific simulation models, the techniques related to loop approximation cannot
be straightforwardly applied. Removing iterations from a simulation leads to different
case studies and non-comparable simulations. There is the exception of convergent sim-
ulations for which it is possible to safely remove iterations whose results do not provide
more information. However, without any information about the convergent criteria, it is
not safe to assume that scientific simulations with different numbers of iteration can be
comparable. In the case of our context of supporting decision making, fully removing some
iterations corresponding to time steps would alter the duration of the simulation period.
Even more, meteorologic data are highly variable and cannot be easily inferred between
time steps. The recharge rate (ie. quantity of water to enter the aquifer per time unit)
varies on a daily basis. Removing iterations would change the climate scenario. Thus, the
model generated by the application of loop perforation or loop unrolling on a simulation
model related to climate study would not be comparable to the initial model and would

not constitute a surrogate in that aspect.
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3.4 Summary

Surrogate models are used in place of a reference model when the modelling context
is different from the one for which the reference model has been elaborated. One reason
and context that calls for the use of surrogate models is the need for faster simulation.
Several surrogate modelling approaches exist and each adopts a particular point of view to
perform the elaboration of the alternate models. Yet, there is a lack of a specific approach
to answer the trade-off needed for decision making support in the field of environmental
science that fulfil the needs regarding the application of a systematic approach.

The described approaches present different advantages and drawbacks to their appli-
cation when using scientific models to support decision making. They are summarised
in the Table 3.1. The data-driven approach does not require domain expertise but is
time-consuming and /or resource-demanding. The model reduction approach relies on the
domain knowledge as well as expertise in mathematics to simplify the complex physics-
based reference model. It is then time-consuming to elaborate the new models. Approx-
imate computing (AC) involving loop approximation has a real potential to enable the
trade-off of some accuracy for faster execution speed in a systematic manner as no domain
knowledge is particularly required for its implementation and it is neither time-consuming
nor resource-demanding. The knowledge about the physical processes that is encompassed
in the reference model is not modified. However, AC is not yet fully directly adapted to
general scientific simulation models that can be encountered in environmental science.
Hence, it would be worth investigating whether it is possible to extend this approach to

the scientific models under consideration in the context of supporting decision making.

Take-away Message of the Chapter

The approximate computing approach which focuses on approximating the compu-

tation of the software is especially interesting and relevant to fulfil requirements of
the decision support. However, it is not yet applicable on scientific models in a sys-
tematic way. In this thesis, we investigate the possibility of adapting it for scientific

models to answer the challenge 2 (cf. Section 1.3).

67



Chapter 3 — State of the Art

.@OE@EHO@H@Q I10] Adeinooe ,ﬂ0|wg:u®.5 I10] m@SUﬂgﬂowu 9[J JO MIIAIA() — T°¢ 9[q8],

Suiy, doorg
.NEEOED doory otemyjog
uoryeoundy, doo
uoryeiojv g doo
090 ‘stoppe ayeurrxorddy ‘3 QIRMPICE]

Surndwoy) oyewrxoxddy

so1sAYJ peyrdurg

uorysodwona(q reuodoyr() wdoig

uoTONPOI [PPOJN

SYIOM)ON [RINON

Suruaea] dea(g

SISISIS S XXX (X

NSRS NS IS S
XN XN NS INISNS
SISNPRRINS NSNS

090 ‘sueow-y| ‘S99l

FurwIea T QUIYDRIN

UAALI(J-RYR(]

S[EpOW dYIPIAIDS 04 pojdepy

Surpuemop-o0IMosey] J0N  SUINSU0d-owWL], 0N  paimbar asi1edxy oN

uoryeotjdde o1pemo)sAs e SuIpILSol BLIOII)

anbruay,

odAT,

yororddy

68



CHAPTER 4

UNDERSTANDING THE
COMPLEMENTARITY OF SCIENTIFIC AND
ENGINEERING MODELS

In this chapter, we describe two collaborative contributions that we have been part of
as they help us understand how to define the related challenges and the context we are
faced with in this thesis. They serve as foundation for the work we conduct in tackling the
challenges in using scientific models to support decision making. They constitute the first
steps to undertake before tailoring the scientific models to support decision making. The
first contribution, presented in Section 4.1, is the result of a collaborative work gathering
numerous researchers from the software engineering domain with various backgrounds and
experiences with the diverse types of models'. It proposes a framework dealing with the
integration of diverse types of models and data and the role they play in a socio-technical
system. The associated section is based on the paper published in the journal of IEEFE
Software [117]. The Section 4.2 explains the second contribution focusing on the specifics
of the development and validation of scientific software, and is based on the paper published
in the December 2021 issue of the journal of IEEE Computer [19].

We first need to understand what the nature of scientific models entails to be able
to tailor them by performing a trade-off thanks to approximate computing. We want to
understand how their development cycle and their use can affect the trade-off approach.
Approximate computing being usually carried out on engineering models, the so-called
classical software, we ponder on its applicability on scientific software by comparing them
to engineering models. To this end, we are interested in the relationship between scientific
and engineering models as well as in the characteristics of scientific models that make

them stand out in the software world.

1. 1% Workshop on Data and Models at Bellairs 2019 [14]
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4.1 Demystifying the scientific and engineering mod-

els and their complementarity

The investigation and work described in this section is the result of a collaborative
work gathering numerous researchers from the software engineering domain with various
backgrounds and experiences with the diverse types of models?. Thus, the effort and the
resulting contribution have to be seen as a work based on a joint sharing of knowledge,
expertise and thinking. We present the work we participated in as a researcher with experi-
ence and knowledge about scientific modelling, and more particularly for the brainstorming
process, the writing of the specific parts related to scientific models and the reviewing stage.
In this thesis, this work is particularly relevant as it enables us to demystify the scientific
and engineering models and helps us understand their complementarity. Furthermore, this
work presents the framework that we use as foundation to define our own exclusive con-
tributions, which are presented in the following chapters. The core contributions of this
thesis therefore constitute the implementation of the described framework in the context
of using scientific simulation models to support decision making, and are as such a new
contribution that demonstrates the application of such framework.

The word model is used in many communities, for a good reason: they share a com-
mon definition. A model is an abstraction of an aspect of reality for a given purpose [118].
Models can be used to answer questions with responses that are sufficiently close to real-
ity [119]. Beyond this common definition, different types of models have commonalities,
but also notable differences, which are not yet fully understood. Existing work has dis-
cussed various types of models [120] and the roles they can play [121]. Here we study these
notions of model types and roles with respect to their interplay with the available data. As
a result, we provide a conceptual framework that demonstrates the relevant combinations
of the different roles of models in engineering and scientific processes. We concentrate on

three main types of models: scientific, engineering, and machine learning models.

4.1.1 Types of models

Scientific Model

As presented in Section 2.1.1 & Section 2.2.1, a scientific model is a representation

of some aspects of a phenomenon of the world [3]. It is used to explain and analyse the

2. 1% Workshop on Data and Models at Bellairs 2019 [14]
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phenomenon (e.g., define, quantify, visualise, or simulate), based on established scientific
knowledge defining a theory. A theory provides a framework with which models of specific
phenomena and systems can be constructed. Models are validated or rejected by exper-
iments or known theories. Upon validation, these models are typically used to predict
future behaviour of the system through simulation or mathematical calculus. Different
types of models are used for different aims: conceptual models to improve shared under-
standing, operational models to refine measurement, mathematical models to quantify a
subject, or graphical models to visualise the subject. A holistic view of a phenomenon or
a system is assumed and different models can be used at different time- or space-scales.

Scientific models encompass a wide range of representations, such as climate change
models, electromagnetic models, protein synthesis models, or metabolic network models.
Scientific models typically involve equation-based continuous formalisms such as differen-
tial equations, as well as discrete models (e.g., state-based, event-driven, or agent-based
models).

Associated data can be numerical or symbolic (e.g., DNA nucleotides). Data are col-
lected, produced, manipulated, and exploited in several ways at different points of the
scientific method life-cycle. For example, observation data can be curated and then used
in a calibration phase to set the parameters of a model; data can be directly processed

by a model; or data can be produced as a result of model simulations.

Engineering Model

Models in engineering disciplines are devoted to support the definition and represen-
tation of a targeted system [120]. Engineering models represent concerns ranging from
onboard control in autonomous vehicles for braking and obstacle avoidance, to traffic
management models, information systems, business rules, etc. They are meant to drive,
possibly with some degree of automation, the development of the system-to-be.

Engineering disciplines often use systematic processes and methods in addition to well-
defined notations for their models. Those formalisms can be domain-specific (e.g., BPMN
or BPEL) or more generic (e.g., UML or SysML). With these formal processes and lan-
guages, validation of the models includes the use of formal techniques, simulations, and
tests.

Engineering models can represent a means to develop a physical system for a spe-
cific purpose that obeys physical laws, or a software-based system (including behaviour,

structure, intentions, and/or configuration), or both (e.g., cyber-physical systems). As
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such, we also consider engineering models to be those that use decision logic to manage a
system based on inputs from environment sensors to determine an appropriate response.
In many cases, a feedback loop is used to govern how to adjust the response to account
for different types of uncertainty (e.g., errors, changing operational conditions).

During the design of a feedback loop, engineering models must keep track of key
elements of the system (e.g., physical and logical elements), which requires processing
large volumes of data. For instance, when engineering models are used to control their

environment, they have to be able to handle continuous data as opposed to discrete data.

Machine Learning Model

Machine Learning (ML) models are produced by automated learning algorithms out
of sample data, known as training data, in order to make predictions or decisions without
being explicitly programmed to perform the task. They can be seen as an approximation
of the conceptual relationship between a particular input and the expected or a priori
unknown target output (cf. Section 3.2).

ML models are used for a wide range of applications, such as image classification,
feature extraction, defect density prediction, language translation, or motion planning
of robots. Common formalisms include neural networks, Bayesian classifiers, statistical
models (e.g., linear regression), and many others.

ML models are obtained according to the inductive reasoning principle, i.e., general-
isation from specific cases. This approach implies a certain degree of uncertainty as to
whether the specific cases sufficiently represent the rules and principles an ML model
is intended to capture. The kind of data used in ML is mostly numeric for regression

problems, but also symbolic for classification problems.

4.1.2 Complementarities and Synergies of Models
By definition, a model has a purpose, and thus plays one or more roles with respect
to that purpose. A model plays:

— a descriptive role if it documents some current or past aspect of the system under
study (which can be a software-intensive system or a natural system), facilitating

understanding, and enabling analysis.

— a prescriptive role if it is a description of the system to be built, driving the con-

structive process, including runtime evolution in the case of self-adaptive systems
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(a.k.a. models@runtime).

— a predictive role if it is used to predict information that one cannot or does not want
to measure (which creates new knowledge and allows decision-making and trade-off

analyses to be performed).

Each model type can play more than one role. A scientific model is first descriptive, but
its main objective is to become predictive supporting what-if scenarios [13]. Embedded
into a socio-technical system, it becomes prescriptive. For example, consider a prescriptive
model of a decision-making tool for climate change using a predictive simulator based on
a descriptive scientific model of the earth’s water cycle. An engineering model typically
starts by being descriptive (e.g., a domain model describing key concepts and relation-
ships), and then at design time is refined/transformed into a prescriptive model. But once
the system is built as prescribed, the model becomes descriptive again as a form of doc-
umentation [122]. An engineering model can also be used as a predictive model: e.g., an
architecture model could be used to predict the performance of a specific configuration.
An ML model is mostly used in a predictive role with the objective to infer new knowledge
given some hypothetical input data. It might also be descriptive of a current or past re-
lationship, or prescriptive if the results are used to make decisions. For instance, consider
a prescriptive model of a smart farm where a predictive ML model is used to decide on
irrigation plans based on descriptive historical data.

To create a model of any of the above types, knowledge and data are needed as
input. The proportion of required knowledge or the importance of the availability of the
required data to build the models are highly specific to each model type. For example, in
ML models, we need problem-specific knowledge to choose the adequate ML technique(s),
choose the ML meta-parameters (e.g., different kinds of layers and how they connect in a
neural network), choose the input variables and the output variables, and then derive a
specialised model from the data. In scientific models, knowledge formulates a hypothesis
while data parametrise the model. In engineering models, we mainly use knowledge about
the domain and possibly improve or tune the models with data.

Along with the respective importance of knowledge and data in the process of building
the models, the order in which models and data are considered is specific to the type of
models. Descriptive engineering models primarily start with data, including external data
(e.g., expert/domain knowledge expressed in requirements or constraints) or measured
data (e.g., exploitation data from previous systems). Engineering models are then used to

prescribe the way the future system will be built. With knowledge about which algorithms
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are best suited for a problem, ML typically starts with input/output system data or
measured data for training, and iteratively (e.g., with feedback loops) revises the model
to address the problem at hand, where the resulting models are the main output of
the process. In scientific models, the external data (e.g., real-world observations) plays
important roles while off-the-shelf models aim to describe existing phenomena and hence

are regularly updated and improved.

4.1.3 The MODA Framework

Life-cycle support for current and future complex socio-technical (software-intensive)
systems requires us to synergistically combine this range of models through well-founded
techniques that leverage their overall benefits to satisfy many different purposes. In order
to support this integration through engineering processes, we describe a conceptual Models
and Data (MODA) framework that explicitly relates the different roles of the model types
according to three kinds of data: input/output data, measured data, and external data.
The MODA framework provides insight into the integration of the different roles that
various model types play, including their data sources and related actions, resulting in a
generalised view of common software development processes, technologies, and systems.

The systems we consider range from software-intensive systems (where software is
the predominant component, e.g., e-commerce applications) and cyber-physical systems
(where software controls physical components, e.g., smart grids) to more general socio-
technical systems (where humans are in the loop with software-based systems, e.g., crisis
management systems). These systems are data-centric. Data are not only provided to and
produced by the running system, but data about the software itself and its surrounding
environment is collected (e.g., performance data). All those data are processed by de-
scriptive, predictive, and prescriptive models in order to adapt the system to handle the
evolving data.

Figure 4.1 presents the MODA framework. The running software is depicted in red,
different kinds of data are shown in yellow, different model roles are represented in white,
and the arrows represent actions related to the models and data. Consider, e.g., a Crisis
Management System (CMS) intended to provide a responsive means to systematically
detect crises and deploy resources to mitigate them (e.g., traffic accidents). In this case,
the running software typically comprises a distributed system with one or multiple back-
ends and databases, sensors, and applications running on the smart devices of the different

CMS participants (first responders, drivers, etc.), and vehicles.
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Figure 4.1 — The MODA Framework (dotted boxes are optional)

The running software processes input data and generates output, depicted by the ar-
rows A and B labelled Input processing and Output processing, respectively. For CMS, in-
put data include information gathered from phone calls (e.g., number of vehicles involved,
affected area, fire), and information gathered from sensors (e.g., GPS data gathered from
workers, vehicles, cameras, weather information). Output data include resource assign-
ments and mission-related information communicated to activate emergency personnel,

as well as information and requested actions sent to other systems (e.g., the police).

The C arrow labelled Measurement represents the gathering of metadata or metrics
about the running software. Gathering such data requires additional effort, ranging from
code instrumentation and logging to human auditing. The gathered data might be filtered
or aggregated in real-time, as well as stored for offline use. For CMS, possible metadata
could include performance measurements, resource usage (e.g., used network bandwidth),

reliability data (e.g., time-to-failure, noise in communication), and detected intrusions.

The last kind of data we distinguish, external data, is any kind of information that is
not explicitly within the scope of the software in the current version of the system. For

CMS, e.g., historical data about past emergencies or social media data could be considered
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to improve crisis management (.J arrow).

The D arrow labelled Generalisation, calibration represents techniques that generalise
from the different kinds of data to yield a descriptive model. These techniques include
conceptual generalisation approaches such as abstraction, synthesis, and type induction,
but also statistical approaches, regression, differential equation inference, complex event
processing (e.g., aggregating many small events into semantically meaningful ones), min-
ing, as well as natural language processing and advanced machine learning techniques.

The generalisation can happen in real-time (e.g., for adaptive systems), or offline.

Building a CMS descriptive model includes matching the received data about an event
with generic crisis templates to classify the unfolding crisis according to well-known cri-
sis types. Subsequently, the templates are parametrised with specific event information,
e.g., the number of victims and vehicles on fire. Models of historical information about
crises could be generated by mining historical data. Scientific models, e.g., fire propaga-
tion modelling, modelling of physical roadway condition in response to different weather
conditions, can be built to help assess the situation. ML techniques can be applied to

analyse traffic patterns.

The E arrow (Preparation for prediction) refers to preprocessing techniques that com-
bine data and descriptive models to build models that can be used to make predictions.
Sometimes descriptive models can be used directly to make predictions (e.g., fault tree
analysis). More often, additional processing is required, e.g., applying techniques for inter-
and intra-polation, using statistical techniques (regression), preparing for simulation and
training of ML models, e.g., neural networks. For CMS, one might prepare a queuing
network and then choose and parametrise a simulator to make traffic predictions. Neural
networks could be trained to discover hidden behavioural patterns that can be used to

prevent potential future accidents or shorten the emergency response time.

