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SUMMARY

Image-guided Interactive Simulation for Endovascular Surgery

Minimally invasive fluoroscopy-based procedures are the gold standard for diagnosing
and treating various pathologies of the cardiovascular system. With this kind of proce-
dures, clinicians have to infer the 3D shape of the device from 2D images. Such lack of
depth perception, combined with a dense environment of overlaying anatomical structures,
has been identified as one of the major factors affecting clinical performances.

Several methods have been proposed to enhance the visualization of 2D fluoroscopic
images, which could improve the clinician’s global insight and consequently the positive
outcomes of the procedures. A widely used approach is to create a 3D reconstruction of the
surgical scene to be combined with 2D fluoroscopic images, in order to have an augmented
view. In general, this kind of methods aims at retrieving the 3D shape of the device (and
or anatomical structures) by combining some priors on the shape and the behaviour of the
device, with external observations, providing some incomplete information on its current
state.

After highlighting the limitations of the existing 2D-3D reconstruction methods, our
objective was to develop a method that:

1. provides a good description of both the shape and the behavior of the device; taking
into account non-rigid interactions with the surrounding anatomy and non-linear
phenomena (e.g. non-sliding contacts);

2. solely relies on monocular 2D fluoroscopic images, without the need to embed any
external sensors onto the interventional device;

3. takes into account and compensates the uncertainties which might exist on model
parameterization and the noise affecting external observations;

4. is compatible with real-time computations;

We first proposed a purely deterministic approach, where projective information from
2D fluoroscopic images is integrated to the model as mechanical constraints. Despite the
good results, the proposed method is not able to take into account non-linear phenomena
such as stick and slip transitions. In addition, errors on both the navigation model and
external observations are not taken into account. For the above reasons, we designed a
new stochastic approach. Given the ill-posedness of the 2D-3D reconstruction problem,
the 3D shape of the interventional device can be seen as a random variable. Such variable
is described, at the same time, through an process model, which provides a description
of the variable through time and it is affected by some uncertainties, and some external



observations, which can provide some partial information on its current configuration and
are affected by noise.

In particular, this thesis aims to develop a novel approach, where a Bayesian approach is
used to combine a constrained physics-based simulation of the catheter navigation, with
external 2D observations extracted from 2D fluoroscopic images. Whereas the physics-
based model provides a prediction of the shape of the navigation device navigating the
blood vessels (taking into account non-linear interactions between the catheter and the
surrounding anatomy), an Unscented Kalman Filter is used to correct the navigation
model using 2D features, extracted from fluoroscopic images, as external observations.
The proposed method has been evaluated on both synthetic and real data.

Lastly, we present and analyse the current limitations of our method, proposing possible
solutions, along with some perspectives for future works and applications.

Keywords : Computer Aided Surgery, Endovascular Intervention, Catheter Recon-
struction, Physics-based Simulation, Stochastic Method, Constrained Unscented Kalman
Filter
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1.1. INTRODUCTION )

1.1 Introduction

This PhD work is set within the domain of computer-assisted interventions (CAI). Such

field of research embraces all the typologies of medical procedures planned or performed
with the support of computer technologies.
In particular, we address our research towards fluoroscopy-based minimally invasive en-
dovascular procedures, intending to enhance the visualization of X-ray fluoroscopic images.
Indeed, better visualization of the fluoroscopic-guidance would improve surgical insights
on all levels. This augmented view would lead to an increase in the number of positive
outcomes, shorten the overall procedure and, consequently, reduce radiation exposure for
both patients and operators.

In particular, this research aims to propose a new method to retrieve in real-time the
three-dimensional (3D) shape of the navigating device, solely based on monocular fluoro-
scopic images. Combining a 3D visualization of the surgical scene with the 2D fluoroscopic
images, could significantly improve the visual feedback of the ongoing procedure, allow-
ing the surgeon to navigate inside the vascular tree relying on a three-dimensional image.
Indeed three-dimensional feedback not only would facilitate navigation providing depth
information, but also would allow surgeons to virtually access structures which are not
visible in the fluoroscopic image.

; Z.L i

-

Figure 1.1: Example of Siemens C-arm Artis Zeego equipment for X-ray generation and detection, used
in interventional radiology, general vascular applications and hybrid procedures.
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1.2 Clinical Context

In minimally invasive surgery (MIS), target lesions are reached through small peripheral
accesses, which allow surgeons to insert different kinds of surgical instruments to treat the
disease without the need for large incisions. Compared to open surgery, minimally invasive
procedures enable to significantly reduce the risk of complications, and the recovery time
of the patients.

In the following sections, we outline a brief description of minimally invasive procedures,
and the basic principles of fluoroscopy, to understand better how computer technologies,
in particular a virtual simulation of the three-dimensional reconstruction of the surgical
scene, could improve the visualization in such image-guided procedures.

1.2.1 Endovascular Minimally Invasive Surgery

Minimally invasive techniques are particularly useful for blood vessels and lymphatic
system conditions, which can then be treated using small instruments, like catheters,
guide-wires, balloons, and stents. Such procedures are known as Vascular (Endovascular)
Minimally Invasive Surgery. The instruments are inserted through a distal puncture point
and manipulated through the vascular tree, or other pathways, up to reach the target le-
sion (see Fig. 1.2).

Figure 1.2: Endovascular procedure (Coronary Angioplasty) to treat coronary stenosis with a balloon
catheter. The catheter is inserted through the femoral artery, and pushed through the vascular tree in
order to reach the region of interest and treat the lesion.

Endovascular minimally invasive surgeries include: angiography, stent and filter place-
ment, vascular embolization, percutaneous transluminal angioplasty (PTA), radiofre-
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quency cardiac catheter ablation, thrombalytic and fibrinolytic procedures and others,
for more details see [5].

Figure 1.3: Examples of endovascular procedures performed under fluoroscopic guidance. (a) Stent place-
ment: a wire mesh tube is placed to properly open an artery during an angioplasty. (b) Endovascular
treatment of an aneurysm: several coils are placed into the aneurysm through a catheter which is subse-
quently detached and withdrawn. (c¢) Radiofrequency ablation of the cardiac wall.

Without direct access to the operative site, the entire procedure needs to be performed
under medical image-guidance. Such guidance provides the operator with live feedback
on the anatomy of the patient and the position and shape of the deployed interventional
device. The problem is that surgeons must navigate inside the 3D vascular tree, relying
only on bi-dimensional (2D) images. Also, such images may be challenging to interpret
due to poor contrast or the presence of multiple overlaying structures, which prevent a
clear visualization of the target lesion.

For endovascular procedures, standard imaging systems are X-ray fluoroscopy, which pro-
vides high-quality visualization of radio-opaque instruments and devices. An iodinated
contrast agent is often injected to reveal the patient’s vasculature, but sometimes view
angles are chosen before the administration of contrast and may not demonstrate specific
lesions.

Volumetric imaging systems may be used as additional support to 2D fluoroscopy
to have further 3D information. For example, computed tomography angiography
(CTA) and magnetic resonance angiography (MRA) allow pre-operatively acquiring three-
dimensional data-sets of the vascular tree and their environment. Other techniques like
3D rotational angiography (3DRA) based on C-arm-like systems allow intra-operatively
to obtain volumetric data of the vascular tree. The main problem with 3D data-sets lies
in its registration to the 2D images. Indeed, tissue deformations caused by breathing mo-
tions or interaction with other organs, and different configurations between pre-operative
and intra-operative acquisition, make the 2D-3D registration problem non-trivial.
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The nephrotoxicity of the agent, the radiation exposure, and the loss of depth perception
in X-ray images, are reasons why improved means of visualization have been investigated.

1.2.1.1 Interventional Devices

The interventional devices typically used in endovascular procedures are catheter and
guide-wires. A catheter is a hollow flexible tube that can be inserted in duct or vessels.
Thereby, catheters either allow the injection or drainage of fluids or provide a passage-
way and access for other surgical instruments, such as stents, balloons, or micro-coils.
Catheters are normally composed of different polymers which present good properties in
terms of strength, flexibility, torque control, low resistance of the internal surface, and
radio-opacity Their configuration (fig.1.4(a)) presents a hub, a body, and a proximal tip,
available in different designs according to the specific application (fig.1.4(b)).

‘ L“
!

{ \
\

1\ \

N~

(a) (b)

Figure 1.4: (a) The hub is a threaded plastic connection at the end of the catheter, which allows the
injection of fluids or the insertion of coaxial instrument. The body can reach length of 80-120cm according
to the specific application (b) The design of the tip (straight, pigtail, cobra tail, sheperd,...) Depends on
the application and the anatomical target (©) Boston Scientific.

Catheters may be pushed towards placement, through a stainless steel metallic struc-
ture, known as the guide-wire. Guide-wires are used to facilitate the insertion of the
catheter by increasing its rigidity. Thereby, the clinician first inserts the guide-wire, and
then the coaxial catheter slides around the guide, following its path.

1.2.2 Principles of Fluoroscopy

Fluoroscopy is a real-time imaging technique based on X-rays. It is principally used
for guidance in interventional radiology and image-guided surgery, due to its ability to
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show the dynamic anatomical process. An overview of fluoroscopy based procedures
is presented in [6]. In particular, fluoroscopic techniques enable clinicians to visualize in
real-time, and simultaneously, the contrast-enhanced internal anatomical structures, their
motion, as well as the dynamics of the interventional devices which are being deployed.

1.2.2.1 Equipment and Mode of Operation

A fluoroscope consists of an X-ray source and a detector, and the patient is positioned
in between. Modern fluoroscopic systems are typically mounted on a C-arm machine
(see Fig. 1.1). The X-ray source and the detector are on the opposite extremities of the
C-arm. Such configuration allows effortless rotations around the operating table, provid-
ing posteroanterior, lateral, and oblique angles of view. Typical C-arm equipment may
be floor mounted (Fig. 1.1), ceiling mounted (Fig. 1.5(a)), or mobile in order to be dis-
placed within the operating room (Fig. 1.5(b)). Biplane systems include two C-arms (Fig.
1.5(c)) and enable clinicians to visualize simultaneously two different projections of the
patient. Such systems are used for specific applications in cardiac and neuroangiography
procedures.

Figure 1.5: (a) Ceiling mounted, (b) Mobile C-arm, (c) Biplane System. All right reserved (©) Siemens

Different modes of operation may be used according to the specific application. In clas-
sic continuous fluoroscopy, the X-ray beam continuously hits the patient providing high
time resolution; this is particularly useful to examine processes which require at least 30
frames/s to be adequately visualized. On the other hand, such modality entails a higher
amount of emitted ionizing radiation. For that, both the patient dose and the fluoroscopy
time needs to be lowered. An alternative to continuous fluoroscopy is pulsed fluoroscopy,
in which a series of short X-ray pulses (i.e. 10ms/pulse) is emitted at different selectable
frame rates (30, 15, 7.5 frame/s). Pulsed fluoroscopy images appear sharper with lower
motion blur. Low pulses rates enable a spare of X-ray dose, but that may not be suitable
for rapidly moving organs or advancing instruments. Higher acquisition rates provide
better images for dynamic phenomena, to the detriment of X-ray dose reduction. An
interesting comparison between continuous and pulsed fluoroscopy can be found in 7]
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and |[8].

1.2.2.2 Fluoroscopic Images

Typically, in fluoroscopic images, all the radio-opaque structures appear overlaid on a
grey-scale projected image. The grey level of each structure depends on the proper X-ray
absorption coefficient (see fig.1.6(a)). Image processing is therefore employed to improve
the quality of the fluoroscopic flow. Commonly, to reduce image noise, a frame averaging
on consecutive images, with a user-selectable number of frames, may be performed (]9]).
Such temporal averaging combines the most recent frame with the previous ones, allowing
to eliminate the temporally uncorrelated noise. This processing technique allows the re-
duction of quantum noise and works optimally whenever changes between two consecutive
images are small.

In endovascular procedures, Digital Subtraction Angiography (DSA) is a type of fluoro-
scopic technique used to visualize vasculature in a dense environment clearly (see Fig.
1.6(b)). In particular, sequential images acquired after injection of a contrast agent are
subtracted from a mask image that includes only the anatomical background (previous in-
jection). DSA images eliminate static structures and enhance contrast. A further imaging
mode, is the road-map (see Fig. 1.6(c)) that enables to create a map of the vasculature,
generated by using a stored image of a contrast-filled vessel (similar to Fig. 1.6(a)) sub-
tracted in real-time to a contrast-free fluoroscopic image. Such road-map image can be
either displayed alongside the live fluoroscopy or overlaid to it, so that clinicians may
have an idea of both the path to follow and the live motion of a deployed instrument.

References or further information about fluoroscopy and its principles can be found in
[10], [11], [12].

1.3 Problem Assessment and Contributions

The use of fluoroscopy as intra-operative guidance facilitated the development of sev-
eral minimally invasive techniques. Nevertheless, this type of medical imaging technique
presents some drawbacks, related to several factors. Study researches in different domains
have been carried out to overcome some of these disadvantages.

In the following sections, we illustrate the main shortcomings of fluoroscopy, and how
our own proposed solution can overcome some of the limitations. The chapter ends with
our contributions to the state of the art.
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Figure 1.6: (a) Original fluoroscopic unsubtracted image-head, bone structures are superimposed to
contrast-enhanced vasculature. (b) DSA image (here at the end of contrast medium injection) where the
vasculature is enhanced with respect to the background, online subtraction of a constant, contrast-free
mask image, during contrast medium injection. (c) Road-map in which both the vessel path and the
radio-opaque instrument are visible, online subtraction of a constant, contrast-enhanced image, during
tool navigation under fluoroscopic guidance.

1.3.1 Limitations of Fluoroscopic Procedures

Like other X-ray based procedures, fluoroscopy carries some risks linked to radiation
exposure. Such risks may include biological effects, such as injuries to the skin and the
underlying tissues, and radiation-induced cancer. These effects may affect both the pa-
tient and the operators, and extensive studies have been carried out to evaluate radiation
exposure ([13], [14]).

Risks related to radiation exposure are mainly due to the ability of fluoroscopy to display
dynamic processes: a fluoroscopic flow is, in fact, provided by a series of images, produced
at a maximum rate of 30 frames per second. Whereas the radiation exposure needed to
generate one fluoroscopic image is low, higher exposures can result from the overall pro-
cedure time given the large series of acquired images. Thus, the total fluoroscopic time
is one of the significant factors that determine the dose. Staff and operators are usually
protected by lead aprons and lead glass shielding. For both the patients and the operators
several dose reduction techniques may be applied: pulsed fluoroscopy at low image rate,
last image hold, intermittent exposures, grid removal and others ([15], [16]).

