
TH
ES
E
D
E
D
O
CT
O
RA

T
N
N
T
:2
02
2U

PA
SG

07
0

Expressing predicate subtyping
in computational logical

frameworks
Expression du sous-typage par prédicats

dans les cadres logiques calculatoires

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580 (STIC)
Spécialité de doctorat : Informatique

Graduate School : Informatique et sciences du numérique, Référent :
ENS Paris-Saclay

Thèse préparée dans l’unité de recherche Laboratoire Méthodes Formelles
(Université Paris-Saclay, CNRS, ENS Paris-Saclay)

sous la direction de Frédéric Blanqui, chargé de recherche HDR
et le co-encadrement de Gilles Dowek, directeur de recherche HDR.

Thèse soutenue à Paris-Saclay, le 27 Septembre 2022, par

Gabriel Hondet

Composition du jury
Dale Miller Président
Chargé de recherche, Inria Saclay
Natarajan Shankar Rapporteur & examinateur
Distinguished senior scientist, SRI International
Aaron Stump Rapporteur & examinateur
Full professor, University of Iowa
Serenella Cerrito Examinatrice
Professeure, Université d’Evry
Assia Mahboubi Examinatrice
Directrice de recherche HDR, Inria Nantes
Enrico Tassi Examinateur
Chargé de recherche, Inria Sophia Antipolis
Frédéric Blanqui Directeur de thèse
Chargé de recherche HDR, Inria Saclay

Titre : Expression du sous-typage par prédicats dans les cadres logiques calculatoires
Mots clés : interopérabilité, cadre logique, preuve formelle, réécriture, Dedukti, PVS

Résumé : Le typage permet d’apporter de la
sûreté dans la programmation, et il est utilisé
au cœur de la majorité des systèmes de preuve.
Plus un système de types est expressif, plus il est
aisé d’y encoder des invariants qui seront vérifiés
mécaniquement lors du typage. Le sous-typage par
prédicats est une extension des types simples dans
laquelle les types peuvent dépendre de prédicats.
Un sous-type {x : A | P(x)} est habité par les
éléments t de type A pour lesquels P(t) est vrai.
Cette extension fournit un système de type riche
et intuitif mais indécidable.

Cet ouvrage est dédié à l’encodage du sous-
typage par prédicats dans Dedukti, un cadre

logique avec règles de calcul. On commence par
encoder une version explicite du sous-typage par
prédicats dans lequel on distingue les habitants des
sous-types des habitants des types.

Le sous-typage par prédicat est souvent utilisé
de manière implicite, sans différence syntaxique
entre les habitants de A et ceux de {x : A |
P(x)}. On enrichit le cadre logique avec un système
de raffinement des termes afin d’ajouter ajouter
ces marqueurs syntaxiques et expliciter le sous-
typage au sein des termes. Cette transformation
est appliquée à la bibliothèque standard de PVS ,
un assistant de preuve centré sur le sous-typage
par prédicats.

Title : Expressing predicate subtyping in computational logical frameworks
Keywords : interoperability, logical framework, formal proof, rewriting, Dedukti, PVS

Abstract :Safe programming as well as most proof
systems rely on typing. The more a type system
is expressive, the more these types can be used
to encode invariants which are therefore verified
mechanically through type checking procedures.
Predicate subtyping extends simple type theory
by allowing terms to be defined by predicates.
A predicate subtype {x : A | P(x)} is inhabited
by terms t of type A for which P(t) holds.
This extension provides a rich and intuitive but
undecidable type system.

This work is dedicated to the encoding
of predicate subtyping in Dedukti : a logical

framework with computation rules. We begin by
encoding explicit predicate subtyping for which
terms of type A are syntactically different from
terms of type {x : A | P(x)}.

Predicate subtyping, is often used implicitly,
with no syntactic difference between terms of type
A and terms of type {x : A | P(x)}. We enrich our
logical framework with a term refiner which can
add these syntactic markers in order to explicit
subtyping in terms. This transformation is used
to translate the standard library of PVS , a proof
assistant using extensively predicate subtyping, to
Dedukti.

Contents

1 Introduction 9
1.1 Predicate subtyping . 11

1.1.1 Subtyping for more understandable developments 11
1.1.2 The Prototype Verification System: an implementation of

predicate subtyping . 12
1.1.3 A minimal and formalised version of PVS 14

1.2 Logical frameworks for interoperability 14
1.3 Contributions . 16

1.3.1 Encoding explicit predicate subtyping 16
1.3.2 Handling implicit predicate subtyping 16
1.3.3 Working with PVS . 17

1.4 Related works . 17
1.5 Notations and definitions . 21
1.6 Expressing systems in computational logical frameworks 23

2 Encoding explicit predicate subtyping 27
2.1 PVS-Cert: A minimal system with predicate subtyping 27

2.1.1 Type system modulo theory 28
2.1.2 Simple type theory . 31
2.1.3 Predicate subtyping . 32

2.2 Encoding PVS-Cert in λΠme . 36
2.2.1 Encoding simple type theory in λΠme 37
2.2.2 Encoding explicit predicate subtyping in λΠme 38
2.2.3 Translation of PVS-Cert terms into λΠ[Pe] 39
2.2.4 Examples of encoded theories 41

2.3 Preservation of typing by the encoding 42
2.4 Mechanising type checking . 49

3

CONTENTS

2.4.1 Deciding equivalence . 49
2.4.2 Bidirectional type checkers 52

2.5 Conservativity of computations 55
2.6 Conclusion . 60

3 Coercions in logical frameworks 61
3.1 Term refiner . 62

3.1.1 Definitions . 63
3.1.2 Refiner specification . 66
3.1.3 Properties of coercion systems 67
3.1.4 Standard coercions for functions 69
3.1.5 Coercing to functions . 70

3.2 Computing coercions . 72
3.2.1 Initial observations . 72
3.2.2 Computing coercions with a rewrite system 73
3.2.3 Standard coercions . 76
3.2.4 Non-linearity threatens convergence 77
3.2.5 Examples of coercions . 79
3.2.6 Related work on coercions 81

3.3 Holes . 82
3.4 Implementation . 84
3.5 Conclusion . 85

4 Implicit predicate subtyping 87
4.1 PVS-Core: A system with implicit predicate subtyping 88

4.1.1 Definition . 88
4.1.2 Encoding PVS-Core in λΠmr 89

4.2 Tuning the refiner for PVS-Core 91
4.2.1 Abstract coercion rules 91
4.2.2 Coercions by rewriting . 98
4.2.3 Coercing to functions . 100
4.2.4 Preservation of substitution by refinement 104

4.3 Preservation of typeability by the encoding 107
4.4 Conclusion . 113

5 Translating PVS 115
5.1 Computational logical frameworks 115
5.2 Statements and theories . 116
5.3 PVS language features . 118

4

CONTENTS

5.3.1 Overloading . 118
5.3.2 Theory parameters and polymorphism 118
5.3.3 Logical connectives . 119
5.3.4 Tuples and matching . 120
5.3.5 Bounded quantification 122
5.3.6 Records . 125
5.3.7 Fixpoints and inductive types 125
5.3.8 Abstract datatypes . 127

5.4 Implementation . 127
5.5 Results . 130
5.6 Conclusion . 133

6 Exporting PVS proofs 135
6.1 Proof representations . 135
6.2 Proof scripts to incomplete terms 137
6.3 Filling gaps . 139
6.4 Conclusion . 142

7 Conclusion 143

A Typing rules of 𝔖 167

B Encoding of normalisation counter-example 169

5

CONTENTS

6

Acknowledgements

En premier lieu, je remercie mes encadrants, Frédéric et Gilles. Il est clair
que ce manuscrit n’aurait pas cette allure sans vous. J’ai beaucoup profité de
votre capacité à aborder tout problème, ce qui m’a à plusieurs reprises permis
de prendre des routes moins sinueuses pour parvenir à mes fins.

I am very grateful to Shankar and Aaron who reviewed this manuscript. I
also thank warmly Dale, Assia, Enrico and Serenella for having accepted to be
part of my jury.

I’d like to express my gratitude towards Stéphane Graham-Lengrand and
Maria Paola Bonacina, who made my stay at SRI International both possible
and delightful. I also thank Sam Owre for proofreading my Lisp code and
providing some very valuable help with it.

Je remercie les permanent⋅es du laboratoire avec qui j’ai interagi, Chantal,
Valentin, Bruno, Stéphane, Caroline, Serge ; aussi bien pour des considérations
scientifiques que sociales.

Je remercie mes collègues doctorant⋅es et post-doctorant⋅es, avec qui j’ai
partagé au quotidien mes peines et mes réjouissances, qu’elles soient scientifiques
ou non. Parmi celles et ceux là, je remercie d’abord les aînés, François, Gaspard,
Guillaume, Yacine et Franck, qui m’ont chaleureusement accueilli dans l’équipe,
et qui, au cours des pauses café, se sont révélés être des enseignants inestimables.
Je pense sincèrement que ce manuscrit et moi vous devons beaucoup. Je remercie
aussi Aliaume, Emilie et Nathan, avec qui j’ai commencé mon stage et ma thèse,
et avec qui j’ai partagé un bureau, des pauses café et des concerts, jusqu’à ce
que le covid nous repousse chez nous. Je remercie chaleureusement Giann-
Karlo qui a partagé avec moi nos nouveaux bureaux à Gif-sur-Yvette ; et enfin
Amélie, Fabricio, Louise, Luc, Pierre, Thiago et Yoan. Je remercie Monsieur
Färber, avec qui j’ai partagé un covid, pour sa bonne humeur contagieuse et
semble-t-il insubmersible. Il me tarde de jouer à nouveau la Pavane avec vous.

7

CONTENTS

Je remercie aussi les stagiaires et autres ni doctorant⋅es, ni post-doctorant⋅es
ni permanent⋅es que j’ai pu voir, pour avoir amené de la fraîcheur et de la
nouveauté dans l’équipe, je pense à Amélie, Corentin, Elliot, Émile, Houda,
Loris, Quentin, Thomas ; et en particulier à Taïssir.

Parce qu’il n’y a pas que la science dans la vie, je remercie toutes les
personnes extra-académiques qui m’ont accompagné pendant ces trois années,
que ce soient mes parents qui ont assuré la logistique, mon frère ou Margaux.
Je remercie aussi Hubert, pour m’avoir permis, chaque semaine de penser à
autre choses que mes problèmes de typage, de terminaison ou autres ; bien que
la construction des 12 gammes majeures reste une tâche assez calculatoire. Je
remercie Choupine et Lilou d’avoir égayé mes journées de télétravail. Et enfin,
je remercie Emilie d’avoir fait de cette période une expérience aussi stimulante
intellectuellement qu’humainement.

If you feel that I should have thanked you, but I’ve not; it’s highly likely that
I’ve simply forgotten. My sincere apologies, and thank you.

8

Chapter 1

Introduction

Regardless of one’s personal opinion of René Descartes’s philosophy, it may
not be exaggerated to say that his Discours de la méthode1 (Descartes 1637)
has shaped scientific methodology of all western cultures. In the second part,
Descartes establishes four principles by which one should abide to establish
unquestionable facts. The first and second principles read as follows

Le premier [principe] était [...] de ne comprendre rien de plus en mes
jugements, que ce qui se présenterait si clairement et si distinctement
à mon esprit que je n’eusse aucune occasion de le mettre en doute.

Le second, de diviser chacune des difficultés que j’examinerais, en
autant de parcelles qu’il se pourroit, et qu’il seroit requis pour les
mieux résoudre.

and in English

The first [law] was [...] to comprise nothing more in my judgement
than what was presented to my mind so clearly and distinctly as to
exclude all ground of doubt.

The second, to divide each of the difficulties under examination into
as many parts as possible, and as might be necessary for its adequate
solution.

1Discourse on the Method of Rightly Conducting One’s Reason and of Seeking Truth in
the Sciences, translations are by John Veitch

9

Descartes acknowledges that these ideas are not novel and come from his under-
standing of geometry proofs, but he extends this procedure to a general method
to establish truth regardless of the discipline. This methodology has been called
reductionism, as opposed to holism.

Coupled with a formal language, reductionism became de facto prevalent to
provide foundations for mathematics. Mathematical foundations are formulated
by a limited number of unquestionable axioms. For instance, during the 19th
century, Giuseppe Peano proposed an axiomatic formulation of arithmetic with
natural numbers (Peano 1889). In his (emblematic) theory, the proposition
‘2 + 2 = 4’ can be proved using the axiom of transitivity ‘if 𝑥 = 𝑦 and 𝑦 = 𝑧,
then 𝑥 = 𝑧’ and the definition of addition ‘𝑥 + (𝑦 + 1) = (𝑥 + 𝑦) + 1’ and
‘𝑥 + 0 = 𝑥’.

However, a theorem as simple as ‘2 + 2 = 4’, already consumes no less than
five inference steps. Considering the ‘complexity’ and the relatively low intellec-
tual impact of the proposition, it seems almost impossible to formalise substan-
tial mathematical developments as they would quickly become overwhelming
and human beings could not possibly review or write them without making a
mistake.

Fortunately, machines able to repeat simple but tedious logical operations
ad nauseam have since been invented. When fed with proofs written in some
language they understand, these machines can be programmed to mechanically
check that these proofs are nothing more than successive applications of axioms
on which programmers and mathematicians agreed. In the late 60s, de Bruijn
designed the formal system Automath (H. Barendregt and Rezus 1983) around
an automatic proof checker that verifies the correctness of specifications written
in a formal language.

While automatic proof checkers completely transferred the verification to
computers, writing proofs—especially formal proofs—remains pedestrian. To
sort this problem out, Milner 1972 designed the interactive system LCF . Its
proof checker can be used by human beings to generate formal proofs, not only
to check them once finished. The automated reasoning system Nqthm by Boyer
and Moore 19792 inherited the interactive aspect of LCF and has been used to
check over 16,000 theorems.

While formalising mathematics, one establishes propositions and theorems to
describe the behaviour of the notions he or she introduces. Proofs are given af-
terward to assert that propositions hold. Therefore, we claim that mathematics
initially consider propositions as the primary building block. General purpose

2Also called the ‘Boyer-Moore Theorem Prover’.

10

CHAPTER 1. INTRODUCTION

programming can be seen as the opposite approach: one describes procedures
and calculations, and then attributes meaning to these calculations. Indeed, it
is easy to write syntactically correct but semantically incorrect expressions, such
as ‘3 × true’ in general purpose programming languages. To reject nonsensical
computations, types that represent meaning are attributed to values. In the
previous example, 3 is an integer, which may be denoted ‘3 ∶ int’, true is a
boolean, denoted ‘true ∶ bool’ and × is a function whose type may be denoted
‘× ∶ int → int → int’. Typing a program ensures it has a meaning according
to a type system (Pierce 2002). Verifying that a program has a given meaning
is the same as checking that a proof proves a given proposition3.

1.1 Predicate subtyping
1.1.1 Subtyping for more understandable developments
Type systems must find a balance between rigidity, which allows to define pre-
cisely the meaning of expressions, and flexibility, which eases the task of writing
expressions that are understood by the type system. It is difficult to translate
one’s ideas into type system that is too rigid: the translation of one’s thoughts
into a language understood by a computer is likely to be difficult, as well as the
debugging. On the contrary, it is easy to write expressions that make sense to
humans in system that is too flexible, but in turn less meaning is conveyed to
the computer and its ability to spot erroneous statements becomes limited.

Subtyping (Cardelli 1984) makes type systems more flexible. It allows to
structure types of expressions hierarchically: different meanings can be at-
tributed to the same expression, especially when some are generalisations of
others. A magpie is a bird as well as an animal, a geranium is a flowering
plant as well as a vegetable &c. Hierarchical organisation may be particularly
well suited for the expression of human-made concepts: our own memory can be
modelled by semantic networks whose nodes are hierarchically organised (Collins
and Quillian 1969).

The success (in the sense of adoption) of object oriented programming may
support our claim. Object oriented languages (Abadi and Cardelli 1995) allow a
relatively straightforward (in comparison to other formalisms) encoding of the
concepts industries deal with. Any concept can be modelled by a class, and
its relationships with other concepts can be modelled by subtyping. In order

3This equivalence between proofs and programs and between types and propositions has
been called the ‘propositions-as-type principle’, or ‘Curry-Howard correspondence’.

11

1.1. PREDICATE SUBTYPING

to encode systems people deal with, object oriented systems tend to have very
liberal subtyping. Liberal to the point that one may lose the intuition behind
subtyping (AbdelGawad 2014; Cargill 1991).

Predicate subtyping (J. M. Rushby, Owre and Shankar 1998) allows one to
classify expressions by the properties they validate. It can be straightforwardly
interpreted as set comprehension: the set of roots of unity is classically defined
by {𝑧 ∶ C ∣ ∃𝑛, 𝑧𝑛 = 1}, which is a predicate subtype whose support is C
(the set of complex numbers) and whose predicate is ∃𝑛, 𝑧𝑛 = 1. When we
manipulate a root of unity 𝑧, we can conjugate 𝑧 to ̄𝑧 because 𝑧 is also a complex
number. This ability to consider 𝑧 as a root of unity and a complex number is
precisely what subtyping allows. Therefore, just like object oriented languages
allow to model concepts easily, predicate subtyping is an intuitive encoding of
mathematics as we learned them. It is also valuable when writing program
specifications: guards, preconditions and postconditions are easily expressed as
predicate subtypes. For instance, a function that pops an element from a stack
must take as argument a non-empty stack; the domain of that function may
thus be {𝑠 ∶ stack ∣ ¬empty?(𝑠)}.

Because predicate subtyping entangles proof checking with type checking, it
provides a very rich type system where subtle invariants may be expressed in
order to reject a large number of pathological expressions (such as 1

1−1). This
expressiveness comes at the cost of undecidable type checking. Indeed, for a
term 𝑡 to be judged of type {𝑥 ∶ 𝐴 ∣ 𝑃}, the predicate {𝑡/𝑥}𝑃 must be proved;
which has no reason a priori to be decidable (F. Gilbert 2018).

1.1.2 The Prototype Verification System: an implementa-
tion of predicate subtyping

To our knowledge, no proof assistant has chosen predicate subtyping as its
paramount feature, except the Prototype Verification System (Owre, J. Rushby
et al. 1998; Owre, J. M. Rushby and Shankar 1992), or PVS for short. Even
though proof assistants whose types can depend on values allow to express
types of the form {𝑥 ∶ 𝐴 ∣ 𝑃}, most of them do not consider 𝐴 as a subtype of
the former. PVS is a specification development environment developed at SRI
International based on simple type theory and predicate subtyping. It is made
of a specification language parser, a type checker and a theorem prover.

In PVS , specifications are split across ‘theories’. The validation of a theory
is performed in two steps. The first rejects ill-typed expressions not taking sub-
typing into account: terms of the form TRUE OR 1 are rejected, but not 1 / 0.
The second phase collects all proof obligations due to predicate subtyping to

12

CHAPTER 1. INTRODUCTION

generate ‘type correctness conditions’ (shortened TCC in PVS jargon). For in-
stance, type checking the expression 1

𝑥 generates the type correctness condition
𝑥 ≠ 0. This type correctness condition can be solved in an interactive proof
mode. To avoid overwhelming users with either redundant or trivial type cor-
rectness conditions, a substantial effort has been put in automating theorem
proving.

There are mainly two stratagems to automate theorem proving in PVS .
The first, and most common, is to provide elaborated decision procedures such
as binary decision diagrams or satisfiability modulo theory solvers (such as
Yices (Dutertre 2014) also developed at SRI). The other capitalises on the en-
tanglement of theorem proving and type checking, and is implemented by the
system of ‘judgements’ (Owre, Shankar et al. 2020, page 25). Broadly, judge-
ments extract typing judgements that may be relevant to the theorem prover,
such as ‘exp(2𝑖𝜋

3) is a root of unity’. Such a judgement will raise a type correct-
ness condition that requires to prove the claim, so that similar type correctness
conditions appearing later on may be automatically solved by instantiation of
the judgement. Judgements can be a lot more general than that, in order to
catch as many redundant type correctness conditions as possible.

The proof theory PVS is based on classical sequent calculus (Owre and
Shankar 1997b). Proofs are solved by providing tactics operating on a proof
state (Shankar et al. 2021). Because type checking and theorem proving are
entangled, well-typedness may depend on the provability of some formula which
itself may depend on some logical context. For instance, consider the expression

𝑥 ≠ 1 ⇒ 1
1 − 𝑥

= 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑛 +𝑂(𝑥𝑛+1)

The right-hand side of the implication may be well-typed only if 1 − 𝑥 ≠ 0
is provable. This can be proved only if the hypothesis 𝑥 ≠ 1 is added to the
context in which the right-hand side is type checked. Similarly, in the ternary
IF THEN ELSE construction, the condition must be added to the context to type
check the ‘then’ branch while its negation must be added to the context to type
check the ‘else’ branch.

Thanks to predicate subtyping, PVS features a clear distinction between
the specification phase which consists in designing objects and concepts as well
as their desired properties, from the proving phase where one proves the type
correctness conditions raised while typing the specification. This separation is
also physical: proofs are saved as tactic scripts in auxiliary files, away from the
specification.

13

1.2. LOGICAL FRAMEWORKS FOR INTEROPERABILITY

1.1.3 A minimal and formalised version of PVS
Because PVS is a complex system with many features, F. Gilbert 2018 has
extracted a minimal and essential core from PVS in order to study predicate
subtyping. He defined two languages: the vernacular language in which specifi-
cations are written is called PVS-Core. Type checking is undecidable in PVS-
Core, it is a minimal version of the specification language of PVS . The second
language named PVS-Cert is a language for certificates of PVS-Core. The type
system of PVS-Cert enjoys many properties, such as strong normalisation and
decidability of type checking. Typing derivations of PVS-Core can be translated
to judgements of PVS-Cert. In order to obtain decidable type checking, proofs
of type correctness conditions are included in the terms of PVS-Cert. Therefore,
in PVS-Cert, a root of unity is not just a complex, but a complex with a proof
that it is a root of unity. We therefore lose subtyping, or at least its implicit
aspect. Subtyping is made explicit in the sense that any root of unity can be
transformed into a complex number, by forgetting the proof it is a root of unity.

1.2 Logical frameworks for interoperability
In the beginning of the 20th century, diverse formal systems and axiomatic
theories have been designed to found mathematics. Some of them were made to
palliate defects or paradoxes of their predecessors (see Russell’s paradox (Russell
1903) and his subsequent ‘type theory’ (Whitehead and Russell 1997)) while
others were experimental. One may wonder whether two such formal systems
agree with each other, whether they have the same truth. One could—or rather
should—wonder first whether this question makes sense. Just like two strangers
that do not talk the same language cannot exchange ideas (and hence cannot
agree, at least consciously); propositions expressed in one formal system may
not make sense in the other. Even assuming that two formal systems have the
same language, what should we think of propositions that are provable in one
system but not in the other? Are there, after all, propositions that are provable
in both systems? Metatheoretically, it is very unlikely that two formal systems
with approximately the same scope share no proof: what good is a system in
which we cannot prove ‘2 + 2 = 4’ for mathematics? Even if there seems to be
no such thing as ‘universal truth’, it must nevertheless be the case that formal
systems used to express mathematics share some elementary notions. But how
can they be related?

For years, the validity of proofs—whether a proof effectively proves what its

14

CHAPTER 1. INTRODUCTION

authors claim it proves—depended exclusively on whether contemporary experts
were convinced the proof holds or not. With axiomatic theories, experts founded
their reasoning and the validity of proofs became objective, but still dependent
on the attention and perseverance of experts to correctly unfold the axioms (not
taking into account that formal proofs were not likely to be written nor unfolded
by hand). The mechanisation of proof checking finally allowed the validity of
proofs not to depend on the reviewer. On the other hand, we still need reviewers
to check that formalised statements make sense. Furthermore, the validity of
proofs depends strongly on a new parameter, namely the implementation of the
proof checker.

We are faced with two questions:

• Can we avoid relying on a particular and potentially flawed implementa-
tion of some formal system to verify our mathematics?

• When a proposition has been proved to hold in some system, can we as-
sume the proposition holds in an other system? Furthermore, how similar
are the proofs?

Avizienis 1985 proposes multiversion programming to answer the first question.
If we denote by 𝑝 the probability of introducing an error into the implementation
of a formal system, several implementations can be independently developed.
When 𝑛 such implementations agree, the probability of a false positive (or false
negative) may be brought down to 𝑝𝑛. However, the efficiency of multiversion
programming has been contested by Knight and Leveson 1986 and has become
controversial (see Knight and Leveson 1990). For the second question, we have
to study and compare logical systems themselves, so we are not using formal
systems to prove propositions in them, but we are comparing them and prov-
ing propositions about them. But in which formal system should we formalise
formal systems? If only we could design a formal system expressive enough
for propositions and proofs of other systems to be expressed, we could com-
pare propositions themselves, and even proofs. We could check proofs from
different formal systems, as long as their axioms are translated into the more
expressive logic. The ‘predicate logic’ of Frege 1879 fulfills these requirements.
For instance, set theories have been expressed in it. Such formal systems are
called ‘logical frameworks’ and are designed to define other logics. They strive
to remain as weak as possible, in the sense that they provide as few native
constructions as possible. Other logical frameworks have been conceived since
predicate logic, such as ‘Edinburgh’s logical framework’ (Harper, Honsell and
Plotkin 1993) (sometimes written LF , ELF , λΠ, or λ𝒫).

15

1.3. CONTRIBUTIONS

1.3 Contributions
This thesis shows how predicate subtyping can be expressed into a logical frame-
work based on dependent types and equational theories: the λΠ-calculus modulo
equations (hereafter λΠme). The study is both theoretic and applied to the ex-
pression of PVS into Dedukti (Deducteam 2022a), an implementation of λΠme.
The thesis can be separated into three parts.

1.3.1 Encoding explicit predicate subtyping
Chapter 2 provides a new interpretation of PVS-Cert into λΠme, a logical frame-
work where types are identified up to arbitrary congruences (while LF identifies
types up to reduction of functions). The novelty lies in the encoding of the con-
version relation of PVS-Cert. It implements a weak form of proof irrelevance
by erasing proof terms from the language. This reduction is encoded as a set of
equations. These equations may put in relation well-typed and ill-typed terms
which is a nuisance when one wants to reason on well-typed terms only. We
show that we can get rid of intermediate ill-typed terms when considering an
equality between two well-typed terms.

We establish typing preservation for PVS-Cert: any well-typed judgement
of PVS-Cert can be encoded as a well-typed judgement of λΠme.

We then discuss the implementation of a decidable relation in order to obtain
decidable type checking. Rewriting is used to provide a confluent relation, but
its termination is left as a conjecture, with potential tracks to prove it. The
section ends on some preliminary results for the conservativity of the encoding:
if two terms are equivalent with respect to the rewriting relation, then they are
equivalent with respect to the equations. This property requires a proof because
proof irrelevance is implemented in the rewrite relation using new symbols that
are not used in the equations. We therefore have to prove that these symbols
do not alter proofs of equivalence.

1.3.2 Handling implicit predicate subtyping
Chapters 3 and 4 are dedicated to the management of implicit subtyping. Im-
plicit subtyping may be seen as a coercion insertion problem, motivating the
implementation and study of term refiners. We model a coercion system on top
of this refiner that is able, in particular, to transform non functional values into
functional ones.

16

CHAPTER 1. INTRODUCTION

We study the implementation of a coercion system using rewrite rules. The
rewrite rules are used to implement a function computing the coercion of a
term between two types. The rewrite rules required to encode such a function
quickly become difficult to study and are known to yield non convergent rewrite
systems on untyped terms. Nonetheless we show that such a coercion system
allows us to implement sophisticated coercions in our framework. We also need
to handle proof obligations, which are modelled with existential variables in the
framework. The rewrite relation is extended to allow the generation of such
existential variables.

In Chapter 4, we provide a coercion system suitable to type check judge-
ments of λΠme that use implicit predicate subtyping. This coercion system
is able to interpret terms of PVS-Core expressed in λΠme into terms of PVS-
Cert expressed into λΠme. In particular, while F. Gilbert 2018 provides an
interpretation of complete derivations of PVS-Core to PVS-Cert (just like the
‘Penn-translation’ by Tannen et al. 1991), the mechanisms established in this
thesis allows us to generate, inside λΠme, well-typed certificates (i.e. judge-
ments of PVS-Cert) from well-typed judgements of PVS-Core. We show a type
preservation theorem: well-typed judgements of PVS-Core can be refined to
well-typed judgements of λΠme. In particular, this theorem requires a proof
that the refiner preserves substitution in the sense that substituting before or
after refinement should be the same (up to convertibility).

1.3.3 Working with PVS
Chapters 5 and 6 present an implementation of the translation from PVS-Core
to PVS-Cert encoded in Dedukti and use it to translate the standard library of
PVS (called ‘Prelude’). The Prelude uses more features available in PVS than
are described in the language encoded so far, such as polymorphism, tuples,
overloading &c. We present and discuss additional encodings for these features.

PVS stores proofs as sequences of tactics. Its Lisp image is able to rerun
these tactic sequences to obtain proof trees. We sketch procedures to generate
complete proof terms from these proof trees.

1.4 Related works
Subtyping on sorts has been added to pure type systems in order to obtain an
infinite hierarchy of universes that is easier to manipulate. These systems are
called cumulative type systems (Barras 1999; Luo 1990; François Thiré 2020).

17

1.4. RELATED WORKS

Predicate subtyping as considered in this work is based on the ideas devel-
oped in PVS (J. M. Rushby, Owre and Shankar 1998). It has been theoretically
studied by Owre and Shankar 1997b, where they formalise a substantial part
of PVS (including pairs, theories, polymorphism, logical context) and give a
set-theoretical interpretation of types and expressions. Although both ibid. and
F. Gilbert 2018 formalise a fragment of PVS , they do not handle subtyping sim-
ilarly. Ibid. keeps as much information as possible in the terms of the certificate
language, and subtyping is performed in small steps: from a type to its super-
type or one of its subtypes. The typing rules given by Owre and Shankar 1997b
stipulate that upon application (𝑓 𝑎), term 𝑎 must validate all proof obligations
from the topmost supertype of the domain of 𝑓 to the actual domain of 𝑓; we
can think of 𝑎 as being coerced from its current type to its topmost type, and
then coerced back to the domain of 𝑓. Stump 2003 provides another approach
to predicate subtyping, closer to the one of Owre and Shankar 1997b than of
F. Gilbert 2018. It defines a system PFsub which handles partial functions and
with an emphasis on the distinction between the type system and the proof
system. In particular, there may be expressions that are not typable in PVS
because of unsolvable type correctness conditions, such as 1

𝑖 > 0 ⇒ 𝑖 ≠ 0 (where
𝑖 is a real number). This expression is typable in PFsub, and even valid.

Barras and Bernardo 2008 provide a language with implicit constructions
whose type checking is not decidable (like PVS-Core), and an extraction from
the implicit language to an annotated one whose type checking is decidable (like
PVS-Cert). Just like in PVS-Cert the conversion in the decidable type system
operates on terms that are stripped of their implicit subterms. An emulation of
PVS is also provided where predicate subtypes are encoded by dependent pairs
whose second component is implicit, which allows to perform proof irrelevance
since these proofs are erased—because implicit—by the conversion.

Emulation of predicate subtyping à la PVS in other systems has already
been attempted several times. Hurd 2001 emulates predicate subtyping in HOL
using predicates instead of predicate subtypes. This approach suits well the
higher order nature of HOL but forces subtyping judgements to be stated as
theorems rather than typing judgements: while PVS can quantify over predicate
subtypes, HOL cannot quantify over values that validate a predicate. It brings
complications to keep the logical context in which terms are type checked.

Predicate subtyping has been encoded in the calculus of constructions by
Sozeau 2006. The encoding is similar to PVS-Cert, but the conversion rela-
tion is much richer. In particular, it includes 𝜂-equivalence 𝑓 = 𝜆𝑥, 𝑓 𝑥 (when
𝑥 ∉ 𝑓). The counterpart of PVS-Core is the language Russell. Russell han-
dles predicate subtyping implicitly. Type correctness conditions are replaced

18

CHAPTER 1. INTRODUCTION

with existential variables which are handled as unknown terms whose type is a
proposition. Expressions are written in Russell and then translated to the cal-
culus of constructions by an ad-hoc coercion insertion algorithm. More technical
comparisons will be carried out later on, in particular in Section 3.2.6.

Kaufmann and Moore 1997 provide in ACL2 a system of ‘guards’ into its
logic based on Common Lisp. These guards can mimic the expression of pre-
conditions with predicate subtyping. In ACL2, arguments of functions can
be guarded by predicates. Functions are said ‘gold’ when the functions used
in their body have their guards validated assuming the guards of the current
function. This mechanism replicates logical context we find in PVS : a ternary
‘if-then-else’ expression is gold whenever its ‘then’ branch is gold assuming the
branching condition and its ‘else’ branch is gold assuming the negation of the
branching condition. We can say that a symbol is gold when its type correctness
conditions have been solved.

Salvesen and Smith 1988 have studied the introduction of predicate sub-
typing into Martin-Löf type theory under the name ‘subset types’. The subset
formation and subset introduction rules are identical to the ones of PVS-Core.
Subset elimination has been studied in two different formalisms: intensional
type theory where the equality is definitional and extensional type theory where
the equality is extensional and undecidable. One of the aims of the authors is
to avoid proving the same lemmas several times. For instance, proposition
∀𝑥 ∈ {𝑦 ∶ 𝐴 ∣ 𝑃}, {𝑥/𝑦}𝑃 should not require any lemma: proving {𝑥/𝑦}𝑃
should take advantage of 𝑥 being in {𝑦 ∶ 𝐴 ∣ 𝑃}. Martin-Löf type theory with
extensional equality (and subset types) has been implemented in Nuprl (Con-
stable et al. 1986).

Cauderlier and Dubois 2014 have expressed object oriented type systems
with subtyping in λΠme. Unlike PVS , type checking in this type system is
decidable, it only performs structural subtyping on record types: a record type
𝐴 is a subtype of a record type 𝐵 if the set of projections of 𝐴 is a superset of
the projections of B. That way, any record of type 𝐴 can be seen as a record
of type 𝐵. Subtyping is expressed through an explicit coercion function, like
in PVS-Cert, but the coercion function is more general: it takes two encoded
types as arguments, a proof of subtyping, and coerces an element of the former
encoded type to the latter one. In the encoded calculus, expressions of type 𝐵
are bundles containing an encoded type 𝐴, an object of type 𝐴 and a proof that
𝐴 is a subtype of 𝐵. The article proposes an alternative encoding which is more
shallow but non terminating.

Refinement types by Lovas and Pfenning 2010 enrich type systems while
keeping type checking decidable. Refinement types act as a layer on top of the

19

1.4. RELATED WORKS

base type system that allows to provide more invariants on functions: refine-
ment ‘sorts’ are not native types. Refinement types can be seen as an inten-
sional version of predicate subtyping: atomic refinements are axiomatised, such
as pos ⊏ nat, and the type checker is able to attribute refinement sorts to ex-
pressions in canonical forms using these declarations. Interestingly, refinement
types can be interpreted by predicates into λΠ with proof irrelevance.

Ferreira and Pientka 2014 show how elaboration can be used in logical frame-
works to separate a user-level syntax (‘the language of programs’) from a kernel-
level syntax (‘the language of types and terms’). The set of terms is richer
than ours as it contains recursive functions and pattern matching. Thanks to
elaboration, types and arguments may be omitted from the language, but the
elaboration cannot be parametrised.

Pfenning 2001 has studied the interactions between proof irrelevance and
intensional and extensional type theories. The type theory presented is an
extension of λΠ with different notions of truth: the judgement ⊢ 𝑀 ÷𝐴 states
𝐴 is provable, but the proof is hidden (the judgement ⊢ 𝑀 ∶ 𝐴 provides a
proof that is taken into account). Similarly, the function type Π𝑥 ÷ 𝐴,𝐵 has
an irrelevant argument. When a function takes a proof irrelevant argument, the
application is itself proof irrelevant, allowing the definitional equality to ignore
the argument.

Back to Martin-Löf type theory, Abel, Coquand and Pagano 2011 distin-
guish propositions 𝐴 from ‘proof-irrelevant propositions Prf(𝐴)’. While 𝐴 can
be inhabited by several normal forms, Prf(𝐴) is inhabited by a single normal
form.

Werner 2008 embeds proof irrelevance into the extended calculus of construc-
tions of Luo 1990 using the dependent pairs of the calculus. Dependent pair
types and right (or second) projections come in two flavours, proof irrelevant
or vanilla. The reduction at the heart of the congruence reduces terms tagged
irrelevant to a canonical proof 𝜖. In this work, it is shown how such proof irrel-
evance can be used to form a language with explicit coercions closely related to
PVS .

Proof irrelevance is native in Lean (Moura et al. 2015), and Matita supports
it as well (Asperti, Ricciotti and Coen 2014, Section 9.3). Proof assistants Coq
and Agda (G. Gilbert et al. 2019) have both a specific sort for proof irrelevant
propositions (SProp for Coq and Prop for Agda).

Aspinall and Compagnoni 2001 have studied subtyping in λΠ, but a transla-
tion from λΠ with subtyping to λΠ was left as future work. Such a translation
is given in (Tannen et al. 1991) and will be discussed in Chapter 3.

Some earlier forms of predicate subtyping can also be seen in the OBJ lan-

20

CHAPTER 1. INTRODUCTION

guages which implement sub-sorting. Futatsugi et al. 1985 describe how sub-
sorting is performed; in particular, sub-sorting declarations such as ‘non empty
lists is a subtype of lists’ are interpreted as coercion operators. Bouhoula, J.
Jouannaud and Meseguer 2000 use membership declarations to provide more
information to the type checker in order to infer more precise types (or sorts).
Membership declarations are similar to the ‘judgements’ mechanism of PVS .

1.5 Notations and definitions
Lower case letters generally stand for objects, and uppercase letters for types,
𝑥, 𝑦, 𝑧, 𝑣 generally stand for variables, 𝑠 for sorts, Γ,Δ,Ξ for contexts.

For any set ℰ, any natural number 𝑘, we denote ℰ𝑘 = ℰ × ℰ𝑘−1 when 𝑘 > 1
and ℰ1 = ℰ; and ℰ∗ = ⋃𝑘≥0 ℰ

𝑘.

Hoare triples Given a procedure 𝑒 that may diverge or fail, the notation
(from Hoare 1969) {𝑃} 𝑒 {𝑄} states that whenever precondition 𝑃 holds and 𝑒
terminates without failure then postcondition 𝑄 holds as well. Any Hoare triple
{𝑃} 𝑓 {𝑄} can be seen as a specification for procedure 𝑓, and we say that an
implementation of 𝑓 obeys its specification when it validates the Hoare triple.

Terms 𝜆 terms are defined inductively on a countably infinite set of variables
𝒳 by

𝑡 ∶∶= 𝑥 ∈ 𝒳 ∣ 𝑡 𝑡 ∣ 𝜆𝑥 ∶ 𝑡, 𝑡 ∣ Π𝑥 ∶ 𝑡, 𝑡. (1.1)

The set of 𝜆-terms is denoted 𝒯(𝒳) (the set of variables will be omitted in
general). A dependent product Π𝑥 ∶ 𝑡, 𝑢 may be written 𝑡 → 𝑢 if 𝑢 does not
contain variable 𝑥.

The application of a substitution 𝜎 to a term 𝑡 is denoted 𝜎𝑡 and {𝑢/𝑥}
denotes the substitution of term 𝑡 for variable 𝑥.

Vectors (which are considered to be the same as finite sequences) are de-
noted in bold 𝒙 or in parentheses (𝑥𝑖)𝑖 where 𝑖 is the index. Vectors may be
used in substitution {𝒖/𝒙} 𝑡 or binders ‘𝝀𝒙 ∶ 𝒕, 𝑢’, ‘𝜫𝒙 ∶ 𝒕, 𝑢’. Concatenation
and adding are written with the comma ‘,’. Both ‘𝑥, 𝒙’ and ‘𝒙, 𝒚’ are correct
sequences (and the latter is not a sequence of sequences). Substitution is ex-
tended to sequences by 𝜎𝒙 = (𝜎𝑥𝑖)𝑖. Contexts can be seen as sequences of pairs
of variables and types, hence adding a binding (𝑥 ∶ 𝑇) to a context Γ is written
‘Γ, (𝑥 ∶ 𝑇)’. The empty context is denoted ∅.

21

1.5. NOTATIONS AND DEFINITIONS

For any judgement 𝐽, we write 𝒟 ∶∶ 𝐽 if 𝒟 is a derivation tree whose conclu-
sion is judgement 𝐽.

Subterms and positions A position is a string of natural numbers, 𝜖 is the
empty string, 𝒫 is the set of positions, and for any term 𝑡 in 𝒯(𝒳), 𝒫(𝑡) is the
set of positions of 𝑡 defined as follows:

𝒫(𝑓 𝑡1 … 𝑡𝑛) = {𝜖}
𝑛
⋃
𝑖=1

{𝑖, 𝑝 ∣ 𝑝 ∈ 𝒫(𝑡𝑖)}

𝒫(𝜆𝑥 ∶ 𝑡, 𝑢) = {𝜖} ∪ {1, 𝑝 ∣ 𝑝 ∈ 𝒫(𝑡)} ∪ {2, 𝑝 ∣ 𝑝 ∈ 𝒫(𝑢)}
𝒫(Π𝑥 ∶ 𝑡, 𝑢) = {𝜖} ∪ {1, 𝑝 ∣ 𝑝 ∈ 𝒫(𝑡)} ∪ {2, 𝑝 ∣ 𝑝 ∈ 𝒫(𝑢)}
𝒫(𝑥) = {𝜖} if 𝑥 ∈ 𝒳.

For any term 𝑡 the subterm of 𝑡 at position 𝑝 ∈ 𝒫(𝑡) is defined by

𝑡|𝜖 = 𝑡; (𝑓 𝑡1 … 𝑡𝑛)|𝑖,𝑝 = 𝑡𝑖|𝑝
(𝜆𝑥 ∶ 𝑡1, 𝑡2)|𝑖,𝑝 = 𝑡𝑖|𝑝; (Π𝑥 ∶ 𝑡1, 𝑡2)|𝑖,𝑝 = 𝑡𝑖|𝑝.

For any terms 𝑠 and 𝑡, the replacement of the subterm of 𝑡 at position 𝑝 ∈ 𝒫(𝑡)
by term 𝑠 is denoted {𝑠/𝑝} 𝑡 and defined as

{𝑠/𝜖} 𝑡 = 𝑠
{𝑠/𝑖, 𝑝} (𝑓 𝑡1 … 𝑡𝑛) = (𝑓 𝑡1 … ({𝑠/𝑝} 𝑡𝑖) … 𝑡𝑛)
{𝑠/1, 𝑝} (𝜆𝑥 ∶ 𝑡, 𝑢) = 𝜆𝑥 ∶ {𝑠/𝑝} 𝑡, 𝑢
{𝑠/2, 𝑝} (𝜆𝑥 ∶ 𝑡, 𝑢) = 𝜆𝑥 ∶ 𝑡, {𝑠/𝑝} 𝑢
{𝑠/1, 𝑝} (Π𝑥 ∶ 𝑡, 𝑢) = Π𝑥 ∶ {𝑠/𝑝} 𝑡, 𝑢
{𝑠/2, 𝑝} (Π𝑥 ∶ 𝑡, 𝑢) = Π𝑥 ∶ 𝑡, {𝑠/𝑝} 𝑢

The prefix order ≤ is defined as 𝑝 ≤ 𝑞 if there is 𝑝′ such that 𝑝, 𝑝′ = 𝑞. A
position 𝑝 is below position 𝑞 if 𝑞 ≤ 𝑝 and strictly below 𝑞 if 𝑞 ≤ 𝑝 and 𝑞 ≠ 𝑝
(above is defined similarly). Two positions are disjoint or parallel if they are not
comparable with respect to ≤.

A context is a term with at most one occurrence of a variable �. If 𝛾
is a context, 𝛾[𝑡] denotes the substitution of term 𝑡 for variable �. When not
mentioned, sets of variables for the language do not contain � to avoid confusion.

22

CHAPTER 1. INTRODUCTION

Relations and rewriting For any relation 𝑅 we note 𝑅= its reflexive closure,
𝑅+ its transitive closure, 𝑅−1 its inverse and 𝑅∗ its reflexive and transitive
closure. For any relations 𝑅 and 𝑆, we write 𝑅𝑆 = {(𝑡, 𝑢) ∣ ∃𝑣, 𝑡 𝑅 𝑣 ∧ 𝑣 𝑆 𝑢}
the composition of 𝑅 and 𝑆. For any relation 𝑅, two terms 𝑠 and 𝑡 are joinable
denoted 𝑠 ↓𝑅 𝑡 whenever there is a term 𝑢 such that 𝑠 𝑅∗ 𝑢 (𝑅−1)∗ 𝑡. The
congruence of a relation 𝑅 is the smallest equivalence relation containing 𝑅 that
is closed by context and substitution; it is denoted ≃𝑅.

An equation is a pair of terms (𝑡, 𝑢) denoted 𝑡 = 𝑢. A rewrite rule is an
equation (𝑡, 𝑢) denoted 𝑡 ↪⟶ 𝑢 when 𝑡 is not a variable and all free variables
of 𝑢 are in 𝑡. When 𝑅 is a rewrite system (a set of rewrite rules), ↪⟶𝑅 is the
closure by context and substitution of the rewrite rules of 𝑅. If ↪⟶ is a rewrite
relation, ↪⟶= denotes its reflexive closure, ⟵↩ its inverse, ↔ its symmetric
closure, ↪⟶+ its transitive closure and ↪⟶∗ its reflexive and transitive closure.

Definition 1. A rewrite relation ↪⟶ is called

• Church-Rosser when 𝑡 ↔∗ 𝑢 implies 𝑡 ↓ 𝑢.

• confluent when 𝑠 ⟵↩∗ 𝑡 ↪⟶∗ 𝑢 implies 𝑠 ↓ 𝑢.

Proposition 1. A relation has the Church-Rosser property if and only if it is
confluent.

Proof. See Baader and Nipkow 1998, Theorem 2.1.5.

A rewrite relation ↪⟶ is terminating whenever there is no infinite reduction
chain 𝑡0 ↪⟶ 𝑡1 ↪⟶ … and it is convergent when it is both terminating and
confluent.

Given a relation ↔ that is symmetric, stable by context and stable by substi-
tution (but not transitive), if ≃ = ↔∗ (i.e. ≃ is the least congruence containing
↔), then a proof of congruence 𝑡 ≃ 𝑢 is a sequence of terms (𝑠𝑖)𝑖 such that
𝐴 ↔ 𝑠1 ↔ 𝑠2 ↔ ⋯ ↔ 𝐵.

1.6 Expressing systems in computational logical
frameworks

We present informally some usual techniques to express systems in the compu-
tational logical framework λΠme.

Given a theory 𝒮 made of a language and typing rules, expressing it in λΠme
consists in providing a set of functions and equations in order to translate valid

23

1.6. EXPRESSING SYSTEMS IN COMPUTATIONAL LOGICAL
FRAMEWORKS

judgements of 𝒮 into λΠme. The set of functions and equations of λΠme to
embed 𝒮 is denoted λΠ[𝒮].

In order to get acquainted with general techniques used to embed systems
in logical frameworks, we show how to express simply typed 𝜆-calculus (Church
1940) and minimal predicate logic (Frege 1879) in λΠme.
Example 1 (𝜆-calculus). To embed the simply typed 𝜆-calculus with one sort,
we declare a type I to represent this unique sort, a function app ∶ I → I → I
that stands for the application and a function abs ∶ (I → I) → I that stands
for the abstraction.

Using these functions, the term 𝜆𝑥, 𝜆𝑦, (𝑦 𝑥) is represented by

(abs (𝜆𝑥 ∶ 𝐼, (abs (𝜆𝑦 ∶ 𝐼, (app 𝑦 𝑥))))) .

This encoding may seem confusing, as we could simply use the identity for em-
bedding, since λΠme contains both the abstraction and the application. How-
ever, we use the functions app and abs to separate the abstractions of the
framework that are used as tools to bind variables from the actual abstraction
of the source logic, here the 𝜆-calculus, which we embed using abs.

The embedding is not yet finished, as 𝛽 reductions of the 𝜆-calculus are not
reflected in our embedding: whereas, for any free variable 𝑥, ((𝜆𝑦, 𝑦) 𝑥) = 𝑥, we
do not have such equality in the embedding: (app (abs (𝜆𝑦, 𝑦)) 𝑥) is not equal
to 𝑥. Therefore, we add the following equation to the framework

(app (abs 𝑏) 𝑒) = (𝑏 𝑒) .

The embedding consists finally of the following set of functions and equations
(where ⋆ is the type of types in λΠme),

I ∶ ⋆
app ∶ I → I → I
abs ∶ (I → I) → I
(app (abs 𝑏) 𝑒) = (𝑏 𝑒)

We can finally prove that the embedding preserves typing, i.e. that any
valid typing judgements of the source system is embedded as a valid typing
judgement of λΠme; and we can prove that it is complete: embedded types can
be inhabited in λΠme only if they can be inhabited in the 𝜆-calculus.
Example 2 (Minimal predicate logic). Predicate logic with a single sort, in its
minimal form, is made of the universal quantification ∀ and the implication ⇒,

24

CHAPTER 1. INTRODUCTION

and a sort 𝐼. Just like in the previous example, the sort 𝐼 is embedded by a type
I ∶ ⋆. We add the type of propositions denoted Prop ∶ ⋆. The implication ⇒ is
embedded by a function imply ∶ Prop → Prop → Prop. The quantifier ∀ binds a
variable, therefore, we use the absraction of the framework as a binding facility:
for any proposition 𝑃, denoting 𝑃 ′ the embedding of 𝑃, ‘∀𝑥.𝑃’ is embedded as
(all (𝜆𝑥 ∶ I, 𝑃 ′)), where all ∶ (I → Prop) → Prop.

Our current embedding allows us to write well-formed propositions, but we
cannot express proofs yet. For this, we introduce a dependent type Prf ∶ Prop →
⋆ such that, for any proposition 𝑃, (Prf𝑃) can be interpreted as the type of
proofs of 𝑃. For any propositions 𝑃 and 𝑄 embedded as 𝑃 ′ and 𝑄′, proofs of
𝑃 ⇒ 𝑄 cannot be terms of type (imply𝑃 ′ 𝑄′), because the latter is an object,
it is not a type. However, it can be typed by (Prf (imply𝑃 ′ 𝑄′)) which is now
a type.

Finally, the Brouwer-Heyting-Kolmogorov interpretation of proofs says that
a proof of 𝑃 ⇒ 𝑄 should be a function mapping proofs of 𝑃 to proofs of 𝑄. This
interpretation is not reflected in the embedding: (Prf (imply𝑃 ′ 𝑄′)) is not a
function type. But thanks to the computational capabilities of λΠme, we can
add the following equation

(Prf (imply𝑃𝑄)) = (Prf𝑃) → (Prf𝑄)

so that the type of proofs of 𝑃 ⇒ 𝑄 is identified with the type of functions from
proofs of 𝑃 to proofs of 𝑄.

More techniques to express theories in λΠme can be seen in (Blanqui, Dowek
et al. 2021; Guillaume Burel et al. 2016).

25

1.6. EXPRESSING SYSTEMS IN COMPUTATIONAL LOGICAL
FRAMEWORKS

26

Chapter 2

Encoding explicit predicate
subtyping

This chapter is based on (Hondet and Blanqui 2021). The modifications brought
in this manuscript are listed in Table 2.1.

2.1 PVS-Cert: A minimal system with predi-
cate subtyping

Because of its size, encoding the whole of PVS cannot be achieved in one step.
Consequently, F. Gilbert 2018 extracted, formalised and studied a subsystem

Table 2.1: Main differences with (Hondet and Blanqui 2021)

Expanded formalism in Section 2.1
New section on conservativity of computations (Section 2.5)
New section on bidirectional type checkers (Section 2.4.2)
Replaced encoded Prop by El o

Removed encoded type and Kind which were the encoding of the sorts of
PVS-Cert, only Type remains as encoded sort (and o)

27

2.1. PVS-CERT: A MINIMAL SYSTEM WITH PREDICATE SUBTYPING

of PVS which captures the essence of predicate subtyping named PVS-Cert.
Unlike PVS , PVS-Cert contains proof terms, thus type checking is decidable in
PVS-Cert while it is not in PVS . Hence PVS-Cert is a suitable logical system
in which to encode PVS specifications and proofs so that they may be cross
checked.

In comparison with (F. Gilbert 2018), we use equations rather than re-
duction rules and slightly change the syntax of terms. The system PVS-Cert
remains a two layer system composed of predicate subtyping on top of simple
type theory (Church 1940).

2.1.1 Type system modulo theory
To describe the various type systems used in this work, we will use type systems
modulo introduced by Blanqui 2001. Type systems modulo are an extension of
pure type systems (H. Barendregt and Hemerik 1990) with symbols of fixed arity
declared in a typing signature and an arbitrary congruence. Pure type systems
use the reflexive transitive symmetric closure of the 𝛽 reduction as equivalence.

Definition 2 (Syntax of type systems modulo). The terms of type systems
modulo are parametrised by a set of sorts 𝒮, a set of variables 𝒳 and a set of
symbols ℱ. The set of terms is denoted 𝒯(𝒳,𝒮,ℱ) and is described by the
following grammar

𝑡 ∶∶= 𝑠 ∈ 𝒮 ∣ 𝑥 ∈ 𝒳 ∣ 𝑓 ∈ ℱ ∣ 𝑡 𝑡 ∣ 𝜆𝑥 ∶ 𝑡, 𝑡 ∣ Π𝑥 ∶ 𝑡, 𝑡 (2.1)

A contexts is a subsets of (𝒳 × 𝒯(𝒳,𝒮,ℱ))∗ where each variable is bound at
most once.

We will often abuse notations and omit arguments of 𝒯(−) whenever they
can be unambiguously inferred from the context. The set of variables can almost
always be omitted, since we only work with set 𝒳.

Definition 3 (Signature). For any set of symbols ℱ, any set of sorts 𝒮, such that
ℱ, 𝒮 and 𝒳 are pairwise disjoint, denoting 𝒯 as an abbreviation for 𝒯(𝒳,𝒮,ℱ),
a typing signature is a partial function Σ ∶ ℱ ⇀ (𝒳×𝒯)∗×𝒯×𝒮. Furthermore,
for any triple ((𝒙,𝑨),𝐵, 𝑠) in the image of Σ, variables 𝒙 are pairwise distinct.

A mapping from a symbol 𝑓 to a triple ((𝒙, 𝒕), 𝑇 , 𝑠) is denoted 𝑓[𝒙 ∶ 𝒕] ∶
𝑇 ∶ 𝑠 To say that 𝑓 is mapped to ((𝒙,𝑨),𝐵, 𝑠) by Σ, we either write Σ(𝑓) =
((𝒙,𝑨),𝐵, 𝑠) or 𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ. For any signature Σ, the domain of Σ is
denoted dom(Σ).

