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Geometrical element K € Q,

Reference geometrical element
Geometrical transformation ¢% : K—>K
Unit outward normal

Unit tangent

Set of faces of the geometrical elements
Set of interior faces

Set of boundary faces

Finite Element

NOTATIONS

Ny, Finite element space dimension
®i FE basis function i=1,...,N,
X, (Q) FE approximation space X, = span({¢;},)
uj, FE approximation of the field u

Reduced Basis
N Reduced basis space dimension
& RB basis function i=1,...,N
X, (Q) RB approximation space X, = span({&;};)
Upp RB approximation of the field u
u RB parameter
P Parameter space
Zb RB trainset
M Empirical Interpolation Method dimension
qm EIM basis function m=1,....M
Priy EIM parameter space
Erivm EIM trainset

Magnetostatic
E Electric field N-C!
H Magnetic field A-m™!
D Electric flux C-m™
B Magnetic flux Tesla (T)
A Magnetic vector potential Ves-m!
% Magnetic scalar potential Volt (V)
j Current density A-m™
p Electric charge C-m
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€ Electric permitivity F-m!

0o Electric conductivity at reference temperature 7y S - m™

o(T) Electric conductivity S -m!
Elasticity
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v Poisson’s ratio -

ar Coefficient of thermal expansion K -1
Heat Transfer

T Temperature Kelvin

Ko Thermal conductivity at reference temperature 7, W-m™'- K™

k(T) Thermal conductivity W-m' . K!

Nu Nusselt number -

C, Thermal capacity J-K!

Po Mass density kg-m™

jo Heat flux density W-m™?

L Lorenz number W-Q-K?

« temperature coefficient of resistivity K!

h transfer coefficient W-m?2 . K!
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Introduction

Context

The magnetic field is present naturally in our life. For example, the Earth has a mag-
netic field of about 4.7 x 10~ Tesla. Even the human brain produces a magnetic field
of 10712 T. Tt is also used in everyday life, doorbells, speakers, motors in a car, or hard
drive all use electromagnetism at some point. Other usages include the detection of
cancerous cells by the magnetic resonance imaging or MRI, or the cancellation of the
gravitation force, allowing to reproduce the conditions of space on Earth in a cheaper
way than parabolic flight or the levitation of objects, such as the Maglev train. For this
type of application, the magnets are designed to provide a specific profile of a magnetic
field. Magnets are also a tool in many research areas, like solid state nuclear magnetic
resonance. The more intense the magnetic field is, the higher the precision is.

(a) MRI scanner (b) Maglev train (c) Hendo Hoverboard

Figure 1 — Applications of magnetic field

The development of such magnets for research purpose has started at the beginning
of the 20th century. For example, in France, the 120 tons electromagnet of Bellevue,
now in a museum, operated from 1920 to 1970, reaching 5 Tesla. More modern tech-
niques have emerged in the 1940s with the works of Francis Bitter and with some
improvements on them, see [Montgomery, 1969]. The use of superconducting materi-
als spread in the late 1960s. Superconductors are materials which have zero electrical
resistance below a certain temperature. The record intensity using superconducting
materials is of 23.5 T, reached at the Ultra-High Field European NMR Center in Lyon,
France. Unfortunately, due to the intrinsic limitation of superconductivity, currently
above = 24 T we lose superconductivity with standard superconductors materials.

Magnetic fields which intensity is higher than this limit, 24 T, are called high mag-
netic fields. This kind of intensity is usually reached using resistive magnets made
of resistive materials, like copper alloy. They require to be water-cooled to keep an

vii



viii INTRODUCTION

acceptable temperature. This type of magnets are very expensive to build and oper-
ate, so only a few laboratories around the world operate them. The magnets are then
provided to scientists to perform their experiments. In Europe, they are gathered in
the European Magnetic Field Laboratory (EMFL). The French laboratory, the Labora-
toire National des Champs Magnétiques Intenses (LNCMI), is split in two sites. One at
Toulouse and one at Grenoble. The latter provides a magnetic field of 37 T for several
hours.

(a) Bellevue magnet (b) Hybrid magnet (c) LNCMI experi-
mental chamber

Figure 2 — The evolution of magnets in time

The design of the magnet plays a great role in the intensity that it can reach. This
is why, at the LNCMI, various technologies are tested and combined. The most com-
monly used type of magnet is the Bitter magnet (see Figure 3a), from the name of its
inventor in 1933. It consists of conductive disks, stacked into a solenoid, kept at tem-
perature by passing water into holes made in the disks. The record magnetic field
reached using Bitter magnet is 41 T in the United States at the NHMFL [Toth and Bole,
2018]. Another type of magnets is the so-called poly helix magnets (see Figure 3b) de-
scribed in detail in [Debray et al., 2002] and [Debray et al., 2012]. The magnet is made
of several concentric copper alloy tubes, helically cut by spark erosion. They can be
cooled either longitudinally, in which case the water circulates only between the tubes,
or radially, where the water can also pass between the turns of the tubes. This is pos-
sible by the insertion of insulators in the helix cut, a procedure exclusively developed
at the LNCMI. Finally, there are hybrid magnets (see Figure 2b) combining an outsert
made of superconductor materials and a resistive insert. The current record for these
hybrid magnet is 46 T at NHFML. The LNCMI is building a hybrid magnet targeting
42T.

The international competition to realize magnets capable of reaching the highest
possible intensity or the most homogeneous magnetic field to conduct the experiments
is tough. Consequently, the LNCMI needs to continually improve the characteristics
and the design of its magnets. During the experiments, the electric current can reach
31 kA with a power of 30 MW, necessitating the cooling of the magnet by a water flow
of 140 L/s, allowing to evacuating 6kW/m?, or approximately 150°C, and the materials
composing the magnet are pushed to 90% of their elasticity limit. All of this enable the



(a) Bitter magnet (b) Polyhelix magnets
(up to Im in diameter) (up to 400mm in diameter)

Figure 3 — Various resistive magnet technologies are used to reach high magnetic
tields

LNCMI to reach magnetic fields of up to 43 Tesla, but it also means that extra care is
needed to ensure that the magnets are not damaged during the operation, as a resistive
magnet can cost up to 300 000 euros and one year to design, provision the material and
assemble, whereas a spraconductive magnet can cost up to 3 million euros and up to
10 years to assemble for the Hybrid project developed at Grenoble. So the engineers of
the LNCMI have to understand perfectly the process taking place in the magnet, even
if the materials used, particular copper alloy to maximize conductivity, come with an
uncertainty with regards of their material properties. Also, some scientific experimen-
tations require to have a better homogeneity of the magnetic field than normal in the
zone of interest, necessitating specific field profile, and thus specific magnet. To un-
derstand the properties or design specific magnets, the numerical simulation plays an
essential role as stated in [Trophime et al., 2002]. This is the reason behind the HiFi-
Magnet project, which is a collaboration between the LNCMI and the University of
Strasbourg. It aims to use the resources of the latter to help the former modeling the
physics of a high field magnet.

This thesis, as part of the HiFiMagnet project, continues the work previously done
by C. Daversin in [Daversin Catty, 2016] to provide efficient and reliable ways to sim-
ulate the 3D multi-physics model on real magnet geometries. Since this model will
be used with different types of magnets and/or different experimental parameters, an
effort has been made to make it easy to configure. The models and simulations range
from mono-physic (e.g. magnetic field computation) to multi-physics (e.g. tempera-
ture, electric and magnetic field and displacement computations), for a small part of
the magnet and/or the whole magnet. A goal is that engineers at LNCMI might be
able to use it through the MSO4SC portal, which provides users a high performance
computing (HPC) solution in the cloud and is part of the H2020 European project. Dur-
ing this thesis, we also tried to use the Hybrid Discontinuous Galerkin (HDG) method
to better approximate flux variables, such as the electric density or magnetic field. A
paper detailing the treatment of the Integral Boundary Condition is in preparation
[Guidoboni et al., 2020]. It requires to add another unknown in our equations, which
implies a greater cost that we are trying to mitigate by the use of the static condensation
technique. The required computational resources may become very important requir-



X INTRODUCTION

ing the use of HPC. Lastly, in order to perform optimization problems and sensitivity
and uncertainty quantification analysis, we use the Reduced Basis (RB) method, which
allows to compute the magnetic field in an efficient way for different parameters.

Feel++

All the methods presented in this thesis have been implemented using the library
Feel++, for Finite Element Embedded Library in C++. Since the electromagnetism,
described by Maxwell, and the other physics involved in a high-field magnet, can be
expressed using partial differential equations (PDE), the Finite Element Method (FEM)
is well suited to solve this kind of numerical problems.

Feel++ is an open-source library, which creates a domain specific embedded lan-
guage (DSEL) aiming to help in the implementation of PDEs with syntax close to the
mathematical formulation. It has been described in [Prud’Homme et al., 2012] and can
be found at www . feelpp.org where various scientific projects are presented.

To efficiently solve the problems, Feel++ is relying on proven solvers provided by
third party libraries like PETSc [Balay et al., 2018], and the meshing of the geometries is
outsourced to GMSH [Geuzaine and Remacle, 2009] or Salome [Ribes et al., 2017]. The
parallelization is seamless for the user, allowing to run the simulation from a laptop
to a cluster without changing the code, a feature needed for the complex geometries
of the magnets. Feel++ already provides a RB framework that we needed to update
and extend for our applications. We also had to develop a HDG framework upon the
Finite Element implementation of Feel++ in order to take advantages of this method.

Plan

This manuscript is organised into four parts.

The first part describes the mathematical methods used.
The chapter 1 recalls the theory of the Finite Element Method on which the other de-
velopments are based. In this chapter the principle of the FEM is reviewed as well
as some families of finite elements convenient for our multi-physics problem, such as
Raviart-Thomas and Nedelec.
The chapter 2 aims at detailing the Hybrid Discontinuous Galerkin method. The sec-
tion 2.1 describes an original contribution, the Integral Boundary Condition, allowing
to impose the value of the integral of the normal flux, without knowing neither the
value of the potential nor the value of the normal flux. This again is of importance
for our thermo-electric problem, since we can modelize the input current setting more
closely to the electrical configuration when the magnets are operated.
The chapter 3 details the Reduced Basis method. We focus on the methods dealing
with the non-linear and non affinely parametrized problems. We introduce the Em-
pirical Interpolation Method to have an affine decomposition, and the Simultaenous
Reduced EIM method to keep a computational cost reasonable.


www.feelpp.org

X1

The second part describes the different physics of our model.
The chapter 4 details the non-linear thermoelectric problem. This problem takes into
account the dependence on the temperature of the thermal and electric conductivity to
simulate the current flow in the magnet and the increase of temperature resulting from
Joule effect.
The chapter 5 enumerates the different resolution strategies for the magnetostatic prob-
lem. It shows how to retrieve the magnetic field and potential in the whole domain,
including the magnet, using the saddle point or the regularized formulation of the
Maxwell equations. Alternatively, we use the Biot & Savart law to compute the mag-
netic field or potential in a region of interest at the center, but not in the magnet with
less computational cost than when using the Maxwell’s equations.
Finally the chapter 6 describes the linear elasticity problem. It is used to check if the
deformation of the magnet and the stress due to the Lorenz forces and the thermal di-
lation are not too important.
Each chapter will present the equations related to the physical problem, along with
the different formulations of the problem, continuous Galerkin, hybrid discontinuous
Galerkin and reduced basis, except for the chapter on Biot & Savart for which there is
no HDG formulation.

The third part describes the contribution to the Feel++ library during this thesis.
The chapter 7 details the HDG implementation of the mixed Poisson and mixed Elas-
ticity problems and the chapter 8 details the implementation of the classes needed for
the computation of the magnetic field using the Reduced Method of the Biot & Savart
law.

The last part of this manuscript describes the applications of the methods previously
presented.
The chapter 9 presents two applications dealing with parameters identification. First,
the identification of the water cooling parameters, namely the water temperatures and
heat transfer coefficients in each cooling channel of the magnet. Secondly, we repro-
duce the comissioning of a magnet, identifying two parameters, the field factor and
the resistance of the magnet.
Finally, the chapter 10 details geometric optimization and control applications. The
tirst application aims at finding a geometrical configuration to cut the most inner he-
lices to achieve the most homogeneous magnetic field in the region of interest.

Publications

in preparation An implementation of HDG methods with Feel++. Application to prob-
lems with integral boundary conditions

with C. Prud’homme, L. Sala, S. Bertoluzza, G. Guidoboni, D.
Prada, R. Sacco and M. Szopos
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Part 1

Mathematical modeling






Chapter 1

Preliminary Notions

In this chapter, we introduce the basis of the mathematical framework we will work
with during this manuscript. We start by recalling some properties of function spaces,
in particular the Sobolev spaces. We then introduce the Finite Element Method by
exposing its principle and detailing some useful finite element families.

Contents
1.1 Functionspaces . .. ... ... ..., 3
1.1.1  Spaces of continuous functions . . . . ... ... .. ... ... 3
1.1.2  Spaces of integrable functions . . . . . . ... ... ... ... .. 4
1.1.3 Sobolevspaces . ............... ... ... ... .. 4
1.2 Finite ElementMethod .. ......................... 6
1.2.1 Principles of themethod . . . . .. .. ... .. ... .. ... .. 6
1.2.2 Finite elements family . . . ... ... .. ... .. .. ..... 8
1.2.3 Continuous and Discontinuous Galerkin . . . . ... ... ... 12

1.1 Function spaces

1.1.1 Spaces of continuous functions
Let define the operator

] ay |(l’|
pr=(2) (2) -_9"
0x 0x, 0xy...0x,
where a is a multi-index.
Let Q be an open set in R” and let k € N. We denote by C*(Q) the set of all continuous

functions defined on Q such that D%u is continuous on Q for all @ with |o| < k. If Qis a
bounded open set, C*(Q) can be equipped with the norm

ldlexgy = ), sup D" u()|

max |a|<k x€Q

3



4 CHAPTER 1. PRELIMINARY NOTIONS

The support of a continuous function u defined on an open set Q c R” is defined as
the closure of the set {x € Q| u(x) # 0}. This is noted supp u.
We denote by C§(Q) the set of all u contained in C*(Q) whose support is a bounded
subset of Q. Let
C5(Q) = N0 Co(Q)

1.1.2 Spaces of integrable functions
Let p a real number, p > 1, we denote by L?(Q) the set of all functions defined on an
open subset Q of R” such that

flu(x)lpdx < oo
Q

Any two functions which are equal almost everywhere (i.e. equal, except on a set of
measure zero) on Q are identified with each other.
LP(Q) is a Banach space equipped with the norm

Nl = ( f |u<x>|f’dx)"
Q

An important special case corresponds to p = 2, then the space L*(Q) is a Hilbert space
with the following norm and inner product

lullr2) = llulloq = ( j; IM(X)IZdX) s () = (U, v)og) = fg u(x)v(x)dx

1.1.3 Sobolev spaces

Let us define the concept of weak derivative. Let u € CX(Q) with Q an open subset
of R", and let v € C;(Q), then the following integration by parts formula holds:

f D%u(x) - v(x)dx = (=1 f u(x) - Dv(x)dx, lal <k, YveCy(Q)
Q Q

Let u be a locally integrable function on Q (i.e. u € L'(w) for each bounded open set w
with @ c Q). We call the weak derivative the locally integrable function w, such that:

f We(x) - v(x) = (=1) f u(x) - D*v(x)dx Yv e CY(Q)
Q

Q

The function w, is called a weak derivative of the function u of order |a| = a; + - - + @,
and we write w, = D?u. This function is unique, due to the DuBois Reymond’s lemma.

Let k > 0 an integer and suppose that p € [1, co]. We define:
Wi(Q) = (u € L(Q) | D"u € L/(Q), lal < k)

Wllj(Q) is called a Sobolev space of order «.
When 1 < p < o0, it can be equipped with the following semi-norm and norm:

' i ;
— P — p
v = | DI ullgy | o elhugiar = | Dl

lar|=k

J=0
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And when p = oo:

k
bty = Y ID"UlL @y Mrlhyiioy = D Il
lal=k 7=0

An important special case corresponds to p = 2. The space W5(Q) is a Hilbert space
with the inner product:
(1, Vwsy = ) (D", D)
lal<k
We then usually write H*(Q) instead of W(Q).
We use frequently H'(Q) and H*(Q).
For p=2, k=1, we consider

0
H(Q) = {u e LX(Q) | a—; cL2Q), j=1,.. n} (1.1)
J
1
n 2 2
ou
lullin iy = llll g = | ull}2q + — ]
Q) ]Z:; %[ 20
1
u u o
Ulgiqy = U1, = o
1105l 20
For p=2, k=2, we consider
0 0?
HX(Q) = {u € 12(Q)| a—” €I2Q), j=1,....n, 2L c12Q), i,j= ln}
Xj Oxl@xj
1
n 2 n 2 2
ou 0’u
lull gy = | Iull32 ) + — + ]
L@ ; ax]' Q) iz 6xl~(9xj 12Q)
1
n azu 2 2
|u|H2(Q) = ]
i,jZ::I Hxi(?xj 12(Q)

We finally define some other useful Sobolev spaces.
Let Hé (Q) be the closure of C;°(Q) in the norm ||-||;1(q). That means Hé (Q) is the set of all
u € H'(Q) such that u is the limit in H'(Q) of a sequence {Un}y_, with u,, € C7(Q). It can
be shown that
Hy(Q) = {ue H'(Q) | u=0on Q)

This space is a Hilbert space, with the same norm and inner product than H'(Q).
We also define H'/?(9Q) as the range of the trace operator 1r : H'(Q) — L*(Q):
H'*(0Q) = {u € L*(0Q) | Jit € H'(Q) such that u = tr(i)}
equipped with the following norm:

||u||H1/2(6Q): inf ”ﬁ”Hl(Q)
icH' (Q)

tr(i)=u
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This Banach space is useful when dealing with boundary conditions.

For the magnetostatic, we will need to integrate terms of divergence or curl of a
tield. We need to ensure that those terms are square integrable. For such instances, we
introduce the two following spaces:

Hgi(Q) = fu € [LX(Q)]? | V-ue L} (Q)} (1.2)

3 ) J 5 ) 1 ifd=2
Hen(Q) = {u € [L7(Q)] [V X u e [LY(D)]'}, V—{3 fd =3 (1.3)

We shall note that the curl of a 2 dimensional vector is a scalar and the curl of a 3
dimensional vector remains a vector.
Those spaces are Hilbert spaces, with their respective scalar product and norm:

(W, V)@ = WV)pe +(V-u,V-V)q Il = VO, Wa @
(W, Vg @ = @, V) + (VXU VXV)pg ally,,.@ = V@, 0y, ,@

1.2 Finite Element Method

Usually, the laws of physics are described in terms of partial differential equations
(PDEs). But in general, those equations cannot be solved analytically. We need to
use some type of discretizations to approximate the PDEs, and numerically solve the
problem. The Finite Element Method allows to compute such approximations

The origin of the method can be traced back to the early 1940s in [Hrennikoff, 1941]
and [Courant, 1943] with the mesh discretization and the first apparitions of the el-
ements. The method has grown in popularity later as the use of computers spread,
and rigorous basis and further developments were published [Strang and Fix, 1973],

[Ciarlet, 1978].

1.2.1 Principles of the method

The first step to apply the finite element method to a partial differential problem
is to get a variational formulation of it. It consists in multiplying the PDE by a test
function, from a function space to define later, and integrating over the domain. We
can view the left-hand side of the variationnal formulation as a bilinear form and the
right-hand side as a linear form. The problem is now:

Find u € V(Q) such that a(u,v) = I(v) Vv e V(Q)
where V(Q) is a Hilbert space of functions defined on Q equipped with the norm ||||, a
is a bilinear form on V(Q) x V(Q) and [ a linear form on V(Q).

The Lax-Milgram theorem ([Lax and Milgram, 1954]) states that this problem has a
unique solution under the following conditions:

e [is continuous : K such that |/(u)| < K ||u||, Yu € V(Q)
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e ais continuous : AM such that |a(u, v)| < M ||ul| ||VIl, Y(u, v) € V(Q) X V(Q)
e ais coercive : da > 0 such that a(u, u) > a ||ull*, Yu € V(Q)

The Babuska-Lax-Milgram ([Babuska, 1971]) extends this results when the test and trial
function spaces are different.

To get a numerical approximation of u, we need to look for a solution in v, ¢ V of
finite dimension. An approximation u;, of u can be defined by the problem

Find u, €V, such that Cl(l/th, Vh) = l(Vh) Yv, € V,

We can build a sequence of subsets (V}), such that for all element ¢ of V, there exists
a sequence of ¢, € V,, such that |l¢ — ¢;ll = 0 when & — 0. This is called a Galerkin
method.

For any v, € V;, ¢ V we have a(u,v,) = I(v;) and a(uy, vi) = I(v;) so a(u — up, v;) = 0.
From this, we can show that

alu —up,u—uy) =alu—u,u—v,) Yv, eV,
But since a is coercive and continuous,
2
alu—wll” < a(u — up, u —up) = au — up, u —vyp) < M|l — ug|| [lu — vl
or o
llee — upl| < . oo = vll  Yve €V

which implies

M

ot — upll < —d(u, Vi)

a

where d(u, V) = min,ey, [lu — v||. This inequality is called Céa’s lemma.
Since V), is of finite dimension N, it admits a basis (¢, ..., ¢y,). u, can be written as

Npy

up = Z Uipi
i=1

We can then rewrite the variational problem as

Ni
Find U = (Uy,..., Uy,) such that )" Ua(gi,¢)) = lgp), Yj=1,....N, (1.4)

i=1
That is equivalent to the linear system:
alpr,e1) ... algiew) \( Ui lp1)
: : N (1.5)
a(en,¢1) - alen, ¢n,)) \Uy, l(en,)

or
AU =D
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1.2.2 Finite elements family

The matrix A could be dense, but to be efficient, we want this matrix to be as sparse
as possible. For this, we need to define the functions ¢; with a support as small as pos-
sible.

The first step to define the finite element used is to partition the domain Q into a collec-
simplices, K, can be a line, a triangle, or a tetrahedron, and in the case of hypercubes, it
can be a line, a quadrangle, or a hexaedrons. The characteristic size of those is #, thus,
we call Q, the mesh corresponding to Q. We call 77, the set of all domains K..

The finite element method defines this basis [Ciarlet, 1978], and so the space V), from
a tuple (K, Pk, Zk).

e K is the geometrical domain, simplex or hypercube used to create €.
e Py is a polynomial space of finite dimension k defined on K.
e X is a set of linear functionnals {o; : Px — ]R}i.‘:1

The k local basis functions of Py, {¢ j}’;:I, are defined such that oi(¢;) = 6;;, 1 <i,j < k.
The global finite element space on €, V), is derived from the local space. Every func-
tion of the global space is defined by having its restrictions to each K, belonging to the
local finite element space associated, and by adding the required continuity conditions

between each cell.

Each finite element (K., Pk,, Xg,) involves its proper basis functions. The right way
to handle this is to choose a reference finite element (K, Pp,2¢). Then each element
K. of the mesh Q, is supposed to be the image of K from a C**’-diffeomorphism ¢f”,
where geo is the geometrical order of the mesh.

In this way, many computations can be performed once on the reference element, and
all we need is the Jacobian of the transformation Ji” and its inverse to deal with the

integrals.

Depending on the problem, the space V), needs to have certain properties. Indeed,
the solution can belong to H', Hyy or H.,, defined in section 1.1.3. Each space has an
interpolation operator defining its discrete version and the finite elements associated.

Those spaces are related to each other by the De Rham complex diagram (1.6) [Boffi
et al., 2013], where the range of each of the operators coincides with the null space of the
operator in the sequence, and the last map is a surjection. We also show the discrete version
of the diagram, where the discrete spaces are obtained from the continuous one by an
interpolant 7, : X — Xj.

R -5 H(Q) -5 Hun(Q —5 Hp@ — IXAQ)
LAY Ly L) .4 (1.6)

id Vi VX Vi
R — Uh — Vh 4 Wh — Zh

We will now define the Lagrange finite elements that are conforming to the space
H'(Q), and so define U, in 1.2.2.1. Then, in 1.2.2.2, we define the Raviart-Thomas finite
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elements, conforming to the space H,;,(Q2), and defining the space W),. And in 1.2.2.3,
we define the Nedelec finite elements, conforming to H,,,(€2) and defining the space
V.

1.2.2.1 Lagrange finite elements

The Lagrange finite element are one of the most used family of finite element. Indeed,
it is suitable to solve problems whose solution resides in H' Hilbert space (1.1), and
because they allow an easy visualisation of the fields. We recall that the Lagrange finite
elements are defined as tuples (K, Pk, Xx). The polynomial space P of order k is the set
of polynomials of degree less than k, P*. The set of linear functional X, which are the
degrees of freedom, are the evaluation of the polynomials p € P* at the interpolation
points of K, denoted d;:

oi(p) = pd), VYpeP

This allow to deduce the Lagrange basis functions.

-1,-D (1,-1

(a) 2D simplex (b) 3D simplex

Figure 1.1 — Reference elements

1.2.2.2 Raviart-Thomas finite elements

For problems involving the integral of divergence terms, we need to ensure that those
terms are square integrable. That is the discrete functions are in Hgy, (1.2). For this to
be the case, in particular, the normal component of the solution across the interfaces of
the elements of the mesh Q, must be continuous. Several divergence conforming finite
elements have been proposed using different bases, such as Brezzi-Douglas-Marini
(BDM) [Brezzi et al., 1985] or Raviart-Thomas [Raviart and Thomas, 1977], using dif-
ferent polynomial spaces, [P“]“ or a subspace of [P**!]¢. They have been both extended
in 3D by Nédélec. We will detail the Raviart-Thomas finite elements.
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=11

o (=1,-1,1)

(a) 2D simplex (b) 3D simplex

Figure 1.2 — Reference elements - normals

Following Ciarlet’s formalism, we need to define Px and X¢. The function space Pk
is O the vectorial subspace of [P**']¢ of order k defined as:

D, = [P & x (]Pk e Pk-‘)

We can split the set of degrees of freedom Zx as two sets of linear fonctionnals. We
can use nodal or modal basis functions, in the latter case, at the lowest order zero, we
define the faces degrees of freedom {0/} ,cg, and from the order one, we also use the
inner degrees of freedom {o*}ker,:

O'f(u):fu-np Vp € PX(f)
f

ot (w) = fu-q vq € [P1(K)]
K

Remark 1. The orientation of the normal is important for the definition of the face dofs.
We need to ensure the unicity of the normal across elements.

1.2.2.3 Nedelec finite elements

In the same way as for the Hy, conforming elements, we may need to use elements that
ensure that the curl of a discrete function is integrable. Similar to the Hg, conforming
elements, H, conforming elements need to ensure the continuity of the tangential
component of the solution. Such elements have been introduced by ]J.C. Nédélec in the
80s [Nédélec, 1980], [Nédélec, 1986]. They are thus called the Nédélec finite elements,
and group two elements types, similar in construction to the Raviart-Thomas elements
and the Brezzi-Douglas-Marini elements. We will detail the first kind of the Nédélec
finite elements.
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(=1,-1

1,-1n

(a) 2D simplex (b) 3D simplex

Figure 1.3 — Reference elements - tangents

Following Ciarlet’s formalism, we need to define Px and X¢. The function space Pk
is R*! a vectorial subspace of [P*']? of order k defined as:

Rk,l — []Pk]d @Sk
where S is defined as:
S=fue[Phl u-5=0
where % € K is in the reference element.

As with Hg, conforming elements, we can use nodal or modal function basis, the
latter is detailed here. We split the set of degrees of freedom Zk as three sets of linear
functionnal. At the lowest order, we have the edge degrees of freedom {o}.cp, and for
highest order we add the set of faces degrees of freedom {0/} cg, and the set of inner
degrees of freedom {o%}ker, .

In 2D, the edges are combined with the faces, thus we have that o, = o, and:

o(u) = f (u-t)p Vp € Pke)
o) = f u-q Vg € [P1(K))?
K

In 3D, we have:

o“(u) = f (u-t)p Vp € PX(e)

o/ (u) = f(u Xn)-q vq € [P'(HTP
r

o) = f u-q vq € [P(NHT
K

Remark 2. The orientation of the tangent is important for the definition of the face dofs
in 3D. We need to ensure the unicity of the tangent across elements.
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1.2.3 Continuous and Discontinuous Galerkin

The Continuous Galerkin (CG) implies that the function vy is continuous across the
edges of the simplicies K:

V = {v € CUQ) [ vak € Px(K))

A different class of Finite Element methods uses discontinuous functions, thus it is
called Discontinuous Galerkin (DG). These methods allow more flexibility in regards
of local changes in each element. For example, using different polynomial order in dif-
ferent elements of the mesh becomes possible, as well as using non-conforming mesh
and h— p adaptivity. Since the elements only communicate with their immediate neigh-
bour, the resulting matrices are easily parallelized ([Remacle et al., 2003]). This class
of methods has been introduced in [Reed and Hill, 1973] for time independent linear
hyperbolic equations. It has then been developed for non-linear time dependent prob-
lems in [Cockburn and Shu, 1991, Cockburn and Shu, 1989, Cockburn et al., 1989, Cock-
burn et al., 1990, Cockburn and Shu, 1998]. More details and recent works can be found
in [Cockburn et al., 2011].

A major inconvenience of Discontinuous Galerkin is that due to the discontinuity be-
tween elements, for the same vertex in the mesh, we have different degrees of freedom
in each cell touching this vertex. This leads to a higher number of degrees of free-
dom than in the CG methods, and so a much higher computational cost for the same
number of elements. We will see in the next chapter a method to reduce this cost.



Chapter 2

Hybrid Discontinuous Galerkin

The discontinuous Galerkin (DG) finite element methods are attractive for many scien-
tists due to inherent advantages. Indeed DG methods can handle any type of mesh, are
well suited for hp-adaptivity [Berger and Colella, 1989, Bey et al., 1996], allow bound-
ary conditions to be simply imposed and are easy to parallelize [Baggag et al., 1999].
But the considerable increase in number of degrees of freedom needed by these meth-
ods makes its computational cost very high in comparison to the continuous Galerkin
methods (see Table 2.3 and 2.4 for comparison). The introduction of DG methods ca-
pable of taking advantages of the optimization technique called static condensation in
[Cockburn et al., 2009b] offers a solution to this issue.

In problems involving a primal and a flux variable, such as potential and gradient or
curl, HDG methods reduce the number of degrees of freedom by introducing a new
variable, which is the numerical trace of the primal variable. Thanks to static conden-
sation, the primal and flux variable can be expressed in terms of this variable. This
allows to compute the trace by solving a global problem but only on the face of the
elements. Then the primal and flux variables are recovered by solving local problems
on each element. Since the trace is defined only on the element boundaries, the com-
putational cost of the global problem is low in comparison to other DG methods.

In addition, for certain types of problems, such as convection-diffusion problems, the
HDG methods have optimal convergence for the approximation of the flux. Local post
processing can also be performed at the element level to achieve an even better con-
vergence of the solution or obtain a new approximation with conservative properties
with the flux in Hg, [Cockburn et al., 2009¢]. Since we use discontinuous approxima-
tion, this method is also well suited for mortaring techniques [Barrenechea et al., 2018].
Because the many local problems to solve are defined only by elements, those methods
remain highly parallelizable.

Hybrid mixed methods aim at solving a problem by splitting it in many local prob-
lems, one for each element of the mesh ,,, with transmission conditions between them
determined by solving a single global problem. To obtain a hybrid mixed method, we
need to write the problem as a system of first order equations in terms of discontin-
uous approximations for both the flux variable, the primal variable and their trace.
Hybrid Discontinuous Galerkin methods have been developed for Stokes and Navier-

13
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Stokes flow [Nguyen et al., 2010, Nguyen et al., 2011], linear and non-linear elasticity
[Kabaria et al., 2014, Qiu et al., 2013] and more recently for Maxwell equations [Lu
et al., 2015, Chen et al., 2017]. Those equations can be used to describe the physics of
the cooling, deformation, and magnetic forces of the magnet. The formulation for sec-
ond order elliptic problems, developed by [Cockburn et al., 2009b] is suitable for both
the electric and thermic problems. It will be described in the following section, with
the addition of the Integral Boundary Condition. We developed a method to deal with
this type of boundary conditions, described in [Guidoboni et al., 2020], that allows us
to be as close as possible from the modeling view point of the experimental procedure
at the LNCMI, see chapter 4.

The static condensation, a method to reduce the cost of solving such discontinuous
problems, will be detailed in section 2.2. Finally, we will present the performances of
this method compared to a classic Continuous Galerkin formulation in section 2.3.
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2.1 Integral Boundary Condition

Complex systems, such as the one modeling the thermoelectric problem at the LNCMI,
give rise to physical properties that do not fall into standard boundary conditions like
Dirichlet, Neumann or Robin. The Integral Boundary Condition (IBC) can help model
a problem where we cannot impose directly the value of a field p or of its normal flux
Vp - n on a surface. Instead, we want the field p to be constant on the surface with
an unknown value and we want the integral over the surface of the normal flux to be
equal to a given value. It is especially helpful when it is not possible to experimentally
access the pointwise value of p on a surface but the global flux across this surface is a
given design target.

An Integral Boundary Condition (IBC) on I'; is a condition of the type:

f u-n = g; and p is an unknown constant on I'; such that [I';|p — f p=0
Iy Iy

We will describe the method to deal with such condition in a mixed poisson problem.
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We want to find p such that:
-V-(«Vp)=f (2.1)
In order to use HDG, we first need to write this equation as a system of first order

equations involving the primal variable p and its flux u:
Find u, p, such that:

u+xkVp=0inQ (2.2a)
Vou=finQ (2.2b)

With Dirichlet, Neumann and IBC conditions on I'p, 'y and I'; respectively:

P =gp onlp (2.2¢)
u-n=gy only (2.2d)
f u-n=g on I} (2.2e)
I
ITslp — f p=0 onT; (2.2f)
I

where 0Q =T =T, U’y UT,.

We will describe the variational formulation of the problem, but we first need to
introduce a fixed function ¢ € H'*(T) verifying

@r, = &gp,» and @y, = 1
and the space Hy\*('y) defined as
HY*(Ty) = {p e H/*M) | ¢ =0on T, UT})

as well as
M =span < ¢ > @Hééz(I“N)

Then we look for u € Hy,(Q), p € L*(Q), and p € M such that for all v € Hg, (Q),
g € L*(Q) and u € M we have

', V)o— (P, V-V)o +(p,v-n)r =0 (2.3a)
(V -u, q)Q = (f’ q)Q (23b)
(u-n, @y = (g, ry + &l u, D, (2.3c)

In order to prove that problem 2.3 admits a unique solution, we start by observing that
since the normal trace operator from Hg,, (Q) to H'/*(I') admits a bounded right inverse,
the following inf-sup condition holds:

. <u -1, ¢>1‘
inf sup >
$M yerg (@) 1l g, ) ||¢||H1/z(r)

(2.4)

We will first prove the following lemma:
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Lemma 1. Setting
Z ={u € Hyy(Q) [(a-n,¢)r =0 V¢ € M)

an inf-sup condition of the form

(p’V : u)Q

pel2@ ez lIPlloq allgy, @)

>1 (2.5)
holds.