Another minor disadvantage is related to the need for nephrotoxic contrast agents used
to enhance the visualization of internal structures. Iodine-based or Gadolinium-based
solutions are usually injected in the navigated artery through a catheter, for techniques
such as DSA or road mapping, to highlight blood vessels changing the absorption of X-
ray. Despite being safe drugs, an adverse allergic reaction may occur. In their work, [17]
summarize current knowledge for safe use of contrast media.

The second main drawback related to the intrinsic properties of X-ray images is the lack of
spatial information. In particular, projective 2D fluoroscopic images cannot provide depth
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information. Such lack of depth perception is further complicated by the environment of
overlaid dense multiple anatomical structures (see Fig. 1.7), and it has been identified as
one of the most important factors affecting clinical performance [18]. By solely relying

Figure 1.7: Fluoroscopic image of porcine abdomen acquired during experimental trials. A contrast
medium has been injected and, for that, renal arteries appear more visible (yellow arrows). Other
anatomical structures appear overlaid in the background more or less visible according to their properties.
The radio-opaque catheter is pointed out with a red arrow, whereas blu arrows show some radio-opaque
markers which we used in our experiences to calibrate the C-arm. In this figure, black dots are radio-
opaque calibration markers.

on bi-dimensional images, it is often arduous for the clinicians to mentally reconstruct
the 3D spatial configuration of the interventional device, the tortuous anatomy, the bi-
furcations, or the precise location of the target lesion. Therefore, to better reconstruct
the three-dimensional configuration, clinicians often rely on other imaging techniques, like
ultrasound, or acquire other fluoroscopic images along different projective angles of view.
This reconstruction implicates increasing procedure time, with a consequent increase of
radiation exposure.

1.3.2 Proposed Solution

The main objective of the work is to enhance the visual feedback of procedures based
on fluoroscopic images. Therefore, we propose to retrieve the 3D shape of the device
from a monocular fluoroscopic view and combine the 3D reconstruction with the 2D
fluoroscopic images. A better 3D visualization of the device within the patient anatomy
would eventually allow to decrease the global procedure time and, as a result, the overall
radiation exposure.
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2D fluoroscopic images provide just partial information about the current configuration
of the device. Such projective information could still be combined with a 3D model
of the device to find an optimal estimation of the real 3D catheter shape. Retrieving
a 3D shape from 2D information is not straightforward. 2D-3D reconstruction is an
extremely ill-posed problem. Given the missing information on depth direction, several
3D configurations may correspond to the same projection, and a unique solution does not
exist. To reduce the ambiguities deriving from the absence of depth information, some
additional constraints need to be applied. Such constraints may be of different kinds.
For example: regularization criteria applied to the 3D model (geometrical or physical
properties), a boundary volume defined by the surrounding vessel or the use of multiple
images acquired under different angles of view.

Compared to the existing methods, this work proposes a novel stochastic approach
that combines a 3D navigation model of the device with 2D information from fluoroscopic
images through an Unscented Kalman Filter (UKF). We focused our research on the
reconstruction of flexible and inextensible devices like catheters and guide-wires.

We defined an advanced navigation model, where the interventional device is described
through a physics-based finite element (FE) model. Indeed, taking into account the
tool’s physical properties enables achieving a better description of its dynamic behavior.
The navigation of the device inside the vasculature is performed through a non-linear
collision model, which takes into account complex phenomena, like non-rigid non-slip
contacts, providing a more realistic description of the interactions between the catheter
and the surrounding vessel. An optimized implementation allows achieving real-time
computation and performing FE simulation at frame-rates compatible with fluoroscopy
ones. Although the advanced model provides a realistic description of the catheter
dynamics, a perfect characterization of the navigation model is practically not feasible.
Some errors may affect the mechanical parameterization of the catheter’s model, and
some uncertainty related to the interaction model (friction coefficient of the vessels
surface, the vessel geometry, etc.).

An Unscented Kalman Filter is used to merge the catheter navigation model with the
detected image features. In practice: we correct the predicted 3D shape of the device
(provided by the navigation model) using the information provided by external mea-
surements about its current state (the projected shape of the device in the fluoroscopic
image). The use of such Bayesian formalism allows considering and tackling errors
and uncertainties in model parameterization and implementation,and noise in external
measurements (i.e. error detection in fluoroscopic images).

In conclusion, we propose a novel method to reconstruct the 3D shape of an international
device, which can handle and tackle several challenges.

e The type of external measurements: we use one-view projective observations, that
only provide partial information on the current state of the estimated object.



e The nature of the shape to reconstruct: a catheter is a threadlike object, different

from reconstructing than an entire surface.

e The interaction between devices and surrounding vessel: for the stochastic filter,

this is a problem of constrained state estimation.

e The real-time computation to achieve: the aim is to be compatible with typical

fluoroscopy acquisition frame rates.

These aspects will be examined in detail in the following chapters, highlighting why
such subjects are challenging and how our approach can overcome them.

1.3.3 Manuscript Outline

This manuscript is structured as follows:

1.

The current chapter introduces the clinical context, the current problems and limi-
tations, and our proposed solution.

. Chapter II includes the state of the art of the related works. Besides a more de-

tailed review on 3D reconstruction method from 2D views, we also present some
literature on the different scientific topics covered by our approach. We provide a
full description of different models used for interventional devices, and we present a
brief state of the art on image segmentation methods, although this subject is out
of the scope of our work, and no research has been performed in this field.

Chapter III presents an initial approach for 3D catheter reconstruction from 2D
monocular images. The method can be defined as a constrained Shape-from-
Template approach, in which image information is taken into account within the
simulation as mechanical constraints computed through Lagrange multipliers. This
work has been the object of the publication [2].

Chapter IV introduces stochastic simulation, presenting a preliminary study on the
state vector and the identification of model uncertainties.

Chapter V, the core of our work, details the stochastic simulation for catheter nav-
igation, also defined as a constrained Unscented Kalman Filter approach. The
physics-based catheter model and 2D fluoroscopic image features are redefined
within the Bayesian framework of an Unscented Kalman Filter. This work has
been the object of the publication [1].

Chapter VI presents a final overview of our work. We highlight possible solutions to
enhance and generalize our approach, along with some perspective for future works.
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2.1 Introduction

Fluoroscopic guidance provides essential information about the current configuration of
both the patient’s anatomy and the deployed interventional device. Nevertheless, X-ray
images’ projective nature entails a loss of information in terms of 3D perception.

For the last twenty years, computer-aided image guidance has enabled us to process 2D
fluoroscopic images, combine them with other medical data, enhance their visualization,
or provide more realistic feedback of the surgical scene. In particular, it is possible to
augment the fluoroscopic view by merging the 2D X-ray images with 3D models of the
anatomical environment and or the interventional device.

In general, existing approaches, which enable to enhance the visualization of fluoroscopic
images, can be classified into two main classes: methods purely operating in the 2D
domain, where the interventional device is segmented within fluoroscopic; and approaches
using 3D priors to add 3D information to the surgical scene.

In this chapter, we provide a quick overview of methods proposing a 2D enhancement
fluoroscopic images (Sec. 2.2), whereas in Sec. 2.3 we expose the different solutions
currently used to enhance the visualization of X-ray fluoroscopic images through the
visualization of 3D anatomical structures. A more detailed state of the art of methods
proposing a 3D reconstruction of the surgical device is presented in Sec. 2.4, being the
main objective of this thesis.

2.2 2D Enhancement of Fluoroscopic Images

Over the last years, several approaches have been proposed to detect and track the in-

terventional device in X-ray images. Catheter and guide-wires are deformable structures,
with average contrast, in a noisy and dense background. Therefore, their visualization is
often impractical without subtracted images, as in Fig. 1.6(a).
The segmentation of the device within the image can be performed with different pur-
poses: to purely enhance the visualization of the tool, to exploit the extracted shape
to compensate for respiratory motion ([19], [20]), or to use the segmented shape to per-
form 2D-3D registration of anatomical models. In particular, vessel registration can be
performed by aligning the vessel center-line with the extracted device shape (|21], [22]).

For general curved shapes, one of the first works on guide-wire extraction and tracking
in fluoroscopic images was presented by [23], based on researches on enhancement and
extraction of curved line structures (|24]). The method relies on the use of Hessian-based
filters, to enhance the instrument in images with a low signal-to-noise ratio (SNR) and
then interpolate the extracted points with a B-spline model. Other methods have been
then proposed, based on the same principles ([25], [26], [27]).
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(b) [27] (c) [29]

Figure 2.1: [28] Input image and detected segments. [27] Optimal B-Spline (yellow) which allows to
track the catheter even in presence of self-intersections. [29] Electrode detection: input image on the left
and results of detection with overlaid extracted features.

Machine learning, [28],[30], and convolutional neural networks (CNNs) [31] are different
approaches that allows segmenting curved structures within fluoroscopic images.
Specific methods exist for ablation catheters, embedded with metallic electrodes ([32],
[33],[29]) that are easy to detect and track in fluoroscopic images.
A recent method by [34] proposes to improve depth perception without employing virtual
or augmented reality, but rather by predicting depth information from a single view X-ray
image. In particular, the depth model is learned through a label-consistent deep learning
method incorporating atlas, prior spatial constraints, and patient-specific pre-operative
CT models. The work is an initial proof of concept on simulated X-ray images.

Although such methods can significantly improve the quality of the visualization, they
solely provide 2D information that does not overcome the lack of depth perception. 3D
knowledge may be included by merging the fluoroscopic image of either 3D models of
the vascular anatomy, or 3D representations of the inserted device. Such approaches are
respectively discussed in detail in sections 2.3 and 2.4.

2.3 Enhancement of Fluoroscopic Images with 3D
Anatomy Reconstruction

The intrinsic nature of 2D projective images often forces clinicians to infer a 3D surgi-
cal scene from theoretical knowledge of the anatomical structures. In general, such priors
can not always be reliable due to substantial anatomical variability. For that, whenever
using C-arm like equipment, several acquisitions along different angles may be performed
before starting the procedure, to conceive a better virtual reconstruction of the anatom-
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ical configuration. Nevertheless, this multiple-acquisitions inspection can be extremely
time consuming and not always feasible in a clinical room. Usually, only one optimal
fluoroscopic view is generally chosen according to the specific pathology. Besides that,
this view can not be valid and useful during the whole procedure.

As presented in [35], image-guided surgery (IGS) extensively exploits mixed reality to
combine the real environment with pre-operative or intra-operative models of the pa-
tient anatomy. Such augmented visualization provides the surgeon with a more extensive
view beyond the anatomy that is actually visible, which entails a better understanding of
the overall anatomical configuration. Pre-operative 3D volumetric data may be acquired
through different technologies and then registered to 2D X-ray images. 3D imaging tech-
nologies include: Computed Tomography Angiography (CTA), as done in [36] and [37], or
3D Rotational Angiography (3DRA) as presented by [38] (Fig. 2.2). In fluoroscopy-based
procedures, enhanced views, where different kinds of images are fused to 2D X-ray images,
enable globally reducing the radiation time, the overall procedure time, and the injected
contrast medium. This has been shown by [39], who compare classic thoracic endovas-
cular aortic repair procedures (TEVAR) with hybrid TEVAR procedures performed with
2D-3D of image fusion (IF) (Fig. 2.3(a)).

(a) Fluoro (b) 3DRA (c) 3DAF

Figure 2.2: [38] (a) Fluoroscopic Image. (b) 3D Model of the Vasculature (DRA). (¢) 3D Augmented
Fluoroscopy (3DAF) with transparent 3D model and 2D image. It is possible to notice how the 3D model
allows visualizing an aneurysm, otherwise not detectable within the 2D image

In general, to register a 3D model to a 2D image, a calibration of the C-arm must be
performed to find the projection matrix relating the 2D space of the fluoroscopic image
with the 3D world. Several methods have been proposed. In [40], authors use a rigid phan-
tom embedded with radio-opaque markers: minimizing the reprojection mean quadratic
error of such reference points, they retrieve the projection matrix. In [41], a calibration
method has been developed, specific for a clinical context, exploiting a mechanical model
of the C-arm. Using a planar calibration target, they measure the variation of the intrinsic



22 CHAPTER 2. STATE OF THE ART

parameters on a vascular C-arm. Other approaches are based on 2D-3D registration. [42]
propose a review of the main methods used in image-guided interventions: feature-based
strategies iteratively minimize the distance between corresponding points or contours,
intensity-based or gradient-based approaches iteratively optimize the similarities between
images or gradient vectors.

An important aspect lies in the fact that vascular structures are soft tissues which may
undergo large deformations due to external forces or physiological phenomena; also signif-
icant changes may occur between the pre-operative and the intra-operative configurations.
For that non-rigid 2D-3D registration techniques have been developed. Some methods in
an one view scenario have been proposed by [43| (see Fig.2.3(b)), [44] or [45]. Non-rigid
registration requires additional constraints beyond iterative minimizations or optimiza-
tions, such as: geometry preservation constraints [43|, center-line matching between the
real vessel and the virtual surface [44] or center-line matching between the real vessel and
the 2D catheter shape extracted in fluoroscopic images in [46].

(a) [39] (b) [43]

Figure 2.3: Example of 2D-3D overlaid images: [39] Complete angiogram after TEVAR procedure with
IF of a 3D model of descending aorta. [43] Visualization of the 2D-3D C-arm/ patient scenario

Multi-modal imaging techniques above presented would allow reducing the ambiguities
by providing an augmented view. Intra-operative live reconstructions could be performed
with a C-arm like equipment, to check, whenever needed throughout the procedure, the
precision of the 2D-3D registration. Unfortunately, temporal constraints (related to the
acquisition time and the processing and reconstruction of medical images) and a substan-
tial amount of additional radiation exposure make the use of real-time intra-operative 3D
reconstructions not feasible in practice. Another minor disadvantage is that regardless of
the registration method, the benefits of using 3D overlays on 2D images are limited by
the visualization choice. The high opacity of the 3D structures makes the background
X-ray image not visible but enhances the virtual 3D model. Besides, low transparencies
keep the X-ray image visible but reduce the actual usefulness of the 3D render.
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2.4 Enhancement of Fluoroscopic Images with 3D In-
strument Reconstruction

Besides the 3D visualization of anatomical models, it is possible to reconstruct the 3D
shape of the interventional device. Combining the current 2D fluoroscopic image with a
3D reconstruction of the interventional device, plus the 3D visualization of the anatomical
structures, could greatly improve the surgical insight.

