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Résumé : Cette thèse se décompose en trois parties basées sur des résultats de stabilisation et de contrôle des EDP non linéaires dispersives. Dans la première partie, nous considérons l'équation de KdV-BBM non-linéaire sur le tore avec un dissipateur localisé en espace. Nous montrons l'existence globale de la solution, ainsi que sa convergence en temps vers une fonction analytique. Cette propriété d'analyticité permet l'application de résultats de prolongement unique pour montrer que la fonction limite est une constante. Ensuite, nous en déduisons que l'approche que nous avons faite sur KdV-BBM est applicable pour l'équation de BBM pour un certain type de dissipateur dépen-dant du temps. La première partie est donc un résultat de stabilisation par un dissipateur localisé en espace. La deuxième partie présente deux résultats de contrôlabilité en fréquences pour l'équation de BBM non linéaire sur le tore. Nous utilisons des contrôles trigonométriques prenant des valeurs dans un espace de dimension finie pour montrer que l'équation est approximativement contrôlable dans H 1 , et n'est pas exactement contrôlable dans H s pour s compris entre 1 et 2. Dans la troisième partie, nous donnons un résultat de contrôlabilité approchée pour l'équation KP-I non linéaire sur le tore 2d. Nous utilisons le même type de contrôle trigonométrique considéré dans la seconde partie.
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Abstract : This thesis is divided into three parts based on results of stabilization and control of dispersive nonlinear PDEs. In the first part, we consider the nonlinear KdV-BBM equation on the torus with a localized damping. We show the global existence of the solution, as well as its convergence in time towards an analytical function. This property of analyticity allows the application of unique continuation results to show that the limit function is a constant. Then, we deduce that the approach we made on KdV-BBM is applicable for the BBM equation for a certain type of damping depending on time. The first part is therefore a result of sta-bilization by a dissipator localized in space. The second part is through control terms localized in frequencies. We present two controllability results for the nonlinear BBM equation on the torus. We use trigonometric controls taking values in a finite dimensional space to show that the equation is approximately controllable in H 1 , and is not exactly controllable in H s for s between 1 and 2. In the third part, we give an approximate controllability result for the nonlinear KP-I equation on the 2d torus. We use the same type of trigonometric control considered in the second part.

Introduction

Plusieurs phénomènes dans la nature sont modélisés par des équations aux dérivées partielles (EDP). Parmi les questions importantes dans ce domaine :

Peut-on exercer sur un système d'EDP une force pour amener les trajectoires des solutions à un état souhaité ? Et peut-on contrôler le temps que prennent ces trajectoires pour atteindre l'état ?

Nous parlons ici de la stabilisation et du contrôle, et la réponse à ces questions nous permettent de mieux comprendre le comportement dynamique des systèmes d'EDP et d'avoir des prévisions. Parmi les exemples connus on peut citer l'équation des ondes

∂ 2 t u -c 2 ∆u = 0,
qui modélise la propagation d'une onde avec une vitesse c. En physique quantique l'équation de Schrödinger i∂ t Ψ + ∆Ψ -V (t, x)Ψ = 0, permet de trouver la probabilité pour qu'une particule dans un atome soit proche d'un certain état. En mécanique des fluides l'équation d'Euler ∂ t u + ⟨u, ∇⟩ u + ∇p = 0, qui modélise l'écoulement d'un fluide parfait incompressible sous une pression intérieure p. L'équation de la chaleur

∂ t u -∆u = f,
qui décrit la diffusion de la chaleur et l'évolution de la température en considérant une source f .

Nous intéressons dans la partie principale de cette thèse à l'équation de Benjamin-Bona-Mahony (BBM)

∂ t u + ∂ x u -∂ xxt u + u∂ x u = 0.
Cette équation a été traitée en 1972 par Benjamin, Bona et Mahony dans [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF] comme une nouvelle version de l'équation de Korteweg-de Vries (KdV)

∂ t u + ∂ xxx u + u∂ x u = 0,
introduite par Korteweg et de Vries [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF] en 1895. Pour les détails sur les différences entre les équations de BBM et KdV nous renvoyons le lecteur à l'article d'Olver [START_REF] Olver | Euler operators and conservation laws of the BBM equation[END_REF].

Cette thèse se décompose de six chapitres. Dans ce premier chapitre nous donnons une introduction générale et des préliminaires sur les résultats principaux. Nous introduisons le problème que nous allons étudier dans chaque chapitre et nous présentons les travaux dans la littérature liés à notre cas, ainsi que la démarche détaillée qu'on considère dans les chapitres suivants.

Dans le deuxième chapitre, nous introduisons des outils mathématiques ainsi que le cadre fonctionnel dans lequel nous allons se placer. Nous définissons les espaces usuels et nous donnons des définitions et des résultats connus.

Dans le troisième chapitre nous présentons un résultat de stabilisation pour l'équation de KdV-BBM non-linéaire, où nous montrons l'existence globale de la solution, ainsi que sa convergence en temps vers une fonction analytique. Cette propriété d'analyticité permet d'appliquer des résultats de prolongement unique pour montrer que la fonction limite est une constante.

Nous étudions après la contrôlabilité de l'équation de BBM dans le quatrième chapitre. Plus précisément nous montrons qu'on peut contrôler approximativement dans H 1 l'équation en utilisant des termes de contrôles appartenant à des espaces de dimensions finis. Ensuite nous montrons la non contrôlabilité exacte de l'équation dans H s lorsque s ∈ [1, 2[. Dans le cinquième chapitre, nous appliquons la méthode de contrôle du quatrième chapitre à l'équation de Kadomtsev-Petviashvili I (KP-I) en dimension

2.

Dans le sixième chapitre nous démontrons quelques points techniques.

Définition 1 On dit qu'une EDP de la forme ∂ t u + Au = 0 est stable si la solution converge vers un état stationnaire quand t tend vers +∞.

Définition 2 On dit qu'une EDP de la forme

∂ t u + Au = f u(0) = u 0 ,
est exactement contrôlable en un temps T si pour toute fonction v, il existe f telle que la solution u vérifie u(T ) = v. L'EDP est dite approximativement contrôlable en un temps T si pour toute fonction v et pour ϵ > 0, il existe f telle que la solution u vérifie ∥u(T ) -v∥ ≤ ϵ.

Le point de départ était la conjecture de Rosier [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF] suivante : Conjecture de prolongement unique. Il existe une constante δ > 0 telle que pour toute donnée initiale v 0 ∈ H 1 (T) vérifiant ∥v 0 ∥ H 1 (T) < δ, si la solution v de

∂ t v + ∂ x v -∂ xxt v + v∂ x v = 0, (t, x) ∈]0, T [×T v(•, 0) = v 0 , (1.1) 
vérifie v(x, t) = 0 pour tout (x, t) ∈ ω×]0, T [, où ω est un ouvert non vide de T et T > 0, alors v 0 = 0, et ainsi, v ≡ 0.

Cette conjecture est utilisée pour montrer des résultats de stabilisation pour l'équation de BBM sur le tore en considérant différents types de dissipations. Pour montrer des résultats de stabilisation, nous n'avons pas besoin de démontrer cette conjecture pour toute solution v, mais seulement pour des solutions qui vérifient des propriétés supplémentaires permettant d'appliquer le théorème de Hale et Raugel [START_REF] Hale | Regularity, determining modes and galerkin methods[END_REF].

Théorème 1 (Hale et Raugel) Soit Y un espace de Banach complexe. Soient P n ∈ L(Y ) une suite d'opérateurs continus linéaire et Q n = Id-P n . Notons par A : D(A) → Y le générateur infinitésimal du semi-groupe {e tA } t≥0 et soit G ∈ C 1 (Y ). Supposons que V est une solution forte dans Y de l'équation V ′ (t) = AV (t) + G(V (t)), t ∈ R.

On suppose que 1. {V (t); t ∈ R} est contenu dans un ensemble compact K de Y.

2. Pour tout y ∈ Y , (P n y) n converge vers y quand n → +∞ et (P n ) et (Q n ) n sont des suites de L(Y ) bornés par une constante K 0 .

L'opérateur A s'écrit

A = A 1 + B 1 où B 1 est borné et A 1 commute avec P n .
4. Il existe M, c > 0 tels que e At L(Y ) ≤ M e -ct et e (A 1 +QnBB * )t L(QnY,Y ) ≤ M e -ct pour tout t ≥ 0.

5. G est analytique dans la boule B Y (0, r), où r vérifie r ≥ 4 sup t∈R ∥V (t)∥ Y .

6. {DG(V (t))Z ; t ∈ R, ∥Z∥ Y ≤ 1} est relativement compact dans Y .

Alors la solution V (t) est analytique en t.

Rappelons la définition d'une fonction analytique dans le cadre d'un espace de Banach.

Définition 3 Une fonction u est dite analytique sur un espace de Banach X si elle est développable en série entière en tout point de son domaine de définition. D'une manière équivalente, elle est analytique si elle est de classe C ∞ et il existe c > 0 et σ > 0 tels que pour tout α ≥ 0,

∂ α t u(•, t) X ≤ cα!σ α .
Le théorème de Hale et Raugel donne l'analyticité de la solution par rapport au temps. Ensuite, l'idée était de le combiner avec un autre théorème qui donne un résultat de prolongement unique à partir de l'analyticité. Le cas de l'équation de BBM était assez problématique. En effet, le comportement de la solution de l'équation de BBM ne permet pas d'avoir une décroissance exponentielle évidente de l'énergie quand nous considérons -comme dans le cas du papier de Rosier [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF]-un dissipateur localisé en espace. Plus précisément, la solution de l'équation de BBM n'a pas un caractère de transport, ce qui fait que lorsque le dissipateur est localisé en espace, il n'est pas évident de démontrer la décroissance exponentielle de l'énergie, qui elle, est une hypothèse dans le théorème de Hale et Raugel. Ce comportement peut être vu directement sur l'équation. En effet, l'équation Donc la fonction v n'a pas un caractère de transport car la partie peu régulière vient purement de v 0 . Autrement dit, la régularité de v à l'instant t va être la même que celle de v 0 puisque l'écriture (1.2) décompose l'expression de v à un instant t en une partie irrégulière v 0 (x) et une partie régulière t 0 Av(s, x)ds, par suite les singularités H 1 sont portées seulement par v 0 .

∂ t v + ∂ x v -∂ xxt v + v∂ x v = 0, est équivalente à ∂ t v = Av, avec Av = -(1 -∂ xx ) -1 ∂ x v + v∂ x v
Nous avons décidé d'étudier le modèle de l'équation de KdV-BBM

∂ t u + ∂ x u -∂ xxt u + ∂ xxx u -∂ x (a(x)∂ x u) + u∂ x u = 0, x ∈ T, u(., 0) = u 0 ∈ H 1 (T),
x ∈ T, (1.3) où a ≥ 0 est une fonction bornée de classe C ∞ telle que {a > 0} ̸ = ∅. Nous verrons que les résultats sur KdV-BBM ont des conséquences sur l'équation BBM. Cette équation est une "combinaison" de l'équation de KdV:

∂ t u + ∂ xxx u + u∂ x u = 0,
avec l'équation de BBM:

∂ t u + ∂ x u -∂ xxt u + u∂ x u = 0.
L'équation (1.3) est hyperbolique, en effet, en écrivant l'équation linéaire sous la forme

∂ t u = Au, (1.4) où A = -(1 -∂ xx ) -1 (∂ x + ∂ xxx -∂ x (a(x)∂ x )).
(1.5)

En appliquant la transformée de Fourier en x et en t à (1.4), la partie imaginaire du terme dominant est τ -(1 -ξ 2 ) -1 ξ 3 . Or

τ -(1 -ξ 2 ) -1 ξ 3 = τ -(1 -ξ 2 ) -1 (ξ(ξ 2 -1 + 1)) = τ + ξ -(1 -ξ 2 ) -1 ξ.
Ceci veut dire que le symbole principale est τ + ξ. Autrement dit l'équation est de même type que l'équation de transport, d'où le caractère hyperbolique.

Première partie

Dans la littérature on peut trouver plusieurs modèles d'équations aux dérivées partielles décrivant le mouvement de l'eau dans des faibles profondeurs suivant une propagation dans une seule direction, voir par exemple [START_REF] Bona | Higher-order hamiltonian model for unidirectional water waves[END_REF] et [START_REF] Carvajal | Comparison between model equations for long waves and blow-up phenomena[END_REF]. En particulier l'équation de KdV-BBM sur le tore

∂ t u + ∂ x u -∂ xxt u + ∂ xxx u -∂ x (a(x)∂ x )u + u∂ x u = 0,
(1.6) où a ≥ 0 est une fonction bornée de classe C ∞ telle que {a > 0} ̸ = ∅.

À notre connaissance, l'équation de KdV-BBM a été traitée pour la première fois sous la forme d'un système dans [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. i: Derivation and linear theory[END_REF] par Bona, Chen et Saut. Cette équation a été récemment considérée dans [START_REF] Besse | Discrete transparent boundary conditions for the mixed kdv-bbm equation[END_REF], [START_REF] Denys | Numerical simulation of a solitonic gas in kdv and kdv-bbm equations[END_REF] et [START_REF] Mancas | Elliptic solutions and solitary waves of a higher order kdv-bbm long wave equation[END_REF] pour des résultats de simulations numériques. La stabilisation n'a pas été étudiée pour l'équation de KdV-BBM mais a été étudiée pour KdV dans [START_REF] Baudouin | Two approaches for the stabilization of nonlinear kdv equation with boundary time-delay feedback[END_REF] par Baudouin et Crépeau, et dans [START_REF] Laurent | Control and stabilization of the korteweg-de vries equation on a periodic domain[END_REF] par Laurent, Rosier et Zhang. Il existe des résultats de stabilisations pour l'équation de BBM dans [START_REF] Ammari | Well-posedness and stabilization of the benjamin-bona-mahony equation on star-shaped networks[END_REF] par Ammari et Crépeau, et dans [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF] par Rosier.

Un résultat de prolongement unique pour l'équation de KdV-BBM peut être trouvé dans le papier de Rosier [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF] en utilisant des inégalités de Carleman. La particularité de l'équation KdV-BBM est qu'elle admet un opérateur non local et non borné d'ordre 1, ce qui introduit quelques difficultés dans l'analyse. Notre résultat principal est une propriété de stabilisation des solutions de (1.6) sur le tore.

Théorème 2 Pour tout u 0 ∈ H 1 (T), il existe une unique solution u = u(t, x) de (1.6) globale en temps telle que lim t→+∞ u(t, •) = 1 2π T u 0 (x)dx, dans H 1 (T).

La vérification des hypothèses du théorème de Hale et Raugel fait l'objet des proposition 1, exprimant la compacité des trajectoires de la solution, ainsi que les théorèmes 3 et 8, exprimant deux différents types de décroissance exponentielles. Donnons maintenant le plan de la preuve. Dans la Section 3.2, nous montrons l'existence de la solution du problème linéaire. Plus précisément nous utilisons le théorème de Lumer-Phillips et nous associons à l'opérateur de l'équation linéaire un groupe {S(t)} t∈R construit à partir de deux semi-groupes {S + (t)} t≥0 et {S -(t)} t≤0 , où le semi-groupe sur R + est de contraction.

Dans la Section 3.3 nous obtenons un résultat de décroissance exponentielle pour le semi-groupe donné par le théorème suivant.

Théorème 3 Il existe δ > 0 et M > 0 tels que |||S(t)||| L(H 1 (T)) ≤ M e -δt , ∀t ≥ 0.
(1.7)

Nous utilisons ici le résultat de Huang [START_REF] Huang | Caracteristic conditions for exponential stability of linear dynamical systems in hilbert spaces[END_REF].

Théorème 4 Soit H un espace de Hilbert, et A :

D(A) ⊂ H -→ H le générateur infinitésimal d'un semi-groupe {T (t)} t≥0 . Supposons que 1. Il existe c 1 > 0 tel que |||T (t)||| L(H) ≤ c 1 , ∀t ≥ 0, 2. A + iµ est inversible pour tout µ dans R, 3. Il existe c 2 > 0 tel que |||(A + iµ) -1 ||| L(H) ≤ c 2 pour tout µ dans R.
Alors il existe M > 0 et c > 0 tels que

|||T (t)||| L(H) ≤ M e -ct , ∀t ≥ 0. (1.8)
Nous remarquons que le noyau de l'opérateur A donné par (1.5) contient les constantes, ce qui fait que la deuxième hypothèse du théorème de Huang n'est pas vérifiée quand µ = 0. Nous se plaçons donc dans le sous-espace fermé de H 1 (T)

Ḣ1 (T) = u ∈ H 1 (T) ; (u, 1) L 2 (T) = 0 ,
muni de la norme H 1 (T). La troisième hypothèse du théorème de Huang consiste à estimer la norme de la résolvante avec une constante c 2 uniforme par rapport à µ. Pour démontrer cette estimation, nous raisonnons par l'absurde. Cela revient à construire une mesure semi-classique dont les différents propriétés conduisent à une contradiction. Cette technique a été utilisée pour la stabilité de l'équation des ondes, voir [START_REF]Semi-classical estimates for the resolvant in non trapping geometries[END_REF], [START_REF] Burq | Condition nécessaire et suffisante pour la controlabilité exacte des ondes[END_REF], [START_REF] Gérard | Ergodic properties of eigenfunctions for the dirichlet problem[END_REF], [START_REF]Microlocal defect measures[END_REF], [START_REF] Lebeau | Equation des ondes amorties[END_REF], [START_REF] Miller | Refraction of high-frequency waves density by sharp interfaces and semi classical measures at the boundary[END_REF] et [START_REF]The kato smoothing effect for schrödinger equations with unbounded potentials in exterior domains[END_REF]. La construction des mesures semi-classiques repose sur le théorème de Burq [START_REF] Burq | Mesures semi classiques et mesures de défauts[END_REF] suivant.

Théorème 5 Soient (h k ) k une suite de nombres réels qui converge vers 0 et (v h k ) une suite bornée dans L 2 (T) qui converge faiblement vers 0. Il existe une sous-suite de (v h k ) -qu'on continue de la noter

(v h k )-et une mesure de Radon positive ν définie sur T × R telle que pour tout b ∈ C ∞ 0 (T × R; C) lim h k →0 b(x, h k D)v h k , v h k L 2 (T) = T×R b(x, ξ)dν(x, ξ).
ν est appelée mesure semi-classique associée à la suite (v h k ).

Dans la Section 3.4, à partir du théorème de point fixe de Picard, nous prouvons l'existence locale et l'unicité de la solution pour le problème non linéaire:

∂ t u + ∂ x u -∂ xxt u + ∂ xxx u -∂ x (a(x)∂ x u) + u∂ x u = 0, x ∈ T, u(., 0) = u 0 ∈ H 1 (T).
(1.9) Par une estimation a priori sur l'énergie, nous déduisons l'existence globale pour le problème non linéaire. Ainsi qu'une certaine continuité par rapport à la donnée initiale: Théorème 6 Il existe une unique solution de (1.9) définie sur tout R. De plus, pour T > 0, l'application

H 1 (T) -→ C [-T, T ], Ḣ1 (T) u 0 -→ u,
où u est la solution du problème non linéaire admettant u 0 comme donnée initiale, est Lipschitzienne.

Dans la Section 3.5, nous montrons que la solution converge vers une solution bornée pour tout t dans R. Pour démontrer cela, nous prenons une suite croissante (t n ) de temps qui tend vers +∞, et nous montrons que la suite u(t n ) n est bornée dans H 2 (T). Donc elle converge faiblement -après extraction d'une sous suite-vers une fonction qu'on appelle u ∞ . Nous obtenons alors le résultat suivant.

Théorème 7 Soient (t n ) n une suite croissante qui tend vers +∞, u 0 une donnée initiale réelle dans Ḣ1 (T), et u est la solution correspondante de (1.9). Alors, il existe une sous-suite

(t ϕ(n) ) n de (t n ) n et une fonction u ∞ (•) ∈ C 0 R, Ḣ1 (T) telles que ∀T > 0, lim n→+∞ u(t ϕ(n) + •) = u ∞ (•) dans C 0 [-T, T ], Ḣ1 (T) . (1.10)
La fonction u ∞ admet des propriétés particulières qui permettent d'appliquer le théorème de Hale et Raugel contrairement à une solution quelconque du problème non linéaire. En effet, la proposition suivante montre que la solution u ∞ , qui elle, va jouer le rôle d'une donnée initiale dans la suite, est bornée sur R. Ce qui permet de vérifier la première hypothèse du théorème de Hale et Raugel, car nous ne partons pas de n'importe quelle donnée initiale mais d'une donnée initiale qui est une limite de solutions.

Proposition 1 Soit u ∞ = u ∞ (0) la fonction obtenue par le Théorème 7 et u ∞ (t) la solution correspondante. Il existe une constante c > 0 telle que sup t∈R ∥u ∞ (t)∥ H 2 (T) ≤ c.
(1.11) L'hypothèse intéressante suivante est, dans un sens à préciser plus en détails, une décroissance exponentielle du semi-groupe linéaire sur les hautes fréquences.

Théorème 8 Il existe M > 0 et c > 0 tels que pour tout t ≥ 0 et n ∈ N e (A 1 +QnBB * )t L(QnH 1 ,H 1 ) ≤ M e -ct .
(1.12)

Pour montrer cela, nous utilisons la décroissance exponentielle vue précédemment ainsi que le résultat de Haraux [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF] qui énonce le théorème suivant. Rappelons le contexte du théorème, Soient les deux équations

φ ′ (t) + A 1 φ(t) = 0, (1.13) et y ′ (t) + A 1 y(t) + BB * y(t) = 0. (1.14)
Théorème 9 Les deux propriétés suivantes sont équivalentes 1. Il existe T 0 > 0 et c > 0 tels que toute solution φ de (1.13) vérifie

∥φ(0)∥ 2 H ≤ c T 0 0 ∥B * φ(s)∥ 2 H ds. (1.15) 2. Il existe T 1 > 0 et δ > 0 tels que toute solution y de (1.14) vérifie ∀y 0 ∈ D(A 1 ), ∀t ≥ T 1 , ∥y(t)∥ H = ∥S(t)y 0 ∥ H ≤ e -δt ∥y 0 ∥ H , (1.16) où {S(t)} t≥0 est le semi-groupe généré par A 1 + BB * .
La raison de l'application du théorème 9 est la suivante, il est aisé de démontrer l'inégalité d'obseravilité (1.15) associée à l'opérateur A 1 + Q n BB * à partir de celle associée à l'opérateur A 1 + BB * . Ensuite, nous montrons que la décroissance exponentielle associée au semi-groupe de l'opérateur A 1 +Q n BB * est équivalente à l'inégalité d'oservabilité pour A 1 + BB * .

Les autres hypothèses du théorème de Hale et Raugel sont plus faciles à vérifier. Cette démarche pour montrer l'analyticité a été utilisée dans l'article de Joly et Laurent [START_REF] Joly | Stabilization for the semilinear wave equation with geometric control condition[END_REF] qui l'on appliquer à l'équation des ondes. L'intérêt d'avoir une solution analytique est qu'elle permet d'appliquer le théorème de prolongement unique de Tataru [START_REF] Tataru | Unique continuation for solutions to pde's; between hörmander's theorem and holmgren's theorem[END_REF], voir aussi d'autres théorèmes dans l'article d'Hörmander [START_REF]On the uniqueness of the cauchy problem under partial analyticity assumptions[END_REF] et le papier de Robbiano et Zuily [START_REF] Robbiano | Uniqueness in the cauchy problem for operators with partially holomorphic coefficients[END_REF].

Le prolongement unique consiste à démontrer qu'une solution nulle d'un côté d'une surface est nulle localement de l'autre côté. Les résultats de prolongement unique reposent sur la notion de pseudo-convexité des surfaces. Le théorème de Tataru est un résultat intermédiaire entre les théorèmes d'Hörmander et celui d'Holmgren. Plus précisément, dans le théorème d'Hörmander, les coefficients de l'opérateur sont supposés de classe C 1 et doivent vérifier les conditions de la pseudo-convexité sur un certain ensemble. Holmgren suppose que les coefficients sont analytiques. Tataru donne un résultat intermédiaire entre les deux dans le sens où si le symbole principale de l'opérateur est de classe C 1 et les coefficients d'ordre inférieurs sont analytiques en temps, alors nous pouvons affaiblir les hypothèses d'Hörmander et vérifier les conditions de la pseudo-convexité sur un ensemble plus petit que celui d'Hörmander. Autrement dit, Tataru et Hörmander utilisent tous les deux une notion de pseudo-convexité mais la définition de Tataru est posée sur un ensemble strictement plus petit que celui considéré par Hörmander. Dans le résultat d'Holmgren, les coefficients sont supposés analytiques et les surfaces sont supposées non caractéristiques. Cette technique de déformation de surfaces dans le but d'avoir des résultats de prolongement unique peut être trouvé (avant Tataru et Hörmander) dans John [START_REF] John | On linear partial differential equations i with analytic coefficients[END_REF].

L'idée de la démonstration dans ce cas consiste à montrer d'abord que la fonction u ∞ est une constante (en temps et en espace) sur le support de a. Puis d'utiliser un argument de déformation de surfaces pour montrer que u ∞ est une constante sur une partie de la forme ]x * , x * + 2π[×{t = 0}, avec x * ∈ T. Ceci implique que la donnée initiale (qu'on peut noter u ∞ (0)) est égale à une constante c * sur un intervalle en x de longueur 2π. Donc, en regardant l'équation vérifiée par v := u ∞ -c * nous trouvons que v(0) = 0 partout, et par unicité de la solution, v(t) = 0 partout et ainsi, u ∞ est une constante pour tout (x, t) ∈ T × R.

À noter que le théorème standard d'Hörmander [START_REF] Hörmander | The analysis of linear pd operators. iv, fourier integral operators[END_REF] ne s'applique pas dans notre cas. La démonstration de l'analyticité en temps de la solution est donc cruciale pour l'utilisation du résultat de Tataru et cela conduit au résultat de stabilisation.

Dans la Section 3.7, nous déduisons que l'approche faite sur l'équation de KdV-BBM est applicable pour l'équation de BBM dans un cas particulier. En effet, la conjecture de prolongement unique que Rosier a énoncé dans [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF] est vraie avec un dissipateur a dépendant du temps et de la forme a(x + ct) avec c > 0.

Nous considèrons l'équation de BBM suivante

∂ t v + ∂ x v -∂ xxt v -∂ x (a(x + ct)∂ x )v + v∂ x v = 0, x ∈ T, t > 0, v(•, 0) = v 0 , x ∈ T.
(1.17) Nous montrons que modulo un changement de variable, l'étude faite sur l'équation de KdV-BBM reste valable pour l'équation (1.17). Ce type de dissipateur a été utilisé dans [START_REF] Cerpa | On the controllability of the improved boussinesq equation[END_REF] pour montrer des résultats de contrôlabilité de l'équation de Boussinesq. Selon nos connaissances, le taux de décroissance de l'énergie de la solution du problème non linéaire de KdV-BBM est encore une question ouverte.

Deuxième partie

Dans le quatrième chapitre, nous étudions la contrôlabilité approchée et la non-contrôlabilité exacte de l'équation de BBM non-linéaire

∂ t u + ∂ x u -∂ xxt u + u∂ x u = 0,
introduite par [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF], pour décrire un phénomène de propagation d'ondes longues unidirectionnelles de faibles amplitudes dans le cas dispersif non linéaire. Il a été prouvé dans [START_REF] Bona | Sharp well-posedness results for the bbm equation[END_REF] et [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF] que l'équation de BBM est bien posée lorsque la donnée initiale u 0 appartient à H s (T) avec s ≥ 0, et avant cela, dans [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF] quand s ∈ N * . De plus, l'application u 0 → u(t) est analytique. Nous savons aussi que l'équation est mal posée dans le cas s < 0 dans des sens différents (voir [START_REF] Bona | Sharp well-posedness results for the bbm equation[END_REF] et [START_REF] Panthee | On the ill-posedness result for the bbm equation[END_REF] pour un énoncé précis). Dans cette partie nous intéressons à la contrôlabilité de l'équation de BBM sur le tore

∂ t u + ∂ x u -∂ xxt u + u∂ x u = η(t, x), (t, x) ∈]0, T [×T. u(•, 0) = u 0 .
(1.18)

Micu [START_REF] Micu | On the controllability of the linearized benjamin-bonamahony equation[END_REF] a étudié la contrôlabilité de l'équation de BBM linéarisée sur [0, 1] avec un terme de contrôle sur le bord. Il a montré que l'équation n'est pas spectralement contrôlable mais approximativement contrôlable avec un contrôle dans L 2 (0, T ). Il a également montré que pour tout N > 0 et T > 0, il existe un contrôle tel que la projection de la solution sur l'espace de dimension finie généré par les 2N premières fonctions propres de l'opérateur de BBM est égale à zéro à l'instant t = T. Rosier et Zhang [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF] donnent un résultat contrôlabilité exacte pour l'équation de BBM avec une contrôle mobile pour un temps grand, ainsi que des estimations du terme de contrôle en fonction des données initiales et des données finales. Ils considèrent d'abord l'équation linéaire, puis ils déduisent le résultat sur l'équation non linéaire à l'aide d'un argument de point fixe. Zhang et Zuazua ont montré la contrôlabilité approximative de l'équation de BBM avec un terme de contrôle localisé, voir la Section 7 dans [START_REF] Zhang | Unique continuation for the linearized benjamin-bona-mahony equation with space-dependent potential[END_REF]. On peut aussi trouver la contrôlabilité approchée de l'équation de BBM en 1-d avec retard par Leiva [START_REF] Leiva | Controllability of the impulsive functional bbm equation with nonlinear term involving spatial derivative[END_REF].

