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Abstract

Surgery, a core unit of the patient care system, is increasingly improving due to continuous
technological innovations facilitating better patient outcomes and providing rich intraopera-
tive data via information systems. This, however, increases the complexity of the workflow
procedures, as well as, the surgeons’ cognitive workload. Consequently, there is an increasing
need to optimize surgical workflow via intelligent and analytical systems that can provide
decision support and context-aware assistance to the surgeons. Despite the vast literature
on activity recognition in medical computer vision, the coarse-grained nature of the tasks
mostly tackled, e.g. recognizing surgical phases, are not detailed enough for a more helpful
Al assistance in the operating room (OR). Modern high-tech surgery rooms require a more
detailed activity recognition system: one that can meticulously capture finer actions, such as
interactions between the instrument and tissue, and comprehensively describe the activities
taking place.

In this thesis, we focus on the development of deep learning methods for the detec-
tion and recognition of surgical instruments and their fine-grained activities in laparoscopic
videos. These activities are formalized as triplets of (instrument, verb, target) representing
the tool-activity. We investigate, firstly, joint detection and tracking of surgical instruments
in laparoscopic videos. To alleviate the difficulty of manually generating bounding box an-
notations for instruments in every video frame, we develop a novel localization method that
is weakly supervised on binary presence labels, which are easier to generate. To leverage the
temporal structure of surgical videos, we propose the use of a Recurrent Neural Network to
track the motion of instruments, still without requiring any form of spatial training labels.
Moreover, we create a large video dataset with spatial labels, which we use to validate the
proposed method. Progressing to activity modeling, we generate a large-scale dataset of
surgical action triplets and build several deep learning models for their recognition. First,
we design a recognition pipeline that learns the individual components of the triplets using
CNN features and establishes their association in a 3D feature space, as a frame can contain
multiple triplets. Improving on the first method, we propose a new form of spatial attention to
capture the individual triplet components more efficiently using activations resulting from
the instruments. Furthermore, we introduce a new form of semantic attention, inspired
by Transformer networks, to learn triplet components’ association. Finally, we validate all
the proposed approaches on the datasets introduced in this work, achieving state-of-the-art
performance on each task.
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|§ Introduction

But biology and computer science - life and computation - are related...
I am confident that at their interface great discoveries await those who seek them
—Leonard Adleman

Figure 1.1 — An example of a hybrid operating room that combines a traditional operating room
with an image guided interventional suite. AMIGO suite at Brigham and Women's Hospital, Boston,
Massachusetts. Image Credit: Copyright 2015 IMRIS, Inc.
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To remain alive, the human body must be kept in a healthy condition. When the body
health deteriorates, medicine and medicinal foods are used to treat the ailing conditions. In
some cases, the affected tissue or organ may be repaired or removed through a manual or
instrumental technique known as surgery. According to Encyclopedia Britannica, surgery
is a field and practice of medicine that involves the manipulation of bodily structures for
diagnostic or therapeutic purposes. A number of medical conditions can only be effectively
treated through surgery, especially those conditions that cannot be sustained over a long
period without vital organ dysfunction. Post-surgery in such cases is usually characterized by



relief, a surge in energy, and increased life expectancy. In the earlier days, most surgeries are
carried out in open procedure which involves the cutting of skin and tissues large enough so
that the surgeon can have a full view of the structures or organs to be operated upon. This
type of procedure is usually associated with intense pain and long hospital stay due to the
postoperative time required to heal the manipulated structures and incisions made on the
body. Deciding to get surgery under such a scenario can feel overwhelming. Aside from the
associated intraoperative pain and postoperative infection which can now be controlled by

the patient’s anesthesia and antiseptics (introduced in 19"

century), some surgical errors
could also lead to life-threatening complications, re-admission, re-operation, and sometimes
death [Nathan 2012, Birkmeyer 2013]. And so, many efforts are being made to improve surgery
with lots of them focusing on the minimization of the risks associated with intraoperative
errors. The expectation is to develop a surgical practice that is safe, effective, and efficient.

One of the most prominent improvements in surgery is the advent of Minimally Invasive
Surgery (MIS): tiny holes are made on the body, and through the use of an endoscope and en-
doscopic devices, surgery is performed at a proxy. This type of surgery is enabled by advances
in technology such as the introduction of cutting-edge surgical instruments, novel imaging
technologies, control, monitoring, and support systems used during the procedure to provide
greater control of the surgical procedure and reduced tissue trauma and disruption while
granting better access to the anatomical structure. The minimally invasive technique creates a
bedrock for the other technological innovations in surgery such as endoscopy, robot-assisted
surgery, robotic surgery, etc., with improved patient outcomes. By being less traumatic and
less invasive, it significantly alleviates some preoperative, intraoperative, and postoperative
burden thereby leading to shorter hospital stay [Velanovich 2000]. However, this success
comes at a price for the surgeon, who now deals with increased technical difficulty coming
from the indirect vision and non-conventional handling of advanced surgical instruments [Bal-
lantyne 2002], especially during complex surgical cases [Felli 2019].

The elevated complexity of MIS is one of the motivations driving the development of
context-aware support systems for surgery [Lemke 2005]; i.e. systems capable of assisting
surgeons, for example via automated warnings [Vercauteren 2019], based on their dynamic
perception and understanding of the surgical scene and workflow. And so, a copious amount
of research in surgical data science [Maier-Hein 2017] provides data-driven computational
models that are capable of extracting knowledge from medical data with reliability, accuracy,
and speed [Vercauteren 2019]. Facilitated by the acquisition of a large amount of data using the
novel imaging technologies, such as endoscopes, a growing number of state-of-the-art (SOTA)
algorithms are being developed using Machine Learning and Artificial Intelligence methods to
provide automated analysis of workflow [Simpson 2019, Gibson 2018]. These algorithms tackle
several tasks including the classification of surgery type, detection of the used instruments,
recognition of the surgical phases, prediction of activities within the phases, etc., providing
information that is helpful for the development of Computer Assisted Intervention (CAI)
in the OR. While there has been commendable progress in workflow analysis, the activity
recognition is still very much at a coarse level, i.e., they are not detailed enough to give accurate
information about the activities taking place. To obtain a comprehensive account of surgical
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activity, simultaneous recognition of the tools, the underlying tissues, and the relationship
between them needs to be established.

The principal aim of this thesis is to develop smart computational aids for the detection
of surgical instruments and the recognition of their fine-grained activities in laparoscopic
videos. On the aspect of surgical instrument detection, the objective is to devise a new
deep learning method that can learn from simple image-level labels the spatial positions
and motion trajectories of surgical instruments - a complex task that would have ordinarily
required expensive and difficult-to-generate spatial annotations for model training. This
approach is known as weak supervision. On the activity recognition task, the objective is to
build novel deep learning models that can recognize surgical actions as triplets of (instrument,
verb, target) - a detailed level of granularity for activity recognition that is needed for a more
helpful Artificial Intelligence (AI) assistance in the OR. This is known as surgical action triplet
recognition [Neumuth 2006, Kati¢ 2014, Kati¢ 2015]. These objectives formed the central
work carried out in this thesis. The benefit of the thesis is that decision support tools built
from this research can be used to develop CAI solutions in the OR. Those tools will enable
standardization of and objectivity in surgical care to provide better assessment, early detection
of errors, safety monitoring, and guidance leading to improved patient care [Garrow 2021]. To
facilitate this work, we also generate large fine-grained datasets to support research at this
level of details.

In the following sections, we begin to dissect the clinical context for this thesis by throwing
light into the background of the surgical procedure of our concern. There, we discuss the
advancement in surgery that serves as the bedrock for the research and development of CAI
systems in the OR. Going further, we present the problems being researched in this field while
identifying a research gap that forms the central point in our research proposal. Thereafter, we
highlight the motivations for our research, emphasizing the thesis interest in surgical tool and
activity recognition, their challenges, research questions, and perspectives. This is followed by
a presentation of the contributions of this work towards providing new deep learning solutions
in this domain of research and concluded by outlining the structure of the thesis.

1.1 Clinical Context and Background

The growing popularity and acceptance of technology in our time is due to its perceived
ability to enhance human performance in many spheres of life. Technology has also been
utilized in surgery to improve surgeon’s competence and provides access to relevant and
complementary information that could help in reducing risks for patients. This has invariably
increased the patients’ confidence in getting surgery. Since technology and its methods are
still emerging, there are increasing opportunities to advance interventional medicine. In this
section, we present a brief overview of the surgical procedure of interest in this thesis. This
will also include highlights on the innovative transformations that have created the enabling
environment for the use of CAI systems in optimizing the surgical procedure. We will then
conclude this overview section with the nature of ongoing studies modeling surgical workflow
to provide the needed CAI solutions.



1.1. Clinical Context and Background

(b) The minimally invasive surgery, where a

(a) The traditional open surgery, whereby a tiny hole-like incision is made and the sur-
big incision is made to have a direct broad geons have indirect view of the anatomy via
view of the anatomy being operated on. a computer screen.

Figure 1.2 — Two different procedures for cholecystectomy surgery (open vs laparoscopic) based on
the size of incisions made during surgery. Images obtained from http://airnmed.com .

1.1.1 Image Guided Surgery

Image-Guided Surgery (IGS) is not only a direct product of surgical innovation but also one of
the most notable enabler of other technological advancement in surgery. It is an umbrella term
including all interventions performed looking at and relying on digital images [Bucholz 1995].
The idea dated back to the 1940s when Sir Victor Horsley and Robert Clarke developed the first
stereotactic frame fitted over the head of a patient to undergo brain surgery [Galloway 2015].
At that time, IGS only refers to stereotactic surgery where preoperative images are registered to
the surgical space through the use of reference markers called fiducials and a tracking device
which displays the surgeon’s anatomic position on Three Dimensional (3D) reconstructions of
the preoperative films [Bucholz 1995]. IGS was originally developed for the treatment of brain
tumors using stereotactic surgery and radiosurgery that are guided by intraoperative computed
tomography (CT), Magnetic Resonance Imaging (MRI), and positron emission tomography
(PET), all these targeted toward electro-physiological measures for refinement of position,
optical localization, and image guidance [Galloway 2015]. A central aspect of IGS is creating
accurate, detailed, patient-specific models from medical imagery. Using the model, surgical
instruments are tracked relative to the patient, allowing the surgeon to effectively execute
procedures while avoiding hidden, critical structures [Grimson 1999]. This also alleviates
pains on the patient’s side with fluoroscopy being the first image guidance technology adopted
by pain specialists. IGS can be broadly classified into minimally invasive surgery (MIS),
interventional endoscopy, and interventional radiology (also called percutaneous surgery)
[Mascagni 2018].

