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Cementless implants have become more and more common for joint replacement and dental surgery. Initial stability is obtained during the surgery through a press fit process in the host bone, while long-term stability is obtained by bone growing around and into the porous surface of the implant, a process called osseointegration. As debonding of the bone-implant interface due to aseptic loosening and insufficient osseointegration still occur and may have dramatic consequences, predicting implant stability and failure is one of the major goals in modern implant research.

This work presents different 3D FE modeling approaches to model contact and initial and long-term stability of cementless implants using the example of a cylindrical implant (CSI) and an acetabular cup implant (ACI).

First, an approach to assess the initial stability of an ACI considering a realistic geometry of a patient's hip, based on Coulomb's friction contact and standard FE, is presented. The influence of different patient and implant-specific parameters is analyzed in order to determine optimal stability for different configurations and thus obtain the optimal combination of the implant's surface roughness and the press-fit, based on a patient's bone quality.

Second, a phenomenological model for the frictional contact behavior of debonding osseointegrated implants is developed. The classical Coulomb's law is extended from a constant to a varying friction coefficient, that models the transition from an unbroken (osseointegrated) to a broken (debonded) state, based on a state variable depending on the deformation of the bone-implant interface. This model can account for the higher tangential forces observed in osseointegrated implants compared to unbonded implants. In addition, a NURBS-enrichment approach for 3D contact elements is used for an efficient modeling of the geometries and their contact. This model is applied to the torsional debonding of CSI and the results are compared to experimental data and to a previous analytical model.

Third, the modified Coulomb's law model is extended in normal direction considering a cohesive zone model, to account for debonding in normal direction and allow for adhesive friction. This model is applied to simulate secondary stability and debonding of an ACI in different removal tests, and to determine the relevance of osseointegration and biomechanical factors for long-term stability. The results are compared with the purely tangential model to identify the relevance of normal adhesion in the debonding of ACI.

Last, three simple evolution laws for osseointegration based on initial stability to account for realistic and time-dependent osseointegration, are presented.

Due to their generality, all models presented herein can be applied to all kinds of endosseous implants or imperfectly bonded interfaces in general. Furthermore, the models can be coupled with remodeling algorithms or realistic loading data, to make simulations and prognoses for the whole life cycle of an implant from the surgery, through osseointegration and bone remodeling, to long-term stability under cyclic loading. i

Résumé

Les implants osseux constituent actuellement l'approche thérapeutique la plus utilisée pour réparer les articulations et les os endommagés. La stabilité initiale est obtenue pendant la chirurgie grâce à un processus d'ajustement serré dans l'os hôte, tandis que la stabilité à long terme est obtenue par la croissance osseuse autour et dans la surface poreuse de l'implant, un processus appelé ostéointégration. Comme le décollement de l'interface os-implant dû à un descellement aseptique et à une ostéointégration insuffisante se produit toujours et peut avoir des conséquences dramatiques, prédire la stabilité et l'échec de l'implant est l'un des objectifs majeurs de la recherche implantaire moderne.

L'objectif de ce travail est de proposer plusieurs modélisations complémentaires du contact adhésif à l'interface os-implant pendant et après la chirurgie.

Premièrement, les déterminants biomécaniques de la stabilité primaire d'une cupule acétabulaire (ACI) sont présentés. Pour quantifier la stabilité primaire, l'insertion de l'ACI dans un hémi-bassin humain et le retrait ultérieur sont simulés. L'influence de différents paramètres spécifiques au patient et à l'implant sur la stabilité primaire est discutée. Sur la base de la rigidité osseuse d'un patient, des combinaisons optimales de l'ajustement serré et du coefficient de frottement peuvent être identifiées pour assurer une stabilité initiale optimale.

Deuxièmement, un modèle phénoménologique du comportement de contact frictionnel des implants ostéointégrés décollés est développé. La loi de Coulomb classique est étendue d'un coefficient de frottement constant à un coefficient de frottement variable, qui modélise la transition d'un état ininterrompu (ostéo-intégré) à un état cassé (délié), basé sur une variable d'état dépendant de la déformation de l'interface os-implant. Ce modèle est appliqué au décollement en torsion des implants de forme cylindrique et les résultats sont comparés aux données expérimentales et à un modèle analytique précédent.

Troisièmement, le modèle de loi de Coulomb modifié est étendu dans la direction normale en considérant un modèle de zone cohésive, pour tenir compte du décollement dans la direction normale et tenir compte du frottement adhésif. Ce modèle est appliqué pour simuler la stabilité secondaire et le décollement d'un ACI dans différents tests de retrait, et pour déterminer la pertinence de l'ostéointégration et des facteurs biomécaniques pour la stabilité à long terme.

Enfin, trois lois d'évolution simples pour l'ostéointégration basée sur la stabilité initiale sont présentées pour rendre compte d'une ostéointégration réaliste et dépendante du temps.

En raison de leur généralité, tous les modèles présentés dans ce travail peuvent être appliqués à toutes sortes d'implants osseux ou plus généralement d'interfaces imparfaitement collées. De plus, les modèles peuvent être couplés à des algorithmes de remodelage ou à des données de chargement réalistes, pour mener à bien des simulations et des pronostics pour tout le cycle de vie d'un implant depuis la chirurgie, en passant par le remodelage osseux et l'ostéointégration, jusqu'à la stabilité à long terme sous chargement cyclique.

Zusammenfassung

Unzementierte Implantate werden immer häufiger als Gelenkersatz und in der Zahnchirurgie eingesetzt. Da eine Ablösung des Implantats vom Knochen aufgrund von Lockerung und einer unzureichenden Knochenintegration immer noch auftritt und dramatische Folgen haben kann, ist die Vorhersage der Implantatstabilität und des Versagens des Knochen-Implantat-Verbunds eines der Hauptziele in der Implantatforschung.

In dieser Arbeit werden verschiedene dreidimensionale finite Elemente Methoden zur Modellierung des Kontakts zwischen Knochen und Implantat, sowie der simulation der primären und Langzeitstabilität von unzementierten Implantaten vorgestellt.

Zunächst wird ein Ansatz zur quantifizierung der primären Stabilität einer Hüftpfanne in einer realistischen Geometrie der Hüfte eines Patienten vorgestellt. Der Einfluss verschiedener patienten-und implantatspezifischer Parameter wird analysiert, um die optimale Stabilität, basierend auf der Kombination der Oberflächenrauheit und der Presspassung des Implantats, unter der Berücksichtigung der Knochenqualität eines Patienten, zu erhalten.

Anschließend wird ein phänomenologisches Modell für das reibungsbehaftete Kontaktverhalten von sich lösenden, osseointegrierten Implantaten vorgestellt. Das klassische Coulombsche Reibungsgesetz wird von einem konstanten auf einen variablen Reibungskoeffizienten erweitert, der auf einer Zustandsvariable basiert, die von der Verformung der Grenzfläche zwischen Knochen und Implantat abhängt. So kann der Übergang von einem osseointegrierten zu einem völlig abgelösten Zustand modelliert werden. Dieses Modell wird auf die Ablösung durch Torsion von zylindrischen Implantaten angewendet und die Ergebnisse werden mit experimentellen Daten und einem bestehenden analytischen Modell verglichen.

Dieses Reibungsmodell wird anschließend in normalen Richtung um ein Adhäsionsmodell erweitert um Haftreibung zu ermöglichen. Dieses Modell wird angewendet, um die Langzeitstabilität und das Ablösen einer Hüftpfanne in verschiedenen Belastungstests zu simulieren und die Relevanz der Osseointegration, Adhäsion in Normalenrichtung und der biomechanischen Faktoren für die Langzeitstabilität zu bestimmen. Die Ergebnisse werden mit dem rein tangentialen Modell verglichen, um die Relevanz der normalen Adhäsion für das Ablösen von Hüftimplantaten zu ermitteln.

Schließlich werden drei einfache Evolutionsgesetze für die Osseointegration basierend auf der primären Stabilität vorgestellt, um eine realistische und zeitabhängige Osseointegration berücksichtigen zu können.

Aufgrund ihrer Allgemeinheit können alle hier vorgestellten Modelle auf alle Arten von Knochenimplantaten oder unvollständig gebundenen Grenzflächen im Allgemeinen angewendet werden. Darüber hinaus können die Modelle z.B. mit Algorithmen für Knochenumbau oder realistischen Belastungszyklen gekoppelt werden, um Simulationen und Prognosen für den gesamten Lebenszyklus eines Implantats von der Operation über Osseointegration und Knochenumbau, bis hin zur Langzeitstabilität unter zyklischer Belastung zu erstellen.
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Introduction

Endosseous implants, which are implants that partially or completely replace or support biological structures, are currently the most applied therapy for worn out, damaged, or destroyed joints, bones or teeth. Severe cases require the total replacement of the damaged joint or tooth, such as total hip or knee arthroplasty or dental implants. These replacements are the most commonly performed type of orthopedic surgery, with over 1 million replacements annually in the USA alone [START_REF] Lee | Current state and future of joint replacements in the hip and knee[END_REF]. With the ever increasing life expectancy, there is a rapid increase in patients with musculoskeletal conditions and diseases such as fractures, osteoporosis, and bone metastases, which require partial or total replacement of joints [START_REF] Kurtz | Projections of primary and revision hip and knee arthroplasty in the united states from 2005 to 2030[END_REF][START_REF] Kurtz | Impact of the economic downturn on total joint replacement demand in the united states: updated projections to 2021[END_REF][START_REF] Wengler | Hip and knee replacement in germany and the usa: analysis of individual inpatient data from german and us hospitals for the years 2005 to 2011[END_REF]. The increase of joint replacements leads to an increase in aseptic loosening and debonding-related implant failure [START_REF] Cram | Total knee arthroplasty volume, utilization, and outcomes among medicare beneficiaries, 1991-2010[END_REF], which are difficult to anticipate, as the responsible phenomena of bone remodeling and bone apposition are complex and remain poorly understood.

One of the most important factors for the success of an endosseous implant is mechanical stability [START_REF] Huja | Microdamage adjacent to endosseous implants[END_REF]. Good initial contact between bone and implant, good bone quality, and an appropriate amount of micro-motion at the bone-implant interface (BII) govern the growth of new bone and therefore, the adaptation of the implant inside the patient's body. Poor initial stability, incorrect load distribution, and large micro-motions can lead to maladaptation of the implant. In turn, maladaptation of the implant can lead to loosening, malapposition of bone tissue, and bone loss. These conditions can increase friction at the BII, which in turn may lead to wear and failure of the implant [START_REF] Huiskes | Failed innovation in total hip replacement: diagnosis and proposals for a cure[END_REF].

Two types of implant stability can be distinguished: (i) primary (or initial) stability during surgery, which is mainly governed by mechanical factors, such as interlocking phenomena and bone quality [START_REF] Viceconti | Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration[END_REF] and (ii) secondary (or long-term) stability, that is achieved several weeks or months after surgery, through the formation and maturation of newly formed bone tissue at the BII, a process called osseointegration [START_REF] Albrektsson | Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man[END_REF]. While the evolution of secondary implant stability is governed by complex biochemical processes, the mechanical behavior of the BII remains crucial for the surgical outcome [START_REF] Gao | Biomechanical behaviours of the bone-implant interface: a review[END_REF]. Therefore, a thorough understanding of the contact mechanisms that govern and inhibit the adaptation of implants is necessary. The application of these new insights during the design and testing phase of implants, can lead to improved implants with a longer life expectancy, fewer implant failures and therefore, fewer revisions of artificial joints. In addition, advanced numerical 1. Introduction prediction of implant behavior in vivo 1 could reduce the amount of animal experiments and clinical patient trials, which are necessary for the evaluation of endoprosthetics. Furthermore, these tools could help surgeons make informed decisions of the optimal implant and implantation technique for a specific patient.

In most mechanical engineering disciplines and industries, computational modeling, e.g. computational fluid dynamics or structural mechanics, is already a well established tool to design, simulate, and optimize procedures, machinery, and biological and chemical processes. However, adhesive contact between bones and implants is a highly complex multi-physics and multi-scale problem that still lacks a holistic computational model that addresses all relevant phenomena and is able to predict correct results for the whole life cycle of an implant. As implant stability includes phenomena on different time-and length-scales, tissue mechanics, structure and contact mechanics, and biochemistry, it presents a number of unique challenges absent in more traditional computational modeling applications. Furthermore, due to the size and shape of common joint replacements and the reliance on bone remodeling and osseointegration, experimental data on long-term stability is scarce, making validation of numerical models difficult. Most numerical analyses of orthopedic devices are performed to: (i) model bone remodeling and osseointegration, (ii) gain a fundamental understanding of the (mechanical) behavior of the BII, and (iii) assist the design and pre-clinical testing of new implants and to compare their performance with existing designs. While there are many numerical studies concerning these aspects [START_REF] Pankaj | Patient-specific modelling of bone and bone-implant systems: the challenges[END_REF][START_REF] Taylor | Accounting for patient variability in finite element analysis of the intact and implanted hip and knee: a review[END_REF][START_REF] Haïat | Effects of biomechanical properties of the bone-implant interface on dental implant stability: from in silico approaches to the patient's mouth[END_REF][START_REF] Murakami | Finite element contact analysis as a critical technique in dental biomechanics: a review[END_REF][START_REF] Taylor | Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities[END_REF], the specific modeling and prediction of debonding due to imperfect osseointegration is still lacking in the literature.

The objective of this thesis is to propose several computational models for the adhesive contact at the BII during the surgery and after osseointegration. The contact models consider nonlinear material behavior, large deformation, adhesive friction, osseointegration, and debonding. Bone and implant are assumed to be deformable solids. The models are applied to coin-shaped implants for verification and validation and then applied to simulate initial and long-term stability of an acetabular cup implant (ACI). The new contributions of this work comprise four complementary studies on primary and long-term stability and debonding of osseointegrated implants.

First, determinants of the primary stability of cementless ACI are presented. To quantify primary stability, the insertion of an ACI into a human hemi-pelvis and subsequent pull-out are simulated. Primary stability is quantified by the remaining gap between hip cavity and implant after insertion, and the maximum pull-out force. The influence of the interference fit, the interfacial friction coefficient, and the stiffness of the cortical and trabecular bone tissue on primary stability is discussed. Based on the patient's bone stiffness, optimal combinations of the interference fit and the friction coefficient (i.e. implant surface roughness) can be identified to ensure optimal initial stability.

Second, a phenomenological model for the frictional contact behavior of debonding osseointegrated implants is developed. The classical Coulomb's law (see Section 3.3.3) is extended from a constant to a varying friction coefficient, that models the transition from an unbroken to a broken state, based on a state variable depending on the total sliding distance of the implant.

While the unbroken state denotes osseointegration and thus the presence of adhesive bonds and a higher friction coefficient, the broken state denotes pure frictional contact behavior of the interface with a lower friction coefficient. Thus, this model can account for the higher tangential shear forces observed in osseointegrated implants compared to unbonded implants. This model is applied to the torsional debonding of coin-shaped implants (CSI) and the results are compared to experimental data and a previous analytical model.

Third, the modified Coulomb's law for tangential debonding is applied to simulate secondary stability of an ACI and determine relevant factors. Furthermore, the model is extended in normal direction by a cohesive zone model (see Section 3.3.2), to account for debonding in normal direction and allow for adhesive friction. This contact model is applied to simulate the debonding of a 3D, osseointegrated ACI in different removal tests. The implant stability is quantified by the removal force/torque and the biomechanical determinants of long-term stability, such as primary stability and degree of osseointegration are assessed. The results are compared with the purely tangential model to identify the relevance of normal adhesion in the debonding of ACI.

Last, two simple evolution laws for osseointegration are presented, which are based on initial stability, in terms of contact pressure and contact gap. They are used to compute realistic and time-dependent osseointegration of implants and can be coupled with models of initial and long-term stability to provide a complete workflow for implant assessment.

Due to their generality all models presented herein can be applied to various kinds of endosseous implants or imperfectly bonded interfaces in general. Furthermore, the presented models can be coupled with more advanced bone remodeling algorithms or realistic loading data, to make qualitative simulations and prognoses for the whole life cycle of an implant from the surgery, through bone remodeling and osseointegration, to long-term stability under cyclic loading.

The reminder of this thesis is structured as follows: Chapter 2 provides an introduction into the biomedical and biomechanical background of this thesis. Furthermore, several experimental methods to analyze implant stability and the state of the art in numerical simulation of implant stability are summarized. In Chapter 3, the continuum mechanical equations required to generally describe nonlinear contact between two deformable bodies are summarized. Chapter 4 follows with an introduction into nonlinear finite element methods for solids and the resulting solution procedure for contact problems. A finite element study on the determinants of primary stability of an ACI is discussed in Chapter 5. An analytical and numerical model for tangential debonding of osseointegrated implants is derived and applied to simple implants in Chapter 6. This model is extended into normal direction and applied to model long-term stability of an ACI in Chapter 7. In Chapter 8, three simple evolution laws for osseointegration based on the initial stability of the implant are presented. These time-dependent evolution laws are used to compute the distribution and degree of osseointegration, based on the contact gaps and contact pressure distribution at the BII. Chapter 9 concludes this thesis and provides some perspective for future work.

Chapter 2

Background

This work introduces various computational contact models to analyze the primary and secondary stability and adhesive debonding of osseointegrated implants and identifies biomechanical determinants of implant stability. This chapter provides an introduction into the topic of bone implants, bone implant stability, and the necessary biomedical and biomechanical background. Furthermore, several experimental methods to analyze implant stability and the state of the art in numerical simulation of implant stability are summarized.

Bone

From a biomedical point of view, bones are rigid organs that form part of the skeleton of vertebrates. The main functions of bones are the support of the body structure, mobility, production of red and white blood cells, and storage of minerals. The adult human body consists of around 205 bones, which can be divided into groups of long and short bones, flat, sesamoid and irregular bones. Besides mineralized tissues, bones consist of bone marrow, nerves, blood vessels, and cartilage. From a biomechanical point of view, bone is a multiscale composite and heterogeneous medium [START_REF] Sansalone | Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale[END_REF].

Bone Tissue

Bone tissue is a mineralized tissue that appears in the human body in mainly two forms: cortical and trabecular bone. Both types have a hierarchical structure. At the macroscopic scale, bone tissue is governed by a rigid matrix that composes 30 % of the volume of the whole bone and is made up of collagen fibers, non-collageneous proteins, and lipids. The other 70 % are inorganic minerals, such as calcium carbonates and calcium phosphates (e.g., hydroxyapatite), in varying percentage [START_REF] Paschalis | Spectroscopic characterization of collagen cross-links in bone[END_REF][START_REF] Olszta | Bone structure and formation: A new perspective[END_REF][START_REF] Gao | Connection between elastic and electrical properties of cortical bone[END_REF]. At the microscopic scale, bone tissue consists of different types of bone cells, e.g., osteoblasts and osteocytes, which are responsible for formation and mineralization of bone tissue, and osteoclasts, which are involved in the resorption and reformation of bone. An illustration of the hierarchical structure of bone tissue is shown in Figure 2.1.

The exterior shell of bones is made up of cortical bone, also referred to as compact bone. It facilitates the main functions of bones, such as the support and protection of the whole body, provision of levers and attachment sites for muscles, sinews, and joints, and the storage and release of minerals, mainly calcium. Cortical bone is composed of concentric parallel [START_REF] Grandfield | Bone, implants, and their interfaces[END_REF]. bone lamellae, which form base units called osteons or Haversian systems. Osteons are centered around Haversian canals, which contain blood vessels. Haversians canals communicate between the blood vessels, the medullary cavity, and the periosteum by transverse canals, called Volkmann's canals.

Trabecular bone, which is also known as cancelous or spongy bone, is typically found at the ends of long bones, such as the femur (see Figure 2.4). It has a sponge like, porous structure made up by a network of trabeculae. The trabeculae are embedded in a medium composed of bone marrow, blood, and stem cells that produce blood cells. Trabeculae are aligned towards the mechanical load distribution, and thus trabecular bone is exposed to constant change as the bone adapts to new load cycles or damage. While having a larger specific surface area than cortical bone, trabecular bone is less dense and less stiff.

From a mechanical point of view, bone tissue is a multiscale composite and a heterogeneous medium and exhibits different mechanical properties: (i) anisotropy, i.e., it has different material properties in different directions, (ii) viscoelasticity, i.e., it exhibits both viscous and elastic characteristics when undergoing deformation, (iii) surface roughness and porosity on different length scales. Furthermore, bone properties vary according to the type of bone tissue and the observation scale but also from patient to patient (and species to species), due to, e.g., differences in sex, age, activity level, and health conditions [START_REF] Whitehouse | Scanning electron microscope studies of trabecular bone in the proximal end of the human femur[END_REF][START_REF] Goldstein | The mechanical properties of trabecular bone: dependence on anatomic location and function[END_REF][START_REF] Bayraktar | Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue[END_REF]. Furthermore, bone properties evolve constantly due to bone remodeling processes, that allow bone to heal and to adapt its structure and loading capabilities to new loading conditions.

Bone Remodeling

Healthy bone remodels constantly and adapts its structure to the loads it is subjected to, in order to optimize load distribution inside the bone as well as to improve stability and to prevent and heal fractures [START_REF] Wolff | Das Gesetz der Transformation der Knochen[END_REF]. During this process, bone tissue is resorbed by osteoclasts, which remove the mineralized matrix and break up organic bone components. Then, new bone tissue is created by osteoblasts where needed. Osteoblasts are responsible for bone synthesis and mineralization, renewal and repair. Once trapped inside the bone matrix, they become inactive and are transformed into osteocytes, which are mature bone cells that constitute the osteons.

Bone healing can be divided into two mechanisms: direct bone growth and indirect bone growth after callous formation [START_REF] Agarwal | Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair[END_REF]. The first mechanism involves the growth of bone from the broken ends at a fracture site without forming fibrous tissue and this is the mechanism that is exploited by cementless implants (see Section 2.2 and 2.2.3.2). The second mechanism involves inflammation, leading to a callous formation that needs to be resorbed so that healthy bone growth can take place.

Endosseous Implants

Endosseous implants are used to support or replace joints, bones, or teeth by directly inserting the implants into the bone structure. Some examples of commercially used endosseous implants are shown in Figure 2.2. Essentially, endosseous implants can be divided into two groups: cemented and uncemented implants.

Cemented implants use acrylic cement (polymethylmethacrylate (PMMA) copolymer and methylmethacrylate (MMA) monomer) to quickly establish a solid attachment to the bone, which allows for mobility immediately after surgery. Cemented joint replacements have been in clinical use for many decades and a successful implant may last more than 20 years. A successful joint replacement has a stable boundary between the implant and the cement and a durable mechanical connection between the cement and the bone. However, over time the cement can crack or wear out, loosening the connection between the implant and adjacent bone, making a revision surgery necessary (Herberts andMalchau, 1997, 2000). Loosening is more likely to occur in patients who are very active or very heavy, as the implants are put under more frequent and higher loads. For this reason, cemented joint replacements are more commonly recommended for patients who are older, have conditions such as rheumatoid arthritis, or are younger but have compromised health or poor bone quality and density. While cemented implants can be loaded immediately after surgery, the introduction of bone-cement and cementimplant interfaces increases the risk of debonding and wear. Furthermore, the bone cement can cause thermal damage due to the polymerization reaction [START_REF] Charnley | The bonding of prostheses to bone by cement[END_REF][START_REF] Hailer | Uncemented and cemented primary total hip arthroplasty in the swedish hip arthroplasty register: evaluation of 170,413 operations[END_REF] and can become problematic in case of revision surgery, as it needs to be removed [START_REF] Charnley | The bonding of prostheses to bone by cement[END_REF][START_REF] Galasso | Physical, mechanical and pharmacological properties of coloured bone cement with and without antibiotics[END_REF]. The widespread use of uncemented implants has shown that some implants experience a better fixation through osseointegration than by cementing the interface, e.g. the acetabular component (see Figure 2.4 and 2.5 ) [START_REF] Widmer | Load transfer and fixation mode of press-fit acetabular sockets[END_REF].

Nowadays, uncemented implants have become more and more common [START_REF] Grimberg | Endoprothesenregister deutschland: Jahresbericht 2019[END_REF]. Uncemented implants establish initial stability during surgery by a press-fit, which is mainly governed by mechanical factors, such as interlocking phenomena [START_REF] Swami | Current trends to measure implant stability[END_REF]. Long-term stability is achieved several weeks or months after surgery, through osseointegration. The contact surfaces of such implants are rough or semi-porous, to allow bone to grow into and around the implant surface and to form a solid attachment, due to mechanical interlocking and chemical bonding between the calcium of the bone and the alloy or coating of the implant [START_REF] Barrere | Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants[END_REF][START_REF] Baril | Direct visualization and quantification of bone growth into porous titanium implants using micro computed tomography[END_REF][START_REF] Sul | Experimental evidence for interfacial biochemical bonding in osseointegrated titanium implants[END_REF]. Cementless implants are mostly used in younger, more active patients with good bone quality [START_REF] Drexler | Cementless fixation in total knee arthroplasty: down the boulevard of broken dreams-opposes[END_REF]. Younger bone is more prone to grow into the implant as expected, and thus facilitates the fixation of the implant. For some joint implants, e.g., total knee or hip replacements, a combination of both methods is applied where one component is cemented while the other part is left to osseointegrate. In evaluating cementless knee prostheses, physicians have found that better attachment to the bone occurs with the femur than with the kneecap or lower leg [START_REF] Robertsson | The swedish knee arthroplasty register: a review[END_REF][START_REF] Wyatt | Survival outcomes of cemented compared to uncemented stems in primary total hip replacement[END_REF]. Accordingly, some physicians use a cementless attachment to the femur and cement the other portions of the implant, an approach called hybrid or mixed total knee replacement.

Background

While stainless steel has been used as implant material for over a century, titanium and titanium alloys (e.g., Ti-6Al-4V) have gained more and more attention, as they have been shown to form a closer contact to bone, due to chemical bonding with the bone tissue [START_REF] Albrektsson | Interface analysis of titanium and zirconium bone implants[END_REF][START_REF] Albrektsson | Osseointegrated dental implants[END_REF]. In addition, titanium has a similar tensile strength as stainless steel but is much lighter. Not only the material, but also the surface properties play a significant role in the success and quality of the integration of an implant. In general, rough surfaces are preferred for implant parts in contact with bone as they have a larger available area for host proteins and cells and have been shown to promote mineralization [START_REF] Shalabi | Implant surface roughness and bone healing: a systematic review[END_REF][START_REF] Novaes | Influence of implant surfaces on osseointegration[END_REF]. The typical surface roughness of implants varies from 0.5 to 10 µm [START_REF] Albrektsson | Osseointegrated dental implants[END_REF][START_REF] Jemat | Surface modifications and their effects on titanium dental implants[END_REF][START_REF] De Bruyn | Implant surface roughness and patient factors on long-term peri-implant bone loss[END_REF]. Common surface treatments are acid etching, sand blasting, oxidation, and mechanical polishing. In addition to surface treatment, the application of hydroxyapatite or other bioactive coatings has shown to be promising and led to improved bone ingrowth in several studies [START_REF] Cook | Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength[END_REF][START_REF] Søballe | Hydroxyapatite ceramic coating for bone implant fixation: mechanical and histological studies in dogs[END_REF][START_REF] Barrere | Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats[END_REF]. With the recent development of laser beam melting, 3D printing, and topology optimization, titanium implants and implant surfaces can now be printed with complex topography and topology [START_REF] Palmquist | Biomechanical, histological, and ultrastructural analyses of laser micro-and nano-structured titanium alloy implants: A study in rabbit[END_REF][START_REF] Baril | Direct visualization and quantification of bone growth into porous titanium implants using micro computed tomography[END_REF]. In the context of implants, surface topography refers to the surface roughness, including the waviness, asperity, and surface finish, while topology refers to the macroscopic geometry and structure of the implant (see Figure 2.2, left).

Despite recent advances in implant technology and the optimization of surgical procedures, debonding and failure of endosseous implants of both types still occur and may have dramatic consequences. Aseptic loosening due to, e.g., wear and osteolysis, is the main cause (75 %) of implant revisions worldwide [START_REF] Crawford | Total hip replacement: indications for surgery and risk factors for failure[END_REF][START_REF] Drexler | Cementless fixation in total knee arthroplasty: down the boulevard of broken dreams-opposes[END_REF]. Up to 25 % of patients have to undergo revision surgery and approximately 7 % within the first 8 years of implantation. Revision surgery is usually more invasive than the first surgery and the reported 15-year survival rate of revision surgery is only 69 % [START_REF] Ulrich | Total hip arthroplasties: what are the reasons for revision[END_REF]. Therefore, there is a high demand in reliable models that can assess and predict the behavior of the BII, to aid in implant conception and optimizing surgical procedures.

The methods developed in this work will be applied to two different types of cementless implants: coin-shaped implants and acetabular cup implants.

Coin-Shaped Implants

Most studies on bone attachment to implants have used push-in or pull-out in vitro1 tests [START_REF] Bishop | The influence of bone damage on press-fit mechanics[END_REF][START_REF] Wennerberg | Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia[END_REF][START_REF] Berahmani | An experimental study to investigate biomechanical aspects of the initial stability of press-fit implants[END_REF][START_REF] Damm | Friction coefficient and effective interference at the implant-bone interface[END_REF]. The implant geometry influences the test results [START_REF] Brånemark | Biomechanical characterization of osseointegration: an experimental in vivo investigation in the beagle dog[END_REF] and leads to spatially complex, non-uniform, multiaxial stress fields [START_REF] Shirazi-Adl | Finite element stress analysis of a push-out test part 1: fixed interface using stress compatible elements[END_REF] and unstable crack propagation. Therefore, using realistic implant geometries makes it difficult to estimate a physically meaningful value for the interfacial mechanical strength. As a consequence, models with a planar BII were designed to minimize the effects of friction and mechanical forces introduced by the geometry [START_REF] Skripitz | Attachment of PMMA cement to bone: force measurements in rats[END_REF].

A frequently used group of models are coin-shaped implants (CSI) These small, cylindrical implants can be implanted into rabbits in order to study determinants of implant stability and the healing process [START_REF] Rønold | Effect of micro-roughness produced by tio2 blasting-tensile testing of bone attachment by using coin-shaped implants[END_REF][START_REF] Rønold | Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test[END_REF]. They can be used for different kinds of analyses, such as histology and histomorphometry, spectroscopy, and experimental testing. The planar bottom surface allows the study of the BII in a controlled manner (Mathieu et al., 2012a;[START_REF] Vayron | Evolution of bone biomechanical properties at the micrometer scale around titanium implant as a function of healing time[END_REF]Fraulob et al., 2020b). Initial gaps between implant and bone allow the study of newly formed bone (Fraulob et al., 2020b), while Polytetrafluoroethylene (PTFE) caps on the side wall ensure that only the bottom surface is osseointegrated, which is essential for some types of mechanical testing, e.g., torsion (Mathieu et al., 2012a). 

Acetabular Cup Implants

One of the most common orthopedic surgery is hemi-or total hip arthroplasty (THA) [START_REF] Lee | Current state and future of joint replacements in the hip and knee[END_REF][START_REF] Grimberg | Endoprothesenregister deutschland: Jahresbericht 2019[END_REF]. The femoral head and, if necessary, the acetabulum are replaced with an artificial implant. A total replacement implant consists of three parts: (i) an ACI, (ii) a liner, and (iii) a femoral stem, which are depicted in Figure 2.4. An ACI is usually a hemispherically shaped implant, covered with an alloy or a bioactive coating, such as hydroxyapatite. The outer surface of the implant is usually rough, porous, or has a complex surface structure. Some examples of commercially used ACI are shown in Figure 2.5. During surgery, a hemispherical cavity is drilled into the pelvis. In the case of cementless implants, this cavity is often under-reamed to produce an interference fit between bone and implant. This interference fit is defined as the difference in diameter between the cavity and the ACI. During the surgery, an ancillary is attached to the ACI. The ACI is then inserted into the cavity through hammer blows onto the ancillary [START_REF] Michel | Monitoring the press-fit insertion of an acetabular cup by impact measurements: Influence of bone abrasion[END_REF]. The interference fit produces a press-fit of the implant and ensures initial stability. For patients with poor bone quality or mass or for revision surgeries, ACI can also be fixated by using screws. Long-term stability is then achieved by bone growing around and into the surface of the implant.

The Bone-Implant Interface

The BII is a complex system governed by biochemical and biomechanical processes, occurring at nano-and micro-scales (molecular level biochemistry and surface roughness) as well as the macro-scale (organ level load application). Here, the definitions of primary and secondary stability are given, and relevant biological and mechanical factors are discussed.

Primary Stability

Primary stability of a cementless implant is defined as the initial fixation of the implant in the host bone and is achieved during surgery. It is governed by patient-and implant-specific factors, as well as by the surgical protocol.

The patient's bone quality and quantity are essential to ensure that initial fixation takes place [START_REF] Swami | Current trends to measure implant stability[END_REF]. If bone stiffness or bone mass is insufficient, some implants, like the ACI, can be additionally fixed with screws, to avoid excessive micro-motion and displacement.

While the implant geometry has an effect on the load distribution from implant to bone, the surface properties (e.g., roughness, porosity, surface treatment) affect the seating of the implant [START_REF] Curtis | The initial stability of uncemented acetabular components[END_REF][START_REF] Hadjari | Initial stability of porous coated acetabular implants. the effect of screw placement, screw tightness, defect type, and oversize implants[END_REF][START_REF] Ries | Effect of cementless acetabular cup geometry on strain distribution and press-fit stability[END_REF][START_REF] Markel | Press-fit stability of uncemented hemispheric acetabular components: a comparison of three porous coating systems[END_REF]. A certain roughness and porosity is needed to ensure osseointegration later on. However, highly rough surfaces can inhibit the proper seating of the implant.

From a mechanical point of view, the key elements of the surgical protocol of uncemented implants can be reduced to interference fit, implantation angle, insertion load, and bone stiffness. While a certain interference fit and insertion load is needed to properly insert and fixate the implant, excessive interference fit and insertion load can lead to bone damage and bone resorption.

Osseointegration and Secondary Stability

Secondary stability is achieved several weeks after surgery, through osseointegration phenomena. The process of osseointegration is based on bone remodeling and healing. An implant is considered as osseointegrated (and therefore secondarily stable) if there is no relative motion between the bone and the implant. Thus, it is rather measured in terms of stability and not in terms of contact area.

Osseointegration can be divided into three stages, which are shown in Figure 2.6: In the insertion stage, a cavity is drilled into the host bone, resulting in destroyed bone. Then, the implant is inserted by screwing (e.g., for dental implants) or hammering it into the cavity. The space between implant and bone is initially filled with fluids, blood clots, and bone fragments (see Figure 2.6, 1.). In the healing phase, blood clots and wound fluid are absorbed and replaced by a collagen matrix that is mineralized progressively by the action of osteoblasts (see Figure 2.6, 2a.). In addition, the new tissue is vascularized. During this phase, the implant temporarily loosens, while new bone grows onto and into the implant. Therefore, the implant should not be loaded fully for several weeks to ensure proper stability. The newly formed bone matures in up to 16 weeks [START_REF] Roberts | Bone physiology and metabolism in dental implantology: risk factors for osteoporosis and other metabolic bone diseases[END_REF].

After healing, the new bone tissue has fully mineralized. A steady state is established where the implant is fully integrated into the bone and the bone tissue remodels to given loads and stresses (see Figure 2.6, 3a.).

However, osseointegration can fail at any stage. An example of an initial failure is that the wound fluid is not replaced by a mineralized collagen matrix but rather by non-mineralized connective tissue that does not support the implant and can increase further bone loss [START_REF] Huiskes | Failed innovation in total hip replacement: diagnosis and proposals for a cure[END_REF], as it does not distribute loads onto the remaining bone properly (see Figure 2.6, 2b.). A failure later on is usually due to insufficient bone-to-implant contact. This can lead to suboptimal load distribution between implant and bone, which may lead to debonding of the interface, interface motion, debris, and wear (see Figure 2.6, 3b. Biological factors that inhibit proper osseointegration are, e.g., poor bone quantity and mineral density. In addition, many biological mechanisms of the BII are stimulated or inhibited by the mechanical behavior of the interface, depending on the intensity of the mechanical stimulation.

The implant's surface material, roughness, and coating are not only important factors for primary but also secondary stability. An appropriate degree of surface roughness ensures the implant fixation through new bone growing into the surface [START_REF] Schwarz | Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model[END_REF] and by minimizing micro-motion during the healing phase, due to higher interfacial friction [START_REF] Gao | Biomechanical behaviours of the bone-implant interface: a review[END_REF]. Different surface treatments and coatings, such as hydroxyapatite coatings have been shown to promote bone healing [START_REF] Le Guéhennec | Surface treatments of titanium dental implants for rapid osseointegration[END_REF]. The contact surface area of the implant is also important, as a larger initial contact with bone also increases the possible sites for bone ingrowth.

Another important factor is the implant geometry, which is responsible for the stress distribution. Excessive compressive stresses created during the implant insertion can lead to bone necrosis and ischemia [START_REF] Sotto-Maior | Influence of high insertion torque on implant placement: an anisotropic bone stress analysis[END_REF]. Although the implant may be in contact with trabecular and cortical bone, the latter plays the governing role in experimental and numerical analyses, as the highest stresses occur in cortical bone around the neck of the implant [START_REF] Sütpideler | Finite element analysis of effect of prosthesis height, angle of force application, and implant offset on supporting bone[END_REF]. Improper load distribution after osseointegration can have a negative impact on bone remodeling, as bone may grow away from the implant, leading to implant loosening. Furthermore, the load cases and the load distribution influence the interface micro-motion. While there is still some disagreement about how much micro-motion is really necessary to stimulate bone growth, usually a value of up to 50 µm is stated [START_REF] Bragdon | Differences in stiffness of the interface between a cementless porous implant and cancellous bone in vivo in dogs due to varying amounts of implant motion[END_REF][START_REF] Fitzpatrick | Computationally efficient prediction of boneimplant interface micromotion of a cementless tibial tray during gait[END_REF]. Micro-motion that exceeds a value of 150 µm has been shown to inhibit bone growth and promote bone loss [START_REF] Pilliar | Observations on the effect of movement on bone ingrowth into porous-surfaced implants[END_REF][START_REF] Jasty | In vivo skeletal responses to porous-surfaced implants subjected to small induced motions[END_REF]. Loading conditions vary not only with the implant geometry but also with the patient's height, weight, age, sex, and vitality [START_REF] Kutzner | Loading of the knee joint during activities of daily living measured in vivo in five subjects[END_REF]. Therefore, the determination of biomechanical properties and mechanical phenomena is essential to understand the behavior of the BII.