The F arrow (Analysis, decision, and change) represents decision support activities
(e.g., what-if analysis) and the application of consequent changes to the prescriptive
model. For CMS; prescriptive models would include mission workflows, safety regulations
that should be enforced, UML descriptions of the software solution, algorithms supporting
communication, etc. What-if scenarios can be run manually or in an automated fashion
(e.g., using hill-climbing / optimising searches, genetic algorithms). Different approaches
can be used for enacting a decision. For instance in self-adaptive systems, a decision might
require a reconfiguration that can be achieved by making changes to the prescriptive ar-

chitecture model (e.g., by means of model transformations), or by updating configuration
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files. In a software product line setting, foreseen adaptations can be achieved by selecting
features that describe previously-designed alternatives, and then adapting the prescriptive
model, e.g., by model weaving or merging. For CMS, one could predict that the network
noise will become significant in the near future and then trigger the decision to switch
to a more robust communication protocol at runtime. Offline extrapolation of current
crises data predicting future needs of the CMS might lead to the decision to develop new

features for the next version of the CMS software.

The G arrow labelled Generation represents the typical software development activities
that use high-level prescriptive models (e.g., requirements models) to produce lower-level
prescriptive models (e.g., design models or executable code). The techniques used here in-
clude model transformations, model instantiation, and compilers. Recently, Al techniques

have also been used in this step to optimise the generation process.

The H arrow (Deployment) involves deploying and executing or interpreting the low-
level, executable models (e.g., code). Here as well, Al techniques are beginning to emerge,
e.g., to optimise node configurations in cloud deployments. For CMS, a new architecture

model could be distributed to all system nodes to switch to a new communication protocol.

Finally, the I arrow (Enactment) represents actions accomplished or enforced in a
socio-technical system based on prescriptive models involving human/social dimensions
(e.g., policies, laws, standards). For CMS, new driving regulations could be devised that
force truck drivers to adhere to stronger safety requirements. Such regulations would have
to be enforced by legal means. Similarly, transparent information dissemination policies

could be put in place to strengthen the population’s feeling of security.

Besides socio-technical systems like CMS, MODA generalises state-of-practice pro-
cesses, technologies, and other systems. Figure 4.2 highlights MODA’s broad applicability
with representative instantiations of MODA. We show three different software develop-
ment processes (waterfall, iterative/agile, and test-driven development; Fig. 4.2a-c), as
well as business process modelling and mining approaches (Fig. 4.2d). The generic na-
ture of MODA even enables its use as an underlying structure for explaining business
modelling approaches (Fig. 4.2e). In Fig. 4.2f-h, we consider workflows in scientific com-
puting [123], commonly-used machine learning pipelines in software development, and
the autonomic computing MAPE-K loop [124]. Note that recommender systems are sim-
ilar to machine learning pipelines in that a predictive model is included in a prescriptive
model to provide recommendations automatically. Finally, we consider the development

of four systems (Fig. 4.2i-1), differing in terms of complexity, availability of data, and
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requirements volatility: (7) a simple mobile app, (i) a control and command system in
an aircraft, (77i) a digital twin application, and (7v) a smart power grid application. Ex-
emplified by the above processes, technologies, and systems, we have illustrated how the
MODA framework is a common reference to guide the use of models, data sources, and

their implied actions to improve the integration of different model roles and data sources.

a) Waterfall Process Model for Software Development e) Business Modelling i) Development of Simple Mobile App
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4.1.4 Relevance of the MODA Framework

A key objective of software engineering (SE) research in the near future is to enable
an engineering-based approach to support rigorous processes and techniques for model
and data integration for the increasingly complex and dynamic socio-technical systems of
tomorrow. To date, SE researchers have used Al as a tool to support SE tasks (e.g., to
improve testing techniques) or applied SE to Al (e.g., to test Al software). Beyond this
bidirectional use, we focus on relating the fundamental role of models obtained through
Al to the fundamental roles of both scientific and engineering models.

We introduce the MODA framework as a conceptual reference framework that provides
the foundations for identifying the various models and their respective roles within any
model-based system development life-cycle. It is intended to be a guide to organise the
various models in data-centric socio-technical systems.

Such a framework also facilitates the identification of open challenges that need to be
addressed in the near future. We mention some of these challenges in the following and
organise them according to the framework’s arrows C' to F' in Fig. 4.1. This list is not
an exhaustive treatment of all challenges (e.g., quality attributes in general, and ethical
considerations of ML in particular, are not discussed). In general, to make MODA effective,
efforts are required in foundational support for data and model interplay (e.g., protocols
and interfaces).

One challenge deals with questions on guidelines regarding when, what, and how (i) to
observe (e.g., systematic methods to derive (arrow D) descriptive models out of observed
data) or (ii) to measure running software (e.g., need metrics that take into account the
measured data (arrow C') such as data related to performance, load, and execution time).
These issues are similar to the monitoring issues faced by the self-adaptive systems com-
munity [125] and the models@runtime approach [126]. However, MODA provides a more
accurate explanation of the different types of models, and thus of the questions to be
answered: what are the methods needed to systematically design the data processing
pipeline from observations to decisions? How can we control data quality through the
entire processing pipeline? How can established ML techniques be used to support de-
sign decisions?” What are the optimal uses and constraints related to online-training and
offline-training?” How can ML techniques be used in data processing that purely runs
online (e.g., observation process), as measurement overhead needs to be kept low?

It is also important to help determine when the different types of models must be

made explicit within the process (e.g., when is it beneficial to have an explicit scientific
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model — in addition to an engineering model — as a descriptive model?), and elaborate
semi-automated model transformations that assist the developers in accomplishing arrows
D, E, and F. This need requires a deep understanding of what kinds of factors affect
the interplay between a descriptive model and a predictive model (i.e., certain descriptive
models make the prediction easier, but their creation requires considerable effort), and how
to learn complex models with ML techniques (i.e., models that process complex inputs
and/or produce complex outputs). In this context, it is crucial to identify the limitations
of the different types of models used in a system. Techniques need to be defined to mitigate
these limitations and still be able to provide high-level guarantees. A plethora of model
integration work exists mainly for engineering models [127]. Recent work has attempted to
integrate ML and SE in Differentiable Programming [128], and ML and scientific models
to define a Theory-Guided Data Science [129]. MODA goes further, though, as integration
of the three different kinds of models requires a common understanding, and we envision
that new kinds of model interfaces will need to be developed to address this heterogeneity
challenge.

Finally, systematic methods are needed for the operationalisation of decision making
that apply predictive models to improve prescriptive models of the system (arrow F'), while
ensuring important prescribed properties (e.g., safety, security). MODA can again be used
to pose relevant research questions. How can we combine useful knowledge extracted from
observations of varying nature (traceability information, quality measures, structural /en-
vironment constraints) with previous/external knowledge in order to refine the predictive
model and enhance or adapt the prescriptive model? How can we systematically deal with
data uncertainty (either coming from uncertain data in the descriptive model or from the
predictive model)?

We envision the MODA framework to be used as a hitchhiker’s guide to explain,
organise, and compare complex engineering processes, software development life-cycles,
system life-cycles, and technologies, while creating a research momentum to address the

open challenges.

4.1.5 What it Implies for Scientific Models and the Support of
Decision Making

The MODA framework gives a clear definition and formalism of the approach we want

to achieve. It highlights the need for a systematic approach to integrate the different types
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of models depending on their roles and the associated data. In our case, it involves the
systematic approach of tailoring descriptive models, here scientific models, to make them
take a predictive role (cf. arrow E of the Figure 4.1) to improve the prescriptive model that
is the decision making process (cf. arrow F'). It also underlines the need of collaboration
between the different communities of modelling (e.g., SE and ES) to achieve the efficient

and relevant integration and complementary of the models in a socio-technical system.

4.2 Understanding the Development of Scientific Soft-

ware

The investigation and work described in this section is the result of a collaborative
work. We participated in this work as one of the two main co-authors of the associated
paper, with equal effort put in the different stages of the contribution (i.e., brainstorming,
writing, reviewing) as the other main author did. We present this work as it embodies
the foundation needed to understand the challenge we face regarding the validation of the
fidelity and credibility of the scientific models. We use the knowledge acquired in this work
in the main contributions of the thesis which are described in the following chapters.

In this section, we explore the overall scientific software development process, we pro-
vide an integrated view of the scientific computing and software engineering activities,
artifacts and roles, and we discuss the trade-offs on the required V&V activities with
regard to the computer languages at hand. This work offers a holistic view through which
we introduce the existing V&V approaches from the literature to support such activities

and the accountability of the respective roles.

4.2.1 The Engineering of Scientific Software

Software engineers generally follow an engineering process, a.k.a. Software Develop-
ment Life Cycle (SDLC), that introduces the required activities to produce software. For
instance, the V-model (cf. green part in Figure 4.3) has been introduced to highlight the
relationships between each activity of the development life cycle and its associated activity
of V&V (cf. Section 2.3.2). In the rest of the section, we use the V-model as a support for
the identification of the main software engineering activities, regardless of the associated
method (e.g., incremental, iterative or agile). The same activities can be retrieved in all

methods, possibly with different time dimensions (e.g., a V-model in each sprint of an
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agile method).
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Figure 4.3 — Overall scientific software development process across the V-model.

In Figure 4.3, we propose an engineering process adapted to scientific software de-
velopment in the form of a V-model, a.k.a. scientific V-model, subsuming the original
software engineering (SE) V-model. We introduce the roles, activities and artifacts of this
V-model, with an emphasis on V&V concerns. The V-model is composed of two branches:
the first one on the left is top-down, corresponding to the successive elaboration of the
various artifacts, and the second on the right is bottom-up, representing the validation
process of the scientific software. At each level, a V&V activity on the ascending branch
is located across from an artifact on the descending branch. The purpose of the V&V
activity is to validate the scientific software with respect to the artifact in question. This
is represented by the dashed arrows in Figure 4.3.

The development of scientific software involves several activities that manipulate dif-
ferent types of artifacts. Thus, the design of scientific software based on mathematical
models requires the involvement and cooperation of various stakeholders ranging from
scientists and engineers to experts in software engineering or numerical analysis. These
stakeholders play one of three roles (according to the development context, one person
might endorse more than one role): scientists as domain experts (S in Figure 4.3), numer-

ical analysts as experts in the discretisation of a continuous phenomenon on a computer
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(N in Figure 4.3), and software engineers as experts of software development to deliver
the expected services (SE in Figure 4.3). It is worth noting the very different background
and expertise of these three roles, and the tight collaboration required across the develop-
ment process. The tasks linked to each role are associated with the activities and artifacts

forming the V-model represented in Figure 4.3.

As presented in Section 2.2.1, the implementation of the scientific software is the
result of a successive refinement of different artifacts, starting with observations and
theories to elaborate the mathematical model, and going through discretisation methods
to obtain a numerical scheme. The implementation of the discretisation process requires
specific skills and it is undertaken by numerical analysts (N in dark grey in Figure 4.3),

in collaboration with scientists who act as domain experts (S in light grey in Figure 4.3).

From that point on, software engineering concerns enter the development process, as
well as the software engineers. While numerical analysts are required as domain expert
(N in light grey in Figure 4.3), such software engineering concerns require specific skills
brought by software engineers (SE in dark grey in Figure 4.3). This is represented on
the middle lower part of Figure 4.3 with a second, nested V-model (in green) correspond-
ing to the usual V-model used in software engineering (cf. Section 2.3.2). This V-model
effectively bridges the gap between the numerical scheme — which can be considered as
the stakeholder requirements for scientific software — and the software engineering pro-
cess. It encompasses all the software engineering concerns to obtain a reliable working
software, including performance, concurrency, targeted architectures, memory manage-
ment, data access, and so on. The different artifacts and steps are the same as described
in Section 2.3.2.

Once the software engineering V&V concerns have been addressed, the conformity of
the scientific software to its original mathematical model is ensured throughout a step
we called discretisation testing (cf. Figure 4.3). During this testing activity, numerical
analysts aim to validate whether the scientific software produces results that are within
an acceptable margin with regard to the results that would be obtained by analytically
solving the mathematical model. The techniques used for discretisation testing vary in
their level of rigour, depending mostly on the availability of an exact solution to the
mathematical model. Without such a solution, techniques such as symmetry, conservation,

or Galilean invariance testing can be employed [130].

These techniques leverage domain knowledge that the numerical solution should ex-

hibit specific characteristics such as symmetry when provided with symmetric geometry
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and conditions, conservation of some physical properties (e.g., mass, energy), or be unaf-
fected by operational changes such as inverting the axes of the coordinate system. Note
that, as these tests rely on domain knowledge, some might not be used from one field to
another (e.g., when no symmetry is present). Another technique that can be used without
an exact solution is code-to-code comparison [131], which consists in running a simulation
of the same mathematical model embedded in another piece of scientific software, and

comparing the results.

Yet, obtaining the highest degree of confidence in the discretised model requires tech-
niques leveraging an exact solution to the mathematical model. When an analytical so-
lution is not available, exact solutions can be obtained through the use of the method
of manufactured solutions [132], which constrains the simulator to compute a solution
chosen beforehand (the so-called manufactured solution). Whether analytical or manu-
factured, an exact solution allows to employ rigorous techniques such as discretisation
error quantification, iterative convergence testing, and order-of-accuracy testing, respec-
tively in order of increasing rigour [133]. In essence, these techniques aim to assess whether
the discretisation error, 7.e., the difference between the numerical and the exact solutions,
tends toward zero as the value of the discretisation parameters decreases, and thus that

the numerical scheme is a correct discretisation of the mathematical model.

Finally, the last V&V step we designate as model testing is conducted by scientists.
Model testing (a.k.a. model validation) aims to statistically quantify the disagreement be-
tween the numerical solutions and the available experimental data, and to assess whether
the resulting uncertainty is acceptable within the application domain of the model [64].
Ideally, these data are collected through a set of validation experiments. Validation experi-
ments are a special kind of experiment aiming to measure the conditions of the experiment
as precisely and completely as possible, with less emphasis on controlling the environment
than for other kinds of experiments [134]. This distinction allows to run simulations of
the model whose inputs match very closely those of the experiments, and thus to assess
the fidelity, in these precise conditions, of the outputs of the simulations with regard to

collected measurements.

Overall, the different testing activities of the scientific V-model can be related to the
corresponding steps of the software engineering V-model: the implementation testing step
can be conceptually compared to the unit and integration testing step, the discretisa-
tion testing to the system testing, and the model testing to the final scientific software

acceptance testing.
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These activities serve the same purpose but use different techniques, according to
the nature of the artifact under test. The observations fulfil the role of the stakeholders
requirements in that they directly represent the essence of the phenomenon to be modelled.
The mathematical model can be considered as the software requirements as it encompasses
the global scientific behaviour of the physical system the software should encode. The
numerical scheme reflects the purpose of the global and detailed designs as it specifies how
the numerical solution to the mathematical model should be computed in the software, and
how each step of computation is related to one another, in a similar way as the behavior
and interaction of units and components are described in the design specifications.

However, the techniques used are distinctive as they depend on very different natures
of artifacts — present on the left top-down branch of the V-model depicted in Figure 4.3 —
on which they validate the software. For instance, discretisation testing, which we relate
to system testing in the context of scientific software development, aims at validating
the scientific software with regard to the mathematical model. Since the mathematical
model consists of mathematical equations, associated V&V techniques manipulate math-
ematical concepts such as the convergence of numerical sequences in the case of iterative
convergence testing. Alternatively, the system testing phase of the nested V-model uses
the software requirements as a reference to assess the validity of the software. As those are
software specifications, the testing techniques manipulate software states and behaviours.
They ensure that the different states are consistent from a software perspective. For ex-
ample, that multiple simultaneous runs of the software do not affect the output of each

individual run.

4.2.2 Modelling Comes with Responsibility

The overall development process is complex and challenging when it comes to ensure
reliable scientific software. To mitigate this complexity and allow scientists and numeri-
cal analysts to directly implement their scientific software, existing computer languages
come with dedicated constructs that balance the responsibility between the language user
and the language provider. We explore various computer languages at hand to implement
scientific software according to their provided constructs, and discuss the consequences
on the expressive power and on the required V&V activities. We illustrate this in Fig-
ure 4.4, where we rely on the V-cycle for the development of scientific software proposed
in Figure 4.3. In Figure 4.4, the orange and blue colours are used to identify who supplies

what artifacts and who is responsible for what V&V activities. The orange colour refers
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to language users, while the blue colour refers to language providers.
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(a) Scientific software development using an existing simulator (eg., Modflow [135]).
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Reusing Existing Simulators

Figure 4.4a shows the situation where scientists directly use existing scientific software
such as MODFLOW [135] or MITgem [136]. In this situation, language users are scientists
configuring the models encoded into an existing piece of scientific software for their specific
case. The language used in this case corresponds to a configuration language used to
configure simulators and run simulations according to specific parameters (e.g., FloPy for
MODFLOW [137]). Language users specify fixed input quantities such as the geometry, or
physical modelling parameters of the system and obtain a simulator specific to a certain
context (e.g.,groundwater flows in a specific watershed area). Then, for each simulation,
language users specify the input quantities that vary from one simulation to another, such
as the initial and boundary conditions, or the system excitation over time.

