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Abstract

Cementless implants have become more and more common for joint replacement and dental
surgery. Initial stability is obtained during the surgery through a press fit process in the host
bone, while long–term stability is obtained by bone growing around and into the porous surface
of the implant, a process called osseointegration. As debonding of the bone–implant interface
due to aseptic loosening and insufficient osseointegration still occur and may have dramatic
consequences, predicting implant stability and failure is one of the major goals in modern implant
research.

This work presents different 3D FE modeling approaches to model contact and initial and
long–term stability of cementless implants using the example of a cylindrical implant (CSI) and
an acetabular cup implant (ACI).

First, an approach to assess the initial stability of an ACI considering a realistic geometry
of a patient’s hip, based on Coulomb’s friction contact and standard FE, is presented. The
influence of different patient and implant–specific parameters is analyzed in order to determine
optimal stability for different configurations and thus obtain the optimal combination of the
implant’s surface roughness and the press–fit, based on a patient’s bone quality.

Second, a phenomenological model for the frictional contact behavior of debonding osseoin-
tegrated implants is developed. The classical Coulomb’s law is extended from a constant to
a varying friction coefficient, that models the transition from an unbroken (osseointegrated)
to a broken (debonded) state, based on a state variable depending on the deformation of the
bone–implant interface. This model can account for the higher tangential forces observed in
osseointegrated implants compared to unbonded implants. In addition, a NURBS-enrichment
approach for 3D contact elements is used for an efficient modeling of the geometries and their
contact. This model is applied to the torsional debonding of CSI and the results are compared
to experimental data and to a previous analytical model.

Third, the modified Coulomb’s law model is extended in normal direction considering a
cohesive zone model, to account for debonding in normal direction and allow for adhesive friction.
This model is applied to simulate secondary stability and debonding of an ACI in different
removal tests, and to determine the relevance of osseointegration and biomechanical factors for
long–term stability. The results are compared with the purely tangential model to identify the
relevance of normal adhesion in the debonding of ACI.

Last, three simple evolution laws for osseointegration based on initial stability to account
for realistic and time-dependent osseointegration, are presented.

Due to their generality, all models presented herein can be applied to all kinds of endosseous
implants or imperfectly bonded interfaces in general. Furthermore, the models can be coupled
with remodeling algorithms or realistic loading data, to make simulations and prognoses for the
whole life cycle of an implant from the surgery, through osseointegration and bone remodeling,
to long–term stability under cyclic loading.

i



Zusammenfassung

Unzementierte Implantate werden immer häufiger als Gelenkersatz und in der Zahnchirurgie
eingesetzt. Da eine Ablösung des Implantats vom Knochen aufgrund von Lockerung und einer
unzureichenden Knochenintegration immer noch auftritt und dramatische Folgen haben kann,
ist die Vorhersage der Implantatstabilität und des Versagens des Knochen–Implantat–Verbunds
eines der Hauptziele in der Implantatforschung.

In dieser Arbeit werden verschiedene dreidimensionale finite Elemente Methoden zur Model-
lierung des Kontakts zwischen Knochen und Implantat, sowie der simulation der primären und
Langzeitstabilität von unzementierten Implantaten vorgestellt.

Zunächst wird ein Ansatz zur quantifizierung der primären Stabilität einer Hüftpfanne in
einer realistischen Geometrie der Hüfte eines Patienten vorgestellt. Der Einfluss verschiedener
patienten– und implantatspezifischer Parameter wird analysiert, um die optimale Stabilität,
basierend auf der Kombination der Oberflächenrauheit und der Presspassung des Implantats,
unter der Berücksichtigung der Knochenqualität eines Patienten, zu erhalten.

Anschließend wird ein phänomenologisches Modell für das reibungsbehaftete Kontaktverhal-
ten von sich lösenden, osseointegrierten Implantaten vorgestellt. Das klassische Coulombsche
Reibungsgesetz wird von einem konstanten auf einen variablen Reibungskoeffizienten erweit-
ert, der auf einer Zustandsvariable basiert, die von der Verformung der Grenzfläche zwischen
Knochen und Implantat abhängt. So kann der Übergang von einem osseointegrierten zu einem
völlig abgelösten Zustand modelliert werden. Dieses Modell wird auf die Ablösung durch Tor-
sion von zylindrischen Implantaten angewendet und die Ergebnisse werden mit experimentellen
Daten und einem bestehenden analytischen Modell verglichen.

Dieses Reibungsmodell wird anschließend in normalen Richtung um ein Adhäsionsmodell
erweitert um Haftreibung zu ermöglichen. Dieses Modell wird angewendet, um die Langzeitsta-
bilität und das Ablösen einer Hüftpfanne in verschiedenen Belastungstests zu simulieren und die
Relevanz der Osseointegration, Adhäsion in Normalenrichtung und der biomechanischen Fak-
toren für die Langzeitstabilität zu bestimmen. Die Ergebnisse werden mit dem rein tangentialen
Modell verglichen, um die Relevanz der normalen Adhäsion für das Ablösen von Hüftimplantaten
zu ermitteln.

Schließlich werden drei einfache Evolutionsgesetze für die Osseointegration basierend auf der
primären Stabilität vorgestellt, um eine realistische und zeitabhängige Osseointegration berück-
sichtigen zu können.

Aufgrund ihrer Allgemeinheit können alle hier vorgestellten Modelle auf alle Arten von
Knochenimplantaten oder unvollständig gebundenen Grenzflächen im Allgemeinen angewendet
werden. Darüber hinaus können die Modelle z.B. mit Algorithmen für Knochenumbau oder real-
istischen Belastungszyklen gekoppelt werden, um Simulationen und Prognosen für den gesamten
Lebenszyklus eines Implantats von der Operation über Osseointegration und Knochenumbau,
bis hin zur Langzeitstabilität unter zyklischer Belastung zu erstellen.
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Résumé

Les implants osseux constituent actuellement l’approche thérapeutique la plus utilisée pour
réparer les articulations et les os endommagés. La stabilité initiale est obtenue pendant la
chirurgie grâce à un processus d’ajustement serré dans l’os hôte, tandis que la stabilité à long
terme est obtenue par la croissance osseuse autour et dans la surface poreuse de l’implant, un
processus appelé ostéointégration. Comme le décollement de l’interface os-implant dû à un
descellement aseptique et à une ostéointégration insuffisante se produit toujours et peut avoir
des conséquences dramatiques, prédire la stabilité et l’échec de l’implant est l’un des objectifs
majeurs de la recherche implantaire moderne.

L’objectif de ce travail est de proposer plusieurs modélisations complémentaires du contact
adhésif à l’interface os-implant pendant et après la chirurgie.

Premièrement, les déterminants biomécaniques de la stabilité primaire d’une cupule acétab-
ulaire (ACI) sont présentés. Pour quantifier la stabilité primaire, l’insertion de l’ACI dans un
hémi-bassin humain et le retrait ultérieur sont simulés. L’influence de différents paramètres
spécifiques au patient et à l’implant sur la stabilité primaire est discutée. Sur la base de la
rigidité osseuse d’un patient, des combinaisons optimales de l’ajustement serré et du coefficient
de frottement peuvent être identifiées pour assurer une stabilité initiale optimale.

Deuxièmement, un modèle phénoménologique du comportement de contact frictionnel des
implants ostéointégrés décollés est développé. La loi de Coulomb classique est étendue d’un
coefficient de frottement constant à un coefficient de frottement variable, qui modélise la transi-
tion d’un état ininterrompu (ostéo-intégré) à un état cassé (délié), basé sur une variable d’état
dépendant de la déformation de l’interface os-implant. Ce modèle est appliqué au décollement
en torsion des implants de forme cylindrique et les résultats sont comparés aux données expéri-
mentales et à un modèle analytique précédent.

Troisièmement, le modèle de loi de Coulomb modifié est étendu dans la direction normale
en considérant un modèle de zone cohésive, pour tenir compte du décollement dans la direction
normale et tenir compte du frottement adhésif. Ce modèle est appliqué pour simuler la stabilité
secondaire et le décollement d’un ACI dans différents tests de retrait, et pour déterminer la
pertinence de l’ostéointégration et des facteurs biomécaniques pour la stabilité à long terme.

Enfin, trois lois d’évolution simples pour l’ostéointégration basée sur la stabilité initiale sont
présentées pour rendre compte d’une ostéointégration réaliste et dépendante du temps.

En raison de leur généralité, tous les modèles présentés dans ce travail peuvent être appliqués
à toutes sortes d’implants osseux ou plus généralement d’interfaces imparfaitement collées. De
plus, les modèles peuvent être couplés à des algorithmes de remodelage ou à des données de
chargement réalistes, pour mener à bien des simulations et des pronostics pour tout le cycle de
vie d’un implant depuis la chirurgie, en passant par le remodelage osseux et l’ostéointégration,
jusqu’à la stabilité à long terme sous chargement cyclique.
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Nomenclature

Acronyms

Symbol Description Page
ACI acetabular cup implant 2
BIC bone-to-implant contact 14
BII bone-implant interface 1
BVP boundary value problem 27
CAD computer aided design 33
CAE computer aided engineering 34
CAM computer aided manufacturing 34
CSI coin-shaped implant 3
CZM cohesive zone model 24
FE finite element 15
FEA finite element analysis 15
FEM finite element method 28
IGA isogeometric analysis 33
MMA methylmetacrylate 7
MC modified Coulomb’s friction law 83
EMC extended modified Coulomb’s friction law 83
NURBS non-uniform rational basis splines 32
PDE partial differential equation 28
PMMA polymethylmethacrylate 7
PTFE polytetrafluorethylen 68
QUS quantitative ultrasound 14
RFA resonance frequency analysis 14
vdW van der Waals 24
THA total hip arthroplasty 10
µCT microcomputed tomography 15
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Latin Symbols

In general, upright symbols denote their respective discretized vectors and matrices, i.e.,
vectors and matrices associated with finite element nodes, and are not listed here.

Symbol Description Unit Equation Page
as sliding threshold [m] (6.5) 67
aαβ surface metric tensor components (3.23) 23
apα co-variant tangent vector [1] or [m] (3.22) 23
aαp contra-variant tangent vector [1] or [m] (3.23) 23
Aαβ surface metric tensor components 23
Ap
α co-variant tangent vector [1] or [m] 23

Aα
p contra-variant tangent vector [1] or [m] 23

bs transition factor (6.5) 67
b left Cauchy-Green tensor (3.9) 20
b̄ prescribed body force [N/kg] (3.43) 27
Be Bernstein polynomials (4.21) 35
B set of points defining a body 19
∂B set of points defining a surface on body B 19
c critical/crack radius [m] (6.7) 68
C effective shear stiffness (6.16) 70
C right Cauchy-Green tensor (3.9) 20
Ce Bézier extraction operator (4.21) 35
c spatial elasticity tensor (3.14) 21
d displacement [m] (5.1) 49
da area element in current configuration [m2] (3.7) 20
dA area element in reference configuration [m2] (3.7) 20
dv volume element in current configuration [m3] (3.6) 20
dV volume element in reference configuration [m3] (3.6) 20
D rate of deformation tensor [1/s] (3.15) 22
e error [%] (6.24) 72
E Green-Lagrange strain tensor (3.8) 20
E Young’s modulus [N/m2] (3.13) 21
Eadh adhesion energy [J] (6.7) 69
fs slip criterion (3.35) 25
f tensor function (3.58) 29
f virtual force vector (4.23) 37
F force [N] 49
F deformation gradient (3.3) 19
g gap [m] (3.28) 23
g gap vector [m] (3.26) 23
he element size [m] 47
G shear modulus [N/m2] (3.12) 21
He Hermite polynomial 36
H constant height [m] 47
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I identity tensor (3.8) 20
I fourth-order symmetric tensor (3.14) 21
IF interference fit [m] 46
J change of volume (3.4) 19
Js change of area (3.5) 19
k stiffness/tangent matrix (4.36) 38
−→
k bone apposition rate (8.2) 110
←−
k bone resorption rate (8.2) 110
kr reaction rate [1/day] (8.2) 110
ls load step (5.1) 49
∆ls load step increment (5.1) 49
L linearization (3.58) 29
L constant length [m] 24
m mass [kg] 24
M torque [N m] (6.10) 69
n number/amount (4.1) 31
n surface normal (3.10) 21
N,M shape function (4.4) 32
N array of shape functions (4.4) 32
p, q polynomial order (4.20) 35
pc contact pressure [N/m2] (3.31) 23
p̄ average contact pressure [N/m2] 74
P control point vector (4.17) 34
P parameter space (3.40) 26
rres residual (3.50) 28
r radius (coordinate) [m] (6.8) 69
Re rational basis function (4.21) 35
R constant radius [m] 47
S second Piola-Kirchhoff stress tensor [N/m2] (3.11) 21
t time [s] 42
t0 reference traction [N/m2] (7.1) 83
t surface traction [N/m2] (3.10) 21
t̄ prescribed surface load [N/m2] (3.43) 27
u displacement vector [m] (3.2) 19
v discretized virtual displacement (4.7) 32
V function space (3.51) 28
W e weighting function (4.21) 35
W energy [J] (6.25) 77
W spin tensor (3.16) 22
We weights (4.21) 35
x current position of a material point [m] (3.1) 19
X initial position of a material point [m] (3.1) 19
x, y, z coordinate [m] (6.8) 69
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Greek Symbols

