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Chapter 1 Introduction

Regardless of one's personal opinion of René Descartes's philosophy, it may not be exaggerated to say that his Discours de la méthode1 (Descartes 1637) has shaped scientific methodology of all western cultures. In the second part, Descartes establishes four principles by which one should abide to establish unquestionable facts. The first and second principles read as follows Le premier [principe] était [...] de ne comprendre rien de plus en mes jugements, que ce qui se présenterait si clairement et si distinctement à mon esprit que je n'eusse aucune occasion de le mettre en doute.

Le second, de diviser chacune des difficultés que j'examinerais, en autant de parcelles qu'il se pourroit, et qu'il seroit requis pour les mieux résoudre.

and in English

The first [law] was [...] to comprise nothing more in my judgement than what was presented to my mind so clearly and distinctly as to exclude all ground of doubt.

The second, to divide each of the difficulties under examination into as many parts as possible, and as might be necessary for its adequate solution.

Descartes acknowledges that these ideas are not novel and come from his understanding of geometry proofs, but he extends this procedure to a general method to establish truth regardless of the discipline. This methodology has been called reductionism, as opposed to holism.

Coupled with a formal language, reductionism became de facto prevalent to provide foundations for mathematics. Mathematical foundations are formulated by a limited number of unquestionable axioms. For instance, during the 19th century, Giuseppe Peano proposed an axiomatic formulation of arithmetic with natural numbers [START_REF] Peano | Arithmetices principia, nova methodo exposita[END_REF]. In his (emblematic) theory, the proposition '2 + 2 = 4' can be proved using the axiom of transitivity 'if 𝑥 = 𝑦 and 𝑦 = 𝑧, then 𝑥 = 𝑧' and the definition of addition '𝑥 + (𝑦 + 1) = (𝑥 + 𝑦) + 1' and '𝑥 + 0 = 𝑥'.

However, a theorem as simple as '2 + 2 = 4', already consumes no less than five inference steps. Considering the 'complexity' and the relatively low intellectual impact of the proposition, it seems almost impossible to formalise substantial mathematical developments as they would quickly become overwhelming and human beings could not possibly review or write them without making a mistake.

Fortunately, machines able to repeat simple but tedious logical operations ad nauseam have since been invented. When fed with proofs written in some language they understand, these machines can be programmed to mechanically check that these proofs are nothing more than successive applications of axioms on which programmers and mathematicians agreed. In the late 60s, de Bruijn designed the formal system Automath (H. [START_REF] Barendregt | Semantics for Classical AU-TOMATH and Related Systems[END_REF] around an automatic proof checker that verifies the correctness of specifications written in a formal language.

While automatic proof checkers completely transferred the verification to computers, writing proofs-especially formal proofs-remains pedestrian. To sort this problem out, Milner 1972 designed the interactive system LCF . Its proof checker can be used by human beings to generate formal proofs, not only to check them once finished. The automated reasoning system Nqthm by Boyer and Moore 19792 inherited the interactive aspect of LCF and has been used to check over 16,000 theorems.

While formalising mathematics, one establishes propositions and theorems to describe the behaviour of the notions he or she introduces. Proofs are given afterward to assert that propositions hold. Therefore, we claim that mathematics initially consider propositions as the primary building block. General purpose programming can be seen as the opposite approach: one describes procedures and calculations, and then attributes meaning to these calculations. Indeed, it is easy to write syntactically correct but semantically incorrect expressions, such as '3 × true' in general purpose programming languages. To reject nonsensical computations, types that represent meaning are attributed to values. In the previous example, 3 is an integer, which may be denoted '3 ∶ int', true is a boolean, denoted 'true ∶ bool' and × is a function whose type may be denoted '× ∶ int → int → int'. Typing a program ensures it has a meaning according to a type system [START_REF] Pierce | Types and programming languages[END_REF]. Verifying that a program has a given meaning is the same as checking that a proof proves a given proposition3 .

Predicate subtyping 1.Subtyping for more understandable developments

Type systems must find a balance between rigidity, which allows to define precisely the meaning of expressions, and flexibility, which eases the task of writing expressions that are understood by the type system. It is difficult to translate one's ideas into type system that is too rigid: the translation of one's thoughts into a language understood by a computer is likely to be difficult, as well as the debugging. On the contrary, it is easy to write expressions that make sense to humans in system that is too flexible, but in turn less meaning is conveyed to the computer and its ability to spot erroneous statements becomes limited.

Subtyping [START_REF] Cardelli | A Semantics of Multiple Inheritance[END_REF]) makes type systems more flexible. It allows to structure types of expressions hierarchically: different meanings can be attributed to the same expression, especially when some are generalisations of others. A magpie is a bird as well as an animal, a geranium is a flowering plant as well as a vegetable &c. Hierarchical organisation may be particularly well suited for the expression of human-made concepts: our own memory can be modelled by semantic networks whose nodes are hierarchically organised [START_REF] Collins | Retrieval time from semantic memory[END_REF].

The success (in the sense of adoption) of object oriented programming may support our claim. Object oriented languages [START_REF] Abadi | A Theory of Primitive Objects: Second-Order Systems[END_REF] allow a relatively straightforward (in comparison to other formalisms) encoding of the concepts industries deal with. Any concept can be modelled by a class, and its relationships with other concepts can be modelled by subtyping. In order 1.1. PREDICATE SUBTYPING to encode systems people deal with, object oriented systems tend to have very liberal subtyping. Liberal to the point that one may lose the intuition behind subtyping [START_REF] Abdelgawad | Subtyping in Java with Generics and Wildcards is a Fractal[END_REF][START_REF] Cargill | Controversy: The Case Against Multiple Inheritance in C++[END_REF].

Predicate subtyping (J. M. [START_REF] Rushby | Subtypes for Specifications: Predicate Subtyping in PVS[END_REF] allows one to classify expressions by the properties they validate. It can be straightforwardly interpreted as set comprehension: the set of roots of unity is classically defined by {𝑧 ∶ C | ∃𝑛, 𝑧 𝑛 = 1}, which is a predicate subtype whose support is C (the set of complex numbers) and whose predicate is ∃𝑛, 𝑧 𝑛 = 1. When we manipulate a root of unity 𝑧, we can conjugate 𝑧 to z because 𝑧 is also a complex number. This ability to consider 𝑧 as a root of unity and a complex number is precisely what subtyping allows. Therefore, just like object oriented languages allow to model concepts easily, predicate subtyping is an intuitive encoding of mathematics as we learned them. It is also valuable when writing program specifications: guards, preconditions and postconditions are easily expressed as predicate subtypes. For instance, a function that pops an element from a stack must take as argument a non-empty stack; the domain of that function may thus be {𝑠 ∶ stack | ¬empty?(𝑠)}.

Because predicate subtyping entangles proof checking with type checking, it provides a very rich type system where subtle invariants may be expressed in order to reject a large number of pathological expressions (such as 1 1-1 ). This expressiveness comes at the cost of undecidable type checking. Indeed, for a term 𝑡 to be judged of type {𝑥 ∶ 𝐴 | 𝑃 }, the predicate {𝑡/𝑥} 𝑃 must be proved; which has no reason a priori to be decidable (F. [START_REF] Gilbert | Extending higher-order logic with predicate subtyping : application to PVS[END_REF].

The Prototype Verification System: an implementation of predicate subtyping

To our knowledge, no proof assistant has chosen predicate subtyping as its paramount feature, except the Prototype Verification System (Owre, J. [START_REF] Rushby | Subtypes for Specifications: Predicate Subtyping in PVS[END_REF]; Owre, J. M. [START_REF] Owre | PVS: A Prototype Verification System[END_REF], or PVS for short. Even though proof assistants whose types can depend on values allow to express types of the form {𝑥 ∶ 𝐴 | 𝑃 }, most of them do not consider 𝐴 as a subtype of the former. PVS is a specification development environment developed at SRI International based on simple type theory and predicate subtyping. It is made of a specification language parser, a type checker and a theorem prover.

In PVS, specifications are split across 'theories'. The validation of a theory is performed in two steps. The first rejects ill-typed expressions not taking subtyping into account: terms of the form TRUE OR 1 are rejected, but not 1 / 0. The second phase collects all proof obligations due to predicate subtyping to generate 'type correctness conditions' (shortened TCC in PVS jargon). For instance, type checking the expression 1 𝑥 generates the type correctness condition 𝑥 ≠ 0. This type correctness condition can be solved in an interactive proof mode. To avoid overwhelming users with either redundant or trivial type correctness conditions, a substantial effort has been put in automating theorem proving.

There are mainly two stratagems to automate theorem proving in PVS. The first, and most common, is to provide elaborated decision procedures such as binary decision diagrams or satisfiability modulo theory solvers (such as Yices [START_REF] Dutertre | Yices 2.2[END_REF]) also developed at SRI). The other capitalises on the entanglement of theorem proving and type checking, and is implemented by the system of 'judgements' (Owre, Shankar et al. 2020, page 25). Broadly, judgements extract typing judgements that may be relevant to the theorem prover, such as 'exp( 2𝑖𝜋3 ) is a root of unity'. Such a judgement will raise a type correctness condition that requires to prove the claim, so that similar type correctness conditions appearing later on may be automatically solved by instantiation of the judgement. Judgements can be a lot more general than that, in order to catch as many redundant type correctness conditions as possible.

The proof theory PVS is based on classical sequent calculus (Owre and Shankar 1997b). Proofs are solved by providing tactics operating on a proof state [START_REF] Shankar | PVS Prover Guide[END_REF]. Because type checking and theorem proving are entangled, well-typedness may depend on the provability of some formula which itself may depend on some logical context. For instance, consider the expression

𝑥 ≠ 1 ⇒ 1 1 -𝑥 = 1 + 𝑥 + 𝑥 2 + ⋯ + 𝑥 𝑛 + 𝑂(𝑥 𝑛+1 )
The right-hand side of the implication may be well-typed only if 1 -𝑥 ≠ 0 is provable. This can be proved only if the hypothesis 𝑥 ≠ 1 is added to the context in which the right-hand side is type checked. Similarly, in the ternary IF THEN ELSE construction, the condition must be added to the context to type check the 'then' branch while its negation must be added to the context to type check the 'else' branch. Thanks to predicate subtyping, PVS features a clear distinction between the specification phase which consists in designing objects and concepts as well as their desired properties, from the proving phase where one proves the type correctness conditions raised while typing the specification. This separation is also physical: proofs are saved as tactic scripts in auxiliary files, away from the specification.

LOGICAL FRAMEWORKS FOR INTEROPERABILITY

A minimal and formalised version of PVS

Because PVS is a complex system with many features, F. Gilbert 2018 has extracted a minimal and essential core from PVS in order to study predicate subtyping. He defined two languages: the vernacular language in which specifications are written is called PVS-Core. Type checking is undecidable in PVS-Core, it is a minimal version of the specification language of PVS. The second language named PVS-Cert is a language for certificates of PVS-Core. The type system of PVS-Cert enjoys many properties, such as strong normalisation and decidability of type checking. Typing derivations of PVS-Core can be translated to judgements of PVS-Cert. In order to obtain decidable type checking, proofs of type correctness conditions are included in the terms of PVS-Cert. Therefore, in PVS-Cert, a root of unity is not just a complex, but a complex with a proof that it is a root of unity. We therefore lose subtyping, or at least its implicit aspect. Subtyping is made explicit in the sense that any root of unity can be transformed into a complex number, by forgetting the proof it is a root of unity.

Logical frameworks for interoperability

In the beginning of the 20th century, diverse formal systems and axiomatic theories have been designed to found mathematics. Some of them were made to palliate defects or paradoxes of their predecessors (see Russell's paradox [START_REF] Russell | The Principles of Mathematics[END_REF] and his subsequent 'type theory' [START_REF] Whitehead | Principia Mathematica to *56[END_REF])) while others were experimental. One may wonder whether two such formal systems agree with each other, whether they have the same truth. One could-or rather should-wonder first whether this question makes sense. Just like two strangers that do not talk the same language cannot exchange ideas (and hence cannot agree, at least consciously); propositions expressed in one formal system may not make sense in the other. Even assuming that two formal systems have the same language, what should we think of propositions that are provable in one system but not in the other? Are there, after all, propositions that are provable in both systems? Metatheoretically, it is very unlikely that two formal systems with approximately the same scope share no proof: what good is a system in which we cannot prove '2 + 2 = 4' for mathematics? Even if there seems to be no such thing as 'universal truth', it must nevertheless be the case that formal systems used to express mathematics share some elementary notions. But how can they be related?

For years, the validity of proofs-whether a proof effectively proves what its authors claim it proves-depended exclusively on whether contemporary experts were convinced the proof holds or not. With axiomatic theories, experts founded their reasoning and the validity of proofs became objective, but still dependent on the attention and perseverance of experts to correctly unfold the axioms (not taking into account that formal proofs were not likely to be written nor unfolded by hand). The mechanisation of proof checking finally allowed the validity of proofs not to depend on the reviewer. On the other hand, we still need reviewers to check that formalised statements make sense. Furthermore, the validity of proofs depends strongly on a new parameter, namely the implementation of the proof checker.

We are faced with two questions:

• Can we avoid relying on a particular and potentially flawed implementation of some formal system to verify our mathematics?

• When a proposition has been proved to hold in some system, can we assume the proposition holds in an other system? Furthermore, how similar are the proofs? [START_REF] Avizienis | The N-Version Approach to Fault-Tolerant Software[END_REF] proposes multiversion programming to answer the first question.

If we denote by 𝑝 the probability of introducing an error into the implementation of a formal system, several implementations can be independently developed.

When 𝑛 such implementations agree, the probability of a false positive (or false negative) may be brought down to 𝑝 𝑛 . However, the efficiency of multiversion programming has been contested by [START_REF] Knight | An Experimental Evaluation of the Assumption of Independence in Multiversion Programming[END_REF] and has become controversial (see Knight and Leveson 1990). For the second question, we have to study and compare logical systems themselves, so we are not using formal systems to prove propositions in them, but we are comparing them and proving propositions about them. But in which formal system should we formalise formal systems? If only we could design a formal system expressive enough for propositions and proofs of other systems to be expressed, we could compare propositions themselves, and even proofs. We could check proofs from different formal systems, as long as their axioms are translated into the more expressive logic. The 'predicate logic' of Frege 1879 fulfills these requirements. For instance, set theories have been expressed in it. Such formal systems are called 'logical frameworks' and are designed to define other logics. They strive to remain as weak as possible, in the sense that they provide as few native constructions as possible. Other logical frameworks have been conceived since predicate logic, such as 'Edinburgh's logical framework' [START_REF] Harper | A Framework for Defining Logics[END_REF]) (sometimes written LF , ELF, λΠ, or λ𝒫).

CONTRIBUTIONS

Contributions

This thesis shows how predicate subtyping can be expressed into a logical framework based on dependent types and equational theories: the λΠ-calculus modulo equations (hereafter λΠme). The study is both theoretic and applied to the expression of PVS into Dedukti (Deducteam 2022a), an implementation of λΠme.

The thesis can be separated into three parts.

Encoding explicit predicate subtyping

Chapter 2 provides a new interpretation of PVS-Cert into λΠme, a logical framework where types are identified up to arbitrary congruences (while LF identifies types up to reduction of functions). The novelty lies in the encoding of the conversion relation of PVS-Cert. It implements a weak form of proof irrelevance by erasing proof terms from the language. This reduction is encoded as a set of equations. These equations may put in relation well-typed and ill-typed terms which is a nuisance when one wants to reason on well-typed terms only. We show that we can get rid of intermediate ill-typed terms when considering an equality between two well-typed terms. We establish typing preservation for PVS-Cert: any well-typed judgement of PVS-Cert can be encoded as a well-typed judgement of λΠme.

We then discuss the implementation of a decidable relation in order to obtain decidable type checking. Rewriting is used to provide a confluent relation, but its termination is left as a conjecture, with potential tracks to prove it. The section ends on some preliminary results for the conservativity of the encoding: if two terms are equivalent with respect to the rewriting relation, then they are equivalent with respect to the equations. This property requires a proof because proof irrelevance is implemented in the rewrite relation using new symbols that are not used in the equations. We therefore have to prove that these symbols do not alter proofs of equivalence.

CHAPTER 1. INTRODUCTION

We study the implementation of a coercion system using rewrite rules. The rewrite rules are used to implement a function computing the coercion of a term between two types. The rewrite rules required to encode such a function quickly become difficult to study and are known to yield non convergent rewrite systems on untyped terms. Nonetheless we show that such a coercion system allows us to implement sophisticated coercions in our framework. We also need to handle proof obligations, which are modelled with existential variables in the framework. The rewrite relation is extended to allow the generation of such existential variables.

In Chapter 4, we provide a coercion system suitable to type check judgements of λΠme that use implicit predicate subtyping. This coercion system is able to interpret terms of PVS-Core expressed in λΠme into terms of PVS-Cert expressed into λΠme. In particular, while F. Gilbert 2018 provides an interpretation of complete derivations of PVS-Core to PVS-Cert (just like the 'Penn-translation' by [START_REF] Tannen | Inheritance as Implicit Coercion[END_REF], the mechanisms established in this thesis allows us to generate, inside λΠme, well-typed certificates (i.e. judgements of PVS-Cert) from well-typed judgements of PVS-Core. We show a type preservation theorem: well-typed judgements of PVS-Core can be refined to well-typed judgements of λΠme. In particular, this theorem requires a proof that the refiner preserves substitution in the sense that substituting before or after refinement should be the same (up to convertibility).

Working with PVS

Chapters 5 and 6 present an implementation of the translation from PVS-Core to PVS-Cert encoded in Dedukti and use it to translate the standard library of PVS (called 'Prelude'). The Prelude uses more features available in PVS than are described in the language encoded so far, such as polymorphism, tuples, overloading &c. We present and discuss additional encodings for these features.

PVS stores proofs as sequences of tactics. Its Lisp image is able to rerun these tactic sequences to obtain proof trees. We sketch procedures to generate complete proof terms from these proof trees.

Related works

Subtyping on sorts has been added to pure type systems in order to obtain an infinite hierarchy of universes that is easier to manipulate. These systems are called cumulative type systems [START_REF] Barras | Auto-validation d'un système de preuves avec familles inductives[END_REF][START_REF] Luo | An extended calculus of constructions[END_REF][START_REF] Thiré | Interoperability between proof systems using the logical framework Dedukti[END_REF].

RELATED WORKS

Predicate subtyping as considered in this work is based on the ideas developed in PVS (J. M. [START_REF] Rushby | Subtypes for Specifications: Predicate Subtyping in PVS[END_REF]. It has been theoretically studied by Owre and Shankar 1997b, where they formalise a substantial part of PVS (including pairs, theories, polymorphism, logical context) and give a set-theoretical interpretation of types and expressions. Although both ibid. and F. Gilbert 2018 formalise a fragment of PVS, they do not handle subtyping similarly. Ibid. keeps as much information as possible in the terms of the certificate language, and subtyping is performed in small steps: from a type to its supertype or one of its subtypes. The typing rules given by Owre and Shankar 1997b stipulate that upon application (𝑓 𝑎), term 𝑎 must validate all proof obligations from the topmost supertype of the domain of 𝑓 to the actual domain of 𝑓; we can think of 𝑎 as being coerced from its current type to its topmost type, and then coerced back to the domain of 𝑓. Stump 2003 provides another approach to predicate subtyping, closer to the one of Owre and Shankar 1997b than of F. Gilbert 2018. It defines a system PF sub which handles partial functions and with an emphasis on the distinction between the type system and the proof system. In particular, there may be expressions that are not typable in PVS because of unsolvable type correctness conditions, such as 1 𝑖 > 0 ⇒ 𝑖 ≠ 0 (where 𝑖 is a real number). This expression is typable in PF sub , and even valid.

Barras and Bernardo 2008 provide a language with implicit constructions whose type checking is not decidable (like PVS-Core), and an extraction from the implicit language to an annotated one whose type checking is decidable (like PVS-Cert). Just like in PVS-Cert the conversion in the decidable type system operates on terms that are stripped of their implicit subterms. An emulation of PVS is also provided where predicate subtypes are encoded by dependent pairs whose second component is implicit, which allows to perform proof irrelevance since these proofs are erased-because implicit-by the conversion.

Emulation of predicate subtyping à la PVS in other systems has already been attempted several times. Hurd 2001 emulates predicate subtyping in HOL using predicates instead of predicate subtypes. This approach suits well the higher order nature of HOL but forces subtyping judgements to be stated as theorems rather than typing judgements: while PVS can quantify over predicate subtypes, HOL cannot quantify over values that validate a predicate. It brings complications to keep the logical context in which terms are type checked.

Predicate subtyping has been encoded in the calculus of constructions by Sozeau 2006. The encoding is similar to PVS-Cert, but the conversion relation is much richer. In particular, it includes 𝜂-equivalence 𝑓 = 𝜆𝑥, 𝑓 𝑥 (when 𝑥 ∉ 𝑓). The counterpart of PVS-Core is the language Russell. Russell handles predicate subtyping implicitly. Type correctness conditions are replaced with existential variables which are handled as unknown terms whose type is a proposition. Expressions are written in Russell and then translated to the calculus of constructions by an ad-hoc coercion insertion algorithm. More technical comparisons will be carried out later on, in particular in Section 3.2.6.

Kaufmann and Moore 1997 provide in ACL2 a system of 'guards' into its logic based on Common Lisp. These guards can mimic the expression of preconditions with predicate subtyping. In ACL2, arguments of functions can be guarded by predicates. Functions are said 'gold' when the functions used in their body have their guards validated assuming the guards of the current function. This mechanism replicates logical context we find in PVS: a ternary 'if-then-else' expression is gold whenever its 'then' branch is gold assuming the branching condition and its 'else' branch is gold assuming the negation of the branching condition. We can say that a symbol is gold when its type correctness conditions have been solved. [START_REF] Salvesen | The Strength of the Subset Type in Martin-Löf's Type Theory[END_REF] have studied the introduction of predicate subtyping into Martin-Löf type theory under the name 'subset types'. The subset formation and subset introduction rules are identical to the ones of PVS-Core. Subset elimination has been studied in two different formalisms: intensional type theory where the equality is definitional and extensional type theory where the equality is extensional and undecidable. One of the aims of the authors is to avoid proving the same lemmas several times. For instance, proposition ∀𝑥 ∈ {𝑦 ∶ 𝐴 | 𝑃 }, {𝑥/𝑦} 𝑃 should not require any lemma: proving {𝑥/𝑦} 𝑃 should take advantage of 𝑥 being in {𝑦 ∶ 𝐴 | 𝑃 }. Martin-Löf type theory with extensional equality (and subset types) has been implemented in Nuprl [START_REF] Constable | Implementing mathematics with the Nuprl proof development system[END_REF]).

Cauderlier and Dubois 2014 have expressed object oriented type systems with subtyping in λΠme. Unlike PVS, type checking in this type system is decidable, it only performs structural subtyping on record types: a record type 𝐴 is a subtype of a record type 𝐵 if the set of projections of 𝐴 is a superset of the projections of B. That way, any record of type 𝐴 can be seen as a record of type 𝐵. Subtyping is expressed through an explicit coercion function, like in PVS-Cert, but the coercion function is more general: it takes two encoded types as arguments, a proof of subtyping, and coerces an element of the former encoded type to the latter one. In the encoded calculus, expressions of type 𝐵 are bundles containing an encoded type 𝐴, an object of type 𝐴 and a proof that 𝐴 is a subtype of 𝐵. The article proposes an alternative encoding which is more shallow but non terminating.

Refinement types by Lovas and Pfenning 2010 enrich type systems while keeping type checking decidable. Refinement types act as a layer on top of the 1.4. RELATED WORKS base type system that allows to provide more invariants on functions: refinement 'sorts' are not native types. Refinement types can be seen as an intensional version of predicate subtyping: atomic refinements are axiomatised, such as pos ⊏ nat, and the type checker is able to attribute refinement sorts to expressions in canonical forms using these declarations. Interestingly, refinement types can be interpreted by predicates into λΠ with proof irrelevance.

Ferreira and Pientka 2014 show how elaboration can be used in logical frameworks to separate a user-level syntax ('the language of programs') from a kernellevel syntax ('the language of types and terms'). The set of terms is richer than ours as it contains recursive functions and pattern matching. Thanks to elaboration, types and arguments may be omitted from the language, but the elaboration cannot be parametrised.

Pfenning 2001 has studied the interactions between proof irrelevance and intensional and extensional type theories. The type theory presented is an extension of λΠ with different notions of truth: the judgement ⊢ 𝑀 ÷ 𝐴 states 𝐴 is provable, but the proof is hidden (the judgement ⊢ 𝑀 ∶ 𝐴 provides a proof that is taken into account). Similarly, the function type Π𝑥 ÷ 𝐴, 𝐵 has an irrelevant argument. When a function takes a proof irrelevant argument, the application is itself proof irrelevant, allowing the definitional equality to ignore the argument.

Back to Martin-Löf type theory, Abel, Coquand and Pagano 2011 distinguish propositions 𝐴 from 'proof-irrelevant propositions Prf(𝐴)'. While 𝐴 can be inhabited by several normal forms, Prf(𝐴) is inhabited by a single normal form.

Werner 2008 embeds proof irrelevance into the extended calculus of constructions of Luo 1990 using the dependent pairs of the calculus. Dependent pair types and right (or second) projections come in two flavours, proof irrelevant or vanilla. The reduction at the heart of the congruence reduces terms tagged irrelevant to a canonical proof 𝜖. In this work, it is shown how such proof irrelevance can be used to form a language with explicit coercions closely related to PVS.

Proof irrelevance is native in Lean [START_REF] Moura | The Lean Theorem Prover (System Description)[END_REF], and Matita supports it as well (Asperti, Ricciotti and Coen 2014, Section 9.3). Proof assistants Coq and Agda (G. [START_REF] Gilbert | Definitional Proof-Irrelevance without K[END_REF]) have both a specific sort for proof irrelevant propositions (SProp for Coq and Prop for Agda).

Aspinall and Compagnoni 2001 have studied subtyping in λΠ, but a translation from λΠ with subtyping to λΠ was left as future work. Such a translation is given in [START_REF] Tannen | Inheritance as Implicit Coercion[END_REF] and will be discussed in Chapter 3. Some earlier forms of predicate subtyping can also be seen in the OBJ lan-guages which implement sub-sorting. [START_REF] Futatsugi | Principles of OBJ2[END_REF] describe how subsorting is performed; in particular, sub-sorting declarations such as 'non empty lists is a subtype of lists' are interpreted as coercion operators. Bouhoula, J. Jouannaud and Meseguer 2000 use membership declarations to provide more information to the type checker in order to infer more precise types (or sorts).

Membership declarations are similar to the 'judgements' mechanism of PVS.

Notations and definitions

Lower case letters generally stand for objects, and uppercase letters for types, 𝑥, 𝑦, 𝑧, 𝑣 generally stand for variables, 𝑠 for sorts, Γ, Δ, Ξ for contexts.

For any set ℰ, any natural number 𝑘, we denote ℰ 𝑘 = ℰ × ℰ 𝑘-1 when 𝑘 > 1 and ℰ 1 = ℰ; and ℰ * = ⋃ 𝑘≥0 ℰ 𝑘 .

Hoare triples

Given a procedure 𝑒 that may diverge or fail, the notation (from Hoare 1969) {𝑃} 𝑒 {𝑄} states that whenever precondition 𝑃 holds and 𝑒 terminates without failure then postcondition 𝑄 holds as well. Any Hoare triple {𝑃} 𝑓 {𝑄} can be seen as a specification for procedure 𝑓, and we say that an implementation of 𝑓 obeys its specification when it validates the Hoare triple. (1.1)

Terms

The set of 𝜆-terms is denoted 𝒯(𝒳) (the set of variables will be omitted in general). A dependent product Π𝑥 ∶ 𝑡, 𝑢 may be written 𝑡 → 𝑢 if 𝑢 does not contain variable 𝑥.

The application of a substitution 𝜎 to a term 𝑡 is denoted 𝜎𝑡 and {𝑢/𝑥} denotes the substitution of term 𝑡 for variable 𝑥.

Vectors (which are considered to be the same as finite sequences) are denoted in bold 𝒙 or in parentheses (𝑥 𝑖 ) 𝑖 where 𝑖 is the index. Vectors may be used in substitution {𝒖/𝒙} 𝑡 or binders '𝝀𝒙 ∶ 𝒕, 𝑢', '𝜫𝒙 ∶ 𝒕, 𝑢'. Concatenation and adding are written with the comma ','. Both '𝑥, 𝒙' and '𝒙, 𝒚' are correct sequences (and the latter is not a sequence of sequences). Substitution is extended to sequences by 𝜎𝒙 = (𝜎𝑥 𝑖 ) 𝑖 . Contexts can be seen as sequences of pairs of variables and types, hence adding a binding (𝑥 ∶ 𝑇 ) to a context Γ is written 'Γ, (𝑥 ∶ 𝑇 )'. The empty context is denoted ∅.

NOTATIONS AND DEFINITIONS

For any judgement 𝐽, we write 𝒟 ∶∶ 𝐽 if 𝒟 is a derivation tree whose conclusion is judgement 𝐽.

Subterms and positions

A position is a string of natural numbers, 𝜖 is the empty string, 𝒫 is the set of positions, and for any term 𝑡 in 𝒯(𝒳), 𝒫(𝑡) is the set of positions of 𝑡 defined as follows:

𝒫(𝑓 𝑡 1 … 𝑡 𝑛 ) = {𝜖} 𝑛 ⋃ 𝑖=1 {𝑖, 𝑝 | 𝑝 ∈ 𝒫(𝑡 𝑖 )} 𝒫(𝜆𝑥 ∶ 𝑡, 𝑢) = {𝜖} ∪ {1, 𝑝 | 𝑝 ∈ 𝒫(𝑡)} ∪ {2, 𝑝 | 𝑝 ∈ 𝒫(𝑢)} 𝒫(Π𝑥 ∶ 𝑡, 𝑢) = {𝜖} ∪ {1, 𝑝 | 𝑝 ∈ 𝒫(𝑡)} ∪ {2, 𝑝 | 𝑝 ∈ 𝒫(𝑢)} 𝒫(𝑥) = {𝜖} if 𝑥 ∈ 𝒳.
For any term 𝑡 the subterm of 𝑡 at position 𝑝 ∈ 𝒫(𝑡) is defined by

𝑡| 𝜖 = 𝑡; (𝑓 𝑡 1 … 𝑡 𝑛 )| 𝑖,𝑝 = 𝑡 𝑖 | 𝑝 (𝜆𝑥 ∶ 𝑡 1 , 𝑡 2 )| 𝑖,𝑝 = 𝑡 𝑖 | 𝑝 ; (Π𝑥 ∶ 𝑡 1 , 𝑡 2 )| 𝑖,𝑝 = 𝑡 𝑖 | 𝑝 .
For any terms 𝑠 and 𝑡, the replacement of the subterm of 𝑡 at position 𝑝 ∈ 𝒫(𝑡) by term 𝑠 is denoted {𝑠/𝑝} 𝑡 and defined as

{𝑠/𝜖} 𝑡 = 𝑠 {𝑠/𝑖, 𝑝} (𝑓 𝑡 1 … 𝑡 𝑛 ) = (𝑓 𝑡 1 … ({𝑠/𝑝} 𝑡 𝑖 ) … 𝑡 𝑛 ) {𝑠/1, 𝑝} (𝜆𝑥 ∶ 𝑡, 𝑢) = 𝜆𝑥 ∶ {𝑠/𝑝} 𝑡, 𝑢 {𝑠/2, 𝑝} (𝜆𝑥 ∶ 𝑡, 𝑢) = 𝜆𝑥 ∶ 𝑡, {𝑠/𝑝} 𝑢 {𝑠/1, 𝑝} (Π𝑥 ∶ 𝑡, 𝑢) = Π𝑥 ∶ {𝑠/𝑝} 𝑡, 𝑢 {𝑠/2, 𝑝} (Π𝑥 ∶ 𝑡, 𝑢) = Π𝑥 ∶ 𝑡, {𝑠/𝑝} 𝑢
The prefix order ≤ is defined as 𝑝 ≤ 𝑞 if there is 𝑝 ′ such that 𝑝, 𝑝 ′ = 𝑞. A position 𝑝 is below position 𝑞 if 𝑞 ≤ 𝑝 and strictly below 𝑞 if 𝑞 ≤ 𝑝 and 𝑞 ≠ 𝑝 (above is defined similarly). Two positions are disjoint or parallel if they are not comparable with respect to ≤.

A context is a term with at most one occurrence of a variable . If 𝛾 is a context, 𝛾[𝑡] denotes the substitution of term 𝑡 for variable . When not mentioned, sets of variables for the language do not contain to avoid confusion.

Relations and rewriting

For any relation 𝑅 we note 𝑅 = its reflexive closure, 𝑅 + its transitive closure, 𝑅 -1 its inverse and 𝑅 * its reflexive and transitive closure. For any relations 𝑅 and 𝑆, we write 𝑅𝑆 = {(𝑡, 𝑢) | ∃𝑣, 𝑡 𝑅 𝑣 ∧ 𝑣 𝑆 𝑢} the composition of 𝑅 and 𝑆. For any relation 𝑅, two terms 𝑠 and 𝑡 are joinable denoted 𝑠 ↓ 𝑅 𝑡 whenever there is a term 𝑢 such that 𝑠 𝑅 * 𝑢 (𝑅 -1 ) * 𝑡. The congruence of a relation 𝑅 is the smallest equivalence relation containing 𝑅 that is closed by context and substitution; it is denoted ≃ 𝑅 .

An equation is a pair of terms (𝑡, 𝑢) denoted 𝑡 = 𝑢. A rewrite rule is an equation (𝑡, 𝑢) denoted 𝑡 ⟶ 𝑢 when 𝑡 is not a variable and all free variables of 𝑢 are in 𝑡. When 𝑅 is a rewrite system (a set of rewrite rules), ⟶ 𝑅 is the closure by context and substitution of the rewrite rules of 𝑅. If ⟶ is a rewrite relation, ⟶ = denotes its reflexive closure, ⟵ its inverse, ↔ its symmetric closure, ⟶ + its transitive closure and ⟶ * its reflexive and transitive closure.

Definition 1. A rewrite relation ⟶ is called • Church-Rosser when 𝑡 ↔ * 𝑢 implies 𝑡 ↓ 𝑢.
• confluent when 𝑠 ⟵ * 𝑡 ⟶ * 𝑢 implies 𝑠 ↓ 𝑢.

Proposition 1. A relation has the Church-Rosser property if and only if it is confluent.

Proof. See Baader and Nipkow 1998, Theorem 2.1.5. A rewrite relation ⟶ is terminating whenever there is no infinite reduction chain 𝑡 0 ⟶ 𝑡 1 ⟶ … and it is convergent when it is both terminating and confluent.

Given a relation ↔ that is symmetric, stable by context and stable by substitution (but not transitive), if ≃ = ↔ * (i.e. ≃ is the least congruence containing ↔), then a proof of congruence 𝑡 ≃ 𝑢 is a sequence of terms (𝑠 𝑖 ) 𝑖 such that 𝐴 ↔ 𝑠 1 ↔ 𝑠 2 ↔ ⋯ ↔ 𝐵.

Expressing systems in computational logical frameworks

We present informally some usual techniques to express systems in the computational logical framework λΠme.

Given a theory 𝒮 made of a language and typing rules, expressing it in λΠme consists in providing a set of functions and equations in order to translate valid
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judgements of 𝒮 into λΠme. The set of functions and equations of λΠme to embed 𝒮 is denoted λΠ [𝒮].

In order to get acquainted with general techniques used to embed systems in logical frameworks, we show how to express simply typed 𝜆-calculus [START_REF] Church | A Formulation of the Simple Theory of Types[END_REF] and minimal predicate logic [START_REF] Frege | Begriffsschrift[END_REF] in λΠme.

Example 1 (𝜆-calculus). To embed the simply typed 𝜆-calculus with one sort, we declare a type I to represent this unique sort, a function app ∶ I → I → I that stands for the application and a function abs ∶ (I → I) → I that stands for the abstraction.

Using these functions, the term 𝜆𝑥, 𝜆𝑦, (𝑦 𝑥) is represented by (abs (𝜆𝑥 ∶ 𝐼, (abs (𝜆𝑦 ∶ 𝐼, (app 𝑦 𝑥))))) .

This encoding may seem confusing, as we could simply use the identity for embedding, since λΠme contains both the abstraction and the application. However, we use the functions app and abs to separate the abstractions of the framework that are used as tools to bind variables from the actual abstraction of the source logic, here the 𝜆-calculus, which we embed using abs.

The embedding is not yet finished, as 𝛽 reductions of the 𝜆-calculus are not reflected in our embedding: whereas, for any free variable 𝑥, ((𝜆𝑦, 𝑦) 𝑥) = 𝑥, we do not have such equality in the embedding: (app (abs (𝜆𝑦, 𝑦)) 𝑥) is not equal to 𝑥. Therefore, we add the following equation to the framework (app (abs 𝑏) 𝑒) = (𝑏 𝑒) .

The embedding consists finally of the following set of functions and equations (where ⋆ is the type of types in λΠme),

I ∶ ⋆ app ∶ I → I → I abs ∶ (I → I) → I (app (abs 𝑏) 𝑒) = (𝑏 𝑒)
We can finally prove that the embedding preserves typing, i.e. that any valid typing judgements of the source system is embedded as a valid typing judgement of λΠme; and we can prove that it is complete: embedded types can be inhabited in λΠme only if they can be inhabited in the 𝜆-calculus.

Example 2 (Minimal predicate logic). Predicate logic with a single sort, in its minimal form, is made of the universal quantification ∀ and the implication ⇒, and a sort 𝐼. Just like in the previous example, the sort 𝐼 is embedded by a type I ∶ ⋆. We add the type of propositions denoted Prop ∶ ⋆. The implication ⇒ is embedded by a function imply ∶ Prop → Prop → Prop. The quantifier ∀ binds a variable, therefore, we use the absraction of the framework as a binding facility: for any proposition 𝑃, denoting 𝑃 ′ the embedding of 𝑃, '∀𝑥.𝑃' is embedded as (all (𝜆𝑥 ∶ I, 𝑃 ′ )), where all ∶ (I → Prop) → Prop.

Our current embedding allows us to write well-formed propositions, but we cannot express proofs yet. For this, we introduce a dependent type Prf ∶ Prop → ⋆ such that, for any proposition 𝑃, (Prf 𝑃) can be interpreted as the type of proofs of 𝑃. For any propositions 𝑃 and 𝑄 embedded as 𝑃 ′ and 𝑄 ′ , proofs of 𝑃 ⇒ 𝑄 cannot be terms of type (imply 𝑃 ′ 𝑄 ′ ), because the latter is an object, it is not a type. However, it can be typed by (Prf (imply 𝑃 ′ 𝑄 ′ )) which is now a type.

Finally, the Brouwer-Heyting-Kolmogorov interpretation of proofs says that a proof of 𝑃 ⇒ 𝑄 should be a function mapping proofs of 𝑃 to proofs of 𝑄. This interpretation is not reflected in the embedding: (Prf (imply 𝑃 ′ 𝑄 ′ )) is not a function type. But thanks to the computational capabilities of λΠme, we can add the following equation

(Prf (imply 𝑃 𝑄)) = (Prf 𝑃) → (Prf 𝑄)
so that the type of proofs of 𝑃 ⇒ 𝑄 is identified with the type of functions from proofs of 𝑃 to proofs of 𝑄.

More techniques to express theories in λΠme can be seen in [START_REF] Blanqui | Some Axioms for Mathematics[END_REF][START_REF] Burel | Dedukti: a Logical Framework based on the 𝜆Π-Calculus Modulo Theory[END_REF].
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Chapter 2

Encoding explicit predicate subtyping

This chapter is based on (Hondet and Blanqui 2021). The modifications brought in this manuscript are listed in Table 2.1.

PVS-Cert: A minimal system with predicate subtyping

Because of its size, encoding the whole of PVS cannot be achieved in one step. Consequently, F. Gilbert 2018 extracted, formalised and studied a subsystem Unlike PVS, PVS-Cert contains proof terms, thus type checking is decidable in PVS-Cert while it is not in PVS. Hence PVS-Cert is a suitable logical system in which to encode PVS specifications and proofs so that they may be cross checked.