Determining Biomechanical Properties and Behavior of the Bone-Implant Interface

There are different methods to assess the properties of the BII and implant stability. They can be divided into invasive and non-invasive experimental methods, and numerical methods. Often, multimodal approaches are used to gain as much insight out of a sample as possible, e.g, histological analysis and quantitative ultrasound techniques [START_REF] Fraulob | Quantitative ultrasound assessment of the influence of roughness and healing time on osseointegration phenomena[END_REF] or nanoindentation and Raman spectroscopy (Fraulob et al., 2020b). This section summarizes the most common approaches found in the literature.

Non-Invasive Experimental Methods

There exist several non-invasive methods to monitor osseointegration that can be applied during the surgery and at different stages of the healing process.

In orthopedic surgery, the surgeons mostly rely on their experience, perception, and proprioception to determine the proper seating and initial stability of the implant. For certain implants (e.g., a femoral stem) the proper seating during insertion can be identified by changes in (i) the sound and (ii) the physical sensation during the impacts with a surgical hammer [START_REF] Trisi | Bone classification: clinical-histomorphometric comparison[END_REF].

A simple method is the percussion test, where the implant is struck with a metallic instrument to induce a sound [START_REF] Atsumi | Methods used to assess implant stability: current status[END_REF]. A "dull" sound may indicate no or poor osseointegration while a "crystal" sound indicates good osseointegration [START_REF] Swami | Current trends to measure implant stability[END_REF]. This technique was used to develop Periotest (Medizintechnik Gulden, Bensheim, Germany), which is a commercially available tool that uses an electro-magnetically driven and controlled tapping metallic rod. The mobility of the BII is measured by the reaction of the implant to the imposed impact load and the bone density can be derived. However, the reliability of this method has been questioned due to its sensibility to many factors, such as the striking height and handpiece angulation [START_REF] Salvi | Diagnostic parameters for monitoring peri-implant conditions[END_REF]. Furthermore, this method is deemed unsuitable for standardized testing, due to its dependence on the surgeon [START_REF] Atsumi | Methods used to assess implant stability: current status[END_REF]2. Background Bayarchimeg et al., 2013;[START_REF] Swami | Current trends to measure implant stability[END_REF] and cannot be applied to every type of implant. In addition, this method only allows an assessment of initial stability but cannot predict the long-term outcome of the surgery.

Another measurable factor during the surgery is the cutting torque resistance while reaming or drilling the implantation site. Studies have shown that the cutting torque resistance is highly correlated with bone density [START_REF] Friberg | Evaluation of bone density using cutting resistance measurements and microradiography. an in vitro study in pig ribs[END_REF][START_REF] Friberg | On cutting torque measurements during implant placement: a 3-year clinical prospective study[END_REF] and can be used as an indicator for bone quality.

Medical imaging, such as quantitative computer tomography and photon absorptiometry, can be used to assess bone quantity and density (e.g. before surgery) and can also monitor the progression of osseointegration and detect gaps in the BII. However, depending on the size and location of the implant, not all values can be quantified and gaps might not be visible due to restrictions in imaging perspective, resolution, and artifacts [START_REF] Knott | A comparison of magnetic and radiographic imaging artifact after using three types of metal rods: stainless steel, titanium, and vitallium[END_REF].

Resonance frequency analysis (RFA) uses the vibration of a transducer and structural analysis to measure implant stability and bone density. One part of the transducer is directly screwed onto the implant while the other part works as a receptor. The implant is perturbed by a sinusoidal input with increasing frequency until the implant resonates. Measurements after surgery provide a baseline reading. During and after the healing period, high frequency resonance indicates a strong BII. There exist different commercially available products on the market that use enhanced RFA, such as electronic technology RFA and magnetic technology RFA (Osstell, Integration Diagnostic AB, Goteborg, Sweden). However, RFA cannot be used to directly identify the properties of the BII and the orientation and fixation of the transducers were found to have significant effects on the measured implant stability (Vayron et al., 2018a,b).

Quantitative ultrasound (QUS) techniques are used to estimate bone quality and quantity and degree of bone-to-implant contact [START_REF] Laugier | Bone quantitative ultrasound[END_REF]Mathieu et al., 2011aMathieu et al., , 2012bMathieu et al., , 2011c)). Ultrasonic waves are sensitive to the bone's elastic properties [START_REF] Laugier | Bone quantitative ultrasound[END_REF]. As the bone-implant contact ratio (BIC), the elastic properties, and the mass density of periprosthetic bone tissue increase, the changes in the reflection of the ultrasonic waves can be measured and quantified. Recent studies have shown that QUS techniques are significantly more sensitive to changes of periprosthetic bone tissue compared to RFA (Vayron et al., 2018a,b).

Invasive Experimental Methods

There exist several invasive techniques to determine implant stability and evaluate osseointegration that are mainly used in research and implant testing.

In histomorphometric analysis, the osseointegrated implant is removed including the surrounding bone and sliced into specimens and often dyed to differentiate between tissues (see Figure 2.3). These specimens can be probed, e.g., by nanoindentation [START_REF] Anchieta | Mechanical property assessment of bone healing around a titanium-zirconium alloy dental implant[END_REF]; ?; Kim et al., 2016a,b;[START_REF] Anchieta | Nanomechanical assessment of bone surrounding implants loaded for 3 years in a canine experimental model[END_REF] and observed under a microscope. With this method, the bone-implant contact ratio and bone microarchitecture [START_REF] Trisi | Bone classification: clinical-histomorphometric comparison[END_REF] and mineral density (Artzi et al., 2003a,b), can be assessed. Histomorphometric analysis is also used after different healing periods to assess the change in bone structure and composition. However, this method cannot quantify the fixation of the implant and only provides 2D information. Furthermore, this technique is mainly used for small implants, like dental implants and CSI.

Raman spectroscopy uses a specific Raman interferometer with an infrared laser. The scattered light reflects compositions of mineral and collagen phases due to the difference in molecule and ion vibrations. This can be used to evaluate the local biochemical composition of bone tissue at the nanoscale, which includes the mineral and organic components. Raman spectroscopy has been used to investigate the remodeling process of healing bone tissues in general [START_REF] Ahmed | Raman spectroscopy of bone composition during healing of subcritical calvarial defects[END_REF][START_REF] Shah | Extracellular matrix composition during bone regeneration in the human dental alveolar socket[END_REF] and for titanium implants [START_REF] Lopes | Infrared laser photobiomodulation (λ 830 nm) on bone tissue around dental implants: a raman spectroscopy and scanning electronic microscopy study in rabbits[END_REF][START_REF] Shah | 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface[END_REF]. As with histomorphometry, this method cannot quantify the stability of the BII.

Removal tests, such as pull-out, push-out, lever-out, and torsional tests, are widely used to evaluate the implant fixation by recording the force-displacement curve, the maximum removal force, micro-motion, or the shear strength of the BII [START_REF] Søballe | Hydroxyapatite ceramic coating for bone implant fixation: mechanical and histological studies in dogs[END_REF][START_REF] Brunski | Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments[END_REF][START_REF] Chang | Functional apparent moduli as predictors of oral implant osseointegration dynamics[END_REF][START_REF] Trisi | Primary stability, insertion torque and bone density of cylindric implant ad modum branemark: is there a relationship? an in vitro study[END_REF]Mathieu et al., 2012a), which has been correlated with histological assessments in animal studies [START_REF] Johansson | A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone[END_REF][START_REF] Haïat | Effects of biomechanical properties of the bone-implant interface on dental implant stability: from in silico approaches to the patient's mouth[END_REF]. These techniques are used to quantify primary and secondary stability of implants in vitro and ex vivo2 . Most experimental studies on secondary stability are performed on dental implants and CSI. The influence of biological as well as mechanical factors on the long-term stability, and the implant topology make experimental testing of cementless implants difficult and at present, such studies are lacking in the literature [START_REF] Viceconti | Effect of the initial implant fitting on the predicted secondary stability of a cementless stem[END_REF][START_REF] Helgason | On the mechanical stability of porous coated press fit titanium implants: a finite element study of a pushout test[END_REF]. Therefore, there is a high demand in reliable numerical models that can model and quantify the behavior of the BII during the surgery, through osseointegration, up to cyclic loading, bone remodeling, and debonding.

Numerical Methods

Finite element analysis (FEA) has been applied to the whole spectrum of endosseous implants, modeling their behavior in vivo, ex vivo, and in vitro, and assessing determinants of initial and long-term stability, as well as bone remodeling. It has significantly improved the understanding of the mechanical behavior of bone implants and the BII. There exist a number of thorough reviews on numerical models for bone implants and the BII [START_REF] Pankaj | Patient-specific modelling of bone and bone-implant systems: the challenges[END_REF][START_REF] Taylor | Accounting for patient variability in finite element analysis of the intact and implanted hip and knee: a review[END_REF][START_REF] Haïat | Effects of biomechanical properties of the bone-implant interface on dental implant stability: from in silico approaches to the patient's mouth[END_REF][START_REF] Murakami | Finite element contact analysis as a critical technique in dental biomechanics: a review[END_REF][START_REF] Taylor | Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities[END_REF]. Therefore, this section is limited to (i) the primary stability of ACI (ii) osseointegration algorithms, and (iii) macroscopic models of long-term stability, partial osseointegration, and debonding of uncemented implants in general.

Primary Stability of ACI

Initially, finite element (FE) modeling of orthopedic implants was mainly used to gain a qualitative insight into the behavior of the bone-implant system inside the patient and to determine relevant patient-, implant-and surgery-specific parameters affecting implant performance [START_REF] Taylor | Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities[END_REF], as most of these factors cannot be observed or measured experimentally. Nowadays, numerical modeling is also used in the design phase of implants and studies are carried out to assess the impact on performance of, e.g., changes in implant design and surface treatment [START_REF] Viceconti | Pre-clinical validation of joint prostheses: a systematic approach[END_REF][START_REF] Taylor | Accounting for patient variability in finite element analysis of the intact and implanted hip and knee: a review[END_REF]. Due to the progress of medical imaging (e.g. microcomputed tomography (µCT)) and its use as geometrical input for FE models, case-specific modeling [START_REF] Hsu | The relation between micromotion and screw fixation in acetabular cup[END_REF]) and multi-factorial studies [START_REF] Anderson | Subject-specific finite element model of the pelvis: development, validation and sensitivity studies[END_REF][START_REF] Hsu | The number of screws, bone quality, and friction coefficient affect acetabular cup stability[END_REF][START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Amirouche | Factors influencing initial cup stability in total hip arthroplasty[END_REF][START_REF] Rourke | Patient and surgical variability in the primary stability of cementless acetabular cups: a finite element study[END_REF] with realistic bone geometries are carried out to assess patient-related factors on the surgical outcome, such as bone geometry, bone quality, and loading cycles. A case-specific model is usually used to investigate a unique situation, e.g., a specific condition or geometrical anomaly, whereas a multi-factorial study aims to generate various cases representative of a population and may require a large number of analyses [START_REF] Clarke | Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum[END_REF]. Furthermore, there is a growing potential in FE models to provide patient specific models that can guide the decision making process of orthopedic surgeons in terms of choice of implant and surgical protocol.

Predicting Osseointegration

Mathematical and numerical models that can predict osseointegration and bone remodeling are mostly based on continuum damage mechanics [START_REF] Prendergast | Prediction of bone adaptation using damage accumulation[END_REF][START_REF] Doblaré | Anisotropic bone remodelling model based on a continuum damagerepair theory[END_REF][START_REF] Moreo | Modelling the mechanical behaviour of living bony interfaces[END_REF][START_REF] Caouette | A new interface element with progressive damage and osseointegration for modeling of interfaces in hip resurfacing[END_REF] and mechanoregulatory algorithms [START_REF] Huiskes | Adaptive boneremodeling theory applied to prosthetic-design analysis[END_REF][START_REF] Weinans | The behavior of adaptive bone-remodeling simulation models[END_REF][START_REF] Huiskes | A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation[END_REF][START_REF] Prendergast | Finite element models in tissue mechanics and orthopaedic implant design[END_REF][START_REF] Fernandes | A contact model with ingrowth control for bone remodelling around cementless stems[END_REF][START_REF] Andreykiv | Bone ingrowth simulation for a concept glenoid component design[END_REF][START_REF] Dickinson | Implant-bone interface healing and adaptation in resurfacing hip replacement[END_REF].

These models often incorporate cell differentiation rules based on mechanical stimulus to simulate the creation and maturation of bone tissue by changes in material properties, such as bone density and stiffness. For the mechanical stimulation or threshold of bone growth, strain energy density [START_REF] Huiskes | Adaptive boneremodeling theory applied to prosthetic-design analysis[END_REF][START_REF] Weinans | Adaptive bone remodeling around bonded noncemented total hip arthroplasty: a comparison between animal experiments and computer simulation[END_REF][START_REF] Andreykiv | Bone ingrowth simulation for a concept glenoid component design[END_REF][START_REF] Lutz | Numerical investigations on the osseointegration of uncemented endoprostheses based on bio-active interface theory[END_REF][START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF], micromotion [START_REF] Caouette | A new interface element with progressive damage and osseointegration for modeling of interfaces in hip resurfacing[END_REF][START_REF] Tarala | Toward a method to simulate the process of bone ingrowth in cementless tha using finite element method[END_REF][START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF], interface gap size [START_REF] Tarala | Toward a method to simulate the process of bone ingrowth in cementless tha using finite element method[END_REF][START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF] and interface stress [START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF] are used.

Biological factors that are considered are, e.g. platelet reactions, growth factors, cell density [START_REF] Andreykiv | Bone ingrowth simulation for a concept glenoid component design[END_REF] and cell differentiation [START_REF] Andreykiv | Bone ingrowth simulation for a concept glenoid component design[END_REF][START_REF] Dickinson | Implant-bone interface healing and adaptation in resurfacing hip replacement[END_REF][START_REF] Mukherjee | Influence of implant surface texture design on peri-acetabular bone ingrowth: a mechanobiology based finite element analysis[END_REF][START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF]. Intermediate bonding can be characterized by applying spring elements [START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF] or change in material parameters [START_REF] Andreykiv | Bone ingrowth simulation for a concept glenoid component design[END_REF][START_REF] Dickinson | Implant-bone interface healing and adaptation in resurfacing hip replacement[END_REF][START_REF] Tarala | Toward a method to simulate the process of bone ingrowth in cementless tha using finite element method[END_REF][START_REF] Mukherjee | Influence of implant surface texture design on peri-acetabular bone ingrowth: a mechanobiology based finite element analysis[END_REF] such as interfacial stiffness. The successful bonding is then modeled by, e.g., setting the osseointegrated contact region to bonded contact [START_REF] Spears | Interfacial conditions between a press-fit acetabular cup and bone during daily activities: implications for achieving bone in-growth[END_REF][START_REF] Fernandes | A contact model with ingrowth control for bone remodelling around cementless stems[END_REF][START_REF] Viceconti | Effect of the initial implant fitting on the predicted secondary stability of a cementless stem[END_REF][START_REF] Andreykiv | Bone ingrowth simulation for a concept glenoid component design[END_REF][START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF], by means of spring elements [START_REF] Tarala | Toward a method to simulate the process of bone ingrowth in cementless tha using finite element method[END_REF] or interface elements [START_REF] Lutz | Numerical investigations on the osseointegration of uncemented endoprostheses based on bio-active interface theory[END_REF][START_REF] Caouette | A new interface element with progressive damage and osseointegration for modeling of interfaces in hip resurfacing[END_REF].

Some works combine osseointegration estimations with simultaneous or subsequent bone remodeling [START_REF] Dickinson | Implant-bone interface healing and adaptation in resurfacing hip replacement[END_REF][START_REF] Tarala | Toward a method to simulate the process of bone ingrowth in cementless tha using finite element method[END_REF][START_REF] Mukherjee | Influence of implant surface texture design on peri-acetabular bone ingrowth: a mechanobiology based finite element analysis[END_REF][START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF]. However, due to the iterative nature and the complexity of the algorithms, they are computationally expensive and can often only be applied to 2D geometries [START_REF] Andreykiv | Bone ingrowth simulation for a concept glenoid component design[END_REF] or small portions of the FE mesh [START_REF] Mukherjee | Influence of implant surface texture design on peri-acetabular bone ingrowth: a mechanobiology based finite element analysis[END_REF].

While these models provide detailed osseointegration states for different types of implants, to the author's knowledge, none of them have been used as input for simulating the debonding of the BII so far.

Debonding of Partially Osseointegrated Implants

Most finite element models that study secondary stability and implant failure assume the BII to be either perfectly bonded or fully sliding [START_REF] Gupta | The effects of interfacial conditions and stem length on potential failure mechanisms in the uncemented resurfaced femur[END_REF][START_REF] Tomaszewski | A comparative finite-element analysis of bone failure and load transfer of osseointegrated prostheses fixations[END_REF][START_REF] Galloway | A large scale finite element study of a cementless osseointegrated tibial tray[END_REF][START_REF] Chou | Finite element modelling of implant designs and cortical bone thickness on stress distribution in maxillary type iv bone[END_REF][START_REF] Demenko | Prognosis of implant longevity in terms of annual bone loss: a methodological finite element study[END_REF][START_REF] Rittel | Modelling dental implant extraction by pullout and torque procedures[END_REF][START_REF] Mondal | The effects of implant orientations and implant-bone interfacial conditions on potential causes of failure of tibial component due to total ankle replacement[END_REF]. While perfectly bonded contact conditions do not allow for debonding to occur, interface behavior that is modeled as frictionless or by Coulomb's friction cannot fully represent 2.4. Further Challenges the nonlinear interface behavior of the BII even before osseointegration occurs (Dammak et al., 1997b;[START_REF] Viceconti | Effect of the initial implant fitting on the predicted secondary stability of a cementless stem[END_REF]. Furthermore, it was shown that implants are typically never fully osseointegrated and only show a 30-70% bone-to-implant contact after healing [START_REF] Brånemark | Biomechanical characterization of osseointegrazion during healing: an experimental in vitro study in the rat[END_REF][START_REF] Marin | Biomechanical and histomorphometric analysis of etched and non-etched resorbable blasting media processed implant surfaces: an experimental study in dogs[END_REF]. Therefore, imperfect osseointegration and its influence on stability must be considered.

A common approach is to model imperfect osseointegration by setting osseointegrated contact elements to be perfectly bonded while non-integrated contact elements follow frictionless or Coulomb's friction contact [START_REF] Spears | The effect of interfacial parameters on cup-bone relative micromotions: A finite element investigation[END_REF][START_REF] Viceconti | Effect of the initial implant fitting on the predicted secondary stability of a cementless stem[END_REF][START_REF] Helgason | Risk of failure during gait for direct skeletal attachment of a femoral prosthesis: A finite element study[END_REF][START_REF] Galloway | A large scale finite element study of a cementless osseointegrated tibial tray[END_REF]. Another approach to account for varying degree of osseointegration is to adjust material properties of the BII, while keeping the interface fully bonded [START_REF] Kurniawan | Finite element analysis of bone-implant biomechanics: refinement through featuring various osseointegration conditions[END_REF] or by varying the friction coefficient of the BII from zero for unbonded to infinity for perfectly osseointegrated surfaces [START_REF] Korabi | The failure envelope concept applied to the bone-dental implant system[END_REF]. However, these models cannot represent the adaptive changes of the bone-implant interface and debonding. Furthermore, they usually determine failure by excessive stress or strain at the BII or the bone, without modeling the actual separation between bone and implant and local changes of contact conditions. So far, only very few FE studies model contact and failure of partially osseointegrated implants. [START_REF] Rittel | Modeling the effect of osseointegration on dental implant pullout and torque removal tests[END_REF] studied the in influence of partial osseointegration on dental implant stability and cohesive failure. There, a tie constraint was applied to the BII, such that bone-implant debonding occurs in the bone tissue around the interface. Partial osseointegration was model by defining a relative osseointegrated area with random distribution and setting non-integrated areas to frictional contact. To address the lack of numerical models that model partial osseointegration and explicit debonding of the BII, this works puts a special focus on developing and applying such models.

Further Challenges

Difficulties concerning the modeling of short and long-term stability of endosseous implants arise at many levels. First of all, there is a lack of consistent experimental data, especially on long-term stability. Besides few well documented patient trials, most experiments are performed on animals. Unfortunately, animals have different bone properties and experience different loading cycles than humans, making adaptation of in vivo data to humans difficult. Furthermore, even within humans the material parameters differ greatly, requiring multi-factorial studies. Another drawback is that, except for dental implants, there currently exists no effective, noninvasive way to assess implant stability, requiring complicated and ethically difficult animal experiments. In addition, the normal life expectancy of animals is too short for long-term studies, as implants have a life expectancy of 15 years and beyond.

Apart from the available data, bones and bone tissue are complex biological compounds. Bone tissue is a viscoelastic and anisotropic material with nonlinear stress-strain behavior, and therefore is difficult to model realistically and efficiently at the same time. In addition, the load distribution onto bones is not fully understood yet, as many aspects like muscle activity and interaction, posture, and type of movement have to be taken into account. Furthermore, boneimplant contact is a multi-scale problem including chemical binding between bone and implant, motion over the whole contact surface, reaction to external loads, and biochemical remodeling of bone tissue due to mechanical stimulation which all lead to inhomogeneous, time-dependent contact. Concerning the stability of implants, some factors like the bone quality of the patients and the skill of the surgeon are factors that cannot be determined beforehand and are hard to quantify.

Chapter 3

Nonlinear Continuum Mechanics

In the previous chapter, the biomedical and biomechanical background of the present work was introduced. This chapter gives an introduction on the basics of nonlinear continuum mechanics of deformable bodies in contact, which are necessary to describe the mechanical behavior of the BII. In this work, nonlinearity occurs due to the stress-strain behavior of the materials and the geometrical variations that significantly affect the load-deformation behavior. A more detailed introduction to nonlinear continuum mechanics of solids can be found in [START_REF] Holzapfel | Nonlinear solid mechanics[END_REF]. Contact mechanics involving large deformation and friction is discussed in detail in [START_REF] Laursen | Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[END_REF] and [START_REF] Wriggers | Computational contact mechanics[END_REF]. This work follows the standard notation of nonlinear solid mechanics: lower case letters denote the current (spatial) configuration and upper case letters denote the reference (material) configuration. Bold letters denote vectors and tensors, while standard font denotes scalar quantities.

Kinematics

Consider a deformable body B 0k (k = 1) and its surface ∂B 0k as shown in Figure 3.1. In its reference (material) configuration B 0k , a material point in or on the body has the coordinates X k . As this point undergoes large deformation, it obtains the coordinates x k (X k ) in the deformed (or current or spatial) configuration B k , defined by

x k := ϕ k (X k ), (3.1)
where ϕ k is the mapping from the reference to the current configuration. The deformation within the body is characterized by the displacement u k and the deformation gradient F k as

u k = ϕ k (X k ) -X k , (3.2) F k = ∂ϕ k ∂X k . (3.3)
From the deformation gradient F k follow the volume change J k and surface area change J sk defined by

J k := detF k > 0, (3.4) J sk := det s F k > 0, (3.5)
which govern the local volume change and surface area change between the reference and the current configuration:

dv k = J k dV k ∀x k ∈ B k , (3.6) da k = J sk dA k ∀x k ∈ ∂B k . (3.7)
Here det s (•) is the surface determinant on ∂B k , see, e.g., [START_REF] Sauer | The multiplicative deformation split for shells with application to growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity[END_REF]. 
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Strain Measures

Strain describes the change in shape of a body due to external forces (excluding rigid body motion). This change in shape can be exhibited as, e.g, dilatation or shear. Different equivalent choices for the expression of a strain tensor can be made, depending on whether it is defined with respect to the reference or the current configuration and on whether finite or infinitesimal deformation is considered. As the applications in this thesis involve large deformation, a finite strain tensor in material configuration is chosen. Based on the deformation gradient F k the Green-Lagrangian strain tensor

E k = 1 2 F T k F k -I , (3.8)
can be defined, where I is the identity tensor. The corresponding right and left Cauchy-Green deformation tensors are defined as

C k = F T k F k , b k = F k F T k , (3.9)
where C k is a material tensor and b k is a spatial tensor.

Stress Measures

Stress describes the internal response of a body to external loads. A body can exhibit stress due to external forces, e.g., change in pressure or temperature, or due to internal forces, e.g., the pre-stress of blood vessels.

Constitutive Equations

If we intersect the body B k at a point x k by a plane with unit normal n k , we can determine the traction t k acting at this point from

t k = σ k n k , (3.10)
where σ k is usually referred to as the Cauchy or true stress tensor. The Cauchy stress tensor σ k completely describes the stress state of a uniformly stressed body. Another common stress measure is the second Piola-Kirchhoff stress tensor S k , which is defined by (3.11) This stress tensor relates forces in the reference configuration to areas in the reference configuration. The concrete definition of these stress measures depends on the chosen constitutive (material) behavior.

S k = J k F -1 k σ k F -T k .

Constitutive Equations

Constitutive theory describes the (microscopic or macroscopic) behavior of a material. In the purely mechanical case for deformable solids, constitutive theory formulates relationships between the deformation and the inner forces of a body, also referred to as stress-strain relations. More generally, these relationships are extended by density, temperature, and entropy.

In this work, all materials are modeled as homogeneous (i.e., they have the same properties at every material point) and isotropic (i.e., they exhibit the same behavior in every loading direction). Furthermore, all materials are either linear elastic, linear hypoelastic, or non-linear hyperelastic, which are explained in the following.

Linear Material Model

A Cauchy elastic or linear elastic material does not depend on the past history of the deformation. Consequently, the stress depends only on the current deformation gradient F k . The stress-strain relation of a linear elastic body is thus linear and is given by Hooke's law: (3.12) where ε k =1 2 (∇u k + ∇u T k ) is the infinitesimal strain tensor. Λ k and G k are commonly referred to as the first and second Lamé parameters 1 , and for a homogeneous, isotropic material defined as

σ k = 2G k ε k + Λ k tr(ε k )I,
Λ k = E k ν k (1 + ν k )(1 -2ν k ) , G k = E k 2(1 + ν k ) , (3.13)
where E k is the Young's modulus and ν k is the Poisson ratio. The corresponding spatial elasticity tensor c k is given by (3.14) where I 4 is the fourth-order symmetric identity tensor. Constitutive behavior of elastic materials is a function of only the current state of deformation. This model cannot describe, e.g., hysteresis, stress softening, residual strains, and other inelastic effects. If a deformable body goes through a large deformation or if a material does not behave linearly, a more accurate material model is required.

c k = Λ k I ⊗ I + 2G k I 4 ,

Hypoelastic Material Model

Hypoelastic material models are also referred to as incremental material models since they are expressed in rate form. In order to derive meaningful material models for finite deformations, objective rates should be used. Material objectivity states that the constitutive laws must not depend on the chosen external reference frame. An objective strain rate is given e.g., by the rate of deformation tensor D k and the spin tensor W k , defined by

D k = 1 2 Ḟ k F -1 k + F -T k Ḟ T k , (3.15) W k = 1 2 Ḟ k F -1 k -F -T k Ḟ T k . (3.16)
As an objective stress rate, one can use the Jaumann rate of the Cauchy stress tensor

σk = σk + σ k • W k -W k • σ k .
(3.17)

The stress-strain relationship of a linear hypoelastic material model is then defined by

σk = Λ k tr(D k )I + 2G k D k , (3.18)
together with the spatial elasticity tensor c k from Eq. (3.14).

Compressible Neo-Hookean Material Model

In the particular case of hyperelasticity, the material behavior does not depend on the deformation path. Thus, the work done by stresses only depends on the initial state in the reference configuration and current state in the deformed configuration. A material is defined as Green elastic or hyperelastic, if the stress-strain relationship derives from a strain energy density function W . A special case of the hyperelastic material models is the compressible Neo-Hookean model that also includes a nonlinear stress-strain dependence, such as

σ = Λ k J k (lnJ k ) 2 I + G k J k (B k -I) , (3.19) c k = Λ k J k I ⊗ I + 2 G k -Λ k lnJ k J k I 4 .
(3.20)

Contact Mechanics

This work focuses on contact problems that arise from surface effects, including friction and adhesion. This section introduces the basic contact surface description, kinematics, and general descriptions of friction and adhesion.

Contact Surface Description and Kinematics

Consider two 3D bodies B k , k = 1, 2, their boundaries ∂B k , and their contact surfaces ∂ c B k , as shown in Figure 3.2(a). In this work, a contact surface denotes the whole potential surface area where contact between two bodies can occur. A 3D surface of body B k can be described by the mapping 

x k = x k (ξ), ξ ∈ P k , ( 3 
(x p -x k ) • a p α = 0, α = 1, 2. (3.25)
This equation is nonlinear in general and thus has to be solved using, e.g., Newton's method [START_REF] Sauer | A computational contact formulation based on surface potentials[END_REF]. Once the coordinates of the projection point are determined, one can define the contact gap vector

g c := x k -x p , ( 3.26) 
which can be decomposed into a normal and tangential component

g c = g n + g t .
(3.27)

The signed normal gap g n is defined by

g n :=    g n , x k / ∈ B , -g n , x k ∈ B . (3.28)
To capture tangential sticking and sliding, one has to define a tangential slip

g t = g e + g s . (3.29)
The tangential slip g t can be decomposed in to a reversible/elastic part g e that is associated with sticking, and an irreversible/inelastic part g s , associated with sliding. A schematic representation of the different components is given in Figure 3.2 (b). Given the contact surfaces, the contact traction t c can be decomposed into a normal and tangential component, i.e.

t c = t n + t t .
(3.30)

In the case of no adhesion and no friction, these components are defined as 

t n = p c n p p c ≥ 0, ( 3 

Adhesion

Adhesion describes the clinging of two different surfaces to each other, such as velcro, glue, or the feet of a gecko that stick to a glass plane. It can be caused on the microscopic or macroscopic level by different mechanisms, such as chemical bonding and van der Waals forces, electrostatic and magnetic forces, but also mechanical effects, such as capillary interaction, mechanical interlocking, suction forces, and diffusion.

In this work adhesion at the BII occurs due to mechanical interlocking between the porous implant surface and the newly formed bone tissue and a chemical bond between the titanium alloy of the implant and the calcium of the bone. Both are forms of dry adhesion, as opposed to wet adhesion, which includes a lubricant. The macroscopic adhesion at the BII is still poorly understood and no agreed upon model exists. In this work for the adhesion in normal direction, a simple cohesive zone model (CZM) is chosen; even though cohesion usually describes the clinging of the molecules of one material to each other, which is governed by electrical attraction. Cohesive zone models are fracture mechanics models, where the separation of the contact surfaces takes place across an extended crack tip, or cohesive zone (CZ), and is resisted by cohesive tractions [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF][START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF]. A simple example is the exponential CZM

t cz = t cz g cz e 1- g n gcz g n for g n ≥ 0 (3.33)
by [START_REF] Xu | Void nucleation by inclusion debonding in a crystal matrix[END_REF] depicted in Figure 3.3(a). t cz denotes the largest amount of cohesive traction and g cz is its location.

Another possibility is to model adhesion due to van der Waals (vdW) forces, which describe adhesion and repulsion between molecules. This model is mostly used for particle simulation but can also be applied to continuum mechanics, according to [START_REF] Sauer | Enriched contact finite elements for stable peeling computations[END_REF], as

t vdW = t vdW n p , t vdW = A H 2πr 3 0 1 45 r 0 g n 9 - 1 3 r 0 g n 3 .
(3.34)

A H denotes the Hamaker constant, whose magnitude reflects the strength of the van der Waals force between two particles, or between a particle and a substrate [START_REF] Hamaker | The london-van der waals attraction between spherical particles[END_REF]. Here, r 0 denotes the equilibrium spacing of the Lennard-Jones potential (Jones, 1924a,b). Figure 3.3(b) shows the van der Waals traction t vdW as a function of the normal gap g n , where g n is normalized by r 0 and t vdW is normalized by the traction t 0 . 

Friction

In general, friction denotes the force resisting the relative motion of solid surfaces, fluid layers, and material elements. In this work, only dry friction is considered, which is the force that opposes the relative tangential motion of two solid surfaces in contact. Dry friction generally arises from the surface roughness and surface deformation, but also from adhesion and debris.

For frictional contact, the tangential traction t t is determined by the behavior during sticking and sliding. The distinction between these two states is based on a slip criterion of the form

f s    < 0, sticking, ≥ 0, sliding. (3.35) An example of the slip criterion f s is f s = ||t t || -t slide t .
(3.36)

During sticking, the traction t t is defined by the constraint that no relative tangential motion occurs. During sliding, the traction

t t = t slide t τ p (3.37)
is characterized by a sliding law, where τ p is the tangential sliding direction. One of the simplest but most commonly used friction laws is Coulomb's law, shown in Figure 3.4, which is stated as

t slide t = µ t n , (3.38)
where µ is a constant friction coefficient and t n = t n . The tangential sliding direction τ p usually cannot be computed analytically and therefore, needs to be approximated. Two different approaches, one based on elastoplasticity theory [START_REF] Wriggers | Computational contact mechanics[END_REF][START_REF] Laursen | Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[END_REF][START_REF] Sauer | An unbiased computational contact formulation for 3D friction[END_REF]) and one based on surface potentials [START_REF] Sauer | A computational contact formulation based on surface potentials[END_REF][START_REF] Duong | A concise frictional contact formulation based on surface potentials and isogeometric discretization[END_REF] are explained in Section 4.3.
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Balance Laws

When considering deformable solids as continua, their deformation and interaction can be described by balance laws. These equations can be formulated with respect to the reference configuration (material form) or the current configuration (spatial form) and in global and local form. In this work, only the quasi-static case is considered, in which case the balance laws become conservation equations. Furthermore, the balance of mechanical energy requires that the internal energy of the bodies remains constant. This condition is automatically satisfied by the material models introduced in Section 3.2 and thus, is not discussed further.

The derivations of the balance laws are based on the following mathematical theorems: The divergence theorem is stated as

∂B k • • n k da k = B k div(•) dv k , (3.39)
where n k is the outward normal vector of boundary ∂B k . The other theorem is the localization theorem

P k • dv = 0 P k ⊂ B k ⇔ • = 0 ∀ x k ∈ B k , (3.40)
which can equally be applied to surface integrals.

Balance of Mass

Assuming that a body cannot loose or gain mass, the mass density can only change due to change of volume J k in Eq. (3.4). The global conservation of mass is defined by

B k ρ k dv k = 0, ∀ x k ∈ B k (3.41)
where ρ k is the density. The local form of the conservation of mass is given by

ρ 0k = J k ρ k ∀ x k ∈ B k , (3.42)
where ρ 0k is the density in the reference configuration.

Balance of Linear Momentum

Linear momentum is changed by the action of external forces. Excluding forces due to inertia, the global linear momentum balance states that 

divσ k + ρ k bk = 0 ∀ x k ∈ B k .
(3.44)

Balance of Angular Momentum

The balance of angular momentum requires that the Cauchy stress tensor (3.10) is symmetric [START_REF] Belytschko | Nonlinear Finite Elements for Continua and Structures[END_REF]:

σ k = σ T k ∀ x k ∈ B k . (3.45)
Hence, the second Piola-Kirchhoff stress tensor (3.11) must also be symmetric.

Strong Form of the Mechanical Contact Boundary Value Problem

Due to the addition of contact in the system, the balance equations have to be amended. In this work, no mass and heat sources are assumed, hence the mass balance (3.42) remains unchanged for contact contributions. When considering contact between two deformable bodies B 1 and B 2 , their boundaries are decomposed into (3.47) leading to an additional boundary condition

∂B k = ∂ ϕ B k ∪ ∂ tB k ∪ ∂ c B k , k = 1, 2, ( 3 
σ k n k = tk + t ck ,
σ k n k = t ck on ∂ c B k , (3.48)
with t ck = t nk -t tk . The mechanical contact boundary value problem (BVP) can then be formulated as follows: for each of the two bodies

B k (k = 1, 2), find the current positions x k (X k ), ∀ x k ∈ B k , s.t. divσ k + ρ k bk = 0 in B k , σ k n k = tk on ∂ tB k , σ k n k = t ck on ∂ c B k , x k = φk on ∂ ϕ B k , x k (t = 0) = X k .
(3.49)

Nonlinear Continuum Mechanics

Equations (3.49) are also called the strong form of the partial differential equation (PDE) system, because all their components and their derivatives have to be continuously differentiable functions. However, many physical problems have no strong solution. Hence, discrete methods have to be used to derive a solvable PDE. In this work the finite element method (FEM) is used, which requires a variational or weak formulation of the BVP (3.49).

∂ tB 1 ∂ c B B 1 B 2 ∂ ϕ B 1 ∂ ϕ B 2 da dv t1 t2 ∂ tB 2 b1 b2 Figure 3.5 -Mechanical contact boundary value problem: Contact of two deformable bod- ies B 1 , B 2 , with Dirichlet boundaries ∂ ϕ B 1 , ∂ ϕ B 2 , Neumann boundaries ∂ tB 1 , ∂ tB 2 , contact boundary ∂ c B, body forces b1 , b2
, and external tractions t1 , t2 .

Weak Form of the Mechanical Contact Boundary Value Problem

Instead of solving the BVP (3.49) analytically, one can use an approximate method, such as FEM. There, e.g., the deformation u k is approximated by u h k , which is then inserted into the BVP (3.49) divσ k (u h k ) + ρ k bk = r res .