L'équation (1.18) préserve les constantes, nous introduisons donc pour s ≥ 0 le sous-espace fermé de H s (T) Le théorème 11 est donc un résultat qui dit que nous ne pouvons pas faire mieux que le théorème 10, dans le sens où, avec des contrôles de dimensions finie, l'équation ne peut être que contrôlable approximativement. L'idée de la preuve du théorème 10 est de commencer par considérer un contrôle dans H(I 0 ), et de montrer que la solution atteint un espace H(I 1 ) dans un temps t, où I 1 ⊋ I 0 . Puis nous recommençons à partir de I 1 ce qui permet de construire un I 2 de la même façon, et ainsi de suite. Le but est de montrer que l'union de H(I n ) est dense en Ḣ1 (T), ce qui revient à montrer que l'union des I n est Z. La suite d'ensemble (I n ) joue le rôle des nouveaux modes de Fourier que l'on obtient après chaque étape. Il faut donc que l'inclusion de I n dans I n+1 soit stricte, sinon la suite (I n ) sera stationnaire à un certain rang n et dans ce cas, l'espace atteignable serait de dimension finie.

Ḣs (T) = u ∈ H s (T) ; (u, 1) L 2 (T) = 0 ,
Une remarque intéressante est de voir que pour atteindre à la fin un espace dense de Ḣ1 (T), il faut partir d'un contrôle dans H(I 0 ), où I 0 est générateur de Z, c'est-à-dire que tout entier de Z peut être écrit comme une combinaison linéaire avec des coefficients entiers d'éléments de I 0 . Remarquons que le contrôle repose sur un phénomène non linéaire où le terme u∂ x u génère de nouvelles fréquences, néanmoins, l'hypothèse sur I 0 est purement linéaire. En d'autres termes, en partant d'un I 0 qui génère linéairement Z, nous définissons une suite (I n ) construite à partir d'un procédé non linéaire. Il est important de voir que dans ce raisonnement, nous ne perdons jamais d'informations puisqu'après chaque étape, nous montrons que le cible sera dans un espace plus riche en fréquences. En répétant cette procédure suffisamment de fois, nous pouvons atteindre un espace dense dans Ḣ1 (T).

Nous commençons par utiliser un contrôle avec une très grande norme H 1 (T) en un temps petit, avec cela, nous montrons que la solution va converger vers une quantité dans laquelle le terme non linéaire de l'équation apparaît. Cette limite que l'on retrouve peut jouer le rôle d'une donnée initiale dans la suite. En appliquant à nouveau l'équation, le terme non linéaire donnera de nouvelles droites vectorielles qui peuvent être utilisées comme données initiales. Une fois que nous montrons que nous pouvons aller de n'importe quel point à n'importe quel point approximativement en un temps petit, nous pouvons généraliser cela pour conclure que le résultat est également vrai en un temps fixe.

Cette technique est inspirée de l'article de Nersesyan [START_REF]Approximate controllability of nonlinear parabolic pdes in arbitrary space dimension[END_REF], où il applique le même type de contrôle sur l'équation de la chaleur, et dans L'organisation du quatrième chapitre est la suivante. Dans la Section 4.2, nous étudions l'existence de la solution du problème non linéaire en utilisant un argument de point fixe sur l'équation de BBM modifiée suivante

∂ t u + ∂ x u + δ -1 2 φ -∂ xxt u + u + δ -1 2 φ ∂ x u + δ -1 2 φ = δ -1 f, ( 1 
.20) avec u(0) = u 0 , δ > 0 et φ une fonction régulière. L'intérêt d'ajouter la constante δ est de mesurer la taille du terme de contrôle qu'on va mettre à la première étape de notre raisonnement par récurrence, et de mesurer le temps d'existence de la solution avec un terme de contrôle sous la forme δ -1 f . La fonction φ joue ici le rôle d'une deuxième donnée initiale injectée dans l'équation. La solution de (1.20) à l'instant t va être notée u(t) = R t (u 0 , δ -1 2 φ, δ -1 f ). Nous établissons des estimations de continuité de la solution par rapport à la donnée initiale, à la fonction φ et du terme de contrôle. Nos résultats de continuité sont les suivants.

Proposition 2 Il existe des constantes positives

c 1 , c 2 et c 3 telles que pout t ≤ δ R t u 0 , δ -1 2 φ, δ -1 f -R t v 0 , δ -1 2 ψ, δ -1 g H 1 ≤ c 1 ∥u 0 -v 0 ∥ H 1 + c 2 ∥f -g∥ L 1 ([0,δ];H -1 ) + c 3 ∥φ -ψ∥ H -1 . (1.21) Lemme 1 Soient ϵ > 0, v ∈ Ḣ1 (T) et u 0 ∈ B H 1 v, ϵ 2 
, alors il existe

C > 0 et t * > 0 telle que la solution u(t * ) = R t * (u 0 , 0, 0) ∈ B H 1 (v, ϵ) et pour tout t ∈ [0, t * ] u(t) -u 0 H 1 ≤ Ct. (1.22)
Nous posons

C(I) = η -(1 -∂ xx ) -1 d i=1 φ i ∂ x φ i ; η, φ i ∈ H(I), ∀d ≥ 1 .
Le résultat principal de la section 4.2 est la limite suivante.

Proposition 3 Soit u(t) = R t u 0 , δ -1 2 φ, δ -1 η 0 la solution de (1.20), alors lim δ→0 u(δ) = u 0 + (1 -∂ xx ) -1 (η 0 -φ∂ x φ) , dans H 1 (T).
(1.23)

Cette proposition dit que lorsque δ tend vers 0, nous pouvons atteindre approximativement l'espace C(I) où on voit le terme non linéaire de l'équation apparaître dans la limite.

Dans la Section 4.3, nous partons d'un ensemble I 0 qui génère Z, puis nous définissons une suite d'ensembles (I n ) liés aux coefficients de Fourier donnés par le terme non linéaire, et nous prouvons que leur union forme un espace dense dans Ḣ1 (T). Ce qui revient au lemme suivant. 

H(I n+1 ) ⊂ C(I n ).
Autrement dit, ce qu'on peut atteindre en partant de φ et η dans H(I n ) va être une quantité dans un certain espace atteignable C(I).

Dans la Section 4.4, nous montrons que nous pouvons appliquer un contrôle pour passer d'une donnée initiale u 0 à un certain u 0 + H approximativement, où H est un espace de dimension finie que nous allons enrichir jusqu'à obtenir un espace dense dans Ḣ1 (T). Ensuite, en utilisant un raisonnement par récurrence et une propriété de densité, nous montrons que nous pouvons atteindre approximativement n'importe quel point en un temps T > 0. Ceci conclut la preuve du Théorème 10.

Dans la Section 4.5, nous donnons une preuve du Théorème 11. Nous commençons par le cas le plus simple, la non contrôlabilité exacte dans Ḣ1 (T). Nous raisonnons par contradiction pour montrer avec le théorème de Baire que l'espace atteignable dans Ḣ1 (T) ne peut pas contenir un ouvert, donc son complémentaire est dense.

Le cas s ∈]1, 2[ est plus technique. Nous utilisons un argument de l'ϵ-entropie pour compter le nombre de boules nécessaires pour recouvrir un certain ensemble. Plus précisément, nous estimons le nombre de boules de Ḣ1 (T) qu'il faut pour recouvrir la boule unité de Ḣs (T) lorsque s ∈]1, 2[, puis nous montrons que l'application η → u ne peut pas nous donner assez de boules pour couvrir une boule de Ḣs (T). Cela signifie que nous n'avons pas assez de contrôles pour obtenir une contrôlabilité exacte dans Ḣs (T).

Cette technique a été utilisée pour montrer que l'équation d'Euler n'est pas exactement contrôlable en 2-d par Shirikyan [START_REF]Euler equations are not exactly controllable by a finitedimentsional external force[END_REF]. Dans les travaux de Nersesyan et Nersisyan on peut aussi trouver le raisonnement de l'ϵ-entropie pour prouver la non contrôlabilité exacte dans [START_REF] Nersesyan | Global exact controllability in infinite time of shrödinger equation[END_REF] pour l'équation de Schrödinger, et dans [START_REF] Nersisyan | Controllability of 3d incompressible euler equations by a finite-dimensional external force[END_REF] pour l'équation d'Euler en 3-d.

Troisième partie

Nous intéressons dans le cinquième chapitre à l'équation de KP-I en 2-d

∂ t u + ∂ xxx u + u∂ x u -∂ -1 x ∂ yy u = η, (x, y) ∈ T 2 , t > 0, u(•, •, 0) = u 0 , (x, y) ∈ T 2 . (1.25)
Cette équation, vue comme une généralisation des équations de type KdV en dimensions supérieurs, est introduite par Kadomtsev et Petviashvili [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersive media[END_REF]. Kenig [Ken04] a montré que l'équation de KP-I est bien posée sur des espaces ayant une certaine régularité (voir aussi Bourgain [START_REF] Bourgain | On the cauchy problem for the kadomstev-petviashvili equation[END_REF] et Saut [START_REF] Saut | Remarks on the generalized kadomtsev-petviashvili equations[END_REF]). Un travail de Saut et Tzvetkov [START_REF] Saut | The cauchy problem for higher-order kp equations[END_REF] montre que pour des espaces de Sobolev inhomogène avec une faible régularité par rapport à la variable x, l'équation de KP-I est mal posée.

La contrôlabilité a été étudiée pour l'équation de KP-II

∂ t u + ∂ xxx u + u∂ x u + ∂ -1
x ∂ yy u = 0, dans l'article de Rivas et Sun [START_REF] Rivas | Internal controllability of non-localized solution for the kadomtsev-petviashvili ii equation[END_REF]. Un résultat de contrôlabilité pour l'équation de KP-I linéaire peut être trouvé dans l'article de Sun [START_REF] Sun | Exact controllability of linear kp-i equation[END_REF].

Dans la Section 5.2 nous commençons par introduire les espaces

Hs T 2 =    u = (k,n)∈Z * ×Z u k,n e i(kx+ny) ∈ L 2 T 2 ; (k,n)∈Z * ×Z u k,n 2 (1 + k 2 + n 2 ) s < ∞    , (1.26) et Q s T 2 =    u = (k,n)∈Z * ×Z u k,n e i(kx+ny) ∈ L 2 T 2 ; (k,n)∈Z * ×Z u k,n 2 (k 4 + n 2 ) 2 k 2 + 1 (1 + k 2 + n 2 ) s < ∞    , (1.27)
dans lesquels nous allons étudier l'existence et les propriétés de la solution.

L'espace Q s est le domaine de la partie linéaire vue comme opérateur non borné sur Hs . Nous considérons l'équation de KP-I avec un terme de contrôle η = η(t, x, y) comme dans le problème étudié au quatrième chapitre.

L'idée pour montrer l'existence est de regarder directement l'équation non linéaire en remplaçant le terme u∂ x u par v∂ x u pour définir un semi-groupe associé à l'opérateur A(v) et ensuite prendre v = u. Nous donnons également des estimations nécessaires pour le théorème d'existence.

Le résultat d'existence n'est pas optimale du point de vue de la régularité des données initiales, mais suffisent pour le problème du contrôle approché. Le résultat principal de la Section 5.3 est le théorème suivant.

Théorème 12 Il existe une unique solution

u ∈ C [0, T ′ ]; W ∩C 1 [0, T ′ ]; H s de (1.25), où W est une boule ouverte (bornée) de Q s .
L'opérateur A(v) de l'équation de KP-I est un opérateur qui dépend du temps, l'équation (1.25) est donc équivalente à

∂ t u = A(u(t))u + f, u(s) = 0, (1.28) où A(v(α)) = -∂ xxx u + v(α)∂ x u -∂ -1
x ∂ yy u . La preuve du théorème 12 est basée sur le théorème de Kato [Kat75, Theorem 6] suivant.

Théorème 13 Soient X un espace de Banach reflexif, Y ⊂ X un autre espace de Banach reflexif qui s'injecte avec une injection dense dans X. Soit W une boule ouverte de Y contenant 0, T > 0 et S : Y → X un isomorphisme. Supposons que 1. A = A(v(α)) est le générateur infénitisimal d'un semi-groupe {e sA(v(α)) } s≥0 tel que pour tout s > 0

e -sA(v(α)) X ≤ e βs , ∀(α, v) ∈ [0, T ] × W. 2. Pour tout (α, v) ∈ [0, T ] × W , l'opérateur SA(α, v)S -1 -A(α, v) est uniformément borné sur X. 3. Pour tout v ∈ W, α → A(α, v) est continue sur L(X, Y ) et pour α ∈ [0, T ], v → A(α, v) est Lipschitzienne. 4. Pour tout v ∈ W , α → f (α, v) est continue de [0, T ] dans X, pour tout α ∈ [0, T ], v → f (α, v) est Lipschitzienne et f est une fonction bornée de [0, T ] × W dans Y . Alors (1.28) admet une unique solution u ∈ C [0, T ′ ]; W ∩ C 1 [0, T ′ ]; X pour un T ′ ∈ [0, T ].
Comme nous allons considérer un contrôle avec des fonctions trigonométriques. La première étape, après avoir montrer l'existence, est de modifier l'équation en introduisant une constante δ > 0 et φ ∈ C ∞ . Nous regardons l'équation

   ∂ t u + ∂ xxx (u + δ -1 2 φ) + (u + δ -1 2 φ)∂ x (u + δ -1 2 φ) -∂ -1 x ∂ yy (u + δ -1 2 φ) = δ -1 η, u(•, •, 0) = u 0 .
(1.29) Nous donnons des estimations de continuité pour la solution de (1.29). Ensuite, nous faisons tendre δ vers 0 dans H s pour obtenir la limite suivante.

Proposition 4 La solution u(t) = R t u 0 , δ -1 2 φ, δ -1 η 0 de (1.29) vérifie lim δ→0 u(δ) = u 0 + η 0 -φ∂ x φ, dans H s (T 2 ).
(1.30)

Cette proposition est l'équivalente de la proposition 3.

Dans la Section 5.4. Nous prouvons le résultat de contrôlabilité approchée donné par le théorème suivant. Soit I 1 = {(1, 1); (1, 0); (1, -1)}. Nous posons pour I ⊂ Z * × Z l'espace H(I) = vect cos(px + qy), sin(px + qy); pour (p, q) ∈ I , Théorème 14 L'équation (1.25) est approximativement contrôlable dans Hs avec des contrôles constants par morceaux à valeurs dans H(I 1 ) pour s > 2. C'est-à-dire, pour tout T > 0, ϵ > 0 et tout u 0 , v ∈ Hs , il existe un contrôle η(t, x, y) constant par morceaux en temps à valeurs dans H(I 1 ) et une solution u de (1.25) telle que

∥u(T ) -v∥ H s ≤ ϵ.
Pour cela, nous énonçons un résultat analogue au lemme 3, pour conclure qu'avec une suite (I N ) définie à l'aide des produits des fonctions trigonométriques, nous pouvons, à partir du choix de I 1 , créer toutes les fréquences de Z * × Z. Cela conduit par suite à un résultat de contrôle approché.

Chapter

II

Preliminaries

This chapter is a presentation of the mathematical notions and definitions that we will use in the following. Some results in this chapter are known in the context of a real or complex space. Since we are going to deal with equations in the torus

T := R/2πZ,
for the next chapters, we give equivalent versions of the known results in the case where the variable x is in the torus using the fact that there is a bijection between the functions defined on the torus and the 2π-periodic functions defined on R.

Let (E, || • || E ) and (F, || • || F ) be two Banach spaces.

Usual spaces

For 1 ≤ p < ∞, we denote by L p (T, C) the space of measurable functions f : T → C such that µ(|f | p ) < ∞, where µ is a measure on T. The Lebesgue space L p (T, C) is defined as L p (T, C) = L p (T, C)/∼, where ∼ is the equivalence relation defined by f ∼ g if and only if f = g almost everywhere in T for the Lebesgue measure. For f ∈ L p (T, C), the norm of f is given by

∥f ∥ L p = T |f (x)| p dx 1 p .
When p = +∞, we define the space of bounded measurable functions L ∞ (T, C) equiped with the norm

∥f ∥ L ∞ = sup x∈T |f (x)|.
In a similar way, we define for 1 ≤ p < ∞ the space ℓ p (Z) of sequences

(x k ) k such that ∥(x k ) k ∥ ℓ p := k∈Z |x k | p 1 p < ∞,
and the space ℓ ∞ (Z) the space of sequences (x k ) k such that

∥(x k ) k ∥ ℓ ∞ := sup k∈Z |x k | < ∞.
The Sobolev spaces are defined for s ∈ R by

H s (T) = u = n∈Z u n e inx : T -→ C ; n∈Z (1 + n 2 ) s |u n | 2 < ∞ . (2.1)
The space H s (T) is equiped by the inner product

⟨ • , • ⟩ s : H 1 (T) x H 1 (T) -→ C (u, v) -→ n∈Z (1 + n 2 ) s u n v n (2.2)
where u n and v n are the Fourier coefficients of u and v respectively. We note

⟨ • , • ⟩ = ⟨ • , • ⟩ 1 . Definition 1 1. A bounded operator from E to F is a linear continuous map from E to F .
2. An unbounded operator from E to F is the given of a vector subspace of E, denoted D(A) and called domain of the operator, and of a continuous linear operator A from D(A) in F.

L(E, F ) denotes the space of bounded linear operators from E to F , equiped with the norm

|||A||| L(E,F ) = sup u E ≤1 Au F u E .
For k ∈ N * , C k (T) denotes the space of functions defined on the torus whose derivatives up to k exists and continuous. When k = 0, C 0 (T) (or C(T)) denotes the space of the continuous functions on the torus. The space C(T) equiped with the norm || • || ∞ is a Banach space. The space C ∞ is the space of functions infinitely differentiable, and C ∞ 0 when moreover the functions are with compact support.

We denote by BV [0, T ], X the space of functions in L 1 [0, T ], X with bounded variations from [0, T ] with values in X, equiped with the norm

u BV = u L 1 + X |du|, (2.3) 
where du(s) = u ′ (s)ds is the derivative of u in the sense of distributions that can assumed to be a Radon measure. See Chapter 1 in [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF] for more details.

Some definitions

We give in this subsection some definitions and well-known results. Let p, q, r ≥ 1. We define the convolution f * g between two functions f ∈ L p (T) and g ∈ L q (T) by

f * g(x) = T f (y)g(x -y) dy.
The function f * g belongs to L r (T), where r satisfy the relation

1 p + 1 q = 1 + 1 r .
(2.4) Moreover, we have the estimation

∥f * g∥ L r ≤ ∥f ∥ L p ∥g∥ L q .
The same result holds true for sequences. The sequence

(x * y) k is define in ℓ r (Z) when (x k ) k ∈ ℓ p (Z) and (y k ) k ∈ ℓ q (Z) by (x * y) k = n∈Z x n y n-k ,
where r satisfy (2.4), and we have ∥x * y∥ ℓ r ≤ ∥x∥ ℓ p ∥y∥ ℓ q .

(2.5)

Definition 2 An operator A of L(E, F ) is compact if the image by A of the unit ball of E has a compact closure in F .
We can see the compact property with using sequences.

Proposition 5 An operator A of L(E, F ) is compact if and only if for any bounded sequence (u n ) n in E, the sequence (Au n ) n contains a converging subsequence in F .

Definition 3 Let (x n ) be a sequence in a Hilbert space H and x an element of H. We say that the sequence (x n ) converges weakly to x and we note

x n ⇀ x if ∀ h ∈ H, lim n→∞ x n , h H = x, h H . Definition 4 We say that a family {S(t)} t≥0 of bounded linear operators is a semigroup on E if 1. S(0) = Id E , 2. S(t 1 + t 2 ) = S(t 1 )S(t 2 ), for all t 1 , t 2 ≥ 0.
If moreover the application t → S(t)x is continuous in 0 for all x in E, then {S(t)} t≥0 is called a C 0 -semigroup. And if these properties extend for t ≤ 0, we talk about a group or a C 0 -group.

Definition 5

We call infinitesimal generator of a semigroup {S(t)} t≥0 the unbounded linear operator (A, D(A)) defined by

D(A) = u ∈ E; lim t→0 + S(t)u -u t exists in E ,
and for u ∈ D(A)

Au = lim t→0 + S(t)u -u t .
Definition 6 (Fredholm operator) Let E and F be two Banach spaces. We say that an operator

A : E -→ F is Fredholm if 1. dim Ker A < ∞, 2. codim Im(A) < ∞.

The index of A is defined by

Ind(A) = dim Ker A -codim Im(A).
Lemma 1 Let {S(t)} t≥0 be a C 0 -semigroup, then, there exist M ≥ 1 and c ≥ 0 such that for all t ≥ 0

|||S(t)||| ≤ M e ct .
If for all t ≥ 0, |||S(t)||| ≤ 1, we say that it is a semigroup of contraction.

Lemma 2 Let E and F be two Banach spaces.

If A : E -→ F is a Fredholm operator of index Ind(A) and T : E -→ F is a compact operator then A+T is a Fredholm operator of index Ind(A).
Theorem 1 (Picard) Let A ⊂ X be a closed set and Φ : A → A be a map of contraction, that is to say there exists

θ ∈]0, 1[ such that for all u, v ∈ A ∥Φu -Φv∥ F ≤ θ ∥u -v∥ E .
Then, there exists a unique u ∈ A such that Φu = u.

Definition 7 (Dissipative operator) Let (H, ⟨ • , • ⟩) be a Hilbert space. An operator A : D(A) ⊂ H -→ H is called dissipative if for all u ∈ D(A),
Re ⟨Au, u⟩ ≤ 0.

We will prove the existence of the solutions using the two following theorems.

Theorem 2 Let A be a linear operator. Then A is dissipative if and only if for all u ∈ D(A) and λ > 0, we have

∥(λ -A)u∥ ≤ λ ∥u∥ .
Theorem 3 (Lumer-Phillips) Let A be a linear operator of dense domain in a Hilbert space H. If A is dissipative and if there exists

λ 0 > 0 such that Im(λ 0 I -A) = H, then A is the infinitesimal generator of a C 0 -semigroup of contraction.
See [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] for a proof.

If the infinitesimal generator A of a C 0 -semigroup {S(t)} t≥0 verifies the assumptions of Theorem 3, then the solution of the equation

∂ t u = Au u(0) = u 0 , is noted u(t) = S(t)u 0 .
Theorem 4 (Hille-Yosida) We have an equivalence between the two assumptions.

1. A is the infinitesimal generator of a C 0 -semigroup of contractions {S(s)} s≥0 . 2. A is closed, of domain dense and ∥R(λ, A(t))∥ ≤ 1 λ for Reλ > 0. Theorem 5 (Banach) If T ∈ L(E, F ) is bijective, then T -1 is continuous.
Definition 8 (Hamiltonian field) We call Hamiltonian field associated with a function f ∈ C ∞ the operator H f defined by

H f = ⟨∂ ξ f, ∂ x ⟩ -⟨∂ x f, ∂ ξ ⟩ = n j=1 ∂ ξ j f ∂ x j -∂ x j f ∂ ξ j .
Definition 9 (Poisson bracket) Let f, g : R 2n -→ R be two functions in C 1 . We define their Poisson bracket by

{f, g} = H f g = ⟨∂ ξ f, ∂ x g⟩ -⟨∂ x f, ∂ ξ g⟩ .
We denote by D = -i∂ x .

A differential operator P of order m is an operator defined by

P = |m|≤α σ α (x)∂ α x ,
where σ α are regular functions. The symbol of P is the function a :

T×R → C such that a(x, ξ) = |m|≤α σ α (x)(iξ) α .
This definition can be extended to other classes of operators in which the symbol is no longer necessarily a polynomial in ξ. In this case, we speak of pseudodifferential operators.

Definition 10 Let a = a(x, ξ) be a symbol of C ∞ (T × R). The pseudo- differential operator of symbol a, noted Op(a) is defined for all u ∈ C ∞ (T) by 
Op(a)u(x) = F -1 (a(x, ξ)Fu(ξ)) = 1 2π R T e i(x-y)ξ a(x, ξ)u(y)dydξ.
(2.6)

Definition 11 Let h > 0. We define the semiclassical Fourier transform by

F h φ(ξ) = R e -i h xξ φ(x)dx,
and its inverse

F -1 h ψ(x) = 1 2πh R e i h xξ ψ(ξ)dξ. Definition 12 Let u(x) = j∈Z u j e ijx ∈ L 2 (T) and a(x, ξ) = j∈Z a j (ξ)e ijx ∈ C ∞ 0 (T × R) such that a is 2π-periodic on x and a j (ξ) = 1 2π T a(x, ξ)e -ijx dx.
Then the semi-classical pseudo-differential operator of a is defined by

Op h (a)u = 1 2π R e ixξ a(x, hξ)û(ξ)dξ = 1 2π j,l∈Z u j (x)a l-j (hj)e ilx . (2.7)
We use here the standard quantification known in the literature. By an analogous calculation that in [START_REF] Harinck | Chaos en mécanique quantique[END_REF], we show that Op h (a) is well defined. And by applying [HPS14, Lemma 6.4] and [HPS14, Proposition 6.5] we have that Op h (a) is a bounded operator in L 2 (T). See also [START_REF] Zworski | Semiclassical analysis[END_REF]Section 5.3.1].

Theorem 6 Let a ∈ C ∞ 0 (T × R).
The operator Op h (a) extends to a continuous operator on L 2 (T), and there exists a constant c > 0 (which does not depend on h) such that

|||Op h (a)||| L 2 (T) ≤ c.
The character bounded on L 2 is necessary to be able to write the existence theorem of semi-classical measure in the case where the space variable of the symbol belongs to the torus.

Chapter

III

Stabilization of the KdV-BBM equation

Introduction

In the literature we can find several models of partial differential equations to describe the movement of water in shallow depths following a unidirectional propagation, see for instance [START_REF] Bona | Higher-order hamiltonian model for unidirectional water waves[END_REF], [START_REF] Bona | Comparison of model equations for smallamplitude long waves[END_REF] and [START_REF] Carvajal | Comparison between model equations for long waves and blow-up phenomena[END_REF]. In this work, we study the stabilization for the damped nonlinear KdV-BBM equation

∂ t u + ∂ x u -∂ xxt u + ∂ xxx u -∂ x (a(x)∂ x )u + u∂ x u = 0, (3.1)
where a, the damping, is non negative. This equation mixes the KdV equation

∂ t u+∂ xxx u+u∂ x u = 0, with the BBM equation ∂ t u+∂ x u-∂ xxt u+u∂ x u = 0.
To our knowledge the KdV-BBM equation was treated for the first time as a system in [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. i: Derivation and linear theory[END_REF] to study its properties. This equation has been recently considered in [START_REF] Besse | Discrete transparent boundary conditions for the mixed kdv-bbm equation[END_REF], [START_REF] Denys | Numerical simulation of a solitonic gas in kdv and kdv-bbm equations[END_REF] and [START_REF] Mancas | Elliptic solutions and solitary waves of a higher order kdv-bbm long wave equation[END_REF] from numerical analysis point of view. Stabilization was not considered for KdV-BBM equation but was considered for KdV in [START_REF] Baudouin | Two approaches for the stabilization of nonlinear kdv equation with boundary time-delay feedback[END_REF] and [START_REF] Laurent | Control and stabilization of the korteweg-de vries equation on a periodic domain[END_REF], and for BBM equation in [START_REF] Ammari | Well-posedness and stabilization of the benjamin-bona-mahony equation on star-shaped networks[END_REF] and [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF].

The particularity of the KdV-BBM equation, is that it admits a nonlocal unbounded operator of order 1, that introduces some difficulties in the analysis. Our main result is a stabilization property for the solutions of (3.1) on the torus. The principal theorem is the following.