Symbol Description Unit Equation Page
Γ surface element (4.1) 31
ε infinitesimal strain tensor (3.12) 21
ε penalty parameter [N/m2] (4.44) 40
θ rotation angle [deg] (6.7) 68
Λ first Lamé parameter (3.12) 21
µ friction coefficient (3.38) 25
ν Poisson ratio (3.13) 21
ξ, η, ζ parametric coordinates (4.9) 32
ξ vector of parametric coordinates (3.22) 23
Ξ knot vector (4.14) 34
Π potential energy [J] (3.54) 29
δΠ variation of the potential energy [J] (3.54) 29
ρ mass density [kg/m3] (3.41) 26
σ stress (component) [N/m2] (6.9) 69
σ Cauchy stress tensor [N/m2] (3.10) 21
σ̌ Jaumann rate of the Cauchy stress tensor [N/m2s] (3.17) 22
τ tangential sliding direction (3.37) 25
φ (de)bonding state (6.1) 66
φ̂ bonding state (during osseointegration) (8.1) 110
φ0 initial degree of osseointegration (6.5) 67
φ̄0 average percentage of initially osseointegrated area (6.26) 77
ϕ deformation mapping (3.1) 19
δϕ variation/test function/virtual displacement (3.51) 28
Ω bulk element (4.1) 31

Mathematical Operators

a · b scalar product (vector):
∑
i aibi

A : B scalar product (tensor):
∑
i,j AijBij

a⊗ b tensor product: [a⊗ b]ij = aibj
•̇ temporal derivative: ∂ • /∂t
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Subscripts and Superscripts

The position of a symbol as a subscript or superscript has no particular meaning and is
chosen based on convenience.

Symbol Description Symbol Description
∞ infinite/steady state SR short range
* reference value stick sticking
0 initial/reference state t tangential
A ancillary tb trabecular bone
adh adhesion t̄ Neumann boundary
b broken ub unbroken
c contact vdW van der Waals
cb cortical bone α, β ∈{1,2} surface coordinate index
cp control point θ degree (coordinate)
CZ cohesive zone � parent element
e elastic
e element-wise
el element
ext external
gp Gauss-point
h discretized variable
i inelastic
i load increment
I implant
in inertia
int internal
k ∈{1,2} body index
` ∈{2,1} body index
lim limit
lin linear
max maximum
mp mean percentage
n normal
n load/time step
opt optimal
p projection point
r reaction (chemical)
s, slide sliding
s surface
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Chapter 1

Introduction

Endosseous implants, which are implants that partially or completely replace or support
biological structures, are currently the most applied therapy for worn out, damaged, or destroyed
joints, bones or teeth. Severe cases require the total replacement of the damaged joint or tooth,
such as total hip or knee arthroplasty or dental implants. These replacements are the most
commonly performed type of orthopedic surgery, with over 1 million replacements annually
in the USA alone (Lee and Goodman, 2008). With the ever increasing life expectancy, there
is a rapid increase in patients with musculoskeletal conditions and diseases such as fractures,
osteoporosis, and bone metastases, which require partial or total replacement of joints (Kurtz
et al., 2007, 2014; Wengler et al., 2014). The increase of joint replacements leads to an increase in
aseptic loosening and debonding-related implant failure (Cram et al., 2012), which are difficult
to anticipate, as the responsible phenomena of bone remodeling and bone apposition are complex
and remain poorly understood.

One of the most important factors for the success of an endosseous implant is mechanical
stability (Huja et al., 1999). Good initial contact between bone and implant, good bone quality,
and an appropriate amount of micro-motion at the bone-implant interface (BII) govern the
growth of new bone and therefore, the adaptation of the implant inside the patient’s body. Poor
initial stability, incorrect load distribution, and large micro-motions can lead to maladaptation
of the implant. In turn, maladaptation of the implant can lead to loosening, malapposition of
bone tissue, and bone loss. These conditions can increase friction at the BII, which in turn may
lead to wear and failure of the implant (Huiskes, 1993).

Two types of implant stability can be distinguished: (i) primary (or initial) stability during
surgery, which is mainly governed by mechanical factors, such as interlocking phenomena and
bone quality (Viceconti et al., 2000) and (ii) secondary (or long-term) stability, that is achieved
several weeks or months after surgery, through the formation and maturation of newly formed
bone tissue at the BII, a process called osseointegration (Albrektsson et al., 1981). While
the evolution of secondary implant stability is governed by complex biochemical processes, the
mechanical behavior of the BII remains crucial for the surgical outcome (Gao et al., 2019).
Therefore, a thorough understanding of the contact mechanisms that govern and inhibit the
adaptation of implants is necessary. The application of these new insights during the design and
testing phase of implants, can lead to improved implants with a longer life expectancy, fewer
implant failures and therefore, fewer revisions of artificial joints. In addition, advanced numerical
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prediction of implant behavior in vivo 1 could reduce the amount of animal experiments and
clinical patient trials, which are necessary for the evaluation of endoprosthetics. Furthermore,
these tools could help surgeons make informed decisions of the optimal implant and implantation
technique for a specific patient.

In most mechanical engineering disciplines and industries, computational modeling, e.g. com-
putational fluid dynamics or structural mechanics, is already a well established tool to design,
simulate, and optimize procedures, machinery, and biological and chemical processes. However,
adhesive contact between bones and implants is a highly complex multi-physics and multi-scale
problem that still lacks a holistic computational model that addresses all relevant phenomena
and is able to predict correct results for the whole life cycle of an implant. As implant sta-
bility includes phenomena on different time- and length-scales, tissue mechanics, structure and
contact mechanics, and biochemistry, it presents a number of unique challenges absent in more
traditional computational modeling applications. Furthermore, due to the size and shape of
common joint replacements and the reliance on bone remodeling and osseointegration, exper-
imental data on long-term stability is scarce, making validation of numerical models difficult.
Most numerical analyses of orthopedic devices are performed to: (i) model bone remodeling
and osseointegration, (ii) gain a fundamental understanding of the (mechanical) behavior of the
BII, and (iii) assist the design and pre-clinical testing of new implants and to compare their
performance with existing designs. While there are many numerical studies concerning these
aspects (Pankaj, 2013; Taylor et al., 2013; Haïat et al., 2014; Murakami and Wakabayashi, 2014;
Taylor and Prendergast, 2015), the specific modeling and prediction of debonding due to imper-
fect osseointegration is still lacking in the literature.

The objective of this thesis is to propose several computational models for the adhesive con-
tact at the BII during the surgery and after osseointegration. The contact models consider non-
linear material behavior, large deformation, adhesive friction, osseointegration, and debonding.
Bone and implant are assumed to be deformable solids. The models are applied to coin-shaped
implants for verification and validation and then applied to simulate initial and long-term sta-
bility of an acetabular cup implant (ACI). The new contributions of this work comprise four
complementary studies on primary and long-term stability and debonding of osseointegrated
implants.

First, determinants of the primary stability of cementless ACI are presented. To quantify
primary stability, the insertion of an ACI into a human hemi-pelvis and subsequent pull-out
are simulated. Primary stability is quantified by the remaining gap between hip cavity and
implant after insertion, and the maximum pull-out force. The influence of the interference fit,
the interfacial friction coefficient, and the stiffness of the cortical and trabecular bone tissue on
primary stability is discussed. Based on the patient’s bone stiffness, optimal combinations of
the interference fit and the friction coefficient (i.e. implant surface roughness) can be identified
to ensure optimal initial stability.

Second, a phenomenological model for the frictional contact behavior of debonding osseoin-
tegrated implants is developed. The classical Coulomb’s law (see Section 3.3.3) is extended from
a constant to a varying friction coefficient, that models the transition from an unbroken to a
broken state, based on a state variable depending on the total sliding distance of the implant.

1. Latin for "within the living"; in vivo studies are performed inside a living organisms.
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While the unbroken state denotes osseointegration and thus the presence of adhesive bonds and
a higher friction coefficient, the broken state denotes pure frictional contact behavior of the
interface with a lower friction coefficient. Thus, this model can account for the higher tangential
shear forces observed in osseointegrated implants compared to unbonded implants. This model
is applied to the torsional debonding of coin-shaped implants (CSI) and the results are compared
to experimental data and a previous analytical model.

Third, the modified Coulomb’s law for tangential debonding is applied to simulate secondary
stability of an ACI and determine relevant factors. Furthermore, the model is extended in
normal direction by a cohesive zone model (see Section 3.3.2), to account for debonding in
normal direction and allow for adhesive friction. This contact model is applied to simulate
the debonding of a 3D, osseointegrated ACI in different removal tests. The implant stability
is quantified by the removal force/torque and the biomechanical determinants of long-term
stability, such as primary stability and degree of osseointegration are assessed. The results are
compared with the purely tangential model to identify the relevance of normal adhesion in the
debonding of ACI.

Last, two simple evolution laws for osseointegration are presented, which are based on initial
stability, in terms of contact pressure and contact gap. They are used to compute realistic
and time-dependent osseointegration of implants and can be coupled with models of initial and
long-term stability to provide a complete workflow for implant assessment.

Due to their generality all models presented herein can be applied to various kinds of en-
dosseous implants or imperfectly bonded interfaces in general. Furthermore, the presented
models can be coupled with more advanced bone remodeling algorithms or realistic loading
data, to make qualitative simulations and prognoses for the whole life cycle of an implant from
the surgery, through bone remodeling and osseointegration, to long-term stability under cyclic
loading.

The reminder of this thesis is structured as follows: Chapter 2 provides an introduction into
the biomedical and biomechanical background of this thesis. Furthermore, several experimental
methods to analyze implant stability and the state of the art in numerical simulation of implant
stability are summarized. In Chapter 3, the continuum mechanical equations required to gen-
erally describe nonlinear contact between two deformable bodies are summarized. Chapter 4
follows with an introduction into nonlinear finite element methods for solids and the resulting
solution procedure for contact problems. A finite element study on the determinants of primary
stability of an ACI is discussed in Chapter 5. An analytical and numerical model for tangential
debonding of osseointegrated implants is derived and applied to simple implants in Chapter 6.
This model is extended into normal direction and applied to model long-term stability of an
ACI in Chapter 7. In Chapter 8, three simple evolution laws for osseointegration based on the
initial stability of the implant are presented. These time-dependent evolution laws are used to
compute the distribution and degree of osseointegration, based on the contact gaps and contact
pressure distribution at the BII. Chapter 9 concludes this thesis and provides some perspective
for future work.
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Chapter 2

Background

This work introduces various computational contact models to analyze the primary and sec-
ondary stability and adhesive debonding of osseointegrated implants and identifies biomechanical
determinants of implant stability. This chapter provides an introduction into the topic of bone
implants, bone implant stability, and the necessary biomedical and biomechanical background.
Furthermore, several experimental methods to analyze implant stability and the state of the art
in numerical simulation of implant stability are summarized.