(3.50)

The residual r res represents the error between the exact solution and the approximated solution. This error can be reduced to zero in a weak sense, by multiplying the residual with a variation δϕ k (also called test function or virtual displacement) and integrating over the whole domain:

2 k=1 B k divσ k + ρ k bk • δϕ k dv = 0 ∀ δϕ k ∈ V, (3.51)
where V is a suitable function space for δϕ k . After reformulation, application of the divergence theorem, and decomposition of the boundary

∂B k into a Neumann part ∂ t B k and a contact part ∂ c B k
, the first term of Eq. (3.51) can be expressed as

B k divσ k • δϕ k dv k = ∂tB k tk • δϕ k da k + ∂cB k t ck • δϕ k da k - B k grad (δϕ k ) : σ k dv k . (3.52)
Finally, the weak form of the local linear momentum balance can be written as

2 k=1 B k grad (δϕ k ) : σ k dv k virtual internal work - ∂cB k t ck • δϕ k da k virtual contact work + ∂tB k tk • δϕ k da k + B k ρ k bk • δϕ k dv k virtual external work = 0 ∀ δϕ k ∈ V.
(3.53) 3.5. Linearization Equation (3.53) can also be expressed as the variation of the potential energy δΠ k (principle of virtual work), as

δΠ k = δΠ int,k + δΠ ck -δΠ ext,k = 0 ∀ δϕ k ∈ V, (3.54) with δΠ int,k = B k grad (δϕ k ) : σ k dv k , (3.55) δΠ ext,k = ∂tB k tk • δϕ k da k + B k ρ k bk • δϕ k dv k , (3.56) δΠ ck = - ∂cB k t ck • δϕ k da k . (3.57)
In order to solve the generally nonlinear system of equations (3.54) numerically with the Newton-Raphson methods it must be linearized first.

Linearization

In continuum mechanics, nonlinearity can arise from the geometry due the use of nonlinear strain measures, such as the Green-Langrange strain tensor (3.8), from nonlinear constitutive behavior, such as hyperelastic materials (3.19), or from unilateral geometrical constraints, which are common in contact problems.

The linearization of a differentiable function f (x) is given by the function evaluation at a specific point x and the directional derivative ∆f (x, ∆x), i.e., L [f , ∆x] x = f (x) + ∆f (x, ∆x).

(3.58)

The directional derivative ∆f (x, ∆x) at x in the direction ∆x is defined by

∆f (x, ∆x) = ∆f (x) [∆x] := lim ω→0 f (x + ω∆x) -f (x) ω = d dω f (x + ω∆x) ω=0 . (3.59)
For the weak form of the mechanical problem (3.54) the corresponding linearization is given by Chapter 4

∆δΠ e k = ∂δΠ e k ∂x k ∆x k , ∆δΠ e •,k = ∆ x δΠ e •,k , • = int, ext, c, ( 3 

Finite Element Discretization and Algorithmic Contact Treatment

Now that the mechanical foundations of the contact of two deformable bodies have been introduced, the numerical formulation and implementation of contact problems can be formulated. In this chapter, the basic concepts of FEM and its application to contact problems are outlined. In this work, FEM is used to compute numerical solutions of partial differential equations, such as Eqs. (3.53). As this work only considers quasi-static simulations, Eqs. (3.53) only have to be discretized in space. In the following, upright symbols denote vectors and matrices that are associated with FE nodes.

Spatial Discretization

For FEM it is necessary to discretize the geometry of the bodies B k , k = 1, 2 in space. Hence, both interacting bodies B k and their surfaces ∂B k are decomposed into n el,k smaller subdomains, or elements. Depending on the type and amount of elements, this results in an approximation of the original geometry, i.e.,

B 0k ≈ B h 0k = n el,k e=1 Ω e 0k , ∂B h 0k ≈ n el,k e=1 Γ e 0k , (4.1) B k ≈ B h k = n el,k e=1 Ω e k , Ω e k ≈ ϕ k (Ω e 0k ), ∂B h k ≈ n el,k e=1 Γ e k , Γ e k ≈ ϕ k (Γ e 0k ), (4.2) 
in material and spatial configuration, respectively. The superscript h indicates the spatial approximation of the continuous variable. The surface elements correspond to the bulk elements and together, are referred to as finite elements. Often, the surface elements are chosen as the faces of the bulk elements which lie on the surface. An example of a spatial discretization in 2D is shown in Figure 4.1. For each finite element in the reference configuration, a point X k (or x k ) is approximated by n ne,k nodes, which are weighted by n ne,k shape functions. By storing the positions of these nodes in the vectors 

X e k =     X e 1 . . . X e n ne,k     , x e k =     x e 1 . . . x e n ne,k     , (4.3) Ω e k Γ e k ∂B k
X k ≈ X h k = N k X e k for X k ∈ Ω e 0k , (4.4) x k ≈ x h k = N k x e k for x k ∈ Ω e k . (4.5)
The most commonly used method in spatial discretization is the isoparametric concept; it has been proven to be very practical for nonlinear problems (Zienkiewicz and Taylor, 2005;[START_REF] Wriggers | Nonlinear finite element methods[END_REF]. It uses the same shape functions for the geometry and the field variables. The displacement u k , for instance, can be discretized as

u k ≈ u h k = N k u e k in Ω e k . (4.6)
Using the same set of shape functions, one can approximate the test functions δϕ k for the weak form (3.53), by

δϕ k ≈ δϕ h k = N k v e k in Ω e k .
(4.7)

The shape functions N k depend on the interpolation functions used. In the following, the Lagrangian interpolation basis functions and the Lagrangian surface enrichment are introduced, as well as the non-uniform rational basis splines (NURBS) enriched discretization, that is used for the contact surfaces in Chapters 6-8.

Lagrangian Elements and Lagrangian Enrichment

The standard FEM uses Lagrangian polynomials as shape functions. In the one-dimensional case, a general Lagrange element of order n -1 can be written as [START_REF] Wriggers | Nonlinear finite element methods[END_REF])

N k (ξ) = n j=1,j =k ξ j -ξ ξ j -ξ k , (4.8)
For higher-dimensional cases, the shape functions can be constructed by tensor products of the one-dimensional shape functions, namely (4.10) in the 2D quadrilateral and 3D hexahedral case, respectively, yielding

N k (ξ, η) = N j (ξ)N m (η), (4.9) N k (ξ, η, ζ) = N j (ξ) ⊗ N m (η) ⊗ N o (ζ), j, m, o = 1, ..., n,
N 2D I = 1 4 (1 ± ξ)(1 ± η), N 3D I = 1 8 (1 ± ξ)(1 ± η)(1 ± ζ), (4.11)
with the parametric coordinates ξ, η, ζ.

In order to increase the accuracy of the geometrical approximation, one can increase the density and decrease the size of the FE at the contact surfaces; or one can use FE with higherorder shape functions. However, this increases the computational cost and not all solvers are suitable to solve meshes with higher-order elements. Furthermore, higher-order Lagrangian interpolation is prone to oscillate.

Another, usually less costly strategy, is to enrich both the contact surface and the solution variables by shape functions of higher order, e.g., second-order Lagrangian elements (Zienkiewicz and Taylor, 2005) (see Figure 4.2). As an example, the shape functions for a 2D quadrilateral element with quadratic Lagrangian enrichment [START_REF] Sauer | Enriched contact finite elements for stable peeling computations[END_REF] are

N 1 (ξ, η) = 1 4 (ξ 2 -ξ)(1 -η), N 4 (ξ, η) = 1 4 (1 -ξ)(1 + η), N 2 (ξ, η) = 1 4 (ξ 2 + ξ)(1 -η), N 5 (ξ, η) = 1 2 (1 -ξ 2 )(1 -η), N 3 (ξ, η) = 1 4 (1 + ξ)(1 + η), (4.12)
and for a 3D hexahedral element

N 1 = 1 4 (ξ 2 -ξ)(η 2 -η)(1 -ζ), N 8 = 1 8 (1 -ξ)(1 + η)(1 + ζ), N 2 = 1 4 (ξ 2 + ξ)(η 2 -η)(1 -ζ), N 9 = 1 4 (1 -ξ 2 )(η 2 -η)(1 -ζ), N 3 = 1 4 (ξ 2 + ξ)(η 2 + η)(1 -ζ), N 10 = 1 4 (ξ 2 + ξ)(1 -η 2 )(1 -ζ), N 4 = 1 4 (ξ 2 -ξ)(η 2 + η)(1 -ζ), N 11 = 1 4 (1 -ξ 2 )(η 2 + η)(1 -ζ), N 5 = 1 8 (1 -ξ)(1 -η)(1 + ζ), N 12 = 1 4 (ξ 2 -ξ)(1 -η 2 )(1 -ζ), N 6 = 1 8 (1 + ξ)(1 -η)(1 + ζ), N 13 = 1 4 (1 -ξ 2 )(1 -η 2 )(1 -ζ), N 7 = 1 8 (1 + ξ)(1 + η)(1 + ζ).
(4.13)

While enriched elements of this type are at least C 1 -continuous 1 almost everywhere on the contact surface, they are still only C 0 -continuous at their element boundaries. These discontinuities can cause problems during the contact projection (see Section 4.3), especially for non-planar contact surfaces. As it remains crucial to ensure C 1 -continuity for the entire contact surface, especially for curved and complex geometries such as implants, a enrichment approach based on isogeometric analysis (IGA) is used in parts of this work.

Isogeometric Analysis

IGA was proposed by [START_REF] Hughes | Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[END_REF] to bridge the gap between computer aided design (CAD), which is generally used to create virtual geometries, and FEA, that requires a FE mesh.

1. C denotes the smoothness of a function in terms of the number of continuous derivatives it has in a specific domain. Hence, C 0 -continuity refers to a function that is continuous, but its derivatives are not. A function with C 1 -continuity is at least once continuously differentiable.

In CAD, computed manufacturing (CAM) and engineering (CAE), basis splines (B-splines) and non-uniform rational B-splines (NURBS) are used to represent the often curved and complex geometries. However, traditional FEA requires the generation of a suitable FE mesh from the geometry, where the geometry is usually discretized by Lagrangian FE. In addition to the loss of accuracy in geometry representation and the limited smoothness at the element boundaries, the creation of a FE mesh from a CAD geometry consumes the majority of the total time of a FEA project [START_REF] Cottrell | Isogeometric analysis: Toward integration of CAD and FEA[END_REF]. To ensure an accurate geometry representation and increase efficiency, IGA aims at using the same geometric representation for design and analysis.

One of the basic ingredients are B-splines. B-splines are piece-wise polynomial functions defined by their polynomial order p and a knot vector Ξ. A knot vector is a set of non-decreasing parametric coordinates

Ξ = [ξ 1 , ξ 2 , ..., ξ n+p+1 ] . (4.14)
Here, n is the number of basis functions defined by the knot vector. The interval between two adjacent knot values [ξ i , ξ i+1 ] ≥ 0 is called knot span. Each of these knot spans partitions the parameter space into elements which are mapped to the physical domain. The basis function only depends on the relative size of the knot spans, which can be used to classify B-splines. In a uniform B-spline the knots in the knot vector are equally spaced, whereas in a non-uniform B-spline, the size of the knot spans can differ.

Using the definition in Eq. (4.14), a B-spline basis function can be defined recursively with the Cox-de Boor recursion formula [START_REF] Cox | The numerical evaluation of b-splines[END_REF][START_REF] Boor | On calculating with b-splines[END_REF], where piece-wise constant basis functions are obtained on each knot span, as

N i,0 (ξ) =    1 if ξ i ≤ ξ < ξ i + 1, 0 otherwise, for p = 0, (4.15) N i,p (ξ) = ξ -ξ i ξ i+p -ξ N i,p-1 (ξ) + ξ i+p+1 -ξ ξ i+p+1 -ξ i+1 N i+1,p-1 (ξ), for p > 0. (4.16)
A B-spline curve is then obtained by multiplying the basis functions N i,p with the control points

P i , i = 1, 2, ..., n, i.e. C(ξ) = n i=1 N i,p (ξ)P i = N p (ξ)P.
(4.17)

The control points P i span the so-called control polygon, which is the piece-wise linear interpolation of the control points.

To define a B-spline surface, knot vectors in two parametric directions are required, resulting in shape functions N i,p and M j,q , j = 1, 2, ..., m, and a grid of control points P ij . The B-spline surface can then be expressed by

S(ξ, η) = n i=1 m j=1 N i,p (ξ)M j,q (η)P ij . (4.18)
NURBS are an extension of B-splines. In contrast to B-splines, NURBS can represent conic sections, such as circles and ellipses exactly, as their basis functions are rational. NURBS geometries in R d can be imagined as B-spline geometries in R d+1 projected onto R d . The additional coordinate of each NURBS control point P w i is the NURBS weight w i . The NURBS control points are obtained by dividing the components 1, ..., d of the control points P w i by their corresponding weight w i , i.e.

(P i ) j = (P w i ) j w i , for j = 1, ..., d, w i = (P w i ) d+1 . (4.19)
A detailed introduction into NURBS and isogeometric analysis can be found in [START_REF] Cottrell | Isogeometric analysis: Toward integration of CAD and FEA[END_REF].

NURBS-enriched Contact Elements

When using surface-enriched FE, the bulk of the bodies B k and their surfaces other than the contact surfaces are discretized with standard (linear) Lagrangian elements. The contact surfaces ∂ c B k can be enriched, e.g., by a higher-order Lagrangian discretization, by a polynomial interpolation (e.g., Hermite polynomials H e [START_REF] Sauer | Enriched contact finite elements for stable peeling computations[END_REF]), or a spline. In parts of this work NURBS-enriched contact FE are used (Corbett andSauer, 2014, 2015).

A 2D NURBS-enriched element has three linear faces in 2D and one NURBS curve. Such an element is defined by p + 3 nodes, with p + 1 control points on the NURBS curve and 2 in the bulk part (see Figure 4.2). The basis functions of such a (quadrilateral) element are given by

N 1 (ξ, η) = R e 1 (ξ) 1 2 (1 -η), N p+2 (ξ, η) = 1 4 (ξ + 1)(1 + η), . . . (4.20) N p+1 (ξ, η) = R e p+1 (ξ) 1 2 (1 -η) N p+3 (ξ, η) = 1 4 (ξ -1)(1 + η),
with the rational basis functions R e given by

R e (ξ) = W e C e B e (ξ) W e (ξ) , (4.21)
with the weighting functions W e (ξ), the weights W e , localized Bézier extraction operator C e [START_REF] Borden | Isogeometric finite element data structures based on Bezier extraction of NURBS[END_REF], and the Bernstein polynomials B e (ξ). This results in a continuous normal vector used in finding the closest point projection x p on the contact surface (for straight or curved surfaces; not for sharp edges and kinks). For a three dimensional body, the surface is enriched by a NURBS surface of order p and q. One element then consists of (p + 1)(q + 1) + 4 nodes, n cp = (p + 1)(q + 1) control points on the contact surface and four in the bulk domain.

The basis functions and approximations follow in an analogous manner:

N 1 (ξ, η) = R e 1 (ξ, η) 1 2 (1 -ζ), N n cp+1 = 1 8 (1 -ξ)(1 -η)(1 + ζ), . . . N n cp+2 = 1 8 (1 + ξ)(1 -η)(1 + ζ), (4.22) N ncp (ξ, η) = R e ncp (ξ, η) 1 2 (1 -ζ), N n cp+3 = 1 8 (1 + ξ)(1 + η)(1 + ζ). N n cp+4 = 1 8 (1 -ξ)(1 + η)(1 + ζ).

Finite Element Discretization and Algorithmic Contact Treatment

ξ Ω 1 1 -1 -1 η Ω e ξ Ω 1 1 -1 -1 η ξ Ω 1 1 -1 -1 η Ω e Ω e ξ Ω 1 1 -1 -1 η Ω e linear Lagrangian quadratic Lagrangian Hermite Interpolation NURBS C 0 -continuous C 0 -continuous C 1 -continuous C 1 -continuous and higher 4 3 4 3 4 3 1 2 1 2 1 2 5 p+3 p+2 1 p+1 ... 5 6 u h k = 4 I=1 N 0 I u e I u h k = 5 I=1 N I u e I u h k = 4 I=1 N I u e I + 2 I=1 H e I u e I,ξ u h k = p+3 I=1 N I u e I Figure 4
.2 -Example of linear Lagrangian bulk discretization with different surface-enriched contact elements in 2D [START_REF] Sauer | Enriched contact finite elements for stable peeling computations[END_REF][START_REF] Sauer | A computational contact formulation based on surface potentials[END_REF]Corbett andSauer, 2014, 2015) with corresponding parent element Ω (see Section 4.1.5).

NURBS-enriched contact elements are accurate, robust and efficient, especially for problems dominated by surface effects, such as frictional and adhesive contact. The isogeometric surface elements provide accuracy, smoothness, and at least C 1 -continuity over the element boundaries, while the Lagrangian finite elements in the bulk are simple and efficient. A more detailed explanation and derivation is provided in Corbett andSauer (2014, 2015). The Lagrangian bulk discretization and several surface-enrichment approaches are pictured in Figure 4.2.

Apart from the shape functions exist two general types of meshes: structured and unstructured meshes. In structured meshes, the finite elements within a body are aligned in a regular, predictable pattern, while in unstructured grids they are distributed in an irregular pattern. In this work, mainly structured hexahedral grids are used. While irregular meshes are, in general, more suitable to discretize complex and curved shapes, the usage of NURBS-enriched structured hexahedral grids at the contact boundary outperforms the quality of spatial discretization by unstructured grids. Furthermore, structured grids use a predictable numbering of the nodes and elements. On the one hand, the storage of element connectivity becomes unnecessary in general, and on the other hand, it facilitates the debugging of grids that have to be created by hand.

Discretized Weak Form

Now, the weak form (3.55)-(3.57) can be discretized in space. First, the variations of the potential energy δΠ k are expressed in terms of the contribution of a single FE by using the approximation (4.7):

δΠ int,k = (v e k ) T f e int,k , f e int,k = Ω e k B T k σ k dv k , (4.23) δΠ ext,k = (v e k ) T f e ext,k , f e ext,k = Γ e k N T k tk da k + Ω e k ρ k N T k bk dv k , (4.24) δΠ ck = (v e k ) T f e ck , f e ck = -Γ e ck N T k t ck da k . (4.25)
The spatially discrete weak form of the system is then obtained by assembling all elemental contributions (v)

T [f int + f c -f ext ] = 0, (4.26)
where f int , f ext , f c denote global force vectors. This implies, that at those nodes for which v is arbitrary, the force equilibrium condition

f (u) = f int (u) + f c (u) -f ext (u) = 0 (4.27)
must be satisfied. This equation system can now be solved by numerical integration.

Element Mapping

The elemental force vectors f e contain integrals over the corresponding bulk or surface elements Ω e k and Γ e k . Most of these integrals cannot be solved analytically and thus have to be computed numerically by, e.g., a quadrature rule. In order to efficiently evaluate both, the integrals and the shape function array N k , in either the reference or current configuration, it is useful to consider a so-called parent element Ω . For quadrilateral and hexahedral elements, which are mainly used in this work, Ω corresponds to a square (or cube) with edge length 2 and is described in terms of a local coordinate ξ * ∈ [-1, 1] d on the parent element, where d is the space dimension. Then, one can define the shape functions in N k with respect to this coordinate, as

N I = N I (ξ * ), I = 1, ..., n ne,k . (4.28)
With respect to the local derivatives of the shape functions ∂N I /∂ξ * , one can define a mapping from the parent element to the actual reference or current element as

j e k = ∂x h k ∂ξ * ≈ n ne,k I=1 x e I ⊗ ∂N I ∂ξ * , J e k = ∂X h k ∂ξ * ≈ n ne,k I=1 X e I ⊗ ∂N I ∂ξ * , (4.29)
which are denoted the elemental Jacobians. These expressions can be used to determine, e.g., the deformation gradient F e k and its determinant

F e k = j e k (J e k ) -1 , J e k = detF e k = detj e k detJ e k . (4.30)
Since the local derivatives of the shape functions ∂N I /∂ξ * do not change during the computation, they only need to be evaluated once at the beginning. The derivatives with respect to the global coordinates are then given by

∂N I ∂x h k = (j e k ) -T ∂N I ∂ξ * , ∂N I ∂X h k = (J e k ) -T ∂N I ∂ξ * . (4.31)
4. Finite Element Discretization and Algorithmic Contact Treatment The volume and the surface integrals in terms of the parent elements Ω and Γ can then be reformulated as

B 0k ∂B 0k ∂B k reference configuration current configuration F e k Ω e 0k Ω e k η ξ Ω 1 1 -1 -1 J e k j e k Γ e c0k Γ e ck J e ck J e Ak j e ak Γ B k -1 ξ 1 parent element parent element
dv k = det j e k dξ * , dV k = det J e k dξ * , (4.33) da k = j e ak dξ, dA k = J e Ak dξ. (4.34)
An illustration of the mapping and the mapped components is shown in Figure 4.3.

Solution Procedure

Once the elemental force vectors are evaluated and assembled according to Eq. (4.27), the system of equations must be solved. As both, the internal forces and the contact forces in Eq. (4.27) are nonlinear with respect to the displacement u, the entire system of equations must first be linearized (as shown in Section 3.5), so that it can be solved with the Newton-Raphson method [START_REF] Wriggers | Nonlinear finite element methods[END_REF]. This method solves a nonlinear equation system by repeatedly solving its linearization around the current solution u i in load increment i and updating the solution

u i+1 = u i + ∆u i+1 , i = 0, 1, ... (4.35)
for the next load increment. The update ∆u i+1 is obtained by solving the linear equation system

k ∆u i+1 + f (u i ) = 0, k := ∂f (u i ) ∂u i . (4.36) 4.3. Contact Projection Approaches
The tangent or stiffness matrix k is composed of the internal stiffness k int , external stiffness k ext , and the contact stiffness k c :

k = k int + k ext + k c , k int := ∂f int (u) ∂u , k c := ∂f c (u) ∂u , k ext := ∂f ext (u) ∂u . (4.37)
In analogy to the global force vectors these are assembled from the contributions of each single FE. To solve the linear system, one starts with an initial guess u i = 0 and iterates until a certain convergence criterion, e.g.,

r res i := f (u i ) • ∆u i+1 < ε tol , (4.38)
is satisfied, where ε tol is a pre-defined tolerance.

Contact Projection Approaches

Traditional contact algorithms require the definition of a master surface ∂ c B and a slave surface ∂ c B k . Then, the contact traction t c is only evaluated on the slave surface ∂ c B k , by

δΠ c ≈ δΠ h c = n k e=1 (δx e k • f e ck + δx e • f e c ), (4.39) 
where n k denotes the number of elements of the slave surface. The elemental contact force vectors

f e ck = -Γ e k N T k t ck da k , f e c = -Γ e k N T (ξ)t ck da k , (4.40) act on element Γ e k ⊂ ∂ c B h k and partially on some elements Γ e ⊂ ∂ c B h ( = k).
The contact traction is carried over to the master surface as -t ck . Although the so-called master-slave or full-pass approach is widely used for contact between two deformable bodies, it introduces a bias into the formulation and requires additional effort to integrate the quantities of the neighboring surfaces [START_REF] Sauer | A computational contact formulation based on surface potentials[END_REF]. To overcome these issues, one can use an unbiased two-half-pass approach for contact [START_REF] Sauer | A computational contact formulation based on surface potentials[END_REF][START_REF] Sauer | An unbiased computational contact formulation for 3D friction[END_REF]. There, the original weak formulation of the virtual contact work is considered and the contact tractions t ck are evaluated on each contact surface ∂ c B k (k = 1 and k = 2) separately:

δΠ c ≈ δΠ h c = 2 k=1 n k e=1 δx e k • f e ck , ( 4.41 
)

f e ck = Γ e k N T k t ck da k . (4.42)
Although this formulation solves the drawback of the full-pass algorithm it introduces some other drawbacks. The first issue is that this formulation does not fulfill the equilibrium of the contact tractions exactly. However, the resulting error is of the same order as those errors stemming, e.g., from the finite element discretization and decreases to zero with further mesh refinement [START_REF] Sauer | A computational contact formulation based on surface potentials[END_REF]. The other important issue concerns over-constraining, which may occur for the penalty method (introduced in Section 4.4) when used with many quadrature points [START_REF] Sauer | An unbiased computational contact formulation for 3D friction[END_REF]. This can be circumvented by mesh refinement or the choice of moderate penalty parameters. Both contact projection approaches are sketched in 

The Penalty Method for Frictional Contact

The exact treatment of normal contact (without adhesion) requires that the normal contact pressure p c is zero when the bodies B k are not in contact (g n > 0) and that contact (g n = 0) results in a negative contact pressure (p c < 0). These conditions are known as the Karush-Kuhn-Tucker or Hertz-Signiorini-Moreau conditions and are summarized as

g n ≥ 0, p c ≤ 0, g n p c = 0. (4.43)
To simplify the numerical treatment, one can allow for small interpenetrations g n < 0 and a small reversible tangential gap ∆g e , that are penalized by means of penalty parameters n , t . The normal traction t n is then given by An example for both traction components is shown in Figure 4.5. As the penalty parameters approach infinity, the penetration g n approaches zero, thus converging to the exact solution. However, the penalty parameters have to be chosen appropriately, as high values can lead to ill-conditioning of the stiffness matrix k (4.36).

t n =    n g n n k , g n < 0, 0, g n ≥ 0,

Predictor-Corrector Algorithms

One common strategy to distinguish between frictional sticking and sliding is a predictorcorrector approach similar to those used in computational plasticity. This approach uses a so-called trial traction t n+1 trial . First, sticking is assumed, such that

t n+1 trial = t n+1 stick . (4.46)
This trial traction can then be inserted into the slip criterion (3.36) to check the current contact state:

1. If f s (t n+1 trial , t n+1 slide ) < 0, the point x n+1 p is sticking tangentially; in this case

t n+1 t = t n+1 trial , (4.47) 2. If f s (t n+1 trial , t n+1 slide ) ≥ 0, the point x n+1
p is sliding; in this case a corrector step has to be performed to determine the actual traction t n+1 t satisfying f s (t n+1 trial , t n+1 slide ) = 0. For the formulation of the sliding traction t n+1 slide and the sliding direction τ p from Eq. (3.37), one can use elastoplasticity theory in order to incorporate a friction response in tangential direction (see e.g. [START_REF] Wriggers | Computational contact mechanics[END_REF]; [START_REF] Laursen | Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[END_REF]; [START_REF] Sauer | An unbiased computational contact formulation for 3D friction[END_REF]). In the context of this work, another approach is also used that is based on the surface potential-based contact formulations of [START_REF] Duong | A concise frictional contact formulation based on surface potentials and isogeometric discretization[END_REF] and [START_REF] Sauer | A computational contact formulation based on surface potentials[END_REF]. Both concepts will be summarized and explained based on Coulomb's friction (3.38) and are sketched in Figure 4.6. 4.6 -Comparison of formulations for the tangential sliding direction τ p : (a) τ p as the secant direction [START_REF] Sauer | An unbiased computational contact formulation for 3D friction[END_REF]. (b) τ p as the tangent direction [START_REF] Duong | A concise frictional contact formulation based on surface potentials and isogeometric discretization[END_REF]. Adopted and modified from [START_REF] Duong | A concise frictional contact formulation based on surface potentials and isogeometric discretization[END_REF].

∂ c B k ĝn n g n+1 m x n+1 ( ξn ) x n+1 (ξ m ) x n+1 (ξ n+1 p ) τ p ĝn n g n+1 m x n+1 k x n+1 (ξ n ) x n+1 (ξ m ) ∂ c B τ p ∂ c B k x n+1 k ∂ c B (a) (b) Figure

Elastoplasticity Based Formulation

Following [START_REF] Sauer | An unbiased computational contact formulation for 3D friction[END_REF], the tangential contact traction during sticking is defined by

t n t = t x n (ξ n p ) -x n (ξ n s ) . (4.48)
At the new pseudo-time t n+1 the following trial traction is considered, which is associated to sticking (predictor step)

t n+1 trial = t x n+1 (ξ n+1 p ) -x n+1 (ξ n s ) , ξ α s n+1 = ξ α s n . (4.49)
In case of sliding, the implicit Euler method is used to discretize ξ α s n+1 in time:

ξ α s n+1 ≈ ξ α s n + ∆γ n+1 τ n+1 p • a α s n+1 , (4.50)
and thus

x n+1 (ξ n+1 s ) = x n+1 (ξ n s ) + ∆γ n+1 τ n+1 p . (4.51)
The scalar ∆γ n+1 can then be determined by assuming 

τ n+1 p = t n+1 trial t n+1 trial , a α p n+1 ≈ a α s n+1 = τ n+1 p , ( 4 
ξ α s n+1 ≈ ξ α s n + ∆γ n+1 τ n+1 p • τ n+1 p , (4.54) t n+1 t = t n+1 trial -t ∆γ n+1 τ n+1 p . (4.55)
For a more detailed derivation the reader is referred to [START_REF] Sauer | An unbiased computational contact formulation for 3D friction[END_REF].

Surface Potential Based Formulation

In order to determine the contact traction at the current time step, according to the contact formulation of [START_REF] Duong | A concise frictional contact formulation based on surface potentials and isogeometric discretization[END_REF], a so-called interacting (elastic) gap vector g e ( ξ) is introduced. This gap vector is defined between the current slave point x k and the so-called current interacting point x ( ξ) on the master surface ∂ c B (defined below), i.e. g e ( ξ) := x k -x ( ξ).

(4.56)

The current gap vector can be further decomposed into a tangential and a normal component g e ( ξ) = g en + g et , with

g en ( ξ) := (n ⊗ n) g e , g et ( ξ) := (a α ⊗ a α ) g e . (4.57)
According to the penalty formulation, the total frictional contact traction is proportional to the interacting gap vector g e ( ξ), according to (4.58) which follows from using the contact potential W := 1 2 g e • g e . At initial contact, the interacting point x ( ξ) is equal to the closest projection point of x k . During sticking, the current interacting point is equal to the previous interacting point ξn . Therefore, for sticking, the current contact gap vector g e is determined from Eq. (4.56) with ξ = ξn . During sliding, the current interacting point ξ is the solution of the kinematic constraint equation,

t c = g e ,
f g ( ξ) := g et -g max et = 0, (4.59)
in the current configuration. g e then follows from Eq. (4.56). The critical value during sliding g max et is defined by the chosen friction law. For example, for Coulomb's friction, it is defined as

g max et = µ g en τ p , (4.60)
where τ p can be computed by projecting the previous interacting gap g n e onto the tangent plane at the current interaction point x ( ξ):

τ p = (a α ⊗ a α ) g n e (a β ⊗ a β ) g n e , (4.61)
where a α , a α are evaluated at x ( ξ).

Solution Algorithm

Finally, the complete contact FE solution algorithm for frictional contact without adhesion with the full-pass approach can be assembled and is sketched below. For the two-half-pass approach the contact loop is performed for both contact surfaces ∂ c B k and ∂ c B . For the contact formulations and osseointegration models presented in Chapters 6-8 the code in the blue box needs to be adjusted. 

Determinants of Initial Stability of Cementless Implants

In the previous chapters, the required foundations in nonlinear mechanics, finite element methods, and computational contact mechanics were introduced. In the following, the new contributions of this work are presented, beginning with the assessment of the determinants of primary stability of a cementless ACI.

Mayor parts of this chapter have been published in Immel et al. (2021a). The 2D results in Sections 5.3.1, 5.3.3-5.3.5 were adopted from [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. Figures 5.3 (b)-(d), 5.4 and 5.6, as well as the data for E tb = 0.1, 0.5 GPa in Figures 5.9 and 5.10 and their discussion were not part of these publications and have been added here.

Motivation

Cementless ACI have become more and more common for THA surgery [START_REF] Toossi | Acetabular components in total hip arthroplasty: is there evidence that cementless fixation is better?[END_REF]. Initial stability is obtained during the surgical intervention through a diameter interference fit, by reaming the host bone cavity [START_REF] Mackenzie | Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty[END_REF][START_REF] Kim | Reamed surface topography and component seating in press-fit cementless acetabular fixation[END_REF][START_REF] Macdonald | Press-fit acetabular cup fixation: principles and testing[END_REF]. The ACI is inserted into the bone cavity using impacts and the initial fixation is achieved through residual stresses, localized mostly at the ACI rim [START_REF] Hothi | Explicit finite element modelling of the impaction of metal press-fit acetabular components[END_REF][START_REF] Mukherjee | Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap[END_REF]. To achieve an optimal primary stability, a compromise should be found between: 1. reducing the relative micro-motions at the bone-implant interface (BII), and avoiding large gaps between bone and implant, which may lead to the formation of fibrous tissue in the periimplant region [START_REF] Brånemark | Osseointegrated implants in the treatment of the edentulous jaw. experience from a 10-year period[END_REF], the formation of low-quality bone tissue or even inhibit bone growth [START_REF] Jasty | Bone ingrowth into porous-surfaced harris/galante prosthesis acetabular components retrived from human patients[END_REF][START_REF] Sandborn | Tissue response to porous-coated implants lacking initial bone apposition[END_REF][START_REF] Mukherjee | Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap[END_REF], and 2. avoiding excessive stresses in peri-implant bone tissue, which may lead to bone necrosis or local ischemia [START_REF] Sotto-Maior | Influence of high insertion torque on implant placement: an anisotropic bone stress analysis[END_REF]. All these phenomena may jeopardize osseointegration processes [START_REF] Jasty | Bone ingrowth into porous-surfaced harris/galante prosthesis acetabular components retrived from human patients[END_REF][START_REF] Schmalzried | The mechanism of loosening of cemented acetabular components in total hip arthroplasty. analysis of specimens retrieved at autopsy[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF], and can lead to implant loosening. It remains difficult to predict ACI loosening because of its multi-factorial causes related to the implant properties, the cavity geometry (e.g., its diameter), and to the patient's bone quality [START_REF] Kwong | A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component[END_REF][START_REF] Hsu | The number of screws, bone quality, and friction coefficient affect acetabular cup stability[END_REF][START_REF] Amirouche | Factors influencing initial cup stability in total hip arthroplasty[END_REF]. Different pull-out tests have been carried out in vitro and ex vivo to assess the ACI primary stability [START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF][START_REF] Goldman | Does increased coefficient of friction of highly porous metal increase initial stability at the acetabular interface?[END_REF], with several studies focusing on the effect of bone quality on the biomechanical behavior of the ACI [START_REF] Hsu | The number of screws, bone quality, and friction coefficient affect acetabular cup stability[END_REF][START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF]. However, such biomechanical testing cannot be applied during surgery. It remains difficult to carry out a systematic in vitro investigation of the multifactorial determinants of ACI stability because of the difficulty to precisely control all parameters when using bone tissue.

For these reasons, several numerical models have been developed to assess the biomechanical behavior of the cementless ACI with simplified bone geometries [START_REF] Yew | Deformation of press-fitted metallic resurfacing cups. part 2: finite element simulation[END_REF][START_REF] Hothi | Explicit finite element modelling of the impaction of metal press-fit acetabular components[END_REF][START_REF] Souffrant | Advanced material modelling in numerical simulation of primary acetabular press-fit cup stability[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. While such models offer some initial insight on the biomechanical parameters and the contact behavior of the BII in a controlled environment, their simplified geometry constitutes a strong limitation because it does not properly capture 3D effects that have an important influence on the structural behavior of the pelvis. In particular, [START_REF] Cilingir | Three-dimensional anatomic finite element modelling of hemi-arthroplasty of human hip joint[END_REF] investigated the influence of the bone geometry on the contact pressure and stress distribution by comparing the performance of a 2D axisymmetric, 3D axisymmetric, and 3D hemi-pelvis model. They showed that, while all models predicted a similar contact pressure distribution in the acetabular cavity, the maximum von Mises stress within the bone tissue differed significantly. As the insertion of the ACI into the reamed cavity produces considerable stresses at the bone cavity rim, anatomic 3D models must be considered to achieve more reliable results. Consequently, more accurate models of the human pelvis have been developed to model the contact behavior of the ACI [START_REF] Anderson | Subject-specific finite element model of the pelvis: development, validation and sensitivity studies[END_REF][START_REF] Hsu | The number of screws, bone quality, and friction coefficient affect acetabular cup stability[END_REF][START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Amirouche | Factors influencing initial cup stability in total hip arthroplasty[END_REF][START_REF] Rourke | Patient and surgical variability in the primary stability of cementless acetabular cups: a finite element study[END_REF]. However, none of the aforementioned studies analyzed both the insertion and the stability of the ACI, which are highly interdependent. Moreover, only a small range of biomechanical parameters were analyzed so far.

The aim of this work is to provide a better understanding of the determinants of the primary stability of cementless ACI in the human pelvis. The ACI primary stability is assessed through the estimation of the pull-out force [START_REF] Olory | Comparative in vitro assessment of the primary stability of cementless press-fit acetabular cups[END_REF] and the polar gap [START_REF] Mackenzie | Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty[END_REF][START_REF] Amirouche | Factors influencing initial cup stability in total hip arthroplasty[END_REF]. Therefore, geometrically nonlinear FE analyses are performed to simulate the quasi-static insertion and subsequent pull-out of the ACI in a patient's hemipelvis. The influence of a broad range of different implant-and patient-specific parameters on the ACI primary stability, such as the friction coefficient at the BII µ, the bone quality in terms of cortical and trabecular bone Young's moduli E cb , E tb , and the diametric interference fit IF , are analyzed and compared to a previous 2D study [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF].

Setup

The choice of the input parameters and geometrical properties of the present FE model are based on the study of [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. In contrast to their work, the geometry of a 3D human pelvis is used here, instead of a simplified 2D trabecular bone block. Finite element meshing and numerical analyses were carried out using ANSYS Workbench software (v.14, ANSYS, Inc., Canonsburg, PA, USA).

Geometry and Mesh

The geometry for the human hemi-pelvis is obtained from a free online data base (hipSTL). The points comprising the contours of the hip are triangulated, decimated, and smoothed in MeshLab [START_REF] Cignoni | Meshlab: an open-source mesh processing tool[END_REF]. The thickness of the cortical bone layer may vary and its limit with the trabecular bone is blurred because the properties of the bone change gradually, which is not taken into account in the present model. Instead, a uniform thickness of the cortical bone 5.2. Setup tissue of 1 mm [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF] is assumed. The corresponding cortical layer is created by extrusion with Meshmixer (Autodesk, San Rafael, CA, USA). A hemi-spherical cavity is created in the acetabula, using ANSYS Workbench. The cavity diameter is varied between 48.5 and 50.9 mm, which corresponds to different values of the diametric interference fit IF (0-2.5 mm), according to values found in the literature [START_REF] Kwong | A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component[END_REF][START_REF] Macdonald | Press-fit acetabular cup fixation: principles and testing[END_REF][START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Yew | Deformation of press-fitted metallic resurfacing cups. part 2: finite element simulation[END_REF][START_REF] Hothi | Explicit finite element modelling of the impaction of metal press-fit acetabular components[END_REF]. The resulting pelvis geometry is shown in The ACI is modeled after the Cotyle Cerafit (Ceraver, Roissy, France) and has an outer radius of R I = 25.5 mm. Its thickness varies linearly as a function of the polar angle, with values between 2.9 mm at the cup dome and 3.7 mm at the cup rim, similarly as what is used in previous studies [START_REF] Michel | Finite element model of the impaction of a press-fitted acetabular cup[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. Moreover, a cylindrical ancillary, with a radius and height of R A = 8.5 mm and H A = 190 mm, is rigidly attached to the ACI, as it is done in the clinic during insertion. The complete model is shown in Figure 5.1(a).