28

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

empty

⊢∅

decl
𝑥 ∉ Γ Γ ⊢ 𝐴 ∶ 𝑠

⊢Γ, 𝑥 ∶ 𝐴

var
⊢Γ (𝑥 ∶ 𝐴) ∈ Γ

Γ ⊢ 𝑥 ∶ 𝐴

conv
Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝐵 ∶ 𝑠 𝐴 ≃ 𝐵

Γ ⊢ 𝑡 ∶ 𝐵

sort
⊢Γ (𝑠1, 𝑠2) ∈ 𝒜

Γ ⊢ 𝑠1 ∶ 𝑠2

prod
Γ ⊢ 𝐴 ∶ 𝑠1 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑠2 (𝑠1, 𝑠2, 𝑠3) ∈ 𝒫

Γ ⊢ Π𝑥 ∶ 𝐴,𝐵 ∶ 𝑠3

abst
Γ ⊢ Π𝑥 ∶ 𝐴,𝐵 ∶ 𝑠 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵

Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ∶ Π𝑥 ∶ 𝐴,𝐵

appl
Γ ⊢ 𝑡 ∶ Π𝑥 ∶ 𝐴,𝐵 Γ ⊢ 𝑢 ∶ 𝐴

Γ ⊢ (𝑡 𝑢) ∶ {𝑢/𝑥}𝐵

sign
𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ 𝒙 ∶ 𝑨 ⊢ 𝐵 ∶ 𝑠 (Γ ⊢ 𝑡𝑖 ∶ {𝑡𝑗/𝑥𝑗}𝑗<𝑖

𝐴𝑖)
𝑖

Γ ⊢ (𝑓 𝒕) ∶ {𝒕/𝒙}𝐵

Figure 2.1: Typing rules of a type system modulo. They are parametrised by
axioms 𝒜, product rules 𝒫, congruence ≃ and signature Σ.

The notation [𝒙 ∶ 𝒕] is reminiscent of de Bruijn’s telescopes (de Bruijn 1991)
where each term 𝑡 may depend on the variables bound earlier in the context.

Remark 1. Signatures provide an arity to each symbol in their domain. For any
signature Σ, for any (𝑓[(𝑥𝑖 ∶ 𝐴𝑖)𝑖≤ℓ] ∶ 𝐵 ∶ 𝑠) ∈ Σ, (𝑓 𝒕) is well-typed only when 𝑓
is applied to ℓ arguments (see rule sign of Fig. 2.1), therefore ℓ can be seen as
the arity of 𝑓.

Definition 4 (Type system modulo specification). A type system modulo spec-
ification is a 6-uple (𝒮,𝒜,𝒫,ℱ,≃,Σ) where

• 𝒮 is a finite set of constants called sorts,

• 𝒜 ⊆ 𝒮× 𝒮 is a relation called axioms,

29

2.1. PVS-CERT: A MINIMAL SYSTEM WITH PREDICATE SUBTYPING

• 𝒫 ⊆ 𝒮 × 𝒮 × 𝒮 is a relation called product rules,

• ℱ is a set of function symbols,

• ≃ is a congruence on 𝒯(𝒮,ℱ) and

• Σ is a typing signature.

When omitted, the set of symbols ℱ defaults to the domain of Σ.

Definition 5 (Type system modulo). For any specification 𝔗 = (𝒮,𝒜,𝒫,ℱ,≃
,Σ), abbreviating 𝒯(𝒮,ℱ) by 𝒯, a type system modulo is a ternary relation (also
called ‘typing relation’) in (𝒳 × 𝒯)∗ × 𝒯 × 𝒯 denoted ‘Γ ⊢ 𝑡 ∶ 𝑢’ where Γ is a
context and 𝑡 and 𝑢 are terms. A triple (Γ, 𝑡, 𝑢) is in the relation if and only
if Γ ⊢ 𝑡 ∶ 𝑢 can be derived can be derived using the inference rules of Fig. 2.1
parametrised by 𝔗.

For any specification 𝔗, the type system modulo parametrised by 𝔗 is de-
noted ‘⋅ ⊢𝔗 ⋅ ∶ ⋅’ (where ‘⋅’ denotes the position of arguments). The annotation 𝔗
can be omitted when the specification can be unambiguously inferred. In that
case, we simply write ‘⋅ ⊢ ⋅ ∶ ⋅’. Because a specification identifies uniquely a type
system modulo, we may quantify over type systems modulo instead of specifica-
tion, so that the sentence ‘for any type system modulo 𝔗’ should be understood
as ‘for any type system modulo specification 𝔗’. For any specification, for any
triple (Γ, 𝑡, 𝐴), the notation Γ ⊢ 𝑡 ∶ 𝐴 is also called a ‘judgement’ in the sense
that it judges 𝑡 to be of type 𝐴 in context Γ.

Definition 6 (Well-formed signature). A signature Σ is well-formed in a type
system modulo 𝔗, written ⊢𝔗 Σ, if for any judgement 𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ, we
have 𝒙 ∶ 𝑨 ⊢𝔗 𝐵 ∶ 𝑠.

Remark 2. We do not pay attention to how signatures and equivalences are
formed in general. The formation rules of signatures may be defined in the type
system (Gaspard Férey 2021; Guillaume Burel et al. 2016; Saillard 2015). These
presentations are suitable for formalising the meta theory of logical frameworks,
when the process of creating a signature is discussed, and some properties must
be kept through extension of the signature. In this thesis, we consider a re-
stricted number of signatures which are designed so that they have desirable
properties.

Definition 7. Let 𝔗 be a type system modulo parametrised by a set of sorts 𝒮.
We say that a context Γ is well-formed in 𝔗 whenever ⊢𝔗 Γ is derivable. We say

30

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

that a type 𝑇 is well-sorted in context Γ in 𝔗 whenever there is a sort 𝑠 ∈ 𝒮 such
that Γ ⊢𝔗 𝑇 ∶ 𝑠. We say that a term 𝑡 is well-typed in a context Γ in 𝔗 whenever
there is a type 𝑇 well-sorted in context Γ (in system 𝔗) such that Γ ⊢𝔗 𝑡 ∶ 𝑇 is
derivable.

Definition 8 (λΠme). For any set of variables 𝒳, for any set of symbols ℱ, for
any set of equations ℰ and for any typing signature Σ, a λΠme system is a type
system modulo parametrised by ({⋆,�}, {(⋆,�)},𝒫𝜆Π,ℱ,≃,Σ) where 𝒫𝜆Π =
{(⋆, ⋆, ⋆), (⋆,�,�)} and ≃ is the smallest congruence containing equations of ℰ
and Eq. (𝛽) Page 31. Any λΠme system is specified by the triple (ℱ, ℰ,Σ).

Any instance of λΠme with an empty set of equations is an instance of the
Edinburgh’s logical framework. The family of λΠme type systems modulo can
be seen as a logical framework extended with an equational theory.

2.1.2 Simple type theory
PVS and PVS-Cert are both based on simple type theory (Church 1940), which
can be represented by the following type system modulo.

Definition 9 (Simple type theory, λhol). Simple type theory, or λhol, is the
type system modulo defined by the following parameters

• 𝒮 = {Prop, Type, Kind},

• 𝒜 = {(Prop, Type), (Type, Kind)},

• 𝒫 = {(Prop, Prop, Prop), (Type, Type, Type), (Type, Prop, Prop)},

• ℱ = ∅,

• Σ = ∅,

• ≃ is the congruence of the 𝛽-reduction defined by Eq. (𝛽)

((𝜆𝑥, 𝑡) 𝑢) ↪⟶ {𝑢/𝑥} 𝑡 (𝛽)

λhol is also a pure type system (H. Barendregt and Hemerik 1990) since the
signature is empty and the equivalence is the closure of the 𝛽-reduction.

We denote by ≃𝛽 the congruence of rule Eq. (𝛽).

31

2.1. PVS-CERT: A MINIMAL SYSTEM WITH PREDICATE SUBTYPING

psub [𝑇 ∶ Type; 𝑃 ∶ 𝑇 → Prop] ∶ Type ∶ Kind
pair [𝑇 ∶ Type; 𝑃 ∶ 𝑇 → Prop; 𝑥 ∶ 𝑇 ; ℎ ∶ 𝑃 𝑥] ∶ psub(𝑇 , 𝑃) ∶ Type
𝜋ℓ [𝑇 ∶ Type; 𝑃 ∶ 𝑇 → Prop; 𝑥 ∶ psub(𝑇 , 𝑃)] ∶ 𝑇 ∶ Type
𝜋𝑟 [𝑇 ∶ Type, 𝑃 ∶ 𝑇 → Prop, 𝑥 ∶ psub(𝑇 , 𝑃)] ∶ 𝑃 (𝜋ℓ(𝑇 , 𝑃 , 𝑥)) ∶ Type

Figure 2.2: Signature ΣPe of PVS-Cert.

2.1.3 Predicate subtyping
Predicate subtyping introduces four new symbols in simple type theory: the type
construction for predicate subtypes psub, an introduction of predicate subtypes
pair and two eliminators 𝜋ℓ and 𝜋𝑟. A predicate subtype psub(𝐴, 𝑃) is defined
from a supertype 𝐴 and predicate 𝑃 over 𝐴. Terms inhabiting a predicate
subtype psub(𝐴, 𝑃) are built with pair(𝐴, 𝑃 , 𝑡, ℎ) made of a term 𝑡 that stands
for an actual value of type 𝐴 and a proof ℎ that 𝑡 validates 𝑃. Eliminators allow
either to retrieve a value out of 𝑢 using 𝜋ℓ(𝐴, 𝑃 , 𝑢), or to retrieve a proof that
𝑢 validates 𝑃 with 𝜋𝑟(𝐴, 𝑃 , 𝑢). The constructors and eliminators can be seen as
coercions from types to predicate subtypes and vice versa: they allow either to
attach some logical content to a value, or to retrieve the actual value to perform
some computation. Unlike PVS-Cert, PVS does not use coercions pair, 𝜋ℓ and
𝜋𝑟. In PVS , subtyping is implicit: terms do not have a unique type, and its
choice is left to the type checker.

These symbols are declared in the signature in Fig. 2.2. In addition to simple
type theory (Definition 9) and these symbols, PVS-Cert uses a congruence ≃Pe
that identifies more terms than ≃𝛽 which will be defined in Definition 10.
Remark 3. Unlike the original presentation of PVS-Cert by F. Gilbert 2018, pro-
jections and pairs are annotated with the type of their argument to prove more
easily that the translation of PVS-Cert terms is well-defined (Proposition 2).

Proof irrelevance So far, no real difference has been evinced between PVS-
Cert and dependent pairs: predicate subtype psub(𝐴, 𝑃) is just a restricted
version of dependent pairs (Σ𝑥 ∶ 𝐴, 𝑃𝑥) (see ibid., Definition 4.2.3). The dif-
ference lies in the equivalence relations and the fact that PVS-Cert implements
proof irrelevance in pairs.

Proofs contained in terms are essential for typing purposes. On the other
hand, these proofs are a burden regarding the equivalence of terms. Were

32

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

these proofs taken into account (as ≃𝛽 does), too many terms would be dis-
tinguished. For example, consider two terms 𝑡 = pair(nat, evenp, 2, ℎ) and
𝑡′ = pair(nat, evenp, 2, ℎ′) that stand for the number 2 that has been proved
even. Without proof irrelevance, 𝑡 and 𝑡′ are not considered equal because they
do not have the same proof (ℎ and ℎ′) that 2 is even. We end up with one even
number 2 per proof that 2 is even.

As stated by de Bruijn 1994, most mathematicians seek convertibility of 𝑡 and
𝑡′ and care more about what ℎ and ℎ′ prove than the proofs themselves. In that
regard, PVS-Cert has proof irrelevant pairs: proofs attached to terms are not
taken into account when checking the equivalence of two pairs. This property is
embedded in the equivalence relation used in the conversion rule of PVS-Cert
which does not attach any importance to the proofs of pairs. Consequently, the
eliminator 𝜋𝑟 provides a proof, but we do not know which one a priori. We only
know what it proves.

Definition 10. The equivalence of PVS-Cert is noted ≃Pe and is the smallest
congruence containing Eqs. (2.2), (2.3) and (𝛽)

pair(𝑡, 𝑢,𝑚, ℎ0) = pair(𝑡, 𝑢,𝑚, ℎ1) (2.2)
𝜋ℓ(𝑡0, 𝑢0, pair(𝑡1, 𝑢1,𝑚, ℎ)) = 𝑚 (2.3)

Equation (2.3) allows the projection to compute. The right projection does
not compute1 to avoid implementing full proof irrelevance: the addition of such
a reduction rule causes all proofs (i.e. terms of type Prop) to be equivalent (since
ℎ = 𝜋𝑟(𝑎, 𝑝, pair(𝑎, 𝑝, 𝑥, ℎ)) = 𝜋𝑟(𝑎, 𝑝, pair(𝑎, 𝑝, 𝑥, ℎ′)) = ℎ′), which may imply
other axioms such as the uniqueness of identity proofs (G. Gilbert et al. 2019).

Definition 11 (PVS-Cert). PVS-Cert is the same system as λhol but with
ℱPe = {psub, 𝜋ℓ, pair, 𝜋𝑟}, the signature ΣPe defined in Fig. 2.2 and congruence
≃Pe (Definition 10). Typing judgements of PVS-Cert may be written ‘⊢Pe∶’ to
avoid confusion.

The conversion relation used by F. Gilbert 2018 contains only 𝛽 and the
following reductions that erase coercions:

𝜋ℓ(𝑇 , 𝑃 ,𝑋) ↪⟶ 𝑋
pair(𝑇 , 𝑃 ,𝑋,𝐻) ↪⟶ 𝑋.

These reduction rules cannot be included in congruence ≃Pe because they do not
preserve typing: the left-hand side and the right-hand side of both rules cannot

1In contrast to the reduction of Sozeau 2006, which contains both projections.

33

2.1. PVS-CERT: A MINIMAL SYSTEM WITH PREDICATE SUBTYPING

have the same type. On the other hand, this congruence contains surjective
pairing pair(𝑡, 𝑝, 𝜋ℓ(𝑡, 𝑝, 𝑒) , 𝜋𝑟(𝑡, 𝑝, 𝑒)) ↪⟶∗ 𝑒 whereas ≃Pe does not. Equations
of λΠme must preserve typing for the type checker to behave well, which prevents
from using the above reduction rules as equations.

Proofs of 𝑇 ≃𝛽 𝑈 or 𝑇 ≃Pe 𝑈 can use untyped intermediate terms, which can
be problematic when proving properties hold on typed terms only.
Example 3. While 𝛽-reduction preserves typing in PVS-Cert, its symmetric,
𝛽-expansion, does not. For instance, assume that signature Σ declares

Nat ∶ Type; zero ∶ Nat; String ∶ Type.

Then zero (which is well-typed) 𝛽-expands to ((𝜆𝑥 ∶ String, 𝑥) zero) which is
ill-typed (because the domain of the abstraction, String, is not convertible with
the type of the argument, Nat).

Proof irrelevance does not preserve well-typedness. Assume we use the pre-
vious signature Σ, and we add the declarations

Even ∶ Nat → Prop and zE ∶ (Even zero)

where Even is a predicate, and zE is a proof that zero validates Even. In the
new signature, the following judgements hold by rule sign

⊢
𝛼

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞pair(Nat, Even, zero, zE) ∶ psub(Nat, Even)

However, 𝛼 is convertible, via Eq. (2.2), with pair(Nat, Even, zero, zero) where
the latter term is not typeable because the fourth argument (zero) is not a proof
of (Even zero), hence rule sign does not apply.

We therefore show that if 𝑇 and 𝑈 are well-typed, there is a proof of 𝑇 ≃Pe 𝑈
that uses only well-typed terms. In the case of ≃𝛽, the problem is solved by
confluence of ↪⟶𝛽. We now prove a similar property for ≃Pe:

Lemma 1. Let ↪⟶𝛽,𝜋ℓ
= ↪⟶𝛽 ∪ ↪⟶𝜋ℓ where ↪⟶𝜋ℓ is the closure by substi-

tution and context of Eq. (2.3) oriented from left to right, and let ↔pi be the
smallest congruence containing Eq. (2.2). Then

• ≃Pe ⊆ ↪⟶∗
𝛽,𝜋ℓ

↔∗
𝑝𝑖⟵↩∗𝛽,𝜋ℓ

• if 𝑡 and 𝑢 are well typed and 𝑡 ≃Pe 𝑢, then they have the same type modulo
≃Pe.

34

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

Proof. We prove that ↔pi steps can be postponed: ↔pi ↪⟶𝛽,𝜋ℓ
⊆ ↪⟶=

𝛽,𝜋ℓ
↔∗

pi.
Assume that the ↔pi step is at position 𝑝 and the ↪⟶𝛽,𝜋ℓ

step is at position 𝑞.
If 𝑝 and 𝑞 are disjoint, this is immediate. If 𝑝 is above 𝑞, then

pair(𝑎, 𝑏,𝑚, ℎ1) ↔pi pair(𝑎, 𝑏,𝑚, ℎ2) ↪⟶𝛽,𝜋ℓ
pair(𝑎′, 𝑏′,𝑚′, ℎ′

2).

If the ↪⟶𝛽,𝜋ℓ
step is not applied in a subterm of ℎ2, then ℎ2 = ℎ′

2 and the
rewrite sequence can be transformed into

pair(𝑎, 𝑏,𝑚, ℎ1) ↪⟶𝛽,𝜋ℓ
pair(𝑎′, 𝑏′,𝑚′, ℎ1) ↔pi pair(𝑎′, 𝑏′,𝑚′, ℎ2).

If ↪⟶𝛽,𝜋ℓ
is applied on a subterm of ℎ2, then (𝑎, 𝑏,𝑚) = (𝑎′, 𝑏′,𝑚′) and we can

directly apply Eq. (2.2):

pair(𝑎, 𝑏,𝑚, ℎ1) ↔pi pair(𝑎, 𝑏,𝑚, ℎ′
2).

If 𝑞 is above 𝑝, we have either

• (𝜆𝑥 ∶ 𝑎, 𝑡) 𝑢 ↔pi (𝜆𝑥 ∶ 𝑎′, 𝑡′) 𝑢′ ↪⟶𝛽,𝜋ℓ
{𝑢′/𝑥} 𝑡′ and (𝜆𝑥 ∶ 𝑎, 𝑡) 𝑢 ↪⟶𝛽,𝜋ℓ

{𝑢/𝑥} 𝑡 ↔pi {𝑢′/𝑥} 𝑡′, or

• the ↔pi step is applied to a subterm erased by ↪⟶𝜋ℓ , in which case
↔pi ↪⟶𝜋ℓ ⊆ ↪⟶𝜋ℓ , or

• the ↔pi step is applied to a subterm that is not erased by ↪⟶𝜋ℓ in which
case ↔pi ↪⟶𝜋ℓ ⊆ ↪⟶𝜋ℓ↔pi.

The relation ↪⟶𝛽,𝜋ℓ
is confluent because Eq. (𝛽) and oriented Eq. (2.3) form an

orthogonal combinatory reduction system (i.e. whose rules are left-linear and
non-overlapping) (Klop, Oostrom and Raamsdonk 1993). We show 1. ≃Pe ⊆
↪⟶∗

𝛽,𝜋ℓ
↔∗

pi⟵↩∗𝛽,𝜋ℓ
by confluence of ↪⟶𝛽,𝜋ℓ

and postponement of equational
steps and by induction on the number of ↔pi steps.

We now prove that 2. ↪⟶𝛽 preserves typing. For this, it is enough to prove
that, if (Π𝑥 ∶ 𝑎, 𝑏) and (Π𝑥 ∶ 𝑎′, 𝑏′) are typeable, and (Π𝑥 ∶ 𝑎, 𝑏) ≃Pe (Π𝑥 ∶ 𝑎′,
𝑏′), then 𝑎 ≃Pe 𝑎′ and 𝑏 ≃Pe 𝑏′ (for more details, see Blanqui 2005), which
follows from Item 1. We now prove that 3. ↪⟶𝜋ℓ preserves typing. Assume that
𝜋ℓ(𝑎0, 𝑝0, (pair(𝑎1, 𝑝1,𝑚, ℎ))) is of type 𝐶. By inversion of typing rules, the type
of pair(𝑎1, 𝑝1,𝑚, ℎ) is convertible with psub(𝑎0, 𝑝0) and 𝑎0 ≃Pe 𝐶. By inversion
again, the type of 𝑚 is convertible with 𝑎1 and psub(𝑎0, 𝑝0) ≃Pe psub(𝑎1, 𝑝1).
By Item 1, 𝑎0 ≃Pe 𝑎1 and 𝑝0 ≃Pe 𝑝1. Therefore, 𝑚 is of type 𝐶.

35

2.2. ENCODING PVS-CERT IN ΛΠME

For the following sub-proof, note that 4. ↔∗
pi = ⇔pi where ⇔pi consists in

applying several ↔pi steps such that if there is a ↔pi rewriting at position 𝑝,
there is no rewriting below position 4, 𝑝 (no rewriting below the proof irrelevant
argument). Indeed, if

𝑡
⏞⏞⏞⏞⏞⏞⏞pair(𝑎, 𝑝,𝑚, ℎ1) ↔pi pair(𝑎, 𝑝,𝑚, (… (pair(𝑎′, 𝑝′,𝑚′, ℎ′

1))…)) ↔pi

pair(𝑎, 𝑝,𝑚, (… (pair(𝑎′, 𝑝′,𝑚′, ℎ′
2))…))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢

then 𝑡 ↔pi 𝑢 as well. Now that ↪⟶𝛽,𝜋ℓ
preserves typing, we show 5. : ‘if 𝑡 ↔∗

pi 𝑢
and 𝑡 and 𝑢 are well typed, then they have the same type (modulo ≃Pe)’ by
induction on the number of positions rewritten in 𝑡 ⇔pi 𝑢. If no position is
rewritten, then 𝑡 is syntactically equal to 𝑢, and hence they have the same type.
Otherwise, assume Item 5 for 𝑛 > 0 positions, 𝑡 ⇔pi 𝑢 with 𝑛+1 equational steps
and let 𝑝 ∈ 𝒫(𝑡) such that a ↔pi equational step is applied at 𝑝, and no more
than 𝑛 equational steps are applied below 𝑝. Such a position exists since there is
at least one equational step, and if there are more than 𝑛 equational steps below
𝑝, we may take the first position below 𝑝 where an equational step occurs. Then
by hypothesis, 𝑡|𝑝 ⇔pi 𝑢|𝑝 with no more than 𝑛 equational steps, and both 𝑡|𝑝
and 𝑢|𝑝 are typeable since 𝑡 and 𝑢 are typeable. Thus by induction hypothesis,

𝑡|𝑝 and 𝑢|𝑝 have the same type. Now by induction hypothesis, {𝑢|𝑝/𝑝} 𝑡 ⇔pi 𝑢
with no more than 𝑛 rewrite steps, and both terms are typeable, so they have
the same type. Since we have 𝑡 ⇔pi {𝑢|𝑝/𝑝} 𝑡 and both terms typeable, we

have also that 𝑡 and {𝑢|𝑝/𝑝} 𝑡 have the same type.
We can now conclude: if 𝑡 ≃Pe 𝑢 and both 𝑡 and 𝑢 are typeable, then by

Item 1 we have 𝑡′ and 𝑢′ such that 𝑡 ↪⟶∗
𝛽,𝜋ℓ

𝑡′ ↔∗
pi 𝑢′ ⟵↩∗𝛽,𝜋ℓ

𝑢. By Items 2
and 3, we have that 𝑡′ has the same type as 𝑡 and 𝑢′ has the same type as 𝑢.
By Item 5, 𝑡′ and 𝑢′ have the same type. Finally, by transitivity of ≃Pe, 𝑡 and
𝑢 have the same type (modulo ≃[Pe]).

2.2 Encoding PVS-Cert in λΠme
Encoding PVS-Cert into a logical framework such as λΠme allows to express
terms of the former into the latter. Because logical frameworks strive to remain
minimal, constructions such as pair(𝐴, 𝑃 ,𝑚, ℎ) or psub(𝐴, 𝑃) are not built-in:

36

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

Σ[stt]

⎧
{
{
{
{
{
⎨
{
{
{
{
{
⎩

Type ∶ ⋆ ∶ �
o ∶ Type ∶ ⋆
El [𝑡 ∶ Type] ∶ ⋆ ∶ �
Prf [𝑝 ∶ (El o)] ∶ ⋆ ∶ �
∀ [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o))] ∶ (El o) ∶ �
⇒[𝑝 ∶ (El o) , 𝑞 ∶ (Prf 𝑝) → (El o)] ∶ (El o) ∶ �
⇝[𝑡 ∶ Type, 𝑢 ∶ (El 𝑡) → Type] ∶ Type ∶ �

(2.4)
(2.5)
(2.6)
(2.7)
(2.8)
(2.9)

(2.10)

ℰ[stt]

⎧{
⎨{⎩

(Prf (∀ 𝑡 𝑝)) = Π𝑥 ∶ El, 𝑡, (Prf (𝑝 𝑥))
(Prf (𝑝 ⇒ 𝑞)) = Πℎ ∶ Prf𝑝, (Prf (𝑞 ℎ))
(El (𝑡 ⇝ 𝑢)) = Π𝑥 ∶ El, 𝑡, El, (𝑢 𝑥)

(2.11)
(2.12)
(2.13)

Figure 2.3: Signature Σ[stt] and equations ℰ[stt] to encode simple type theory
into λΠme.

they must be expressed into the language of the logical framework through an
encoding. We hence define the symbols allowing to emulate predicate subtyping
using the terms of λΠme.

2.2.1 Encoding simple type theory in λΠme
Following the stratification of λΠme (Harper, Honsell and Plotkin 1993), we say
that term 𝑡 typeable by 𝑇 is an object when 𝑇 is typable by ⋆ and a type when
𝑇 is typeable by �.

The encoding of λhol given in Fig. 2.3 Page 37 follows the method settled
by Blanqui, Dowek et al. 2021; Cousineau and Dowek 2007. Symbols that
constitute the encoding in λΠme are written in blue.

The sort Type is encoded by the type Type, and the sort Prop by the object
o in declarations (2.4) and (2.5). One can already note that the declaration
o ∶ Type encodes the axiom Prop ∶ Type of PVS-Cert.

For objects and types of λhol, the idea is to manipulate them as objects of
λΠme. We call type codes the types of λhol encoded as objects of λΠme. When
a type from λhol is needed, for instance to encode 𝜆𝑥 ∶ nat, 𝑥, we use families
of types of λΠme indexed by type codes to lift λΠme objects to λΠme types.

Terms of type Type are encoded as type codes of type Type. These type codes

37

2.2. ENCODING PVS-CERT IN ΛΠME

can be interpreted as λΠme types with the family of types El (2.6). Because
o (2.5) is the type code of propositions, the latter are encoded as objects of
type El, o. The type of proofs is given by the family Prf (2.7) indexed by
propositions. For instance, given a λhol type 𝜄 and a λhol proposition 𝑃 both
encoded as λΠme objects, the abstractions 𝜆𝑥 ∶ El, 𝜄, 𝑥 and 𝜆ℎ ∶ Prf𝑃, ℎ are
valid λΠme terms.

Constants ∀ and ⇒ represent respectively the universal quantification, which
can also be seen as a dependent product binding values (of type codes) into
propositions; and the (dependent) implication which binds proofs into proposi-
tions, and can also be seen as a dependent product at the level of propositions.
Constant ⇒ represents the dependent version of the functional arrow, at the
level of type codes.

Equations (2.11) to (2.13) are used to map encoded products to λΠme prod-
ucts.

Remark 4. Symbols ⇝ and ⇒ are written infix for readability. Furthermore,
these two operators have a binder as second argument to express the dependency
of the second argument on the first one, like with dependent product. We may
abuse notations and write (𝑥⇝𝑦) when 𝑦 ∶ Type does not depend on 𝑥, instead
of (𝑥 ⇝ 𝜆𝑣 ∶ Type, 𝑦).

Definition 12 (λΠ[stt]). The encoding of simple type theory in λΠme denoted
λΠ[stt] is the λΠme type system parametrised by signature Σ[stt] and equations
ℰ[stt] both defined in Fig. 2.3.

2.2.2 Encoding explicit predicate subtyping in λΠme
Predicate subtypes are defined in declaration (2.14) as encoded types (i.e. terms
of type Type) built from encoded type 𝑡 and predicate defined on 𝑡. Pairs are
encoded in Eq. (2.15), where the second argument is the predicate that defines
the type of the pair. The two projections are encoded in declarations (2.16)
and (2.17).

Definition 13 (λΠ[Pe]). Let Σ[Pe] be the union of signature Σ[stt] (defined
in Fig. 2.3) and typing declarations of Fig. 2.4. Let ℰ[Pe] the set of equations
containing ℰ[stt] and Eqs. (2.18) and (2.19) defined in Fig. 2.4. We denote λΠ[Pe]
the encoding of PVS-Cert in λΠme. It is the λΠme type system parametrised
by signature Σ[Pe] and equations ℰ[Pe]. The congruence of λΠ[Pe] is denoted
≃[Pe].

38

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

psub [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o))] ∶ Type ∶ ⋆ (2.14)
pair [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o)) ;𝑚 ∶ (El 𝑡) , ℎ ∶ (Prf (𝑝𝑚))] ∶

(El (psub 𝑡 𝑝)) ∶ ⋆
(2.15)

fst [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o)) ;𝑚 ∶ (El (psub 𝑡 𝑝))] ∶ El, 𝑡 ∶ ⋆ (2.16)
snd [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o)) ;𝑚 ∶ (El (psub 𝑡 𝑝))] ∶

(Prf (𝑝 (fst 𝑡 𝑝𝑚))) ∶ ⋆.
(2.17)

(pair 𝑡 𝑝𝑚ℎ) = (pair 𝑡 𝑝𝑚ℎ′)
(fst 𝑡 𝑝 (pair 𝑡′ 𝑝′ 𝑚ℎ)) = 𝑚

(2.18)
(2.19)

Figure 2.4: Signature and equations to encode predicate subtyping into λΠme.

2.2.3 Translation of PVS-Cert terms into λΠ[Pe]
Definition 14 (Translation). Let Γ be a well-formed context.

• The term translation of term 𝑀 typeable in Γ, noted [𝑀]Γ, is defined in
Figs. 2.5 and 2.6.

• The type translation of Kind and the terms 𝑀 typeable by a sort in Γ,
noted J𝑀KΓ, is defined in Fig. 2.7.

• The context translation JΓK is defined by induction on Γ as

J∅K = ∅; JΓ, 𝑥 ∶ 𝑇K = JΓK , 𝑥 ∶ J𝑇KΓ

Proposition 2. The translation function [−]− that maps a context and a PVS-
Cert term typeable in this context to a λΠme term is well-defined.

Proof. After Lemma 1 and Blanqui 2001, Lemma 41, the types of a term are
unique up to equivalence. Moreover, the arguments of the translation function
are decreasing with respect to the (strict) subterm relation.

For now, we have no guarantee on the behaviour of our encoding, and thus
successfully type checking an encoded theory into λΠme brings no useful in-
formation on the source theory. Section 2.3 contains theorems to recover some
guarantees on the encoding.

39

2.2. ENCODING PVS-CERT IN ΛΠME

[𝑥]Γ = 𝑥
[Prop]Γ = o

[Type]Γ = Type

[𝑀𝑁]Γ = [𝑀]Γ [𝑁]Γ
[𝜆𝑥 ∶ 𝑇 ,𝑀]Γ = 𝜆𝑥 ∶ (El [𝑇]Γ), [𝑀]Γ,𝑥∶𝑇

[Π𝑥 ∶ 𝑇 , 𝑈]Γ = [𝑇]Γ ⇝(𝜆𝑥 ∶ J𝑇KΓ, [𝑈]Γ,𝑥∶𝑇)

when Γ ⊢Pe 𝑇 ∶ Type and Γ, 𝑥 ∶ 𝑇 ⊢Pe 𝑈 ∶ Type

[Π𝑥 ∶ 𝑇 , 𝑃]Γ = ∀ [𝑇]Γ (𝜆𝑥 ∶ J𝑇KΓ, [𝑃]Γ,𝑥∶𝑇)

when Γ ⊢Pe 𝑇 ∶ Type and Γ, 𝑥 ∶ 𝑇 ⊢Pe 𝑃 ∶ Prop

[Πℎ ∶ 𝑃 ,𝑄]Γ = [𝑃]Γ ⇒(𝜆ℎ ∶ J𝑃KΓ, [𝑄]Γ,ℎ∶𝑃)

when Γ ⊢Pe 𝑃 ∶ Prop and Γ, ℎ ∶ 𝑃 ⊢Pe 𝑄 ∶ Prop

Figure 2.5: Translation from λhol to λΠ[stt].

[psub(𝑇 , 𝑃)]Γ = (psub [𝑇]Γ [𝑃]Γ)

[pair(𝑇 , 𝑃 ,𝑀,𝑁)]Γ = (pair [𝑇]Γ [𝑃]Γ [𝑀]Γ [𝑁]Γ)

[𝜋ℓ(𝑇 , 𝑃 ,𝑀)]Γ = (fst [𝑇]Γ [𝑃]Γ [𝑀]Γ)

[𝜋𝑟(𝑇 , 𝑃 ,𝑀)]Γ = (snd [𝑇]Γ [𝑃]Γ [𝑀]Γ)

Figure 2.6: Translation from PVS-Cert to λΠ[Pe].

40

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

J𝑇KΓ = (El [𝑇]Γ) when Γ ⊢Pe 𝑇 ∶ Type

J𝑇KΓ = (Prf [𝑇]Γ) when Γ ⊢Pe 𝑇 ∶ Prop

JKindK = ⋆
JTypeK = Type

Figure 2.7: Translation of types from PVS-Cert to λΠ[Pe].

2.2.4 Examples of encoded theories
We provide here some examples that take advantage of proof irrelevance or
predicate subtyping. While these examples could have been presented in PVS-
Cert, we write them into λΠ[Pe]. For any context Γ, name 𝑓, type 𝐴 and term 𝑡,
the notation ‘𝑓 [Γ] ∶ 𝐴 ≔ 𝑡’ is syntactic sugar for a signature declaration ‘𝑓 [Γ] ∶
𝐴 ∶ 𝑠’ (we drop the sort in the declaration for brevity) and an equation ‘(𝑓 𝒙) = 𝑡’
where 𝒙 are the variables defined in Γ. We will generally omit the first two
arguments of fst, pair and snd so the term (fst𝑚) stands for (fst 𝑎 𝑝𝑚) for
some terms 𝑎, 𝑝. These examples show that the encoding is relatively lightweight
and thus suitable for human-made developments. Furthermore, interpretation
functions El and Prf could be omitted using coercion facilities later described
in Chapter 3 Page 61, as shown in Example 12 Page 74.

Because equality is one of the most common mathematical predicates, we
start by defining a signature with equality and inequality in Fig. 2.8. The sig-
nature defines a polymorphic equality predicate =, a constructor refl and an
eliminator eqind stating that terms may be substituted by equals. This signa-
ture is assumed to be prepended to the signatures we define in the remaining
of this section. Therefore, in the following signatures, all functions declared or
defined in Fig. 2.8 are available.

Example 4 (Stacks with predicate subtypes). This example comes from the
language reference manual of PVS (Owre, Shankar et al. 2020) and illustrates
the use of predicate subtyping and the generation of type correctness conditions
through a specification of stacks in Fig. 2.9.

Predicate subtyping is used to define the type of nonempty stacks, which
allows the function pop to be total. In the definition of the theorem pop2push2,
term 𝛼 is a proof that the first argument of the pair is not empty. Such term is
the encoding’s counterpart of PVS ’ type correctness conditions. We can thus see

41

2.3. PRESERVATION OF TYPING BY THE ENCODING

= [𝑎 ∶ Type] ∶ (El (𝑎 ⇝ 𝑎⇝ o))
refl [𝑎 ∶ Type] ∶ (Prf (∀ 𝑎 (𝜆𝑥, (= 𝑎 𝑥𝑥))))
eqind [𝑎 ∶ Type] ∶
(Prf (∀ (𝑎⇝ o) (𝜆𝑝, (∀ 𝑎𝜆𝑥, (∀ 𝑎𝜆𝑦, (𝑝 𝑥) ⇒ (=𝑥 𝑦) ⇒ (𝑝 𝑦))))))

false ∶ (El o) ≔ (∀ o (𝜆𝑥, 𝑥))
not ∶ (El (o⇝ o)) ≔ 𝜆𝑝, 𝑝 ⇒ false
!= [𝑎 ∶ Type] ∶ (El (𝑎 ⇝ 𝑎⇝ o)) ≔ 𝜆𝑥, 𝜆𝑦, (not (= 𝑎 𝑥 𝑦))

Figure 2.8: Signature for a polymorphic equality and inequality. refl is
the constructor of the equality type and eqind is the eliminator. Falsity and
negation are encoded using standard higher order techniques.

that type correctness conditions of PVS have a clear and explicit representation
in the encoding, allowing its benefits to be transported to λΠme.
Example 5 (Sorted lists and proof irrelevance). This example is inspired by
sorted lists in the Agda manual (The Agda Team 2021, section ‘Irrelevance’).
Because we have not encoded dependent types, we use the native product of the
framework to encode them. The specification is given in Fig. 2.10.

This example illustrates the conciseness of predicate subtyping: the proof
obligation (ℎ ≤ 𝑏) is encoded into the type of ℎ rather than passed as a stan-
dalone argument in Agda, shortening the type of scons. In Fig. 2.11, we declare
two (non-convertible) axioms 𝑝1 and 𝑝2 to be proofs of (zero ≤ suc zero) and
two lists containing zero and proved to be bounded by (suc zero) using 𝑝1 for ℓ1
and 𝑝2 for ℓ2. Without proof irrelevance, equality (= (slist (suc zero)) ℓ1 ℓ2)
is not provable using refl because it requires 𝑝1 ≃ 𝑝2. With proof irrelevance,
(refl ℓ1) is an acceptable proof.

2.3 Preservation of typing by the encoding
In this section, we prove that the encoding preserves typing: if a PVS-Cert type
is inhabited then its translation is inhabited too. This property is sometimes
called correctness or soundness, and is a requirement for adequacy as defined by
Harper and Licata 2007. Typing preservation increases the trust in the source
system because in case the translation does not type check in λΠme, then the

42

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

stack ∶ Type
empty ∶ (El stack)
nat ∶ Type
nonempty_stack? ∶ (El (stack⇝ o)) ≔ 𝜆𝑠, 𝑠 ≠ empty
nonempty_stack ∶ (psub nonempty_stack?)
push ∶ (El (stack⇝ nat⇝ nonempty_stack))
pop ∶ (El (nonempty_stack⇝ stack))
pop_push ∶
(Prf (∀ 𝜆𝑥 ∶ (El nat), (∀ 𝜆𝑠 ∶ (El stack), (pop (push𝑥 𝑠)) = 𝑠)))

pop2push2 [𝑥 𝑦 ∶ (El nat) , 𝑠 ∶ (El stack)] ∶
(Prf (pop (pair (pop (push𝑥 (fst (push 𝑦 𝑠)))) 𝛼) = 𝑠)) ≔
…

Figure 2.9: Specification of stacks.

zero ∶ (El nat)
suc ∶ (El (nat⇝ nat))
≤ ∶ (El (nat⇝ nat⇝ o))
slist ∶ Π𝑛 ∶ (El nat), Type
snil ∶ (El (nat⇝ (𝜆𝑛, (slist𝑛))))
bounded ∶ Π𝑛 ∶ (El nat), Type ≔ 𝜆𝑏, (psub (𝜆𝑛, 𝑛 ≤ 𝑏))
scons ∶
(El (nat⇝𝜆𝑏, (bounded 𝑏) ⇝ 𝜆ℎ, (slistℎ) ⇝ (slist 𝑏)))

Figure 2.10: Specification of sorted lists.

43

2.3. PRESERVATION OF TYPING BY THE ENCODING

𝑝1 ∶ (Prf (zero ≤ (suc zero)))
𝑝2 ∶ (Prf (zero ≤ (suc zero)))
ℓ1 ∶ … ≔ (scons (suc zero) (pair zero 𝑝1) snil)
ℓ2 ∶ … ≔ (scons (suc zero) (pair zero 𝑝2) snil)

Figure 2.11: Definition of two sorted lists with different proofs.

initial judgement must not type check in PVS-Cert.
Typing preservation does not guarantee that if a (translated) proof is inhab-

ited in λΠme, then it is also inhabited in PVS-Cert. The translation that maps
all types to Π𝑥 ∶ Type, (El (𝑥 ⇝ 𝑥)) trivially preserves typing because all type
translations are inhabited by 𝜆𝑥 ∶ Type, 𝜆𝑦 ∶ (El𝑥), 𝑥. But we can provide a
proof for the translation of falsity.

Conservativity (also called completeness) prevents such an anomaly by stat-
ing that any type in the image of the translation must be inhabited in the source
system. The latter pathological translation violates this property.

It is more difficult in general to prove that encodings are conservative than
type-preserving. Cousineau and Dowek 2007 prove that terminating pure type
systems are conservative: a type in the image of the translation is inhabited
in the source system if it is inhabited by a normal form in the framework.
In our case, the termination of system ℛ[Pe] with Eq. (𝛽) can only be conjec-
tured. More recently, Assaf 2015 has proved completeness for pure type systems
that may be non terminating. But pure type systems use the congruence of 𝛽
which is included in the congruence used by PVS-Cert. Finally, Felicissimo 2022
favour deep embeddings over shallow ones to prove more easily conservativity.
Deep embeddings mark the distinction between administrative 𝛽 redexes from
meaningful redexes of the embedded system that are materialised by embedded
and annotated abstractions (abs𝐴(𝜆𝑥,𝐵) (𝜆𝑥, 𝑒)) and annotated applications
(app𝐴(𝜆𝑥,𝐵) 𝑒1 𝑒2).

Lemma 2 (Preservation of substitution). If Γ, 𝑥 ∶ 𝑈,Δ ⊢P 𝑀 ∶ 𝑇 and Γ ⊢P 𝑁 ∶ 𝑈,
then [{𝑁/𝑥}𝑀]Γ,{𝑁/𝑥}Δ = {[𝑁]Γ/𝑥} [𝑀]Γ,𝑥∶𝑈,Δ.

Proof. By structural induction on 𝑀. The proof is straightforward because ap-
plications are translated as applications and abstractions as abstractions. For
the product case, note that by stratification of PVS-Cert (F. Gilbert 2018,

44

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

Proposition 5.4.1), the sort of a term is stable by substitution, so if [Π𝑥 ∶ 𝑀1,𝑀2]
= (∀ J𝑀1K (𝜆𝑥, [𝑀2])) (for instance), then [{𝑁/𝑥}Π𝑧 ∶ 𝑀1,𝑀2] is still trans-
lated with a ∀ because {𝑁/𝑥}𝑀1 has the same sort as 𝑀1 (and same for
𝑀2).

Lemma 3 (Preservation of equivalence). Let 𝑀 and 𝑁 be two well typed terms
in Γ. If 𝑀 ≃Pe 𝑁, then [𝑀]Γ ≃[Pe] [𝑁]Γ.

Proof. We first show that if 𝑀 ≃Pe 𝑁 in a single step, then [𝑀] ≃[Pe] [𝑁]. Using
the notations of Lemma 1 Page 34, we show that

1. computational steps of ↪⟶𝛽,𝜋ℓ
restricted to typeable terms are preserved,

2. equational steps of ↔𝑝𝑖 restricted to well typed terms are preserved.

These two properties are shown by induction on a context 𝛾 such that 𝑀 =
𝛾[�̂�] 𝑅 𝛾[̂𝑁] = 𝑁 where 𝑅 is any of the two relations applied at the head of �̂�
and ̂𝑁. We will only detail the base cases of inductions, the other cases being
straightforward.

Preservation of computation There are two possible cases: When 𝑀 =
((𝜆𝑥, 𝑡) 𝑢) ↪⟶𝛽 {𝑢/𝑥} 𝑡, we have,

[(𝜆𝑥 ∶ 𝑈, 𝑡) 𝑢]Γ = ((𝜆𝑥 ∶ J𝑈KΓ, [𝑡]Γ,𝑥∶𝑈) [𝑢]Γ) =

{[𝑢]Γ/𝑥} [𝑡]Γ ≃[Pe] [{𝑢/𝑥} 𝑡]Γ

where the equivalence is given by Lemma 2. When

𝑀 = 𝜋ℓ(𝑇1, 𝑃1, pair(𝑇0, 𝑃0, 𝑡, ℎ)) ↪⟶𝜋ℓ 𝑡

we have the following equalities

[𝜋ℓ(𝑇1, 𝑃1, (pair(𝑇0, 𝑃0, 𝑡, ℎ)))]Γ
=(fst [𝑇1]Γ [𝑃1]Γ [pair(𝑇0, 𝑃0, 𝑡, ℎ)]Γ)

=(fst [𝑇1]Γ [𝑃1]Γ (pair [𝑇0]Γ [𝑃0]Γ [𝑡]Γ [ℎ]Γ)) ≃[Pe] [𝑡]Γ

with the last equivalence provided by Eq. (2.3) Page 33.

45

2.3. PRESERVATION OF TYPING BY THE ENCODING

Preservation of Proof Irrelevance Assume that 𝑀 = pair(𝑇 , 𝑃 , 𝑡, ℎ) ↔pi
pair(𝑇 , 𝑃 , 𝑡, ℎ′)

[pair(𝑇 , 𝑃 , 𝑡, ℎ)]Γ = pair [𝑇]Γ [𝑃]Γ [𝑡]Γ [ℎ]Γ ≃[Pe]

pair [𝑇]Γ [𝑃]Γ [𝑡]Γ [ℎ′]Γ = [pair(𝑇 , 𝑃 , 𝑡, ℎ′)]Γ

where the equivalence is given by Eq. (2.2) Page 33.

We now prove the main proposition. By Lemma 1 Page 34, we know that
there are 𝐻0 and 𝐻1 such that 𝑀 ↪⟶∗

𝛽,𝜋ℓ
𝐻0 ↔∗

pi 𝐻1 ⟵↩∗𝛽,𝜋ℓ
𝑁 and that

𝑀,𝐻0,𝐻1 and 𝑁 are typeable. For 𝑅 ∈ {↔pi, ↪⟶𝛽,𝜋ℓ
}, we have 𝑡 𝑅∗ 𝑢 ⇒

[𝑡] ≃[Pe] [𝑢] by induction on the number of 𝑅 steps, using the lemma just proved
before for the base case. Therefore, [𝑀]Γ ≃[Pe] [𝐻0]Γ ≃[Pe] [𝐻1]Γ ≃[Pe] [𝑁]Γ,
which gives, by transitivity of ≃[Pe], [𝑀]Γ ≃[Pe] [𝑁]Γ.

Theorem 1 (Typing preservation). If Γ ⊢Pe 𝑀 ∶ 𝑇, then Γ ⊢[Pe] [𝑀]Γ ∶ J𝑇KΓ.
For all Γ, if ⊢[Pe] Γ, then ⊢[Pe] JΓK.

Proof. The two propositions are shown simultaneously by induction on the typ-
ing derivation of Γ ⊢Pe 𝑀 ∶ 𝑇.

EMPTY
⊢Pe ∅

We have J∅K = ∅ and ⊢[Pe] ∅.

DECL
𝑣 ∉ Γ Γ ⊢Pe 𝑇 ∶ 𝑠

⊢Pe Γ, 𝑣 ∶ 𝑇

We have JΓ, 𝑣 ∶ 𝑇K = JΓK , 𝑣 ∶ J𝑇KΓ. By induction hypothesis, we have
JΓK ⊢[Pe] [𝑇]Γ ∶ J𝑠KΓ, for 𝑠 ∈ 𝒮 and hence J𝑠KΓ is either Elo, Type or
⋆. If 𝑠 is Kind, then 𝑇 is Type (because Type is the only inhabitant of
Kind). The induction hypothesis becomes by definition of the translation
JΓK ⊢[Pe] Type ∶ ⋆ and we can derive ⊢[Pe] JΓK , 𝑣 ∶ Type with decl

If 𝑠 is Type, since JΓK ⊢[Pe] Type ∶ ⋆ by declaration (2.4) Page 37, we can
derive with decl ⊢[Pe] JΓ, 𝑣 ∶ 𝑇K because JTypeK = Type. Otherwise, 𝑠 is
Type or Prop and J𝑇K = 𝜉 [𝑇]Γ where 𝜉 is El or Prf. Because both El and
Prf have ⋆ as domain (declarations (2.6) and (2.7)), JΓK ⊢[Pe] J𝑇KΓ ∶ ⋆ and
finally, ⊢[Pe] JΓ, 𝑣 ∶ 𝑇K by application decl.

46

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

VAR
𝑣 ∶ 𝑇 ∈ Γ ⊢PeΓ

Γ ⊢Pe 𝑣 ∶ 𝑇
By definition, [𝑣] = 𝑣 and by induction hypothesis, ⊢[Pe] JΓK. Since 𝑣 ∶ 𝑇 ∈
Γ, by definition, there is Δ ⊊ Γ where ⊢PeΔ such that, 𝑣 ∶ J𝑇KΔ ∈ JΓK.
Hence JΓK ⊢[Pe] 𝑣 ∶ J𝑇KΔ and finally JΓK ⊢[Pe] 𝑣 ∶ J𝑇KΓ because contexts are
well formed.

SORT
⊢PeΓ (𝑠1, 𝑠2) ∈ 𝒜

Γ ⊢Pe 𝑠1 ∶ 𝑠2

Sort 𝑠1 is either Prop or Type.

• If 𝑠1 = Prop, then 𝑠2 = Type, and the judgement is translated as
JΓK⊢[Pe] o ∶ Type. By induction hypothesis ⊢[Pe] JΓK holds. Using rule
sign with Eq. (2.5), the judgement JΓK ⊢[Pe] o ∶ Type is derivable.

• If 𝑠1 = Type, then 𝑠2 = Kind. In that case, the judgement is trans-
lated as JΓK ⊢[Pe] Type ∶ ⋆. It is derivable using sign with declaration
(2.4) and the induction hypothesis to have ⊢[Pe] JΓK.

PROD
Γ ⊢Pe 𝑇 ∶ 𝑠1 Γ, 𝑥 ∶ 𝑇 ⊢Pe 𝑈 ∶ 𝑠2 (𝑠1, 𝑠2, 𝑠3) ∈ 𝒫

Γ ⊢Pe Π𝑥 ∶ 𝑇 , 𝑈 ∶ 𝑠3

We only detail for the product (𝑠1, 𝑠2, 𝑠3) = (Type, Prop, Prop), others
being processed similarly. Because

[Π𝑥 ∶ 𝑇 , 𝑈]Γ = ∀ [𝑇]Γ (𝜆𝑥 ∶ J𝑇KΓ, [𝑈]Γ,𝑥∶𝑇)

we want to show that

JΓK ⊢[Pe] ∀ [𝑇]Γ (𝜆𝑥 ∶ J𝑇KΓ, [𝑈]Γ,𝑥∶𝑇) ∶ JPropK .

By induction hypothesis we have JΓK⊢[Pe][𝑇] ∶ JTypeK and JΓ, 𝑥 ∶ 𝑇K⊢[Pe][𝑈] ∶
JPropK. By definition of the translation, we obtain JΓK ⊢[Pe] [𝑇] ∶ Type and
JΓK , 𝑥 ∶ J𝑇KΓ ⊢[Pe] [𝑈] ∶ Elo. Each judgement of the following sequence
implies the derivability of the successive one,

JΓK ⊢[Pe] 𝜆𝑥 ∶ J𝑇KΓ, [𝑈]Γ,𝑥∶𝑇 ∶ J𝑇KΓ → Elo derivable in λΠme
JΓK ⊢[Pe] 𝜆𝑥 ∶ J𝑇KΓ, [𝑈]Γ,𝑥∶𝑇 ∶ El [𝑇]Γ → Elo by definition of J−K
JΓK ⊢[Pe] 𝜆𝑥 ∶ J𝑇KΓ, [𝑈]Γ,𝑥∶𝑇 ∶ El([𝑇]Γ ⇝ o) by conv and Eq. (2.13)

JΓK ⊢[Pe] ∀ [𝑇]Γ (𝜆𝑥, J𝑇KΓ[𝑈]Γ,𝑥∶𝑇) ∶ Elo by typing of ∀ in Σ[Pe]

JΓK ⊢[Pe] ∀ [𝑇]Γ (𝜆𝑥, J𝑇KΓ[𝑈]Γ,𝑥∶𝑇) ∶ JPropK because JPropK = Elo

47

2.3. PRESERVATION OF TYPING BY THE ENCODING

ABST
Γ, 𝑣 ∶ 𝑇 ⊢Pe 𝑀 ∶ 𝑈 Γ ⊢Pe Π𝑣 ∶ 𝑇 , 𝑈 ∶ 𝑠

Γ ⊢Pe 𝜆𝑣 ∶ 𝑇 ,𝑀 ∶ Π𝑣 ∶ 𝑇 , 𝑈
We have [𝜆𝑣 ∶ 𝑇 ,𝑀]Γ = 𝜆𝑣 ∶ J𝑇KΓ, [𝑀]Γ and the following sequence of
implications

JΓ, 𝑣 ∶ 𝑇K ⊢[Pe] [𝑀]Γ,𝑣∶𝑇 ∶ J𝑈KΓ,𝑣∶𝑇 by induction hypothesis
JΓK , 𝑣 ∶ J𝑇KΓ ⊢[Pe] [𝑀]Γ,𝑣∶𝑇 ∶ J𝑈KΓ,𝑣∶𝑇 by definition of J−K
JΓK ⊢[Pe] 𝜆𝑣 ∶ J𝑇KΓ, [𝑀]Γ,𝑣∶𝑇 ∶ Π𝑣 ∶ J𝑇KΓ, J𝑈KΓ,𝑣∶𝑇 by abst

In the last step, the product is well typed in λΠme since J𝑈K and J𝑇K are
both of type ⋆ and thus the product is of type ⋆ as well.
Finally, we proceed by case distinction on sorts 𝑠𝑇 and 𝑠𝑈 such that Γ⊢Pe
𝑇 ∶ 𝑠𝑇 and Γ ⊢Pe 𝑈 ∶ 𝑠𝑈. We will detail the case (𝑠𝑇, 𝑠𝑈) = (Type, Prop).
We have

Π𝑣 ∶ J𝑇KΓ, J𝑈KΓ,𝑣∶𝑇 ≃[Pe] Prf(∀ [𝑇]Γ (𝜆𝑥 ∶ J𝑇KΓ, [𝑈]Γ,𝑣∶𝑇)) = JΠ𝑣 ∶ 𝑇 , 𝑈KΓ

which allows to conclude.

APPL
Γ ⊢Pe 𝑀 ∶ Π𝑣 ∶ 𝑇 , 𝑈 Γ ⊢Pe 𝑁 ∶ 𝑇

Γ ⊢Pe (𝑀𝑁) ∶ {𝑁/𝑣}𝑈
By induction hypothesis and conversion, we have JΓK⊢[Pe] [𝑀]Γ ∶ Π𝑣 ∶ J𝑇KΓ,
J𝑈KΓ,𝑣∶𝑇 (shown by case distinction on the sorts of 𝑇 and 𝑈) and JΓK ⊢[Pe]
[𝑁]Γ ∶ J𝑇KΓ. Since [𝑀𝑁]Γ = [𝑀] [𝑁], we obtain using appl JΓK⊢[Pe] [𝑀𝑁] ∶
{[𝑁]Γ/𝑣} J𝑈KΓ,𝑣∶𝑇 and by Lemma 2 Page 44, we obtain JΓK ⊢[Pe] [𝑀𝑁] ∶
J{𝑁/𝑣}𝑈KΓ.

CONV
Γ ⊢Pe 𝑀 ∶ 𝑈 Γ ⊢Pe 𝑇 ∶ 𝑠 𝑇 ≃Pe 𝑈

Γ ⊢Pe 𝑀 ∶ 𝑇
By induction hypothesis, JΓK ⊢[Pe] [𝑀]Γ ∶ J𝑈KΓ.
We now prove that if 𝑇 ≃Pe 𝑈, then J𝑇KΓ ≃[Pe] J𝑈KΓ and Γ ⊢[Pe] J𝑇K ∶ ⋆
which will allow us to conclude using conv in λΠme.
By Lemma 1 Page 34 and because 𝑇 and 𝑈 are typeable, Γ ⊢Pe 𝑈 ∶ 𝑠. By
Lemma 3 Page 45, [𝑇]Γ ≃[Pe] [𝑈]Γ.
If 𝑠 = Prop, then J𝑇KΓ = Prf [𝑇]Γ ≃[Pe] Prf [𝑈]Γ = J𝑈KΓ. Moreover we
have JΓK ⊢[Pe] J𝑇KΓ ∶ ⋆ because, by induction hypothesis, [𝑇]Γ ∶ JPropK =

48

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

El [Prop] = (El o), and declaration (2.7) Page 37. If 𝑠 = Type, J𝑇KΓ =
El [𝑇]Γ ≃[Pe] El [𝑈]Γ = J𝑈KΓ. By induction hypothesis, [𝑇]Γ ∶ JTypeKΓ =
Type. If 𝑠 = Kind, then 𝑇 = 𝑈 = Type (Type is the only inhabitant of
Kind). Finally, JTypeK = Type ∶ ⋆.