Theorem 7 For all u 0 ∈ H 1 (T), there exists a unique solution u = u(t, x) of (3.1) global in time such that

lim t→+∞ u(t, •) = 1 2π T u 0 (x)dx, in H 1 (T).
Now we give the outline of the proof. In Section 3.2, we show the existence of the solution of the linear problem. In Section 3.3, we obtain the exponential decay result on the semigroup by an estimation of the resolvent. This estimate comes from semiclassical measures and the technic was used for the stability of the wave equation. This method can be found for the wave equation, see [START_REF]Semi-classical estimates for the resolvant in non trapping geometries[END_REF], [START_REF] Burq | Condition nécessaire et suffisante pour la controlabilité exacte des ondes[END_REF], [START_REF] Gérard | Ergodic properties of eigenfunctions for the dirichlet problem[END_REF], [START_REF]Microlocal defect measures[END_REF], [START_REF] Lebeau | Equation des ondes amorties[END_REF], [START_REF] Miller | Refraction of high-frequency waves density by sharp interfaces and semi classical measures at the boundary[END_REF] and [START_REF]The kato smoothing effect for schrödinger equations with unbounded potentials in exterior domains[END_REF].

In Section 3.4, from the fixed point theorem we prove local existence and the uniqueness for the nonlinear problem. By an a priori estimate on the energy, we deduce global existence for the nonlinear problem.

In Section 3.5, from energy decay dynamical system technics, we prove first that solution converges to a bounded solution for all t in R. Second, from result of [START_REF] Hale | Regularity, determining modes and galerkin methods[END_REF] we prove that this particular solution is analytic in time. This allows to apply uniqueness results (see [START_REF]On the uniqueness of the cauchy problem under partial analyticity assumptions[END_REF], [START_REF] Hörmander | The analysis of linear pd operators. iv, fourier integral operators[END_REF], [START_REF] Robbiano | Uniqueness in the cauchy problem for operators with partially holomorphic coefficients[END_REF] and [START_REF] Tataru | Unique continuation for solutions to pde's; between hörmander's theorem and holmgren's theorem[END_REF]) and we deduce that this particular solution is in fact a constant. The result of unique continuation which we will arrive at in Section 3.6 is therefore a result which says that if the solution is a constant on an open set, then it is constant over the whole domain. The unique continuation gives stabilization at the end in the sense that some solutions will goes to a constant as t goes to infinity. This technique can be found in [START_REF] Joly | Stabilization for the semilinear wave equation with geometric control condition[END_REF] where the authors consider the wave equation. They show that they can found an analytical solution in time and then use an unique continuation result to prove the stabilization.

In Section 3.7 we give a quick deduction that the approach we made on KdV-BBM is applicable for the equation of BBM in a particular case. More precisely we say that the unique continuation conjecture that Rosier has stated in [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF] is true with a dissipator a which depends on time. This type of dissipator was used in [START_REF] Cerpa | On the controllability of the improved boussinesq equation[END_REF] to show controllability results for the Boussinesq equation.

According to our knowledge, the rate of decay of the energy of the KdV-BBM nonlinear problem solution is still an open question.

Linear equation

We consider the linear KdV-BBM equation

∂ t u + ∂ x u -∂ xxt u + ∂ xxx u -∂ x (a(x)∂ x )u = 0, x ∈ T, t > 0, u(•, 0) = u 0 ∈ H 2 (T), x ∈ T, (3.2) where a ≥ 0 is a bounded C ∞ function such that {a > 0} ̸ = ∅.
We start by showing the existence of the solution. The operator

(1 - ∂ xx ) -1 is defined as follow (1 -∂ xx ) -1 : H s (T) -→ H s+2 (T) f -→ u,
the unique solution of the equation (1

-∂ xx )u = f, defined by its Fourier coefficients u n = 1 1 + n 2 f n . We have u ∈ H s+2 (T) when f ∈ H s (T) since (1 + n 2 ) s+2 2 u n 2 = (1 + n 2 ) s |f n | 2 , which have a finite sum. The undounded operator (A, D(A)) in H 1 (T) is defined by D(A) = H 2 (T) and 
A : H 2 (T) -→ H 1 (T) u -→ -(1 -∂ xx ) -1 (∂ x u + ∂ xxx u -∂ x (a(x)∂ x )u)). (3.3) The operator A has values in H 1 (T) since (1 -∂ xx ) -1 ∂ x u ∈ H 3 (T), (1 -∂ xx ) -1 ∂ xxx u ∈ H 1 (T) and (1 -∂ xx ) -1 ∂ x (a(x)∂ x )u ∈ H 1 (T).
We prove now that A is a Fredholm operator.

Proposition 6

The operator A -considered as operator on H 2 (T) with values in H 1 (T)-is a Fredholm operator of index 0.

Proof Let δ > 0, A can be written as sum of A 0 and B with

A 0 = -(1 -∂ xx ) -1 (∂ x + ∂ xxx + δ) and B = -(1 -∂ xx ) -1 (-∂ x (a(x)∂ x ) -δ). Note that if u(x, t) = n∈Z u n (t)e inx , then A 0 u = n∈Z -in + in 3 -δ 1 + n 2 u n (t)e inx .
The operator A 0 is bijective from H 2 (T) to H 1 (T), indeed, the equation A 0 u = f written with the Fourier coefficents is

-1 1 + n 2 (in -in 3 + δ)u n = f n . So we can write u n in respect of f n u n = -(1 + n 2 ) δ + in(1 -n 2 ) f n .
Note here that the denominator cannot be equal to 0, hence the interest in adding and subtracting δ in A. We thus have the injectivity and the surjectivity of A 0 , in other words

dim Ker A 0 = codim Im(A 0 ) = 0. This prove that A 0 is Fredholm of index 0. The operator B is bounded from H 2 (T) in itself scince ∥Bu(t)∥ H 2 (T) ≤ ∥∂ x (a∂ x )u(t) + δu(t)∥ L 2 (T) ≤ ∥a∂ x u(t)∥ H 1 (T) + δ ∥u(t)∥ L 2 (T) ≤ a ∞ + δ ∥u(t)∥ H 2 (T) . (3.4) So B is a compact operator from H 2 (T) in H 1 (T) thanks to the compact injection of H 2 (T) in H 1 (T)
. By applying Lemma 2 on A 0 And B, we obtain that A is a Fredholm of index 0.

Theorem 8

The operator A generates a C 0 -semigroup {S + (t)} t≥0 of contraction.

⟨(A + iµ)u, u⟩ = ((A + iµ)u, (1 -∂ xx )u) = -(∂ x u, u) + (∂ xx u, ∂ x u) -(a∂ x u, ∂ x u) + iµ u 2 H 1 (3.5) The quantity (∂ x u, u) is pure imaginary since Re(∂ x u, u) = 1 2 T ∂ x uu + u∂ x udx = 1 2 ((∂ x u, u) + (u, ∂ x u)) = 0.
By the same way we show that Re(∂ xxx u, u) = 0. Then

Re ⟨(A + iµ)u, u⟩ = - T a |∂ x u| 2 dx ≤ 0. (3.6) So A is dissipative. Now it suffices to prove that A -λ is injective for some λ > 0. Let u ∈ H 2 (T)
such that Au -λu = 0. We have

0 = Re ⟨Au -λu, u⟩ = - T a |∂ x u| 2 dx-λ u 2 H 1 ≥ -a L ∞ -λ u 2 H 1 .
This give us that A -λ is injective. Since A is Fredholm of index 0, and u -→ λu is an operator compact from H 2 (T) in H 1 (T), then A -λ is also Fredholm of index 0, since it is injective, it is therefore surjective. We apply Theorem 3 and the proof is complete.

We now prove that we have a semigroup on R -.

Theorem 9 The operator

-A generates a C 0 -semigroup {S -(t)} t≥0 . Proof Let u ∈ H 2 (T). For λ > 1 + a 2 L ∞ (T) we have ⟨(-A -λ)u, u⟩ = (∂ xxx u + ∂ x u -∂ x (a∂ x )u -λ(1 -∂ xx )u, u). (3.7) Thus Re ⟨(-A -λ)u, u⟩ = T a|∂ x u| H 1 (T) -λ u 2 H 1 (T) ≤ 0. (3.8)
By the same way as the previous proof, we show that the operator A + λ is surjective. This proves that -A -λ generates a contraction semigroup that we denote by { S-(t)} t≥0 .

We pose now S -: t -→ e λt S-(t). S -defines a semigroup with infinitesimal generator -A. Indeed, for u ∈ H 1 (T) we have

S -(t)u -u t = e λt S-(t)u -u t = e λt S-(t)u -u t + e λt u -u t -→ (-A -λ)u + λu = -Au,
(3.9) when t → 0, and this was to be demonstrated.

We use now a result of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] to define a group from two semigroups on R + and R -.

Theorem 10 Let A and -A be the generators of two semigroups {S + (t)} t≥0 and {S -(t)} t≥0 respectively, then the operator A generates a group {S(t)} t∈R defined by

S(t) = S + (t), if t ≥ 0 S -(-t), if t ≤ 0 (3.10)
Proof We start by checking that {S(t)} t∈R given by (3.10) is a group. Let us first show that for all t ∈ R we have

S(t)S(-t)u = u, ∀u ∈ H 1 (T). (3.11)
Let t ≥ 0 and u ∈ H 2 (T). If t = 0 we have the equality by definition of S + .

We calculate now the derivative of (3.11)

(S(t)S(-t)u) ′ = (S + (t)S -(t)u) ′ = AS + (t)S -(t)u -S + (t)AS -(t)u = (AS + (t) -S + (t)A) S -(t)u = 0, (3.12) 
since A commutes with S + . If t ≤ 0 we have by the same way

(S(t)S(-t)u) ′ = (S -(-t)S + (-t)u) ′ = AS -(-t)S + (t)u -S -(-t)AS + (t)u = (AS -(-t) -AS -(-t)) S + (t)u = 0. (3.13)
From the density of H 2 (T) in H 1 (T) we obtain (3.11). Let us now show that

S(s + t) = S(s)S(t), ∀s, t ∈ R. (3.14)
Several cases arise. Note that if s > 0, t > 0, s+t > 0 or s < 0, t < 0, s+t < 0 we have (3.14) from the definition of S + and S -respectively. If s > 0, t < 0, s + t > 0 then

S(s)S(t) = S + (s)S -(-t) = S + (s + t -t)S -(-t) = S + (s + t)S + (-t)S -(-t) = S(s + t)S(-t)S(t) = S(s + t).
If s > 0, t < 0, s + t < 0 then

S(s)S(t) = S + (s)S -(-t) = S + (s)S -(s -s -t) = S + (s)S -(s)S -(-(s + t)) = S(s)S(-s)S(s + t) = S(s + t). Likewise, if t > 0, s < 0, s + t > 0 then S(s)S(t) = S -(-s)S + (t) = S -(-s)S + (-s + s + t) = S -(-s)S + (-s)S + (s + t) = S(s)S(-s)S(s + t) = S(s + t). If t > 0, s < 0, s + t < 0 then S(s)S(t) = S -(-s)S + (t) = S -(-s -t + t)S + (t) = S -(-(s + t))S -(t)S + (t) = S(s + t)S(-t)S(t) = S(s + t).
Hence we get (3.14). Now let t, s ∈ R and u ∈ H 2 (T). we have

S(t)u -u t S(s) = S(t + s)u -S(s)u t = S(s) S(t)u -u t .
(3.15)

When t goes to 0, we obtain AS(s) = S(s)A.

We finish the subsection by giving this remark.

Remark 1 Taking λ = 0 in the proof of Theorem 8, we can see that A is the infinitesimal generator of a C 0 semigroup of contractions {S(t)} t≥0 . Moreover, for u solution of (3.2), we have that ∥u(t

)∥ 2 H 1 (T) is nonincreasing. Indeed d dt 1 2 ∥u(t)∥ 2 H 1 = (∂ t u, (1 -∂ xx )u) L 2 + (u, (1 -∂ xx )∂ t u) L 2 = (-∂ x u -∂ xxx u + ∂ x (a∂ x )u, u) L 2 + (u, -∂ x u -∂ xxx u + ∂ x (a∂ x )u) L 2 = -2 T a(x) |∂ x u(t, x)| 2 dx ≤ 0. (3.16)

Exponential stability

The goal of this subsection is to prove the exponential stability of {S(t)} t≥0 . More precisely, we will prove the following result.

Theorem 11 There exists δ > 0 and M > 0 such that

|||S(t)||| L(H 1 (T)) ≤ M e -δt , ∀t ≥ 0.
(3.17)

We will use the following theorem.

Theorem 12 Let H be a Hilbert space, and A :

D(A) ⊂ H -→ H a generator infinitesimal of a semigroup {T (t)} t≥0 . Assume that 1. There exists c 1 > 0 such that |||T (t)||| L(H) ≤ c 1 , ∀t ≥ 0, 2. A + iµ is inversible for all µ in R, 3. There exists c 2 > 0 such that |||(A + iµ) -1 ||| L(H) ≤ c 2 for all µ in R.
Then, there exists M > 0 and c > 0 such that

|||T (t)||| L(H) ≤ M e -ct , ∀t ≥ 0. (3.18)
See [Hua85, Theorem 3] for more details.

We cannot apply this theorem to A since it is not injective, the second assumption is not verified when µ = 0. For that, we introduce the closed subspace of H 1 (T)

Ḣ1 (T) = u ∈ H 1 (T) ; (u, 1) L 2 (T) = 0 .
We equip Ḣ1 (T) and H 2 (T) ∩ Ḣ1 (T) with the norms of H 1 (T) of H 2 (T) respectively. Note that the space Ḣ1 (T) can be equiped by the norm ∂ x • L 2 (T) as shows the following proposition.

Proposition 7 The norms • H 1 (T) and ∂ x • L 2 (T) are equivalent on Ḣ1 (T).
See Annex for the proof. We say that Au ∈ Ḣ1 (T) for u ∈ H 1 (T) since

(Au, 1) L 2 (T) = (-(1 -∂ xx ) -1 (∂ xxx u + ∂ x u -∂ x (a∂ x u)) , 1) L 2 (T) = (-∂ x (1 -∂ x ) -1 (∂ xx u + u -a∂ x u) , 1) L 2 (T) = ((1 -∂ x ) -1 (∂ xxx u + u -a∂ x u) , ∂ x 1) L 2 (T) = 0. If u(t, x) = k∈Z u k (t)e ikx ∈ H 1 (T), we can write u(t, x) = u 0 (t) + u(t, x), with u ∈ Ḣ1 (T). It is easily checked that if ∂ t u = Au, then u 0 (t) is indepen- dent of t since ∂ t u(t, x) = ∂ t u 0 (t) + ∂ t u(t, x) = Au(t, x).
Thus

∂ t u 0 (t), 1 L 2 (T) + (∂ t u(t, x), 1) L 2 (T) =0 = (Au(t, x), 1) L 2 (T) =0
.

Then ∂ t u 0 (t) = 0. So for u ∈ H 1 (T) we write u(t, x) = u 0 + u(t, x).
The space Ḣ1 (T) is then invariant by {S(t)} t≥0 , then it is also a semigroup of contraction on Ḣ1 (T). We thus define Ȧ with D( Ȧ) = H 2 (T) ∩ Ḣ1 (T) and Ȧu = Au for u ∈ D( Ȧ). The operator Ȧ is injective, indeed, for u ∈ Ḣ1 (T) such that Ȧu = 0, we can adapt the proof of Theorem 8 to obtain ∂ x u = 0 on T. As u ∈ Ḣ1 (T), then u = 0. Furthermore, Ȧ : H 2 (T) ∩ Ḣ1 (T) -→ Ḣ1 (T) is a Fredholm operator of index 0, so it is bijective. Then we have the second assumption of Theorem 12 for all µ ∈ R. Using bounded inverse theorem, A -1 is continuous. The third assumption of Theorem 12 is thus checked for µ = 0. We define now the resolvent of Ȧ by

R(λ) : Ḣ1 (T) -→ Ḣ1 (T) f -→ u (3.19) solution of ( Ȧ -λ) u = f.
Proposition 8 There exists c > 0 such that for all f ∈ Ḣ1 (T) we have

∀ µ ∈ R, ∥ u(t)∥ H 1 (T) ≤ c ∥f ∥ H 1 (T) ,
where u is solution of ( Ȧ + iµ) u = f . Proof Let µ 0 > 0. We distinguish two cases.

1 st case : |µ| ≤ µ 0 . The resolvent µ -→ (A+iµ) -1 is well defined from R to L Ḣ1 (T), Ḣ1 (T) .
Indeed, let u be such that Au + iµu = 0. Using the same arguments seen in (3.5) and (3.6) we obtain

Re ⟨(A + iµ)u, u⟩ = - T a |∂ x u| 2 dx = 0.
This give us that ∂ x u = 0 on {a > 0}. The equation

Au + iµu = 0 becomes then -∂ xxx u -∂ x u + iµu = 0. (3.20) Now let x 0 ∈ {a > 0}. The function ∂ x u is solution of (3.20) with the condi- tions ∂ x u(x 0 ) = ∂ xx u(x 0 ) = ∂ xxx u(x 0 ) = 0,
which means that ∂ x u ≡ 0. So u is constant. Since u belongs to Ḣ1 (T), we deduce that u ≡ 0. Hence the operator A + iµ is injective. Since it is Fredholm of index 0, it is bijective. Furthermore, we know that the resolvent is continuous from R to L Ḣ1 (T), Ḣ1 (T) . So there exists

c = c µ 0 > 0 such that ∀µ ∈ [-µ 0 , µ 0 ], (A + iµ) -1 L( Ḣ1 , Ḣ1 ) ≤ c. 2 nd case : |µ| > µ 0 .
Without loss of generality, we may consider from now on the operator A in H 1 (T) to simplify the notation instead of Ȧ in Ḣ1 (T). By an argument of symmetry, we know that R(iµ

)f = R(-iµ)f for f ∈ Ḣ1 (T). Indeed, Let u such that (A + iµ)u = f, with µ < -µ 0 . On the one hand (A + iµ)u = f , so (A -iµ)u = f . Then u = R(iµ)f . On the other hand, u = R(-iµ)f . Thus u = R(-iµ)f , and hence ∥R(-iµ)f ∥ = R(-iµ)f = R(iµ)f . So it
is sufficient to prove the result for µ > µ 0 .

We will prove by contradiction the resolvente estimate. Assume that

∀ k ∈ N, ∃ f k ∈ H 1 (T), ∃ µ k ≥ k / u k H 1 (T) > k f k H 1 (T) , (3.21) where u k is solution of (A+iµ k )u k = f k . We can assume that u k H 1 (T) = 1 and f k k∈N -→ 0 in H 1 (T), when k -→ +∞.
We notice that the sequence (µ k ) goes to +∞. Indeed, suppose that (µ k ) stay bounded. We know that the map µ

-→ |||(A + iµ) -1 ||| L(H 1 ) is continuous, so |||(A + iµ) -1 ||| L(H 1 ) is bounded. In this case we have u k H 1 (T) ≤ (A + iµ k ) -1 L(H 1 ) f k H 1 (T) -→ 0, when k goes to +∞, which contradicts the fact that u k H 1 (T) = 1.
We consider the equation

(1 -∂ xx ) -1 ∂ xxx u k + ∂ x u k -∂ x (a∂ x )u k + iµ k u k = f k . (3.22) We note (u k ) k = n∈Z u k n e inx , (f k ) k = n∈Z f k n e inx and a = n∈Z a n e inx . We know that if a∂ x u k = l∈Z (a∂ x u k ) l e ilx then (a∂ x u k ) l = j∈Z ia j (l -j)u k l-j .
So we define ãk n when (1

-∂ xx ) -1 ∂ x (a∂ x u k ) = n∈Z ãk n e inx by ãk n = (1 -∂ xx ) -1 ∂ x (a∂ x u k ) n = in 1 + n 2 (a∂ x u k ) n = -n 1 + n 2 j∈Z a j (n -j)u k n-j . (3.23)
The equation (3.22) written with Fourier coefficients is

1 1 + n 2 -in 3 + in u k n -ãk n + iµ k u k n = f k n . (3.24) Let δ ∈]0, 1 4 [. Let us first take the frequencies n such that |n -µ k | ≥ δµ k . We have 1 1 + n 2 -in 3 + in + iµ k = i(-n + µ k ) + 2in 1 + n 2 .
So we can write (3.24) under the form

u k n = -2n (-n + µ k )(1 + n 2 ) u k n + ãk n i(-n + µ k ) + f k n i(-n + µ k ) . (3.25) Since 1 |n -µ k | ≤ 1 δµ k , we have |n-µ k |≥δµ k -2n (-n + µ k )(1 + n 2 ) u k n e inx 2 H 1 = |n-µ k |≥δµ k 4(1 + n 2 ) (-n + µ k ) 2 n 2 (1 + n 2 ) 2 ≤1 u k n 2 ≤ 4 (δµ k ) 2 |n-µ k |≥δµ k (1 + n 2 ) u k n 2 ≤ 4 (δµ k ) 2 u k 2 H 1 (T) = 4 (δµ k ) 2 . (3.26) The operator (1 -∂ xx ) -1 (∂ x (a∂ x )) is bounded on H 1 (T). Indeed (1 + n 2 ) ãk n 2 = n 2 1 + n 2 j∈Z a j (n -j) u k n-j 2 ≲ j∈Z 1 (1 + j) σ (n -j) u k n-j 2 .
This is true for all σ > 1 from the regularity of a. So

1 (1 + j) σ j ∈ ℓ 1 and (nu n ) n ∈ ℓ 2 . From (2.5), we deduce that n∈Z (1 + n 2 ) ãk n 2 ≤ c. Thus |n-µ k |≥δµ k ãk n i(-n + µ k ) e inx 2 H 1 = |n-µ k |≥δµ k 1 (-n + µ k ) 2 (1 + n 2 ) ãk n 2 ≤ 1 (δµ k ) 2 n∈N (1 + n 2 ) ãk n 2 ≤ c (δµ k ) 2 .
(3.27) We have also 

|n-µ k |≥δµ k f k n i(-n + µ k ) e inx 2 H 1 = |n-µ k |≥δµ k (1 + n 2 ) (-n + µ k ) 2 f k n 2 ≤ c (δµ k ) 2 , (3.28) since f → 0 in H 1 (T).
|n-µ k |≥δµ k (1 + n 2 ) u k n 2 ≤ C (δµ k ) 2 -→ 0, when k → ∞.
(3.29)

We conclude that

(1-δ)µ k ≤n≤(1+δ)µ k (1 + n 2 ) u k n 2 ≈ 1.
For the part where n is of the order of µ k , we introduce a smooth fonction Ψ such that 0 ≤ Ψ ≤ 1 and

Ψ(s) = 1, if |s -1| ≤ δ 0, if |s -1| ≥ 2δ (3.30) Let h = 1 µ k . The operator Ψ(-ih∂ x ) is defined by Ψ(-ih∂ x )u k = n∈Z Ψ(hn)u k n e inx .
Note that Ψ(hn

) ̸ = 0 for n ∈ [(1 -2δ)µ k , (1 + 2δ)µ k ] since Ψ(hn) = 1, if |n -µ k | ≤ δµ k 0, if |n -µ k | ≥ 2δµ k . (3.31)
We can divide the frequencies which are of the order of µ k and the frequencies which remain by the sum

u k = (u k -Ψu k ) + Ψu k . (3.32) Indeed, when |n -µ k | ≤ δµ k we have |n| ≤ |n -µ k | + |µ k | ≤ (1 + δ)|µ k |,
and |µ k | ≤ |µ k -n| + |n| ≤ δ|µ k | + |n|. Hence (1 -δ)|µ k | ≤ |n| ≤ (1 + δ)|µ k |. Since Ψ(hn) = 1 when n ∈ [(1 -δ)µ k , (1 + δ)µ k ], we have u k -Ψ(-ih∂ x )u k 2 H 1 (T) = n∈Z (1 + n 2 )(1 -Ψ(hn)) 2 u k n 2 ≤ |n-µ k |≥δµ k (1 + n 2 ) u k n 2 ≤ C (δµ k ) 2 . (3.33) So for µ k large enough, we can assume that Ψ(-ih∂ x )u k H 1 (T) ≥ 1 2 . Now let v k = Ψ(-ih∂ x )u k ∥Ψ(-ih∂ x )u k ∥ L 2 (T)
, and we have

(1 -∂ xx ) -1 (∂ xxx + ∂ x -∂ x (a∂ x )) v k + iµ k v k = Ψ(-ih∂ x )f k ∥Ψ(-ih∂ x )u k ∥ L 2 +(1-∂ xx ) -1 ∂ x [Ψ(-ih∂ x ), a] ∂ x u k ∥Ψ(-ih∂ x )u k ∥ L 2 .
(3.34)

We can easily check that

Ψ(-ih∂ x )u k L 2 (T) ≈ h Ψ(-ih∂ x )u k H 1 (T) ≈ h. (3.35) Indeed 1 ≈ Ψ(-ih∂ x )u k 2 H 1 = Ψ(-ih∂ x )u k 2 L 2 + ∂ x Ψ(-ih∂ x )u k 2 L 2 = Ψ(-ih∂ x )u k 2 L 2 + h -2 h∂ x Ψ(-ih∂ x )u k 2 L 2 = hn≈1 (1 + n 2 ) |Ψ(hn)| 2 u k n 2 ≈ 1 h 2 hn≈1 |Ψ(hn)| 2 u k n 2 = 1 h 2 Ψ(-ih∂ x )u k 2 L 2 .
The term

Ψ(-ih∂ x )f k ∥Ψ(-ih∂ x )u k ∥ L 2 (T) tends towards 0 in L 2 (T) when k goes to +∞ since Ψ(-ih∂ x )f k L 2 (T) ∥Ψ(-ih∂ x )u k ∥ L 2 (T) ≈ h f k H 1 (T) ∥Ψ(-ih∂ x )u k ∥ L 2 (T) ≈ f k H 1 (T) -→ 0. (3.36)
We apply h 3 (1 -∂ xx ) to (3.34), we obtain

(h∂ x ) 3 v k + h 2 (h∂ x ) v k -h (h∂ x ) (a (h∂ x )) v k -i (h∂ x ) 2 v k + ih 2 v k = h 3 (1 -∂ xx ) ∥Ψ(-ih∂ x )u k ∥ L 2 Ψ(-ih∂ x )f k + h (h∂ x ) ∥Ψ(-ih∂ x )u k ∥ L 2 [Ψ(-ih∂ x ), a] (h∂ x ) u k .
(3.37)

We will show now with the two following lemmas that we have

h 3 (1 -∂ xx ) ∥Ψ(-ih∂ x )u k ∥ L 2 Ψ(-ih∂ x )f k + h (h∂ x ) ∥Ψ(-ih∂ x )u k ∥ L 2 [Ψ(-ih∂ x ), a] (h∂ x ) u k L 2 = o(h). (3.

38)

Lemma 3 There exists c > 0 such that

h 3 (1 -∂ xx ) ∥Ψ(-ih∂ x )u k ∥ L 2 (T) Ψ(-ih∂ x )f k L 2 (T) ≤ ch f k H 1 (T) . (3.39)
Proof Let Ψ : s → -s2 Ψ(s). From (3.35) we have

h 3 (1 -∂ xx ) ∥Ψ(-ih∂ x )u k ∥ L 2 Ψ(-ih∂ x )f k L 2 ≲ (h 2 -h 2 ∂ xx ) Ψ(-ih∂ x )f k L 2 ≤ h 2 Ψ(-ih∂ x )f k L 2 + Ψ(hD)f k L 2 ≤ h 2 f k L 2 + h Ψ(hD)f k H 1 ≤ ch f k H 1 .
Lemma 4 There exists c > 0 such that for z ∈ L 2 (T)

∥[Ψ(-ih∂ x ), a] z∥ H 1 (T) ≤ c z L 2 (T) . Proof Note that if [Ψ(-ih∂ x ), a] u k = n∈Z γ k n e inx , then γ k n = Ψ(hn) j∈Z a n-j u k j - j∈Z a n-j Ψ(hj)u k j = j∈Z a n-j (Ψ(hn) -Ψ(hj)) u k j .
We want to prove that

n∈Z 1 + n 2 |γ n | 2 = n∈Z 1 + n 2 j∈Z a n-j |Ψ(hn) -Ψ(hj)| |z j |
In Γ 1 , we have Ψ(hn) = 0 and |n -j| = |n| + j. We know also that for all

σ we have |a n | ≤ 1 (1 + |n|) σ . Thus √ 1 + n 2 |γ n | ≤ c j∈Z √ 1 + n 2 1 + |n| + j ≤c 1 (1 + |n -j|) σ-1 |Ψ(hj)| ≤1 |z j | ≤ c j∈Z 1 (1 + |n -j|) σ-1 1 2 j∈Z 1 (1 + |n -j|) σ-1 |z j | 2 1 2 ≤ c j∈Z 1 (1 + |n -j|) σ-1 |z j | 2 1 2 . Then n∈Z 1 + n 2 |γ n | 2 ≤ c j∈Z |z j | 2 n∈Z 1 (1 + |n -j|) σ-1 .
The term n∈Z 1 (1 + |n -j|) σ-1 converges and it does not depend on j. We deduce the estimate (3.40) on Γ 1 .