MIS refers to any surgical procedure performed through tiny incisions as shown in Fig.
1.2b instead of a large opening as in the traditional open surgery shown in Fig. 1.2a. This form
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of surgery is performed using miniaturized cutting-edge instruments supporting the drastic
reduction of the size of incisions needed to gain access to the surgical site [Litynski 1999].
During MIS, some keyhole-like ports are made on the patient’s body. The size of these ports is
now dependent on the size of the instruments (e.g. trocar) [Fuchs 2002, Westebring-van der
Putten 2008] rather than on the surgeon’s holistic view of the surgical site as the case is in
open procedures. The implication is that the patient generally experiences a decrease odds
of nosocomial infection, less pain, less bleeding, and faster recovery times [Velanovich 2000,
Olsen 1991] compared to the open surgery.

MIS is performed using a rigid endoscope held manually or tele-manipulated as opposed
to interventional endoscopy, which uses flexible endoscopes intervening through natural
orifices such as mouth, anus, etc. Note that MIS can be performed as well using surgical
robots. In rigid endoscopy, a surgeon accesses the surgical site through trocar ports formed by
minimally invasive incisions made on the patient’s body [Litynski 1999]. Some specialized
surgical instruments (such as electrified bipolar, hook, scissors, etc.) are passed via the
trocar and the procedure is performed with the aid of the light and camera which allows the
surgeon to see the inside of the patient’s body via a monitor screen. Using the endoscopes,
some of the hand motions, particularly the articulations, are transmitted to the instrument
tips [Gaab 2013] for the dexterous manipulation of the anatomies. According to Healthline
1, rigid endoscopy falls into categories, based on the area of the body that they investigate.
Some examples include: laparoscopy (abdominal area), arthroscopy (joints), bronchoscopy
(lungs), colonoscopy (colon), thoracoscopy (chest), ureteroscopy (ureter), etc. This thesis
focus on a type of laparoscopic surgery known as Laparoscopic Cholecystectomy.

1.1.2 Laparoscopic Cholecystectomy

Laparoscopic cholecystectomy is a minimally invasive surgery that involves the removal of the
gallbladder from the body [Olsen 1991]. Gallbladder removal is essentially carried out due to
the presence of painful gallstones otherwise known as Cholelithiasis [Schirmer 1991] and the
complications they cause. Meanwhile, a patient can live a normal life after the gallbladder
is removed. The procedure is characterized by the dissection of the gallbladder from the
surrounding anatomies, clipping, and cutting of structures (such as cystic-duct, cystic-artery,
and other blood vessels) connecting to the gallbladder, and extraction of the gallbladder from
the body using a specimen bag (see also Figure 1.3). Laparoscopic cholecystectomy is one
of the most commonly performed surgical procedures in the world [Shaffer 2006]. It has
become the gold standard approach to cholecystectomy [Pucher 2018] owing to its attributed
low profile risk in removing the gallbladder. It is frequently used in research due to its high
frequency of occurrence and well standardize protocol [Padoy 2012].

Being a type of minimally invasive surgery MIS, it equally enjoys a significant reduction of
some preoperative, intraoperative, and postoperative issues such as pain and pain medication,
invasiveness, blood loss, and recovery time [Olsen 1991, Velanovich 2000]. Nonetheless, its
clinical outcome is only comparable to the traditional open surgeries [Ballantyne 2002]. Just
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Laparoscopic Cholecystectomy Procedure

7 ) 1) The Fundus Of The Gallbladder Is
Diagrammatic Anatomy Of Gallbladder Grasped And The Cystic Duct Is
& Surrounding Structures Identified In Calot's Triangle.

Laparoscopic Incision Sites

2) The Cystic Duct Is Clamped & 3) Cholangiogram Confirms Anatomy. 4) The Gallbladder Is Dissected

Contrast Material Introduced The Cystic Duct & Artery Are From The Liver & Removed.
Via Catheter. Cholangiogram Taken. Clamped & Divided.

Figure 1.3 — A sequence of laparoscopic cholecystectomy. (source: [Massarweh 2007]) .

like open cholecystectomy, laparoscopic cholecystectomy is not immune to surgical errors.
In fact, the non-conventional way of manipulating the laparoscopic instruments coupled
with indirect observation of surgical scene via the screen of a monitor denies surgeons their
conventional hand-eye coordination and direct hepatic feedback making it susceptible to
visual illusion [Ballantyne 2002, Mascagni 2020, Mascagni 2021b].

Fortunately, laparoscopic cholecystectomy, compared to open cholecystectomy, has better
vantage points to overcoming surgical risks. One of which, like other laparoscopic procedures,
is that it enables a large amount of data to be acquired via the endoscope for their analysis.
Leveraging this support, surgical workflow analysis on these data can help to develop intra-
and post-operative context-aware decision support tools [Maier-Hein 2017] that can assist the
surgeons to perceive, interpret, plan, and act on the digital visual data potentially fostering in-
creased surgical safety and efficiency and decrease risk further. Also, the design of laparoscopy
makes it easy for the integration of Al aids in surgery. This is because the use of computer
systems and cameras in laparoscopy already provides imaging, deployment, and visualization
platforms. The captured procedural data are readily available in digital form that Al systems
can directly process online and in real-time. The analysis can be displayed on or next to the
computer screen that the surgeons are already monitoring the procedure from.

In the next section, we will discuss the surgical workflow analysis in CAl in order to better
understand the place and usefulness of the work done in this thesis.
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1.1.3 Surgical Workflow Analysis
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Figure 1.4 — An illustration of a context-aware assistance in the operating room using some of the
systems developed in this thesis.

The technological advancement in medicine have not only improved medical practices, but
also transformed surgery from a risky "art" into a scientific discipline capable of treating
many diseases and conditions [Misra 2017, Twinanda 2017]. Some surgeries may require
highly adaptive assistance systems [Kranzfelder 2013b, Jiang 2017, Liew 2018] which analyze
surgical workflows and provide context-aware assistance [Lemke 2005] in the OR. Slowly,
surgery is merging with technical disciplines and the procedure becoming more and more
complex. There is now a growing need for documentation, computational model, and to
analyze and support the surgical practice by means of computers and robots. This is one
of the motivations driving the development of CAI systems to utilize the pre-operative and
intra-operative patient-specific information from different sources, sensors, and imaging
modalities to enhance the workflow, control, ergonomics, and navigation capabilities during
surgery [Mirota 2011, Stoyanov 2012].

Computer-Assisted Intervention (CAI) is a field of research and practice, where medi-
cal interventions including clinical decisions are supported by computer systems and tech-
nology with the aim of augmenting the capability of clinicians to achieve a better clinical
outcome. It encompasses medical robotics [Hager 1995, Hager 1996, Speidel 2014, Wag-
ner 2021a, Vander Poorten 2020], interventional navigation [Navab 2002, Pfeiffer 2019b],
intraoperative decision supports [Speidel 2006, Padoy 2008, Sznitman 2011], medical imag-
ing [Navab 1999, Fitzek 2021], augmented reality and visualization [Navab 2007, Navab 2012, Ro-
das 2015], workflow and skill analysis [Speidel 2006, Speidel 2009, Jin 2018], surgical train-
ing [Stefan 2020], etc.. Among various functionalities of CAl, it is also expected to provide
context-awareness assistance and intelligent decision support systems in the OR. Context-
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aware assistance entails knowledge representation and useful signals that can interactively
update the surgeon on the state of the intraoperative procedure such as providing timely
information through surgical phases [Maier-Hein 2017]. This type of information is useful in
optimizing operating time, analyzing technical requirements, anticipating patient positioning,
evaluating surgical skills, guiding against an unintentional use of instruments, and improving
the pre-operative human-computer interface [Lalys 2014]. Decision support entails providing
some complementary aids that can help surgeons to optimize their surgical decisions, for
instance, retrieving of patient’s history information, browsing decisions on similar cases from
a surgical database, validating a tumor, quantifying blood loss, crosschecking safety check-
points, measuring the length of structures in bypass, etc. Such informed context-aware and
decision support systems could be developed from procedural data analysis in a scientific
discipline known as Surgical Data Science (SDS).

SDS sets in to observe the preoperative, intraoperative, and postoperative activities with the
aim of improving the value and quality of interventional healthcare [Maier-Hein 2017]. Its in-
volvement is via data capturing, organization, analysis, and modeling [Maier-Hein 2017, Maier-
Hein 2020]. While the advanced devices can provide increasingly more information from
surgical procedures (e.g. surgical videos, instrument use, staff participation, instrument trajec-
tories, etc.) [Kranzfelder 2014], it is SDS that is concerned with the analysis and understanding
of the OR activities [Lalys 2014] using the data. This analysis can provide surgeons with quan-
titative support to aid decision-making and surgical actions, one of the fundamental needs in
CAL

Recently, surgical workflow analysis has become an active research area in surgical data
science [Neumuth 2009, Maier-Hein 2017]. It is aimed at the automatic recognition of a
predefined subset of tasks, or activities of interest by following surgical processes with real-
time analysis of live video data acquired intraoperatively [Ahmadi 2006]. The surgical process
of interest can be a set of one or more linked steps that collectively realize a surgical objective
within the context of an organizational structure defining functional roles and relationships
[Neumuth 2009]. The idea of describing the surgical procedure as a sequence of tasks was first
introduced by [MacKenzie 2001] and formalized in [Jannin 2001]. The formalization allows
surgical processes to be represented at the appropriate level of granularity (e.g.: activities,
phases, steps, etc.) for the requisite decision making. Surgical Workflow Analysis identifies the
stages of a procedure and gives guidance on what tool to use next, what the next step should
be, or by displaying pertinent information at any given time. For example, if the operation
is to remove a tumor, it can be relied on to determine if the growth is visible, or warn when
an instrument is approaching a no-go zone in the body [Speidel 2008]. So, a more precise
decision-making process would actually require filtering data and knowledge about surgical
actions, instruments, anatomical structures, phases, and the workflow itself. And so there are
numerous research focusing on different aspects of workflow analysis including the surgery
type classification [Kannan 2019], surgery remaining time estimation [Aksamentov 2017],
tool detection [Bouget 2017], phase recognition [Garrow 2021], action/activity recognition
[Lalys 2014], clinicians pose estimation [Kadkhodamohammadi 2014], surgeon skill evaluation
[Reiley 2011], etc. All these contribute in great amount towards the realization of CAI. For
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instance, surgical phase, action, and event recognition will mainly help in providing context-
awareness. On the other hand, surgical instruments and anatomical structures recognition
will play a role in improving safety by guiding against the use of the instrument, like a hook, in
an unsafe dissection zone [Speidel 2008] or other safety checkpoints [Mascagni 2021b] such
as anatomy validation and grading. The scrutiny from skill evaluation will help to improve
surgical performance.