In comparison with (F. Gilbert 2018), we use equations rather than reduction rules and slightly change the syntax of terms. The system PVS-Cert remains a two layer system composed of predicate subtyping on top of simple type theory [START_REF] Church | A Formulation of the Simple Theory of Types[END_REF]).

Type system modulo theory

To describe the various type systems used in this work, we will use type systems modulo introduced by Blanqui 2001. Type systems modulo are an extension of pure type systems (H. [START_REF] Barendregt | Types in Lambda Calculi and Programming Languages[END_REF] with symbols of fixed arity declared in a typing signature and an arbitrary congruence. Pure type systems use the reflexive transitive symmetric closure of the 𝛽 reduction as equivalence.

Definition 2 (Syntax of type systems modulo). The terms of type systems modulo are parametrised by a set of sorts 𝒮, a set of variables 𝒳 and a set of symbols ℱ. The set of terms is denoted 𝒯(𝒳, 𝒮, ℱ) and is described by the following grammar

𝑡 ∶∶= 𝑠 ∈ 𝒮 | 𝑥 ∈ 𝒳 | 𝑓 ∈ ℱ | 𝑡 𝑡 | 𝜆𝑥 ∶ 𝑡, 𝑡 | Π𝑥 ∶ 𝑡, 𝑡 (2.1) 
A contexts is a subsets of (𝒳 × 𝒯(𝒳, 𝒮, ℱ)) * where each variable is bound at most once.

We will often abuse notations and omit arguments of 𝒯(-) whenever they can be unambiguously inferred from the context. The set of variables can almost always be omitted, since we only work with set 𝒳. Definition 3 (Signature). For any set of symbols ℱ, any set of sorts 𝒮, such that ℱ, 𝒮 and 𝒳 are pairwise disjoint, denoting 𝒯 as an abbreviation for 𝒯(𝒳, 𝒮, ℱ), a typing signature is a partial function Σ ∶ ℱ ⇀ (𝒳 × 𝒯) * ×𝒯×𝒮. Furthermore, for any triple ((𝒙, 𝑨), 𝐵, 𝑠) in the image of Σ, variables 𝒙 are pairwise distinct.

A mapping from a symbol 𝑓 to a triple ((𝒙, 𝒕), 𝑇 , 𝑠) is denoted 𝑓[𝒙 ∶ 𝒕] ∶ 𝑇 ∶ 𝑠 To say that 𝑓 is mapped to ((𝒙, 𝑨), 𝐵, 𝑠) by Σ, we either write Σ(𝑓) = ((𝒙, 𝑨), 𝐵, 𝑠) or 𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ. For any signature Σ, the domain of Σ is denoted dom(Σ). The notation [𝒙 ∶ 𝒕] is reminiscent of de Bruijn's telescopes (de Bruijn 1991) where each term 𝑡 may depend on the variables bound earlier in the context. Remark 1. Signatures provide an arity to each symbol in their domain. For any signature Σ, for any (𝑓[(𝑥 𝑖 ∶ 𝐴 𝑖 ) 𝑖≤ℓ ] ∶ 𝐵 ∶ 𝑠) ∈ Σ, (𝑓 𝒕) is well-typed only when 𝑓 is applied to ℓ arguments (see rule sign of Fig. 2.1), therefore ℓ can be seen as the arity of 𝑓.
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empty ⊢ ∅ decl 𝑥 ∉ Γ Γ ⊢ 𝐴 ∶ 𝑠 ⊢ Γ, 𝑥 ∶ 𝐴 var ⊢ Γ (𝑥 ∶ 𝐴) ∈ Γ Γ ⊢ 𝑥 ∶ 𝐴 conv Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝐵 ∶ 𝑠 𝐴 ≃ 𝐵 Γ ⊢ 𝑡 ∶ 𝐵 sort ⊢ Γ (𝑠 1 , 𝑠 2 ) ∈ 𝒜 Γ ⊢ 𝑠 1 ∶ 𝑠 2 prod Γ ⊢ 𝐴 ∶ 𝑠 1 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑠 2 (𝑠 1 , 𝑠 2 , 𝑠 3 ) ∈ 𝒫 Γ ⊢ Π𝑥 ∶ 𝐴, 𝐵 ∶ 𝑠 3 abst Γ ⊢ Π𝑥 ∶ 𝐴, 𝐵 ∶ 𝑠 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ∶ Π𝑥 ∶ 𝐴, 𝐵 appl Γ ⊢ 𝑡 ∶ Π𝑥 ∶ 𝐴, 𝐵 Γ ⊢ 𝑢 ∶ 𝐴 Γ ⊢ (𝑡 𝑢) ∶ {𝑢/𝑥} 𝐵 sign 𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ 𝒙 ∶ 𝑨 ⊢ 𝐵 ∶ 𝑠 (Γ ⊢ 𝑡 𝑖 ∶ {𝑡 𝑗 /𝑥 𝑗 } 𝑗<𝑖 𝐴 𝑖 ) 𝑖 Γ ⊢ (𝑓 𝒕) ∶ {𝒕/𝒙} 𝐵
Definition 4 (Type system modulo specification). A type system modulo specification is a 6-uple (𝒮, 𝒜, 𝒫, ℱ, ≃, Σ) where • 𝒮 is a finite set of constants called sorts,

• 𝒜 ⊆ 𝒮 × 𝒮 is a relation called axioms, 29 2.1. PVS-CERT: A MINIMAL SYSTEM WITH PREDICATE SUBTYPING • 𝒫 ⊆ 𝒮 × 𝒮 × 𝒮 is a relation called product rules, • ℱ is a set of function symbols,
• ≃ is a congruence on 𝒯(𝒮, ℱ) and • Σ is a typing signature.

When omitted, the set of symbols ℱ defaults to the domain of Σ.

Definition 5 (Type system modulo). For any specification 𝔗 = (𝒮, 𝒜, 𝒫, ℱ, ≃ , Σ), abbreviating 𝒯(𝒮, ℱ) by 𝒯, a type system modulo is a ternary relation (also called 'typing relation') in (𝒳 × 𝒯) * × 𝒯 × 𝒯 denoted 'Γ ⊢ 𝑡 ∶ 𝑢' where Γ is a context and 𝑡 and 𝑢 are terms. A triple (Γ, 𝑡, 𝑢) is in the relation if and only if Γ ⊢ 𝑡 ∶ 𝑢 can be derived can be derived using the inference rules of Fig. 2.1 parametrised by 𝔗.

For any specification 𝔗, the type system modulo parametrised by 𝔗 is denoted '⋅ ⊢ 𝔗 ⋅ ∶ ⋅' (where '⋅' denotes the position of arguments). The annotation 𝔗 can be omitted when the specification can be unambiguously inferred. In that case, we simply write '⋅ ⊢ ⋅ ∶ ⋅'. Because a specification identifies uniquely a type system modulo, we may quantify over type systems modulo instead of specification, so that the sentence 'for any type system modulo 𝔗' should be understood as 'for any type system modulo specification 𝔗'. For any specification, for any triple (Γ, 𝑡, 𝐴), the notation Γ ⊢ 𝑡 ∶ 𝐴 is also called a 'judgement' in the sense that it judges 𝑡 to be of type 𝐴 in context Γ.

Definition 6 (Well-formed signature). A signature Σ is well-formed in a type system modulo 𝔗, written ⊢ 𝔗 Σ, if for any judgement 𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ, we have 𝒙 ∶ 𝑨 ⊢ 𝔗 𝐵 ∶ 𝑠.

Remark 2. We do not pay attention to how signatures and equivalences are formed in general. The formation rules of signatures may be defined in the type system (Gaspard Férey 2021; Guillaume [START_REF] Burel | Dedukti: a Logical Framework based on the 𝜆Π-Calculus Modulo Theory[END_REF][START_REF] Saillard | Vérification de typage pour le lambda-Pi-Calcul Modulo : théorie et pratique)[END_REF]. These presentations are suitable for formalising the meta theory of logical frameworks, when the process of creating a signature is discussed, and some properties must be kept through extension of the signature. In this thesis, we consider a restricted number of signatures which are designed so that they have desirable properties.

Definition 7. Let 𝔗 be a type system modulo parametrised by a set of sorts 𝒮. We say that a context Γ is well-formed in 𝔗 whenever ⊢ 𝔗 Γ is derivable. We say CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING that a type 𝑇 is well-sorted in context Γ in 𝔗 whenever there is a sort 𝑠 ∈ 𝒮 such that Γ ⊢ 𝔗 𝑇 ∶ 𝑠. We say that a term 𝑡 is well-typed in a context Γ in 𝔗 whenever there is a type 𝑇 well-sorted in context Γ (in system 𝔗) such that Γ ⊢ 𝔗 𝑡 ∶ 𝑇 is derivable.

Definition 8 (λΠme). For any set of variables 𝒳, for any set of symbols ℱ, for any set of equations ℰ and for any typing signature Σ, a λΠme system is a type system modulo parametrised by ({⋆, }, {(⋆, )}, 𝒫 𝜆Π , ℱ, ≃, Σ) where 𝒫 𝜆Π = {(⋆, ⋆, ⋆), (⋆, , )} and ≃ is the smallest congruence containing equations of ℰ and Eq. (𝛽) Page 31. Any λΠme system is specified by the triple (ℱ, ℰ, Σ).

Any instance of λΠme with an empty set of equations is an instance of the Edinburgh's logical framework. The family of λΠme type systems modulo can be seen as a logical framework extended with an equational theory.

Simple type theory

PVS and PVS-Cert are both based on simple type theory [START_REF] Church | A Formulation of the Simple Theory of Types[END_REF], which can be represented by the following type system modulo.

Definition 9 (Simple type theory, λhol). Simple type theory, or λhol, is the type system modulo defined by the following parameters • 𝒮 = {Prop, Type, Kind},

• 𝒜 = {(Prop, Type), (Type, Kind)},

• 𝒫 = {(Prop, Prop, Prop), (Type, Type, Type), (Type, Prop, Prop)},

• ℱ = ∅, • Σ = ∅,
• ≃ is the congruence of the 𝛽-reduction defined by Eq. (𝛽)

((𝜆𝑥, 𝑡) 𝑢) ⟶ {𝑢/𝑥} 𝑡 (𝛽)
λhol is also a pure type system (H. [START_REF] Barendregt | Types in Lambda Calculi and Programming Languages[END_REF]) since the signature is empty and the equivalence is the closure of the 𝛽-reduction.

We denote by ≃ 𝛽 the congruence of rule Eq. (𝛽). . The constructors and eliminators can be seen as coercions from types to predicate subtypes and vice versa: they allow either to attach some logical content to a value, or to retrieve the actual value to perform some computation. Unlike PVS-Cert, PVS does not use coercions pair, 𝜋 ℓ and 𝜋 𝑟 . In PVS, subtyping is implicit: terms do not have a unique type, and its choice is left to the type checker. These symbols are declared in the signature in Fig. 2.2. In addition to simple type theory (Definition 9) and these symbols, PVS-Cert uses a congruence ≃ Pe that identifies more terms than ≃ 𝛽 which will be defined in Definition 10. Remark 3. Unlike the original presentation of PVS-Cert by F. Gilbert 2018, projections and pairs are annotated with the type of their argument to prove more easily that the translation of PVS-Cert terms is well-defined (Proposition 2).

Proof irrelevance So far, no real difference has been evinced between PVS-Cert and dependent pairs: predicate subtype psub(𝐴, 𝑃) is just a restricted version of dependent pairs (Σ𝑥 ∶ 𝐴, 𝑃 𝑥) (see ibid., Definition 4.2.3). The difference lies in the equivalence relations and the fact that PVS-Cert implements proof irrelevance in pairs.

Proofs contained in terms are essential for typing purposes. On the other hand, these proofs are a burden regarding the equivalence of terms. Were these proofs taken into account (as ≃ 𝛽 does), too many terms would be distinguished. For example, consider two terms 𝑡 = pair(nat, evenp, 2, ℎ) and 𝑡 ′ = pair(nat, evenp, 2, ℎ ′ ) that stand for the number 2 that has been proved even. Without proof irrelevance, 𝑡 and 𝑡 ′ are not considered equal because they do not have the same proof (ℎ and ℎ ′ ) that 2 is even. We end up with one even number 2 per proof that 2 is even.

As stated by de Bruijn 1994, most mathematicians seek convertibility of 𝑡 and 𝑡 ′ and care more about what ℎ and ℎ ′ prove than the proofs themselves. In that regard, PVS-Cert has proof irrelevant pairs: proofs attached to terms are not taken into account when checking the equivalence of two pairs. This property is embedded in the equivalence relation used in the conversion rule of PVS-Cert which does not attach any importance to the proofs of pairs. Consequently, the eliminator 𝜋 𝑟 provides a proof, but we do not know which one a priori. We only know what it proves.

Definition 10. The equivalence of PVS-Cert is noted ≃ Pe and is the smallest congruence containing Eqs. (2.2), (2.3) and (𝛽)

pair(𝑡, 𝑢, 𝑚, ℎ 0 ) = pair(𝑡, 𝑢, 𝑚, ℎ 1 ) (2.2) 𝜋 ℓ (𝑡 0 , 𝑢 0 , pair(𝑡 1 , 𝑢 1 , 𝑚, ℎ)) = 𝑚 (2.3) Equation (2.
3) allows the projection to compute. The right projection does not compute1 to avoid implementing full proof irrelevance: the addition of such a reduction rule causes all proofs (i.e. terms of type Prop) to be equivalent (since ℎ = 𝜋 𝑟 (𝑎, 𝑝, pair(𝑎, 𝑝, 𝑥, ℎ)) = 𝜋 𝑟 (𝑎, 𝑝, pair(𝑎, 𝑝, 𝑥, ℎ ′ )) = ℎ ′ ), which may imply other axioms such as the uniqueness of identity proofs (G. [START_REF] Gilbert | Definitional Proof-Irrelevance without K[END_REF].

Definition 11 (PVS-Cert). PVS-Cert is the same system as λhol but with ℱ Pe = {psub, 𝜋 ℓ , pair, 𝜋 𝑟 }, the signature Σ Pe defined in Fig. 2.2 and congruence ≃ Pe (Definition 10). Typing judgements of PVS-Cert may be written '⊢ Pe ∶' to avoid confusion.

The conversion relation used by F. Gilbert 2018 contains only 𝛽 and the following reductions that erase coercions: 𝜋 ℓ (𝑇 , 𝑃 , 𝑋) ⟶ 𝑋 pair(𝑇 , 𝑃 , 𝑋, 𝐻) ⟶ 𝑋.

These reduction rules cannot be included in congruence ≃ Pe because they do not preserve typing: the left-hand side and the right-hand side of both rules cannot
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have the same type. On the other hand, this congruence contains surjective pairing pair(𝑡, 𝑝, 𝜋 ℓ (𝑡, 𝑝, 𝑒) , 𝜋 𝑟 (𝑡, 𝑝, 𝑒)) ⟶ * 𝑒 whereas ≃ Pe does not. Equations of λΠme must preserve typing for the type checker to behave well, which prevents from using the above reduction rules as equations.

Proofs of 𝑇 ≃ 𝛽 𝑈 or 𝑇 ≃ Pe 𝑈 can use untyped intermediate terms, which can be problematic when proving properties hold on typed terms only.

Example 3. While 𝛽-reduction preserves typing in PVS-Cert, its symmetric, 𝛽-expansion, does not. For instance, assume that signature Σ declares Nat ∶ Type; zero ∶ Nat; String ∶ Type.

Then zero (which is well-typed) 𝛽-expands to ((𝜆𝑥 ∶ String, 𝑥) zero) which is ill-typed (because the domain of the abstraction, String, is not convertible with the type of the argument, Nat). Proof irrelevance does not preserve well-typedness. Assume we use the previous signature Σ, and we add the declarations

Even ∶ Nat → Prop and zE ∶ (Even zero)
where Even is a predicate, and zE is a proof that zero validates Even. In the new signature, the following judgements hold by rule sign ⊢ 𝛼 ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ pair(Nat, Even, zero, zE) ∶ psub(Nat, Even)

However, 𝛼 is convertible, via Eq. (2.2), with pair(Nat, Even, zero, zero) where the latter term is not typeable because the fourth argument (zero) is not a proof of (Even zero), hence rule sign does not apply.

We therefore show that if 𝑇 and 𝑈 are well-typed, there is a proof of 𝑇 ≃ Pe 𝑈 that uses only well-typed terms. In the case of ≃ 𝛽 , the problem is solved by confluence of ⟶ 𝛽 . We now prove a similar property for ≃ Pe : 

Lemma 1. Let ⟶ 𝛽,𝜋 ℓ = ⟶ 𝛽 ∪ ⟶𝜋
) ⟶ 𝛽,𝜋 ℓ pair(𝑎 ′ , 𝑏 ′ , 𝑚 ′ , ℎ ′ 2 ).
If the ⟶ 𝛽,𝜋 ℓ step is not applied in a subterm of ℎ 2 , then ℎ 2 = ℎ ′ 2 and the rewrite sequence can be transformed into pair(𝑎, 𝑏, 𝑚, ℎ 1 ) ⟶ 𝛽,𝜋 ℓ pair(𝑎 ′ , 𝑏 ′ , 𝑚 ′ , ℎ 1 ) ↔ pi pair(𝑎 ′ , 𝑏 ′ , 𝑚 ′ , ℎ 2 ).

If ⟶ 𝛽,𝜋 ℓ is applied on a subterm of ℎ 2 , then (𝑎, 𝑏, 𝑚) = (𝑎 ′ , 𝑏 ′ , 𝑚 ′ ) and we can directly apply Eq. (2.2): pair(𝑎, 𝑏, 𝑚, ℎ 1 ) ↔ pi pair(𝑎, 𝑏, 𝑚, ℎ ′ 2 ).

If 𝑞 is above 𝑝, we have either

• (𝜆𝑥 ∶ 𝑎, 𝑡) 𝑢 ↔ pi (𝜆𝑥 ∶ 𝑎 ′ , 𝑡 ′ ) 𝑢 ′ ⟶ 𝛽,𝜋 ℓ {𝑢 ′ /𝑥} 𝑡 ′ and (𝜆𝑥 ∶ 𝑎, 𝑡) 𝑢 ⟶ 𝛽,𝜋 ℓ {𝑢/𝑥} 𝑡 ↔ pi {𝑢 ′ /𝑥} 𝑡 ′ , or
• the ↔ pi step is applied to a subterm erased by ⟶𝜋 ℓ , in which case ↔ pi ⟶𝜋 ℓ ⊆ ⟶𝜋 ℓ , or

• the ↔ pi step is applied to a subterm that is not erased by ⟶𝜋 ℓ in which case ↔ pi ⟶𝜋 ℓ ⊆ ⟶𝜋 ℓ ↔ pi .

The relation ⟶ 𝛽,𝜋 ℓ is confluent because Eq. (𝛽) and oriented Eq. ( 2.3) form an orthogonal combinatory reduction system (i.e. whose rules are left-linear and non-overlapping) [START_REF] Klop | Combinatory Reduction Systems: Introduction and Survey[END_REF]. We show 1. ≃ Pe ⊆ ⟶ * 𝛽,𝜋 ℓ ↔ * pi ⟵ * 𝛽,𝜋 ℓ by confluence of ⟶ 𝛽,𝜋 ℓ and postponement of equational steps and by induction on the number of ↔ pi steps.

We now prove that 2. ⟶ 𝛽 preserves typing. For this, it is enough to prove that, if (Π𝑥 ∶ 𝑎, 𝑏) and (Π𝑥 ∶ 𝑎 ′ , 𝑏 ′ ) are typeable, and (Π𝑥 ∶ 𝑎, 𝑏) ≃ Pe (Π𝑥 ∶ 𝑎 ′ , 𝑏 ′ ), then 𝑎 ≃ Pe 𝑎 ′ and 𝑏 ≃ Pe 𝑏 ′ (for more details, see Blanqui 2005), which follows from Item 1. We now prove that 3. ⟶𝜋 ℓ preserves typing. Assume that 𝜋 ℓ (𝑎 0 , 𝑝 0 , (pair(𝑎 1 , 𝑝 1 , 𝑚, ℎ))) is of type 𝐶. By inversion of typing rules, the type of pair(𝑎 1 , 𝑝 1 , 𝑚, ℎ) is convertible with psub(𝑎 0 , 𝑝 0 ) and 𝑎 0 ≃ Pe 𝐶. By inversion again, the type of 𝑚 is convertible with 𝑎 1 and psub(𝑎 0 , 𝑝 0 ) ≃ Pe psub(𝑎 1 , 𝑝 1 ). By Item 1, 𝑎 0 ≃ Pe 𝑎 1 and 𝑝 0 ≃ Pe 𝑝 1 . Therefore, 𝑚 is of type 𝐶.
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For the following sub-proof, note that 4. ↔ * pi = ⇔ pi where ⇔ pi consists in applying several ↔ pi steps such that if there is a ↔ pi rewriting at position 𝑝, there is no rewriting below position 4, 𝑝 (no rewriting below the proof irrelevant argument). Indeed, if

𝑡 ⏞⏞⏞⏞⏞⏞⏞ pair(𝑎, 𝑝, 𝑚, ℎ 1 ) ↔ pi pair(𝑎, 𝑝, 𝑚, (… (pair(𝑎 ′ , 𝑝 ′ , 𝑚 ′ , ℎ ′ 1 )) … )) ↔ pi pair(𝑎, 𝑝, 𝑚, (… (pair(𝑎 ′ , 𝑝 ′ , 𝑚 ′ , ℎ ′ 2 )) …)) ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 𝑢
then 𝑡 ↔ pi 𝑢 as well. Now that ⟶ 𝛽,𝜋 ℓ preserves typing, we show 5. : 'if 𝑡 ↔ * pi 𝑢 and 𝑡 and 𝑢 are well typed, then they have the same type (modulo ≃ Pe )' by induction on the number of positions rewritten in 𝑡 ⇔ pi 𝑢. If no position is rewritten, then 𝑡 is syntactically equal to 𝑢, and hence they have the same type. Otherwise, assume Item 5 for 𝑛 > 0 positions, 𝑡 ⇔ pi 𝑢 with 𝑛+1 equational steps and let 𝑝 ∈ 𝒫(𝑡) such that a ↔ pi equational step is applied at 𝑝, and no more than 𝑛 equational steps are applied below 𝑝. Such a position exists since there is at least one equational step, and if there are more than 𝑛 equational steps below 𝑝, we may take the first position below 𝑝 where an equational step occurs. Then by hypothesis, 𝑡| 𝑝 ⇔ pi 𝑢| 𝑝 with no more than 𝑛 equational steps, and both 𝑡| 𝑝 and 𝑢| 𝑝 are typeable since 𝑡 and 𝑢 are typeable. Thus by induction hypothesis, 𝑡| 𝑝 and 𝑢| 𝑝 have the same type. Now by induction hypothesis, { 𝑢| 𝑝 /𝑝} 𝑡 ⇔ pi 𝑢 with no more than 𝑛 rewrite steps, and both terms are typeable, so they have the same type. Since we have 𝑡 ⇔ pi { 𝑢| 𝑝 /𝑝} 𝑡 and both terms typeable, we have also that 𝑡 and { 𝑢| 𝑝 /𝑝} 𝑡 have the same type.

We can now conclude: if 𝑡 ≃ Pe 𝑢 and both 𝑡 and 𝑢 are typeable, then by Item 1 we have 𝑡 ′ and 𝑢 ′ such that 𝑡 ⟶ * 𝛽,𝜋 ℓ 𝑡 ′ ↔ * pi 𝑢 ′ ⟵ * 𝛽,𝜋 ℓ 𝑢. By Items 2 and 3, we have that 𝑡 ′ has the same type as 𝑡 and 𝑢 ′ has the same type as 𝑢. By Item 5, 𝑡 ′ and 𝑢 ′ have the same type. Finally, by transitivity of ≃ Pe , 𝑡 and 𝑢 have the same type (modulo ≃ [Pe] ).

Encoding PVS-Cert in λΠme

Encoding PVS-Cert into a logical framework such as λΠme allows to express terms of the former into the latter. Because logical frameworks strive to remain minimal, constructions such as pair(𝐴, 𝑃 , 𝑚, ℎ) or psub(𝐴, 𝑃) are not built-in: they must be expressed into the language of the logical framework through an encoding. We hence define the symbols allowing to emulate predicate subtyping using the terms of λΠme.

Σ [stt] ⎧ { { { { { ⎨ { { { { { ⎩ Type ∶ ⋆ ∶ o ∶ Type ∶ ⋆ El [𝑡 ∶ Type] ∶ ⋆ ∶ Prf [𝑝 ∶ (El o)] ∶ ⋆ ∶ ∀ [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o))] ∶ (El o) ∶ ⇒ [𝑝 ∶ (El o) , 𝑞 ∶ (Prf 𝑝) → (El o)] ∶ (El o) ∶ ⇝ [𝑡 ∶ Type, 𝑢 ∶ (El 𝑡) → Type] ∶ Type ∶ (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) (2.10) ℰ [stt] ⎧ { ⎨ { ⎩ (Prf (∀ 𝑡 𝑝)) = Π𝑥 ∶ El, 𝑡, (Prf (𝑝 𝑥)) (Prf (𝑝 ⇒ 𝑞)) = Πℎ ∶ Prf𝑝, (Prf (𝑞 ℎ)) (El (𝑡 ⇝ 𝑢)) = Π𝑥 ∶ El, 𝑡, El, (𝑢 𝑥) (2.11) (2.12) (2.

Encoding simple type theory in λΠme

Following the stratification of λΠme [START_REF] Harper | A Framework for Defining Logics[END_REF], we say that term 𝑡 typeable by 𝑇 is an object when 𝑇 is typable by ⋆ and a type when 𝑇 is typeable by .

The encoding of λhol given in Fig. 2.3 Page 37 follows the method settled by [START_REF] Blanqui | Some Axioms for Mathematics[END_REF][START_REF] Cousineau | Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo[END_REF]. Symbols that constitute the encoding in λΠme are written in blue.

The sort Type is encoded by the type Type, and the sort Prop by the object o in declarations (2.4) and (2.5). One can already note that the declaration o ∶ Type encodes the axiom Prop ∶ Type of PVS-Cert.

For objects and types of λhol, the idea is to manipulate them as objects of λΠme. We call type codes the types of λhol encoded as objects of λΠme. When a type from λhol is needed, for instance to encode 𝜆𝑥 ∶ nat, 𝑥, we use families of types of λΠme indexed by type codes to lift λΠme objects to λΠme types.

Terms of type Type are encoded as type codes of type Type. These type codes
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can be interpreted as λΠme types with the family of types El (2.6). Because o (2.5) is the type code of propositions, the latter are encoded as objects of type El, o. The type of proofs is given by the family Prf (2.7) indexed by propositions. For instance, given a λhol type 𝜄 and a λhol proposition 𝑃 both encoded as λΠme objects, the abstractions 𝜆𝑥 ∶ El, 𝜄, 𝑥 and 𝜆ℎ ∶ Prf𝑃, ℎ are valid λΠme terms.

Constants ∀ and ⇒ represent respectively the universal quantification, which can also be seen as a dependent product binding values (of type codes) into propositions; and the (dependent) implication which binds proofs into propositions, and can also be seen as a dependent product at the level of propositions. Constant ⇒ represents the dependent version of the functional arrow, at the level of type codes.

Equations (2.11) to (2.13) are used to map encoded products to λΠme products.

Remark 4. Symbols ⇝ and ⇒ are written infix for readability. Furthermore, these two operators have a binder as second argument to express the dependency of the second argument on the first one, like with dependent product. We may abuse notations and write (𝑥 ⇝ 𝑦) when 𝑦 ∶ Type does not depend on 𝑥, instead of (𝑥 ⇝ 𝜆𝑣 ∶ Type, 𝑦).

Definition 12 (λΠ[stt]). The encoding of simple type theory in λΠme denoted λΠ [stt] is the λΠme type system parametrised by signature Σ [stt] and equations ℰ [stt] both defined in Fig. 2.3.

Encoding explicit predicate subtyping in λΠme

Predicate subtypes are defined in declaration (2.14) as encoded types (i.e. terms of type Type) built from encoded type 𝑡 and predicate defined on 𝑡. Pairs are encoded in Eq. (2.15), where the second argument is the predicate that defines the type of the pair. The two projections are encoded in declarations (2.16) and (2.17).

Definition 13 (λΠ[Pe]

). Let Σ [Pe] be the union of signature Σ [stt] (defined in Fig. 2.3) and typing declarations of Fig. 

[Pe] . The congruence of λΠ[Pe] is denoted ≃ [Pe] . CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING psub [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o))] ∶ Type ∶ ⋆ (2.14) pair [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o)) ; 𝑚 ∶ (El 𝑡) , ℎ ∶ (Prf (𝑝 𝑚))] ∶ (El (psub 𝑡 𝑝)) ∶ ⋆ (2.15) fst [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o)) ; 𝑚 ∶ (El (psub 𝑡 𝑝))] ∶ El, 𝑡 ∶ ⋆ (2.16) snd [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o)) ; 𝑚 ∶ (El (psub 𝑡 𝑝))] ∶ (Prf (𝑝 (fst 𝑡 𝑝 𝑚))) ∶ ⋆.
(2.17)

(pair 𝑡 𝑝 𝑚 ℎ) = (pair 𝑡 𝑝 𝑚 ℎ ′ ) (fst 𝑡 𝑝 (pair 𝑡 ′ 𝑝 ′ 𝑚 ℎ)) = 𝑚 (2.18) (2.19)
Figure 2.4: Signature and equations to encode predicate subtyping into λΠme.

Translation of PVS-Cert terms into λΠ[Pe]

Definition 14 (Translation). Let Γ be a well-formed context.

• The term translation of term 𝑀 typeable in Γ, noted [𝑀] Γ , is defined in Figs. 2.5 and 2.6.

• The type translation of Kind and the terms 𝑀 typeable by a sort in Γ, noted 𝑀 Γ , is defined in Fig. 2.7.

• The context translation Γ is defined by induction on Γ as

∅ = ∅; Γ, 𝑥 ∶ 𝑇 = Γ , 𝑥 ∶ 𝑇 Γ Proposition 2.
The translation function [-] -that maps a context and a PVS-Cert term typeable in this context to a λΠme term is well-defined.

Proof. After Lemma 1 and Blanqui 2001, Lemma 41, the types of a term are unique up to equivalence. Moreover, the arguments of the translation function are decreasing with respect to the (strict) subterm relation. [psub(𝑇 , 𝑃) 

[𝑥] Γ = 𝑥 [Prop] Γ = o [Type] Γ = Type [𝑀 𝑁] Γ = [𝑀] Γ [𝑁] Γ [𝜆𝑥 ∶ 𝑇 , 𝑀] Γ = 𝜆𝑥 ∶ (El [𝑇] Γ ), [𝑀] Γ,𝑥∶𝑇 [Π𝑥 ∶ 𝑇 , 𝑈] Γ = [𝑇] Γ ⇝ (𝜆𝑥 ∶ 𝑇 Γ , [𝑈] Γ,𝑥∶𝑇 ) when Γ ⊢ Pe 𝑇 ∶ Type and Γ, 𝑥 ∶ 𝑇 ⊢ Pe 𝑈 ∶ Type [Π𝑥 ∶ 𝑇 , 𝑃] Γ = ∀ [𝑇] Γ (𝜆𝑥 ∶ 𝑇 Γ , [𝑃] Γ,𝑥∶𝑇 ) when Γ ⊢ Pe 𝑇 ∶ Type and Γ, 𝑥 ∶ 𝑇 ⊢ Pe 𝑃 ∶ Prop [Πℎ ∶ 𝑃 , 𝑄] Γ = [𝑃] Γ ⇒ (𝜆ℎ ∶ 𝑃 Γ , [𝑄] Γ,ℎ∶𝑃 ) when Γ ⊢ Pe 𝑃 ∶ Prop and Γ, ℎ ∶ 𝑃 ⊢ Pe 𝑄 ∶ Prop
] Γ = (psub [𝑇] Γ [𝑃] Γ ) [pair(𝑇 , 𝑃 , 𝑀 , 𝑁)] Γ = (pair [𝑇] Γ [𝑃] Γ [𝑀] Γ [𝑁] Γ ) [𝜋 ℓ (𝑇 , 𝑃 , 𝑀)] Γ = (fst [𝑇] Γ [𝑃] Γ [𝑀] Γ ) [𝜋 𝑟 (𝑇 , 𝑃 , 𝑀)] Γ = (snd [𝑇] Γ [𝑃] Γ [𝑀] Γ ) Figure 2.6: Translation from PVS-Cert to λΠ[Pe]. 𝑇 Γ = (El [𝑇] Γ ) when Γ ⊢ Pe 𝑇 ∶ Type 𝑇 Γ = (Prf [𝑇] Γ ) when Γ ⊢ Pe 𝑇 ∶ Prop Kind = ⋆ Type = Type

Examples of encoded theories

We provide here some examples that take advantage of proof irrelevance or predicate subtyping. While these examples could have been presented in PVS-Cert, we write them into λΠ [Pe]. For any context Γ, name 𝑓, type 𝐴 and term 𝑡, the notation '𝑓 [Γ] ∶ 𝐴 ≔ 𝑡' is syntactic sugar for a signature declaration '𝑓 [Γ] ∶ 𝐴 ∶ 𝑠' (we drop the sort in the declaration for brevity) and an equation '(𝑓 𝒙) = 𝑡' where 𝒙 are the variables defined in Γ. We will generally omit the first two arguments of fst, pair and snd so the term (fst 𝑚) stands for (fst 𝑎 𝑝 𝑚) for some terms 𝑎, 𝑝. These examples show that the encoding is relatively lightweight and thus suitable for human-made developments. Furthermore, interpretation functions El and Prf could be omitted using coercion facilities later described in Chapter 3 Page 61, as shown in Example 12 Page 74.

Because equality is one of the most common mathematical predicates, we start by defining a signature with equality and inequality in Fig. 2.8. The signature defines a polymorphic equality predicate =, a constructor refl and an eliminator eqind stating that terms may be substituted by equals. This signature is assumed to be prepended to the signatures we define in the remaining of this section. Therefore, in the following signatures, all functions declared or defined in Fig. 2.8 are available.

Example 4 (Stacks with predicate subtypes). This example comes from the language reference manual of PVS [START_REF] Owre | PVS Language Reference[END_REF]) and illustrates the use of predicate subtyping and the generation of type correctness conditions through a specification of stacks in Fig. 2.9.

Predicate subtyping is used to define the type of nonempty stacks, which allows the function pop to be total. In the definition of the theorem pop2push2, term 𝛼 is a proof that the first argument of the pair is not empty. Such term is the encoding's counterpart of PVS' type correctness conditions. We can thus see
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= [𝑎 ∶ Type] ∶ (El (𝑎 ⇝ 𝑎 ⇝ o)) refl [𝑎 ∶ Type] ∶ (Prf (∀ 𝑎 (𝜆𝑥, (= 𝑎 𝑥 𝑥)))) eqind [𝑎 ∶ Type] ∶ (Prf (∀ (𝑎 ⇝ o) (𝜆𝑝, (∀ 𝑎 𝜆𝑥, (∀ 𝑎 𝜆𝑦, (𝑝 𝑥) ⇒ (= 𝑥 𝑦) ⇒ (𝑝 𝑦)))))) false ∶ (El o) ≔ (∀ o (𝜆𝑥, 𝑥)) not ∶ (El (o ⇝ o)) ≔ 𝜆𝑝, 𝑝 ⇒ false != [𝑎 ∶ Type] ∶ (El (𝑎 ⇝ 𝑎 ⇝ o)) ≔ 𝜆𝑥, 𝜆𝑦, (not (= 𝑎 𝑥 𝑦)) Figure 2.8:
Signature for a polymorphic equality and inequality. refl is the constructor of the equality type and eqind is the eliminator. Falsity and negation are encoded using standard higher order techniques.

that type correctness conditions of PVS have a clear and explicit representation in the encoding, allowing its benefits to be transported to λΠme.

Example 5 (Sorted lists and proof irrelevance). This example is inspired by sorted lists in the Agda manual (The Agda Team 2021, section 'Irrelevance'). Because we have not encoded dependent types, we use the native product of the framework to encode them. The specification is given in Fig. 2.10.

This example illustrates the conciseness of predicate subtyping: the proof obligation (ℎ ≤ 𝑏) is encoded into the type of ℎ rather than passed as a standalone argument in Agda, shortening the type of scons. In Fig. 2.11, we declare two (non-convertible) axioms 𝑝 1 and 𝑝 2 to be proofs of (zero ≤ suc zero) and two lists containing zero and proved to be bounded by (suc zero) using 𝑝 1 for ℓ 1 and 𝑝 2 for ℓ 2 . Without proof irrelevance, equality (= (slist (suc zero)) ℓ 1 ℓ 2 ) is not provable using refl because it requires 𝑝 1 ≃ 𝑝 2 . With proof irrelevance, (refl ℓ 1 ) is an acceptable proof.

Preservation of typing by the encoding

In this section, we prove that the encoding preserves typing: if a PVS-Cert type is inhabited then its translation is inhabited too. This property is sometimes called correctness or soundness, and is a requirement for adequacy as defined by Harper and Licata 2007. Typing preservation increases the trust in the source system because in case the translation does not type check in λΠme, then the

stack ∶ Type empty ∶ (El stack) nat ∶ Type nonempty_stack? ∶ (El (stack ⇝ o)) ≔ 𝜆𝑠, 𝑠 ≠ empty nonempty_stack ∶ (psub nonempty_stack?) push ∶ (El (stack ⇝ nat ⇝ nonempty_stack)) pop ∶ (El (nonempty_stack ⇝ stack)) pop_push ∶ (Prf (∀ 𝜆𝑥 ∶ (El nat), (∀ 𝜆𝑠 ∶ (El stack), (pop (push 𝑥 𝑠)) = 𝑠))) pop2push2 [𝑥 𝑦 ∶ (El nat) , 𝑠 ∶ (El stack)] ∶ (Prf (pop (pair (pop (push 𝑥 (fst (push 𝑦 𝑠)))) 𝛼) = 𝑠)) ≔ … Figure 2
.9: Specification of stacks.

zero ∶ (El nat) suc ∶ (El (nat ⇝ nat)) ≤ ∶ (El (nat ⇝ nat ⇝ o)) slist ∶ Π𝑛 ∶ (El nat), Type snil ∶ (El (nat ⇝ (𝜆𝑛, (slist 𝑛)))) bounded ∶ Π𝑛 ∶ (El nat), Type ≔ 𝜆𝑏, (psub (𝜆𝑛, 𝑛 ≤ 𝑏)) scons ∶ (El (nat ⇝ 𝜆𝑏, (bounded 𝑏) ⇝ 𝜆ℎ, (slist ℎ) ⇝ (slist 𝑏)))
Figure 2.10: Specification of sorted lists. Typing preservation does not guarantee that if a (translated) proof is inhabited in λΠme, then it is also inhabited in PVS-Cert. The translation that maps all types to Π𝑥 ∶ Type, (El (𝑥 ⇝ 𝑥)) trivially preserves typing because all type translations are inhabited by 𝜆𝑥 ∶ Type, 𝜆𝑦 ∶ (El 𝑥), 𝑥. But we can provide a proof for the translation of falsity.

𝑝 1 ∶ (Prf (zero ≤ (suc zero))) 𝑝 2 ∶ (Prf (zero ≤ (suc zero))) ℓ 1 ∶ … ≔ (scons (suc zero) (pair zero 𝑝 1 ) snil) ℓ 2 ∶ … ≔ (scons (suc zero) (pair zero 𝑝 2 ) snil)
Conservativity (also called completeness) prevents such an anomaly by stating that any type in the image of the translation must be inhabited in the source system. The latter pathological translation violates this property.

