
HAL Id: tel-03854875
https://theses.hal.science/tel-03854875v1

Submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards flexible Integrated Development Environment
Fabien Coulon

To cite this version:
Fabien Coulon. Towards flexible Integrated Development Environment. Génie logiciel [cs.SE]. Uni-
versité de Rennes, 2022. Français. �NNT : 2022REN1S021�. �tel-03854875�

https://theses.hal.science/tel-03854875v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Fabien COULON
Towards flexible Integrated Development Environment

Thèse présentée et soutenue à Rennes, le 3 mars 2022
Unité de recherche : IRISA (UMR 6074) Institut de Recherche en Informatique et Systemes
Aléatoires

Rapporteurs avant soutenance :

Sophie EBERSOLD Maître de conférences HDR, Université Toulouse - Jean Jaurès
Jean-Remy FALLERI Maître de conférences HDR, Université de Bordeaux

Composition du Jury :

Président : Guillaume PIERRE Professeur, Université de Rennes 1
Examinateurs : Réda BENDRAOU Professeur, Université Paris Nanterre

Sophie EBERSOLD Maître de conférences HDR, Université Toulouse - Jean Jaurès
Jean-Remy FALLERI Maître de conférences HDR, Université de Bordeaux
Olivier BARAIS Professeur, Université de Rennes 1

Dir. de thèse : Benoit COMBEMALE Professeur, Université de Rennes 1

ACKNOWLEDGEMENT

Voici mes remerciments aux personnes qui m’ont permis d’achever cette thèse.
Merci à Benoit pour avoir toujours été de bon conseil et à Olivier qui à toujours des
techno cool à tester.
Merci aux permanents, doctorants et postdocs de l’équipe DiverSE, trop nombreux
pour être tous nommés, que j’ai eu le plaisir de côtoyer toutes ces années et qui sont
des gens géniaux.
Merci à Kévin et Etiennes pour toutes ces parties de figurines et jeux vidéo.
Et bien sûr merci à ma famille.

So Long, and Thanks for All the Fish !

3

TABLE OF CONTENTS

1 Résumé en français 8
1.1 Contexte . 8
1.2 Enoncé du problème . 9
1.3 Contributions . 11
1.4 Résultats . 13

2 Introduction 15
2.1 Context . 15
2.2 Problem Statements . 16
2.3 Contributions . 18
2.4 Results . 19
2.5 Outline . 20
2.6 Publications . 21

I Background and State of the Art 22

3 Background 23
3.1 Software Language . 23

3.1.1 Software Language Engineering 24
3.1.2 Metamorphic DSL . 28

3.2 Cloud Computing . 29
3.2.1 Service Levels . 29
3.2.2 Cloud-Native Application . 31
3.2.3 Microservices . 33

3.3 Summary . 35

4 State of the Art 36
4.1 Integrated Development Environment . 36

4.1.1 Desktop IDE . 37

5

TABLE OF CONTENTS

4.1.2 Web-based IDE . 42
4.1.3 Cloud-based IDE . 44

4.2 Flexibility in IDEs . 46
4.2.1 Modularity . 46
4.2.2 Distribution . 47

4.3 Summary . 48

II Contributions 50

5 Thesis Overview 51
5.1 Vision . 51
5.2 Overview . 52

6 Shape-diverse DSL 54
6.1 Technological Stacks . 54
6.2 Motivating Example . 55
6.3 Shape-Diverse DSLs . 57
6.4 Synchronizing Incarnations with PRISM 58

6.4.1 Patch Formalism . 59
6.4.2 Communication Bus . 61

6.5 A Shape-Diverse FSM Language . 62
6.5.1 Connecting technological stacks with PRISM 64

6.6 Conclusion . 67

7 Distributed Integrated Development Environment 68
7.1 Distributed Language Services . 68
7.2 Motivating example . 70
7.3 Approach overview . 72

7.3.1 Designing IDE microservices . 75
7.3.2 IDE Deployment . 77

7.4 Towards a modular and distributed IDE 77
7.4.1 Language and protocol specifications 78
7.4.2 Feature model generation . 79
7.4.3 Microservice generation . 80
7.4.4 Deployment configuration . 81

6

TABLE OF CONTENTS

7.4.5 Distributed IDE architecture . 81
7.5 Experimentations . 82

7.5.1 Experimental setup . 83
7.5.2 Results . 84
7.5.3 Discussion . 90

7.6 Conlusion . 93

III Conclusion and Perspectives 94

8 Conclusions 95

9 Perspectives 98
9.1 Contribution improvements . 98
9.2 Long-term perspectives . 100
9.3 IDE as Code . 102

Bibliography 105

7

CHAPITRE 1

RÉSUMÉ EN FRANÇAIS

1.1 Contexte

Les Environnements de Développement Intégrés (EDI) sont des logiciels qui regroupent
de nombreux services pour les activités de développement et offrent un accès unifié à
ces services, ce qui en font des outils majeurs pour les développeurs. Les développeurs
sont des utilisateurs de langages, c’est-à-dire qu’ils manipulent les constructions d’un
langage par le biais de services de langage. Ces services sont réalisés par les concepteurs
de langages, qui attendent de plus en plus des EDIs qu’ils soient des plateformes
extensibles afin de les utiliser comme base pour fournir des services de langages logiciels.
Ces langages peuvent être des langages à usage général (General-Purpose Language
ou GPL en anglais) conçus pour être utilisés dans n’importe quel domaine d’application
(i.e., Java, SQL, XML, etc), mais aussi des langages spécifiques à un domaine (DSL pour
Domain Specific Language en anglais) dédiés à un domaine d’application particulier
[101]. La conception et la réalisation des langages logiciels impliquent les mêmes tâches
que celles requises par le cycle de vie des logiciels [45], allant de la spécification et de la
réalisation des services de langage à leur déploiement. Les concepteurs de langage sont
aidés par l’ingénierie des langages logiciels (SLE pour Software Language Engineering
en anglais), qui est une discipline rationalisant le processus de développement des
langages logiciels [81]. Les concepteurs de langage suivent les principes du SLE pour
définir leur langage et l’implémenter dans une pile technologique, et à la fin du processus,
peuvent intégrer leurs services de langage dans un EDI et les mettre à la disposition
des futurs utilisateurs du langage.

La tendance récente pour les EDIs est d’être implémentés en tant qu’applications
web. Les EDIs pour le Web adoptent le modèle de logiciel en tant que service (Software
as a Service en anglais) pour fournir un accès à distance à un environnement de développement
via un navigateur Web. L’un des principaux objectifs des EDIs Web est de fournir un
environnement de développement sans installation. La configuration de l’environnement

8

Résumé en français

de développement est la première activité d’un développeur. C’est une tâche qui consiste
à récupérer le code source, à installer les outils, à installer les dépendances, etc. C’est
une tâche qui prend du temps, qui est obligatoire mais aussi spécifique à chaque projet.
L’EDI Web est une solution qui réduit le coût du passage d’un projet à l’autre en
fournissant un environnement de développement prêt à l’emploi. Un autre avantage
d’un EDI Web est qu’il permet de travailler n’importe où puisque seul un navigateur
Web et une connexion Internet sont nécessaires. Les développeurs peuvent donc passer
d’une machine à l’autre de manière transparente. La fourniture d’un EDI sous forme
de services permet aux concepteurs de langage de faire de la livraison continue grace
à laquelle les services de l’EDI peuvent être mis à jour et fournis directement aux
utilisateurs d’un langage sans interrompre leurs activités. L’exécution des services de
langage sur une machine distante est également un moyen de préserver les ressources
du client, telles que l’utilisation du processeur, de la mémoire ou de la batterie lors de
l’exécution de calculs intensifs.

La réalisation d’EDIs en tant qu’applications web soulève de nouveaux défis que
nous avons abordés dans un contexte industriel par le biais d’un partenariat entre une
entreprise et un laboratoire dans le cadre du programme doctoral CIFRE (Convention
Industrielle de Formation par la Recherche).

1.2 Enoncé du problème

Lorsqu’il s’agit d’implémenter un langage, le concepteur choisit une pile technologique
particulière, qui englobe la manière de définir le langage (grammaire, métamodèle,...),
le langage de programmation à utiliser, quel framework, etc. Le concepteur de langage
fait ce choix en fonction des atouts particuliers de la pile technologique (par exemple, la
facilité d’écrire des transformations de code, de réaliser des interpréteurs, etc. Cependant,
l’implémentation d’un langage dans une pile technologique particulière est un choix
à long terme qu’il est difficile de modifier par la suite et, de plus, il est difficile de
combiner plusieurs piles technologiques qui peuvent être éloignées tant dans leur
formalisme que sur le plan technique. Ce manque de flexibilité dans l’implémentation
empêche le concepteur de langage de bénéficier des avantages de plusieurs piles technologiques
en même temps et ne permet pas aux utilisateurs de langage de choisir la pile technologique
la plus appropriée à leur activité actuelle (c’est-à-dire d’utiliser les meilleurs services
de langage fournis par une pile technologique particulière).

9

Résumé en français

Les implémentations de langage sont constituées de services hétérogènes. Chaque
service de langage a des besoins spécifiques, c’est à dire qu’ils peuvent avoir par exemple
des fréquences d’utilisation différentes ou des complexité de calcul différentes ce qui
implique une consommation différente des ressources (par exemple le CPU, la mémoire,
etc). Dans le même temps, de nombreuses plateformes d’exécution sont disponibles
pour ces services (serveurs dédiés, cloud, ordinateurs portables, etc.), chacune ayant
ses propres caractéristiques (les serveurs dédiés disposent de beaucoup de CPU et de
mémoire, le cloud fournit un mécanisme de déploiement automatique qui facilite la
mise à l’échelle des applications, l’ordinateur portable de l’utilisateur du langage évite
la latence du réseau, etc).

Les EDIs Web existants ne tirent pas parti de cette diversité de ressources fournies
par les platesformes d’exécution disponibles, car ils sont composés d’un client s’exécutant
dans un navigateur Web et d’un serveur monolithique fournissant les services de langage.
Leur principal objectif est de fournir un environnement de développement prêt à l’emploi
afin d’éviter la perte de temps liée à la configuration de cet environnement. À cette
fin, ils s’appuient sur l’isolation de l’ensemble de l’environnement de développement.
Cette isolation est assurée par le serveur qui fournit les services de langage et l’espace
de travail de l’utilisateur contenant les artefacts développés. Cependant, les serveurs
de langage sont des applications monolithiques, qui limitent la flexibilité des EDIs
basés sur le Web, tant au niveau de l’implémentation que du déploiement du langage.
Cela limite l’implémentation puisqu’elle ne permet au concepteur de langage d’utiliser
qu’une seule pile technologique et cela limite le déploiement puisque la nature monolithique
du serveur implique que tous les services de langage soient co-localisés. La co-localisation
ne permet pas le déploiement indépendant des services de langage nécessaire pour
allouer les ressources fournies par les différentes plateformes d’exécution disponibles.

Tirer parti de la diversité de plusieurs platesformes d’exécution en distribuant des
services de langage hétérogènes aux endroits adaptés à leurs besoins pourrait profiter
aux utilisateurs du langage en leur donnant de la flexibilité dans le déploiement des
services de langage pour maximiser leurs performances. La distribution des services
de langage est également l’occasion de construire des EDIs qui prennent en charge
plusieurs utilisateurs en partageant des instances de services de langage entre plusieurs
utilisateurs. Le partage des services de langage minimise les temps morts et évite le
gaspillage de ressources par rapport au déploiement d’une instance de chaque service
de langage pour chaque utilisateur.

10

Résumé en français

Les concepteurs de langage ont une longue expérience de la construction des EDIs,
mais le passage à une architecture distribuée ajoute des préoccupations supplémentaires.
Dans ce contexte, les services de langage sont isolés et communiquent par échange
de messages, ce qui nécessite la modularisation des services de langage. Ils peuvent
également être déployés sur plusieurs plateformes d’exécution, potentiellement de
manière dynamique, ce qui nécessite un moyen de configurer leur déploiement. Cependant,
il n’existe pas d’abstractions appropriées pour décrire un environnement de développement
distribué permettant de faciliter le développement de services de langage et de supporter
l’automatisation de leur déploiement fiable.

Les limites de la flexibilité dans l’implémentation et le déploiement des langages
peuvent être résumées par les deux défis suivants :

Défi #1 : Les concepteurs de langage doivent pouvoir tirer parti des atouts spécifiques
des nombreuses piles technologiques possibles pour implémenter les langages et, inversement,
les utilisateurs de langage doivent pouvoir manipuler les constructions du langage en
passant de manière transparente entre les services de langage implémentés dans des
piles technologiques différentes.

Défi #2 : Les services de langage doivent pouvoir exploiter les platesformes d’exécution
disponibles pour répondre au mieux à leurs besoins en fonction des activités de l’utilisateur
du langage, qui peuvent évoluer dans le temps.

1.3 Contributions

Nous adressons ces défis par deux contributions. Pour apporter plus de flexibilité
dans l’implémentation des langages (challenge #1), nous proposons de connecter à
un bus de communication différentes piles technologiques implémentant le même
langage pour synchroniser les constructions du langage réalisées dans chaque pile.
Le bus de communication est basé sur un modèle de publication/abonnement pour
diffuser les changements survenus dans une pile technologique aux autres piles. L’idée
générale est chaque pile technologique fournisse des constructions de langage équivalentes
qui peuvent être manipulées par le biais de services de langage, et que tout changement
résultant de ces manipulations est automatiquement signalé aux autres piles. Les constructions
de langage sont toujours synchronisées et les utilisateurs peuvent passer sans problème
d’un service de langage à l’autre à partir des différentes piles technologiques. Nous
proposons un formalisme qui permet de représenter les changements sous la forme

11

Résumé en français

d’une liste d’opérations atomiques agnostiques de toute pile technologique.

Nous avons implémenté le bus de communication comme un plugin Eclipse pour
connecter les piles technologiques Eclipse Modeling Framework (EMF) [132], Rascal
[84], et Java fluent API ; permettant la combinaison de ces piles pour implémenter
un langage et permettant de choisir dans quelle pile manipuler les constructions du
langage.

Pour une plus grande flexibilité dans le déploiement des services de langage (challenge
#2), nous proposons une approche générative qui permet de modulariser automatiquement
les services de langage et qui permet de supporter leur déploiement de manière fiable
sur la base de la spécification d’un protocole de communication. L’objectif est d’exploiter
les ressources disponibles de plusieurs platesformes d’exécution pour répondre au
mieux aux besoins des services de langage en les distribuant sur ces dites plateformes.
Nous fournissons un DSL à destination du concepteur de langage pour spécifier les
protocoles de communication qui sont ensuite utilisés comme entrées pour générer des
microservices implémentant les services de langage. Nous générons aussi un modèle
de variabilité pour piloter une fiable configuration de leur déploiement. Ce DSL nous
permet de spécifier l’ensemble des services de langage, leurs interfaces et leurs interactions.
Notre approche pour modulariser automatiquement les services de langage consiste à
utiliser cette spécification de protocole en plus de la spécification d’un langage pour
générer des microservices. Nous utilisons la spécification du langage pour générer le
code source nécessaire au chargement d’un programme, qui est l’entrée de la logique
du service de langage, et nous utilisons la spécification du protocole de communication
pour générer le code source et les fichiers de configuration nécessaires à la communication
avec d’autres microservices. Notre objectif est de générer des microservices prêts à
être déployés, dans lesquels le concepteur du langage n’a plus qu’à implémenter leur
logique interne. En complément, nous générons un modèle de variabilité, qui définit
les contraintes de déploiement entre les services de langage, pour piloter la configuration
de déploiement des services de langage de manière fiable. La configuration permet à
l’utilisateur du langage de définir dynamiquement quels services doivent être déployés
et sur quelle plateforme d’exécution.

Les générateurs ont été implémentés sous forme de plugins Eclipse pour être intégrés
à l’écosystème EMF et fonctionnent avec des langages définis avec des métamodèles
Ecore et des grammaires Xtext [44]. Les microservices générés sont intégrés dans des
conteneurs Docker [100] et leur déploiement est effectué dans un cluster Kubernetes

12

Résumé en français

[18] pour former un environnement de modélisation sous forme d’application nativement
pour le cloud. Notre configurateur utilise l’API Kubernetes pour modifier dynamiquement
la configuration du déploiement.

1.4 Résultats

Nous avons appliqué notre première contribution aux trois piles technologiques
EMF, Rascal et Java fluent API dans lesquelles le langage Automate Fini à été implémenté.
Nous avons pu diffuser les changements produits par les services de langage d’une
pile technologique aux autres et ainsi manipuler le même automate fini à travers les
services de langage des différentes piles.

Pour valider la généralisation de notre deuxième contribution, nous l’avons appliquée
aux langages NabLab [94], Logo [1], MiniJava [121], et ThingML [61]. Sur ces langages,
nous avons validé que nous étions capables de générer des microservices implémentant
un ensemble de services de langage, que nous étions capables de les distribuer sur
un cluster Kubernetes, et que nous étions capables de configurer dynamiquement le
déploiement des services de langage.

Pour évaluer l’avantage de la distribution des services de langage, nous avons
mesuré leurs temps de réponse pour le langage NabLab dans deux configurations : des
services de langage fournis par un serveur monolithique déployé localement sur un
ordinateur portable et des services de langage implémentés sous forme de microservices
sans état déployés à distance sur de puissantes machines. Nous avons constaté qu’il est
avantageux d’exécuter les services à forte intensité de calcul sous forme de microservices
déployés à distance, car le gain en temps de calcul l’emporte sur la perte due à la
modularisation et à la communication réseau.

Pour évaluer le coût de la distribution, nous avons mesuré la part due au protocole
de communication et la part due au chargement des programmes dans les temps de
réponse des microservices sans état implémentant les services de langage pour les
quatre langages NabLab, Logo, ThingML et MiniJava. Nos résultats montrent que les
temps de réponse des services de langage implémentés par des serveurs monolithiques,
qui sont avec état, sont inférieurs à ceux des microservices, que les temps d’échange
de messages entre microservices dues au protocole sont acceptables (i.e. inférieures à
200 ms), et que le coût de chargement d’un programme à chaque requête est une part
significative de la mauvaise performance des microservices sans état par rapport aux

13

Résumé en français

serveurs monolithiques.
En conclusion, notre première application montre que notre approche consistant à

combiner des piles technologiques apporte une flexibilité tant au niveau de l’implémentation
que de l’utilisation du langage. D’après la deuxième application et les résultats de notre
expérimentation, nous concluons que la distribution de services de langage rend un
EDI flexible dans son déploiement, ce qui nous permet de tirer parti des plateformes
d’exécution disponibles pour améliorer les temps de réponse des services de langage.

14

CHAPTER 2

INTRODUCTION

This chapter first presents the research context of this thesis (Section 2) and
defines the challenges addressed (Section 2.2). We then introduce the scientific
contributions (Section 2.3) and the results of our evaluations (Section 2.4). Fi-
nally, we outline the content of the thesis (Section 2.5) and list the publications
resulting from this work (Section 2.6).

2.1 Context

Integrated Development Environments (IDE) are software aggregating many ser-
vices for development activities and providing unified access to these services, mak-
ing them major tools for developers. Developers are language users which manipulate
language constructs through language services. These services are implemented by
language designers, who increasingly expect IDEs to be extensible platforms so that
they can be used as the basis to provide the services of software languages. Such lan-
guage can be General-Purpose Language (GPL) that are designed to be used for any
application domain (i.e., Java, SQL, XML, etc), but can also be Domain Specific Lan-
guage (DSL) that are dedicated to a particular application domain [101]. The design
and implementation of software languages involve the same tasks required by the life-
cycle of software [45], ranging from the specification and implementation of language
services to their deployments. The language designers are helped by the Software Lan-
guage Engineering (SLE), which is a discipline rationalizing the process of developing
software languages [81]. Language designers follow the principles of SLE to define
their language and implement it in one technological stack, and at the end of the pro-
cess may integrate its language services in an IDE and make them available to future
language users.

The recent trend for IDEs is to be implemented as web applications. Web-based
IDEs are adopting the Software as a Service (SaaS) model to provide remote access to a

15

Partie , Chapter 2 – Introduction

development environment through a web browser. One of the main objectives of Web-
based IDEs is to provide a development environment without installation. Configuring
the development environment is the first and mandatory activity of a developer. It is a
task consisting of retrieving the source code, installing tools, installing dependencies,
etc. It is a time-consuming task, that is mandatory but also specific for each project.
Web-based IDE is a solution to reduce the cost of switching between projects by pro-
viding ready to use development environment. Another advantage is that Web-based
IDE makes it possible to work anywhere since only a web browser and an internet
connection are needed. Thus developers can switch from machine to machine seam-
lessly. Providing an IDE as services opens for language designers the continuous de-
livery workflow by which the IDE services can be updated and provided directly to
language users without interrupting their activities. Running language services on a
remote machine is also a way to preserve the client’s resources like CPU, memory, or
battery from heavy computations.

Implementing IDE as a web application raises new challenges which we have ad-
dressed in an industrial context through a partnership between a company and a lab-
oratory within the framework of the French doctoral program CIFRE 1.

2.2 Problem Statements

When he comes to implementing a language, the language designer chooses a par-
ticular technological stack, which encompasses the manner of defining the language
(grammar, metamodel,...), the programming language to be used, which framework,
etc. The language designer makes this choice based on the particular strengths of the
technological stack (i.e., the ease of writing code transformation, of implementing in-
terpreters, etc). However implementing a language in one technological stack is a long-
term choice that is hard to change later and, moreover, it is difficult to combine multiple
technological stacks that may be distant both in their formalism and technically. This
lack of flexibility in the language implementation prevents language designers from
benefiting from the strengths of multiple technological stacks at the same time and
does not allow language users to choose the most appropriate technological stack to
manipulate language construct according to his current activity (i.e., to use best lan-
guage services from a particular technological stack).

1. stands for Industrial Agreement of Training through Research

16

2.2. Problem Statements

Language implementations are made of heterogeneous services. Each language ser-
vice has specific needs in the sense that they have different frequency of use, different
computational complexity which implies a different consumption of resources (e.g.,
CPU, memory, etc). At the same time, many execution platforms are available for these
services, (e.g., dedicated servers, clouds, laptops, etc), each with its own characteris-
tics, (e.g., dedicated servers have a lot of CPU and memory, the cloud provides an
automatic deployment mechanism that facilitates application scaling, language user’s
laptop avoids network latency, etc).

Existing Web-based IDEs do not leverage this diversity of resources from avail-
able execution platforms because they are divided into a frontend component running
in a web browser and a monolithic language server acting as a backend component.
Their main purpose is to provide a ready-to-use development environment to avoid
the time lost in configuring the development environment. To this end, they rely on
the isolation of the whole development environment to provide an out-of-the-box en-
vironment. This is achieved through the server that provides the language services and
the user workspace containing the developed artifacts. However, language servers are
monolithic applications, which limit the flexibility of Web-based IDEs in both language
implementation and deployment. It limits the implementation since it only allows lan-
guage designers to use a single technological stack and it limits the deployment since
the monolithic nature of the server implies that all language services are co-located and
therefore prohibits the independent deployment of the language services necessary to
allocate the resources provided by the different execution platforms of a cloud.

Leveraging the diversity of the available execution platforms by distributing the
heterogeneous language services to the location tailored to their needs could benefit
the language users by giving them flexibility in the deployment of language services
to maximize their performances. The distribution of language services is also an op-
portunity to build IDEs that support multiple users by sharing instances of language
services across multiple language users. Sharing language services minimize idle time
and avoid wasted resources compared to deploying one instance of each language ser-
vice for each language user.

Language designers have long experience building desktop IDEs, however, the
move to a distributed architecture adds additional concerns. In this context, language
services are isolated and communicate through the exchange of messages, which re-
quires the modularization of language services. They can also be deployed across mul-

17

Partie , Chapter 2 – Introduction

tiple execution platforms, possibly dynamically, which requires a means of configuring
their deployment. However, there are no proper abstractions to describe a distributed
developing environment to ease the development of language services and to support
the automation of their safe deployment.

