
HAL Id: tel-03854857
https://theses.hal.science/tel-03854857

Submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

List recommendations with multi-armed bandits
Camille-Sovanneary Gauthier

To cite this version:
Camille-Sovanneary Gauthier. List recommendations with multi-armed bandits. Machine Learning
[cs.LG]. Université de Rennes, 2022. English. �NNT : 2022REN1S023�. �tel-03854857�

https://theses.hal.science/tel-03854857
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Camille-Sovanneary GAUTHIER
List recommendations with multi-armed bandits

Thèse présentée et soutenue à Rennes, le 17 mars 2022
Unité de recherche : IRISA

Rapporteurs avant soutenance :

Vianney PERCHET Professeur, ENSAE
Philippe PREUX Professeur, Université de Lille

Composition du Jury :
Président : François TAÏANI Professeur, Université Rennes 1
Examinateurs : Audrey DURAND Assistant Professor, Université Laval

Jeremie MARY Senior Researcher, Criteo
Claire VERNADE Research Scientist, DeepMind

Dir. de thèse : Elisa FROMONT Professeure, Université Rennes 1, IRISA
Co-dir. de thèse : Romaric GAUDEL Maitre de conférence, ENSAI, CREST

Invité(s) :

Bruno GUILBOT Head of Data and Artificial Intelligence, Louis Vuitton





ACKNOWLEDGEMENT

Je ne suis pas une personne très manuelle... C’est un fait que mes proches et moi-
même avons constaté assez tôt. Par contre, l’art et l’artisanat, qui nécessitent de fortes
compétences manuelles pour se matérialiser, me fascinent. Ce sont des activités créatives,
passionnées et passionnantes et imprégnées de partages et de transmissions. Je trouve
cela beau. Mais bon, ce n’était pas dans mes cordes et j’ai suivi un cursus scolaire plus
traditionnel pour notre époque. En plus, je préfère les mathématiques et l’informatique.
Adieu cafés d’artistes, bonjour pragmatisme ! C’est en tout cas ce que je pensais.

Maintenant que je termine ma thèse, que je regarde ce qui s’est passé et ce qui
m’attend, je me vois en artisane du monde numérique, à façonner les interactions de de-
main. Ce regard nouveau, j’ai pu le forger avec l’aide de toutes les personnes sur lesquelles
j’ai pu compter et que je veux prendre le temps de remercier ici. Parce que comme toute
artisane, avec cette thèse, j’ai pu débuter un compagnonnage riche de rencontres.

Je tiens tout d’abord à remercier mon directeur et ma directrice de thèse, mes mentors
dans cet art qu’est la recherche : Romaric Gaudel et Elisa Fromont. Je vous remercie
pour votre temps, votre patience et tous vos conseils. Merci Elisa pour ton énergie et ton
enthousiasme. Tu m’as donné de multiples clés et cartes pour explorer le monde de la
recherche et décrypter ses codes. Ton accompagnement m’a été précieux pour prendre la
hauteur nécessaire et tes critiques constructives m’ont permis d’aiguiser ma clarté et ma
pédagogie, qui sont des compétences qui me sont maintenant indispensables. Merci pour
ton rire et tes encouragements qui ont illuminé ces trois années. Merci Romaric pour cette
discussion, alors que j’étais encore élève à l’ENSAI, qui m’a confortée dans le fait qu’une
thèse était un beau projet auquel je pouvais m’accrocher. Merci ensuite d’avoir construit ce
sujet avec Bruno et moi. Merci d’avoir cru en ce projet et en mes capacités. Merci enfin de
m’avoir poussé à aller toujours plus loin dans des nouveaux domaines et de nouveaux axes
de travail. Ta passion pour la recherche et ton intérêt pour tous les sujets me fascinent.
Merci de m’avoir fait autant évoluer pendant ces trois années aussi bien humainement
que techniquement. Même si j’ai vécu cette thèse physiquement loin de vous, je me suis
toujours sentie soutenue et écoutée. Je me sens chanceuse et reconnaissante de vous avoir
eus tous les deux comme directeur et directrice de thèse et d’avoir partagé ces années avec

3



vous.
Je ne sais pas si lors d’un "vrai" compagnonnage le travail réalisé au cours de ce

parcours initiatique est jugé par des paires. En thèse, oui. Et pour leurs remarques et
questions constructives, je tenais à remercier mes rapporteurs, Philippe Preux et Vianney
Perchet, ainsi que mon jury : Audrey Durand, Claire Vernade et Jeremie Mary. Je tenais
à remercier également François Taïani qui en plus d’avoir présidé mon jury, a vérifié le
bon déroulement de cette thèse au côté de Charlotte Laclau que je remercie également.
Leur implication dans mon Comité de suivi a permis de poser des balises concrètes et
d’une réelle aide pour moi dans cette thèse.

Pendant ces trois ans, j’ai pu travailler simultanément dans deux ateliers rennais au
côté de maîtres de disciplines variées et de leurs "apprentis".

L’atelier ensaien qui m’avait initiée et donné mes premiers sujets de composition en
apprentissage automatique, a continué de me donner des "modèles" pour mes œuvres.
Continuer dans cet atelier m’a permis de (re)découvrir des artistes des statistiques et de
profiter de la sagesse d’Amandine D., des conseils et de la solidarité de Steven G., de
la fantaisie d’Edouard G., du bon sens de Max D., de la force tranquille d’Eli C., de la
vitalité de Daphné A., de l’humour de Sunny W. et de la gentillesse de Guillaume Fl.,
Hassan M., Guillaume Fr. et Camille M.

L’atelier Lacodamien a été l’occasion de découvrir de nouvelles applications et une
nouvelle manière de penser et d’utiliser l’informatique. Et cette découverte, j’ai pu la
faire grâce à des artistes d’une bienveillance absolue tels que Alexandre T., Laurence R.,
Véronique M., Christine L., Tassadit B., Peggy C., Gaelle T. et Luis G.(qui m’a aussi
fait découvrir le chocolat équatorien !). J’ai découvert aussi de nombreuses applications
et nouvelles pistes grâce aux "petits" dont je faisais partie quelques jours par mois au
côté de Johanne B. (merci de m’avoir hébergée et d’avoir animé mes passages à Rennes),
de Gregory M. (merci de m’avoir initiée à la politique), de Yichang W. (merci pour
ton sourire communicatif), de Heng Z. (merci pour tes conseils sur IGRIDA), de Mael
G. (merci de m’avoir introduite à vos soirées jeu), de Colin L. (merci de m’avoir fait
découvrir le reggae nu-roots), de Antonin V. (merci de m’avoir mise en garde sur toutes
ces cyberattaques), de Lenaig C. (merci d’être aussi compréhensive face à mes reviews
douteuses et mes répétitions bancales), de Julien D. et Simon C. ("merci" de m’avoir jugée
pour mes goûts gastronomiques), de Josie S., d’ Olivier G., de Nassim A. et de beaucoup
d’autres...

Etant en thèse CIFRE et dans cette métaphore artistique, certains pourraient penser

4



que mon entreprise, Louis Vuitton, a tenu le rôle de mécène. Mais le département In-
novation Digitale dans lequel j’étais intégrée a été bien plus pour moi. Cette équipe est
comme un grand collectif d’artistes et d’artisans mettant en œuvre leur savoir-faire pour
constuire des projets innovants et variés, et répondre ainsi aux besoins de LV et de ses
clients : architectes de projets, poéte(sse)s de la veille, ébénistes du code, sculpteur(trice)s
de données...

Je tenais donc à remercier Bruno Guilbot, Agnès Vissoud et Eliot Barril pour leur
confiance et pour avoir permis à cette thèse de voir le jour. Un merci particulier à Bruno
pour ton soutien envers ce projet et ton aide précieuse dans sa mise en place. Merci d’être
un tel initiateur et moteur pour nos projets IA même lorsqu’ils sont (trop) disruptifs et
pour ton enthousiasme et ta bienveillance. Merci également à toute l’équipe pour votre
curiosité et votre soif de partage qui ont coloré ces trois années. Merci à Julie B. pour
ta belle et bonne humeur contagieuse et tous les moments de partage dont tu es souvent
l’initiatrice, merci à Badr S. d’avoir été un binôme de choc et pour continuer d’être aussi
partant et coopératif pour nos projets, merci à Laura E., Anne P., Gordan G. et Félina R.
de me faire découvrir toutes ces dernières tendances (mode, innovation et viennoiseries),
merci à Julien L. et à Pierre L. de m’avoir fait découvrir nombre de jeux, séries et aussi
méthodes de traitement stat et data, merci à Léa F. d’avoir relevé le defi d’un stage
sur les bandits contextuels, merci à Fabien S., Ken B., Basile M., Amelie N., Thomas
P., Matthieu B., Charlotte P., Maud L., Charlène D., Florent C., Aurélien L., Thibault
P., Jordan F., Steven L., Nathan V., Yuan X., Aymeric F., Ming Z. et tous ceux que je
n’ai pas pu citer pour ces moments passés ensemble au Bailleul, écrin de tant d’œuvres
fantastiques.

Mes cafés d’artistes ont été des cafet d’écoles et de labo, mais aussi des écoles d’étés
et des conférences (même virtuelles). A ces occasions, on écoute sur scène les maîtres, on
refait le monde avec d’autres passionnés et surtout, on se soutient. Merci à Guillaume
A. de l’avoir fait aussi autour de pâtisseries et à Dorothé K. de l’avoir fait au travers de
l’expérience MT180.

Enfin, j’ai la chance d’être soutenue par une famille et des amis formidables. Merci à
mes parents pour tout et notamment de m’avoir appris que je pouvais faire tout ce que
je voulais si j’y mettais les efforts et l’intégrité nécessaires. Merci à ma petite soeur Eva-
Kalyane, qui m’émerveille par sa force de caractère et qui me pousse à donner le meilleur
en acceptant mes faiblesses. Merci à ma moitié, mon pilier ces dernières années qui m’a
soutenue, et même s’il ne comprenait pas pourquoi je me lançais dans "une telle galère",

5



m’a permis de voir toujours le positif.
Je remercie tous mes proches qui sont présents dans les bons comme dans les mo-

ments difficiles et notamment Sao. Merci à mes amis que je connais depuis le collège, le
lycée, la prépa ou l’ENSAI et qui, même si nos chemins ont divergé géographiquement ou
professionnellement, sont toujours présents et me soutiennent.

Enfin merci à mon grand-père, Marcel Gauthier, qui a vu mes premiers déboires de
thèse et qui aurait adoré m’entendre parler de mes publications, qui aurait suivi ma
soutenance avec tout l’intérêt du monde et qui aurait lu ce mémoire de la première à
la dernière page. Merci de m’avoir montré que la curiosté était une force et que le mot
’pourquoi’ était irremplaçable.

"Ce qui est important, ce n’est pas de finir une œuvre, mais d’entrevoir qu’elle permette
un jour de commencer quelque chose." Joan Miro

Ça tombe bien, la recherche est une œuvre infinie.

6



TABLE OF CONTENTS

Long summary (in French) 11

Introduction 19
Recommendation systems and Louis Vuitton . . . . . . . . . . . . . . . . . . . . 19
Online learning to rank at Louis Vuitton . . . . . . . . . . . . . . . . . . . . . . 22
Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1 Background on bandit-based recommender systems 27
1.1 User click behavioral models . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1.1 Position-based model . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.1.2 Cascading model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.1.3 Others click behavioral models . . . . . . . . . . . . . . . . . . . . . 31

1.2 Bandit algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.1 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.2.2 Thompson sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.2.3 Upper confidence bound algorithm . . . . . . . . . . . . . . . . . . 34
1.2.4 Combinatorial bandits . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3 My thesis setting: learning to rank in a semi-bandit setting . . . . . . . . . 36
1.3.1 Bandits for click behavioral model . . . . . . . . . . . . . . . . . . . 36
1.3.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.3.3 Choice of the environment to evaluate bandit algorithms . . . . . . 38
1.3.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Related work 43
2.1 Bandits on PBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 PMED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.2 Focus on (KL)CombUCB1 . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Bandits on other click behavioral models . . . . . . . . . . . . . . . . . . . 47
2.2.1 Focus on TopRank . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7



TABLE OF CONTENTS

2.3 Related algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.1 Focus on OSUB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Unimodal bandit for PBM 53
3.1 Relation with unimodality . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Parametric graph for unimodal ranking bandit . . . . . . . . . . . . . . . . 57
3.3 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4 Practical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 MCMC bandits for PBM 69
4.1 Thompson sampling with approximation approaches . . . . . . . . . . . . . 70

4.1.1 Approximation based on Metropolis Hasting . . . . . . . . . . . . . 71
4.1.2 Approximation based on Langevin gradient descent . . . . . . . . . 76
4.1.3 Overall complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Practical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Unimodal bandits for other click behavioral models 91
5.1 Model assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 UniRank: unimodal bandit algorithm for generic online ranking . . . . . . 95
5.3 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Practical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Conclusion 107
Take away . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Contribution for Louis Vuitton . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Echo chamber and exploration behavior . . . . . . . . . . . . . . . . . . . . . . 111
Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 115

Appendix 123

8



TABLE OF CONTENTS

A GRAB 124
A.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.2 Proof of Lemma 1 (PBM Fulfills Assumption 1) . . . . . . . . . . . . . . . 126
A.3 Preliminary to the Analysis of GRAB . . . . . . . . . . . . . . . . . . . . . 128
A.4 Proof of Theorem 2 (Upper-bound on the Regret of KL-CombUCB) . . . . 128
A.5 Proof of Lemma 2 (Upper-bound on the Number of Iterations of GRAB

for which ãaa(t) = ãaa 6= aaa∗) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.6 Proof of Lemma 3 (Upper-bound on the Number of Iterations of GRAB

for which π̃ππ(t) /∈ Πρρρ(ãaa)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.7 S-GRAB: OSUB on a Static Graph . . . . . . . . . . . . . . . . . . . . . . 137

B UniRank 139
B.1 Organisation of the Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.3 Proof of Lemma 4 (PBM and CM Fulfills Assumptions 2, 4, and 5) . . . . 143
B.4 Technical Lemmas Required by the Proof of Theorem 3 . . . . . . . . . . . 145

B.4.1 Proof of Lemma 5 (Pseudo-Unimodality Assuming a Total Order
on Items) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B.4.2 Minimum Expected Click Difference . . . . . . . . . . . . . . . . . . 146
B.4.3 Upper-bound on the Number of High Deviations for Variables with

Lower-Bounded Mean . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.4.4 Upper-Bound on the Number of Upper-Estimations of a Pessimistic

Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.5 Proof of Theorem 3 (Upper-Bound on the Regret of UniRank Assuming a

Total Order on Items) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.5.1 Upper-Bound on the Number of Sub-Optimal Merges of UniRank

when the Leader is the Optimal Partition . . . . . . . . . . . . . . . 155
B.5.2 Upper-Bound on the Expected Number of Iterations at which the

Leader is not the Optimal Partition . . . . . . . . . . . . . . . . . . 157
B.5.3 Final Step of the Proof of Theorem 3 (Upper-Bound on the Regret

of UniRank Assuming a Total Order on Items) . . . . . . . . . . . 165
B.6 UniRank’s Theoretical Results While Facing State-of-the-Art Click Models 169

B.6.1 Proof of Corollary 1 (Upper-Bound on the Regret of UniRank when
Facing CM∗ Click Model) . . . . . . . . . . . . . . . . . . . . . . . 169

9



TABLE OF CONTENTS

B.6.2 Proof of Corollary 2 (Upper-Bound on the Regret of UniRank when
Facing PBM∗ Click Model) . . . . . . . . . . . . . . . . . . . . . . 170

10



LONG SUMMARY (IN FRENCH)

Cette thèse CIFRE s’inscrit dans le projet de Louis Vuitton d’améliorer l’expérience
de ses clients sur l’ensemble de ses interfaces numériques.

En tant que marque de luxe, Louis Vuitton (LV) a toujours accordé une attention
particulière aux services dispensés à ses clients afin d’offrir l’"ultime expérience d’achat".
En magasins, les conseillers clients sont les ambassadeurs de la "Maison" et sont formés
spécifiquement pour faire de chaque visite des clients, une expérience satisfaisante.

La digitalisation croissante de la société amène toutes les marques, y compris les
marques de luxe, à moderniser leurs processus de vente pour s’adapter et se fondre dans
les nouveaux besoins de leurs clients. De plus, les pages web traditionnelles sont appelées
à changer avec l’arrivée de l’incrustation de produits dans des vidéos ou via les nouvelles
expériences 3D 1 qui permettront aux utilisateurs d’avoir des interactions plus immersives
et plus de liberté dans leur navigation web. Ces interfaces ouvertes s’imposent comme
une révolution incontournable pour les marques et vont creuser un fossé entre les marques
s’adaptant à ce nouveau monde numérique et celles qui ne le font pas. Pour assurer l’accès
à ces produits et services, Louis Vuitton dispose de différents canaux : son site internet, son
chatbot, appelé Assistant Virtuel, son application " LV app " et l’utilisation d’applications
sociales et mobiles tel que Instagram, Wechat ou Line.

Sur chaque canal, des équipes dédiées sont chargées de concevoir des expériences pour
satisfaire les besoins des clients. Trois exemples d’expériences proposées sur le site e-
commerce de LV sont présentées sur la Figure 4 : la page d’accueil dédiée à la mise en avant
des actualités LV, une grille de produits dédiée à la suggestion de cadeaux et une grille
de "looks" pour présenter les produits de prêt-à-porter. L’assistant virtuel est également
capable de répondre de manière engageante et interactive aux clients. La Figure 5 donne
un exemple d’interaction entre le chatbot et un utilisateur pour découvrir les produits de
la marque.

Néanmoins, les clients ont de grandes attentes vis-à-vis de l’expérience proposée par
Louis Vuitton et, comme la part des ventes à distance est en augmentation, ces attentes

1. https://journalduluxe.fr/fr/mode/louis-vuitton-un-madison-square-garden-virtuel-pour-le-
lancement-de-la-capsule-nba

11



Long summary (in French)

Figure 1: Pages du site e-commerce de Louis Vuitton. En haut : page d’accueil. En bas
à gauche : la section "Cadeaux pour femmes" avec un affichage en grille. En bas à droite
: la section "Prêt-à-porter par look", avec un affichage de plusieurs produits par look sur
une grille.

ont influencé la conception et la gestion de tous les canaux de communication. Actuelle-
ment, sur le site e-commerce de Louis Vuitton, les recommandations sont basées sur des
règles commerciales, sur de la similarité visuelle ou sur la popularité des produits et les
actions passées des utilisateurs. Ces différentes stratégies de recommandations ont pour
but de répondre aux besoins des clients en matière soit de conseils génériques, soit de
recommandations alternatives ou encore pour pousser du contenu sur la marque. Comme
de nouveaux produits sont fréquemment ajoutés au catalogue de produits LV, les recom-
mandations sur le site e-commerce doivent faire preuve de dynamisme afin d’inclure effi-
cacement ces nouveaux produits.

Les cas d’utilisation présentés précédement, tel que la construction de grille ou la dé-
couverte de produit grâce au chatbot ont en commun de choisir et d’ordonner K éléments
à proposer à un utilisateur parmi L possibles. Cette configuration est connue sous le nom
de recommandation de liste et sera le point central de cette thèse.

Les systèmes de recommandations (RS) sont conçus pour aider les utilisateurs à choisir

12



Long summary (in French)

Figure 2: Product Discovery on Louis Vuitton’s Virtual Assistant.

des éléments pertinents. Ces éléments peuvent être très divers (chansons, publicités, films
. . . ) et sont souvent destinés à être affichés sur des pages web, parmi un très grand
nombre d’éléments semblables. A la différence d’un conseiller de vente humain qui vous
aurait promené dans tous les rayons d’un magasin physique, un système de recomman-
dations peut aider simultanément des milliers d’internautes à rechercher des millions de
produits. Ce processus automatique aide les entreprises à satisfaire leurs clients digitaux.
La diversité des systèmes de recommandations et de leurs implémentations permet de
répondre à différents besoins en termes d’interactions avec les clients : remplissage du
panier, choix alternatifs, ... ils peuvent se concentrer sur une seule recommandation ou en
fournir plusieurs à la fois pour donner plus de liberté aux utilisateurs. À chaque appel,
ces systèmes sélectionnent K articles parmi L articles potentiels, K ≤ L. Les retours
des utilisateurs sont ensuite collectés pour chaque élément affiché, reflétant la pertinence
des choix proposés : temps d’écoute, taux de clics, etc. Habituellement, ces retours sont
utilisés simultanément lors d’une phase d’apprentissage statique (ou "batch") en appli-
quant par exemple des méthodes de filtrage collaboratif [57], des méthodes basées sur
le contenu [47] ou en intégrant des caractéristiques décrivant les utilisateurs et les élé-
ments [10, 65]. Cependant, les retours utilisés pour ces types d’apprentissages statiques
ne sont disponibles que pour les éléments qui ont été effectivement présentés à l’utilisateur

13



Long summary (in French)

jusqu’alors. L’apprentissage des modèles précédents influence donc les recommendations
alors que pour les modèles classiques d’apprentissage statique, les données sont supposées
indépendantes. Les systèmes de recommandation en ligne (ORS) sont développés pour
surmonter ce problème de dépendance entre données. Le problème dit du bandit manchot
à K-bras avec retour semi-bandit [19, 9] est une façon standard de décrire ce cadre : celui-
ci tend à recommander itérativement un ou plusieurs éléments parmi un ensemble plus
large d’éléments possibles, chacun d’entre eux étant indépendant des autres, puis il reçoit
un retour pour chaque élément recommandé qui sera utilisé par l’algorithme pour choisir
la prochaine liste de recommandations. Cette utilisation des retours amène l’algorithme
à adopter deux types de comportement : d’une part, l’algorithme présente des articles
avec peu ou pas de retours aux utilisateurs afin de collecter des informations sur tous les
articles possibles et, d’autre part, l’algorithme promeut les articles qui ont les meilleurs
retours.

Un autre problème, lié à l’ordonnancement, consiste à afficher les K éléments choisis
aux bonnes positions pour maximiser l’attention de l’utilisateur. Des exemples typiques
de tels affichages sont (i) une liste de nouvelles, visibles une par une ; (ii) une liste de
produits, disposés par rangées ; ou (iii) des publicités réparties partout sur une page web.
Plusieurs approches ont été proposées pour apprendre à positionner les meilleurs éléments
aux meilleures positions [53, 15, 44]. Ces approches sont appelées bandits manchots multi
jeu ou apprentissage d’ordonnancement en ligne (OLR).

Pour s’attaquer au problème d’apprentissage d’ordonnancement en ligne rencontré sur
le site de LV, il faut comprendre et identifier le modèle de comportement de clics suivi par
les utilisateurs de LV. Une fois le modele identifié, des algorithmes peuvent être développés
pour estimer efficacement les paramètres de ce modèle.

Sur le site de Louis Vuitton, par exemple, les produits sont affichés sur des grilles de
différents formats, en fonction de l’appareil utilisé (téléphone, ordinateur...). Ces différents
types d’affichage entraînent des sens de lecture variant selon les utilisateurs. Ainsi, il
est important de comprendre comment les clients interagissent avec les recommandations
affichées car l’attention des clients envers un article affiché est impactée par sa position sur
la grille. En plaçant les produits adéquats dans des positions qui seront vues en premier
par les clients, ils trouveront plus facilement ce dont ils ont besoin et leur expérience
sera améliorée. Cela introduit un nouveau défi qui consiste à ordonner les articles et les
positions.

Un client peut donner différent retours lorsqu’on lui présente une liste de recomman-

14



Long summary (in French)

dations, c’est-à-dire une liste ordonnée de K éléments. Ces retours peuvent être un clic
unique sur le premier élément pertinent ou le temps passé à consulter une recommanda-
tion. Nous considérons ici qu’un retour est une liste de K booléens (clic ou non clic), un
pour chaque élément présenté. Les modèles comportementaux de clics visent à fournir un
modèle paramétrique des interactions entre les clients et les listes de recommandations.
Ce modèle définit les probabilités de clic pour chaque élément d’une liste. De nombreux
modèles comportementaux de clics permettent de comprendre comment évolue l’attention
(partielle) des clients en fonction des positions [55, 16]. La question principale est de com-
prendre si un élément situé à une position donnée a été vu ou non pour ensuite déterminer
si un élément ne reçoit pas de clic parce qu’il n’était pas pertinent ou parce qu’il n’a pas
été vu. Cette probabilité de clic dépend à la fois de la pertinence d’un élément et de
l’impact de sa position. Les différents modèles de comportement de clics existants met-
tent en œuvre cette hypothèse de manière différente : le modèle basé sur la position (PBM)
suppose que la pertinence d’un élément et l’impact de sa position sont indépendants ; le
modèle en cascade (CM) suppose que les clients examinent les positions de haut en bas
itérativement.

Les produits étant proposés sous la forme d’une grille sur le site de LV, la lecture
d’une page n’est pas intuitive/conventionnée : il peut exister différents sens de lecture.
Ainsi, plus que sélectionner les produits les plus pertinents, il s’agit de savoir aussi les
positionner dans cette grille pour optimiser la visite des utilisateurs. Dans ce genre de
situations, plusieurs modèles de comportement ont été identifiés : le modèle PBM semble
le plus adapté du fait de l’indépendance des impacts des positions et des items, qui facilite
l’adaptation aux différents sens de lecture.

Une fois le modèle comportemental de clics le plus pertinent identifié, les paramètres
doivent être déduits à l’aide d’un algorithme efficace. Le site e-commerce de LV attire
chaque jour de nombreux visiteurs, et met en avant le catalogue de produits de LV,
qui contient des dizaines de milliers d’articles et est fréquemment renouvelé. En outre,
l’affichage du site de e-commerce est essentiellement statique pour l’instant, avec quelques
changements lorsque de nouvelles règles commerciales sont introduites. Tout cela conduit
à très peu d’interactions par produit et par client, et ces interactions se concentrent sur les
mêmes produits. Cette situation est un des inconvénient des approches traditionnelles de
recommandation telles que le filtrage collaboratif et la factorisation matricielle qui ne peu-
vent pas avoir de bonnes estimations pour les produits peu mis en avant. Pour surmonter
cette concentration sur peu d’éléments, les algorithmes de bandits manchots peuvent être

15



Long summary (in French)

mis en œuvre en complément des systèmes de recommandations existants. Grâce à leur
apprentissage en continu, les algorithmes de bandits manchots rendent l’affichage plus
dynamique et apprennent sur tous les produits grâce aux interactions avec les utilisateurs
et au mécanisme d’exploration des bandits manchots. Comme K articles sont affichés
simultanément et que les interactions sont recueillies sur chaque article, nous sommes
confrontés à ce que l’on appelle le retour semi-bandit à jeux multiples.

La structure de cette thèse est la suivante. Le chapitre 1 présente les idées générales
sur les deux principaux concepts étudiés dans cette thèse : les modèles comportementaux
de clics et les algorithmes de bandits manchots. Différents modèles de clics sont décrits
(Section 1.1) à la fois en termes d’interaction avec l’utilisateur mais aussi selon des hy-
pothèses générales sur la définition de la probabilité des clics. Un cadre général pour les
algorithmes de bandits et quelques détails sur les algorithmes standards tels que Thomp-
son Sampling et UCB sont présentés dans la section 1.2. La section 1.2.4 se concentre sur
les bandits manchots combinatoires qui s’appliquent de façon similaire à certaines de nos
contributions, notamment sur la manière d’associer des produits à des positions, qui peut
être considérée comme une recommandation combinatoire. Pour conclure ce chapitre, la
section 1.3 présente le cadre utilisé dans cette thèse. L’accent est mis sur l’évaluation en
définissant les mesures de performance, le processus de génération des retours utilisateurs
et les jeux de données utilisés.

Le chapitre 2 présente des algorithmes de l’état de l’art liés au contexte de la thèse
présenté dans le chapitre précédent et aux contributions présentées dans les chapitres
suivants. Les algorithmes sont divisés en trois groupes : les algorithmes spécialisés dans
le modèle basé sur les positions (PBM), les algorithmes conçus pour d’autres modèles de
clics ou pour les cas où les modèles de clics ne sont pas spécifiés et enfin les algorithmes
dont la structure est proche des contributions présentées dans cette thèse. Au sein de
ces groupes, une attention particulière est portée aux principaux algorithmes de l’état de
l’art.

Le chapitre 3 introduit une contribution basée sur les bandits manchots unimodaux,
publiée dans [26] et présentée à [25]. Cette adaptation du cadre des bandits manchots uni-
modaux au cas PBM est présentée dans la section 3.1. Ensuite, notre algorithme GRAB est
présenté dans la section 3.2. L’analyse théorique et les résultats empiriques sont présentés
dans les sections 3.3 et 3.4.

Le chapitre 4 présente une contribution concernant spécifiquement le problème PBM
en couplant les bandits manchots par échantillonnage de Thompson et les méthodes

16



Long summary (in French)

d’échantillonnage par approximation de Monte Carlo par chaîne de Markov. Ce tra-
vail a été publié dans [23] et présenté à [24]. Une version étendue de [23] est en cours
de révision dans le journal ACM Transactions on Information Systems. La section 4.1
présente les deux méthodes d’approximation utilisées dans cette contribution ainsi que les
algorithmes associés : PB-MHB (Position Based Metropolis-Hastings Bandit) et PB-LB
(Position Based Langevin gradient Bandit). La section 4.2 donne des résultats empiriques
et montre que, même si cette contribution n’a pas de preuve théorique, contrairement à
celle présentée dans le chapitre précédent, elle fournit les algorithmes les plus performants.

Le chapitre 5 présente une contribution conçue pour recommander dans un cadre
comportemental plus large que dans les deux chapitres précédents. Cette contribution
adapte les bandits unimodaux pour s’adapter à plusieurs modèles de clics. Ces adaptations
sont présentées dans les sections 5.1 et 5.2. L’analyse théorique et les résultats empiriques
sont donnés dans les sections 5.3 et 5.4.

Pour conclure, nous faisons la synthèse de ces trois contributions et nous discutons
de l’impact social de tels systèmes. Enfin, nous avançons quelques perspectives mises en
lumière par ce travail, tant du point de vue de la recherche que du point de vue de
l’entreprise Vuitton.

Publications

Voici la liste des articles rédigés dans le cadre de cette thèse :
— Publications en conférences internationales [23] and [26]:

— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont, "Bandit Algo-
rithm for both Unknown Best Position and Best Item Display on Web Pages",
IDA: 19th International Symposium on Intelligent Data Analysis, Porto,Portugal,
2021.

— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont and Aser Boam-
mani Lompo, "Parametric Graph for Unimodal Ranking Bandit", ICML: Pro-
ceedings of the 38th International Conference on Machine Learning, virtual,
2021.

— Publications en conférences nationales [24] and [25]:
— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont, "Bandits man-

chots avec échantillonnage de Thompson pour des recommandations basées sur
les positions", CAp’2020 (Conférence d’Apprentissage), virtual, 2020.

— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont and Aser Boam-

17



Long summary (in French)

mani Lompo, "Ordonnancement d’objets par bandits unimodaux sur des graphes
paramétriques", CAp’2021 (Conférence d’Apprentissage), Saint-Etienne, 2021.

— En révision (journal):
— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont, "MCMC-based

Thomson Sampling Algorithms for Online Recommendations in the Position-
Based Model", ACM Transactions on Information Systems (TOIS).

— En soumission à ICML 2022 (refusé à NeurIPS 2021 et amélioré):
— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont, "UniRank: Uni-

modal Bandit Algorithm for Online Ranking".

18



INTRODUCTION

This industrial thesis is part of Louis Vuitton’s project to enhance its clients’ experience
on its digital interfaces.

Recommendation systems and Louis Vuitton

How Louis Vuitton advises its clients today

As a luxury brand, Louis Vuitton (LV) has always paid a particular attention to
its client services in order to deliver the, so called, ultimate premium experience. Client
Advisors are the ambassadors of the "Maison" in stores and are trained specifically to make
every visit in the store, a satisfactory experience. Figure 3 shows a typical Louis Vuitton
store where various products are displayed according to both specific LV guidelines and
to the know-how of the store’s crew.

The digitalization of everyone life brings luxury brands to be accessible online and
adapt and blend in their clients’ new needs. Moreover, traditional web pages are destined
to change with the arrival of incrustation of product in videos and new 3D experiences 2

which will give users more immersive interactions and more liberty in their web browsing.
These open interfaces will broaden the gap between brands which adapt to the digital

2. https://journalduluxe.fr/fr/mode/louis-vuitton-un-madison-square-garden-virtuel-pour-le-
lancement-de-la-capsule-nba

Figure 3: Display of various products in Montaigne Store in Paris.

19



Introduction

Figure 4: Pages of the Louis Vuitton website. Top: Homepage. Bottom left: "Women Gift"
section with a grid display. Bottom right: "Ready to Wear by Look" section, with multiple
product displayed on looks on a grid.

world and those which do not. To increase its accessibility, Louis Vuitton has various
channels: its website, its chatbot, called the Virtual Assistant, its application "LV app"
and social and mobile applications such as Instagram, Wechat or Line. On each channel,
dedicated teams are in charge of designing experiences to satisfy their clients’ needs.
For instance, Figure 4 presents three different experiences on the website: the homepage
dedicated to highlight LV news, a grid of product dedicated to showcase gift suggestions
and a grid of "looks" to present ready-to-wear products. The Virtual Assistant is also able
to answer in an engaging and interactive way with clients. For instance, Figure 5 shows a
Product Discovery query from a user.

Nevertheless, clients have high expectations towards the experience proposed by Louis
Vuitton and, because the share of distant sales is increasing, these expectations have
influenced the design and management of all the communication channels. Currently, on
Louis Vuitton’s website, recommendations are based on business rules, visual similarity
between products or products’ popularity and past actions of clients to address clients’
needs for generic advises, alternative recommendations and to push contents. Since there

20



Introduction

is frequently new products included in LV products’ catalogue, recommendations on the
website also need to continuously include these new products.

The use cases presented in this section have in common to choose and rank K items
among L possible ones. This setting is known as list recommendation and will be the
focus of this thesis.

Figure 5: Product Discovery on Louis Vuitton’s Virtual Assistant.

Recommendation systems in our everyday life

Recommendation Systems (RS) are designed to assist users to choose relevant items.
These items can be songs, adds or movies and are often meant to be displayed on web
pages, among a very large number of elements. When a human sales advisor would have
walked you through all the shelves of a physical store, a Recommendation System can help
thousands of web users to search in millions of products at the same time. This automatic
process helps companies to satisfy their digital clients. RS cover many needs in terms of
interactions with clients: completion of basket, alternative choices, ... they can focus on a
single recommendation or provide multiple ones at a time to give more freedom to users.
At each call, such systems select K items among L potential ones, K ≤ L. User feedbacks
are collected for each displayed items, reflecting how relevant these automated choices are:

21



Introduction

listening time, clicks, rates, etc. Usually, these feedbacks are used through batch learning
by applying for instance collaborative filtering methods [57], content-based ones [47] or
through embedding alongside features describing users and items [10, 65]. However, these
feedbacks are available only for the items which were actually presented to the user. Online
Recommendation Systems (ORS) are developed to overcome this issue. The Multi-armed
bandit problem with semi-bandit feedback [19, 9] is a standard way to describe this setting.
This setting tends to iteratively recommend one or multiple items amongst a larger set of
possible items, each of them being independent from the other, then it receives a feedback
for each item recommended which will be used by the algorithm to choose the next list
of recommendations. This use of feedbacks drives the algorithm to adopt two types of
behavior: on the one side, the algorithm presents items with few or no previous feedback
at to users to collect information on all the possible items and on the other side, the
algorithm promotes items which have the best feedbacks.

Another problem, related to ranking, is to display the K chosen items at the right
positions to maximize the user attention. Typical examples of such displays are (i) a
list of news, visible one by one by scrolling; (ii) a list of products, arranged by rows; or
(iii) advertisements spread everywhere on a web page. Numerous approaches have been
proposed to jointly learn how to choose the best positions for the corresponding best items
[53, 15, 44] referred to as multiple-play bandit or online learning to rank (OLR).

Online learning to rank at Louis Vuitton

To tackle the online learning to rank problem arising from LV’s use cases, one needs to
understand and identify the click behavioral model followed by LV users. Then, algorithms
can be developed to efficiently infer the parameters of the relevant model.

On Louis Vuitton’s website, for example, products are displayed on grids of different
shape, depending on your device (phone, computer...). These different types of display
lead to various reading directions for users. Thus, it is important to understand how clients
interact with the displayed recommendations as clients’ attention toward a displayed item
is impacted by its position on the grid. By putting the selected products in positions which
will be seen by clients, their experience will be enhanced and they will find more easily
what they need.

The client gives some feedback when presented with a recommended list (i.e. a ranked
list ofK items). We consider here that a feedback is a list ofK Booleans (click or no click),

22



Introduction

one for each presented item. Behavioral click models aim at providing a parametric model
of the interactions between the clients and the recommended lists. This model defines the
click probabilities for each item given a recommended list. Many click behavioral models
are identified to understand how clients provide their (partial) attention [55, 16]. The
main issue is to understand if an item located at a given position has been seen or not
and thus if an item is not receiving a click because it was not relevant or because it has
not been seen. This probability of click should depend both on the relevancy of an item
and the impact of its position. Different existing click behavioral models implement this
assumption differently: the position-based model (PBM) assumes that the relevancy of an
item and the impact of its position are independent; The cascading model (CM) assumes
that clients look at positions from top to bottom.

Once the most relevant click behavioral model is identified, parameters have to be
infered through an efficient algorithm. LV’s website attracts many visitors each day, and
showcases the product catalogue of LV, which contains tens of thousands of items and
is renewed frequently. Moreover, the website display is currently mostly static with some
changes when new business rules arrive. These facts combined, lead to very few inter-
actions per product per client and these interactions are focused on the same products.
This is harmful for traditional recommendation approaches such as collaborative filter-
ing and matrix factorisation. To overcome this concentration on few information, bandit
algorithms can be implemented as complementary module to existing recommendation
systems. Through their continuous learning, bandit algorithms make the display more
dynamic and learn on all products thanks to both users interactions and bandits’ ex-
ploration component. As we are displaying K items simultaneously and collecting the
interactions on each item, we face the, so called, multiple-play semi-bandit setting [9].

To tackle the particular recommendation use cases encountered at
Louis Vuitton, we focus on the online learning to rank problem. To
apply online learning to rank in these cases, we first need to identify
the right click behavioral models for LV’s clients and develop new
bandit algorithms to efficiently infer the parameters of such click
behavioral models.

Summary of the thesis goals

23



Introduction

Thesis outline

This thesis is organised as follows. Chapter 1 presents general ideas on the two main
concepts used in this thesis: behavioral click models and bandit algorithms. Various click
models are depicted (Section 1.1) both in terms of user interaction but also according to
general assumptions on the definition of the probability of clicks. A general framework for
bandit algorithms and some details on a few algorithms such as Thompson sampling and
Upper Confidence Bound (UCB) are presented in Section 1.2. Section 1.2.4 narrows the
focus to combinatorial bandits, which have similar issues as some of our contributions,
more precisely "how to allocate products to positions" can be seen as making a combina-
torial recommendation. To conclude this chapter, section 1.3 presents the setting used in
this thesis. A focus on the evaluation is made by defining the performance metrics, the
feedbacks generation process and the benchmark datasets.

Chapter 2 provides algorithms related to the setting presented in the previous chapter
and to the contributions presented in the subsequent chapters. The algorithms are divided
into three groups: algorithms specialized in the position-based model (PBM), algorithms
designed for other click models and for unspecified click models and finally, algorithms
which structure is close to the contributions presented in this thesis.

Chapter 3 presents a contribution based on unimodal bandits and published in [26]
and presented at [25]. This adaptation of the unimodal bandit framework to our position-
based setting is presented in Section 3.1. Then, our algorithm, GRAB (for parametric
Graph for unimodal RAnking Bandit), is presented in Section 3.2. Theoretical analysis
and practical results are presented in Sections 3.3 and 3.4.

Chapter 4 presents a contribution to tackle specifically PBM by coupling Thompson
Sampling bandits and Markov chain Monte Carlo approximation sampling methods. This
work has been published in [23] and presented at [24]. An extended version of [23] is
under review in ACM Transactions on Information Systems. Section 4.1 presents the two
approximation methods used in this contribution with the associated algorithms: PB-
MHB (for Position Based Metropolis-Hastings Bandit) and PB-LB (for Position Based
Langevin gradient Bandit). Section 4.2 gives empirical results and shows that, even though
this contribution is less well theoretically grounded than the one presented in the previous
chapter, it provides the best performing algorithms.

Chapter 5 presents a contribution designed to recommend under a wider setting than
in the two previous chapters. This contribution, called UniRank (for Unimodal Bandit

24



Introduction

Algorithm for Generic Online Ranking) adapts unimodal bandits to tackle multiple click
models. These adaptations are presented in Sections 5.1 and 5.2. Theoretical analysis and
practical results are given in Sections 5.3 and 5.4.

Finally, we conclude by giving the main take away of these three contributions and by
discussing the social impact of such systems. Some perspectives of this work both from a
research point of view and from an industrial one are then given.

Publications

Here is the list of the articles written in the context of this thesis:
— Published in international venues [23] and [26]:

— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont, "Bandit Algo-
rithm for both Unknown Best Position and Best Item Display on Web Pages",
IDA: 19th International Symposium on Intelligent Data Analysis, Porto,Portugal,
2021.

— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont and Aser Boam-
mani Lompo, "Parametric Graph for Unimodal Ranking Bandit", ICML: Pro-
ceedings of the 38th International Conference on Machine Learning, virtual,
2021.

— Published in national venues [24] and [25]:
— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont, "Bandits man-

chots avec échantillonnage de Thompson pour des recommandations basées sur
les positions", CAp’2020 (Conférence d’Apprentissage), virtual, 2020.

— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont and Aser Boam-
mani Lompo, "Ordonnancement d’objets par bandits unimodaux sur des graphes
paramétriques", CAp’2021 (Conférence d’Apprentissage), Saint-Etienne, 2021.

— Under review (journal):
— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont, "MCMC-based

Thomson Sampling Algorithms for Online Recommendations in the Position-
Based Model", ACM Transactions on Information Systems (TOIS).

— To be submitted at ICML 2022 (rejected at NeurIPS 2021 and improved):
— Camille-Sovanneary Gauthier, Romaric Gaudel, Elisa Fromont, "UniRank: Uni-

modal Bandit Algorithm for Generic Online Ranking".

25





Chapter 1

BACKGROUND ON BANDIT-BASED

RECOMMENDER SYSTEMS

Contents
1.1 User click behavioral models . . . . . . . . . . . . . . . . . . . . 28

1.1.1 Position-based model . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1.2 Cascading model . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.1.3 Others click behavioral models . . . . . . . . . . . . . . . . . . 31

1.2 Bandit algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.1 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2.2 Thompson sampling . . . . . . . . . . . . . . . . . . . . . . . . 33

1.2.3 Upper confidence bound algorithm . . . . . . . . . . . . . . . . 34

1.2.4 Combinatorial bandits . . . . . . . . . . . . . . . . . . . . . . . 35

1.3 My thesis setting: learning to rank in a semi-bandit setting . 36
1.3.1 Bandits for click behavioral model . . . . . . . . . . . . . . . . 36

1.3.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . 37

1.3.3 Choice of the environment to evaluate bandit algorithms . . . 38

1.3.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

This chapter provides general ideas about the main scientific concepts tackled in this
thesis: click behavioral model and bandit algorithms.