2.1 Bone

From a biomedical point of view, bones are rigid organs that form part of the skeleton
of vertebrates. The main functions of bones are the support of the body structure, mobility,
production of red and white blood cells, and storage of minerals. The adult human body consists
of around 205 bones, which can be divided into groups of long and short bones, flat, sesamoid
and irregular bones. Besides mineralized tissues, bones consist of bone marrow, nerves, blood
vessels, and cartilage. From a biomechanical point of view, bone is a multiscale composite and
heterogeneous medium (Sansalone et al., 2010).

2.1.1 Bone Tissue

Bone tissue is a mineralized tissue that appears in the human body in mainly two forms:
cortical and trabecular bone. Both types have a hierarchical structure. At the macroscopic
scale, bone tissue is governed by a rigid matrix that composes 30 % of the volume of the whole
bone and is made up of collagen fibers, non-collageneous proteins, and lipids. The other 70 % are
inorganic minerals, such as calcium carbonates and calcium phosphates (e.g., hydroxyapatite),
in varying percentage (Paschalis et al., 2001; Olszta et al., 2007; Gao and Sevostianov, 2016).
At the microscopic scale, bone tissue consists of different types of bone cells, e.g., osteoblasts
and osteocytes, which are responsible for formation and mineralization of bone tissue, and
osteoclasts, which are involved in the resorption and reformation of bone. An illustration of the
hierarchical structure of bone tissue is shown in Figure 2.1.

The exterior shell of bones is made up of cortical bone, also referred to as compact bone.
It facilitates the main functions of bones, such as the support and protection of the whole
body, provision of levers and attachment sites for muscles, sinews, and joints, and the stor-
age and release of minerals, mainly calcium. Cortical bone is composed of concentric parallel
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Figure 2.1 – Schematic illustration of the hierarchical structure of bone tissue. Adopted and
modified from (Grandfield, 2015).

bone lamellae, which form base units called osteons or Haversian systems. Osteons are cen-
tered around Haversian canals, which contain blood vessels. Haversians canals communicate
between the blood vessels, the medullary cavity, and the periosteum by transverse canals, called
Volkmann’s canals.

Trabecular bone, which is also known as cancelous or spongy bone, is typically found at the
ends of long bones, such as the femur (see Figure 2.4). It has a sponge like, porous structure
made up by a network of trabeculae. The trabeculae are embedded in a medium composed of
bone marrow, blood, and stem cells that produce blood cells. Trabeculae are aligned towards
the mechanical load distribution, and thus trabecular bone is exposed to constant change as
the bone adapts to new load cycles or damage. While having a larger specific surface area than
cortical bone, trabecular bone is less dense and less stiff.

From a mechanical point of view, bone tissue is a multiscale composite and a heterogeneous
medium and exhibits different mechanical properties: (i) anisotropy, i.e., it has different material
properties in different directions, (ii) viscoelasticity, i.e., it exhibits both viscous and elastic
characteristics when undergoing deformation, (iii) surface roughness and porosity on different
length scales. Furthermore, bone properties vary according to the type of bone tissue and the
observation scale but also from patient to patient (and species to species), due to, e.g., differences
in sex, age, activity level, and health conditions (Whitehouse and Dyson, 1974; Goldstein, 1987;
Bayraktar et al., 2004). Furthermore, bone properties evolve constantly due to bone remodeling
processes, that allow bone to heal and to adapt its structure and loading capabilities to new
loading conditions.

2.1.2 Bone Remodeling

Healthy bone remodels constantly and adapts its structure to the loads it is subjected to, in
order to optimize load distribution inside the bone as well as to improve stability and to prevent
and heal fractures (Wolff, 1892). During this process, bone tissue is resorbed by osteoclasts,
which remove the mineralized matrix and break up organic bone components. Then, new bone
tissue is created by osteoblasts where needed. Osteoblasts are responsible for bone synthesis and
mineralization, renewal and repair. Once trapped inside the bone matrix, they become inactive
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2.2. Endosseous Implants

and are transformed into osteocytes, which are mature bone cells that constitute the osteons.
Bone healing can be divided into two mechanisms: direct bone growth and indirect bone

growth after callous formation (Agarwal and García, 2015). The first mechanism involves the
growth of bone from the broken ends at a fracture site without forming fibrous tissue and this is
the mechanism that is exploited by cementless implants (see Section 2.2 and 2.2.3.2). The second
mechanism involves inflammation, leading to a callous formation that needs to be resorbed so
that healthy bone growth can take place.

2.2 Endosseous Implants

Endosseous implants are used to support or replace joints, bones, or teeth by directly in-
serting the implants into the bone structure. Some examples of commercially used endosseous
implants are shown in Figure 2.2. Essentially, endosseous implants can be divided into two
groups: cemented and uncemented implants.

Cemented implants use acrylic cement (polymethylmethacrylate (PMMA) copolymer and
methylmethacrylate (MMA) monomer) to quickly establish a solid attachment to the bone,
which allows for mobility immediately after surgery. Cemented joint replacements have been
in clinical use for many decades and a successful implant may last more than 20 years. A
successful joint replacement has a stable boundary between the implant and the cement and
a durable mechanical connection between the cement and the bone. However, over time the
cement can crack or wear out, loosening the connection between the implant and adjacent
bone, making a revision surgery necessary (Herberts and Malchau, 1997, 2000). Loosening is
more likely to occur in patients who are very active or very heavy, as the implants are put
under more frequent and higher loads. For this reason, cemented joint replacements are more
commonly recommended for patients who are older, have conditions such as rheumatoid arthritis,
or are younger but have compromised health or poor bone quality and density. While cemented
implants can be loaded immediately after surgery, the introduction of bone-cement and cement-
implant interfaces increases the risk of debonding and wear. Furthermore, the bone cement can
cause thermal damage due to the polymerization reaction (Charnley, 1964; Hailer et al., 2010)
and can become problematic in case of revision surgery, as it needs to be removed (Charnley,
1964; Galasso et al., 2011). The widespread use of uncemented implants has shown that some
implants experience a better fixation through osseointegration than by cementing the interface,
e.g. the acetabular component (see Figure 2.4 and 2.5 ) (Widmer et al., 2002).

Nowadays, uncemented implants have become more and more common (Grimberg et al.,
2019). Uncemented implants establish initial stability during surgery by a press-fit, which is
mainly governed by mechanical factors, such as interlocking phenomena (Swami et al., 2016).
Long-term stability is achieved several weeks or months after surgery, through osseointegration.
The contact surfaces of such implants are rough or semi-porous, to allow bone to grow into and
around the implant surface and to form a solid attachment, due to mechanical interlocking and
chemical bonding between the calcium of the bone and the alloy or coating of the implant (Bar-
rere et al., 2004; Baril et al., 2011; Sul et al., 2013). Cementless implants are mostly used in
younger, more active patients with good bone quality (Drexler et al., 2012). Younger bone is
more prone to grow into the implant as expected, and thus facilitates the fixation of the implant.
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(a) (b) (c)

Figure 2.2 – Examples of different endosseous implants: (a) Spinal implant (4web medical,
2021). (b) Dental implant (biotech–dental). (c) Knee implants (strykerCTKS).

For some joint implants, e.g., total knee or hip replacements, a combination of both methods
is applied where one component is cemented while the other part is left to osseointegrate. In
evaluating cementless knee prostheses, physicians have found that better attachment to the bone
occurs with the femur than with the kneecap or lower leg (Robertsson et al., 2014; Wyatt et al.,
2014). Accordingly, some physicians use a cementless attachment to the femur and cement the
other portions of the implant, an approach called hybrid or mixed total knee replacement.

While stainless steel has been used as implant material for over a century, titanium and
titanium alloys (e.g., Ti-6Al-4V) have gained more and more attention, as they have been shown
to form a closer contact to bone, due to chemical bonding with the bone tissue (Albrektsson
et al., 1985, 1986). In addition, titanium has a similar tensile strength as stainless steel but is
much lighter.

Not only the material, but also the surface properties play a significant role in the success and
quality of the integration of an implant. In general, rough surfaces are preferred for implant parts
in contact with bone as they have a larger available area for host proteins and cells and have been
shown to promote mineralization (Shalabi et al., 2006; Novaes et al., 2010). The typical surface
roughness of implants varies from 0.5 to 10 µm (Albrektsson et al., 1986; Jemat et al., 2015;
De Bruyn et al., 2017). Common surface treatments are acid etching, sand blasting, oxidation,
and mechanical polishing. In addition to surface treatment, the application of hydroxyapatite or
other bioactive coatings has shown to be promising and led to improved bone ingrowth in several
studies (Cook et al., 1992; Søballe, 1993; Barrere et al., 2003). With the recent development
of laser beam melting, 3D printing, and topology optimization, titanium implants and implant
surfaces can now be printed with complex topography and topology (Palmquist et al., 2010; Baril
et al., 2011). In the context of implants, surface topography refers to the surface roughness,
including the waviness, asperity, and surface finish, while topology refers to the macroscopic
geometry and structure of the implant (see Figure 2.2, left).

Despite recent advances in implant technology and the optimization of surgical procedures,
debonding and failure of endosseous implants of both types still occur and may have dramatic
consequences. Aseptic loosening due to, e.g., wear and osteolysis, is the main cause (75 %) of
implant revisions worldwide (Crawford and Murray, 1997; Drexler et al., 2012). Up to 25 %
of patients have to undergo revision surgery and approximately 7 % within the first 8 years of
implantation. Revision surgery is usually more invasive than the first surgery and the reported
15–year survival rate of revision surgery is only 69 % (Ulrich et al., 2008). Therefore, there is
a high demand in reliable models that can assess and predict the behavior of the BII, to aid in
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implant conception and optimizing surgical procedures.
The methods developed in this work will be applied to two different types of cementless

implants: coin–shaped implants and acetabular cup implants.

2.2.1 Coin–Shaped Implants

Most studies on bone attachment to implants have used push-in or pull-out in vitro 1 tests
(Bishop et al., 2014; Wennerberg et al., 2014; Berahmani et al., 2015; Damm et al., 2015). The
implant geometry influences the test results (Brånemark et al., 1998) and leads to spatially com-
plex, non-uniform, multiaxial stress fields (Shirazi-Adl, 1992) and unstable crack propagation.
Therefore, using realistic implant geometries makes it difficult to estimate a physically mean-
ingful value for the interfacial mechanical strength. As a consequence, models with a planar
BII were designed to minimize the effects of friction and mechanical forces introduced by the
geometry (Skripitz and Aspenberg, 1999).

A frequently used group of models are coin-shaped implants (CSI) These small, cylindrical
implants can be implanted into rabbits in order to study determinants of implant stability and
the healing process (Rønold and Ellingsen, 2002; Rønold et al., 2003). They can be used for differ-
ent kinds of analyses, such as histology and histomorphometry, spectroscopy, and experimental
testing. The planar bottom surface allows the study of the BII in a controlled manner (Mathieu
et al., 2012a; Vayron et al., 2014; Fraulob et al., 2020b). Initial gaps between implant and bone
allow the study of newly formed bone (Fraulob et al., 2020b), while Polytetrafluoroethylene
(PTFE) caps on the side wall ensure that only the bottom surface is osseointegrated, which is
essential for some types of mechanical testing, e.g., torsion (Mathieu et al., 2012a). Figure 2.3
shows two images of a freshly implanted CSI in a rabbit tibia and a histological image of an
osseointegrated CSI.

soft tissue
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Figure 2.3 – Different images of a CSI: (a) CSI after implantation in a rabbit tibia. (b)
Histological image of an osseointegrated and cut CSI after a healing time of 10 weeks. Adopted
and modified from Vayron et al. (2014); Fraulob et al. (2020b).