The limits of flexibility in language implementation and deployment can be sum-
marized by the two following challenges:

Challenge #1: Language designers must be able to benefit from the specific strengths
of the many possible technological stacks to implement languages and, on the other
way around, language users must be able to seamlessly switch between language ser-
vices implemented in different technological stacks to manipulate the same language
constructs.

Challenge #2: The language services must be able to leverage the available execu-
tion platforms to best fit their needs according to the activities of the language user,
which can evolve over time.

2.3 Contributions

We tackle the challenges with two contributions. To bring more flexibility in lan-
guage implementation (challenge #1), we propose to synchronize the language con-
structs from different technological stacks implementing the same language by con-
necting them to a communication bus. The communication bus is based on a publish/-
subscribe pattern to broadcast changes that happened in one technological stack to
the other stacks. The main idea is that multiple technological stacks provide equiv-
alent language constructs that can be manipulated through language services, and
that any changes that may result from these manipulations are automatically reported
across all stacks. Language constructs are always synchronized and language users can
seamlessly switch between language services from the different technological stacks.
We propose a formalism that allows changes to be represented in the form of a list of
atomic operations agnostic of any technological stacks.

We implemented the communication bus as an Eclipse plugin to connect the tech-
nological stacks Eclipse Modeling Framework (EMF) [132], Rascal [84], and Java fluent
API; allowing the combination of these stacks to implement a language and allowing
to choose in which stack to manipulate the language constructs.

To enable greater flexibility in the deployment of language services (challenge #2),

18

2.4. Results

we propose a generative approach to automatically modularize language services and
support their safe deployment based on the specification of a communication protocol.
The goal is to leverage the available resources of multiple execution platforms to best
fit the needs of language services by distributing them across platforms. We provide
a DSL at the destination of the language designer to specify communication protocols
to be used as input to generate microservices implementing the language services and
a feature model to drive the safe configuration of their deployment. This DSL allows
us to specify the set of language services, their interfaces, and their interactions. Our
approach to automatically modularize language services is to use this protocol speci-
fication in addition to the language specification to generate the microservices. We use
the language specification to generate the source code needed to load a program, which
is the input of the language service logic and we use the communication protocol spec-
ification to generate the source code and configuration files needed for the communica-
tion with other microservices. We aimed at generating ready-to-deploy microservices,
in which the language designer only has to implement their internal logic. Comple-
mentary, we generate a feature model, which defines deployment constraints between
the language services, to drive the safe deployment configuration of language services.
The configuration allows a language user to dynamically define which services have
to be deployed and on which execution platform.

The generators have been implemented as Eclipse plugins to be integrated into the
EMF ecosystem and work with languages defined by Ecore metamodels and Xtext
[44] grammars. The generated microservices are embedded in Docker [100] containers
and their deployment is performed in a Kubernetes [18] cluster to form a modeling
environment as a cloud-native application. Our configurator uses the Kubernetes API
to dynamically change the deployment configuration.

2.4 Results

We applied our first contribution to the three technological stacks EMF, Rascal, and
Java fluent API in which the Finite State Machine language was implemented. We were
able to report the changes produced by the language services from one technological
stack to the others and thus manipulate the same finite state machine through the lan-
guage services of the different stacks.

To validate our second contribution is generalizable, we applied it to the NabLab

19

Partie , Chapter 2 – Introduction

[94], Logo [1], MiniJava [121], and ThingML [61] languages. On these languages, we
validated that we were able to generate microservices implementing a set of language
services, that we were able to distribute them on a Kubernetes cluster, and that we
were able to dynamically configure the deployment of the language services.

To evaluate the benefit of the distribution of language services, we measured their
response times for the NabLab language in two configurations: language services pro-
vided by a monolithic server deployed locally on a laptop and language services im-
plemented as stateless microservices deployed remotely on powerful machines. We
have found that it is advantageous to run computationally intensive services as re-
motely deployed microservices, as the gain in computing time outweighs the loss due
to modularization and network communication.

To evaluate the cost of distribution, we measured in the response times of the state-
less microservices implementing language services of the four languages the part due
to the communication protocol and the part due to the loading of the programs. Our
results show that response times of language services implemented by monolithic
servers, which are stateful, are lower than those of microservices, that message ex-
change overheads between microservices due to the protocol are acceptable (i.e., less
than 200 ms), and that the cost of loading a program at each request is a significant part
of the bad performance of stateless microservices compared to monolithic servers.

In conclusion, our first application shows that our approach of combining techno-
logical stacks brings flexibility for both implementation and language usage. From the
second application and the results of our experimentation, we conclude that the dis-
tribution of language services makes an IDE flexible in its deployment, allowing us to
leverage available execution platforms to improve language service response times.

2.5 Outline

The content of this thesis manuscript is organized in three parts containing 9 chap-
ters as follows:

The first part (Part I) is composed of two chapters giving the context of this thesis.
Chapter 3 presents the general background necessary for the understanding of this the-
sis. It presents the fields of Software Language Engineering and Cloud-native Appli-
cations. Chapter 4 reviews the state of the art of IDEs and discusses of their flexibility.

The second part (Part II) contains three chapters presenting the contributions of this

20

2.6. Publications

thesis. Chapter 5 gives an overview of the thesis and presents how the contributions
are related. Chapter 6 describes our contributions on combining multiple technological
stacks to implement and use languages. Chapter 7 presents our solution to language
services modularization and language services distribution to leverage cloud infras-
tructure.

The third part (Part III) is composed of two concluding chapters. Chapter 8 is a sum-
mary of this thesis. Chapter 9 identifies the perspectives of our contributions opening
to future works.

2.6 Publications

This section lists the publications in international conferences resulting from the
work of this thesis.

— Shape-diverse DSLs: languages without borders (vision paper) (distinguished
vision paper award) Fabien Coulon, Thomas Degueule, Tijs Van Der Storm, Benoit
Combemale. In Proceedings of the 11th ACM SIGPLAN International Confer-
ence on Software Language Engineering, 2018 [30].

— Modular and Distributed IDE Fabien Coulon, Alex Auvolat, Benoit Combe-
male, Yérom-David Bromberg, François Taïani, Olivier Barais, Noël Plouzeau.
In Proceedings of the 13th ACM SIGPLAN International Conference on Soft-
ware Language Engineering, 2020 [29].

21

PART I

Background and State of the Art

22

CHAPTER 3

BACKGROUND

This thesis is about the application of cloud computing to software language
engineering. We start this chapter by defining what a software language is (Sec-
tion 3.1) and giving an overview of software language engineering (Section
3.1.1) before introducing the notion of metamorphic DSL (Section 3.1.2). We
then introduce the principles of cloud computing (Section 3.2) and describe its
different service models (Section 3.2.1). We conclude by presenting the proper-
ties of cloud-native applications (Section 3.2.2) and their realization in microser-
vices (Section 3.2.3).

3.1 Software Language

Software languages are artificial languages implemented as software. They are in-
volved in every activity of software and systems engineering [91] and are more and
more numerous [90]. Software languages can be programming languages (e.g., C, Python,
Javascript) but are not restricted to this domain. We can cite for example markup
languages to structure documents (e.g., HTML, XML), query languages to request
databases (e.g., SQL), configuration languages (e.g., YAML, JSON), modeling languages
(e.g., Flowchart, ThingML), etc.

Software languages can be classified as General-Purpose Languages (GPL) or Domain-
Specific Languages (DSL) [145]. GPLs are software languages general enough to target
any application domain. It means that they don’t contain features specialized for a
particular domain. They are intended to be used by software-experts, which can make
them difficult to handle by domain-experts who do not have the same skills. DSL suit
better for domain-experts since they are languages at the right level of abstraction for
them, making them easier for modifications and understanding [32]. DSLs are every-
where: web, embedded systems, simulation, security, testing, or education to cite a
few domains where they are used [112]. Compared to GPLs, DSLs are tailored for one

23

Partie I, Chapter 3 – Background

particular application domain and have expressiveness that increases their ease of use
[101]. DSLs might also improve language user efficiency [87] however their is a lake of
usability evaluation [12].

Software languages can also be classified as internal or external languages. Internal
languages are software languages using the constructs of host languages to express
the concepts of their domain. Internal languages benefit from the tooling of the host
language [72]. This makes it possible to reuse the existing infrastructure of the host
language to avoid reimplementing it specifically for the internal language, and thus
reduces the development cost. Reusing tools of the host language is also a limitation in
the sense that they are not specifically tailored for the internal language, e.g., a source
code validator may not detect errors specifics to the internal language. Fluent API [48]
is an example of a technique used to implement internal languages in programming
languages. This technique relies mostly on method chaining, object scoping and call
of function as function’s parameters. External languages are autonomous languages
in the sense that they have their own dedicated tooling. The creation of an external
language is the creation of a new language that requires writing its specification and
implementing its tooling.

In the following section, we present the discipline of Software Language Engineer-
ing, which provides methods and techniques for software language development ac-
tivities.

3.1.1 Software Language Engineering

Software Languages are software [45] and therefore face the same challenges in
their development (e.g., design, test, deployment, maintenance, etc). The development
tasks can even increase in complexity for the case of DSLs since it requires exper-
tise in both application domain and language development [101]. The construction of
domain-specific tools is expensive [149] and require language engineering skills [154].

Derived from Software Engineering, Software Language Engineering is the com-
puting discipline for designing and implementing Software Languages. It is a system-
atic discipline providing methods to guide the language designers in the design and
implementation of the aspects of a software language which mainly consist of the ab-
stract syntax, the concrete syntax, and the semantics [60].

Figure 3.1 shows the relationships between these three aspects of software lan-

24

3.1. Software Language

Figure 3.1 – Software language aspects and their relationships

guages. The central aspect is the Abstract Syntax that structurally defines the concepts
of a language, e.g., a metamodel. The Abstract Syntax is possibly complemented by
Concrete Syntaxes that define how the concepts of a language will be presented to the
language users, e.g., a textual grammar. The Abstract Syntax can also be completed by
Semantics that add meaning, e.g., well-formedness rules. We detail these three soft-
ware language aspects in the following.

An abstract syntax defines, for a given language, the concepts and their relation-
ships. Concepts are used as language constructs to create the representation of a sys-
tem of the application domain. Metamodels and models (i.e., a graph of objects) are
examples of forms that such abstract syntax and representations can take. Language
users manipulate representations through language services provided by the tooling
of the language. However, these representations are not what the language users see
since they are abstract data structures, meaning they are independent of concrete rep-
resentations constructed thanks to the concrete syntax.

Figure 3.2 illustrates the definition and the usage of an abstract syntax for the Finite
State Machine (FSM) language. The top sub-figure 3.2a presents the abstract syntax of
the FSM language in the form of a metamodel. It define the three concepts of the lan-
guage with the classes FSM, State, and Transition. The FSM is composed of States and
Transitions, and has a reference to one State that design it has the initial state of the ma-
chine. A Transition has a reference to an ingoing State, a reference to an outgoing State
and has an attribute event to define its trigger. Both FSM and State have an attribute
name. The bottom sub-figure 3.2b presents an example of FSM representing the behav-
ior of a door, in the form of a model conform to the metamodel presented in sub-figure
3.2a. The door is represented by an object FSM named ’door’. It has two objects State
named ’opened’ and ’closed’, the former being referenced has the initial State. The ob-

25

Partie I, Chapter 3 – Background

(a) Abstract syntax of the FSM language, in
the form of a metamodel

(b) The behavior of a door represented by a model con-
form to the metamodel of the FSM language

Figure 3.2 – Illustrative example of definition and usage of an abstract syntax with the
Finite State Machine language

ject FSM contains also two objects Transition. The first Transition ingoing from the State
named ’opened’, outgoing to the State named ’closed’ and is triggered by the event
’close’. The second Transition ingoing from the State named ’closed’, outgoing to the
State named ’opened’ and is triggered by the event ’open’.

A concrete syntax defines the notations for representations presented to the lan-
guage users. It is through these notations that the language users will understand and
manipulate the abstract representations. The concrete syntax can be textual or graphi-
cal. Textual syntaxes are defined by textual grammars, i.e., production rules like EBNF
[156]. Graphical syntaxes are defined by mapping elements of the abstract syntaxes
with graphical representations like geometrical shapes, tables, etc [147, 151].

Listing 3.1 shows an illustrative concrete syntax for the Finite State Machine lan-
guage in the form of a grammar. It is composed of production rules that define that

26

3.1. Software Language

1 grammar FSM;
2
3 fsm : ’ fsm ’ ’ { ’ s t a t e * t r a n s i t i o n * ’ } ’ ;
4 s t a t e : ’ s t a t e ’ ID ;
5 t r a n s i t i o n : ID ’→’ ID ;
6
7 ID : [a−z] + ;

Listing 3.1 – Illustrative example of concrete syntax with the Finite State Machine
language

an FSM starts with the word fsm followed by a list of states and a list of transitions
surrounded by curly brackets. A state must start with the word state followed by an
identifier and a transition starts with an identifier followed by an arrow and another
identifier. An identifier is defined as a sequence of at least one letter.

In addition to abstract syntax and concrete syntax to define languages, they are
semantics that gives meaning to the language. Semantics are classified in static seman-
tics or dynamic semantics. Static semantics are attached to language constructs and are
about checking their well-formedness. Dynamic semantics is about computation and
express the runtime behavior of languages. It can be one kind of operational, denota-
tional or axiomatic, or hybrid [109]. Operational semantics defines language behavior
with transitions between program states. The evaluation of operational semantics is the
run of a sequence of steps that perform transformations of the program state. Denota-
tional semantics defines the mapping between two languages. It is used to translate
the constructs of a source language to constructs of a target language. Axiomatic se-
mantics consists of making assertions on programs. It is used to define the properties
of programs that have to be satisfied, e.g., by using Hoare logic [69].

Language workbenches are IDEs assisting language designers in the engineering
of languages and improving the user experience of these languages [49]. In addition to
tools and methods guiding language designers during the development, they provide
metalanguages to specify the different concerns of software languages. Erdweg et al.
[42] compared languages workbenches and proposed a feature model summarizing
their different concerns. To give some examples of language workbenches, we can cite
Gemoc [16], Xtext [15], Rascal [84], Spoofax [78] or JetBrains MPS [152].

27

Partie I, Chapter 3 – Background

3.1.2 Metamorphic DSL

When coming to implementing a DSL, language designers have to take design deci-
sions. First of all, the language designer has to choose a shape for the DSL. The shape of
a language is realized through a technological stack providing the means to implement
the different concerns of a language. A good shape of a language depends on its user
and its activity [28]. For example, an internal language, like an API is easily integrated
with programs and therefore more suited for a programmer whereas an external form
may be more intuitive for a non-software-expert. The decision on how to implement
a DSL can also be based on the facilities provided by the language workbenches, each
of which has strength in a particular concern of a language. For example, a language
workbench like Rascal eases the implementation of refactoring tools.

The notion of metamorphic DSL was introduced in [3]. It is the idea that a DSL can
have multiple shapes at the same time and that language users can switch between
the shapes. Metamorphic DSL benefits both language designers who can leverage the
strength of multiple technological stacks to implement a language (i.e., a shape) and
language users who can use the most appropriate shape according to their activities.

1 SELECT *
2 FROM products
3 WHERE gps = ’ t rue ’

(a) SQL as external language

1 Optional <Product > person =
2 from (Product . c l a s s)
3 . where (Product : : getGPS)
4 . equals (" t rue ")
5 . s e l e c t (
6 productMapper ,
7 connect ionFactory : :

openConnection) ;

(b) SQL as fluent API

Figure 3.3 – Illustrative example of metamorphic SQL with an external language shape
and a fluent API shape

Figure 3.3 shows an illustrative example of metamorphic DSL with the Structured
Query Language (SQL), a language to write queries for databases. In this example,
SQL as metamorphic language has two shapes: one as an external language and one as
a fluent API in Java. Both sub-listings 3.3a and 3.3b show the same query (the selection
of all products with the GPS property) in the two shapes of the metamorphic language.
The both shapes of the metamorphic SQL are useful to the user but for different tasks.
The strength of the external language shape is that the user can benefits of a dedicated

28

3.2. Cloud Computing

editor to write the queries. The fluent API shape offer to the user the opportunity to use
the host language to build its queries (e.g., using Java’s for loops, variables, if, etc).

In the previous sections, we presented what are software languages, SLE, and meta-
morphic DSL. We will then present the field of Cloud Computing, which is used as a
means in this thesis to distribute language services, allowing to leverage of multiple
execution platforms.

3.2 Cloud Computing

Cloud computing is a paradigm that enables access to resources (e.g., machines,
storage, etc) on-demand through a network [99]. The principle of cloud computing
is to provide a set of shared resources to customers, which on-demand self-serve the
resources. Resources are allocated or unallocated in an automatic way to avoid any hu-
man intervention. The automation enables rapid scalability to follow the needs in re-
sources of deployed applications which can increase or decrease over time. Resources
are monitored to measure the usages of each customer. Cloud computing allows each
customer to pay the cloud provider only for the resources they consume, which avoids
paying for a static infrastructure dimensioned for peaks of occasional consumption [160].

It exists different kinds of clouds: public, private, or hybrid. The public cloud serves
multiple customers whereas the private cloud serves only one. The choice between
these two infrastructures has to take multiple concerns into consideration such as se-
curity or reliability but also costs since public vs private can be seen as pay-for-what-
you-use vs pay-fixed-cost [155]. The hybrid cloud is a composition of public and pri-
vate clouds that aims to take advantage of both. One usage is that a company uses a
part of its infrastructure as a private cloud and sells unused parts as a public cloud, or
at the inverse use all of its infrastructure and use an external public cloud to be flexible
in case of peaks of consumption.

3.2.1 Service Levels

Cloud providers business offers multiple service levels to their customers: Infras-
tructure as a service, Platform as a service, Software as a service, and Function as a Ser-
vice [117]. They differ in the level of abstraction of the resources that can be allocated
to the customer, ranging from low level (e.g., storage) to high level (e.g., software).

29

Partie I, Chapter 3 – Background

Figure 3.4 – Service Levels in Cloud Computing

Figure 3.4 presents the service levels of Cloud Computing, ranked by their level
of abstraction of the resources. Infrastructure as a service (IaaS) is at the lowest level,
followed by Platform as a service (PaaS), Software as a service (SaaS), and Function
as a Service (FaaS) at the higher level. Although these service levels are perceived as
layered, a service level does not necessarily rely on a lower service level and can be
relying on an ad hoc solution. For example, an SaaS can be provided on top of servers
without relying on a PaaS offering. In the following, we detail the presented level of
services.

Infrastructure as a service (IaaS)

IaaS level is the offer that gives the most control to customers. It allocates low-
level resources, such as CPU, storage, or network to customers and provides access
to physical infrastructure or virtual machines. Customers can manage, configure, and
install by themselves everything from the operating system to end-user applications.
Amazon EC2 [5] is an example of IaaS.

Platform as a service (PaaS)

PaaS level offers to customers an execution environment (i.e., an operating system)
in which they can deploy their applications. In this level, customers can deploy appli-
cations but have no access to the underlying infrastructure. Google App Engine [56]
and Microsoft Azure [102] are examples of available PaaS.

30

3.2. Cloud Computing

Software as a service (SaaS)

SaaS level offers ready to use applications to customers. The application runs on a
cloud infrastructure that is totally invisible to the customer, who only has access to the
application, often a web or a mobile application. To give some examples, we can cite
Netflix’s video streaming [113] or Uber’s food delivery [144] services.

Function as a Service (FaaS)

FaaS level is an approach to serverless computing that offers an execution environ-
ment for a particular language [11]. Serverless computing allows customers to upload
code and pay only for the time of its execution. In FaaS, the deployment unit is the
function. Amazon Lambda [6] is an example of FaaS.

3.2.2 Cloud-Native Application

A cloud-native application is an application designed to exploit the capabilities
of cloud computing. It is composed of independently deployable functionalities and
manages horizontal scalability (i.e., duplication of functionalities in several instances
to cope with the load) [88]. In addition to the scalability, they are other motivations
for the adoption of a cloud-native application. The distribution of functionalities pro-
vides robustness to the application by avoiding the propagation of failures and allow-
ing automatic recovery. In addition, application delivery is done at the granularity of
functionality, which makes it faster and continuous.

Leymann et al. [96] define the properties a cloud-native application must have to
take advantage of the capabilities of a cloud, summarized by the acronym IDEAL (Iso-
lation of state, Distribution, Elasticity, Automated Management, and Loose coupling).
This acronym means that :

— the state of the application must be passed to the functionality with each call if
possible or be isolated in its own component

— the functionality must be distributable, replicable, and have low coupling be-
tween them

— the application is automatically capable of duplicating or deleting functionality
to keep up with load increases and capable of restarting functionality in case of
an error

31

Partie I, Chapter 3 – Background

Bundling an application in a virtual machine or a container is not enough to call it a
cloud-native application since it will not have all the IDEAL properties to fully exploit
possibilities of clouds [97]. Such bundled application is easily deployable on a cloud
and therefore match the Automated Deployment property but its monolithic nature
prevents the others, i.e., the faults from functionalities of the monolith are not isolated
and if a functionality is a bottleneck the whole application is duplicated and may lead
to duplication of states.

(a) Scaling of monolithic application

(b) Scaling of cloud-native application

Figure 3.5 – Comparison of the scaling of monolithic and cloud-native applications in
a cloud

Figure 3.5 illustrates the difference in the use of cloud machines between a mono-
lithic application and a cloud-native application when handling multiple users. In Fig-

32

3.2. Cloud Computing

ure 3.5a, a monolithic application with 3 functionalities running in a process is de-
ployed in a cloud with three machines. To handle the number of users, the monolithic
application is duplicated on the three machines in the cloud. Users of the application
access its functionalities through a load balancer that dispatches requests across in-
stances of the application. In Figure 3.5b, a similar application with 3 functionalities
but cloud-native is deployed in a cloud with three machines. Each functionality of the
application is running in its own process. To handle the number of users, the function-
alities are duplicated on the three machines in the cloud. Users of the application access
the functionalities through a load balancer that dispatches requests across the function-
ality instances. The difference with the monolithic application is that each functionality
runs in its own process and can be deployed independently. Scaling of both monolithic
and cloud-native applications is based on functionality usage, but the monolithic de-
ploys every functionality on each duplication, while cloud-native deploys only the
functionality being used. The granularity of cloud-native application scaling enables
better utilization of machine resources by closely following user usage.

3.2.3 Microservices

Microservices are a way to build Cloud-Native applications. Microservices archi-
tecture is an architectural style allowing a functional decomposition of an application
into autonomous services [125]. Microservices follow the principle of single responsi-
bility, i.e., they provide only one functionality. They are isolated from each other and
communicate by exchanging messages (e.g. REST 1 requests). Microservices are possi-
bly embedded in software containers and their deployment is automatically managed
by a container orchestrator, making a microservices-based application fault-tolerant
and managing scalability by specifically replicating the most commonly used microser-
vices. Another benefit of a microservices architecture is the ability to continuously de-
ploy each functionality, as opposed to a monolithic architecture that redeploys the en-
tire application even if the change only concerns one functionality. A new version of
a microservice can be deployed to replace the old version without interruption of ser-
vice, allowing parts of the application to be updated independently of each other and
transparently to the user.

Microservices architecture is often viewed as an evolution of Service Oriented Ar-

1. Representational State Transfer

33

Partie I, Chapter 3 – Background

chitecture (SOA) [161]. However, these two architectural styles differ in their approach
to service-driven applications. The microservices architecture style can be resume as
“dumb pipes and smart endpoint” [95] while SOA style as “simple services and smart
pipes” [21]. SOA connects services with an Enterprise Service Bus (ESB). ESB is in
charge of dispatching messages that comprise performing complex operations such as
transforming messages into another format and orchestration of services. In microser-
vices architecture style, there is no central component to connect services and the ser-
vice coordination is choreography-oriented (i.e., each microservice implements its own
subpart of the global coordination of the application).

The straightforward approach to build microservices-based application is by hand
using frameworks like Spring [148], MicroProfile [40], Micronaut [26] or Quarkus [65].
However languages promote microservices as first class entitiy, e.g., programming lan-
guage [58], aspect-oriented language [62], agent-oriented language [158] or modeling
language [36].