Proof. In order to prove the Lemma, for any given p € L*(Q) we need to find u € Z such
that

(P, V-wa 2 Iplloq Iz,

Let then p € L*(Q) be given and let § € L*(I') be some function satisfying fr[ g = fg p
and g =0on '\ I;. Letting ¢ € H'(Q) be the zero mean solution of

V-kVp=pinQ, «V¢-n=gonT,

it is not difficult to verify that u = —«V¢, belongs to Z. Moreover

(p,V-u)g = f IpI®
Q

The inf-sup bound 2.5 follows by observing that

allgy @ S 18llo S IPlg@y + 18llmecy < lPllog

Thanks to 2.4 and 2.5, we can now prove the following theorem

Theorem 1. For f € L*(Q), gy € L*(Ty), the problem 2.3 admits a unique solution (u, p, p)
satisfying
-V-«kVp=finQ,, p=0onTp, —-«kVp-n=gyonly, (2.6)

as well as the integral boundary condition

IT7lp — f p=0onT; (2.7)
I

Moreover, if gy satisfies suitable compatibility conditions, the non standard boundary condition

I;

is satisfied.
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Proof. In view of [Nicolaides, 1982], the two inf-sup conditions (2.4) and (2.5), together
with the continuity of bilinear forms on the left-hand side of (2.3) and of the linear
operators on the right-hand side of (2.3), imply existence, uniqueness and stability of
the solution. By standard arguments it is then not difficult to verify that (2.6) holds
and that p = p on I';,. Condition (2.7) will be encoded directly in the choice of the
discretization space. We then only need to prove that (2.8) holds. In order to do so, we
need to give a rigorous meaning to the left-hand side of such an equality. We start by
observing that p solves the equation (2.6) with additional boundary condition p = p
onI’. This is a standard mixed Dirichlet-Neumann boundary condition, and we know
(see e.g. [Grisvard, 1985]) that its solution verifies p € W'¥(Q) for some s > 2. This, in
turn, implies thatu-n = —«Vp-n € W;,” 2 with s’ < 2. Since the function birc is identically
equal to one on I'; and to zeroon I' \ I';:

- 1 onIy
¢ibc =
0 onI'\Iy

verifies ¢, € W!/%¥, it makes sense to write the integral of the right-hand side of (2.8).
Remark that ¢ ¢ H'*(I), so that we would not be able to give a sense to such an
integral if we only knew that u € Hy, (Q). Let now ¢o = ¢ — ¢y.. We have

fwn:f(u-n)éibﬁf(u-n)é—(u-n)éﬁﬁfgzv<?>+g1—f(u'n)<5o=g1
Iy I I I'y r

where the last equation comes from the observation that supp(¢o) = 'y and that ¢y = ¢
on its support. m]

2.1.1 Notations

Let ©;, be the mesh approximating Q. It is a set of elements K. We define an interior
face as F' = 0K* N 0K~ for K™ and K~ two adjacent elements. A boundary face is a face
as F = K NT. The set of interior and boundary faces are noted respectively &) and &7
The set of all faces is the union of those two sets, and is noted &,. We will also need the
set&) =&\ T

We introduce the following spaces:

Vh ={v:Q, > RYvg e V(K) VK € Q) (2.9a)
={w:Q, > R|lwg € WNK) VK €Q,), (2.9b)
={u:& — Rlyr e MN(F) VF € &)}, (2.9¢)

Ch ={me C'(T'))|mr € P°(F) VF eI} (2.9d)

Setting the trace @ of u and defining the local spaces V¥(K), W*(K) and M*(F) determines
the kind of hybrid method which is used. In the following, we will use:

e Fork > 0:

VHK) = [PHK)Y, WHK) = PXK) (2.10)
M(F) = {u € L*(&) |wr € P(F) VF € &) (2.11)
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e For each K € Q),, the numerical normal flux:
ﬁh ‘n=u,-n+ TK(ph - ﬁh - /1},) on 0K (212)

where p;, € M,’i is the trace of p, on all the faces except on I';, where the trace of p,
is represented by A, € Cj,.

Remark 3. The numerical normal flux (2.12) is characteristic of a particular class of HDG
methods, the so-called Local Discontinuous Galerkin Hybridizable (LDG-H) methods
proposed and investigated in a series of seminal papers [Cockburn et al., 2008, Cock-
burn et al., 2009b, Cockburn et al., 2009¢c, Cockburn et al., 2009a] The quantity 7 is
a nonnegative stabilization parameter which can have different values on each face
F € 0K depending on the mesh element K.

We define also the jump of the normal component of a vectorial discontinuous func-
tion v by:
[[V]lF = Vk+ - g+ + Vg- - Dk~

where ng is the unit outward normal of K.

2.1.2 Formulation

In [Arnold and Brezzi, 1985], it was proven that p, can be viewed as a Lagrange
multiplier enforcing the continuity condition across each face. In the same way, 4, is a
Lagrange multiplier enforcing the integral boundary condition.

This gives us the following variational formulation:
Find (up, py, Pr. A) € Vi X WE x M§ x Cj, such that:

(K" vida = (P, V - Vida+{Pns Vi - g + (Ap, Vi - M, = 0 (2.13a)

(V- ah, gn)a + Tk P qnde, —TkPn qnlel = (An> Txqnir, = (f, gn)a (2.13b)

W - 0, () gp + STk Pis i)g) =Tk Pis> M) =0 (2.13¢)
(Pn> )Ty, = (&ps Hn)ry, (2.13d)

(p, -, wy)ry + Tk Phs )ty =Tk Phs )Ty = (8N Hn)ry (2.13e)
(uy, - m, mp)r, + (T Pr> M), — (i), = gl (L myr, (2.13f)

for all (Vh, qh,,uh,mh) € V];l X W;: X M]Z X Cy,.

Remark 1. The boundary condition (2.2c) is enforced directly in the definition of the
trial space M.

Theorem 2 (Existence and uniqueness of the discrete solution). The discrete problem
(2.12), (2.13) has a unique solution.

Proof. Proposition 3.1 of [Cockburn, 2010] holds unchanged. Indeed by testing the
discrete equations with (vy, gs, n, my) = (W, pp, —pi, —A;) and integrating by parts, also
in our case we obtain the discrete energy equation

(< wy, w)a + kPR = Pr = Ao Pn — Pn — Ande, = (f» Pa
—(gn> Pudry, — &7, A,



2.2. STATIC CONDENSATION 19

Now, to prove uniqueness (which, in the discrete setting, implies existence thanks to
the finite dimensionality of the discrete spaces) we need to prove that vanishing data
yield the null solution. Let then f = 0, gy = 0 and g; = 0. The discrete energy equation
then imply u, = 0 and p; = p, on 9K for all K. Testing equation (2.13a) with ¥f = Vpf €
VX¥(K) we obtain that VpK is a constant for all K. Then p, is a constant itself, which is
necessarily 0, due to the Dirichlet boundary condition. o

2.1.3 Post-Processing

Under the assumptions that the exact solution is smooth enough, and the stabiliza-
tion function 7 is of order one, this method gives an order of convergence of k + 1 for
both the potential and the flux when the polynomial order used is .

Here, we will show the post processing technique presented in [Cockburn et al.,
2012] aiming to obtain a better approximation of the potential p;, which converges one
order higher than pj in L?. If the potential p, € W}, we want to find p; € W;*! such that
forall K € Q:

(VPi Vanx = —=("'w, Vg Vg, € Wit (2.14a)
(P> Dk = (P, Dk (2.14b)

The equation (2.14b) constrains p; to have the same mean value than p,,.

2.2 Static condensation

Problem 2.13 is a monolithic problem, where all variables are solved at once. Since
the flux, primal and trace variables are discontinuous the number of dof is very large.
The idea of the static condensation is to first solve a global problem on the faces of the
mesh corresponding to the transmission conditions between elements and the bound-
ary conditions. This allows to compute p on the faces. Then we compute (u, p) by
solving local problems on each cell K € €.

The formulation for both these problems can be obtained from the formulation (2.13).
We first need to define the following local matrices:

Ady = (ku, V)i Al ==,V vk FK = (g v
Afy = (V- u,q) AL = (tp, @)sx Ff = (f, 9«

° Ime(F]UFD):QI
K _ K _ K _ A
Ay =(u-n, wsx Ay = (TP, Wk A% = —(TP, ok
[ If K N FI = 0:

Ay = =(p,m - m)a

A{(z = _<Tﬁ7 Q>6K
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e IfKNTp +0:
Aé(z = <ﬁ9/’t>ﬁK Fé( = <gD,,U>K
e If KN FN # 0:
FX = (gn. W«
e IfKnN F[ # 0:
K K K 1
Aos = (A, V- Mgk A13 = —(1, 7q)sk F3 = ﬁ<gl,m>6k
1
A% = (u-n,mgg A% = (tp,max AE = —(A, mygk

If p and A are known, then (u, p) can be uniquely determined by:

A(I)(O A(I)(l Ug _ F(I){ _ A(I)(z A(I)g ﬁﬁK
AR AR [ \pe) T \FK) T\AK AR )\ Aok
———— e~ —_—— — —
AK Uk FK BK TK
or:
UK = (A5 TFK — (A% ' BETX (2.15)

The trace can be writtenas@i-n=u-n+ 7p — 7p — 74, and the form associated with it:
(w-n+7p, sk — (TP, wox if K ¢ I

e MMOK) .
W-n+71p, Wox — (TA, msx if K € T;

whose matrix representation is:

Ago Agl Ug + A§2 0 1361(
A?O A§1 Pk 0 A§3 /laK

—_— ——— — ———
CckK Uk EXK TX

or using 2.15:
CKUK + EKTK — CK(AK)—IFK _ CK(AK)—IBKTK + EKTK
= CKAKYTFE — (XX 'BX + EXYTX (2.16)
DK DK

f

Assembling the local matrices D¥, Df + FX + FX, T¥ into respectively H, F and T, we
have a global problem to solve:
HT = F (2.17)

Thus, we first resolve the global problem (2.17) to find the traces (p, 1) and then,
using them in the right-hand side of the local problems (2.15), we can retrieve (u, p).
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2.3 Performances

2.3.1 IBC and partitioning

In parallel, a special care has to be taken for the partitioning of the mesh when us-
ing integral boundary conditions. Indeed, in absence of integral boundary conditions,
each element K € Q, has degrees of freedom inside it, and on each face 7, but not on
its vertices. Therefore, two elements K; and K, share their degrees of freedom only if
they share a face. In CG method, the nodal continuity at vertices connects the degrees
of freedom of an element to an unknown number of elements’ degrees of freedom, de-
pending on the size of the mesh.
In the case of integral boundary conditions, the connectivity is different. All the faces
F € ¥, share a single common degree of freedom through A. Thus, all the degrees of
freedom of all the elements K having at least one face on I'; are coupled. In parallel,
we need to ensure that all the elements sharing a face with I'; are on the same pro-
cessor, otherwise the communications become the bottleneck of the computation. We
impose to the partitioner that each IBC face is a neighbor of all the other IBC faces. The
standard partitioning, where we do not ensure that all the elements are on the same
processor and the special partitioning for 16 processors are presented in figure 2.1. The
difference of computational time between the standard and the special partitioning is
detailed in table 2.1.

(a) Standard (b) Special

Figure 2.1 — Standard and special partitioning on 16 procs with IBC condition in front

Partitioning np=2 np=4 np=8 np=16
Standard 1132.78 412.666 17147.3 21778.5
Special 1145.71 424.482 354.697 31.272
Speed-up  0.99 0.97 48.44  674.84

Table 2.1 — Time to solve a problem with 30¢® dofs using standard and special parti-
tionning for different number of processors

We can see that without the special partitioning, the advantages of parallel comput-
ing is totally lost, more processors leads to worst performances. Whereas with special
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partitioning, for 2 or 4 processors we have the same performances than with the stan-
dard partitioning, this is expected since the IBC surface is not partitioned for so few
processors. But with 8 or 16 processors, the speed-up is important, the special parti-
tioning is 674 times faster than the standard one with 16 processors.

It is absolutely necessary to use this partitioning when dealing with integral boundary
condition in parallel.

2.3.2 Conservation of the current density

An important feature of the HDG method is that we impose the conservativity of
the traces between elements [Arnold et al., 2002]. In the case of an electric problem,
this leads to have much better conservation of the current density j, and so we really
comply with the condition V-j = 0. To verify this property, we computed the difference
of input current and output current in a magnet, using a Newton method for the non-
linearity in CG on a fine mesh (22M elements, 4.3 X 10° dofs), a Picard method in CG
on a coarse mesh (3.3M elements, 10° dofs) and a Picard method in HDG on the coarse
mesh ((39 + 13 +22) x 10° dofs). If the HDG method takes more time to solve (5252s on
32 procs) than with the CG method (944s for the fine mesh, 284s for the coarse mesh, on
32 procs), we can see in table 2.2 that the difference between the input current and the
output current is practically 0 with the HDG method, whereas with the CG method,
both with the fine and coarse mesh, the difference is much larger (= 30).

Method | Mesh | Inputj | Outputj | Difference
CG Newton | fine | 30982.94 | -31013.84 30.9
CG Picard | coarse | 30991.47 | -31021.05 29.58
HDG Picard | coarse | 30898.33 | -30898.35 0.02

Table 2.2 — Difference on the current between inlet and outlet

This property is very important both from a physical point of view, for the engineers
of the LNCM]I, and from a computational point of view, when using the current density
as right-hand side in the magnetostatic problem, having V - j = 0 is crucial for the
convergence of the methods.

2.3.3 Computational cost

Even if the total number of degrees of freedom is greater than in the CG formulation,

the use of the static condensation allows to reduce drastically the cost of the HDG
method. A comparative study between CG and HDG methods can be found in [Kirby
etal., 2012].
In table 2.3 is presented reference error for the potential (e,) or the flux (e,), number
of dof (# Dof) and time of resolution (for the creation of the matrix, the vector, the
resolution and the total) for a 2D Continuous Galerkin problem of polynomial order
1. In table 2.4 is presented the corresponding results in HDG to match each reference
error (including the post processed error for the potential e)-), number of dof or time
of resolution of table 2.3 for the same problem and the same polynomial order.

All the computations done in this part have been done on one of the five nodes of
ATLAS, the computing resource cluster at Cemosis and IRMA laboratory. The node
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used has 24 cores on 2 sockets (Intel Xeon E5-2680 v3 2.50GHz ) hyperthreaded with
256 GB of RAM. Everything is interconnected with both 10Gb Ethernet cards and 40Gb
Infini-band cards. The workload manager is slurm. For both CG and HDG, the Geo-
metric Algebraic MultiGrid (GAMG) preconditioner [Amestoy et al., 2000] is used.

h  #Dof e, e, N matrix vector solve total
5o 1165 6267 1.de-3 112 051s 217s 1.72s 4.4s

Table 2.3 — Reference for a 2D CG problem with polynomial order 1

h  #Dof ¢, ey e, N matrix vector solve post total
2502 1165 10e-5 788 4205 112 0.04s 097s 092s 0.3s 2.23s
60> 1865 587 1.0e° 0.de6 112 0.75s 17.13s 27.5s 6.8s 52.2s
5o 2764 3905 4.9e7 7o~ 112 0.02s 0.34s 0.22s 0.09s 0.67s
1501 3263 3404 1205 14e3 112 0.02s 0.17s 0.04s 0.03s 0.26s

Table 2.4 — Corresponding values to CG problem in bold for a 2D HDG problem with
polynomial order 1

We can see in the previous tables that with the same number of dofs, the HDG
method is slower than the CG method. Also for the same error for the potential, HDG
is much slower than CG, but the error on the flux is much lower. But if we post process
the potential, then for the same error as the potential in the CG method, HDG becomes
faster than CG, and the error on the flux is lower. If we are only interested in the er-
ror on the flux, then we can see that for the same error, HDG is also faster than CG
although the error on the potential is greater in this case.

2.4 Conclusion

In this chapter, we have described the use of the Integral Boundary Condition (IBC)
in the case of a mixed Poisson problem and proved that the resulting problem is well-
posed. We have also described a way to use static condensation when dealing with
this type of condition to efficiently solve the problem. Finally, we detailed three points
showing the performances of the method, first in parallel when using IBC with the
special partitioning, then with respect to the conservation of the flux, and we compared
the computational cost of the HDG method with the CG method at comparable errors.
We found that for similar cost, we are able to reach better errors and physical properties
with HDG than with CG. Even if the HDG method is competitive compared to CG we



24 CHAPTER 2. HYBRID DISCONTINUOUS GALERKIN

want to achieve real-time computations and for this we need another method to solve
our problems.



Chapter 3

Model Order Reduction

The finite element method presented in the previous chapter is widely used in both
industrial and academic context for its robustness and precision and the fact that it
builds on a powerful mathematical framework. But a small change of a parameter
in the equations requests to do all the resolution again, leading to a high computa-
tional cost when we need to solve the problem for numerous parameters. This can be
the case when trying to do uncertainty quantification, optimize part of the problem, a
component or an experimental setup for example, control the state of an experiment,
or simply explore the solutions set. This is called many-query methods, and even with
the ever growing power of super computers, the cost can be too high to use the high
fidelity resolution.

To lower the computational complexity of such problems, the methods of Model
Order Reduction (MOR) are used. One possible way of reducing the order of a model
is to simplify the physics involved in the problem, but the accuracy of our solution
decreases accordingly. Other methods can be used where the model equations are pro-
jected on a space with a reduced dimensionality than the full order space. Such meth-
ods are for example the proper generalized decomposition [Chinesta et al., 2011], the
proper orthogonal decomposition [Kerschen et al., 2005] or the reduced basis method.
We will focus on the latter.

The work on the reduced basis method started for non-linear problems with [Noor,
1981]. It has then been extended to other types of problems such as incompressible
flows or multi-parameter problems [Balmes, 1996], [Fink and Rheinboldt, 1983], [Pe-
terson, 1989], [Rheinboldt, 1992]. The method was improved by the use of efficient
errors estimators, leading to the Certified Reduced Basis Method, see [Prud'Homme
et al., 2001], [Veroy et al., 2003], [Prud’homme and Patera, 2004], [Quarteroni et al.,
2011], [Rozza et al., 2007] or [Patera and Rozza, 2007]. The estimated error between the
full-order model and the reduced one is computed on a quantity of interest, the output
of the model, with an offline/online strategy. This allows to explore the parametric
domain and optimally build the reduced basis.

The first section of this chapter will describe the notations and the greedy algorithm
to select the basis vectors. In the second section, we will detail the operator approxi-

25
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mations used, the Empirical Interpolation Method (EIM) [Barrault et al., 2004], [Grepl,
Martin A. et al., 2007], [Maday et al., 2008], its discrete version, [Chaturantabut and
Sorensen, 2010], an algorithm to accelerate the method, [Daversin, C. et al., 2013], used
in case of non-linear problems and the Empirical Quadrature Method (EQM).

Contents
3.1 ReducedBasisMethod . ............... ... ........ 26
3.1.1 Reduced basis space generation . . ................ 27
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3.22 EIM for Discrete Operators . . . . ... ... ........... 37
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3.1 Reduced Basis Method

We seek to solve a parametric problem:

Problem 1. Find u(u) € V such that:

a(u(p),vip) = fv;p) Yvev

and evaluate

s = Uup); p)
u(p) is known as the exact solution. It belongs to the solution manifold:
M = {u(u) | p € P and u(u) solution of Problem 1} c V

1= (..., 1, belongs to the space P c R”.

We want to approximate this solution numerically, thus we use a space V), of dimen-
sion N, and of basis {go,-}f\i”l.
This approximation of high accuracy is obtained by solving the “truth” problem:

Problem 2. Find u;,(u) € V,, such that:

a(up(p), vis i) = fps ) Vv €V,

The solutions u,(u) belong to the discrete version of the solution manifold:

M, = {up(u) | € P and u,(u) solution of Problem 2} c V,
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But the cost of solving Problem 2 depends on N, and thus can be very large. The
idea of the reduced basis method is that for many problems we can approximate M,
with a few basis functions with a small error. This basis {f,-}fi , is the reduced basis
which spans the subspace V,, of V,,, of dimension N < N;,.

The reduced problem reads as:

Problem 3. Find u,,(u) € V,;, such that:

a(urb(ﬂ)v Vrb;ﬂ) = f(vrb;ﬂ) erb € Vrb

The quality of the space V,;, of dimension N, is determined by

d(My, Vi) = sup inf |l — villy

upeM, Vb€V

and the best possible error of approximation within the spaces of dimension N is the
Kolmogorov N-width [Kolmogoroff, 1936]:

inf d(M,. V). (3.1)

The idea is to build V,;, such that d(M,, V,;,) decreases rapidly when N increases or
at least such that d(M,, V,,) is close to the Kolmogorov N-width.

3.1.1 Reduced basis space generation
Let introduce the discrete set of parameters P, ¢ P and the associated manifold of
cardinality M = |Py[:

M,(Py) = {up(u) | 1 € Py, and uy,(u) solution of Problem 2} Cc V,

We consider the case where a is continuous coercive and symmetric. We introduce
a scalar product and the norm associated with the bilinear form:

(u, V) = a(u, v; ) el = +/(ut, ),

In the following, we will use a reference parameter j for the scalar product (-,-); and
the norm || - ||;.

In the next sections, we will present the two most common method to generate the
reduced basis.

3.1.1.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is probably the best known method for
model order reduction, it has been introduced by Noor in [Noor, 1981], and then stud-
ied by other researchers [Fink and Rheinboldt, 1983, Peterson, 1989, Porsching and Lee,
1987]. We will show briefly how it works.

We denote v, = u;(u,,) for m = 1, ..., M and create the correlation matrix C € RM*M;

1
Cg = M(lﬂm,%)v, l<mqg<M
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Then, we solve the following eigen problem for the N eigenmodes (4,,v,) with the
largest eigenvalues and |[v,||2gm) = 1

Cv,=A4,v,, 1<n<<M

We can now define the reduced basis {£,}. With 4| > --- > Ay, we have:

&(x) = \/_ Z(vn)mwm(x) 1<n<N

The space Vpop spanned by {£,} is the N dimensional space that minimizes the quantity:

\/ Z Jnf () = visly

over all N-dimensional subspaces V,,.
If Py is the projection from V onto Vpop, then we have the following error estimate:

1 M M
JMZHW—PN(Wv: J D A

m=1 m=N+1

But in practice, determining P, to have a good approximation is difficult and thus, we
often need to have M > N, which makes the construction of the matrix C and the
resolution of the eigen problem very expensive (it scales like O(NN?)).

3.1.1.2 Greedy algorithm

Here, we will explain the greedy algorithm, see [DeVore et al., 2012] for more details.
We introduce an error bound 7(u) such that:

lln(e) = un(lla < n(p), Y eP
We will develop how to define such estimator in section 3.1.3.

The greedy algorithm is an iterative procedure where at each step, we expand the
reduced basis with u,(u) corresponding to the parameter u that maximizes the error

n(w).

We first set n = 1, choose p; randomly in P, and set a tolerance tol, such that when
n(u) < tol, the process is over.

1. We compute uy(u,) and set V,;, = span{u,(u;), . . ., up(i,)}
2. Foreach u € P,

(a) We compute u,,(u) € Vy

(b) We evaluate n(u)

3. We choose u,,| = arg max n(u)
[lGPh
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4. If n(pysr) > tol setn = n+ 1 and go back to 1.
Else terminate.

The advantages over the POD are that for a N-dimensional space, we only need N
truth approximations, and the evaluations of u,,(4) and 7(u) are inexpensive. Addi-
tionally, since the basis at each step are hierarchical, if one want to improve the quality
of the space V,;,, one needs only to do n additional steps.

If we assume that the bilinear form a is coercive and continuous for every u € P, that
is there exists a positive constant a(u) > @ > 0 and a finite constant y(u) < y < 0 such
that

a,v;p) 2 aIMly, and  a(w,v; ) < y@lwlivivily
and that the solution manifold M has en exponentially small Kolmogorov N-width

dy(M) < ce™™, a > log(1 + \/g), then it has been proven [Buffa, Annalisa et al., 2012],

that the reduced basis approximation converges exponentially fast in the sense that
there exists 8 > 0 such that

VueP, lunp) — up@lly < Ce™

Remark 4. We shall note that the vectors {u,(u,),...,u,(uy)} may be linearly depen-
dent, so we need to orthogonalize it using for example the Gram-Schmidt algorithm

to obtain the basis {£i, ..., &y}, It is necessary to have a reasonable condition number,

(D)
bounded by Z%.

3.1.2 Affine decomposition

Let’s have a look at the different issues from an algebraic point of view. We recall
that the basis of V, is {¢1,...,¢y,} and the reduced basis is {¢},...,&y}. Then we can
write iy = XV ul'y, & = TV Enpy and iy = T il £,

The truth problem is then
AU = F

with A} € RM"*Ni 1" and F/ belonging to R, such that

(A = algi i), (Ui =,  (F))i = f(@ip)

We introduce the matrices B € R"", A% € R"" and the vector F%, € R" such that

(B)in = &ins (Al;,tb)mn = a(&m, &ns W), (Ffb)n = [ )

The matrix A*, can be computed as B" A B, and the vector F*, as B" F}.
Then the reduced problem could be solved by:

H it _ M
Arb Urb - Frb

N _ M
where (U,), = Unppy -

The problem is that to compute A%, we need to assemble the truth matrix A%. But this
matrix depends on N, and thus, the resolution of the reduced problem would also
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depend on it, diminishing its performances. The idea is then to split the computations
using an offline/online strategy, where all the heavy computations are done during the
offline phase, and during the online phase, only the assembly of the matrix and vector
and the resolution are done.

Now, let’s assume that we can decompose the forms a(-, -; ), f(-; ), I(-; p) such that:

Qu
a(w,v;p) = Z (wa,w,v), a;:VyxV,->R,01:P >R, Yg=1,...,0, (3.2)
g=1

Qs

foim =) G £,0), fiiVioREGPSR, Vg=1,....0; (33
q=1
Y]

I(v; ) = Z 67 ()l (v) l:Vi-oR 6 :P>R,  VYg=1,...,0 (34

g=1

We can introduce the matrices A?, € RV for 1 < ¢ < Q,, and the vectors F?, € RY
for 1 < g < Qy such that:

(Agb)mn = aq(fm» &) (ng)n = fq(fn)

or
a9 _ pT A4 q _ pTra
A,=BAB F,=BF,

Now, we have that:
Qu

9r
Al = 3 OIG0AL,  F = dGFY, (3.5)
q=1 g=1

where all the matrices A?, and the vectors F?, can be pre-computed during the offline
phase, where the complexity depends on the dimension of the finite element space. In
doing so, the assembly of the matrix A’r' , does not depend on N, and so can be done
during the online phase, such that the complexity depends solely on N, Q, and Q.

3.1.3 Certified Error Bound

In this section we will detail the definition of n(1) needed in the greedy algorithm
for the reduced bases generation (see section 3.1.1.2). The efficient computation of such
a bound for coercive problems is detailed in [Ngoc Cuong et al., 2005] [Prud’'Homme
et al., 2001]. An error bound should be accurate enough to be valid for all N and for
all parameter values in P and to allow the minimal number of basis to achieve the
precision wanted. Since we need to compute 7(u) for all u € P, and we may have to
compute it during the online phase, it needs to be fast to compute.

3.1.3.1 Estimators and efficiency

Key ingredients of the certified error bound are the error estimators and their effi-
ciency. We will show how to compute them, interested readers can found more details
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in [Hesthaven et al., 2015]. We first need to define the discrete coercivity and continuity
constants of the bilinear form a:

. aVy, Vi,
a'h(ll) — lnf ( hs /127”)
vh€Vn ||Vh||V

Since V), is included in V, we have a(u) < a,(u) and y,(u) < y(u).

We will use su(u) = I(up(u); ), (@) = l(up(p); p) and the error e(u) = up(p) — up,(p2)
and the equation linking it to the residual:

ale(u),vi; i) = r(vis ) Vv, €V, (3.7)

where r(-; ) is the residual living in the dual space of V. Since r(-; u) € V;, we introduce
its Riesz representation 7,(u) € V), such that:

(Pr), vi)y = r(vis ), Vv, €V, (3.8)

alwy, Vi,
, and y,(u) = sup sup AW, Vi i)
wreVy vpeVy, ||W/’l||V||v/‘l||V

(3.6)

We recall that

Il = G oy, = sup "k (3.9)

VhEV), ”vh”V

We will assume that we have a lower bound for «,(u) that we will note a;z(u). This
lower bound will be detailed in 3.1.3.3.

Then we can define the error estimators for the energy norm, the output and the
relative output:

Pl
en = . 3.10
Nen(1) T (3.10)
A 2
7. = ”;’;(:(2'; = Nenl(p)’. (3.11)
A 2
poy = P 612

QLB(”)Srb(I'[) - Srb(/'l)
By remarking that

ars@llelly < ale(u), e); ) = lle@ll; < IPGlIvIeG)lly

we have that those estimators are rigorous upper bounds for the following errors

lleen () — s (Ol < Men(p), (3.13)
Sh(”) - Srb(ll) < ns(ll)a (314)
sp() — spp(p0)

T < nyre 3.15
1) M, ret(1) (3.15)
To control the quality of the estimators, we introduce the effictivity index associated:
Men(H)
fEen(p) = , 3.16
S EE ) = 0 — watwl, (316
1s()
ff(u) = ————, 3.17
SR S — sa 47
effs,rel(ﬂ) — ns,rel(ﬂ)sh(ﬂ) (318)

sp(p) — s.,(p)
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The efficiency of the estimators have to be > 1 for the error bound to be correct, but
to ensure a dimension of the basis as small as possible and avoid unnecessary basis
vector, we want it to be as close to 1 as possible. If we assume that the problem is
coercive and compliant, that is / = f and a is symmetric for all parameters, we have:

Yr(p)
eff.(u) < 15 @)’ (3.19)
Yr(p)
S —_ b .2
effy(u) < P (3.20)
O Eapa(pt) < (1 + 7gy) L. (3.21)
CYLB(#)

Some other estimators that could be useful to define are the ones using the V-norm:

17l

nv(p) = , [z (pt) — (Ml < 1y (1), (3.22)

a’LB(ﬂ)

2/|7)lly lleen () — e, ()lly
re = > = re 3.23
) = s Gy ol ST 32)
The associated effectivity indices are
nv(u) Z10)

= , < , 3.24
SEEVUD = 10 — ws Gy SEEVU < (3.24)
effv’rel([l) — nV,rel(ﬂ)”uh(ﬂ)”V effv,rel(ﬂ) <3 ’}/h(l'l) (325)

loer, () — urb(ﬂ)”V’ arp(u)

As stated in section 3.1.3, we need to compute those estimators in the offline phase
for all u € Py, and also in the online phase. Thus, the computation need to be efficient.
All estimators rely on ||7,(u)lly and @ z(u). We will use the reduced basis to compute
those two quantities efficiently.

3.1.3.2 Riesz representation

In this section, we will explain how to compute [[7,(u)lly effectively, that is, using the
reduced basis, more details can found in [Hesthaven et al., 2015].

First, we need to decompose r(v;; ) by using the affine decomposition:

9r Q. N
i) = ) O f,m) = D 0y, a,En vi)
q=1 g=1 n=1

We introduce the vector r(u) € R with Q, = Oy + NQ,:

() = (030 0% G~ 6L, ... =) 62 ) (3.26)

and the vector of linear forms R € (V;l)Qr:

R = (fla cee anfaal(‘fl’ ')’ oo ,al(§N7 ')’ e ’aQa(é:l’ ')’ R ’aQa(é‘:N’ ))T (327)
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Combining (3.26) and (3.27), we have:

0
P, vy = 1 ) = ) 1R, () Vv € Vy
g=1

By noting 7/ the Riesz representation of R, € V; for 1 < ¢ < Q,, we have:

O O

) = ) rg)#, GOl = D rr @, i)y (3.28)

g=1 P.g=1

By reusing the notation from the section 3.1.2, with the additional matrices M, A] €
RY>Ni for 1 < g < Q,, and the vectors F; € RM for 1 < ¢ < Qy, such that:

(Mp)ij = (@in@))v,  (ADij = ag(@in@),  (FDi = fy(en)
we can rewrite (3.28) as

Q' a
H=(F),....,F AlB,...,A%B)" (3.29)
G =H"M,'H e RO

1Pl = r)" Gr(p) (3.30)

3.1.3.3 Stability constant

There exists several ways to compute efficiently the stability constant a;z(i). The two
first, Min-6 and multi parameter Min-6 [Machiels et al., 2000], [ Veroy, Karen et al., 2002],
[Patera and Rozza, 2007] are restricted to a parametrically coercive problems. The last,
the successive constraint method (SCM) [Huynh et al., 2007], [Vallaghé et al., 2011], is
more general and more precise but more complex.

First we need to recall that computing the coercivity constant

. a\Vy, Vp,
a’h([l) — inf ( hs hzal‘l)
W Il

is the same than finding the smallest eigenvalue of the following problem:

Problem 4. Find (1, w,) € R* x V), such that

a(Wpy, vis ) = Awp, vy Vv, €V,

Min-6 approach

The Min-0 and the multi parameter Min-6 methods are restricted to the problems that
are parametrically coercive:

e Oi(u)>0,YueP, g=1,...,0,

e a,(-,-): V4 x V) = R is semi-positive definite forallg = 1,. .., Q,.
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To use the Min-6 approach, we assume to already have computed one coercivity
constant, @, (¢’) for a parameter y’, using Problem 4.
Then we can compute the lower bounds for each p:

LATD)
o 0. 0(u") ()
During the offline phase we solve the eigenvalue problem, which can be computa-

tionally intensive, and in the online phase, we use the equation (3.31) to compute the
bound efficiently for pu.

arp(p) = ap( ) (3.31)

Multi-parameter Min-6 approach

The multi-parameter Min-6 approach refines the simple Min-6 approach by using M
parameter g, ..., u" for which the coercivity constant @;,(u™) is computed during the
offline phase by using Problem 4.

Then we can compute the lower bounds fast in the online phase for each pu:

/(7))
(07 = max |« min
LB(l'l) =l M( h(ll )qzl ’’’’’ 0. QZ(IJm))

(3.32)

This method is more accurate than the simple Min-6, but it also requires more eigen-
value problems to be solved. Furthermore, both methods are restrained to the paramet-

rically coercive problems, for other problems, we need to use the Successive Constraint
Method.

Successive Constraint Method (SCM)

By using the affine decomposition, we can write

Qa
@) = inf Z 6 )~

q( h> Vi)
Ivally
The right-hand side can be written as a minimization problem:

Problem 5. Find a;,(u) such that;
@;(p) = min Sy, y)
yey

where the functional S is defined as:

S:PxR% —R

Qu
(1Y) = S(y) = Y 0y,

g=1

and the set Y by

ag(vi, Vi)
= {y:(yl,...,yQa)ERQ“th ev, S.t.yq: q”VT’ 1 <g=< Qa}
hlly
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To have a lower and upper bounds of @,(u), we enlarge and respectively restrict the
set of admissible solutions, Yy Cc Y C Y ;5.

To define the sets Y3 and Y, 5, we use an iterative process. We arbitrarily choose a
parameter u' in a subset E, of P;,. We set a tolerance tol to stop the process.
And we also need to introduce the function providing close parameter values:

M closest pointstou € E  if |E| > M,
Py(u: E) = { P

if |E|<M

The iterative process is the following:
We first need to do some initialization:

e Solve for the smallest o, and the largest o, eigenvalue of the problem:

agWp,vi) = ogwi, vy Y €V, Yg=1,...,0,

Qu
e Set the box 8 such that: 8 = l_[[cr;, o]

g=1
e SetCo=0and a¥,(u) =0, VueE,, andn =1,
Then do while n,(u,) > tol:
1. Set C, = C\y U {1}
2. Solve the eigen problem

aWp, vis ") = ap(W YWy, vy Yy €V,
ag(wh, wy)
W15,

4. Set Y}, ={y, 1<j<n)

3. Set (y"), =

5. Foreachu € E;:

(a) Compute aj,z(u) = min S(u,y)

yeYip
(b) Set
. {y €BISW.y) > ay) V' € Py, (1, C),

LB = ’ n—=1,, s ’ —_ (333)
S(ﬂ ,)’) Za’LB (H)vﬂ ePM+(ﬂa':*a\Cn)

(c) Compute o} z(1) = myin Su,y)
yeYip
a; (1)

@y ()
6. Set y,,; = argmaxn,(u) andn=n+1

HEE,

(d) Setn,(u) =1-
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To find @ (u) for any u € P, we have to solve

= in S(u, 3.34
arp(p) yefJ?Ll;l(ﬂ) M, y) ( )

This algorithm depends on Py, and Py,. An improvement of this algorithm, sim-

plifying the choice of those values and accelerating it, is proposed in [Vallaghé et al.,
2011] and explained hereafter.
By noting that (3.33) is a linear program with Q, design variables, we can decrease the
number of constraints. First, the constraints on ¢’ € Py, (u,E, \ C,) only take into ac-
count a lower bound of the coercivity constant, and thus are of poorer quality than the
first set of constraints. So we remove them completely, along with the need of M.. In
a linear program with Q, variables, there is maximum Q, active constraints when the
minimum is reached. In addition to this, we can see that if at the step n a constraint
is not active, then it will not be active for the next steps. We need to keep track of the
active constraints at each step, and so we do not need M, anymore. The Space Y now
reads:

LB~ S(ﬂn,y) = ah(ﬂn)

where A(u,C,-) is the set of active constraints at minimum for the computation of
arp(p, Cyoy). After arp(u, C,) is computed, we check which constraints are active among
A(u,C,_1) U u, and store the active ones in A(u, C,,).