The FE mesh is generated with ANSYS Workbench and it slightly varies for every value of the interference fit IF . It typically contains approximately 125,000 tetrahedral and hexahedral, quadratic Lagrangian elements, leading to a global system with approximately 615,000 degrees of freedom. The mesh size is finer around the bone cavity surface (average size 0.8 mm) to provide a sufficiently accurate geometrical approximation of the curved contact surface. An enlargement of the mesh at the cavity is shown in Figure 5.1 (b). A standard convergence study concerning the element size h e and the load step increment ∆ls is performed for the reference case (see Section 5.2.2), with the pull-out force (see Section 5.2.4) as the convergence criteria. The mesh and load step increment are refined until the relative change in the pull-out force was below 1 % and quadratic Newton-Raphson convergence within 2 steps was ensured (see Appendix B.1). In cases where parameter combinations with high stiffness or interference fit do not converge for the determined load step increment, the load step increment is further decreased.

Material Properties and Varied Parameters

The ancillary and the ACI are made of stainless steel and titanium alloy (Ti-Al6-V4), respectively. The pelvis is assumed to be composed of a uniform thin outer layer of cortical bone (1 mm) and trabecular bone inside. However, due to the simulated reaming, no cortical bone remains on the contact surface of the hip cavity (see Figure 5.1 (b)). All materials are assumed to be homogeneous, isotropic, and hypoelastic (3.2.2). The Poisson ratio for all materials is set to ν = 0.3. Table 5.1 shows the elastic properties of the different materials used in this study.

Friction is modeled with a standard Coulomb's law (3.38), with constant friction coefficient µ. A wide range of values of µ (0-1) was considered in order to simulate the physiological range of friction for various types of implant surfaces in contact with bone and for different clinical situations of the BII (Dammak et al., 1997a;[START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Novitskaya | Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review[END_REF]. µ * = 0.3 is taken as the reference value (Dammak et al., 1997a). Variations of the Young's moduli of cortical bone E cb and trabecular bone E tb are considered within their physiological range [START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF][START_REF] Phillips | Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[END_REF][START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Watson | The effect of boundary constraints on finite element modelling of the human pelvis[END_REF] and for some extreme cases: E tb between 0.1 and 2 GPa and E cb between 0.2 and 25 GPa. The bone's elastic modulus in the cavity provides an indication of the bone quality and has been previously investigated in FE studies [START_REF] Hsu | The number of screws, bone quality, and friction coefficient affect acetabular cup stability[END_REF][START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF]. The reference values are E * cb = 18 GPa [START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF]) and E * tb = 0.2 GPa [START_REF] Phillips | Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[END_REF], respectively.

A broad range of the diametric interference fit IF (0-2.5 mm) is considered, to cover most commonly used configurations, as well as extreme cases. The corresponding reference value is IF * = 1 mm, which is a standard value used in clinical practice [START_REF] Kwong | A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component[END_REF]. Throughout this study, the parameter set of E * cb = 18 GPa, E * tb = 0.2 GPa, µ * = 0.3, and IF * = 1.0 mm is referred to as the reference case. Table 5.1 lists the analyzed parameters with their corresponding range and reference value.

Boundary and Loading Conditions

All simulations are performed with quasi-static analysis setting (i.e., excluding inertia and viscosity) and considering large deformation effects. Frictional contact with the augmented

Setup

Lagrange method is used. The hip cavity is set as the slave surface and the ACI is set as the master surface.

The pelvis is rigidly fixed in all directions at the pubic symphysis and the iliac joint (see Figure 5.1(a), red), following the literature [START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF][START_REF] Anderson | Subject-specific finite element model of the pelvis: development, validation and sensitivity studies[END_REF][START_REF] Clarke | Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum[END_REF][START_REF] Henyš | Material model of pelvic bone based on modal analysis: a study on the composite bone[END_REF]. All other location corresponding to bone tissue are free. At the initial state (load step) ls 0 = 0, the outer boundary of the ACI and the internal boundary of the hip cavity are close but not in contact.

To simulate the insertion process, a uniform displacement d 0 is applied to the ancillary. The implant is displaced by d 0 until the normal reaction force reaches F z = F 0 = -2500 N. The reaction force F 0 is chosen based on experimental measurements from [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] and is similar to values found in the literature [START_REF] Sotto-Maior | Influence of high insertion torque on implant placement: an anisotropic bone stress analysis[END_REF][START_REF] Souffrant | Advanced material modelling in numerical simulation of primary acetabular press-fit cup stability[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF]. The displacement d 0 depends on the studied parameters and is not known a priori. It is computed for each parameter combination individually by performing an initial insertion simulation first to determine

d 0 (µ, IF , E cb , E tb , F 0 ), s.t. F z (d 0 ) = F 0 .
To simulate the push-in and removal of the implant into and from the pelvis, the simulation is divided into three stages: First, the displacement d 0 is applied to the top surface of the ancillary (see Figure 5.1(a), blue) in order to insert the implant into the hip until the normal reaction force F 0 is reached at load step ls 1 . Second, the implant and the ancillary are held in place until load step ls 2 . This is done only for illustrative purposes; the actual holding time has no influence in quasi-static simulations. Third, the uniform pull-out displacement -d 0 is applied to the top surface of the ancillary, until the implant is completely detached from the bone (load step ls 3 ). The quasi-static displacement u z in axial direction z can then be described by

u z =          d 0 • ∆ls/ls 1
for ls 0 ≤ ls < ls 1 , d 0 for ls 1 ≤ ls < ls 2 , d 0 • (ls 3 -∆ls)/ls 1 for ls 2 ≤ ls ≤ ls 3 .

(5.1)

In most cases the load step size of ∆ls = d 0 /200 is used during the insertion and the extraction phases (resulting in 440 load steps). For high friction coefficients (0.6-1.0) and a critical interference fit (1.0-1.8 mm), a smaller load step size, such as ∆ls = d 0 /5000 is needed to ensure Newton-Raphson convergence.

Quantifying Primary Stability

In this chapter, the primary stability is quantified by the size of the polar gap after insertion and by the values of the pull-out force. The pull-out force F max z is defined by the positive maximum normal reaction force F z obtained at the upper surface of the ancillary during the pull-out phase. The polar gap is determined as the distance between the pole of the ACI and the pole of the hip cavity during the holding phase (load step ls = 220). The pull-out force has already been used in previous works in order to assess the ACI primary stability [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Olory | Comparative in vitro assessment of the primary stability of cementless press-fit acetabular cups[END_REF][START_REF] Bishop | The influence of bone damage on press-fit mechanics[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. The pull-out force is a clinically relevant quantity because after inserting the ACI in the pelvis, surgeons usually attempt to pull or lever-out the ACI to check manually for the stability and motion of the ACI. Furthermore, it is commonly used as a determinant of primary stability in in vitro studies [START_REF] Hsu | The number of screws, bone quality, and friction coefficient affect acetabular cup stability[END_REF][START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF][START_REF] Goldman | Does increased coefficient of friction of highly porous metal increase initial stability at the acetabular interface?[END_REF]. Moreover, the polar gap between the ACI and the hip is also frequently used in clinical studies [START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Michel | Finite element model of the impaction of a press-fitted acetabular cup[END_REF][START_REF] Rourke | Patient and surgical variability in the primary stability of cementless acetabular cups: a finite element study[END_REF] in order to assess the ACI stability. Large gaps indicate improper seating of the ACI and can affect the quality of long-term fixation due to the formation of fibrous tissue in the peri-implant region [START_REF] Brånemark | Osseointegrated implants in the treatment of the edentulous jaw. experience from a 10-year period[END_REF], the formation of low-quality bone tissue or even inhibit bone growth [START_REF] Jasty | Bone ingrowth into porous-surfaced harris/galante prosthesis acetabular components retrived from human patients[END_REF][START_REF] Sandborn | Tissue response to porous-coated implants lacking initial bone apposition[END_REF][START_REF] Mukherjee | Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap[END_REF]. The polar gap is evaluated based on values found in the literature [START_REF] Jasty | Bone ingrowth into porous-surfaced harris/galante prosthesis acetabular components retrived from human patients[END_REF][START_REF] Schmalzried | The mechanism of loosening of cemented acetabular components in total hip arthroplasty. analysis of specimens retrieved at autopsy[END_REF][START_REF] Mackenzie | Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty[END_REF][START_REF] Udomkiat | Cementless hemispheric porous-coated sockets implanted with press-fit technique without screws: average ten-year follow-up[END_REF], where gaps below 500 µm (indicated in green in Figures 5.5 (b),(d) and 5.7(b),(d)) are considered optimal, gaps between 500 µm and 1 mm are considered acceptable (indicated in yellow), and gaps above 1 mm (indicated in red) are considered to be critical.

Results

The results obtained with the FE model are presented and compared to a previous 2D study [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. First, the main differences between the results obtained in the previous 2D axisymmetric study and in the present study for the reference case are discussed. Second, the structural response of the pelvis and the implant in terms of stress distribution is analyzed. Last, the parametric study on the influence of the bone Young's moduli E tb and E cb , the friction coefficient µ, and the interference fit IF on primary stability as well as optimal combinations of these parameters are discussed. 

Reference Case

F max z =445 N F max z =216 N Figure 5
.2 -Variation of the reaction force F z applied to the ancillary as a function of load step ls for the 2D and 3D model for the reference case. Adopted from (Immel et al., 2021a;[START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF].

Three phases of the controlled displacement can be identified: 1) an insertion phase from ls 0 = 0 to ls 1 = 200. As soon as contact is established, the reaction force decreases as a function of the displacement until the predefined value F 0 = -2500 N is reached. During the insertion phase, the slope of F z is first constant, which corresponds to constant stiffness of the boneimplant system. 2) a holding phase from ls 1 = 201 to ls 2 = 240, where the implant is held in 5.3. Results place. Here, the reaction force is constant with F z = F 0 . 3) a pull-out phase from ls 2 = 241 to ls 3 = 440, until the ACI is completely removed, and no contact remains. The reaction force increases up to a positive maximum F po , and then decreases to 0. For the reference case, the maximal von Mises equivalent stress of 407 MPa is reached after full insertion and is localized in several elements of the cortical shell around the acetabulum. The von Mises equivalent stress inside the trabecular bone of the cavity is significantly lower than in the cortical shell. Inside the contact area, the highest stresses are found in the equatorial rim with approximately 10 MPa. The stress distribution at the time where the maximal pullout force is reached remains similar to the holding phase. However, the maximum stress only reaches 267 MPa during pull-out. For the the optimal case for E * tb no sharp stress peaks and a more homogeneous stress distribution are observed. The maximum stress after insertion and at pullout are 226 MPa and 134 MPa, respectively. Similarly to the reference case, the highest stresses are located in the cortical shell around the cavity. Although the pullout force of 426 N is higher than in the reference case, the overall von Mises stress is considerably lower. However, a higher stress is observed in the cavity with up to 20 MPa at the equatorial rim. As expected, a higher pullout force corresponds to a higher stress in the cavity and thus a higher initial stability of the implant.

Stress Distribution

Effect of Variations of the Young's Modulus of Bone

Figure 5.4 shows the reaction force F z as a function of the load step ∆ls for various bone Young's moduli E tb and E cb . For all values of E tb and E cb , F z first decreases linearly at the beginning of the insertion phase, which corresponds to the macroscopic rigidity of the boneimplant system. For increasing E tb , the duration of this linear phase and the pull-out force increase. results of the 2D model show a distinct peak of the pull-out force at F max z = 667 N for E tb ≈ 0.375 GPa, the 3D hemi-pelvis model behaves differently since the pull-out force is an increasing function of E tb . A similar behavior can be observed for the polar gap (b), which increases as a function of E tb . Note that the variation of the polar gap was not investigated in the 2D case, so no comparison is possible with the 3D case.

E cb = 0.2 GPa E cb = 1 GPa E cb = 5 GPa E * cb = 18 GPa E cb =
A variation of the Young's modulus of cortical bone E cb within the physiological range (15-23 GPa [START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF][START_REF] Watson | The effect of boundary constraints on finite element modelling of the human pelvis[END_REF])) only has a negligible effect on the pull-out force (207-219 N). The pull-out force only decreases for extreme cases with very low cortical bone Young's modulus (< 10 GPa). Up to E cb = 8 GPa, the polar gap increases only slightly and is less than several micrometers and may therefore be considered as negligible. In contrast to E tb , all tested values of E cb result in acceptable polar gaps (< 500 µm). Therefore, the influence of E cb within its physiological range is deemed negligible here and only different values of E tb will be considered in what follows. tb , E * cb , µ * , IF * , respectively. The physiological range for E tb and E cb is indicated in gray. The polar gap is classified as optimal (< 500 µm, green), acceptable (< 1 mm, yellow), or critical (> 1 mm, red). The reference case is marked with a star. Adopted from [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]; Immel et al. (2021a).

Effect of variations of the Friction Coefficient and the Interference Fit

Figure 5.6 shows the reaction force F z as a function of the load step ∆ls for various values of the friction coefficient µ and the interference fit IF . A similar behavior of the reaction force as for the bone's Young's moduli can be observed. For all values of, F z first decreases linearly at the beginning of the insertion phase, which corresponds to the macroscopic rigidity of the boneimplant system. For increasing values of µ, the duration of this linear phase increases, while for increasing IF this linear response phase becomes shorter. In contrast to the previous 2D study [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF], the macroscopic rigidity for higher friction coefficients does not stay constant during the entire insertion phase. Increasing µ does not necessarily lead to an increase in pull-out force, as F max z is visibly lower for µ = 1 than for µ = 0.6. Similar, increasing IF does not necessarily increase the pull-out force. Instead, a peak value is found between IF = 1 -1.5 mm. increases for low values of µ, reaches a maximum at around µ = 0.6, and then slowly decreases for all models and chosen values of E tb . The pull-out forces obtained with the present 3D model are approximately halved, compared to the results of the 2D study. For µ < 0.17 the pull-out force is zero for all values of E tb . F max z increases as a function of the trabecular bone stiffness, while maintaining a similar behavior for various friction coefficients. The polar gap increases almost linearly as a function of the friction coefficient when a constant insertion force is considered, which can be explained by the fact that a high value of the friction coefficient inhibits the insertion process. Increasing the value of µ from 0.3 to 0.6 leads to an increase of the polar gap from 162 µm and 614 µm, which is above the maximum recommended gap of 500 µm [START_REF] Schmalzried | The mechanism of loosening of cemented acetabular components in total hip arthroplasty. analysis of specimens retrieved at autopsy[END_REF][START_REF] Cochran | Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible[END_REF]. In the present case, all values of µ > 0.5 5.3. Results lead to polar gaps higher than 500 µm and values of µ > 0.8 lead to values of the polar gap exceeding the commonly reported limit of 1 mm [START_REF] Jasty | Bone ingrowth into porous-surfaced harris/galante prosthesis acetabular components retrived from human patients[END_REF][START_REF] Mackenzie | Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty[END_REF]. For E tb = 0.1 GPa, polar gaps below 500 µm are achieved with µ < 0.9, while for E tb = 0.5 GPa only µ < 0.3 results in sufficiently small polar gaps when an interference fit of IF = 1 mm is considered.

A non-linear behavior of F max z as a function of IF is obtained, similarly to the behavior of F max z as a function of µ. For both, the 2D axisymmetric model and the 3D geometry, F max z reaches a maximum value for an optimal interference fit of IF = 1.2-1.4 mm for E * tb . The pull-out force behaves similarly for different bone stiffness with a maximum value of 174 N for E tb = 0.1 GPa and 361 N for E tb = 0.5 GPa. Moreover, the polar gap increases as a function of the interference fit for all values of E tb . A polar gap equal to 162 µm is obtained for the reference case and for IF =1.4 mm, the polar gap is equal to 493 µm. In the reference case, IF > 1.4 mm lead to polar gaps values higher than 500 µm and IF > 1.8 mm lead to polar gaps higher than 1 mm. For E tb = 0.1 GPa, acceptable gaps are achieved with IF < 2 mm, and for E tb = 0.5 GPa with IF < 1 mm. cb , IF * , µ * , respectively. The polar gap is classified as optimal (< 500 µm, green), acceptable (< 1 mm, yellow), or critical (> 1 mm, red). The reference case is marked with a star. Adopted from [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]; Immel et al. (2021a).

Optimal Conditions

In what follows, the optimal combinations of µ and IF for primary stability of the ACI are discussed. Values or parameter sets that maximize the pull-out force while maintaining a polar gap lower than 500 µm for a given bone stiffness are denoted optimal. Figure 5.8 shows the variation of the pull-out force as a function of the interference fit IF and the friction coefficient µ for E * tb , E * cb for the 3D model. The optimal interference fit IF opt for each value of µ is marked with a diamond. The variation of the maximum pull-out force F max z obtained for IF opt as a function of µ is shown in Figure 5.9 and the variation of the optimal interference fit IF opt as a function of µ is shown in Figure 5.10. 

max. pull-out force F max z [N] 2D, Et = 0.1 GPa 3D, Et = 0.1 GPa 2D, E * t = 0.2 GPa 3D, E * t = 0.2 GPa 2D, Et = 0.5 GPa 3D, Et = 0.5 GPa Figure 5
.9 -Variation of the maximal pull-out force F max z obtained for the optimal interference fit IF opt as a function of the friction coefficient µ w.r.t. trabecular bone Young's modulus E tb for constant Young's modulus E * cb . Adopted and extended from [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]Immel et al., 2021a).

The lowest value is IF opt = 0.2 for µ = 0.15 and the highest is IF opt = 1.4 mm for µ * in the 3D model. The variation of the optimal interference fit IF opt as a function of µ is qualitatively similar in the 2D and the 3D case. However, the maximum pull-out force obtained with the determined IF opt for the 3D case are consistently lower than in the 2D case.

Figure 5.9 shows that increasing µ higher than 0.6 does not lead to a higher pull-out force, which is consistent with the results shown in Figure 5.7(a). Similar computations have also been done for E tb = 0.1 and 0.5 GPa and the results show that an optimal case is also reached between µ opt = 0.5 -0.6. Overall, the optimal parameter sets with respect to the three values of trabecular bone stiffness E tb are shown in cb . Adopted and extended from [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]Immel et al., 2021a). 

E tb [GPa] IF opt [mm] µ opt F max z [N]

Discussion and Limitations

This work aims to provide more insight into the biomechanical determinants of the primary stability of an ACI, which is estimated through the assessment of the pull-out force and the polar gap. The ACI primary stability is shown to depend on the elastic properties of the different bone tissues (E tb and E cb ), on the friction coefficient µ, and on the interference fit IF . The influence of these four parameters on the ACI primary stability was investigated within their respective physiological range (see Table 5.1). For each parameter set, the insertion of an ACI into a hip is simulated using a realistic FE model. When considering variations within their physiological ranges, E tb is shown to have a stronger influence on the pull-out force and the polar gap than E cb , which can be explained by the fact that no cortical bone is present in the cavity. The results show that a maximum value of the pull-out force is obtained for specific combinations of µ and IF (which depend on E tb ), while the polar gap increases as a function of all parameters. Based on these findings, optimal conditions for different bone stiffness can be determined and related to µ and to IF .

Pull-Out Force

The pull-out forces for E * tb are found to be comprised between 0 and 496 N in this study, which agrees with the results found in the literature [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. The pull-out force increases along with the friction coefficient up to µ = 0.6, which can be explained by an increase of the tangential contact stresses at the equatorial rim, and then decreases because higher values of the friction coefficient inhibit sufficient seating of the cup and thus removal becomes easier [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF]. From the point of view of implant manufacturers, the results shown in Figure 5.7(a) indicate that increasing the friction coefficient beyond 0.6 may weaken the ACI primary stability. However, rough surfaces may enhance osseointegration phenomena [START_REF] Cochran | Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible[END_REF] and thus long-term stability, which is another constraint that should be taken into account. It has been shown that the pull-out force cannot be taken as the sole determinant of implant stability, as a parameter set with a maximal pull-out force can lead to excessive values of the polar gap, which can inhibit bone ingrowth and thus long-term implant stability [START_REF] Sandborn | Tissue response to porous-coated implants lacking initial bone apposition[END_REF][START_REF] Mukherjee | Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap[END_REF].

The pull-out forces predicted in the present study are significantly lower than the ones found in comparable 2D axisymmetric studies [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. Moreover, while the results of the 2D model showed that the pull-out force reaches a maximum value of F max z = 667 N for E tb ≈ 0.375 GPa, the behavior of the pull-out force predicted by the 3D hemi-pelvis model is different (see Figure 5.5(a)) since the pull-out force monotonically increases as a function of E tb . Since in our study and in e.g., [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF] [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF], a 1 mm thick cortical layer is present, the difference in the magnitude of the pull-out force obtained with the 2D models [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] and with the present 3D model might be explained by the differences in the geometry of the acetabulum, the boundary conditions, and the corresponding structural stiffness. Both 2D studies [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] used axisymmetric, simplified models of the pelvis with 1) a lower surface fixed in all directions and 2) a perfectly hemi-spherical cavity. In contrast, the present work considered a 3D hemi-pelvis model, which is fixed at the pubic symphysis and the iliac joint only. The cavity is not perfectly hemispherical since the acetabular wall is not present everywhere (see Figure 5.1(b)), similarly to what is obtained in the clinic. Moreover, the wall thickness of the cavity rim is much lower and non-uninform in the 3D model, implying lower wall stiffness, and hence lower contact pressures and pull-out forces, as shown in Figure 5.2. In particular, for the 3D model 1) the linear response during the insertion phase is considerably shorter, 2) the reaction force rises more slowly during the insertion and the pull-out phase, and 3) the pull-out force is much smaller than in the in the 2D model [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. However, the present study shows that the 3D hemi-pelvis geometry does not influence the overall response of the pull-out force to different friction coefficients and interference fit when compared to a 2D axisymmetric setup [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] (see Figure 5.7(a), (c)). Nonetheless, the real 3D geometry is shown to have a significant effect on the response of the pull-out force to trabecular bone stiffness (see Figure 5.5(a)). Therefore, when analyzing the implant stability in terms of the pull-out force and the polar gap, modeling a realistic pelvis geometry is necessary, which is consistent with previous studies studies [START_REF] Kim | Reamed surface topography and component seating in press-fit cementless acetabular fixation[END_REF].

Polar Gap

While bone ingrowth has been shown for polar gaps up to 5 mm [START_REF] Mukherjee | Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap[END_REF], the potential osteocyte jumping distance is deemed to be no greater than 1 mm [START_REF] Jasty | Bone ingrowth into porous-surfaced harris/galante prosthesis acetabular components retrived from human patients[END_REF][START_REF] Mackenzie | Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty[END_REF]. Several studies agree that the initial polar gap should not exceed 500 µm, as higher gaps can promote the growth of weaker bone tissue [START_REF] Sandborn | Tissue response to porous-coated implants lacking initial bone apposition[END_REF][START_REF] Mukherjee | Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap[END_REF] or inhibit bone growth completely, and thus jeopardize longterm stability [START_REF] Jasty | Bone ingrowth into porous-surfaced harris/galante prosthesis acetabular components retrived from human patients[END_REF][START_REF] Schmalzried | The mechanism of loosening of cemented acetabular components in total hip arthroplasty. analysis of specimens retrieved at autopsy[END_REF]. Polar gaps observed in the clinic are usually referred to being "lower than 500 µm and never higher than 1 mm" [START_REF] Schmalzried | The mechanism of loosening of cemented acetabular components in total hip arthroplasty. analysis of specimens retrieved at autopsy[END_REF][START_REF] Udomkiat | Cementless hemispheric porous-coated sockets implanted with press-fit technique without screws: average ten-year follow-up[END_REF]. In this study, high pull-out forces often coincide with large polar gaps (> 500 µm) and thus, a balance between maximizing the pull-out force and minimizing the polar gap should be targeted.

As shown in Figures 5.5 (b), (d), and 5.7(b), (d), the polar gap increases as a function of E cb , E tb , µ, IF . While assuming the reference values for all other parameters, values of E tb higher than 0.4 GPa lead to polar gaps above 500 µm. Therefore, and as shown in Figure 5.7, to balance out the pull-out force and the size of the polar gap, high friction coefficients and a large interference fit should be avoided for patients with stiffer bone. Since low interfacial friction may destabilize the implant [START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF], a reduction of the interference fit might be favorable in such cases.

Polar gaps values are found to be between 0 and 2483 µm in this study, which is in agreement with the findings of other clinical [START_REF] Schmalzried | The mechanism of loosening of cemented acetabular components in total hip arthroplasty. analysis of specimens retrieved at autopsy[END_REF][START_REF] Udomkiat | Cementless hemispheric porous-coated sockets implanted with press-fit technique without screws: average ten-year follow-up[END_REF][START_REF] Mukherjee | Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap[END_REF], experimental [START_REF] Kwong | A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component[END_REF][START_REF] Mackenzie | Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty[END_REF] and FE studies [START_REF] Yew | Deformation of press-fitted metallic resurfacing cups. part 2: finite element simulation[END_REF][START_REF] Amirouche | Factors influencing initial cup stability in total hip arthroplasty[END_REF][START_REF] Rourke | Patient and surgical variability in the primary stability of cementless acetabular cups: a finite element study[END_REF]. The polar gap is found to increase with larger interference fit [START_REF] Mackenzie | Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty[END_REF], as well as with bone stiffness and friction coefficient. In our study, the best compromise between a high pull-out force and a polar gap ≤ 500 µm for an interference fit of 1 mm is obtained for µ opt = 0.5 for E * tb and for µ opt = 0.6 for E tb = 0.1 GPa. For E tb = 0.5 GPa, only friction coefficients µ ≤ 0.2 lead to values of polar gaps below 500 µm but in this case, an insufficient pull-out force is obtained. Accepting a polar gap of up to 1 mm leads to µ = 0.5 as the optimal choice. In general, polar gaps predicted in this study are significantly lower than in comparable 2D axisymmetric studies [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF], which may be explained by the fact that 2D configurations are much stiffer compared to the 3D case (see above). Optimal friction coefficients are found to be higher in our study, compared to e.g., [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF] [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF]) (µ = 0.2 -0.3), while [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] found an optimum for µ = 0.6, as only the pull-out force was considered as a determinant of primary stability.

Contact Stresses

The maximal value of the contact stresses on the cavity surface is found to be localized at the equatorial rim, which is in good agreement with previous works by several authors [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Hothi | Explicit finite element modelling of the impaction of metal press-fit acetabular components[END_REF][START_REF] Amirouche | Factors influencing initial cup stability in total hip arthroplasty[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF] who established that the contact between the ACI and the surrounding bone tissue mostly occurs around the equatorial rim. As shown in Figure 5.3, the maximum value of the contact pressure for the reference configuration is found to be around 10 MPa, which is in good agreement with similar studies [START_REF] Widmer | Load transfer and fixation mode of press-fit acetabular sockets[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. The maximal contact stress observed in the optimal case for E tb is twice as high as in the reference case, which corresponds to the increased pull-out force observed for the optimal case. However, excessive stresses can lead to bone damage during the implantation or to bone resorption later and thus should be monitored carefully.

Optimal Conditions for Primary Stability

Several studies suggest that the interference fit is one of the most important factors in order to achieve adequate fixation [START_REF] Curtis | The initial stability of uncemented acetabular components[END_REF][START_REF] Macdonald | Press-fit acetabular cup fixation: principles and testing[END_REF][START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF] and that increased under-reaming can compensate low bone stiffness [START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Rourke | Patient and surgical variability in the primary stability of cementless acetabular cups: a finite element study[END_REF]. As low interfacial friction may destabilize the implant [START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF] and thus has to be avoided, an adequate interference fit according to the bone quality must be chosen instead.

While it was shown that higher interference fit values are required for softer bone (E tb = 0.1 GPa) to achieve similar pull-out forces as in the reference case E * tb , common interference fit values (between 1 and 2 mm) lead to excessive gaps for stiffer bone (E tb = 0.5 GPa) and thus should be avoided. However, our findings suggest that the interference fit should not be increased to more than around 1.3 mm, because it leads to a concomitant decrease of the pull-out force and increase of the polar gap. For both, the 2D axisymmetric and 3D cases, an optimal interference fit of IF = 1.4 mm for E * tb and µ * is found, when only considering maximizing the pull-out force, which is in agreement with other studies [START_REF] Kwong | A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component[END_REF][START_REF] Macdonald | Press-fit acetabular cup fixation: principles and testing[END_REF].

Previous studies confirm our findings concerning the existence of an optimal primary stability condition linking press-fitting and friction [START_REF] Kwong | A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component[END_REF][START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. In our study an interference fit of around 1.3 mm is found to be optimal in terms of maximal pull-out force for friction coefficients ranging between µ = 0.25-0.5 and E * tb , while a mean interference fit of 1.1 mm is found optimal when considering a polar gap less than 500 µm as well, similar to comparable studies [START_REF] Kwong | A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component[END_REF][START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. However, there are also studies that suggest a larger interference fit of IF = 2 -3 mm [START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF].

The optimal values of IF and µ in terms of maximal pull-out force and minimal polar gap for the different values of trabecular bone stiffness are listed in Table 5.2. As the optimal friction coefficient is higher than in the reference case, while the interference fit is lower, the determined optimal cases suggest that a higher friction coefficient (up to µ = 0.6) enhances primary stability more than an increased interference fit. While being optimal in terms of the polar gap and the pull-out force, the determined optimal cases exhibit a higher stress in the equatorial rim of the cavity compared to the reference configuration. Excessive stresses in the cavity can become critical because they can cause bone damage during the insertion and bone resorption during the healing phase [START_REF] Sotto-Maior | Influence of high insertion torque on implant placement: an anisotropic bone stress analysis[END_REF]. Therefore, future analyses of optimal primary stability should also include and classify the hoop stress in the cavity.

Limitations

This study has several limitations. First, only a single pelvis geometry of unknown sex and age was considered. Moreover, in the context of hip replacements, pathological degeneration of the bone structure and damage often need to be considered. Due to the numerous parameters considered and to the considerable computation time, different patient geometries and implantation angles could not be taken into account here and the impact of changes of the anatomy should be considered in future work, since bone geometry and stiffness have an effect on implant stability [START_REF] Clarke | Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum[END_REF]. Several recent studies analyzed the influence of different patient geometries and bone stiffness [START_REF] Phillips | Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[END_REF][START_REF] Clarke | Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum[END_REF], as well as the influence of different implantation angles [START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Goldman | Does increased coefficient of friction of highly porous metal increase initial stability at the acetabular interface?[END_REF]. Second, all materials were assumed to be homogeneous and isotropic as is mostly done in the literature [START_REF] Cilingir | Three-dimensional anatomic finite element modelling of hemi-arthroplasty of human hip joint[END_REF][START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Clarke | Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum[END_REF]. This assumption allows to assess the influence of a small number of parameters in a controlled manner. Furthermore, the observed stress in the contact area was below the yield stress of human bone [START_REF] Bayraktar | Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue[END_REF][START_REF] Morgan | Bone mechanical properties in healthy and diseased states[END_REF]. Therefore, it may be assumed that no bone damage took place for the simulated insertion and pull-out tests, allowing to consider a hypoelastic material model as a valid simplification. While trabecular bone damage may occur during the insertion process, an experimental study showed that bone damage has no impact on the pull-out force [START_REF] Bishop | The influence of bone damage on press-fit mechanics[END_REF]. As our study focuses on initial stability in terms of the pull-out force, bone damage was neglected as well.

Several studies consider the inhomogeneous [START_REF] Clarke | Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum[END_REF][START_REF] Rourke | Patient and surgical variability in the primary stability of cementless acetabular cups: a finite element study[END_REF], an-isotropic [START_REF] Nguyen | Influence of anisotropic bone properties on the biomechanical behavior of the acetabular cup implant: a multiscale finite element study[END_REF], and plastic [START_REF] Souffrant | Advanced material modelling in numerical simulation of primary acetabular press-fit cup stability[END_REF] nature of bone tissues, by using data obtained from CT scans or experiments with sawbones. Other studies have also considered elasto-plastic effects [START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF][START_REF] Ovesy | Explicit finite element analysis can predict the mechanical response of conical implant press-fit in homogenized trabecular bone[END_REF], debonding [START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF](Immel et al., , 2021b,c),c), and damage of the interface [START_REF] Rittel | Modeling the effect of osseointegration on dental implant pullout and torque removal tests[END_REF][START_REF] Ovesy | Explicit finite element analysis can predict the mechanical response of conical implant press-fit in homogenized trabecular bone[END_REF]. While some studies point out the need to explicitly model the nonuniform thickness of the cortical layer [START_REF] Hsu | The relation between micromotion and screw fixation in acetabular cup[END_REF][START_REF] Clarke | Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum[END_REF], realistic results have also been achieved with a uniform cortical thickness around 0.9-1.5 mm [START_REF] Anderson | Subject-specific finite element model of the pelvis: development, validation and sensitivity studies[END_REF][START_REF] Phillips | Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[END_REF][START_REF] Watson | The effect of boundary constraints on finite element modelling of the human pelvis[END_REF]. Due to the simulated reaming in our study, there is no cortical bone remaining in the contact area for any interference fit value (see Figure 5.1(b)) so the ACI only comes into contact with trabecular bone. As shown in Figure 5.5, the influence of the cortical bone stiffness on the pull-out force and on the polar gap in our model is relatively small compared to other studied parameters. Thus, we assumed that the effect of the cortical bone thickness was negligible compared to the effect of other parameter, which is in agreement with the literature [START_REF] Anderson | Subject-specific finite element model of the pelvis: development, validation and sensitivity studies[END_REF][START_REF] Phillips | Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[END_REF][START_REF] Watson | The effect of boundary constraints on finite element modelling of the human pelvis[END_REF]. However, when considering the stress and deformation distributions over the whole pelvis, the cortical bone thickness must be taken into account.

Third, as this study focuses on primary stability during surgery, only a pull-out test and no cyclic loading (e.g., walking) was simulated. Thus, the influence of muscle tissue and ligaments on the deformation behavior and load response was neglected, which is in agreement with what is done in the literature [START_REF] Hao | The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model[END_REF][START_REF] Clarke | Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum[END_REF]. However, it has been shown that muscles and ligaments have to be taken into account when analyzing the stress distribution inside the acetabulum [START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF]. To draw comparisons to a previous study [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF], a normal pull-out test was chosen, although lever-out tests have also been used in the literature [START_REF] Macdonald | Press-fit acetabular cup fixation: principles and testing[END_REF].

Fourth, a quasi-static configuration was considered, and all dynamic aspects were neglected, similarly to what was done in some comparable works [START_REF] Spears | The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. Note that a previous study precisely focuses on the insertion process of an ACI by considering dynamic modeling [START_REF] Michel | Finite element model of the impaction of a press-fitted acetabular cup[END_REF], which is important when modeling the insertion by hammer impacts. However, using dynamic modeling would not modify the pull-out test performed in this study.

Fifth, only the pull-out force and the polar gap have been chosen as determinants of the ACI primary stability and the detailed stress distribution at the BII for each parameter set was not studied specifically. The stress distribution especially at the equatorial rim of the cavity should be analyzed and classified as well, as is done in other works [START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Rourke | Patient and surgical variability in the primary stability of cementless acetabular cups: a finite element study[END_REF]. Micromotion at the BII, as well as contact area are other determinants of initial stability used in the literature [START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Rourke | Patient and surgical variability in the primary stability of cementless acetabular cups: a finite element study[END_REF]. Furthermore, the polar gap was obtained at a given insertion force, which is the same for all cases considered in this work. However, when the insertion force is removed once the implant is inserted, the polar gap can increase due to relaxation [START_REF] Michel | Finite element model of the impaction of a press-fitted acetabular cup[END_REF]. Although this situation is clinically relevant, it is out of the scope of this work but will be considered in future studies. In addition, a mathematical relationship for the trends of the relationship between bone stiffness, interference fit, and friction coefficient (shown in Figures 5.7(a) and (c), and 5.9) should be established. Including the aforementioned factors in future works could provide a more complete picture on implant primary stability and facilitate the choice of an implant configuration for a specific patient and provide a basis for modeling osseointegration.

Eventually, the proposed model should be validated experimentally as is partially done in the 2D case [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. However, drawing comparisons to e.g., clinical studies is difficult, due to all the assumptions described above. Moreover, it remains difficult to measure the actual friction coefficient of the BII [START_REF] Gao | Biomechanical behaviours of the bone-implant interface: a review[END_REF], as well as the elastic bone modulus (bone being heterogeneous, viscoelastic, and anisotropic) experimentally. Furthermore, as the hip cavity is reamed by hand, it is difficult to achieve a perfectly hemispherical cavity and it has been shown that the actual interference fit differs from what is determined by the implant and the last reamer size used [START_REF] Kim | Reamed surface topography and component seating in press-fit cementless acetabular fixation[END_REF][START_REF] Macdonald | Press-fit acetabular cup fixation: principles and testing[END_REF].