Microservitization

The development of applications based on microservices architecture involves the
process of microservitization which promotes microservices as first-class entities in the
development activities. Microservitization is defined by Hassan, Ali, and Bahsoon [62]
as “a shift towards transforming services/components into microservices — more fine-
grained and autonomic services that isolate fine-grained business functionalities by
boundaries and interact through standardised interfaces”. The microservitization pro-
cess is applicable for both the creation of new microservices-based applications (green-
field approach) and the migration of existing monolithic applications to microservices-
based applications (brownfield approach) [63]. Both greenfield and brownfield mi-
croservitization approaches entail the isolation of functionalities and communication
through interfaces, the goal being to get the properties of cloud-native applications.

Determining the good granularity for microservices is a major concern in develop-
ing microservices-based application [64]. The granularity of microservices is a trade-
off to define stable boundaries that requires a good understanding of the domain of
the application by developers. Defining too small microservices makes the application
having more microservices which increases the deployment cost and which impacts
performances since the number of exchanges between microservices will be more nu-
merous. It makes the application harder to understand and reason about which in-

34

3.3. Summary

crease its maintenance cost. On the opposite, too coarse-grained microservices make
it harder to achieve the cloud-native application properties. Microservices with big-
ger scope make applications less flexible in the scalability management since it relies
on replication of the functionalities. It also reduces the fault isolation of functionalities
that impacts the robustness of the whole application.

3.3 Summary

In this chapter, we presented the domains we use as background in this thesis. We
defined Software Language Engineering which is is a computing discipline for design-
ing and implementing software languages and introduced the notion of metamorphic
DSL, i.e., a DSL with multiple shapes. We also presented the paradigm of Cloud Com-
puting which is used to leverage a cluster of machines to provide on-demand access to
their resources. We described what Cloud-Native applications are, which are applica-
tions designed to leverage the capabilities of a cloud and the Microservices approach
to Cloud-Native applications. In the following chapter, we present the state of the art in
desktop and web-based Integrated Development Environments, their use of the cloud,
and discuss the limitation of their flexibility with regard to the challenges presented in
Chapter 2.

35

CHAPTER 4

STATE OF THE ART

In this chapter, we present the state of the art of IDEs in regards to the chal-
lenges presented in Chapter 2. We first review the different kinds of IDEs, i.e.,
desktop IDEs, web-based IDEs and cloud-based IDEs (Section 4.1). We start by
presenting the desktop IDEs, their component-based architectures and the rise
of language protocols used for communication between IDEs and language ser-
vices. We then present the web-based IDEs (Section 4.1.2) We last present cloud-
based IDEs and there usage of cloud infrastructure to manage user workspaces
(Section 4.1.3). We secondly discuss of the flexibility limitations of IDEs regard-
ing the challenges to be addressed (Section 4.2).

4.1 Integrated Development Environment

IDEs are software dedicated to the development of software. Development of soft-
ware involves many activities that includes in addition to programming, the designing,
debugging, testing, the organization of development projects, collaboration with other
developers, etc. IDEs assist software developers by bringing together a set of devel-
opment tools and by providing a unified interface for ease of use. We use the term
of development tool to refer to the software components used by software developers
that support their activities. Development tools include editors, compilers, or debug-
gers but also development tools that are not directly related to languages, e.g., version
control systems. Language constructs are manipulated through the language services
provided by these tools. For example, in program development, textual documents
are parsed to obtain programs, which are then validated before being interpreted or
compiled at the end.

Mastering individually the many tools of a development environment may be hard.
Indeed without an IDE, software developers have to install the development tools,
learn how to configure them and how to use them individually. Moreover, in a devel-

36

4.1. Integrated Development Environment

opment environment the tools are not used separately, they form a tool chain. Software
developers have to understand how to connect them to have a usable development en-
vironment.

IDEs mitigate these difficulties by providing an environment where all the develop-
ment tools are in one place that avoids to install them one by one. Development tools
in IDE are already connected in a preconfigured tool chain that allows an immediate
usage of them. Tools are also accessible in a unified interface that hides the specificities
of each tool to ease the usage. IDEs aim to reduce the cost of software development by
easing the experience of the developer.

We give in the following subsections an overview of the existing kinds of IDE and
the opportunities they offers. First, we present desktop IDEs and the emergence of
language protocols.

Second, we present the Web-based IDEs which are the result of the trend to move
software from desktop applications to web-based applications for development envi-
ronments [79]. They provide an online experience for software development through
a web browser. The intent behind the move from desktop UI to an in-browser inter-
face was to avoid the cost of installing and configuring development environments by
providing ready-to-use solutions to the users.

Last, we present Cloud-based IDEs which adopted the SaaS model by taking the
opportunities offered by cloud computing.

4.1.1 Desktop IDE

We review in this section the architecture used to integrate development tools in
desktop IDEs (i.e., IDEs running on the machine of the software developer) and present
afterwards the language protocols that emerged from these architectures and which are
used to externalize language services from IDEs.

Component-based architecture

Although IDEs can be dedicated to a single language, the 10 most searched IDEs on
Google [141] support multiple languages, i.e., Visual Studio [106], Eclipse [38], Android
Studio [55], Visual Studio Code [107], PyCharm [74], IntelliJ [73], Netbeans [8], Xcode
[10], Atom [53] and Sublim Text [71]. IDEs supporting multiple languages are also
a popular basis for language workbenches, as can be seen in [42] where 6 of the 10

37

Partie I, Chapter 4 – State of the Art

languages workbenches compared are based on Eclipse or IntelliJ.

The support for multiple development tools in these IDEs is allowed by component-
based architectures. The extension of the IDE to add a language service consists of
providing components implementing a set of APIs.

The IDE Eclipse relies on the OSGi standard [4] for its modularity. Equinox, the
Eclipse’s implementation of the OSGi standard, is a Java framework running on top
of a JVM which allows to implement an application following a dynamic component
model [137]. OSGi components are Jar archives containing Java classes called bundles.
Each bundle declares its dependencies to other bundles and the set of services it re-
quires and offers, which are implemented by Java classes. OSGi manages the life cycle
of the bundles dynamically, i.e., bundles are installable on the fly without a reboot.
At the installation of a bundle, its services are registered in a central registry that is
used to satisfy the provide/require dependencies of all services. Eclipse uses OSGi’s
dynamic bundle management, but although OSGi provides a service registry, Eclipse
uses the plugin concept. Eclipse plugins act similarly to OSGi services in that they de-
fine extension points to contribute, which declare Java interfaces that other plugins can
implement to contribute the extension point.

Leveraging from the experiences of Eclipse, Visual Studio Code is a component-
based IDE that improves the extensibility design and opens up to new usage scenar-
ios. Visual Studio Code was designed with performance in mind. Eclipse startup time
suffers from the lack of isolation of its plugins. Visual Studio Code proposes to run its
extensions in separate processes. This way an extension taking too much time does not
impact the whole IDE. The time the IDE is ready to serve the user is not increased by
slow running extensions. Visual Code Studio also allows running extensions remotely.
The core component of the IDE communicates with an agent deployed remotely. The
extension and an agent are deployed remotely. The agent is connected to the core com-
ponent deployed on the user machine and acts as a gateway with the remote extension.
This architecture allows scenarios like working with multiple file systems, with con-
tainers or SSH Boxes.

Visual Studio Code faced the problem of integrating the support for the many ex-
isting languages. Their approach was to decouple the IDE from the language imple-
mentation with a communication protocol. The proposed to have a language agnostic
IDE that accesses language services provided by dedicated language servers running
at the side of the IDE for each language via a language protocol, i.e., a standardized

38

4.1. Integrated Development Environment

communication protocol for using the language services. In the next subsection, we in-
troduce the IDE portability problem and review the language protocols that standardize
the communication between IDE and language servers.

Language Protocols

The support of multiple languages has led IDEs to be language-agnostics. For the
integration of each language, a generic API must be implemented to connect the lan-
guage services in the IDE, therefore this adaptation code is specific to both the host IDE
and the integrated language. IDE maintainers must make an effort to support multiple
languages and this effort has to be repeated in other IDEs since the APIs differ, even for
the same languages. Keidel, Pfeiffer, and Erdweg [80] identified this issue as the IDE
portability problem. Language designers also face the same problem when creating new
languages. Indeed, to increase the adoption of a new language, language designers
must do the integration work for many IDEs, which requires implementing the many
APIs of the targeted IDEs. The global effort to get n IDEs to support m languages is
therefore n x m implementations of integration logics.

Figure 4.1 – IDE portability problem

Figure 4.1 illustrates the IDE portability problem with the IDEs Visual Studio Code,
Theia, and Eclipse at the left side and the languages Java, Python, and Javascript at the
right side. Each arrow between an IDE and a language represents an adaptation effort
to integrate both sides. Each of the three IDE has to integrate with the three languages,
which represent in total an effort of nine integrations.

The IDE portability problem due to the multiplication of IDEs and language has led
to the emergence of language protocols that standardize the communication between
IDEs and language servers providing the language services. They try to solve the
problem by decoupling language-agnostic clients (e.g., IDEs) from language-specific

39

Partie I, Chapter 4 – State of the Art

servers that provide language services thanks to standardized inter-processes commu-
nication. The clients and servers run in separate but linked processes through a com-
munication channel and implement the same protocol specifications, i.e., they agree on
the format of the messages exchanged and on their sequence order. Language protocols
make IDEs interoperable with language servers. This means that the implementation
of a protocol in an IDE makes any existing and future language servers implementing
the same protocol available "for free", and conversely, language designers have access
"for free" to any IDE implementing the same protocol. Language protocols standard-
ize communication by defining interfaces for a set of language services for specific
activities in various domains such as program editing, program debugging, program
building, etc.

The Language Server Protocol (LSP) [104] is a language protocol initiated by Mi-
crosoft that specifies communication for language services for program editing activ-
ities (e.g., content assist, goto definition, program validation, etc). LSP provides inter-
operability between development environments and language servers providing lan-
guage services. It is a standardized protocol that defines the format of data exchanged,
which is based on text positions in addition to the specificities of each language service.
It is a protocol that uses the remote procedure call paradigm. It is based on the JSON-
RPC [108] which defines a notification, request, and response format using JSON. LSP
was first introduced in Microsoft’s multi-language IDE Visual Studio Code to solve
the IDE portability problem but it gained popularity and has been implemented, to date,
by 24 clients and supported by 79 languages [129]. The languages supporting LSP are
not restricted to GPLs like Java or Python since it has been applied to modeling lan-
guage based on the EMF [122] and has been used for textual DSLs to facilitate their
integration into multiple editors [17]. Although the objective of LSP is to support the
integration of any language, it is limited to textual languages. However, a workaround
solution based on an intermediate representation in textual format for a graphical rep-
resentation has been proposed [123].

Figure 4.2 illustrates the benefit of using LSP with the same IDEs and language
presented in figure 4.1 which illustrated the IDE portability problem. The support for
each of the three languages is implemented by language servers implementing LSP
and each of the three IDE implements the same protocol, that represent in total an
effort of 6 protocol implementations.

Software debugging has always been a major concern in software engineering. It

40

4.1. Integrated Development Environment

Figure 4.2 – IDEs and languages integration with the Language Server Protocol

requires some form of language protocol to allow an external tool to monitor the ex-
ecution of programs, whether it is an interpreted program or a compiled language
(through the instrumentation of the code). IDEs such as Eclipse provide generic APIs
to connect debugged software to their debugging interface. Tools like Gemoc [16] bene-
fits of this infrastructure to implement over a debugging protocol for model execution.

In parallel with LSP, Microsoft has developed the Debug Adapter Protocol (DAP)
[103] to decouple language-agnostics clients from language-specific debuggers. This is
a protocol complementary to LSP that standardizes communications between the client
and the server for debugging activities (add breakpoint, step into, drop frame, etc). It
allows to control stack-based execution of a program and to inspect its internal state.
The protocol is based on the remote procedure call paradigm. It specifies the format
of the messages exchanged, which is based on the document identifier and the text
positions.

Build Server Protocol (BSP) [126] is a protocol to address the IDE portability prob-
lem between clients and build tools (e.g., sbt, Graddle), where clients can be language
servers or directly IDEs. Like LSP, BSP relies on JSON-RPC. BSP allows a client to
launch tasks and follow progress through notifications. The tasks include compilation,
testing, and execution.

Jupyter Notebook [76] is a web-based environment for editing interactive docu-
ments made up of cells that contain chunks of program, each of which is independently
evaluable. Jupyter Notebook supports multiple languages through the concept of ker-
nel, which are language-specific interpreters built as Read-Print-Eval-Loop (REPL).
Jupyter Notebook uses the Wire Protocol to establish a communication between the
frontend and the kernel with request/reply messages.

Keidel, Pfeiffer, and Erdweg [80] propose a solution to the IDE portability problem
called Monto. Inspired by the domain of compilers that face a similar portability prob-

41

Partie I, Chapter 4 – State of the Art

lem and which use intermediate representations to write compilers for m language
targeting n architectures, Keidel, Pfeiffer, and Erdweg [80] propose to use intermediate
representations common to IDE clients and language services to enable communica-
tion agnostic of any IDE or language. Monto makes IDEs clients interoperable with
language services and supports their distribution as microservices.

Language protocols solve the IDE portability problem and standardize communica-
tions for language services in many domains, such as program editing, program de-
bugging, program building, etc. In the following section, we discuss why component-
based architecture and language protocols from the state of the art are not enough
flexible to address the challenges presented in section 2.2.

4.1.2 Web-based IDE

Web technologies offer the possibility to have a development environment accessi-
ble remotely and ready to use thanks to a web browser. This simplifies the start of a
development project and eases the collaboration between users since only a browser
is needed. Web-based development environments come in a variety of forms, such as
code editors that can be integrated into web pages, notebooks for data scientists, full
web-based IDEs, or code playgrounds that emphasize collaboration over snippets of
code.

Code editors are the simplest form of a web development environment. They are
web components that can be integrated into a web page and provide few language
services to assist in program writing. As web component, they are used in more com-
plete web-based development environments, e.g., the editor ACE [2] is used in the
web-based IDE Cloud9 [7], the editor CodeMirror [24] is used in the IDE Codeany-
where [23] and Jupyter Notebook [76], the editor Monaco [105] is used in the web-
based IDEs Visual Studio Code [107] and Eclipse Theia [143].

Code playgrounds are a new trend in developing environments emphasizing in-
teractivity and allowing collaborative editing. It exists web-based environments that
allow publishing code snippets to share or review source code such as Pastebin.com or
GitHub Gist [131] but they differ from code playgrounds since they are not ’language
award’, i.e., they do not provide language services. JSFiddle [75] and CodePen [25]
are code playgrounds that provide collaborative program editor for web page devel-
opment, complemented by a rendering view and a console. The source code (HTML,

42

4.1. Integrated Development Environment

CSS, and Javascript) can be executed to view the resulting web page. Repl.it [120] is
a code playground supporting dozens of programming languages. It integrates a file
browser, a program editor, a console, and a shell. Programs can be executed and the
result is displayed in a console.

Web-based IDEs such as Visual Studio Code, Cloud9, Eclipse Orion [39] or Eclipse
Theia are web-based development environments close to desktop IDEs in terms of
functionalities and user experience. They are integration frameworks that, in addition
to program editor aggregate project management, version control system, debugger,
etc. Web-based IDEs are referred to as cloud IDE when deployed in a cloud. They
exploit the horizontal scalability of clouds, i.e., new instances of the IDE are created
for each new user. Some web-based IDEs like Cloud9, Eclipse Che [41] or Codeany-
where [23] also exploit the cloud isolation capability to manage user workspaces. The
boundary between web-based and desktop IDEs can be fuzzy since a web-based appli-
cation can be run locally. This is the case for example with Visual Studio Code which
is an IDE built with web technologies but used mainly as a desktop IDE. It uses Elec-
tron [47], a framework using the Chromium rendering engine that turns web page to
graphical representation and using the Node.js Javascript runtime to run Javascript
programs. Electron allows the execution of both the backend and frontend of a web
application, making it a desktop application for the user. Eclipse Theia is another ex-
ample of IDE built with web technologies that can be used as a desktop application
using Electron. Although they are packaged as a desktop application, they are not lim-
ited to the desktop since they have an architecture designed for the web (i.e., they have
a frontend and a backend). Microsoft provide Visual Studio Code as web-based IDE in
GitHub Codespaces [54] and Eclipse Theia is usable as web-based IDE in Gitpod [142].

The plugin architecture is also used by web-based IDEs to extend both frontend and
backend. Visual Studio Code is composed of a UI part (i.e., the frontend that runs in a
web browser) and a Workspace part (i.e., the backend). Visual Studio Code has a plu-
gin architecture that provides a set of contribution points to extend both the UI and the
Workspace parts. Plugins must declare the extension point to which they contribute.
The distinction between UI and Workspace allows running plugins on the right ma-
chine when Visual Studio Code is deployed in a remote development setup. Similarly,
Eclipse Theia is based on a plugin architecture but also offers an alternative exten-
sion mechanism based on dependency injection. These extensions are NPM packages
composed of Javascript classes that can declare injectable contribution interfaces. The

43

Partie I, Chapter 4 – State of the Art

difference is that extensions are used to build Javascript applications running in the
same process while plugins are isolated in their own process (or in a worker for the
frontend part). Since plugins run in process, they are isolated which allows them to be
loaded at runtime but forces them to communicate through well-defined APIs. Maróti
et al. [98] proposed a plugin architecture for WebGME to extend both frontend and
backend. Plugins interact with the model through a Javascript API that allows them
to be deployed on the frontend or backend. To support plugins written in a language
other than Javascript, they also provide a REST API to interact with the model.

Notebooks like Apache Zeppelin [9] or Jupyter Notebook [76] are also a form of a
web-based development environment. Notebooks are interactive documents contain-
ing parts of natural language and cells of source code. The cells of code can be executed
to produce text or graphical outputs that can be interactive. Each cell shares the same
execution context but is executed independently following the Read-Eval-Print-Loop
model. The combination of natural language, snippets of executable code, and interac-
tive output makes notebook environments suitable for education and data exploration
purposes.

Web-based collaborative modeling environment such as WebGME [98] or AtomPM [134]
has been investigated. Sirius Web [115] is a web-based modeling environment with col-
laborative capabilities that allows using in web browser modelers defined with Sirius
[147], an Eclipse-based technology to design and implement modeling languages with
graphical syntax. MDEForge [13] is a web-based modeling environment centered on
modeling repository. It focuses on two aspects: model storage and model transforma-
tion execution in a cloud. Distil [20] allows to describe MDE services and generate web
environment. Zweihoff, Naujokat, and Steffen [162] introduced Pyro, a graphical mod-
eling environment with collaborative support. They propose a generative approach to
produce the frontend and backend of the web modeling environment from specifica-
tions.

4.1.3 Cloud-based IDE

In this section, we overview how cloud-based IDEs leverage the capabilities of
clouds to manage user workspaces. The user workspace has a specific configuration for
each development project. This includes source code, dependencies, runtime, language
services, etc. Cloud-based IDEs provide remote access to development environments

44

4.1. Integrated Development Environment

that are provisioned on-demand in the cloud. They complete web-based IDEs by sup-
porting a reproducible development environment that allows automatic workspace
setup. Fylaktopoulos et al. [52] define cloud-based development as "the complete trans-
fer of developer workspace into the cloud. The developer’s environment is a combina-
tion of the programming IDE, the local build system, the local runtime, the connections
between these components and their dependencies".

Clouds facilitate the management of development environments by allowing on-
demand workspace. Each user can have its own isolated workspace deployed in a
cloud thanks to virtualization (e.g., virtual machines or containers). Virtualization brings
independence to execution platforms, enabling reproducible workspaces. It removes
the need for user involvement in workspace configuration, and thus provides a ready-
to-use development environment.

Container-based solutions running on clouds complement web-based IDEs. Eclipse
Che [41] proposes to use Docker containers to deploy whole workspaces on a Kuber-
netes cluster. Workspaces are configured through YAML files named "devfile". They
contain for example the location of a source code repository, the language server to be
deployed or the IDE to be used (e.g., Eclipse Theia). Eclipse Che read these "devfiles"
to produce the containers to be deployed on the Kubernetes cluster. As text format, the
"devfile" allows the versioning and the sharing of workspace configuration. Amazon
provides Cloud9 [7] for AWS which is a web-based IDE that also uses Docker con-
tainers to deploy workspaces in Amazon’s clusters. Codeanywhere [23], which relies
on DevBoxes [33], is another example of web-based IDE using containers to manage
workspaces. GitPod [142] is an online service integrated with GitHub, Bitbucket, and
GitLab that promotes the dev-environment-as-code, i.e., the idea that development en-
vironments are complex things that have to be described in an editable, shareable,
and versionable configuration file. It uses Docker to containerize whole workspaces,
containing at least a runtime environment with source code and a web-based IDE. Mi-
crosoft proposes Codespaces [54], an online service interfaced with GitHub that pro-
vides a container-based solution for workspaces. They use JSON files to configure the
content of the workspaces.

The capabilities of the cloud provide web-based IDEs with on-demand and repro-
ducible workspaces, that are customizable with configuration files. We discuss in the
next section why the cloud-based IDEs in the state of the art do not fully address the
challenges presented in section 2.2.

45

Partie I, Chapter 4 – State of the Art

4.2 Flexibility in IDEs

In this section, we discuss on the aforementioned approaches to flexibility in IDEs
and identify what is missing to address the challenges presented in section 2.2. We first
discuss on the support of modularity in IDEs and then discuss on their capacity to
distribute language services.

4.2.1 Modularity

IDEs are modular thanks to component-based architectures and the use of lan-
guage protocols. Component-based architectures allow support for modular devel-
opment tools. Components are reified through the concept of plugins, which define
how IDEs can be modularized. Plugins declare extension points with API, which are
implemented by the language services of the new languages integrated into the IDE.
Although this is an architecture that allows modularization, it imposes limits on the
flexibility of the IDE with regard to the challenges of combining technological stacks
and leveraging multiple execution platforms.

Component-based architecture does not allow the combination of multiple tech-
nological stacks for one language. The integration of a language into the IDE is done
through the implementation of APIs corresponding to the language services supported
by the IDE (or a subset). The implementation of the language is done in the technolog-
ical stack chosen by the language designer. A language could be implemented multi-
ple times in different technological stacks, but each implementation would be isolated
from the others. A language is integrated into the IDE framework as one set of co-
hesive plugins implemented in the same technological stack and despite the API ab-
straction layer provided by the plugin that allows modularization, this approach to the
modularization is not flexible enough to support multiple technological stacks. Indeed,
the plugin approach allows language services to be implemented in any technological
stacks, but the use of language services from different technological stacks requires the
addition of a synchronization mechanism for the language concepts manipulated by
the language services.

Language protocols solve the IDE portability problem, i.e., they provide interoper-
ability between IDE clients and language servers by standardizing their communica-
tion. Protocols allow language services to be isolated from IDEs and give total inde-
pendence in their implementation from technologies used in the IDE. Each protocol

46

4.2. Flexibility in IDEs

is dedicated to a given activity (e.g., editing, debugging, etc) making them support a
well-defined set of language services. For a given activity, a language protocol has a
fixed specification that defines the language services and the formats of exchange mes-
sages, formats that are tied to particular concrete syntaxes. Fixed specifications solve
the IDE portability problem but this has led to the multiplication of protocol to cover
new activities. Existing language protocols are not enough flexible to allow modular-
ity for any language. They limit the modularity of IDEs since only language services
specified by a protocol can be integrated into an IDE. Keidel, Pfeiffer, and Erdweg [80]
proposed a solution based on standardized intermediate representations allowing the
distribution of language services as microservices. However, they specified only three
language services, which limit its usability.

Language protocols are technology agnostics, which allow technological stacks to
be interoperable. However, language protocols were first designed to communicate
with local processes providing language services for an IDE running in another pro-
cess. It means that they are designed with a single-source model, which prohibits the
use of multiple technological stacks to implement a language. Indeed using language
services from multiple technological stacks implementing the same language implies
multiple source models and therefore requires additional synchronization mechanisms
for the models.