Behavioral clicks models provide a framework for users’ interactions with web pages
and how to interpret these interactions. In particular, they give some information about
which knowledge can be extracted from such interactions and which assumptions should
be considered.

Then, these interactions can be used by bandit algorithms in various ways to learn
user preferences. Some of these general methods are described here to understand how

27



Chapter 1 – Background on bandit-based recommender systems

this information is used in order to optimize recommendations and adapt to users.
Finally, these general presentations lead to the introduction of our setting. We describe

which paths we explore to address the general problematic depicted in the Introduction,
and which choices we made to formalize our problem and test our ideas.

1.1 User click behavioral models

Everyone has its own attention. However when you want to provide a piece of informa-
tion to someone, you have to understand his/her attention mechanism in order to make
sure that your information is received.

When the information goes through a digital interface, identifying users’ attention is
harder as digital browsing does not leave any clear signal. The only signal one has access
to is the user feedback, often his/her clicks on a piece of information displayed. This piece
of information will be referred to as an item. Clicks on items mix the attention of the user
with the relevance of the item which has been clicked on. In other words, when an item is
not clicked on, one does not know if it is because the user did not see it (the item did not
get the user attention) or because the user did not like the item (the item was irrelevant).
Nevertheless, as attention is mostly linked to how the information is transmitted, for
instance how items are placed on a web page, many models were designed to understand
users’ click behavior toward the proposed display.

In our work, we focus on a setting where multiple items are displayed at the same
time. In the following, we always denote K the number of items we want to display at a
time, chosen from a set of L available ones (L > K). We represent the K displayed items
as the list aaa = (a1, . . . , aK), where for each k ∈ [1, K], ak is the item displayed at the
k-th position. We also define A the set of all possible lists of K distinct elements among
L. Feedbacks of a user according to aaa are noted ccc = (c1, . . . , cK) and are associated here
with the fact that the user clicked or not on an item. Thus, for k ∈ [1, K], ck ∈ {0, 1} is
the fact that a user clicks or not on the k-th item when aaa is displayed.

Usually, the marginal probability of interaction towards the item placed at the k-th
position is decomposed in two terms:

P(ck|aaa) def= χ(aaa, k)θak , (1.1)

28



1.1. User click behavioral models

where χ(aaa, k) is interpreted as the probability that the user looks at the position k given aaa,
and θak represents the probability for the user to click on the item ak when the user looks
at it. Note that this decomposition does not assume anything regarding the link between
clicks ck and ck′ at two different positions k 6= k′; these clicks may either be correlated or
independent. Similarly, we do not make any assumption on the way this recommendation
is displayed, for example it can take the shape of a list, a grid or it can be spread on a
(web) page.

This general definition can be instantiated into more specific click behavioral models
such as the widely studied Position-based model (PBM) and Cascading model (CM)
which are described respectively in Sections 1.1.1 and 1.1.2. These models are defined by
referring to the way users interact with aaa, but we can also define axioms on χ(aaa, k) and
θak to encompass a wider range of behaviors, as it is shown in Section 1.1.3.

1.1.1 Position-based model

The Position-Based Model (PBM) [55, 16] relies on two vectors of parameters: θθθ ∈
[0, 1]L

and κκκ ∈ [0, 1]K , where θi is the probability for the user to click on item i when
he/she observes that item, and κk is the probability for the user to observe the position
k. These parameters are unknown, but they may be inferred from user behavior data:
we need to first record the user feedback (click vs. no-click per position) for each set of
displayed items, then we may apply an expectation-maximization framework to compute
the maximum a posteriori values for (θθθ,κκκ) given these data [12].

More formally, for aaa ∈ A and k ∈ [1, K], this model defines the feedback associated
with each couple (item, position) (ak, k) as the product of two independent random vari-
ables: Xak , which is the result of the event "the user finds ak relevant" and Yk, which is
the result of the event "the user sees the position k". We have:

Xak ∼ Ber(θak),
Yk ∼ Ber(κk),
ck = YkXak ,

29



Chapter 1 – Background on bandit-based recommender systems

where Ber is the Bernoulli distribution. As every variable are iid, we can write:

ck | aaa
iid.∼ Ber (θakκk) , (1.2)

in other word, P (ck = 1 | aaa) = θakκk,

P (ck = 0 | aaa) = 1− θakκk.

The general form expressed by Equation (1.1) can be found in this definition of PBM
by taking χ(aaa, k) = κk ∀k ∈ [1, K]. PBM is particularly interesting when the display is
dynamic, as often on modern web pages, and may depend on the reading direction of the
user (which varies from one country to another) and on the ever-changing layout of the
page.

1.1.2 Cascading model

The cascading model [16] is another popular user click behavioral model. It assumes
that the positions are observed in a known order and that the user leaves the website
as soon as he/she clicks on an item. More specifically, if the user clicks on the item in
position k, he/she will not look at the following k + 1, . . . , K positions.

To define ck, L independent random variables Xak are drawn from a Bernoulli distri-
bution Ber(θak) and the click on each element of aaa is defined by:

Xak ∼ Ber(θak), ∀k ∈ [1, K],

ck = Xk

k−1∏
j=1

(1−Xj), ∀k ∈ [1, K].

While in PBM, a user can click on more than one element of aaa, in CM, user can click
on at most one element. The user will either click on one element and leave or he/she will
see all the elements of aaa and leave without clicking.

Here, again, the general form meets this definition of CM with χ(aaa, k) = ∏k−1
j=1(1−θaj)

∀k ∈ [1, K]. CM is commonly used to describe users’ click behavior toward a list of
propositions such as the output of standard search engines.

30



1.2. Bandit algorithms

1.1.3 Others click behavioral models

There exist many more click behavioral models which fall in the general setting defined
by Equation 1.1. For instance, the Dependant Click Model (DCM) which can be seen as an
extension of CM with the addition of a probability of leaving which reflects the "patience"
of the user to leave the consultation of aaa before seeing everything and without clicking on
any seen item. All the models described previously adapt the Equation 1.1. This model
descriptions interprets Equation 1.1’s terms as clients interaction. Here, χ(aaa, k) reflects
users’ interactions and gives its specificity for both PBM and CM. For instance in CM,
χ(aaa, k) is the probability that no element was clicked on before reaching position k.

Another way to describe a user behavior is to directly put assumptions on χ(aaa, k) and
θak as done, for example, in [43]. We give, here, examples of such assumptions:

— Let aaa∗ ∈ A be an optimal proposition 1. Then maxa∈A
∑K
k=1P(ck|aaa) = ∑K

k=1P(ck|aaa∗).
This assumption states that the optimal action orders the items according to the
order in which each positions are seen.

— Let i and j be items with θi ≥ θj and let σi,j : A −→ A be the permutation that
exchange i and j and leaves other items unchanged. Then for any aaa, where i is
the position k, P(ck|aaa) ≥ θi

θj
P(ck|σi,j(aaa)), with σi,j(aaa) be the proposition resulting

from applying the permutation σ to aaa. This assumption expresses the impact of
reversing two elements which were ordered correctly.

These assumptions include all three models described before, and more, without mak-
ing assumptions on the type of interactions between the user and the proposed list of
items.

1.2 Bandit algorithms

To cope with the real world where perfect-information does not exist, we may need to
make repeated choices under uncertainty.

In order to make good choices ultimately, what strategy should a learner adopt? Should
he/she focus on exploration and then choose according to the data collected? How many
choices should focus on exploration? How to use information collected on the fly to benefit
quickly and reasonably from this collect? This last point is especially relevant in the digital

1. optimality is defined in Section 1.2, but as it is implied the optimal proposition is best possible list
to display to the user

31



Chapter 1 – Background on bandit-based recommender systems

realm where it is easier to proceed by test and learn. It is also the place of everlasting
changes thus being dynamic is a compulsory feature.

Moreover, when facing recommendations, a user has only access to the items proposed
to him/her. How to collect information, while optimizing without spoiling the collection
by being too greedy?

Bandit algorithms are designed to face this dilemma called the exploration/exploitation
dilemma. They are often used in a complementary way to more "traditional" recommen-
dation systems to specifically enhance the way information are collected.

1.2.1 Generality

The Bandit framework consists in making T ∈ N consecutive interactions, with T
called the horizon. At each iterations t ∈ T , an interaction stands between a learner, who
takes an action at from a set of actions A, and an environment ν, which gives a feedback,
a reward rt, to the learner according to at.

An environment ν is the set of laws over each action. Drawing from ν at iteration t
leads to the vector xxx(t) = (x1(t), . . . , x|A|(t)) ∼ ν which couples each possible action to
its reward. At each iteration the reward rt retrieved from taking action at is rt = xat(t).

The learner bases its iterative choices on the actions and rewards gathered at previous
iterations. It is notedDt = {(a1, r1), . . . , (at−1, rt−1)}. The use ofDt to take action is called
a policy, π. We have π(Dt) = at. Each policy iteratively build Dt from D0 = {} by adding
(at, rt) at each iteration t. Note that even if the notation related to π reminds a function,
π is a way of choosing the next action to take, given the information available. The main
goal of the learner is to choose a policy which maximises the cumulative reward (∑T

t=1 rt)
over all T steps. To do so, the learner does not have access to the actual environment it
is interacting with but, to a set of environment E , it has to choose from. For instance, E
can be a set of models with unknown fixed parameters, the learner will have to infer the
parameters fitting the data collected, in order to apply an appropriate policy. In iterative
choices, bandits offer a great addition to more traditional information retrieval methods
as they can take into account the dependency of previous choices to the next one.

We note a∗ the best choice over the T iterations, a.k.a. the optimal action. This optimal
action is assumed to be the same over all T iterations. a∗ maximises the cumulative
expected reward, µaaa = ∑T

t=1E[rt|at = aaa]. The policy which leads to a∗, called optimal
policy is noted π∗ and for each iteration t, π∗(Dt) = a∗. Thus, we have µ∗ = ∑T

t=1Eπ∗ [rt] =∑T
t=1E[rt|at = π∗(Dt)].

32



1.2. Bandit algorithms

Algorithm 1 Thompson Sampling algorithm
Require: prior law U
Require: posterior law Q
D0 ←− {}
ν0 ∼ U
for t = 1, 2, . . . , T do
choose at = argmaxa∈Aµa(νt−1)
observe reward rt
Dt ←− (at, rt)
νt ∼ Q(Dt)

end for

In order to evaluate a learner, the usual measure is the cumulative expected regret
RT rather than the cumulative expected reward. RT denotes the loss of a learned policy
compared to the optimal policy.

RT
def=

T∑
t=1
Eπ∗ [rt]−

T∑
t=1
Eπ [rt] . (1.3)

Among all the possible policies, two major families are presented in Sections 1.2.2 and
1.2.3. The last section of this chapter gives some details about a specific bandit setting:
combinatorial bandits.

1.2.2 Thompson sampling

The Thompson Sampling (TS) algorithm [62] is the first bandit policy ever described.
It uses Bayesian inferences to explore. It adds noises to the parameters estimators and
allows to control the randomized choice among actions.

The TS algorithm (see Algorithm 1) starts with an environment ν0 ∈ E drawn from
a prior distribution U over E . Then, at each iteration t, a new environment νt is drawn
from a posterior distribution Q which maps Dt over E . Then, the action is chosen by
maximizing the expected gain in this environment. For the ith action in νt, this expected
gain is defined as µi(νt) =

∫
R xidPνt(xxx). Q is the reward distribution and U is either

neutral or is constructed on a practical belief over the actions.
Thompson sampling policy is known to have good empirical performances on a wide

range of environments. The main limitation is the restrictions over Q. It has to be easy

33



Chapter 1 – Background on bandit-based recommender systems

Algorithm 2 Upper Confidence Bound algorithm
Require: A
for t = 1, . . . , |A| do
D0 ←− {}
Choose at = t
observe reward rt
Dt ←− (at, rt)

end for
for t = |A|, . . . , T do
choose at = argmaxa∈AUCBa

observe reward rt
Dt ←− (at, rt)

end for

to draw from in order to proceed to the inference step. If the distribution does not have
a closed form, an approximation of the draw is needed.

1.2.3 Upper confidence bound algorithm

Upper Confidence Bound algorithms [4] are bandit algorithms which base their trade-
off between exploration and exploitation on the principle of optimism in face of uncer-
tainty. This principle promotes exploration over actions which have been chosen too few
times and adjusts the probability of choosing an action according to the upper confidence
bound on the expected reward. These algorithms choose the next action by taking the
argmax of this bound (see Algorithm 2).

There exist many variations of this method to take into account the specificities of the
encountered setting. The most common one is UCB1. This algorithm is designed to tackle
a setting were there is a finite number of possible actions. These actions are independent
and their rewards are bounded. UCB1 defines its bound as:

UCBUCB1
a = µ̂a +

√
2 log(t)
Ta

,

where µ̂a is an estimation of the expected cumulative reward’s value for a and Ta =∑T
t=1 1at=a is the number of times a has been chosen so far.

An alternative to this algorithm is based on the Kullback-Leibler divergence [21]. It

34



1.2. Bandit algorithms

leads to the following bound:

UCBKL
a

def= f (µ̂a, Ta, t) , (1.4)

where f(ρ̂, s, t) stands for

sup{p ∈ [ρ̂, 1] : s× kl(ρ̂, p) ≤ log(t) + 3 log(log(t))},

with
kl(p, q) def= p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
,

the Kullback-Leibler divergence from a Bernoulli distribution of mean p to a Bernoulli
distribution of mean q; f(ρ̂, s, t) def= 1 when ρ̂ = 1, s = 0, or t = 0.

This definition of the UCBKL achieves better performances when the setting is the
same as UCB1, namely a limited number of independent actions, with bounded rewards.

1.2.4 Combinatorial bandits

After seeing two policies common in the bandit literature, the previous definition of
an environment is extended here to reach the setting used in this thesis and detailed in
the last section of this chapter.

Stochastic combinatorial semi-bandits [19, 9] are online learning problems where a
learner has to choose a subset of items under some given combinatorial constraints. Then
the learner observes some stochastic weights for each item and receives as a payoff, the
result of a function of these weights. This function depends on the combinatorial problem
the bandit is facing. In the following section, this function is considered as the sum of
these weights. This combinatorial setting is a way to split the initially more complex
arms into simpler elements, for instance a list of products can be seen as a complex arm
composed of each product beeing its simpler elements. Then, in combinatorial setting,
the algorithm learns the impact of each element. In many cases, observations made on
one arm benefit others. By splitting these observations to each element, a shared element
brings knowledge to the other arms which use this element. 2 This setting prevents an
exponential increase in the number of arms, called the combinatorial explosions. It is also
possible to add constraints on these associations of elements.

2. In some cases, the bandits have only access to the combination of the weights of the chosen arm’s
elements. This situation is referred to as stochastic combinatorial bandits.

35



Chapter 1 – Background on bandit-based recommender systems

Combinatorial learning problem can be written as a tuple B = (E,A, ν). E is a set
of elements, A ⊆ {0, 1}|E| is a set of arms, where each arm aaa is a subset of E and ν is
a distribution on weights. Each weight translates conditions to combine the element. For
example, in a case where you have to propose a subset of K element amongst L, each
element wil have a weightFollowing the terminology used in [40], E is called the ground
set and A the feasible set.

At each iteration, the bandit algorithm chooses a subset of elements aaa ∈ A and receives
the reward∑e∈aaawe, where www is an independent draw of ν on [0, 1]|E|. The expected reward
associated to the element e is denoted ρe

def= Ewww∼ν [we]. As choosing aaa ∈ A is equivalent
to choose each element of aaa, the expected reward when choosing the arm aaa is:

µaaa
def= Ewww∼ν

[∑
e∈aaa

we

]
=
∑
e∈aaa

ρe. (1.5)

The best expected reward is, as before, noted µ∗ def= maxaaa∈A µaaa.
The learning agent interacts with the environment T times and its goal is to maximize

µaaa over the T steps. If the learner knew ν a priori, the optimal action would be to choose
a∗ = argmaxa∈A µaaa at all steps t.

As for classical bandit settings, methods such as UCB can be used to estimate each
ρe and thus µaaa. One of the main challenge of these settings is the definition of the com-
binatorial constraints which define A and the possible arms to recommend.

1.3 My thesis setting: learning to rank in a semi-
bandit setting

As already mentioned in the introduction, we are facing a recommendation problem
where one has to recommend K items among L possible ones. These items are displayed
on a grid.

1.3.1 Bandits for click behavioral model

As we recommend a (ordered) list of items, we consider the following online learning
to rank (OLR) problem with clicks feedback. At each iteration t, a recommendation aaa =
(a1, . . . , aK) is chosen among A and displayed to the user. In this setting, A is the set of all
possible ordered lists ofK items among the L possible ones. We can defineA = PLK , the set

36



1.3. My thesis setting: learning to rank in a semi-bandit setting

of permutations of K items among L as a permutation is the ordered choice of K distinct
items among L. Let ak be the item displayed at position k. aaa def= {ak : k ∈ [K]} is the set
of all displayed items. Throughout the thesis, the terms permutation and recommendation
are used interchangeably to denote an element of PLK .

An instance of our OLR problem is a tuple (L,K, ν), where L is the number of available
items,K 6 L is the number of positions to display the items, and ν is a set of distributions
from A × [L] to [0, 1] such that for any recommendation aaa and position k, ν(aaa, k) is the
distribution of probability that a user clicks on the item displayed at position k when
recommending aaa. As we are transposing click behavioral models to the bandit framework,
we have E[ν(aaa, k)] = P(ck|aaa) with P(ck|aaa) defined according to the chosen model.

In our setting, a recommendation algorithm is only aware of L andK and has to deliver
T consecutive recommendations. At each iteration t ∈ [T ], the algorithm recommends a
permutation aaa(t) and observes the reward rt = ccc(t) = (ca1(t)(t), . . . , caK(t)(t)), where for
any position k, cak(t)(t) equals 1 if the user clicks on the item ak(t), and 0 otherwise.
To keep notations simple, we also define ci(t) = 0 for undisplayed items i ∈ [K] \ aaa(t).
Recall that the recommendation at time t is only based on previous recommendations and
observations.

In this thesis, we tackle a special case of this general OLR, named PB-OLR for
position-based online learning to rank. An instance of a PB-OLR problem is a tuple
(L,K, (ρi,k)(i,k)∈[L]×[K]). For any item i and position k, ρi,k is the probability for a user
to click on item i when displayed at position k, independently of the items displayed at
other positions. It is a particular case where ν is adapted to settings where the position’s
impact must be taken into account. Under the PBM click model, there exist two vectors
θθθ ∈ RL and κκκ ∈ RK , such that ρi,k = θiκk (i.e. ρρρ is of rank 1). It is a subcase of this
broader PB-OLR problem.

Overall, we are facing a Bernoulli semi-bandit setting as we are facing an online learn-
ing to rank problem with access to a vector rt of click feedbacks. Depending on the click
behavioral model assumed, we can defined our performance measure.

1.3.2 Performance evaluation

Section 1.2.1 gave a general definition of the cumulative expected regret RT as a
standard evaluation metric. We detail here its definition, when facing our semi-bandit
setting.

In this setting, as the individual clicks are observed, the reward of the algorithm is

37



Chapter 1 – Background on bandit-based recommender systems

their sum rt
def= ∑K

k=1 cak(t)(t), while recommending aaa(t). Let µaaa denote the expectation
of rt when the recommendation is aaa(t) = aaa, and µ∗ def= maxaaa∈PLK µaaa the highest expected
reward. Once again, the aim of the algorithm is to minimize the expected cumulative
regret

RT = Tµ∗ − E
[
T∑
t=1

µaaa(t)

]
, (1.6)

where the expectation is taken w.r.t. the recommendations from the algorithm and the
clicks. This definition can adapt to all the presented behavioral settings by expressing µ
according to the expected reward of these models.

For instance, applying this definition in PBM leads to µa = ∑K
k=1 θakκk and RT =

µ∗T −∑T
t=1

∑K
k=1 θak(t)κk.

Remark 1 (Regret’s limitation). The expected cumulative regret is the standard mea-
sure to evaluate the performance of bandit algorithms, but it requires the knowledge of
the optimal recommendation. To control this knowledge and show the specific behavior
of a method, an offline evaluation on simulated data is often done in practice. Neverthe-
less, it may lead to unrealistic situations. Moreover, in "business" practice, this optimal
recommendation is hard to get, due to changes in customer preferences or to the addition
of new items. An alternative measure is the cumulative reward. Both measures lead to
the same conclusions, but the cumulative expected regret gives additional insight on the
impact of the learning strategy. Thus this regret evaluation measure will be preferred.

1.3.3 Choice of the environment to evaluate bandit algorithms

As mentioned in Remark 1, regret is a more precise measure than reward. It can be
applied in various situations. In this section, we elaborate on the design of an appropriate
environment to compute the regret and evaluate our algorithms while staying close to real
life situations.

To evaluate the impact of iterative recommendation systems, online solution can be
considered such as deploying the algorithm in A/B test situations. Nevertheless, it requires
a careful designed of the A/B test and firms are more inclined to have offline evaluations
before putting a system into production. So want to measure the gain of a change before
applying it.

Thus, the experiences performed throughout this thesis are done offline and measured

38



1.3. My thesis setting: learning to rank in a semi-bandit setting

using the regret RT . To reconcile offline and realistic data, many experience settings exist.
Offline experiences on bandit algorithms are based on log datasets recording recommen-
dations and users’ feedbacks. They allow to measure regret at each iteration.

Some evaluations are, for instance, based on replay methods [42]. Applied strictly, at
an iteration t, a replay method uses a log data and when the logged action mismatches
the action chosen by the evaluated policy, the iteration is discarded from the evaluation.
It decreases the number of records used by 1/|A|, with A the set of possible arms.

Many evaluation methods are built upon the replay idea such as bootstrap sampling
replay [51] or counterfactual estimators on list recommendations [60]. These methods
use the distribution on the arm induced by the policy which has collected the data to
evaluate on more logged data, and thus a wider time horizon T . Another usual way to
get around this data dropping issue is to simulate the interactions according to the real-
life logged data. To do so, the parameters of the assumed click behavioral model are
inferred and then used to simulate new interactions. For instance, let us imagine that
an online recommender system is required to deliver T consecutive recommendations. At
each iteration t, the user feedback is drawn from a distribution derived from the PBM
distribution given in Equation (1.2), with θθθ and κκκ inferred from the logged data.

Since this method is often chosen in our closest related work, it is also our chosen
evaluation strategy in this thesis for all our algorithmic contributions. The inference of
the parameters used to simulate the click behavior is detailed in the next section, along
with a description of the datasets that are used in this thesis.

1.3.4 Datasets

Two types of data are considered in our experiments. They are denoted purely simu-
lated, for simulated data and behavioral, for data based on real life datasets. For both of
them, the feedbacks are simulated by drawing from a set of distributions ν. The param-
eters of the distributions in ν are chosen to reflect specific situations in purely simulated
experiments. The values of the parameters of the tested click behavioral models are ob-
tained from true user behavior as in [41, 37].

Suitable datasets to evaluate recommendation systems should (at least) be composed
of logs of recommendations together with their rewards (e.g. a movie and a rating, a
music and its listening time, a product and its purchase...). In our case, recommendations
are list of items and their positions and rewards are the list of clicks. To the best of our

39



Chapter 1 – Background on bandit-based recommender systems

knowledge, there exist only two public datasets which answer these criteria. 3 First, these
two datasets (Yandex then KDD) are described in terms of collected information and
parameters inference. Lastly, the choice of parameters for the purely simulated settings
are given.

Yandex Dataset

The Yandex 4 dataset contains 65 million search queries and 167 million hits, expressing
about a month of search activities from users of Yandex search engine. For each query,
the user is shown 10 items from a larger set of possibilities defined for each query. Each
items are displayed at positions 1 to 10 and the search engine records each click of the
user. As in [43], we select the most frequent queries, and keep the 10 most attractive items
to display. The experimental setting includes the 10 most frequent queries and requires
ranked recommendations of 5 items. To have various settings based on this dataset, we
proceed similarly to [43]. The results is averaged on the 10 most frequent queries. These
L items are chosen among the most attractive ones selected among all items possible for
each query. Then, we observe the regret over the top K = 5 positions. We also perform
various experimental plan in order to test various values of L. Having various values L
allow us to test the impact of the quantity of information given to each algorithm. This
leads to a dataset where each entry correspond to a session ID, a query, a list of 10 items
displayed and a list of {0, 1} corresponding to the user’s click. For instance, id000 with the
query q has been shown (itemA, itemB, itemC) and gives as feedbacks (1, 0, 0) meaning
that during session id000 which is associated with the query q, the user clicked on itemA

but not on itemB nor itemC .
To compute the PBM parameters, these entries are transposed to q matrices, MMM [q],

(one for each query) by putting each available position in rows, items in columns and each
elementMMM [q][k, i] being the proportion of clicks on item i while being at position k when
the query is q.MMM [q] is constructed by filtering on q and then iterating on each element of
the lists of displayed items and their associated list of clicks.

In the Yandex dataset, for each query q, the parameters (θθθ[q],κκκ[q]) of PBM are set
from the Singular Value Decomposition (SVD) of the matrixMMM [q] ∈ RL×K which contains

3. Event if this work results was made in the context of a company, the data collected so far on
Louis Vuitton’ websites are not suitable for our experiments due to the lack of recorded logs of past
recommendations and due to static nature of these recommendations.

4. Yandex personalized web search challenge, 2013. https://www.kaggle.com/c/yandex-personalized-
web-search-challenge

40



1.3. My thesis setting: learning to rank in a semi-bandit setting

the probability to be clicked for each item in each position. By denoting ζ [q], the greatest
singular value of MMM [q], and uuu[q] (respectively vvv[q]) the left (resp. right) singular vector
associated to ζ [q], we set

θθθ[q] def= vvv
[q]
1 ζ

[q]uuu[q], κκκ[q] def= vvv[q]/vvv
[q]
1 ,

such that κκκ[q]
1 = 1, and θθθ[q]Tκκκ[q] = ζuuu[q]Tvvv[q]. This leads to θi values ranging from 0.070 to

0.936, depending on the query, and κk values ranging from 0.49 to 1.0,
Note that [41] uses the expectation-maximization framework instead of SVD to infer

the parameters.
For the Cascading Model, we use the Pyclick [3] package to infer the (θθθ[q]) parameters.

This leads to to θi values ranging from 0.0053 to 0.5, depending on the query.

KDD Dataset

The second behavioral dataset is KDD Cup 2012 track 2. It consists of session logs
of soso.com, a Tencent’s search engine. It tracks clicks and displays of advertisements
on a search engine result web-page, w.r.t. the user query. For each query, at most 3
positions are available for different number of ads to display. Each of the 150M lines
contains information about the search (UserId, QueryId. . . ) and the ads displayed (AdId,
Position, Click, Impression). We seek the best ads per query, namely the ones with a
higher probability to be clicked.

To follow what has been done in previous works, instead of looking for the probability
to be clicked per display, we target the probability to be clicked per session. This amounts
to discarding the information Impression. We also filter the logs to restrict the analysis to
(query, ad) couples with enough information: for each query, ads are excluded if they were
displayed less than 1,000 times at any of the 3 possible positions. Then, we filter queries
that have less than 5 ads satisfying the previous condition. We end up with 8 queries and
from 5 to 11 ads per query. In this dataset, each entry is composed of a query and of the
couple (item, position) with a boolean indicating if the couple has been clicked on or not.
As for Yandex, these entry are transposed to matricesMMM [q] by iterating on all couples to
get proportions of click for each couple.

In this second dataset KDD, for each query q, the parameters are also inferred thanks
to SVD for PBM as done for Yandex dataset. This leads to θi values ranging from 0.004
to 0.149 and κk values ranging from 0.10 to 1.00, depending on the query.

41



Chapter 1 – Background on bandit-based recommender systems

Parameters for other click behavioral models can not be computed due to the struc-
ture of this KDD dataset. Indeed, the logs record each couple (item,user) independently,
preventing us to have the exhaustive list of items seen by a user at each iteration.

Simulated Data

We choose the value of the PBM parameters (θθθ,κκκ) in the purely simulated setting, to
highlight the stability of all the proposed approach even for extreme settings. Namely, we
consider L = 10 items, K = 5 positions, and κκκ = [1, 0.75, 0.6, 0.3, 0.1]. The range of values
for θθθ is either:

— close to zero (θθθ− = [10−3, 5.10−4, 10−4, 5.10−5, 10−5, 10−6, . . . , 10−6]),
— close to one (θθθ+ = [0.99, 0.95, 0.9, 0.85, 0.8, 0.75, . . . , 0.75]),
— characteristic of the one encountered in website interactions such as product discov-

ery on a commercial website (θθθW = [0.3, 0.2, 0.15, 0.15, 0.15, 0.10, 0.05, 0.05, 0.01, 0.01]).

1.4 Conclusion

In this chapter, we gave insights on click behavioral model and bandit algorithms to
have a better understanding of how we can model our users’ interactions and how we
can handle the interactive nature of recommendation systems. To make multi-proposition
recommendations, we combine these two concepts in order to dynamically adapt to users’
behaviors towards list of recommendations. The next chapter provides state-of-the-art
algorithms for this setting.

42



Chapter 2

RELATED WORK

Contents
2.1 Bandits on PBM . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 PMED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.2 Focus on (KL)CombUCB1 . . . . . . . . . . . . . . . . . . . . . 45

2.2 Bandits on other click behavioral models . . . . . . . . . . . . 47
2.2.1 Focus on TopRank . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Related algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.1 Focus on OSUB . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

This chapter provides a literature study of the most relevant research works in the
topics introduced in the previous chapter. It focuses on algorithms and it is organised
according to the goal of each presented algorithm. First, we give an overview of bandit
algorithms which aim at recommending lists of items in the Position-based Model (PBM).
Then, we extend this literature study to algorithms designed for other click behavioral
models, such as Cascading models, or for unspecified settings. Finally, we refer to unimodal
bandits, a type of bandits which was not designed for list recommendations but whose
mechanism is close to our contribution.

2.1 Bandits on PBM

As presented in Section 1.1.1, PBM [55, 16] relies on two vectors of parameters: θθθ ∈
[0, 1]L and κκκ ∈ [0, 1]K , where θi is the probability for the user to click on item i when
she/he observes this item, and κk is the probability for the user to observe position k. PBM
is transposed to the bandit framework in [36, 41, 37]. [36] and [41] propose two approaches
based on a Thompson sampling framework, with two different sampling strategies. [41]
also introduces several approaches based on the optimism in face of uncertainty principle

43



Chapter 2 – Related work

[5]. However, approaches in [36, 41] assume κκκ known beforehand. In this section, we mainly
focus on the PMED algorithm [37] as it does very few additional assumptions on PBM
compared to bandits based on Thompson sampling presented here. Then, we also describe
the adaptation of CombUCB1 [40] to PBM.

2.1.1 PMED

[37] proposes PMED, an approach to learn both θθθ and κκκ while recommending. However,
PMED requires the κk values to be sorted in decreasing order which is, as discussed below,
not a minor assumption.

This algorithm bases its recommendations on the optimal amount of exploration steps
needed to have a consistent conclusion on the performance, on each couple item-position
(i, k), noted {Ni,k}i∈[L],k∈[K]. To compute exactly this quantity, one needs the true value
of (θθθ,κκκ). As this algorithm faces PBM under uncertainty of position bias, it computes
an approximation of this optimal amount of exploration, noted {Ñi,l}i∈[L],k∈[K], by using
(θ̂θθ, κ̂κκ) which are the maximum likelihood estimators of (θθθ,κκκ). It leads to an optimal regret
lower bound.

More precisely, PMED is based on the construction of permutations (referred to as
L-allocations in [37]). We remind that a permutation is a list of K elements, from our
set of L possible items, in which the position in the list corresponds to its position in
the recommendation. For example, with K = 5 and L = 10, a possible permutation is
(7,3,5,1,4) corresponding to putting item 7 in position 1, item 3 in position 2, item 5
in position 3, item 1 in position 4 and item 4 in position 5. PMED then selects an arm
among a set of possible permutations noted LC . PMED loops on this set of permutations
in order to gradually collect information on each items and positions and build the next
set of permutations noted LN which will be transferred to LC as soon as LC = ∅. LC
initially contains all (circular) permutations of the list of K elements. PMED loops on
LC until the iteration constrain is reached (meaning t > T ). It is possible to do so since
LN is never empty. PMED has three ways to add elements to LN :

— uniform exploration over the pairs (i, k). This exploration stabilizes the estimators.
— exploration based on the estimated optimal amount of exploration steps, {Ñi,k}i∈[L],k∈[K],

to collect enough information on items and positions.
— exploitation, which is used when the optimized exploration phase is completed.
An alternative version of PMED, named PMED-Hinge, adds an extra exploration

step in order to handle small but not fully converged divergences between arms. This

44



2.1. Bandits on PBM

additional exploration step is helpful to prove the matching between the upper regret
bound of this algorithm and the expected regret lower bound proven in [37]. This bound
is in O(c∗ (θθθ,κκκ) log T ), where c∗ (θθθ,κκκ) only depends on θθθ and κκκ and is asymptotically
optimal in this setting. Unfortunately, to the best of our knowledge, there is no known
closed-form for c∗ (θθθ,κκκ), which hinders the comparison to other algorithms. PMED is not
based on Thompson Sampling, even so approaches based on Thompson Sampling are
known to deliver more accurate recommendations [7, 2, 35, 11]. PMED is compared to
Thompson Sampling approaches which uses approximated law. Thus we can wonder if
Thompson Sampling approaches based on the actual reward law could perform better.
Moreover, PMED is a complex algorithm to implement and computationally costly given
its unstable loops and the matrix decomposition used to build list of items from the
permutation matrix.

2.1.2 Focus on (KL)CombUCB1

Combinatorial bandits are also good leads to tackle PBM. In this section, we will
describes how the work of [40] can be extended to the PBM setting. Some information
about this algorithm have already been given in Section 1.2.3.

Before presenting the way to adapt combinatorial bandits to PBM, we will present a
boosted version of CombUCB1 [40]. As mention in Section 1.2.3, among the way to build
the upper confidence bound over the expected reward, it is possible to use the Kullback-
Leibler (KL) divergence. When it is well applied, using the KL divergence leads to better
performance in terms of the quality of the recommendations (the regret decrease faster).

We adapt CombUCB1 to use a KL-based bound and this helps the algorithm to reach
a lower regret. This variation on CombUCB1, called KL-CombUCB, chooses its next
arm based on a Kullback-Leibler index (see Equation 1.4) instead of the usual confi-
dence upper-bound derived from the Hoeffding’s inequality. KL-CombUCB assumes that
the weight-vector www(t) is in {0, 1}E whereas unspecified combinatorial bandits can have
its weight-vector in R as a weight-vector translate the constraints of the combinatorial
settings which have been taken.

We denote ∆aaa
def= µ∗−µaaa the gap between the best expected reward and the reward of

an arm aaa, and ∆min
def= minaaa∈A:∆aaa>0 ∆aaa the smallest gap with a sub optimal arm. Kveton

et al. proves that the regret of CombUCB1 is upper-bounded by O
(
|E|∗K

∆min log T

)
. A similar

proof would lead to the same upper-bound for KL-CombUCB.
As mentioned in Section 1.2.4, combinatorial algorithms can also handle PBM. To

45



Chapter 2 – Related work

Algorithm 3 KL-ComUCB1 (applied to PBM)
Require: number of items L, number of positions K
for t = 1, 2, . . . , L do
recommend aaa(t) = (((t− 1)%L) + 1, (t%L) + 1, . . . , ((t+K − 2)%L) + 1)
observe the clicks-vector ccc(t)

end for
for t = L+ 1, L+ 2, . . . do

recommend aaa(t) = argmax
aaa∈PLK

K∑
k=1

baaak,k(t)

observe the clicks-vector ccc(t)
end for

apply KL-CombUCB to PBM, we choose the ground set E = [L] × [K], the feasible set
Θ = {{(aaak, k) : k ∈ [K]} : aaa ∈ PLK}, and the expected weights ρ(i,k) = θiκk for any
"element" (i, k) ∈ E. Note that the observed weights of the generic setting correspond to
the clicks-vector in the PBM setting.

The corresponding algorithm, depicted by Algorithm 3, recommends at each iteration
t the best permutation given the maximal indices bi,k(t), defined as:

bi,k(t)
def= f (ρ̂i,k(t), Ti,k(t), t) ,

where
— Ti,k(t)

def= ∑t−1
s=1 1{aaak(s) = i},

— ρ̂i,k(t)
def= 1

Ti,k(t)
∑t−1
s=1 1{aaak(s) = i}ck(s).

Remark 2. Adapting CombUCB1 to PBM leads to the same algorithm with bi,k(t) being
replaced by an upper confidence bound Ut(i, k) = ρ̂i,k(t− 1) +

√
1.5 log(t−1)
Ti,k(t−1) .

This optimization problem is a linear sum assignment problem which is solvable in
O (K2(L+ logK)) time [54]. KL-CombUCB1 [40] applied to PBM leads to an algorithm
which suffers a O(LK2/∆ log T ) regret.

Overall, combinatorial bandits and especially KL-CombUCB are fitted to handle PBM
settings. Associating items to positions is a combinatorial problem under constraints of
unicity of the use of items and positions.

46



2.2. Bandits on other click behavioral models

2.2 Bandits on other click behavioral models

Besides PBM, there exists other click behavioral models such as the Cascading model
or the Dependent Click model, presented in Section 1.1.2 and 1.1.3. For instance, the
cascading model has been extensively studied within the bandit framework [67, 33, 38,
39, 46, 15, 11]. However, the assumption of the cascading model regarding the order of
observations is irrelevant when considering items spread in a webpage or items arranged
by rows. Due to various user behaviors and industrial needs in terms of display, different
bandit algorithms exist to address all these models with less assumptions. To the best
of our knowledge, only the algorithms BatchRank [66], TopRank [43], and BubbleRank
[44] handle users following a general model covering several behaviors models (and, in
particular, PBM). These three algorithms exhibit a regret upper-bound for T consecutive
recommendations of at least O( L∗K

∆ log T ), where ∆ depends on the so-called attraction prob-
ability of items. As TopRank presents the best results in terms of regret and complexity,
we focus on this method in the following.

2.2.1 Focus on TopRank

To handle various click behavioral models, [43] makes a set of assumptions to define
the set of click behavioral models it can handle and ensure that information collected are
consistent with its learning process. These assumptions are defined upon v(aaa, k), which is
an unknown function giving the probability that the user clicks on position k at iteration
t given the recommendation aaa ∈ A, with A the set of arms. The function v is defined
to give a more generic definition of the click behavioral models handled by TopRank.
v can be written as v(aaa, k) = χ(aaa, k)α(aaak), with χ(aaa, k) the probability that the user
examines position k given ranking aaa and α being an attractiveness function 1. To follow
[43] notations, we note aaa−1(i) the position of item i in the recommendation aaa. For example,
given the recommendation aaa with aaak = i, we have with this notation aaa−1(i) = k. We
remind TopRank’s assumptions on users’ behaviors here:

— v(aaa, k) = 0 for all k > K,

— Let aaa∗ ∈ A be an optimal action. Then maxa∈A
∑K
k=1 v(aaa, k) = ∑K

k=1 v(aaa∗, k),
— Let i and j be items with α(i) ≥ α(j) and let σ : A −→ A be the permutation that

exchange i and j and leaves other items unchanged. Then for any action aaat ∈ A,
v(aaa,aaa−1(i)) ≥ α(i)

α(j)v(σ(aaa), aaa−1(i)),

1. Note that we recover the model introduced in Chapter 1, with v(aaa, k) = P(ck|aaa) and α(aaak) = θaaak
.

47



Chapter 2 – Related work

Algorithm 4 TopRank

G1 ←− ∅ and c←−
4
√

2/π
erf(
√

2)
for t = 1, 2, . . . , T do
{Construction of the partition}
d←− 0
while [L]\⋃dc=1P tc 6= ∅ do
d←− d+ 1
P td ←− minGt

(
[L]\⋃d−1

c=1 P tc
)

end while
{Choice of action}
Recommend aaat uniformly at random from A(P t1, . . . ,P td)
Observe the reward ccc(t)
{Construction of the oriented Graph}
for (i, j) ∈ [L]2 do

Utij ←−

ci(t)− cj(t) , if i, j ∈ P td for some d,
0 , otherwise

Stij ←−
∑t
s=1 Usij and Ntij ←−

∑t
s=1 | Usij |

Gt+1 ←− Gt
⋃{(j, i) : Stij ≥

√
2Ntij log( c

δ

√
Ntij) and Ntij > 0

}
end for

end for

— For any action aaa and optimal action aaa∗ with α(a(k)) = α(aaa∗(k)) it holds that
v(aaa, k) ≥ v(aaa∗, k).

Algorithm 4 presents TopRank. In order to propose an optimal ordered list, TopRank
is based on three components, each component being updated at each iteration t: a repre-
sentation of relation between items based on performances, noted Gt, a partition of items
based on these relations, noted P t and a subset of the possible action raising from this par-
tition, noted A(P). First TopRank identifies relations between items and represents these
relations in the oriented graph Gt, where G1 = ∅. More precisely, Gt links two items with
the oriented edge (j, i) if TopRank determines with high probability that i has a greater
expected reward than j. Formally, Gt is updated at each iteration t with the couple (j, i)
if Stij ≥

√
2Ntij log( c

δ

√
Ntij) and Ntij > 0, where Stij is the number of clicks on i rather

than j and Ntij is the number of times i and j where simultaneously presented. Then, at
each iteration t, TopRank computes a partition of [L] into P t1, . . . ,P td. This partition is
made by extracting items which are minimum according to Gt. For X ⊆ [L], the mini-
mum according to Gt is minGt(X) def= {i ∈ X : (i, j) /∈ Gt for all j ∈ X}. This partition

48



2.3. Related algorithms

splits all elements of [L] into exclusive groups where all elements have the same relative
information, ie any j ∈ P tc+1 leads with high probability to a lower expected reward than
any i ∈ P tc. This partition is key to construct the set of actions A(P t1, . . . ,P td), where an
action aaa places items in P t1 in the first | P t1 | positions, the items in P t2 in the next | P t2 |
positions, and so one. In each subset of a partition, the items are randomized. Formally,

A(P t1, . . . ,P td)
def= {a ∈ A : max

i∈Ptc
aaa−1(i) ≤ min

i∈Ptc+1

aaa−1(i) for all c ∈ [d− 1]}.

Thus A(P t1, . . . ,P td) is a subset of A containing all the arms which are compliant with the
partial order identified by the partition P t1, . . . ,P td and from which TopRank chooses its
next recommendation.

As said in the introduction of this section, TopRank exhibits a regret upper-bound for
T iterations of O(LK/∆ log T ), where ∆ depends on the attraction probability of items.
TopRank is the first efficient algorithm to handle several click behavioral models, without
strong assumptions.