1. Latin for "within the glass"; in vitro studies are experimental studies that are performed outside a living
organism in a controlled environment.
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2. Background

2.2.2 Acetabular Cup Implants

One of the most common orthopedic surgery is hemi- or total hip arthroplasty (THA) (Lee
and Goodman, 2008; Grimberg et al., 2019). The femoral head and, if necessary, the acetabulum
are replaced with an artificial implant. A total replacement implant consists of three parts: (i)
an ACI, (ii) a liner, and (iii) a femoral stem, which are depicted in Figure 2.4. An ACI is
usually a hemispherically shaped implant, covered with an alloy or a bioactive coating, such as
hydroxyapatite. The outer surface of the implant is usually rough, porous, or has a complex
surface structure. Some examples of commercially used ACI are shown in Figure 2.5. During
surgery, a hemispherical cavity is drilled into the pelvis. In the case of cementless implants, this
cavity is often under-reamed to produce an interference fit between bone and implant. This
interference fit is defined as the difference in diameter between the cavity and the ACI.

femur

femoral stem

acetabular cup
liner

pelvis

(a) (b) (c)

Figure 2.4 – Total hip replacement: (a) Schematic illustration of the components and the final
system of a total hip replacement. (b) Implant position inside the patient. (c) X-ray of a total
hip replacement inside a patient. Adopted and modified from AAOS; Learmonth et al. (2007).

Figure 2.5 – A variety of ACI with different surface treatments and with and without screw
holes (b.braun; strykerTridentII).

During the surgery, an ancillary is attached to the ACI. The ACI is then inserted into the
cavity through hammer blows onto the ancillary (Michel et al., 2014). The interference fit
produces a press-fit of the implant and ensures initial stability. For patients with poor bone
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2.2. Endosseous Implants

quality or mass or for revision surgeries, ACI can also be fixated by using screws. Long-term
stability is then achieved by bone growing around and into the surface of the implant.

2.2.3 The Bone-Implant Interface

The BII is a complex system governed by biochemical and biomechanical processes, occurring
at nano- and micro-scales (molecular level biochemistry and surface roughness) as well as the
macro-scale (organ level load application). Here, the definitions of primary and secondary
stability are given, and relevant biological and mechanical factors are discussed.

2.2.3.1 Primary Stability

Primary stability of a cementless implant is defined as the initial fixation of the implant in
the host bone and is achieved during surgery. It is governed by patient- and implant-specific
factors, as well as by the surgical protocol.

The patient’s bone quality and quantity are essential to ensure that initial fixation takes
place (Swami et al., 2016). If bone stiffness or bone mass is insufficient, some implants, like the
ACI, can be additionally fixed with screws, to avoid excessive micro-motion and displacement.

While the implant geometry has an effect on the load distribution from implant to bone,
the surface properties (e.g., roughness, porosity, surface treatment) affect the seating of the
implant (Curtis et al., 1992; Hadjari et al., 1994; Ries et al., 1997; Markel et al., 2002). A
certain roughness and porosity is needed to ensure osseointegration later on. However, highly
rough surfaces can inhibit the proper seating of the implant.

From a mechanical point of view, the key elements of the surgical protocol of uncemented
implants can be reduced to interference fit, implantation angle, insertion load, and bone stiff-
ness. While a certain interference fit and insertion load is needed to properly insert and fixate
the implant, excessive interference fit and insertion load can lead to bone damage and bone
resorption.

2.2.3.2 Osseointegration and Secondary Stability

Secondary stability is achieved several weeks after surgery, through osseointegration phe-
nomena. The process of osseointegration is based on bone remodeling and healing. An implant
is considered as osseointegrated (and therefore secondarily stable) if there is no relative motion
between the bone and the implant. Thus, it is rather measured in terms of stability and not in
terms of contact area.

Osseointegration can be divided into three stages, which are shown in Figure 2.6: In the
insertion stage, a cavity is drilled into the host bone, resulting in destroyed bone. Then, the
implant is inserted by screwing (e.g., for dental implants) or hammering it into the cavity. The
space between implant and bone is initially filled with fluids, blood clots, and bone fragments (see
Figure 2.6, 1.). In the healing phase, blood clots and wound fluid are absorbed and replaced by
a collagen matrix that is mineralized progressively by the action of osteoblasts (see Figure 2.6,
2a.). In addition, the new tissue is vascularized. During this phase, the implant temporarily
loosens, while new bone grows onto and into the implant. Therefore, the implant should not be
loaded fully for several weeks to ensure proper stability. The newly formed bone matures in up
to 16 weeks (Roberts et al., 1992).
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After healing, the new bone tissue has fully mineralized. A steady state is established where
the implant is fully integrated into the bone and the bone tissue remodels to given loads and
stresses (see Figure 2.6, 3a.).

However, osseointegration can fail at any stage. An example of an initial failure is that
the wound fluid is not replaced by a mineralized collagen matrix but rather by non-mineralized
connective tissue that does not support the implant and can increase further bone loss (Huiskes,
1993), as it does not distribute loads onto the remaining bone properly (see Figure 2.6, 2b.). A
failure later on is usually due to insufficient bone-to-implant contact. This can lead to suboptimal
load distribution between implant and bone, which may lead to debonding of the interface,
interface motion, debris, and wear (see Figure 2.6, 3b.).
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Figure 2.6 – Schematic illustration of the different stages of osseointegration and examples of
osseointegration failure.

Biological factors that inhibit proper osseointegration are, e.g., poor bone quantity and min-
eral density. In addition, many biological mechanisms of the BII are stimulated or inhibited by
the mechanical behavior of the interface, depending on the intensity of the mechanical stimula-
tion.

The implant’s surface material, roughness, and coating are not only important factors for
primary but also secondary stability. An appropriate degree of surface roughness ensures the
implant fixation through new bone growing into the surface (Schwarz et al., 2009) and by
minimizing micro-motion during the healing phase, due to higher interfacial friction (Gao et al.,
2019). Different surface treatments and coatings, such as hydroxyapatite coatings have been
shown to promote bone healing (Le Guéhennec et al., 2007). The contact surface area of the
implant is also important, as a larger initial contact with bone also increases the possible sites
for bone ingrowth.

12



2.3. Determining Biomechanical Properties and Behavior of the Bone-Implant Interface

Another important factor is the implant geometry, which is responsible for the stress dis-
tribution. Excessive compressive stresses created during the implant insertion can lead to bone
necrosis and ischemia (Sotto-Maior et al., 2010). Although the implant may be in contact with
trabecular and cortical bone, the latter plays the governing role in experimental and numerical
analyses, as the highest stresses occur in cortical bone around the neck of the implant (Sütpideler
et al., 2004). Improper load distribution after osseointegration can have a negative impact on
bone remodeling, as bone may grow away from the implant, leading to implant loosening. Fur-
thermore, the load cases and the load distribution influence the interface micro-motion. While
there is still some disagreement about how much micro-motion is really necessary to stimu-
late bone growth, usually a value of up to 50 µm is stated (Bragdon et al., 1996; Fitzpatrick
et al., 2014). Micro-motion that exceeds a value of 150 µm has been shown to inhibit bone
growth and promote bone loss (Pilliar et al., 1986; Jasty et al., 1997). Loading conditions vary
not only with the implant geometry but also with the patient’s height, weight, age, sex, and
vitality (Kutzner et al., 2010). Therefore, the determination of biomechanical properties and
mechanical phenomena is essential to understand the behavior of the BII.

2.3 Determining Biomechanical Properties and Behavior of
the Bone-Implant Interface

There are different methods to assess the properties of the BII and implant stability. They
can be divided into invasive and non-invasive experimental methods, and numerical methods.
Often, multimodal approaches are used to gain as much insight out of a sample as possible, e.g,
histological analysis and quantitative ultrasound techniques (Fraulob et al., 2020c) or nanoin-
dentation and Raman spectroscopy (Fraulob et al., 2020b). This section summarizes the most
common approaches found in the literature.

2.3.1 Non-Invasive Experimental Methods

There exist several non-invasive methods to monitor osseointegration that can be applied
during the surgery and at different stages of the healing process.

In orthopedic surgery, the surgeons mostly rely on their experience, perception, and proprio-
ception to determine the proper seating and initial stability of the implant. For certain implants
(e.g., a femoral stem) the proper seating during insertion can be identified by changes in (i) the
sound and (ii) the physical sensation during the impacts with a surgical hammer (Trisi and Rao,
1999).

A simple method is the percussion test, where the implant is struck with a metallic in-
strument to induce a sound (Atsumi et al., 2007). A "dull" sound may indicate no or poor
osseointegration while a "crystal" sound indicates good osseointegration (Swami et al., 2016).
This technique was used to develop Periotest (Medizintechnik Gulden, Bensheim, Germany),
which is a commercially available tool that uses an electro-magnetically driven and controlled
tapping metallic rod. The mobility of the BII is measured by the reaction of the implant to
the imposed impact load and the bone density can be derived. However, the reliability of this
method has been questioned due to its sensibility to many factors, such as the striking height
and handpiece angulation (Salvi and Lang, 2004). Furthermore, this method is deemed un-
suitable for standardized testing, due to its dependence on the surgeon (Atsumi et al., 2007;
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Bayarchimeg et al., 2013; Swami et al., 2016) and cannot be applied to every type of implant.
In addition, this method only allows an assessment of initial stability but cannot predict the
long-term outcome of the surgery.

Another measurable factor during the surgery is the cutting torque resistance while reaming
or drilling the implantation site. Studies have shown that the cutting torque resistance is highly
correlated with bone density (Friberg et al., 1995, 1999) and can be used as an indicator for
bone quality.

Medical imaging, such as quantitative computer tomography and photon absorptiometry,
can be used to assess bone quantity and density (e.g. before surgery) and can also monitor the
progression of osseointegration and detect gaps in the BII. However, depending on the size and
location of the implant, not all values can be quantified and gaps might not be visible due to
restrictions in imaging perspective, resolution, and artifacts (Knott et al., 2010).

Resonance frequency analysis (RFA) uses the vibration of a transducer and structural analy-
sis to measure implant stability and bone density. One part of the transducer is directly screwed
onto the implant while the other part works as a receptor. The implant is perturbed by a sinu-
soidal input with increasing frequency until the implant resonates. Measurements after surgery
provide a baseline reading. During and after the healing period, high frequency resonance in-
dicates a strong BII. There exist different commercially available products on the market that
use enhanced RFA, such as electronic technology RFA and magnetic technology RFA (Osstell,
Integration Diagnostic AB, Goteborg, Sweden). However, RFA cannot be used to directly iden-
tify the properties of the BII and the orientation and fixation of the transducers were found to
have significant effects on the measured implant stability (Vayron et al., 2018a,b).

Quantitative ultrasound (QUS) techniques are used to estimate bone quality and quantity
and degree of bone-to-implant contact (Laugier and Haïat, 2011; Mathieu et al., 2011a, 2012b,
2011c). Ultrasonic waves are sensitive to the bone’s elastic properties (Laugier and Haïat,
2011). As the bone-implant contact ratio (BIC), the elastic properties, and the mass density of
periprosthetic bone tissue increase, the changes in the reflection of the ultrasonic waves can be
measured and quantified. Recent studies have shown that QUS techniques are significantly more
sensitive to changes of periprosthetic bone tissue compared to RFA (Vayron et al., 2018a,b).

2.3.2 Invasive Experimental Methods

There exist several invasive techniques to determine implant stability and evaluate osseoin-
tegration that are mainly used in research and implant testing.

In histomorphometric analysis, the osseointegrated implant is removed including the sur-
rounding bone and sliced into specimens and often dyed to differentiate between tissues (see
Figure 2.3). These specimens can be probed, e.g., by nanoindentation (Anchieta et al., 2014;
?; Kim et al., 2016a,b; Anchieta et al., 2018) and observed under a microscope. With this
method, the bone-implant contact ratio and bone microarchitecture (Trisi and Rao, 1999) and
mineral density (Artzi et al., 2003a,b), can be assessed. Histomorphometric analysis is also used
after different healing periods to assess the change in bone structure and composition. How-
ever, this method cannot quantify the fixation of the implant and only provides 2D information.
Furthermore, this technique is mainly used for small implants, like dental implants and CSI.