4.2.2 Distribution

Component-based architecture does not allow to leverage of multiple execution
platforms for the language services. Although the component-based architecture al-
lows modularity, the resulting IDE is a monolithic software. This means that all lan-
guage services run on the same execution platform. To leverage multiple execution
platforms, modularizing an IDE require isolation of the language services and the abil-
ity to distribute them.

In web-based IDEs, the development is driven by the need of providing ready-
to-use development environments. The state of the art web-based IDEs make devel-
opment environments accessible through web browsers and rely on client/server ar-
chitecture to externalize the user interface and discharge the language users from the
responsibility of set up the development environment. However, the server part of
web-based IDEs that provide language services uses component-based architecture

47

Partie I, Chapter 4 – State of the Art

like desktop IDEs that allows the same modularity, which is limited by its monolithic
nature, i.e., leveraging multiple executions platforms require the distribution of the
language services.

Cloud-based IDEs use clouds to manage user workspaces. They rely on container
technologies to provide a runtime environment for language services. Workspace con-
tainerization addresses the need to provide a ready-to-use development environment
for each user on demand. Containers help to scale IDEs in function of the number
of users. Each user has its own deployed container containing its workspace with all
the services he needs and its source code. Although containers allow deployment on
multiple execution platforms, cloud-based IDEs package the whole development en-
vironment into one container. This means that all language services are deployed as
a whole on the same execution platform. While cloud allows deploying on multiple
execution platforms, cloud-based IDEs don’t fully exploit this possibility. The con-
tainerization of workspace allows configuring cloud-based IDE by specifying which
language servers will be embedded in the container, which allows only coarse-grained
modularity. The language services can’t be deployed individually across multiple ex-
ecution platforms, so their needs can’t be met individually. Language services should
be deployable individually, and since they are provided by a single container, it is nec-
essary to modularize them into dedicated containers for distribution across multiple
execution platforms.

4.3 Summary

In this chapter, we first presented the modularity of the IDEs, which is enabled by
component-based architecture and is used to support multiple languages. We also pre-
sented languages protocols, which complete the modularity brought by component-
based architecture to solve the portability problem by making IDE clients interoperable
with language servers. We then introduced web-based IDEs and presented how they
allow extensibility. We also reviewed the usage of cloud capabilities by cloud-based
IDEs to provide on-demand and ready-to-use workspaces.

Regarding the challenge of combining multiple technological stacks to benefit from
their strength to implement a language and enable to seamlessly switch between lan-
guage services from different technological stacks, we identified that IDEs lack of a
synchronization mechanism for multiple technological stacks.

48

4.3. Summary

Both component-based architecture and language servers are monolithic, which
prevents leveraging execution platforms to best fit the needs of language services. To
address this challenge, language services have to be distributed on the execution plat-
forms, which is not possible with the current usage of cloud capabilities by cloud-based
IDEs that deploy the whole user workspace in a single container.

In the next part, we will present our contributions to the flexibility of IDEs. We first
detail our approach to combine multiple technological stacks to allow language de-
signers to benefit of their specific strengths when implementing language and to allow
language users to switch between language services implemented in these stacks. The
approach consists of a communication bus used to synchronize the multiple imple-
mentations of a language in different technological stacks. We secondly detail our ap-
proach to modularize and distribute language services to leverage multiple execution
platforms. It is a generative approach to implement language services as microservices
and to drive their safe deployment.

49

PART II

Contributions

50

CHAPTER 5

THESIS OVERVIEW

In this chapter, we present the vision we defend and the global view of this
thesis. We start by presenting our vision regarding the challenges of flexibility
in IDEs. We then give an overview of our contributions which are detailed in
the two following chapters.

5.1 Vision

We identified in Chapter 2 two challenges regarding the IDEs flexibility, i.e., the
challenge of using multiple technological stacks to implement and use languages and
the challenge of leveraging execution platforms for language services.

We showed in Chapter 4 that IDEs are not enough flexible to address these chal-
lenges.

Our vision is that language services are central to IDEs and that they should not be
all implemented in the same technological stack and not be all deployed on the same
execution platform. We claim that combining multiple technological stacks bring more
flexibility to language designers and ease the activities of the language users. We also
claim that distributing language services provides more flexibility to language users
and gives them the possibility to improve the performances of language services.

From the challenges of IDEs flexibility we formulate the two research questions that
drove this thesis:

— RQ1: How to combine the strengths of multiple technological stacks in the lan-
guage design and implementation?

— RQ2: How to leverage the available execution platforms to best fit the needs of
language services?

51

Partie II, Chapter 5 – Thesis Overview

5.2 Overview

In this section, we draw the big picture of this thesis. We present how we tackled
the identified challenges through the two research questions of the previous section
and show how the two contributions of the thesis are related.

Figure 5.1 – Thesis overview

Figure 5.1 presents an overview of our two complementary contributions to two
different aspects of the IDE flexibility. The first contribution brings flexibility in lan-
guage implementation and is depicted on the left side of the figure. The second contri-
bution brings flexibility in language deployment and reconfiguration and is depicted
on the right side of the figure.

The first aspect of the IDE flexibility was explored by answering the research ques-
tion RQ1: How to combine the strengths of multiple technological stacks in the language de-
sign and implementation? An abstract syntax, concretes syntaxes and semantics are the
main components of language specifications and are used to implement languages in
technological stacks. We consider the technological stack as the technological means
for implementing a language (we precise the term technological stack in section 6.1).

52

5.2. Overview

For example, a same language specification can be implemented with a Metamodel
or with an Algebraic Data Type. Both implementations define language services and,
depending of the technological stack, ones manipulate a Model conform to a Meta-
model and others manipulate a Program conform to an Algebraic Data Type. With
our contribution presented in Chapter 6 we propose to synchronize the Model with
the Program (both being equivalent, i.e., they represent the same thing). We propose
in this contribution to enable synchronization by producing a Patch when a language
service manipulates the Model or the Program. The Patch represents the changes after
the manipulation and is applied to the other Model or Program. The goal is to keep the
equivalence between the Model and the Program over time, which gives the flexibility
to language users to use language services from different implementations of the same
language regardless of their technological stack.

The second aspect of the IDE flexibility was explored by answering the research
question RQ2: How to leverage the available execution platforms to best fit the needs of lan-
guage services? We propose with our contribution presented in Chapter 7 to distribute
language services across the different execution platforms as microservices that ex-
change messages through a communication protocol. To handle the distributed context
for a language, we complement language specification with a communication proto-
col specification that describes language services and their dependencies. We use these
specifications to generate microservices and drive their safe deployment. The goal is
to give the flexibility to dynamically configure the deployment of language services
across multiple execution platforms.

As previously mentioned, the two contributions of this thesis cover two aspects
of the IDE flexibility. While the second contribution is a systematic approach to au-
tomate the modularization and the distribution of language services, it is limited to
one technological stack. The first contribution complements the second contribution
by enabling the use of multiple technological stacks.

We present our contributions to the flexibility of IDEs in the next chapters of this
section. The Chapter 6 details our approach to design, implement and use a language
by combining multiple technological stacks. The chapter 7 details our approach to the
distribution of language services.

53

CHAPTER 6

SHAPE-DIVERSE DSL

In this chapter, we present our first contribution, which is an approach to
shape-diverse DSLs that consists of combining technological stacks for the im-
plementation and use of DSLs. We start by introducing the context of this con-
tribution (Section 6.1) and by describing a motivating example (Section 6.2).
We then define the notion of shape-diverse DSL (Section 6.3) before presenting
PRISM, our prototype approach to connect multiple technological stacks (Sec-
tion 6.4) and detailing our approach by using an example with the FSM lan-
guage implemented in multiple technological stacks. (Section 6.5). We end the
chapter with our conclusions on PRISM (Section 6.6). This chapter is based on
our SLE’18 [30] publication.

6.1 Technological Stacks

One of the first steps in designing a new DSL is to choose which technological
stack will be used to engineer it. We define a technological stack as the technologi-
cal means for implementing a language. This includes language workbenches as well
as programming languages and ontology languages, to name a few. The notion of
technological stack is orthogonal to the distinction between technological spaces (e.g.,
grammarware [82], modelware [89]); between graphical and textual syntax; between
internal, embedded, and external DSLs, etc. For instance, we consider Rascal [84] and
Spoofax [78] as two distinct technological stacks within the broader technological space
of grammarware and meta-programming; EMF [132] and UML [50] (using Profiles [127])
as two distinct technological stacks within the broader technological space of model-
ware. Technological stacks usually come with their own meta-languages for express-
ing the various aspects of a DSL: abstract syntax, concrete syntax, static and execution
semantics, tools, etc. As implementation techniques radically differ from one techno-
logical stack to another, this initial design choice commits the development of a DSL in

54

6.2. Motivating Example

a set direction that can hardly be reconsidered later on.

From the language designer’s point of view, however, every technological stack
has its own strengths. The ecosystem around EMF is strong in the definition of user-
friendly editors and persistence frameworks for large models, while the Rascal envi-
ronment is better in the definition of interpreters and refactoring tools. The benefits
of various technological stacks are also visible from the language users’ point of view.
While domain experts may prefer to manipulate domain concepts through a dedicated
syntax, advanced users (e.g., system integrators) may favor the flexibility of a fluent
API in their favorite programming language to manipulate the very same constructs.

However, it is currently hard to combine multiple technological stacks to engineer
a DSL, since they may be distant conceptually and technically, and making them inter-
operable requires implementing adaptation layers between technological stacks.

In this chapter, we present PRISM, a framework for combining multiple technolog-
ical stacks. PRISM enables the engineering and the use of DSL with multiple shapes.
We first motivate the usefulness of having a DSL implemented in multiple techno-
logical stacks using an example. We then introduce the notion of shape-diverse DSL,
i.e., a DSL engineered in multiple technological stacks. We detail afterwards PRISM,
which mainly consists of a communication bus relying on a publish/subscribe pattern
and a DSL-agnostic formalism to express changes on models. We conclude the chapter
with an example of shape-diverse DSL with the Finite-State Machine (FSM) language
implemented in three technological stacks. We demonstrate that it is possible, for a lan-
guage implemented into multiple technological stacks, to switch seamlessly between
language services from the different technological stacks.

6.2 Motivating Example

The language designer can choose from many technological stacks when coming to
implementing a language. This choice is based on the strength of the selected techno-
logical stack in a specific aspect of language engineering.

Let us consider a simple FSM language as a motivating example. An FSM is an
abstract machine reacting to events and is used for example to describe the behavior
of systems. The main concepts of the FSM language are Machine, State, Transition,
and Event. Machine, which is the root concept, is composed of States and Transitions.
The Transition connects a source State with a target State and is triggered by an Event.

55

Partie II, Chapter 6 – Shape-diverse DSL

States have a name and one of them is declared as the initial State of the Machine. To
complete the motivating example let also consider EMF, Rascal, and Java Fluent API
as possible technological stacks to implement the FSM language. As depicted in Figure
6.1, one would like to combine the strengths of these multiple technological stacks to
engineer the FSM language. Rascal could be used to develop its interpreter, a set of
refactoring tools (e.g., state collapsing and minimization), and a textual editor; EMF to
develop a graphical animator for debugging FSM models and a persistence layer; Java
to offer a fluent API for advanced users who focus on its integration with other system
concerns.

Figure 6.1 – Three incarnations of the same FSM model in three technological
stacks: different representations and tools for different users and tasks.

Using today’s techniques, it is possible to define the same FSM language in these
three technological stacks separately. It is not possible, however, to apply the tools of a
given technological stack on the models or programs created in another technological
stack—for instance, animating an FSM model written in EMF using the Rascal inter-
preter, or synchronizing a textual FSM model in Rascal with its equivalent incarnation
as a Java AST. Achieving this goal requires to efficiently synchronize the diverse repre-
sentations of the same model in different technological stacks; for instance to let the FSM
interpreter written in Rascal update its own representation of an FSM model after each
execution step and synchronize it with the representation of the same model in EMF
for animation purposes.

We envision a language engineering approach enabling (i) language designers to
combine tools from multiple technological stacks to engineer diverse shapes for a sin-
gle DSL and (ii) language users to manipulate language constructs in the most appro-
priate shape.

56

6.3. Shape-Diverse DSLs

6.3 Shape-Diverse DSLs

The cornerstone artifact defining a DSL in any technological stack is its abstract
syntax. The way abstract syntax is expressed differs drastically from one technological
stack to another: GEMOC [16] and Xtext [15] use Ecore metamodels [132], MPS uses
concepts [149], Rascal [84] uses Algebraic Data Types (ADT), etc. Language embedding
techniques, on the other hand, use the constructs of a host language to materialize
the constructs of a DSL in the host language itself (e.g., a set of Java classes). Con-
crete models are then built as instances of the corresponding abstract syntax formal-
ism: Ecore models, ADT values, Java ASTs, etc. The tools defined within a particular
technological stack (an interpreter in Rascal, an editor in EMF) manipulate models in
the corresponding formalism (respectively, ADT values and Ecore models). These for-
malisms radically differ in many ways [83]: object-oriented vs. functional, graphs vs.
trees, mutable vs immutable datatypes, cross-references vs. symbolic names, etc. As
technological stacks are developed by independent groups of people and rely on dif-
ferent underlying theories, it is neither possible nor desirable to establish a common
foundation upon which all technological stacks would agree.

Figure 6.2 – Languages are implemented as shapes in technological stacks and models
are projected as incarnations conforming to the shapes.

Figure 6.2 gives an overview of the concept of shape-diverse DSL and the terminol-
ogy we use throughout the chapter. A shape-diverse DSL L (e.g., the FSM language

57

Partie II, Chapter 6 – Shape-diverse DSL

of Figure 6.1) is a language that is implemented in multiple technological stacks T S i

through multiple shapes Si. As mentioned earlier, Ecore metamodels, ADT definitions,
and Java APIs, along with their associated tooling, are examples of shapes. Similarly, a
“conceptual” model m that uses the constructs of L (e.g., the simple Button machine)
is projected 1 as an incarnation Ii conforming to the shape Si in a technological stack
T S i: an Ecore model, an ADT value, or a Java AST.

As the same model is incarnated many times, each of its incarnations Ii must
remain synchronized. This synchronization mechanism must ensure three important
properties. First, it should be efficient. This rules out any synchronization mechanism
that would require doing a full traversal or serializing and deserializing the incarna-
tions after every change. Second, it must account for any extra shape-specific informa-
tion the various technological stacks have to maintain to function properly. Examples
of such extra information include layout information in a textual or graphical editor,
or runtime state in a simulation environment. The synchronization mechanism must
thus isolate the information that relates to the model itself from the information that is
specific to a particular shape. Third, the synchronization mechanism must be language-
agnostic, meaning it should not have to be implemented from scratch for every shape-
diverse DSL.

6.4 Synchronizing Incarnations with PRISM

In this section, we present PRISM, our prototype approach to the problem of syn-
chronizing various incarnations of a model. Figure 6.3 gives an overview of PRISM,
which is used as a communication bus between technological stacks and keeps the
technological stacks fully independent. The key idea is that every change occurring
on one incarnation is shipped to all other incarnations of the same model in the form
of a patch. This patch represents the exact set of changes that occurred on one incar-
nation. It allows synchronizing connected incarnations efficiently without requiring
serialization or a full traversal of any of the incarnations. PRISM keeps track of a ma-
trix that associates every conceptual model to its incarnations in various technological
stacks. When a change occurs on one incarnation, for instance resulting from a user
edit or a refactoring, the technological stack hosting this incarnation generates a patch

1. The notion of projection here is unrelated to the notion of projectional editing [153] as there is no
underlying AST to project from.

58

6.4. Synchronizing Incarnations with PRISM

describing the change as a set of CRUD-like operations. The technological stack ships
the patch to PRISM, which then propagates the patch to every other incarnation of the
same model.

Figure 6.3 – Using PRISM to synchronize three incarnations of the same model. Here,
a change occurs on Incarnation #1 and the resulting patch is shipped to Incarnation #2
and #3.

Every technological stack then interprets the patch in its own way to keep the repre-
sentation synchronized. In EMF, for instance, the patch is interpreted as a set of changes
that impact a model conforming to an Ecore metamodel, while in Rascal it is inter-
preted as a set of changes that impact an ADT value.

We detail, in the rest of this section, the patch formalism and the communication
bus of PRISM.

6.4.1 Patch Formalism

Patch describes changes that occurred during the editing of an incarnation of a
model. Changes are represented by a sequence of operations, which correspond to the
delta between the state of the incarnation of a model before and after its editing. In our
prototype implementation, the structure of this patch is prescribed by the Rascal ADT
shown in Figure 6.1, largely inspired by the edit scripts used by Rozen and Storm [124].

59

Partie II, Chapter 6 – Shape-diverse DSL

Essentially, patches consist of a set of operations, which include create or destroy an
object in a model, set or unset a value in an object property, insert or remove a value in
an object property which is multi-valued.

1 @doc {A patch c o n s i s t s of a sequence of e d i t s }
2 a l i a s Patch = tuple [Id root , Edi t s e d i t s] ;
3
4 @doc { Edi t s are operat ions at tached to o b j e c t i d e n t i t i e s }
5 a l i a s Edi t s = l r e l [Id obj , Edi t e d i t] ;
6
7 data Edit
8 = put (s t r f i e l d , value val)
9 | unset (s t r f i e l d)

10 | i ns (s t r f i e l d , i n t pos , value val)
11 | del (s t r f i e l d , i n t pos)
12 | c r e a t e (s t r c l a s s)
13 | destroy () ;

Listing 6.1 – CRUD-like patch definition in Rascal.

Operations are attached to identities [83] that represent particular objects in the
model. To ensure that every technological stack can apply the operations on the right
elements, identities are preserved across technological stacks and, in our case, they are
represented by URIs [14].

Figure 6.4 – Produced Patch representing model editings

Figure 6.4 illustrates the production of a patch. An FSM model with two states
named ’On’ and ’Off’ is edited to rename the states ’Open’ and ’Closed’. These changes
take place on one incarnation of the model and have to be applied on the other incarna-

60

6.4. Synchronizing Incarnations with PRISM

tions in the other technological stacks. To do this, we create a patch that describes these
changes and that will be sent to notify the other stacks. Here the patch contains the two
renames, represented by the put operations. Each of them contains three pieces of infor-
mation: the identity of the modified object represented by the URIs ’//@states.0’ and
’//@states.1’, the name of the changed properties (i.e.,’name’), and the value assigned
to the properties (i.e.,’Open’ and ’Closed’).

As mentioned earlier, each technological stack may want to preserve extra shape-
specific information across the patches. A textual editor in Rascal, for instance, needs
to keep some of the parsing information to maintain layout whenever patches are ap-
plied. So it should be possible to apply the patch while maintaining the extra informa-
tion specific to a given technological stack. Intuitively, our approach supposes that all
the information that does not directly relate to the constructs of a language is “extra”
and therefore should not be part of the patch itself. There might be cases where sharing
extra-information from one shape to the other is desirable, for instance, to share layout
information between two textual editors.

6.4.2 Communication Bus

The central component of PRISM is the communication bus. It connects the different
technological stacks and its role is to distribute the patches across all the stacks by
following a publish/subscribe pattern to synchronize the incarnations of a model.

New technological stacks can be connected to PRISM by implementing a simple in-
terface that consists of two operations, namely (i) produce which creates a patch materi-
alizing the changes on an incarnation and notifies PRISM, and (ii) apply which receives
a patch from PRISM and interprets it to update an incarnation, taking into account the
specificities of the technological stack. The way changes are detected in an incarnation
and patches are produced is not prescribed by our approach. For instance, our Ras-
cal implementation computes patches from a diff operation between two ADT values,
while our EMF implementation captures the result of transactions on an Ecore model
to produce the patches. The produce and apply operations are implemented once for
every technological stack and do not have to be re-implemented for every language.

Editing model in multiple technological stacks starts with the creation of a stream
(of patches). Other technological stacks have to connect to the stream after it is created.
For each new connection, the creator of the stream sends them the current state of its

61

Partie II, Chapter 6 – Shape-diverse DSL

model incarnation in the form of a patch, which contains all the operations to create
the complete model from an empty state. After applying the initial patch received from
the connection, a technological stack is free to produce or receive patches representing
changes to the model. To avoid inconsistencies, patches are only produced when the
model state is valid.

Technological stacks can contain multiple models incarnations involved in different
editing stream thus, a cornerstone artifact in PRISM is the dispatch mechanism that
routes patches to the appropriate incarnations. When receiving a patch, PRISM looks
up its internal matrix to determine which other incarnations of the same model should
be updated. The patch is then copied and routed accordingly.

Our current implementation of the dispatch mechanism is kept simple and does not
support concurrent editing on different incarnations of the same model. This would
scale PRISM to advanced scenarios, such as collaborative editing, but this is beyond
the scope of this work.

6.5 A Shape-Diverse FSM Language

We detail in this section the usage of PRISM to build a shape-diverse FSM language
conjointly in Rascal, EMF, and Java technological stacks. Figure 6.5 depicts the imple-
mentation of the abstract syntax of this FSM language in the three technological stacks.
The corresponding incarnations are those given in Figure 6.1.

The abstract syntax of the FSM language in Rascal is an Abstract Data Type (ADT).
We declare a data type for each concept of the FSM language: a data type Machine with
a name, a list of States, and a reference to an initial State; a data type State with a name
and a list of transitions; a data type Trans with a triggering event and a reference to an
outgoing State. All of these data types also declare an identifier.

The abstract syntax of a language in EMF is defined with a metamodel (MM).
The FSM language is defined with three classes corresponding to the concepts Ma-
chine, State, and Transition. The class Machine has an attribute name, contains multi-
ple States, and has a reference for an initial State. The class State has an attribute name
and contains transitions. The class Trans has an attribute name and a reference to a
target State.

Java Fluent APIs used for internal languages are defined with Java classes. The
FSM language is represented with the three classes Machine, State, and Trans. The

62

6.5. A Shape-Diverse FSM Language

data Machine (Id uid) =
Machine (s t r name ,

l i s t [S t a t e] s t a t e s ,
Ref [S t a t e] i n i t i a l) ;

data S t a t e (Id uid) =
S t a t e (s t r name ,

l i s t [Trans] t r a n s) ;

data Trans (Id uid) =
Trans (s t r event ,

Ref [S t a t e] t a r g e t) ;

(a) Rascal ADT

Machine

name:String

State

name:String

Trans

event:String

states

trans
target

*

1..1

* initial 1..1

(b) Ecore MM

c l a s s Machine {
Machine (S t r i n g name) ;
S t a t e i n i t (S t r i n g name) ;
S t a t e s t a t e (S t r i n g name) ;
Machine end () ;

}
c l a s s S t a t e {

S t a t e s t a t e (S t r i n g name) ;
Trans t a r g e t (S t r i n g name) ;
Machine end () ;

}
c l a s s Trans {

Trans t a r g e t (S t r i n g name) ;
S t a t e on (S t r i n g event) ;
Machine end () ;

}

(c) Java API

Figure 6.5 – Three shapes of an FSM language; the corresponding incarnations are those
depicted in Figure 6.1.

class Machine declares a constructor taking its name as a parameter, a method state
taking a parameter name and returning the created State, a method init similar to the
method state but used to identify the initial state. The class State has a method target
taking the name of an outgoing state and has a method state with a parameter name
which is used to append a declaration of a new state. The class Trans has a method
taking a triggering event as a parameter and a method target taking the name of a
state which is used to append a declaration of an outgoing state in the last declared
state. All the classes have a method end to close their declaration, which returns the
type Machine necessary to open new declarations. We build the Java API following
a simple systematic convention, so as to easily pinpoint which parts of the Java AST
have changed (to compute a patch) or need to be updated (to apply a patch).