To retrieve the shape of the interventional device, information on its current state must
be provided. In general, such information may consist of visual data extracted from
fluoroscopic images (monocular images or obtained from biplane system), measurements
provided by external sensors embedded onto the device (such as electromagnetic sensor,
or optical fibers based sensors), or a combination of both. In any case, to retrieve the
3D shape of the device, this kind of data must be interpolated or regularized by a model
providing some priors on the shape of the device and or its behavior. Such models can
include but are not limited to: geometric models, FEM models, kinematic or dynamic
navigation models. Several approaches have been developed to retrieve the 3D recon-
struction of the device, combining priors on the device and information about its current
state, according different strategies.

Although different types of interventional devices exist, we focused the state of the art of
this thesis on methods like ours, conceived for devices like catheters and guide-wires. Gen-
erally speaking, this type of instruments undergoes rigid motion (due to i.e. respiratory
motions) and non-rigid deformations, caused by interaction with surrounding anatomy or
manipulations by the operators. The time-varying shape of the device can generally be
seen as a 3D open non-planar curve.

2.4.1 Interventional Device Model

As stated above, information about the current configuration of the device, provided
by fluoroscopic images or external sensors, is not sufficient to retrieve the whole 3D re-
construction of the instrument. For that, it must be combined with a model describing
the shape and or the behavior of the device. Generally speaking, such models can be
either geometric, purely describing the shape, or physics-based and kinematic, providing
a description of the behavior of the device.

Parametric models, such as splines, have been widely used to model the shape of catheter-
like devices. A spline is a polynomial piecewise-defined function (see Fig. 2.4(a)) and dif-
ferent types of splines may be used according to the specific modeling needs. For surgical
thread simulations, authors in [47] combine the use of Catmull-Rom splines and uniform
cubic B-Spline respectively for their property of interpolation and their better continuity.
Given that splines are purely geometric models that do not provide any information about
the behavior of the device, authors defined a constraint to control the model; in partic-
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ular, they constrain the curve to slide through known fixed locations. Indeed, given the
properties of spline functions, a good estimation of the device shape is only possible when
combining spline models with additional information coming from other sources: biplane
images (48], [49], [50]), external sensors ([51], [52]) or applying multiple regularization
constraints ([53], [54]).

i+2

(a) B-Spline (b) [55]

Figure 2.4: (a) Example of a B-spline as a piece-wise polynomial function. (b) [55] Schematic represen-
tation of guide-wire at rest and under rigid translation after one joint changes configuration.

A geometric approach, where the catheter is represented as a multi-body system com-
posed of connected links, enables users to have a description of the device behavior.
Researches presented in [56] and [57| propose to model endoscopic devices as rigid-links
connected through joints, which allow the bending of the instrument. In [58|, where au-
thors propose a training system for interventional radiology, three different forces can be
applied to the multi-body object: contact forces, injection forces for the device, and forces
applied by the user at the proximal end of the instrument. This discrete model enables
a good approximation of a catheter, but it requires many small links to represent a high
degree of flexibility, thus leading to increased computational cost. In [55], a guide-wire is
modeled as a series of connected small incompressible rigid rods. A further constraint of
length preservation is imposed so that the movement of any joint is restricted to a 2D sur-
face in the 3D space. The method operates in the quasi-static domain, to provide a good
propagation of the device without precise knowledge of friction forces. Authors in [59]
model the guide-wire as a series of rigid segments whose behavior is modeled according to
Hooke’s law. In their work, a quasi-static approach is adopted, and static friction forces
are taken into account, under the hypothesis that the device is inserted slowly without
any acceleration. The proposed approach does not fulfill real-time requirements. In [60],
authors propose a mass-spring model in which the device is modeled as a series of particles
connected by rigid springs of equal length, where rotation and translation movements are
handled separately. The proposed strategy presents some instabilities when the instru-
ment collides with a vessel bifurcation during the insertion. Both [60] and [59] solely model
bending deformations. The method presented in [61] proposes a geometric approach for
VR simulations of catheter navigation within a heart chamber. The device is modeled as
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a series of rigid links which undergo different motions, depending on the segment of the
catheter represented (tip, shaft, proximal part). According to the interaction with the
heart wall (non-slip, pseudo-slip, slip contacts), the catheter model undergoes a different
type of deformations. The method of [62] relies on a quasi-static approach for the propa-
gation of the guide-wire, which is modeled as a linked rigid rod undergoing bending and
translations. To take into account the mechanical properties of the device, they define a
function of angular spring, constant for each joint. Collision response between the device
and the surrounding anatomy is performed with a force correction strategy, instead of
performing a time-consuming collision detection at every iteration of the algorithm. (Fig.

2.5(b)).

f(0),1(c)

guidewire
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Figure 2.5: (a) [63] Section of a rod from ¢ to s, subject to distributed and internal forces and moments.
(b) [62] The guide-wire is separated into linked rigid rods and the tip portion is intrinsically curved.

The main advantage of geometric approaches lies in the low computational cost. Nev-
ertheless, such methods require explicit modeling of contact forces and do not provide an
accurate prediction of the device’s behavior. For example, they do not allow any physical
modeling of motions like torsions, or significant bending.

In that sense, physics-based approaches can provide a better prediction of the behavior
of the device. Cosserat rod theory has been widely used to model one-dimensional elastic
objects. Such a theory involves equilibrium relationships relating internal and external
forces and moments along the length of a rod (Fig. 2.5(a)). The popularity of Cosserat
models in computer graphics arose with [64], who proposed an expensive Newton iterative
static approach to model thin elastic objects. [65] proposed a physically-based deforma-
tion model of Cosserat rod theory, based Finite Element Methods (FEM), to take into
account effects like torsion. In medical applications, a hybrid approach is presented by
[66] where they simulate guide-wire insertions, combining the body of the device (mod-
eled as a series of non-linear elastic Cosserat rods) and the tip, modeled using a more
efficient generalized bending model. Cosserat theory has also been used to compute the
statics of a magnetically actuated catheter [67|. However, contact handling with such a
model is difficult. For catheter navigation, where collisions occur continuously along the
device’s length, this is indeed a critical issue. Other physics-based approaches relying on a
finite element representation have been proposed. Authors in [68] propose a new method
based on three-dimensional beam theory which enables to handle geometric non-linearities
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while having a real-time computation, through an incremental approach to handle large
deformations. Based on this approach, [69] proposes a composite model of catheter/guide-
wire taking into account complex interactions between the devices and the surrounding
vessels. Similarly, [70] models an embolization coil as a set of deformable linked beams
(see Fig. 2.6(a)), and interactions are modeled with non-holonomic constraints applied
through Lagrange multipliers. More in general, this FE based approach, relying on three-
dimensional beam theory, allows modeling bending, twist, and other deformations, plus
the interactions with the surrounding anatomy in real-time.
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Figure 2.6: (a) [70] Modeling of a wire using linked beam element,internal forces are computed us-
ing a local reference frame to handle large deformations. (b) [71] Catheter model and the assigned
Denavit-Hartenberg (D-H) coordinate frames.

Continuous robot theory is a third approach to model catheter-like devices. An exhaus-
tive survey is presented in [63]. This is particularly useful for steerable robots, where the
tip deflection is activated through a pull-wires mechanism. A first kinematic model has
been proposed by [71], in which the tip position is predicted based on the configuration
of the shaft and the manipulations performed on the catheter handle (see Fig. 2.6(h)).
Interactions with surrounding anatomy are not taken into account. In [72],the authors
model the tip of a steerable catheter through the beam theory to describe large deflections.
Such approaches are valid only for devices actuated with a pull-wires like mechanisms.

The choice of the most appropriate model for catheter-like structures depends on the
trade-off among model complexity, computational expense, and accuracy. Geometric
approaches are more computationally efficient to solve, but they lack physical realism and
precision for large deformations. On the other hand, physics-based approaches assure a
better description of the object’s behavior, but they are more computationally expensive.
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2.4.2 Overview on Reconstruction Methods

Two are the sources of information that must be combined to reconstruct the shape of
the device: information on the current configuration of the device and priors on its shape or
behavior. For that, we decided to classify the reconstruction methods classified according
to three main categories: reconstruction methods based on the use of biplane images
(sec. 2.4.2.1), monocular reconstruction solely relying on visual data (sec. 2.4.2.2), and
methods of monocular reconstruction based on the use of external sensors (sec. 2.4.2.3),

2.4.2.1 Biplane Images Reconstruction

As in Fig.1.5(c), biplane angiographic systems allow the simultaneous acquisition of
images in two quasi-orthogonal planes. This setup improves the operator’s perception of
space for both the anatomical structures and the deployed devices. In this context, the 3D
reconstruction of the device shape can be described as a classic stereoscopic reconstruction
problem, in which the two calibrated cameras are the X-rays sources of the biplane system
(see Fig. 2.7).
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Figure 2.7: Schematic description of biplane reconstruction.

A common practice is to extract the projected shape of the device as a 2D curve and
find the corresponding 3D shape under the hypothesis of uniqueness ', regularity *, and
monotony of pairing .

In [48], the authors use some B-spline models to fit the 2D projections. By enforcing the
above-mentioned constraints, they retrieve a 3D B-spline from the two views. The quality
of the reconstruction is dependent on the precision of the 2D B-spline extracted in the
fluoroscopic images. Unfortunately, it is not always possible to have an accurate analytic
parameterization of such 2D curves, given the image segmentation quality. In [73], the
authors model the 3D shape as a set of connected 3D points. Constraints of monotony and
uniqueness are applied by estimating, in 3D, a specific catheter direction and consequently
defining a new 3D point along the predicted direction. Yet, they require a pre-processing
step in which the position and the orientation of one of the 3D points must be initialized.

1A single 3D curve is projected on a unique 2D curve within the image.
2 Enforce the smoothness of the curve, preventing from large curvatures.
3 The function which interpolates corresponding points has to be monotonic.
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Additionally, the linear estimation of a new catheter path leads to some problems during
the reconstruction algorithm. Alternatively, [74] proposes to reconstruct the 3D shape
from non-structured 2D points. In particular, they back-project the 2D points first, then
through clustering methods, they obtain a set of representative 3D points, reduced to
a unique curve, thanks to a moving least-squares approach. Nevertheless, an additional
third view is necessary to reconstruct more complex shapes. Another type of constraint
exploits the temporal coherence of the catheter path. In [49], where the biplane system
is employed asynchronously, a 3D B-spline curve is regularized so that its projections
are consistent with the image features extracted in two views, where the information
from the missing image (caused by the asynchronous acquisition) is created from the
interpolation of its sequence neighbor. Nevertheless, a temporal constraint is not always
suitable since abrupt movements may occur between two consecutive images. Also, the
initialization step may be affected by some problems In [50], the authors use epipolar
geometry to segment images and create correspondences between 2D segments, rather
than set 2D points. Then, when enforcing monotony and regularity constraints, they
identify an optimal 3D shape using a B-spline function. A thorough state of the art of
the main approaches relying on biplane systems is presented in Chapter III of [75], in
which methods are classified according to both the type image-features detected within
the images (e.g. set of disconnected points, fragments and segments, and parameters
lines), and the constraints applied to retrieve the optimal 3D shape

Although biplane systems facilitate the navigation providing two different angles of
view, such equipment is not widely used in clinical routine (mostly due to their relatively
high cost). Instead, they are used for specific applications where, in any case, solely
one view is actually followed by surgeons. Other disadvantages are due to the neces-
sary synchronization of the images. Also, the manipulation of biplane systems is not
straightforward. For example, it is not possible for surgeons to indiscriminately change
the orientations of C-arms during the procedure.

2.4.2.2 Monocular Images Reconstruction

Unlike biplane systems, mono-plane fluoroscopic systems (see Fig. 1.1) are extensively
used in clinical practice and provide X-rays images along a single angle of view. The
reconstruction of the 3D catheter using only a single 2D projection is an intrinsically ill-
posed problem: several 3D configurations may correspond to the same 2D image, which
entails an infinity of possible solutions (see Fig. 2.8).

In general, the information extracted from fluoroscopic images consists of the projected
shape of the interventional device. Such projected shape is generally represented as a
parametric curve, connected segments, or sets of points. The precision of the segmentation
depends mainly on the quality of the image, in particular on the contrast to noise ratio
of the instrument. In [76], a guide-wire is segmented as a parametric curve, and its
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Figure 2.8: Several 3D configurations may correspond to the same 2D projection.

shape is detected within fluoroscopic images. Authors provide a segmentation error of 1.5
pixel (see Fig. 2.9(a)), for a guide-wire presenting in the image width of 3-5 pixels. The
segmentation error increased with an increment in noise in images. Other approaches,
such as [32], aim at detecting in fluoroscopic images specific features such as electrodes of
ablation catheter (see Fig. 2.9(b)), gathering 2D detection errors of 0.50 £+ 0.29 mm.

Lasso catheter

Ablation catheter

Ablation catheter tip

electrode

CS catheter

(a) [76] (b) [32]

Figure 2.9: Two examples of what kind of observation can be extracted from fluoroscopic images

Once visual information has been extracted from monocular images, it must be inter-
polated or regularized by a device model. The first work proposing the reconstruction
of an interventional device from one-view images is 77|, where authors retrieve the 3D
position and orientation of the catheter through a rigid transformation. In particular, a
known rigid 3D model of the catheter is projected into the image plane. The reprojection
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error (between the projected positions and the measured image positions) is iteratively
minimized until finding the best rigid transformation. In this case, the catheter was
equipped with radio-opaque markers, making image-features detection, and 2D-3D corre-
spondences less arduous. Their rigid registration method has been proved to be robust
to noisy images, but sensitive to changes in catheter’s tip shape (i.e. deformation). In
[53], authors present the reconstruction of a guide-wire within a cerebral artery, where
a pre-operative model of the vascular branch is registered on the fluoroscopic image and
used as a further constraint (Fig. 2.10(a)). Since, in reality, the device navigates inside
the blood vessel, the reconstructed device shape must lay within the restrictive volume
defined by the vessel surface. The 2D guide-wire is segmented within the images, and
it is parameterized as a B-spline. Then, points are back-projected, and a 3D shape is
found enforcing criteria of continuity and spacial coherence. In practice, a 3D model of
B-spline is found, inside the vessel surface’s restrictive volume, as the minimum cost 3D
continuous path that respects the 2D parameterization. The precision of the method is
limited by the accuracy of the B-spline segmented within fluoroscopic images. In their
work, the segmentation is done manually, defining some points along the guide-wire and,
subsequently, performing a B-spline interpolation and re-sampling. Another limitation
of such methods is related to computation time, which is not compatible with the 10-20
frames/second of the imaging system.

E focal spot

(b) [54]

Figure 2.10: [53] Global setup and coordinate systems involved in the 3-D reconstruction. [54] 3D
visualization of the estimated wire after subtraction.