Oftentimes, some of those input quantities are unknown (e.g., when they cannot be
measured in the field), or known only with a high uncertainty. In such cases, language users
will need to conduct model calibration to reduce the parametric uncertainty of their model
and obtain useful results. Over the years, a number of techniques have been developed
to conduct model calibration [138]. Yet, model calibration cannot eliminate every source
of uncertainty. Thus, some means of propagating uncertainties over the inputs through
the model to obtain the corresponding output uncertainties are required (e.g., sensitiv-
ity analysis [69]). While numerous black-box methods exist, white-box (a.k.a. open-box)
methods that leverage domain knowledge receive more attention [139]. However, such
methods require access to internal variables of the embedded model. The latter must thus
be exposed as configurable simulation parameters to enable the use of certain state-of-
the-art techniques.

In the situation depicted in Figure 4.4a, the simulator offers abstractions specific to
the embedded mathematical model (e.g., soil permeability, porosity), which users can
parametrise to run context-specific simulations through the underlying scientific software.
Thus, developers of a simulator must first endorse all the responsibilities associated with
the development of a complete piece of scientific software, as covered in the previous
section, including implementation, discretisation, and model testing.

An important language-related responsibility that befalls simulator developers is to
clearly identify, document, and enforce as much as possible the validity envelope of the
abstractions exposed by the configuration language of the simulator, to prevent its misuse.
In the general sense, we define the validity envelope of a language as the set of valid pro-

grams one can write with that language. In the case of a configuration language dedicated
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to a specific piece of scientific software (such as FloPy), this validity envelope must pre-
vent unsound module and parameter combinations, and enforce the value of parameters
to be within their bounds (e.g., non-negative volume of rainfall).

Due to combinatorial explosion, an abstraction of the domain is generally required to
identify and enforce the validity envelope of configuration languages, as far as unsound
combinations of parameters are concerned particularly. This will, in turn, necessarily result
in false positives or false negatives. Techniques such as sensitivity analysis can be used to
identify the relationships between the different parameters, and thus detect such unsound

combinations.

Languages for Mathematical Models

When existing scientific software do not embed the desired mathematical model, one
will need to define their own. Defining a mathematical model and deriving the corre-
sponding scientific software can be done directly, using languages such as Mathematica 3
or MATLAB.* Figure 4.4b depicts the development of such languages and the develop-
ment of scientific software using them.

In this scenario, language users are scientists implementing their mathematical model
using a language that offers constructs at the corresponding abstraction level (i.e., con-
tinuous mathematics), and allows them to derive the corresponding piece of scientific
software. Thus, they endorse the responsibility of addressing the V&V concerns asso-
ciated with model testing — identified in the previous section — since those are out of
scope of such a language. In addition, in order to validate the implementation of their
mathematical model with regard to its specification, language users perform discretisation
testing.

However, as explained in the previous section, when no analytical solution to the
mathematical model is available, the most rigorous techniques for discretisation testing
(e.g., iterative convergence testing, order-of-accuracy testing) can only be used by em-
ploying the method of manufactured solutions [132], which requires to inject source terms
into the discretised model. Therefore, to enable the use of these techniques, the language
needs to either provide tools allowing it, or to directly give access to the discretised model.
Otherwise, only less rigorous techniques such as those described in the previous section

can be employed to conduct discretisation testing.

3. https://www.wolfram.com/mathematica
4. https://matlab.mathworks.com
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Language providers are in charge of designing continuous mathematical constructs
(e.g., differential blocks in MATLAB’s block diagrams) allowing language users to de-
fine their mathematical models, and also developing the infrastructure (e.g., compiler) to
derive reliable working scientific software from any mathematical model. This language
infrastructure performs automated and possibly configurable discretisation and scientific
software derivation (as indicated by the blue numerical scheme and scientific software
boxes on Figure 4.4b). So, language providers must handle the corresponding V&V con-
cerns (i.e., the concerns pertaining to the discretisation of their language constructs), as
well as the software engineering concerns — encapsulated into the SE V-model — which are
tied to the implementation of their discretised language constructs.

For that reason, in addition to software engineers, numerical analysts take an active
part in language design, and scientists come in assistance to provide the language require-
ments and criteria for the verification and validation of the language constructs and of
their discretisation. While the techniques used to address the V&V concerns related to
the discretisation of language constructs and of plain mathematical models are the same,
they are here applied to individual language constructs and combinations thereof, instead
of complete mathematical models. The objective is to cover as many valid uses of the
language as possible to check that its validity envelope subsumes the application domain
intended for the language.

Finally, to allow language users to validate the implementation of their mathematical
model, tools for discretisation testing should be provided, in particular tools allowing an
automated use of the method of manufactured solutions. This allows language users to
perform the required validation at the level of abstraction of the language (the continuous

mathematical level in this case), which is an essential functionality of software languages.

Languages for Numerical Schemes

When more control is required over what discretisation methods to apply and how to
apply them, and when languages at the mathematical level of abstraction do not fit this
need, one has to handle the discretisation step oneself. Figure 4.4c depicts a situation in
which numerical analysts use languages dedicated to the definition of numerical schemes
(or with the right abstractions to do so) such as NabLab [140], Julia [141], SciPy [142],
GNU Octave (https://www.gnu.org/software/octave/), or Blitz4++ (https://github.
com/blitzpp/blitz). These languages allow to automatically derive the corresponding

piece of scientific software, on which the scientific V&V activities listed in the previous
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section can be conducted, without having to handle software engineering concerns.

In this scenario, language users are numerical analysts who apply discretisation meth-
ods on mathematical models provided by scientists to obtain numerical schemes, that they
implement using a language that offers constructs at the corresponding level of abstrac-
tion, and that allows them to derive a piece of scientific software for the discretised model.
Therefore, they endorse the responsibility of addressing the V&V concerns corresponding
to discretisation testing while scientists endorse the one associated with model testing.
Indeed, those responsibilities are out of the scope of a language at the numerical scheme
level of abstraction, as indicated by the orange colour of the corresponding boxes in Fig-
ure 4.4c. Finally, language users must validate their implementation of their numerical

scheme with regard to its specification, which is the aim of implementation testing.

In this situation, implementation testing is performed with the aid of tool support from
the language that allows language users to stay at the same abstraction level (i.e., discrete
mathematics), without having to consider system concerns such as memory management

Oor concurrency.

Language providers expose discrete mathematical constructs that allow language users
to implement their numerical scheme. From the numerical schemes defined with those
constructs, the infrastructure of the language (e.g., model transformations, interpreters,
compilers, code generators) derives the corresponding piece of scientific software. There-
fore, language providers must tackle the system concerns (e.g., memory management,
concurrency, data management) and corresponding V&V concerns of the language infras-
tructure to make it possible to tackle the concerns of the scientific software thus generated.
In essence, this means that the concerns must be addressed for any valid numerical scheme
written by the language user, which is depicted in Figure 4.4c by the blue color of the SE

V-model and scientific software.

While this task is mainly undertaken by software engineers, the assistance of numerical
analysts is required to both define the required expressiveness for the language (which in
turn allows to derive the stakeholder requirements from a given numerical scheme), and
perform the necessary V&V activities to ensure that the effective semantics of the derived
piece of software is equivalent to the semantics of the provided numerical schemes. In
other words, software engineers require the assistance of numerical analysts to tackle
concerns related to the abstractions at the discrete mathematics level, and clearly define

the validity envelope of the language.

Then to foster the robustness of the V&V process spanning the entire V-model, lan-
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guage providers should offer tool support allowing language users to perform implemen-
tation testing at the discrete mathematics level of abstraction. This tooling can take the
form of a dedicated debugger, and optimally includes facilities dedicated to the analysis of
numerical schemes such as plot drawing, monitoring variable values and watch expressions
(i.e., exogenous expressions of no interest for actual simulations, evaluated for debugging
purposes only), and conditional breakpoints and step-by-step execution to detect and

investigate faults in the numerical scheme.

Languages for Scientific Software

Finally, when performance is critical to a particular piece of scientific software, be
it in terms of memory or execution time, specific hardware and architectures need to be
targeted (e.g., heterogeneous and performance-oriented infrastructures such as distributed
CPU-GPU architectures). If no language for either mathematical models or numerical
schemes supports the targeted type of architecture, system-level languages such as C,
C++, and Fortran can be used, conjointly with APIs such as OpenMP, and standards such
as MPI and SYCL. Continuous progress in the hardware domain and in the field of high
performance computing (HPC) pushes the developers of performance-critical scientific
software to use such system-level abstractions, as they are often the only way to leverage

the latest HPC-specific technologies.

Figure 4.4d depicts developments where language users express the particularities of
their simulator with regard to all the concerns involved in the development of scien-
tific software, ranging from the mathematical model, to the encoded numerical scheme,
to system-level concerns such as concurrency, memory, and data handling. In this case,
language users must also endorse the responsibilities of addressing the V&V concerns
corresponding to each step in the development process, from the V&V of the aforemen-
tioned system concerns, to discretisation testing, to model testing. In such a situation,
another possibility for language users is to take the role of language provider for an
existing language for mathematical models or numerical schemes. This places them as
language providers in the situations depicted in Figure 4.4c or Figure 4.4b. As such, they
can broaden the range of architectures that can be targeted by the existing language
by including their architecture of choice, and thus foster the use of the language in the
community as a language at a higher abstraction level than system-level languages that

nonetheless allows to target state-of-the-art hardware.
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4.2.3 Key Takeaways regarding Scientific Software and Associ-

ated Languages

When developing scientific software, dedicated languages for mathematical models and
numerical schemes (e.g., MATLAB, NabLab, SciPy) bring benefits to users from the scien-
tific community with regard to languages at a low abstraction level (e.g., C++, Fortran),
as low-level V&V and performance concerns are addressed as part of the development of
those high-level, dedicated languages. This means that users of such high-level languages,
i.e., scientists and numerical analysts, can leave aside software engineering concerns to fo-
cus on their area of expertise and the associated V&V concerns, resulting in an increased

robustness of the end-to-end development process of scientific software.

In exchange for these benefits to language users, designers of high-level, dedicated lan-
guages face additional challenges: the higher the abstraction level offered by a language is,
the more steps and complexity in the V&V process of the language itself there are. These
languages have to guarantee the correctness and performance of the scientific software
resulting from any valid piece of code, mathematical model, or numerical scheme written
with them, and provide tools to language users to validate their use of the language.
For instance, developing a dedicated language at the mathematical level requires the de-
signers to ensure not only that their implementation and discretisation testing cover any
mathematical model written with the language, but also that users are able to perform

discretisation testing specific to their precise piece of scientific software.

We highlight in this section the importance of extensively documenting the V&V pro-
cesses that are conducted as part of the development of a language. This allows language
users to clearly identify what V&V concerns are or not already addressed as part of a
language. Consequently, users can pick languages according to both their goals in terms
of scientific software development, and to the V&V concerns they are able to continuously
address themselves according to the state of the current knowledge. This way, scientists
are less likely to have to handle software engineering concerns when they do not want to
double as software engineers. In addition, this allows to capitalise on the aforementioned

development and V&V overhead that comes with the development of those languages.

Another key point is the need for language providers to offer, as part of the language
infrastructure, facilities to allow language users to conduct V&V activities tailored to
their specific simulation model. This enables the continuity of the V&V process, from

user-defined program to scientific software, and fosters both transparency of the complete
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development process, and trust in the resulting scientific software.

This work leads to a clarification of the roles of the various stakeholders taking part
in the development of scientific software. A reasoned approach for the development of
reliable scientific software has been proposed that allows to clearly characterise the validity
envelope of this type of software. We believe that the generalised use of our approach will
allow to systematically characterise the validity envelope of scientific software, to make it

explicit and thus lead to a better and safer use of these software.

4.3 Summary

The presented contributions highlight the relevance and need for collaboration between
the modelling communities of software engineering and environmental science. There is
indeed a need to integrate the different types of models (e.g., scientific and engineering
models) according to the role they can take in a socio-technical system as well as a
need to elaborate the systematic approaches that allows that integration. The case of
supporting decision making is a relevant example. An approach to take into account
the primary descriptive role of the scientific models and their newly predictive role for
prescriptive purposes is essential to make scientific models a crucial support of decision
making. To be applicable, this approach must be able to ensure the reliability of the
results produced by the scientific models. As the development and validation of such
models are based on several artifacts and the involvement of different roles or stakeholders,
the approach has to take into account the modelling objectives and context as well as
the domain of application. In all, the researchers in software engineering (and related
domains) have thus a decisive part to play in tackling the different challenges faced by the
researchers in environmental science. Their expertise is required to elaborate tools and
methods (e.g., languages, approximation technique) that can help the scientists ensure
the reliability of the scientific models that are to be used in a socio-technical context such
as the support of decision making.

Concerning the thesis’ issue of tailoring of environmental models, the contributions
enable us to answer Challenge 1 of demystifying the scientific models and their comple-
mentarity to engineering models as well as their specificities regarding their development
and, more specifically, their validation. The tailoring approach will answer the need for the
integration of models with the descriptive, predictive, and prescriptive roles for supporting

decision making. Moreover, the approach has to be validated to ensure its reliability with
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regard to the goal that is decision making and the environmental domain of its application.
The validation cannot consist of V&V techniques that focus only on the implementation
aspect but also must relate to its application domain. Validation has to involve the skills
of the different stakeholder roles that are associated with the different artifacts which are

embedded in a scientific software.

Take-away Messages of the Chapter

The systematic tailoring approach of scientific models, based on approximate com-

puting, that we want to achieve, has to integrate the different stakeholder roles
involved in the development process to support decision making and to ensure the
reliability of the projections by taking care of the validation of the approach with
regard to the modelling context (i.e., application domain and objectives) and the

specificities of scientific software.
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CHAPTER 5

APPROXIMATE SCIENTIFIC COMPUTING

In this chapter, we propose to investigate AC' for scientific simulation models to provide
relevant trade-offs between accuracy and performance. This contribution is the main step
to answer the challenges related to making scientific models support decision making. We
present the loop aggregation technique that enables execution speed-up of the simulations
while ensuring the credibility of the results, with a systematic approach with a minimal
set-up.

We present a new approximate computing (AC) technique, called loop aggregation.
According to the main variable of interest, we automatically reduce the main loop of the
simulation model by aggregating the corresponding spatial or temporal data to a specific
degree. This aggregation can be either applied as a pre-processing of the input data or by
model transformation. For example, in the case of an a posteriori study of the causes of soil
drying-up with all the necessary data available, it is worthwhile to use the pre-processing
implementation. Or, in the case of a crisis situation and the continuous monitoring of a
sudden and dangerous flooding episode, the model transformation will be able to manage
the available on-going data. We apply loop aggregation on a geophysical model of a

hydraulic simulation with various input data from different sites and climate series.

5.1 Approach Overview

To handle the issue of non-comparable simulations, that was exposed in the Sec-
tion 3.3.3 and that are caused by AC when removing some iterations from the loop, we
reduce the number of computations while ensuring comparable conditions (eg. same du-
ration of the simulation period for Modflow). We introduce a new AC strategy adapted to
scientific models, the loop aggregation technique (depicted in Fig. 5.1). This technique
is similar to loop perforation (cf. Section 3.3.2) and loop unrolling (cf. Section 3.3.2) since
it skips some number of loop iterations but adds specific stages to keep the results and

simulation consistent with the baseline. It acts on the main loop of the simulator which is
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the loop iterating at the highest level on all the input data and enclosing all the processing
of those data. The loop aggregation technique has three stages:
— aggregation (highlighted in blue): the input values of the main variable of interest

are aggregated through an aggregation function.

— processing (highlighted in violet): the operations within the loop are only performed

on aggregated values.

— interpolation (highlighted in pink): the intermediate results are retrieved through

an interpolation function.

Loop Aggregation {@é}
T Data Pre-processing (e dataset) |
ifor (i=0; i<=N; i+=p) {
' Val_agg(i) =
| Aggregate(Val(i-p+1),..., Val(i))

1 H Model Transformation (e.g., live stream)

: ifor (i=0; i<=N; i+=p) {
i’//// 5 : Val_agg(i) =
; . i Aggregate(Val(i-p+1),...,Val(i)) :
: | for (1=0; i<=N; i+=p){ i i
! Interpolate(result(i-p), result(i)) H
i3 i

Lif (i>e) {

‘-——--—--»-----»---"----"--"-"-""“"'“"""; result(i-p+1),..., result(i-1) =
E Interpolate(result(i-p), result(i)) i

Figure 5.1 — The Loop Aggregation technique approach.

As shown in Fig. 5.1, the simulation context guides the type of the loop aggregation
implementation : data pre-processing or model transformation. Both implementations are
equivalent as they reflect the loop aggregation approach. The difference is that the three
stages are not carried out at the same moment. When all the input data are available before
the model is run, a black-box implementation relies on the separation of the three stages
(Data pre-processing). The aggregation stage acts as a pre-processing before the model
execution, hence the name of the strategy. The values of the input data are aggregated
according to an aggregation parameter, p. The processing stage is carried out when the
model runs with the model remaining as it is. The interpolation stage is then performed
as post-processing after the model execution. With a simulation context of dynamic data
flows (ie. stream data), the model transformation strategy is used. It is then necessary to
perform the three stages of approximation dynamically to take data into account when

they are retrieved. This implies accessing the model source code and adopting a white-
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box approach. All the stages and the modifications are made within the main loop of the
model and the value of the iteration step is replaced by p, the value of the aggregation
parameter.