2.3 Related algorithms

Bandits aim to choose actions one at a time. These actions can take various forms.
Since in our setting, our actions are totally ordered lists of items, the two first sections
of this chapter described works related to similar settings, where click behavioral model
assumptions are made to help bandits being more efficient. Nevertheless, among the con-
tributions presented in this thesis, some of them can be brought closer to works handling
slightly different settings. This section will present such approaches. More precisely, we will
focus on OSUB, a unimodal bandit for single recommendation tasks. The work presented
in this thesis is partly an extension of this algorithm.

2.3.1 Focus on OSUB

The contributions presented in Chapter 3, and 5 extend the unimodal bandit setting
[13] which assumes the existence of a known graph G = (V,E) carrying a partial order
on the set of bandit arms denoted A. Unimodal bandit algorithms are aware of G, but
ignore the partial order induced by the edges of G. However, they rely on G to efficiently
browse the arms up to the best one.

49



Chapter 2 – Related work

Typically, OSUB algorithm [13] selects at each iteration t, an arm aaa(t) in the neigh-
borhood NG (ãaa(t)) given G of the current best arm ãaa(t) (a.k.a. the leader).

Unimodal bandit algorithms are based on a specific assumption which links the set of
possible actions and gives the general structure of G. Let us first recall the definition of
unimodality as described in [13] and then detail OSUB algorithm.

Definition 1 (Unimodality). Let A be a set of arms, and (νaaa)aaa∈A a set of reward dis-
tributions of respective expectations (µaaa)aaa∈A. Let G = (V,E) be an undirected graph with
vertices V = A and edges E ⊆ V 2. The set of expected rewards (µaaa)aaa∈A is unimodal w.r.t.
G, if and only if:

1. the set of expected rewards admits a unique best arm: argmaxaaa∈A µaaa = {aaa∗};
2. and from any arm aaa 6= aaa∗, there exists a path (aaa0, aaa1, . . . , aaan) in G such that aaa0 = aaa,
aaan = aaa∗, and ∀i ∈ [n], µaaai > µaaai−1.

Note that the second property of unimodal sets of expected rewards is equivalent to
the property stating that from any sub-optimal arm aaa, there exists an arm aaa′ ∈ NG(aaa)
such that µaaa′ > µaaa, where NG(aaa) is the neighborhood of aaa in G.

These assumptions structure G and allow OSUB to work as follows (see pseudo code
in Algorithm 5). OSUB uses an index based on KL-divergence upper confidence bounds
defined for each arm. This index’s definition comes from KL-UCB algorithm [22] and aims
to an optimistic exploration. A similar definition as the one provided in Section 1.2.3 leads
to define the index as:

bk(t)
def= f

(
µ̂k(t), Tk(t), T̃ãaa(t)(t) + 1

)
,

where
— Tk(t)

def= ∑t−1
s=1 1{aaak(s) = i},

— µ̂k(t)
def= 1

Tk(t)
∑t−1
s=1 1{aaak(s) = i}ck(s),

— ãaa(t) the leader, i.e. the recommendation with the best pseudo average reward µ̂k(t),
— T̃ãaa(t)(t)

def= ∑t−1
s=1 1{ãaa(s) = aaa}.

OSUB searches in the neighborhood of the current leader ãaa(t). It chooses the next
action aaa such as aaa = argmaxaaa∈NG(ãaa) baaa(t) with NG(aaa) = {l : (l, aaa) ∈ E} ∪ {aaa}.n

In this algorithm, ties are broken arbitrarily and the leader ãaa(t) is often recommended
in order to ensure that the number of times an arm has been selected is at least pro-
portional to the number of times it has been the leader. This can be removed but it

50



2.4. Conclusion

Algorithm 5 OSUB
Require: graph G = (V,E)
Require: maximal degree of nodes in G γ
for t ≥ 1 do
select

k(n) =


ãaa(t) , if T̃ãaa(t)(t)

γ+1 ∈ N,

argmax
k∈{ãaa(t)}
∪Nπ̃ππ(ãaa(t))

K∑
k=1

bk(t) , otherwise

observe the clicks-vector ccc(t)
end for

simplifies the regret analysis. By restricting the exploration to this neighborhood, the
regret suffered by OSUB scales as O(γ/∆ log T ), where γ is the maximum degree of G
and ∆ = minaaa∈NG(aaa∗) µ

∗−µaaa. This bound has to be compared with O(|A|/∆ log T ) if the
arms are independent.

Remark 3 (Rank-1-Bandit). [34, 32] propose Rank-1-Bandit, an algorithm which apply
OSUB on a similar framework as ours. In their framework, the probability for an item i

to be clicked in position k is also θθθiκκκk. The difference lies in the recommendation setting.
While in our case the algorithm has to choose an item for each K positions at each
iteration, in the rank-1 bandit setting, the algorithm only picks one item and pairs it with
the most appropriate position to be displayed.

2.4 Conclusion

This overview of state-of-the-art algorithms addressing the bandit setting under a PBM
assumption shows that very few of these algorithms address this model with both (θθθ,κκκ)
unknown (fully unknown PBM). The only approach is PMED which is computationally
costly. We aim at developing efficient algorithms both in terms of computational time and
regret performance. To do so, on the one hand we extend unimodal bandits (presented in
Section 2.3) to reach an efficient algorithm and prove its regret bound. On the other hand,
in Section 1.3 we approximate draws given the a posteriori law on the parameters of the
fully unknown PBM and we use these draws in the Thompson Sampling framework.

Furthermore, many click behavioral models exist to address various recommendation
settings. To be more generic, some algorithms address simultaneously several click be-

51



Chapter 2 – Related work

havioral models, when they fall in a set of reasonable assumptions. We contribute to this
area with a unimodal bandit which is able to address click behavioral models such as CM
and PBM simultaneously. This contribution leads to decrease the number of assumptions
needed for generic list recommendation, down to the existence of an identifiable total order
on the items. We also decrease the expected regret lower bound identified by TopRank
for this setting. Even if unimodal approaches were not initially designed to tackle our
settings, we extend these approaches to our tasks.

52



Chapter 3

UNIMODAL BANDIT FOR THE

POSITION-BASED MODEL

Contents
3.1 Relation with unimodality . . . . . . . . . . . . . . . . . . . . . 54

3.2 Parametric graph for unimodal ranking bandit . . . . . . . . 57

3.3 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Practical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

The idea presented in this chapter is based on the mapping of lists of recommendable
items into a unimodal graph. We elaborate on this idea: how PBM can be adapted to a
unimodal graph? How can a bandit algorithm explore this graph to find the best possible
list? The contributions presented in this chapter have been published in [26] at ICML’21.

We tackle a position-based online learning to rank (PB-OLR) bandit setting, which is
defined in Section 1.3 and covers PBM click model, with an unimodal bandits point of
view [13]. First, we expose a family of parametric graphs of degree L − 1 over permuta-
tions, such that the PBM setting is unimodal w.r.t. one graph in this family. While the
corresponding graph is unknown from the learner, graphs of this family enable an effi-
cient exploration strategy of the set of potential recommendations. Secondly, we introduce
a new bandit algorithm, GRAB, which learns online the appropriate graph in this family
and bases its recommendations on the learned graph. From an application point of view,
this algorithm has several interesting features: it is simple to implement and efficient in
terms of computation time; it handles the PBM bandit setting without any knowledge on
the impact of positions (contrarily to many competitors presented in Chapter 2.1); and
it empirically exhibits a regret on par with other theoretically proven algorithms on both
artificial and real datasets. In particular, we prove a O(L/∆ log T ) regret upper-bound for

53



Chapter 3 – Unimodal bandit for PBM

GRAB. Regret upper-bounds give guaranties on the performance of algorithms in the worst
case scenario. In order to give more context to this theoretical result, a comparison of the
assumptions and the regret upper-bounds of related algorithms is shown in Table 3.1. This
Table shows that GRAB achieves one of the lowest regret bound with fewer information.
The lowest regret bound is achieved by PBM-PIE [41] which needs the value of κκκ. As
discuss in Section 2.1.1, PMED-Hinge [37] has a bound defined on c∗ (θθθ,κκκ) which makes
the comparison to other regret bound difficult. The proof of our bound extends OSUB’s
proof [13] both (i) to the context of a graph learned online, and (ii) to the combinatorial
semi-bandit setting.

This chapter is organised as follow: Section 3.1 describes the assumption taken to use
unimodality bandits in our setting. Section 3.2 presents GRAB. Finally theoretical and
practical results are presented in Section 3.3 and 3.4. We conclude in Section 3.5

Table 3.1: Settings and upper-bound on cumulative regret for state-of-the-art algorithms.
Nπ∗(aaa∗) is a set of recommendations in the neighborhood of the best recommendation.
Kmax is the maximum number of differences between two arms; see. Theorem 2 for a
specific definition.

Algorithm Handled settings Regret ∆, assuming
θ1 > θ2 > · · · > θL

GRAB (our algorithm) PBM O
(
L
∆ log T

)
min

aaa∈Nπ∗ (aaa∗)
µ∗ − µaaa

CombUCB1 [40] PBM O
(
LK2

∆ log T
)

min
aaa∈PLK

µ∗ − µaaa

PBM-PIE [41] PBM with κκκ
known

O
(
L−K

∆ log T
)

min
i∈{K+1,...,L}

µ∗ − µaaa[K:=i]

PMED-Hinge [37] PBM with κ1 >
· · · > κK

O (c∗ (θθθ,κκκ) log T ) ∅

TopRank [43] PBM with κ1 >
· · · > κK , CM, . . .

O
(
LK
∆ log T

)
min

(j,i)∈[L]×[K]:j>i

θi − θj
θi

OSUB [13] Unimodal O
( γ

∆ log T
)

min
aaa∈NG(aaa∗)

µ∗ − µaaa

KL-CombUCB (Theorem 2) Combinatorial O
(
|A|K2

max
∆ log T

)
min
aaa∈A

µ∗ − µaaa

3.1 Relation with unimodality

The setting tackled in this Chapter is the PB-OLR setting (see Section 1.3). It assumes
that clicks are independent. Apart from this global assumption, the proposed algorithm

54



3.1. Relation with unimodality

ρρρ =

A
B
C
D

1 2 3
1.00 0.90 0.80
0.90 0.81 0.72
0.80 0.72 0.64
0.70 0.63 0.56


aaa= (B,C,A)
πππ= (1, 3, 2)

Πρρρ(aaa)= {πππ}

ρa1,1 = 0.90 > ρa2,2 = 0.72 < ρa3,3 = 0.80
ρaπ1 ,π1 = 0.90 > ρaπ2 ,π2 = 0.80 > ρaπ3 ,π3 = 0.72
µaaa◦(3,1) = 1.00+0.72+0.72 = 2.44 > µaaa = 0.90+0.72+0.80 = 2.42

aaa =
(B,C,A)

aaa ◦ (2, 1) =
(C,B,A)

aaa ◦ (2, 3) =
(B,A,C)

aaa ◦ (3, 1) =
(A,C,B)

aaa[2 := D] =
(B,D,A)

aaa[3 := D] =
(B,C,D)

aaa[1 := D] =
(D,C,A)

Figure 3.1: Assumption 1 in practice. To distinguish between items and positions, the 4
items are denoted A, B, C, and D. On the left: parameters and considered recommenda-
tion aaa. We consider a matrix of probabilities of clicks ρρρ which corresponds to a PBM click
model, and a sub-optimal recommendation aaa. The corresponding set Πρρρ(aaa) of appropriate
rankings of positions is composed of a unique permutation πππ. On the right: correspond-
ing neighborhoods. Solid lines identify the neighborhood Nπππ(aaa) used by GRAB, and both
solid and dashed lines correspond to the neighborhood NG(aaa) used by S-GRAB (see the
appendix A.7 for details regarding S-GRAB). Note that there is a recommendation better
than aaa in both neighborhoods: aaa ◦ (3, 1) = (A,C,B).

assumes a relaxed version of unimodality. Here we present this assumption and state its
relation with PBM. We first define the set of appropriate rankings of positions: for each
recommendation aaa ∈ PLK , we denote Πρρρ(aaa) ⊆ PKK the set of permutations πππ of the K
positions such that ρaπ1 ,π1 > ρaπ2 ,π2 > · · · > ρaπK ,πK , with ρaπ1 ,π1 being the probability
for a user to click on item placed at position π1 in the list a as defined in Section 1.3.
Therefore, an appropriate ranking of positions orders the positions from the one with the
highest probability of click to the one with the lowest probability of click. See Figure 3.1
for an example of Πρρρ(aaa).

With this notation, our assumption is the following:

Assumption 1 (Relaxed Unimodality). For any recommendation aaa ∈ PLK and any rank-
ing of positions πππ ∈ Πρρρ(aaa), if µaaa 6= µ∗, with µaaa defined by Equation (1.5), then either there
exists k ∈ [K − 1] such that

µaaa < µaaa◦(πk,πk+1) (3.1)

or there exists i ∈ [L] \ aaa([K]) such that

µaaa < µaaa[πK :=i], (3.2)

55



Chapter 3 – Unimodal bandit for PBM

where
— aaa ◦ (πk, πk+1) is the permutation for which the items at positions πk and πk+1 are

swapped,
— aaa[πK := i] is the permutation which is the same as aaa for any position k 6= πK, and

such that aaa[πK := i]πK = i,
— and aaa([K]) is the set of items recommended by aaa, namely aaa([K]) def= {a1, . . . , aK}.

Assumption 1 relates to a natural property of standard click models: (i) for the optimal
recommendation, the position with the k-th highest probability to be observed is the one
displaying the k-th most attractive item, (ii) for a sub-optimal recommendation, swapping
two consecutive items, given this order, leads to an increase of the expected reward.
However, Assumption 1 considers the order based on the click probabilities ρak,k, not on
the observation probabilities κk. Figure 3.1 gives an example of both orders and of the
neighborhood associated to the ranking πππ defined after the order on click probabilities
ρak,k.

Assumption 1 relates to the unimodality of the set of expected rewards (µaaa)aaa∈PLK .
The definition of unimodality in [13] is recall in Section 2.3.1, Definition 1. The relation
between unimodality and Assumption 1 is expresses here .

Let us assume that there exists a unique recommendation aaa∗ with maximum expected
reward, and denote F = (πππaaa)aaa∈PLK a set of rankings of positions such that for any rec-
ommendation aaa, πππaaa ∈ Πρρρ(aaa). Then, by denoting GF = (V,EF) the directed graph with
vertices V = PLK and edges

EF
def=

{
(aaa,aaa ◦ (πaaak, πaaa(k+1))) : k ∈ [K − 1]

}
∪ {(aaa,aaa[πaaaK := i]) : i ∈ [L] \ aaa([K])} ,

(µaaa)aaa∈PLK is unimodal 1 with respect to GF . Note that this graph is unknown from the
algorithm as it builds upon the unknown mapping F . However, this mapping may be
learned online, paving the way to an OSUB-like algorithm to explore the space of recom-
mendations.

While the existence of a better recommendation in the neighborhood defined given
this order is less intuitive, it remains true for state-of-the-art click models (PBM, the cas-
cading model, and the dependent click model) and paves the way to an algorithm based
on observed random variables. Note also that while there exists a better recommendation

1. While the definition of unimodality in [13] involves an undirected graph, OSUB only requires a
directed graph and the existence of a strictly increasing path from any sub-optimal arm to the optimal
one.

56



3.2. Parametric graph for unimodal ranking bandit

both in the neighborhood based on the order on observation probability and in the neigh-
borhood based on the order on click probability, this is not true for any neighborhood
based on any arbitrary order (as soon as K > 4).

Hereafter, Lemma 1, states that Assumption 1 is weaker than the PBM one. The proof
of this Lemma is deferred to the appendix.

Lemma 1. Let (L,K, (θiκk)(i,k)∈[L]×[K]) be an online learning to rank problem with users
following PBM, with positive probabilities of looking at a given position. Then Assumption
1 is fulfilled.

3.2 Parametric graph for unimodal ranking bandit

Our algorithm, GRAB (for parametric Graph for unimodal RAnking Bandit), takes
inspiration from the unimodal bandit algorithm OSUB [13] by selecting at each iteration
t an arm aaa(t) in the neighborhood of the current best arm (a.k.a. the leader), noted ãaa(t).
While in OSUB the neighborhood is known beforehand, here we learn it online. GRAB is
described in Algorithm 6. This algorithm uses the following notations:

At each iteration t, we denote

ρ̂i,k(t)
def= 1

Ti,k(t)

t−1∑
s=1
1{ak(s) = i}cak(t)(s),

the average number of clicks obtained at position k when displaying item i at this position,
where

Ti,k(t)
def=

t−1∑
s=1
1{ak(s) = i}

is the number of time item i has been displayed at position k; ρ̂i,k(t)
def= 0 when Ti,k(t) = 0.

The leader ãaa(t) is the recommendation with the best pseudo average reward µ̄aaa(t)
def=∑K

k=1 ρ̂ak,k(t), and we note

T̃aaa(t)
def=

t−1∑
s=1
1{ãaa(s) = aaa},

the number of times the leader is aaa for iterations 1 to t− 1.
Finally, the statistics ρ̂i,k(t) are paired with their respective indices

bi,k(t)
def= f

(
ρ̂i,k(t), Ti,k(t), T̃ãaa(t)(t) + 1

)
,

57



Chapter 3 – Unimodal bandit for PBM

Algorithm 6 GRAB: parametric Graph for unimodal RAnking Bandit
Require: number of items L, number of positions K
1: for t = 1, 2, . . . do

2: ãaa(t)← argmax
aaa∈PLK

K∑
k=1

ρ̂ak,k(t)

3: find π̃ππ(t) s.t. ρ̂ãπ̃1(t)(t),π̃1(t)(t) > ρ̂ãπ̃2(t)(t),π̃2(t)(t) > · · · > ρ̂ãπ̃K (t)(t),π̃K(t)(t)
4: recommend

aaa(t) =


ãaa(t) , if T̃ãaa(t)(t)

L
∈ N,

argmax
aaa∈{ãaa(t)}
∪Nπ̃ππ(ãaa(t))

K∑
k=1

bak,k(t) , otherwise

where Nπππ(aaa) = {aaa ◦ (πk, πk+1) : k ∈ [K − 1]} ∪ {aaa[πK := i] : i ∈ [L] \ aaa([K])}
5: observe the clicks vector ccc(t)
6: end for

where f(ρ̂, s, t) stands for

sup{p ∈ [ρ̂, 1] : s× kl(ρ̂, p) ≤ log(t) + 3 log(log(t))},

with
kl(p, q) def= p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
,

the Kullback-Leibler divergence from a Bernoulli distribution of mean p to a Bernoulli
distribution of mean q; f(ρ̂, s, t) def= 1 when ρ̂ = 1, s = 0, or t = 0.

At each iteration t, GRAB first identifies the leader ãaa(t), and then recommends either
ãaa(t) every L-th iteration, or the best permutation in the inferred neighborhood, given the
sum of indices ∑K

k=1 bak,k(t) (see Figure 3.1 for an example of a neighborhood). Each time
an argmax is computed, the ties are randomly broken.

To finish the presentation of GRAB, let us now discuss its initialisation and its time-
complexity.

Remark 4 (Initialisation). The initialisation of the algorithm is handled through the
default value of indices bi,k: 1. This value ensures that any permutation is recommended
at least once, as soon as it belongs to the neighborhood of an arm which is often the
leader. If a permutation is not in such neighborhood, the theoretical analysis in Section
3.3 proves that this permutation is sub-optimal, hence it does not matter whether this
permutation is explored at least once or not.

58



3.3. Theoretical analysis

Remark 5 (Algorithmic Complexity). Even though the two optimization steps might
seem costly, at each iteration the choice of a recommendation is done in a polynomial
time w.r.t. L and K: first, the maximization at Line 2 is a linear sum assignment problem
which is solvable in O (K2(L+ logK)) time [54]; it is not required to scan the L!/(L−K)!
permutations of K distinct items among L. Secondly, the maximization at Line 4 is over
a set of L− 1 recommendations and is equivalent to the maximization of

Baaa(t) =
K∑
k=1

bak,k(t)−
K∑
k=1

bãk(t),k(t),

which reduces to the sum of up to four bak,k(t) terms as we are looking at recommendations
aaa in the neighborhood of the leader. Specifically, either

— aaa = ãaa(t) and Baaa(t) = 0,
— or aaa = ãaa(t) ◦ (k, k′) and Baaa(t) = bãk′ ,k(t) + bãk,k′(t)− bãk,k(t)− bãk′ ,k′(t),
— or aaa = ãaa(t)[k := i] and Baaa(t) = bi,k(t)− bãk,k(t).

Hence, this maximization requires O(L) computation time. Overall, the computation time
per iteration is a O (K2(L+ logK)).

3.3 Theoretical analysis

As already mentionned in 2.3.1, the proof of the upper-bound on the regret of GRAB
follows a similar path as the proof of OSUB [13]: (1) apply standard bandit analysis to
control the regret under the condition that the leader ãaa(t) is the best arm aaa∗, and (2)
upper-bound the expected number of iterations such that ãaa(t) 6= aaa∗ by a O(log log T ).
The inference of the rankings on positions adds up a third step (3) upper-bounding the
expected number of iterations such that π̃ππ(t) /∈ Πρρρ (ãaa(t)) for GRAB.

The first step differs from [13], as we have to account for the semi-bandit feedback.
We note that when the leader is the best arm, GRAB behaves as a Kullback-Leibler
variation of CombUCB1 [40] that we call KL-CombUCB in the following (see Section
2.1.2 for a complete definition of KL-CombUCB). We derive an upper-bound specific to
KL-CombUCB which accounts for the fact that the maximization at Line 4 of Algorithm
6 can be reduced to the maximization over sums of at most 4 terms (see Remark 5). In
the context of GRAB, this new result, expressed by Theorem 2, reduces the regret-bound
by a factor K w.r.t. the standard upper-bound for CombUCB1.

The second part of the analysis is based on the fact that with high probability

59



Chapter 3 – Unimodal bandit for PBM

µ̄aaa(t) > µ̄aaa′(t) if µaaa > µaaa′ , which derives from the control of the deviation of each
ρ̂i,k(t). Here lies the second main difference with Combes and Proutière’s analysis: we
control the deviation of each individual ρ̂i,k(t) while they control the deviation of µ̂aaa(t)

def=
(∑t−1

s=1 1{aaa(s) = aaa})−1∑t−1
s=1 1{aaa(s) = aaa}r(s). Again, the analysis benefits from the small

number of differences between recommendations in the neighborhood of the leader. More-
over, the analysis handles the fact that the neighborhoods may change from an iteration
to another, while the neighborhoods are constant in Combes and Proutière’s analysis. The
corresponding result is expressed, in the following, by Lemma 2.

Finally, the number of iterations at which the inferred ranking on the positions is
inappropriate is controlled by Lemma 3. The proof of this lemma is eased by the fact that
the number of times the leader is played is at least proportional to the number of times
it is the leader.

We now propose and prove the main theorem that upper-bounds the regret of GRAB.
Its proof is given after the presentation of all the necessary theorems and lemmas.

Theorem 1 (Upper-Bound on the Regret of GRAB). Let
(
L,K, (ρi,k)(i,k)∈[L]×[K]

)
be an

online learning to rank problem satisfying Assumption 1 and such that there exists a
unique recommendation aaa∗ with maximum expected reward. When facing this problem,
GRAB fulfills:

∀aaa ∈ Nπππ∗(aaa∗), E
[
T∑
t=1
1 {ãaa(t)=aaa∗, π̃ππ(t)=πππ∗, aaa(t)=aaa}

]
6

8
∆2
aaa

log T + O (log log T ) , (3.3)

E

[
T∑
t=1
1{ãaa(t) 6= aaa∗}

]
= O (log log T ) , (3.4)

E

[
T∑
t=1
1{π̃ππ(t) /∈ Πρρρ (ãaa(t))}

]
= O (1) , (3.5)

and hence

R(T ) 6
∑

aaa∈Nπππ∗ (aaa∗)

8
∆aaa

log T +O (log log T ) (3.6)

= O
(

L

∆min
log(T )

)
,

where πππ∗ is the unique ranking of positions in Πρ(aaa∗), ∆aaa
def= µ∗ − µaaa, and ∆min

def=

60



3.3. Theoretical analysis

minaaa∈Nπππ∗ (aaa∗) ∆aaa.

The first upper-bound (Equation (3.3)) deals with the expected number of iterations
at which GRAB recommends a sub-optimal permutation while the leader is the best
permutation. It derives from Theorem 2 hereafter, which detailed proof is in the appendix.

Theorem 2 (New Upper-Bound on the Regret of KL-CombUCB). We consider a com-
binatorial semi-bandit setting. Let E be a set of elements and A ⊆ {0, 1}E be a set of
arms, where each arm aaa is a subset of E. Let us assume that the reward when drawing
the arm aaa ∈ A is ∑e∈aaa ce, where for each element e ∈ E, ce is an independent draw of
a Bernoulli distribution of mean ρe ∈ [0, 1]. Therefore, the expected reward when drawing
the arm aaa ∈ A is µaaa = ∑

e∈aaa ρe.
When facing this bandit setting, KL-CombUCB (CombUCB1 equiped with Kullback-

Leibler indices, see Section 2.1.2) fulfills

∀aaa ∈ A s.t. µaaa 6= µ∗,

E

[
T∑
t=1
1{aaa(t) = aaa}

]
6

2K2
aaa

∆2
aaa

log T +O (log log T ) ,

and hence

R(T ) 6
∑

aaa∈A:µaaa 6=µ∗

2K2
aaa

∆aaa

log T +O (log log T )

= O
(
|A|K2

max

∆min
log(T )

)
,

where µ∗ def= maxaaa∈A µaaa, ∆aaa
def= µ∗−µaaa, ∆min

def= minaaa∈A:∆aaa>0 ∆aaa, Kaaa
def= minaaa∗∈A:µaaa∗=µ∗ |aaa\

aaa∗| is the smallest number of elements to remove from aaa to get an optimal arm, and
Kmax

def= maxaaa∈A:µaaa 6=µ∗ Kaaa.

Secondly, the expected number of iterations at which the leader is not the optimal
arm (Equation (3.4)) is controlled by Lemma 2, which detailed proof is in the appendix.

Lemma 2 (Upper-Bound on the Number of Iterations of GRAB for which ãaa(t) 6= aaa∗).
Under the hypotheses of Theorem 1 and using its notations,

∀ãaa ∈ PLK \ {aaa∗}, E
[
T∑
t=1
1{ãaa(t) = ãaa}

]
= O (log log T ) .

61



Chapter 3 – Unimodal bandit for PBM

Finally, the number of iterations at which the inferred ranking on the positions is
inappropriate (Equation (3.5)) is controlled by Lemma 3, which detailed proof is in the
appendix.

Lemma 3 (Upper-Bound on the Number of Iterations of GRAB for which πππ(t) /∈ Πρρρ(ãaa)).
Under the hypothesises of Theorem 1 and using its notations,

∀ãaa ∈ PLK , E
[
T∑
t=1
1 {ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)}

]
= O (1) .

We assemble these results to get the proof of Theorem 1.

Proof of Theorem 1. First note that, since there is a unique optimal permutation, there
is a unique appropriate ranking πππ∗ of positions w.r.t. aaa∗: Πρρρ(aaa∗) = {πππ∗}. Then, the proof
is based on the following decomposition of the set [T ] of iterations:

[T ] =
⋃

aaa∈{aaa∗}
∪Nπππ∗ (aaa∗)

{t ∈ [T ] : ãaa(t) = aaa∗, π̃ππ(t) = πππ∗, aaa(t) = aaa}

∪ {t ∈ [T ] : ãaa(t) 6= aaa∗} ∪ {t ∈ [T ] : π̃ππ(t) /∈ Πρρρ (ãaa(t))}.

As for any recommendation aaa, ∆aaa 6 K, this decomposition leads to the inequality
R(T ) 6 ∑

aaa∈Nπππ∗ (aaa∗) ∆aaaAaaa +KB +KC, with

Aaaa = E

[
T∑
t=1
1 {ãaa(t) = aaa∗, π̃ππ(t) = πππ∗, aaa(t) = aaa}

]
,

B = E

[
T∑
t=1
1 {ãaa(t) 6= aaa∗}

]
,

C = E

[
T∑
t=1
1{π̃ππ(t) /∈ Πρρρ (ãaa(t))}

]
.

The term Aaaa is smaller than the expected number of times the arm aaa is chosen by
KL-CombUCB when it plays on the set of arms {aaa∗} ∪ Nπππ∗ (aaa∗). As any of these arms
differs with aaa∗ at at most two positions, Theorem 2 upper-bounds Aaaa by

8
∆2
aaa

log T +O (log log T )

62



3.3. Theoretical analysis

and hence ∑aaa∈Nπππ∗ (aaa∗) ∆aaaAaaa = O (L/∆min log T ) as |Nπππ∗ (aaa∗) | = L− 1.
Note that Theorem 5 of [40], upper-bounding the regret of CombUCB1, leads to a

O (LK/∆ log T ) bound 2 for ∑aaa∈Nπππ∗ (aaa∗) ∆aaaAaaa, which we reduce by a factor K by using
Theorem 2.

From Lemma 2, the term B is upper-bounded by

B =
∑

ãaa∈PLK\{aaa∗}
E

[
T∑
t=1
1 {ãaa(t) = ãaa}

]
= O (log log T ) ,

and we upper-bound the term C with Lemma 3:

C =
∑
ãaa∈PLK

E

[
T∑
t=1
1{ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)}

]
= O (1) .

Finally, the regret of GRAB is upper-bounded by summing these three terms, which
concludes the proof.

3.3.1 Discussion

KL-CombUCB adapted to the PBM setting, which is presented in Section 2.1.2 has a
close relationship with GRAB:

— both algorithms solve a linear sum assignment problem, they only differ from the
metric to optimize: ∑K

k=1 ρ̂ak,k(t) for GRAB vs. ∑K
k=1 bak,k(t) for KL-CombUCB;

— both algorithms recommend the best permutation aaa regarding ∑K
k=1 bak,k(t), they

only differ from the considered set of permutations: {ãaa(t)}∪Nπ̃ππ(t) (ãaa(t)) for GRAB
vs. PLK for KL-CombUCB.

By considering a larger set of permutations, KL-ComUCB1 suffers aO(LK2/∆min log T )
regret (by applying [40] bound), which is higher than the upper-bound on the regret of
GRAB by a factor K2.

Assumming θ1 > · · · > θL and κ1 > · · · > κK , the detailed formula for the regret
upper-bound (3.6) is ∑K−1

k=1
8 log T

(κk−κk+1)(θk−θk+1) +∑L
k=K+1

8 log T
κK(θK−θk) , where the first sum cor-

responds to the set of neighbors of aaa∗ which recommend the same items as aaa∗, and the

2. In this setting, the ground set is E
def=

⋃
k∈[K]{(amax(k−1,1), k), (ak, k), (amin(k+1,K), k)} ∪⋃

k∈[L]\[K]{(ak,K)} and is of size L + 2K − 2, and any arm is composed of exactly K elements in
E.

63



Chapter 3 – Unimodal bandit for PBM

103 104 105 106 107

Iterations

0
2500
5000
7500

10000
12500
15000
17500
20000

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

GRAB
S-GRAB

KL-CombUCB
εn-greedy, c=104

TopRank
PMED

Figure 3.2: Cumulative regret w.r.t. iterations on Yandex dataset. The plotted curves cor-
respond to the average over 200 independent sequences of recommendations (20 sequences
per query). The shaded area depicts the standard error of our regret estimates.

second sum relates to the set of neighbors of aaa∗ which replace the ‘last’ item in aaa∗. Hence,
the number of displayed items does not impact the total number of terms, but the gaps
∆aaa.

Note also that GRAB is, by design, robust to miss-specifications. Typically, GRAB
would properly handle a matrix ρρρ = θθθTκκκ + E , if maxi,j |Ei,j| is smaller than half of the
minimum gap between two entries of the matrix θθθTκκκ.

However, if there is a set of optimal recommendations A∗ (instead of a unique one),
after convergence, the leader will be picked in that set at each iteration. So the neighbor-
hood of each optimal recommendation will be explored, and we will get a regret bound
in O(|A∗|L). This behavior questions the applicability of unimodality to the Cascading
Model (CM), as with this model there is at least K! optimal recommendations. Moreover,
while Assumption 1 is valid for CM and the Dependent Click Model (DCM), our setting
also assumes the existence of the matrix ρρρ, which is false for CM and DCM: in both
settings the probability of clicking on item i in position ` depends on other displayed
items.

64



3.4. Practical results

103 104 105 106 107

Iteration

0

2000

4000

6000

8000

10000

12000
Cu

m
ul

at
iv

e 
Ex

pe
ct

ed
 R

eg
re

t

(a) θθθ close to 1

104 105 106 107

Iteration

0

200

400

600

800

1000

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(b) θθθ close to 0
GRAB
S-GRAB

KL-CombUCB
εn-greedy

TopRank
PMED

Figure 3.3: Cumulative regret w.r.t. iterations on simulated data. The plotted curves
correspond to the average over 20 independent sequences of recommendations. The shaded
area depicts the standard error of our regret estimates. For εn-Greedy, c is set to 105 when
θθθ is close to 0, and to 103 when θθθ is close to 1.

3.4 Practical results

In this section, we compare GRAB to PMED [37], to TopRank [43], to εn-Greedy,
to Static Graph for unimodal RAnking Bandit (S-GRAB), a simplified version of GRAB
presented in Appendix A.7, and to KL-CombUCB, an adaptation of CombUCB1 [40]. The
experiments are conducted on the Yandex dataset (see Section 1.3.4) and on purely sim-
ulated data (see Section 1.3.4). We use the cumulative regret to evaluate the performance
of each algorithm, where the cumulative regret is averaged over 20 independent runs of
T = 107 iterations each. Code and data for replicating our experiments are available at
https://github.com/gaudel/ranking_bandits.

We mostly compare GRAB to algorithms presented in Chapter2 but also to εn-Greedy,
which is a simple yet efficient algorithm for standart usecases. At each time-stamp t, εn-
Greedy computes an estimation (θ̂θθ, κ̂κκ) of parameters (θθθ,κκκ) by applying Singular Value
Decomposition (SVD) to the collected data. Let us denote âaa(t) the recommendation with
the highest expected reward given the inferred values (θ̂θθ, κ̂κκ). A greedy algorithm would
recommend âaa(t). Since this algorithm never explores, it may end-up recommending a
sub-optimal affectation. εn-Greedy counters this by randomly replacing each item of the
recommendation with a probability ε(t) = c/t, where c is a hyper-parameter to be tuned.
In the following, we plot the results obtained with the best possible value for c, while trying
c in {100, 101, . . . , 106}. Note that the best value for c varies from a dataset to another.

65

https://github.com/gaudel/ranking_bandits


Chapter 3 – Unimodal bandit for PBM

In the following, the tunning of c leads to use c = 104 for Yandex dataset, c = 105 for
simulated dataset with θθθ close to 0 and c = 103 for simulated dataset with θθθ close to 1.

Figure 3.2 shows the results for the algorithms on Yandex and Figure 3.3 on the sim-
ulated data. We measure the performance of each algorithm according to the cumulative
regret (see Equation 1.6). It is the sum, over T consecutive recommendations, of the
difference between the expected reward of the best answer and of the answer of a given
recommender system. The best algorithm is the one with the lowest regret. We average the
results of each algorithm over 20 independent sequences of recommendations per query or
simulated setting. Although PMED theoretically yields an asymptotically optimal regret,
we stop it at iteration t = 105 due to its heavy computation-time.

Ablation Study The two main ingredients of GRAB are the use of a graph to explore
the set of recommendations, and the online inference of this graph. Without these in-
gredients, GRAB boils down to KL-CombUCB which recommends at each iteration the
best permutation given the sum of indices bi,k and has a O (LK2/∆ log T ) regret. With
only the first ingredient (namely a static graph of degree Θ(LK)), we get S-GRAB which
regret is upper-bounded by O (LK/∆ log T ), while GRAB’s regret is upper-bounded by
O (L/∆ log T ) thanks to a set of graphs of degree L− 1.

We want to assert the empirical impact of these ingredients. On Figures 3.2 and 3.3,
we see that GRAB has a better regret than S-GRAB and KL-CombUCB in every settings.
This confirms that the proposed graphs are relevant to explore the set of recommendations,
and that GRAB quickly infer the appropriate graph in the family of potential ones.

Results Analysis Figure 3.2 compares the empirical regret of all algorithms on Yandex
dataset. GRAB is the best with a regret at T = 107 about two time smaller than the rest
of the algorithms.

Figure 3.3 shows our results on purely simulated data illustrating extreme settings,
where values of θθθ are extremely close to 0 (Figure 3.3b) or close to 1 (Figure 3.3a) even
though these settings are less realistic. In both settings, GRAB is in the top-2 algorithms.
However, while TopRank provides better or similar result as GRAB at iteration 107, its
regret is higher than the one of GRAB up to iteration t = 4×106. TopRank only catches-
up GRAB at the end of the sequences of recommendations. We note that in the setting
close to 1, TopRank manages to find the perfect order after 106 iterations. In this setting
too, εn-greedy has better performance during the 106 first iterations, but suffers from its

66



3.5. Conclusion

Table 3.2: Average computation time for sequences of 107 recommendations vs. all queries
of Yandex dataset

Algorithm (hour/min) trial (ms)
GRAB 2h24 0.9
S-GRAB 9h56 3.6
εn-greedy c = 104 1h13 0.4
KL-CombUCB 2h03 0.7
PMED 474h13∗ 170
TopRank 9h29 3
∗ Extrapolation from 105 recommendations.

greedy behaviour during the last steps with a large variance.

Computation Time As shown in Table 3.2, the fastest algorithm is εn-greedy. KL-
CombUCB and GRAB are two times slower. The exploration of S-GRAB multiplies its
computation time by 4 compared to GRAB. TopRank is about three times slower than
GRAB.

3.5 Conclusion

We saw that unimodal bandit is a promising way to tackle list recommendations under
the Position Based Model as this model leads to an easy-to-use metric to find the best
recommendation w.r.t. bak,k(t). This method can be put closer to UCB method. Other
efficient Bandits methods are based on Thompson Sampling. In the context of PBM
setting, the application of Thompson Sampling requires drawing samples after an unusual
law. We’ll see in the next chapter that methods exist to simulate those draw.

67





Chapter 4

MCMC BANDITS FOR PBM

Contents
4.1 Thompson sampling with approximation approaches . . . . . 70

4.1.1 Approximation based on Metropolis Hasting . . . . . . . . . . 71

4.1.2 Approximation based on Langevin gradient descent . . . . . . . 76

4.1.3 Overall complexity . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Practical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Markov chain Monte Carlo (MCMC) is a class of sampling methods which solve the
problem evoked at the end of the precedent chapter: How to use Thompson Sampling
Bandit algorithm on the exact posterior law induced by PBM. Two of these sampling
methods are used in this work: Metropolis Hasting and Langevin gradient descent.Their
adaptation in our bandit setting is explained in this chapter. A preliminary version of
these contribution has been presented at IDA’21 [23] and the final version is under review
in ACM Transactions on Information Systems journal.

The proposed approaches handle a position-based online learning to rank (PB-OLR)
bandit setting, defined in Section 1.3 and covering PBM click model. This chapter intro-
duces a family of bandit algorithms designed to handle PBM with a semi-bandits Thomp-
son sampling framework. These algorithms do not require the knowledge of the probability
of a user to look at a given position: they learn this probability from past recommenda-
tions/feedbacks. This is a strong improvement w.r.t. previous attempts in this research
line [36, 41] as it allows the use of our algorithms in contexts where this information is
not obvious: a web-page with a layout which often changes and, with it, the probability of
a user to look at a given position. Besides, even with stable layouts, it is easier to apply
a framework which learns the attractiveness of both items and positions than having two
separate modules: an online learning approach dedicated to the positions and a bandit al-
gorithm dedicated to the items. This improvement results from the use of Markov Chain

69



Chapter 4 – MCMC bandits for PBM

Monte Carlo (MCMC) [50, 18] methods to sample parameters given an approximation
of their posterior distribution which monotonically approaches the posterior distribution.
While MCMC methods are well-known and extensively used in Bayesian statistics, they
were rarely used for Thomson Sampling [35, 17, 56, 48] and it is the first time that the
Metropolis-Hastings framework is used in the PBM setting.

As mentioned in Section 2.1, previous work [36, 41] apply Thompson sampling to tackle
PBM but limit themselves to a setting where κκκ is known. The distributions rising from this
assumption is easier than the one which arises from κκκ being unknown. In the following, we
propose to use Metropolis-Hastings framework and Langevin gradient descent, two strate-
gies to approximate draw from various distributions, to handle this harder distribution.

Other works [17, 56, 35, 48] investigate a large range of distribution approximation
strategies to apply TS framework to the distributions arising from various setting such as
the contextual bandit setting. Overall, these articles handle a pure bandit setting while
we are in a semi-bandits setting: for each recommendation we receive as reward a list of
1 or 0 (click or not). As most of commercial website can track precisely on which product
each client clicks, we aim at exploiting that fine-grain information.

This chapter is organised as follow: Section 4.1 presents the different approximation
approaches uses to build PB-MHB and PB-LB. Empirical performances are presented
Section 4.2. We conclude in Section 4.3

4.1 Thompson sampling with approximation approaches

We handle the setting presented in Section 1.3 with the online recommender system
depicted by Algorithm 7. We present here two versions of this method, which is based
on the Thompson sampling framework [62, 1] and use standard statistical methods to
approximate the parameters of the reward law. Thus, we firstly look at rewards with a
fully Bayesian point of view: we assume that they follow the statistical model depicted
in Section 1.3, and we choose a uniform prior on the parameters θθθ and κκκ. Therefore the
posterior probability for these parameters given the previous observations D(t) is

P (θθθ,κκκ|D(t)) ∝
L∏
i=1

K∏
k=1

(θiκk)Si,k(t) (1− θiκk)Fi,k(t) , (4.1)

where Si,k(t) = ∑t−1
s=1 1ik(s)=i1rk(s)=1 denotes the number of times the item i has been

clicked while being displayed in position k from iteration 1 to t − 1, and Fi,k(t) =

70



4.1. Thompson sampling with approximation approaches

Algorithm 7 Thompson Sampling with MCMC approximations
D(1)←− {}
for t = 1, . . . do
draw (θ̃θθ, κ̃κκ) ∼ P̃ (θθθ,κκκ|D(t)) using MCMC approximation (see Algorithm 8 or 9)
display the K items with greatest value in θ̃θθ, ordered by decreasing values of κ̃κκ
get rewards rrr(t)
D(t+ 1)←− D(t) ∪ (aaa(t), rrr(t))

end for

∑t−1
s=1 1ik(s)=i1rk(s)=0 denotes the number of times the item i has not been clicked while

being displayed in position k from iteration 1 to t− 1.
Secondly, we choose the recommendation aaa(t) at iteration t according to its posterior

probability of being the best arm. To do so, we draw a sample (θ̃θθ, κ̃κκ) of parameters (θθθ,κκκ)
according to their posterior distribution, we keep the best items given θ̃θθ, and we display
them in the right order given κ̃κκ.

The posterior distribution in Eq. (4.1) of parameters θθθ and κκκ does not belong to
a standard family of distributions. Hence we have to resort to approximate sampling.
We propose the use of Metropolis-Hasting and Langevin algorithms, leading respectively
to the PB-MHB (Position Based Metropolis-Hastings Bandit) family of algorithms and
to PB-LB (Position Based Langevin gradient Bandit) algorithm that we detail in the
following.