To wrap it up, surgical workflow analysis can be introduced into CAI systems and have a
large impact on future surgical innovations, whether for planning, intra-operative or post-
operative purposes. It would offer an additional layer of quality control and safety monitoring
to surgical procedures. Furthermore, it would provide tools to keep surgeons and OR staff on
track with every small detail.

1.2 Research Overview

1.2.1 Problem Statement

As the field of surgery is evolving with emerging technologies improving patient outcomes,
the procedures are becoming more and more complex heightening pressure on surgeons
who are now faced with complex handling of the sophisticated equipment. This equipment,
especially the ones with sensors and imaging capabilities, such as endoscopes, captures a
great deal of data from different sources and modalities. However, the general problem is that
"these large unprocessed surgical data are left unused". Analyzing these data would provide
intelligent feedback, knowledge, communication signals, procedural and patient-specific
model [Kranzfelder 2013b, Jiang 2017, Liew 2018] to the surgeons, helping to reduce their
cognitive workload and improving their coordination and efficiency pre-operatively and intra-
operatively [Lemke 2005]. The current information and communication technology in the
OR cannot sufficiently extract useful information from these data or process the procedural
data in a way that benefits the operational and clinical tasks without disrupting the surgical
workflow.

Developing CAI solutions that can analyze the procedural data intraoperatively is one
of the main focuses of surgical workflow analysis, mostly to provide interactive feedback
to surgeons about the ongoing activities. Such a system should be able to understand the
activities in every given surgical scene. Lots of research model information concerning the
surgical intervention and its activities in their own way, such as performance time, instru-
ments used, trajectories, or intervention phases. These exploits are encouragingly utiliz-
ing the available data to provide computer-based solutions to assist the intervention. But,
the specific problem is that the existing systems only describe surgical activities at a very
coarse level, which are not detailed enough for more helpful Al-assistance in the OR. Their
coarse-grained predictions leave out substantial semantics, such as details about the tissue
operated upon. For instance, the main task studied by the community, surgical phase recog-
nition [Ahmadi 2006, Lo 2003], only describes scenes at a very coarse level. As an example
the clipping and cutting phase [Twinanda 2016b] in cholecystectomy contains a multitude of
important actions such as graspers holding anatomical landmarks, a clipper applying several
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clips, laparoscopic scissors cutting the cystic-duct and so on. The coarse phase labels can
help navigate surgical videos and even help to provide selective documentation of critical
events [Mascagni 2021a], but by itself, the phase information does not provide an accurate
picture of the activities taking place. Such unaccounted finer details of the workflow activities
are imperative for fostering improved safety in laparoscopic cholecystectomy. And so, it ap-
pears like the finer-grained the activity is modeled, the more value it gains in terms of clinical
utility. Finer-grained workflow divisions such as step [Ramesh 2021], single verb action [Khat-
ibi 2020, Rupprecht 2016] recognition made limited attempts at breaking the activities into
finer units but still overlook interactions with the anatomy. Thus, the problem remains largely
unresolved.

1.2.2 Research Questions

Our central research question is: how can tool-tissue interactions be effectively modeled to
infer fine-grained surgical actions from videos for the best clinical utility? In an attempt to
answer this research question, we are faced with disentangling activities into components
entities involved in the interaction: the instrument, its role, and its target. It now looks like
multiple recognition tasks are involved, but since the whole activities revolve around the
instruments, localizing of these instruments becomes imperative as well for the recognition of
the other interacting components that rely on the instrument position information.

However, there is a lack of spatially annotated datasets to train a deep learning model for
instrument detection. But, since it is easier to generate binary labels indicating the presence
or absence of surgical instruments, how to exploit these easier-to-generate binary presence
labels for tool localization and tracking? becomes a complementary research question. Work
done in this thesis is targeted at providing enough scope for investigation, practical answers,
and insightful discussion to these research questions.

1.2.3 Purpose Statement

The purpose of this study is to develop computational artificial intelligent systems for the
detection and recognition of surgical instruments and fine-grained activities in laparo-
scopic videos. Considering the interconnectedness of these two aspects of surgical work-
flow analysis: tool and activity, we propose, as our first task, to detect and track the surgical
instruments in laparoscopic videos and thereafter, extend this proposal to also include the
recognition of the actions performed using the detected instruments as would be introduced
further and extensively discussed in the succeeding chapters.

1.2.4 Tasks and Methods

We present a concise overview of the tasks tackled in this thesis.

1.2.4.1 Surgical Tool Detection and Tracking

The surgical instrument recognition is an essential component for all the works done in this
thesis. Its role in all our process modeling is crucial as tool information is a discriminative
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feature that enhances surgical activity recognition. Tool recognition entails the detection of
the presence of tools and their classification. This recognition is a multi-label classification
problem meaning that more than one tool can be present at the same time.

Our first task goes beyond multi-label recognition, to also include localization and tracking.
By localization, the method predicts coordinate labels representing the spatial locations of
the detected tools. And by tracking, the method associates and propagates the identities of
the detected tools across video frames, including their re-identifications. Tool localization
and tracking are respectively spatial and spatiotemporal tasks: they require a deep learning
model to be trained on data in which the spatial coordinates of the tools have to be manually
annotated. Owing to the lack of spatially annotated data, our tool detection method is designed
to learn without requiring any form of spatial annotation, but by leveraging an approach
termed weak supervision.

Taking everything into account, we build a new deep learning model, with both spatial and
spatiotemporal considerations, that is trained end-to-end but weakly supervised on binary
presence labels for joint detection and tracking of surgical tools in laparoscopic videos. Our
model employs two main deep learning methods: (1) CNN for feature encoding and spatial
localization; and (2) Recurrent Neural Network (RNN) for temporal refinement and tracking.

Building a joint detection and tracking pipeline for surgical instruments in the first instance
creates a bedrock for the rest of the research work in this thesis.

1.2.4.2 Surgical Action Triplet Recognition

For its significance, especially in providing context-aware assistance in the OR, a copious
amount of work models surgical activities recognition at different levels of granularity. Our
activity recognition goes beyond the conventional recognition of surgical action as a single
verb of the surgical instruments, to a deeper understanding of visual semantics that depicts the
complex relationships between instruments and tissues. Specifically, we tackle surgical activity
recognition at a more fine-grained and detailed level formalized as triplet, for comprehensive
information to provide the best clinical utility in CAI systems.

Action triplet is here presented as (instrument, verb, target) combinations [Kati¢ 2014].
Their recognition requires a lot of tasks, including simultaneous recognition of the three
constituting components of the triplets, which is multi-label per component, and a semantic
association of these components as there can be multiple triplets per frame. Characteristically,
action triplets are instrument-centric, meaning that consideration of anatomy as part of a
triplet is not by mere visibility, rather by its involvement in an interaction carried out using
an instrument. Also, a verb is defined by the action of an instrument. This ultimately means
that without an instrument, there is no verb, and also no anatomy will be marked as a target.
The implication is that methods intending to recognize these two dependent components
correctly would require the discriminative instrument information.

Taking everything into account, we build several new deep learning models, tackling
both the components detections and their association. We still rely on binary presence
labels to provide instruments’ location information for guiding the detection of the other two
components of the triplet. We explore two deep learning methods in this task: (1) CNN for
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feature encoding, spatial localization, triplet and triplet components recognition; (2) Attention
Mechanism that models spatial and semantic reasoning for improved detection of the triplet
components and their association.

The modeled task and methods stand out among other surgical workflow frameworks in
providing truly fine-grained and comprehensive information on surgical activities.

1.2.5 Research Motivation

We discuss in this section, the motivation for the work done in this thesis.

1.2.5.1 Motivation for Surgical Tool Detection and Tracking

A key ingredient to developing CAI systems that can provide context-aware decision support
for laparoscopic surgery is having a real-time knowledge of the presence of the surgical
instruments, their locations, and their track of movement over time. Surgical instruments play
a central role in the understanding of other aspects of surgical workflow analysis. For instance,
the instruments’ presence and their co-occurrence usage are some of the most important
discriminating markers of the varying surgical phases and steps [Padoy 2012, Stauder 2014].
Also, the tools entry, exit, and substitution within the body determine the surgical phase
transitions. Most surgical events are directly or indirectly tied to the instruments such as the
presence of smoke resulting from the coagulating instruments (e.g.: bipolar) [Nwoye 2019].

Tool detection information could be useful in formulating and sending crucial signals
in the OR. These signals could be for pre-operative or intra-operative needs. For instance,
the detection of prolonged use of certain instruments such as irrigation and suction devices
suggesting bleeding could be used to request a senior surgeon’s intra-operative assistance.
Whereas the detection of some instruments in combination with other foreign bodies such
as a specimen bag could suggest the concluding part of a current surgery. This informa-
tion would be useful in estimating the remaining surgery duration which is important for
OR scheduling and pre-operative pain medication on the next patient in the waiting room.
Furthermore, surgical instrument detection and tracking are essential in understanding the
tool-tissue interaction in surgical videos [Nwoye 2019]. In this case, the instrument is central,
meaning that such interactions revolve around the presence of an instrument [Nwoye 2020].
In robot-assisted surgery, the detection and tracking of the manually used instruments would
provide information for the synchronization of kinematized and non-kinematizd instruments
location [Nwoye 2019]. Since surgical skills are mostly accessed by the instrument usage
pattern [Speidel 2006, Jin 2018], detection and tracking of instruments can be helpful in the
evaluation of surgical skill and performance. Therefore, an instrument recognition model can
be integrated into some learning systems to assist in surgical skill training and education.

