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Computing the best journey for two TISs

We rst concentrate our eorts on the development of solution methods for traces composed of two TISs. At this stage, we assume that none of the TISs have obtained connexion points. Nine dierent methods are proposed depending on the characteristics of each TIS. These methods are divided into three phases.

1. The rst phase collects connexion points and evaluate transfers between TISs.

2. The second phase computes the earliest arrival time at e. Depending on the characteristics of the TISs, this time can be exact or estimated.

. This station can therefore be removed. A new set containing the remaining connexion points is created. It is denoted C rLD/F . The long-distance calculator is then called: C I/LD ----⇒ LD

Chapter 1 Introduction

Producing reliable multimodal trips is a complex problem. Indeed, transportation networks are continually expanding to serve as many people as possible. At the same time, transport modes are diversifying with the advance of new services such as free-oating self-service rental of scooters and bicycles, carsharing and vehicles for hire. As these service oerings expand the transport possibilities, it becomes harder for users to grasp the oer in its entirety, thus reinforcing the need for journey planning systems.

One approach extensively researched is the centralized approach. This solution brings together the data of all services in one single system. It then uses one of the available algorithms proposed by the scientic literature to compute optimal journeys. Although it is an interesting approach, it is not always possible. Indeed, the data must be accessible and kept up-to-date which can be dicult to achieve.

A second approach consists of combining already existing transportation information systems (TIS). Each TIS has its own calculator and can be queried by external entities. They oer various degrees of coverage and reliability. Since this approach relies on independent entities, it is referred to as distributed architecture. TISs are used to compute parts of journeys or complete multimodal journeys.

This thesis focuses on the second approach.

Industrial context

This thesis is a collaboration between École des Mines de Saint-Etienne and Cityway. It is part of a research project called M2I. Cityway, a subsidiary of Transdev, was established in 2001. The company specializes in providing traveller information for operators of public transport networks and public authorities. It oers websites and mobile applications to inform users of network status, to sell public transport tickets, to book transport and compute journeys. In order to compute the best journey, Cityway uses a journey calculator developed in-house. This calculator specializes in computing optimal journeys for public transport, bicycle, car or walking. It can also be used for other modes of transport such as free-oating, on demand transport, bicycle-sharing or car-sharing and carpooling. When it does not have access to the necessary data to compute the journey, it queries external TISs. M2I (Mobilité intégrée en Île-de-France -Integrated mobility in Île-de-France) is a project between multiple companies and laboratories. It is composed of STIF, Trandev, Autoroutes Trac, Phoenix-ISI, Cityway, SPIE, LIRIS laboratory from Lyon 1 and PSA Peugeot Citroën. This project aims to develop multi-modality in Île-de-France by improving information systems. This thesis is part of "lot 3.1" which is about studying the pros and cons of various architectures to compute journeys. This thesis was created to improve solution methods for distributed architectures. S. Shorten

Contributions

The contributions of this thesis are divided into three sections. The rst section introduces a characterisation of TISs and of their APIs. The second section presents methods to compute the best journey given a combination of TISs. The last section describes how to create a trip duration estimator for public transport networks. An estimator is useful to compute optimized journeys, when some TISs lack of some characteristics.

Dening the characteristics of TISs and of their APIs

The rst part of this thesis focuses on identifying specic characteristics to dene TISs and their APIs. We introduce four types of characteristics:

• Type of connexion points between APIs (Predened (bus, metro), Undened (car, walk) or Obtained (carpooling))

• Time-dependence of these connexion points

• Time-dependence of the journey

• Presence of a MultiPointTrip service Dening these characteristics allows us to develop solution methods that are independent of the transportation modes and that can generalize to any API having similar characteristics. These methods are presented in Chapter 3 alongside a scheme to create valid combinations of TISs. These combinations are called traces.

Methods to solve traces

The next contributions investigate how to identify the best journey associated with a trace. In what follows, the user request will be expressed as departing from a point denoted as s and arriving to a point denoted as e. The earliest departure time from s is denoted as t 0 and the objective is to compute the earliest arrival time at e. If multiple journeys share the same arrival time at e, then the journey that departs from s the latest will be considered as optimal. This objective is called the lexicographic earliest arrival objective.

These contributions are further divided in three parts. Introduction 3. The third phase computes the best journey considering the lexicographic earliest arrival objective.

Some of these methods are evaluated using real data from the Île-de-France public transport network. A comparison between our architecture and a centralized system is also carried out. Optimisations are also proposed depending on the capabilities of the TISs. These contributions are presented in Chapter 4.

Extension to larger traces

The next part of this thesis generalizes the methods of Chapter 4 to traces composed of n TISs. However, traces are limited to contain no more than one TIS without a MultiPointTrip service.

A new structure is introduced: the Block. Using this structure, it is possible to recursively reduce a trace composed of n TISs to a trace composed of two or three blocks. With two blocks, methods proposed in Chapter 4 can be used to nd the best journey. New methods are introduced to solve traces composed of three blocks.
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In this chapter, we make the assumption that no information about the network is available except for the name of the public transport stations. The proposed method identies important stations in the network, which we coin as hubs. To nd these hubs, a large number of journey requests are randomly generated. Based on the journeys found for these requests, the stations with the largest numbers of transfers are selected as hubs.

A graph is then created using these hubs. Numerous requests are performed to estimate the fastest trips from any point in the network to a hub. This graph is nally used to estimate trip durations in the complete network.

Experiments using real data from the Paris public transport network are carried out to evaluate the eciency and eectiveness of this approach.

These contributions are presented in Chapter 7.

Outline

This thesis is divided into the following 7 chapters:

Chapter 2 describes the journey planning problem. It presents a quick overview of various centralized methods to solve this problem. Then, it reviews industrial projects and state of the art methods for journey computation with multiple TISs.

In Chapter 3, we propose a set of characteristics to dene TISs and their APIs. These characteristics are used in the subsequent chapters to create generic solution methods. A method to determine relevant traces is also described in this chapter.

In Chapter 4, we present methods to solve the journey planning problem when combining two TISs. This chapter only considers TISs with predened or undened connexion points. The proposed methods dier according to the characteristics of the TISs involved. Experiments are also performed to compare these methods with a centralized approach.

Chapter 5 extends to n the number of TISs in a trace. To do so, a block structure is dened. This structure enables solving traces composed of multiple TISs. We only consider traces containing at most one TIS without a MultiPointTrip service. Thanks to the block structure, some cases can be addressed with the methods of Chapter 4. Additional methods are proposed for the other cases.

In Chapter 6, traces composed of one TIS with obtained connexion points are studied. The block concept is still used to compute solutions for traces with multiple TISs. Experiments using real data from Blablacar are performed to evaluate the eectiveness of some of the proposed methods.

Chapter 7 proposes a method to create an estimator for a public transport network. The key to this method consists of identifying important stations (hubs) in the network. A graph is constructed based on these hubs. This graph is then used to provide estimated durations between any pair of stations in the network. Experiments are performed to validate the estimates obtained using this method.

Finally, Chapter 8 reviews the various contributions of this thesis and proposes further perspectives to explore.

Chapter 2

Industrial and scientic context S. Shorten

Journey planning

The journey planning problem is a well studied subject in operational research. Given a start point s and an end point e, the journey planning problem consists of nding the best journey from s to e according to one or multiple objectives and subject to a set of constraints.

The most common objectives are to minimize the travel time, the arrival time at e or the distance covered. This latter objective is used in the shortest path problem. Other objectives can be considered such as minimizing the journey's monetary cost, the number of transfers between transports or maximizing the comfort of the journey. Most of the times, objectives are combined to create interesting solution compromises for the user.

In this thesis, we will consider one objective: the lexicographic minimal duration.

Denition 2.2.1. The lexicographic minimal duration combines two objectives: leaving s at the latest possible time and arriving at e at the earliest time. A lexicographical order is used to sort these two objectives. Firstly, the solutions are discriminated according to one objective called the main objective. Solutions that are equivalent based on the rst objective are then distinguished according to the second objective.

When minimizing the arrival time at e is the main objective, this objective will be called lexicographic earliest arrival. The objective will be called lexicographic latest departure when maximizing the departure time from s is the main objective.

In addition to the various objectives, each journey planning problem can have specic constraints. A common constraint is to x a time, denoted t 0 at one of the points. This time can represent the earliest departure time from s or the latest arrival time at e. Other constraints can limit the walk duration or exclude specic roads or transportation modes. Some limits can also be set on the number of transfers or on the price of the journey for example.

Multiple approaches have been developed depending on needs and available data. Two of these approaches are presented below: the centralized approach and the distributed approach.

Centralized journey planning

The centralized approach is the most common and is well studied. In this approach, the information needed to solve the problem is gathered in one place and is accessible by the algorithm selected to solve this problem. A possible architecture of a centralized system is presented in Figure 2.1. This gure is divided into two parts:

• The rst part is called the front-end. It denes the interface between the user and the system. The user uses this interface to formulate its request. Usually, it is integrated in a mobile application or a web site as shown in Figure 2.1.

• The second part is the server. It is composed of a journey planner and at least one database.

The complete system is called a Transportation Information System or TIS A TIS collects user requests and computes solutions. The quality of the trips depends mostly on the information available to the TIS. This data can be divided in three groups: theoretical, historical, or real-time. • Theoretical data are the foundation of our data. They consist, for example, of the transportation network structure, the timetable in public transport, the speed limits on the roads. These data are supposed to be xed over the considered time period.
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• Historical data (also known as predictive data) are based on past events. They capture periodic phenomena on the network such as peak hours. If available, they are used in addition to theoretical data.

• Real time data reects live information. They are useful to take into account disruptions such as delays in public transport or trac jams on the road. This data is more precise and is useful to compute reliable journeys.

This information is integrated by the journey planner which computes the best journey given the data at its disposal. Several algorithms have been developed by the scientic community to compute the best journey. Dijkstra [START_REF] Edsger | A note on two problems in connexion with graphs[END_REF], as early as 1959, publishes an algorithm to solve the shortest path problem in a graph with positive weight. Bellman and Ford [START_REF] Bellman | On a routing problem[END_REF][START_REF] Lester | Network ow theory[END_REF] present an algorithm to nd a solution even with negative weights. This algorithm is also capable of detecting the presence of negative weight cycles. Since then, numerous methods have been developed to reduce the computation time (A * [HNR68], ARCF LAG [START_REF] Lauther | An extremely fast, exact algorithm for nding shortest paths in static networks with geographical background[END_REF] and Contraction Hierarchies [START_REF] Geisberger | Exact routing in large road networks using contraction hierarchies[END_REF] for example). Variations on the shortest path problem have also been studied. One of these variants considers the case where the solution varies depending on the time t 0 associated with the request. This occurs in public transport for example. Recent algorithms such as RAPTOR [DPW14], Transfer pattern [BCE + 10] and CSA [START_REF] Dibbelt | Intriguingly simple and fast transit routing[END_REF] compute optimal solutions for this problem very quickly even on country-sized networks.

Another well studied variant is the computation of multi-modal journeys. In this case, the goal is to nd the best journey while considering multiple modes of transportation. These modes can be combined to nd a good solution. However, not every combination of modes is possible or acceptable for the user. A common solution is to use a regular language to describe allowed mode combinations [START_REF] Barrett | Formal-language-constrained path problems[END_REF][START_REF] Delling | Accelerating multi-modal route planning by access-nodes[END_REF]. For more information on centralized journey planning, a recent state of the art was published in 2016 by Bast et al [BDG + 16].

All the algorithms mentioned above can be described as centralized. Indeed, they run on a single machine and require direct access to the data in order to compute the optimal solution. This type of system is the most common and can be very ecient. These systems however have some drawbacks. First, since everything is done in one place, it represents a single point of failure.
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Another drawback is the data accessibility. Usually, information is fragmented among multiple providers. These providers are private companies or public institutions and may or may not publish their data. It thus might be challenging to collect important information and even more to keep it up-to-date. When this is not possible, solutions proposed by a centralized architecture might be non-optimal or infeasible. In this case, multiple TISs specialized in specic modes or regions emerge. This is the case with the TIS of the RATP1 , specialized in the public transport in Paris, Blablacar 2 , focused on carpooling or Waze that only considers car journeys.

With these specialized TISs, computing a journey between two locations or modes not covered by a single TIS require some extra steps. Indeed, the user must nd appropriate location to change between TISs and query each TIS separately. This solution requires the user to know the various TISs and potential transition points. They must also make multiple requests to nd the optimal journey. This fragmentation of the information between dierent systems makes it hard for the user to nd the best solution to its request. In this case, a distributed system may represent a solution.

Distributed journey planning

In the case of distributed journey planning, several TISs are available. Each TIS contains its own algorithm and data. Distributed journey planning then consists of combining the knowledge of these TISs to obtain the best solution. The network created by this set of TISs is called a distributed system. Denition 2.2.2. A distributed system is a set of autonomous and interconnected computers, processors or programs. Each component of the system is called a node. A node is autonomous if it has its own means of control. In addition, a node is said to be interconnected if it can receive and send messages to other nodes. [START_REF] Tel | Introduction to distributed algorithms[END_REF].

Thus, in this model, a TIS represents a node of the system. Each calculator works independently and proposes its results. Each calculator must also be able to be called and to send messages. To do this, operators must oer access to their calculator, through APIs for example. Denition 2.2.3. An API (Application Programming Interface ) is a set of functions, which provides controlled access to data or software functionality. This software is, in our case, the journey planner.

Access to an API is easier to obtain than complete data required for a centralized system. Indeed, with an API, the operator of a TIS has more control over what is transmitted. Operators decide which methods or data are available. They can also set limits on the number of requests or on the volume of data transmitted.

Every TIS oers dierent methods accessible by APIs. These methods are dened by the operator when creating the API. Two methods are quickly presented here: Trip and MultiPointTrip. A more complete description of the capabilities oered by a TIS is given in Chapter 3. The input of both methods is a request. A request R is mainly composed of: Industrial and scientic context
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a set of start points S, a set of end points E, a constraint which can be start at or arrive at, a set of times T, either associated with the points in S or in E, depending on the constraint, an objective function (fastest, least connexions, earliest arrival or latest departure), a list of options.

• The Trip service (represented by -→) computes an optimal path given the request and returns the trip details. Most APIs only accept requests with one start and one end point. If giving multiple start and/or end points is allowed, this request will return only one solution, that is, it will determine the best start and end points. If the constraint is set to 'start at', the Trip request will be denoted S@T -→ E. Conversely, if the constraint is set to 'arrive at', it will be denoted S -→ E@T . This notation was introduced by Geisberger [START_REF] Geisberger | Advanced route planning in transportation networks[END_REF].

• The MultiPointTrip service is denoted S@T --⇒ E if the constraint in the request is set to 'start at' or S --⇒ E@T otherwise. Contrary to the Trip service, this service is commonly used with multiple start and end points. If the request's constraint is set to 'start at' (S@T --⇒ E), the MultiPointTrip service returns the earliest arrival time at each point e ∈ E given the start times in S. In most of the cases, the detail of each trip is not returned, only the arrival time at each point in E and the associated departure point. Similarly, when the request's constraint is set to 'arrive at', the latest departure time from each point of S is returned.

A common solution when using multiple TISs consists of setting up an entity called orchestrator. When a request is received from a user, it is transmitted to the orchestrator. The orchestrator will then make requests to the various TISs (see Figure 2.2). These TISs use the data at their disposal to answer these requests and return optimized journeys to the orchestrator. The orchestrator then analyses the responses received and makes further requests if necessary. This continues until a convenient complete journey is created. This journey is nally returned to the user.

Funded projects for distributed journey planning

Following the huge development of TISs for centralized journey planning, many projects have emerged to combine these systems. Indeed, the limits of systems specialized on a mode, a region or a country quickly appeared. These projects were therefore created to compute trips on a larger scale, usually between regions or countries, or to better combine modes. The projects presented in this chapter all happened in Europe but similar project might have appeared outside of Europe. Most of these projects focus on the combination of public transport TISs.

DELFI

To our knowledge, the rst project on the subject was the German distributed journey planner project called DELFI (Durchgängige Elektronische FahrplanInformation) [oD06]. This project was launched by the German Ministry of Transport in 1994 and was published on June 24, 2004. At that time, Germany had multiple public transport TISs. Each TIS was specic to a region of the country. However, there was no system linking them together. DELFI's idea was to keep the local calculators and add a long-distance calculator to compute inter region solutions. The period from 1994 to 2004 was used to evaluate the feasibility of a distributed calculator and to lay the foundations of the project. DELFI largely relies on the work done by Möhring [Möh99] in 1997 (see section 2.4). DELFI uses the existing TISs but requires a specic architecture. So, these TISs need to adapt their architecture to be integrated.

Architecture

In DELFI, two levels of integration are available. In the rst level, a TIS can be queried to compute trips but cannot call other TISs. In this case, the TIS implements a communication interface. This interface follows a strict protocol and is used by other TISs to make trip requests. This TIS is called a passive server.

The second level of integration allows a TIS to query other TISs and thus to compute journeys across regions. Here, the TIS must also implement an orchestrator (also known as search controller). As shown in Figure 2.3 the orchestrator is positioned between the website and the local calculator. It contains a journey planner, a communication interface and its own database called meta-database.

This database contains a list of the calculators accepting requests and the regions on which they operate as well as the names of various cities in Germany and transition points between TISs. Each transition point must be accepted by every TISs concerned to be added in the database. In the case of DELFI, this database is present on each TIS with an orchestrator. Since this database must be identical in each orchestrator, its creation follows a precise procedure: an entity called coordinator creates an empty database and sends a copy to each operator to ll it. Once lled, each operator sends the database back to the coordinator. The coordinator unies the dierent results in a consistent database. This database is then sent to all operators to be used as a metadatabase. This process starts again when an operator wishes to make a modication to the database or a new operator is added. This database also denes a level of knowledge of each TIS on various transport networks, even those outside their region. This is done using an indicator called SPAN. This indicator describes the degree of information possessed by a TIS on the public network of a city. It is used to select the best TIS associated with an address and a mode of transportation. It is also used if the main calculator no longer responds, to select between alternative TISs.
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In addition to the local TISs, a long-distance TIS is created. It is called for trips across dierent regions.

Communication between an orchestrator and calculators was done using a CORBA (Common Object Request Broker Architecture) API. This was modied in the 5 th version of DELFI to use a SOAP (Simple Object Access Protocol) Web Service.

Request resolution

Using this architecture, we can describe the various steps to solve a journey request. Let s@t 0 -→ e be the user request. s is the start point, e the end point and t 0 the earliest departure time from s. The goal is to nd the best journey considering the lexicographic minimal duration. The method used by the orchestrator can be broken down into three distinct steps:

1. The search for relevant TISs.

When a user makes a request to the front end of a TIS, it is transmitted to the orchestrator. Here the orchestrator uses its database (meta-database) to identify the two local TISs concerned. The TIS with the departure point is named initial calculator and is denoted T IS I . The TIS with the arrival point is named nal calculator and is denoted T IS F . The longdistance calculator is denoted T IS LD . The orchestrator then asks each calculator to check if the start and end addresses are valid. If both addresses are linked to a single calculator, the orchestrator communicates the request to this calculator and forwards the answer received to the user. Otherwise, the next step is used.

Obtaining transition points.

In this case, the orchestrator asks the initial and nal calculators to provide a list of longdistance transition points, accessible respectively from the departure and arrival points. The points obtained are stations where a transition between the local and the long-distance TIS can be made. The transition points between the initial calculator and the long-distance calculator are denoted C I/LD . C LD/F are the transition points shared by the long-distance calculator S. Shorten and the nal calculator. In DELFI, the transition points between long-distance server are the platforms. Therefore, the local TISs is in charge of computing the walk sections to reach these platforms if needed.

Computing the best journey.

To compute the best journey, 3 series of 3 calls are executed. Each series is represented in Figure 2.4.

1:

The rst series computes the earliest arrival time at e and at each set of transition points C I/LD and C LD/F .

The initial calculator is requested with the following MultiPointTrip request: s@t 0 --⇒ I C I/LD . This request computes the earliest arrival time at each transition point in C I/LD . The set of these times is denoted T <I/LD .

The long-distance calculator is then called by the orchestrator to compute the earliest arrival time at C LD/F given T <I/LD . This is achieved with MultiPointTrip request C I/LD @T <I/LD ----⇒

LD

C LD/F . The times obtained are denoted T <LD/F . Finally, the nal calculator is called with request C LD/F @T <LD/F --⇒ F e. This call returns the earliest arrival time at e. It is denoted t e .

At the end of this rst series, the earliest arrival time at e and at each connexion point is known. A path can be deduced since a departure point was obtained for each arrival time obtained. However, this path is not necessarily optimal based on the lexicographic minimal duration. Indeed, another path might be able to leave s later and still arrive at e at t e .

An example is provided in Figure 2.5. In this gure, the x-axis represents the geographical progress of the solution while the time is represented with y-axis. The user arrives at Station 3 as early as possible (t 2 in this case) and waits. Another route (leaving at t 1 from Station 2 and arriving at t 3 at Station 3) allows the user to arrive at Station 3 on time while leaving s later.

2:

The purpose of this series of calls ( 2 in Figure 2.4) is to nd the latest departure time from s while keeping the arrival time t e obtained in the previous step. The order of the calculations is then reversed compared to the previous series. Three MultiPointTrip requests are made. The constraint will be set to arrive at. Therefore, the request will be denoted A --⇒ B@T . The rst call of the series is made to T IS F :

C LD/F --⇒ F e@t e .
This call provides the set of latest departure times from C LD/F to reach e at t e They are denoted T >LD/F . Given T >LD/F , we can eliminate transition points unable to reach e at t e . If, for a given connexion point c

LD/F i ∈ C LD/F , t >LD/F i < t <LD/F i
, then it is not possible to reach e at t e from c LD/F i Finally, T IS I is called to compute the latest departure time from s. It is obtained with the MultiPointTrip call s --⇒ I C rI/LD @T >I/LD . The time obtained is denoted t > s . At the end of this step, the orchestrator has the departure and arrival times at each transition point of the best trip. It deduces the sequence of transition points used for this trip (c I/LD i for T IS 1 and c LD/F j for T IS F ). However, it does not have the detail of this route. They are obtained with the last series of calls.

3: This last step ( 3 on Figure 2.4) consists in retrieving the detail of the complete route.

To do so, three Trip requests are successively made : s@t > s -→

I c I/LD i , c I/LD i @t >I/LD i --→ LD c LD/F j and c LD/F j @t >LD/F j -→ F e.
The orchestrator then combines these results to obtain a complete journey. This journey is returned to the user.

Start: s e: End C I/LD @T <I/LD ----⇒ LD C LD/F Initial local calculator: T IS I Long-distance cal- culator: T IS LD Final local calculator: T IS F s@t0 --⇒ I C I/LD 1 C LD/F @T <LD/F --⇒ F e
Start: s e: End This method allows to compute solutions across multiple systems. However, since each TIS is called multiple times, the algorithm is slow in practice. The average response time is 4 seconds and it can go up to 10 seconds on some requests, for country sized requests in Germany.

C I/LD ----⇒ LD C rLD/F @T >LD/F Initial local calculator: T IS I Long-distance cal- culator: T IS LD Final local calculator: T IS F s --⇒ I C rI/LD @T >I/LD 2 C LD/F --⇒ F e@t e s@t > s -→ I c I/LD i c I/LD i @t >I/LD i --→ LD c LD/F j c LD/F j @t >LD/F j -→ F e 
It is important to note that using a long-distance calculator can be non-optimal in certain circumstances. Station B, End). However, a faster route is possible using only local TISs with a value of 6 against 12 . This problem is solved in DELFI with the incorporation of transition points between adjacent TISs in the Meta database. • Local servers. They contain their own database as well as a trip calculator. These local servers can communicate with the other elements. This communication is used to transmit user requests and to respond to various requests made by the orchestrator. To do so, they must oer a specic API. In the EU-Spirit documentation, a local server can be active or passive. A local server is active if it receives a user request and queries the orchestrator. A passive server is only interrogated by the orchestrator to compute trips or to give information on a locality.

• The Ring Origin Destination Identier (RODI): This program helps to identify the departure and arrival servers according to the information provided by the user. This program is contacted by the active server receiving the user request if the active server cannot determine by its own means which servers are concerned by the request. RODI then contacts the passives server to verify if they indeed know the start or end points. Once the request is claried, RODI then calls the RCC to compute the journey.

• The Ring Connection Composer (RCC). It makes requests to the various TISs. It then retrieves and combines partial solutions provided by dierent TISs. It also decides whether the long-distance server should be called or not.

• A Meta Database named RRDB. This database contains all stations where a transition between two TISs is possible. It also contains the path describing each transition. In addition, this database has the list of local servers as well as an indicator to know the level of knowledge of each local server on each network. There are several instances of this database. If a dierence exists between two instances, a hierarchy exists to determine which instance is valid. 
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Request resolution

The three steps presented for DELFI (the search for local TISs, transition points and trip computation) remain valid.

• Search for local computers: when a local server receives a request, it queries its database to verify if it knows the addresses provided in the request. If both the origin and destination addresses are recognized, the local server tries to nd the best solution locally. On the contrary, if at least one of the addresses is not recognized, the server queries RODI which identies the departure and arrival servers. The request is then passed to the RCC.

• Obtaining transition points: the RCC asks the local servers to provide the various transition points. If the two local servers don't have any transition points in common, it decides to also use a long-distance calculator.

• Computing the best route: since the implementation is similar to DELFI, the notation introduced earlier will be reused. C I/LD and C LD/F represent respectively the connexion points between T IS I and T IS LD and between T IS LD and T IS F . The RCC rst estimates the travel time between the starting point and the transition points T R 1/LD . This estimation is based on the distance between the starting point and the transition points. RCC can also ask T IS I for an estimation. Using this estimation, an estimated arrival time at each transition point is obtained. These times, denoted T <I/LD , are used as the departure times to compute the long-distance trip. The following MultiPointTrip request is made to T IS LD : This method reduces the number of calls to three. It allows faster response times compared to DELFI. However, it is based on an estimation of arrival times at C I/LD . This method has two main drawbacks. Firstly, since this estimation is an approximation, the real trip may be longer than estimated. If this dierence is too important, it can be impossible to reach the long-distance trips on time. In this case, the whole calculation must be restarted by re-evaluating the arrival time at each connexion point of the long-distance TIS. Another drawback is the heuristic nature of the solution. Indeed, if the estimated time at C I/LD is larger than the real earliest arrival time, the solution will be feasible but will not take into account possible long-distance trips that leave earlier. This method also requires that T IS LD , T IS I and T IS F return detailed solutions to a MultiPointTrip request, which is rarely true in practice.

C I/LD @ T <I/LD ----⇒ LD C LD/F

WSM

WSM is a French project developed by CanalTP. This calculator allowed the SNCF (National french railway company) to oer door-to-door trips. It is based on the same algorithm as EU-Spirit. However, unlike the latter, the transition points between local TISs are selected by the long-distance TIS. For this, the long-distance TIS considers all the stations under a xed distance from the start and end points. These stations are selected as connexion points. This feature means that local TISs don't need to maintain a database containing transition points. These changes place less strain on local TISs at the cost of a more complex long-distance TIS. The number of calls as well as the performance of the WSM project are comparable to those of EU-Spirit, the two methods being very similar.

Journey-Web

Journey-web is the UK's distributed journey planner project. It was launched in 2000 by the Department for Public Transport after a research phase conducted by Fingerle and Lock among others [START_REF] Garrett | Practical issues in prototyping national public transport journey planning system using journeyweb protocol[END_REF][START_REF] Garrett | Final results of an extensible public transport journey planning system prototype using journey web protocols[END_REF]. It is based on 11 regional TISs. These TISs allow Journey-Web to compute trips across Great-Britain (England, Scotland and Wales). These TISs communicate using an XML protocol named TransXChange and developed specically for the project [START_REF]TransXChange Schema Guide[END_REF]uk14]. Journey-Web changes its approach compared to DELFI and EU-Spirit. Indeed, it doesn't have a specic long-distance calculator. Instead, each local TIS must be able to compute long-distance trips. To do so, two databases are added to each TIS, NaPTAN (National Public Transport Access Nodes) and NPTG (National Public Transport Gazetteer). The NaPTAN database contains every station in the network and its coordinates. It also assigns a unique number to each station to simplify the identication of stations. The NPTG database contains all cities, towns, villages and hamlets and their coordinates. It also lists local and long-distance transportation transition points as well as transition points between two adjacent regions. These modications oer one major advantage compared to DELFI and EU-Spirit: it allows to reduce the number of steps necessary to nd the best solution. The resolution is divided in four steps:
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1. The location of the two local TISs is obtained by querying the NPTG database with the addresses provided by the user. When both TISs are identied, NPTG is queried to provide transition points with the long-distance network. The IDs used for the transition points are the one described in the NaPTAN database.

2. The local TIS with the most transition points is selected to compute the long-distance. In Figure 2.8, the selected TIS is the initial TIS. Therefore, the transition points considered are between the long-distance network and the nal TIS. They are denoted C I/F . A MultiPoint-Trip request is then made to the initial TIS: s@t 0 --⇒ I C I/F . As with EU-Spirit, this call gives the earliest arrival times in C I/F denoted T <I/F as well as the details of the trips.

3.

A second MultiPointTrip request, C I/F @T <I/F --⇒ F e, is made to compute the second part of the journey. It returns the earliest arrival time at e, t e and the detail for associated trips.

4.

Computation stops here if only the earliest arrival time is needed. To also obtain the lexicographic minimal duration, two additional MultiPointTrip requests are made:

C I/F --⇒ F e@t e
which returns the latest departure times from C I/F denoted T >I/F and s -→ I C I/F @T >I/F . This second request returns the latest departure time from s. The responses are combined to create a solution.

Thus, resolving a request requires only a small number of calls compared to DELFI. This method also makes it easier to consider the entire oer (even when the TISs are adjacent) and doesn't suer Industrial and scientic context from approximations unlike EU-Spirit and WSM. However, these improvements come at the expense of local TISs. Indeed, they must integrate and update two databases. Moreover, each local TIS must be able to compute long-distance trips. This puts more responsibilities on each TIS and induces a greater diculty to be integrated.

A unication of local TISs reduced the number of participants to three in 2014. The Journey-Web website was closed on September 30, 2014 due to the presence of ecient alternatives in the private sector.

APII-SIM

APII-SIM is a French project between two companies CanalTP and Cityway. Contrary to previous projects, APII-SIM does not make any dierence between TISs. Therefore, there is no long-distance or local TIS. Each TIS can be combined with other TISs.

Architecture

The architecture of APII-SIM is very similar to the architecture of EU-Spirit. It is detailed in Figure 2.9. Like EU-Spirit, the APII-SIM creates a specic orchestrator (also called Aiguilleur). This orchestrator is centralized and determines which TISs can be used when solving a request. To do so, it relies on a Meta-Database. This database contains a correspondence graph dened below, the geographic area of each TIS, the list of modes and stops associated with a TIS. It also contains a list of possible connexions between TISs. Each TIS can update the information in this database with specic queries. The APII-SIM also sets up two modes of communication based on active and passives servers. An external system (active server) allows local TISs to call the orchestrator when a user request needs to be processed. The internal mode allows the orchestrator to call dierent local TISs (passive servers) to perform trip computation.

The trip resolution method resembles to the method described for DELFI. To reduce the number of request, APII-SIM denes two new types of Trip requests:

• Trip request with multiple points: In this Trip request, either the departure or the arrival points contain multiple points. The other set contains only one element. This type of request is denoted -→ →. For instance, a request in 'start at', A@T -→ → e, returns the trip with the earliest arrival time at e. In a request in 'arrive at': s -→ → A@T , the solution obtained is the trip with the latest departure time from s. The detail of the trip is also obtained in both cases.

• A MultiPointTrip request with reverse. This MultiPointTrip request is denoted ⇛. It takes two sets of points A and B and a set of times denoted T . For a request in 'start at', A@T ⇛ B, it computes the earliest arrival times at each point in B but also the latest associated departure time at each point of A. In APII-SIM, this request is only made when one of the two sets contains only one element.

This request can be replaced by two successive MultiPointTrip requests if it is not oered by a TIS. Firstly, A@T --⇒ B gives the earliest arrival times at B, denoted T B . Then A --⇒ B@T B returns the latest departure times from A.
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Resolution

When a user sends a request to a TIS, the TIS checks if it can solve it. If not, the request is transferred to the orchestrator. The orchestrator rst searches the list of TISs accessible from the starting point and those accessible from the end point. A TIS is said to be accessible from a point p 1 if there is a point p 2 belonging to said TIS such that the distance as the crow ies from p 1 to p 2 is inferior to a xed value and if the requested time is included in the TIS service hours. For example, in Figure 2.10, T IS 1 and T IS 2 are accessible from A. From B, T IS 1 and T IS 3 are accessible. And T IS 1 , T IS 2 and T IS 4 are accessible from C. The orchestrator then generates all the possible combinations of TISs able to give a solution. To achieve this, APII-SIM is based on a correspondence graph. In this correspondence graph denoted G(V,E), each TIS is represented by a node. An edge e = (u, v) exists in G if TIS u and TIS v share at least one point. This point is called a connexion point. For instance, in Figure 2.10, the point C is a connexion point between T IS 1 , T IS 2 and T IS 4 . Therefore, the correspondence graph in Figure 2.10 contains edges (T IS 1 ,T IS 2 ), (T IS 1 ,T IS 4 ) and (T IS 2 ,T IS 4 ). The resulting correspondence graph is a simple non-valued graph.