In addition to the abstract syntaxes, we defined concrete syntaxes and tools for each
of the technological stacks. We use Rascal to define a textual editor and a simple trans-
formation that inserts a new state in a machine. We use EMF to define two graphical
editors: a classical tree editor and a domain-specific representation with Sirius. 2 Since
our fluent API is an internal language, we rely on Java tooling for the edition of an

2. https://www.eclipse.org/sirius/

63

https://www.eclipse.org/sirius/

Partie II, Chapter 6 – Shape-diverse DSL

FSM, which includes for example the Java content assist.

We defined three shapes for the FSM language in different technological stacks.
However, the technological stacks are isolated from each other, which prevents a lan-
guage user from seamlessly switching from one shape to another and using their tools
without concern for the synchronization of the different incarnations. PRISM is used to
bridge the technological stacks and thus break this isolation. Whenever an incarnation
of the FSM model is updated, the technological stack in which the change happens pro-
duces a patch (cf. Figure 6.1) that is shipped to the other technological stacks through
the dispatch mechanism of PRISM. Every technological stack interprets the patch in its
own way to keep its incarnation updated, accounting for the extra information it has
to manage (e.g., layouts within the textual and graphical editors). A simple matrix,
internal to PRISM, keeps track of which model each incarnation is projecting to route
the patch to the right incarnation.

While the Rascal and EMF shapes synchronize seamlessly, we noticed a number
of challenges with the Java API. As the Java API inherits the (domain-agnostic) tool-
ing of Java itself, it lacks the domain knowledge necessary to always generate correct
patches. Due to the lack of domain-specific static semantics, a well-formed Java pro-
gram may indeed produce an ill-formed FSM that cannot be interpreted by the other
shapes. Besides, our prototype implementation does not account for complex string
manipulation when invoking the API or use of variables. However, we believe that
these are purely engineering concerns and that enough effort spent on the Java API
shape would provide a flawless experience.

6.5.1 Connecting technological stacks with PRISM

PRISM is a language and technological stack agnostic means of communication.
Connecting a new technological stack to PRISM consists of implementing interfaces to
publish and receive patches. We have connected the technological stacks EMF, Rascal,
and Java Fluent API with PRISM to synchronize their incarnations of the same model.

For the EMF technological stack, we listen to the changes on the model to register
modifications. On the save operation of the model editor, we produce a patch represent-
ing these modifications and ship it to PRISM. Upon notification of changes by PRISM,
we interpret the received patch to apply model operations corresponding to the oper-
ations from the patch. The interpretation consists of updating the current state of the

64

6.5. A Shape-Diverse FSM Language

model.

For the Rascal technological stack, a listener is triggered by the program editor on
save operation. This listener compares the last ADT tree value with the current one
and translates the difference into a patch that is sent to PRISM. When PRISM notifies a
change, the patch is interpreted to produce a new ADT tree value from the last tree and
from the operations from the patch. Since in Rascal values are immutable, the result of
the interpretation is a replacement of the current value.

For the Java Fluent API technological stack, save operation triggers a listener which
will compare the expressions corresponding to the FSM in the current file and in the
last modified version of the file to produce a patch. The patch received from PRISM

notification is interpreted to edit the current file according to the operations from the
patch. While in the two other technological stacks the production/interpretation of the
patch is generic for any language, in this technological stack we are specific to the FSM
language since there are multiple solutions to represent a concept with a fluent API
(e.g., methods, parameters, ...) and there is no coding convention for fluent API.

To illustrate the application of a Patch, let’s consider that an incarnation of an FSM
model is edited to change the name of the initial state to ’Open’. The produced Patch
will look like put(’//@states.0’, ’name’, ’Open’) to represent the change of property ’name’
on the state identified by the URI ’//@states.0’. The interpretation of Patch’s operations
is specific to each shape :

— In the EMF shape, the interpretation of the put operation starts by retrieving
the modified object thanks to the identifier ’//@states.0’, which is supported
natively by the EMF framework. We then use the EMF reflective API to look for
an object’s property matching the name ’name’ and set the new value ’Open’.

— In the Rascal shape, applying a Patch starts by copying the ADT tree value rep-
resenting the model and maintaining a map of identifier (i.e., URI) for each ele-
ment of the tree. The interpretation of the put operation constructs an ADT value
representing the property ’name’ with the value ’Open’. We then search in the
map for the element corresponding to the identifier ’//@states.0’ and we attach
to it the created ADT value for the property. Once the Patch is fully applied, the
ADT tree value is serialized back to text.

— In the Java fluent API shape, we start by visiting the Java AST to search for the
sequence of method invocations corresponding to the incarnation of the model
(i.e., the first sequence ending with an invocation ’end()’). For each invocation

65

Partie II, Chapter 6 – Shape-diverse DSL

’state()’ or ’target() we compute an identifier (i.e., an URI). To apply the opera-
tion put, we look for the invocation corresponding to the identifier ’//@states.0’.
When then set the parameter of this invocation to ’Open’. To finish the applica-
tion of the Patch, the Java AST is serialized back to text.

For the three technological stacks, we restricted the production of patches to save
operation on editing to avoid ill-formed patches (i.e., we require a valid model before
expressing changes) and since we don’t support concurrent editing. We don’t address
collaborative editing but it is a perspective of this thesis.

Figure 6.6 – Screenshot of PRISM connecting EMF, Rascal and Java Fluent API for the
FSM language in the Eclipse IDE

Using PRISM, which connects the EMF, Rascal, and Java Fluent API technological
stack, a language user can switch between them seamlessly to manipulate a model
incarnated in multiple shapes. For example, editing the Java expression representing
the FSM model will update the two other incarnations, afterwards, the language user
can apply a program transformation in the Rascal incarnation and then finish editing
the model in an EMF graphical editor. Figure 6.6 presents our prototype PRISM running
in the Eclipse IDE. An FSM model is incarnated in the EMF, Rascal, and Java Fluent
API technological stacks and can be edited by a language user while PRISM keeps the
different incarnation synchronized.

66

6.6. Conclusion

6.6 Conclusion

When designing a DSL, language designers choose a particular technological stack
from those available, which allows them to benefit from its strengths but also prohibits
access to the strengths of other stacks. In this chapter, we proposed an approach to
combine multiple technological stacks for the implementation and use of DSLs and
thus allowing the engineering of shape-diverse DSL. To keep the different incarnation
of a model synchronized across the technological stacks, we proposed a patch formal-
ism that is agnostic of the DSL shape to express model changes and a communication
bus based on a publish/subscribe pattern to deliver these patches. We implemented
the approach with our prototype PRISM to support the engineering of shape-diverse
DSLs in the Eclipse IDE. We applied our approach to the FSM language and showed
that we were able to manipulate an FSM model incarnated in the EMF, Rascal, and Java
fluent API technological stacks.

We have shown through PRISM that synchronizing models incarnated in multiple
technological stacks is a solution that brings more flexibility to language designers
who can combine the strengths of the stacks and to the language users who can switch
between language services regardless of their stack.

67

CHAPTER 7

DISTRIBUTED INTEGRATED

DEVELOPMENT ENVIRONMENT

In this chapter, we present the second contribution of this thesis, which com-
plements the contribution presented in the previous chapter. This contribution
is an approach to IDE distribution consisting of modularizing language ser-
vices and deploying them on multiple execution platforms. We first introduce
the context of the contribution (Section 7.1) and present a motivating example
for language services distribution (Section 7.2). We then give an overview of the
approach (Section 7.3) and detail it on the NabLab language example (Section
7.4) before presenting our evaluation of the approach and our results (Section
7.5). We finish the chapter with our conclusions on the contribution (Section
7.6). This chapter is based on our SLE’20 [29] publication.

7.1 Distributed Language Services

Modern IDEs are moving to the Software as a Service model [34] in order to ben-
efit from advantages [67] such as reduced availability delay (since the application is
already installed and configured), lower costs to maintain and/or upgrade, scalability,
etc. The rise of a protocol such as the Language Server Protocol that standardizes the
protocol used between a language-agnostic IDE and a language server that provides
language services such as auto completion, search for definition, search for all refer-
ences, compilation, etc. has allowed the emergence of high quality generic Web com-
ponents to build the IDE part that runs in the browser. For instance, Monaco 1 (used

1. https://microsoft.github.io/monaco-editor/

68

https://microsoft.github.io/monaco-editor/

7.1. Distributed Language Services

in VSCode 2, Theia 3 , . . .), Atom 4, CodeMirror 5 (CodePen 6, Jupyter 7), are now em-
beddable Web components with a direct support of most of the LSP features, thereby
simplifying the development of Web-based IDEs.

However, defining the architecture of an LSP server implementation and more gen-
erally the server implementation for a particular language remains a complex step.
The simplistic deployment of the language server part in a sufficiently powerful cloud
does not in reality provide the optimal user-experience. Each of language services has
specific requirements in terms of latency and bandwidth, but also in terms of specific
computing capacity. It is therefore important to tune the deployment according to the
services of a particular language but also according to the context of use of the IDE
for a given user, and the available execution platforms. For example, it could be re-
quired to reduce the network requirements if the quality of the network decreases for
a specific user (i.e., move a language service from a server to the user’s machine). Such
an implementation of a language server should therefore be essentially a Dynamically
Adaptive System (DAS)[119] in which we could provide tailored distribution of the
language services that optimizes the user experience and their overall performance.
Defining the architecture of such a system requires fine-grained modularity in both
design and deployment, and the ability to run in a distributed and heterogeneous en-
vironment.

In contrast with the current approaches that provide IDEs in the form of a mono-
lithic client-server architecture, we explore in this work the modularization of all lan-
guage services to support their individual deployment and dynamic adaptation within
an IDE. We propose a generative approach to automatically obtain microservices im-
plementing language services from a language specification, complemented with a fea-
ture model that drives the safe configuration and automates the deployment of IDE
features (i.e., coherent groups of language services). We study the impact on perfor-
mances when distributing the language services across the available execution plat-
forms. We evaluate our approach on four EMF-based languages and demonstrate the
benefit of a custom distribution of the various language services. In particular, we ap-
ply our approach to NabLab, Logo, MiniJava and ThingML to compare response times

2. https://code.visualstudio.com/
3. https://theia-ide.org/
4. https://atom.io/
5. https://codemirror.net/
6. https://codepen.io/
7. https://jupyter.org/

69

https://code.visualstudio.com/
https://theia-ide.org/
https://atom.io/
https://codemirror.net/
https://codepen.io/
https://jupyter.org/

Partie II, Chapter 7 – Distributed Integrated Development Environment

of language services in our approach with monolithic language server.

7.2 Motivating example

To illustrate the heterogeneity of the various services provided by modern IDEs,
we use in this section and throughout this chapter the open-source and industrial
DSL NabLab 8. NabLab provides a productive development environment for numeri-
cal analysis over exascale HPC technologies. The associated IDE provides all the com-
mon editing services (syntax coloring, auto-completion, validators...) and a complex
compilation chain targeting various backends. NabLab users are mathematicians and
physicists that write algorithms for numerical analysis. NabLab programs are mainly
composed of jobs with a complex data flow between them, representing physical sys-
tems. As the computation used to simulate physical systems is expensive, NabLab
programs are given to a compilation chain generating efficient source code to run the
different jobs in parallel. We chose NabLab because developing NabLab software pro-
vides a wide range of requirements, from responsive code edition operations to CPU
intensive compilation and execution.

JSON-RPC
(local or over

Internet)

IDE Client

Language
user

Completion

Language Server

References
Rename

Compiler

Workspace

Storage

…

Interpreter

Figure 7.1 – Current IDE Architecture, including a language-agnostic client that pro-
vides the user interface, and a language-specific server that provides all the language
services for a given language

Figure 7.1 represents the current IDE architecture according to the state of practices.
This architecture separates the IDE client, which is the language-agnostic interface for
language users, from the language server which implements the language-specific ser-
vices. The IDE client remotely calls these services by sending JSON-RPC 9 messages to
the language server. This architecture makes it possible to deploy the IDE client and

8. https://github.com/cea-hpc/NabLab
9. https://www.jsonrpc.org/

70

https://github.com/cea-hpc/NabLab

7.2. Motivating example

the language server possibly in different execution platforms (e.g., the client on the de-
velopment laptop, and the server on the cloud or an application server). In practice,
NabLab has been developed using the Eclipse Modeling Framework [132], including the
Ecore 10, Xtext 11 and Sirius 12 technologies.

For the sake of illustration, we selected four representative language services pro-
vided by the NabLab IDE: completion is a content assist that returns a list of proposals
for a given context, references searches for elements in a file referring to a given symbol,
rename changes names for a given element and for all its referring elements, and com-
piler performs graph analysis of the concurrent job to generate optimized Java source
code (one of the possible backends in NabLab). We have chosen these language ser-
vices to be representative of language user’s activities: code edition, code navigation,
code refactoring and code transformation.

In the NabLab IDE, completion, references and rename are obtained with Xtext and
the support of the Language Server Protocol, while compiler is a separate compilation
chain integrated and prompted from the IDE. To illustrate the heterogeneity of these
language services and the potential benefits of distributing them, we measured their

10. https://www.eclipse.org/ecoretools
11. https://www.eclipse.org/Xtext
12. https://www.eclipse.org/sirius

Figure 7.2 – Response times of four NabLab services (client and server deployed on the
same local development laptop)

71

https://www.eclipse.org/ecoretools
https://www.eclipse.org/Xtext
https://www.eclipse.org/sirius

Partie II, Chapter 7 – Distributed Integrated Development Environment

response times on NabLab files of increasing size. The measurements were performed
100 times for each language service, with a client and a server both deployed on the
same machine with an Intel Core i7-7600U CPU at 2.80GHz, 32 GiB of RAM, and the
HotSpot JVM 11.0.5. Figure 7.2 presents the means of the response times expressed in
milliseconds (ms) for the different files and, due to the large range of values, with a
logarithmic scale.

We observe an important heterogeneity among the language services, ranging from
completion that lasts about 5 ms constantly over the files, to references that goes up to
about 188 ms, rename that goes up to 7.106 seconds, and finally compiler that goes up
to 14.78 minutes. This difference in response times between the language services is
of several orders of magnitude. It can be explained by the workload of each service:
completion traverses object’s references, reference is a query in a graph of objects, rename
rewrites the file and compiler performs complex graph analysis and generates source
code. This motivates the need for an individual and distributed deployment of each
language service to leverage better the available execution platforms, fit the activities
performed, and eventually provide the best user experience within the IDE client. In
particular, we focus on the following research questions:

RQ1 Is it possible to provide a systematic approach that automates the modulariza-
tion of the language service implementations, supports their individual deploy-
ment, and enables their dynamic adaptation according to a given context (e.g.,
usage, environment)?

RQ2 Is it possible to optimize the distribution of the language services across the
available runtime platforms (e.g., local platform, application server, cloud) to
improve their performances within the IDE?

7.3 Approach overview

We propose a systematic approach that eases the modularization and distribution of
highly configurable IDEs for DSLs. The approach takes as inputs i) a software language
specification, in the form of a metamodel, a syntax description, and any additional
concerns such as validators, compilers, etc., and ii) a set of desired features (i.e., co-
herent groups of services) that the IDE must or may provide. As output, the approach
generates a set of modular, language-specific, IDE features and a tool-supported fea-

72

7.3. Approach overview

ture model to configure and automate their distribution and integration within a Web-
based IDE.

The following quality criteria guided our current implementation of this systematic
approach:

— IDE configurability for the end user;
— efficiency of resource usage: CPU time, bandwidth, reactivity as perceived by

the end user;
— extendibility and reusability from the point of the language designer, i.e., when

the set of features evolve or when distributed platform technologies change
(long term, human driven adaptation);

— adaptability, possibly dynamically (according to the usage and environment).

Our process design decisions were taken to obtain a satisfactory balance of these crite-
ria.

We distinguish two different user roles: language users, and language designers. In
our process, configurability of an IDE by an end-user relies on software product line
principles: using a language specification as input, language designers build in fact
a family of distributed IDEs. Language designers, or even language users, can then
configure the family to obtain an IDE that suits the user’s needs and experience.

Figure 7.3 presents the overall approach, from the specifications to the deployment
of an IDE. First, a language designer provides a language specification along with a
protocol specification that describes the expected modularity of the language services
and their interactions. From these specifications, we automatically generate a set of
microservices implementing the IDE features and a feature model that captures their
valid configurations. The feature model offers a description of the variability of a sys-
tem, here an IDE, presented as a tree of features enriched with logical constraints. It
essentially describes what the feature alternatives are, their dependencies and whether
they are mandatory or optional. The IDE and its deployment can then be configured
by a language designer or user, depending on who has the knowledge to decide where
to deploy the microservices. Configurations could also be proposed by an automated
process involving a predictive model in the deployment, or through dynamic recon-
figuration, in an attempt to maintain metrics such as user experience. The IDE con-
figuration consists in selecting the microservices that will be available to the language
user, together with information on where to deploy them. The feature model is used to
validate the set of microservices to be deployed by checking the variability constraints.

73

Partie II, Chapter 7 – Distributed Integrated Development Environment

Figure 7.3 – Approach overview, with the two main steps: 1© IDE microservicesation
and 2© IDE deployment

At the end, the microservices are distributed to different execution platforms such as

74

7.3. Approach overview

development laptop, cloud or application servers. At this stage, the language services
are running and the language user can use them through an IDE client.

In the rest of this section, we detail the two main steps of our approach (1© and 2©
in Figure 7.3).

7.3.1 Designing IDE microservices

The design of an IDE family is based on two main inputs that are required to im-
prove flexibility and reusability of elementary design elements, thereby supporting the
language designer in providing a highly and dynamically customizable distributed
IDE.

Language specification The language designer needs a language specification. In our
prototype, the language specification comes as an Ecore metamodel, an Xtext gram-
mar description, and additional services such as compilers. Using tools such as XText,
the language designer is able to produce a software module that acts as a parser and
builds a model from a program file, as an internal, metamodel compliant, form of the
program.

Protocol specification The language designer also provides a description of the ex-
pected modularity of the language services in the form of a so called protocol. Code
completion, symbol renaming, compiler, are examples of such language services (capa-
bilities) that may be grouped into IDE features as deployment units. The grouping of
the language services into IDE features, and their inter-dependencies, are expressed in
a specific model, for which we provide a specific DSL with a concrete syntax, and a
metamodel shown in Figure 7.4.

Using this DSL the language designer is able to declare the properties and rela-
tionships of each feature declared in a protocol specification. The DSL relies on the
following types (cf. Figure 7.4):

— The Capability type describes the definition of a basic service point, akin to
a callable function in the architecture. Details of the function implementation,
such as a port number for micro-service based implementations are also indi-
rectly provided by a Capability.

— The Feature type regroups a coherent set of capabilities. It typically represents

75

Partie II, Chapter 7 – Distributed Integrated Development Environment

Figure 7.4 – The metamodel used to describe a protocol for IDE features

an elementary tool supported by the IDE (e.g., code completion, name refactor-
ing).

— The Protocol type regroups the features that are potentially supported by an
IDE.

— The Dependency type describes the relationships between capabilities supported
by a protocol, for instance the call dependency between two capabilities.

From the language specification and the protocol specification, we implemented a
generative approach (1© in Figure 7.3) that produces:

— a set of modular language services in the form of cloud-native applications as
microservices, and the required code that will take care of the communication
between language services as described in the protocol.

— a feature model that represents the IDE family.

The feature model can then be enriched with deployments constraints, e.g.:

— for efficiency reason some capabilities need to be implemented by the same fea-
ture, and therefore deployed on the same execution node;

— some features are alternatives in a group, e.g., if at run time the currently de-
ployed feature becomes unavailable then one alternative will be deployed auto-
matically.

76

7.4. Towards a modular and distributed IDE

7.3.2 IDE Deployment

The final task to build a usable, running IDE is the deployment phase. As men-
tioned before, we aim at providing a family of IDEs to the final language user, as dif-
ferent users have different needs, and a given user may also wish to tailor the IDE
depending on the current tasks he is involved in. To support this flexibility we defined
a configuration language to allow the user to control on which capabilities to deploy
and where, while maintaining the constraints defined in the feature model.

A point to consider in order to support reconfiguration of the deployment (i.e., to
move microservices) is that we implement language services as stateless microservices.
A stateless microservice does not keep any states between requests. This has benefits
for the scalability of distributed applications since a microservice can be replicated and
the requests dispatched among the different instances to handle load increases. It also
allows the microservices to be moved easily from one location to another, and it avoids
data loss in the case of a microservice crash. However, stateless microservice involves
retrieving and parsing programs before processing language services, which increases
response times compared to stateful microservices. This additional cost on response
times must be taken into account to benefit from the reconfiguration of a distributed
IDE.

The proposed generative approach (2© in Figure 7.3) takes as inputs a specific con-
figuration of the feature model and the microservices, and produces a distributed IDE
integrated with the Web-based client.

7.4 Towards a modular and distributed IDE

In this section we use a running example to detail the steps introduced in the pre-
vious section. Our task is the design of a distributed IDE for Nablab users.

Developing NabLab software provides a wide range of requirements, from respon-
sive code edition operations to CPU intensive compilation and execution. Taking care
of this range of requirements is best addressed by distributing language services on
various types of execution platforms, which makes NabLab a good candidate language
for our experiments on modular and distributed IDE construction.

NabLab users are supported by a set of tools that form a specific IDE:

— A textual editor supports contextual code completion, code folding, syntax high-

77

Partie II, Chapter 7 – Distributed Integrated Development Environment

lighting, error detection, quick fixes, variable scoping, and type checking.
— A model explorer provides a dedicated outline view and a contextual LaTeX

view.
— A debugging environment provides variable inspection, plot display and 2D/3D

visualization.
— A NabLab compiler generates efficient implementations thanks to the associated

compilation chain.

7.4.1 Language and protocol specifications

As mentioned in the previous section, in our approach a language specification
consists of defining a metamodel and associated concerns such as the concrete syntax
and semantics. We use the Eclipse Modeling Framework 13 (EMF) and its ecosystem to
define our language specification.

The concrete syntax of NabLab is a grammar defined with Xtext[43]. Taking a gram-
mar as input, Xtext is able to generate the source code implementing a set of language
services for a text editor. Xtext can also generate a language server, which embeds the
language services that are then callable remotely. In our approach we use this generator
to produce implementations of IDE features.

The compilation chain comes as a separate language service implemented with
Xtend 14, and this service is integrated and prompted from the IDE client.

Listing 7.1 is an excerpt from the protocol specification for NabLab. This protocol
specification conforms to the metamodel described in Figure 7.4. Our tool to edit a
protocol textual specification and simultaneously build a protocol model is based on
Xtext. Our NabLab protocol model declares the storage and completion features, and
a dependency between their respective capabilities. The storage feature provides the
following capabilities: document, to retrieve a persisted document (a program), and up-
date, to change the contents of a program. The completion feature provides the complete
capability to get content assist proposals. In the dependencies, the complete capability
first retrieves a program by calling the document capability before computing the set
of completion choices. The protocol specification of NabLab, in addition to the storage
and completion features shown in the listing, also has the following features: workspace,
which computes diagnostics for programs and indexes their content, definition, which

13. https://www.eclipse.org/modeling/emf/
14. https://www.eclipse.org/xtend/

78

7.4. Towards a modular and distributed IDE

1 Protocol {
2 mandatory fea ture s torage {
3 c a p a b i l i t i e s :
4 document
5 update
6 }
7 fea ture completion {
8 c a p a b i l i t i e s :
9 complete

10 }
11 (. . .)
12 dependencies {
13 completion . complete → s torage . document
14 (. . .)
15 }
16 }

Listing 7.1 – Excerpt of the protocol specification for the completion feature of NabLab

gives the location of an element’s definition, highlight, which looks up the element’s
definition as well as other elements linked to the same definition, hover, which re-
turns the element’s description, documentSymbol, which returns all the elements of a
program, formatting, which computes text edition operations to normalize program’s
indentation, rename, which returns text edition operations to rename an element’s defi-
nition and other elements linked to the same definition, references, which finds elements
having the same definition, symbol, which returns all the symbols in the opened pro-
gram matching a query, and compiler, which generates a Java source file from a NabLab
file.