Based on the significance, a lot of deep learning strategies have been explored on sur-
gical instrument detection in laparoscopic videos and images including their classification,
localization, segmentation, and tracking.
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1.2.5.2 Motivation for Fine-Grained Activity Recognition

Having discussed the importance of surgical instrument detection in CAI, it will be necessary to
also highlight that detected tool information alone is not sufficient to develop novel assistance
systems that are reactive to the context, e.g. that can interpret tool-tissue interaction, provide
timely instructions to OR staff, enforce safety checkpoints, or log automatically relevant
information within the surgical report. This is because a particular instrument, such as a
grasper, can occur in almost all the phases of the surgery but only its usage pattern could
deliver distinguishing semantics for context-aware modeling. For instance, the clinical need
of notifying the surgeons to observe CVS achievement may be overrun if a system fails to
distinguish when an instrument like grasper is retracting gallbladder at the calot triangle
dissection phase from when it is packing the specimen bag at the gallbladder retraction phase.

A step further in recognizing the surgical instruments is the understanding of the actions
that they are performing at every point in time throughout the entire duration of the surgery.
This is known as surgical activity or action recognition. The term surgical tool-activity as used
in this thesis refers to those surgical actions/activities that are instrument-driven as opposed
to other non-operative activities that can even happen even outside the patient’s body without
the use of surgical instruments. Modeling a tool activity encompasses the used instrument, the
action of the instrument, and the targeted underlying anatomy. This is formalized as surgical
action triplet in [Kati¢ 2014]. These types of actions are instrument-centric. Their recognition
usually starts from the point of instruments insertion into the body to their withdrawal from
the body. A recognition model detects these instruments and recognizing their interactions
with the tissues at every time interval in the procedure.

Surgical tool-activity recognition is highly essential towards the development of intra-
operative and post-operative context-aware decision support systems since they provide
additional information about the state of the detected instruments which are more relevant
to the context-awareness of the procedure. Surgical tool-activity recognition is also essential
in robotic surgery to keep track of the surgical actions controlled by humans. Surgical tool-
activity recognition can be helpful in action anticipation. A sequence of predicted surgical
actions could be used by a rule-based inference system to identify error-prone situations in
complex cases, anticipate failures, and provide useful signals requesting assisted intervention.

At a fine-grained level of granularity, surgical activity recognition can help foster safety
intraoperatively. For instance, in laparoscopic cholecystectomy, Critical View of Safety (CVS)
achievement is a commonly advocated safety check to prevent bile duct injury (BDI). This
medical error can lead to a major complication in surgery. According to [Strasberg 1995], CVS
is defined by 3 criteria (1) the view of 2 and only 2 tubular structures, the cystic duct, and the
cystic artery, connecting to the gallbladder, (2) that the hepatocystic triangle is cleared from fat
and connective tissues, and (3) the lower part of the gallbladder is separated from the liver bed.
These criteria can be achieved by careful dissection. Since CVS is assessed visually, this means
that the assessment can be automated using computer vision [Mascagni 2020,Mascagni 2021b].
Hence, an activity recognition model which takes into consideration the detailed description
of the instrument-tissue interaction would be of great benefit towards automating and giving
feedback on CVS assessment. Furthermore, fine-grained activity recognition could potentially
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help to mitigate visual illusion by differentiating, via feedback, unrelated but easily mistaken
tissue manipulations such as clipping cystic-duct vs clipping bile-duct. However, this level of
granularity for surgical action detection, which is needed for a more helpful Al in the OR, is
lacking in the existing recognition systems.

Surgical action recognition models can also be useful postoperatively via video captioning
and report generation for post-surgery evaluation. In surgical education, they can be used for
action-specific video indexing and retrieval. It can also help to improve the overall workflow
of the hospital as the information can be made available to the administration, or computing
overall statistics [Padoy 2008]. In general, surgical tool detection and tool-activity recognition
will set a bridge for the development of many medical applications that could be useful
pre-operatively, intra-operatively, and post-operatively.

1.3 Challenges

We broadly classify the challenges facing the modeling of surgical tool-activity recognition
into two: data- and method-based challenges.

1.3.1 Challenges Related to Data

Over the years, interesting deep learning methods have been developed for visual recognition
and language translation, however, these algorithms do not directly generalize on surgical
data. Notwithstanding the endoscopic videos capturing most of the activities performed
within the patient [Vercauteren 2019], automatic recognition of these activities is much more
challenging than the classical human activity recognition for which most of the algorithms are
benchmarked. Sometimes, these challenges are introduced by the constraints arising from
surgical data acquisition protocol, annotations difficulty, and overlapping labels as discussed
further.

1.3.1.1 Visual Challenges in Laparoscopic Images

Recognition models trained on natural images may not easily adapt on surgical data owing to
a swift change in the task scene and visual ambiguity [Lalys 2014] affecting the image quality
and visibility. In terms of coverage, the endoscopic videos are captured at a very close range
which restricts the camera from obtaining sufficient contextual information. This also restricts
the field-of-view and localization [Baumhauer 2008]. Since the videos were acquired in a
controlled and constrained environment, the obtained images are typically similar to each
other, resulting in low intra-class variability.

In the general vision tasks, shape, texture, and color are major discriminating properties
learned by the recognition models, nevertheless, these features are not fairly representative
in surgical data. The anatomies maintain fairly similar colors and textures, yet their shapes
are mostly deformable. Worst still, these anatomies do not maintain clear boundaries from
each other. The difficulty of recognizing and differentiating these anatomies affects learning
the instruments based on their scene contextual characteristics. The surgical instruments
are mostly similar except for the tips which are less than 20% of the whole body. There can
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Figure 1.5 — Laparoscopic images illustrating several visual challenges: (a) occlusion, (b) specular
reflection, (c) presence of smoke, (d) blood splatter, (e) rapid motion blurring, (f) out of body noise,
(g) restricted field-of-view, (h) dirtiness of lens.

also be varying shapes for the instrument’s tip resulting from their articulations. There can
be occlusion of surgical instruments by the anatomies or other instruments [Speidel 2014].
And this becomes a bigger issue when the occlusion is on discriminative tips of the instru-
ments. Even the camera lens can sometimes be occluded by the anatomies preventing it from
capturing a clearer surgical scene. The orientation of the endoscopic camera leads to rapid
appearance changes [Reiter 2010] and sometimes, can make the anatomies and instruments
appear ambiguous when captured from different angles.

One peculiar visual challenge in surgical images is blood splatting [Haase 2013] on the
instruments and the surrounding anatomies which can re-color them, thereby making their
recognition more difficult. The camera lens can also be stained by blood and other fluids. At
some point in the procedure, we witness the withdrawal and re-insertion of the camera to clean
the stained lenses. Sometimes, when the camera is abruptly taken out of the patient’s body;,
whether to clean them or not, it unintentionally captures other objects/persons in the OR
which adds more noise to the dataset. More noise can be introduced from other sources such
as poor resolution, some temporal blackouts, and lighting changes [Reiter 2010, Reiter 2012b,
Sznitman 2012b]. This lighting can occur as specular reflection causing distorted brightness
and contrast in the captured images. Another source of noise is the rapid camera motion
leading to image blurring [Sznitman 2012a] which reduces the clarity of the instrument’s and
anatomy’s boundaries. The quality of data obtained from the endoscopic camera can be also
affected by the presence of smoke [Sznitman 2012b] caused by coagulating instruments.

In endoscopic videos, the instrument motions are backward, based on a fulcrum effect
of the trocar insertion site which is antagonistic to the natural motion of the object in the
real world scene. This affects the use of methods, such as object tracking, trained on natural
vision datasets. There are also data variability across surgical teams, patient specification, and
medical data centers [Vercauteren 2019]. These visual challenges, as illustrated in Figure 1.5,
make it difficult to design discriminative visual features to represent the data.
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1.3.1.2 Lack of Spatially Annotated Dataset

Having listed some of the visual challenges in surgical data preventing direct translation of
vision deep learning algorithms in surgery, one would be tempted to ask why these algorithms
are not directly benchmarked on the surgical datasets. A bigger data challenge in the field is
the unavailability of large annotated datasets. Intelligent complementary aids for a complex
procedure such as laparoscopy would require extensive analysis and model training on a
large bank of surgical data. Before the advent of laparoscopy, most of the patient data are
not digitalized and stored in a structured and standard manner [Maier-Hein 2017]. Even
though the endoscopic camera captures a large amount of digital data, the bulk of them is not
annotated.

A large chunk of the annotated ones such as Cholec80 [Twinanda 2016b], M2CAI-tool
[Twinanda 2016a], etc., provides only binary labels. For the instrument recognition task,
multi-label binaries of 0s and 1s are provided for each frame where the present instrument
classes are annotated as 1s and the absent ones, labeled 0s. For the phase recognition task, a
multi-class binary annotation is provided with the correct phase per frame labeled 1 and the
rest marked Os. This type of annotations is not designed for training Al models for complex
tasks such as localization, segmentation, tracking, etc. And, creating spatial annotations
such as region boundaries and pixel-wise masks is expensive, tedious, and time-consuming
[Jia 2017, Vardazaryan 2018, Nwoye 2019]. This bottleneck has limited the exploitation of
deep learning methods on only a very tiny fraction of the dataset that could be annotated
spatially [Vardazaryan 2018, Nwoye 2019].

Since generating binary annotations just indicating the presence of the instruments re-
quires less effort, it becomes an interesting research question to exploit these easier to gen-
erate binary labels for many complex tasks that would have ordinarily require spatial la-
bels [Nwoye 2019]. Success in this direction would motivate increasing access and usage
of large datasets [Nwoye 2019], which would, in turn, set the stage for a new generation of
analytics that will support decision making, model benchmarking, and quality improvement
in interventional medicine [Maier-Hein 2017].