In essence, the loop aggregation technique adds an aggregation stage to the ap-
proximation process described in approximate loop unrolling (cf. Section 3.3.2) to enable
AC with scientific models. It enables a black-box implementation with separate stages
running at different times when all data are available or a white-box implementation with
a model transformation when dealing with dynamic data. The number of computations is
reduced by the use of the p-parameter and the approximate simulation is still comparable
to the reference one. In theory, the technique can be applied to all scientific models with a
main loop iterating over temporal or spatial data. There is no need for specific knowledge
about the application domain of the model except for information about the use of the

model.

5.2 Experimenting Loop Aggregation on a Hydroge-
ological Model

This section details the application of loop aggregation on a hydrogeological simu-
lation model. The goal is to speed its execution up in order for the complex simulation

model to be used in the context of decision making related to climate change.

5.2.1 Motivating Example

Hydrologists are working to determine the impact of the sea level rise on coastal
aquifers, on increased saturation levels, and associated consequences on inland vulnera-
bility. Between the current state of the aquifers and the predicted sea level rise and climate
scenarios, hydrological models are expected to provide predictions.

Those models are based on the three-dimensional software Modflow [135] considered
to be an international standard for simulating and predicting groundwater movements. It
is based on Darcy’s law and conservation principles to represent the groundwater flows.
Groundwater flows are essentially modelled by a diffusion equation with Dirichlet bound-
ary conditions when the groundwater level reaches the surface. The resulting parabolic
partial differential equation is discretised with a finite difference method and integrated

with classical implicit temporal schemes [143]. The quantity of interest to assess the
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groundwater-issued vulnerability is derived from the depth to the groundwater level. When
groundwater levels rise to some tens of centimetres to the surface, vulnerability becomes
difficult to mitigate. Modflow requires both the geological and geographical settings of
the studied site (inputs illustrated as Geology and Land Use in Fig. 5.2) and the meteoro-
logical forcing term (represented as the Weather input in Fig. 5.2) driving the infiltration
and the recharge to the aquifer. This configuration does not change over the simulation
period. The meteorological forcing term comes from climate scenarios available on the
next century with the estimation of the different elements of the hydrological balance
taken here as the input (recharge) to the aquifer. The groundwater flow model provides
over the simulation period the location of the groundwater surface, more generally called

water table.

Land Use Decision

N - y Exploration 1
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Figure 5.2 — Exploration of several climate scenarios simulations for various stakeholders.

As shown in Fig. 5.2, although the model was created by and for hydrologists, the
simulation results can also be of interest to other users. Indeed, with growing awareness
of climate change, general public including decision-makers increasingly ask to investigate
by themselves the effect of climate change on property and land use planning. Overall,
people want to explore the different future climate scenarios, and associated simulations,
in an interactive way to make informed decisions or to understand their impact.

Since Modflow is a complex model, its execution can last more than a day. This
simulation time is multiplied by the number of scenarios to explore which prevent effective
and interactive exploration of the predictions. Making the model run faster would enable
such exploration, but the predictions obtained must remain scientifically acceptable to

respect the main trends and avoid any significant bias.
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Thus, there is a need for finding a trade-off between accuracy and performance. A
solution is to simplify the model. However, hydrologists and/or decision-makers may not
have the expertise to make this trade-off through model reduction. This raises several
scientific questions : (i) Can we make Modflow run faster while maintaining acceptable
predictions? (ii) Can we do so without any expertise in hydrology or model simplification
and any time-consuming/resource-demanding set-up? (iii) More generally, how to achieve

it for scientific simulation models?

5.2.2 The Case Study of Modflow

The case study of our motivating example is based on the prediction of groundwater
movements in a watershed near Lestre in Normandy in France to assess the risk of in-
creased saturation at this site. The prediction period for the simulation is 42 years and is
represented by 15340 stress periods (ie. time steps) whose duration is set to correspond to
a simulated day. The parameters of the model have been set by hydrologists. Executing

Modflow with those inputs and non-aggregated data constitutes the reference simulation.

5.2.3 Approximating the Model with the Loop Aggregation Ap-

proach

We derive the approximate simulations using our loop aggregation technique with
different aggregation parameters (p) to assess the variation of the simulation execution
time.

In the case of Modflow, the main loop iterating over the stress periods, the compu-
tation reduction is done by removing some of them. The values of the recharge rate are
aggregated as it is the variable of interest. As all the input data are available upstream,
we perform our loop aggregation approach on those data following the Data Pre-pro-
cessing implementation. We experiment two strategies for the aggregation stage (detailed

hereafter) and linear regression for results interpolation.

Strategy with the Mean as Aggregation Function of the Recharge

The recharge data are aggregated for p being equal to 2, 7, 30, 90, 182, 365, 730 and
3652, corresponding to stress period durations of 2 days, 7 days, 1 month, 3 months,
6 months, 1 year, 2 years and 10 years. Those values of p were chosen to represent mean-

ingful periods for hydraulic and meteorological events.
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The mean is chosen as the aggregation function. The choice has been made according
to the use of the recharge rate and according to the advice of experts to maintain the
overall flux balance. To ensure comparable approximate simulations, the aggregation has
also to impact the values of the stress period duration. Indeed, the simulation period must
represent a span of 42 years. The stress period duration of the aggregated stress periods
is thus changed into the value of p. For instance, with p = 2, the inputs are modified as

shown in Fig. 5.3a.

Stress SP =2 Stress SP
Period | Duration R(en:II‘Laarg)e I:'—)- Period Duration R(i::;:’aarg)e
Number (days) Y Number (days) ¥
o] 1 0.00000 o] 1 0.00000
x 1 1 0.00001 jr 0.00001 "-20,00000 2 2 0.00005
2 ! 000000 4 2 0.000855
Nl s 1 0.00012 000012+ 000159, /
4 1 0.00159
(a)
Stress sP =2 Stress SP
Period | Duration R(?:? daarg)e p—)- Period Duration R(:;:’aarg)e
Number (days) Yy Number (days) Y
o] 1 0.00000 0 1 0.00000
1 1 0.00001 1 2 X
xR J s 2 0.00000
2 1 0.00000 4 2 0.000159
Nl = 1 0.00012 0.00159
4 1 0.00159
(b)

Figure 5.3 — Aggregation strategies with p = 2. a : mean as the aggregation function of
the recharge. b : p-th value assigned as the aggregated value of recharge.

Strategy with Assigning the p-th Value as the Aggregated Value of Recharge

The aggregation is again carried out for p being equal to 2, 7, 30, 90, 182, 365, 730
and 3652. The stress period duration is changed into the value of p and the recharge value
of the p-th stress period is assigned as the mean recharge value for the corresponding

aggregated stress periods. The aggregation is carried out as presented in Fig. 5.3b for

p=2.
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5.2.4 Conditions of the Experimentation

Modflow is run as a Fortran executable with compiled code for computing the ground-
water flows in the aquifer. A wrapping software layer written in Python by hydrologists
is used to configure Modflow and format the simulation inputs. The version of Modflow
used is MODFLOW-NWT-SWRI1, the U.S. Geological Survey modular finite-difference
groundwater-flow model with Newton formulation and with the version number 1.1.4 re-
leased on 04/01/2018 associated with the SWR1 which version number is 1.04.0 released
on 09/15/2016.

The experimentation is done on a single node with a Intel(R) Xeon(R) CPU E5-2650
v4 processor with 2.20GHz. Each simulation is run on a single core with 2 threads and 8GB
RAM. The model is embedded inside a Docker image deployed on a virtual machine for
each simulation. The virtual machine is a Alpine Linux 3.4.3 amd64. Through the Docker
image, the memory available for each simulation is limited to 2Gb. These measures are

taken to limit variations in the experimentation environment.

5.3 Evaluation

In this section, we validate our ability to apply the loop aggregation on our moti-

vating scenario presented in 5.2.1. The goal is to answer the following research questions

RQ1: Is loop aggregation able to perform substantial performance increase while
maintaining meaningful results for experts?
RQ2: Is the loop aggregation technique able to produce relevant trade-offs for var-

ious input data such as climate scenarios and geographical sites?

5.3.1 Acceptation Criterion

The hydrological model is based on Modflow, which is a previously developped sim-
ulator (cf. Section 4.2.2), that has been calibrated and validated beforehand. Hence, the
validation of the outputs resulting from the approximation simulations focuses on the val-
idation with regard to the domain application (cf. model testing in Section 4.2.1). Domain
experts have established an approximation indicator called acceptance criterion (here, the
H indicator), which represents a threshold under which the indicator value should remain

for the approximated results to be considered acceptable.
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Simulation approximations are defined on the quantities of interest of the models. Con-
sidering the issues of coastal saturation, the relevant quantities derive from the proximity
of the aquifer to the surface, what we can call the zone of saturation vulnerability. When
the top of the aquifer (water table) approaches the soil surface at a distance smaller than
d., water resources, soil humidity, flooding risks and other human activities are impacted.
The characteristic distance d. depends on the type of human activity (eg. agriculture or
cities).

However, the transition from the water table being outside the vulnerability zone
to being inside it is not sharp. Rather, there is a transition zone from a zone with no
vulnerability, when the aquifer is deep enough, to a zone with vulnerability, when the
aquifer is close to the surface (Fig. 5.4). The width of the transition zone will be noted
Ad,. and be taken as a linear function of d. with Ad.(x) = ad.(x) where « is the
proportionality factor and @ is the position. With d. typically of the order of 30 cm and
a equal to 1/3, the transition width, Ad,, is of the order of 10 cm.
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Figure 5.4 — Vulnerability zone and the associated representation of W's.
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Approximations on the quantities of interest will thus be weighted according to their
proximity to the surface with the function Wy (h), presented in 5.1, where h is the piezo-

metric level and z, is the altitude of the soil surface.

0 if h < 2, — (d+ &)
W) = $sin (3 C0 ) i, — (0 28 <h<a - (d+22) G
1 if b > 2, — (d, — &)

The H indicator ||Ah]|, on the saturation level is defined by Fig. 5.2. The threshold

for the H indicator is set by hydrologists to 0.1 m, meaning that any approximation of
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the water table depth within a margin of 10 c¢m is acceptable. Variables issued by the

reference and approximate simulations are indexed by the letters R and A respectively.

AR, = J 4 3 maz (W (o e, )) W (i (e, )] (i (0) = (2.0

5.3.2 Performance Increase with Loop Aggregation

To answer RQ1, we assess the performance increase and the acceptation criterion
when applying loop aggregation on the Modflow model (Section 5.2.1). We use two
aggregation strategies with the same inputs (site, ie. Lestre, and recharge series). The

reference simulation is run in 34032 seconds, ie. 9 hours, 27 minutes and 12 seconds.

Experiments with the Strategy of the Mean as the Aggregation Function

We observe in Fig. 5.5a-c that the more approximated the simulation is, the faster it
is. It follows the rational idea that, for a dominantly linear model, the duration of the
execution is directly linked to the number of iterations in the loop. With respect to the
acceptance criterion, the approximated simulations performed in our experiment with a
period of less than one year (p = 365) are considered to produce acceptable outputs.
Within these acceptable outputs, the shortest execution time (1149 seconds or 19 minutes
and 9.0 seconds) is obtained with the simulation of one year stress periods. The execution

time is reduced by more than 29 times, a speed-up of more than 96.6%.

Test with the Strategy of the p-th Value Assigned to the Aggregated Value

Loop aggregation shows again a performance gain (Fig. 5.5b-d). We observe that the
H indicator is higher for the same aggregation rate than for the previous strategy which
is consistent with the fact that we introduce more approximation here (ie. the recharge
values of the aggregated iterations are not taken into account). The best speed-up is
87.49% with p = 30 (Fig. 5.5d).
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Figure 5.5 — Evolution of the H indicator and speed-up according to p for the mean
aggregation function strategy (a and c) and for the strategy with the p-th value as the
aggregated value (b and d). The red dashed line represents the value of the acceptation

criterion. ¢,d : H Ind. = H Indicator.
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Stability of the Execution Time Across Simulations

To assess the stability of the execution time obtained for the simulations, we run 30
replicates of the reference simulation and 30 replicates of the simulation with p = 365
and p = 3652. We use here the approximation with the mean aggregation function. The
summary of the results is shown in 5.1. The execution times are stable enough to back the
conclusion of substantial performance increase, ie. the standard deviations and relative

standard errors are significantly lower than the speed-up.

Number of Mean Median Standard Deviation RSE
replicates (s) (s) (s) (%)

1 30 3.57TE+04  3.66E+04 3.01E+03 8.42

365 30 1.02E4+03  9.68E+02 1.71E402 16.77

3652 30 2.07TE+02  2.00E+02 2.76E+01 13.33

Table 5.1 — Variability of time across replicate simulations. RSE = Relative Standard
Error.

To answer RQ1, the loop aggregation provides substantial performance increase

while preserving accepted results for the Modflow hydraulic simulator.

5.3.3 Approach Robustness

To answer RQ2, we experimentally explore using loop aggregation with other in-
puts such as climate scenarios (i.e. recharge series) or geographic sites. In these experi-

ments, we use the mean aggregation strategy for the following case studies.

Another Climate Scenario

In this experiment, we use another climate scenario while the rest of the experiment
inputs remain the same as in inprevious section. Again, loop aggregation leads to a

substantial speed up 84.84% (p = 90), while remaining within the acceptation criterion.

Replication on other Geographical Sites

We conduct the same experimentation on 22 other geographical sites. The cumulative
execution time amounts to 24 days, 15 hours, 44 minutes and 27 seconds. The speed-up
between the reference simulation and the fastest acceptable approximation is illustrated

in Fig. 5.6 across the sites.
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Empirically, we find that loop aggregation enables an acceptable approximate sim-
ulation for all sites. The gains are not homogeneous but they are substantial. The mean
and median speed-up are 91.93% and 95.13% with a minimum of 72.26% (Doville) and a
maximum of 99.78% (Graye-sur-Mer).

m Reference Approximate

Simulationtime
sy
o8 B R = (I« < R =
3 [ R - [ R - |
] o R [ I - |
] o R [ I - |
] o R - [ R |
|
I
]

cra
]

I){| . ___ |
]
|
]
|
|
|
]

-
|
|
]
L]
|
]
]

5 2 L a5 G i o A 2 & & & 2 A - & & o
§F B e W & o o g W {—PA‘ Pl S R
T s - . L YN P . L
Rl - k- A o b ¥ S N N +
(07 o S a8 oW 9 i-:?.'\‘ o .\'.\3‘ A o
o A s : & ~
& ok q?&t & \x*' “F & }\3\3 \_h'e.s" o
i ('\3 \2\1' "\ﬁ Phad -
& TR .3\‘\
'?S_ -_'Ju. Ly

Geographical site

Figure 5.6 — Speed-up across different geographical sites.

To answer RQ2, the loop aggregation technique provides appealing speed-up while
maintaining acceptable results with various inputs (ie. recharge series and geographical

sites).

5.3.4 Threats to Validity

Although we empirically validate that the loop aggregation approach gives conclu-
sive results for the Modflow scientific simulator in several scenarios, some internal and
external limitations remain. Our approach is not analytical but empirical. Our technique
may not be the only answer to find trade-offs between performance and acceptability with
a minimal set-up. The experimentation was carried out on a specific environment. Care
should be taken to ensure that the conclusion can be made with other environments.
Moreover, while the indicator used to determine the acceptability of the approximated
results were given by experts, it may not meet the expectations of other Modflow experts.
To mitigate these limitations, the experimentations have been carried out with various
inputs (several sites, another recharge series) and a second aggregation strategy. Regard-
ing external limitations, our implementation of loop aggregation is limited to a single

scientific simulation model based on a differential equation and to aggregating temporal
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data. Following works are needed to apply the technique with an aggregation on spatial

data as well as including other scientific simulation models (eg. other forms of equations).

5.4 Summary

We propose loop aggregation, an approximate scientific computing technique, that
enables to automatically and systematically reduce the main loop of a simulation model
by aggregating the corresponding spatial or temporal data. It can either be implemented
as a black-box approximation with a data pre-processing or as a white-box model transfor-
mation. Our experimentation on a hydraulic simulator shows a median 95.13% speed-up
of the simulation time while preserving acceptable results for all the 23 use cases. The
approach is supported with a minimal set-up as opposed to time-consuming model reduc-
tion and resource-demanding statistical techniques. The flexibility provided ensures that
users can explore the simulations according to their specific constraints. In particular,
it addresses the Challenge 2 regarding the systematic application of trade-off between
accuracy and execution speed while ensuring the fidelity and credibility of the simulation
models.

On a broader note, this approach fits perfectly into the MODA framework by integrat-
ing and combining the different roles that the scientific models can play when considered
in the context of decision making. In addition, the reliability of the results is ensured
given the definition of an acceptability criterion that incorporates knowledge about the

application domain (hydrogeology, and assessment of flood risk).