7.4.2 Feature model generation

In a second step we generate a NabLab feature model by taking the NabLab proto-
col specification as input. Figure 7.5 presents the resulting feature model built by ap-
plying the approach described in the previous section. The features of the model match
the IDE features of the protocol specification and the hierarchy is derived from the de-
pendencies between capabilities. For example, in the protocol specification symbol has
a capability calling the index capability declared in workspace. We infer that symbol re-
quires workspace to run, and we set a parent-child relationship in the feature model.
It means that a configuration of this feature model containing symbol is valid only if

79

Partie II, Chapter 7 – Distributed Integrated Development Environment

Figure 7.5 – Feature model of the language NabLab

workspace is also present. We compute similarly the hierarchy for other features.

Our implementation of the feature model generator relies on the Feature IDE frame-
work [139], which provides facilities to construct and manipulate feature models.

The feature model generated with this framework is then used in the deployment
configurator to check the validity of a given configuration by analyzing the constraints
defined in the feature model.

7.4.3 Microservice generation

We use the Quarkus 15 framework to implement Java microservices for each IDE
feature defined in the protocol specification. A Java class is generated with methods
corresponding to the Capabilities of the IDE feature. Each Capability is implemented as
a REST API, by annotating methods with HTTP verbs, query parameters, and endpoint
paths. These methods are callbacks for the HTTP requests. We process the Capability’s
JSON definition file to generate arguments and return type for the methods. We also
generate proxy classes from the dependencies of the IDE features. These classes pro-
vide methods to remotely call the capabilities implemented in the other microservices.

The language service implementations of NabLab are provided by Xtext, except for
the compiler. To leverage these available implementations, we modularized an Xtext
implementation to have a set of modular language services usable through a generic
protocol. By looking at the name of the language service to detect if it matches Xtext’s
features, the code generator inserts calls to the methods of the Xtext module that im-
plements the language service. For language services that do no match Xtext’s features,
such as the compiler, we generate the required code to embed them into microservices

15. https://quarkus.io/

80

7.4. Towards a modular and distributed IDE

and allow their integration into the IDE.

7.4.4 Deployment configuration

Our distribution of the IDE features relies on Docker 16 and a container orchestra-
tor (e.g., Kubernetes 17 or Nomad 18). The microservices are packaged in Docker con-
tainers, which isolate the microservices and ease the deployment by embedding their
runtime environment (e.g., a JVM). We deploy containers in a cluster by using a con-
tainer orchestrator, since it permits to plan their deployment at different locations and
move them at runtime. Our deployment configurator monitors the deployment using
the Kubernetes API, to get the list of deployed microservices with their locations to
construct the configuration representing the current deployment. We provide a fron-
tend for the configurator as a web page that displays configurations to the language
user and designer. Through this web page, the language user can change the deploy-
ment configuration by disabling microservices, selecting new ones and change their
deployment location. If the new configuration is valid, a deployment plan is sent to
the Kubernetes API.

7.4.5 Distributed IDE architecture

The architecture of the final application is divided into a frontend part and a back-
end part, as depicted in Figure 7.6. The frontend part is a web page executed in a web
browser. The backend part is a set of microservices running a Kubernetes cluster. The
frontend contains the Monaco program editor that communicates with the backend
through the Language Server Protocol and Javascript code calling the compiler service
through direct HTTP requests.

As language services are distributed in multiple microservice, a microservice acting
as a router is connected to Monaco through a websocket. The router forwards the LSP
messages to the microservice implementing the relevant language service and sends
their response back to Monaco.

Language services are implemented as stateless microservices. With each request
they receive, they retrieve the current program from a microservice dedicated to stor-

16. https://www.docker.com/
17. https://kubernetes.io/
18. https://www.nomadproject.io/

81

Partie II, Chapter 7 – Distributed Integrated Development Environment

Figure 7.6 – Microservice architecture

ing it. We use Mongo as the database to store the programs. The microservice imple-
menting the workspace language service receives program edits notifications and sends
diagnostics notifications to the frontend (i.e., errors markers). It also computes an index
of the symbols in the programs, which is required by the microservices implementing
references and symbol.

7.5 Experimentations

In this section we present our experiments to answer the research questions intro-
duced in Section 7.2 (RQ1 and RQ2). We conducted these experiments on four EMF-
based languages: NabLab, our own implementation of the Logo language, ThingML 19

and MiniJava 20. Logo is an educational programming language dedicated to 2D draw-
ings, ThingML is dedicated to applications for the Internet of Things, and MiniJava is
a subset of the Java language. We selected this mix of general purpose and domain

19. https://github.com/TelluIoT/ThingML
20. https://github.com/tetrabox/minijava

82

7.5. Experimentations

specific languages of distinct domains to be representative of the generalization of the
proposed approach.

Our experiments compare language services implemented by monolithic servers
deployed locally and modular servers distributed over the available execution plat-
forms. Our results show that monolithic servers deployed locally offer better response
times when not resource demanding but quickly limited for computationally inten-
sive IDE features, and that parsing models and loading model elements constitute a
bottleneck for microservices, which would prevent the design of an entirely stateless
architecture.

7.5.1 Experimental setup

The evaluation was performed on three machines in a Nomad 21 cluster. All ma-
chines were Dell PowerEdge R330 with Intel(R) Xeon(R) CPU E3-1280 v6 @ 3.90GHz 4
cores, hyper-threading and 31GB of RAM. The IDE features were deployed in Docker
containers and running on OpenJDK 11.0.5.

The evaluation measured the response times of language services implemented as
monolithic language servers, and as distributed language servers with microservices.
Both are implementing the Language Server Protocol 22 (LSP), and possibly additional
services such as a compiler. Monolithic language servers were deployed on a single
machine of the cluster. We generated programs of a similar number of lines of code
based on the content of existing examples for each language 23. For each program, we
initialized an LSP session and opened the program. We then called 100 times each
language service sequentially and measured the time elapsed between the request and
the reply.

We performed the same experiments with the distributed servers after a distri-
bution of the language services over the available cluster. On the first machine we
deployed the language service storage, on the second machine workspace, completion,
definition, highlight, documentSymbol and on the third machine hover, references, rename,
symbol. Since we wanted to measure the cost of message exchanges, we deployed de-
pending IDE features on different machines: for instance, workspace feature was not on
the same machine than references and symbol, that storage is on its own machine. The

21. https://nomadproject.io/
22. https://microsoft.github.io/language-server-protocol/
23. https://anonymous.4open.science/r/e03961ac-9f27-4c52-ab28-87cf105a83f4/

83

Partie II, Chapter 7 – Distributed Integrated Development Environment

client that sends the requests to language services was deployed outside of the cluster,
on a machine connected to the cluster by a local network.

In the case of the distributed servers, we also measured the times taken to load
and resolve the references of models, in order to highlight impact of load and resolve
phases in the response time of the microservices. More precisely, models are graphs of
objects that reference each other but these references are not resolved at the first load,
they are resolved on demand when language services browse the models, which has an
impact on the processing time of the language services. For each language we repeated
100 times the measure of loading and resolution time of each program .

7.5.2 Results

To investigate the gains and the costs of distributing language services, we first
compared the response times of language services of the motivating example in Sec-
tion 7.2, which are implemented by a monolithic server running on a laptop, to the
response times of the same language services implemented by microservices running
on the Nomad cluster for the NabLab language. In a second experiment, we compared
the response times of language services for monolithic and distributed architectures
running both on the Nomad cluster to evaluate the cost of the distribution for the lan-
guages NabLab, Logo, ThingML and MiniJava. We then measured the loading time
of the programs for these four languages and compare them to the response times of
language services to evaluate the impact of the stateless architecture.

Microservice-based version

We measured the response times of microservices running on a cluster implement-
ing the language services of the motivating example presented in Figure 7.2 and com-
pare them with the response times of language services running locally on the laptop.
Figure 7.7 presents response times of these microservices deployed in the Nomad clus-
ter. The percentage given for each bar represents the overhead with regard to the time
presented in Figure 7.2. Response times of the feature completion increase with file size
and are several orders higher than in Figure 7.2, where they are between 2 and 6 mil-
liseconds. Response times for references are 2 to 10 times higher than those in Figure 7.2.
Feature rename takes 6% more on the 121-line file, but gains between 16% and 25% for
the other files. Feature compiler gains 51% on the 121-line file and gains between 9%

84

7.5. Experimentations

Figure 7.7 – Response times of language services of the motivating example deployed
as microservices in the Nomad cluster, and comparison with the response times from
Figure 7.2.

and 21% on the other files.

Protocol

To evaluate the cost of the distribution of the language services, we measured re-
sponse times on programs of increasing sizes for the languages Logo, NabLab, ThingML
and MiniJava, with both monolithic and distributed servers. For the distributed ar-
chitecture, we also measured the overheads from message exchanges between the mi-
croservices to fulfill the request to language services. We performed 100 measurements
for each language service on each program and for both servers, and computed the
means. For the 320 measured means, 232 of them have a coefficient of variation (i.e.,
the ratio of the standard deviation to the mean) below 30%.

Figures 7.8, 7.9, 7.10 and 7.11 presents a comparison of the response times of the
language services for the monolithic and distributed architectures on programs of in-
creasing size, respectively for NabLab, Logo, MiniJava and ThingML. The response
times of the distributed architecture contains the protocol overhead parts representing
the times taken by the exchanges between the microservices, which include the re-
trieval of programs from the storage microservice, and the retrieval of the workspace’s
index (only for references and symbol features). The upper parts of the bar displayed in

85

Partie II, Chapter 7 – Distributed Integrated Development Environment

Figure 7.8 – Comparison of response times in monolithic and distributed architectures
for language services of NabLab

orange represent the times not due to the exchanges between the microservices, which
include the processing times of the internal logic of the microservice implementing the
language service, and the time for sending the response to the client.

In most cases, the distributed architecture introduces an overhead in comparison
to the monolithic implementation. However, we also observe that the overhead is
marginally due to the protocol (implied by the modularization), but rather due to the
microservice execution time. We further explore this in the rest of this section.

86

7.5. Experimentations

Figure 7.9 – Comparison of response times in monolithic and distributed architectures
for language services of Logo

Statelessness impact

The microservices being stateless, they all require to fetch and load the necessary
part of the model in addition to executing the corresponding language service(s). To
evaluate the impact on response times of the stateless nature of microservices imple-
menting language services, we measured the initial load times and the full references
resolution times for the four languages NabLab, Logo, Minijava and ThingML on the
same programs used before. The considered programs are EMF models, in the form
of graphs of objects which are loaded lazily. An initial load is performed to build the
objects of the model but references between them are resolved on demand. Language
services browse models when performing their internal logic. This process requires

87

Partie II, Chapter 7 – Distributed Integrated Development Environment

Figure 7.10 – Comparison of response times in monolithic and distributed architectures
for language services of MiniJava

to resolve visited references, which consist of finding the referenced elements in the
model, and therefore has a cost in time. This means that language services performing
simple queries on a program, such as the completion feature which browses few object
references, are less impacted by model loading than language services that browse the
whole model, such as for instance the documentSymbol feature which collects all named
elements of a model.

Figure 7.12 shows the means of the measurements for the four languages, on pro-
grams of increasing size. Since models are loaded lazily, we measured the initial load
times and the reference resolution times. The load curve represents the times to parse
programs and build the corresponding model. The resolve curve represents the times

88

7.5. Experimentations

Figure 7.11 – Comparison of response times in monolithic and distributed architectures
for language services of ThingML

to resolve all the references between objects in the model. The load and resolve are cu-
mulative times that correspond to the complete model loading.

In all cases we observe a linear time for load, while resolve can be exponential ac-
cording to the size of the considered program and consume an important part of the
overall model loading time.

To further compare the load and resolution times of model with language service
response times, we measured completion, which is one of the fastest of our language ser-
vices and documentSymbol which is one of the most time consuming. Figure 7.13 shows
their response times on programs of increasing size for the monolithic and distributed
architectures of the four languages. The differences of response times of completion and

89

Partie II, Chapter 7 – Distributed Integrated Development Environment

Figure 7.12 – EMF model load and resolution times

documentSymbol between monolithic and distributed architectures go up to 355 ms and
220 ms respectively for Logo, 347 ms and 2058 ms for NabLab, 229 ms and 242 ms for
MiniJava, and 110 ms and 174 ms for ThingML.

Figure 7.13 – Comparison of services browsing few model references (completion) and
many model references (documentSymbol) for the languages Logo, NabLab, MiniJava
and ThingML in the monolithic and the distributed architectures

7.5.3 Discussion

We modularized and distributed language services in a cluster and we compared
their response times with monolithic servers implementing the same features. In this
section we discuss these results to answer the research questions introduced in section
7.2.

90

7.5. Experimentations

Systematic approach to automate the modularization and individual deployment of
language services (RQ1)

We present in this work a first generative approach to modularize all services of
a language server in the form of deployment units as microservices, and a second
generative approach in charge of establishing the communication between the vari-
ous microservices corresponding to a given configuration of the expected IDE. The
granularity of the IDE features in terms of the language services to be included in a
given microservice, as well as the information on the possible dependencies between
them, are given by a protocol specification taken as input of our overall approach. The
microservices are stateless, and support custom and possibly dynamic adaptation of
their configuration.

We experiment our approach on four representative EMF-based languages, namely
NabLab, Logo, MiniJava and ThingML, and demonstrate the ability of our approach
to be applied on all of them. We generate deployment configurators for these four lan-
guages, and select language services to be deployed, distribute them on the machines
of a cluster and dynamically change the deployment configuration. For all languages,
the monolithic and distributed implementations of the language server are function-
ally equivalent.

The results from Figures 7.8 to 7.11 show that the protocol and the communica-
tion between the microservices are only a small part of the overall overhead in the
response times of the distributed features. The overhead for features rename and sym-
bol last longer, which can be explained by the fact that these two features query the
symbol index in addition to retrieving the model while the other features only send
requests to retrieve the model.

The differences of response times in Figure 7.13 between the monolithic architec-
ture and the distributed architectures can be explained by the fact that the monolithic
servers are stateful and the microservices are stateless. The monolithic servers load
models only once at initialization and perform model validation to find errors, a pro-
cess that requires traversing all elements of the model. This means that models are
loaded and all their references are resolved when the internal logic of the feature is
running. In the case of microservices, models are loaded at each request and references
are resolved on demand while the internal logic of the feature is running. We notice
in Figure 7.13, that the differences in response time between the monolithic and dis-
tributed curves are at least equal to the loading times of the models in Figure 7.12 and

91

Partie II, Chapter 7 – Distributed Integrated Development Environment

even close to the full resolution time of the models for NabLab. We also notice that the
completion feature has less overhead than the documentSymbol feature. This difference
is due to the lazy loading of the model since completion has to resolve few model ob-
ject references whereas documentSymbol has to resolve all containment references of the
model.

From these observations we conclude that the protocol for stateless microservices
implementing IDE features introduces a small overhead corresponding to message ex-
changes. The differences of response times between the monolithic and distributed
architectures are mostly due to the stateless nature of microservices that requires to
load the model and to resolve the references lazily.

Distribution of the language services to improve the overall performances of the
IDE (RQ2)

Our generator uses the specification of a communication protocol to generate mi-
croservices communicating by HTTP requests. Each microservice is associated with an
HTTP resource, which is identified by a URL address. To send a request to a resource,
a Domain Name System (DNS) must translate the destination URL into an IP address.
This process abstracts the actual destination address of a request. We use HTTP to
convey messages to microservices that can dynamically change their location after a
reconfiguration of their deployment. Since microservices are by nature isolated from
each other, HTTP communication allows the microservices to be distributed over dif-
ferent execution platforms.

We observed from Figure 7.7 that there is a real benefit on the response times to
distribute some computationally intensive features (e.g., compiler), while others that
are less demanding in terms of resources are better deployed locally to keep the best
user experience (e.g., completion and references). The size of the program considered is
also important on the result (cf. rename).

We conclude that there is an important benefit in modularizing the language ser-
vices, and in distributing them in a relevant way such as we can optimize the response
time of each feature individually, and improve the overall user experience of the IDE.
As future work, we plan to use a learning model to estimate the pros and cons of the
distribution of each feature according to the communications and the available exe-
cution platforms, and then to infer automatically the best configuration for a given
context.

92

7.6. Conlusion

7.6 Conlusion

IDEs provide heterogeneous language services but lack the flexibility to fulfill their
individual needs by leveraging the various execution platform that may be available.
In this chapter, we proposed a generative approach to modularize and distribute lan-
guage services. We proposed to complement language specifications with protocol
specifications describing the language services and their communications. Based on
these specifications, we can generate microservices implementing the language ser-
vices and generate a Feature Model to drive their safe deployment on multiple exe-
cution platforms. We applied our approach to four languages and deployed their lan-
guage services on the execution platforms in a cloud. We evaluated our approach by
comparing language services implemented by microservices with language services
implemented by monolithic servers and showed that it is beneficial to distribute com-
putationally intensive language services on a cloud. However, our results also showed
that stateless microservices may be costly due to the cost of loading the model which
is not compensated by the computational power of the cloud execution platforms.

We have shown with this contribution that distributing language services across
multiple execution platform brings more flexibility to language users since the con-
figuration of the language service deployment allows to leverage available execution
platforms.

93

PART III

Conclusion and Perspectives

94

CHAPTER 8

CONCLUSIONS

IDEs are central components for both language designers and language users. For
language designers, IDEs are more and more expected to be extensible, making them
a practical base for language workbenches. With IDEs, language designers have ac-
cess to multiple language workbenches that can provide different technological stacks.
Each technological stack has its own strength and multiple stacks could be relevant
to implement a language. Having language implemented in multiple technological
stacks is also interesting for the language user since he could manipulate language
constructs, for a given activity, with the most appropriate language services provided
by a particular language stack. However technological stacks are isolated and there-
fore it is not possible to benefit from multiple stacks neither for language designers or
language users. IDEs are also central to language users for the development activities.
To support these activities, IDEs aggregate a set of heterogeneous language services.
In the meantime, language users have access to a variety of execution platforms, rang-
ing from laptop to dedicated server or even cloud clusters, each one of these execution
platforms having different capacities or resources (e.g., CPU, memory, network latency,
...), which can’t be fully exploited because of the monolithic architecture of IDEs that
implies to deploy every language services on the same execution platform.

For these reasons, we state in this thesis that the distribution of language services
makes IDEs more flexible for both language designers and language users. We iden-
tify two challenges to be addressed to bring such flexibility. First, technological stacks
should be interoperable to allow language designers to benefit from the specific strengths
of multiple stacks when implementing languages, and must be interoperable to allow
language users to switch seamlessly between language services implemented in dif-
ferent technological stacks. Second, language services should be modularized as inde-
pendently deployable units and distributed to leverage the resources of the available
execution platforms to best fit their needs according to the language user activities,
which can evolve over time.

95

Partie III, Chapter 8 – Conclusions

To address the first challenge, we proposed a communication bus to connect mul-
tiple technological stacks in which the same language is implemented and we defined
a formalism to express the changes in the model incarnations. Equivalent model in-
carnations from the different technological stacks are kept synchronized by emitting
their changes through the communication bus following a publish/subscribe pattern.
We implemented our approach to connect multiple technological stacks as the frame-
work PRISM, which is our prototype integrated to GEMOC [16]. We evaluated our first
contribution on a Finite State Machine language implemented on the three technolog-
ical stacks EMF, Rascal, and Java fluent API. A Finite State Machine was represented
in the three technological stacks with their own language constructs. We were able to
manipulate the same Finite State Machine through the language services of different
technological stacks while keeping language constructs synchronized.

To address the second challenge, we defined a protocol specification language to al-
low language designers to describe language services and their relations. We proposed
a microservices generator taking such protocol specification in input to automatize the
modularization of language services. We also use the protocol specification as a ba-
sis for generating a feature model that is used to drive a deployment configurator in
the safe distribution of the language services across the different execution platforms
according to the constraints specified in the feature model. We implemented our gen-
erator as an Eclipse plugin that takes as input languages defined in the EMF ecosystem
and produces microservices containing the language services. Our prototype allows
us to dynamically change the deployment of the microservices in a Kubernetes clus-
ter through to a configurator using the Kubernetes API. This second contribution was
evaluated on the four languages NabLab, Logo, ThingML, and MiniJava. For each of
these languages, we specified a protocol describing their language services, and based
on this specification we were able to generate microservices implementing the lan-
guage services and a feature model expressing the constraints between these services.
We demonstrated the usefulness of the distribution by measuring for NabLab the re-
sponse times of language services provided by a monolithic server deployed on the
same laptop of the IDE client and language services implemented as microservices
and deployed on a cloud. Our results show that the use of distant cloud servers im-
proves the performances of computational intensive language services (e.g., rename and
compile), thereby compensating the overhead due to the distribution. Experiments also
show the benefits of retaining local other features that should be reactive and less de-

96

manding in resources (e.g., completion). We also compared for the four languages the
response times of the monolithic and distributed architectures, both deployed on a
cloud, to investigate the cost of the distribution. Our results show that microservices
have higher response times than monoliths due to our choice of making stateless mi-
croservices whereas monolithic servers are stateful. We found that the response times
overhead of microservice is mainly due to the costly loading of models on each request
and that the message exchange times are acceptable (i.e., less than 200 ms).

In conclusion, we brought with the works of this thesis more flexibility to language
designers and users through the combination of multiple technological stacks for the
design, implementation, and usage of languages and through the distribution of lan-
guage services across multiple execution platforms. Although the works done in this
thesis are the first steps towards the realization of IDEs as cloud-native applications,
we believe that the full adoption of cloud computing and web technologies will open
up new possibilities for software language engineering that will benefit both language
designers and users.

97

CHAPTER 9

PERSPECTIVES

The work presented in this thesis is the first step toward distributed IDE
to bring more flexibility in the design, implementation, and deployment of lan-
guages. We present afterward the perspectives opening to future works to im-
prove the contributions (Section 9.1) and we close on the long-term perspectives
(Section 9.2).

9.1 Contribution improvements

Model access Our approach to distributing language services across execution plat-
forms to best meet their needs has been to modularize language services as stateless
microservices. We identified the model load as a bottleneck that significantly increases
the response time of language services. Access to the model is a concern that requires
further investigation to identify the possible solutions and the trade-off to ensure ac-
ceptable response times.

Stateful language services could be one solution to avoid model load at each re-
quest. One direction to explore in order to support stateful language services is model
replication with a synchronization mechanism to keep the multiple instances of a model
contained in different language services up to date. However, statelessness can still be
a good solution for language services that do not require the whole model to perform
their internal logic. Keeping models in model repository and querying only parts of
the model might be an appropriate solution for such services.

To determine which kind of access is appropriate for which service, we need a char-
acterization of each service to identify the part of the model it uses and its frequency of
use. Such characterization could be based on the knowledge of the language designer,
who adds this informations into a protocol specification, which can be used as a basis
for generating the appropriate code in the microservice. The application of static analy-
sis of code on the existing framework implementing language services may be another

98

9.1. Contribution improvements

way to extract these characteristics, as well as the application of dynamic analysis on
the running language services.

Collaborative model editing As mentioned in Section 6.4.2, our approach to meta-
morphic DSL does not account for concurrent edits of different incarnations of the
same model. It does not account either for a possible distribution of the language ser-
vices and the incarnations of the model over the network, which require dealing with
consistency concerns such as the order of edits or their duplication. Nonetheless, we
believe that the idea of exchanging patches would be a good fit for advanced scenar-
ios such as collaborative and distributed editing of models by different stakeholders
under different shapes.

Conflict-free Replicated Data Types (CRDT) is a set of data structures with merge
operators designed for replicated data in a decentralized context. Concurrent editing
of data is allowed by the properties of the merge operator (i.e., associativity, reflexiv-
ity and idempotency) which ensure that merging a set of divergent data in any order
will always produce the same result. Each data replica can evolve independently and
as long as every replica receives all the modifications of its siblings (possibly multiple
times and in a different order), the properties of CRDT guarantee their eventual con-
sistency. The use of the CRDT to express patches is a promising lead to be investigated
for handling concurrent editions, possibly from distributed language services.

Communication protocol We have automated the modularization of the IDE by gen-
erating microservices implementing language services on the basis of a protocol spec-
ification. This protocol specification lets the language designer list the language ser-
vices, describe their capabilities, and define their dependencies. This information al-
lowed us to generate the source code of the microservices and to configure their com-
munication channel with their dependencies.