It is more difficult in general to prove that encodings are conservative than type-preserving. [START_REF] Cousineau | Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo[END_REF] prove that terminating pure type systems are conservative: a type in the image of the translation is inhabited in the source system if it is inhabited by a normal form in the framework. In our case, the termination of system ℛ [Pe] with Eq. (𝛽) can only be conjectured. More recently, Assaf 2015 has proved completeness for pure type systems that may be non terminating. But pure type systems use the congruence of 𝛽 which is included in the congruence used by PVS-Cert. Finally, Felicissimo 2022 favour deep embeddings over shallow ones to prove more easily conservativity. Deep embeddings mark the distinction between administrative 𝛽 redexes from meaningful redexes of the embedded system that are materialised by embedded and annotated abstractions (abs 𝐴 (𝜆𝑥, 𝐵) (𝜆𝑥, 𝑒)) and annotated applications

(app 𝐴 (𝜆𝑥, 𝐵) 𝑒 1 𝑒 2 ). Lemma 2 (Preservation of substitution). If Γ, 𝑥 ∶ 𝑈 , Δ ⊢ P 𝑀 ∶ 𝑇 and Γ ⊢ P 𝑁 ∶ 𝑈, then [{𝑁 /𝑥} 𝑀] Γ,{𝑁/𝑥}Δ = {[𝑁] Γ /𝑥} [𝑀] Γ,𝑥∶𝑈,Δ .
Proof. By structural induction on 𝑀. The proof is straightforward because applications are translated as applications and abstractions as abstractions. For the product case, note that by stratification of PVS-Cert (F. Gilbert 2018, Proposition 5.4.1), the sort of a term is stable by substitution, so if

[Π𝑥 ∶ 𝑀 1 , 𝑀 2 ] = (∀ 𝑀 1 (𝜆𝑥, [𝑀 2 ])) (for instance), then [{𝑁 /𝑥} Π𝑧 ∶ 𝑀 1 , 𝑀 2 ]
is still translated with a ∀ because {𝑁 /𝑥} 𝑀 1 has the same sort as 𝑀 1 (and same for 𝑀 2 ).

Lemma 3 (Preservation of equivalence). Let 𝑀 and 𝑁 be two well typed terms in Γ.

If 𝑀 ≃ Pe 𝑁, then [𝑀] Γ ≃ [Pe] [𝑁] Γ . Proof. We first show that if 𝑀 ≃ Pe 𝑁 in a single step, then [𝑀] ≃ [Pe] [𝑁].
Using the notations of Lemma 1 Page 34, we show that 1. computational steps of ⟶ 𝛽,𝜋 ℓ restricted to typeable terms are preserved, 2. equational steps of ↔ 𝑝𝑖 restricted to well typed terms are preserved.

These two properties are shown by induction on a context 𝛾 such that 𝑀 = 𝛾[ M ] 𝑅 𝛾[ N ] = 𝑁 where 𝑅 is any of the two relations applied at the head of M and N . We will only detail the base cases of inductions, the other cases being straightforward.

Preservation of computation

There are two possible cases: When 𝑀 = ((𝜆𝑥, 𝑡) 𝑢) ⟶ 𝛽 {𝑢/𝑥} 𝑡, we have,

[(𝜆𝑥 ∶ 𝑈 , 𝑡) 𝑢] Γ = ((𝜆𝑥 ∶ 𝑈 Γ , [𝑡] Γ,𝑥∶𝑈 ) [𝑢] Γ ) = {[𝑢] Γ /𝑥} [𝑡] Γ ≃ [Pe] [{𝑢/𝑥} 𝑡] Γ
where the equivalence is given by Lemma 2. When

𝑀 = 𝜋 ℓ (𝑇 1 , 𝑃 1 , pair(𝑇 0 , 𝑃 0 , 𝑡, ℎ)) ⟶𝜋 ℓ 𝑡
we have the following equalities

[𝜋 ℓ (𝑇 1 , 𝑃 1 , (pair(𝑇 0 , 𝑃 0 , 𝑡, ℎ)))] Γ = (fst [𝑇 1 ] Γ [𝑃 1 ] Γ [pair(𝑇 0 , 𝑃 0 , 𝑡, ℎ)] Γ ) = (fst [𝑇 1 ] Γ [𝑃 1 ] Γ (pair [𝑇 0 ] Γ [𝑃 0 ] Γ [𝑡] Γ [ℎ] Γ )) ≃ [Pe] [𝑡] Γ
with the last equivalence provided by Eq. ( 2.3) Page 33.

Preservation of Proof Irrelevance

Assume that 𝑀 = pair(𝑇 , 𝑃 , 𝑡, ℎ) ↔ pi pair(𝑇 , 𝑃 , 𝑡, ℎ ′ ) [pair(𝑇 , 𝑃 , 𝑡, ℎ)] Γ = pair [𝑇] Γ [𝑃] Γ [𝑡] Γ [ℎ] Γ ≃ [Pe] pair [𝑇] Γ [𝑃] Γ [𝑡] Γ [ℎ ′ ] Γ = [pair(𝑇 , 𝑃 , 𝑡, ℎ ′ )] Γ
where the equivalence is given by Eq. ( 2.2) Page 33.

We now prove the main proposition. By Lemma 1 Page 34, we know that there are 𝐻 0 and 𝐻

1 such that 𝑀 ⟶ * 𝛽,𝜋 ℓ 𝐻 0 ↔ * pi 𝐻 1 ⟵ * 𝛽,𝜋 ℓ 𝑁 and that 𝑀 , 𝐻 0 , 𝐻 1 and 𝑁 are typeable. For 𝑅 ∈ {↔ pi , ⟶ 𝛽,𝜋 ℓ }, we have 𝑡 𝑅 * 𝑢 ⇒ [𝑡] ≃ [Pe]
[𝑢] by induction on the number of 𝑅 steps, using the lemma just proved before for the base case. Therefore,

[𝑀] Γ ≃ [Pe] [𝐻 0 ] Γ ≃ [Pe] [𝐻 1 ] Γ ≃ [Pe] [𝑁] Γ , which gives, by transitivity of ≃ [Pe] , [𝑀] Γ ≃ [Pe] [𝑁] Γ . Theorem 1 (Typing preservation). If Γ ⊢ Pe 𝑀 ∶ 𝑇, then Γ ⊢ [Pe] [𝑀] Γ ∶ 𝑇 Γ . For all Γ, if ⊢ [Pe] Γ, then ⊢ [Pe] Γ .
Proof. The two propositions are shown simultaneously by induction on the typing derivation of Γ ⊢ Pe 𝑀 ∶ 𝑇. 

EMPTY ⊢ Pe ∅ We have ∅ = ∅ and ⊢ [Pe] ∅. DECL 𝑣 ∉ Γ Γ ⊢ Pe 𝑇 ∶ 𝑠 ⊢ Pe Γ, 𝑣 ∶ 𝑇 We have Γ, 𝑣 ∶ 𝑇 = Γ , 𝑣 ∶ 𝑇 Γ . By induction hypothesis, we have Γ ⊢ [Pe] [𝑇] Γ ∶ 𝑠 Γ , for 𝑠 ∈ 𝒮 and hence 𝑠 Γ is either Elo, Type or ⋆. If 𝑠 is Kind, then 𝑇 is Type (because Type is the only inhabitant of Kind).
⊢ Pe Γ (𝑠 1 , 𝑠 2 ) ∈ 𝒜 Γ ⊢ Pe 𝑠 1 ∶ 𝑠 2 Sort 𝑠 1 is either Prop or Type. Γ ⊢ Pe 𝑀 ∶ 𝑈 Γ ⊢ Pe 𝑇 ∶ 𝑠 𝑇 ≃ Pe 𝑈 Γ ⊢ Pe 𝑀 ∶ 𝑇 By induction hypothesis, Γ ⊢ [Pe] [𝑀] Γ ∶ 𝑈 Γ .
We now prove that if 𝑇 ≃ Pe 𝑈, then 𝑇 Γ ≃ [Pe] 𝑈 Γ and Γ ⊢ [Pe] 𝑇 ∶ ⋆ which will allow us to conclude using conv in λΠme.

By Lemma 1 Page 34 and because 𝑇 and 𝑈 are typeable, Γ ⊢ Pe 𝑈 ∶ 𝑠. By Lemma 3 Page 45, anddeclaration (2.7) Page 37

[𝑇] Γ ≃ [Pe] [𝑈] Γ . If 𝑠 = Prop, then 𝑇 Γ = Prf [𝑇] Γ ≃ [Pe] Prf [𝑈] Γ = 𝑈 Γ . Moreover we have Γ ⊢ [Pe] 𝑇 Γ ∶ ⋆ because, by induction hypothesis, [𝑇] Γ ∶ Prop = El [Prop] = (El o),
. If 𝑠 = Type, 𝑇 Γ = El [𝑇] Γ ≃ [Pe] El [𝑈] Γ = 𝑈 Γ . By induction hypothesis, [𝑇] Γ ∶ Type Γ = Type. If 𝑠 = Kind, then 𝑇 = 𝑈 = Type (Type is the only inhabitant of Kind). Finally, Type = Type ∶ ⋆. SIGN 𝑓[𝒙 ∶ 𝑻 ] ∶ 𝑈 ∶ 𝑠 ∈ Σ Pe 𝒙 ∶ 𝑻 ⊢ 𝑈 ∶ 𝑠 (Γ ⊢ 𝑡 𝑖 ∶ {𝑡 𝑗 /𝑥 𝑗 } 𝑗<𝑖 𝑇 𝑖 ) 𝑖 Γ ⊢ (𝑓 𝒕) ∶ {𝒕/𝒙} 𝑈 𝑇 𝑖 Γ
which we can write as, thanks to Lemma 2,

Γ ⊢ [Pe] [𝑡 𝑖 ] Γ ∶ {[𝑡 𝑗 ] Γ /𝑥 𝑗 } 𝑗<𝑖 𝑇 𝑖 .
Using rule sign, we are able to conclude Γ ⊢ Definition 15 (λΠmr). A λΠmr type system is a λΠme type system whose set of equations is replaced by a rewrite system. A λΠmr type system is parametrised by a triple ℜ = (ℱ, ℛ, Σ) where ℛ is a rewrite system. It has the same typing rules as λΠme but its congruence ≃ is the joinability relation ↓ 𝛽,ℛ defined by the rule (𝛽) (defined Page 31) and the rules of ℛ.

Definition 16 (Subject reduction). We say that reduction ⟶ has the subject reduction property, or that it preserves typing if whenever Γ ⊢ 𝑡 ∶ 𝐴 and 𝑡 ⟶ 𝑢, then Γ ⊢ 𝑢 ∶ 𝐴.

Definition 17 (Type preserving rewrite rule). Let Σ be a signature and ℛ be a rewrite system. Let 𝔗 be the λΠmr type system parametrised by Σ and ℛ.

A rewrite rule ℓ ⟶ 𝑟 preserves typing in 𝔗 if for any substitution 𝜎, for any context Γ well-formed in 𝔗, for any term 𝐴 well-sorted in 𝔗, if Γ ⊢ 𝔗 𝜎ℓ ∶ 𝐴, then Γ ⊢ 𝔗 𝜎𝑟 ∶ 𝑇.

Definition 18 (Well-formed λΠmr system). Let Σ be a signature and ℛ be a rewrite system whose terms are in 𝒯({⋆, }, dom(Σ)). We say that the λΠmr type system 𝔗 parametrised by Σ and ℛ is well-formed when Σ is well-formed in 𝔗 and the rewrite system ℛ is convergent, type-preserving in 𝔗, and, for any rule ℓ ⟶ 𝑟 in ℛ, ℓ and 𝑟 are neither the sort ⋆ nor products of the form 𝜫𝒙 ∶ 𝑼 , ⋆.

In the latter definition, the last condition on the rewrite system allows to recover some of the benefits of the stratification of λΠmr (see Saillard 2015, Figure 2.1), the most useful one being the following corollary. A similar definition can be found in (Blanqui 2005).

Proposition 3. For any well-formed λΠmr type system, for any typeable term 𝑡, if 𝑡 ≃ then 𝑡 = , if 𝑡 ≃ ⋆, then 𝑡 = ⋆.

Proof. By well-formedness of the type system, there is no rule that rewrite to ⋆ by definition, and because is not typeable, there is no rule that rewrites to .

(pair 𝑡 𝑝 𝑚 ℎ) ⟶ (pair † 𝑡 𝑝 𝑚) (2.22)

(fst 𝑡 0 𝑝 0 (pair † 𝑡 1 𝑝 1 𝑚)) ⟶ 𝑚 (2.23) (Prf (∀ 𝑡 𝑝)) ⟶ Π𝑥 ∶ (El 𝑡), (Prf (𝑝 𝑥)) (2.24) (El (𝑡 ⇝ 𝑢)) ⟶ Π𝑥 ∶ (El𝑡), (El (𝑢 𝑥)) (2.25) (Prf (𝑝 ⇒ 𝑞)) ⟶ Πℎ ∶ (Prf𝑝), (Prf (𝑞 ℎ)) (2.26)
Figure 2.12: Rewrite system ℛ [Pe] obtained from the completion of equation of PVS-Cert.

Given an equational theory, a convergent rewrite system whose joinability is the same as the equational theory can be obtained through completion procedures [START_REF] Baader | Term rewriting and all that[END_REF]. However, completion procedures rely on well-founded orders that cannot be provided in the case of PVS-Cert because of Eq. (2.2) Page 33 which cannot be oriented since each side of the equation has a free variable which is not in the other side.

As noted by [START_REF] Knuth | Simple Word Problems in Universal Algebras[END_REF], the addition of a symbol to the signature can circumvent the issue. Hence, we add a symbol for proof irrelevant pairs, and make it equal to pairs 

pair † [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o)) ; 𝑥 ∶ (El 𝑡)] ∶ (El (psub 𝑡 𝑝)) ∶ ⋆ (2.
= ⟶ 𝛽 ∪ ⟶ ℛ [Pe]
is confluent.

Proof. The rewrite system in Fig. 2.12 is orthogonal, hence confluent [START_REF] Klop | Combinatory Reduction Systems: Introduction and Survey[END_REF].

Proposition 5. Let ≃ ℛ [Pe] be the smallest congruence containing ⟶ 𝛽,ℛ [Pe]
where ℛ [Pe] is defined in Fig. 

(pair 𝑡 𝑝 𝑚 ℎ 0 ) ⟶ ℛ [Pe] (pair † 𝑡 𝑝 𝑚) ⟵ ℛ [Pe] (pair 𝑡 𝑝 𝑚 ℎ 1 ) .
Finally, for Eq. ( 2.3),

(fst 𝑡 0 𝑝 0 (pair 𝑡 1 𝑝 1 𝑚 ℎ)) ⟶ ℛ [Pe] (fst 𝑡 0 𝑝 0 (pair † 𝑡 1 𝑝 1 𝑚)) ⟶ ℛ [Pe] 𝑚. Conjecture 1. Rewrite relation ⟶ 𝛽,ℛ [Pe] is terminating.
One possible solution to prove that conjecture is to extend the proof of termination for the encoding of simple type theory presented by Dowek 2017 to the rewrite relation

⟶ 𝛽,ℛ [Pe] .
Assuming conjecture 1, relation ⟶ 𝛽,ℛ [Pe] is convergent, and therefore a type checker can be provided for λΠ [Pe].

Remark 5. The rewrite relation generated by the rewrite system ℛ [Pe] Fig. 2.12 preserves typing (see [START_REF] Blanqui | Some Axioms for Mathematics[END_REF], Theorem 9).

Bidirectional type checkers

Type systems presented so far use an undirected ternary relation Γ ⊢ 𝑡 ∶ 𝐴. In such relations, just like in Prolog clauses, there is no notion of input or output. Undirected type systems are more succinct to formalise, but they are not suited for functional implementations because it requires to guess types. Guessing can be avoided by specifying carefully in inference rules what should be considered as inputs or outputs: bidirectional type systems [START_REF] Benthem Jutting | Checking Algorithms for Pure Type Systems[END_REF][START_REF] Dunfield | Bidirectional Typing[END_REF][START_REF] Lennon-Bertrand | Complete Bidirectional Typing for the Calculus of Inductive Constructions[END_REF][START_REF] Pierce | Local type inference[END_REF] use two relations, synthesis and checking. As devised by McBride 2018, we distinguish inputs that are assumed well formed from subjects that may not be well formed and from outputs which exist and are well formed if the judgement holds. Synthesis-or type inference-is denoted Γ ⊢ 𝑡 ⇒ 𝐴 where Γ is an input, 𝑡 is the subject and 𝐴 is an output. Checking Γ ⊢ 𝑡 ⇐ 𝐴 asserts that 𝑡 is typeable by 𝐴 where Γ and 𝐴 are inputs and 𝑡 is the subject.

Bidirectional type checkers are not only a matter of implementations and algorithms: they constrain more the shape of typing derivations than undirected type checkers. There is no need to check the well formedness of signatures in the bidirectional type checker (for the same reason as for contexts). Well formedness of contexts and signatures is assumed as preconditions for the type checker to behave well.

Proposition 6 (Correctness of checking and inference). Let 𝔗 be a well-formed λΠmr type system parametrised by a (well-formed) signature Σ and a (convergent and type preserving) rewrite system ℛ. Inference and checking satisfy the following properties Proposition 7 (Completeness of inference). For any well-formed λΠmr type system 𝔗 whose congruence is denoted ≃, If Γ ⊢ 𝔗 𝑡 ∶ 𝐴 then there is 𝐴 ′ such that Γ ⊢ 𝔗 𝑡 ⇒ 𝐴 ′ and 𝐴 ≃ 𝐴 ′ .

{⊢ 𝔗 Γ} Γ ⊢ 𝔗 𝑡 ⇒ 𝐴 {Γ ⊢ 𝔗 𝑡 ∶ 𝐴} {⊢ 𝔗 Γ ∧ Γ ⊢ 𝔗 𝐴 ∶ 𝑠 ∧ 𝑠 ∈ {⋆, }} Γ ⊢ 𝔗 𝑡 ⇐ 𝐴 {Γ ⊢ 𝔗 𝑡 ∶ 𝐴} Γ ⊢ 𝐴 ⇒ 𝑠 𝑠 ∈ {⋆, } Γ ⊢ 𝐴 ⇒ 𝒮 𝑠
Proof. By induction on the undirected typing derivation.

For rule abst, the induction hypothesis gives Γ ⊢ Π𝑥 ∶ 𝐴, 𝐵 ⇒ 𝑅, and inversion of typing rules provides Γ ⊢ 𝐴 ⇐ ⋆. By induction hypothesis we have Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ⇒ 𝐵 ′ where 𝐵 ′ ≃ 𝐵, and hence we conclude Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ⇒ Π𝑥 ∶ 𝐴, 𝐵 ′ where Π𝑥 ∶ 𝐴, 𝐵 ≃ Π𝑥 ∶ 𝐴, 𝐵 ′ .

For rule prod, we have by induction hypothesis that Γ ⊢ 𝐴 ⇒ 𝑅 where 𝑅 ≃ ⋆ and Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ⇒ 𝑆 where 𝑆 ≃ 𝑠 ∈ {⋆, }. By confluence of

(𝛽 ∪ ℛ), if 𝑆 ≃ 𝑠, then 𝑆 ⟶ * 𝛽,ℛ 𝑠 (because 𝑠 ∈ {⋆, } is in normal form), hence Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ⇒ 𝒮 𝑠.
For rule For rule conv, the induction hypothesis directly provide the premises required to apply b-check.

We prove an additional lemma that will be used afterwards, Lemma 4. For any well-formed λΠmr type system, if Γ ⊢ 𝑡 ⇒ 𝐴, then Γ ⊢ 𝐴 ⇒ 𝒮 𝑠.

Proof. If Γ ⊢ 𝑡 ⇒ 𝐴, by correctness, Γ ⊢ 𝑡 ∶ 𝐴. By validity, ∃𝑠 ∈ {⋆, }, Γ ⊢ 𝐴 ∶ 𝑠. By completeness ∃𝑢, Γ ⊢ 𝐴 ⇒ 𝑢 and 𝑢 ≃ 𝑠. Denoting ℛ the rewrite system parametrising the (well-formed) λΠmr type system, by confluence of ℛ and because 𝑠 is a normal form, 𝑢 ⟶ * 𝛽,ℛ 𝑠.

Conservativity of computations

We declared in Section 2.3 Page 42 that an encoding is conservative whenever the inhabitation of an encoded type implies the inhabitation of the original type in the original system. 𝑢. If 𝑡 𝑞 ⟶ fst † 𝑢 and 𝑝 = 3, 𝑞 then 𝑠 ⟶ fst 𝑢. Otherwise, there is 𝑡 ′ such that

𝑠 ⟶ 𝛽,ℛ [Pe] 𝑡 ′ ⟶ = † 𝑢.
Proof. By inspection of the concerned rewrite rules.

We show here that ⟶ † rewrite steps are either part of the computation of a projection, in which case they can be grouped with a ⟶ fst † into a ⟶ fst rewrite rule (included in ℛ + ), or the rewrite step can be postponed. Lemma 6. Let 𝑡 and 𝑢 be two terms of

𝒯(ℱ [Pe] ) such that 𝑡 ⟶ * 𝛽,ℛ [Pe] 𝑢. Then 𝑡 ⟶ * 𝛽,ℛ + ⟶ * † 𝑢.
Proof. First, note that for any positions 𝑝, 𝑞, any terms 𝑠, 𝑡, 𝑢, if

𝑠 𝑝 ⟶ † 𝑡 𝑞 ⟶ 𝛽,ℛ [Pe] 𝑢 and if 𝑡 𝑞 ⟶ fst † 𝑢 and 𝑝 = 3, 𝑞 then 𝑠 ⟶ fst 𝑢. Otherwise, there is 𝑡 ′ such that 𝑠 ⟶ 𝛽,ℛ + 𝑡 ′ ⟶ = † 𝑢.
This can be shown by inspection of the concerned rewrite rules.

We proceed by induction on the number of ⟶ fst † reduction. If there is no ⟶ fst † rewrite step, then all ⟶ † rewrite steps can be postponed (using the former lemma). Now assume 𝑡 ⟶ * 𝛽,ℛ [Pe] 𝑢 with 𝑛 ⟶ fst † rewrite steps, where 𝑛 ≥ 1. The rewrite sequence is of the form 𝑡 ⟶ * 𝛽,ℛ [Pe] 𝑡 0 ⟶ fst † ⟶ * 𝛽,ℛ [Pe] 𝑢 where there is no ⟶ fst † reduction between 𝑡 and 𝑡 0 . There must be a ⟶ † reduction to form the redex in 𝑡 0 because 𝑡 does not contain any pair † symbol since it is in 𝒯(ℱ [Pe] ). Therefore the reduction is of the form

𝑡 ⟶ * 𝛽,ℛ [Pe] 𝑡 1 ⟶ † 𝑡 2 ⟶ * 𝛽,ℛ [Pe] 𝑡 0 ⟶ fst † ⟶ * 𝛽,ℛ [Pe] 𝑢
Since there is no ⟶ fst † reduction between 𝑡 2 and 𝑡 0 , the ⟶ † rewrite step can be postponed:

𝑡 ⟶ * 𝛽,ℛ [Pe] 𝑡 3 3,𝑝 ⟶ † 𝑡 0 𝑝 ⟶ fst † ⟶ * 𝛽,ℛ [Pe] 𝑢.
The rewrite sequence can be transformed into

𝑡 ⟶ * 𝛽,ℛ [Pe] 𝑡 3 ⟶ fst ⟶ * 𝛽,ℛ [Pe] 𝑢
which contains 𝑛-1 ⟶ fst † rewrite steps. We conclude by induction hypothesis. 57

CONSERVATIVITY OF COMPUTATIONS

Note that 𝑡 cannot contain symbol pair † when 𝑡 ∈ 𝒯(ℱ [Pe] ). The second item of the following proposition is the converse of confluence. It will be used to group ⟶ † rewrite steps by pairs operating at the same position because for any position 𝑝,

𝑝 ⟶ † 𝑝 ⟵ † ⊆ ≃ [Pe] .
Lemma 7. For any positions 𝑝 and 𝑞,

• 𝑝 ⟶ † 𝑞 ⟶ † ⊆ 𝑞 ⟶ † 𝑝 ⟶ = † • If 𝑝 ≠ 𝑞, 𝑝 ⟶ † 𝑞 ⟵ † ⊆ 𝑞 ⟵ † 𝑝 ⟶ † Proof.
By case analysis: either the first rewrite step is applied on a subterm erased by the second rewrite step (below the fourth argument of pair), in which case it can be discarded; or the two rewrite steps do not interfere with each other. Assume there are 𝑒 and 𝑒 ′ such that 𝑒 𝑝 ⟶ † 𝑐 𝑞 ⟵ † 𝑒 ′ . First we know that we have redexes at positions 𝑝 and 𝑞 in 𝑒 and 𝑒 ′ respectively,

𝑒| 𝑝 = (pair 𝑒 0 𝑒 1 𝑒 2 𝑒 3 ) and 𝑒 ′ | 𝑞 = (pair 𝑒 ′ 0 𝑒 ′ 1 𝑒 ′ 2 𝑒 ′ 3 ). But we also know that 𝑒| 𝑞 = 𝑐| 𝑞 and 𝑒 ′ | 𝑝 = 𝑐| 𝑝 , so 𝑒| 𝑞 = (pair † 𝑒 ′ 0 𝑒 ′ 1 𝑒 ′ 2 ) and 𝑒 ′ | 𝑝 = (pair † 𝑒 0 𝑒 1 𝑒 2 ). Thus we can build 𝑐 ′ = {pair 𝑒 ′ 0 𝑒 ′ 1 𝑒 ′ 2 𝑒 ′ 3 /𝑞} 𝑒 = {pair 𝑒 0 𝑒 1 𝑒 2 𝑒 3 /𝑝} 𝑒 ′ such that 𝑒 𝑞 ⟵ † 𝑐 ′ 𝑝 ⟶ † 𝑒 ′ .
We show next that if 𝑡 and 𝑢 do not contain any pair † and they both reduce to a same term by discarding their proofs, then they are convertible with respect to proof irrelevance.

Lemma 8. If 𝑡, 𝑢 ∈ 𝒯(ℱ [Pe] ) and 𝑡 ⟶ * † 𝑢 ⟵ * † 𝑠, then 𝑡 ≃ [Pe] 𝑠.
Proof. Using Lemma 7, we can commute rewrite steps of a sequence 𝑥 ⟶ * † 𝑦 in order to obtain a sequence of minimal length (removing reflexive steps) where each rewrite step is applied on a position 𝑝 such that 𝑢| 𝑝 = pair † …. Because 𝑡 and 𝑢 are in 𝒯(Σ [Pe] ), there is no symbol pair † in 𝑡 or 𝑠, and thus there is exactly one rewrite step for each pair † symbol in 𝑢 (can be shown by induction on the number of pair † symbols where the induction hypothesis is applied on subterms of 𝑡). Therefore, the two sequences have the same length, and if there is a step 𝑝 ⟶ † in one, then there is the same step in the other.

Last, with Lemma 7, the valley In implementations Regarding Dedukti, the existence of pair † threatens the conservativity of any development. Indeed, for any predicate 𝑃, the function '𝜆𝑒, (snd 𝑇 𝑃 (pair † 𝑒))' maps any term 𝑒 (of type (El 𝑇)) to a proof of (𝑃 𝑒) regardless of the provability of (𝑃 𝑒) in PVS-Cert.

𝑡 ⟶ = † 𝑢 ⟵ * † 𝑠 can be rearranged into 𝑡 ( 𝑝 ⟶ 𝑝 ⟵ ) * 𝑠 and because 𝑝 ⟶ 𝑝 ⟵ ⊆ ≃ [Pe] , we obtain 𝑡 ≃ [Pe] 𝑠. Proposition 8. Let 𝑀 , 𝑁 ∈ 𝒯(ℱ [Pe] ) such that 𝑀 ≃ 𝛽,ℛ [Pe] 𝑁. Then 𝑀 ≃ [Pe] 𝑁. Proof. Because ⟶ 𝛽,ℛ [Pe] is confluent (Proposition 4 Page 51), there is 𝛼 such that 𝑀 ⟶ * 𝛽,ℛ [Pe] 𝛼 ⟵ * 𝛽,
But if we remember that the symbol pair † has been created only to implement a proof irrelevant conversion, Dedukti developers may verify that their development does not contain the symbol pair † : each time an inhabitant of a subtype is needed, the symbol pair must be used. If proof irrelevance is needed, the conversion will take care of erasing proofs.

To help developers enforce such an invariant, Dedukti relies on the notion of scope (in the usual sense for programming languages) and modules (see F. [START_REF] Thiré | Proof Irrelevance and Predicate Subtyping in Dedukti[END_REF]. We say that a symbol is protected2 if it is used to implement proof irrelevance. A module ℳ is a pair made of a list of imported signatures and a signature, where a signature is simply a list of declarations. See the work of [START_REF] Chrzaszcz | Modules in Coq Are and Will Be Correct[END_REF][START_REF] Courant | A Module Calculus for Pure Type Systems[END_REF][START_REF] Norell | Towards a practical programming language based on dependent type theory[END_REF] for studies on modules in pure type systems.

Let ℳ be a module whose signature Σ † contains protected symbols declarations, and let Σ be Σ † without protected symbol declarations. Because Σ must declare rewrite rules that reduce to terms containing pair † , there is no restriction on the usage of pair † in Σ. When working on a module ℳ ′ that imports ℳ, only Σ can be used to build terms (types, definitions and rewrite rules). Nonetheless, this restriction can be softened in the case of rewrite rules left-hand sides. If ℳ ′ declares a rewrite rule ℓ ⟶ 𝑟 with pair in ℓ, then a critical pair is formed: taking the case of PVS-Cert, for any context 𝛾,

𝛾 [ℓ[pair † 𝑥 𝑦 𝑧]𝜎] ⟵ 𝛾[ℓ𝜎] ⟶ 𝛾[𝑟𝜎]
. This critical pair can be avoided by using pair † instead of pair in ℓ. Therefore, protected symbols are allowed in left-hand sides, regardless of the module, since in rewrite rules, only terms of the right-hand side may be created. François Thiré 2020 has used such mechanisms to encode proof irrelevance for cumulative type systems. The mechanism described here is similar to private types studied by Blanqui, Hardin and Weis 2007 that have been implemented in OCaml (Leroy et al. 2022, Section 10.3).

Conclusion

In Section 2.1, we defined the family of type systems modulo. This family contains λΠme, the extension of Edinburgh's logical framework with equations, simple type theory as well as simple type theory with explicit predicate subtyping and proof irrelevance which has been named PVS-Cert.

Section 2.2 presents an λΠme signature suitable to embed terms from PVS-Cert. The embedding function transforming PVS-Cert typing judgements into λΠme typing judgements is also given, and we give examples of theories expressed in PVS-Cert, but encoded in λΠme. These examples feature predicate subtyping and proof irrelevance.

In Section 2.3, the former encoding is proved to preserve typing: whenever a judgement holds in PVS-Cert, its embedding holds in λΠme. The converse, called completeness or conservativity is left open.

The penultimate Section 2.4 revolves around decidability of type checking. The family of type systems λΠmr is introduced. An λΠmr type system is like an λΠme type system whose equational theory is defined by a convergent rewrite system, in order to obtain a decidable equational theory. The equational theory for PVS-Cert is translated into a confluent rewrite system whose termination is left open. In particular, symbols have to be added to λΠmr to handle proof irrelevance. To ensure decidability of type checking, bidirectional type checking is introduced.

The last section anticipates the proof of conservativity of the encoding by showing that the rewrite system used to encode PVS-Cert in λΠmr is conservative: whenever two embedded terms are equivalent in λΠmr, then both terms are equivalent in PVS-Cert. The section closes on some implementation-related directions to avoid soundness issues raised by the symbols added to embed proof irrelevance.

Chapter 3

Coercions in computational logical frameworks

The previous chapter laid the foundations of a language with predicate subtyping along with its encoding in Edinburgh's Logical Framework modulo equations (λΠme). Type checking in that encoding is decidable because subtyping is explicit and types are equivalent up to a decidable convertibility relation implemented by a convergent rewrite system (convergence, and hence decidability are rather a conjecture).

Predicate subtyping is generally used implicitly: the type checker guesses where subtyping occurs, and there is no syntactic construction to mark the type of terms. Our next objective is to synthesise these subtyping information. That synthesis allows first to cross check proofs of systems that use implicit predicate subtyping (such as PVS); and second to write much more concise expressions in the framework. That information can either be generated with ad-hoc type checking algorithms (F. [START_REF] Gilbert | Extending higher-order logic with predicate subtyping : application to PVS[END_REF][START_REF] Sozeau | Subset Coercions in Coq[END_REF]; or with generic coercion insertion algorithms. Unlike F. [START_REF] Gilbert | Extending higher-order logic with predicate subtyping : application to PVS[END_REF][START_REF] Luo | Coercive subtyping: Theory and implementation[END_REF][START_REF] Tannen | Inheritance as Implicit Coercion[END_REF], we work with typing judgements rather than typing derivations. In these works, translation functions are defined on typing derivations (with subtyping rules) and return terms with coercions. For instance, for PVS-Cert defined in Fig. 2 where the translation function insert the coercion 𝜋 ℓ to transform the implicit subtyping rule

Γ ⊢ 𝑡 ∶ psub(𝐴, 𝑃) Γ ⊢ 𝑡 ∶ 𝐴
into a sign rule (defined in Fig. 2.1 Page 29). Our goal is to define a translation function which has the same output but that is defined on typing judgements rather than typing derivations, so that we would have Γ ⊢ 𝑡 ∶ 𝐴 = 𝜋 ℓ (𝐴, 𝑃 , … ).

In the rest of this document, because we focus on one type system that we extend, we will not define each new feature as a new system, but will add these features on a system named 𝔖. For now, 𝔖 is λΠmr, its set of terms is 𝒯(𝒳, {⋆, }, ℱ) for some countable 𝒳, some finite ℱ, 𝒳, ℱ and {⋆, } pairwise disjoints and its typing relation is defined by the inference rules of Fig. 2.13 Page 54 parameterised by a rewrite system ℛ and a signature Σ.

The translation function -relies on a term refiner that will be presented formally. That refiner is able to transform a term by the means of coercions. It is possible to compute coercions with a rewrite system: some examples as well as some limitations will be provided. We will need to encode yet unknown terms into our framework. For this we introduce holes as lightweight existential variables [START_REF] Muñoz | A Calculus of Substitutions for Incomplete-Proof Representation in Type Theory[END_REF].

Term refiner

Refiners-also called elaborators-are type checkers which accept a larger class of terms than the type checkers exposed so far. As a ternary relation, they are not designed to be correct with respect to type checkers: there may be terms 𝑡 such that Γ ⊢ 𝑡 ⇒ 𝐴 holds with a refiner but not without. Refiners return the input term being type checked as an output of the type checking (and inference) relations which are now quaternary relations: synthesis is written Γ ⊢ 𝑡 ⇝ 𝑢 ∶ 𝐴 and reads 'term 𝑡 refines to 𝑢 of type 𝐴 (in context Γ)' while checking is written Γ ⊢ 𝑡 ∶ 𝐴 ⇝ 𝑢 and reads 'term 𝑡 refines to 𝑢 when checked against type 𝐴 (in context Γ)'. In both judgements, terms (and contexts) on the left of the arrow '⇝' are either subjects or inputs of the judgement and terms that are on its right are outputs.

The output term serves two purposes. The first is to avoid performing twice term transformations during type checking by passing refined term around judgements. It also serves as a justification, indicating how the refiner transformed the term to accept it. For any well-formed λΠmr type system, a cast relation is valid if it satisfies the following property

Definitions

{⊢ Γ ∧ Γ ⊢ 𝐴 ⇒ 𝒮 𝑠 ∧ Γ ⊢ 𝑡 ⇐ 𝐴 ∧ Γ ⊢ 𝐵 ⇒ 𝒮 𝑠} 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡 ′ {Γ ⊢ 𝑡 ′ ⇐ 𝐵}
Definition 20 (Coercion, coercion system). We call coercion system any set of inference rules or axioms that can be used to derive a cast 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢. Axioms of such coercion systems can be called coercions.

Lemma 9 (Correctness of r-cast). Rule r-cast (defined in Fig. 3.1) is a valid cast relation.

Proof. If the rule applies, then 𝑡 ′ = 𝑡 and 𝐴 ≃ 𝛽,ℛ 𝐵. We can conclude using b-check.

The following lemma provides inversion rules for the refiner.

Lemma 10 (Inversion of typing rules Fig. 3.1).

• 

If Γ ⊢ 𝑥 ⇝ 𝑡 ∶ 𝑅 then 𝑥 ∶ 𝑅 ∈ Γ and 𝑡 = 𝑟. Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝑠 𝑠 ∈ {⋆, } Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝒮 𝑠 r-check Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝐴 𝑡 ′ ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡 ″ Γ ⊢ 𝑡 ∶ 𝐵 ⇝ 𝑡 ″ r-cast 𝐴 ≃ 𝛽,ℛ 𝐵 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡
• If Γ ⊢ 𝜆𝑥 ∶ 𝑇 1 , 𝑡 2 ⇝ 𝑡 ′ ∶ 𝑅 then 𝑅 = Π𝑥 ∶ 𝑇 ′ 1 , 𝑅 2 for some 𝑇 ′ 1 and 𝑅 2 with (Γ ⊢ 𝑇 1 ∶ ⋆ ⇝ 𝑇 ′ 1 ), (Γ, 𝑥 ∶ 𝑇 ′ 1 ⊢ 𝑡 2 ⇝ 𝑡 ′ 2 ∶ 𝑅 2 ) and 𝑡 ′ = 𝜆𝑥 ∶ 𝑇 ′ 1 , 𝑡 ′ 2 .
• If Γ ⊢ (𝑡 1 𝑡 2 ) ⇝ 𝑡 ′ ∶ 𝑅, then there are some types 𝑇 11 , 𝑅 1 such that

Γ ⊢ 𝑡 1 ⇝ 𝑡 ′ 1 ∶ Π𝑥 ∶ 𝑇 11 , 𝑅 1 , Γ ⊢ 𝑡 2 ∶ 𝑇 11 ⇝ 𝑡 ′ 2 , and 𝑅 = {𝑡 ′ 2 /𝑥} 𝑅 1 , 𝑡 ′ = (𝑡 ′ 1 𝑡 ′ 2 ).
• If Γ ⊢ Π𝑥 ∶ 𝑇 1 , 𝑇 2 ⇝ 𝑡 ′ ∶ 𝑅 then there are sorts 𝑠 1 , 𝑠 2 and 𝑠 3 and types

𝑇 ′ 1 , 𝑇 ′ 2 with 𝑅 = 𝑠 1 , 𝑡 ′ = Π𝑥 ∶ 𝑇 ′ 1 , 𝑇 ′ 2 , (Γ ⊢ 𝑇 1 ∶ ⋆ ⇝ 𝑇 ′ 1 ), (Γ, 𝑥 ∶ 𝑇 ′ 1 ⊢ 𝑇 2 ⇒ 𝒮 𝑠 2 ) and (𝑠 1 , 𝑠 2 , 𝑠 3 ) ∈ 𝒫 𝜆Π . • If Γ ⊢ (𝑓 𝒕) ⇝ 𝑡 ′ ∶ 𝑅 where 𝑓 ∈ Σ, 𝑅 = {𝒕 ′ /𝒙} 𝐵 for some 𝐵 with 𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ, for all 𝑖, Γ ⊢ 𝑡 𝑖 ∶ {𝑡 ′ 𝑗 /𝑥 𝑗 } 𝑗<𝑖 𝐴 𝑖 ⇝ 𝑡 ′ 𝑖 and 𝑡 ′ = 𝒕 ′ . • If Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ Π 𝑅 then 𝑅 = Π𝑥 ∶ 𝑇 1 , 𝑇 2 for some 𝑇 1 , 𝑇 2 with Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝑇 and 𝑇 ⟶ * ℛ Π𝑥 ∶ 𝑇 1 , 𝑇 2 . • If Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝒮 𝑅 then 𝑅 ∈ {⋆, } with Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝑠 ′ and 𝑠 ′ ⟶ * ℛ 𝑅. • If Γ ⊢ 𝑡 ∶ 𝑅 ⇝ 𝑡 ′ then 𝑡 ″ ∶ 𝑇 <∶ 𝑅 ⇝ 𝑡 ′ for some 𝑡 ″ , 𝑇 with Γ ⊢ 𝑡 ⇝ 𝑡 ″ ∶ 𝑇.
Proof. By inspection of the typing rules Fig. 3.1.