Take-away Messages of the Chapter

We propose a new approximate computing technique by adapting the approach to

systematically apply it on scientific models in the context of supporting decision
making. The elaborated technique is called loop aggregation and is evaluated on
a hydrogeological model that is based on the existing simulator named Modflow. The
scientific software gains flexibility while ensuring its reliability thanks to the trade-
off made by the approach. The model shifts from a descriptive role to a predictive
role to answer prescriptive purposes in the context of decision making. It is thus

tailored to that new context of use.

109






CHAPTER 6

TRADE-OFF OPTIMISATION FOR
DECISION MAKING

In this Chapter, we propose an approach towards automatically determining the optimal
value of the aggregation parameter to apply loop aggregation without running the reference
simulation. The optimisation of the trade-off performed by loop aggregation leads to better
speed-up of the simulation execution and by extension to more interactivity and easier

exploration of scenarios by stakeholders for decision making.

In Chapter 5, we adapted approximate computing to scientific models to perform the
trade-off between accuracy and execution speed by elaborating the loop aggregation tech-
nique. The approach can be systematically applied as it is easy to set up and it does
not require us to modify the mathematical model embedded in the software with domain
expertise (i.e., environmental science and mathematics) or to use high performance com-
puting resources. The reliability of the scientific models is preserved. The simulations are
faster to execute while generating credible projections.

In our context of supporting decision making, there is a need to explore new scenarios
through simulation by decision makers. The new scenarios to explore can be of different
types: they can correspond to other geographical sites (i.e., spatial areas), to other climate
scenarios (i.e., temporal evolutions) or to landscape modifications as solutions to assess
before implementing them in the real world.

It is possible to apply loop aggregation, the approximate technique we presented
in Chapter 5, to explore a new scenario (e.g., assess the flood risk of another area) for
which the simulation has not been run yet. The technique can be systematically per-
formed with an aggregation parameter (a.k.a. aggregation rate, and noted as p) equals
to 2 without much risk on the acceptability of the results. It reduces the execution time
quite significantly while only having minimal impact on the accuracy. For instance, with

the Modflow model, a speed-up of more than 36% was observed with the aggregation
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parameter equals to 2 (cf. Figure 5.5¢). Higher speed-up is possible with higher values
of the aggregation parameter. For the Modflow model and the example described in Sec-
tion 5.3.2, the best trade-off is reached with the aggregation parameter equals to 365 for
a speed-up of more than 96% (cf. Figure 5.5¢).

However, when we want a higher speed-up to provide better interactivity in the explo-
ration of new scenarios, we do not a priori know the acceptable values of the aggregation
parameter we can apply loop aggregation with. Indeed, we would need to compute the
acceptability indicator to know if a certain value of the aggregation parameter would lead
to a surrogate model producing acceptable results. That acceptability indicator is based
on the discrepancy between the results of the reference simulation and the approximate
simulation. Therefore, the simulation of the reference model has to be executed to de-
termine which values of the approximate parameter are deemed adequate. But running
the reference simulation removes the need for a surrogate model (i.e., and approximate
simulations).

To explore new scenarios in an optimal way due to loop aggregation, there is a need
to determine the optimal value of the aggregation parameter (i.e., its maximal value
that leads to a maximal speed-up while still respecting the acceptability criterion). That
raises several scientific questions: (i) Can we determine the optimal value of the aggre-
gation parameter to apply loop aggregation for a new scenario? (ii) Can we determine it
automatically and a priori without having to run the corresponding reference simulation?

In this chapter, we propose an approach to apply the loop aggregation technique for
the exploration of new scenarios by determining the optimal aggregation parameter to
use for those scenarios. More specifically, we investigate how to automatically determine

that optimal value without running the reference simulation.

6.1 Approach Overview

The challenge is to provide an optimal trade-off between speed-up and accuracy for
scientific models in the context of decision making. More specifically, we want to auto-
matically and in a priori fashion determine the optimal value of the aggregation pa-
rameter to apply the loop aggregation technique on the simulation models (i.e., reference
models). To tackle it, we propose an approach, that we call Loop Aggregation Prediction,
to optimise the application of the loop aggregation technique, i.e., to obtain the optimal

surrogate model leading to the best speed-up for the simulation model while ensuring
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that the acceptability criterion is fulfilled. We leverage that optimisation approach on
the commonly-used machine learning pipeline. It is represented by the Figure 6.1 that
uses the MODA framework (cf. Section 4.1.3) and more specifically the instantiation cor-
responding to the Figure 4.2g. The goal is basically to automate the prediction of the
optimal value of the aggregation parameter to apply loop aggregation with thanks to a

predictive model, so to act on the F' arrow represented on the figure.

Predict the optimal
value of p for new

Prescriptive Model:
Use of the predictive

i scenario Predictive Model:
optlr;earlf;/?r:?ﬁ)ggp © < Model Elaboration &
aggregation on new F Validation

simulations A

Feature extraction
E
phase
Descriptive Model:
Data cleaning phase
A
Data cleaning D

phase

Data:
Data Collection
Phase

Figure 6.1 — Overview of the Loop Aggregation Prediction Approach (use of the MODA framework)

The predictive model is generated using a data-driven approach (cf. Section 3.2).
This predictive model is to determine the values of the acceptability indicator (H) that
would be obtained when applying loop aggregation on the simulation model for a new
scenario with the corresponding examined values of the aggregation parameter (p). From
those values of the acceptability indicator, the predicted optimal value of the aggregation
parameter can be determined.

The elaboration of the predictive model requires several steps. The predictive model
(i.e., ML model, cf. Section 4.1.1) is built by a learning algorithm. The model corresponds
to the relationship between the variable to predict and the input data, from which we want
to predict the variable. It is inferred by the learning algorithm through the process that
is called training. In our context, the variable to predict is the acceptability indicator and
the input data encompass the examined values of the aggregation parameter as well as
various information, called features, that characterise the scenario we want to explore when
applying loop aggregation. The relationship between the variable to predict and the input
data can be represented by the function g as H = ¢g(F,p) with H being the acceptability
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indicator, F' the features about the scenario and p the aggregation parameter. The steps
of the model elaboration are the following: the data collection, the features definition, the
model training and the model validation (cf. Figure 6.2). Each step is described in the

following subsections.

Data Collection Features Definition Model Validation

- Apply loop aggregation on the - Define the features to - Split the dataset into training - Use the testing data to validate
simulation model with the range characterise the different data and testing data the predictive model

of values for the aggregation scenarios - Use of the training data by the

parameter - Integrate the features values learning algorithm to elaborate

- Apply loop aggregation on the into the dataset the predictive model

simulation model for several
scenarios

Figure 6.2 — Steps of the Loop Aggregation Prediction Approach.

6.1.1 Data Collection

As the predictive model is made through the processing of data by the learning algo-
rithm, the first step is to collect the needed data that will serve as input data. The sample
data correspond to the pairings of the values of the aggregation parameter to apply loop
aggregation with and the values of the acceptability indicator for the corresponding ap-
proximate simulations resulting from the application of loop aggregation on the simulation
model and the elaboration of the surrogate model. The variable to predict is the value of
the acceptability indicator as it is that piece of information that determines if a value of

the aggregation parameter can be used for loop aggregation to produce acceptable results.

f Simulation \
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Figure 6.3 — Overview of the Data Collection Phase

The collection of the data is done by running simulations of cases which type is the

same as the new scenario to explore. For instance, if the new scenario to explore is a
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new geographical site, the simulations are run for a range of various geographical sites. In
addition, for each case, the simulations are run for the different values of the aggregation
parameter to assess. For example, if the range of values of the aggregation parameter
is p = {1,2,7,30,90, 182,365, 730, 3652}, nine simulations have to be run for each case
corresponding to a geographical site. The process is represented in Figure 6.3.

From those simulations, the pairings are generated for the range of values of the
aggregation parameters as well as for various cases. They can be summarised as shown
in Table 6.1

Case | Aggregation Parameter | Acceptability Indicator
Cy P H 1,1
4 P2 H 1,2

CNC PNp—1 HNc,Np—l

CNC pr HNC7NP

Table 6.1 — Sample Dataset after the Data Collection. N.: Number of different cases. IV,:
Number of different values for the aggregation parameter.

6.1.2 Features Definition

With only the pairings of the aggregation parameters and the acceptability indicator,
it is not possible for the learning algorithm to establish the relationship between the
two variables while taking into account the case. Indeed, to capture the relationship and
the specificity of the case, the algorithm needs to have some information to discriminate
each case. Moreover, without any information describing the new scenario to explore,
the predictive model would predict generic values of the acceptability indicator for each
aggregation parameter instead of values which are specific and relevant to that unique
scenario.

As such, features that aim to describe and characterise each case are elaborated. Usu-
ally, those features are built to best represent the cases in such a way that the relationship
between the paring can be extracted more easily by the learning algorithm. Thus, the goal
of the features is to give information that highlight the specificities of each case. For in-
stance, for a new scenario corresponding to a new geographical site to explore and the
collected cases representing different sites, the features can be about the spatial specifici-
ties of the sites (e.g., the surface area, the mean elevation, etc.). The phase of defining

those features leads to the sample dataset presented in Table 6.2.
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Case Features Aggregation Parameter | Acceptability Indicator
Cy F1,1 Fl,Nf y4 H1,1
4 F1,1 F1,Nf PnNp H1,Np
Cy F2,1 F2,Nf b1 H2,1
Ci | Fiq | ...| Finy D; H;;
CNC FNc,l FNC,Nf PnNp HNC,Np

Table 6.2 — Dataset After the Features Definition. Nc¢: Number of different cases. Np:
Number of different values for the aggregation parameter. N f: Number of features.

6.1.3 Model Training

Once the sample dataset is completed (i.e., samples collected and features defined),
the next step is to elaborate the predictive model thanks to the learning algorithm. The
learning algorithm aims to extract the relationship between the features of the cases,
the aggregation parameter and the acceptability indicator. The predictive model is based
on that relationship and uses it to predict the value of the acceptability indicator for
a new scenario. In all, it can be represented by a function g as H = ¢(F,p) with H
being the acceptability indicator, F' the features about the scenario and p the aggregation

parameter.

Before elaborating the predictive model, the dataset is split into a training dataset
and a testing dataset. As we want to apply loop aggregation to explore a new scenario
in an optimal way, we want to assess if the predictive model can determine the optimal
value of the aggregation parameter to be used to apply loop aggregation for that scenario.
Thus, we split the sample dataset as follow. The testing dataset is composed of the data
corresponding to the particular case C that plays the role of the new scenario to predict
the optimal value of the aggregation parameter in the validation step. The training dataset
is the dataset of the remaining cases that have been sampled. The Table 6.3 and Table 6.4
represent the situation for which the particular case C} is the last case Cjy. of the sample

dataset.

The learning algorithm uses the training dataset as inputs to generate the predictive
model that match the data the best according to a process that is specific to the algorithm.

For instance, the learning algorithm can use a linear regression, a polynomial regression
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Case Features Approximation Parameter | Acceptability Indicator
Ch F1,1 Fl,Nf b H1,1
Ci | Fy | .| Fixy P Hy;

CNe-1 Fchl,l Fchl,Nf PnNp Hchl,Np

Table 6.3 — Training Dataset. Nc: Number of different cases. Np: Number of different
values for the aggregation parameter. N f: Number of features.

Case Features Approximation Parameter | Acceptability Indicator
Cne | Fnei | - | Feny D1 Hpyea
Cne | Fnei | - | Feny Dj Hyej
Cne | Eni | - | Fneny DPNp Hyenp

Table 6.4 — Testing Dataset. Nc: Number of different cases. Np: Number of different
values for the aggregation parameter. N f: Number of features.

or a decision tree regression. The goal is for the function to outputs the values of the
acceptability indicator of the training dataset thanks to the values of the aggregation

parameter and the features.

6.1.4 Model Validation

The last step before the predictive model can be used is to perform its validation. The
goal is to check if the predictive model can determine the optimal value of the aggrega-
tion parameter for a new scenario. That means to check if the predicted values of the
acceptability indicator lead to determining the correct optimal value of the aggregation
parameter. In the same fashion as done in Section 5.3.2, the optimal value of the aggrega-
tion parameter (Pmq:) is the highest one for which the surrogate model, obtained through
loop aggregation, still produces acceptable results (cf. Equation 6.1b). More specifically,
it means that, for that aggregation parameter, the acceptability criterion (H; < Th) is
respected and the value of the associated indicator H; is below the defined threshold T'h
(cf. Equation 6.1a).
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Hpow =H; < Thimaz(H;) (6.1a)
Prae = max|-Pj (61b)

The validation of the predictive model requires the definition of a validation metric to
ensure the predictions made by the model are correct enough. In practice, to ensure that
the prediction is correct for a new scenario, we use the testing dataset corresponding to
the particular case C that plays the role of the new scenario. Only the information about
the features of the testing case and the values of the aggregation parameter are given as
inputs to the predictive model. The validation then consists in comparing the predicted
values of the acceptability indicator and the real values and in checking if the predicted
optimal aggregation parameter is correct thanks to the validation metric.

There are three types of predictions:

— correct estimation, when the predicted aggregation parameter is the correct one

(Phres = Prvas)-

— underestimation, when the predicted aggregation parameter is lower than the correct
one (pPred < preal) Tt is not the optimal value so the speed-up is not the highest

possible one, but the results remain acceptable according to the defined acceptability

criterion.

— overestimation, when the predicted aggregation parameter is greater than the correct
one (prred > preal) With the overestimated aggregation parameter, the results of
the surrogate simulation do not meet the acceptability criterion.

The correct estimations and underestimations are deemed as acceptable with regard
to the application of the loop aggregation technique, whereas the overestimations are
problematic as they lead to simulation results for which the acceptability criterion is not
met.

The type of prediction made by the predictive model is by definition linked to the
case C} used for the testing dataset. Thus, the predictive model may lead to a correct
estimation for one testing case C; but may also lead to an overestimation for another
testing case Cio. As we use a sample of the possible cases in the training dataset to
elaborate the predictive model, we cannot ensure that the predictive model would lead to
no overestimation for all the possible scenarios to explore that are not part of the collected

cases or the testing case. The sample set may not encompass the diversity that is present
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in the set of all the possible scenarios. Therefore, we take into account that fact in the
validation of the prediction model. We deem the predictive model as a valid one if it leads
to a majority of acceptable estimations (correct and underestimations) and only a few
overestimations. Thus, the validation criterion for the predictive model is that the error
that may be introduced by an overestimation and that is quantified by the validation
metric has to be below an accepted value (Error < €). We define the specific validation

metric we use in our experimentation in the Section 6.3.1.

6.1.5 Variability of the Predictive Model

When applying this overall approach, one needs to keep in mind that the predictive
model results from a complex elaboration requiring several steps and involving many
variable factors. Thus, the quality of the model can be impacted by those factors and,
more specifically, at several levels: the learning algorithm and the training dataset [144]—
[147].

The factors influencing the elaboration and the associated quality of the predictive
model, and by extension its validation, are represented in the Figure 6.4 by the different

circled numbers. They are:

1. the type of algorithm that is used (e.g., an algorithm based on linear regression
or on decision tree regression will produce different predictive model with different

prediction quality)

2. the hyper-parameters of the algorithm (noted as A in Figure 6.4) that are used to
tuned the algorithm. Modifying their values impacts the generation of the predictive
model. For instance, with a linear regression algorithm, an hyper-parameter dictates
the application of the normalisation of the data before inferring the linear regression

between the input data and the output data.
3. the values of the aggregation parameter
4. the cases sampled for the training dataset
5. the features used to characterise the cases

As those various factors can alter the validation of the predictive model, one needs to
be aware of their impact on the predictive model. Because of the various factors involved in
the elaboration of the predictive model, the design space of the predictive model is complex
with a high dimensionality, as each factor can be broken down into several dimensions

(cf. Figure 6.5). When applying the Loop Aggregation Prediction approach, one thus has
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to take into account the complex design space of the predictive model when making their

choices during the different steps of the elaboration of the predictive model.

Training Dataset

(Td)
Aggregation @
paranerer © Learning Algorithm Predictive Model
Cases @ g(Fp) = U(TdJ\)@ H =g(F.p)

Features
e O)

Figure 6.4 — Variables Impacting the Elaboration of the Model Validation. \: hyper-parameters of the
algorithm. u(): function representing the functioning of the learning algorithm. g(): function representing
the functioning of the predictive model.
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Figure 6.5 — High Dimensionality of the Design Space of the Predictive Model

The exploration of the design space enables to determine the impact of the factors on
the accuracy of the predictive model and guides in the application of the Loop Aggregation

Prediction approach. We explore a sub-space of that design space in following section to
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highlight the impact of different factors on the accuracy and validation of the predictive

model.

6.2 Experimentation

We apply the Loop Aggregation Prediction approach (i.e., optimisation approach) in
order to use the loop aggregation technique for new scenarios in the case of the Modflow
model that is presented in Section 5.2. When applying the loop aggregation technique,
the aggregation function we choose is the mean function, as the results, presented in Fig-
ure 5.5¢ and Section 5.3.2, show that this strategy enables a higher value of the aggregation
parameter and a higher speed-up with the Modflow model.