4.1.1 Approximation based on Metropolis Hasting

As already mentioned, the distribution in Eq. (4.1) does not correspond to a well-
known distribution. [36, 41] circumvent this problem by considering that κκκ is known in
order to manipulate L independent simpler distributions Pi (θi|θθθ−i,κκκ,D(t)), where θθθ−i
denotes the components of θθθ except for the i-th one. These approaches gives good results
but fails when κκκ is unknown. Indeed, by having κκκ and θθθ both unknown, we have to handle a
law for which the components θ1, . . . , θL and κ1, . . . , κK are correlated (see Equation 4.1).
We propose the PB-MHB family of algorithms to address this issue. This family handles
the unusual distribution given in Eq. (4.1) thanks to a carefully designed Metropolis-
Hastings algorithm [50] (cf. Algorithm 8). This algorithm consists in building a sequence of
m samples (θθθ(1),κκκ(1)), . . . , (θθθ(m),κκκ(m)) such that (θθθ(m),κκκ(m)) follows a good approximation
of the targeted distribution. It is based on a Markov chain on parameters (θθθ,κκκ) which
admits the targeted probability distribution as its unique stationary distribution. It start

71



Chapter 4 – MCMC bandits for PBM

Algorithm 8 Metropolis-Hastings applied to the distribution of Equation (4.1)
Require: D(t): previous recommendations and rewards
Require: qθ1, . . . , qθL and qκ1 , . . . , qκK : densities of proposal for each components of (θθθ,κκκ)
Require: m: number of steps
Require: (if Gaussian Random Walk proposal) σ = c/

√
t: width of Gaussian random-

walk steps

1: (θθθ(0),κκκ(0))←
draw (θθθ(0),κκκ(0)) after uniform distribution , if random start
reuse (θ̃θθ, κ̃κκ) from previous recommendation , otherwise

2: κ(0)
1 ←− 1

3: for s = 1, . . . ,m do
4: (θ̇θθ, κ̇κκ)← (θθθ(s−1),κκκ(s−1))
5: for i = 1, . . . , L do
6: draw θ̃i from the proposal law of density qθi

(
θ̃i | θ̇i, θ̇θθ−i, κ̇κκ,D(t)

)
7: θ̇i ←− θ̃i with prob. pθacc

def= min
(

1, Pi(θ̃i|θ̇θθ−i,κ̇κκ,D(t))
Pi(θ̇i|θ̇θθ−i,κ̇κκ,D(t))

qθi (θ̇i|θ̃i,θ̇θθ−i,κ̇κκ,D(t))
qθi (θ̃i|θ̇i,θ̇θθ−i,κ̇κκ,D(t))

)
8: end for
9: for k = 2, . . . , K do
10: draw κ̃i from the proposal law of density qκk

(
κ̃i | κ̇k, κ̇κκ−k, θ̇θθ,D(t)

)
11: κ̇k ←− κ̃k with prob. pκacc

def= min
(

1, Pk(κ̃i|κ̇κκ−k,θ̇θθ,D(t))
Pk(κ̇k|κ̇κκ−k,θ̇θθ,D(t))

qκk(κ̇k|κ̃i,κ̇κκ−k,θ̇θθ,D(t))
qκ
k(κ̃i|κ̇k,κ̇κκ−k,θ̇θθ,D(t))

)
12: end for
13: (θθθ(s),κκκ(s))←− (θ̇θθ, κ̇κκ)
14: end for
15:
16: return (θθθ(m),κκκ(m))

from an initial pair (θθθ(0),κκκ(0)) which can be drawn from a uniform distribution or reused
from previous recommendation.

At step s, the sample (θθθ(s),κκκ(s)) moves toward sample (θθθ(s+1),κκκ(s+1)) by applying (L+
K − 1) transitions: one per item and one per position except for κ1. Let us start by
focusing on the transition regarding item i (Lines 6–7) and denote (θ̇θθ, κ̇κκ) the sample
before the transition.

The algorithm aims at sampling a new value for θ̇i according to its posterior probability
given other parameters and the previous observations D(t):

Pi
(
θ̇i|θ̇θθ−i, κ̇κκ,D(t)

)
∝

K∏
k=1

θ̇
Si,k(t)
i

(
1− θ̇iκ̇k

)Fi,k(t)
. (4.2)

This transition consists in two steps:

72



4.1. Thompson sampling with approximation approaches

1. draw a candidate value θ̃ after a proposal probability distribution qθi
(
θ̃i | θ̇i, θ̇θθ−i, κ̇κκ,D(t)

)
to be discussed later on;

2. accept that candidate or keep the previous sample:

θ̇i ←

θ̃i , with prob. pθacc
θ̇i , otherwise

,

with pθacc
def= min

(
1, Pi(θ̃i|θ̇θθ−i,κ̇κκ,D(t))
Pi(θ̇i|θ̇θθ−i,κ̇κκ,D(t))

qθi (θ̇i|θ̃i,θ̇θθ−i,κ̇κκ,D(t))
qθi (θ̃i|θ̇i,θ̇θθ−i,κ̇κκ,D(t))

)
.

This acceptance step yields two behaviours:

— Pi(θ̃i|θ̇θθ−i,κ̇κκ,D(t))
Pi(θ̇i|θ̇θθ−i,κ̇κκ,D(t)) measures how likely the candidate value is compared to the previous
one, w.r.t. the posterior distribution,

— qθi (θ̇i|θ̃i,θ̇θθ−i,κ̇κκ,D(t))
qθi (θ̃i|θ̇i,θ̇θθ−i,κ̇κκ,D(t)) prevents preferring candidates easily reached by the proposal qθi .

The sampling process for the parameter κ̇k is similar (Lines 10–11). The Metropolis-
Hastings step is based on the proposal qκk

(
κ̃i | κ̇k, κ̇κκ−k, θ̇θθ,D(t)

)
and aims at the probability

Pk
(
κ̇k|θ̇θθ, κ̇κκ−k, D(t)

)
∝

L∏
i=1

κ̇
Si,k(t)
k

(
1− θ̇iκ̇k

)Fi,k(t)
. (4.3)

The proposal laws are hyper-parameters of Algorithm 8. This flexibility allows to use
generic proposals as well as task-specific ones. We implement and detail in the following
four different laws: a Truncated Gaussian Random Walk (TGRW), a Logit Gaussian
Random Walk (LGRW), a proposal using the approximated law used in [36] named here
PseudoView and the one from [41] named MaxPos. The first two are generic and can be
applied to any situation. The later two were borrowed from previous works tackling a
similar task.

Truncated Gaussian Random Walk This proposal draws θ̃ (respectively κ̃) from
N
(
θ̇i, σ

)
(resp. N (κ̇k, σ)) with a Gaussian step of standard deviation σ. As our targeted

law is bounded in [0, 1], we truncate this distribution by rejecting candidate values out
of [0, 1]. Note that due to the truncation, the probability to get the proposal θ̃i starting
from θ̇i is

qθi
(
θ̃i | θ̇i, θ̇θθ−i, κ̇κκ,D(t)

)
= φ(θ̃i | θ̇i, σ)

∆Φσ(θ̇i)
,

73



Chapter 4 – MCMC bandits for PBM

where φ(· | θ̇i, σ) is the probability associated to the Gaussian distribution with mean θ̇i
and standard deviation σ, Φ(· | θ̇i, σ) is its cumulative distribution function, and

∆Φσ(θ̇i) = Φ(1 | θ̇i, σ)− Φ(0 | θ̇i, σ).

The probability to get the proposal θ̇i starting from θ̃i is similar, which reduces the ratio
of proposal probabilities at Line 7 to

qθi
(
θ̇i | θ̃i, θ̇θθ−i, κ̇κκ,D(t)

)
qθi
(
θ̃i | θ̇i, θ̇θθ−i, κ̇κκ,D(t)

) =
∆Φσ

(
θ̇i
)

∆Φσ

(
θ̃i
) .

As we will see in section 4.2, this proposal is efficient while being generic.

Logit Gaussian Random Walk The second set of proposals avoid the truncation
by applying a Gaussian random walk on the logit of each parameter θi and κk. As an
example, the proposal for item i is drawn as

θ̃i = logit−1
(
θ̂`i
)
, (4.4)

where θ̂`i ∼ N
(
logit

(
θ̇i
)
, σ
)
, and logit(p) = log

(
p

1−p

)
, for p ∈ (0, 1). Note that the

inverse of the logit function is the logistic function i.e. logit−1(x) = 1
1+exp(−x) , with x ∈ R,

which enforces θ̃i ∈ [0, 1].
As the proposal is mainly a Gaussian random walk, we have:

qθi
(
θ̇i | θ̃i, θ̇θθ−i, κ̇κκ,D(t)

)
qθi
(
θ̃i | θ̇i, θ̇θθ−i, κ̇κκ,D(t)

) =
φ
(
logit

(
θ̇i
)
| logit

(
θ̃i
)
, σ
)

φ
(
logit

(
θ̃i
)
| logit

(
θ̇i
)
, σ
) = 1.

The transition regarding the parameter κk involves the same framework, and the
corresponding set of proposals gives an alternative to TGRW for unspecific tasks.

PseudoView We also design a set of proposals by adapting the posterior law used in
[36], which assumes that the κκκ parameter is known. This proposal is specific to our task
which should accelerate the convergence of the Metropolis-Hastings method.

For the parameter θi, the proposal is defined as follows. We define Ñi(t) = ∑K
k=1 κ̇k

∑t−1
s=1 1ik(s)=i,

the pseudo-expected number of times that item i has been observed. Note that this pseudo-
expectation depends on the current estimate κ̇κκ of κκκ. We draw the next candidate θ̃i as

74



4.1. Thompson sampling with approximation approaches

follow:

θ̃i ∼ Beta
(
Si(t) + 1,max

(
Ñi(t)− Si(t) + 1, 1

))
, (4.5)

with Si(t) = ∑K
k=1 Si,k(t) the sum of the clicks obtained by item i over all the positions

until iteration t− 1, and Beta the beta distribution.
Thus, the ratio of the proposal probabilities becomes

qθi
(
θ̇i | θ̃i, θ̇θθ−i, κ̇κκ,D(t)

)
qθi
(
θ̃i | θ̇i, θ̇θθ−i, κ̇κκ,D(t)

) = θ̇
Si(t)
i (1− θ̇i)Ñi(t)−Si(t)

θ̃
Si(t)
i (1− θ̃i)Ñi(t)−Si(t)

.

The transition regarding the parameter κk involves the same framework, with Sk(t) =∑L
i=1 Si,k(t) the sum of the clicks obtained at position k over all items placed there until

iteration t − 1, and Ñk(t) = ∑L
i=1 θ̇

(t)
i

∑t−1
s=1 1ik(s)=i the pseudo-expected number of times

position k has been clicked, i.e. the proportion of users to click at this position regardless
of the item.

This set of proposals is specifically designed for our problem. It is based on the estima-
tion of the average impact of each item, independently of the position it as been displayed
at, and on the estimation of the average impact of each position. Nevertheless, we will
show in our experiments that this PseudoView proposal is less efficient than the generic
ones, such as the previously described proposals Truncated Gaussian Random Walk and
Logit Gaussian Random Walk.

MaxPos Finally, we introduce the MaxPos proposal from [41]. As for PseudoView, this
proposal is specific to our task. For each item i, we identify the position kmax in which
it has been displayed the most, and we restrict ourselves to the statistics Si,kmax and
Fi,kmax gathered at this position to draw a candidate θ̃i. As drawing from Beta(Si,kmax(t)+
1, Fi,kmax(t) + 1) leads to an estimation of the product θiκkmax we define our proposal as

θ̃i = x

κ̇kmax
, with x ∼ Beta (Si,kmax(t) + 1, Fi,kmax(t) + 1) , (4.6)

where kmax = argmax16k6K(Si,k(t) + Fi,k(t)).
Thus, the ratio of the proposal probabilities becomes

qθi
(
θ̇i | θ̃i, θ̇θθ−i, κ̇κκ,D(t)

)
qθi
(
θ̃i | θ̇i, θ̇θθ−i, κ̇κκ,D(t)

) = (θ̇iκ̇(t)
kmax

)Si,kmax (t)(1− θ̇iκ̇(t)
kmax

)Fi,kmax (t)

(θ̃iκ̇(t)
kmax

)Si,kmax (t)(1− θ̃iκ̇(t)
kmax

)Fi,kmax (t)
.

75



Chapter 4 – MCMC bandits for PBM

Algorithm 9 Langevin Algorithm applied to the inverse log-likelihood Û
Require: (θθθ(0),κκκ(0)): use particle (θθθ(m),κκκ(m)) from the previous call to Algorithm 9
Require: D(t): previous recommendations and rewards
Require: m: number of steps
Require: h = h0/t: gradient step-size
Require: γ: noise-parameter for the final step
for s = 1, . . . ,m do
Compute ∇Ûθθθ =

[
∂Û
∂θ1

(θθθ(s−1),κκκ(s−1)), . . . , ∂Û
∂θL

(θθθ(s−1),κκκ(s−1))
]

Compute ∇Ûκκκ =
[
∂Û
∂κ1

(θθθ(s−1),κκκ(s−1)), . . . , ∂Û
∂κK

(θθθ(s−1),κκκ(s−1))
]

Sample
[
θθθ(s),κκκ(s)

]
∼ N

([
θθθ(s−1),κκκ(s−1)

]
− h

[
∇Ûθθθ,∇Ûκκκ

]
, 2hIL+K

)
end for
Sample

[
θ̃θθ, κ̃κκ

]
∼ N

([
θθθ(m),κκκ(m)

]
, 1
tγ
IL+K

)
return (θ̃θθ, κ̃κκ) and (θθθ(m),κκκ(m))

The transition regarding the parameter κk involves the same framework, with

imax = argmax
16i6L

(Si,k(t) + Fi,k(t)).

By restricting themselves to the most used positions (respectively the most displayed
items), these proposals loose part of the gathered information. However, in the context
of a bandit setting, each item should be displayed at the right position most of the time,
therefore, the impact of this data loss should become negligible when the time tends to
infinity.

Overall, PB-MHB (i) offers a way to tackle settings with unusual posterior distribution
and (ii) is a flexible tool which can take different proposal as parameter to adapt to the
problem we are facing. To highlight this flexibility, we have presented two generic proposals
(TGRW and LGRW) and two proposals specific to our application which take inspiration
from [36] and [41].

4.1.2 Approximation based on Langevin gradient descent

Other statistical methods can be coupled with the Thompson Sampling method to
approximate the parameters from the exact reward law such as the Langevin Gradient
Descent. This is the approach used in [48] except that the corresponding bandit setting
is composed of a set of independent arms. We now present how an Langevin gradient

76



4.1. Thompson sampling with approximation approaches

descent may be used in our more entangled setting:

— the arms (the recommendations) are no more independents, they share the same
set of parameters κκκ and θθθ;

— each observation (the click/no-click on item i in position k at iteration t) results
from the combination of two parameters: θi and κk;

— at each iteration, we observe K random outputs instead of only one.

We propose PB-LB (for Position Based Langevin gradient Bandit) which consists in
using Algorithm 9 to sample (θ̃θθ, κ̃κκ) at Line 3 of Algorithm 7. Algorithm 9 applies an
Langevin strategy to the function

Û(θθθ,κκκ) = − logP (θθθ,κκκ|D(t)) ,

which is the opposite of the log-likelihood of parameters θθθ and κκκ, assuming uniform prior
for these parameters.

At each iteration t, an Langevin algorithm is run on m steps, and each step consists
in updating the parameters given the gradient of Û and adding Gaussian noise. Note that
the gradient of Û is given by

∂Û

∂θi
(θθθ,κκκ) = −

K∑
k=1

(Si,k
1
θi
− Fi,k

κk
1− θiκk

) , ∀i ∈ [L],

∂Û

∂κk
(θθθ,κκκ) = −

L∑
i=1

(Si,k
1
κk
− Fi,k

θi
1− θiκk

) , ∀k ∈ [K].

After these m consecutive steps, the algorithm returns a perturbed version of the last
particle (θθθ(m),κκκ(m)).

Algorithm 9 requires the choice of three hyper-parameters: the number of steps m,
h0 which controls the size of the gradient steps, and γ which controls the uncertainty
of the proposal (θ̃θθ, κ̃κκ). These hyper-parameters are the same at each iteration of PB-LB.
Regarding h0 and γ, they are usually defined according to a smoothness property on
the target function Û . In our setting, Û is not smooth enough to derive theoretically
founded values for h0 and γ. However, we show in Section 4.2 that a careful tuning of
both parameters drastically reduces the cumulative expected regret of PB-LB.

77



Chapter 4 – MCMC bandits for PBM

4.1.3 Overall complexity

The computational complexity of PB-MHB (using Algorithm 8) is driven by the num-
ber of random-walk steps done per recommendation: m(L + K − 1), which is controlled
by the hyper-parameter m. We have a similar situation with PB-LB (using Algorithm
9), with m the number of steps of the gradient descent: the complexity per iteration is
O (m(L+K)). The hyper-parameter m corresponds to the burning period: the number of
steps required by MCMC methods to draw a point (θθθ(m),κκκ(m)) almost independent from
the initial one. While the requirement for a burning period may refrain us from using
such methods in recommendation settings, we demonstrate in the following experiments
that the required value for m remains reasonable. We drastically reduce m by starting the
MCMC approximations call from the point used to recommend at previous iteration. This
corresponds to the second option at Line 1 in Algorithm 8, and to the default behavior
of Algorithm 9.

As we will see in Table 4.2, despite similar complexity, PB-MHB is much slower than
PB-LB. This is partially due to the rejection phase of TGRW and to implementation
details: the steps in Algorithm 9 are vectorized, while the steps in Algorithm 8 are se-
quential.

4.2 Practical results

In this section we demonstrate the benefit of the proposed approaches both on three
artificial datasets called purely simulated and two real-life datasets (Yandex and KDD).
All these datasets are presented in Section 1.3.4. In the Yandex setting, we look at the
results averaged on the 10 most frequent queries, while displaying K = 5 items among
the L = 10 most attractive ones. We also consider the settings L = 5 and L = 20. In the
KDD setting, we look at the 8 most frequent queries, with L=3 and K depending on the
query. Let us remind that whatever real-life data we are using, we use them to compute
the parameters θθθ and κκκ and simulate at each iteration a "real" user feedback (i.e. clicks) by
applying PBM with these parameters. This is what is usually done in the literature since
the recommendations done by a bandit are very unlikely to match the recommendations
logged in the ground truth data and without matching, it would be impossible to compute
a relevant reward for each interaction (see Section 1.3.3). We compare the performance
of all versions of PB-MHB and PB-LB with the performance of TopRank [43] and GRAB
[26] that were described respectively in Section 2.2.1 and Chapter 3.

78



4.2. Practical results

We compare the algorithms on the basis of the cumulative expected regret (see Equation
(4.8)), which is the sum, over T consecutive recommendations, of the difference between
the expected reward of the best possible answer and of the answer of a given recommender

100 102 104

Iteration

10 2

10 1

100

101

102

103

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(a) Yandex K = 5, L = 5

100 102 104

Iteration

10 1

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(b) Yandex K = 5, L = 10

100 102 104

Iteration

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(c) Yandex K = 5, L = 20

100 102 104

Iteration

10 1

100

101

102

103

104

105

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(d) KDD

101 102 103 104 105

Iteration

101

102

103

104

Cu
m

ul
at

iv
e 

Re
gr

et

(e) θθθ close to real life

101 102 103 104 105

Iteration

101

102

103

104

Cu
m

ul
at

iv
e 

Re
gr

et

(f) θθθ close to 1

101 102 103 104 105

Iteration

10 2

10 1

100

101

102

Cu
m

ul
at

iv
e 

Re
gr

et

(g) θθθ close to 0
PB-MHB(TGRW), c = 10 1

PB-MHB(TGRW), c = 100
PB-MHB(TGRW), c = 101

PB-MHB(TGRW), c = 102
PB-MHB(TGRW), c = 103

PB-MHB(TGRW), c = 104
PB-MHB(TGRW), c = 105

Figure 4.1: (TGRW) Cumulative expected regret w.r.t. the number of iterations on three
datasets: Yandex ((a), (b) and (c)), KDD (d) and purely simulated ((e), (f) and (g)).
Impact of the width c/

√
t of Gaussian random-walk steps for the truncated proposal. The

(narrow) shaded area depicts the standard error of our regret estimates.

79



Chapter 4 – MCMC bandits for PBM

system:

RT
def=

T∑
t=1
E

[
K∑
k=1

rk(t)
∣∣∣∣∣ aaa(t) = aaa∗

]
−

T∑
t=1
E

[
K∑
k=1

rk(t)
∣∣∣∣∣ aaa(t)

]
(4.7)

= µ∗T −
T∑
t=1

K∑
k=1

θik(t)κk. (4.8)

The regret is plotted with respect to T on a log-scale basis. The best algorithm is the
one with the lowest regret. The log scale helps to identify the typical bandit behaviors.
In particular, a linear tendency corresponds to an exploration phase, a constant tendency
implies that the recommendation of the bandit matches the optimal recommendation,
a log tendency means that the bandit recommendation is really close to the optimal
recommendation and that the bandit is accurately learning, and finally an inflection is
the sign that the bandit over exploit and that it takes wrong decisions. We average the
results of each algorithm over 20 independent sequences of recommendations per query
(in total: 20 sequences for simulated data, 160 sequences for KDD behavioral data and
200 sequences for Yandex behavioral data). The shaded area in the figures depicts the
standard error of our regret estimates.

PB-MHB Hyper-Parameters

PB-MHB main hyper-parameter is the proposal law. We compare four proposals:
Truncated Gaussian Random Walk (TGRW), Logistic Gaussian Random Walk (LGRW),
MaxPos and PseudoView presented in section 4.1.1. The performance of PB-MHB is also
impacted by the number m of Metropolis-Hastings steps per recommendation.

When PB-MHB uses a Gaussian Random Walk proposal (TGRW or LGRW), its
behavior is affected by an additional hyper-parameter: the width c/

√
t of the Gaus-

sian random-walk steps. Figure 4.1 and Figure 4.2 show the impact of c/
√
t on each

dataset for both proposals. To measure the impact of c/
√
t on each settings, we com-

pare the cumulative expected regret of PB-MHB using TGRW (Figure 4.1) with c ∈
[10−1, 100, 101, 102, 103, 104, 105] and PB-MHB using LGRW (Figure 4.2) with c ∈ [10−1, 100,

101, 102].
Comparing both figures, we can conclude that the regret of the PB-MHB algorithm

which uses the TGRW proposal is the smallest (compared to using LGRW) as soon as
c is large enough (c >= 100), meaning that PB-MHB with TGRW proposal is learning
fast and well. Even in extreme settings, where θθθ is close to 0 or to 1, TGRW follows a

80



4.2. Practical results

100 102 104

Iteration

10 2

10 1

100

101

102

103

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(a) Yandex K = 5, L = 5

100 102 104

Iteration

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(b) Yandex K = 5, L = 10

100 102 104

Iteration

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(c) Yandex K = 5, L = 20

101 102 103 104 105

Iteration

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(d) KDD

101 102 103 104 105

Iteration

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(e) θθθ close to real life

101 102 103 104 105

Iteration

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(f) θθθ close to 1

101 102 103 104 105

Iteration

10 2

10 1

100

101

102

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(g) θθθ close to 0
PB-MHB(LGRW), c = 10 1 PB-MHB(LGRW), c = 100 PB-MHB(LGRW), c = 101 PB-MHB(LGRW), c = 102

Figure 4.2: (LGRW) Cumulative expected regret w.r.t. the number of iterations on three
datasets: Yandex ((a), (b) and (c)), KDD (d) and purely simulated ((e), (f) and (g)).
Impact of the width c/

√
t of Gaussian random-walk steps for the logit proposal. The

shaded area depicts the standard error of our regret estimates.

log curve which means that PB-MHB is learning the best recommendation. We can see
that when L is increasing while K is stable (Yandex K = 5, L = 10 and K = 5, L = 20
), which means that when the set of available items is large compared to the number of
position, the learning process is slower. The tunning of c for the LGRW proposal depends

81



Chapter 4 – MCMC bandits for PBM

100 102 104

Iteration

10 1

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

PB-MHB(TGRW), m=1,    c=100

PB-MHB(TGRW), m=10,  c=100

PB-MHB(TGRW), m=1,    c=103

PB-MHB(TGRW), m=10,  c=103

PB-MHB(TGRW), m=1,    c=103, rand. start

Figure 4.3: Cumulative expected regret w.r.t. iterations for TGRW proposal on Yandex
dataset (with K = 5, L = 10). Impact of the use of the parameters from the previous iter-
ation to warm-up the Metropolis-Hasting algorithm and of the number m of Metropolis-
Hastings steps per recommendation. The results are computed with the TGRW proposal
for c = 1 and c = 103. The shaded area depicts the standard error of our regret estimates.

100 102 104

Iteration

10 1

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(a) Yandex K = 5, L = 10

100 102 104

Iteration

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

PB-MHB(PseudoView), m=1
PB-MHB(PseudoView), m=10

(b) θθθ close to real life

Figure 4.4: Cumulative expected regret w.r.t. iterations for PseudoView proposal on two
datasets: (a) Yandex (with K = 5, L = 10) and (b) simulated data with θθθ "close to real
life". Impact of the number m of Metropolis-Hastings steps per recommendation. The
shaded area depicts the standard error of our regret estimates.

more on the setting. If c is too small, PB-MHB explores too much and if c is higher than
its optimal value, the curve of the cumulative expected regret is inflected meaning that
the learning leads to a sub-optimal recommendation. Overall, TGRW gives more stable
results (i.e. less sensitive to its hyperparameters) than LGRW, as it does not suffer from
high value of c and reaches the best performances when c >= 100 for all settings.

In Figures 4.3 and 4.4, we illustrate the impact of m with TGRW and PseudoView
proposals. Using both figures, we can see that increasing the number of steps improves
the performance of PB-MHB. For TGRW (Figure 4.3), it yields a high regret only when

82



4.2. Practical results

c and m are both low (blue solid curve): when the random-walk steps are too small the
Metropolis-Hasting algorithm requires more steps to get uncorrelated samples (θ̃θθ, κ̃κκ). For

100 102 104

Iteration

10 2

10 1

100

101

102

103

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(a) Yandex K = 5, L = 5

101 102 103 104 105

Iteration

100

101

102

103

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(b) Yandex K = 5, L = 10

101 102 103 104 105

Iteration

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(c) Yandex K = 5, L = 20

101 102 103 104

Iteration

100

101

102

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(d) KDD

101 102 103 104 105

Iteration

101

102

103

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(e) θθθ close to real life

101 102 103 104 105

Iteration

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(f) θθθ close to 1

101 102 103 104 105

Iteration

100

101

102

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(g) θθθ close to 0
PB-MHB(LGRW)
PB-MHB(MaxPos)

PB-MHB(TGRW), c = 104

PB-MHB(PseudoView)

Figure 4.5: Cumulative expected regret w.r.t. the number of iterations on three datasets:
Yandex ((a), (b) and (c)), KDD (d) and purely simulated ((e), (f) and (g)). Impact of the
choice of the proposal for PB-MHB. c is set according to the best results of Figure 4.1,
i.e. c = 104 for TGRW; For LGRW, c = 100 in (a), (d) and (e) and c = 101 in the other
settings according to the best results of Figure 4.2.

83



Chapter 4 – MCMC bandits for PBM

reasonable values of c, m has no impact on the performance, which ease the tuning of
PB-MHB hyper-parameters to obtain good recommendations. Overall, taking c = 1000
for the TGRW proposal and m = 1 is a good choice both in terms of regret and in
terms of computation time, since the computation time of PB-MHB scales linearly with
m. For PseudoView (Figure 4.4), we show the impact of m on datasets: Yandex with
K = 5, L = 10 (Figure 4.4a) and the purely simulated settings with θθθ close to real life
(Figure 4.4b). We focus on these two settings in order to highlight the positive impact of
increasing m on the learning process which can be seen in Figure 4.4a but easier to spot
in Figure 4.4b. PseudoView has no additional parameter to correct the estimation of θθθ,κκκ
for one step. Thus having m = 10 leads to better performances as the Markov chain can
converge more accurately at each call. Thus, even when proposals with lower performance
are chosen, PB-MHB can increase its performance by increasing m.

Furthermore the Metropolis-Hastings run of PB-MHB starts from the couple (θ̃θθ, κ̃κκ)
from the previous iteration. Figure 4.3 also shows the impact of keeping the parameters
from the previous iteration compared to a purely random start. Note that this warm-up
start allows PB-MHB to have a small regret while only doing m = 1 Metropolis-Hastings
steps per recommendation. Starting from a new randomly drawn set of parameters would
require more than m = 10 steps to obtain the same result, meaning a computation budget
more than 10 times higher. This behavior is explained by the gap between the uniform
law (which is used to draw the starting set of parameters) and the targeted law (posterior
distribution of these parameters) which concentrates around its MAP. Even worse, this gap
increases while getting more and more data since the posterior distribution concentrates
with the increase of data. As a consequence, the required value for m increases along
time when applying a standard Metropolis-Hasting initialisation, which explains why the
dotted red line diverges from the solid one around iteration 104 in Figure 4.3.

Comparison of PB-MHB proposals

As shown in Figure 4.5, the TGRW proposal leads to the best results among all the
proposal tested, while PseudoView and MaxPosition exhibit poor performances on some
settings. LGRW has a higher regret than the other proposals and needs a proper tunning.
MaxPosition has similar results as TGRW on most of the settings but performs very
poorly on Yandex K = 5, L = 5. PseudoView has an inflected behavior on four settings
out of seven which implies the need to increase m. As discuss in Section 4.1.3 this increase
leads to unreasonable computation time due to the increase of the burning period.

84



4.2. Practical results

h0

0.00010.001
0.1

10.0
0.0001

0.001
0.01

1.0
100.0

Re
gr

et

102

103

104

105

(a) Yandex K = 5, L = 5

h0

0.00010.001
0.1

10.0
0.001

0.01
1.0

100.0

Re
gr

et

105

106

(b) Yandex K = 5, L = 10

h0

0.00010.001
0.1

10.0
0.0001

0.01
1.0

100.0

Re
gr

et

105

106

(c) Yandex K = 5, L = 20

h0

0.00010.001
0.1

10.0
0.0001

0.01
1.0

100.0

Re
gr

et

104

105

(d) KDD

Figure 4.6: Cumulative expected regret at T=107 for PB-LB on Yandex and KDD. The
plotted surfaces correspond to the cumulative expected regret at iteration T=107 averaged
over 20 independent sequences of recommendations per query (in total: 160 sequences for
KDD and 200 sequences for each Yandex) for each couple of hyper-parameters (γ, h0)
used to tune PB-LB. Values of γ and h0 scale axes y and x, the cumulative expected
regret scales the axis z. Both 3D and 2D surfaces depict the impact of hyper-parameters
γ and h0 on the cumulative expected regret. The 2D surface is a heat map: blue regions
show the lowest regret and red regions show the higher regret.

Thus, we selected PB-MHB with a TGRW proposal and c = 104 to compare with
state-of-the-art algorithms.

PB-LB Hyper-Parameters

In Figure 4.6 and 4.7, we compare the performance of PB-LB depending on the value
of its parameters γ and h0. We take a large combination of values for γ and h0 ranging
respectively from 10−4 to 103 and from 10−6 to 102. The number of steps is set to m = 1

85



Chapter 4 – MCMC bandits for PBM

h0

0.00010.001
0.1

10.0
0.001

0.01
1.0

100.0

Re
gr

et105

106

(a) θθθ close to real life

h0

0.00010.001
0.1

10.0
0.001

0.01
1.0

100.0

Re
gr

et

105

106

(b) θθθ close to 1

h0

0.00010.001
0.1

10.0
0.001

0.01
1.0

100.0
Re

gr
et

102

103

(c) θθθ close to 0

Figure 4.7: Cumulative expected regret at T=107 for PB-LB on purely simulated settings.
The plotted surfaces correspond to the cumulative expected regret at iteration T=107

averaged over 20 independent sequences of recommendations (in total: 20 sequences for
each simulated data) for each couple of hyper-parameters (γ, h0) used to tune PB-LB.
Values of γ and h0 scale axes y and x, the cumulative expected regret scales the axis
z. Both 3D and 2D surfaces depict the impact of hyper-parameters γ and h0 on the
cumulative expected regret. The 2D surface is a heat map: blue regions show the lowest
regret and red regions show the higher regret.

Yandex KDD θ close to
L = 5 L = 10 L = 20 real life 1 0

h0 0.001 0.001 0.001 0.01 0.01 0.1 0.001
γ 10.0 0.01 0.01 0.01 1000.0 100.0 00.1

Table 4.1: PB-LB hyper-parameters best values for T = 107 iterations on both behavioral
and purely simulated settings.

86



4.2. Practical results

as the experiments on PB-MHB showed (c.f. Fig. 4.3) the limited impact of m when other
hyper-parameters are properly tuned, and as increasing m would increase the computa-
tional cost. In this experiment, we look at the cumulative expected regret at T = 107

iterations as a function of γ and h0. We observe that both γ and h0 require a fine tun-
ing to get a low regret, otherwise the regret drastically increases. Moreover, these best
combination of parameters depends on the setting (see. Table 4.1).

Comparison with Competitors

Figure 4.8 compares the regret obtained by PB-MHB, PB-LB, and their competitors
on all our settings with various click and observation probabilities. In each setting, PB-
MHB exhibits the smallest regret. On four settings out of seven, namely KDD, Yandex
with (K = 5, L = 10) and (K = 5, L = 20) and purely simulated data with θθθ close to 1,
PB-MHB reduces the regret by an order of magnitude compared to its competitors, while
on the other settings, Yandex with (K = 5, L = 5) and purely simulated data with θθθ close
to 0 or close to real life, it is tightly followed by PB-LB or TopRank. The only behavioral
setting on which the regret reduction is not by an order of magnitude is Yandex with
(K = 5, L = 5) which can be seen as a pure ordering task, this task being more adapted
to TopRank. Even in this case, PB-MHB manages to have a lower regret than TopRank
on most of the iterations. Overall, compared to its direct competitors, PB-MHB has the
best regret performance on all the tested settings.

On the Yandex dataset various number, L, of available items are tested to show the
impact of this number. As expected, increasing L increases the expected cumulative regret
for PB-MHB, PB-LB and TopRank. GRAB is the least impacted by this variation with
a regret at T = 107 between 5 ∗ 103 and 104 for all three Yandex settings. The increase of
L = 5 to L = 20 on Yandex leads to an increase of 102 of PB-MHB’s regret. For TopRank
and PB-LB, this increase leads to a regret about 103 times higher.

Computation Time

Finally, in Table 4.2 we compare the computation time of each algorithm for different
L on Yandex. PB-LB and GRAB are both stable as the increase of L does not impact their
computation time per recommendation and they have the lowest computation time for
higher L. TopRank is slower and its computation time increases with L. This may be due to
the partition over all the items that TopRank has to compute to build its recommendation.
Finally, despite its low regret, PB-MHB (with its best proposal, TGRW) is ten time slower

87



Chapter 4 – MCMC bandits for PBM

than the other algorithms in the setting L = 5 and its computation time increases with L.

101 103 105 107

Iteration

10 1

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(a) Yandex K = 5, L = 5

101 103 105 107

Iteration

100

101

102

103

104

105

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(b) Yandex K = 5, L = 10

101 103 105 107

Iteration

101

102

103

104

105

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(c) Yandex K = 5, L = 20

101 103 105 107

Iteration

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(d) KDD

101 103 105 107

Iteration

101

102

103

104

Cu
m

ul
at

iv
e 

Re
gr

et

(e) θθθ close to real life

101 103 105 107

Iteration

101

102

103

104

Cu
m

ul
at

iv
e 

Re
gr

et

(f) θθθ close to 1

101 103 105 107

Iteration

10 2

10 1

100

101

102

103

Cu
m

ul
at

iv
e 

Re
gr

et

(g) θθθ close to 0
TopRank
GRAB

PB-MHB(TGRW,c=104)
PB-LB

Figure 4.8: Cumulative expected regret w.r.t. the number of iterations on three datasets:
Yandex ((a), (b) and (c)), KDD (d) and purely simulated ((e), (f) and (g)) for all com-
petitors. The plotted curves correspond to the average over 20 independent sequences of
recommendations per query (in total: 20 sequences for simulated data, 160 sequences for
KDD and 200 sequences for each Yandex). The shaded area depicts the standard error of
our regret estimates. For PB-LB, h0 and γ are set according to Table 4.1.

88



4.3. Conclusion

However, we believe that 30ms is still affordable for online experiences while the webpage
is loading and this is still much lower (for better recommendations) than other algorithms
(e.g. PMED [37] described in Section 2.1.1) proposed in the bandit-based RS literature.

Algorithm Computation Time (ms)
L = 5 L = 10 L = 20

TopRank 0.7 3 7
GRAB 0.8 0.8 1
PB-LB 1 1 1
PB-MHB TGRW, c = 104 11 17 30

Table 4.2: Average computation time per recommendation for a sequence of 107 recom-
mendations vs. the first query of Yandex data, on an Intel Xeon E5640 CPU@2.67GHz
with 50 GB RAM. The algorithms are implemented in Python.

4.3 Conclusion

We saw in this chapter that Metropolis Hasting gives the best practical result despite
a slight loss in term of computational speed and its lack of theoretical proof. Langevin
based method is also a good alternative but its tuning sensibility makes it quite hard
to put in practice, when no information on users behavior are known. Now that we saw
several method to handle PBM, we will see in the next chapter how the unimodal method
can be extended to other click behavioral model.

89





Chapter 5

UNIMODAL BANDITS FOR OTHER CLICK

BEHAVIORAL MODELS

Contents
5.1 Model assumption . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 UniRank: unimodal bandit algorithm for generic online rank-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Practical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

In the two previous chapters, PBM is the main click behavioral model tackled. In this
chapter, we reuse the Unimodal bandit framework seen in Chapter 3 to tackle other click
behavioral model. This extension is more preferred to the extension of MCMC based bandits
as it leads to theoretical guaranties through the upper confidence bound.

In this chapter, the setting tackled is an online learning to rank (OLR) problem with
clicks feedback. The difference with previous chapters stands in the fact that the click
model is not assume beforehand and thus ν can be refined to match any position-based
assumptions (see Section 1.3 and Equation (1.1)).

The main contribution presented in this chapter is the new bandit algorithm, UniRank,
dedicated to a generic online learning to rank setting. UniRank is inspired by unimodal
bandit algorithms [13]: we implicitly consider a graph G on the partitions of the item-set
[L] such that the considered bandit setting is unimodal w.r.t. G, and UniRank chooses
each recommendation in the G-neighborhood of an elicited partition. Thanks to this re-
stricted exploration, UniRank is the first algorithm dedicated to a generic setting with a
O(L/∆ log T ) regret upper-bound, while previous state-of-the-art algorithms were suffer-
ing a O(LK/∆ log T ) regret (see Table 5.1). Note that Unirank’s upper-bound requires all
items’ attractiveness to be different, which is an usual assumption satisfied by real world

91



Chapter 5 – Unimodal bandits for other click behavioral models

Algorithm Click model Regret ∆
θ1 > θ2 > · · · > θL

UniRank (our algorithm) PBM∗, CM∗, . . . O (L/∆ log T ) Detailed
PBM, CM, . . . O (LK/∆ log T ) in

UniRank (facing CM∗) CM∗ O ((L−K)/∆ log T ) Chapter 5
TopRank [43] PBM, CM, . . . O (LK/∆ log T ) min

(j,i)∈[L]×[K]:j>i

θi − θj
θi

GRAB (Chapter 3) PBM O
(
L
∆ log T

)
min

aaa∈Nπ∗ (aaa∗)
µ∗ − µaaa

PB-MHB (Chapter4) PBM unknown ∅
PBM-PIE [41] PBM O ((L−K)/∆ log T ) min

i∈{K+1,...,L}
µ∗ − µaaa[K:=i]

CascadeKL-UCB [38] CM O ((L−K)/∆ log T ) min
aaa∈A

µ∗ − µaaa
SAM [58] Matching∗ O (L logL/∆ log T ) min

aaa∈Nπ∗ (aaa∗)
µ∗ − µaaa

OSUB [13] Unimodal O (γ/∆ log T ) min
aaa∈NG(aaa∗)

µ∗ − µaaa

Table 5.1: Required click model and upper-bound on cumulative regret for some well-
known algorithms. The exact definition of ∆ is specific to each algorithm and are defined
in 3.1. The symbol ∗ means Assumption 3, defined in Section 5.1, is satisfied.

applications. Table 5.1 also helps comparing regret upper bounds according to related algo-
rithms’ assumption on click model. The top three bound shows theoretical performances of
UniRank under various click model assumption. UniRank achieves the lowest regret bound
when facing multiple models. This bound reduces when restricting on CM and is the same
as CascadeKL-UCB [38]. When facing PBM, PBM-PIE [41] has a lower regret bound but
needs more information on the κκκ values as recall in Chapter 3.

From an application point of view, UniRank has several interesting features: it handles
state of the art click models which have attraction-probabilities θθθ altogether ; it is simple
to implement and efficient in terms of computation time; it does not require the knowledge
of the time horizon T ; and it exhibits an empirical regret on par with other theoretically
proven algorithms.

As an indirect contribution, UniRank demonstrates that unimodality is a key tool to
analyze the intrinsic complexity of some combinatorial semi-bandit problems. We also
demonstrate the flexibility of unimodal bandit algorithms and of the proof of their regret
upper-bound. In particular, we extend [13]’s analysis to a graph which is unimodal in a
weaker sens: (i) UniRank takes its decisions given an optimistic index which is not based
on the expected reward but on the probability for an item to be more attractive than another
one thanks to the comparison of clicks over items embodied by random variable ci(t) (see

92



5.1. Model assumption

Section 1.1) and (ii) some sub-optimal nodes in the handled graph have no better node in
their neighborhood.

This chapter is organised as follow: Section 5.1 presents the assumption used to model
our setting. We then introduce UniRank in Section 5.2, and theoretical guarantees and
empirical performance are presented respectively in Section 5.3 and 5.4. We conclude in
Section 5.5

5.1 Model assumption

Up to now, an OLR problem assumes two main properties: (i) a click at a position
is a random variable only conditioned by the recommendation and the position, and (ii)
the expectation of the corresponding distribution is fixed. We now introduce the three
assumptions required by UniRank, which are fulfilled by PBM and CM click models.

We first assume an order on items.

Assumption 2 (strict weak order). There exits a preferential attachment function g :
[L]→ R on items, and for any pair of items (i, j),

— if g(i) > g(j), item i is said more attractive than item j, which we denote i � j;
— if g(i) = g(j), item i is said equivalent to item j, which we denote i ∼ j.

This assumption is an implicit assumption of state-of-the-art click-models (PBM, CM,
Dependent Click Model). It ensures the existence of a strict weak order � on items: the
items may be ranked by attractiveness, some items being equivalent. A typical example
with L = 4 would be 1 � 2 ∼ 3 � 4, meaning item 1 is more attractive than any other
item, and items 2 and 3 are equivalent and more attractive than item 4. Such situation
may also be represented with an ordered partition: {1} � {2, 3} � {4}, where E � F

means that for any item i ∈ E and any item j ∈ F , i � j. In the rest of this chapter we
will use either the preferential attachment function, or its associated strict weak order, or
the corresponding ordered partition depending on the most appropriate representation.