Raman spectroscopy uses a specific Raman interferometer with an infrared laser. The scat-
tered light reflects compositions of mineral and collagen phases due to the difference in molecule
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and ion vibrations. This can be used to evaluate the local biochemical composition of bone tis-
sue at the nanoscale, which includes the mineral and organic components. Raman spectroscopy
has been used to investigate the remodeling process of healing bone tissues in general (Ahmed
et al., 2018; Shah et al., 2019) and for titanium implants (Lopes et al., 2007; Shah et al., 2016).
As with histomorphometry, this method cannot quantify the stability of the BII.

Removal tests, such as pull-out, push-out, lever-out, and torsional tests, are widely used to
evaluate the implant fixation by recording the force-displacement curve, the maximum removal
force, micro-motion, or the shear strength of the BII (Søballe, 1993; Brunski et al., 2000; Chang
et al., 2010; Trisi et al., 2011; Mathieu et al., 2012a), which has been correlated with histological
assessments in animal studies (Johansson and Albrektsson, 1991; Haïat et al., 2014). These
techniques are used to quantify primary and secondary stability of implants in vitro and ex
vivo 2. Most experimental studies on secondary stability are performed on dental implants and
CSI. The influence of biological as well as mechanical factors on the long-term stability, and the
implant topology make experimental testing of cementless implants difficult and at present, such
studies are lacking in the literature (Viceconti et al., 2004; Helgason et al., 2008). Therefore,
there is a high demand in reliable numerical models that can model and quantify the behavior
of the BII during the surgery, through osseointegration, up to cyclic loading, bone remodeling,
and debonding.

2.3.3 Numerical Methods

Finite element analysis (FEA) has been applied to the whole spectrum of endosseous im-
plants, modeling their behavior in vivo, ex vivo, and in vitro, and assessing determinants of
initial and long-term stability, as well as bone remodeling. It has significantly improved the
understanding of the mechanical behavior of bone implants and the BII. There exist a number
of thorough reviews on numerical models for bone implants and the BII (Pankaj, 2013; Taylor
et al., 2013; Haïat et al., 2014; Murakami and Wakabayashi, 2014; Taylor and Prendergast,
2015). Therefore, this section is limited to (i) the primary stability of ACI (ii) osseointegration
algorithms, and (iii) macroscopic models of long-term stability, partial osseointegration, and
debonding of uncemented implants in general.

2.3.3.1 Primary Stability of ACI

Initially, finite element (FE) modeling of orthopedic implants was mainly used to gain a
qualitative insight into the behavior of the bone-implant system inside the patient and to deter-
mine relevant patient-, implant- and surgery-specific parameters affecting implant performance
(Taylor and Prendergast, 2015), as most of these factors cannot be observed or measured ex-
perimentally. Nowadays, numerical modeling is also used in the design phase of implants and
studies are carried out to assess the impact on performance of, e.g., changes in implant design
and surface treatment (Viceconti et al., 2009; Taylor et al., 2013). Due to the progress of med-
ical imaging (e.g. microcomputed tomography (µCT)) and its use as geometrical input for FE
models, case-specific modeling (Hsu et al., 2006)) and multi–factorial studies (Anderson et al.,
2005; Hsu et al., 2007; Janssen et al., 2010; Amirouche et al., 2014; Rourke and Taylor, 2020)
with realistic bone geometries are carried out to assess patient-related factors on the surgical

2. Latin for "out of the living"; ex vivo experiments are either performed on dead organisms (cadaveric studies)
or with tissue extracted from a living organism and not grown artificially
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outcome, such as bone geometry, bone quality, and loading cycles. A case-specific model is
usually used to investigate a unique situation, e.g., a specific condition or geometrical anomaly,
whereas a multi-factorial study aims to generate various cases representative of a population and
may require a large number of analyses (Clarke et al., 2013). Furthermore, there is a growing
potential in FE models to provide patient specific models that can guide the decision making
process of orthopedic surgeons in terms of choice of implant and surgical protocol.

2.3.3.2 Predicting Osseointegration

Mathematical and numerical models that can predict osseointegration and bone remodeling
are mostly based on continuum damage mechanics (Prendergast and Taylor, 1994; Doblaré
and Garcıa, 2002; Moreo et al., 2007; Caouette et al., 2013) and mechanoregulatory algo-
rithms (Huiskes et al., 1987; Weinans et al., 1992; Huiskes et al., 1997; Prendergast, 1997;
Fernandes et al., 2002; Andreykiv et al., 2005; Dickinson et al., 2012).

These models often incorporate cell differentiation rules based on mechanical stimulus to
simulate the creation and maturation of bone tissue by changes in material properties, such
as bone density and stiffness. For the mechanical stimulation or threshold of bone growth,
strain energy density (Huiskes et al., 1987; Weinans et al., 1993; Andreykiv et al., 2005; Lutz
and Nackenhorst, 2012; Chanda et al., 2020), micromotion (Caouette et al., 2013; Tarala et al.,
2013; Chanda et al., 2020), interface gap size (Tarala et al., 2013; Chanda et al., 2020) and
interface stress (Chanda et al., 2020) are used.

Biological factors that are considered are, e.g. platelet reactions, growth factors, cell den-
sity (Andreykiv et al., 2005) and cell differentiation (Andreykiv et al., 2005; Dickinson et al.,
2012; Mukherjee and Gupta, 2017; Chanda et al., 2020). Intermediate bonding can be charac-
terized by applying spring elements (Chanda et al., 2020) or change in material parameters (An-
dreykiv et al., 2005; Dickinson et al., 2012; Tarala et al., 2013; Mukherjee and Gupta, 2017)
such as interfacial stiffness. The successful bonding is then modeled by, e.g., setting the osseoin-
tegrated contact region to bonded contact (Spears et al., 2000; Fernandes et al., 2002; Viceconti
et al., 2004; Andreykiv et al., 2005; Chanda et al., 2020), by means of spring elements (Tarala
et al., 2013) or interface elements (Lutz and Nackenhorst, 2012; Caouette et al., 2013).

Some works combine osseointegration estimations with simultaneous or subsequent bone
remodeling (Dickinson et al., 2012; Tarala et al., 2013; Mukherjee and Gupta, 2017; Chanda
et al., 2020). However, due to the iterative nature and the complexity of the algorithms, they
are computationally expensive and can often only be applied to 2D geometries (Andreykiv et al.,
2005) or small portions of the FE mesh (Mukherjee and Gupta, 2017).

While these models provide detailed osseointegration states for different types of implants,
to the author’s knowledge, none of them have been used as input for simulating the debonding
of the BII so far.

2.3.3.3 Debonding of Partially Osseointegrated Implants

Most finite element models that study secondary stability and implant failure assume the
BII to be either perfectly bonded or fully sliding (Gupta et al., 2010; Tomaszewski et al., 2010;
Galloway et al., 2013; Chou et al., 2014; Demenko et al., 2016; Rittel et al., 2017; Mondal and
Ghosh, 2019). While perfectly bonded contact conditions do not allow for debonding to occur,
interface behavior that is modeled as frictionless or by Coulomb’s friction cannot fully represent
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the nonlinear interface behavior of the BII even before osseointegration occurs (Dammak et al.,
1997b; Viceconti et al., 2004). Furthermore, it was shown that implants are typically never fully
osseointegrated and only show a 30-70% bone-to-implant contact after healing (Brånemark et al.,
1997; Marin et al., 2010). Therefore, imperfect osseointegration and its influence on stability
must be considered.

A common approach is to model imperfect osseointegration by setting osseointegrated contact
elements to be perfectly bonded while non-integrated contact elements follow frictionless or
Coulomb’s friction contact (Spears et al., 2001; Viceconti et al., 2004; Helgason et al., 2009;
Galloway et al., 2013). Another approach to account for varying degree of osseointegration is
to adjust material properties of the BII, while keeping the interface fully bonded (Kurniawan
et al., 2012) or by varying the friction coefficient of the BII from zero for unbonded to infinity for
perfectly osseointegrated surfaces (Korabi et al., 2017). However, these models cannot represent
the adaptive changes of the bone-implant interface and debonding. Furthermore, they usually
determine failure by excessive stress or strain at the BII or the bone, without modeling the
actual separation between bone and implant and local changes of contact conditions. So far, only
very few FE studies model contact and failure of partially osseointegrated implants. Rittel et al.
(2018) studied the in influence of partial osseointegration on dental implant stability and cohesive
failure. There, a tie constraint was applied to the BII, such that bone-implant debonding
occurs in the bone tissue around the interface. Partial osseointegration was model by defining
a relative osseointegrated area with random distribution and setting non-integrated areas to
frictional contact. To address the lack of numerical models that model partial osseointegration
and explicit debonding of the BII, this works puts a special focus on developing and applying
such models.

2.4 Further Challenges

Difficulties concerning the modeling of short and long-term stability of endosseous implants
arise at many levels. First of all, there is a lack of consistent experimental data, especially on
long-term stability. Besides few well documented patient trials, most experiments are performed
on animals. Unfortunately, animals have different bone properties and experience different
loading cycles than humans, making adaptation of in vivo data to humans difficult. Furthermore,
even within humans the material parameters differ greatly, requiring multi-factorial studies.
Another drawback is that, except for dental implants, there currently exists no effective, non-
invasive way to assess implant stability, requiring complicated and ethically difficult animal
experiments. In addition, the normal life expectancy of animals is too short for long-term
studies, as implants have a life expectancy of 15 years and beyond.

Apart from the available data, bones and bone tissue are complex biological compounds.
Bone tissue is a viscoelastic and anisotropic material with nonlinear stress-strain behavior, and
therefore is difficult to model realistically and efficiently at the same time. In addition, the load
distribution onto bones is not fully understood yet, as many aspects like muscle activity and
interaction, posture, and type of movement have to be taken into account. Furthermore, bone-
implant contact is a multi-scale problem including chemical binding between bone and implant,
motion over the whole contact surface, reaction to external loads, and biochemical remodeling
of bone tissue due to mechanical stimulation which all lead to inhomogeneous, time-dependent
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contact. Concerning the stability of implants, some factors like the bone quality of the patients
and the skill of the surgeon are factors that cannot be determined beforehand and are hard to
quantify.
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Chapter 3

Nonlinear Continuum Mechanics

In the previous chapter, the biomedical and biomechanical background of the present work
was introduced. This chapter gives an introduction on the basics of nonlinear continuum me-
chanics of deformable bodies in contact, which are necessary to describe the mechanical behavior
of the BII. In this work, nonlinearity occurs due to the stress-strain behavior of the materials and
the geometrical variations that significantly affect the load-deformation behavior. A more de-
tailed introduction to nonlinear continuum mechanics of solids can be found in Holzapfel (2000).
Contact mechanics involving large deformation and friction is discussed in detail in Laursen
(2013) and Wriggers (2006). This work follows the standard notation of nonlinear solid mechan-
ics: lower case letters denote the current (spatial) configuration and upper case letters denote
the reference (material) configuration. Bold letters denote vectors and tensors, while standard
font denotes scalar quantities.

3.1 Kinematics

Consider a deformable body B0k (k = 1) and its surface ∂B0k as shown in Figure 3.1. In its
reference (material) configuration B0k, a material point in or on the body has the coordinatesXk.
As this point undergoes large deformation, it obtains the coordinates xk(Xk) in the deformed
(or current or spatial) configuration Bk, defined by

xk := ϕk(Xk), (3.1)

where ϕk is the mapping from the reference to the current configuration. The deformation
within the body is characterized by the displacement uk and the deformation gradient F k as

uk = ϕk(Xk)−Xk, (3.2)

F k = ∂ϕk
∂Xk

. (3.3)

From the deformation gradient F k follow the volume change Jk and surface area change Jsk
defined by

Jk := detF k > 0, (3.4)
Jsk := detsF k > 0, (3.5)
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which govern the local volume change and surface area change between the reference and the
current configuration:

dvk = Jk dVk ∀xk ∈ Bk, (3.6)
dak = Jsk dAk ∀xk ∈ ∂Bk. (3.7)

Here dets(•) is the surface determinant on ∂Bk, see, e.g., Sauer et al. (2019).