SIGN
𝑓[𝒙 ∶ 𝑻] ∶ 𝑈 ∶ 𝑠 ∈ ΣPe 𝒙 ∶ 𝑻 ⊢ 𝑈 ∶ 𝑠 (Γ ⊢ 𝑡𝑖 ∶ {𝑡𝑗/𝑥𝑗}𝑗<𝑖

𝑇𝑖)
𝑖

Γ ⊢ (𝑓 𝒕) ∶ {𝒕/𝒙}𝑈
We first observe from Fig. 2.4 Page 39 that for each 𝑓 ∈ ΣPe, we have
a counterpart symbol ̂𝑓 ∈ Σ[Pe] such that if 𝑓[𝒙 ∶ 𝑻] ∶ 𝑈 ∶ 𝑠 ∈ ΣPe then
̂𝑓 [𝒙 ∶ J𝑻K] ∶ J𝑈K𝒙∶𝑻 ∶ ⋆ ∈ Σ[Pe].

We verify that for each declaration in the signature, the second premise
𝒙 ∶ 𝑻 ⊢ 𝑈 ∶ 𝑠 holds.
By induction hypothesis, for each 𝑖, we have

JΓK ⊢[Pe] [𝑡𝑖]Γ ∶
r
{𝑡𝑗/𝑥𝑗}𝑗<𝑖

𝑇𝑖

z

Γ

which we can write as, thanks to Lemma 2,

JΓK ⊢[Pe] [𝑡𝑖]Γ ∶ {[𝑡𝑗]Γ
/𝑥𝑗}

𝑗<𝑖
𝑇𝑖.

Using rule sign, we are able to conclude JΓK ⊢[Pe]
̂𝑓 [𝒕]Γ ∶ {[𝑻]/𝒙} J𝑈K.

By Lemma 2, we obtain JΓK ⊢[Pe]
̂𝑓 [𝒕]Γ ∶ J{𝒕/𝒙}𝑈K. Moreover, we have

taken care to define the translation in Fig. 2.6 Page 40 such that [𝑓(𝒕)] =
̂𝑓 [𝒕].

2.4 Mechanising type checking
2.4.1 Deciding equivalence
The encoding of PVS-Cert into λΠme can be used to proof check terms of PVS-
Cert using a type checker for λΠme. But because of the conv rule, type checking
cannot be decidable if ≃[Pe] is not. To implement decidable equivalences, one
may resort to rewriting (Baader and Nipkow 1998): given a convergent (i.e.
confluent and terminating) rewrite relation ↪⟶𝑅, if ≃𝑅 is the smallest congru-
ence containing ↪⟶𝑅, then 𝑠 ≃𝑅 𝑡 can be decided by computing and comparing

49

2.4. MECHANISING TYPE CHECKING

the normal forms of 𝑠 and 𝑡 with respect to ↪⟶𝑅. Consequently, while type
checkers cannot be provided for λΠme in general, they can when ≃ is the small-
est congruence containing a convergent rewrite relation (Guillaume Burel et al.
2016). Such type systems are named ‘λΠ-calculus modulo rewriting’ shortened
λΠmr.

Definition 15 (λΠmr). A λΠmr type system is a λΠme type system whose set of
equations is replaced by a rewrite system. A λΠmr type system is parametrised
by a triple ℜ = (ℱ,ℛ,Σ) where ℛ is a rewrite system. It has the same typing
rules as λΠme but its congruence ≃ is the joinability relation ↓𝛽,ℛ defined by
the rule (𝛽) (defined Page 31) and the rules of ℛ.

Definition 16 (Subject reduction). We say that reduction ↪⟶ has the subject
reduction property, or that it preserves typing if whenever Γ ⊢ 𝑡 ∶ 𝐴 and 𝑡 ↪⟶ 𝑢,
then Γ ⊢ 𝑢 ∶ 𝐴.

Definition 17 (Type preserving rewrite rule). Let Σ be a signature and ℛ be
a rewrite system. Let 𝔗 be the λΠmr type system parametrised by Σ and ℛ.
A rewrite rule ℓ ↪⟶ 𝑟 preserves typing in 𝔗 if for any substitution 𝜎, for any
context Γ well-formed in 𝔗, for any term 𝐴 well-sorted in 𝔗, if Γ ⊢𝔗 𝜎ℓ ∶ 𝐴, then
Γ ⊢𝔗 𝜎𝑟 ∶ 𝑇.

Definition 18 (Well-formed λΠmr system). Let Σ be a signature and ℛ be a
rewrite system whose terms are in 𝒯({⋆,�},dom(Σ)). We say that the λΠmr
type system 𝔗 parametrised by Σ and ℛ is well-formed when Σ is well-formed
in 𝔗 and the rewrite system ℛ is convergent, type-preserving in 𝔗, and, for
any rule ℓ ↪⟶ 𝑟 in ℛ, ℓ and 𝑟 are neither the sort ⋆ nor products of the form
𝜫𝒙 ∶ 𝑼, ⋆.

In the latter definition, the last condition on the rewrite system allows to
recover some of the benefits of the stratification of λΠmr (see Saillard 2015, Fig-
ure 2.1), the most useful one being the following corollary. A similar definition
can be found in (Blanqui 2005).

Proposition 3. For any well-formed λΠmr type system, for any typeable term
𝑡, if 𝑡 ≃ � then 𝑡 = �, if 𝑡 ≃ ⋆, then 𝑡 = ⋆.

Proof. By well-formedness of the type system, there is no rule that rewrite to
⋆ by definition, and because � is not typeable, there is no rule that rewrites to
�.

50

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

(pair 𝑡 𝑝𝑚ℎ) ↪⟶ (pair†𝑡 𝑝𝑚) (2.22)
(fst 𝑡0 𝑝0 (pair† 𝑡1 𝑝1 𝑚)) ↪⟶ 𝑚 (2.23)
(Prf (∀ 𝑡 𝑝)) ↪⟶ Π𝑥 ∶ (El 𝑡), (Prf (𝑝 𝑥)) (2.24)
(El (𝑡 ⇝ 𝑢)) ↪⟶ Π𝑥 ∶ (El𝑡), (El (𝑢 𝑥)) (2.25)
(Prf (𝑝 ⇒ 𝑞)) ↪⟶ Πℎ ∶ (Prf𝑝), (Prf (𝑞 ℎ)) (2.26)

Figure 2.12: Rewrite system ℛ[Pe] obtained from the completion of equation of
PVS-Cert.

Given an equational theory, a convergent rewrite system whose joinability
is the same as the equational theory can be obtained through completion pro-
cedures (Baader and Nipkow 1998). However, completion procedures rely on
well-founded orders that cannot be provided in the case of PVS-Cert because
of Eq. (2.2) Page 33 which cannot be oriented since each side of the equation
has a free variable which is not in the other side.

As noted by Knuth and Bendix 1983, the addition of a symbol to the sig-
nature can circumvent the issue. Hence, we add a symbol for proof irrelevant
pairs, and make it equal to pairs

pair† [𝑡 ∶ Type; 𝑝 ∶ (El (𝑡 ⇝ o)) ; 𝑥 ∶ (El 𝑡)] ∶ (El (psub 𝑡 𝑝)) ∶ ⋆ (2.20)
(pair 𝑡 𝑝𝑚ℎ) = (pair† 𝑡 𝑝𝑚) (2.21)

thus (pair 𝑡 𝑝𝑚ℎ) = (pair† 𝑡 𝑝𝑚) = (pair 𝑡 𝑝𝑚ℎ′). The new set of identities
given by Eqs. (2.3), (2.11) to (2.13) and (2.21) Pages 33, 37 and 51 can be
completed into a rewrite system ℛ[Pe] which is equivalent to the equations.

Proposition 4 (Confluence). The rewrite relation ↪⟶𝛽,ℛ[Pe]
= ↪⟶𝛽 ∪ ↪⟶ℛ[Pe]

is confluent.

Proof. The rewrite system in Fig. 2.12 is orthogonal, hence confluent (Klop,
Oostrom and Raamsdonk 1993).

Proposition 5. Let ≃ℛ[Pe]
be the smallest congruence containing ↪⟶𝛽,ℛ[Pe]

where ℛ[Pe] is defined in Fig. 2.12 and ≃[Pe] the congruence of λΠ[Pe] (defined
in Definition 13 Page 38). Then ≃[Pe] ⊆ ≃𝛽,ℛ[Pe]

.

51

2.4. MECHANISING TYPE CHECKING

Proof. It is enough to prove that every equation of PVS-Cert is included in
≃ℛ[Pe],𝛽. This is immediate for Eqs. (2.11) to (2.13) since they are equal to the
rules (2.24) to (2.26). For Eq. (2.2), we have

(pair 𝑡 𝑝𝑚ℎ0) ↪⟶ℛ[Pe]
(pair† 𝑡 𝑝𝑚) ⟵↩ℛ[Pe]

(pair 𝑡 𝑝𝑚ℎ1) .

Finally, for Eq. (2.3),

(fst 𝑡0 𝑝0 (pair 𝑡1 𝑝1 𝑚ℎ)) ↪⟶ℛ[Pe]
(fst 𝑡0 𝑝0 (pair† 𝑡1 𝑝1 𝑚)) ↪⟶ℛ[Pe]

𝑚.

Conjecture 1. Rewrite relation ↪⟶𝛽,ℛ[Pe]
is terminating.

One possible solution to prove that conjecture is to extend the proof of
termination for the encoding of simple type theory presented by Dowek 2017 to
the rewrite relation ↪⟶𝛽,ℛ[Pe]

.
Assuming conjecture 1, relation ↪⟶𝛽,ℛ[Pe]

is convergent, and therefore a type
checker can be provided for λΠ[Pe].
Remark 5. The rewrite relation generated by the rewrite system ℛ[Pe] Fig. 2.12
preserves typing (see Blanqui, Dowek et al. 2021, Theorem 9).

2.4.2 Bidirectional type checkers
Type systems presented so far use an undirected ternary relation Γ ⊢ 𝑡 ∶ 𝐴. In
such relations, just like in Prolog clauses, there is no notion of input or output.
Undirected type systems are more succinct to formalise, but they are not suited
for functional implementations because it requires to guess types. Guessing can
be avoided by specifying carefully in inference rules what should be considered
as inputs or outputs: bidirectional type systems (Benthem Jutting, McKinna
and Pollack 1993; Dunfield and Krishnaswami 2019; Lennon-Bertrand 2021;
Pierce and Turner 2000) use two relations, synthesis and checking. As devised
by McBride 2018, we distinguish inputs that are assumed well formed from
subjects that may not be well formed and from outputs which exist and are
well formed if the judgement holds. Synthesis—or type inference—is denoted
Γ ⊢ 𝑡 ⇒ 𝐴 where Γ is an input, 𝑡 is the subject and 𝐴 is an output. Checking
Γ ⊢ 𝑡 ⇐ 𝐴 asserts that 𝑡 is typeable by 𝐴 where Γ and 𝐴 are inputs and 𝑡 is the
subject.

Bidirectional type checkers are not only a matter of implementations and
algorithms: they constrain more the shape of typing derivations than undirected
type checkers.

52

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

Figure 2.13 Page 54 provides the inference rules of a bidirectional type
checker for λΠmr, based on the work of Lennon-Bertrand 2021. Following
(ibid.), we introduce constrained inference whenever some specific shape for
terms is expected. In rules b-prod-c and b-sort-c, we must ensure that re-
duction ↪⟶𝛽,ℛ preserves the postconditions of synthesis: if Γ ⊢ 𝑡 ∶ 𝐴 and
𝐴 ↪⟶𝛽,ℛ 𝐵, then Γ ⊢ 𝑡 ∶ 𝐵. The first premise of rule b-sort-c does not involve
rewriting because of Proposition 3.

There is no need to check the well formedness of signatures in the bidi-
rectional type checker (for the same reason as for contexts). Well formedness
of contexts and signatures is assumed as preconditions for the type checker to
behave well.

Proposition 6 (Correctness of checking and inference). Let 𝔗 be a well-formed
λΠmr type system parametrised by a (well-formed) signature Σ and a (conver-
gent and type preserving) rewrite system ℛ. Inference and checking satisfy the
following properties

{⊢𝔗 Γ} Γ ⊢𝔗 𝑡 ⇒ 𝐴 {Γ ⊢𝔗 𝑡 ∶ 𝐴}
{⊢𝔗 Γ ∧ Γ ⊢𝔗 𝐴 ∶ 𝑠 ∧ 𝑠 ∈ {⋆,�}} Γ ⊢𝔗 𝑡 ⇐ 𝐴 {Γ ⊢𝔗 𝑡 ∶ 𝐴}

Proof. The proof is close to the one of (ibid., Theorem 2), we remind the key
points. By mutual induction on the typing derivation. Rules of the bidirectional
system (including the new rule b-sign) are replaced by rules of the undirected
system where b-check, b-prod-c and b-sort-c are replaced by conv. Rule
b-abst uses an additional prod rule, we detail the derivation in the undirected
system as an example (we dropped the type system annotation):

Γ ⊢ 𝐴 ∶ ⋆ Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑠𝐵 prod
Γ ⊢ Π𝑥 ∶ 𝐴,𝐵 ∶ 𝑠 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵

abst
Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ∶ Π𝑥 ∶ 𝐴,𝐵

where we omit the premise (⋆, 𝑠𝐵, 𝑠) ∈ 𝒫𝜆Π for spacing issues. All leaves of
the tree are obtained by induction hypothesis, with Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑠𝐵 ob-
tained by validity (sometimes called ‘correctness of types’) of pure type systems
(H. P. Barendregt, Dekkers and Statman 2013; Blanqui 2001; Coquand and
Huet 1988). In rule b-appl, because the reduction ↪⟶𝛽,ℛ preserves typing (by
hypothesis on ℛ), 𝐴1 is well sorted and hence the induction hypothesis can be
applied on the second premise.

53

2.4. MECHANISING TYPE CHECKING

b-sort

Γ ⊢ ⋆ ⇒ �

b-var
(𝑥 ∶ 𝐴) ∈ Γ
Γ ⊢ 𝑥 ⇒ 𝐴

b-prod
Γ ⊢ 𝐴 ⇐ ⋆ Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ⇒𝒮 𝑠 (⋆, 𝑠, 𝑠) ∈ 𝒫𝜆Π

Γ ⊢ Π𝑥 ∶ 𝐴,𝐵 ⇒ 𝑠

b-abst
Γ ⊢ 𝐴 ⇐ ⋆ Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ⇒ 𝐵

Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ⇒ Π𝑥 ∶ 𝐴,𝐵

b-appl
Γ ⊢ 𝑡 ⇒Π Π𝑥 ∶ 𝐴1, 𝐴2 Γ ⊢ 𝑢 ⇐ 𝐴1

Γ ⊢ (𝑡 𝑢) ⇒ {𝑢/𝑥}𝐴2

b-sign
𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ (Γ ⊢ 𝑡𝑖 ⇐ {𝑡𝑗/𝑥𝑗}𝑗<𝑖

𝐴𝑖)
𝑖

Γ ⊢ (𝑓 𝒕) ⇒ {𝒕/𝒙}𝐵

b-check
Γ ⊢ 𝑡 ⇒ 𝐴 𝐴 ≃𝛽,ℛ 𝐵

Γ ⊢ 𝑡 ⇐ 𝐵

b-prod-c
Γ ⊢ 𝑡 ⇒ 𝐴 𝐴 ↪⟶∗

𝛽,ℛ Π𝑥 ∶ 𝐴1, 𝐴2

Γ ⊢ 𝑡 ⇒Π Π𝑥 ∶ 𝐴1, 𝐴2

b-sort-c
Γ ⊢ 𝐴 ⇒ 𝑠 𝑠 ∈ {⋆,�}

Γ ⊢ 𝐴 ⇒𝒮 𝑠

Figure 2.13: Bidirectional type checker for λΠmr.

54

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

Proposition 7 (Completeness of inference). For any well-formed λΠmr type
system 𝔗 whose congruence is denoted ≃, If Γ ⊢𝔗 𝑡 ∶ 𝐴 then there is 𝐴′ such
that Γ ⊢𝔗 𝑡 ⇒ 𝐴′ and 𝐴 ≃ 𝐴′.
Proof. By induction on the undirected typing derivation.

For rule abst, the induction hypothesis gives Γ ⊢ Π𝑥 ∶ 𝐴,𝐵 ⇒ 𝑅, and
inversion of typing rules provides Γ ⊢ 𝐴 ⇐ ⋆. By induction hypothesis we have
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ⇒ 𝐵′ where 𝐵′ ≃ 𝐵, and hence we conclude Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ⇒ Π𝑥 ∶ 𝐴,
𝐵′ where Π𝑥 ∶ 𝐴,𝐵 ≃ Π𝑥 ∶ 𝐴,𝐵′.

For rule prod, we have by induction hypothesis that Γ ⊢ 𝐴 ⇒ 𝑅 where
𝑅 ≃ ⋆ and Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ⇒ 𝑆 where 𝑆 ≃ 𝑠 ∈ {⋆,�}. By confluence of
(𝛽 ∪ℛ), if 𝑆 ≃ 𝑠, then 𝑆 ↪⟶∗

𝛽,ℛ 𝑠 (because 𝑠 ∈ {⋆,�} is in normal form), hence
Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ⇒𝒮 𝑠.

For rule appl, induction hypothesis gives Γ ⊢ 𝑡 ⇒ 𝐶 with 𝐶 ≃ Π𝑥 ∶ 𝐴,𝐵.
By confluence of 𝛽 ∪ ℛ and product compatibility (see Saillard 2015, Theorem
2.6.11), 𝐶 ↪⟶𝛽,ℛ Π𝑥 ∶ 𝐶1, 𝐶2 where 𝐶1 ≃ 𝐴 and 𝐶2 ≃ 𝐵. Hence Γ ⊢ 𝑡 ⇒Π

Π𝑥 ∶ 𝐶1, 𝐶2. Induction hypothesis also gives Γ ⊢ 𝑢 ⇒ 𝐴′ with 𝐴′ ≃ 𝐴. By
transitivity of ≃, we can apply b-check to derive Γ ⊢ 𝑢 ⇐ 𝐶1 and then apply
rule b-appl.

Rule sign can be replaced by b-sign: induction hypotheses give Γ ⊢ 𝑡𝑖 ⇒
{𝑡𝑗/𝑥𝑗}𝑗<𝑖

𝐴′
𝑖 with {𝑡𝑗/𝑥𝑗}𝐴′

𝑖 ≃ {𝑡𝑗/𝑥𝑗}𝐴𝑖, with which b-check can be applied
sequentially. Note that Σ (or at least the declaration used) is well formed by
hypothesis, since 𝒙 ∶ 𝑨 ⊢ 𝐵 ∶ 𝑠 is a premise.

For rule conv, the induction hypothesis directly provide the premises re-
quired to apply b-check.

We prove an additional lemma that will be used afterwards,
Lemma 4. For any well-formed λΠmr type system, if Γ ⊢ 𝑡 ⇒ 𝐴, then Γ ⊢
𝐴 ⇒𝒮 𝑠.
Proof. If Γ ⊢ 𝑡 ⇒ 𝐴, by correctness, Γ ⊢ 𝑡 ∶ 𝐴. By validity, ∃𝑠 ∈ {⋆,�}, Γ ⊢
𝐴 ∶ 𝑠. By completeness ∃𝑢, Γ ⊢ 𝐴 ⇒ 𝑢 and 𝑢 ≃ 𝑠. Denoting ℛ the rewrite
system parametrising the (well-formed) λΠmr type system, by confluence of ℛ
and because 𝑠 is a normal form, 𝑢 ↪⟶∗

𝛽,ℛ 𝑠.

2.5 Conservativity of computations
We declared in Section 2.3 Page 42 that an encoding is conservative whenever
the inhabitation of an encoded type implies the inhabitation of the original type

55

2.5. CONSERVATIVITY OF COMPUTATIONS

in the original system. To prove such property, the conservativity of compu-
tations is needed: whenever encoded term [𝑡] computes to encoded term [𝑢] in
the framework, then 𝑡 computes to 𝑢 in the original system. In our case, we
must prove that the joinability defined by 𝛽 and the rewrite rules of ℛ[Pe] (i.e.
the congruence for the encoding of PVS-Cert in λΠmr) does not identify more
terms than the original equivalence ≃Pe (Definition 10) (see Felicissimo 2022,
Proposition 37). In the presence of proof irrelevance and mechanised typing,
the introduction of terms pair† may prevent the former property to hold. We
prove in Proposition 8 Page 59 that symbols added to encodings to implement
proof irrelevance do not allow the conversion to identify more terms.

We denote

• for any rewrite relation ↪⟶, 𝑠 𝑝↪⟶ 𝑡 if 𝑠 ↪⟶ 𝑡 where the rewrite rule is
applied on position 𝑝 (so 𝑠 = {𝜎ℓ/𝑝} 𝑠 ↪⟶ {𝜎𝑟/𝑝} 𝑠 = 𝑡 where ℓ ↪⟶ 𝑟)

• ↪⟶† the context and substitution closure of rule (2.22) Page 51,

• ↪⟶fst† the context and substitution closure of rewrite rule (2.23),

• ↪⟶fst the context and substitution closure of Eq. (2.19) oriented from
left to right.

• ℛ+ the rewrite system containing rules (2.24) to (2.26) and identity (2.19)
oriented from left to right (therefore, ℛ+ is ℛ[Pe] without the rules that
involve pair†, which are replaced by another rule).

We intend to show that any ↪⟶† rewrite step can either be grouped with a
↪⟶fst† rewrite step, resulting in a ↪⟶fst rewrite step, or it can be postponed.
Said differently, any ↪⟶† rewrite step is either involved in a pair projection,
or it is used to discard a proof, in which case the proof can be discarded at
the end of the rewrite sequence. Therefore, any rewrite sequence can be re-
ordered into a sequence 𝑠+ that involve ↪⟶fst rewrite steps but no ↪⟶† step,
followed by a sequence of ↪⟶† steps. Rewrite steps of 𝑠+ are straightforwardly
conservative with respect to ≃[Pe], and then, remarking that for any position
𝑝, 𝑝↪⟶†

𝑝⟵↩† is precisely the equation for proof irrelevance, it is contained
in ≃[Pe]. We thus show that any sequence ↪⟶∗

†⟵↩∗† can be reordered into a
sequence (𝑝𝑖 ↪⟶†

𝑝𝑖⟵↩†)
∗

𝑖
.

56

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

Lemma 5. Let 𝑝 and 𝑞 be two positions and 𝑠, 𝑡, 𝑢 such that 𝑠 𝑝↪⟶† 𝑡 𝑞↪⟶𝛽,ℛ[Pe]

𝑢. If 𝑡 𝑞↪⟶fst† 𝑢 and 𝑝 = 3, 𝑞 then 𝑠 ↪⟶fst 𝑢. Otherwise, there is 𝑡′ such that
𝑠 ↪⟶𝛽,ℛ[Pe]

𝑡′ ↪⟶=
† 𝑢.

Proof. By inspection of the concerned rewrite rules.

We show here that ↪⟶† rewrite steps are either part of the computation of
a projection, in which case they can be grouped with a ↪⟶fst† into a ↪⟶fst

rewrite rule (included in ℛ+), or the rewrite step can be postponed.

Lemma 6. Let 𝑡 and 𝑢 be two terms of 𝒯(ℱ[Pe]) such that 𝑡 ↪⟶∗
𝛽,ℛ[Pe]

𝑢. Then
𝑡 ↪⟶∗

𝛽,ℛ+ ↪⟶∗
† 𝑢.

Proof. First, note that for any positions 𝑝, 𝑞, any terms 𝑠, 𝑡, 𝑢, if 𝑠 𝑝↪⟶†
𝑡 𝑞↪⟶𝛽,ℛ[Pe]

𝑢 and if 𝑡 𝑞↪⟶fst† 𝑢 and 𝑝 = 3, 𝑞 then 𝑠 ↪⟶fst 𝑢. Otherwise, there
is 𝑡′ such that 𝑠 ↪⟶𝛽,ℛ+ 𝑡′ ↪⟶=

† 𝑢. This can be shown by inspection of the
concerned rewrite rules.

We proceed by induction on the number of ↪⟶fst† reduction. If there is no
↪⟶fst† rewrite step, then all ↪⟶† rewrite steps can be postponed (using the
former lemma). Now assume 𝑡 ↪⟶∗

𝛽,ℛ[Pe]
𝑢 with 𝑛 ↪⟶fst† rewrite steps, where

𝑛 ≥ 1. The rewrite sequence is of the form 𝑡 ↪⟶∗
𝛽,ℛ[Pe]

𝑡0 ↪⟶fst† ↪⟶∗
𝛽,ℛ[Pe]

𝑢
where there is no ↪⟶fst† reduction between 𝑡 and 𝑡0. There must be a ↪⟶†

reduction to form the redex in 𝑡0 because 𝑡 does not contain any pair† symbol
since it is in 𝒯(ℱ[Pe]). Therefore the reduction is of the form

𝑡 ↪⟶∗
𝛽,ℛ[Pe]

𝑡1 ↪⟶† 𝑡2 ↪⟶∗
𝛽,ℛ[Pe]

𝑡0 ↪⟶fst† ↪⟶∗
𝛽,ℛ[Pe]

𝑢

Since there is no ↪⟶fst† reduction between 𝑡2 and 𝑡0, the ↪⟶† rewrite step can
be postponed:

𝑡 ↪⟶∗
𝛽,ℛ[Pe]

𝑡3 3,𝑝↪⟶† 𝑡0 𝑝↪⟶fst† ↪⟶∗
𝛽,ℛ[Pe]

𝑢.

The rewrite sequence can be transformed into

𝑡 ↪⟶∗
𝛽,ℛ[Pe]

𝑡3 ↪⟶fst ↪⟶∗
𝛽,ℛ[Pe]

𝑢

which contains 𝑛−1 ↪⟶fst† rewrite steps. We conclude by induction hypothesis.

57

2.5. CONSERVATIVITY OF COMPUTATIONS

Note that 𝑡 cannot contain symbol pair† when 𝑡 ∈ 𝒯(ℱ[Pe]). The second
item of the following proposition is the converse of confluence. It will be used
to group ↪⟶† rewrite steps by pairs operating at the same position because for
any position 𝑝, 𝑝↪⟶†

𝑝⟵↩† ⊆ ≃[Pe].

Lemma 7. For any positions 𝑝 and 𝑞,

• 𝑝↪⟶†
𝑞↪⟶† ⊆ 𝑞↪⟶†

𝑝↪⟶=
†

• If 𝑝 ≠ 𝑞, 𝑝↪⟶†
𝑞⟵↩† ⊆ 𝑞⟵↩†

𝑝↪⟶†

Proof. By case analysis: either the first rewrite step is applied on a subterm
erased by the second rewrite step (below the fourth argument of pair), in which
case it can be discarded; or the two rewrite steps do not interfere with each other.

Assume there are 𝑒 and 𝑒′ such that 𝑒 𝑝↪⟶† 𝑐 𝑞⟵↩† 𝑒′. First we know
that we have redexes at positions 𝑝 and 𝑞 in 𝑒 and 𝑒′ respectively, 𝑒|𝑝 =
(pair 𝑒0 𝑒1 𝑒2 𝑒3) and 𝑒′|𝑞 = (pair 𝑒′

0 𝑒′
1 𝑒′

2 𝑒′
3). But we also know that 𝑒|𝑞 = 𝑐|𝑞

and 𝑒′|𝑝 = 𝑐|𝑝, so 𝑒|𝑞 = (pair† 𝑒′
0 𝑒′

1 𝑒′
2) and 𝑒′|𝑝 = (pair† 𝑒0 𝑒1 𝑒2). Thus

we can build 𝑐′ = {pair 𝑒′
0 𝑒′

1 𝑒′
2 𝑒′

3/𝑞} 𝑒 = {pair 𝑒0 𝑒1 𝑒2 𝑒3/𝑝} 𝑒′ such that
𝑒 𝑞⟵↩† 𝑐′ 𝑝↪⟶† 𝑒′.

We show next that if 𝑡 and 𝑢 do not contain any pair† and they both reduce
to a same term by discarding their proofs, then they are convertible with respect
to proof irrelevance.

Lemma 8. If 𝑡, 𝑢 ∈ 𝒯(ℱ[Pe]) and 𝑡 ↪⟶∗
† 𝑢 ⟵↩∗† 𝑠, then 𝑡 ≃[Pe] 𝑠.

Proof. Using Lemma 7, we can commute rewrite steps of a sequence 𝑥 ↪⟶∗
† 𝑦 in

order to obtain a sequence of minimal length (removing reflexive steps) where
each rewrite step is applied on a position 𝑝 such that 𝑢|𝑝 = pair† …. Because
𝑡 and 𝑢 are in 𝒯(Σ[Pe]), there is no symbol pair† in 𝑡 or 𝑠, and thus there is
exactly one rewrite step for each pair† symbol in 𝑢 (can be shown by induction
on the number of pair† symbols where the induction hypothesis is applied on
subterms of 𝑡). Therefore, the two sequences have the same length, and if there
is a step 𝑝↪⟶† in one, then there is the same step in the other.

Last, with Lemma 7, the valley 𝑡 ↪⟶=
† 𝑢 ⟵↩∗† 𝑠 can be rearranged into

𝑡 (𝑝↪⟶𝑝⟵↩)∗ 𝑠 and because 𝑝↪⟶𝑝⟵↩ ⊆ ≃[Pe], we obtain 𝑡 ≃[Pe] 𝑠.

58

CHAPTER 2. ENCODING EXPLICIT PREDICATE SUBTYPING

Proposition 8. Let 𝑀,𝑁 ∈ 𝒯(ℱ[Pe]) such that 𝑀 ≃𝛽,ℛ[Pe]
𝑁. Then 𝑀 ≃[Pe]

𝑁.

Proof. Because ↪⟶𝛽,ℛ[Pe]
is confluent (Proposition 4 Page 51), there is 𝛼 such

that 𝑀 ↪⟶∗
𝛽,ℛ[Pe]

𝛼 ⟵↩∗𝛽,ℛ[Pe]
𝑁. By Lemma 6, there are 𝑀 ′ and 𝑁 ′ such that

𝑀 ↪⟶∗
𝛽,ℛ+ 𝑀 ′ ↪⟶∗

† 𝛼 ⟵↩∗† 𝑁 ′ ⟵↩∗𝛽,ℛ+ 𝑁.

By Lemma 8, 𝑀 ′ ≃[Pe] 𝑁 ′. Since ↪⟶𝛽,ℛ+ ⊆ ≃[Pe] (all rules of ℛ+ and Eq. (𝛽)
are contained in ≃[Pe]), we have 𝑀 ≃[Pe] 𝑀 ′, 𝑁 ≃[Pe] 𝑁 ′, and finally by transi-
tivity of ≃[Pe], 𝑀 ≃[Pe] 𝑁.

In implementations Regarding Dedukti, the existence of pair† threatens the
conservativity of any development. Indeed, for any predicate 𝑃, the function
‘𝜆𝑒, (snd𝑇𝑃 (pair† 𝑒))’ maps any term 𝑒 (of type (El𝑇)) to a proof of (𝑃 𝑒)
regardless of the provability of (𝑃 𝑒) in PVS-Cert.

But if we remember that the symbol pair† has been created only to im-
plement a proof irrelevant conversion, Dedukti developers may verify that their
development does not contain the symbol pair†: each time an inhabitant of a
subtype is needed, the symbol pair must be used. If proof irrelevance is needed,
the conversion will take care of erasing proofs.

To help developers enforce such an invariant, Dedukti relies on the notion
of scope (in the usual sense for programming languages) and modules (see F.
Thiré and G. Férey 2019). We say that a symbol is protected2 if it is used to
implement proof irrelevance. A module ℳ is a pair made of a list of imported
signatures and a signature, where a signature is simply a list of declarations. See
the work of Chrzaszcz 2003; Courant 1997; Norell 2007 for studies on modules
in pure type systems.

Let ℳ be a module whose signature Σ† contains protected symbols decla-
rations, and let Σ be Σ† without protected symbol declarations. Because Σ
must declare rewrite rules that reduce to terms containing pair†, there is no
restriction on the usage of pair† in Σ. When working on a module ℳ′ that
imports ℳ, only Σ can be used to build terms (types, definitions and rewrite
rules). Nonetheless, this restriction can be softened in the case of rewrite rules
left-hand sides. If ℳ′ declares a rewrite rule ℓ ↪⟶ 𝑟 with pair in ℓ, then
a critical pair is formed: taking the case of PVS-Cert, for any context 𝛾,

2Protected symbols are called private by F. Thiré and G. Férey 2019.

59

2.6. CONCLUSION

𝛾 [ℓ[pair† 𝑥 𝑦 𝑧]𝜎] ⟵↩ 𝛾[ℓ𝜎] ↪⟶ 𝛾[𝑟𝜎]. This critical pair can be avoided by
using pair† instead of pair in ℓ. Therefore, protected symbols are allowed in
left-hand sides, regardless of the module, since in rewrite rules, only terms of
the right-hand side may be created. François Thiré 2020 has used such mecha-
nisms to encode proof irrelevance for cumulative type systems. The mechanism
described here is similar to private types studied by Blanqui, Hardin and Weis
2007 that have been implemented in OCaml (Leroy et al. 2022, Section 10.3).

2.6 Conclusion
In Section 2.1, we defined the family of type systems modulo. This family con-
tains λΠme, the extension of Edinburgh’s logical framework with equations,
simple type theory as well as simple type theory with explicit predicate subtyp-
ing and proof irrelevance which has been named PVS-Cert.

Section 2.2 presents an λΠme signature suitable to embed terms from PVS-
Cert. The embedding function transforming PVS-Cert typing judgements into
λΠme typing judgements is also given, and we give examples of theories ex-
pressed in PVS-Cert, but encoded in λΠme. These examples feature predicate
subtyping and proof irrelevance.

In Section 2.3, the former encoding is proved to preserve typing: whenever
a judgement holds in PVS-Cert, its embedding holds in λΠme. The converse,
called completeness or conservativity is left open.

The penultimate Section 2.4 revolves around decidability of type checking.
The family of type systems λΠmr is introduced. An λΠmr type system is like an
λΠme type system whose equational theory is defined by a convergent rewrite
system, in order to obtain a decidable equational theory. The equational theory
for PVS-Cert is translated into a confluent rewrite system whose termination
is left open. In particular, symbols have to be added to λΠmr to handle proof
irrelevance. To ensure decidability of type checking, bidirectional type checking
is introduced.

The last section anticipates the proof of conservativity of the encoding by
showing that the rewrite system used to encode PVS-Cert in λΠmr is conser-
vative: whenever two embedded terms are equivalent in λΠmr, then both terms
are equivalent in PVS-Cert. The section closes on some implementation-related
directions to avoid soundness issues raised by the symbols added to embed proof
irrelevance.

60

Chapter 3

Coercions in computational
logical frameworks

The previous chapter laid the foundations of a language with predicate subtyp-
ing along with its encoding in Edinburgh’s Logical Framework modulo equa-
tions (λΠme). Type checking in that encoding is decidable because subtyping
is explicit and types are equivalent up to a decidable convertibility relation im-
plemented by a convergent rewrite system (convergence, and hence decidability
are rather a conjecture).

Predicate subtyping is generally used implicitly: the type checker guesses
where subtyping occurs, and there is no syntactic construction to mark the
type of terms. Our next objective is to synthesise these subtyping information.
That synthesis allows first to cross check proofs of systems that use implicit
predicate subtyping (such as PVS); and second to write much more concise
expressions in the framework. That information can either be generated with
ad-hoc type checking algorithms (F. Gilbert 2018; Sozeau 2006); or with generic
coercion insertion algorithms.

Unlike F. Gilbert 2018; Luo, Soloviev and Xue 2013; Tannen et al. 1991, we
work with typing judgements rather than typing derivations. In these works,
translation functions are defined on typing derivations (with subtyping rules)
and return terms with coercions. For instance, for PVS-Cert defined in Fig. 2.2
Page 32, we would have the following definition where J−K denotes the transla-

61

3.1. TERM REFINER

tion
u

v
𝜌

Γ ⊢ 𝑡 ∶ psub(𝐴, 𝑃)
Γ ⊢ 𝑡 ∶ 𝐴

}

~ ≔ 𝜋ℓ(𝐴,𝑃 ,
s 𝜌
Γ ⊢ 𝑡 ∶ psub(𝐴, 𝑃)

{
)

where the translation function insert the coercion 𝜋ℓ to transform the implicit
subtyping rule

Γ ⊢ 𝑡 ∶ psub(𝐴, 𝑃)
Γ ⊢ 𝑡 ∶ 𝐴

into a sign rule (defined in Fig. 2.1 Page 29). Our goal is to define a translation
function which has the same output but that is defined on typing judgements
rather than typing derivations, so that we would have JΓ ⊢ 𝑡 ∶ 𝐴K = 𝜋ℓ(𝐴, 𝑃 ,…).

In the rest of this document, because we focus on one type system that
we extend, we will not define each new feature as a new system, but will add
these features on a system named 𝔖. For now, 𝔖 is λΠmr, its set of terms is
𝒯(𝒳, {⋆,�},ℱ) for some countable 𝒳, some finite ℱ, 𝒳, ℱ and {⋆,�} pairwise
disjoints and its typing relation is defined by the inference rules of Fig. 2.13
Page 54 parameterised by a rewrite system ℛ and a signature Σ.

The translation function J−K relies on a term refiner that will be presented
formally. That refiner is able to transform a term by the means of coercions.
It is possible to compute coercions with a rewrite system: some examples as
well as some limitations will be provided. We will need to encode yet unknown
terms into our framework. For this we introduce holes as lightweight existential
variables (Muñoz 1997).

3.1 Term refiner
Refiners—also called elaborators—are type checkers which accept a larger class
of terms than the type checkers exposed so far. As a ternary relation, they are
not designed to be correct with respect to type checkers: there may be terms 𝑡
such that Γ ⊢ 𝑡 ⇒ 𝐴 holds with a refiner but not without. Refiners return the
input term being type checked as an output of the type checking (and inference)
relations which are now quaternary relations: synthesis is written Γ ⊢ 𝑡 ⇝ 𝑢 ∶ 𝐴
and reads ‘term 𝑡 refines to 𝑢 of type 𝐴 (in context Γ)’ while checking is written
Γ ⊢ 𝑡 ∶ 𝐴 ⇝ 𝑢 and reads ‘term 𝑡 refines to 𝑢 when checked against type 𝐴 (in
context Γ)’. In both judgements, terms (and contexts) on the left of the arrow

62

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

‘⇝’ are either subjects or inputs of the judgement and terms that are on its
right are outputs.

The output term serves two purposes. The first is to avoid performing
twice term transformations during type checking by passing refined term around
judgements. It also serves as a justification, indicating how the refiner trans-
formed the term to accept it.

3.1.1 Definitions
Figure 3.1 defines a refiner parametrised by a cast relation for λΠmr. Most
inference rules are the same as the type checker’s one in Fig. 2.13 Page 54 with
a new output. The main difference lies in the check rule b-check: the judgement
Γ ⊢ 𝑡 ⇐ 𝐴 may hold even when the type inferred from 𝑡 is not convertible with
𝐴. In that case a coercion may be used to transform 𝑡 (of type 𝑇) into a term 𝑢 of
type 𝐴. Denoting 𝑇 the type inferred from 𝑡, this transformation is represented
by the judgement 𝑡 ∶ 𝑇 <∶ 𝐴 ⇝ 𝑢. Type 𝑇 may be called the source type and 𝐴
the target type.

Definition 19 (Cast relation). A cast relation is a subset of 𝒯4 where 𝒯 ab-
breviates the set of terms of λΠmr. The cast relation is denoted 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢.

For any well-formed λΠmr type system, a cast relation is valid if it satisfies
the following property

{⊢Γ ∧ Γ ⊢ 𝐴 ⇒𝒮 𝑠 ∧ Γ ⊢ 𝑡 ⇐ 𝐴 ∧ Γ ⊢ 𝐵 ⇒𝒮 𝑠}
𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡′

{Γ ⊢ 𝑡′ ⇐ 𝐵}

Definition 20 (Coercion, coercion system). We call coercion system any set
of inference rules or axioms that can be used to derive a cast 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢.
Axioms of such coercion systems can be called coercions.

Lemma 9 (Correctness of r-cast). Rule r-cast (defined in Fig. 3.1) is a valid
cast relation.

Proof. If the rule applies, then 𝑡′ = 𝑡 and 𝐴 ≃𝛽,ℛ 𝐵. We can conclude using
b-check.

The following lemma provides inversion rules for the refiner.

Lemma 10 (Inversion of typing rules Fig. 3.1). • If Γ ⊢ 𝑥 ⇝ 𝑡 ∶ 𝑅 then
𝑥 ∶ 𝑅 ∈ Γ and 𝑡 = 𝑟.

63

3.1. TERM REFINER

r-sort

Γ ⊢ ⋆ ⇝ ⋆ ∶ �

r-var
(𝑥 ∶ 𝐴) ∈ Γ

Γ ⊢ 𝑥 ⇝ 𝑥 ∶ 𝐴

r-abst
Γ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴′ Γ, 𝑥 ∶ 𝐴′ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ⇝ 𝜆𝑥 ∶ 𝐴′, 𝑡′ ∶ Π𝑥 ∶ 𝐴′, 𝐵

r-prod
Γ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴′ Γ, 𝑥 ∶ 𝐴′ ⊢ 𝐵 ⇝ 𝐵′ ∶𝒮 𝑠 (⋆, 𝑠, 𝑠) ∈ 𝒫𝜆Π

Γ ⊢ Π𝑥 ∶ 𝐴,𝐵 ⇝ Π𝑥 ∶ 𝐴′, 𝐵′ ∶ 𝑠

r-appl
Γ ⊢ 𝑡 ⇝ 𝑡′ ∶Π Π𝑥 ∶ 𝐴1, 𝐴2 Γ ⊢ 𝑢 ∶ 𝐴1 ⇝ 𝑢′

Γ ⊢ (𝑡 𝑢) ⇝ (𝑡′ 𝑢′) ∶ {𝑢′/𝑥}𝐴2

r-sign
𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ (Γ ⊢ 𝑡𝑖 ∶ {𝑡′𝑗/𝑥𝑗}𝑗<𝑖

𝐴𝑖 ⇝ 𝑡′𝑖)
𝑖

Γ ⊢ (𝑓 𝒕) ⇝ (𝑓 𝒕′) ∶ {𝒕′/𝒙}𝐵

r-prod-c
Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐴 𝐴 ↪⟶∗

𝛽,ℛ Π𝑥 ∶ 𝐴1, 𝐴2

Γ ⊢ 𝑡 ⇝ 𝑡′ ∶Π Π𝑥 ∶ 𝐴1, 𝐴2

r-sort-c
Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝑠 𝑠 ∈ {⋆,�}

Γ ⊢ 𝑡 ⇝ 𝑡′ ∶𝒮 𝑠

r-check
Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐴 𝑡′ ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡″

Γ ⊢ 𝑡 ∶ 𝐵 ⇝ 𝑡″

r-cast
𝐴 ≃𝛽,ℛ 𝐵

𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡

Figure 3.1: Bidirectional type inference and type checking with refinement for
λΠmr.

64

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

• If Γ ⊢ 𝜆𝑥 ∶ 𝑇1, 𝑡2 ⇝ 𝑡′ ∶ 𝑅 then 𝑅 = Π𝑥 ∶ 𝑇 ′
1 , 𝑅2 for some 𝑇 ′

1 and 𝑅2 with
(Γ ⊢ 𝑇1 ∶ ⋆ ⇝ 𝑇 ′

1), (Γ, 𝑥 ∶ 𝑇 ′
1 ⊢ 𝑡2 ⇝ 𝑡′2 ∶ 𝑅2) and 𝑡′ = 𝜆𝑥 ∶ 𝑇 ′

1 , 𝑡′2.

• If Γ ⊢ (𝑡1 𝑡2) ⇝ 𝑡′ ∶ 𝑅, then there are some types 𝑇11, 𝑅1 such that
Γ ⊢ 𝑡1 ⇝ 𝑡′1 ∶ Π𝑥 ∶ 𝑇11, 𝑅1, Γ ⊢ 𝑡2 ∶ 𝑇11 ⇝ 𝑡′2, and 𝑅 = {𝑡′2/𝑥}𝑅1,
𝑡′ = (𝑡′1 𝑡′2).

• If Γ ⊢ Π𝑥 ∶ 𝑇1, 𝑇2 ⇝ 𝑡′ ∶ 𝑅 then there are sorts 𝑠1, 𝑠2 and 𝑠3 and types 𝑇 ′
1,

𝑇 ′
2 with 𝑅 = 𝑠1, 𝑡′ = Π𝑥 ∶ 𝑇 ′

1 , 𝑇 ′
2, (Γ ⊢ 𝑇1 ∶ ⋆ ⇝ 𝑇 ′

1), (Γ, 𝑥 ∶ 𝑇 ′
1 ⊢ 𝑇2 ⇒𝒮

𝑠2) and (𝑠1, 𝑠2, 𝑠3) ∈ 𝒫𝜆Π.

• If Γ ⊢ (𝑓 𝒕) ⇝ 𝑡′ ∶ 𝑅 where 𝑓 ∈ Σ, 𝑅 = {𝒕′/𝒙}𝐵 for some 𝐵 with
𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ, for all 𝑖, Γ ⊢ 𝑡𝑖 ∶ {𝑡′𝑗/𝑥𝑗}𝑗<𝑖

𝐴𝑖 ⇝ 𝑡′𝑖 and 𝑡′ = 𝒕′.

• If Γ ⊢ 𝑡 ⇝ 𝑡′ ∶Π 𝑅 then 𝑅 = Π𝑥 ∶ 𝑇1, 𝑇2 for some 𝑇1, 𝑇2 with Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝑇
and 𝑇 ↪⟶∗

ℛ Π𝑥 ∶ 𝑇1, 𝑇2.

• If Γ ⊢ 𝑡 ⇝ 𝑡′ ∶𝒮 𝑅 then 𝑅 ∈ {⋆,�} with Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝑠′ and 𝑠′ ↪⟶∗
ℛ 𝑅.

• If Γ ⊢ 𝑡 ∶ 𝑅 ⇝ 𝑡′ then 𝑡″ ∶ 𝑇 <∶ 𝑅 ⇝ 𝑡′ for some 𝑡″, 𝑇 with Γ ⊢ 𝑡 ⇝ 𝑡″ ∶ 𝑇.

Proof. By inspection of the typing rules Fig. 3.1.

Definition 21. We say that 𝐵 is reachable from 𝐴 if there are terms 𝑡 and 𝑢
such that 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢, and we write 𝐴 <∶ 𝐵. We write 𝑡 ∶ 𝐴 <∶ 𝐵 to state
that there a term 𝑢 such that 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢.

Potential additional checking rules Some refiners have more than one
introduction rule for the checking relation. In particular, Asperti, Ricciotti,
Coen and Tassi 2018; Norell 2007; Pierce and Turner 2000 provide the following
rule

r-check-abst
𝐵 ↪⟶∗

𝛽,ℛ Π𝑥 ∶ 𝐵1, 𝐵2
Γ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴′ 𝐴′ ≃𝛽,ℛ 𝐵1 Γ, 𝑥 ∶ 𝐴′ ⊢ 𝑡 ∶ 𝐵2 ⇝ 𝑡′

Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ∶ 𝐵 ⇝ 𝜆𝑥 ∶ 𝐴′, 𝑡′
.

It pushes typing information up to the leaves of terms, traversing abstractions.
This allows deriving more precise coercion problems, but it is not required for

65

3.1. TERM REFINER

completeness with respect to the bidirectional type checker. Given an algo-
rithm to generate coercions, it extends the set of admissible terms, as shown in
Example 6.
Example 6 (Checking abstractions with a dedicated rule). Let Γ be the context
containing the declarations

Γ = nat ∶ Type, even? ∶ (El (nat⇝ o)) , 𝑒 ∶ (El (psubnat even?)) .

Checking the function 𝜆𝑥 ∶ (Elnat), 𝑒 against (Elnat) → (Elnat) yields the
following derivation tree (using rules of Fig. 3.1),

⊢ 𝜆𝑥, 𝑒 ⇝ 𝜆𝑥, 𝑒 ∶ (Elnat → (El (psub evenp)))
𝜆𝑥, 𝑒 ∶ (Elnat → (El (psub evenp))) <∶ (Elnat) → (Elnat) ⇝ …

⊢ 𝜆𝑥, 𝑒 ∶ (Elnat) → (Elnat) ⇝ …
.

The second premise shows that the coercion system must be able to traverse
products. However, if rule r-check-abst is added to the type checker, the
coercion problem becomes 𝑒 ∶ (El (psub evenp)) <∶ (Elnat) ⇝ (fst 𝑒) and does
not need the former specific coercion rule.

Such an additional checking rule pushes typing information inside the ab-
straction and transfers the task of inspecting terms from the coercion algorithm
to the type checker. However, such a rule is generally used when the inference
is not defined on abstractions, so that there may be only one rule to derive
Γ ⊢ 𝜆𝑥 ∶ 𝐸, 𝑒 ⇐ 𝐴. In that case, only terms in 𝛽-normal form may be type
checked, (in objects, inference is required only for heads of applications, so we
miss only terms that have an abstraction as the head of an application, that is,
a 𝛽-redex). Because we intend to refine terms that are not in 𝛽-normal form,
we keep the inference of abstractions.

3.1.2 Refiner specification
We give formal specifications for the three judgements Γ ⊢ 𝑡 ⇝ 𝑡 ∶ 𝑡, Γ ⊢ 𝑡 ∶ 𝑡 ⇝ 𝑡
and 𝑡 ∶ 𝑡 <∶ 𝑡 ⇝ 𝑡.

The soundness of the refiner is established with respect to the typing relations
defined by the rules of Fig. 2.13 Page 54 parametrised by the same signature
and rewrite system.

Proposition 9 (Validity of r-cast). The cast relation implemented by the rule
r-cast defined in Fig. 3.1 is valid.

66

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

Proof. For any well-formed λΠmr type system parametrised by a rewrite system
ℛ, if the rule r-cast applies, then 𝑡′ = 𝑡 and 𝐴 ≃𝛽,ℛ 𝐵. We can conclude using
rule b-check.

Proposition 10 (Correctness of refiner). For any well-formed λΠmr type sys-
tem, any valid cast relation, the inference and checking relations defined in
Fig. 3.1 validate the following property

{⊢Γ} Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐴 {Γ ⊢ 𝐴 ⇒𝒮 𝑠 ∧ Γ ⊢ 𝑡′ ⇐ 𝐴}
{⊢Γ ∧ Γ ⊢ 𝐴 ⇒𝒮 𝑠} Γ ⊢ 𝑡 ∶ 𝐴 ⇝ 𝑡′ {Γ ⊢ 𝑡′ ⇐ 𝐴}

Proof. By mutual induction on refiner typing derivations. For rules r-var,
r-sort, r-abst, r-prod, r-appl, it is enough to replace judgements of the form
Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐴 by Γ ⊢ 𝑡′ ⇒ 𝐴 and Γ ⊢ 𝑡 ∶ 𝐴 ⇝ 𝑡′ by Γ ⊢ 𝑡′ ⇐ 𝐴 to obtain
correct derivations in the bidirectional system. For rule r-sign, the same op-
eration holds, noting that because Σ is well-formed, preconditions hold for the
sequence of premises that type (𝑡𝑖)𝑖. The procedure allows to derive the first
precondition using Lemma 4 Page 55 and the second because if Γ ⊢ 𝑡 ⇒ 𝐴, then
Γ ⊢ 𝑡 ⇐ 𝐴.

For the rule r-check, induction hypothesis ensures that the preconditions
required by the cast relation hold, and correctness of the cast relation (Lemma 9)
gives Γ ⊢ 𝑡″ ⇐ 𝐴.

Proposition 11 (Partial completeness of refiner). For any well-formed λΠmr
type system,

• if Γ ⊢ 𝑡 ⇒ 𝐴, then Γ ⊢ 𝑡 ⇝ 𝑡 ∶ 𝐴;

• for any type 𝐴 well-sorted in Γ, if Γ ⊢ 𝑡 ⇐ 𝐴, then Γ ⊢ 𝑡 ∶ 𝐴 ⇝ 𝑡.

Proof. The two propositions are proved simultaneously by induction on the
typing derivation. The proof is straightforward, bidirectional premises can be
replaced by refiner-style premises. The only exception is the rule b-check:
Γ ⊢ 𝑡 ⇒ 𝐴 can be replaced by Γ ⊢ 𝑡 ⇝ 𝑡 ∶ 𝐴 by induction hypothesis. Since
𝐴 ≃ 𝐵 (where ≃ is the congruence of the λΠmr type system), we can deduce
𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡, and finally we can conclude with r-check.

3.1.3 Properties of coercion systems
Coercions are often used to specify semantics of type systems with implicit
subtyping (Luo, Soloviev and Xue 2013; Tannen et al. 1991). Coercion opera-
tors transform implicit subtyping inference rules into application rules. In that

67

3.1. TERM REFINER

context, coercion insertion functions work on typing derivations of the source
language (with implicit subtyping). Such a function is coherent if derivations
with the same conclusion are translated to behaviourally equivalent terms (i.e.
convertible terms).
Example 7. In the context of programming languages, it is common to co-
erce from numbers to booleans. Assume we have several coercions from inte-
gers to booleans IntToBool ∶ Int → Bool, from integers to float (less com-
mon) IntToFloat ∶ Int → Float and from floats to booleans FloatToBool ∶
Float → Bool. There are at least two derivations with conclusion 1 ∶ Bool
whose translations are (IntToBool 1) (where 1 is coerced from Int to Bool)
and (FloatToBool (IntToFloat 1)) (where 1 is coerced from Int to Float to
Bool).

Definition 22 (Coherence). Let ≃ be a congruence. A cast relation is coherent
with respect to ≃ if and only if all elements of the set {𝑢 ∣ 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢} are
convertible with respect to ≃.

Note that in our case, because coercion insertion (which can be seen as
interpretation) is performed together with the elaboration of the derivation,
non-coherence would result from the non determinism of the elaboration of the
derivation.
Example 8. In Example 7, there are two ways to coerce an integer to a boolean:
either directly with IntToBool or by composing IntToFloat with FloatToBool.
The coercion system is coherent if whatever the coercion system used, the re-
sult is the same, i.e., denoting the function composition with ∘, IntToBool =
FloatToBool ∘ IntToFloat.

Subtyping rules may often be used more than once in a row. For instance,
assuming the derivation

Γ ⊢ 2 ∶ Even
Γ ⊢ 2 ∶ Int
Γ ⊢ 2 ∶ Bool

its translation, noted J−K is
u

v
Γ ⊢ 2 ∶ Even
Γ ⊢ 2 ∶ Int
Γ ⊢ 2 ∶ Bool

}

~ = (IntToBool
s
Γ ⊢ 2 ∶ Even
Γ ⊢ 2 ∶ Int

{
) =

(IntToBool (EvenToInt 2)) .

68

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

In our case, because we do not start from the typing derivation, but from the
conclusion of that derivation Γ ⊢ 2 ∶ Bool, our algorithmic coercion system must
be able to synthesise a sequence of coercions.