Conclusion

All studied parameters E tb , E cb , IF , and µ significantly influence the ACI primary stability. Quadratic regression analyses were used for the dependence of the pull-out force on the different parameters and linear regression analyses were performed to analyze the dependence of the polar gap on the same parameters. All p-values were p < 0.01 (where p is the probability that the null hypothesis is true). An optimal combination of µ and IF was determined. For E tb = 0.1 GPa, the optimal configuration corresponds to IF = 0.8 mm and µ = 0.6, while for E tb = 0.2 GPa, it corresponds to IF = 0.8 mm and µ = 0.6 and for E tb = 0.5 GPa, it is IF = 0.8 mm and µ = 0.5. The strong correlation between the aforementioned parameters may therefore require particular attention of implant manufacturers and of surgeons in order to maximize the ACI primary stability. The numerical results are found to be consistent with previous experimental and numerical studies and can help surgeons select the optimal interference fit in a patientspecific manner, based on the patient's bone quality and the chosen implant. The results also show that increasing IF above 1.4 mm and µ above 0.6 has no benefit on ACI primary stability, which can aid in ACI implant conception and selection of appropriate surface treatments. In addition, this study provides detailed knowledge of the local contact state and the influence of implant-and patient-specific parameters and hence, is an important step towards modeling and understanding osseointegration. The results presented in this work can be used as a basis for modeling long-term stability, e.g., for stress-, strain-or micro-motion-dependent osseointegration models and the subsequent debonding of osseointegrated implants [START_REF] Rittel | Modeling the effect of osseointegration on dental implant pullout and torque removal tests[END_REF][START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF]Immel et al., , 2021b)), as is done in the following chapters. This model can also be applied to hip geometries with osseous defects to provide suggestions for ensuring primary stability for these challenging and clinically relevant cases. However, the proposed in silico model needs to be improved to better match the clinical conditions, e.g., by simulating lever-out tests or including different hip geometries and inhomogeneous bone stiffness. As the problem is characterized by multi-parameter optimization, a rigorous determination of optimal parameter combinations requires corresponding optimization algorithms, which should be considered in future works.

Chapter 6

Tangential Debonding of Partially Osseointegrated Implants

In the previous chapter, the determinants of primary stability of a cementless ACI were identified and discussed. Based on these findings, different models for the secondary stability of osseointegrated implants are introduced in the following chapters. This chapter presents a phenomenological model for the frictional contact behavior of tangentially debonding, osseointegrated implants, to model and assess long-term implant stability. The classical Coulomb's law is extended from a constant to a varying friction coefficient, that models the transition from an unbroken to a broken state, based on a state variable depending on the total sliding distance of the BII. While the unbroken state denotes osseointegration and thus the presence of adhesive bonds and a higher friction coefficient, the broken state denotes pure frictional contact behavior of the interface with a lower friction coefficient. Thus, this model can account for the higher tangential forces observed in osseointegrated implants compared to unbonded implants.

The content of this chapter has been published in restructured form in [START_REF] Immel | A frictional and adhesive contact model for debonding of the bone-implant interface based on state variable friction laws[END_REF][START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF].

Motivation

Most studies on bone attachment to implants have used push-in or pull-out in vitro tests [START_REF] Bishop | The influence of bone damage on press-fit mechanics[END_REF][START_REF] Wennerberg | Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia[END_REF][START_REF] Berahmani | An experimental study to investigate biomechanical aspects of the initial stability of press-fit implants[END_REF][START_REF] Damm | Friction coefficient and effective interference at the implant-bone interface[END_REF]. As the implant geometry influences the test results [START_REF] Brånemark | Biomechanical characterization of osseointegration: an experimental in vivo investigation in the beagle dog[END_REF] and leads to spatially complex, non-uniform, multiaxial stress fields (Shirazi-Adl, 1992) and instantaneous, unstable crack propagation, using realistic implant geometries makes it difficult to estimate a physically meaningful value for the interfacial mechanical strength. Therefore, models with a planar BII were designed to minimize the effects of friction and mechanical forces introduced by the geometry [START_REF] Skripitz | Attachment of PMMA cement to bone: force measurements in rats[END_REF][START_REF] Rønold | Effect of micro-roughness produced by tio2 blasting-tensile testing of bone attachment by using coin-shaped implants[END_REF][START_REF] Rønold | Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test[END_REF]. However, the measured pull-out force in these experiments cannot be used to retrieve information about the strength of the interface. More recently, mode III cleavage experiments applied to CSI have been proposed by Mathieu et al. (2012a). A rotation of the implant with respect to the bone was imposed and the resulting moment was recorded. This resulted in stable crack propagation, which allows to assess the adhesion energy. However, the agreement between the analytical and experimental results was only moderate and significant discrepancies were obtained.

The tangential load-displacement behavior at the BII was found to be nonlinear [START_REF] Rancourt | Friction properties of the interface between porous-surfaced metals and tibial cancellous bone[END_REF][START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF]Dammak et al., 1997b). However, numerical analyses of implant stability still only consider either fully bonded, frictionless contact or pure Coulomb's friction [START_REF] Pettersen | Subject specific finite element analysis of implant stability for a cementless femoral stem[END_REF][START_REF] Chong | Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions[END_REF][START_REF] Ghosh | Bone remodelling around cementless composite acetabular components: The effects of implant geometry and implant-bone interfacial conditions[END_REF]. While such assumptions may be valid for the assessment of initial stability, prediction of failure of osseointegrated implants requires a more accurate description of the contact behavior and the inclusion of frictional and adhesive effects [START_REF] Castellani | Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control[END_REF][START_REF] Tschegg | Characterization methods of bone-implant-interfaces of bioresorbable and titanium implants by fracture mechanical means[END_REF].

A simple way to model macroscopic friction phenomena that are related to different states of the BII are state variable friction laws, introduced by Rice and [START_REF] Ruina | Slip instability and state variable friction laws[END_REF]; [START_REF] Ruina | Slip instability and state variable friction laws[END_REF], which were motivated by the experimental findings of [START_REF] Dieterich | Time-dependent friction and the mechanics of stick-slip[END_REF]Dieterich ( , 1979a)). These laws focus on the observed phenomena of (i) fading memory and steady state, (ii) positive dependence on the instantaneous slip rate, and (iii) negative dependence on past slip rates. In general, it is assumed that at any given time, the contact surface has a certain state and the frictional stress only depends on that state, the slip rate and the contact pressure. Similarly, the rate of change for the state only depends on the current state, the slip rate, and the pressure at the analyzed point. Although these laws have so far been mainly applied in geology and geophysics, one can also interpret the state variable as the degree of osseointegration and current debonding state of the BII.

State Variable Friction Laws

In so called rate-state or state variable friction laws [START_REF] Rice | Stability of steady frictional slipping[END_REF][START_REF] Ruina | Slip instability and state variable friction laws[END_REF] it is assumed, that at any given time, any point x on the contact surface has a state φ = φ(x, t). The tangential contact traction then depends in general on the contact pressure p c , the sliding rate ġs = ġs , and the state variable φ, i.e., t t = t t (p c , ġs , φ).

(6.1)

For a given x, the state φ is assumed to be a continuous function of ġs (t). Moreover, the rate of change of φ at x generally only depends on the pressure, the sliding rate and the instantaneous state of this point, i.e., φ = F(p c , ġs , φ). (6.2)

Since φ does not depend on the state at other points, Eq. ( 6.2) is a local evolution law. State variable friction laws are able to model a change in the frictional contact traction due to past states (referred to as memory [START_REF] Rice | Stability of steady frictional slipping[END_REF][START_REF] Ruina | Slip instability and state variable friction laws[END_REF]). They are also able to model an asymptotic approach to steady state sliding when ġs becomes constant [START_REF] Rice | Stability of steady frictional slipping[END_REF].

Modified Coulomb's Friction Law

In contrast to a constant friction coefficient as is used in the classical Coulomb's law (3.38), we propose to model µ as a function of the scalar state variable φ, as

µ := µ(φ) = φ µ ub + (1 -φ) µ b , (6.3)
where µ ub and µ b are the friction coefficient for the unbroken (initial) and broken state, respectively, that are weighted according to the state variable φ. As this is a local friction model, where φ and thus µ can change pointwise, it allows for the description of locally varying bonding states, such as occur in crack propagation and partial osseointegration. According to Eq. ( 6.3), the state variable φ determines whether a point is in an unbroken, partially broken or fully broken state. Here, φ is considered to depend on the accumulated sliding distance g s = t 0 ġs dt (6.4) at a certain point x, according to the smooth function

φ(g s ) = φ 0 •          1 if gs as < 1, 1 2 -1 2 sin π 2bs gs as -b s -1 if 1 ≤ gs as ≤ 1 + 2b s , 0 if gs as > 1 + 2b s .
(6.5)

The parameter a s represents the sliding threshold up to which tangential adhesion takes effect (µ = µ b for g s ≤ a s ), while b s defines the size of the transition zone between the two friction coefficients. This implies, that up to a sliding length of g s = a s we have a higher resistance to tangential displacement, similar to the effect of adhesion. After the sliding distance a s is reached, the friction coefficient starts to decrease to µ = µ b , corresponding to the sliding of a fully debonded body. The sliding distance needed for a certain point on the contact surface to fully debond is then controlled by the parameter b s . Eq. (6.5) was designed such that it captures the experimental behavior shown in Section 6.4.5.2 (see Figure 6.5). Equation (6.5) depends on the initial bonding state φ 0 = [0, 1], where φ 0 (x) = 0 denotes no initial bonding and φ 0 (x) = 1 represents full initial bonding. 1 The bonding state variable indicates that for φ(x) > 0 tangential contact at x is governed by the proposed friction law (6.3), while for φ(x) = 0 it is governed by classical Coulomb's law (3.38) with µ = µ b . This definition results in three possible states for every point on the contact surface: fully bonded (φ = 1), debonding (0 < φ < 1) and fully debonded/sliding (φ = 0), which is illustrated in Figures 6.1(a) and 6.1 (b).

The computation of the friction coefficient µ in Eq. ( 6.3) requires the knowledge of the accumulated sliding distance g s . Here, we approximate Eq. (6.4) by accumulating the distance from the initial interacting point to the current interacting point, i.e.,

g n+1 s ≈ n+1 i=1 x ξi -x ξi-1 . (6.6)
For simple cases, this model can be solved analytically, as presented in Section 6.4.3. However, for the complex geometries of endosseous implants, the nonlinear and anisotropic behavior of bone tissue and loading conditions inside the human body may require a numerical solution. This becomes particularly important when considering inhomogeneous initial bonding (where φ 0 (x) = const ∀x), due to imperfect or partial osseointegration, as presented in Section 6.4.5.4. 

Application to Coin-Shaped Implants

To calibrate the friction model described above, it is applied to the mode III debonding of an osseointegrated implant. The test case is originally presented by Mathieu et al. (2012a) (in the following also referred to as the reference study).

Experimental Setup

In Mathieu et al. (2012a), two CSI made of titanium alloy (Ti-6Al-4V), with a radius R I = 2.5 mm and a height H I = 3 mm, were implanted into the tibiae of a rabbit and left in vivo during seven weeks. Polytetrafluoroethylene (PTFE) caps were placed around the implants, to ensure that bone in-growth only occurred at the bottom of the cylindrical implants. After seven weeks, the rabbit was sacrificed and the bone samples including the implants were extracted and conserved. Then, mode III cleavage experiments were carried out. The bone specimen was rigidly fixed to minimize the remaining normal force. The implant was fixed by a chuck screwed to a torque meter. Then, a 10 • rotation with a constant rotation speed of 0.01 • s -1 was imposed. Finally, the torque and rotation angle as a function of time were extracted via post processing.

Analytical Model of Mathieu et al. (2012a)

To explain the experimental results, Mathieu et al. (2012a) developed an analytical model that couples crack propagation with friction, based on [START_REF] Chateauminois | Friction and shear fracture of an adhesive contact under torsion[END_REF]. The model assumes that the crack starts from the outside and propagates purely in a circular manner and in mode III to the center of the contact surface, using a Dugdale crack model, without any normal force. In this description, the interfacial forces are supposed to be constant up to a given separation distance between the surfaces.

Let R be the radius of the implant and the initial contact area, then c defines the radius of the current crack (see Figure 6.2(a)), corresponding to the twisting angle where E adh denotes the adhesion energy. c separates the contact area into an adhering/sticking region for r < c and a debonded/sliding region for c < r < R. In the sliding region, the orthoradial shear stress σ θz is assumed to be constant, according to

θ = πE adh 4cG + τ 0 2G cosh -1 R c , ( 6 
σ θz (r) = τ 0 for c < r < R, ( 6.8) 
with constant τ 0 = 3M ∞ z /2πR 3 , where M ∞ z corresponds to the torque for a rotation angle equal to infinity (i.e., where the surface is fully debonded), and z denotes the axial direction. In the sticking region, the orthoradial stress becomes

σ θz (r) = 2 π     πGE adh c r √ c 2 -r 2 + τ 0 sin -1     R c 2 -1 R r 2 -1         for r < c.
(6.9)

New Analytical Model

Given the modified Coulomb's law (6.3), a new analytical model can be derived. Due to symmetry, the tangential traction component σ θz is distributed radially symmetric along the BII, while the radial traction component σ zr is zero (as in the model presented in Section 6.4.2).

In general, the torque M z , as a function of the rotation angle θ, can be computed analytically, as M z (θ) = 2π r r 2 • σ θz (r, θ, g s ) dr. (6.10)

We assume both bodies to be linear elastic (see Section 3.2.1) and the normal contact pressure pc to be distributed homogeneously along the contact surface. We define the hyperbola

c(θ) := θ lin θ R (6.11)
to be the function of the critical radius for the stick/slip transition, such that r < c denotes the sticking region and c ≥ r ≥ R denotes the sliding region. Furthermore, we define θ lin as the limit for which the tangential traction will be a linear function of the implant radius and θ max is the rotation angle for which the whole contact surface starts sliding (see Figure 6.3). It also marks the location of the maximal torque M max z in the torque-angle-curve (see e.g. Figure 6.5). With the definition of the critical radius c from Eq. ( 6.11) we have c(θ lin ) = R and σ θz (θ lin , c(θ lin )) := t max t .

(6.12)

Assuming bone and implant to be linear elastic bodies, we know that for sticking, the tangential traction will be proportional to the applied rotation angle θ and the current radius r, i.e.,

σ stick θz (θ, r) = λθr, λ = const, (6.13)
where λ is a constant stress per length. Thus, the torque for the sticking region becomes Together with Eq. ( 6.11) we obtain the tangential traction component for sticking

M z (θ) = 2π R 0 r 2 •
σ stick θz (θ, r) = θr t max t θ lin R = r c(θ) t max t .
(6.20)

In the sliding region r ≥ c, the tangential traction follows the modified Coulomb's law (6.21) with µ = µ(g s ) from Eq. ( 6.3). As long as a part of the interface remains sticking

σ slide θz = µp c ,
g s = 0, otherwise g s = r (θ -θ max + θ lin ) . (6.22)
The tangential contact traction as a function of the rotation angle can then be summarized by

σ θz (θ, r) =    t max t r c(θ) , for r < c (sticking), µp c ,
for r ≥ c (sliding), (6.23) Figure 6.4 illustrates the variation of the tangential contact traction (6.23) for θ = θ lin , θ = θ max , and some θ larger than θ max . While the two analytical models presented in Sections 6.4.2 and 6.4.3 both assume circular crack propagation from outside to inside and determine the stick/slip transition by a critical (or crack) radius, the analytical model from the reference study imposes the crack radius and computes the corresponding rotation angle, while the new model directly imposes the rotation angle.

Numerical Setup

As in the experiments, we consider a CSI with the same dimensions R I = 2.5 mm and H I = 3 mm. The bone sample is modeled as a rectangular cuboid with dimensions 12.5 × 12.5 × 5 mm. The implant is positioned at the center of the upper bone surface. The bodies are meshed according to the parameters given in Table 6.1, where n e denotes the number of elements of the body/surface and n gp denotes the number of Gauss-points per element. While the bulk is discretized with linear Lagrangian shape functions, the contact surfaces are discretized with quadratic NURBS (see Section 4.1.3). The FE mesh is pictured in Figure 6.2 (b). To justify this coarse discretization, a refinement analysis of the mesh and the load step size is performed ( Contact is computed with a penalty regularization (see Section 4.4), and the corresponding penalty parameter is set according to the Young's modulus of bone to t = n = E cb /L 0 , with L 0 = 0.01 m. The full-pass approach (see Section 4.3) with the predictor-corrector algorithm from Section 4.5.2 are used.

The lower surface of the bone block is fixed in all directions, while the sides of the bone block are fixed in their corresponding normal direction. The modified Coulomb's friction model requires a contact pressure during sliding, see Eqs. (3.38) and (6.23). We generate this pressure by applying a uniform vertical displacement d 0 at the upper surface of the implant. Then, the implant is rotated by 10 • around its central axis with a constant load step size of 0.01 • .

All computations in Sections 6.4.5.1-6.4.5.3 use homogeneous initial bonding (φ 0 (x) = 1, ∀x ∈ S k ), while Section 6.4.5.4 presents cases with inhomogeneous initial bonding. For both bodies, the Neo-Hookean material model of Eq. (3.19) is used. The material properties for the implant are those of titanium alloy (Ti-6Al-4V: E i = 113 GPa, ν i = 0.3). The material properties of the bone and the friction parameters µ ub , µ b , a s , b s , and the contact pressure p c have to be determined by a parameter study and are presented in 6.4.5.1.

All simulations were performed with an in-house, MATLAB-based solver (R2018b, The MathWorks, Natick, MA, USA).

Results

In the following, the results obtained with the new analytical model and numerical study are presented and compared to the experimental and analytical results corresponding to the reference study. First, the parameter estimation and the subsequent error estimation for homogeneous osseointegration are presented. Second, the torque-per-angle curves corresponding to the different models are compared and the debonding behavior of the implant is discussed. Third, the work of adhesion and frictional energy loss of the models are compared. Last, several cases of partial osseointegration are presented and compared with the homogeneous case.

Parameter Calibration

During the parameter estimation stage, the Poisson ratio of bone is fixed to ν b = 0.3. The remaining parameters G cb , d, µ ub , a s , b s are determined by minimizing the mean relative error

e mp Mz = mean θ∈[0 • ,10 • ] M exp z (θ) -M z (θ) M exp z (θ) , (6.24)
where M exp z is defined as the torque over the rotation angle θ obtained from the corresponding experiment. The shear modulus G cb is calibrated using the initial slope of the linear part of the torque-per-angle curve (i.e., M z (θ ≤ θ lin )) (e.g. see Figure 6.5(a)). The other parameters depend on the friction coefficient µ b , which is investigated at the fixed values µ b = [0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5], which corresponds to the typical range found in the literature [START_REF] Rancourt | Friction properties of the interface between porous-surfaced metals and tibial cancellous bone[END_REF][START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF][START_REF] Grant | Artificial composite bone as a model of human trabecular bone: the implant-bone interface[END_REF][START_REF] Biemond | Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology[END_REF]. The vertical displacement d 0 is calibrated from steady state sliding, which is considered here to occur for θ > 9 • . We thus minimize Eq. (6.24) for θ ∈ [9 • , 10 • ] to calibrate d 0 . There, the implant is assumed to be fully debonded and thus, tangential sliding contact is governed by Coulomb's law (3.38) with µ = µ b . Once d 0 is determined, it is considered constant for all rotation angles θ.

The initial friction coefficient µ ub is calibrated using M max z (as t max t = µ ub p c ) (see Table 6.2). Finally, the parameters a s and b s are then determined by minimizing Eq. ( 6.24) for the whole torque-per-angle curve.

The bone shear modulus can be estimated from the new analytical model. Due to the nonhomogeneous pressure distribution, the displacement d 0 and subsequently all other parameters are determined using the numerical model. However, adjusting d 0 for the new analytical model of Section 6.4.3 leads to the same estimated values for µ ub , a s , and b s .

data set M max z [N m] M ∞ z [N m] θ lin θ max 1 0.0538 0.0368 0.13 • 1.13 • 2 0.0595 0.0444 0.11 • 2.02 • Table 6
.2 -Data sets used for the parameter estimation. Data set 1 and 2 correspond to the data shown in Figure 4a and 4b of Mathieu et al. (2012a), respectively. θ lin denotes the limit of the elastic part of the deformation, while θ max is the location of the maximum torque M max z . M ∞ z denotes the torque for a fully debonded implant and is taken at 10 • . Adopted from [START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF]. Table 6.3 shows the estimated shear moduli and the corresponding Young's moduli obtained from the numerical parameter estimation for the two data sets, compared to the computed shear moduli obtained in the reference study. The estimated shear moduli of 7 and 8 GPa are higher than the reported values of 2-6 GPa [START_REF] Sharma | Comparative study of locational variation in shear and transverse elastic modulus of buffalo cortical bone[END_REF][START_REF] Tang | Shear deformation and fracture of human cortical bone[END_REF]), while the corresponding Young's moduli of 18 and 21 GPa are in good agreement with experimental data from the literature [START_REF] Rho | Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements[END_REF][START_REF] Novitskaya | Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review[END_REF] and previous studies [START_REF] Vayron | Variation of biomechanical properties of newly formed bone tissue determined by nanoindentation as a function of healing time[END_REF][START_REF] Vayron | Nanoindentation measurements of biomechanical properties in mature and newly formed bone tissue surrounding an implant[END_REF]. In the reference study the model was fit to match the peak and the decrease in torsion, which results in a considerable error for the shear modulus, as shown in Table 6.3 and Figure 6.5. As our proposed model allows for more control, it is possible to match more characteristics of the torque curve, such as the initial slope, the peak, the softening and the torque for complete debonding.

Table 6.4 shows the results of the numerical parameter estimation of the different data sets and the corresponding mean percentage error, for the chosen levels of friction coefficient µ b . For the analyzed µ b , the corresponding initial friction coefficient µ ub lies between 0.29 and 0.73 and agrees well with the values of 0.28-1.1 reported in the literature [START_REF] Rancourt | Friction properties of the interface between porous-surfaced metals and tibial cancellous bone[END_REF][START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF][START_REF] Zhang | Interfacial frictional behavior: cancellous bone, cortical bone, and a novel porous tantalum biomaterial[END_REF][START_REF] Grant | Artificial composite bone as a model of human trabecular bone: the implant-bone interface[END_REF][START_REF] Biemond | Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology[END_REF][START_REF] Damm | Friction coefficient and effective interference at the implant-bone interface[END_REF]. Increasing µ b results in a smaller normal force and a higher µ ub . Calibrating the parameters using M max z and M ∞ z results in almost identical curves for all tested values of µ b . Therefore, for the second data set only µ b = 0.3 [START_REF] Rancourt | Friction properties of the interface between porous-surfaced metals and tibial cancellous bone[END_REF] and µ ub = 0.4 [START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF][START_REF] Grant | Artificial composite bone as a model of human trabecular bone: the implant-bone interface[END_REF] are investigated, which are the values most commonly reported for the interface between cortical bone and polished metal implants.

As shown in Table 6.4, the parameters a s and b s only depend on the shear modulus and on the overall shape of the torque curve, i.e., the width of the peak and the slope of M z (θ). The computed values for a s indicate that adhesion takes effect for a sliding distance up to 22 and 26 µm, respectively. When these values are exceeded, the implant starts to debond, which is indicated by a decreasing friction coefficient (see 6.7 (b)). This observation is in agreement with the reported threshold for micro-motion of the BII, where no deformation occurs. In most studies, a value of up to 50 µm is reported [START_REF] Bragdon | Differences in stiffness of the interface between a cementless porous implant and cancellous bone in vivo in dogs due to varying amounts of implant motion[END_REF][START_REF] Fitzpatrick | Computationally efficient prediction of boneimplant interface micromotion of a cementless tibial tray during gait[END_REF], while values exceeding 150 µm have shown to inhibit bone growth and promote bone loss [START_REF] Pilliar | Observations on the effect of movement on bone ingrowth into porous-surfaced implants[END_REF][START_REF] Jasty | In vivo skeletal responses to porous-surfaced implants subjected to small induced motions[END_REF]. However, these values were only reported for normal displacement and may vary for tangential displacement. (1993; 2011; 2011; 2012; 2012; 2015) 2 (Mathieu et al., 2012a) (see Eqs. (6.7),(6.9)) and the present numerical solution. The estimated parameters are the enforced normal displacement d 0 , corresponding average contact pressure pc , friction coefficient for the unbroken state µ ub , sliding threshold a s , and transition factor b s . Adopted from [START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF].

data set model G cb [GPa] E cb [GPa] literature

Torque Curves and Debonding Behavior

The corresponding curves representing the variation of the torque as a function of the angle of rotation are shown in Figure 6.5(a) and 6.5 (b). The resulting torque obtained with the new analytical model described in Section 6.4.3 and the numerical solution of the proposed friction model of Section 6.3 (using µ b = 0.4) are very close. While the analytical solution shows a slightly closer fit to the experimental data before the peak in torque (resulting in an error of 2.18 % for the first data set and 2.83 % for the second data set), the numerical solution provides a better estimation of the behavior after debonding. The errors obtained with the numerical solution are given in Table 6.4 and are compared to the analytical model from the reference study. Overall, the numerical solutions yield the best agreement with the experimental data, especially concerning the initial slope (i.e. stiffness) of the torque and the decrease after its peak. The torque curves show a flat plateau at the peak, which comes from the behavior induced by the sliding threshold a s . Increasing a s induces an offset of the debonding process and thus, results in an elongated peak. Another difference is shown in Figure 6.5 (b) for θ > 2.5 • , where the decrease of the torque is not exactly reproduced. A different transition function φ may allow for a closer fit there.

The top row in Figure 6.6 shows the distribution of the friction coefficient µ in the contact area for different angles of rotation. A transition zone (characterized by µ b < µ < µ ub ), which may be understood as a crack front, cf. Mathieu et al. (2012a) and Figure 6.2(a), appears at 1.13 • . The transition zone propagates inward in the radial direction from the external radius R into the center, which corresponds to the crack mode assumed by the analytical models. The transition zone can also be observed in Figure 6.7(a), which shows the value of the friction coefficient as a function of the implant radius for different angles of rotation. When the rotation angle increases, the width of the transition zone decreases. It becomes apparent, that for the numerical model no full debonding is achieved after a rotation of 10 • , since for the nodes close to the center of the implant's contact surface the appropriate sliding distance to start the transitioning of µ has not been reached yet. In fact, under perfect twisting conditions, g s remains zero at the center of the implant. Thus the center of the implant will never debond for (perfect) twisting.

The bottom row of Figure 6.6 shows the distribution of the sliding distance over the contact surface for different angles of rotation. Although the body starts sliding before a twisting angle of 1 • , the factor a s prevents a change of the friction coefficient until a sliding distance of 22 µm is reached. This is also shown in Figure 6.7 (b), which illustrates the variation of the friction coefficient as a function of the sliding distance g s for r = R and data set 1. The friction coefficient stays constant as µ = µ ub for g s ≤ a s and then decreases, until it reaches µ = µ b at g s = 66 µm. 

1 • 2 • 3 • 5 • 8 • 10 • µ 0.58 0.5 0.4 1 • 2 • 3 • 5 • 8 • 10 • 0 0.1 0.22 g s [mm]

Work of Adhesion

Due to the poor agreement between the experimental results and the analytical model developed in Mathieu et al. (2012a), an energetic approach was proposed to determine the dissipated frictional energy W fric , the work of adhesion W adh , and the total energy necessary for debonding W deb ,2 which are given by

W deb = θ=10 • θ=0 • M z (θ) dθ, W fric = θ=10 • θ=θmax M ∞ z dθ, W adh = W deb -W fric . (6.25)
Based on the experimental results, θ = 10 • was chosen to be the angle of rotation where the implant was completely debonded from the bone, indicated by a constant torque M ∞ z . The area-specific average work of adhesion E adh is then given by

E adh = W adh πR 2 φ0 , (6.26)
where φ0 is the average of the initially osseointegrated area, see also Section 6.4.5.4. A visual analysis of the implant surfaces after debonding yielded φ0 = 0.73 for the first data set (see Figure 6.8(a)) and φ0 = 0.72 for the second (Mathieu et al., 2012a). Table 6.5 gives the results for the different energies with respect to the values of φ0 determined by the surface analysis. In the cases presented here, the analytical and the numerical models use φ 0 (x) = 1 ∀ x. Therefore, the true area-specific work of adhesion for these models E * adh was computed by using φ0 = 1 in Eq. (6.26). Results for E adh where φ0 = 1 is used during the simulation are presented in Section 6.4.5.4.

For both data sets, the analytical solution by Mathieu et al. (2012a) underestimates the total debonding work and the area-specific adhesion work, while the numerical results with the modified Coulomb's law lead to very good agreement with the experimental data. The analytical solution with the modified Coulomb's law yields less accurate results for the second data set.

For simplicity, the results in the remaining part of this work were obtained based only on the estimated parameters for the first data set and µ b = 0.4 (see Table 6.4). Mathieu et al. (2012a) showed that part of the limitations of their model lies in the assumption of a fully bonded surface at the beginning of the experiment. The analysis of the implants' surfaces after debonding indicated that most likely, full osseointegration was not achieved. This resulted in regions where no bone tissue was initially attached to the implant surface, as seen in Figure 6.8(a), and thus no adhesive or frictional effects can take place. This state of partial osseointegration can be readily investigated with the proposed numerical model. Therefore, an analysis assuming inhomogeneous initial bonding was performed, with various distributions φ 0 (x) in model (6.5).

data model W deb [N m] W fric [N m] W adh [N m] E adh [N m -1 ] E * adh [N m -1 ]

Partial Osseointegration

In order to analyze the debonding behavior of the BII and to determine the influence of the percentage and the distribution of osseointegration, different cases for a fine mesh with 400 contact elements on the implant surface were constructed: First, a bonding pattern based on 

Partial Osseointegration for Different Material Parameters

When the model parameters are fitted for every pattern (see Table 6.6), the torque-angle curve only weakly depends on the various distributions of osseointegration, as seen in Figure 6.10, resulting in a minimum error of 1.95 % for the reconstructed pattern, 1.99 % for the circular pattern and 2.15 % for the random distribution, respectively. While the error is slightly larger compared to the reconstructed pattern, the circular pattern has a closer fit to the experimental data for θ < θ max , which leads to a small improvement of the prediction of E adh . Since the model parameters are unknown, fitting the parameters to the experimental data leads to similar curves for every presented case. Out of the different osseointegration patterns, the random pattern is the closest to the results obtained with full initial bonding. The random pattern still has a balanced degree of osseointegration over the implant radius, while pattern (b) and (c) are only weakly (or not) bonded on the outer part of the implant and thus, a bigger difference is seen in the beginning of the torque curve. Overall, the aforementioned results lead to the conclusion that without knowing the friction coefficients, the torque-per-angle curve does not provide sufficient information on the degree and distribution of osseointegration of the BII.

As the state of an element does not depend on the states of neighboring elements, the total sliding distance is not affected by inhomogeneous initial bonding. Therefore, a similar propagation of the transition zone as in the homogeneous case can be seen in Figure 6.9. In contrast to the torque, partial osseointegration has a larger effect on the model parameters, as shown in Table 6.6. In general, partial osseointegration leads to the estimation of higher µ ub , that are still well within the range of reported values in the literature. In addition, the transition time is notably lower and for the distinct patterns (b) and (c), the sliding threshold is lower, as well. 6.8). Adopted from [START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF].
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Partial Osseointegration for Equal Material Parameters

The effect of the different osseointegration patterns becomes much more distinct when studying the results obtained for equal material parameters for bone tissue and the implant, as presented in Figure 6.11. Here, the parameters for the homogeneous case of the first data set (µ b = 0.4) were used (see Tables 6.3 and 6.4) with φ0 = 0.55 for all four patterns. Using partial osseointegration only affects the part of the deformation where (tangential) adhesive forces are expected to play a mayor role, represented by the peak in the torque curve. In general, partial osseointegration patterns lead to a lower M max z and differences in the softening of the curve. The initial slope of the torque curve and M ∞ z are not affected by the different osseointegration patterns. Applying φ 0 = 0.55 to all contact elements in the homogeneous bonding case produces the same result as using a randomly distributed pattern with φ0 = 0.55, where φ 0 = 1 for the osseointegrated elements. The distinct patterns (b) and (c) with weak or no boding on the outer part of the implant produce a lower peak and longer softening periods. 6.2). Adopted from [START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF].

Discussion and Limitations

This work aims to provide a simple friction law to model the debonding of the BII. The mechanical model is incorporated into an analytical model and is implemented into an accurate and efficient contact algorithm with NURBS-enriched finite elements and thus, allows to predict the debonding of osseointegrated implants numerically. The model only depends on four physiological parameters (µ ub , p, a s , and b s ), that can be determined by a parameter study based on experimental results. Moreover, it allows for reasonable estimations of other parameters, such as the bone's Young's modulus and adhesion energy. However, due to the limited experimental data analyzed here, no a-priori determination of the input parameters can be made yet. While the analytical solution of the proposed friction law already leads to good estimates, the results obtained by the finite element simulation are more accurate as they can also account for non-linear material behavior, large deformations, and partial osseointegration.

One difficulty associated with the present study arises from the contact pressure, which is required to establish frictional contact. In Mathieu et al. (2012a), it was reported that although the experimental pressure was minimized, it could not be completely excluded nor measured. Since the experimental torque does not go to zero for fully debonded implants, a normal pressure is likely to remain applied to the implants. As friction coefficients and normal force are unknown, no statement can be made about the accuracy of the estimated contact pressure. Furthermore, in the beginning, p c accounts for applied normal forces as well as adhesive forces due to chemical and mechanical bonding. The measurement or elimination of applied normal forces would clearly determine the friction coefficient for the broken state and thus also for the unbroken state of a certain sample. Therefore, an improvement of the testing machine used for the experimental measurements is needed and is currently under development.

While the estimated parameters are within a reasonable range compared to the literature [START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF][START_REF] Novitskaya | Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review[END_REF][START_REF] Damm | Friction coefficient and effective interference at the implant-bone interface[END_REF], and result in a good qualitative and quantitative representation of the torque-angle curve, there are still visible differences, in particular at the beginning of the peak. Following the argumentation of the reference study, these differences might be explained by the assumption of a full initial bonding between bone and implant, while an initial bonding of 30-70 % is reported in the literature [START_REF] Brånemark | Biomechanical characterization of osseointegrazion during healing: an experimental in vitro study in the rat[END_REF][START_REF] Marin | Biomechanical and histomorphometric analysis of etched and non-etched resorbable blasting media processed implant surfaces: an experimental study in dogs[END_REF]. Accounting for inhomogeneous osseointegration in our model has shown an influence on the torque curves and the model parameters, such as the friction coefficient for the unbroken state. As these values were not or cannot be measured experimentally yet, it is assumed that the parameters obtained by incorporating imperfect osseointegration are more accurate than assuming a homogeneous distribution of osseointegration. Furthermore, a partial bonding will most likely lead to a more complex crack front and propagation than what is assumed by the analytical and numerical models.

Other factors that were not taken into account in the present work are the roughness of bone and implant surfaces, as well as wear and debris. Furthermore, only a healing time of 7 weeks was considered, while a comparison of different healing times in terms material parameters and of osseointegration would be interesting. Thus, a study on the influence of the surface roughness and healing time is planned for future work.

Another interesting aspect for future work is the application of the model to actual implant and bone geometries, for example in artificial hip joints and dental implants. The latter have been recently examined by [START_REF] Rittel | Modeling the effect of osseointegration on dental implant pullout and torque removal tests[END_REF] to study the influence of partial osseointegration on implant stability and cohesive failure. In addition, only torsional debonding was tested in this work while other loading conditions, such as push-in and pull-out of the implant are more commonly analyzed [START_REF] Bishop | The influence of bone damage on press-fit mechanics[END_REF][START_REF] Wennerberg | Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia[END_REF][START_REF] Berahmani | An experimental study to investigate biomechanical aspects of the initial stability of press-fit implants[END_REF][START_REF] Damm | Friction coefficient and effective interference at the implant-bone interface[END_REF].

Although, bone is highly non-linear and anisotropic, the choice of an isotropic, non-linear elastic Neo-Hookean material model here leads to reasonable results for the planar mode III debonding of titanium and cortical bone, due to the small deformation. It has to be investigated if this still holds for, e.g., pull-out tests and contact with trabecular bone, as is presented in Chapter 7. Especially for the modeling of cohesive failure of bone, a fracture model would be needed.

Conclusion

Overall it is shown, that assuming a smooth transition from an unbroken to a broken state, characterized by a decreasing friction coefficient during the debonding process leads to good agreement with experimental data with both, an analytical and a numerical approach. While the analytical model is simple, it is an efficient way to provide initial estimates for this kind of experiment. The numerical results on the other hand are more accurate and allow for more complex material behavior, stress distribution, and (partial) osseointegration. Both approaches enable the estimation of several parameters of the BII. The proposed friction model is expected to help in understanding the debonding phenomena at the BII. An extension to adhesive friction [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF][START_REF] Mergel | Contact with coupled adhesion and friction: Computational framework, applications, and new insights[END_REF] as well as application to hip implants is presented in the following chapter.

Chapter 7

Normal and Tangential Debonding of Partially Osseointegrated Implants

In the previous chapter, a contact model for the tangential debonding of partially osseointegrated implants was introduced. To increase the accuracy and applicability of this model, this chapter introduces the extension of the modified Coulomb's friction law (MC) in normal direction and to adhesive friction. Consequently, a CZM (see Section 3.3.2) is used to extend the normal traction for positive contact gaps and the tangential traction is shifted, accordingly. This extended model (EMC) is tested with the CSI model from Chapter 6 and is then applied to simulate the debonding of a 3D, osseointegrated ACI in different removal tests. The ACI stability is quantified by the removal force/torque and the biomechanical determinants of the long-term stability, such as primary stability and degree of osseointegration are assessed. The results of the formulations with and without the CZM extension are compared to assess the impact of adhesion and adhesive friction on the stability of osseointegrated implants.

Major parts of this chapter have been published as Immel et al. (2021b,c).

Adhesive Friction and Debonding

To account for normal adhesion and debonding in the extension of the modified Coulomb's law, the normal traction (3.31) is extended by an exponential CZM [START_REF] Xu | The influence of nucleation criterion on shear localization in rate-sensitive porous plastic solids[END_REF] (see Sauer ( 2016)), i.e.

t n =          0 g b ≥ g n or φ = 0, φ 0 t 0 g 0 g n exp 1 -gn g 0 n 0 ≤ g n < g b and φ > 0, -n g n g n < 0, (7.1)
where t 0 is the maximum positive normal traction, g 0 is the contact distance, where the maximum traction t 0 occurs, and g b is a cut-off distance, where contact is lost. The parameters t 0 , g 0 , g b depend on the interface. The normal traction model (7.1) is illustrated in Figure 7.1(a). Equation ( 7.1) implies that, when pulling the contact surfaces apart in normal direction, as long as the point remains fully or partially bonded (φ > 0) the normal traction keeps increasing until g n = g b . As soon as the point is fully debonded (φ = 0) or the normal gap is g n > g b , the contact is lost and the normal traction component becomes t n = 0. The sharp drop in the normal traction at g b is motivated by observations from experimental pull-out tests of osseointegrated, coin-shaped implants [START_REF] Rønold | Effect of micro-roughness produced by tio2 blasting-tensile testing of bone attachment by using coin-shaped implants[END_REF][START_REF] Nonhoff | Establishment of a new pull-out strength testing method to quantify early osseointegration-an experimental pilot study[END_REF].