B0k

Bk

∂B0k

∂Bk

e1

e2

e3

uk

reference
configuration

current
configuration

Xk
xk

ϕk,F k, Jk, Jsk

E1

E3

E2

dA

da
dV

dv

Figure 3.1 – Reference configuration B0k, current configuration Bk and their respective surfaces
∂B0k and ∂Bk.

3.1.1 Strain Measures

Strain describes the change in shape of a body due to external forces (excluding rigid body
motion). This change in shape can be exhibited as, e.g, dilatation or shear. Different equivalent
choices for the expression of a strain tensor can be made, depending on whether it is defined
with respect to the reference or the current configuration and on whether finite or infinitesimal
deformation is considered. As the applications in this thesis involve large deformation, a finite
strain tensor in material configuration is chosen. Based on the deformation gradient F k the
Green-Lagrangian strain tensor

Ek = 1
2
(
FT
kF k − I

)
, (3.8)

can be defined, where I is the identity tensor. The corresponding right and left Cauchy-Green
deformation tensors are defined as

Ck = FT
kF k, bk = F kF

T
k , (3.9)

where Ck is a material tensor and bk is a spatial tensor.

3.1.2 Stress Measures

Stress describes the internal response of a body to external loads. A body can exhibit stress
due to external forces, e.g., change in pressure or temperature, or due to internal forces, e.g.,
the pre-stress of blood vessels.
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If we intersect the body Bk at a point xk by a plane with unit normal nk, we can determine
the traction tk acting at this point from

tk = σknk, (3.10)

where σk is usually referred to as the Cauchy or true stress tensor. The Cauchy stress tensor
σk completely describes the stress state of a uniformly stressed body. Another common stress
measure is the second Piola-Kirchhoff stress tensor Sk, which is defined by

Sk = JkF
−1
k σkF

−T
k . (3.11)

This stress tensor relates forces in the reference configuration to areas in the reference config-
uration. The concrete definition of these stress measures depends on the chosen constitutive
(material) behavior.

3.2 Constitutive Equations

Constitutive theory describes the (microscopic or macroscopic) behavior of a material. In
the purely mechanical case for deformable solids, constitutive theory formulates relationships
between the deformation and the inner forces of a body, also referred to as stress-strain relations.
More generally, these relationships are extended by density, temperature, and entropy.

In this work, all materials are modeled as homogeneous (i.e., they have the same properties
at every material point) and isotropic (i.e., they exhibit the same behavior in every loading
direction). Furthermore, all materials are either linear elastic, linear hypoelastic, or non-linear
hyperelastic, which are explained in the following.

3.2.1 Linear Material Model

A Cauchy elastic or linear elastic material does not depend on the past history of the de-
formation. Consequently, the stress depends only on the current deformation gradient F k. The
stress-strain relation of a linear elastic body is thus linear and is given by Hooke’s law:

σk = 2Gkεk + Λktr(εk)I, (3.12)

where εk = 1
2(∇uk +∇uT

k ) is the infinitesimal strain tensor. Λk and Gk are commonly referred
to as the first and second Lamé parameters 1, and for a homogeneous, isotropic material defined
as

Λk = Ekνk
(1 + νk)(1− 2νk)

, Gk = Ek
2(1 + νk)

, (3.13)

where Ek is the Young’s modulus and νk is the Poisson ratio. The corresponding spatial elasticity
tensor ck is given by

ck = ΛkI ⊗ I + 2GkI4, (3.14)

where I4 is the fourth-order symmetric identity tensor.
Constitutive behavior of elastic materials is a function of only the current state of deforma-

tion. This model cannot describe, e.g., hysteresis, stress softening, residual strains, and other
inelastic effects. If a deformable body goes through a large deformation or if a material does
not behave linearly, a more accurate material model is required.

1. In terms of the Lamé parameters, the shear modulus Gk is often denoted µ. To avoid confusion with the
friction coefficient µ the shear modulus is denoted Gk throughout this work.
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3.2.2 Hypoelastic Material Model

Hypoelastic material models are also referred to as incremental material models since they
are expressed in rate form. In order to derive meaningful material models for finite deformations,
objective rates should be used. Material objectivity states that the constitutive laws must not
depend on the chosen external reference frame. An objective strain rate is given e.g., by the
rate of deformation tensor Dk and the spin tensor W k, defined by

Dk = 1
2
(
Ḟ kF

−1
k + F−Tk Ḟ

T
k

)
, (3.15)

W k = 1
2
(
Ḟ kF

−1
k − F

−T
k Ḟ

T
k

)
. (3.16)

As an objective stress rate, one can use the Jaumann rate of the Cauchy stress tensor

σ̌k = σ̇k + σk ·W k −W k · σk. (3.17)

The stress-strain relationship of a linear hypoelastic material model is then defined by

σ̌k = Λktr(Dk)I + 2GkDk, (3.18)

together with the spatial elasticity tensor ck from Eq. (3.14).

3.2.3 Compressible Neo-Hookean Material Model

In the particular case of hyperelasticity, the material behavior does not depend on the defor-
mation path. Thus, the work done by stresses only depends on the initial state in the reference
configuration and current state in the deformed configuration. A material is defined as Green
elastic or hyperelastic, if the stress-strain relationship derives from a strain energy density func-
tion W . A special case of the hyperelastic material models is the compressible Neo-Hookean
model that also includes a nonlinear stress-strain dependence, such as

σ = Λk
Jk

(lnJk)2I + Gk
Jk

(Bk − I) , (3.19)

ck = Λk
Jk
I ⊗ I + 2Gk − ΛklnJk

Jk
I4. (3.20)

3.3 Contact Mechanics

This work focuses on contact problems that arise from surface effects, including friction and
adhesion. This section introduces the basic contact surface description, kinematics, and general
descriptions of friction and adhesion.

3.3.1 Contact Surface Description and Kinematics

Consider two 3D bodies Bk, k = 1, 2, their boundaries ∂Bk, and their contact surfaces ∂cBk,
as shown in Figure 3.2(a). In this work, a contact surface denotes the whole potential surface
area where contact between two bodies can occur. A 3D surface of body Bk can be described
by the mapping

xk = xk(ξ), ξ ∈ Pk, (3.21)
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which maps a point ξ =
{
ξ1, ξ2} lying in the 2D parameter space Pk to the surface point

xk ∈ ∂cBk. For a given surface point xk one can determine the point that minimizes the
distance between xk and the neighboring contact surface ∂cB`, which is denoted by the closest
point projection xp = x`(ξp) ∈ ∂cB` (` = 2, 1). At the unknown point xp, the surface ∂cB` can
be characterized by the co-variant and contra-variant tangent vectors apα and aαp (α = 1, 2) and
by its surface normal np. Then, a set of tangent vectors on ∂cBk can be defined as

apα := ∂x`(ξ)
∂ξα

|ξp , (3.22)

aαp := aαβp a
p
β,

[
aαβp

]
=
[
apαβ

]−1
, apαβ = apα · a

p
β, (3.23)

np := ap1 × a
p
2

||ap1 × a
p
2 ||
. (3.24)

In the reference configuration ∂cB0k the tangent vectors Ap
α,A

α
p and the surface metric tensor

components Ap
αβ can be defined similarly as in Eqs. (3.22)-(3.23). The coordinates ξp of the

projection point xp can be determined by solving

(xp − xk) · apα = 0, α = 1, 2. (3.25)

This equation is nonlinear in general and thus has to be solved using, e.g., Newton’s method (Sauer
and De Lorenzis, 2013). Once the coordinates of the projection point are determined, one can
define the contact gap vector

gc := xk − xp, (3.26)

which can be decomposed into a normal and tangential component

gc = gn + gt. (3.27)

The signed normal gap gn is defined by

gn :=

 ‖gn‖ , xk /∈ B`,
−‖gn‖ , xk ∈ B`

. (3.28)

To capture tangential sticking and sliding, one has to define a tangential slip

gt = ge + gs. (3.29)

The tangential slip gt can be decomposed in to a reversible/elastic part ge that is associated
with sticking, and an irreversible/inelastic part gs, associated with sliding. A schematic repre-
sentation of the different components is given in Figure 3.2(b). Given the contact surfaces, the
contact traction tc can be decomposed into a normal and tangential component, i.e.

tc = tn + tt. (3.30)

In the case of no adhesion and no friction, these components are defined as

tn = pcnp pc ≥ 0, (3.31)
tt = 0, (3.32)
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where pc is the contact pressure.
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(a) Basic contact surface description and kinemat-
ics.

pc

gs ge
gt

mε t̄
τ p
x0 xs

tt −tt
np

(b) Tangential sticking and sliding from x0 to xs.
Here,m denotes a mass , ε is a spring constant, and
t̄ is an external load. τ p is the tangential sliding
direction (see Section 3.3.3).

Figure 3.2 – Schematic illustrations of the basic surface description and contact kinematics.
Adopted and modified from Duong and Sauer (2019).

3.3.2 Adhesion

Adhesion describes the clinging of two different surfaces to each other, such as velcro, glue,
or the feet of a gecko that stick to a glass plane. It can be caused on the microscopic or
macroscopic level by different mechanisms, such as chemical bonding and van der Waals forces,
electrostatic and magnetic forces, but also mechanical effects, such as capillary interaction,
mechanical interlocking, suction forces, and diffusion.

In this work adhesion at the BII occurs due to mechanical interlocking between the porous
implant surface and the newly formed bone tissue and a chemical bond between the titanium
alloy of the implant and the calcium of the bone. Both are forms of dry adhesion, as opposed
to wet adhesion, which includes a lubricant. The macroscopic adhesion at the BII is still poorly
understood and no agreed upon model exists. In this work for the adhesion in normal direction,
a simple cohesive zone model (CZM) is chosen; even though cohesion usually describes the
clinging of the molecules of one material to each other, which is governed by electrical attraction.
Cohesive zone models are fracture mechanics models, where the separation of the contact surfaces
takes place across an extended crack tip, or cohesive zone (CZ), and is resisted by cohesive
tractions (Dugdale, 1960; Barenblatt, 1962). A simple example is the exponential CZM

tcz = tcz
gcz

e

(
1− ‖gn‖

gcz

)
gn for gn ≥ 0 (3.33)

by Xu and Needleman (1993) depicted in Figure 3.3(a). tcz denotes the largest amount of
cohesive traction and gcz is its location.

Another possibility is to model adhesion due to van der Waals (vdW) forces, which describe
adhesion and repulsion between molecules. This model is mostly used for particle simulation
but can also be applied to continuum mechanics, according to Sauer (2011), as

tvdW = tvdWnp, tvdW = AH
2πr3

0

[
1
45

(
r0
gn

)9
− 1

3

(
r0
gn

)3
]
. (3.34)
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AH denotes the Hamaker constant, whose magnitude reflects the strength of the van der Waals
force between two particles, or between a particle and a substrate (Hamaker, 1937). Here, r0
denotes the equilibrium spacing of the Lennard-Jones potential (Jones, 1924a,b).

Figure 3.3(b) shows the van der Waals traction tvdW as a function of the normal gap gn,
where gn is normalized by r0 and tvdW is normalized by the traction t0.
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(a) Exponential cohesive zone model based on the
normal gap gn with maximum traction tcz occur-
ring at gn = gcz.
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(b) Van der Waals adhesion model based on the
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Figure 3.3 – Illustration of adhesive contact models.

3.3.3 Friction

In general, friction denotes the force resisting the relative motion of solid surfaces, fluid
layers, and material elements. In this work, only dry friction is considered, which is the force
that opposes the relative tangential motion of two solid surfaces in contact. Dry friction generally
arises from the surface roughness and surface deformation, but also from adhesion and debris.