In Γ 2 , Ψ(hn) = 0, and we have

h + |hn -hj| ≥ h + |hn -1| -|hj -1| ≥ h + 3δ -2δ ≥ δ. It follows that 1 1 + |n -j| ≤ ch, thus √ 1 + n 2 |γ n | ≤ c j∈Z h √ 1 + n 2 (1 + |n -j|) σ-1 |z j | .
Since in Γ 2 we have hn ≤ 1 -3δ, the term h √ 1 + n 2 is bounded independently of n. We obtain with the same Hölder inequality as in Γ 1 the estimate (3.40).

In Γ 3 , Ψ(hn) = 0 and we have also Hence we estimate

h + |hn -hj| ≥ h + hn -hj ≥ h + 1 + 3δ -(2δ + 1) ≥ δ. So 1 1 + |n -j| ≲ h. (3.41) Furthermore n ≲ |n -j| + |j| ≲ |n -j| + 1 h . ( 3 
√ 1 + n 2 |γ n | ≲ j∈Z h|n -j| + 1 (1 + |n -j|) σ-1 |z j | ≲ j∈Z 1 (1 + |n -j|) σ-2 |z j | ,
and we use again Hölder inequality as in Γ 1 to obtain (3.40).

In Γ 4 , we use the mean value theorem to write

|Ψ(hn) -Ψ(hj)| ≤ ch |n -j| . Then √ 1 + n 2 |γ n | ≤ c j∈Z |n -j| (1 + |n -j|) σ |z j | ≤ c j∈Z 1 (1 + |n -j|) σ-1 |z j | .
As in Γ 2 , we obtain (3.40).

In Γ 5 , we have Ψ(hn) = Ψ(hj) = 0. The result follows directly.

We deduce from Lemma 4 taking z = ∂ x u k (∈ L 2 (T)) that

h 3 ∥Ψ(-ih∂ x )u k ∥ L 2 ∂ x [Ψ(-ih∂ x ), a] ∂ x u k L 2 ≤ h 2 [Ψ(-ih∂ x ), a] ∂ x u k H 1 ≤ ch 2 ∂ x u k L 2 ≤ ch 2 u k H 1 = ch 2 .
(3.43) Then (3.39) and (3.43) give (3.38). Furthermore

ih 2 v k L 2 (T) = o(h), and h 2 (h∂ x )v k L 2 (T) = o(h), (3.44) since v k L 2 (T) = 1.
We give also the following lemma.

Lemma 5 There exists c > 0 such that

(h∂ x ) (a (h∂ x )) v k L 2 (T) ≤ c. (3.45)
Proof We recall that

Ψ(hn) = 1, if |hn -1| ≤ δ 0, if |hn -1| ≥ 2δ,
and for k large enough,

Ψ(-ih∂ x )u k L 2 ≈ h. We have (h∂ x ) (a (h∂ x )) = a(h∂ x ) 2 + [h∂ x , ah∂ x ]. Thus (h∂ x ) (a (h∂ x )) v k L 2 (T) ≤ a(h∂ x ) 2 v k L 2 (T) + [h∂ x , ah∂ x ]v k L 2 (T)
We estimate the first quantity.

a(h∂ x ) 2 v k 2 L 2 (T) ≤ c (h∂ x ) 2 v k 2 L 2 (T) ≤ n∈Z h 4 n 4 ψ 2 (hn)(u k n ) 2 h 2 ≤ c n∈Z n 2 h 2 n 2 ψ 2 (hn) ≤c (u k n ) 2 ≤ c n∈Z n 2 (u k n ) 2 ≤ c u k 2 H 1 (T) = c. Now we write [h∂ x , ah∂ x ] = h∂ x (ah∂ x )-a(h∂ x ) 2 = ha ′ h∂ x +a(h∂ x ) 2 -a(h∂ x ) 2 = ha ′ h∂ x . Then [h∂ x , ah∂ x ]v k 2 L 2 (T) = ha ′ h∂ x Ψ(-ih∂ x )u k ∥Ψ(-ih∂ x )u k ∥ L 2 (T) 2 L 2 (T) ≤ c n∈Z h 4 n 2 ψ 2 (hn)(u k n ) 2 h 2 ≤ c n∈Z h 2 n 2 ψ 2 (hn)(u k n ) 2 ≤ ch 2 n∈Z n 2 (u k n ) 2 ≤ ch 2 u k 2 H 1 (T) = ch 2 . This give us (3.45). We can write h (h∂ x ) (a (h∂ x )) v k L 2 (T) = O(h). Now (3.37) be- comes (hD) 3 v k -(hD) 2 v k = hg k , (3.46)
where g is a bounded function in L 2 (T). We can now give the theorem of existence of semiclassical measure, which is a classical theorem and may be found in [Bur97, Theorem 2] or [Gé91a, Proposition 3.1].

Theorem 13 Let (h k ) k be a sequence of reals which converges to 0 and (u h k ) a bounded sequence in L 2 (T) which converges weakly to 0. There exists a subsequence from (u h k ) -which we called also (u h k )-and a non negative Radon measure ν on T × R such that for every b ∈ C ∞ 0 (T × R; C)

lim h k →0 b(x, h k D)u h k , u h k L 2 (T) = T×R b(x, ξ)dν(x, ξ).
ν is called the semiclassical measure associated to the sequence (u h k ).

We will apply this theorem to the sequence (v h k ), so we check first that it converges weakly to 0.

Proposition 9

The sequence v h k converges weakly to 0.

Proof We know that v h k converges weakly since v h k L 2 (T) = 1. We write v h k = n∈Z v h n e inx = n∈Z Ψ(hn)u h k n Ψ(hn)u h k n L 2
e inx , and we pose

φ = n∈Z φ n e inx ∈ C ∞ 0 (T).

So we have |φ

n | ≤ 1 (1 + n 2 ) σ for all σ > 0. Let Θ be a C ∞ function such that 0 ≤ Θ ≤ 1 and Θ(s) = 1, if |s -1| ≤ 2δ 0, if |s -1| ≥ 3δ.
(3.47)

Note that ΘΨ = Ψ. We have

v h k , φ L 2 ,L 2 = n∈Z v h n φ n = n∈Z Θ(hn)Ψ(hn) u h k n Ψ(hn)u h k n L 2 φ n ≲ n∈Z Θ 2 (hn) |φ n | 2 1 2 n∈Z v h k n 2 1 2 =1 ≲   n∈Z Θ 2 (hn) ≤1 1 (1 + n 2 ) 2σ   1 2 ≲ 1 1 + 1 h 2 2σ-1 2 n∈Z 1 1 + n 2 1 2 <∞ , (3.48)
since n is of the order of 1 h when Θ(hn) ̸ = 0. This quantity goes to 0 as h -→ 0, and the proof is complete.

Remark 2 We can prove that the mesure ν is bounded using Gårding inequality, more precisely

T×R dν(x, ξ) ≤ 1. (3.49)
Let us study where the measure ν is supported.

Proposition 10 We have

ν(x, ξ) = ν(x) ⊗ δ ξ=1 . (3.50) Proof We multiply the equation (3.46) by a function b ∈ C ∞ 0 (T × R; C) b(x, hD) (hD) 3 -(hD) 2 v k = hb(x, hD)g k = O(h). Note that the symbol of b(x, hD) ((hD) 3 -(hD) 2 ) is b(x, ξ) (ξ 3 -ξ 2 ) which belongs to C ∞ 0 (T × R; C).
According to Theorem 13, we have on the one hand 

b(x, hD) (hD) 3 -(hD) 2 v k , v k L 2 -→ T×R b(x, ξ) ξ 3 -ξ 2 dν(x,
(ν) ⊂ T × {ξ = 1} . Let b ∈ C ∞ 0 (R; C) independent of x and χ ∈ C ∞ (R) such that χ(ξ) = 1, if |ξ| ≤ δ 0, if |ξ| ≥ 2δ,
where the constant δ is the same one used in (3.30).

We want to prove that On the one hand

(1 -hD)b 1 (hD)v k , v k L 2 =   (1 -hD) b 1 (hD)Ψ(hD) =0 u k ∥Ψ(hD)u k ∥ , Ψ(hD) u k ∥Ψ(hD)u k ∥   L 2 = 0.
(3.55)

From Theorem 13 we have

T×R (1 -ξ)b 1 (ξ)dν(x, ξ) = 0, (3.56) 
for every b 1 such that (3.54).

On the other hand 

T×R b 2 (ξ)(1 -ξ)dν(x, ξ) = T×R (1 -χ(ξ))b(ξ)(1 -ξ)dν(x, ξ) = T×R (1 -χ(ξ))b(ξ) ξ 2 (ξ 3 -ξ 2 )dν(x, ξ) = 0, (3.57 

Proposition 11

The measure ν ≡ 0 everywhere.

Proof We first show that ν is an uniform measure on {ξ = 1}, i.e. ν(x, ξ) = ν ⊗ δ ξ=1 , that is ν does not depend on x. We start by giving the following lemma.

Lemma 6 Let a 1 and a 2 be two symbols in C ∞ , then

[Op h (a 1 ), Op h (a 2 )] = h i Op h ({a 1 , a 2 }) + h 2 O(1). (3.58)
See [Zwo12, Theorem 4.12] for a proof.

We come back to the equation (3.37). From (3.38) and (3.44) we have

(hD) 3 v k -(hD) 2 v k + ih(hD) a(x)(hD)v k = o(h), (3.59) 
where o(h) is a function going to 0 in L 2 (T) when h goes to 0.

We first prove that ν = 0 on {a > 0}. Let b ∈ C ∞ 0 (T × R; R) such that b(x, ξ) = b(ξ). Since b is real and does not depend on x, we know from [Zwo12, Theorem 4.1] that the operator b(hD) is self adjoint, and the operator hD is also self adjoint. Taking the imaginary part of the inner product of (3.59) with b(hD)v k we get

hIm ib(hD)(hD) a(x)(hD)v k , v k L 2 (T) = Im o(h), v k L 2 (T) . Thus Im ib(hD)(hD) a(x)(hD)v k , v k L 2 (T) -→ 0. By Theorem 13, we know that b(hD)(hD) a(x)(hD)v k , v k L 2 -→ T×R a(x)ξ 2 b(ξ)dν(x, ξ) = 0. That means ν = 0 in {a > 0}. Now let b = b(x, ξ) ∈ C ∞ 0 (T×R; R), P = (hD) 3 -(hD) 2 +ih(hD) (a(x)(hD))
, and p = ξ 3 -ξ 2 its principal symbol. We have

(P b(x, hD) -b(x, hD)P )v k , v k = b(x, hD)v k , P * v k -b(x, hD)P v k , v k = b(x, hD)v k , (hD) 3 -(hD) 2 -ih(hD) (a(x)(hD)) v k -b(x, hD)P v k , v k = b(x, hD)v k , (hD) 3 -(hD) 2 + ih(hD) (a(x)(hD)) v k -b(x, hD)v k , 2ih(hD) (a(x)(hD)) v k -b(x, hD)P v k , v k .
On the one hand

1 h (P b(x, hD) -b(x, hD)P ) v k , v k = 1 i Op h ({p, b}) v k , v k + o(1),
according to (3.58), and converges to 1 i T×R {p, b} dν(x, ξ) by Theorem 13.

On the other hand

1 h b(x, hD)P v k , v k = 1 h    b(x, hD) (hD) 3 -(hD) 2 + ih(hD) (a(x)(hD)) v k =o(h) , v k    -→ 0.
(3.60)

The term

1 h b(x, hD)v k , 2ih(hD) (a(x)(hD)) v k → -2i T×R a(x)ξ 2 b(x, ξ)dν(x, ξ).
Then

1 i T×R {p, b} dν(x, ξ) = 2i T×R a(x)ξ 2 b(x, ξ)dν(x, ξ) = 0. (3.61)
Now we have

0 = T×R {p, b} dν = ⟨ν, H p b⟩ = -⟨H p ν, b⟩ = -⟨∂ ξ p∂ x ν -∂ x p∂ ξ ν, b⟩ = -(3ξ 2 -2ξ)∂ x ν, b . (3.62)
This is true for every b. Thus (3ξ 2 -2ξ)∂ x ν = 0. Since ν is supported in {ξ = 1} and (3ξ 2 -2ξ) |ξ=1 = 1, we get ∂ x ν = 0. So, ν(x) does not depend of x. Since ν = 0 on the support on a, we deduce that ν ≡ 0 everywhere.

To finish we verify at the same time that ν ̸ ≡ 0. For that, we recall that

v k h = Ψ(hD)u k h Ψ(hD)u k h L 2 (T)
.

Let Θ be a function in C ∞ such that 0 ≤ Θ ≤ 1 and

Θ(s) = 1, if |s -1| ≤ 2δ 0, if |s -1| ≥ 3δ. (3.63) 
Note that ΘΨ = Ψ. On the one hand

lim h→0 Op h (Θ)v k h , v k h L 2 (T) = T×R Θ(ξ)dν(x, ξ),
and on the other hand

Op h (Θ)v k h , v k h L 2 (T) = 1 Ψ(hD)u k h L 2 Op h (Θ)Op h (Ψ)u k h , v k h L 2 (T) = 1 Ψ(hD)u k h L 2 Op h (Ψ)u k h , v k h L 2 (T) = v k h 2 L 2 (T) = 1.
Thus T×R Θ(ξ)dν(x, ξ) = 1. This means that ν cannot be identically 0. This is absurd, so the assumption (3.21) is false.

We can now return to the operator Ȧ. From the above, we have

∀µ ̸ = 0, ∀f ∈ H 1 (T), ∃u ∈ D(A) ; (A + iµ)u = f.
Furthermore, there exists c > 0 which does not depend on µ such that

∥u(t)∥ H 1 (T) ≤ c ∥f ∥ H 1 (T) .
In particular, if f ∈ Ḣ1 (T), we have u ∈ Ḣ1 (T) since

iµ (u, 1) L 2 = (f, 1) L 2 -(Au, 1) L 2 = 0.
In this case, we can write for all µ ̸ = 0

∥u(t)∥ Ḣ1 (T) = ∥u(t)∥ H 1 (T) ≤ c ∥f ∥ H 1 (T) = c ∥f ∥ Ḣ1 (T) . So ( Ȧ + iµ) -1 = (A + iµ) -1 | Ḣ1 .
From Theorem 12, we have for all t ≥ 0,

|||S(t)||| L(H 1 ,H 1 ) ≤ M e -δt .
We finish this subsection by showing the exponential stability in H 2 (T), which will be useful later.

Lemma 7 There exist M, δ > 0 such that for all t ≥ 0 we have

|||S(t)||| L( Ḣ2 ) ≤ M e -δt .
(3.64)

Proof Let u(t) ∈ H 2 (T) ∩ Ḣ1 (T) and t ≥ 0. We have

∥S(t)u∥ H 2 (T) ≃ ∥AS(t)u∥ H 1 (T) + ∥S(t)u∥ H 1 (T) = ∥S(t)Au∥ H 1 (T) + ∥S(t)u∥ H 1 (T) ≤ M e -δt ∥Au∥ H 1 (T) + M e -δt ∥u∥ H 1 (T)
≤ M e -δt u H 2 (T) .

Nonlinear equation

We consider now the nonlinear equation

∂ t u + ∂ x u -∂ xxt u + ∂ xxx u -∂ x (a(x)∂ x u) + u∂ x u = 0, x ∈ T, u(., 0) = u 0 ∈ H 1 (T), x ∈ T.
(3.65) We show in this paragraph that this equation admits a unique solution defined over all R. The principal theorem of this subsection is the following result.

Theorem 14 Let R > 0. There is a unique solution of (3.65) that exists on R. Moreover, for T > 0, the map

H 1 (T) -→ C [-T, T ], Ḣ1 (T) u 0 -→ u,
where u is the solution of the nonlinear problem with the initial data u 0 , is Lipschitz on B Ḣ1 (T) (0, R).

The first equation of (3.65) is equivalent to

∂ t u = Au-(1-∂ xx ) -1 u∂ x u.
The local existence is a consequence of the Picard fixed point theorem. Let R > 0 and 0 < T ≤ 1. We define

B R,T = u ∈ C [-T, T ], Ḣ1 (T) ; sup s∈[-T,T ] ∥u(s)∥ H 1 (T) ≤ R . We equip C [-T, T ], Ḣ1 (T) with the distance d(u, v) = sup s∈[-T,T ] ∥u(s) -v(s)∥ H 1 (T) .
The space C [-T, T ], Ḣ1 (T) , d is a complete metric space. For u 0 in Ḣ1 (T) and t ∈ [-T, T ], we introduce

Φ : C [-T, T ], Ḣ1 (T) -→ C [-T, T ], Ḣ1 (T) u -→ S(t)u 0 - t 0 S(t -s)(1 -∂ xx ) -1 u(s)∂ x u(s)ds. It is clear that Φ(u) ∈ C [-T, T ], Ḣ1 (T) when u ∈ C [-T, T ], Ḣ1 (T) ⊂ C [-T, T ], L ∞ (T) since ∂ x u ∈ C ([-T, T ], L 2 (T)), then u∂ x u ∈ C ([-T, T ], L 2 (T)), which implies (1 -∂ xx ) -1 u∂ x u ∈ C [-T, T ], H 2 (T) ∩ Ḣ1 (T) .
So the quantities S(t)u 0 and S(t-s

)(1-∂ xx ) -1 u∂ x u ∈ C [-T, T ], Ḣ1 ( 

T) .

Lemma 8 There exists C 0 > 0 such that

∀M > 0, ∃ R, T > 0 ; RT < C 0 , ∀ ∥u 0 ∥ H 1 (T) ≤ M, Φ : B R,T -→ B R,T , is a contraction.
Proof It is easy to show that for every g ∈ C ([-T, T ], L 2 (T)) we have for every

t ∈ [-T, T ] t 0 S(t -s)(1 -∂ xx ) -1 g(s)ds H 1 (T) ≤ cT e δ sup s∈[-T,T ] ∥g(s)∥ L 2 (T) .
Let u, v ∈ B R,T . We have

Φ(u)(x, t) -Φ(v)(x, t) = - t 0 S(t -s)(1 -∂ xx ) -1 (u(s)∂ x u(s) -v(s)∂ x v(s)) ds = - t 0 S(t -s)(1 -∂ xx ) -1 {(u(s) -v(s)) ∂ x u(s) + (∂ x u(s) -∂ x v(s)) v(s)} ds.
As Ḣ1 (T) → L ∞ (T) continuously, we have

∥Φ(u)(t) -Φ(v)(t)∥ H 1 ≤ cT e δ sup s∈[-T,T ] ∥u(s) -v(s)∥ L ∞ ∥∂ x u(s)∥ L 2 + ∥∂ x u(s) -∂ x v(s)∥ L 2 ∥v(s)∥ L ∞ ≤ cT e δ sup s∈[-T,T ] ∥u(s) -v(s)∥ H 1 ∥∂ x u(s)∥ L 2 + ∥∂ x u(s) -∂ x v(s)∥ L 2 ∥v(s)∥ H 1 ≤ 2cT Re δ sup s∈[-T,T ] ∥u(s) -v(s)∥ H 1 = 2cT Re δ d(u, v).
(3.66) Taking the supremum on t we get

d(Φ(u), Φ(v)) ≤ 2cT Re δ d(u, v).
So, for T ≤ min e -δ 4cR , 1 , Φ is a contraction.

Let us now show that if u ∈ B R,T then Φ(u) ∈ B R,T . From (3.66) and taking v = 0 we obtain

∥Φ(u)(t)∥ H 1 -∥Φ(0)(t)∥ H 1 ≤ ∥Φ(u)(t) -Φ(0)(t)∥ H 1 ≤ 2cT Re δ sup s∈[-T,T ] ∥u(s)∥ H 1 .
Let M > 0 and u 0 ∈ H 1 (T) be such that ∥u 0 ∥ H 1 (T) ≤ M . We can write

∥Φ(u)(t)∥ H 1 (T) ≤ e δ ∥u 0 ∥ H 1 (T) + 2cT R 2 e δ ≤ M + 2cT R 2 e δ (3.67) Choosing R ≥ 4M e δ + e -δ 4c we get ∥Φ(u)(t)∥ H 1 (T) < R. Since R > e -c 4c , this estimate is valid when T ≤ e -δ 4cR
, and the proof is complete.

Before showing the global existence, we give the following result of the semigroup.

Proposition 12 There exists c > 0 which depends only on the function a(x) such that the solution u of the nonlinear problem which exists on

] -T, T [ verifies ∥u(t)∥ H 1 (T) ≤ ∥u 0 ∥ H 1 (T) e δ|t| , ∀t ∈] -T, T [. (3.68) Proof Let t ∈] -T, 0[, we write ∥u(t)∥ 2 H 1 (T) -∥u(0)∥ 2 H 1 (T) = t 0 ∂ t ∥u(σ)∥ 2 H 1 (T) dσ = -4 t 0 T a(x) |∂ x u(σ)| 2 dxdσ ≤ 4 a L ∞ (T) 0 t ∥u(σ)∥ 2 H 1 (T) dσ.
Then

∥u(t)∥ 2 H 1 (T) ≤ c 0 t ∥u(σ)∥ 2 H 1 (T) dσ + ∥u(0)∥ 2 H 1 (T) . Using Gronwall inquality ∥u(t)∥ 2 H 1 (T) ≤ ∥u(0)∥ 2 H 1 (T) e -ct
, ∀t ∈] -T, 0[. We can repeat the same arguments for t ∈ [0, T [. This was to be demonstrated.

We can now prove Theorem 14.

Proof (of Theorem 14) Let u and v be two solutions of (3.65) admitting the same initial data. The function w = u -v verifies

∂ t w + ∂ x w -∂ xxt w + ∂ xxx w -∂ x (a(x)∂ x )w + w∂ x u + v∂ x w = 0.
We know that

w(t) = t 0 S(t -s)(1 -∂ xx ) -1 (w(s)∂ x u(s) + v(s)∂ x w(s)) ds.
According to (3.68) we can deduce that ∥∂ x u∥ L 2 (T) ≤ c 1 and ∥v(s

)∥ L 2 (T) ≤ c 2 . It follows for t ≥ 0 ∥w(t)∥ H 1 = t 0 S(t -s)(1 -∂ xx ) -1 (w(s)∂ x u(s) + v(s)∂ x w(s)) ds H 1 ≤ t 0 max{c 1 , c 2 } ∥w(s)∥ H 1 ds.
By Gronwall's inequality, we obtain ∥w(t)∥ H 1 (T) = 0. We can do the same calculus for t ≤ 0, so that we have uniqueness. To prove that the solution is global, we recall that for the local existence of the solution, by taking R and T such that RT ≤ e -δ 4c , we found a solution which exists on [0, T ]. Now let T * = sup{t ≥ 0 ; u exists on [0, t]} and 0 < T 1 < T * . Suppose that T * < ∞. From Proposition 12, if

∥u(T 1 )∥ H 1 (T) ≤ ∥u 0 ∥ H 1 (T) e δT 1 = R 1 ,

then we have a solution which exists on [T 1 , T ] as soon as (T -T

1 )R 1 ≤ e -δ 4c . That means T ≤ e -δ 4cR 1 + T 1 = e -δ 4c ∥u 0 ∥ H 1 e δT 1 + T 1 = f (T 1 ).
It is clear that f (T * ) > T * , since f is continuous, there exists T < T * such that f (T ) > T * . This means that the solution starting from T 1 will exist beyond T * , which is absurd. This implies T * = +∞. The same argument can be repeated for t ≤ 0. Once we know that the solution of the nonlinear problem exists on all R, we can repeat the same proof as that of Proposition 12 with all T > 0 to write

∥u(t)∥ H 1 (T) ≤ ∥u 0 ∥ H 1 (T) e c|t| , ∀t ∈ R, (3.69)
where u is the solution of the nonlinear problem which exists on all R. Now we finish the proof by proving that the map u 0 -→ u is locally Lipschitz continuous from H 2 (T) ∩ Ḣ1 (T) to C [-T, T ], Ḣ1 (T) . Let u and v be two solutions of the nonlinear problem with initial data u 0 and v 0 respectively, and T > 0.

We have ∀t ∈ [-T, T ],

u(t) -v(t) = S(t)(u 0 -v 0 ) - t 0 S(t -s) (1 -∂ xx ) -1 (u(s)∂ x u(s) -v(s)∂ x v(s)) =(F u-F v)(s)
ds.

But

∥(F u -F v)(s)∥ H 1 = ∥((u(s) -v(s))∂ x u(s) -(∂ x u(s) -∂ x v(s))v(s))∥ L 2 ≤ c ∥u(s) -v(s)∥ L ∞ ∥∂ x u(s)∥ L 2 + ∥∂ x u(s) -∂ x v(s)∥ L 2 ∥v(s)∥ L ∞ ≤ c ∥u(s)∥ H 1 + ∥v(s)∥ H 1 ∥u(s) -v(s)∥ H 1 . (3.70)
Then there exists c > 0 which depend on T such that

∥u(t) -v(t)∥ H 1 ≤ c ∥u 0 -v 0 ∥ H 1 +c t 0 (∥u(s)∥ H 1 + ∥v(s)∥ H 1 ) ∥u(s) -v(s)∥ H 1 ds ≤ c ∥u 0 -v 0 ∥ H 1 +c (∥u 0 ∥ H 1 + ∥v 0 ∥ H 1 ) t 0 ∥u(s) -v(s)∥ H 1 ds .
By Gronwall inequality

∥u(t) -v(t)∥ H 1 (T) ≤ C ∥u 0 -v 0 ∥ H 1 (T) , (3.71) 
with C = ce δT (∥u0∥ H 1 +∥v 0 ∥ H 1 ) .

Convergence of the solutions

We start by introducing a function called u ∞ , which is a limit in a certain way of the solution given in the following theorem. The advantage of u ∞ is that it is an analytic function in time, this property will be used later to show that u ∞ is a constant.

Theorem 15 Let (t n ) n be a nondecreasing sequence of times which goes to +∞, and u 0 a real valued initial data in Ḣ1 (T) with u the corresponding solution of (3.65). Then, there exists a subsequence (t ϕ(n) ) n and an analytic function in time u ∞ such that

∀T > 0, lim n→+∞ u(t ϕ(n) + •) = u ∞ (•) in C 0 [-T, T ], Ḣ1 (T) .
(3.72)

We can easily prove the convergence of u(t ϕ(n) ) towards a function u ∞ . We start by giving this remark.

Remark 3 If u 0 real valued, the corresponding solution u of (3.65) is bounded for t ≥ 0. Moreover ∥u(t)∥ H 1 (T) ≤ ∥u 0 ∥ H 1 (T) , ∀t ≥ 0.

(3.73) Indeed, note that u is real when u 0 is real. We recall that the norm

|| • || 2 H 1 (T)
of the solution of the linear problem is nonincreasing. Since Re(u∂ x u, u) = 0, the same calculus as in Remark 1 gives us that ∥u(t)∥ H 1 (T) is nonincreasing where u(t) is the solution of nonlinear problem. Now let (t n ) n be a sequence which goes to +∞, according to Duhamel's formula

u(t n ) = S(t n )u 0 - tn 0 S(s)(1 -∂ xx ) -1 u(t n -s)∂ x u(t n -s)ds. When t n → +∞, the term S(t n )u 0 goes to 0 from (3.17). Since u ∈ L ∞ [0, +∞[, Ḣ1 (T) ⊂ L ∞ ([0, +∞[×T), and 
∂ x u ∈ L ∞ ([0, +∞[, L 2 (T)), then u∂ x u ∈ L ∞ ([0, +∞[, L 2 (T)). Which implies (1 -∂ xx ) -1 u∂ x u ∈ L ∞ [0, +∞[, H 2 (T) ∩ Ḣ1 (T) . From (9) we have thus tn 0 S(s)(1 -∂ xx ) -1 u(t n -s)∂ x u(t n -s)ds H 2 ≤ c tn 0 |||S(s)||| L( Ḣ2 ) ds ≤ c +∞ 0 e -δs ds < ∞. The sequence tn 0 S(s)(1 -∂ xx ) -1 u(t n -s)∂ x u(t n -s)ds n is uniformly
bounded in H 2 (T), and then, it converges weakly in H 2 (T) up to a subsequence (ϕ n ) n and so, strongly in H 1 (T) to u ∞ . Now let S(t) t∈R be the nonlinear semigroup, in other words u(t) = S(t)u 0 .

On the one hand, for s ∈ R we have S(s)u(t ϕn ) = S (t ϕn + s) u 0 = u(t ϕn + s).

On the other hand, we use the continuity property of u seen in Theorem 14 to write lim n→+∞ S(s)u(t ϕn ) = S(s)u ∞ = u ∞ (s).

This give us the limit (3.72).

Remark 4

The function u ∞ given by Theorem 15 will be now considered as initial data. We will write it down u ∞ (0), and we write down u ∞ the corresponding solution.

Now let us prove the analyticity of u ∞ . To do that we shall apply the following theorem, see [HR03, Theorem 2.20] with assumptions (H3mod) and (H5).