Definition 21. We say that 𝐵 is reachable from 𝐴 if there are terms 𝑡 and 𝑢 such that 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢, and we write 𝐴 <∶ 𝐵. We write 𝑡 ∶ 𝐴 <∶ 𝐵 to state that there a term 𝑢 such that 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢. 

Potential additional checking rules

𝐵 ⟶ * 𝛽,ℛ Π𝑥 ∶ 𝐵 1 , 𝐵 2 Γ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴 ′ 𝐴 ′ ≃ 𝛽,ℛ 𝐵 1 Γ, 𝑥 ∶ 𝐴 ′ ⊢ 𝑡 ∶ 𝐵 2 ⇝ 𝑡 ′ Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ∶ 𝐵 ⇝ 𝜆𝑥 ∶ 𝐴 ′ , 𝑡 ′ .
It pushes typing information up to the leaves of terms, traversing abstractions. This allows deriving more precise coercion problems, but it is not required for
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completeness with respect to the bidirectional type checker. Given an algorithm to generate coercions, it extends the set of admissible terms, as shown in Example 6.

Example 6 (Checking abstractions with a dedicated rule). Let Γ be the context containing the declarations Γ = nat ∶ Type, even? ∶ (El (nat ⇝ o)) , 𝑒 ∶ (El (psub nat even?)) .

Checking the function 𝜆𝑥 ∶ (El nat), 𝑒 against (El nat) → (El nat) yields the following derivation tree (using rules of Fig. 3.1),

⊢ 𝜆𝑥, 𝑒 ⇝ 𝜆𝑥, 𝑒 ∶ (El nat → (El (psub evenp))) 𝜆𝑥, 𝑒 ∶ (El nat → (El (psub evenp))) <∶ (El nat) → (El nat) ⇝ … ⊢ 𝜆𝑥, 𝑒 ∶ (El nat) → (El nat) ⇝ … .
The second premise shows that the coercion system must be able to traverse products. However, if rule r-check-abst is added to the type checker, the coercion problem becomes 𝑒 ∶ (El (psub evenp)) <∶ (El nat) ⇝ (fst 𝑒) and does not need the former specific coercion rule.

Such an additional checking rule pushes typing information inside the abstraction and transfers the task of inspecting terms from the coercion algorithm to the type checker. However, such a rule is generally used when the inference is not defined on abstractions, so that there may be only one rule to derive Γ ⊢ 𝜆𝑥 ∶ 𝐸, 𝑒 ⇐ 𝐴. In that case, only terms in 𝛽-normal form may be type checked, (in objects, inference is required only for heads of applications, so we miss only terms that have an abstraction as the head of an application, that is, a 𝛽-redex). Because we intend to refine terms that are not in 𝛽-normal form, we keep the inference of abstractions.

Refiner specification

We give formal specifications for the three judgements Γ ⊢ 𝑡 ⇝ 𝑡 ∶ 𝑡, Γ ⊢ 𝑡 ∶ 𝑡 ⇝ 𝑡 and 𝑡 ∶ 𝑡 <∶ 𝑡 ⇝ 𝑡.

The soundness of the refiner is established with respect to the typing relations defined by the rules of Fig. 2.13 Page 54 parametrised by the same signature and rewrite system.

Proposition 9 (Validity of r-cast). The cast relation implemented by the rule r-cast defined in Fig. 3.1 is valid.

Proof. For any well-formed λΠmr type system parametrised by a rewrite system ℛ, if the rule r-cast applies, then 𝑡 ′ = 𝑡 and 𝐴 ≃ 𝛽,ℛ 𝐵. We can conclude using rule b-check.

Proposition 10 (Correctness of refiner). For any well-formed λΠmr type system, any valid cast relation, the inference and checking relations defined in Fig. 3.1 validate the following property

{⊢ Γ} Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝐴 {Γ ⊢ 𝐴 ⇒ 𝒮 𝑠 ∧ Γ ⊢ 𝑡 ′ ⇐ 𝐴} {⊢ Γ ∧ Γ ⊢ 𝐴 ⇒ 𝒮 𝑠} Γ ⊢ 𝑡 ∶ 𝐴 ⇝ 𝑡 ′ {Γ ⊢ 𝑡 ′ ⇐ 𝐴}
Proof. By mutual induction on refiner typing derivations. For rules r-var, r-sort, r-abst, r-prod, r-appl, it is enough to replace judgements of the form Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝐴 by Γ ⊢ 𝑡 ′ ⇒ 𝐴 and Γ ⊢ 𝑡 ∶ 𝐴 ⇝ 𝑡 ′ by Γ ⊢ 𝑡 ′ ⇐ 𝐴 to obtain correct derivations in the bidirectional system. For rule r-sign, the same operation holds, noting that because Σ is well-formed, preconditions hold for the sequence of premises that type (𝑡 𝑖 ) 𝑖 . The procedure allows to derive the first precondition using Lemma 4 Page 55 and the second because if Γ ⊢ 𝑡 ⇒ 𝐴, then Γ ⊢ 𝑡 ⇐ 𝐴.

For the rule r-check, induction hypothesis ensures that the preconditions required by the cast relation hold, and correctness of the cast relation (Lemma 9) gives Γ ⊢ 𝑡 ″ ⇐ 𝐴.

Proposition 11 (Partial completeness of refiner). For any well-formed λΠmr type system,

• if Γ ⊢ 𝑡 ⇒ 𝐴, then Γ ⊢ 𝑡 ⇝ 𝑡 ∶ 𝐴; • for any type 𝐴 well-sorted in Γ, if Γ ⊢ 𝑡 ⇐ 𝐴, then Γ ⊢ 𝑡 ∶ 𝐴 ⇝ 𝑡.
Proof. The two propositions are proved simultaneously by induction on the typing derivation. The proof is straightforward, bidirectional premises can be replaced by refiner-style premises. The only exception is the rule b-check: Γ ⊢ 𝑡 ⇒ 𝐴 can be replaced by Γ ⊢ 𝑡 ⇝ 𝑡 ∶ 𝐴 by induction hypothesis. Since 𝐴 ≃ 𝐵 (where ≃ is the congruence of the λΠmr type system), we can deduce 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡, and finally we can conclude with r-check.

Properties of coercion systems

Coercions are often used to specify semantics of type systems with implicit subtyping [START_REF] Luo | Coercive subtyping: Theory and implementation[END_REF][START_REF] Tannen | Inheritance as Implicit Coercion[END_REF]. Coercion operators transform implicit subtyping inference rules into application rules. In that context, coercion insertion functions work on typing derivations of the source language (with implicit subtyping). Such a function is coherent if derivations with the same conclusion are translated to behaviourally equivalent terms (i.e. convertible terms).

Example 7. In the context of programming languages, it is common to coerce from numbers to booleans. Assume we have several coercions from integers to booleans IntToBool ∶ Int → Bool, from integers to float (less common) IntToFloat ∶ Int → Float and from floats to booleans FloatToBool ∶ Float → Bool. There are at least two derivations with conclusion 1 ∶ Bool whose translations are (IntToBool 1) (where 1 is coerced from Int to Bool) and (FloatToBool (IntToFloat 1)) (where 1 is coerced from Int to Float to Bool).

Definition 22 (Coherence). Let ≃ be a congruence. A cast relation is coherent with respect to ≃ if and only if all elements of the set {𝑢 | 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢} are convertible with respect to ≃.

Note that in our case, because coercion insertion (which can be seen as interpretation) is performed together with the elaboration of the derivation, non-coherence would result from the non determinism of the elaboration of the derivation.

In our case, because we do not start from the typing derivation, but from the conclusion of that derivation Γ ⊢ 2 ∶ Bool, our algorithmic coercion system must be able to synthesise a sequence of coercions.

Definition 23 (Transitivity). A cast relation is transitive whenever the following rule is admissible

𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢 𝑠 ∶ 𝑆 <∶ 𝑈 ⇝ 𝑢 ′ .
The output of the conclusion for transitivity is 𝑢 ′ and not 𝑢: there is no reason for 𝑢 and 𝑢 ′ to be convertible a priori. Example 9. Considering the coercion system composed of the two rules

𝑒 ∶ Float <∶ Bool ⇝ (FloatToBool 𝑒) 𝑒 ∶ Int <∶ Float ⇝ (IntToFloat 𝑒) a transitivity rule is required to derive 𝑒 ∶ Int <∶ Bool ⇝ 𝑒 ′ .
Definition 24 (Stability). A cast relations is stable by substitution (or just stable) if for any term 𝑢, the following rule is admissible 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡 ′ {𝑢/𝑥} 𝑡 ∶ {𝑢/𝑥} 𝐴 <∶ {𝑢/𝑥} 𝐵 ⇝ {𝑢/𝑥} 𝑡 ′ .

Standard coercions for functions

Since products and abstractions are native objects of the language, we can define higher order coercion rules to handle products. It is common to have covariance on the codomain: a function type Π𝑥 ∶ 𝐴, 𝐵 is a subtype of Π𝑥 ∶ 𝐴, 𝐶 if 𝐵 is a subtype of 𝐶. For instance, with coercions defined in Example 9, the function type Bool → Int is a subtype of the function type Bool → Float. We may also have contravariance on the domain which states that 𝐵 → 𝐴 is a subtype of 𝐶 → 𝐴 if 𝐶 is a subtype of 𝐴 (the order of subtyping is reversed on domains) (Pierce 2002, pp. 184-185). For instance, the function type Float → Bool is a subtype of Int → Bool.

The following rule may be used to implement covariance (on the codomain) and contravariance (on the domain),

𝑥 ∶ 𝐵 1 <∶ 𝐴 1 ⇝ 𝑒 𝑥 (𝑓 𝑒 𝑥 ) ∶ 𝐴 2 <∶ 𝐵 2 ⇝ 𝑒 𝑓 ∶ Π𝑥 ∶ 𝐴 1 , 𝐴 2 <∶ Π𝑥 ∶ 𝐵 1 , 𝐵 2 ⇝ 𝜆𝑥 ∶ 𝐵 1 , 𝑒
or if only covariance on the codomain is desired, we may use the following one:

𝐴 1 ≃ 𝛽,ℛ 𝐵 1 (𝑓 𝑥) ∶ 𝐴 2 <∶ 𝐵 2 ⇝ 𝑒 𝑓 𝑓 ∶ Π𝑥 ∶ 𝐴 1 , 𝐴 2 <∶ Π𝑥 ∶ 𝐵 1 , 𝐵 2 ⇝ 𝜆𝑥 ∶ 𝐵 1 , 𝑒 𝑓 .
These two rules 𝜂-expand their arguments. To avoid such modification of the term, and because λΠmr does not have 𝜂-equivalence, we can replace the latter rule by a restricted form

𝐴 1 ≃ 𝛽,ℛ 𝐵 1 𝑒 ⟶ * ℛ,𝛽 𝜆𝑥 ∶ 𝐸 0 , 𝑒 0 𝑒 0 ∶ 𝐴 2 <∶ 𝐵 2 ⇝ 𝑒 1 𝑒 ∶ Π𝑥 ∶ 𝐴 1 , 𝐴 2 <∶ Π𝑥 ∶ 𝐵 1 , 𝐵 2 ⇝ 𝜆𝑥 ∶ 𝐵 1 , 𝑒 1 .
Note that as soon as the precondition Γ ⊢ 𝑒 ⇐ Π𝑥 ∶ 𝐴 1 , 𝐴 2 is validated, whenever 𝑒 ⟶ * ℛ 𝜆𝑥 ∶ 𝐸 0 , 𝑒 0 , we have 𝐸 0 ≃ 𝛽,ℛ 𝐴 1 by inversion of rules b-check and b-abst (Page 54).

Coercing to functions

When inferring the type of an application (𝑓 𝑡), a product type must be found for the head of the application 𝑓. In r-prod Page 64, products are only searched among reducts. Were the type checker able to coerce the head to some functions, more terms would be accepted:

Example 10. Let Σ be Σ [Pe] (defined Fig. 2.4 Page 39) extended with the declarations

nat ∶ Type 0 ∶ (El nat) cont? ∶ (El ((nat ⇝ nat) ⇝ o)) h ∶ (Prf (cont? (𝜆𝑥 ∶ (El nat), 𝑥))) .
The application of (pair (𝜆𝑥 ∶ (El nat), 𝑥) h) to 0 does not type check in Σ because the head of the application is a pair, hence its type is of the form (El (psub …)) which is not convertible with a product.

On the other hand, the application of (fst (pair (𝜆𝑥 ∶ (El nat), 𝑥) ℎ)) to 0 type checks (and reduces to ((𝜆𝑥, 𝑥) 0)).

The following rule may be used to coerce heads of applications to functions

Γ ⊢ 𝑓 ⇝ 𝑓 ′ ∶ 𝐴 Γ ⊢ Π𝑥 ∶ 𝐴 1 , 𝐴 2 ⇒ 𝒮 𝑠 𝑓 ′ ∶ 𝐴 <∶ Π𝑥 ∶ 𝐴 1 , 𝐴 2 ⇝ 𝑓 ″ Γ ⊢ 𝑓 ⇝ 𝑓 ″ ∶ Π Π𝑥 ∶ 𝐴 1 , 𝐴 2
but it requires to guess types 𝐴 1 and 𝐴 2 . Although asking for a terminating procedure enumerating all well-formed reachable types is certainly too much, we may be able to define a terminating relation that computes some subtypes of a given type.

Definition 25 (Subtype projection). For any well-formed λΠmr type system, a relation ≺ on types is a valid subtype projection if

{⊢ Γ ∧ Γ ⊢ 𝐴 ⇒ 𝒮 𝑠} 𝐴 ≺ 𝐵 {Γ ⊢ 𝐵 ⇒ 𝒮 𝑠 ∧ 𝐴 <∶ 𝐵} .
Example 11. In the encoding of PVS-Cert Fig. 2.4 Page 39, (nat ⇝ nat) is a well-formed type code that can be extracted from (psub (nat ⇝ nat) cont?) and that can be mapped to a product through El. The subtyping relation thus ought to contain (where ≺ * is the transitive and reflexive closure of ≺)

(El (psub (nat ⇝ nat) cont?)) ≺ * (El nat) → (El nat) .
We extend (and replace) rule r-prod-c with

r-prod-c Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝐴 𝐴 ≺ * Π𝑥 ∶ 𝐴 1 , 𝐴 2 𝑡 ′ ∶ 𝐴 <∶ Π𝑥 ∶ 𝐴 1 , 𝐴 2 ⇝ 𝑡 ″ Γ ⊢ 𝑡 ⇝ 𝑡 ″ ∶ Π Π𝑥 ∶ 𝐴 1 , 𝐴 2
Definition 26. System 𝔖 is extended with rule r-prod-c parametrised by a subtype projection ≺.

Lemma 11 (Correctness of r-prod-c with respect to inference). Rule r-prod-c is correct with respect to Proposition 10 Page 67.

Proof. Induction hypothesis and post-conditions of the first and second premises provide the required preconditions for the third premise to hold. Correctness of the coercion relation allows to conclude. Remark 6. Rule r-prod-c could also be formulated

Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝐴 𝐴 ≺ * Π𝑥 ∶ 𝐴 1 , 𝐴 2 Γ ⊢ 𝑡 ′ ∶ Π𝑥 ∶ 𝐴 1 , 𝐴 2 ⇝ 𝑡 ″ Γ ⊢ 𝑡 ⇝ 𝑡 ″ ∶ Π Π𝑥 ∶ 𝐴 1 , 𝐴 2
but this formulation infers twice the type of 𝑡: once in the first premise, and the second as the premise of Γ ⊢ 𝑡 ∶ Π𝑥 ∶ 𝐴 1 , 𝐴 2 ⇝ 𝑡 ′ .

Computing coercions

For now, the only way to introduce 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢 is through rule r-cast page 64. We have also seen other potential introduction rules for functions. This section investigates how derivations for the cast relations can be built using a rewrite system. The goal here is to provide an implementation or a decidable procedure to derive coercion judgements given a finite set of coercions.

Initial observations

The set of admissible cast judgements denoted 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢 is defined by sets of inference rules whose conclusion (or premises) are schemes of cast judgements 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢, where terms of the form 𝑡 denote schemes, that is, terms that may contain metavariables. Given a set of inference rules, procedures to derive admissible relation instances can be implemented using λProlog-like inference systems [START_REF] Miller | Teyjus[END_REF][START_REF] Tassi | lic: LGPL-2.1-only[END_REF]. Such algorithms are based on unification: to build a derivation tree for 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢, terms 𝑡, 𝐴 and 𝐵 (the inputs of the problem) are unified with the conclusions of the available rules, which may contain metavariables (like the rules described in Section 3.1.4 Page 69).

However, full-fledged unification is not needed in the case of coercions. Inputs of coercion judgements1 are 𝜆 terms and do not contain metavariables. When judging whether 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢 holds, 𝑡, 𝐴 and 𝐵 are 𝜆 terms. It suffices to look for coercion rules whose conclusion 𝑝 ∶ 𝑋 <∶ 𝑌 ⇝ 𝑦 is such that 𝑝 filters 𝑡, 𝑋 filters 𝐴 and 𝑌 filters 𝐵 (we do not care about 𝑢 because it is an output of the judgement, so it will always be a metavariable). If such a rule is found, noting 𝜎 the substitution such that 𝜎𝑝 = 𝑡, 𝜎𝑋 = 𝐴 and 𝜎𝑌 = 𝐵, for each premise 𝑝 ′ ∶ 𝑋 ′ <∶ 𝑌 ′ ⇝ 𝑦 ′ of the coercion rule, we are left with new coercion judgements 𝜎𝑝 ′ ∶ 𝜎𝑋 ′ <∶ 𝜎𝑌 ′ ⇝ 𝜎𝑦 ′ .

Since only filtering is needed, it may be possible to implement the inference algorithm using a rewrite system defining an operator 𝜅: for each coercion rule of the form 

(𝑝 𝑖 ∶ 𝑋 𝑖 <∶ 𝑌 𝑖 ⇝ 𝑒 𝑖 ) 𝑖 𝑝 ∶ 𝑋 <∶ 𝑌 ⇝ 𝑒[𝑒 𝑖 ]

Computing coercions with a rewrite system

Coercing a term 𝑡 from a type 𝐴 to another type 𝐵 amounts to triggering some computation on term 𝑡 depending on 𝐴 and 𝐵 (and sometimes 𝑡 itself). Since our system 𝔖 already handles computation through rewriting, we detail how to compute coercions with a rewrite system. Computational content for coercions is added on a symbol 𝜅 which extends the syntax of 𝔖. In this context, 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢 holds whenever (𝜅 𝐴 𝐵 𝑡) reduces to term 𝑢. Definition 27. Let ℱ be a set of symbols, and 𝜅 a symbol not in ℱ. We call ℱ-coercion rewrite system any rewrite system whose terms are in 𝒯(ℱ ∪ {𝜅}). We may omit the set of symbols and call it a coercion rewrite system when the set of symbols can be unambiguously inferred.

Definition 28. Consider system 𝔖 parametrised by a signature Σ, let ℱ be the domain of Σ and 𝜅 ∉ ℱ. We extend the system by adding the rule r-coerce

(𝜅 𝐴 𝐵 𝑡) ⟶ + 𝛽,𝒞,ℛ 𝑡 ′ 𝜅 ∉ 𝑡 ′ 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡 ′
parametrised by a ℱ-coercion system 𝒞 to the rules of Fig. 3.1 Page 64.

Adding coercions to the system amounts to declare rewrite rules (𝜅 𝑥 𝑦 𝑧) ⟶ 𝑟 on system 𝒞. This rewrite system is used in r-coerce to transform the input term 𝑡. The second premise of the former rule ensures that the symbol 𝜅 is erased from 𝑡 ′ , meaning that all coercions have been found. It is equivalent to saying that 𝑡 ′ ∈ 𝒯({⋆, }, ℱ).

Remark 7. The relation in the first premise of r-coerce is not reflexive, because if no rewrite step is performed, there is no way to erase the symbol 𝜅. The symmetric closure ⟶ * 𝛽,𝒞,ℛ could be used instead: if no rewrite step occur, the second premise fails.

COMPUTING COERCIONS

Example 12 (El coercion). Using rule r-coerce and signature Σ [Pe] , the type family El can be used as a coercion when the rewrite rule (𝜅 Type ⋆ 𝑥) ⟶ El𝑥 is in 𝒞. This coercion allows terms to not use the function El at all, allowing for instance the term (𝜆nat ∶ Type, 𝜆𝑛 ∶ nat, 𝑛) to be typeable.

We only show parts of the typing derivation that are relevant regarding the coercion

r-var nat ∶ Type ⊢ nat ⇝ nat ∶ Type (𝜅 Type ⋆ nat) ⟶ (El nat) r-coerce nat ∶ Type <∶ ⋆ ⇝ (El nat) r-check nat ∶ Type ⊢ nat ∶ ⋆ ⇝ (El nat)
where the conclusion is used to prove the judgement nat ∶ Type ⊢ 𝜆𝑛 ∶ nat, 𝑛 ⇝ 𝜆𝑛 ∶ (El nat), 𝑛 ∶ Π𝑛 ∶ (El nat), (El nat) using rule r-abst.

Remark 8. To keep type checking decidable, we need ⟶ 𝛽,ℛ,𝒞 to be convergent, at least using a fixed strategy [START_REF] Pol | Just-in-time: On Strategy Annotations[END_REF].

Proposition 12. Let 𝔗 be a well-formed λΠmr type system parametrised by a (well-formed) signature Σ and a (convergent and type preserving) rewrite system ℛ. Consider also 𝔖 parametrised by Σ, ℛ and the empty coercion system, whose judgements are noted '⋅ ⊢ ∅ ⋅ ∶ ⋅'.

• If Γ ⊢ ∅ 𝑡 ⇝ 𝑡 ′ ∶ 𝐴, then Γ ⊢ 𝔗 𝑡 ⇒ 𝐴;

• for any type 𝐴 such that there is 𝑠 ∈ {⋆, }, Γ ⊢ ∅ 𝐴 ∶ 𝒮 𝑠, if Γ ⊢ ∅ 𝑡 ∶ 𝐴 ⇝ 𝑡 ′ then Γ ⊢ 𝔗 𝑡 ⇐ 𝐴.

Proof. By mutual induction over the typing derivation. All cases are handled by induction hypothesis except r-coerce. If the input coercion system is empty, rule r-coerce cannot be used and only rule r-cast can be used. Hence 𝑡 and 𝑡 ′ are syntactically equal, and by Proposition 10 Page 67, Γ ⊢ 𝑡 ′ ⇒ 𝐴.

In order to maintain the soundness of the relation 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡 ′ , the rewrite system 𝒞 must enforce some invariants.

Definition 29. Let 𝔗 be a well-formed λΠmr type system parametrised by a signature Σ and a rewrite system ℛ. Let 𝔎 be the (well-formed) λΠmr type system parametrised by the signature Σ ∪ {𝜅[𝐴 ∶ ⋆, 𝐵 ∶ ⋆, 𝑡 ∶ 𝐴] ∶ 𝐵 ∶ ⋆} and ℛ. A coercion rewrite system 𝒞 is type preserving if for any rewrite rule ℓ ⟶ 𝑟 ∈ 𝒞, for any context Γ well-formed in 𝔗, for any type 𝐴 such that Γ ⊢ 𝔗 𝐴 ⇐ 𝒮 𝑠, for any substitution 𝜎 if Γ ⊢ 𝔎 𝜎ℓ ⇐ 𝜎𝐴, then Γ ⊢ 𝔎 𝜎𝑟 ⇐ 𝜎𝐴. preserves typing. For any substitution 𝜎, the left-hand side is well-typed if 𝜎𝑥 is typeable by Type. In that case, the right-hand side (El (𝜎𝑥)) is well-typed and has the same type as the left-hand side, this type is ⋆.

In the former definition, the extended declaration is well-formed although the type of symbol 𝜅 cannot be typed into λΠmr because it is polymorphic (its type would be Π𝐴 ∶ ⋆, Π𝐵 ∶ ⋆, 𝐴 → 𝐵). Using the signature, terms with 𝜅 can be typed when it is fully applied.

Lemma 12. Let 𝔗 be a well-formed λΠmr type system parametrised by a signature Σ and a rewrite system ℛ. Let 𝔎 be the λΠmr type system parametrised by the signature Σ ∪ {𝜅[𝐴 ∶ ⋆, 𝐵 ∶ ⋆, 𝑥 ∶ 𝐴] ∶ 𝐵 ∶ ⋆} and ℛ. Then for any context Γ well-formed in 𝔗, for any terms 𝑡 and 𝐴 of 𝒯({⋆, }, dom(Σ)),

• if Γ ⊢ 𝔎 𝑡 ⇒ 𝐴 then Γ ⊢ 𝔗 𝑡 ⇒ 𝐴;
• for any sort 𝑠 such that Γ ⊢ 𝔗 𝐴 ⇒ 𝒮 𝑠, if Γ ⊢ 𝔎 𝑡 ⇐ 𝐴, then Γ ⊢ 𝔗 𝑡 ⇐ 𝐴. For rule b-sign, because Σ is in 𝒯({⋆, }, ℱ), 𝜅 cannot occur in any term of any judgement of Σ (in particular in types of symbol declarations), hence induction hypothesis is enough.

For rule b-prod-c, by induction hypothesis, Γ ⊢ 𝔗 𝑡 ⇒ 𝐴 holds, and Π𝑥 ∶ 𝐴 1 , 𝐴 2 does not contain 𝜅 because ℛ has terms in 𝒯(ℱ). The case of b-sort-c is similar.

For rule b-check, by induction hypothesis, Γ ⊢ 𝔗 𝑡 ⇒ 𝐴. By hypothesis, 𝐵 does not contain 𝜅. By confluence of ℛ, there is 𝐶 such that 𝐴 ⟶ * ℛ 𝐶 and 𝐵 ⟶ * ℛ 𝐶. Because ℛ has its terms in 𝒯(ℱ), 𝐴 and 𝐵 are both in 𝒯(ℱ), we have 𝐶 ∈ 𝒯(ℱ).

Proposition 13 (Validity of r-coerce). The cast relation implemented by the rule r-coerce page 73 is a valid.

COMPUTING COERCIONS

Proof. Let Λ = Σ ∪ {𝜅[𝐴 ∶ ⋆, 𝐵 ∶ ⋆, 𝑥 ∶ 𝐴] ∶ 𝐵 ∶ ⋆}, (⊢ Λ ∶) the type checking relation using signature Λ. By induction on the length of the reduction, we prove that the following property holds

{Γ ⊢ 𝑡 ⇐ 𝐴 ∧ Γ ⊢ 𝐵 ⇒ 𝒮 𝑠} (𝜅 𝐴 𝐵 𝑡) ⟶ * 𝛽,ℛ,𝒞 𝑢 {Γ ⊢ Λ 𝑢 ⇐ 𝐵}
The base case is proved by induction on a context 𝐶 such that 𝐶[𝜎ℓ] ⟶ 𝐶 [𝜎𝑟] where ℓ ⟶ 𝑟 ∈ 𝒞. When the context 𝐶 is empty, either (𝜅 𝑎 𝑏 𝑡) ⟶ 𝛽,ℛ (𝜅 𝑎 ′ 𝑏 ′ 𝑡 ′ ) where we can conclude because {𝛽} ∪ ℛ has the subject reduction property. Or (𝜅 𝑎 𝑏 𝑡) ⟶ 𝒞 𝑢 and we can conclude by type preservation of 𝒞. By structural induction on context 𝐶, we can conclude for the base case.

We can conclude the proof by induction on the length of the reduction, using the base case to prove heredity as well.

Using Lemma 12, if (𝜅 𝐴 𝐵 𝑡) ⟶ 𝛽,ℛ,𝒞 𝑢 and 𝜅 ∉ 𝑢, then Γ ⊢ 𝑢 ⇐ 𝐵.

As a corollary, we have that a refiner with a type preserving coercion system is still correct by Proposition 10 Page 67.

Using a rewrite system also provides stability by substitution for free because rewriting is stable by substitution by definition.

Corollary 1. Any coercion system implemented by rule r-coerce, r-cast and a coercion rewrite system 𝒞 is stable by substitution (Definition 24 Page 69).

Proof. By inversion of inference rules that allow to derive 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢.

Standard coercions

The coercions defined in Section 3.1.3 Page 67 can be implemented by a higherorder rewrite system. Covariance and contravariance may be implemented by

(𝜅 (Π𝑥 ∶ 𝐴 1 , 𝐴 2 ) (Π𝑥 ∶ 𝐵 1 , 𝐵 2 ) 𝑓) ⟶ 𝜆𝑥 ∶ 𝐵 1 , (𝜅 𝐴 2 𝐵 2 (𝑓 (𝜅 𝐵 1 𝐴 1 𝑥))) .
We can avoid 𝜂-expansion if we filter only abstractions

(𝜅 (Π𝑥 ∶ 𝐴 1 , 𝐴 2 ) (Π𝑥 ∶ 𝐵 1 , 𝐵 2 ) (𝜆𝑥, 𝑋[𝑥])) ⟶ 𝜆𝑥 ∶ 𝐵 1 , (𝜅 𝐴 2 𝐵 2 𝑋[𝜅 𝐵 1 𝐴 1 𝑥]) .
Further details on the shape of patterns and higher order matching can be found in the works of Hondet and Blanqui 2020; [START_REF] Klop | Combinatory Reduction Systems: Introduction and Survey[END_REF][START_REF] Miller | A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification[END_REF]. In the latter rule, we consider that the bound variable 𝑥 in the right-hand side captures the variable that was bound in 𝑋. If we are only interested in covariance in the codomain, we can use the non-linear rule

(𝜅 (Π𝑥 ∶ 𝐴, 𝐵) (Π𝑥 ∶ 𝐴, 𝐶) (𝜆𝑥, 𝑋[𝑥])) ⟶ 𝜆𝑥 ∶ 𝐴, (𝜅 𝐵 𝐶 𝑋[𝑥]) . (𝒞-Π)
With Eq. (𝒞-Π) and a rule (𝜅 Int Float 𝑁) ⟶ (IntToFloat 𝑁), the coercion of 𝜆𝑏, 𝑛 from Bool → Int to Bool → Float is computed by

(𝜅 (Bool → Int) (Bool → Float) (𝜆𝑏, 𝑛)) ⟶ 𝒞 (𝜆𝑏 ∶ Bool, (𝜅 Int Float)) ⟶ 𝒞 (𝜆𝑏 ∶ Bool, (IntToFloat 𝑛)).
In presence of recursive coercions, such as (𝜅 (El (psub 𝑇 𝑃)) 𝑈 𝑋) ⟶ (𝜅 𝑇 𝑈 (fst 𝑋))

an explicit elimination rule may be required to be able to obtain terms without 𝜅. Such elimination rule would be non recursive variants like (𝜅 (El (psub 𝑇 𝑃)) 𝑇 𝑋) ⟶ (fst 𝑋) .

However, this approach requires each recursive coercion rule to have a nonrecursive (and non-linear) counterpart. We can reduce the number of non-linear rules using a generic eliminator that encodes the identity coercion, (𝜅 𝑇 𝑇 𝑋) ⟶ 𝑋.

(𝒞-Id)

Note that this rule subsumes rule r-cast page 64: by confluence of ℛ, if 𝐴 ≃ ℛ 𝐵, there is 𝐶 such that 𝐴 ⟶ * ℛ 𝐶 and 𝐵 ⟶ * ℛ 𝐶, hence (𝜅 𝐴 𝐵 𝑡) ⟶ * ℛ (𝜅 𝐶 𝐶 𝑡) ⟶ 𝒞 𝑡.

Non-linearity threatens convergence

Termination

Abel and Coquand 2020 showed that Eq. (𝒞-Id) may harm termination in presence of polymorphism (à la System F by [START_REF] Girard | Une extension de l'interpretation de Godel a l'analyse, et son application a l'elimination des coupures dans l'analyse et la theorie des types[END_REF] or with a proof irrelevant propositional equality and impredicativity because of non-linear filtering on types [START_REF] Harper | Parametricity and Variants of Girard's J Operator[END_REF]. The example of non-termination given in [START_REF] Abel | Failure of Normalization in Impredicative Type Theory with Proof-Irrelevant Propositional Equality[END_REF] has been encoded into PVS-Cert in Appendix B Page 169.

In our case, we may take advantage of the encoding, and prove at least that terms in the image of the encoding are weakly normalising. In that case, we may use normalisation strategies [START_REF] Pol | Just-in-time: On Strategy Annotations[END_REF] to reach normal forms.

COMPUTING COERCIONS

Π𝑥 ∶ (El 𝑇), (El 𝑈) ⟶ (El (𝑇 ⇝ 𝑈 ))

(3.1)

(𝜋 -1 (El 𝑋)) ⟶ 𝑋 (3.2) (𝜅 (𝐴 ⇝ 𝐵) (𝐴 ⇝ 𝐶) (𝜆𝑥, 𝐸[𝑥])) ⟶ 𝜆𝑥, (𝜅 ′ 𝐵 𝐶 𝐸[𝑥]) (3.3) (𝜅 𝐴 𝐴 𝑋) ⟶ 𝑋.
(3.4) Figure 3.2: Rewrite system ℛ inv to retrieve type codes from types.

Confluence

Non linearity breaks confluence over untyped terms [START_REF] Klop | Combinatory reduction systems[END_REF]. It may be useful to restrict non-linearity to type codes rather than the framework's types to be able to use layering methods provided by Gaspard Férey 2021; Gaspard Férey and J.-P. Jouannaud 2021. For this, we may type 𝜅 by 𝜅 ∶ Π𝑎 ∶ Type, Π𝑏 ∶ Type, (El (𝑎 ⇝ 𝑏)) and we replace rule r-coerce with (𝜅 𝑎 𝑏 𝑡) ⟶ * 𝑢 𝜅 ∉ 𝑢 𝑡 ∶ (El 𝑎) <∶ (El 𝑏) ⇝ 𝑢 .

However, there is no reason that inference returns only terms of the form (El 𝑋), in particular when inferring the type of an abstraction: the normal form of the type of an encoded function is a product of the framework. It is possible to invert rewrite rules: Fig. 3.2 Page 78 inverts products in the image of El to retrieve a type code. Other rules define coercion elimination and coercion of functions, filtering on type codes rather than types. For this, function 𝜅 is given type Π𝑎 ∶ Type, Π𝑏 ∶ Type, (El (𝑎 ⇝ 𝑏)) to operate on type codes 𝑎 and 𝑏. Rule r-coerce page 73 can be finally be replaced with

(𝜅 (𝜋 -1 𝑇) (𝜋 -1 𝑈) 𝑒) ⟶ * inv 𝑒 ′ 𝜅 ∉ 𝑒 ′ 𝑒 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑒 ′
In this work, we stick to the basic implementation with non-linear rewriting, although it may be either non terminating or non confluent. We believe that there is a large, non trivial class of terms on which the system is normalising and confluent.

Examples of coercions

Luo, Soloviev and Xue 2013 provide a nomenclature of some different coercions. We analyse how these coercions are translated in our framework.

Plain coercions are simply rewrite rules whose source and targets are ground (without variables) terms (𝜅 Child Human 𝑡) ⟶ (c 𝑡) .

Note that we cannot 𝜂-reduce the rewrite rule because 𝜅 has to be fully applied to be typeable.

Dependent coercions are rewrite rules where the target type depends on the coercion. For instance, given a theory of lists and vectors, a function that transforms lists to vectors may be defined in the main rewrite system ℛ,

(lv nil) ⟶ vnil (lv (cons 𝑥 ℓ)) ⟶ (vcons (len ℓ) 𝑥 (lv ℓ))
where nil is the empty list, cons the consing operator on lists, vnil and vcons are their vector counterparts and (len ℓ) computes the length of ℓ. We can define the coercion

(𝜅 List (Vec 𝑛) ℓ) ⟶ (lv ℓ)
where the target type is (Vec (len ℓ)).

Coercions that have a dependent source type are (somewhat confusingly) named 'parametrised' coercions. If we define a transformation from vectors to lists, (vl vnil) ⟶ nil (vl (vcons 𝑛 𝑥 𝑣)) ⟶ (cons (vl 𝑣))

the coercion from vectors to list can be defined with

(𝜅 (Vec 𝑛) List 𝑣) ⟶ (vl 𝑛 𝑣)
where the source type of 𝑣, (Vec 𝑛), depends on a parameter 𝑛.

Coercion rules, or parametric coercions, are coercions that may depend on other coercions. For instance, the coercion from (List 𝑎) to (List 𝑏) may be defined as

(𝜅 (List 𝑎) (List 𝑏) ℓ) ⟶ (map (𝜆𝑥 ∶ El𝑎, (𝜅 (El 𝑎) (El 𝑏) 𝑥)) ℓ)
Table 3.1: Feature comparison of different coercion systems. Each column stand for a feature, and for each system, there is a bullet if the feature is supported by the system. Abbreviation 'dep. tgt.' stands for 'dependent target', 'dep. src.' for 'dependent source' for 'dependent source', 'param.' for 'parametrised' and 'nonunif.' for 'non uniform'. plain dep. tgt. dep. src. param. nonunif.

Coq • • • Matita • • • • Plastic • • • • 𝔖 • • • • •
where we use the function El defined in Fig. Coen and Tassi 2009 introduce nonuniform coercions, that is, coercions that may depend on the value being coerced. They give for example the promotion from support to semi-groups: one may promote Z to (Z, +) but (List Z) to ((List Z) , append). Our coercion system allows such coercions because it is able to match on the coerced term. Assuming the definitions of the type of semigroups SemiGroup, a constructor for semigroups semig,

(𝜅 Type SemiGroup Z) ⟶ (semig Z +) (𝜅 Type SemiGroup (List 𝑋)) ⟶ (semig (List 𝑋) (append 𝑋))
Table 3.1 compares the features of the different coercion systems that have been reviewed.

We can already define the eliminator for predicate subtyping fst as a coercion

((𝜅 (El (psub 𝑎 𝑝)) (El 𝑏) 𝑒)) ⟶ (𝜅 (El𝑎) (El 𝑏) (fst 𝑎 𝑝 𝑒))
to remove spurious pair constructions automatically. Furthermore, an object of type (psub (𝑎 ⇝ 𝑏) 𝑝) can be coerced to a function of type (El(𝑎 ⇝ 𝑏)). This feature appears to be a direct benefit of the logical framework, even though coercions only coerce from encoded objects to encoded objects, the shallowness of the encoding reflects the coercions in the encoding into the logical framework: objects coerced to encoded functions are also coerced to functions of the framework.

However, the converse rule adding pair constructions cannot be encoded yet: we have no way to populate the proof obligation of pairs. In Matita and Russell by Sozeau 2006, existential variables are used for such a task.

Related work on coercions

Coercions are used extensively in programming languages such as C (see ISO 2018, section 6.3), often to avoid having a numerical operator for each number type. For instance, the OCaml language does not use coercions and consequently has an addition for floats (+.) and one for integers (+) while the C language has one + for floats, integers, unsigned integers &c.

Coercions for programming languages are generally built into the language, one cannot add a new coercion for a new datatype, say, in C , to coerce between structures. Some interactive proof assistants provide such facilities and coercions may be declared like functions or theorems (using special syntax). We review here some of these interactive proof assistants and how coercions are defined, but more importantly, what kind of coercions they can define.

In Coq [START_REF] Saıbi | Outils Génériques de Modélisation et de Démonstration pour la Formalisation des Mathématiques en Théorie des Types. Application à la Théorie des Catégories[END_REF], coercions are declared between 'classes' that behave like approximations of types: functions and sorts are grouped into their own metaclass and type families are classes. Sources of coercions must be classes, they cannot be variables that may be instantiated to coercible classes upon application. Coercions are compiled into an 'inheritance' graph. Graph structures allow efficient lookup for coercions: finding a coercion between two classes amounts to find a path in the graph. However, there may be issues if two paths have the same source and target: this could probably lead to two different, unequal coercions. To ensure coherence-the property that two coercions are behaviourally equivalent if they have the same source and same target-the order of declaration of coercions is kept significant.