Since fluoroscopic procedures rely on a flow of images, another constraint exploited by
[54] takes into account the temporal coherence of the catheter path. Using a particle
filter, the authors combine a known 3D geometric model of the vessels with the back-
projection of 2D features, creating a 3D probability distribution of the wire position,s
which is recursively propagated. For each distribution, the probability density is mainly
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composed of three terms: the likelihood between the observations and the points (related
to the intensity of the point projected into the image), the knowledge of the last time
step, and the update providing a prediction where the points could go given the current
position. A B-spline model with maximum probability, maximum length, and minimum
curvature priors is set to regularize the maximum a posterior solution (Fig. 2.10(b)).
This method mainly relies on the hypothesis of temporal continuity. In practice, the
device position can drastically change between two images due to operators’ movements
or contacts with surrounding anatomy. Despite good results, such a purely geometric
model would not ensure a correct reconstruction when dealing with ambiguous views of
the surgical scene (i.e. whenever the catheter moves along the direction of the X-ray
detector optical axis or the image is not clear due to multiple overlapping vessels). In
[78], the 3D reconstructed shape is defined as a smooth curve lying inside the blood vessels
and matching the projection of the guide-wire segmented in the images. Smoothness and
continuity are ensured with a set of priors, including a constraint of matching the vessel
center-line. Such regularization criteria lead to shapes that do not perfectly match reality.
Center-line alignment precludes from reproducing any contacts between the device and
the vessel surface, while they frequently occur. Ambiguous cases are not handled and
left for the clinician to interpret. Also, their approach does not provide a unique curve
but rather a combination of possible reconstructions (Fig. 2.11(a)). Authors in [79],
propose a Hidden Markov Model (HMM) to reconstruct the catheter’s tip within a 3DRA
surface. (Fig. 2.11(c)). The catheter is segmented within the fluoroscopic images, and
a 2D-3D registration is performed by aligning the vessel center-line with the extracted
catheter. The probability distribution of the 3D tip position is computed using an HMM
and updated based on the previous distribution and the 2D-3D registration results.

recior

/_.___...L

(a) [78] (b) [80]

Figure 2.11: (a) [78] 3D view with all possible reconstructions (yellow). (b) [80] magnification associated
with a cone beam acquisition geometry. (c) [31] 3D tip tracking using Hidden Markov Model.

Electrophysiology catheters are embedded with metallic electrodes, that easily de-
tectable in fluoroscopic images. In fact, their projection in fluoroscopic images presents
different characteristics than a simple navigation device. Based on this assumption, de-
tecting changes in object magnifications enables to retrieve the original position and the
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orientation of the object with respect to the X-rays sources. Authors in [80] compare the
fluoroscopic projection of the object with DRR images of a model of the same object while
varying its pose. Template matching is used do obtain a measure of similarity between
the template image and the segmented feature in the X-ray image. Once a preliminary
estimate has been found, it is refined via multivariate function minimization. In [29],
authors present a method to detect and predict the depth of catheter electrodes from
single-view images, employing a full convolution neural network. The robustness in the
depth direction needs to be improved (6.08 + 4.66 for tip electrodes in a lateral view).
More in general, such methods rely on magnification changes requiring high accuracy
in image segmentation, at sub-pixel level, which is easier for such catheters due to the
electrodes. Given that catheter-like devices are not easily detectable in fluoroscopic im-
ages, it is not possible to assimilate an X-ray projection to an orthographic projection.
Approaches relying on different magnification effects do not apply to standard catheters.

Robotic steerable catheters can be seen as a series of rigid links connected and an a
prior knowledge on the controls, along with schematic parameterizations of the joints,
allows defining a unique kinematic model. Based on multi- views fluoroscopic images,
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Figure 2.12: (a) [81] Concentric tube robot shape reconstruction. (b) [21] Kinematic parameters of a
concentric tube robot (c¢) [82] C-arm rotation towards optimal position where Vy; s s is on the image plane.

[83] propose a method to reconstruct the 3D shape of an ablation catheter for cardiac
diseases, based on Non-Rigid Structure-from-Motion* combined with robotic modeling. In

4A well known problem in Computer Vision of reconstructing a non-rigid object from a moving camera.
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particular, the method uses a low-dimensional parameterization of catheter deformation
and does not require the use of 3D vessel geometry as further constraints. In [81], the
shape of the continuous robot is estimated through a kinematic model, which is refined
with X-rays image-features (Fig. 2.12(a)). The images are acquired under an optimal
positioning of the C-arm, which allows users to extract robust features. This method relies
on the hypothesis of varying, multiple times during the procedure, the C-arm orientation.
This is not always acceptable during the clinical work-flow. The work of [82] presents a
technique to reconstruct the 3D shape of a Hansen artisan robotic catheter, without the
need for external hardware for shape sensing, based on adaptive C-arm positioning and
offline appearance priors. The shape of the device is modeled using a graph representation,
where each 3D edge corresponds to the center-line of each 3D segment of the catheter,
and the nodes their connections. First, they extract the 2D center-line of the catheter
in the image. Then, they estimate the 3D shape using appearance priors. Lastly, they
calculate the optimal positioning of the C-arms. The C-arm is iteratively rotated until
the difference between the current 3D shape, and the previous one has been minimized.
This method relies on the hypothesis of varying C-arm orientation multiple times during
the procedures, which is not always acceptable during the clinical work-flow. Also, the
orientation of the 3D catheter is based on 2D detected features, typical of concentric tubes.
The same authors, in [21], overcame the problem of multiple C-arm acquisitions, by taking
into account a kinematic model of the robotic catheter (Fig. 2.12(b)). They perform a 2D-
3D registration combining the 2D features extracted from fluoroscopic images, with a 3D
shape estimation calculated from forward kinematics. The kinematic model is typical of
concentric tube robots. The shape is calculated through a boundary value problem (BVP)
for the relative twist angle (between concentric tubes) and for bending and torsional
curvature as functions of arc length. The integration of such values provides the shape of
the robot as a function of arc length.

2.4.2.3 Monocular Images Reconstruction using External Sensors

In case of monocular images, given the absence of further information (such as the
second image of biplane systems) additional constraints must be defined. In particular,
another possible solution is to embed external sensors onto the catheter. While fluo-
roscopic images only enable the gathering of the current projected shape of the device,
external sensors would allow retrieving some 3D information about its configuration and
location. For catheter-like devices, two categories of sensors can be used: fiber optic
sensors (FOS) based and electromagnetic (EM) tracking.

Fiber Bragg Grating (FBG) is a particular category of optical fiber sensors that act as
a wavelength selective mirror. This feature arises when a light produced by a broadband
source is transmitted through the fiber. In FBG sensors, only the light centered on the
Bragg wavelength is reflected by the grating: other components will continue their path
all along the fiber with no signal loss. Whenever an external load is applied to the optical
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fiber, the induced deformation produces a mechanical strain, resulting in a wavelength
shift for the reflected light. When analyzing the wavelength shift, it is possible to retrieve
the strain and estimate the curvature to reconstruct the shape (see Fig. 2.13(a)). The
main advantages of such sensors are related to their size and their miniaturized design,
which makes them easy to integrate onto the instrument. Also, presenting high elasticity
and flexibility, they do no significantly modify the device’s properties. In the medical
context, FBG sensors are typically used to perform surgical needle shape tracking, and
achieved precision can reach ranges of 0.74 — 1.2 mm ([84], [85], [86] ), using different
needles length and different numbers of FBG sensors spaced out at various distances
along the fibers.

FBG-sets

(a) [85] (b) [87] (c) [87]

Figure 2.13: (a) [88] Demonstration of the curvature-strain model for helically-wrapped FBG sensors.
(b) [87] Principle of intra-operative EM tracking, (c) examples of sensor from Ascension Technology
Corporation.

It has been demonstrated that FBG sensors present reasonable performances for shape
sensing of devices with high stiffness (i.e. needles), where the strain is perfectly trans-
ferred from the deformed device to the sensor. For catheter-like devices, authors in [51]
propose a simultaneous catheter and environment modeling (SCEM) for trans-femoral
Transcatheter Aortic Valve Implantation procedures (TAVI). They replace classic fluoro-
scopic images with a virtual reconstruction of the 3D anatomy and the inserted device.
Whereas the reconstruction of the vasculature is based on data fusion between intravascu-
lar ultrasound (IVUS) and electromagnetic (EM) tracking, shape sensing based on FBG
sensors is performed to retrieve the catheter shape; an overview of the hardware and
software set-up is presented in Fig. 2.14(b). In this work, the clinical procedure is not
fluoroscopy-based, but to the best of our knowledge, this is the only method to propose
an FBG sensor to reconstruct the catheter shape. FOS-based sensing does not suite the
large deformations and the low stiffness of interventional devices like catheters.

Another technology widely adopted in medicine is electromagnetic (EM) tracking.
Thorough reviews of electromagnetic tracking in clinical environment have been presented
in [89] and [87]). The working principle of EM sensors relies on Faraday’s Law. Whenever
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Figure 2.14: (a) [88] Demonstration of the curvature-strain model for helically-wrapped FBG sensors.
(b) Sensor fusion framework and hardware configuration for the system presented in [51].

a receiver moves within a magnetic field, a voltage, proportional to the intensity of the
magnetic field, is induced in the receiver. Such induced voltage gives the measurement of
the orientation and the position of the receiver with respect to the emitter. EM technol-
ogy is mainly used to localize and track the 3D location and orientation of surgical tools,
by embedding the device with an EM sensor. The sensor is tracked within the working
volume of an EM field generator (see Fig. 2.13(b)). Magnetic sensors can present different
sizes and different detected degrees-of-freedom (DoFs), usually: 3 DoFs for position and 2
/ 3 DoFs for orientation (see Fig. 2.13(c)); similarly, different field generators can create
a working volume of different sizes. Various configurations may be adopted in the oper-
ating room, according to the chosen equipment. Generally speaking concerning precision,
most assessments show promising results below 1.0 mm (see [87]). For catheter-based
procedures, the general idea is to embed an external sensor into the instrument, to have
a 3D knowledge on the position of the tip or other parts of the device.

Compared to FBG sensors, EM tracking is more adaptable to deformable devices like
catheters. In [90], authors propose to use EM tracking in combination with occasional
intra-operative CTA, within a navigator where a virtual 3D reconstruction of the surgical
scene is introduced. In particular, they developed a general EM navigation framework
in which the catheter is embedded with 2 EM sensors (5 DoFs) at the distal part. The
mutual information provided by the two sensors allows the reconstruction of the curvature
of the tip. The sensor can be attached to the instrument or inserted into a customized
multi-lumen catheter (see Fig. 2.15(a)). Authors in [22] propose a method to reconstruct
the shape of the device based on a probabilistic fusion of the real-time EM tracking with a
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(a) [90] (b) [91]

Figure 2.15: (a) [90] Representation of a traditional catheter with two sensor coils (yellow cylinder). (b)
[91] Comparison between classic fluoroscopic images against 3D virtual reality images generated with 3D
EM sensors for catheter position and model of the anatomy.

simulation of catheter navigation, based on a kinematic model. Their framework is overall
composed of 7 sensors (one 6DoF and the rest 5DoF) distributed along the catheter. A
Kalman filter is used to combine the pose information provided by the sensors, with
the kinematic model of catheter navigation. Such a probabilistic approach allows taking
into account measurement errors from EM sensors and inaccuracies associated with the
kinematic model. In this case, an algorithm simulating the insertion used to provide a
prediction of the catheter dynamic consequent to a certain insertion length. The catheter
model is defined through a given number of oriented nodes. The shape is computed
minimizing the bending and the elastic energy of the device inside the vasculature, based
on the approach proposed by [55]. In particular, following a known insertion length,
total energy is minimized to find the consequent displacement of each node. A first-order
iterative analytic solution is proposed to efficiently obtain the vector of the displacement
of each segment. Another probabilistic approach is proposed by [52]. In this case, the 2D
information extracted from fluoroscopic images is combined with the pose information of
EM sensors to retrieve a 3D reconstruction of the entire catheter shape. The catheter is
modeled as a 3D B-spline and multiple EM sensors are embedded onto the instrument, to
retrieve the position and orientation of several segments of the device. The reconstruction
of the 3D catheter shape is achieved by optimizing the B-spline model’s probability density,
given the EM information and the 2D image-features. As before, a probabilistic approach
allows taking several errors into account: noise and distortion in fluoroscopic images, errors
from EM sensors, and registration errors between EM data and fluoroscopic images. EM
trackers were also combined in [91] with a robotic catheterization system, providing a 3D
instrument position and orientation visualization instead of the classic 2D fluoroscopic
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view (see Fig. 2.15(h)).

Although embedded trackers can give a rather precise location of the catheter, they
allow only for a very partial reconstruction of the device, and a full shape cannot be
retrieved. Only when combined with other information, such as a kinematic model of the
device [22] or image features [52]), it is possible to reconstruct the whole shape. Also,
their embedding on the interventional device implies significant work-flow changes, hence
restricting the possible clinical applications. EM tracker limitations are associated with
the sensitivity to ferromagnetic materials. In particular, ferromagnetic and conductive
objects may create distortions of the magnetic field. EM localization errors may further
increase in an operating room’s environment, where interactions with ferromagnetic ma-
terials cannot be neglected. The majority of sensor intends to replace classic fluoroscopy
guidance to reduce radiation exposure. Nevertheless, existing technology is not mature
enough, and fluoroscopy remains the only reliable method for accurate information on the
ongoing procedure status.

2.4.3 Discussion

Given the presented state of the art, it is clear that multiple sources of information
need to be combined to retrieve a reliable 3D reconstruction of the device: a model
(physics-based or geometric, including motions and deformations), constraints (contacts
with surrounding vessels, regularization criteria on the shape, temporal coherence), and
information on the current state of the device (projective 2D from image features, 3D
from position or shape sensors).

Reconstruction methods based on geometric priors of the shape of the catheter (mainly
B-splines) cannot guarantee a reliable reconstruction, especially under ambiguous views.
Moreover, in this case, the device motion is not modeled. For that, 2D-3D data association
is more arduous, and the thereafter reconstruction may fail, especially after sudden mod-
ifications of the catheter’s shape (e.g. following a contact with the surrounding anatomy
or an abrupt movement). Reconstruction methods defining a kinematic or physics-based
model of the device provide a better description of the device’s behavior within blood
vessels. On the other hand, they may be computationally expensive, thus incompatible
with frame-rates of acquisition images (7.5-15 fps). Reconstruction methods exploiting
embedded external sensors entail significant modifications of the clinical work-flows. Also,
EM tracking, which is the most suitable for catheter-like devices, presents important lim-
itations related to ferromagnetic interactions in a clinical environment.

In table 2.1, we summarize all the above-listed methods according to different criteria.