0 {y €BISW',y) = anp') V' € Au, Cn—l)a}

During the online phase, the set of active constraints A(u, C,) has not been com-
puted, so the idea is to use all u, € C,. Even if it seems a brute force approach, the
authors note that the computational cost is still reasonable, being able to compute 10°
lower bounds in 1 minute for K = 1500. The advantage of this method is to reduce
considerably the offline cost of the SCM, with an example reaching a factor 60 between
the original and the proposed method.

3.2 Operator approximation

We may need to approximate operators such as non-linear expressions, matrices, vec-
tors or integrals. The following sections detail methods for such approximations.

3.2.1 Empirical Interpolation Method
Very often, the hypothesis made in section 3.1.2 that we can write

Qu
a(u,vip) = ) Blwa,(u,v)
g=1

does not hold. In this case, we want to approximate the non-affine terms in a way that
would allow us to establish an affine decomposition for a. Such method is described in
[Barrault et al., 2004], [Grepl, Martin A. et al., 2007], [Maday et al., 2008] or [Daversin,
C. etal., 2013] and is called the Empirical Interpolation Method.
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The idea of the Empirical Interpolation Method (EIM), is to approximate a general
parametrized function by a sum of affine terms:

M
806 ) ~ gy i) = ) O (1) (x)
m=1

To do this, we choose a subset Zgy C Pgiy, and a tolerance. In the following, we
will note g, = g(-, ) : Q = Rand gy, = gu(-, ).

—_ (x)
1. Choose p; € Egyy s.t. gy, # 0, 1 = argmax|g,, (x)], ¢1(x) = i‘]‘([l)
xeQ
2. Sete; =gy, — &l
3. Setm =2 and do until ¢,,,_; < tol
(a) Choose 1, = arg maxllg, — gu1lli=
HEEEIM
(b) Set (T™1);; = q,(1), (gzl,,jl)i =8u,(t), 1 <1, j<m-1,
(c) Solve T "6, 1 = gl
(d) Set r = 8u, — 8muyr tm = A SUP |1 (X)], Gu(X) = :’”(—(txm))
xeQ
(e) Set ey = ”rm”LZ(Q), m=m+1
This procedure output a basis ¢, ..., gy of linearly independent functions and in-
terpolation points 7, ...,y such that the matrix T;; = (T"");; = ¢;(t;) is lower triangular

with unity diagonal of size M x M.

Then to compute gy, for all u € Pg;y, we need to solve the linear problem:

TOm = 8 (3.35)
For example, say we have
a(u,v: pu) = fg(x, Wb(u,v; x)dx
Q

Then using the EIM decomposition of g(x,u) ~ Znﬂle HZqum(x) we have the following
approximation for a:

M M
a(u, v, i) ~ Z Oy (1) fg qm(X)b(u, v; x)dx = Z G (pay(u, v)
m=1 m=1

3.2.2 EIM for Discrete Operators

In some cases, for complex operators such as stabilization terms or geometric trans-
formations, it is not easy to have an analytical expression of the non-affine component.
For this, we want to approximate the discrete operator directly [Chaturantabut and
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Sorensen, 2010]. The main elements of the method and algorithm stay the same, but
instead to act on space/parameter functions, we act on vectors or matrices. We want
to have:

M
TCx ) ~ Ty ) = ) 0, ()@ (x)
m=0

The main difference is that in steps 1 and 3d, instead of setting the interpolation
point z,,, we set an interpolation index i,, such that:

I, = arg max |Rm(x,,u)j|
jel

An element of the set of indices I can be an integer defining the index of a vector or a
pair of integers in a matrix. More generally, for a tensor of order r, I contains tuples of
integers.

An index of a tensor corresponds to a degree of freedom in a finite element space.
To be able to compute efficiently the right-hand side of (3.35) during the online phase,
we need to build a finite element space containing only the degrees of freedom linked
to the indices of interpolations.

In order to do this, we need to extract a sub-mesh containing only the elements as-
sociated with these degrees of freedom. This step is very important if we want to be
independent of the finite element dimension during the online phase.

3.2.3 Simultaneous EIM and Reduced basis

We now consider non-linear problems where we cannot apply the previous method
readily.

Problem 6. Find u;,(u) € V,, such that:
a(up, viis ) = 0,(ar (u, v) + (), v) = f(vi ) Vv eV,
where g is a non linear function.

We could try to solve the following system:
O (A1t + 81(1t) = F

where (g,(u))); = (g(un(p)), ).
This gives the following reduced problem:

DAL, + g(idy) = Fy

where grb(ul:b) = BTgh(BuIrlb)
But the matrix B € RV so this would not be efficient to compute such a term.

We could use the EIM approximation of g to write:

M
(grb(ul:b)7 Vip) R (gM(I/lI:b), Vip) = Z QZfM(Il)bm(vrb)
m=1
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with
bm(vrb) = (Qma vrb) (336)
M

Or) = ) (T e guts (1) (3.37)

kA:ll y
= Z(T_l)mk 8 [Z(be)né:n(tk)) (338)

k=1 n=1
(3.39)

Then the problem 6 can be written as:

M
OLUDAL I, + D O ()b, = Fy (3.40)
m=1

with (b%), = by(&,).
And it can be solved using Newton or Picard algorithm.

The issue in such case is that the step 3a implies that you use the “truth” solver to

compute the solution of problem 6 for each parameter u € Zgy. This can be quite
expensive to do, especially for a non-linear problem.
An algorithm has been presented in [Daversin and Prud’Homme, 2015] to reduce the
cost of this computation, the Simultaneous EIM and Reduced basis (SER). Instead of
using the “truth” solver, we would use the reduced basis approximation to speed up
the construction of the interpolation.

Of course the EIM is necessary to have an efficient reduced basis approximation.
We then need to build simultaneously the EIM basis and reduced basis:

1. Choose p; and compute the first EIM basis ¢; and first reduced basis ¢;.
2. Setn=1and m = 1.
3. Do until reaching tolerance or maximum number of basis:

(a) Use u!, to choose p,,, in step 3a and build g,.;.

(b) Use g, to compute &,4;.

(c) Setn=n+1landm=m+ 1.

This algorithm allows to reduce considerably the number of finite element resolu-
tion when using EIM. Instead of doing #Zg;y resolutions to compute the approxima-
tion errors, and N resolutions for the reduced basis vectors, we only do N + 1 resolu-
tions, one for each basis vector of the reduced basis and one to start the EIM basis.
Other variants have been studied in [Daversin Catty, 2016], the most effective being
the multi-level SER, which consists in doing multiple times the loop of the SER algo-
rithm, using the reduced basis approximation of the previous loop, thus improving the
approximation.
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Validation

To validate our implementation of the EIM and SER methods, we propose to test it on
a 2D non-linear and non-affinely parametrized benchmark, proposed in [Grepl, Martin
A. etal., 2007].

The domain Q = [0, 1]* is the unit square. The parameter space is D = [0.01, 10]>. The
problem is described by the following elliptic and non linear equation, Yu = (u;, ) € D

et2u® _
— Au(u) + uy — = 100 sin(27x) sin(27y), (3.41)
M2

and u(u) =0onT = 0Q.

The average of u on Q is the output of interest.

s(u) = L u(y) dQ . (3.42)

Introducing the space X;, = {v, € C%(Q;)|vyx € Px(K)}, we can write the weak for-
mulation as find u;,(u) € X;, such that

paun(i) _
fVuh(y) - Vv, dQ + fﬂle—vh dQ = f 100 sin(2zx) sinry)v, dQ, Vv, € X,
Q Q H2 Q
(3.43)

To compute the RB approximation of uy(u), we will use an EIM approximation of
the term w

eﬂzuh(ﬂ)

M
*Z (g (3.44)

The mesh is composed of 2880 elements and the train set for the EIM greedy al-
gorithm is a uniform grid 40 x 40 of D, and the dual norm of the residual is used as
an error indicator. A fixed point algorithm is used to solve the problem both during
the offline and the online phases. We present a profile of the solution for an arbitrary
chosen u, on figure 3.1.

We are interested in the relative error between the truth approximation u,(u) and
the RB approximation uy(u), and also the relative error between the truth output and
its RB approximation:

u _ ”uh(ﬂ) - MN(”)HO
N =T o
k) — sl
A P I

We compare the classic EIM algorithm and the SER algorithm on 50 parameters chosen
randomly with respect to the number of reduced basis used, up to 20 basis.
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10°

-1.3e+00 05 O 0.5 1.1e+00

- | .

Figure 3.1 — Example of the solution for problem (3.41) with p = (1.91,2.77)
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Figure 3.2 — Min, max and mean errors on the field, e}, on 50 parameters
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10° | ——min / max || 10° f ,
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(a) Classic EIM (b) SER

Figure 3.3 — Min, max and mean errors on the output, ¢}, on 50 parameters
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Figure 3.4 — Comparison of the mean errors on « and the output between SER and EIM
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The errors presented in figures 3.2 and 3.3 have the same behavior regarding the
repartition between the min and the max. Whereas the figure 3.4 shows that even if
the SER algorithm converges more slowly than the classical EIM, we reach an error that
is reasonable in comparison. Especially, if we take into account that the convergence
study took 4000s with the classical algorithm whereas with SER, it took only 500s.

3.24 Empirical Quadrature Method

In [Yano and Patera, 2019], a method is presented to reduce the computational cost
of integrating parametrized functions. They developed an offline/online procedure to
obtain an empirical quadrature rule optimized for the parametrized function consid-
ered. This allows not to depend anymore on the finite element dimension for comput-
ing an integral.

When computing an integral with the finite element method, we use quadrature
points set to discretize the integral, see [Canuto et al.,, 2006]. A quadrature rule is
a set of points and weights that allows to approximate the integral. In Feel++ the
in [Solin et al., 2003]. This quadratu}é rule represents the “truth” quadrature, meaning
that it approximates the integral to a certain tolerance:

Ni
[ stndx= Y uiheter ) < o2 (3.45)
i=1

The Empiric Quadrature method consists in optimizing the quadrature rule used
for a set of parametrized expressions {g,} of size M. Since the number N, is typically
very large, it depends on the number of elements in the domain to integrate, we want
to find the quadrature points and weights that allow to best approximate the integrals
of our expressions.

If we note
Nh

Im(/»‘) — fgm(X,,U)dX and I’t:l’uth(”) — Z Wﬁruthgm(é;l{ruth’ﬂ)
Q i=1

then, we want

KV
D) = ) wign(&. ) (3.46)
i=1
such that
L) - Iw| < e/2 Ym,Yu (3.47)

and where K << N,,. This leads to |Im(/1) — ];1(;1)| <eg Vm, Vu.

During the offline phase, we will train our algorithm on a set of parameters Z7“" of
size J. We will note gin’j = gu(£rh, u;.’ aimy To this end, we need to solve a linear program
LP; ., where the structural variables are the weights p;, and we seek to minimize their

sum:
Ni

Z Pi (3.48a)
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under the constraints that the weights are positive:

pi=>0, 1<i<N, (3.48Db)

and that we are accurate enough on our train set:
Ni Ni

Zwéruthgm(é:l{ruth’”;rain) _ Zpigm(é:;rmh,uj‘ram) < 8/2 v1 < ] < J, VI <m< M
i=1 i=1

which translate as constraints on the auxiliary variables x;:

Nh Nh
Z wﬁ”"hgﬁn,j —&/2<x < Z wﬁ””hgin’j +&/2 Vi<j<J Vl<m<M (3.48¢)
i=1 i=1
where the MJ auxiliary variables x; are:
Nj,
w= pgh; VI<j<LVI<m<M (3.48d)
i=1

4

The four equations (3.48) define the linear program LP, ;.

We can see that we need to compute gfn, i = g,n(.fl?’””’, ,u;.””'”) for all expressions g, for
all points £ and for all parameters u7*". This is very time consuming due to the
number of evaluations to do. If the expressions are complex, the order of the truth
quadrature rule rises and with it, the number of points. As an example, in Feel++, the
order is set automatically, for a complex expression of order 10, it gives 126 points by
elements, and it can rise up to 1001 points by elements for very complex expressions.
Multiplied by the number of elements in the domain of integration, the number of
evaluations can be well beyond hundreds of millions.

To test our implementations of the method, we will compute the error between the
truth quadrature and the empiric quadrature for the following set of expressions:

go = xcos(a) + ysin(a) g1 = —xsin(a) + ycos(a)

with & = uox? + u1y* + upz> and where u = [0.1, 10]° and Q = [0, 1]°.

We use a tolerance & = 2¢7, on a mesh with 84 elements. The order of quadrature
determined by Feel++ is 5, which gives 14 points by elements, so 1176 evaluations
and as many constraints for our linear programming problem. The reference time to
compute an integral over all the elements is 6¢™3s.

The number of quadrature points optimized K", the maximum errors for each expres-
sion, e; and e, over 50 parameters chosen randomly, and the time to compute the inte-
gral with respect to the size J of the train set is summarized in table 3.1.

J 10 50 100 250 500 1000
K 20 94 144 177 191 199
t| 3¢ | lde™ | 2 247 | 2.6e7* | 2.8¢7*
e; | 0.2588 | 0.0463 | 2.41e73 | 5.97¢™* | 3.98¢7* | 1.479¢7*
e, | 03152 | 0.0168 | 2.48¢73 | 2.9¢7™ | 4.47¢™* | 3.419¢7

Table 3.1 — Error of the Empirical Quadrature method for different sizes of train set
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As expected, the more parameters the quadrature have been trained on, the more
precision we get. With a reasonable size for the train set, we are close to the tolerance
set. We also see that the time of computation rises with the number of quadrature
points used, but stays at least an order of magnitude less than the reference time.

3.3 Conclusion

To conclude, we have a method that allows to compute the solution efficiently or an
output of interests for a parametrized problem. This problem can be non-affine or
even non-linear thanks to the EIM algorithm, and complex operators can be dealt
with its version for discrete operators. With the SER algorithm, we have a way to
use the EIM algorithm without the extreme cost associated with non-linear problems.
And the EQM algorithm allows us to reduce the cost of computing the integral of a
parametrized expression over a domain by limiting the number of quadrature points.
Finally, all those algorithms are split between an offline phase where all the heavy
computation is done, and an online phase, where the results can be obtained in real
time.
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A high field magnet involves several different coupled physics. First, the electric
current that runs through the magnet will produce heat because of the Joule losses.
The temperature will change the thermal and electric conductivity of the copper alloys
constituting the magnet. To control the temperature, the magnet will be cooled by a
forced water flow. The current density will produce a magnetic field. The thermal
dilation and the Lorentz forces will deform the magnet. Finally, the deformation of the
magnet may alter the cooling and hence the electric current.

Since modeling directly such a complex problem is very difficult, we chose to make
some simplification. First, we place ourselves in a stationary problem, thus eliminating
the difficulty of time-dependent problems. Then, the cooling of the magnet involves
a fluid mechanic problem that is very expensive to solve. We chose to simplify this
problem by introducing heat exchange coefficients derived from standard correlation
in thermohydraulics. Finally, we suppose that the deformations are very small and
thus we work solely in the reference geometry, rather than the deformed one. If this
hypothesis does not hold, we should couple the models via the ALE map to work on
the deformed geometry. The simplified physics involved in a high field magnets are
presented in the figure 3.5.

Joules losses

Thermic Electric
e Non-Linear *E?-o-n-d-u-c-tl-v-l’;l-e; e Non-Linear
e Cooling: e Current intensity
Colburn on boundary
correlation
) ) Current density
Dilatation
Y
Y -
Elasticity Magnetostatic
e Linear _ Lorentz forces

< o Maxwell

e Deformation e Biot & Savart

Figure 3.5 — Coupled physics in a high field magnet

In the following part of this thesis, the problems for each of those physics will be
detailed. We begin by the thermoelectric problem and its coupling in chapter 4. The
CG and HDG formulation are presented as well as some results for the reduced basis.
In chapter 5 two methods to compute the magnetic field are detailed. The Maxwell
equations are used to solve a problem or a formula given by Biot & Savart can be
used, which allows to use the reduced basis method to improve the computation cost.
Lastly, the linear elasticity problem is presented in chapter 6. Both the CG and HDG
formulations are introduced.
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Chapter 4

Electro-Thermic model

Even if electromagnetism is the main physic of interest, other physics are involved
in the study of high field magnets. In order to produce the magnetic field, a current
density, typically few hundred A/mm?, is provided to the electromagnet. Joule losses
induced by the current create an important increase of heat within the magnet. The
temperature can possibly degrade its mechanical properties and lead to thermal di-
latation which may damage the electromagnet. Thus, beside an accurate estimation of
the current density, an accurate estimate of the temperature is also needed, especially
since material properties such as electric or thermic conductivity depend on it.

First we will describe the coupled electro-thermic model used, and in the following
sections, present the Continuous Galerkin formulation with its validation, followed
by the Hybrid Discontinuous Galerkin formulation of the same problem. Finally, the
Reduced Basis method is used to reduce the computational cost in order to use this
problem in a many-query situation.
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The Maxwell-Faraday equation states that an electric field, E, is proportional to the
variation of the magnetic field, B, over time. In steady case, due to the properties of

51
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the curl operator, this implies that there exists a scalar potential V such that E = -VV.
Furthermore, the Ohm'’s law tells us that the current density j is proportional to the
electric field E:

J=0E

where o is the electrical conductivity of the material.
Finally, the charge conservation principle

dp
ZLivV.i=0
6t+ J

where p is the charge density, gives, in the steady case, the equation:

V. (—oVV) =0 (4.1)

The heat variation can be obtained in two ways. Firstly, by using the first thermody-
namic principle, where the work done by the system is neglected because we consider

only small deformations.
oT

00 = Cppo—- (4.2)
where C, and p, are respectively the specific heat capacity and the mass density of the
material.

Secondly, the heat variation can also be read from the heat flux density j, and the
eventual internal sources of heat P

60 =V -jo+P (4.3)

The Fourier’s law defines j as k<VT where « is the thermal conductivity of the material.
The internal source of heat is the Joule effect, we thenhave P =j-E = ocVV - VV.
In the steady case, (4.2-4.3) give us:

—V-(VT)=oVV-VV (4.4)

Both electric and thermic equations (4.1-4.4), involve the respective conductivity, o
and «. Those conductivities depend on the material but also on the temperature for
metal and alloys.

The electrical conductivity describes the capacity of a material to transport electric
charges. It is the reciprocal of the resistivity, which measures the opposition to the flow
of the electric current. In the case of metals and alloys, the material’s resistivity p can be
expressed in terms of the resistivity at reference temperature 7, and of the temperature
coefficient «. It is linearly dependent on the temperature:

P(T) = po(l + AT —Tp))

Since the conductivity is the inverse of the resistivity, oy = 1/py is the conductivity at

reference temperature and
0o
T)= ———— 4.5
D) = e =10 (45)
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The Wiedemann—-Franz law states that the ratio between the thermal and the electric
conductivities for metals and alloys is proportional to the temperature, by a constant L
known as the Lorenz number. Thus, we can write the thermal conductivity as:

«(T) = o(T)LT (4.6)

This leads to a non-linearity in the coupled electro-thermal model.

To discuss the boundary conditions associated with the system, we will use the
following notations: Q = I',, UT,, UTI, = I'. UT, where each surface has its own
boundary condition type, which definition follows.

We consider the cooling water surrounding the magnet as electrically insulating.
Thus, we add a homogeneous Neumann condition on these surfaces, noted I'..:

e —o(T)VV-n=0onT,

In the magnet, to impose the current circulation, a difference of potential is created
between current input and output. This difference can be modeled in three different
ways:

1. as a Dirichlet condition:
e V=0onT;,
o V=Vponl,;
2. or to be closer to the experiment as a Neumann condition:

e V=0onI};,

e —0(T)VV-n= onl,,

T o0l
where [ is the input current and |I',,,| is the area of the output surface.

An issue with the first type of condition is that to ensure that the current created by the
difference of potential has the right intensity, we may need to control its value using a
control feedback loop to adjust the difference of potential V. This can be done using
a Proportional Integral Derivative (PID) controller, but the tuning of the coefficients
can be difficult and is problem dependant. The main issue is that it requires also many
evaluations of the system. The second type of condition gives the correct intensity
directly, but we need to ensure the constantness of the potential on the surface. A
solution to those issues is the Integral Boundary Condition presented in section 2.1 of
chapter 2 so that the difference of potential is modeled

3. as an IBC:
e V=0onTIj

° f —o(T)VV -n =1 and V is constant on I,

rour

The impact of the choice of boundary condition will be presented in section 4.2.2.
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To model the magnet cooling by a forced water flow, we assume that the thermal
flux is proportional to the difference of temperature between the cooling water and the
magnet. The factor is called the heat transfer coefficient, 7. Hence the cooling of the
magnet can be modeled by a Robin condition:

o —k(T)VT -n=hT -T,)onT,

As the exchange originates from a convection phenomenon, 4 can be deduced from
the thermal conductivity, the hydraulic diameter D, and the Nusselt number Nu by the
following relation:

(T, )Nu
Dy,

h=

In normal operation, the water flow is turbulent and parallel to the surface I'.. In this
condition, Nu is classically expressed as:

Nu = a Re", Pr'"

with Re the Reynolds and Pr the Prandtl number. Values of a,n and m depends from
the correlation used. For instance, the Colburn correlation [Colburn, 1933] leads to
a=0.023,n=0.8,m=0.3.

In practice, magnet designer also often use a simpler correlation derived by Mont-
gomery [Montgomery, 1969]:

MO'S

h =1426 (1 +0.0157T,,) ]

DY?
where u stands for the water flow velocity.

On other surfaces, no heat exchanges are considered. Thus, we use a homogeneous
Neumann condition:

o «k(T)VT -n=0onT,

Then, the problem is to find V, T such that:

V- (-o(T)VV) =0 in Q (4.7a)
V- (T)VT)=o(T)VV-VV inQ (4.7b)
V=0 on T3, (4.7¢)

v="Vp onl,,; (4.7d)
—-o(T)VV-n=0 onl, (4.7e)
—«k(T)VT -n =T -T,) onT. (4.7f)
—«k(T)VT -n=0 onl, (4.7g)
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41 CG formulation

4.1.1 Variational formulation
The variational formulation of (4.7a) reads:

f V(= (T)VV)py =0 Yoy € Xy (4.8)
Q
which gives:
fO'(T)VV -Voy — f eyo(T)VV-n=0 Vey e Xy 4.9)
Q 00

Using strong Dirichlet conditions for (4.7c-4.7d) and the definition of (4.7e), we need
tofindVe{re H( Q) |v=00onT,,and v = Vp onT,,} such that Vo, € {v € H'(Q) | v =
OonTl,,andv=0onT,,}:

fO'(T)VV -Voy — oy o(T)VV-n - oy o(T)VV.-n—- f eyo(T)VV-n=0
Q l—in Y rom T Fe —_

thatisfind Ve{ve H'(Q)|v=00onT;,, and v = V, onT,,} such that:
fO'(T)VV Vo, =0 Voye{veH' Q) |v=00onT;, andv=0o0nT,,} (4.10)
Q

Alternatively, we can impose the Dirichlet conditions weakly by using the Nitsche
method [Nitsche, 1971, Freund and Stenberg, 1995]. In this case, instead of using the
function space to enforce them, we add two terms containing the weak form of the
normal derivative of the solution and the test function, causing the method to be sym-
metric and consistent. And we also add a term with a positive constant y such that
the term dominates the two others on the boundary to ensure well-posedness, in or-
der to penalize the difference between the solution and the Dirichlet condition. It also
depends on the discretization of the domain via the size of the element Ak in order to
scale the coefficients. This term causes the method to be stable, and it can be proven
that if y is sufficiently large, the discrete solution converges to the exact one with opti-
mal order.

We need to find V € H'(Q) such that Yoy € H'(Q):

fO'(T)VV'V‘Pv—f a(T)(VV -n) gy
Q

I'p
o(T) o(T)
- f a(T)(Vey -m)V + f yV‘Pv: —f (Vov-n)gp + f ygD‘Pv
I'p I'p hK I'p I'p hK

Similarly, the variational formulation for (4.7b) reads:

fK(T)VT . V(,DT - f or K(T)VT -1 —f @r K(T)VT ‘N = fO'(T)VV : VVQDT VQDT S XT
Q T, m T, T Q

Using the definitions of the boundary conditions (4.7f-4.7g), we need to find T € H'(Q)
such that Yo, € H'(Q):

fK(T)VT~V(,0T+thcpT:fa(T)VV-VV¢T+thngT (4.11)
Q T, Q :

I
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4.1.2 Verification

In this verification case, we will estimate the rise in temperature due to Joules losses
in a stranded conductor cooled by a force flow. Electrical potential V, and V, are re-
spectively applied to the entry and exit of the conductor.

The geometry of the conductor is chosen as to have an analytical expression for the
temperature.

41.2.1 Problem

The conductor consists of a rectangular cross section torus which is somehow "cut" to
allow for applying electrical potential. The conductor is cooled with a force flow along
its cylindrical faces.

In 2D, the geometry is as follows:

ri VO

Figure 4.1 — 2D Geometry of the thermoelectric validation

In 3D, this is the same geometry, but extruded along the z axis.

The input parameters are given in table 4.1, and the material properties in table 4.2.
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Name | Description Value Unit
r; internal radius 1 mm
r, external radius 2 mm
0 angle m/2 rad
Z height 1 mm
I current intensity -800 A
Vb electrical potential 0.03125 %
h; internal transfer coefficient 008 | W-mm? K
T, internal water temperature 293 K
h, external transfer coefficient | 0.08 | W -mm™2-K!
T, external water temperature 293 K
Table 4.1 — Input parameters
Name | Description Marker | Value Unit
o electric conductivity | omega | 58¢3 | S.mm™!
K thermic conductivity | omega | 0.38 | W/(mm.K)

Table 4.2 — Materials

57

The boundary conditions for the electrical problem are introduced as simple Dirich-
let boundary conditions for the electric potential on the entry/exit of the conductor.
For the remaining faces, as no current is flowing through these faces, we add Homo-

geneous Neumann

conditions.
Marker Type Value
VO Dirichlet 0
V1 Dirichlet Vp
Rint, Rext, top*, bottom* | Neumann 0

Table 4.3 — Electric boundary conditions

As for the heat equation, the forced water cooling is modeled by Robin boundary

condition with Tw the temperature of the coolant and / a heat exchange coefficient.

Marker Type Value
Rint Robin h(T -T,;)
Rext Robin h (T —T,,)
V0, V1, top*, bottom* | Neumann 0

*: only in 3D

Table 4.4 — Thermal boundary conditions
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The main fields of concern are the electric potential V, the temperature 7' and the
current density j or the electric field E.
The analytical solutions in the linear case are given by:
Vb

1%
V=-—26= FD atan2(y, x)

VD y VD X
E=|-— ,—
6 xX2+y? 6 x*+)y?

2
T = —Alog(i) + Ty
ro
with:
(oa VD
=52
2k\ 6
k T,
B = 1 —
hiri " here " Og(ri)

e 1 i 1 ;
C = log (}"_) 10g(rer,-) 4 2K( Og(r) + Og(}" ))
i hir; her,
TWi - Twe + AC)

o= eXP( 2AB

2Ak T, hiriT,i + hor. T, A T 2 r, 2
T,=————1 — |+ + h;r;1 —| +hr1 —
hir; + h,r, 8 ( r,-) hir; + h,r, h;r; + h,r, ( 7108 (ro) 7e 108 (ro) )

4.1.2.2 Results

We will check if the approximations converge at the appropriate rate: k+1 for the L,
norm for V and T, k for the H; norm for V and T, k for the L, norm for E and j, and k-1
for the H, norm for E and j.

The convergence rates for the temperature, the electric potential and the current
density are presented respectively in figure 4.2, 4.3 and 4.4 for 2D and 3D.
We can see that the errors converge at the expected rates, except in 3D for the current
density where we do not reach the rate exactly but are close to it.

4.2 HDG formulation

Each problem, electric and thermal, can be described by a mixed Poisson equation as
seen in chapter 2, where the flux and the potential are the current density and the elec-
tric potential for the electric problem and the temperature flux and the temperature for
the thermal problem. The non-linearity is handled by a fixed point algorithm, in which
we first solve the electric problem to know the Joule’s losses and then we can solve the
thermal problem. At each step of the algorithm, we then update the conductivities
with the previous temperature and solve again the two problems until convergence,
that is the increment of the electric potential and the temperature between two steps is
less than a certain tolerance.
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Figure 4.2 — Temperature convergence for L2 and H1 norm
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Figure 4.3 — Electric potential convergence for L2 and H1 norm
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Figure 4.4 — Current density convergence for L2 and H1 norm

4.2.1 Verification

In this section we will verify our implementation both in the linear case in section
4.2.1.1, and in non-linear case in section 4.2.1.2.

4.21.1 Linear case

We will use the same problem as in section 4.1.2.1 to verify our implementation. The
IBC condition will be tested by replacing the boundary conditions of the electric prob-
lem by:

Marker Type Value
VO Dirichlet 0
V1 IBC 1
Rint, Rext, top*, bottom* | Neumann 0

Table 4.5 — Electric boundary conditions

The convergence of the errors in the L, norm for the electric potential, post-processed
electric potential, current density and temperature are presented respectively in figures
45,4.6,47,4.8.

We can see that the computed orders of convergence are in agreement with the the-
oretical predictions from chapter 2.
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Figure 4.6 — Post-processed electric potential convergence for L2 norm
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Figure 4.8 — Temperature convergence for L2 norm
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4.2.1.2 Non-linear case

Here we will test if a non-linear problem is solved correctly using a Picard algorithm.
For this we will solve a non-linear mixed poisson problem for which we know a solu-
tion. The domain is [0, 1] X [0, 1] and the exact solutions are:

p=Tx+1)7 -1

-3

for the non-linear conductivity k = (1 + p)>. The boundary conditions are summarized
in table 4.6.

Type | Domain | Value
Dirichlet {0} x [0, 1] 0
Neumann | [0, 1] x {0, 1} 0

IBC {1} x [0, 1] -7/3

Table 4.6 — Boundary conditions for the non-linear test case

The Picard algorithm converged in between 16 and 22 iterations for a tolerance of
le™!2, whereas the GAMG preconditioner used in the linear solver converged in be-
tween 18 and 25 iterations, also for a tolerance of le~'?. The least number of iterations
is for the polynomial order 1 and the coarsest mesh and the greater number of itera-
tions for the polynomial order 3 and the finer mesh.

The errors are presented in figure 4.9. We can see that the computed orders of con-
vergence are in agreement with the theoretical predictions from chapter 2, except for
the potential and post-processed potential at order 3.

4.2.2 Validation

In this section, we want to validate our HDG formulation of the non-linear thermo-
electric problem to see if the results are in agreement with the CG formulation. For this,
we will look at quantities of interests in our problem on two real geometries, a section
of a bitter (see figure 4.10a) which parameters are given in table 4.7, and a helix of a
magnet (see figure 4.10b), to see if they agree with the expected values from a physical
point of view.

Parameter Symbol Units Value
length of the bitter [ mm 96
angle between I';, and I, a radian /18
diameter of ',/ r mm 10
width of [';yp12 W) mm 1.1
length of I'¢y,12 I mm 5.9
height - mm 1

Table 4.7 — Geometrical parameters for the bitter.
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(a) A schematic view of a portion of a bitter (b) Helix of a magnet

Figure 4.10 — Geometries of a magnet

The quantities that we are interested in are the minimal, mean and maximal temper-
ature and the current intensity on the input and output surfaces I, and 7, (where the
electric potential and the intensity are imposed), the power in the domain P and also
the standard deviation (SD) of the electric potential on the surface where the intensity
is imposed.

In CG, the intensity is imposed using a Neumann condition, whereas in HDG the in-
tensity is imposed using an Integral Boundary Condition.

Tmax Tmean Tmin I 0 1 1 P SD
CG 308.15 302.89 296.12 -3329.42  3329.5 133.49  1.5¢7
HDG 307.18 302.81 296.12 -3333.0  3333.0 13345  6.6¢7’
CG 408.12 331.1 290.12 -30004.2 30002.16 277823.2 1.4e™*
HDG 408.95 333.03 290.14 -30000.0 30000.0 284183.0 4.2¢7°

Bitter

HL-31_H1

Table 4.8 — Comparison on the quarter turn

In table 4.8, the quantities of interest are the one expected from a physical point of
view. Furthermore, we can see that the temperatures are comparable, the difference
does not exceed 0.6%. For the intensity, in HDG, we have the exact value imposed,
whereas in CG, we have an error of approximately 0.1%. For the bitter, the powers
computed in CG and HDG are close (0.03%), but in the case of the helix, the powers
do not agree completely but are still relatively close (0.2%). We can also see that the
standard deviation of the potential is always greater in CG than when using the IBC in
HDG.
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Thus, we can validate the HDG formulation for real non-linear thermoelectric prob-
lems.

4.3 CRB formulation

In this section, we will describe the affine decomposition of the thermoelectric problem,
as well as a way to compute the value of a field at a certain point during the online
phase.

4.3.1 Affine decomposition

We want to be able to modify the following parameters in the context of the re-
duced basis method: the electric conductivity at reference temperature, the tempera-
ture coefficient, the Lorenz number, the difference of potential, the heat transfer co-
efficient and the temperature of the water. Thus, the parameter will be of the form
u= (oo, a,L Vp,hT,) €PcCRE
We now also need to approximate the conductivities and the right-hand side of (4.7b)
with EIM:

M, My My
Ty~ Y B g, Ty~ ) B, oMVV-VV~ > Bl (), (412)

mg=1 mp=1 my=1

This leads to the following affine decomposition of the problem:

My M,
Y [ @IV Ver- Y ELw [ a (v mey - Tov-mv + Lvay
Q Q

My= 1 cond my= 1 cond

Mj
2 pw [T Veren [ Tey
Qcond Qcond

my=1

My M,
= DB [ abor=Y B wve [ arevn-Tonear, [ o

my= 1 cond my=1 Qcond Qcond

It allows us to retrieve the electric potential and the temperature as:

N N
V= Ve T =) T,wé (4.13)

n=1 n=1

4.3.2 Value at a point

In chapter 9 we will need to compute the value of the electric potential and of the
temperature at different points, each corresponding to a sensor. With Galerkin meth-
ods, we need to interpolate the value by using the dofs surrounding the point. But this
approach would not be feasible during the online phase without computing the high
tidelity field first.
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So in order to compute those values in real time, we need to compute the value of
each reduced basis at those points during the offline phase, what we call the reduced
basis context. And during the online phase, we only need to multiply this matrix by
the vector of coefficients of our solution for the parameter to have a vector of values
for the points.

4.3.3 Results

Here are presented the results on the same problem as in 4.1.2.1, with the parameters
described in 4.3.1. We used SER to compute the three EIM, for o, k and the Joule losses,
with a train set of size 1000, and 10 reduced basis chosen randomly.

In figure 4.11a and 4.11b are presented the min, max and average over 50 parameters
of the error for V and T respectively, between the reduced solution and the high fidelity
one.

101 [ — T

—— min / max 100 ——min / max ||
101 —— mean || —— mean
1072 .
1073 :
1074 | .
1075 | :
107 | {0 |
10°° b \ \ L 1078 | \ \ L
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N N
(a) Relative error on V (b) Relative error on T

Figure 4.11 — Min, max and mean error over 50 random parameters

The error for the output of the average temperature in the domain is shown in figure
4.12a, whereas in figure 4.12b, we present the error for the value of the temperature on
a point.

As we can see, the error rapidly decreases to be around 107%, both for the two fields
and the outputs.