The orchestrator then generates all the possible paths in graph G where the rst TIS is a TIS accessible from s and the last TIS is a TIS accessible from e. Each path corresponds to a sequence of TISs which may produce a solution. To reduce the number of transfers and the duration of the journey resolution, the number of TISs is limited to three. Therefore, for a request A@t 0 -→ B in Figure 2.10, the following combinations of TISs are obtained: 

• T IS 1 • T IS 1 + T IS
• T IS 2 + T IS 1 + T IS 3
These combinations are called traces. The orchestrator then tries to compute the optimal journey for each trace. If the trace contains one TIS, T IS 1 , a single Trip call: s@t 0 -→ 1 e gives the solution if T IS 1 computes the best trip considering the lexicographic objective. Otherwise, two successive requests are necessary: s@t 0 -→ 1 e returns the earliest arrival time at e denoted t e . It is followed by s -→ 1 e@t e which returns the latest departure time from s and the trip detail.

For trace of size 2: T IS 1 + T IS 2 , connexion points are rst collected. Contrary to previous projects, connexion points are not shared between TISs. Therefore, a transfer by walk may be necessary to pass from one TIS to another. This transfer walk is generated by the orchestrator. Two sets of connexion points are created: C 1/2 and C 2/1 . C 1/2 contains connexion points in T IS 1 from which a transfer to a connexion point in T IS 2 is possible. In a similar fashion, C 2/1 is the list of every connexion point in T IS 2 in transition with at least one connexion point from T IS 1 . When the connexion points are obtained, four calls are made to compute the best journey:

• Firstly, a MultiPointTrip request to T IS 1 is made: s@t 0 --⇒ 1 C 1/2 . It returns the earliest arrival times at C 1/2 denoted T <1/2 . Transition durations are then added to obtain the earliest arrival times at C 2/1 : T <2/1 .

• A MultiPointTrip request with reverse is then made: C 2/1 @T <2/1 --⇛ 1 e. It provides the earliest arrival time at e: t < e as well as the latest departure times, denoted T <2/1 , from C 2/1 to reach e at t < e . Given T >2/1 and T <2/1 , only connexion points c 

: c 2/1 j @t >2/1 j - → 2 e.
If the trace is composed of three TISs: T IS 1 + T IS 2 + T IS 3 , the orchestrator rst nds the connexion points: C 1/2 , C 2/1 , C 2/3 and C 3/2 . A sequence of 7 requests presented in Figure 2.11 is then made. This series of calls is similar to the one presented for DELFI. The calls can be divided into three parts.

• The rst part consists in nding the earliest time of arrival at the dierent transition points and at e. This is done with requests 1 , 2 and 3 in Figure . From this set, the latest departure times in C 2/3 are obtained by subtracting the transition times from T >3/2 . In a similar fashion, C r2/3 is created. 4 is a MultiPointTrip while 5 is a Trip request with multiple points. It gives the latest departure point from s as well as the trip detail.

• Finally, 6 and 7 requests are Trip requests to obtain the detail in T IS 2 and T IS 3 . The orchestrator adds the transitions to nd the nal path.

This approach is dierent from other projects as it oers a greater variety of journeys. For example, it can compute solutions combining local bus between two trains, which is not possible with other methods. However, it requires TISs to be able to perform MultiPointTrip requests to be combined eciently with other TISs.

Tests on real data have provided results that are not compatible with an industrial context. Indeed, for a query containing two TISs, the average computing time is 38 seconds. For three TISs, it rises to 42 seconds for country sized requests. Almost all of the computing time is spent in waiting for the response from TISs and processing the response (94% on average for a trace with two TISs and 97% for a trace with three TISs). To be used, this solution must rely on ecient TISs. 

Additional projects

Other projects have been presented in the literature. However, little information was found to describe the solution used.

• MASAI is part of an European project aiming to combine all travel services into a single ecosystem. This project mixes various APIs to compute a complete journey, from the itinerary of the trip to the choice of the hotel and the purchase of relevant tickets. To do this, it relies on the Semantic Web to link the information provided by each API. As this project is still in its infancy, little information is available. We can however mention the publication of an article explaining in more detail the use of the Semantic Web [FAR + 17] and more precisely Linked Data.

• WISETRIP [START_REF] Spitadakis | Wisetrip-international multimodal journey planning and delivery of personalized trip information[END_REF] is a project funded by the European Commission and carried by Forthnet. It integrates TISs from Greece, the Netherlands, the United Kingdom, Italy, Russia, China, Belgium, Brazil and Spain. To do this, WISETRIP creates a centralized orchestrator. This orchestrator has been enhanced to warn users if a disturbance requires a modication of the planned route [START_REF] Solar | Enhanced wisetrip: Wide scale multimodal and intelligent journey planning[END_REF]. This is achieved through a decision module called Real Time Decision Module (or RTDM). This module keeps the on-going and future journeys already computed.

When a new event is received by the RTDM, it checks whether this event aects a solution already returned. If a trip is aected, it is updated and the user is informed.

• LinkingDanube [START_REF]Intereg Danube Transnational Programme[END_REF] is another project supported by the European Union to create a distributed route planner linking some Central and South-East European countries. This calculator includes Austria, Hungary, Czech Republic, Romania, Slovakia and Slovenia.

Literature review

Decentralized journey planning has also been studied by the scientic community. In 1997, Professor Möhring became interested in the problem of distributed journey planning and its multi-criteria optimization [START_REF] Möhring | Verteilte verbindungssuche im öentlichen personenverkehr graphentheoretische modelle und algorithmen[END_REF]. Möhring proposes an algorithm in the case where TISs are weakly connected to each other. This is the case in Figure 2.12 where the two TISs are only connected by three nodes.

In this example, each network is represented by a partial graph. Merging these networks create a graph G(V,E). Since the number of connexion nodes between two TISs is low, it is possible to compute every journey. In his experiment, the orchestrator has access to a graph composed only of the connexion points between two TISs as well as the start and end nodes from the user request. This graph presented in Figure 2.13 is called master graph by Möhring. For a request combining two TISs, the resolution is divided in three steps. Firstly, each path from the start point to each connexion point is explored. Then, the transfer durations are added. Finally, multiple requests are made to the second TIS to compute the best path in this TIS.

Möhring shows that this method can be used to solve multi-objective journeys. It however requires keeping all non-dominated solutions on each point of the master graph.

The number of requests increases with the number of connexion points. Möhring therefore states that this method is not interesting if the number of TISs and the number of connexion points is large. A solution proposed by Möhring would be to create a hierarchy between transport modes. For instance, a possible hierarchy would be to only accept traces beginning with short distance modes, then increase to longer distance mode and nish with small distance TISs. In this Industrial and scientic context case, traces such as T IS bike + T IS T rain + T IS Bike or T IS Bus + T IS T rain are acceptable whereas T IS T rain + T IS Bike + T IS T rain is not. This restriction allows to reduce the number of connexion points to consider.

T IS 1

T IS 2

Start End

T IS 1 T IS 2 Kämpke and Schaal published in 1998 a paper on distributed computation and trace generation [START_REF] Kämpke | Distributed generation of fastest paths[END_REF]. They rst show that obtaining an optimal journey in a graph G composed of n nodes can require O(n) calls, even when the graph is composed of only two TISs.

In a second phase, they propose a method based on an intersection graph G ′ (V ′ , E ′ ). Unlike the correspondence graph presented in APII-SIM, a node v i/j exists if T IS i and T IS j share at least one connexion point. Thus

V ′ = v i/j |T IS i ∩ T IS j ̸ = ∅ , where sets T IS are sets of connexion points. An arc (v 1/2 , v 3/4 ) is added to E ′ if (T IS 1 ∪ T IS 2 ) ∩ (T IS 3 ∪ T IS 4 ) ̸ = ∅ and if (T IS 1 ∪ T IS 2 ) ̸ = (T IS 3 ∪ T IS 4 ). A weight function W is also added. W (v 1/2 , v 3/4
) is the minimal time needed to reach a connexion point in T IS 3 ∩ T IS 4 starting from a connexion point in T IS 1 ∩ T IS 2 . This weight is time-independent and represents a lower bound on the transition time between these TISs. When a request s@t 0 -→ e is received, s and e are added to the intersection graph as nodes. An edge (s, v i/j ) (resp (e, v i/j )) is created if s ∈ T IS i or s ∈ T IS j (resp e ∈ T IS i or e ∈ T IS j ). The weight on these edges is computed in the same fashion as for the other edges. The shortest path between s and e is then computed to obtain a trace. The duration associated with this trace is then computed using the TISs involved. The approach presented by Kämpke and Schaal is interesting since it uses a lower bound to select which traces should be studied and avoid exploring uninteresting traces.

Wang and Kämpke [START_REF] Wang | Shortest route computation in distributed systems[END_REF] propose an exact algorithm to compute a trip in a distributed system. In their distributed system, each TIS (called class) is associated with a unique mode of transportation. A stop on the network can be included in one or sometimes multiple TISs when several modes of transportation are available at this stop. Since it is not possible to recreate the entire network in a reasonable way, they introduce a graph called the complete intersection graph and denoted G IC . As represented in S. Shorten that belong to two or more classes in Figure 2.14(a). An arc (u,v) is created if u and v share at least one TIS. The weight of each arc is computed thanks to a call to the TIS shared by both nodes.

If they are shared by several TISs, only the shortest path is kept. To each weight, a label is added containing the TIS used. This graph is then used to solve user requests.

Similarly to [START_REF] Kämpke | Distributed generation of fastest paths[END_REF], when a request s@t → e is received, the nodes s and e are added to the intersection graph if they were not associated with multiple classes. In this case, an arc (s, u) (resp (v, e)) is created if u and s share a class and u ∈ G IC (resp if v and e share a class and v ∈ G IC ). The weight on the arcs is computed by calling the relevant TISs. This new graph is called the extended intersection graph.

A shortest path algorithm such as Dijkstra is then used on the graph to obtain the shortest path (e 1 , e 2 , ..., e n ). For each arc e i , a call to the class C i is made to compute the trip detail. This method ensures the optimality of the solution. However, it assumes the ability to create G IC which in the worst case may be as or more costly than recreating the complete graph. This is the case if a class contains entirely another class (see Figure 2.15). In this example, T IS 3 is completely included in T IS 1 . Therefore, according to the denition of the intersection graph, every stop in T IS 3 is present in graph G IC and these steps constitute a clique. The graph requires to compute more weights than to recover the whole original graph.

In this paper, Wang and Kämpke also modify G IC to consider time-dependent modes of transportation. These types of modes are taken into account by multiplying the labels on the arcs, one label per optimal schedule. The graph then looks like a time-dependent graph [START_REF] Gerth | Time-dependent networks as models to achieve fast exact time-table queries[END_REF][START_REF] Orda | Minimum weight paths in time-dependent networks[END_REF] where the labels are integrated into a weight function. This solution allows to consider all the supply and to obtain the optimal result. However, it requires to be able to compute the weights of the arcs which requires an access to the data or a very important number of calls to each TISs, which may not be feasible.

A similar method is proposed by Kamoun [START_REF] Kamoun | Conception d'un système d'information pour l'aide au déplacement multimodal: Une approche multi-agents pour la recherche et la composition des itinéraires en ligne[END_REF] with time-dependent transportation modes. This method reuses an intersection graph. However, Kamoun considers too expensive to precompute every weight in a time-dependent network. Instead, this graph is used to determine which Trip requests should be made.

Kamoun also introduces a graph called adjacency graph. This graph G(V, E) is identical to the correspondence graph presented for APII-SIM. In this graph, each TIS is represented by a node. An arc (u, v) exists if TIS u and TIS v share a station. Given the graph G presented in Figure 2.14, the adjacency graph of G is presented in Figure 2.16. Let s@t 0 -→ e be the user request, s is in T IS 4 and e in T IS 2 . A ooding algorithm is then used to compute every trace under a specic length. With a maximum length of 4 for the traces, the following traces are created: T IS 4 + T IS 1 + T IS 3 and T IS 4 + T IS 2 + T IS 1 + T IS 3 . Each trace is then solved separately. The intersection graph is used to nd which request should be called based on the trace obtained. An agent-based solution was then used to nd the best solution for each trace. This solution does not require pre-computation. However, it might be slow due to the number of requests needed to nd the best solution.

This work was continued by Feki [START_REF] Firas | The fastest paths in time-dependent decentralized travel information system with time-window as departure time[END_REF][START_REF] Firas | Optimisation distribuée pour la recherche des itinéraires multiopérateurs dans un réseau de transport co-modal[END_REF] with the study of the impact of a start time interval instead of a xed schedule. The proposed approach can be broken down as follows:

• Creation of the adjacency graph.

• Computation of acceptable-size traces using a ooding algorithm.

• Creation of the extended intersection graph. • Retrieving the various departure times in the interval from each node used in a trace. This is done by requesting the various TISs.

C 1 C 2 C 3 C 4 (a) Graph G of a network composed of 4 classes 2, C 2 4 , C 1 5, C1 3 , C 2 2 , C 2 C 1 C 2 C 3 C 4 (b) Graph G IC s e 6 , C 4 9 , C 4 2, C 2 4 , C 1 5, C1 4, C 3 3 , C 2 2 , C 2 C 1 C 2 C 3 C 4 ( 
• Computation of the shortest paths using information obtained in the previous step.

• Obtaining the details on the shortest paths by calling the TISs.

Feki also developed a method to take into account disturbances [START_REF] Firas | Disturbance management in distributed travel information system[END_REF] and warn users when their trip are aected. Specic agents are created to interrogate TISs and retrieve various disruptions. When a disruption happens, a verication is made to check if it impacts trips already computed. If S. Shorten The starting point of the calculation is modied according to the estimated position of the user.

The user is then contacted with an updated itinerary.

In [START_REF] Jeribi | Conception et réalisation d'un système de gestion de véhicules partagés: de la multimodalité vers la co-modalité[END_REF], Jeribi also continues the work of Kamoun. Jeribi presents an evolutionary approach on the various agents. This evolutionary step is made to consider multiple criteria as objective.

Conclusion

In this chapter, two approaches to solve the journey planning problem have been presented: the centralized and the decentralized. Both approaches are promoted in Europe through studies, such as [HWB + 16], and laws, at an European level [tEc17] and at a national level for example in France with article L1115-1[nat19]. These laws compel transport authorities and operators to publish theoretical (static) data and various APIs. As explained, each approach has its benets and its drawbacks.

Since this thesis focuses on distributed systems, multiple projects and research papers have been presented. Most of the projects rely on specic TIS capabilities to compute solutions. However, these capabilities are not always available.

In the next chapter, we propose a set of characteristics to dene a TIS and its API. Then various methods are proposed based on these characteristics to compute journeys. Chapter 3 

Introduction

As seen in the previous chapter, various projects were made to build a journey planner using a distributed architecture. However, these experiments imposed a specic set of characteristics to each TIS's API. If a TIS's API does not have these characteristics, it cannot be integrated. A modication to the API must be made to integrate it. In the following chapters, we propose dierent methods to integrate TISs depending on their characteristics. A quick overview of the characteristics used to identify a TIS and an API is made in Section 3.2. Section 3.3 presents the current solver's architecture at Cityway and the integration of a distributed solver. In Section 3.4, an algorithm is presented. This algorithm nds possible combinations of TISs to solve a user request.
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Characteristics of TISs and APIs

This section presents various characteristics used to dened a TIS and its API. Among the possible characteristics, only a limited set is presented. These characteristics are used in the integration of a TIS and its API in our distributed system.

Characteristics of TISs

As presented in the introduction, a TIS provides services and information on transport networks. We use four characteristics to dene a TIS:

• The geographic area it covers. This area is a simple closed polygon in a 2D plane P. The geographic area of a TIS,

T IS i is denoted G(T IS i ). A point p ∈ P is in G(T IS i ) if p is
enclosed by the edges of G(T IS i ). By denition, T IS i will only accept a request if both the start and end points are in G(T IS i ). Some TISs may cover a geographic area which is not connected but is composed of multiple closed areas. This is the case when a TIS proposes solutions for multiple regions or even countries but does not allow trips linking these regions.

In this case, multiple T ISs will be virtually created in our decentralized system, one for each closed area.

• The data at its disposal and the quality of said data. Data can be more or less extensive and reliable depending on the information available to the TIS's provider.

• The services proposed by the TIS's API. These services are dened in section 3.2.2

• The transportation mode available. A TIS that proposes n modes will be conceptually considered as n dierent TISs. Restricting the number of modes to one per TIS allows to compare dierent TISs. This comparison is useful to determine which TIS is best suited depending on the user request. This comparison between TISs is mainly based on the data quality accessible by the TIS. However, the data quality of a TIS can vary between modes and with other factors such as the geographic area. A separation by mode is therefore made to mitigate data quality variation. Nevertheless, if the same TIS is selected for successive modes, it will be treated as a single TIS. This is done to reduce the number of requests made and to fully use TIS's capabilities.

APIs and user request

An API species how a user should interact to get a response or trigger a specic action from the API's provider. In our case, the API's provider is a TIS and the user is the orchestrator. Each provider can either design its own API or follow a xed protocol. The rst option allows more independence for the TISs. It however requires orchestrator to build a specic module for each API it wants to integrate. This module creates requests to the format dened by the API. It then collects and parses responses obtained from the TIS. Without loss of generality, we suppose that every API follows a slightly modied version of the OJP standard [27806]. This standard denes possible calls and responses used in a distributed journey planner system. In this standard, each API can propose up to 7 services. We will focus on 4 of them. The following description of these services is greatly simplied since we only use a small portion of the options oered by the format.

• LocationInformation(p): This call takes a location p in argument. When a TIS receives this call, it veries the existence of the location p in his system. If this location is known by the TIS, it returns available information on this location.

• ExchangePoints : This call is made to collect connexion points.

Denition 3.2.1. A connexion point is a location where a user can enter or exit a transportation mode. For example, a bus stop, a subway station and a bicycle-sharing station are all connexion points for their respective modes. A set of connexion point for a TIS, T IS i , is denoted C T IS i . Some transportation modes do not have connexion points. This is the case for personal bikes or taxis since a trip can start and end anywhere. In this case, C T IS i = ∅ by convention.

This function is modied compared to its description in OJP. In OJP, connexion points (called "exchange points") are locations at the border of each TIS. They are used to pass from one TIS to another. These points are agreed upon and shared by both TISs. In this paper, we suppose that no agreement between TISs has been made. Therefore, each TIS has its own set of connexion points and a transfer must be computed to pass from a connexion point from one TIS to a connexion points from another TIS.

The two remaining services compute trips. They are named Trip and MultiPointTrip and they both answer to a trip request. A trip request R is mainly composed of:

                
a set of start points S, a set of end points E, a constraint which can be start at or arrive at, a set of times T, either associated with the points in S or in E, depending on the constraint, an objective function (fastest, least connexions, earliest arrival or latest departure), a list of options. When the constraint is set to start at, each point in S is matched to a time in T . To be valid, a solution must begin its journey from one of the points s i ∈ S at or after t i ∈ T . Likewise, if the constraint is set to arrive at, times in T indicate the latest possible arrival time at each point in E.

Given a TIS T IS i , the two services Trip and MultiPointTrip can be described as follows:

• Trip(R): This service provides a detailed trip in response to the request R it received. The starting points are denoted S and ending points E. The request is sent to a TIS denoted T IS i . If multiple points are present in S and/or E, the journey planner identies the pair of start/end points that provides the optimal trip and returns only this trip. If multiple trips are equivalent, only one trip is returned.

• MultiPointTrip(R): This service is denoted S@T --⇒ i E or S --⇒ i E@T depending on the value of the constraint in R. Let S@T --⇒ i E be a MultiPointTrip request. For every point e ∈ E,
this service gives the following information: the earliest arrival time at e, a starting point s ∈ S from which it is possible to reach e at this arrival time, the associated departure time from s. Contrary to Trip services, the detail of the trip is not necessarily provided. When the constraint is set to arrive at, S --⇒ i E@T , the returned information is: departure point in S, the associated departure time and the arrival point in E. It should be noted that most TISs currently on the market do not propose a MultiPointTrip service or put a restriction on the number of points.
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In the algorithms developed in this thesis, we dierentiate between three types of Trip request:

• The rst type of Trip considers requests with only one start point and one end point. Moreover, the objective is set to earliest arrival time or latest departure but not lexicographic. It will be denoted s@t -→ i e if the constraint is on start at and s -→ i e@t otherwise. If the constraint is set at start at, this request returns the solution with the earliest arrival time at e given t. However, if the constraint is set at arrive at, the solution with the latest departure time from s is returned. This request is the most basic request and is supposed to be supported by every TIS. It is mainly called after MultiPointTrip requests to obtain the detail of the journey.

• The second type of Trip accepts multiple start and end points. The goal of the Trip request is to nd the best trip among multiple trips possible. It will be denoted S@T -→ i → E for start at constraint and S -→

i → E@T otherwise. Similarly to the previous type, it only considers the earliest arrival time or latest departure objective. For example, if the constraint of the request is set to start at, the trip returned will be the trip arriving the earliest at one point in E considering the starting time T . It should be noted that this call returns the earliest departure time from s i to reach e i but it may not be the solution with the latest departure time for S or even from s i . If this type of request is not oered by the API, S@T -→ i → E is replaced by two successive requests. Firstly, a MultiPointTrip request: S@T --⇒ i E, described below is made. It gives the earliest arrival time at each point of E. The point with the earliest arrival time is selected. If multiple points have the same arrival time, one is selected randomly. Let e j be the selected point, t e j the arrival time and s i the associated point from S. A Trip request s i -→ i e j @t e j is then made to obtain the detail of the trip.

• The last type of Trip request nd the best trip considering the lexicographic criteria. It will be denoted S@T ← → i → E if the constraint is on start at and S ← → i → E@T otherwise. If this type of request is not available on the TIS, S@T ← → i → E is replaced by two successive requests. Firstly, a MultiPointTrip request S@T --⇒ i E. This call returns T E which is then used as latest arrival time in a second request: S -→ An example of the dierence between the various requests is given in Table 3.1. The network is presented in Figure 3.1. In this example, S = {s 1 , s 2 }, E = {e 1 , e 2 } and T = {8:00, 8:10}. The TIS call is denoted T IS 1 .

i → E@T E .

Type of request

Result s 1 @8:00 -→ 1 e 1 [(s 1 @8:05, A@8:10, RedLine), (A@8:30, e 1 @9:00, RedLine)] s 1 @8:10 -→ 1 e 1 [(s 1 @8:20, A@8:25, RedLine), (A@8:30, e 1 @9:00, RedLine)] s 1 @8:00 -→ 1 e 2 [(s 1 @8:05, A@8:10, RedLine), (A@8:30, e 2 @8:55, BlueLine)]

S@T - → 1 → E
[(s 1 @8:05, A@8:10, RedLine), (A@8:30, e 2 @8:55, BlueLine)] or [(s 2 @8:15, e 2 @8:55, GreenLine)] S@T ← → 1 → E [(s 1 @8:20, A@8:25, RedLine), (A@8:30, e 2 @8:55, BlueLine)]

S@T --⇒ 1 E
(e 1 @9:00, s 1 ); (e 2 @8:55, s 1 ) or (e 1 @9:00, s 1 ); (e 2 @8:55, s 2 ) Table 3.1: Illustration of the dierent types of requests In this thesis, almost all Trip and MultiPointTrip requests are not made using the lexicographic minimal duration objective but with an objective function set to earliest arrival or latest departure depending on the constraint. This choice was made since some APIs does not propose such objective function notably with multiple start and end points. It was therefore chosen to consider only requests with earliest arrival or latest departure objective. If an API accepts lexicographic minimal duration objective, two successive calls to this API with dierent objective function can be replaced by a single call using the lexicographic minimal duration objective.

Characteristics of APIs

Characteristics of a TIS's API can have a strong impact on the orchestrator strategy. We identied four important characteristics:

• Is the solution provided by the TIS time-dependent?

A TIS is said time-independent if, given any request, a translation in the values of T results in an equivalent translation of the various times in the solutions. Otherwise, the API is called time-dependent. Walking or biking are examples of time-independent transport modes. Public transport is time-dependent, due to the use of timetables. Some transport modes can be time-dependent or not depending on the data considered by the TIS. For example, a TIS computing car trips will be time-dependent if predictive travel-time variations or real-time trac information are available for the TIS. However, if only the speed limitations are taken into account, the API is considered time-independent.

• Which type of connexion points is used by the TIS?

As explained in section 3.2.2, a connexion point is a location to enter or exit a mode of transportation. They are essential to combine TISs. A TIS can have three types of connexion points:
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Predened : In this case, the connexion points are xed and can be known in advance.

Information on connexion points can thus be stored and used when necessary by the orchestrator. Updates can happen on a monthly/yearly basis. For example, in a public transport network, the connexion points are the stations of the network.

Obtained : For some TISs, connexion points are not known in advance but gathered in the response to a Trip request. This mostly occurs with TISs specialized in carpooling. These TISs search possible carpooling trips based on the start and end location given by the user. They return solutions composed of a pick-up and a drop-o point. These points may be far from the original points. In this case, they are used as connexion points with others TISs in order to compute the rst and last mile trips.

Undened : Finally, some transport modes do not have any connexion points. This is the case when a exible mode is used such as a taxi, a demand responsive transport or a personal bicycle.

• Are connexion points time-dependent?

A connexion point is time-dependent if the information associated with this point is valid for a limited time. This is the case for free-oating vehicles or bicycle-sharing stations for example. Indeed, in these cases, the availability varies. A solution might be possible at t but not at t + δt. In the case of free-oating vehicle, connexion points are available vehicles and available parking spots. Therefore, the connexion points must be updated regularly as the availability of these vehicles and parking spots change over time. Public transport stations on the other hand are considered time-independent. As with TIS's time-dependency, the time-dependence for connexion points varies depending on the quality of the information. For example, a parking can be time-dependent if the information on the remaining places is updated in real-time while it will be considered time-independent otherwise. In this thesis, we consider that all connexion points are time-independent.

• Does the API allows MultiPointTrip requests?

Very few APIs currently propose a MultiPointTrip service. This service is however required in the implementation of distributed systems such as Del or APII-SIM to reduce the number of requests. If this service is not supported by an API, we will suppose that the Trip service for this API only accepts requests composed of one start point and one end point (|S| = |E| = 1).

This assumption is made based on our observations of various APIs. If an API proposes a

Trip service with |S| > 1 or |E| > 1 without oering a MultiPointTrip, the methods proposed in the thesis can still be used. They might however result in unoptimized methods since they do not fully exploit the API's capabilities. Adapting the methods is left for future research.

If the API of a TIS does not propose a MultiPointTrip service, then an estimator is used. An estimator of T IS 1 is a TIS, denoted T IS 1, that covers at least the same geographic area and transport mode of T IS 1 , but with less reliable data. To be an estimator, T IS 1 also has to oer a MultiPointTrip service. It is always possible to nd an estimator for a TIS. Indeed, when no other TIS can full this role, an estimator can be created. For example, a simple estimator can be made by estimating the duration of a trip based on the distance as the crow ies between the start and end points divided by a xed speed. This speed is also estimated based on the transport mode used. The development of estimators is investigated in Chapter 7.

We suppose in the following that an estimator gives a lower bound of the actual result. Indeed, the estimator will typically not take into account information such as trac jam or delays. Therefore, it seems sensible to make this assumption. This hypothesis may turn to be false. For example, a transfer between two buses might not be possible considering the timetable but becomes possible due to a delay of the second bus involved in the transfer.

Architecture of our distributed system

Based on the various denitions made in the previous section, this section presents an architecture for our solution. First, we will consider the current architecture in Cityway's journey planner. Our modications are then presented as well as the various elements precomputed.

Architecture in Cityway

Figure 3.2 proposes a simplied description of the architecture. The architecture is a mix between a centralized architecture and a distributed one. Firstly, users formulate their requests using an application or a website. These requests are then transmitted to the journey planner's API. The journey planner analyses each request and interrogates dierent calculators as well as various databases. Most of the times, the trip computation will be made by Cityway's trip calculator.

This calculator handles multiple modes such as Public transport, Walk, Bike or Car. It owns multiple graphs which it uses to compute trips. Since these graphs are not linked together, the journey planner sometimes uses APII-SIM methods to compute solutions combining dierent modes (see Chapter 2). A more complete description of Cityway's trip calculator is presented in [START_REF] Iglesias | Calcul d'itinéraire multicritère en transport multimodal[END_REF].

The journey planner is also able to interrogate external APIs. These APIs can be called to compute the entire solution. Depending on the characteristics proposed by these API, they may also be called to compute part of a solution. In this case, the other part is computed by Cityway's Trip calculator. This is notably the case with On Demand Transportation (ODT) to obtain multimodal solutions combining ODT and Public Transport.

Architecture modications

Our distributed solution is added to this architecture. The journey planner is modied to also be used as an orchestrator. This solution was selected to facilitate the integration and to reuse part of the work already made. In this new system, the journey planner is used as an orchestrator. A new API is added (Tomtom). A new database is also added. This database contains the characteristics of each TIS and each API, both dened in the previous section. A fraction of the database is presented in Figure 3.3. Each TIS has a unique ID denoted TISID, a name and a description. The characteristics of a TIS are stored in the table TISCharacteristics. This table contains the mode proposed by the TIS as well as the geographic area G represented by two dierent structures (a geography (Shape [START_REF]GPS%20latitude%20and% 20longitude%20coordinates[END_REF] and a WellKnownText(WKT [START_REF]Information technology database languages sql multimedia and application packages part 3: Spatial[END_REF]). The CondenceIndex is a number representing the quality of the data proposed by the TIS. In our case, this number is set once and is evaluated only when a new TIS is added.

P redef ined connexion points are kept in ContactStop Transfers T T IS i |T IS j between two TISs, T IS i and T ISj, with P redef ined connexion points are computed in advance. They are kept in the Transfer table. TransferInfo table contains the duration and distance of each transfer.

The orchestrator also has at its disposition a simple localisation system to reduce the number of LocationInformation requests made. In our case, we have access to the list of addresses thanks to OSM [START_REF]Openstreetmap[END_REF]. It is not represented in this schema.

Transfer and graph of intersection

To compute a trip using multiple TISs, we must know if it is possible to pass from one TIS to another. To reduce the number of transfers and thus the possibilities, a limit on the transfer duration is imposed. Depending on the API's characteristics, 6 combinations of types of connexion • Predened + Predened: if both TISs have predened connexion points, a transfer will be created for each pair of connexion points that can be joined by a walk trip. The walk trip duration must be less than a xed limit d to be considered. In Figure 3.4, 3 transfers are possible between T IS 1 and T IS 2 , respectively in A, B or s. We can note that a transfer is also possible with T IS 4 in A. More formally

T T IS i |T IS j = (p, q, w) : p ∈ C T IS i , q ∈ C T IS j , W alkDuration(p, q) = w < d
This combination can be precomputed.

• Predened + Obtained: this case is similar to Predened + Predened. However, since the transition points of one T IS are not known, the rst step consists of gathering them using a Trip request. Once this is done, the transfer between T IS i and T IS j is dened as previously:

T T IS i |T IS j = (p, q, w) : p ∈ C T IS i , q ∈ C T IS j , W alkDuration(p, q) = w < d
In this case, the various transfers and their duration are computed on the spot and not precomputed. Indeed, the obtained connexion points vary depending on the user request.
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• Predened/Obtained + Undened: When combining two TISs, where one TIS has undened connexion points, the connexion points of the other TIS are used. To nd the relevant points, the geographic area covered by each TIS is used. If the intersection of these areas is not empty, transfer between these two TISs is considered possible. For instance, in Figure 3.4, T IS 3 has Undened connexion point. Since its geographic area is included in the geographic area of T IS 1 , a transfer between T IS 1 and T IS 3 is deemed possible. Thus, every connexion point of T IS 1 in the geographic area of T IS 3 (C and D in Figure 3.4) is a possible location for a transfer. In this case, the transfer between two TISs, T IS i and T IS j is dened as follow:

If T IS i has undened connexion points:

T T IS i |T IS j = (p, p, 0) : p ∈ C T IS j , p ∈ G(T IS i )
If T IS j has undened connexion points:

T T IS i |T IS j = (p, p, 0) : p ∈ C T IS i , p ∈ G(T IS j )
In the case of obtained connexion points, connexion points are collected with a Trip request. Then, the possible transfers are evaluated using the same method.

• Obtained + Obtained: this combination is not considered. In this thesis, a TIS with Obtained connexion points is only called using the departure and arrival point of the user request. This allows to gather dierent connexion points. This request returns multiple trips, each with a pick-up point close to s and a drop-o point close to e. Therefore, this combination is not considered.