Information on the device’s current state can be provided by biplane images, monocu-
lar images and or external sensors. 2D information extracted from images can be either
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Table 2.1: Classification of reviewed approaches according to: observations used, chosen model for the

device and its navigation, and methods caracteristics

feature-based (i.e.

markers detection or detection specific features such electrodes) or

without any specific features. The model of the device can be purely geometric (i.e. B-
spline) or take into account its behavior through a kinematic or physics-based approach.
Specific methods take into account the surrounding 3D anatomy as a further constraint
to the 3D space, considering as well the interactions with the blood vessels. All of the
above-mentioned methods are prone to be tainted with errors, either related to the obser-
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vations or inaccuracies in the model. Whereas deterministic methods either don’t mention
uncertainties nor take them into account through empiric parameters, probabilistic ap-
proaches can handle various sources of error. For example, [22]| proposed a Kalman Filter
formalism to fuse data from multiple EM sensors with the physics-based model, taking
into account uncertainties on both the models and the external measurements. In [52],
authors retrieve the 3D shape of the device, optimizing a posterior probability function.
This is defined as the probability of the spline model given the data originating from the
EM sensors and the fluoroscopic images. In practice, they perform a maximum likeli-
hood estimation. To take into account the uncertainty on the 3D configuration of the
catheter, authors in [54] describes the 3D position of the device as a probability function,
where both the representation and the temporal update are performed using a particle
filter. Particle filters are particularly useful for describing multi-modal probability dis-
tributions, but they may be extremely computationally expensive due to the number of
generated particles. In [31], the 3D tip location is represented through a Hidden Markov
Model. The probability that the catheter is at a specific location is the probability that
the HMM is in the corresponding state. Each state changes at each discrete time step,
according to the probabilities associated with the current 2D observation. Despite the
good results, they apply their method only to the tip of the device.

In a more general computer vision context, some methods have been proposed to re-
cover the 3D shape of a deforming non-rigid surface from a monocular sequence based on
Finite Element (FE) models. FE models enable to implement sophisticated priors on the
shape to capture realistic deformations while being robust to occlusions [92, 93]. Under a
probabilistic approach, it has been recently shown how a FE model could be leveraged in
an EKF framework to achieve online reconstruction [94]. Two hypotheses are necessary
for this method: they assume to know the deformation modes of the surface, and they
suppose to detect and track some to 2D features, whose correspondences with 3D points
of the FE model are assumed to be known. The FE model, driven by the 2D detected
features, captures elastic deformations of the surface, but it does not provide any infor-
mation about the dynamic behavior of the object. Contacts and collisions are not taken
into account, whereas only fixed physical constraints can be included in the model. Also,
such a framework could not directly fit our specific problem of catheter reconstruction, as
a surface FE model cannot be applied to a curved shape like the interventional device.

2.5 Conclusion

The main aim of our work is to reconstruct the 3D shape of the interventional device
from 2D single-view fluoroscopic images, without the need of any additional hardware.
To this end, the final proposed result of this thesis is a finite element (FE) simulation
reproducing the navigation within blood vessels through a constrained physics-based sim-
ulation. Similarly to the physics-based model presented in sec. 2.4.2.2, our model aims



at having a better prediction of the device physical behavior, in particular taking into
account contacts with the surrounding blood vessels while guaranteeing real-time com-
putation. Information on the current state of the catheter is solely provided by 2D fluo-
roscopic images where we detect and extract the projection of radio-opaque markers the
catheter is embedded with.

We first proposed a deterministic approach (Chapter III), where the 2D features ex-
tracted from fluoroscopic images are integrated into the navigation model as mechani-
cal constraints. Despite the good results, this purely deterministic method needs some
specific hypothesis making it restrictive for a straightforward application. In addition,
uncertainties on the navigation model and errors on extracted features are not taken into
account.

We then evaluated a probabilistic approach (Chapter V). Through a Bayesian filter, the

predicted shape of the device is corrected with the 2D monocular images. Such stochas-
tic formulation allows us not only to take into account inaccuracies in the navigation
model (such as mechanical characterization of the catheter model, uncertainties on ap-
plied constraints, etc.), but it also allows interpreting the missing depth information of
2D image-features as a further source of uncertainty of the stochastic state. Given the
non-linearity of both the model and the observation processes, we propose to use an Un-
scented Kalman Filter [95].
One of the major contributions of this work is a solution to the constrained state esti-
mation problem raised by contacts. In stochastic, a constrained estimation occurs when
not all the values of the random variable are acceptable samples. In our case, as the
device is constrained to stay inside the vessel, the estimated positions cannot assume all
the possible values within their probability distribution (e.g. outside the vessel surface).
The proposed method casts such constrained estimation as a Non-linear Complementarity
Problem (NLCP) solved using a Gauss-Seidel Method.
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3.1 Introduction

In this chapter, we present a deterministic approach to retrieve the 3D shape of the
catheter from 2D monocular X-rays images. We model the navigating device through
a Finite Element approach, where the information collected through 2D image-features
is integrated into the model as mechanical constraints. Given the ill-posedness of the
problem, further constraints providing additional 3D knowledge have to be identified to
retrieve an optimal 3D shape. In the following sections, we present the FE model of
the surgical device in detail, the constraints formalism used to integrate the 2D image
features, and the different types of constraints that can be defined to add 3D knowledge
to the problem.

3.2 Deformable Models

When simulating catheter-like devices, two parameters have to be taken into account to
define an efficient model: the different motions the device can undergo and the resulting
deformations. Devices such as catheters, or guide-wires, are flexible but inextensible non-
linear elastic objects. When pushed inside blood vessels, they show high non-linearities.
This is due to contacts with the surrounding anatomy, high tensile strength, and low
resistance to bending. The motion of such devices is induced by the manual movement
performed by clinicians at their proximal end. Indeed, by pushing, pulling, or twisting
this extremity, operators can navigate the device through the vascular tree and reach the
target lesion.

In section 2.4.1, we presented the existing approaches used to model catheter-like de-
vices. Mass-spring models or multi-body dynamics present limitations related to the fact
that the physical parameters like Young’s modulus cannot entirely be translated with a
spring stiffness. Also, torsional energy terms and geometric non-linearities are not taken
into account. If geometric non-linearities, such as contacts and friction phenomena, are
taken into account, they are however incompatible with real-time requirements (|59]). To
provide an efficient biomechanical characterization of the instrument, while handling non-
linearities within a real-time computation, we exploit the FE approach presented by [68|
and [96]. Such an approach is based on the three-dimensional beam theory introduced
by [97]. Combining such FE model with a co-rotational approach allows us to represent
highly non-linear behaviour while guaranteeing a fast computation.
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3.2.1 Finite Element Approach

The finite element method is a numerical technique used to analyze any physical phe-
nomenon that can be described using partial differential equations (PDEs). FEM belongs
to variational methods that, in a general manner, aim at energy minimization. In par-
ticular, whenever a boundary condition (like a displacement or a force) is applied, only
the configuration with minimum total energy is chosen among all possible. First, in FE
approaches, infinite DoFs of a continuum object are sampled into finite discrete elements
connected with each other at nodes. By joining such elements, the field quantity becomes
interpolated over the entire structure through a piecewise polynomial interpolation.

The governing equations at partial derivatives (plus the boundary conditions) are then
approximated to algebraic equations (eq. 3.1) and solved simultaneously for each node.

F u = f —su=F'f (3.1)
< =~ ~—~
Property Behaviour Action

F is a non-linear function describing the mechanical characterization of the material,
providing as well as information on the discretization of the surface; the vector f expresses
the internal forces on all the nodes; the vector u, unknown of the equation, expresses the
displacement of each node between its initial and deformed position (uy — uy).

Different types of FEM may be defined according to the object to be modeled and
the deformations it undergoes. Linear FE models describe the elastic behavior of the
object through Hooke’s law, characterized basically by Young’s modulus and Poisson
ratio. In this case, F is replaced by its first order approximation F(u; — ug) =
K(uy — ug) + O(|Jluy — ugl[?), where K becomes a constant matrix, computed as the
Jacobian of F evaluated in uy: K = g—{:, which can be pre-computed at the beginning
of the simulation. Several works have been presented relying on linear FEM (]98], [99],
[100]). Although their robustness and computational speed make them suitable for real-
time computations, the linear approach does not perfectly describe large deformations
and non-linearities, which may typically occur in medical simulation.

Instead, large deformations can be accurately described by hyperelastic (non-linear) mod-
els; most common models, among others, are St-Venant-Kirchoff, Neo-Hookean, and
Mooney-Rivilin. Hyperelastic materials can be described through a strain-energy den-
sity function, which is used to derive a non-linear constitutive model. More in general,
the stress S depends on the tensor strain E and the energy function W, through the
expression S = %—Vg. Despite the large range of deformations described, hyperelastic FE
models are computationally expensive (given the non-linearity of the internal forces, the
stiffness matrices are not constant thus not pre-computable). Also, they cannot guarantee
the numerical stability of the simulations. To be compatible with the real-time require-
ments of medical simulations, [101] proposed an approach based on an implicit integration

scheme, leading to a faster stiffness matrix assembly for isotropic and anisotropic materi-
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als. Another FE method, which allows modeling large deformations, is the co-rotational
approach. Initially proposed by [102], such a method assumes that occurring rotations
are the main cause of geometrical non-linearities. The method has been then adapted
to real-time computations for volumetric objects by [103] or [104], where the rotations
of each element are independently computed . In particular, assuming that linear elastic
forces are invariant under translations but not under rotations, they propose to work with
a constant linear stiffness matrix K and extract the rotational part R of the deformation.
Let g, be the position of the i element before its displacement, the function F can be
written as:

Fi=R; K, (Rflq@' — Qi) (3.2)

For a tetrahedral element, the matrix R; € R!'?2%!2 is a diagonal matrix, where each
R, € R3*3 represents a global rotational component of the rigid body transformation of
the element.

They first rotate the deformed positions q; back to the initial frame using the inverse
matrix R;'; then, the forces are computed as K; (R;'q; — qi) and rotated back as
in equation 3.2. Finally, the new stiffness matrix is estimated through the derivative
K, =% - RK,R;!

v 0q;

3.2.2 Catheter Model

To model large deformations while being compatible with real-time computations, we
use a combination of a FE model of the three-dimensional beams with a co-rotational
approach.

A beam is an element composed of two linked nodes, each one described by 6 DoFs. The
elementary beam is characterized by a stiffness matrix K, € R'?*!2 which is a symmetric
matrix relating forces and torques (applied to the e element) with the corresponding
spatial and angular displacement. Such a matrix can be formalized as follows:
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Figure 3.1: 6DoFs beam obtained as a series of N connected nodes
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(3.4)

where the different parameters are summarized in the following table:

E | Young’s Modulus | I cross-section moment of inertia
v | Poisson’s ratio b = gﬁg shear deformation parameters
A | beam cross section | J polar moment

[ | beam length G = ﬁ

Table 3.1: Mechanical parameters to describe a three-dimensional beam model.

All the beam elements are then linked to each other through a finite element model
expressed with a co-rotational formulation. Therefore, the local forces for each element
can be expressed as in equation 3.2 where the local rotations are now associated to the
two nodes of the beam. The rotation matrix R, of the e element of the beam is R, =
diag(R} R! R? R?), where R! and R? are the rotations of the node 1 and 2 of the beam.
The total co-rotational elastic forces may be expressed as:

-Fe = Re Ke (R;1Qe - qeo) (35>
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where the stiffness matrix K. is computed as in equation 3.4, the vectors q., qe, € R!?*!
represent the positions and orientations of each beam (for the deformed state and the
initial one), and the matrix R, describes the elementary rotations associated with the
two nodes of each beam. Such a co-rotational FE approach allows taking into account
non-linearities occurring in large deformations, while assuring a fast and stable compu-
tation. This last advantage is also due to the particular structure of beams, which can
be numerically described as a Block Tridiagonal system (BTD), whose inversion can be
performed more rapidly than a full matrix.

3.3 Boundary Conditions

The linear system resulting from the FE method is singular. Therefore, boundary
conditions need to be defined to make it invertible. The choice of appropriate boundary
conditions is fundamental for the correct resolution of the computational problem. In a
medical simulation, such boundary conditions are generally represented by two objects
interacting together (i.e. two anatomical structures in contact, a surgical instrument
in contact with an organ or an object constrained within a specific area). In our case,
boundary conditions are provided by the blood vessel the catheter interacts with during
the navigation. In the following sections, we provide a general definition of the mechanical
constraints, along with the formalism describing the interactions between the catheter and
the surrounding anatomy.

3.3.1 General Definition

In classic mechanics, constraints can be mainly classified as holonomic and non-
holonomic constraints.

Holonomic constraints, also known as equality constraints, can be formalized as:
W(di,qz) =0 (3.6)

where q; and qs are generalized coordinates of the nodes that represent the two objects
in contact. Such kind of constraints operate on the position of an object, constraining
it to lay e.g. on a surface (fig. 3.2(a)), a line (fig. 3.2(b)) or a to match specific point
according to the DoFs of the constraint (fig. 3.2(c)).

Non-holonomic constraints, also known as inequality constraints, express all the
differential constraints which can be formalized as:

W(ai,qz2) <0 (3.7)
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A practical example can be the case of a 3 DoFs particle trapped inside a sphere of radius
R, the non-holonomic constraint can be described as /22 4+ y2 4+ 22 < R.

W w.

1 DoF 2 DoF 3 DoF

//ql d>

q2 g
d: //D/

(a) 1 DoF (b) 2 DoFs (¢) 3 Dofs

Figure 3.2: Holonomic constraints on position: (a) 1 DoF constraints operate on only on one DoF
of the object (qi), which is hence enforced to slide on a surface (q2). (b) 2 DoFs constraints operate on
two DoFs of the object, which is hence enforced to slide on a line (qz2). (c) 3 DoFs constraint, constrain
three Dofs of the object whose position is fixed at q;.

3.3.2 Contact Model

The interventional device is bound to remain inside the blood vessels, and some interac-

tions may occur between the catheter and the vessel wall. Such boundary condition, plus
the collisions that may occur between the device and the vessel wall, can be expressed
as non-holonomic constraints which enforce the catheter to stay inside the blood vessel.
Looking at eq. 3.7, the formulation W(qcu, Ques) < 0 bounds the catheter inside the
surface, and the equality W(Qeat, Ques) = 0 is used to formalize the situation where the
two objects are in contact. This kind of constraints are applied through Lagrange mul-
tipliers (|98, 105]) in a prediction-correction approach. First, an unconstrained motion
is performed, then, if an interpenetration occurs W(qear, Ques) > 0 (i.e. the catheter is
outside the vessel), contact forces are applied to all the positions violating the boundary
constraints, to correct them and bring them inside the vessel surface. Lagrange multipli-
ers represent the intensity of such contact forces, which must be applied to respect the
defined constraints. Physical laws defining contacts are expressed here above, while the
temporal integration will be detailed in Sec. 3.4.
Contact conditions can be assessed by the interpenetration d,,, and the amplitude of the
contact force A, that needs to be applied to correct a potential constraint violation. Both
of these quantities are expressed along the normal n of the surface of contact. The collision
response is governed by Signorini’s law (eq. 3.8):
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6n >0
An >0 (3.8)
80 An=0

expressing that at any time, the interpenetration 4, is non-negative (null if contact), the
contact force A, is non-negative (null if no contact), and either §, or A, is null at any
moment of time (see [106, 107| for details). In practice, if there is no interpenetration
(6n > 0) no force needs to be applied (A, = 0); otherwise, if d, < 0 a contact force
An > 0 must be applied to bring the position back to the contact point (d, = 0).