For frictional contact, the tangential traction tt is determined by the behavior during sticking
and sliding. The distinction between these two states is based on a slip criterion of the form

fs

< 0, sticking,
≥ 0, sliding.

(3.35)

An example of the slip criterion fs is

fs = ||tt|| − tslidet . (3.36)

During sticking, the traction tt is defined by the constraint that no relative tangential motion
occurs. During sliding, the traction

tt = tslidet τ p (3.37)

is characterized by a sliding law, where τ p is the tangential sliding direction. One of the simplest
but most commonly used friction laws is Coulomb’s law, shown in Figure 3.4, which is stated as

tslidet = µ tn, (3.38)

where µ is a constant friction coefficient and tn = ‖tn‖. The tangential sliding direction τ p
usually cannot be computed analytically and therefore, needs to be approximated. Two different
approaches, one based on elastoplasticity theory (Wriggers, 2006; Laursen, 2013; Sauer and
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De Lorenzis, 2015)) and one based on surface potentials (Sauer and De Lorenzis, 2013; Duong
and Sauer, 2019) are explained in Section 4.3.
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Figure 3.4 – Frictional, tangential traction for a single point for constant pressure, defined by
Coulomb’s law (3.38), as a function of the tangential gap gt = ‖gt‖. Here, L0 is a reference
length.

3.4 Balance Laws

When considering deformable solids as continua, their deformation and interaction can be
described by balance laws. These equations can be formulated with respect to the reference
configuration (material form) or the current configuration (spatial form) and in global and local
form. In this work, only the quasi-static case is considered, in which case the balance laws
become conservation equations. Furthermore, the balance of mechanical energy requires that
the internal energy of the bodies remains constant. This condition is automatically satisfied by
the material models introduced in Section 3.2 and thus, is not discussed further.

The derivations of the balance laws are based on the following mathematical theorems: The
divergence theorem is stated as ∫

∂Bk
• · nk dak =

∫
Bk

div(•) dvk, (3.39)

where nk is the outward normal vector of boundary ∂Bk. The other theorem is the localization
theorem ∫

Pk
• dv = 0 Pk ⊂ Bk ⇔ • = 0 ∀xk ∈ Bk, (3.40)

which can equally be applied to surface integrals.

3.4.1 Balance of Mass

Assuming that a body cannot loose or gain mass, the mass density can only change due to
change of volume Jk in Eq. (3.4). The global conservation of mass is defined by∫

Bk
ρk dvk = 0, ∀xk ∈ Bk (3.41)

where ρk is the density. The local form of the conservation of mass is given by

ρ0k = Jkρk ∀xk ∈ Bk, (3.42)

where ρ0k is the density in the reference configuration.
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3.4. Balance Laws

3.4.2 Balance of Linear Momentum

Linear momentum is changed by the action of external forces. Excluding forces due to
inertia, the global linear momentum balance states that

2∑
k=1

[∫
Bk
ρkb̄k dv +

∫
∂t̄Bk

t̄k da
]

= 0, (3.43)

where b̄k denotes the external body forces and t̄k are the surface forces with the Neumann
boundary ∂t̄Bk ⊆ ∂Bk. Taking into account local mass conservation (3.42) and Cauchy’s the-
orem (3.10) and applying the divergence theorem (3.39), one can obtain the local form of the
linear momentum balance as

divσk + ρkb̄k = 0 ∀xk ∈ Bk. (3.44)

3.4.3 Balance of Angular Momentum

The balance of angular momentum requires that the Cauchy stress tensor (3.10) is symmet-
ric (Belytschko et al., 2000):

σk = σT
k ∀xk ∈ Bk. (3.45)

Hence, the second Piola-Kirchhoff stress tensor (3.11) must also be symmetric.

3.4.4 Strong Form of the Mechanical Contact Boundary Value Problem

Due to the addition of contact in the system, the balance equations have to be amended.
In this work, no mass and heat sources are assumed, hence the mass balance (3.42) remains
unchanged for contact contributions. When considering contact between two deformable bodies
B1 and B2, their boundaries are decomposed into

∂Bk = ∂ϕBk ∪ ∂t̄Bk ∪ ∂cBk, k = 1, 2, (3.46)

and are assumed to be pairwise disjoint (see Figure 3.5). ∂ϕ denotes the Dirichlet boundary, ∂t̄Bk
denotes the Neumann boundary, and ∂cBk is the contact boundary. When including contact
phenomena, the definition of the Cauchy stress tensor (3.10) is extended to

σknk = t̄k + tck, (3.47)

leading to an additional boundary condition

σknk = tck on ∂cBk, (3.48)

with tck = tnk − ttk. The mechanical contact boundary value problem (BVP) can then be
formulated as follows: for each of the two bodies Bk (k = 1, 2), find the current positions
xk(Xk), ∀xk ∈ Bk, s.t.

divσk + ρkb̄k = 0 in Bk,
σknk = t̄k on ∂t̄Bk,
σknk = tck on ∂cBk,
xk = ϕ̄k on ∂ϕBk,

xk(t = 0) = Xk.

(3.49)
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3. Nonlinear Continuum Mechanics

Equations (3.49) are also called the strong form of the partial differential equation (PDE) sys-
tem, because all their components and their derivatives have to be continuously differentiable
functions. However, many physical problems have no strong solution. Hence, discrete methods
have to be used to derive a solvable PDE. In this work the finite element method (FEM) is used,
which requires a variational or weak formulation of the BVP (3.49).

∂t̄B1

∂cB

B1

B2
∂ϕB1

∂ϕB2

da

dv

t̄1

t̄2
∂t̄B2

b̄1

b̄2

Figure 3.5 – Mechanical contact boundary value problem: Contact of two deformable bod-
ies B1, B2, with Dirichlet boundaries ∂ϕB1, ∂ϕB2, Neumann boundaries ∂t̄B1, ∂t̄B2, contact
boundary ∂cB, body forces b̄1, b̄2, and external tractions t̄1, t̄2.

3.4.5 Weak Form of the Mechanical Contact Boundary Value Problem

Instead of solving the BVP (3.49) analytically, one can use an approximate method, such as
FEM. There, e.g., the deformation uk is approximated by uhk , which is then inserted into the
BVP (3.49)

divσk(uhk) + ρkb̄k = rres. (3.50)

The residual rres represents the error between the exact solution and the approximated solution.
This error can be reduced to zero in a weak sense, by multiplying the residual with a variation
δϕk (also called test function or virtual displacement) and integrating over the whole domain:

2∑
k=1

[∫
Bk

(
divσk + ρkb̄k

)
· δϕk dv

]
= 0 ∀ δϕk ∈ V, (3.51)

where V is a suitable function space for δϕk. After reformulation, application of the divergence
theorem, and decomposition of the boundary ∂Bk into a Neumann part ∂tBk and a contact part
∂cBk, the first term of Eq. (3.51) can be expressed as∫
Bk

divσk · δϕk dvk =
∫
∂t̄Bk

t̄k · δϕk dak +
∫
∂cBk

tck · δϕk dak −
∫
Bk

grad (δϕk) : σk dvk. (3.52)

Finally, the weak form of the local linear momentum balance can be written as

2∑
k=1

[ ∫
Bk

grad (δϕk) : σk dvk︸ ︷︷ ︸
virtual internal work

−
∫
∂cBk

tck · δϕk dak︸ ︷︷ ︸
virtual contact work

+
∫
∂t̄Bk

t̄k · δϕk dak +
∫
Bk
ρkb̄k · δϕk dvk︸ ︷︷ ︸

virtual external work

]
= 0 ∀ δϕk ∈ V.

(3.53)
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Equation (3.53) can also be expressed as the variation of the potential energy δΠk (principle of
virtual work), as

δΠk = δΠint,k + δΠck − δΠext,k = 0 ∀ δϕk ∈ V, (3.54)

with

δΠint,k =
∫
Bk

grad (δϕk) : σk dvk, (3.55)

δΠext,k =
∫
∂t̄Bk

t̄k · δϕk dak +
∫
Bk
ρkb̄k · δϕk dvk, (3.56)

δΠck = −
∫
∂cBk

tck · δϕk dak. (3.57)

In order to solve the generally nonlinear system of equations (3.54) numerically with the Newton-
Raphson methods it must be linearized first.

3.5 Linearization

In continuum mechanics, nonlinearity can arise from the geometry due the use of nonlinear
strain measures, such as the Green-Langrange strain tensor (3.8), from nonlinear constitutive
behavior, such as hyperelastic materials (3.19), or from unilateral geometrical constraints, which
are common in contact problems.

The linearization of a differentiable function f(x) is given by the function evaluation at a
specific point x̄ and the directional derivative ∆f(x̄,∆x), i.e.,

L [f ,∆x]x̄ = f(x̄) + ∆f(x̄,∆x). (3.58)

The directional derivative ∆f(x̄,∆x) at x̄ in the direction ∆x is defined by

∆f(x̄,∆x) = ∆f(x̄) [∆x]

:= lim
ω→0

f(x̄+ ω∆x)− f(x̄)
ω

=
[ d
dωf(x̄+ ω∆x)

]
ω=0

.

(3.59)

For the weak form of the mechanical problem (3.54) the corresponding linearization is given by

∆δΠe
k = ∂δΠe

k

∂xk
∆xk, ∆δΠe

•,k = ∆xδΠe
•,k, • = int, ext, c, (3.60)

which allows the linearization to be done contribution-wise. The linearizations of Eqs. (3.55)–
(3.57) depend on the applied constitutive and contact models and are presented in Appendix A.
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Chapter 4

Finite Element Discretization and
Algorithmic Contact Treatment

Now that the mechanical foundations of the contact of two deformable bodies have been in-
troduced, the numerical formulation and implementation of contact problems can be formulated.
In this chapter, the basic concepts of FEM and its application to contact problems are outlined.
In this work, FEM is used to compute numerical solutions of partial differential equations, such
as Eqs. (3.53). As this work only considers quasi-static simulations, Eqs. (3.53) only have to
be discretized in space. In the following, upright symbols denote vectors and matrices that are
associated with FE nodes.

4.1 Spatial Discretization

For FEM it is necessary to discretize the geometry of the bodies Bk, k = 1, 2 in space. Hence,
both interacting bodies Bk and their surfaces ∂Bk are decomposed into nel,k smaller subdomains,
or elements. Depending on the type and amount of elements, this results in an approximation
of the original geometry, i.e.,

B0k ≈ Bh0k =
nel,k⋃
e=1

Ωe
0k, ∂Bh0k ≈

nel,k⋃
e=1

Γe0k, (4.1)

Bk ≈ Bhk =
nel,k⋃
e=1

Ωe
k, Ωe

k ≈ ϕk(Ωe
0k), ∂Bhk ≈

nel,k⋃
e=1

Γek, Γek ≈ ϕk(Γe0k), (4.2)

in material and spatial configuration, respectively. The superscript h indicates the spatial ap-
proximation of the continuous variable. The surface elements correspond to the bulk elements
and together, are referred to as finite elements. Often, the surface elements are chosen as the
faces of the bulk elements which lie on the surface. An example of a spatial discretization in 2D
is shown in Figure 4.1. For each finite element in the reference configuration, a point Xk (or
xk) is approximated by nne,k nodes, which are weighted by nne,k shape functions. By storing
the positions of these nodes in the vectors

Xe
k =


Xe

1
...