The strongest results of the theoretical analysis require the slightly stronger assump-
tion which ensures that two distinct items cannot be equivalent. This assumption is equiv-
alent to any of both hypothesis: (i) the order � is total, and (ii) each subset of the ordered
partition is composed of only one item.

Assumption 3 (strict total order). There exits a preferential attachment function g :
[L]→ R on items s.t. for any pair of distinct items (i, j), either g(i) > g(j) or g(j) > g(i).

93



Chapter 5 – Unimodal bandits for other click behavioral models

Our next assumption indicates that recommending the items according to the order
� associated to the preferential attachment leads to an optimal recommendation.

Definition 2 (Compatibility with a strict weak order). Let � be a strict weak order on
the items, and aaa be a recommendation. The recommendation aaa is compatible with the
order � if

1. for any position k ∈ [K − 1], either ak � ak+1 or ak ∼ ak+1;

2. for any item j in [L] \ aaa([K]), either aK � j or aK ∼ j.

Assumption 4 (Optimal reward). Any recommendation aaa compatible with � is optimal,
meaning µaaa = µ∗.

This assumption is of utmost importance for UniRank as it means that identifying a
partition of the items which is coherent with � is sufficient to ensure optimal recommen-
dations. In the context of CM (respectively PBM) click model, this assumption means
that the k-th most attractive item has to be placed at the k-th looked-at position (resp.
the k-th most observed position), which obviously leads to the highest expected number
of clicks.

Let us now consider the last assumption which regards the expectation of the random
variable ci(t)− cj(t), corresponded to the Expected click difference.

Definition 3 (Expected click difference). Let i and j be two items, and aaa a recommenda-
tion. The probability of difference and the expected click difference between items i and
j w.r.t. the recommendation aaa are respectively:

δ̃i,j(aaa) = Paaa(t)∼U({aaa,(i,j)◦aaa}) [ci(t) 6= cj(t)] and

∆̃i,j(aaa) = Eaaa(t)∼U({aaa,(i,j)◦aaa}) [ci(t)− cj(t) | ci(t) 6= cj(t)] ,

where (i, j) ◦aaa is the permutation aaa such that items i and j have been swapped, and U(S)
is the uniform distribution on the set S. If only i (respectively j) belongs to aaa, (i, j) ◦ aaa
is the permutation aaa where item i is replaced by item j (resp. j by i). If neither i nor j
belongs to aaa, (i, j) ◦ aaa is aaa.

Assumption 5 (Order identifiability). The strict weak order � on items is identifiable,
meaning that for any couple of items (i, j) in [L]2 s.t. i � j, and for any recommendation
aaa ∈ PLK s.t. at least one of both items is displayed, δ̃i,j(aaa) 6= 0 and ∆̃i,j(aaa) > 0 .

94



5.2. UniRank: unimodal bandit algorithm for generic online ranking

The expected click difference reflects the fact that an item leads to more clicks than
another independently of the position of both items (other items being unchanged). Hence,
Assumption 5 points out that when an item is more attractive than another one, it has
a higher probability to be clicked upon, all other things being equal. This assumption is
natural and ensures that the order on items may be recovered from the expected click
difference, which can be observed.

Finally, the following lemma, proven in Appendix B.3, states that CM and PBM
models fulfill our assumptions.

Lemma 4. Let (L,K, ρ) be an online learning to rank problem with users following CM or
PBM model with positions ranked by decreasing observation probabilities. Then Assump-
tions 2, 4, and 5 are fulfilled. Furthermore, Assumption 3 is fulfilled if for any couple of
items, their attraction-probabilities θ differ.

5.2 UniRank: unimodal bandit algorithm for generic
online ranking

Our algorithm, UniRank, is detailed in Algorithm 10, and Figure 5.1 unfolds one iter-
ation of UniRank. This algorithm takes inspiration from the unimodal bandit algorithm
OSUB [13] by selecting at each iteration t an arm to play PPP (t) in the neighborhood of
the current best one P̃PP (t) (a.k.a. the leader). However, UniRank’s arms are not recom-
mendations but sets of recommendations represented by ordered partitions. Hence, the
recommendation aaa(t) is drawn uniformly at random in the subset A (PPP (t)) of recommen-
dations compatible with PPP (t).

Let us now first define the notations used by UniRank and then present its concrete
behaviour.

Statistic ŝi,j(t) UniRank’s choices are based on the statistic ŝi,j(t) and pessimistic es-
timators of its expected value: the Kullback-Leibler-based one denoted si,j(t), and the
slightly pessimistic one s̃i,j(t). ŝi,j(t) is the average value of ci(s) − cj(s) for s in [t − 1],
where we restrict ourselves to iterations at which items i and j are in the same subset of
the played partition PPP (s), and ci(s) 6= cj(s). More specifically,

ŝi,j(t)
def= 1

Ti,j(t)

t−1∑
s=1

Oi,j(s)(ci(s)− cj(s)),

95



Chapter 5 – Unimodal bandits for other click behavioral models

1

2

3 4

5

6

7

P̃1 = {1, 2} P̃3 = {4, 5}P̃2 = {3} P̃4 = {6, 7}

P1 = {1, 2, 3} P2 = {4, 5, 7}

aaa = (1, 3, 2, 7)

Figure 5.1: One iteration of UniRank with L = 7 items and K = 4 positions (t is omitted
for clarity). Each arrow i → j in the top graph on items means the sligthly pessimistic
statistic is non-negative (s̃i,j > 0). With these values, the leader partition (represented
with dashed ellipses) is (P̃1, P̃2, P̃3, P̃4), where P̃4 gathers remaining items as the 3 first
partitions contain more than K items. Then, we assume that s1,3 6 0, s3,4 6 0, and
s5,7 < s5,6 6 0 and we represent with dotted ellipses the corresponding played partition
(P1, P2). P1 derives form the merge of P̃1 and P̃2 as item 3 is not clearly less attractive
than item 1. P̃2 and P̃3 are not merged as P̃2 is already merged with its predecessor. Last,
P2 is obtained by adding item 7 from P̃4 to P̃3 as item 5 is not clearly less attractive than
item 7, and item 7 is the best item having this property. Finally the recommendation aaa
is obtained by concatenating a random permutation of P1 with a random permutation of
1 item from P2.

96



5.2. UniRank: unimodal bandit algorithm for generic online ranking

where Oi,j(s)
def= 1 {∃c, (i, j) ∈ Pc(s)2}1{ci(s) 6= cj(s)} denotes that the difference be-

tween items i andj is observable at iteration s, Ti,j(t)
def= ∑t−1

s=1Oi,j(s), and ŝi,j(t)
def= 0

when Ti,j(t) = 0.

The statistics ŝi,j(t) are paired with their respective pessimistic indices

si,j(t)
def= 2 ∗ f

(
1 + ŝi,j(t)

2 , Ti,j(t), t̃P̃PP (t)(t)
)
− 1,

where f is a function from [0, 1] × N × N to [0, 1] and f(µ̂, T, t) def= inf{µ ∈ [0, µ̂] :
T × kl(µ̂, µ) ≤ log(t) + 3 log(log(t))}, with kl(p, q) def= p log (p/q) + (1− p) log (1−p/1−q) the
Kullback-Leibler divergence (KL) from a Bernoulli distribution of mean p to a Bernoulli
distribution of mean q; f(µ̂, T, t) def= 0 when µ̂ = 1, T = 0, or t = 0; and t̃P̃PP (t) is the number
of iterations the leader P̃PP (t) at iteration t has previously been the leader. This pessimistic
index is similar to the one used for KL-based bandit algorithms, after a rescaling of ŝi,j(t)
to the interval [0, 1].

Finally, UniRank also make use of the slightly pessimistic estimate s̃i,j(t)
def= ŝi,j(t)−√

log log t/Ti,j(t).

97



Chapter 5 – Unimodal bandits for other click behavioral models

Algorithm 10 UniRank: Unimodal Bandit Algorithm for Generic Online Ranking
Require: number of items L, number of positions K
1: for t = 1, 2, . . . do
2:

3: {leader-partition elicitation}
4: construct P̃ (t) using Leader-partition elicitation method (see Algorithm 11)
5:

6: {optimistic partition elicitation}
7: c̃← 1; d← 0
8: while c̃ ≤ d̃− 2 do
9: d← d+ 1
10: if min(i,j)∈P̃c̃(t)×P̃c̃+1(t) si,j(t) < 0 then
11: {merge both subsets}
12: Pd(t)← P̃c̃(t) ∪ P̃c̃+1(t); c̃← c̃+ 2
13: else
14: {keep current subset untouched}
15: Pd(t)← P̃c̃(t); c̃← c̃+ 1
16: end if
17: end while
18: if c̃ = d̃− 1 then
19: d← d+ 1; Pd(t)← P̃d̃−1(t)
20: if P̃d̃(t) 6= ∅ and min

(i,j)∈P̃d̃−1(t)×P̃d̃(t)
si,j(t) < 0 then

21: {add best item from remaining ones}

22: Pd(t)← Pd(t) ∪
argmin

j∈P̃d̃(t)
min

i∈P̃d̃−1(t)
si,j(t)


23: end if
24: end if
25: d(t)← d

26:

27: {recommendation}
28: choose aaa(t) uniformly at random in A (PPP (t))
29: observe the clicks vector ccc(t)
30: end for

98



5.2. UniRank: unimodal bandit algorithm for generic online ranking

Algorithm 11 Leader-partition elicitation
Require: number of items L, number of positions K
1: d̃← 0; R← [L]
2: repeat

3: B ←

j ∈ R : ∀i ∈ R, ŝi,j(t)−
√√√√ log log t

Ti,j(t)
< 0


4: if B 6= ∅ then d̃← d̃+ 1 ; P̃d̃(t)← B end if
5: until R = ∅ or B = ∅ or

∣∣∣⋃d̃c̃=1 P̃c̃(t)
∣∣∣ > K

6: if R 6= ∅ then d̃← d̃+ 1 ; P̃d̃(t)← R end if
7: return P̃ (t)

Leader Elicitation At each iteration, UniRank first builds a partition P̃PP (t) = (P̃1(t),
. . . , P̃d̃(t)) which is coherent with s̃i,j(t), meaning that for any couple of items (i, j) in
[L]2, if s̃i,j(t) > 0 then either i belongs to a subset P̃c(t) ranked before the subset of j, or
there exists a cycle (i1, i2, . . . , iN) such that i1 = iN = i, i2 = j, and for any n ∈ [N − 1],
s̃in,in+1(t) > 0. This partition is iteratively build by repeating the process of (i) gathering
in a subset the non-dominated items (meaning the items j for which s̃i,j(t) < 0 for any
remaining item i), and (ii) removing them. A special care is taken to handle situations
with cycles, and to gather in the same subset remaining items as soon as the first subsets
contain more than K items.

Optimistic Partition Elicitation The partition P̃PP (t) plays the role of leader, meaning
that at each iteration, UniRank picks a permutation PPP (t) in the neighborhood N (P̃PP (t)) of
P̃PP (t), solving an exploration-exploitation dilemma. The partition PPP (t) is build by merging
consecutive subsets P̃c(t) and P̃c+1(t) of the partition P̃PP (t), where c ∈ [d − 2], if one of
the items in P̃c+1(t) is not clearly less attractive than all items in P̃c(t). The difference
in attractiveness is measured after the pessimistic estimator si,j(t). Note that the subset
P̃d̃(t) is never merged with P̃d̃−1(t), only the arm j in P̃d̃(t) with the smallest estimate
mini∈P̃d̃−1(t) si,j(t) is added to P̃d̃−1(t) if this estimate is non-positive.

Remark 6 (Recommendation chosen at random). Taking a random permutation is re-
quired to control the statistic ŝi,j(t). Indeed, the analysis requires the probability for i to
be ranked before j in the recommendation to be even. Overall, the aim is to identify a
partition PPP ∗ such that any permutation in A (PPP ∗) is compatible with the unknown strict
weak order on items.

99



Chapter 5 – Unimodal bandits for other click behavioral models

Remark 7 (Leader chosen given a pessimistic estimator). Note that UniRank uses a
slightly pessimistic estimator to choose the leader, while OSUB selects the leader based
on a maximum likelihood estimator. From a theoretical point of view, both criteria are
equivalent, but the increase in stability brought by the pessimistic estimator drastically
reduces the regret suffered by UniRank in practice.

Remark 8 (Last subset of P̃PP (t)). To keep the algorithm and its analysis simple, the
partition P̃PP (t) is such that ∑d̃−2

c=1 |P̃c| < K 6
∑d̃−1
c=1 |P̃c|, meaning that the items in P̃d̃(t)

are the one which are never displayed by the recommendations in A
(
P̃PP (t)

)
. The subset

P̃PP d̃(t) may be empty.

5.3 Theoretical analysis

The proof of the upper-bound on the regret of UniRank follows a similar path as
the proof of OSUB [13]: (i) apply a standard bandit analysis to control the regret un-
der the condition that the leader P̃PP (t) is an optimal partition, and (ii) upper-bound by
O(log log T ) the expected number of iterations such that P̃PP (t) is not an optimal partition.

However, both steps differ from [13]. First, UniRank handles partitions instead of
recommendations. Secondly, it builds upon ŝi,j(t) instead of estimators of the expected
reward. While ŝi,j(t) is the average of dependent random variables with different expected
values, these expected values are greater than some non-negative constant ∆̃i,j when i � j,
which is sufficient to lower-bound ŝi,j(t) away from 0 as required by the proof of the regret
upper-bound (see Appendices B.4.2, B.4.3, and B.4.4 for details). Thirdly, the proof is
adapted to handle the fact that Ti,j(t) randomly increases when we play items i and j

due to the exploration-exploitation rule, which is unusual in the bandit literature. Finally,
while at each iteration UniRank is allowed to apply several simultaneous merges of two
partitions, we prove that the regret is the same as when at most one merge is done per
iteration. Up to our knowledge, this exploration-exploitation strategy and its analysis
are new in the bandit community. We believe that it opens new perspectives for other
semi-bandit settings.

Note that, as in [58], we restrict the theoretical analysis to the setting where the
order on items is total, meaning we use Assumption 3. Without loss of generality, we
also assume that 1 � 2 � · · · � L. Hence the only partition PPP ∗ which is such that, any
permutation aaa in A (PPP ∗) is compatible with the unknown strict total order on items, is
({1}, . . . {K}, [L] \ [K]).

100



5.3. Theoretical analysis

We now propose the main theorem that upper-bounds the regret of UniRank.

Theorem 3 (Upper-bound on the regret of UniRank assuming a total order on items).
Let (L,K, ρ) be an OLR problem satisfying Assumptions 3, 4, and 5 and such that 1 �
2 � · · · � L. Denoting PPP ∗ = ({1}, . . . , {K}, [L] \ [K]) the optimal partition associated to
this order, when facing this problem, UniRank fulfills

∀k ∈ [L] \ {1}, E
[
T∑
t=1
1
{

P̃PP (t)=PPP ∗,
∃c,Pc(t)={min(k−1,K),k}

}]

6
16
δ̃∗k∆̃2

k

log T +O (log log T ) , (5.1)

and E
[
T∑
t=1
1{P̃PP (t) 6= PPP ∗}

]
= O (log log T ) , (5.2)

and hence

R(T ) 6
L∑
k=2

8∆k

δ̃∗k∆̃2
k

log T +O (log log T ) = O
(
L

∆ log T
)
,

where for any position k > 1, denoting ` def= min(k − 1, K),
δ̃∗k

def= minPPP∈N (PPP ∗):∃c,(`,k)∈P 2
c
Paaa(t)∼U(A(PPP )) [c`(t) 6= ck(t)] ,

∆̃k
def= minaaa∈PLK :{`,k}∩aaa([K]) 6=∅ ∆̃`,k(aaa),

∆k
def= µ(1,...,K) − µ(`,k)◦(1,...,K),

∆ def= mink∈{2,...,L} δ̃∗k∆̃2
k/∆k, and N (PPP ∗) the set of partitions in the neighbor of PPP ∗.

The first upper-bound (Equation (5.1)) controls the expected number of iterations at
which UniRank explores while the leader is the optimal partition. Both types of explo-
ration are coverred: the merging of two consecutive subsets of P̃PP (t), and the addition of a
sub-optimal arm to the last subset of the chosen partition PPP (t). The second upper-bound
(Equation (5.2)) regards the expected number of iterations at which the leader is not the
optimal partition. Let us now express the same bounds assuming the state of the art click
models.

Corollary 1 (Facing CM∗ click model). Under the hypotheses of Theorem 3, if the user

101



Chapter 5 – Unimodal bandits for other click behavioral models

follows CM with probability θi to click on item i when it is observed, then UniRank fulfills

R(T ) 6
L∑

k=K+1
16θK + θk
θK − θk

log T +O (log log T )

= O
(

(L−K)θK + θK+1

θK − θK+1
log T

)
.

Corollary 2 (Facing PBM∗ click model). Under the hypotheses of Theorem 3, if the
user follows PBM with the probability θi of clicking on item i when it is observed and the
probability κk of observing the position k, then UniRank fulfills

R(T ) = O
(
L

∆ log T
)
,

where ∆ def= min{mink∈{K+1,...,L}
1
2
θK−θk
θK+θk

,

mink∈{2,...,K}
( 1

2 (κk−1+κk)(θk−1+θk)−2κk−1κkθk−1θk)(θk−1−θk)
(κk−1−κk)(θk−1+θk)2 }.

Note that the regret upper-bound reduces to O ((L−K)/∆ log T ) with CM since,
with this click model, the recommendation is optimal as soon as no sub-optimal item is
displayed.

A more detailed version of these corollaries is given in the appendix, together with their
proofs and Theorem 3’s proof. These proofs builds upon the following pseudo-unimodality
property which we also prove in the appendix.

Lemma 5 (Pseudo-unimodality assuming a total order on items). Under the hypotheses
of Theorem 3, for any ordered partition of the items P̃PP =

(
P̃1, . . . , P̃d̃

)
6= PPP ∗,

— either there exists c ∈ [d̃− 1] such that |P̃c| > 1;
— or P̃1 = {i} and there exists j ∈ P̃2 such that j � i;
— or there exists c ∈ [d̃ − 1] \ {1} such that P̃c−1 = {i′}, P̃c = {i}, i′ � i, and there

exists j ∈ P̃c+1 such that j � i.

The first alternative implies that the subset P̃c should be split, which will be discovered
by recommending permutations compatible with either P̃PP or its neighbors. Both other
alternatives imply that j should be in a subset ranked before the subset containing i,
which will discovered by recommending permutations compatible with any neighbor of P̃PP
obtained by merging {i} with the subsequent subset.

Remark 9 (Upper-bound on the regret assuming a strict total order on items). In [58],

102



5.4. Practical results

to prove a O(L logL/∆ log T ) regret-bound for a setting related to learning to rank, items
are also assumed to have strictly different attractiveness.

Remark 10 (Upper-bound on the regret of UniRank assuming a weak order on items).
If the order on items is not total, the proof of Theorem 3 may be adapted to get a
O (LK/∆ log T ) bound. Indeed, under the strict weak order assumption, there exists a set
of optimal partitions, and therefore, any permutation compatible with a neighbor of any
of these partitions may be recommended O (1/∆ log T ) times. In the worst case scenario,
K items are equivalent and strictly more attractive than the L−K remaining items, and
the set of the permutations compatible with a neighbor partition is composed of K(L−K)
permutations, which translates into a O (LK/∆ log T ) regret bound. Note that [43] proves
a Ω (LK/∆ log T ) lower-bound on the regret assuming that the best items have the same
attractiveness which means that the upper-bound of UniRank for this specific setting is
optimal.

5.4 Practical results

In this section, we compare UniRank to TopRank [43], PB-MHB (Chapter 4), GRAB
(Chapter 3), and CascadeKL-UCB [38]. The experiments are conducted on the Yandex
dataset, detailed in Section 1.3.4 both in PBM and CM settings. We look at the results
averaged on the 10 most frequent queries, while displaying K = 10 or K = 5 items among
the L = 10 most attractive ones selected among all items possible for each query, we then
observe the regret over the top 5 positions. Having various K values allow us to test the
impact of the quantity of information given to each algorithm. We use the cumulative
regret (see Equation (1.6)) to evaluate the performance of each algorithm, where the
cumulative regret is averaged over 20 independent runs per selected query of T= 107

iterations each (see the source code in the supplementary material). CascadeKL-UCB [38]
is an algorithm dedicated to CM setting in which it shows a regret inO ((L−K)/∆ log T ).

Our results are shown in Figure 5.2. As expected, CascadeKL-UCB outperforms other
algorithms in the CM model for which it is designed and suffers a linear regret (i.e. very
high) in the PBM model. Surprisingly, although PB-MHB and GRAB are designed for
PBM model, (i) PB-MHB is the first or second best algorithm in all models and even
outperforms CascadeKL-UCB for K = 5 in CM model, and (ii) GRAB is ranked second
and third in all models when K = 5. We conjecture that the good results of PB-MHB
and GRAB in the CM model results from CM model being equivalent to a PBM model in

103



Chapter 5 – Unimodal bandits for other click behavioral models

101 103 105 107

Iteration

100

101

102

103

104

105

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(a) Yandex PBM,
K = 5

101 103 105 107

Iteration

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(b) Yandex PBM,
K = 10

101 103 105 107

Iteration

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(c) Yandex CM,
K = 5

101 103 105 107

Iteration

100

101

102

103

104

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

(d) Yandex CM,
K = 10

UniRank
GRAB

TopRank,T=107 
PB-MHB, c=103, m=1

TopRank, T=1012

CascadeKL-UCB
TopRank, doubling

Figure 5.2: Cumulative regret on the 5 first positions w.r.t. iterations on Yandex dataset
with L = 10 and K = 5 or K = 10 for PBM and CM models. The plotted curves corre-
spond to the average over 200 independent sequences of recommendations (20 sequences
per query). The (small) shaded areas depict the standard error of our regret estimates.

the neighborhood of the optimal recommendation. However, PB-MHB is computationally
expensive (see Table 5.2) and lacks a theoretical analysis. Note also that GRAB suffers a
high regret for K = 10 meaning that it does not find the right ranking among the selected
items.

Finally, our algorithm UniRank and TopRank enjoy a logarithmic regret in all set-
tings and UniRank has a lower regret than TopRank, except for CM model with K = 5
from iterations 105 to 107. However, TopRank is aware of the horizon T and may stop
(over)exploring early, as can be observed in the CM model after iteration 105. If TopRank
targets a horizon T = 1012 or uses the doubling trick it suffers a higher regret than
UniRank.

Regarding the computational complexity, as shown in Table 5.2, PB-MHB is signif-
icantly slower with a computation time per recommendation ten times higher than any
other algorithm. These other algorithms have a similar computation time of approximately
1 ms per recommendation.

Overall, (i) only UniRank and TopRank are consistent over all settings, with a rea-
sonable computation time, and a theoretical proof, and (ii) in 3 settings over 4 UniRank
enjoys a smaller regret than TopRank even though UniRank does not require the knowl-
edge of the horizon T .

104



5.5. Conclusion

Algorithm Computation Time (ms)
K=5 K=10

UniRank 1.0± 0.2 1.2± 0.3
TopRank 0.7± 0.3 0.4± 0.1
PB-MHB 13.9± 4.9 20.8± 7.4
GRAB 0.9± 0.3 1.1± 0.4

CascadeKL-UCB 0.9± 0.0 1.2± 0.3

Table 5.2: Average computation time per recommendation. For each top 10 query of
Yandex dataset, 20 runs are performed assuming CM model and L = 10.

5.5 Conclusion

We saw that this extension allows to tackle a wider range of click behavioral models
which assume that positions and items have an impact on users’ click and fall in the OLR
setting. UniRank needs a different metric to find the best recommendation as CM may
lead to multiple good recommendations although unimodality requires only a unique best
possibility. UniRank leads to stable performance across settings.

105





CONCLUSION

Take away

Digital relationships with clients need to be nurtured by good recommendations. To
provide such recommendations, two components are key:

— understand clients’ click behavior since these clicks are a key interaction between
clients and digital interfaces,

— adapt dynamically to clients’ interactions by taking every clicks and every prod-
ucts consulted into account; This entails combining exploration and exploitation of
possible recommendations in order to recommend more relevant items to clients.

These two aspects correspond to two research fields: the study of click behavioral models
and the design of bandit algorithms. This thesis aims at adapting click behavioral mod-
els to the multiple-play semi-bandit setting while using as few assumptions as possible.
Using bandits to tackle click behavioral models is equivalent to solving an online learning
to rank problem (OLR) with clicks feedbacks defined by the number of available items L,
the number of positions K and the set of distributions which gives to any list of recom-
mendations the click probability on every couple (item, position). By adopting different
angles, three contributions rise from the study of this problem.

The first angle adopted is a restriction of the OLR problem to position-based online
learning to rank (PB-OLR). This restricted problem uses a set of distributions which
gives the probability of clicking on an item displayed at a given position. This problem is
particularly adapted to the full position-based model (PBM) which is a click behavioral
model well-suited for our targeted industrial applications. The full PBM setting aims at
recommending a ranking of K items among L according to their attractiveness and the
visibility of the positions without any prior knowledge on these quantities. This full PBM
setting has, to the best of our knowledge, rarely been tackled. Our proposed algorithms
GRAB (parametric Graph for unimodal RAnking Bandit), PB-MHB (Position Based
Metropolis-Hastings Bandit) and PB-LB (Position Based Langevin gradient Bandit) learn
online both the user preferences and the gaze habits. Each algorithm adopts a different
strategy to solve this problem.

107



GRAB uses a unimodal approach. To apply the unimodal bandit setting efficiently, we
define a graph parameterized by a ranking on positions. This definition leads to a family of
graphs where each graph maps all possible permutations of items according to the impact
of each position. GRAB learns online the parameterization over this family of graphs
to identify a unimodal graph. Then, GRAB builds the path to the best permutation of
items in this unimodal graph and recommend the optimal list recommendation. We prove
a regret upper-bound in O(L/∆ log T ) for this algorithm which reduces by a factor K2

the bound which would be obtained without the unimodal setting. The strength of this
algorithm derives first from the application of unimodality to OLR, and second from the
family of graphs and its parameterization by the ranking of positions. Indeed, a naive
application of unimodality leads to a bandit algorithm (denoted S-GRAB) exploring a
graph a degree KL, which induces a regret of the same level as previous state of the
art approaches: O(LK/∆ log T ). Then, by considering a set of graphs, GRAB handle
graphs of degree L and hence reduces the regret by a factor K. On real and simulated
data, GRAB quickly delivers good recommendations. Nevertheless, our second algorithm,
PB-MHB, leads to better empirical regret.

The second approach, implemented in PB-MHB and PB-LB, consists in coupling
Thompson Sampling bandits framework with an MCMC approximation to sample draws
from the law induced by the full PBM. Indeed, this law is unusual and does not have any
closed form usable in a Bayesian learning process. PB-MHB and PB-LB are two ways
of applying MCMC approximations to this law. PBM has two sets of parameters, one
for the probability of viewing each position, the other for the probability of the user to
acknowledge each item to be relevant. As these two sets of PBM parameters have sym-
metrical roles in the full PBM, PB-MHB uses a Metropolis Hasting approximation with
a Gibbs splitting to learn the values of the parameters of the PBM model. This leads to
a more accurate recommendation with the lowest empirical regret achieved so far in the
state-of-the-art with the same assumptions. Unfortunately, by treating each parameter
and updating them separately, the computational time drastically increases. By apply-
ing a Langevin gradient descent, another MCMC approximation, PB-LB achieves a lower
and more stable (according to the possible parameters) computation time and its regret
performance is on part with state-of-the-art algorithms. Yet, the use of Langevin gradient
implies a tedious tuning of the hyperparameters of the algorithm. For both algorithms,
no theoretical analysis on the regret bound is given due to the complexity involved in
the double randomness induced by the Thompson sampling framework and the MCMC

108



approximations.

This two contributions give strong results both theoretical and empirical to tackle the
problem of list recommendation in the PBM setting.

The second angle of this thesis concerns the use of unimodality for list recommen-
dations in more click behavioral models (than PBM). While the setting is more generic,
again unimodality may lead to the design of efficient algorithms. Typically, a naive ap-
plication of unimodality leads again to a bandit algorithm with a O(LK/∆ log T ) regret
bound, which however remains at the level of state of the art algorithms. Unfortunately,
GRAB cannot be adapted to general click behavioral models as it is strongly based on
the assumption that the probability of clicking on an item i displayed at position k is
independent of the items displayed displayed at other positions. Therefore, to tackle the
initial OLR setting and still achieve a regret upper-bound in O(L/∆ log T ), UniRank
(Unimodal Bandit Algorithm for Generic Online Ranking) applies unimodal bandits to a
graph where nodes are ordered partitions of items instead of lists of items. This algorithm
also uses pessimistic estimators instead of the estimators of the expected reward used by
OSUB [13]. These two elements alter OSUB’s exploration-exploitation strategy to reach a
regret upper-bound in O(L/∆ log T ). Both GRAB and UniRank are original contributions
in their use of unimodal bandit, and we believe that our theoretical analysis opens new
perspectives for other semi-bandit settings. Experiments against state-of-the-art learning
algorithms show that UniRank is stable in all settings. UniRank enjoys a smaller regret
than GRAB in PBM and than CascadeKL-UCB [38] (the corresponding state-of-the-art)
in CM. UniRank also has a much smaller computation time than PB-MHB.

To summarize, the initial problem tackled by this thesis was to dynamically adapt to
users while respecting their click behavior. All three algorithms presented in this thesis
answer this initial problem by tackling different aspects. In Table 5.3, the contributions are
compared with respect to their theoretical and empirical results. GRAB gives theoretical
guarantees for bandit recommendations according to PBM which is a simple yet relevant
click behavioral model. PB-MHB and PB-LB give strong empirical results in this same
setting with the addition of being computationally efficient for PB-LB. And UniRank
provides a more generic approach to make bandit recommendations on a wider range
of click behavioral models while conserving the same theoretical regret upper bound as
GRAB.

109



Table 5.3: Comparison of the contributions of this thesis

Algorithm Setting Method Theoretical Empirical Computation
analysis regret∗ time∗∗

PB-MHB PB-OLR Metropolis unknown 2× 103 17
Hasting

PB-LB PB-OLR Langevin unknown 3× 104 1
gradient

GRAB PB-OLR Unimodal O(L/∆ log T ) 1× 104 0.8
UniRank OLR Unimodal O(L/∆ log T ) 1× 104 1
∗ on Dataset Yandex L=10, K=5 at T = 107
∗∗ for one recommendation in ms

Contributions for Louis Vuitton

The work presented in this thesis is planned to be implemented. Indeed, evaluations
on Louis Vuitton’s customers’ behavior are needed before using such algorithms online.
The two initiatives described in this section aim at collecting data in a dynamic recom-
mendation setting in order to proceed (in the future) to an evaluation on a corporate
Louis Vuitton dataset.

As part of this thesis, an industrial application called "Dynamic Recommender" has
been developed. The architecture of this application has been thought to be as flexible
as possible in order to cover diverse needs such as product recommendations but also to
test front pages on the website. To highlight the potential of using bandit-based dynamic
learning at Vuitton, I developed a simple application where basic K-armed bandits such
as Thompson Sampling or ε-greedy are available. Dynamic Recommender should ease
the use of bandits to a few call to the application and manage its data automatically.
The deployment of this application is currently in process. It should provide inspirational
recommendations for Louis Vuitton’s chatbot by March 2022. This project generates lots
of interest from the business teams, which are implied in the co-creation of new types of
use cases for Louis Vuitton. This team work feeds thoughts on the database management
and the learning process, for example.

During this three-years thesis, I also supervised a six-month intern at Vuitton who
worked on contextual bandits. The goal was to apply well-known contextual bandits to
Louis Vuitton’s products data, such as images or descriptions, and understand how these
data should be integrated to a contextual bandit. This work aimed first at boosting

110



recommendation systems in production on Louis Vuitton website, and include contextual
bandit to the application "Dynamic Recommender".

Echo chamber and exploration behavior

In the media, an Echo chamber is defined as a closed environment where each per-
son’s beliefs are amplified and reinforced by repetition and where he/she can only access
information reflecting its own point of view. This insulates the person from opposite
opinions and can lead to misinformation. This phenomenon can happen anywhere where
information are exchanged, but on digital interfaces such as website and social medias,
recommendation systems are designed to collect user interactions and provide precise
recommendations according to these specific interactions. Recommendation systems pri-
marily show users, contents that are similar to what they have already agreed on. Indeed,
these contents are more likely to have a high probability to be pleasant to the user. This
specific type of Echo Chamber is called a filter bubble. It raises many social concerns as
it tends to wider the gap between social groups. Echo chambers prevent people to have
complex and structured exchanges as they split information. Echo chambers isolate users
from perspectives they have not expressed an interest in yet. In our context, which is
e-commerce recommendations, filter bubbles can lead to user boredom.

The contributions presented in this thesis could lead to such pitfall if improperly ap-
plied. Unlike batch learning algorithms such as traditional collaborative filtering, bandit
algorithms have an exploration mechanism. Exploration brings more heterogeneous rec-
ommendations in order to collect enough and varied information and to take consistent
decisions. Nevertheless, bandit algorithms also have an optimisation goal. They aim at
promoting items which have a high probability to satisfy users according to their past be-
havior. Thus, if you use a bandit algorithm on a homogeneous group, you will learn faster
their expectation, but you will lock them up in a filter bubble. To prevent such behavior of
algorithms, it is possible to apply aging laws to mitigate the importance of the best items
and to reintroduce exploration. Another way would simply be to build recommendation
use cases on heterogeneous groups in order to vary the recommendations. These solutions
can be seen as business rules and do not change bandit algorithms objectives. To avoid
such rules and risking a deterioration of the algorithm performances, bandit algorithms
can include diversity in their objectives [53, 28, 52]. Rather than only maximizing click
rates, a loss can be introduced to evaluate how similar products are within a list. This

111



solution can be seen as including a diversity constrain in a combinatorial bandit setting.
Nevertheless, this constrain changes the setting presented in this thesis as it assumes that
relevancy of a product does not depend only on the product itself but also on surrounding
products.

Perspectives

This work is a contribution to Louis Vuitton’s global project to enhance client online
relationship with the brand. It opens multiple perspectives both in research and devel-
opment on short or long terms. These perspectives can be divided into two categories. If
there exists a strong methodology to address the subject and off-the-shelf algorithms to
use in an industrial context then I will refer to it as development subjects. If there is no
such methodology or existing algorithms and further work has to be done to transpose
the subject into a research problem and bring a solution with strong guaranty to apply it
then, I will refer to it as research subjects. I prioritize both types of subjects according to
their relevancy for business and their immediate feasibility.

Short term research subjects One way to extend the contributions of this thesis is to
transpose them to contextual bandits in order to speed up the learning process when using
more items. The integration of unimodal bandit algorithms working on parametric spaces
[14] may pave the way to efficient contextual recommendation systems handling larger sets
of items and positions. Moreover, we would like to apply PB-MHB to environments where
PBM parameters are evolving with time and where our learning setting could develop
its full potential, especially when the parameter related to the position are evolving.
Relevancy of items greatly changes over time. We could benefit in understanding this
evolution in order to anticipate its impact on learning and adapt to it. Finally, in this work,
only clicks have been taken into account to express clients’ tastes. There are many other
feedbacks which can be taken into account to characterize clients’ needs and tastes, such
as the actual buying of the product. These feedbacks show different levels of commitment
of the client and have to be considered accordingly. For instance, a series of clicks may
lead to a sell [64].

Short term development subjects As mentioned earlier, the "Dynamic Recom-
mender" application has been developed to ease the use of bandit algorithms. Contextual

112



bandits could be added and used to enhance recommendation qualities on a large set of
items. One of the main issue when industrializing bandit algorithms is to have an eval-
uation pipeline and to monitor performances. To solve this issue, many counterfactual
estimators exist to measure offline the gain of new policies [49, 60] and should be imple-
mented in order to monitor performances of new bandit algorithms but also to measure
the shift in online recommendations. One should design properly the testing pipeline of
bandit recommendations and measure the gain of such recommendations over other types
of recommendation systems (a.k.a. A/B testing).

Long term research subjects To trust somebody who gives you an advice, he/she
often needs to add an explanation. Another way to make recommendations convincing, is
to build it through a conversation. These two aspects can be found in the literature asso-
ciated to two fields: Explainable AI and Conversational AI. Explainable AI is nowadays
associated with various degrees of explanations. For instance, when a recommendation
is based on similar products, one can use the referenced products as an explanation.
However, recommendation systems are becoming more and more complex with, for in-
stance, neural recommendation systems [29], explainable AI addition will be needed to
ensure trust between recommendation systems and users. This need for more explainable
recommendations leads to various interesting topics such as constructing measures and
datasets to evaluate recommendation explanations [45]. An other topic are counterfactual
explanations for recommendation which study how users’ actions change overtime [27, 63].
Moreover, adding explainability in such systems will enhance future performances as it can
help spot mistakes. By adding understandable elements used by the algorithm to build
its recommendations, human-in-the-loop scheme can be build around such algorithms.
Humans will be able to understand and correct algorithms’ decisions and algorithms will
express new patterns of choice which will help sellers to perform better recommendations.

On the other hand, Conversationnal AI aims at building complex conversations by
adapting to the user. This ability would help building trust and collect valuable informa-
tion to help users. Users and systems can dynamically interact with conversationnal AI,
enabling collecting explicit and immediate users’ preferences. According to [20], this field
raises many challenges among which building a mutli-turn conversational recommendation
strategy which I found particularly interesting as it appears to me as a direct application
of the exploration/exploitation trade-off on multiple levels: which number of questions to
chose? which topics? which order? which items must be associated together? what type

113



of questions?
Another aspect that makes recommending a difficult task is the evolution of the needs

and the behaviors of the users. An interesting path of research is to infer a user’ motivation
within a searching session [61, 30] to adequately make a recommendation through a min-
imal number of interactions and/or few information on him/her. A way to adapt to users
needs is to use collective behaviour to understand how users interact with a recommen-
dation. By using contextual bandits and users’ first actions on a website, one can classify
users according to their instant needs and use the collaborative and dynamic learning of
bandits to recommend adequate item. Nevertheless identifying and characterizing users’
instant needs, which are subjective and complex information is still difficult.

Long term development subjects Combinatorial bandits are a well known setting
which can handle various situations thanks to constraints which can be put upon their
set of arms. The main issue with this setting is that, depending on the constraints consid-
ered, the problem encountered can have a NP complexity and thus it has to be designed
carefully. However, this class of bandits offers a possible solution to learn how to (aestheti-
cally) match products. Indeed, the fashion business aims at selling products from different
categories, for instance a hat and a bag. A way to do so is to recommend products that
match well according to style, for example. Thus, being able to learn this type of con-
straints and applying them to recommend lists of items is relevant for fashion industries.
Other methods exist based on neural networks and tensor completion to build looks from
scratch or complete a scene with adequate items [8, 31].

114



BIBLIOGRAPHY

[1] Shipra Agrawal and Navin Goyal, « Near-Optimal Regret Bounds for Thompson
Sampling », in: Jour. of the ACM, JACM 64.5 (Sept. 2017), 30:1–30:24.

[2] Shipra Agrawal and Navin Goyal, « Thompson Sampling for Contextual Bandits
with Linear Payoffs », in: proc. of the 30th Int. Conf. on Machine Learning, ICML’13,
2013.

[3] Maarten de Rijke Aleksandr Chuklin Ilya Markov, « Click Models for Web Search »,
in: Click Models for Web Search, ed. by Kamalika Chaudhuri and Masashi Sugiyama,
http://clickmodels.weebly.com/the-book.html: Morgan and Claypool Publishers, 2015.

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer, « Finite-time analysis of the multiarmed
bandit problem », in: Machine learning 47.2 (2002), pp. 235–256.

[5] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer, « Finite-time Analysis of the
Multiarmed Bandit Problem », in: Machine Learning 47.2 (May 2002), pp. 235–
256.

[6] Léon Bottou et al., « Counterfactual Reasoning and Learning Systems: The Example
of Computational Advertising », in: Journal of Machine Learning Research 14.65
(2013), pp. 3207–3260, url: http://jmlr.org/papers/v14/bottou13a.html.

[7] Olivier Chapelle and Lihong Li, « An Empirical Evaluation of Thompson Sam-
pling », in: Advances in Neural Information Processing Systems 24, NIPS’11, 2011.

[8] Huiyuan Chen et al., « Tops, Bottoms, and Shoes: Building Capsule Wardrobes
via Cross-Attention Tensor Network », in: Fifteenth ACM Conference on Recom-
mender Systems, New York, NY, USA: Association for Computing Machinery, 2021,
pp. 453–462, isbn: 9781450384582.

[9] Wei Chen, Yajun Wang, and Yang Yuan, « Combinatorial multi-armed bandit: Gen-
eral framework and applications », in: proc. of the 30th Int. Conf. on Machine
Learning, ICML’13, 2013.

115

http://jmlr.org/papers/v14/bottou13a.html


[10] Heng-Tze Cheng et al., « Wide & Deep Learning for Recommender Systems », in:
Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS
2016, Boston, MA, USA: Association for Computing Machinery, 2016, pp. 7–10,
isbn: 9781450347952, doi: 10.1145/2988450.2988454, url: https://doi.org/
10.1145/2988450.2988454.

[11] Wang Chi Cheung, Vincent Tan, and Zixin Zhong, « A Thompson Sampling Algo-
rithm for Cascading Bandits », in: proc. of the 22nd Int. Conf. on Artificial Intel-
ligence and Statistics, AISTATS’19, 2019.

[12] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke, Click Models for Web
Search, Morgan & Claypool Publishers, 2015.

[13] Richard Combes and Alexandre Proutière, « Unimodal bandits: Regret lower bounds
and optimal algorithms », in: proc. of the 31st Int. Conf. on Machine Learning,
ICML’14, 2014.

[14] Richard Combes, Alexandre Proutière, and Alexandre Fauquette, « Unimodal Ban-
dits with Continuous Arms: Order-Optimal Regret without Smoothness », in: Proc.
ACM Meas. Anal. Comput. Syst. 4.1 (May 2020).

[15] Richard Combes et al., « Learning to Rank: Regret Lower Bounds and Efficient
Algorithms », in: proc. of the ACM SIGMETRICS Int. Conf. on Measurement and
Modeling of Computer Systems, 2015.

[16] Nick Craswell et al., « An Experimental Comparison of Click Position-bias Models »,
in: proc. of the Int. Conf. on Web Search and Data Mining, WSDM ’08, 2008.

[17] Bianca Dumitrascu, Karen Feng, and Barbara Engelhardt, « PG-TS: Improved
Thompson Sampling for Logistic Contextual Bandits », in: Advances in Neural In-
formation Processing Systems 31, NIPS’18, 2018.

[18] Alain Durmus and Éric Moulines, « Nonasymptotic convergence analysis for the
unadjusted Langevin algorithm », in: The Annals of Applied Probability 27.3 (2017),
pp. 1551–1587, issn: 10505164, url: http://www.jstor.org/stable/26361410.