To enable sliding for tensile normal traction in the present extension of the contact model, the tangential sliding limit (3.36) is shifted by

t slide t = µ(φ) (t 0 -t n ) , (7.2)
according to [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF][START_REF] Mergel | Contact with coupled adhesion and friction: Computational framework, applications, and new insights[END_REF].

The slope of the function t n (g n ) and t slide t (µ) at g n = 0 depends solely on the choice of the parameters. It is smooth when The damage parameter g d (x) is composed of an accumulated irreversible tangential slip g s (see Section 6.3) and the accumulated normal gap g sn , i.e.1 g d = g s + g sn .

n = φ 0 e t 0 g 0 , ( 7 
(7.4)

This implies that during sticking, g d only increases if g sn increases. Otherwise, there is no change in the debonding state. The irreversible normal slip g sn is defined as

g sn = t 0 ġsn dt. (7.5)
Here, we approximate g sn as (see Figure 3.2(a))

g n+1 sn ≈ n+1 i=1 g i n -g i-1 n . (7.6)
Only the magnitudes of the slip g s and g sn are accumulated, not their direction. Thus, a loadreversal in negative direction does not lead to a decrease in g d .

Application to Coin-Shaped Implants

To demonstrate the new contact formulation (7.1) and ( 7.2) a CSI model is used to simulate different debonding modes.

Setup

We consider the same basic setup as in Chapter 6.4.4. The parameters of the state function (6.5) are chosen to be a s = 22 µm, b s = 0.74, µ ub = 0.44, and µ b = 0.3, based on Section 6.4.5.1. The initial osseointegration is constant across the bone-implant interface and is set to be φ 0 = 1 (perfectly integrated). Due to the lack of experimental data, the cohesive zone parameters g 0 , g b are set to g b = g 0 = 3a s , for simplicity.

The maximum traction of the cohesive zone model, t * 0 = 1.8 MPa, is calibrated based on the results of [START_REF] Rønold | Effect of micro-roughness produced by tio2 blasting-tensile testing of bone attachment by using coin-shaped implants[END_REF] for polished, titanium CSI. In that experimental study, CSI with different surface roughness were implanted into rabbit tibiae and allowed to osseointegrate for 10 weeks. Then, the implants were removed together the surrounding bone. The bone and implant parts were fixed into a tensile test machine and the implant was pulled constantly in the normal direction until it was completely debonded from the bone. For the polished CSI an average degree of osseointegration of φ 0 = 0.26 and an average maximum pull-out force of 9 N were determined, which results in an approximate 35 N for φ = 1.

The boundary conditions and considered test configurations are shown in Figure 7.2. The lower surface of the bone block is fixed in all directions. In this work, only quasi-static conditions are considered. First, the implant is pressed into the bone block until a normal reaction force of -70 N is reached, as is done in Section 6.4.4. Then, for the first three test cases, full and homogeneous initial osseointegration (φ 0 = 1) of the bone-implant interface is applied (Figure 7.2 (a) and (c)). For test cases with tension, the implant is then pulled in normal direction until an average normal reaction force of 20 N is reached (Figure 7.2(b)). Last, debonding with no initial pressure or tension is considered (Figure 7.2(d)).

Then, the new contact model is examined for five different debonding test cases:

1. mode II: the upper implant surface is moved in x-direction under constant compression (mode IIa) or tension (mode IIb).

2. mode III: the upper surface of the implant is rotated around its z-axis under constant compression (mode IIIa) or tension (mode IIIb).

3. mode I+II: the upper implant surface simultaneously pulled along the z-axis and in xdirection, corresponding to an angle α = 30, 45, or 60 • . This is performed with initial compression (mode I+IIci) and without initial contact force (mode IIIdi).

4. mode I+II: the upper implant surface is simultaneously pulled along the z-axis and in x-direction, corresponding to an angle of α = 45

• for different choices of t 0 ∈ [t * 0 /2, t * 0 , 2t * 0 ]
. This is performed with initial compression (mode I+IIcii) and without initial contact force (mode IIIdii).

5. mode I+II: the upper implant surface is simultaneously pulled along the z-axis and in

x-direction, corresponding to an angle of α = 45 • for increasing degrees of initial osseointegration φ 0 ∈ [0, 0.25, 0.5, 0.75, 1]. This is performed with initial compression (mode I+IIciii) and without initial contact force (mode IIIdiii). All simulations are performed with an in-house, MATLAB-based solver (R2019b, The Math-Works, Natick, MA, USA). Contact is computed with a penalty regularization, and the corresponding penalty parameter is set to n = t = E tb /L 0 , with L 0 = 0.01 m. The step size for all load cases is ∆u = 0.65 µm (for applied displacement loads and ∆θ = 0.1 • for applied rotations).

Results

In the following, the results of the debonding tests for the CSI, in terms of load-displacement curves, obtained with the MC and its new extension to adhesive friction (EMC) are presented and compared with each other.

Test 1: Mode II Debonding

Figure 7.3 shows the normal and tangential reaction forces F z and F x for debonding and possible subsequent sliding in (tangential) x-direction under prescribed constant compression or tension. For a constant compression of -70 N, the slope of the curve of the tangential reaction force is identical for the MC and the EMC. The maximum tangential reaction force increases from 30 N to 45 N for the EMC. For a constant tension of 20 N, the tangential reaction force reaches up to 6 N before decreasing and dropping to 0 because of the absence of contact. The maximum tangential reaction force under tension is smaller than under compression, due to the decrease in φ stemming from the accumulated deformation in normal direction before the debonding started (due to pulling the implant back up before sliding). The contact is lost abruptly after the limit for the accumulated deformation g d is reached, due to the positive contact gap at the bone-implant interface. 

Test 2: Mode III Debonding

Figure 7.4 shows the normal reaction force F z and the debonding torque M z for mode III debonding due to rotation around the implant's (normal) z-axis under prescribed constant compression or tension for the considered contact laws. For a constant compression of -70 N, the slope of the torque curve is identical for both contact laws. The maximal torque increases by 0.027 Nm (about 50%) when including normal adhesion (EMC). For a constant tension of 20 N the torque reaches 0.011 Nm and then decreases down to zero due to loss of contact. This loss is gradual, starting in the external region of the cylinder and propagating inward to its center. These results emphasize the fact that torque tests yield a stable crack propagation, which is particularly interesting when it comes to assessing the effective adhesion energy of the bone-implant interface (Mathieu et al., 2012a). 

Test 3: Mode I+II Debonding for Varying Angles

Figure 7.5 shows the normal and tangential reaction forces F z and F x for mixed mode debonding under different angles α (mode I+IIci) starting from an initial contact pressure, based on the MC and the EMC. The normal reaction force F z increases linearly until it reaches zero. For each angle, the slope of the reaction force curve is identical for both considered contact laws, respectively. In case of the EMC, the reaction force becomes positive at some point and follows the debonding curve of cohesive zone model (7.1) seen in Fig. 7.1(a). In all presented cases, the debonding occurs because the maximal normal gap exceeds g b , due to the prescribed upward movement. Therefore, increasing the debonding angle α decreases the amount of tangential deformation necessary for debonding, i.e. where contact is lost and the reaction force becomes zero.

The tangential reaction force F x increases linearly until the respective sliding limit is reached. Then the implant starts sliding and the tangential reaction force decreases linearly, as long as the normal force F z is still negative. When the normal reaction force reaches zero, the cases with the MC show zero tangential reaction force, as there is no contact anymore. For the cases with the EMC, the bone-implant interface has not fully debonded yet and thus, there is still a normal (adhesive) contact force building up. As a result, the tangential reaction force decreases nonlinearly until it reaches zero.

While the maximum normal reaction force is the same for all three tested angles, the maximum tangential reaction force decreases for an increasing debonding angle. The respective maximal tangential reaction force for each case is around 1.5 times higher for the EMC compared to the MC, due to the shift in tangential contact traction (7.2).

Figure 7.6 shows the normal and tangential reaction forces F z and F x for mixed mode debonding under different angles α (mode I+IIdi), with no initial contact force, based on the EMC. The different curves of the normal reaction force F z are identical to the positive part of the curves in Figure 7.5. As there is no initial compression or tension in the beginning of this loading case, all curves begin at the origin. Similarly, the different curves for the tangential reaction force F x are identical to the exponential part of the curves in Figure 7.5 and are shifted by the same displacement towards the origin, respectively, as the normal reaction force. .7 shows the normal and tangential reaction force F z and F x for mixed mode debonding under α = 45 • as a function of the tangential displacement with different values of the maximal CZM traction t 0 when considering adhesive friction (mode I+IIcii). As expected, the maximum normal and tangential reaction forces are proportional to t 0 (see Eqs. (7.1) and (7.2)). Furthermore, the slopes of F z and F x at the transition from compression to tension (F x = 0, u x = 6.5 mm) are smooth for about t 0 = 2t * 0 (as 2t * 0 ≈ n g 0 /φ 0 e (see Eq. 7.3)). Figure 7.8 shows the normal and tangential reaction forces F z and F x for mixed mode debonding under α = 45 • , with no initial contact force, as a function of the tangential displacement for different values of the maximal CZM traction t 0 when considering adhesive friction (mode I+IIdii). The different curves of the normal reaction force F z are identical to the positive part of the curves in Figure 7.7. As there is no initial contact force in the beginning of this loading case, all curves begin at the origin. Similarly, the different curves of the tangential reaction force F x are identical to the exponential part of the curves in Figure 7.7 and are shifted by the same displacement towards the origin, respectively, as the normal reaction force. 

Test 5: Mode I+II Debonding for Varying Degree of Osseointegration

Figure 7.9 shows the normal and tangential reaction force F z and F x for mixed mode debonding under 45 • as a function of the tangential displacement with increasing degree of osseointegration φ 0 when considering adhesive friction (mode I+IIciii). Increasing the degree of initial osseointegration increases the peak magnitude in the normal and tangential reaction force. This is due to the fact that in this test case, debonding occurs first due to g n > g b and not due to exceeding the limit of the deformation of the interface g d = a s (1 + 2b s ) (see Eq. (6.5)). The maximal normal and tangential reaction force increase proportionally with increasing φ 0 , while the tangential displacement necessary for debonding remains the same. Figure 7.10 shows the normal and tangential reaction forces F z and F x for mixed mode debonding under α = 45 • , with no initial contact force, as a function of the tangential displacement with increasing degree of osseointegration φ 0 when considering adhesive friction (mode I+IIdiii). The different curves of the normal reaction force F z are identical to the positive part of the curves in Figure 7.9. As there is no initial contact force in the beginning of this loading case, all curves begin at the origin. Similarly, the different curves of the tangential reaction force F x are identical to the exponential part of the curves in Figure 7.9 and are shifted by the same displacement towards the origin, respectively, as the normal reaction force. 

Application to Acetabular Cup Implants

Both, the MC and the EMC have been examined for a simple implant model in Section 7.2. Now, both models are applied to simulate the debonding of a 3D, osseointegrated ACI, under different removal conditions, similar to the simulations in [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] andChapter 5. Here, the implant's secondary stability is considered and is quantified by assessing the removal force/torque. Furthermore, the biomechanical determinants of the long-term stability, such as primary stability and initial degree of osseointegration are assessed. The results of the MC and its extension to adhesive friction, EMC, are compared to assess the importance of adhesive effects for long-term stability because it allows to distinguish the influence of primary stability and osseointegration phenomena on the secondary stability.

Setup

A simple cylindrical block is considered, as it is a suitable simplification of the pelvis geometry that qualitatively captures the relevant contact conditions. The same geometry of the ACI including the ancillary used in [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] and Chapter 5 is considered herein and is briefly summarized in the following. An idealized bone block with the same properties as in [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] is used in order to calibrate the model and compare results. The bone block is modeled as a cylinder with a radius of 50 mm and a height of 40 mm. A hemi-spherical cavity is cut into the cylinder with a radius R b based on the fixed radius of the implant R i and the chosen interference fit IF , i.e., R b = R i -IF/2. The edge of the cavity has a fillet radius of 2 mm.

As in Section 7.2, the bodies are meshed with surface-enriched hexahedral elements according to the parameters given in Table 7.1. The finite element mesh is shown in Figure 7.11. A refinement analysis of the mesh and the load step size is performed to ascertain mesh convergence (see Appendix A) for the reference case (see Section 7.3.1.1). (b) (c) Table 7.1 -ACI debonding: Number of finite elements n el , type of shape functions and number of Gauss points per element n gp for the two bodies and their contact surfaces. Adopted from Immel et al. (2021c).

Model Parameters

The ancillary and the ACI are assumed to be made of stainless steel (E a = 211 GPa, ν a = 0.3) and titanium alloy (Ti-Al6-V4; E i = 113 GPa, ν i = 0.3), respectively. The bone block is assumed to consist only of trabecular bone tissue (ν b = 0.3 [START_REF] Yew | Deformation of press-fitted metallic resurfacing cups. part 2: finite element simulation[END_REF]), without an outer cortical layer. This is in accordance with the study presented in Chapter 5 and findings in the literature [START_REF] Anderson | Subject-specific finite element model of the pelvis: development, validation and sensitivity studies[END_REF][START_REF] Phillips | Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[END_REF][START_REF] Watson | The effect of boundary constraints on finite element modelling of the human pelvis[END_REF], that indicate that the reaming of the hip performed during surgery may completely remove cortical bone tissue from the contact area. For all bodies, the Neo-Hookean material model of Eq. (3.19) is used. Furthermore, all materials are assumed to be homogeneous and isotropic and both contact surfaces are assumed to be perfectly smooth.

In this work, the effect of various biomechanical properties of the bone-implant system on the ACI long-term stability is assessed. Therefore, different degrees of osseointegration from 0 -100% are considered. Furthermore, the influence of varying bone stiffness E tb = 0.1 -0.6 GPa, interference fit IF = 0 -2.0 mm, and friction coefficient µ b = 0 -0.7 on the long-term stability are analyzed. The corresponding friction coefficient µ ub = 0.15 -1 is taken from Table 4 from [START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF] and is roughly 1.5 times higher than µ b . Based on previous studies [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]Immel et al., 2021a) the parameter set of E * tb = 0.2 GPa, IF * = 1 mm, and µ * b = 0.3 is denoted as the reference case and marked with * . The parameters of the state function (6.5) are chosen to be a s = 128 µm and b s = 1.84, which does not affect the maximum of the removal force/torque. Due to the lack of experimental data, the values of a s and b s are chosen large enough so that the debonding process is visible and a removal force/torque can be identified (see Figure 7.14). The coefficients of the cohesive zone model t 0 = t * 0 = 1.8 MPa and g b = g 0 = 3a s are calibrated based on the results of [START_REF] Rønold | Effect of micro-roughness produced by tio2 blasting-tensile testing of bone attachment by using coin-shaped implants[END_REF] for polished CSI, as was done in Section 7.2.

Boundary and Loading Conditions and Solver Settings

The bone block is fixed in all directions at the bottom surface. As before, only quasi-static conditions are considered. The simulations of implant insertion and subsequent removal are comprised of three stages (see Fig. 7.12):

1. insertion: the implant is inserted vertically into the cavity, by pushing the upper surface of the ancillary in negative z-direction, until the reaction force at the top of the ancillary reaches F 0 = -2500 N, similar to values found in the literature [START_REF] Sotto-Maior | Influence of high insertion torque on implant placement: an anisotropic bone stress analysis[END_REF][START_REF] Souffrant | Advanced material modelling in numerical simulation of primary acetabular press-fit cup stability[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF] and to what was done in previous studies [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]Immel et al., 2021a). The downward displacement attained at the top of the ancillary for F 0 = -2500 N is denoted d 0 . It depends on the considered parameters E tb , IF , and µ b and thus changes for each case, i.e.

d 0 = d 0 (µ b , IF , E tb , F 0 ).
2. osseointegration: the contact surfaces are assumed to be homogeneously osseointegrated with an initial degree of osseointegration varying from φ 0 ∈ [0, 0.25, 0.5, 0.75, 1].

3. removal: the implant is removed either -mixed mode I: by displacing the upper surface of the ancillary in positive z-direction by -d 0 ,

-mixed mode II: by displacing the center of the upper surface of the ancillary in positive x-direction by d 0 ,

-mode III: by rotating the upper surface of the ancillary around its z-axis by θ = 10 • .

The three simulation stages are shown in Figure 7.12(a) and the different removal cases are illustrated in Figure 7.12(b). The example of mode I debonding is shown, with the final output of the load-displacement curve inside the red square (cf. Fig. 7.13 (a)).

The stability of the configuration is then assessed by determining the maximum pull-out force in normal direction, F max z , the maximum pull-out force in tangential direction, F max x , or the maximum debonding torque M max z . Contact is computed with a penalty regularization, and the corresponding penalty parameter is chosen based on the Young's modulus of trabecular bone as n = t = E tb /L 0 , with L 0 = R I = 0.0255 m corresponding to the radius of the implant. The number of load steps for the different simulation stages are: l 1 = l 3.modeI = l 3.modeIII = 100 and l 3.modeII = 1000 All simulations were performed with an in-house, MATLAB-based solver (R2019b, The MathWorks, Natick, MA, USA) with MATLAB's own parallelization. Computations were performed on the RWTH Compute Cluster (Intel HNS2600BPB, Platinum 8160) with 20 cores. The average computing time for the different contact laws and loading cases is listed in Table B.3. The computing time is sensitive to the parameter combination. Parameter combinations that produce high pull-out forces/debonding torque have a longer computing time. The difference in computing time between the debonding tests and the contact models is discussed in Section 7.4.3. 

Debonding without Adhesion in Normal Direction

First, the results of the removal tests, in terms of load-displacement curves and pull-out force/ debonding torque, obtained with the MC are presented. The results with the EMC follow in Section 7.3.3, and a comparison is given in Section 7.4.1.

Mixed Mode I: Normal Pull-Out Test

Figure 7.13 (a) shows the normal reaction force F * z for the reference case, which increases and reaches a peak at a displacement of 0.25-0.32 mm and then slowly decreases to zero. This maximum coincides with the start of the decrease of the average degree of osseointegration of the bone-implant interface φ (see Figure 7.13, (b)). At a displacement of 1.07 mm, the reaction force becomes independent from φ 0 . At this point, the bone-implant interface is completely debonded ( φ = 0) and only pure Coulomb's friction is taking place until the contact at the bone-implant interface is lost completely at a displacement of about 4.25 mm. In this test, osseointegration only affects the magnitude of the peak, while the overall slope of the load-displacement curve remains unchanged when increasing the initial degree of osseointegration. The location of the peak does not change significantly with increasing φ 0 . Due to the lack of experimental data for this work, the values of a * s = 128 µm and b * s = 1.84 are chosen large enough so that the debonding process is visible and a removal force/torque can be identified. The effect of changing the value of a s and b s on F * z (φ 0 = 1) is shown in Figure 7.14. Naturally, both parameters have no effect on the mechanical behavior before debonding and on the maximum pull-out force. Decreasing or increasing a s and b s decreases or increases the amount of deformation that is necessary for the interface to fully debond (about 0.7,0.75,1.1,1.75,1.9 mm,respectively,see Fig. 7.14). After debonding, only pure Coulomb's friction takes place until the contact between bone and implant is lost completely (after a displacement of about 4.25 mm). 

Mixed Mode II: Tangential Pull-out Test

The tangential reaction force F *

x for the reference case increases and reaches a peak at a displacement of about 75 µm and then slowly decreases to zero (see Figure 7.16 (a)). The average degree of osseointegration of the bone-implant interface φ starts to decrease already beyond 34 µm (Figure 7.16 (b)). At a displacement of about 0.3 mm, the reaction force becomes independent from φ 0 . Similarly to the normal pull-out test, increased osseointegration only affects the magnitude of the tangential pull-out force, while the location of the peaks and the initial slope of the curves for different degrees of osseointegration are very similar. Tangential pull-out forces are roughly one magnitude lower than the corresponding normal pull-out force, which agrees with observations from clinical practice. During surgery, after the insertion of the ACI, surgeons often attempt to lever out an acetabular cup to test the seating of the ACI. That is, the surgeon applies a tangential force, such as is considered here, instead of a normal force since normal pull-out would require too much force. z as a function of the rotation angle for different values of φ 0 and the reference case. The torque increases, reaches a peak at an angle of about 3 • and then decreases to reach a constant torque of 47 Nm at about 4.5 • due to the present compressive normal force. The degree of osseointegration starts to decrease at an angle of about 2.6 • and becomes zero at about 4.5 • (see Figure 7.19 (b)). As for the normal and the tangential pull-out cases, only the magnitude of the peak of the load-displacement curve is affected when increasing the degree of osseointegration φ 0 . 

Mode III: Torsional Debonding Test

Debonding with Adhesion in Normal Direction and Adhesive Friction

The results corresponding to the load-displacement curves and pull-out force/ debonding torque obtained with the three removal tests and with the EMC are presented below. In addition to the modified Coulomb's friction law (6.3), the EMC includes a CZM in normal direction (7.1) and adhesive friction (7.2).

Mixed Mode I: Normal Pull-out Test

Figure 7.20 shows the variation of the normal reaction force F * z as a function of the tangential displacement and the initial degree of osseointegration φ 0 for the reference case. The normal reaction force increases, reaches a peak at a displacement of about 0.25 mm and then decreases. The effect of osseointegration and adhesive friction on the load-displacement curve is more pronounced than for the MC. This can be seen as the magnitude increase of the pull-out forces is higher and the peaks are wider (compare Figures 7.13 (a) and 7.20). In contrast to the MC, here, F * z depends on φ 0 throughout the whole debonding process, which is due to the adhesion in normal direction. However, the initial slope of the normal reaction force curves does not change significantly when increasing φ 0 . Compared to the results obtained when considering only tangential debonding (see Fig. 7.13 (a)), some small oscillations after the peak are visible. x as a function of the tangential displacement for different values of φ 0 . The effect of osseointegration and adhesive friction on the loaddisplacement curve is more pronounced with the EMC than with the MC. As for the normal pull-out test, F *

x remains dependent on φ 0 throughout the whole debonding process. The peak in tangential reaction force is reached at a displacement of about 0.08 mm. Furthermore, the increase in magnitude is considerably larger than for the MC, while remaining roughly one magnitude lower than the results for the normal pull-out case with adhesive friction. Here, larger oscillations are visible, which are discussed in Section 7.4.3. The reference case is marked with * . Adopted from Immel et al. (2021c).

Mode III: Torsional Debonding Test

Figure 7.24 shows the variation of the debonding torque M * z as a function of the rotation angle and the initial degree of osseointegration φ 0 for the reference case. In contrast to the results obtained with the MC, the peak in torque is obtained at a rotation angle of approximately θ = 3.5 • . Then the torque decreases to a constant value due to the present compressive normal force. When considering adhesive friction, the torque after full debonding does not reach the same constant values for each φ 0 due the the shift in the tangential sliding threshold (7.2), that depends on φ 0 . 

Discussion

This work studies the contact and debonding behavior between implant and bone using a new adhesive friction model that accounts for partial osseointegration. The new extension to adhesive friction is first demonstrated on a simple model of an osseointegrated implant, following previous studies [START_REF] Rønold | Effect of micro-roughness produced by tio2 blasting-tensile testing of bone attachment by using coin-shaped implants[END_REF][START_REF] Rønold | Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test[END_REF]Fraulob et al., 2020a,b,c;[START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF]. Then, both the original and the extended debonding model, are applied to the debonding of a partially osseointegrated acetabular cup implant, which corresponds to a situation of clinical interest. The effect of increasing the osseointegration level on implant stability is examined by analyzing the behavior of the maximum removal force/torque, for three patient-and implant-dependent parameters: IF, E tb , and µ b . Overall, both debonding models provide reasonable qualitative estimates of long-term stability with higher estimates of implant stability for the extension to adhesive friction.

Comparison of the Modified and Extended Coulomb's Law with

Respect to their Biomechanical Relevance Figure 7.26 shows the ratio between the maximum removal forces/torque obtained for perfect initial osseointegration (φ 0 = 1) and no initial osseointegration (φ 0 = 0) (F max (φ 0 = 1)/F max (φ 0 = 0)) for the studied parameters and removal tests when considering both proposed models. Table 7.2 shows the corresponding average percentage increase in the maximum pull-out forces/torque. The relative variation of the pull-out force/debonding torque obtained by considering the modified Coulomb's law is qualitatively similar when varying IF and E tb , with values ranging between 38 and 62%, with a slightly higher increase of the reaction force for lower values of IF and E tb . Concerning the friction coefficient µ b , the modified Coulomb's law shows the largest effect on the pull-out force/torque for a value of µ b = 0.2. This effect then decreases when increasing the friction coefficient. The increase of the maximum pull-out force is much higher for the EMC compared to the MC with values ranging between 46-172%. In addition, osseointegration modeled with the EMC leads to a larger increase of the maximum removal force/torque for low parameter values, which corresponds to low initial stability but high contact area.

While the relative variation of F max x , F max z , M max z produced by the two debonding models due to changes of µ b are very similar, the slopes of the curves in Figure 7.26 for IF and E tb show considerable differences between the two contact models. The MC only has a small effect on the maximum torque for all observed parameters with a total increase in torque of 7-15%. The present extension produces a higher increase in the maximum torque of 21-35%, due to the shift in the tangential traction Eq. (7.2). Overall, the effect on the maximum torque remains considerably lower compared to the pull-out tests, as no contact is lost during the torsion test. Table 3 lists the average percentage increase in the maximum pull-out forces F max z , F max Both presented contact models produce reasonable estimates for the long-term stability of the ACI, when compared to existing numerical results for the initial stability [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] (see Figures 7.13 and 7.20, φ 0 = 0). Overall, the maximum pull-out forces F max x , F max z and the debonding torque M max z all increase nearly linearly with increasing degree of osseointegration φ 0 for every chosen parameter IF, µ b , E tb . In this work, osseointegration is shown to significantly increase implant stability (see Figure 7.26). However, the dependence of the maximum pullout force/debonding torque on the different parameter sets remains essentially the same as for primary stability. The two presented contact models indicate that poor initial stability will lead to poor or suboptimal long-term stability, which emphasizes the crucial role of primary stability for the implant outcome. This finding is in agreement with the literature, where initial stability is determined as the governing factor of long-term stability [START_REF] Pilliar | Observations on the effect of movement on bone ingrowth into porous-surfaced implants[END_REF][START_REF] Engh | Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses[END_REF][START_REF] Engh | Long-term porous-coated cup survivorship using spikes, screws, and press-fitting for initial fixation[END_REF][START_REF] Rittel | Modeling the effect of osseointegration on dental implant pullout and torque removal tests[END_REF], as the mechanical conditions at the bone-implant interface have a significant effect on bone growth and remodeling. Furthermore, the present extension has a higher effect on poor initial stability, stressing the importance of adhesion for low initial stability.

F max z , MC F max x , MC M max z , MC F max z , EMC F max x , EMC M max z , EMC (b 
Both presented debonding models also allow the assessment of how loading that does not result in complete debonding affects the remaining osseointegration state φ of the bone-implant interface (see e.g. Figure 7.13 (b)). Future studies that couple the EMC with cyclic loading and bone growth and remodeling could e.g. provide answers on how daily loading affects the bonding state of the interface during and after healing.

Comparison with Similar Studies

Since most numerical studies that model osseointegrated interfaces assume perfectly bonded surfaces and thus, do not simulate the actual debonding of the interface, only few comparisons with existing work can be made. One comparable work is the study of [START_REF] Rittel | Modeling the effect of osseointegration on dental implant pullout and torque removal tests[END_REF], where the influence of partial osseointegration on dental implant stability and cohesive failure was studied. There, a tie constraint was applied to parts of the bone-implant interface throughout the simulation, such that bone-implant debonding occurred as cohesive failure in the bone around the bone-implant interface. Partial osseointegration was modeled by defining a relative osseointegrated area with a random distribution and restricting non-integrated areas to frictional contact. One key finding of the study of [START_REF] Rittel | Modeling the effect of osseointegration on dental implant pullout and torque removal tests[END_REF] was that none of their removal tests was able to distinguish osseointegration above 20% and that the torque test was more accurate than a pull-out test in determining the degree of osseointegration. Based on these findings, it was concluded that osseointegration of only 20% of the bone-implant interface provides sufficient long-term stability. In the present study, opposite findings are obtained. Here, all considered debonding tests show consistent increase in stability for increasing initial degree of osseointegration. Furthermore, osseointegration showed the least effect on the debonding torque and the highest for mode II debonding. The difference between the two studies might stem from the difference between the cohesive failure model of [START_REF] Rittel | Modeling the effect of osseointegration on dental implant pullout and torque removal tests[END_REF] and the adhesive failure models presented here, and/or the difference in geometry and contact conditions.

Further studies and especially experimental testing, as proposed in Section 7.2, are necessary in order to calibrate and validate the proposed contact models.

Numerical Stability

Mesh convergence was investigated for the reference case and the modified Coulomb's friction law (see Appendix B.3). The load-displacement curves obtained when considering adhesive friction (see Figures 7.20 and 7.22 (a)) show oscillations in the reaction force after the peak and require an increased number of Newton-Raphson iterations and thus, increased computing (see Appendix A). In the cases of normal and tangential debonding, the added adhesion in normal direction results in alternating sticking and sliding (so called stick-slip motion), producing oscillations in the results. The quasi-static assumption used in this work is not suitable in those cases and a dynamic simulation should be performed instead to account for the inertia in the system.

Due to the lack of experimental data and comparable numerical results, the a priori assessment of the choice of mesh, boundary conditions and relevance of inertia, remains difficult and thus the results can only provide a qualitative statement of the relevance of the analyzed parameters on implant stability.

Perspectives and Guidelines for Future Work

In the following, perspectives for future extensions and applications of the proposed bone and contact models are discussed. Furthermore, we state guidelines for future experimental testing, in order to obtain relevant data to calibrate and validate the proposed models.

Modeling Perspectives

Bone Modeling

This work uses idealized bone geometries. This was done in order to use results from [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] as calibration for cases with φ 0 = 0. Further, our work focuses on the contact behavior of the osseointegrated bone-implant interface. The contact geometry and contact conditions of the hemispherical cavity are very similar to a generic pelvis. While the simplified bone geometry is a justified simplification in this work, an analysis of e.g. different pelvis shapes and defects on the contact behavior of the bone-implant interface would be of clinical relevance.

The bone block was modeled with trabecular bone without a cortical layer and the bone was rigidly fixed at the entire bottom surface. The absence of cortical bone in the contact area is in accordance with a previous study (Immel et al., 2021a) and findings in the literature [START_REF] Anderson | Subject-specific finite element model of the pelvis: development, validation and sensitivity studies[END_REF][START_REF] Phillips | Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[END_REF][START_REF] Watson | The effect of boundary constraints on finite element modelling of the human pelvis[END_REF], that indicate that the reaming performed during surgery may completely remove cortical bone tissue from the contact area. Due to the simplified setup, the influence of muscle tissue and ligaments on the deformation behavior and load response was neglected as well, which is in agreement with what is commonly done in the literature [START_REF] Hao | The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model[END_REF][START_REF] Clarke | Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum[END_REF]. However, it has been shown that muscles and ligaments have to be taken into account when analyzing the stress distribution inside the acetabulum [START_REF] Shirazi-Adl | Experimental determination of friction characteristics at the trabecular bone and porous-coated metal interface in cementless implants[END_REF], which is beyond the scope of the present study. Future studies should consider more realistic and physiological geometries and boundary conditions to improve the accuracy of the numerical results and provide more reliable estimations of implant stability.

No actual bone ingrowth or bone remodeling was modeled and homogeneous osseointegration over the whole bone-implant interface was assumed. In reality, only certain parts of the boneimplant interface are osseointegrated depending on the contact conditions, such as contact stress, micromotion, and initial gap. In addition, initial gaps after surgery might be filled with bone tissue during the healing phase and thus increase the contact area and bonding strength over time. In future works, the presented debonding models should be coupled with suitable osseointegration models and bone remodeling algorithms [START_REF] Caouette | A new interface element with progressive damage and osseointegration for modeling of interfaces in hip resurfacing[END_REF][START_REF] Mukherjee | Bone ingrowth around porous-coated acetabular implant: a threedimensional finite element study using mechanoregulatory algorithm[END_REF][START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF][START_REF] Martin | Bone orthotropic remodeling as a thermodynamically-driven evolution[END_REF], to achieve a more reliable assessment of implant long-term stability. These models should account for pressure-and micromotion-depended bone apposition and resorption, as well as changes in the contact gap and the maturation of new bone tissue, e.g. by changing the bone's elastic properties with respect to healing time. Furthermore, due to bone growth and the change in elastic properties of the bone during osseointegration and remodeling, the stress inside the bone changes during the healing process and might be significantly different after healing compared to the state directly after surgery. As the change in stress can significantly affect secondary stability, remodeling related effects should be considered in future works.

Contact Modeling

This work neglects the roughness of the implant surface and of the reamed bone cavity. While a simple modeling of rough surfaces by adjusting µ b , µ ub , t 0 is possible, the explicit modeling of rough surfaces should be considered in future works, as surface roughness affects initial stability and osseointegration and thus also long-term stability. Furthermore, due to the rise of additive manufacturing in implantology, complex implant surface topologies become more and more relevant and should be studied.

The CZM in Eq. ( 7.1) is modeled with a sharp drop in t n at g n = g b . Future studies should explore CZM models that depend on φ instead of φ 0 and have a smooth decline in t n for g n > g b .

The removal force/debonding torque were chosen as determinants of long-term stability. The stress distribution could be used as another determinant, as is done in other works [START_REF] Janssen | Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties[END_REF][START_REF] Rourke | Patient and surgical variability in the primary stability of cementless acetabular cups: a finite element study[END_REF]. However, the stress distribution inside the bone changes during healing and osseointegration, as the mechanical properties of the bone tissue change when the new bone tissue mineralizes. This makes comparisons of stress fields of initial stability and secondary stability scenarios difficult, when this temporal change is not accounted for.

As in previous studies by our group [START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF][START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF]Immel et al., , 2021a)), a quasistatic configuration was considered, and all dynamic aspects were neglected, similarly to what was done in comparable works [START_REF] Spears | The effect of interfacial parameters on cup-bone relative micromotions: A finite element investigation[END_REF][START_REF] Le Cann | Does surface roughness influence the primary stability of acetabular cups? a numerical and experimental biomechanical evaluation[END_REF][START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF]. Note that a previous study focuses on the insertion process of an acetabular cup implant by considering dynamic modeling [START_REF] Michel | Finite element model of the impaction of a press-fitted acetabular cup[END_REF], which is important when modeling the insertion by hammer impacts. Furthermore, the stick-slip results with the present extended contact model (see Figures 7.20 and 7.22) indicate that dynamic simulations become necessary when considering high frictional and adhesive forces.

Experimental Perspectives

Model EMC depends on two additional physiological parameters t 0 , g 0 that can be determined based on some of the few experimental results available in the literature [START_REF] Rønold | Effect of micro-roughness produced by tio2 blasting-tensile testing of bone attachment by using coin-shaped implants[END_REF]. However, to the best of our knowledge, no suitable measurements have been obtained for osseointegrated acetabular cup implants yet, which is why we calibrated our models with measurements for coin-shaped implants instead. Future experimental tests of osseointegrated implants under mixed mode or mode III debonding under constant tension (as presented in Section 7.2) can provide important insight on the adhesive behavior of the osseointegrated interface to calibrate and validate the proposed debonding models.

Last, the strong influence of biological as well as mechanical factors and the bone geometry on the long-term stability make validation of the presented numerical models difficult. At present, experimental studies that provide sufficient information on the behavior and stability of the partially osseointegrated bone-implant interface, are lacking in the literature [START_REF] Helgason | On the mechanical stability of porous coated press fit titanium implants: a finite element study of a pushout test[END_REF]. We suggest to perform mixed mode debonding and mode III debonding under constant tension, as demonstrated in Section 7.2. These results would provide important information on the debonding behavior of osseointegrated interfaces and allow to further calibrate and validate the extension of the modified Coulomb's law. Further computational studies cannot reliably provide more insight on the in vivo behavior, as the level of sophistication of the models is beyond the point of verification with current in vivo, ex vivo, and even some in vitro measurement techniques [START_REF] Taylor | Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities[END_REF]. Therefore, it becomes more and more difficult to reliably assess the performance of numerical models for the bone-implant interface. If FE models are to be trusted and accepted by clinicians, they need to demonstrate that they are capable of predicting realistic in vivo behavior. Thus, further development of experimental measurement techniques and quantification of relevant biomechanical metrics (e.g., stress-strain behavior, micromotion, friction, adhesion, debonding under tension) is essential to provide the data necessary to develop and improve numerical models. However, the development of new and more accurate experimental machinery and techniques that are able to provide the necessary data is difficult and time consuming and provides a constant challenge. While experimental and numerical methods keep improving, a certain acceptance that FE studies may not be representative of the in vivo conditions yet but are an approximate model, needs to be established.

Conclusion

This work presents a new extended debonding model for the bone-implant interface, which can describe the debonding behavior of osseointegrated acetabular cup implants and thus assess their stability. In addition to the modified Coulomb's law in Chapter 6, it includes a cohesive zone model in normal direction and adhesive friction in tangential direction.