The coercion system of Matita (Asperti, Ricciotti, Coen and Tassi 2018) is somewhat similar to the previous one, but it uses existential variables and unification. As a consequence, the framework handles naturally coercion from non functional to functional objects. Furthermore, coercions may create proof obligations that are represented with existential variables. Like in Coq, the types of the sources and targets of coercions is a type approximation, it does 3.3. HOLES not contain variables, existential variables nor higher order terms. Like in [START_REF] Saıbi | Outils Génériques de Modélisation et de Démonstration pour la Formalisation des Mathématiques en Théorie des Types. Application à la Théorie des Catégories[END_REF], the order of declaration of coercions is significant, the most recent path prevails.

The logical framework Plastic by Luo, Soloviev and Xue 2013 defines coercion using inference rules in which the premises specify coercions to be found so that the coercion of the conclusion may be derived. Therefore Plastic allows parametric2 coercions such as

Γ ⊢ 𝐴 < 𝑐 𝐵 ∶ Type Γ ⊢ List(𝐴) < map(𝑐) List(𝐵) ∶ Type
where coercion 𝑐 called a 'prerequisite' coerces objects of type 𝐴 to type 𝐵, and map(𝑐) is the derived coercion from List(𝐴) to List(𝐵). The coherence condition is stricter than the former ones: the identity coercion must not be derivable using the coercion rules and if two coercions have the same source and target, then they must be equal. The order of declaration is not taken into account.

Sozeau 2006 designs a system to derive parametric coercions for predicate subtyping. Subtyping is contravariant on the domain and covariant on the codomain of functional objects. Contravariance on the domain requires the coercion insertion algorithm to 𝜂 expand its argument which in turn requires the congruence of the target system to contain 𝜂 equivalence. Functional objects wrapped in predicate subtypes can be coerced to functions using a map 𝜇 • which performs approximately the same computations as our relation ≺. For instance, 𝜇 • ({𝑓 ∶ 𝐴 → 𝐵 | 𝑓(𝑥) = 𝑓(𝑦) ⇒ 𝑥 = 𝑦}) = 𝐴 → 𝐵. The coercion system notably provides coercions for dependent sum types. Unicity of coercions, which is necessary to prove that the system is conservative, is ensured by the equational theory of the system which furthermore includes surjective pairing for dependent pairs and for elements of predicate subtypes.

Holes

Holes (also called placeholders by [START_REF] Asperti | A Bi-Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions[END_REF] stand for yet unknown terms. In proof assistants, they allow to reduce the size of terms of the concrete syntax: terms may contain holes that are refined into existential variables [START_REF] Muñoz | A Calculus of Substitutions for Incomplete-Proof Representation in Type Theory[END_REF]) which are instantiated using typing constraints and unification. We used such a facility in Chapter 2 Page 27 to write (fst 𝑥) instead of (fst 𝑎 𝑝 𝑥). In proof assistants such as Coq (The Coq Development Team 2022), (fst 𝑥) is first transformed into (fst ♦ ♦ 𝑥) then into (fst ?𝑎 ?𝑝 𝑥) by the type checker, where ?𝑎 and ?𝑝 are existential variables. Then a unification algorithm tries to instantiate these existential variables to make the whole term well typed.

In our case, we are only interested in marking places where proofs have to be provided. These proofs cannot be automatically generated by unification algorithms. Therefore, we do not consider full-fledged existential variables, but only holes, that is, places in terms where a proof has to be provided. Holes are not typed but can be easily replaced by existential variables by traversal of the term.

Definition 30. We extend system 𝔖 with holes. Given a set of symbols ℱ, (typed in a signature Σ), the terms of 𝔖 are 𝒯(ℱ ∪ {♦, 𝜅}).

Holes are not typeable. However, because we intend to extend the coercion judgement to allow the creation of holes, we may use the rule b-hole Γ ⊢ ♦ ⇐ 𝐴 in order to state the correctness of 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢.

Definition 31 (Type preserving coercion system). Let 𝔄 be a well-formed λΠmr type system parametrised by a signature Σ and a rewrite system ℛ. Let ℌ be the λΠmr type system parametrised by symbols dom(Σ) ∪ {𝜅, ♦}, signature Σ ∪ {𝜅[𝐴 ∶ ⋆, 𝐵 ∶ ⋆, 𝑡 ∶ 𝐴] ∶ 𝐵 ∶ ⋆}, rewrite system ℛ and extended with the rule b-hole. A coercion rewrite rule (𝜅 𝐴 𝐵 𝑒) ⟶ 𝑟 preserves typing if for any context Γ, substitution 𝜎, if Γ ⊢ 𝔄 𝜎𝑒 ⇐ 𝜎𝐴, then Γ ⊢ ℌ 𝜎𝑟 ⇐ 𝜎𝐵.

Note that as long as holes are only generated by coercions, there is no need to refine holes. Rule b-hole is added to the type checker to keep the correctness of the refiner, that is, whenever Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝑇, then Γ ⊢ 𝑡 ′ ⇐ 𝑇.

Remark 9 (From holes to proof obligations). Given a term with holes, it is easy to transform these holes into proper existential variables. For that, assume existential variables are elements of a countable set 𝒴 noted ?𝑥, and define proof problems as set of judgements of the form Γ ⊢ ?𝑥 ∶ 𝑇 which states that a term of type 𝑇 in context Γ has to be found. We define type checking judgements Γ ⊢ 𝑡 ⇝ 𝑡 ∶ 𝑡 ⊧ 𝒫 and Γ ⊢ 𝑡 ∶ 𝑡 ⇝ 𝑡 ⊧ 𝒫 which produce proof problems. This relation is defined by the rules given in Fig. 3.1 Page 64 where for each rule, each premise output a proof problem 𝒫 𝑖 and the conclusion outputs the proof problem ⋃ 𝑖 𝒫 𝑖 (or the empty set if the rule does not have any premise). For instance, the abstraction r-abst is transformed into

Γ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴 ′ ⊧ 𝒫 1 Γ, 𝑥 ∶ 𝐴 ′ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝐵 ⊧ 𝒫 2 Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ⇝ 𝜆𝑥 ∶ 𝐴 ′ , 𝑡 ′ ∶ Π𝑥 ∶ 𝐴 ′ , 𝐵 ⊧ 𝒫 1 ∪ 𝒫 2 .
To these rules, we add the following one

?𝑥 ∈ 𝒴 Γ ⊢ ♦ ∶ 𝑇 ⇝ ?𝑥 ⊧ {Γ ⊢ ?𝑥 ∶ 𝑇 }
which transforms holes into existential variables.

Implementation

The refiner described in this section has been implemented in Lambdapi (Deducteam 2022b, version 2.1.0). Furthermore, Lambdapi features existential variables, which are used to implement holes. Ferreira and Pientka 2014 use existential variables to provide implicit arguments. Lambdapi contains additional type checking rules, for instance to infer properly a type when an existential variable appears at the head of an application.

Refinement slows down type checking substantially. We conjecture this slowdown is caused by the necessity to destructure and then restructure not only types, but also terms during type checking. Indeed, sparing term reconstruction speeds up the process. For instance, upon the inference of an abstraction 𝜆𝑥 ∶ 𝑇 , 𝑡, we made the refiner return, along with the refined body 𝑡, whether the term 𝑡 was modified, and the same for the domain 𝑇. If the two terms are not modified, then we may as well return the term given as input rather than build a new abstraction with body 𝑡 (from the recursive call to the refiner) and domain 𝑇. In particular, the cost of construction of abstraction may vary depending on how binders are implemented. In Lambdapi, they are represented using the Bindlib library by Lepigre 2022. It provides a safe automated programmable interface and features higher order abstract syntax, which provides efficient substitution at the cost of an expensive binder construction (in comparison with de Bruijn 1972 indices).

Conclusion

We have defined a new family of type systems 𝔖 based on λΠmr (Definition 15 Page 50). It features term refinement-also called elaboration-which allows to turn incomplete terms into well-typed terms, hence separating a user-level syntax of incomplete terms and a kernel-level syntax. Refinement is parameterised by a cast relation and a subtype projection. The cast relation can be implemented by a rewrite system. Terms of an 𝔖 type system can contain holes which stand for yet unknown proofs. An 𝔖 type system is finally parameterised by • a rewrite system ℛ to implement a decidable congruence;

• a signature Σ to declare and type symbols;

• a coercion rewrite system 𝒞 that implements a cast relation;

• a subtype projection ≺ to be able to refine the head of application; its type checking rules are summarised in Appendix A Page 167.

Chapter 4

Implicit predicate subtyping

We have seen in Chapter 2 Page 27 that predicate subtyping can be encoded into the logical framework λΠmr. For this, we designed a translation function from the source system (PVS-Cert) to its encoding in λΠmr, and we showed that this translation preserves typing: whenever an object inhabits a type in the source system, then its translation inhabits the translation of its type in the framework.

In Chapter 3 Page 61, we provided a term refiner that can type check incomplete terms inserting coercions to make them well typed. Coercions implement some form of implicit subtyping: if the domain of the coercion is the subtype, and its range the supertype, then any term can be typed by one of its supertypes by the insertion of a coercion.

We now show how a system with implicit predicate subtyping like PVS can be encoded into our system 𝔖 (which is λΠmr with a refiner and existential variables). We begin by a description of the system to be encoded, then we provide an encoding along with a translation function. Finally we prove that the encoding preserves typeability. The third premise of the rule subtype-intro corresponds to PVS' type correctness conditions. We are not interested in their derivation because our translation axiomatises them by placing holes where proofs for type correctness conditions are required.

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ psub(𝐴, 𝑃) ∶ Type Γ ⊢ (𝑃 𝑡) Γ ⊢ 𝑡 ∶ psub(𝐴, 𝑃)

PVS-CORE: A SYSTEM WITH IMPLICIT PREDICATE SUBTYPING

However, because coercions pair and fst are inserted into encoded terms in order to type check them, we need to take care that inserting these coercions do not break computation: whenever two terms are convertible in PVS-Core, their translation and refinement should also be convertible in λΠ [Pe].

Example 14. Let 𝑒 = ((𝜆𝑥 ∶ (El 𝐴), (𝑓 𝑥)) 𝑢) be a term in the image of the translation defined in Fig. 4.2. Note that 𝑒 ⟶ 𝛽 (𝑓 𝑢). Let Γ = 𝐴 ∶ Type, 𝑃 ∶ (El (Type ⇝ o)) , 𝑓 ∶ (El ((psub 𝐴 𝑃) ⇝ 𝐴)) , 𝑢 ∶ (El (psub 𝐴 𝑃)).

In order to have a well-typed term 𝑒, it is refined

Γ ⊢ 𝑒 ⇝ ((𝜆𝑥, (𝑓 (pair 𝑥 ♦))) (fst 𝑢)) ∶ …
and the refinement 𝛽-reduces to (𝑓 (pair (fst 𝑢) ♦)).

The refinement of the reduct of 𝑒, namely (𝑓 𝑢) can itself be refined into (𝑓 𝑢). Therefore, to keep convertibility through translation and refinement, we need (𝑓 𝑢) ≃ (𝑓 (pair (fst 𝑢) ♦)).

The latter example shows that to preserve convertibility, the encoded congruence must contain some sort of surjective pairing, namely (pair (fst 𝑒) ♦) ≃ 𝑒. Therefore, we add this identity to the set of equations of the encoding of PVS-Cert in λΠme:

(Prf (∀ 𝑡 𝑝)) = Π𝑥 ∶ (El 𝑡), (Prf (𝑝 𝑥)) (Prf (𝑝 ⇒ 𝑞)) = Πℎ ∶ (Prf 𝑝), (Prf 𝑞) (El (𝑡 ⇝ 𝑢)) = Π𝑥 ∶ (El 𝑡), (El (𝑢 𝑥)) (pair 𝑡 𝑝 𝑒 ℎ) = (pair 𝑡 𝑝 𝑒 ℎ ′ ) (fst 𝑡 0 𝑝 0 (pair 𝑡 1 𝑝 1 𝑒 ℎ)) = 𝑒 (pair 𝑡 0 𝑝 0 (fst 𝑡 0 𝑝 0 𝑒) ℎ) = 𝑒.
We can complete this set of equations into the rewrite system ℛ [sPe] .

Definition 33 (ℛ [sPe]

). We define the rewrite system ℛ [sPe] as the union of the system ℛ [Pe] (defined in Fig. 2.12 Page 51) and the rule

(pair † 𝑇 𝑃 (fst 𝑈 𝑃 𝑀)) ⟶ 𝑀 . (SP † )
Equation (SP † ) threatens the confluence of the system because it is non linear. Non linearity can sometimes be avoided when only well-typed terms are considered, as in Eq. ( 2.3) Page 33, but not in the case of surjective pairing. Assume that Γ ⊢ 𝜎ℓ ⇐ 𝐴 where ℓ is the left-hand side of Eq. (SP † ) where the second occurrence of 𝑃 (when reading from left to right) is replaced with 𝑄 so that ℓ is algebraic, Γ is a well-formed context, 𝐴 is a well-formed type in Γ, and 𝜎 is a substitution. Then by inversion, 𝐴 is of the form 𝐴 = (El (psub (𝜎𝐴) (𝜎𝑃 ))). By inversion, 𝜎𝑋 is of type (El (psub (𝜎𝐵) (𝜎𝑄))), and (El (𝜎𝑈 )) ≃ (El (𝜎𝑇 )). The right-hand side 𝜎𝑋 has the same type as the left-hand side only if 𝑃 ≃ 𝑄.

Non linear rule are famous to break desirable properties in untyped 𝜆 calculus such as confluence [START_REF] Klop | Combinatory reduction systems[END_REF]. Fortunately, [START_REF] Pottinger | The Church-Rosser theorem for the typed λ-calculus with surjective pairing[END_REF] showed that simply typed 𝜆-calculus with surjective pairing remains confluent using the weak normalisation of the calculus. Curien and Cosmo 1996 have provided a confluent rewrite system for the typed 𝜆-calculus with 𝜂-equivalence, surjective pairing and terminal objects. 

Tuning the refiner for PVS-Core

The refiner of the system 𝔖 is parametrised by a coercion system and a subtype projection ≺. This section provides these two components, and establishes some of their properties.

Abstract coercion rules

Coercions to implement implicit predicate subtyping in 𝔖 parametrised by Σ [Pe] and ℛ [sPe] are given in Fig. 4.3. Rules sub-elim and sub-intro follow the intuitions given in Section 2.1.3 Page 32. Rule sub-fun implements covariance on the domain of abstractions. Note that there is no need to constrain 𝑇 0 to be the same as 𝑇 1 , since preconditions ensure that Γ ⊢ 𝑡 ⇐ Π𝑥 ∶ 𝑇 1 , 𝑇 2 , and hence 𝑇 0 ≃ [sPe],𝛽 𝑇 1 . Rule sub-red allows to reduce terms in order to apply coercion rules. For instance, the coercion problem 𝜆𝑥, 𝑒 𝑥 ∶ (El (𝑋 ⇝ 𝑌 )) <∶ (El 𝑋) → (El 𝑍) ⇝ 𝜆𝑥, 𝑒 𝑧 requires term (El (𝑋 ⇝ 𝑌 )) to be reduced to a product in order to apply rule sub-fun.

TUNING THE REFINER FOR PVS-CORE

sub-elim Remark 10. Rule sub-red is very liberal and allows any reduction to be performed into the source and target of coercions. Many of these computations are irrelevant regarding coercions: most rules of ℛ [sPe] cannot transform a term into a pattern of a conclusion of a coercion rule (i.e. introduce El symbols on top of terms, or transform types to products).

(fst 𝑇 𝑎 𝑡) ∶ (El 𝑇) <∶ 𝑈 ⇝ 𝑢 𝑡 ∶ (El (psub 𝑇 𝑎)) <∶ 𝑈 ⇝ 𝑢 sub-intro 𝑡 ∶ 𝑇 <∶ (El 𝑈) ⇝ 𝑢 𝑡 ∶ 𝑇 <∶ (El (psub 𝑈 𝑎)) ⇝ (pair 𝑈 𝑎 𝑢 ♦) sub-red 𝑇 ⟶ * ℛ [sPe] ,𝛽 𝑇 ′ 𝑈 ⟶ * ℛ [sPe] ,𝛽 𝑈 ′ 𝑡 ∶ 𝑇 ′ <∶ 𝑈 ′ ⇝ 𝑢 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢 sub-fun 𝑡 ⟶ * ℛ [sPe] ,𝛽 𝜆𝑥 ∶ 𝑇 0 , 𝑡 0 𝑇 1 ≃ [sPe],𝛽 𝑈 1 𝑡 0 ∶ 𝑇 2 <∶ 𝑈 2 ⇝ 𝑢 0 𝑡 ∶ Π𝑥 ∶ 𝑇 1 , 𝑇 2 <∶ Π𝑥 ∶ 𝑈 1 , 𝑈 2 ⇝ 𝜆𝑥 ∶ 𝑈 1 , 𝑢 0
It may be interesting to only allow relevant computations to take place while coercing terms, either to have more control over the shape of returned terms, or to avoid performing unnecessary (and costly) computations. The only relevant computations are 𝛽-reduction (to transform types which would be 𝛽-redexes) and Eq. (2.13) Page 37 to transform encoded arrow types into the framework's product type. The latter transformation could be allowed with the following
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For rule sub-red, we invoke confluence of ≃ [sPe],𝛽 . For rule sub-fun, induction hypothesis gives (𝜅 𝐵 𝐶 𝑏) ⟶ 𝒞 [Pe] ,ℛ [sPe] ,𝛽 𝑐, and we can apply Eq. (𝒞-Π).

For rules sub-intro and sub-elim, we conclude using induction hypothesis, either rule Eq. (4.2) or Eq. (4.1) and transitivity of the rewrite relation.

Example 15. Surjective pairing is required for coherence: the identity coercion for type (El (psub 𝑇 𝑎)) may be derived with

𝑇 ≃ [sPe],𝛽 𝑇 r-cast (fst 𝑡) ∶ 𝑇 <∶ 𝑇 ⇝ (fst 𝑡) sub-intro (fst 𝑡) ∶ 𝑇 <∶ (El (psub 𝑇 𝑎)) ⇝ (pair (fst 𝑡) ♦) sub-elim 𝑡 ∶ (El (psub 𝑇 𝑎)) <∶ (El (psub 𝑇 𝑎)) ⇝ (pair (fst 𝑡) ♦)
where (pair (fst 𝑡) ♦) is convertible to 𝑡 only if surjective pairing (Eq. (SP † ) Page 90) is included in the convertibility relation.

Coercing to functions

Predicate subtypes can be organised as trees, where nodes are types (and subtypes), and there is an edge between types 𝐴 and 𝐵 if 𝐵 = psub(𝐴, 𝑃). Such a graph is indeed a tree: any type has at most one supertype which is the support of the predicate, and any number of subtypes. Roots of such trees are called 'maximal types' by Owre and Shankar 1997b. The maximal type of any type is computed by the function 𝜇 defined in (ibid.), 𝜇(psub(𝑇 , 𝑎)) = 𝜇(𝑇 ) 𝜇(𝑇 → 𝑈 ) = 𝑇 → 𝜇(𝑈 ) 𝜇(𝑠) = 𝑠 for any primitive sort 𝑠.

We may mimic this procedure to look for product types among supertypes of a type: given a type 𝑇, the procedure iterates through the path from 𝑇 to its maximal type, and stops as soon as a product is found. To this end we define a subtype projection ≺ that computes less than the 𝜇 operator. This subtype projection essentially contains the equation psub(𝑇 , 𝑎) ≺ 𝑇. However, we cannot simply take the context closure of that relation, because subtyping is invariant on the domain. Therefore we do not take the contextual closure but we reduce modulo ⟶ ℛ [sPe] ,𝛽 .

Lemma 24. If 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢 and 𝑡 ∶ 𝑇 <∶ 𝑉 ⇝ 𝑣, then 𝑢 is convertible with an abstraction (modulo ≃ [sPe],𝛽 ) if and only if 𝑣 is.

Proof. If 𝑢 is convertible with an abstraction, by correctness of the cast relation, 𝑈 is of the form 𝑈 = Π𝑥 ∶ 𝑈 1 , 𝑈 2 .

With a rewrite system

Definition 36. We define the rewrite system ℛ 𝜈 on symbols

ℱ [Pe] ∪ {𝜈}. (𝜈 (El (psub 𝐴 𝑃))) ⟶ (𝜈 (El 𝐴)) (𝜈 (Π𝑥 ∶ 𝐴, 𝐵)) ⟶ Π𝑥 ∶ 𝐴, 𝐵 (𝜈.1) (𝜈.2)
Lemma 25. Let 𝔑 be the λΠmr type system parametrised by the signature

Σ [Pe] ∪ {𝜈[𝐴 ∶ ⋆] ∶ ⋆ ∶ }. Then 𝔑 is well-formed and relation ⟶ ℛ [sPe] ,𝛽,ℛ 𝜈 preserves typing in 𝔑: for any well-formed context Γ (in 𝔑), any substitution 𝜎, if Γ ⊢ 𝔑 𝜎𝐴 ⇐ ⋆ and 𝐴 ⟶ * ℛ [sPe] ,𝛽,ℛ 𝜈 Π𝑥 ∶ 𝐴 1 , 𝐴 2 , then Γ ⊢ λΠ[sPe] 𝜎(Π𝑥 ∶ 𝐴 1 , 𝐴 2 ) ⇐ ⋆.
Proof. System 𝔑 is well-formed because Σ [Pe] is well-formed and the declaration 𝜈[𝐴 ∶ ⋆] ∶ ⋆ ∶ is also well-formed.

First we prove that if (𝜈 𝑡) ⟶ ℛ 𝜈 Π𝑥 ∶ 𝑡 1 , 𝑡 2 , then 𝜈 ∉ Π𝑥 ∶ 𝑡 1 , 𝑡 2 by induction on the number of rewrite steps. If (𝜈 𝑡) ⟶ ℛ 𝜈 Π𝑥 ∶ 𝑡 1 , 𝑡 2 , then Eq. (𝜈.2) must be used. By hypothesis, there is no 𝜈 in 𝑡, and the rewrite rule erases the leading 𝜈. Now assume there is a reduction chain

(𝜈 𝑡) ⟶ * ℛ 𝜈 Π𝑥 ∶ 𝑡 1 , 𝑡 2 . Then (𝜈 𝑡) ⟶ ℛ 𝜈 𝑢 ⟶ * ℛ 𝜈 Π𝑥 ∶ 𝑡 1 , 𝑡 2 .
The first rewrite step cannot use Eq. (𝜈.2), otherwise 𝑢 would be a normal form. Hence it uses Eq. (𝜈.1), and 𝑢 is of the form (𝜈 𝑢 ′ ), and induction hypothesis allows to conclude.

Then we show that ⟶ ℛ 𝜈 preserves typing in signature

Σ [Pe] ∪ {𝜈[𝐴 ∶ ⋆] ∶ ⋆ ∶ }.
For type preservation, we prove that each rewrite rule preserves typing. For Eq. (𝜈.1), by several inversions of b-sign page 54, we have the left-hand side well typed if Γ ⊢ (𝜎𝐴) ⇐ Type. Using several b-sign, we can derive Γ ⊢ (𝜈 (El 𝐴)) ⇐ ⋆. For the second rule, the left-hand side is well typed if Π𝑥 ∶ (𝜎𝐴), (𝜎𝐵) has type ⋆.

Finally, we show that for any term 𝑡, if 𝜈 ∉ 𝑡, then 𝑡 is typable in Σ [Pe] . We show that by simultaneous inductions on derivations Γ ⊢ 𝔑 𝑡 ⇒ 𝐴 and for any 𝐴 such that Γ ⊢ λΠ[Pe] 𝐴 ⇒ 𝒮 𝑠, Γ ⊢ 𝔑 𝑡 ⇐ 𝐴. For rule b-sign, since 𝜈 is not in 𝑡, and because 𝜈 is not in Σ [Pe] , all typing declarations of Σ 

≺ 𝜈 = ≺ * .
Proof. We first show that ≺ 𝜈 ⊆ ≺ * by induction on the number of ⟶ ℛ 𝜈 rewrite steps. Assume 𝑇 ≺ 𝜈 Π𝑥 ∶ 𝑈 1 , 𝑈 2 . There is at least one rewrite step to eliminate 𝜈, which may be (𝜈 (El (𝑇 0 ⇝ 𝑇 1 ))) ⟶ ℛ 𝜈 Π𝑥 ∶ (El 𝑇 0 ), (El (𝑇 1 𝑥)). In that case, we conclude with Eq. (4.4). If (𝜈 (Π𝑥 ∶ 𝑇 0 , 𝑇 1 )) ⟶ ℛ 𝜈 Π𝑥 ∶ 𝑇 0 , 𝑇 1 , we conclude by reflexivity of ≺ = .

Assume there are 𝑛 rewrite steps. The reduction must be of the form

(𝜈 (El (psub 𝑇 0 𝑎))) ⟶ ℛ 𝜈 (𝜈 (El 𝑇 0 )) ⟶ + ℛ 𝜈 Π𝑥 ∶ 𝑈 1 , 𝑈 2 .
By induction hypothesis, (El 𝑇 0 ) ≺ * Π𝑥 ∶ 𝑈 1 , 𝑈 2 . By Eq. ( 4.3), (El (psub 𝑇 0 𝑎)) ≺ (El 𝑇 0 ). We conclude by transitivity of ≺ * .

We show the converse: ≺ * ⊆ ≺ 𝜈 by induction on the number of ≺ steps. Assume 𝑇 ≺ * Π𝑥 ∶ 𝑈 1 , 𝑈 2 . If 𝑇 = Π𝑥 ∶ 𝑈 1 , 𝑈 2 , then we conclude with Eq. (𝜈.2). If 𝑇 ≺ 𝑆 ≺ * Π𝑥 ∶ 𝑈 1 , 𝑈 2 , then 𝑇 = (El (psub 𝑇 0 𝑎)) and 𝑆 = (El 𝑇 0 ). We conclude by Eq. (𝜈.1), induction hypothesis and transitivity of ⟶ * ℛ 𝜈 .

Example 16. Let Σ = Σ [Pe] ∪ {nat ∶ Type ∶ ⋆, inj?[𝑛 ∶ (El nat)] ∶ (El o) ∶ ⋆}.
Then the judgement 𝑓 ∶ (El (nat ⇝ nat)) , 𝜌 ∶ (Prf (inj? 𝑓)) ⊢ ((pair 𝑓 𝜌) 0) ∶ (El nat) ⇝ 𝑡 ′ cannot be derived without 𝜈 and rule r-prod-c page 71. Indeed, the psub hides the encoded arrow in (psub (nat ⇝ nat) inj?), so it does not rewrite to a product. However we have the following reduction chain

(𝜈 (El (psub (nat ⇝ nat) inj?))) ⟶ ℛ 𝜈 (El (nat ⇝ nat)) ⟶ ℛ [sPe] (El nat) → (El nat) .
Definition 37 (𝔖+[sPe]). We denote 𝔖+[sPe] the type system 𝔖 (Section 3. 

Preservation of substitution by refinement

We now prove a property similar to a substitution lemma (Barras 1999, Lemme 4.28), but generalised to refined terms: if the subject and inputs are substituted, then the output is also substituted. Such a property is essential to prove that valid judgements of PVS-Core can be translated and refined into valid judgements of λΠ [sPe]. In this section, when the type system is omitted from typing judgements, refinement judgements use type system 𝔖+[sPe] and judgements without refinement use λΠ[sPe].

Lemma 26. For any well-formed context Γ, any well-sorted type 𝐴 and any term 𝑢 such that Γ ⊢ 𝑢 ∶ 𝐴 ⇝ 𝑢 ′ , the two following propositions hold.

1. If Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝐵 then Γ ⊢ {𝑢/𝑥} 𝑡 ∶ {𝑢 ′ /𝑥} 𝐵 ⇝ 𝑒 and 𝑒 ≃ 𝛽,[sPe] {𝑢 ′ /𝑥} 𝑡 ′ . 2. Let 𝐵 be a well-sorted type. If Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 ⇝ 𝑡 ′ , then Γ ⊢ {𝑢/𝑥} 𝑡 ∶ {𝑢 ′ /𝑥} 𝐵 ⇝ 𝑒 and 𝑒 ≃ 𝛽,[sPe] {𝑢 ′ /𝑥} 𝑡 ′ .
Proof. The two propositions are proved simultaneously by induction on the typing derivation. Parts of the proof will be presented as sequences of judgement annotated with a justification, like

Γ ⊢ 𝑢 ⇝ 𝑡 ∶ 𝑈 inversion (4).
Numbers on the right of the justification refer to equations (e.g. 'Eq. (𝛽)'). If there is no reference, the justification applies to either the previous judgement, or it applies to a hypothesis in the statement.

• For rule r-var when 𝑡 ∈ 𝒳 and 𝑡 ≠ 𝑥 the conclusion is immediate: 𝑡 ∶ 𝐵 ∈ Γ, thus {𝑢 ′ /𝑥} 𝐵 = 𝐵 and 𝑒 = 𝑡 = {𝑢 ′ /𝑥} 𝑡.

• For rule r-var when 𝑡 = 𝑥, we have 𝐵 = 𝐴 = {𝑢 ′ /𝑥} 𝐵, Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ⇝ 𝑥 ∶ 𝐴 and {𝑢/𝑥} 𝑡 = 𝑢 and 𝑒 = 𝑢 ′ by definition.

•

r-prod Γ, 𝑥 ∶ 𝐴 ⊢ 𝑇 0 ∶ ⋆ ⇝ 𝑅 0 Γ, 𝑥 ∶ 𝐴, 𝑧 ∶ 𝑅 0 ⊢ 𝑇 1 ⇝ 𝑅 1 ∶ 𝑠 1 (⋆, 𝑠 1 , 𝑠 2 ) ∈ 𝒫 𝜆Π Γ, 𝑥 ∶ 𝐴 ⊢ Π𝑧 ∶ 𝑇 0 , 𝑇 1 ⇝ Π𝑧 ∶ 𝑅 0 , 𝑅 1 ∶ 𝑠 2 Induction hypothesis gives Γ, 𝑥 ∶ 𝐴 ⊢ {𝑢/𝑥} 𝑇 0 ∶ ⋆ ⇝ 𝑆 0 with 𝑆 0 ≃ [sPe],𝛽 {𝑢 ′ /𝑥} 𝑅 0 and Γ, 𝑧 ∶ {𝑢 ′ /𝑥} 𝑅 0 ⊢ {𝑢/𝑥} 𝑇 1 ∶ {𝑢 ′ /𝑥} 𝑠 1 ⇝ 𝑆 1 with 𝑆 1 ≃ [sPe],𝛽 {𝑢 ′ /𝑥} 𝑅 1 . By inversion, we have Γ, 𝑧 ∶ {𝑢 ′ /𝑥} 𝑅 0 ⊢ {𝑢/𝑥} 𝑇 1 ⇝ 𝑆 ′ 1 ∶ 𝑠 ′
1 and a coercion from 𝑠 ′ 1 to 𝑠 1 (note that the inferred type is named 𝑠 ′ 1 but we have no evidence that it is a sort). Because there is no coercion from types to sorts, we 104 get 𝑠 1 = 𝑠 ′ and 𝑆 ′ 1 = 𝑆 1 . Therefore we may conclude using rule r-check with

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING Γ ⊢ {𝑢/𝑥} 𝑇 0 ∶ ⋆ ⇝ 𝑆 0 induction hypothesis 𝑆 0 ≃ {𝑢 ′ /𝑥} 𝑅 0 induction hypothesis (4.5) Γ, 𝑧 ∶ {𝑢 ′ /𝑥} 𝑅 0 ⊢ {𝑢/𝑥} 𝑡 1 ∶ {𝑢 ′ /𝑥} 𝑅 1 ⇝ 𝑒 i.h. (4.6) 𝑒 ≃ {𝑢 ′ /𝑥} 𝑟 0 induction hypothesis (4.7) Γ, 𝑧 ∶ {𝑢 ′ /𝑥} 𝑅 0 ⊢ {𝑢/𝑥} 𝑡 1 ⇝ 𝑡 * 1 ∶ 𝑇 * inversion Eq. (4.6) (4.8) 𝑡 * 1 ∶ 𝑇 * <∶ {𝑢 ′ /𝑥} 𝑅 1 ⇝ 𝑒 inversion Eq. (4.6) (4.9)
Γ ⊢ Π𝑧 ∶ {𝑢/𝑥} 𝑇 0 , {𝑢/𝑥} 𝑇 1 ⇝ Π𝑧 ∶ 𝑆 0 , 𝑆 1 ∶ 𝑠 2 . • r-abst Γ, 𝑥 ∶ 𝐴 ⊢ 𝑇 0 ∶ ⋆ ⇝ 𝑅 0 Γ, 𝑥 ∶ 𝐴, 𝑧 ∶ 𝑅 0 ⊢ 𝑡 0 ⇝ 𝑟 0 ∶ 𝑅 1 Γ, 𝑥 ∶ 𝐴 ⊢ 𝜆𝑧 ∶ 𝑇 0 , 𝑡 0 ⇝ 𝜆𝑧 ∶ 𝑅 0 , 𝑟 0 ∶ Π𝑧 ∶ 𝑅 0 , 𝑅 1
The sequence of judgement that lead to the conclusion is given in Fig. 4.5. We can apply rule sub-fun on judgement (4.9) of Fig. 4.5 to obtain 𝜆𝑧 ∶ 𝑅 0 , 𝑡 * 1 ∶ Π𝑧 ∶ 𝑅 0 , 𝑇 * <∶ {𝑢 ′ /𝑥} Π𝑧 ∶ 𝑅 0 , 𝑅 1 ⇝ 𝜆𝑧 ∶ {𝑢 ′ /𝑥} 𝑅 0 , 𝑒 (4.10)

and conclude with sub-red where the conversion is given by Eq. (4.5) and finally Eq. (4.7).

•

r-appl Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 1 ⇝ 𝑡 ′ 1 ∶ Π Π𝑧 ∶ 𝐵 1 , 𝐵 2 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 2 ∶ 𝐵 1 ⇝ 𝑡 ′ 2 Γ, 𝑥 ∶ 𝐴 ⊢ (𝑡 1 𝑡 2 ) ⇝ (𝑡 ′ 1 𝑡 ′ 2 ) ∶ {𝑡 ′ 2 /𝑧} 𝐵 2 Induction hypothesis on the second premise gives Γ ⊢ {𝑢/𝑥} 𝑡 2 ∶ {𝑢 ′ /𝑥} 𝐵 1 ⇝ 𝑞 2 for some 𝑞 2 with 𝑞 2 ≃ [sPe],𝛽 {𝑢 ′ /𝑥} 𝑡 ′ 2 .
We then analyse how {𝑢/𝑥} 𝑡 1 behaves under constrained inference. Judgements (4.16) and (4.18

) give Γ ⊢ {𝑢/𝑥} 𝑡 1 ⇝ 𝑟 1 ∶ Π Π𝑧 ∶ 𝑅 1 , 𝑅 2 . If 𝑡 ′
1 is not convertible with an abstraction (modulo ≃ [sPe],𝛽 ), then 𝑞 1 is not convertible with an abstraction as well, and by Lemma 24, 𝑟 1 is not. Lemma 15 Page 93 gives 𝑅 2 ≃ {𝑢 ′ /𝑥} 𝐵 2 . By Lemmas 17 and 20 Pages 93 and 96 over Eqs. (4.17) and (4.18), 𝑟 1 ≃ [sPe],𝛽 𝑞 1 . By transitivity of ≃ and Eq. (4.15), we obtain 𝑟 1 ≃ {𝑢 ′ /𝑥} 𝑡 ′ 1 . We can conclude by an application of rule r-check using rule r-cast for the second premise since 

{𝑟 2 /𝑧} 𝑅 2 ≃ {𝑢 ′ /𝑥} {𝑡 ′ 2 /𝑧} 𝐵 2 (the substitution is not parallel). If 𝑡 ′ 1 is an abstraction of the form 𝑡 ′ 1 = 𝜆𝑧, 𝑡 ′ 11 , then 𝑞 1 is convertible with an 105 4.2. TUNING THE REFINER FOR PVS-CORE Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 1 ⇝ 𝛼 1 ∶ 𝑇 1 inversion first premise (4.11) 𝑇 1 ≺ * Π𝑧 ∶ 𝐵 1 , 𝐵 2 idem (4.12) 𝛼 1 ∶ 𝑇 1 <∶ Π𝑧 ∶ 𝐵 1 , 𝐵 2 ⇝ 𝑡 ′ 1 idem (4.13) Γ ⊢ {𝑢/𝑥} 𝑡 1 ∶ {𝑢 ′ /𝑥} Π𝑧 ∶ 𝐵 1 , 𝐵 2 ⇝ 𝑞 1 i.h.

Preservation of typeability by the encoding

In Section 2.2 Page 36, we showed that any valid judgement of PVS-Cert can be encoded into a valid judgement of λΠ [Pe]. Similarly, we show that any valid judgement of PVS-Core can be encoded into a valid judgement of 𝔖+[sPe]. Furthermore, provided that holes are replaced with actual proofs, 𝔖+[sPe] outputs judgements that are valid in λΠ [sPe].

As usual, we must ensure that terms that compute in PVS-Core are translated to terms that compute in 𝔖. Otherwise we could not translate the conversion rule of PVS-Core as a conversion of the framework. We already know that the syntactic translation [-] preserves computation. In the presence of coercions, we must ensure that inserting coercions does not break 𝛽-redexes, and that refined 𝛽-redexes compute to refined 𝛽-reducts.

Lemma 27. Let Γ be well-formed context, 𝑡 and 𝑢 two terms, and 𝑡 ⟶ 𝛽 𝑢. For rule subtype-elim, induction hypothesis gives

Γ ⊢ 𝑇 1 ⇝ 𝑇 ′ 1 ∶ 𝑠 1 inversion of premise Γ ⊢ 𝑈 1 ∶ 𝑠 1 ⇝ 𝑉 1 induction hypothesis 𝑉 1 ≃ 𝑇 ′ 1 idem Γ ⊢ 𝑈 1 ⇝ 𝑈 ′ 1 ∶ 𝑠 2 inversion Eq. (4.29) 𝑈 ′ 1 ∶ 𝑠 2 <∶ 𝑠 1 ⇝ 𝑉 1 idem 𝑈 ′ 1 = 𝑉 1 ∧ 𝑠 1 = 𝑠 2 Lemma 18 Γ ⊢ Π𝑥 ∶ 𝑒, 𝑈 1 ⇝ Π𝑥 ∶ 𝑒, 𝑈 ′ 1 ∶ 𝑠 2 rule r-prod 𝑉 = Π𝑥 ∶ 𝑒,
Γ ⊢ 𝑡 1 ⇝ 𝑡 ′ 1 ∶ 𝑇 1 inversion Γ ⊢ 𝑢 1 ∶ 𝑇 1 ⇝ 𝑣 1 induction hypothesis 𝑣 1 ≃ 𝑡 ′ 1 induction hypothesis Γ ⊢ 𝑢 1 ⇝ 𝑢 ′ 1 ∶ 𝑈 1 inversion Eq. (4.33) 𝑢 ′ 1 ∶ 𝑈 1 <∶ 𝑇 1 ⇝ 𝑣 1 idem 𝜆𝑥, 𝑢 ′ 1 ∶ Π𝑥 ∶ 𝑒, 𝑈 1 <∶ Π𝑥 ∶ 𝑒, 𝑇 1 ⇝ 𝜆𝑥, 𝑣 1 rule sub-fun Γ ⊢ 𝜆𝑥, 𝑢 1 ⇝ 𝜆𝑥, 𝑢 ′ 1 ∶ Π𝑥 ∶ 𝑒, 𝑈 1 rule r-abst on Eq. (4.35) Γ ⊢ 𝜆𝑥, 𝑢 1 ∶ Π𝑥 ∶ 𝑒, 𝑇 1 ⇝ 𝜆𝑥 ∶ 𝑒, 𝑣 1 rule r-check ( 
Γ ⊢ 𝑡 1 ⇝ 𝑡 ′ 1 ∶ 𝑇 1 inversion 𝑇 1 <∶ Π Π𝑥 ∶ 𝑅 1 , 𝑅 2 idem 𝑡 ′ 1 ∶ 𝑇 1 <∶ Π𝑥 ∶ 𝑅 1 , 𝑅 2 ⇝ 𝑡 𝜋 1 idem Γ ⊢ 𝑡 1 ∶ Π𝑥 ∶ 𝑅 1 , 𝑅 2 ⇝ 𝑡 𝜋 1 rule r-check Γ ⊢ 𝑢 1 ∶ Π𝑥 ∶ 𝑅 1 , 𝑅 2 ⇝ 𝑤 1 induction hypothesis 𝑤 1 ≃ [sPe],𝛽 𝑡 𝜋 1 idem Γ ⊢ 𝑢 1 ⇝ 𝑢 ′ 1 ∶ 𝑈 inversion Eq. (4.38) Γ ⊢ 𝑢 1 ⇝ 𝑢 𝜋 1 ∶ Π Π𝑥 ∶ 𝑉 1 , 𝑉 2 Lemma 23 𝑢 𝜋 1 ∶ Π𝑥 ∶ 𝑉 1 , 𝑉 2 <∶ Π𝑥 ∶ 𝑅 1 , 𝑅 2 ⇝ 𝑤 2 𝑤 2 ≃ [sPe],𝛽 𝑤 1 coherence 𝑉 1 ≃ [sPe],
Γ ∘ ⊢ (psub [𝐴] [𝑃]) ∶ Type ⇝ (psub 𝐴 ′ 𝑃 ′ ) and Γ ∘ ⊢ [𝑡] ∶ (El (psub 𝐴 ′ 𝑃 ′ )) ⇝ 𝑡 ′ .
Transitivity of coercion rules Fig. 4.3 ensures that if [𝑡] can be checked against (El (psub 𝐴 ′ 𝑃 ′ )), then it can be checked against (El (𝐴 ′ )).