• Undened + Undened: this combination is also not considered in this paper. In this case, a transition can be made anywhere in the network. Reducing the number of possible connexion points would lead to one of the previous cases.

We note

C i|j = p ∈ C T IS i |(∃q ∈ C IT S j ), (∃w ∈ IR + )[(p, q, w) ∈ T TIS i |TIS j ]
, the set of connexion points from T IS i which have a transfer with at least one connexion point from T IS j .

A graph G(V, E) is created using the list of possible transfers. It is called the graph of intersection. In this graph, each TIS is represented by a single node. An edge e = (a, b) exists if a transfer is possible between a and b. This graph is precomputed by the orchestrator. Therefore, for TISs with obtained or undened connexion points, the geographic area is used. This graph can also be found in the literature under the name of adjacency graph [START_REF] Kamoun | Conception d'un système d'information pour l'aide au déplacement multimodal: Une approche multi-agents pour la recherche et la composition des itinéraires en ligne[END_REF]. An example of such graph is given in Figure 3.5 which represents the graph of intersection for the network in Figure 3.4. This graph is kept by the orchestrator.

Request resolution: computing possible combinations of TISs

Based on the distributed system described, this section studies the resolution of a user request. When a user request s@t 0 → e is received, the rst task of the orchestrator is to locate the position of s and e. This is done using information provided in the request and comparing it with the data available in the database. The orchestrator may also call the LocationInformation service to check if a TIS can identify these points. Based on these information, s and e are added to the graph of intersection as nodes. A link between s (or e) and the node representing T IS i , is added if the position of s (or e) is within the geographic area G(T IS i ). In Figure 3.4, the point s is inside the geographic area of T IS 1 and T IS 2 whereas e is in T IS 1 and T IS 3 's geographic area. The resulting graph is called the extended graph of intersection G ex and is presented in Figure 3.6 for the network in Figure 3.4. This graph is used to nd possible combination of TISs able to give a solution to the user request. Denition 3.4.1. A walk is a sequence of alternating edges and vertices starting and ending with a vertex. w = (v 0 , e 0 , v 1 , .., e n-1 , v n ) is a walk in graph G(V, E) if each edge connects the previous vertex to the next in the sequence. More formally, ∀e i ∈ w, e i = (v i , v i+1 ) and e i ∈ E.

In a simple graph, this denition can be rewritten as: A walk is a sequence of vertices w = (v 0 , v 1 , .., v n ). w is a walk in the graph G(V, E) if each pair of successive nodes in the walk is connected by an edge in G. More formally,

∀(v i , v i+1 ) ∈ w, ∃e ∈ E|e = (v i , v i+1 ).
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A walk from s to e in G ex represents a sequence of TISs which may provide a solution for the user request s@t 0 → e. As such, (s, T IS 1 , e) represents the solution where only the transport mode of T IS 1 is used. Whereas (s, T IS 2 , T IS 1 , e) is the combination where T IS 2 is used rst followed by T IS 1 . Continuing with our example, we can note that, in this last case, the relevant transfer can only be on A or B as a transfer in s would result in a solution using only T IS 1 . Given a walk in G ex , the sequence of TISs without the start and end points is called a trace.

A simple recursive algorithm nds every possible trace with a size below a xed limit K. This algorithm starts from start node s and recursively extends to every neighbour until the end node e or limit K is reached. Algorithm 1 presents a pseudo-code for this algorithm. 

IS 1 T IS 1 + T IS 3 T IS 1 + T IS 2 + T IS 1 T IS 2 + T IS 1 T IS 1 + T IS 3 + T IS 1 T IS 1 + T IS 4 + T IS 1 T IS 2 + T IS 1 + T IS 3 T IS 2 + T IS 4 + T IS 1
When the constraint is set to arrive at, the trace generation is modied. The extended graph of intersection is created using the same procedure. However, the edges are inverted as shown in Figure 3.7.

A trace in this new graph is a walk from e to s. The same algorithm is used to nd all the possible walks in G ext with e as the start node and s as the end node. For the extended graph in Figure 3.7, this method generates the following traces: 

T IS 3 + T IS 1 T IS 1 + T IS 2 + T IS 1 T IS 1 + T IS 2 T IS 1 + T IS 3 + T IS 1 T IS 1 + T IS 4 + T IS 1 T IS 3 + T IS 1 + T IS 2 T IS 1 + T IS 4 + T IS 2
Since the edges are reversed, the order of TISs in the trace is inverted. The trace resolution is also slightly modied as explain in the following chapters.

Contrary to previous approaches like APII-SIM or Kamoun [START_REF] Kamoun | Conception d'un système d'information pour l'aide au déplacement multimodal: Une approche multi-agents pour la recherche et la composition des itinéraires en ligne[END_REF], a TIS can appear several times in a trace but not consecutively. This choice was made since a unique area can be covered by multiple TISs and each TIS is specialized in a specic transport mode. In this case, it might be interesting to reuse a TIS already used in combination with other TISs. An example is given in In this example, the optimal solution uses T IS 2 two times (between s and 3 and between 4 and e). This situation occurs for instance when T IS 2 is a mode of transportation which provides solutions for the rst and last mile problem (free-oating for example).

Since a vertex can be repeated multiple times, the number of traces in a graph can be large. However, we don't need to consider every single trace. Some combinations of transportation modes S. Shorten are impossible such as Carpooling + Personal Bike. Others are possible but unattractive such as Bike + BikeSharing. To restrict the number of traces, we create a list of acceptable traces. This list does not consider each TIS in particular but restricts the possible combinations between various modes of transportation. An example using a graph is given on Figure 3.9. In this example, 5 modes of transportation are considered. A path in the graph represents an acceptable sequence of modes. Based on this graph, we can eliminate every trace which sequence of transport modes is not a path in the graph. The remaining traces are considered being valid. A solution must then be computed for each remaining traces. This representation can also be described as a language. In this model, each mode of transportation is a symbol in an alphabet . A language L is created to dene valid words. These words can be understood as valid combinations of transport modes. This approach is used in numerous studies to computed multimodal journeys or impose restrictions on a journey [START_REF] Barrett | Formal-language-constrained path problems[END_REF]

[BBJ + 02][BBH + 08].
This concludes the rst part of the resolution. The second part computes the fastest trip associated with each trace. This part is detailed in the following chapters. When all the traces are evaluated, the results obtained are sorted, ltered if necessary and then sent to the user.

Conclusion

This chapter started by proposing a set of characteristics to describe TISs and APIs able to compute trips. Then, the architecture of our distributed system to query these APIs was presented. Finally, the rst step of resolution was explained when the system receives a trip request. This rst step consists of nding acceptable combinations of TISs named traces. The second step computes the fastest solution for each acceptable trace. Generic methods to solve various traces are presented in the next chapters. These methods vary based on the trace and on the characteristics of the various APIs composing the trace. The next chapter presents methods for computing traces composed of two T ISs where neither have obtained connexion points. Chapter 5 extends these methods for traces with more than two TISs. Finally, Chapter 6 proposes methods when a TIS with obtained connexion points is in the trace.

Chapter 4

Resolution for traces of size two 

Introduction

In the previous chapter, a characterisation of the various APIs was proposed as well as a method to nd possible traces given a user request. In this chapter, we explore how to solve traces composed of two TISs. Various methods are introduced with the objective of reducing the number of calls to TISs, depending on their characteristics. These methods are then tested using the transport network of Île-de-France. In this chapter, we don't consider traces composed of TISs with obtained connexion points. This characteristic is found in carpooling TISs for example. These traces are investigated in Chapter 6.
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Overview of the solution methods

We consider a user request s@t 0 → e and a trace T IS 1 + T IS 2 , composed of two TISs without obtained connexion points. As explained previously, the case where both TISs have undened connexion points is also not considered. Therefore, at least one TIS has predened connexion points. Depending on the characteristics of each TIS, dierent methods are used. Each method is divided in three phases:

• Phase 1: Identify the connexion points.

• Phase 2: Calculate or estimate the earliest arrival time at e. This phase also tries to reduce the number of connexion points.

• Phase 3: Re-evaluate the earliest arrival time at e if needed, and compute the latest departure time from s and the solution details.

Phase 1 is identical for all methods. Phase 2 and phase 3 depend on the TIS characteristics. Table 4.1 lists the possible combinations of characteristics and species which method to use in each case. The name of the method is followed by two numbers indicating which variant of Phase 2 and Phase 3 to use. Table 4.1: Methods for combining two TISs with predened or undened connexion points Overall, Phase 2 is declined in three dierent versions: 2-1, 2-2 and 2-3. Phase 3 has 8 dierent variants: 3-1, 3-1bis and 3-2 to 3-7. Based on this table, we can note that the character timedependent or independent of the rst TIS (T IS 1 ) has a limited eect on the selection of the method except when both TISs propose a MultiPointTrip service and are time-independent. The other methods 3-1 to 3-7 are only slightly modied if T IS 1 is time-independent. This is represented by the a symbol.

All these methods, including the method of Phase 1, are described in details in sections 4.3 to 4.8. The adaptation to a user request s → e@t 0 is presented in Section 4.9.

Method F1 is equivalent to the method used by Del or APII-SIM. Methods F1bis and F1ter are original optimized variants of this method. These methods cover 4 cases in the table. The 12 other cases cannot be tackled with Del or APII-SIM and are original contributions of this chapter.

Phase 1

The goal of Phase 1 is to identify possible connexions between the two TISs. If the points are not already dened in the orchestrator's database, the ExchangePoint service is called for each TIS. This phase returns the various transfers with the associated transfer durations: see Figure 4.1 for an illustration with 3 connexion points in set C 1|2 , 4 in set C 2|1 , 5 feasible transfers (set T T IS 1 |T IS 2 ) and the associated transfer times T 1|2 (k, l).

This phase initiates all methods proposed in this section.

Resolution for traces of size two Phase 2-1:

T IS 2 is time-dependent
This variant is used when T IS 2 is time-dependent. It executes three MutliPointTrip requests which are made either to the TIS or to its estimator, depending on the presence of the service in the TIS.

To ease the readability, we rst assume that no estimators are used. We clarify the impact of estimators afterwards. The three calls are shown in Figure 4.2. On this gure, notation ----⇒ i|| î is introduced to denote a MultiPointTrip request made to T IS i if it proposes the MultiPointTrip service or to the estimator T IS î if it doesn't. The method is organized in 7 steps.

1. The rst step computes the earliest arrival times at connexion points in set C 1|2 . We denote T <1|2 these arrival times. They are obtained with the following MultiPointTrip call to T IS 1 :

s@t 0 --⇒ 1 C 1|2 (see 1 on Figure 4.2).
2. At the second step, the transfer durations T <1|2 are added to T <1|2 in order to compute the earliest departure time from each connexion point in set C 2|1 . Multiple times may be available for a single connexion point. On our example of . This request provides the latest departure times T >2|1 from C 2|1 enabling to reach e on time.

5.

A new set C r2|1 is introduced. It is composed of all points in C 2|1 where the earliest departure time is not greater than the latest departure time, that is, points c

2|1 j ∈ C 2|1 such that t <2|1 j ≤ t >2|1 j . As such in Figure 4.2, c 2|1 1 is not included in C r2|1 .
6. The latest arrival times for points in C 1|2 , denoted T >1|2 , are computed by subtracting transfer durations from latest departure times T >2|1 . Again, multiple times may be obtained for a given connexion point. In this case, only the latest arrival time is kept.

7. A new set C r1|2 is nally introduced. It contains the subset of connexion points c 1|2 i from C 1|2 that satisfy t <1|2 i ≤ t >1|2 i
. This concludes phase 2. At the end of these phases, we have access to the earliest arrival time at e, t e . Moreover, C r1|2 and C r2|1 contain the list of connexion points from which reaching e on time is possible, with associated earliest and latest times : T <1|2 , T >1|2 , T <2|1 , T >2|1 .

Impact of using estimators on phases 2-1 and 2-2

When one or two of the TISs require an estimator, the algorithms of phases 2-1 and 2-2 remain unchanged. However, some values are only estimated. We introduce symbol ˆto identify these values. For example, t e is denoted te .

If T IS 1 requires an estimator, earliest departure times T <1|2 and T <2|1 are estimated. If at least one TIS doesn't oer a MultiPointTrip service, te is estimated. Note that all these values dene lower bounds on the optimal values T <1|2 , T <2|1 and t e because estimators are assumed to provide lower bounds on travel times.

Other values and sets are also estimated: T >2|1 , Ĉr2|1 , T >1|2 , Ĉr1|2 . These sets are created based on te . Therefore, they must be updated when te is updated or when t e is found.

Phase 2-3: T IS 1 and T IS 2 are time-independent and propose a MultiPointTrip service When both TISs are time-independent and oer a MultiPointTrip service, the algorithm can be even more optimized. Since the TISs are time-independent, an optimal trip will necessarily start at time t 0 . Thus, only the rst criterion from the lexicographic order needs to be optimized.

MultiPointTrip request s@t 0 --⇒ 1 C 1|2 is rst executed. This request returns the earliest arrival time at each connexion point in C 1|2 . These times are denoted T <1|2 . By adding transfer times, we obtain the earliest departure times T <2|1 at each connexion point in C 2|1 . Then, Trip request , one is selected randomly. The advantage of using the Trip service compared to the MultiPointTrip service is that we obtain the detail of the optimal trip in T IS 2 . No further call to the services of this T IS will be needed in Phase 3. This is only possible because the optimal arrival time at all connexion points in C 2|1 is known.

C 2|1 @T <2|1 - → 2 → e

Output Phase 2-3

At the end of Phase 2-3, the optimal connexion points are known: c 

Phase 3 for TISs without estimators

These methods are used when both TISs propose a MultiPointTrip service. This group concerns Method F1, F1bis and F1ter. Since both TISs propose a MultiPointTrip service, every result collected in Phase 2 is exact. In this case, two approaches are presented. If at least one TIS is time-dependent, the approach presented in Phase 3-1 is used. If both TISs are time-independent, Phase 2-3 was applied. Therefore, the details in T IS 2 are already known. In this case, Phase 3-1bis is used.

Phase 3-1 :

T IS 1 is time-dependent Phase 3-1 is composed of 2 steps:
1. The rst step nds the latest possible departure time from s. This is done using the following Trip request: s -→ 1 → C r1|2 @T >1|2 . This call returns the latest departure time t > s from s, the associated connexion point c Phase 3-1a: Phase 3-1 where T IS 1 is time-independent When T IS 1 is time-independent, Phase 3-1 is modied. It is decomposed in 2 steps. 1. Since T IS 1 is time-independent, the MultiPointTrip request s@t 0 --⇒ 1 C 1|2 , made in step 1 of Phase 2-1, gave the earliest arrival times at C 1|2 but also the duration of every trip between s and a connexion point in C 1|2 . These durations are gathered in a set denoted

S. Shorten

D 1 = d 1 i : c 1|2 i ∈ C 1|2
where d 1 i is the duration between s and c 1|2 i . We can compute the latest departure time from s associated with each connexion point c

1|2 i ∈ C 1|2 by subtracting d 1 i ∈ D 1 i to t >1|2 i ∈ T >1|2 .
The latest departure time from s obtained is denoted t s and the associated connexion point c 2. Two nal Trip requests can then be made in parallel: s -→

1 c 1|2 ī @t >1|2 ī and c 2|1 j @t >2|1 j - → 2 e.
With this evolution, both Trip requests are made in parallel and s -→

1 → C 1|2 @T >1|2 is reduced to s - → 1 c 1|2 ī @t >1|2 ī .
Phase 3-1bis: (b) Otherwise, it is conrmed that e can be reached at the estimated arrival time te . Sim- ilarly, it is conrmed that latest times T >1|2 and T >2|1 are exact. Furthermore, it is sure that sets Ĉr1|2 and Ĉr2|1 are correct because the rules that permitted to exclude connexion points were based on lower bounds for T <1|2 and T <2|1 and exact values for T >1|2 and T >2|1 . However, it is possible that these sets can still be reduced. The rules from steps 5 to 7 of Phase 2-1 are applied again with the exact values for T <1|2 and T <2|1 . Then, all values are exact and are denoted t e , T <1|2 , T >1|2 , T <2|1 T >2|1 , C r1|2 and C r2|1 .

For each

c 1|2 i ∈ C r1|2 , a Trip request s - → 1 c 1|2 i @t >1|2 i
is made. These calls allow nding the connexion point enabling the latest departure from s and the associated trip.

Given the best connexion point

c 1|2 i , a connected point c 2|1 j is selected in C r2|1 and the Trip request c 2|1 j @t <2|1 j - → 2
e is nally executed to obtain the detail of the trip.

Note: If one is condent in the quality of the estimator (for IT S 1 ) and one thus considers that the chances of reaching e at time te are high, this phase can be modied as follows. In the rst step, Trip requests s@t 0 -→

1 c 1|2 i can be replaced by requests s - → 1 c 1|2 i @t >1|2 i
. Finding a trip starting from s after time t 0 guarantees satisfying arrival time te at e. In this case, the algorithm can continue and the Trip requests of Step 2 can be skipped. However, if it fails (the starting time is inferior than t 0 ), phase 3-2 has to be restarted from the beginning with s@t 0 -→

1 c 1|2 i
Trip requests.

Note:

Step 2 of phase 3-2 requires to make one Trip request for each remaining connexion points in C r1|2 . Since it is possible to reach e at t e from these connexion points, we need to nd the point which provide the latest departure time. Even though the proposed method nds the best solution, it might be too expensive if the number of remaining connexion points is large.

Another solution is to use the estimator to nds which Trip requests are important and which can be removed. This is done in three steps: S. Shorten 1. This rst step estimates the latest departure time from s. Let C r1|2 be the remaining connexion points and T >1|2 the latest departure times from said points. A rst MultiPointTrip call is made: s --⇒ 1 C r1/2 @T >1|2 . It returns ts , the estimated latest departure time from s. A second MultiPointTrip s@ ts --⇒ 1 C r1/2 gives the earliest arrival times T <1|2 at C r1/2 .

For each connexion point

c 1|2 i ∈ C r1|2 with t<1|2 i ≤ t >1|2 i , a Trip call is made: s - → 1 c 1|2 i @t >1|2 i
.

The trip with the latest departure time is kept. The latest departure time will be denoted t s . If t s = ts then the best solution is found, and the research is stopped. However, if t s < ts then other connexion points previously discarded may lead to a better solution.

3. The following MultiPointTrip request is made to nd the other possible connexion points: associated is selected as the best connexion point in T IS 1 .

s@t s --⇒ 1 C r1|2 .
Step 3 of Phase 3-2 is then called to compute the detail of the journey in T IS 2 .

Phase 3-2a: Modication of Phase 3-2 when T IS 1 is time-independent When T IS 1 is time-independent, Phase 3-2 can be improved. In this case, steps 1 and 3 are untouched. However, 2 is skipped. Indeed, since T IS 1 is time-independent, the Trip requests made in step 1 gave the duration of each relevant trip. Based on these durations, the latest departure time from s can be obtained as well as the relevant connexion point c 1|2 ī . Moreover, the times obtained with the trips in step 1 are shifted to match the latest departure time t >1|2 ī . Phase 3-4: T IS 2 is time independent Phase 3-4 is a simplication of 3-2 when T IS 2 is time-independent. A bounding mechanism is introduced to limit the number of Trip requests. It is based on the data computed during Phase 2-2. It is composed of 3 steps: Phase 3-4a: Both TISs are time-independent This Phase is a variation on Phase 3-4 when T IS 1 is also time-independent. In this case step 1 and 2 of Phase 3-4 are untouched. However, 3 is modied as follow: e are executed following this order. These requests enable computing the exact arrival time to e under the condition that c 2|1 j is used. We denote t e (j) this value. In addition, t e is set to the minimal t e (j) value among those that have been computed. As soon as the result of a Trip request is such that te (j) > t e for the remaining points c 2|1 j , the computation stops: none of the remaining points in C 2|1 can arrive at e before or at time t e .

1. Given a connexion point c 1|2 i ∈ C 1|2 ,
3. Set C r1|2 is dened with c 1|2 i ∈ C 1|2 is in C R1|2 if t < e (i) = t e . Since
Resolution for traces of size two 3. Set C r2|1 is then dened as the set of all points in C 2|1 with t e (j) = t e . Values T <2|1 and T >2|1 are known for this set (they are equal when T IS 2 is time-independent). Set C r1|2 can be deduced as well as T >1|2 .

4. Depending on the characteristics of T IS 1 , the algorithm nishes with step 4 of Phase 3-3 or step 4 of Phase 3-3a. The algorithm combines steps from Phase 3-2 and Phase 3-3. It is divided in 4 steps where some steps can be repeated as well as some steps of Phase 2-1.

1.

Step 1 of Phase 3-2 is applied with a slight modication to (1b). Indeed, contrary to Phase 3-2, after the Trip requests s@t 0 -→

1 c 1|2 i , ∀c 1|2 i ∈ Ĉr1|2 , if at least one value t <1|2 i satises t <1|2 i ≤ t>1|2 i
, we are still not sure that e can be reached at t e . Indeed, the estimation given by T IS 2 might be underestimated. Therefore, step (1b) of Phase 3-2 becomes:

(b) Every connexion point c 1|2 i ∈ C r1|2 where t <1|2 i > t>1|2 i are removed from C r1|2 .
T <1|2 is updated accordingly to contain only the earlier departure times from connexion points in C r1|2 . Transfer durations T 1|2 are then added to T <1|2 to compute the earliest arrival time at C 2|1 . If multiple times are obtained for a given connexion point, only the earliest time is kept. The vector of times obtained is denoted T <2|1 . Given Ĉr1|2 , some of the connexion points in C 2|1 may not be reachable. The set of reachable points is denoted C r2|1 .

2. Given T <2|1 , step 1 of Phase 3-3 is called to compute the earliest arrival time at e associated with C r2|1 . The time obtained is denoted te .

Step (1b) of Phase 3-3 is modied as follow:

(b) If te > te , we need to check if an earliest arrival time at e is possible. To do so, Phase 2-1 is recalled starting from step 4. In this case, te is an upper bound on the latest arrival time at e. In step 4, the following MultiPointTrip request C 2|1 --⇒ 2 e@ te is made. This request returns an estimation of the latest departure times from C 2|1 . These new times are denoted T >2|1 . The set Ĉr2|1 is updated to contain only connexion points c 

S. Shorten

Phase 3-6a: T IS 1 is time-independent When T IS 1 is time-independent and T IS 2 is time-dependent, only the last step of Phase 3-6 is modied. It becomes:

4. Since T IS 1 , is time-independent, the results obtained in step 2 give the durations of each potential trip in T IS 1 . Therefore, we can deduce the latest departure time from s. The detail is obtained by shifting the Trip result obtained.

Phase 3-7: T IS 2 is time-independent Phase 3-7 is a simplication of 3-6 when T IS 2 is time-independent. A combination of the bounding mechanisms of phases 3-4 and 3-5 is used. Again, the data available after Phase 2-2 is used.

1. Given two connexion points c 1|2 i ∈ C 1|2 and c 2|1 j ∈ C 2|1 , the estimated arrival time t<1|2 i to c 1|2 i
is known, as well as the estimated time needed to reach e from c 2|1 j . Adding transfer times, an estimated arrival times at e can then be computed for all pairs of points (i, j) ∈ T T IS 1 |T IS 2 . We denote te (i, j) these values. They provide lower bounds on the arrival time at e under the condition that connexion points c is used. We denote t e (i, j) this value. In addition, t e is set to the minimal t e (i, j) value among those that have been computed. As soon as the result of the Trip requests is such that te (i, j) > t e for the remaining pairs (i, j), this step stops: none of the remaining pairs enable arriving at e before or at time t e .

3. Sets C r1|2 and C r2|1 are composed with all the nodes that appear in pairs (i, j) with t e (i, j) = t e . The algorithm continues with the last step of Phase 3-3.

Phase 3-7a: Both TISs are time-independent When both TISs are time-independent, only the last step is modied. Indeed, since T IS 1 is timeindependent, the latest departure time from s is already known: t 0 . The pair of connexion points The result from T IS 2 in step 2 between c 2|1 j and e is shifted to match t <2|1 . This concludes Phase 3-7a.

(c 1|2 i , c 2|1 

Adaptation to the arrive at constraint

When the constraint is set to arrive at, the trace resolution changes. As shown in section 3.4, the trace generation is modied. The trace obtained is a walk from e to s. Therefore, a trace T IS 1 +T IS 2 with the constraint in depart at became T IS 2 +T IS 1 in arrive at. Given this trace, the resolution method used the same table: Table 4.1. For example, given the trace Γ = T IS 1 + T IS 2 , if T IS 1 is time-dependent and oer a MultiPointTrip service while T IS 2 is time-independent and requires an estimator, Method F5 is selected. The resolution method is however modied to match the constraint. The requests made in each method are modied as followed:

• The constraint of each request is inverted. If it was set to start at, it becomes arrive at and vice versa.

• s is replaced by e and vice versa.

• The departure and arrival points are swapped to take into account the change.

Given these changes, a request s@t 0 --

⇒ 1 C 1|2 in start at becomes C 1|2 --⇒ 1
e@t 0 in arrive at. Since the constraint is inverted, the notations for the times obtained are also inverted: > becomes < and vice versa.

Another change concerns the transfers. Given a trace T IS 1 + T IS 2 with the constraint set at arrive at, the transfer T 2|1 is selected instead of T 1|2 . Indeed, the journey obtained is a journey from s to e starting in T IS 2 and ending with T IS 1 . Since the transfer durations are not symmetric due to the presence of slops or one-way passages for example, the transfer T 2|1 must be used. Given these modications, we are able to compute journeys with the arrive at constraint.

Experimentations

Based on the methods described previously, we developed a proof of concept. It combines three dierent APIs:

• PT. We use Cityway's API. It allows MultiPointTrip requests.

• CAR. We use Tomtom's API or Cityway's API. Tomtom's API is time-dependent, Cityway's API is considered as time-independent. Tomtom's API allows MultiPointTrip requests but only in a small amount. Therefore, this service is not used. Cityway's API allows MultiPoint-Trip requests. So, when Tomtom's API is used, Cityway's API serves as an estimator.

• BIKE. We use Geovelo's API. It only allows Trip requests. Again, we use Cityway's API as an estimator.

We considered region Île-de-France, generated 6000 user requests and performed dierent series of experiments. All these experiments have been carried out using an Intel i5-5300U 2.30GHz for both the TISs and the orchestrator. Figures 4.7 and 4.8 report an example of the response obtained to a user request using this proof of concept.

Request generation

The area covered by this study is region Île-de-France. This area is divided in two distinct sub-areas:

• The interior, composed of the 20 arrondissements of Paris.

• The exterior, composed of the rest of the territory in region Île-de-France. (iii) Mixed: One of the two points is in the interior while the other is in the exterior area.

For each type, 2000 requests are created. The start and end points are generated randomly following a uniform distribution. In the case of the mixed set, 1000 requests have a starting point in the interior area and an arrival point in the exterior area. The 1000 remaining requests are reversed: the departure point is in the exterior area and the arrival point is in the interior area. All the requests have the constraint sets to start at and share the same departure time.

First experiment: comparison between a centralized and a distributed system

The rst experiment compares a distributed and a centralized system. The trace used for this experiment is CAR + PT. This trace was selected because Cityway's engine is able to compute it as a centralized system. In order to have the same data in both systems, we use Cityway's API for both modes for the distributed system. Therefore, both PT and CAR are provided from the Cityway's engine in the distributed system and both systems have access to the same information, either directly for the centralized system or by using a TIS in the case of the distributed system. However, a perfectly fair comparison of the two systems is not possible because of some specicities of Cityway's engine when used as a centralized system. First, the engine doesn't use a unique graph. Instead, it has one specic graph per mode. It switches between these graphs, which is somehow similar to a distributed system. However, when switching between graphs, the system is able to initialize the search in the second graph with all the labels obtained in the rst graph, thus mimicking the behaviour that would have a real centralized system based on a single graph. Secondly, the engine uses a slightly modied objective function. It takes into account additional factors as the number of changes or the walking time. The evaluation of path quality in the centralized and distributed systems are thus not necessarily similar which may lead to dierent solutions.

T IS CAR is time-independent and allows MultiPointTrip requests. T IS P T is time-dependent and also allows MultiPointTrip requests. Therefore, the trace is solved with method F 1 in the distributed system.

Connexion points are respectively undined and predined in T IS CAR and T IS P T . Both TISs cover the same area. So, T T IS CAR |T IS P T is composed of the connexion points from T IS P T , that is, the 18,875 main public transport stations in region Île-de-France. Each column represents a type of request (internal/internal, mixed or external/external). In each column, the average computation time of a request is given as well as the standard deviation of the computation duration. Both values are expressed in seconds.

If we consider the second main column, internal/internal requests, the centralised architecture computes the trace CAR + PT in 2,42 seconds in average. The distributed architecture responds in almost 20 seconds. Similar results are also observed with mixed and external/external requests. Due to the high response time, the distributed system is not usable as it is. It should be noted that in average 94.74% up to 95, 95% of the response time is spent waiting for a response from an API depending on the type of requests.

The absence of variation in the computation duration across the dierent types of requests can be explained. In the distributed architecture, every connexion point is considered, independently of the request. Therefore, the computation time doesn't vary signicantly between the various types of requests. Similarly, since the centralised TIS has separated graphs for the mode CAR and PT, it explores most of the CAR graph before switching to the PT graph.

We then look at the dierence on the solutions obtained with both systems. Since it might be possible that a system returns a solution and not the other, Table 4.3 presents the various solutions obtained. It is divided in ve columns. The rst column describes the type of request studied in each row.

The second column presents the percentage of requests where both systems returned a journey. Depending on the type of requests, this percentage varies from 77.44% for external/external requests up to 88.82% for internal/internal request.

The next column gives the percentage of requests where the distributed system did not return a journey while the centralised system did. This case is rare, less than 2% for external/external requests and less than 1% for other types of requests. Some of these errors are due to the objective function used by T IS T C . Indeed, the MultiPointTrip request C 2|1 @T <2|1 --⇒ The fourth column consider the opposite case. It shows the percentage of requests where the distributed system produces a solution while the centralized system does not. This scenario is more common with 10.43% of the requests internal/internal and 18.90% of external/external requests. This scenario occurs for example when the PT portion of the best journey is composed only of a walk section. In this case, the centralised system doesn't return a solution while the distributed does.

Finally, the last column gives the percentage of requests where neither architecture found a solution. This case is also rare but can occurs if the solution required too much walk to be viable for example. It should be noted that when both systems return a journey, the responses obtained may be dierent. This is explored in Table 4.4. This table is divided in 4 main columns. Similarly to Table 4.3, the rst column presents the type of request associated with each row. Percentages given in this table are computed considering only the requests where both systems produced a solution (77.44% of the total requests for external/external request for example).

The second column presents the percentage of identical solutions. This percentage varies from 36.42% up to 57.93%.

The next column presents situations where the distributed journeys obtained are better than the centralized journeys. This column is divided into two columns: the percentage of occurrence and the average gap with the solution obtained with the centralised architecture. This scenario occurs in the same proportion as identical solution. The average dierence for external/external requests is 10 minutes and 25 seconds. This dierence is small compared to the average duration of a solution for external/external request which is 1:25:34. This high number of occurrences of this scenario can be explained by the dierence of objective functions between the two systems. Indeed, the centralized system tries to minimize the arrival time but it also takes into account others factors such as the number of transfers or the walk duration. This may lead to slightly worst solution when compared against our objective function.

The last column considers the opposite scenario where the centralized journey is better than the journey obtained with the distributed system. This scenario occurs less than 10% of the requests where both systems return a solution. This dierence is due to the dierence in objective function. Similarly with the solution not found in Table 4.3, the MultiPointTrip request C 2|1 --⇒ 2 e@t e may exclude valid solutions and therefore lead to worst solutions.

Second experiment: Improvements of the distributed system

In the second experiment, we examine methods to reduce the computation duration of the distributed system. Two methods are proposed. The rst improvement modies the method used given the capabilities of T IS P T . Indeed, in our case, T IS P T is able to compute ← → → Trip re- A second optimization is also implemented. This optimization reduces the number of connexion points considered. It is based on the work of Bast et al. [START_REF] Bast | Result diversity for multi-modal route planning[END_REF]. In this paper, the authors dene dierent rules to reduce the number of solutions when exploring a Pareto front. They consider that given two non dominated journeys, one with the trace CAR and one CAR + PT, if most of the trip in the second trace is made in CAR, it is better to make the whole journey using only the mode CAR and therefore to only present the CAR solution. They propose to remove every CAR + PT solution with a CAR section taking more than 25% of the whole journey.