Definition 23 (Transitivity). A cast relation is transitive whenever the follow-
ing rule is admissible

𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢
𝑠 ∶ 𝑆 <∶ 𝑈 ⇝ 𝑢′ .

The output of the conclusion for transitivity is 𝑢′ and not 𝑢: there is no
reason for 𝑢 and 𝑢′ to be convertible a priori.
Example 9. Considering the coercion system composed of the two rules

𝑒 ∶ Float <∶ Bool ⇝ (FloatToBool 𝑒)

𝑒 ∶ Int <∶ Float ⇝ (IntToFloat 𝑒)

a transitivity rule is required to derive 𝑒 ∶ Int <∶ Bool ⇝ 𝑒′.

Definition 24 (Stability). A cast relations is stable by substitution (or just
stable) if for any term 𝑢, the following rule is admissible

𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡′

{𝑢/𝑥} 𝑡 ∶ {𝑢/𝑥}𝐴 <∶ {𝑢/𝑥}𝐵 ⇝ {𝑢/𝑥} 𝑡′
.

3.1.4 Standard coercions for functions
Since products and abstractions are native objects of the language, we can define
higher order coercion rules to handle products. It is common to have covariance
on the codomain: a function type Π𝑥 ∶ 𝐴,𝐵 is a subtype of Π𝑥 ∶ 𝐴,𝐶 if 𝐵 is a
subtype of 𝐶. For instance, with coercions defined in Example 9, the function
type Bool → Int is a subtype of the function type Bool → Float. We may also
have contravariance on the domain which states that 𝐵 → 𝐴 is a subtype of 𝐶 →
𝐴 if 𝐶 is a subtype of 𝐴 (the order of subtyping is reversed on domains) (Pierce
2002, pp. 184-185). For instance, the function type Float → Bool is a subtype
of Int → Bool.

The following rule may be used to implement covariance (on the codomain)
and contravariance (on the domain),

𝑥 ∶ 𝐵1 <∶ 𝐴1 ⇝ 𝑒𝑥 (𝑓 𝑒𝑥) ∶ 𝐴2 <∶ 𝐵2 ⇝ 𝑒
𝑓 ∶ Π𝑥 ∶ 𝐴1, 𝐴2 <∶ Π𝑥 ∶ 𝐵1, 𝐵2 ⇝ 𝜆𝑥 ∶ 𝐵1, 𝑒

69

3.1. TERM REFINER

or if only covariance on the codomain is desired, we may use the following one:

𝐴1 ≃𝛽,ℛ 𝐵1 (𝑓 𝑥) ∶ 𝐴2 <∶ 𝐵2 ⇝ 𝑒𝑓

𝑓 ∶ Π𝑥 ∶ 𝐴1, 𝐴2 <∶ Π𝑥 ∶ 𝐵1, 𝐵2 ⇝ 𝜆𝑥 ∶ 𝐵1, 𝑒𝑓
.

These two rules 𝜂-expand their arguments. To avoid such modification of
the term, and because λΠmr does not have 𝜂-equivalence, we can replace the
latter rule by a restricted form

𝐴1 ≃𝛽,ℛ 𝐵1 𝑒 ↪⟶∗
ℛ,𝛽 𝜆𝑥 ∶ 𝐸0, 𝑒0 𝑒0 ∶ 𝐴2 <∶ 𝐵2 ⇝ 𝑒1

𝑒 ∶ Π𝑥 ∶ 𝐴1, 𝐴2 <∶ Π𝑥 ∶ 𝐵1, 𝐵2 ⇝ 𝜆𝑥 ∶ 𝐵1, 𝑒1
.

Note that as soon as the precondition Γ ⊢ 𝑒 ⇐ Π𝑥 ∶ 𝐴1, 𝐴2 is validated,
whenever 𝑒 ↪⟶∗

ℛ 𝜆𝑥 ∶ 𝐸0, 𝑒0, we have 𝐸0 ≃𝛽,ℛ 𝐴1 by inversion of rules b-check
and b-abst (Page 54).

3.1.5 Coercing to functions
When inferring the type of an application (𝑓 𝑡), a product type must be found
for the head of the application 𝑓. In r-prod Page 64, products are only searched
among reducts. Were the type checker able to coerce the head to some functions,
more terms would be accepted:
Example 10. Let Σ be Σ[Pe] (defined Fig. 2.4 Page 39) extended with the dec-
larations

nat ∶ Type
0 ∶ (El nat)
cont? ∶ (El ((nat⇝ nat) ⇝ o))
h ∶ (Prf (cont? (𝜆𝑥 ∶ (El nat), 𝑥))) .

The application of (pair (𝜆𝑥 ∶ (El nat), 𝑥) h) to 0 does not type check in Σ
because the head of the application is a pair, hence its type is of the form
(El (psub …)) which is not convertible with a product.

On the other hand, the application of (fst (pair (𝜆𝑥 ∶ (El nat), 𝑥) ℎ)) to 0
type checks (and reduces to ((𝜆𝑥, 𝑥) 0)).

The following rule may be used to coerce heads of applications to functions

Γ ⊢ 𝑓 ⇝ 𝑓 ′ ∶ 𝐴 Γ ⊢ Π𝑥 ∶ 𝐴1, 𝐴2 ⇒𝒮 𝑠 𝑓 ′ ∶ 𝐴 <∶ Π𝑥 ∶ 𝐴1, 𝐴2 ⇝ 𝑓″

Γ ⊢ 𝑓 ⇝ 𝑓″ ∶Π Π𝑥 ∶ 𝐴1, 𝐴2

70

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

but it requires to guess types 𝐴1 and 𝐴2. Although asking for a terminating
procedure enumerating all well-formed reachable types is certainly too much,
we may be able to define a terminating relation that computes some subtypes
of a given type.

Definition 25 (Subtype projection). For any well-formed λΠmr type system,
a relation ≺ on types is a valid subtype projection if

{⊢Γ ∧ Γ ⊢ 𝐴 ⇒𝒮 𝑠} 𝐴 ≺ 𝐵 {Γ ⊢ 𝐵 ⇒𝒮 𝑠 ∧ 𝐴 <∶ 𝐵} .

Example 11. In the encoding of PVS-Cert Fig. 2.4 Page 39, (nat ⇝ nat) is
a well-formed type code that can be extracted from (psub (nat⇝ nat) cont?)
and that can be mapped to a product through El. The subtyping relation thus
ought to contain (where ≺∗ is the transitive and reflexive closure of ≺)

(El (psub (nat⇝ nat) cont?)) ≺∗ (El nat) → (El nat) .

We extend (and replace) rule r-prod-c with

r-prod-c
Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐴 𝐴 ≺∗ Π𝑥 ∶ 𝐴1, 𝐴2 𝑡′ ∶ 𝐴 <∶ Π𝑥 ∶ 𝐴1, 𝐴2 ⇝ 𝑡″

Γ ⊢ 𝑡 ⇝ 𝑡″ ∶Π Π𝑥 ∶ 𝐴1, 𝐴2

Definition 26. System 𝔖 is extended with rule r-prod-c parametrised by a
subtype projection ≺.

Lemma 11 (Correctness of r-prod-c with respect to inference). Rule r-prod-c
is correct with respect to Proposition 10 Page 67.

Proof. Induction hypothesis and post-conditions of the first and second premises
provide the required preconditions for the third premise to hold. Correctness of
the coercion relation allows to conclude.

Remark 6. Rule r-prod-c could also be formulated

Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐴 𝐴 ≺∗ Π𝑥 ∶ 𝐴1, 𝐴2 Γ ⊢ 𝑡′ ∶ Π𝑥 ∶ 𝐴1, 𝐴2 ⇝ 𝑡″

Γ ⊢ 𝑡 ⇝ 𝑡″ ∶Π Π𝑥 ∶ 𝐴1, 𝐴2

but this formulation infers twice the type of 𝑡: once in the first premise, and the
second as the premise of Γ ⊢ 𝑡 ∶ Π𝑥 ∶ 𝐴1, 𝐴2 ⇝ 𝑡′.

71

3.2. COMPUTING COERCIONS

3.2 Computing coercions
For now, the only way to introduce 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢 is through rule r-cast
page 64. We have also seen other potential introduction rules for functions. This
section investigates how derivations for the cast relations can be built using a
rewrite system. The goal here is to provide an implementation or a decidable
procedure to derive coercion judgements given a finite set of coercions.

3.2.1 Initial observations

The set of admissible cast judgements denoted 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢 is defined by sets
of inference rules whose conclusion (or premises) are schemes of cast judgements
𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢, where terms of the form 𝑡 denote schemes, that is, terms that
may contain metavariables. Given a set of inference rules, procedures to derive
admissible relation instances can be implemented using λProlog-like inference
systems (Miller and Nadathur 2019; Tassi and Coen 2022). Such algorithms
are based on unification: to build a derivation tree for 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢, terms
𝑡, 𝐴 and 𝐵 (the inputs of the problem) are unified with the conclusions of the
available rules, which may contain metavariables (like the rules described in
Section 3.1.4 Page 69).

However, full-fledged unification is not needed in the case of coercions. In-
puts of coercion judgements1 are 𝜆 terms and do not contain metavariables.
When judging whether 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢 holds, 𝑡, 𝐴 and 𝐵 are 𝜆 terms. It suffices
to look for coercion rules whose conclusion 𝑝 ∶ 𝑋 <∶ 𝑌 ⇝ 𝑦 is such that 𝑝 filters
𝑡, 𝑋 filters 𝐴 and 𝑌 filters 𝐵 (we do not care about 𝑢 because it is an output
of the judgement, so it will always be a metavariable). If such a rule is found,
noting 𝜎 the substitution such that 𝜎𝑝 = 𝑡, 𝜎𝑋 = 𝐴 and 𝜎𝑌 = 𝐵, for each
premise 𝑝′ ∶ 𝑋′ <∶ 𝑌 ′ ⇝ 𝑦′ of the coercion rule, we are left with new coercion
judgements 𝜎𝑝′ ∶ 𝜎𝑋′ <∶ 𝜎𝑌 ′ ⇝ 𝜎𝑦′.

Since only filtering is needed, it may be possible to implement the inference
algorithm using a rewrite system defining an operator 𝜅: for each coercion rule
of the form

(𝑝𝑖 ∶ 𝑋𝑖 <∶ 𝑌𝑖 ⇝ 𝑒𝑖)𝑖

𝑝 ∶ 𝑋 <∶ 𝑌 ⇝ 𝑒[𝑒𝑖]𝑖

1In the sense given in Section 2.4, opposed to outputs

72

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

where 𝑒[𝑒𝑖]𝑖 denotes that terms 𝑒𝑖 may occur in 𝑒, declare a rewrite rule

𝜅 (𝑝 ∶ 𝑋 <∶ 𝑌) ↪⟶ 𝑒[𝜅(𝑝
𝑖
∶ 𝑋𝑖 <∶ 𝑌𝑖)𝑖

] .

3.2.2 Computing coercions with a rewrite system
Coercing a term 𝑡 from a type 𝐴 to another type 𝐵 amounts to triggering
some computation on term 𝑡 depending on 𝐴 and 𝐵 (and sometimes 𝑡 itself).
Since our system 𝔖 already handles computation through rewriting, we detail
how to compute coercions with a rewrite system. Computational content for
coercions is added on a symbol 𝜅 which extends the syntax of 𝔖. In this context,
𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢 holds whenever (𝜅𝐴𝐵 𝑡) reduces to term 𝑢.

Definition 27. Let ℱ be a set of symbols, and 𝜅 a symbol not in ℱ. We call
ℱ-coercion rewrite system any rewrite system whose terms are in 𝒯(ℱ ∪ {𝜅}).
We may omit the set of symbols and call it a coercion rewrite system when the
set of symbols can be unambiguously inferred.

Definition 28. Consider system 𝔖 parametrised by a signature Σ, let ℱ be
the domain of Σ and 𝜅 ∉ ℱ. We extend the system by adding the rule

r-coerce
(𝜅𝐴𝐵 𝑡) ↪⟶+

𝛽,𝒞,ℛ 𝑡′ 𝜅 ∉ 𝑡′

𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡′

parametrised by a ℱ-coercion system 𝒞 to the rules of Fig. 3.1 Page 64.

Adding coercions to the system amounts to declare rewrite rules (𝜅 𝑥 𝑦 𝑧) ↪⟶
𝑟 on system 𝒞. This rewrite system is used in r-coerce to transform the input
term 𝑡. The second premise of the former rule ensures that the symbol 𝜅 is
erased from 𝑡′, meaning that all coercions have been found. It is equivalent to
saying that 𝑡′ ∈ 𝒯({⋆,�},ℱ).

Remark 7. The relation in the first premise of r-coerce is not reflexive, because
if no rewrite step is performed, there is no way to erase the symbol 𝜅. The
symmetric closure ↪⟶∗

𝛽,𝒞,ℛ could be used instead: if no rewrite step occur, the
second premise fails.

73

3.2. COMPUTING COERCIONS

Example 12 (El coercion). Using rule r-coerce and signature Σ[Pe], the type
family El can be used as a coercion when the rewrite rule (𝜅 Type ⋆ 𝑥) ↪⟶ El𝑥
is in 𝒞. This coercion allows terms to not use the function El at all, allowing
for instance the term (𝜆nat ∶ Type, 𝜆𝑛 ∶ nat, 𝑛) to be typeable.

We only show parts of the typing derivation that are relevant regarding the
coercion

r-var
nat ∶ Type ⊢ nat ⇝ nat ∶ Type

(𝜅 Type ⋆ nat) ↪⟶ (Elnat)
r-coerce

nat ∶ Type <∶ ⋆ ⇝ (Elnat)
r-check

nat ∶ Type ⊢ nat ∶ ⋆ ⇝ (Elnat)

where the conclusion is used to prove the judgement nat ∶ Type ⊢ 𝜆𝑛 ∶ nat,
𝑛 ⇝ 𝜆𝑛 ∶ (Elnat), 𝑛 ∶ Π𝑛 ∶ (Elnat), (Elnat) using rule r-abst.
Remark 8. To keep type checking decidable, we need ↪⟶𝛽,ℛ,𝒞 to be convergent,
at least using a fixed strategy (Pol 2001).

Proposition 12. Let 𝔗 be a well-formed λΠmr type system parametrised by a
(well-formed) signature Σ and a (convergent and type preserving) rewrite system
ℛ. Consider also 𝔖 parametrised by Σ, ℛ and the empty coercion system, whose
judgements are noted ‘⋅ ⊢∅ ⋅ ∶ ⋅’.

• If Γ ⊢∅ 𝑡 ⇝ 𝑡′ ∶ 𝐴, then Γ ⊢𝔗 𝑡 ⇒ 𝐴;

• for any type 𝐴 such that there is 𝑠 ∈ {⋆,�}, Γ ⊢∅ 𝐴 ∶𝒮 𝑠, if Γ ⊢∅ 𝑡 ∶ 𝐴 ⇝ 𝑡′
then Γ ⊢𝔗 𝑡 ⇐ 𝐴.

Proof. By mutual induction over the typing derivation. All cases are handled
by induction hypothesis except r-coerce. If the input coercion system is empty,
rule r-coerce cannot be used and only rule r-cast can be used. Hence 𝑡 and 𝑡′
are syntactically equal, and by Proposition 10 Page 67, Γ ⊢ 𝑡′ ⇒ 𝐴.

In order to maintain the soundness of the relation 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡′, the
rewrite system 𝒞 must enforce some invariants.

Definition 29. Let 𝔗 be a well-formed λΠmr type system parametrised by a
signature Σ and a rewrite system ℛ. Let 𝔎 be the (well-formed) λΠmr type
system parametrised by the signature Σ ∪ {𝜅[𝐴 ∶ ⋆,𝐵 ∶ ⋆, 𝑡 ∶ 𝐴] ∶ 𝐵 ∶ ⋆} and ℛ.
A coercion rewrite system 𝒞 is type preserving if for any rewrite rule ℓ ↪⟶ 𝑟 ∈ 𝒞,
for any context Γ well-formed in 𝔗, for any type 𝐴 such that Γ ⊢𝔗 𝐴 ⇐𝒮 𝑠, for
any substitution 𝜎 if Γ ⊢𝔎 𝜎ℓ ⇐ 𝜎𝐴, then Γ ⊢𝔎 𝜎𝑟 ⇐ 𝜎𝐴.

74

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

Example 13. In this example, we use the typing relation λΠ[sPe]. The following
coercion

(𝜅 Type ⋆ 𝑥) ↪⟶ (El𝑥)

preserves typing. For any substitution 𝜎, the left-hand side is well-typed if 𝜎𝑥
is typeable by Type. In that case, the right-hand side (El (𝜎𝑥)) is well-typed
and has the same type as the left-hand side, this type is ⋆.

In the former definition, the extended declaration is well-formed although
the type of symbol 𝜅 cannot be typed into λΠmr because it is polymorphic (its
type would be Π𝐴 ∶ ⋆,Π𝐵 ∶ ⋆,𝐴 → 𝐵). Using the signature, terms with 𝜅 can
be typed when it is fully applied.

Lemma 12. Let 𝔗 be a well-formed λΠmr type system parametrised by a sig-
nature Σ and a rewrite system ℛ. Let 𝔎 be the λΠmr type system parametrised
by the signature Σ∪ {𝜅[𝐴 ∶ ⋆,𝐵 ∶ ⋆, 𝑥 ∶ 𝐴] ∶ 𝐵 ∶ ⋆} and ℛ. Then for any context
Γ well-formed in 𝔗, for any terms 𝑡 and 𝐴 of 𝒯({⋆,�},dom(Σ)),

• if Γ ⊢𝔎 𝑡 ⇒ 𝐴 then Γ ⊢𝔗 𝑡 ⇒ 𝐴;

• for any sort 𝑠 such that Γ ⊢𝔗 𝐴 ⇒𝒮 𝑠, if Γ ⊢𝔎 𝑡 ⇐ 𝐴, then Γ ⊢𝔗 𝑡 ⇐ 𝐴.

Proof. By simultaneous induction over Γ ⊢𝔎 𝑡 ⇒ 𝐴 and Γ ⊢𝔎 𝑡 ⇐ 𝐴. We use the
typing rules of Fig. 2.13 Page 54.

Rules b-prod, b-abst, b-appl are handled by induction hypothesis.
For rule b-sign, because Σ is in 𝒯({⋆,�},ℱ), 𝜅 cannot occur in any term

of any judgement of Σ (in particular in types of symbol declarations), hence
induction hypothesis is enough.

For rule b-prod-c, by induction hypothesis, Γ ⊢𝔗 𝑡 ⇒ 𝐴 holds, and Π𝑥 ∶ 𝐴1,
𝐴2 does not contain 𝜅 because ℛ has terms in 𝒯(ℱ). The case of b-sort-c is
similar.

For rule b-check, by induction hypothesis, Γ ⊢𝔗 𝑡 ⇒ 𝐴. By hypothesis, 𝐵
does not contain 𝜅. By confluence of ℛ, there is 𝐶 such that 𝐴 ↪⟶∗

ℛ 𝐶 and
𝐵 ↪⟶∗

ℛ 𝐶. Because ℛ has its terms in 𝒯(ℱ), 𝐴 and 𝐵 are both in 𝒯(ℱ), we
have 𝐶 ∈ 𝒯(ℱ).

Proposition 13 (Validity of r-coerce). The cast relation implemented by the
rule r-coerce page 73 is a valid.

75

3.2. COMPUTING COERCIONS

Proof. Let Λ = Σ ∪ {𝜅[𝐴 ∶ ⋆,𝐵 ∶ ⋆, 𝑥 ∶ 𝐴] ∶ 𝐵 ∶ ⋆}, (⊢Λ∶) the type checking
relation using signature Λ. By induction on the length of the reduction, we
prove that the following property holds

{Γ ⊢ 𝑡 ⇐ 𝐴 ∧ Γ ⊢ 𝐵 ⇒𝒮 𝑠} (𝜅𝐴𝐵 𝑡) ↪⟶∗
𝛽,ℛ,𝒞 𝑢 {Γ ⊢Λ 𝑢 ⇐ 𝐵}

The base case is proved by induction on a context 𝐶 such that 𝐶[𝜎ℓ] ↪⟶
𝐶[𝜎𝑟] where ℓ ↪⟶ 𝑟 ∈ 𝒞. When the context 𝐶 is empty, either (𝜅 𝑎 𝑏 𝑡) ↪⟶𝛽,ℛ
(𝜅 𝑎′ 𝑏′ 𝑡′) where we can conclude because {𝛽} ∪ ℛ has the subject reduction
property. Or (𝜅 𝑎 𝑏 𝑡) ↪⟶𝒞 𝑢 and we can conclude by type preservation of 𝒞.
By structural induction on context 𝐶, we can conclude for the base case.

We can conclude the proof by induction on the length of the reduction, using
the base case to prove heredity as well.

Using Lemma 12, if (𝜅𝐴𝐵 𝑡) ↪⟶𝛽,ℛ,𝒞 𝑢 and 𝜅 ∉ 𝑢, then Γ ⊢ 𝑢 ⇐ 𝐵.

As a corollary, we have that a refiner with a type preserving coercion system
is still correct by Proposition 10 Page 67.

Using a rewrite system also provides stability by substitution for free because
rewriting is stable by substitution by definition.

Corollary 1. Any coercion system implemented by rule r-coerce, r-cast and
a coercion rewrite system 𝒞 is stable by substitution (Definition 24 Page 69).

Proof. By inversion of inference rules that allow to derive 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢.

3.2.3 Standard coercions
The coercions defined in Section 3.1.3 Page 67 can be implemented by a higher-
order rewrite system. Covariance and contravariance may be implemented by

(𝜅 (Π𝑥 ∶ 𝐴1, 𝐴2) (Π𝑥 ∶ 𝐵1, 𝐵2) 𝑓) ↪⟶ 𝜆𝑥 ∶ 𝐵1, (𝜅𝐴2 𝐵2 (𝑓 (𝜅𝐵1 𝐴1 𝑥))) .

We can avoid 𝜂-expansion if we filter only abstractions

(𝜅 (Π𝑥 ∶ 𝐴1, 𝐴2) (Π𝑥 ∶ 𝐵1, 𝐵2) (𝜆𝑥,𝑋[𝑥])) ↪⟶
𝜆𝑥 ∶ 𝐵1, (𝜅𝐴2 𝐵2 𝑋[𝜅𝐵1 𝐴1 𝑥]) .

Further details on the shape of patterns and higher order matching can be found
in the works of Hondet and Blanqui 2020; Klop, Oostrom and Raamsdonk 1993;
Miller 1991. In the latter rule, we consider that the bound variable 𝑥 in the

76

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

right-hand side captures the variable that was bound in 𝑋. If we are only
interested in covariance in the codomain, we can use the non-linear rule

(𝜅 (Π𝑥 ∶ 𝐴,𝐵) (Π𝑥 ∶ 𝐴,𝐶) (𝜆𝑥,𝑋[𝑥])) ↪⟶ 𝜆𝑥 ∶ 𝐴, (𝜅𝐵𝐶𝑋[𝑥]) . (𝒞-Π)

With Eq. (𝒞-Π) and a rule (𝜅 Int Float𝑁) ↪⟶ (IntToFloat𝑁), the coer-
cion of 𝜆𝑏, 𝑛 from Bool → Int to Bool → Float is computed by

(𝜅 (Bool → Int) (Bool → Float) (𝜆𝑏, 𝑛)) ↪⟶𝒞

(𝜆𝑏 ∶ Bool, (𝜅 Int Float)) ↪⟶𝒞 (𝜆𝑏 ∶ Bool, (IntToFloat𝑛)).

In presence of recursive coercions, such as

(𝜅 (El (psub𝑇𝑃)) 𝑈𝑋) ↪⟶ (𝜅𝑇𝑈 (fst𝑋))

an explicit elimination rule may be required to be able to obtain terms without
𝜅. Such elimination rule would be non recursive variants like

(𝜅 (El (psub𝑇𝑃)) 𝑇𝑋) ↪⟶ (fst𝑋) .

However, this approach requires each recursive coercion rule to have a non-
recursive (and non-linear) counterpart. We can reduce the number of non-linear
rules using a generic eliminator that encodes the identity coercion,

(𝜅 𝑇𝑇𝑋) ↪⟶ 𝑋. (𝒞-Id)

Note that this rule subsumes rule r-cast page 64: by confluence of ℛ, if
𝐴 ≃ℛ 𝐵, there is 𝐶 such that 𝐴 ↪⟶∗

ℛ 𝐶 and 𝐵 ↪⟶∗
ℛ 𝐶, hence (𝜅𝐴𝐵 𝑡) ↪⟶∗

ℛ
(𝜅𝐶𝐶 𝑡) ↪⟶𝒞 𝑡.

3.2.4 Non-linearity threatens convergence
Termination

Abel and Coquand 2020 showed that Eq. (𝒞-Id) may harm termination in pres-
ence of polymorphism (à la System F by Girard 1971) or with a proof irrele-
vant propositional equality and impredicativity because of non-linear filtering
on types (Harper and Mitchell 1999). The example of non-termination given
in (Abel and Coquand 2020) has been encoded into PVS-Cert in Appendix B
Page 169.

In our case, we may take advantage of the encoding, and prove at least that
terms in the image of the encoding are weakly normalising. In that case, we
may use normalisation strategies (Pol 2001) to reach normal forms.

77

3.2. COMPUTING COERCIONS

Π𝑥 ∶ (El𝑇), (El𝑈) ↪⟶ (El (𝑇⇝ 𝑈)) (3.1)
(𝜋−1 (El𝑋)) ↪⟶ 𝑋 (3.2)
(𝜅 (𝐴⇝𝐵) (𝐴⇝𝐶) (𝜆𝑥,𝐸[𝑥])) ↪⟶ 𝜆𝑥, (𝜅′ 𝐵𝐶𝐸[𝑥]) (3.3)
(𝜅𝐴𝐴𝑋) ↪⟶ 𝑋. (3.4)

Figure 3.2: Rewrite system ℛinv to retrieve type codes from types.

Confluence

Non linearity breaks confluence over untyped terms (Klop 1980). It may be
useful to restrict non-linearity to type codes rather than the framework’s types
to be able to use layering methods provided by Gaspard Férey 2021; Gaspard
Férey and J.-P. Jouannaud 2021. For this, we may type 𝜅 by 𝜅 ∶ Π𝑎 ∶ Type,
Π𝑏 ∶ Type, (El (𝑎 ⇝ 𝑏)) and we replace rule r-coerce with

(𝜅 𝑎 𝑏 𝑡) ↪⟶∗ 𝑢 𝜅 ∉ 𝑢
𝑡 ∶ (El 𝑎) <∶ (El 𝑏) ⇝ 𝑢

.

However, there is no reason that inference returns only terms of the form (El𝑋),
in particular when inferring the type of an abstraction: the normal form of the
type of an encoded function is a product of the framework.

It is possible to invert rewrite rules: Fig. 3.2 Page 78 inverts products in
the image of El to retrieve a type code. Other rules define coercion elimination
and coercion of functions, filtering on type codes rather than types. For this,
function 𝜅 is given type Π𝑎 ∶ Type, Π𝑏 ∶ Type, (El (𝑎 ⇝ 𝑏)) to operate on type
codes 𝑎 and 𝑏. Rule r-coerce page 73 can be finally be replaced with

(𝜅 (𝜋−1 𝑇) (𝜋−1 𝑈) 𝑒) ↪⟶∗
inv 𝑒′ 𝜅 ∉ 𝑒′

𝑒 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑒′

In this work, we stick to the basic implementation with non-linear rewriting,
although it may be either non terminating or non confluent. We believe that
there is a large, non trivial class of terms on which the system is normalising
and confluent.

78

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

3.2.5 Examples of coercions
Luo, Soloviev and Xue 2013 provide a nomenclature of some different coercions.
We analyse how these coercions are translated in our framework.

Plain coercions are simply rewrite rules whose source and targets are ground
(without variables) terms

(𝜅 Child Human 𝑡) ↪⟶ (c 𝑡) .

Note that we cannot 𝜂-reduce the rewrite rule because 𝜅 has to be fully applied
to be typeable.

Dependent coercions are rewrite rules where the target type depends on
the coercion. For instance, given a theory of lists and vectors, a function that
transforms lists to vectors may be defined in the main rewrite system ℛ,

(lv nil) ↪⟶ vnil
(lv (cons𝑥 ℓ)) ↪⟶ (vcons (len ℓ) 𝑥 (lv ℓ))

where nil is the empty list, cons the consing operator on lists, vnil and vcons
are their vector counterparts and (len ℓ) computes the length of ℓ. We can
define the coercion

(𝜅 List (Vec𝑛) ℓ) ↪⟶ (lv ℓ)

where the target type is (Vec (len ℓ)).
Coercions that have a dependent source type are (somewhat confusingly)

named ‘parametrised’ coercions. If we define a transformation from vectors to
lists,

(vl vnil) ↪⟶ nil
(vl (vcons𝑛𝑥 𝑣)) ↪⟶ (cons (vl 𝑣))

the coercion from vectors to list can be defined with

(𝜅 (Vec𝑛) List 𝑣) ↪⟶ (vl𝑛 𝑣)

where the source type of 𝑣, (Vec𝑛), depends on a parameter 𝑛.
Coercion rules, or parametric coercions, are coercions that may depend on

other coercions. For instance, the coercion from (List 𝑎) to (List 𝑏) may be
defined as

(𝜅 (List 𝑎) (List 𝑏) ℓ) ↪⟶ (map (𝜆𝑥 ∶ El𝑎, (𝜅 (El 𝑎) (El 𝑏) 𝑥)) ℓ)

79

3.2. COMPUTING COERCIONS

Table 3.1: Feature comparison of different coercion systems. Each column
stand for a feature, and for each system, there is a bullet if the feature is
supported by the system. Abbreviation ‘dep. tgt.’ stands for ‘dependent tar-
get’, ‘dep. src.’ for ‘dependent source’ for ‘dependent source’, ‘param.’ for
‘parametrised’ and ‘nonunif.’ for ‘non uniform’.

plain dep. tgt. dep. src. param. nonunif.
Coq • • •
Matita • • • •
Plastic • • • •
𝔖 • • • • •

where we use the function El defined in Fig. 2.3 Page 37 and use usual encod-
ing techniques given in Section 2.2.1 Page 37. In our framework, parametric
coercions are coercions where the right hand side issues recursive calls to the
coercion operator. Parametric coercions can also be used to inline the definition
of lv,

(𝜅 List (Vec𝑛) nil) ↪⟶ vnil
(𝜅 List (Vec (succ𝑛)) (cons𝑥 ℓ)) ↪⟶ (vcons (len ℓ) 𝑥 (𝜅 List (Vec𝑛) ℓ))

Coen and Tassi 2009 introduce nonuniform coercions, that is, coercions that
may depend on the value being coerced. They give for example the promotion
from support to semi-groups: one may promote Z to (Z, +) but (List Z) to
((List Z) , append). Our coercion system allows such coercions because it is
able to match on the coerced term. Assuming the definitions of the type of
semigroups SemiGroup, a constructor for semigroups semig,

(𝜅 Type SemiGroup Z) ↪⟶ (semig Z+)
(𝜅 Type SemiGroup (List𝑋)) ↪⟶ (semig (List𝑋) (append𝑋))

Table 3.1 compares the features of the different coercion systems that have
been reviewed.

We can already define the eliminator for predicate subtyping fst as a coer-
cion

((𝜅 (El (psub 𝑎 𝑝)) (El 𝑏) 𝑒)) ↪⟶ (𝜅 (El𝑎) (El 𝑏) (fst 𝑎 𝑝 𝑒))

to remove spurious pair constructions automatically. Furthermore, an object
of type (psub (𝑎 ⇝ 𝑏) 𝑝) can be coerced to a function of type (El(𝑎 ⇝ 𝑏)). This

80

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

feature appears to be a direct benefit of the logical framework, even though
coercions only coerce from encoded objects to encoded objects, the shallowness
of the encoding reflects the coercions in the encoding into the logical frame-
work: objects coerced to encoded functions are also coerced to functions of the
framework.

However, the converse rule adding pair constructions cannot be encoded
yet: we have no way to populate the proof obligation of pairs. In Matita and
Russell by Sozeau 2006, existential variables are used for such a task.

3.2.6 Related work on coercions
Coercions are used extensively in programming languages such as C (see ISO
2018, section 6.3), often to avoid having a numerical operator for each number
type. For instance, the OCaml language does not use coercions and consequently
has an addition for floats (+.) and one for integers (+) while the C language
has one + for floats, integers, unsigned integers &c.

Coercions for programming languages are generally built into the language,
one cannot add a new coercion for a new datatype, say, in C , to coerce between
structures. Some interactive proof assistants provide such facilities and coer-
cions may be declared like functions or theorems (using special syntax). We
review here some of these interactive proof assistants and how coercions are
defined, but more importantly, what kind of coercions they can define.

In Coq (Saı̈bi 1999), coercions are declared between ‘classes’ that behave
like approximations of types: functions and sorts are grouped into their own
metaclass and type families are classes. Sources of coercions must be classes,
they cannot be variables that may be instantiated to coercible classes upon
application. Coercions are compiled into an ‘inheritance’ graph. Graph struc-
tures allow efficient lookup for coercions: finding a coercion between two classes
amounts to find a path in the graph. However, there may be issues if two paths
have the same source and target: this could probably lead to two different,
unequal coercions. To ensure coherence—the property that two coercions are
behaviourally equivalent if they have the same source and same target—the
order of declaration of coercions is kept significant.

The coercion system of Matita (Asperti, Ricciotti, Coen and Tassi 2018)
is somewhat similar to the previous one, but it uses existential variables and
unification. As a consequence, the framework handles naturally coercion from
non functional to functional objects. Furthermore, coercions may create proof
obligations that are represented with existential variables. Like in Coq, the
types of the sources and targets of coercions is a type approximation, it does

81

3.3. HOLES

not contain variables, existential variables nor higher order terms. Like in (Saı̈bi
1999), the order of declaration of coercions is significant, the most recent path
prevails.

The logical framework Plastic by Luo, Soloviev and Xue 2013 defines coer-
cion using inference rules in which the premises specify coercions to be found
so that the coercion of the conclusion may be derived. Therefore Plastic allows
parametric2 coercions such as

Γ ⊢ 𝐴 <𝑐 𝐵 ∶ Type
Γ ⊢ List(𝐴) <map(𝑐) List(𝐵) ∶ Type

where coercion 𝑐 called a ‘prerequisite’ coerces objects of type 𝐴 to type 𝐵,
and map(𝑐) is the derived coercion from List(𝐴) to List(𝐵). The coherence
condition is stricter than the former ones: the identity coercion must not be
derivable using the coercion rules and if two coercions have the same source
and target, then they must be equal. The order of declaration is not taken into
account.

Sozeau 2006 designs a system to derive parametric coercions for predicate
subtyping. Subtyping is contravariant on the domain and covariant on the
codomain of functional objects. Contravariance on the domain requires the
coercion insertion algorithm to 𝜂 expand its argument which in turn requires
the congruence of the target system to contain 𝜂 equivalence. Functional objects
wrapped in predicate subtypes can be coerced to functions using a map 𝜇• which
performs approximately the same computations as our relation ≺. For instance,
𝜇•({𝑓 ∶ 𝐴 → 𝐵 ∣ 𝑓(𝑥) = 𝑓(𝑦) ⇒ 𝑥 = 𝑦}) = 𝐴 → 𝐵. The coercion system
notably provides coercions for dependent sum types. Unicity of coercions, which
is necessary to prove that the system is conservative, is ensured by the equational
theory of the system which furthermore includes surjective pairing for dependent
pairs and for elements of predicate subtypes.

3.3 Holes
Holes (also called placeholders by Asperti, Ricciotti, Coen and Tassi 2012) stand
for yet unknown terms. In proof assistants, they allow to reduce the size of terms
of the concrete syntax: terms may contain holes that are refined into existential
variables (Muñoz 1997) which are instantiated using typing constraints and

2Sacerdoti Coen and Tassi 2011 say that a coercion is parametric if it depends on other
coercions.

82

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

unification. We used such a facility in Chapter 2 Page 27 to write (fst𝑥)
instead of (fst 𝑎 𝑝 𝑥). In proof assistants such as Coq (The Coq Development
Team 2022), (fst𝑥) is first transformed into (fst♦♦𝑥) then into (fst ?𝑎 ?𝑝 𝑥)
by the type checker, where ?𝑎 and ?𝑝 are existential variables. Then a unification
algorithm tries to instantiate these existential variables to make the whole term
well typed.

In our case, we are only interested in marking places where proofs have to
be provided. These proofs cannot be automatically generated by unification
algorithms. Therefore, we do not consider full-fledged existential variables, but
only holes, that is, places in terms where a proof has to be provided. Holes are
not typed but can be easily replaced by existential variables by traversal of the
term.

Definition 30. We extend system 𝔖 with holes. Given a set of symbols ℱ,
(typed in a signature Σ), the terms of 𝔖 are 𝒯(ℱ ∪ {♦, 𝜅}).

Holes are not typeable. However, because we intend to extend the coercion
judgement to allow the creation of holes, we may use the rule

b-hole

Γ ⊢ ♦ ⇐ 𝐴

in order to state the correctness of 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢.

Definition 31 (Type preserving coercion system). Let 𝔄 be a well-formed λΠmr
type system parametrised by a signature Σ and a rewrite system ℛ. Let ℌ be
the λΠmr type system parametrised by symbols dom(Σ) ∪ {𝜅,♦}, signature
Σ ∪ {𝜅[𝐴 ∶ ⋆,𝐵 ∶ ⋆, 𝑡 ∶ 𝐴] ∶ 𝐵 ∶ ⋆}, rewrite system ℛ and extended with the
rule b-hole. A coercion rewrite rule (𝜅𝐴𝐵𝑒) ↪⟶ 𝑟 preserves typing if for any
context Γ, substitution 𝜎, if Γ ⊢𝔄 𝜎𝑒 ⇐ 𝜎𝐴, then Γ ⊢ℌ 𝜎𝑟 ⇐ 𝜎𝐵.

Note that as long as holes are only generated by coercions, there is no need
to refine holes. Rule b-hole is added to the type checker to keep the correctness
of the refiner, that is, whenever Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝑇, then Γ ⊢ 𝑡′ ⇐ 𝑇.
Remark 9 (From holes to proof obligations). Given a term with holes, it is
easy to transform these holes into proper existential variables. For that, assume
existential variables are elements of a countable set 𝒴 noted ?𝑥, and define proof
problems as set of judgements of the form Γ ⊢ ?𝑥 ∶ 𝑇 which states that a term
of type 𝑇 in context Γ has to be found. We define type checking judgements

83

3.4. IMPLEMENTATION

Γ ⊢ 𝑡 ⇝ 𝑡 ∶ 𝑡 ⊧ 𝒫 and Γ ⊢ 𝑡 ∶ 𝑡 ⇝ 𝑡 ⊧ 𝒫 which produce proof problems. This
relation is defined by the rules given in Fig. 3.1 Page 64 where for each rule,
each premise output a proof problem 𝒫𝑖 and the conclusion outputs the proof
problem ⋃𝑖 𝒫𝑖 (or the empty set if the rule does not have any premise). For
instance, the abstraction r-abst is transformed into

Γ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴′ ⊧ 𝒫1 Γ, 𝑥 ∶ 𝐴′ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐵 ⊧ 𝒫2

Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ⇝ 𝜆𝑥 ∶ 𝐴′, 𝑡′ ∶ Π𝑥 ∶ 𝐴′, 𝐵 ⊧ 𝒫1 ∪ 𝒫2
.

To these rules, we add the following one

?𝑥 ∈ 𝒴
Γ ⊢ ♦ ∶ 𝑇 ⇝ ?𝑥 ⊧ {Γ ⊢ ?𝑥 ∶ 𝑇}

which transforms holes into existential variables.

3.4 Implementation
The refiner described in this section has been implemented in Lambdapi (De-
ducteam 2022b, version 2.1.0). Furthermore, Lambdapi features existential vari-
ables, which are used to implement holes. Ferreira and Pientka 2014 use exis-
tential variables to provide implicit arguments. Lambdapi contains additional
type checking rules, for instance to infer properly a type when an existential
variable appears at the head of an application.

Refinement slows down type checking substantially. We conjecture this slow-
down is caused by the necessity to destructure and then restructure not only
types, but also terms during type checking. Indeed, sparing term reconstruction
speeds up the process. For instance, upon the inference of an abstraction 𝜆𝑥 ∶ 𝑇 ,
𝑡, we made the refiner return, along with the refined body 𝑡, whether the term 𝑡
was modified, and the same for the domain 𝑇. If the two terms are not modified,
then we may as well return the term given as input rather than build a new
abstraction with body 𝑡 (from the recursive call to the refiner) and domain 𝑇. In
particular, the cost of construction of abstraction may vary depending on how
binders are implemented. In Lambdapi, they are represented using the Bindlib
library by Lepigre 2022. It provides a safe automated programmable interface
and features higher order abstract syntax, which provides efficient substitution
at the cost of an expensive binder construction (in comparison with de Bruijn
1972 indices).

84

CHAPTER 3. COERCIONS IN LOGICAL FRAMEWORKS

3.5 Conclusion
We have defined a new family of type systems 𝔖 based on λΠmr (Definition 15
Page 50). It features term refinement—also called elaboration—which allows
to turn incomplete terms into well-typed terms, hence separating a user-level
syntax of incomplete terms and a kernel-level syntax. Refinement is parame-
terised by a cast relation and a subtype projection. The cast relation can be
implemented by a rewrite system. Terms of an 𝔖 type system can contain holes
which stand for yet unknown proofs. An 𝔖 type system is finally parameterised
by

• a rewrite system ℛ to implement a decidable congruence;

• a signature Σ to declare and type symbols;

• a coercion rewrite system 𝒞 that implements a cast relation;

• a subtype projection ≺ to be able to refine the head of application;

its type checking rules are summarised in Appendix A Page 167.

85

3.5. CONCLUSION

86

Chapter 4

Implicit predicate
subtyping

We have seen in Chapter 2 Page 27 that predicate subtyping can be encoded
into the logical framework λΠmr. For this, we designed a translation function
from the source system (PVS-Cert) to its encoding in λΠmr, and we showed
that this translation preserves typing: whenever an object inhabits a type in
the source system, then its translation inhabits the translation of its type in the
framework.

In Chapter 3 Page 61, we provided a term refiner that can type check incom-
plete terms inserting coercions to make them well typed. Coercions implement
some form of implicit subtyping: if the domain of the coercion is the subtype,
and its range the supertype, then any term can be typed by one of its supertypes
by the insertion of a coercion.

We now show how a system with implicit predicate subtyping like PVS can
be encoded into our system 𝔖 (which is λΠmr with a refiner and existential
variables). We begin by a description of the system to be encoded, then we
provide an encoding along with a translation function. Finally we prove that
the encoding preserves typeability.

87

4.1. PVS-CORE: A SYSTEM WITH IMPLICIT PREDICATE SUBTYPING

subtype-elim
Γ ⊢ 𝑡 ∶ psub(𝐴, 𝑃)

Γ ⊢ 𝑡 ∶ 𝐴

subtype-intro
Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ psub(𝐴, 𝑃) ∶ Type Γ ⊢ (𝑃 𝑡)

Γ ⊢ 𝑡 ∶ psub(𝐴, 𝑃)

Figure 4.1: Inference rules for implicit predicate subtyping.

4.1 PVS-Core: A system with implicit predi-
cate subtyping

4.1.1 Definition
F. Gilbert 2018 defines the system PVS-Core as an idealisation of the core of
PVS . It is made of simple type theory (like PVS-Cert), with the psub construc-
tion and additional typing rules for implicit predicate subtyping. The semantics
of the subtyping of PVS-Core are given by a translation from PVS-Core deriva-
tions to PVS-Cert judgements.

Definition 32 (PVS-Core). PVS-Core is the extension of the type system
modulo parametrised by

𝔐 = (𝒮Po = {Prop, Type, Kind},𝒜Po = {(Prop, Type), (Type, Kind)},
𝒫Po = {(Type, Type, Type)},ℱPo, ΣPo, ≃𝛽)

ΣPo

⎧{
⎨{⎩

∀[𝐴 ∶ Type, 𝑃 ∶ (𝐴 → Prop)] ∶ Prop ∶ Type
⇒[𝑃 ∶ Prop, 𝑄 ∶ Prop] ∶ Prop ∶ Type
psub[𝐴 ∶ Type, 𝑃 ∶ (𝐴 → Prop)] ∶ Type ∶ Kind

and where ℱPo = {∀,⇒, psub}. The ternary typing relation defining PVS-Core
depends on a binary relation Γ ⊢ 𝑃 whose derivation rules are given in (ibid.).
Judgements of the form Γ ⊢ 𝑡 ∶ 𝐴 are derived with the type system in Fig. 2.1
(Page 29) with two extra rules for subtyping given in Fig. 4.1. The congruence
of PVS-Core, denoted ≃𝛽 is the smallest one containing 𝛽-reduction (Eq. (𝛽)
Page 31).

The third premise of the rule subtype-intro corresponds to PVS ’ type cor-
rectness conditions. We are not interested in their derivation because our trans-
lation axiomatises them by placing holes where proofs for type correctness con-
ditions are required.

88

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

[𝑋] = 𝑋
[Prop] = o
[Π𝑥 ∶ 𝐴,𝐵] = ([𝐴] ⇝ (𝜆𝑥 ∶ El [𝐴], [𝐵]))
[psub(𝐴, 𝑃)] = (psub [𝐴] [𝑃])
[𝑥] = 𝑥
[∀𝑥 ∶ 𝐴, 𝑃] = (∀ [𝐴] (𝜆𝑥 ∶ (El [𝐴]), [𝑃]))
[𝑃 ⇒ 𝑄] = ([𝑃] ⇒ [𝑄])
[𝜆𝑥 ∶ 𝐴, 𝑡] = 𝜆𝑥 ∶ (El [𝐴]), [𝑡]
JTypeK = Type
J𝐴K = (El [𝐴]) otherwise

Figure 4.2: Translation from PVS-Core terms to (a subset of) λΠ[Pe] terms.

There is a straightforward translation from PVS-Core terms to PVS-Cert
terms (see ibid., Definition 9.3.1). The main differences that we see between the
two systems are that

• pair, 𝜋ℓ and 𝜋𝑟 are not part of the syntax of PVS-Core, subtyping is
implicit in PVS-Core;

• deduction and typing are separated: there is no proof term in PVS-Core.

Lemma 13. Functions [−] and J−K defined in Fig. 4.2 are well-defined and
terminate on terms of PVS-Core. They both preserve substitution: [{𝑢/𝑥} 𝑡] =
{[𝑢]/𝑥} [𝑡] (and similarly replacing [−] by J−K).

Proof. The function [−] is called recursively on strict subterms of its argument,
thus it terminates. Preservation of substitution for [−] is shown by structural
induction on 𝑡. For J−K, either the argument is Type, in which case termination
is immediate, or it is a direct consequence of the termination of [−]. We can
say the same for preservation of substitution.

4.1.2 Encoding PVS-Core in λΠmr
Since terms of PVS-Core can be translated to the encoding of PVS-Cert in
λΠmr, namely λΠ[Pe], we do not need to define a new encoding for PVS-Core.

89

4.1. PVS-CORE: A SYSTEM WITH IMPLICIT PREDICATE SUBTYPING

However, because coercions pair and fst are inserted into encoded terms in
order to type check them, we need to take care that inserting these coercions
do not break computation: whenever two terms are convertible in PVS-Core,
their translation and refinement should also be convertible in λΠ[Pe].
Example 14. Let 𝑒 = ((𝜆𝑥 ∶ (El𝐴), (𝑓 𝑥)) 𝑢) be a term in the image of the
translation defined in Fig. 4.2. Note that 𝑒 ↪⟶𝛽 (𝑓 𝑢). Let Γ = 𝐴 ∶ Type, 𝑃 ∶
(El (Type⇝ o)) , 𝑓 ∶ (El ((psub𝐴𝑃)⇝𝐴)) , 𝑢 ∶ (El (psub𝐴𝑃)).

In order to have a well-typed term 𝑒, it is refined

Γ ⊢ 𝑒 ⇝ ((𝜆𝑥, (𝑓 (pair𝑥♦))) (fst𝑢)) ∶ …

and the refinement 𝛽-reduces to (𝑓 (pair (fst𝑢) ♦)).
The refinement of the reduct of 𝑒, namely (𝑓 𝑢) can itself be refined into

(𝑓 𝑢). Therefore, to keep convertibility through translation and refinement, we
need (𝑓 𝑢) ≃ (𝑓 (pair (fst𝑢) ♦)).

The latter example shows that to preserve convertibility, the encoded congru-
ence must contain some sort of surjective pairing, namely (pair (fst 𝑒) ♦) ≃ 𝑒.
Therefore, we add this identity to the set of equations of the encoding of PVS-
Cert in λΠme:

(Prf (∀ 𝑡 𝑝)) = Π𝑥 ∶ (El 𝑡), (Prf (𝑝 𝑥))
(Prf (𝑝 ⇒ 𝑞)) = Πℎ ∶ (Prf 𝑝), (Prf 𝑞)
(El (𝑡 ⇝ 𝑢)) = Π𝑥 ∶ (El 𝑡), (El (𝑢 𝑥))
(pair 𝑡 𝑝 𝑒 ℎ) = (pair 𝑡 𝑝 𝑒 ℎ′)
(fst 𝑡0 𝑝0 (pair 𝑡1 𝑝1 𝑒 ℎ)) = 𝑒
(pair 𝑡0 𝑝0 (fst 𝑡0 𝑝0 𝑒) ℎ) = 𝑒.

We can complete this set of equations into the rewrite system ℛ[sPe].

Definition 33 (ℛ[sPe]). We define the rewrite system ℛ[sPe] as the union of the
system ℛ[Pe] (defined in Fig. 2.12 Page 51) and the rule

(pair† 𝑇𝑃 (fst𝑈𝑃𝑀)) ↪⟶ 𝑀. (SP†)

Equation (SP†) threatens the confluence of the system because it is non
linear. Non linearity can sometimes be avoided when only well-typed terms are
considered, as in Eq. (2.3) Page 33, but not in the case of surjective pairing.
Assume that Γ ⊢ 𝜎ℓ ⇐ 𝐴 where ℓ is the left-hand side of Eq. (SP†) where the

90

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

second occurrence of 𝑃 (when reading from left to right) is replaced with 𝑄 so
that ℓ is algebraic, Γ is a well-formed context, 𝐴 is a well-formed type in Γ, and 𝜎
is a substitution. Then by inversion, 𝐴 is of the form 𝐴 = (El (psub (𝜎𝐴) (𝜎𝑃))).
By inversion, 𝜎𝑋 is of type (El (psub (𝜎𝐵) (𝜎𝑄))), and (El (𝜎𝑈)) ≃ (El (𝜎𝑇)).
The right-hand side 𝜎𝑋 has the same type as the left-hand side only if 𝑃 ≃ 𝑄.

Non linear rule are famous to break desirable properties in untyped 𝜆 cal-
culus such as confluence (Klop 1980). Fortunately, Pottinger 1981 showed that
simply typed 𝜆-calculus with surjective pairing remains confluent using the weak
normalisation of the calculus. Curien and Cosmo 1996 have provided a conflu-
ent rewrite system for the typed 𝜆-calculus with 𝜂-equivalence, surjective pairing
and terminal objects.

Conjecture 2. Rewrite relation ↪⟶𝛽,ℛ[sPe]
defined in Definition 33 is confluent

on well-typed terms.

Definition 34 (λΠ[sPe]). We denote λΠ[sPe] the λΠmr type system defined by
the signature Σ[Pe] of λΠ[Pe] (defined in Definition 13 Page 38) and the rewrite
system ℛ[sPe] (defined in Definition 33). Its congruence is denoted ≃[sPe].

4.2 Tuning the refiner for PVS-Core
The refiner of the system 𝔖 is parametrised by a coercion system and a subtype
projection ≺. This section provides these two components, and establishes some
of their properties.

4.2.1 Abstract coercion rules
Coercions to implement implicit predicate subtyping in 𝔖 parametrised by Σ[Pe]
and ℛ[sPe] are given in Fig. 4.3. Rules sub-elim and sub-intro follow the intu-
itions given in Section 2.1.3 Page 32. Rule sub-fun implements covariance on
the domain of abstractions. Note that there is no need to constrain 𝑇0 to be
the same as 𝑇1, since preconditions ensure that Γ ⊢ 𝑡 ⇐ Π𝑥 ∶ 𝑇1, 𝑇2, and hence
𝑇0 ≃[sPe],𝛽 𝑇1. Rule sub-red allows to reduce terms in order to apply coercion
rules. For instance, the coercion problem

𝜆𝑥, 𝑒𝑥 ∶ (El (𝑋⇝ 𝑌)) <∶ (El𝑋) → (El𝑍) ⇝ 𝜆𝑥, 𝑒𝑧

requires term (El (𝑋⇝ 𝑌)) to be reduced to a product in order to apply rule
sub-fun.

91

4.2. TUNING THE REFINER FOR PVS-CORE

sub-elim
(fst𝑇𝑎 𝑡) ∶ (El𝑇) <∶ 𝑈 ⇝ 𝑢
𝑡 ∶ (El (psub𝑇𝑎)) <∶ 𝑈 ⇝ 𝑢

sub-intro
𝑡 ∶ 𝑇 <∶ (El𝑈) ⇝ 𝑢

𝑡 ∶ 𝑇 <∶ (El (psub𝑈𝑎)) ⇝ (pair𝑈𝑎𝑢♦)

sub-red
𝑇 ↪⟶∗

ℛ[sPe],𝛽 𝑇 ′ 𝑈 ↪⟶∗
ℛ[sPe],𝛽 𝑈 ′ 𝑡 ∶ 𝑇 ′ <∶ 𝑈 ′ ⇝ 𝑢

𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢

sub-fun
𝑡 ↪⟶∗

ℛ[sPe],𝛽 𝜆𝑥 ∶ 𝑇0, 𝑡0 𝑇1 ≃[sPe],𝛽 𝑈1 𝑡0 ∶ 𝑇2 <∶ 𝑈2 ⇝ 𝑢0

𝑡 ∶ Π𝑥 ∶ 𝑇1, 𝑇2 <∶ Π𝑥 ∶ 𝑈1, 𝑈2 ⇝ 𝜆𝑥 ∶ 𝑈1, 𝑢0

Figure 4.3: Coercion rules for predicate subtyping in PVS-Cert.

Remark 10. Rule sub-red is very liberal and allows any reduction to be per-
formed into the source and target of coercions. Many of these computations
are irrelevant regarding coercions: most rules of ℛ[sPe] cannot transform a term
into a pattern of a conclusion of a coercion rule (i.e. introduce El symbols on
top of terms, or transform types to products).

It may be interesting to only allow relevant computations to take place while
coercing terms, either to have more control over the shape of returned terms, or
to avoid performing unnecessary (and costly) computations. The only relevant
computations are 𝛽-reduction (to transform types which would be 𝛽-redexes)
and Eq. (2.13) Page 37 to transform encoded arrow types into the framework’s
product type. The latter transformation could be allowed with the following

92

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

coercion rules
sub-p-elim
𝑡 ∶ Π𝑥 ∶ (El𝑇1), (El (𝑇2 𝑥)) <∶ 𝑈 ⇝ 𝑢

𝑡 ∶ (El (𝑇1 ⇝𝑇2)) <∶ 𝑈 ⇝ 𝑢
sub-p-intro
𝑡 ∶ 𝑇 <∶ Π𝑥 ∶ (El𝑈1), (El (𝑈2 𝑥)) ⇝ 𝑢

𝑡 ∶ 𝑇 <∶ (El (𝑈1 ⇝𝑈2)) ⇝ 𝑢

and 𝛽-reduction could be allowed with rule sub-red where ↪⟶ℛ[sPe],𝛽 is replaced
with ↪⟶𝛽.