The modified Coulomb's law and its extension show that friction and adhesion increase the pull-out force/debonding torque of osseointegrated implants, and thus are relevant for long-term stability. Furthermore it is shown that, while osseointegration increases implant secondary stability, a sufficient primary stability remains crucial for long-term stability, which is in agreement with the literature. These findings underline the importance of the development of surgical decision support systems such as the surgical hammer instrumented with a force sensor to measure the displacement of an osteotome or implant and determine when full insertion has taken place (Michel et al., 2016a,b;[START_REF] Dubory | A cadaveric validation of a method based on impact analysis to monitor the femoral stem insertion[END_REF][START_REF] Lomami | Ex vivo estimation of cementless femoral stem stability using an instrumented hammer[END_REF] or contactless vibro-acoustic measurement devices that can monitor implant seating [START_REF] Goossens | Acoustic analysis to monitor implant seating and early detect fractures in cementless tha: An in vivo study[END_REF]. Furthermore, a future detailed study would be able to answer how cyclic loading affects the bonding state of the interface during and after healing. Last, this work provides directions for important experimental testing of osseointegrated coin-shaped implants. Mixed mode debonding and mode III debonding under constant tension could provide important information on the debonding behavior of osseointegrated interfaces and allow for further calibration and validation of the proposed contact models. Furthermore, osseointegration algorithms based on, e.g., the contact state, should be considered instead of pre-defined or homogeneous osseointegration as has been done in this and the previous chapter. Coupling simulations of initial stability, subsequent osseointegration and bone remodeling, and long-term stability and debonding can provide more reliable assessments of implant stability and aid in implant conception and individual patient treatment. A simple example of coupling the developed debonding models from Chapters 6 and 7 with an osseointegration algorithm instead of using pre-defined osseointegration is presented in the next chapter. There, three simple evolution laws for osseointegration, based on the primary stability of the implant are introduced and demonstrated on a CSI.

Chapter 8 Evolution Laws for Osseointegration Based on Initial Stability

In the previous chapters, numerical models for the secondary stability of partially osseointegrated implants with pre-defined osseointegration patterns or homogeneous distribution were presented. To complete the workflow of the numerical modeling of implant stability and the implant life cycle presented in this thesis, this chapter provides an outlook on how to model osseointegration and healing, and how to incorporate it into the workflow of simulating implant stability. Therefore, three simple evolution laws for osseointegration are outlined. These models depend on the contact gap and the contact pressure of the BII after insertion, and the healing time. Thus, the pressure and displacement fields created during the simulation of implant insertion, such as presented in Chapter 5 can be used as input for the modeling of bone apposition and the creation of osseointegration patterns. This computed osseointegration setting can then be used instead of the pre-defined patterns presented in Chapter 6 or the homogeneous approach used in Chapter 7. This procedure provides a more accurate representation of osseointegration and thus, a more realistic assessment of long-term stability. Furthermore, this allows to have one streamlined workflow for the whole life cycle of an implant, where all three steps of implant stability analysis (insertion, osseointegration, debonding) are governed by the same key parameters and macroscopic contact phenomena. A summary of existing osseointegration and bone remodeling algorithms is given in Section 2.3.3.2.

Parts of this chapter are in preparation for publication as [START_REF] Sauer | A fully coupled chemo-thermo-mechanical contact model and its application to bonding and debonding[END_REF].

Simple Evolution Laws for Osseointegration

To model osseointegration over time, the formulation of chemical contact reactions is utilized. Here, φ = φ(t, p c , g n ) is defined as the degree of osseointegration during healing 1 . Then, φ 0 introduced in Chapter 6 becomes equivalent to φ after a certain healing time t and φ0 = 0 represents the initial state before healing. To define increasing bonding due to osseointegration, 1. Overall, a unified model where φ ∈ [0, 1] represents both the increasing degree of osseointegration during healing and the (de)bonding state of the BII after healing and during loading can be established. Then, φ0 corresponds to the initial state before healing (usually φ0 = 0). φ increases and/or decreases during the osseointegration process (due to bone apposition and bone resorption) and decreases during debonding. In order to emphasize the difference between modeling the osseointegration and the debonding processes, a different notation φ for osseointegration is chosen here. The overall reaction rate for truly touching contact k

A c = - → k A c - ← - k A c is then k A c (p c ) =                1 p opt,1 c < p c < p opt,2 c , 1 2 -1 2 sin π 2b 1 pc p opt,1 c -b 1 -1 p min c ≤ p c ≤ p opt,1 c , 1 2 -1 2 sin π 2b 2 pc p opt,2 c -b 2 -1 p opt,2 c ≤ p c ≤ p max c , 0 p c < p min c ∨ p c > p max c . (8.9)
This model corresponds with observations from the literature where excessive stress or pressure can inhibit bone growth [START_REF] Sotto-Maior | Influence of high insertion torque on implant placement: an anisotropic bone stress analysis[END_REF].

The reaction rate for short range contact, namely

- → k = - → k A SR (g n ),
is designed within the limits for the contact gap g n , g opt = 500 µm and g lim = 1000 µm, as introduced in Chapter 5. For g n < g opt the reaction rate is 1. For g n >= g opt the reaction rate decreases until it reaches 0 at g n = g lim , i.e.

- → k A SR (g n ) =          1 g n < g opt , 3 4 -1 4 sin π 2b 3 gn gopt -b 3 -1 g opt ≤ g n ≤ g lim , 0 g n > g lim , (8.10) with b 3 = g lim -g opt 2 g opt .
(8.11)

The gap limit g lim defines the maximal gap where contact reactions can occur, and thus osseointegration, and g opt is the gap until which full osseointegration ( φ = 1) is possible, and corresponds to observations from clinical trials and experiments [START_REF] Fernandes | A contact model with ingrowth control for bone remodelling around cementless stems[END_REF][START_REF] Jasty | Bone ingrowth into porous-surfaced harris/galante prosthesis acetabular components retrived from human patients[END_REF][START_REF] Mackenzie | Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty[END_REF][START_REF] Schmalzried | The mechanism of loosening of cemented acetabular components in total hip arthroplasty. analysis of specimens retrieved at autopsy[END_REF][START_REF] Spears | Interfacial conditions between a press-fit acetabular cup and bone during daily activities: implications for achieving bone in-growth[END_REF][START_REF] Udomkiat | Cementless hemispheric porous-coated sockets implanted with press-fit technique without screws: average ten-year follow-up[END_REF]. The overall reaction rate for short rage contact k

A SR = - → k A SR - ← - k A SR is then k A SR (g n ) =          1 g n < g opt , 1 2 -1 2 sin π 2b 3 gn gopt -b 3 -1 g opt ≤ g n ≤ g lim , 0 g n > g lim .
(8.12)

The reaction rates k A c and k A SR are shown in Figure 8.1. The analytical solution of Eq. (8.4) for model A is given by φA (8.13) and the corresponding numerical solution obtained with the implicit backward Euler method is 

(t) = - → k A 1 -e -krt ,
φn+1 A = ∆t k r - → k A + φn A 1 + ∆t k r . ( 8 

Model C

An even simpler but continuous model can be derived by modeling truly touching and shortrange contact based on the contact gap alone. The forward reaction is modeled as

- → k C =    0 if g n < (g opt -∆g) ∨ g c > g lim , -→ k 0 2 • cos gc-g lim g lim -gopt if (g opt -∆g) ≤ g c ≤ g lim .
(8.20)

The backward reaction is modeled as (8.22) and the numerical solution is given by φn+1

← - k C =          ← - k 0 (g c + g lim + ∆g) 2 g n < (g opt -∆g), 0 (g opt -∆g) ≤ g c ≤ g lim , ← - k 0 (g c -g lim ) 2 g c > g lim , ( 8 
(t) = 1 1 - ← - k C -→ k C + 1 -e -krk C t ,
C = ∆t k r - → k C + φ n C ∆t k r k C + 1 . (8.23)
The maximal degree of osseointegration is given by φ

max C = - → k C /k C .
An example for the evolution of φ at a certain point on the BII over time is given in Figure 8.4. 

Application to Coin-Shaped Implants

To demonstrate the new osseointegration laws and the complete workflow from initial stability, over osseointegration, to long-term stability and debonding, the CSI model introduced in Chapter 6 is used.

Setup

Unless stated otherwise, the same geometry, boundary conditions, material parameters, and solver parameters as in Section 6.4.1 are used.

To adequately demonstrate the pressure-and contact gap-dependent osseointegration law, the bone block is modeled with a rough upper surface by modifying the z-coordinate of the upper bone surface according to z(x, y) = γ sin 0.1π λ x + sin 0.1π λ y , (8.24)

where γ = 500 µm is the peak-to-peak amplitude and λ = 10 µm is the wave period. The implant surface remains perfectly flat.

The bodies are meshed according to the parameters given in Table 8.1, where n e denotes the number of elements of the body/surface and n gp denotes the number of Gauss-points per element. While the bulk is discretized with linear Lagrangian shape functions, the contact surfaces are discretized with quadratic NURBS (Corbett andSauer, 2014, 2015). The mesh of the complete setup and an enlargement of the bone surface profile are shown in Figure 8.5.

The parameters from the evolution laws introduced in Sections 8. g opt 500 µm (2002; 1988; 1994; 1992; 2000; 2002) 

Results

Figure 8.6(a) shows the surface profile of the bone block z under the CSI before insertion, the normal contact gap g n and the contact pressure p c at the BII after insertion, respectively. The average contact pressure is -5.55 MPa, which is within the pressure limits p min While the patterns of osseointegration correspond with the gap/pressure field and do not change over time, the increase in the degree of osseointegration φ is visible. The whole progression of the average degree of osseointegration φ for all models over time is shown in Figure 8.7. The average degree of osseointegration is almost the same for the first two models until t ≈ 18 days. For increasing t the model A predicts a higher average osseointegration than model B, due to the large plateau in c A c . The least increase in φ is predicted by model C, due to bone resorption.

Last, the debonding of the osseointegrated implant is simulated by rotating the implant around its z-axis, as is done in Section 6.4 and 7.2. Figure 8.8 shows the torque curves for a respective healing time of 14, 30, and 100 days. As expected, only the magnitude of the maximal torque is affected, while the rest of the torque curve remains independent of φ and t. 

Discussion and Limitations

This work aims to provide an outlook on (i) how to couple osseointegration laws with simulations of initial and long-term stability and (ii) how simple osseointegration laws can be designed based on the same mechanical parameters that govern models for primary and secondary stability. Furthermore, due to the use of a state variable as the representation of osseointegration, the presented approach is suitable for explicitly modeling the subsequent debonding of the (partially) osseointegrated interface, in contrast to common osseointegration and bone remodeling algorithms that result in fully bonded surfaces [START_REF] Andreykiv | Bone ingrowth simulation for a concept glenoid component design[END_REF][START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF][START_REF] Fernandes | A contact model with ingrowth control for bone remodelling around cementless stems[END_REF][START_REF] Spears | Interfacial conditions between a press-fit acetabular cup and bone during daily activities: implications for achieving bone in-growth[END_REF][START_REF] Viceconti | Effect of the initial implant fitting on the predicted secondary stability of a cementless stem[END_REF]. Due to the inclusion of reverse reaction rates, bone resorption and bone remodeling can simply be integrated into the model. Full coupling would then allow to model the effect of applied loads during healing on the osseointegration of the implant. The average degree of osseointegration predicted by the models and shown in Figure 8.7 corresponds well to the results of other more complex, numerical approaches [START_REF] Caouette | A new interface element with progressive damage and osseointegration for modeling of interfaces in hip resurfacing[END_REF][START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF][START_REF] Tarala | Toward a method to simulate the process of bone ingrowth in cementless tha using finite element method[END_REF].

Due to the idealized contact conditions and the lack of experimental results to adequately choose the parameters of the evolution laws, the calculated osseointegration of over 70% after complete healing (here, t = 100 days) is rather high. In reality, usually only 30-70% of the implant surface is osseointegrated [START_REF] Brånemark | Osseointegrated implants in the treatment of the edentulous jaw. experience from a 10-year period[END_REF][START_REF] Brånemark | Biomechanical characterization of osseointegrazion during healing: an experimental in vitro study in the rat[END_REF][START_REF] Marin | Biomechanical and histomorphometric analysis of etched and non-etched resorbable blasting media processed implant surfaces: an experimental study in dogs[END_REF]. Thus, more experimental results are needed to derive more realistic parameters for the evolution laws.

Although, a rough surface profile was use to investigate osseointegration under truly touching and short range contact conditions, no contact gap remained. Therefore, the models should be applied to rougher surface profiles and different pressure conditions (e.g. tension), to assess if the models generally overestimate the degree of osseointegration. Especially the behavior for mainly short range contact, as is the case for, e.g. acetabular cup implants [START_REF] Jasty | In vivo skeletal responses to porous-surfaced implants subjected to small induced motions[END_REF][START_REF] Mackenzie | Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty[END_REF][START_REF] Schmalzried | The mechanism of loosening of cemented acetabular components in total hip arthroplasty. analysis of specimens retrieved at autopsy[END_REF][START_REF] Udomkiat | Cementless hemispheric porous-coated sockets implanted with press-fit technique without screws: average ten-year follow-up[END_REF] would be of interest.

The presented evolution laws are simplified significantly and leave room for improvement and extension. They were created mainly for illustrative purposes and are phenomenological at best. Some limitations and possible extensions for future work need to be addressed nonetheless, apart from the limitations introduced by the usage of the models from Chapters 6 and 7 (and discussed in their respective sections).

First, in the presented example, it is assumed that no change in contact and loading condition during the healing phase takes place. For a more realistic approach, a full coupling between mechanical and chemical contact should be established, see, e.g. Sauer et al. (2022). Based on this coupling, an explicit model of bone apposition and resorption based on, e.g. excessive micromotion at the BII, could be established, as is done in [START_REF] Caouette | A new interface element with progressive damage and osseointegration for modeling of interfaces in hip resurfacing[END_REF]; [START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF]; [START_REF] Tarala | Toward a method to simulate the process of bone ingrowth in cementless tha using finite element method[END_REF].

Second, not only the bonding state but also the maturation of bone tissue should be considered, by e.g., time-dependent change of material parameters such as bone stiffness, as is done in [START_REF] Andreykiv | Bone ingrowth simulation for a concept glenoid component design[END_REF]; [START_REF] Dickinson | Implant-bone interface healing and adaptation in resurfacing hip replacement[END_REF]; [START_REF] Mukherjee | Influence of implant surface texture design on peri-acetabular bone ingrowth: a mechanobiology based finite element analysis[END_REF]; [START_REF] Tarala | Toward a method to simulate the process of bone ingrowth in cementless tha using finite element method[END_REF]. Another approach would be to use evolution laws with focus on the biochemical processes, as presented by [START_REF] Andreykiv | Bone ingrowth simulation for a concept glenoid component design[END_REF]; [START_REF] Chanda | A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling[END_REF]; [START_REF] Dickinson | Implant-bone interface healing and adaptation in resurfacing hip replacement[END_REF]; [START_REF] Mukherjee | Influence of implant surface texture design on peri-acetabular bone ingrowth: a mechanobiology based finite element analysis[END_REF].

Third, these evolution laws do not model actual bone growth and thus no change in geometry at the BII takes place. However, bone growth changes the geometry (e.g. contact gaps are filled over time) and mechanical conditions (e.g. change in stress distribution, bone stiffness, and material symmetry) at the BII, which needs to be accounted for.

Last, instead of using smooth or artificially rough surfaces, this model can also be used with actual rough or porous implant surfaces, as well as geometries obtained from topology optimization. Similarly, measurements or geometries obtained from µCT can be used for the bone block.

Conclusion

Overall it is shown that simple evolution laws based on macroscopic parameters such as the contact gap and contact pressure can provide reasonable initial estimations of osseointegration over time and that a simulation workflow and analysis of the implant life cycle, where each step is based on the same mechanical factors, is possible and easy to establish. While providing room for improvements and the ability to be coupled with different models, the presented modeling approach poses an initial step to a holistic approach towards modeling implant behavior inside the patients body.

Chapter 9 Conclusion

This chapter concludes this thesis by summarizing the most important aspects of the presented models of primary and secondary stability, and osseointegration. Furthermore, a perspective for future challenges and work is given.

Summary

The aim of this thesis was to develop adhesive and frictional contact models that can characterize the contact behavior of the bone-implant interface during and after surgery, as well as after osseointegration. Therefore, critical reviews of the current state of the art of numerical models for primary and secondary stability, as well as osseointegration and bone remodeling were given first.

The first project dealt with the determinants of initial stability of an uncemented ACI in a 3D hemi-pelvis. The effect of variations of the bone stiffness, interfacial friction coefficient, and diametric interference fit on stability in terms of pull-out force and polar gap was presented and discussed. The data suggested, that increasing the interference fit and friction coefficient excessively does not improve stability and a careful choice is more beneficial. Maximal initial stability can be achieved by optimal combination of the friction coefficient and interference fit based on the bone stiffness. Furthermore, it was shown that the pull-out force cannot be taken as the sole quantification of initial stability (as is done in the clinic), as high pull-out forces coincide with large polar gaps that can compromise long-term stability. This encourages the development of guiding tools for surgeons to help achieving and quantifying initial stability better.

To approach long-term stability and debonding of osseointegrated implants, a modified Coulomb's friction law was developed. This law utilizes a variable friction function, based on the current bonding and deformation state of the BII, thus allowing to describe bonded, debonding, and debonded interface behavior. Before debonding, a high friction coefficient is used to mimic the effects of bonding and adhesion. During deformation and debonding of the BII, the friction coefficient decreases to allow for complete debonding of the interface. This model poses a contrast to common approaches that utilize perfectly bonded or fully sliding elements. Case studies with simple geometries and homogeneous osseointegration can be solved analytically, while complex contact conditions and inhomogeneous osseointegration require numerical analysis. The model was applied to debonding, partially osseointegrated CSI and proved to be a good characterization of the debonding behavior when compared to experimental data. Furthermore, both the analytical and the numerical model allowed for the estimation of the shear stiffness and friction coefficient of the BII. This new contact model was then applied to the debonding of osseointegrated ACI, to determine the importance of osseointegration on long-term stability, but also the relevance of initial stability. Three different loading scenarios were considered: normal pull-out, tangential pull-out and torsion. Stability increased almost linearly for increasing osseointegration for all studied parameters. The same parameter values of the interference fit, the bone stiffness, and the friction coefficient as for initial stability produced peak values for pull-out force and torque.

To improve the modified Coulomb's friction model and to account for adhesion in normal direction, it was extended by an exponential cohesive zone model. Furthermore, the tangential contact traction was shifted to allow for adhesive friction for positive contact stress (tension). The models capabilities were first demonstrated on a CSI and then applied to the debonding of osseointegrated ACI. While having only small impact on the overall load-displacement behavior of the system, the addition of normal adhesion lead to a significant increase in predicted pull-out force and torque, especially for cases with low initial stability, i.e. case with a larger contact surface. While osseointegration increased stability up to 116% compared to the initial stability, even perfect osseointegration could not overcome poor initial stability, further stressing the importance of adequate primary stability and the development of corresponding measurement and guiding techniques.

The two models for long-term stability presented in this thesis used either pre-defined osseointegration patterns or a homogeneous distribution of osseointegration of the contact surface. To complete the workflow of the numerical modeling of implant stability and the implant life cycle presented in this thesis, two simple evolution models for osseointegration were introduced and coupled with simulating initial and long-term stability. The three evolution laws incorporate bone apposition as well as bone resorption, based on the contact state after insertion in terms of contact gap and contact pressure. The three laws were then applied to CSI and the resulting osseointegration was used as input for debonding tests. Although the presented evolution laws are very simple, they produce similar results as more complex osseointegration and bone remodeling laws. As the predicted osseointegration does not result in fully bonded elements, as is the more common approach in the literature, the predicted osseointegration can be used as a more accurate input for simulating long-term implant stability and debonding.

Overall, this thesis provides consecutive, numerical models of implant primary stability, osseointegration, and secondary stability. The presented models provide insight on the behavior of the bone-implant interface and help in understanding the phenomena of implant debonding. They can also be used to help develop methods and guidelines for surgeons to support their choice of implant and surgical technique for a specific patient. Furthermore, they enable a holistic approach to model the in vivo behavior of bone implants during the surgery, osseointegration, and cyclic loading after healing. Thus, the suggested models can be used as a tool in implant conception, design, optimization, and evaluation. Last, the explicit modeling of the adhesive and macroscopic debonding of the bone-implant interface in normal and tangential direction poses a novel approach in modeling debonding of the osseointegrated bone-implant interface. Although specifically designed for this purpose, the (extended) modified Coulomb's friction law can also be applied to simulation the debonding of all kinds of imperfectly bonded interfaces.

Perspective

The presented formulations can be extended in different aspects apart from the limitations and extensions already discussed in the respective chapters and above.

Coupled Models

FE models of orthopedic devices can be used to assess if new implant designs (or subtle changes in design) can lead to significant improvements compared to existing implants and if they are robust to patient and surgical variability. Furthermore, they can be used to develop decision support tools for planing orthopedic surgery, such as computer assisted surgery, customized patient implants and surgical techniques, and quantification of initial stability during surgery, by providing additional information about the potential risk of failure on a patient-specific basis. However, no single model will be able to address all relevant factors due to the multi-scale, multi-time, and multi-body biomechanical problem of artificial joint replacements. Therefore, the coupling of different models to simulate the complete life cycle of an implant from the surgery, over osseointegration and bone remodeling, to long-term behavior and stability will be necessary to make realistic predictions of the performance of new implants and surgical techniques. In the case of this work, the deformation and stress data from the primary stability model discussed in Chapter 5 can be used as input for stress-or micromotion-based prediction of osseointegration and remodeling as demonstrated in Chapter 8. Then, the osseointegration patterns and conditions provided by these models can in turn be used as input for secondary stability models, as discussed in Chapters 6 and 7. Models of secondary stability can also be combined with models that incorporate complex cyclic loading conditions and boundary conditions that account for, e.g., muscle movement, tendons, and other soft tissues. Due to the general nature of the models presented in Chapter 6 and 7 they can also be used to characterize the behavior of other (imperfectly) bonded interfaces that exhibit tangential and normal bonding and debonding.

Additive Manufacturing and Shape Optimization

With the rise of additive manufacturing in implantology and the improvement of medical imaging methods, numerical models will need to consider realistic and complex implant and bone geometries. In the long-term, homogeneous material models will have to give way to the non-homogeneous, anisotropic bone properties mapped from µCT and other measurement techniques. Furthermore, a coupling of shape optimization algorithms, which are more and more used to design implants, with osseointegration and debonding models could improve the performance and life expectancy of implants as well allow for full customization based on the patients complete physiological condition.

Experimental Measurement Techniques

Another factor is the amount of limitations and unknowns in the modeling of the BII, due to the lack of experimental data to populate the numerical models or the need to better understand the fundamentals of the biomechanics of the BII over time. Compared to other engineering disciplines like automotive or aerospace engineering, the knowledge of loading conditions acting on orthopedic devices, including the interaction of muscles, tendons and soft tissue, is still quite limited. To the author's knowledge there still exist no in vivo studies to, e.g., measure the full stress-strain distribution at the BII of joint implants for different patient and loading scenarios over time, due to the difficulties in obtaining that data. Further computational studies cannot reliably provide more insight on in vivo behavior, as the level of sophistication of the models is beyond the point of verification with current in vivo, ex vivo, and even some in vitro measurement techniques. Especially, contact mechanics require experiments with a wide range of loading and interface conditions to generate enough data to formulate, populate, and verify new contact models. Therefore, it becomes more and more difficult to reliably assess the performance of implants and surgical techniques with numerical models. If FE models are to be trusted and accepted by clinicians, they need to demonstrate that they are capable of predicting realistic in vivo behavior. Thus, further development of experimental measurement techniques and quantification of relevant biomechanical metrics (e.g., stress-strain behavior, micromotion, friction, adhesion, debonding under tension) is essential to provide the data necessary to develop and improve numerical models. However, the development of new and more accurate experimental machinery and techniques that are able to provide the necessary data is difficult and time consuming and provides a constant challenge. Until then, a certain acceptance that FE studies may not be representative of the in vivo conditions but an idealized model, needs to be established.

Résumé substantiel

Les implants osseux permettent le remplacement ou la réparation partiels ou complets de structures ostéoarticulaires, et constituent actuellement l'approche thérapeutique la plus utilisée pour soigner les articulations et les os endommagés. Du fait de la hausse continue de l'espérance de vie, on assiste à une augmentation rapide du nombre de patients atteints d'affections et de maladies musculosquelettiques telles que les fractures, l'ostéoporose et les métastases osseuses, qui nécessitent un remplacement partiel ou total des articulations. Certains cas relativement courants nécessitent le remplacement total de l'articulation, comme c'est le cas lors d'une arthroplastie totale de la hanche ou du genou. Bien que ces interventions soient les plus fréquentes en chirurgie orthopédique, on constate de nombreux cas de descellements aseptiques entraînant souvent des échecs implantaires difficiles à anticiper, car les phénomènes responsables du remodelage osseux et de l'apposition osseuse sont complexes et restent mal connus.

L'un des facteurs les plus importants pour assurer le succès d'un implant osseux est sa stabilité mécanique. Un bon contact initial entre l'os et l'implant, une bonne qualité osseuse et une quantité appropriée de micromouvements à l'interface os-implant sont autant de facteurs qui garantissent une bonne croissance de l'os néoformé et donc l'intégration de l'implant à l'intérieur du corps du patient. Une mauvaise stabilité initiale, une mauvaise répartition de la charge et des micromouvements importants peuvent au contraire entraîner une mauvaise intégration de l'implant, puis un descellement et un échec chirurgical. Ces situations peuvent augmenter le frottement au niveau de l'interface os-implant, ce qui peut également entraîner des échecs implantaires.

On distingue deux types de stabilité implantaire : 1. la stabilité primaire (ou initiale) pendant l'opération chirurgicale, qui est principalement régie par des facteurs mécaniques tels que des phénomènes d'imbrication et la qualité osseuse du patient, et 2. la stabilité secondaire (ou à long terme), qui est atteinte plusieurs semaines ou mois après l'opération par la formation et la maturation de tissu osseux au niveau de l'interface os-implant, un processus appelé ostéointégration. Alors que l'évolution de la stabilité secondaire de l'implant est régie par des processus biomécaniques complexes, le comportement mécanique de l'interface os-implant reste crucial pour le résultat chirurgical. Par conséquent, les modèles présentés dans cette thèse sont basés sur la biomécanique.

Dans le domaine du génie mécanique et de la mécanique des structures, la modélisation et la simulation numérique sont des approches déjà bien établies pour concevoir, simuler et optimiser les procédures, les machines et les procédés mécaniques, biologiques et chimiques. Cependant, le contact adhésif entre les os et les implants est un problème multi-physique et multi-échelle complexe, qu'il reste difficile de modéliser finement en prenant en compte tous les phénomènes pertinents. Il est donc encore difficile de comprendre et de prédire les phénomènes i 9. Résumé se déroulant lors de l'ensemble du cycle de vie d'un implant. Comme la stabilité de l'implant implique des phénomènes à différentes échelles spatio-temporelles, la biomécanique de l'implant, qui comprend la mécanique tissulaire, structurale et du contact ainsi que la biochimie, présente un certain nombre de défis uniques et absents des applications de modélisation informatique plus traditionnelles. De plus, en raison de la taille et de la forme des prothèses articulaires usuelles et de l'importance des phénomènes de remodelage osseux, les données expérimentales concernant la stabilité à long terme sont rares, ce qui rend la validation des modèles numériques difficile.

L'objectif des modèles numériques en lien avec l'implantologie est de modéliser le remodelage osseux et l'ostéointégration, d'acquérir une compréhension fondamentale du comportement mécanique de l'interface os-implant, d'aider à la conception de nouveaux implants et à leurs tests précliniques, et de comparer leurs performances avec celle des implants existants. Bien qu'il existe de nombreuses études numériques concernant ces aspects, la modélisation et la prédiction spécifiques au descellement dû à une ostéointégration imparfaite font encore défaut dans la littérature. L'objectif de ce travail est de proposer plusieurs modélisations complémentaires du contact adhésif à l'interface os-implant pendant et après l'opération chirurgicale. Les modèles de contact développés prennent en compte le comportement non linéaire du matériau, les grandes déformations, le frottement adhésif, l'ostéointégration et le décollement de l'interface os-implant. L'os et l'implant sont modélisés comme des solides déformables. Ces modèles sont d'abord appliqués à des implants de forme cylindrique pour vérification et validation, puis à une cupule acétabulaire utilisée dans le cadre des prothèses de hanche pour en simuler la stabilité primaire et secondaire. Trois approches complémentaires sont proposées.

Dans un premier temps, les déterminants biomécaniques de la stabilité primaire d'une cupule acétabulaire non-cimentée sont présentés. Pour quantifier la stabilité primaire, l'insertion d'une cupule acétabulaire dans un hémi-bassin humain et son retrait ultérieur sont simulés. La stabilité primaire est quantifiée par l'espace restant entre la cavité de la hanche et l'implant après insertion et par la force d'arrachement maximale. L'influence d'un ajustement serré lors de l'insertion de la cupule, du coefficient de frottement à l'interface et de la rigidité du tissu osseux cortical et trabéculaire sur la stabilité primaire est discutée. Sur la base de la rigidité osseuse d'un patient, des combinaisons optimales de l'ajustement serré et du coefficient de frottement peuvent être identifiées pour assurer une stabilité initiale optimale. Tous les paramètres étudiés influencent significativement la stabilité primaire de la cupule acétabulaire. Une combinaison optimale de coefficient de frottement et de l'ajustement serré a été déterminée. La forte corrélation entre les paramètres susmentionnés nécessite donc une attention particulière de la part des fabricants d'implants et des chirurgiens afin de maximiser la stabilité primaire de la cupule acétabulaire. Les résultats numériques sont cohérents avec les études expérimentales et numériques précédentes et aideront les chirurgiens à choisir l'ajustement serré optimal d'une manière spécifique au patient, en fonction de sa qualité osseuse et de l'implant choisi. Les résultats montrent également qu'une différence supérieure à 1,4 mm entre le diamètre de la cavité osseuse et celui de la cupule ainsi qu'un coefficient de frottement supérieur à 0,6 ne permettent pas d'améliorer la stabilité primaire de la cupule acétabulaire. Ces résultats peuvent aider à la conception des implants et au choix des traitements de surface appropriés. De plus, cette étude fournit des informations détaillées sur l'état de contact local et sur l'influence des paramètres spécifiques à l'implant et au patient, et constitue donc une étape importante vers la modélisation et la compréhension de la stabilité implantaire. Cependant, cette première partie ne prend pas en compte les phénomènes d'adhésion à l'interface os-implant.

Dans un second temps, un modèle phénoménologique du comportement de contact frictionnel relatif aux implants ostéointégrés est développé. La loi de Coulomb est étendue en considérant un coefficient de frottement variable modélisant la transition d'un état intact (interface ostéointégrée) à un état décollé. Le coefficient de friction est déterminé sur la base d'une variable d'état dépendant du glissement total à l'interface os-implant. Alors que l'état intact correspond à une interface ostéointégrée, donc à la présence de liaisons adhésives et à un plus grand coefficient de frottement, l'état décollé dénote un comportement en frottement pur à l'interface avec un coefficient de frottement plus faible. Ainsi, ce modèle peut rendre compte des forces de cisaillement tangentielles plus élevées observées dans les implants ostéointégrés par rapport aux implants non-ostéointégrés. Ce modèle est appliqué au décollement en torsion d'un implant cylindrique et les résultats sont comparés aux données expérimentales ainsi qu'à un modèle analytique développé précédemment. L'hypothèse d'une transition en douceur d'un état intact à un état cassé, caractérisée par un coefficient de frottement décroissant pendant le processus de décollement, permet d'obtenir un bon accord entre les données expérimentales et les approches analytique et numérique. Bien que le modèle analytique soit relativement simple, il s'agit d'un moyen efficace de fournir des estimations rapides pour ce type d'expérience. Les résultats numériques, en revanche, sont plus précis et permettent de modéliser plus finement un comportement du matériau, une distribution des contraintes et une ostéointégration partielle plus complexes. Les deux approches permettent d'estimer plusieurs paramètres importants de l'interface os-implant. Le modèle de frottement proposé permet de comprendre les phénomènes de décollement à l'interface os-implant.

Dans un troisième temps, la loi de Coulomb modifiée développée précédemment pour le décollement tangentiel est appliquée pour simuler et estimer les déterminants de la stabilité à long-terme d'une cupule acétabulaire. De plus, le modèle est complété en considérant l'adhésion dans la direction normale via l'utilisation d'un modèle de zone cohésive afin de tenir compte du décollement dans la direction normale et de permettre la prise en compte du frottement adhésif. Ce modèle de contact est appliqué pour simuler en 3D le descellement d'une cupule acétabulaire ostéointégrée à travers différents tests d'arrachement. La stabilité de l'implant est quantifiée par la force et le couple d'arrachement, et les déterminants biomécaniques de la stabilité à long terme, tels que la stabilité primaire et le degré d'ostéointégration, sont évalués. Les résultats sont comparés au modèle purement tangentiel pour identifier la pertinence de l'adhérence normale dans le descellement de la cupule acétabulaire. Tout en n'ayant qu'un faible impact sur le comportement global charge-déplacement du système, l'ajout d'une adhérence normale conduit à une augmentation significative de la force d'arrachement et du couple prédits, en particulier pour les cas ayant une faible stabilité initiale, et donc une plus grande surface de contact. Bien que le processus d'ostéointégration permette d'augmenter la stabilité d'un implant d'une valeur pouvant aller jusqu'à 116% de sa stabilité primaire, même une ostéointégration parfaite ne suffit pas à compenser une mauvaise stabilité primaire. Cela souligne en outre l'importance d'une bonne stabilité primaire et le développement de techniques de mesure et de guidage adéquates pour les chirurgiens.

Les modèles présentés jusqu'à présent portaient sur la stabilité initiale et à long terme et s'appuyaient sur des distributions d'ostéo-intégration prédéfinies. Pour compléter le workflow de la modélisation numérique de la stabilité des implants présenté dans cette thèse et pour modéliser le cycle de vie complet de l'implant, l'ostéointégration de l'implant doit également être modélisée. C'est pourquoi trois modèles simples d'évolution pour l'ostéointégration, basés It should be noted, that the chosen parameter set has an influence on the computing time and the accuracy. Parameter combinations that produce high pull-out forces also require more computing time. Furthermore, Newton-Raphson convergence could not be achieved for all parameter combinations with ∆ls = d 0 /200. In those cases, the load step size had to be decreased to ∆ls = d 0 /5000 to ensure convergence.

B.2 Modified Coulomb's Friction Law on Coin-Shaped Implants

To analyze the convergence behavior of the MC applied to the CSI, three different finite element meshes were constructed, denoted coarse, medium, and fine with 3,390, 12,354, and 47,130 degrees of freedom, respectively. In addition, different load step sizes [0.1 • , 0.05 • , 0.02 • , 0.01 • , 0.005 • , 0.004 • ] were investigated, corresponding to a number of load steps of [100,200,500,1,000,2,000,2,500], respectively. For the parameters, data set 1 with µ b = 0.4 was chosen.

To compare the different setups, we define the mean relative torque error where here M max z is the maximum torque obtained by the numerical solution. 6.24) for different configurations of data set 1 (µ b = 0.4). Adopted from [START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF]. 

Mz

reaches its limit for all meshes after 1,000 load steps to 0.0175, 0.0171, and 0.017, respectively. This is also the case for the mean percentage error shown in Table B.1, with its lowest value of 2.176 % for the fine mesh and the highest value of 2.241 % for the coarse mesh. In addition, the error is increasing with the number of load steps for the coarse mesh. This stems from the coarse resolution of the peak for larger load steps and thus leading to the torque values to be closer to the experimental data. It should be noted, that the mesh size has a small effect on x B.3. Modified Coulomb's Friction Law on Acetabular Cup Implants the outcome of the parameter study and thus, both e mp

Mz and e rel Mz can be further minimized by performing a separate parameter estimation for each mesh.

B.3 Modified Coulomb's Friction Law on Acetabular Cup Implants

To analyze the convergence behavior of the MC applied to the acetabular cup implant, five different finite element meshes for the bone block were constructed with increasing refinement of the elements in x-and y-direction. The number of elements for each mesh are shown in (φ 0 = 1) = 659 N. The corresponding relative error of the maximum pull-out force of the meshes 1 to 4 is 10.5, 6.1, 2.1, and 0.4%, respectively. Due to the focus on contact problems, the mesh was only refined in x-and y-direction. The number of elements in z-direction remains 5, as a previous convergence study showed no measurable improvement with further refinement in z-direction. Due to the lack of comparable experimental data and the amount of computations (58 with standard Coulomb's law, 435 with each of the two contact models)
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 21 Figure 2.1 -Schematic illustration of the hierarchical structure of bone tissue. Adopted and modified from[START_REF] Grandfield | Bone, implants, and their interfaces[END_REF].

  Figure 2.2 -Examples of different endosseous implants: (a) Spinal implant (4web medical, 2021). (b) Dental implant (biotech-dental). (c) Knee implants (strykerCTKS).

  Figure 2.3 -Different images of a CSI: (a) CSI after implantation in a rabbit tibia. (b) Histological image of an osseointegrated and cut CSI after a healing time of 10 weeks. Adopted and modified from Vayron et al. (2014); Fraulob et al. (2020b).

  Figure 2.4 -Total hip replacement: (a) Schematic illustration of the components and the final system of a total hip replacement. (b) Implant position inside the patient. (c) X-ray of a total hip replacement inside a patient. Adopted and modified from AAOS; Learmonth et al. (2007).
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 25 Figure 2.5 -A variety of ACI with different surface treatments and with and without screw holes (b.braun; strykerTridentII).
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 31 Figure 3.1 -Reference configuration B 0k , current configuration B k and their respective surfaces ∂B 0k and ∂B k .
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 32 Figure 3.2 -Schematic illustrations of the basic surface description and contact kinematics. Adopted and modified from Duong and Sauer (2019).
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 33 Figure 3.3 -Illustration of adhesive contact models.
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 34 Figure 3.4 -Frictional, tangential traction for a single point for constant pressure, defined by Coulomb's law (3.38), as a function of the tangential gap g t = g t . Here, L 0 is a reference length.

  the external body forces and tk are the surface forces with the Neumann boundary ∂ tB k ⊆ ∂B k . Taking into account local mass conservation (3.42) and Cauchy's theorem (3.10) and applying the divergence theorem (3.39), one can obtain the local form of the linear momentum balance as

  .46) and are assumed to be pairwise disjoint (see Figure 3.5). ∂ ϕ denotes the Dirichlet boundary, ∂ tB k denotes the Neumann boundary, and ∂ c B k is the contact boundary. When including contact phenomena, the definition of the Cauchy stress tensor (3.10) is extended to

  .60) which allows the linearization to be done contribution-wise. The linearizations of Eqs. (3.55)-(3.57) depend on the applied constitutive and contact models and are presented in Appendix A.
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 41 Figure 4.1 -Example of a spatial discretization of a 2D body B k with quadrilateral, linear finite elements Ω e k , Γ e k . Blue dots represent the element nodes.
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 43 Figure 4.3 -Mappings of the parent bulk and surface element Ω and Γ to their respective reference and current configurations.