Theorem 16 Let Y be a complex Banach space. Let P n ∈ L(Y ) be a sequence of continuous linear maps and let Q n = Id-P n . Let A : D(A) → Y be the generator of a continuous semigroup {e tA } t≥0 and let G ∈ C 1 (Y ). We assume that V is a complete mild solution in Y of

V ′ (t) = AV (t) + G(V (t)), t ∈ R.
(3.74)

We further assume that 1. {V (t), t ∈ R} is contained in a compact set K of Y.

2. For any y ∈ Y , (P n y) n converges to y when n → +∞ and (P n ) and

(Q n ) n are sequences of L(Y ) bounded by K 0 .

The operator A splits in

A = A 1 + B 1 where B 1 is bounded and A 1 commutes with P n .
4. There exists M, λ > 0 such that e At L(Y ) ≤ M e -ct and e (A 1 +QnBB * )t L(QnY,Y ) ≤ M e -ct for all t ≥ 0. 5. G is analytic in the ball B Y (0, r), where r is such that r ≥ 4 sup t∈R

∥V (t)∥ Y . 6. {DG(V (t))Z ; t ∈ R, ∥Z∥ Y ≤ 1} is relatively compact set of Y .
Then, the solution V (t) is analytic from t ∈ R into Y .

We use this theorem taking

A : u -→ -(1 -∂ xx ) -1 (∂ x u + ∂ xxx u -∂ x (a(x)∂ x )u) and G : u -→ -(1 -∂ xx ) -1 (u∂ x u).
Note that u ∞ verifies the same equation as u. We deduce from this the existence of u ∞ on all R as well as the first part of the assumption 4.

We check the rest of the assumptions.

Proposition 13 Let u ∞ (0) be the function obtained by Theorem 15 and u ∞ (t) the corresponding solution. Then there exists c > 0 such that

sup t∈R ∥u ∞ (t)∥ H 1 (T) ≤ c. (3.75) Proof Let t ∈ R and (t ϕ(n)
) n the subequence given by Theorem 15. Using Proposition 12, there exists N 1 > 0 be such that for all n ≥ N 1 we have

u ∞ (t) -u(t ϕ(n) + t) H 1 ≤ 1.
On the other hand, there exist N 2 > 0 such that for n ≥ N 2 we have t ϕ(n) + t > 0. We deduce from (3.69) that for

n ≥ N 1 + N 2 ∥u ∞ (t)∥ H 1 ≤ u ∞ (t) -u(t ϕ(n) + t) H 1 + u(t ϕ(n) + t) H 1 ≤ 1 + ∥u(0)∥ H 1 ≤ c.

It follows the estimate (3.75).

Proposition 14 Let u ∞ (0) be the function obtained by Theorem 15 and u ∞ (t) the corresponding solution. Then there exist c > 0 such that

sup t∈R ∥u ∞ (t)∥ H 2 (T) ≤ c. (3.76) Proof Let t ∈ R, n ∈ N and v a solution of the nonlinear problem such that v(•) = u ∞ (• + t -n). We can write v(σ) = S(σ)v(0) - σ 0 S(σ -s)(1 -∂ xx ) -1 v(s)∂ x v(s)ds.
Note that v(n -t) = u ∞ (0). Thus, we can use a simple change of variables to get

u ∞ (t) = S(n)u ∞ (t -n) + n 0 S(τ )(1 -∂ xx ) -1 u ∞ (t -τ )∂ x u ∞ (t -τ )dτ. (3.77) We know that ∥S(n)u ∞ (t -n)∥ H 1 (T) ≤ ce -δn ∥u ∞ (t -n)∥ H 1 (T) ≤ Ce -δn .
Then, when n goes to +∞, (3.77) becomes

u ∞ (t) = +∞ 0 S(τ )(1 -∂ xx ) -1 u ∞ (t -τ )∂ x u ∞ (t -τ )dτ.
Since the operator u -→ (1 -∂ xx ) -1 u∂ x u is bounded from Ḣ1 (T) into H 2 (T) ∩ Ḣ1 (T), using Lemma 7 and Proposition 13 we obtain

∥u ∞ (t)∥ H 2 (T) ≤ c +∞ 0 e -δτ ∥u ∞ (t -τ )∥ 2 H 1 (T) dτ ≤ c +∞ 0 e -δτ dτ ≤ C.
{u ∞ (t) ; t ∈ R} is then a bounded set of H 2 (T) ∩ Ḣ1 (T), and consequently it is a relatively compact set of Ḣ1 (T).

We deduce that u ∞ satisfies the first assumption of Theorem 16 with K = {u ∞ (t), t ∈ R}. We define

(P n ) n and (Q n ) n for u = k∈Z * u k e ikx ∈ Ḣ1 (T) with P n (u) = |k|≤n u k e ikx and Q n (u) = |k|>n u k e ikx .
Clearly ∥P n ∥ L(H 1 ,H 1 ) ≤ 1 and ∥Q n ∥ L(H 1 ,H 1 ) ≤ 1, as well as (P n (u)) n converges towards u for all u ∈ Ḣ1 (T). We denote by

A 1 = -(1 -∂ xx ) -1 (∂ x + ∂ xxx ) and B = (1 -∂ xx ) -1 ∂ x a 1 2 (1 -∂ xx ) 1 2
. It is clear too that A 1 commutes with P n . The assumption 2 and 3 of Theorem 16 are verified. We can easily check that the adjoint of B in H 1 (T) is given by

B * = -(1 -∂ xx ) -1 2 a 1 2 ∂ x . Furthermore, BB * = -(1 - ∂ xx ) -1 ∂ x a∂ x . We can write A = A 1 +BB * . The operator BB * is nonnegative and (BB * u, u) H 1 = T a(x)|∂ x u(t, x)| 2 dx.

We will now prove the following result.

Theorem 17 There exists M > 0 and c > 0 be such that for every t ≥ 0 and for every n ∈ N

e (A 1 +QnBB * )t L(QnH 1 ,H 1 ) ≤ M e -ct . (3.78)
Let us start by giving an abstract result following the same approach as [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF]. We consider a complex Hilbert space H, A 1 an unbounded skewadjoint, m-dissipative linear operator on H and B a bounded linear operator such as BB * ≥ 0.

We also consider these two equations φ ′ (t) + A 1 φ(t) = 0, (3.79) and y ′ (t) + A 1 y(t) + BB * y(t) = 0.

(3.80)

Theorem 18

The following properties are equivalent.

1. There exists T 0 > 0 and c > 0 such that every solution φ of (3.79) satisfies

∥φ(0)∥ 2 H ≤ c T 0 0 ∥B * φ(s)∥ 2 H ds. (3.

81)

2. There exists T 1 > 0 and δ > 0 such that every solution y of (3.80) satisfies

∀y 0 ∈ D(A 1 ), ∀t ≥ T 1 , ∥y(t)∥ H = ∥S(t)y 0 ∥ H ≤ e -δt ∥y 0 ∥ H , (3.82)
where {S(t)} t≥0 is the semigroup generated by A 1 + BB * .

See Annex for the proof.

Proposition 15 Let u ∈ Ḣ1 (T), and let v be a solution of

∂ t v = (A 1 + Q n BB * ) v v(0) = Q n u
and w a solution of

∂ t w = Q n (A 1 + BB * ) Q n w w(0) = Q n u. Then v = w.
Proof Let z = Q n w. We have

∂ t z = Q n ∂ t w = Q n (Q n (A 1 + BB * )Q n w) = Q n (A 1 + BB * ) Q n z.
Since z(0) = w(0), by uniqueness w = z = Q n w, and we have

∂ t w = Q n (A 1 + BB * ) Q n w = Q n A 1 Q n w + Q n BB * Q n w = A 1 Q n Q n w + Q n BB * Q n w = (A 1 + Q n BB * ) w Then w = v.
We prove now Theorem 17.

Proof According to Proposition 15, it suffices to show that we have an exponential decrease for the semigroup associated with the operator

Q n (A 1 + BB * ) Q n .
For this, we will use Theorem 18. So we must prove that

∥φ(0)∥ 2 H 1 ≤ c 1 T 0 0 ∥Q n B * φ(s)∥ 2 H 1 ds, (3.83)
where φ is solution of

φ ′ (t) = Q n A 1 Q n φ(t) φ(0) = Q n φ(0).
We consider the problem

ψ ′ (t) = A 1 ψ(t) ψ(0) = Q n φ(0).
From (3.18) and Theorem 18, ψ satisfies

∥ψ(0)∥ 2 H 1 ≤ c 2 T 0 0 ∥B * ψ(s)∥ 2 H 1 ds.
Note that the constant c 2 depends only on the operator A 1 . So the estimate is uniform in n. Since Q n commutes with A 1 , we can take ψ = Q n φ. Thus we have (3.83) and then (3.78).

The two last assumptions of Theorem 16 are satisfied with the following proposition.

Proposition 16

The map G is holomorphic from Ḣ1 (T) to itself. Moreover, the set {DG(u

∞ (t))h ; t ∈ R, ∥h∥ Ḣ1 (T) ≤ 1} is a bounded set in Ḣ2 (T). Proof We recall that for u ∈ Ḣ1 (T), G(u) = -(1 -∂ xx ) -1 (u∂ x u). We know that G(u) ∈ Ḣ1 (T) since (G(u), 1) L 2 = -((1 -∂ xx ) -1 (u∂ x u), 1) L 2 = - 1 2 (1 -∂ x ) -1 ∂ x u 2 , 1 L 2 = 0.
We give the following definition of a holomorphic function on a Banach space. See [START_REF] Harris | Fixed point theorems for infinite dimensional holomorphic functions[END_REF] for more details.

Definition 13 Let X and Y be complex Banach spaces and let D be an open subset of X. A function G : D -→ Y is holomorphic if for each u ∈ D, there exists a continuous complex-linear mapping DG(u) :

X -→ Y such that lim h-→0 ∥G(u + h) -G(u) -DG(u)h∥ Y ∥h∥ X = 0. (3.84)
Let u and h be two functions in Ḣ1 (T). We have

G(u + h) = -(1 -∂ xx ) -1 ((u + h)∂ x (u + h)) = G(u) -(1 -∂ xx ) -1 (u∂ x h + h∂ x u) + G(h)
The map DG(u

) : h -→ -(1 -∂ xx ) -1 (u∂ x h + h∂ x u
) is linear and continuous, indeed

∥DG(u)h∥ H 1 (T) ≤ ∥DG(u)h∥ H 2 (T) ≤ u L ∞ (T) ∥h∥ H 1 (T) + ∥h∥ L ∞ (T) ∥∂ x u∥ L 2 (T) ≤ 2 u H 1 (T) ∥h∥ H 1 (T) . (3.85) Furthermore ∥G(u + h) -G(u) -DG(u)h∥ H 1 = ∥G(h)∥ H 1 ≤ ∥h∥ L ∞ ∥∂ x h∥ L 2 ≤ ∥h∥ 2 H 1 .
We have then (3.84). Now let u ∞ be the solution of the nonlinear problem with the initial data u ∞ (0), and h ∈ Ḣ1 (T) such that ∥h∥ H 1 (T) ≤ 1. We know that u ∞ ∈ L ∞ R, Ḣ1 (T) from Proposition 13. Estimation (3.85) shows that {DG(u ∞ (t))h ; t ∈ R, ∥h∥ Ḣ1 (T) ≤ 1} is a bounded set in Ḣ2 (T). Thanks to the compact injection Ḣ2 (T) → Ḣ1 (T), we deduce the assumption 6 of Theorem 16.

All the assumptions of Theorem 16 are verified, the solution u ∞ of the nonlinear problem is an analytical function.

Unique continuation

We will show in this last part that u ∞ is constant for all (x, t) ∈ T × R.

Proposition 17 There exists c * ≥ 0 such that for all (x, t)

∈ T × R, u ∞ (x, t) = c * . Let -2π < α < β < 0 be two real numbers such that ]α, β[⊂ {a > 0}.
We first give the following proposition.

Proposition 18 There exists c * ≥ 0 such that for all (x, t

) ∈]α, β[×R, u ∞ (x, t) = c * .
Proof Let u be a solution of the non linear problem. From Remark 3, ∥u(t)∥ 2

H 1 (T)
is nonincreasing to a constant c ≥ 0, and we have with the notation of Theorem 15 lim

n→+∞ ∥u(t n + t) -u ∞ (t)∥ H 1 (T) -→ 0, ∀ t ∈ R, so ∥u ∞ (t)∥ 2 H 1 (T) = c for all t ∈ R. Now ∥u ∞ (t)∥ 2 H 1 (T) -∥u ∞ (0)∥ 2 H 1 (T) = -2 t 0 a(x) |∂ x u ∞ (x, σ)| 2 dσ, ∀ t ∈ R. Then t 0 a(x) |∂ x u ∞ (x, σ)| 2 dσ = 0, ∀ t ∈ R. This implies that u ∞ (x, t) is a constant on x for x ∈ ]α, β[. Now, since u ∞ satisfies (1 -∂ xx )∂ t u ∞ + ∂ xxx u ∞ + ∂ x u ∞ + u ∞ ∂ x u ∞ = 0,
and ∂ x u ∞ = 0, we deduce that we have also

∂ t u ∞ = 0. The function v = u ∞ -c * verifies the equation    (1 -∂ xx )∂ t v + ∂ xxx v + (1 + u ∞ )∂ x v = 0, (x, t) ∈ T × R v(x, 0) = v 0 ∈ H 1 (T), v(x, t) = 0, (x, t) ∈ ]α, β[×R. (3.86) Let P (x, t, ∂ x , ∂ t ) = ∂ xxx -∂ xx ∂ t +∂ t +w(t, x)∂ x , where w = 1+u ∞ .
The principal symbol is given by p(x, t, ξ, τ ) = ξ 2 (ξ -τ ). let x * ∈]α, β[. We denote by

ψ : (x, t) -→ (x -x * ) 2 -t 2 , and Γ = {(x, t, ξ, 0) ; x ∈ T, t, ξ ∈ R} .
We recall the following definition (see [Tat95, Definition 1.2])

Definition 14 (Pseudo-convex surface) Let P be a differential operator of ordre m, with a principal symbol p, S a level set of a smooth function ψ, and (x 0 , t 0 ) ∈ S such that ∇ψ(x 0 , t 0 ) ̸ = 0. We say that S is strongly pseudoconvex in (x 0 , t 0 ) with respect to P on Γ if 1. Re{p, {p, ψ}}(x 0 , t 0 , ξ, 0) > 0, on {(x 0 , t 0 , ξ, 0) ∈ Γ ; p(x 0 , t 0 , ξ, 0) = {p, ψ}(x 0 , t 0 , ξ, 0) = 0, with ξ ̸ = 0}

2.

1 γi {p(x, t, ξ -iγψ ′ x , τ -iγψ ′ t ), p(x, t, ξ + iγψ ′ x , τ + iγψ ′ t )} (x 0 , t 0 , ξ, 0) > c(ξ 2 + γ 2 ) m-1 , on {(x 0 , t 0 , ξ, 0) ∈ Γ ; p(x 0 , t 0 , ξ + iγψ ′ x , iγψ ′ t ) = {p(x, t, ξ+iγψ ′
x , τ +iγψ ′ t ), ψ}(x 0 , t 0 , ξ, 0) = 0, with γ > 0}. We will use this theorem given in [Tat95, Theorem 2] Theorem 19 Let K be an open set of R n and P a differential operator of ordre m such that 1. The principal symbol of P is real and whose coefficients are independent of t and assumed to be in C 1 (T),

The coefficients of lower order terms of P are analytic from

I ⊂ R into L ∞ (T),
Let (x 0 , t 0 ) ∈ T × R and ψ a smooth function such that ∇ψ(x 0 , t 0 ) ̸ = 0. Assume that the level surface {ψ(x, t) = ψ(x 0 , t 0 )} is strongly pseudo-convex in (x 0 , t 0 ) with respect to P on Γ. Then there exists an open neighbourhood V of (x 0 , t 0 ) such that if u is solution of P (x, D)u = 0 in K and u = 0 in {ψ > ψ(x 0 , t 0 )}, then u = 0 in V.

Clearly P verifies the first assumption of the theorem. The second assumption is also verified due to Proposition 13 and Theorem 15. We will show now that the level surfaces of the function ψ are strongly pseudo-convex on Γ.

Proposition 19

Let λ 1 = ψ(α + 2π, 0) = (α + 2π -x * ) 2 . The level surfaces {ψ = λ} for λ ∈]0, λ 1 ] are strongly pseudo-convex with respect to P on Γ.

Proof We will show that the sets {(x 0 , t 0 , ξ, 0) ∈ Γ ; p(x 0 , t 0 , ξ, 0) = {p, ψ}(x 0 , t 0 , ξ, 0) = 0, with ξ ̸ = 0}, and

{(x 0 , t 0 , ξ, 0) ∈ Γ ; p(x 0 , t 0 , ξ + iγψ ′ x , iγψ ′ t ) = {p(x, t, ξ + iγψ ′ x , τ + iγψ ′ t )
, ψ}(x 0 , t 0 , ξ, 0) = 0, with γ > 0} are empty. For the first set, we already notice that the case p(x 0 , t 0 , ξ, 0) = ξ 3 = 0 give necessarily ξ = 0, which is impossible. For the second one, we have γ > 0, then p(x 0 , t 0 , ξ+iγψ ′

x , iγψ ′ t ) = (ξ+2iγ(x-x * )) 2 (ξ+2iγ(t+x-x * )) is equal to 0 when ξ = 0 and x = x * , or when ξ = 0 and t + x -x * = 0. The first case is impossible since x = x * means that ψ = -t 2 < 0, but we want that the surfaces {ψ = λ} are stongly pseudo-convex for λ ∈]0, λ 1 ]. For the same reason, the second one is also impossible since t + x -x * = 0 correspond for all t ∈ R to {ψ = 0}. 

The assumptions of

λ 0 = inf λ ∈ 0, (2π) 2 ; v(x, t) = 0, ∀(x, t) ∈ {ψ > λ} ∩ T .
We give the following figure .   Here the green part corresponds to a connex part of {a > 0}, on which we know that v = 0. The idea is to use this information to show that v = 0 on a set slightly larger than {a > 0} using a surface deformation technique. It is sufficient to prove that λ 0 = 0. Assume that λ 0 > 0.

We know that v = 0 on {ψ ≥ λ 1 } ∩ T from Remark 5. By applying Theorem 19 to each point (x, t) ∈ {ψ = λ 0 } ∩ T =: T 0 , there exists an open neighborhood B(x, t) of (x, t) such that v = 0 on B(x, t).

So, if T 0 ⊂ (x i ,t i )∈T 0 B(x i , t i ), there exists B(x 1 , t 1 ), ..., B(x p , t p ) by a compactness argument such that T 0 ⊂ p i=1 B(x i , t i ).
We will show that there exists λ

∈ [0, λ 0 [ such that {ψ = λ} ∩ T ⊂ p i=1 B(x i , t i ).
Suppose that for all n ∈ N * , ψ = λ 0 -

1 n ∩ T ̸ ⊂ p i=1 B(x i , t i ). Let (y n , s n ) ∈ ψ = λ 0 - 1 n ∩ T . We know that for all n ∈ N * (y n , s n ) ∈ supp(v). Since ψ = λ 0 - 1 n ∩T is a compact set, there exists (y φ(n) , s φ(n) )
a subsequence of (y n , s n ) such that y φ(n) → y and s φ(n) → s. This give us that ψ(y, s) = λ 0 . Hence, there exists i ∈ {1, .., p} such that (y, s) ∈ B(x i , t i ). So for n large enough, we have (y φ(n) , s φ(n) ) ∈ B(x i , t i ), and then, (y φ(n) , s φ(n) ) / ∈ supp(v), which reach a contradiction. We deduce that λ 0 = 0 and then v = 0 on T .

Remark 5

The constant λ 1 is chosen so that

{ψ ≥ λ 1 } ∩ T ⊂ {a > 0} × R .

So combinning this with the last line of equation (3.86), we have clearly that

v = 0 on {ψ ≥ λ 1 } ∩ T .
The proof of Proposition 17 is easy now.

Proof We conclude from the preceding result that v is equal to zero everywhere since v = 0 on ]x * , x * + 2π] × {t = 0}, and then, the function v 0 in (3.86) is equal to 0. Thus we obtain v(x, t) = u ∞ (x, t) -c * = 0 for all (x, t) ∈ T × R.

Remark 6 Note that [START_REF] Hörmander | The analysis of linear pd operators. iv, fourier integral operators[END_REF]Theorem 28.3.4] is not applicable here since the level sufaces of ψ are not strongly pseudo-convex with respect to P in the sense of the theorem. Indeed, by a simple calculus we can prove that the assumption Re {p, {p, ψ}} (x 0 , t 0 , ξ, τ ) > 0, in the definition of pseudo-convexity in [START_REF] Hörmander | The analysis of linear pd operators. iv, fourier integral operators[END_REF] is not verified on the set

(ξ, τ ) ̸ = (0, 0) ∈ R 2 ; p(x 0 , t 0 , ξ, τ ) = p ′ (ξ,τ ) (x 0 , t 0 , ξ, τ ), ψ ′ (x,t) (x 0 , t 0 ) = 0 ,
since the choice ξ = 0 and τ ̸ = 0 vanish the two quantities p ′ (ξ,τ ) (x 0 , t 0 , ξ, τ ), ψ ′ (x,t) (x 0 , t 0 ) , p(x 0 , t 0 , ξ, τ ) and vanish also the term Re {p, {p, ψ}}.

We give finally a proof of Theorem 7. 

Proof Let u = k∈Z u k (t)e ikx
∥u(t n + s) -c * ∥ H 1 (T) = 0. Thus lim n→+∞ sup s∈[-T,T ] u 0 (t n + s) -c * 2 + k∈Z * (1 + k 2 ) u k (t n + s) 2 1 2 = 0.
We already know that u 0 (t n + s) is constant in time, in particular u 0 (t n + s) = u 0 (0), and since the term

k∈Z * (1+k 2 ) u k (t n + s)
2 goes to 0, we deduce that c * = u 0 (0). We finish by proving that lim t→+∞ u(t, •) = c * . Suppose that there exists (s n ) n a sequence of times which goes to +∞ and ∥u(s n ) -c * ∥ H 1 (T) ≥ ϵ, for some ϵ > 0. From Theorem 15, there exists a subsequence (s ϕ(n) ) n such that lim n→+∞ u(s ϕ(n) ) -c * H 1 (T) = 0, which is absurd.

A remark on the BBM equation

We consider this BBM equation

∂ t v + ∂ x v -∂ xxt v -∂ x (a(x + ct)∂ x )v + v∂ x v = 0, x ∈ T, t > 0, v(•, 0) = v 0 , x ∈ T, ( 3 
.87) where c > 0 and a ≥ 0 is assumed to be a bounded function in C ∞ (T) such that {a > 0} ̸ = ∅.

We can prove the result of stabilization by following the same approach in the preceding paragraphs. After a change of variables we can write the equation under the form

∂ t v -c∂ xxx v -∂ xxt v + (c + 1)∂ x v -∂ x (a(x)∂ x )v + v∂ x v = 0.
We prove that if v is the solution of the linear equation then

d dt 1 2 ∥v(t)∥ 2 H 1 = -2 T a(x) |∂ x v(t, x)| 2 dx ≤ 0. (3.88)
Except that there are different constants that appear in the equation compared to what we did previously, the results are essentially the same, and we give the following theorem.

Theorem 21 For all v 0 ∈ H 1 (T), there exists a unique solution v = v(t, x) of (3.87) global in time such that

lim t→+∞ v(t, •) = 1 2π T v 0 (x)dx, in H 1 (T).
We can see in this figure the difference between considering a dissipator of the form a(x) and another of the form a(x + ct).

Remark 7 As we saw in the introduction chapter, the mass of the solution of the BBM equation will remain around the initial data. This is why when we put a dissipator a(x) localized in space, the intersection between the solution and the dissipator will be negligible. The result becomes different when the dissipator is localized in space but of the form a(x + ct). In this case, even if the solution remains around a single place, the dissipator can move over time to touch the solution sufficiently in order to obtain the decreasing of energy (3.88).

Chapter

IV

Controllability of the BBM equation

Introduction

The nonlinear BBM equation ∂ t u + ∂ x u -∂ xxt u + u∂ x u = 0, introduced by [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF], seen as a regularized counterpart of the nonlinear KdV equation ∂ t u + ∂ x u + ∂ xxx u + u∂ x u = 0, is a model to describe a propagation phenomenon of one-dimensional unidirectional small amplitude long waves in nonlinear dispersive case. It was proven in [START_REF] Bona | Sharp well-posedness results for the bbm equation[END_REF] and [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF] that the BBM equation is well posed when the initial data u 0 belongs to H s (T) with s ≥ 0, and before that, in [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF] when s ∈ N * . Furthermore, the map u 0 → u(t) is real analytic. It is also known that the equation is ill-posed in the case s < 0 in different senses (see [START_REF] Bona | Sharp well-posedness results for the bbm equation[END_REF] and [START_REF] Panthee | On the ill-posedness result for the bbm equation[END_REF] for precise statement).

In this chapter, we are interested in the approximate controllability of the BBM equation on the torus

∂ t u + ∂ x u -∂ xxt u + u∂ x u = η(t, x), (t, x) ∈]0, T [×T. u(•, 0) = u 0 . (4.1)
Micu [START_REF] Micu | On the controllability of the linearized benjamin-bonamahony equation[END_REF] studied the controllability of the linearized BBM equation on [0, 1] with a control term on the boundary. He showed that the equation is not spectrally controllable but approximately controllable with a control in L 2 (0, T ). He also showed that for all N > 0 and T > 0, we can find a control such that the projection of the solution on the finite dimensional space generated by the first 2N eigenfunctions of the BBM operator is equal to zero at t = T. Rosier and Zhang [START_REF] Rosier | On the benjamin-bona-mahony equation with a localized damping[END_REF] give an exact controllability result for the BBM equation with a moving control for a large time, as well as estimates of the control term in combination of the initial data and the final data, by considering first the linearized equation, then deduce the result on the nonlinear equation using a fixed point argument. Zhang and Zuazua have shown the approximate controllability for the BBM equation with a localized control term, see Section 7 in [START_REF] Zhang | Unique continuation for the linearized benjamin-bona-mahony equation with space-dependent potential[END_REF]. We can also find the approximate controllability for the equation of BBM in 1-d with delay in [START_REF] Leiva | Controllability of the impulsive functional bbm equation with nonlinear term involving spatial derivative[END_REF].

The equation (4.1) preserves the constants, so we introduce the closed subspace of H 1 (T)

Ḣ1 (T) = u ∈ H 1 (T) ; (u, 1) L 2 (T) = 0 ,
equiped with H 1 (T)-norm. We will apply a method based on the use of the nonlinear term. The type of control we consider is trigonometric functions. The interest of such a choice of control is that our nonlinear term u∂ x u leaves the cosines and the sines invariant. We start with an initial data in Ḣ1 (T) and a control which belongs to a finite dimension space given for I ⊂ Z * by H(I) = span{cos(kx), sin(kx); for k ∈ I}.

(4.2)

Definition 15 We say that the equation (4.1) is approximately controllable in Ḣ1 (T) by values in H(I) if for any T > 0, ϵ > 0 and any u 0 , v ∈ Ḣ1 (T), there is a piecewise constant control with values in H(I) and a solution u of (4.1) such that ∥u(T ) -v∥ H 1 ≤ ϵ.

Definition 16

We say that the equation (4.1) is exactly controllable in Ḣs (T) by values in H(I) if for any T > 0 and any u 0 , v ∈ Ḣs (T), there is a piecewise constant control with values in H(I) and a solution u of (4.1) such that u(T ) = v.

Our two main results are the following theorems. The idea of the proof of Theorem 22 is to start by considering a control in H(I 0 ), and show that the solution reaches a space H(I 1 ) in a time t, where I 1 ⊋ I 0 . Then we start again from I 1 which allows us to construct an I 2 , and so on. The goal is to show that the union of H(I n ) is dense in Ḣ1 (T), which amounts to show that the union of I n is Z. The sequence (I n ) plays the role of the new Fourier modes that we obtain after each step. So it is necessary that the inclusion of I n in I n+1 is strict, because otherwise the sequence (I n ) will stop at a certain moment and we cannot reach a dense space, since the goal is to have an infinite dimension space from finite dimension spaces. Another interesting remark is to see that to reach at the end a dense space in Ḣ1 (T), we must start from a control in H(I 0 ), where I 0 is generator of Z, i.e. any integer of Z can be written as a linear combination with integer coefficients of elements of I 0 . So in fact, we can say that a nonlinear phenomenon gives a linear phenomenon in the sense that it is the term u∂ x u which generates new frequencies. In other words, we have that I 0 generates Z and we define a sequence (I n ) constructed from with linear combinations while the product u∂ x u is not linear. It is important to see that in the reasoning, we never lose informations since after each step, we show that the target will be in a larger space. By repeating this procedure enough times, we can reach a dense space in Ḣ1 (T). We start by using a control with a very large norm H 1 (T) in a small time, with that, we show that the solution will converge to a quantity in which the nonlinear term of the equation appears. This limit that we find can play the role of an initial data in the following. By applying the equation again, the nonlinear term will give new vector lines that can be used as initial data and so on. Once we show that we can go from any point to any point approximately in a small time, we can generalize that to conclude that the result is also true in a fixed time.