The following lemmas state some properties that can be obtained by invert-
ing the coercion rules.

Lemma 14. Assume ⊢
λΠ[sPe] Γ, 𝑇 and Π𝑥 ∶ 𝐶1, 𝐶2 are well-sorted in Γ using

λΠ[sPe] and Γ ⊢
λΠ[sPe] 𝜆𝑥 ∶ 𝑇0, 𝑡 ⇐ 𝑇. If (𝜆𝑥 ∶ 𝑇0, 𝑡) ∶ 𝑇 <∶ Π𝑥 ∶ 𝐶1, 𝐶2 ⇝ 𝑢,

then ‘𝑢 = 𝜆𝑥 ∶ 𝑈0, 𝑢0’, ‘𝑇0 ≃[sPe],𝛽 𝑈0’, ‘𝑇 ≃[sPe],𝛽 Π𝑥 ∶ 𝑇0, 𝑇1’, ‘𝐶1 ≃[sPe],𝛽 𝑇0’
and ‘𝑡 ∶ 𝑇1 <∶ 𝐶2 ⇝ 𝑢0’.

Proof. By inversion of typing, 𝑇 must be a product. By definition of ↪⟶ℛ[sPe],𝛽,
products are not convertible with terms of the form (El (psub …)), so only rule
sub-fun can be applied.

Lemma 15. Assume ⊢
λΠ[sPe] Γ, Π𝑥 ∶ 𝑇1, 𝑇2 and Π𝑥 ∶ 𝑈1, 𝑈2 are well-sorted in

Γ using λΠ[sPe] and Γ ⊢
λΠ[sPe] 𝑓 ⇐ Π𝑥 ∶ 𝑇1, 𝑇2. If 𝑓 ∶ Π𝑥 ∶ 𝑇1, 𝑇2 <∶ Π𝑥 ∶ 𝑈1,

𝑈2 ⇝ 𝑔 and 𝑓 is not an abstraction, then Π𝑥 ∶ 𝑇1, 𝑇2 ≃[sPe],𝛽 Π𝑥 ∶ 𝑈1, 𝑈2.

Proof. Rules sub-elim and sub-intro cannot be applied. Because 𝑓 is not an
abstraction, rule sub-fun cannot be used either. We are left with rule r-cast
which demands that Π𝑥 ∶ 𝑇1, 𝑇2 ≃[sPe],𝛽 Π𝑥 ∶ 𝑈1, 𝑈2 and gives 𝑔 = 𝑓.

Lemma 16. The coercion system defined in Fig. 4.3 is stable by ↪⟶ℛ[sPe],𝛽: if
𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢, 𝑇 ↪⟶∗

ℛ[sPe],𝛽 𝑇 ′ and 𝑈 ↪⟶ℛ[sPe],𝛽 𝑈 ′, then 𝑡 ∶ 𝑇 ′ <∶ 𝑈 ′ ⇝ 𝑢.

Proof. Terms of the form (El (psub𝑇𝑃)) or Π𝑥 ∶ 𝑇1, 𝑇2 are in head normal
form: if (El (psub𝑇𝑃)) ↪⟶∗

ℛ[sPe],𝛽 𝑈, then 𝑈 is of the form (El (psub𝑈0 𝑄)).
The same property holds for products.

Lemma 17. The coercion system defined in Fig. 4.3 is transitive.

93

4.2. TUNING THE REFINER FOR PVS-CORE

Proof. Assume that the inference rule of Definition 23 Page 69 can be used. We
show that any derivation using this rule can be transformed into a derivation
not using this rule by induction on the size of the derivation.

If the last inference rule is not the transitivity rule, we conclude by induction
hypothesis.

If the last inference is the transitivity rule, we operate by case distinction
on the two premises 𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡 and 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢.

Case SUB-ELIM/any 𝑆 = (El (psub𝑆0 𝑃))
(fst𝑆0 𝑃𝑠) ∶ (El𝑆0) <∶ 𝑇 ⇝ 𝑡

and by induction we can assume the right-hand derivation to be transitivity
free, as well as the derivation of (El𝑆0) <∶ 𝑇. We use the transitivity rule to
build a derivation of (fst𝑆0 𝑃𝑠) ∶ 𝑆0 <∶ 𝑈 ⇝ 𝑢′. This derivation is strictly
smaller than the original, so the induction hypothesis can be used to derive a
transitivity-free derivation. We conclude using rule sub-elim.

Case any/SUB-INTRO 𝑈 = (El (psub𝑈0 𝑃)) ; 𝑇 <∶ 𝑈0
Transitivity rule can be used to build a derivation of 𝑠 ∶ 𝑆 <∶ 𝑈0 ⇝ 𝑢0. This
derivation is smaller than the original one, therefore by induction hypothesis it
is transitivity-free. We can conclude using rule sub-intro.

Case R-CAST/any 𝑆 ≃[sPe],𝛽 𝑇
By confluence of ↪⟶ℛ[sPe],𝛽, there is a common reduct 𝑉 of 𝑆 and 𝑇. Therefore,
we also have 𝑡 ∶ 𝑉 <∶ 𝑈 ⇝ 𝑢′ by Lemma 16. By induction hypothesis this
derivation is transitivity-free. We conclude using sub-red.

Case any/R-CAST Idem.
Case SUB-INTRO/SUB-ELIM 𝑇 = (El (psub𝑇0 𝑃))

𝑆 <∶ 𝑇0; 𝑇0 <∶ 𝑈
We can use the transitivity rule to build a derivation of 𝑠 ∶ 𝑆 <∶ 𝑈 ⇝ 𝑢′. Since
this derivation is strictly smaller than the original one, by induction hypothesis
it is transitivity-free.

Case SUB-FUN/SUB-FUN 𝑆 = Π𝑥 ∶ 𝑆1, 𝑆2; 𝑇 = Π𝑥 ∶ 𝑇1, 𝑇2
𝑈 = Π𝑥 ∶ 𝑈1, 𝑈2; 𝑆2 <∶ 𝑇2; 𝑇2 <∶ 𝑈2
𝑆1 ≃[sPe],𝛽 𝑇1; 𝑇1 ≃[sPe],𝛽 𝑈1

Induction hypothesis allows to build a transitivity-free derivation of 𝑆2 <∶ 𝑈2.
By transitivity of ≃[sPe],𝛽, we have 𝑆1 ≃[sPe],𝛽 𝑈1. We apply rule sub-fun to
conclude.

Case SUB-RED/any 𝑆 ↪⟶∗
ℛ[sPe],𝛽 𝑆0; 𝑇 ↪⟶∗

ℛ[sPe],𝛽 𝑇0

𝑠 ∶ 𝑆0 <∶ 𝑇0 ⇝ 𝑡
Lemma 16 gives 𝑡 ∶ 𝑇0 <∶ 𝑈 ⇝ 𝑢. Therefore we can build by induction hypothesis
a transitivity-free derivation of 𝑠 ∶ 𝑆0 <∶ 𝑈 ⇝ 𝑢. We conclude using rule sub-red.

94

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

Case any/SUB-RED Idem.

Lemma 18. The following properties hold for the coercion system defined by
Fig. 4.3.

1. It is stable by substitution.

2. It is symmetric: if 𝑇 <∶ 𝑈, then 𝑈 <∶ 𝑇.

3. For any sorts 𝑠 and 𝑠′, if 𝑡 ∶ 𝑠 <∶ 𝑠′ ⇝ 𝑡′, then 𝑠 = 𝑠′ and 𝑡 = 𝑡′.

Proof. 1. By induction on the coercion derivation.

2. By induction on the coercion derivation.

3. The only rule that can be applied is r-cast page 64 (sorts are constant
with respect to ↪⟶ℛ[sPe],𝛽).

Lemma 19. For any terms 𝑡0 and 𝑡1, for any types 𝐴 and 𝐵, if there is 𝑢0,
𝑡0 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢0 and 𝑡0 ≃[sPe],𝛽 𝑡1, then there is 𝑢1, 𝑡1 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢1 and
𝑢0 ≃[sPe],𝛽 𝑢1.

Proof. By induction on 𝑡0 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢0.
Case SUB-ELIM 𝐴 = (El (psub𝐴0 𝑃)) ; (fst 𝑡0) ∶ (El𝐴0) <∶ 𝐵 ⇝ 𝑢

Induction hypothesis gives (fst 𝑡1) ∶ (El𝐴0) <∶ 𝐵 ⇝ 𝑢1 with 𝑢0 ≃[sPe],𝛽 𝑢1 since
(fst 𝑡0) ≃[sPe],𝛽 (fst 𝑡1). We conclude using rule sub-elim.

Case SUB-INTRO 𝐵 = (El (psub𝐵0 𝑃)) ; 𝑢0 = (pair𝑢00 ♦)
𝑡0 ∶ 𝐴 <∶ (El𝐵0) ⇝ 𝑢00

Induction hypothesis gives 𝑡1 ∶ 𝐴 <∶ (El𝐵0) ⇝ 𝑢10 with 𝑢10 ≃[sPe],𝛽 𝑢00. We
can apply rule sub-intro to obtain 𝑡1 ∶ 𝐴 <∶ (El (psub𝐵0 𝑃)) ⇝ (pair𝑢10 ♦).
We obtain

(pair𝑢10 ♦) ↪⟶ℛ[sPe],𝛽 (pair† 𝑢10) ≃[sPe],𝛽 (pair† 𝑢00) ⟵↩ℛ[sPe],𝛽 (pair† 𝑢00) .

Case SUB-RED 𝐴 ↪⟶∗
ℛ[sPe],𝛽 𝐴′; 𝐵 ↪⟶∗

ℛ[sPe],𝛽 𝐵′

𝑡0 ∶ 𝐴′ <∶ 𝐵′ ⇝ 𝑢0
We conclude by induction hypothesis and rule sub-red.

Case SUB-FUN 𝐴 = Π𝑥 ∶ 𝐴1, 𝐴2; 𝐵 = Π𝑥 ∶ 𝐵1, 𝐵2
𝑡0 ↪⟶∗

ℛ[sPe],𝛽 𝜆𝑥 ∶ 𝑇0, 𝑡00

𝑡00 ∶ 𝐴2 <∶ 𝐵2 ⇝ 𝑢00
𝑢0 = 𝜆𝑥 ∶ 𝑇0, 𝑢00

By (conjectured) confluence of ↪⟶ℛ[sPe],𝛽, we have 𝑡1 ↪⟶∗
ℛ[sPe],𝛽 𝜆𝑥 ∶ 𝑇1, 𝑡10, and

95

4.2. TUNING THE REFINER FOR PVS-CORE

𝜆𝑥 ∶ 𝑇1, 𝑡10 ≃[sPe],𝛽 𝜆𝑥 ∶ 𝑇0, 𝑡00. By induction hypothesis, 𝑡10 ∶ 𝐴2 <∶ 𝐵2 ⇝ 𝑢10
and 𝑢10 ≃[sPe],𝛽 𝑢00. We conclude using rule sub-fun.

Case R-CAST 𝐴 ≃[sPe],𝛽 𝐵; 𝑡0 = 𝑢0
We also get 𝑢1 = 𝑡1, hence 𝑢1 ≃[sPe],𝛽 𝑢0.

We can obtain a stronger property than transitivity: not only the transtivity
rule is admissible, but there is no difference (up to ≃[sPe],𝛽) between coercing in
two steps or coercing at once. This property is required to show that the refiner
preserves substitution.

Lemma 20. If 𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡, 𝑡′ ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢, 𝑡 ≃[sPe],𝛽 𝑡′ and 𝑠 ∶ 𝑆 <∶ 𝑈 ⇝ 𝑢′,
then 𝑢 ≃[sPe],𝛽 𝑢′.

Proof. Note that by transitivity (Lemma 17), judgement 𝑠 ∶ 𝑆 <∶ 𝑈 ⇝ 𝑢′ can
always be derived whenever 𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡 and 𝑡′ ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢. By induction
on 𝑠 ∶ 𝑆 <∶ 𝑈 ⇝ 𝑢.

Case R-CAST 𝑆 ≃[sPe],𝛽 𝑈; 𝑠 = 𝑢′

We proceed by another induction on 𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡. If the last rule is sub-elim,
then 𝑆 = (El (psub𝑆0 𝑃)) and we have

(fst 𝑠) ∶ (El𝑆0) <∶ 𝑇 ⇝ 𝑡
𝑠 ∶ (El (psub𝑆0 𝑃)) <∶ 𝑇 ⇝ 𝑡

;
𝑡′ ∶ 𝑇 <∶ (El𝑆0) ⇝ 𝑢′

0

𝑡 ∶ 𝑇 <∶ (El (psub𝑆0 𝑃)) ⇝ (pair𝑢′
0 ♦)

If 𝑈 is not of the form (El (psub𝑆0 𝑃)), by confluence of ↪⟶ℛ[sPe],𝛽, there is a
common reduct of 𝑆 and 𝑈 of the form (El (psub𝑅𝑄)) (because (El (psub …))
is a head normal form). Therefore without loss of generality, we consider 𝑈
to be (El (psub𝑆0 𝑃)). By induction hypothesis, we obtain (fst 𝑠) ≃[sPe],𝛽
𝑢′

0. Therefore, the conclusion holds if 𝑠 ≃[sPe],𝛽 (pair𝑢′
0 ♦), i.e. 𝑠 ≃[sPe],𝛽

(pair (fst 𝑠) ♦). It holds by Eq. (SP†) Page 90.
If the last rule is sub-intro,

𝑇 = (El (psub𝑇0 𝑃))
𝑠 ∶ 𝑆 <∶ (El𝑇0) ⇝ 𝑡0; 𝑡 = (pair 𝑡0 ♦)
(fst 𝑡′) ∶ (El𝑇0) <∶ 𝑆 ⇝ 𝑢

Noting that (fst 𝑡′) ≃[sPe],𝛽 (fst (pair 𝑡0 ♦)) ↪⟶ℛ[sPe],𝛽 𝑡0, induction hypothe-
sis gives 𝑢′ ≃[sPe],𝛽 𝑢.
If the last rule is sub-red,

𝑆 ↪⟶∗
ℛ[sPe],𝛽 𝑆′; 𝑇 ↪⟶∗

ℛ[sPe],𝛽 𝑇 ′; 𝑠 ∶ 𝑆′ <∶ 𝑇 ′ ⇝ 𝑡

96

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

By application of rule sub-red, 𝑡′ ∶ 𝑇 ′ <∶ 𝑈 ⇝ 𝑢 holds. We conclude by
induction hypothesis.
If the last rule is sub-fun,

𝑆 = Π𝑥 ∶ 𝑆1, 𝑆2; 𝑇 = Π𝑥 ∶ 𝑇1, 𝑇2;
𝑠 ↪⟶∗

ℛ[sPe],𝛽 𝜆𝑥 ∶ 𝑆0, 𝑠0; 𝑡 = 𝜆𝑥 ∶ 𝑇1, 𝑡0

𝑠0 ∶ 𝑆2 <∶ 𝑇2 ⇝ 𝑡0
Since 𝑈 ≃[sPe],𝛽 𝑆, 𝑈 ↪⟶∗

ℛ[sPe],𝛽 Π𝑥 ∶ 𝑈1, 𝑈2. Similarly, we get 𝑡′ ↪⟶∗
ℛ[sPe],𝛽 𝜆𝑥,

𝑡′0. Using rule sub-red, we can obtain 𝑡′ ∶ Π𝑥 ∶ 𝑇1, 𝑇2 <∶ Π𝑥 ∶ 𝑈1, 𝑈2 ⇝ 𝑢.
Applying sub-fun, we obtain 𝑡′0 ∶ 𝑇2 <∶ 𝑈2 ⇝ 𝑢0. Induction hypothesis gives
that 𝑡0 ∶ 𝑆2 <∶ 𝑈2 ⇝ 𝑢′

0 and 𝑢0 ≃[sPe],𝛽 𝑢′
0. We conclude using rule sub-fun.

Case SUB-ELIM 𝑆 = (El (psub𝑆0 𝑃))
(fst 𝑠) ∶ (El𝑆0) <∶ 𝑈 ⇝ 𝑢′

By induction hypothesis, if (fst 𝑠) ∶ (El𝑆0) <∶ 𝑇 ⇝ 𝑡 then (fst 𝑠) ∶ (El𝑆0) <∶
𝑈 ⇝ 𝑢′ with 𝑢 ≃[sPe],𝛽 𝑢′. Applying rule sub-elim, we obtain 𝑠 ∶ 𝑆 <∶ 𝑈 ⇝ 𝑢′.

Case SUB-INTRO 𝑈 = (El (psub𝑈0 𝑃)) ; 𝑠 ∶ 𝑆 <∶ (El𝑈0) ⇝ 𝑢0
𝑢′ = (pair𝑢′

0 ♦)
Induction hypothesis gives 𝑢′

0 ≃[sPe],𝛽 𝑢0 where 𝑡′ ∶ 𝑇 <∶ (El𝑈0) ⇝ 𝑢0. Using
rule sub-intro, we get 𝑡′ ∶ 𝑇 <∶ 𝑈 ⇝ (pair𝑢0 ♦) and (pair𝑢0 ♦) ≃[sPe],𝛽
(pair𝑢′

0 ♦).
Case SUB-RED 𝑆 ↪⟶∗

ℛ[sPe],𝛽 𝑆′; 𝑈 ↪⟶∗
ℛ[sPe],𝛽 𝑈 ′

𝑠 ∶ 𝑆′ <∶ 𝑈 ′ ⇝ 𝑢′

By rule sub-red, both 𝑠 ∶ 𝑆′ <∶ 𝑇 ⇝ 𝑡 and 𝑡′ ∶ 𝑇 <∶ 𝑈 ′ ⇝ 𝑢 hold. The result
follows from induction hypothesis.

Case SUB-FUN 𝑆 = Π𝑥 ∶ 𝑆1, 𝑆2; 𝑈 = Π𝑥 ∶ 𝑈1, 𝑈2; 𝑆1 ≃[sPe],𝛽 𝑈1
𝑠 ↪⟶∗

ℛ[sPe],𝛽 𝜆𝑥 ∶ 𝑆0, 𝑠0; 𝑢′ = 𝜆𝑥 ∶ 𝑈1, 𝑢′
0

𝑠0 ∶ 𝑆2 <∶ 𝑈2 ⇝ 𝑢′
0

By induction on 𝑠 ∶ 𝑆 <∶ 𝑇 ⇝ 𝑡. If 𝑇 is a product 𝑇 = Π𝑥 ∶ 𝑇1, 𝑇2 (and rule
sub-fun as well), the result follows from induction hypothesis.
If 𝑇 is of the form 𝑇 = (El (psub𝑇0 𝑎)), then

𝜆𝑥 ∶ 𝑆0, 𝑠0 ∶ Π𝑥 ∶ 𝑆1, 𝑆2 <∶ (El𝑇0) ⇝ 𝑡0
𝜆𝑥 ∶ 𝑆0, 𝑠0 ∶ Π𝑥 ∶ 𝑆1, 𝑆2 <∶ (El (psub𝑇0 𝑎)) ⇝ (pair 𝑡0 ♦)
(fst (pair 𝑡0 ♦)) ∶ (El𝑇0) <∶ Π𝑥 ∶ 𝑈1, 𝑈2 ⇝ 𝑢

(pair 𝑡0 ♦) ∶ (El (psub𝑇0 𝑎)) <∶ Π𝑥 ∶ 𝑈1, 𝑈2 ⇝ 𝑢

We can apply induction hypothesis since (fst (pair 𝑡0 ♦)) ↪⟶ℛ[sPe],𝛽 𝑡0, we
obtain 𝑢 ≃[sPe],𝛽 𝑢′.

97

4.2. TUNING THE REFINER FOR PVS-CORE

(𝜅 (El (psub𝐴𝑃)) (El𝐵) 𝑋) ↪⟶ (𝜅 (El𝐴) (El𝐵) (fst𝐴𝑃𝑋))
(4.1)

(𝜅 (El𝐴) (El (psub𝐵𝑃)) 𝑋) ↪⟶ (pair𝐵𝑃 (𝜅 (El𝐴) (El𝐵) 𝑋) ♦)
(4.2)

(𝜅 (Π𝑥 ∶ 𝐴,𝐵) (Π𝑥 ∶ 𝐴,𝐶) (𝜆𝑥,𝑋)) ↪⟶ 𝜆𝑥 ∶ 𝐴, (𝜅𝐵𝐶𝑋) (𝒞-Π)
(𝜅𝑋𝑋𝑌) ↪⟶ 𝑌 (𝒞-Id)

Figure 4.4: Coercion rewrite rules 𝒞[Pe] for implicit predicate subtyping. Rules
(𝒞-Π) and (𝒞-Id) are discussed in Section 3.2.3 Page 76.

4.2.2 Coercions by rewriting
Next, just like we proposed to implement rewriting as an implementation of
coercions in Section 3.2.2 Page 73, we provide the adequate rewrite rules to
implement the coercion rules of Fig. 4.3 Page 92 in Fig. 4.4. Equations (4.1)
and (4.2) are the rewriting counterparts of rules sub-elim and sub-intro. The
two other rules have been discussed in Section 3.2.3 Page 76.

Lemma 21. The coercion system defined by inference rule r-coerce and the
rewrite system defined by Fig. 4.4 is correct with respect to rules of Fig. 4.3 and
rule r-cast page 64: If (𝜅𝐴𝐵 𝑡) ↪⟶∗

𝛽,ℛ[sPe],𝒞[Pe]
𝑢 and 𝜅 ∉ 𝑢, then there is 𝑢′

such that 𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑢′ and 𝑢 ≃[sPe],𝛽 𝑢′.

Proof. By induction on the number of ↪⟶𝒞[Pe]
rewrite steps.

There is at least one rewrite rule to eliminate symbol 𝜅: Eq. (𝒞-Id). In that
case, we have

(𝜅𝐴𝐵 𝑡) ↪⟶∗
ℛ[sPe],𝛽 (𝜅𝐶𝐶 𝑡) ↪⟶𝒞[Pe]

𝑡 ↪⟶∗
ℛ[sPe],𝛽 𝑢.

Since 𝐴 and 𝐵 can be rewritten to 𝐶, we have 𝐴 ≃[sPe],𝛽 𝐵. Hence we can derive
𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡 with rule r-cast, with 𝑡 ≃[sPe],𝛽 𝑢.

For the recursive case, we are in the following situation

(𝜅𝑅𝑆 𝑒0) ↪⟶∗
ℛ[sPe],𝛽 (𝜅𝑅′ 𝑆′ 𝑒1) ↪⟶𝒞[Pe]

𝑒2 ↪⟶∗
𝒞[Pe],ℛ[sPe],𝛽 𝑒3.

Where the second rewrite step is either Eq. (𝒞-Π), Eq. (4.1) or Eq. (4.2). If
it is Eq. (4.1), then 𝑅′ = (El (psub𝑅′

0 𝑎)), 𝑒2 = (𝜅 (El𝑅′
0) 𝑆′ (fst 𝑒1)). By

98

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

induction hypothesis, there is a derivation tree 𝜏 whose conclusion is (fst 𝑒1) ∶
(El𝑅′

0) <∶ 𝑆′ ⇝ 𝑒3. We can use rule sub-elim to thus deduce

𝜏 ∶∶ (fst 𝑒′
2) ∶ (El𝑅′

0) <∶ 𝑆′ ⇝ 𝑒3 sub-elim
𝑒1 ∶ (El (psub𝑅′

0 𝑎)) <∶ 𝑆′ ⇝ 𝑒3 sub-red
𝑒0 ∶ 𝑅 <∶ 𝑆 ⇝ 𝑒3

.

When rewrite rule Eq. (4.2) is used, then 𝑆′ = (El (psub𝑆′
0 𝑎)) and 𝑒2 =

(pair (𝜅𝑅′ (El𝑆′
0) 𝑒1) ♦). Because pair is constant for ↪⟶ℛ[sPe],𝒞[Pe]

, we have
𝑒3 = (pair 𝑒′

3 ♦). By induction hypothesis, there is a derivation tree 𝜏 whose
conclusion is 𝑒1 ∶ 𝑅′ <∶ (El𝑆′

0) ⇝ 𝑒′
3. Like before, we can use rule sub-intro,

𝜏 ∶∶ 𝑒1 ∶ 𝑅′ <∶ (El𝑆′
0) ⇝ 𝑒′

3 sub-intro
𝑒1 ∶ 𝑅′ <∶ (El (psub𝑆′

0 𝑎)) ⇝ (pair 𝑒′
3 ♦) sub-red

𝑒0 ∶ 𝑅 <∶ 𝑆 ⇝ 𝑒3

.

If Eq. (𝒞-Π) is used, then 𝑅′ = Π𝑥 ∶ 𝑅′
1, 𝑅′

2, 𝑆′ = Π𝑥 ∶ 𝑅′
1, 𝑆′

2 and 𝑒1 =
𝜆𝑥 ∶ 𝑇 , 𝑒11. We also have 𝑒2 = 𝜆𝑥 ∶ 𝑅′

1, (𝜅𝑅′
2 𝑆′

2 𝑒11) and 𝑒3 = 𝜆𝑥 ∶ 𝐸1, 𝑒30
because abstractions on top of terms cannot be rewritten. Therefore we have
(𝜅𝑅′

2 𝑆′
2 𝑒11) ↪⟶∗

ℛ[sPe],𝛽,𝒞[Pe]
𝑒30. By induction hypothesis, there is a derivation

tree 𝜏 ∶∶ 𝑒11 ∶ 𝑅′
2 <∶ 𝑆′

2 ⇝ 𝑒30 (where we have Γ, 𝑥 ∶ 𝑇 with 𝑒1 = 𝜆𝑥 ∶ 𝑇 , 𝑒11
well-typed in context Γ by type-preservation of ↪⟶ℛ[sPe],𝛽, and 𝑒0 well-typed in
Γ by precondition of coercion). We can therefore apply rule sub-fun to derive
𝜆𝑥, 𝑒11 ∶ Π𝑥 ∶ 𝑅′

1, 𝑅′
2 <∶ Π𝑥 ∶ 𝑅′

1, 𝑆′
2 ⇝ 𝜆𝑥 ∶ 𝑅′

1, 𝑒30. We still have to prove that
𝜆𝑥 ∶ 𝑅′

1, 𝑒30 ≃[sPe],𝛽 𝑒3 = 𝜆𝑥 ∶ 𝐸1, 𝑒30, so we just have to show 𝑅′
1 ≃[sPe],𝛽 𝐸1.

This proposition holds because we know that there is no coercion 𝜅 in either of
them, and that 𝑅′

1 ↪⟶𝛽,ℛ[sPe],𝒞[Pe]
𝐸1. Therefore ↪⟶𝒞[Pe]

rewrite steps cannot
be used in the convertibility proof.

Lemma 22. The coercion system defined by rewrite system Fig. 4.4 is complete
with respect to rules of Fig. 4.3 Page 92 and rule r-cast page 64: If 𝑡 ∶ 𝐴 <∶
𝐵 ⇝ 𝑢, then (𝜅𝐴𝐵 𝑡) ↪⟶∗

𝒞[Pe],ℛ[sPe],𝛽 𝑢 and 𝜅 ∉ 𝑢.

Proof. By induction on the derivation of 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢. For rule r-cast,
we have 𝑇 ≃[sPe],𝛽 𝑈 and because ↪⟶ℛ[sPe],𝛽 is confluent, there is 𝑉 such that
𝑇 ↪⟶∗

ℛ[sPe],𝛽 𝑉 ⟵↩∗ℛ[sPe],𝛽 𝑈. Thus we have (𝜅 𝑇𝑈 𝑡) ↪⟶∗
ℛ[sPe],𝛽 (𝜅 𝑉𝑉 𝑡) ↪⟶𝒞[Pe]

𝑡
where the last rewrite step is obtained with Eq. (𝒞-Id).

99

4.2. TUNING THE REFINER FOR PVS-CORE

For rule sub-red, we invoke confluence of ≃[sPe],𝛽.
For rule sub-fun, induction hypothesis gives (𝜅𝐵𝐶 𝑏) ↪⟶𝒞[Pe],ℛ[sPe],𝛽 𝑐, and

we can apply Eq. (𝒞-Π).
For rules sub-intro and sub-elim, we conclude using induction hypothesis,

either rule Eq. (4.2) or Eq. (4.1) and transitivity of the rewrite relation.

Example 15. Surjective pairing is required for coherence: the identity coercion
for type (El (psub𝑇𝑎)) may be derived with

𝑇 ≃[sPe],𝛽 𝑇
r-cast

(fst 𝑡) ∶ 𝑇 <∶ 𝑇 ⇝ (fst 𝑡)
sub-intro

(fst 𝑡) ∶ 𝑇 <∶ (El (psub𝑇𝑎)) ⇝ (pair (fst 𝑡) ♦)
sub-elim

𝑡 ∶ (El (psub𝑇𝑎)) <∶ (El (psub𝑇𝑎)) ⇝ (pair (fst 𝑡) ♦)

where (pair (fst 𝑡) ♦) is convertible to 𝑡 only if surjective pairing (Eq. (SP†)
Page 90) is included in the convertibility relation.

4.2.3 Coercing to functions
Predicate subtypes can be organised as trees, where nodes are types (and sub-
types), and there is an edge between types 𝐴 and 𝐵 if 𝐵 = psub(𝐴, 𝑃). Such a
graph is indeed a tree: any type has at most one supertype which is the support
of the predicate, and any number of subtypes. Roots of such trees are called
‘maximal types’ by Owre and Shankar 1997b. The maximal type of any type is
computed by the function 𝜇 defined in (ibid.),

𝜇(psub(𝑇 , 𝑎)) = 𝜇(𝑇)
𝜇(𝑇 → 𝑈) = 𝑇 → 𝜇(𝑈)
𝜇(𝑠) = 𝑠 for any primitive sort 𝑠.

We may mimic this procedure to look for product types among supertypes of
a type: given a type 𝑇, the procedure iterates through the path from 𝑇 to its
maximal type, and stops as soon as a product is found. To this end we define
a subtype projection ≺ that computes less than the 𝜇 operator. This subtype
projection essentially contains the equation psub(𝑇 , 𝑎) ≺ 𝑇. However, we cannot
simply take the context closure of that relation, because subtyping is invariant
on the domain. Therefore we do not take the contextual closure but we reduce
modulo ↪⟶ℛ[sPe],𝛽.

100

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

Definition 35. Let 𝒯 be the set of terms of λΠ[sPe]. We define the relation
≺ ⊆ 𝒯×𝒯 as the smallest relation such that

(El (psub𝑇𝑎)) ≺ (El𝑇)
↪⟶ℛ[sPe],𝛽 ⊆ ≺.

(4.3)
(4.4)

Proposition 14. Relation ≺ is a subtype projection (Definition 25 Page 71).

Proof. For each rule, by inversion, when the left-hand side is well-typed, the
right-hand side is well-typed as well.

For Eq. (4.3), the right-hand side can be coerced to the right-hand side by
rule sub-elim. For Eq. (4.4), we can conclude with r-cast.

Lemma 23. For any terms 𝑡, 𝑇, 𝑈1 and 𝑈2 such that Γ ⊢
λΠ[sPe] 𝑡 ⇐ 𝑇, there is

𝑠, Γ ⊢
λΠ[sPe] Π𝑥 ∶ 𝑈1, 𝑈2 ⇒𝒮 𝑠, if 𝑡 ∶ 𝑇 <∶ Π𝑥 ∶ 𝑈1, 𝑈2 ⇝ 𝑢, then there are 𝑆1 and

𝑆2 such that 𝑇 ≺∗ Π𝑥 ∶ 𝑆1, 𝑆2 and Π𝑥 ∶ 𝑆1, 𝑆2 <∶ Π𝑥 ∶ 𝑈1, 𝑈2.

Proof. If 𝑇 is a product 𝑇 = Π𝑥 ∶ 𝑇1, 𝑇2, then 𝑇 ≺= Π𝑥 ∶ 𝑇1, 𝑇2 and Π𝑥 ∶ 𝑇1,
𝑇2 <∶ Π𝑥 ∶ 𝑈1, 𝑈2 by hypothesis.

Otherwise, 𝑇 must be of the form (El𝑇0). By inspection of the coercion rules
Fig. 4.3 Page 92, the only rules that can be used are sub-red and sub-elim.

By induction on the derivation 𝑡 ∶ 𝑇 <∶ Π𝑥 ∶ 𝑈1, 𝑈2 ⇝ 𝑢.
Case SUB-ELIM 𝑇0 = (psub𝑇00 𝑎)

(fst 𝑡) ∶ (El𝑇00) <∶ Π𝑥 ∶ 𝑈1, 𝑈2 ⇝ 𝑢
By induction hypothesis, (El𝑇00) ≺∗ Π𝑥 ∶ 𝑇1, 𝑇2 and Π𝑥 ∶ 𝑇1, 𝑇2 <∶ Π𝑥 ∶ 𝑈1, 𝑈2.
By definition of ≺, 𝑇 = (El (psub𝑇00 𝑎)) ≺ (El𝑇00).

Case SUB-RED 𝑇 ↪⟶∗
ℛ[sPe],𝛽 𝑇 ′; Π𝑥 ∶ 𝑈1, 𝑈2 ↪⟶∗

ℛ[sPe],𝛽 Π𝑥 ∶
𝑈 ′

1, 𝑈 ′
2

𝑡 ∶ 𝑇 ′ <∶ Π𝑥 ∶ 𝑈 ′
1, 𝑈 ′

2 ⇝ 𝑢
When 𝑇0 is of the form (psub𝑇00 𝑎), then 𝑇 ′ must be of the form 𝑇 ′ =
(El (psub𝑇 ′

0 𝑎′)) where 𝑇00 ↪⟶∗
ℛ[sPe],𝛽 𝑇 ′

0 and 𝑎 ↪⟶+
ℛ[sPe],𝛽 𝑎′. Induction hy-

pothesis gives 𝑇 ′ ≺∗ Π𝑥 ∶ 𝑇1, 𝑇2 and Π𝑥 ∶ 𝑈 ′
1, 𝑈 ′

2 <∶ Π𝑥 ∶ 𝑇1, 𝑇2. Equa-
tion (4.4) gives 𝑇 ≺ Π𝑥 ∶ 𝑇1, 𝑇2. When 𝑇0 is of the form 𝑇01 ⇝ 𝑇02, then
(El𝑇0) ↪⟶∗

ℛ[sPe],𝛽 Π𝑥 ∶ (El𝑇01), (El𝑇02). We conclude by induction hypothesis
and inclusion of ↪⟶ℛ[sPe],𝛽 into ≺∗.

Case R-CAST 𝑇 ≃[sPe],𝛽 Π𝑥 ∶ 𝑈1, 𝑈2
By confluence of ↪⟶ℛ[sPe],𝛽 (conjecture 2 Page 91), there is a common reduct
𝑉. By Eq. (4.4), 𝑇 ≺∗ 𝑉. We conclude with rule sub-red.

101

4.2. TUNING THE REFINER FOR PVS-CORE

Lemma 24. If 𝑡 ∶ 𝑇 <∶ 𝑈 ⇝ 𝑢 and 𝑡 ∶ 𝑇 <∶ 𝑉 ⇝ 𝑣, then 𝑢 is convertible with
an abstraction (modulo ≃[sPe],𝛽) if and only if 𝑣 is.

Proof. If 𝑢 is convertible with an abstraction, by correctness of the cast relation,
𝑈 is of the form 𝑈 = Π𝑥 ∶ 𝑈1, 𝑈2.

With a rewrite system

Definition 36. We define the rewrite system ℛ𝜈 on symbols ℱ[Pe] ∪ {𝜈}.

(𝜈 (El (psub𝐴𝑃))) ↪⟶ (𝜈 (El𝐴))
(𝜈 (Π𝑥 ∶ 𝐴,𝐵)) ↪⟶ Π𝑥 ∶ 𝐴,𝐵

(𝜈.1)
(𝜈.2)

Lemma 25. Let 𝔑 be the λΠmr type system parametrised by the signature
Σ[Pe] ∪ {𝜈[𝐴 ∶ ⋆] ∶ ⋆ ∶ �}. Then 𝔑 is well-formed and relation ↪⟶ℛ[sPe],𝛽,ℛ𝜈

preserves typing in 𝔑: for any well-formed context Γ (in 𝔑), any substitution
𝜎, if Γ ⊢𝔑 𝜎𝐴 ⇐ ⋆ and 𝐴 ↪⟶∗

ℛ[sPe],𝛽,ℛ𝜈
Π𝑥 ∶ 𝐴1, 𝐴2, then Γ ⊢

λΠ[sPe] 𝜎(Π𝑥 ∶ 𝐴1,
𝐴2) ⇐ ⋆.

Proof. System 𝔑 is well-formed because Σ[Pe] is well-formed and the declaration
𝜈[𝐴 ∶ ⋆] ∶ ⋆ ∶ � is also well-formed.

First we prove that if (𝜈 𝑡) ↪⟶ℛ𝜈
Π𝑥 ∶ 𝑡1, 𝑡2, then 𝜈 ∉ Π𝑥 ∶ 𝑡1, 𝑡2 by induction

on the number of rewrite steps. If (𝜈 𝑡) ↪⟶ℛ𝜈
Π𝑥 ∶ 𝑡1, 𝑡2, then Eq. (𝜈.2) must

be used. By hypothesis, there is no 𝜈 in 𝑡, and the rewrite rule erases the
leading 𝜈. Now assume there is a reduction chain (𝜈 𝑡) ↪⟶∗

ℛ𝜈
Π𝑥 ∶ 𝑡1, 𝑡2. Then

(𝜈 𝑡) ↪⟶ℛ𝜈
𝑢 ↪⟶∗

ℛ𝜈
Π𝑥 ∶ 𝑡1, 𝑡2. The first rewrite step cannot use Eq. (𝜈.2),

otherwise 𝑢 would be a normal form. Hence it uses Eq. (𝜈.1), and 𝑢 is of the
form (𝜈 𝑢′), and induction hypothesis allows to conclude.

Then we show that ↪⟶ℛ𝜈
preserves typing in signature Σ[Pe] ∪ {𝜈[𝐴 ∶ ⋆] ∶

⋆ ∶ �}. For type preservation, we prove that each rewrite rule preserves typing.
For Eq. (𝜈.1), by several inversions of b-sign page 54, we have the left-hand
side well typed if Γ ⊢ (𝜎𝐴) ⇐ Type. Using several b-sign, we can derive
Γ ⊢ (𝜈 (El𝐴)) ⇐ ⋆. For the second rule, the left-hand side is well typed if
Π𝑥 ∶ (𝜎𝐴), (𝜎𝐵) has type ⋆.

Finally, we show that for any term 𝑡, if 𝜈 ∉ 𝑡, then 𝑡 is typable in Σ[Pe].
We show that by simultaneous inductions on derivations Γ ⊢𝔑 𝑡 ⇒ 𝐴 and for
any 𝐴 such that Γ ⊢

λΠ[Pe] 𝐴 ⇒𝒮 𝑠, Γ ⊢𝔑 𝑡 ⇐ 𝐴. For rule b-sign, since 𝜈 is not
in 𝑡, and because 𝜈 is not in Σ[Pe], all typing declarations of Σ[Pe] are typeable

102

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

in λΠ[Pe] by induction hypothesis. For rule b-check, by induction hypothesis,
Γ ⊢
λΠ[Pe] 𝑡 ⇒ 𝐴′. Then because there is no rule with symbol 𝜈 in ℛ[Pe] and

because 𝜈 does not appear in 𝐴′ nor 𝐴, we have 𝐴′ ≃[sPe] 𝐴. Other rules are
easily handled using the induction hypotheses.

Proposition 15. Relation ≺𝜈 defined by 𝑇 ≺𝜈 Π𝑥 ∶ 𝑈1, 𝑈2 if and only if
(𝜈 𝑇) ↪⟶∗

ℛ𝜈
Π𝑥 ∶ 𝑈1, 𝑈2 is sound and complete with respect to ≺ from Defini-

tion 35: ≺𝜈 = ≺∗.

Proof. We first show that ≺𝜈 ⊆ ≺∗ by induction on the number of ↪⟶ℛ𝜈
rewrite

steps. Assume 𝑇 ≺𝜈 Π𝑥 ∶ 𝑈1, 𝑈2. There is at least one rewrite step to eliminate
𝜈, which may be (𝜈 (El (𝑇0 ⇝𝑇1))) ↪⟶ℛ𝜈

Π𝑥 ∶ (El𝑇0), (El (𝑇1 𝑥)). In that
case, we conclude with Eq. (4.4). If (𝜈 (Π𝑥 ∶ 𝑇0, 𝑇1)) ↪⟶ℛ𝜈

Π𝑥 ∶ 𝑇0, 𝑇1, we
conclude by reflexivity of ≺=.

Assume there are 𝑛 rewrite steps. The reduction must be of the form
(𝜈 (El (psub𝑇0 𝑎))) ↪⟶ℛ𝜈

(𝜈 (El𝑇0)) ↪⟶+
ℛ𝜈

Π𝑥 ∶ 𝑈1, 𝑈2. By induction hy-
pothesis, (El𝑇0) ≺∗ Π𝑥 ∶ 𝑈1, 𝑈2. By Eq. (4.3), (El (psub𝑇0 𝑎)) ≺ (El𝑇0). We
conclude by transitivity of ≺∗.

We show the converse: ≺∗ ⊆ ≺𝜈 by induction on the number of ≺ steps.
Assume 𝑇 ≺∗ Π𝑥 ∶ 𝑈1, 𝑈2. If 𝑇 = Π𝑥 ∶ 𝑈1, 𝑈2, then we conclude with Eq. (𝜈.2).
If 𝑇 ≺ 𝑆 ≺∗ Π𝑥 ∶ 𝑈1, 𝑈2, then 𝑇 = (El (psub𝑇0 𝑎)) and 𝑆 = (El𝑇0). We
conclude by Eq. (𝜈.1), induction hypothesis and transitivity of ↪⟶∗

ℛ𝜈
.

Example 16. Let Σ = Σ[Pe] ∪ {nat ∶ Type ∶ ⋆, inj?[𝑛 ∶ (El nat)] ∶ (El o) ∶ ⋆}.
Then the judgement

𝑓 ∶ (El (nat⇝ nat)) , 𝜌 ∶ (Prf (inj? 𝑓)) ⊢ ((pair 𝑓 𝜌) 0) ∶ (El nat) ⇝ 𝑡′

cannot be derived without 𝜈 and rule r-prod-c page 71. Indeed, the psub
hides the encoded arrow in (psub (nat⇝ nat) inj?), so it does not rewrite to a
product. However we have the following reduction chain

(𝜈 (El (psub (nat⇝ nat) inj?))) ↪⟶ℛ𝜈
(El (nat⇝ nat)) ↪⟶ℛ[sPe]

(El nat) → (El nat) .

Definition 37 (𝔖+[sPe]). We denote 𝔖+[sPe] the type system 𝔖 (Section 3.5
Page 85) parametrised by signature Σ[Pe] (Fig. 2.4 Page 39), by the rewrite
relation ℛ[sPe] (Definition 33 Page 90), by the coercion system 𝒞[Pe] (Fig. 4.4
Page 98) and by the subtype projection ≺ (Definition 35 Page 101).

103

4.2. TUNING THE REFINER FOR PVS-CORE

4.2.4 Preservation of substitution by refinement
We now prove a property similar to a substitution lemma (Barras 1999, Lemme
4.28), but generalised to refined terms: if the subject and inputs are substituted,
then the output is also substituted. Such a property is essential to prove that
valid judgements of PVS-Core can be translated and refined into valid judge-
ments of λΠ[sPe]. In this section, when the type system is omitted from typing
judgements, refinement judgements use type system 𝔖+[sPe] and judgements
without refinement use λΠ[sPe].

Lemma 26. For any well-formed context Γ, any well-sorted type 𝐴 and any
term 𝑢 such that Γ ⊢ 𝑢 ∶ 𝐴 ⇝ 𝑢′, the two following propositions hold.

1. If Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐵 then Γ ⊢ {𝑢/𝑥} 𝑡 ∶ {𝑢′/𝑥}𝐵 ⇝ 𝑒 and 𝑒 ≃𝛽,[sPe]
{𝑢′/𝑥} 𝑡′.

2. Let 𝐵 be a well-sorted type. If Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 ⇝ 𝑡′, then Γ ⊢ {𝑢/𝑥} 𝑡 ∶
{𝑢′/𝑥}𝐵 ⇝ 𝑒 and 𝑒 ≃𝛽,[sPe] {𝑢′/𝑥} 𝑡′.

Proof. The two propositions are proved simultaneously by induction on the
typing derivation. Parts of the proof will be presented as sequences of judgement
annotated with a justification, like

Γ ⊢ 𝑢 ⇝ 𝑡 ∶ 𝑈 inversion (4).

Numbers on the right of the justification refer to equations (e.g. ‘Eq. (𝛽)’). If
there is no reference, the justification applies to either the previous judgement,
or it applies to a hypothesis in the statement.

• For rule r-var when 𝑡 ∈ 𝒳 and 𝑡 ≠ 𝑥 the conclusion is immediate: 𝑡 ∶
𝐵 ∈ Γ, thus {𝑢′/𝑥}𝐵 = 𝐵 and 𝑒 = 𝑡 = {𝑢′/𝑥} 𝑡.

• For rule r-var when 𝑡 = 𝑥, we have 𝐵 = 𝐴 = {𝑢′/𝑥}𝐵, Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ⇝
𝑥 ∶ 𝐴 and {𝑢/𝑥} 𝑡 = 𝑢 and 𝑒 = 𝑢′ by definition.

•

r-prod
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑇0 ∶ ⋆ ⇝ 𝑅0 Γ, 𝑥 ∶ 𝐴, 𝑧 ∶ 𝑅0 ⊢ 𝑇1 ⇝ 𝑅1 ∶ 𝑠1

(⋆, 𝑠1, 𝑠2) ∈ 𝒫𝜆Π

Γ, 𝑥 ∶ 𝐴 ⊢ Π𝑧 ∶ 𝑇0, 𝑇1 ⇝ Π𝑧 ∶ 𝑅0, 𝑅1 ∶ 𝑠2
Induction hypothesis gives Γ, 𝑥 ∶ 𝐴 ⊢ {𝑢/𝑥} 𝑇0 ∶ ⋆ ⇝ 𝑆0 with 𝑆0 ≃[sPe],𝛽
{𝑢′/𝑥}𝑅0 and Γ, 𝑧 ∶ {𝑢′/𝑥}𝑅0 ⊢ {𝑢/𝑥} 𝑇1 ∶ {𝑢′/𝑥} 𝑠1 ⇝ 𝑆1 with 𝑆1 ≃[sPe],𝛽
{𝑢′/𝑥}𝑅1. By inversion, we have Γ, 𝑧 ∶ {𝑢′/𝑥}𝑅0 ⊢ {𝑢/𝑥} 𝑇1 ⇝ 𝑆′

1 ∶ 𝑠′
1 and a

coercion from 𝑠′
1 to 𝑠1 (note that the inferred type is named 𝑠′

1 but we have no
evidence that it is a sort). Because there is no coercion from types to sorts, we

104

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

Γ ⊢ {𝑢/𝑥} 𝑇0 ∶ ⋆ ⇝ 𝑆0 induction hypothesis
𝑆0 ≃ {𝑢′/𝑥}𝑅0 induction hypothesis (4.5)
Γ, 𝑧 ∶ {𝑢′/𝑥}𝑅0 ⊢ {𝑢/𝑥} 𝑡1 ∶ {𝑢′/𝑥}𝑅1 ⇝ 𝑒 i.h. (4.6)
𝑒 ≃ {𝑢′/𝑥} 𝑟0 induction hypothesis (4.7)
Γ, 𝑧 ∶ {𝑢′/𝑥}𝑅0 ⊢ {𝑢/𝑥} 𝑡1 ⇝ 𝑡∗1 ∶ 𝑇 ∗ inversion Eq. (4.6) (4.8)
𝑡∗1 ∶ 𝑇 ∗ <∶ {𝑢′/𝑥}𝑅1 ⇝ 𝑒 inversion Eq. (4.6) (4.9)

Figure 4.5: Reasoning steps for the abstraction case of Lemma 26.

get 𝑠1 = 𝑠′ and 𝑆′
1 = 𝑆1. Therefore we may conclude using rule r-check with

Γ ⊢ Π𝑧 ∶ {𝑢/𝑥} 𝑇0, {𝑢/𝑥} 𝑇1 ⇝ Π𝑧 ∶ 𝑆0, 𝑆1 ∶ 𝑠2.

•

r-abst
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑇0 ∶ ⋆ ⇝ 𝑅0 Γ, 𝑥 ∶ 𝐴, 𝑧 ∶ 𝑅0 ⊢ 𝑡0 ⇝ 𝑟0 ∶ 𝑅1

Γ, 𝑥 ∶ 𝐴 ⊢ 𝜆𝑧 ∶ 𝑇0, 𝑡0 ⇝ 𝜆𝑧 ∶ 𝑅0, 𝑟0 ∶ Π𝑧 ∶ 𝑅0, 𝑅1
The sequence of judgement that lead to the conclusion is given in Fig. 4.5. We
can apply rule sub-fun on judgement (4.9) of Fig. 4.5 to obtain

𝜆𝑧 ∶ 𝑅0, 𝑡∗1 ∶ Π𝑧 ∶ 𝑅0, 𝑇 ∗ <∶ {𝑢′/𝑥}Π𝑧 ∶ 𝑅0, 𝑅1 ⇝ 𝜆𝑧 ∶ {𝑢′/𝑥}𝑅0, 𝑒 (4.10)

and conclude with sub-red where the conversion is given by Eq. (4.5) and finally
Eq. (4.7).

•

r-appl
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡1 ⇝ 𝑡′1 ∶Π Π𝑧 ∶ 𝐵1, 𝐵2 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡2 ∶ 𝐵1 ⇝ 𝑡′2

Γ, 𝑥 ∶ 𝐴 ⊢ (𝑡1 𝑡2) ⇝ (𝑡′1 𝑡′2) ∶ {𝑡′2/𝑧}𝐵2
Induction hypothesis on the second premise gives Γ ⊢ {𝑢/𝑥} 𝑡2 ∶ {𝑢′/𝑥}𝐵1 ⇝ 𝑞2
for some 𝑞2 with 𝑞2 ≃[sPe],𝛽 {𝑢′/𝑥} 𝑡′2. We then analyse how {𝑢/𝑥} 𝑡1 behaves
under constrained inference. Judgements (4.16) and (4.18) give Γ ⊢ {𝑢/𝑥} 𝑡1 ⇝
𝑟1 ∶Π Π𝑧 ∶ 𝑅1, 𝑅2.
If 𝑡′1 is not convertible with an abstraction (modulo ≃[sPe],𝛽), then 𝑞1 is not
convertible with an abstraction as well, and by Lemma 24, 𝑟1 is not. Lemma 15
Page 93 gives 𝑅2 ≃ {𝑢′/𝑥}𝐵2. By Lemmas 17 and 20 Pages 93 and 96 over
Eqs. (4.17) and (4.18), 𝑟1 ≃[sPe],𝛽 𝑞1. By transitivity of ≃ and Eq. (4.15), we
obtain 𝑟1 ≃ {𝑢′/𝑥} 𝑡′1. We can conclude by an application of rule r-check
using rule r-cast for the second premise since {𝑟2/𝑧}𝑅2 ≃ {𝑢′/𝑥} {𝑡′2/𝑧}𝐵2
(the substitution is not parallel).
If 𝑡′1 is an abstraction of the form 𝑡′1 = 𝜆𝑧, 𝑡′11, then 𝑞1 is convertible with an

105

4.2. TUNING THE REFINER FOR PVS-CORE

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡1 ⇝ 𝛼1 ∶ 𝑇1 inversion first premise (4.11)
𝑇1 ≺∗ Π𝑧 ∶ 𝐵1, 𝐵2 idem (4.12)
𝛼1 ∶ 𝑇1 <∶ Π𝑧 ∶ 𝐵1, 𝐵2 ⇝ 𝑡′1 idem (4.13)
Γ ⊢ {𝑢/𝑥} 𝑡1 ∶ {𝑢′/𝑥}Π𝑧 ∶ 𝐵1, 𝐵2 ⇝ 𝑞1 i.h. Eqs. (4.11) and (4.13)

(4.14)
𝑞1 ≃ {𝑢′/𝑥} 𝑡′1 idem (4.15)
Γ ⊢ {𝑢/𝑥} 𝑡1 ⇝ 𝑠1 ∶ 𝑆1 inversion Eq. (4.14) (4.16)
𝑠1 ∶ 𝑆1 <∶ {𝑢′/𝑥}Π𝑧 ∶ 𝐵1, 𝐵2 ⇝ 𝑞1 inversion Eq. (4.14) (4.17)
𝑆1 ≺∗ Π𝑧 ∶ 𝑅1, 𝑅2 Lemma 23 (4.18)
Π𝑧 ∶ 𝑅1, 𝑅2 <∶ {𝑢′/𝑥}Π𝑧 ∶ 𝐵1, 𝐵2 Lemma 23 (4.19)
𝑅1 ≃ {𝑢′/𝑥}𝐵1 Lemma 14 and Eq. (4.19) (4.20)

Figure 4.6: Initial proof steps for the application case of Lemma 26.

abstraction of the form 𝜆𝑧, 𝑞11 where 𝑞11 ≃[sPe],𝛽 𝑡′11. By Lemma 24, 𝑟1 is also
an abstraction of the form 𝑟1 = 𝜆𝑧, 𝑟11. Lemma 14 and Eq. (4.19) Pages 93
and 106 give

𝑟11 ∶ 𝑅2 <∶ {𝑢′/𝑥}𝐵2 ⇝ 𝑞11

because coercion is stable by substitution, we get,

{𝑟2/𝑧} 𝑟11 ∶ {𝑟2/𝑧}𝑅2 <∶ {𝑟2/𝑧} {𝑢′/𝑥}𝐵2 ⇝ {𝑟2/𝑧} 𝑞11

and we also have {𝑟2/𝑧} 𝑞11 ≃ {𝑟2/𝑧} {𝑢′/𝑥} 𝑡′11 by stability of ≃ and because
((𝜆𝑧, 𝑟11) 𝑟2) ↪⟶𝛽 {𝑟2/𝑧} 𝑟11, we can apply Lemma 19 Page 95 to obtain

((𝜆𝑧, 𝑟11) 𝑟2) ∶ {𝑟2/𝑧}𝑅2 <∶ {𝑟2/𝑧} {𝑢′/𝑥}𝐵2 ⇝ {𝑟2/𝑧} 𝑞′
11

and 𝑞′
11 ≃ {𝑟2/𝑧} 𝑞11. Now, remarking that

{𝑟2/𝑧} {𝑢′/𝑥} 𝑡′11 ≃ {𝑢′/𝑥} {𝑡′2/𝑧} 𝑡′11

(substitutions are sequential and not parallel), and ((𝜆𝑧, 𝑡′11) 𝑡′2) ↪⟶𝛽 {𝑡′2/𝑧} 𝑡′11,
we get by transitivity of ≃ that 𝑞′

11 ≃ {𝑢′/𝑥} ((𝜆𝑧, 𝑡′11) 𝑡′2). We can conclude
with rule r-check.

106

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

Γ ⊢ {𝑢/𝑥} 𝑡 ∶ {𝑢′/𝑥} 𝑇 ⇝ 𝑒1 induction hypothesis (4.21)
𝑒1 ≃ {𝑢′/𝑥} 𝑡″ induction hypothesis (4.22)
Γ ⊢ {𝑢/𝑥} 𝑡 ⇝ 𝑒2 ∶ 𝐸2 inversion of Eq. (4.21) (4.23)
𝑒2 ∶ 𝐸2 <∶ {𝑢′/𝑥} 𝑇 ⇝ 𝑒1 inversion of Eq. (4.21) (4.24)
{𝑢′/𝑥} 𝑡″ ∶ {𝑢′/𝑥} 𝑇 <∶ {𝑢′/𝑥}𝐵 ⇝ 𝑒3 stability (Lemma 18) (4.25)
𝑒3 ≃ {𝑢′/𝑥} 𝑟 stability (Lemma 18) (4.26)
𝑒2 ∶ 𝐸2 <∶ {𝑢′/𝑥}𝐵 ⇝ 𝑒4
Lemma 17 and Eqs. (4.22), (4.24) and (4.25)

(4.27)

𝑒3 ≃ 𝑒4 Lemma 20 and Eqs. (4.24), (4.25) and (4.27) (4.28)

Figure 4.7: Proof steps for case r-check of Lemma 26.