4.4 Conclusion

In this chapter we have described the thermoelectric problem and the boundary condi-
tions associated with it. Both the Continuous Galerkin and the Hybrid Discontinuous
Galerkin discretizations are presented, compared and validated using a test case prob-
lem corresponding to what we will need to solve to modelize high field magnets. We
can see that HDG can reach equivalent errors to CG, or even better errors for flux fields,
with a mesh much coarser, but the computational cost is still greater in 3D case.
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Figure 4.12 — Min, max and mean error over 50 random parameters

For the CRB formulation, we have explained the affine decomposition and the choices
for the EIM approximations needed. We then presented the results on the same test
case. Those results show that our implementation can be used on real problems for
high field magnets to more interesting applications.



Chapter 5

Magnetostatic

The electromagnetism is, of course, very important in the modelling of a high field
magnet. The magnetic field is directly linked to the current density j from the previous
chapter. The physic is governed by the Maxwell’s equations and has been detailed in
[Feynman et al., 2011] for example. To compute the magnetic field in a region carrying
no current, we can also use the Biot-Savart law described in [Kratz and Wyder, 2002].
We will first recall the Maxwell’s equations and compare two CG formulations to solve
them. Then, the Biot-Savart law will be detailed along with methods allowing to take
advantage of the reduced basis method previously described.
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5.1 Maxwell

The Maxwell’s equations describe the generation of electric and magnetic fields by
currents, establishing relations between the electric and magnetic fields (resp. E and
H), the electric and magnetic flux (resp. D and B), the current density j and the electric

69
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charge p. They are essential in the study of high field magnets.
oB

VXE = ~ (Faraday) (5.1a)
. 0D
VxH=j+ m (Maxwell-Ampere) (5.1b)
V-B=0 (Gauss magnetic law) (5.1¢)
V-D=p (Gauss electric law) (5.1d)

In static case, the time derivatives are obviously not considered.

These equations have to be completed with the following constitutive laws, linking
B to H and D to E from material properties.

B=uH, D=c¢E (5.2)

where p is the magnetic permeability, € the electric permittivity.

The Gauss’s magnetic law in (5.1c) leads to the existence of a vectorial magnetic
potential A
V-B=0= JAsuchthatB=V x A (5.3)

The magnetic potential A is not unique since the curl of a gradient is always zero. Thus,
if A is a potential, then A + V¢ is also a potential for the same magnetic field B.

Combining Maxwell Ampere’s equation (5.1b) with the previously introduced con-
stitutive laws (5.2), we have

. B=uH 1 . B=VxA 1 ]
VxH=j = Vx(—B):J = Vx(—VxA):J (5.4)
H H

For magnetostatic problems, the independence of time removes the temporal partial
derivatives of (5.1a-5.1b). Then, combining the Maxwell-Ampere equation with (5.2)
and (5.3) gives the potential based magnetostatic problem

V X (1V X A) =j (5.5)
u

We consider here the classical boundary condition for magnetostatic, which impose
the tangential component of magnetic potential on the boundary that reads

A Xn=AponiQ (5.6)

where n is the outward unit normal on Q. Classically A, is set to zero on 92 to mimic
the behavior of A at infinity.

The problem (5.5) does not have a unique solution, due to the non-unicity of A.
However we shall remark that the gradient field V¢ doesn’t affect the magnetic flux B
which is the classical quantity of interest.

Nevertheless, the unicity of the solution is essential for the numerical solving.
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The first way to guarantee the solution unicity consists in adding a condition on the
divergence, using a gauge. The use of the Coulomb gauge V- A = 0 adds a divergence-
free condition, and the unique solution is obtained by solving a saddle point problem.
A second way consists in considering the ungauged magnetostatic problem (5.5) as a
special case of the potential based full maxwell problem in frequency domain.

5.1.1 Saddle-point

Enforcing the Coulomb gauge (divergence-free condition) to the potential based
magnetostatic problem (5.5) can be managed by a scalar Lagrange multiplier p, see
[Dumitru, 2013] for more details, giving the following problem to solve

1
Vx(—VxA)+Vp:j on Q (5.7a)
u
V-A=0 onQ (5.7b)
A Xn=AponoiQ (5.7¢)
p=0 onoQ (5.7d)

5.1.1.1 Variational formulation

The variational formulation consists in finding (A, p) € (X C Heun(Q) X Hy(Q)) such that

fl(VxA)-(va)+f l(VXA)-(VXn)+fV-Vp=fj-V YveX (5.8a)
oM oo M Q Q
f A-Vg=0 Vg € Hy(Q) (5.8b)
Q
The Dirichlet boundary condition (5.7c) on A imposed directly in the definition of
the function space cancels the boundary term of (5.8a)
X = HAD,curl(Q) = {V € chrl(Q) | vXn= AD on a-Q}

The variational formulation then consists in finding (A, p) € (Ha, cun(2) X Hé(Q)) such
that

fl(VxA)-(va)+f 1(V><A)-A1D+fv-Vp:fj-v VveX (5.9a)
oM o Q Q

f A-Vg=0 Vge H\(Q)  (5.9b)
Q

We can also impose (5.7c) on weak form, as in section 4.1, we add terms for sym-
metrization and stabilization, see [Assous and Michaeli, 2013] and [Thomée, 2006], and
so avoiding to modify the function space X = H.,1(Q), to impose directly the tangential
component of A. We denote y the penalisation coefficient, and 4, the mesh size. The
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variational formulation then consists in finding (A, p) € (Heun(Q) X Hy(Q)) such that

fl(VxA)-(va)+fv-Vp
QM Q

+f l(V><A)-(v><n)+f l(V><v)-(A><n) (5.10a)
M

oo M

1 1
+f l_(vxn)(Axn):fjv-l—f—(VXV)AD VveX
a0 hs Q QM

1
+f 1—(v><n)-AD
0Q hs:u
fA-Vq =0 Vg € Hy(Q)
Q

(5.10b)

5.1.1.2 Discretization

The vectorial magnetic potential A is approximated using Nédélec finite elements of
lowest order, and the scalar multiplier p is approximated with Lagrange finite elements
of order k. We denote by V;, ¢ X and Q), C Hé () the associated finite element spaces,
respectively. Considering {y/;};_ (resp. {¢,}i.)) the finite element basis functions of V;,
(resp. QOp), the discrete approximations A, of A and p, of p reads
Ay = Zaﬂﬁj and  p, = Zpi¢i (5.11)
i=1

J=1

Replacing A and p by their discretizations 5.11 in the variational formulations (5.9a)
or (5.10a), the discrete magnetostatic saddle-point formulation can be written

A BT\ (A f
(5 5)0)-0) 12
If (5.7c) is imposed on the strong form as in (5.9a), the matrix A reads
1
Ay = [ 2T xu) - Txu) 519
oM

The enforcement of (5.7c) on weak form (5.10a) adds symmetrization and penalisation
in A which then reads

1 1 1 1
Aij = f —(Vxlﬂj)-(VXlﬁin —(VXl//j)-(l/’an)+f —(Vxlﬁi)'(l//jxn)v“f —l(lﬁjxn)-(lﬁixn)
oM a0 1 a0 M 00 M hy
(5.14)
The matrix 8 of (5.12) reads

B,"j = fs;l//j . V¢, (515)

and the right-hand side vector f is the discretization of the source term j to which
symmetrization and penalisation terms can be added

1 1
f, = f joun+ f Lovu - Ap + f LY s - Ay (5.16)
Q o0 M o0 M hy
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5.1.2 Regularized formulation

Here we present an alternative to the use of Coulomb gauge. We consider the
Maxwell’s equations (5.1) given on their full formulation (with time derivatives), which
can describe all electromagnetic phenomena.

The time dependency of these equation can be removed using a time Fourier trans-
form

FLEONw) : f(1) — FLEOIw) = f Fe™di (5.17)

The ungauged magnetostatic problem (5.5) is a special case of the time harmonic
Maxwell’s equations with w = 0. The full-maxwell problem expressed in frequency
domain is regular for all w > 0, and then has a unique solution. The idea to regularize
the magnetostatic problem (5.5) is based on the consideration that the electromagnetic

tields obtained at low frequencies are a good approximation of magnetostatics fields
and is detailed in [Bebendorf and Ostrowski, 2009].

From Maxwell-Ampeére equation (5.1b) in (5.5) and (5.2), we can deduce

Vx(leA):j+aE+sa—E (5.18)
u ot
And from Faraday’s law in (5.5), we have :
_ 0(VxA) _ 0A
VXE = ” = E= o (5.19)
Combining (5.18) and (5.19), we deduce
1 0’A oA
VX(/ZVXA)-'-SW-'—O-g:J (520)

The Fourier transform of the derivative terms of (5.20) is obtained combining (5.17)
with a simple integration by parts, leading to a multiplication with iw

0A
T[E](w) = iwf[Al(w)
We can then deduce the time harmonic equation

1
V x (—V X A) + (iw — sw?)A = j (5.21)
M

Our operator for magnetostatic equation (5.5) can then be "regularized" adding to it
a multiple of magnetic potential A, mimicking the last term (ciw — ew?)A of (5.21)

1
V x (—v X AS) +aA, =] (5.22)
u

The solution A, of the regularized problem (5.22) converges to the solution A of the
initial problem (5.5) for £ — 0, and we can show that

I . .
Il Ag [z, < . ljll, and Hcsuchthat [|A-A;llg,,<clljll, (5.23)
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5.1.2.1 Variational formulation

The variational formulation obtained from (5.22) consists in finding A € X C Heyu(Q)
such that

fl(VxA)~(V><v)+f l(V><A)~(v><n)+fozA-v:fj-v VveY c H.,(Q)
QM oo M Q Q (5.24)

with X and Y to be determined.

If the Dirichlet boundary condition (5.6) on A is imposed on strong form, it removes
the boundary term of (5.24) and the condition is inherent to the function space X =
Ha, cu1(€2). The variational formulation becomes :

Find A € Hy, cun(Q2) such that

fl(VxA)-(va)+faA~V:fj-v Vv € Hycun(Q) (5.25)
QM Q Q

We can also impose the Dirichlet boundary conditions on weak form, adding sym-
metrization and penalisation terms and then avoiding adding condition in X function
space, i.e. X = H,u(Q). As previously, y is the penalisation coefficient and %, the
mesh size. The variational formulation consists then in finding A € H,4(Q) such that
Vv € chrl(Q)

fl(VxA)-(va)+faA-v+f Y1y xn - Axn
QM Q o0 hs 1t

+f l(V><A)-(v><n)+f l(V><v)-(A><n):fj-v+f l(V><v)-AD
M oo M Q oo M
(5.26)

5.1.3 Verification

We need to check the convergence rate of our model. For this we will use the domain
[-1,1]¢ where d is the dimension, d = 2,3, and a magnetic permeability 4 = 1. The
following analytical solution in 2D and 3D will be used:

2 (1 -1 - 2)
a=(12%) A=l(1-)-2)
(1= )1~ )

B=-2x+2y B=|-20"-D(x-2)
222 - D(x—y)

2(x* =Dy - 2) ]

Note that in 2D, the magnetic field B is a scalar field, since the curl of a 2D vectorial
tield (uy, u,) is defined as d,u, — Oyu,.
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Figure 5.1 — Convergence of the magnetic potential for L, and H.,; norm with regular-

ized and saddle point formulation
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Figure 5.2 — Convergence of the magnetic field for L, norm with regularized and saddle

point formulation
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In figures 5.1 and 5.2, representing respectively the convergence of the magnetic
potential A and of the magnetic field B, we can see that there is no difference between
the two methods presented. Both methods reach the order of convergence predicted
by the theory.

The use of Nedelec elements, whose degrees of freedom are located on the edges
of the mesh, has a high computational cost due to the bad conditioning of the matrix
representing the bilinear form. This is especially the case for the saddle point formu-
lation since the system to solve is larger than with the regularized formulation due to
the Lagrange multiplier. The resolution of such problems need adapted precondition-
ing techniques to ease the convergence of the iterative solvers, particularly in 3D. One
important condition for those preconditioners to work best is to have the condition
V - j = 0 imposed correctly. As we saw in section 2.3, the HDG method allows us to
control much more effectively this condition than with the CG method. Such precon-
ditioners have been described in [Greif and Schétzau, 2007] or [Hiptmair and Xu, 2007]
and have been implemented in Feel++.

5.1.4 Validation

In this example, we will compute the magnetic field generated by a stranded con-
ductor. The geometry of the conductor is chosen such that we can derive the analytical
expression of the magnetic field.

5.1.4.1 Problem

The conductor Q consists in a rectangular cross-section torus, as in section 4.1.2.1, con-
sidered only in 3D. The geometry also contains an external domain which is an ap-
proximation of R* \ Q.

Name | Description Value | Unit
r; internal radius | 1.107 m
T, external radius | 2.1073 m
H half height 251073 | m

Table 5.1 — Geometrical parameters

The constant current density j, in A/m* can be viewed as an input parameter, or
given by the thermoelectric model.
The boundary conditions are given below:

e A = 0 at the infinity
e A xn =0 onsymetry plane

For simple conductor geometry, analytical expressions of the magnetic field along
the Z-Axis may be found in physics textbooks, like [Jackson, 1999]. The expression of
the magnetic field in R? is more difficult to derive but may be found in several papers.
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As a classical result, we consider only the magnetic field along the Z-Axis, which ana-
lytical expression is given below:

1 5 S =2 t=z+H
B) = 50 |[1og + )] |
2 "="lt=z-H
In figure 5.3, we show the analytical expression and the result of the regularized
formulation along the z-axis. We can see that the results are in accordance with the

expected expression.

— Analytical

= | —Regularized

l L |
0.8 :
0.6 .

B_(T)

0.4 | 2

0.2

= ! ! ! ! ! =
-6 -4 =2 0 2 4 6

z (mm)

Figure 5.3 — Analytical and numerical value of B, along the z-axis

5.2 Biot & Savart

In the case of a steady current j in a conductor Qc, Jean-Baptiste Biot and Félix Savart
discovered in 1820 an equation describing the magnetic induction B. The latter can be
determined in the domain Q,,,,, where Q¢ and Q,,,, does not intersect.

The equation (5.5) can be seen as a Poisson equation, under the conditions that the
magnetic permeability is constant and that we enforce the divergence-free condition
with a Coulomb gauge. Using the general solution of this equation, the Green’s func-

tion G(x,r) = ;—ﬂm, [Jackson, 1999], we can express the magnetic potential A as:

Ho J(r)
AX)= — dr ¥xeQ,,,
0= o fg FEE

where y is the vaccum permeability.

From the definition of B in (5.3), the magnetic field at a point x is given by:

_ Mo J@r) X (x-r)
B(x) = y fQC PE dr VX € Q. (5.27)
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5.2.1 Parallel algorithm

Although the computation of this quantity is straightforward in sequential, if the
domains Q¢ and Q,,, are partitioned, we need to devise a parallel algorithm to com-
pute efficiently B.

Let’s write the partionning of the domains as:

Q= Jo.  and Q.= ]e,
i J

We can parallelize the computation on n processors by splitting the integral on the
Qi
c

Do [C§@) X (x—T1) .
=y 2 22 Vx € QJ 5.28
B(x) ; - fg R xeQl, (5.28)
= Z B(x) VxeQl (5.29)

i=1

Thus, to parallelize the computation, we need to be able to transfer data between the
processors p;."g" in which belongs the degrees of freedom of Q;,,, and all the processors
p¢ in which belongs Q... In parallel computing, namely with mpi, the interprocess

transfers are handled by so-called communicators.

From this, the algoritm reads as:

mgn

1. create subcommunicators { P, plc, ..., S}V, so that processors containing de-
grees of freedom in Q,,,, can share data with processors containing Q¢

2. each p;f’g" shares its degrees of freedom of Q{;,gn in its subcommunicators with all
processors p¢

3. each proc p€ computes Bi(x) for every x in Q/,,,
p i p y 4

4. reduce operation on local contributions B/(x): transfer back the values of B'(x) to
mg

p;*" and sum them
Remark. The computation of B'(x) can be optimized by computing only once the geo-
metrical transformation and quadrature points for every degree of freedom. And when
using Lagrange’s finite elements, three degrees of freedom (in 3D) are in fact associated
with one point, hence we need to do the precomputation only for each point x.

The performances of this algorithm have been tested on Curie supercomputer (TGCC,
France) [Daversin Catty, 2016]. The theoretical speed up should be that with n times
more processors, we gain a factor n in computational time. The speed up is defined as:

tref * nref
t*n

where t,.; and n,., are reference time and number of processors respectively.
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The speed up obtained with this algorithm is shown in figure 5.4. We can see that
with optimized computation of the integrals, we reach the ideal speed-up for any num-
ber of processors.

I
4| ideal 2
— speed-up
3 - |
2 [ |
1 - |
| | | |
50 100 150 200
nb procs

Figure 5.4 — Biot-Savart computation : Speed-up

5.2.2 RB formulation

We want to use the CRB approximation of the thermoelectric problem to be able to
compute the magnetic field B efficiently. For this, we need to consider two cases, one if
the parameters u are experimental (current intensity, water temperature,... ), and one if
the parameters are geometrical. The two cases are presented in the following sections.

5.2.2.1 No geometric parameter

This is the simplest case. We take advantage of the fact that the current density j can
be written in terms of the approximations of o (r, ) and V(r, p):

Mo
o(r,m~ ). By (g, )

mg=1

N
Ve, )~ ) Va(é) ()
g
J ) = = VY ) ~ = Y > VaGpsy, (05, (DVE/(x) (5.30)

n=1 my=1
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Injecting this approximation of j into the Biot & Savart law (5.27) gives:

Rl M

x —rp?
N M
. - ~qm, (DVE] () X (X 1)

= zlwwmwmﬁ@f‘ : dr (5.31)

n=1 my=1 4r Qc IX - I'I

grlzrn(r(x)

Np
= Z Bk(ﬂ)f/f(x) Vx € ngn

k=1

with B(u) = V, ()85, (n) and &7 = €5, fork = (my — )N + nand Ny = NM,,.

The functions &7, having no dependence on y, can be pre-computed during the of-
fline phase. This allows, during the online phase, the computation in real time for any
parameter u by only computing the coefficients V,(u) and 87, (u), and thus Bi(u).

mey

We will test our implementation on the same problem as in section 4.1.2.1 where
we compute the magnetic field B in a sphere centered at (0,0, 0). The parameters are
o,LahT,. We use EIM with a trainset of 1000 parameters, but we will use SER to
compute only N+1 FE solutions. We use the empirical errors ||u, () — u,-1 ()| to choose
the next parameter for the reduced basis, with a tolerance on the mean temperature of
1073, We only need 6 basis to reach this tolerance, thus we only need 7 FE resolutions
with SER instead of 1006.

The convergences for V, T, B are presented in figure 5.5, the relative errors with re-
spect to the FEM solution are computed over 50 parameters chosen randomly. We can

100 1 10tr 1 100f ]
1074 | 11074 8
107° a
1078 L | | 1079 L ‘ ‘ L | | |
2 4 6 2 4 6 2 4 6
N N N
(a) Erroron T (b) Exrror on V (c) Error on B

Figure 5.5 — Mean error (red) and min/max error (blue) for 50 random parameters

see that with only 6 basis we do not exceed 2.107° for B.

5.2.2.2 Geometric parameter (DEIM)

In the case of geometrical parameters, it is more difficult to use the reduced basis
method because of the distance in the denominator in the integral. Indeed if the ge-
ometry of the conductor depends on the parameters y by a geometric transformation
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¢u, the distance between the point x € Q,,,, and a point r € Q¢ also depends on the
parameters pu.

B(X,,u) = @ f Mdr Vx € ngn
A Jp00) X— r)
ko —oVV. J(;ﬂl X (pu(x) — 1

)

- an o 6 (x) = 1P o dr
Thus, using EIM to remove this dependence is not an option, because we would need
to have a different EIM for each point x in ©,,,,. This is simply not possible due to the
number of points in the domain.

The solution is to use the discrete version of EIM, see 3.2.2, to approximate the whole
field B.

Mp
B(x, p) ~ B (x, 1) = > Of(1)af %)

m=1

Using the geometrical transformation presented in section 10.1, figure 5.6 shows dif-
ferent errors on V and B using the discrete version of EIM. Figure 5.6a plots the relative
error of V with respect to the number N of reduced basis used, with DEIM finding the
exact decomposition for the linear and bilinear forms. Figure 5.6b shows the relative
error of B computed on the whole domain Q,,,, using DEIM only to compute V. The
error is plotted against the number of reduced basis used for V. Figure 5.6c presents the
relative error of B¥# computed with DEIM, and using V computed with 25 reduced ba-
sis and DEIM. The relative errors with respect to the FEM solution are plotted against
the number of EIM basis Mp.

T — ‘ T T T 1072 [ T T =
10°2 | min / max || 102 | .
mean \\—,"_—
o Nl ]| 100 1o |
107 L \ \ i} 107 7\ \ \ | 107 | i
0 10 20 0 10 20 0 10 20
N N M
(a) Relative error on V (b) Relative error on B (c) Relative error on BM»

Figure 5.6 — Min, max and mean errors on the fields, V, B and BYz, on 50 parameters

Results with randomly chosen basis, hence the jumps on the errors for V and B. The
error on B”# shows that we do not need a great number of basis for DEIM to reach an
error corresponding to the error on V.

When using EIM, during the online phase we need to solve the problem:
qit) ... qi(ty,) [ O1(w) B(t, u)
e : N : (5.32)
0 qMB(tMB) G)MB(”) B(tMB’”)



82 CHAPTER 5. MAGNETOSTATIC

and in the right-hand side, we can see that we need to compute the value of the mag-
netic field at the points of interpolation t;. This requires to compute an integral on Qc,
which is of high dimension. So, even if we have reduced the cost of computing the
integral on the whole domain Q,,, to compute it only on the few interpolation points,
we lose the real-time computation of the magnetic field.

The idea is to use EQM, presented in section 3.2.4, to compute B(t;, u) with a reduced
set of quadrature points. This way, we may have a real-time computation of the mag-
netic field when using geometrical parameters.

5.3 Conclusion

In this chapter, we presented several ways of computing the magnetic field, either by
the Maxwell equations or by using the Biot-Savart law.

We showed two formulations, saddle-point and regularized for the Maxwell equations
and detailed the corresponding discretization, each giving the expected convergence
rate.

We also described the parallel algorithm used to compute the integral necessary
for the Biot-Savart law, as well as the reduced algorithm to compute it in real time.
When using geometrical parameters, the order reduction is more complex, needing
the combination of DEIM and EQM to reach real-time computation. We showed the
convergence of both methods with respect to the number of reduced basis.



Chapter 6

Linear elasticity model

At full power, the typical constraints within High Field Magnets reach in normal oper-
ation 80% of the material yield strength. The elasticity model is, thus, very important
to ensure that these constraints remain sustainable.

High Field Magnets are, of course, subject to the constraints originating from the
Lorentz forces f = j x B. We also have to consider the thermal dilatation since the
temperature in the magnet may reach more than 100°C in operation. The pressure
induced by the water flow is neglected.

We will first describe the linear elasticity model used, based on [Slaughter and
Petrolito, 2002] where more details can be found. We will then present the Contin-
uous Galerkin formulation with its validation, and finally, the Hybrid Discontinuous
Galerkin formulation.

Contents
61 CGformulation.............. ... . . 85
6.1.1 Verification . . . ... .. ... ... ... 86
6.1.2 Validation . . .. ... ... ... 87
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As Qr is at equilibrium state, the equation of motions becomes the following equi-

librium equation :
V.og+f=0 (6.1)

where :
e 7 is the stress tensor

e f represents the volume forces applied on Q

83
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The quantity we focus on is the displacement vector u, which is the unknown in
which we write the system (6.1).
We have to introduce the tensor of small deformations & :

g= %(Vu + Vvu’) (6.2)

and the Hooke’s law allows to link stress tensor & with tensor of small deformation & :

- E /[ v -
@) = (a s 2VTr(8)I) 6.3)

where :
e Eis Young modulus
e vis Poisson’s ratio
e [ is the identity tensor

We introduce the A and u the Lamé coefficients :

Ev E
=Tva-m ™ ey

which allows us to rewrite (6.3) as:
5(8) = 2ué + ATr(3)I

To take into account the thermal dilatation of the magnet, we need to add a term to the
stress tensor:

5'(5) = Oz'E(g‘) +O=-T = 2,u§+/lTr(§)I—

E
—-or(T = To)l (6.4)

Remark 5. Here, we chose to use the temperature on the same domain as the displace-
ment because we made the hypothesis that we have only small deformations not im-
pacting the computation of the temperature and the other fields of interests. But, to
be more precise, we should use an ALE map to have the temperature in the reference
domain.

For simplicity, we will omit the dependence of & on £ in the following.
We need to complete the system with some boundary conditions:

e where the magnet is attached, we can prescribe the displacement with Dirichlet
conditions:
u=up ondiQp (6.5a)

e pressure forces can be imposed using Neumann conditions:

o-n=g ondiQp (6.5b)
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where 9Q = 0Qp U 0Qp.

To determine if the deformation of the magnet stays elastic or becomes plastic en-
gineers uses yield surfaces. This allows to have a simple criterion which should not
exceed a certain value to know if the magnet is damaged or not. The most common for
isotropic materials are the Tresca and Von Mises criteria.

The Tresca yield criterion, also known as the maximum shear stress theory criterion
[Tresca, 1864] uses the diagonalized stress tensor 6 and is determined as:

_ =d =d =d = =d =
trge = max(|oy; — opl, 109 = 033l 1033 = 0, )
The Von Mises criterion, also known as the maximum distortion energy criterion

[Mises, 1913] can be expressed using the stress tensor ¢ or the diagonalized stress
tensor 5:

1 — i = = i i - - -
vms = \/E ((0"11 —F0n) + (Fn— ) + (633 — 0'11)2) +3 (0'%2 +05; + 0'51)

1, _ _ _ _ _ _
VMg = \/5 ((0"11 —50) + (G — 033)? + (533 —0_'11)2)

6.1 CG formulation

The variational formulation consists in finding u in X such that:

f(:T:ch—fé‘n-go:—ff-cp YoeY (6.6)
Q ples Q

We now need to make appear the displacement vector u thanks to the Hooke’s law
(6.3) in the first component of (6.6):

fa=':Vgo:2,uf§:Vgo+/lfTr(§)I:V<p (6.7)
Q Q Q

We have the following identities:

M
M
)

i} _ 1
Tr(e)=V-u, 1:Vo=V-p, £:Vp= with 5= 5(V<,o + V') (6.8)

Which give us the formulation:

2,uf?;:§+/lf(V~u)(V-<p)—f5'-n-¢:—ff~go Yoe X (6.9)
Q Q 90 Q

Imposing the boundary conditions (6.5a) in a strong form leads to finding u ¢
HIIID’QD(Q) such that:

2,uf§:§+/lf(V-u)(V-<p):—ff-go+f g VgoeHé’QD(Q) (6.10)
Q Q Q oQp
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We also can impose the boundary condition (6.5a) in a weak way by adding penalty
and consistency terms, giving us the following formulation: Find u € H'(Q) such that:

2/xf5:§+ﬂf(V-u)(V~so)+f Yu-p
Q Q 6QDhS

—f GE m)-p- (&(E)-n)-u:—ff-go+f - V€ H'(Q)
oQp oQp Q oQp

6.11)
N GORR
oQp s 0Qp

In the case where we take into account the thermal dilatation and where we impose
the Dirichlet conditions in a strong way, we need to add the following term to the
right-hand side:

E
f Y T —TyV - ¢ 6.12)
Q 1 - 2V

For the weak form of the Dirichlet conditions, add the previous term and the following

to the right-hand side:
—f 5'T-n-uD (613)
9

and the two following terms to the matrix:

—f 5'T-n~gp—f 0='T-n-u (614)
39[) aQD

6.1.1 Verification

To test our implementation of the CG formulation for the linear elasticity, we will
check the convergence orders on a test problem. The geometry is the same as in section
4.1.2.1. In the following A = u = 1, and the exact solutions are:

e in 2D:
u=_—— (sin(mrx) cos(my), cos(mrx) sin(rry))
2
- 1 {2cos(nx)cos(my) - sin(mx)sin(my)
= 7\ =sin(rx) sin(ry) 2 cos(rx) cos(ry)
e in 3D:
u= 2 (sin(mrx) cos(my) sin(nz), cos(mx) sin(mry) sin(nrz), cos(mx) cos(my) cos(nz))
1 % cos(mx) cos(my) sin(rz)  — sin(rx) sin(zry) sin(z) 0
o=- [ sin(rrx) sin(mry) sin(mz) % cos(mx) cos(my) sin(rrz) 0 ]
0 0 —1 cos(mx) cos(ry) sin(rz)
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Figure 6.1 — Exact solution for the displacement in 2D and 3D

The displacement is presented in figure 6.1.

We use Dirichlet boundary conditions on V,, and V, and Neumann boundary condi-
tions and all the other surfaces.

The errors on the displacement and the stress are presented in figures 6.2 and 6.3
respectively.

We can see that the orders of convergence are in agreement with the theoretical
predictions.

6.1.2 Validation

In this example, we consider a solenoid conductor with finite thickness and infinite
length. This allows us to ignore the z components in our equations. We admit that
there is only a radial expansion.

6.1.2.1 Problem

Since we cannot build an infinite geometry, we use a solenoid of length 20 with an
internal radius of 1 and an external radius of 2. The volumic force f take into account
the Lorenz forces but not the thermal dilation, hence f = j x B. The current density j
and the magnetic field B can be seen as input parameters or given by our thermoelectric
and magnetostatic models.

The material properties of the solenoid are presented in the table 6.1.
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Figure 6.2 — Displacement convergence for L2 norm
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Figure 6.3 — Stress convergence for L2 norm
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Name | Description Value Unit
E Young modulus | 128.10° | Pa = kg.m™'.s~*
v Poisson’s ratio 0.33 -

Table 6.1 — Materials

We impose Neumann conditions on all boundaries of the solenoid, except for the
top and bottom, where we will use Dirichlet boundary conditions set to 0 to model the
clamped side of the magnet.

The analytical solution of an infinite solenoid differs from this case because of the
geometry used. We will then only compare the radial displacement at z = 10, to be as
far as possible from the top and bottom of the solenoid.

An analytical solution can be found in [Wilson, 1987] or [Montgomery, 1969], and
interested readers can find more details in them. The idea to find the analytical solution
is to express our quantities in cylindrical coordinates and use the fact that the only
non-null component of the current density is its angular component j;. We can find
the radial component u, of u as solution of:

ﬁ( ou, _&__(1+v)(1—2v)
or rﬁr ro E(l-v)

rjﬁbz
We want to express the solution as
C
u, =Cyr+ =4 u,y(r)
r

where u, is a particular solution. Using boundary conditions we can find the two
coefficients C; and C»:

T+ -2, Ab, \(2—-v rg T,
= g e )5 - - )
Ab. (2v=3\( r2 . r.\
Ta-i\ 78 (r2—r? ri

—r32js (1 +v) Ab, \(2 r.\ Ab, (2v-3 r\
=gy (o2 ()1 -G )

where @ = * and Ab; = b.(r;) — b.(r,).

Using the expresswns for j and B, we can find the particular solution u,. In case of a
Bitter coil, as in section 4.1.2.1, the current distribution is in r;/r and the magnetic field
is linear with respect to r, we find:

C(L+v)(1-2v) | Ab, r\ Ab, r
u,(r) = Ed—) rij L (a)rln( ) (2b(r1)+1( ))rln(rl)}

whereas if the current density is uniform in the coil, we have:

I+ =2v) | n _Abz r\ i Ab: (1 3
up(r)—W”i]el—g(bz(ri)+a—l)(;) SCY—I( )l
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Figure 6.4 — Analytical and computed X component of the displacement

Finally, returning to Cartesian coordinates, the displacement u can be written as:

[cosw)ur(r)) VeV )
u= =
0

sin(Q)u,(r) \/%Mr( J2 + 2)
X +y
0

6.1.2.2 Results

In figure 6.4 are presented the X component of the displacement on the line [0, 1] x {0} x
{10} as well as the error between the analytical solution and computed displacement.

We can see that our model is close to the analytical solution, and the error, even if it
increases when the radius increases, does not exceed 1e™*. We conclude that our model
is valid for this problem.

6.2 HDG formulation

The HDG formulation for linear and non-linear elasticity have been described in [Kabaria
et al., 2014, Qiu et al., 2013].

By rewriting the equation (6.1) as a system of first order equations, we can write the
linear elasticity problem as:

<
Y
Qu Qo
+ |
- M
Il
o O
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with A the compliance operator, which is a bounded, symmetric, positive definite op-
erator over the set of symmetric matrices S (K) c R?:

- 1_ -A
AV = —v

+ —————Tr()I
2u 2p(+2p) e

Using the same notations introduced in chapter 2, the HDG formulation of the prob-
lem is:

(AT h, Vi)a + (W, V - Vo=, vy - m)r = 0
(V- Wia — (tup, wyr - 1l wir = (f, w)g
(O -1, pp))eo — (TUh, fpdeo +(Tly, ) = 0
(Gh -, )y — T, )y T, fy)r,, = {8, M)ty
Oy, ), = (Up, Hp)r,

for all (vy,, wy,, ) € V, x W, x M, where

Vi = {7 € R™Q) i € [PUE)I™ c S(K) VK € Q)
W, = (w € RY(Q) Wi € [P(K)] VK € Q)
M, = {p € RYQ) |k € [Pi(F)]* VF € &)

Remark 6. The symmetry of the elements of V, is enforced in an essential manner in
their definition [Qiu et al., 2013].

6.2.1 Verification

For the verification of the HDG formulation, we use exactly the same problem as
in section 6.1.1. The relative errors in norm L, for the displacement and the stress are
presented in figures 6.5 and 6.6 respectively.

We can see that the orders of convergence are in agreement with the theoretical
predictions, see [Qiu et al., 2013].

6.2.2 Validation
To validate our model, we use the same configuration as in section 6.1.2. We also
compare the X component of the analytical solution on the line [0, 1] x {0} x {10} with

the computed solution. The values are presented in figure 6.7a and the error in figure
6.7b.

We can see that although the error is greater than in CG, it is still acceptable and
thus validate our HDG model.

6.3 Conclusion

In this chapter, we have presented the linear elasticity problem and its CG and HDG
formulations. We have shown that our models converge at the appropriate orders.
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Figure 6.5 — Displacement convergence for L2 norm
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Figure 6.7 — Analytical and computed X component of the displacement

And we have validated our models on a physical case. Although the HDG method is
more demanding in terms of memory, we can be close to the CG results if we increase
the polynomial order.

This third problem, with the thermoelectric and magnetostatic problem, allows us to
have a complete model for our magnet. We can now compute all relevant quantities for
the study of the high field magnets: the temperature, the current density, the magnetic
field and the deformation of the magnet.
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Implementations
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In this part we describe the implementation of the numerical methods introduced
previously using the Finite Element Library in C++ Feel++ [Prud'Homme et al., 2012].
This library is used by a wide range of users, from mechanical engineers in industry,
physicists in complex fluids, computer scientists in biomedical applications to applied
mathematicians. This is made possible by the use of the domain specific embedded lan-
guage (DSEL) as close as possible to the shared mathematical formulation hiding linear
algebra and computer science complexities. The DSEL allows to use simply Galerkin
methods (FEM, SEM, CG, DG, CRB) in 1D, 2D and 3D for arbitrary polynomial orders
on simplices and hypercubes meshes.

This is feasible because Feel++ takes advantage of the newest C++ standard such as
type inference, uses meta-programmation to deal with templates and rely on different
well-known third party libraries. The most prominent amid them are OpenMPI for the
parallelism, PETSc, SLEPc and Eigen for the linear algebra, Boost for different useful
libraries, in particular for the meta-programmation ,and HDF5 to store vectors and
meshes in a parallel fashion.

Best expressivity Best expressivity
using high using high
level language level language
Numerical Physical Numerical Physical
Methods Models Methods Models
Domain
Complexity Specific
of Scientific Embedded
Computing Language
Software for Galerkin
Methods
Computer Algebraic Computer Algebraic
Science Methods Science Methods
Best performance Best performance
using low using low
level language level language

Figure 6.8 — The DSEL offered by Feel++provides high level language to break the
complexity of scientific computing software while keeping the performances of a low
level language.

Feel++ also provides applications, called toolboxes, to solve a variety of problems
using only light configuration files. We started this thesis by reimplementing the exist-
ing classes to use the latest developement of Feel++ and use the toolboxes, easing the
configuration and coupling of the different problems.