As presented in Section 6.1.5, the accuracy and validation of predictive model is de-
pendent on a number of factors in its elaboration process. Here, we apply the optimisation
approach while acting on some of the factors and having the others fixed during our exper-
imentation. We explore a sub-space of the design space of the predictive model to observe
the impact of the different factors on the validation of the predictive model. We focus on
the training data level by having different numbers and types of cases, different types of
features, as well as different numbers of aggregation parameters. The learning algorithm
we use is the random forest regressor from the scikit-learn® library (version 0.24.1). The
random forest algorithm aims to build a predictor with a set of decision trees that grow
in randomly selected subspaces of data [148]. It is considered as one of the most accurate
general-purpose learning algorithm with a low risk of over-fitting (.e., inability of the pre-
dictive model to to make good prediction for data different from the training set) [148].
The associated hyper-parameters are the default ones of the scikit-learn library except
for a number of trees of 1000 (n__estimators = 1000). Various scenarios can be explored
with the simulation model, such as climate scenarios, spatial scenarios (i.e., geographical
sites), and landscape scenarios corresponding to the potential solutions to enact to antic-
ipate and reduce the risk of flooding. The experiments are performed for the exploration
of a new spatial scenario corresponding to a geographical site. Therefore, the cases that
constitute the sample dataset correspond to different geographical sites.

In all, we exhaustively explore a design sub-space of the predictive model to investigate
the accuracy and validation of the predictive model. The Figure 6.6 represents the sub-

space we explore in our experimentation. The dimensions corresponding to the number of

1. https://scikit-learn.org/stable/index.html
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aggregation parameters, the scale of cases and the type of features are considered for two
different values, whereas the dimension of the number of cases is explored for a range of
values. We thus focus more on the impact of the number of cases in the sample dataset

on the validation of the predictive model.

Number of
aggregation
parameters
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30 T
9 -4
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(o)
Mo Number
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S 9 Catchment areas
* l/ /770/_
l///)@ ,0/70/
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Figure 6.6 — Explored Sub-Space of the Design Space of the Predictive Model

On a practical note, the experimental conditions are the same as the ones presented

in Section 5.2.4, except that the virtual machine is Alpine Linux 3.11.3 this time.

6.2.1 Aggregation Parameter

We apply loop aggregation for two different ranges of values of the aggregation pa-
rameter (Np) and we collect the data of the associated simulations. The value fo the
aggregation parameter corresponds to the aggregation rate made during the loop aggre-
gation technique (cf. Section 5.1). In our context of using the Modflow model, it represents
the number of days we aggregate together to reduce the number of computations (cf. Sec-
tion 5.2.3).

The first range is composed of nine values (Np = 9) and the values of the aggre-
gation parameter are the same as those used in the experimentation done for applying
the loop aggregation technique in Section 5.2.3 (p = {1,2,7,30,90, 182, 365, 730, 3652} ).
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The second range gathers thirty values (Np = 30) and the values are p = {1,2,7,15,21,
30,45, 50, 60, 75,90, 100, 125, 150, 182, 200, 250, 300, 330, 365, 550, 640, 730, 1000, 1500, 2000,
2250, 3000, 3182, 3652}.

6.2.2 Cases

The cases that are sampled in the data collection step correspond to different geo-
graphical sites. Data associated to the geographical sites are collected at two different
scales. The first one is the scale of catchment areas (cf Figure 6.7a), whereas the second

one is the scale of sub-catchment areas (cf. Figure 6.7b).

(a) Catchment Areas (b) Sub-catchment Areas

Figure 6.7 — The location of the spatial cases (Normandy, France).

We elaborate the predictive model for various numbers of cases (N¢ = {5, 10, 15,20, 25}
for the scale of the catchment areas and N¢ = {5, 10, 15, 20, 25, 30, 35, 40,45} for the scale

of the sub-catchments areas).

6.2.3 Features

We use 2 different types of domain features that we call Geomorphology and Vulnera-
bility. Those features are elaborated by the domain experts. The Geomorphology features,
deals with features about the landscape of the geographical site. It is composed of 5

different features:
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— slope (%)
— elevation (m)
— area (m?)
— distance to the stream (i.e., rivers, in m)
— surface area ratio: the ratio between the surface area (taking into account the vari-
ation of the landscape) and the planar area.
The Vulnerability features are:
— the coastal vulnerability. The number of 75m*75m areas with an altitude inferior to
10m and a slope inferior to 2.5%.
— the hydraulic vulnerability. The number of 75m*75m areas with a distance to the
stream inferior to 500m and a slope inferior to 2.5%.
All the values are the mean values for the spatial area considered as the type of case
(i.e., catchment or sub-catchment areas) except for the features dealing with ratio (i.e., sur-
face area ratio) and a count (i.e., vulnerabilities).

In our experiments, we either use the Geomorphology features or the combination of

the Geomorphology and the Vulnerability features to elaborate the predictive model.

6.3 Evaluation

In this section, we assess our ability to automatically and predict the optimal value
of the aggregation parameter for new scenario with the Modflow model without running
any simulation. The goal is to answer the following research questions:

RQ1: Can we apply the optimisation approach to automatically predict the optimal
value of the aggregation parameter to perform loop aggregation on a new scenario without
running the reference simulation?

RQ2: What are the factors of elaboration we can act on to ensure that we obtain a
valid predictive model?

In all, we want to investigate the ability to learn from previously completed simulations

and the impact of different factors on that ability.

6.3.1 Definition of the Validation Metric

As stated in Section 6.1.4, the predictive model elaborated by the loop aggregation

prediction approach needs to be validated. The predictive model produces predicted val-

124



6.3. Evaluation

ues of the acceptability indicator and thus, the correctness of those values needs to be
evaluated with regard to the objective of the predictive model (i.e., predict the optimal
aggregation parameter for applying loop aggregation on a new scenario). For the predic-
tive model that is elaborated thanks to a training dataset, its validation is performed
thanks to a testing dataset which regroups the data of a specific case. That specific case
C} plays the role of a new scenario that is to be explored thanks to loop aggregation and
for which we need the optimal value of the aggregation parameter. Therefore, we evaluate
the capacity of the predictive model to generate correct acceptability indicator values with
regard to the declaration of the optimal aggregation parameter.

A validation metric is essential to assess the model and its correctness. Quality metrics,
such as the mean square error, are commonly used in the elaboration and validation of
predictive models through the data-driven approach. They evaluate the discrepancy of
each predicted value to the corresponding real value. In our situation, we cannot adopt
the same method. Each predicted value of the acceptability indicator is not to be taken on
its own but in association with the other predicted values of the acceptability indicator for
the whole range of values of the aggregation parameter that are considered for one case.
Indeed, it is that group of values that leads to determining the predicted optimal value
of the aggregation parameter. Therefore, it is necessary to have a validation metric that
takes that fact into account. Moreover, in Section 6.1.4, we presented the different types
of predictions and the need for them to be considered when defining the validation metric
and performing the validation of the predictive model. Thus, we define some validation
metrics in consequence by focusing on the error introduced by overestimation predictions
and take into account the specificity of using a range of aggregation parameters to study
a single case.

In all, we elaborate three validation metrics, that we call here the error metrics, to

assess the correctness of the predictive model in order to assess:

— if the predictive model leads to overestimation predictions of the aggregation pa-

rameter.

— in the situation of overestimations, the impacts on applying loop aggregation with

regard to:
— how often there is on overestimation
— to what extent error is introduced

In our experimentation, we do not define the validation criterion (cf. Section 6.1.4) and

the associated value of the accepted error (€) as we require the expertise of domain experts.
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However, we use different validation metrics to quantify the correctness of the definition of
the optimal aggregation parameter and assess its evolution according to different factors

while exploring the design sub-space.

The Error.s metric. To assess how much discrepancy the predictive model generates
by its prediction of the optimal aggregation parameter for the case in the testing dataset,
we use the Error..s metric described in Equation 6.2a. It represents the discrepancy in
terms of quantity of the acceptability indicator that is introduced by the prediction of the
optimal aggregation parameter (Pp,.,) when the prediction is an overestimation for the
testing case.

The optimal aggregation parameter is determined thanks to Equation 6.1 for both the

real

red
Praz

pred ). The corre-

predicted values of the acceptability indicator ( ) and the real ones (

sponding real values of the acceptability indicator corresponding to both real (H¢% (preal ))

and predicted aggregation parameters (H % (pPr¢d)) are then compared to check if the pre-

max max

diction introduces some additional error with a overestimation (pfre?(case) > pred (case)).

Errorease :Hgfgglc( inil)case - H;fgzi(pﬁglm)case if Jgg(case) > prme;z:lv(case) (6.2&)

With the Error..s metric, the predictive model elaborated with a specific set of cases
forming the training dataset is evaluated with only a specific testing case. In practise,
the cases composing the training dataset and the testing case are chosen randomly, and
the Error..s. is computed for this only sample dataset. That situation is represented by
the Figure 6.8 where the sample dataset is composed of ten cases and only one specific case
(depicted in purple) among them is used as the testing case during the model validation

step.

Training
Case

Testing

Case

Sample

Q Dataset

Figure 6.8 — Repartition of the cases involved in the computation of Error..s. with ten cases (Nc = 10)

However, the training dataset and the cases composing it can impact on the predictive
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model and its predictive ability. Instead of evaluating the specific model for a specific
case, we also want to evaluate its correctness independently of the cases that are part of

the training dataset and the testing dataset.

The Errorg., metric. To assess the validation of the predictive model independently
to the case used as the testing case, we define a global error metric (Erroriopa). It repre-
sents the mean error added by the predictive model, when dealing with overestimations,
and corresponding to the different cases composing the datasets. In all, we iterate over
for each case of the dataset for the testing case and also over the possible sample datasets
(i.e., combinations of cases).

To compute the Errorgpa metric, we first compute the Errorcop figuration metric. The
latter serves to assess the error introduced by overestimations when iterating over the
cases of the sample dataset to be chosen as the testing case. We call the configuration
the set regrouping the instances of the sample dataset for which each case is iteratively
used as the testing case. The Figure 6.9 illustrates that configuration for a sample dataset
composed of ten cases. Only six of the ten cases are represented in order to save space.

The principle is that the testing case, shown as a purple circle, is a different one in each

/ Training
B

instance.

= —

Figure 6.9 — Repartition of the cases involved in the computation of Erroreon figuration With ten cases
(Nec=10)

The error metric of the configuration Er70r o figuration is then calculated as the mean

Errorese metric over the different cases of the dataset (Nc¢) (cf. Equation 6.3a).
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With that metric, we take into account the impact of the case of the sample dataset
taken as the testing case. Yet, the sample dataset is the same in the configuration assessed
with the Errorcon figuration metric. Even though the cases that compose the sample dataset
are randomly selected from the set of collected cases, the rest of the non-selected cases

are not taken into account in the evaluation of the Errorcon, figuration metric.

Therefore, to have a robust evaluation and do a cross-validation, the process done
for one configuration is replicated for 100 random configurations overall (Nreplication =
100). The random selection of the cases to elaborate the sample datasets, and by extension
random configurations, is illustrated in the Figure 6.10 for an example with a size of sample
dataset equals to ten cases. The global error metric (Errorgem,) is thus computed as the

mean value of the Errorcon figuration for all the configurations (cf. Equation 6.3b).
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Figure 6.10 — Random selection of the cases composing the sample datasets. Example of sample datasets
made of ten cases (Nc¢ = 10).

Nc
1

Er'rorconfiguration = Z ETTOrcase (6 3&)

Nc —

n—=
1 Nreplication
Error lobal — 7 1. 4. __ ETTOTcon iguration 6.3b

g Nreplication 712::1 fig (6.3b)
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The POG metric. To have some information about how many predictions made by the
predictive model correspond to overestimations, we define the percentage of overestima-
tions obtained globally over all the random configurations used by the Errorgp, metric.
We aim to quantify how often the predictive model makes overestimations. A predictive
model leading to fewer overestimations is better. We call that metric POG for Percentage
QOverestimation Global. It is computed as the ratio of overestimation predictions over the

total number of predictions and then converted into a percentage (cf. Equation 6.4).

1 if red > real
Overegse = I Dinaie > Pinac (6.4a)
0 else.
NreplicationxNc
POG = ( > Over qse) * 100 (6.4b)
n=1

Summary of the Validation Metrics

— Error.se: assesses how much the predictive model can introduce error when

it lead to an overestimation of the aggregation parameter for a specific sample

dataset and a specific testing case.

— Errorgepa: assesses how much the predictive model can introduce error when
it lead to an overestimation of the aggregation parameter over 100 sample

dataset and the different testing cases.

— POQG: assesses how often the predictive model leads to overestimations.

6.3.2 Prediction of the Optimal Aggregation Parameter

In this section, we assess the quality of the ability to determine the optimal aggregation
parameter by the predictive model thanks to the validation metrics we have previously
presented in Section 6.3.1. In particular, we answer the research questions RQ1 and RQ2

defined at the beginning of Section 6.3.

RQ1: Ability to determine the optimal aggregation parameter

Depending on the training dataset used, the resulting predictive model can be vali-

dated or not with regard to the specific testing case. Indeed, there are situations where
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Errores. = 0 meaning that the predictive model produces correct enough values of the
acceptability indicator for the various aggregation parameter values and that the associ-
ated predicted optimal aggregation parameter (pP"¢?) is the acceptable for the considered
case (i.e., there is no overestimation).

The results concerning the POG metric attest that there are situations for which
the predictive model leads to acceptable predictions (either a correct prediction of an
underestimation). Actually, we can see on the figures 6.11a, 6.11b, 6.12a & 6.12b that the
percentage of overestimations is globally ranging from 15% to 45% and it never equals
100%.

For instance, the predictive model is validated (Errores. = 0) for the following con-

ditions:

— the training dataset encompasses the data concerning the catchment areas of Jul-

louville, La Pernelle, La Feuillie and Blainville-sur-Mer.
— the testing dataset corresponds to the data for the catchment area of Saint-Malo.
— the Geomorphology features
— Np=9
— Nc=5
— the scale of catchment areas

However, the predictive model elaborated from the same sample dataset but with the
training dataset containing the catchment areas of Jullouville, La Pernelle, La Feuillie
and Saint-Malo was not validated with regard to the testing case of Blainville-sur-Mer
as Error.s. = 0.069. This observation highlights the impact of the composition of the
training and testing datasets on the accuracy and validation of the predictive model to
determine the optimal aggregation parameter of a new scenario.

In all, to answer RQ1, the Loop Aggregation Prediction approach makes it possible
to automatically and a priori determine the optimal aggregation parameter for a new
scenario (i.e., here a geographical site). In the sub-space of the design space that we
explore, there are always acceptable predictions. The percentage of overestimations POG
never equals 100% while investigating different values for the factors (i.e., dimensions of
the sub-space). But, not all predictions made by the predictive model are certain to be
valid and to lead to the correct optimal aggregation parameter to be determined. The
validation of the predictive model is thus also related to the various choices made along

the elaboration of the predictive model and at each step of it. This result prompts us to
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then look at the factors that impact on the correctness of the predictive model and to
investigate the RQ2.

There is an ability to learn from previously executed simulations.
The Loop Aggregation Prediction approach makes it possible to
automatically and a priori determine the optimal aggreation pa-
rameter. Yet, some predictions lead to errors while determining it.
Overall, the global introduced error is low (0.05m maximum) and
may not threaten the exploration of new scenarios through the ap-
plication of loop aggregation on the simulaiton model. In the fol-
lowing section, we quantify those errors while exploring the design
sub-space of the predictive model that is elaborated through the
approach to investigate the impact on validation according to the

different factors.
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Evolution of the Percentage of Overestimation Predictions
According to the Number of Cases considered in the Sample Dataset
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(a) Scale: catchment. Np =9
Evolution of the Percentage of Overestimation Predictions
According to the Number of Cases considered in the Sample Dataset
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(b) Scale: catchment. Np = 30

Figure 6.11 — Evolution of the Percentage of overestimation predictions for Catchment
areas. Np: number of aggregation parameters.
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(b) Scale: sub-catchment. Np = 30

Figure 6.12 — Evolution of the Percentage of overestimation predictions prediction for

Sub-catchment areas. Np: number of aggregation parameters.
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RQ2: Factors Impacting the Correctness of the Predictive Model

To answer RQ2, we assess the correctness of the predictive model while exploring its
design sub-space. We vary different factors involved in its elaboration (i.e., dimensions of
the sub-space): the number of aggregation parameters, the number of cases, the scale of
the cases, and the features used to characterise the cases. We observe the evolution of the
validation metrics according to those changes. The figures 6.13a, 6.13b, 6.14a & 6.14b

illustrate the evolution of the Errorg ., metric in the corresponding situations.

Evolution of the Global Error Generated by the Prediction
According to the Number of Cases considered in the Dataset
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(a) Scale: catchment. Np =9

Evolution of the Global Error Generated by the Prediction
According to the Number of Cases considered in the Dataset
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Figure 6.13 — Evolution of the Global Error Metric for Catchment areas. Np: number of
aggregation parameters.
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Figure 6.14 — Evolution of the Global Error Metric for Sub-catchment areas. Np:

number of aggregation parameters.
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Number of Aggregation Parameters. We observe that the value of the quality met-
ric is globally lower when dealing with a lower number of aggregation parameters. Using
the nine possible values for the aggregation parameter (cf.Figure 6.13a & Figure 6.14a)
has better prediction than Np = 30 (cf.Figure 6.13b & Figure 6.14b). This can be ex-
plained as there are more possible values and a higher chance to get the wrong one. The
results concerning the POG metric (i.e., percentage of overestimations) support that ex-
planation. Indeed, the percentage of overestimations is globally lower when the number
of aggregation parameters is lower.