•

r-check
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ⇝ 𝑡″ ∶ 𝑇 𝑡″ ∶ 𝑇 <∶ 𝐵 ⇝ 𝑟

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 ⇝ 𝑟
Judgements (4.23) and (4.27) allow to apply rule r-check to conclude Γ ⊢
{𝑢/𝑥} 𝑡 ∶ {𝑢′/𝑥}𝐵 ⇝ 𝑒4. By transitivity of ≃[sPe],𝛽, Eqs. (4.26) and (4.28),
𝑒4 ≃[sPe],𝛽 {𝑢′/𝑥} 𝑟.

4.3 Preservation of typeability by the encoding
In Section 2.2 Page 36, we showed that any valid judgement of PVS-Cert can
be encoded into a valid judgement of λΠ[Pe]. Similarly, we show that any valid
judgement of PVS-Core can be encoded into a valid judgement of 𝔖+[sPe]. Fur-
thermore, provided that holes are replaced with actual proofs, 𝔖+[sPe] outputs
judgements that are valid in λΠ[sPe].

As usual, we must ensure that terms that compute in PVS-Core are trans-
lated to terms that compute in 𝔖. Otherwise we could not translate the con-
version rule of PVS-Core as a conversion of the framework. We already know
that the syntactic translation [−] preserves computation. In the presence of co-
ercions, we must ensure that inserting coercions does not break 𝛽-redexes, and
that refined 𝛽-redexes compute to refined 𝛽-reducts.

Lemma 27. Let Γ be well-formed context, 𝑡 and 𝑢 two terms, and 𝑡 ↪⟶𝛽 𝑢.

107

4.3. PRESERVATION OF TYPEABILITY BY THE ENCODING

For any well-sorted term 𝐴 in Γ, if Γ ⊢ [𝑡] ∶ 𝐴 ⇝ 𝑡′ then Γ ⊢ [𝑢] ∶ 𝐴 ⇝ 𝑢′ and
𝑡′ ≃[sPe],𝛽 𝑢′. If Γ ⊢ [𝑡] ⇝ 𝑡′ ∶ 𝑇, then Γ ⊢ [𝑢] ∶ 𝑇 ⇝ 𝑢′ and 𝑡′ ≃[sPe],𝛽 𝑢′.

Proof. We can show easily that [𝑡] ↪⟶𝛽 [𝑢] because the encoding is shallow.
Therefore, without loss of generality, we consider terms 𝑡 and 𝑢 in the image of
[−].

By induction on a context 𝛾 such that 𝑡 = 𝛾[𝑒] and the reduction happens
at the head of 𝑒. For the base case, consider the empty 𝛾, and 𝑡 is of the form
𝑡 = ((𝜆𝑥 ∶ 𝑇1, 𝑡1) 𝑡2). Then 𝑡 ↪⟶𝛽 𝑢 = {𝑡2/𝑥} 𝑡1. By Lemma 10 Page 63, Γ ⊢
((𝜆𝑥 ∶ 𝑇1, 𝑡1) 𝑡2) ⇝ ((𝜆𝑥 ∶ 𝑇 ′

1 , 𝑡′1) 𝑡′2) ∶ 𝑇, so the refinement ((𝜆𝑥 ∶ 𝑇 ′
1 , 𝑡′1) 𝑡′2) ↪⟶𝛽

{𝑡′2/𝑥} 𝑡′1. Lemma 26 Page 104 gives 𝑢′ ≃[sPe],𝛽 {𝑡′2/𝑥} 𝑡′1 for some 𝑢′ with
Γ ⊢ {𝑡2/𝑥} 𝑡1 ∶ 𝑇 ⇝ 𝑢′.

For the inductive case, we assume that 𝑡 ↪⟶𝛽 𝑢 and for each possible context
𝛾, we verify that Γ ⊢ 𝛾[𝑡] ∶ 𝐴 ⇝ 𝑡′, Γ ⊢ 𝛾[𝑢] ∶ 𝐴 ⇝ 𝑢′ and 𝑡′ ≃[sPe],𝛽 𝑢′. We note
� the hole of contexts. Let 𝑒 be a term. The possible contexts are 1. (Π𝑥 ∶ �,
𝑒), 2. (Π𝑥 ∶ 𝑒,�), 3. (𝜆𝑥 ∶ �, 𝑒), 4. (𝜆𝑥 ∶ 𝑒,�), 5. (𝑒�), 6. (� 𝑒).

For Items 1, 3 and 5, terms 𝑡 and 𝑢 are checked against the same type:
either ⋆ or the domain of 𝑒 for the application case. By induction hypothesis,
the refinements of 𝑡 and 𝑢 are convertible.

For Item 2, 𝐴 must be a sort in {⋆,�}, we note it 𝑠𝐴. By inversion and
Lemma 18 Page 95, the sort inferred from Π𝑥 ∶ 𝑒, 𝑢 is 𝑠𝐴. By the shape of
𝒫𝜆Π, 𝑠𝐴 is the sort inferred from both 𝑡 and 𝑢. Therefore, the refinements 𝑡′
and 𝑢′ are both the inference of 𝑡 and 𝑢, which are syntactically equal to the
refinement obtained by checking them against 𝑠𝐴. By induction hypothesis, we
get 𝑡′ ≃[sPe],𝛽 𝑢′.

For Item 2, we have 𝑡 = Π𝑥 ∶ 𝑒, 𝑇1 ↪⟶𝛽 𝑢 = Π𝑥 ∶ 𝑒, 𝑈1 with 𝑇1 ↪⟶𝛽 𝑈1.
Proof steps described in Fig. 4.8 allow to conclude Π𝑥 ∶ 𝑒, 𝑈 ′

1 ≃ Π𝑥 ∶ 𝑒, 𝑇 ′
1 using

Eq. (4.30).
For Item 4, assume 𝑡 = 𝜆𝑥 ∶ 𝑒, 𝑡1 ↪⟶𝛽 𝜆𝑥 ∶ 𝑒, 𝑢1, and Γ ⊢ 𝑒 ⇒𝒮 ⋆. Then we

have 𝜆𝑥 ∶ 𝑒, 𝑡′1 ≃ 𝜆𝑥 ∶ 𝑒, 𝑣1 by Eq. (4.34).
For Item 6, assume (𝑡1 𝑒) ↪⟶𝛽 (𝑢1 𝑒). If 𝑢𝜋

1 is not an abstraction, then
Eq. (4.40) and Lemma 15 give 𝑉2 ≃[sPe],𝛽 𝑅2 and 𝑢𝜋

1 ≃[sPe],𝛽 𝑡𝜋1 . By stability by
context of ≃[sPe],𝛽, (𝑡𝜋1 𝑒) ≃[sPe],𝛽 (𝑢𝜋

1 𝑒) (𝑒 is checked against 𝑉1 or 𝑅1, which
are convertible by Eq. (4.42)).

If 𝑢𝜋
1 is an abstraction 𝑢𝜋

1 = 𝜆𝑥 ∶ 𝑉1, 𝑢11, then we also have 𝑤2 of the
form 𝑤2 = 𝜆𝑥,𝑤21 by Lemma 14 Page 93. Finally, following Fig. 4.11 we have
(𝑢𝜋

1 𝑒) = ((𝜆𝑥, 𝑢11) 𝑒), and we can apply rule r-check on Eq. (4.44), and we can

108

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

Γ ⊢ 𝑇1 ⇝ 𝑇 ′
1 ∶ 𝑠1 inversion of premise

Γ ⊢ 𝑈1 ∶ 𝑠1 ⇝ 𝑉1 induction hypothesis
𝑉1 ≃ 𝑇 ′

1 idem
Γ ⊢ 𝑈1 ⇝ 𝑈 ′

1 ∶ 𝑠2 inversion Eq. (4.29)
𝑈 ′

1 ∶ 𝑠2 <∶ 𝑠1 ⇝ 𝑉1 idem
𝑈 ′

1 = 𝑉1 ∧ 𝑠1 = 𝑠2 Lemma 18
Γ ⊢ Π𝑥 ∶ 𝑒, 𝑈1 ⇝ Π𝑥 ∶ 𝑒, 𝑈 ′

1 ∶ 𝑠2 rule r-prod
𝑉 = Π𝑥 ∶ 𝑒, 𝑈 ′

1 rule r-check and Eq. (4.31)

(4.29)
(4.30)

(4.31)

(4.32)

Figure 4.8: Proof steps for Lemma 27, case 𝑡 = Π𝑥 ∶ 𝑒,�.

Γ ⊢ 𝑡1 ⇝ 𝑡′1 ∶ 𝑇1 inversion
Γ ⊢ 𝑢1 ∶ 𝑇1 ⇝ 𝑣1 induction hypothesis
𝑣1 ≃ 𝑡′1 induction hypothesis
Γ ⊢ 𝑢1 ⇝ 𝑢′

1 ∶ 𝑈1 inversion Eq. (4.33)
𝑢′

1 ∶ 𝑈1 <∶ 𝑇1 ⇝ 𝑣1 idem
𝜆𝑥, 𝑢′

1 ∶ Π𝑥 ∶ 𝑒, 𝑈1 <∶ Π𝑥 ∶ 𝑒, 𝑇1 ⇝ 𝜆𝑥, 𝑣1 rule sub-fun
Γ ⊢ 𝜆𝑥, 𝑢1 ⇝ 𝜆𝑥, 𝑢′

1 ∶ Π𝑥 ∶ 𝑒, 𝑈1 rule r-abst on Eq. (4.35)
Γ ⊢ 𝜆𝑥, 𝑢1 ∶ Π𝑥 ∶ 𝑒, 𝑇1 ⇝ 𝜆𝑥 ∶ 𝑒, 𝑣1 rule r-check

(4.33)
(4.34)
(4.35)

(4.36)
(4.37)

Figure 4.9: Proof steps for stability by context, Lemma 27, case 𝜆𝑥 ∶ 𝑒,�.

109

4.3. PRESERVATION OF TYPEABILITY BY THE ENCODING

Γ ⊢ 𝑡1 ⇝ 𝑡′1 ∶ 𝑇1 inversion
𝑇1 <∶Π Π𝑥 ∶ 𝑅1, 𝑅2 idem
𝑡′1 ∶ 𝑇1 <∶ Π𝑥 ∶ 𝑅1, 𝑅2 ⇝ 𝑡𝜋1 idem
Γ ⊢ 𝑡1 ∶ Π𝑥 ∶ 𝑅1, 𝑅2 ⇝ 𝑡𝜋1 rule r-check
Γ ⊢ 𝑢1 ∶ Π𝑥 ∶ 𝑅1, 𝑅2 ⇝ 𝑤1 induction hypothesis
𝑤1 ≃[sPe],𝛽 𝑡𝜋1 idem
Γ ⊢ 𝑢1 ⇝ 𝑢′

1 ∶ 𝑈 inversion Eq. (4.38)
Γ ⊢ 𝑢1 ⇝ 𝑢𝜋

1 ∶Π Π𝑥 ∶ 𝑉1, 𝑉2 Lemma 23
𝑢𝜋

1 ∶ Π𝑥 ∶ 𝑉1, 𝑉2 <∶ Π𝑥 ∶ 𝑅1, 𝑅2 ⇝ 𝑤2

𝑤2 ≃[sPe],𝛽 𝑤1 coherence
𝑉1 ≃[sPe],𝛽 𝑅1 Lemma 14 and Eq. (4.40)

(4.38)
(4.39)

(4.40)
(4.41)
(4.42)

Figure 4.10: Initial proof steps for Lemma 27, for the case (� 𝑒).

𝜆𝑥, 𝑢11 ∶ Π𝑥 ∶ 𝑉1, 𝑉2 <∶ Π𝑥 ∶ 𝑅1, 𝑅2 ⇝ 𝜆𝑥,𝑤21

𝜆𝑥, 𝑢11 ∶ Π𝑥 ∶ 𝑅1, 𝑉2 <∶ Π𝑥 ∶ 𝑅1, 𝑅2 ⇝ 𝜆𝑥,𝑤21
rule sub-red and Eq. (4.42)

𝑢11 ∶ 𝑉2 <∶ 𝑅2 ⇝ 𝑤21 Lemma 14
{𝑒/𝑥} 𝑢11 ∶ {𝑒/𝑥} 𝑉2 <∶ {𝑒/𝑥}𝑅2 ⇝ {𝑒/𝑥}𝑤21 stability Lemma 18
((𝜆𝑥, 𝑢11) 𝑒) ↪⟶𝛽 {𝑒/𝑥} 𝑢11

((𝜆𝑥, 𝑢11) 𝑒) ∶ {𝑒/𝑥} 𝑉2 <∶ {𝑒/𝑥}𝑅2 ⇝ 𝑐 Lemma 19
𝑐 ≃[sPe],𝛽 {𝑒/𝑥}𝑤21 idem 2

(4.43)

(4.44)

(4.45)

Figure 4.11: Proof steps for stability by context, Lemma 27, case (� 𝑒) in
presence of 𝛽 redexes.

110

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

conclude by transitivity and monotonicity of ≃[sPe],𝛽 since

𝑐 ≃[sPe],𝛽 {𝑒/𝑥}𝑤21 ⟵↩𝛽 ((𝜆𝑥,𝑤21) 𝑒) = (𝑤2 𝑒) ≃[sPe],𝛽 (𝑤1 𝑒) ≃[sPe],𝛽 (𝑡𝜋1 𝑒) .

Lemma 28. Let 𝑀, 𝑁 and 𝐴 be terms. If Γ ⊢ [𝑀] ∶ 𝐴 ⇝ 𝑀 ′ and 𝑀 ↪⟶∗
𝛽 𝑁,

then Γ ⊢ [𝑁] ∶ 𝐴 ⇝ 𝑁 ′ and 𝑀 ′ ≃[sPe],𝛽 𝑁 ′.

Proof. By induction on the number of computation steps ↪⟶𝛽 where the base
case is handled by Lemma 27.

Lemma 29. If 𝐴 and 𝐵 are two well formed types of PVS-Core, Γ ⊢ [𝐴] ∶
Type ⇝ 𝐴′, Γ ⊢ [𝐵] ∶ Type ⇝ 𝐵′, and 𝐴 ≃𝛽 𝐵, then 𝐴′ ≃[sPe],𝛽 𝐵′.

Proof. If 𝐴 = Type, then 𝐵 = Type and [𝐴] = [𝐵] = Type. Applying r-sign
followed by r-check, we obtain that 𝐴′ = 𝐵′ = Type.

Otherwise, by confluence of ↪⟶𝛽, there is 𝐶 such that 𝐴 ↪⟶∗
𝛽 𝐶 ↪⟶∗

𝛽 𝐵.
By Lemma 28, let Γ ⊢ [𝐴] ∶ Type ⇝ 𝐴′, then JΓK ⊢ [𝐶] ∶ Type ⇝ 𝐶′ and
𝐴′ ≃[sPe],𝛽 𝐶′.

A symmetrical argument yields 𝐵′ ≃[sPe],𝛽 𝐶′ for an analogously defined 𝐵′

where JΓK ⊢ [𝐵] ⇝ 𝐵′ ∶ Type and finally, 𝐴′ ≃[sPe],𝛽 𝐶′ ≃[sPe],𝛽 𝐵′.

Definition 38. Let Γ be a well-formed PVS-Core context. We note Γ ↦ Γ∘

the translation from PVS-Core contexts to 𝔖 contexts defined by ∅∘ = ∅ and
(Γ, 𝑥 ∶ 𝐴)∘ = Γ∘, 𝑥 ∶ 𝐴′ where Γ∘ ⊢ J𝐴K ∶ ⋆ ⇝ 𝐴′.

Theorem 2. Let Γ be a context, 𝑡 and 𝐴 terms such that Γ ⊢Po 𝑡 ∶ 𝐴. Then the
three following propositions hold, ⊢Γ∘, Γ∘ ⊢ J𝐴K ∶ ⋆ ⇝ 𝐴′ and Γ∘ ⊢ [𝑡] ∶ 𝐴′ ⇝ 𝑡′.

Proof. The three propositions are shown simultaneously by induction on the
typing derivation Γ ⊢Po 𝑡 ∶ 𝐴.

For rule empty page 29, there is nothing to do: the empty context is trans-
lated as the empty context.

For rule decl, induction hypothesis gives ⊢Γ∘ and Γ∘ ⊢ [𝑇] ∶ J𝑠K ⇝ 𝑇 ′. Since
variables are unchanged, we still have 𝑣 ∉ Γ∘. If 𝑠 = Type, then J𝑠K = Type.
By correctness of the refiner (Proposition 10 Page 67), Γ∘ ⊢ 𝑇 ′ ∶ Type and thus
with rule sign, Γ∘ ⊢ El [𝑇 ′] ∶ ⋆ which allows to conclude with rule decl.

For rule var, induction hypothesis gives ⊢Γ∘. By definition of J⋅K and 𝑥 ↦ 𝑥∘,
there is 𝐴′ such that (𝑥 ∶ 𝐴′) ∈ Γ∘.

For rule sort, refer to the proof of Theorem 1 Page 46, and we can conclude
by partial completeness of the type checker with refinement.

111

4.3. PRESERVATION OF TYPEABILITY BY THE ENCODING

For rule subtype-elim, induction hypothesis gives Γ∘ ⊢ (psub [𝐴] [𝑃]) ∶
Type ⇝ (psub𝐴′ 𝑃 ′) and Γ∘ ⊢ [𝑡] ∶ (El (psub𝐴′ 𝑃 ′)) ⇝ 𝑡′. Transitivity of coer-
cion rules Fig. 4.3 ensures that if [𝑡] can be checked against (El (psub𝐴′ 𝑃 ′)),
then it can be checked against (El (𝐴′)).

For rule subtype-intro, induction hypothesis gives Γ∘ ⊢ [𝑡] ∶ 𝐴′ ⇝ 𝑡′ where
Γ∘ ⊢ J𝐴K ∶ ⋆ ⇝ 𝐴′. Like above, transitivity of coercion rules Fig. 4.3 en-
sures that if [𝑡] can be checked against (El𝐴′), then it can be checked against
(El (psub𝐴′ 𝑃 ′)) with r-check.

For rule prod, we have (𝑠1, 𝑠2, 𝑠3) = (Type, Type, Type). In that case, induc-
tion hypothesis gives Γ∘ ⊢ [𝐴] ∶ Type ⇝ 𝐴′ and (Γ, 𝑥 ∶ 𝐴′)∘ ⊢ [𝐵] ∶ Type ⇝ 𝐵′.
By definition, (Γ, 𝑥 ∶ 𝐴)∘ = Γ∘, 𝑥 ∶ 𝐴″ where Γ∘ ⊢ J𝐴K ∶ ⋆ ⇝ 𝐴″. Since 𝑠1 is Type,
J𝐴K = (El [𝐴]) so by inversion of r-appl, 𝐴″ = 𝐴′. With rules r-check and
r-abst, we can derive Γ∘ ⊢ 𝜆𝑥 ∶ (El𝐴′), 𝐵′ ∶ Π𝑥 ∶ (El𝐴′), Type ⇝ 𝜆𝑥 ∶ (El𝐴′),
𝐵′. It allows us to conclude using sign with (𝐴′ ⇝ (𝜆𝑥,𝐵′)).

For rule abst, we have Γ ⊢ 𝐴 ∶ Type and Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ Type because
(Type, Type, Type) is the only product rule of PVS-Core with Type as last sort.
Thus induction hypothesis gives 1. Γ∘ ⊢ [𝐴] ∶ Type ⇝ 𝐴′ along with Γ∘, 𝑥 ∶
𝐴′ ⊢ [𝐵] ∶ Type ⇝ 𝐵′ and 2. Γ∘, 𝑥 ∶ 𝐴′ ⊢ [𝑡] ∶ (El𝐵′) ⇝ 𝑡′ (induction
hypothesis hold because for each judgement, its inputs are well formed thanks
to previous judgements). With rule r-sign and Item 1 we can derive 3. Γ∘ ⊢
(El [𝐴]) ∶ ⋆ ⇝ (El𝐴′) where J𝐴K = (El [𝐴]). We can apply rule r-check on
Item 3 and Item 2 to obtain Γ∘, 𝑥 ∶ (El𝐴′) ⊢ 𝜆𝑥 ∶ J𝐴K, [𝑡] ∶ Π𝑥 ∶ (El𝐴′),
(El𝐵′) ⇝ 𝜆𝑥 ∶ (El𝐴′), 𝑡′. Finally, note that JΠ𝑥 ∶ 𝐴,𝐵K = (El([𝐴] ⇝ [𝐵])),
hence by rule r-sign, Γ∘ ⊢ (El ([𝐴] ⇝ [𝐵])) ∶ ⋆ ⇝ (El (𝐴′ ⇝𝐵′)). Furthermore,
(El(𝐴′⇝(𝜆𝑥,𝐵′))) ↪⟶∗

𝛽,ℛ[sPe]
Π𝑥 ∶ El𝐴′, (El𝐵′) so we can use the rule r-check

to conclude Γ∘, 𝑥 ∶ (El𝐴′) ⊢ 𝜆𝑥 ∶ J𝐴K, [𝑡] ∶ (El (𝐴′ ⇝ (𝜆𝑥,𝐵′))) ⇝ 𝜆𝑥 ∶ (El𝐴′),
𝑡′.

For rule appl, the idea is to use rules r-appl and r-check. We first justify
that we can use r-prod-c. By induction hypothesis, Γ∘ ⊢ [Π𝑥 ∶ 𝐵1, 𝐵2] ∶ Type ⇝
𝐵′. By definition of translation and inversion of typing, 𝐵′ = 𝐵′

1⇝(𝜆𝑥 ∶ (El𝐵′
1),

𝐵′
2) and by Eq. (2.25) Page 51, (El (𝐵′

1 ⇝ (𝜆𝑥 ∶ (El𝐵′
1), 𝐵′

2))) ↪⟶ Π𝑥 ∶ (El𝐵′
1),

(El𝐵′
2). By induction hypothesis,

Γ∘ ⊢ [𝑡] ∶ 𝐵′ ⇝ 𝑡′. (4.46)

By inversion, there are 𝑋′ and 𝑋 such that Γ∘ ⊢ [𝑡] ⇝ 𝑡′ ∶Π Π𝑥 ∶ 𝑋′, 𝑋.
We have, 𝑋′ ≃ (El𝐵′

1) because either rule sub-fun is used or rule r-cast.
Hence we can derive Γ∘ ⊢ [𝑡 𝑢] ⇝ (𝑡′ 𝑢′) ∶ {𝑢′/𝑥}𝑋 using induction hypothesis
Γ∘ ⊢ 𝑢 ∶ (El𝐵′

1) ⇝ 𝑢′. Finally we must verify that we have Γ∘ ⊢ [𝑡 𝑢] ∶ 𝐴′ ⇝

112

CHAPTER 4. IMPLICIT PREDICATE SUBTYPING

𝑡″ where Γ∘ ⊢ [{𝑢/𝑥}𝐵2] ∶ Type ⇝ 𝐴′ and 𝐴′ ≃ {𝑢′/𝑥}𝐵′
2 by Lemma 26

Page 104. Either {𝑢′/𝑥}𝑋 ≃ (El {𝑢′/𝑥}𝐵′
2), in which case there is nothing to

do. Otherwise, we have covariance on the codomain of the type of 𝑡. This case is
possible only if 𝑡 is an abstraction because there is no subtyping on product types
in PVS-Core (and (𝑡 𝑢) is thus a 𝛽-redex). By induction hypothesis Eq. (4.46)
and inversion of rule r-check and rule sub-fun, 𝑋 is coercible to 𝐵2, hence the
application (𝑡′ 𝑢′) can be coerced from {𝑢′/𝑥}𝑋 to {𝑢′/𝑥}𝐵′

2 and we conclude
with r-check.

For rule sign, induction hypotheses allow to apply rule r-sign because for
each judgement (𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠) ∈ ΣPo, there is a symbol (̂𝑓[𝒙 ∶ J𝑨K] ∶ J𝐵K ∶
J𝑠K) ∈ ΣPe.

For rule conv, 𝑠 is either Type or Kind (Prop is not a sort). If it is Kind,
then 𝐴 = 𝐵 = Type because Type is the only inhabitant of Kind. Otherwise,
we have Γ ⊢ 𝐵 ∶ Type induction hypothesis gives Γ∘ ⊢ [𝑡] ∶ 𝐵′ ⇝ 𝑡′ where
Γ∘ ⊢ 𝐵 ∶ Type ⇝ 𝐵′. The sort 𝑠𝐴 of 𝐴 is Type as well (see F. Gilbert 2018,
Section 3.2) and Γ∘ ⊢ [𝐴] ∶ J𝑠𝐴K ⇝ 𝐴′. We have J𝑠𝐴K = Type, so by Lemma 29
Page 111, 𝐴′ ≃[sPe],𝛽 𝐵′. We can use rule r-check and coerce [𝑡] from its
inferred type to 𝐵′ and then from 𝐵′ to 𝐴′ to conclude Γ∘ ⊢ 𝑡 ∶ 𝐴′ ⇝ 𝑡′.

Any well-formed judgement of PVS-Core can be translated to a well-formed
judgement in the encoding of PVS-Cert. However, this judgement may contain
holes: each time the subtyping rule subtype-intro page 88 is used in the PVS-
Core derivation, a coercion rule Section 4.2.1 that generates a hole is used to
type the PVS-Cert-encoded judgement (note that this assertion is not accurate,
one may build a derivation tree in PVS-Core with useless subtyping rules which
will not have any counterpart in the typing derivation in 𝔖+[sPe]).

Completeness of the encoding of PVS-Core states that whenever a proposi-
tion of PVS-Core encoded in λΠ[sPe] is inhabited, then the original proposition
is also inhabited in PVS-Core. Because PVS-Cert is a conservative extension
of PVS-Core (ibid., Chapter 8), we do not need to prove more than the com-
pleteness of λΠ[sPe].

4.4 Conclusion
We have embedded simple type theory with implicit predicate subtyping (named
PVS-Core) into the type system 𝔖 (defined in Chapter 3 Page 61). For this,
a signature and a rewrite system to embed terms of PVS-Core in λΠmr in
Section 4.1 has been provided.

113

4.4. CONCLUSION

In order to type check judgements with implicit subtyping, we provided a
rewrite system to implement a suitable cast relation: whenever type 𝐴 is a
subtype of type 𝐵 in PVS-Core, then the embedding of 𝐴 can be cast to the
embedding of 𝐵. The type system made of 𝔖 parametrised by the signature
and rewrite system for the embedding and the cast relation is denoted 𝔖+[sPe].

We end the chapter by proving that the embedding of PVS-Core in 𝔖+[sPe]
preserves typing.

114

Chapter 5

Translating PVS

Previous chapters described theoretic embeddings of terms from various systems
to a logical framework. Although there was a focus on computability through
bidirectional formalisms and decidable congruences, few applications have been
shown.

In this section, we take a look at the translation of the standard library of
the proof assistant PVS called ‘Prelude’ to Dedukti, an implementation of a
logical framework with computation rules.

5.1 Computational logical frameworks
Dedukti (Deducteam 2022a) is an implementation1 of λΠmr. It is used as a
proof checker: given a signature, it returns whether it is is well-formed or not.
Because Dedukti is by design minimal, it does not handle existential variables
nor coercions. Therefore we use an alternative implementation Lambdapi (De-
ducteam 2022b) that can refine incomplete terms into complete Dedukti terms:
PVS files are translated to Lambdapi sources, Lambdapi refines these terms and
outputs Dedukti files.

Both Lambdapi and Dedukti interact with signatures which are coded as lists
of typing declarations and rewrite rules. Figure 5.1 defines the syntax of typing

1At the time of writing, a specification for implementations of λΠmr is being developed.
This specification is to be called Dedukti, whereas the legacy implementation, called Dedukti
in this manuscript, has been renamed to ‘the dk tool suite’. It contains a parser and a type
checker (called dkcheck) for the Dedukti language.

115

5.2. STATEMENTS AND THEORIES

⟨id⟩ ∶∶= …
⟨stmt⟩ ∶∶= symbol ⟨id⟩ ∶ ⟨𝑡⟩ [≔ ⟨𝑡⟩]? [begin admitted]?;

∣ rule ⟨𝑡⟩ ↪⟶ ⟨𝑡⟩;

Figure 5.1: BNF grammar of Lambdapi statements. Non terminal are written
between angles ⟨like this⟩. Optional groups are written between square brackets
followed by a question mark [like this]?. The class ⟨id⟩ is the class of identifiers,
it is left unspecified (in practice, it may be the class of words formed with
ASCII letters). The class ⟨𝑡⟩ is the class of terms of type systems modulo (see
Definition 2 Page 28) with holes ♦ (see Section 3.3 Page 82).

declarations in Lambdapi.
Semantically, a symbol declaration adds a typing judgement to the global

signature. If the optional group [≔ 𝑒] is used in the statement, then a rewrite
rule from the name to expression 𝑒 is also added to the signature. If the keyword
‘begin admitted’ is appended to the declaration, holes in the type or the defi-
nition are replaced by fresh axioms added to the signature. These fresh axioms
(generated by Lambdapi) are translated as symbol declarations in Dedukti. A
rewrite rule declaration adds a rewrite rule to the signature.

In this part, PVS code will be shown like this

stack: TYPE
% Here is a comment

5.2 Statements and theories

The translation of PVS terms is defined in of Fig. 4.2 Page 89, but the syntax
of PVS slightly differs from the one we used to express the translation.

PVS ’ developments are split into theories which can be seen as modules or
namespaces. Most basic theories consist of a name and a list of statements.
There are four kinds of statements: declarations, definitions, axioms and theo-
rems. For each kind of statement, we informally give its semantics, its syntax
in PVS and its translation to Lambdpi.

116

CHAPTER 5. TRANSLATING PVS

Declarations The declaration of name f of type A states that f is an inhab-
itant of type A. A declaration is translated as a fresh typing judgement in a
typing signature Σ that is accumulated through the translation. For instance,

double(x: real): real

declares that name double applied to a real number is a real number. It is
translated to

symbol double ∶ (El ([real] ⇝ (𝜆𝑥, [real])));

Definitions Definitions are essential for practical developments, they allow to
use names instead of large expressions. In general, the unfolding of definitions is
represented by a dedicated reduction called 𝛿 (Owre and Shankar 1997b; Severi
and Poll 1994; The Coq Development Team 2022) Dedukti does not handle
definitions per se. However, since it has a liberal reduction, we may simply use
it for definitions as well: A definition is translated as a typing judgement (just
like declarations) with a unique rewrite rule which rewrites the name of the
definition to the larger expression.

double(x: real) : real = x + x

declares that double(x) expands to x + x. It is translated as the following
declarations

symbol double ∶ (El ([real] ⇝ (𝜆𝑥, [real]))) ≔ 𝜆𝑥, 𝑥 + 𝑥;

Axioms An axiom states that a certain proposition is inhabited, but the in-
habitant is not provided. Like declarations, they are translated as fresh typing
judgements.

foo : POSTULATE Bar

declares that foo is a proof of proposition Bar. Since Bar is a proposition, its
type is bool. It is translated as

symbol foo ∶ (Prf [Bar]);

Theorems Theorems are like definitions, but the type of the term is a propo-
sition, and the term itself is seen as a proof of that proposition, with, in general,

117

5.3. PVS LANGUAGE FEATURES

no computational relevance. It is thus common in implementations to drop the
expansion: what matters is that a proof has been given at some point.

foo : THEOREM Bar

defines foo as a proof of proposition Bar. Because there is no proof term in
PVS , the proof is not given in the statement, it is asked to the user, and stored
elsewhere as a tree of tactics. It is translated as a single judgement and a new
hole

symbol foo ∶ (Prf [Bar]) ≔ ♦ begin admitted;

5.3 PVS language features
So far, we have only dealt with a minimal kernel for PVS . PVS has more features
which must be correctly encoded to be able to translate actual files. We give
some of these features, and sketch encodings into Lambdapi.

5.3.1 Overloading
PVS allows to overload symbols (Owre, Shankar et al. 2020, Chapter 8) (this
feature is sometimes called ad-hoc polymorphism). For instance, the minus
symbol - is overloaded to be both a unary minus and a binary subtraction.
Overloading is also used to provide both curried and uncurried version of some
operators, or to pass arguments as theory parameters (see for instance the func-
tion least_upper_bound? defined in theories ‘orders’ and ‘orders_alt’).

Overloading can be removed by the translation. When a term is type checked
by PVS , each ‘name’ (a ‘name’ is a Lisp structure which represents a variable
or constant) contains a pointer to the statement in which it is declared. The
translation takes into account both the original name and the declaration to
create a new, unambiguous identifier in Lambdapi.

5.3.2 Theory parameters and polymorphism
Theories may depend on a context containing type variables as well as ob-
ject variables. Consider the theory Fig. 5.2. All statements of the theory ab-
stract over the parameter t, therefore, when not in the scope of the theory,
objects of the theory ‘stack’ must instantiate the parameter t. This instan-
tiation is performed in PVS by providing a context, for instance, the type

118

CHAPTER 5. TRANSLATING PVS

stack[t: TYPE]: THEORY
stack: TYPE
nil: stack
push(e: t, s: stack): stack

END stack

Figure 5.2: Theory for stacks with polymorphism.

of stacks of booleans is stack[bool].stack. We could say that there are
two different applications: one with brackets to instantiate theories’ parame-
ters and the other noted with parentheses being the usual application of 𝜆-
calculus. In the framework, we have one application only. Because there is
no mechanism to implicitly abstract over statements in a module, theory pa-
rameters are translated as function arguments. The type declaration stack
above is translated as ‘symbol stack ∶ Π𝑡 ∶ Type, Type;’ and nil is translated as
‘symbol nil ∶ Π𝑡 ∶ Type, (stack 𝑡);’. Such an encoding is not conservative since
the non applied term stack is not typeable in PVS while it is in the framework:
Π𝑡 ∶ Type, Type is not in the image of any embedding.

5.3.3 Logical connectives
The primitive components for logical content of PVS are falsity false, the
equality = and a (polymorphic) ternary IF. Because of predicate subtyping,
type checking branches may require to assume that the condition holds or that
the negation holds. For example, the first branch of IF(x /= 0, 1 / x, x), is
well-typed only if we can prove x /= 0 (by typing of the division operator /).
Therefore, the then branch of a conditional expression IF(P, then, else) is
type-checked in a logical context where proposition P is assumed true whereas
the else branch is type checked in a logical context where not P is assumed.

We (arbitrarily) chose to use usual encodings of simple type theory using the
implication and the universal quantification as primitive connectives (as done by
F. Gilbert 2018, Section 2.1.2). The ternary (propositional) ‘if’ can be encoded
by

symbol if ∶
Π𝑝 ∶ (El o), (El ((Prf 𝑝) ⇝ o)) → (El ((Prf (¬ 𝑝)) ⇝ o)) → (El o) ≔
𝜆𝑝, 𝜆then, 𝜆else, (𝑝 ⇒ then) ⇒ (𝜆𝑥, (¬ 𝑝) ⇒ else);

119

5.3. PVS LANGUAGE FEATURES

The logical context is encoded by the context used in the type checking relation,
and its extension is hence encoded by the dependent implication (𝑝⇒then) where
‘then’ binds a proof of the condition 𝑝 in the expression used as first branch.
Therefore, assuming a division operator

symbol / ∶ (El (real⇝ (psub (𝜆𝑟, 𝑟 ≠ 0)) ⇝ real));

the latter function can be encoded in PVS-Cert with

𝜆𝑥, (if (𝑥 ≠ 0) (𝜆𝑝 ∶ (Prf (𝑥 ≠ 0)), (/ 1 (pair𝑥 𝑝))) (𝜆𝑝, 1)) .

5.3.4 Tuples and matching
PVS handles natively tuples and dependent tuples. A tuple is a heterogeneous
fixed-length collection of elements. To distinguish between types and inhabi-
tants, we will use telescopes (de Bruijn 1991) for types of tuples, and tuples
for the objects. We may have dependent telescopes, which behave like chained
dependent pairs, and non dependent telescopes. Owre and Shankar 1997b pro-
vide the typing rules for pairs but not for general telescopes. Tuples are noted
(𝑥, 𝑦, 𝑧) and telescopes [𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵, 𝑧 ∶ 𝐶] or [𝐴,𝐵,𝐶] if 𝐵 does not depend
on 𝑥 and 𝐶 does not depend on 𝑥 nor 𝑦. We infer naturally typing rules for
telescopes,

Γ ⊢ 𝐴 ∶ TYPE Γ, 𝑥 ∶ 𝐴 ⊢ [𝑩] ∶ TYPE
Γ ⊢ [𝑥 ∶ 𝐴,𝑩] ∶ TYPE

Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ (𝒃) ∶ [𝑩]
Γ ⊢ (𝑎, 𝒃) ∶ [𝑥 ∶ 𝐴,𝑩]

In contrast with binary cartesian products, [𝐴, [𝐵,𝐶]] is different from [𝐴,
𝐵,𝐶].

In idiomatic PVS , telescopes are used abundantly in function declarations.
Therefore functions are seldom curried. To currify PVS , we may use some
procedure defined by

Curry([𝐷0,𝑫] → 𝑅) = 𝐷0 → Curry([𝑫] → 𝑅)
Curry([𝐷1, 𝐷2] → 𝑅) = 𝐷1 → 𝐷2 → 𝑅.

120

CHAPTER 5. TRANSLATING PVS

But this method fails to currify correctly the defined type PRED such that
PRED[t] = [t -> bool], in particular when PRED[[t, t]] appears (this func-
tion is defined in the theory ‘defined_types’ of the Prelude).

To ease the definition of functions, PVS pattern-matches the components
of arguments that are tuples. To define a function of two arguments, that
is, a function that takes a tuple of two elements as argument, the syntax
f(x, y) = x + y is used, instead of the more cumbersome f(x) = x`1 + x`2
(where x`n is the nth element of tuple x). We thus have to define a matching
operator on tuples as well. Let A.N be the type of (unary) integers, T n be the
type of telescopes of length n and code a function that injects telescopes into
type codes (code is thus of type Π𝑛 ∶ A.N, (T𝑛) → Type where the first argument
is left implicit).

symbol match [l: A.N] [ret: Set] [tt: T l] (arg: El (code tt)):
El (mkarr tt ret) → El ret;

rule match nil $e ↪ $e
with match (&cons $x $y) $f ↪ match $y ($f $x)
with match (cons $x $y) $f ↪ match $y ($f $x);

Function mkarr is defined by

injective symbol mkarr [n: A.N]: T n → Set → Set;
rule mkarr nil! $Ret ↪ $Ret
with mkarr (&cons! $X $Q) $Ret ↪ arrd $X (λ x, (mkarr ($Q x) $Ret))
with mkarr (cons! $X $Q) $Ret ↪ arr $X (mkarr $Q $Ret);

so that, denoting [A,B] for a (non dependent) telescope and A ~> B for an en-
coded arrow, mkarr [A, B] ret returns A ~> B ~> ret, that is, mkarr trans-
forms a telescope into a function type with ret for codomain. With these
functions, we are able to translate a statement such as

XOR(A: bool, B: bool) = (A /= B)

by

symbol XOR ∶
(El [[A, B -> bool]]) ≔
𝜆𝑥, (match𝑥 (𝜆𝐴𝐵 ∶ (El [Prop]), [A /= B]));

where the variables A and B of the body A /= B are captured by the variables
of the variables 𝐴 and 𝐵 of the abstraction.

121

5.3. PVS LANGUAGE FEATURES

5.3.5 Bounded quantification
Since there is a notion of subtypes in PVS , a possible extension is to allow
theories to quantify over all subtypes of a given type. A subtype is declared
in theory parameters with [A TYPE FROM B] to state that A is a subtype of
B. Semantically, it means that A can be substituted by any type C such that
the conjunct of the predicates that define C imply the conjunct of predicates
defining B.

Contexts are extended with bindings of the form 𝑋 <∶ 𝐴. The following rule
is admissible,

𝑋 <∶ 𝐴 ∈ Γ Γ ⊢ 𝑡 ∶ 𝑋
Γ ⊢ 𝑡 ∶ 𝐴

which allows to perform predicate subtyping on type variables. For instance, in
context

Γ = int ∶ Type,nat ∶ Type ≔ psub(int, (𝜆𝑘, 𝑘 ≥ 0)),
𝑋 <∶ nat, 𝑥 ∶ 𝑋, abs ∶ int → nat

(where nat is defined) judgement ‘Γ ⊢ (abs𝑥) ∶ nat’ holds because 𝑥 can be
typed as int using the aforementioned rule: it is first typed from 𝑋 to nat
because 𝑋 <∶ nat is in Γ, then from nat to int by (syntactic) subtyping. We
cannot ignore the judgement 𝑋 <∶ nat and translate it as 𝑋 ∶ Type, because there
is no coercion from 𝑋 to nat, so there is no 𝑡 such that 𝑥 ∶ (El𝑋) <∶ JnatK ⇝ 𝑡
holds.

To ensure correctness, we can provide a cast operator defined as

symbol cast ∶ Π𝐴 ∶ Type, Π𝐵 ∶ Type, Π𝑥 ∶ (El𝐴), (El𝐵);

and we translate the previous example into Δ ⊢ (abs (cast𝑋nat 𝑥)) ⇐ JnatK
which in turn holds. However the cast operator is highly unsafe: it breaks
completeness of the encoding since any type can be inhabited with cast. To
avoid inhabiting any type, we can ask for a proof p that X is a subtype of A in
cast X A p x.

There are two ways to provide such a proof P. Either the cast operator
expects a semantical proof which states that the conjunct of predicates defining
X implies the conjunct of predicates defining A. This requires an operator that
retrieves the predicates that define a type. In the semantics manual, Owre and
Shankar 1997b define the operator 𝜋 for such a job. Or the operator expects

122

CHAPTER 5. TRANSLATING PVS

a syntactic proof which ensures that X can only be substituted by syntactic
subtypes of A.

We chose to encode the syntactic constraint. For this, we consider a tree
where types are nodes, and there is an edge between two types if one is a direct
subtype of the other. For instance, there is an edge between {x: A | P} and A.
The evidence that 𝑋 is a subtype of 𝐴 is then a path in the tree from 𝑋 to 𝐴.
Paths can be built with the system in Fig. 5.3. This proof system is encoded
into the framework using a dedicated type

1 constant symbol Restriction: Set → Set → TYPE;

where an inhabitant of Restriction A B is an evidence that A is a subtype of
B. Then the inference rules are encoded:

1 constant symbol Rest-refl (a: Set): Restriction a a;
2 constant symbol Rest-sub (a: Set) (p: El (a ~> prop)): Restriction (psub [a] p) a;
3 constant symbol Rest-trans (a b c: Set):
4 Restriction a b → Restriction b c → Restriction a c;
5 constant symbol Rest-fun (d r0 r1: Set):
6 Restriction r0 r1 → Restriction (d ~> r0) (d ~> r1);
7 constant symbol Rest-tuple [len: A.N]
8 (hd0: Set) (tl0: TL.T len)
9 (hd1: Set) (tl1: TL.T len):

10 Restriction hd0 hd1 → Restriction (TL.code tl0) (TL.code tl1) →
11 Restriction (TL.code (TL.cons! hd0 tl0)) (TL.code (TL.cons! hd1 tl1));

and we can define the cast operator
1 symbol cast (a: Set) (b: Set) (_: Restriction a b) (_:El a): El b;

If no computation is added on cast, we may encounter conversion issues, be-
cause, for instance, (cast (psub A P) A (Rest-sub A P) x) is not convert-
ible with (fst A P x). Therefore we add the following reduction rules where
TL is a namespace for telescope-related operations, and in that namespace, car
retrieves the head of a telescope, cdr retrieves its tail and code transforms a
telescope into a type code,

1 rule cast _ _ (Rest-refl _) $x ↪ $x;
2 rule cast _ _ (Rest-trans $a $b $c $prf-ab $prf-bc) $x ↪
3 cast $b $c $prf-bc (cast $a $b $prf-ab $x);
4 rule cast _ _ (Rest-sub _ _) $x ↪ fst $x;
5 rule cast _ _ (Rest-fun _ $r0 $r1 $proof) $f ↪ λ x, cast $r0 $r1 $proof ($f x);
6 rule cast _ _ (Rest-tuple $h0 $t0 $h1 $t1 $proof-hd $proof-tl) $l ↪
7 TL.cons (cast $h0 $h1 $proof-hd (TL.car $l))
8 (cast (TL.code $t0) (TL.code $t1) $proof-tl (TL.cdr $l));

These reductions pattern-match on the proof provided, which allows to have an
orthogonal, type-preserving rewrite system. Again, just like in PVS , subtyping
is covariant on the codomain but neither covariant nor contravariant in the
domain because of rule rest-fun.

123

5.3. PVS LANGUAGE FEATURES

rest-refl

𝐴 ≤ 𝐴

rest-sub

psub(𝐴, 𝑃) ≤ 𝐴

rest-trans
𝐴 ≤ 𝐵 𝐵 ≤ 𝐶

𝐴 ≤ 𝐶

rest-fun
𝑅 ≤ 𝑅′

𝐷 → 𝑅 ≤ 𝐷 → 𝑅′

rest-tup
𝑇0 ≤ 𝑇 ′

0 (𝑇𝑖)𝑖∈{1… } ≤ (𝑇 ′
𝑖)𝑖∈1…

𝑻 ≤ 𝑻 ′

Figure 5.3: Inference rules to derive subtyping judgements 𝐴 ≤ 𝐵.

Remark 11. At the time of writing, this encoding is not used in the transpiler
yet. Indeed, since this encoding manipulates subtyping proofs, the translation
function must introduce them. Therefore, any subtype binding of the form
X TYPE FROM Y has to introduce two elements in the context, the type X as
well as a proof that X is a subtype of Y. Because contexts may be extended
only through abstractions or products in the framework both X and the proof
of subtyping must be abstracted over.

For instance, the theory

min_nat[T: TYPE FROM nat]: THEORY
min(S: (nonempty?[T])): {a | S(a) AND (FORALL x: S(x) IMPLIES a <=

x)}
[...]

END min_nat

would be translated as

symbol min ∶
Π𝑇 ∶ Type, (Restriction𝑇 nat) → Π𝑆 ∶ (El (psub (nonempty?𝑇))),…;

where min is a function that accepts three arguments: a type 𝑇, a proof that 𝑇
is a subtype of nat and a set 𝑆.

Regarding the code of the transpiler, it is fairly easy to abstract over an addi-
tional parameter, but one has to remember which theory uses bounded quantifi-
cation. The translator should thus inspect the declarations of the constants and
the theory they are declared in to see whether it uses bounded quantification.

124

CHAPTER 5. TRANSLATING PVS

5.3.6 Records
Records (Owre, Shankar et al. 2020, Section 5.11) are native types in PVS , and
can be anonymous. For instance, given the expression (# x := 4, y := 5 #),
PVS infers the record type [# x : nat, y : nat #]. We do not have yet
an encoding for records, so such judgements cannot be translated. However,
we may be able to axiomatise declared record types. For instance, assuming a
record type rc : [# a: T1, b: T2 #] is declared in PVS , we can declare a
fresh type, a constructor and the projections ,

1 constant symbol rc: Set;
2 constant symbol make_rc (_: El T1) (_: El T2): El rc;
3 constant symbol a_of_rc : El (rc ~> T1);
4 constant symbol b_of_rc : El (rc ~> T2);

and then translate (# a := e1, b := e2 #) by make_rc a b; given a record
value v, projection v`a is translated as a_of_rc v and v`b as b_of_rc v.

However, because PVS allows anonymous record types, the translation has to
axiomatise each anonymous record type occurrence and ensure that two equiv-
alent anonymous record type are also equivalent in the framework.

5.3.7 Fixpoints and inductive types
Inductive types (Pierce 2002) are allowed in PVS . For instance, the transitive
closure of a relation R, defined in the theory ‘relations’ of the Prelude reads as
follows

TC(R)(x, y): INDUCTIVE bool = R(x,y) OR (EXISTS z: TC(R)(x,z) AND
TC(R)(z,y))

Recursive functions (Owre, Shankar et al. 2020, Section 3.4) can also be defined,
such as the exponential in theory ‘exponentiation’:

expt(r, n): RECURSIVE real =
IF n = 0 THEN 1 ELSE r * expt(r, n-1) ENDIF

MEASURE n;

A measure must be provided along with the definition to ensure that it is de-
creasing. For each recursive definition, a type correctness condition is issued to
prove the recursive calls are smaller according to the measure.

Following the intuitions of Gaspard Férey 2021, a recursor can be defined
with a fix operator:

125

5.3. PVS LANGUAGE FEATURES

1 symbol fix (a: Set)(r: Set)(meas:El a → Nat)
2 (f: Π(x:El a),
3 (Π(y:El a)(π:Prf(lenat (meas y) (meas x))), El r) → El r):
4 El a → El r;

where Nat is the type of natural numbers and lenat is the usual order on natural
numbers. The idea is to create a fixpoint such that (fix 𝑓) = (𝑓 (fix 𝑓)). But
because we want it polymorphic, we must take as argument the codes of the
domain a and codomain r. We also take as argument the measure meas used to
ensure that the recursive call is issued on a smaller argument. Then we take as
argument the function f itself. This function has type

Π𝑥 ∶ (El 𝑎),
(Π𝑦 ∶ (El 𝑎),Π𝜋 ∶ (Prf (lenat (meas 𝑦) (meas𝑥))), (El 𝑟)) →

(El 𝑟)

where 𝑥 is the current argument of the fixpoint (fix 𝑓 𝑥), 𝑦 is the value on which
the recursive call occurs and 𝜋 is a proof that the measure of 𝑦 is smaller than
the measure of 𝑥. We also define a computation rule

1 rule fix $a $r $meas $f $x ↪
2 $f $x
3 (λ (y: El $a) (π:Prf(lenat ($meas y) ($meas $x))),
4 fix $a $r $meas $f y);

Let us see how the function behaves on the definition of the factorial:
1 symbol nat: Set;
2 rule (El nat) ↪ Nat;
3 symbol mul: El (nat ~> nat ~> nat);
4 symbol pred: El (nat ~> nat);
5 symbol pred-lower: Prf (∀ nat (λ n: El nat, (lenat (pred n) n)));
6 symbol fac* n fac ≔
7 (if (eqnat n 0)
8 1
9 (mul n (fac (pred n) (pred-lower n))));

10 symbol fac n ≔ fix nat nat (λ x, x) fac* n;

We give a sequence of reduction of the term (fac 5)

1. We begin by unfolding the symbol fac,
1 fix nat nat (λ x, x) fac* 5

2. which produces a term that reduces to, by the fixpoint rule,
1 (λ n fac,
2 if (eqnat n 0)
3 1
4 (mul n (fac (pred n) (pred-lower n))))
5 5
6 (λ(y:El nat) (π:Prf(lenat y 5)), fix nat nat (λ x, x) fac* y)

126

CHAPTER 5. TRANSLATING PVS

3. This new term 𝛽 reduces to
1 if (eqnat 5 0)
2 1
3 (mul 5 ((λ y π, fix nat nat (λ x, x) fac* y) 4 (pred-lower 5)))

4. and further 𝛽 reduces to
1 if (eqnat 5 0)
2 1
3 (mul 5 (fix nat nat (λ x, x) fac* 4))

The result is convertible with if (eqnat 5 0) 1 (mul 5 (fac 4)). We can
see that the second 𝛽 reduction (Item 4) may occur only if a proof of decreas-
ingness is provided.

However, this method has a severe drawback: the termination of the fixpoint
reduction rule depends on the reduction strategy. Indeed, we chose to perform
a 𝛽 reduction at Item 3, but we could have continued unfolding the reduction
rule of the fixpoint. For that reason, this encoding is not used in the translation,
and the computational content of recursive functions is removed.

5.3.8 Abstract datatypes
Owre and Shankar 1997a also define ‘abstract datatypes’. Abstract datatypes
allow one to define sructures that can be freely generated by a finite number of
constructors, such as lists. Datatype declarations behave like macros, i.e. they
are expanded (by PVS) to a theory.

5.4 Implementation
The code in charge of the translation of PVS specifications to Lambdapi signa-
tures is a patch for PVS , written in Common Lisp (X3J13 Committee 1994). It
is part of the personoj (Hondet 2022) suite. The code defines a new command
for PVS that can be invoked from PVS ’ ‘read-eval-print-loop’. The command
takes as argument the name of a PVS theory and outputs its translation. The
patch defines mainly a printing function pp-dk such that (pp-dk strm obj)
prints the translation of PVS object obj onto stream strm.

An arbitrary theory from the Prelude may be printed with the commands
given in Fig. 5.4

The translation has only been tested on the Prelude so far. In particular,
in PVS , all theories of the Prelude are implicitly imported. Therefore, for any
theory of the Prelude, its PVS version does not contain any import command

127

5.4. IMPLEMENTATION

$./pvs -raw
[...]
* (get-theory "booleans")

#<Theory booleans>
* (pp-dk *standard-output* * t)

require open personoj.lhol personoj.logical personoj.pvs_cert
personoj.eq personoj.restrict personoj.coercions;
require personoj.telescope as TL;
require personoj.extra.arity-tools as A;
require open personoj.nat;
require open personoj.cast;
// Theory booleans
constant symbol prop: Set;
symbol prop: Set ≔ prop begin admitted;
constant symbol false: El prop begin admitted;
constant symbol true: El prop begin admitted;
constant symbol NOT: El (prop ~> prop) begin admitted;
constant symbol ¬: El (prop ~> prop) begin admitted;
constant symbol AND: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol &: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol ∧: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol OR: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol ∨: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol IMPLIES: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol =>: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol ⇒: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol WHEN: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol IFF: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol <=>: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
constant symbol ⇔: El ((TL.code (TL.double! prop prop)) ~> prop) begin admitted;
NIL
*

Figure 5.4: Commands to call the translator. The translator is called on the
theory ‘booleans’. Prompts starting with $ are shell prompts, the ones starting
with * are Lisp prompts. The output of each command directly follows the
prompt up to the next prompt.

128

CHAPTER 5. TRANSLATING PVS

whereas its translation to Lambdapi imports all Prelude theories defined before
it. Some theories of the Prelude are part of the encoding. These theories can
be identified in the output as the ones with the prefix personoj in Fig. 5.4.

As described in Chapter 4 Page 87, any pair coercion gives birth to a hole
(denoted ♦). In Lambdapi, these holes are materialised by existential variables.
For a declaration or definition to be well-typed in Lambdapi, it must not con-
tain any existential variable, that is, they must have been instantiated to some
term. Because holes that stand for missing proofs cannot be instantiated au-
tomatically, Lambdapi has been modified to generate fresh symbols, which can
be interpreted as axioms, to replace holes. These axioms are materialised as
constant definitions when exported to Dedukti.