Coulomb’s friction law states that the reaction force has a non-null component
in the tangential direction (see [106]). Considering the dynamic friction of a single
contact point, the direction of the friction force must lay in the direction of the tangential
motion. In particular, such reaction force belongs to a pyramid cone whose height and
directions are defined by the normal force A, and the cone angle is defined by a parameter
i that models the friction amplitude. Combining Couloumb’s law with Signorini’s law
expresses conditions that govern stick and slip phenomenon in friction:

dr=0— |Acll <pglAall  (stick) (3.9)
or #0 = |[Ar|[ = —pl|[Ax]] (slip) (3.10)

where d1 represents the tangential component of the interpenetration é = é, + dr. In

this case, contacts can be analyzed in two orthogonal directions, given by the surface of

contact: collision is assessed along its normal n, whereas the friction acts in the tangential

plane T. As stated above, such interactions can be expressed by a non-linear function

W(qi,qs) depending on the positions of both objects in contact. Given the linearized
oW

problem, the transpose of the Jacobian J = Dq EXpresses the directions along which all

the contact forces A, for all points in contact, are applied.

3.4 Temporal Integration

Once the mechanical model has been defined, and the boundary conditions have been
set, a method of temporal integration must be chosen to describe the process through
time. The dynamics of the interventional device can be generally described by Newton’s
second law of motion (here expressed as second order differential equation):

M(x)% = F(t) — F(x,%) + W(x, %) (3.11)



CHAPTER 3. AUGMENTED 3D CATHETER NAVIGATION USING
92 CONSTRAINED SHAPE FROM TEMPLATE

—>slip
—— stick

(a) Signorini’s law (1) (b) Signorini’s law (2) (¢) Coulomb’s law

Figure 3.3: n represent the normal to the surface discriminating the boundary condition. (a) The first
step in collision response is to verify whether, under unconstrained motion, interpenetration may occur
along the normal n (8, > 0). (b) If a violation is detected, a correction contact force A, > 0 needs to
be applied to correct the interpenetration d,, = 0. (¢) Whenever friction must be taken into account, the
contact force will lay inside a cone defined by the normal n and the parameter p. If eq. 3.9 is verified,
A1 will lay inside the cone and a stick contact will occur, otherwise, according to eq. 3.10, Agp will be
applied for a slip contact.

Where (x,%,X%) express respectively position, velocity and acceleration of a catheter’s
node; M(x) and F(x,xX) represent respectively the inertia matrix and the internal forces,
both derived from the co-rotational FE model, F(¢) expresses the external forces while
W(x, %) formalizes the boundary conditions applied to the model.

A method is explicit if the step displacement xj, at time k, is determined using the
equation of motion at the previous step X_1:

kk;—l = m_lf
%), = Xp_1 + Xp1 T (3.12)

X = Xp—1 + Xp—1 T’

These methods, also known as Forward Fuler methods, are simple, fast, but unstable for
real-time computations. In fact, the conditional stability of the central difference method
requires using very small time-steps, which is an issue for real-time or fast simulations.
On the other hand, implicit methods such as Backward Euler solve the system using the
equation of motion X, of the current step k, to determine the current step displacement
X

Xy = Xp—1 + X1 (3.13)
X = Xgp—1 + XkT .

Implicit time integration algorithms require additional computations but have the benefit
of being unconditionally stable. This is due to the fact that a linear system must be
solved at each time-step, where global equilibrium is verified at each time increment.
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3.4.1 Backward Euler Integration

In the case of interventional device navigation, we have a relatively stiff object whose
boundary conditions are represented by the vessel wall and the contacts that occur with
the surrounding surface. Non-rigid contacts are non-linear phenomena, varying through
time, and collision response on mechanical objects leads to discontinuities in velocities.
This problem belongs to the domain of non-smooth mechanics, for which accelerations
are not defined. To handle non-smooth dynamics while enabling fast computations, we
use a time-stepping method [108] based on an Implicit Integration scheme.

Considering the discrete time-step T' = [k — 1 — k], Eq. 3.11 may be rewritten as:

M(X)(Xk - Xk—l) = T(Fk - ]:(Xk, Xk)) + TW(Xk, Xk)
Xp = Xp_1 + (% — Xpq)T (3.14)
Xp = Xp_1+ XkT

In this case, the acceleration is defined as a difference of velocities. Non-linear terms, such
as F (X, Xy), are linearized using a first order Taylor series expansion:

oF oF
F(Xpo1 4 dx, Xpy + dX) = fr_y + ——dx + ——dx (3.15)
ox ox
The implicit velocity update is then computed as:
oF 8]—" oOF
(M — T~ T ——)dx =T (f_1 + T3 % 1)+ TITN, (3.16)

where dx = (x;—x;_1) and d% = (X, —Xy_1). After discretization, the matrix M expresses
the mass and it can be considered as constant and lumped, leading to a diagonal matrix
M € R'2N*I2N The partial derivatives of elastic forces can be defined as K = %&£ €
RIZV312N and the B = 22 € R12V*12V pegpectively approximating the stiffness of all the
vertices and damping of the model. The term J” A, expresses the linearized contacts. A
more detailed explanation will be provided in following sections.

Last equation, rewritten as a linear system ', becomes:

(M —-TB — T2K) T(fk — 1+ TKx) +TJ' A (3.17)
X dx f

Matrices M, B, K are computed by summing up each element’s contributions to its
vertices. This operation is called the assembly and, for elastic deformations, matrix
A € RPNXI2N s symmetric definite positive. The vector b € R'?V expresses applied
external forces.

!discrete-time index is dropped for sake of simplicity.
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3.5 Constraint-based Solution

To integrate the dynamics of the non-rigid objects (Eq. (3.17)) with contact’s law and
friction’s law (Equations (3.8)-(3.10)), we use a Lagrange multiplier approach with a single
linearization per time-step. Penalty methods, such as spring-like forces, which try to keep
the object inside the surface (i.e. enforcing the boundary conditions) are neither suitable
nor stable solutions for our problem. Instead, we use Lagrange multipliers, ensuring that
at the end of each time-step we have a valid configuration (every point of the catheter
lies inside the vessel) while reducing the computational cost.

Based on Eq.(3.8) and (3.17), the overall dynamic behavior of two interacting objects
may be described as a Karush-Kuhn-Tucker system (KKT) as follows:

Ag=b+J"x
. (3.18)
J'q=46
The aim is to compute, for each node, A deriving from contact’s law and the current state
q. Such resolution is performed through iterative steps:

1. Free Motion: we solve the linear system Aq = b, which will provide g/ at
the end of the time-step, as if no interaction constraints were applied (A = 0 in
Eq.(3.17), see Fig. 3.4(b)).

(a) Beginning Time-step (b) End Time-step

Figure 3.4: Example of free motion. At the beginning of the time-step, the catheter enforces the boundary
conditions lying inside the surface. After the free motion, the catheter advanced exiting the vessel. Green
segments in (b) shows the interpenetration d that has occurred.

This step may be expensive given that it requires the inversion of a large ma-
trix: /™ = A~'b. We use direct solvers to decompose matrix A in smaller
sub-matrices (LU decomposition, LDLT decomposition, Block Tridiagonal (BTD)
inversion, Cholesky decomposition). Iterative solvers also exist, but they are not
well designed for ill-conditioned scenarios, such as stiff and light objects as the
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catheter.

2. Constraint definition: we perform proximity detection (as described in sec. 3.3.2)
and we compute the Jacobian of the constraints J© = %i:. In practice, this matrix
gathers the directions n (see Fig. 3.5(b)) along which the correction forces A will
be applied.

(a) Proximity Detection (b) End Time-step

Figure 3.5: For each node of the catheter, the closest surface is detected and its normal n (pointing inside
the surface) is identified.

The proximity detection is performed using the positions at the beginning of the
time-step (Fig. 3.5(a)), supposing the matrix J to be constant during the time-step.

3. Compliance Computation: once both the directions of the constraints (expressed
through J) and the free motion /™ (without constraints) are known, we can define
4, being the violation of the constraint. In practice, it is the distance the interpen-
etration, projected along the constraint directions n gathered in J.
From Eq.(3.17): q = q/™ — A='J” X, we can rewrite the second term of Eq. (3.18)
as:
—1q7T _ free
(JAWJ A=Jq/" -4 (3.19)

The Delassus Operator W represents the mechanical coupling between the con-
straints and it is the most expensive step of the simulation as it requires to explicitly
multiply the inverse of the mechanical matrix A with the Jacobian of the contacts.

4. Constraint Resolution: the above expression provides a Non-linear Complemen-
tarity Problem (NLCP) where two are the unknowns: the applied forces A and the
violation &. This is solved through an iterative Gauss-Seidel Method, where each
constraint is treated singularly independently from other current constraints. More
details on this step are presented in [96] and [107].

5. Final Correction: once contact forces A are known, it is possible to compute the
final position and velocity of each node of the model:
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y@*\\k 6_*'\

(a) Violation Detection (b) Violation Correction

Figure 3.6: Whenever an interpenetration has occurred (8 > 0) along the direction n, contact forces
A > 0 are applied in order to correct the positions (6 = 0).

q= qfree . AflJT)\

Xp = Xp_1 + XkT

3.6 2D-3D Reconstruction Constraints

The navigation model described in the previous sections provides an estimate of the
catheter shape by simulation. When synchronization is made with actual X-ray image
sequences, it is pretty straightforward to see that the simulation rapidly deviates from
the real data. To retrieve the catheter’s real shape, the model needs to be combined
with external observations about the current state of the device. The approach we first
followed in our thesis consisted of expressing such information as mechanical constraints.
We report in this section on the various constraints we investigated, and both their impact
and limitations.

The 2D projected shape of the catheter is detected in the X-ray images. Hence, the first
hypothesis we made is to enforce the simulated device’s projected shape to match the
detected 2D projection. To have information on the catheter configuration, we use radio-
opaque markers placed on the catheter length and automatically detected and tracked in
fluoroscopic images. This gives rise to a set of 2DoFs holonomic constraints, as described
in section 3.3.1. A common problem with 2D-3D matching is the uncertainty of the depth
of the object in 3D, especially with deformable objects. The second set of constraints
is provided by the contact conditions that force the catheter to remain inside the blood
vessels. The lack of constraint on the proximal part of the catheter, outside the blood
vessel, can have a definite impact on its distal shape. Therefore, we investigated a third
and last set of constraints placed at the proximal part of the catheter, which is why we
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called them entry constraints.

3.6.1 Projective Constraint

In general, the projected shape of the device, extracted from fluoroscopic images, can

be represented as: unstructured points, segments of curves, or ordered points (or curves),
which can define a complete parameterization of a projected 3D curve. Different tech-
niques are adopted to match the detected 2D features with the corresponding parts on
the 3D model, according to the type of extracted information.
The focus of this thesis is on data/simulation fusion. Segmentation of interventional de-
vices in fluoroscopic images, along with new contributions in this field, is not attempted
in this work. To simplify image processing, we make the assumption extensively used
in monocular reconstruction to detect and track 2D features corresponding to known 3D
points. In particular, we used a catheter tagged with radio-opaque markers, easy to de-
tect and track. Furthermore, X-ray images were calibrated, i.e. a projection matrix C
was determined for each image sequence. Thus, the image constraint is mainly based on
2D-3D point correspondences.

3.6.1.1 Marker Detection and Tracking

As above stated, the catheter is assumed to be tagged with M radio-opaque markers
{m; = (2i,ys, %) Yiep, v, equally distributed along the catheter length (Fig. 1.4(a)). Each
marker m; is related to the catheter nodes through a constant linear mapping M;. In
the X-ray image (Fig. 3.27(a)) (acquired in this case on a rigid phantom), the catheter’s
markers appear clearly visible inside the vessel. Given their shape, size, and grey-scale
intensity, they are easily distinguishable from other structures, such as the calibration
markers used to retrieve the projection matrix. Fluoroscopic images are treated in real-
time to detect the markers. In particular, linear and non-linear filtering operations are
applied to extract the markers.

3.6.1.2 Calibration and Projection Matrix

In the image, each marker is detected at pixel coordinates p; = (u;, v;) which are related
to the 3D marker coordinates through the [3 x 4] projection matrix C, such that

p;, = Cm, (3.21)

where the underline notation expresses homogeneous coordinates. The calibration matrix



CHAPTER 3. AUGMENTED 3D CATHETER NAVIGATION USING
o8 CONSTRAINED SHAPE FROM TEMPLATE

C only depends on the X-ray view incidence, which is assumed constant during the acqui-
sition of a fluoroscopic sequence. A calibration procedure is performed to retrieve C. For
our work, 3D markers are glued at the surface of the phantom and detected in the X-ray
image, as well as in a 3D CT scan of the phantom, which enables us to build 2D-3D point
correspondences. The 3x4 projection matrix is computed by solving the linear system
built from those 2D-3D correspondences [109].

In general, a 3D point P(x,y, z) can be expressed either in the world reference frame R,
or within the camera reference frame R.. This entails that the projection matrix C can be
decomposed in intrinsic parameters K € R3*3 ([110]) and extrinsic parameters E € R3*4
so that:

C=KxE
mir Mi2 M1z Miy fz s o ri1 Ti2 T3]t (3.22)
Ma1 Mg Moy Moy | = | 0 f y Yo | X |[ro1 Too Toz| 12
m31 M3z 7133 MM3q 0 0 1 r31 sz T33| 13

The extrinsic matrix E is defined by a rigid rotation R and a translation 7', with E = [R|T]
allowing the transformation between the two reference frames R, and R..