However, we do not define the interface of the language services, and neither their
behavior (i.e., the actual protocol between services) in the protocol specification. En-
riching our specification DSL with such concepts could help increase the amount of
code we generate in the microservice and thus reduce the amount of work remaining
for the language designer. Making interfaces for language services explicit will bring
the benefits of static typing, thus reducing the risk of deploying microservices that
don’t work.

99

Partie III, Chapter 9 – Perspectives

Our protocol specification DSL makes it possible to define dependencies between
language services but does not permit to define the order in which they are used. Spec-
ifying the behavior of the language services, at the scale of the whole IDE, could make
it possible to generate dedicated source code in the microservice and thus reduce the
risk of errors that can arise when the language designer manually implements these
behaviors. One direction to be investigated is the service choreography (i.e., each ser-
vice implementing a part of the global service coordination), which allows to deduce
the individual behavior of services from the specification of global system behavior.

Generation of language implementations To benefit from our contribution allowing
to combine technological stacks (Chapter 6), language designers have to handcraft ev-
ery shape of a language. It may however be possible to automatically generate shapes
of a language, either from a common language definition or from a shape to another.
For instance, researchers have studied the generation of fluent APIs from BNF-like
grammar definitions [111]. Automatic generation of shapes is not necessary for shape-
diverse DSLs, but future research in this area would greatly ease their adoption.

In our approach to the distribution of language services (Chapter 7), we container-
ize microservices to deploy them in a cluster and allow the language user to use them
through a web application. This implies that each machine has an environment capa-
ble of running containers, which limits the possible deployment locations. Although
we can deploy microservices on the user’s machine if it provides such an environ-
ment, we may want to deploy language services even closer to the user, directly into
its browser. In our implementation, we generate Java microservices, but we believe
that generating WebAssembly code could be a good target to deploy language services
at the location closest to the user, thus avoiding the costs induced by network and
containerization layers. The availability of the WebAssembly technology creates a new
technical environment that facilitates the development of modules that can run both
on the client-side and the server-side in an efficient manner.

9.2 Long-term perspectives

Patch formalism Implementers of a synchronization mechanism for shape-diverse
DSLs may opt for the closed-world or open-world assumption. In the former, one
assumes that all technological stacks are known beforehand, while in the latter new

100

9.2. Long-term perspectives

technological stacks may be connected at any point in time, for instance using our
produce/apply interface for patches. Although the closed-world assumption eases the
definition of a common patch formalism on which all technological stacks agree, it
hampers evolution and adaptability of the communication bus.

In PRISM, we opted for patches in the form of edit scripts [124] and were success-
fully able to bridge three distinct technological stacks relying on radically different
theories. We cannot conclude however that the information contained in such patches
is sufficient for any kind of abstract syntax formalism. In an open world especially, con-
necting new technological stacks raises the problem of patch evolution. In addition, if
extra information (e.g., textual layout) has to be shared amongst various technologi-
cal stacks, the patch formalism should be adapted accordingly. Patches are nonetheless
central to our vision, as most other approaches (e.g., change propagation [128]) assume
the existence of an underlying model that is not materialized in our case.

Challenges of internal DSLs We encountered a number of challenges when engi-
neering the Java shape of our DSL (Section 6.5). These are mainly due to the fact that the
domain-specific static semantics is lost when manipulating Java ASTs using domain-
agnostic Java tooling. Besides, it may be hard to statically analyze the Java code ma-
nipulating models to account for reflexivity, string manipulation, or use of variables.
Future work must investigate what are the limits imposed by internal DSLs in this
context, especially regarding the absence of domain-specific static semantics.

Synchronization and impact management To synchronize the incarnations of a model
for shape-diverse DSLs, we made the assumption that produced Patches are always
well-formed. We require a model to be valid before emitting a Patch. However, one
technological stack may emit Patches that are not valid for other technological stacks.
For example, we observed that the semantic of the FSM language in the Java fluent API
(Section 6.5) could not be expressed since we rely on the validation of Java program,
which may lead to the production of ill-formed Patches. To handle ill-formed Patches,
PRISM needs a mechanism to roll back a Patch when it cannot be applied to a notified
technological stack.

Another improvement for PRISM is to explore how to make it possible for a lan-
guage user to fix a produced ill-formed Patch since he may have the expertise to han-
dle it. To assist the language user in this process, a correspondence model [37] could

101

Partie III, Chapter 9 – Perspectives

be established by the language designer to link elements of the different shapes. With
such a model, impacted model elements could be automatically inferred to guide the
language user in fixing the ill-formed Patch.

Self adaptation for language services deployment We have presented an approach
for distributing the language services of an IDE (Chapter 7). We proposed a deploy-
ment configurator, driven by a feature model, which allows selecting the language
services to be deployed and the execution platforms. This configuration is performed
manually by a language designer or a language user, depending on who has knowl-
edge of which language service should be available and which execution platforms
best meet the needs of each language service. However, taking such a decision may
not be an easy task and may evolve, as the needs of language services depend on the
available execution platforms and the current activity of the language user, both of
which may change over time. To handle such a dynamic environment, an automatic
configuration of the language services deployment would be more efficient than our
manual approach. One approach for such automation could be techniques from the do-
main of self-adaptive systems. It will require to describe the resources of the execution
platforms and the needs of the language services. Based on these descriptions, a self-
adaptation of the deployment configuration can be performed. It consists in measuring
metrics and selecting an adaptation strategy to satisfy quality of services goals.

Moreover, self-adapting system is a domain that could be useful for metamorphic
DSL. We view the contribution presented in Chapter 6 as a first step towards meta-
morphic DSLs. Beyond the combination of multiple technological stacks, the notion of
metamorphic DSL envisions self-adaptable languages that automatically adapt their
shapes and the associated IDE according to a particular usage or task. The implemen-
tation of a language as a self-adapting system reacting to the activities of the language
user by deploying language services from a particular shape accordingly could be a
solution towards self-adaptability of languages.

9.3 IDE as Code

We envision the future of IDE as the IDE as Code which takes its inspiration from
the as code approach that was applied for example in cloud computing through the
YAML configuration files. The as code approach is the idea that a system could be de-

102

9.3. IDE as Code

scribed with ’code’, i.e., a textual representation. The as code brings the advantages of
code (e.g., modularization, sharing, versioning, static analysis, automatization, etc) to
the configuration of a system but also enforce a common formalism for all its concerns,
that avoid the multiplication of configuration files in different languages.

Actual language protocols in IDE allow interoperability between client IDEs and
language servers implementing general-purpose languages. Such protocols are fixed
standards, which limit architectures to client/server and allow IDE configuration at
language granularity. To use domain-specific languages, which may have their own
specific language services, we need tailor-made protocols.

We see IDE as Code as the next step in the configuration of IDEs. Such configuration
should be done through a language within language services are first class citizen. Such
language should allow to describe the language services which include their interfaces,
their interactions and their needs regarding their executing environment.

We think such description could ease the tasks of language designers, for example
by detecting errors. A detailed description of language services could also allow the
automatic generation of implementations targeting multiple execution environments
and thus enriching the possibilities in the configuration of the IDE (e.g., choosing to
deploy a language service implementation for a server or choosing an implementation
for a web browser).

103

BIBLIOGRAPHY

[1] Hal Abelson, Nat Goodman, and Lee Rudolph, « Logo manual », in: (1974).

[2] Ace, Ace, 2021, URL: https://ace.c9.io/.

[3] Mathieu Acher, Benoit Combemale, and Philippe Collet, « Metamorphic domain-
specific languages: A journey into the shapes of a language », in: Proceedings of
the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming & Software, 2014, pp. 243–253.

[4] OSGI alliance, OSGI, 2021, URL: https://www.osgi.org/.

[5] Amazon, Amazon EC2, 2020, URL: https://aws.amazon.com/ec2/.

[6] Amazon, AWS Lambda – Serverless Compute - Amazon Web Services, 2020, URL:
https://aws.amazon.com/lambda.

[7] Amazon, Cloud9, 2021, URL: http://c9.io/.

[8] Apache, NetBeans, 2021, URL: http://netbeans.apache.org/.

[9] Apache, Zeppelin, 2021, URL: https://zeppelin.apache.org/.

[10] Apple, Xcode, 2021, URL: https://developer.apple.com/xcode/.

[11] Ioana Baldini et al., « Serverless computing: Current trends and open prob-
lems », in: Research Advances in Cloud Computing, Springer, 2017, pp. 1–20.

[12] Ankica Barisic et al., « How to reach a usable DSL? Moving toward a Systematic
Evaluation », in: Electronic Communications of the EASST 50 (2012).

[13] Francesco Basciani et al., « MDEForge: an Extensible Web-Based Modeling Plat-
form. », in: CloudMDE@ MoDELS, 2014, pp. 66–75.

[14] Tim Berners-Lee, Roy Fielding, and Larry Masinter, Uniform resource identifier
(URI): Generic syntax, tech. rep., 2004.

[15] Lorenzo Bettini, Implementing domain-specific languages with Xtext and Xtend, Packt
Publishing Ltd, 2016.

105

https://ace.c9.io/
https://www.osgi.org/
https://aws.amazon.com/ec2/
https://aws.amazon.com/lambda
http://c9.io/
http://netbeans.apache.org/
https://zeppelin.apache.org/
https://developer.apple.com/xcode/

Partie III, BIBLIOGRAPHY

[16] Erwan Bousse et al., « Execution framework of the gemoc studio (tool demo) »,
in: Proceedings of the 2016 ACM SIGPLAN International Conference on Software
Language Engineering, ACM, 2016, pp. 84–89.

[17] Hendrik Bünder, « Decoupling Language and Editor-The Impact of the Lan-
guage Server Protocol on Textual Domain-Specific Languages. », in: MODEL-
SWARD, 2019, pp. 129–140.

[18] Brendan Burns et al., « Borg, omega, and kubernetes », in: Queue 14.1 (2016),
pp. 70–93.

[19] Carlos Carrascal Manzanares, Jesús Sánchez Cuadrado, and Juan de Lara, « Build-
ing MDE cloud services with DISTIL », in: CEUR Workshop Proceedings, CEUR-
WS, 2015.

[20] Carlos Carrascal-Manzanares, Jesús Sánchez Cuadrado, and Juan de Lara, « Build-
ing MDE cloud services with DISTIL », in: International Conference on Model
Driven Engineering Languages and Systems, vol. 1563, Model-Driven Engineer-
ing on and for the Cloud, Ottawa, Canada: CEUR Workshop Proceedings, Sept.
2015, pp. 19–24, URL: https://hal.archives-ouvertes.fr/hal-01761670.

[21] Tomas Cerny, Michael J Donahoo, and Michal Trnka, « Contextual understand-
ing of microservice architecture: current and future directions », in: ACM SIGAPP
Applied Computing Review 17.4 (2018), pp. 29–45.

[22] Betty HC Cheng et al., « On the globalization of domain-specific languages »,
in: Globalizing Domain-Specific Languages, Springer, 2015, pp. 1–6.

[23] Codeanywhere, Codeanywhere, 2021, URL: https://codeanywhere.com/.

[24] CodeMirror, CodeMirror, 2021, URL: https://codemirror.net/.

[25] CodePen, CodePen, 2021, URL: https://codepen.io/.

[26] Object Computing, Micronaut, 2021, URL: https://micronaut.io/.

[27] Jonathan Corley, Eugene Syriani, and Huseyin Ergin, « Evaluating the cloud
architecture of AToMPM », in: 2016 4th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), IEEE, 2016, pp. 339–
346.

106

https://hal.archives-ouvertes.fr/hal-01761670
https://codeanywhere.com/
https://codemirror.net/
https://codepen.io/
https://micronaut.io/

BIBLIOGRAPHY

[28] Valerio Cosentino, Massimo Tisi, and Javier Luis Cánovas Izquierdo, « A model-
driven approach to generate external dsls from object-oriented apis », in: Inter-
national Conference on Current Trends in Theory and Practice of Informatics, Springer,
2015, pp. 423–435.

[29] Fabien Coulon et al., « Modular and Distributed IDE », in: Proceedings of the 13th
ACM SIGPLAN International Conference on Software Language Engineering, SLE
2020, Virtual, USA: Association for Computing Machinery, 2020, pp. 270–282,
ISBN: 9781450381765, DOI: 10.1145/3426425.3426947, URL: https://doi.org/
10.1145/3426425.3426947.

[30] Fabien Coulon et al., « Shape-diverse DSLs: languages without borders (vision
paper) », in: Proceedings of the 11th ACM SIGPLAN International Conference on
Software Language Engineering, 2018, pp. 215–219.

[31] K. Czarnecki and A. Wasowski, « Feature Diagrams and Logics: There and Back
Again », in: 11th International Software Product Line Conference (SPLC 2007), Sept.
2007, pp. 23–34, DOI: 10.1109/SPLINE.2007.24.

[32] Arie Van Deursen and Paul Klint, « Little languages: little maintenance? », in:
Journal of Software Maintenance: Research and Practice 10.2 (1998), pp. 75–92.

[33] Devbox, Devbox, 2021, URL: https://devbox.ewave.com/#/.

[34] Abhijit Dubey and Dilip Wagle, « Delivering software as a service », in: The
McKinsey Quarterly 6.2007 (2007), p. 2007.

[35] Thomas F Düllmann and André van Hoorn, « Model-driven generation of mi-
croservice architectures for benchmarking performance and resilience engineer-
ing approaches », in: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion, 2017, pp. 171–172.

[36] Thomas F. Düllmann and André van Hoorn, « Model-Driven Generation of Mi-
croservice Architectures for Benchmarking Performance and Resilience Engi-
neering Approaches », in: Proceedings of the 8th ACM/SPEC on International Con-
ference on Performance Engineering Companion, ICPE ’17 Companion, Association
for Computing Machinery, 2017, pp. 171–172, ISBN: 9781450348997, DOI: 10 .
1145/3053600.3053627, URL: https://doi.org/10.1145/3053600.3053627.

107

https://doi.org/10.1145/3426425.3426947
https://doi.org/10.1145/3426425.3426947
https://doi.org/10.1145/3426425.3426947
https://doi.org/10.1109/SPLINE.2007.24
https://devbox.ewave.com/#/
https://doi.org/10.1145/3053600.3053627
https://doi.org/10.1145/3053600.3053627
https://doi.org/10.1145/3053600.3053627

Partie III, BIBLIOGRAPHY

[37] Sophie Ebersold, « Modelisation des systemes complexes et Points de vue: l’Ingenierie
des Modeles centree utilisateur pour l’Ingenierie Systeme », PhD thesis, Univer-
site de Toulouse, 2021.

[38] Eclipse, Eclipse IDE, 2021, URL: https://www.eclipse.org/ide/.

[39] Eclipse, Eclipse Orion, 2021, URL: https://projects.eclipse.org/projects/
ecd.orion.

[40] Eclipse, MicroProfile, 2021, URL: https://microprofile.io/.

[41] Eclipse Foundation, Eclipse Che | Eclipse Next-Generation IDE for developer teams,
[Online; accessed 25-February-2020], 2020, URL: https://www.eclipse.org/
che/.

[42] Sebastian Erdweg et al., « Evaluating and comparing language workbenches:
Existing results and benchmarks for the future », in: Computer Languages, Sys-
tems & Structures 44 (2015), pp. 24–47.

[43] Moritz Eysholdt and Heiko Behrens, « Xtext: Implement Your Language Faster
than the Quick and Dirty Way », in: Proceedings of the ACM International Con-
ference Companion on Object Oriented Programming Systems Languages and Appli-
cations Companion, OOPSLA ’10, Reno/Tahoe, Nevada, USA: Association for
Computing Machinery, 2010, pp. 307–309, ISBN: 9781450302401, DOI: 10.1145/
1869542.1869625, URL: https://doi.org/10.1145/1869542.1869625.

[44] Moritz Eysholdt and Heiko Behrens, « Xtext: implement your language faster
than the quick and dirty way. », in: Jan. 2010, pp. 307–309, DOI: 10 . 1145 /
1869542.1869625.

[45] Jean-Marie Favre et al., « Empirical language analysis in software linguistics »,
in: International Conference on Software Language Engineering, Springer, 2010, pp. 316–
326.

[46] Matthias Felleisen et al., « A programmable programming language », in: Com-
munications of the ACM 61.3 (2018), pp. 62–71.

[47] OpenJS fondation, Electron, 2021, URL: https://www.electronjs.org/.

[48] Martin Fowler, « Fluent Interface.(2005) », in: URL http://martinfowler. com/blik-
i/FluentInterface. html (2005).

108

https://www.eclipse.org/ide/
https://projects.eclipse.org/projects/ecd.orion
https://projects.eclipse.org/projects/ecd.orion
https://microprofile.io/
https://www.eclipse.org/che/
https://www.eclipse.org/che/
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://www.electronjs.org/

BIBLIOGRAPHY

[49] Martin Fowler, Language workbenches: The killer-app for domain specific languages,
2005.

[50] Martin Fowler, UML distilled: a brief guide to the standard object modeling language,
Addison-Wesley Professional, 2004.

[51] George Fylaktopoulos et al., « A distributed modular platform for the develop-
ment of cloud based applications », in: Future Generation Computer Systems 78
(2018), pp. 127–141.

[52] George Fylaktopoulos et al., « CIRANO: An integrated programming environ-
ment for multi-tier cloud based applications », in: Procedia Computer Science 68
(2015), pp. 42–52.

[53] GitHub, Atom, 2021, URL: https://atom.io/.

[54] GitHub, Codespaces, 2021, URL: https://github.com/features/codespaces.

[55] Google, Android Studio, 2021, URL: https://developer.android.com/studio.

[56] Google, Google App Engine, 2020, URL: https://appengine.google.com/.

[57] Giona Granchelli et al., « Microart: A software architecture recovery tool for
maintaining microservice-based systems », in: 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), IEEE, 2017, pp. 298–302.

[58] Claudio Guidi et al., « Microservices: a Language-based Approach », in: Present
and Ulterior Software Engineering, ed. by Manuel Mazzara and Bertrand Meyer,
https://hal.inria.fr/hal-01635817: Springer, Nov. 2017, URL: https : / / hal .
inria.fr/hal-01635817.

[59] Claudio Guidi et al., « Microservices: a Language-based Approach », in: CoRR
abs/1704.08073 (2017), arXiv: 1704.08073, URL: http://arxiv.org/abs/1704.
08073.

[60] David Harel and Bernhard Rumpe, « Meaningful modeling: what’s the seman-
tics of" semantics"? », in: Computer 37.10 (2004), pp. 64–72.

[61] Nicolas Harrand et al., « ThingML: a language and code generation framework
for heterogeneous targets », in: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, 2016, pp. 125–
135.

109

https://atom.io/
https://github.com/features/codespaces
https://developer.android.com/studio
https://appengine.google.com/
https://hal.inria.fr/hal-01635817
https://hal.inria.fr/hal-01635817
https://arxiv.org/abs/1704.08073
http://arxiv.org/abs/1704.08073
http://arxiv.org/abs/1704.08073

Partie III, BIBLIOGRAPHY

[62] Sara Hassan, Nour Ali, and Rami Bahsoon, « Microservice ambients: An archi-
tectural meta-modelling approach for microservice granularity », in: 2017 IEEE
International Conference on Software Architecture (ICSA), IEEE, 2017, pp. 1–10.

[63] Sara Hassan and Rami Bahsoon, « Microservices and their design trade-offs: A
self-adaptive roadmap », in: 2016 IEEE International Conference on Services Com-
puting (SCC), IEEE, 2016, pp. 813–818.

[64] Sara Hassan, Rami Bahsoon, and Rick Kazman, « Microservice transition and
its granularity problem: A systematic mapping study », in: Software: Practice and
Experience 50.9 (2020), pp. 1651–1681.

[65] Red Hat, Quarkus, 2021, URL: https://quarkus.io/.

[66] Jan Heering et al., « The syntax definition formalism sdf—reference manual— »,
in: ACM Sigplan Notices 24.11 (1989), pp. 43–75.

[67] Jay Heiser and John Santoro, Hype cycle for software as a service, 2019.

[68] Soichiro Hidaka, Frédéric Jouault, and Massimo Tisi, « On Additivity in Trans-
formation Languages », in: 20th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2017, Austin, TX, USA, September
17-22, 2017, 2017, pp. 23–33, DOI: 10.1109/MODELS.2017.21, URL: https://doi.
org/10.1109/MODELS.2017.21.

[69] Charles Antony Richard Hoare, « An axiomatic basis for computer program-
ming », in: Communications of the ACM 12.10 (1969), pp. 576–580.

[70] Christian Hofer and Klaus Ostermann, « Modular domain-specific language
components in scala », in: ACM SIGPLAN Notices, vol. 46, 2, ACM, 2010, pp. 83–
92.

[71] Sublime HQ, Sublime Text, 2021, URL: https://www.sublimetext.com/.

[72] Paul Hudak, « Building domain-specific embedded languages », in: Acm com-
puting surveys (csur) 28.4es (1996), 196–es.

[73] JetBrains, IntelliJ IDEA, 2021, URL: https://www.jetbrains.com/fr-fr/idea/.

[74] JetBrains, PyCharm, 2021, URL: https://www.jetbrains.com/fr-fr/pycharm/.

[75] JSFiddle, JSFiddle, 2021, URL: https://jsfiddle.net/.

[76] Jupyter, Jupyter, 2021, URL: https://jupyter.org/.

110

https://quarkus.io/
https://doi.org/10.1109/MODELS.2017.21
https://doi.org/10.1109/MODELS.2017.21
https://doi.org/10.1109/MODELS.2017.21
https://www.sublimetext.com/
https://www.jetbrains.com/fr-fr/idea/
https://www.jetbrains.com/fr-fr/pycharm/
https://jsfiddle.net/
https://jupyter.org/

BIBLIOGRAPHY

[77] Kyo C Kang et al., Feature-oriented domain analysis (FODA) feasibility study, tech.
rep., Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990.

[78] Lennart CL Kats and Eelco Visser, « The spoofax language workbench: rules
for declarative specification of languages and IDEs », in: ACM sigplan notices,
vol. 45, 10, ACM, 2010, pp. 444–463.

[79] Lennart CL Kats et al., « Software development environments on the web: a
research agenda », in: Proceedings of the ACM international symposium on New
ideas, new paradigms, and reflections on programming and software, 2012, pp. 99–
116.

[80] Sven Keidel, Wulf Pfeiffer, and Sebastian Erdweg, « The IDE Portability Prob-
lem and Its Solution in Monto », in: Proceedings of the 2016 ACM SIGPLAN In-
ternational Conference on Software Language Engineering, SLE 2016, Amsterdam,
Netherlands: Association for Computing Machinery, 2016, pp. 152–162, ISBN:
9781450344470, DOI: 10.1145/2997364.2997368, URL: https://doi.org/10.
1145/2997364.2997368.

[81] Anneke Kleppe, Software language engineering: creating domain-specific languages
using metamodels, Pearson Education, 2008.

[82] Paul Klint, Ralf Lämmel, and Chris Verhoef, « Toward an engineering discipline
for grammarware », in: ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 14.3 (2005), pp. 331–380.

[83] Paul Klint and Tijs van der Storm, « Model Transformation with Immutable
Data », in: International Conference on Theory and Practice of Model Transformations,
Springer, 2016, pp. 19–35.

[84] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju, « EASY Meta-Programming
with Rascal. Leveraging the Extract-Analyze-SYnthesize Paradigm for Meta-
Programming », in: Proceedings of the 3rd International Summer School on Gener-
ative and Transformational Techniques in Software Engineering (GTTSE’09), LNCS,
Braga, Portugal: Springer, 2010.

[85] Sander Klock et al., « Workload-based clustering of coherent feature sets in mi-
croservice architectures », in: 2017 IEEE International Conference on Software Ar-
chitecture (ICSA), IEEE, 2017, pp. 11–20.