Notes on the development workflow Developing in Lisp may feel odd in
regard with other languages. Readers may consult the blogpost of Losh 2018 for
an overview of the tooling used to program in Lisp. PVS is itself a Lisp image
with additional functions to parse PVS files, prove propositions interactively,
assert whether two PVS terms are equal &c. Documentation may be obtained
using usual Lisp introspection facilities. For instance, the function describe
can be used
$./pvs -raw
[...]
* (describe 'lambda-expr)
PVS:LAMBDA-EXPR
[symbol]

LAMBDA-EXPR names the standard-class #<STANDARD-CLASS PVS:LAMBDA-EXPR>:
Class precedence-list: LAMBDA-EXPR, BINDING-EXPR, EXPR, SYNTAX,

STANDARD-OBJECT, SB-PCL::SLOT-OBJECT, T
Direct superclasses: BINDING-EXPR
Direct subclasses: RECURSIVE-DEFN-CONVERSION, TUPTYPE-CONVERSION,

RECTYPE-CONVERSION, FUNTYPE-CONVERSION,
FIELDEX-LAMBDA-EXPR, LET-LAMBDA-EXPR, SET-EXPR,
LAMBDA-CONVERSION, LAMBDA-EXPR-WITH-TYPE

No direct slots.
* (describe 'binding-expr)
PVS:BINDING-EXPR
[symbol]

BINDING-EXPR names the standard-class #<STANDARD-CLASS PVS:BINDING-EXPR>:
Class precedence-list: BINDING-EXPR, EXPR, SYNTAX, STANDARD-OBJECT,

SB-PCL::SLOT-OBJECT, T
Direct superclasses: EXPR
Direct subclasses: QUANT-EXPR, LAMBDA-EXPR
Direct slots:

OP
Initargs: OP, :OP
Readers: OP
Writers: (SETF OP)

129

5.5. RESULTS

BINDINGS
Initargs: BINDINGS, :BINDINGS
Readers: BINDINGS
Writers: (SETF BINDINGS)

EXPRESSION
Initargs: EXPRESSION, :EXPRESSION
Readers: EXPRESSION
Writers: (SETF EXPRESSION)

COMMAS?
Initargs: COMMAS?, :COMMAS?
Readers: COMMAS?
Writers: (SETF COMMAS?)

CHAIN?
Initargs: CHAIN?, :CHAIN?
Readers: CHAIN?
Writers: (SETF CHAIN?)

Data structures for expressions are defined in file src/classes-expr.lisp
of PVS distribution 7.1, and the declarations are defined in src/classes-
decl.lisp.

5.5 Results
We translated parts of the Prelude of PVS . The whole Prelude contains 1000
propositions split among 133 theories. We are able to translate and type check
881 propositions split among 85 theories. There are theories that have not
been translated because they use either abstract datatypes, records or recur-
sive definitions. Some theories that use bounded quantification (particularly
that instantiate bounded types) could not be translated either, and we failed
to translate a few other theories for still unclear reasons. Judgements2 are not
translated. On the other hand, some type correctness conditions are translated
as propositions. The translation contains 77 propositions that are type correct-
ness conditions, therefore we have a total of 952 translated propositions. We
observe that terms are substantially larger with explicit predicate subtyping.
Table 5.1 shows that some theories explode in size when predicate subtyping is
made explicit. Indeed, even though half of the translation in Dedukti are less
than 2.17 times bigger than the translation in Lambdapi, theories in Dedukti
are in average 21.3 times bigger, suggesting that there are extreme values in the
distribution, as shown by the important standard deviation of 63.0. The more
predicate subtypes are nested, the more the size of terms increases (because
of explicit coercions). Furthermore, Table 5.1 does not count axioms used to
instantiate type correctness conditions, which would further increase the size

2As defined in Section 1.1.2 Page 12.

130

CHAPTER 5. TRANSLATING PVS

of Dedukti files (the translated theory ‘real_defs’ contains 2742 such axioms
generated from 53 declaration and definitions). With these axioms taken into
account, the average ratio soars up to 366, the standard deviation to 1390 and
the higest ratio to 8830. Therefore, theories like ‘sets’ that have at most one
level of predicate subtyping (that is, (psub 𝑡 𝑝) but not (psub (psub 𝑡 𝑝) 𝑞)) have
a least expansion ratio than theories like ‘naturalnumbers’ which contains up
to four levels of predicate subtyping: ‘sets’ grows from 15Kio3 (in Lambdapi)
to 44Kio (in Dedukti) while ‘naturalnumbers’ grows from 11Kio to 4.7Mio. In
consequence, type checking theories takes more time with Lambdapi than with
PVS . In particular, type checking in PVS does not take subtyping into account,
it only checks that arguments have an appropriate maximal supertype (that is,
if f is a function whose domain is psub(bool, 𝑝), then (f e) is well-typed when
the maximal supertype of e is bool). Table 5.1 shows the size of some theories
and their type checking time while Table 5.3 displays the number of statements
and the number of generated axioms of the same theories. We can clearly see
that type checking time is not proportional to the size of the theory: among
the listed theories, ‘real_defs’ is the longest to type check but not the biggest
in size. Type checking is sensitive to the shape of terms, and in particular to
how nested predicate subtyping is. We also see that Dedukti takes in general
less time to type check theories than Lambdapi, except for ‘extra_real_props’
whose number of axioms per entity ratio is substantially higher than the ratios
of other theories. We can infer that type checking expanded terms is generally
faster than type checking and refining terms, except for some pathological cases
where subtyping generates a considerable amount of type correctness conditions.
In that case, because we expect type correctness conditions to be redundant,
sharing should reduce drastically the size of the theory (and its type checking
time). Furthermore, Type checking a file requires to load all previous signatures
which can take a substantial amount of time, especially in Lambdapi where sig-
natures are heavier. For instance, the Lambdapi signature for ‘real_defs’ weighs
520Mio whereas its Dedukti counterpart weighs 249Mio. We suspect signatures
are heavier in Lambdapi because Bindlib (the library used to implement binders)
uses higher order abstract syntax and thus signatures contain closures; where
Dedukti uses de Bruijn indices. Readers concerned with performance should
rather look at Dedukti (Deducteam 2022a) or more specifically Kontroli by Fär-
ber 2022 which can handle bigger files than Lambdapi.

3A kibioctet (abbreviated Kio) is 210 = 1024 octets, a mebioctet (abbreviated Mio) is 220

octets, or 1024Kio.

131

5.5. RESULTS

Table 5.1: Distribution of the ratios between the size of theories translated to
Dedukti (with explicit predicate subtyping) and the size of theories translated
to Lambdapi (with implicit predicate subtyping). The first cell indicates that
theories translated to Dedukti are in average 21.3 times bigger than the theories
translated to Lambdapi. Columns labelled ‘25%’, ‘50%’ and ‘75%’ are the first,
second and third quartiles. Axiom declarations for type correctness conditions
that appear in Dedukti files are not counted.

Mean Std. dev Min 25% 50% 75% Max
21.3 63.1 0.761 1.47 2.17 5.20 386

Table 5.2: Size and type checking time of some theories of PVS ’ ‘Prelude’
listed in topological order. The first line indicates that the theory ‘functions’
weighs 8Kio when translated to Lambdapi (with implicit predicate subtyping),
22Kio when translated to Dedukti (with explicit predicate subtyping), Lambdapi
takes 0.04 seconds (wall clock time) to type check (and refine) the translation
and Dedukti takes 0.00 second as well to type check the (refined) translation.
Theories have been type checked on a processor ‘Intel Core i5-8265U’ with 15GiB
of random access memory.

Theory LSize (Kio) DSize (Kio) LTime (s) DTime (s)
functions 7 22 0.04 0.00
orders 10 25 0.05 0.00
sets 15 44 0.08 0.01
sets_lemmas 45 190 0.13 0.03
naturalnumbers 11 4700 6.3 1.3
real_defs 61 310 000 100 91
real_props 130 21 000 20 8.4
extra_real_props 170 220 000 55 120

132

CHAPTER 5. TRANSLATING PVS

Table 5.3: Amount of statements. The first line indicates that the theory ‘func-
tions’ contains 14 statements (a statement is either a declaration, a definition or
a proposition) and type checking the theory generates 2 type correctness condi-
tions.

Theory Statements Axioms
functions 14 2
orders 23 3
sets 52 25
sets_lemmas 119 127
naturalnumbers 34 416
real_defs 53 2742
real_props 220 3582
extra_real_props 62 6258

5.6 Conclusion
In this section, we applied the theoretical work of preceding chapters to translate
the standard library of PVS to Lambdapi, an implementation of 𝔖+[sPe]. Our
theory does not handle yet all features used by PVS in its standard library.
The implementation supports some of these features although their embedding
has not been studied extensively, and other features are not supported at all.
We are also able to make subtyping explicit, which allows us to analyse the size
increase of terms when making subtyping explicit.

133

5.6. CONCLUSION

134

Chapter 6

Exporting PVS proofs

As a proof assistant, a substantial part of PVS is dedicated to the manipulation
of proofs. Historically, we distinguish several ways to store proofs. For the
de Bruijn criterion, proofs ought to be stored in full to be checked by other
independent checkers. The LCF architecture by Milner 1972 rather records
the inference rules used to perform a proof. A proof is verified by rerunning
these inference rules on the theorem, and ensuring that these inference rules
are properly used. The trust we have on a LCF -style system depends on the
kernel that implements the inference rules of the logic. The more this kernel is
complex, the less we may trust it. PVS is closer to LCF style proof assistants,
but it is also highly automated and its kernel is large.

This chapter explores ways to translate PVS proofs to logical frameworks,
in particular λΠmr implemented by Dedukti and Lambdapi.

6.1 Proof representations
To understand how proofs are represented in PVS , we will describe succinctly
how users interact with their specification through PVS .

To define a theory in PVS , users mainly write definitions and specify prop-
erties of these definitions as propositions. There is no proof object in theories.
Propositions are proved interactively: when type checking the theory, PVS asks
users to prove theorems in a new window. This window shows a prompt, where
users may write tactics to prove the proposition incrementally. Finally, when
the proposition is proved, the window is closed and the proof script is recorded

135

6.1. PROOF REPRESENTATIONS

into another file (out of the theory).

Such a workflow emphasises the separation between defining a theory, and
proving it. There is no notion of proof in the PVS specification language,
and PVS does not specify any proof language, besides a (substantial) set of
tactics (Shankar et al. 2021).

On the other hand, logical frameworks based on λΠmr use the same repre-
sentation for proofs and terms: proofs are terms whose types are propositions.
This principle—called the Curry-de Bruijn-Howard correspondence—is embed-
ded into the encoding of PVS-Cert (Fig. 2.4 Page 39) through the mapping Prf:
propositions are terms of type (El o), and 𝜋 is a proof of 𝑃 if ⊢ 𝜋 ∶ (Prf𝑃) (see
Blanqui, Dowek et al. 2021, page 4).

For instance, if 𝑃 is a proposition, we have ⊢ 𝜆𝑥 ∶ (Prf𝑃), 𝑥 ∶ (Prf (𝑃⇒ 𝑃))
(because (Prf𝑃) → (Prf𝑃) ≃[Pe] (Prf (𝑃⇒ 𝑃))), so 𝜆𝑥 ∶ (El𝑃), 𝑥 is a proof
of 𝑃 ⇒ 𝑃. In PVS , the proposition 𝑃 ⇒ 𝑃 is proved by the sequence of tactics
(flatten propax) (sequences are written as S-expressions).

Small LCF-style systems have already been encoded successfully into De-
dukti, such has HOL-Light (Assaf and Burel 2015). In such encodings, there
is one symbol declaration per inference rule of the logic, and the application of
an inference rule is translated as the application of a symbol. Because PVS is
a large and highly automated program, it is difficult to justify how tactics are
applied.

However, internally, PVS represents proofs as trees whose nodes are labelled
with propositions. Each node of the tree is labelled with a proposition, and
there is an edge from node 𝑛1 to node 𝑛2 when the application of a certain
tactic on the proposition of 𝑛1 produce the proposition of node 𝑛2. In practice,
tactics often produce several ‘sub goals’ (a goal is a proposition to be proved),
and proofs are therefore rather trees than lists. Proof trees are available in
the Lisp environment once the proof has been rerun on the initial statement:
intermediate goals are not saved, only the tactics are.

In the rest of this chapter, propositions are expressed in PVS-Cert. To
simplify notations, we will write ‘𝑃 ⇒ 𝑄’ instead of ‘Π𝑥 ∶ 𝑃 ,𝑄’ when 𝑃 and 𝑄
are propositions (that is, their type is Prop). We remind that if ‘Γ ⊢ ℎ ∶ 𝑃 ⇒ 𝑄’
and ‘Γ ⊢ 𝑖 ∶ 𝑃’, then ‘Γ ⊢ (ℎ 𝑖) ∶ 𝑄’: proofs of implications are functions and
therefore implication are eliminated by term application.

136

CHAPTER 6. EXPORTING PVS PROOFS

6.2 Proof scripts to incomplete terms
The objective is thus to design a function 𝜙 which maps proof trees to proof
terms. If 𝜏 is a proof tree, we note 𝜏 ∶∶ 𝑃 to state that 𝑃 is the root of tree 𝜏.
For any tree 𝜏 ∶∶ 𝑃, let 𝑃 ′ be defined by ⊢ [𝑃] ∶ (El o) ⇝ 𝑃 ′ (where [−] is the
object translation defined in Fig. 4.2 Page 89), the proof of tree 𝜏 is 𝜙(𝜏) such
that ⊢ 𝜙(𝜏) ∶ (Prf𝑃 ′).

PVS implements a classical sequent calculus (Owre and Shankar 1997b), but
inference steps between nodes of the trees are generally more complex than the
application of an inference rule of the sequent calculus.

Since there is a priori no way to determine which inference rule is used, the
idea is to replace inference rules by holes. For instance, assume tree 𝜏 is of the
form

…
𝑄1

…
𝑄2

𝑃

(which can also be represented by the symbolic expression (𝑃 (𝑄1 …) (𝑄2 …))).
Then we know that a proof 𝜋𝑃 is obtained from proofs 𝜋𝑄1

of 𝑄1 and 𝜋𝑄2
of 𝑄2, but we do not know how. Therefore, provided we have a proof 𝜋→ of
𝑄1 ⇒ 𝑄2 ⇒ 𝑃, we can conclude 𝜋𝑃 = (𝜋→ 𝜋𝑄1

𝜋𝑄2
).

We define a function |−| from trees of propositions to trees of propositions
that transforms a tree of goals to a tree containing the justification of inference
steps as labels. The notation (⇒ 𝑄𝑖)𝑖 ⇒ 𝑃 is short for 𝑄1 ⇒ 𝑄2 ⇒ … ⇒ 𝑃 or
just 𝑃 if the sequence (𝑄𝑖)𝑖 is empty.

∣
(𝜏𝑖 ∶∶ 𝑄𝑖)𝑖

𝑃
∣ =

|𝜏𝑖|
(⇒ 𝑄𝑖)𝑖 ⇒ 𝑃

Trees can be annotated with proofs, such trees are noted
…

𝜌1 ∶ 𝑄1

…
𝜌2 ∶ 𝑄2

𝜋 ∶ 𝑃

We define the function ‖−‖ that transforms proof-annotated proof trees to terms
by

∥
(𝜏𝑖)𝑖

𝜋 ∶ 𝑃
∥ = (𝜋 ‖𝜏𝑖‖𝑖) (6.1)

137

6.2. PROOF SCRIPTS TO INCOMPLETE TERMS

For the following function, we introduce the notion of named holes. Named
holes are variables of a countable set 𝒴 noted ?𝑥 that are handled like regular
holes by the type checker (with rule b-hole page 83). A proof problem 𝒫 is a
set of judgements of the form {⊢ ?𝑥 ∶ 𝑃} which states that ?𝑥 is a hole that
should be replaced by a term of type 𝑃. The function (−)• annotates a proof
tree with named holes:

(
(𝜏𝑖)𝑖
𝑃

)
•

= let (𝜒𝑖, 𝒫𝑖)𝑖 = ((𝜏𝑖)
•)

𝑖
in (

(𝜒𝑖)𝑖
?ℎ ∶ 𝑃

, {⊢ ?ℎ ∶ 𝑃}⋃
𝑖
𝒫𝑖) (6.2)

where ?ℎ must be fresh and the ‘let in’ construct binds, for each 𝑖, (𝜏𝑖)
• to ele-

ments 𝜒𝑖 and 𝒫𝑖. The result is a pair made of a tree whose labels are annotated
with a typed hole and a proof problem containing the type of the hole.

The following lemma provides some specifications for the procedures.

Definition 39. An indexing function 𝑓 ∶ 𝒴 → 𝒳 is an injection that can be
extended to a mapping ̂𝑓 ∶ 𝒯(𝒳 ∪ 𝒴) → 𝒯(𝒳) defined by

̂𝑓 (𝑡 𝑢) = (̂𝑓(𝑡) ̂𝑓(𝑢)) ̂𝑓(𝜆𝑥 ∶ 𝑇 , 𝑡) = 𝜆𝑥 ∶ ̂𝑓(𝑇), ̂𝑓(𝑡)
̂𝑓(Π𝑥 ∶ 𝑇 , 𝑈) = Π𝑥 ∶ ̂𝑓(𝑇), ̂𝑓(𝑈) ̂𝑓(𝑥) = 𝑥

̂𝑓(?𝑥) = 𝑥

where the generated 𝑥 must be fresh in the case of named holes. To simplify
notations, we do not distinguish indexings 𝑓 from their extension ̂𝑓.

Lemma 30. • Procedures |−|, ‖−‖ and (−)• terminate.

• For any proof tree 𝜏 ∶∶ 𝑃, with (𝜒,𝒫) = (|𝜏|)•, for any indexing 𝐼, let Δ be
such that for each judgement {⊢ ?𝑥 ∶ 𝑃} in 𝒫, then (𝐼(?𝑥) ∶ 𝑃) ∈ Δ, then
Δ ⊢ 𝐼(‖𝜒‖) ∶ 𝑃.

Proof. For each of these procedures, the recursive calls are operated on sub-trees
of the argument. We conclude by finiteness of proof trees.

By induction on the tree 𝜏. Assume 𝜏 is of the form

𝜒1 ∶∶ 𝑄1 ⋯ 𝜒𝑛 ∶∶ 𝑄𝑛

𝑃
By definition, |𝜏| is

|𝜒1| ∶∶ 𝑅1 ⋯ |𝜒𝑛| ∶∶ 𝑅𝑛

𝑄1 ⇒ … ⇒ 𝑄𝑛 ⇒ 𝑃

138

CHAPTER 6. EXPORTING PVS PROOFS

and (𝜏)• yields a proof problem 𝒫 = 𝒬1∪…∪𝒬𝑛 where for all 𝑖, (𝜒′
𝑖, 𝒬𝑖) = (|𝜒𝑖|)

•;
and a tree 𝜏 ′

𝜒′
1 ∶∶ (?𝑖1 ∶ 𝑅1) ⋯ 𝜒′

𝑛 ∶∶ (?𝑖𝑛 ∶ 𝑅𝑛)
?ℎ ∶ 𝑄1 ⇒ … ⇒ 𝑄𝑛 ⇒ 𝑃

and ‖𝜏 ′‖ = (?ℎ ‖𝜒′
1‖ … ‖𝜒′

𝑛‖).
By induction hypothesis, there are (Δ𝑖)𝑖 such that for all 𝑖, Δ𝑖 ⊢ 𝐼(‖𝜒′

𝑖‖) ∶ 𝑄𝑖.
We define Δ such that for all judgement {⊢ ?𝑥 ∶ 𝑃} ∈ 𝒫, (𝐼(?𝑥) ∶ 𝑃) ∈ Δ.
Therefore, we can derive Δ ⊢ 𝐼(?ℎ) ∶ 𝑄1 ⇒ … ⇒ 𝑄𝑛 ⇒ 𝑃, and thus, by
the application rule, we get Δ ⊢ 𝐼(?ℎ) (𝐼(‖𝜒′

1‖)) … (𝐼(‖𝜒′
𝑛‖)) ∶ 𝑃 where terms

𝐼(‖𝜒′
𝑖‖) are typeable in Δ because by definition, for any 𝑖, Δ𝑖 ⊆ Δ.

The main motivation behind these procedures is that inference rules are
easier to prove than successive goals: given a proof tree 𝜏, it is easier to prove
labels of |𝜏| than labels of 𝜏 itself.

Procedures |−| and ‖−‖ have been implemented in personoj (Hondet 2022):
the Lisp function pprint-proof prints the proof of a formula. Each inference
step 𝑸

𝑃 is translated to a let-binding of the form ‘let 𝑣 ∶ ⋀𝑸 ⇒ 𝑃 ≔ ?𝑃 in’ as
shown in Fig. 6.1 Page 140. In Lambdapi source files, proofs are not different
from definitions: given a proposition named prop whose statement is the type
𝑃, its translated proof 𝜋, the proposition is declared along with its proof with

symbol prop ∶ (Prf𝑃) ≔ 𝜋;

If 𝜋 contains holes (which will almost always be the case), type checking this
declaration will fail because all existential variables must be instantiated for type
checking to succeed. To solve these existential variables, we can take advantage
of the proof mode of Lambdapi which allows to prove sub-goals incrementally
using tactics.

6.3 Filling gaps
Using the procedures defined in the previous section, cross checking PVS proofs
amount to solve the proof obligations generated by the annotation function
(−)•.

These proof obligations can obviously be solved manually, the cross checking
procedure is thus semi-automatic: previous procedures transform propositions
into smaller sub-goals that are easier to prove.

139

6.3. FILLING GAPS

* (let ((*current-context* *prelude-context*))
(pprint-proof "xor_def"))

[...]
let _v2 : Prf (∀ [prop] (λ (A: El prop),∀ [prop] (λ (B: El prop),= [prop]
(TL.double [prop] [prop] (xor_def.XOR (@TL.double prop prop A B))
(@if prop A (λ _v3: Prf A, ¬ B) (λ _v4: Prf (¬ A), B)))))) ≔ _ in
_v2
"_v2"

Figure 6.1: Translation of the proof of the formula xor_def from the theory
xor_def. PVS ’ prompt is preceded by *. The proof has only one inference step
which is converted into the let-binding _v2. The final proof term is also _v2.

To obtain a fully automatic cross checking procedure, we may call automated
solvers (El Haddad 2021). After all, PVS proofs often use a tactic grind that
calls an SMT solver, so we may be able to replicate this behaviour. There are
several issues to solve for this strategy to pay off:

1. proofs from PVS use predicate subtyping, there is no SMT solver that
understand predicate subtyping1;

2. PVS is higher order, higher order proof search is difficult;

3. the substitution with which lemmas are instantiated is not recorded when
they are called through highly automated tactics2 (e.g. the auto-rewrite
tactic).

Automated provers used in proof assistants such as Isabelle’s ‘sledgeham-
mer’ (Paulson and Blanchette 2012) encode higher order problems into first or-
der logic (Czajka and Kaliszyk 2018; Robinson 1969). There are native higher
order SMT solvers as well such as Satallax by Brown 2012 or Leo-III (Steen
2021; Steen and Benzmüller 2018) (see Benzmüller and Miller 2014, for more
examples). There are also recent development to extend SMT solvers to support
higher order theorem proving without higher order unification (Barbosa et al.
2019). On the other hand, Bentkamp et al. 2021 use higher order unification to
handle proofs in higher order logic.

Item 3 is likely to need PVS to be edited in order to record substitutions
used to instantiate lemmas. Otherwise, the framework may implement some
form of proof search among already proved lemmas.

1with the notable exception of Yices 1, which is no longer maintained
2but lemmas and type correctness conditions themselves are recorded in proof states.

140

CHAPTER 6. EXPORTING PVS PROOFS

F. Gilbert 2018 showed that PVS-Cert is a conservative extension of simple
type theory: a proposition 𝑃 is inhabited in simple type theory if and only if
it is inhabited in PVS-Cert. The translation J−K defined in (ibid., p. 129)
translates PVS-Cert expressions to simple type theory expression. We will note
⟨−⟩ instead of J−K to avoid confusions.

For instance,

⟨∀𝑥 ∶ psub(𝐴, 𝑃),𝑄⟩ = ∀𝑥 ∶ ⟨𝐴⟩ , (⟨𝑃⟩ 𝑥) ⇒ ⟨𝑄⟩

where term 𝑄 may use 𝜋𝑟(𝐴, 𝑃 , 𝑥), which has no counterpart in simple type
theory. The translation adds a hypothesis of (⟨𝑃⟩ 𝑥) that will be used in ⟨𝑄⟩
instead of 𝜋𝑟(𝐴, 𝑃 , 𝑥).

We can map function ⟨−⟩ over proof trees so that labels do not use predicate
subtyping. Assuming proofs of a ⟨−⟩-mapped proof tree are filled, we want in
fine to obtain a proof of the initial statement. Assuming proofs are found for
propositions without predicate subtyping, we still have to build a proof of the
initial statement which may contain predicate subtyping. A procedure ⟨−⟩−1

mapping proofs of propositions of the form ⟨𝑃⟩ to proofs of 𝑃 is required to
prove the initial goal.

Conjecture 3. Let 𝒯Pe = 𝒯({Prop, Type, Kind}, {psub, pair, 𝜋ℓ, 𝜋𝑟}). Then
there is a function

𝜙 ∶ 𝒯Pe ×𝒯({Prop, Type, Kind}) → 𝒯Pe

such that, for all 𝑃, whenever ⊢ 𝜋 ∶ ⟨𝑃⟩, then 𝜙(𝑃 , 𝜋) reduces to a proof term in
𝒯Pe and ⊢ 𝜙(𝑃 , 𝜋) ∶ 𝑃.

Related works Procedure |−| is a minimal version of the extraction phase
handled by Ekstrakto (El Haddad 2021; Haddad, Burel and Blanqui 2019).
While personoj handles directly PVS proof trees, Ekstrakto processes problems
in the TSTP format (Sutcliffe 2017). For each proof step in the TSTP file, it
generates a TPTP problem to justify inferences of the trace file. Ekstrakto is
capable of reconstructing proofs provided that TPTP sub-problems are solved
by automated theorem provers that generate Dedukti proofs like ZenonMod-
ulo (Delahaye et al. 2013) or ArchSat (Bury 2019). The proof reconstruction
phase performs the same task as function ‖−‖ where proofs are Lambdapi con-
stants. Each TPTP file gives birth to a Lambdapi file, in contrast to our pro-
cedure which generates a symbol declaration for each proof trace. Proofs to be
found are modelled with existential variables by procedure (−)• which is lighter

141

6.4. CONCLUSION

than using the module system provided by Lambdapi: for each sub-problem,
Ekstrakto expects its proof to be stored in a term named delta. The existential
quantification is thus performed at the level of modules rather than terms.

Results from the works of El Haddad 2021 are promising, but Ekstrakto only
handles formulæ in clausal normal form.

6.4 Conclusion
This section completes the translation process: while Chapter 5 only dealt with
definitions and propositions, in this chapter, we sketched a procedure to build
proof terms in 𝔖+[sPe] from the proof traces we can get from PVS . We saw
that transforming a PVS proof trace into a proof term amounts to certify that
the deduction steps PVS performs are sound. Finding such certificates amounts
to finding proofs in simple type theory with predicate subtyping. Fortunately,
F. Gilbert 2018 showed that predicate subtyping can be safely eliminated from
propositions, and thus the problem reduces to finding proofs in simple type
theory.

142

Chapter 7

Conclusion

The goal of this document was to show how predicate subtyping à la PVS can
be encoded in an extension of λΠmr with coercion insertion.

We showed how to encode certificates of typing derivations for PVS-Core
(simple type theory with predicate subtyping) (Chapter 2). We proved the
encoding preserves typing. In order to type check not only certificates but
terms of PVS-Core, we set up a new type checker featuring existential variables
and coercion insertion (Chapter 3). We showed that certificates for PVS-Core
can be generated using coercions, and that typing in PVS-Core is preserved
(Chapter 4). We discussed which features are missing from PVS-Core to be able
to encode developments extracted from the standard library of PVS (Chapter 5).
We specified a procedure to extract proofs associated to PVS specifications and
reduce them to easier sub-problems, that can hopefully be solved by automated
provers (Chapter 6).

Perspectives
The equational theory encoded by equations Eqs. (2.2), (2.3) and (𝛽) pages 31,
and 33 is a subset of the relation ≡∗ defined in (ibid.). Indeed, ≡∗ contains
surjective pairing ‘pair(𝑡, 𝑝, 𝜋ℓ(𝑡, 𝑝, 𝑒) , 𝜋𝑟(𝑡, 𝑝, 𝑒)) ≡∗ 𝑒’ while our encoded con-
gruence ≃[Pe] does not. We could add surjective pairing to ≃[Pe], but 1. the proof
of Lemma 1 Page 34 does not hold anymore and 2. relation ↪⟶𝛽,𝜋ℓ,SP (where
↪⟶SP is surjective pairing) is not confluent on untyped terms. See Section 4.1
Page 88 for more information on surjective pairing.

143

Completeness of the encoding can only be conjectured. References to tackle
completeness are given in Section 2.3 Page 42.

We chose to encode predicate subtyping using a constant psub. We could
also encode predicate subtyping like existential quantifiers in 𝜆-calculi,

(El (psub 𝑎 𝑝)) ↪⟶ Π𝑧 ∶ Type, (Π𝑥 ∶ (El 𝑎), (Prf (𝑝 𝑥)) → (El 𝑧)) → (El 𝑧) .

We provided a confluent rewrite relation to decide our equational theory
≃[Pe], but its termination is conjectured in Section 2.4.1 Page 49. More broadly,
we implemented a weak form of proof irrelevance where only an argument of
pair is proof irrelevant. It might be interesting to study full proof irrelevance
in λΠme, where all propositions are considered equal.

Regarding the refiner, we chose not to include a dedicated checking rule for
abstractions. Including it may allow the coercion judgement to not depend on
the term, since we would remove rule sub-fun page 92. In consequence, the
proof of Lemma 26 Page 104 should be reviewed.

No criteria have been provided to implement mechanical checks for typing
preservation for the rewrite rules for coercions. Algorithms from (Blanqui 2020;
Saillard 2015) could be adapted.

Similarly, criteria to check termination of the coercion system, assuming
termination of the main rewrite system, could be studied. We saw that as soon
as subtyping becomes transitive, we need recursive coercion rules, and coercion
eliminators which we encoded with a non-linear rewrite rule. We may be able
to remove this elimination rule by providing an algorithmic subtyping relation
without reflexivity taking inspiration from Pierce 2002. Coercion would then
be eliminated with rules of the shape ‘(𝜅 𝜄 𝜄 𝑥) ↪⟶ 𝑥’ where 𝜄 is an encoded
sort of the source language (a maximal type in the terminology of PVS). The
resulting subtyping strategy would become close to the one exposed by Owre and
Shankar 1997b where terms are systematically cast to their maximal supertype.
One could also look at λProlog (Dunchev et al. 2015; Felty et al. 1988) to replace
rewriting in order to implement coercion systems.

F. Gilbert proposes several extensions for PVS-Cert in order to encompass
more features of PVS . These features can be found in the standard library of
PVS and are thus discussed in Chapter 5 Page 115, but their encoding is not
proved to preserve typing, nor to be complete. Polymorphism, tuple types and
record types are ubiquitous in PVS , and thus could be proposed (for the en-
coding of records in λΠmr, see Cauderlier and Dubois 2014). Proper encoding
of recursive structures (Giménez 1994) could be used to encode recursive defi-
nitions, inductive types and ‘datatypes’ (Owre and Shankar 1997a). Bounded

144

CHAPTER 7. CONCLUSION

quantification (Pierce 2002) would also be worthwhile since it is used in PVS ’
standard library.

Implementations The refiner has been implemented in Lambdapi and in-
tegrated in the main codebase (see Deducteam 2022b, version 2.1.0) but the
coercion algorithm is at the moment prototypical. Furthermore, for now, right
elements of pairs (pair 𝑡 𝑢) are systematically holes (that are refined into exis-
tential variables). Since all type correctness conditions are translated, many of
these holes could probably be translated as instantiations of type correctness
conditions. One could try to instantiate automatically these holes, searching
through already declared propositions.

The proof extraction mechanism (Chapter 6) remains to be implemented
completely and tested on the Prelude. Functions |−|, ‖−‖ and (−)• have been
implemented by Hondet 2022, noting that personoj leaves ‘holes’ for existential
variables, and it is Lambdapi that builds proof problems when transforming
these holes into existential variables. Function ⟨−⟩−1 and ⟨−⟩ remain to be both
formalised and implemented. To take full advantage of the ability of Lambdapi
to process proof scripts, procedures ⟨−⟩−1 and ⟨−⟩ could be coded as tactics
themselves. However, these procedures could not be coupled with the tactic
why3 anyway since the latter does not return proof terms yet, it adds axioms
in the signature. One could also design a procedure that works in parallel:
proof obligations could be output in another signature and proved separately
using ad-hoc mechanisms (just like PVS stores proofs beside specifications). A
prototype has been designed in earlier versions of (ibid.).

145

146

Index

/, 120
=, 42
≤, 43
λhol, 31, 33, 37, 38, 40
λProlog, 72, 144

abs, 24, 44, 122
abstract datatype, 127
ACL2, 19
ad-hoc polymorphism, 118
adequacy, 42
Agda, 20, 42
all, 25
app, 24, 44
append, 80
ArchSat, 141
arity, 29
Automath, 10
axiom, 10, 29, 116

below, 22
≃𝛽, 31
𝛽, 31, 33, 35, 44, 50, 59, 88, 104,

143
Bindlib, 84, 131
Bool, 68, 69, 77
bool, 131

bounded, 43

C, 81
c, 79
cartesian product, 120
checking, 52
Child, 79
church-rosser, 23
coercion, 62
coherence, 82
coherent, 68
Common Lisp, 19, 127
completeness, 44, 113
completion, 51
confluent, 23
congruence, 23
cons, 79, 80
conservativity, 44
constrained inference, 53
cont?, 70, 71
context, 22
contravariant, 82
convergent, 23, 49
Coq, 20, 81, 83
correctness, 42
covariant, 82
cumulative type system, 17, 60

147

INDEX

Curry, 120

de Bruijn, 10
de Bruijn criterion, 135
de Bruijn index, 131
declaration, 116
Dedukti, 16, 17, 59, 115–117,

129–132, 135, 136, 141
definition, 116
disjoint, 22
dk, 115
dkcheck, 115
double, 117

e, 131
edinburgh’s logical framework, 15,

31
Ekstrakto, 141, 142
El, 27
elaborator, 62
ELF, 15
empty, 43
empty?, 12
eqind, 41, 42
𝜂-equivalence, 18
𝜂 equivalence, 82
𝜂-expansion, 70
Even, 34, 68
evenp, 33
EvenToInt, 68
existential variable, 62, 129
extended calculus of constructions,

20

f, 131
false, 42
fix, 126
Float, 68, 69, 77
FloatToBool, 68, 69

grind, 140

h, 70
higher order abstract syntax, 131
Hoare triple, 21
HOL, 18
HOL-Light, 136
holes, 88
Human, 79

I, 24, 25
if, 120
imply, 25
inductive type, 125
inference, 52
inj?, 103
Int, 68, 69, 77
interactive proof assistant, 81
IntToBool, 68
IntToFloat, 68, 69, 77
Isabelle, 140

joinable, 23
judgement

PVS, 13

Kind, 31, 32, 39, 41, 46, 47, 49, 88,
113, 141

Kontroli, 131

Lambdapi, 84, 115, 116, 118, 127,
129–133, 135, 139, 141,
142, 145

Lambdpi, 116
LCF, 10, 135
Lean, 20
len, 79, 80
lenat, 126
Leo-III, 140
LF, 15, 16
Lisp, 17, 118, 128, 129, 136, 139

148

INDEX

List, 79, 80
logical context, 119
logical framework, 15, 31
λΠ, 20
λΠme, 16, 17, 19, 23–25, 31, 34,

36–39, 42, 44, 47–50, 60,
61, 90, 144

λΠmr, 50, 53–56, 60, 62–64, 67, 70,
71, 74, 75, 83, 85, 87, 89,
91, 102, 113, 115, 135,
136, 143, 144

lv, 79, 80

macro, 127
map, 79
match, 121
Matita, 20, 81
meas, 126
min, 124
multiversion, 15

Nat, 34
nat, 33, 37, 43, 70, 103, 124
nil, 79, 80, 119
nonempty?, 124
nonempty_stack, 43
nonempty_stack?, 43
normal form, 44
not, 42
Nqthm, 10
Nuprl, 19

o, 27
OBJ, 20
object, 37
object oriented programming, 11
OCaml, 60, 81
overloading, 118

paradoxe, 14

parallel, see disjoint
parametric, 82
Peano, 10
personoj, 127, 139, 141, 145
Plastic, 82
pop, 41, 43
pop2push2, 41, 43
pop_push, 43
precondition, 21
predicate logic, 15
predicate subtyping, 12, 82
prelude, 115
Prf, 25
private, 59
private type, 60
product, 30
Prolog, 52
proof irrelevance, 16, 32, 56
Prop, 25, 27, 31–34, 37, 40, 41,

46–49, 88, 89, 113, 121,
136, 141

protected symbol, 59
pure type system, 28, 44, 53
push, 43
PVS, 12–14, 16–21, 27, 28, 31, 32,

41, 42, 61, 87, 88, 115,
116, 118–123, 125, 127,
129–133, 135–137,
139–145

PVS-Cert, 14, 16–19, 27, 28,
31–34, 36–42, 44, 49, 51,
52, 56, 59–61, 71, 77,
87–90, 92, 107, 113, 120,
136, 141, 144

≃Pe, 33
PVS-Core, 14, 17–19, 88–91, 104,

107, 111–114, 143

reachable, 65

149

INDEX

𝐴 <∶ 𝐵, 65
real, 120
record, 125
reductionism, 10
refiner, 62
refl, 41, 42
replacement, 22
Restriction, 124
rewriting, 49
Russell, 18, 19, 81

Satallax, 140
scons, 42–44
semig, 80
SemiGroup, 80
sequent calculus, 13
shallow, 81
signature, 28
slist, 42, 43
smt solver, 140
snil, 43, 44
sort, 29
soundness, 42
source, 63
specification, 12, 21
stack, 12, 43, 119
statement, 116
String, 34
subject reduction, 50
substitution, 104
subtyping, 11
suc, 42–44
succ, 80
supertype, 32

surjective pairing, 90
synthesis, 52
𝔖, 62
system f, 77

T, 121
tactic, 13
target, 63
TCC, 88
telescope, 29, 120
terminating, 44
theorem, 116
theory, 116
TPTP, 141
TSTP, 141
tuple, 120
Type, 31, 32, 34, 37, 40, 41, 46–49,

88, 89, 111–113, 122, 141
type code, 37
type preservation, 42
type system modulo, 28, 30

validity, 53
vcons, 79, 80
Vec, 79, 80
vl, 79
vnil, 79, 80

Yices, 13

Z, 80
zE, 34
ZenonModulo, 141
zero, 34, 42–44

150

Bibliography

Abadi, Martı́n and Luca Cardelli (1995). ‘A Theory of Primitive Objects:
Second-Order Systems’. In: Sci. Comput. Program. 25.2-3, pp. 81–116. doi:
10.1016/0167-6423(95)00010-0. url: https://doi.org/10.1016/0167-
6423(95)00010-0.

AbdelGawad, Moez A. (2014). ‘Subtyping in Java with Generics and Wildcards
is a Fractal’. In: CoRR abs/1411.5166. arXiv: 1411.5166. url: http://arx
iv.org/abs/1411.5166.

Abel, Andreas and Thierry Coquand (June 2020). ‘Failure of Normalization in
Impredicative Type Theory with Proof-Irrelevant Propositional Equality’.
In: Logical Methods in Computer Science Volume 16, Issue 2. doi: 10.2363
8/LMCS-16(2:14)2020. url: https://lmcs.episciences.org/6606.

Abel, Andreas, Thierry Coquand and Miguel Pagano (2011). ‘A Modular Type-
checking algorithm for Type Theory with Singleton Types and Proof Irrele-
vance’. In: Log. Methods Comput. Sci. 7.2. doi: 10.2168/LMCS-7(2:4)2011.
url: https://doi.org/10.2168/LMCS-7(2:4)2011.

The Agda Team (Dec. 2021). Agda Manual. Version 2.6.2.1. url: https://agd
a.readthedocs.io/en/v2.6.2.1/index.html.

Asperti, Andrea, Wilmer Ricciotti and Claudio Sacerdoti Coen (2014). ‘Matita
Tutorial’. In: J. Formaliz. Reason. 7.2, pp. 91–199. doi: 10.6092/issn.197
2-5787/4651. url: https://doi.org/10.6092/issn.1972-5787/4651.

Asperti, Andrea, Wilmer Ricciotti, Claudio Sacerdoti Coen and Enrico Tassi
(2012). ‘A Bi-Directional Refinement Algorithm for the Calculus of (Co)In-
ductive Constructions’. In: Log. Methods Comput. Sci. 8.1. doi: 10.2168
/LMCS-8(1:18)2012. url: https://doi.org/10.2168/LMCS-8(1:18)2012
.

[SW] Asperti, Andrea, Wilmer Ricciotti, Claudio Sacerdoti Coen and Enrico
Tassi, Matita 2018. vcs: https://github.com/LPCIC/matita, swhid:

151

https://doi.org/10.1016/0167-6423(95)00010-0
https://doi.org/10.1016/0167-6423(95)00010-0
https://doi.org/10.1016/0167-6423(95)00010-0
https://arxiv.org/abs/1411.5166
http://arxiv.org/abs/1411.5166
http://arxiv.org/abs/1411.5166
https://doi.org/10.23638/LMCS-16(2:14)2020
https://doi.org/10.23638/LMCS-16(2:14)2020
https://lmcs.episciences.org/6606
https://doi.org/10.2168/LMCS-7(2:4)2011
https://doi.org/10.2168/LMCS-7(2:4)2011
https://agda.readthedocs.io/en/v2.6.2.1/index.html
https://agda.readthedocs.io/en/v2.6.2.1/index.html
https://doi.org/10.6092/issn.1972-5787/4651
https://doi.org/10.6092/issn.1972-5787/4651
https://doi.org/10.6092/issn.1972-5787/4651
https://doi.org/10.2168/LMCS-8(1:18)2012
https://doi.org/10.2168/LMCS-8(1:18)2012
https://doi.org/10.2168/LMCS-8(1:18)2012
https://doi.org/10.2168/LMCS-8(1:18)2012
https://github.com/LPCIC/matita

BIBLIOGRAPHY

⟨swh:1:dir:766d45eced3d73664ce3548352024f9c6022d362;origin=http
s://github.com/LPCIC/matita;visit=swh:1:snp:e9b4ab1512b17932f6
00788af1e1b97f25fbeef9;anchor=swh:1:rev:794ed25e6e608b2136ce7f
a2963bca4115c7e175⟩.

Aspinall, David and Adriana B. Compagnoni (2001). ‘Subtyping dependent
types’. In: Theor. Comput. Sci. 266.1-2, pp. 273–309. doi: 10.1016/S03
04-3975(00)00175-4. url: https://doi.org/10.1016/S0304-3975(00)0
0175-4.

Assaf, Ali (Sept. 2015). ‘A framework for defining computational higher-order
logics’. Theses. École polytechnique. url: https://pastel.archives-ouve
rtes.fr/tel-01235303.

Assaf, Ali and Guillaume Burel (2015). ‘Translating HOL to Dedukti’. In: Pro-
ceedings Fourth Workshop on Proof eXchange for Theorem Proving, PxTP
2015, Berlin, Germany, August 2-3, 2015. Ed. by Cezary Kaliszyk and An-
drei Paskevich. Vol. 186. EPTCS, pp. 74–88. doi: 10.4204/EPTCS.186.8.
url: https://doi.org/10.4204/EPTCS.186.8.

Avizienis, Algirdas (1985). ‘The N-Version Approach to Fault-Tolerant Software’.
In: IEEE Trans. Software Eng. 11.12, pp. 1491–1501. doi: 10.1109/TSE.19
85.231893. url: https://doi.org/10.1109/TSE.1985.231893.

Baader, Franz and Tobias Nipkow (1998). Term rewriting and all that. Cam-
bridge University Press. isbn: 978-0-521-45520-6.

Barbosa, Haniel et al. (2019). ‘Extending SMT Solvers to Higher-Order Logic’.
In: Automated Deduction - CADE 27 - 27th International Conference on
Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings. Ed.
by Pascal Fontaine. Vol. 11716. Lecture Notes in Computer Science. Springer,
pp. 35–54. doi: 10.1007/978-3-030-29436-6_3. url: https://doi.org
/10.1007/978-3-030-29436-6%5C_3.

Barendregt, Hendrik Pieter, Wil Dekkers and Richard Statman (2013). Lambda
Calculus with Types. Perspectives in logic. Cambridge University Press. isbn:
978-0-521-76614-2. url: http://www.cambridge.org/de/academic/subje
cts/mathematics/logic-categories-and-sets/lambda-calculus-type
s.

Barendregt, Henk and Kees Hemerik (1990). ‘Types in Lambda Calculi and Pro-
gramming Languages’. In: ESOP’90, 3rd European Symposium on Program-
ming, Copenhagen, Denmark, May 15-18, 1990, Proceedings. Ed. by Neil D.
Jones. Vol. 432. Lecture Notes in Computer Science. Springer, pp. 1–35. doi:
10.1007/3-540-52592-0_53. url: https://doi.org/10.1007/3-540-52
592-0%5C_53.

152

http://archive.softwareheritage.org/swh:1:dir:766d45eced3d73664ce3548352024f9c6022d362;origin=https://github.com/LPCIC/matita;visit=swh:1:snp:e9b4ab1512b17932f600788af1e1b97f25fbeef9;anchor=swh:1:rev:794ed25e6e608b2136ce7fa2963bca4115c7e175
http://archive.softwareheritage.org/swh:1:dir:766d45eced3d73664ce3548352024f9c6022d362;origin=https://github.com/LPCIC/matita;visit=swh:1:snp:e9b4ab1512b17932f600788af1e1b97f25fbeef9;anchor=swh:1:rev:794ed25e6e608b2136ce7fa2963bca4115c7e175
http://archive.softwareheritage.org/swh:1:dir:766d45eced3d73664ce3548352024f9c6022d362;origin=https://github.com/LPCIC/matita;visit=swh:1:snp:e9b4ab1512b17932f600788af1e1b97f25fbeef9;anchor=swh:1:rev:794ed25e6e608b2136ce7fa2963bca4115c7e175
http://archive.softwareheritage.org/swh:1:dir:766d45eced3d73664ce3548352024f9c6022d362;origin=https://github.com/LPCIC/matita;visit=swh:1:snp:e9b4ab1512b17932f600788af1e1b97f25fbeef9;anchor=swh:1:rev:794ed25e6e608b2136ce7fa2963bca4115c7e175
https://doi.org/10.1016/S0304-3975(00)00175-4
https://doi.org/10.1016/S0304-3975(00)00175-4
https://doi.org/10.1016/S0304-3975(00)00175-4
https://doi.org/10.1016/S0304-3975(00)00175-4
https://pastel.archives-ouvertes.fr/tel-01235303
https://pastel.archives-ouvertes.fr/tel-01235303
https://doi.org/10.4204/EPTCS.186.8
https://doi.org/10.4204/EPTCS.186.8
https://doi.org/10.1109/TSE.1985.231893
https://doi.org/10.1109/TSE.1985.231893
https://doi.org/10.1109/TSE.1985.231893
https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1007/978-3-030-29436-6%5C_3
https://doi.org/10.1007/978-3-030-29436-6%5C_3
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
https://doi.org/10.1007/3-540-52592-0_53
https://doi.org/10.1007/3-540-52592-0%5C_53
https://doi.org/10.1007/3-540-52592-0%5C_53

BIBLIOGRAPHY

Barendregt, Henk and Adrian Rezus (1983). ‘Semantics for Classical AU-
TOMATH and Related Systems’. In: Inf. Control. 59.1-3, pp. 127–147. doi:
10.1016/S0019-9958(83)80033-3. url: https://doi.org/10.1016/S001
9-9958(83)80033-3.

Barras, Bruno (Nov. 1999). ‘Auto-validation d’un système de preuves avec
familles inductives’. PhD thesis. Université Paris 7.

Barras, Bruno and Bruno Bernardo (2008). ‘The Implicit Calculus of Construc-
tions as a Programming Language with Dependent Types’. In: Foundations
of Software Science and Computational Structures, 11th International Con-
ference, FOSSACS 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29 - April 6, 2008. Proceedings. Ed. by Roberto M. Amadio. Vol. 4962. Lec-
ture Notes in Computer Science. Springer, pp. 365–379. doi: 10.1007/978
-3-540-78499-9_26. url: https://doi.org/10.1007/978-3-540-78499
-9%5C_26.

Benthem Jutting, L. S. van, James McKinna and Robert Pollack (1993). ‘Check-
ing Algorithms for Pure Type Systems’. In: Types for Proofs and Programs,
International Workshop TYPES’93, Nijmegen, The Netherlands, May 24-28,
1993, Selected Papers. Ed. by Henk Barendregt and Tobias Nipkow. Vol. 806.
Lecture Notes in Computer Science. Springer, pp. 19–61. doi: 10.1007/3-5
40-58085-9_71. url: https://doi.org/10.1007/3-540-58085-9%5C_71.

Bentkamp, Alexander et al. (2021). ‘Superposition with Lambdas’. In: CoRR
abs/2102.00453. arXiv: 2102.00453. url: https://arxiv.org/abs/2102
.00453.

Benzmüller, Christoph and Dale Miller (2014). ‘Automation of Higher-Order
Logic’. In: Computational Logic. Ed. by Jörg H. Siekmann. Vol. 9. Handbook
of the History of Logic. Elsevier, pp. 215–254. doi: 10.1016/B978-0-444-5
1624-4.50005-8. url: https://doi.org/10.1016/B978-0-444-51624-4
.50005-8.

Blanqui, Frédéric (Sept. 2001). ‘Théorie des types et réécriture’. english version:
http://hal.inria.fr/inria-00105525/. Theses. Université Paris Sud - Paris XI.
url: https://tel.archives-ouvertes.fr/tel-00105522.

— (2005). ‘Definitions by rewriting in the Calculus of Constructions’. In: Math.
Struct. Comput. Sci. 15.1, pp. 37–92. doi: 10.1017/S0960129504004426.
url: https://doi.org/10.1017/S0960129504004426.

— (2020). ‘Type Safety of Rewrite Rules in Dependent Types’. In: 5th Inter-
national Conference on Formal Structures for Computation and Deduction,
FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference). Ed.
by Zena M. Ariola. Vol. 167. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum

153

https://doi.org/10.1016/S0019-9958(83)80033-3
https://doi.org/10.1016/S0019-9958(83)80033-3
https://doi.org/10.1016/S0019-9958(83)80033-3
https://doi.org/10.1007/978-3-540-78499-9_26
https://doi.org/10.1007/978-3-540-78499-9_26
https://doi.org/10.1007/978-3-540-78499-9%5C_26
https://doi.org/10.1007/978-3-540-78499-9%5C_26
https://doi.org/10.1007/3-540-58085-9_71
https://doi.org/10.1007/3-540-58085-9_71
https://doi.org/10.1007/3-540-58085-9%5C_71
https://arxiv.org/abs/2102.00453
https://arxiv.org/abs/2102.00453
https://arxiv.org/abs/2102.00453
https://doi.org/10.1016/B978-0-444-51624-4.50005-8
https://doi.org/10.1016/B978-0-444-51624-4.50005-8
https://doi.org/10.1016/B978-0-444-51624-4.50005-8
https://doi.org/10.1016/B978-0-444-51624-4.50005-8
https://tel.archives-ouvertes.fr/tel-00105522
https://doi.org/10.1017/S0960129504004426
https://doi.org/10.1017/S0960129504004426

BIBLIOGRAPHY

für Informatik, 13:1–13:14. doi: 10.4230/LIPIcs.FSCD.2020.13. url:
https://doi.org/10.4230/LIPIcs.FSCD.2020.13.

Blanqui, Frédéric, Gilles Dowek et al. (2021). ‘Some Axioms for Mathematics’.
In: 6th International Conference on Formal Structures for Computation and
Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual
Conference). Ed. by Naoki Kobayashi. Vol. 195. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 20:1–20:19. doi: 10.4230/LIPIcs.FSCD.2
021.20. url: https://doi.org/10.4230/LIPIcs.FSCD.2021.20.

Blanqui, Frédéric, Thérèse Hardin and Pierre Weis (2007). ‘On the Implemen-
tation of Construction Functions for Non-free Concrete Data Types’. In:
Programming Languages and Systems. Ed. by Rocco De Nicola. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 95–109. isbn: 978-3-540-71316-6.

Bouhoula, Adel, Jean-Pierre Jouannaud and José Meseguer (2000). ‘Specifica-
tion and proof in membership equational logic’. In: Theor. Comput. Sci.
236.1-2, pp. 35–132. doi: 10.1016/S0304-3975(99)00206-6. url: https:
//doi.org/10.1016/S0304-3975(99)00206-6.

Boyer, Robert S. and J. Strother Moore (Dec. 1979). A Computational Logic.
Ed. by Thomas A. Standish. Academic Press. isbn: 9781483277882.

Brown, Chad E. (2012). ‘Satallax: An Automatic Higher-Order Prover’. In:
Automated Reasoning - 6th International Joint Conference, IJCAR 2012,
Manchester, UK, June 26-29, 2012. Proceedings. Ed. by Bernhard Gram-
lich, Dale Miller and Uli Sattler. Vol. 7364. Lecture Notes in Computer
Science. Springer, pp. 111–117. doi: 10.1007/978-3-642-31365-3_11.
url: https://doi.org/10.1007/978-3-642-31365-3%5C_11.

[SW Rel.] Bury, Guillaume, Archsat version v1.1, Sept. 2019. lic: MIT. vcs:
https://github.com/Gbury/archsat, swhid: ⟨swh:1:dir:9b6d26ca7327
080671981480ea4e4df0efbca8d4;origin=https://github.com/Gbury/a
rchsat;visit=swh:1:snp:146ff404d9ba1c03d40a711a55bd28201faa851
1;anchor=swh:1:rev:c76bad0dd0f1d6393a16648404fbf8a7b0aaca47⟩.

Cardelli, Luca (1984). ‘A Semantics of Multiple Inheritance’. In: Semantics of
Data Types, International Symposium, Sophia-Antipolis, France, June 27-29,
1984, Proceedings. Ed. by Gilles Kahn, David B. MacQueen and Gordon D.
Plotkin. Vol. 173. Lecture Notes in Computer Science. Springer, pp. 51–67.
doi: 10.1007/3-540-13346-1_2. url: https://doi.org/10.1007/3-540
-13346-1%5C_2.

Cargill, Thomas A. (1991). ‘Controversy: The Case Against Multiple Inheritance
in C++’. In: Comput. Syst. 4.1, pp. 69–82. url: http://www.usenix.org
/publications/compsystems/1991/win%5C_cargill.pdf.

154

https://doi.org/10.4230/LIPIcs.FSCD.2020.13
https://doi.org/10.4230/LIPIcs.FSCD.2020.13
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-642-31365-3%5C_11
https://github.com/Gbury/archsat
http://archive.softwareheritage.org/swh:1:dir:9b6d26ca7327080671981480ea4e4df0efbca8d4;origin=https://github.com/Gbury/archsat;visit=swh:1:snp:146ff404d9ba1c03d40a711a55bd28201faa8511;anchor=swh:1:rev:c76bad0dd0f1d6393a16648404fbf8a7b0aaca47
http://archive.softwareheritage.org/swh:1:dir:9b6d26ca7327080671981480ea4e4df0efbca8d4;origin=https://github.com/Gbury/archsat;visit=swh:1:snp:146ff404d9ba1c03d40a711a55bd28201faa8511;anchor=swh:1:rev:c76bad0dd0f1d6393a16648404fbf8a7b0aaca47
http://archive.softwareheritage.org/swh:1:dir:9b6d26ca7327080671981480ea4e4df0efbca8d4;origin=https://github.com/Gbury/archsat;visit=swh:1:snp:146ff404d9ba1c03d40a711a55bd28201faa8511;anchor=swh:1:rev:c76bad0dd0f1d6393a16648404fbf8a7b0aaca47
http://archive.softwareheritage.org/swh:1:dir:9b6d26ca7327080671981480ea4e4df0efbca8d4;origin=https://github.com/Gbury/archsat;visit=swh:1:snp:146ff404d9ba1c03d40a711a55bd28201faa8511;anchor=swh:1:rev:c76bad0dd0f1d6393a16648404fbf8a7b0aaca47
https://doi.org/10.1007/3-540-13346-1_2
https://doi.org/10.1007/3-540-13346-1%5C_2
https://doi.org/10.1007/3-540-13346-1%5C_2
http://www.usenix.org/publications/compsystems/1991/win%5C_cargill.pdf
http://www.usenix.org/publications/compsystems/1991/win%5C_cargill.pdf

BIBLIOGRAPHY

Cauderlier, Raphaël and Catherine Dubois (2014). ‘Objects and Subtyping
in the Lambda-Pi-Calculus Modulo’. In: 20th International Conference on
Types for Proofs and Programs, TYPES 2014, May 12-15, 2014, Paris,
France. Ed. by Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau.
Vol. 39. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 47–
71. doi: 10.4230/LIPIcs.TYPES.2014.47. url: https://doi.org/10.423
0/LIPIcs.TYPES.2014.47.