For rule subtype-intro, induction hypothesis gives Γ ∘ ⊢ [𝑡] ∶ 𝐴 ′ ⇝ 𝑡 ′ where Γ ∘ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴 ′ . Like above, transitivity of coercion rules Fig. 4.3 ensures that if [𝑡] can be checked against (El 𝐴 ′ ), then it can be checked against (El (psub 𝐴 ′ 𝑃 ′ )) with r-check.

For rule prod, we have (𝑠 1 , 𝑠 2 , 𝑠 3 ) = (Type, Type, Type). In that case, induction hypothesis gives

Γ ∘ ⊢ [𝐴] ∶ Type ⇝ 𝐴 ′ and (Γ, 𝑥 ∶ 𝐴 ′ ) ∘ ⊢ [𝐵] ∶ Type ⇝ 𝐵 ′ . By definition, (Γ, 𝑥 ∶ 𝐴) ∘ = Γ ∘ , 𝑥 ∶ 𝐴 ″ where Γ ∘ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴 ″ . Since 𝑠 1 is Type, 𝐴 = (El [𝐴]
) so by inversion of r-appl, 𝐴 ″ = 𝐴 ′ . With rules r-check and r-abst, we can derive Γ ∘ ⊢ 𝜆𝑥 ∶ (El 𝐴 ′ ), 𝐵 ′ ∶ Π𝑥 ∶ (El 𝐴 ′ ), Type ⇝ 𝜆𝑥 ∶ (El 𝐴 ′ ), 𝐵 ′ . It allows us to conclude using sign with (𝐴 ′ ⇝ (𝜆𝑥, 𝐵 ′ )).

For rule abst, we have Γ ⊢ 𝐴 ∶ Type and Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ Type because (Type, Type, Type) is the only product rule of PVS-Core with Type as last sort. Thus induction hypothesis gives 1. For rule appl, the idea is to use rules r-appl and r-check. We first justify that we can use r-prod-c. By induction hypothesis, Γ ∘ ⊢ [Π𝑥 ∶ 𝐵 1 , 𝐵 2 ] ∶ Type ⇝ 𝐵 ′ . By definition of translation and inversion of typing,

Γ ∘ ⊢ [𝐴] ∶ Type ⇝ 𝐴 ′ along with Γ ∘ , 𝑥 ∶ 𝐴 ′ ⊢ [𝐵] ∶ Type ⇝ 𝐵 ′ and 2. Γ ∘ , 𝑥 ∶ 𝐴 ′ ⊢ [𝑡] ∶ (El 𝐵 ′ ) ⇝ 𝑡 ′ (
𝐵 ′ = 𝐵 ′ 1 ⇝(𝜆𝑥 ∶ (El 𝐵 ′ 1 ), 𝐵 ′ 
2 ) and by Eq. ( 2.25) Page 51, (El

(𝐵 ′ 1 ⇝ (𝜆𝑥 ∶ (El 𝐵 ′ 1 ), 𝐵 ′ 2 ))) ⟶ Π𝑥 ∶ (El 𝐵 ′ 1 ), (El 𝐵 ′ 2 )
. By induction hypothesis, ), in which case there is nothing to do. Otherwise, we have covariance on the codomain of the type of 𝑡. This case is possible only if 𝑡 is an abstraction because there is no subtyping on product types in PVS-Core (and (𝑡 𝑢) is thus a 𝛽-redex). By induction hypothesis Eq. (4.46) and inversion of rule r-check and rule sub-fun, 𝑋 is coercible to 𝐵 2 , hence the application (𝑡 ′ 𝑢 ′ ) can be coerced from {𝑢 ′ /𝑥} 𝑋 to {𝑢 ′ /𝑥} 𝐵 ′ 2 and we conclude with r-check.

Γ ∘ ⊢ [𝑡] ∶ 𝐵 ′ ⇝ 𝑡 ′ . ( 4 
For rule sign, induction hypotheses allow to apply rule r-sign because for each judgement

(𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠) ∈ Σ Po , there is a symbol ( f[𝒙 ∶ 𝑨 ] ∶ 𝐵 ∶ 𝑠 ) ∈ Σ Pe .
For rule conv, 𝑠 is either Type or Kind (Prop is not a sort). If it is Kind, then 𝐴 = 𝐵 = Type because Type is the only inhabitant of Kind. Otherwise, we have Γ ⊢ 𝐵 ∶ Type induction hypothesis gives Γ ∘ ⊢ [𝑡] ∶ 𝐵 ′ ⇝ 𝑡 ′ where Γ ∘ ⊢ 𝐵 ∶ Type ⇝ 𝐵 ′ . The sort 𝑠 𝐴 of 𝐴 is Type as well (see F. Gilbert 2018, Section 3.2) and Γ ∘ ⊢ [𝐴] ∶ 𝑠 𝐴 ⇝ 𝐴 ′ . We have 𝑠 𝐴 = Type, so by Lemma 29 Page 111, 𝐴 ′ ≃ [sPe],𝛽 𝐵 ′ . We can use rule r-check and coerce [𝑡] from its inferred type to 𝐵 ′ and then from 𝐵 ′ to 𝐴 ′ to conclude Γ ∘ ⊢ 𝑡 ∶ 𝐴 ′ ⇝ 𝑡 ′ . Any well-formed judgement of PVS-Core can be translated to a well-formed judgement in the encoding of PVS-Cert. However, this judgement may contain holes: each time the subtyping rule subtype-intro page 88 is used in the PVS-Core derivation, a coercion rule Section 4.2.1 that generates a hole is used to type the PVS-Cert-encoded judgement (note that this assertion is not accurate, one may build a derivation tree in PVS-Core with useless subtyping rules which will not have any counterpart in the typing derivation in 𝔖+[sPe]).

Completeness of the encoding of PVS-Core states that whenever a proposition of PVS-Core encoded in λΠ[sPe] is inhabited, then the original proposition is also inhabited in PVS-Core. Because PVS-Cert is a conservative extension of PVS-Core (ibid., Chapter 8), we do not need to prove more than the completeness of λΠ[sPe].

Conclusion

We have embedded simple type theory with implicit predicate subtyping (named PVS-Core) into the type system 𝔖 (defined in Chapter 3 Page 61). For this, a signature and a rewrite system to embed terms of PVS-Core in λΠmr in Section 4.1 has been provided.

In order to type check judgements with implicit subtyping, we provided a rewrite system to implement a suitable cast relation: whenever type 𝐴 is a subtype of type 𝐵 in PVS-Core, then the embedding of 𝐴 can be cast to the embedding of 𝐵. The type system made of 𝔖 parametrised by the signature and rewrite system for the embedding and the cast relation is denoted 𝔖+ [sPe].

We end the chapter by proving that the embedding of PVS-Core in 𝔖+[sPe] preserves typing.

Chapter 5

Translating PVS Previous chapters described theoretic embeddings of terms from various systems to a logical framework. Although there was a focus on computability through bidirectional formalisms and decidable congruences, few applications have been shown.

In this section, we take a look at the translation of the standard library of the proof assistant PVS called 'Prelude' to Dedukti, an implementation of a logical framework with computation rules.

Computational logical frameworks

Dedukti (Deducteam 2022a) is an implementation 1 of λΠmr. It is used as a proof checker: given a signature, it returns whether it is is well-formed or not. Because Dedukti is by design minimal, it does not handle existential variables nor coercions. Therefore we use an alternative implementation Lambdapi (Deducteam 2022b) that can refine incomplete terms into complete Dedukti terms: PVS files are translated to Lambdapi sources, Lambdapi refines these terms and outputs Dedukti files.

Both Lambdapi and Dedukti interact with signatures which are coded as lists of typing declarations and rewrite rules. Figure 5.1 defines the syntax of typing 1 At the time of writing, a specification for implementations of λΠmr is being developed. This specification is to be called Dedukti, whereas the legacy implementation, called Dedukti in this manuscript, has been renamed to 'the dk tool suite'. It contains a parser and a type checker (called dkcheck) for the Dedukti language. Semantically, a symbol declaration adds a typing judgement to the global signature. If the optional group [≔ 𝑒] is used in the statement, then a rewrite rule from the name to expression 𝑒 is also added to the signature. If the keyword 'begin admitted' is appended to the declaration, holes in the type or the definition are replaced by fresh axioms added to the signature. These fresh axioms (generated by Lambdapi) are translated as symbol declarations in Dedukti. A rewrite rule declaration adds a rewrite rule to the signature.

STATEMENTS AND THEORIES

In this part, PVS code will be shown like this stack: TYPE % Here is a comment

Statements and theories

The translation of PVS terms is defined in of Fig. 4.2 Page 89, but the syntax of PVS slightly differs from the one we used to express the translation. PVS' developments are split into theories which can be seen as modules or namespaces. Most basic theories consist of a name and a list of statements. There are four kinds of statements: declarations, definitions, axioms and theorems. For each kind of statement, we informally give its semantics, its syntax in PVS and its translation to Lambdpi.

Declarations

The declaration of name f of type A states that f is an inhabitant of type A. A declaration is translated as a fresh typing judgement in a typing signature Σ that is accumulated through the translation. For instance, double(x: real): real declares that name double applied to a real number is a real number. It is translated to

symbol double ∶ (El ([real] ⇝ (𝜆𝑥, [real])));
Definitions Definitions are essential for practical developments, they allow to use names instead of large expressions. In general, the unfolding of definitions is represented by a dedicated reduction called 𝛿 (Owre and Shankar 1997b;[START_REF] Severi | Pure Type Systems with Definitions[END_REF]The Coq Development Team 2022) Dedukti does not handle definitions per se. However, since it has a liberal reduction, we may simply use it for definitions as well: A definition is translated as a typing judgement (just like declarations) with a unique rewrite rule which rewrites the name of the definition to the larger expression. Axioms An axiom states that a certain proposition is inhabited, but the inhabitant is not provided. Like declarations, they are translated as fresh typing judgements.

foo : POSTULATE Bar declares that foo is a proof of proposition Bar. Since Bar is a proposition, its type is bool. It is translated as symbol foo ∶ (Prf [Bar]); Theorems Theorems are like definitions, but the type of the term is a proposition, and the term itself is seen as a proof of that proposition, with, in general, no computational relevance. It is thus common in implementations to drop the expansion: what matters is that a proof has been given at some point.

foo : THEOREM Bar defines foo as a proof of proposition Bar. Because there is no proof term in PVS, the proof is not given in the statement, it is asked to the user, and stored elsewhere as a tree of tactics. It is translated as a single judgement and a new hole symbol foo ∶ (Prf [Bar]) ≔ ♦ begin admitted;

PVS language features

So far, we have only dealt with a minimal kernel for PVS. PVS has more features which must be correctly encoded to be able to translate actual files. We give some of these features, and sketch encodings into Lambdapi.

Overloading

PVS allows to overload symbols (Owre, Shankar et al. 2020, Chapter 8) (this feature is sometimes called ad-hoc polymorphism). For instance, the minus symbolis overloaded to be both a unary minus and a binary subtraction. Overloading is also used to provide both curried and uncurried version of some operators, or to pass arguments as theory parameters (see for instance the function least_upper_bound? defined in theories 'orders ' and 'orders_alt').

Overloading can be removed by the translation. When a term is type checked by PVS, each 'name' (a 'name' is a Lisp structure which represents a variable or constant) contains a pointer to the statement in which it is declared. The translation takes into account both the original name and the declaration to create a new, unambiguous identifier in Lambdapi.

Theory parameters and polymorphism

Theories may depend on a context containing type variables as well as object variables. Consider the theory Fig. 5.2. All statements of the theory abstract over the parameter t, therefore, when not in the scope of the theory, objects of the theory 'stack' must instantiate the parameter t. This instantiation is performed in PVS by providing a context, for instance, the type of stacks of booleans is stack [bool].stack. We could say that there are two different applications: one with brackets to instantiate theories' parameters and the other noted with parentheses being the usual application of 𝜆calculus. In the framework, we have one application only. Because there is no mechanism to implicitly abstract over statements in a module, theory parameters are translated as function arguments. The type declaration stack above is translated as 'symbol stack ∶ Π𝑡 ∶ Type, Type;' and nil is translated as 'symbol nil ∶ Π𝑡 ∶ Type, (stack 𝑡);'. Such an encoding is not conservative since the non applied term stack is not typeable in PVS while it is in the framework: Π𝑡 ∶ Type, Type is not in the image of any embedding.

Logical connectives

The primitive components for logical content of PVS are falsity false, the equality = and a (polymorphic) ternary IF. Because of predicate subtyping, type checking branches may require to assume that the condition holds or that the negation holds. For example, the first branch of IF(x /= 0, 1 / x, x), is well-typed only if we can prove x /= 0 (by typing of the division operator /). Therefore, the then branch of a conditional expression IF(P, then, else) is type-checked in a logical context where proposition P is assumed true whereas the else branch is type checked in a logical context where not P is assumed.

We (arbitrarily) chose to use usual encodings of simple type theory using the implication and the universal quantification as primitive connectives (as done by But this method fails to currify correctly the defined type PRED such that PRED[t] = [t -> bool], in particular when PRED [[t, t]] appears (this function is defined in the theory 'defined_types' of the Prelude).

To ease the definition of functions, PVS pattern-matches the components of arguments that are tuples. To define a function of two arguments, that is, a function that takes a tuple of two elements as argument, the syntax f(x, y) = x + y is used, instead of the more cumbersome f(x) = x`1 + x`2 (where x`n is the nth element of tuple x). We thus have to define a matching operator on tuples as well. Let A.N be the type of (unary) integers, T n be the type of telescopes of length n and code a function that injects telescopes into type codes (code is thus of type Π𝑛 ∶ A.N, (T 𝑛) → Type where the first argument is left implicit). 

Bounded quantification

Since there is a notion of subtypes in PVS, a possible extension is to allow theories to quantify over all subtypes of a given type. A subtype is declared in theory parameters with [A TYPE FROM B] to state that A is a subtype of B. Semantically, it means that A can be substituted by any type C such that the conjunct of the predicates that define C imply the conjunct of predicates defining B.

Contexts are extended with bindings of the form 𝑋 <∶ 𝐴. The following rule is admissible,

𝑋 <∶ 𝐴 ∈ Γ Γ ⊢ 𝑡 ∶ 𝑋 Γ ⊢ 𝑡 ∶ 𝐴
which allows to perform predicate subtyping on type variables. For instance, in context

Γ = int ∶ Type, nat ∶ Type ≔ psub(int, (𝜆𝑘, 𝑘 ≥ 0)), 𝑋 <∶ nat, 𝑥 ∶ 𝑋, abs ∶ int → nat
(where nat is defined) judgement 'Γ ⊢ (abs 𝑥) ∶ nat' holds because 𝑥 can be typed as int using the aforementioned rule: it is first typed from 𝑋 to nat because 𝑋 <∶ nat is in Γ, then from nat to int by (syntactic) subtyping. We cannot ignore the judgement 𝑋 <∶ nat and translate it as 𝑋 ∶ Type, because there is no coercion from 𝑋 to nat, so there is no 𝑡 such that 𝑥 ∶ (El 𝑋) <∶ nat ⇝ 𝑡 holds.

To ensure correctness, we can provide a cast operator defined as symbol cast ∶ Π𝐴 ∶ Type, Π𝐵 ∶ Type, Π𝑥 ∶ (El 𝐴), (El 𝐵);

and we translate the previous example into Δ ⊢ (abs (cast 𝑋 nat 𝑥)) ⇐ nat which in turn holds. However the cast operator is highly unsafe: it breaks completeness of the encoding since any type can be inhabited with cast. To avoid inhabiting any type, we can ask for a proof p that X is a subtype of A in cast X A p x.

There are two ways to provide such a proof P. Either the cast operator expects a semantical proof which states that the conjunct of predicates defining X implies the conjunct of predicates defining A. This requires an operator that retrieves the predicates that define a type. In the semantics manual, Owre and Shankar 1997b define the operator 𝜋 for such a job. Or the operator expects a syntactic proof which ensures that X can only be substituted by syntactic subtypes of A.

We chose to encode the syntactic constraint. For this, we consider a tree where types are nodes, and there is an edge between two types if one is a direct subtype of the other. For instance, there is an edge between {x: A | P} and A. The evidence that 𝑋 is a subtype of 𝐴 is then a path in the tree from 𝑋 to 𝐴. Paths can be built with the system in Fig. 5.3. This proof system is encoded into the framework using a dedicated type If no computation is added on cast, we may encounter conversion issues, because, for instance, (cast (psub A P) A (Rest-sub A P) x) is not convertible with (fst A P x). Therefore we add the following reduction rules where TL is a namespace for telescope-related operations, and in that namespace, car retrieves the head of a telescope, cdr retrieves its tail and code transforms a telescope into a type code,

rule cast _ _ (Rest-refl _) $x ↪ $x; rule cast _ _ (Rest-trans $a $b $c $prf-ab $prf-bc) $x ↪ cast $b $c $prf-bc (cast $a $b $prf-ab $x); rule cast _ _ (Rest-sub _ _) $x ↪ fst $x; rule cast _ _ (Rest-fun _ $r0 $r1 $proof) $f ↪ λ x, cast $r0 $r1 $proof ($f x); rule cast _ _ (Rest-tuple $h0 $t0 $h1 $t1 $proof-hd $proof-tl) $l ↪ TL.cons (cast $h0 $h1 $proof-hd (TL.car $l)) (cast (TL.code $t0) (TL.code $t1) $proof-tl (TL.cdr $l));
These reductions pattern-match on the proof provided, which allows to have an orthogonal, type-preserving rewrite system. Again, just like in PVS, subtyping is covariant on the codomain but neither covariant nor contravariant in the domain because of rule rest-fun. 123 Remark 11. At the time of writing, this encoding is not used in the transpiler yet. Indeed, since this encoding manipulates subtyping proofs, the translation function must introduce them. Therefore, any subtype binding of the form X TYPE FROM Y has to introduce two elements in the context, the type X as well as a proof that X is a subtype of Y. Because contexts may be extended only through abstractions or products in the framework both X and the proof of subtyping must be abstracted over.

PVS LANGUAGE FEATURES

rest-refl 𝐴 ≤ 𝐴 rest-sub psub(𝐴, 𝑃) ≤ 𝐴 rest-trans 𝐴 ≤ 𝐵 𝐵 ≤ 𝐶 𝐴 ≤ 𝐶 rest-fun 𝑅 ≤ 𝑅 ′ 𝐷 → 𝑅 ≤ 𝐷 → 𝑅 ′ rest-tup 𝑇 0 ≤ 𝑇 ′ 0 (𝑇 𝑖 ) 𝑖∈{1… } ≤ (𝑇 ′ 𝑖 ) 𝑖∈1… 𝑻 ≤ 𝑻 ′
For instance, the theory where min is a function that accepts three arguments: a type 𝑇, a proof that 𝑇 is a subtype of nat and a set 𝑆.

Regarding the code of the transpiler, it is fairly easy to abstract over an additional parameter, but one has to remember which theory uses bounded quantification. The translator should thus inspect the declarations of the constants and the theory they are declared in to see whether it uses bounded quantification.

Records

Records (Owre, Shankar et al. 2020, Section 5.11) are native types in PVS, and can be anonymous. For instance, given the expression (# x := 4, y := 5 #), PVS infers the record type [# x : nat, y : nat #]. We do not have yet an encoding for records, so such judgements cannot be translated. However, we may be able to axiomatise declared record types. For instance, assuming a record type rc : [# a: T1, b: T2 #] is declared in PVS, we can declare a fresh type, a constructor and the projections , However, because PVS allows anonymous record types, the translation has to axiomatise each anonymous record type occurrence and ensure that two equivalent anonymous record type are also equivalent in the framework.

Fixpoints and inductive types

Inductive types [START_REF] Pierce | Types and programming languages[END_REF] are allowed in PVS. For instance, the transitive closure of a relation R, defined in the theory 'relations' of the Prelude reads as follows Recursive functions (Owre, Shankar et al. 2020, Section 3.4) can also be defined, such as the exponential in theory 'exponentiation':

expt(r, n): RECURSIVE real = IF n = 0 THEN 1 ELSE r * expt(r, n-1) ENDIF MEASURE n;
A measure must be provided along with the definition to ensure that it is decreasing. For each recursive definition, a type correctness condition is issued to prove the recursive calls are smaller according to the measure.

Following the intuitions of Gaspard Férey 2021, a recursor can be defined with a fix operator: whereas its translation to Lambdapi imports all Prelude theories defined before it. Some theories of the Prelude are part of the encoding. These theories can be identified in the output as the ones with the prefix personoj in Fig. 5.4.

As described in Chapter 4 Page 87, any pair coercion gives birth to a hole (denoted ♦). In Lambdapi, these holes are materialised by existential variables. For a declaration or definition to be well-typed in Lambdapi, it must not contain any existential variable, that is, they must have been instantiated to some term. Because holes that stand for missing proofs cannot be instantiated automatically, Lambdapi has been modified to generate fresh symbols, which can be interpreted as axioms, to replace holes. These axioms are materialised as constant definitions when exported to Dedukti. Data structures for expressions are defined in file src/classes-expr.lisp of PVS distribution 7.1, and the declarations are defined in src/classesdecl.lisp.

Notes on the development workflow

Results

We translated parts of the Prelude of PVS. The whole Prelude contains 1000 propositions split among 133 theories. We are able to translate and type check 881 propositions split among 85 theories. There are theories that have not been translated because they use either abstract datatypes, records or recursive definitions. Some theories that use bounded quantification (particularly that instantiate bounded types) could not be translated either, and we failed to translate a few other theories for still unclear reasons. Judgements2 are not translated. On the other hand, some type correctness conditions are translated as propositions. The translation contains 77 propositions that are type correctness conditions, therefore we have a total of 952 translated propositions. We observe that terms are substantially larger with explicit predicate subtyping. Table 5.1 shows that some theories explode in size when predicate subtyping is made explicit. Indeed, even though half of the translation in Dedukti are less than 2.17 times bigger than the translation in Lambdapi, theories in Dedukti are in average 21.3 times bigger, suggesting that there are extreme values in the distribution, as shown by the important standard deviation of 63.0. The more predicate subtypes are nested, the more the size of terms increases (because of explicit coercions). Furthermore, Table 5.1 does not count axioms used to instantiate type correctness conditions, which would further increase the size of Dedukti files (the translated theory 'real_defs' contains 2742 such axioms generated from 53 declaration and definitions). With these axioms taken into account, the average ratio soars up to 366, the standard deviation to 1390 and the higest ratio to 8830. Therefore, theories like 'sets' that have at most one level of predicate subtyping (that is, (psub 𝑡 𝑝) but not (psub (psub 𝑡 𝑝) 𝑞)) have a least expansion ratio than theories like 'naturalnumbers' which contains up to four levels of predicate subtyping: 'sets' grows from 15Kio3 (in Lambdapi) to 44Kio (in Dedukti) while 'naturalnumbers' grows from 11Kio to 4.7Mio. In consequence, type checking theories takes more time with Lambdapi than with PVS. In particular, type checking in PVS does not take subtyping into account, it only checks that arguments have an appropriate maximal supertype (that is, if f is a function whose domain is psub(bool, 𝑝), then (f e) is well-typed when the maximal supertype of e is bool). Table 5.1 shows the size of some theories and their type checking time while Table 5.3 displays the number of statements and the number of generated axioms of the same theories. We can clearly see that type checking time is not proportional to the size of the theory: among the listed theories, 'real_defs' is the longest to type check but not the biggest in size. Type checking is sensitive to the shape of terms, and in particular to how nested predicate subtyping is. We also see that Dedukti takes in general less time to type check theories than Lambdapi, except for 'extra_real_props' whose number of axioms per entity ratio is substantially higher than the ratios of other theories. We can infer that type checking expanded terms is generally faster than type checking and refining terms, except for some pathological cases where subtyping generates a considerable amount of type correctness conditions.

In that case, because we expect type correctness conditions to be redundant, sharing should reduce drastically the size of the theory (and its type checking time). Furthermore, Type checking a file requires to load all previous signatures which can take a substantial amount of time, especially in Lambdapi where signatures are heavier. For instance, the Lambdapi signature for 'real_defs' weighs 520Mio whereas its Dedukti counterpart weighs 249Mio. We suspect signatures are heavier in Lambdapi because Bindlib (the library used to implement binders) uses higher order abstract syntax and thus signatures contain closures; where Dedukti uses de Bruijn indices. Readers concerned with performance should rather look at Dedukti (Deducteam 2022a) or more specifically Kontroli by Färber 2022 which can handle bigger files than Lambdapi. 

RESULTS

Conclusion

In this section, we applied the theoretical work of preceding chapters to translate the standard library of PVS to Lambdapi, an implementation of 𝔖+[sPe]. Our theory does not handle yet all features used by PVS in its standard library. The implementation supports some of these features although their embedding has not been studied extensively, and other features are not supported at all. We are also able to make subtyping explicit, which allows us to analyse the size increase of terms when making subtyping explicit.

Chapter 6

Exporting PVS proofs

As a proof assistant, a substantial part of PVS is dedicated to the manipulation of proofs. Historically, we distinguish several ways to store proofs. For the de Bruijn criterion, proofs ought to be stored in full to be checked by other independent checkers. The LCF architecture by Milner 1972 rather records the inference rules used to perform a proof. A proof is verified by rerunning these inference rules on the theorem, and ensuring that these inference rules are properly used. The trust we have on a LCF -style system depends on the kernel that implements the inference rules of the logic. The more this kernel is complex, the less we may trust it. PVS is closer to LCF style proof assistants, but it is also highly automated and its kernel is large. This chapter explores ways to translate PVS proofs to logical frameworks, in particular λΠmr implemented by Dedukti and Lambdapi.

Proof representations

To understand how proofs are represented in PVS, we will describe succinctly how users interact with their specification through PVS.

To define a theory in PVS, users mainly write definitions and specify properties of these definitions as propositions. There is no proof object in theories. Propositions are proved interactively: when type checking the theory, PVS asks users to prove theorems in a new window. This window shows a prompt, where users may write tactics to prove the proposition incrementally. Finally, when the proposition is proved, the window is closed and the proof script is recorded 6.1. PROOF REPRESENTATIONS into another file (out of the theory). Such a workflow emphasises the separation between defining a theory, and proving it. There is no notion of proof in the PVS specification language, and PVS does not specify any proof language, besides a (substantial) set of tactics [START_REF] Shankar | PVS Prover Guide[END_REF]).

On the other hand, logical frameworks based on λΠmr use the same representation for proofs and terms: proofs are terms whose types are propositions. This principle-called the Curry-de Bruijn-Howard correspondence-is embedded into the encoding of PVS-Cert (Fig. 2.4 Page 39) through the mapping Prf: propositions are terms of type (El o), and 𝜋 is a proof of 𝑃 if ⊢ 𝜋 ∶ (Prf 𝑃) (see Blanqui, Dowek et al. 2021, page 4).

For instance, if 𝑃 is a proposition, we have ⊢ 𝜆𝑥 ∶ (Prf 𝑃), 𝑥 ∶ (Prf (𝑃 ⇒ 𝑃 )) (because (Prf 𝑃) → (Prf 𝑃) ≃ [Pe] (Prf (𝑃 ⇒ 𝑃 ))), so 𝜆𝑥 ∶ (El 𝑃), 𝑥 is a proof of 𝑃 ⇒ 𝑃. In PVS, the proposition 𝑃 ⇒ 𝑃 is proved by the sequence of tactics (flatten propax) (sequences are written as S-expressions).

Small LCF-style systems have already been encoded successfully into Dedukti, such has HOL-Light [START_REF] Assaf | Translating HOL to Dedukti[END_REF]. In such encodings, there is one symbol declaration per inference rule of the logic, and the application of an inference rule is translated as the application of a symbol. Because PVS is a large and highly automated program, it is difficult to justify how tactics are applied.

However, internally, PVS represents proofs as trees whose nodes are labelled with propositions. Each node of the tree is labelled with a proposition, and there is an edge from node 𝑛 1 to node 𝑛 2 when the application of a certain tactic on the proposition of 𝑛 1 produce the proposition of node 𝑛 2 . In practice, tactics often produce several 'sub goals' (a goal is a proposition to be proved), and proofs are therefore rather trees than lists. Proof trees are available in the Lisp environment once the proof has been rerun on the initial statement: intermediate goals are not saved, only the tactics are.

In the rest of this chapter, propositions are expressed in PVS-Cert. To simplify notations, we will write '𝑃 ⇒ 𝑄' instead of 'Π𝑥 ∶ 𝑃 , 𝑄' when 𝑃 and 𝑄 are propositions (that is, their type is Prop). We remind that if 'Γ ⊢ ℎ ∶ 𝑃 ⇒ 𝑄' and 'Γ ⊢ 𝑖 ∶ 𝑃', then 'Γ ⊢ (ℎ 𝑖) ∶ 𝑄': proofs of implications are functions and therefore implication are eliminated by term application.

Proof scripts to incomplete terms

The objective is thus to design a function 𝜙 which maps proof trees to proof terms. If 𝜏 is a proof tree, we note 𝜏 ∶∶ 𝑃 to state that 𝑃 is the root of tree 𝜏. For any tree 𝜏 ∶∶ 𝑃, let 𝑃 ′ be defined by ⊢ [𝑃] ∶ (El o) ⇝ 𝑃 ′ (where [-] is the object translation defined in Fig. 4.2 Page 89), the proof of tree 𝜏 is 𝜙(𝜏 ) such that ⊢ 𝜙(𝜏 ) ∶ (Prf 𝑃 ′ ).

PVS implements a classical sequent calculus (Owre and Shankar 1997b), but inference steps between nodes of the trees are generally more complex than the application of an inference rule of the sequent calculus.

Since there is a priori no way to determine which inference rule is used, the idea is to replace inference rules by holes. For instance, assume tree 𝜏 is of the form

… 𝑄 1 … 𝑄 2

𝑃

(which can also be represented by the symbolic expression (𝑃 (𝑄 1 …) (𝑄 2 …))).

Then we know that a proof 𝜋 𝑃 is obtained from proofs 𝜋 𝑄 1 of 𝑄 1 and 𝜋 𝑄 2 of 𝑄 2 , but we do not know how. Therefore, provided we have a proof 𝜋 → of 𝑄 1 ⇒ 𝑄 2 ⇒ 𝑃, we can conclude 𝜋 𝑃 = (𝜋 → 𝜋 𝑄 1 𝜋 𝑄 2 ).

We define a function |-| from trees of propositions to trees of propositions that transforms a tree of goals to a tree containing the justification of inference steps as labels. The notation (⇒ 𝑄 𝑖 ) 𝑖 ⇒ 𝑃 is short for 𝑄 1 ⇒ 𝑄 where ?ℎ must be fresh and the 'let in' construct binds, for each 𝑖, (𝜏 𝑖 ) • to elements 𝜒 𝑖 and 𝒫 𝑖 . The result is a pair made of a tree whose labels are annotated with a typed hole and a proof problem containing the type of the hole.

The following lemma provides some specifications for the procedures. where the generated 𝑥 must be fresh in the case of named holes. To simplify notations, we do not distinguish indexings 𝑓 from their extension f.

Lemma 30.

• Procedures |-|, ‖-‖ and (-) • terminate.

• For any proof tree 𝜏 ∶∶ 𝑃, with (𝜒, 𝒫) = (|𝜏|)

• , for any indexing 𝐼, let Δ be such that for each judgement {⊢ ?𝑥 ∶ 𝑃 } in 𝒫, then (𝐼(?𝑥) ∶ 𝑃 ) ∈ Δ, then Δ ⊢ 𝐼(‖𝜒‖) ∶ 𝑃.

Proof. For each of these procedures, the recursive calls are operated on sub-trees of the argument. We conclude by finiteness of proof trees.

By induction on the tree 𝜏. Assume 𝜏 is of the form The main motivation behind these procedures is that inference rules are easier to prove than successive goals: given a proof tree 𝜏, it is easier to prove labels of |𝜏| than labels of 𝜏 itself.

𝜒 1 ∶∶
Procedures |-| and ‖-‖ have been implemented in personoj [START_REF] Rel | Personoj version 0.1[END_REF]): the Lisp function pprint-proof prints the proof of a formula. Each inference step 𝑸 𝑃 is translated to a let-binding of the form 'let 𝑣 ∶ ⋀ 𝑸 ⇒ 𝑃 ≔ ?𝑃 in' as shown in Fig. 6.1 Page 140. In Lambdapi source files, proofs are not different from definitions: given a proposition named prop whose statement is the type 𝑃, its translated proof 𝜋, the proposition is declared along with its proof with symbol prop ∶ (Prf 𝑃) ≔ 𝜋;

If 𝜋 contains holes (which will almost always be the case), type checking this declaration will fail because all existential variables must be instantiated for type checking to succeed. To solve these existential variables, we can take advantage of the proof mode of Lambdapi which allows to prove sub-goals incrementally using tactics.

Filling gaps

Using the procedures defined in the previous section, cross checking PVS proofs amount to solve the proof obligations generated by the annotation function (-) • .

These proof obligations can obviously be solved manually, the cross checking procedure is thus semi-automatic: previous procedures transform propositions into smaller sub-goals that are easier to prove. To obtain a fully automatic cross checking procedure, we may call automated solvers (El Haddad 2021). After all, PVS proofs often use a tactic grind that calls an SMT solver, so we may be able to replicate this behaviour. There are several issues to solve for this strategy to pay off:

1. proofs from PVS use predicate subtyping, there is no SMT solver that understand predicate subtyping1 ; 2. PVS is higher order, higher order proof search is difficult;

3. the substitution with which lemmas are instantiated is not recorded when they are called through highly automated tactics2 (e.g. the auto-rewrite tactic).

Automated provers used in proof assistants such as Isabelle's 'sledgehammer' (Paulson and Blanchette 2012) encode higher order problems into first order logic [START_REF] Czajka | Hammer for Coq: Automation for Dependent Type Theory[END_REF][START_REF] Robinson | Mechanizing higher-order logic[END_REF]. There are native higher order SMT solvers as well such as Satallax by Brown 2012 or Leo-III [START_REF] Steen | Leo-III 1.6 version v1.6[END_REF][START_REF] Steen | The Higher-Order Prover Leo-III[END_REF]) (see Benzmüller and Miller 2014, for more examples). There are also recent development to extend SMT solvers to support higher order theorem proving without higher order unification [START_REF] Barbosa | Extending SMT Solvers to Higher-Order Logic[END_REF]. On the other hand, Bentkamp et al. 2021 use higher order unification to handle proofs in higher order logic.

Item 3 is likely to need PVS to be edited in order to record substitutions used to instantiate lemmas. Otherwise, the framework may implement some form of proof search among already proved lemmas. F. Gilbert 2018 showed that PVS-Cert is a conservative extension of simple type theory: a proposition 𝑃 is inhabited in simple type theory if and only if it is inhabited in PVS-Cert. The translation -defined in (ibid., p. 129) translates PVS-Cert expressions to simple type theory expression. We will note ⟨-⟩ instead of -to avoid confusions.

For instance, ⟨∀𝑥 ∶ psub(𝐴, 𝑃), 𝑄⟩ = ∀𝑥 ∶ ⟨𝐴⟩ , (⟨𝑃⟩ 𝑥) ⇒ ⟨𝑄⟩

where term 𝑄 may use 𝜋 𝑟 (𝐴, 𝑃 , 𝑥), which has no counterpart in simple type theory. The translation adds a hypothesis of (⟨𝑃⟩ 𝑥) that will be used in ⟨𝑄⟩ instead of 𝜋 𝑟 (𝐴, 𝑃 , 𝑥).

We can map function ⟨-⟩ over proof trees so that labels do not use predicate subtyping. Assuming proofs of a ⟨-⟩-mapped proof tree are filled, we want in fine to obtain a proof of the initial statement. Assuming proofs are found for propositions without predicate subtyping, we still have to build a proof of the initial statement which may contain predicate subtyping. A procedure ⟨-⟩ -1 mapping proofs of propositions of the form ⟨𝑃⟩ to proofs of 𝑃 is required to prove the initial goal. While personoj handles directly PVS proof trees, Ekstrakto processes problems in the TSTP format [START_REF] Sutcliffe | The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP v6.4.0[END_REF]. For each proof step in the TSTP file, it generates a TPTP problem to justify inferences of the trace file. Ekstrakto is capable of reconstructing proofs provided that TPTP sub-problems are solved by automated theorem provers that generate Dedukti proofs like ZenonModulo [START_REF] Delahaye | Zenon Modulo: When Achilles Outruns the Tortoise Using Deduction Modulo[END_REF] or ArchSat (Bury 2019). The proof reconstruction phase performs the same task as function ‖-‖ where proofs are Lambdapi constants. Each TPTP file gives birth to a Lambdapi file, in contrast to our procedure which generates a symbol declaration for each proof trace. Proofs to be found are modelled with existential variables by procedure (-) • which is lighter than using the module system provided by Lambdapi: for each sub-problem, Ekstrakto expects its proof to be stored in a term named delta. The existential quantification is thus performed at the level of modules rather than terms.

Results from the works of El Haddad 2021 are promising, but Ekstrakto only handles formulae in clausal normal form.

Conclusion

This section completes the translation process: while Chapter 5 only dealt with definitions and propositions, in this chapter, we sketched a procedure to build proof terms in 𝔖+[sPe] from the proof traces we can get from PVS. We saw that transforming a PVS proof trace into a proof term amounts to certify that the deduction steps PVS performs are sound. Finding such certificates amounts to finding proofs in simple type theory with predicate subtyping. Fortunately, F. Gilbert 2018 showed that predicate subtyping can be safely eliminated from propositions, and thus the problem reduces to finding proofs in simple type theory.

Chapter 7 Conclusion

The goal of this document was to show how predicate subtyping à la PVS can be encoded in an extension of λΠmr with coercion insertion.

We showed how to encode certificates of typing derivations for PVS-Core (simple type theory with predicate subtyping) (Chapter 2). We proved the encoding preserves typing. In order to type check not only certificates but terms of PVS-Core, we set up a new type checker featuring existential variables and coercion insertion (Chapter 3). We showed that certificates for PVS-Core can be generated using coercions, and that typing in PVS-Core is preserved (Chapter 4). We discussed which features are missing from PVS-Core to be able to encode developments extracted from the standard library of PVS (Chapter 5). We specified a procedure to extract proofs associated to PVS specifications and reduce them to easier sub-problems, that can hopefully be solved by automated provers (Chapter 6).