1.3.1.3 Lack of Standardized Action Class Labels

One of the factors affecting research on surgical action recognition is the lack of standardized
class labels for consistent benchmarking of recognition models. The impact of having stan-
dardized class labels for activity recognition is manifested in surgical phase recognition which
has become one of the most researched workflow analyses in surgical data science. In laparo-
scopic cholecystectomy, surgical phase recognition is known for its seven common phase
labels already established in the literature, namely: preparation, calot triangle dissection,
clipping & cutting, gallbladder dissection, gallbladder packaging, cleaning & coagulation, and
gallbladder extraction. Following this standardized labeling, several large public datasets have
been generated for phase recognition which includes the famous Cholec80 [Twinanda 2016b],
m2cail6-workflow [Twinanda 2016a], Endovis workflow challenge, and many other unpub-
lished datasets.
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Surgical action recognition could have also been as widely researched as the phase coun-
terpart since it would be interesting to also detect the finer actions, such as interactions
between the instrument and tissue, within the phases for a better understanding of the sur-
gical activities. However, there exist no standardized action class labels across procedures
even at a coarse-grained level. In laparoscopic surgery, work in [Lo 2003] recognizes four
major action events as idle, retraction, cauterization, and suturing. The larger SDS challenges
proposed different four verb classes (cut, grasp, hold, and clip) at MICCAI EndoVis challenge
2019 [Wagner 2021b]. Another challenge at MIDL 2020, the proposed action labels comprise 21
classes in EASD dataset [Bawa 2021]. A work on surgical image captioning [Xu 2021] generates
semantic relationship classes from two different robotic surgery datasets. the first dataset
comprises 11 action classes namely: manipulating, grasping, retracting, cutting, cauterizing,
looping, suctioning, clipping, ultrasound sensing, stapling, and suturing, whereas the second
dataset was annotated with 5 action classes comprising manipulating, grasping, cauterizing,
suctioning, and clipping. The inconsistency in the label classes motivates their proposal for
cross-domain adaptation across action labels in different surgical procedures.

Furthermore, works in gynecologic laparoscopy [Khatibi 2020, Petscharnig 2018b] recog-
nize 8 action classes of suction and irrigation, cold cutting, blunt dissection, coagulation,
suturing, high-frequency thermal cutting, sling, and injection. Another [Kletz 2017] proposed
11 actions classes for the same surgery. The lack of uniformity in the number and labels for the
action classes across procedures hinders method comparison and incremental improvement
of existing works for surgical action recognition. The inconsistency makes it even more diffi-
cult to combine several small datasets from several data centers since deep learning models
are known to perform better when trained on a large dataset. A uniform, consensus, and stan-
dardized recommendations for annotating of surgical video data would enable assessment of
algorithms and multi-institutional collaboration [Meireles 2021].

1.3.1.4 Lack of Fine-Grained Dataset for Detailed Workflow Analysis

Out of all existing frameworks for surgical workflow analysis in endoscopic videos, action
triplet recognition stands out as the only one aiming to provide truly fine-grained and com-
prehensive information on surgical activities [Nwoye 2021]. However, there is a lack of public
triplet datasets which can be attributed to the difficulty in generating a dataset of such detailed
nature as rightfully pointed out in [Twinanda 2017]. The difficulty in generating this type of
annotations can be connected to the particular need for precision in medicine. Most anatomi-
cal structures can not be easily differentiated without their texture information. Also, there are
unclear boundaries between most anatomies making it difficult to precisely differentiate some
actions when formulated as triplets. Additionally, the lack of triplet datasets can also be linked
to the expert knowledge required for their labeling especially the anatomies, and sometimes,
understanding the verb of the instruments on the anatomies is not straightforward. These
difficulties have affected the generation of the dataset and in turn, hinders the design and
training of recognition models for action triplet recognition.

Although generating a dataset of such magnitude is non-trivial, it is needed at this stage
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to drive the research forward, as shown by datasets such as Cholec80 2, CATARACTS? and
EndoVis 4, which have had tremendous impacts in the community.

Success stories in fine-grained activity recognition will motivate research in the field [Maier-
Hein 2020], create a building block for onward development, model benchmarking, and offer
direction for onward improvement.

1.3.2 Challenges Related to Methods

Vision-based approaches are very attractive in modeling surgical workflow since they do not
require the redesign of the surgical instruments and/or OR. Also, they are equally achieving
state-of-the-art (SOTA) performance in surgical workflow analysis. However, the difficulty of
using deep learning for the detection and recognition tasks in surgery, for all its utility, is not
to be overlooked. In this section, we discuss some of these challenges for a better perspective
on the proposed tasks.

1.3.2.1 Huge Training Data Requirement

While human beings can learn abstract relationships in a few trials on a single or small
data sample, deep learning algorithms need to be trained on large sets of labeled data over
several iterations. In most cases, their performance scales with an increase in training ex-
amples [Sun 2017]. If the data is limited, deep learning tends to overfit the training sam-
ples [Horenko 2020]: this is because when a deep learning algorithm fits the variables, it also
fits the noise specific to the given data. Several examples of similar cases are needed for the
model to correctly concentrate on the deterministic features in the data. For instance, without
training on large endoscopic data, a deep learning model may also include the shape of the
camera to predict an instrument type.

Obtaining these data and their annotations is generally hard as previously discussed. It
is also not straightforward to ascertain the size of a dataset needed for the effective training
of deep learning algorithms. This may vary according to various factors. Firstly, the number
of categories in a learning task. The more the categories, the more the overlap between their
discriminating properties, and the more the training data needed by a deep learning model to
accurately discriminate these categories.

Performance need is another factor affecting the data requirements for model training.
While a small size dataset may be enough for a proof-of-concept study, a large dataset is
needed for training a deep learning model for production, and an even larger dataset is
needed when the model is intended to generalize across data sources or centers. Furthermore,
class imbalance is another factor affecting the data requirements. In real-world examples,
dataset categories usually differ in size. Deep learning models tend to have more false positives
for the most frequently occurring classes and more false negatives for the less frequent classes.

There is no perfect way to deal with lack of data or missing data, but many efforts have been
made to diminish the effects which include: data augmentation [Ding 2020], unsupervised

2http://camma.u-strasbg.fr/datasets
Shttps://cataracts.grand- challenge.org/
4http:/ /endovissub-instrument.grand-challenge.org/
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learning [Twinanda 2018], semi-supervised learning [Yu 2018, Shi 2021, Bodenstedt 2017],
transfer learning [Neimark 2021, Dergachyova 2018], self-supervised learning [Funke 2018, da
Costa Rocha 2019], synthetic dataset [Pfeiffer 2019a, Ding 2020], and of recent meta-learning
[Dawoud 2020]. While all these approaches bring their own advantages to deep learning, they
have not particularly removed the huge data requirements for training a deep learning model.

1.3.2.2 Computational Cost and Memory Requirement

Deep learning comes with a voracious appetite for computing power. While it has been shown
that deep learning models perform better with deeper than shallower layers, unfortunately
increasing the layers also means increasing the training parameters. This overparameteriza-
tion of deep learning models which is intended to improve performance, however, increases
the cost of training a deep learning model which scales with the product of the number of
parameters and data points. Hence, many models require very high GPU computational
power or even expensive TPU.

Apart from the computational demand, large memory is needed to fit large training data.
Some networks are trained with smaller batch sizes to reduce the memory overhead. However,
some tasks, such as activity recognition, tracking, etc., are better designed to capture longer
temporal information even across a full video length. In this setup, training a CNN + Long
Short Term Memory (LSTM) model in an end-to-end manner is usually impracticable as most
of the time, the LSTMs most are intended to capture the temporal information of the full video.
Unlike in general computer vision, where such tasks are modeled using very short video clips,
laparoscopic videos are usually very long (avg. 1 hour in Cholec80 [Twinanda 2016b]). Hence,
most LSTM-based models are not trained end-to-end since they relied on CNN extracted
spatial features which would be stacked over a given temporal length. Instead, most of the
algorithms are tailored for offline processing with pre-recorded videos [Ye 2016]. However,
deep learning models would learn better representations as both the CNN and the LSTM
components can benefits from each other when trained end-to-end [Yengera 2018], as some
studies have shown using shorter videos [Ma 2016]. Also, since the same model training
strategy is usually maintained during inference, it is hard to use an offline trained model for
online inference as would be needed in the OR.

Another factor affecting the memory requirement for deep learning training on surgical
data is image resolution. Due to the requirements for precision in medicine, images are
usually preserved at high resolution. Compressing these images would lead to the loss of
tiny structures in the image which might be contextually informative for feature extraction.
Keeping surgical images at such high resolution, such as 1080x1920x3 as in Cholec80, leads to
a huge memory bottleneck and affects model training especially for deeper layer models.

1.3.2.3 Time Constraint on Hyper-parameter Tuning

One of the most tedious efforts in the development and training of deep learning models is
hyperparameter tuning. These hyperparameters such as learning rate, weight decay constant,
batch size, etc., are usually not learned by the network, instead, they are determined and
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fixed by a human. Selecting the best hyperparameters is usually a bottleneck as this would
require series of trial and error over several options, and even without a guarantee of the best
choice. Most times, these hyperparameters are by extensive grid search leading to training of
hundreds of models.

Apart from hyperparameter tuning, model selection can be done through another time-
consuming process known as cross-validation. In this case, a dataset is split into k-folds and
the model is trained k-times on different k-1 folds for model selection. Cross-validation which
usually indicates the mean + std of the model performance is also used for model selection as
well as hyperparameter tuning.

In the course of training different models for cross-validation, hyperparameter tuning, etc.,
several model weights are stored which is also memory-consuming.

1.3.2.4 Multiple Instance Bottleneck

Deep learning is traditionally designed to learn and approximate a function that directly maps
input to output. In most cases, the output is designed as a vector of log probabilities which can
be thresholded at 50% for binary classification. In the case of multiple classes, an arg-softmax
is used to determine the model prediction. A more difficult case is the multi-label classification
where zero, one, or more class labels can be predicted. Even in the multi-label situation, there
can still be multiple instances of the same label. Deep learning models, in most cases, are not
designed to handle this kind of situation. This is largely due to the dataset not being annotated
to account for the number of occurrences for the class labels. One backdrop of this effect is
that it makes it impossible for deep learning models that are weakly supervised for localization
on binary data labels to be able to infer the number of instances for each localized object class.