However, the speed-up is potentially higher with more values of the aggregation param-
eter. For instance, for the Saint-Potan site, with nine possible values for the aggregation
parameter, the real and predicted optimal aggregation parameter is 90 (cf. red values
in Table 6.5), as it is the highest value for which the acceptability indicator is below the
threshold of 0.1m (cf. acceptability criterion). But, with thirty possible values, the real
optimal aggregation parameter is 150 and the predicted optimal aggregation parameter is
100 (cf. red values in Table 6.6). Even if the prediction is not correct in this configuration
(Errorese # 0), the aggregation parameter is higher and by extension leads to higher
speed-up when applying loop aggregation (cf. Section 5.3.2).

Site Rate | H real | H pred

Saint-Potan | 1 0.0 0.0
Saint-Potan | 2 0.0026 0.0029
Saint-Potan | 7 0.0104 0.0128

Saint-Potan | 30 0.0275 | 0.0313
Saint-Potan | 90 0.0670 | 0.0823
Saint-Potan | 182 0.1215 | 0.1602
Saint-Potan | 365 0.1426 | 0.1813
Saint-Potan | 730 0.1854 | 0.2178
Saint-Potan | 3652 | 0.2711 | 0.2735

Table 6.5 — H indicator values for Saint-Potan site with Geomorphology features and 9

real red __ 90

aggregation parameters. pied = pbree

With a lower number of aggregation parameters, the percentage of
overestimations as well as the global error introduced by the pre-
dictive model is globally lower. Yet, the associated speed-up gained
thanks to the loop aggregation application is also lower compared

to a higher number of aggregation parameters.
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Site Rate | H real | H pred
Saint-Potan | 1 0.0 0.0
Saint-Potan | 2 0.0026 | 0.0030
Saint-Potan | 7 0.0104 | 0.0136

Saint-Potan | 15 0.0168 | 0.0212
Saint-Potan | 21 0.0203 | 0.0239
Saint-Potan | 30 0.0275 | 0.0322
Saint-Potan | 45 0.0389 | 0.0455
Saint-Potan | 50 0.0415 | 0.0480
Saint-Potan | 60 0.0489 | 0.0588
Saint-Potan | 75 0.0546 | 0.0663
Saint-Potan | 90 0.0670 | 0.0823
Saint-Potan | 100 0.0687 | 0.0856
Saint-Potan | 125 0.0833 | 0.1062
Saint-Potan | 150 0.0919 | 0.1176
Saint-Potan | 182 0.1215 | 0.1602
Saint-Potan | 200 0.1069 | 0.1404
Saint-Potan | 250 0.1366 | 0.1599
Saint-Potan | ...
Saint-Potan | 3652 | 0.2711 | 0.2486

Table 6.6 — H indicator values for Saint-Potan site with Geomorphology features and 30
aggregation parameters. p'¢% = 150; p?¢¢ = 100

max max
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Number of Cases. The number of cases part of the dataset has an impact on the
correctness of the predictive model. Thanks to the Figure 6.13, we observe that the value
of the global error metric globally decreases with a higher number of cases for both
types of features when dealing with data at the scale of catchment (cf. Figure 6.13a &
Figure 6.13b) and of sub-catchment areas (Figure 6.14a & Figure 6.14b). It seems logical,
as having more cases in the training dataset means more information to generate more
precisely the relationship function between inputs and outputs that the predictive model
is built on. It is easier to infer the correct value for a new case when more cases have
already been processed. There is a higher probability that the features of the new case to
explore are similar to those of already treated cases.

To quantify the speed of the ability to learn according to the number of cases, we
evaluate the order of magnitude of the necessary number of cases that would lead to a
null global error, so leading to no overestimation. To do so, we interpolate the number
of cases that would lead to a null value for the global error metric. We do this for each
factor (i.e., number of aggregation parameters, scale of the cases, type of features). We
perform the interpolation by using a linear function. We use that type of function because
of the linear aspect of the curve taken by the values of the percentage of overestimations
(cf. Figure 6.11 & Figure 6.12) and by the values of the global error metric according to
the number of cases (cf. Figure 6.13 & Figure 6.14). Moreover, when using a second order
polynomial interpolation, there are no real solution(i.e., 35S | S €R) for Errorgepa = 0.
The estimated numbers of cases needed to reach a null value of the global error metric

are presented in Table 6.7.

Number of Estimated
aggregation | Scale of Cases Features Function number of cases
parameters (order of magnitude)

9 Catchment Geomorphology -0.00049799 x + 0.03190079 65

9 Catchment Geomorphology + Vulnerability | -0.00091176 x + 0.03732907 40

9 Sub-catchment Geomorphology -0.00118049 x + 0.0486074 40

9 Sub-catchment | Geomorphology + Vulnerability | -0.00120761 x + 0.04823382 40

30 Catchment Geomorphology -0.00083812 x + 0.04588949 55

30 Catchment Geomorphology + Vulnerability | -0.00081469 x + 0.04636059 55

30 Sub-catchment Geomorphology -0.00056813 x + 0.04734662 85

30 Sub-catchment | Geomorphology + Vulnerability | -0.00060514 x + 0.04837019 80

Table 6.7 — Estimated number of cases to reach a global error metric equals to zero
according to different factors.

We observe that with a larger number of aggregation parameters, the number of cases
would be globally larger for the predictive model to make no overestimation prediction.

We also can see that the ability to learn from the past simulations is either the same
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or faster for the features combining the Geomorphology and Vulnerability features. The
latter may thus add some relevant information to better predict the optimal aggregation

parameter.

Using a sample dataset containing more cases leads to fewer over-
estimations by the predictive model and to a lower global error
introduced by it when applying loop aggregation on the simulation
model. Also, the learning ability of the predictive model is enhanced

when dealing with the Geomorphology and Vulnerability features.

Scale of Cases We observe that the global error metric is higher with data at the sub-
catchment scale (cf.Figure 6.14a & Figure 6.14b) than at the catchment scale (cf.Figure 6.13a
& Figure 6.13b) for the same number of cases. With a lower scale, the data encompass
more specific information about the spatial features. We would think that it would lead
to better predictions. However, it is not the case here. As the simulation of the Modflow
model are run with data at the scale of the catchment area, using the same scale to predict

the optimal aggregation parameter could be better.

Yet, the estimated number of cases to reach a null global error is lower for sub-
catchment data (cf. Table 6.7) with nine possible values of the aggregation parameter
(Np = 9). For instance, 42 cases would be needed for the dataset with Geomorphology
features at the sub-catchment scale, whereas, 65 cases would be needed for data at the
catchment scale. That means that the learning algorithm is extracting information faster
from features related to sub-catchment scale. The higher slope for the curves for the sub-
catchment areas supports that idea. When there are 30 possible values for the aggregation
parameter, using data at the sub-catchment scale seems to require more cases (84 and
80 instead of 55 and 57). An explanation can be that the higher quantity of information
present in the dataset (i.e., using 30 different values of the aggregation parameter and
more local information with sub-catchment areas) makes it more difficult to infer the

relationship between the features and the optimal aggregation parameter.
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If the goal is to have a predictive model always producing accept-
able predictions with the lowest number of cases, the best situation
would be to use features defined at the sub-catchment scale with the
nine different values of aggregation parameters. However, if some
additional constraint are to be put on reaching the best speed-up,
using a dataset with features at the catchment scale with the thirty

values of aggregation parameters would be best (cf. Section 6.3.2).

Features Selection Looking at the Figure 6.13 and Figure 6.14, the behaviour of the
global error metric seems globally similar when dealing with Geomorphology or Geomor-
phology + Vulnerability features. We could have thought that using more features would
result in better predictions. However, this observation suggests that adding features may
not be relevant. The Geomorphology features describe the landscape of each site, which
has a direct impact on the way groundwater behaves. The Vulnerability features are more
focused on describing some specific areas inside the site and may be less relevant to

characterise how the surrogate model will impact the results for the site.

We can say that the relevance of each feature is more important
than the global number of features for the correctness of the pre-
dictive model. Moreover, using more relevant features can benefit

with regard to the speed of learning from the number of cases.
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Conclusion of the Experimentation

To answer RQ1, it is possible to elaborate a predictive model that outputs the right
optimal value of the aggregation parameter for a new scenario (i.e., a new geograph-
ical site). However, it is not always the case depending on the new scenario to predict
and the training data used to elaborate the model. Indeed, the Errorgm, metric,
assessing the elaboration of the predictive models from different configurations of
cases, is not equal to 0. That observation confirms that attention must be given
on which dataset to use for the elaboration of the predictive model. So, the data
collection step cannot be done at random and building the right training dataset has
to be investigated. Overall, the error globally introduced by the predictive model
is low (0.05m maximum). So, depending on the validation criterion and the value
of the threshold of accepted error, the overestimations are not threatening to the
exploration of new scenarios through the application of loop aggregation.

To answer RQ2, according to the results, to optimise the elaboration of the best
predictive model, we need to define features which are related to the objective of the
simulation and the functioning of the model. When the constraint is not to obtain
any overestimation, it seems better to put effort into running sample simulations
with a lower number of values of the aggregation parameter and more different sce-
narios. However, if the speed-up is more important than the accuracy, choosing to
run simulations with more aggregation parameters values with less scenarios is a
better method. In addition, using data at the sub-catchment scale would lead to
better predictions when dealing with a larger dataset.

In all, we answer Challenge 3 by proposing the Loop Aggregation Prediction ap-
proach. We show that it can automatically and a priori predict the optimal aggrega-
tion parameter for the Modflow model. However, optimising its process is required
to lead to systematic correct predictions and acceptable results when applying loop

aggregation on the simulation model.

6.3.3 Threats to Validity

Although we apply the optimisation approach by experimenting with different vari-
ables that impact on the correctness of the predictive model, some limitations still remain.

As stated in Section 6.1.5, there are many variables in the optimisation approach that
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can impact on the correctness of the predictive model. With the experimentation, we only
focus on investigating some of them (i.e., type of cases, number of cases, number of aggre-
gation parameters, number and type of features) while other remain fixed (i.e., learning
algorithm and associated hyper-parameters). Besides, we have not explored all potential
values for each factor (e.g., choosing different values of the aggregation parameter but
for the same number). However, this is a preliminary study that aims to give general
information about the factors that impact the correctness of the predictive model (and
the validation of the optimisation approach) and to what extent they impact it.

In our experiments, only the particular Modflow model presented in Section 5.2.1 is
used and may not represent other scientific models. But, it can show that the different
factors can significantly impact the quality of the prediction. for a model. The specific
acceptability indicator defined by experts to match our context and presented in Sec-
tion 5.3.1 is investigated. Other indicators may lead to other observations. Also, all the
predictions are made with the same learning algorithm (i.e., random forest regression
algorithm). However, that means that other algorithms may lead to different predictions
than the ones we observe. The associated hyper-parameters can also potentially change
the observations.

Future work is then needed to be able to have a clear and global map of how the
different factors impact the validation of the predictive model. It would equate to perform

a sensitivity analysis of the elaboration of the predictive model.

6.3.4 Discussion

Given the experimentation findings, we conclude that the validation of the predictive
model is dependent on the choices made during the different steps of the optimisation
approach. There is a great variability in the quality of the predictions depending on the
various factors (e.g., number of cases, type of features, number of aggregation parameter
to explore, etc). It seems difficult to know where to act to ensure systematic correct
predictions currently, as the design space of the predictive model is large and complex.
That’s why, there is a need to rely on the domain knowledge to know where to look
specifically and what may be relevant to improve the quality of the predictions. Indeed,
the domain experts know better what physical parameters impact the results produced by
the simulation model and how they may impact the value of the acceptability indicator.
For instance, we have seen that the different types of features can impact the speed with

which the predictive model is getting more accurate alongside the increase in the number
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6.3. Evaluation

of cases considered in the model training. So, domain experts have more insight into what
features could more relevant to optimise the trade-off made through the application of

loop aggregation on the simulation model.

In summary, there are three ways to optimise the execution of a scientific model (at the
software level): one based on domain knowledge with model reduction (cf. Section 3.1),
another involving artificial intelligence and data (cf. Section 3.2), and the last involv-
ing computational approximation (cf. Section 3.3). The latter allows for a systematic
application that is neither time nor resource intensive. The loop aggregation technique
(cf. Chapter 5) can be applied as a black-box approach for an aggregation parameter
equals to 2. But when a more optimal aggregation parameter is sought, an optimisation
of the application of the technique is needed. The Loop Aggregation Prediction approach,
i.e., optimisation approach, however requires data and domain expertise. Therefore, the
drawbacks of using the model reduction or the data-driven approaches reappear. Yet, even
if the optimisation approach requires some sample simulations, it requires fewer samples
than using a data-driven approach to generate a surrogate model. But optimising the
optimisation approach would tend to need many more samples and be more comparable

to the situation of using data-driven approach to generate surrogate models.

Moreover, when taking a step back, the loop aggregation technique is an optimisation
of running the simulation model. The optimisation approach is a way to optimise the loop
aggregation technique, and thus an optimisation of the optimisation of the simulation
model. That optimisation approach works for some cases, but needs to be optimised to
ensure correct predictions at all time. Then, that would mean doing an optimisation of the
optimisation of the optimisation of the simulation model. Of course, using the optimal
trade-off to explore scenarios to support decision making is the dream situation. But,
we can ponder over the necessity to perform that level of optimisation when the goal is
for the simulation model to run faster and to enable the exploration of scenarios with a
flexibility regarding the accuracy of the results. Indeed, thanks to the experimentation we
did, we know it is possible to quantify the error that is associated to the prediction of the
optimal aggregation parameter. We can then let the users of the simulation model decide
if they accept the potential additional approximation of using the predicted aggregation
parameter for building the surrogate model that will be used to explore the different
scenarios. In addition, the goal is for the stakeholders to explore a multitude of scenarios
to have a global picture of the situation and problems to tackle or of the consequences of

enacting the solutions scenarios. It gives them global information for the first reflective
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Chapter 6 — Trade-off optimisation for Decision Making

step in the decision-making process. After getting information about the potential risks
and relevant solutions to enact, the stakeholders will run the specific simulation (i.e., the
reference model without any approximation) of the solution they want to enact to have the
precise details and risks assessment before the definite enactment of their decision. Having
slightly more approximation introduced by the Loop Aggregation prediction approach does

not seem that relevant finally.

6.4 Summary

We propose the Loop Aggregation Prediction approach to automatically and a priori
predict the optimal aggregation parameter to use when applying loop aggregation on the
simulation model for the exploration of new scenarios. We implement the optimisation
approach for the Modflow model and observe that the optimal aggregation parameter
can be predicted. However, its prediction is not always correct and may lead to some ad-
ditional error when considering the results obtained after applying the loop aggregation
technique on the simulation model. We give preliminary insight into what factors impact
the correctness and to what extent. The domain knowledge would be required to under-
stand where to look at specifically to have an efficient application of the optimisation

approach (e.g.,. elaboration of relevant features to characterise the cases).

In all, the optimisation approach can be useful as it leads to optimal trade-off when
applying loop aggregation. There is an ability to learn from previously executed simula-
tion. The error introduced by overestimations by predictive model is relatively low and
may not impact the global results of the exploration of the various scenarios by the stake-
holders. With the additional error being quantified, it lets the users decide if they accept
this potential additional error when exploring the various scenarios with the surrogate
model through the definition of the threshold of the acceptable error in the validation

criterion.
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6.4. Summary

Take-away Messages of the Chapter

The Loop Aggregation Prediction approach enables us to automatically and in a
priori fashion determine the optimal aggregation parameter to use when applying
loop aggregation on the simulation model for the exploration of new scenarios. The
resulting trade-off between speed-up and accuracy of the simulation model is optimal
and leads to a better exploration of new scenarios by skaholders in their decision-
making process. The variable efficiency of the approach according to different factors
and choices made during its application highlights the significance of incorporating
domain knowledge in the elaboration as well as the validation process to make it

even more optimal.
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CHAPTER 7

CONCLUSION AND PERSPECTIVES

7.1 Conclusion

Scientific models are at the heart of scientific research to understand the world around
us. Scientists have long used them to represent and study real-world physical phenomena.
However, a new context of use has emerged with the fact that they are now being used
to predict the future behaviour of the system and to make projections. That way, scien-
tific models are valuable in supporting decision making. The urgency surrounding global
warming and environmental risks perfectly symbolises the advantage of using these models
to support decision making. However, some requirements must be met to allow this shift
in the context in which models are used and to make models accessible to stakeholders
other than scientists and modellers (e.g., policy makers, general public). The support of
decision making requires the models to enable the exploration of scenarios and to be inter-
active, while ensuring credible projections. Yet, the models previously used by scientists
have become very complex and time-consuming or resource-intensive to run. Therefore,
these models need to be tailored to meet the new context. Their execution has to be sped
up. The trade-off of accuracy for more flexibility of the models is relevant in this situation
as decision support aims to provide an overview of the projections across scenarios or
environmental risk assessment, rather than very specific data for each scenario.