This technique is inspired by the paper of Nersesyan [START_REF]Approximate controllability of nonlinear parabolic pdes in arbitrary space dimension[END_REF], where he applies the same type of control on the heat equation, and in [START_REF] Nersesyan | Approximate controllability of lagrangian trajectories of the 3d navier-stokes system by a finite-dimensional force[END_REF] for Navier-Stokes systems. We refer the reader also to the works of Agrachev and Sarychev [START_REF] Agrachev | Navier-stokes equations: controllability by means of low modes forcing[END_REF][START_REF]Controllability of 2d euler and navier-stokes equations by degenerate forcing[END_REF] where they use trigonometric polynomials as a control over the equation of Navier-Stokes/Euler systems in 2-d and 3-d. Nersisyan [START_REF] Nersisyan | Controllability of 3d incompressible euler equations by a finite-dimensional external force[END_REF][START_REF]Controllability of the 3d compressible euler system[END_REF] uses this method of controlling with spaces of finite dimensions for the Euler equation. See as well works of Shirikyan [START_REF] Shirikyan | Approximate controllability of three-dimensional navier-stokes equations[END_REF][START_REF]Exact controllability in projections for threedimensional navier-stokes equations[END_REF][START_REF]Approximate controllability of the viscous burgers equation on the real line[END_REF][START_REF]Control theory for the burgers equation: Agrachev sarychev approach[END_REF] for the Burger and Navier-Stokes equations.

The organization of the chapter is as follows. In Section 4.2, we study the existence of the solution of the nonlinear problem using a fixed point argument. Then we establish some estimations of continuity of the solution with respect to the initial data and to the control term.

In Section 4.3, we start from a set I 0 which generates Z, then we define a sequence of sets (I n ) related to the Fourier coefficients given by nonlinear term, and we prove that their union forms a dense space in Ḣ1 (T).

In Section 4.4, we prove that we can apply a control to go from an initial data u 0 to some u 0 + H approximately, where H is a finite dimension space that we will enrich until we have a dense space in Ḣ1 (T). Then, arguing by induction and density, we show that we can reach approximately any point for any time T > 0.

In Section 4.5, we give a proof of Theorem 2. We start with the easiest case, the non exact controllability in Ḣ1 (T). We argue by contradiction to show with the Baire's theorem that the attainable space in Ḣ1 (T) cannot contain an open set, therefore its complement is dense. The case s ∈]1, 2[ is more technical. We use an ϵ-entropy argument to count the number of balls needed to cover a certain set. More precisely, we estimate the number of balls it takes to cover the unit ball of Ḣs (T) when s ∈]1, 2[, then we show that the application η → u cannot give us enough balls to cover a ball of Ḣs (T). This means that we do not have enough controls to achieve exact controllability in Ḣs (T). This technique is inspired by Shirikyan in [START_REF]Euler equations are not exactly controllable by a finitedimentsional external force[END_REF] who used it to show that the Euler equation is not exactly controllable in 2-d. We can also find the reasoning of ϵ-entropy to prove the non exact controllability in [START_REF] Nersesyan | Global exact controllability in infinite time of shrödinger equation[END_REF] for the Schrödinger equation, and in [START_REF] Nersisyan | Controllability of 3d incompressible euler equations by a finite-dimensional external force[END_REF] for the Euler equation in 3-d.

Existence and properties

For technical reasons that we will see below, we introduce a function φ ∈ Ḣ1 (T) in the equation. So we consider the following nonlinear BBM equation on the torus

∂ t u + ∂ x (u + φ) -∂ xxt u + (u + φ)∂ x (u + φ) = η(t, x), (t, x) ∈]0, T [×T, (4.3 
) where η(t) ∈ L 1 (T). Note that the function v = u + φ is solution of (4.1) with the initial condition u 0 + φ. For u 0 ∈ Ḣ1 (T), the solution of (4.3) at time t, with a control term η, is noted u(t) = R t (u 0 , φ, η). The equation (4.3) can be written under the form

∂ t u = η + A(u + φ) -(1 -∂ 2 xx ) -1 (u + φ)∂ x (u + φ), (4.4) 
where

A = -(1 -∂ 2 xx ) -1 ∂ x and η = (1 -∂ 2 xx ) -1 η.
We know that since A is bounded then it is the infinitesimal generator of a uniformly continuous semigroup e tA t≥0 .

We start by studying the existence of the solution as well as some estimations that we will use in the following. Let δ > 0, φ and f two smooth functions, we consider the equation

∂ t u + ∂ x u + δ -1 2 φ -∂ xxt u + u + δ -1 2 φ ∂ x u + δ -1 2 φ = δ -1 f, u(•, 0) = u 0 ∈ Ḣ1 (T).
(4.5)

Lemma 9 For all u 0 , φ, f ∈ Ḣ1 (T), there exists R > 1 and δ ′ ∈]0, 1[ such that for all δ < δ ′ , there exists a unique solution u ∈ C [0, 2δ], Ḣ1 (T) of (4.5) satisfiying

∥u(t)∥ H 1 (T) ≤ R, ∀t ∈ [0, 2δ]. (4.6) Proof For R > 1 and 0 < T ≤ 1, we define B R,T = u ∈ C [0, T ], Ḣ1 (T) ; sup s∈[0,T ] ∥u(s)∥ H 1 (T) ≤ R .
The space C [0, T ], Ḣ1 (T) equiped with the distance

d(u, v) = sup s∈[0,T ] ∥u(s) -v(s)∥ H 1
is a complete metric space. For δ > 0, u 0 ∈ Ḣ1 (T) and t ∈ [0, T ], we introduce

Φ : C [0, T ], Ḣ1 (T) -→ C [0, T ], Ḣ1 (T) u -→ e tA u 0 + t 0 e (t-s)A (1 -∂ xx ) -1 δ -1 f -δ -1 2 ∂ x φ -u(s) + δ -1 2 φ ∂ x u(s) + δ -1 2 φ ds. Let u, v ∈ B R,T . We have (Φ(u)-Φ(v))(x, t) = - t 0 e (t-s)A (1-∂ xx ) -1 u(s) + δ -1 2 φ ∂ x u(s) + δ -1 2 φ -v(s) + δ -1 2 φ ∂ x v(s) + δ -1 2 φ ds = - t 0 e (t-s)A (1 -∂ xx ) -1 (u(s) -v(s)) ∂ x u(s) + δ -1 2 φ + (∂ x u(s) -∂ x v(s)) v(s) + δ -1 2 φ ds. (4.7)
Thus, since the norm of A is bounded by 1, we have for t < 2δ

∥(Φ(u) -Φ(v))(t)∥ H 1 ≤ cT e T sup s∈[0,T ] ∥u(s) -v(s)∥ L ∞ ∂ x u(s) + δ -1 2 φ L 2 + ∥∂ x u(s) -∂ x v(s)∥ L 2 v(s) + δ -1 2 φ L ∞ ≤ 2CT R + δ -1 2 ∥φ∥ H 1 sup s∈[0,T ] ∥u(s) -v(s)∥ H 1 ≤ 4Cδ ′ 1 2 δ ′ 1 2 R + ∥φ∥ H 1 sup s∈[0,T ] ∥u(s) -v(s)∥ H 1 .
Taking the supremum on t we get

d(Φ(u), Φ(v)) ≤ 4Cδ ′ 1 2 δ ′ 1 2 R + ∥φ∥ H 1 (T) d(u, v). We choose δ ′ such that d(Φ(u), Φ(v)) ≤ 1 2 d(u, v). So for δ ′ < min 1 8CR , 1 8C ∥φ∥ H 1 2 , Φ is a contraction. Now we show that if u ∈ B R,T then Φ(u) ∈ B R,T . Taking v = 0, and using the fact that ∥u(t)∥ H 1 ≤ R we obtain ∥Φ(u)(t)∥ H 1 -∥Φ(0)(t)∥ H 1 ≤ ∥Φ(u)(t) -Φ(0)(t)∥ H 1 ≤ 2CT R R + δ -1 2 ∥φ∥ H 1 .
Since t ≤ 2δ ≤ 2δ ′ we see that

∥Φ(0)∥ H 1 ≤ c ∥u 0 ∥ H 1 + ct δ -1 ∥f ∥ L 2 + δ -1 2 ∥φ∥ H 1 + R + δ -1 2 ∥φ∥ H 1 2 ≤ c ∥u 0 ∥ H 1 + 2c ∥f ∥ L 2 + δ ′ 1 2 ∥φ∥ H 1 + δ ′ 1 2 R + ∥φ∥ H 1 2
(4.8) So we can choose R large enough such that we estimate each term in (4.8) by R 8 and the term

2CT R R + δ -1 2 ∥φ∥ H 1 by R 2 . Thus we obtain ∥Φ(u)(t)∥ H 1 ≤ R 2 + R 8 + R 8 + R 8 + R 8 = R.
We give now an estimation of continuity.

Proposition 20 For all u 0 , v 0 ∈ Ḣ1 (T), φ, ψ ∈ H -1 (T) and f, g ∈ L 1 ([0, δ]; H -1 (T)), there are positive constants

δ ′′ ≤ 1, c 1 , c 2 = c 2 (R) Lemma 10 Let ϵ > 0, v ∈ Ḣ1 (T) and u 0 ∈ B H 1 v, ϵ 2 , then there ex- ists C = C ϵ, v H 1 > 0 and t * > 0 such that the solution u(t * ) = R t * (u 0 , 0, 0) ∈ B H 1 (v, ϵ
) and for all t ∈ [0, t * ] we have

u(t) -u 0 H 1 ≤ Ct. (4.15)
Proof Since A is a bounded operator, it is sufficient to estimate u in the expression

∂ t u = Au -(1 -∂ 2 xx ) -1 u∂ x u
, and we get

u(t) -u 0 H 1 ≤ ct sup s∈[0,t] u(s) H 1 + sup s∈[0,t] u(s) 2 H 1 ≤ ct 3ϵ 2 + v H 1 + 3ϵ 2 + v H 1 2 ≤ Ct. (4.16)
Let H(I) defined in (4.2). We set

C(I) = η -(1 -∂ xx ) -1 d i=1 φ i ∂ x φ i ; η, φ i ∈ H(I), ∀d ≥ 1 .
The following proposition shows that the nonlinear term of the equation appears in the limit of the solution as t goes to 0. In other words, we can approximately reach the elements of C(I). Let us set

Θ(u 0 , φ, δ * ) = η ∈ L 1 ([0, δ * ]; H -1 ) ; R t u 0 , δ -1 2 φ, δ -1 η exists and continuous for t ∈ [0, δ * ] . Proposition 21 For u 0 ∈ Ḣ1 (T), φ ∈ H -1 (T) and η 0 ∈ Θ(u 0 , φ, δ * ), the solution u(t) = R t u 0 , δ -1 2 φ, δ -1 η 0 of (4.5) verifies lim δ→0 u(δ) = u 0 + (1 -∂ xx ) -1 (η 0 -φ∂ x φ) , in H 1 (T). (4.17) Proof For t ∈ [0, δ * ], let v(t) = u(δt)
, where u is the solution of (4.5), then v satisfies

∂ t v + δ∂ x v -∂ xxt v + δv∂ x v = δ -1 η 0 . So ∂ t v = -δ(1-∂ xx ) -1 ∂ x (v + δ -1 2 φ) + (v + δ -1 2 φ)∂ x (v + δ -1 2 φ) -δ -1 η 0 . Let w(t) = u 0 + t(1 -∂ xx ) -1 (η 0 -φ∂ x φ) and z = v -w.
We have

∂ t z = -δ(1 -∂ xx ) -1 ∂ x (z + w + δ -1 2 φ) + (z + w)∂ x (z + w + δ -1 2 φ) + δ -1 2 φ∂ x (z + w) . (4.18)
Taking the inner product in H 1 (T) with z we have

1 2 ∂ t ∥z(t)∥ 2 H 1 = -δ ∂ x z + w + δ -1 2 φ , z L 2 + (z + w) ∂ x z + w + δ -1 2 φ , z L 2 + δ -1 2 (φ∂(z + w), z) L 2 . (4.19) We claim 1 2 ∂ t ∥z(t)∥ 2 H 1 ≤ δ C 1 + C 2 δ 1 2 ∥z(t)∥ H 1 + ∥z(t)∥ 2 H 1 ≤ Cδ 1 + ∥z(t)∥ 2 H 1 .
(4.20) Indeed, as

T z k ∂ x z dx = 0 for k = 1, 2, we estimate the quantities T z∂ x z + w + δ -1 2 φ dx = ∥w(t)∥ H 1 ∥z(t)∥ L 2 +δ -1 2 ∥φ∥ H 1 ∥z(t)∥ L 2 ≤ ∥w(t)∥ H 1 + δ -1 2 ∥φ∥ H 1 ∥z(t)∥ H 1 , (4.21) T z(z + w)∂ x z + w + δ -1 2 φ dx ≤ T z 2 ∂ x w + δ -1 2 φ dx + T wz∂ x z dx + T wz∂ x w dx + δ -1 2 T wz∂ x φ dx ≤ 2 ∥z(t)∥ ∞ ∥w(t)∥ L 2 ∥z(t)∥ H 1 + 2δ -1 2 ∥φ∥ L 2 ∥z(t)∥ 2 H 1 +∥w(t)∥ L 2 ∥z(t)∥ 2 H 1 +∥w(t)∥ 2 H 1 ∥z(t)∥ H 1 +δ -1 2 ∥w(t)∥ ∞ ∥z(t)∥ H 1 ∥φ∥ H 1 ≤ C 1 + C 2 δ -1 2 ∥z(t)∥ H 1 + ∥z(t)∥ 2 H 1 , (4.22) and T φz∂ x (z + w) dx ≤ ∥φ∥ H 1 ∥z(t)∥ H 1 ∥z(t)∥ H 1 + ∥w(t)∥ H 1 ,
which give us (4.20). By integrating it between 0 and t we have

∥z(t)∥ 2 H 1 ≤ 2C δt + t 0 ∥z(s)∥ 2 H 1 ds . By Gronwall estimation ∥z(t)∥ 2 H 1 ≤ δC 1 e C 2 t . Since t ≤ 1, we have ∥z(t)∥ 2 H 1 ≤ δC 1 e C 2 → 0 as δ → 0.
In particular, u(δ) = v(1) → w(1) as δ → 0, and then we obtain (4.17).

Some algebric results

Let I 0 ⊂ Z be a symmetric set. We define by induction for all n ∈ N

I n+1 = {j + p ; for j, p ∈ I n }.
This sequence of sets will play a role in the proof of the main theorem. More precisely, we claim that the union of (I n ) will be equal to Z, which will correspond afterwards to showing that we can reach all the Fourier modes to achieve the approximate controllability.

Lemma 11

If I 0 is a generator of Z, then n∈N I n = Z.
(4.23)

Proof For n ∈ N * , we define

Γ n = d j=1 p j k j ; for p j ∈ Z, k j ∈ I 0 such that d j=1 |p j | ≤ n, ∀d ≥ 1 . Since I 0 is a generator of Z, it is clear that n∈N * Γ n = Z.

Now we will show by induction that for all

n ∈ N * , Γ n ⊂ I n-1 . As I 0 is symmetric, Γ 1 = {±k / k ∈ I 0 } = I 0 .
Suppose that Γ n ⊂ I n-1 for some n ∈ N * , and let q = d j=1

p j k j ∈ Γ n+1 . If d j=1
|p j | ≤ n, then q ∈ I n and the result follows directly. If

d j=1 |p j | = n + 1, note that we can suppose p j ̸ = 0 for all j = 1, .., d. Let q ′ = (p 1 ± 1)k 1 + d j=2 p j k j be such that |p 1 ± 1| = |p 1 | -1. We see that q ′ ∈ Γ n since |p 1 ± 1| + d j=2 |p j | = n.
According to the induction hypothesis we have q ′ ∈ I n-1 , and we know that k 1 ∈ I 0 ⊂ I n-1 . Hence, from the definition of I n , we have

I n ∋ k 1 ∓ q ′ = k 1 ∓ (p 1 ± 1)k 1 + d j=2 p j k j = q.
So Γ n ⊂ I n-1 for all n ∈ N * , thus Z * ⊂ n∈N I n , which completes the proof.

We can deduce from the previous lemma that if I 0 is a generator of Z, the space

H ∞ := n∈N H(I n ) is dense in Ḣ1 (T). Since for all z = ∞ k=1 a k cos(kx) + b k sin(kx) ∈ Ḣ1 (T),
we can find N large enough and n ∈ N such that

N k=1 a k cos(kx)+b k sin(kx) ∈ H(I n ) and z - N k=1 a k cos(kx) + b k sin(kx) H 1 < ϵ.
Now we show that the elements of space H(I) formed by trigonometric polynomials are in fact elements of space C(I) that we have already shown that we can reach according to Proposition 23.

Lemma 12 For all n ∈ N, we have the inclusion

H(I n+1 ) ⊂ C(I n ).
Proof Let n ∈ N and η 0 ∈ H(I n+1 ). From (4.2), η 0 is a linear combination of terms ξ j,p of the following form ξ j,p = a cos(jx)+b sin(jx)+c cos((j+p)x)+d sin((j+p)x)+e cos((j-p)x) + f cos((j -p)x), where j, p ∈ I n .

Case 1 : j ± p ̸ = 0

We look for η, φ 1 , ..., φ d in

H(I n ) such that ξ j,p = η-(1-∂ xx ) -1 d i=1 φ i ∂ x φ i .
We notice that the two terms a cos(jx) + b sin(jx) in expression of ξ j,p are in H(I n ), so we take η = a cos(jx) + b sin(jx). Now we set φ 1 = α cos(jx) + β sin(jx) + cos(px) + sin(px), φ 2 = -β cos(jx) + α sin(jx) -cos(px) + sin(px), φ 3 = α ′ cos(jx) + β ′ sin(jx) + cos(px) + sin(px), and φ 4 = -β ′ cos(jx) + α ′ sin(jx) + cos(px) -sin(px).

The functions φ 1 , φ 2 , φ 3 and φ 4 are in H(I n ), and we obtain

φ 1 ∂ x φ 1 + φ 2 ∂ x φ 2 + φ 3 ∂ x φ 3 + φ 4 ∂ x φ 4 = (p -j) {(α -β) cos((j -p)x) + (α + β) sin((j -p)x)} + (p + j) {(β ′ + α ′ ) cos((j + p)x) + (β ′ -α ′ ) sin((j + p)x)} . (4.24)
Since the map

(α, β, α ′ , β ′ ) → (p-j)(α-β), (p-j)(α+β), (p+j)(β ′ +α ′ ), (p+j)(β ′ -α ′ )
is bijective (since the determinant of the associated matrix is equal to 4(pj) 2 (p + j) 2 ̸ = 0), then we can write the quantities c cos((j + p)x) + d sin((j + p)x) + e cos((j -p)x) + f cos((j -p)x) in the expression of ξ j,p under the form

φ 1 ∂ x φ 1 + φ 2 ∂ x φ 2 + φ 3 ∂ x φ 3 + φ 4 ∂ x φ 4 . We deduce that η 0 ∈ C(I n ).
Case 2 : j ± p = 0 Without lost of generalities we can suppose that j = p > 0. In this case, ξ j,p take the following form ξ j,p = ξ j = a cos(jx) + b sin(jx) + c cos(2jx) + d sin(2jx), where j ∈ I n .

Note that we can suppose (c, d) ̸ = (0, 0) if not, η 0 ∈ H(I n ) . Let φ 1 = α cos(jx)+β sin(jx). We have φ 1 ∂ x φ 1 = jαβ cos(2jx)+ j 2 (β 2 -α 2 ) sin(2jx). We can check that a solution of

jαβ = c j 2 (β 2 -α 2 ) = d, is (α, β) = c √ j d + √ c 2 + d 2 , 1 √ j d + √ c 2 + d 2 .
As in the first case, we can write a cos(jx) + b sin(jx) = η ∈ H(I n ) and c cos(2jx

) + d sin(2jx) = φ 1 ∂ x φ 1 . Hence η 0 ∈ C(I n ).
We finish this section by giving an algebraic property of R t .

Lemma 13 Let R t (u 0 , 0, η) be the solution of (4.3), where η is given by

η(s) =    η 1 (s), s ∈ [0, t 1 ] η 2 (s), s ∈ [t 1 , t 2 ] η 3 (s), s ∈ [t 2 , t 3 ].
For all t 1 , t 2 , t 3 ≥ 0, we have the equality

R t 1 +t 2 +t 3 (u 0 , 0, η) = R t 3 R t 2 R t 1 u 0 , 0, η 1 (•) , 0, η 2 (•-t 1 ) , 0, η 3 (•-t 2 -t 1 ) . (4.25)
Proof We denote by R(t, s, v, η) the solution of (4.3) at the instant t, when φ = 0 and with initial data R(s, s, v, η) = v. That means R t (u 0 , 0, η) = R(t, 0, u 0 , η).

From the uniqueness of solutions, we can see that for all σ ≥ 0 R t, σ, R(σ, s, u 0 , η), η = R(t, s, u 0 , η). (4.26)

Using (4.26) we can write

R(t 1 + t 2 + t 3 , 0, u 0 , η) = R t 1 +t 2 +t 3 , t 1 +t 2 , R t 1 +t 2 , t 1 , R(t 1 , 0, u 0 , η 1 (•)), η 2 (•-t 1 ) , η 3 (•-t 2 -t 1 ) = R t 3 , 0, R t 1 + t 2 , t 1 , R(t 1 , 0, u 0 , η 1 (•)), η 2 (• -t 1 ) , η 3 (• -t 2 -t 1 ) = R t 3 R t 1 + t 2 , t 1 , R(t 1 , 0, u 0 , η 1 (•)), η 2 (• -t 1 ) , 0, η 3 (• -t 2 -t 1 ) = R t 3 R t 2 R t 1 (u 0 , 0, η 1 (•)), 0, η 2 (• -t 1 ) , 0, η 3 (• -t 2 -t 1 ) . (4.27)

Proof of Theorem 22

We can know give a proof of Theorem 22. For I ⊂ Z and k ∈ N * , we set

C k (I) = η -(1 -∂ xx ) -1 k i=1 φ i ∂ x φ i ; η, φ i ∈ H(I) .
Proof Let v ∈ Ḣ1 (T). Suppose I 0 is generator of Z * . This means that H ∞ is dense in Ḣ1 (T). For all ϵ > 0 there exist n > 0 and v ∈ u 0 + H(I n+1 ) such that ∥v -v∥ H 1 ≤ ϵ. So in the rest of the proof, we will call w the element which belongs to H(I n+1 ) ⊂ C(I n ).

Step 1: Controllability in small time. We prove by induction the following property

P n k : ∀u 0 ∈ Ḣ1 (T), ∀ϵ > 0, ∀σ > 0, ∀w ∈ C k (I n ), ∃t ∈]0, σ], ∃η ∈ Θ(u 0 , φ, t) ∩ H(I 0 ) s.t. ∥R t (u 0 , 0, η) -(u 0 + w)∥ H 1 ≤ ϵ.
The property P 0 0 follows from Proposition 23. We give a double induction on both index k and n. Suppose that P n k is true for some k ∈ N * and n

∈ N * . Let u 0 ∈ Ḣ1 (T), ϵ > 0, σ > 0, w ∈ C k (I n ) and v = w -(1 -∂ xx ) -1 φ∂ x φ ∈ C k+1 (I n ),
where φ ∈ H(I n ).

We know from Proposition 23 that R δ u 0 , δ -1 2 φ, 0 → u 0 -(1-∂ xx ) -1 φ∂ x φ, when δ → 0. Combinning this with (4.14), we can found δ 1 > 0 small enough such that

R δ 1 u 0 + w + δ -1 2 1 φ, 0, 0 -u 0 + w -(1 -∂ xx ) -1 φ∂ x φ + δ -1 2 1 φ H 1 ≤ ϵ 3c 1 , (4.28)
where c 1 is the constant given by Proposition 20. Since w+δ

-1 2 1 φ ∈ C k (I n ), we use the fact that P n k is true to found t 1 > 0 and η 1 ∈ Θ(u 0 , φ, t 1 + δ 1 ) ∩ H(I 0 ) such that R t 1 u 0 , 0, η 1 -u 0 + w + δ -1 2 1 φ H 1 ≤ ϵ 3c 2 1 .
(4.29) Thus, using the property of the nonlinear semigroup in Lemma 13 with t 1 and δ 1 we have

R t 1 +δ 1 u 0 , 0, 1 [0,t 1 ] η 1 -u 0 + w -(1 -∂ xx ) -1 φ∂ x φ + δ -1 2 1 φ H 1 ≤ R δ 1 R t 1 u 0 , 0, η 1 , 0, 0 -R δ 1 u 0 + w + δ -1 2 1 φ, 0, 0 H 1 + R δ 1 u 0 + w + δ -1 2 1 φ, 0, 0 -u 0 + w -(1 -∂ xx ) -1 φ∂ x φ + δ -1 2 1 φ H 1 . (4.30)
From the continuity of R δ 1 with respect to the initial data seen in Proposition 20 and from (4.29), we can estimate the first term on the right by ϵ 3c 1

. By the same method applied to the second one using (4.28), we can write

R t 1 +δ 1 u 0 , 0, 1 [0,t 1 ] η 1 -u 0 + w -(1 -∂ xx ) -1 φ∂ x φ + δ -1 2 1 φ H 1 ≤ 2ϵ 3c 1 .
(4.31) This means that starting from u 0 , after a time t 1 + δ 1 and using the control

1 [0,t 1 ] η 1 we can reach u 0 + w -(1 -∂ xx ) -1 φ∂ x φ + δ -1 2
1 φ. Now we take this quantity as initial data and we apply P n k again, there exist t 2 > 0 and η 2 ∈ Θ(u 0 , φ, t 2 + t 1 + δ 1 ) ∩ H(I 0 ) such that

R t 2 u 0 + w -(1 -∂ xx ) -1 φ∂ x φ + δ -1 2 1 φ, 0, η 2 -(u 0 + v) H 1 ≤ ϵ 3 . (4.32) Let η : s → 1 [0,t 1 ] η 1 (s) + 1 [t 1 +δ 1 ,t 1 +δ 1 +t 2 ] η 2 (s -t 1 -δ 1 ).
As in (4.30), we use Lemma 13, (4.31), (4.32) and the continuity of R t 2 with respect to the initial data, we obtain

∥R t 2 +t 1 +δ 1 (u 0 , 0, η) -(u 0 + v)∥ H 1 ≤ R t 2 R t 1 +δ 1 u 0 , 0, 1 [0,t 1 ] η 1 , 0, η 2 -R t 2 u 0 + w -(1 -∂ xx ) -1 φ∂ x φ + δ -1 2 1 φ, 0, η 2 H 1 + R t 2 u 0 + w -(1 -∂ xx ) -1 φ∂ x φ + δ -1 2 1 φ, 0, η 2 -(u 0 + v) H 1 ≤ 2ϵ 3 + ϵ 3 = ϵ.
Note that we can always take δ 1 , t 1 and t 2 small enough such that

t 2 + t 1 + δ 1 < σ.
This proves that P n k+1 is true. So we have that P 0 k is true for all k ∈ N. From Lemma 12, P 1 0 is true. We can repete the same reasoning in this first step of the proof to deduce that P 1 k is true for all k ∈ N, and then, P 2 0 is true from Lemma 12 and so on. In the end, P n k is true for all k, n ∈ N.

Step 2: Controllability in fixed time. Once we have approximate controllability in a small time, we can generalize this for any T > 0. Indeed, we know from what precedes that for all v ∈ C(I n ), starting from any u 0 , the solution will be in a neighborhood of v in a time shorter than σ. We use the same notation R seen in the proof of Lemma 13. Let T > 0, from the first step, there exist t 1 < T and η 1 ∈ H(I 0 ) such that

∥u 1 -v∥ H 1 ≤ ϵ 2
, where u 1 = R t 1 (u 0 , 0, η 1 ). Now we set

t 2 = inf t ∈ [t 1 , T [ ; R(t, t 1 , u 1 , 0) -v H 1 ≥ ϵ .
Suppose that t 2 exists (if not, the proof is complete). We know that if R(t,

t 1 , u 1 , 0) -v H 1 = ϵ then t ≥ ϵ 2C
, indeed, we can use Lemma 10 to write

R(t, t 1 , u 1 , 0) -v H 1 ≤ R(t, t 1 , u 1 , 0) -u 1 H 1 + u 1 -v H 1 ≤ Ct + ϵ 2 .
At t = t 2 , we use the first step taking σ = T -t 2 2 , so we can find t 3 and

η 3 such that R t 3 , t 2 , R(t 2 , t 1 , u 1 , 0), η 3 -v H 1 ≤ ϵ 2 .
We can introduce t 4 by the same way as t 2

t 4 = inf t ∈ [t 3 , T [ ; R t, t 3 , R t 3 , t 2 , R(t 2 , t 1 , u 1 , 0), η 3 , 0 -v H 1 ≥ ϵ ,
and repeate the same process until we reach T .