In our case, when combining modes, we set a limit on the maximal distance used by each mode comparatively with the distance of the solution obtained using only said mode. This choice was made to reduce the computation time as well as to propose a more diverse set of solutions. For example, in the case of trace CAR + PT, the best solution may consist in doing the majority of the trip in car and to use the PT for one stop only. In this case, even though it is the best solution combining CAR and PT, this solution is not useful because it is just a worsened variation of the CAR trip. If the solution obtained with the restriction is signicantly worse than a full CAR trip, it can be ltered in a future step. 5 possible limitations are tested against the unlimited version: 20%, 40%, 60%, 80% and 100%. These percentages represent the maximal distance of the car trip in the trace CAR + P T compared to the distance obtained when using only the mode CAR. The PT mode is not restricted.

Both improvements are then used in the next experimentations. Table 4.5 presents the computation duration and the time spent in each request given the various limitations. The rst two columns present the type of requests tested as well as the limitation on the car trip. The third column shows the time spent waiting for a MultiPointTrip computation. This column is divided in two columns representing the average duration as well as the duration in the 9 th decile. As expected, adding a bound to the CAR distance reduces the average computation time. The impact is more important for internal/internal with a reduction ranging from 87, 7% with a 100% limit and up to 99, 3% when the bound is set at 20%. This eect is reduced with mixed and external/external requests. The time spent in MultiPointTrip requests is divided by at least 2 compared with the unbounded system. As we can see in the 9 th decile column, restricting the distance in CAR has an impact on at least 90% of our MultiPointTrip requests.

The next column shows the total duration in Trip requests to nd a solution. Similarly to the previous column, it is divided in two columns. The rst represents the average duration spent in Trip requests and the second the 9 th decile. In this case, adding a bound reduces the computation time but not as much as with MultiPointTrip request. This reduction might be unexpected. However, in the second step of Method 1ter, a ← → → Trip request is made. The departure points for this S. Shorten request are every connexion point gathered in phase 1 and attainable with the MultiPointTrip requests. Therefore, reducing the number of connexion points viable reduces the exploration and the computation time required. It should be noted that when a bound is used for a mode M , an additional Trip request s@t 0 -→ M e is made to compute the distance of reference. In our case, an additional Trip request with the mode CAR is made. This additional Trip request is also taken into account in the results.

Finally, the last column shows the average computation time as well as the ratio between the time spent by the orchestrator waiting for a response compared to the total time. Implementing a bound on the CAR distance allows to reduce the average total time. We can also see that using method F1ter instead of method F1 divides by two the computation time (from 19,58 seconds to 9,68 seconds for external/external requests). However, even with the restriction on the car distance, the average computation time can reach almost 6 seconds with a restriction of 100% for external/external requests. In these cases, this method is not usable as such and must be optimized further. One idea would be to use a faster TIS. Indeed, as we can see in the last column, at least 55, 31% of the total time is spent waiting for the various TISs and this value can go up to 92, 01% for unbounded computations.

Figure 4.9 presents another view on the computation times. In this gure, the x-axis represents dierent bounds on the CAR duration. Two additional points were added for comparison, the centralised and distributed without bound. Similarly to the cases with bound on the CAR distance, the method F1ter is used for the distributed option. The y-axis represents the total computation duration. It is expressed in seconds. For each conguration on the x-axis, three box plots are presented, one for each type of requests. The box covers the value from the rst quartile(Q1) to the third quartile(Q3). The median is shown with an orange line. The lines extending below and above the rectangle are called the whiskers. They extend up to a specic value (Q1 -1, 5 * (Q3 -Q1)) for the lowest value and up to Q3 + 1, 5 * (Q3 -Q1)) for the highest value. Any data not in this boundary is called an outlier and is represented by a circle.

The computation times of centralized and unbounded distributed are less variable compared to the computation time for bounded distributed system. Indeed, the standard deviation of the computation duration is between 0.36 and 0.41 for centralized system while it can reach 3.43 for distributed system with a 100% bound. However, these systems have a minimal duration (2 seconds for the centralized system and 6 for the distributed one), since every connexion point is always considered. This leads to xed but slow computation time.

The eects of using a bound on the solutions are presented in Table 4.6. This table compares the results obtained using multiple bounds against unbounded solutions.

As with Table 4.5, the rst two columns describe the type of request and the bound associated with each row.

The utmost right column presents the percentage of requests where a solution is not returned by the bounded system while a solution is found by the unbounded system.

As expected, since the set of connexion points is restricted, the set of possible solutions is also restricted. This restriction may not return a solution if for example the last bus cannot be reached in time. This eect is more important when most of the connexion points are removed for long distance trips as less back-up points are available. It concerns 6.07% of the requests for external/external requests when an upper bound on the CAR distance of 20% is used.

The third main column details cases where the solution obtained with a boundary is worse than the unbounded solution. This main column is divided in three columns. The rst column presents the percentage of dierent solutions obtained when using a bound compared to the unbounded solutions. This percentage is not adjusted with the percentage of non-found solution. Therefore, for internal/internal requests with a bound of 20%, only 29.21%(100 -1.99 -68.78) of the solutions are identical with the unbounded solutions. Except for the 100% bound, we found at least 30.78% of errors for internal/internal requests. This number can go up to 90.71% of errors for external/external request with a bound of 40%.

The next two columns give respectively the average error and standard deviation in seconds. The S. Shorten error is dened as the dierence in arrival time between the bounded solution and the unbounded solution. If the arrival times are equals, the dierence of departure time is considered. As expected, the average error decreases when the upper bound increases. The average error for external/external requests can reach 1 hour and 48 minutes when the bound is set at 20%. This large dierence on the solution may be due to a longer journey but may also be caused by a later departure date. To understand if the dierence in result is caused by longer journey and/or later departure time, and therefore arrival time, we must look at the fourth main column of this table. It presents the dierence in duration between bounded and unbounded journeys. It is divided in two columns, giving the average duration dierence and the standard deviation.

As we can see, the average dierence in duration is smaller than the error on the solution. For bound of 100%, the change in journey duration is small compared to the dierence in objective value. In these cases, the dierence is due to a later departure time. However, for smaller bounds, the dierence in duration explained at least 29% of the dierence and up to 86,7% for external/external request with a 20% bound. Therefore, adding a bound to the CAR duration increases the trip duration as well as the journey departure time. The reduction on the solution duration as well as the convergence of the solution to the unbounded solution presented in Table 4.6 can also be visualized in Figures 4.10, 4.11 and 4.12. A graph is created for each combination between the type of request and bound. In a graph, each solution is represented by a point. The x-axis represents the duration of the journey but also consider the waiting time between the requested departure time and the real departure time. The y-axis represents this rst waiting time. With this representation, every solution is below the y = x line. A point close to this line represents a solution where most of the journey duration is spent waiting to depart. A red cross is added to each graph. It represents the centroid (or barycenter).

For internal/internal requests (Figure 4.10), relaxing the bound reduces the duration of the trip but makes almost no change to the waiting time between the request departure time and the real departure time. This evolution is more visible in Figure 4.11 and Figure 4.12. Relaxing the bound reduces the trip duration and brings the point in a line close to the y=x line. This eect can be explained by the dierence in speed and availability of both modes. When no restriction is placed on the CAR trip, most of the journey is made by CAR as it is often faster. In this case, the PT trip is reduced to the bare minimum. Since the public transport may be not frequent outside of the main cities, the departure time is moved at the latest possible time while still catching the earliest useful public transport trip. This eect is less important in well deserve cities such as Paris where the dierence between the departure time and the requested departure time is small.

These conclusions are however specic to the CAR + PT combination. Indeed, a similar experiment was made with the trace BIKE + PT. In this case, a specic bound equal to the minimum between 40% of the distance or 20 kilometres was used. For external/external requests, the percentage of error is 57.63% compared to 90.71% with CAR + PT. The average error falls to 145 seconds or 2 minutes and 25 seconds. It is therefore much more interesting to consider a restriction on the distance modes used to solve the last mile problem such as bike or free-oating vehicles for example.

Third experiment: experimentations with estimators

This last experiment looks at traces with a TIS without MultiPointTrip service. Three traces are tested: T IS BIKE + T IS P T , T IS CAR + T IS P T and T IS P T + T IS BIKE . Geovelo computes Trip for bike and Tomtom is used for car results. In this experiment, these TISs are only called with Trip requests and therefore, require the use of an estimator. In both cases, the estimator used is the TIS provided by Cityway. Method F2 is used for the traces T IS BIKE + T IS P T and T IS CAR + T IS P T while method F5 is used for the trace T IS P T + T IS BIKE .

The protocol of experimentation is modied. To not overload external services with requests, only 100 requests were made for each trace. 33 are internal/internal requests, 33 mixed and 34 external/external. In the same spirit, the maximum number of loops for each method was set to three. A loop occurs when there is a gap between the estimation provided by the estimator and the real duration. In this case, additional trips may become relevant and must be tested. For example in Phase 3-2, a loop occurs when e cannot be reached in time during step 1-1a. In this case, Phase 2-1 is recalled.

We also used the improvement detailed in the previous section. A distance bound is created for car and bike section. The bound for car was set to 25% similarly to [START_REF] Bast | Result diversity for multi-modal route planning[END_REF] while it was set to 50% for bike. Table 4.7 presents the results of this experimentation. The rst column gives the trace studied in each row. The second column presents the computation duration. It is divided in two columns, one for the average computation duration and one for the standard deviation. Both of these measurements are expressed in seconds. The average computation time is similar between the various traces, varying between 3.9 and 4.5 seconds. The standard deviation for trace T IS BIKE + T IS P T or T IS CAR + T IS P T is around 1.5 second while it reaches 2 seconds for T IS P T + T IS BIKE .

The next main column looks at the proportion of total time spent waiting for a response from an API. Similarly with the previous column, it is divided in two columns, representing respectively the average duration and the standard deviation. We observe that the average waiting time represents more than 50% of the total time. This proportion is slightly reduced compared with the one observed in Table 4.5. Indeed, when using an estimator, additional steps must be made such as matching the results with the correct connexion points since the estimator T IS î and T IS i used a dierent set of ids for similar points. The average time spent waiting for a response is slightly higher for the trace T IS P T + T IS BIKE with a lower standard deviation. This dierence may be caused by an increase of the number of requests made as shows in the last column. The last main column shows the number of extra loops made. It is divided in three columns. Each column is associated with a number of extra loops ranging from 0 to 2 and gives the percentage of extra loops for each type of trace. For both traces T IS BIKE + T IS P T and T IS CAR + T IS P T , most of the requests end with the rst loop. However, with T IS P T + T IS BIKE , 58% of the requests need to S. Shorten 

Conclusion and future work

This chapter proposes generic methods to compute journeys combining two TISs together. These methods are dened based on the characteristics of each TIS in the trace. Each method was described in detail and some experiments were made to test these methods using real data. Using these methods, it is possible to compute journeys combining two modes easily. It only requires to have access to the relevant APIs. These methods are more exible compared to a centralized system. Indeed, a journey combining two TISs can be computed if the APIs can be described using the characteristics dened in Chapter 3. However, as the experiments have shown, this exibility comes at the cost of larger computation time. Indeed, the computation duration depends on the response time of each TIS. Moreover, having a distributed system reduces the control on the nal solution. Each TIS may have a dierent denition of an acceptable solution and most of the parameters considered by the TIS may not be accessible using the API. We also propose some improvements to reduce the computation time. However, these improvements must be used sparingly as they might degrade the journey obtained.

In this chapter, we supposed that at least one TIS must have xed connexion points. However, in some scenarios, no connexion points are available or the number of connexion points is too high to be accepted by the TIS's API. This may happen, for instance, when making a car trip between two countries, each with its own TIS. The connexion points in this case represents all the possible roads between both countries. It might be interesting to considered only the main roads in a rst approximation or to use a TIS covering both countries as an estimator to nd the relevant connexion points.

In this chapter, we also made the supposition that each TIS and its estimator are either both time-dependent or time-independent. However, the estimator might be time-independent while the TIS is not. This may occur for a TIS with a CAR mode for example. The estimator considers only the speed limit while the TIS takes into account real-time perturbations. Taking this dierence into account will reduce the number of calls made to the estimator and therefore speed up the computation time.

The next chapter presents a generic extension to these methods in order to compute journeys for traces of size 3 and higher.

Introduction

The previous chapter studied the resolution of traces composed of 2 TISs. Various methods were presented depending on the TIS's characteristics. In this chapter, we consider traces of size n. Seeing the size of the traces and the number of possible characteristic's combination, a generic solution is proposed to limit the number of methods. This solution is composed of two phases. Firstly, a simple algorithm reduces a trace of size n to a smaller trace. Then, if the size of the reduced trace is two, the methods presented in the previous section can be used. Otherwise, specic methods will be proposed. This chapter is divided in ve main sections. The rst section introduces a new structure called block. Then, the denition of traces and services are generalized to blocks, in sections 5.3 and 5.4, respectively. Section 5.5 studies traces composed of two blocks. These traces can be solved using the methods introduced in Chapter 4. For the remaining cases, sections 5.7 to 5.11 propose new methods. Details on the complexity of all methods are presented in Section 5.12. This chapter is only a theoretical study. Therefore, no experiment was made.

Denitions

Let Γ = T IS 1 + T IS 2 + • • • + T IS n be a trace composed of n TISs. Following Section 3.3.3, we assume that no two successive TISs have undened connexion points. Therefore, at least one out of two successive TIS has predened connexion points. In addition, we assume that at most one out of the n TISs doesn't propose the MultiPointTrip service.

Our approach consists in reducing trace Γ to a trace with a more manageable size. To do so, we introduce a recursive structure that we call block. Denition 5.2.1. A block is an object containing either a non-empty trace of TISs or a non-empty trace of blocks.

Clearly, trace Γ can be reinterpreted in many dierent block combinations. For example, Figure 5.1 reports a trace composed of 3 TISs and shows two dierent block combinations representing this trace.

The various characteristics dened for a TIS's API generalize to blocks:

• Time-dependence : A block can be time-dependent or time-independent. A block B is said time-independent if all the elements in B are also time-independent. Otherwise, the block is time-dependent.

• MultiPointTrip: If one element in the block does not propose a MultiPointTrip service, then the block does not support MultiPointTrip requests. Otherwise, it accepts the MultiPointTrip service.

• Connexion points : Similarly to a TIS, a block B can have three types of connexion points: undef ined, predef ined or obtained. However, a block has two sets of connexion points: one corresponding to the beginning of the block denoted C B -and one corresponding to the end of the block C B + . C B -(resp. C B + ) is composed of the connexion points of the rst (resp. last) TIS in the block.

Depending on how the trace is organized in blocks, the blocks will not have the same structure nor the same characteristics. Coming back to the example of Figure 5.1, B e can be time-independent or time-dependent. This dierence will impact solution methods. Therefore, it is important to nd the block combination that will allow minimizing the number of requests.

In addition, what is claimed above about block characteristics is not completely true. A block (or TIS) that is intrinsically time-independent will be considered time-dependent when it is surrounded by two time-dependent elements in the combination. Indeed, the optimizations introduced in Chapter 4 for time-independent TISs do not hold in this setting. This is illustrated on a simple example with Figure 5.2. 

Trace reduction

In this section, we explain how block combinations are dened. We consider a trace Γ = T IS 1 + T IS 2 + • • • + T IS n . Two methods are proposed depending on the presence or the absence of a TIS requiring an estimator (TIS without the MultiPointTrip service) in Γ.

Case where every TIS proposes the MultiPointTrip service

This rst reduction method is used when every TIS in trace Γ accepts MultiPointTrip requests. The reduction is organized in ve steps: With this algorithm, Γ is reduced to a combination of two blocks: B s followed by B e , or B sm followed by B e . In the following, a block composition is called a composite trace and is denoted Γ ′ .

1. A block B s is initialized with T IS 1 . A block B e is initialized with T IS n . 2. If T IS 1 is time-independent,
Note that blocks B s and B e are respectively time-independent if and only if T IS 1 and T IS n are. By construction, B m is necessarily considered to be time-dependent even if it is composed only of time-independent TISs. B sm is also considered time-dependent. 

Block services

In order to reuse the methods described in section 4.2 on a composite trace Γ ′ , we need to clarify how services operate on blocks. 
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MultiPointTrip service

The composite trace of a block is a sequence of blocks or TISs. A MultiPointTrip request applied to a block actually corresponds to a sequence of MultiPointTrip requests following the composite trace. At each step, a set of connexion points with associated times is given as input and a similar set is obtained as output. The input given to the rst element of the trace is the input of the service. The input of a next element is obtained from the output of the previous element. The service output is the output from the last element. When an element in the composite trace is a block, what is described here is executed recursively. When the element is a TIS, a MultiPointTrip request is applied, with the given input data. This request generates an output that is modied as follows: if a connexion point is associated with a time limit and if this time limit is not respected, the connexion point is removed from the output. We denote C@T this data.

Then, unless this was the last element, the input of the next call is constructed. The Exchange-Point service is applied to the next element to obtain the set of connexion points for this element. Timestamps are then computed by adding transfer times to C@T . If a connexion point is labelled with several timestamps (obtained from dierent origins in C), only the best timestamp is kept. If a connexion point is associated with a time limit and if this time limit is not respected, the connexion point is removed.

Trip service

A Trip request applied to a block can be interpreted in three dierent manners depending on the context.

1. The easiest case is when the connexion points that will be used between two successive elements of the composite trace are already know. It happens many times in the methods of Generalisation of the trace combination Chapter 4 and is shown with symbol -→. The objective of the Trip request is then to determine the detailed path within each TIS (or block) of the composite trace and to concatenate these successive paths. This is easily done by successively applying one-to-one Trip requests and adding transfer times when needed.

2. The second case is met when the user request is already partially solved: the value of the rst criterion (according to the dened lexicographic order) has been computed and the second criterion still has to be optimized. It is shown with symbol -→ →. Assume for example that the request is s -→ B → C B|D @T B|D . In this context, arriving at nodes in C B|D before times in T B|D guarantees optimizing the rst criterion. So, we search for the latest departure time t s from s compatible with these limits, as well as the detailed path between s and the node c B|D i in C B|D that enables this starting time.

To obtain this information, the request is rst considered as a MultiPointTrip request s --⇒ B C B|D @T B|D and executed as described above with only a slight dierence: in the last call, instead of applying a MultiPointTrip request to the element at hand, a Trip -→ → request is executed. This trip request provides the starting time t s from s, the detail of the path followed in this element, the connexion point e 1 that enables this starting time, and the time t e 1 at this point. Then, considering transfer times and the latest departure time information obtained from the MultiPointTrip requests, a starting point s 2 and a time t 2 are obtained for the next element, and a Trip request s 2 @t 2 → c is executed, where c is also known from the MultiPointTrip requests. This second Trip request provides new data s 3 and time t 3 and, the scheme is repeated until the last Trip request is executed with c reduced to e. Note that the element to which this Trip requests are applied might be TISs or blocks, which imposes to consider recursively what is described in this section. Note also that in this recursive process, it is possible that the Trip request falls in a dierent category.

When applied on a time-independent element of a composite trace, a Trip request -→ → can sometimes be reduced to a -→. Indeed, a Trip request -→ → is only made to the rst or last element of the composite trace. Moreover, when a time-independent block or TIS is in the rst or last position in a composite trace, the durations obtained using a MultiPointTrip allow to compute the duration of every path. Therefore, if a Trip request -→ → is made after a MultiPointTrip request, the duration obtained with the MultiPointTrip request is enough to nd the best sequence of connexion points. Therefore, a simple -→ request can be made.

This simplication cannot be used if a MultiPointTrip request was not made previously. For example, the request -→ → cannot be simplied for phase 2-3 used in Method F1ter.

3. In very specic situations, the Trip request aims at nding the best trip optimizing both criteria. In this case, the request is shown with symbol ← → →. Actually, this symbol is never used in the methods of Chapter 4. It only appears in Appendix A.1.2, while describing the extension of Method F1ter to the case where T IS 2 is time-dependent.

First, the Trip request is transformed into the equivalent MultiPointTrip request. It provides both the optimal value for the rst criterion and time limits. Then, the Trip request is considered again but with the opposite constraint (start at if the constraint was arrive at, and vice-versa) and subject to the time limits that were just obtained. The context is that of requests of type -→ → and can be dealt with the technique presented above.
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For instance, a request s@t 0 ← → → C is rst transformed into a request s@t 0 --⇒ C, which gives a vector T of latest arrival times at C. Then a request s -→ → C@T is applied.

The number of MultiPointTrip requests for a request of type -→ → is k -1 for a composite trace with k elements. A request of type ← → → on the other hand requires 2k -1 MultiPointTrip requests.

Composite traces composed of two blocks

When a composite trace is composed of two blocks, the methods presented in chapter 4 can directly be applied, with block services. An illustrative example is reported in Appendix A.2. In particular, thanks to the reduction algorithm, any trace composed of n TISs without estimator can be reduced to a composite trace of size two and solved.

Composite traces composed of three blocks

We now introduce a new set of methods for composite traces made of 3 blocks. Without loss of generality, we consider a composite trace Γ ′ = B A + B / m + B B and a user request s@t 0 → e. Eight dierent congurations are possible depending on the time-dependency of each block. Note that the intermediate block (block B / m ) necessarily requires an estimator in a trace of size 3. The methods are divided in 4 steps:

• Phase 1 collects the various connexion points and transfer times.

• Phase 2 estimates the arrival time at e and the relevant connexion points in B B and B / m .

• Phase 3: nds exactly the optimal arrival time at e

• Phase 4: computes the latest departure time from s if needed and the detailed optimal trip.

Phase 1 is identical for every method. Phase 2, 3 and 4 vary depending on the characteristics of the three blocks. Table 5.1 presents the resulting methods. As in Table 4.1, the name of each method is followed with numbers. They indicate the type of algorithms that are used for phases 2, 3 and 4. These three phases are respectively declined in 2, 4 and 2 variants. These dierent methods are described in the following sections. At the end of phase 1, all connexion points are known as well as the transfers and transfer times between T ISs and between blocks.

B A 's characteristics Characteristics of B / m and B B B / m is time-dependent B / m is time-independent B B is time-dependent B B is time-independent B B is time-dependent B B is time-independent Time-dependent F x 1(2-1,3-1,4-1) F x 2(2-2,3-2,4-1) F x 3(2-1,3-3,4-1) F x 4(2-2,3-4,4-1) Time-independent F x 1bis(2-1,3-1,4-2) F x 2bis(2-2,3-2,4-2) F x 3bis(2-1,3-3,4-2) F x 4bis(2-2,3-4,4-2)

Phase 2

Phase 2 estimates the earliest arrival time at e. This estimation is denoted te . It also reduces the sets of connexion points in B B and B / m to only keep connexion points able to reach e at time te . These reductions are based on estimations produced by B / m . Two implementations of phase 2 are possible whether B B is time-dependent or not.

Phase 2-1: 

B B is time-dependent Phase 2-1 is used when B B is time-dependent. It
C B / m |B A @T <B / m |B A ----⇒ B / m C B / m |B B .
B B |B / m @ T <B B |B / m ----⇒ B B
e gives the estimated earliest arrival time at e. This time is denoted te . Since te is based on the estimation provided by B / m , it is also an estimation.

6.

Step 6 tries to nd the connexion points able to reach e at time te . Firstly, the following MultiPointTrip request is made:

C B B |B / m ----⇒ B B
e@ te . It returns the latest departure times . This step concludes Phase 2-1.

T >B B |B / m . 7. A new set is introduced: C rB B |B / m .
Phase 2-2: B B is time-independent This phase is used when B B is time-independent. In this case, the number of MultiPointTrip requests can be reduced. The phase is divided in 5 steps:

1. Two MultiPointTrip requests are made in parallel:

s@t 0 ----⇒ B A C B A |B / m and C B B |B / m ----⇒ B B
e@t 0 .

The rst call returns the earliest arrival time at which share the same estimated arrival time at e, te (k). L is then sorted in increasing order of te (k). The rst set in L gives the estimated earliest arrival time in e denoted te . Moreover, the connexion points in this rst set are the only ones from which it may be possible to reach e at time te . Step 9. These steps check estimation te . At the end of this phase, R is either empty and e is not reachable at time te (the algorithm then continues with Step 7) or te is denoted t e and all pairs of connexion points compatible with this deadline are in R (the next step is Step 9).

C B A |B / m : T <B A |B / m .
7. This step is performed when it is not possible to reach e at time te 

c B / m |B B k ∈ C rB / m |B B }.
It is then compared to the estimated value for t e (if available):

(a) If t e has not yet been given a value or te < t e , we set t e = te . Also, the pairs of connexion points in P able to reach e at time te are regrouped in set R.

(b) If te = t e , the pairs of connexion points able to reach e at time te are added to R.

Then, te is compared with the estimated arrival time te . This comparison is made to estimate if some pairs of points previously excluded must be reconsidered:

(a) If te = te , each pair of points from block B B enabling to reach e at time te are already found. Indeed, te is the best arrival time found. Moreover, the connexion points not included in P or remaining in L have an estimated arrival time larger than te . The best pairs of connexion points are thus in R and t e gives exactly the earliest arrival time at e.

Step 9 is started.

(b) Otherwise, if te > te , some trips excluded in Step 3 may lead to better solutions. They are evaluated in steps 7 and 8.

7. This step estimates the earliest arrival time for each connexion point c Indeed, te is the best arrival time found. Moreover, connexion points not included in P or remaining in L have an estimated arrival time larger than te . The best pairs of connexion points are thus in R. This concludes Phase 3-3.

B / m |B B k ∈ C rB / m |B B . Only the points from C B / m |B A which are not coupled with c B / m |B B k in Q are considered. The set of these points is denoted CB / m |B A (k) = c B / m |B A j ∈ C B / m |B A : (c B / m |B A j , c B / m |B B k ) / ∈ Q . A Multi- PointTrip request CB / m |B A (k)@ T B / m |B A ----⇒ B / m c B / m |B B k is executed. It returns this estimation, denoted t<B / m |B B k . 8. For each connexion point c B / m |B B k ∈ C rB / m |B B ,
(b) Otherwise, if te > te , it may be possible to obtain a better solution. Phase 3-3 is thus restarted.

Output of phases 3

At the end of these phases, the earliest arrival time at e is known and is denoted t e . Set R contains every pair of connexion points from B / m able to reach e at t e . The latest arrival times at connexion points c and that appear in R are kept. Among the remaining connexion points, one is selected at random as they are equivalent for our criteria. A pair (c 

B / m |B A j and c B / m |B B k with (c B / m |B A j , c B / m |B B k ) ∈ R
B / m |B A j , c B / m |B B k ) in R is selected. It

Complexity of the various methods

Due to the presence of a TIS requiring an estimator, some methods presented in the previous sections may require a large number of requests to nd the best trip. This section evaluates this number. Results are reported in Table 5.2.

Numbers are computed based on the following parameters. Given a trace Γ, n is the size of the trace. If one of the TIS, T IS / m , needs an estimator, the number of T ISs in block B A is denoted l and the number of T ISs in block B B is denoted m. We thus have n = l +m+1. When an estimator is used, the number of calls also depends on the number of connexion points. Let p be the number of connexion points of T IS / m with the preceding TIS and q be the number of connexion points with the following TIS. When the estimator is at one of the extremities of the trace, the number of connexion points is always denoted p. Methods F 6 and F 7 are only shown for traces of sized two as the generalisation to larger traces is only presented for traces with at most one estimator. 

F 1 2 3 3 2 2 O(1) F 1bis 2 2 2 2 2 O(1) F 1ter 2 1 1 2 2 O(1) F 2 2 3 2p + 3 3 2p + 1 O(p) F 3 2 3 4 2 p + 1 O(p) F 4 2 2 2 3 2p + 1 O(p) F 5 2 2 2 2 p + 1 O(p) F 6 2 3 2p + 4 3 3p O(p) F 7 2 2 2 2 2p O(p) F x 1 n 2n -1 2n + 2pq(m + 1) -2 * n + 1 n + 2pq -1 O(pqn) F x 2 n n + l n + l + 2pq -1 * n + 1 n + 2pq -1 O(n + pq) F x 3 n n + l n + l + q(2pm + 1) -1 * n n + pq -1 O(pqn) F x 4 n n + 1 n + q + l -1 * n n + pq -1 O(n + pq) F 1 n 2n -1 2n -1 n n O(n) F 1bis n n n n n O(n) F 1ter n n -1 n -1 n n O(n) F 2 n n + 1 2p(n -1) + 3 n + 1 2p + n -1 O(pn) F 3 n n + 1 2n n p + n -1 O(n + p) F 4 n n n n + 1 2p + n -1 O(n + p) F 5 n 2(n -1) 2(n -1) n p + n -1 O(n + p) * :
Given a method F x Y , the complexity of the bis equivalent: F x Y bis is obtained by subtracting l -1 to the number of MultiPointTrip requests.

Table 5.2: Number of calls to MultiPointTrip and Trip

We can note that, except for F 2, the number of call is linear when the trace can be reduced to a composite trace of size two. However, when the composite trace is composed of three blocks, the methods require O(n + pq) or even O(pqn) requests. Therefore, in a practical context, these methods should be used with precaution as they may lead to long waiting time before providing an answer.

Note

In some cases, a reduction in the number of calls is possible. Indeed, in Step 8 of Phase 3-1 and Step 7 of Phase 3-2, a new estimation of the earliest arrival time at some points c

B / m |B B k ∈ C B / m |B B is searched. A MultiPointTrip
request is called to obtain this new estimation. Some departure points are excluded since a previous MultiPointTrip request gave an estimation for these points and the real trip duration was obtained in a previous Trip request. In this case, it is possible to reduce the number of MultiPointTrip requests. It is however not trivial as illustrated with Figure 5.6. In the example of Figure 5.6, three MultiPointTrip requests are needed in the original method A . For every right-hand side node in the bipartite graph, it gives the earliest arrival time and the corresponding best source node, among nodes that are connected with plain arcs. The same information can be obtained with only two MultiPointTrip requests B . Actually, the minimal number of requests is given by the minimal number of complete bipartite subgraphs that cover all plain arcs and only plain arcs. This problem is known as the biclique cover (or biclique edge cover) and it is NP-complete even for bipartite graphs [START_REF] Orlin | Contentment in graph theory: covering graphs with cliques[END_REF]. In view of the expected number of connexion points in practice, optimal or near-optimal biclique covers could certainly be found, but this is left for further optimisations of the methods.

Possible improvement when computing multiple traces

In Chapter 3, we have seen how to generate traces able to solve a user request. In the previous chapter and in this chapter, we have seen how to solve each one of these traces when they do not include TISs with obtained connexion points. The fact that some traces might start with the same TIS gives however the opportunity of mutualizing trace resolution.

To do so, we introduce a rooted tree that represents the set of possible traces. Contrary to the structures introduced in Section 3.4, TISs are represented by edges. Acceptable traces are then given by the paths starting from the root node. Traces are not only obtained for paths between the root and leaves of the tree, but also between the root and any intermediate node. Figure 5.7 presents an example of such tree with 5 modes: personal bike (BIKE), bicycle-sharing system (BSS), personal car (CAR), carpooling (CARPOOLING) and public transport (PT). For the sake of more generality, we do not follow the assumptions of this chapter in this example. In this tree, PT is a valid trace as well as CARPOOLING + BSS or BSS + PT + BSS, for example.

It is not always true that all subpaths of an acceptable trace are acceptable traces. To deal with that, we dene some nodes as closed nodes. A node of the tree is said closed if the trace from the root to this node is not allowed. In Figure 5.8, the trace CAR is not possible but CAR + PT is allowed. With this representation, it is possible to mutualize the MultiPointTrip call s@t 0 --⇒ 1 C 1|2 made at the beginning of Phase 2. If several traces share the same rst TIS, the request can be executed only once, with a set of connexion points enlarged to the union of the connexion points available from the dierent traces. For instance, in the case of traces PT + BIKE, PT + BSS and PT + CARPOOLING, the three MultiPointTrip requests to T IS P T can be replaced by a unique request considering the connexion points associated with BSS, CARPOOLING and BIKE. Other equivalent optimizations are possible in Phase 3, but they are very specic and have not been implemented.

Conclusion

This chapter presented a generalisation of the methods of previous chapter to solve arbitrary large traces. This is done by rst introducing the concepts of blocks and composite traces. An extension of the various services to blocks was then proposed. It allowed to resolve some composite traces using methods presented in the previous chapter. New methods were also introduced to solve the remaining cases. However, these new methods require a signicant number of requests making them hard to be used in practice.

Further work is needed to extend these methods when more than one estimator is present in the trace. Another area of improvement is to reduce the number of requests. This could be done by introducing heuristic methods. For example, a stopping criterion based on the remaining improvement or the number of requests already made could be introduced. Another potential Chapter 6

Computing a trace containing a TIS with obtained connexion points 

Introduction

In Chapter 3, three dierent types of connexion points were presented: Predened, Obtained and Undened. Chapter 4 and Chapter 5 proposed methods to solves traces composed of T ISs with predened or undened connexion points. The resolution of traces containing one T IS with obtained connexion points is considered in this chapter. This type of connexion points is notably found with carpooling TISs. Multiple methods are presented based on the characteristics of the other T ISs in the trace. An experiment is also performed on industrial data to test our methods. The eciency of the methods is evaluated as well as the importance of a parameter presented in this chapter.