111

https://doi.org/10.1145/2997364.2997368
https://doi.org/10.1145/2997364.2997368
https://doi.org/10.1145/2997364.2997368

Partie III, BIBLIOGRAPHY

[86] Tomaž Kosar, Sudev Bohra, and Marjan Mernik, « Domain-specific languages:
A systematic mapping study », in: Information and Software Technology 71 (2016),
pp. 77–91.

[87] Tomaž Kosar et al., « Program comprehension of domain-specific and general-
purpose languages: replication of a family of experiments using integrated de-
velopment environments », in: Empirical Software Engineering 23.5 (2018), pp. 2734–
2763.

[88] Nane Kratzke and Peter-Christian Quint, « Understanding cloud-native appli-
cations after 10 years of cloud computing-a systematic mapping study », in:
Journal of Systems and Software 126 (2017), pp. 1–16.

[89] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit, « Technological Spaces: An Initial
Appraisal », in: (Jan. 2002).

[90] Ralf Lammel and Chris Verhoef, « Cracking the 500-language problem », in:
IEEE software 18.6 (2001), pp. 78–88.

[91] Ralf Lämmel, Software languages: Syntax, semantics, and metaprogramming, Springer,
2018.

[92] Ralf Lämmel and Erik Meijer, « Mappings make data processing go’round »,
in: International Summer School on Generative and Transformational Techniques in
Software Engineering, Springer, 2005, pp. 169–218.

[93] Benoit Lelandais, Marie-Pierre Oudot, and Benoit Combemale, « Fostering Meta-
models and Grammars within a Dedicated Environment for HPC: The NabLab
Environment (Tool Demo) », in: Proceedings of the 11th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, SLE 2018, Boston, MA, USA:
Association for Computing Machinery, 2018, pp. 200–204, ISBN: 9781450360296,
DOI: 10.1145/3276604.3276620, URL: https://doi.org/10.1145/3276604.
3276620.

[94] Benoit Lelandais, Marie-Pierre Oudot, and Benoit Combemale, « Fostering meta-
models and grammars within a dedicated environment for HPC: the NabLab
environment (tool demo) », in: Proceedings of the 11th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, 2018, pp. 200–204.

112

https://doi.org/10.1145/3276604.3276620
https://doi.org/10.1145/3276604.3276620
https://doi.org/10.1145/3276604.3276620

BIBLIOGRAPHY

[95] James Lewis and Martin Fowler, Microservices - a definition of this new architec-
tural term, 2014, URL: https://martinfowler.com/articles/microservices.
html.

[96] Frank Leymann et al., « Native cloud applications: why monolithic virtualiza-
tion is not their foundation », in: International Conference on Cloud Computing and
Services Science, Springer, 2016, pp. 16–40.

[97] Frank Leymann et al., « Native cloud applications: Why virtual machines, im-
ages and containers miss », in: Proceedings of the 6th International Conference on
Cloud Computing and, SciTePress, pp. 7–15.

[98] Miklós Maróti et al., « Next generation (meta) modeling: web-and cloud-based
collaborative tool infrastructure. », in: MPM@ MoDELS 1237 (2014), pp. 41–60.

[99] Peter Mell, Tim Grance, et al., « The NIST definition of cloud computing », in:
(2011).

[100] Dirk Merkel, « Docker: lightweight linux containers for consistent development
and deployment », in: Linux journal 2014.239 (2014), p. 2.

[101] Marjan Mernik, Jan Heering, and Anthony M Sloane, « When and how to de-
velop domain-specific languages », in: ACM computing surveys (CSUR) 37.4 (2005),
pp. 316–344.

[102] Microsoft, Cloud Computing Services | Microsoft Azure, 2020, URL: https : / /
azure.microsoft.com/.

[103] Microsoft, Debug Adapter Protocol, 2021, URL: https://microsoft.github.io/
debug-adapter-protocol/.

[104] Microsoft, Language Server Protocol, 2021, URL: https://microsoft.github.io/
language-server-protocol/.

[105] Microsoft, Monaco, 2021, URL: https://microsoft.github.io/monaco-editor/.

[106] Microsoft, Visual Studio, 2021, URL: https://visualstudio.microsoft.com/
fr/.

[107] Microsoft, VSCode, 2021, URL: https://code.visualstudio.com/.

[108] Matt Morley, JSON-RPC, 2021, URL: https://www.jsonrpc.org/specification.

113

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://azure.microsoft.com/
https://azure.microsoft.com/
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/monaco-editor/
https://visualstudio.microsoft.com/fr/
https://visualstudio.microsoft.com/fr/
https://code.visualstudio.com/
https://www.jsonrpc.org/specification

Partie III, BIBLIOGRAPHY

[109] Peter D Mosses, « The varieties of programming language semantics and their
uses », in: International Andrei Ershov Memorial Conference on Perspectives of Sys-
tem Informatics, Springer, 2001, pp. 165–190.

[110] Moh Afifun Naily et al., « A framework for modelling variable microservices as
software product lines », in: International Conference on Software Engineering and
Formal Methods, Springer, 2017, pp. 246–261.

[111] Tomoki Nakamaru et al., « Silverchain: a fluent API generator », in: ACM SIG-
PLAN Notices 52.12 (2017), pp. 199–211.

[112] Leandro Marques do Nascimento et al., « A systematic mapping study on domain-
specific languages », in: The Seventh International Conference on Software Engineer-
ing Advances (ICSEA 2012), 2012, pp. 179–187.

[113] Netflix, Netflix, 2020, URL: https://www.netflix.com/.

[114] Jakob Nielsen, Usability engineering, Morgan Kaufmann, 1994.

[115] Obeo, Sirius Web, 2021, URL: https : / / www . eclipse . org / sirius / sirius -
web.html.

[116] Ernst Oberortner, Uwe Zdun, and Schahram Dustdar, « Tailoring a model-driven
quality-of-service DSL for various stakeholders », in: 2009 ICSE Workshop on
Modeling in Software Engineering, IEEE, 2009, pp. 20–25.

[117] Deepak Puthal et al., « Cloud computing features, issues, and challenges: a big
picture », in: 2015 International Conference on Computational Intelligence and Net-
works, IEEE, 2015, pp. 116–123.

[118] Andres J Ramirez and Betty HC Cheng, « Design patterns for developing dy-
namically adaptive systems », in: Proceedings of the 2010 ICSE Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems, 2010, pp. 49–58.

[119] Andres J. Ramirez and Betty H. C. Cheng, « Design Patterns for Developing
Dynamically Adaptive Systems », in: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’10, Cape
Town, South Africa: Association for Computing Machinery, 2010, pp. 49–58,
ISBN: 9781605589718, DOI: 10.1145/1808984.1808990, URL: https://doi.org/
10.1145/1808984.1808990.

[120] Repl.it, Repl.it, 2021, URL: https://repl.it/.

114

https://www.netflix.com/
https://www.eclipse.org/sirius/sirius-web.html
https://www.eclipse.org/sirius/sirius-web.html
https://doi.org/10.1145/1808984.1808990
https://doi.org/10.1145/1808984.1808990
https://doi.org/10.1145/1808984.1808990
https://repl.it/

BIBLIOGRAPHY

[121] Eric Roberts, « An overview of MiniJava », in: ACM SIGCSE Bulletin 33.1 (2001),
pp. 1–5.

[122] Roberto Rodriguez-Echeverria et al., « An LSP infrastructure to build EMF lan-
guage servers for web-deployable model editors. », in: MODELS Workshops,
2018, pp. 326–335.

[123] Roberto Rodriguez-Echeverria et al., « Towards a language server protocol in-
frastructure for graphical modeling », in: Proceedings of the 21th ACM/IEEE In-
ternational Conference on Model Driven Engineering Languages and Systems, 2018,
pp. 370–380.

[124] Riemer van Rozen and Tijs van der Storm, « Toward live domain-specific lan-
guages: From text differencing to adapting models at run time », in: (Aug. 2017).

[125] Newman Sam, « Building microservices », in: O’Reilly Media, Inc. (2015).

[126] Jetbrains Scala Center, Build Server Protocol, 2021, URL: https://build-server-
protocol.github.io/.

[127] Bran Selic, « A systematic approach to domain-specific language design using
UML », in: Object and Component-Oriented Real-Time Distributed Computing, 2007.
ISORC’07. 10th IEEE International Symposium on, IEEE, 2007, pp. 2–9.

[128] Oszkár Semeráth et al., « Change Propagation of View Models by Logic Synthe-
sis using SAT solvers », in: Proceedings of the 5th International Workshop on Bidi-
rectional Transformations, Bx 2016, co-located with The European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
8, 2016. 2016, pp. 40–44, URL: http://ceur-ws.org/Vol-1571/paper%5C_6.pdf.

[129] Sourcegraph, Language Server, 2021, URL: https://langserver.org/.

[130] Diomidis Spinellis, « Notable design patterns for domain-specific languages »,
in: Journal of systems and software 56.1 (2001), pp. 91–99.

[131] Megan Squire and Amber K Smith, « The diffusion of pastebin tools to enhance
communication in floss mailing lists », in: IFIP International Conference on Open
Source Systems, Springer, 2015, pp. 45–57.

[132] Dave Steinberg et al., EMF: eclipse modeling framework, Pearson Education, 2008.

[133] Dave Steinberg et al., EMF: eclipse modeling framework, Pearson Education, 2008.

115

https://build-server-protocol.github.io/
https://build-server-protocol.github.io/
http://ceur-ws.org/Vol-1571/paper%5C_6.pdf
https://langserver.org/

Partie III, BIBLIOGRAPHY

[134] Eugene Syriani et al., « AToMPM: A Web-based Modeling Environment. », in:
Demos/Posters/StudentResearch@ MoDELS 2013 (2013), pp. 21–25.

[135] Genc Tato et al., « ShareLatex on the Edge: Evaluation of the Hybrid Core/Edge
Deployment of a Microservices-Based Application », in: Proceedings of the 3rd
Workshop on Middleware for Edge Clouds & Cloudlets, MECC’18, Rennes, France:
Association for Computing Machinery, 2018, pp. 8–15, ISBN: 9781450361170,
DOI: 10.1145/3286685.3286687, URL: https://doi.org/10.1145/3286685.
3286687.

[136] Genc Tato et al., « ShareLatex on the Edge: Evaluation of the Hybrid Core/Edge
Deployment of a Microservices-based Application », in: MECC 2018 - 3rd Work-
shop on Middleware for Edge Clouds & Cloudlets, Rennes, France, Dec. 2018, pp. 1–
6, URL: https://hal.inria.fr/hal-01942807.

[137] Andre LC Tavares and Marco Tulio Valente, « A gentle introduction to OSGi »,
in: ACM SIGSOFT Software Engineering Notes 33.5 (2008), pp. 1–5.

[138] Branko Terzic et al., « Development and evaluation of MicroBuilder: a Model-
Driven tool for the specification of REST Microservice Software Architectures »,
in: ENTERPRISE INFORMATION SYSTEMS 12.8-9 (2018), pp. 1034–1057.

[139] Thomas Thüm et al., « FeatureIDE: An extensible framework for feature-oriented
software development », in: Science of Computer Programming 79 (2014), pp. 70–
85.

[140] Leonardo P Tizzei et al., « Using microservices and software product line engi-
neering to support reuse of evolving multi-tenant saas », in: Proceedings of the
21st International Systems and Software Product Line Conference-Volume A, 2017,
pp. 205–214.

[141] Google Trends, Top IDE index, 2021, URL: https://pypl.github.io/IDE.html.

[142] TypeFox, Gitpod, 2021, URL: https://www.gitpod.io/.

[143] TypeFox, Theia, 2021, URL: https://theia-ide.org/.

[144] Uber, Uber Eats, 2020, URL: http://ubereats.com/.

[145] Arie Van Deursen, Paul Klint, and Joost Visser, « Domain-specific languages:
An annotated bibliography », in: ACM Sigplan Notices 35.6 (2000), pp. 26–36.

116

https://doi.org/10.1145/3286685.3286687
https://doi.org/10.1145/3286685.3286687
https://doi.org/10.1145/3286685.3286687
https://hal.inria.fr/hal-01942807
https://pypl.github.io/IDE.html
https://www.gitpod.io/
https://theia-ide.org/
http://ubereats.com/

BIBLIOGRAPHY

[146] Eelco Visser et al., « A language designer’s workbench: a one-stop-shop for im-
plementation and verification of language designs », in: Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, 2014, pp. 95–111.

[147] Vladimir Viyović, Mirjam Maksimović, and Branko Perisić, « Sirius: A rapid
development of DSM graphical editor », in: IEEE 18th International Conference on
Intelligent Engineering Systems INES 2014, IEEE, 2014, pp. 233–238.

[148] VMware, Spring, 2021, URL: https://spring.io/.

[149] Markus Voelter, Generic tools, specific languages, Citeseer, 2014.

[150] Markus Voelter, « Language and IDE Modularization and Composition with
MPS », in: Generative and Transformational Techniques in Software Engineering IV:
International Summer School, GTTSE 2011, Braga, Portugal, July 3-9, 2011. Revised
Papers, 2013, pp. 383–430, DOI: 10.1007/978-3-642-35992-7_11".

[151] Markus Voelter and Sascha Lisson, « Supporting Diverse Notations in MPS’Projectional
Editor. », in: GEMOC@ MoDELS, 2014, pp. 7–16.

[152] Markus Voelter and Vaclav Pech, « Language modularity with the MPS lan-
guage workbench », in: 2012 34th International Conference on Software Engineering
(ICSE), IEEE, 2012, pp. 1449–1450.

[153] Markus Voelter, Jos Warmer, and Bernd Kolb, « Projecting a modular future »,
in: IEEE Software 32.5 (2015), pp. 46–52.

[154] Markus Voelter et al., DSL engineering: Designing, implementing and using domain-
specific languages, dslbook. org, 2013.

[155] Joe Weinman, « Hybrid cloud economics », in: IEEE Cloud Computing 3.1 (2016),
pp. 18–22.

[156] Niklaus Wirth, « Extended backus-naur form (ebnf) », in: Iso/Iec 14977.2996 (1996),
pp. 2–1.

[157] Ling Wu et al., « CEclipse: An online IDE for programing in the cloud », in: 2011
IEEE World Congress on Services, IEEE, 2011, pp. 45–52.

[158] Chengzhi Xu et al., « Caople: A programming language for microservices saas »,
in: 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE), IEEE,
2016, pp. 34–43.

117

https://spring.io/
https://doi.org/10.1007/978-3-642-35992-7_11"

Partie III, BIBLIOGRAPHY

[159] Vladimir Yussupov et al., « Pattern-based Modelling, Integration, and Deploy-
ment of Microservice Architectures », in: 2020 IEEE 24th International Enterprise
Distributed Object Computing Conference (EDOC), IEEE, 2020, pp. 40–50.

[160] Qi Zhang, Lu Cheng, and Raouf Boutaba, « Cloud computing: state-of-the-art
and research challenges », in: Journal of internet services and applications 1.1 (2010),
pp. 7–18.

[161] Olaf Zimmermann, « Microservices tenets », in: Computer Science-Research and
Development 32.3-4 (2017), pp. 301–310.

[162] Philip Zweihoff, Stefan Naujokat, and Bernhard Steffen, « Pyro: Generating domain-
specific collaborative online modeling environments », in: International Confer-
ence on Fundamental Approaches to Software Engineering, Springer, 2019, pp. 101–
115.

118

Titre : Vers des Environnements de Développement Intégrés flexibles

Mot clés : IDE, DSL Metamorphique, Microservice, Approche générative

Résumé : Les Environnements de
Développement Intégrés (EDI) sont des
composants centraux pour les utilisateurs
de langages, qui permettent les activités de
développement et fournissent un accès unifié
aux services de langages. Les EDIs sont
également essentiels pour les concepteurs
de languages, qui s’attendent de plus en plus
à ce que les EDIs soient extensibles, ce qui
en fait une base pratique pour les ateliers de
langages.

Bien que les concepteurs de langage
aient la possibilité d’implémenter les langages
dans la pile technologique de leur choix,
ils manquent de flexibilité pour cette tâche.
En effet, un langage peut être implémenté
dans différentes piles technologiques mais
les services de langages des différentes
piles ne peuvent pas manipuler les mêmes
constructions de langage en raison de
l’isolement des piles technologiques. Une
telle flexibilité est intéressante pour les
concepteurs de langage, car chaque pile a
ses points forts, et est intéressante pour les
utilisateurs de langage car, pour une activité
donnée, ils manipuleront les constructions de
langage avec les services de langage les plus
appropriés fournis par une pile technologique
spécifique.

La tendance récente dans l’ingénierie des
EDIs est d’adopter le modèle Software as
a Service pour réaliser les EDIs en tant
qu’applications cloud, l’objectif étant de fournir
un environnement de développement sans
installation via un navigateur web. Les clouds
sont composés de plateformes d’exécution qui
peuvent varier dans les ressources qu’elles
fournissent (mémoire, CPU, etc.) et, en même
temps, les EDIs sont composés de services
de langage hétérogènes ayant des besoins

spécifiques. Cependant, les EDIs existants
basés sur le cloud ne tirent pas parti de
la diversité des ressources disponibles pour
répondre au mieux aux besoins de leurs
services de langage car leurs architectures
sont monolithiques, ce qui interdit toute
flexibilité dans le déploiement des languages.

La flexibilité dans la réalisation et le
déploiement des langages peut se résumer
à deux défis. Premièrement, les concepteurs
de langage doivent pouvoir bénéficier des
atouts spécifiques des nombreuses piles
technologiques possibles pour la réalisation
des langages et, d’autre part, les utilisateurs
de langage doivent pouvoir passer de manière
transparente entre les services de langage
réalisés dans différentes piles technologiques
pour manipuler les mêmes constructions de
langage. Deuxièmement, les services de
langage doivent exploiter les plateformes
d’exécution disponibles pour répondre au
mieux à leurs besoins en fonction des activités
de l’utilisateur du langage, qui peuvent évoluer
dans le temps. À cette fin, les services
de langage doivent être distribués et leur
déploiement doit être configurable.

Cette thèse apporte plus de flexibilité
à la fois dans l’implémentation du langage
et dans le déploiement des services
du langage. Pour relever le défi de
l’implémentation d’un langage dans plusieurs
piles technologiques, nous proposons un
bus de communication basé sur un motif de
type publication/souscription et un formalisme
pour exprimer les changements dans les
constructions du langage afin de synchroniser
les piles technologiques implémentant le
même langage. Nous avons appliqué cette
contribution aux trois piles technologiques
EMF, Rascal, et Java fluent API dans

lesquelles le langage Machine à Etats a été
implémenté.

Afin de relever le défi de la
distribution et de la configuration du
déploiement des services de langage,
nous proposons une approche générative,
basée sur la spécification d’un protocole de
communication, pour modulariser les services
de langage et pour permettre un déploiement
sûr. Pour valider la généralisation de notre
deuxième contribution, nous l’avons appliquée
aux langages NabLab, Logo, MiniJava et
ThingML. Nous avons mesuré qu’il y a un
avantage à exécuter des services intensifs
en calcul en tant que microservices déployés
à distance et que les microservices sans
état ont une surcharge significative due au

chargement de modèle.
Cette thèse a permis de tirer profit des

forces de plusieurs piles technologiques pour
implémenter des langages en connectant
des ateliers de langages de ces piles et a
permis de distribuer des services de langage
sur différentes plateformes d’exécution
en fonction de leurs besoins grâce à la
spécification d’un protocole de communication
combiné à une approche générative. Nous
pensons que ce travail est un premier pas
vers un EDI auto-adaptatif capable de réagir
automatiquement aux changements dans
les activités des utilisateurs de lanngage
et aux changements dans les plateformes
d’exécution disponibles.

Title: Towards flexible Integrated Development Environment

Keywords: IDE, Metamorphic DSL, Microservice, Generative approach

Abstract: Integrated Development Environ-
ments (IDE) are central components for lan-
guage users to support development activities
and provide unified access to language ser-
vices. IDEs are essential for language design-
ers as well, who increasingly expect IDEs to
be extensible, making them a practical base
for language workbenches.

Although language designers have the
choice to implement languages in the tech-
nological stack of their choice, they lake of
flexibility for this task. Indeed, a language
can be implemented in different technological
stacks but the language services of the differ-
ent stacks cannot manipulate the same lan-
guage constructs due to the isolation of tech-
nological stacks. Such flexibility is interesting
for language designers, because each stack
has its strengths, and is interesting for lan-
guage users because, for a given activity, they
would manipulate language constructs with
the most appropriate language services pro-
vided by a specific technological stack.

The recent trend in IDE engineering is

to adopt the Software as a Service model
for implementing IDEs as cloud applications,
the goal being to provide a development en-
vironment without installation through a web
browser. Clouds are composed of execution
platforms that can vary in the resources they
provide (memory, CPU, etc) and at the same
time IDEs are composed of heterogeneous
language services with specific needs. How-
ever existing cloud IDEs do not take advan-
tage of the diversity of available resources
to best fit the needs of their language ser-
vices because their architectures are mono-
lithic, which prohibits any flexibility in language
deployment.

Flexibility in the implementation and de-
ployment of languages can be summarized
as two challenges. First, language design-
ers must be able to benefit from the spe-
cific strengths of the many possible technolog-
ical stacks for implementing languages and,
on the other side, language users must be
able to seamlessly switch between language
services implemented in different technologi-

121

Partie III,

cal stacks to manipulate the same language
constructs. Second, language services must
leverage available execution platforms to best
fit their needs according to the language user’s
activities, which can evolve over time. To this
end, language services have to be distributed
and their deployment has to be configurable.

This thesis brings more flexibility in both
language implementation and language ser-
vices deployment. For the challenge of im-
plementing a language in multiple technologi-
cal stacks, we propose a communication bus
based on a publish/subscribe pattern and a
formalism to express changes in language
constructs to synchronize technological stacks
implementing the same language. We ap-
plied this contribution to the three technologi-
cal stacks EMF, Rascal, and Java fluent API in
which the Finite State Machine language has
been implemented.

To address the challenge of distributing
and configuring the deployment of language
services, we propose a generative approach

to modularize language services and support
their safe deployment based on the specifica-
tion of a communication protocol. To validate
our second contribution is generalizable, we
applied it to the NabLab, Logo, MiniJava, and
ThingML languages. We measured that there
is a benefit in running computational intensive
services as remotely deployed microservices
and that stateless microservices have a signif-
icant overhead due to model loading.

This thesis made it possible to take advan-
tage of the strengths of multiple technological
stacks to implement languages by connect-
ing language workbenches and to distribute
language services across different execution
platforms according to their needs through the
specification of communication protocol com-
bined with a generative approach. We believe
that this work is a first step towards a self-
adaptive IDE capable of automatically reacting
to changes in the activities of language users
and in available execution platforms.

122

	Résumé en français
	Contexte
	Enoncé du problème
	Contributions
	Résultats

	Introduction
	Context
	Problem Statements
	Contributions
	Results
	Outline
	Publications

	I Background and State of the Art
	Background
	Software Language
	Software Language Engineering
	Metamorphic DSL

	Cloud Computing
	Service Levels
	Cloud-Native Application
	Microservices

	Summary

	State of the Art
	Integrated Development Environment
	Desktop IDE
	Web-based IDE
	Cloud-based IDE

	Flexibility in IDEs
	Modularity
	Distribution

	Summary

	II Contributions
	Thesis Overview
	Vision
	Overview

	Shape-diverse DSL
	Technological Stacks
	Motivating Example
	Shape-Diverse DSLs
	Synchronizing Incarnations with Prism
	Patch Formalism
	Communication Bus

	A Shape-Diverse FSM Language
	Connecting technological stacks with Prism

	Conclusion

	Distributed Integrated Development Environment
	Distributed Language Services
	Motivating example
	Approach overview
	Designing IDE microservices
	IDE Deployment

	Towards a modular and distributed IDE
	Language and protocol specifications
	Feature model generation
	Microservice generation
	Deployment configuration
	Distributed IDE architecture

	Experimentations
	Experimental setup
	Results
	Discussion

	Conlusion

	III Conclusion and Perspectives
	Conclusions
	Perspectives
	Contribution improvements
	Long-term perspectives
	IDE as Code

	Bibliography