We identified several challenges involved in achieving this trade-off. First, the specifics
of the scientific models and associated software have to be determined (cf. Challenge
1, Section 1.3). Questions arise about the organisation and validation of scientific soft-
ware and the comparison of scientific models with the engineering models that are usually
embedded in standard software. Only once the nature, operation, and development of sci-
entific software has been fully established, is it possible to consider how to trade off
the accuracy and the execution speed of scientific models while ensuring their reliabil-
ity (cf. Challenge 2, Section 1.3)7 This involves identifying how to tailor them to the

decision-making context. Finally, the concern is how to achieve this trade-off in a such

147



a way as to ensure an optimal exploration of scenarios which satisfies the fastest exe-
cution time of simulations while maintaining the fidelity of the models (cf. Challenge
3, Section 1.3).

Existing trade-off approaches entail the creation of a surrogate model which is an al-
ternate version of the reference simulation model that answers to a different modelling
objective than the one for the reference model. Those approaches adopt different strate-
gies: model reduction, data-driven methods and approximate computing. However, none
of them constitute a directly usable systematic approach to perform the trade-off between
accuracy and speed for scientific models in environmental science. They are either time-
consuming, resource-demanding or demand expertise, and, therefore, they do not fulfil

the requirements associated with supporting stakeholders in decision making.

To achieve the trade-off in our context of interest, we addressed the aforementioned
challenges through our contributions. First, we established that scientific models are com-
plementary to engineering models. We presented the MODA framework focusing on the
interplay of models and data as well as the integration of the different types and roles of
models involved in a cyber-physical system. It helped highlight that, although scientific
models tended to primarily have a descriptive nature, they are increasingly taking on
the role of prescriptive models, providing guidelines of actions to enact in the real world
(e.g., which pesticide to use at which time and on which plants in the field). Engineering
model embedded in standard software are commonly prescriptive models. As such, scien-
tific models and engineering models can play the similar roles in a cyber-physical system.
This endorses the idea that the methods traditionally applied to engineering models can
be transferred to scientific models. Then we investigated the specificities of scientific mod-
els. We proposed an overview of the development of the associated scientific software and
we highlighted the need for specific validation of the corresponding artifacts involved in
the model development. Indeed, scientific software are the result of the refinement of the
mathematical model and numerical scheme. They require the same V&V stage regarding
the SE concerns of the implementation as the one ordinarily performed for engineering
models and standard software, but, they also entail the specialised V&V stages regarding
the numerical scheme and the mathematical model that are embedded into the scientific
software. Finally, building on the previous contributions, we took into account the comple-
mentary nature of scientific and engineering models, and the specifics of scientific models
to perform the trade-off between accuracy and execution speed on them. We investigated

the application of a AC technique adapted to scientific models used in environmental
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science. We thus developped a new technique, called loop aggregation, which can be
applied in a systematic approach, that answers the requirements of supporting decision
making for those specific models, and that ensures their reliability thanks to the use of an
definite acceptability criterion. We validated the technique on a hydrogeological model of

the underground water flow used to assess the flood risks in coastal areas.

Then we optimised the application of the loop aggregation technique by proposing an
approach, called Loop Aggregation Prediction, that automatically and a priori predicts
the optimal value of the loop aggregation parameter. The proposed approach can be used
when the potential associated error is acknowledged and dealt with in the process of using
the related surrogate model. The speed-up proposed by the surrogate model is then more
optimal and provide a better interactivity for the decision makers to explore the various

scenarios in order to decide on an action to enact.

Overall, we addressed the considered challenges by taking into account the context and
the features of the scientific model to tailor it to support decision making in environmental

science related issues such as climate change.

7.2 Perspectives

The contributions are innovative works in the fields of software engineering and envi-
ronmental science and constitute a first step into capitalising the expertise from both fields
to tackle the new challenges faced regarding the new context of use of scientific models
for decision making but also in cyber-physical systems. As such, the contributions have
opened up some new perspectives for future work. We identify several research questions

related to the conclusion of our contributions that help give a roadmap of future work:

— Future RQ 1: How to generalise the loop aggregation technique to support decision

making?
— Future RQ 2: How to use the loop aggregation technique for models at run-time?

— Future RQ 3: Can we apply loop aggregation in contexts other than supporting

decision making?

— Future RQ 4: To what extent can loop aggregation be relevant in other contexts

related to Environmental Science and ICT4S?
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7.2.1 Future RQ1: Generalisation of the Loop Aggregation Tech-
nique
Optimisation for the Exploration of New Scenarios

As initiated by the contribution presented in Chapter 6, the application of the loop
aggregation can be optimised. The optimisation approach that we propose answers that
need, but is not optimal itself. Therefore, it would be beneficial to better understand all
the various factors in the optimisation approach that lead to correct prediction of the
optimal aggregation parameter to use for loop aggregation for generic scientific models
and not only the Modflow model we use in our experimentation. Having such guidelines
about the influence of the factors on the quality of prediction would help to directly im-
plement the prediction of the optimal aggregation parameter in any context. Moreover, an
interesting work would be to investigate how the incorporation of more domain knowledge
could improve the approach and its application. For instance, the better fitted definition
of the features used to characterise the cases involved in the model training could signifi-
cantly reduce the number of overestimations we observed in our experimentation with the
Modflow model. Again, the beneficial sharing of skills of the software and environmental

domains can be pointed out.

Experimenting on Other Models

As stated in Section 5.3.4, the loop aggregation technique has only been validated
on one environmental model. Applying the technique on other environmental models
would bring more insight and information about its effect on the gain of execution speed.
For example, some study could be made to determine if there is a maximal speed-up
depending on the form of the mathematical models (e.g., complexity of the systems of
differential equations). What’s more, the simulation model used in our evaluation is based
on reusing the existing Modflow simulator. According to our scientific V-Model, we can
think of applying loop aggregation on simulation models being implemented thanks to
the description of another artifact and with another programming language. We could
observe the possible adaptation it would need to implement the loop aggregation technique
for a model implemented in a programming language associated with the description of
the numerical scheme such as Nablab [140] (cf. Section 4.2.2). We can investigate the
interaction between the discretisation testing and the validation of the surrogate model

with respect to the acceptability criterion.
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Integration into a Modelling Environment

The loop aggregation technique has been implemented for a hydrogeological model
based on the Modflow simulator [20]. The code we wrote to do so was specific to the
model. Producing a non-specific model code library would enable and facilitate the im-
plementation of the technique for other scientific models by others. The application of
the technique could thus be automated inside a modelling environment where modellers
would provide the necessary information about the model such as the acceptability cri-
terion and its threshold value, the range of approximation parameters, the aggregation
function, and the interpolation function (cf. Section 5.1). We can for example think of
virtual labs which provide a modelling environment for modellers to design their models,
a environment to share the simulation results to other stakeholders such as policy makers

and the general public [6].

7.2.2 Future RQ2: Automation of Surrogate Modelling Accord-

ing to the Runtime Context

As presented in Chapter 3, other surrogate modelling approaches and techniques exist.
The loop aggregation technique does not replace the other statistical or model reduction
approaches applied to scientific models in a standard context but rather complements
them. Indeed, given its minimal set-up, it could be used during a first approximation
phase to generate input /output pairs which could later be used for more efficient statistical
approaches as well as allowing a first exploration of the model to better understand it for
a possible model reduction approach later on.

An example of application is the approach of improving the training data of Machine
Learning models with simulation results generated by process-based models that is applied
in [11], [149]. Instead of building a classic predictive model thanks to the data collected
about the system under study, the authors use a process-based model to generate more
data that are then used in the elaboration of the predictive model. Instead of the po-
tentially complex process-based model, the simulation results used for the training data
would be generated by the surrogate model generated by applying the loop aggregation
technique.

Another example of perspectives for combining the surrogate modelling approaches

is the case of the service provided by the company named Extrality '. The service they

1. https://www.extrality.ai/
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provide is to generate a surrogate model of the simulation model thanks to artificial
intelligence (i.e., a data-driven approach). It helps the users to run more simulations
faster and to explore those simulations while keeping the accuracy of the physical process
based model. The service is presented as a way to reduce the computation costs and to
capitalise on all the past run simulations to improve the actual simulation model. The
surrogate model that is build in this case needs executing simulations to be elaborated,
as presented in the chapter on the state of the art and Section 3.2. Instead of running
the reference simulation model to generate the samples used to elaborate the empirical
surrogate model, the simulations would be run with the surrogate model made thanks to
loop aggregation. It would save time and resource.

Therefore, there would also be a need for an approach guiding which surrogate mod-
elling technique to use and when to use it according to the runtime context (e.g., amount
of available outputs that would have been already simulated, value of targeted accuracy,
etc).

Another case where the loop aggregation technique can be used according to the
runtime context of the model is when simulation results are critically needed in a short
amount of time. For example, with an autonomous car, when an immediate response is
to be made in a critical situation caused by a change in the environment (e.g., an animal
suddenly crossing the road), using the approximate computing approach to produce the
results and infer the better action that needs to be made would be justified. The loop
aggregation has thus the potential to be applied in a diversity of domains and application

with regard to decision making.

7.2.3 Future RQ3: Extending the application of Loop Aggrega-
tion thanks to the generated speed-up

Loop aggregation has been elaborated to answer the needs associated to the support
of decision making. However, as its functioning is based on using a faster surrogate model,
we can think of investigating the other application situations where it could be beneficial.
Surrogate models are already used in the exploration of the design space of scientific
models, calibration and sensitivity analysis. Indeed, machine learning models as well as
reduced models are used in the environmental science community to explore the design
space of the models [150]. The loop aggregation technique could theoretically also be useful

in those cases. That way, modellers can have more insight into the validation envelope of
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their model and ensure to perform a better validation of the model.

Also, as the trade-off enables the exploration of multiple scenarios, it facilitates the
modelling of systems at higher scales (from local to world systems) or to build complex
systems that integrate various complex sub-systems. It can help achieve the idea of "models
of everywhere" that is described by Beven [151] and that aims to use models to simulate
and study the whole world thanks to a complex and global model (that is build upon

previously developed models at a lower scale).

7.2.4 Future RQ4: Extending the Application of Loop Aggrega-
tion in the Field of ICT4S

Linked to the previous section, the loop aggregation technique can bring benefits in
applying it in other context and in particular in ICT4S (Information and Communication
Technology for Sustainability). The research field of ICT4S deals with the role that ICT
plays in the digitalisation and transition to a sustainable society. Two ways that ICT can
act are to (i) seek the optimisation of the energy consumption of technologies to avoid
unnecessary use and (ii) to serve as a means to raise awareness about the sustainability

related societal issues and help more informed-based and relevant decision making.

In this context, the loop aggregation technique we elaborated can be associated to the
second way of action. Indeed, its goal is to support decision making dealing with envi-
ronmental issues. However, as it is based on speeding up the execution of the simulation
model by making fewer computations, there is a potential advantage in its application with
regard to the energy consumption. When dealing with systems and context for which the
accuracy of the simulation results is not critical, using a surrogate model generated by the
loop aggregation technique could save some energy compared for instance to data-driven
approaches. So, it could be interesting to assess if such technique is also relevant to be
used as a means to reduce the energy consumption when dealing with scientific computing.
This analysis would evaluate the footprints and the handprints generated. The reduction
of energy consumption by the technique is not evident as there is the potential rebound

effect of running many more faster simulations compared to fewer long simulations.
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7.2.5 On the Collaboration of Environmental Science and Soft-

ware Engineering Researchers

The different contributions have highlighted the benefits of collaboration of environ-
mental science and software engineering researchers to tackle issues involving scientific

models.

In particular, the MODA framework gives an overview of the different interactions of
data and models according to their roles and, therefore, enables to represent the various
use of models and associated contexts. The scientific V-Model presents the importance of
appropriate tools to ensure the development of reliable scientific software, that are a crucial
means to do scientific research. In all, to support the growing interest and need of building
more complex and smarter cyber-physical systems that encompass several models, tools
and methods have to be elaborated. That elaboration needs to involve all the different
stakeholders with various expertise to ensure the relevance and the effectiveness of such

tools and methods.

The contributions of the loop aggregation technique, as well as its associated optimi-
sation approach, have shown the interest to use software engineering techniques usually
applied for engineering models for scientific models to optimise their execution, and the
need of the domain knowledge and expertise to optimise that specific optimisation. The
domain knowledge is beneficial in helping the optimisation made by software engineering

techniques on scientific models.

This notion of the importance of collaboration between the two domains has emerged
and has gained momentum in recent years [22]. Therefore, I hope that this thesis and the
associated contributions will prompt future collaborations to make cyber-physical systems
more efficient, relevant and, especially, more sustainable. In particular, we can envision
using CPS to address sustainability. Assessing sustainability requires modeling multiple
complex systems and their associated interactions, dealing with large volumes of data,
and integrate diverse domain knowledge. CPS are thus perfect means to address this
task, as they allow system adaptation through feedback loops. There is also interesting
investigations to lead on addressing the sustainability of the software-related processes

while developing and maintaining such CPS.

In summary, we can envision smart-CPS for sustainability. CPS would integrate several
scientific models which are used as simulators to describe and predict physical phenomena

related to sustainability(e.g.,environmental, economical or social phenomena) so that pre-
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scriptions about efficient adaptation of the system can be performed. The smart property
of the CPS comes from the efficient adaptation that relates to the behaviour of physical
phenomena, and also comes from the efficiency in adapting so that the system is sustain-
able with regard to its execution and maintenance (e.g.,using efficient (approximated)

execution of models).
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Agir sur la fiabilité et la flexibilité des logiciels scientifiques en sciences de I'environne-
ment : Vers une approche systématique d’aide a la prise de décision

Mot clés : Génie Logiciel, Approximation, Prise de décision, Sciences de I'environnement

Résumé : Les logiciels scientifiques sont au
coeur de l'aide a la prise de décision liée a la
résolution des problémes environnementaux
grace a la simulation. Cependant, leur com-
plexité rend leur exécution colteuse en temps
OuU en ressources, ce qui n'est pas compa-
tible avec le contexte de la prise de décision
interactive. Lobjectif principal de la thése est
d’adapter les modéles scientifiques, et donc
les logiciels scientifiques, afin de rendre leur
utilisation pertinente et efficace dans de tels
contextes. Nous étudions d’abord les modéles
scientifiques et leur complémentarité avec les
modéles d’'ingénierie pour comprendre com-
ment ils interagissent ensemble et comment
cela a un impact sur 'adaptation souhaitée.
Nous présentons le modéle MODA qui défi-
nit l'intégration des différents types et rbles
que les modeles peuvent prendre dans un
systéme sociotechnique. Nous étudions en-
suite la spécificité des modéles scientifiques
en termes de cycle de développement et
de processus de validation. Nous décrivons

une approche pour le développement de lo-
giciels scientifiques fiables qui permet de ca-
ractériser clairement I'enveloppe de validité
de ce type de logiciel. Enfin, nous propo-
sons une approche systématique de 'adap-
tation des modéles scientifiques pour soute-
nir la prise de décision en troquant la préci-
sion contre la flexibilité. Nous adaptons une
technique de calcul approximatif pour les mo-
deles scientifiques. Nous I'évaluons sur un
modele hydro-géologique utilisé pour estimer
le risque d’inondation dans les zones cbtiéres.
Nos résultats montrent une accélération si-
gnificative avec une configuration requise mi-
nimale. Nous proposons également une ap-
proche d’optimisation pour généraliser I'adap-
tation des modéles scientifiques a la prise de
décision. En somme, notre approche permet
d’utiliser des modeéles scientifiques pour aider
a résoudre des défis environnementaux, met-
tant ainsi le génie logiciel au service de la so-
ciéte.

On Reliability and Flexibility of Scientific Software in Environmental Science: Towards a
Systematic Approach to Support Decision-Making

Keywords: Software Engineering, Approximate Computing, Decision Making, Environmental

Science

Abstract: Scientific software are the cen-
tre stage to support decision-making related
to tackling environmental issues thanks to
simulation. However, their complexity makes
their execution time-consuming or resource-
demanding, which is not compatible to the
context of interactive decision-making. The
main goal of the thesis is to tailor the scientific
models, and thus, scientific software, to make
them relevant and efficient to be used in such
contexts. We first study the scientific mod-
els and their complementarity to engineering
models to understand how they interact to-
gether and how this can impact the desired tai-
loring. We present the MODA framework that
defines the integration of the different types
and roles that models can take in a sociotech-
nical system. We then investigate the speci-
ficity of the scientific models in terms of devel-

opment cycle and validation process. We de-
scribe a reasoned approach for the develop-
ment of reliable scientific software that allows
to clearly characterize the validity envelope of
this type of software. Finally, we propose a
systematic approach of tailoring the scientific
models to support decision-making by trading-
off accuracy for flexibility. We adapt an ap-
proximate computing technique for scientific
models. We evaluate it on a hydro-geological
model used to assess the risk of flooding in
coastal areas. Our results show a significant
speed-up with a minimal set-up. We also pro-
pose a trade-off optimisation approach to gen-
eralise the tailoring of scientific models for
decision-making. In all, our approach enables
to use scientific models to help solve environ-
mental challenges, putting software engineer-
ing at the service of society.
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