This chapter is divided in 7 sections. Section 6.2 presents the dierences between a T IS with obtained connexion points and a T IS with predened or undened connexion points. An overview of the dierent methods is presented in section 6.3. Sections 6.4 to 6.7 detail the various phases of each method. Finally, in section 6.8, experiments on specic methods are made.
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Specicities of TISs with obtained connexion points

In the following, a T IS with obtained connexion points is denoted T IS O . T IS O behaves dierently than a T IS with predened or undened connexion points. Firstly, T IS O has connexion points. However, these connexion points are not gathered using an ExchangePoints request. They are obtained with the Trip service. This service is modied compared to the Trip service presented in Chapter 3. A Trip request is composed of the following elements:

                     a start point s,
an end point e, a constraint which can be start at or arrive at, a time t, either associated with s or with e, depending on the constraint, an objective function (e.g. fastest, least connexions or least walking), two distances D s and D e a list of options. Two new parameters are introduced D s and D e , that dene maximal distances to s and e. Also, input data s, e and t with multiple values are not accepted. Finally, the output is modied. It provides a set R O of eligible trips, constrained with distances D s and D e . This is illustrated with Figure 6.1. Each trip is dened by its departure point (also known as pick-up point), its arrival point (also referred as drop-o point) and associated times. The pick-up and drop-o points are not necessarily at s and e, but are at a maximal distance from s for the pick-up points and from e for the drop-o points. These distances are dened in the request under D s and D e , respectively. This can be seen in Figure 6.1 were R 1 and R 5 are not acceptable since their respective drop-o points are too far from e. Moreover, a trip is only returned if it respects the time constraint dened in the request. Therefore, depending on this constraint, some trips might not be presented, such as R 3 in Figure 6.1. Since time aects the result, T IS O is considered time-dependent. 

′ α + Γ O + Γ ′ β is denoted Γ ′ .
The time-dependency of each block is determined based on the time-dependency of its elements. If every element is time-independent, the block is time-independent. Otherwise, it is considered time-dependent.

Phases

When the composite trace is known, the resolution can start. Let s@t 0 -→ e be the user request. Resolution is divided in 4 phases:

• Phase 1 applies a Trip request to T IS O and computes relevant connexion points between successive components of the composite trace.

• Phase 2 limits trips in T IS O to those reachable given Γ α .

• Phase 3 evaluates the earliest arrival time at e.

• Phase 4 calculates the latest departure time from s and collects the detail of each trip.

Phase 1 doesn't depend on the characteristics of blocks in Γ ′ α and Γ ′ β . Therefore, only one method is proposed. For phases 2, 3 and 4 various methods are needed depending on the type of sub-trace and the characteristics of each block. Each phase is explored in a dedicated section .

Phase 1: Obtaining connexion points

Phase 1 computes connexion points with T IS O and identies possible transfers for each successive pair of TISs. It is divided in 2 steps.

1. This rst step starts with a Trip request s@t 0 -→ O e. As shown in Figure 6.1, this call returns a list of possible trips denoted R O . Each trip contains a pick-up and a drop-o point as well as associated times. These points give connexion points for T IS O . Pick-up points are

Computing a trace containing a TIS with obtained connexion points gathered in a set denoted C O+ and the associated pick-up times are denoted T >O+ . Likewise, C O-contains the drop-o points and T <O-the associated drop-o times. In the following, C O-, C O+ , T >O+ and T <O-will be denoted respectively C O , C O , T >O and T <O if it is not ambiguous. Without loss of generality, we also suppose that each connexion point is associated with only one trip in R O (otherwise, a connexion point can be duplicated).

2. In the second step, transfers between TISs and between blocks are computed. For each TIS in trace Γ except T IS O , connexion points are collected with an ExchangePoint request if they are not already available. Transfer times are also collected or computed if needed. Regarding T IS O , this is done thanks to sets C O+ and C O-. Finally, connexion points and transfer times for blocks are also dened using connexion points and transfer times from TISs.

At the end of Phase 1, connexion points C i|j , C j|i and transfer times T i|j are known, for each pair of successive TISs (T IS i , T IS j ) in Γ, as well as for pairs of successive blocks in Γ ′ . Moreover, detailed information on trips in T IS O is available.

Phase 2: Suppressing unattainable trips in R O

Phase 2 is used to discard trips in T IS O which cannot be reached before their pick-up times.

Dierent methods are proposed depending on the type of composite trace obtained for Γ ′ α . It should however be noted that time dependency / independency doesn't aect the type of method used. The methods are presented in Table 6.1. One method is proposed for each one of the six forms that can have Γ ′ α .

Trace

Γ ′ α ∅ B A B / m α B / m α + B B B A + B / m α B A + B / m α + B B Method used O2-0 O2-1 O2-2 O2-2bis O2-3 O2-3bis
Table 6.1: Methods for Phase 2

These methods are described below.

Phase O2-0:

Γ ′ α = ∅
When Γ ′ α is empty, Phase 2 is skipped. Indeed, every trip in R O respects the time constraint and is therefore attainable.

Phase O2-1:

Γ ′ α = B A Here, Γ ′
α is composed of a unique block B A . This block oers a MultiPointTrip service. In this case, Phase 2 is decomposed in two steps.

1. The rst step computes earliest arrival times T <B A |O at C B A |O . These times are obtained with the MultiPointTrip request s@t 0 ----⇒

B A C B A |O .
2. Transfers T B A |O are added to T <B A |O to nd the earliest arrival time at each connexion point in C O|B A . If multiple times are obtained for a given connexion point, only the earliest time is kept. The vector of times obtained is denoted T <O|B A . For each connexion point S. Shorten

c O|B A i ∈ C O|B A , t <O|B A i is compared with t >O i . If t <O|B A i > t >O i , c O|B A i
is not reachable on time. It is therefore removed from C O|B A . The remaining connexion points are gathered in a set denoted C rO|B A . The associated trips in R O form a set denoted R rO . This concludes phase O2-1. An example is provided in gures 6.2 and 6.3. In this example, Γ ′ = B A + T IS O . The rst step gives earliest arrival times at C B A |O as shown in Figure 6.2. In Figure 6.3, times T B A |O are added to T <B A |O to compute T <O|B A . In this case C rO|B A = {c 1 , c 3 } and R 2 and R 4 are suppressed since they cannot be reached on time. 1. The rst step computes the latest arrival time at each connexion point c

B / m α |O i ∈ C B / m α |O
for each trip R j ∈ R O . Given a trip R j , this is obtained by subtracting transfer durations T B / m α |O to t >O j . The resulting latest arrival times are denoted T >B / m α |O (j).

A

MultiPointTrip request s@t 0 ------⇒ B / m α C B / m α |O is executed to estimate earliest arrival times at connexion points in C B / m α |O . These estimated times are denoted T <B / m α |O . 3. For each trip R j ∈ R O and each connexion point c B / m α |O i ∈ C B / m α |O , t >B / m α |O i (j) and t<B / m α |O i are compared. If t >B / m α |O i (j) ≥ t<B / m α |O i , it might be possible to reach R j using c B / m α |O i . Therefore, c B / m α |O i is added to a set denoted C rB / m α |O (j). The next step checks if R j is indeed reachable or not.
4. The reachability of each trip R j ∈ R O is checked with Trip requests. To minimize the number of requests, connexion points in C rB / m α |O (j) are rst sorted in decreasing order of gap

t >B / m α |O i (j) - t<B / m α |O i . Following this order, request s ---→ B / m α c B / m α |O i @t >B / m α |O i (j) is executed
to check if the latest departure time from s is greater than or equal to t 0 . In this case, R j is known to be reachable, otherwise c

B / m α |O i is removed from C rB / m α |O (j)
and the search continues with the next connection point until the reachability status is found for R j .

Note that the results of Trip requests carried out for a trip R j can be reused for other trips in

R O . Given R k ∈ R O , request s ---→ B / m α c B / m α |O i @t >B / m α |O i (k) is not necessary if t >B / m α |O i (k) ≥ t >B / m α |O i
(j) and if the equivalent request for R j was conclusive (R k can also be reached on time). Conversely, s ---→

B / m α c B / m α |O i @t >B / m α |O i (k) is not useful if t >B / m α |O i (k) ≤ t >B / m α |O i (j) and
if the equivalent request for R j was negative (neither R j nor R k can be reached on time from

c B / m α |O i ). Also, if B / m α is time-independent, only one request per connexion point c B / m α |O i
is necessary as it returns the duration of the trip.

At the end of Step 4, R rO regroups all the trips in R O that can be reached on time, starting at time t 0 from s.

Note: Another approach is possible for the last step. It is described in Appendix A.3

Phase O2-2bis:

Γ ′ α = B / m α + B B
This method is adapted from Phase O2-2. In this case, a block B B is added after B / m α . The resolution is divided in 3 steps.

1. This step is similar to Step 1 of Phase O2-2, with block B B replacing B / m α . This step computes the latest departure time in C B B |O associated with each trip in R O . For a given trip R l ∈ R O , these times are denoted T >B B |O (l).

For each trip R

l ∈ R O , MultiPointTrip request C B B |B / m α ----⇒ B B C B B |O @T >B B |O (l) is per- formed.
Each call returns the latest departure time from C B B |B / m α associated with R l . These times are denoted T >B B |B / m α (l).

3. The last step then consists in applying Phase O2-2, but with T IS O replaced by B B . The rst step returns the latest arrival time at each connexion point in

C B / m α |B B for each trip R l ∈ R O . These times are denoted T >B / m α |B B (l). Then each trip R l is tested to see if it is reachable.
At the end of this step, set R rO contains reachable trips.

Phase O2-3:

Γ ′ α = B A + B / m α
In this variant of Phase 2, Γ ′ α is composed of two blocks: B A and B / m α . The resolution is divided in 6 steps, with the last step possibly repeated.

1. The rst step computes the latest departure time at each connexion point c

B / m α |O k ∈ C B / m α |O for each trip R l ∈ R O .
The method used is identical to step 1 in Phase O2-2. For each trip R l ∈ R O , the latest arrival times obtained are denoted T >B / m α |B O (l).

2. MultiPointTrip request s@t 0 ----⇒ 

B A C B A |B / m α is
c B / m α |B A j @t <B / m α |B A j ------⇒ B / m α C B / m α |O k . Each MultiPointTrip request returns a vector T <B / m α |O (j).
This vector is an estimation of the earliest arrival times at C B / m α |O using c B / m α |B A j . 5. We introduce R rO ⊂ R O the set of trips that are known to be reachable. Initially, R rO is empty. The next step aims at completing R rO . Trip requests to B / m α are used to verify the reachability of trips R j ∈ R O . To limit the number of requests, a score S is attributed to each pair (c

B / m α |B A j , c B / m α |O k ) ∈ C B / m α |B A × C B / m α |O : S(c B / m α |B A j , c B / m α |O k ) = R l ∈R O \R rO t >B / m α |O k (l)≥ t<B / m α |O k (j) t >B / m α |O k (l) - t<B / m α |O k (j)
This score computes the sum of gaps between the estimated earliest arrival time and the latest arrival time associated with each trip in R 0 \ R rO . Given a pair (c

B / m α |B A j , c B / m α |O k ), if no trip in R 0 \ R rO is estimated reachable, S(c B / m α |B A j , c B / m α |O k
) is not dened. Each pair of connexion points with a score is added to a set L. This set is then sorted in the decreasing order of scores.

6. This step is repeated until R O \ R rO = ∅ or L = ∅. If R rO has been modied at the last execution of the step, scores are rst recomputed, and list L is reordered. Let (c

B / m α |B A j , c B / m α |B O k
) be the rst pair in L. This pair is removed from L and Trip request c

B / m α |B A j @t <B / m α |B A j ---→ B / m α c B / m α |O k is carried out. This request returns the earliest arrival time at c B / m α |O k from c B / m α |B A j . This time is denoted t <B / m α |O k (j). For each trip R l ∈ R O \ R rO , t <B / m α |O k (j) is compared to t >B / m α |O k (l). If t <B / m α |O k (j) ≤ t >B / m α |O k (l), R l is reachable. In this case, R l is added to R rO . Phase O2-3bis: Γ ′ α = B A + B / m α + B B
This case is a combination of Method O2-3 and Method O2-2bis. It is divided in 9 steps:

1-2 Steps 1 and 2 of Method O2-2bis are applied. These steps compute the latest departure time at each point in At the end of this method, R rO contains reachable trips in R O .

C B B |B / m α associated with each trip R o ∈ R O . The associated vector is denoted T >B B |B / m α (o).
Computing a trace containing a TIS with obtained connexion points

Output of Phase 2

At the end of Phase 2, a set R rO is created. This set contains every reachable trip in T IS O .

Additional output is available depending on the method used. Phases O2-1, O2-3 and O2-3bis compute the earliest arrival time at the pick-up point of each trip R j ∈ R rO . However, in phases O2-2 and O2-2bis, the latest arrival time at each trip R j is used to compute the latest departure time from s. This information will be useful in Phase 4 to reduce the number of requests. The next steps vary depending on the trace. A separation in four groups is proposed:

• The rst group is used only when Γ ′ β is empty.

• The second group concerns composite traces of size one.

• The third group contains composite traces composed of two blocks starting with B / m β .

• The last group contains the remaining traces. These composite traces have a size of two or three and the rst block oers a MultiPointTrip request.

Each group is described in the following sections.

Phase 3 when

Γ ′ β = ∅ When Γ ′ β = ∅,
the arrival time at e of each trip R j ∈ R rO is compared. The earliest arrival time at e is selected. It is denoted t e . Each trip with an arrival time at e larger than t e is excluded. The remaining trips are regrouped and form an updated set still denoted R rO . This concludes Phase 3 when Γ ′ β is empty.

Phase 3 when Γ ′ β contains a single block

In this situation, Γ ′ β is composed of a unique block. Depending on the characteristics of this block, various methods are proposed. Each method is a modied version of a method proposed in Chapter 4. They are presented in Table 6 

C B C |O @T <B C |O ----⇒ B C
e to compute the earliest arrival time at e. This time is denoted t e . An example is provided in Figure 6.4. A second MultiPointTrip request, shown with Figure 6.5, is made to remove connexion points unable to reach e at t e . On the example of Figure 6.5, c

B C |O 3 and c B C |O 4
are removed since t

<B C |O 3 = 9:25 > 9:20 = t >B C |O 3 and t <B C |O 4 > t >B C |O 4 
. The remaining points are regrouped in a set denoted C rB C |O . Then, transfer times T O|B C are subtracted from T >B C |O to compute T >O|B C . For each connexion point c

O|B C i ∈ C rO|B C , t >O|B C i ∈ T >O|B C is compared to t <O|B C i ∈ T <O|B C . If t <O|B C i > t >O|B C i , it is not possible to reach e at t e from c O|B C i . Therefore, c O|B C i is removed from C rO|B C . The remaining points form an updated version of C rO|B C . R rO is also updated to only keep trips R j ∈ R rO such that c O|B C i is in C rO|B C . In Figure 6.5, c O|B C 4
and R 4 are removed from C rO|B C and R rO , respectively. As with Method O3-1, Γ ′ β consists of a unique block, B C . However, in this case, B C is timeindependent. This characteristic is used to improve Method O3-1. The solution method is inspired by Phase 2-2 of Chapter 4. This method is divided in 4 steps: 

1. First, MultiPointTrip request C B C |O ----⇒ B C e@t 0 is carried out. Since B C is time-independent,

2.

Step 2 nds the earliest arrival time at e, t e , as well as connexion points able to reach e at t e .

Firstly, the earliest arrival time at e is computed by adding

d B C j ∈ D B C to t <B C |O j ∈ T <B C |O
for each connexion point c

B C |O j ∈ C B C |O .
The time obtained is denoted t e (j). The earliest time found among those times is the earliest arrival time at e. It is denoted t e . C B C |O is updated to suppress any connexion point unable to reach e at t e . A new set 4. For each connexion point c

C rB C |O = {c B C |O j , c B C |O j ∈ C B C |O and t e (j) = t e } is created. T <B C |O is
O|B C i ∈ C rO|B C , t <O|B C i is compared with t >O|B C i . If t <O|B C i > t >O|B C i
, it is not possible to reach e at t e starting from c

O|B C i
. Those connexion points are therefore suppressed from C rO|B C . R rO is also updated to contain only trips with a connexion point in C rO|B C . This concludes Method O3-2.

Method O3-3:

Γ ′ β = B / m β and B / m β is time-dependent
This method is applied when Γ ′ β is composed of a single block which requires an estimator. This block is denoted B / m β . In this case, Method F3 of Chapter 4 is used with T IS 1 = T IS O and T IS 2 = B / m β . At the end of this phase, t e is found and C rO|B C contains only the drop-o points able to reach e at t e . R rO is updated keeping only trips with a drop-o point in C rO|B C . Details of the trips in B / m β are also known contrary to methods O3-1 and O3-2.

Method O3-4:

Γ ′ β = B / m β and B / m β is time-independent
In this situation, B / m β is time-independent. Method O3-3 could be used. However, the character time-independent of B / m β allows us to reduce the number of requests. This method is composed of 4 steps. In this case, Γ ′ β is composed of two blocks where the rst block requires an estimator. Depending on the characteristics of B / m β and B D , a dierent method is used. Table 6.3 presents these methods. 

B D B / m β Time-dependent Time-independent Time-dependent Method O3-5(F x 2-1 * , F x 3-1) Method O3-7(F x 2-1 * , F x 3-3) Time-independent Method O3-6(F x 2-2 * , F x 3-2) Method O3-8(F x 2-2 * , F x 3-4) * :
Phase is modied Table 6.3: Methods used for phase 3 when Γ ′ β begins with a TIS requiring an estimator

The methods reuse parts of the methods F x presented in the previous chapter. More precisely, phases 2, 3 and 4 of these methods are reused. Since Phase 4 is identical in every method, it is not specied in Table 6.3. Phases 2-1 and 2-2 are modied to be used with only two blocks instead of three. In this section, only these modications are presented. A simple reference to Chapter 5 is given for other steps. Also, Table 6.4 reports an equivalence table for the names of the blocks and TISs. Phase 3: Γ ′ β contains two or three blocks and starts with a block proposing a MultiPointTrip service In this case, Γ ′ β contains either two or three blocks depending on the presence or not of B D in the composite trace. Resolution is based on the methods proposed in Chapter 5. However, this phase only computes the earliest arrival time t e at e and the connexion points in C O-able to reach e at t e . Therefore, solution methods are slightly modied to end before computing the details in each block. Moreover, solution methods are also modied since Γ ′ β begins with multiple starting points instead of a unique point s.

Notation in method F

x B A B / m B B Notation in this section T IS O B / m β B D Table 6.
As shown in Table 6.5, 6 dierent methods are used depending on the size of Γ ′ β and the characteristics of each block. It should be noted that the characteristics of B C do not inuence this phase. A mapping between the notation of Chapter 5 and the notation used in this chapter is presented in Table 6.6. 

B D B / m β Time-dependent Time-independent Time-dependent F x 1(2-1,3-1,4-1(steps 1 & 2)) F x 2(2-2,3-2,4-1(steps 1 & 2)) Time-independent F x 3 (2-1,3-3,4-1(steps 1 & 2)) F x 4 (2-2, 3-4,4-1(steps 1 & 2)) B D = ∅ F 3(2-1,3-3(steps 1, 2 & 3)) F 5(2-2,3-5(steps 1, 2 & 3))
C B C |O @T <B C |O ----⇒ B C C B C |B / m β .
Four nal steps are also added to take into account these multiple departure points. This modication is identical for each method. Indeed, in all methods, the earliest arrival time at e, t e , is found as well as the connexion points C 

T >B

C |O is compared with T <B C |O for each connexion point c B C |O j ∈ C B C |O . If t <B C |O j > t >B C |O j
, it is not possible to reach e at t e using c 4. For each connexion point c

O|B C i ∈ C O|B C , t <O|B C i is compared with t >O|B C i . If t <O|B C i > t >O|B C i
, it is not possible to reach e at t e starting from c O|B C i . Those points are therefore suppressed from C rO|B C . R rO is updated as follow: for each connexion point c O|B C j ∈ C rO|B C , the associated trip R j is kept in R rO . Other trips are removed.

Output of Phase 3

At the end of Phase 3, the earliest arrival time at e, t e , is found. Moreover, C rO-contains only connexion points able to reach e at t e . The set of possible trips in R rO is updated to only retain trips with an arrival point c O- i ∈ C rO-. The updated set is denoted R rO . The set of connexion points in C rO+ can also be updated accordingly. 

B / m α |O k ∈ C B / m α |O . If t>B / m α |B A j (k) > t>B / m α |B A j
, it might be possible to leave s later than t > At the end of Part 1, the latest departure time from s is known and the trip detail in Γ ′ α is computed. Moreover, the associated trip R ∈ R rO is found. Part 2 is therefore used to compute the trip detail in Γ ′ β .

If Γ ′ β = ∅, this part is skipped. If Γ ′ β is not empty, the best trip in each block associated with R is already known. A simple Trip request is then made to B C and B D if they exist. These Trip requests compute the detail of each trip. B / m β is skipped since the details were already obtained in Phase 3. This concludes the resolution for traces composed of a TIS with obtained connexion points.

Experimentations

These methods are evaluated with two series of experiments. In the rst experiment, methods are tested for two dierent traces: Public Transport + Carpooling + Walk and Public Transport + Carpooling + Public Transport. The second experiment studies, on the same traces, the impact of parameters D s and D e .

In these traces, the TIS with Obtained connexion points is the carpooling API BlaBlaCar1 . Solutions for public transport and walk are provided by Cityway's API. This API oers a Multi-PointTrip service. For the combination Public Transport + Carpooling + Walk, the walk section is provided by Cityway's API since Blablacar doesn't return it.

Methods are evaluated using 504 randomly generated requests. To do so, the seven largest cities in Region Grand-Est (Strasbourg, Reims, Metz, Mulhouse, Nancy, Colmar and Troyes) and Paris were selected. A rectangle delimiting each city was created and points were picked randomly inside these rectangles. Using these points, requests from one city to another were created. It should be noted that a dierent set of requests was created for the two traces. In the rst experiment, D s and D e were set to 20 km each and the walk was limited to 2 km.

First experiment Table 6.8 reports the number of requests for which a solution was found and, when the request fails, the part of the trace that explains this failure. The rst column describes the trace. The second column gives the number of successful requests. Remaining columns indicate the cause when no solution is found (in percent of the total number of requests). As we can see, only 33% of the requests return a solution for trace PT + Carpooling + PT and this number decreases to less than 4% for trace PT + Carpooling + Walk. In both cases, the carpooling API did not return at least one trip in 29% and 38% of the requests. This absence is most likely due to the COVID-19 pandemic, since these computations were made in early 2021.

The next column presents the number of times where none of the carpooling trips were reachable by public transport on time. Again, the large rates (20% and 40%) can be explained by the rarity of carpooling trips.

Finally, the last column presents the number of times it was not possible to reach e from the remaining drop-o points. The small number of solutions found for trace PT + Carpooling + Walk can be explained by the small limit on walking time.

In order to better analyse successful requests, additional requests were made for trace PT + Carpooling + Walk. New requests were generated until a total of 38 successful request was reached. This number was obtained after 840 requests. At this point, the experiment was stopped to limit the number of calls made to an external API. Computing times are presented in Table 6.9, Figure 6.7 and Figure 6.8 for the two traces and the 38 and 167 successful requests, respectively. 6.9 is divided in two parts. The rst part provides the total computing times and the response times from the carpooling API. In each column, the average response times and the standard deviations are presented. The time to obtain a solution varies between 1.8 seconds and 4.4 seconds for trace PT + Carpool + PT, and between 1.6 and 2.9 seconds for trace PT + Carpooling + Walk. These durations are acceptable but larger than expected in an industrial context. The calls to the carpooling API represent a small portion of these times (6 to 8%). Figure 6.7 and Figure 6.8 present time repartition in more details. As expected, most time is spent in Trip and MultiPointTrip requests. The eciency of these services is therefore an important factor to use these methods in an industrial context. The Internal section in these gures regroups the dierent computations made by the orchestrator. These could range from calling the database, creating the requests and parsing the responses, to mapping the connexion points obtained by the carpooling and to applying transfers in order to suppress useless connexion points.
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Second experiment

In the second experiment, the impact of D s and D e is investigated. It should be noted that Blablacar'API does not dierentiate between D s and D e . Therefore, a single value is used for both parameters. For PT + Carpooling + PT, only 162 requests out of the 167 successful requests were used. This reduction is due to a dierence in the response given by the carpooling API between the start and the end of our experiments. Table 6.10 describes the eects of D s and D e on solutions. The rst two columns present the two traces and selected values for D s and D e . The next three columns report the impact of D s and D e on solutions. The rst column gives the number of times a solution was found. The next column gives the percentage of solutions equivalent to those found when D s = D e = 20000. The third column presents the average gap (in minutes) when solutions are not equivalent. As expected, the number of solutions decreases with the values of D s and D e . When the trace is PT + Carpooling + Walk, similar solutions are found: either the solution obtained with the limit set to 20000 is still acceptable, or it is not and no other feasible solution can be found. For trace PT + Carpooling + PT, the quality of some solution decreases. These solutions arrive at e more than 4 hours later than the original solution on average.

Again, the reduction of the carpooling oer due to the pandemic can explain the limited number of alternatives returned by the carpooling API. This is shown in the last two columns of the table. The rst column provides the average number of carpooling solutions returned by the API and the last column shows the standard deviation. As we can see, the average number of carpooling responses for the whole day is very small, with only 7 solutions on average with a radius of 20 km around the start and end points.

Conclusion

This chapter presented various methods to solve traces containing a TIS with obtained connexion points: T IS O .

The Trip service denition was updated to handle TISs with obtained connexion points. This request returns multiple trips, each with a pick-up and a drop-o points. A time is associated with each point (respectively, the pick-up and drop-o time). Since these times are xed, they dene the latest arrival time for B A and the earliest departure time for B B . These x times also enables studying of traces with two TISs requiring an estimator, as long as these two TISs are on dierent sides of T IS O in the trace.

Traces containing one TIS with obtained connexion points were then analysed. Firstly, we create composite traces to reduce the possible cases. Resolution methods were then proposed to nd the best solution.

Experiments demonstrated the practical utility of these methods. A solution for a trace with 3 TISs can be obtained in 2 or 3 seconds. Moreover, the impact of parameters D s and D e was analysed. Unfortunately, these results need to be conrmed and rened as they were made with a low volume of carpooling trips, due to the COVID pandemic. S. Shorten

Introduction

In the previous chapters, various methods to compute the best journey in a distributed system were presented. Given a trace Γ, the method used depends on the number of TISs in Γ but also on the characteristics of these TISs. One important characteristic is the presence or absence of a MultiPointTrip service. When this service is not proposed by a TIS, another TIS is used to answer MultiPointTrip queries. This TIS is called an estimator and, calling T IS i the rst TIS, it is denoted T IS î. The results obtained from T IS î are treated as estimations for T IS i . These estimations are used to guide Trip requests made to T IS i . Among the dierent characteristics of TISs, this characteristic has the most impact on the total number of requests used to nd an optimal journey. This is shown, for example, in Table 5.2 of Chapter 5. In this table, when every TIS oers a MultiPointTrip service, the number of requests depends only on the size of the trace denoted n. Conversely, if one TIS does not oer this service, the number of requests also depends on the number of connexion points between the TISs, which can be relatively large. Therefore, to minimize the total number of requests, it is preferred that every TIS in the trace proposes a MultiPointTrip service. This might however not always be possible depending on the TISs selected. In this case, an estimator is needed and the quality of this estimator must also be considered. As explained before, estimations guide Trip requests made to T IS i , but they also act as lower bounds. These lower bounds permit to stop computations earlier. For that reason, a good estimator limits the increase in the total number of requests due to the absence of the MultiPointTrip service. In this chapter, we present an algorithm to create an estimator for a public transport TIS if one is needed. We will discuss the following contributions:

• A method is proposed to nd important stops in a public transport network using only API calls. These stops are called hubs. Based on those, the estimator is created and provides an estimation of trip duration between any pair of stops in the public transport network.

• The relevance of the set of hubs is studied. An experiment is also carried out to evaluate the quality of the estimator in various congurations. The estimator is also compared to other estimators obtained with easier methods.

The rest of this chapter is divided in the following ve sections. Firstly, denitions and notations are proposed in section 7.2. Then, a quick review of various representations of public transport networks is presented in section 7.3. The proposed algorithm to create an estimator is detailed in section 7.4. In section 7.5, experiments conducted on the Île-de-France network are reported. Finally, section 7.6 concludes the chapter, discusses shortcomings of the method and presents potential extensions of our work.

Denitions and notations for a public transport network

Since this chapter focuses on public transport networks, some denitions are introduced. A public transport network is composed of one or multiple public modes of transportation such as buses, trains or trams. Available transport modes in the public transport network are gathered in a set denoted M. Each mode is divided in one or multiple lines. Île-de-France public transport network has for example 16 lines of metro (denoted 1 to 14 plus 3bis and 7bis), 5 lines of RER (A to E) is not dened for the last triplet.

An example of a timetable is given in Figure 7.1. This gure presents a portion of the timetable of RER D operated by the SNCF. The rst column shows the various stops possible in this portion of the line. This portion of the timetable starts from Gare du Nord and ends at Corbeil Essonnes.

Each following column is a trip and each line of said column is a triplet. Here however, since t arr i = t dep i , only one time is shown. As we can see, dierent sequences of stops are possible on the same line. In this example, some trips skip Le Vert de Maisons, Creteil Pompadour and Villeneuve Triage while others don't. In this case, we say that these trips have dierent routes. Denition 7.2.2. A route is a sequence of stops followed by at least one trip of the timetable.

Since it doesn't consider the time at each point, multiple trips can follow the same route.
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In this timetable, each route has a specic name (ROPO, ROVO, RUPE, BUPE, ZUPE). Here, routes RUPE, BUPE and ZUPE have dierent names since some of them continue after Corbeil Essonnes but it is not shown in this reduced timetable. BUPE carries on to Malherbes and ZUPE to Melun.

Using these denitions, we can dene a journey using the public transport network as a succession of trips and transfers between trips.

Another common denition of a trip in a public transport network can also be found in the literature. In this case, a trip is dened as an ordered list of elementary steps (also known as elementary connections) [START_REF] Pyrga | Ecient models for timetable information in public transportation systems[END_REF][START_REF] Geisberger | Contraction of timetable networks with realistic transfers[END_REF] In the following, we denote f(e) the element f of the elementary step e. For instance, dep(e) is the departure stop from e and t arr (e) is the arrival time at arr(e). To be considered as an elementary step, the stop arr(e) must be the stop directly after dep(e) in route r(e). If we consider the public transport network presented in Figure 7.2, the portion of the rst trip in timetable 7.3 can be described with three elementary steps (e 1 , e 2 , e 3 ) where: This concept of elementary step can be extended to also describe transfers between dierent routes. This is done by adding two possibilities for r. r can represent the route used or it can be set to either "Transfer" to denote a transfer between two routes or to "Wait" to denote waiting to board a vehicle. When r(e) is set to "Transfer", dep(e) is the stop to get o and arr(e) is the get-on stop. The dierence between t dep (e) and t arr (e) is the time needed to physically move from dep(e) to arr(e). When r(e) is set to "Wait", dep(e) = arr(e) and t arr (e) -t dep (e) is the duration of the wait. If we consider that the transfer duration between r red 1 and r blue 1 at the stop C takes ve minutes, the best journey for the request T (A@8:00 → D) is composed of ve elementary steps: (e 1 , e 2 , e 3 , e 4 , e 5 ) where : This denition of an elementary step e can also be extended to all modes of transportations if we expand the possibilities for dep(e) and arr(e). For example, to represent a trip using a car, a bike or even walking, dep(e) and arr(e) can be used to represent addresses. An address corresponds either to a place of departure, a place of arrival or a crossroad when a change of street is required. Given this new denition, the path represented in Figure 7.4 can be expressed as the following list of three elementary steps (e 1 , e 2 , e 3 ): 

Representation of a public transport network

To create an estimator, we need to select a representation of the public transport network. Multiple representations and associated algorithms have been proposed in the scientic literature to nd the best journey in a time-dependent network. In this section, we present some important representations and algorithms.

Time-expanded model

This model [START_REF] Schulz | Dijkstra's algorithm on-line: an empirical case study from public railroad transport[END_REF] represents each elementary step in a graph G(V,A). Given an elementary step (s, e, t s , t e , r), two vertices u and v are created. The rst vertex, u(s, t s ), represents the departure from s at t s while the second vertex, denoted v(e, t e ), represents the arrival at e at t e . An arc (u, v) is also created. The weight of this arc is the elementary step duration: t e -t s . If multiple vertices represent the same stop at the same time, they are merged. To consider potential transfers at the same stop, an arc (u(a, t u ), v(b, t v )) is created between u and v if they represent the same stop and the time t v is the earliest time at this stop after t u . More formally, an arc (u(a, t u ), v(b, t v )) is created if a=b, t u < t v and ∄w(c, t w )|a = c and t u < t w < t v . A representation of the network presented in Figure 7.2 using the time-expanded model is shown in Figure 7. Numerous modications to this model were proposed to consider various additional constraints. One simple constraint to add is transfers between stations. These transfers can be considered in the graph by adding arcs. For instance, we want to allow a transfer of duration d from station a to station b. For each node u(a, t u ) ∈ V representing an arrival at a at time t u , an arc (u, v) is added from u to node v(b, t v ) which is the earliest node representing a departure from b where t u + d ≤ t v .