Also, there could be class overlap, especially in fine-grained action labels making a direct
input-output mapping insufficient to correctly differentiate multiple instance cases as can be
seen in action triplet recognition.

1.4 Terminology in Surgical Tool-Activity Recognition

Several terms related to surgical workflow analysis are not well-defined. Since they will be
used throughout this thesis, it becomes imperative to explicitly clarify their definitions.

The terms instrument and tool are used interchangeably to mean the devices for carrying
out desired effects during surgery which usually involves the manipulation of the anatomies.
While tool may be loosely defined to include computer systems and Al solutions used during
a surgical procedure, it is, however, in this thesis, limited to the hardware devices that have
direct contacts with the tissue, and performs a specific action on them. They perform such
functions as cutting, dissecting, grasping, holding, retracting, etc. The term tool is more widely
used in the community, however, without changing the meaning, we prefer instrument when
discussing triplet to have a better acronym (i,v,t) for (instrument, verb, target) rather than
(t,ut) for (rool, verb, target) which would introduce ambiguities in the text. Still on tools, the
term detection means the localization and classification/recognition of surgical instruments.
Sometimes, we simply use the term localization in this thesis to also mean detection. Also,
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Figure 1.6 — Axis showing the granularity of activity in the OR, from the coarsest level (right) to the
finest level (left). The granularity axis is modified from [Lalys 2014] to show the intersection with
instrument and anatomy recognition to form a triplet.

detection can be used to simply mean the binary presence detection.

The definition of the term activity is subjective and overlapping, depending on the context
and level of abstraction at which they are described. We adopt the notion of activity granularity
presented in [Lalys 2014] also represented by the axis in Figure 1.6. The axis represents activity
from the coarsest to the finest level. Following the axis (right to left), a procedure describes
the full central activity of a full surgery such as cholecystectomy, cataracts, etc. Within the
procedure, there are phases, which are the meaningful sequence of tasks carried out to achieve
a procedure. A phase usually describes a series of actions on anatomy (e.g.: gallbladder
retraction) or a group of anatomies (e.g.: calot triangle dissection) intended for a unified
purpose. When a phase is further split into smaller units while still retaining the "action on
an anatomy" description (e.g.: cutting cystic-artery, pushing needle, etc.), it is called a step.
Going more finer, the term action ignores the anatomy and identifies the verb, such as cutting,
pushing, etc. as the fundamental element in the semantic interpretation of a surgical scene.
We modify the axis in Figure 1.6 to rightfully highlight the type of activity tackled in this thesis
which is at the intersection of the fine-grained action with the instrument and the anatomy
which are being left out as the activity becomes finer. This intersection is referred to as action
triplet or simply triplet. Hence, surgical action triplet is not only fine-grained but also a detailed
and comprehensive modeling of surgical activities.

Surgical videos capture workflow activities that can be recognized at different levels of
granularity depending on the focus of the research. If the recognition of the activities at
any time step utilizes all observations made from the beginning of the procedure up to that
time step, it is referred to as online. This type of recognition is usable intra-operatively or in
real-time. Whereas it is called offline if the recognition utilizes all observations in the entire
procedure including the ones ahead of the given prediction time step. This type of recognition
can only be used post-operatively. All our proposed methods in this thesis are designed for
real-time benefits.
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1.5 Summary and Thesis Overview

We have presented in this chapter the general overview of the thesis. We equally discussed the
medical background including the clinical motivation, challenges, and highlighted as well the
research gaps which the work is designed to fill. To conclude this chapter, we summarize our
contributions and thesis outline in this section.

1.5.1 Contributions

The fundamental aim of this thesis is to address the problem of surgical activity recognition by
developing deep learning methods that can detect and track surgical instruments and also
recognize their fine-grained detailed activities in laparoscopic videos. The contributions of
this thesis mainly revolve around two main points: (1) the recognition, detection, and tracking
of surgical instruments using deep learning methods that are weakly supervised on binary
presence labels; (2) the recognition of surgical actions at a fine-grained level described in the
form of a triplet (instrument, verb, target). The contributions are discussed in detail as follows:

The first contribution is the study and development of novel deep learning models that
can exploit weakly annotated data for the detection, localization, and tracking of surgical in-
struments. Existing works [Sznitman 2012a, Rieke 2016, Sznitman 2014] on surgical instrument
recognition rely on full supervision: a situation whereby the detection and tracking models
are trained on data in which the spatial positions of the instruments are manually annotated.
However, creating spatial annotations such as region boundaries and pixel-wise masks is ex-
pensive, tedious, and time-consuming [Jia 2017]. This bottleneck has limited the exploitation
of deep learning methods on only a very tiny fraction of the dataset that could be annotated
spatially [Vardazaryan 2018]. Since generating binary annotations just indicating the presence
of the instruments requires less effort, we propose a new deep learning object detection and
tracking method that circumvents the lack of spatially annotated surgical data with weak
supervision on binary presence labels [Nwoye 2019]. While existing work [Vardazaryan 2018]
localizes a point on the instruments using weak supervision, it is not trivial to model their
temporal consistency or track surgical instruments across frames without requiring spatial
annotations. Hence, we propose an RNN that could leverage the temporal information in
video data in a manner that still allows for weakly supervised learning, resulting in an elegant
end-to-end tracking method that models the spatio-temporal motion of the surgical instru-
ments. In the first instance, we propose a deep learning model that can model localization
features in its inner convolution layer without requiring spatial annotations. We show that the
activation at this inner layer, also known as heatmaps, can sufficiently describe the position of
the surgical instruments when trained on binary labels. Then, we learn smooth trajectories of
the instruments by modeling the temporal consistency of the localization heatmaps. This we
achieve by employing a ConvLSTM layer, which is known for its spatiotemporal capability to
infuse temporal smoothing while retaining a 3D spatial dimension of the input features. The
ConvLSTM leverage the temporal information inherent in video data to model the motion
tracking of the detected instruments [Nwoye 2019] without spatial training labels. Combining
the convolution’s spatial localization and ConvLSTM temporal modeling, we built a weakly-
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supervised tracking model with SOTA performance on the three tasks of presence detection,
localization, and tracking in the Cholec80 dataset [Twinanda 2016b].

For the second contribution [Nwoye 2020], we build upon the foremost research to rec-
ognize the activities of the surgical instruments. Previous research has mostly focused on
phase recognition [Blum 2010, Dergachyova 2016, Twinanda 2015], gesture recognition from
robotic data [DiPietro 2016, Malpani 2016] and event recognition [Loukas 2015]. The coarse
nature of these tasks’ output leaves out substantial semantics for helpful Al assistance. Hence,
we propose a more detailed analysis of recognizing fine-grained activities representing the
instrument-tissue interactions in endoscopic videos. We model these activities as surgical
action triplets of (instrument, verb, target) and develop deep learning models to recognize
these triplets. As an ablation experiment, we build a naive baseline for simple classification of
the triplet IDs which unfortunately proves to be sub-optimal. Then, we extended the approach
to a multi-task learning method to capture the interacting components of the triplets, namely:
instrument, verb, and target, and learn their association using a Multiple Layer Perceptron
(MLP). We observed that we can better inform the verb and target detection by leveraging the
appearance cue of the instrument, of course, as the triplet is instrument-centric. To this end,
we have the proposed a model which utilizes the instrument class activation to guide the other
components’ detection. Since MLP could not conserve the semantic structure of the triplet
association in its dense connectivity, we also modeled a learnable higher dimensional space
for the tripartite association of the triplet components. The proposed approach was evaluated
on a new dataset, CholecT40, which has been generated in collaboration with our clinical
partners from 40 videos of the Cholec80 dataset and annotated with 128 action triplet classes.
Albeit action triplets information is used in [Kati¢ 2014, Kati¢ 2015] to improve surgical phase
recognition, this is the first work to recognize action triplets directly from surgical videos.

Even though the proposed triplet recognition model outperformed the baseline models,
there are potential areas of improvement in the recognition pipeline, one of which concerns
the low performance recorded for the verbs and targets. Thus, as a third contribution, we
introduced a new form of spatial attention mechanism [Nwoye 2021] to capture the individual
action triplet components in a scene. This technique focuses on the recognition of the verbs
and targets using the activations resulting from the instruments. In performance, the proposed
attention method outperforms the previous proof of concept model in triplet component
detection.

Motivated by the performance improvement of the attention-guided modeling, as the
fourth contribution, we extended the model to capture even longer range attention for the
triplet component association. In this, we proposed a transformer-inspired model [Nwoye 2021]
that semantically models the association of the detected components of the triplets. In prac-
tice, it leverages both self and cross attentions with interacting components of the triplets to
learn their association. Different from self-attention in Natural Language Processing (NLP),
we propose to also utilize several cross attentions to benefit from the learned representative
features of components. The transformer-inspired model sets a new SOTA performance in the
triplet recognition task.

The last contribution is the generation of large datasets for tool and activity recognition.
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For the tool detection task, we generated spatial labels on 5 videos for the evaluation of weakly
supervised models on tool localization and tracking. For the tool-activity recognition task, we
generated CholecT40 [Nwoye 2020] for surgical action triplet recognition, thanks to our clinical
collaborators at Strasbourg (IRCAD and IHU) in the CONDOR project. To standardize the data
and label, we extended the dataset to CholecT50 with additional 10 videos and standardized
classes. CholecT50 is now a mixture of annotations from different surgeons that capture
more variability of surgical expertise, and the label mediation thereafter. To further encourage
research in this domain, the CholecT50 is used to organize an EndoVis sub-challenge under the
name Surgical Action Triplet Recognition 2021 (CholecTriplet2021)° held jointly with MICCAI
2021 in Strasbourg, France. This challenge will help to navigate the activity recognition in
surgical workflow analysis to a new level and to match the pace of similar research, such as
HOI in the Computer Vision community. We plan to release the CholecT50 (train set) as the
largest fine-grained dataset for surgical action triplet recognition to date containing videos of
cholecystectomy recordings annotated with 100 action triplet classes.

1.5.2 OQutline

This thesis is organized into three parts as follows:

¢ The first part introduces the clinical context and motivation in chapter 1. Chapter 2
presents a review of related works available in the literature and a comparative analysis
of their task formulations, methodologies, levels of supervision, and significance.