The next chapter will describe the classes implemented during this thesis to provide
such a toolbox for the HDG mixed Poisson and mixed Elasticity problems. It has been
realized with the help of Lorenzo Sala, a PhD student at the University of Strasbourg.
The other chapter of this part will focus on the different classes needed for the reduc-
tion of the Biot & Savart problem.
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Chapter 7

HDG Method

In this chapter, we discuss the computational framework implementing the HDG meth-
ods described in chapters 4 and 6. We will first describe the C++ class MixedPoisson
in section 7.1 implementing a mixed Poisson problem and show how to use this class
to solve the problem. Next we do the same for the MixedElasticity class and the
linear elasticity problem.

Contents
701 MixXedPoOiSSOn . . v v v v i v vt b bttt e e e e e e e e e e e e e e e 99
72 MixedElasticity ... ... .. i ittt 104

71 MixedPoisson

To provide a toolbox for the mixed Poisson problem, we create a C++ class called
MixedPoisson, child of the superclass ModelNumerical. This superclass loads all
the information needed for our model, such as the materials used, the boundary con-
ditions and their relation with the mesh by the way of markers.

In Code 7.1, we start by introducing some type definitions needed for the meshes
and the function spaces, in particular:

Dim is the domain dimension

Order is the polynomial order

G_Order is the polynomial order of the geometric transformation
Pdhv_type represents a vectorial discontinuous Galerkin space
Pdh_type represents a scalar discontinuous Galerkin space

Pch_type represents a scalar continuous Galerkin space

Code 7.1 — Type definition for HDG Mixed Poisson

using convex_type = Simplex<Dim,G_Order>;

99
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using mesh_type = Mesh<convex_type>;

using face_convex_type = Simplex<Dim-1,G_Order,Dim>;
using face_mesh_type = Mesh<face_convex_type>;

using Vh_t = Pdhv_type<mesh_type,Order>;

using Wh_t = Pdh_type<mesh_type,Order>;

using Whp_t = Pdh_type<mesh_type, Order+1>;

using Mh_t

Pdh_type<face_mesh_type,Order>;

using Ch_t = Pch_type<face_mesh_type, 0>;
using MOh_t = Pdh_type<face_mesh_type, 0>;
using product2_space_type = ProductSpaces2<Ch_ptr_t,Vh_ptr_t,Wh_ptr_t,Mh_ptr_t>;

Once the types are declared, we can create the mesh on the domain, on the faces of
the Integral boundary conditions for 1 and on the complement of it in the faces of the
domain for the trace p, as well as the product space V} x Wy x M} X Cj,.

Code 7.2 — Creation of the meshes and spaces for HDG Mixed Poisson

M_mesh = loadMesh( new mesh_type);
// Mh only on the faces whitout integral condition

auto

complement_integral_bdy = complement (faces (M_mesh), [this] ( auto const& ewrap ) {

auto const& e = unwrap_ref( ewrap );
for( auto exAtMarker : this->M_IBCList)

{

}

if ( e.hasMarker () && e.marker () .value() == this->M_mesh->markerName (

exAtMarker.marker () ) )

return true;

return false; });

Then we can build the matrix and the vector for the bilinear and linear forms. auto
face_mesh = createSubmesh( _mesh=M_mesh, _range=complement_integral_bdy, _update=0 );
M_Vh = Pdhv<Order>( M_mesh, true);

M_Wh

Pdh<Order>( M_mesh, true );

M_Whp = Pdh<Order+1>( M_mesh, true );

M_Mh

= Pdh<Order>( face_mesh, true );

M_MOh = Pdh<0>( face_mesh );

auto

M_Ch

auto

M_ps

ibc_mesh = createSubmesh( _mesh=M _mesh, _range=markedfaces (M_mesh, ibc_markers),
_update=0 );

= Pch<0>( ibc_mesh, true );

ibcSpaces = std::make_shared<ProductSpace<Ch_ptr_t,true> >( M_integralCondition,
M_Ch);

= std::make_shared<product2_space_type> (product2 (ibcSpaces,M_Vh,M _Wh,M_Mh)) ;

Then we can build the matrix and the vector for the bilinear and linear forms. At
this point, depending on the strategy to solve the problem, monolithic or static con-
densation, we will determine which pattern to use for the matrix. Likewise, we build
the matrix and the vector for the post-process, using a local pattern the problem can
be solved in each cell of the mesh. We also create the block bilinear and linear forms
associated with the matrix and vector.

Code 7.3 — Matrices and variational forms for HDG Mixed Poisson

solve::strategy s = M_useSC ? solve::strategy::static_condensation :

solve::strategy::monolithic;

solve::strategy spp = solve::strategy::local;

auto

pps = product ( M_Whp );

M_A_cst = makeSharedMatrixCondensed<value_type> (s, csrGraphBlocks (*M_ps,

(s>=solve::strategy::static_condensation) ?Pattern: :ZERO:Pattern::COUPLED), *M_backend

)
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M_F = makeSharedVectorCondensed<value_type> (s, blockVector (xM_ps), =*M_backend, false);
M_App = makeSharedMatrixCondensed<value_type> (spp, csrGraphBlocks (pps,
(spp>=solve::strategy::static_condensation) ?Pattern: :ZERO:Pattern: :COUPLED),

backend (), true );
M_Fpp = makeSharedVectorCondensed<value_type> (solve::strategy::local, blockVector (pps),
backend(), false);

auto bbf = blockform2( *«M_ps, M_A_cst);
auto blf = blockforml( *M_ps, M_F );

Next, we show the implementation of the assembly of the system. In particular:
e the core of the HDG matrix in Code 7.4

e the right-hand side in Code 7.5

e the Dirichlet boundary condition in Code 7.6

e the Neumann boundary condition in Code 7.7

e the Integral boundary condition in Code 7.8

We can access the block (i, j) of the bilinear form using integral constant known at
compile time (0\_c for example).

Code 7.4 — Assemble core the matrix for HDG Mixed Poisson

for ( auto consté& pairMat : modelProperties().materials() )

{

auto marker = pairMat.first;
auto material = pairMat.second;
auto cond = material.getScalar (M_conductivityKey, M_paramValues);
// (sigma”-1 3, v)
bbf (0_c,0_c) += integrate (_range=markedelements (M_mesh,marker),
_expr=(trans (idt (u))+id(v)) /cond );
}

// —(p,div(v))_Omega
bbf( O_c, 1_c ) += integrate(_range=elements (M_mesh),_expr=-(idt (p)*div(v)));

// <phat,v.n>_Gamma\Gamma_I
bbf( 0_c, 2_c ) += integrate(_range=internalfaces (M_mesh),
_expr=(
idt (phat) x (leftface (normal (v))+rightface (normal(v)))) );
bbf( O_c, 2_c ) += integrate(_range=gammaMinusIntegral,
_expr=idt (phat) *normal (v)) ;

// (div(j),q)_Omega
bbf( 1_c, O_c ) += integrate(_range=elements (M_mesh), _expr=id(w)*divt (u));

// <tau p, w>_Gamma
bbf( 1_c, 1_c ) += integrate(_range=internalfaces (M_mesh),
_expr=tau_constant =*
( leftfacet ( idt(p))*leftface(id(w)) +
rightfacet ( idt (p)) *rightface (id(w) )));
bbf( 1_c, 1_c ) += integrate(_range=boundaryfaces (M_mesh),
_expr=tau_constant x id(w)*idt (p));

// <-tau phat, w>_Gamma\Gamma_TI
bbf( 1_c, 2_c ) += integrate(_range=internalfaces (M_mesh),
_expr=-tau_constant * idt (phat) =
( leftface( id(w) )+
rightface( id(w) )));
bbf( 1_c, 2_c ) += integrate(_range=gammaMinusIntegral,
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_expr=-tau_constant * idt (phat) * id(w) );

// <3j.n,mu>_Omega/Gamma
bbf( 2_c, O_c ) += integrate(_range=internalfaces (M_mesh),
_expr=( id(l)x (leftfacet (normalt (u))+
rightfacet (normalt(u))) ) );

// <tau p, mu>_Omega/Gamma
bbf( 2_c, 1_c ) += integrate(_range=internalfaces (M_mesh),
_expr=tau_constant * id(l) * ( leftfacet( idt(p) )+
rightfacet ( idt(p) )));

// <-tau phat, mu>_Omega/Gamma
bbf( 2_c, 2_c ) += integrate(_range=internalfaces (M_mesh),
_expr=-sc_param+tau_constant x idt (phat) = id(l) );

Code 7.5 — Assemble right hand side for HDG Mixed Poisson

auto itField = modelProperties () .boundaryConditions().find( "potential");
if ( itField != modelProperties () .boundaryConditions () .end() )
{

auto mapField = (xitField) .second;

auto itType = mapField.find( "SourceTerm" );

if ( itType != mapField.end() )

{

for ( auto consté& exAtMarker : (xitType) .second )

{
std::string marker = exAtMarker.marker () ;
auto g = expr<expr_order> (exAtMarker.expression());

if ( !'this->isStationary() )
g.setParameterValues( { {"t", M_bdf_mixedpoisson->time ()} } );
g.setParameterValues ( M_paramValues );
blf(l_c) += integrate( _range=markedelements (M_mesh,marker),
_expr=inner (g, id(w)) );
}
}
}
itField = modelProperties () .boundaryConditions () .find( "flux");
if ( itField != modelProperties () .boundaryConditions () .end() )
{
auto mapField = (xitField) .second;
auto itType = mapField.find( "SourceTerm" );
if ( itType != mapField.end() )
{
for ( auto const& exAtMarker : (xitType) .second )

{
std::string marker = exAtMarker.marker();
auto g = expr<Dim, 1, expr_order> (exAtMarker.expression());
if ( !'this->isStationary() )
g.setParameterValues( { {"t", M_bdf_mixedpoisson->time ()} } );
blf(0_c) += integrate( _range=markedelements (M_mesh,marker),
_expr=inner (g, id(v)) );

Code 7.6 — Assemble Dirichlet boundary condition for HDG Mixed Poisson

bbf( 2_c, 2_c ) += integrate(_range=markedfaces (M_mesh,marker),
_expr=idt (phat) = id(l) );
blf(2_c) += integrate(_range=markedfaces (M_mesh,marker),
_expr=id (1) rexpr) ;

Code 7.7 — Assemble Neumann boundary condition for HDG Mixed Poisson
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// <3j.n,mu>_Gamma_N

bbf( 2_c, O_c ) += integrate(_range=markedfaces (M_mesh,marker),
_expr=id(1l) *normalt (u) );

// <tau p, mu>_Gamma_N

bbf( 2_c, 1_c ) += integrate(_range=markedfaces (M_mesh,marker),
_expr=tau_constant x id(l) * idt(p) );

// <-tau phat, mu>_Gamma_N

bbf( 2_c, 2_c ) += integrate(_range=markedfaces (M_mesh,marker),
_expr=-tau_constant * idt (phat) * id(l) );
blf(2_c) += integrate( _range=markedfaces (M_mesh, marker),

_expr=id (1) xexpr) ;

Code 7.8 — Assemble Integral boundary condition for HDG Mixed Poisson

// <lambda, v.n>_Gamma_I
bbf( O_c, 3_c, 0, i ) += integrate( _range=markedfaces (M_mesh,marker),
_expr= idt (uIl) % normal (u) );

// —<lambda, tau w>_Gamma_T
bbf( 1_c, 3_c, 1, i ) += integrate( _range=markedfaces (M_mesh,marker),
_expr=-tau_constant * idt (ul) = id(w) );

// <j.n, m>_Gamma_T
bbf( 3_c, O_c, i, 0 ) += integrate( _range=markedfaces (M_mesh,marker), _expr=normalt (u) =*
id(nu) );

// <tau p, m>_Gamma_I
bbf( 3_c, 1_c, i, 1 ) += integrate( _range=markedfaces (M_mesh,marker),
_expr=tau_constant xidt(p) * id(nu) );

// —<lambda2, m>_Gamma_T

bbf( 3_c, 3_c, i, i ) += integrate( _range=markedfaces (M_mesh,marker),
_expr=-tau_constant * id(nu) xidt (ul) );
double meas = integrate( _range=markedfaces (M_mesh,marker),
_expr=cst (1.0)) .evaluate() (0,0);
// <I_target,m>_Gamma_I
blf(3_c,1) += integrate( _range=markedfaces (M_mesh,marker), _expr=gxid(nu)/meas );

Finally, we solve the system either with the static condensation strategy or with
the monolithic one. All the procedure described in section 2.2 is hidden in the solve
method which will call the right method depending on if we have IBC or not. Then,
we retrieve the flux and the potential in the first and second block of the solution re-
spectively.

Code 7.9 — Solve the system for HDG Mixed Poisson

auto U = M_ps—>element ();

bbf.solve(_solution=U, _rhs=blf, _condense=M_useSC, _name=prefix());

M up = U(0_c);
M pp = U(l_c);

At the end, we can solve problem 2.14 to retrieve the post-processed potential.

Code 7.10 — Assemble and solve the post process for HDG Mixed Poisson

auto pps = product ( M_Whp );
auto b = blockform2( pps, M_App);
b( 0O_c, 0_c ) = integrate( _range=elements (M_mesh),
_expr=inner (gradt (M_ppp) ,grad (M_ppp) ) ) ;

auto ell = blockforml( pps, M_Fpp);
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for ( auto consté& pairMat : modelProperties().materials() )
{
auto marker = pairMat.first;
auto material = pairMat.second;
auto cond = material.getScalar (M_conductivityKey, M_paramValues) ;
ell(0_c) += integrate( _range=markedelements (M_mesh,marker),
_expr=-grad (M_ppp) *idv (M_up) /cond) ;

b.solve( _solution=PP, _rhs=ell, _name="sc.post", _local=true);
M_ppp=PP (0_c) ;

auto POdh = Pdh<0> (M_mesh) ;

M_ppp -= M_ppp.ewiseMean (P0dh) ;

M_ppp += M_pp.ewiseMean (POdh);

We list here the main methods that are available in the API provided by Feel++ in
order to use this toolbox:

e mesh (), which allows to access the computational mesh,

e potentialSpace (),fluxSpace (), which allow to access the primal and dual
spaces,

e potentialField(),fluxField (), which allow to access the primal and dual
variables,

e init (mesh=nullptr), which initialize the mesh, spaces, BCs, exporter,... The
user can pass the mesh otherwise it is automatically loaded,

e assembleAll (), which will assemble all the different blocks of the bilinear and
linear form. The user can have more control by calling subfunctions directly, such

asassembleCstPart (),assembleNonCstPart (),updateConductivityTerm (conducti

The last function can be useful if dealing with non-linear conductivity.
e solve (), which solves the system previously built,

e postProcess (), which will assemble and solve the post process system. The

user can have more control by calling subfunctions directly, such as assemblePostProcessCst

assemblePostProcessRhs (conductivity, marker).
e exportResults (), which exports the results asked in the configuration file.

In Code 7.11, we show a simple example of how to use the toolbox.

Code 7.11 — Example of how to use the API for HDG Mixed Poisson

using mp_type = FeelModels::MixedPoisson<nDim, OrderT, GOrder>;
auto MP = mp_type: :New("hdg.poisson") ;

auto mesh = loadMesh( _mesh=new typename mp_type::mesh_type );
MP->init (mesh) ;

MP->assembleAll () ;

MP->solve () ;

MP->exportResults () ;

7.2 MixedElasticity

To provide a toolbox for the mixed elasticity problem, we create a C++ class called
MixedElasticity, child of the superclass Mode 1Numerical. This superclass loads



OO 0NN UT WN -~

—_

7.2. MIXEDELASTICITY 105

all the information needed for our model, such as the materials used, the boundary
conditions and their relation with the mesh by the way of markers.

In Code 7.12, we start by introducing some type definitions needed for the meshes
and the function spaces, in particular:

Dim is the domain dimension

Order is the polynomial order

G_Order is the polynomial order of the geometric transformation
Pdhms_type represents a symmetric matrix discontinuous Galerkin space
Pdhv_type represents a vectorial discontinuous Galerkin space
Pdh_type represents a scalar discontinuous Galerkin space

Pchv_type represents a vectorial continuous Galerkin space

Code 7.12 - Type definition for HDG Mixed Elasticity

using convex_type = Simplex<Dim,G_Order>;

using mesh_type = Mesh<convex_type>;

using face_convex_type = Simplex<Dim-1,G_Order,Dim>;

using face_mesh_type = Mesh<face_convex_type>;

using Vh_t = Pdhms_type<mesh_type,Order>;

using Wh_t = Pdhv_type<mesh_type, Order>;

using Mh_t = Pdhv_type<face_mesh_type,Order>;

using MOh_t = Pdh_type<face_mesh_type, 0>;

using Ch_t = Pchv_type<face_mesh_type, 0>;

using product2_space_type = ProductSpaces2<Ch_ptr_t,Vh_ptr_t,Wh_ptr_t,Mh_ptr_t>;

Once the types are declared, we can create the mesh on the domain, on the faces of
the Integral boundary conditions if needed and on the complement of it in the faces of

the domain for the trace @, as well as the product space Vi, Xx W, x M.

Code 7.13 — Creation of the meshes and spaces for HDG Mixed Elasticity

M_mesh = loadMesh( new mesh_type);
// Mh only on the faces whitout integral condition
auto complement_integral_bdy = complement (faces (M_mesh), [this] ( auto const& ewrap ) {
auto const& e = unwrap_ref( ewrap );
for( auto exAtMarker : this->M_IBCList)
{
if ( e.hasMarker() && e.marker().value() == this->M_mesh->markerName (
exAtMarker.marker () ) )
return true;
}

return false; });

auto face_mesh = createSubmesh( _mesh=M_mesh, _range=complement_integral_bdy, _update=0 );

M_Vh = Pdhms<Order>( M_mesh, true );
M_Wh = Pdhv<Order>( M_mesh, true );
M_Mh = Pdhv<Order>( face_mesh, true );
M_MOh = Pdh<0>( face_mesh );

auto ibc_mesh = createSubmesh( _mesh=M_mesh, _range=markedfaces (M_mesh, ibc_markers),
_update=0 );
M_Ch = Pch<0>( ibc_mesh, true );

auto ibcSpaces = std::make_shared<ProductSpace<Ch_ptr_t,true> >( M_integralCondition,
M_Ch);
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M_ps = std::make_shared<product2_space_type> (product2 (ibcSpaces,M_Vh,M_Wh,M _Mh));

Then we can build the matrix and the vector for the bilinear and linear forms. At
this point, depending on the strategy to solve the problem, monolithic or static con-
densation, we will determine which pattern to use for the matrix. We also create the
block bilinear and linear forms associated with the matrix and vector.
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Code 7.14 — Matrices and variational forms for HDG Mixed Elasticity

solve::strategy s = M_useSC ? solve::strategy::static_condensation :
solve::strategy::monolithic;
solve::strategy spp = solve::strategy::local;

M_A_cst = makeSharedMatrixCondensed<value_type> (s, csrGraphBlocks (*M_ps,
(s>=solve::strategy::static_condensation) ?Pattern::ZERO:Pattern: :COUPLED), *M_backend

) 4
M_F = makeSharedVectorCondensed<value_type> (s, blockVector (xM_ps), =*M _backend, false);

auto bbf
auto blf

blockform2( *M_ps, M_A_cst);
blockforml ( *M_ps, M_F );

Next, we show the implementation of the assembly of the system. In particular:
e the core of the HDG matrix in Code 7.15

e the right-hand side in Code 7.16

e the Dirichlet boundary condition in Code 7.17

e the Neumann boundary condition in Code 7.18

We can access the block (i, j) of the bilinear form using integral constant known at
compile time (0\_c for example).

Code 7.15 — Assemble core the matrix for HDG Mixed Elasticity

for ( auto consté& pairMat : modelProperties().materials() )
{
auto material = pairMat.second;
auto lambda = material.getScalar ("lambda");
Feel::cout << "Lambda: " << lambda << std::endl;
auto mu = material.getScalar ("mu");
Feel::cout << "Mu: " << mu << std::endl;
auto cl cst (0.5) /mu;
auto c2 —lambda/ (cst(2.) * mu * (cst(Dim)«*lambda + cst (2.)*mu));
Feel::cout << "cl: " << mean(_range=elements (M_mesh),_expr=cl) << std::endl;
Feel::cout << "c2:_" << mean(_range=elements (M_mesh),_expr=c2) << std::endl;

bbf( 0_c, O_c ) +=
integrate (_quad=_Q<expr_order>(),_range=elements (M_mesh),_expr=(cl*inner (idt (sigma),id(v)))
)
bbf( 0_c, O_c ) +=
integrate (_quad=_0Q<expr_order>(),_range=elements (M_mesh),_expr=(c2+trace (idt (sigma)) trace (id(v)))
)i

bbf( O_c, 1_c ) +=

integrate (_quad=_Q<expr_order>(),_range=elements (M_mesh),_expr=(trans (idt (u))~div(v)));
bbf( 0_c, 2_c) += integrate (_quad=_Q<expr_order>(),_range=internalfaces (M_mesh),
_expr=-( trans (idt (uhat))*leftface (id(v)*N())+

trans (idt (uhat) ) *rightface (id(v)*N())) );
bbf( 0_c, 2_c) += integrate(_quad=_Q<expr_order> (),_range=gammaMinusIntegral,
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bbf( 1_c, O

bbf( 1_c, 1_c) +=
integrate (_quad=_Q<expr_order>(),_range=internalfaces (M_mesh),_expr=-tau_constant =

bbf( 1_c, 1_

bbf( 1_c, 2_

bbf( 1_c, 2_

bbf( 2_c, O

// BC
bbf( 2_c, 1

bbf( 2_c, 2

c) +=
c) +=
c) +=
_c) +=
_c) +=

_c) +=

_expr=-trans (idt (uhat)) = (id(v)*N()) );

_c) += integrate (_quad=_Q<expr_order>(),_range=elements (M_mesh),

_expr=(trans (id(w)) ~divt (sigma)));

( leftfacet(
pow (idv (H) ,M_tauOrder) xtrans (idt (u))) xleftface (id(w)) +
rightfacet (
pow (idv (H) ,M_tauOrder) xtrans (idt (u))) *rightface (id(w)
))) i
integrate (_quad=_0Q<expr_order> (), _range=boundaryfaces (M_mesh),
_expr=-(tau_constant =
pow (idv (H) ,M_tauOrder) xtrans (idt (u)) «id(w)));
integrate (_quad=_0Q<expr_order>(),_range=internalfaces (M_mesh),

_expr=tau_constant =*
( leftfacet (trans (idt (uhat)))*leftface(
pow (idv (H) ,M_tauOrder) »id (w) )+
rightfacet (trans (idt (uhat)))*rightface (

pow (idv (H) ,M_tauOrder) «xid (w) )));
integrate (_quad=_0Q<expr_order> (), _range=gammaMinusIntegral,
_expr=tau_constant * trans(idt (uhat)) =

pow (idv (H) ,M_tauOrder) xid (w) );

integrate (_quad=_0Q<expr_order>(),_range=internalfaces (M_mesh),

_expr=( trans(id(m))* (leftfacet (idt (sigma) *N() )+
rightfacet (idt (sigma) *N())) ) );

integrate (_quad=_Q<expr_order>(),_range=internalfaces (M_mesh),

_expr=-tau_constant * trans(id(m)) » (leftfacet(
pow (idv (H) ,M_tauOrder) idt (u) )+
rightfacet (
pow (idv (H) ,M_tauOrder) idt (u)
))) i

integrate (_quad=_0Q<expr_order>(),_range=internalfaces (M_mesh),
_expr=sc_paramxtau_constantxtrans (idt (uhat)) xid (m)
( leftface( pow(idv (H),M_tauOrder) ) +
rightface ( pow(idv (H),M_tauOrder) )));

Code 7.16 — Assemble right hand side for HDG Mixed Elasticity

auto itField =

if (itField
{

auto mapField =

modelProperties () .boundaryConditions () .find("stress");

!'= modelProperties () .boundaryConditions () .end() )

auto itType

if ( itType

{

for

{

(xitField) .second;

= mapField.find ("SourceTern") ;

= mapField.end() )

( auto const& exAtMarker : (xitType) .second )

auto g = expr<Dim,1l,expr_order> (exAtMarker.expression());
'this->isStationary () )
g.setParameterValues( { {"t", M_nm mixedelasticity->time()} } );

if |

blf(

1l_c)

+= integrate (_quad=_Q<expr_order> (), _range=elements (M_mesh),
_expr=trans(g)xid(w));
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Code 7.17 — Assemble Dirichlet boundary condition for HDG Mixed Elasticity

bbf( 2_c, 2_c) += integrate (_quad=_Q<expr_order>(),_range=markedfaces (M_mesh,marker),
_expr=trans (idt (uhat)) % id(m) );
blf( 2_c ) += integrate(_quad=_Q<expr_order> (), _range=markedfaces (M_mesh,marker),

_expr=trans (id(m)) *g) ;

Code 7.18 — Assemble Neumann boundary condition for HDG Mixed Elasticity

bbf( 2_c, O_c) += integrate(_quad=_Q<expr_order>(),_range=markedfaces (M_mesh,marker ),
_expr=( trans (id(m))* (idt (sigma) *N()) ));

bbf( 2_c, 1l_c) += integrate(_quad=_Q<expr_order>(),_range=markedfaces (M_mesh,marker),
_expr=-tau_constant * trans(id(m)) = (
pow (idv (H) ,M_tauOrder) xidt (u) ) );

bbf( 2_c, 2_c) += integrate(_quad=_Q<expr_order>(),_range=markedfaces (M_mesh,marker),
_expr=tau_constant * trans(idt (uhat)) * id(m) = (
pow (idv (H) ,M_tauOrder) ) );
blf( 2_c ) += integrate(_quad=_Q<expr_order>(),_range=markedfaces (M_mesh,marker),

_expr=trans (id(m))* g );

Finally, we solve the system either with the static condensation strategy or with
the monolithic one. All the procedure described in section 2.2 is hidden in the solve
method which will call the right method depending on if we have IBC or not. Then,
we retrieve the stress and the displacement in the first and second block of the solution
respectively.

Code 7.19 — Solve the system for HDG Mixed Elasticity

auto U = M_ps -> element();

bbf.solve (_solution=U, _rhs=blf, _condense=M_useSC, _name= this->prefix());

M up = U(0
M_pp =

|
(e
o

We list here the main methods that are available in the API provided by Feel++ in
order to use this toolbox:

e mesh (), which allows to access the computational mesh,

e displacementSpace (),stressSpace (), which allow to access the primal
and dual spaces,

e fieldDisplacement (),fieldStress (), which allow to access the primal
and dual variables,

e init (mesh=nullptr), which initialize the mesh, spaces, BCs, exporter,... The
user can pass the mesh otherwise it is automatically loaded,

e assembleCstPart (), assembles the matrix of the linear elasticity system, in-
cluding the matrix contributions due to BCs,

e assembleNonCstPart (), assembles the right-hand side of the linear elasticity
system,

e solve (), which solves the system previously built,

e exportResults (), which exports the results asked in the configuration file.
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In Code 7.20, we show a simple example of how to use the toolbox.

Code 7.20 — Example of how to use the API for HDG Mixed Elasticity

typedef FeelModels::MixedElasticity<nDim,OrderT> me_type;

auto ME = me_type::New("hdg.elasticity");

auto mesh = loadMesh( _mesh=new typename me_type::mesh_type );
ME -> init (mesh);

ME->assembleCst () ;

ME->assembleNonCst () ;

ME->solve () ;

ME->exportResults( mesh );
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Chapter 8

Biot-Savart Reduced basis

Feel++ had already a model order reduction framework at the start of this work [Veys,
2014], with the following features:

e CRBM for elliptic and parabolic linear coercive problems
— primal/dual problem
- coecivity bounds evaluation with min-6 and SCM
— offline/online residual evaluation
— efficient error bounds on the output
e CRBM for non affine linear coercive problems
- EIM and error estimators
e RBM for non linear and multiphysic problems
- EIM + SER

First we present the CRB framework of Fee1++ in figure 8.1, where the main classes
are:

e ModelCrbBase is used to implement a new RB model. Each new RB applica-
tion is implemented in a new class inherited from ModelCrbBase. It provides
the necessary interface with the RB framework. The user can then specity the
characteristics of the model: geometry, FE space, parameter space, affine decom-
position... ModelCrbBase also comes with some options used to set up the RB
algorithm (transient or steady, linear or not, ...).

e CRB class executes the suitable offline algorithm and produces the RB space which
is eventually stored in a database.

e CRBModel provides the FEM resolution algorithms specific to each problem.

e EIMand DEIM are used to recover an affine approximation for non-affine or non-
linear problems.

111



T W=

[e)}

112 CHAPTER 8. BIOT-SAVART REDUCED BASIS

Affine Terms ]l—}[ Affine Decomposition Error Estimators

[ Non-Affine Terms ]i

e RB Space Xy
e Sampling Sy

e Precomputed Structures

Figure 8.1 — Main classes in Fee1++RB framework

During this thesis, we helped the implementation of composite reduced spaces for
multiphysics problems [Wahl, 2018]. After that we implemented the reduced algo-
rithm for Biot-Savart and the Empirical Quadrature Method, which are detailed re-
spectively in section 8.1 and 8.2.

8.1 Biot & Savart Reduced

The implementation of the algorithm to reduce the computation cost of the Biot-Savart
law (see 5.2.2.1) is presented in this section.

In order to be able to use our Biot-Savart code in an existing plugin for Paraview,
we wanted to mimic the CRB classes. So we created a class Biot SavartRB which
would use some of the interface of the class CRB to call the actual model and manage
the database. It would also be the object launching the offline procedure as shown in
Code 8.1. We first call the CRB offline procedure to create the reduced basis associated
with the thermoelectric problem, and then we compute the integral for each reduced
basis for V and EIM basis for o.

Code 8.1 — Offline phase of Biot SavartRB

M_model->crbOffline();

// try to reload elements
if( M_rebuild )

{

Feel::cout << "Database_for_biotsavart_not_found, computing_the_database" <<
std::endl;
for( int n = 0; n < M_model->Qb(); ++n )
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for( int m = 0; m < M_model->mMaxB(); ++m )
{
M_N = M_model->computelIntegrals( n, m );
this->saveDB() ;
this->saveRB () ;

}
}

Feel::cout << tc::green << "BiotSavart_dimension:_ " << M_N << tc::reset << std::endl;

As in the CRB framework, the class implementing the actual model inherits from
ModelCrbBase. It manages all the order reduction of the thermo-electric problem, by

creating the corresponding object and retrieve the parameter space Dmu, as shown in
Code 8.2.

Code 8.2 — Construction of BiotSavart

M_teModel = boost::make_shared<thermoelectric_model_type> (prefix);
M_crbModel = boost::make_shared<crbmodel_ type>( M_teModel, stage);
M_crb = crb_type::New( M_teModel->modelName (), M_crbModel, stage);
M_ser = boost::make_shared<ser_type>( M_crb, M_crbModel );

M_Dmu = M_crb->Dmu () ;
M_N = 0;

We then initialize all the necessary information to build our basis, including the
materials properties and where to compute the magnetic field and the electric field.
Once we initialize the mesh and the FE spaces, we have to setup the communicators to
manage the parallel computing of the integrals. Code 8.3 shows all those steps.

Code 8.3 — Initialization of BiotSavart

M_propertyPath = Environment::expand( soption(prefixvm( prefix,"filename").c_str()) );
M_modelProps = boost::make_shared<prop_type> (M_propertyPath);
M_elecMaterials = M_modelProps->materials () .materialWithPhysic("electric");
M_magnMaterials = M_modelProps->materials () .materialWithPhysic ("magneto");
M_mesh = M_teModel->mesh () ;
M_XhCond = M_teModel->functionSpace();
std::vector<std::string> magnRange;
for ( auto const& mat : M_magnMaterials )
magnRange.push_back ( mat.first );
M_Xh = functionspace_type::New( _mesh=M mesh, _range=markedelements (M_mesh, magnRange) );
M_XN->setModel ( this->shared_from_this() );
this->setupCommunicators () ;

To compute the actual reduced basis for Biot-Savart, we have to get the correspond-
ing basis for V and o~

Code 8.4 — Retrieve the reduced basis

auto g_m = M_teModel->eimSigmaQ (mat, m);

auto xi_n = M_crbModel->rBFunctionSpace () ->template
rbFunctionSpace<0> () ->primalBasisElement (n);

auto bgm = M_Xh->element () ;

As we need to compute the integrals for all points in the magnetic box, we have to
find all coordinates of the dofs. As we use Lagrange elements, we know that to each
point corresponds three dofs corresponding to the x,y,z components of the vectorial
basis. Thus we can use one every three dofs as they are sorted geometrically, as shown
in Code 8.5.
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Code 8.5 — Retrieve the coordinates of the magnet box

std::vector<Eigen::Matrix<double,3,1>> coords( dofSize/3 );
// fill vector of coordinates

for(int d = 0; d < dofSize; d+= 3)

{

auto dof_coord = M_dofMgn.at (i) [d].template get<0>();
Eigen::Matrix<double, 3, 1> coord;

coord << dof_coord[0],dof_coord[1l],dof_coord[2];
coords [d/3] = coord;

We then use lambda _e1v and the evaluate function to compute the value of the
integral at each coordinate, without having to recompute all the geometrical transfor-
mation each time.

Code 8.6 — Computing the integrals on the coordinates

auto dist = inner( _elv-P(),_elv-P(),
mpl::int_<InnerProperties::IS_SAME|InnerProperties: :SQRT>());

auto mgnField
= integrate (_range=markedelements( M_mesh, mat),
_expr=-coeffxidv (g_m) *cross (trans (gradv(xi_n)),
_elv-P() )/ (distxdistxdist),
_quad=_0Q<1>() ).template evaluate (coords);

Once the reduced basis for Biot-Savart computed, during the online phase, we com-
pute the coefficients for a parameter mu by multiplying those of V, vtN, and those of
o, betaSigma. This step is presented in Code 8.7.

Code 8.7 — Computing the coefficient during the online phase

vectorN_type beta (M_N);
int index = 0;
for( auto const& mat : M_elecMaterials )

{

auto betaSigma = M_teModel->eimSigmaBeta (mat.first, mu, vtN);
for( int m = 0; m < M_teModel->mMaxSigma( mat.first ); ++m)
{

for( int n = 0; n < M_crb->dimension(); ++n )

{

beta (index++) = betaSigma (m) *vtN(n);

}

}
}

return beta;

8.2 Empirical Quadrature

In this section, we will present the three classes needed to implement the Empirical
Quadrature Method presented in section 3.2.4. First, the linear program solved during
the offline phase is managed by the class OptimisationLinearProgramming, in-
terfacing the GLPK library [GLPK, 2020]. Then, we need to be able to evaluate each ex-
pression at each quadrature point, for this we implemented the ExpressionEvaluator
class. Finally, the EmpiricalQuadrature class, uses the ExpressionEvaluator
objects to fill the OptimisationLinearProgramming object and solve it. Those
classes are summarized in figure 8.2.
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Figure 8.2 — Classes for the Empirical Quadrature Method

8.2.1 Class OptimisationLinearProgramming

This class interfaces the GLPK library, so at the initialization, we create the problem,
give it a name and chose if we want to minimize or maximize our objective function.
We then use a g1lp_smcp object to set all the parameters such as the tolerances, the time
or iteration limits, or the type of scaling via command line options. The initialization
is presented in Code 8.8.

Code 8.8 — Initialization of GLPK

M_pb = glp_create_prob();

glp_set_prob_name( M_pb, name.c_str () );
glp_set_obj_dir( M_pb, direction );

M_params = new glp_smcp;

glp_init_smcp (M_params) ;

M_params—->msg_lev = ioption("glpk.verbosity");
M_params->meth = ioption ("glpk.method");
M_params->tol_bnd = doption("glpk.tolerance-bounds");
M_params->tol_dj = doption("glpk.tolerance-dual");
M_params->tol_piv = doption("glpk.tolerance-pivot");
M_params—->it_lim = ioption("glpk.iteration-limit");
M_params->tm_lim = ioption("glpk.time-1limit");
M_params—->presolve = ioption("glpk.presolve");
M_scaling = ioption("glpk.scaling");

To add a row in our problem, we need to give it a name and the bounds of the
variables.