Let P. be the point expressed in the camera reference frame and P, its correspondent in
the world reference frame, we can hence express:

P.=RP+T (3.23)

P,=R'P.—R'T (3.24)

Concerning the intrinsic matrix K, it transforms 3D camera coordinates to 2D homoge-
neous image coordinates expressing the focal length in terms of pixels f;, f,, the principal
point of the camera z¢, yy and the skew s between the axes. K is invertible, and given the
p(u, v) pixel coordinates of the projected point P (expressed in homogeneous coordinates)
we can easily express the line of sight associated to p, as the line going (through the origin
of the camera frame R, and along vector n,, given in R. by::

n,=K 'p (3.25)

3.6.1.3 Projective Constraint Formalism

Each detected marker m; defines a line of sight with the optical center of the camera
(origin of R.), along vector n; = K~'m;. If P is a 3D point, a Cartesian equation of this
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line in R, is thus given by:

t _
A AP =0 (3.26)
viP =0

which expresses that A, is the intersection of two planes normal to respectively v; and
vy. Both vectors must be orthogonal to n; and we chose (see Fig. 3.7(b)):

{V1 = (i1 — ;) X 1 (3.27)

Vo = V1 X 1y

Assuming the all linear mappings between the markers and the catheter’s nodes are the
identity mapping, the hypothesis that the projected shape of the device have to match the
shape extracted withing the image can be geometrically translated by enforcing the nodes
of the catheter to slide along the markers’ lines of sight in 3D. This can be translated, for
each node x;, by:

VIRP,+T)=0 and VvLRP+T)=0 (3.28)

where P denotes the position component of the generalized coordinate x, in R,,. This
constraint takes the general form P(x;) = 0, and is therefore holonomic.

Pi+1

Pi

Figure 3.7: The line of sight for each 3D catheter’s node is defined from its corresponding 2D point
detected onto the image and the camera center. Normals v; and vy are calculated from eq.3.27.
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Forces are applied on each node, along the associated vectors vi; and v,. The formalism
adopted to choose v, and v, makes that both plane constraints are adapted to the pro-
jected shape of the catheter: assuming n;,; — n; is approximately tangent to this shape,
and that n; is approximately orthogonal to the image plane, then vy is orthogonal to the
projected catheter shape and parallel to the image plane and vy is also parallel to the
image plane and tangent to the projected catheter shape.

3.6.2 Entry Constraint

Another constraint we defined, to have additional 3D knowledge on the insertion point
of the device, is called Entry Constraint since it applies to the proximal portion of the
catheter. To define such constraint, we exploited the fact that instruments are usually
inserted through a rigid valve, of whom we can retrieve position and orientation (Fig. 3.8).
Through this constraint, we want to fix a third dimension for the registration, and an
orientation through which the insertion will be initialized. Similarly to the Projection
Constraint, it is a holonomic constraint at 2DoFs, authorizing the sliding of the catheter
along a certain line defined by the intersection of the planes whose normals are v; and
Vo.

Figure 3.8: Two points of the valve are identified both in 2D and 3D in order to define the normals of the
bilateral constraint. The constraint is then applied to the catheter nodes closest to the entry markers.

Ey and E, are the two 3D points on the valve, and pg, and pg, their corresponding 2D
points detected on the image (Fig. 3.8(a)), the sliding line Ag can be defined as:

viP =0
Ap:{ ! 3.29
" {ng:o (3.29)
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where the normals (Fig. 3.8(b)) can be defined as:

{Vl — Posy (3.30)

Vg = vy X (an2 - anl)

For both the projection constraint and the entry constraint, given their linear for-
mulation, the elements of the Jacobian matrix corresponding to each applied boundary
conditions will be the coefficients a, b, c and o', b, ¢’ of a generic line f expressed in the
Euclidean three-dimensional space through two linearly independent Cartesian equations,
identifying the intersection of two non parallel planes:

(3.31)

Jar+by+cz+d=0
Ndz+Vy+cdz+d =0

In particular given (3.28), for a given constraint we can write the above coefficients as
(a,b,¢) = viR and (a’,V', ) = viR, whereas the vector X will be composed of d = viT
and d' = viT, where v; and v, are normalized.

3.7 Experimentations and Results

In this section, we evaluate the accuracy of the proposed method on both synthetic and
real data. In particular, we want to test the method relying solely on Surface Constraint
or Entry Constraint formalism, each one combined with the Projective Constraint. The
general approach is to compare the achieved reconstruction to a known ground-truth, and
evaluate its quality based on some evaluation metrics.

3.7.1 Overview and Metrics

In the synthetic experiments, a simple Y-shape geometry (mimicking a vessel bifurca-
tion) is chosen to generate a ground-truth simulation of catheter navigation. The tagged
device is assumed to be inserted through a rigid insertion valve. 2D synthetic observa-
tions are generated by projecting the 3D radio-opaque markers according to a chosen view
and adding some Gaussian noise. In this case, two orthogonal views have been chosen.
Combining the obtained 2D observations, with a catheter navigation model that presents
different parameterization from the ground-truth’s, we tried to retrieve the real 3D shape
of the device. This particular type of geometry has been chosen to evaluate the perfor-
mances when using different observation angles of view. In particular, we wanted to test
the robustness of the reconstruction if the device path is not deductible from the image
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(i.e. the plane containing vessel bifurcation is orthogonal the view).

The first real data-set was acquired using the test-bed described in [111], where two dif-
ferent stereoscopic cameras provide a ground-truth reconstruction of the shape of the
navigating catheter. These data provided no information on the insertion valve location.
Therefore, we only evaluated our method relying on the surface and projective constraints.
We generated 2D observations by projecting the reconstructed reference shape according
to one of the stereoscopic views and adding some Gaussian noise. Combining such 2D
information with the constrained navigation model, we evaluate the quality of the recon-
struction in the presence of different parameterization of the catheter navigation model.
The second real data-set aims at evaluating the quality of the reconstruction when solely
relying on 2D information and the entry constraint. The aim is to establish whether
it is possible to perform a correct 3D reconstruction of the catheter shape, without the
need of the surrounding anatomy. In this case, we used a catheter equipped with actual
markers visible in the X-ray images. The ground-truth catheter insertion has been per-
formed under fluoroscopic guidance and 2D images of the procedure have been acquired.
2D image features are detected and tracked within the recorded images. Additional 3D
acquisitions have been performed on some significant points of the insertion, to validate
our reconstruction.

The quality of the reconstruction has been evaluated by comparing the 3D shape of
the reconstructed catheter with the known ground-truth. Comparison metrics have been
evaluated on B-spline interpolations, computed starting from the tip, of both the reference
shape gy = (g1, ..., gnr) and the catheter’s ¢y = (¢4, ..., cpr), (with M = 10N against the
N nodes of the FE model). This allows to have a finer discretization of the shapes.
Concerning the metrics we evaluated:

e The Euclidean distance between the reference tip and the reconstructed tip:
d(gm, em) = \/ (91 — 1)”

e The mean distance between the distal segment of the reference shape and the distal
segment of the reconstructed shape:

m(gM7 CM) =

with i € [1, L] covering the lcm distal part of the device;

e The 3D Hausdorff distance between the whole ground-truth shape and the recon-
structed shape:
h(gut, enr) — max (min (d(g, ¢)))
gEegM ceCpyy
We focused on the tip and distal segment of the device, because it is the part most subject
to variations during the insertion and of the highest importance for clinicians.
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3.7.2 Synthetic Experiment on Projective Constraint and Surface
Constraint

In order to generate the ground-truth scenario, the simulation is based both onto the
vessel geometry constraint and the passage of the catheter through an insertion valve.
The Y-shaped vessel geometry has been generated by connecting three cylinders of 1 cm
of diameter, whereas the catheter is modeled as a series of N = 30 connected beams for
a total length of 10cm. Once the reference shape has been acquired, 2D observations are
generated. First, two orthogonal views are chosen (see Fig. 3.9), then the 3D nodes,
corresponding to the markers, are projected according to the selected view and some
Gaussian noise (with o = 0.25 pixels) is added to the projected positions, to be consistent
with the level of noise occurring in image-feature detection. Three different instances
of 2D noisy measurements have been generated for each view. Thereby, six different
data-sets of 2D observations were generated.

| amame |

«Noisy Obs 1
*Noisy Obs 2
<Noisy Obs 3
-Real Pos

I S R S B Y

T

X

=

0 150 [pixel] 300 450

Figure 3.9: Top view and side view. According these views, three different instances of noisy observations
are generated to strengthen the statistical significance of the results.

The 2D-3D reconstruction is then performed by relying on the projective and surface
constraints (see Fig. 3.10-(b)). No information is provided on the entry of the catheter.
Different parameterizations of the catheter navigation model have been tested to mimic
different kinds of misknowledge affecting the physics-based model. The objective is to
evaluate the robustness of the reconstruction. In general, the primary sources of uncer-
tainty consist of physical parameters (such as Young’s modulus), the insertion force, the
initial configuration of the catheter, and parameters concerning the applied constraints
(such as the friction coefficient or the vessel geometry). For that, three different scenarios
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have been evaluated. Model parameters for ground-truth and registration scenarios have
been summarized in tab. 3.2.

(a) Overview (b) Applied Constraints

Figure 3.10: (a) The blue shape represents the reference shape, whereas the red shape is the achieved
reconstruction. (b) We apply projective constraints and surface constraints. Constraint normals are
represented as green and red arrows. Green lines represent line of sight between the camera and the
detected markers (in this case, according to a side view).

Ground Truth Case 1l Case 2 Case 3 unit

Young’s Modulus 750 | 500 | 1000 | 1500 [ MPa
Outer Radius - Inner Radius 0.35-0.02 mm
Mass 0.48 g
Insertion Force 1.7e-03 | 1.7e-04 | 1.7e-02 | N/s
Time-step 0.001 S
Total Length 10 cm
Nodes 30 \ 10

Friction Coefficient 0.01 0.5

Initial Configuration o | ¢o - [R|T] o

Surface Constraint S0 so - [R|Ts]

Table 3.2: Simulation parameters for synthetic evaluation considering the vessel information. See Fig.
3.10 for reference configuration ¢ (blue shape) and Fig. 3.14-(a) for the real vessel geometry here noted
as sg.

Case 1. In this case, both Young’s modulus and insertion force were incorrect with
respect to the reference values. A coarser discretization of the beam is adopted. As
shown in Fig. 3.11, the reconstruction provided good results. In particular, we obtained
an average 3D Hausdorff distance of h = 3.5+ 1.4 [mm| when using side observations, and
h =2.440.6 [mm]| for observations from a top view. The average mean error at the distal
segment of the tip is m = 1.5 + 0.8 [mm]| for side observations and m = 0.6 + 0.5 [mm]|
for top observations. Concerning the average error at the tip, we obtained d = 0.4 + 0.4
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[mm| when using side observations and d = 0.3 £ 0.3 [mm)] fo a top view.

6 4
-Side View -Side View ~Side View
6 -Top View ~Top View 3 ~Top View

[mm]
n
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(a) Hausdorff Distance (b) Distal Segment Error (¢) Tip Error

Figure 3.11: Evaluation metrics to compare reconstructed shape with ground truth. Red and blue curves
represent respectively the reconstruction error when using side and top view observations. The error is
evaluated on the whole 3D reconstruction (a), on the distal segment (b), and on the tip location (c).
Both top and side view observations allow retrieving an accurate reconstruction, especially for the distal
part.

For the Hausdorff distance, the main errors occurred at the entry point, on the part
of the catheter not yet in the phantom. The tip error was always very good, as well as
the error on the distal segment in the top view. This error slowly deteriorates in the side
view, due to the ambiguity on the bifurcation, remaining within acceptable ranges (2.5
mm, compared to the 1 cm vessel diameter). Results appeared to be more accurate when
using observations from a top view (blue graph in Fig. 3.11), due to the fact that there is
no ambiguity in the depth direction, showing the geometry of the bifurcation along with
the catheter path.

Case 2. A further uncertainty on the initial configuration is taken into account.

(a) 3D View (b) Top View (c) Side View

Figure 3.12: Insight on initial configuration error. Real shape (blue) against erroneous (red).

Again, in both cases of side and top observations, we were able to retrieve the catheter’s
correct position. In particular, we obtained an average 3D Hausdorff distance of h =
4.3 £ 0.8 |mm]| for side observations and h = 3.1 + 0.6 [mm]| for observations from a
top view. Concerning the average mean error at the distal segment of the tip, we had
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m = 1.7 £ 0.8 [mm)] for side observations and m = 0.6 & 0.6 [mm]| for top observations.
The average error at the tip is d = 0.4 £ 0.4 [mm]| when using side observations and
d = 0.4 £ 0.3 |[mm]| for observations from a top view. In this case, errors appear greater
(especially for Hausdorff distance) due to the initial wrong configuration where, on the
whole length, the distance between the real shape and the reconstructed one is more
important. Nevertheless, the tip presents accurate reconstruction results.

-Side View -Side View -Side View
-Top View -Top View -Top View
E E E
1000 1500 2000 1000 1500 2000 500 1000 1500 2000
[ms] [ms] [ms]
(a) Hausdorff Distance (b) Distal Segment Error (¢) Tip Error

Figure 3.13: Reconstruction errors for Case 2 scenario. Similarly to previous case, both reconstructions
performed with top (blue) and side (red) view observations allow retrieving an accurate reconstruction
(i.e. the error between the ground truth shape and the reconstructed one remains acceptable).

Case 3. In this case, we wanted to test the accuracy of the reconstruction when having
errors on the surface constraint. In particular, we supposed to have an erroneous geometry
(see Fig. 3.14-(a)), and an incorrect friction coefficient. Results are presented in Fig. 3.15.

(a) Geometry Comparison (b) Validation View

Figure 3.14: (a) The red geometry presents some differences from the real one (here shown from a lateral
angle). (b) Looking at the validation view (when using side observations) error appears to be mainly on
the bottom on the catheter and in the depth direction.

The average 3D Hausdorff distance is h = 5.7 & 0.9 [mm]| for side observations and
h = 3.8+ 0.7 [mm]| for observations from a top view. The average mean distance at the
distal segment of the tip is m = 1.7 £ 0.8 [mm)| for side observations and m = 2.2 + 0.6
[mm)] for top observations; and average error at the tip is d = 0.7 & 0.4 [mm| when using
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side observations and d = 1.2£0.3 [mm)] for observations from a top view. Given the error
on the geometry, errors appeared to be higher compared to previous cases. Nevertheless,
they mainly occurred on the distal end of the catheter, which is in general less constrained
within the vessel geometry.

10

~Side View ~Side View ~Side View
—Top View -Top View -Top View
mem /4 o~ MM&::
1000 1500 2000 1000 1500 2000 500 1000 1500 2000
[ms] [ms] [ms]
(a) Hausdorff Distance (b) Distal Segment Error (c) Tip Error

Figure 3.15: Reconstruction errors for Case 3 scenario. In this case, the reconstruction is less accurate
than previous cases and the distance from the ground truth (computed on the whole shape (a), the distal
segment (b), and the tip location(b)) appears more important. This is due to the error on the vessel
geometry initialization which impacts the reconstruction.