[19] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain, « Combinatorial Network Opti-
mization with Unknown Variables: Multi-Armed Bandits with Linear Rewards and
Individual Observations », in: IEEE/ACM Trans. Netw. 20.5 (Oct. 2012), pp. 1466–
1478.

116

https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2988450.2988454
http://www.jstor.org/stable/26361410


[20] Chongming Gao et al., « Advances and challenges in conversational recommender
systems: A survey », in: AI Open 2 (2021), pp. 100–126, issn: 2666-6510, doi:
https://doi.org/10.1016/j.aiopen.2021.06.002, url: https://www.
sciencedirect.com/science/article/pii/S2666651021000164.

[21] Aurélien Garivier and Olivier Cappé, « The KL-UCB Algorithm for Bounded Stochas-
tic Bandits and Beyond », in: proc. of the 24th Annual Conf. on Learning Theory,
COLT’11, 2011.

[22] Aurélien Garivier and Olivier Cappé, The KL-UCB Algorithm for Bounded Stochas-
tic Bandits and Beyond, 2013, arXiv: 1102.2490 [math.ST].

[23] Camille-Sovanneary Gauthier, Romaric Gaudel, and Élisa Fromont, « Bandit Al-
gorithm for both Unknown Best Position and Best Item Display on Web Pages »,
in: 19th International Symposium on Intelligent Data Analysis, IDA, vol. 12695,
Lecture Notes in Computer Science, Springer, 2021, pp. 209–221.

[24] Camille-Sovanneary Gauthier, Romaric Gaudel, and Élisa Fromont, « Bandits man-
chots avec échantillonnage de Thompson pour des recommandations multiples suiv-
ant un modèle fondé sur les positions », in: Joint Conferences CAp and RFIAP
2020, CAp + RFIAP, 2020.

[25] Camille-Sovanneary Gauthier, Romaric Gaudel, and Élisa Fromont, « Ordonnance-
ment d’objets par bandits unimodaux sur des graphes paramétriques », in: Con-
férence sur l’Apprentissage automatique, CAp 21, 2021.

[26] Camille-Sovanneary Gauthier et al., « Parametric Graph for Unimodal Ranking
Bandit », in: Proceedings of the 38th International Conference on Machine Learning,
ICML, vol. 139, Proceedings of Machine Learning Research, PMLR, 2021, pp. 3630–
3639.

[27] Azin Ghazimatin et al., « PRINCE: Provider-side Interpretability with Counterfac-
tual Explanations in Recommender Systems », in: Proceedings of the 13th Inter-
national Conference on Web Search and Data Mining (Jan. 2020), doi: 10.1145/
3336191.3371824.

[28] Hédi Hadiji et al., Diversity-Preserving K-Armed Bandits, Revisited, 2020, arXiv:
2010.01874 [stat.ML].

117

https://doi.org/https://doi.org/10.1016/j.aiopen.2021.06.002
https://www.sciencedirect.com/science/article/pii/S2666651021000164
https://www.sciencedirect.com/science/article/pii/S2666651021000164
https://arxiv.org/abs/1102.2490
https://doi.org/10.1145/3336191.3371824
https://doi.org/10.1145/3336191.3371824
https://arxiv.org/abs/2010.01874


[29] Xiangnan He et al., « Neural Collaborative Filtering », in: Proceedings of the 26th
International Conference on World Wide Web, WWW ’17, Perth, Australia: In-
ternational World Wide Web Conferences Steering Committee, 2017, pp. 173–182,
isbn: 9781450349130, doi: 10.1145/3038912.3052569, url: https://doi.org/
10.1145/3038912.3052569.

[30] Jyun Yu Jiang et al., « Learning to represent human motives for goal-directed web
browsing », English (US), in: RecSys 2021 - 15th ACM Conference on Recommender
Systems, RecSys 2021 - 15th ACM Conference on Recommender Systems, Publisher
Copyright: © 2021 ACM.; 15th ACM Conference on Recommender Systems, RecSys
2021 ; Conference date: 27-09-2021 Through 01-10-2021, Association for Computing
Machinery, Inc, Sept. 2021, pp. 361–371, doi: 10.1145/3460231.3474260.

[31] Wang-Cheng Kang et al., « Complete the Look: Scene-Based Complementary Prod-
uct Recommendation », in: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2019), pp. 10524–10533.

[32] Sumeet Katariya et al., « Bernoulli Rank-1 Bandits for Click Feedback », in: proc. of
the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, 2017.

[33] Sumeet Katariya et al., « DCM Bandits: Learning to Rank with Multiple Clicks »,
in: proc. of the 33rd Int. Conf. on Machine Learning, ICML’16, 2016.

[34] Sumeet Katariya et al., « Stochastic Rank-1 Bandits », in: proc. of the 20th Int.
Conf. on Artificial Intelligence and Statistics, AISTATS’17, 2017.

[35] Jaya Kawale et al., « Efficient Thompson Sampling for Online Matrix Factorization
Recommendation », in: Advances in Neural Information Processing Systems 28,
NIPS’15, 2015.

[36] Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa, « Optimal Regret Analysis
of Thompson Sampling in Stochastic Multi-armed Bandit Problem with Multiple
Plays », in: proc. of the 32nd Int. Conf. on Machine Learning, ICML’15, 2015.

[37] Junpei Komiyama, Junya Honda, and Akiko Takeda, « Position-based Multiple-play
Bandit Problem with Unknown Position Bias », in: Advances in Neural Information
Processing Systems 30, NIPS’17, 2017.

[38] Branislav Kveton et al., « Cascading Bandits: Learning to Rank in the Cascade
Model », in: proc. of the 32nd Int. Conf. on Machine Learning, ICML’15, Lille,
France, 2015.

118

https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3460231.3474260


[39] Branislav Kveton et al., « Combinatorial Cascading Bandits », in: Advances in Neu-
ral Information Processing Systems 28, NIPS’15, 2015.

[40] Branislav Kveton et al., « Tight Regret Bounds for Stochastic Combinatorial Semi-
Bandits », in: proc. of the 18th Int. Conf. on Artificial Intelligence and Statistics,
AISTATS’15, 2015.

[41] Paul Lagrée, Claire Vernade, and Olivier Cappé, « Multiple-play Bandits in the
Position-based Model », in: Advances in Neural Information Processing Systems
30, NIPS’16, 2016.

[42] John Langford, Alexander Strehl, and Jennifer Wortman, « Exploration Scaveng-
ing », in: ICML ’08, Helsinki, Finland: Association for Computing Machinery, 2008,
pp. 528–535, isbn: 9781605582054, doi: 10.1145/1390156.1390223, url: https:
//doi.org/10.1145/1390156.1390223.

[43] Tor Lattimore et al., « TopRank: A practical algorithm for online stochastic rank-
ing », in: Advances in Neural Information Processing Systems 31, NIPS’18, 2018.

[44] Chang Li et al., « BubbleRank: Safe Online Learning to Re-Rank via Implicit Click
Feedback », in: proc. of the 35th Uncertainty in Artificial Intelligence Conference,
UAI’19, 2019.

[45] Lei Li, Yongfeng Zhang, and Li Chen, « EXTRA: Explanation Ranking Datasets
for Explainable Recommendation », in: Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval, New
York, NY, USA: Association for Computing Machinery, 2021, pp. 2463–2469, isbn:
9781450380379.

[46] Shuai Li et al., « Contextual Combinatorial Cascading Bandits », in: proc. of the
33rd Int. Conf. on Machine Learning, ICML’16, 2016.

[47] Pasquale Lops, Marco Degemmis, and Giovanni Semeraro, « Content-based Recom-
mender Systems: State of the Art and Trends », in: Recommender Systems Hand-
book, 2011.

[48] Eric Mazumdar et al., « On Thompson Sampling with Langevin Algorithms », in:
proc. of the 37th Int. Conf. on Machine Learning, ICML’20, 2020.

[49] Yusuke Narita, Shota Yasui, and Kohei Yata, Efficient Counterfactual Learning from
Bandit Feedback, 2018, arXiv: 1809.03084 [cs.LG].

119

https://doi.org/10.1145/1390156.1390223
https://doi.org/10.1145/1390156.1390223
https://doi.org/10.1145/1390156.1390223
https://arxiv.org/abs/1809.03084


[50] Radford M. Neal, Probabilistic Inference Using Markov Chain Monte Carlo Methods,
tech. rep., University of Zurich, Department of Informatics, Sept. 1993.

[51] Olivier Nicol, Jérémie Mary, and Philippe Preux, Improving offline evaluation of
contextual bandit algorithms via bootstrapping techniques, 2014, arXiv: 1405.3536
[stat.ML].

[52] Javier Parapar and Filip Radlinski, « Diverse User Preference Elicitation with Multi-
Armed Bandits », in: Proceedings of the 14th ACM International Conference on
Web Search and Data Mining, WSDM ’21, Virtual Event, Israel: Association for
Computing Machinery, 2021, pp. 130–138, isbn: 9781450382977, doi: 10.1145/
3437963.3441786.

[53] Filip Radlinski, Robert Kleinberg, and Joachims Thorsten, « Learning diverse rank-
ings with multi-armed bandits », in: proc. of the 25th Int. Conf. on Machine Learn-
ing, ICML’08, 2008.

[54] Lyle Ramshaw and Robert E. Tarjan, On Minimum-Cost Assignments in Unbal-
anced Bipartite Graphs, tech. rep., HP research labs, 2012.

[55] Matthew Richardson, Ewa Dominowska, and Robert Ragno, « Predicting Clicks:
Estimating the Click-Through Rate for New Ads », in: proc. of the 16th Interna-
tional World Wide Web Conference, WWW ’07, 2007.

[56] Carlos Riquelme, George Tucker, and Jasper Snoek, « Deep Bayesian Bandits Show-
down: An Empirical Comparison of Bayesian Deep Networks for Thompson Sam-
pling », in: proc. of the Int. Conf. on Learning Representations, ICLR’18, 2018.

[57] J. Ben Schafer et al., « Collaborative Filtering Recommender Systems », in: The
Adaptive Web: Methods and Strategies of Web Personalization, Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 291–324, isbn: 9783540720782.

[58] Flore Sentenac et al., « Pure Exploration and Regret Minimization in Matching
Bandits », in: Proc. of the 38th Int. Conf. on Machine Learning, ICML’21, 2021,
pp. 9434–9442.

[59] Adith Swaminathan and Thorsten Joachims, Counterfactual Risk Minimization:
Learning from Logged Bandit Feedback, 2015, arXiv: 1502.02362 [cs.LG].

120

https://arxiv.org/abs/1405.3536
https://arxiv.org/abs/1405.3536
https://doi.org/10.1145/3437963.3441786
https://doi.org/10.1145/3437963.3441786
https://arxiv.org/abs/1502.02362


[60] Adith Swaminathan et al., « Off-policy evaluation for slate recommendation », in:
Advances in Neural Information Processing Systems, ed. by I. Guyon et al., vol. 30,
Curran Associates, Inc., 2017, url: https://proceedings.neurips.cc/paper/
2017/file/5352696a9ca3397beb79f116f3a33991-Paper.pdf.

[61] Jacopo Tagliabue et al., SIGIR 2021 E-Commerce Workshop Data Challenge, 2021,
arXiv: 2104.09423 [cs.IR].

[62] William R Thompson, « On The Likelihood that one Unknown Probability Exceeds
Another in View of the Evidence of two Samples », in: Biometrika 25.3-4 (Dec.
1933), pp. 285–294, issn: 0006-3444, doi: 10.1093/biomet/25.3-4.285, url:
https://doi.org/10.1093/biomet/25.3-4.285.

[63] Khanh Hiep Tran, Azin Ghazimatin, and Rishiraj Saha Roy, « Counterfactual Ex-
planations for Neural Recommenders », in: Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(July 2021), doi: 10.1145/3404835.3463005.

[64] Claire Vernade, Andras Gyorgy, and Timothy Mann, Non-Stationary Delayed Ban-
dits with Intermediate Observations, 2020, arXiv: 2006.02119 [stat.ML].

[65] Fuzheng Zhang et al., « Collaborative Knowledge Base Embedding for Recom-
mender Systems », in: Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’16, San Francisco, California,
USA: Association for Computing Machinery, 2016, pp. 353–362, isbn: 9781450342322,
doi: 10.1145/2939672.2939673, url: https://doi.org/10.1145/2939672.
2939673.

[66] Masrour Zoghi et al., « Online Learning to Rank in Stochastic Click Models », in:
proc. of the 34th Int. Conf. on Machine Learning, ICML’17, 2017.

[67] Shi Zong et al., « Cascading Bandits for Large-scale Recommendation Problems »,
in: proc. of the 32nd Conference on Uncertainty in Artificial Intelligence, UAI ’16,
2016.

121

https://proceedings.neurips.cc/paper/2017/file/5352696a9ca3397beb79f116f3a33991-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5352696a9ca3397beb79f116f3a33991-Paper.pdf
https://arxiv.org/abs/2104.09423
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1145/3404835.3463005
https://arxiv.org/abs/2006.02119
https://doi.org/10.1145/2939672.2939673
https://doi.org/10.1145/2939672.2939673
https://doi.org/10.1145/2939672.2939673




APPENDIX

123



Appendix A

GRAB

The appendix is organized as follows. We first list most of the notations used in the
paper in Appendix A.1. Lemma 1 is proved in Appendix A.2. In Appendix A.3, we recall
a Lemma from [13] used by our own Lemmas and Theorems, and then in Appendices A.4
to A.6 we respectively prove Theorem 2, Lemma 2, and Lemma 3. Finally in Appendix
A.7 we introduce and discuss S-GRAB.

A.1 Notations

The following table summarize the notations used through the paper and the appendix.

Symbol Meaning
T Time horizon
t iteration
L number of items
i index of an item
K number of positions in a recommendation
k index of a position
[n] set of integers {1, . . . , n}
PLK set of permutations of K distinct items among L
θθθ vectors of probabilities of click
θi probability of click on item i

κκκ vectors of probabilities of view
κk probability of view at position k

A set of bandit arms
aaa an arm in A
aaa(t) the arm chosen at iteration t

ãaa(t) best arm at iteration t given the previous choices and feed-
backs (called leader)

Continued on next page
124



Symbol Meaning
aaa∗ best arm
G graph carrying a partial order on A
γ maximum degree of G

NG(ãaa(t)) neighborhood of ã(t) given G

ρi,k probability of click on item i displayed at position k

ccc(t) clicks vector at iteration t

r(t) reward collected at iteration t, r(t) =
∑K
k=1 ck(t)

µaaa expectation of r(t) while recommending aaa, µaaa =
∑K
k=1 ρak,k

µ∗ highest expected reward, µ∗ = maxaaa∈PLK µaaa
∆a gap between µa and µ∗

∆min minimal value for ∆a

∆ generic reward gap between one of the sub-optimal arms and
one of the best arms

R(T ) cumulative (pseudo-)regret, R(T ) = Tµ∗ − E
[∑T

t=1 µaaa(t)
]

Πρρρ(aaa) set of permutations in PKK ordering the positions s.t. ρaπ1 ,π1 >

ρaπ2 ,π2 > · · · > ρaπK ,πK
πππ element of Πρρρ(aaa)
π̃ππ estimation of πππ
aaa ◦ (πk, πk+1) permutation swapping items in positions πk and πk+1

aaa[πK := i] permutation leaving aaa the same for any position except πK

for which aaa[πK := i]πK = i

F rankings of positions respecting Πρρρ, F = (πππaaa)aaa∈PLK s.t. ∀aaa ∈
PLK ,πππaaa ∈ Πρρρ(aaa)

Ti,k(t) number of iterations s.t. item i has been displayed at position
k, Ti,k(t) =

∑t−1
s=1 1{ak(s) = i}

T̃aaa(t) number of iterations s.t. the leader was aaa, T̃aaa(t)
def=∑t−1

s=1 1{ãaa(s) = aaa}
Taaa(t) number of iterations s.t. the chosen arm was aaa, Taaa(t) =∑t−1

s=1 1{aaa(s) = aaa}
T ãaaaaa (t) number of iterations s.t. the leader was ãaa, the chosen arm

was aaa, and aaa was chosen
by the argmax on

∑K
k=1 bak,k(t): T ãaaaaa (t) =∑t−1

s=1 1
{
ãaa(s) = ãaa,aaa(s) = aaa, T̃ãaa(s)/L /∈ N

}
ρ̂i,k(t) estimation of ρi,k at iteration t, ρ̂i,k(t) = 1

Ti,k(t)
∑t−1
s=1 1{ak(s) =

i}ck(s)
Continued on next page

125



Symbol Meaning
bi,k(t) Kullback-Leibler index of ρ̂i,k(t) , bi,k(t) =

f
(
ρ̂i,k(t), Ti,k(t), T̃ãaa(t)(t) + 1

)
f Kullback-Leibler index function, f(ρ̂, s, t) = sup{p ∈ [ρ̂, 1] : s ×

kl(ρ̂, p) ≤ log(t) + 3 log(log(t))},
kl(p, q) Kullback-Leibler divergence from a Bernoulli distribution

of mean p to a Bernoulli distribution of mean q, kl(p, q) =
p log

(
p
q

)
+ (1− p) log

(
1−p
1−q

)
Baaa(t) pseudo-sum of indices of aaa at iteration t, Baaa(t) =

∑K
k=1 bak,k(t)−∑K

k=1 bãk(t),k(t)
Nπ∗(a∗) neighborhood of the best arm
Kaaa (with combinatorial bandit setting) number of elements in aaa

but not in aaa∗,
Kaaa = minaaa∗∈A:µaaa∗=µ∗ |aaa \ aaa∗|

Kmax (with combinatorial bandit setting) maximal number of ele-
ments in a sub-optimal arm aaa
but not in an optimal arm a∗, Kmax = maxaaa∈A:µaaa 6=µ∗ Kaaa

c∗ (θθθ,κκκ) coefficient in the regret bound of PMED
c (in εn-greedy) parameter controlling the probability of ex-

ploration
c (in PB-MHB) parameter controlling size of the step in the

Metropolis Hasting inference
m (in PB-MHB) number of step in the Metropolis Hasting in-

ference

Table A.1: Summary of the notations of Chapter 3.

A.2 Proof of Lemma 1 (PBM Fulfills Assumption 1)

Proof of Lemma 1. Let (L,K, (ρi,k)(i,k)∈[L]×[K]) be an online learning to rank (OLR) prob-
lem with users following PBM, with positive probabilities of looking at a given position.
Therefore, there exists θθθ ∈ [0, 1]L and κκκ ∈ (0, 1]K such that for any item i and any position
k, ρi,k = θiκk.

Let aaa ∈ PLK be a recommendation, and let πππ ∈ Πρρρ (aaa) be an appropriate ranking of

126



positions. One of the four following properties is satisfied:

∃k ∈ [K − 1] s.t. θaπk < θaπk+1
, (A.1)

∃k ∈ [K − 1] s.t. κπk < κπk+1 , (A.2)
∃i ∈ [L] \ aaa([K]) s.t. θaπK < θi, (A.3)
∀k ∈ [K − 1], θaπk > θaπk+1

∀k ∈ [K − 1], κπk > κπk+1

∀i ∈ [L] \ aaa([K]), θaπK > θi

. (A.4)

Let prove, by considering each of these properties one by one, that aaa is either one of
the best arms, or aaa fulfills either Property (2) or Property (3) of Assumption 1.

If Property (A.1) is satisfied and θaπk = 0, then by definition of πππ and Πρρρ (aaa), 0 =
θaπkκπk > θaπk+1

κπk+1 > 0 which is absurd.

Therefore, If Property (A.1) is satisfied,
θaπk+1
θaπk

> 1.
Note that by definition of πππ and Πρρρ (aaa), and as ρi,k = θiκk, θaπkκπk > θaπk+1

κπk+1 .

Hence κπk >
θaπk+1
θaπk

κπk+1 > κπk+1 , and

µaaa − µaaa◦(πk,πk+1) = θaπkκπk + θaπk+1
κπk+1 −

(
θaπk+1

κπk + θaπkκπk+1

)
=
(
θaπk − θaπk+1

) (
κπk − κπk+1

)
< 0,

meaning µaaa < µaaa◦(πk,πk+1), which corresponds to Property (2) of Assumption 1.
Similarly, if Property (A.2) is satisfied, then Property (2) of Assumption 1 is fulfilled.
If Property (A.3) is satisfied,

µaaa − µaaa[πK :=i] = θaπKκπK − θiκπK
=
(
θaπK − θi

)
κπK

< 0.

Hence µaaa < µaaa[πK :=i], which corresponds to Property (3) of Assumption 1.
Finally, if Property (A.4) is satisfied, µaaa = µ∗.
Overall, either aaa is one of the best arms, or aaa fulfills Property (2) of Assumption 1, or

aaa fulfills Property (3) of Assumption 1, which concludes the proof.

127



A.3 Preliminary to the Analysis of GRAB

The analysis of GRAB requires a control of the number of high deviations, as expressed
by Lemma B.1 of [13]. Let us recall this lemma, which we denote Lemma 6 in current
paper.

Lemma 6 (Lemma B.1 of [13]). Let i ∈ [L], k ∈ [K], ε > 0. Define F(T ) the σ-algebra
generated by (ccc(t))t∈[T ]. Let Λ ⊆ N be a random set of instants. Assume that there exists
a sequence of random sets (Λ(s))s≥1 such that (i) Λ ⊆ ⋃

s≥1 Λ(s), (ii) for all s > 1 and
all t ∈ Λ(s), Ti,k(t) ≥ εs, (iii) |Λ(s)| 6 1, and (iv) the event t ∈ Λ(s) is Ft-measurable.
Then for all δ > 0,

E

∑
t≥1
1{t ∈ Λ, |ρ̂i,k(t)− ρi,k| > δ}

 6
1
εδ2

A.4 Proof of Theorem 2 (Upper-bound on the Regret
of KL-CombUCB)

Proof of Theorem 2. Let aaa ∈ A be a sub-optimal arm. Let aaa∗ ∈ A be an optimal arm
such that |aaa \ aaa∗| = Kaaa.

We denote K̄aaa
def= |aaa∗ \ aaa|, Taaa(t)

def= ∑t−1
s=1 1{aaa(s) = aaa} the number of time the arm aaa

has been drawn, and Te(t)
def= ∑t−1

s=1 1{e ∈ aaa(s)} the number of time the element e was in
the drawn arm.

Let decompose the expected number of iterations at which the permutation aaa is rec-
ommended:

E

[
T∑
t=1
1{aaa(t) = aaa}

]
6

∑
e∈aaa\aaa∗

E

[
T∑
t=1
1

{
aaa(t) = aaa, |ρ̂e(t)− ρe| >

∆aaa

2Kaaa

}]

+
∑

e∈aaa∗\aaa
E

[
T∑
t=1
1{be(t) 6 ρe}

]

+ E
 T∑
t=|E|

1

{
aaa(t) = aaa,∀e ∈ aaa \ aaa∗, |ρ̂e(t)− ρe| <

∆aaa

2Kaaa

, ∀e ∈ aaa∗ \ aaa, be(t) > ρe

}
+ |E|.

128



The proof consists in upper-bounding each term on the right-hand side.

First Term Let e ∈ aaa \ aaa∗, and denote Ae =
{
t ∈ [T ] : aaa(t) = aaa, |ρ̂e(t)− ρe| > ∆aaa

2Kaaa

}
.

Ae ⊆
⋃
s∈N Λk(s), where Λk(s)

def= {t ∈ Ae : Taaa(t) = s}. For any integer value s,
|Λk(s)| 6 1 as Taaa(t) increases for each t ∈ Ae. Note that for each s ∈ N and n ∈ Λk(s),
Te(n) > Taaa(n) = s. Then, by Lemma 6

E [|Ae|] ≤ E
[
T∑
t=1
1{t ∈ Ae}

]

= E

[
T∑
t=1
1

{
t ∈ Ae, |ρ̂e(t)− ρe| >

∆aaa

2Kaaa

}]

6
4K2

aaa

∆2
aaa

.

Hence, ∑e∈aaa\aaa∗ E
[∑T

t=1 1
{
aaa(t) = aaa, |ρ̂e(t)− ρe| > ∆aaa

2Kaaa

}]
= ∑

e∈aaa\aaa∗ E [|Ae|] 6 4K3
aaa

∆2
aaa
.

Second Term Let e ∈ aaa∗ \ aaa, and denote Be
def= {t ∈ [T ] : be(t) 6 ρe}.

By Theorem 10 of [21], E [|Be|] = O(log log T ), so ∑e∈aaa∗\aaaE
[∑T

t=1 1{be(t) 6 ρe}
]

=
O(K̄aaa log log T ).

Third Term Let note

C
def=

{
t ∈ [T ] \ [|E|] : aaa(t) = aaa,∀e ∈ aaa \ aaa∗, |ρ̂e(t)− ρe| <

∆aaa

2Kaaa

, ∀e ∈ aaa∗ \ aaa, be(t) > ρe

}
.

Let t ∈ C.

At each step of the initialization phase, the algorithm removes at least one element e
of the set Ẽ of unseen elements. Therefore, the initialization lasts at most |E| iterations.
Hence, at iteration t, aaa(t) = aaa is chosen as ∑e∈aaa be(t) = maxaaa′∈A

∑
e∈aaa′ be(t).

Then, by Pinsker’s inequality and the fact that t 6 T , and Te(t) > Taaa(t) for any e in

129



aaa,

0 6
∑
e∈aaa

be(t)−
∑
e∈aaa∗

be(t)

=
∑

e∈aaa\aaa∗
be(t)−

∑
e∈aaa∗\aaa

be(t)

6
∑

e∈aaa\aaa∗
ρ̂e(t) +

√√√√ log(t) + 3 log(log(t))
2Te(t)

−
∑

e∈aaa∗\aaa
be(t)

<
∑

e∈aaa\aaa∗
ρe + ∆aaa

2Kaaa

+

√√√√ log(T ) + 3 log(log(T ))
2Taaa(t)

−
∑

e∈aaa∗\aaa
ρe

6
∑
e∈aaa

ρe −
∑
e∈aaa∗

ρe +Kaaa
∆aaa

2Kaaa

+Kaaa

√√√√ log(T ) + 3 log(log(T ))
2Taaa(t)

= −∆aaa + 2∆aaa

2 +Kaaa

√√√√ log(T ) + 3 log(log(T ))
2Taaa(t)

.

= −∆aaa

2 +Kaaa

√√√√ log(T ) + 3 log(log(T ))
2Taaa(t)

.

Hence, Taaa(t) < K2
aaa

2 log(T )+6 log(log(T ))
∆2
aaa

.
Therefore, C ⊆

{
t ∈ [T ] \ [|E|] : aaa(t) = aaa, Taaa(t) < K2

aaa
2 log(T )+6 log(log(T ))

∆2
aaa

}
, and

E

 T∑
t=|E|

1

{
aaa(t) = aaa,∀e ∈ aaa \ aaa∗, |ρ̂e(t)− ρe| <

∆aaa

2Kaaa

,∀e ∈ aaa∗ \ aaa, be(t) > ρe

}
= E [|C|]

6 E

[∣∣∣∣∣
{
t ∈ [T ] \ [|E|] : aaa(t) = aaa, Taaa(t) < K2

aaa

2 log(T ) + 6 log(log(T ))
∆2
aaa

}∣∣∣∣∣
]

6 K2
aaa

2 log(T ) + 6 log(log(T ))
∆2
aaa

.

Regret upper-bound Overall,

E

[
T∑
t=1
1{aaa(t) = aaa}

]
6

4K3
aaa

∆2
aaa

+O(K̄aaa log log T ) +K2
aaa

2 log(T ) + 6 log(log(T ))
∆2
aaa

+ |E|

= 2K2
aaa

∆2
aaa

log(T ) +O
((

K̄aaa + K2
aaa

∆2
aaa

)
log log T

)

130



and

R(T ) =
∑

aaa∈A:µaaa 6=µ∗
∆aaaE

[
T∑
t=1
1{aaa(t) = aaa}

]

6
∑

aaa∈A:µaaa 6=µ∗

2K2
aaa

∆aaa

log(T ) +O
((

K̄aaa∆aaa + K2
aaa

∆aaa

)
log log T

)

= O
(
|A|K2

max

∆min
log T

)
,

which concludes the proof.

A.5 Proof of Lemma 2 (Upper-bound on the Number
of Iterations of GRAB for which ãaa(t) = ãaa 6= aaa∗)

Proof of Lemma 2. Let ãaa ∈ PLK\{aaa∗} and prove that E
[∑T

t=1 1{ãaa(t) = ãaa}
]

= O (log log T ).

The proof requires notations related to the neighborhood of ãaa. Let N def= ⋃
πππ∈PKK

Nπππ(ãaa)
be the set of all the potential neighbors of ãaa. By definition of the neighborhoods,

N =
{
ãaa ◦ (k, k′) : k, k′ ∈ [K]2, k > k′

}
∪ {ãaa[k := i] : k ∈ [K], i ∈ [L] \ ãaa([K])} ,

and its size is N = K(2L−K − 1)/2. As ãaa is sub-optimal, and due to Assumption 1, for
any appropriate ranking of positions πππ ∈ Πρρρ (ãaa), there exists a recommendation aaa+ with
a strictly better expected reward than ãaa in the neighborhood Nπππ(ãaa). We denote

N+ def=
⋃

πππ∈Πρρρ(ãaa)

{
aaa+ ∈ Nπππ(ãaa) : µaaa+ = max

aaa∈Nπππ(ãaa)
µaaa

}

the set of such recommendations. We also chose ε < min{1/(2N), 1/L} and note

δ
def= min

πππ∈Πρρρ(ãaa)
min

aaa∈Nπππ(ãaa)∪{ãaa}\N+

(
max

aaa′∈Nπππ(ãaa)
µaaa′ − µaaa

)
.

To bound E [1{ãaa(t) = ãaa}], we use the decomposition {t ∈ [T ] : ãaa(t) = ãaa} ⊆ ⋃aaa+∈N+ Aaaa+∪

131



B where for any permutation aaa+ ∈ N+,

Aaaa+ = {t : ãaa(t) = ãaa, Taaa+(t) > εT̃ãaa(t)}

and
B = {t : ãaa(t) = ãaa,∀aaa+ ∈ A+, Taaa+(t) < εT̃ãaa(t)}.

Hence,
E [1{ãaa(t) = ãaa}] 6

∑
aaa+∈A+

E [|Aaaa+|] + E [|B|] .

Bound on E [|Aaaa+|] Let aaa+ be a permutation in N+ and denote K+ the set of positions
for which aaa+ and ãaa disagree: K+ =

{
k ∈ [K] : a+

k 6= ãk
}
. The permutation aaa+ is in the

neighborhood of ãaa, so either aaa+ = ãaa ◦ (k, k′) or aaa+ = aaa[k := i], with k and k′ in [K], and
i in [L]. Overall, |K+| 6 2.

By the design of the algorithm and by definition of ε, we have that ∀t ∈ Aaaa+ , Tãaa(t) >
T̃ãaa(t)/L > εT̃ãaa(t). Moreover, at the considered iterations ãaa is the leader, so

Aaaa+ ⊆
{
t : ãaa(t) = ãaa, T̃ãaa(t) <

1
ε

}
∪
{
t : ãaa(t) = ãaa,min{Tãaa(t), Taaa+(t)} > εT̃ãaa(t) > 1,

∑
`

ρ̂ã`,`(t) >
∑
`

ρ̂a+
`
,`(t)

}

⊆
{
t : ãaa(t) = ãaa, T̃ãaa(t) <

1
ε

}

∪

t : ãaa(t) = ãaa,min{Tãaa(t), Taaa+(t)} > εT̃ãaa(t),
∑
k∈K+

ρ̂ãk,k(t) >
∑
k∈K+

ρ̂a+
k
,k(t)


⊆
{
t : ãaa(t) = ãaa, T̃ãaa(t) <

1
ε

}
∪
{
t : ãaa(t) = ãaa,min{Tãaa(t), Taaa+(t)} > εT̃ãaa(t),∃k ∈ K+,

|ρ̂ãk,k(t)− ρãk,k| >
δ

2|K+|
or |ρ̂a+

k
,k(t)− ρa+

k
,k| >

δ

2|K+|

}

⊆
{
t : ãaa(t) = ãaa, T̃ãaa(t) <

1
ε

}
∪

⋃
k∈K+

⋃
i∈{ãk,a+

k }
Λi,k,

with Λi,k
def=

{
t : ãaa(t) = ãaa,min{Tãaa(t), Taaa+(t)} > εT̃ãaa(t), |ρ̂i,k(t)− ρi,k| > δ

2|K+|

}
.

Fix k in K+ and i in
{
ãk, a

+
k

}
. Λi,k ⊆

⋃
s∈N Λi,k(s), with Λi,k(s)

def= {t ∈ Λi,k : T̃ãaa(t) =
s}. |Λi,k(s)| 6 1 as T̃ãaa(t) increases for each t ∈ Λi,k. Note that for each s ∈ N and

132



n ∈ Λi,k(s), Ti,k(n) > min {Taaa(n), Taaa+(n)} > εT̃ãaa(n) = εs. Then, by Lemma 6

E [|Λi,k|] = E

[
T∑
t=1
1{t ∈ Λi,k}

]

= E

[
T∑
t=1
1

{
t ∈ Λi,k, |ρ̂i,k(t)− ρi,k| >

δ

2|K+|

}]

6
4|K+|2

εδ2

Hence, E [|Aaaa+|] 6 1
ε

+∑
k∈K+

∑
i∈{ãk,a+

k }E [|Λi,k|] 6 1
ε

+ 8|K+|3
εδ2 .

Bound on E [|B|] We first split B in two parts: B = Bt0 ∪ BT
t0 , where Bt0 def= {t ∈ B :

T̃ãaa(t) 6 t0}, BT
t0

def= {t ∈ B : T̃ãaa(t) > t0}, and t0 is chosen as small as possible to satisfy
three constraints required in the rest of the proof.

Namely, t0 = max
{

1
ε
, (1 +N)(1− 1

L
− εN)−1, inf

{
t : 2

√
log(t+1)+3 log(log(t+1))

2εt < δ
8

}}
.

Note that t0 only depends on K, L and δ, and that (1− 1
L
− εN) > 0 (assuming L > 2)

as ε < 1/(2N).

We also define

— D
def= ⋃

(aaa,k)∈(N∪{ãaa}\N+)×[K] Daaa,k,
where Daaa,k

def=
{
t ∈ [T ] : ãaa(t) = ãaa,aaa(t) = aaa, |ρ̂ak,k(t)− ρak,k| > δ

8

}
,

— E
def= ⋃

(aaa+,k)∈N+×[K] Eaaa+,k, where Eaaa+,k
def= {t ∈ [T ] : ãaa(t) = ãaa, ba+

k
,k(t) 6 ρa+

k
,k},

— and F def= {t ∈ [T ] : ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)}.

Let t ∈ BT
t0 . By construction, GRAB forces itself to select

⌈
T̃ãaa(t)
L

⌉
times the leader ãaa

between iterations 1 and t− 1. So,

T̃ãaa(t) =
⌈
T̃ãaa(t)
L

⌉
+

∑
aaa∈N∪{ãaa}

T ãaaaaa (t)

where T ãaaaaa (t) = ∑t−1
s=1 1

{
ãaa(s) = ãaa,aaa(s) = aaa, T̃ãaa(s)/L /∈ N

}
is the number of times arm aaa ∈

N ∪ {ãaa} has been played normally (i.e not forced) while ãaa was leader, up to time t− 1.
Let prove by contradiction that there is at least one recommendation aaa that has been
selected normally more than εT̃ãaa(t) + 1 times, namely T ãaaaaa (t) > εT̃ãaa(t) + 1.

133



Assume that for each recommendation aaa in N ∪ {ãaa}, T ãaaaaa (t) < εT̃ãaa(t) + 1. Then

T̃ãaa(t) =
⌈
T̃ãaa(t)
L

⌉
+

∑
aaa∈N∪{ãaa}

T ãaaaaa (t)

< 1 + T̃ãaa(t)
L

+N(εT̃ãaa(t) + 1).

Therefore T̃ãaa(t)(1− 1
L
−Nε) < 1 +N , which contradicts t ∈ BT

t0 .

So, there exists a recommendation aaa such that T ãaaaaa (t) > εT̃ãaa(t) + 1. Let denote s′ the
first iteration such that T ãaaaaa (s′) > εT̃ãaa(t) + 1. At this iteration, T ãaaaaa (s′) = T ãaaaaa (s′ − 1) + 1,
meaning that ãaa(s′ − 1) = ãaa, aaa(s′ − 1) = aaa, T̃ãaa(s′ − 1)/L /∈ N, and T ãaaaaa (s′ − 1) > εT̃ãaa(t).
Therefore, the set {s ∈ [t] : ãaa(s) = ãaa, T ãaaaaa(s)(s) > εT̃ãaa(t), T̃ãaa(s)/L /∈ N} is non-empty. We
define ψ(t) as the minimum on this set

ψ(t) def= min
{
s ∈ [t] : ãaa(s) = ãaa, T ãaaaaa(s)(s) > εT̃ãaa(t), T̃ãaa(s)/L /∈ N

}
.

We note aaa the recommendation aaa(ψ(t)) at iteration ψ(t). We have aaa /∈ N+ since for
any recommendation aaa+ ∈ N+, T ãaaaaa+(ψ(t)) 6 T ãaaaaa+(t) 6 Taaa+(t) < εT̃ãaa(t). Let aaa+ be one of
the best recommendations inNπ̃ππ(ψ(t)) (ãaa)∪{ãaa}, meaning µaaa+ = maxaaa′∈Nπ̃ππ(ψ(t))(ãaa)∪{ãaa} µaaa′ , and
let K denote the set of positions for which aaa and aaa+ disagree. As both recommendations
are in Nπ̃ππ(ψ(t))(ãaa) ∪ {ãaa}, |K| 6 4.

Let prove by contradiction that ψ(t) ∈ D ∪ E ∪ F . Assume that ψ(t) /∈ D ∪ E ∪ F .

Since ψ(t) /∈ F , π̃ππ (ψ(t)) belongs to Πρρρ (ãaa) and hence aaa+ is in N+ and ∑
k ρa+

k
,k −∑

k ρak,k = µaaa+ − µaaa > δ.

Moreover, since ψ(t) /∈ D ∪E, for each position k ∈ [K], |ρ̂ak,k(ψ(t))− ρak,k| < δ
8 , and

ba+
k
,k(ψ(t)) > ρa+

k
,k.

Finally, Taaa(ψ(t)) > T ãaaaaa (ψ(t)) > εT̃ãaa(t) > 1, and therefore bak,k(ψ(t)) and ρ̂ak,k(ψ(t))
are properly defined for any position k ∈ [K].

Then, by Pinsker’s inequality and the fact that ψ(t) 6 t, T̃ãaa(s) is non-decreasing in s,

134



and Taaa(ψ(t)) > εT̃ãaa(t),

∑
k

bak,k(ψ(t))−
∑
k

ba+
k
,k(ψ(t)) =

∑
k∈K

bak,k(ψ(t))− ba+
k
,k(ψ(t))

6
∑
k∈K

ρ̂ak,k(ψ(t)) +

√√√√ log(T̃ãaa(ψ(t)) + 1) + 3 log(log(T̃ãaa(ψ(t)) + 1))
2Taaa(ψ(t))

− ba+
k
,k(ψ(t))

<
∑
k∈K

ρak,k + δ

8 +

√√√√ log(T̃ãaa(t) + 1) + 3 log(log(T̃ãaa(t) + 1))
2εT̃ãaa(t)

− ρa+
k
,k

6
∑
k∈K

ρak,k + δ

8 + δ

8 − ρa
+
k
,k

6
∑
k

ρak,k −
∑
k

ρa+
k
,k + |K| · 2δ8

6 −δ + 8δ8
= 0,

which contradicts the fact that aaa is played at iteration ψ(t). So ψ(t) ∈ D ∪ E ∪ F .

Overall, for any t ∈ BT
t0 , ψ(t) ∈ D∪E∪F . So,BT

t0 ⊆
⋃
n∈D∪E∪F B

T
t0∩{t ∈ [T ] : ψ(t) = n}.

Let n be in D ∪ E ∪ F . For any t in BT
t0 ∩ {t ∈ [T ] : ψ(t) = n}, T ãaaaaa(n)(n) = dεT̃ãaa(t)e and

T̃ãaa(t+ 1) = T̃ãaa(t) + 1. So |BT
t0 ∩ {t ∈ [T ] : ψ(t) = n} | < 1/ε+ 1. Overall,

E [|B|] 6 t0 + E
[
|BT

t0|
]
6 t0 + (1/ε+ 1) (E [|D|] + E [|E|] + E [|F |]).

It remains to upper-bound E [|D|], E [|E|], and E [|F |] to conclude the proof.

Bound on E [|D|] The upper-bound on E [|D|] is obtained with the same strategy as
the last step in the proof of the upper-bound on E [|Aaaa+|]. Let aaa be a recommendation
in N ∪ {ãaa} \ N+, and k ∈ [K] be a position. Daaa,k ⊆

⋃
s∈N Λaaa,k(s), where Λaaa,k(s)

def= {t ∈
Daaa,k : Taaa(t) = s}. |Λaaa,k(s)| 6 1 as Taaa(t) increases for each t ∈ Daaa,k. Note that for each
s ∈ N and n ∈ Λaaa,k(s), Tak,k(n) > Taaa(n) = s. Then, by Lemma 6

135



E [|Daaa,k|] ≤ E
[
T∑
t=1
1{t ∈ Daaa,k}

]

= E

[
T∑
t=1
1

{
t ∈ Daaa,k, |ρ̂ak,k(t)− ρak,k| >

δ

8

}]

6
64
δ2

Hence, E [|D|] ≤ ∑(aaa,k)∈(N∪{ãaa}\N+)×[K]E [|Daaa,k|] 6 64(N+1)K
δ2 .

Bound on E [|E|] By Theorem 10 of [21], E [|Eaaa+,k|] = O(log(log(T ))), so E [|E|] 6∑
(aaa+,k)∈N+×[K]E [|Eaaa+,k|] = O(|N+|K log(log(T ))).

Bound on E [|F |] By Lemma 3, E [|F |] = E
[∑T

t=1 1 {ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)}
]

= O (1) .
Overall E [1{ãaa(t) = ãaa}] 6 |K+|

ε
+8|K+|3|N+|

εδ2 +t0+
(

1
ε

+ 1
)

64(N+1)K
δ2 +O

(
|N+|K

ε
log log T

)
+

O(1) = O
(
|N+|K

ε
log log T

)
, which concludes the proof.

A.6 Proof of Lemma 3 (Upper-bound on the Number
of Iterations of GRAB for which π̃ππ(t) /∈ Πρρρ(ãaa))

Proof of Theorem 3. Let ãaa be a K-permutation of L items. If Πρρρ (ãaa) contains all the
permutations of K elements, the set {t : ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)} is empty.

Otherwise, let denote δ the smallest non-zero gap between the probability of click
at position k and the probability of click at position k′ 6= k: δ def= min

{
ρãk,k − ρãk′ ,k′ :

(k, k′) ∈ [K]2, ρãk,k − ρãk′ ,k′ > 0
}
. The gap δ is the minimum on a finite set, so δ > 0.