Code 8.9 — Add a row

int r = glp_add_rows( M_pb, 1);
glp_set_row_name( M_pb, r, name.c_str() );
glp_set_row_bnds( M_pb, r, type, 1lb, ub );

To add a column to our problem, we need to give it a name, the bounds of the
variables and the associated coefficient.

Code 8.10 — Add a column

int ¢ = glp_add_cols( M_pb, 1);
glp_set_col_name( M_pb, c, name.c_str() )
glp_set_col_bnds( M_pb, c, type, lb, ub )
glp_set_obj_coef( M_pb, c, coef );

7
7

To fill the matrix of constraints, we need three arrays: row indices of each element
are stored in the array ia, column indices are stored in the array ja, and numer-
ical values of corresponding elements are stored in the array ar. We then call the
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glp_load_matrix function with the problem, the size and these arrays as detailed
in Code 8.11.

Code 8.11 — Set the constraints

int k = 1;
int R = matrix.size();
if( R ==0)
return;
int C = matrix[0].size();

int ia[l+CxR], Jjal[l+CxR];
double ar[1+C=*R];
for( int r = 0; r < R; ++r)
{
for( int ¢ = 0; ¢ < C; ++c)
{
ialk]
jalk]
ar[k]
++k;

r+l1;
c+l;
matrix([r] [c];

}
}
glp_load_matrix( M_pb, CxR, ia, ja, ar );

The last function consists in solving the problem. Before that, we call glp_scale_prob

to choose between the possible choices: geometric mean scaling, equilibration scaling,
round scale factors to nearest power of two, or skip the scaling. Alternatively, we can
let GLPK choose the appropriate scaling automatically. After that we can apply the
simplex method to our problem to solve it, as shown in Code 8.12.

Code 8.12 — Scale and solve the problem

glp_scale_prob (M_pb, M_scaling);
return glp_simplex (M_pb, M_params);

8.2.2 C(lass ExpressionEvaluator

This class manages the evaluation of an expression at the quadrature points. As
the expressions can depend on parameters or can be non-linear, their type cannot be
known beforehand, so we created a base class with the necessary interface, presented in
Code 8.13. Then we use templated subclasses by the type of the expression, depending
of the dependence of the class on parameters or FE field.

Code 8.13 — Interface for the evaluator

virtual void init (int o) = 0;

virtual void update (element_type consté& elt) = 0;

virtual bool update (parameterelement_type const& mu) = 0;
virtual int nPoints() = 0;

virtual double weight (int i) = 0;

virtual double eval(int g, int comp) = O0;

virtual int order () = 0;

int component () { return M_comp; }

To evaluate an expression on a point, we need to have the context of this point,
meaning the element in which it belongs. We also need to construct the evaluator
using the geometric map and this context. Finally, as described in Code 8.14, we can
also retrieve the quadrature weights of the quadrature rule.

Code 8.14 — Initialization
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auto
auto

const eltForInit = boost::unwrap_ref (xboost::get<l>(this->M_range));
g = _Q(order);

using iim_type =

vf::detail::integrate_im_type<decltype (this->M_range),decltype (M_expr),decltype (q),decltype (q) >;

auto ims = iim_type::im(qg, q,M_expr);

auto im = ims.first;

auto pts = im.points();

auto gm = eltForInit.gm();

auto geopc = gm->preCompute ( pts );

M_ctx = gm->template context<vm::POINT|vm::JACOBIAN|expr_type::context>( eltForInit,
geopc ) ;

M_evaluator = std::make_shared<evaluator_type> (M_expr.evaluator ( mapgmc (M_ctx) ) );

M_weights = im.weights();

When we want to evaluate the expression on a specific point, we first need to update
the context and the evaluator with this element.

Code 8.15 — Update for a new element

auto
M_ct
M_ev

const& elt = unwrap_ref( eltWrap );
x—>update ( elt );
aluator->update ( vf::mapgmc( M_ctx ) );

After update the context and the evaluator, we can evaluate the expression by pass-

ing the

index of the quadrature point in the element, and the component that we want

to evaluate. We also need to multiply by the Jacobian, given by the context.

Code 8.16 — Evaluation at an interpolation point

retu

rn M_evaluator->evalqg(comp, 0, q) *M_ctx->J(q) ;

The dependence on a parameter M_mu and a FE function M_u is managed by the use
of reference. When the reference of the parameter or of the function is updated, the
expression is automatically updated.

Code 8.17 — Reference for the parameters and field

parameterelement_type& M_mu;

func

tion_element_type& M_u;

8.2.3
This

Class EmpiricalQuadrature
class links the previous two, by collecting the ExpressionEvaluator cor-

responding to the set of expressions g, and creating the linear programming prob-
lem. Each expression is added to a vector of ExpressionEvaluatorBase via the
method addExpression templated by the type of the expression and possibly by
the type of the FE function. In each of these functions, the corresponding subclass of
ExpressionEvaluatorBase is instantiated and added to the collection.

Code 8.18 — Adding expressions

template<typename ExprT>

void addExpression (ExprT& ex, int comp = 0);
template<typename ExprT>
void addExpression (ExprT& ex, parameterelement_type& mu, int comp = 0);

template<typename ExprT, typename FctT>
void addExpression (ExprT& ex, parameterelement_type& mu, FctT& u, fct_type<ExprT,FctT>

const& £, int comp = 0);
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Once everything is initialized, we can compute all the evaluations of the expres-
sions. For each parameter in the trainset, we update each expression with it, then for
each element on the range, for each expression we update the context and evaluator
with the element, and we evaluate the expression for each quadrature points. Those
loops are presented in Code 8.19.

Code 8.19 — Evaluation of all the quadrature points

for( j = 0; 3 < M_J; ++3)
{

for(m= 0; m < M_M; ++m )
M_exprevals[m]->update (M_trainset->at (Jj));

n = 0;

for( auto consté& eltWrap : M_range )

{

auto const& elt = unwrap_ref( eltWrap );
if ( elt.processId() != Environment::rank() )
continue;

for(m=0; m < M_M; ++m )
{
M_exprevals[m]->update ( eltWrap );
for ( uintlé_type g = 0; g < nPts; ++g )
{
eval[m] [J] [ntg] = M_exprevals[m]->eval (g, M_exprevals[m]->component ());
res[m] [j] += M_exprevals[m]->weight (q)*xeval[m] [J] [n+g];
}
}
n += nPts;

Once we have all the evaluations, we create the linear program. We first add the
rows corresponding to all the expressions for each parameter of the trainset, with the
bounds set to the evaluations multiplied by the weights plus/minus the tolerance. We
then add the columns of the problem corresponding to the optimized weights, with a
coefficient of 1 and lower bounded by 0. Next we set the matrix with our evaluations
and finally we solve our problem to find the non-zero weights for our set of expres-
sions. This procedure is detailed in Code 8.20.

Code 8.20 — Solve the linear program

auto glpk = OptimizationLinearProgramming( GLP_MIN, M_prefix );

for( int m = 1; m <= M_M; ++m )
for( int j = 1; J <= M_J; ++3 )
glpk.addRow ( (boost::format ("x_%1%%2%") %m%Jj) .str(), GLP_DB, res[m-1][j-1]-M_tol,
res[m-1][j-1]+M_tol );

for( int n = 1; n <= M_N; ++n)
glpk.addColumn( (boost::format ("p_%1%")%n).str(), 1.0, GLP_LO, 0.0, 0.0 );

std::vector<std::vector<double> > eval2 (M_MxM_J);
for(int m = 0; m < M_M; ++m)
for(int 3 = 0; j < M_J; ++3)
for(int n = 0; n < M_N; ++n)
eval2 [m*M_J+7j] .push_back (eval[m] [Jj][n]);
glpk.setMatrix (eval?);

int e = glpk.solve();
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In this part, we will show results on geometries of real magnets used at the LNCMI.
Such geometries are obtained through CAD softwares, such as Salome [Ribes et al.,
2017]. Specific plugins have been developed in order to create the different parts of
a magnet, the helices, the rings linking them and the inlet and outlet for the electric
current. Creating only the geometry can take several hours, and once done, the mesh
is generated by MeshGems, which is integrated in Salome.

The first fully coupled model of resistive high field magnet on such geometries has
been described in [Daversin Catty, 2016] and [Daversin et al., 2016a] [Daversin et al.,
2016b]. During this work, more systematic simulations were carried out with a special
focus on validations. The main goal here is to achieve more reliable models by using
actual data from magnets in operation and by comparing results with experimental
data and data from the magnet monitoring system. The main results obtained will be
presented on Chapter 9. We will show how the use of HDG method may improve the
quality of the simulation and how CRB methods can be used in this context.

Finally, in Chapter 10, we will explore the potential of CRB methods applied to a
shape optimization problem. This final application can open the path to the develop-
ment of high field magnets with an enhanced homogeneity for the solid state NMR
scientific community.
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Chapter 9

Identification of Cooling parameters

As previously presented, High Field Magnets are electromagnets powered with up to
31 KA to deliver up to 37 tesla. To dissipate the heat produced by the Joule losses,
the magnets are cooled by a water forced flow (up to 140//m’ with a pressure drop of
25 bars). Magnets are actually composed of a poly-helices insert, and a bitter insert
disposed in a concentric way. The poly-helices insert is the innermost one. Each insert
is set into a separate housing with a specific power supply and cooling system. In the

sequel, we will refer to “tranche” for these separate systems.
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Figure 9.1 — Hydraulic circuit schema with localization of the tensors

Such environment (water and high pressure) makes it difficult to instrument the
magnets. The only available measures, depicted in figure 9.1, come from:

e voltage taps on the connection ring between consecutive tube for the poly-helices
insert,
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e water temperature probes at the inlet and outlet of the cooling circuit,
e flow rate sensor.

On the figure 9.2a, the voltage taps disposed on the BP plateau are circled in red.
Once the insert is totally assembled, they are in contact with the rings connecting two
consecutive helices. On figure 9.2b is shown the monitoring of a magnet during oper-
ation, with the values of the different sensors.

Field -

From | Aprll, 2017 To | Aprli, 2017

Ucoill6: 105.72V  »

Tout: 28.92°C |

= Tinl: 13.60 °C F

| « Field: 0.64T [

14:45 14:50 14| Tuesday, Apr 11, 15:00:30-15:00;39 |

(a) Tension sensors (b) Logs of magnet monitoring system

Figure 9.2 — Monitoring Magnets

In addition to these data, we also have access to:
e the total voltage drop V,
e the total electric power P,

e and the field factor f, i.e. the ratio of the magnetic field B,(0) at the magnetic
center over the input current /.

f is experimentally obtained by measuring the magnetic field profile along the mag-
net Oz axis at a given current. Note that this actually relies on the hypothesis of linear
dependency of B versus I.

The magnet is actually operated by setting the input current /. In practice, the user
requests a value of B,(0) on a console which, in turn, sends an order to power supply
to deliver a current / = B,(0)/f. During this operation, the monitoring system receives
data from the voltage taps U;, water temperatures probes (7, T,.) and flow rate Q
Sensor.

The control system relies on these data to determine if the operating magnet is safe
or not. More precisely it checks the deviation dRO0; of the resistance measured for each
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voltage tap (i.e. R0; = 4) from a reference value. A heuristic threshold of 3% is con-
sidered as an indicator of a wrong behavior. Once this threshold is reached, a signal
is sent to power supply, leading to a controlled power shutdown. This means that I is
driven to 0 in a controlled manner (typically in roughly a tenth of second).

The reference values for RO; are determined during the magnet commissioning fol-
lowing this process:

e For I, in a set of input current values

e Measure U per helix (or couple of helices)
e Compute R =¥

e Repeat for new I,,, until 30 kA is reached

Then, a fit for each R as a 2nd order polynomial of I is computed. This fit will also
be useful to have an estimate of the mean temperature < 7' > of the helix (or couple of
helices):

R=RI=0)(1+a(<T >-Ty))
with T a reference temperature (generally 20 C).

In a first example, we will consider a magnet in operation during a steady state. The
simulations will be carried out with several heat exchange cooling models. The goal
is to find the cooling parameters that would provide the results that match best the
control/command voltage measurements.

Using the best cooling model according to what has been found in the first exam-
ple, we will simulate the commissioning of a magnet. The objective, here, is to find
estimates for the field factor f and the reference resistance for each voltage taps.
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9.1 A Magnet in operation

As stated in introduction, we consider in this section an actual magnet configuration.
The setup, we model, is a so-called plateau. The input data - i.e. input currents and
voltages, inlet water temperature - are retrieved from the control/monitoring system
log file corresponding to the experiment selected.

The objective of this study is to find the water cooling parameters that gives the
voltage drop per helices that best match the measured data.
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9.1.1 Water temperature and heat exchange coefficients

Since modeling the thermohydraulic problem is out of the scope of this study, the
cooling is modeled by Robin conditions on the temperature field, of the type n(T - T,),
as seen in chapter 4. These parameters - namely 4 the heat exchange coefficient and 7,
the water temperature - are not known precisely.

Indeed, as seen in the figure 9.1, if we have access to the flow rate and the inlet tem-
perature for each tranche, we only have the outlet temperature for the whole magnet,
that is an average between the water coming out respectively from the Polyhelix and
the Bitter insert.

We need to determine the temperature of the water 7, and the heat transfer coeffi-
cient & that provide the lowest error between measured and computed electric poten-
tial.

We consider different correlations for the heat exchange coefficient:
e Montgomery [Montgomery, 1969]:

uO.S
h = 1426 (1 + 0.015T,,) o2

h

e Colburn [Colburn, 1933]:

_KTONu _ KT

h
Dy, Dy,

with @ =0.023,n = 0.8,m = 0.3

e Dittus [Dittus and Boelter, 1985]:
same as Colburn but with @ = 0.023,n = 0.8, m = 0.4

e Silberberg [Silberberg et al., 2009]:
same as Colburn but with @ = 0.015,n = 0.85,m = 0.3

Since the Nusselt number Nu depends on water temperature and pressure, we retrieve
these data from the monitoring system. It also depends on the water velocity, which
is not available directly. So we assume that the water velocity is the same per channel,
given by the ratio of water flow divided by the total section of the cooling channels. The
temperature elevation d7,, along each channel I is directly obtained by the calorimetric
balance:

[ (T = T,)ds

9.1
pCpv,,S ©-1)

Several types of water temperatures are then used:

e a constant temperature in all the channels:

TWJ' = Tm + dTW/2
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e a global gradient of temperature with z,,;,, and z,,,, the minimum and maximum
of the whole magnet:

Tw,i = Tin + dTw(Z - Zmin)/(zmax - Zmin)

e a gradient of temperature per channel with the actual channel’s length:

All these configurations have also been tested with dT,, and & computed separately
for each channel or in a unique way for all channels. Those represent 24 different
configurations.

9.1.2 Modeling a plateau

We ran the simulation on a 14 helices insert, where a voltage tap per helix has been
implemented and two additional temperature probes were added in connection rings
on either HP and BP side. This configuration corresponds to an experiment carried out
in April 2017 : the magnet ran at an input current [, of 22148.2 A.

We will compare:

e the voltage tap measurements on HP and BP sides (14 measurements)
¢ the temperature measurement in the rings H2H3 and H3H4

An image of the electric potential and the temperature on the 14 helices of the mag-
net can be seen in figure 9.3. The sensors are represented as red dots.
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(a) Electric potential (b) Temperature

Figure 9.3 — Actual magnet in operation at 1=22148 A
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9.1.2.1 Continuous Galerkin

To reach the requested state, we run the code iteratively until we reach the value I, and
dT,, does not change between two iterations. The stopping criterion is set to 0.01%.
The computation has been realized on a cluster, using 2 compute nodes, each with 24
cores on 2 sockets (Intel Weon E5-2680 v4 2.40GHz). The mesh has 22 million elements,
and each function space has 4.3 million degrees of freedom. Using Picard algorithm, it
takes around 500s per iteration for I, and dT,, and it takes at least 3 iterations to reach
convergence of those values.

The results for the voltage taps are presented in Figures 9.4 for the constant water
temperature, with 4 and dT,, computed only once for all the channels. The Figure 9.5
shows the results for the gradient of temperature with the channel’s actual lengths.
Note that the voltage tap 3 is not shown as it was not functional at the time of the
experiment.
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Figure 9.4 — Errors on the tension for CG and constant water temperature

As expected, when modeling the temperature more accurately, we obtain better re-
sults. We can see that we overestimate the tension in most of the helices. But, for the
Montgomery and Dittus correlations, we retrieve the measured values with less than
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Figure 9.5 — Errors on the tension for CG and gradient water temperature

4% of error.

With the Dittus correlation, the temperatures computed are 284.66 K at HP and 302.35
K at BP, whereas the measured values are 287.95 K and 305.35 K respectively. This
means that we have less than 1% of error on the temperature.

9.1.2.2 Hybrid Discontinuous Galerkin

For the HDG model, we use the integral boundary condition to impose directly the
value of Iy. The computation has been realized on the same cluster than in the previous
chapter, on the same number of cores. The mesh was coarser than in the previous
case, it has 3.3 million elements, the discontinuous vectorial space for the flux has
39 million dofs, the discontinuous scalar space for the potential has 13 million dofs
and the discontinuous scalar space for the trace has 22 million dofs. Using Picard
algorithm, it takes around 1600s to solve the problem.

The results for the gradient of temperature with the channel’s actual lengths are
presented in figure 9.6 and a comparison for the Dittus correlation between CG and
HDG is shown in figure 9.7.
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Figure 9.6 — Errors on the tension for HDG

We can see that the Dittus and Montgomery correlations give once again the best
results, less than 4% of error for Dittus, even if the errors are slightly above the ones
obtained using the CG discretization. For the temperature, we have very similar results
with the CG discretization, 284.73 K at HP and 302.20 K at BP, whereas the measured
values are 287.95 K and 305.35 K respectively. This means that we have less than 1% of
error on the temperature.

9.1.2.3 Reduced order model

Even if we have small errors for all helices, we noticed that the voltage taps on the 10,
11 and 13 th helices present higher errors than the others. This can be due to the state of
the magnet on which the measurements have been done, indeed this magnet was not
new and thus could have deformed during previous experimentations, thus leading to
wrong estimations of the heat transfer coefficients.

Here we will use the model described in section 4.3 to find the heat transfer coefficients
and the temperature of the water per channel that allows us to be as close as possible
to the measured values.
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Figure 9.7 — Comparison of the errors on the tension between CG and HDG

Problem

Here, we fix the parameters o, @, L, Vp with the values used in the precedent section.
Thus, the parameters of our reduced model are i; and T?, for i = 1, ..., 14, the heat trans-
fer coefficient and water temperature for each channel. The temperature will range
from the inlet temperature to the outlet temperature given by the monitoring system,
whereas the coefficients will range around 25% of the Montgomery correlation.

We need to solve an optimization problem where we want to minimize the follow-
ing function:
14 m m m
f([J) _ Z |Ul _mUi | " |THP ;Tle " |TBP _mTBpl
U} Tl Tl

(9.2)

i=1
where U; and U!" are respectively the tension at the tap i computed and measured, and
Tup, T}, Tgp and T}, are the temperature on the HP side computed and measured,
and the temperature on the BP side computed and measured.

For this problem, we have 28 parameters, and 29 different materials (14 helices, 13
rings to connect them, and the inlet and outlet of current), and thus 59 EIM approxi-
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mations. With so much EIMs and dofs, the creation and storing of the matrices take
more than 500Go of memory, so it is not viable to use this strategy.

As an alternative, we are investigating the use of DEIM, in order to group all EIMs,
and/or to restrict the parameters to only a few helices.

The results will be available soon.

9.2 Magnet Commissioning

Before setting a polyhelices magnet into operation, two experiments are carried out to
respectively measure the factor field of the new magnet (i.e. the ratio between the mag-
netic field value at the center of the magnet and the input current) and to record the
resistance of a helix or a couple of helices as a function of the input current. Schemat-
ically these resistances data will then be used to control the magnet behavior. Devia-
tions from these recorded values above a given threshold indicate that some problems
are occurring into the magnet. This will trigger an alert leading to a controlled magnet
shutdown.

The monitoring of the current during the commissioning is shown in figure 9.8, where
we can see different plateaus with their intensities used.

-10*
3 [T T ]

I(A)

!
A\ e o Lo} \}
SN SN

> & O ©
N L9 .9 U9
I

{\
Q
\4/3.

e
,\43.

Figure 9.8 — Current for the first tranche of a magnet over time

So far, this operation was performed without any prior calculations except for the
simulation of the polyhelices magnet at full power. Following the validation of our
numerical model on the simulation of a magnet plateau, we have tried to reproduce
numerically the commissioning experiments.

In standard operation the water flow Q in each tranche is dependent on the input
current / on the corresponding magnet. More precisely, the pump rpm V,,,,,, is function
of I. We recall that a tranche corresponds to a magnet. In the subsequent simulation
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we only consider the polyhelices magnet. We assume that Q is simply proportional
to Vjump. Similarly the pressure drop in the tranche P is assumed to be proportional
to Vyump- It is to be noted that this is a rough approximation of the cooling hydraulic
circuit. To mimic the commissioning, we will run HiFiMagnet simulations at various /
with a Dittus correlation (see section 9.1.1) per cooling channel. The water temperature
in each cooling channel will be considered constant and equal to the mean temperature,
ie. (T, +dT,)/2. T; is the input water temperature. The heat coefficients and dT,, per
cooling channels are computed from calorimetric balances for each input current.

Field Factor

For the field factor, we will use Biot-Savart to compute the z component of the magnetic
tield at the center of the magnet. In CG, we need to loop over the difference of potential
to approximate the current I wanted, we then compute j as —oVV. In HDG, we can
directly impose the current I using the Integral Boundary Condition, and we have
directly access to j.

30 |~ CG (8.8588 - 107™) 1 30| HDG (8.856 - 107%)
— Exp (8.892-107%) — Exp (8.892-107%)
20 1 20
e =)
m aa)
10 [ 1 10
0 8 0
| | | | | | | |
0 1 2 3 0 1 2 3
intensity (A) 104 intensity (A) 104
(a) CG (b) HDG

Figure 9.9 — Field factor experimental vs numerical

The experimental value of the field factor for the magnet used is 8.892¢7* tesla/A.
In CG, we find 8.8588¢—4 T/A, which gives an error of 0.37%, whereas using HDG,
we find 8.856¢* T/A, which gives an error of 0.40%, as presented in figure 9.9. We
conclude that both discretizations can be used to reproduce numerically the commis-
sioning experiments, even with a coarser mesh for HDG.

Resistance per couple of helices

Actual setup of the monitoring system only record the voltage taps per couple of he-
lices. During commissioning we record the resistance per couple of functions of I.
These values, as explained in introduction, will serve as a reference. In operation, resis-
tance values are compared to this reference to track deviation further than a threshold.
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Using results from previous simulations, we can easily have access to the resistance
per couple of helices. Figure 9.10 shows the experimental vs numerical resistance for
the first couple of helices, both in CG and HDG, whereas figure 9.11 shows the same

for the last couple.

30 o~ Numerical 30 [~ Numerical |
—=— Experimental —=— Experimental
20 20 - A
>
10 - 10 - A
0 0 2
0 1 3 0 1 3
1(A) 10% 1(A) -10*
(@) CG (b) HDG
Figure 9.10 — Resistance of couple 1: experimental vs numerical
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Figure 9.11 — Resistance of couple 7: experimental vs numerical

For the first couple of helices, we can see that we are on good agreement, both in
CG and HDG, with the experimental values of the resistance. But for the last couple
of helices, the computation does not coincide to the experimental data, especially for

high intensity.

A possible explanation is that the commissioning of the magnets are done relatively
quickly, a few minutes, due to the cost of electricity and in order to keep a constant
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temperature of the water from the river. The hypothesis is that it is sufficient to reach
a plateau, where the dynamic effects are over, and we can use a static model for the
simulation. If that is the case for the first couple of helices, it seems that this hypothesis
does not hold for the last couple. It can be due to the fact that the last helices are much
more massive than the first ones, and so have a higher inertia, taking longer to reach
the plateau than the other helices.

9.3 Conclusion

In this chapter we presented an application of our models to identify the cooling pa-
rameters that were used in an experimentation conducted at the LNCMI. In particular,
we saw the importance of the choice of the correlation for the heat exchange parameter
h, with the Dittus and Montgomery ones leading to the best results. It allowed us to
retrieve the experimental values with an acceptable error, less than 4% for the tensions
and less than 1% for the temperature.

We also retrieve the control parameters of the field factor and the resistance of the mag-
net for both methods. If for the first helices, the parameters are retrieved accurately, it
is less accurate for the last helices. We think that the static model might be not enough
to understand correctly what is going on during the commissioning, and a dynamic
model could be more accurate in this case.

When trying to enhance the accuracy of our parameters with the use of the reduced
basis method, we saw the difficulty of scaling up to real geometries. Naively using the
method on such problems induce a huge memory cost, leading to the use of alternative
strategy, such as DEIM, or splitting the problems on several helices.

This application, nonetheless, showed that our models can be used by the LNCMI to
control efficiently the magnets used in experimentation.
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Chapter 10

Geometrical optimization

The use of the reduced order method allows us to compute a large number of simula-
tion for different parameters. This gives us the possibility to do optimization or control
that would not have been possible with a full order model.

Contents
10.1 Homogeneity optimization . . . ... ... .. .. ............ 137
10.2 Problem . . . ... .. . . e e e 139
103 Results . . . . . oo i it e e 141

10.1 Homogeneity optimization

For NMR solid state physic applications, users are interested in having a magnetic field

as homogeneous as possible within the experiment zone. The typical homogeneity

maXXEQ”l n BZ(X) . - . .
h=— s — 1 of our magnets is about 107 in a 1 cm® whereas users are looking
MiNgcq,,, B:(X)

for 10°°.

So at the LNCMI, a focus is made in reaching a homogeneous field in the region of
interest. Following an idea of C. Trophime and A. Janka, we want to modify the shape
of the helical cut by applying a geometric transformation, and perform an optimization
of this transformation to have the best homogeneity possible.

The shape of the helix is modified by using an angular torsion as described in Figure
10.1. The angle of the torsion is controlled by a Bezier curve «(z). The control points py
of the curve are the parameters of the optimization p.

Gu(1) = ) Biopi= Y Ch(1 - 0" p (10.1)
k=0 k=0

In fact we need to rescale z so that the helices are comprised between 0 and 1 in «, and
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Figure 10.1 — Description of the geometric transformation

that @ = 0 if we are outside the height of the helices:

0 ifz<z,orz>z
ORI b ’ (10.2)
ay, (E) else
To assure continuity, we impose py = p, = 0in the control points, so that u = (py,. .., ps-1).
The geometric transformation is then written as:
X xcos(ay(z)) +ysin(a,(z))
Gu |y | =|—xsin(eu(2)) + ycos(a,(z)) (10.3)
Z Z
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10.2 Problem

So the weak formulation reads:

f oVV - -Vpy + f kVT -Vor + f hT or
Pu(Q) u(Q) $uTc)

—f 0((VV-n)sz>v+(V90v-n)V)—f o— chv
¢u(LUl0)

éu(T1Ul0) hr

:f (O'VV-VV)¢T+f hTW¢T—f aVD(V¢V.n)+f oVpL
$u(Q) 6u(TC) 6u(T0) 6u(To) hr

" H

To be able to do the computation on a reference mesh, we need the Jacobian and its
inverse. Since a depends on z, we first need to define its derivative:

oay,

)= S (e - pOBE (= (10.4

Ry =2

2L (2).

For the sake of readability, we will note al’,(z) 0z

And we have:

cos(au(z))  sin(au(z))  a;(2)(—xsin(a,(z)) + y cos(@u(z)))
Jg, = |—sin(@u(z)) cos(au(z)) a,(2)(—xcos(au(z)) — y sin(au(z))) (10.5)
0 0 1

cos(au(z)) —sin(@u(z)) —ya,(2)
J;: = |sin(au(z)) cos(u(z)  xa,(z) (10.6)
0 0 1
gl = 1 (10.7)

With this geometric transformation, the weak formulation writes as:

fga(w'J‘ZJ)'(V9"V'J¢?J)|J¢,I|+L’<(VT'J<Z) (Vor - J; )|J¢,,|+fr hT¢r |1,
C
_LUFOG((VV.J;,}.n)90v+(V<pv.J;ﬂ1.n) V) |J¢”|_fr,ur(,a%vw |74,

=fga(VV-J;) (Vvv-J, )|J¢#|+f hTwer |Js,| (10.8)
_f O'VD(VQOV J )|J¢”|+f O'VDthOV|J¢”|
I'o F

Using EIM for the right hand side o (VV : Jq;yl) : (VV : depl) and for J,! such that:

My M,
o (V-7 (YW 2 Y Bhal, T R Y B Q (10.9)
m=0 m=0



140 CHAPTER 10. GEOMETRICAL OPTIMIZATION

we get the following affine decomposition:

M; M,
I ANAN) fg (V- Q) (Vv - Q) |, | +k > BrGoB o) fg (VT - Q,) - (Vor - O |7,

m,[=0 m,[1=0

WA (VV - Qu-m gy + (Voy - Qu-m) V) |Jy,| - f ahlwv |74,
m=0 ;U 1Ulo F
+h f Tor|Js,|
I'c
My M,
=30 > HlwBoplw) [ ol V-0V 0|+ it [ erls]
k=0 m,I=0 c

My
—aVp ) ) f (Vo - Qn 1) [y, | + oV f Y ||
m=0 T'o To hF

Another simpler way is to use the discrete EIM and its matrix version MDEIM, see
section 3.2.2 to write the linear and bilinear form (10.8) directly respectively as:

My Mp
aw,vip) ~ Y Baan  foip) ~ > BhG L (10.10)
m=0 m=0

This reduces the number of terms in the affine decomposition, and in practice, it is able
to find the exact decomposition of the matrix and vector.

Once we have the electric potential, we want to use the method seen in 5.2.2.2 to
determine the magnetic field in the region of interest, a sphere of radius 6mm in the
middle of the magnet.

A $u(Qc) |X - l’|‘
—oVV - T X (3u(%) = 1)
= o P ﬂ3 |J¢ﬂ|dr
4n Joc |pu(x) — 1]

As explained in 5.2.2.2 we need to use the discrete version of EIM to approach this
integral and as seen in 3.2.4, we can use the empirical quadrature method to avoid the
need of computing the integral respectively for every point in the region of interest and
for every point in the magnet.

The homogeneity is defined as:

maxyeq,,, B:(X, i)

- - 10.11
Minyeq,,, B:(X, ) ( )

hp(p) =

And the problem is to find the parameters u such that the homogeneity is minimal:

fi = arg min hp(u) (10.12)

ueP
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10.3 Results

We will focus on a magnet with 4 helices, and a sphere box at its center. The two
innermost helices will be optimized to maximize the homogeneity, and the two out-
ermost helices will be used to provide a background magnetic field, they will not be
optimized. The original geometry, clipped for visualization purposes, is presented in
tigure 10.2.
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Figure 10.2 — Original geometry

We performed the optimization with the software NLopt [ Johnson, Steven G., ].
NLopt is “a free/open-source library for nonlinear optimization, providing a common
interface for a number of different free optimization routines available online as well
as original implementations of various other algorithms.” The difficulty for us is that
we do not know the gradient of our objective function, so we have to use derivative
free algorithms, which are less effective than gradient base algorithms. On a simplified
problem, we computed the homogeneity for parameters between the initial shape and
the optimized one. We used a linear combination of the parameters u, with p, the ini-
tial parameter and p; the optimized parameter, we used u = p, + %( p1— po)- The figure
10.3 shows the continuity of the homogeneity and it seems to be convex.

The other variant of optimization algorithm is the global/local class. A global al-
gorithm will try to find the maximum or minimum over a given set of parameters,
whereas a local algorithm will focus on local optimum.
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Figure 10.3 — Homogeneity between initial shape (py) and optimal shape (p;)

In order to take advantage of the local algorithm, we need to have an idea of where
to search for the optimum. Thus, we first use a global algorithm to find the global
parameter space and then we use the global optimum as starting point for the local
algorithm. The global algorithm used is DIRECT [JONES et al., ], which search the
domain by systematically dividing it into smaller and smaller hyperrectangles in a
deterministic way. For the local optimization, we use COBYLA [Powell, 1994], “it con-
structs successive linear approximations of the objective function and constraints via a
simplex of n+1 points (in n dimensions), and optimizes these approximations in a trust
region at each step”.

Because it is unlikely that the global optimization reach the required tolerance, ei-
ther for the objective function or the parameters, we need to limit the number of it-
erations possible. We chose to set this limit to 1000 iterations, since from our experi-
mentations, the subdomain found at this point was enough to start the local algorithm,
which took 150 iterations to find the optimum.

Due to the high number of dofs in the magnet, using the Empirical Quadrature Method
was not possible, the number of constraints of the linear program exceeded the limit
of GLPK. We are currently looking to interface other software which would be able to
solve such large linear program, but the following results were obtained without the
use of this method, thus by computing the magnetic field at each interpolation point
on the magnet with all the quadrature points.

Each finite element evaluation of the homogeneity, including solving the electric prob-
lem and computing the magnetic field, took approximately 120s, whereas the reduced
evaluation took 10s. Performing the 1150 evaluations necessary to the optimization
would have taken more than 38 hours, whereas with the reduced algorithm, it took
only 3 hours.

The figures 10.4a and 10.4b show respectively the original z component of the mag-
netic field in the sphere and the optimized one.



10.3. RESULTS 143

> b— >

BM BM

7.6e+00 7569 7.56 7.561 7.562 7.563 7.564 7.565 7.566 7.567 7.5687.6e+00 7.3e+00 7.31867.3188 7.319 7.31927.31947.31967.3198 7.32 7.32027.3204  7.3e+00
| | | | | | | | |

(a) Initial magnetic fied in the sphere (b) Optimised magnetic field in the sphere

Figure 10.4 — Magnetic field in the sphere

The figure 10.5 shows the differences between the initial (in blue) and the optimal
(in red) cuts of the helices.

And the table 10.6 summarizes the initial and optimized quantities. We can see that
the loss of magnetic field intensity is very limited, less than 0.001%, but the minimum
intensity is much closer to the maximum, leading to an improvement of the homogene-
ity by a factor 26.

initial optimal
min [B,| 7.31521 7.33091
max B, 7.33913 7.33181
e — 1 ]3.23698 x 107 | 1.22054 x 107

Figure 10.6 — Initial and optimal homogeneity

In this chapter, we showed an application using a wide range of methods in order
to make usable a procedure of geometrical optimization in the context of a high field
magnet. We use the reduced basis method in combination with DEIM and EQM to
decrease the time needed for the necessary evaluation of the minimum and maximum
of the magnetic field. Unfortunately, to scale the method up to such problems, we still
need to find a way to solve the linear program for so many constraints, the use of other
software than GLPK is investigated. But even without EQM, we can reduce greatly
the time needed for the evaluation, and reach interesting results, which could be even
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Figure 10.5 — Initial (blue) and optimal (red) cuts

improved by using more parameters or more helices. Those results can be used by the
LNCMI to enhance the homogeneity of the magnets produced.




Conclusion and Outlook

Conclusion

This thesis built on the work already done in the HifiMagnet project by C. Daversin,
aiming to ease the maintainability of the existing models and to have more precise
and effective models. The effort was made in order to help the LNCMI to use those
methods in their workflow to build better magnets, or better understand their inner
workings.

The first part of the thesis consisted of rewriting the models to use the latest feature
of Feel++ and the use of Json files to ease the configuration of the models.
We then implemented the HDG method in Feel++ and created toolboxes for the ther-
moelectric and elasticity problems. This method permits to control the flux fields di-
rectly, such as the current density, the magnetic field, or the stress, thus having better
physical properties, such as the conservation of the current. In particular, we develop
the Integral Boundary Conditions, allowing us to be as close as possible to the actual
experimental conditions at the LNCMI, by imposing the current intensity instead of
the difference of potential. In order to be able to scale up to real geometries, we needed
to implement a special partitioning strategy, and the static condensation, which would
decrease greatly the computational cost of the method.