Another model called realistic time-expanded model was also proposed [PSWZ08] [Gei11]. This model takes into account transfer duration at a station. Indeed, in the model described above, the transfer duration was considered negligible.

In this new model, three types of nodes are created: departure, arrival and transfer. For each elementary step (s, e, t s , t e , r), a departure node u(s, t s ) is created as well as an arrival node v(e, t e ). An arc (u, v) is added with a weight of t e -t s . If the route r continues after e, an arc is created between v and the node representing the departure of r from e. The arc duration correspond to the waiting time in the vehicle at b.

For each departure node u(s, t u ), an associated transfer node w(s, t w ) is added to the graph. An arc (w, u) is created with a weight of zero. This arc represents the boarding of a vehicle. This transfer node w(s, t w ) is also linked to the transfer node with the same station and the earliest time after t w . This passage from one transfer node to another allows a traveller to wait at the station for its next course.

To consider a minimal transfer time t, a nal set of arcs is added. Each arrival node v(e, t v ) is linked to the earliest transfer node w(e, t w ) such that t w > t v + t.

These representations allow to compute time-dependent journeys using algorithms made for time-independent network such as Dijkstra. However, since each elementary step adds two nodes to the graph, this representation can become very large. To obtain a graph with a reduced size, another representation can be used: the time-dependent representation

Time-dependent model

In this model proposed by Brodal and Jacob [START_REF] Gerth | Time-dependent networks as models to achieve fast exact time-table queries[END_REF], a node of the graph G(V,A) represents a stop of the network. An arc (u,v) is created if an elementary step from u to v exists. The weight of each arc is dened by a time-dependent function denoted F u,v (t). F u,v is a piece-wise linear function that returns the duration of the trip from u to v arriving at the earliest possible time at v given a time of arrival at u. This function only considers using elementary steps linking u to v. It can be computed using the timetables. For instance, Figure 7 This representation was modied [START_REF] Geisberger | Advanced route planning in transportation networks[END_REF] to take into account a minimal transfer duration. Instead of a unique vertex per station, a vertex v sr is created for each stop s ∈ S in a route r ∈ R.
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An arc (u,v) is created if both vertex are on the same route r and the stop represented by v directly follows the stop represented by u in said route. An additional node is added for each stop called the transfer node. This node is linked to each vertex representing the same node. The weight of these arcs take into account the drop-o and get-on durations as well as any transfer duration. An example of this representation for the network presented in Figure 7.2 is given in Figure 7.7 Numerous methods were published to reduce the computation time required to compute journeys in a time-dependent network. Among these speed-up methods, some are based on a simplied representation of the public transport network. This representation is called the stop graph. It can also be found under the name of station graph [START_REF] Schulz | Using multi-level graphs for timetable information in railway systems[END_REF] or condensed graph [START_REF] Delling | Engineering time-expanded graphs for faster timetable information[END_REF]. Let G(V,A) be a stop graph. Each node v ∈ V represents a stop of the network. An arc a = (u,v), is created if an elementary step e exists where dep(e) = u and arr(e) = v. The weight of this arc is the minimal duration among every elementary step from u to v. This representation is timeindependent. Therefore, it cannot be used to compute journeys. However, it is useful to provide lower bounds such as in the time-dependent adaptations of ALT and ArcFlag [START_REF] Delling | Engineering time-expanded graphs for faster timetable information[END_REF] algorithms. This graph can also be used to nd important stops in a network. This is done for example in the transfer pattern algorithm [BCE + 10].

B E D A t B r1 C r1 C r4 A r1 A r2 D r4 D r3 C r2 A r3 C E r1
The main idea of the transfer pattern algorithm is based on computing in advance every optimal transfer pattern to reduce the exploration when receiving a request. A transfer pattern between two stops a and b is a list of stops representing a journey. The rst stop in the transfer pattern is the departure stop a, the last stop is the arrival stop b and every stop between is a stop where a transfer is made in the journey. For example, in Figure 7.2, ACD and AD are two transfer patterns from A to D. When a request s@t 0 -→ e is received, the earliest journey associated with each transfer pattern is computed. The best journey is our solution. Reducing the exploration to a few sets of optimal transfer patterns reduces the response time. However, computing every optimal transfer pattern turns out to be too expensive. To reduce the preprocessing, important stops were selected by making random requests on the stop graph. Most recurring stops in solutions were selected. These stops were called hubs. In the preprocessing phase, transfer patterns are computed from these hubs to every stop. However, from a non-hub stop, only the transfer patterns without hubs as transfer are kept. When they contain at least one hub, only the transfer patterns up to the rst Creation of an estimator for public transport hub is kept.

It should be noted that some methods don't use a graph to compute the best journey in a time-dependent network. For instance, RAPTOR [DPW14] uses three arrays, one containing the dierent routes, one containing the stops present in each route and nally one with every trip, grouped by route and ordered chronologically. Using these arrays, RAPTOR works on multiple rounds to compute the earliest arrival time at every stop given a starting stop and a departure time. At each round k, it computes the earliest arrival time at each stop with k-1 transfers or less. To do so, it scans every route at each round and checks if the earliest arrival time of the stops in the route can be improved. Improvements were made to reduce the number of routes scanned.

Another example is the CSA [START_REF] Dibbelt | Intriguingly simple and fast transit routing[END_REF] algorithm. In this algorithm, every elementary step is stored in an array sorted by departure time. A variable τ (s) is created for each stop s to denote the current earliest arrival time at this stop. When receiving a request d@t 0 -→ a, τ (s) is initialized at innity for each stop except for τ (d) which is initialized at t 0 . Then, the array of connexions is scanned. When a reachable elementary step e is found, τ (dep(e)) ≤ t dep (e), we check if the earliest arrival time at arr(e) is improved: τ (arr(e)) ≥ t arr (e). If this is the case, τ (arr(e)) is updated. Transfers from arr(e) are also considered. This scan continues until the elementary step checked has a departure time greater than the earliest arrival time found at a.

Creation of an estimator

In this section, we propose a method to create an estimator for a public transport TIS. This TIS is accessible thanks to an API. This API should be able to answer Trip requests. We suppose to have access to a list containing every stop available in the network. This list may be obtained using the ExchangePoints service for example. This list of stops is denoted S. In this list, each stop can be represented using its name or an id for example, as long as it is recognized by the public transport API. The position of these stops, the network structure and timetables are supposed unknown. This assumption is the lowest feasible assumption since knowledge of the stop is mandatory to make a request to the public transport API. Given these constraints, recreating the whole network with the timetable would require too many requests. Since the estimator should return lower bounds on the duration, one solution would be to create a stop graph as presented in the previous section. However, the shape of the network is unknown making it dicult to create. Therefore, similarly to [BCE + 10], our method is based on nding important hubs of the network and then creating a graph around these hubs.

Our algorithm is divided in two phases. The rst phase tries to identify important stops and creates a partial duration matrix of the network around those hubs. This phase is called the preprocessing phase. The second phase occurs when a MultiPointTrip request is received. In this phase, the matrix is used to order possible calls to the API and to provide an estimation for each trip duration.

Preprocessing phase

The preprocessing phase is divided in two steps. Firstly, it tries to nd important stops in the public transport network. These stations are called the hubs of the network. In the second step, these hubs are used to create an estimator.
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Hub discovery

The rst step of the preprocessing phase discovers hubs in the network. To do so, a score I(s) is assigned to each stop s ∈ S. This score is initially set to 0 for every stop. The algorithm then creates a xed number of Trip requests: a@t -→ b. This number of requests is denoted R. The start and the end of each request are randomly selected among the stops of the network. However, the start time is set at 8:00am. This time was selected based on the rush hours and the average waiting time to obtain the least waiting time during the journey. These requests are sent to the public transport API. The API provides a response which contains a detailed trip with every transit. For each transit in the response, the score of the transit stop increases by 1. For instance, with the trip T 1 proposed in section 7.2: (A, B, 8:00, 8:10, r red 1 ), (B, C, 8:10, 8:20, r red 1 ), (C, C, 8:20, 8:25, T ransf er), (C, C, 8:25, 8:30, W ait), (C, D, 8:30, 8:45, r blue 1 ), I(C) is increased by one. However, if the transfer requires to change stops, the score of both stops is increased by one. When every request is computed, the algorithm selects the H stops with the highest score. These stops are the hubs of the network. We note H the set of hubs selected, H ⊂ S.

Creation of an estimator

The second part of the preprocessing phase builds a directed graph G(V,A,Ω). Each stop is represented by a node v ∈ V . An arc a = (u, v) is created between u and v if u or v represents a hub. More formally

A = {(u, v) |u, v ∈ V, u ∈ H} ∪ {(u, v) |u, v ∈ V, v ∈ H}.
An example of the graph obtained is given in Figure 7.8.a. For each arc a = (u, v), a Trip request u@8:00→ v is made to the public transport API. The trip obtained is composed of n elementary steps and is denoted T = (e 1 , e 2 , .., e n ). Using this journey, three dierent weight functions are computed for comparison purposes. They are denoted respectively Ω R , Ω W and Ω T W .

• Ω R sets the weight of arc a as the duration of the journey T .

Ω R (a) = t arr (e n ) -t dep (e 1 )

• Ω W sets the weight of arc a to the duration of the journey returned by the API minus any waiting times:

Ω W (a) = e i ∈T \{e/r(e)=Wait}
et(e i ) -st(e i )

• Ω T W sets the weight of arc a to the duration of the journey returned by the API minus any waiting and transfer times:

Ω T W (a) =
e i ∈T \{e/r(e)=Transfer or r(e)=Wait}

et(e i ) -st(e i )

Similarly to the stop graph, this duration is used as a lower approximation of the time required to complete the journey from u to v at any time of the day. Once a weight is assigned to every arc of the graph, the preprocessing phase end. Therefore, creating the graph requires making |H| * (2 * |S| -|H| -1) + R requests to the API.

Request resolution

This phase starts every time a MultiPointTrip request is received. The request is composed of M starting stops D = {D 1 , D 2 , .., D M } and N nishing stops : A = {A 1 , A 2 , .., A N }. Starting stops come with an earliest departure time. The goal of this phase is to obtain a lower bound estimation of each trip. Given this request, a subgraph of G is created: G ′ (V ′ , A ′ ). This graph contains only the starting and ending points of the request and the hubs as shown on Figure 7.8 .b. The arcs are kept in only one direction: from a starting point to a hub or from a hub to an ending point. The weight of each arc is kept.

Once G ′ is constructed, every starting point receives a label. The label contains the starting node, the current node and the earliest time of departure called the weight of the label. The weight of the label represents the earliest arrival time possible at each stop. Each label is extended following every outgoing arc. When an extension is made, the weight of the label is updated by adding the weight of the arc (Figure 7.9 B). If two labels with the same starting node are on the same node, the label with the highest weight is dominated and thus deleted (Figure 7.9 C). A pseudo-code of the label propagation is presented in Appendix B.1. Finally, when no more labels can be extended, all labels on the nishing nodes are gathered. The weight of each label gives the estimation of the trip duration for each call. The labels are then sorted based on this lower bound. For example, in Figure 7.9 C, the call (D2,A2) seems the most interesting with its expected lower bound equal to 10. Then comes (D1,A2) with 11, (D2,A1) and nally (D1,A1). The public transport API is called using this order. However, contrary to the transfer pattern algorithm [BCE + 10], we don't require the hub to be used in the request. Hubs are only used to reduce the number of requests made in the preprocessing phase and to produce estimations. This propagation method allows to compute an estimation for each pair of points (d i , a j ) where d i ∈ D and a j ∈ A. This method requires to keep up to M labels at each node. We can reduce the number of labels kept to only one by keeping only the label with the earliest value without considering the departure stop. If this modication is made, only the earliest estimated arrival time for each arrival stop will be obtained. 

Improving the hub selection

One area for improvement concerns the hubs selection phase. When selecting hubs, we noticed that some hubs were very close to each other. One of the reasons is the representation of a stop by APIs. Some APIs consider one stop per transport mode. This means that places grouping several lines are represented as dierent stops by the API. For example, Gare de Lyon (see gure 7.10) has 2 metro lines, 2 RER, 1 transilien, and 17 bus or night-time lines. This single station can sometimes be represented by four dierent stops, one for each mode of transportation, or even 22 with one stop for each line of public transport (or more if we dierentiate metro platforms of the same line for example). In this case, the hub selection algorithm considers each stop without being able to group them together as one stop. This leads to a fragmentation of the weights assigned to each stop and the nal weight of each stop may then be too low to be considered as a hub even if the station deserves to be a hub. The opposite eect can also occur and several hubs may be selected even though they all represent the same station. To solve these problems, we propose to modify the current algorithm.

The improvement tries to detect close stops and groups those stops together. This detection is done during the scoring phase I(s). To detect close stops, we use the responses obtained in the scoring phase. In each response obtained in this phase, if a transfer is made between stop a and b, we look at the transfer duration given in the response. If the duration is smaller than a predened time (we chose two minutes), we suppose that a and b are close. When we sort the nal score of each station, the score of a station will be the sum of its score plus the score of all the stations that are close to it. Moreover, when a hub is selected, every station close to this hub are removed from the pool of potential hubs. This strategy detects when multiple stations are close to each other and when the score of a station is split between multiple stations due to the API conguration. 

Results

This section is divided in two parts. The rst part evaluates the pertinence of our method to select hubs. The second part compares results obtained with our estimator given various parameters. This estimator is also compared against other simpler algorithms. The public transport API used is provided by Cityway. It covers the region of 'Île-de-France'. This region is composed of 8 administrative departments. The API provides more than 18 000 stops. The network is served by bus, tramways, subways and trains. The implementation was done on C# and ran on a 4 cores Intel Xeon E5606 running at a frequency of 2,13GHz with 8Go of RAM.

Hub selection

The rst experiment measures the ability of our algorithm to nd the same set of hubs on independent runs given the same set of parameters. An instability measure, denoted χ, is created to quantify the consistency between dierent runs. χ l compares the score dierence of a stop s when it is selected as a hub on a run l but not on another run k. This score is normalized to compare the instability of dierent sets of parameters. The formal denition of χ l is:

χ l (H, L, R) = L k=1,k̸ =l s∈H l (R,H)\H k (R,H) | Îl (s) -Îk (s)| H * (L -1)
where :

• H is the number of hubs S. Shorten

• L is the number of independent runs • R is the initial number of requests • H l (R, H) is the set of H hubs found after R requests by the run l.

• Îl (s) is the normalized score of a station s on the run l. It is computed using the following formula:

Îl (s) = I l (s) max k∈S (I l (k))
This normalisation allows to compare instabilities between runs with dierent numbers of initial requests. In the rst experiment, ten runs were launch with 5000 initial requests. Figure 7.11 represents the evolution of the instability based on the number of hubs selected. The x-axis represents the number of hubs selected while the y-axis gives the instability score for each run. We observe that the instability oscillates when the number of hubs selected is lower than 25. This oscillation suggests that multiple stops have a similar importance but have dierent weights depending on the initial requests made and therefore are selected in dierent orders across the various runs. The instability then stabilizes after the 100 hubs mark. At this point, we can suppose that the main stops are selected and adding another hub has a low impact on the instability. We also note that the instability score never falls to zero. Therefore, at any point, in a least one run, a stop was selected as a hub and was not selected by the other runs.

We then study the impact of the number of initial requests on the instability. 5 values were considered: 500, 1000, 2000, 5000 and 10000 requests. For each value, 10 dierent runs were made. Figure 7.12 presents the evolution of the average instability for each number of initial requests. Figure 7.13 presents the evolution of the standard deviation of the instability. It is important to notice that, in both cases, the y axis uses a logarithmic scale. The mean and standard deviation reduces when the number of requests increase. Increasing the number of initial requests allows to be more consistent to select the rst 5 to 25 hubs in the network. However, the overall shape of each curve is similar and the ratio between the average instability and the standard deviation stays around four even when the number of initial requests increases.

Experimentation on the estimator

This section presents various experiments made on the estimators and the results obtained.

Methodology

The estimations created by an estimator serve two purposes in our methods:

• To order the potential Trip requests.

• To be used as a lower bound in order to stop the computation.

To test both characteristics, the following experimental protocol is used. Let G(V, A, Ω) be the estimator graph. As explained in section 7.4.2, given a MultiPointTrip request D@T --⇒ A, an estimation of the earliest arrival time for each pair (d i , a j ) ∈ D × A is obtained. This allows to create a call order.

However, having a call order is not enough to reduce the number of calls. We also need to know when we can stop calling the API. This is done by using the estimations obtained from the estimator as a lower bound. If the best result given so far by the API is lower than the estimated trip duration of the next query, the algorithm is stopped. An example can be seen in Table 7.1. This table is created using results obtained in Figure 7.9 which gave the following call order: (D2, A2), (D1, A2), (D2, A1) and (D1, A1). The rst Trip request to the API, (D2,A2), returns a duration of 12. Since the next call (D1, A2) has an estimated duration smaller than our current best solution (11 compared to 12), this Trip request is also made. With the value of 14, it does not improve the best solution. The next call (D2,A1) has an estimated lower bound of 13 which is higher than the best solution found. Therefore, the algorithm is stopped. The best trip found, from D2 to A2, is returned as the solution. Using this algorithm, dierent experimentations were made.
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Call order (D2,A2) (D1,A2) (D2,A1) (D1,A1) Estimated lower bound 10 11 13 14 Real time (results given by the API) 12 14 stop Table 7.1: Reduction of Trip requests made using results obtained from Figure 7.9

For each experimentation, 10 000 random requests are generated. Each request contains a start point denoted x and an end point denoted y. Both points are selected at random. Then, among all the stops within a 2 kilometres radius from x, 5 are selected at random. Those 5 stops are the departure stations D = {D 1 , .., D 5 }. The same is done with y which produces the set of arrival points A = {A 1 , .., A 5 }. The value of 2 kilometres was selected to imitate a journey in an urban area, which can combine small distance transport modes such as walk or dockless electric scooter or bike with public transport. We verify that D ∩ A = ∅. Given these stops, the total number of Trip requests to nd the best trip is 25. This number can be lower if less than 5 stops are found in the two kilometres radius around x or y. The starting time is randomized for each request but is the same for each stop of a request.

Eect of the number of initial requests and hubs

The rst experimentation studies the eect of the number of initial requests and the number of hubs on the estimator results. The weight function selected is Ω T W . Table 7.2 and Table 7.3 present the impact of the number of hubs on the results with respectively 1000 and 10 000 initial requests. Each table can be decomposed in 5 main columns. The rst two columns contain the number of hubs and the initial number of requests. The next column gives the average number of calls made by the algorithm. As explained, the algorithm stops when the earliest arrival time obtained is lower than the remaining estimations or when every Trip query was made. A normalized average is also presented. This value considers cases where the size of D or A is lower than ve. It is computed using the following formula: N * = 25 * N T where N* is the normalized number of requests, N the number of requests used and T the total number of requests possible. For example, if only three stations where reachable in A and ve in D, the total number of requests would be reduced to 15. Therefore, if the algorithm stops after 6 requests, the normalized number of requests would be 10.

The fourth column of the table concerns estimation errors. Estimations produced by the estimator may be higher than the real trip duration. Indeed, this may be the case when the optimal solution does not pass by a hub for example. These columns give the percentage of errors, the average dierence between estimations and trip duration when estimations were higher than the trip duration, and the 9 th decile of the error on the duration.

Finally, the last column gives the percentage of non optimal solutions found by our algorithm and the average gap between the solution obtained and the optimal solution.

The percentage of requests made is high, ranging from 60 to 70% of the possible requests. Moreover, increasing the number of hubs increases the average number of requests made. The initial number of requests has a small impact on the result. Indeed, increasing the number of initial requests by a factor 10 only raises the number of optimal solutions found by 0.5% in average. However, the number of hubs has more impact on the result. An increment of 10 hubs leads to an average raise of 0, 72% in the number of optimal solutions found. With 100 hubs (0.55% of the stops) and 10 000 initial requests, the optimal solution is found almost 95% of the time. The number of errors on the estimation follows a similar pattern. Increasing the number of hubs by 7.3: Impact of the number of hubs on the estimations with 10000 requests 10 reduces the number of errors by 1.5%. The gap between the estimated lower bound and the real trip duration is also reduced. Even though this method provides good results, the number of requests made is high.

Modied stopping criterion

To reduce the number of requests made, we test if our algorithm was consistently ranking the optimal solution in the rst few requests. If so, we could set a maximum number of requests and stop the algorithm when it is reached. The stopping criterion is modied to cap the number of calls at 3 or 5. Tables 7.4 and 7.5 present the results obtained with respectively 1000 and 10 000 initials requests. Similarly to the previous tables, the rst two columns present the number of hubs and initial requests made. The next main column presents the average number of calls and percentage of error on the solution. This column is an aggregation of columns 3 and 5 of Table 7.2 and Table 7.3. The last two main columns propose the percentage of non-optimal solutions and average error on the solution after 3 and 5 requests respectively.

Similarly with the previous method, the number of initial requests has a small impact on the solutions obtained. This new stopping criterion reduces the average number of requests made by a factor 3. However, the number of errors on the solution jumps from 5.13% to 38.08% with 3 calls and to 25.73% with 5 calls. The average error gap also increases from 7 minutes to more than 12 minutes for 100 hubs and 10000 initial requests. This dierence is low considering the average duration of our trip is 1 hour and 32 minutes. However, due to the large number of errors, this method is not usable for a real product with this set of parameters. remaining stations is selected. The graph is then modied to integrate the new hub. α s and β s are set to zero for the remaining stations and the second step is restarted until |H| hubs are selected. Tables 7.6 and 7.7 present the dierence of results between the original method and the variation. A column was added in second position to indicate which method is used. The method named "Original" is the method presented in section 7.4.1 while the method named "Variation" represents the method proposed in this section 7.4.3 Table 7.6 presents results obtained with the original stop criterion. This new hub selection method makes less calls, 0.64 in average. However, it increases the number of non optimal solutions found by 1.5% in average and it overestimates the trip duration of 1.36% additional trips in average compared to the original solution.

In Table 7.7, we change the stopping criterion to stop after 3 or 5 requests. In this case, both methods give similar results. However, the original hub selection method is slightly better than the variation method. With 3 requests, the original method produces in average 0.80% more optimal solutions than the variation method. Based on these results, the variation method is therefore not interesting compared to a simpler hub selection method. 

Weight functions

We also compare the dierent weight functions proposed in Section 7.4.1. The previous methods used the weight function Ω T W to consider only the travel time. Ω W only suppress the waiting time while Ω R uses the duration obtained during the preprocessing phase. The results are presented in Table 7.8 and Table 7.9. As expected, by taking into account the transfer duration and moreover with the waiting time, we reduce the number of calls made. Indeed, since the estimation increases, the algorithm stops earlier. Unfortunately, it also decreases the number of optimal solutions found and it increases the number of errors. Indeed, with 100 hubs, we found 10% fewer optimal solutions with Ω R compared to Ω T W . Therefore, these weight functions cannot be eectively used as lower bounds. Nonetheless, as shown in Table 7.9, using the real duration allows to reduce the number of errors when limiting the number of requests to three or ve. Another aw in the algorithm is the multitude of possible routes within a line. Indeed, the weight of the arcs may not represent a good estimate of the lower boundary if the route retrieved during the preprocessing phase was not the fastest route possible. This is the case when the algorithm retrieves an omnibus route while a direct route exists but was not available at the time of the request.

One solution to handle these errors is to update the graph based on responses obtained with the API. Let a@t → b, a request with an estimated time higher than the time obtained using the API. We rst look at the response r = (e 1 , e 2 , ..., e n ). If at least one hub h is present in the list of elementary steps, we update the weights of (a, h) and (h, b) based on the response. Indeed, since the estimation obtained for a@t → b is greater than the real duration, at least one of the arcs, (a, h) or (h, b) has a weight greater than expected. We can therefore reduce its weight based on the weight function and on duration of the trip obtained in the response.

We can also update the weight from each station crossed to/from the hub h on the trip if needed.

On the other hand, if the response does not contain any hub, we add to the graph a new arc (a, b). The weight of this new arc is given by the weight function selected applied to this trip.

This solution doesn't suppress mistakes, but it alters the graph after an error to prevent further errors.

Other possible evolutions

In this chapter, we suppose the position of stops unknown. This hypothesis was made to have as few requirements as possible. However, it is sometime possible to get the position of every stop. This information can be used to reduce the number of requests during the preprocessing phase and to detect small trips.

One possibility would be to suppose that given a station s and a hub h, if they are distant from each other, both trips s@t → h and h@t → s might pass by one or multiple hubs closer than h to s.

Given this supposition, a modication to the graph G is made. For each station s ∈ S which is not a hub, instead of adding an arc (s, h) and (h, s) for each h ∈ H, we x a constant K < |H| such that s is only linked to the K nearest hubs to s. With this method, we can reduce the number of requests to 2K * (|S| -|H|) + |H| * (|H| -1) + R.

It should be noted that this method also changes slightly the request resolution. Indeed, since each stop is no longer linked to every hub, we need to keep the links between the hubs when building G ′ to produce an estimation of the trip duration.

Another possible improvement would be to consider the time-dependent character of the network. Although recreating complete timetables is too expensive, considering dierent phases such as peak time, o peak and night time could be interesting. Indeed, the lower bound can be very far from the actual result when requests made during the pre-calculation are made at peak times and the user requests a journey at o-peak times or at night, where the available trips are less numerous or dierent.

Other methods have also been developed in network analysis such as degree centrality or betweenness centrality [START_REF] Linton C Freeman | A set of measures of centrality based on betweenness[END_REF]. These methods require to have access to the graph. However, it would be interesting to compare the hubs produced by those methods against our method on a known network.

Chapter 8 Conclusion and outlook 8.1 Conclusion

In this thesis, we discussed methods to compute journeys by combining multiple TISs. The main contributions are detailed below.

Characterisation et trace generation

We rst proposed a set of characteristics to describe a TIS and its API. Characteristics selected have an impact when computing a journey combining multiple TISs. Four characteristics were identied: type of connexion points, presence of MultiPointTrip service, time-dependence of the journey and time-dependence of connexion points.

A method to nd possible traces was also presented. It is based on a graph of intersections. A recursive algorithm is used to compute every trace under a xed size. These traces are then ltered based on the combination of transport mode. Indeed, some traces may be impossible or uninteresting for the user.

Traces resolution

This set of contributions proposes methods to compute the best journey associated with a trace. As explained, these methods are based on the set of characteristics dened in Chapter 3.

Traces composed of two TISs

The rst contribution in trace resolution was to consider traces with two TISs where neither TIS has obtained connexion points. In this situation, 16 cases were identied depending on the characteristics. We proposed 9 dierent methods. An experimentation on Île-de-France network was made. Methods to reduce the computation time were also investigated.

Traces with n TISs

A generalisation to consider traces composed of n TISs is presented. A structure called block was introduced. Using this structure, a trace of size n can be reduced to a composite trace composed of two or three blocks. Methods proposed for traces with two TISs can be reused to nd the best S. Shorten journey for composite traces with two blocks. A new set of methods was introduced to compute solutions for composite traces with three blocks.

Traces containing one TIS with obtained connexion points

Another contribution concerns the resolution of traces containing a TIS with obtained connexion points. The block structure is used to reduce a composite trace containing n TISs to a trace with up to 7 blocks. Resolution methods divided in 4 steps are proposed. Finally, an experimentation was made. This experiment combines carpooling trips from Blablacar with public transport in region Grand-Est and Paris.

Creation of an estimator for public transport network

The nal contribution concerns the creation of an estimator. Estimators are TISs called to provide MultiPointTrip service when a TIS doesn't oer it. We propose a method to create an estimator for a public transport network. This method nds important stations in the network. These stations are called the hubs of the network. A weighted graph is then created based around these hubs. This graph obtained is used to estimate a trip duration between every pair of points in the network. An experiment was made with the public transport network in Paris.

Outlook

This thesis covers a small portion of the possibilities available with distributed journey planning. In this section, we present some ideas not developed to improve our methods and subjects which remains unexplored.

TISs evaluation

One unexplored subject is the quality score attributed to each TIS. In this thesis, the score of a TIS is a xed number evaluated only once. This score reects the reliability of each TIS estimated by a transportation expert. It is used to select which TIS to call depending on the transport mode and the geographic area. Therefore, it is important to have a reliable score. Having a reliable score associated with each TIS is also useful when a TIS doesn't respond. We can select alternative TISs based on this score. This versatility is one of the advantages of a distributed system.

As explained, the solution proposed in this thesis doesn't take into account variations on the quality of dierent TISs. A solution would be to update the score by regularly comparing journeys proposed to the actual journeys and to journeys proposed by dierent TISs. The collect of the actual journey can be made by asking the user for a feedback or by tracking the user. This allows us to compare solutions from various TISs and update their score over time.

How to update the score based on the response is also an interesting subject. A possible solution may be to use method develops in trust modelling [START_REF] Pinyol | Computational trust and reputation models for open multi-agent systems: a review[END_REF][WV03].

Speed-up opportunities

The resolution methods presented may require many requests and rely heavily on the response speed of each TIS. We propose some ideas to speed-up the computation.

Conclusion and outlook

As presented in Chapter 4, a method to reduce the computation time is to reduce the number of connexion points considered. This reduction can be based on a xed distance for example. This is possible with transport mode like bike or walk where it is common to x an upper bound. The reduction can also use single mode solutions to reduce the number of points. For instance, a public transport connexion point reachable with 18 minutes of bike is not interesting if the complete trip can be made with a 20 minutes bike ride.

Strategies can also be implemented to avoid computing every trace possible. For example, solutions obtained with a unique mode can be analysed before starting a combination with another mode. Indeed, if a car trip is faster than the fastest public transport mode available, it might be uninteresting to compute a trace combining car and public transport.

In some situation, the estimator is time-independent when the TIS without MultiPointTrip service is time-dependent. In this case, we can reuse durations obtained with the estimator to limit the number of MultiPointTrip requests made.

Finally, we can decrease the perceived waiting time by the user. This can be done by streaming the journeys when they are computed instead of waiting to compute every trace. With this system, simple solutions with a single TIS are presented rst. Followed by more complex solutions associating multiple TISs. However, this solution doesn't reduce the total computation time.

Possible extensions

In this section, we present a list of ideas which were not considered in this thesis:

• One idea is to extend the methods proposed. Indeed, we limit our methods to one or two TISs without MultiPointTrip service and only one TIS with obtained connexion point. It would be interesting to propose solutions without these limits. Similarly, we also only consider the situation where connexion points are time-independent. Considering time-dependent connexion points allow more reliable journeys. Indeed, they are used to take into account availability of a parking spot or bicycle availability at a bicycle-sharing station for example.

• In this study, we suppose that the estimator only returns lower bound estimations. However, as shown in Chapter 7, depending on the data available, this hypothesis is not always veried. Finding the adaptations required to consider this possibility is a possible extension of our work.

• A smaller improvement concerns transport over TISs. This occurs for instance when a bus starts its journey in one region and nished it in another. If the TISs used are specialized to only serve a region, it should be possible to propose solutions which stay on the bus between regions. This is done in OJP with a specic variable.

• A possible extension of our model is to consider other objectives such as limiting the number of transfers or the total price for instance. Some of these objectives may be harder as an optimal solution may be composed of non-optimal local solutions. For example, in Figure 8.1, we try to minimize the number of transfers. It is possible to travel from s to c • In this thesis, we made a dierence between time-dependent and time-independent journeys. However, it is possible to distinguish two types of time-dependence: weak time-dependence and strong time-dependence. A journey is weakly time-dependent if no waiting time is possible. A trip in car is weakly time-dependent while public transport is strongly time-dependent. More formally, let F be a function which given a time t and two points s and e returns the earliest arrival time between at e leaving s at t. F is weakly time-dependent if it is strictly increasing: ∀s, e, t 1 , t This dierentiation might be useful to reduce the number of calls necessary. This is true in the trace T IS 1 + T IS 2 where T IS 1 is time-independent and T IS 2 is weakly time-dependent. In this case, only one request is made to T IS 2 : C 1|2 @T <1|2 -→

2 → e instead of three.

• One advantage of using a distributed journey planner is to have access to up to date journeys. However, since the data is decentralised, it is challenging to consider disturbances occurring after the request was made and aecting the computed journey. In this case, it would be interesting to recompute the journey and to contact the user with an updated journey. This could be done by adapting the work of Feki [START_REF] Firas | Disturbance management in distributed travel information system[END_REF] for example.

e where each call returns the earliest arrival time at the connexion points associated. This time is then used with the transfers to compute the earliest departure time for the next call. At the end of these calls, the earliest arrival time t e is known as well as the earliest arrival time at each connexion points.