Perspectives

The equational theory encoded by equations Eqs. (2.2), (2.3) and (𝛽) pages 31, and 33 is a subset of the relation ≡ * defined in (ibid.). Indeed, ≡ * contains surjective pairing 'pair(𝑡, 𝑝, 𝜋 ℓ (𝑡, 𝑝, 𝑒) , 𝜋 𝑟 (𝑡, 𝑝, 𝑒)) ≡ * 𝑒' while our encoded congruence ≃ [Pe] does not. We could add surjective pairing to ≃ [Pe] , but 1. the proof of Lemma 1 Page 34 does not hold anymore and 2. relation ⟶ 𝛽,𝜋 ℓ ,SP (where ⟶ SP is surjective pairing) is not confluent on untyped terms. See Section 4.1 Page 88 for more information on surjective pairing. CHAPTER 7. CONCLUSION quantification [START_REF] Pierce | Types and programming languages[END_REF] would also be worthwhile since it is used in PVS' standard library.

Implementations

The refiner has been implemented in Lambdapi and integrated in the main codebase (see Deducteam 2022b, version 2.1.0) but the coercion algorithm is at the moment prototypical. Furthermore, for now, right elements of pairs (pair 𝑡 𝑢) are systematically holes (that are refined into existential variables). Since all type correctness conditions are translated, many of these holes could probably be translated as instantiations of type correctness conditions. One could try to instantiate automatically these holes, searching through already declared propositions.
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 21 Figure 2.1: Typing rules of a type system modulo. They are parametrised by axioms 𝒜, product rules 𝒫, congruence ≃ and signature Σ.

13 )Figure 2

 132 Figure 2.3: Signature Σ [stt] and equations ℰ [stt] to encode simple type theory into λΠme.

  2.4. Let ℰ [Pe] the set of equations containing ℰ [stt] and Eqs. (2.18) and (2.19) defined in Fig. 2.4. We denote λΠ[Pe] the encoding of PVS-Cert in λΠme. It is the λΠme type system parametrised by signature Σ [Pe] and equations ℰ
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 25 Figure 2.5: Translation from λhol to λΠ[stt].
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 27 Figure 2.7: Translation of types from PVS-Cert to λΠ[Pe].
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 2 Figure 2.11: Definition of two sorted lists with different proofs.

  The induction hypothesis becomes by definition of the translation Γ ⊢ [Pe] Type ∶ ⋆ and we can derive ⊢ [Pe] Γ , 𝑣 ∶ Type with decl If 𝑠 is Type, since Γ ⊢ [Pe] Type ∶ ⋆ by declaration (2.4) Page 37, we can derive with decl ⊢ [Pe] Γ, 𝑣 ∶ 𝑇 because Type = Type. Otherwise, 𝑠 is Type or Prop and 𝑇 = 𝜉 [𝑇] Γ where 𝜉 is El or Prf. Because both El and Prf have ⋆ as domain (declarations (2.6) and (2.7)), Γ ⊢ [Pe] 𝑇 Γ ∶ ⋆ and finally, ⊢ [Pe] Γ, 𝑣 ∶ 𝑇 by application decl. VAR 𝑣 ∶ 𝑇 ∈ Γ ⊢ Pe Γ Γ ⊢ Pe 𝑣 ∶ 𝑇 By definition, [𝑣] = 𝑣 and by induction hypothesis, ⊢ [Pe] Γ . Since 𝑣 ∶ 𝑇 ∈ Γ, by definition, there is Δ ⊊ Γ where ⊢ Pe Δ such that, 𝑣 ∶ 𝑇 Δ ∈ Γ . Hence Γ ⊢ [Pe] 𝑣 ∶ 𝑇 Δ and finally Γ ⊢ [Pe] 𝑣 ∶ 𝑇 Γ because contexts are well formed.
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 2 Figure 2.13 Page 54 provides the inference rules of a bidirectional type checker for λΠmr, based on the work of Lennon-Bertrand 2021. Following (ibid.), we introduce constrained inference whenever some specific shape for terms is expected. In rules b-prod-c and b-sort-c, we must ensure that reduction ⟶ 𝛽,ℛ preserves the postconditions of synthesis: if Γ ⊢ 𝑡 ∶ 𝐴 and 𝐴 ⟶ 𝛽,ℛ 𝐵, then Γ ⊢ 𝑡 ∶ 𝐵. The first premise of rule b-sort-c does not involve rewriting because of Proposition 3.There is no need to check the well formedness of signatures in the bidirectional type checker (for the same reason as for contexts). Well formedness of contexts and signatures is assumed as preconditions for the type checker to behave well.
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 213 Figure 2.13: Bidirectional type checker for λΠmr.

  .2 Page 32, we would have the following definition where -denotes the transla-∶ psub(𝐴, 𝑃) )
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 3 Figure 3.1 defines a refiner parametrised by a cast relation for λΠmr. Most inference rules are the same as the type checker's one in Fig. 2.13 Page 54 with a new output. The main difference lies in the check rule b-check: the judgement Γ ⊢ 𝑡 ⇐ 𝐴 may hold even when the type inferred from 𝑡 is not convertible with 𝐴. In that case a coercion may be used to transform 𝑡 (of type 𝑇) into a term 𝑢 of type 𝐴. Denoting 𝑇 the type inferred from 𝑡, this transformation is represented by the judgement 𝑡 ∶ 𝑇 <∶ 𝐴 ⇝ 𝑢. Type 𝑇 may be called the source type and 𝐴 the target type. Definition 19 (Cast relation). A cast relation is a subset of 𝒯 4 where 𝒯 abbreviates the set of terms of λΠmr. The cast relation is denoted 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢.For any well-formed λΠmr type system, a cast relation is valid if it satisfies the following property
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 31 Figure 3.1: Bidirectional type inference and type checking with refinement for λΠmr.

  Some refiners have more than one introduction rule for the checking relation. In particular, Asperti, Ricciotti, Coen and Tassi 2018; Norell 2007; Pierce and Turner 2000 provide the following rule r-check-abst

  𝑖where 𝑒[𝑒 𝑖 ] 𝑖 denotes that terms 𝑒 𝑖 may occur in 𝑒, declare a rewrite rule𝜅 (𝑝 ∶ 𝑋 <∶ 𝑌) ⟶ 𝑒[𝜅 (𝑝 𝑖 ∶ 𝑋 𝑖 <∶ 𝑌 𝑖 ) 𝑖 ] .

Example 13 .

 13 In this example, we use the typing relation λΠ[sPe]. The following coercion (𝜅 Type ⋆ 𝑥) ⟶ (El 𝑥)

Proof.

  By simultaneous induction over Γ ⊢ 𝔎 𝑡 ⇒ 𝐴 and Γ ⊢ 𝔎 𝑡 ⇐ 𝐴. We use the typing rules of Fig. 2.13 Page 54. Rules b-prod, b-abst, b-appl are handled by induction hypothesis.

  2.3 Page 37 and use usual encoding techniques given in Section 2.2.1 Page 37. In our framework, parametric coercions are coercions where the right hand side issues recursive calls to the coercion operator. Parametric coercions can also be used to inline the definition of lv, (𝜅 List (Vec 𝑛) nil) ⟶ vnil (𝜅 List (Vec (succ 𝑛)) (cons 𝑥 ℓ)) ⟶ (vcons (len ℓ) 𝑥 (𝜅 List (Vec 𝑛) ℓ))

Figure

  Figure 4.1: Inference rules for implicit predicate subtyping.

Conjecture 2 .

 2 Rewrite relation ⟶ 𝛽,ℛ [sPe] defined in Definition 33 is confluent on well-typed terms. Definition 34 (λΠ[sPe]). We denote λΠ[sPe] the λΠmr type system defined by the signature Σ [Pe] of λΠ[Pe] (defined in Definition 13 Page 38) and the rewrite system ℛ [sPe] (defined in Definition 33). Its congruence is denoted ≃ [sPe] .
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 43 Figure 4.3: Coercion rules for predicate subtyping in PVS-Cert.
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 5 Page 85) parametrised by signature Σ [Pe] (Fig. 2.4 Page 39), by the rewrite relation ℛ [sPe] (Definition 33 Page 90), by the coercion system 𝒞 [Pe] (Fig. 4.4 Page 98) and by the subtype projection ≺ (Definition 35 Page 101).
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 45 Figure 4.5: Reasoning steps for the abstraction case of Lemma 26.
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 47 Figure 4.7: Proof steps for case r-check of Lemma 26.
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 48 Figure 4.8: Proof steps for Lemma 27, case 𝑡 = Π𝑥 ∶ 𝑒, .

  induction hypothesis hold because for each judgement, its inputs are well formed thanks to previous judgements). With rule r-sign and Item 1 we can derive 3. Γ ∘ ⊢ (El [𝐴]) ∶ ⋆ ⇝ (El 𝐴 ′ ) where 𝐴 = (El [𝐴]). We can apply rule r-check on Item 3 and Item 2 to obtain Γ ∘ , 𝑥 ∶ (El 𝐴 ′ ) ⊢ 𝜆𝑥 ∶ 𝐴 , [𝑡] ∶ Π𝑥 ∶ (El 𝐴 ′ ), (El 𝐵 ′ ) ⇝ 𝜆𝑥 ∶ (El 𝐴 ′ ), 𝑡 ′ . Finally, note that Π𝑥 ∶ 𝐴, 𝐵 = (El([𝐴] ⇝ [𝐵])), hence by rule r-sign, Γ ∘ ⊢ (El ([𝐴] ⇝ [𝐵])) ∶ ⋆ ⇝ (El (𝐴 ′ ⇝ 𝐵 ′ )). Furthermore, (El(𝐴 ′ ⇝ (𝜆𝑥, 𝐵 ′ ))) ⟶ * 𝛽,ℛ [sPe] Π𝑥 ∶ El𝐴 ′ , (El𝐵 ′ ) so we can use the rule r-check to conclude Γ ∘ , 𝑥 ∶ (El 𝐴 ′ ) ⊢ 𝜆𝑥 ∶ 𝐴 , [𝑡] ∶ (El (𝐴 ′ ⇝ (𝜆𝑥, 𝐵 ′ ))) ⇝ 𝜆𝑥 ∶ (El 𝐴 ′ ), 𝑡 ′ .

  Figure 5.1: BNF grammar of Lambdapi statements. Non terminal are written between angles ⟨like this⟩. Optional groups are written between square brackets followed by a question mark [like this]?. The class ⟨id⟩ is the class of identifiers, it is left unspecified (in practice, it may be the class of words formed with ASCII letters). The class ⟨𝑡⟩ is the class of terms of type systems modulo (see Definition 2 Page 28) with holes ♦ (see Section 3.3 Page 82).

  double(x: real) : real = x + x declares that double(x) expands to x + x. It is translated as the following declarations symbol double ∶ (El ([real] ⇝ (𝜆𝑥, [real]))) ≔ 𝜆𝑥, 𝑥 + 𝑥;

Figure 5 . 2 :

 52 Figure 5.2: Theory for stacks with polymorphism.

  F. Gilbert 2018, Section 2.1.2). The ternary (propositional) 'if' can be encoded by symbol if ∶ Π𝑝 ∶ (El o), (El ((Prf 𝑝) ⇝ o)) → (El ((Prf (¬ 𝑝)) ⇝ o)) → (El o) ≔ 𝜆𝑝, 𝜆then, 𝜆else, (𝑝 ⇒ then) ⇒ (𝜆𝑥, (¬ 𝑝) ⇒ else);

  symbol match [l: A.N] [ret: Set] [tt: T l] (arg: El (code tt)):El (mkarr tt ret) → El ret; rule match nil $e ↪ $e with match (&cons$x $y) $f ↪ match $y ($f $x) with match (cons $x $y) $f ↪ match $y ($f $x);Function mkarr is defined by injective symbol mkarr [n: A.N]: T n → Set → Set; rule mkarr nil! $Ret ↪ $Ret with mkarr (&cons! $X $Q) $Ret ↪ arrd $X (λ x, (mkarr ($Q x) $Ret)) with mkarr (cons! $X $Q) $Ret ↪ arr $X (mkarr $Q $Ret); so that, denoting [A,B] for a (non dependent) telescope and A ~> B for an encoded arrow, mkarr [A, B] ret returns A ~> B ~> ret, that is, mkarr transforms a telescope into a function type with ret for codomain. With these functions, we are able to translate a statement such as XOR(A: bool, B: bool) = (A /= B) by symbol XOR ∶ (El [[A, B -> bool]]) ≔ 𝜆𝑥, (match 𝑥 (𝜆𝐴 𝐵 ∶ (El [Prop]), [A /= B])); where the variables A and B of the body A /= B are captured by the variables of the variables 𝐴 and 𝐵 of the abstraction.

  constant symbol Restriction: Set → Set → TYPE; where an inhabitant of Restriction A B is an evidence that A is a subtype of B. Then the inference rules are encoded: constant symbol Rest-refl (a: Set): Restriction a a; constant symbol Rest-sub (a: Set) (p: El (a ~> prop)): Restriction (psub [a] p) a; constant symbol Rest-trans (a b c: Set): Restriction a b → Restriction b c → Restriction a c; constant symbol Rest-fun (d r0 r1: Set): Restriction r0 r1 → Restriction (d ~> r0) (d ~> r1); constant symbol Rest-tuple [len: A.N] (hd0: Set) (tl0: TL.T len) (hd1: Set) (tl1: TL.T len): Restriction hd0 hd1 → Restriction (TL.code tl0) (TL.code tl1) → Restriction (TL.code (TL.cons! hd0 tl0)) (TL.code (TL.cons! hd1 tl1)); and we can define the cast operator symbol cast (a: Set) (b: Set) (_: Restriction a b) (_:El a): El b;

Figure 5 .

 5 Figure 5.3: Inference rules to derive subtyping judgements 𝐴 ≤ 𝐵.

  min_nat[T: TYPE FROM nat]: THEORY min(S: (nonempty?[T])): {a | S(a) AND (FORALL x: S(x) IMPLIES a <= x)} [...] END min_nat would be translated as symbol min ∶ Π𝑇 ∶ Type, (Restriction 𝑇 nat) → Π𝑆 ∶ (El (psub (nonempty? 𝑇))), …;

  constant symbol rc: Set; constant symbol make_rc (_: El T1) (_: El T2): El rc; constant symbol a_of_rc : El (rc ~> T1); constant symbol b_of_rc : El (rc ~> T2); and then translate (# a := e1, b := e2 #) by make_rc a b; given a record value v, projection v`a is translated as a_of_rc v and v`b as b_of_rc v.

  TC(R)(x, y): INDUCTIVE bool = R(x,y) OR (EXISTS z: TC(R)(x,z) AND TC(R)(z,y))

Figure 5 . 4 :

 54 Figure 5.4: Commands to call the translator. The translator is called on the theory 'booleans'. Prompts starting with $ are shell prompts, the ones starting with * are Lisp prompts. The output of each command directly follows the prompt up to the next prompt.

  Developing in Lisp may feel odd in regard with other languages. Readers may consult the blogpost of Losh 2018 for an overview of the tooling used to program in Lisp. PVS is itself a Lisp image with additional functions to parse PVS files, prove propositions interactively, assert whether two PVS terms are equal &c. Documentation may be obtained using usual Lisp introspection facilities. For instance, the function describe can be used $ ./pvs -raw [...] * (describe 'lambda-expr) PVS:LAMBDA-EXPR [symbol] LAMBDA-EXPR names the standard-class #<STANDARD-CLASS PVS:LAMBDA-EXPR>: Class precedence-list: LAMBDA-EXPR, BINDING-EXPR, EXPR, SYNTAX, STANDARD-OBJECT, SB-PCL::SLOT-OBJECT, T Direct superclasses: BINDING-EXPR Direct subclasses: RECURSIVE-DEFN-CONVERSION, TUPTYPE-CONVERSION, RECTYPE-CONVERSION, FUNTYPE-CONVERSION, FIELDEX-LAMBDA-EXPR, LET-LAMBDA-EXPR, SET-EXPR, LAMBDA-CONVERSION, LAMBDA-EXPR-WITH-TYPE No direct slots. * (describe 'binding-expr) PVS:BINDING-EXPR [symbol] BINDING-EXPR names the standard-class #<STANDARD-CLASS PVS:BINDING-EXPR>: Class precedence-list: BINDING-EXPR, EXPR, SYNTAX, STANDARD-OBJECT, SB-PCL::SLOT-OBJECT, T Direct superclasses: EXPR Direct subclasses: QUANT-EXPR, LAMBDA-

Definition 39 .

 39 An indexing function 𝑓 ∶ 𝒴 → 𝒳 is an injection that can be extended to a mapping f ∶ 𝒯(𝒳 ∪ 𝒴) → 𝒯(𝒳) defined byf (𝑡 𝑢) = ( f(𝑡) f(𝑢)) f(𝜆𝑥 ∶ 𝑇 , 𝑡) = 𝜆𝑥 ∶ f(𝑇 ), f(𝑡) f(Π𝑥 ∶ 𝑇 , 𝑈 ) = Π𝑥 ∶ f(𝑇 ), f(𝑈 ) f(𝑥) = 𝑥 f(?𝑥) = 𝑥

  Figure 6.1: Translation of the proof of the formula xor_def from the theory xor_def. PVS' prompt is preceded by *. The proof has only one inference step which is converted into the let-binding _v2. The final proof term is also _v2.

Conjecture 3 .

 3 Let 𝒯 Pe = 𝒯({Prop, Type, Kind}, {psub, pair, 𝜋 ℓ , 𝜋 𝑟 }). Then there is a function 𝜙 ∶ 𝒯 Pe × 𝒯({Prop, Type, Kind}) → 𝒯 Pe such that, for all 𝑃, whenever ⊢ 𝜋 ∶ ⟨𝑃⟩, then 𝜙(𝑃 , 𝜋) reduces to a proof term in 𝒯 Pe and ⊢ 𝜙(𝑃 , 𝜋) ∶ 𝑃. Related works Procedure |-| is a minimal version of the extraction phase handled by Ekstrakto (El Haddad 2021; Haddad, Burel and Blanqui 2019).
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	.1: Main differences with (Hondet and Blanqui 2021)
	Expanded formalism in Section 2.1
	New section on conservativity of computations (Section 2.5)
	New section on bidirectional type checkers (Section 2.4.2)
	Replaced encoded Prop by El o
	Removed encoded type and Kind which were the encoding of the sorts of
	PVS-Cert, only Type remains as encoded sort (and o)

2.1.3 Predicate subtyping Predicate

  subtyping introduces four new symbols in simple type theory: the type construction for predicate subtypes psub, an introduction of predicate subtypes pair and two eliminators 𝜋 ℓ and 𝜋 𝑟 . A predicate subtype psub(𝐴, 𝑃) is defined from a supertype 𝐴 and predicate 𝑃 over 𝐴. Terms inhabiting a predicate subtype psub(𝐴, 𝑃) are built with pair(𝐴, 𝑃 , 𝑡, ℎ) made of a term 𝑡 that stands for an actual value of type 𝐴 and a proof ℎ that 𝑡 validates 𝑃. Eliminators allow either to retrieve a value out of 𝑢 using 𝜋 ℓ (𝐴, 𝑃 , 𝑢), or to retrieve a proof that 𝑢 validates 𝑃 with 𝜋 𝑟 (𝐴, 𝑃 , 𝑢)

	2.1. PVS-CERT: A MINIMAL SYSTEM WITH PREDICATE SUBTYPING
	psub [𝑇 ∶ Type; 𝑃 ∶ 𝑇 → Prop] ∶ Type ∶ Kind
	pair [𝑇 ∶ Type; 𝑃 ∶ 𝑇 → Prop; 𝑥 ∶ 𝑇 ; ℎ ∶ 𝑃 𝑥] ∶ psub(𝑇 , 𝑃) ∶ Type
	𝜋 ℓ [𝑇 ∶ Type; 𝑃 ∶ 𝑇 → Prop; 𝑥 ∶ psub(𝑇 , 𝑃)] ∶ 𝑇 ∶ Type
	𝜋 𝑟 [𝑇 ∶ Type, 𝑃 ∶ 𝑇 → Prop, 𝑥 ∶ psub(𝑇 , 𝑃)] ∶ 𝑃 (𝜋 ℓ (𝑇 , 𝑃 , 𝑥)) ∶ Type
	Figure 2.2: Signature Σ Pe of PVS-Cert.

  We prove that ↔ pi steps can be postponed:↔ pi ⟶ 𝛽,𝜋 ℓ ⊆ ⟶ = 𝛽,𝜋 ℓ ↔ *pi . Assume that the ↔ pi step is at position 𝑝 and the ⟶ 𝛽,𝜋 ℓ step is at position 𝑞. If 𝑝 and 𝑞 are disjoint, this is immediate. If 𝑝 is above 𝑞, then pair(𝑎, 𝑏, 𝑚, ℎ 1 ) ↔ pi pair(𝑎, 𝑏, 𝑚, ℎ 2

	CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING
	Proof.
	ℓ where ⟶𝜋 ℓ is the closure by substi-
	tution and context of Eq. (2.3) oriented from left to right, and let ↔ pi be the
	smallest congruence containing Eq. (2.2). Then
	• ≃ Pe ⊆ ⟶ * 𝛽,𝜋 ℓ ↔ * 𝑝𝑖 ⟵ * 𝛽,𝜋 ℓ
	• if 𝑡 and 𝑢 are well typed and 𝑡 ≃ Pe 𝑢, then they have the same type modulo
	≃ Pe .

4 Mechanising type checking 2.4.1 Deciding equivalence

  The encoding of PVS-Cert into λΠme can be used to proof check terms of PVS-Cert using a type checker for λΠme. But because of the conv rule, type checking cannot be decidable if ≃ [Pe] is not. To implement decidable equivalences, one may resort to rewriting[START_REF] Baader | Term rewriting and all that[END_REF]): given a convergent (i.e. confluent and terminating) rewrite relation ⟶ 𝑅 , if ≃ 𝑅 is the smallest congruence containing ⟶ 𝑅 , then 𝑠 ≃ 𝑅 𝑡 can be decided by computing and comparing the normal forms of 𝑠 and 𝑡 with respect to ⟶ 𝑅 . Consequently, while type checkers cannot be provided for λΠme in general, they can when ≃ is the smallest congruence containing a convergent rewrite relation (Guillaume[START_REF] Burel | Dedukti: a Logical Framework based on the 𝜆Π-Calculus Modulo Theory[END_REF]. Such type systems are named 'λΠ-calculus modulo rewriting' shortened λΠmr.

[Pe] f [𝒕] Γ ∶ {[𝑻]/𝒙} 𝑈 . By Lemma 2, we obtain Γ ⊢ [Pe] f [𝒕] Γ ∶ {𝒕/𝒙} 𝑈 . Moreover, we have taken care to define the translation in Fig. 2.6 Page 40 such that [𝑓(𝒕)] = f [𝒕].

2.

  2.12 and ≃ [Pe] the congruence of λΠ[Pe] (defined in Definition 13 Page 38). Then ≃ [Pe] ⊆ ≃ 𝛽,ℛ [Pe] .

	Proof. It is enough to prove that every equation of PVS-Cert is included in
	≃ ℛ [Pe] ,𝛽 . This is immediate for Eqs. (2.11) to (2.13) since they are equal to the
	rules (2.24) to (2.26). For Eq. (2.2), we have

  appl, induction hypothesis gives Γ ⊢ 𝑡 ⇒ 𝐶 with 𝐶 ≃ Π𝑥 ∶ 𝐴, 𝐵. By confluence of 𝛽 ∪ ℛ and product compatibility (seeSaillard 2015, Theorem 2.6.11), 𝐶 ⟶ 𝛽,ℛ Π𝑥 ∶ 𝐶 1 , 𝐶 2 where 𝐶 1 ≃ 𝐴 and 𝐶 2 ≃ 𝐵. Hence Γ ⊢ 𝑡 ⇒ Π Π𝑥 ∶ 𝐶 1 , 𝐶 2 . Induction hypothesis also gives Γ ⊢ 𝑢 ⇒ 𝐴 ′ with 𝐴 ′ ≃ 𝐴. By transitivity of ≃, we can apply b-check to derive Γ ⊢ 𝑢 ⇐ 𝐶 1 and then apply rule b-appl.Rule sign can be replaced by b-sign: induction hypotheses give Γ ⊢ 𝑡 𝑖 ⇒ {𝑡 𝑗 /𝑥 𝑗 }

𝑗<𝑖

𝐴 ′

𝑖 with {𝑡 𝑗 /𝑥 𝑗 } 𝐴 ′ 𝑖 ≃ {𝑡 𝑗 /𝑥 𝑗 } 𝐴 𝑖 , with which b-check can be applied sequentially. Note that Σ (or at least the declaration used) is well formed by hypothesis, since 𝒙 ∶ 𝑨 ⊢ 𝐵 ∶ 𝑠 is a premise.

  To prove such property, the conservativity of computations is needed: whenever encoded term[𝑡] computes to encoded term[𝑢] in the framework, then 𝑡 computes to 𝑢 in the original system. In our case, we must prove that the joinability defined by 𝛽 and the rewrite rules of ℛ [Pe] (i.e. the congruence for the encoding of PVS-Cert in λΠmr) does not identify more terms than the original equivalence ≃ Pe (Definition 10) (seeFelicissimo 2022, Proposition 37). In the presence of proof irrelevance and mechanised typing, the introduction of terms pair † may prevent the former property to hold. We prove in Proposition 8 Page 59 that symbols added to encodings to implement proof irrelevance do not allow the conversion to identify more terms.Said differently, any ⟶ † rewrite step is either involved in a pair projection, or it is used to discard a proof, in which case the proof can be discarded at the end of the rewrite sequence. Therefore, any rewrite sequence can be reordered into a sequence 𝑠 + that involve ⟶ fst rewrite steps but no ⟶ † step, followed by a sequence of ⟶ † steps. Rewrite steps of 𝑠 + are straightforwardly conservative with respect to ≃ [Pe] , and then, remarking that for any position 𝑝, 𝑝 ⟶ † 𝑝 ⟵ † is precisely the equation for proof irrelevance, it is contained in ≃ [Pe] . We thus show that any sequence ⟶ * † ⟵ * † can be reordered into a sequence ( 𝑝 𝑖 ⟶ † 𝑝 𝑖 ⟵ † ) Let 𝑝 and 𝑞 be two positions and 𝑠, 𝑡, 𝑢 such that 𝑠 𝑝 ⟶ † 𝑡 𝑞 ⟶ 𝛽,ℛ [Pe]

We denote

• for any rewrite relation ⟶, 𝑠 𝑝 ⟶ 𝑡 if 𝑠 ⟶ 𝑡 where the rewrite rule is applied on position 𝑝 (so 𝑠 = {𝜎ℓ/𝑝} 𝑠 ⟶ {𝜎𝑟/𝑝} 𝑠 = 𝑡 where ℓ ⟶ 𝑟)

• ⟶ † the context and substitution closure of rule (2.22) Page 51,

• ⟶ fst † the context and substitution closure of rewrite rule (2.23),

• ⟶ fst the context and substitution closure of Eq. (

2

.19) oriented from left to right.

• ℛ + the rewrite system containing rules (2.24) to (2.26) and identity

(2.19) 

oriented from left to right (therefore, ℛ + is ℛ [Pe] without the rules that involve pair † , which are replaced by another rule).

We intend to show that any ⟶ † rewrite step can either be grouped with a ⟶ fst † rewrite step, resulting in a ⟶ fst rewrite step, or it can be postponed. * 𝑖 .

Lemma 5.

  ℛ [Pe] 𝑁. By Lemma 6, there are 𝑀 ′ and 𝑁 ′ such that 𝑀 ⟶ * 𝛽,ℛ + 𝑀 ′ ⟶ * † 𝛼 ⟵ * † 𝑁 ′ ⟵ * 𝛽,ℛ + 𝑁 . By Lemma 8, 𝑀 ′ ≃ [Pe] 𝑁 ′ . Since ⟶ 𝛽,ℛ + ⊆ ≃ [Pe] (all rules of ℛ + and Eq. (𝛽) are contained in ≃ [Pe] ), we have 𝑀 ≃ [Pe] 𝑀 ′ , 𝑁 ≃ [Pe] 𝑁 ′ , and finally by transitivity of ≃ [Pe] , 𝑀 ≃ [Pe] 𝑁.

  [Pe] are typeable in λΠ[Pe] by induction hypothesis. For rule b-check, by induction hypothesis, Γ ⊢ λΠ[Pe] 𝑡 ⇒ 𝐴 ′ . Then because there is no rule with symbol 𝜈 in ℛ [Pe] and because 𝜈 does not appear in 𝐴 ′ nor 𝐴, we have 𝐴 ′ ≃ [sPe] 𝐴. Other rules are easily handled using the induction hypotheses. Relation ≺ 𝜈 defined by 𝑇 ≺ 𝜈 Π𝑥 ∶ 𝑈 1 , 𝑈 2 if and only if (𝜈 𝑇) ⟶ * ℛ 𝜈 Π𝑥 ∶ 𝑈 1 , 𝑈 2 is sound and complete with respect to ≺ from Definition 35:

	Proposition 15.

  𝑠 1 ∶ 𝑆 1 <∶ {𝑢 ′ /𝑥} Π𝑧 ∶ 𝐵 1 , 𝐵 2 ⇝ 𝑞 1 Π𝑧 ∶ 𝑅 1 , 𝑅 2 <∶ {𝑢 ′ /𝑥} Π𝑧 ∶ 𝐵 1 , 𝐵2 Initial proof steps for the application case of Lemma 26. abstraction of the form 𝜆𝑧, 𝑞 11 where 𝑞 11 ≃ [sPe],𝛽 𝑡 ′ 11 . By Lemma 24, 𝑟 1 is also an abstraction of the form 𝑟 1 = 𝜆𝑧, 𝑟 11 . Lemma 14 and Eq. (4.19) Pages 93 and 106 give 𝑟 11 ∶ 𝑅 2 <∶ {𝑢 ′ /𝑥} 𝐵 2 ⇝ 𝑞 11 because coercion is stable by substitution, we get, {𝑟 2 /𝑧} 𝑟 11 ∶ {𝑟 2 /𝑧} 𝑅 2 <∶ {𝑟 2 /𝑧} {𝑢 ′ /𝑥} 𝐵 2 ⇝ {𝑟 2 /𝑧} 𝑞 11 and we also have {𝑟 2 /𝑧} 𝑞 11 ≃ {𝑟 2 /𝑧} {𝑢 ′ /𝑥} 𝑡 ′ 11 by stability of ≃ and because ((𝜆𝑧, 𝑟 11 ) 𝑟 2 ) ⟶ 𝛽 {𝑟 2 /𝑧} 𝑟 11 , we can apply Lemma 19 Page 95 to obtain ((𝜆𝑧, 𝑟 11 ) 𝑟 2 ) ∶ {𝑟 2 /𝑧} 𝑅 2 <∶ {𝑟 2 /𝑧} {𝑢 ′ /𝑥} 𝐵 2 ⇝ {𝑟 2 /𝑧} 𝑞 ′ {𝑢 ′ /𝑥} 𝑡 ″ ∶ {𝑢 ′ /𝑥} 𝑇 <∶ {𝑢 ′ /𝑥} 𝐵 ⇝ 𝑒 3

	Γ ⊢ {𝑢/𝑥} 𝑡 ∶ {𝑢 ′ /𝑥} 𝑇 ⇝ 𝑒 1	induction hypothesis	(4.21)
	𝑒 1 ≃ {𝑢 ′ /𝑥} 𝑡 ″	induction hypothesis	(4.22)
	Γ ⊢ {𝑢/𝑥} 𝑡 ⇝ 𝑒 2 ∶ 𝐸 2	inversion of Eq. (4.21)	(4.23)
	𝑒 2 ∶ 𝐸 2 <∶ {𝑢 ′ /𝑥} 𝑇 ⇝ 𝑒 1		inversion of Eq. (4.21)	Eqs. (4.11) and (4.13) (4.24)
				stability (Lemma 18)	(4.25)	(4.14)
	𝑞 1 ≃ {𝑢 ′ /𝑥} 𝑡 ′ 1 𝑒 3 ≃ {𝑢 ′ /𝑥} 𝑟 stability (Lemma 18) idem	(4.26)	(4.15)
	Γ ⊢ {𝑢/𝑥} 𝑡 1 ⇝ 𝑠 1 ∶ 𝑆 1 𝑒 2 ∶ 𝐸 2 <∶ {𝑢 ′ /𝑥} 𝐵 ⇝ 𝑒 4 Lemma 17 and Eqs. (4.22), (4.24) and (4.25) inversion Eq. (4.14) inversion Eq. (4.14)	(4.27)	(4.16) (4.17)
	𝑆 1 ≺ * Π𝑧 ∶ 𝑅 1 , 𝑅 2 𝑒 3 ≃ 𝑒 4 Lemma 20 and Eqs. (4.24), (4.25) and (4.27) Lemma 23	(4.28)	(4.18)
				Lemma 23	(4.19)
	𝑅 1 ≃ {𝑢 ′ /𝑥} 𝐵 1	Lemma 14 and Eq. (4.19)	(4.20)
	Figure 4.6: 11
	and 𝑞 ′ 11 ≃ {𝑟 2 /𝑧} 𝑞 11 . Now, remarking that
	{𝑟 2 /𝑧} {𝑢 ′ /𝑥} 𝑡 ′ 11 ≃ {𝑢 ′ /𝑥} {𝑡 ′ 2 /𝑧} 𝑡 ′ 11
	(substitutions are sequential and not parallel), and ((𝜆𝑧, 𝑡 ′ 11 ) 𝑡 ′ 2 ) ⟶ 𝛽 {𝑡 ′ 2 /𝑧} 𝑡 ′ 11 ,
	we get by transitivity of ≃ that 𝑞 ′ 11 ≃ {𝑢 ′ /𝑥} ((𝜆𝑧, 𝑡 ′ 11 ) 𝑡 ′ 2 ). We can conclude
	with rule r-check.	

  Initial proof steps for Lemma 27, for the case ( 𝑒). 𝜆𝑥, 𝑢 11 ∶ Π𝑥 ∶ 𝑉 1 , 𝑉 2 <∶ Π𝑥 ∶ 𝑅 1 , 𝑅 2 ⇝ 𝜆𝑥, 𝑤 21 𝜆𝑥, 𝑢 11 ∶ Π𝑥 ∶ 𝑅 1 , 𝑉 2 <∶ Π𝑥 ∶ 𝑅 1 , 𝑅 2 ⇝ 𝜆𝑥, 𝑤 21 rule sub-red and Eq. (4.42) 𝑢 11 ∶ 𝑉 2 <∶ 𝑅 2 ⇝ 𝑤 21 Lemma 14 {𝑒/𝑥} 𝑢 11 ∶ {𝑒/𝑥} 𝑉 2 <∶ {𝑒/𝑥} 𝑅 2 ⇝ {𝑒/𝑥} 𝑤 21 stability Lemma 18 ((𝜆𝑥, 𝑢 11 ) 𝑒) ⟶ 𝛽 {𝑒/𝑥} 𝑢 11 ((𝜆𝑥, 𝑢 11 ) 𝑒) ∶ {𝑒/𝑥} 𝑉 2 <∶ {𝑒/𝑥} 𝑅 2 ⇝ 𝑐

				(4.38)
				(4.39)
				(4.40)
				(4.41)
		𝛽 𝑅 1	Lemma 14 and Eq. (4.40)	(4.42)
	Figure 4.10: Lemma 19	(4.43) (4.44) (4.45)
	𝑐 ≃ [sPe],𝛽 {𝑒/𝑥} 𝑤 21	idem 2
	Figure 4.11:	Proof steps for stability by context, Lemma 27, case ( 𝑒) in
	presence of 𝛽 redexes.	

  .46) By inversion, there are 𝑋 ′ and 𝑋 such thatΓ ∘ ⊢ [𝑡] ⇝ 𝑡 ′ ∶ Π Π𝑥 ∶ 𝑋 ′ , 𝑋.We have, 𝑋 ′ ≃ (El 𝐵 ′ 1 ) because either rule sub-fun is used or rule r-cast. Hence we can deriveΓ ∘ ⊢ [𝑡 𝑢] ⇝ (𝑡 ′ 𝑢 ′ ) ∶ {𝑢 ′ /𝑥} 𝑋 using induction hypothesis Γ ∘ ⊢ 𝑢 ∶ (El 𝐵 ′ 1 ) ⇝ 𝑢 ′ .Finally we must verify that we have Γ ∘ ⊢ [𝑡 𝑢] ∶ 𝐴 ′ ⇝ 𝑡 ″ where Γ ∘ ⊢ [{𝑢/𝑥} 𝐵 2 ] ∶ Type ⇝ 𝐴 ′ and 𝐴 ′ ≃ {𝑢 ′ /𝑥} 𝐵 ′ 2 by Lemma 26 Page 104. Either {𝑢 ′ /𝑥} 𝑋 ≃ (El {𝑢 ′ /𝑥} 𝐵 ′ 2

Table 5 .

 5 1: Distribution of the ratios between the size of theories translated to Dedukti (with explicit predicate subtyping) and the size of theories translated to Lambdapi (with implicit predicate subtyping). The first cell indicates that theories translated to Dedukti are in average 21.3 times bigger than the theories translated to Lambdapi. Columns labelled '25%', '50%' and '75%' are the first, second and third quartiles. Axiom declarations for type correctness conditions that appear in Dedukti files are not counted.

	Mean Std. dev Min 25% 50% 75% Max
	21.3	63.1	0.761 1.47 2.17 5.20 386
	Table 5.2: Size and type checking time of some theories of PVS' 'Prelude'
	listed in topological order. The first line indicates that the theory 'functions'
	weighs 8Kio when translated to Lambdapi (with implicit predicate subtyping),
	22Kio when translated to Dedukti (with explicit predicate subtyping), Lambdapi
	takes 0.04 seconds (wall clock time) to type check (and refine) the translation
	and Dedukti takes 0.00 second as well to type check the (refined) translation.
	Theories have been type checked on a processor 'Intel Core i5-8265U' with 15GiB
	of random access memory.			
	Theory	LSize (Kio) DSize (Kio) LTime (s) DTime (s)
	functions		7	22	0.04	0.00
	orders		10	25	0.05	0.00
	sets		15	44	0.08	0.01
	sets_lemmas		45	190	0.13	0.03
	naturalnumbers		11	4700	6.3	1.3
	real_defs		61	310 000	100	91
	real_props		130	21 000	20	8.4
	extra_real_props		170	220 000	55	120

  2 ⇒ … ⇒ 𝑃 or just 𝑃 if the sequence (𝑄 𝑖 ) 𝑖 is empty. | (𝜏 𝑖 ∶∶ 𝑄 𝑖 ) 𝑖 For the following function, we introduce the notion of named holes. Named holes are variables of a countable set 𝒴 noted ?𝑥 that are handled like regular holes by the type checker (with rule b-hole page 83). A proof problem 𝒫 is a set of judgements of the form {⊢ ?𝑥 ∶ 𝑃 } which states that ?𝑥 is a hole that should be replaced by a term of type 𝑃. The function (-) • annotates a proof tree with named holes: 𝜒 𝑖 , 𝒫 𝑖 ) 𝑖 = ((𝜏 𝑖 ) • )

			(	(𝜏 𝑖 ) 𝑖 𝑃	)	𝑖 in (	(𝜒 𝑖 ) 𝑖 ?ℎ ∶ 𝑃	, {⊢ ?ℎ ∶ 𝑃 } ⋃
		𝑃	| =	|𝜏 𝑖 | (⇒ 𝑄 𝑖 ) 𝑖 ⇒ 𝑃
	Trees can be annotated with proofs, such trees are noted
		…		…
	𝜌 1 ∶ 𝑄 1	𝜌 2 ∶ 𝑄 2
			𝜋 ∶ 𝑃		
	We define the function ‖-‖ that transforms proof-annotated proof trees to terms
	by					
	∥	(𝜏 𝑖 ) 𝑖 𝜋 ∶ 𝑃	∥ = (𝜋 ‖𝜏 𝑖 ‖ 𝑖 )	(6.1)

• = let (𝑖 𝒫 𝑖 ) (6.2)

  𝑄 1 ⋯ 𝜒 𝑛 ∶∶ 𝑄 𝑛 𝑃 By definition, |𝜏| is |𝜒 1 | ∶∶ 𝑅 1 ⋯ |𝜒 𝑛 | ∶∶ 𝑅 𝑛 𝑄 1 ⇒ … ⇒ 𝑄 𝑛 ⇒ 𝑃and (𝜏) • yields a proof problem 𝒫 = 𝒬 1 ∪…∪𝒬 𝑛 where for all 𝑖, (𝜒′ 𝑖 , 𝒬 𝑖 ) = (|𝜒 𝑖 |) • ; and a tree 𝜏 ′ 𝜒 ′ 1 ∶∶ (?𝑖 1 ∶ 𝑅 1 ) ⋯ 𝜒 ′ 𝑛 ∶∶ (?𝑖 𝑛 ∶ 𝑅 𝑛 ) ?ℎ ∶ 𝑄 1 ⇒ … ⇒ 𝑄 𝑛 ⇒ 𝑃 and ‖𝜏 ′ ‖ = (?ℎ ‖𝜒 ′ 1 ‖ … ‖𝜒 ′ 𝑛 ‖). By induction hypothesis, there are (Δ 𝑖 ) 𝑖 such that for all 𝑖, Δ 𝑖 ⊢ 𝐼(‖𝜒 ′ 𝑖 ‖) ∶ 𝑄 𝑖 . We define Δ such that for all judgement {⊢ ?𝑥 ∶ 𝑃 } ∈ 𝒫, (𝐼(?𝑥) ∶ 𝑃 ) ∈ Δ. Therefore, we can derive Δ ⊢ 𝐼(?ℎ) ∶ 𝑄 1 ⇒ … ⇒ 𝑄 𝑛 ⇒ 𝑃, and thus, by the application rule, we get Δ ⊢ 𝐼(?ℎ) (𝐼(‖𝜒 ′ 1 ‖)) … (𝐼(‖𝜒 ′ 𝑛 ‖)) ∶ 𝑃 where terms 𝐼(‖𝜒 ′ 𝑖 ‖) are typeable in Δ because by definition, for any 𝑖, Δ 𝑖 ⊆ Δ.