Note that the sequence (t j ) will not converge since the "waiting time" inside the ball B(v, ϵ) is always greater than ϵ 2C .

Step 3: Necessity of the condition on I 0 . Suppose that I 0 is not a generator of Z, and let u 0 be an initial data in H ∞ . As the product u∂ x u leaves the space H ∞ invariant, then we can apply the argument of the fixed point seen in Lemma 9 in C ([0, T ], H ∞ ). By uniqueness of the solution we will have u(t) ∈ H ∞ . This means that since I 0 is not a generator of Z we can found a set I 1 ⊂ Z such that H(I 1 ) is orthogonal to H ∞ , so H ∞ cannot be dense in Ḣ1 (T).

Proof of Theorem 23

We prove in this section that we cannot do exact controllability of the BBM equation in Ḣs (T) for s ∈ [1, 2[. Definition 17 Let A be a set of a Banach space X and ϵ > 0. We say that a family of sets

(A i ) i=1,..,n is an ϵ-covering of A if A ⊂ n i=1
A i and diam(A i ) < 2ϵ, for all i = 1, .., n. The ϵ-entropy of A for the topology of X is the number H ϵ given by the logarithm of the minimal number N ϵ of sets A i so that it forms an ϵ-covering of A. So we write H ϵ (A, X) = ln N ϵ (A, X) .

Remark 9 It is known that if

A = N k=1 A k then H ϵ (A, X) ≤ N k=1 H ϵ √ N (A k , X).
See inequality (7) in Section 10.1 of [START_REF] Lorentz | Approximation of functions[END_REF] for details.

Proposition 22 Let J = [0, T ], E a finite dimensional vector space and B a closed ball in BV (J, E). Then there exists c > 0 such that

H ϵ B, L 1 (J, E) ≤ c 1 ϵ ln 1 ϵ . (4.33)
See Annex for the proof. We will use the following Lemma (Lemma 2.1. in [START_REF]Euler equations are not exactly controllable by a finitedimentsional external force[END_REF]).

Lemma 14 Let X, Y be two Banach spaces, K ⊂ X a compact set and f : X → Y a function such that

f (u) -f (v) Y ≤ L u -v X .
Then for all ϵ > 0 we have

H ϵ f (K), Y ≤ H ϵ L (K, X).
Proof (of Theorem 23) Case 1 : s = 1. Let Q be an open set in Ḣ1 (T) and (B n ) n∈N a family of closed balls with center 0 and radius n in BV [0, δ * ], H(I 0 ) . Suppose that we have exact controllability in Ḣ1 (T), then

Q ⊂ n∈N R t (u 0 , 0, B n ).
We recall that R t (u 0 , 0,

•) : BV [0, δ * ], H(I 0 ) -→ Ḣ1 (T). Since H(I 0 ) is a finite dimension space, the injection BV [0, δ * ], H(I 0 ) → L 1 [0, δ * ], H(I 0 )
is compact (see Theorem 1.19 in [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF] for the proof). So from the continuity result of Corollary 1 we can deduce that the family (R t (u 0 , 0, B n )) n∈N is relatively compact in Ḣ1 (T). This is absurd because the interior of n∈N R t (u 0 , 0, B n ) is empty from Baire's theorem, so it cannot contain Q.

Case 2 : s ∈]1, 2[. We say that x ∼ y if there are c 1 , c 2 > 0 such that c 1 y ≤ x ≤ c 2 y. We start by giving another version of the ϵ-entropy definition then we will give the link between them.

Definition 18 Let A 1 , A 2 two Banach spaces, T ∈ L(A 1 , A 2 ) and

U A i = a ∈ A i ; a A i ≤ 1 .
The k-th entropy of T is defined by

e k (T ) = inf    ϵ > 0; T (U A 1 ) ⊂ 2 k-1 j=1 b j + ϵU A 2 , b 1 , ..., b 2 k-1 ∈ A 2    .
This definition describe the same thing as Definition 17. Indeed, Definition 17 says that we need at least N ϵ (A, X) balls of size ϵ to cover a set A. In Definition 18 (Definition 1 in [START_REF] Edmunds | Function spaces, entropy numbers, differential operators[END_REF]) we fix the radius of the balls e k = ϵ, and we say that we need 2 k-1 balls, in other words N ϵ ∼ 2 k-1 .

We have the following Lemma.

Lemma 15 Let B be a ball of Ḣs (T) for s ∈]1, 2[, then

H ϵ B, H 1 (T) ∼ ϵ -1 s-1 .
(4.34)

Proof We know from Theorem 2 of the Section 3.3.3. in [START_REF] Edmunds | Function spaces, entropy numbers, differential operators[END_REF] that if we take T = id : Ḣs (T) → Ḣ1 (T) then e k (T ) ∼ k -(s-1) . So for k large enough, if we set ϵ = k -(s-1) , we have N ϵ B, H 1 (T) ∼ 2 k-1 which give us (4.34).

From Lemma 14 and Propostion 22, we have

H ϵ R t (u 0 , 0, B), H 1 ≤ H ϵ c B, L 1 ≤ C 1 ϵ ln 1 ϵ .
This means that the solution R t (u 0 , 0, •) cannot create more than the order 1 ϵ ln 1 ϵ of balls in H 1 . But from Lemma 15 we see that we need the order ϵ -1

s-1 of balls in H 1 to cover a ball in Ḣs . So if s ∈]1, 2[ and B ⊂ Ḣs , we have

H ϵ R t (u 0 , 0, B), H 1 < cH ϵ B, H 1
and thus, the exact controllability result is not possible.

Chapter

V

Controllability of the KP-I equation

Introduction

We consider the Kadomtsev-Petviashvili I equation on the torus

∂ t u + ∂ xxx u + u∂ x u -∂ -1 x ∂ yy u = η, (x, y) ∈ T 2 , t > 0, u(•, •, 0) = u 0 , (x, y) ∈ T 2 , (5.1)
where the operator ∂ -1

x is defined for u = (k,n)∈Z * ×Z u k,n e i(kx+ny) by kx+ny) .

∂ -1 x u = - (k,n)∈Z * ×Z i k u k,n e i(
This equation, seen as a generalization of KdV type equations in higher dimensions, is introduced by Kadomtsev and Petviashvili [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersive media[END_REF]. Kenig [START_REF] Kenig | On the local and global well-posedness theory for the kp-i equation[END_REF] showed that the KP-I equation is well posed on spaces with a certain regularity (see also Bourgain [Bou93] and Saut [START_REF] Saut | Remarks on the generalized kadomtsev-petviashvili equations[END_REF]). A work by Saut and Tzvetkov [START_REF] Saut | The cauchy problem for higher-order kp equations[END_REF] shows that for inhomogeneous Sobolev spaces with weak regularity with respect to the variable x, the KP-I equation is ill-posed. A controllability result for the linear KP-I equation can be found in Sun's article [START_REF] Sun | Exact controllability of linear kp-i equation[END_REF]. We define for s > 1 the spaces

Hs T 2 =    u = (k,n)∈Z * ×Z u k,n e i(kx+ny) ∈ L 2 T 2 ; (k,n)∈Z * ×Z u k,n 2 (1 + k 2 + n 2 ) s < ∞    , (5.2) 
and Q s , the domain of the operator ∂ xxx -∂ -1

x ∂ yy is given by

Q s T 2 =    u = (k,n)∈Z * ×Z u k,n e i(kx+ny) ∈ L 2 T 2 ; (k,n)∈Z * ×Z u k,n 2 (k 4 + n 2 ) 2 k 2 + 1 (1 + k 2 + n 2 ) s < ∞    . (5.3)
We consider the KP-I equation with a control term η = η(t, x, y) as in the problem studied in the fourth chapter. The idea to show the existence is to look directly at the nonlinear equation by replacing the term u∂ x u by v∂ x u to define a semi-group associated with the operator A(v) and then take v = u. We also give necessary estimates for the existence theorem. The existence result is not optimal from the point of view of the regularity of the initial data, but is sufficient for the approximate control problem.

We write the equation (5.1) under the form

∂ t u = A(u)u + η, u(0) = u 0 , (5.4) where A(v) is defined for v ∈ Q s T 2 by A(v) : Q s T 2 -→ Hs T 2 u -→ -∂ xxx u + v∂ x u -∂ -1 x ∂ yy u .
For a proof that A(v) operates from Q s to Hs , we refer to Lemma 16 and Lemma 18. The operator A(v) can be written as the sum

A(v) = A 1 + A 2 (v) with A 1 u = -∂ xxx u + ∂ -1 x ∂ yy u + 1, and A 2 (v)u = -v∂ x u -1.
Now it is all about estimating the term

k 2+2α k 2 + (k 4 + n 2 ) 2 (1 + k 2 + n 2 ) 3-α 2 . We see that k 2+2α (1 + k 2 + n 2 ) 3-α 2 k 2 + (k 4 + n 2 ) 2 ≲                    k 2+2α+3-α k 8 = k -3+α ≤ C, if k 2 ≥ n 2 , k 2+2α n 3-α k 8 ≤ n -3+α n 3-α ≤ C, if k 2 < n 2 < k 4 , k 2+2α n 3-α n 4 ≤ n 1+α n -1-α ≤ C, if n 2 ≥ k 4 . So ∂ α x u 2 H s+ 3-α 2 ≤ C u 2 
Q s and hence we obtain (5.5) and ∂ α x u ∈ H s+ 3-α 2 T 2 . We prove the second statement of (5.6).

∂ y u 2 H s+ 1 2 = (k,n)∈Z * ×Z n 2 |u k,n | 2 (1 + k 2 + n 2 ) s+ 1 2 = (k,n)∈Z * ×Z 1 + (k 4 + n 2 ) 2 k 2 |u k,n | 2 (1+k 2 +n 2 ) s n 2 k 2 (1 + k 2 + n 2 ) 1 2 k 2 + (k 4 + n 2 ) 2 .
As previously, we estimate

n 2 k 2 (1 + k 2 + n 2 ) 1 2 k 2 + (k 4 + n 2 ) 2 ≲    k -3 ≤ C, if k 2 ≥ n 2 , n 3 k -6 ≤ C, if k 2 < n 2 < k 4 , n -1 k 2 ≤ C, if n 2 ≥ k 4 .
Thus ∂ y u ∈ H s+ 1 2 T 2 . For the third one

∂ x ∂ y u 2 H s = (k,n)∈Z * ×Z k 2 n 2 |u k,n | 2 (1 + k 2 + n 2 ) s = (k,n)∈Z * ×Z 1 + (k 4 + n 2 ) 2 k 2 |u k,n | 2 (1 + k 2 + n 2 ) s k 4 n 2 k 2 + (k 4 + n 2 ) 2 .
We estimate

k 4 n 2 k 2 + (k 4 + n 2 ) 2 ≲ k -4 n 2 ≤ C, if k 4 ≥ n 2 , k 4 n -2 ≤ C, if n 2 ≥ k 4 .
Then ∂ x ∂ y u ∈ H s T 2 , and for the last one

∂ -1 x ∂ yy u 2 H s = (k,n)∈Z * ×Z n 4 k 2 |u k,n | 2 (1 + k 2 + n 2 ) s = (k,n)∈Z * ×Z 1 + (k 4 + n 2 ) 2 k 2 |u k,n | 2 (1 + k 2 + n 2 ) s n 4 k 2 + (k 4 + n 2 ) 2 .
We have

n 4 k 2 + (k 4 + n 2 ) 2 ≲ n 4 k -8 ≤ C, if k 4 ≥ n 2 , C, if n 2 ≥ k 4 . Then ∂ -1
x ∂ yy u ∈ H s T 2 , which completes the proof of (5.6).

Lemma 17 Let s 0 > 1 and w = k,n∈Z 2 w k,n e i(kx+ny) ∈ H s 0 T 2 . Then there exists c = c(s 0 ) > 0 such that

∥w k,n ∥ ℓ 1 ≤ c ∥w∥ H s 0 .
Proof From Cauchy-Schwarz inequality we have

k,n∈Z 2 |w k,n | ≤   k,n∈Z 2 |w k,n | 1 + |k| 2 + |n| 2 s 0 2   1 2   k,n∈Z 2 1 1 + |k| 2 + |n| 2 s 0 2   1 2 < ∞. Lemma 18 Let s ≥ s 0 > 1 and f, g in H s T 2 . There exists c = c(s, s 0 ) > 0 such that ∥f g∥ H s ≤ c (∥f ∥ H s ∥g∥ H s 0 + ∥f ∥ H s 0 ∥g∥ H s ) . (5.7) Proof We write ∥f g∥ 2 H s = k,n∈Z 2 q 2 k,n with q k,n = l 1 ,l 2 ∈Z 2 f k-l 1 ,n-l 2 g l 1 ,l 2 1 + |k| 2 + |n| 2 s 2 . Now we see that |q k,n | ≤ l 1 ,l 2 ∈Z 2 |f k-l 1 ,n-l 2 ||g l 1 ,l 2 | 1 + |k -l 1 | 2 + |n -l 2 | 2 s 2 + l 1 ,l 2 ∈Z 2 |f k-l 1 ,n-l 2 ||g l 1 ,l 2 | 1 + |l 1 | 2 + |l 2 | 2 s 2 . (5.8) By setting a k,n = |f k,n | 1 + |k| 2 + |n| 2 s 2 and b k,n = |g k,n |, we can deduce that (a k,n ) ∈ ℓ 2 since f ∈ H s and (b k,n ) ∈ ℓ 1 from Lemma 17. Moreover, ∥a k,n ∥ ℓ 2 = ∥f ∥ H s and ∥b k,n ∥ ℓ 1 ≤ c ∥g∥ H s 0 .
This means that the two sums in the right side of (5.8), which are actually a k,n * b k,n each, are in ℓ 2 and the proof is complete.

Lemma 19 If v, w ∈ Q s , then there exists a constant c = c(s) > 0 such that [∂ yy ∂ -1 x , v]∂ x w H s ≤ c v H s w H s . Proof We use the equality [∂ -1 x , v] = -∂ -1 x (∂ x v)∂ -1 x to write [∂ yy ∂ -1 x , v]∂ x w = ∂ yy ∂ -1 x (v∂ x w) -v∂ yy w = ∂ -1 x ∂ yy v∂ x w + 2∂ y v∂ yx w + v∂ yyx w -v∂ yy w = ∂ x w∂ -1 x ∂ yy v + [∂ -1 x , ∂ x w]∂ yy v + 2∂ -1 x ∂ y v∂ yx w +v∂ yy w + [∂ -1 x , v]∂ yyx w -v∂ yy w = ∂ x w∂ -1 x ∂ yy v -∂ -1 x ∂ xx w∂ -1 x ∂ yy v + 2∂ -1 x ∂ y v∂ yx w -∂ -1 x ∂ x v∂ yy w = ∂ x w∂ -1 x ∂ yy v -∂ -1 x ∂ xx w∂ -1 x ∂ yy v + 2∂ -1 x ∂ y v∂ yx w -∂ x v∂ -1 x ∂ yy w -[∂ -1 x , ∂ x v]∂ yy w = ∂ x w∂ -1 x ∂ yy v -∂ -1 x ∂ xx w∂ -1 x ∂ yy v + 2∂ -1 x ∂ y v∂ yx w -∂ x v∂ -1 x ∂ yy w + ∂ -1 x ∂ xx v∂ -1 x ∂ yy w .
Now we use Lemma 16 to say that both terms ∂ x w∂ -1 x ∂ yy v and ∂ x v∂ -1 x ∂ yy w belong to H s . The other terms belong at least to H s since they have ∂ -1

x which is bounded in H s . So all the quantities are bounded in H s and the proof is complete.

Lemma 20 Let s > 1, v, z ∈ Q s , and Λ s = (1 -∆) s 2 . There exists c = c(s) > 0 such that [Λ s , v]Λ 1-s z L 2 ≤ c v H s+1 z L 2 . Proof Let [Λ s , v]Λ 1-s z = k,n∈Z 2 γ k,n . Writing [Λ s , v]Λ 1-s z = Λ s (vΛ 1-s z)- vΛ 1 z, we have {Λ s (vΛ 1-s z)} k,n = l 1 ,l 2 ∈Z 2 (1 + k 2 + n 2 ) s 2 v k-l 1 ,n-l 2 (1 + l 2 1 + l 2 2 ) 1-s 2 z l 1 ,l 2 , and {vΛ 1 z} k,n = l 1 ,l 2 ∈Z 2 v k-l 1 ,n-l 2 (1 + l 2 1 + l 2 2 ) 1 2 z l 1 ,l 2 . Thus γ k,n = l 1 ,l 2 ∈Z 2 (1+l 2 1 +l 2 2 ) 1-s 2 (1 + k 2 + n 2 ) s 2 -(1 + l 2 1 + l 2 2 ) s 2 v k-l 1 ,n-l 2 z l 1 ,l 2
We set

Γ 1 = (l 1 , l 2 ) ∈ Z 2 ; |k -l 1 | + |n -l 2 | ≤ |l 1 | + |l 2 | 2 , Γ 2 = (l 1 , l 2 ) ∈ Z 2 ; |k -l 1 | + |n -l 2 | > |l 1 | + |l 2 | 2 and |k| + |n| > |l 1 | + |l 2 | , and 
Γ 3 = (l 1 , l 2 ) ∈ Z 2 ; |k -l 1 | + |n -l 2 | > |l 1 | + |l 2 | 2 and |k| + |n| ≤ |l 1 | + |l 2 | .
On Γ 1 we estimate

|γ k,n | ≤ c l 1 ,l 2 ∈Z 2 (1 + |l 1 | 2 + |l 2 | 2 ) 1-s 2 |n -k|(1 + |l 1 | 2 + |l 2 | 2 ) s-1 2 |v k-l 1 ,n-l 2 ||z l 1 ,l 2 | ≤ c l 1 ,l 2 ∈Z 2 |n -k||v k-l 1 ,n-l 2 ||z l 1 ,l 2 |.
So, from Lemma 17 we can write

∥(γ k,n ) k,n ∥ ℓ 2 (Γ 1 ) =   l 1 ,l 2 ∈Z 2 |n -k|v k-l 1 ,n-l 2 z l 1 ,l 2   k,n ℓ 2 ≤ c ∥(kv k,n ) k,n ∥ ℓ 1 ∥(z k,n ) k,n ∥ ℓ 2 ≤ c ∥v∥ H s+1 z L 2 On Γ 2 we estimate |γ k,n | ≤ c l 1 ,l 2 ∈Z 2 (1 + |l 1 | 2 + |l 2 | 2 ) 1-s 2 (1 + |k| 2 + |n| 2 ) s 2 |v k-l 1 ,n-l 2 ||z l 1 ,l 2 | ≤ c l 1 ,l 2 ∈Z 2 (1 + |k -l 1 | 2 + |n -l 2 | 2 ) s 2 |v k-l 1 ,n-l 2 ||z l 1 ,l 2 |. So ∥(γ k,n ) k,n ∥ ℓ 2 (Γ 2 ) =   l 1 ,l 2 ∈Z 2 (1 + |k -l 1 | 2 + |n -l 2 | 2 ) s 2 v k-l 1 ,n-l 2 z l 1 ,l 2   k,n ℓ 2 ≤ c ((1 + k 2 + n 2 ) s 2 v k,n ) k,n ℓ 1 ∥(z k,n ) k,n ∥ ℓ 2 ≤ C v H s z L 2 And on Γ 3 we estimate |γ k,n | ≤ c l 1 ,l 2 ∈Z 2 (1 + |l 1 | 2 + |l 2 | 2 ) 1-s 2 (1 + |l 1 | 2 + |l 2 | 2 ) s 2 |v k-l 1 ,n-l 2 ||z l 1 ,l 2 | ≤ c l 1 ,l 2 ∈Z 2 (1 + |l 1 | 2 + |l 2 | 2 ) 1 2 |v k-l 1 ,n-l 2 ||z l 1 ,l 2 | ≤ c l 1 ,l 2 ∈Z 2 (1 + |k -l 1 | 2 + |n -l 2 | 2 ) 1 2 |v k-l 1 ,n-l 2 ||z l 1 ,l 2 |, and we obtain ∥(γ k,n ) k,n ∥ ℓ 2 (Γ 3 ) ≤ C v H s+1 z L 2 ,
following the argument of proof on Γ 2 .

Lemma 21 There exists c > 0 such that for a ∈ H s+1 and z ∈ H s with s > 1, we have

Re Λ s (a∂ x z), Λ s z L 2 ≤ (c ∥a∥ H s+1 + c ∥a∥ H 2+ϵ ) ∥z∥ 2 H s .
(5.9)

Proof We know that Re Λ s (a∂ x z), Λ s z L 2 = Re [Λ s , a]∂ x z, Λ s z L 2 + Re a∂ x Λ s z, Λ s z L 2 .
We use Lemma 20 to estimate the first term

[Λ s , a]∂ x z, Λ s z L 2 = [Λ s , a]Λ 1-s Λ s-1 ∂ x z, Λ s z L 2 ≤ c ∥a∥ H s+1 ∥z∥ 2 H s .
(5.10) For the second term, we write

a∂ x Λ s z, Λ s z L 2 = [Λ s , a]∂ x z, Λ s z L 2 + ∂ x (aΛ s z), Λ s z L 2 = [Λ s , a]∂ x z, Λ s z L 2 -Λ s z, ∂ x aΛ s z L 2 . So 2Re a∂ x Λ s z, Λ s z L 2 = Re [Λ s , a]∂ x z, Λ s z L 2 ,
and it is easy to see that

[a, ∂ x ]Λ s z, Λ s z L 2 ≤ c ∥a ′ ∥ L ∞ ∥Λ s z∥ 2 L 2 ≤ c ∥a∥ H 2+ϵ ∥z∥ 2 H s .
(5.11) From (5.10) and (5.11) we deduce (5.9).

Lemma 22 Let s

0 > 1, s ≥ s 0 + 1, v, z ∈ Q s . Then ∥[Λ s , v]∂ x z∥ L 2 ≲ v H s z H s 0 +1 + v H s 0 +1 z H s .
(5.12)

In particular

∥[Λ s , z]∂ x z∥ L 2 ≲ z H s z H s 0 +1 ≲ z 2 H s .
(5.13)

Proof

The proof is similar to the proof of Lemma 20. We write

[Λ s , v]∂ x z = Λ s (v∂ x z) -vΛ s ∂ x z.
We know that

{Λ s (v∂ x z)} k,n = l 1 ,l 2 ∈Z 2 (1 + k 2 + n 2 ) s 2 v k-l 1 ,n-l 2 il 1 z l 1 ,l 2 ,
and the estimation of {[Λ s , v]∂ x z} k,n is the same as on Γ 2 , which complete the proof of (5.12).

Existence

We consider the equation

∂ t u + ∂ xxx u + u∂ x u -∂ -1 x ∂ yy u = 0, (x, y) ∈ T 2 , t > 0, u(•, •, t = σ) = u 0 , (x, y) ∈ T 2 , (5.14) 
We recall that we write this equation under the form

∂ t u = A(u(t))u, u(σ) = u 0 , (5.15) 
where

A(v(α)) : Q s T 2 -→ Hs T 2 u -→ -∂ xxx u + v(α)∂ x u -∂ -1
x ∂ yy u . The semigroup associated with the operator A(v(α)) will be noted {e tA(v(α)) } t≥0 , and the solution of the equation (5.14) at time t will be noted S(t, σ)u 0 .

Here the parameter t describe at what time we look at the solution and the parameter σ describe at what time the initial data is taken. For the existence of the solution of (5.15) we shall apply the following theorem. (See [Kat75, Theorem 6]).

Theorem 25 Let X be a reflexive Banach space, Y ⊂ X another reflexive Banach space continuously and densely embedded in X. Let W be an open ball in Y which contains 0, T > 0 and S : Y → X an isomorphism. Assume that

1. A = A(v(α)) is a generator of a semigroup {e sA(v(α)) } s≥0 such that for all s > 0 e -sA(v(α)) X ≤ e βs , ∀(α, v) ∈ [0, T ] × W. 2. For each (α, v) ∈ [0, T ] × W , the operator SA(v(α))S -1 -A(v(α)) is uniformally bounded in X. 3. For each v ∈ W, α → A(v(α)) is continuous in L(X, Y ) and for each t ∈ [0, T ], v → A(v(α)) is Lipschitz-continuous. 4. For each v ∈ W , α → f (α, v) is continuous from [0, T ] to X, for each α ∈ [0, T ], v → f (α, v) is Lipschitz continuous and f is a bounded function on [0, T ] × W to Y . Then (5.15) has a unique solution u ∈ C [0, T ′ ]; W ∩ C 1 [0, T ′ ]; X for some T ′ ∈ [0, T ].
We recall the two following theorems to prove the existence.

Theorem 26 (Lumer-Phillips) Let A be a linear operator of dense domain in a Hilbert space H. If A is dissipative and if there exists λ 0 > 0 such that Im(λ 0 I -A) = H, then A is the infinitesimal generator of a C 0 -semigroup of contractions.

Theorem 27 (Hille-Yosida) We have an equivalence between the two assumptions.

1. A is the infinitesimal generator of a C 0 -semigroup of contractions {S(s)} s≥0 .

2. A is closed, of domain dense and ∥R(λ, A(t))∥ ≤ 1 λ for Reλ > 0.

Theorem 28 There exists an unique solution u

∈ C [0, T ′ ]; W ∩C 1 [0, T ′ ]; H s of (5.4), where W is a bounded open set of Q s . Proof We use Theorem 25 taking X = H s , Y = Q s and S = A 1 . The operator A 1 : Q s → H s is inversible, it is thus Fredholm of index 0. The operator A 2 (v) : Q s → H s (when v ∈ Q s ) is compact since v∂ x u ∈ H s+1 → H s from (5.6). So A(v) = A 1 + A 2 (v) is also Fredholm of index 0. To prove that A is dissipatif, let λ > 0 and λ 0 large enough. As ∂ xxx -∂ -1 x ∂ yy is skew-adjoint since Re ⟨∂ xxx u -∂ -1
x ∂ yy u, u⟩ H s = 0, we have

Re ⟨(λ 0 + λ -A)u, u⟩ H s = (λ 0 + λ) u 2 H s + Re ⟨v∂ x u, u⟩ H s = (λ 0 + λ) u 2 H s + Re Λ s (v∂ x u), Λ s u L 2 = (λ 0 + λ) u 2 H s + Re [Λ s , v]∂ x u, Λ s u L 2 - 1 2 Re(∂ x vΛ s u, Λ s u) L 2 ≥ λ 0 + λ -c v H s - 1 2 ∂ x v L ∞ u 2 H s ≥ λ 0 + λ -C v H s u 2 H s .
(5.16) Hence A is dissipative. Now we estimate

(λ 0 + λ -A)u L 2 u L 2 ≥ Re (λ 0 + λ -A)u, u L 2 = (λ 0 + λ) u 2 L 2 + Re v∂ x u, u L 2 = (λ 0 + λ) u 2 L 2 - 1 2 T 2 ∂ x v. u| 2 dxdy = λ 0 + λ - 1 2 ∂ x v L ∞ u 2 L 2 ≥ λ u 2 L 2 .
This mean that λ 0 + λ -A is injective, since it is a Fredholm operator of index 0, it is also surjective, then inversible. From Theorem 26, λ 0 -A is a generator of a C 0 -semigroup of contractions. In other words, for λ 0 > C ∥v∥ H s , we have e -tA H s ≤ e C∥v∥ H s t .

(5.17)

This give us the first assumption of Theorem 25 with β = C ∥v∥ H s . To prove now the second assumption, let u ∈ H s T 2 . Since the terms ∂ xxx and ∂ -1

x ∂ yy commute with A 1 , we note w = A -1 1 ∂ x u (which belongs to Q s-1 ) and we have

A 1 AA -1 1 u -Au = A 1 v∂ x A -1 1 u -v∂ x u = [A 1 , v] w = -[∂ xxx , v] w -[∂ -1 x ∂ yy , v] w = -(∂ xxx v) w -3∂ xx v∂ x w -3∂ x v∂ xx w -[∂ -1
x ∂ yy , v] w. We use results from Lemma 16 and Lemma 19 to estimate each quantity.