By definition of π̃(t), ρ̂ãπ̃1(t)(t),π̃1(t)(t) > ρ̂ãπ̃2(t)(t),π̃2(t)(t) > · · · > ρ̂ãπ̃K (t)(t),π̃K(t)(t), so,

{t : ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)} =
⋃

π̃ππ∈PKK

⋃
k∈[K−1]

{
t : ãaa(t) = ãaa, π̃ππ(t) = π̃ππ, ρãπ̃k ,π̃k < ρãπ̃k+1 ,π̃k+1

}

⊆
⋃

π̃ππ∈PKK

⋃
k∈[K−1]

{
t : ãaa(t) = ãaa, π̃ππ(t) = π̃ππ,

|ρ̂ãπ̃k ,π̃k (t)−ρãπ̃k ,π̃k |>
δ
2

or |ρ̂ãπ̃k+1 ,π̃k+1 (t)−ρãπ̃k+1 ,π̃k+1 |>
δ
2

}

=
⋃

π̃ππ∈PKK

⋃
k∈[K]

Λπ̃ππ,k,

136



with Λπ̃ππ,k
def=

{
t : ãaa(t) = ãaa, π̃ππ(t) = π̃ππ, |ρ̂ãπ̃k ,π̃k(t)− ρãπ̃k ,π̃k | >

δ
2

}
, for any ranking of posi-

tions π̃ππ ∈ PLK and any rank k ∈ [K].
Let π̃ππ ∈ PLK be a ranking of positions, and k ∈ [K] be a rank. Λπ̃ππ,k ⊆

⋃
s∈N Λπ̃ππ,k(s),

with Λπ̃ππ,k(s)
def= {t ∈ Λπ̃ππ,k : T̃ãaa(t) = s}. |Λπ̃ππ,k(s)| 6 1 as T̃ãaa(t) increases for each t ∈ Λπ̃ππ,k.

Note that for each s ∈ N and n ∈ Λπ̃ππ,k(s), Tãπ̃k ,π̃k(n) > Tãaa(n) > T̃ãaa(n)/L = s/L. Then,
by Lemma 6

E [|Λπ̃ππ,k|] = E

[
T∑
t=1
1{t ∈ Λπ̃ππ,k}

]

= E

[
T∑
t=1
1

{
t ∈ Λπ̃ππ,k, |ρ̂ãπ̃k ,π̃k(t)− ρãπ̃k ,π̃k | >

δ

2

}]

6
4L
δ2

Hence,

E

[
T∑
t=1
1{ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)}

]
6

∑
π̃ππ∈PKK

∑
k∈[K]

E [Λπ̃ππ,k]

6
4LKK!
δ2

= O (LKK!) ,

which concludes the proof.

A.7 S-GRAB: OSUB on a Static Graph

The algorithm S-GRAB, depicted in Algorithm 12, is similar to GRAB except that it
explores a static graph G = (E, V ) defined by

V
def= PLK ,

E
def=

{
(aaa,aaa ◦ (k, k′)) : k, k′ ∈ [K]2, k > k′

}
∪ {(aaa,aaa[k := i]) : k ∈ [K], i ∈ [L] \ aaa([K])} .

This graph is chosen to ensure that with PBM setting any sub-optimal recommen-
dation has a strictly better recommendation in its neighborhood given G. This graph is
fixed and does not require the knowledge of a mapping P , but its degree is also about K

137



Algorithm 12 S-GRAB: Static Graph for unimodal RAnking Bandit
Require: number of items L, number of positions K
γ ← K(2L−K − 1)/2
for t = 1, 2, . . . do

ãaa(t)← argmax
aaa∈PLK

K∑
k=1

ρ̂ak,k(t)

recommend aaa(t) =


ãaa(t) , if T̃ãaa(t)(t)

γ+1 ∈ N,

argmax
aaa∈{ãaa(t)}∪NG(ãaa(t))

K∑
k=1

bak,k(t) , otherwise

where NG(aaa) = {aaa ◦ (k, k′) : k, k′ ∈ [K]2, k > k′} ∪
{aaa[k := i] : k ∈ [K], i ∈ [L] \ aaa([K])}
observe the clicks vector ccc(t)

end for

times larger than the degree of the graphs handled by GRAB.
As for GRAB, any recommendation in the neighborhood of the leader given G differs

with the leader at, at most two positions. Therefore a proof similar to the one of Theorem
1 ensures that S-GRAB’s regret is upper-bounded by O (LK/∆min log T ). This regret
upper-bound is higher than GRAB’s one by a factor K due to the larger size of the
considered neighborhoods. However, this regret remains smaller than KL-CombUCB’s
one by a factor K thanks to the bounded number of differences between the leader and
the arm played.

138



Appendix B

UNIRANK

B.1 Organisation of the Appendix

The appendix is organized as follows. After listing most of the notations used in
the paper in Appendix B.2, we prove Lemma 4 in Appendix B.3. Then we prove some
technical lemmas in Appendix B.4, which are required by the proof of Theorem 3 in
Appendix B.5. Finally, we discuss the regret upper-bound of UniRank for some specific
settings in Appendix B.6.

B.2 Notations

Symbol Meaning
T Time horizon
t iteration
L number of items
i index of an item
K number of positions in a recommendation
k index of a position
[n] set of integers {1, . . . , n}
PLK set of permutations of K distinct items among L
θθθ vectors of probabilities of click
θi probability of click on item i

κκκ vectors of probabilities of view
κk probability of view at position k

A set of bandit arms
aaa an arm in A
aaa(t) the arm chosen at iteration t

ak item displayed at position k in the recommendation aaa

Continued on next page

139



Symbol Meaning
aaa∗ best arm
ρ function from PLK× [K] to [0, 1] giving the probability of click
ρ(aaa, k) probability of click on the item displayed at position k when

recommending aaa
ccc(t) clicks vector at iteration t

ci(t) clicks on item i at iteration t

r(t) reward collected at iteration t, r(t) =
∑L
i=1 ci(t)

µaaa expectation of r(t) while recommending aaa, µaaa = E[r(t) | aaa(t) = aaa]
µ∗ highest expected reward, µ∗ = maxaaa∈PLK µaaa
∆ generic reward gap between one of the sub-optimal arms and

one of the best arms
∆c reward gap while exchanging items min(c− 1,K) and c in the

optimal recommendation,
δ̃i,j smallest probability for ci(t) to be different from cj(t)

while both items are in the same subset of the chosen parti-
tion PPP (t)

δ̃∗k smallest probability for cmin(k−1,K)(t) to be different from
ck(t), while both items are in the same
subset of the chosen partition PPP (t) and PPP (t) is in the neigh-
borhood of the optimal partition

∆̃i,j smallest (respectively highest) expected difference of click
between items i and j if i � j (resp. j � i)
while both items are in the same subset of the chosen parti-
tion PPP (t)

R(T ) cumulative (pseudo-)regret, R(T ) = Tµ∗ − E
[∑T

t=1 µaaa(t)
]

� strict weak order
(i, j) ◦ aaa permutation swapping items i and j in recommendation aaa

PPP ordered partition of items representing a subset of recom-
mendations, PPP = (P1, . . . , Pd)

Pc cth part of PPP such as
⋃d
c=1 Pc = [L], and Pc ∩ Pc′ is empty when

c 6= c′

A (PPP ) set of recommendations aaa agreeing with PPP

P̃PP (t) best partition at iteration t given the previous choices and
feedbacks (called leader)

PPP ∗ partition such that any permutation aaa in A (PPP ∗) is compatible
with the strict weak order on items.

G graph carrying a partial order on the partitions of items
Continued on next page

140



Symbol Meaning
ti,j(t) number of iterations at which items i and j have been gath-

ered in the same subset of items Pc(s),
ti,j(t)

def=
∑t−1
s=1 1

{
∃c, (i, j) ∈ Pc(s)2}

Ti,j(t) number of iterations at which items i and j have been gath-
ered in the same subset of items Pc(s)
and lead to a different click value, Ti,j(t) =∑t−1
s=1 1

{
∃c, (i, j) ∈ Pc(s)2}1{ci(s) 6= cj(s)}

t̃P̃PP (t) number of time a permutation P̃PP as been the leader, t̃P̃PP (t) def=∑t−1
s=1 1

{
P̃PP (s) = P̃PP

}
δ̃i,j(aaa) probability of difference,δ̃i,j(aaa) = Paaa′∼U({aaa,(i,j)◦aaa}) [ci 6= cj ]
∆̃i,j(aaa) expected click difference,∆̃i,j(aaa) =

Eaaa′∼U({aaa,(i,j)◦aaa}) [ci − cj | ci 6= cj ]
ŝi,j(t) UniRank’s main statistic to infer that i � j, ŝi,j(t)

def=
1

Ti,j(t)
∑t−1
s=1 1

{
∃c, (i, j) ∈ Pc(s)2} (ci(s)− cj(s))

si,j(t) Kullback-Leibler based pessimistic estimator, si,j(t)
def= 2 ∗

f
(

1+ŝi,j(t)
2 , Ti,j(t), t̃P̃PP (t)

)
− 1

s̃i,j(t) slightly pessimistic estimator s̃i,j(t)
def= ŝi,j(t)−

√
log log t/Ti,j(t)

f Kullback-Leibler index function, f(µ̂, T, t) def= inf{µ ∈ [0, µ̂] : T ×
kl(µ̂, µ) ≤ log(t) + 3 log(log(t))},

kl(p, q) Kullback-Leibler divergence from a Bernoulli distribution
of mean p

to a Bernoulli distribution of mean q, kl(p, q) = p log
(
p
q

)
+ (1−

p) log
(

1−p
1−q

)
U(S) uniform distribution on the set S

c (in PB-MHB) parameter controlling size of the step in the
Metropolis Hasting inference

Table B.1: Summary of the notations of Chapter 5.

Table B.1 summarizes the notations used throughout the paper and the appendix.
Below are additional notations necessary for the proofs.

Definition 4 (Specific notations to count events and observations). The proofs are based
on the concentration of the statistic ŝi,j(t) which is the average over Ti,j(t) observations.
The number Ti,j(t) itself is a sum: the sum of the random variables 1{ci(s) 6= cj(s)} |

141



∃c, (i, j) ∈ Pc(s)2, where s is in [t]. To discuss the concentration of this sum, for any
iteration t in [T ], we denote ti,j(t)

def= ∑t−1
s=1 1 {∃c, (i, j) ∈ Pc(s)2} the number of iterations

at which the random variable is observed.

Definition 5 (Recommended subset). Let (L,K, ρ) be an online learning to rank problem,
PPP be an ordered partition of [L] in d subsets, and c ∈ [d] the index of one of these sub-
sets. The subset Pc is recommended (denoted Rec(Pc)) if the recommendations compatible
with PPP include some items from Pc. More specifically, the subset Pc is recommended if
|⋃`∈[c−1] P`| < K.

Definition 6 (Expectations on clicks). let i and j be two different items.
We denote

δ̃i,j
def= min

PPP :∃c,(i,j)∈P 2
c ∧Rec(Pc)

Paaa(t)∼U(A(PPP )) [ci(t) 6= cj(t)]

the smallest probability for ci(t) to be different from cj(t) while both items are in the same
subset of the chosen partition PPP (t) (and may potentially be clicked upon). If we assume
1 � 2 � · · · � L, we also denote

δ̃∗i
def= min

PPP∈N (({1},...,{K},{K+1,...,L})):∃c,(min(i−1,K),i)∈P 2
c

Paaa(t)∼U(A(PPP ))
[
cmin(i−1,K)(t) 6= ci(t)

]

the smallest probability for cmin(i−1,K)(t) to be different from ci(t) while both items min(i−
1, K) and i are in the same subset of the chosen partition PPP (t) (and may potentially be
clicked upon), and PPP (t) is in the neighborhood of the optimal partition PPP ∗ = ({1}, . . . , {K},
{K + 1, . . . , L}).

If i � j, we denote

∆̃i,j
def= min

PPP :∃c,(i,j)∈P 2
c ∧Rec(Pc)

Eaaa(t)∼U(A(PPP )) [ci(t)− cj(t) | ci(t) 6= cj(t)] = min
aaa∈PLK :{i,j}∩aaa([K]) 6=∅

∆̃i,j(aaa),

the smallest expected difference of clicks between items i and j while both items are in the
same subset of the chosen partition PPP (t) (and may potentially be clicked upon).

Symmetrically, if j � i, we denote

∆̃i,j
def= max

PPP :∃c,(i,j)∈P 2
c ∧Rec(Pc)

Eaaa(t)∼U(A(PPP )) [ci(t)− cj(t) | ci(t) 6= cj(t)] = max
aaa∈PLK :{i,j}∩aaa([K]) 6=∅

∆̃i,j(aaa),

the greatest expected difference of clicks between items i and j while both items are in the
same subset of the chosen partition PPP (t) (and may potentially be clicked upon).

142



Lemma 7 in Appendix B.4.2 ensures the proper definition of these notations under
Assumptions 2, 4, and 5, and states that δ̃i,j = δ̃j,i > 0 and ∆̃i,j = −∆̃j,i > 0 if i � j.

Definition 7 (Reward gap). Let (L,K, ρ) be an OLR problem satisfying Assumption 4 and
such that the order on items is a total order. Without loss of generality, let us assume that
1 � 2 � · · · � L.. Denoting PPP ∗ = ({1}, . . . , {K}, {K + 1, . . . , L}) the optimal partition
associated to this order and taking c > 2, the reward gap of item c is

∆c
def= ρ (aaa∗,min(c− 1, K)) + ρ (aaa∗, c)
− ρ ((min(c− 1, K), c) ◦ aaa∗,min(c− 1, K))− ρ ((min(c− 1, K), c) ◦ aaa∗, c)

Note that for c 6 K, ∆c
def= ρ(aaa∗, c−1)+ρ(aaa∗, c)−ρ((c− 1, c)◦aaa∗, c−1)−ρ((c− 1, c)◦

aaa∗, c), and for c > K + 1, ∆c = ρ(aaa∗, K)− ρ((K, c) ◦ aaa∗, K).

B.3 Proof of Lemma 4 (PBM and CM Fulfills As-
sumptions 2, 4, and 5)

For both CM and PBM click models, we note θi the click probability of item i. For
PBM we have κk the probability that a user see the position k.

Proof. Let us begin with some preliminary remarks.
First, with PBMmodel, the positions are ranked by decreasing observation probability,

meaning that κaaa1 > κaaa2 > · · · > κaaaK .
Secondly, by definition, ρ(k,aaa) > 0 for any position k and recommendation aaa, which

implies that:
— mini θi > 0 and maxi θi < 1 in CM model;
— κK > 0 in PBM model.
Let us now prove that Assumptions 2, 4 and 5 are fulfilled by PBM and CM click

models with the strict weak order � defined by i � j ⇐⇒ θi > θj.
By definition of �, Assumption 2 is fulfilled taking the the preferential attachment

function g : i 7→ θi, and 3 is fulfilled as soon as θi 6= θj for any items i 6= j

For Assumption 4, we have to prove that having aaa compatible with � is optimal,
meaning µaaa = µ∗.

Let aaa be a permutation compatible with �.

143



In the case of CM, µaaa = 1−∑K
k=1(1− θak). In order to maximize µaaa, one has to select

the K higher values of θθθ. As aaa is compatible with �, which is defined based on values θi,
it satisfies this property. Hence, CM fulfills Assumption 4.

For PBM, µaaa = ∑K
k=1 θaaakκk. As the series (κk)k∈[K] is non-increasing, µaaa is maximized

if (θk)k∈[K] is also non-increasing and if θK > maxk6K+1 θk. These properties are ensured
by the fact that aaa is compatible with � and that � is defined based on values θi. Hence,
PBM fulfills Assumption 4.

We now prove that CM and PBM fulfill Assumption 5. Let i and j be two distinct
items such that i � j and aaa ∈ PLK be a recommendation such that at least one of both
items is displayed.

First, Eaaa′∼U({aaa,(i,j)◦aaa}) [ci(t) 6= cj(t) | aaa(t) = aaa′] is non-null with PBM model as ci(t) and
cj(t) are independent and as at least one of the four variables ci(t) | aaa(t) = aaa, ci(t) | aaa(t) =
(i, j) ◦ aaa, cj(t) | aaa(t) = aaa, cj(t) | aaa(t) = (i, j) ◦ aaa has an expectation which is non-zero and
strictly smaller than 1 (due to κK > 0 and θi > θj).

Similarly, Eaaa′∼U({aaa,(i,j)◦aaa}) [ci(t) 6= cj(t) | aaa(t) = aaa′] is non-null with CM model as at
most one of both items can be clicked at each iteration and the shown item has non-zero
probability to be clicked (by definition of ρ).

Then, we consider ∆̃i,j(aaa) as

∆̃i,j(aaa) = Paaa′∼U({aaa,(i,j)◦aaa})(ci = 1, cj = 0)− Paaa′∼U({aaa,(i,j)◦aaa})(ci = 0, cj = 1)
Paaa′∼U({aaa,(i,j)◦aaa})(ci = 1, cj = 0) + Paaa′∼U({aaa,(i,j)◦aaa})(ci = 0, cj = 1)

We want to control the sign of ∆̃i,j(aaa), which is also the sign of its numerator, as its
denominator (noted D∆̃i,j(aaa)) is non-negative.

The recommendation aaa′ is drawn uniformly in {aaa, (i, j) ◦ aaa} thus

Paaa′∼U({aaa,(i,j)◦aaa})(ci = 1, cj = 0) = 1
2Paaa(ci = 1, cj = 0) + 1

2P(i,j)◦aaa(ci = 1, cj = 0).

When considering a CM click model, we have Paaa(ci = 1, cj = 0) = ∏k−1
p=1(1−θap)θi and

Paaa(ci = 0, cj = 1) = ∏l−1
p=1(1− θap)θj when i and j ∈ aaa.

In that case, we have:

∆̃i,j(aaa) =
1
2
∏k−1
p=1(1− θap)θi + 1

2
∏l−1
p=1(1− θap)θi −

(
1
2
∏l−1
p=1(1− θap)θj + 1

2
∏k−1
p=1(1− θap)θj

)
D∆̃i,j(aaa)

144



which can be simplified in:

∆̃i,j(aaa) =
1
2

(∏k−1
p=1(1− θap) +∏l−1

p=1(1− θap)
)

(θi − θj)
D∆̃i,j(aaa)

.

Since maxi θi < 1, ∏k−1
p=1(1 − θap) + ∏l−1

p=1(1 − θap) > 0, thus the sign of ∆̃i,j(aaa) is the
sign of (θi − θj) and ∆̃i,j(aaa) > 0 ⇐⇒ θi > θj ⇐⇒ i � j.

Now if i /∈ aaa then Paaa(ci = 1, cj = 0) = 0 as the position is not seen. We have:

∆̃i,j(aaa) =
1
2(∏l−1

p=1(1− θap))(θi − θj)
D∆̃i,j(aaa)

which leads to the same conclusion as the previous case. By symmetry, we have the same
conclusion with j /∈ aaa.

Now with a PBM click model, we have Paaa(ci = 1, cj = 0) = κkθi(1 − κlθj) as ci = 1
and cj = 0 are independant events.

Thus, we have:

∆̃i,j(aaa) =
1
2κkθi(1− κlθj) + 1

2κlθi(1− κkθj)−
(

1
2κlθj(1− κkθi) + 1

2κkθj(1− κlθi)
)

D∆̃i,j(aaa)

which can be simplified in:

∆̃i,j(aaa) =
1
2(κk + κl)(θi − θj)

D∆̃i,j(aaa)

As κk or κl is positive if i or j is presented, similarly to the CM case we have ∆̃i,j(aaa) >
0 ⇐⇒ θi > θj ⇐⇒ i � j.

This proof can be extended to i or j /∈ aaa by taking κk = 0 when k > K.
We can conclude that both CM and PBM fulfills Assumption 5.

B.4 Technical Lemmas Required by the Proof of The-
orem 3

In this section, we gather technical Lemmas required to prove the regret upper-bound
of UniRank. These lemmas regard the pseudo-unimodality of the considered setting (Ap-

145



pendix B.4.1), the concentration away from zero of the statistic ŝi,j(t) (Appendices B.4.2
and B.4.3), and the sufficient optimism brought by si,j(t) (Appendix B.4.4).

B.4.1 Proof of Lemma 5 (Pseudo-Unimodality Assuming a Total
Order on Items)

Proof. To ease the notations, we take the following order on items: 1 � 2 � · · · � L.
Therefore, PPP ∗ = ({1}, . . . , {K}, {j ∈ [L] \ [K]}). Thus P̃PP 6= PPP ∗ implies that P̃PP does not
have the same attributes as PPP ∗ :

— either there exists c ∈ [d− 1] such that |P̃c| > 1;
— or P̃PP = ({1}, . . . , {K}, {` : ` ∈ [L] \ [K]}), with ⋃L

`=1{`} = [L], there exists c in
[K], such that P̃c = {i}, and there exists j ∈ P̃c+1 such that j � i.

Let us show that this second alternative is divided into the two last outputs of Lemma
5. Let c ∈ [K] be the smallest index such that P̃c = {i} and there exists j ∈ P̃c+1 such
that j � i. Either c > 1, and therefore P̃c−1 = {i′} and i′ � i, or c = 1.

B.4.2 Minimum Expected Click Difference

Assumption 5 builds upon ∆̃i,j(aaa) which measures the difference of attractiveness
between i and j while all other items are at fixed positions. In the theoretical analysis of
UniRank, we handle situations where other items may also change in position thanks to
the following Lemma.

Lemma 7 (Minimum expected click difference). Let (L,K, ρ) be an OLR problem satis-
fying Assumptions 4 and 5 with � the order on items, and let i and j be two items such
that i � j. Then, for any partition of items PPP , if there exists c such that (i, j) ∈ P 2

c

and Eaaa(t)∼U(A(PPP )) [ci(t) 6= cj(t)] 6= 0, then Eaaa(t)∼U(A(PPP )) [ci(t)− cj(t) | ci(t) 6= cj(t)] > 0 and
therefore

δ̃i,j > 0 and ∆̃i,j > 0.

Symmetrically, if j � i, for any partition of items PPP , if there exists c such that (i, j) ∈
P 2
c and Eaaa(t)∼U(A(PPP )) [ci(t) 6= cj(t)] 6= 0, then Eaaa(t)∼U(A(PPP )) [ci(t)− cj(t) | ci(t) 6= cj(t)] < 0

and therefore

δ̃i,j > 0 and ∆̃i,j < 0.

146



Proof. The proof consists in writing Eaaa(t)∼U(A(PPP )) [ci(t) 6= cj(t)] 6= 0 two times as a sum
other aaa(t) ∈ U(A (PPP )), and in reindexing one of both sums by (i, j) ◦ aaa(t) ∈ U(A (PPP )).
Then, adding the terms of both sums we get a sum of terms ∆̃i,j(aaa) which by assumption
5 are positive. Hence this sum is positive, which concludes the proof.

B.4.3 Upper-bound on the Number of High Deviations for Vari-
ables with Lower-Bounded Mean

The Proof of Theorem 3 requires the control of the expected number of high deviations
of the statistic ŝi,j(t). We control this expectation through Lemma 10 which derives from
the application of Lemmas 8 and 9 to ŝi,j(t) and T̂i,j(t). Hereafter, we express and prove
the three lemmas. Note that Lemmas 8 and 9 are extensions of Lemmas 4.3 and B.1 of
[13] to a setting where the handled statistic is a mixture of variables following different
laws of bounded expectation.

Lemma 8 (Concentration bound with lower-bounded mean). Let (Xa
t )t>1 with a ∈ R, be

|R| <∞ independent sequences of independent random variables bounded in [0, B] defined
on a probability space (Ω,F ,P). Let Ft be an increasing sequence of σ−fields of F such
that for each t, σ((Xa

1 )a∈R, . . . , (Xa
t )a∈R) ⊂ Ft and for s > t and a a recommendation, Xa

s

is independent from Ft. Consider |R| previsible sequences (εat )t≥1 of Bernoulli variables
(for all t > 0, εat is Ft−1 −mesurable) such that for all t > 0, ∑i ε

a
t ∈ {0, 1}. Let δ > 0

and for every t ∈ {1, . . . , n} let

S(t) =
t∑

s=1

∑
i

εis(X i
s − E[X i

s]), T (t) =
t∑

s=1

∑
i

εis, µ̂(t) = S(t)
N(t) .

Define φ ∈ {t0, . . . , T + 1} a F-stopping time such that either T (φ) > s or φ = T + 1.
Then

P (S(φ) > T (φ)δ, φ 6 T ) 6 exp(−2nδ2

B2 ).

Proof. Let λ > 0, and define Gt = exp(λ(S(t)− δT (t)))1{t 6 T}. We have that:

P(S(φ) > T (φ)δ, φ 6 T ) = P(exp(λ(S(φ)− δT (φ))1{φ 6 T} > 1)
= P(gφ > 1)
6 E[Gφ].

Next we provide an upper bound for E[Gφ]. We define the following quantities:

147



Y i
s = εis(λ(X i

s − E[X i
s])− λ2B2/8)

G̃t = exp
(

t∑
s=1

∑
i

Y i
s

)
1{t 6 T}.

Taking λ = 4δ/B2, Gt can be written:

Gt = G̃t exp(−T (t)(λδ − λ2B2/8) = G̃t exp(−2T (t)δ2/B2).

As T (t) > n if φ 6 T we can upper bound Gφ by:

Gφ = G̃φ exp(−2T (φ)δ2/B2) 6 G̃φ exp(−2nδ2/B2).

It is noted that the above inequality holds even when φ = T +1, since GT+1 = G̃T+1 =
0. Hence:

E[Gφ] 6 E[G̃φ] exp(−2nδ2/B2)

We prove that
(
G̃t

)
t
is a super-martingale. We have that E[G̃T+1 | FT ] = 0 6 G̃T . For

s 6 T − 1, since Bt+1 is F measurable:

E[G̃t+1 | Ft] = G̃t((1−
∑
i

εit+1) +
∑
i

εit+1E[exp(Y i
t+1)]).

As proven in (Hoeffding, 1963)[eq. 4.16] since X i
t+1 ∈ [0, B]:

E[exp(λ(X i
t+1 − E[X i

t+1])] 6 exp(λ2B2/8),

so EE[exp(Y i
t+1)] 6 1 and

(
G̃t

)
t
is a super-martingale: E[G̃t+1 | Ft] 6 G̃t. Since φ 6 T +1

almost surely, and
(
G̃t

)
t
is a supermartingale, Doob’s optional stopping theorem yields:

E[G̃φ] 6 E[G̃0] = 1, and so

P(S(φ) > T (φ)δ, φ 6 T ) 6 E[Gφ]
6 E[G̃φ] exp(−2nδ2/B2)
6 exp(−2nδ2/B2),

which concludes the proof

148



Lemma 9 (Expected number of large deviation with lower-bounded mean). Let (L,K, ρ)
be an OLR problem, Ft the natural σ-algebra generated by the OLR problem, and F =
(Ft)t∈Z the corresponding filtration. We denote Ot

def= (aaa(1), ccc(1), . . . , aaa(t − 1), ccc(t − 1))
the set of random values observed up to time t − 1. Let Zt ∈ [0, B] and Bt ∈ {0, 1} be
two Ft−1-measurable random variables, Λ ⊆ N be a random set of instants, and ε > 0.
For any t ∈ Z, we denote S(t) def= ∑t

s=0BsZs and T (t) def= ∑t
s=0Bs. If for any t > 0,

E [Zt | 0t, Bt = 1] > δ and there exists a sequence of random sets (Λ(n))n>0 such that (i)
Λ ⊆ ⋃

n>0 Λ(n), (ii) for all n > 0 and all t ∈ Λ(n), T (t) > εn, (iii) |Λ(n)| 6 1, and (iv)
the event t ∈ Λ(n) is F-measurable. Then

E

∑
t≥1
1{t ∈ Λ : S(t) < δ

2T (t)}
 ≤ 2B2

εδ2

Proof. Let T ∈ N. For all n ∈ N, |Λ(n)| 6 1, we define Φn as T + 1 if Λ(n)∩ [T ] is empty
and {Φn} = Λ(n) otherwise. Since Λ ⊆ ⋃n>0 Λ(n), we have

T∑
t=1
1

{
t ∈ Λ : S(t) < δ

2T (t)
}
6
∑
n>1
1

{
S(Φn) < δ

2T (Φn),Φn 6 T

}
.

Taking expectations,

E

[
T∑
t=1
1

{
t ∈ Λ : S(t) < δ

2T (t)
}]

6
∑
n>1
P

[
S(Φn) < δ

2T (Φn),Φn 6 T

]

For any t ∈ N, denote S ′(t) def= ∑t
s=0Bs(Zs − E [Zs | 0s, Bs = 1]). As for any s ∈ N,

E [Zs | 0s, Bs = 1] > δ, S ′(t) < S(t)− T (t)δ. Therefore, for any n ∈ N

P

[
S(Φn) < δ

2T (Φn),Φn 6 T

]
6 P

[
S ′(Φn) < −δ2T (Φn),Φn 6 T

]

and
E

[
T∑
t=1
1

{
t ∈ Λ : S(t) < δ

2T (t)
}]

6
∑
n>1
P

[
S ′(Φn) < −δ2T (Φn),Φn 6 T

]

By Lemma 8, since Φn is a stopping time upper bounded by T + 1, and T (Φn) > εn,

E

[
T∑
t=1
1

{
t ∈ Λ : S(t) < δ

2T (t)
}]

6
∑
n>1

exp
(
−εnδ

2

2B2

)
6

2B2

εδ2 ,

where the last inequality drives from the ∑n>1 exp (−nw) 6
∫+∞

0 exp (−uw) du = 1
w
.

149



This upper-bound is valid for any T , which concludes the proof.

Lemma 10 (Expected number of large deviation for our statistics). Let (L,K, ρ) be an
OLR problem satisfying Assumptions 4 and 5 with � the order on items, and let i and j be
two items. If there exists a sequence of random sets (Λ(n))n>0 such that (i) Λ ⊆ ⋃n>0 Λ(n),
(ii) for all n > 0 and all t ∈ Λ(n), ti,j(t) > εn, (iii) |Λ(n)| 6 1, and (iv) the event t ∈ Λ(n)
is F-measurable. Then,

E

∑
t≥1
1

{
t ∈ Λ, Ti,j(t) <

δ̃i,j
2 ti,j(t)

} = O(1) (B.1)

and

E

∑
t≥1
1

{
t ∈ Λ, ŝi,j(t)

∆̃i,j

<
1
2

} = O(1),

meaning

E

∑
t≥1
1

{
t ∈ Λ, ŝi,j(t) <

∆̃i,j

2

} = O(1) , if i � j; (B.2)

E

∑
t≥1
1

{
t ∈ Λ, ŝi,j(t) >

∆̃i,j

2

} = O(1) , if j � i. (B.3)

Proof. Let assume i � j. We first prove Claim (B.1) and then prove Claim (B.2) using
Claim (B.1).

For any t 6 1, we define both following Ft−1-measurable random variables

Zt
def= 1 {ci(t) 6= cj(t)} Bt

def= 1
{
∃c, (i, j) ∈ Pc(t)2

}
,

and we denote Ot
def= (aaa(1), ccc(1), . . . , aaa(t − 1), ccc(t − 1)) the set of random values ob-

served up to time s − 1. Note that Ti,j(t + 1) = ∑t
s=1BsZs, ti,j(t + 1) = ∑t

s=1Bs, and
E [Zt | 0t, Bt = 1] > δ̃i,j by Lemma 7.

Therefore by Lemma 9

E

∑
t≥1
1{t ∈ Λ : Ti,j(t+ 1) < δ̃i,j

2 ti,j(t+ 1)}
 6

2
εδ̃2
i,j

,

150



meaning

E

∑
t≥1
1{t ∈ Λ : Ti,j(t) <

δ̃i,j
2 ti,j(t)}

 6 1 + 2
εδ̃2
i,j

= O(1),

which corresponds to Claim (B.1).

Let now prove Claim (B.2) using the following decomposition

E

[
T∑
t=1
1

{
t ∈ Λ, ŝi,j(t) <

∆̃i,j

2

}]
6 E

[
T∑
t=1
1

{
t ∈ Λ, ŝi,j(t) <

∆̃i,j

2 Ti,j(t) <
δ̃i,j
2 ti,j(t)

}]

+ E
[
T∑
t=1
1

{
t ∈ Λ, ŝi,j(t) <

∆̃i,j

2 , Ti,j(t) >
δ̃i,j
2 ti,j(t)

}]
,

Where the first right-hand side term is smaller than E
[∑

t≥1 1

{
t ∈ Λ, Ti,j(t) < δ̃i,j

2 ti,j(t)
}]

and therefore is a O(1). We control the second term by applying again Lemma 9.

For any t 6 1, we define both following Ft−1-measurable random variables

Zt
def= ci(t)− cj(t) Bt

def= 1
{
∃c, (i, j) ∈ Pc(t)2, ci(t) 6= cj(t)

}
,

Note that Zt ∈ [−1, 1], ŝi,j(t + 1)Ti,j(t + 1) = ∑t
s=1BsZs, Ti,j(t + 1) = ∑t

s=1Bs, and
E [Zt | 0t, Bt = 1] > ∆̃i,j by Lemma 7 as i � j.

We also define A def= Λ ∩
{
t ∈ N : Ti,j(t) > δ̃i,j

2 ti,j(t)
}

and for any n ∈ N, A(n) def=

Λ(n) ∩
{
t ∈ N : Ti,j(t) > δ̃i,j

2 ti,j(t)
}
. Then, (i) as Λ ⊆ ⋃

n>0 Λ(n), A ⊆ ⋃
n>0A(n), (ii) for

all n > 0 and all t ∈ A(n), Ti,j(t) > δ̃i,j
2 ti,j(t) >

δ̃i,j
2 εn, (iii) |A(n)| 6 |Λ(n)| 6 1, and (iv)

the event t ∈ A(n) is F -measurable. Therefore by Lemma 9

E

∑
t≥1
1{t ∈ A : ŝi,j(t+ 1)Ti,j(t+ 1) < ∆̃i,j

2 Ti,j(t+ 1)}
 6

8
δ̃i,jε∆̃2

i,j

,

meaning

E

∑
t≥1
1

{
t∈Λ,ŝi,j(t)<

∆̃i,j
2 ,

Ti,j(t)>
δ̃i,j

2 ti,j(t)

} 6 1 + 8
δ̃i,jε∆̃2

i,j

= O(1).

Overall, E
[∑T

t=1 1
{
t∈Λ,ŝi,j(t)<

∆̃i,j
2

}]
= O(1)+O(1) = O(1) which corresponds to Claim

(B.2).

Other claims are proved symmetrically.

151



B.4.4 Upper-Bound on the Number of Upper-Estimations of a
Pessimistic Estimator

This section presents two results aiming at upper-bounding the number of iterations
at which ∆̃i,j is upper-estimated by si,j(t) if i � j. These new results are extensions of
Lemma 9 and Theorem 10 of [21] to a setting where the handled statistic is a mixture of
variables following different laws of bounded expectation.

Lemma 11. Let X be a random variable taking value in [0, 1] and let µ ≤ E[X]. then for
all λ < 0,

E[exp(λX)] ≤ 1− µ+ µ exp(λ),

Proof. The function f : [0, 1] R−→ defined by f(x) = exp(λx)− x(exp(λ)− 1)− 1 is convex
and such that f(0) = f(1) = 0, hence f(x) ≤ 0 for all x ∈ [0, 1]. Consequentely,

E[exp(λX)] ≤ E[X(exp(λ)− 1) + 1] = E[X](exp(λ)− 1) + 1

As λ < 0 and µ ≤ E[X], we have E[X](exp(λ)− 1) ≤ µ(exp(λ)− 1) and

E[exp(λX)] ≤ µ(exp(λ)− 1) + 1

Lemma 12. Let (Xa
t )t>1 with a ∈ R, be |R| <∞ independent sequences of independent

random variables bounded in [0, 1] defined on a probability space (Ω,F ,P) with common
expectations µa = E[Xa

t ] of minimal value µ = mina∈R µa. Let Ft be an increasing sequence
of σ−fields of F such that for each t, σ((Xa

1 )a∈R, . . . , (Xa
t )a∈R) ⊂ Ft and for s > t and a

a recommendation, Xa
s is independent from Ft. Consider |R| previsible sequences (εat )t≥1

of Bernoulli variables (for all t > 0, εat is Ft−1 − mesurable) such that for all t > 0,∑
i ε
a
t ∈ {0, 1}. Let δ > 0 and for every t ∈ {1, . . . , n} let

S(t) =
t∑

s=1

∑
i

εisX
i
s, N(t) =

t∑
s=1

∑
i

εis, µ̂(t) = S(t)
N(t)

u(n) = max{q > µ̂n : N(n)d(µ̂(n), q) ≤ δ}

Then
P(u(n) < µ) ≤ edδ log(n)e exp(−δ)

152



Proof. For every λ < 0, by Lemma 11, it holds that log(E[exp(λXa
1 )]) ≤ log(1 − µ +

µ exp(λ)) = φµ(λ) for all a. Let W λ
0 = 1 and for t ≥ 1,

W λ
t = exp(λS(t)−N(t)φµ(λ))

(W λ
t )t≥0 is a super-martingale relative to (Ft)t≥0. In fact,

E[exp(λ{S(t+ 1)− S(t)})|Ft] = E[exp(λ
∑
i

εit+1X
i
t+1)|Ft]

As (X i
t)t are independent sequences, we can rewrite :

E[exp(λ{S(t+1)−S(t)})|Ft] =
∏
i

E[exp(λεit+1X
i
t+1)|Ft] =

∏
i

exp(εit+1 log(E[exp(λX i
t+1)|Ft]))

= exp(
∑
i

εit+1 log(E[exp(λX i
1)|Ft])) ≤ exp(

∑
i

εit+1φµ(λ)) = exp({N(t+ 1)−N(t)}φµ(λ))

which can be rewritten as

E[exp(λS(t+ 1)−N(t+ 1)φµ(λ))|Ft] ≤ exp(λS(t)−N(t)φµ(λ))

The rest of the proof follows [21]. Using the "peeling trick", interval {1, . . . , n} of
possible values for N(n) is divided into slices {tk−1 +1, . . . , tk} of geometrically increasing
size. Each slice is treated independently. We assume that δ > 1 and we construct the slicing
as follow : t0 = 0 and for k ∈ N∗, tk = b(1 + η)kc, with η = 1/(δ− 1). LetD = d logn

log 1+ηe be
the first inter such that tD ≥ n and Ak = {tk−1 ≤ N(n) ≤ tk} ∩ {u(n) < µ} . We have :

P(u(n) < µ) ≤ P(
D⋃
k=1

Ak) ≤
D∑
k=1
P(Ak)

Note that by definition of u(n), we have u(n) < µ if and only if µ̂(n) < µ andN(n)d(µ̂(n), µ) >
δ. Let s be the smallest integer sch that δ/(s+1) ≤ d(0, µ). IfN(n) ≤ s, thenN(n)d(µ̂, µ) ≤
sd(µ̂, µ) ≤ asµ̂ ≤ µ

≤
sd(0, µ)bydefintionofs

<
δ. Thus, we can’t have µ̂ < µ andN(n)d(µ̂, µ) >

δ and P(u(n) < µ) = 0 . We have for all k such that tk ≤ s, P(Ak) = 0 and we have
u(n) > µ when N(n) ∈ tk−1 + 1, . . . , tk when tk ≤ s

Now lets see how u(n) can be upper bounded by µ when N(n) > s For k such that
tk ≥ s, we note t̃k−1 = maxtk−1, s and we take z < µ such as d(z, µ) = δ/(1 + η)k and
x ∈]0, µ[ such that d(x, µ) = δ/N(n). We define λ(x) = log(x(1− µ))− log(µ(1− x)) < 0

153



so that we can rewrite d(x, µ) asd(x, µ) = λ(x)x− φµ(λ(x))
— with N(n) > t̃k−1, we have d(z, µ) = δ

(1+µ)k ≥
δ

(1+µ)N(n)

— with N(n) ≤ tk, we have d(µ̂(n), µ) > δ
N(n) >

δ
(1+η)k = d(z, µ). As µ̂ < µ, we have

µ̂(n) ≤ z

Hence on the event {t̃k−1 < N(n) ≤ tk} ∩ {µ̂(n) < µ} ∩ {d(µ̂(n), µ) it holds that
λ(z)µ̂(n)− φµ(λ(z)) ≥ λ(z)z − φµ(λ(z)) = d(z, µ) ≥ δ

(1+η)N(n)

It leads to :

{t̃k−1 < N(n) ≤ tk} ∩ {u(n) < µ} ⊂ {λ(z)µ̂(n)− φµ(λ(z)) ≥ δ

(1 + η)N(n)}

⊂ {λ(z)S(n)−N(n)φµ(λ(z)) ≥ δ

(1 + η)}

⊂ {W λ
n (z) > exp

(
δ

(1 + η)

)
}

As (W λ
t )t≥0 is a supermartingale, E[W λ(z)

n ] ≤ E[W λ(z)
n ] = 1, and the Markov inequality

yields :

P({t̃k−1 < N(n) ≤ tk} ∩ {u(n) < µ}) ≤ P
(
W λ
n (z) > exp

(
δ

(1 + η)

))
≤ exp

(
− δ

(1 + η)

)

As η = 1/(δ − 1), D = d logn
log 1+ηe and log(1 + 1/(δ − 1)) ≥ 1/δ, we obtain :

P(u(n) < µ) ≤
 log n

log
(
1 + 1

δ−1

)
 exp(−δ + 1) ≤ edδ log(n)e exp(−δ)

B.5 Proof of Theorem 3 (Upper-Bound on the Re-
gret of UniRank Assuming a Total Order on
Items)

Before proving the regret upper-bound of UniRank, we prove Lemmas 13 and 14 which
are respectively bounding the exploration when the leader is the optimal one, and the
number of iterations at which the leader is sub-optimal. Finally, the regret upper-bound

154



of UniRank is given in Appendix B.5.3.

B.5.1 Upper-Bound on the Number of Sub-Optimal Merges of
UniRank when the Leader is the Optimal Partition

Lemma 13 (Upper-bound on the number of sub-optimal merges of UniRank when the
leader is the optimal partition). Under the hypotheses of Theorem 3, for any position
c ∈ {2, . . . , L} UniRank fulfills

E

[
T∑
t=1
1
{

P̃PP (t)=PPP ∗,
∃c′,Pc′ (t)={min(c−1,K),c}

}]
6

16
δ̃∗c ∆̃2

min(c−1,K),c
log T +O (log log T ) .

Proof. Let c ∈ {2, . . . , L} be a position, and denote i (respectively j) the item min(c− 1, K)
(resp. c). We aim at upper-bounding the number of iterations such that the leader P̃PP (t) is
the optimal partition PPP ∗, and either the subsets PPP ∗c−1 = {i} and PPP ∗c = {j} are merged in
the chosen partition PPP (t), or j ∈ P̃PP ∗K+1(t) is added to the subset PPP ∗K = {i} in the chosen
partition PPP (t). Both situations require si,j(t) to be non-positive.