Next, we wanted to improve the efficiency of the method by using a order reduction
method. We chose the Reduced Basis Method, since it is well adapted to problems dis-
cretized with the Finite Element Method and provide an efficient offline/online strat-
egy. We had to create the reduced model for the thermoelectric problem and imple-
ment the order reduction for Biot-Savart. We also helped to the implementation of the
Discrete Empirical Interpolation Method in the reduced order framework of Feel++,
which is very convenient when dealing with complex geometrical parameters or prob-
lem with many EIMs. To reduce the cost of the computation of Biot-Savart, the Em-
pirical Quadrature Method was also implemented and integrated in the reduced order
framework of Feel++. If the preliminary results on this method are encouraging, we
still need to find a solution to scale the method up for larger problems. All of those
methods have been combined to have near real time computation of the magnetic field
in a high field magnet.

Finally, we used the methods at our disposal in two applications that can be used by
the LNCMI to improve the quality of the magnets produced or ease their operations.
We confronted our models to experimental data from the LNCMI, searching to identify
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the cooling parameters corresponding to the experiment. We found that the correlation
used for the heat exchange coefficient is important, leading to an error of less than 4%
for both the CG and HDG models. We also accurately retrieved the field factor and the
resistance of the magnet, used to control the intensity needed and to detect anomalies
during the experiment. The use of the order reduction to optimize further those pa-
rameters were complicated by the size of the problem and the number of parameters,
but alternative strategies are implemented to solve this issue.

The second application consisted in optimizing the cuttings of the inner helices in order
to have a better homogeneity inside the magnetic box. It implied the use of geomet-
rical parameters, leading to the use of all methods presented previously (RB, DEIM,
EQM, SER), to reduce the cost of the optimization. The results motivate the use of this
method with more parameters in order to achieve a significant improvement of the
homogeneity in the magnets, providing a lead for their construction by the LNCMIL

Outlook

The HifiMagnet project will continue to improve and develop new methods to help
the LNCMI by using the simulation.

First, from a mathematical point of view, we can add the HDG model for the Maxwell
equations, enabling the computation of all the physics with HDG. HDG could also be
used inside the reduced basis framework, allowing the same control over the reduced
flux fields than with the full model. And the Maxwell and Elasticity problems could
also be reduced using the RB method, which would open other applications needing
real time computations of the magnetic field inside the materials of the magnet and/or
the deformation of the magnet.

The modelization of the problem can also be improved, first by using dynamic mod-
els, in order to see the evolution of the different quantities over time, an internship
is currently working on the subject. Then, we could fully modelize the hydraulics
involved in the cooling of the magnet, it would necessitate solving a Navier-Stokes
equation for the water flowing through the magnet. And to be even more precise, we
should use an ALE map to compute the thermoelectric and magnetostatic problems,
in order to take into account the deformation of the magnet.

Finally, the methods developed during the HifiMagnet should be more integrated
for the LNCMI engineers, who should be able to launch a simulation in the cloud
from their desktop station, using the work done in the MSO4SC European project. The
model order reduction methods should also be available from the MOR_DICUS library,
a FUI project aiming to industrialize the use of such methods.

And of course, the project should continue to develop other applications of interest for
the LNCML
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Appendix A

Hydromorpho

This part details a side project realised during a CEMRACS (2015). This event consist
in a 6 modeling weeks where Phd students from several horizons gather to work on
one project. We propose to couple the Exner equation with the Stokes equations to
model the bedload sediment in geophysical flows. This work is a preliminary study to
directly model the hydrodynamic flow by the unsteady Stokes equation instead of the
classical shallow water equation. We focus in this proceeding on the coupling applying
fluid structure interaction approach to morphodynamical behavior. In other words, we
follow the approach of fluid interaction models replacing the structure equation by the
Exner equation. The aim of this work is to validate the proposed procedure. These
equations are solved by finite element method using the library Feel++.
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HYDROMORPHO: A COUPLED MODEL FOR UNSTEADY STOKES/EXNER
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Abstract. We propose to couple the Exner equation with the Stokes equations to model the bedload
sediment in geophysical flows . This work is a preliminary study to directly model the hydrodynamic
flow by the unsteady Stokes equation instead of the classical shallow water equation. We focus in
this proceeding on the coupling applying fluid structure interaction approach to morphodynamical
behavior. In other words, we follow the approach of fluid interaction models replacing the structure
equation by the Exner equation. The aim of this work is to validate the proposed procedure. These
equations are solved by finite element method using the library FEEL++.

Résumé. Nous proposons de coupler I’équation d’Exner avec les équations de Stokes afin de modéliser
le transport des sédiments par charriage. Ce travail est une étude préliminaire pour modéliser le flux
hydrodynamique par les équations instationnaires de Stokes a la place du choix classique des équations
de Saint-Venant. Ici, nous nous concentrons sur 'utilisation d’une approche interaction fluide structure
pour le couplage, c’est-a-dire remplacer I’équation de structure par I’équation d’Exner. Le but de ce
travail est de valider la procédure proposée. Ces équations sont résolues par la méthode des élements
finis en utilisant la bibliotheque FEEL++.

INTRODUCTION

Many hydrodynamic studies have been done to understand and predict the dynamics of sediments at the
bottom of flows which is a significant and complex process for many geophysical situations. Morphodynamics
modelling is a broad subject whose principles can be found in several references [34], [35]. We can distinguish
two types of sediment transport, the suspended load and the bedload. In this proceeding, we focus on the
bedload transport and its impact on the hydrodynamics. The difficulty remains in the necessity to couple the
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sediment transport models with the hydrodynamic models, and then to develop a robust and stable numerical
method.

On the one hand, the sediment transport is usually modeled by the classical Exner equation [37] and several
laws of transport have been proposed (see [21] to have details on some classical laws) by physical arguments or
closure relations. On the other hand, models as shallow water equations are used to model the hydrodynamics,
and recently in [12,21] a model derived from the Navier-Stokes equations that has an energy balance.

Concerning the numerical methods that have been established for these models, the main numerical schemes
are developed for the hyperbolic systems with source terms for the hydrodynamic flow (see [9], [25]). Therefore,
finite volume schemes are applied for the shallow water system [1,2,23,38]. The problem lies in the coupling
of the numerical schemes. Indeed, in the shallow water models, the topography is a source term and the Exner
equation gives the evolution of the bottom in terms of the fluid velocity. Then, two strategies are distinguished,
the splitting one and the non-splitting one (see [4]). The splitting methods are easier to implement but generate
instabilities in specific situations (see [14]). On the contrary, more complicated models, for instance involving
relaxation, have to be used to take into consideration the fully coupled model [3,29].

Notice that the shallow water model is based on a hydrostatic assumption. It is deduced from the Navier
Stokes equations, neglecting the vertical acceleration (see [23]). Many other free surface models have been
developed to take into account non-hydrostatic effects with vertically averaged models: see [8,10, 11, 18, 32].
Contrariwise, for this study we choose to conserve the z coordinate in our model, which raises the question of
time-depending domain when the bathymetry changes with time: this coupling between fluid motion (including
vertical effects) and domain evolution is at the core of this paper.

This objective being stated, we start with the simplest possible model, a 2D (z — z) Stokes equation. We

couple this equation for the fluid with the Exner model since our computational domain moves as times goes
by. We choose to use the Grass law for the bedload formula (see Equation (10)) which is one possible law
among others. As for the time coupling between hydrodynamical and morphological processes, we choose to use
a monolithic scheme rather than a splitting method: such refinements (that can prove to be very important,
see [14]) are beyond the scope of our work.
Let us now focus on the main feature of this work: the use of fluid-structure interaction techniques (see [13,26])
for the coupling between Stokes and Exner equations. From the numerical viewpoint, we decided to use finite
elements and the open software Feel++ [39-41] that are well adapted to fluid-structure interaction (ALE
implementation, see [26]) and parallelization for large 3D computations.

The article is organized as follows, the first part is devoted to the description of the fluid model and the
sediment model at the bottom. In a second part, it is explained why a method like the ALE is necessary to
couple the models. The third part establishes a complete ALE formulation of the Stokes-Exner model. Then, a
variational formulation is given with the different boundary conditions that we explore. Finally, some numerical
results are presented to evaluate the model and the method used to solve the problem.

1. THE MODEL

In this part, we introduce various equations for our coupled system. Section 1.1 is devoted to the unsteady
Stokes equations (dimension 2, z — z) that we supplement with appropriate boundary conditions. Section 1.2
is dedicated to the bottom boundary condition, located at the (moving) boundary where the fluid model is
coupled with the Exner equation for bedload. Before recalling the complete coupled system in section 1.4, we
present in Section 1.3 the ALE implementation of our model.

We start with a model domain (¢) and a specific boundary to represent the topography. We consider
the domain as a moving domain depending on the bottom. Let us introduce the domain with the following
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definitions:
Q) ={(z,2) eR? | 0<z<l, b(z,t)<2z<1} (1)

where | > 0 is the cavity length and b,(z,t) is the bottom topography in = at time t. We also denote by
T(t) = Tin(t) UTue(t) UTs UT,(E) the boundaries (see Figure 1):

Fin(t) = {0} X [bz(oat)v 1]a

Foui(t) = {l} X [bz(lvt)v 1]7

Iy =10, x {1},

Lp(t) = {(x,2) € R? s.t. 2z =b,(a,t),z € [0,]}.

rs

ngp,
Q(t)
Tin(t) Tout(t)

Bottom \ by (x,t)

FIGURE 1. Definition of the domain

The coupled model leads to solving the non-steady Stokes problem in the fluid domain Q(t) and the Exner
equation to give the boundary I'p(¢t). The issue is to model the fluid process in interaction with the sediment
transport at the bottom. In the following sections, we describe the equations chosen for the fluid in the domain
Q(t) with usual boundary conditions for the boundary I'. Then we propose to use Exner equation to make the
boundary I'y, move.

1.1. Hydrodynamical Model
We consider the unsteady Stokes problem on the domain Q(¢)

p%—ltl — pAu+ Vp =0 on Qt), (2)
div (u) = 0 on Q(t), (3)

where u = (u,w)T is the velocity of the fluid, p is the pressure, u > 0 is the dynamic viscosity and p is the
density. From now on, we will use p = 1. This problem is completed by the boundary conditions detailed
hereafter.

A crucial issue is to have judicious boundary conditions at the interface between the fluid and the topography.
The physical behavior of the sediment transport studied here implies an impermeability boundary condition,
then a constraint on the normal component of the velocity has to be done. Concerning the other boundaries, we
will consider a model test case on which we simulate a flow on the pseudo free surface (I's in our case). Then,
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we impose the velocity on the surface boundary I's by a Dirichlet condition and free boundary conditions, using
Neumann boundary conditions for the velocity, at the inlet and outlet

u=g;on Fsa (4)
0
on = ua—z —pn = go on [y, (¢) UT 5 (2), (5)
u-n=0 on (), (6)
O'H'T:,LL%'TIQP, on I'y(¢), (7)
where o is the stress tensor defined by:
o = (uVu —pld). (8)

The condition (4) imposes the force by using Dirichlet condition.

The condition (5) lets free the velocity at the inlet and at the outlet.

The condition (6) imposes the normal component of the velocity to be null at the bottom. It is the condition
of impermeability of the domain.

The condition (7) lets free the tangential component of the velocity at the bottom. It is needed to have a
displacement of the bottom.

1.2. Morphodynamics model

The sediment dynamics is based on the formulation of a sediment continuity equation stating that the time
variation of the sediment layer in a certain volume is due to the net variation of the solid transport through
the boundaries of the volume. The mathematical expression of such law is known as the Exner equation [33]
presented in this form:

ob, oQ
o " 5%

=0 Vzel0,l,Vtel0,T], 9)

where b (z,t) is the bed elevation, ¢ is defined by (1 —p)~! where p is the material porosity and Q denotes the
solid transport discharge along the x coordinate influenced by the velocity u. The formulation of the bedload
discharge Q can be based on deterministic laws ( [5], [19], [42]) or in probabilistic methods ( [20], [30]), often
supported by experimentation. Grass [27] discussed one of the most basic sediment transport laws that can be
written in one dimension as:

Q = alu*’2, (10)

where 0 < a < 1 is an empirical parameter depending of the type of the sediments, it takes into account the
effects due to the grain size and the kinematic viscosity . For the problem studied in this work, the velocity taken
into consideration in the Grass formula is reduced to the tangential part u, since we impose an impermeability
condition on the interface, see the boundary condition (6).

For the sake of clarity, we will consider the Exner equation under the form:

ob, 0Q
e 92 =0 vee D vee 0T, an

where Q = a|u,[*/? and a = &a.
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1.3. Arbitrary Lagrangian Eulerian (ALE) Method

We now want to couple the two models previously described. The issue is to solve the unsteady Stokes
equations with a moving boundary I'y. In fluid mechanics, one can enumerate two ways to represent a problem:
Lagrangian and Eulerian formulation. On the one hand, Lagrangian formulation is similar to keep track of the
location of each fluid particles. The velocity u and the density p depend only on xq the initial position of the
particles and on t the time. Then, the time derivative of a quantity F' is given by the total time derivative :

DF
Dt~

On the other hand, the main idea of the Eulerian method is to fix a system of coordinates and follow the flux
of particles. In this case, the velocity u and the density p depend on x the position in a global system of
coordinates and ¢ the time. Now, for a function F', the time derivative is given by :

oF
E+H'VF'

The relation between the Eulerian and the Lagrangian time derivatives is:

D 0
a—§+u~v. (12)

Then, the idea of the ALE method is to combine the Eulerian and the Lagrangian method in order to take
into consideration the boundary displacement at each iteration, which represents the bottom in our case. The
goal is to avoid remeshing the domain at each time iteration. This method was first developped for finite
difference in [22,36] and scope to finite element methods in [16,17] and [6]. In 2004, [13] built a method for
great order elements. This has been widely used in Fluid Structure Interaction (FSI) on which it is usual to
have a fluid equation like unsteady Stokes or Navier Stokes in the fluid domain and an elasticity equation for
the structure. This is used in the simulation of blood flow in arteries for instance (see [13], [26]). In the context
of the sediment transport, the bottom plays the role of the structure in the classical methods. Then the idea is
to use the analogy of these methods for the coupled Stokes Exner model.

As the goal is to avoid remeshing the domain, the clue is to use a Lagrangian description to describe the bottom
displacement and a Eulerian description for the fluid model. First, we define a reference domain on which the
topography is described by a Lagrangian description. Secondly, we consider the physical domain Q(¢) on which
the equations of the fluid evolves. Then, it is necessary to define an application able to make the link between
the two domains. In the following, we write = all quantities concerning the reference domain. For the sake of
clarity, we choose € the rectangular domain [0,1] x [0, 1] and the following boundaries :

o Ty, = {0} x [0,1],

o I, =10, x {1},

o Tou = {1} x [0,1],

e I'y = [0,{] x {0} =7, x {0} where 7, = [0,]] .

The relation between the reference domain Q and the physical domain (), is made by an ALE map (see figure

2 ), defined by :
At {

S (13)

M) )
l
=
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O x Q(t)
-~ N

At

F1GURE 2. The ALE map

Therefore the point x(¢) € (t) is obtained by:
x(t) = AYR) = % + ds(X, ), (14)

where 815(&, t) is the displacement of X between ) and Q(t). Notice that x(¢) is time dependent. Then, we can
define the velocity of the mesh:

S At od
W(Xat) = W(X) = aité(xat)v (15)

where W(%,t) € R is defined for % € Q x RT. To take into consideration the velocity of the mesh into the fluid
equation, it is necessary to define it in the fluid domain Q(t), namely:

w x,t) € Q(t) x RT = R4, (16)
w = wo (A" (17)

—~

This definition will allow us to rewrite the fluid equation with an Eulerian description, taking into account the
displacement of the mesh. The last step of the method leads to determine the equation of the displacement &5
in Q. In practice, ds is the solution of a PDE like harmonic or Wislow equation. For the sake of simplicity, we
will work with harmonic extension that allows to have a smooth mesh. We often need to transport an equation
from  to Q(¢) and mutually. Let u : Q(£) x Rt —s RY, then the corresponding map in Q is @ = u o At

If Du/Dt is the time-derivative of u in ALE, we have the following equation:

Du  Ou

— = 4| +tw-Vu 18
Dt Ot (18)
e Notice that if w = u, the mesh is moving with the particles so the description is Lagrangian.

e If w = 0, the mesh does not move and the description is Eulerian.

1.4. Coupled model

In this part, we focus on the coupled model. We denote by X a point in the reference domain Q and by Q(t)
the deformed domain after the transformation. The deformation of the mesh leads to consider the derivative
D defined by (18) which is also called the ALE derivative where the velocity w is defined as: w = % _and
represents the velocity of the displacement of the mesh, that is to say the velocity of the particle in the referéntial
domain. This allows to write the fluid model with a moving mesh on Q(¢). Concerning the boundary conditions,
we still consider a slip boundary condition at the interface between the topography and the fluid. The complete
model is composed of the equation of the fluid in two dimensional domain, the equation of the topography in
one dimensional domain and the ALE equation in two dimensional domain. According to (18), the coupled
model is written as follows :
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1.4.1. Fluid equation
The fluid equation is given by :

%?—(W~V)u—uAu+Vp:F on Q(¢), (19)
div(u) = 0 on Q(¢), (20)
+BC, (21)

where the boundary conditions are those of section 1.1. In particular, condition (7) depends on the bottom
topography.

1.4.2. Bottom equation

We consider the one dimensional domain 7;, = [0, {], on which the bottom topography at position Z € 43, and
time ¢ > 0 is defined by the Exner equation (11):

+ = 0 VZeq,t>0, (22)

b.(2,0) = b.o(#). (23)

Using (10), the sediment law Q depends on the fluid velocity and can be written in the reference domain by:
O, t) = Q (x n B(i),t) Vi € A, (24)
= ou (1’ + 13(:@))3/ . (25)

1.4.3. Displacement equation

This displacement needs to be extended in the fluid domain to associate a new ALE map over the mesh. In
order to do this, we use a classical harmonic extension (see [13] for more details).

—Ads = 0 on, (26)
a(s = 0 on fs, (27)

od . -
ainls = 0 on an ] Fouty (28>
ds = (0,b:(2,1)"  on Ty, (29)

This allows us to have a given displacement defined on fb, to let free the boundaries fin and fout, and to fix
the boundary I';. The harmonic problem spreads the displacement ds on all the domain.

1.4.4. Equation for w
We denote by W the velocity of the displacement

od(%,t)

WR 1) =

(30)

Then, using the ALE transformation, we can compute the velocity w in the domain (¢):

w(x,t) =W ((4) ' (x),t). (31)
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2. VARIATIONAL FORMULATION

This part is devoted to the variational formulation of the problem taking the ALE description into account.

2.1. Variational formulation of the Exner equation

By multiplying the Exner equation and integrating over 4;, we have the following variational formulation for
equations (22)-(23): Taking a test function ¢ € H'(9,), we have:

%/ Bz(i'7t)¢(-%) dz +/ %(ﬁ(@) dz =0, (32)
jt/% ba (@, t)p(2) di — /% O(&,0)¢'(2) 3 + [Q(@,t)(ﬁ(@)}% —0 Vo H(y). (33)

The problem becomes: find b, such that for all ¢ € H' (%)

L[ b no) di = [ Q@ 0e@) di - [Q600@)] (34)

dt Yo Yo o

2.2. Variational formulation of unsteady Stokes Equation

The problem leads to find u € V and p € @ such that the fluid equation (19) is satisfied. Let X be the
functional set of test functions. Notice that the sets V, X and W will be defined later. In practice, the sets V
and X can be different, they depend on the boundary conditions. Multiplying (19) with a test function v € X
and (20) with a test function ¢ € @, and then integrating by part, we get:

@-V—/[(W-V)uyv—f—,u/Vu:Vv—u/a—u-v—/pdiv(v)+/pn-v:/F-v, (35)
o Dt Q Q r on Q r Q

/ div(u) g = 0. (36)
Q
Then, using the Reynolds transport formula on the first term of (35):

d

—[fuv— [ (V-wu-v— [ [(w-V)u] v

dt Jo Q Q

Ou
+M/9Vu.Vv—,u F%-v (37)

f/pdiv(v)+/pn~v :/F-v,
Q r Q

/ div(u) ¢ = 0. (38)
Q
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We define the following forms:

a (u,v) = / uVu: Vv dx, YueV,veX, (39)
Q(t)
as (u,v) = —/(V~w)u-v—/[(w-V)u]-de, Yue V,veX, (40)
Q Q

a (ua V) = ax (ll, V) + a2 (ll7 V) (41)

b(u,q) = / q div(u) dz, YueV,qeQ, (42)
0

L(v)= / F(t)-vdx, Vv e X. (43)
Q(t)

We now need to treat the boundary conditions.

u=g; on [y, (44)
ou
on = Nain —pn =gy on L' (t) U Toue(t), (45)
u-n=0 on %), (46)
Ou
on-T=pg T =93 on Ly (t). ")

2.2.1. Dirichlet and Neumann boundary conditions

We impose the Dirichlet condition in a strong way, the condition is embedded directly into the space in which
we search the solution. We introduce the spaces:

V={ue H(Q)* u=g onl},
X ={veHY(0))? v=0onT,},
Q= L*(Q(t)

The Neumann condition on I';;, U T',,; comes naturally into the formulation. Indeed, the boundary terms can
be written with v € X:

/ _ 0 T L .V+/ A (48)
I, PR on ) LinUlout P M on Iy s .
0 ——— N—————
g2 on

Then, the problem writes:
Find u € V, p € @Q such that

% Qu.vf/Q[(W.V)u].vf/Q(V-W)u-v+u/QVu:va/ﬂpdiv(v)

:/F-V+/ gz-v—f—/ on-v VveJX, (49)
Q TinUlout I

/sz div(u)g=0 Vg€ Q. (50)
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With the notations (39)- (42), the problem writes :
Find u € V,p € @ such that :

G [uvrauy tbivg
b(u, q)

L(v) WYeX, (51)

0 VgeqQ. (52)

The bilinear forms a and b are defined by (41)-(42), and L is defined by:

Lv) = / F-v +/ g2~v+/ on-v. (53)
Q(t) TinUlout Iy

2.2.2. Slip boundary conditions

In this section, we are interested in the interface between the fluid and the topography and we preconise to
have a slip boundary condition on I'y, which is physically consistent with the sediment transport model chosen
in this study, namely the bedload transport. Then, we give the variational formulation with slip boundary
condition u-n = 0 on I',. It is not natural to impose a slip boundary condition in the Stokes problem, and this
problem has been widely studied:

First variational strategy

A first strategy, studied in [15], consists in giving a condition on the stress tensor on - 7 = g3. We rewrite
the test function v = (v-n)n + (v-7)7 where n is the normal component and 7 is the tangential
component on I'y. Taking g3 = 0 and

ueW={veV, v-n|r =0} (54)
Y={veX, v-n|r, =0}, (55)

it is straightforward to verify that the variational formulation writes

G [y [0y [ w9l v (56)

dt Jq
—l—u/Vu:Vv—/pdiv(v) = /F-v+/ g v YWey,
Q Q Q TinUTout

/ div(u) ¢ 0 Vg € Q. (57)
Q
Second variational strategy

A second strategy consists in giving a condition on the velocity at the boundary, see [28], as follows

7]
ua—u T+ a(u- 1) =g with @ > 0. To this aim, we notice that
n

/Fban-v=/Fb«m-n)(v-n>+<an-r><v-r>, (58)

and we rewrite the test function v in terms of the normal component and the tangential component, as
for the previous case. Taking

ueW={veV, v=0onl,, v-n|p, =0}
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the variational formulation writes:

G L= [0 wmev— [ w9y

at Jo
+N/QVu:Vv—/ﬂpdivm+/Fba<u-r><v-r)

/QF-V—O—/Fbg(v-T) (59)

+/ g2V, vwvey,
I'inUlout

/Qdiv(u)q = 0 Vg € Q. (60)

e Third variational strategy
An other alternative leads to using a penalty method. As in a previous case, we take X = {v €
(H'(Q(t)))?, v = 0on T} In order to impose the condition u-n = 0 for the velocity which is
not natural in the variational formulation, we consider the formulation (51) and penalize the natural
boundary condition:

1
onlp, = —g(u-n)n,

where € < 1 . The variational formulation becomes:
Find u € V and p € @Q such that:

u-v+a(u,v)+b(v,p)

b(u,q) = 0 Vge@, (62)

— L X 1
@l (v), WeX (61)

with the bilinear form b defined by (42), L and a defined by

d(u,v):al(u,v)+a2(u,v)+§ /F (u-n)(v - n) do, (63)
L(v):/ﬂF-v—O—/P " tgg-v. (64)

It is proved by Dione in [15] that this problem converges to the problem with slip boundary conditions
when ¢ tends to zero.

3. NUMERICAL METHOD

3.1. Discretization in time

We will now discretise the time derivative with a Backward Differentiation Formula (BDF) of order 1. It
corresponds to the backward Euler method. Let At be the time step, to = 0 the initial time, ¢, = nAt and z™
a field at time t,,.

We can then rewrite the variational formulation at time ¢, :

u" !t —u” ~ o ptl n+1
QT-¢+a(u ) +b (") =L(p), VeV, (65)

b(u" ', q) =0, Vge W, (66)
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since u” is known, this leads to :

1 - " Lo
/Eu"“-wra(u L) +b(e,p +1)=L(<.0)+/Eu p, Vo eV, (67)
Q

Q
b(u"tt, q) =0, Vg e W. (68)

3.2. Discretization in space

We consider in this section a subdivided domain 7; and the finite dimensional spaces Vj, and W}, which
are the discrete spaces of V and W. As well, we approximate u and p by u;, and p,. We use a Galerkin
approximation taking the fields uy, and pp in Vj and W, it reads:

N M
w, =Y ipi, ph =Y Biti, (69)
i=1 i=1

where we denote N = dim V}, and M = dim W}, and ¢ (resp. 1) is the basis function of V}, (resp. W}). Then,
the semi discrete problem writes:

1 ~ n 7 1 n
/ —<up o +a(up T on) + b (n,pp ) = L (en) +/ Uy @n, Veu €V, (70)
o A o A
b(uz+1,q;L) =0, Yan € W, (71)

We choose the following compatible spaces (see [24]):
o V), = {v ec’ (ﬁ) s.t. Vg € P2 for all K € 77L},
e W, ={qeC’(Q) st. qx €Py forall K € T,} N L3 (),
where 7, is the set of mesh elements and Py is the set of polynomial function of degree k. The space V} can
be adjusted for specific boundary conditions.
Throughout the rest of the document, we use these functionals sets.
We denote by U™, P™ the vectors

ay pr
vr=| |, P"=| |, (72)
ay Bir

A the matrix A; ; = a(p;, @;) for 1 <4,j < N and B the divergence matrix BiTJ =b(pi, ;) for 1 <i < N, 1<
j < M. We also note F = (v;)7 where f = Zf\il ~:; and M the mass matrix.

The problem writes:
A+ M/At BT\ (U™t  (F n M/At 0\ (U™ (73)
B 0 prl) 7o 0 0 0/

3.3. Stokes-Exner coupling

Although the algorithm for the instationary Stokes equations described in the previous section constitutes
the main part of the complete method, we give in this part the complete implemented algorithm. We denote
by Nt the final time of the discrete problem and " = nAt. Starting from an initial topography, the first step
consists in solving the Stokes equation in the domain 2" delimited by the initial bottom using the method
presented before. Then, denoting the velocity of the fluid at time ™, by u™ and the velocity of the displacement
of the mesh by w”, we solve the Stokes equation for this initial state. This resolution gives the numerical
solution u™*! at time t"*1. We denote this solver by StokesSolver(2”, u™, w"). This allows to compute the
new topography b"*! using the Exner equation and giving the velocity u”*! and the bottom at time t". We
note this method by ExnerSolver(b™, u"+!) which allows to compute the displacement of the mesh Q" at the
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boundary I'y, that is to say at the interface. Then, it is necessary to extend the deformation in the domain
to compute the new one. To do so, the method ALESolver(Q2", d{fjl) solves the harmonic problem from the
domain at time t” and then, gives the deformation d”*! that needs to be applied. Finally, the velocity w"t!
and the mesh Q"*t'is computed from the displacement. At this step, all the states are obtained for the time
L,

The coupled algorithm can be summarized by the following:

Algorithm 1 Stokes-Exner coupling
0

Require: Q°, 1%, w0, u

for n=0to Ny —1 do
utl = StokesSolver(2",u”, w")
b"*! = ExnerSolver(b",u" ")
drt — okl e
b
d"*! = ALESolver(Q",d™)
. nt1_gn
witl = %
Q"H‘l _ Qn + dn+1

end for

4. NUMERICAL TESTS

4.1. Validation with analytical solutions of the Stokes equations

In order to validate the numerical method proposed and implemented with Feel4++, we compare the numerical
results with analytical solutions of the Stokes problem.

4.1.1. Solution of Bercovier-Engelman

First of all, in order to validate the implementation of the Stokes problem only, we use the solution of
Bercovier-Engelman [7], which consists in finding a velocity that satisfies the free divergence condition and is
null on the whole boundary. From this velocity and a source term f, we deduce gradient pressure, and then a
pressure.

_[(—2562(z — 1)(22 — 1)a?(z — 1)?
v = ( 2562 (z — 1)(22 — 1)2%(z — 1)? ) ,

p=(x—0.5)(z—0.5),

¢ ( 256(22(x — 1)%(122 — 6) + 2(z — 1)(22 — 1)(1222% — 122 + 2)) + (2 — 0.5) )
T\ —256(22(2 — 1)2(122 — 6) + x(z — 1)(2x — 1)(1222 = 122+ 2)) + (z — 0.5) )

We can compare the exact solution and the approximation in Fig 3.
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FI1GURE 4. Convergence rates for the Bercovier-Engelman solution.
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FIGURE 3. Velocity field of the exact solution and error with the numerical solution.

In Figure 4, we compute the errors between the exact and the computed solution and plot these errors versus
the mesh size (in log-log scale). We can then verify that the method converges and that the convergence orders
are 3 for the L2-norm of the velocity and 2 for the pressure, which are those expected by the theory with the

finite elements chosen here.

4.1.2. Driven cavity

The second test case, the driven cavity, is a very classical test case in fluid dynamics. We verify again that
the Stokes problem is well solved but with more physical boundary conditions that will be useful in the sequel.

Indeed, to obtain this solution, we impose v
shown in Figure 5.

I, uly.,ur, = 0 and v|p, = (1,0)7. The numerical results are
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FIGURE 5. Driven cavity.

Notice that the discontinuity of the velocity of the corners of the cavity is due to the discontinuity of the
velocity imposed by the Dirichlet condition. It does not infer on the training, but to avoid this result, a
polynomial function can be set instead of the constant.

4.2. Fluvial dune test case

To validate our complete coupled model with the Exner equation, we take an initial dune given by the
equation :
(z —2.5)2
b,(z,0)=0.2xe 02 vz el0,l], (74)
with [ = 5.
For the unsteady Stokes equation, we use the slip boundary condition (4)-(7) and let free the velocity at the
inlet and outlet with a Neumann boundary condition (5) with go = 0. On the top, we impose the same Dirichlet
condition than in the driven cavity u = (1,0)7, driven the fluid to the right. For the Exner model, we use the
Grass formula (10) and the initial data given by (74). We use the numerical method presented above : finite
element method for spatial discretization and Implicit Euler method for time discretization for all the equations.
As the cavity is driven with a moving bottom, we add the ALE formulation and obtain the results showed in
Figure 6. We use the penalty method for bottom condition. The result is given in figure 6 and is similar to
that of E. J. Kubatko and J. J. Westerink [31] (Fig. 2 of their paper). The same test case has been tested with
multiple dunes and a similar result (distortion to the right) was obtained. This kind of solution can be difficult
to represent with a numerical scheme because the solution becomes discontinuous but the algorithm stays stable
during the simulation. This test case allows us to evaluate the relevance of our method but a comparison with
an analytical solution is necessary to validate the method.

Remark 1. It is not straightforward to validate the method on the complete model with an analytical solution.

In [31], it is explained that the Exner model is an hyperbolic equation. Indeed, we can write Exzner equation (11)
(with € =1) as:

0b, 0b,
b, =0, 75
5 T b5, (75)
_ 9Q(w) : : ‘
where c(by) = % (b.) can be interpreted as a bed velocity (that depends on b, because u in (2)-(3) does).

It is obvious that the conservative law (75) is nonlinear. It is well known that a nonlinear conservative law
is sometimes subject to discontinuities. Fven if the initial topography by is smooth, if characteristics intersect
at time tq > 0, there is no unique solution and a discontinuity can appear. For a time greater than tgi, the
model no longer holds, there are several unphysical solutions. To solve this problem, it is classic to add an
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FIGURE 6. Bottom topography at different times

artificial viscosity or use the integral form of the Exner model (see [31] for details). In order to avoid that kind
of difficulty, we consider small simulation times and let these considerations to further studies.
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5. CONCLUSION

In this note, we consider a coupling between the Exner equation and the Stokes equations to model the
transport sediments in flow phenomena. We focus on a model without free surface and use some numerical
tests to evaluate the relevance of the method. The fluid structure interaction theory and method have been
applied and the objective is to test the proposed method which can be extend to a free surface model. The
library Feel++ and the high computing performance embedded have been used to test the solution method.
Therefore, the final goal of this project is to understand the impact of the sediment transport on the flow using
Navier-Stokes with a free surface system coupled with the standard Exner equation.
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Appendix B

Résumé de theése en francais

B.1 Introduction

Les champs magnétiques sont naturellement présents partout dans notre vie. Par ex-
emple, la Terre émet un champ magnétique de 4.7 x 10~ Tesla et le cerveau humain
émet un champ de 107'? Tesla. Nous 'utilisons aussi dans des objets de tous les jours,
tels que des sonnettes, haut-parleurs, moteurs de voiture ou disques durs de nos or-
dinateurs. D’autres usages incluent la détection de cellules cancéreuses par imagerie
par résonance magnétique ou IRM, ou la compensation de la gravité, permettant de
reproduire les conditions de 'espace sur Terre de maniere moins onéreuse ou de faire
léviter des objets, tels que les trains Maglev. Ce type d’application a besoin de champs
magnétiques avec des profils spécifiques. Les aimants peuvent aussi étre utilisé en tant
qu’outils dans de nombreux domaines de recherche, tels que la résonance magnétique
nucléaire des solides, pour lequel plus le champ est intense, meilleure est la précision.

| H=NDG

L4
H-Upd

T

(a) Scanner IRM (b) Train Maglev (c) Hendo Hoverboard

Figure B.1 — Applications du champ magnétique

La conception des aimants a hauts champs dans le but de la recherche scientifique a
commencé au début du 20e siécle. Dans les années 1940, des techniques plus modernes
ont vu le jour avec les travaux de Francis Bitter, voir [Montgomery, 1969]. A partir des
années 1960, 1'utilisation des matériaux superconducteurs s’est répandue. Le record
d’intensité en utilisant de tels matériaux est de 23,5 T, et a été atteint au Ultra-High
Field European NMR Center a Lyon en France. Mais due aux limitations de la super-
conductivité, au-dessus de ~ 24 T, les matériaux superconducteurs standards perdent
leurs propriétés.
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Pour atteindre plus de 24T, des aimants résistifs sont utilisés. Ceux-ci sont com-
posés de matériels résistifs, tels que des alliages de cuivre. A cause de la chaleur
dégagée, ces aimants ont besoin d’étre refroidis avec de 1’eau, ce qui rend leur con-
struction et leur opération trés cofiteuses. Peu de laboratoires ont donc la possibilité
de faire fonctionner de tels aimants, en Europe, ils sont regroupés dans le European
Magnetic Field Laboratory (EMFL). En France, le Laboratoire National des Champs
Magnétiques Intenses (LNCMI) est situé sur deux sites, a Toulouse et Grenoble. Ce
dernier produit des champs magnétiques de 37 T pendant plusieurs heures.