A 1 AA -1 1 u -Au H s ≲ v H s u H s-1 + v H s+ 1 2 u H s+ 1 2 + v H s+1 u H s + v H s u H s ≲ v Q s u H s . So the operator A 1 AA -1 1 -A is bounded in H s .
For the third assumption, we take v 1 and v 2 in Q s , and it is sufficient to use Lemma 18 to write

∥A(v 1 )u -A(v 2 )u∥ H s ≲ v 1 -v 2 H s ∂ x u H s 0 + v 1 -v 2 H s 0 ∂ x u H s ≲ u Q s v 1 -v 2 Q s .
Since we will use trigonometric function to be the control term f , which do not depends on v, the last assumption of Theorem 25 is verified.

We give the following theorem, which is a particular case of the [Paz83, Theorem 3.1] in chapter 5.

Theorem 29 Let T > 0 and A(t) be the infinitesimal generator of a C 0semigroup {e sA(t) } s≥0 on a Banach space X for t ∈ [0, T ]. Assume that 1. The domaine of A(t) does not depend on t,

There exists

c ∈ R such that ]c, +∞[⊂ ρ(A(t)), 3. There exists M ≥ 1 such that Π k j=1 R(λ, A(t j )) ≤ M λ k , for 0 ≤ t 1 ≤ ... ≤ t k ≤ T.
Then, for t > s, there exists a unique solution u(t, s) of Note that to return to the nonlinear equation, we can take v = u (since we know from Theorem 28 that u exists) and we obtain ∥u(t, s)∥ ≤ e C∥u∥ H s (t-s) .

∂ t u = A(t)u u(s) = u 0 , such that ∥u(t, s)∥ ≤ M e
(5.20)

Let δ > 0 and φ ∈ C ∞ . We consider the equation

   ∂ t u + ∂ xxx (u + δ -1 2 φ) + (u + δ -1 2 φ)∂ x (u + δ -1 2 φ) -∂ -1 x ∂ yy (u + δ -1 2 φ) = δ -1 η, u(•, •, 0) = u 0 ,
(5.21)

Remark 11 Let ũ be the solution of (5.21) and u(t) the solution of

∂ t u + ∂ xxx u + u∂ x u -∂ -1
x ∂ yy u = δ -1 η, u(•, •, 0) = u 0 ,

(5.22)

Then ũ(t) = u(t) + δ -1 2 φ.

It is easy to see from Theorem 25 that the function u(t) = S(t, 0)u 0 + t 0 S(t, σ)δ -1 ηdσ, is the unique solution of

∂ t u + ∂ xxx u + v(t)∂ x u -∂ -1
x ∂ yy u = δ -1 η, (x, y) ∈ T 2 , t > 0, u(•, •, t = σ) = u 0 , (x, y) ∈ T 2 , on an interval [0, T δ ]. The following Lemma gives an estimation of continuity on u.

Lemma 23 Let c 1 > 0. There exists δ 0 > 0 such that for all δ ∈]0, δ 0 [, if the initial data u 0 satisfies ∥u 0 ∥ H s ≤ c 1 δ -1 2 , then there exist a solution u of (5.21) on [0, 2δ] such that ∥u(t)∥ H s ≤ 4c 1 δ -1 2 .

(5.23)

Proof Let T = sup t 1 ∈ [0, 2δ] ; u exists and ∥u(σ)∥ H s ≤ 4c 1 δ -1

2 for σ ∈ [0, t 1 ] .

(5.24) We prove that if t ≤ T , then ∥u(t)∥ H s ≤ 2c 1 δ -1 2 . From the continuity of u, there exists ϵ > 0 such that if t ≤ T + ϵ, then ∥u(t)∥ H s ≤ 4c 1 δ -1 2 , and hence T = 2δ.

From Duhamel formula we can write u(t) = S(t, 0)u 0 + t 0 S(t, σ)δ -1 ηdσ.

So using (5.20) and the estimation of u in (5.24)

∥u(t)∥ H s ≤ e 4Cc 1 δ -1 2 t ∥u 0 ∥ H s + t 0 δ -1 e 4Cc 1 δ -1 2 (t-σ) ∥η∥ H s dσ ≤ c 1 e 4Cc 1 δ -1 2 t δ -1 2 + δ -1 ∥η∥ H s t 0 e 4Cc 1 δ -1 2 y dy ≤ c 1 e 4Cc 1 δ -1 2 t δ -1 2 + δ -1 ∥η∥ H s e 4Cc 1 δ -1 2 t -1 4Cc 1 δ -1 2 . Since t ≤ 2δ we have ∥u(t)∥ H s ≤ c 1 e 8Cc 1 δ 1 2 δ -1 2 + ∥η∥ H s 4Cc 1 δ -1 2 e 8Cc 1 δ 1 2 -1 .
We choose δ 0 small enough so that e 8Cc 1 δ 1 2 0 ≤ 3 2 , and ∥η∥ H s 4Cc 1 e 8Cc 1 δ

1 2 0 -1 ≤ c 1 2 .
So for all δ ∈]0, δ 0 [ we obtain ∥u(t)∥ H s ≤ 2c 1 δ -1

2 .

(5.25) So we can extend the time over which the solution u satisfies (5.25) from T to T + ϵ. From this we can deduce that T = 2δ.

Approximate controllability

We note the solution of (5.21) at time t by u(t) = R t (u 0 , δ -1 2 φ, δ -1 η). We want to have a limit in H s of R t u 0 , δ -1 2 φ, δ -1 η when δ goes to 0, for s large enough, of the solution in small time. Let δ * ∈ [0, 2δ] and Θ the space defined by Θ(u 0 , φ, δ * ) = η ∈ L 1 ([0, T ]; H s ) ; R t u 0 , δ -1 2 φ, δ -1 η exists and continuous for t ∈ [0, δ * ] . Proposition 23 For s > 1, u 0 ∈ H s (T 2 ), φ ∈ C ∞ (T 2 ) and η 0 ∈ Θ(u 0 , φ, δ * ), the solution u(t) = R t u 0 , δ -1 2 φ, δ -1 η 0 of (5.21) verifies lim δ→0 u(δ) = u 0 + η 0 -φ∂ x φ, in H s (T 2 ).

(5.26) Proof For t ∈ [0, δ * ], let v(t) = u(δt), where u is the solution of (5.1), then v satisfies

∂ t v = -δ ∂ xxx (v + δ -1 2 φ) + (v + δ -1 2 φ)∂ x (v + δ -1 2 φ) -∂ -1 x ∂ yy (v + δ -1 2 φ) + η 0 .
Let w(t) = u 0 + t (η 0 -φ∂ x φ) and z = v -w. We have as δ → 0. In particular, u(δ) = v(1) → w(1) in H s as δ → 0, and then we obtain (5.26).

∂
To define a sequence (I N ) of sets as we did in section 4.3, we use the nonlinear term u∂ x u to find out which frequencies can be reached. By symmetry arguments, we can consider just the case q ≥ 0.

We want to write f under the form f = η- We can see that α cos(px + qy) + β sin(px + qy) = η 2 + φ 1 ∂ x φ 1 + φ 2 ∂ x φ 2 .

(5.36)

For the third sum of (5.33), we replace p with p + 1 and q with N -1 in (5.35), and we take (5.37)

Combining (5.34),(5.36) and (5.37), we deduce that f ∈ C(I N ).

To prove the inclusion (5.31), let We prove the following property P k (J) : ∀u 0 ∈ Q s (T 2 ), ∀ϵ > 0, ∀σ > 0, ∀w ∈ C k (J), ∃t ∈]0, σ], ∃ η ∈ Θ(u 0 , φ, t) ∩ H(I 1 ) s.t. ∥R t (u 0 , 0, η) -(u 0 + w)∥ H 1 ≤ ϵ.

We show the result by induction on the variable k. The proof is essentially the same as we did to prove Theorem 22. We recall that in the first stage of the proof, we reasoned by induction to prove that if P n k is true, then P n k+1 is true. We keep the property (4.14) and Lemma 13 in this proof.

By repeating the same arguments as in the first step of the proof of Theorem 22, we can say that we have P k (J) is true for all k ∈ N. This is due to Proposition 23. In other words P k (J) =⇒ P k+1 (J).

(5.39)

Taking J = I 1 , we can deduce from (5.32), that P 0 (I 2 ) is true. Now we use (5.39) again with J = I 2 to obtain that P k (I 2 ) is true for all k. From 5.30, we have P 0 (G 2 ) is true. So applying (5.39) with J = G 2 we deduce that P k (G 2 ) is true for all k. Now we use (5.31) to say that P 0 (I 3 ) is true, and so on, we can start again to write P 0 (I N ) =⇒ P 0 (I N +1 ), for all N ∈ N * . So if P 0 (I N ) is true, then P 0 (I N +1 ) is true, and from (5.39), P k (I N +1 ) is true for all k. Finally, the fact that N ∈N * I N = Z * × Z give us the approximate controllability in small time. The second step of the proof of Theorem 22 also remains valid for having controllability in a fixed time.

Hence for all u ∈ Ḣ1 (T) we have ∥∂ x u∥ L 2 (T) ≤ ∥ u∥ H 1 (T) ≤ (2π + 1) ∥∂ x u∥ L 2 (T) .

Proof (of Theorem 18) We suppose (3.81). Let y(t) = S(t)y 0 be a solution of (3.80) and E(t) = 1 2 ∥y(t)∥ 2 H . We have for every t ≥ 0 (y ′ (t), y(t)) H + (A 1 y(t), y(t)) H = -(BB * y(t), y(t)) H .

Since A 1 is skew-adjoint, we obtain E ′ (t) = -∥B * y(t)∥ 2 H ≤ 0. (6.1)

Thus E is nonincreasing. Now let T = kT 0 , where k is to be chosen further, by integrating (6.1) between 0 and T we get (6.5) As we have 

∥B * v(t
E(0) k .
Since E is nonincreasing, then

E(kT 0 ) ≤ c(1 + M 4 T 2 0 ) E(0) k .
So, for k > 4c(1 + M 4 T 2 0 ) and T = kT 0 we obtain ∥y(T )∥ H ≤ 1 2 ∥y 0 ∥ H , and it is classical that this implies (3.82). Reciprocally, suppose that we have (3.82). Since E decreases towards 0, we can find T 0 > 0 such that every solution y of (3.80) verifies From (6.7), we get (3.81).

Proof (of Proposition 22)

We recall that the norm on BV is given by (2.3). To simplify we take J = [0, 1], and without lost of generalities, we can suppose from Remark 9 that dim(E) = 1. We know that there exixts f ∈ F such that f (t) -u(t k-1 ) ≤ 2 M , so we can write We take the logarithm and the proof is complete.

.

  Nous voyons ici que l'opérateurA est régularisant d'ordre 1, c'est-à-dire que si v ∈ H s (T) alors Av ∈ H s+1 (T). En écrivant formellement v(t, x) = v 0 (x) +t 0 Av(s, x)ds, (1.2) nous pouvons voir que si v 0 ∈ H 1 (T) par exemple, et φ une fonction de troncature régulière vérifiant supp v 0 ∩ supp φ = ∅, alors φv(t, x) = t 0 φAv(s, x)ds ∈ H 2 (T).

Définition 4 Définition 5

 45 muni de la norme H s (T). Nous appliquerons une méthode basée sur l'utilisation du terme non linéaire. Le type de contrôle que nous considérons est celui des fonctions trigonométriques. L'intérêt d'un tel choix de contrôle est que le terme non linéaire u∂ x u laisse les espaces engendrés par les cosinus et les sinus invariants. Nous partons d'une donnée initiale dans Ḣ1 (T) et d'un contrôle qui appartient à un espace de dimension finie donné pour I ⊂ Z * par H(I) = vect{cos(kx), sin(kx) ; k ∈ I}. (1.19) On dit que l'équation (1.18) est approximativement contrôlable dans Ḣ1 (T) par des valeurs dans H(I) si pour tout T > 0, ϵ > 0 et tout u 0 , v ∈ Ḣ1 (T), il existe un contrôle constant par morceaux à valeurs dans H(I) et une solution u de (1.18) telle que ∥u(T ) -v∥ H 1 ≤ ϵ. On dit que l'équation (1.18) est exactement contrôlable dans Ḣs (T) par des valeurs dans H(I) si pour tout T > 0 et tout u 0 , v ∈ Ḣs (T), il existe un contrôle constant par morceaux à valeurs dans H(I) et une solution u de (1.18) telle que u(T ) = v. Théorème 10 L'équation (1.18) est approximativement contrôlable dans Ḣ1 (T) par des contrôles constants par morceaux à valeurs dans H(I) si et seulement si I est un générateur de Z. Théorème 11 L'équation (1.18) n'est pas exactement contrôlable dans Ḣs (T) par des contrôles constants par morceaux à valeurs dans H(I) lorsque s ∈ [1, 2[.

  [Ner15] pour les systèmes de Navier-Stokes. Nous renvoyons également le lecteur aux travaux d'Agrachev et Sarychev [AS05, AS06] où ils utilisent des polynômes trigonométriques pour contrôler les systèmes de Navier-Stokes/Euler en 2-d et 3-d. Nersisyan [Ner10, Ner11] utilise cette méthode de contrôle avec des espaces de dimensions finies pour l'équation d'Euler. Voir aussi les travaux de Shirikyan [Shi06, Shi07, Shi14, Shi18] pour les équations de Burger et Navier-Stokes.

Lemme 2

 2 Si I 0 est un générateur de Z, alors n∈N I n = Z. (1.24) Ensuite, on fait le lien entre la suite (I n ) et l'espace C(I) à travers le résultat suivant. Lemme 3 Pour tout n ∈ N, on a

  Combining, (3.25), (3.26), (3.27) and (3.28), we obtain

  .42) By multiplying (3.41) and (3.42) we get n 1 + |n -j| ≲ h|n -j| + 1.

  ξ), and on the other hand O(h), v k L 2 (T) -→ 0. (3.51) Then T×R b(x, ξ) ξ 3 -ξ 2 dν(x, ξ) = 0. (3.52) Now we want to show that supp

  T×R b(ξ)(1 -ξ)dν(x, ξ) = 0. (3.53) We write b = b 1 + b 2 with b 1 = χb and b 2 = (1 -χ)b. Clearly supp(b 1 ) ⊂ {R \ supp(Ψ)} . (3.54)

  ) from (3.52) by replacing b(x, ξ) with (1 -χ(ξ))b(ξ) ξ 2 . This give us (3.53) for every b ∈ C ∞ 0 (R; C). Then (1 -ξ)ν = 0 and hence we obtain (3.50).

  Theorem 19 are satisfied. So we can use it to show the following result. Theorem 20 Let T be the triangle of vertices {(x * , 0); (x * + 2π, 2π); (x * + 2π, -2π)}, then the function v is identically zero on T . Proof Let

  be the solution of the nonlinear problem. Combining Theorem 15 and Proposition 17 we can write for all T > 0 lim n→+∞ sup s∈[-T,T ]

For

  I ⊂ Z * × Z we set H(I) = span cos(px + qy), sin(px + qy); for (p, q) ∈ I , andC(I) = η -d i=1 φ i ∂ x φ i ; η, φ i ∈ H(I), d ≥ 1 .Let I 1 = {(1, 1); (1, 0); (1, -1)}, and for N ≥ 2 we setI N = (p, q) ∈ Z * × Z ; 0 < p ≤ N and |q| ≤ N -1 ,andG N = (p, q) ∈ Z * × Z ; 0 < p ≤ N + 1 and |q| ≤ N ⧹ (1, ±N ) .Lemma 24 For N ≥ 2 we have the three inclusionsH(G N ) ⊂ C(I N ),(5.30)H(I N +1 ) ⊂ C(G N ),(5.31) and H(I 2 ) ⊂ C(I 1 ).(5.32)Proof The idea to prove (5.30) here is to advance in p and q by making products of the form φ∂ x φ. Let f ∈ H(G N ) and for (a, b) ̸ = (±1, ∓1) φ 1 (x, y) = sin(x + y) + cos(x + y) + c sin(px + qy) + d cos(px + qy), and φ 2 (x, y) = a sin(x + y) + b cos(x + y) + d sin(px + qy) -c cos(px + qy).

φ

  i ∂ x φ i where η, φ i ∈ H(I N ).We have f (x, y) = (p,q)∈G N α cos(px + qy) + β sin(px + qy) = (p,q)∈I N α cos(px + qy) + β sin(px + qy) + {(N +1,q); |q|≤N } α cos(px + qy) + β sin(px + qy) + {(p,q); 2≤p≤N, |q|=N } α cos(px + qy) + β sin(px + qy) (5.33) Note that the numbers α and β depend of p and q. We callη 1 = (p,q)∈I N α cos(px + qy) + β sin(px + qy) ∈ H(I N ).(5.34)Now we prove thatφ 1 ∂ x φ 1 + φ 2 ∂ x φ 2 = 1 2 (b 2 -a 2 ) sin(2x + 2y) + 2(1 + ab) cos(2x + 2y) + (p + 1)(c(1 + b) + d(1 -a)) sin((p + 1)x + (q + 1)y) + (p + 1)(c(1 -a) + d(1 + b)) cos((p + 1)x + (q + 1)y) + (1 -p)(c(1 -b) + d(1 + a)) sin((p -1)x + (q -1)y) + (1 -p)(-c(1 + a) + d(1 -b)) cos((p -1)x + (q -1)y) . (5.35)By replacing p with N and q with q -1 in (5.35), and since the map(c, d) → (c(1 -a) + d(1 + b), c(1 + b) + d(1 -a)),is bijective, we can take1 2 (N + 1)(c(1 -a) + d(1 + b)) = α, 1 2 (N + 1)(c(1 + b) + d(1 -a)) = β,andη 2 = -1 2 (b 2 -a 2 ) sin(2x + 2y) + 2(1 + ab) cos(2x + 2y) + (1 -N )(c(1 -b) + d(1 + a)) sin((N -1)x + (q -2)y)+ (1 -N )(-c(1 + a) + d(1 -b)) cos((N -1)x + (q -2)y) .

  1 -a) + d(1 + b)) = α, 1 2 p(c(1 + b) + d(1 -a)) = β,andη 3 = -1 2 (a 2 -b 2 ) sin(2x + 2y) + 2(1 + ab) cos(2x + 2y) + (2 -p)(c(1 -b) + d(1 + a)) sin((p -1)x + (N -2)y) + (2 -p)(-c(1 + a) + d(1 -b)) cos((p -1)x + (N -2)y) , to obtain α cos(px + qy) + β sin(px + qy) = η 3 + φ 1 ∂ x φ 1 + φ 2 ∂ x φ 2 .

  q)∈H(I N +1 ) α cos(px + qy) + β sin(px + qy) ∈ H(I N +1 ), φ 1 (x, y) = cos(x) + sin(x) + c cos(2x + qy) + d sin(2x + qy), and φ 2 (x, y) = a cos(x) -b sin(x) -d cos(2x + qy) + c sin(2x + qy).

0 ∥B 0 V

 00 * y(s)∥ 2 H ds ≤ E(0).(6.2)This implies that there exists p ∈ {0, ..., k -1} such that v be the solution ofv ′ (t) + A 1 v(t) = 0 v(pT 0 ) = y(pT 0 ). (6.4)The function w = y -v satisfy w ′ (t)+A 1 w(t) = -BB * y(t), and w(pT 0 ) = 0. Thusw(t) = -t pT (t -s)BB * y(s)ds,where {V (t)} t≥0 is the semigroup generated by A 1 , which is a semigroup of contractions by the Hille-Yosida Theorem.We set M = ∥B∥ L(H) . For t ∈ [pT 0 , (p + 1)T 0 ] we have ∥w(t)∥ H ≤ M

T 0 0 0 S 0 0 0 0

 0000 ∥B * y(s)∥ 2 H ds = E(0) -E(T 0 ) let φ be a solution of (3.79) and y a solution of (3.80) with the initial dataφ(0) = y(0). The function z = y-φ verifies z ′ (t)+A 1 z+BB * z = -BB * φ. Then z(t) = -t (t -s)BB * φ(s)ds. For all t ∈ [0, T 0 ] we have ∥z(t)∥ 2 H ≤ c T 0 0 ∥B * φ(s)∥2 H ds (6.8) Since ∥B * y(s)∥ H ≤ ∥B * φ(s)∥ H + ∥B * z(s)∥ H , using (6.8) and the fact that B * is bounded T ∥B * y(s)∥ 2 H ds ≤ c T ∥B * φ(s)∥ 2 H ds.

  Let ϵ > 0 and B ⊂ L 1 (J) a closed ball of radius 1. Let also L, M ∈ N * be two constants to choose later. We define t k = k L and the intervalsI k = [t k-1 , t k [.We set F a finite family of functions f of L 1 (J) constant on each I k which cover B such that every f is worth one of the values 2j M for j = -M, .., M on each I k . The number of elements of F is given by (2M + 1) L . For t ∈ I k , we have u(t) -u(t k-1 )

  ) -f (t) dt ≤ L k=1 I k u(t) -u(t k-1 ) + u(t k-1 ) -f (t) dtNow we choose L and M so that the quantities 1 L and 2L M have the same order of magnitude. Hence we take L

  

  

  

  

  Remark 10The assumptions of[START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] Theorem 3.1] in chapter 5 are satisfied in our case since we take (under the notations of[START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]) Ã(t) = A(t), Y = D(A(t)) = Q s and t → A(t) is continuous from the continuity of the function u. From Theorem 27, we can deduce that M = 1. We know also that using the arguments seen in the proof of Theorem 28, we have λ 0 -A is inversible for all λ 0 > C ∥v∥ H s . This means that there are no eigenvalues of A on ]C ∥v∥ H s , +∞[, which gives us the second assumption of Theorem 29 with c = C ∥v∥ H s . So the solution of∂ t u = A(v(t))u, u(s) = u 0 ,verifies ∥u(t, s)∥ ≤ e C∥v∥ H s (t-s) .

	(5.19)

c(t-s) .

(5.18)

  Re (Λ s φ∂ x (z + w), Λ s z) L 2 -Re Λ s ∂ -1 x ∂ yy (z + w + δ -1 2 φ), Λ s z We know that Re (Λ s ∂ xxx z, Λ s z) = Re Λ s ∂ -1 x ∂ 2 yy z, Λ s z = 0. So we estimate the quantities Re Λ s ∂ xxx z + w + δ -1 2 φ , Λ s z Re (Λ s (z∂ x z) , Λ s z) L 2 ≤ ([Λ s , z]∂ x z, Λ s z) L 2 + (zΛ s ∂ x z, Λ s z) L 2 .The term ([Λ s , z]∂ x z, Λ s z) L 2 can be estimated by z 3 H s from (5.13). And for the term (zΛ s ∂ x z, Λ s z) L 2 we can see that2Re z∂ x Λ s z, Λ s z L 2 = z∂ x Λ s z, Λ s z L 2 + Λ s z, z∂ x Λ s z L 2 = -Λ s z, ∂ x (zΛ s z) L 2 + Λ s z, z∂ x Λ s z L 2 = -Λ s z, ∂ x (z)Λ s z L 2 -Λ s z, z∂ x Λ s z L 2 + Λ s z, z∂ x Λ s z L 2 = -Λ s z, ∂ x (z)Λ s z L 2 .So(Λ s (z∂ x z) , Λ s z) L 2 ≲ z

	By Gronwall inequality		
	∥z(t)∥ 2 H s ≤ Cδ	1 2 e Ct → 0,
	L 2 H s + z 2	+δ -1 2 L 2 3 H s ≲ 1 + z 3 H s ,	. (5.28)
	We claim which give us (5.29). 1 ∂ t ∥z(t)∥ 2 H s ≤ Cδ Integrating it between 0 and t, we have 2 ∥z(t)∥ 2 H s ≤ Cδ 1 2 t 1 + ∥z(s)∥ 3 H s ds = Cδ 1 2 1 + ∥z(t)∥ 3 H s . 1 2 + Cδ 1 2	t	(5.29) H s ds. ∥z(s)∥ 3
	0		0
	L 2 Note that the inequality (5.23) holds also for z (with a different constant), so ≲ w H s+3 + δ -1 2 ∥φ∥ H s+3 z H s ≲ δ -1 2 1 + z 3 0 H s , ∥z(t)∥ 2 H s ≤ Cδ t 1 2 + C ∥z(s)∥ 2 H s ds.

t z = -δ ∂ xxx (z + w + δ -1 2 φ) + (z + w)∂ x (z + w + δ -1 2 φ) + δ -1 2 φ∂ x (z + w) -∂ -1 x ∂ yy (z + w + δ -1 2 φ) . (5.27)

Taking the inner product in H s (T 2 ) with z we have

1 2 ∂ t ∥z(t)∥ 2 H s = -δ Re Λ s ∂ xxx z + w + δ -1 2 φ , Λ s z L 2 +Re Λ s (z + w) ∂ x z + w + δ -1 2 φ , Λ s z

  )∥ 2 H = ∥B * y(t) -B * w(t)∥ 2 H ≤ 2 ∥B * y(t)∥ 2 H + ∥B * w(t)∥ 2 H ,

	combinning (6.3) and (6.5) we get			
	(p+1)T 0 pT 0	∥B * v(s)∥ 2 H ds ≤ 2(1 + M 4 T 2 0 )	E(0) k	.	(6.6)
	Since v verifies (6.4), we have from (3.81) and (6.6)			
	2E(pT 0 ) = ∥v(pT 0 )∥ 2 H ≤ 2c(1 + M 4 T 2 0 )			

Proof We start by checking that A is dissipative. Note that D(A) = H 2 (T) is dense in H 1 (T). For µ ∈ R and u ∈ H 2 (T), we have

≤ c n∈Z |z n | 2 .(3.40) The constant δ is the one used in (3.30). We writeZ 2 = Γ 1 ∪ Γ 2 ∪ Γ

∪ Γ

∪ Γ

, whereΓ 1 = (n, j) ∈ Z 2 ; n ≤ 0 and |hj -1| ≤ 2δ , Γ 2 = (n, j) ∈ Z 2 ; 0 ≤ hn ≤ 1 -3δ and |hj -1| ≤ 2δ , Γ 3 = (n, j) ∈ Z 2 ; hn ≥ 1 + 3δ and |hj -1| ≤ 2δ , Γ 4 = (n, j) ∈ Z 2 ; |hn -1| ≤ 3δ ,and Γ 5 = (n, j) ∈ Z 2 ; |hn -1| ≥ 3δ and |hj -1| ≥ 2δ .

Remerciements

and c 3 = c 3 ∥φ∥ H -1 , ∥ψ∥ H -1 , R such that if δ < δ ′′ , then for all t ≤ δ R t u 0 , δ -1 2 φ, δ -1 f -R t v 0 , δ -1 2 ψ, δ -1 g

+ c 2 ∥f -g∥ L 1 ([0,δ];H -1 ) + c 3 ∥φ -ψ∥ H -1 . (4.9)

Proof Let u(t) = R t u 0 , δ -1 2 φ, δ -1 f and v(t) = R t v 0 , δ -1 2 ψ, δ -1 g . We have

We can see that

So, by integrating (4.10) between 0 and t, we obtain for all t ≤ δ ′′

We can choose δ ′′ small enough such that 1-4cδ ′′ (1+R)-2cδ ′′ 1 2 ∥φ∥ H -1 > 0, which complete the proof.

From now on, we take δ * = min{δ ′ , δ ′′ }. Using the same estimations as in the previous proposition, we have the following corollary.

(4.13)

Remark 8 From uniqueness of the solution, we have the equality for all t ∈

We will also use the continuity in time given by the following lemma.

, then the operator A 1 is given by

where ((A 1 u) k,n ) are the coefficients of A 1 u. We see that the space Q s is made so that A 1 is bijective, and A -1 1 is given by

We give the principal theorem of this chapter. Let I 1 = {(1, 1); (1, 0); (1, -1)}. We define for I ⊂ Z * × Z the space H(I) = span cos(px + qy), sin(px + qy); for (p, q) ∈ I , Theorem 24 The equation (5.1) is approximately controllable in Hs (T 2 ) by piecewise constant controls with values in H(I 1 ) for s > 2. In other words, for all T > 0, ϵ > 0 and all u 0 , v ∈ Hs , there exist a control η(t, x, y) piecewise constant in time with values in H(I 1 ) and a solution u of (5.1) such that ∥u(T ) -v∥ H s ≤ ϵ.

Some estimations

We give some useful estimations that we will need in the next section.

Lemma 16

We have the injection

(5.5)

We prove that

Now we take

For the inclusion (5.32). Let u 0 = a cos(x) + b sin(x). Then

Now let

φ 1 (x, y) = cos(x) + sin(x) + c cos(x + y) + d sin(x + y), and φ 2 (x, y) = cos(x) -sin(x) -d cos(x + y) + c sin(x + y).

We prove that

Since the two maps (a, b) → ab,

are bijective, we obtain (5.32) by the same way as the two first inclusions.

We can now prove Theorem 24. .

By taking the square and then integrating with respect to x we find ∥ u∥ 2 L 2 (T) ≤ 4π 2 ∥∂ x u∥ 2 L 2 (T) .

113