* The second part contains the main body of the thesis. It spans from chapters 3 - 6
representing different tasks and methods that are assembled to achieve the thesis
objectives. Chapter 3 presents a weakly supervised method for surgical instrument
detection, localization, and tracking in laparoscopic videos. The methods presented in
this chapter have been published in [Nwoye 2019]. Chapter 4 presents a method for fine-
grained action recognition as well as an action triplet dataset. The method presented
in this work has been published in [Nwoye 2020]. Chapter 5 presents a method based
on a spatial attention mechanism for improving the triplet components detection.
This chapter additionally includes the improved dataset for action triplet recognition.
Some of the results presented in this chapter have been submitted for publication
[Nwoye 2021]. Chapter 6 presents a transformer-inspired architecture for enhanced
action triplet recognition, specifically improving the triplet association. Some of the
results presented in this chapter have been submitted for peer-review [Nwoye 2021].

* Finally, the third part of this thesis concludes the work by first discussing the existing
and potential clinical applications of the proposed methods in chapter 7. Afterward,
a summary of the thesis is presented in chapter 8, along with discussions about the
possible future directions to improve the methods.

Shttps://cholectriplet2021.grand- challenge.org/
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YA A Review of Related Work

Learn as much as you can from those who know more than you do,
who do better than you, who see more clearly than you.

- Dwight Eisenhower
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Motivated by the need for the real-time information about surgical instruments and their
activities in CAI systems, lots of methods have been investigated to detect instruments on
varieties of surgical data including robot kinematics [Reiter 2012a], electromagnetic signals
[Lahanas 2016, Fried 1997], ultrasound [Hu 2009], fluoroscopy [Weese 1997] and images in
laparoscopic videos. Among all these modalities, the image-based approaches have become
increasingly attractive because they do not require a modification of the instrument design
nor the OR [Lalys 2014].

In this thesis, we focus on using laparoscopic video recordings to perform surgical tool
tracking and activity recognition. Thus, our review of related works in this chapter will focus
mostly on works that employ vision-based approaches. These works are found by keyword
search on Google search engine, Google scholars, ResearchGate, PubMed, ArXiv.org, Semantic
scholars, Refseek, Microsoft academic search, Scopus, Web of Science, etc., also by connected
papers, cited or reference papers, and referencing papers. We will discuss in the following
sections the different levels of complexity at which the tasks have been exploited highlighting
their investigated methodologies, benefits, limitations, and inter-dependencies across tasks
and methods. Where necessary, we will take a tour of the task in the wider computer vision
community for a broader overview and emphasis. We then finalize the review by explaining
how our work is related to the existing literature.

2.1 Tool Detection

In SDS, detection of surgical instruments has been tackle at different levels of complexity.
While some detections are only concerned with identifying the instruments in surgical images,
others model the properties of the identified instruments such as their location, pose, shape,
motion, etc. In the literature, some work independently tackle one aspect of the detection,
whereas others jointly modeled inter-dependent tasks. Each aspect of tool detection provides
some information that can be useful in the development of CAI and other medical applications.
In this section, we review the related works on surgical instrument detection as follows.
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Figure 2.2 — List of the seven surgical instruments used in the Cholec80 dataset [Twinanda 2016b].
Labels: (0) no instrument, (1) grasper, (2) bipolar, (3) hook, (4) scissors, (5) clipper, (6) irrigator,
(7) specimen bag. No instrument label (0) is not a distinct label in the dataset. It is added here to
demonstrate when all instruments are absent.

2.1.1 Presence Detection

Surgical tool presence detection is one of the key problems in automatic surgical video content
analysis. It involves the detection of surgical instruments by providing binary information
denoting which instruments are used at each time in surgery. This goes beyond the image-
level classification [Krizhevsky 2012] in computer vision task as zero, one, or several types of
instruments used in laparoscopic surgery can be detected in one image at the same time: one
image can’t be classified by a single instrument class. Hence, instrument presence detection is
cast as a multi-label classification problem. The instrument presence labels are determined
by the visual information from the laparoscopic videos. They are annotated solely by their visi-
bility per frame and do not require localization information. Solving the instrument presence
detection can benefit many applications such as the evaluation of surgical instrument usage,
video database indexing based on the tools used in each video, and automatic surgical report
generation. Also, the presence detection information can be combined with other signals to
detect a potential upcoming complication such as the detection of instruments that should
not appear in certain surgical phases.

With the success of deep learning in image classification tasks, earlier work [Twinanda 2016b]
proposed Endonet, which is a CNN architecture with a multitask branch for phase and in-
strument recognition. The Endonet model, shown in Figure 2.3, predicts the binary pres-
ence probabilities of seven laparoscopic instruments namely grasper, bipolar, hook, scis-
sors, clipper, irrigator, and specimen-bag as shown in Figure 2.2. The work also introduced
the widely used Cholec80 [Twinanda 2016b] dataset which consists of 80 videos of chole-
cystectomy recording annotated with phase and instrument labels. At that early stage, an
endoscopic vision challenge is launched and code-named M2CAI 2016 workshop ! to es-
tablish this research in the community. The challenge introduced the m2cai-tool dataset,

http:/ /www.camma.u- strasbg.fr/m2cai2016/index.php/tool-presence- detection-challenge-results
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Figure 2.3 — Architecture of EndoNet proposed in [Twinanda 2016b] as a multi-task deep learning
framework for the recognition of surgical tools and phases in laparoscopic videos.

among others, comprising 15 videos of cholecystectomy procedures from University Hos-
pital of Strasbourg (Strasbourg, France) and annotated with binary presence labels of the
same 7 surgical instruments as in Cholec80. In the challenge, [Luo 2016] utilized multi-
ple CNN to model the recognition of each instrument class independently. The unsatisfac-
tory performance suggests that the intrinsic association among the instruments is impor-
tant. Others [Twinanda 2016a, Sahu 2016, Raju 2016, Zia 2016] explored well known deep
learning models from the computer vision community using transfer learning from Ima-
geNet dataset [Deng 2009], and finetuned them on the m2cai-tool challenge dataset. For
Example, ToolNet [Twinanda 2016a] and [Sahu 2016] finetuned the popular AlexNet archi-
tecture [Krizhevsky 2012] while [Raju 2016, Wang 2017] finetuned GoogLeNet [Szegedy 2015]
and VGG-16 [Simonyan 2014]. Also, [Zia 2016] finetuned AlexNet, VGG-16 and Inception-
v3 [Szegedy 2016], all for instrument presence detection on m2cai-tool dataset. Beyond the
challenge, the performance of the deep learning models on the instrument presence detec-
tion tasks has been remarkably improved. This comes from advanced features modeling
including model ensemble [Wang 2017, Al Hajj 2018], class label balancing [Sahu 2017, Mon-
dal 2019, Alshirbaji 2018], and multi-tasking with complementary phase recognition task
[Twinanda 2016b, Mondal 2019, Jin 2020]. In an effort to hasten model training, residual CNN
(ResNet) [He 2016] has also been used including the densely connected CNN (DenseNet) [Ian-
dola 2014] in [LIN 2019] for instrument presence detection.

To consider the long-term relationships in the sequential video frames, [Sahu 2016] pro-
posed to combined ImageNet pretrained and finetuned features that capture both phase and
tool co-occurrence. The combined features are used to create contextual features for tool
detection coupled with a label set sampling technique to reduce bias. In [Roychowdhury 2017],
long-term relationship between images is exploited using a Markov Random Field (MRF)
modeling. The drawback is that online video analysis is not possible with their proposed
approach which requires approximately 20K temporal sequence. The idea of temporal mod-
eling has since advanced to graphical modeling of continuous video frames [Wang 2019a]
where a Graph Convolutional Networks (GCN) is used to analyze the video as a whole and
find correlations useful for the instrument presence detection. These days, notwithstanding,
exploring temporal information for instrument detection is mostly done using RNN. This is be-
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cause RNN keeps a temporal memory to remember past information. On the task of presence
detection, a simpler version of RNN know as Gated Recurrent Unit (GRU) [Cho 2014] has been
utilized to extract spatiotemporal features in [Namazi 2019]. Its single-cell state makes it less
memory consumption and faster than the popular LSTM [Hochreiter 1997]. However, LSTM
is more accurate on datasets with longer sequences such as Laparoscopic videos. The LSTM
model [Jin 2020, Mishra 2017, Al Hajj 2018] and its bidirectional counterparts [Mondal 2019]
has been exploited on surgical videos for modeling the temporal dependencies, as well as
smoothing the predictions for surgical tool detectors. Most times, these LSTM-based models
are not trained end-to-end due to memory bottleneck as discussed earlier in Section 1.3.2.2.

Another way of exploring temporal information is by attention mechanism which allows
a deep learning model to highlight only the important features in an input feature or across
a sequence of inputs while suppressing the less relevant features. Of recent, a long-range
attention modeling using an attention-guided network [Hu 2017] and a transformer-based
method [Kondo 2020] has been explored for detecting the presence of surgical instruments in
laparoscopic videos.

2.1.2 Spatial Localization

Instrument localization is the task of locating an instance of a particular instrument in an im-
age. The location information is usually in form of coordinate points, or pixel masks indicating
the spatial positions of instruments in real-world surgical video frames. In a demonstration,
these coordinates can be plotted over the images in the form of tightly cropped bounding
boxes, outline, overlay to precisely identify the detected instrument instance among several
possible others. Hence, the data annotation involves manually specifying the region bound-
aries such as bounding box coordinates, center pixels, contours/outlines, etc., of the surgical
instruments in the video frames. With the availability of spatial coordinate labels, instrument
localization is mostly tackled as a regression problem where a learning network is trained
to regress from either region proposals or fixed anchor boxes to nearby bounding boxes of
pre-defined target instrument instances. In this case, the localization is cast as a distance
optimization function such as L2 distance, Huber loss [Huber 1992], etc. Other methods which
do not utilize spatial labels for their training mostly extract the box coordinates around some
saliency or activation maps [Vardazaryan 2018].