Figure

  Figure 4.4 -Contact projection approaches. Green dots denote FE nodes while blue crosses represent the Gauss points. Black arrows denote quadrature point entries in f e ck and red arrows denote quadrature point entries in f e c . Adopted and modified from Sauer and De Lorenzis (2015).

  (4.44) while the tangential traction becomes ||t t || = min( t ||∆g e ||, t slide t Normal traction of a single point for pure pressure as a function of the normal gap g n (4.44).

  gt/L 0 tangential traction tt/µtn (b) Tangential traction for a single point for constant pressure, defined by Coulomb's law (3.38) as a function of the tangential gap g t = g t .
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 45 Figure 4.5 -Penalty contact traction. Here, L 0 is a reference length and E 0 is a reference stiffness.

  loading loop: at each quadrature point -apply load step: n → n + 1 -provide initial guess for the nodal displacement u 0 and the current contact surface configuration ∂ c B n+1 global Newton-Raphson loop: iterate for i → i + 1 until converged 1. loop over the bulk elements Ω e and their quadrature points -compute and assemble the internal forces f int and tangent matrices k int contact loop: loop over the slave contact elements Γ e k and their quadrature point 2.1 determine current position x n+1 k of the quadrature point 2.2 closest point projection: -solve Eq. (3.25) with Newton's method to obtain the coordinates ξ p of the closest projection point xp ∈ ∂cB of x n+1 k 2.3 contact computation: evaluate the normal contact distance g n and corresponding direction n p : -if gn ≥ 0: set tc and corresponding gradients to zero; set ξ s = ξ p -if gn < 0: -evaluate the normal contact traction tn = pc np based on Eq. (4.44) -evaluate the tangential contact traction tt: -elastic predictor step: assume sticking (4.47) -check slip criterion (3.36): if fs > 0 perform inelastic corrector step tt = t slide t τ p -compute the gradients ∂tc/∂u e k , ∂tc/∂u e , according to Appendix A -assemble tangent matrices kc 2. apply boundary conditions 3. solve k∆u = -f 4. update u i+1 = u i + ∆u and evaluate error norm 5. check the convergence of the global Newton-Raphson loop Chapter 5

Figure

  Figure 5.1 -(a) Image of the pelvis geometry with the ACI and ancillary. Red elements indicate fixed rigid boundary conditions. Blue elements indicate the region where the displacement is applied. (b) Enlargement of the FE mesh at the cavity. Brown elements indicate cortical bone and green elements represent trabecular bone. Adopted from Immel et al. (2021a).

Figure 5 .

 5 Figure 5.2 shows the variation of the vertical reaction force F z at the upper surface of the ancillary as a function of time for the reference case.

Figure 5 ..Figure 5 . 3 -

 553 Figure 5.3 shows the distribution of the von Mises stress σ M in the hip cavity for the reference case and the optimal case for E * tb (E * cb , IF = 0.8 mm, µ = 0.6, see Section 5.3.5) during the holding phase at ls = 220 and at F z = F max z .
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 54 Figure 5.4 -Variation of the reaction force F z applied to the ancillary as a function of the load step ls for (a) different trabecular bone Young's modulus E tb and (b) cortical bone Young's modulus E cb . Results are shown for E * tb , E * cb , µ * , IF * , respectively.

Figure 5 .

 5 Figure 5.5 shows the variation of the pull-out force F max z (a) and the polar gap (b) as a function of the trabecular bone Young's modulus E tb for the 2D and the 3D model. While the
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 55 Figure 5.5 -Variation of the pull-out force F max z (left) and the polar gap (right) as a function of the Young's modulus of trabecular bone E tb (top) and cortical bone E cb (bottom). Results are shown for E *tb , E * cb , µ * , IF * , respectively. The physiological range for E tb and E cb is indicated in gray. The polar gap is classified as optimal (< 500 µm, green), acceptable (< 1 mm, yellow), or critical (> 1 mm, red). The reference case is marked with a star. Adopted from[START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF];Immel et al. (2021a).
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 56 Figure 5.6 -Variation of the reaction force F z applied to the ancillary as a function of the load step ls for (a) different friction coefficients µ and (b) interference fit IF . The results are shown for E * cb , E * tb , IF * , µ * , respectively.

Figure 5 .

 5 Figure 5.7 shows the variation of the pull-out force F max z (a),(c) and the polar gap (b),(d) as a function of the friction coefficient µ and interference fit IF for different values of E tb . F max z

Figure 5 . 7 -

 57 Figure 5.7 -Variation of the pull-out force F max z and the polar gap as a function of the friction coefficient µ (top) and the interference fit IF (bottom) for different trabecular Young's modulus E tb . The results are shown for E *cb , IF * , µ * , respectively. The polar gap is classified as optimal (< 500 µm, green), acceptable (< 1 mm, yellow), or critical (> 1 mm, red). The reference case is marked with a star. Adopted from[START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF];Immel et al. (2021a).
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 58 Figure 5.8 -Variation of the pull-out force F max z as a function of the interference fit IF and the friction coefficient µ. Results are shown for E *cb , E * tb . The optimal interference fit IF opt for each constellation is marked with a diamond. The reference case is marked with a star. Adopted fromImmel et al. (2021a).
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 510 Figure5.10 -Variation of the optimal interference fit IF opt as a function of the friction coefficient µ w.r.t. trabecular bone Young's modulus E tb for constant Young's modulus E * cb . Adopted and extended from[START_REF] Raffa | Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment[END_REF] Immel et al., 2021a).

  Variation of the sliding threshold a s for b s = 1. Variation of the transition factor b s for a s = 0.22.
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 61 Figure 6.1 -Modified Coulomb's law: Tangential contact traction t t /t max t as a function of the sliding distance g s for varying sliding threshold a s and transition factor b s for φ 0 = 1. Adopted from Immel et al. (2020).

  Schematic representation of the setup and the crack propagation in the uniformly bonded case. (b) NURBS-enriched finite element mesh showing an enlargement of the contact surface.
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 62 Figure 6.2 -Illustrations for the analytical and numerical setup. Adopted from Immel et al. (2020).

Figure 6 . 3 -

 63 Figure 6.3 -New analytical model: Critical radius for stick/slip transition c as a function of the imposed rotation angle θ from Eq. (6.11). Adopted from Immel et al. (2020).
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 64 Figure 6.4 -New analytical model: normalized tangential traction σ θz /t max t as a function of the radius r/R of the contact surface (see Eq. (6.23)) at different rotation angles. Adopted from Immel et al. (2020).

  First data set.

  Second data set.
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 65 Figure 6.5 -Variation of the torque M z as a function of the imposed rotation angle θ. Adopted from Immel et al. (2020).
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 66 Figure 6.6 -Evolution of the debonding of the BII: Value of the friction coefficient µ (top) and the sliding distance g s (bottom) on the contact area of the implant for different angles of rotation. Adopted from Immel et al. (2020).
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 67 Figure 6.7 -Evolution of the debonding of the BII: Behavior of the friction coefficient and the transition zone for the first data set. Adopted from Immel et al. (2020).

  Figure 6.8 -Original and constructed osseointegration patterns with average osseointegration φ0 = 0.55. (a) Original pattern (Mathieu et al., 2012a). (b) Reconstructed pattern. (c) Circular pattern. (d) Random pattern. Light areas represent full osseointegration (φ 0 = 1), while dark areas represent no osseointegration (φ 0 = 0). For the corresponding elements in the reconstructed and artificial patterns φ e 0 is set to 1. Adopted from Immel et al. (2020).

  Figure 6.8(a), assuming that light gray areas indicate osseointegration, was reconstructed. From a visual inspection of the photograph, the sample in Figure 6.8(a) is considered to have average osseointegration φ0 = 0.55. Second, to compare the influence of osseointegration patterns, two other patterns with φ0 = 0.55 were constructed. A simple circular pattern, where only the center part of the interface is integrated and last, a random distribution. For patterns (b)-(d), φ 0 = 1 within the light gray surface elements. The corresponding osseointegration patterns are shown in Figure 6.8.
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 69 Figure 6.9 -Variation of the friction coefficient µ at the BII for different angles of rotation for different patterns of partial osseointegration. Adopted from Immel et al. (2020).
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 610 Figure 6.10 -Partial osseointegration: Variation of the torque M z as a function of the imposed rotation angle θ for different cases of the initial bonding state of the interface with the material parameters shown in Table6.6. Adopted from[START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF].
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 611 Figure 6.11 -Partial osseointegration: Variation of the torque M z as a function of the imposed rotation angle θ for different patterns of the initial bonding state of the interface with φ0 = 0.55 and the same material parameters for all patterns. M ∞ z = 0.0368 N m according to data set 1 (see Table6.2). Adopted from[START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF].

  .3) (where e is Euler's number), otherwise it is discontinuous. A comparison of the standard Coulomb's law and the proposed extended modified Coulomb's law based on adhesive friction is shown in Figure 7.1. Exponential cohesive zone model based on the normal gap g n for various φ 0 , g b = g 0 , and t n := t n • n. Tangential sliding traction t t as a function of the normal gap g n .
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 71 Figure 7.1 -Illustration of (a) the cohesive zone model and (b) the extended modified Coulomb's law with adhesive friction for φ 0 > 0. Adopted from Immel et al. (2021c).
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 72 Figure 7.2 -CSI debonding: Illustrations of the boundary conditions for different debonding cases. (a) Debonding under an initial compression of -70 N, either in mode II or III. (b) Debonding under an initial tension of 20 N, either in mode II or III. Mixed mode debonding with initial compression of -70 N (ci) and without initial contact force (di), and under various loading angles α. Mixed mode debonding with initial compression of -70 N (cii) and without initial contact force (dii), under loading angle α = 45 • and various CZM parameter t 0 in Eq. (7.1). Mixed mode debonding with initial compression of -70 N (ciii) and without initial contact force (diii), under loading angle α = 45 • and various initial degrees of osseointegration φ 0 . Adopted from Immel et al. (2021c).
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 73 Figure 7.3 -CSI debonding: Variation of the normal reaction F z (left) and the tangential reaction force F x (right) as a function of the tangential displacement u x for mode II debonding under constant compression (mode IIa) or constant tension (mode IIb). The results illustrate the difference between the modified Coulomb's law (MC) and the new extension (EMC). Adopted from Immel et al. (2021c).

Figure 7 . 4 -

 74 Figure7.4 -CSI debonding: Variation of the normal reaction F z (left) and the torque M z (right) as a function of the rotation angle θ for mode III debonding under constant compression (IIIa) or constant tension (IIIb). The results illustrate the difference between the modified Coulomb's law (MC) and its new extension (EMC). Adopted fromImmel et al. (2021c).

Figure 7 . 5 -Figure 7 . 6 -

 7576 Figure7.5 -CSI debonding: Variation of the normal reaction force F z (left) and the tangential reaction force F x (right) as a function of the tangential displacement u x for mixed mode debonding, starting from an initial contact pressure (mode I+IIci). The results illustrate the difference between the modified Coulomb's law (MC) and its new extension (EMC). Adopted fromImmel et al. (2021c).

Figure 7

 7 Figure 7.7 -CSI debonding: Variation of the normal reaction force F z (left) and the tangential reaction force F x (right) as a function of the tangential displacement for mixed mode debonding under α = 45 • and varying CZM parameter t 0 , starting from an initial contact pressure (mode I+IIcii). The results show the extended modified Coulomb's law (EMC). Adopted from Immel et al. (2021c).

Figure 7 . 8 -

 78 Figure 7.8 -CSI debonding: Variation of the normal reaction force F z (left) and the tangential reaction force F x (right) as a function of the tangential displacement for mixed mode debonding under α = 45 • and varying CZM parameter t 0 , starting from zero contact force (mode I+IIdii). The results show the extended modified Coulomb's law (EMC). Adopted from Immel et al. (2021c).

Figure 7 . 9 -

 79 Figure7.9 -CSI debonding: Variation of the normal reaction force F z (left) and the tangential reaction force F x (right) as a function of the tangential displacement for mixed mode debonding under α = 45 • and initial degree of osseointegration φ 0 , starting from an initial contact pressure (mode I+IIciii). The results show the extended modified Coulomb's law (EMC). Adopted fromImmel et al. (2021c).

Figure 7 . 10 -

 710 Figure 7.10 -CSI debonding: Variation of the normal reaction force F z (left) and the tangential reaction force F x (right) as a function of the tangential displacement for mixed mode debonding under α = 45 • and initial degree of osseointegration φ 0 , starting from zero contact force (mode I+IIciii). The results show the extended modified Coulomb's law (EMC). Adopted from Immel et al. (2021c).

Figure 7 .

 7 Figure 7.11 -(a) Finite element mesh of the ACI, bone block, and ancillary(Immel et al., 2021b).(b) Bottom view of the ACI implant. (c) Top view of the bone block. A very fine mesh is used around the rim of the cavity, as the contact forces are expected to vary most strongly there. Adopted fromImmel et al. (2021c).

  Illustration of the three simulation stages on the example of mode I debonding. The final output of the reaction force and maximum pull-out force is shown in red. Illustration of the three different removal tests.

Figure 7 .

 7 Figure 7.12 -ACI debonding: (a) Illustration of the three simulation stages and (b) the three removal tests. Adopted from Immel et al. (2021c).

Figure 7 . 13 -

 713 Figure 7.13 -Normal debonding without adhesion for the reference case: (a) Variation of the normal force F * z a function of the initial degree of osseointegration φ 0 . The maximum pullout force F max * z is marked with * . (b) Average degree of osseointegration of the bone-implant interface φ for an initial degree of osseointegration φ 0 = 1. Adopted from Immel et al. (2021c).

Figure 7 . 14 -

 714 Figure 7.14 -Normal debonding without adhesion: Variation of the normal force F * z for φ 0 = 1 as a function of the MC parameters a s and b s . Adopted from Immel et al. (2021c).

Figure 7 .

 7 Figure 7.15(a)-(c) shows the maximum normal pull-out force F max z as a function of the interference fit IF , trabecular bone stiffness E tb , friction coefficient µ b , for different values of the initial degree of osseointegration φ 0 . The results obtained for F max z with φ 0 = 0 are identical to the results from Raffa et al. (2019), which constitutes a validation of the model. First, the pull-out force increases as a function of IF, E tb , µ b , then reaches a peak, and eventually decreases. The maximum value of the pull-out force is obtained for around IF = 1.4 mm, E tb = 0.4 GPa, and µ b = 0.6. For µ b ≤ 0.15 the pull-out force is zero, for all degrees of osseointegration.

Figure 7 . 15 -

 715 Figure 7.15 -Normal debonding without adhesion: Variation of the maximum normal pull-out force F max z as a function of the initial degree of osseointegration φ 0 and (b) the interference fit IF , (c) the trabecular Young's modulus E tb , and (d) the friction coefficient µ b . The reference case is marked with * . Adopted from Immel et al. (2021c).

Figure 7 . 16 -

 716 Figure 7.16 -Tangential debonding without adhesion for the reference case: (a) Variation of the tangential force F * x as a function of the initial degree of osseointegration φ 0 . The maximum pull-out force F max * x is marked with * . (b) Average degree of osseointegration of the boneimplant interface φ for an initial degree of osseointegration φ 0 = 1. Adopted from Immel et al. (2021c).

Figure

  Figure 7.17(a)-(c) shows the maximum tangential pull-out force F max

  Figure 7.17(a)-(c) shows the maximum tangential pull-out force F max x as a function of the interference fit IF , trabecular bone stiffness E tb , friction coefficient µ b , for different values of the initial degree of osseointegration φ 0 . First, the pull-out force increases as a function of IF, E tb and µ b , then reaches a peak, and eventually decreases. The maximum value of the pull-out force is obtained for around IF = 1.4 mm, E tb = 0.4 GPa, and µ b = 0.6 -the same values as for the normal pull-out test. For µ b ≤ 0.15 the pull-out force is zero for all degrees of osseointegration.Tangential pull-out forces are roughly one magnitude lower than the corresponding normal pull-out force, which agrees with observations from clinical practice. During surgery, after the insertion of the ACI, surgeons often attempt to lever out an acetabular cup to test the seating of the ACI. That is, the surgeon applies a tangential force, such as is considered here, instead

Figure 7 . 17 -

 717 Figure 7.17 -Tangential debonding without adhesion: Variation of the maximum tangential pull-out force F max x as a function of the initial degree of osseointegration φ 0 and (a) the interference fit IF , (b) the trabecular Young's modulus E tb , and (c) the friction coefficient µ b . The reference case is marked with * . Adopted from Immel et al. (2021c).

Figure 7 .

 7 Figure 7.19 (a) shows the debonding torque M *z as a function of the rotation angle for different values of φ 0 and the reference case. The torque increases, reaches a peak at an angle of about 3 • and then decreases to reach a constant torque of 47 Nm at about 4.5 • due to the present compressive normal force. The degree of osseointegration starts to decrease at an angle of about 2.6 • and becomes zero at about 4.5 • (see Figure7.19(b)). As for the normal and the tangential pull-out cases, only the magnitude of the peak of the load-displacement curve is affected when increasing the degree of osseointegration φ 0 .

Figure 7 . 18 -

 718 Figure 7.18 -Torsional debonding without adhesion: Variation of the maximum debonding torque M max z as a function of the initial degree of osseointegration φ 0 and (a) the interference fit IF , (b) the trabecular Young's modulus E tb , and (c) the friction coefficient µ b . The reference case is marked with * . Adopted from Immel et al. (2021c).

Figures

  Figures 7.18(a)-(c) show the variation of the maximum debonding torque M max

Figure 7 . 19 -

 719 Figures 7.18(a)-(c) show the variation of the maximum debonding torque M max z as a function of the parameters IF, E tb , µ b , and φ 0 . First, the torque increases with increasing parameter

Figure 7 . 20 -

 720 Figure 7.20 -Normal debonding with adhesive friction: Variation of the normal force F * z as a function of the initial degree of osseointegration φ 0 for the reference case. The maximum pull-out force F max * z

Figures

  Figures 7.21(a)-(c) show the maximum normal pull-out force F max

Figure 7 . 21 -

 721 Figures 7.21(a)-(c) show the maximum normal pull-out force F max z as a function of the parameters IF, E tb , µ b , and φ 0 . The slopes of the different curves of pull-out forces are similar to the ones obtained with the MC (cf. Section 7.3.2.1), with the peak values obtained for the same values of IF, E tb , and µ. For µ b ≤ 0.15 the pull-out force remains equal to zero, regardless of the degree of osseointegration.

Figure 7 . 22 -

 722 Figure 7.22 -Tangential debonding with adhesive friction: Variation of the tangential force F * x a function of the initial degree of osseointegration φ 0 for the reference case. The maximum pull-out force F max * x

Figures

  Figures 7.23(a)-(c) show the variation of the maximum tangential pull-out force F max

Figure 7 . 23 -

 723 Figures 7.23(a)-(c) show the variation of the maximum tangential pull-out force F max x as a function of the parameters IF, E tb , µ b , and φ 0 . While the peaks in tangential pull-out force are obtained for the same parameters as before, the slope of F max x as a function of all parameters (IF, E tb , µ b ) depends on the initiak degree of osseointegration. As before, for µ b ≤ 0.15 the tangential pull-out force remains zero independent of the degree of osseointegration.

Figure 7 . 24 -

 724 Figure 7.24 -Torsional debonding with adhesive friction: Variation of the debonding torque M * z a function of the initial degree of osseointegration φ 0 for the reference case. The maximal torque M max * z

Figures

  Figures 7.25(a)-(c) show the variation of the maximum debonding torque M max

  Figures 7.25(a)-(c) show the variation of the maximum debonding torque M max z as a function of the parameters IF, E tb , µ b , for different values of φ 0 . In contrast to the pull-out test, the removal torque curves are very similar to the corresponding results obtained with the modified Coulomb's law. Peaks in torque are obtained for the same values of IF, E tb , µ b as for the pull-out tests and the modified Coulomb's law.

Figure 7 . 25 -

 725 Figure 7.25 -Torsional debonding with adhesive friction: Variation of the maximal debonding torque M max z as a function of the initial degree of osseointegration φ 0 and (a) the interference fit IF , (b) the trabecular Young's modulus E tb , and (c) the friction coefficient µ b . The reference case is marked with * . Adopted from Immel et al. (2021c).

  100% osseointegration for interference fit IF , Young's modulus E tb , and friction coefficient µ b for both contact laws.

  modulus E b [GPa] increase in force/torque [%]

Figure 7 . 26 -

 726 Figure7.26 -Ratio between the maximum removal forces/torque obtained for perfect initial osseointegration (φ 0 = 1) and no initial osseointegration (φ 0 = 0) as a function of (a) the interference fit IF , (b) the trabecular Young's modulus E tb , and (c) the friction coefficient µ b for the different removal tests. Shown are results for the modified Coulomb's law (MC) and the new extension (EMC). The reference case is marked with * . Some results for IF = 0 mm, E tb = 0, and µ b = 0 -0.15 are omitted, as there is no measurable increase in removal force/debonding torque. Adopted fromImmel et al. (2021c).

  100% osseointegration for interference fit IF , Young's modulus E tb , and friction coefficient µ b for the modified Coulomb's law (MC) and its new extension (EMC). Adopted fromImmel et al. (2021c).

  .14) For model A, the maximal degree of initial osseointegration reduces to φmax A Short range contact g n > 0.

Figure 8 . 2 -

 82 Figure 8.2 -Illustration of the reaction rates for truly touching contact k B c and short range contact k B SR for model B.

  .21) which allows to model actual bone resorption, when k C becomes negative. Here, -→ k 0 = ←k 0 = 1, for simplicity. The different reaction rates of model C are shown in Figure 8.3. The analytical solution for Eq. (8.4) for model C is given by φC

Figure 8 . 3 -Figure 8 . 4 -

 8384 Figure 8.3 -Illustration of the reaction rate for model C. The green area represents condition which induce bone growth, while red areas represent condition that induce bone resorption.

Figure 8 . 5 -

 85 Figure 8.5 -(a) NURBS-enriched FE mesh of the rough bone block and the implant. (b) Enlargement of the bone surface profile with coloring based on the z-coordinate.

c

  and p min c of the two osseointegration models. Figures 8.6(b)-8.6(d) show the distribution and degree of osseointegration for model A, B, and C after a healing time of 14, 30, and 100 days, respectively. Surface profile of the bone block z before insertion, normal gap g n , and contact pressure p c at the BII after insertion. Progression and distribution of osseointegration φA at the BII for model A. Progression and distribution of osseointegration φB at the BII for model B. Progression and distribution of osseointegration φC at the BII for model C.

Figure 8 . 6 -

 86 Figure 8.6 -Osseointegration of the CSI with respect to the healing time and evolution law.

Figure 8 . 7 -

 87 Figure 8.7 -Average degree of osseointegration φ over time t for model A, B, and C.

Figure 8 . 8 -

 88 Figure 8.8 -Variation of the torque M z as a function of the imposed rotation angle θ for model A.

  tangential sliding, k e c has to be evaluated for the current interacting point ξ ( ˆ ) and the previous interacting point ξn ( ¯ ), i.e.t ck = g c , g c = ĝn+1 , k -a α M α k ), M α := -c αβ (c β -m β ) • N , (A.12) ∂t ck ∂u e ˆ = (N ˆ + a α M α ˆ ), M α ˆ := -c αβ (g c -g max τ ) • N ˆ ,β -c β • N ˆ -d γ β • N ˆ ,γ , (A.13) ∂t ck ∂u e ¯ = a α M α ¯ , M α ¯ := -c αβ m β • N ¯ , (A.14)in error was negligible compared to the increase in computing time, the number of time steps ls 1 = 200 (∆ls = d 0 /200) was chosen as a basis for all computations.

  Figure B.2 -Mesh sensitivity: mean relative error e relMz according to Eq. (B.1) for different configurations of data set 1 (µ b = 0.4). Adopted from[START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF].

Figure B. 2

 2 Figure B.2 shows the convergence behavior of the different meshes. It can be seen that e mp

  Corresponding computing time.

Figure B. 3 -

 3 Figure B.3 -Maximum normal pull-out force F max * z and corresponding computing time with respect to number of contact elements on the bone block. Mesh 3, which is used for the computations in this work, is marked with . Adopted from Immel et al. (2021c).

Figure B. 3

 3 Figure B.3 shows the convergence behavior of the maximum pull-out force. It decreases with increasing number of elements, while the computing time increases exponentially. The estimated exact value of F max * z
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	Figure 2.6 -Schematic illustration of the different stages of osseointegration and examples of
	osseointegration failure.

  .21) which maps a point ξ = ξ 1 , ξ 2 lying in the 2D parameter space P k to the surface point x k ∈ ∂ c B k . For a given surface point x k one can determine the point that minimizes the distance between x k and the neighboring contact surface ∂ c B , which is denoted by the closest point projection x p = x (ξ p ) ∈ ∂ c B ( = 2, 1). At the unknown point x p , the surface ∂ c B can

	be characterized by the co-variant and contra-variant tangent vectors a p α and a α p (α = 1, 2) and
	by its surface normal n p . Then, a set of tangent vectors on ∂ c B k can be defined as
	a p α :=	∂x (ξ) ∂ξ α | ξ p ,				(3.22)
	a α p := a αβ p a p β , n p := a p 1 × a p 2 ||a p 1 × a p 2 || a αβ p .	= a p αβ	-1	, a p αβ = a p α • a p β ,	(3.23) (3.24)
	In the reference configuration ∂ c B 0k the tangent vectors A p α , A α p and the surface metric tensor components A p αβ can be defined similarly as in Eqs. (3.22)-(3.23). The coordinates ξ p of the
	projection point x p can be determined by solving		

  Exponential cohesive zone model based on the normal gap g n with maximum traction t cz occurring at g n = g cz .
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			normal gap g n .	

Table 5 . 1 -

 51 Material properties of the four subdomains considered in the numerical model as well as ranges and reference values of the studied parameters: interference fit IF , friction coefficient µ, Young's modulus of cortical bone E cb and Young's modulus of trabecular bone E tb . Adopted fromImmel et al. (2021a).

  Table 5.2.

	optimal interference fit IFopt	0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4	2D, Et=0.1 GPa 3D, Et=0.1 GPa 2D, E * t =0.2 GPa 3D, E * t =0.2 GPa 2D, Et=0.5 GPa 3D, Et=0.5 GPa
		0.2	
		0	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
			friction coefficient µ

Table 5 . 2 -

 52 Optimal values of the interference fit IF opt and friction coefficient µ opt with respect to trabecular bone stiffness E tb with fixed cortical bone stiffness E * cb . Adopted from(Immel et al., 2021a).

	polar gap [µm]

  Parameters of the finite element mesh: Number of elements n e , type of shape functions and number of Gauss-points per element n gp for the two bodies and their contact surfaces. Adopted from[START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF].

	body	n e type of shape fcts.	n gp
	implant bulk	18	linear Lagrange	2 × 2 × 2
	bone bulk	450	linear Lagrange	2 × 2 × 2
	lower implant surface	9	quadratic NURBS	5 × 5
	upper bone surface	225 quadratic NURBS	5 × 5
	Table 6.1 -			
				see
	AppendixB.2).			

Table 6 .

 6 Results for the parameter estimation of the two data sets. Shown are results from the analytical model presented in

	-6	15-23

3 -Results for the parameter estimation of the two data sets for values independent of the friction coefficient µ b . Shown are results from the analytical model presented in

Mathieu et al. (2012a) 

(see Eqs. (6.7),(6.9)) and the present numerical solution. The estimated parameter is the bone shear modulus G cb . The Young's modulus E cb then follows from Eq. (3.13). Adopted from

[START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF]

.

Table 6 . 5 -

 65 Total debonding energy W deb , frictional energy W fric , work of adhesion W adh , and corresponding area-specific works of adhesion E adh and E * adh for the different models and data sets. Adopted from[START_REF] Immel | A modified coulomb's law for the tangential debonding of osseointegrated implants[END_REF].

	set						
		exp.	0.0070	0.0056	0.0014	98	71
	1	ana. (2012a) ana. Eq. (6.23)	0.0066 0.0071	0.0056 0.0057	0.0010 0.0014	70 98	51 72
		sim.	0.0071	0.0057	0.0014	98	72
		exp.	0.0088	0.0060	0.0028	198	143
	2	ana. (2012a) ana. Eq. (6.23)	0.0080 0.0087	0.0064 0.0067	0.0016 0.0020	120 141	81 102
		sim.	0.0089	0.0062	0.0027	191	138

  Table 6.6. Adopted from Immel et al. (2020).

	bonding pattern	φ0	d 0 [µm] µ ub a s [µm]	b s	e mp Mz [%] W adh [N m] E adh [N m -1 ]
	homog.	1	4.9	0.58	22	0.74	2.240	0.0014	130
	(b)	0.55	4.8	0.80	21	0.63	1.949	0.0015	139
	(c)	0.55	4.8	0.97	15	0.67	1.988	0.0014	130
	(d)	0.55	4.9	0.73	22	0.66	2.152	0.0015	139
	Table 6.6 -Change in model parameters and results for implants with partial initial bonding
	compared to homogeneous bonding (see Figure				

  ).

	body	n el	type of shape fcts.	n gp
	implant bulk	338	linear Lagrange	2 × 2 × 2
	ancillary	250	linear Lagrange	2 × 2 × 2
	bone bulk	20000	linear Lagrange	2 × 2 × 2
	outer implant surface	169	quadratic NURBS	5 × 5
	upper bone surface	4000 quadratic NURBS	5 × 5

Table 7 .2 -Average

 7 ). percentage increase in the maximum pull-out forces F max

	force/torque	F max z	F max x	M max z
	model	MC EMC MC EMC MC EMC
	interference fit IF	42% 81% 50% 116% 12% 26%
	Young's modulus E tb 48% 74% 50% 106% 15% 24%
	friction coefficient µ b 41% 73% 41% 108% 12% 21%
				z	, F max

Table 8 . 1 -

 81 1.1-8.1.3 and the parameters for the EMC from Section 7.1 are listed in Table8.2 with values chosen based on previous works and from the literature. Parameters of the finite element mesh: Number of elements n e , type of shape functions and number of Gauss-points per element n gp for the two bodies and their contact surfaces.1. insertion: the upper implant surface is pushed downward into the bone block with the displacement d 0 ;2. osseointegration: the evolution laws A, B, and C from Section 8.1 are applied for the healing time t and the degree of osseointegration φ is computed for every Gauss-point;3. debonding: after the healing time t, the upper surface of the implant is rotated for 10°around its z-axis, until the implant is fully debonded.

	The simulation is divided into three steps:

Three different healing times are considered: t = 14, 30, 100 days.

Table 8 .

 8 

2 -Parameters of the evolution laws for osseointegration and the EMC with corresponding values from the literature.

Table B . 1 -

 B1 Mesh sensitivity: mean percentage error e mpMz according to Eq. (

	Load step Coarse Medium Fine
	0.10 • 0.05 • 0.02 • 0.01 • 0.005 • 0.004 •	0.02233 0.02195 0.02186 0.02242 0.02197 0.02185 0.02239 0.02191 0.02177 0.02240 0.02190 0.02176 0.02241 0.02190 0.02176 0.02241 0.02190 0.02176

Table B .

 B Table B.2. The reference case (E * tb = 0.2 GPa, µ * b = 0.3, IF * = 1.0 mm) was chosen as the parameter set, and the maximum normal pull-out force F max * 2 -Number of elements of the finite element meshes. Adopted from Immel et al. (2021c).

			z	(φ 0 = 1) was chosen as the target
	value.					
	body	mesh 1 mesh 2 mesh 3 mesh 4 mesh 5
	contact elements bone	1000	2000	4000	8000	16000
	contact elements implant	49	81	169	361	676
	bulk elements	5188	10252	20588	40972	81602
	total elements	6237	12333	24757	49333	98278

Latin for "within the glass"; in vitro studies are experimental studies that are performed outside a living organism in a controlled environment.

Latin for "out of the living"; ex vivo experiments are either performed on dead organisms (cadaveric studies) or with tissue extracted from a living organism and not grown artificially

In terms of the Lamé parameters, the shear modulus G k is often denoted µ. To avoid confusion with the friction coefficient µ the shear modulus is denoted G k throughout this work.

In principle Eq. (6.5) can be brought into the form of Eq. (6.2) if a dot is applied to Eq. (6.5) and then gs is eliminated by the inverse function of (6.5). φ0 follows from an evolution law that describes the healing/osseointegration process (φ0 increasing from 0 to 1). However, this is not considered here. Here, only the (further) evolution of φ during debonding (φ decreasing from 1 to 0) is studied.

The strain energy inside the bodies, which generally should also be accounted for, is negligible in this case.

More accurately, the damage parameter could also be computed as g d = g 2 s + g 2 n .
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an evolution law for a chemical contact state (Sauer et al., 2022) is used:

e.g. depending on the contact pressure p c (x), the normal contact gap g n (x), and the current state of osseointegration φ(x) of each Gauss-point. The simplest reaction model is the linear

where -→ k describes a forward reaction (bone apposition) and k r represents the reaction velocity, providing a simple time-dependent osseointegration and bone remodeling law. k r can be dependent on e.g., the healing time t but also the contact state g n , p c . Here, for simplicity it is considered to be k r = const. In order to consider not only bone apposition but also bone resorption, which is part of the processes of osseointegration and bone remodeling (see Section 2.2.3.2), the extended linear reaction model is used, where ←k describes a backward reaction (bone resorption). The overall reaction rate is then defined as

and the evolution law becomes φ

In this work, three simple osseointegration models based on the extended linear model are introduced.

Model A

First, a simple phenomenological model is derived. Here, for simplicity, (8.5) is assumed. When an uncemented implant has been inserted into the host bone cavity, an initial gap g n between bone and implant can remain, e.g. as seen in Chapter 5. Therefore, some parts of the implant can be under pressure, while other areas have no contact at all. Therefore, a distinction between truly touching contact (g n ≤ 0, denoted "C") and short range reactions (g n > 0, denoted "SR") has to be made. For touching contact,

), with a reaction rate based on the contact pressure is defined. The reaction rate is designed within the limits of compressive stress p min c and tensile stress p max c for osseointegration [START_REF] Kaneko | Mechanical properties, density and quantitative ct scan data of trabecular bone with and without metastases[END_REF][START_REF] Viceconti | Effect of the initial implant fitting on the predicted secondary stability of a cementless stem[END_REF]. Both can be assumed as constants or to evolve with bone maturation. In this work, they are assumed to be constant. From p min c the reaction rate -→ k A c first increases from 0 to 1, reaches a plateau from p opt,1 c to p opt,2 c , and then decreases back to 0 at p max c , i.e.

) 

Model B

The second evolution law models the bone apposition reaction (forward) and the bone resorption reaction (backward) explicitly. The forward and backward reaction rates for touching surfaces

Here, it is assumed that due to contact, the forward reaction rate -→ k B c is always 1. However, with increasing pressure or tension, the backward reaction rate ←k B c increases. The reaction rates cancel each other out at the pressure limits p min and p max and the overall reaction rate becomes zero.

For short rage contact, it is assume that the forward reaction rate

SR decreases linearly from 1 to zero for an increasing contact gap, while the backward reaction rate for short range contact

SR increases quadratically from 0 to 1. The reaction rates cancel each other out at g n = g lim , i.e.

(8.17)

The different reaction rates of model B are shown in Figure 8.2. The analytical solution of Eq. ( 8.4) for model B is then given by φB (8.18) and the numerical solution obtained with the implicit backward Euler method is φn+1

Here, the maximal degree of initial osseointegration is φmax

Appendix A

Linearization

The linearization of the internal mechanical contribution w.r.t. the deformation is given by

with

with the derivatives of the shape functions N k,α , the tensor components σ αβ , and the spatial elasticity tensor c in the reference configuration, which depend on the chosen material model.

A detailed derivation is given in e.g. [START_REF] Wriggers | Nonlinear finite element methods[END_REF].

The linearization of the mechanical contact contribution w.r.t. the deformation is given by ∆ x δΠ e int = v T e k e c ∆u e k .

(A.3)

When using the classical full-pass approach, k e c is given by

, k, = 1, 2 ∧ k = , (A.4)

A.1 Tangent Matrix for the Modified Coulomb's Friction Law

For the MCFL, the unified model of [START_REF] Duong | A concise frictional contact formulation based on surface potentials and isogeometric discretization[END_REF] (see Section 4.5.2) is used. During tangential sticking, k e c is evaluated for the previous interacting point ξn ( ¯ ) (see Section 4.5.2), i.e.

and thus

)

Convergence Studies

B.1 Acetabular Cup Implant in Human Hemi-Pelvis

To analyze the convergence behavior of the hemi-pelvis mesh, three different finite element meshes were constructed, denoted coarse, medium, and fine with approximately 92,500, 125,000, and 250,000 elements, respectively. In addition, different numbers of load steps ls 1 ∈ [100, 200, 400] were investigated. The reference case (E * tb = 0.2 GPa, E * cb = 18 GPa, µ * = 0.3, IF * = 1.0 mm) was chosen as the parameter set and the normal pull-out force F * z was chosen as the target value. The corresponding error of the coarse, medium, and fine mesh for ls 1 = 200 is 1.9, 0.6, and 0.2%, respectively. Due to the considerable difference in computing time while having a very low error, the medium mesh was chosen over the fine mesh. The coarse mesh has a coarse resolution especially at the contact surface in the bone cavity. Although having a small error for the reference case, it was assumed that the mesh might be too coarse for parameter combinations that result in stiffer systems. Therefore, the coarse mesh was discarded as well. The error for the medium mesh with ls 1 = 400 is 0.2% while the computing time is 67 hours. As the decrease necessary for Section 7.3, mesh 3 was deemed to have a reasonable ratio between accuracy and computing time and was thus chosen for all computations in Section 7.3.

The average computing time with both contact models for the different loading cases performed with mesh 3 is listed in Table B