4. The last request in phase 2 reduces the connexion points C Bs|Be to keep only the ones able to reach e at t e given the earliest arrival time. This is done with the following request: C Be|Bs --⇒ Be e@t e . This request is also decomposed in 3 successive requests:

C 5|4 --⇒ 5 e@t e , C 4|3 --⇒

4

C r4|5 @T >4|5 and C 3|2 --⇒ 3 C r3|4 @T >3|4 . Each request returns the latest possible departure times T >i|i-1 from the connexion points C i|i-1 . These times are compared with the earliest arrival times T <i|i-1 . Only the connexion points with a latest departure time higher than the earliest arrival time are kept. The remaining connexion points form a set denoted C ri|i-1 . From these points, the latest possible departure times in the next block are deduced using the transfer T i-1|i . If multiple times are possible, only the latest is kept. Moreover, this time is also compared with the earliest arrival time. Only the points with a latest departure time higher than the earliest arrival time are kept. The remaining connexion points are regrouped in a set C ri-1|i with the associated latest arrival times T >i-1|i . They are then used in the next MultiPointTrip request. 
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 4233242 this is the case with c 2|1 In this case, the earliest time is kept. We denote T <2|1 the resulting times.3. Then, a second MultiPointTrip call C 2|1 @T <2|1 --⇒ is carried out and gives the earliest arrival time at e: t e (see 2 on Figure4.2). At this stage, the rst objective of Phase 2 is S. Shorten achieved. The next steps aim at identifying the connexion points compatible with this arrival time. It might be important for Phase 3 to discard these connexion points to limit computing times. The next step makes a third call to the MultiPointTrip service with the following arrive at request: C 2|1 --⇒ @t e ( 3 on Figure4.2)
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1|2 i and c 2|1 j

 2|1 , with the associated departure times t <1|2 i and t <2|1 j . The details of the trip c 2|1 j and e are also known as well as the trip between c 1|2 i and c 2|1 j . The only missing information is the trip between s and c 1|2 i .
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 38 1|2 ī ∈ C r1|2 and arrival time t >1|2 ī , and the detailed trip from s to c 1|2 ī . In Figure 4.5, C r1|2 = {c 1|2 1 , c 1|2 3 }. In this gure, s -→ 1 → C r1|2 @T >1|2 returns c 1|2 3 as the best connexion point with t >1|2 15 and t > s = 8:05.
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5 Figure 4 . 6 :

 546 Figure 4.6: Retrieving the trip information for T IS 2

1|2ī.

  If multiple connexion points share the same departure time, one is selected randomly. Given c 1|2 ī , we can also retrieve the associated connexion point in C 2|1 : c 2|1 j .

  Phase 3-3a: Modication to Phase 3-3 when T IS 1 is time-independent When T IS 1 is time-independent, only the last step of Phase 3-3 is modied.4. Indeed, since T IS 1 is time-independent and given T >1|2 , we can compute the latest departure time from s for each connexion point in C r1|2 using the duration obtained in Phase 2. The associated connexion point in C r1|2 is selected. It is denoted c 1|2 ī . If multiple connexion points are possible, one is selected randomly. A nal Trip request is made: s -→ 1 c 1|2 ī @t >1|2 . This request gives the trip details in T IS 1 . Phase 3-5: T IS 2 is time-independent Phase 3-5 improves upon Phase 3-3 when T IS 2 is time-independent. A bounding mechanism very similar to that of Phase 3-4 is introduced to limit the number of Trip requests. The mechanism is based on the data computed during Phase 2-2. 1. Given a connexion point c 2|1 j ∈ C 2|1 , the earliest arrival time t <2|1 j is known, as well as the estimated time needed to reach e from c 2|1 j . Estimated arrival times at e can then be computed for all points in C 2|1 . We denote te (j) these values. They provide lower bounds on the arrival time at e under the condition that connexion point c 2|1 j is used. 2. Connexion points in C 2|1 are then ranked in the increasing order of these estimated arrival times. Trip requests c 2|1

.

  The rules from steps 5 to 7 of Phase 2-1 are applied again to compute relevant connexion points in Ĉ1|2 . Phase 3-6 is then restarted with updated sets: Ĉr1|2 , Ĉr2|1 , te , T >2|1 and T <2|1 . 3. At this point, the earliest arrival time at e is found. Step 2 and 3 from Phase 3-3 are used to compute the latest departure time from C r2|1 and C 1|2 . They are denoted respectively T >2|1 and T >1|2 . 4. Finally, step 2 from Phase 3-2 is used to nd the latest departure time from s.

2 . 2 e

 22 Pairs of connexion points in T T IS 1 |T IS 2 are then ranked in the increasing order of these estimated arrival times. Trip requests s@t 0 -→ are executed following this order. These requests provide the minimal arrival time t <1|2 i to point c 1|2 i and enable computing the exact arrival time at e under the condition that c 1|2 i and c 2|1 j

j

  ) able to reach e at t e is selected. The trip details from s to c 1|2 i as computed in step 2.
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 2 gives us an arrival time t e . This time is associated with a connexion point denoted c 2|1 i . The second MultiPointTrip request C 2|1 --⇒ 2 e@t e might give departure time at c 2|1 i earlier than t <2|1 i if this solution has a better score. In this case, it is possible that no connexion point remains in C r2|1 leaving no solution at S. Shorten step 5 of phase 2-1.
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 522 Figure 5.2: A time-independent TIS that should be considered time-dependent
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 22 Then, when it is eventually computed that the latest arrival times at c 2|3 1 and c 2|3 2 are 8:24 and 8:37, one might wrongly conclude that the latest starting time from c 2|1 1 is 8:24-(8:13-8:03), that is 8:14, while it is possible to reach S. Shorten this point at 8:26 and arrive on time at c For this reason, a time-independent block surrounded by time-dependent block is considered time-dependent.
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 55354 Figure 5.3: Example of a composite trace with ve TISs

  The second request gives the duration of each trip in B B . It is denoted D B B = d B B l : c B B |B / m l ∈ C B B |B / m where d B B l is the trip duration between c B B |B / m l and e. 2-3 Steps 2 and 3 of phase 2-1 are then used. They give respectively T <B / m |B A and T <B / m |B B . 4. Given T <B / m |B B , Step 4 computes the estimated earliest arrival time at e for each connexion point c B / m |B B k ∈ C B / m B B . This time is obtained by adding to t<B / m |B B k the transfer time T B / m |B B (k, l) and trip duration d B B l . If multiples transfers are possible, only the one with the earliest arrival time at e is kept. The earliest arrival time at e associated with c B / m |B B k is denoted te (k).

5 .

 5 A list L of sets of connexion points is created. Each set contains all the connexion points c B / m |B B k
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 926 Phase 3 when B B is time-dependent Phase 3 nds the earliest arrival time at e. It can have 4 dierent implementations depending on the characteristics of B / m and B B . In this subsection, we study the two cases when B B is time-dependent. and c B / m |B B k Step 2 to 6 are identical to the same steps in Phase 3-1, except that, since Phase 3-3 contains less steps than Phase 3-1, the redirection to Step 10 in steps 3(a) and 6(a) should read redirection to

  transfers time from T B / m |B B and durations from D B B are then added to t<B / m |B B k to produce a new estimation of the earliest arrival time at e. These times are denoted te (k). If te (k) < t e for a given connexion point c B / m |B B k , a trip plus the associated duration D B B in block B B . The best of these values is kept for every pair (j, k). It is denoted te (j, k).

4 . 7

 47 Time te (j, k) is compared with te to only retain couples with an estimated arrival time equal to te . Step 5 and 6 from Phase 3-2 are used to nd the earliest arrival time among the couples in P and to update R if necessary. However, since both B / m and B B are time-independent, the estimated earliest arrival time at e for excluded connexion points were already computed in Step 3. Therefore, the second part of step 6 should read as follows: te is also compared with the estimated arrival time te .

  (a) If te = te , each pair of points in B B able to reach e at time te are already found.

B A |B / m i . 4 - 5 . 6 .

 456 Step 4 and 5 of Phase 4-1 are then used. They nd the best path in B / m associated with c B A |B / m i , as well as the best connexion point in B B , denoted c B B |B / m l Two Trip requests are made in parallel to obtain the detail of the trip in B A and B B : s --→ B A c B A |B / m i @t >B A |B / m i and c B B |B / m l --→ B B e@t e respectively. The trip detail in B / m was obtained in Phase 3. It concludes Phase 4-2.
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 56 Figure 5.6: Two possible set of calls
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 5758 Figure 5.7: Representation of possible traces using a tree
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  Result not returned due to the maximal distance or to the departure time constraint
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 61 Figure 6.1: Example of a response given by T IS O to a Trip request: s@t 0 -→ O e
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 6263 Figure 6.2: Phase O2-1: Computing the earliest arrival time at C B A |O
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 9 Method O2-3 is then used, with T IS O replaced by B B . The rst step computes latest arrival times at C B / m α |B B for each trip R o ∈ R O . Resulting vectors are denoted T >B / m α |B B (o). Earliest arrival times at C B / m α |B A are then computed. Finally, multiple requests are made to B / m α to verify which trips in R O are accessible.

6. 6

 6 Phase 3: Finding the earliest arrival time at e Given the list of reachable trips R rO obtained with Phase 2, we can restrict the connexion points in C O-. The new set is denoted C rO-. Phase 3 computes the earliest arrival time at e, t e , given C rO-, and restricts C rO-to connexion points able to reach e at time t e . Methods proposed in this phase rely heavily on the methods presented in chapters 4 and 5. Phase 3 starts by computing earliest arrival times at the block that follows T IS O , unless Γ ′ β = ∅. Depending on the trace, this block can either be B C or B / m β , and the relevant connexion points C B C |O or C B / m β |O . Earliest arrival times are obtained by adding transfer times T O|B C (resp., T O|B / m β ) to T <B O-. If multiple times are possible for a connexion point, only the earliest time is retained. The resulting set is denoted T <B C |O (resp., T <B / m β |O ).

Figure 6 . 4 :

 64 Figure 6.4: Method O3-1: Computing the earliest arrival time at e

Figure 6 . 5 :

 65 Figure 6.5: Method O3-1: Finding the latest departure time and the associated trips in R rO .

  Computing a trace containing a TIS with obtained connexion points this call returns trip durations between points c B C |O j ∈ C B C |O and e. These durations are denoted D B C .

  also updated to contain only times associated with a connexion point in C rB C |O . This new set is denoted T >B C |O . 3. Transfers T O|B C are subtracted from T >B C |O to compute the latest departure times at C O|B C , denoted T >O|B C . If multiple times are possible for a given connexion point, only the latest time is kept.
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 64 Step 1 of Method O3-2 is used with the estimator of B / m β . This step returns an estimation of trip durations in B / m β . They are denoted DB / m β as presented in Figure 6.Step 1 to 3 of Phase 3-5 from Chapter 4 are then used with T IS 1 = T IS O and T IS 2 = B / m β . At the end of these steps, the earliest arrival time t e , the drop-o points able to reach e at t e , denoted C rO|B / m β , and R rO are obtained. Phase 3: Γ ′ β contains two blocks B / m β and B D

2 Figure 6 . 6 :

 266 Figure 6.6: Method O3-4: State after Step 1
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 423 Mapping of the notation used in this section and in Chapter 5 Modication to Phase 2-1: Since the earliest time at C B / m β |O is already known, steps 1 and 2 of Phase 2-1 are skipped. The rest of Phase 2-1 is used as detailed in Chapter 5. This phase returns an estimation of the earliest arrival time at e denoted te and a set, denoted C rB / m β |B D . This set contains connexion points estimated able to reach e at te given the estimated arrival times obtained. Modication to Phase 2-2: In this situation, B D is time-independent. Phase 2-2 is divided in 3 steps: 1. Two MultiPointTrip requests are made in parallel: C B / m β |O @T <B / m β |O ------⇒ B / m β C B / m β |B D Computing a trace containing a TIS with obtained connexion points and C B D |B / m β ----⇒ B D e@t 0 . The rst request returns an estimation of earliest arrival times at C B / m β |B D . These times are denoted T <B / m β |B D . Meanwhile, the second request gives the duration of each trip in B D . These durations are gathered in a set denoted D B D = Steps 4 and 5 of Phase 2-2 are then used. At the end of Phase 2-1 or 2-2, an estimation on the earliest arrival time at e, te , is obtained. A set L is also created containing an estimated arrival time for each connexion points c B / m β |B D k ∈ C B / m β |B D . Depending on the characteristics of the blocks, Phase 3-1, 3-2, 3-3 or 3-4 is then used without any modication. Each method returns the exact earliest arrival time at e, t e , and the connexion points among C B / m β |O able to reach e at t e . These points are gathered in a set denoted C rB / m β |O . The latest departure times from C rB / m β |O are also known. They are denoted T >B / m β |O . After Phase 3, the rst two steps of Phase 4-1 are nally executed to compute latest departure times from C O|B / m β . Trips in R rO that are part of a solution able to reach e at t e are deduced. These trips are kept in an updated version of R rO . This concludes Phase 3 for traces of size 2: B / m β + B D .

  rB C |B / m β ⊂ C B C |B / m β able to reach e at t e . Latest departure times to reach e at t e are denoted T >B C |B / m β . The following four steps are then used:1. MultiPointTrip request C B C |O ----⇒ B C C rB C |B / m β @T >B C |B /m β is performed to nd latest departure times from C B C |O . These times are regrouped in a set denoted T >B C |O .

  B C |O j . These connexion points are removed from C B C |O . The remaining connexion points form a set denoted C rB C |O . 3. Transfers T O|B C are subtracted from T >B C |O to compute latest departure times from C O|B C . These times are denoted T >O|B C . If multiple times are possible for a given connexion point, only the latest time is kept.
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 6768 Figure 6.7: Average computing time spent in each service for trace PT + Carpooling + Walk
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 7 Figure 7.1: Portion of the timetable for line RER D from Gare du Nord to Corbeil Essones
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 1 (A,B,8:00,8:10,r red 1 ), e 2 :(B,C,8:10,8:20,r red 1 ), e 3 :(C,E,8:20,8:25,r red 1 )
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 1727325 Figure 7.2: An example of a public transport network
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 74 Figure 7.4: Trip by foot between two addresses
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TIMEFigure 7 . 5 :

 75 Figure 7.5: Time-expanded model

  .6 represents the travel time function associated with the trip from Vigneux sur Seine to Juvisy. The x-axis represents the hour of arrival at Vigneux sur Seine. The y-axis gives the associated trip duration. This trip duration takes into account potential waiting times t Vigneux sur Seine.
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 76 Figure 7.6: Weight function between Vigneux sur Seine and Juvisy

Figure 7 . 7 : 2 7. 3 . 3

 77233 Figure 7.7: Graph time-dependent for the network in Figure 7.2
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 278 Figure 7.8: Example of a graph G and the subgraph G ′ created
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 79 Figure 7.9: Example of the label propagation in graph G ′
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 7 Figure 7.10: Public transport at the train station Gare de Lyon [SA]
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 77 Figure 7.11: Instability evolution for 5000 initial requests
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 81 Figure 8.1: Example where the optimal solution used non optimal local journeys
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 56 C rBe|Bs is created. It contains all the connexion points c The latest arrival time at C Bs|Be is computed by subtracting the transfer time T Bs|Be from T >Be|Bs among the remaining connexion point in C rBe|Bs . Only the latest time is kept if multiple times are possible for a given connexion point. 7. A new set is introduced C rBs|Be . It contains only the connexion points where t >Bs|Be > t <Bs|Be . Phase 3-1 is composed of two Trip requests: s -→ Bs → C rBs|Be @T >Bs|Be and c Be|Bs l

  2.3.2 EU-SpiritThe EU-Spirit project (EUropean System for Passenger Services with Intermodal Reservation, Information and Ticketing) is a European project between several countries. This project was born in 1998. Originally, EU-Spirit operated only in Denmark and Sweden. Other countries and regions were added gradually. EU-Spirit has integrated up to 22 partners and has covered the Alsace Lorraine Region, Denmark, Finland, Germany, Luxembourg, some cities in Poland, and Sweden. EU-Spirit reuses some ideas developed in DELFI but tries to reduce the number of calls to reduce response times. Therefore, EU-Spirit retains the separation between local TISs and long-distance TISs. This project started with the communication protocol implemented by DELFI.

	However,
	it is currently replaced by a new protocol: Open API for distributed journey planning (OJP)
	[27806, ES19]

Architecture

Although EU-Spirit was inspired by DELFI, the two architectures are dierent. Unlike DELFI, local TISs do not have to implement an orchestrator. Instead, a unique orchestrator is created. This new architecture is presented in Figure

2

.7. It is decomposed in four elements:

  For each course, the local calculators are queried to complete the route. The calculator of the T IS I is called with the latest arrival time: s -→

							Industrial and scientic context
	routes. Each route has a departing pointc I/LD i	∈ C I/LD , an arrival point c LD/F j	∈ C LD/F
	and a time associated to each point: t <I/LD i	for c I/LD i	and t	>LD/F j	for c LD/F j	.
					I	c I/LD i	@t <I/LD i	. Then, T IS F is called with
	the following request: c LD/F j the journey.	@t <LD/F j	-→ F	e. These solutions are then combined to complete

. In the case of EU-Spirit, this call returns a set of possible

  Transition durations are subtracted from T >2/1 to obtain the latest departure times from C 1/2 . We can deduce the best associated connexion point in T IS 2 . The connexion point is denoted c

	2/1				
		2/1 j	with t >2/1 j	≥ t	<2/1 j	are
	kept. The connexion points kept are gathered in a set C r2/1 .				
	1/2 i	∈ C 1/2 where t >1/2 i	≥ t	<1/2 i	. A

• A new set C r1/2 is created. It contains connexion point c Trip request with multiple points s -→ 1 → C r1/2 @T >1/2 is made to obtain the latest departure time from s. It also returns the trip detail in T IS 1 . S. Shorten • j . A nal Trip request is then made to collect the trip detail in T IS 2

  2.11. 1 and 2 are MultiPointTrip requests. 3 is a MultiPointTrip with reverse. It gives the earliest arrival time at e and the latest associated departure time at C 3/2 . After each query 1 and 2 , the orchestrator adds the transition time to obtain the earliest arrival time in the next TIS.

	3/2 l	where t	>3/2 l	≥ t	<3/2 l

• The second section computes the latest departure time from s. The latest departure time from C 3/2 was obtained with 3 . As presented when combining two TISs, a new set C r3/2 is created. It contains only connexion points c
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  is performed to nd the earliest arrival time t e . This sequence is shown in Figure 4.4. It gives the best connexion point c

		2|1 j ∈ C 2|1 , for example c 2|1 1 on this gure. From this, we can
	deduce the best connexion point c 1|2 i c 2|1 <2|1 j at time t j	∈ C 1|2 . If multiple connexion points in C 1|2 allow reaching

  T IS 1 and T IS 2 are time-independent This method is used when T IS 1 and T IS 2 are time-independent and propose a MultiPointTrip service. In this case Phase 2-3 was applied, which gives: the earliest arrival time at e, the trip detail in T IS 2 and the associated connexion point c Phase 3-2 or Phase 3-4, respectively. Phase 3-2: Both TISs are time-dependent Phase 3-2 is applied when T IS 2 is time-dependent. It is divided in 3 steps:1. The objective of the rst step is to check if a trip can reach e at the estimated time of arrival te . A Trip request s@t 0 -→ , e cannot be reached on time. This is guaranteed because values T >1|2 were obtained from te without resorting to an estimator. It indicates that value te was underestimated too much.(a) In this case, Phase 2-1 is applied again from Step 2, with updated values for T <1|2 . T <1|2 contains the values obtained with the Trip requests in step 1. If no Trip request was made for a particular connexion point, the estimated time obtained in Phase 2-1 step 1 is used. Phase 3-2 is then restarted with updated values for T <1|2 , T >1|2 , T <2|1 , T >2|1 and te .

	1	c 1|2 i	is made for every c 1|2 i	∈ Ĉr1|2 if was not already
	made. This request gives the earliest arrival time t <1|2 i satises t <1|2 i ≤ t >1|2 i	at c 1|2 i . If none of the values t <1|2 i
				1|2 ī	in T IS 1 . Therefore, it only remains to
	compute the trip detail for T IS 1 with request s -→ 1	c 1|2 ī @t ī <1|2	.
	4.6 Phase 3 when T IS 1 requires an estimator

In this case, T IS 2 gives access to the MultiPointTrip service and T IS 1 doesn't. All values obtained from Phase 2 are estimated. Two dierent algorithms are applied when T IS 2 is time-dependent or not:

  This request gives a new estimation for the earliest arrival time T <1|2 . Each connexion point c

	1|2 i selected. The following Trip request is made for each connexion point selected: s -with t<1|2 i ≤ t >1|2 and which were not called in the previous step are i → 1 c 1|2 >1|2 i @t i

.

The results are compared with the latest arrival time t s . The Trip with the latest departure time is the solution for T IS 1 . The connexion point c 1|2 i

  the estimated arrival time t<1|2 1|2 i . Estimated arrival times at e can then be computed for all points in C 1|2 . We denote t< e (i) these values. They provide lower bounds on the arrival time at e under the condition that connexion point c 1|2 i , this step stops: none of the remaining points in C 1|2 can arrive at e before or at time t e .3. Set C r1|2 is dened with all points in C 1|2 such that t < e (i) = t e and the algorithm continues with steps 2 and 3 of Phase 3-2.

			i	to c 1|2 i is known, as well
	as the minimal time needed to reach e from c
			1|2 i	is used.
	2. Connexion points in C 1|2 are then ranked in the increasing order of these estimated arrival
	times. Trip requests s@t 0 -→ 1	c 1|2 i	are executed following this order. These requests provide
	the minimal arrival time t <1|2 i	to point c

1|2 i and enable computing the exact arrival time to e under the condition that c 1|2 i is used. We denote t < e (i) this value. In addition, t e is set to the minimal t < e (i) value among those that have been computed. As soon as the result of a

Trip request is such that t< e (i) > t e for remaining points c

  T IS 1 is time-independent, we can compute the latest departure time from s associated with each c 1|2 i ∈ C r1|2 by shifting the Trip solution obtained in step 2 to match t >2|1 i . The connexion point with the latest departure time from s is selected. If multiple connexion points share the same departure point, one is selected randomly. Step 3 from Phase 3-2 is then made to compute the trip detail for T IS 2 . 4.7 Phase 3 when T IS 2 requires an estimator In this section, T IS 1 gives access to the MultiPointTrip service and T IS 2 doesn't. Values T <1|2 and T <2|1 are exact. Other values from Phase 2 are estimated. Two dierent algorithms are applied when T IS 2 is time-dependent or not: Phase 3-3 or Phase 3-5, respectively. Phase 3-3: Both TISs are time-dependent and T IS 2 doesn't oer a MultiPoint-Trip service This algorithm is applied when T IS 2 is time-dependent and requires to use an estimator. It is organized in 4 steps. MultiPointTrip service only accepts Trip requests with one start point and one end point. As a consequence, exact arrival time values to e are not known for connexion points in C 2|1 \ Ĉr2|1 . Two situations can occur: t e = te or t e > te . t e < te is not possible because we supposed that the estimator gives a lower bound.(a) If t e = te , we know that these values are optimal; we denote them t e . Furthermore we are sure than no connexion point from C 2|1 \ Ĉr2|1 enables reaching e at time t e . Indeed, points discarded from C 2|1 have been discarded with overestimated values T >2|1 (we know that these values are overestimated because they were computed from an exact value t If t e > te , a MultiPointTrip request is called to determine if additional connexion points should be considered and if value t e could be improved: C 2|1 \ Ĉr2|1 --⇒ 2 e@t e . For all con- nexion points c 2|1 j with a result consistent with time T <2|1 , a Trip request c The earliest arrival time to e is updated if needed and denoted t e because it is now exactly known. All connexion points in Ĉr2|1 or C 2|1 \ Ĉr2|1 that enable reaching e at time t e are gathered in set C r2|1 . The latest arrival times T >1|2 at connexion points in C 1|2 can be deduced by subtracting transfer times, and set C r1|2 can be obtained. >1|2 is nally carried out for each connexion point in C r1|2 to determine the latest departure time from s and obtain the associated trip.

		S. Shorten
	(b) 2|1 i @t <2|1 i is performed. 2. A Trip request c 2|1 j -→ 2 e@t e is executed for each point in C r2|1 . It returns the latest departure -→ e 2
	time from c 2|1 j .	
	3.	
	1. For each connexion point c 2|1 i ∈ Ĉr2|1 , a call to the Trip service c 2|1 i @t <2|1 i	-→

2

e is made. From these calls, we obtain t e , the earliest possible arrival time at e passing through Ĉr2|1 , and C r2|1 the subset of connexion points in Ĉr2|1 enabling to reach e at t e . Note that Trip request

C 2|1 @T <2|1 -→ 2

→ e could not be executed to obtain this result because we supposed that a TIS without a e with an estimator in Phase 2-1): they would also have been discarded with the real values. Set C r2|1 thus gives the complete set of connexion points leading to e at time t e and can be renamed C r2|1 .

4. A Trip request s -→

1 → C r1|2 @T

  4.8 Phase 3 when both TISs require an estimatorIn this section, neither T IS 1 nor T IS 2 give access to a MultiPointTrip service. Therefore, all values are estimated in Phase 2. Two dierent algorithms are applied when T IS 2 is time-dependent or not: Phase 3-6 or Phase 3-7, respectively.

Phase 3-6: T IS 2 is time-dependent

Table 4 .

 4 2: Computation time dierence between a centralized and a distributed system

	Architecture used	Internal/Internal requests Mean duration (s) Standard deviation (s) Mean duration (s) Standard deviation (s) Mean duration (s) Standard deviation (s) Mixed requests External/External requests
	Centralised	2.42	0.36	2.79	0.37	2.79	0.40
	Distributed	19.67	2.83	18.12	1.44	19.58	1.95

Table 4 .

 4 2 presents the computation duration associated with each architecture. The rst column describes the architecture studied in each row. The rest of the table is divided in three main columns.

Table 4 . 3

 43 

	Type of requests	Solution found by both architectures (%)	Solution found only with centralized architecture (%)	Solution found only with distributed architecture (%)	No solution found by neither architecture (%)
	Internal/Internal	88.82	0.69	10.43	0.06
	Mixed	83.81	0.90	14.69	0.60
	External/External	77.44	1.95	18.90	1.70

: Comparison of solutions between a centralized and a distributed system

Table 4 .

 4 4: Solution variations between a centralized and a distributed system quests. Since T IS CAR is considered time-independent, a modied version of Method F1ter is used. This modication reduces the number of MultiPointTrip requests needed from three to one. This modication is described in Appendix A.1.2.

	Type of requests	Identical solution Occurrence (%)	Distributed solution is better Occurrence (%) Average dierence (s) Occurrence (%) Average dierence (s) Centralized solution is better
	Internal/Internal	36.42	55.23	214.0	8.35	228.0
	Mixed	44.32	45.93	428.0	9.75	933.0
	External/External	57.93	35.15	625.0	6.93	3446.0

Table 4 .

 4 Time spent on MultiPointTrip requests Time spent on Trip requests Total duration and ratio Mean time (ms) 9 th decile (ms) Mean time (ms) 9 th decile (ms) Mean time (ms) Ratio mean (%) 5: Impact of multiple boundary values on the computation time for CAR + PT

	Type of Request	Car distance upper bound (% of the distance of a car only solution)						
		20	18.56	37.0	251.08	416.0	524.23	55.31
		40	66.32	152.0	301.41	508.0	629.84	60.08
	Internal/Internal	60	151.51	339.8	392.67	712.0	830.94	65.01
		80	273.08	557.7	533.63	995.4	1152.16	69.13
		100	320.6	634.4	568.37	1074.8	1198.66	72.37
		None	2602.41	2889.1	4006.3	4516.0	7192.96	92.01
		20	176.23	522.2	944.86	1745.0	1428.25	76.06
		40	444.85	1231.0	1290.27	2761.0	2080.19	79.02
	Mixed	60	878.49	2116.1	2037.31	4408.7	3407.41	81.52
		80	1170.44	2471.0	2475.15	5218.5	4183.43	84.21
		100	1443.39	2443.0	2957.72	5194.0	5039.01	85.79
		None	2688.43	3144.8	4678.42	5478.0	8139.4	90.71
		20	61.41	129.3	1083.57	1980.3	1455.35	75.64
		40	274.28	725.0	1315.51	2576.6	1946.91	76.8
	External/External	60	843.67	2027.0	2386.15	5203.0	3792.57	79.06
		80	1050.39	2040.4	2611.38	5285.0	4228.0	80.3
		100	1510.74	2472.1	3582.33	6661.3	5855.24	81.56
		None	3023.69	3718.3	5691.28	7245.9	9688.78	90.12

Table 4 . 6

 46 

	Type of Request	Car distance upper bound(%)	Deviation of bounded solutions against unbounded solution Occurrence (%) Mean error (s) Standard deviation (s)	Duration dierence Mean dierence (s) Standard deviation (s)	No solution found (%)
		20	68.78	772.65	539.34	513.65	545.25	1.99
		40	51.19	706.96	478.43	353.78	474.85	0.13
	Internal/Internal	60	40.95	639.75	432.36	255.48	404.87	0.0
		80	30.78	496.3	358.29	144.62	291.17	0.0
		100	3.33	218.23	209.47	6.28	55.31	0.0
		20	78.6	3711.95	3346.11	2466.54	2951.57	2.31
		40	74.29	3430.16	3313.15	2224.89	2914.95	0.4
	Mixed	60	68.97	3236.45	3341.02	1968.75	2816.55	0.4
		80	60.25	2719.43	3175.02	1438.29	2492.86	0.4
		100	9.17	1262.21	2397.12	104.74	813.43	0.25
		20	89.91	6532.05	4597.96	5669.27	4003.8	6.07
		40	90.71	5667.24	4019.06	4832.13	3866.24	1.63
	External/External	60	86.5	4918.74	3799.27	3931.54	3548.62	1.22
		80	76.15	3983.92	3708.07	2690.87	3192.34	1.07
		100	14.06	1949.75	2970.97	239.41	1291.74	0.66

: Solution dierence with various boundary values for CAR + PT

Table 4 .

 4 7: Solution dierence with various boundary values for CAR + PT make 2 or more loop. For method F2, the estimator is in the rst position and the second TIS is time-dependent. A slight error on the estimation can be absorbed with the rst waiting time before leaving s. However, for method F5, the estimator is used to nd the best arrival time. Therefore, if multiple points have close arrival time, a slight error on the estimation force us to verify the other estimations, and therefore multiple calls must be made.

	Trace	Total duration Average time (s) Standard deviation (s) Average time (s) Standard deviation (s) 0 (%) 1 (%) 2 or higher (%) Time spent in API Number of extra loop
	Bike + PT	4.821	2.184	2.330	1.075	75	5	20
	Car + PT	3.993	1.615	2.168	1.438	82	7	11
	PT + Bike	4.925	2.320	2.906	1.038	22	20	58

  all time-independent TISs that follow T IS 1 in the trace are added to B s , until the next TIS in Γ is time-dependent or block B e is reached.

3. If T IS n is time-independent, all time-independent TISs that precede T IS n in the trace are added to B e , until the preceding TIS in Γ is time-dependent or block B s is reached. If T IS n is time-dependent, all TISs not in B s are added to B e . 4. The remaining TISs, that are neither in B s nor in B e , are gathered in a new block called B m . 5. If B m is not empty, a new block called B sm is introduced, containing blocks B s and B m .

  This subsection describes the reduction method when one TIS does not have a MultiPointTrip service, i.e., requires an estimator. Let T IS / m be this TIS. The reduction is again divided in ve steps: A . Similarly, if B / me is non-empty, B B containing B / me and B e is introduced. A followed by B / m followed by B B or B e (1 < / m < n). Blocks B s , B / m and B e are time-independent if and only if T IS 1 , T IS / m and T IS n are. All blocks but B / m oer the MultiPointTrip service. B s / m , B / me , B A and B B are considered to be time-dependent.