As expected, for all the three scenarios, observations from side view (where there is no
knowledge of the bifurcation) provide less accurate results. Nevertheless, the reconstruc-
tion of the distal segment, whose accuracy is essential for a successful procedure, is always
achieved within acceptable ranges of error.

3.7.3 Synthetic Experiment on Projective Constraint and Entry
Constraint

Within this second set, we wanted to evaluate whether it is possible to retrieve the

correct 3D shape of the device without any knowledge of the surrounding vessels. Indeed,
as we have seen above, it is difficult to accurately model vessel segmentation noise. In
this sense, it could be interesting to be relieved from considering contacts with the vessel
walls, in the case of deformable blood vessels, which is a very complex matter to tackle.
However, initial tests rapidly confirmed that 2D markers did not sufficiently constrain the
catheter. Therefore, the reconstruction method only relies on the entry constraint and
the projective information (see Fig. 3.16).
As in previous cases, in the ground-truth scenario, we supposed the catheter to be in-
serted through a rigid valve embedded with two radio-opaque markers. These markers
are detected and are used to define the entry constraint as presented in Sec. 3.6.2. Anal-
ogously to the previous experience, three different scenarios have been set up, where the
model parameters differ from the real values to simulate potential misknowledge on the
navigation model (see Tab. 3.3). Multiple sources of error have been taken into account
simultaneously, to evaluate the quality of the reconstruct when dealing with more or less
incorrect models.
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(a) Overview (b) Applied Constraints

Figure 3.16: (a) The catheter is inserted through a rigid valve embedded with two radio-opaque markers.
(b) Detected markers are used to define the entry constraint, which is applied along with the projective
constraints. Normals are represented as green and red arrows. Green lines represent line of sight between
the camera and the detected point (in this case, according to a side view).

Ground Truth Case 1 Case 2 Case 3 unit

Young’s Modulus 750 | 500 | 1000 | 1500 [ MPa
Radius 0.35-0.02 min
Mass 0.48 g
Insertion Force 3e-03 \ 3e-04 \ 3e-02 N/s
Time-step 0.001 S
Total Length 10 cm
Nodes 30 \ 10

Initial Configuration o \ co - [R|T o

Entry Constraint €o e - [R|T]

Table 3.3: Simulation parameters for synthetic evaluation considering the vessel information. See Fig.
3.10 for reference configuration ¢ (blue shape) and Fig. 3.14-(a) for the real vessel geometry here noted
as Sg.

Case 1. In the first scenario, we supposed to have an incorrect Young’s modulus
initialization and an erroneous insertion force. As noticeable in Fig. 3.17, only when using
observations from the top view (blue graph), it was possible to retrieve the correct shape
of the device. In particular, we obtained an average Hausdorff distance of h = 2.1 +£ 0.4
[mm|, an average mean distance at the distal segment of m = 1.3 £ 0.4 [mm| and an
average error at the tip of d = 0.70.24+ [mm|. However, we observed a drift after the
bifurcation was taken in the side view. This is because the lateral view does not allow us
to discern the path of the catheter, and there is no knowledge about the bifurcation, in the
model. As a result, the 3D reconstructed catheter enforced the projective constraint (Fig.
3.18-(a)), but it is free to move in the depth direction (Fig. 3.18-(b)). The absence of
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Figure 3.17: Reconstruction errors for Case 1 scenario. Curves, computed between the ground-truth
shape and the 3D reconstruction, are the Hausdorff distance (a), the mean distance at the distal segment
(b), and the distance at the tip location (c). Red curve represents the reconstructions error when using
observations from a lateral view, blue curve refers to top observations. Observations acquired along
lateral angle (i.e. where the bifurcation is not visible) do not allow retrieving the correct shape of the
catheter.

space constraints (such as the vessel), combined with the lack of 2D information, generates
3D configurations which are physically coherent (i.e., they enforce the applied constraints)
but may appear outside of the vessel surface. Instead, observations from a superior view
(orthogonal to the bifurcation’s principal axis) provide information about the catheter’s
path. For that, it is possible to retrieve the correct shape of the device, even without any
knowledge of the surrounding geometry.

(a) (b)

Figure 3.18: (a) Reconstructed matches the projective reference shape. (b) In 3D, the reconstructed
catheter assumes a configuration falling outside the vessel surface.

Case 2. In this second scenario, we additionally supposed to have an erroneous initial
configuration of the catheter, as in Fig. 3.12. Like previously, only when using observa-
tions that provide information about the path of the catheter (i.e. top view), it is possible
to retrieve the correct 3D shape (blue shape in Fig. 3.19). We obtained an average 3D
Hausdorff distance of h = 2.4+ 0.4 [mm]|, an average mean distance at the distal segment
of m = 1.6 £ 0.4 [mm| and an average error at the tip of d = 0.9 £+ 0.2 [mm)].



CHAPTER 3. AUGMENTED 3D CATHETER NAVIGATION USING

70 CONSTRAINED SHAPE FROM TEMPLATE
15 .
20 ~Side View 20 _Side View ~Side View
15 ~Top View 15 “Top View ~Top View
7 — E
£ E 10 E
= 5
5 5
% 50 1000 1500 2000 0 s0 1000 1500 2000 0 500 1000 1500 2000
[ms] [ms] [ms]
(a) Hausdorft Distance (b) Distal Segment Error (¢) Tip Error

Figure 3.19: Reconstruction errors for Case 2, representing the distance between the ground-truth shape
and the 3D reconstruction. As previously, side view observations prevent from an exact reconstruc-
tion (red curve diverging). In this case, errors are more important due to the difference on the initial
configuration of the catheter.

Case 3. In this last scenario, we further supposed to have an error on the initialization
on the entry constraint. To mimic a segmentation error on the radio-opaque markers em-
bedded on the insertion valve, we assumed the entry constraint to be misplaced compared
to the real markers position (see Fig. 3.20).

J/

Figure 3.20: Misplaced entry constraint (yellow spheres) enforces the reconstructed catheter (red shape)
to diverge from the ground-truth shape (blue) which lies inside the insertion valve.
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Figure 3.21: Reconstruction errors for Case 3 scenario. As shown by the red curve, representing the
reconstruction performed with observations acquired along lateral angle (i.e. where the bifurcation is not
visible ), side observations do not allow retrieving the correct shape of the catheter. Reconstruction errors
from lateral observation appears greater due to the uncertainty on the entry constraint initialization.

As in previous cases, only the top view allows to retrieve the correct shape of the
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catheter (blue shape in Fig. 3.21). We obtained an average 3D Hausdorff distance of
h =2.94+ 0.4 [mm|, an average error at the distal segment of m = 1.9 £ 0.5 [mm| and an
average error at the tip of d = 1.1 £ 0.2 [mm].

3.7.4 Real Data Experiments on Projective Constraint and Sur-
face Constraint

In this experiments on real data, we evaluated the method relying on the projective
and surface constraints. As performed in [111], a 1.7F micro-catheter (Headway TM 17,
MicroVention Inc.) was inserted in a rigid phantom made of a silicone mold of an internal
carotid artery (H+N-R-A-003 model, Elastrat). The navigation within the transparent
phantom was captured at 198 fps by a pair of two high speed cameras (TM-6740CL,
JAI/Pulnix), synchronized using a trigger (C320 Machine Vision Trigger Timing Con-
troller, Gardasoft). The stereovision camera setup was calibrated using a chessboard
target and OpenCV algorithms. One camera was placed above the phantom to provide a
top view, and the other one provided the side view. In particular, the calibration measured
the projection matrices for each view (matrix C in Eq. (3.21)).

(a) Side View - Acquisition View (b) Top View - Validation View

(c) Applied Counstraints

Figure 3.22: Two orthogonal views are acquired (a)-(b). Reconstruction is performed applying projective
constraint and surface constraints, whose normals are represented as green and red arrows. Green lines
represent line of sight, blue shape is the real catheter, and in red is the reconstructed catheter.
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A sequence of 2130 images (640 x 480 pixels, with a pixel size of 0.13 mm), of a
total duration of 10 s, was acquired: the catheter was automatically segmented and
reconstructed in 3D by triangulation in each frame. This setup provided the ground-
truth reconstruction. It is worthwhile noting that this data-set is particularly interesting
due to a stick-slip motion, which occurs around 7" = 1200. The velocity profile suddenly
changes due to the accumulative effect of friction phenomena. At each time step of
the simulated insertion, virtual markers placed on the catheter are projected through the
known projection matrix so that their 2D positions are automatically computed according
to two different orthogonal views (Fig. 3.22). Each data-set has markers projected in a
view called hereafter the acquisition view, while the other orthogonal view will be referred
to as the validation view. This latter view is not involved in the reconstruction process,
and therefore enables an objective assessment of the capacity of our algorithm to retrieve
the correct shape, even in the depth direction of the acquisition view. Three different
observations sets were generated by adding a random Gaussian 2D noise to such projected
2D positions. A standard deviation of 0.1 pixels was chosen to be consistent with the level
of detection error encountered in actual images. Thereby, six different data-sets of 2D
observations were generated. Without further knowledge of the physics-based model of the
catheter, we decided to evaluate the reconstruction for three different scenarios, presenting
each a different value of Young’s Modulus, insertion force, and friction coefficient. Models
parameterizations are summarized in Tab. 3.4, where parameters have been initialized
with different values, all included within a range of physically coherent values.

Case1l Case2 Case 3 unit

Young’s Modulus 500 ‘ 250 ‘ 750 MPa
Radius 0.4-0.02 mm
Mass 0.2 g
Insertion Force 2.5e-03 ‘ 2.5e-04 ‘ 2.5e-02 | N/s
Time-step 0.001 S
Total Length 6 cm
Nodes 12

Friction Coefficient | 0.01 | 0 | 0.5

Table 3.4: Simulation parameters for real data-set experience, using surface and projective constraints.

As we show in Fig.3.24, the catheter perfectly enforced the projective constraint. Ob-
serving from the acquisition view, the projection of the reconstructed catheter (in green)
perfectly matches the 2D shape in the images. Instead, when considering the whole 3D
shape, it is possible to notice that: 1) at the beginning of the insertion, we were able to
reconstruct the correct 3D shape, 2) the reconstruction method failed when the stick-slip
transition occurred. On average, among the three scenarios, we obtained a 3D Haus-
dorff distance h = 5.2 + 2.5 [mm]|; an average error at the distal segment of the device
m = 2+ 1.3 [mm]; and an average error at the tip d = 1.4 £ 0.8 [mm].

In Fig. 3.25, we present qualitative reconstruction results: whereas side view was
used as observations view, the reconstructed catheter is here superimposed (in yellow)
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Figure 3.23: The Hausdorfl distance (a), the mean distance at the distal segment (b), and the error at
the tip (c), have been computed between ground-truth shape and 3D reconstruction. Curves represent
reconstruction errors when using different sets of model parameters initializations. The method is unable
to compensate stick-slip transition occurring around 7" = 1300, as shown by appearing peaks.

) T=006 ) T=200 ) T=620

) T=840 ) T=1000 ) T=1200

) T=1280 ) T=1360 ) T=2000

Figure 3.24: Reconstruction along acquisition view. In fig. (f), (g), (h) it is possible to observe the stick
and slip transition, with an abrupt movement occurring within a short interval (for details see [111]).
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over the validation view. As soon as accumulative phenomena occur (around 7" = 1000,
Fig. 3.25-(e)), the method is no more able to retrieve the correct 3D configuration.
The problem, which is already over-constrained and ill-conditioned, presents a further
complication consisting of the abrupt variation of the velocity profile. This phenomenon
causes an important discrepancy between the observed 2D positions and what is provided
by the navigation model. To compensate for such variation while enforcing all the applied
constraints, the reconstructed device assumes 3D configurations non-physically coherent.

(a) T=006 (b) T=200 (c) T=620

(d) T=840 (e) T=1000 (f) T=1200

(g) T=1280 (h) T=1360 (i) T=2000

Figure 3.25: The reconstructed shapes are superimposed in the validation view (view orthogonal to the
observation view).
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3.7.5 Real Data Experiments on Projective Constraint and Entry
Constraint

The last evaluation on real data has been performed on a rigid phantom simulating a

vascular branch of 1.8 cm of diameter. Indeed, the above experiment demonstrates that
projective and surface constraints are not sufficient to retrieve the correct 3D shape of the
catheter in the presence of non-linear phenomena. Unfortunately, in the previous setup,
we had no means of capturing the position of the insertion valve to test for the impact of
the entry constraint. We therefore designed and experimented on a new phantom-based
setup. In particular, we wanted to test the method solely relying on the Entry Constraint
and the Projective Constraints. As for the synthetic scenario, we tried to evaluate whether
it is possible to retrieve the correct 3D shape of the device, without any knowledge of the
surrounding vessels.
Medical images have been acquired through a 3D capable angiography C-arm (Artis Zeego,
Siemens Healthcare, Erlangen). We chose a large vessel on purpose so that the shape of
the catheter could not be directly determined from the shape of the vessel. Calibration
markers, both visible in 3D CT-scan and 2D X-ray images, were embedded onto the phan-
tom so that a 3D CT/2D X-ray marker-based registration could provide the projection
matrix (Fig. 3.26) as described in Sec. 3.6.1.2. Two additional markers were positioned
on the entry valve, to retrieve the catheter entrance’s coordinates.

(a)

Figure 3.26: (a) 2D fluoroscopic images showing both calibration markers embedded onto the phantom
and radio-opaque markers of the partially inserted catheter. (b) Green lines represent the line of sight of
the camera; red shape represents the reconstructed catheter whereas the green catheter shape represents
the ground-truth.

The instrument is a flexible catheter with radio-opaque tags every lem; no contrast
medium was needed. The catheter insertion is performed under 2D fluoroscopy; during
the insertion some 3D scans were taken to retrieve the real 3D position of the catheter and
validate our reconstruction. A simple tracking algorithm, based on thresholds on gray
levels and blob detection, was used to extract and track image features automatically.
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We exploited the temporal coherence of the detected markers to bind the 2D markers
with the corresponding 3D nodes of the catheter (see Fig. 3.27). 3D coordinates of
calibration markers and ground-truth catheter needed for the validation were manually
extracted through segmentation of medical data. The catheter is modeled as a series of 30

(a) (b) ()

Figure 3.27: Typical work-flow from the original image (a) to the extracted markers with the correspond-
ing indices(d). First a Gaussian filter is applied to smooth the image (b), then a threshold on gray levels
and a blob detection allow to extract the markers (c).

connected beams, each one 1 cm long. Given the absence of any knowledge of the devices’
physical parameters, we tested the method for three different scenarios presenting different
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