Discourse on the Method of Rightly Conducting One's Reason and of Seeking Truth in the Sciences, translations are by John Veitch

Also called the 'Boyer-Moore Theorem Prover'.

This equivalence between proofs and programs and between types and propositions has been called the 'propositions-as-type principle', or 'Curry-Howard correspondence'.

In contrast to the reduction of Sozeau

2006, which contains both projections.

For now, we have no guarantee on the behaviour of our encoding, and thus successfully type checking an encoded theory into λΠme brings no useful information on the source theory. Section 2.3 contains theorems to recover some guarantees on the encoding.

• If 𝑠 1 = Prop, then 𝑠 2 = Type, and the judgement is translated as Γ ⊢ [Pe] o ∶ Type. By induction hypothesis ⊢ [Pe] Γ holds. Using rule sign with Eq. (2.5), the judgement Γ ⊢ [Pe] o ∶ Type is derivable. • If 𝑠 1 = Type, then 𝑠 2 = Kind. In that case, the judgement is translated as Γ ⊢ [Pe] Type ∶ ⋆. It is derivable using sign with declaration (2.4) and the induction hypothesis to have ⊢[Pe] Γ . PROD Γ ⊢ Pe 𝑇 ∶ 𝑠 1 Γ, 𝑥 ∶ 𝑇 ⊢ Pe 𝑈 ∶ 𝑠 2 (𝑠 1 , 𝑠 2 , 𝑠 3 ) ∈ 𝒫 Γ ⊢ Pe Π𝑥 ∶ 𝑇 , 𝑈 ∶ 𝑠 3We only detail for the product (𝑠 1 , 𝑠 2 , 𝑠 3 ) = (Type, Prop, Prop), others being processed similarly. Because[Π𝑥 ∶ 𝑇 , 𝑈] Γ = ∀ [𝑇] Γ (𝜆𝑥 ∶ 𝑇 Γ , [𝑈] Γ,𝑥∶𝑇 )we want to show thatΓ ⊢ [Pe] ∀ [𝑇] Γ (𝜆𝑥 ∶ 𝑇 Γ , [𝑈] Γ,𝑥∶𝑇 ) ∶ Prop .By induction hypothesis we have Γ ⊢[Pe] [𝑇] ∶ Type and Γ, 𝑥 ∶ 𝑇 ⊢ [Pe] [𝑈] ∶ Prop . By definition of the translation, we obtain Γ ⊢ [Pe] [𝑇] ∶ Type and Γ , 𝑥 ∶ 𝑇 Γ ⊢ [Pe] [𝑈] ∶ Elo. Each judgement of the following sequence implies the derivability of the successive one,Γ ⊢ [Pe] 𝜆𝑥 ∶ 𝑇 Γ , [𝑈] Γ,𝑥∶𝑇 ∶ 𝑇 Γ → Elo derivable in λΠme Γ ⊢ [Pe] 𝜆𝑥 ∶ 𝑇 Γ , [𝑈] Γ,𝑥∶𝑇 ∶ El [𝑇] Γ → Elo by definition of -Γ ⊢ [Pe] 𝜆𝑥 ∶ 𝑇 Γ , [𝑈] Γ,𝑥∶𝑇 ∶ El([𝑇] Γ ⇝ o)by conv and Eq. (2.13) Γ ⊢ [Pe] ∀ [𝑇] Γ (𝜆𝑥, 𝑇 Γ [𝑈] Γ,𝑥∶𝑇 ) ∶ Elo by typing of ∀ in Σ [Pe] Γ ⊢ [Pe] ∀ [𝑇] Γ (𝜆𝑥, 𝑇 Γ [𝑈] Γ,𝑥∶𝑇 ) ∶ Prop because Prop = Elo

Finally, we proceed by case distinction on sorts 𝑠 𝑇 and 𝑠 𝑈 such that Γ ⊢ Pe 𝑇 ∶ 𝑠 𝑇 and Γ ⊢ Pe 𝑈 ∶ 𝑠 𝑈 . We will detail the case (𝑠 𝑇 , 𝑠 𝑈 ) = (Type, Prop). We haveΠ𝑣 ∶ 𝑇 Γ , 𝑈 Γ,𝑣∶𝑇 ≃ [Pe] Prf(∀ [𝑇] Γ (𝜆𝑥 ∶ 𝑇 Γ , [𝑈] Γ,𝑣∶𝑇 )) = Π𝑣 ∶ 𝑇 , 𝑈 Γwhich allows to conclude. APPL Γ ⊢ Pe 𝑀 ∶ Π𝑣 ∶ 𝑇 , 𝑈 Γ ⊢ Pe 𝑁 ∶ 𝑇 Γ ⊢ Pe (𝑀 𝑁 ) ∶ {𝑁 /𝑣} 𝑈 By induction hypothesis and conversion, we have Γ ⊢ [Pe] [𝑀] Γ ∶ Π𝑣 ∶ 𝑇 Γ , 𝑈 Γ,𝑣∶𝑇 (shown by case distinction on the sorts of 𝑇 and 𝑈) and Γ ⊢ [Pe] [𝑁] Γ ∶ 𝑇 Γ . Since [𝑀 𝑁] Γ = [𝑀] [𝑁], we obtain using appl Γ ⊢ [Pe] [𝑀 𝑁] ∶ {[𝑁] Γ /𝑣} 𝑈 Γ,𝑣∶𝑇 and by Lemma 2 Page 44, we obtain Γ ⊢ [Pe] [𝑀 𝑁] ∶ {𝑁 /𝑣} 𝑈 Γ . CONV

We first observe from Fig.2.4 Page 39 that for each 𝑓 ∈ Σ Pe , we havea counterpart symbol f ∈ Σ [Pe] such that if 𝑓[𝒙 ∶ 𝑻 ] ∶ 𝑈 ∶ 𝑠 ∈ Σ Pe then f[𝒙 ∶ 𝑻 ] ∶ 𝑈 𝒙∶𝑻 ∶ ⋆ ∈ Σ [Pe] .We verify that for each declaration in the signature, the second premise 𝒙 ∶ 𝑻 ⊢ 𝑈 ∶ 𝑠 holds.By induction hypothesis, for each 𝑖, we haveΓ ⊢ [Pe] [𝑡 𝑖 ] Γ ∶ {𝑡 𝑗 /𝑥 𝑗 } 𝑗<𝑖

Proof. The proof is close to the one of (ibid., Theorem 2), we remind the key points. By mutual induction on the typing derivation. Rules of the bidirectional system (including the new rule b-sign) are replaced by rules of the undirected system where b-check, b-prod-c and b-sort-c are replaced by conv. Rule b-abst uses an additional prod rule, we detail the derivation in the undirected system as an example (we dropped the type system annotation):Γ ⊢ 𝐴 ∶ ⋆ Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑠 𝐵 prod Γ ⊢ Π𝑥 ∶ 𝐴, 𝐵 ∶ 𝑠 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 abst Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ∶ Π𝑥 ∶ 𝐴, 𝐵where we omit the premise (⋆, 𝑠 𝐵 , 𝑠) ∈ 𝒫 𝜆Π for spacing issues. All leaves of the tree are obtained by induction hypothesis, with Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑠 𝐵 obtained by validity (sometimes called 'correctness of types') of pure type systems (H. P.[START_REF] Barendregt | Lambda Calculus with Types[END_REF][START_REF] Blanqui | Théorie des types et réécriture[END_REF][START_REF] Coquand | The Calculus of Constructions[END_REF]. In rule b-appl, because the reduction ⟶ 𝛽,ℛ preserves typing (by hypothesis on ℛ), 𝐴 1 is well sorted and hence the induction hypothesis can be applied on the second premise.

2.4. MECHANISING TYPE CHECKINGb-sort Γ ⊢ ⋆ ⇒ b-var (𝑥 ∶ 𝐴) ∈ Γ Γ ⊢ 𝑥 ⇒ 𝐴 b-prod Γ ⊢ 𝐴 ⇐ ⋆ Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ⇒ 𝒮 𝑠 (⋆, 𝑠, 𝑠) ∈ 𝒫 𝜆Π Γ ⊢ Π𝑥 ∶ 𝐴, 𝐵 ⇒ 𝑠 b-abst Γ ⊢ 𝐴 ⇐ ⋆ Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ⇒ 𝐵 Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ⇒ Π𝑥 ∶ 𝐴, 𝐵 b-appl Γ ⊢ 𝑡 ⇒ Π Π𝑥 ∶ 𝐴 1 , 𝐴 2 Γ ⊢ 𝑢 ⇐ 𝐴 1 Γ ⊢ (𝑡 𝑢) ⇒ {𝑢/𝑥} 𝐴 2 b-sign 𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ (Γ ⊢ 𝑡 𝑖 ⇐ {𝑡 𝑗 /𝑥 𝑗 } 𝑗<𝑖 𝐴 𝑖 ) 𝑖 Γ ⊢ (𝑓 𝒕) ⇒ {𝒕/𝒙} 𝐵 b-check Γ ⊢ 𝑡 ⇒ 𝐴 𝐴 ≃ 𝛽,ℛ 𝐵 Γ ⊢ 𝑡 ⇐ 𝐵 b-prod-c Γ ⊢ 𝑡 ⇒ 𝐴 𝐴 ⟶ * 𝛽,ℛ Π𝑥 ∶ 𝐴 1 , 𝐴 2 Γ ⊢ 𝑡 ⇒ Π Π𝑥 ∶ 𝐴 1 , 𝐴 2 b-sort-c

Protected symbols are called private by F.[START_REF] Thiré | Proof Irrelevance and Predicate Subtyping in Dedukti[END_REF] 

3.1. TERM REFINERr-sort Γ ⊢ ⋆ ⇝ ⋆ ∶ r-var (𝑥 ∶ 𝐴) ∈ Γ Γ ⊢ 𝑥 ⇝ 𝑥 ∶ 𝐴 r-abst Γ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴 ′ Γ, 𝑥 ∶ 𝐴 ′ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝐵 Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ⇝ 𝜆𝑥 ∶ 𝐴 ′ , 𝑡 ′ ∶ Π𝑥 ∶ 𝐴 ′ , 𝐵 r-prod Γ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴 ′ Γ, 𝑥 ∶ 𝐴 ′ ⊢ 𝐵 ⇝ 𝐵 ′ ∶ 𝒮 𝑠 (⋆, 𝑠, 𝑠) ∈ 𝒫 𝜆Π Γ ⊢ Π𝑥 ∶ 𝐴, 𝐵 ⇝ Π𝑥 ∶ 𝐴 ′ , 𝐵 ′ ∶ 𝑠 r-appl Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ Π Π𝑥 ∶ 𝐴 1 , 𝐴 2 Γ ⊢ 𝑢 ∶ 𝐴 1 ⇝ 𝑢 ′ Γ ⊢ (𝑡 𝑢) ⇝ (𝑡 ′ 𝑢 ′ ) ∶ {𝑢 ′ /𝑥} 𝐴 2 r-sign 𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ (Γ ⊢ 𝑡 𝑖 ∶ {𝑡 ′ 𝑗 /𝑥 𝑗 } 𝑗<𝑖 𝐴 𝑖 ⇝ 𝑡 ′ 𝑖 ) 𝑖 Γ ⊢ (𝑓 𝒕) ⇝ (𝑓 𝒕 ′ ) ∶ {𝒕 ′ /𝒙} 𝐵 r-prod-c Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ 𝐴 𝐴 ⟶ * 𝛽,ℛ Π𝑥 ∶ 𝐴 1 , 𝐴 2 Γ ⊢ 𝑡 ⇝ 𝑡 ′ ∶ Π Π𝑥 ∶ 𝐴 1 , 𝐴 2 r-sort-c

Example 8. In Example 7, there are two ways to coerce an integer to a boolean: either directly with IntToBool or by composing IntToFloat with FloatToBool. The coercion system is coherent if whatever the coercion system used, the result is the same, i.e., denoting the function composition with ∘, IntToBool = FloatToBool ∘ IntToFloat.Subtyping rules may often be used more than once in a row. For instance, assuming the derivationΓ ⊢ 2 ∶ Even Γ ⊢ 2 ∶ Int Γ ⊢ 2 ∶ Bool its translation, noted -is Γ ⊢ 2 ∶ Even Γ ⊢ 2 ∶ Int Γ ⊢ 2 ∶ Bool = (IntToBool Γ ⊢ 2 ∶ Even Γ ⊢ 2 ∶ Int ) =(IntToBool (EvenToInt 2)) .

In the sense given in Section

2.4, opposed to outputs 

[START_REF] Coen | Nonuniform Coercions via Unification Hints[END_REF] say that a coercion is parametric if it depends on other coercions.

4.1. PVS-CORE: A SYSTEM WITH IMPLICIT PREDICATE SUBTYPINGsubtype-elim Γ ⊢ 𝑡 ∶ psub(𝐴, 𝑃) Γ ⊢ 𝑡 ∶ 𝐴 subtype-intro

As defined in Section 1.1.2 Page 12.

A kibioctet (abbreviated Kio) is 2 10 = 1024 octets, a mebioctet (abbreviated Mio) is 2[START_REF] Blanqui | On the Implementation of Construction Functions for Non-free Concrete Data Types[END_REF] octets, or 1024Kio.

with the notable exception of Yices 1, which is no longer maintained

but lemmas and type correctness conditions themselves are recorded in proof states.

Satallax, 140 scons, 42-44 semig, 80 SemiGroup, 80 sequent calculus, 13 shallow, 81 signature, 28 slist, 42, 43 smt solver, 140 snil, 43, 44 sort, 29 soundness, 42 source, 63 specification, 12, 21 stack, 12, 43, 119 statement, 116 String, 34 subject reduction, 50 substitution, 104 subtyping, 11 suc, 42-44 succ, 80 supertype, 32 surjective pairing, 90 synthesis, 52 𝔖, 62 system f, 77 T, 121 tactic, 13 target, 63 TCC, 88 telescope, 29, 120 terminating, 44 theorem, 116 theory, 116 TPTP, 141 TSTP, 141 tuple, 120 Type, 31, 32, 34, 37, 40, 41, 46-49, 88, 89, 111-113, 122, 141 type code, 37 type preservation, 42 type system modulo, 28, 30 validity, 53 vcons, 79, 80 Vec, 79, 80 vl, 79 vnil, 79, 80 Yices, 13 Z, 80 zE, 34 ZenonModulo, 141 zero, 34, 42-44

Acknowledgements

In the last step, the product is well typed in λΠme since 𝑈 and 𝑇 are both of type ⋆ and thus the product is of type ⋆ as well.

[𝑋] = 𝑋 There is a straightforward translation from PVS-Core terms to PVS-Cert terms (see ibid., Definition 9.3.1). The main differences that we see between the two systems are that • pair, 𝜋 ℓ and 𝜋 𝑟 are not part of the syntax of PVS-Core, subtyping is implicit in PVS-Core;

• deduction and typing are separated: there is no proof term in PVS-Core.

Lemma 13. Functions [-] and -defined in Proof. The function [-] is called recursively on strict subterms of its argument, thus it terminates. Preservation of substitution for [-] is shown by structural induction on 𝑡. For -, either the argument is Type, in which case termination is immediate, or it is a direct consequence of the termination of [-]. We can say the same for preservation of substitution.

Encoding PVS-Core in λΠmr

Since terms of PVS-Core can be translated to the encoding of PVS-Cert in λΠmr, namely λΠ[Pe], we do not need to define a new encoding for PVS-Core. The following lemmas state some properties that can be obtained by inverting the coercion rules.

Lemma 14. Assume ⊢ λΠ[sPe] Γ, 𝑇 and Π𝑥 ∶ 𝐶 1 , 𝐶 2 are well-sorted in Γ using λΠ[sPe] and Γ ⊢ λΠ[sPe] 𝜆𝑥 ∶ 𝑇 0 , 𝑡 ⇐ 𝑇. If (𝜆𝑥 ∶ 𝑇 0 , 𝑡) ∶ 𝑇 <∶ Π𝑥 ∶ 𝐶 1 , 𝐶 2 ⇝ 𝑢, then '𝑢 = 𝜆𝑥 ∶ 𝑈 0 , 𝑢 0 ', '𝑇 0 ≃ [sPe],𝛽 𝑈 0 ', '𝑇 ≃ [sPe],𝛽 Π𝑥 ∶ 𝑇 0 , 𝑇 1 ', '𝐶 1 ≃ [sPe],𝛽 𝑇 0 ' and '𝑡 ∶ 𝑇 1 <∶ 𝐶 2 ⇝ 𝑢 0 '. Proof. By inversion of typing, 𝑇 must be a product. By definition of ⟶ ℛ [sPe] ,𝛽 , products are not convertible with terms of the form (El (psub …)), so only rule sub-fun can be applied.

Lemma 15. Assume ⊢ λΠ[sPe] Γ, Π𝑥 ∶ 𝑇 1 , 𝑇 2 and Π𝑥 ∶ 𝑈 1 , 𝑈 2 are well-sorted in

Proof. Rules sub-elim and sub-intro cannot be applied. Because 𝑓 is not an abstraction, rule sub-fun cannot be used either. We are left with rule r-cast which demands that Π𝑥 ∶ 𝑇 1 , 𝑇 2 ≃ [sPe],𝛽 Π𝑥 ∶ 𝑈 1 , 𝑈 2 and gives 𝑔 = 𝑓.

Lemma 16. The coercion system defined in Fig. 4.3 is stable by

Proof. Terms of the form (El (psub 𝑇 𝑃)) or Π𝑥 ∶ 𝑇 1 , 𝑇 2 are in head normal form: if (El (psub 𝑇 𝑃)) ⟶ * ℛ [sPe] ,𝛽 𝑈, then 𝑈 is of the form (El (psub 𝑈 0 𝑄)). The same property holds for products.

Lemma 17. The coercion system defined in Fig. 4.3 is transitive.

TUNING THE REFINER FOR PVS-CORE

Proof. Assume that the inference rule of Definition 23 Page 69 can be used. We show that any derivation using this rule can be transformed into a derivation not using this rule by induction on the size of the derivation.

If the last inference rule is not the transitivity rule, we conclude by induction hypothesis.

If the last inference is the transitivity rule, we operate by case distinction on the two premises 𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡 and 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢.

Case SUB-ELIM/any 𝑆 = (El (psub 𝑆 0 𝑃)) (fst 𝑆 0 𝑃 𝑠) ∶ (El 𝑆 0 ) <∶ 𝑇 ⇝ 𝑡 and by induction we can assume the right-hand derivation to be transitivity free, as well as the derivation of (El 𝑆 0 ) <∶ 𝑇. We use the transitivity rule to build a derivation of (fst 𝑆 0 𝑃 𝑠) ∶ 𝑆 0 <∶ 𝑈 ⇝ 𝑢 ′ . This derivation is strictly smaller than the original, so the induction hypothesis can be used to derive a transitivity-free derivation. We conclude using rule sub-elim.

Case any/SUB-INTRO 𝑈 = (El (psub 𝑈 0 𝑃)) ; 𝑇 <∶ 𝑈 0 Transitivity rule can be used to build a derivation of 𝑠 ∶ 𝑆 <∶ 𝑈 0 ⇝ 𝑢 0 . This derivation is smaller than the original one, therefore by induction hypothesis it is transitivity-free. We can conclude using rule sub-intro.

Case R-CAST/any 𝑆 ≃ [sPe],𝛽 𝑇 By confluence of ⟶ ℛ [sPe] ,𝛽 , there is a common reduct 𝑉 of 𝑆 and 𝑇. Therefore, we also have 𝑡 ∶ 𝑉 <∶ 𝑈 ⇝ 𝑢 ′ by Lemma 16. By induction hypothesis this derivation is transitivity-free. We conclude using sub-red.

Case any/R-CAST Idem.

Case SUB-INTRO/SUB-ELIM 𝑇 = (El (psub 𝑇 0 𝑃)) 𝑆 <∶ 𝑇 0 ; 𝑇 0 <∶ 𝑈 We can use the transitivity rule to build a derivation of 𝑠 ∶ 𝑆 <∶ 𝑈 ⇝ 𝑢 ′ . Since this derivation is strictly smaller than the original one, by induction hypothesis it is transitivity-free.

Case SUB-FUN/SUB-FUN 𝑆 = Π𝑥 ∶ 𝑆 1 , 𝑆

𝛽 𝑈 1 Induction hypothesis allows to build a transitivity-free derivation of 𝑆 2 <∶ 𝑈 2 . By transitivity of ≃ [sPe],𝛽 , we have 𝑆 1 ≃ [sPe],𝛽 𝑈 1 . We apply rule sub-fun to conclude.

Case SUB-RED/any 𝑆 ⟶ * ℛ [sPe] ,𝛽 𝑆 0 ; 𝑇 ⟶ * ℛ [sPe] ,𝛽 𝑇 0 𝑠 ∶ 𝑆 0 <∶ 𝑇 0 ⇝ 𝑡 Lemma 16 gives 𝑡 ∶ 𝑇 0 <∶ 𝑈 ⇝ 𝑢. Therefore we can build by induction hypothesis a transitivity-free derivation of 𝑠 ∶ 𝑆 0 <∶ 𝑈 ⇝ 𝑢. We conclude using rule sub-red.

Case any/SUB-RED Idem.

Lemma 18. The following properties hold for the coercion system defined by Fig. 4 Case SUB-INTRO 𝐵 = (El (psub 𝐵 0 𝑃)) ; 𝑢 0 = (pair 𝑢 00 ♦) 𝑡 0 ∶ 𝐴 <∶ (El 𝐵 0 ) ⇝ 𝑢 00 Induction hypothesis gives 𝑡 1 ∶ 𝐴 <∶ (El 𝐵 0 ) ⇝ 𝑢 10 with 𝑢 10 ≃ [sPe],𝛽 𝑢 00 . We can apply rule sub-intro to obtain 𝑡 1 ∶ 𝐴 <∶ (El (psub 𝐵 0 𝑃)) ⇝ (pair 𝑢 10 ♦). We obtain

We conclude by induction hypothesis and rule sub-red.

Case SUB-FUN 𝐴 = Π𝑥 ∶ 𝐴 1 , 𝐴 

We can obtain a stronger property than transitivity: not only the transtivity rule is admissible, but there is no difference (up to ≃ [sPe],𝛽 ) between coercing in two steps or coercing at once. This property is required to show that the refiner preserves substitution.

Proof. Note that by transitivity (Lemma 17), judgement 𝑠 ∶ 𝑆 <∶ 𝑈 ⇝ 𝑢 ′ can always be derived whenever 𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡 and 𝑡 ′ ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢. By induction on 𝑠 ∶ 𝑆 <∶ 𝑈 ⇝ 𝑢.

Case R-CAST 𝑆 ≃ [sPe],𝛽 𝑈 ; 𝑠 = 𝑢 ′ We proceed by another induction on 𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡. If the last rule is sub-elim, then 𝑆 = (El (psub 𝑆 0 𝑃)) and we have

,𝛽 , there is a common reduct of 𝑆 and 𝑈 of the form (El (psub 𝑅 𝑄)) (because (El (psub …)) is a head normal form). Therefore without loss of generality, we consider 𝑈 to be (El (psub 𝑆 0 𝑃)). By induction hypothesis, we obtain

By application of rule sub-red, 𝑡 ′ ∶ 𝑇 ′ <∶ 𝑈 ⇝ 𝑢 holds. We conclude by induction hypothesis.

If the last rule is sub-fun,

By induction on 𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡. If 𝑇 is a product 𝑇 = Π𝑥 ∶ 𝑇 1 , 𝑇 2 (and rule sub-fun as well), the result follows from induction hypothesis.

If 𝑇 is of the form 𝑇 = (El (psub 𝑇 0 𝑎)), then 
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Coercions by rewriting

Next, just like we proposed to implement rewriting as an implementation of coercions in Section 3. There is at least one rewrite rule to eliminate symbol 𝜅: Eq. (𝒞-Id). In that case, we have

Since 𝐴 and 𝐵 can be rewritten to 𝐶, we have 𝐴 ≃ [sPe],𝛽 𝐵. Hence we can derive 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡 with rule r-cast, with 𝑡 ≃ [sPe],𝛽 𝑢.

For the recursive case, we are in the following situation

Where the second rewrite step is either Eq. (𝒞-Π), Eq. (4.1) or Eq. (4.2). If it is Eq. (4.1), then

induction hypothesis, there is a derivation tree 𝜏 whose conclusion is (fst 𝑒 1 ) ∶ (El 𝑅 ′ 0 ) <∶ 𝑆 ′ ⇝ 𝑒 3 . We can use rule sub-elim to thus deduce

we have 𝑒 3 = (pair 𝑒 ′ 3 ♦). By induction hypothesis, there is a derivation tree 𝜏 whose conclusion is 𝑒 1 ∶ 𝑅 ′ <∶ (El 𝑆 ′ 0 ) ⇝ 𝑒 ′ 3 . Like before, we can use rule sub-intro, Proof. For each rule, by inversion, when the left-hand side is well-typed, the right-hand side is well-typed as well.

For Eq. ( 4.3), the right-hand side can be coerced to the right-hand side by rule sub-elim. For Eq. ( 4.4), we can conclude with r-cast.

Lemma 23. For any terms 𝑡, 𝑇, 𝑈 1 and 𝑈 2 such that Γ ⊢ λΠ[sPe] 𝑡 ⇐ 𝑇, there is

Otherwise, 𝑇 must be of the form (El 𝑇 0 ). By inspection of the coercion rules Fig. 4.3 Page 92, the only rules that can be used are sub-red and sub-elim.

By induction on the derivation 𝑡 ∶ 𝑇 <∶ Π𝑥 ∶ 𝑈 1 , 𝑈 2 ⇝ 𝑢.

Case SUB-ELIM 𝑇 0 = (psub 𝑇 00 𝑎) (fst 𝑡) ∶ (El 𝑇 00 ) <∶ Π𝑥 ∶ 𝑈 1 , 𝑈 2 ⇝ 𝑢 By induction hypothesis, (El 𝑇 00 ) ≺ * Π𝑥 ∶ 𝑇 1 , 𝑇 2 and Π𝑥 ∶ 𝑇 1 , 𝑇 2 <∶ Π𝑥 ∶ 𝑈 1 , 𝑈 2 . By definition of ≺, 𝑇 = (El (psub 𝑇 00 𝑎)) ≺ (El 𝑇 00 ).

Case SUB-RED 𝑇 ⟶

,𝛽 Π𝑥 ∶ (El 𝑇 01 ), (El 𝑇 02 ). We conclude by induction hypothesis and inclusion of ⟶ ℛ

,𝛽 (conjecture 2 Page 91), there is a common reduct 𝑉. By Eq. (4.4), 𝑇 ≺ * 𝑉. We conclude with rule sub-red.

For any well-sorted term

Proof. We can show easily that [𝑡] ⟶ 𝛽 [𝑢] because the encoding is shallow. Therefore, without loss of generality, we consider terms 𝑡 and 𝑢 in the image of [-].

By induction on a context 𝛾 such that 𝑡 = 𝛾[𝑒] and the reduction happens at the head of 𝑒. For the base case, consider the empty 𝛾, and 𝑡 is of the form

For the inductive case, we assume that 𝑡 ⟶ 𝛽 𝑢 and for each possible context 𝛾, we verify that Γ ⊢ 𝛾[𝑡] ∶ 𝐴 ⇝ 𝑡 ′ , Γ ⊢ 𝛾[𝑢] ∶ 𝐴 ⇝ 𝑢 ′ and 𝑡 ′ ≃ [sPe],𝛽 𝑢 ′ . We note the hole of contexts. Let 𝑒 be a term. The possible contexts are 1. (Π𝑥 ∶ , 𝑒), 2. (Π𝑥 ∶ 𝑒, ), 3. (𝜆𝑥 ∶ , 𝑒), 4. (𝜆𝑥 ∶ 𝑒, ), 5. (𝑒 ), 6. ( 𝑒).

For Items 1, 3 and 5, terms 𝑡 and 𝑢 are checked against the same type: either ⋆ or the domain of 𝑒 for the application case. By induction hypothesis, the refinements of 𝑡 and 𝑢 are convertible.

For Item 2, 𝐴 must be a sort in {⋆, }, we note it 𝑠 𝐴 . By inversion and Lemma 18 Page 95, the sort inferred from Π𝑥 ∶ 𝑒, 𝑢 is 𝑠 𝐴 . By the shape of 𝒫 𝜆Π , 𝑠 𝐴 is the sort inferred from both 𝑡 and 𝑢. Therefore, the refinements 𝑡 ′ and 𝑢 ′ are both the inference of 𝑡 and 𝑢, which are syntactically equal to the refinement obtained by checking them against 𝑠 𝐴 . By induction hypothesis, we get 𝑡 ′ ≃ [sPe],𝛽 𝑢 ′ .

For Item 2, we have 𝑡 = Π𝑥 ∶ 𝑒, 𝑇 1 ⟶ 𝛽 𝑢 = Π𝑥 ∶ 𝑒, 𝑈 1 with 𝑇 1 ⟶ 𝛽 𝑈 1 . Proof steps described in Fig. 4.8 allow to conclude Π𝑥 ∶ 𝑒, 𝑈 ′ 1 ≃ Π𝑥 ∶ 𝑒, 𝑇 ′ 1 using Eq. (4.30).

For Item 4, assume 𝑡 = 𝜆𝑥 ∶ 𝑒, 𝑡 1 ⟶ 𝛽 𝜆𝑥 ∶ 𝑒, 𝑢 1 , and Γ ⊢ 𝑒 ⇒ 𝒮 ⋆. Then we have 𝜆𝑥 ∶ 𝑒, 𝑡 ′ 1 ≃ 𝜆𝑥 ∶ 𝑒, 𝑣 1 by Eq. (4.34). For Item 6, assume (𝑡 1 𝑒) ⟶ 𝛽 (𝑢 1 𝑒). If 𝑢 𝜋 1 is not an abstraction, then Eq. ( 4 For rule empty page 29, there is nothing to do: the empty context is translated as the empty context.

For rule decl, induction hypothesis gives ⊢ Γ ∘ and Γ ∘ ⊢ [𝑇] ∶ 𝑠 ⇝ 𝑇 ′ . Since variables are unchanged, we still have 𝑣 ∉ Γ ∘ . If 𝑠 = Type, then 𝑠 = Type. By correctness of the refiner (Proposition 10 Page 67), Γ ∘ ⊢ 𝑇 ′ ∶ Type and thus with rule sign, Γ ∘ ⊢ El [𝑇 ′ ] ∶ ⋆ which allows to conclude with rule decl.

For rule var, induction hypothesis gives ⊢ Γ ∘ . By definition of ⋅ and 𝑥 ↦ 𝑥 ∘ , there is 𝐴 ′ such that (𝑥 ∶ 𝐴 ′ ) ∈ Γ ∘ .

For rule sort, refer to the proof of Theorem 1 Page 46, and we can conclude by partial completeness of the type checker with refinement.

PVS LANGUAGE FEATURES

The logical context is encoded by the context used in the type checking relation, and its extension is hence encoded by the dependent implication (𝑝⇒then) where 'then' binds a proof of the condition 𝑝 in the expression used as first branch. Therefore, assuming a division operator symbol / ∶ (El (real ⇝ (psub (𝜆𝑟, 𝑟 ≠ 0)) ⇝ real));

the latter function can be encoded in PVS-Cert with 𝜆𝑥, (if (𝑥 ≠ 0) (𝜆𝑝 ∶ (Prf (𝑥 ≠ 0)), (/ 1 (pair 𝑥 𝑝))) (𝜆𝑝, 1)) .

Tuples and matching

PVS handles natively tuples and dependent tuples. A tuple is a heterogeneous fixed-length collection of elements. To distinguish between types and inhabitants, we will use telescopes (de Bruijn 1991) for types of tuples, and tuples for the objects. We may have dependent telescopes, which behave like chained dependent pairs, and non dependent telescopes. Owre and Shankar 1997b provide the typing rules for pairs but not for general telescopes. Tuples are noted (𝑥, 𝑦, 𝑧) and telescopes [𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵, 𝑧 ∶ 𝐶] or [𝐴, 𝐵, 𝐶] if 𝐵 does not depend on 𝑥 and 𝐶 does not depend on 𝑥 nor 𝑦. We infer naturally typing rules for telescopes,

In idiomatic PVS, telescopes are used abundantly in function declarations. Therefore functions are seldom curried. To currify PVS, we may use some procedure defined by where Nat is the type of natural numbers and lenat is the usual order on natural numbers. The idea is to create a fixpoint such that (fix 𝑓) = (𝑓 (fix 𝑓)). But because we want it polymorphic, we must take as argument the codes of the domain a and codomain r. We also take as argument the measure meas used to ensure that the recursive call is issued on a smaller argument. Then we take as argument the function f itself. This function has type

PVS LANGUAGE FEATURES

where 𝑥 is the current argument of the fixpoint (fix 𝑓 𝑥), 𝑦 is the value on which the recursive call occurs and 𝜋 is a proof that the measure of 𝑦 is smaller than the measure of 𝑥. We also define a computation rule We give a sequence of reduction of the term (fac 5)

1. We begin by unfolding the symbol fac, The result is convertible with if (eqnat 5 0) 1 (mul 5 (fac 4)). We can see that the second 𝛽 reduction (Item 4) may occur only if a proof of decreasingness is provided. However, this method has a severe drawback: the termination of the fixpoint reduction rule depends on the reduction strategy. Indeed, we chose to perform a 𝛽 reduction at Item 3, but we could have continued unfolding the reduction rule of the fixpoint. For that reason, this encoding is not used in the translation, and the computational content of recursive functions is removed.

Abstract datatypes

Owre and Shankar 1997a also define 'abstract datatypes'. Abstract datatypes allow one to define sructures that can be freely generated by a finite number of constructors, such as lists. Datatype declarations behave like macros, i.e. they are expanded (by PVS) to a theory.

Implementation

The code in charge of the translation of PVS specifications to Lambdapi signatures is a patch for PVS, written in Common Lisp (X3J13 Committee 1994). It is part of the personoj [START_REF] Rel | Personoj version 0.1[END_REF] suite. The code defines a new command for PVS that can be invoked from PVS' 'read-eval-print-loop'. The command takes as argument the name of a PVS theory and outputs its translation. The patch defines mainly a printing function pp-dk such that (pp-dk strm obj) prints the translation of PVS object obj onto stream strm.

An arbitrary theory from the Prelude may be printed with the commands given in Fig. 5.4

The translation has only been tested on the Prelude so far. In particular, in PVS, all theories of the Prelude are implicitly imported. Therefore, for any theory of the Prelude, its PVS version does not contain any import command Completeness of the encoding can only be conjectured. References to tackle completeness are given in Section 2.3 Page 42.

RESULTS

BINDINGS

We chose to encode predicate subtyping using a constant psub. We could also encode predicate subtyping like existential quantifiers in 𝜆-calculi, (El (psub 𝑎 𝑝)) ⟶ Π𝑧 ∶ Type, (Π𝑥 ∶ (El 𝑎), (Prf (𝑝 𝑥)) → (El 𝑧)) → (El 𝑧) .

We provided a confluent rewrite relation to decide our equational theory ≃ [Pe] , but its termination is conjectured in Section 2.4.1 Page 49. More broadly, we implemented a weak form of proof irrelevance where only an argument of pair is proof irrelevant. It might be interesting to study full proof irrelevance in λΠme, where all propositions are considered equal.

Regarding the refiner, we chose not to include a dedicated checking rule for abstractions. Including it may allow the coercion judgement to not depend on the term, since we would remove rule sub-fun page 92. In consequence, the proof of Lemma 26 Page 104 should be reviewed.

No criteria have been provided to implement mechanical checks for typing preservation for the rewrite rules for coercions. Algorithms from [START_REF] Hondet | The New Rewriting Engine of Dedukti[END_REF][START_REF] Saillard | Vérification de typage pour le lambda-Pi-Calcul Modulo : théorie et pratique)[END_REF]) could be adapted.

Similarly, criteria to check termination of the coercion system, assuming termination of the main rewrite system, could be studied. We saw that as soon as subtyping becomes transitive, we need recursive coercion rules, and coercion eliminators which we encoded with a non-linear rewrite rule. We may be able to remove this elimination rule by providing an algorithmic subtyping relation without reflexivity taking inspiration from Pierce 2002. Coercion would then be eliminated with rules of the shape '(𝜅 𝜄 𝜄 𝑥) ⟶ 𝑥' where 𝜄 is an encoded sort of the source language (a maximal type in the terminology of PVS). The resulting subtyping strategy would become close to the one exposed by Owre and Shankar 1997b where terms are systematically cast to their maximal supertype. One could also look at λProlog [START_REF] Dunchev | ELPI: Fast, Embeddable, \lambda Prolog Interpreter[END_REF][START_REF] Felty | Lambda-Prolog: An Extended Logic Programming Language[END_REF] to replace rewriting in order to implement coercion systems.

F. Gilbert proposes several extensions for PVS-Cert in order to encompass more features of PVS. These features can be found in the standard library of PVS and are thus discussed in Chapter 5 Page 115, but their encoding is not proved to preserve typing, nor to be complete. Polymorphism, tuple types and record types are ubiquitous in PVS, and thus could be proposed (for the encoding of records in λΠmr, see [START_REF] Cauderlier | Objects and Subtyping in the Lambda-Pi-Calculus Modulo[END_REF]. Proper encoding of recursive structures [START_REF] Giménez | Codifying Guarded Definitions with Recursive Schemes[END_REF]) could be used to encode recursive definitions, inductive types and 'datatypes' (Owre and Shankar 1997a). Bounded • a subtype projection ≺ used to apply coercions on the head of applications in r-prod-c.

Notation 𝒫 𝜆Π abbreviates the product rules of λΠme, 𝒫 𝜆Π = {(⋆, ⋆, ⋆), (⋆, , )}. 

Appendix B

Encoding of normalisation counter-example

Here follows the encoding of the normalisation counter example of Section 3.2.4 provided in [START_REF] Abel | Failure of Normalization in Impredicative Type Theory with Proof-Irrelevant Propositional Equality[END_REF]. It is encoded in simple type theory (see Section 2. where := represents definition unfolding and --> represents reduction.