Chrzaszcz, Jacek (2003). ‘Modules in Coq Are and Will Be Correct’. In: Types for
Proofs and Programs, International Workshop, TYPES 2003, Torino, Italy,
April 30 - May 4, 2003, Revised Selected Papers. Ed. by Stefano Berardi,
Mario Coppo and Ferruccio Damiani. Vol. 3085. Lecture Notes in Computer
Science. Springer, pp. 130–146. doi: 10.1007/978-3-540-24849-1_9. url:
https://doi.org/10.1007/978-3-540-24849-1%5C_9.

Church, Alonzo (1940). ‘A Formulation of the Simple Theory of Types’. In: J.
Symb. Log. 5.2, pp. 56–68. doi: 10.2307/2266170. url: https://doi.org
/10.2307/2266170.

Coen, Claudio Sacerdoti and Enrico Tassi (2009). ‘Nonuniform Coercions via
Unification Hints’. In: Proceedings Types for Proofs and Programs, Revised
Selected Papers, TYPES 2009, Aussois, France, 12-15th May 2009. Ed. by
Tom Hirschowitz. Vol. 53. EPTCS, pp. 16–29. doi: 10.4204/EPTCS.53.2.
url: https://doi.org/10.4204/EPTCS.53.2.

Collins, Allan M. and M. Ross Quillian (1969). ‘Retrieval time from semantic
memory’. In: Journal of Verbal Learning and Verbal Behavior 8.2, pp. 240–
247. issn: 0022-5371. doi: https://doi.org/10.1016/S0022-5371(69)80
069-1. url: https://www.sciencedirect.com/science/article/pii/S0
022537169800691.

Constable, Robert L. et al. (1986). Implementing mathematics with the Nuprl
proof development system. Prentice Hall. isbn: 978-0-13-451832-9. url: htt
p://dl.acm.org/citation.cfm?id=10510.

Coquand, Thierry and Gérard P. Huet (1988). ‘The Calculus of Constructions’.
In: Inf. Comput. 76.2/3, pp. 95–120. doi: 10.1016/0890-5401(88)90005-3.
url: https://doi.org/10.1016/0890-5401(88)90005-3.

Courant, Judicaël (1997). ‘A Module Calculus for Pure Type Systems’. In: Typed
Lambda Calculi and Applications, Third International Conference on Typed
Lambda Calculi and Applications, TLCA ’97, Nancy, France, April 2-4,
1997, Proceedings. Ed. by Philippe de Groote. Vol. 1210. Lecture Notes in
Computer Science. Springer, pp. 112–128. doi: 10.1007/3-540-62688-3
_32. url: https://doi.org/10.1007/3-540-62688-3%5C_32.

155

https://doi.org/10.4230/LIPIcs.TYPES.2014.47
https://doi.org/10.4230/LIPIcs.TYPES.2014.47
https://doi.org/10.4230/LIPIcs.TYPES.2014.47
https://doi.org/10.1007/978-3-540-24849-1_9
https://doi.org/10.1007/978-3-540-24849-1%5C_9
https://doi.org/10.2307/2266170
https://doi.org/10.2307/2266170
https://doi.org/10.2307/2266170
https://doi.org/10.4204/EPTCS.53.2
https://doi.org/10.4204/EPTCS.53.2
https://doi.org/https://doi.org/10.1016/S0022-5371(69)80069-1
https://doi.org/https://doi.org/10.1016/S0022-5371(69)80069-1
https://www.sciencedirect.com/science/article/pii/S0022537169800691
https://www.sciencedirect.com/science/article/pii/S0022537169800691
http://dl.acm.org/citation.cfm?id=10510
http://dl.acm.org/citation.cfm?id=10510
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/3-540-62688-3_32
https://doi.org/10.1007/3-540-62688-3_32
https://doi.org/10.1007/3-540-62688-3%5C_32

BIBLIOGRAPHY

Cousineau, Denis and Gilles Dowek (2007). ‘Embedding Pure Type Systems
in the Lambda-Pi-Calculus Modulo’. In: Typed Lambda Calculi and Applica-
tions, 8th International Conference, TLCA 2007, Paris, France, June 26-28,
2007, Proceedings. Ed. by Simona Ronchi Della Rocca. Vol. 4583. Lecture
Notes in Computer Science. Springer, pp. 102–117. doi: 10.1007/978-3-540
-73228-0_9. url: https://doi.org/10.1007/978-3-540-73228-0%5C_9.

Curien, Pierre-Louis and Roberto Di Cosmo (1996). ‘A Confluent Reduction for
the lambda-Calculus with Surjective Pairing and Terminal Object’. In: J.
Funct. Program. 6.2, pp. 299–327. doi: 10.1017/S0956796800001696. url:
https://doi.org/10.1017/S0956796800001696.

Czajka, Lukasz and Cezary Kaliszyk (2018). ‘Hammer for Coq: Automation for
Dependent Type Theory’. In: J. Autom. Reason. 61.1-4, pp. 423–453. doi:
10.1007/s10817-018-9458-4. url: https://doi.org/10.1007/s10817-0
18-9458-4.

de Bruijn, Nicolaas Govert (1972). ‘Lambda Calculus Notation with Nameless
Dummies: A Tool for Automatic Formula Manipulation, with Application to
the Church-Rosser Theorem’. In: Indegationes Mathematicae (Proceedings)
75.5, pp. 381–392. issn: 1385-7528. doi: 10.1016/1385-7528(72)90034-0.

— (1991). ‘Telescopic Mappings in Typed Lambda Calculus’. In: Inf. Comput.
91.2, pp. 189–204. doi: 10.1016/0890-5401(91)90066-B. url: https://d
oi.org/10.1016/0890-5401(91)90066-B.

— (1994). ‘Some Extensions of Automath: The AUT-4 Family’. In: Selected
Papers on Automath. Ed. by R.P. Nederpelt, J.H. Geuvers and R.C. de Vrijer.
Vol. 133. Studies in Logic and the Foundations of Mathematics. Elsevier,
pp. 283–288. doi: https://doi.org/10.1016/S0049-237X(08)70209-X.
url: http://www.sciencedirect.com/science/article/pii/S0049237
X0870209X.

[SW Rel.] Deducteam, Dedukti version 8f68bb15, May 2022. lic: CECILL-B.
vcs: https://github.com/Deducteam/Dedukti, swhid: ⟨swh:1:dir:3370
713ab51947c391e9edc50c3cbdf346aafb1d;origin=https://github.com
/Deducteam/Dedukti;visit=swh:1:snp:598eb05f3c67cf121c4252330f6
b581c77b76057;anchor=swh:1:rev:c65e7e66fe4bb8285db1856b8fe2a25
32da2bd50⟩.

[SW Rel.] Deducteam, Lambdapi version 2.2.0, 18th Mar. 2022. lic: CECILL-B.
vcs: https://github.com/Deducteam/lambdapi, swhid: ⟨swh:1:rel:da8
496ba40aff4487947c2c0dc3393394f010165;origin=https://github.co
m/Deducteam/lambdapi;visit=swh:1:snp:4746d104ac26fd901e807a427
806b3ee6b8f5118⟩.

156

https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1007/978-3-540-73228-0%5C_9
https://doi.org/10.1017/S0956796800001696
https://doi.org/10.1017/S0956796800001696
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1016/1385-7528(72)90034-0
https://doi.org/10.1016/0890-5401(91)90066-B
https://doi.org/10.1016/0890-5401(91)90066-B
https://doi.org/10.1016/0890-5401(91)90066-B
https://doi.org/https://doi.org/10.1016/S0049-237X(08)70209-X
http://www.sciencedirect.com/science/article/pii/S0049237X0870209X
http://www.sciencedirect.com/science/article/pii/S0049237X0870209X
https://github.com/Deducteam/Dedukti
http://archive.softwareheritage.org/swh:1:dir:3370713ab51947c391e9edc50c3cbdf346aafb1d;origin=https://github.com/Deducteam/Dedukti;visit=swh:1:snp:598eb05f3c67cf121c4252330f6b581c77b76057;anchor=swh:1:rev:c65e7e66fe4bb8285db1856b8fe2a2532da2bd50
http://archive.softwareheritage.org/swh:1:dir:3370713ab51947c391e9edc50c3cbdf346aafb1d;origin=https://github.com/Deducteam/Dedukti;visit=swh:1:snp:598eb05f3c67cf121c4252330f6b581c77b76057;anchor=swh:1:rev:c65e7e66fe4bb8285db1856b8fe2a2532da2bd50
http://archive.softwareheritage.org/swh:1:dir:3370713ab51947c391e9edc50c3cbdf346aafb1d;origin=https://github.com/Deducteam/Dedukti;visit=swh:1:snp:598eb05f3c67cf121c4252330f6b581c77b76057;anchor=swh:1:rev:c65e7e66fe4bb8285db1856b8fe2a2532da2bd50
http://archive.softwareheritage.org/swh:1:dir:3370713ab51947c391e9edc50c3cbdf346aafb1d;origin=https://github.com/Deducteam/Dedukti;visit=swh:1:snp:598eb05f3c67cf121c4252330f6b581c77b76057;anchor=swh:1:rev:c65e7e66fe4bb8285db1856b8fe2a2532da2bd50
http://archive.softwareheritage.org/swh:1:dir:3370713ab51947c391e9edc50c3cbdf346aafb1d;origin=https://github.com/Deducteam/Dedukti;visit=swh:1:snp:598eb05f3c67cf121c4252330f6b581c77b76057;anchor=swh:1:rev:c65e7e66fe4bb8285db1856b8fe2a2532da2bd50
https://github.com/Deducteam/lambdapi
http://archive.softwareheritage.org/swh:1:rel:da8496ba40aff4487947c2c0dc3393394f010165;origin=https://github.com/Deducteam/lambdapi;visit=swh:1:snp:4746d104ac26fd901e807a427806b3ee6b8f5118
http://archive.softwareheritage.org/swh:1:rel:da8496ba40aff4487947c2c0dc3393394f010165;origin=https://github.com/Deducteam/lambdapi;visit=swh:1:snp:4746d104ac26fd901e807a427806b3ee6b8f5118
http://archive.softwareheritage.org/swh:1:rel:da8496ba40aff4487947c2c0dc3393394f010165;origin=https://github.com/Deducteam/lambdapi;visit=swh:1:snp:4746d104ac26fd901e807a427806b3ee6b8f5118
http://archive.softwareheritage.org/swh:1:rel:da8496ba40aff4487947c2c0dc3393394f010165;origin=https://github.com/Deducteam/lambdapi;visit=swh:1:snp:4746d104ac26fd901e807a427806b3ee6b8f5118

BIBLIOGRAPHY

Delahaye, David et al. (2013). ‘Zenon Modulo: When Achilles Outruns the Tor-
toise Using Deduction Modulo’. In: Logic for Programming, Artificial Intel-
ligence, and Reasoning - 19th International Conference, LPAR-19, Stellen-
bosch, South Africa, December 14-19, 2013. Proceedings. Ed. by Kenneth L.
McMillan, Aart Middeldorp and Andrei Voronkov. Vol. 8312. Lecture Notes
in Computer Science. Springer, pp. 274–290. doi: 10.1007/978-3-642-452
21-5_20. url: https://doi.org/10.1007/978-3-642-45221-5%5C_20.

Descartes, René (June 1637). Discours de la Méthode. French. url: https://w
ww.gutenberg.org/ebooks/13846.

Dowek, Gilles (2017). ‘Models and Termination of Proof Reduction in the
lambda Pi-Calculus Modulo Theory’. In: 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland. Ed. by Ioannis Chatzigiannakis et al. Vol. 80. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 109:1–109:14. doi: 10.4
230/LIPIcs.ICALP.2017.109. url: https://doi.org/10.4230/LIPIcs
.ICALP.2017.109.

Dunchev, Cvetan et al. (2015). ‘ELPI: Fast, Embeddable, \lambda Prolog Inter-
preter’. In: Logic for Programming, Artificial Intelligence, and Reasoning -
20th International Conference, LPAR-20 2015, Suva, Fiji, November 24-28,
2015, Proceedings. Ed. by Martin Davis et al. Vol. 9450. Lecture Notes in
Computer Science. Springer, pp. 460–468. doi: 10.1007/978-3-662-48899
-7_32. url: https://doi.org/10.1007/978-3-662-48899-7%5C_32.

Dunfield, Jana and Neel Krishnaswami (2019). ‘Bidirectional Typing’. In: CoRR
abs/1908.05839. arXiv: 1908.05839. url: http://arxiv.org/abs/1908.0
5839.

Dutertre, Bruno (2014). ‘Yices 2.2’. In: Computer Aided Verification - 26th In-
ternational Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Ed. by
Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer
Science. Springer, pp. 737–744. doi: 10.1007/978-3-319-08867-9_49.
url: https://doi.org/10.1007/978-3-319-08867-9%5C_49.

El Haddad, Yacine (Sept. 2021). ‘Integrating Automated Theorem Provers in
Proof Assistants’. Theses. Université Paris-Saclay. url: https://tel.arch
ives-ouvertes.fr/tel-03387912.

[SW] Färber, Michael, Kontroli 2022. lic: GPL-3.0-or-later. vcs: https://git
hub.com/01mf02/kontroli-rs, swhid: ⟨swh:1:dir:252f87ab6290c9ddc0
a2a8e1993adc8dd67bc3df;origin=https://github.com/01mf02/kontro
li-rs;visit=swh:1:snp:c069cffb811c1cd023bd5de77e7af04bbc48214f
;anchor=swh:1:rev:52f4a715bc4b1580b2b59ef40061218cefbec678⟩.

157

https://doi.org/10.1007/978-3-642-45221-5_20
https://doi.org/10.1007/978-3-642-45221-5_20
https://doi.org/10.1007/978-3-642-45221-5%5C_20
https://www.gutenberg.org/ebooks/13846
https://www.gutenberg.org/ebooks/13846
https://doi.org/10.4230/LIPIcs.ICALP.2017.109
https://doi.org/10.4230/LIPIcs.ICALP.2017.109
https://doi.org/10.4230/LIPIcs.ICALP.2017.109
https://doi.org/10.4230/LIPIcs.ICALP.2017.109
https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.1007/978-3-662-48899-7%5C_32
https://arxiv.org/abs/1908.05839
http://arxiv.org/abs/1908.05839
http://arxiv.org/abs/1908.05839
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9%5C_49
https://tel.archives-ouvertes.fr/tel-03387912
https://tel.archives-ouvertes.fr/tel-03387912
https://github.com/01mf02/kontroli-rs
https://github.com/01mf02/kontroli-rs
http://archive.softwareheritage.org/swh:1:dir:252f87ab6290c9ddc0a2a8e1993adc8dd67bc3df;origin=https://github.com/01mf02/kontroli-rs;visit=swh:1:snp:c069cffb811c1cd023bd5de77e7af04bbc48214f;anchor=swh:1:rev:52f4a715bc4b1580b2b59ef40061218cefbec678
http://archive.softwareheritage.org/swh:1:dir:252f87ab6290c9ddc0a2a8e1993adc8dd67bc3df;origin=https://github.com/01mf02/kontroli-rs;visit=swh:1:snp:c069cffb811c1cd023bd5de77e7af04bbc48214f;anchor=swh:1:rev:52f4a715bc4b1580b2b59ef40061218cefbec678
http://archive.softwareheritage.org/swh:1:dir:252f87ab6290c9ddc0a2a8e1993adc8dd67bc3df;origin=https://github.com/01mf02/kontroli-rs;visit=swh:1:snp:c069cffb811c1cd023bd5de77e7af04bbc48214f;anchor=swh:1:rev:52f4a715bc4b1580b2b59ef40061218cefbec678
http://archive.softwareheritage.org/swh:1:dir:252f87ab6290c9ddc0a2a8e1993adc8dd67bc3df;origin=https://github.com/01mf02/kontroli-rs;visit=swh:1:snp:c069cffb811c1cd023bd5de77e7af04bbc48214f;anchor=swh:1:rev:52f4a715bc4b1580b2b59ef40061218cefbec678

BIBLIOGRAPHY

Felicissimo, Thiago (2022). ‘Adequate and computational encodings in the log-
ical framework Dedukti’. url: https://raw.githubusercontent.com/thi
agofelicissimo/my-files/master/adequate-and-computational-long
.pdf.

Felty, Amy P. et al. (1988). ‘Lambda-Prolog: An Extended Logic Program-
ming Language’. In: 9th International Conference on Automated Deduction,
Argonne, Illinois, USA, May 23-26, 1988, Proceedings. Ed. by Ewing L.
Lusk and Ross A. Overbeek. Vol. 310. Lecture Notes in Computer Science.
Springer, pp. 754–755. doi: 10.1007/BFb0012882. url: https://doi.org
/10.1007/BFb0012882.

Férey, Gaspard (Nov. 2021). ‘Higher-Order Confluence and Universe Embedding
in the Logical Framework’. Theses. Université Paris-Saclay. url: https://t
el.archives-ouvertes.fr/tel-03418761.

Férey, Gaspard and Jean-Pierre Jouannaud (Sept. 2021). ‘Confluence in Non-
Left-Linear Untyped Higher-Order Rewrite Theories’. In: PPDP 2021 - 23rd
International Symposium on Principles and Practice of Declarative Program-
ming. Tallin, Estonia. doi: 10.1145/NNNNNNN.NNNNNNN. url: https://hal
.inria.fr/hal-03126115.

Ferreira, Francisco and Brigitte Pientka (2014). ‘Bidirectional Elaboration of
Dependently Typed Programs’. In: Proceedings of the 16th International
Symposium on Principles and Practice of Declarative Programming, Kent,
Canterbury, United Kingdom, September 8-10, 2014. Ed. by Olaf Chitil,
Andy King and Olivier Danvy. ACM, pp. 161–174. doi: 10.1145/2643135
.2643153. url: https://doi.org/10.1145/2643135.2643153.

Frege, Gottlob (1879). Begriffsschrift. Lubrecht & Cramer, p. 124. isbn: 978-
3487-0062-39.

Futatsugi, Kokichi et al. (1985). ‘Principles of OBJ2’. In: Conference Record of
the Twelfth Annual ACM Symposium on Principles of Programming Lan-
guages, New Orleans, Louisiana, USA, January 1985. Ed. by Mary S. Van
Deusen, Zvi Galil and Brian K. Reid. ACM Press, pp. 52–66. doi: 10.1145
/318593.318610. url: https://doi.org/10.1145/318593.318610.

Gilbert, Frédéric (Apr. 2018). ‘Extending higher-order logic with predicate sub-
typing : application to PVS’. Theses. Université Sorbonne Paris Cité. url:
https://tel.archives-ouvertes.fr/tel-02058937.

Gilbert, Gaëtan et al. (Jan. 2019). ‘Definitional Proof-Irrelevance without K’.
In: Proc. ACM Program. Lang. 3.POPL. doi: 10.1145/3290316. url: http
s://doi.org/10.1145/3290316.

Giménez, Eduardo (1994). ‘Codifying Guarded Definitions with Recursive
Schemes’. In: Types for Proofs and Programs, International Workshop

158

https://raw.githubusercontent.com/thiagofelicissimo/my-files/master/adequate-and-computational-long.pdf
https://raw.githubusercontent.com/thiagofelicissimo/my-files/master/adequate-and-computational-long.pdf
https://raw.githubusercontent.com/thiagofelicissimo/my-files/master/adequate-and-computational-long.pdf
https://doi.org/10.1007/BFb0012882
https://doi.org/10.1007/BFb0012882
https://doi.org/10.1007/BFb0012882
https://tel.archives-ouvertes.fr/tel-03418761
https://tel.archives-ouvertes.fr/tel-03418761
https://doi.org/10.1145/NNNNNNN.NNNNNNN
https://hal.inria.fr/hal-03126115
https://hal.inria.fr/hal-03126115
https://doi.org/10.1145/2643135.2643153
https://doi.org/10.1145/2643135.2643153
https://doi.org/10.1145/2643135.2643153
https://doi.org/10.1145/318593.318610
https://doi.org/10.1145/318593.318610
https://doi.org/10.1145/318593.318610
https://tel.archives-ouvertes.fr/tel-02058937
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316

BIBLIOGRAPHY

TYPES’94, Båstad, Sweden, June 6-10, 1994, Selected Papers. Ed. by Peter
Dybjer, Bengt Nordström and Jan M. Smith. Vol. 996. Lecture Notes in
Computer Science. Springer, pp. 39–59. doi: 10.1007/3-540-60579-7_3.
url: https://doi.org/10.1007/3-540-60579-7%5C_3.

Girard, J. Y. (1971). ‘Une extension de l’interpretation de Godel a l’analyse, et
son application a l’elimination des coupures dans l’analyse et la theorie des
types’. In: 63, pp. 63–92.

Guillaume Burel, Ali Assaf and et al. (2016). ‘Dedukti: a Logical Framework
based on the 𝜆Π-Calculus Modulo Theory’.

Haddad, Mohamed Yacine El, Guillaume Burel and Frédéric Blanqui (2019).
‘EKSTRAKTO A tool to reconstruct Dedukti proofs from TSTP files (ex-
tended abstract)’. In: Proceedings Sixth Workshop on Proof eXchange for
Theorem Proving, PxTP 2019, Natal, Brazil, August 26, 2019. Ed. by Giselle
Reis and Haniel Barbosa. Vol. 301. EPTCS, pp. 27–35. doi: 10.4204/EPTC
S.301.5. url: https://doi.org/10.4204/EPTCS.301.5.

Harper, Robert, Furio Honsell and Gordon D. Plotkin (1993). ‘A Framework for
Defining Logics’. In: J. ACM 40.1, pp. 143–184. doi: 10.1145/138027.138
060. url: https://doi.org/10.1145/138027.138060.

Harper, Robert and Daniel R. Licata (2007). ‘Mechanizing metatheory in a
logical framework’. In: Journal of Functional Programming 17, pp. 613–673.

Harper, Robert and John C. Mitchell (1999). ‘Parametricity and Variants of
Girard’s J Operator’. In: Inf. Process. Lett. 70.1, pp. 1–5. doi: 10.1016/S0
020-0190(99)00036-8. url: https://doi.org/10.1016/S0020-0190(99
)00036-8.

Hoare, C. A. R. (1969). ‘An Axiomatic Basis for Computer Programming’. In:
Commun. ACM 12.10, pp. 576–580. doi: 10.1145/363235.363259. url:
https://doi.org/10.1145/363235.363259.

[SW Rel.] Hondet, Gabriel, Personoj version 0.1, Feb. 2022. lic: CECILL-B.
vcs: https://github.com/Deducteam/personoj, swhid: ⟨swh:1:rel:294
cd408c629b69c53ac4c42ccef4346e6357583;origin=https://github.co
m/Deducteam/personoj;visit=swh:1:snp:eae7073a2f0316041a1b8962b
9f8573bc8fbfd1d⟩.

Hondet, Gabriel and Frédéric Blanqui (2020). ‘The New Rewriting Engine of
Dedukti’. In: CoRR abs/2010.16115. arXiv: 2010.16115. url: https://ar
xiv.org/abs/2010.16115.

— (2021). ‘Encoding of Predicate Subtyping with Proof Irrelevance in the 𝜆Π-
Calculus Modulo Theory’. In: CoRR abs/2110.13704. arXiv: 2110.13704.
url: https://arxiv.org/abs/2110.13704.

159

https://doi.org/10.1007/3-540-60579-7_3
https://doi.org/10.1007/3-540-60579-7%5C_3
https://doi.org/10.4204/EPTCS.301.5
https://doi.org/10.4204/EPTCS.301.5
https://doi.org/10.4204/EPTCS.301.5
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1016/S0020-0190(99)00036-8
https://doi.org/10.1016/S0020-0190(99)00036-8
https://doi.org/10.1016/S0020-0190(99)00036-8
https://doi.org/10.1016/S0020-0190(99)00036-8
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://github.com/Deducteam/personoj
http://archive.softwareheritage.org/swh:1:rel:294cd408c629b69c53ac4c42ccef4346e6357583;origin=https://github.com/Deducteam/personoj;visit=swh:1:snp:eae7073a2f0316041a1b8962b9f8573bc8fbfd1d
http://archive.softwareheritage.org/swh:1:rel:294cd408c629b69c53ac4c42ccef4346e6357583;origin=https://github.com/Deducteam/personoj;visit=swh:1:snp:eae7073a2f0316041a1b8962b9f8573bc8fbfd1d
http://archive.softwareheritage.org/swh:1:rel:294cd408c629b69c53ac4c42ccef4346e6357583;origin=https://github.com/Deducteam/personoj;visit=swh:1:snp:eae7073a2f0316041a1b8962b9f8573bc8fbfd1d
http://archive.softwareheritage.org/swh:1:rel:294cd408c629b69c53ac4c42ccef4346e6357583;origin=https://github.com/Deducteam/personoj;visit=swh:1:snp:eae7073a2f0316041a1b8962b9f8573bc8fbfd1d
https://arxiv.org/abs/2010.16115
https://arxiv.org/abs/2010.16115
https://arxiv.org/abs/2010.16115
https://arxiv.org/abs/2110.13704
https://arxiv.org/abs/2110.13704

BIBLIOGRAPHY

Hurd, Joe (2001). ‘Predicate Subtyping with Predicate Sets’. In: Theorem Prov-
ing in Higher Order Logics, 14th International Conference, TPHOLs 2001,
Edinburgh, Scotland, UK, September 3-6, 2001, Proceedings. Ed. by Richard
J. Boulton and Paul B. Jackson. Vol. 2152. Lecture Notes in Computer Sci-
ence. Springer, pp. 265–280. doi: 10.1007/3-540-44755-5_19. url:
https://doi.org/10.1007/3-540-44755-5%5C_19.

ISO (2018). ISO/IEC 9899:2018: C17: Programming languages — C. Tech. rep.
International Organization for Standardization. url: http://www.open-st
d.org/jtc1/sc22/wg14/www/docs/n2310.pdf.

Kaufmann, Matt and J. Strother Moore (1997). ‘An Industrial Strength Theo-
rem Prover for a Logic Based on Common Lisp’. In: IEEE Trans. Software
Eng. 23.4, pp. 203–213. doi: 10.1109/32.588534. url: https://doi.org
/10.1109/32.588534.

Klop, Jan Willem (1980). ‘Combinatory reduction systems’. PhD thesis. Univ.
Utrecht.

Klop, Jan Willem, Vincent van Oostrom and Femke van Raamsdonk (1993).
‘Combinatory Reduction Systems: Introduction and Survey’. In: Theor.
Comput. Sci. 121.1&2, pp. 279–308. doi: 10.1016/0304-3975(93)90091-7.
url: https://doi.org/10.1016/0304-3975(93)90091-7.

Knight, John C. and Nancy G. Leveson (1986). ‘An Experimental Evaluation
of the Assumption of Independence in Multiversion Programming’. In: IEEE
Trans. Software Eng. 12.1, pp. 96–109. doi: 10.1109/TSE.1986.6312924.
url: https://doi.org/10.1109/TSE.1986.6312924.

— (1990). ‘A reply to the criticisms of the Knight & Leveson experiment’. In:
ACM SIGSOFT Softw. Eng. Notes 15.1, pp. 24–35. doi: 10.1145/382294
.382710. url: https://doi.org/10.1145/382294.382710.

Knuth, D. and P. Bendix (1983). ‘Simple Word Problems in Universal Algebras’.
In.

Lennon-Bertrand, Meven (2021). ‘Complete Bidirectional Typing for the Cal-
culus of Inductive Constructions’. In: CoRR abs/2102.06513. arXiv: 2102.0
6513. url: https://arxiv.org/abs/2102.06513.

[SW Rel.] Lepigre, Rodolphe, Bindlib version 6.0.0, 28th Feb. 2022. lic: LGPL-
3.0-only. vcs: https://github.com/rlepigre/ocaml-bindlib, swhid:
⟨swh:1:rel:fb275298fee0e52fb0c384bd84647de61a0558e7;origin=http
s://github.com/rlepigre/ocaml-bindlib;visit=swh:1:snp:90a86c4c
79b665c68439ad91aad83a5dd1b05152⟩.

Leroy, Xavier et al. (2022). The OCaml Manual. Inria. url: https://ocaml.o
rg/manual/index.html.

160

https://doi.org/10.1007/3-540-44755-5_19
https://doi.org/10.1007/3-540-44755-5%5C_19
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.pdf
https://doi.org/10.1109/32.588534
https://doi.org/10.1109/32.588534
https://doi.org/10.1109/32.588534
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1109/TSE.1986.6312924
https://doi.org/10.1109/TSE.1986.6312924
https://doi.org/10.1145/382294.382710
https://doi.org/10.1145/382294.382710
https://doi.org/10.1145/382294.382710
https://arxiv.org/abs/2102.06513
https://arxiv.org/abs/2102.06513
https://arxiv.org/abs/2102.06513
https://github.com/rlepigre/ocaml-bindlib
http://archive.softwareheritage.org/swh:1:rel:fb275298fee0e52fb0c384bd84647de61a0558e7;origin=https://github.com/rlepigre/ocaml-bindlib;visit=swh:1:snp:90a86c4c79b665c68439ad91aad83a5dd1b05152
http://archive.softwareheritage.org/swh:1:rel:fb275298fee0e52fb0c384bd84647de61a0558e7;origin=https://github.com/rlepigre/ocaml-bindlib;visit=swh:1:snp:90a86c4c79b665c68439ad91aad83a5dd1b05152
http://archive.softwareheritage.org/swh:1:rel:fb275298fee0e52fb0c384bd84647de61a0558e7;origin=https://github.com/rlepigre/ocaml-bindlib;visit=swh:1:snp:90a86c4c79b665c68439ad91aad83a5dd1b05152
https://ocaml.org/manual/index.html
https://ocaml.org/manual/index.html

BIBLIOGRAPHY

Losh, Steve (Aug. 2018). A Road to Common Lisp. url: https://stevelosh
.com/blog/2018/08/a-road-to-common-lisp.

Lovas, William and Frank Pfenning (2010). ‘Refinement Types for Logical
Frameworks and Their Interpretation as Proof Irrelevance’. In: Log. Methods
Comput. Sci. 6.4. doi: 10.2168/LMCS-6(4:5)2010. url: https://doi.org
/10.2168/LMCS-6(4:5)2010.

Luo, Zhaohui (1990). ‘An extended calculus of constructions’. PhD thesis. Uni-
versity of Edinburgh, UK. url: http://hdl.handle.net/1842/12487.

Luo, Zhaohui, Sergei Soloviev and Tao Xue (2013). ‘Coercive subtyping: Theory
and implementation’. In: Inf. Comput. 223, pp. 18–42. doi: 10.1016/j.ic
.2012.10.020. url: https://doi.org/10.1016/j.ic.2012.10.020.

McBride, Conor (Aug. 2018). Basics of bidirectionalism. url: https://pigwor
ker.wordpress.com/2018/08/06/basics-of-bidirectionalism/.

Miller, Dale (1991). ‘A Logic Programming Language with Lambda-Abstraction,
Function Variables, and Simple Unification’. In: J. Log. Comput. 1.4, pp. 497–
536. doi: 10.1093/logcom/1.4.497. url: https://doi.org/10.1093/log
com/1.4.497.

[SW] Miller, Dale and Gopalan Nadathur, Teyjus July 2019. lic: GPL-3.0-or-
later. vcs: https://github.com/teyjus/teyjus, swhid: ⟨swh:1:dir:4a1
885e0a944cb84f267b1737801eb170e53be51⟩.

Milner, Robin (1972). ‘Implementation and applications of Scott’s logic for com-
putable functions’. In: Proceedings of ACM Conference on Proving Assertions
About Programs, Las Cruces, New Mexico, USA, January 6-7, 1972. ACM,
pp. 1–6. doi: 10.1145/800235.807067. url: https://doi.org/10.1145/8
00235.807067.

Moura, Leonardo Mendonça de et al. (2015). ‘The Lean Theorem Prover (Sys-
tem Description)’. In: Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings. Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture
Notes in Computer Science. Springer, pp. 378–388. doi: 10.1007/978-3-3
19-21401-6_26. url: https://doi.org/10.1007/978-3-319-21401-6%5
C_26.

Muñoz, César (1997). A Calculus of Substitutions for Incomplete-Proof Repre-
sentation in Type Theory. Research Report RR-3309. Projet COQ. INRIA.
url: https://hal.inria.fr/inria-00073380.

Norell, Ulf (Sept. 2007). ‘Towards a practical programming language based on
dependent type theory’. PhD thesis. SE-412 96 Göteborg, Sweden: Depart-
ment of Computer Science and Engineering, Chalmers University of Tech-
nology.

161

https://stevelosh.com/blog/2018/08/a-road-to-common-lisp
https://stevelosh.com/blog/2018/08/a-road-to-common-lisp
https://doi.org/10.2168/LMCS-6(4:5)2010
https://doi.org/10.2168/LMCS-6(4:5)2010
https://doi.org/10.2168/LMCS-6(4:5)2010
http://hdl.handle.net/1842/12487
https://doi.org/10.1016/j.ic.2012.10.020
https://doi.org/10.1016/j.ic.2012.10.020
https://doi.org/10.1016/j.ic.2012.10.020
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1093/logcom/1.4.497
https://github.com/teyjus/teyjus
http://archive.softwareheritage.org/swh:1:dir:4a1885e0a944cb84f267b1737801eb170e53be51
http://archive.softwareheritage.org/swh:1:dir:4a1885e0a944cb84f267b1737801eb170e53be51
https://doi.org/10.1145/800235.807067
https://doi.org/10.1145/800235.807067
https://doi.org/10.1145/800235.807067
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6%5C_26
https://doi.org/10.1007/978-3-319-21401-6%5C_26
https://hal.inria.fr/inria-00073380

BIBLIOGRAPHY

Owre, Sam, John Rushby et al. (Oct. 1998). ‘PVS: An Experience Report’.
In: Applied Formal Methods—FM-Trends 98. Ed. by Dieter Hutter et al.
Vol. 1641. Lecture Notes in Computer Science. Boppard, Germany: Springer-
Verlag, pp. 338–345. url: http://www.csl.sri.com/papers/fmtrends98/.

Owre, Sam, John M. Rushby and Natarajan Shankar (1992). ‘PVS: A Proto-
type Verification System’. In: Automated Deduction - CADE-11, 11th Inter-
national Conference on Automated Deduction, Saratoga Springs, NY, USA,
June 15-18, 1992, Proceedings. Ed. by Deepak Kapur. Vol. 607. Lecture
Notes in Computer Science. Springer, pp. 748–752. doi: 10.1007/3-540-5
5602-8_217. url: https://doi.org/10.1007/3-540-55602-8%5C_217.

Owre, Sam and Natarajan Shankar (June 1997a). Abstract Dtatypes in PVS.
Computer Science Laboratory, SRI International. 333, Ravenswood avenue,
Menlo Park, CA 94025.

— (Aug. 1997b). The Formal Semantics of PVS. Tech. rep. SRI-CSL-97-2.
Menlo Park, CA: Computer Science Laboratory, SRI International.

Owre, Sam, Natarajan Shankar et al. (Aug. 2020). PVS Language Reference.
Version 7.1. Computer Science Laboratory, SRI International. Menlo Park,
CA.

Paulson, Lawrence C. and Jasmin Christian Blanchette (2012). ‘Three years of
experience with Sledgehammer, a Practical Link Between Automatic and In-
teractive Theorem Provers’. In: IWIL 2010. The 8th International Workshop
on the Implementation of Logics. Ed. by Geoff Sutcliffe, Stephan Schulz and
Eugenia Ternovska. Vol. 2. EPiC Series in Computing. EasyChair, pp. 1–11.
doi: 10.29007/36dt. url: https://easychair.org/publications/paper
/wV.

Peano, Giuseppe (1889). Arithmetices principia, nova methodo exposita.
Pfenning, Frank (2001). ‘Intensionality, Extensionality, and Proof Irrelevance in

Modal Type Theory’. In: 16th Annual IEEE Symposium on Logic in Com-
puter Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings.
IEEE Computer Society, pp. 221–230. doi: 10.1109/LICS.2001.932499.
url: https://doi.org/10.1109/LICS.2001.932499.

Pierce, Benjamin C. (2002). Types and programming languages. MIT Press. isbn:
978-0-262-16209-8.

Pierce, Benjamin C. and David N. Turner (2000). ‘Local type inference’. In: ACM
Trans. Program. Lang. Syst. 22.1, pp. 1–44. doi: 10.1145/345099.345100.
url: https://doi.org/10.1145/345099.345100.

Pol, Jaco van de (2001). ‘Just-in-time: On Strategy Annotations’. In: Electron.
Notes Theor. Comput. Sci. 57, pp. 41–63. doi: 10.1016/S1571-0661(04)0
0267-1. url: https://doi.org/10.1016/S1571-0661(04)00267-1.

162

http://www.csl.sri.com/papers/fmtrends98/
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8%5C_217
https://doi.org/10.29007/36dt
https://easychair.org/publications/paper/wV
https://easychair.org/publications/paper/wV
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1016/S1571-0661(04)00267-1
https://doi.org/10.1016/S1571-0661(04)00267-1
https://doi.org/10.1016/S1571-0661(04)00267-1

BIBLIOGRAPHY

Pottinger, Garrel (1981). ‘The Church-Rosser theorem for the typed λ-calculus
with surjective pairing’. In: Notre Dame J. Formal Log. 22.3, pp. 264–268.
doi: 10.1305/ndjfl/1093883461. url: https://doi.org/10.1305/ndjfl
/1093883461.

Robinson, John Alan (1969). ‘Mechanizing higher-order logic’. In: Machine In-
telligence 4. Ed. by Bernard Meltzer and Donald Michie, pp. 151–172.

Rushby, John M., Sam Owre and Natarajan Shankar (1998). ‘Subtypes for Spec-
ifications: Predicate Subtyping in PVS’. In: IEEE Trans. Software Eng. 24.9,
pp. 709–720. doi: 10.1109/32.713327. url: https://doi.org/10.1109/3
2.713327.

Russell, Bertrand (1903). The Principles of Mathematics. Cambridge University
Press. isbn: 978-1-313-30597-6.

Sacerdoti Coen, Claudio and Enrico Tassi (Mar. 2011). ‘Nonuniform Coercions
via Unification Hints’. In: Electronic Proceedings in Theoretical Computer
Science 53, pp. 16–29. issn: 2075-2180. doi: 10.4204/eptcs.53.2. url:
http://dx.doi.org/10.4204/EPTCS.53.2.

Saillard, Ronan (2015). ‘Typechecking in the lambda-Pi-Calculus Modulo : The-
ory and Practice. (Vérification de typage pour le lambda-Pi-Calcul Modulo :
théorie et pratique)’. PhD thesis. Mines ParisTech, France. url: https://t
el.archives-ouvertes.fr/tel-01299180.

Saı̈bi, Amokrane (1999). ‘Outils Génériques de Modélisation et de Démonstra-
tion pour la Formalisation des Mathématiques en Théorie des Types. Appli-
cation à la Théorie des Catégories. (Formalization of Mathematics in Type
Theory. Generic tools of Modelisation and Demonstration. Application to
Category Theory)’. PhD thesis. Pierre and Marie Curie University, Paris,
France. url: https://tel.archives-ouvertes.fr/tel-00523810.

Salvesen, Anne and Jan M. Smith (1988). ‘The Strength of the Subset Type in
Martin-Löf’s Type Theory’. In: Proceedings of the Third Annual Symposium
on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July
5-8, 1988. IEEE Computer Society, pp. 384–391. doi: 10.1109/LICS.1988
.5135. url: https://doi.org/10.1109/LICS.1988.5135.

Severi, Paula and Erik Poll (1994). ‘Pure Type Systems with Definitions’. In:
Logical Foundations of Computer Science, Third International Symposium,
LFCS’94, St. Petersburg, Russia, July 11-14, 1994, Proceedings. Ed. by Anil
Nerode and Yuri V. Matiyasevich. Vol. 813. Lecture Notes in Computer
Science. Springer, pp. 316–328. doi: 10.1007/3-540-58140-5_30. url:
https://doi.org/10.1007/3-540-58140-5%5C_30.

163

https://doi.org/10.1305/ndjfl/1093883461
https://doi.org/10.1305/ndjfl/1093883461
https://doi.org/10.1305/ndjfl/1093883461
https://doi.org/10.1109/32.713327
https://doi.org/10.1109/32.713327
https://doi.org/10.1109/32.713327
https://doi.org/10.4204/eptcs.53.2
http://dx.doi.org/10.4204/EPTCS.53.2
https://tel.archives-ouvertes.fr/tel-01299180
https://tel.archives-ouvertes.fr/tel-01299180
https://tel.archives-ouvertes.fr/tel-00523810
https://doi.org/10.1109/LICS.1988.5135
https://doi.org/10.1109/LICS.1988.5135
https://doi.org/10.1109/LICS.1988.5135
https://doi.org/10.1007/3-540-58140-5_30
https://doi.org/10.1007/3-540-58140-5%5C_30

BIBLIOGRAPHY

Shankar, Natarajan et al. (Aug. 2021). PVS Prover Guide. Computer Science
Laboratory, SRI International. 333, Ravenswood avenue, Menlo Park, CA
94025.

Sozeau, Matthieu (2006). ‘Subset Coercions in Coq’. In: Types for Proofs and
Programs, International Workshop, TYPES 2006, Nottingham, UK, April
18-21, 2006, Revised Selected Papers. Ed. by Thorsten Altenkirch and Conor
McBride. Vol. 4502. Lecture Notes in Computer Science. Springer, pp. 237–
252. doi: 10.1007/978-3-540-74464-1_16. url: https://doi.org/10.1
007/978-3-540-74464-1%5C_16.

[SW] Steen, Alexander, Leo-III 1.6 version v1.6, Oct. 2021. lic: BSD-3-Clause.
doi: 10.5281/zenodo.5571355, url: https://doi.org/10.5281/zenodo
.5571355, vcs: https://github.com/leoprover/Leo-III.

Steen, Alexander and Christoph Benzmüller (2018). ‘The Higher-Order Prover
Leo-III’. In: Automated Reasoning - 9th International Joint Conference, IJ-
CAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Ox-
ford, UK, July 14-17, 2018, Proceedings. Ed. by Didier Galmiche, Stephan
Schulz and Roberto Sebastiani. Vol. 10900. Lecture Notes in Computer Sci-
ence. Springer, pp. 108–116. doi: 10.1007/978-3-319-94205-6_8. url:
https://doi.org/10.1007/978-3-319-94205-6%5C_8.

Stump, Aaron (2003). ‘Subset Types and Partial Functions’. In: Automated
Deduction – CADE-19. Ed. by Franz Baader. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 151–165. isbn: 978-3-540-45085-6.

Sutcliffe, G. (2017). ‘The TPTP Problem Library and Associated Infrastructure.
From CNF to TH0, TPTP v6.4.0’. In: Journal of Automated Reasoning 59.4,
pp. 483–502.

Tannen, Val et al. (1991). ‘Inheritance as Implicit Coercion’. In: Inf. Comput.
93.1, pp. 172–221. doi: 10.1016/0890-5401(91)90055-7. url: https://d
oi.org/10.1016/0890-5401(91)90055-7.

[SW Rel.] Tassi, Enrico and Claudio Sacerdoti Coen, ELPI June 2022. lic:
LGPL-2.1-only. vcs: https://github.com/LPCIC/elpi, swhid: ⟨swh:1:r
el:2f11f4206379f0fbb7fd9d9dda6044959f88a76f;origin=https://git
hub.com/LPCIC/elpi;visit=swh:1:snp:61a86249237e73bdd471d7f3cda
f5df1b3a689bc⟩.

[SW] The Coq Development Team, The Coq Proof Assistant version 8.15, Jan.
2022. doi: 10.5281/zenodo.5846982, url: https://doi.org/10.5281/z
enodo.5846982.

Thiré, F. and G. Férey (2019). Proof Irrelevance and Predicate Subtyping in
Dedukti. https://eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/bo

164

https://doi.org/10.1007/978-3-540-74464-1_16
https://doi.org/10.1007/978-3-540-74464-1%5C_16
https://doi.org/10.1007/978-3-540-74464-1%5C_16
https://doi.org/10.5281/zenodo.5571355
https://doi.org/10.5281/zenodo.5571355
https://doi.org/10.5281/zenodo.5571355
https://github.com/leoprover/Leo-III
https://doi.org/10.1007/978-3-319-94205-6_8
https://doi.org/10.1007/978-3-319-94205-6%5C_8
https://doi.org/10.1016/0890-5401(91)90055-7
https://doi.org/10.1016/0890-5401(91)90055-7
https://doi.org/10.1016/0890-5401(91)90055-7
https://github.com/LPCIC/elpi
http://archive.softwareheritage.org/swh:1:rel:2f11f4206379f0fbb7fd9d9dda6044959f88a76f;origin=https://github.com/LPCIC/elpi;visit=swh:1:snp:61a86249237e73bdd471d7f3cdaf5df1b3a689bc
http://archive.softwareheritage.org/swh:1:rel:2f11f4206379f0fbb7fd9d9dda6044959f88a76f;origin=https://github.com/LPCIC/elpi;visit=swh:1:snp:61a86249237e73bdd471d7f3cdaf5df1b3a689bc
http://archive.softwareheritage.org/swh:1:rel:2f11f4206379f0fbb7fd9d9dda6044959f88a76f;origin=https://github.com/LPCIC/elpi;visit=swh:1:snp:61a86249237e73bdd471d7f3cdaf5df1b3a689bc
http://archive.softwareheritage.org/swh:1:rel:2f11f4206379f0fbb7fd9d9dda6044959f88a76f;origin=https://github.com/LPCIC/elpi;visit=swh:1:snp:61a86249237e73bdd471d7f3cdaf5df1b3a689bc
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982
https://eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/books-of-abstracts-TYPES2019.pdf
https://eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/books-of-abstracts-TYPES2019.pdf
https://eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/books-of-abstracts-TYPES2019.pdf

BIBLIOGRAPHY

oks-of-abstracts-TYPES2019.pdf, p. 106. Abstract of a talk given at the
TYPES conference.

Thiré, François (Dec. 2020). ‘Interoperability between proof systems using the
logical framework Dedukti’. Theses. Université Paris-Saclay. url: https://h
al.archives-ouvertes.fr/tel-03224039.

Werner, Benjamin (2008). ‘On the Strength of Proof-irrelevant Type Theories’.
In: Log. Methods Comput. Sci. 4.3. doi: 10.2168/LMCS-4(3:13)2008. url:
https://doi.org/10.2168/LMCS-4(3:13)2008.

Whitehead, Alfred North and Bertrand Russell (1997). Principia Mathematica
to *56. 2nd ed. Cambridge Mathematical Library. Cambridge University
Press. doi: 10.1017/CBO9780511623585.

[SW] X3J13 Committee, Common Lisp HyperSpec 1994. url: http://clhs.l
isp.se.

165

https://eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/books-of-abstracts-TYPES2019.pdf
https://eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/books-of-abstracts-TYPES2019.pdf
https://eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/books-of-abstracts-TYPES2019.pdf
https://eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/books-of-abstracts-TYPES2019.pdf
https://hal.archives-ouvertes.fr/tel-03224039
https://hal.archives-ouvertes.fr/tel-03224039
https://doi.org/10.2168/LMCS-4(3:13)2008
https://doi.org/10.2168/LMCS-4(3:13)2008
https://doi.org/10.1017/CBO9780511623585
http://clhs.lisp.se
http://clhs.lisp.se

BIBLIOGRAPHY

166

Appendix A

Typing rules of 𝔖

The typing rules of system 𝔖 defined in Chapter 3 (Page 61) are given in Fig. A.1
(Page 168). They are parametrised by

• a signature Σ to declare and type symbols;

• a rewrite system ℛ used in the congruence (in r-cast), in the cast relation
r-coerce;

• a coercion system 𝒞 used in the cast relation r-coerce,

• a subtype projection ≺ used to apply coercions on the head of applications
in r-prod-c.

Notation 𝒫𝜆Π abbreviates the product rules of λΠme,

𝒫𝜆Π = {(⋆, ⋆, ⋆), (⋆,�,�)}.

167

r-sort

Γ ⊢ ⋆ ⇝ ⋆ ∶ �

r-var
(𝑥 ∶ 𝐴) ∈ Γ

Γ ⊢ 𝑥 ⇝ 𝑥 ∶ 𝐴

r-abst
Γ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴′ Γ, 𝑥 ∶ 𝐴′ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴, 𝑡 ⇝ 𝜆𝑥 ∶ 𝐴′, 𝑡′ ∶ Π𝑥 ∶ 𝐴′, 𝐵

r-prod
Γ ⊢ 𝐴 ∶ ⋆ ⇝ 𝐴′ Γ, 𝑥 ∶ 𝐴′ ⊢ 𝐵 ⇝ 𝐵′ ∶𝒮 𝑠 (⋆, 𝑠, 𝑠) ∈ 𝒫𝜆Π

Γ ⊢ Π𝑥 ∶ 𝐴,𝐵 ⇝ Π𝑥 ∶ 𝐴′, 𝐵′ ∶ 𝑠

r-appl
Γ ⊢ 𝑡 ⇝ 𝑡′ ∶Π Π𝑥 ∶ 𝐴1, 𝐴2 Γ ⊢ 𝑢 ∶ 𝐴1 ⇝ 𝑢′

Γ ⊢ (𝑡 𝑢) ⇝ (𝑡′ 𝑢′) ∶ {𝑢′/𝑥}𝐴2

r-sign
𝑓[𝒙 ∶ 𝑨] ∶ 𝐵 ∶ 𝑠 ∈ Σ (Γ ⊢ 𝑡𝑖 ∶ {𝑡′𝑗/𝑥𝑗}𝑗<𝑖

𝐴𝑖 ⇝ 𝑡′𝑖)
𝑖

Γ ⊢ (𝑓 𝒕) ⇝ (𝑓 𝒕′) ∶ {𝒕′/𝒙}𝐵

r-prod-c
Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐴 𝐴 ≺∗ Π𝑥 ∶ 𝐴1, 𝐴2 𝑡′ ∶ 𝐴 <∶ Π𝑥 ∶ 𝐴1, 𝐴2 ⇝ 𝑡″

Γ ⊢ 𝑡 ⇝ 𝑡″ ∶Π Π𝑥 ∶ 𝐴1, 𝐴2

r-sort-c
Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝑠 𝑠 ∈ {⋆,�}

Γ ⊢ 𝑡 ⇝ 𝑡′ ∶𝒮 𝑠

r-check
Γ ⊢ 𝑡 ⇝ 𝑡′ ∶ 𝐵 𝑡′ ∶ 𝐵 <∶ 𝐴 ⇝ 𝑡″

Γ ⊢ 𝑡 ∶ 𝐴 ⇝ 𝑡″

r-cast
𝐴 ≃𝛽,ℛ 𝐵

𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡

r-coerce
(𝜅𝐴𝐵 𝑡) ↪⟶+

𝛽,ℛ,𝒞 𝑡′ 𝜅 ∉ 𝑡′

𝑡 ∶ 𝐴 <∶ 𝐵 ⇝ 𝑡′

Figure A.1: Inference rules for system 𝔖.

168

Appendix B

Encoding of normalisation
counter-example

Here follows the encoding of the normalisation counter example of Section 3.2.4
provided in (Abel and Coquand 2020). It is encoded in simple type theory (see
Section 2.2.1) with an equality on propositions. The development is written in
Dedukti version 2.6.

Set: Type.
def El : Set -> Type.
arr : Set -> Set -> Set.
[T, U] El (arr T U) --> El T -> El U.

o: Set.
def Prf : El o -> Type.
imp : El (arr o (arr o o)).
[P, Q] Prf (imp P Q) --> Prf P -> Prf Q.
all : (T: Set) -> (El (arr (arr T o) o)).
[T, P] Prf (all T P) --> (x: El T) -> Prf (P x).

eq_o : (El (arr o (arr o o))).

def bot : El o := all o (x => x).
def neg (A: El o) := imp A bot.
def top := neg bot.

169

def cast : Prf (all o (A => all o (B => imp (eq_o A B) (imp A B)))).
[A, e, x] cast A A e x --> x.

def delta : Prf top := z => z top z.

def omega : Prf (neg (all o (A => all o (B => eq_o A B)))) :=
h => A => cast top A (h top A) delta.

def Omega : Prf (neg (all o (A => all o (B => eq_o A B)))) :=
h => delta (omega h).

In the code above, for any term h whose type is

h: Prf (all o (A => all o (B => eq_o A B)))

term Omega h does not terminate because of the reduction sequence

(Omega h) := delta (omega h) := omega h top (omega h)
:= cast top top (h top top) delta (omega h)
--> delta (omega h)

where := represents definition unfolding and --> represents reduction.

170

	Introduction
	Predicate subtyping
	Subtyping for more understandable developments
	The Prototype Verification System: an implementation of predicate subtyping
	A minimal and formalised version of PVS

	Logical frameworks for interoperability
	Contributions
	Encoding explicit predicate subtyping
	Handling implicit predicate subtyping
	Working with PVS

	Related works
	Notations and definitions
	Expressing systems in computational logical frameworks

	Encoding explicit predicate subtyping
	PVS-Cert: A minimal system with predicate subtyping
	Type system modulo theory
	Simple type theory
	Predicate subtyping

	Encoding PVS-Cert in λΠme
	Encoding simple type theory in λΠme
	Encoding explicit predicate subtyping in λΠme
	Translation of PVS-Cert terms into pcert
	Examples of encoded theories

	Preservation of typing by the encoding
	Mechanising type checking
	Deciding equivalence
	Bidirectional type checkers

	Conservativity of computations
	Conclusion

	Coercions in logical frameworks
	Term refiner
	Definitions
	Refiner specification
	Properties of coercion systems
	Standard coercions for functions
	Coercing to functions

	Computing coercions
	Initial observations
	Computing coercions with a rewrite system
	Standard coercions
	Non-linearity threatens convergence
	Examples of coercions
	Related work on coercions

	Holes
	Implementation
	Conclusion

	Implicit predicate subtyping
	PVS-Core: A system with implicit predicate subtyping
	Definition
	Encoding PVS-Core in λΠmr

	Tuning the refiner for PVS-Core
	Abstract coercion rules
	Coercions by rewriting
	Coercing to functions
	Preservation of substitution by refinement

	Preservation of typeability by the encoding
	Conclusion

	Translating PVS
	Computational logical frameworks
	Statements and theories
	PVS language features
	Overloading
	Theory parameters and polymorphism
	Logical connectives
	Tuples and matching
	Bounded quantification
	Records
	Fixpoints and inductive types
	Abstract datatypes

	Implementation
	Results
	Conclusion

	Exporting PVS proofs
	Proof representations
	Proof scripts to incomplete terms
	Filling gaps
	Conclusion

	Conclusion
	Typing rules of
	Encoding of normalisation counter-example