(a) Aimant Bellevue (b) Aimant Hybrid (c Chambre
d’expérimentation
du LNCMI

Figure B.2 — L'évolution des aimants dans le temps

Le design d’un aimant joue un role important dans l'intensité qu’il peut générer.
C’est pourquoi au LNCMI, différentes technologies sont testées et combinées. Le type
d’aimant le plus utilisé est I’aimant Bitter, constitué de disques conducteurs, empilés
en un solénoide, et refroidit en passant de 1’eau a travers des trous faits dans ces dis-
ques. Le record d’intensité avec un tel aimant est de 41 T au NHMFL aux Etats-Unis
[Toth and Bole, 2018]. Les aimants poly-hélices sont un autre type d’aimant, dont la
description peut étre trouvé dans [Debray et al., 2002] ou [Debray et al., 2012]. Ces
aimants sont faits de plusieurs tubes d’alliages de cuivre, coupés hélicoidalement par
électroérosion. Enfin, les aimants hybrides combinent les aimants superconducteurs et
résistifs. Le record avec de tels aimants est de 46 T au NHFML et le LNCMI est en train
de construire un aimant hybride pouvant générer 42 T'.

Le LNCMI a besoin de continuellement améliorer le design de ses aimants pour
pouvoir rivaliser avec les autres laboratoires internationaux du point de vue de l'intensité
ou de I'homogénéité des champs magnétiques produits. Durant les expériences, le
courant électrique peut atteindre 31 kA avec une puissance de 30 MW, nécessitant le re-
froidissement de I’aimant par un écoulement d’eau de 140 L /s, permettant I’évacuation
de 6kW/m?, ou environ 150°C, et les matériaux composant I'aimant sont poussés a 90%
de leur limite élastique. Dans de telles conditions, il est important de s’assurer que
I'aimant n’est pas endommagé durant 1’'expérience. En effet, un aimant résistif cotite
jusqu’a 300 000 euros et un an pour le concevoir et I'assembler, alors que 'aimant
hybride développé a Grenoble cofite jusqu’a 3 millions d’euros. Pour comprendre
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(a) Aimant Bitter (b) Aimant Poly-hélices
(jusqu’a Im de diametre) (jusqu’a 400mm de diametre)

Figure B.3 — Différentes technologies d’aimants résistifs

les physiques en jeu dans 'aimant ou créer des profils de champs spécifiques, les in-
génieurs du LNCMI se servent de simulations numériques. C’est la raison a 1’origine
du projet HifiMagnet, qui est une collaboration entre le LNCMI et 1'université de Stras-
bourg.

Cette thése continue le travail entamé par C. Daversin dans [Daversin Catty, 2016]
pour fournir un moyen efficace et fiable pour simuler des modéles 3D multi physiques
sur des géométries réelles d’aimants. Les simulations doivent étre faisables pour des
problémes mono physiques ou multi physiques, sur une partie ou sur I’ensemble de
l'aimant, et ainsi doivent étres aisément configurables. L'un des buts du projet est
de permettre aux ingénieurs de LNCMI de lancer des simulations a 1’aide du por-
tail MSO4SC dans le cloud, qui fait partie du projet européen H2020 et qui permet
d’utiliser des solutions de calculs haute performance a partie du cloud. Durant cette
these, nous avons essayé d’utiliser la méthode de Galerkin Discontinue Hybride pour
approcher plus précisément les variables de flux, tel que la densité électrique ou le
champ magnétique. Une publication est en cours pour détailler le traitement de condi-
tion aux bords intégrales (IBC) [Guidoboni et al., 2020]. Enfin, pour diminuer le cotit de
calcul et permettre d’effectuer de I'optimisation ou de la quantification d’incertitudes,
nous utilisons la méthode des bases réduites (RB), qui va nous aider a calculer le champ
magnétique de maniere efficace pour différents parametres.

Toutes les méthodes présentées ont été implémentées en utilisant la librairie d’éléments
finis en C++ Feel++ [Prud'Homme et al., 2012].

Publications

en préparation An implementation of HDG methods with Feel++. Application to prob-
lems with integral boundary conditions

with C. Prud’homme, L. Sala, S. Bertoluzza, G. Guidoboni, D.
Prada, R. Sacco and M. Szopos
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ESAIM: Proceedings and Surveys, EDP Sciences, 2016, CEM-
RACS 2015: Coupling multi-physics models involving fluids, 55,
pp-23-40.

Hydromorpho: A coupled model for unsteady Stokes/Exner equations
and numerical results with Feel++ library

with C. Prud’homme, N. Aissiouene, T. Amtout, M. Brachet, E.
Frénod, A. Rousseau, S. Salmon

Labex IRMIA, Strasbourg, France
Control and Optimization of high field magnets

WCCM, New-York, USA
High Reynolds Aerothermal Simulations and Reduced Basis

CANUM, Cap d’Agde, France
Optimization and control of magnetic high fields

Feel++ User Days, Strasbourg, France
HDG Methods in Feel++

ANR CHORUS Workshop, Paris, France
Model Order Reduction for Mutliphysic Problems, Using the Open-
Source Framework Feel++

CEMRACS, Marseille, France
Cemracs 2016 : Numerical Challenges in Parallel Scientific Computing

MoRePaS, Nantes, France
Towards real time computation of 3D magnetic field in parametrized
Polyhelix magnets using a reduced basis Biot-Savart model

MT25, Amsterdam, Pays-Bas
Towards real time computation of 3D magnetic field in parametrized
Polyhelix magnets using a reduced basis Biot-Savart model

Journée Poster de 1’école doctorale, Strasbourg, France
Optimization and control of magnetic high fields

B.2 Méthodes Numériques

B.2.1 Méthode de Galerkin Discontinue Hybride

Les méthodes de Galerkin Discontinues (DG) sont intéressantes, car elles sont bien
adaptées pour l'adaptabilité hp [Berger and Colella, 1989, Bey et al., 1996], permettent
d’imposer simplement les conditions aux bords et sont faciles a paralléliser [Baggag
et al.,, 1999]. Mais en contrepartie, 'augmentation considérable du nombre de degrés
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de liberté les rend tres coliteuses en comparaison des méthodes de Galerkin Contin-
ues (CG). Des méthodes DG utilisant une technique d’optimisation appelée condensa-
tion statique ont été introduites dans [Cockburn et al., 2009b] pour résoudre cet incon-
vénient.

Dans des problemes impliquant une variable primale et un flux, tel qu'un potentiel
et son gradient, on introduit la trace de la variable primale comme nouvelle variable.
En utilisant la condensation statique, on peut exprimer les variables primale et de flux
en fonction de cette trace. On peut ensuite calculer la trace en résolvant un probleme
global, mais seulement sur les faces des éléments. Et les variables primale et de flux
peuvent étre retrouvées en résolvant des problemes locaux sur chaque élément.

Ces méthodes ont plusieurs avantages, tels que la convergence optimale pour le flux
dans le cas problemes de convection diffusion, des post traitements permettant d’obtenir
une meilleure convergence ou d’avoir des propriétés de conservation pour le flux dans
Hgiv, [Cockburn et al., 2009¢]. Et grace aux nombreux problemes locaux a résoudre, ces
méthodes restent hautement parallélisables.

Les méthodes HDG ont été développées pour les équations de Stokes et Navier-
Stokes [Nguyen et al., 2010, Nguyen et al., 2011], 1’élasticité, linéaire et non linéaire
[Kabaria et al., 2014, Qiu et al., 2013] et plus récemment pour les équations de Maxwell
[Lu et al., 2015, Chen et al., 2017]. Nous pouvons donc les utiliser pour décrire les
physiques du refroidissement, de la déformation et des forces magnétiques des aimants.

De plus, la formulation pour les problémes elliptiques de second ordre, développé
par [Cockburn et al., 2009b] est adaptée aux problémes thermiques et électriques.

u+«kVp=0in Q
Vou=finQ

Nous avons développé une méthode permettant d’utiliser des conditions aux bords
intégrales (IBC) qui vont nous permettre d’étre le plus proche possible des procédures
expérimentales du LNCMI du point de vue de la modélisation. En effet, parfois on ne
peut pas imposer directement la valeur du champ p, ni celui du flux normal Vp - n sur
une surface. A la place, on veut que le champ p soit une constante sur la surface, mais
sans connaitre sa valeur, et I'on veut imposer la valeur de l'intégrale du flux normal
sur cette surface.

f u - n = g; et p est une constante inconnue sur I'; telle que |I'/|p — f p=0
F, l—‘l

C’est intéressant dans notre cas ou p est le potentiel électrique. En effet, nous n’avons
pas accés durant les expériences a sa valeur, mais le flux global a travers la surface
est une donnée de I'expérience. Une publication est en préparation sur cette méthode
[Guidoboni et al., 2020] ot des résultats théoriques sont montrés et des applications
réelles sont montrées.

B.2.2 Méthodes de réduction d’ordre

Méme avec une puissance de calcul en constante progression, effectuer beaucoup
de calcul avec des méthodes HDG ou méme CG peut devenir trop cotiteux. C'est
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le cas lorsque les équations dépendent de parametres u et que 'on doit résoudre ces
équations pour un grand nombre de parameétres.

a(u(p),vip) = fv;p) VYvev

Cela peut arriver si I'on veut quantifier les incertitudes de notre probleme, opti-
miser une partie du probleme, controler 1’état d’'une expérience ou simplement ex-
plorer ’ensemble des solutions.

Pour diminuer la complexité des calculs, nous utilisons les méthodes de réduction
d’ordre (MOR). Une possibilité pour réduire I'ordre d’'un modele est de simplifier les
physiques rentrant en jeu dans le probléme, mais la précision des solutions diminue
de la méme maniere. D’autres méthodes projettent les équations sur un espace avec
une dimension réduite par rapport a un modele haute fidélité. Ces méthodes sont par
exemple la décomposition généralisée aux valeurs propres [Chinesta et al., 2011], la
décomposition orthogonale aux valeurs propres [Kerschen et al., 2005] ou la méthode
des bases réduites [Noor, 1981, Prud’'Homme et al., 2001, Patera and Rozza, 2007].
Nous nous intéresserons en particulier a cette derniere.

Pour construire 'espace de dimension réduite, nous allons utiliser une méthode
gloutonne. Pour cela nous avons besoin d"un estimateur d’erreur n(u) tel que:

lun(p) — urp@Olla < nQ), YpeP

Pour calculer cet estimateur d’erreur de maniere efficace, il nous faudra étre capables
de calculer efficacement le représentant de Riesz du résidu de notre équation, ainsi que
la constante de stabilité. Cette derniére peut étre calculé a I’aide des méthodes de Min-
0, multi parametres Min-6 [Machiels et al., 2000], [Veroy, Karen et al., 2002], [Patera
and Rozza, 2007] ou bien la méthode des contraintes successives (SCM) [Huynh et al.,
2007], [Vallaghé et al., 2011].

L’algorithme glouton est une procédure itérative ott a chaque étape, on agrandit la
base réduite avec la solution u,(u) ou p est le parametre qui maximise 1’erreur n(u).
Pour pouvoir calculer la solution du probléme le plus rapidement possible, nous allons
utiliser une stratégie hors ligne/en ligne, ot1 les plus gros calculs seront précalculés.
Pour cela, on cherche a écrire notre probleme sous la forme d"une décomposition affine:

Qu Or
D 0ta w,v) = Y EL fv)
g=1 q=1

ot les formes bilinéaires et linéaires q, et f, ne dépendent plus des parametres u.

Dans le cas o1 nous ne sommes pas capables d’obtenir une telle décomposition,
dans le cas de probléemes non linéaires par exemple, nous avons besoin d’outils sup-
plémentaires pour utiliser la stratégie hors ligne/en ligne.

Dans un premier temps, nous avons utilisé la méthode d’interpolation empirique (EIM)
décrite dans [Barrault et al., 2004], [Grepl, Martin A. et al., 2007], [Maday et al., 2008] ou
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[Daversin, C. et al., 2013] pour approcher une expression paramétrer par une somme
de termes:

M
806 1) ~ gu(x, 1) = > O (1) (x)
m=1

Cette méthode utilise encore une stratégie hors ligne/en ligne et un algorithme glou-
ton pour trouver les meilleurs points d’interpolation.

Dans le cas d’opérateurs trés complexes, il peut étre utile d’utiliser la version discréte
de cet algorithme [Chaturantabut and Sorensen, 2010] pour approcher un vecteur ou
une matrice, représentant par exemple une forme linéaire ou bilinéaire avec des trans-
formations géométriques.

Dans le cas non linéaire, ces méthodes peuvent avoir un cotit tres élevé, c’est pourquoi
nous avons aussi utilisé une méthode pour construire simultanément la base réduite
et les interpolations empiriques (SER) [Daversin and Prud’Homme, 2015].

Enfin, pour réduire le temps de calcul de certaines intégrales, nous avons implémenté
la méthode des quadratures empiriques [Yano and Patera, 2019].

B.3 Modele 3D multi physique non linéaire

Un aimant a hauts champs implique plusieurs physiques couplées. D’abord, le courant
électrique parcourant 'aimant produit de la chaleur par les pertes Joule. Les conduc-
tivités thermiques et électriques des alliages de cuivre composant I’aimant vont dépen-
dre de la température. L'aimant va étre refroidi par un écoulement forcé d’eau pour
controler la température. La densité de courant va produire un champ magnétique. La
dilatation thermique et les forces de Lorentz vont déformer 1’aimant.

Joules losses

Thermic Electric
e Non-Linear *-C:);l-d-u-c-ti-v-igi-e;* e Non-Linear
e Cooling: e Current intensity
Colburn on boundary
correlation
. . Current density
Dilatation
v A 4
Elasticity Magnetostatic
e Linear _ Lorentz forces

< o Maxwell

o Deformation e Biot & Savart

Figure B.4 — Coupled physics in a high field magnet

Modéliser directement un tel probleme complexe étant trés difficile, nous avons
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choisi de faire quelques simplifications. D’abord, nous nous restreignons a un prob-
leme stationnaire. Nous simplifions ensuite le tres cotiteux probleme de mécanique
des fluides nécessaire pour le refroidissement de 'aimant en introduisant un coeffi-
cient d’échange thermique. Et nous supposons les déformations suffisamment petites
pour pouvoir travailler sur la géométrie de référence. Ce modeéle est présenté dans la
tigure B.4.

B.3.1 Modele Electro-Thermique

Les équations de Maxwell-Faraday nous disent que le champ électrique E est pro-
portionnel a la variation du champ magnétique B au cours du temps. Dans le cas
statique, cela implique qu’il existe un potentiel scalaire V tel que E = —VV. De plus,
la loi d’'Ohm implique que la densité de courant j est proportionnelle au champ élec-
trique: j = oE, ot o est la conductivité électrique du matériau. En utilisant le principe
de conservation de la charge dans le cas statique, on a:

V-(=oVV)=0

Pour le probleme thermique, nous avons comme source de chaleur 'effet Joule, qui
peut étre décrit comme j-E = oVV - VV. D’ou I'équation de la chaleur dans le cas
statique:

~V.(VT) = aVV . -VV

Les conductivités thermique « et électrique o dépendent de la température, et donc
le modele couplé thermo-électrique est non linéaire.
La conductivité électrique décrit la capacité du matériau a transporter les charges élec-
triques. Dans le cas de métaux et d’alliages, o peut étre exprimé en fonction de la
température de référence T, la conductivité a cette température o et d'un coefficient

de température a:
0o

) =TT~ 1)

La loi de Wiedemann-Franz spécifie que le ratio entre les conductivités thermique et
électrique est proportionnel a la température par une constante L nommée le nombre
de Lorenz. D’ot1 la conductivité thermique s’écrit:

«(T) = o(T)LT

Nous considérons l'eau coulant autour de l'aimant comme isolé électriquement.
Nous ajoutons donc une condition de Neumann homogene sur ces surfaces, notées
I,:

e —o(T)VV-n=0surl,

Dans l'aimant, pour imposer la circulation du courant, une différence de potentiel
est créée entre 'amenée et la sortie de courant. Nous pouvons modéliser cette dif-
térence de trois manieres:

1. comme une condition de Dirichlet
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e V=0surl},
o V=Vpsurl,,
2. comme une condition de Neumann

e V=0surl},

e —o(T)VV-n= sur Iy,
|r0Lll|

ou I est le courant imposé et |I',,,| est la surface de sortie
3. comme une condition intégrale

e V=0surl},
° f —0(T)VV -n =1 et V est constant sur I',,;
r()ll[

Pour modéliser le refroidissement de 1'aimant par I'écoulement d’eau, nous sup-
posons que le flux thermique est proportionnel a la différence entre la température de
I'aimant et celle de l'eau. Le facteur est appelé le coefficient de transfert de chaleur
et est noté 1. Nous pouvons donc utiliser une condition de Robin pour modéliser le
refroidissement sur ces surfaces I',:

o —k(I)VT -n=nWT-T,)surl.

Le coefficient de transfert de chaleur peut étre trouvé a partir de différentes corréla-
tions, les plus utilisés sont celle de Colburn [Colburn, 1933] et Montgomery [Mont-
gomery, 1969].

Sur les autres surfaces, on ne considere aucun transfert thermique. Nous utilisons
donc des conditions de Neumann homogenes:

o —k(T)VT -n=0surT;

Le probléme revient donc a trouver V et T tel que:

V- (=o(T)VV) =0 dans Q

V- (k(T)VT) =o(T)VV-VV dans Q
V=0 sur I,

v="Vp sur I',,;
—o(T)VV-n=0 sur I,
—k(T)VT -n=WT -T,) sur I,
—k(T)VT -n=0 sur I

Ce probleme a été implémenté et résolu en utilisant les méthodes CG et HDG,
ainsi que par la méthode des bases réduites pour obtenir des solutions pour différents
parametres.
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B.3.2 Modeéle Magnétostatique

Les équations de Maxwell décrivent la génération de champs électrique E et mag-
nétique H, a l'aide des flux électrique D et magnétique B, la densité de courant j et la
charge électrique p.

VXE = _(96_1: (Faraday)

VxH=j+ %—II) (Maxwell-Ampere)

V-B=0 (Gauss magnetic law)
V-D=p (Gauss electric law)

Dans le cas statique, les dérivées en temps ne sont pas considérées.

Ces équations doivent étre complétées par les lois constitutives liant Ba Het D et E
a partir des propriétés matérielles.

B=uH, D=c¢E

ou u est la perméabilité magnétique, ¢ la permittivité magnétique.

En utilisant les lois magnétiques de Gauss pour définir le potentiel magnétique A
tel que VXA = B et celle de Maxwell Ampere, on obtient le probleme magnétostatique:

Vx(leA):j
M

On considere les conditions aux bords classiques pour la magnétostatique, qui im-
pose la composante tangentielle de potentiel magnétique:

AXn=ApondQ

ol n est la normale unité extérieure sur Q. En général, Ap est défini a zéro sur 9Q
pour imiter le comportement de A a 'infini.

Le probléme magnétostatique n’a pas une unique solution a cause du potentiel A
qui est défini a un gradient prét. Pour garantir l'unicité de la solution, on utilise clas-
siquement deux méthodes.

La premiere est d’ajouter une condition sur la divergence de A, en particulier la jauge
de Coulomb V - A = 0. La solution est ensuite trouvée en résolvant un probléeme de
point-selle.

La seconde méthode consiste a considérer le probléme comme un cas spécial du prob-
leme de Maxwell dans le domaine des fréquences.

Ces deux méthodes impliquent un grand cofit de calcul, nécessitant des précon-
ditionneurs spécifiques a ce type de probleme. Une autre maniére de déterminer le
champ magnétique est d’utiliser la loi de Biot-Savart, permettant dans le cas courant
statique j dans un conducteur Q¢, de calculer B dans un domaine Q,,,. En voyant le
probléeme magnétostatique comme une équation de Poisson et en utilisant la solution
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générale de cette équation, la fonction de Green, on peut écrire le champ magnétique
en un point x comme:

) X (x —

Bx) = 22 f joxx-n .
4 Ja, Ix —rf?

ol Y est la perméabilité dans le vide.

Une méthode pour calculer cette quantité en temps réel a partir d"une solution ré-
duite du probleme thermo-électrique a été développée et implémentée.

B.3.3 Modele linéaire d’Elasticité

A pleine puissance, les contraintes a I'intérieur d"un aimant a haut champ atteignent
80% de la limite d’élasticité des matériaux. Le modele élastique est donc tres important
pour assurer que l'intégrité de 'aimant. Le modele utilisé est décrit dans [Slaughter
and Petrolito, 2002].

Comme Q7 est a 1’équilibre, on a I'équation de 1’équilibre suivant:

V-ag+f=0

N

ou:
e 7 est le tenseur des contraintes
o f représente les forces volumiques sur Q

Nous définissons le tenseur des petites déformations a partir du vecteur déplace-
ment u:

- 1
g = E(Vu + VuT)

et utilisons la loi de Hooke permettant de relier le tenseur des contraintes & et le tenseur
des petites déformations é&:

aa:lfv@+1jm?“ad
ou:

e E estle module de Young

e vest le ratio de Poisson

e ] est le tenseur identité
En introduisant les coefficients de Lamé 1 et u:

1= Ev B E
T A+ -2 =20+

nous pouvons réécrire la loi de Hooke comme:

(&) = 2ue + ATr(&)1
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Pour prendre en compte la dilation thermique de l'aimant, nous devons ajouter un
terme au tenseur des contraintes:

Oz'(g‘) = &E(E) + 0='T = 2/1?) + ATF(E)I - ar(T —Ty)l

1 -2y
Pour compléter le systeme, nous utilisons les conditions aux bords:
e de Dirichlet 1a ot I'aimant est attaché

u=up surdQp

e de Neumann pour imposer une pression

o-n=g surdQp

ou 0Q = (9QD U 8QP

Pour déterminer si les déformations de l'aimant restent élastiques ou deviennent
plastiques, les ingénieurs utilisent les criteres de Tresca et de Von Mises.

Le critere de Tresca [Tresca, 1864] utilise le tenseur des contraintes diagonalisé 5 et
est déterminé comme:

=d =d =d = =d =
trza = max(|0; — 09,109, — 0531, 053 — 7741)

Le critere de Von Mises [Mises, 1913] peut étre écrit en utilisant & ou 5

1,,_ - _ _ _ _ _ _ -
vmg = \/E((&” —0_'22)2+(0_'22—0_'33)2"‘(0_'33—0_'11)2)+3(0_'f2+0_'§3+0_'§1)

1,,_ - - - - _
VIgd = \/E((O_-” —0_'22)2+(0_'22—5'33)24'(0_'33—0_'11)2)

B.4 Applications

B.4.1 Identification de parameétres de refroidissement

Les aimants a hauts champs sont alimentés jusqu’a 31 kA pour délivrer 37 Tes-
las. Pour dissiper la chaleur produite, les aimants sont refroidis par un écoulement
d’eau (jusqu’a 140 I/m?). De tels environnements rendent difficile I'instrumentation
des aimants, les seules mesures disponibles proviennent de:

e prises de tension sur les cercles de connexions entre les tubes consécutifs des
aimants poly-hélices

e sondes de température a I'entrée et a la sortie du circuit de refroidissement

e capteurs de débit
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(a) Tension sensors (b) Logs of magnet monitoring system

Figure B.5 — Monitoring Magnets

Sur la figure B.5, les prises de tension disposées sur le plateau BP sont entourées en
rouge, tandis que sur la figure B.5b est montrée la surveillance de I'aimant durant une
expérience avec les différents capteurs.

Comme énoncé précédemment, le refroidissement est modélisé par des conditions
de Robin du type /(T — T,). Ces parametres, le coefficient d’échange thermique &
et la température de l'eau T, ne sont pas connus précisément. Le but est de déter-
miner quels parametres vont produire les plus petites erreurs entre les mesures ex-
périmentales et simulées. Pour cela, nous considérons différentes corrélations pour le
coefficient d’échange thermique, Montgomery [Montgomery, 1969], Colburn [Colburn,
1933], Dittus [Dittus and Boelter, 1985] et Silberberg [Silberberg et al., 2009].

Nous avons simulé une expérience menée en avril 2017 au LNCMI, un aimant de
14 hélices alimenté par un courant I, de 22148.2 A. Nous comparons les 14 prises de
tension ainsi que deux mesures de températures.

Les différentes erreurs pour les prises de tension en utilisant les méthodes CG et
HDG pour la corrélation de Dittus sont présentées dans I'image B.6.

On peut voir que dans les deux cas les erreurs ne dépassent pas 4%. Les plus
grandes erreurs sur 3 hélices peuvent s’expliquer par des hélices ayant déja servies
et ayant possiblement été déformés.

Avant de mettre un aimant en service, deux expériences sont menées pour mesurer
le facteur de champs f = B/I et la résistance des hélices ou couples d’hélices en fonction
du courant. Ces mesures sont ensuite utilisées pour controler 1'état de I’aimant durant
les expériences, si les mesures divergent trop de celles de références, 1'aimant risque
d’étre endommaggé.
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Figure B.6 — Comparison of the errors on the tension between CG and HDG

Nous avons essayé de reproduire ces opérations par la simulation. Pour le facteur de
champs, la valeur du champ magnétique au centre de I’aimant est calculée en utilisant
la loi de Biot-Savart.

Comme on peut le voir sur la figure B.7, les deux méthodes CG et HDG meénent a
des erreurs inférieures a 0.5%, validant notre modele.

Les résultats concernant la résistance pour le premier et le dernier couple d’hélices
sont présentés dans la figure B.8.

On peut voir que pour le premier couple, les valeurs expérimentales et simulées
concordent correctement. Par contre le dernier couple ne correspond pas. Cela peut
étre dii a la taille de ces hélices qui sont bien plus grandes que les premieres et mettent
donc plus de temps a atteindre un plateau.

B.4.2 Optimisation géométrique
Pour certaines applications, les utilisateurs sont intéressés par un champ magné-

tique le plus homogene possible a 'intérieur de la zone d’expérience. L’homogénéité
maxxeq,,, B:(X)

mgn

est définie comme h =

i — 1 etest de 'ordre de 107 dans 1 cm? tandis que
Mingeo —B,(X)

mgn

les utilisateurs cherchent a atteindre 107°.

Il est donc important pour le LNCMI d’avoir un champ le plus homogeéne possi-
ble dans la région d’intérét. D’apres une idée de C. Trophime et A. Janka, on cherche a
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Figure B.7 — Field factor experimental vs numerical

modifier la forme des découpes de ’aimant en appliquant une transformation géométrique,
et optimiser cette transformation pour avoir la meilleure homogénéité.

La forme de I'hélice est modifiée en utilisant une torsion angulaire, dont I’angle est
contrdlé par une courbe de Bézier a(z). Les points de controle p; de la courbe sont les
parametres de 1’optimisation p.

Gu(t) = ) Biopi =y Ch(1 =1 py (B.1)
k=0 k=0
La transformation géométrique est alors écrite comme:
X x cos(a,(z)) + ysin(a,(z))
du|y | =|—xsin(ay(z)) +ycos(au(z) (B.2)
b4 Z

Nous allons nous concentrer sur un aimant a 4 hélices, avec une spheére en son centre
ou calculer le champ magnétique. Les deux hélices situées le plus a I'intérieur vont étre
modifiées pour maximiser 'homogénéité tandis que les deux autres serviront a fournir
un champ de fond et ne seront pas optimisées.

L'optimisation est effectuée a I’aide du logiciel NLopt [ Johnson, Steven G., ]. La dif-

ficulté pour nous provient du fait que nous ne connaissons pas le gradient de la fonc-
tion objectif, et nous devons donc utiliser des algorithmes n’utilisant pas la dérivée qui
sont moins efficaces.
La stratégie a été d"utiliser d’abord un algorithme global pour localiser de maniere ap-
proximative le minimum, puis d"utiliser un algorithme local pour affiner cette location.
En comptant les deux optimisations, le probléme est résolu plus de 1200 fois, une ré-
solution haute fidélité prenant plus de 120 secondes, et une résolution réduite prenant
10 secondes, cela représente plus de 36 heures de gagnées.



184 APPENDIX B. RESUME DE THESE EN FRANCAIS

307, Numerical 1 100 |~* Numerical |
- Experimenta] —— Experimental

80 - .

20 .
60 [ .

> >

40 | :

10 |- .
20 |
0 - 0 .

0 ! 2 3 0 I 2 3
L(A) 104 I(A) 10%
(a) CG (b) CG

Figure B.8 — Resistance of couple 1: experimental vs numerical

La figure 10.5 montre les différences entre les découpes initiales et optimales des
hélices.
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\ /
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-2 0 2 -2 0 2
helix angle (rad) helix angle (rad)
(a) Cuts of the first helix (b) Cuts of the second helix

Figure B.9 — Initial (blue) and optimal (red) cuts

Le tableau 10.6 résume les quantités initiales et optimales obtenues. On peut voir
que la perte de l'intensité du champ magnétique est trés limitée, moins de 0.001%,
mais le minimum de 1'intensité est beaucoup plus proche du maximum, entrainant
une amélioration de ’homogénéité par un facteur 26.
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initial optimal
min [B,| 7.31521 7.33091
max B, 733913 7.33181
e — 1| 323698 x 107 | 1.22054 % 10~

Figure B.10 — Initial and optimal homogeneity

B.5 Conclusion

Cette these a continué le travail déja effectué dans le projet HifiMagnet par C. Daversin,
dans le but de simplifier la maintenance des modeéles existants et d’avoir des modéles
plus précis et efficaces. Cet effort a été fait pour que les ingénieurs du LNCMI puissent
utiliser ces méthodes dans leur travail pour construire de meilleurs aimants ou mieux
comprendre leur fonctionnement.

La premiere partie de cette these a consisté a réécrire les modeles pour utiliser les
derniéres fonctionnalités de Feel++ et de simplifier leurs configurations.
Nous avons par la suite implémenté la méthode HDG dans Feel++ et créé des tool-
boxes pour les problemes thermoélectrique et élastique. Cette méthode permet de
contrdler les flux directement, comme la densité de courant, le champ magnétique
ou le stresse, et ainsi avoir de meilleures propriétés physiques, comme la conserva-
tion du courant. En particulier, nous avons développé les conditions aux bords inté-
grales, nous permettant d’étre le plus proche possible des conditions expérimentales
du LNCMI. Pour faire nos calculs en paralléle et donc utiliser des géométries réelles,
nous avons di utiliser un partitionnement spécial ainsi que la condensation statique
pour diminuer le cofit de calcul.

Ensuite, nous voulions améliorer l'efficacité de nos simulations en utilisant des
méthodes de réduction d’ordre. Nous avons choisi la méthode des bases réduites, qui
nous offre la possibilité d’avoir une stratégie en ligne/hors ligne. Nous avons créé le
modele réduit pour le probleme thermoélectrique et implémenté la réduction d’ordre
pour Biot-Savart. Nous avons aussi aidé a 'implémentation de la version discrete de
EIM dans Feel++ qui nous permet de gérer simplement des parametres géométriques
complexes. Pour réduire encore le cotit de calcul de Biot-Savart, nous avons implé-
menté la méthode de quadrature empirique. Toutes ces méthodes ont été combinées
pour avoir un calcul en temps réel du champ magnétique dans un aimant a hauts
champs.

Enfin, nous avons utilisé les méthodes a notre disposition dans deux applications
qui peuvent étre utilisées par le LNCMI pour améliorer les qualités des aimants pro-
duits ou faciliter leur utilisation. Nous avons confronté nos modéles aux données ex-
périmentales du LNCMI, recherchant a identifier les parametres de refroidissement
correspondant aux expériences. Nous avons trouvé que les corrélations utilisées pour
les coefficients d’échanges thermiques sont importantes, menant a des erreurs de moins
de 4% pour CG et HDG dans certains cas. Nous avons aussi reproduit le facteur de
champ et la résistance de 1’aimant, utilisés pour controler 1'intensité nécessaire et dé-
tecter les anomalies. L'utilisation de la réduction d’ordre pour encore optimiser ces
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parametres a été compliquée par la taille des problemes et le nombre de parametres,
mais des stratégies alternatives sont implémentées pour résoudre ce probléme.

La seconde application consiste a optimiser les découpes de 'aimant pour obtenir
une meilleure homogénéité. Cela implique l'utilisation de parametres géométriques,
menant a 1'exploitation de toutes les méthodes présentées (RB, DEIM, EQM, SER)
pour réduire le cotit de I'optimisation. Les résultats sont prometteurs et demandent
d’utiliser cette méthode avec plus de parametres pour obtenir une amélioration signi-
ficative de I'homogénéité.

Pour la suite du projet HifiMagnet, de nouvelles méthodes et améliorations vont
étre développées pour aider le LNCMI a I'aide des outils de simulations.

D’abord, d'un point de vue mathématique, on pourrait ajouter le modele HDG pour
les équations de Maxwell, permettant le calcul de toutes les physiques avec HDG.
HDG pourrait aussi étre utilisé avec les bases réduites, donnant la possibilité d’avoir le
méme controle sur les flux que dans le modele haute fidélité. De méme, les problemes
magnétostatique et d’élasticité pourraient étre réduits par la méthode RB, ouvrant la
possibilité a d’autres applications nécessitant des calculs en temps réel.

La modélisation du probléme peut aussi étre améliorée, d’abord en utilisant un
modele dynamique pour voir I’évolution dans le temps des différentes quantités d’intéreét.
Un stage est en cours sur ce sujet. Ensuite, nous pourrions modéliser completement le
refroidissement de 'aimant, en résolvant les équations de Navier-Stokes pour ’écoulement
de l'’eau. Pour étre plus précis, nous devrions aussi utiliser une carte ALE pour prendre
en compte la déformation de I'aimant.

Enfin, les méthodes développées durant le projet HifiMagnet devraient étre plus
intégrées pour les ingénieurs du LNCMI, avec l'utilisation du portail MSO4SC pour
lancer des simulations dans le cloud depuis une station de travail. Les méthodes de ré-
duction de modele devraient aussi étre accessibles a travers la bibliotheque MOR_DICUS,
un projet FUI qui a pour but d'industrialiser de telles méthodes.

Etbien str, le projet devrait continuer a développer d’autres applications d’intérét pour
le LNCML
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Résumé: Nous présentons dans cette these notre travail sur le contr6le et I'optimisation d’aimants a hauts
champs. Les physiques impliquées sont présentées et leur discrétisation est détaillée. Elles consistent
en un probleme thermoelectrique non linéaire, un probléeme magnétostatique et un probléme d’élasticité
linéaire. La méthode de Galerkin Discontinu Hybrid (HDG) est utilisée pour approcher au mieux les
champs d’intérét, tels que la densité de courant, le champ magnétique ou le tenseur des contraintes.
Nous avons développé et implémenté les Conditions Intégrales aux Bords (IBC) pour pouvoir imposer
I'intensité de courant directement au lieu d’utiliser la différence de potentiel. Pour résoudre notre prob-
leme en temps réel, nous avons utilisé la méthode des Bases Réduites (RB), combinée avec la Méthode
d’Interpolation Empirique (EIM), sa version discrete, la méthode Simultanée EIM et RB (SER) et la Méth-
ode de Quadrature Empirique (EQM). Finalement, nous avons appliqué ces méthodes a deux applications
d’intérét pour le LNCMI, l'identification des paramétres de refroidissement basé sur des données expéri-
mentales, et I'optimisation des découpes de I'aimant pour améliorer son homogénéité.

Mots-clés: Réduction d’'ordre de modeéle, Aimants a haut champs, Méthode des Bases Réduites,
Méthode d’Interpolation Empirique, Méthode Eléments Finis, Galerkin Discontinu Hybrid, Calcul Haute
Performance, Feel++

Summary: We present in this thesis our work on the control and optimization of high field magnets. The
physics involved in the operation of the magnet are presented, and their discretization is detailed. It con-
sists of a non-linear thermoelectric problem, a magnetostatic problem and a linear elasticity problem. The
Hybrid Discontinuous Galerkin (HDG) method is used in order to better approximate the fields of interests,
such as the current density, the magnetic field or the stress. We developed and implemented the Integral
Boundary Condition (IBC) to be able to impose the current intensity directly instead of using the difference
of potential. To solve our problem in real time, we used the Reduce Basis method (RB), combined with
the Empirical Interpolation Method (EIM), its discrete version, the Simultaneous EIM and RB method and
the Empirical Quadrature Method (EQM). Finally, we applied our methods to two applications of interest
for the LNCMI, the identification of cooling parameters based on experimental data, and the optimization
of the cuttings of the magnets to improve its homogeneity.

Keywords: Model Order Reduction, High Field Magnets, Reduced Basis Method, Empirical Interpolation
Method, Finite Elements Method, Hybrid Discontinuous Galerkin, High Performance Computing, Feel++
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