	1. T IS / m is included in a block called B /
	An example of the reduction is presented in Figure 5.5
	This method creates a composite trace Γ ′ composed of 2 or 3 blocks, depending on the value
	of / m: B /

m 2. Unless / m = 1, a block B s is initialized with T IS 1 . Unless / m = n, a block B e is initialized with T IS n . 3. If T IS 1 is time-independent and in B s , all time-independent TISs that follow T IS 1 in the trace are added to B s , until the next TIS in Γ is time-dependent or is already in a block (i.e., in B / m ). 4. If T IS n is time-independent and in B e , all time-independent TISs that precede T IS n in the trace are added to B e , until the preceding TIS in Γ is time-dependent or is already in a block. If T IS n is time-dependent and in B e , all TISs that precede T IS n in the trace are added to B e , until block T IS / m is reached. 5. At this point, two sets of TISs may be unassigned: those between B s and B / m and those between B / m and B e . A block is created for each set. They are denoted B s / m and B / me . If B s / m is non-empty, a block containing B s and B s / m is also dened. This block is called B m followed by B B or B e ( / m = 1), B s or B A followed by B / m ( / m = n), B s or B

  ExchangePoint service applied to a block B computes sets C B -and C B + . C B -are the connexion points in the rst TIS of the composite trace dening the block, C B + are those in the last. If they are not already known, the connexion points of the rst and last TISs are obtained applying the

	Time-dependent	Time-independent	Time-dependent	Time-dependent Estimator	Time-dependent	Time-independent
	Block B s : TIS 1 Time-dependent	Block B sm : TIS 2 + TIS 3 Time-dependent Block B A : B s + B sm Time-dependent	Block B m : 4 Time-dependent Estimator	Block B me : TIS 5 Time-dependent Block B B : B me + B e Time-dependent Block B e : TIS 6 Time-independent
				Time-dependent		
	Time-dependent	Time-independent	Time-dependent	Estimator	Time-dependent	Time-independent
		Figure 5.5: Example of a composite trace with an estimator	
	ExchangePoint service				

An

ExchangePoint service.
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 5 

	.1: Methods for composite traces with three blocks
	5.7 Phase 1

Phase 1 identies the possible transfers between each pair of successive TISs in trace Γ. It proceeds as follows. The ExchangePoint service is called for the three blocks B A , B / m and B B . Sets C B A |B / m , C B / m |B A , C B / m |B B and C B B |B / m are then computed as well as transfer times T B A |B / m and T B / m |B B . Similar computations are then recursively executed for each element in each block.

  is composed of 9 steps.1. The rst step nds the earliest arrival times at C B A |B / m . They are computed with the following MultiPointTrip request:s@t 0 ----⇒ B A C B A |B / m .The arrival times obtained are denoted T <B A |B / m . 2. The transfer times T B A |B / m are then added to T <B A |B / m , to obtain the earliest departure times from C B / m |B A . If multiple times are possible for a given connexion point, the earliest time is kept. The earliest departure times are denoted T <B / m |B A .

3. Based on these departure times, a second MultiPointTrip request is made:

  This request is sent to the estimator of B / m as B / m doesn't oer a MultiPointTrip service. It estimates the earliest arrival time at each point of C B / m |B B . The times obtained are denoted T <B / m |B B . 4. The transfer times T B / m |B B are added to T <B / m |B B to estimate the earliest departure times from C B B |B / m . Again, if multiple times are possible at a connexion point, only the earliest time is kept. The times obtained are denoted T <B B |B /

m 5. A third MultiPointTrip request C

  It contains the connexion points c are excluded as it is not possible to reach e at te using those points.8. Given the connexion points in C rBB |B / m , transfer times T B / m |B B are subtracted from T >B B |B / m . This operation produces the latest arrival times in C B / m |B B . If multiple times are possible for a unique connexion point, the latest time is kept. The resulting times are denoted T >B / m |B B . S. Shorten 9. A new set is introduced: C rB / m |B B . It contains all the connexion points c

	B B |B / m l an estimated earliest arrival time smaller than the latest departure time: t<B B |B / ∈ C B B |B / m with m l ≤ t >B B |B / m l . The other points B / m |B B ∈ C B / m |B B that k satisfy t<B / m |B B k >B / m |B B ≤ t k

  This set is denoted C rB / m |B B . Since B B is time-independent, the latest departure times allowing to reach e at time te are exactly times T <B / m |Bm : T >B / m |B B = T <B / m |Bm . This concludes Phase 2-2. At the end of phase 2, an estimation of the earliest arrival time at e is found: te . The latest departure times enabling reaching e at time te , T >B / m |B B and T >B B |B / m are computed along with the associated connexion points C rB B |B / m and C rB / m |B B . Finally, the earliest departure times are also known: T <B A |B / m , T <B / m |B A , T <B / m |B B and T <B B |B / m . Phase 2-2 also produced the ordered list L.

	Output of phases 2-1 and 2-2

  . Vector T <B / m |B B is updated, but, contrary to Phase 3-1, no additional MultiPointTrip request is needed. For a given connexion point c As in phase 3-1, Phase 2-1 is then called again, starting at Step 4. It updates te and the associated values. Phase 3-3 restarts with updated values. 9. At this point, the earliest arrival time t e at e is known. Moreover, set R contains all pairs of connexion points allowing to reach e at time t e . Given T >B / m |B B and R, the latest departure time from C B / m |B A can be computed by subtracting the duration obtained in Step 4 to T >B / m |B B . This operation is only made if the pair of connexion points is in R. the transfer time plus the traversal time of block B B . The latter is obtained from Phase 2-2 (vector D B B ). The minimal arrival time is kept and denoted te (k). 6. From previous steps, a new estimated earliest arrival time at e is computed: te = min{ te (k) :

	8. For a given
	pair (c		
	is computed. It is denoted t	<B / m |B B k	.
	5. The earliest arrival time at e starting from c B / m |B B k all possible transfers to block B B , and by adding to t is then computed. It is found by considering <B / m |B B k
	B / m |B B k obtained from Trip requests of Step 4 and times t , t<B / m |B B is set to the minimal values between the arrival times k <B / m |B A j + dB / m j,k .

  are also known. These times are respectively denoted t Phase 4 is called when the earliest arrival time at e is found. This step nds the trip with the latest departure time from s. It also computes the trip's details in B B . Two implementations of phase 4 are possible depending on the characteristics of B A : Phase 4-1 when B A is time-dependent and Phase 4-2 otherwise. Phase 4-1: B A is time-dependent This phase is called when B A is time-dependent. It is composed of 6 steps. 1. The transfers T B A |B / m are subtracted from T >B / m |B A to obtain the latest arrival times at C B A |B / m . These times are denoted T >B A |B / m . 2. T >B A |B / m is compared with T <B A |B / m to remove every connexion point c |B / m , the latest departure time from s and the trip detail in B A . 4. Step 4 nds the best connexion points in C B / m |B A and C B / m |B B associated with c

	t	>B A |B / m i	B A |B / m i . The remaining connexion points are gathered in a set denoted C rB A |B / where t m .	<B A |B / m i	>
	3. Trip request s --→ B A → C rB A |B / m @T >B A |B / m is called to nd the best connexion point c B A |B / m i	∈
	C rB A B A |B / m i times T B A |B / m are added to t >B A |B / m to obtain the time associated with each connexion point . Transfer i in C B / m |B A linked to c B A |B / m i . This time is denoted t>B / m |B A j . Only the connexion points where
	t>B / m |B A j	<B / m |B A > t j
	>B / m |B A j	and t >B / m |B B k	.
	5.11 Phase 4	

  gives the trip in B B . The result for this trip obtained in the previous phase gives the associated departure time t>B / This step identies the best connexion point in C B B |B / m . Transfer times T B / m |B B are added to t>B / m |B B k . It provides the latest departure times in C B B |B / m denoted T B B |B / m . These times are compared with the latest departure times T B B |B / m obtained in Phase 2. Only the connexion points with T B B |B / m < T B B |B / m are kept. Among those connexion points, one is selected randomly. It is denoted c >B A |B / m , and the set C rB A |B / m . B A |B / m . These durations are then subtracted from T >B A |B / m for the connexion points in C rB A |B / m to nd the path with the latest departure time from s able to reach e at time t e . If multiples connexion points give the same departure time, one is selected randomly. The best connexion point is denoted c

			k	m |B B	.
	5. B B |B / m	
	l			
	6. Finally, Trip request c B B |B / m l	@	t<B B |B / m l	--→

B B e returns the remaining part of the solution. Phase 4-2: B A is time-independent Phase 4-1 can be improved and replaced by Phase 4-2 when B A is time-independent.Phase 4-2 is composed of 6 steps. 1-2 Steps 1 and 2 of Phase 4-1 are used. They nd latest arrival times at C B A |B / m , T 3. Since B A is time-independent, Trip request s@t 0 ----⇒ B A C B A |B / m of Phase 2 gave the duration of each trip between s and C

  executed and provides the earliest arrival times at C B A |B / m α , denoted T <B A |B / m α . S. Shorten 3. Then, transfer durations T B A |B / m α are added to T <B A |B / m α to compute the earliest arrival times at C B / m α |B A . If multiple times are possible for a given connexion point, only the earliest departure time is kept. The resulting vector is denoted T <B / m α |B A . |B A , the following MultiPointTrip request is made:

	4. For each connexion point c B / m α |B A j	∈ C B / m α

Table 6 .

 6 .2. 2: Methods used in phase 3 when Γ ′ β has one block Method O3-1: Γ ′ β = B C and B C is time-dependent In this method, Γ ′ β = B C and B C is time-dependent. Phase 2-1 presented in Chapter 4 is used with T IS 1 = T IS O and T IS 2 = B C , and starting from Step 3. We recall it quickly. It starts with MultiPointTrip request

	S. Shorten

Table 6 .

 6 5: Methods used for Phase 3 when Γ ′ β begins with a TIS proposing a MultiPointTrip service After the common step of Phase 3 which gives the earliest arrival times T <B C |O in C B C |O , the various methods presented in Table 6.5 are used with slight modications. The rst Multi-PointTrip request made to B C must be modied to handle multiple departure points. It becomes

	S. Shorten

Table 6 .

 6 6: Mapping of the notation used in this section and in Chapter 5

  6.7 Phase 4: Retrieving the latest departure time from s and trip details Phase 4 nds the latest departure time from s and computes the trip details in Γ ′ α and Γ ′ β if necessary. This phase is separated in two consecutive parts. The rst part nds the latest departure time from s and the trip detail in Γ ′ α . This phase varies depending on the type of blocks in Γ ′ α and the characteristics of those blocks. The second part of Phase 4 computes the trip details in Γ ′ β . These two parts are detailed in the following sections. Remaining times are gathered in a set denoted T >B / m α |B A 5. Transfer durations T B A |B / m α are then subtracted from T >B / m α |B A to compute the latest arrival times at C B A |B / m α . The resulting vector is denoted T >B A |B / m α . Each connexion point Remaining connexion points are gathered in a set denoted C rB A |B / m α . These latest arrival times help us nd a lower bound on the latest allowed departure time from s. If C rB A |B / m α is empty, steps 6 and 7 are skipped and t 0 is selected as lower bound. In this case, T >B A |B / m α = T <B A |B / m α . >B A |B / m α returns the latest departure time from s given T >B A |B / m α . This time is denoted t > s . It may not be the latest departure time from s as only a limited set of trips in B / m α were tested. Therefore, the next steps try to nd the actual latest departure time. These times are denoted T <B A |B / m α (s). 8. Transfer durations T B A |B / m α are added to obtain the earliest departure times from C B / m α |B A , denoted T <B / m α |B A (s).

							S. Shorten
	If t >B / m α |B A j	is lower than t <B / m α |B A j	, obtained at Step 3 of Phase O2-2, t >B / m α |B A j	is suppressed.
	c B A |B / m α i	∈ C B A |B / m α such that t	>B A |B / m α i	< t <B A |B / m α i	is excluded, where t <B A |B / m α i	was ob-
	tained at Step 2 of Phase O2-3. 6. MultiPointTrip request s ----⇒ B A C rB A |B / m α @T 7. MultiPointTrip request s@t > B A s ----⇒ C B A |B / m α returns the earliest arrival times at C B A |B / m α
	given t > s . 9. A time denoted	t>B / m α |B A j	is assigned to each connexion point c B / m α |B A j	. This time is the
	latest time between t <B / m α |B A j	(s) and t >B / m α |B A j	if it was kept in Step 4. This new time is
	created to exclude times below	t>B / m α |B A j	as they would have a latest departure time equal
	or lower than t > s .	t>B / m α |B A j	is then compared with	t>B / m α |B A j	(k) for each c

Table 6 .

 6 8: Number of solutions found and explanation when no solution is found

	Trace	Number of solutions found	Cause for absence of solution No carpooling found (%) No solution in public transport (%) No solution to reach e (%)
	PT + Carpooling + Walk	19 (3.77%)	29.37	20.43	46.43
	PT + Carpooling + PT	167 (33.13%)	38.10	14.29	14.48

Table 6 .

 6 9: Average total computing times and carpooling response times

	Trace	Total computing time Mean (ms) Standard deviation (ms) Mean (ms) Computing times of the carpooling API Standard deviation (ms)
	PT + Carpooling + Walk	2078.37	314.84	171.79	54.18
	PT + Carpooling + PT	2513.17	359.65	151.29	35.9

Table 6 .

 6 10: Impact of multiple boundary values on the solutions

	Trace	D s and D e (m)	Solutions found Number (%) Optimal(%) Average gap (min.) Mean Number of carpooling responses Standard deviation
		20000	100.0	-	-	7.0	4.52
		10000	97.37	97.37	-	6.39	4.34
	PT + Carpooling + Walk	5000	81.58	81.58	-	4.26	3.44
		2000	34.21	34.21	-	1.18	1.71
		1000	5.26	5.26	-	0.39	1.16
		20000	100.0	-	-	3.07	2.96
		10000	92.59	82.10	264.4	2.60	2.79
	PT + Carpooling + PT	5000	61.11	45.06	302.5	1.69	2.02
		2000	14.81	5.56	398.2	0.23	0.61
		1000	0.00	0.00	-	0.01	0.15

  This sequence represents the successive stops along the line. For each triplet in T, it is possible to get on or o the vehicle. t arr

	Denition 7.2.1. A trip is a sequence of triplets (s i , t arr i , t dep i ) where s i ∈ S and t arr i , t dep i	∈ Π.
	i i . This sequence of triplets is ordered based on the time of passage at each represents the arrival time at s i and t dep the departure time from i ≤ t dep i , t dep s i . Therefore t arr i stop: ∀(s i , t arr i ), (s j , t arr j , t dep j ) ∈ T, i < j ⇒ t dep i ≤ t arr j . t arr i is not dened for the rst triplet
	in a trip. Similarly, t dep i	

.

  Denition 7.2.3. An elementary step describes the passage from a stop to the next in a specic route.An elementary step is dened as a combination of 5 elements (dep, arr, t dep , t arr , r) where

	      	dep : departure stop arr : arrival stop t dep : departure time from dep
	     	t arr : arrival time at arr, t arr > t dep r : route used

Table 7 .

 7 2: Impact of the number of hubs on the estimations with 1000 requests

	Creation of an estimator for public transport

Table 7 .

 7 6: Evaluating two hubs selection methods Mean number of calls Error on the solution (%) Mean error (s) Error on the solution (%) Mean error (s) Error on the solution (%) Mean error (s)

	Hubs Requests	Hub selection method	Number of calls Estimated "lower bound" error Mean Number (%) Mean (s)	Non optimal solution Number (%) Mean error (s)
	20	10000		Original Variation	12.45 (15.37)* 11.82 (14.7)*	10.8 12.37	-1080.54 -1000.15		12.46 14.45	538.38 514.11
	30	10000		Original Variation	13.2 (16.25)* 12.32 (15.2)*	8.25 10.43	-1031.16 -941.72		9.54 12.34	506.64 503.5
	40	10000		Original Variation	13.36 (16.5)* 12.69 (15.65)*	7.16 8.68	-858.38 -913.19		8.9 10.04	468.16 480.53
	50	10000		Original Variation	13.67 (16.84)* 13.01 (16.15)*	6.6 7.73	-884.57 -891.88		7.84 9.19	508.45 479.52
	75	10000		Original Variation	13.98 (17.22)* 13.63 (16.85)*	5.22 5.48	-770.69 -779.37		6.86 7.18	461.37 448.84
	100	10000		Original Variation	14.49 (17.76)* 13.84 (17.09)*	3.65 5.13	-704.94 -714.84		5.13 6.54	430.84 446.51
										* Normalized value
	Hubs Requests	method Hub selection	Original stopping criterion		3 calls limit		5 calls limit
	20	10000	Original Variation	12.45 (15.37)* 11.82 (14.7)*	12.46 14.45	538.38 514.11	40.77 41.27	964.56 974.21	28.61 28.63	807.63 801.35
	30	10000	Original Variation	13.2 (16.25)* 12.32 (15.2)*	9.54 12.34	506.64 503.5	40.19 41.3	912.75 955.26	27.13 29.08	744.2 777.85
	40	10000	Original Variation	13.36 (16.5)* 12.69 (15.65)*	8.9 10.04	468.16 480.53	39.3 40.44	1018.14 893.28	26.71 28.02	868.12 777.42
	50	10000	Original Variation	13.67 (16.84)* 13.01 (16.15)*	7.84 9.19	508.45 479.52	39.3 39.49	979.01 976.93	26.5 27.14	827.72 835.58
	75	10000	Original Variation	13.98 (17.22)* 13.63 (16.85)*	6.86 7.18	461.37 448.84	38.31 39.72	1017.06 990.55	26.46 27.16	857.04 858.72
	100	10000	Original Variation	14.49 (17.76)* 13.84 (17.09)*	5.13 6.54	430.84 446.51	38.08 38.57	914.89 996.83	25.73 26.32	760.78 860.74
										* Normalized value

Table 7 .

 7 

7: Comparison between two hub selection methods with a x number of requests S. Shorten

Table 7 .

 7 Therefore, this weight function ranks more eciently the requests. It might be more interesting to use Ω R if the number of requests is xed. On the contrary, if the lower bound is important, it is more useful to use Ω T W as weight function for our estimator. 8: Eect of the weight method selected on the number of optimal solution found and the number of error Mean number of calls Error on the solution (%) Mean error (s) Error on the solution (%) Mean error (s) Error on the solution (%) Mean error (s)

	Method		Hubs Requests	Number of calls Estimated "lower bound" error Mean Number (%) Mean (s)	Non optimal solution Number (%) Mean error (s)
				10	10000	5.41 (6.87)*	33.83	-1210.72	27.8	546.28
	Real Time Ω R		20 50	10000 10000	5.54 (7.09)* 6.33 (8.03)*	30.99 23.58	-1079.05 -921.95	25.97 20.46	519.72 449.64
				100	10000	7.01 (8.87)*	17.59	-736.34		16.07	419.21
				10	10000	8.47 (10.66)*	20.45	-1102.67	21.18	523.42
	Without waiting time Ω W	20 50	10000 10000	9.11 (11.48)* 10.05 (12.66)*	17.66 12.29	-998.13 -884.45		17.76 13.46	511.23 467.81
				100	10000	10.75 (13.5)*	8.12	-633.07		9.13	388.93
				10	10000	11.27 (13.9)*	14.94	-1152.76	16.24	559.45
	Without waiting time		20	10000	11.82 (14.7)*	12.37	-1000.15	14.45	514.11
	nor transition time Ω T W		50	10000	13.01 (16.15)*	7.73	-891.88		9.19	479.52
				100	10000	13.84 (17.09)*	5.13	-714.84		6.54	446.51
										* Normalized value
	Method	Hubs Requests	Original stopping criterion		3 calls limit		5 calls limit
		10	10000		5.41 (6.87)*	27.8	546.28	38.01	961.26	26.75	819.79
	Real Time ΩR	20 50	10000 10000		5.54 (7.09)* 6.33 (8.03)*	25.97 20.46	519.72 449.64	36.24 35.39	897.66 966.44	24.82 23.4	745.57 827.76
		100	10000		7.01 (8.87)*	16.07	419.21	33.91	1047.54	22.99	869.48
		10	10000		8.47 (10.66)*	21.18	523.42	39.62	967.58	27.76	809.4
	Without waiting time ΩW	20 50	10000 10000		9.11 (11.48)* 10.05 (12.66)*	17.76 13.46	511.23 467.81	39.24 39.06	997.71 1010.05	27.35 26.91	852.08 860.75
		100	10000		10.75 (13.5)*	9.13	388.93	35.83	973.82	24.13	844.29
		10	10000		11.27 (13.9)*	16.24	559.45	42.44	982.7	30.23	815.05
	Without waiting time	20	10000		11.82 (14.7)*	14.45	514.11	41.27	974.21	28.63	801.35
	nor transition time ΩT W	50	10000		13.01 (16.15)*	9.19	479.52	39.49	976.93	27.14	835.58
		100	10000		13.84 (17.09)*	6.54	446.51	38.57	996.83	26.32	860.74
										* Normalized value

Table 7 .
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9: Eect of the weight method selected with a xed number of requests S. Shorten
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latest departure times from C I/LD : T >I/LD . The same method is used to remove transition points unable to reach e at t e and to create C rI/LD

Generalisation of the trace combination improvement is to integrate T ISs with obtained connexion points in the trace. This is studied in the next chapter.

Computing a trace containing a TIS with obtained connexion points If the obtained connexion points are dierent from the requested start and end points, various T ISs can be used to ll the rst and last mile of the trip. Depending on the T ISs used, dierent traces are obtained. The resolution of these traces is considered in the next section.

Trace resolution overview

Denition of a composite trace Let Γ = T IS 1 + ... + T IS n , the trace considered. It is supposed that Γ contains only one T IS with obtained connexion points, T IS O . Based on this information, Γ is divided in three sub-traces: Γ α , Γ β and Γ O .

• Γ α is the sequence of T ISs in Γ before T IS O .

• Γ O is only composed of T IS O .

• Γ β contains the T ISs after T IS O .

Γ α and Γ β might be empty, if Γ O is the rst or last TIS of Γ. Following previous chapters, we suppose that Γ α and Γ β each contain at most one T IS which doesn't oer a MultiPointTrip service. If they exist, these T ISs are denoted respectively T IS / m α and T IS / m β . In chapters 4 and 5, we limit the number of TISs requiring an estimator to one per trace. In this chapter, T IS O denes x pick-up and drop-o times. This allows us to accept up to two TISs without MultiPointTrip service per trace, one in B A and one in B B .

We then dene composite traces for Γ α and Γ β . If these TISs require an estimator, the method proposed in Subsection 5.3.2 is applied. Otherwise, and if they are not empty, the methods described below are used. In both cases, resulting composite traces are denoted Γ ′ α and Γ ′ β . For Γ α , the method is composed of 4 steps.

1. The rst T IS in Γ α , called T IS 1 , is added to a new block denoted B A .

2. Two cases are considered depending on the characteristic of T IS 1 .

(a) If T IS 1 is time-dependent, then every T IS in Γ α is added to B A . This completes the composite trace.

(b) If T IS 1 is time-independent, then every time-independent TIS that succeeds to T IS 1 is added to B A , until a time-dependent TIS is reached or no TISs are left in Γ α . In the former case, Step 3 starts. Otherwise, the composite trace is complete and composed of a unique block B A .

3. A time-dependent TIS has been reached. B A is renamed to B s and all remaining TISs are added to a new block B so .

4. Finally, B s and B so are regrouped in a block denoted B A .

This concludes the reduction for Γ α . For Γ β , a symmetric method is applied. It is also divided in 4 steps:

Computing a trace containing a TIS with obtained connexion points Methods overview for nding the latest departure time from s If Γ ′ α = ∅, the trip R j ∈ R rO with the latest departure time is selected. If multiple trips share the same departure time, one is selected randomly. This trip is denoted R. This concludes the rst part of Phase 4 in this case. If Γ ′ α is not empty, 11 dierent methods can be used depending on the type of trace. These methods are presented in Table 6.7. We can note that the time-dependency characteristic of B B does not inuence the choice of the method. Before starting these methods, two steps are applied. In the description of these steps, the last block in Γ ′ α is denoted B α (which can thus represent B A , B / m α or B B ). These two steps update latest departure times from C Bα|O . 1. Firstly, C O+ is updated to contain only the connexion points associated with a trip in R rO . This updated set is denoted C rO+ . The set of latest departure times T >O+ is also updated. This method improves upon the previous method. When B / m α is time-independent, the number of requests can be reduced. Step 3 is modied while the other steps are used as such. Indeed, since B / m α is time-independent, an estimation of the duration of each trip in B / m α was computed in Method O2-3. The modied steps reads:

Value of trace Γ

Transfer durations

S. Shorten

Further research may consider to use multiple TISs with obtained connexion points in a single trace. Another research area might concern D s and D e . Results obtained with other modes can be used as a guide to x the values of D s and D e . Moreover, it might be interesting to consider other methods to select interesting trips from T IS O . Indeed, the use of a limited radius around s and e might suppress attainable solutions, while increasing the radius may allow useless trips. Other shapes could be used instead of a circle such as an ellipse to limit deviations from the direct path. A geometric approach could also be used by comparing the angle created between a trip provided by T IS O and the direct path from s to e. This angle could then be used to remove in advance some trips from R O .

S. Shorten Hubs Requests

Original stopping criterion 3 calls limit 5 calls limit Mean number of calls Error on the solution (%) Mean error (s) Error on the solution (%) Mean error (s) Error on the solution (%) Mean error (s) 

Modied hub selection

We then try an alternate method to select hubs. This variation takes into account the hubs already selected when considering a new hub. This new method is divided in two steps:

1. The rst step selects one hub using the previous method and constructs the graph G with only one hub.

2. The second step introduces a new scoring function and uses it to add relevant hubs to G.

Similarly to the rst method, a set of R random requests is created: R. These requests are then sent to the public transport API and the responses obtained are used to score each station using I(s). For each request r i ∈ R made, we also keep track of every transfer stations. The resulting set is denoted T (r i ). Trip duration is also kept. It is denoted D(r i ). Once all the requests have been made, the stop with the highest score I(s) is selected to be the rst hub: h 1 . The graph G(V, E) is then constructed using the method described in 7.4.1 with only one hub : h 1 . This graph G can be used to estimate trip duration between pairs of stations. It should be noted that the public transportation API may not be able to nd a trip between a station s and a hub h. In this case, the edge is not created in the graph. Therefore, for some requests, the graph may not be able to return a lower bound estimate.

A new score for every station not selected as hub is computed. Each station s is given a new score composed of two positive values (α s , β s ). Both values are initialized at zero. For each request r i ∈ R, α s is increased by one if no estimation is returned by the graph G for r i and if s is a transfer station for r i : s ∈ T (r i ). This score represents the number of requests without estimations among R in G, which would be resolved by adding s as a hub.

If G returns an estimation for r i , β s is increased by the dierence of duration between the estimation and the real duration D(r i ) if the estimation is greater than the real duration and if s ∈ T (r i ). β s represents the potential improvement in duration by adding s to the hub list.

When every request in R is reviewed, a new hub is selected. This hub is the stop with the highest value in α. In case of equality, β is compared. The stop with the highest β among the Comparison with more basic methods Finally, we compare our algorithm against two other methods. The rst method select the order of calls to make randomly. The second method ranks each pair (d i , a j ) based on the distance between d i and a j in ascending order. Since we don't have a stopping criterion for neither method, we only compare the results after 3 calls and 5 calls. Table 7.10 presents the results obtained.

This table is divided in three main columns. The rst column presents the method used. The second and third columns give the error on the solution after respectively 3 and 5 requests. The hub method selected has 100 hubs, 10000 initial requests and uses Ω R as weight function. As expected, the solution with random order has the worst percentage of error with only 16.55% of optimal solutions found after 3 calls. Sorting the requests by distance is also not very eective with only 40.40% of optimal solutions found after 5 requests compared to 87.01% with our method.

Estimator method 3 calls limit 5 calls limit Error on the solution (%) Mean error (s) Error on the solution (%) Mean error (s) In this chapter, we study the problem of creating an estimator for a public transport network without having access to the network timetables. An estimator is used to respond to MultiPointTrip requests when an API doesn't oer this service. This estimator is valuable when combining TISs.

We propose a method to create such estimator. The proposed method is divided in two phases: a preprocessing phase and a phase used when a MultiPointTrip request must be evaluated. In the preprocessing phase, this method nds important stations for transfer in the network. It then creates a graph centered around these hubs. This graph is then used to provide estimations to MultiPointTrip requests in the second phase.

For the public transport network of "Île-de-France", this method reduces the average number of calls needed (from 25 to 17.7) while nding the optimal solution almost 95% of the time. Our method outperformed other solutions proposed. However, the preprocessing of our larger graph (10 000 initial request and 100 hubs) requires 7 days and up to 6 million requests are necessary to build the graph. Moreover, the reduction in the number of requests is small. Changing the stopping criterion to reduce the number of requests multiplies by ve the number of non optimal solutions. Improvements must therefore be made on the estimator to be usable in an industrial context. In the following paragraphs, we propose some ideas for future work.

Methods to update the graph based on previous results

One important hypothesis is the usage of a hub. This hypothesis allows us to reduce the number of arcs to consider and thus the preprocessing time. However, optimal paths may not use a hub. Therefore, an estimation may be higher than the actual trip duration due to the detour generated by the hub.
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Chapter A Appendix A : Note and alternative options for combining multiple TISs

A.1 Description of osets

In this section, we look at some evolutions available if a TIS is able to consider osets. In this thesis, we suppose that only one indication of time was given at the request. However, some APIs are able to consider additional times, at the departure and arrival points. These additional times are called osets. In this case, the TIS will consider these additional times when computing journeys. These additional times may represent, for example, the trip duration of the previous or next TIS. Therefore, they allow to more easily combine TISs. We present two methods modify with the introduction of osets: Method F1bis and F1ter. These methods also consider that TISs allow ← → →.

A.1.1 Method F1bis: T IS 2 is time-independent

In the case where T IS 2 is time-independent and if the Trip service of T IS 1 accepts osets, it is possible to further reduce the number of calls. Indeed, if such a Trip request is possible, Method F1bis can be reduced to the following steps:

1. Phase 1 stays the same. 

Phase 2: A unique

A.2 Resolution of composite traces with two blocks

In this section, we illustrate the generalization of trace resolution to composite traces with two blocks.

We use the example of Figure A.2. Given the characteristics of this composite trace, Method F1 is used (see Section 4.2).

Phase 1: The rst phase nds every transfer between B s and B e . T Bs|Be = T 2|3 is found as well as every transfer inside each block: T 1|2 , T 3|4 , T 4|5 and the associated connexion points.

Phase 2-1: This phase nds the earliest arrival time t e at e and the connexion points C rBs|Be able to reach e at t e . In method F1, this is done with three successive MultiPointTrip requests: 

The earliest departure times T <2|1 are then obtained using the transfer T 1|2 . Only the earliest departure time for each connexion point c 2|1 i
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The rst call computes the latest departure time from s, the best connexion point c s|e i and the trip detail. Since B s is time-independent, s -→

. Indeed, in phase 2, s@t 0 --⇒ Bs C Bs|Be returned the trip duration associated to each connexion point in C Bs|Be . Therefore, the latest departure time, the best connexion point c

Bs|Be k and the path in B s can be deduced from this call. The following two Trip calls are then made: c

and s -→

. These calls give the trip details for B s .

Given the connexion point c In this work, we first propose a set of useful characteristics to describe a TIS and its API. Four characteristics were identified: type of connexion points, presence of MultiPointTrip service, timedependence of the journey and time-dependence of connexion points. A method to find possible traces and to filter uninteresting traces was also presented.

We then try to solve traces composed of two TISs where neither TIS has obtained connexion points. 16 variations are identified depending on the characteristics. We proposed nine different algorithms to find the best journey.

A generalisation to traces with n TISs is presented. A structure named block is introduced. Using this structure, a trace of size n can be reduced to a trace containing two or three blocks. A new set of methods was introduced to compute solutions for composite traces composed of three blocks while previous methods were modified to be used on traces with two blocks.

Another contribution concerns the resolution of traces containing a TIS with obtained connexion points. The block structure is used to reduce a composite trace containing n TISs to a trace with up to 7 blocks. Resolution methods divided in 4 steps are proposed.

Finally, we study the creation of an estimator for public transport network. We first find important stations in the network. These stations are called the hubs of the network. A weighted graph is then created based around these hubs. This graph obtained is used to estimate a trip duration between every pair of points in the network. Nous essayons ensuite de résoudre des traces composées de deux TIS où aucun des TIS n'a obtenu de points de connexion. 16 variantes sont identifiées en fonction des caractéristiques. Nous avons proposé neuf algorithmes différents pour trouver le meilleur parcours. Une généralisation aux traces avec n TISs est présentée. Une structure nommée bloc est introduite. En utilisant cette structure, une trace de taille n peut être réduite à une trace contenant deux ou trois blocs. Un nouvel ensemble de méthodes a été introduit pour calculer des solutions pour des traces composites composées de trois blocs, tandis que les méthodes précédentes ont été modifiées pour être utilisées sur des traces avec deux blocs.

Une autre contribution concerne la résolution de traces contenant un TIS avec des points de connexion obtenus. La structure en blocs est utilisée pour réduire une trace composite contenant n TIS à une trace comportant jusqu'à 7 blocs. Des méthodes de résolution divisées en 4 étapes sont proposées.

Enfin, nous étudions la création d'un estimateur pour un réseau de transport public. Nous trouvons d'abord les stations importantes dans le réseau. Ces stations sont appelées les hubs du réseau. Un graphe pondéré est ensuite créé autour de ces hubs. Ce graphe obtenu est utilisé pour estimer une durée de trajet entre chaque paire de points du réseau.