Let decompose this number of iterations:

E

[
T∑
t=1
1
{

P̃PP (t)=PPP ∗,
∃c′,Pc′ (t)={min(c−1,K),c}

}]
= E

[
T∑
t=1
1

{
P̃PP (t)=PPP ∗, ∃c′,Pc′ (t)={i,j},

si,j(t)<0

}]

6 E

[
T∑
t=1
1

{
P̃PP (t)=PPP ∗, ∃c′,Pc′ (t)={i,j},

ŝi,j(t)<
∆̃i,j

2

}]

+ E
[
T∑
t=1
1

{
P̃PP (t)=PPP ∗, ∃c′,Pc′ (t)={i,j},

T ∗j (t)<
δ̃∗
j
2 t
∗
j (t)

}]

+ E
 T∑
t=1
1


P̃PP (t)=PPP ∗, ∃c′,Pc′ (t)={i,j},

T ∗j (t)>
δ̃∗
j
2 t
∗
j (t), ŝi,j(t)>

∆̃i,j
2 ,

si,j(t)60


 ,

where t∗j(t)
def= ∑t−1

s=1 1
{
P̃PP (t) = PPP ∗

}
1 {∃c, (i, j) ∈ Pc(s)2},

and T ∗j (t) def= ∑t−1
s=1 1

{
P̃PP (t) = PPP ∗

}
1 {∃c, (i, j) ∈ Pc(s)2}1{ci(s) 6= cj(s)}.

Let bound the first term in the right-hand side.
Denote Λ =

{
t : P̃PP (t) = PPP ∗, ∃c′, Pc′(t) = {i, j}

}
the set of iterations at which P̃PP (t) =

PPP ∗ and both items i and j are gathered in a subset of PPP (t). We decompose that set as
Λ ⊆ ⋃

s∈N Λ(s), with Λ(s) def= {t ∈ Λ : ti,j(t) = s}. |Λ(s)| 6 1 as ti,j(t) increases for each
t ∈ Λ. Note that for each s ∈ N and n ∈ Λ(s), ti,j(n) > ti,j(n) = s.

155



Note also that with the current hypothesis on the order, i � j, hence by Lemma 10,

E

∑
t≥1
1

{
t ∈ Λ, ŝi,j(t) <

∆̃i,j

2

} = O(1).

The second term may is bounded similarly with the same set Λ but with a different
decomposition: Λ ⊆ ⋃

s∈N Λ(s), with Λ(s) def= {t ∈ Λ : t∗j(t) = s}. |Λ(s)| 6 1 as t∗j(t)
increases for each t ∈ Λ. Note that for each s ∈ N and n ∈ Λ(s), t∗j(n) > t∗j(n) = s.

Therefore, the same proof as the one used in Lemma 10 gives

E

∑
t≥1
1

{
t ∈ Λ, T ∗j (t) <

δ̃∗j
2 t
∗
j(t)

} = O(1)

It remains to upper-bound the third term.

Let note

C
def=

{
t ∈ [T ] : P̃PP (t) = PPP ∗, ∃c′, Pc′(t) = {i, j}, T ∗j (t) >

δ̃∗j
2 t
∗
j(t), ŝi,j(t) >

∆̃i,j

2 , si,j(t) 6 0
}

.

Let t ∈ C.

By Pinsker’s inequality and as si,j(t) 6 0,

1
2 >

si,j(t) + 1
2

>
ŝi,j(t) + 1

2 −

√√√√ log(t̃PPP ∗(t)) + 3 log(log(t̃PPP ∗(t)))
2Ti,j(t)

>
∆̃i,j

4 + 1
2 −

√√√√ log(t̃PPP ∗(t))) + 3 log(log(t̃PPP ∗(t))))
2Ti,j(t)

.

Hence, Ti,j(t) 6 8 log(t̃PPP∗ (t)))+24 log(log(t̃PPP∗ (t))))
∆̃2
i,j

as ∆̃i,j > 0 given Lemma 7. Then, by definition
of C and as (i) t̃PPP ∗(t) 6 t 6 T , (ii) T ∗j (t) 6 Ti,j(t), and (iii) δ̃∗j > δ̃i,j > 0 given Lemma 7,
t∗j(t) 6

2T ∗j (t)
δ̃∗j

6 2Ti,j(t)
δ̃∗j

6 16 log(T )+48 log(log(T ))
δ̃∗j ∆̃2

i,j

.

Therefore, C ⊆
{
t ∈ [T ] : P̃PP (t) = PPP ∗, ∃c′, Pc′(t) = {i, j}, t∗j(t) 6

16 log(T )+48 log(log(T ))
δ̃∗j ∆̃2

i,j

}
,

156



and

E

 T∑
t=1
1


P̃PP (t)=PPP ∗, ∃c′,Pc′ (t)={i,j},

T ∗j (t)>
δ̃∗
j
2 t
∗
j (t), ŝi,j(t)>

∆̃i,j
2 ,

si,j(t)60


 = E [|C|]

6 E

[∣∣∣∣∣
{
t∈[T ]: P̃PP (t)=PPP ∗, ∃c′,Pc′ (t)={i,j},

t∗j (t)6 16 log(T )+48 log(log(T ))
δ̃∗
j

∆̃2
i,j

}∣∣∣∣∣
]

6
16 log(T ) + 48 log(log(T ))

δ̃∗j ∆̃2
i,j

,

which concludes the proof.

B.5.2 Upper-Bound on the Expected Number of Iterations at
which the Leader is not the Optimal Partition

Lemma 14 (Upper-bound on the expected number of iterations at which the leader is
not the optimal partition). Under the hypotheses of Theorem 3, UniRank fulfills

E

[
T∑
t=1
1{P̃PP (t) 6= PPP ∗}

]
= O (log log T ) .

Proof. Let P̃PP 6= PPP ∗ be an ordered partition of items of size d, and let upper-bound the
expected number of iterations at which P̃PP (t) = P̃PP by O (log log T ) As there is a finite
number of partitions, this will conclude the proof.

In this proof, for any couple of items (i, j) we denote t̃i,j(s)
def= ∑t−1

s=1 1
{
P̃PP (t) = P̃PP ,∃c, (i, j) ∈ Pc(s)2

}
the number of iteration at which both items have been gathered in the same subset of
PPP (s) while the leader was P̃PP .

The proof depends on the difference between P̃PP and PPP ∗. By Lemma 5,
— either there exists c ∈ [d̃− 1] such that |P̃c| > 1;
— there exists c ∈ [d̃ − 1] \ {1} such that P̃c−1 = {i′}, P̃c = {i}, i′ � i, and there

exists j ∈ P̃c+1 such that j � i;
— or for c = 1, P̃c = {i} and there exists j ∈ P̃c+1 such that j � i;

We first upper-bound the expected number of iterations at which P̃PP (t) = P̃PP under the
first condition, and then prove a similar upper-bound under both other conditions.

157



Assume that there exists c ∈ [d̃− 1] such that |P̃c| > 1 Let t be an iteration such
that P̃PP (t) = P̃PP . As � is a strict total order, there exists an item i∗ ∈ P̃c which is strictly
greater than other items. Moreover, by Assumption 5 and by design of the algorithm, if
for each couple of items (i, j) ∈ P̃ 2

c such that i 6= j, the sign of s̃i,j(t)
def= ŝi,j(t)−

√
log log t
Ti,j(t)

would be the same as the sign of ∆̃i,j, then i∗ would be alone in P̃c(t). So these signs
disagree for at least one of these couples of items. Let control the number of iteration at
which this is true by considering the following decomposition:

{
t : P̃PP (t) = P̃PP

}
⊆

⋃
(i,j)∈P̃ 2

c :i 6=j

Ai,j ∪Bi,j ∪ Ci,j,

where
Ai,j

def=
{
t : P̃PP (t) = P̃PP , Ti,j(t) <

δ̃i,j
2 ti,j(t)

}
,

Bi,j
def=

{
t : P̃PP (t) = P̃PP ,

ŝi,j(t)
∆̃i,j

<
1
2

}
,

and
Ci,j

def=
{
t : P̃PP (t) = P̃PP , Ti,j(t) >

δ̃i,j
2 ti,j(t),

ŝi,j(t)
∆̃i,j

>
1
2 , s̃i,j(t)∆̃i,j 6 0,

}
.

Let (i, j) ∈ P̃ 2
c be a couple of items such that i 6= j, and let first upper-bound the

expected size of Ai,j and Bi,j, and then the expected size of Ci,j.
Note that at each iteration such that P̃PP (t) = P̃PP , i and j are in the same subset of the

partition PPP (t), therefore t̃i,j(t) = t̃P̃PP (t).
Denote Λ =

{
t : P̃PP (t) = P̃PP

}
the set of iterations at which P̃PP (t) = P̃PP , and decompose

that set as Λ ⊆ ⋃s∈N Λ(s), with Λ(s) def= {t ∈ Λ : t̃P̃PP (t) = s}. |Λ(s)| 6 1 as t̃P̃PP (t) increases
for each t ∈ Λ. Note that for each s ∈ N and n ∈ Λ(s), ti,j(n) > t̃i,j(n) = t̃P̃PP (t) = s.

Then by Lemma 10

E [|Ai,j|] = E

∑
t≥1
1

{
t ∈ Λ, Ti,j(t) <

δ̃i,j
2 ti,j(t)

} = O(1)

and

E [|Bi,j|] = E

∑
t≥1
1

{
t ∈ Λ, ŝi,j(t)

∆̃i,j

<
1
2

} = O(1).

Let now upper-bound the expected size of Ci,j by considering separately two situations
for items i and j: (1) i � j, and (2) j � i.

158



Situation (1): i � j Then ∆̃i,j > 0.
Let t ∈ Ci,j. As s̃i,j(t) 6 0, t 6 T , and t̃P̃PP (t) = t̃i,j(t) 6 ti,j(t) 6 2

δ̃i,j
Ti,j(t),

0 > s̃i,j(t)

= ŝi,j(t)−
√√√√ log log t

Ti,j(t)

>
∆̃i,j

2 −

√√√√2 log log T
δ̃i,j t̃P̃PP (t)

.

Hence, t̃P̃PP (t) 6 8 log log T
δ̃i,j∆̃2

i,j

, and

E [|Ci,j|] 6 E
∑
t≥1
1

{
t ∈ Ci,j : t̃P̃PP (t) 6 8 log log T

δ̃i,j∆̃2
i,j

}
= O (log log T )

Situation (2): j � i Then ∆̃i,j < 0.
Let t ∈ Ci,j. As s̃i,j(t) > 0,

0 6 s̃i,j(t)

= ŝi,j(t)−
√√√√ log log t

Ti,j(t)

6
∆̃i,j

2 −

√√√√ log log t
Ti,j(t)

< 0.

Which is absurd. Hence, Ci,j = ∅, and E [|Ci,j|] = 0
Overall, if there exists c ∈ [d̃− 1] such that |P̃c| > 1,

E
[
1{P̃PP (t) = P̃PP}

]
6

∑
(i,j)∈P̃ 2

c :i 6=j

E [|Ai,j|] + E [|Bi,j|] + E [|Ci,j|]

= O(1) +O(1) + (O(log log T ) + 0)
= O(log log T )

159



Assume that there exists c ∈ [d̃− 1] such that P̃c = {i} and there exists j ∈ P̃c+1

such that j � i Let’s now consider the two last possible conditions w.r.t. P̃PP . Under
these conditions, there may exist an item i′ or not. To shorten the proof, we use notations
including i′ even when it does not exist. Corresponding sets (respectively counts) have to
be read as empty (resp. equal to 0) when i′ does not exist.

Also remark that under this condition, d̃ = K + 1, for each index c′ ∈ [K], |Pc′ | = 1,
and, in Pc+1, j is the unique item more attractive than item i.

To bound E
[
1{P̃PP (t) = P̃PP}

]
, we use the decomposition {t ∈ [T ] : P̃PP (t) = P̃PP} = A ∪ B

where
A =

{
t : P̃PP (t) = P̃PP , t̃i,j(t) >

1
2 t̃P̃PP (t)

}
and

B =
{
t : P̃PP (t) = P̃PP , ∀j ∈ P̃+

c+1, t̃i,j(t) <
1
2 t̃P̃PP (t)

}
.

Hence,
E
[
1{P̃PP (t) = P̃PP}

]
6

∑
j∈P̃+

c+1

E [|A|] + E [|B|] .

Bound on E [|A|] Let j ∈ P̃+
c+1 be an item. By design of UniRank, s̃j,i(t) 6 0 as i is in

a subset before the one of j in P̃PP (t).

Let’s decompose A as A ⊆ ⋃s∈N Λ(s), with Λ(s) def= {t ∈ A : t̃P̃PP (t) = s}. |Λ(s)| 6 1 as
t̃P̃PP (t) increases for each t ∈ A. Note that for each s ∈ N and n ∈ Λ(s), ti,j(n) > t̃i,j(n) >
1
2 t̃P̃PP (t) = 1

2s.

As j � i, by Lemma 10

E

∑
t≥1
1

{
t ∈ A, Ti,j(t) <

δ̃i,j
2 ti,j(t)

} = O(1)

and

E

∑
t≥1
1

{
t ∈ A, ŝj,i(t) <

∆̃j,i

2

} = O(1).

Let t ∈ A such that Ti,j(t) > δ̃i,j
2 ti,j(t) and ŝj,i(t) > ∆̃j,i

2 .

160



As s̃j,i(t) 6 0,

0 > s̃j,i(t)

= ŝj,i(t)−
√√√√ log log t

Ti,j(t)

6
∆̃j,i

2 −

√√√√ log log t
Ti,j(t)

.

Hence, Tij(t) 6 4
∆̃2
j,i

log log t 6 4
∆̃2
j,i

log log T .
Remind that by definition of A,

t̃P̃PP (t)(t) 6 2t̃i,j(t) 6 2ti,j(t) 6
4
δ̃i,j

Ti,j(t) 6
16

δ̃i,j∆̃j,i

log log T.

Therefore,
{
t ∈ A : Ti,j(t) > δ̃i,j

2 ti,j(t), ŝi,j(t) 6
∆̃i,j

2

}
⊆
{
t ∈ A : t̃P̃PP (t)(t) 6 16

δ̃i,j∆̃j,i
log log T

}
,

and

E [|A|] 6 E
∑
t≥1
1

{
t ∈ A : Ti,j(t) <

δ̃i,j
2 ti,j(t)

}
+ E

∑
t≥1
1

{
t ∈ A : ŝi,j(t) >

∆̃i,j

2

}
+ E

∑
t≥1
1

{
t ∈ A : Ti,j(t) >

δ̃i,j
2 ti,j(t), ŝi,j(t) 6

∆̃i,j

2

}
6 E

∑
t≥1
1

{
t ∈ A : Ti,j(t) <

δ̃i,j
2 ti,j(t)

}
+ E

∑
t≥1
1

{
t ∈ A : ŝi,j(t) >

∆̃i,j

2

}
+ E

∑
t≥1
1

{
t ∈ A : t̃P̃PP (t)(t) 6

16
δ̃i,j∆̃j,i

log log T
}

= O (1) +O (1) +O (log log T )
= O (log log T ) .

Bound on E [|B|] We first split B in two parts: B = Bt0 ∪ BT
t0 , where Bt0 def= {t ∈ B :

t̃P̃PP (t) 6 t0}, BT
t0

def= {t ∈ B : t̃P̃PP (t) > t0}, and t0 is chosen as small as possible to satisfy

161



three constraints required in the rest of the proof. Namely,

t0 = max
20, inf

t :
√√√√5 log(t) + 15 log(log(t))

δ̃i′,it
<

∆̃i′,i

8

 ,
max

k∈Pc+1\{j}
inf

t :
√√√√5 log(t) + 15 log(log(t))

δ̃k,it
<

∆̃i,k

8


 .

Note that t0 only depends on δ̃i′,i, ∆̃i′,i and δ̃k,i, ∆̃i,k for k ∈ Pc+1 \ {j}.
We also define
— D

def=
{
t ∈ [T ] : P̃PP (t) = P̃PP , c > 1,∃c′, Pc′(t) = {i′, i}, Ti′,i(t) <

δ̃i′,i
2 ti′,i(t)

}
,

— D′k
def=

{
t ∈ [T ] : P̃PP (t) = P̃PP , c > 1,∃c′, Pc′(t) = {k, i}, Tk,i(t) < δ̃k,i

2 tk,i(t)
}
, for each

k ∈ Pc+1 \ {j}
— E

def=
{
t ∈ [T ] : P̃PP (t) = P̃PP , c > 1,∃c′, Pc′(t) = {i′, i}, ŝi′,i(t) <

∆̃i′,i
2

}
,

— E ′k
def=

{
t ∈ [T ] : P̃PP (t) = P̃PP , c > 1,∃c′, Pc′(t) = {k, i}, ŝi,k(t) < ∆̃i,k

2

}
, for each k ∈

Pc+1 \ {j}
— F

def= {t ∈ [T ] : P̃PP (t) = P̃PP ,
si,j(t)+1

2 > ∆̃i,j+1
2 }.

Finally, for any t ∈ N we denote a(t) the event {c > 1, ∃c′, Pc′(t) = {i′, i}}, a′k(t)
the event {∃c′, Pc′(t) = {k, i}} for each k ∈ P̃c+1 \ {j}, and b(t) the event {∀c′, Pc′(t) 6=
{i′, i},∀k ∈ P̃c+1∀c′, Pc′(t) 6= {k, i}}, which we associate to their respective number of
occurrences while the leader is P̃PP :

— t̃a(t)
def= ∑t−1

s=1 1
{
P̃PP (s) = P̃PP , c > 1,∃c′, Pc′(t) = {i′, i}

}
= t̃i′,i(t),

— t̃a′
k
(t) def= ∑t−1

s=1 1
{
P̃PP (s) = P̃PP , ∃c′, Pc′(t) = {k, i}

}
= t̃k,i(t),

— t̃b(t)
def= ∑t−1

s=1 1
{
P̃PP (s) = P̃PP ,∀c′, Pc′(t) 6= {i′, i},∀c′, Pc′(t) 6= {i, j}

}
.

Let t ∈ BT
t0 . By design of UniRank,

t̃P̃PP (t) = t̃i,j(t) + t̃a(t) +
∑

k∈P̃c+1\{j}

t̃a′
k
(t) + t̃b(t).

Therefore, as t̃i,j(t) < 1
2 t̃P̃PP (t) and by definition of t0, either t̃a(t) > 1

γ
t̃P̃PP (t) + 1, or there

exist k ∈ Pc+1 \ {j} such that t̃a′
k
(t) > 1

γ
t̃P̃PP (t) + 1, or t̃b(t) > 1

γ
t̃P̃PP (t) + 1. Let denote e the

index of the event such that t̃e(t) > 1
γ
t̃P̃PP (t) + 1 and elicit an iteration ψ(t) with specific

properties.
We denote s′ the first iteration such that t̃e(t) > 1

γ
t̃P̃PP (t) + 1. At this iteration, t̃e(s′) =

162



t̃e(s′ − 1) + 1, meaning that P̃PP (s′ − 1) = P̃PP , e(s′ − 1) is true, and t̃e(s′ − 1) > 1
γ
t̃P̃PP (t).

Therefore, the set {s ∈ [t] : P̃PP (s) = P̃PP , e(t), t̃e(s) > 1
γ
t̃P̃PP (t)} is non-empty. We define ψ(t)

as the minimum on this set

ψ(t) def= min
{
s ∈ [t] : P̃PP (s) = P̃PP , e(t), t̃e(s) >

1
γ
t̃P̃PP (t)

}
.

Let prove by contradiction that ψ(t) ∈ D∪E ∪F ∪⋃k∈Pc+1\{j}(D′k ∪E ′k). Assume that
ψ(t) /∈ D ∪E ∪ F ∪⋃k∈Pc+1\{j}(D′k ∪E ′k). Either e is a, or e is a′k for some item k, or e is
b.

If e is a, meaning a(ψ(t)) is true Then by design of UniRank, si′,i(ψ(t)) 6 0. Moreover,
since P̃PP (ψ(t)) = P̃PP and there exists c′ such that Pc′(ψ(t)) = {i′, i}, and ψ(t) /∈ D ∪ E,
Ti′,i(ψ(t)) > δ̃i′,i

2 ti′,i(ψ(t)) and ŝi′,i(ψ(t)) > ∆̃i′,i
2 .

Therefore,

Ti′,i(ψ(t)) > δ̃i′,i
2 ti′,i(ψ(t)) > δ̃i′,i

2 t̃a(ψ(t)) > δ̃i′,i
2

1
γ
t̃P̃PP (t)

and by Pinsker’s inequality and the fact that ψ(t) 6 t and t̃P̃PP (s) is non-decreasing in s,
and t̃P̃PP (t) > t0,

1
2 >

si′,i(ψ(t)) + 1
2 >

ŝi′,i(ψ(t)) + 1
2 −

√√√√ log(t̃P̃PP (ψ(t))) + 3 log(log(t̃P̃PP (ψ(t))))
2Ti′,i(ψ(t))

>
1
2 + ∆̃i′,i

4 −

√√√√5 log(t̃P̃PP (t)) + 15 log(log(t̃P̃PP (t)))
δ̃i′,it̃P̃PP (t)

>
1
2 + ∆̃i′,i

4 − ∆̃i′,i

8

= 1
2 + ∆̃i′,i

8

which contradicts the fact that ∆̃i′,i > 0.

If e is a′k for some k ∈ Pc+1 \ {j}, meaning a′k(ψ(t)) is true Then by design of
UniRank, si,k(ψ(t)) 6 0. Moreover, since P̃PP (ψ(t)) = P̃PP and there exists c′ such that
Pc′(ψ(t)) = {k, i}, and ψ(t) /∈ D′k ∪ E ′k, Tk,i(ψ(t)) > δ̃k,i

2 tk,i(ψ(t)) and ŝi,k(ψ(t)) > ∆̃i,k

2 .

163



Therefore,

Tk,i(ψ(t)) > δ̃k,i
2 tk,i(ψ(t)) > δ̃k,i

2 t̃a(ψ(t)) > δ̃k,i
2

1
γ
t̃P̃PP (t)

and by Pinsker’s inequality and the fact that ψ(t) 6 t and t̃P̃PP (s) is non-decreasing in s,
and t̃P̃PP (t) > t0,

1
2 >

si,k(ψ(t)) + 1
2 >

ŝi,k(ψ(t)) + 1
2 −

√√√√ log(t̃P̃PP (ψ(t))) + 3 log(log(t̃P̃PP (ψ(t))))
2Tk,i(ψ(t))

>
1
2 + ∆̃i,k

4 −

√√√√5 log(t̃P̃PP (t)) + 15 log(log(t̃P̃PP (t)))
δ̃k,it̃P̃PP (t)

>
1
2 + ∆̃i,k

4 − ∆̃i,k

8

= 1
2 + ∆̃i,k

8

which contradicts the fact that ∆̃i,k > 0.

If e is b, meaning b(ψ(t)) is true Then by design of UniRank, si,j(ψ(t)) > 0. Moreover,
since P̃PP (ψ(t)) = P̃PP and ψ(t) /∈ F , si,j(ψ(t))+1

2 < ∆̃i,j+1
2 .

Therefore, 1
2 <

si,j(ψ(t))+1
2 < ∆̃i,j+1

2 which contradicts the fact that ∆̃i,j < 0.
Overall, ψ(t) /∈ D ∪E ∪F ∪⋃k∈Pc+1\{j}(D′k ∪E ′k) leads to a contradiction while either

e is a, or e is a′k, or e is b. So, for any t ∈ BT
t0 , ψ(t) ∈ D ∪ E ∪ F ∪ ⋃k∈Pc+1\{j}(D′k ∪

E ′k), and BT
t0 ⊆

⋃
n∈D∪E∪F∪

⋃
k∈Pc+1\{j}

(D′
k
∪E′

k
) B

T
t0 ∩ {t ∈ [T ] : ψ(t) = n}. Let n be in D ∪

E ∪ F ∪ ⋃k∈Pc+1\{j}(D′k ∪ E ′k). For any t in BT
t0 ∩ {t ∈ [T ] : ψ(t) = n}, there exists an

index e ∈ {a, a′k, b} such that t̃e(n) = d 1
γ
t̃P̃PP (t)e, and t̃e(n + 1) = t̃e(n) + 1. So |BT

t0 ∩
{t ∈ [T ] : ψ(t) = n} | 6 γ and

E [|B|] 6 t0 + E
[
|BT

t0|
]
6 t0 + γ(E [|D|] + E [|E|] + E [|F |]).

It remains to upper-bound E [|D|], E [|E|], and E [|F |] to conclude the proof.

Bound on E [|D|] and E [|E|] The upper-bound on E [|D|] and E [|E|] is obtained
through Lemma 10. Let Λ def=

{
t ∈ [T ] : P̃PP (t) = P̃PP , c > 1,∃c′, Pc′(t) = {i′, i}

}
and uses the

decomposition Λ ⊆ ⋃
s∈N Λ(s), where Λ(s) def= {t ∈ Λ : ti′,i(t) = s}. |Λ(s)| 6 1 as ti′,i(t)

164



increases for each t ∈ Λ. Note that for each s ∈ N and n ∈ Λ(s), ti′,i(n) > ti′,i(n) = s.
Then, by Lemma 10, as i′ � i

E [|D|] = E

[
T∑
t=1
1{t ∈ Λ : Ti′,i(t) <

δ̃i′,i
2 ti′,i(t)}

]
= O(1)

and
E [|D|] = E

[
T∑
t=1
1{t ∈ Λ : ŝi′,i(t) <

∆̃i′,i

2 }
]

= O(1).

Bound on E [|F |] By Lemma 12, E [|F |] = O(log(log(T ))).

Overall E
[
1{P̃PP (t) = P̃PP}

]
6 O(log log T )+t0+γ (O(1) +O(1) +O(log log T )) = O (log log T ),

which concludes the proof.

B.5.3 Final Step of the Proof of Theorem 3 (Upper-Bound on
the Regret of UniRank Assuming a Total Order on Items)

The proof of Theorem 3 from Lemmas 13 and 14 is mainly based on an appropriate
decomposition of the regret.

Proof of Theorem 3. The upper-bound on the expected number of iterations at which
UniRank explores while the leader is the optimal partition is given by Lemma 13.

The upper-bound on the expected number of iterations at which the leader is not the
optimal partition is given by Lemma 14.

Let now consider the impact of these upper-bounds on the regret of UniRank.

Let remind that P ∗c = {c} for c ∈ [K], d∗ = K + 1, and P ∗K+1 = [L] \ [K]. Therefore,
µ∗ = µa∗ = ∑K

k=1 ρ(aaa∗, k), where aaa∗ def= (1, 2, . . . , K).

Let first upper-bound the regret suffered at iteration t while the the leader is the

165



optimal partition:

R∗t = µ∗ − Eaaa(t)
[
µaaa(t) | P̃PP (t) = PPP ∗

]
=

K∑
k=1

ρ(aaa∗, k)− Eaaa(t)
[
ρ(aaa(t), k) | P̃PP (t) = PPP ∗

]

=
K∑
k=1
P
(
ak(t) = k | P̃PP (t) = PPP ∗

) (
ρ(aaa∗, k)− Eaaa(t)

[
ρ(aaa(t), k) | ak(t) = k, P̃PP (t) = PPP ∗

])

+
K∑
k=2
P
(
ak−1(t) = k | P̃PP (t) = PPP ∗

) (
ρ(aaa∗, k − 1)− Eaaa(t)

[
ρ(aaa(t), k − 1) | ak−1(t) = k, P̃PP (t) = PPP ∗

])

+
K∑
k=2
P
(
ak(t) = k − 1 | P̃PP (t) = PPP ∗

) (
ρ(aaa∗, k)− Eaaa(t)

[
ρ(aaa(t), k) | ak(t) = k − 1, P̃PP (t) = PPP ∗

])

+
L∑

`=K+1
P
(
aK(t) = ` | P̃PP (t) = PPP ∗

) (
ρ(aaa∗, k)− Eaaa(t)

[
ρ(aaa(t), K) | aK(t) = `, P̃PP (t) = PPP ∗

])

Let’s focus on the first right hand-side term. As the probability of click at position
k only depends on the set of items in positions 1 to k − 1, and as under the condition
ak(t) = k ∧ P̃PP (t) = PPP ∗, aaa(t) and aaa∗ have the same set of items in positions 1 to k − 1,
ρ(aaa∗, k) = Eaaa(t)

[
ρ(aaa(t), k) | ak(t) = k, P̃PP (t) = PPP ∗

]
. Hence that term is equal to 0.

Let now take a look at the second term. By design of UniRank, as ak−1(t) = k∧P̃PP (t) =
PPP ∗, there exists c′ such that Pc′(t) = {k − 1, k}, and

P
(
ak−1(t) = k | P̃PP (t) = PPP ∗

)
= P

(
ak−1(t) = k,∃c′, Pc′(t) = {k − 1, k} | P̃PP (t) = PPP ∗

)
= 1

2P
(
∃c′, Pc′(t) = {k − 1, k} | P̃PP (t) = PPP ∗

)
.

Similarly, the third term corresponds to the existence of c′ such that Pc′(t) = {k − 1, k},
and

P
(
ak(t) = k − 1 | P̃PP (t) = PPP ∗

)
= 1

2P
(
∃c′, Pc′(t) = {k − 1, k} | P̃PP (t) = PPP ∗

)
.

By summing both terms, we have to handle

1
2P

(
∃c′, Pc′(t) = {k − 1, k} | P̃PP (t) = PPP ∗

)
·(

ρ(aaa∗, k − 1) + ρ(aaa∗, k)− Eaaa(t)
[
ρ(aaa(t), k − 1) + ρ(aaa(t), k) | ak−1(t) = k, ak(t) = k − 1, P̃PP (t) = PPP ∗

])
,

166



which is equal to 1
2P

(
∃c′, Pc′(t) = {k − 1, k} | P̃PP (t) = PPP ∗

)
∆k, where

∆k
def= ρ(aaa∗, k − 1) + ρ(aaa∗, k)− ρ((k − 1, k) ◦ aaa∗, k − 1)− ρ((k − 1, k) ◦ aaa∗, k),

as the probability of click at any position k′ only depends on the set of items in positions
1 to k′ − 1.

Finally, following the same argumentation, the last term is equal to

1
2P

(
∃c′, Pc′(t) = {K, `} | P̃PP (t) = PPP ∗

)
∆`,

where ∆`
def= ρ(aaa∗, K)− ρ((K, `) ◦ aaa∗, K).

Overall

R∗t =
K∑
k=2

1
2P

(
∃c′, Pc′(t) = {k − 1, k} | P̃PP (t) = PPP ∗

)
∆k

+
L∑

`=K+1

1
2P

(
∃c′, Pc′(t) = {K, `} | P̃PP (t) = PPP ∗

)
∆`

=
L∑
k=2

1
2P

(
∃c′, Pc′(t) = {min(k − 1, K), k} | P̃PP (t) = PPP ∗

)
∆k.

167



Let finally upper-bound the overall regret.

R(T ) =
T∑
t=1

µ∗ − Eaaa(t)
[
µaaa(t)

]

=
T∑
t=1
P
(
P̃PP (t) 6= PPP ∗

) (
µ∗ − Eaaa(t)

[
µaaa(t) | P̃PP (t) 6= PPP ∗

])

+
T∑
t=1
P
(
P̃PP (t) = PPP ∗

) (
µ∗ − Eaaa(t)

[
µaaa(t) | P̃PP (t) = PPP ∗

])

6
T∑
t=1
P
(
P̃PP (t) 6= PPP ∗

)
K

+
T∑
t=1
P
(
P̃PP (t) = PPP ∗

) L∑
k=2

1
2P

(
∃c′, Pc′(t) = {min(k − 1, K), k} | P̃PP (t) = PPP ∗

)
∆k

6 O (log log T )

+
T∑
t=1

L∑
k=2

1
2P

(
P̃PP (t) = PPP ∗,∃c′, Pc′(t) = {min(k − 1, K), k, }

)
∆k

= O (log log T )

+
L∑
k=2

∆k

2

T∑
t=1
P
(
P̃PP (t) = PPP ∗,∃c′, Pc′(t) = {min(k − 1, K), k, }

)
6 O (log log T )

+
L∑
k=2

∆k

2

(
16
δ̃∗k∆̃2

k

log T +O (log log T )
)

=
L∑
k=2

8∆k

δ̃∗k∆̃2
k

log T +O (log log T )

= O
(
L

∆ log T
)
,

where for any index k > 2

∆̃k
def= ∆̃min(k−1,K),k and ∆ def= min

k∈{2,...,K}

δ̃∗k∆̃2
k

8∆k

,

which concludes the proof.

168



B.6 UniRank’s Theoretical Results While Facing State-
of-the-Art Click Models

Here, we prove Corollaries 1 and 2 and then discuss the relationship between our
upper-bounds and the known lower bounds.

B.6.1 Proof of Corollary 1 (Upper-Bound on the Regret of Uni-
Rank when Facing CM∗ Click Model)

Corollary 3 is a more precise version of Corollary 1. Its proof consists in identifying
the gaps δ̃∗k, ∆̃k, and ∆k, where k is the index of an item.

Corollary 3 (Facing CM∗ click model). Under the hypotheses of Theorem 3, if the user
follows CM with probability θi to click on item i when it is observed, then for any index
k > 2,

δ̃∗k = (θk−1 + θk − θk−1θk)
k−2∏
`=1

(1− θ`) if k 6 K,

δ̃∗k = 1
2 (θK + θk)

K−1∏
`=1

(1− θ`) if k > K + 1,

∆̃k >
θmin(K,k−1) − θk
θmin(K,k−1) + θk

,

∆k = 0 if k 6 K,

∆k = (θK − θk)
K−1∏
`=1

(1− θ`) if k > K + 1.

Hence, UniRank fulfills

R(T ) 6
L∑

k=K+1
16θK + θk
θK − θk

log T +O (log log T )

= O
(

(L−K)ΘK + θK+1

ΘK − θK+1
log T

)
.

Proof of Corollary 3. Values δ̃∗k and ∆k derive from a straightforward computation given
CM model.

Let us prove the lower-bound on ∆̃k. Let i and j be two items such that i 6= j. Let aaa

169



be a recommendation such that P(ci(t) 6= cj(t) | aaa(t) = aaa) > 0.
Without loss of generality, assume i appears in aaa in position k, and if j appears in aaa,

it is in a position ` > k. Then

∆̃i,j(aaa) =
A1+B

2 (θi − θj)
A1+B

2 (θi + θj)− ABθiθj
>
θi − θj
θi + θj

,

with A def= ∏k−1
c=1 (1− θac) and B def= ∏`−1

c=k+1 (1− θac) if j appears in aaa and 0 otherwise.
Hence the lower-bounding values for ∆̃k, by noting that the term A is lower-bounded

by ∏K−1
`=1 (1− θ`) .

Regarding the last formula in Lemma 3, it derives from the fact that θK+θk
θK−θk

is maxi-
mized when θk is maximized, meaning k = K + 1.

B.6.2 Proof of Corollary 2 (Upper-Bound on the Regret of Uni-
Rank when Facing PBM∗ Click Model)

Corollary 4 is a more precise version of Corollary 2. Its proof consists in identifying
the gaps δ̃∗k, ∆̃k, and ∆k, where k is the index of an item.

Corollary 4 (Facing PBM∗ click model). Under the hypotheses of Theorem 3, if the
user follows PBM with the probability θi of clicking on item i when it is observed and the
probability κk of observing the position k, then for any index k > 2,

δ̃∗k = 1
2 (θk−1 + θk) (κk−1 + κk)− 2θk−1θkκk−1κk if k 6 K,

δ̃∗k = 1
2 (θK + θk)κK if k > K + 1,

∆̃k >
θmin(K,k−1) − θk
θmin(K,k−1) + θk

,

∆k = (θk−1 − θk) (κk−1 − κk) if k 6 K,

∆k = (θK − θk)κK if k > K + 1.

Hence, UniRank fulfills

R(T ) 6
K∑
k=2

8(κk−1 − κk)(θk−1 + θk)2

δ̃∗k(θk−1 − θk)
log T +

L∑
k=K+1

16θK + θk
θK − θk

log T +O (log log T )

= O
(
L

∆ log T
)
,

170



where ∆ def= min{mink∈{2,...,K} δ̃∗k(θk−1−θk)
(κk−1−κk)(θk−1+θk)2 , mink∈{K+1,...,L}

θK−θk
θK+θk

}.

Proof of Corollary 4. Values δ̃∗k and ∆k derive from a straightforward computation given
PBM model.

Let us prove the lower-bound on ∆̃k. Let i and j be two items such that i 6= j. Let aaa
be a recommendation such that P(ci(t) 6= cj(t) | aaa(t) = aaa) > 0.

If both i and j appear in aaa, denote k < ` these positions. Then

∆̃i,j(aaa) =
1
2(κk + κ`)(θi − θj)

1
2(κk + κ`)(θi + θj)− 2κkκ`θiθj

>
θi − θj
θi + θj

.

If only one of both items i and j appears in aaa then ∆̃i,j(aaa) = θi−θj
θi+θj .

Hence for any index k > 2, ∆̃k >
θmin(K,k−1)−θk
θmin(K,k−1)+θk

.

171







Titre : Recommandation de listes d’items par bandits manchots

Mot clés : Apprentissage en ligne, Systèmes de Recommendations, Bandits Manchots

Résumé : Nous étudions le problème d’ap-
prentissage de l’ordonnancement en ligne de
L items pour K positions prédéfinies sur une
page web. Pour cela, nous nous intéressons
aux algorithmes de bandits manchots qui ap-
prennent les paramètres de modèles de clics
identifiés, tel que le modèle basé sur les po-
sitions (PBM). Les algorithmes de l’état-de-
l’art s’attaquent rarement au PBM complet, où
tous les paramètres sont inconnus. De plus,
l’état de l’art contient peu d’algorithmes basés
sur Thompson Sampling ou sur les bandits
unimodaux, malgré leurs performances empi-
riques reconnues. Nos deux premières contri-
butions s’appuient sur les bandits unimodaux :
GRAB est spécialisé pour un PBM complet

et UniRank, traite des modèles de clics di-
vers. Ces deux contributions, très efficaces,
ont une borne supérieure de regret théorique
en O (L/∆ log T ), au niveau de l’état de l’art.
La troisième contribution fournit une famille
de bandits adressant le problème PBM com-
plet en couplant l’algorithme Thompson Sam-
pling avec des méthodes d’échantillonnage
par chaînes de Markov Monte-Carlo (MCMC).
Deux méthodes MCMC sont utilisées : par
descente de gradient par Langevin, donnant
des résultats empiriques semblables à l’état
de l’art avec un temps de calcul bas et stable,
et par Metropolis Hasting, qui offre le regret
empirique le plus bas pour ce problème pour
un PBM complet.

Title: List recommendations with multi-armed bandits

Keywords: Online learning, Recommendation Systems, Bandits

Abstract: We tackle the online learning to
rank problem of assigning L items to prede-
fined positions on a web page. To address
this problem, one can learn, in a multiple-
play semi-bandit setting, the parameters of
a behavioral click model, e.g. the so-called
position-based model (PBM). State-of-the-art
algorithms rarely tackle the full PBM, i.e.
PBM with all its parameters unknown. More-
over, efficient algorithmic frameworks such
as Thompson Sampling or Unimodal bandits
were seldom considered for diverse behav-
ioral click models. Three algorithmic contri-
butions are presented in this thesis. Two of
them are based on the unimodal bandit set-
ting: GRAB is specialized for full PBM and ex-
plores a family of graphs parameterized by the

ranking of display positions. UniRank can be
used in multiple click models. It builds a graph
on partitions of items. These two efficient con-
tributions achieve a theoretical regret upper-
bound in O (L/∆ log T ) on par with the state-
of-the-art. The third contribution proposes a
family of bandit algorithms designed to handle
the full PBM and are based on a Thompson
Sampling framework, coupled with Markov
Chain Monte Carlo (MCMC) sampling meth-
ods. Two MCMC methods are used: Langevin
Gradient Descent, which shows good empir-
ical regret performance with a low and stable
computation time and Metropolis Hasting, less
efficient but with the lowest empirical regret
seen in the state-of-the-art for so few model
assumptions.


	Long summary (in French)
	Introduction
	Recommendation systems and Louis Vuitton
	Online learning to rank at Louis Vuitton 
	Thesis outline

	Background on bandit-based recommender systems
	User click behavioral models
	Position-based model
	Cascading model
	Others click behavioral models

	Bandit algorithms
	Generality
	Thompson sampling
	Upper confidence bound algorithm
	Combinatorial bandits

	My thesis setting: learning to rank in a semi-bandit setting
	Bandits for click behavioral model
	Performance evaluation
	Choice of the environment to evaluate bandit algorithms 
	Datasets

	Conclusion 

	Related work
	Bandits on PBM
	PMED
	Focus on (KL)CombUCB1

	Bandits on other click behavioral models
	Focus on TopRank

	Related algorithms
	Focus on OSUB

	Conclusion

	Unimodal bandit for PBM
	Relation with unimodality
	Parametric graph for unimodal ranking bandit
	Theoretical analysis
	Discussion

	Practical results
	Conclusion 

	MCMC bandits for PBM
	Thompson sampling with approximation approaches
	Approximation based on Metropolis Hasting
	Approximation based on Langevin gradient descent
	Overall complexity

	Practical results
	Conclusion

	Unimodal bandits for other click behavioral models
	Model assumption
	UniRank: unimodal bandit algorithm for generic online ranking
	Theoretical analysis
	Practical results
	Conclusion

	Conclusion
	Take away
	Contribution for Louis Vuitton
	Echo chamber and exploration behavior
	Perspectives

	Bibliography
	Appendix
	GRAB
	Notations
	Proof of Lemma 1 (PBM Fulfills Assumption 1) 
	Preliminary to the Analysis of GRAB
	Proof of Theorem 2 (Upper-bound on the Regret of KL-CombUCB)
	Proof of Lemma 2 (Upper-bound on the Number of Iterations of GRAB for which (t)==a-.4*)
	Proof of Lemma 3 (Upper-bound on the Number of Iterations of GRAB for which (t) -.25ex-.25ex-.25ex-.25ex-.4())
	S-GRAB: OSUB on a Static Graph

	UniRank
	Organisation of the Appendix
	Notations
	Proof of Lemma 4 (PBM and CM Fulfills Assumptions 2, 4, and 5) 
	Technical Lemmas Required by the Proof of Theorem 3
	Proof of Lemma 5 (Pseudo-Unimodality Assuming a Total Order on Items) 
	Minimum Expected Click Difference
	Upper-bound on the Number of High Deviations for Variables with Lower-Bounded Mean
	Upper-Bound on the Number of Upper-Estimations of a Pessimistic Estimator

	Proof of Theorem 3 (Upper-Bound on the Regret of UniRank Assuming a Total Order on Items) 
	Upper-Bound on the Number of Sub-Optimal Merges of UniRank when the Leader is the Optimal Partition
	Upper-Bound on the Expected Number of Iterations at which the Leader is not the Optimal Partition
	Final Step of the Proof of Theorem 3 (Upper-Bound on the Regret of UniRank Assuming a Total Order on Items) 

	UniRank's Theoretical Results While Facing State-of-the-Art Click Models
	Proof of Corollary 1 (Upper-Bound on the Regret of UniRank when Facing CM* Click Model) 
	Proof of Corollary 2 (Upper-Bound on the Regret of UniRank when Facing PBM* Click Model) 