Though sometimes used interchangeably, instrument detection is not the same as instru-
ment localization. Surgical instrument detection is a more complex problem that combines
the concepts of instrument localization and their classification. The classification in most
cases is treated as an instrument presence detection task except that each positive presence
label is attached to one localized instance of the instrument. In addition to the benefits of
the presence detection mentioned in Section 2.1.1, the spatial position information from a
surgical instrument detection model can be leveraged to understand the anatomy that the
instrument is manipulating. The knowledge of tool location can be leveraged to build mo-
torized camera systems that are adaptive to the surgeon’s vision center of attention. It can
also be useful in managing instruments that are off the screen thereby increasing patient’s
safety. Since the localization also contains information on the size of the detected instruments,
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some virtual measurement capabilities can be built around such information to obtain the
accurate measurement of the sizes of various anatomical structures. In augmented reality,
visual overlay on the tip of some instruments can benefit from their localization information.

In [Kranzfelder 2013a], radio frequency identification (RFID) tags is used to detect and
categorize surgical instruments. At that period, the growing popularity of the vision-based
approach was not unnoticed with work in [Ryu 2013] utilizing image processing techniques
like K-means clustering and Kalman filtering to localize instruments in surgical videos. In
those days, the traditional machine learning methods of feature engineering are widely ex-
plored. Its success usually depends on the wellness of the crafted feature representations
which are mostly obtained from the image properties such as shape [Doignon 2005], color [Bo-
denstedt 2018b, Sznitman 2014, Allan 2012, Haase 2013], texture [Allan 2012, Reiter 2012a],
gradients [Bouget 2015, Haase 2013], depth [Speidel 2008, Haase 2013], etc. The feature rep-
resentation approach is not robust due to the diversity of surgical specializations, varying
designs of surgical instruments, and visual ambiguity [Lalys 2014] affecting the image quality
and visibility as discussed in Section 1.3.1.1. A combination of the image engineered features
provides a potentially more discriminative feature space [Bouget 2017]. However, feature
engineering is effort- and time-consuming.

There came deep neural networks to the rescue. As opposed to feature engineering,
deep learning allows a CNN model to learn the most suitable features for the detection task
without manual feature manipulations. In this regard, the region-based CNN has been widely
used. Both the one-stage [Choi 2017] and two-stage Region-Based Convolutional Neural
Network (RCNN) [Choi 2017, Jin 2018, Zhang 2020a] are been explored for tool localization.
The simplest way of localizing surgical instruments is by point localization which entails the
locating of a point coordinate that corresponds to a part of the detected instrument. This
point could be the center coordinates or sometimes any coordinates which fall within the
region boundaries of the instrument tips [Vardazaryan 2018]. Beyond the point coordinates,
localizing the surgical instruments by their whole region boundaries using bounding boxes is
the most common approach in the literature [Jin 2018, Choi 2017, Sarikaya 2017]. In [Jin 2018],
aregion-based CNN is employed to detect and localize surgical instruments in laparoscopic
videos. Being the foremost work, [Jin 2018] extended the m2cai-tool dataset to m2cai-tool-
localization by annotating a sample of 2532 frames with 3141 instances of bounding boxes.
Beyond the instrument localization, the movements of the detected tools are also analyzed to
automatically assess surgeon performance in the considered procedure. The dense anchoring
scheme of this two-stage region proposal network is not cost- and time-efficient thereby
affecting its real-time translation. Sequel to this, [Zhang 2020a] proposed to improve the
inference speed of the two-stage region-based CNN using a modulated anchoring network.
They also introduced another spatially annotated dataset AJU-Set of 3164 frames capturing
3952 instance boxes. Another way to improve the inference speed is by the use of lightweight
models or single-shot detectors as done in [Choi 2017]. Besides the laparoscopic video,
surgical instrument detection and localization can be seen in robotic and robot-assisted
surgery [Sarikaya 2017, Choi 2017], and in eye surgeries [Al Hajj 2017]. In [Al Hajj 2017], optical
flow information is used to analyze sequential features of consecutive images to exploit spatial
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Figure 2.4 — The pipeline of the Faster R-CNN architecture for surgical tool detection proposed
in [Jin 2018] including some qualitative results on the success and failure cases of the detection model.

redundancies between them in cataract surgery videos. However, optical flow information
is not easy to generate and they introduce additional visual artifacts. Furthermore, optical
flow algorithm performance is impaired when the spatial locations of a point change abruptly
or when the spatial distance between objects in moving frames is inconsistent. Other works
such as [Sarikaya 2017, Choi 2017] performed surgical tool localization in specific tasks of
robot-assisted surgery videos. In [Sarikaya 2017], an architecture using multimodal CNN
for fast detection and localization of tools in RAS videos is presented. The method applies a
region proposal network (RPN) and a multimodal two-stream CNN for object detection to
jointly predict objectness and localization on a fusion of image and temporal motion cues.
In this vein, [da Costa Rocha 2019, Sestini 2021] presented a self-supervised approach that
uses the kinematic model of the robot to generate the instrument segmentation masks for
the training of a fully convolutional neural network for pixel-wise classification. Most of the
methods explored on robot-assisted surgeries are specifically for surgical training tasks. Using
robotic arms is limited in practice due to the relatively high cost. And there may be differences
between specific training tasks and complete surgery.

The performance of frame-based detectors can be improved more if the deep learning
models can learn more context from video data. Since an image frame is a part of a sequence,
a prediction model can improve its confidence if it has access to temporal information around
the frame. Some surgical contexts may not be correctly recognized by features extracted from a
single image as they may be affected by some visual challenges such as blurring, noise, smoke,
etc. Variations between consecutive frames may help to better detect and localize surgical
instruments in some situations such as occlusion, deformation, and noise. Modeling spatio-
temporal localization is non-trivial as most temporal modeling units such as LSTM, GRU, etc.,
do not preserve the spatial details of image features. A way of overcoming this was proposed
in [Chen 2018] which used a 3D CNN to capture both the temporal and spatial features at
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Figure 2.5 — The architecture of weakly-supervised model for instrument localization proposed
in [Vardazaryan 2018] showing also some qualitative results of the model. Green dot represents the
correct center point localization, red dot is incorrect, and bounding box is groundtruth label.

the same time. Another method in [Wang 2019a], used a GCN for temporal relationship
modeling and a conventional CNN to preserve the spatial features. The GCN is used to analyze
continuous video frames to find correlations. However, this approach has only be explored on
a tool presence detection task. Nevertheless, the two approaches in [Chen 2018, Wang 2019a]
only modeled a very short temporal sequence of few image frames instead of a full video.
Another way of exploring temporal information is by attention mechanism. A long-range
attention modeling using a transformer-based method has been explored in [Kondo 2020] for
detecting the presence of surgical instruments in laparoscopic videos. However, the flattened
nature of their temporal attention modeling does not preserve spatial features and hence
makes the attention model formulated in this manner unsuitable for tool localization.

Despite the progress in surgical instrument detection, the research is limited by the lack of
spatially annotated datasets as already discussed in Section 1.3.1.2. Generating such region
boundaries such as bounding boxes, or outlines is indeed time-consuming, tedious, and
expensive. As part of their contributions, work in [Jin 2018, Zhang 2020a] had to generate a
tiny fraction of spatial labels from a large dataset which is further split into training and tiny
validation sets for their experiments. However, it is common knowledge that deep learning
models are data-hungry as discussed in Section 1.3.2.1. Also, the tiny dataset is insignificant
for model evaluation especially on such delicate tasks as surgical procedures. An interesting
bypass to the issue of limited spatially annotated datasets is to weakly supervise a detection
model on the easier-to-generate dataset.

Weak supervision is a learning technique whereby deep learning models are trained on
data with imperfect or weaker labels. For instance, learning to localize objects using the
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image-level labels, learning to segment objects using bounding boxes coordinate labels, etc.
This is mostly due to the annotation efforts needed to generate the more complex labels.
Weakly supervised models while learning a weaker function based on the available labels such
as binary presence detection or recognition is expected to also capture some features usable
for the recognition of a higher complex task such as localization.

In laparoscopic videos, weak supervision has been employed in [Vardazaryan 2018] to
circumvent the lack of spatially annotated data using binary presence labels. In their work, a
global pooling operation is applied on the output of an Fully Convolutional Network (FCN)
to force the network activations on the most salient features needed to localize surgical
instruments in laparoscopic images. However, their localization is limited to only a point on
the instruments. A more recent work [Fuentes-Hurtado 2019]?proposed to use easy labels,
provided as stripes over different objects in an image, in combination with a partial cross-
entropy loss function to obtain dense pixel-level prediction maps for scene segmentation in
laparoscopic videos. Other interesting applications of weak supervision in medical imaging
are seen in the segmentation of cancerous regions in histopathological images [Jia 2017] and in
the detection of the Region of Interest (ROI) in chest X-rays and mammograms [Hwang 2016].
A closely related approach such as semi-supervised learning combines a chunk of labeled
data with large unlabeled data for model training as done in [Yoon 2020] targeting surgical
tool detection in gastrectomy videos. Semi-supervised learning has also been explored on
surgical gesture recognition [van Amsterdam 2019] where a limited amount of demonstration
labels are used to generate an appropriate initialization for a Gaussian Mixture Models (GMM)
based algorithm.

Another way to detect instruments is by segmentation. This goes beyond the boundary
localization, which classifies the patches of an image containing an instrument, to the clas-
sification of every pixel in an image. Instrument segmentation provides the exact outline
of the instruments by grouping every image pixel belonging to the same instrument and
assigning them their corresponding category label, while the rest of the non-instrument pixels
are assigned a background label which is usually 0. The pixel classified label is known as a
segmentation mask. Generating the groundtruth segmentation mask is very expensive and
time-consuming. Depending on the interest, the instrument segmentation can focus on pro-
ducing a binary mask, where every pixel belonging to an instrument is assigned a foreground
label (usually 1) and the rest of the image pixels are classified as background with a label value
of 0. By using precise segmentation, the pose of the surgical instrument of interest can be
efficiently estimated in laparoscopic surgery. In most cases, the instruments are segmented ac-
cording to their classes where all pixels belonging to the same class of instrument are assigned
aunique label. This type of segmentation is called semantic segmentation. The benefit is that
it would facilitate a better understanding of tool-tissue interaction since the different instru-
ments are designed for a specific type of manipulation on the anatomies. Aside the semantic
segmentation, another widely used type of segmentation in surgery is instance segmentation.
In this case, the image pixel of every distinct instrument is assigned a distinct label. These
instance labels can be very useful in tracking to maintain distinct instrument identities over
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