Xe
nne,k

 , xek =


xe1
...

xenne,k

 , (4.3)
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4. Finite Element Discretization and Algorithmic Contact Treatment

Ωe
k

Γek

∂Bk

Figure 4.1 – Example of a spatial discretization of a 2D body Bk with quadrilateral, linear
finite elements Ωe

k,Γek. Blue dots represent the element nodes.

and introducing the array of shape function Nk = [N1I, ..., Nnne,kI] we can deduce a shorter
notation, namely

Xk ≈Xh
k = NkXe

k for Xk ∈ Ωe
0k, (4.4)

xk ≈ xhk = Nkxek for xk ∈ Ωe
k. (4.5)

The most commonly used method in spatial discretization is the isoparametric concept; it has
been proven to be very practical for nonlinear problems (Zienkiewicz and Taylor, 2005; Wrig-
gers, 2008). It uses the same shape functions for the geometry and the field variables. The
displacement uk, for instance, can be discretized as

uk ≈ uhk = Nkuek inΩe
k. (4.6)

Using the same set of shape functions, one can approximate the test functions δϕk for the weak
form (3.53), by

δϕk ≈ δϕhk = Nkvek inΩe
k. (4.7)

The shape functions Nk depend on the interpolation functions used. In the following, the
Lagrangian interpolation basis functions and the Lagrangian surface enrichment are introduced,
as well as the non-uniform rational basis splines (NURBS) enriched discretization, that is used
for the contact surfaces in Chapters 6-8.

4.1.1 Lagrangian Elements and Lagrangian Enrichment

The standard FEM uses Lagrangian polynomials as shape functions. In the one-dimensional
case, a general Lagrange element of order n− 1 can be written as (Wriggers, 2008)

Nk(ξ) =
n∏

j=1,j 6=k

ξj − ξ
ξj − ξk

, (4.8)

For higher-dimensional cases, the shape functions can be constructed by tensor products of the
one-dimensional shape functions, namely

Nk(ξ, η) = Nj(ξ)Nm(η), (4.9)
Nk(ξ, η, ζ) = Nj(ξ)⊗Nm(η)⊗No(ζ), j,m, o = 1, ..., n, (4.10)
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4.1. Spatial Discretization

in the 2D quadrilateral and 3D hexahedral case, respectively, yielding

N2D
I = 1

4(1± ξ)(1± η), N3D
I = 1

8(1± ξ)(1± η)(1± ζ), (4.11)

with the parametric coordinates ξ, η, ζ.
In order to increase the accuracy of the geometrical approximation, one can increase the

density and decrease the size of the FE at the contact surfaces; or one can use FE with higher-
order shape functions. However, this increases the computational cost and not all solvers are
suitable to solve meshes with higher-order elements. Furthermore, higher-order Lagrangian
interpolation is prone to oscillate.

Another, usually less costly strategy, is to enrich both the contact surface and the solution
variables by shape functions of higher order, e.g., second-order Lagrangian elements (Zienkiewicz
and Taylor, 2005) (see Figure 4.2). As an example, the shape functions for a 2D quadrilateral
element with quadratic Lagrangian enrichment (Sauer, 2011) are

N1(ξ, η) = 1
4(ξ2 − ξ)(1− η), N4(ξ, η) = 1

4(1− ξ)(1 + η),

N2(ξ, η) = 1
4(ξ2 + ξ)(1− η), N5(ξ, η) = 1

2(1− ξ2)(1− η),

N3(ξ, η) = 1
4(1 + ξ)(1 + η),

(4.12)

and for a 3D hexahedral element

N1 = 1
4(ξ2 − ξ)(η2 − η)(1− ζ), N8 = 1

8(1− ξ)(1 + η)(1 + ζ),

N2 = 1
4(ξ2 + ξ)(η2 − η)(1− ζ), N9 = 1

4(1− ξ2)(η2 − η)(1− ζ),

N3 = 1
4(ξ2 + ξ)(η2 + η)(1− ζ), N10 = 1

4(ξ2 + ξ)(1− η2)(1− ζ),

N4 = 1
4(ξ2 − ξ)(η2 + η)(1− ζ), N11 = 1

4(1− ξ2)(η2 + η)(1− ζ),

N5 = 1
8(1− ξ)(1− η)(1 + ζ), N12 = 1

4(ξ2 − ξ)(1− η2)(1− ζ),

N6 = 1
8(1 + ξ)(1− η)(1 + ζ), N13 = 1

4(1− ξ2)(1− η2)(1− ζ),

N7 = 1
8(1 + ξ)(1 + η)(1 + ζ).

(4.13)

While enriched elements of this type are at least C1-continuous 1 almost everywhere on the con-
tact surface, they are still only C0-continuous at their element boundaries. These discontinuities
can cause problems during the contact projection (see Section 4.3), especially for non-planar
contact surfaces. As it remains crucial to ensure C1-continuity for the entire contact surface,
especially for curved and complex geometries such as implants, a enrichment approach based on
isogeometric analysis (IGA) is used in parts of this work.

4.1.2 Isogeometric Analysis

IGA was proposed by Hughes et al. (2005) to bridge the gap between computer aided design
(CAD), which is generally used to create virtual geometries, and FEA, that requires a FE mesh.

1. C denotes the smoothness of a function in terms of the number of continuous derivatives it has in a specific
domain. Hence, C0-continuity refers to a function that is continuous, but its derivatives are not. A function with
C1-continuity is at least once continuously differentiable.
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4. Finite Element Discretization and Algorithmic Contact Treatment

In CAD, computed manufacturing (CAM) and engineering (CAE), basis splines (B-splines) and
non-uniform rational B-splines (NURBS) are used to represent the often curved and complex
geometries. However, traditional FEA requires the generation of a suitable FE mesh from the
geometry, where the geometry is usually discretized by Lagrangian FE. In addition to the loss
of accuracy in geometry representation and the limited smoothness at the element boundaries,
the creation of a FE mesh from a CAD geometry consumes the majority of the total time of a
FEA project (Cottrell et al., 2009). To ensure an accurate geometry representation and increase
efficiency, IGA aims at using the same geometric representation for design and analysis.

One of the basic ingredients are B-splines. B-splines are piece-wise polynomial functions
defined by their polynomial order p and a knot vector Ξ. A knot vector is a set of non-decreasing
parametric coordinates

Ξ = [ξ1, ξ2, ..., ξn+p+1] . (4.14)

Here, n is the number of basis functions defined by the knot vector. The interval between two
adjacent knot values [ξi, ξi+1] ≥ 0 is called knot span. Each of these knot spans partitions the
parameter space into elements which are mapped to the physical domain. The basis function
only depends on the relative size of the knot spans, which can be used to classify B-splines. In
a uniform B-spline the knots in the knot vector are equally spaced, whereas in a non-uniform
B-spline, the size of the knot spans can differ.

Using the definition in Eq. (4.14), a B-spline basis function can be defined recursively with
the Cox-de Boor recursion formula (Cox, 1972; De Boor, 1972), where piece-wise constant basis
functions are obtained on each knot span, as

Ni,0(ξ) =

1 if ξi ≤ ξ < ξi + 1,
0 otherwise,

for p = 0, (4.15)

Ni,p(ξ) = ξ − ξi
ξi+p − ξ

Ni,p−1(ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), for p > 0. (4.16)

A B-spline curve is then obtained by multiplying the basis functions Ni,p with the control points
P i, i = 1, 2, ..., n, i.e.

C(ξ) =
n∑
i=1

Ni,p(ξ)P i = Np(ξ)P. (4.17)

The control points P i span the so-called control polygon, which is the piece-wise linear interpo-
lation of the control points.

To define a B-spline surface, knot vectors in two parametric directions are required, resulting
in shape functions Ni,p and Mj,q, j = 1, 2, ...,m, and a grid of control points P ij . The B-spline
surface can then be expressed by

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)P ij . (4.18)

NURBS are an extension of B-splines. In contrast to B-splines, NURBS can represent conic
sections, such as circles and ellipses exactly, as their basis functions are rational. NURBS
geometries in Rd can be imagined as B-spline geometries in Rd+1 projected onto Rd. The
additional coordinate of each NURBS control point Pw

i is the NURBS weight wi. The NURBS
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4.1. Spatial Discretization

control points are obtained by dividing the components 1, ..., d of the control points Pw
i by their

corresponding weight wi, i.e.

(P i)j = (Pw
i )j
wi

, for j = 1, ..., d,

wi = (Pw
i )d+1.

(4.19)

A detailed introduction into NURBS and isogeometric analysis can be found in Cottrell et al.
(2009).

4.1.3 NURBS-enriched Contact Elements

When using surface-enriched FE, the bulk of the bodies Bk and their surfaces other than
the contact surfaces are discretized with standard (linear) Lagrangian elements. The contact
surfaces ∂cBk can be enriched, e.g., by a higher-order Lagrangian discretization, by a polynomial
interpolation (e.g., Hermite polynomials He (Sauer, 2011)), or a spline. In parts of this work
NURBS-enriched contact FE are used (Corbett and Sauer, 2014, 2015).

A 2D NURBS-enriched element has three linear faces in 2D and one NURBS curve. Such
an element is defined by p + 3 nodes, with p + 1 control points on the NURBS curve and 2 in
the bulk part (see Figure 4.2). The basis functions of such a (quadrilateral) element are given
by

N1(ξ, η) = Re1(ξ)1
2(1− η), Np+2(ξ, η) = 1

4(ξ + 1)(1 + η),
... (4.20)

Np+1(ξ, η) = Rep+1(ξ)1
2(1− η) Np+3(ξ, η) = 1

4(ξ − 1)(1 + η),

with the rational basis functions Re given by

Re(ξ) = WeCeBe(ξ)
W e(ξ) , (4.21)

with the weighting functions W e(ξ), the weights We, localized Bézier extraction operator
Ce (Borden et al., 2011), and the Bernstein polynomials Be(ξ). This results in a continuous
normal vector used in finding the closest point projection xp on the contact surface (for straight
or curved surfaces; not for sharp edges and kinks). For a three dimensional body, the surface is
enriched by a NURBS surface of order p and q. One element then consists of (p+ 1)(q + 1) + 4
nodes, ncp = (p + 1)(q + 1) control points on the contact surface and four in the bulk domain.
The basis functions and approximations follow in an analogous manner:

N1(ξ, η) = Re1(ξ, η)1
2(1− ζ), Nncp+1 = 1

8(1− ξ)(1− η)(1 + ζ),
... Nncp+2 = 1

8(1 + ξ)(1− η)(1 + ζ), (4.22)

Nncp(ξ, η) = Rencp(ξ, η)1
2(1− ζ), Nncp+3 = 1

8(1 + ξ)(1 + η)(1 + ζ).

Nncp+4 = 1
8(1− ξ)(1 + η)(1 + ζ).
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Figure 4.2 – Example of linear Lagrangian bulk discretization with different surface-enriched
contact elements in 2D (Sauer, 2011; Sauer and De Lorenzis, 2013; Corbett and Sauer, 2014,
2015) with corresponding parent element Ω� (see Section 4.1.5).

NURBS-enriched contact elements are accurate, robust and efficient, especially for problems
dominated by surface effects, such as frictional and adhesive contact. The isogeometric surface
elements provide accuracy, smoothness, and at least C1-continuity over the element boundaries,
while the Lagrangian finite elements in the bulk are simple and efficient. A more detailed
explanation and derivation is provided in Corbett and Sauer (2014, 2015). The Lagrangian bulk
discretization and several surface-enrichment approaches are pictured in Figure 4.2.

Apart from the shape functions exist two general types of meshes: structured and unstruc-
tured meshes. In structured meshes, the finite elements within a body are aligned in a regular,
predictable pattern, while in unstructured grids they are distributed in an irregular pattern. In
this work, mainly structured hexahedral grids are used. While irregular meshes are, in general,
more suitable to discretize complex and curved shapes, the usage of NURBS-enriched structured
hexahedral grids at the contact boundary outperforms the quality of spatial discretization by
unstructured grids. Furthermore, structured grids use a predictable numbering of the nodes and
elements. On the one hand, the storage of element connectivity becomes unnecessary in general,
and on the other hand, it facilitates the debugging of grids that have to be created by hand.

4.1.4 Discretized Weak Form

Now, the weak form (3.55)–(3.57) can be discretized in space. First, the variations of the
potential energy δΠk are expressed in terms of the contribution of a single FE by using the
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approximation (4.7):

δΠint,k = (vek)Tf eint,k, f eint,k =
∫

Ωe
k

BT
kσk dvk, (4.23)

δΠext,k = (vek)Tf eext,k, f eext,k =
∫

Γe
k

NT
k t̄k dak +

∫
Ωe
k

ρkNT
k b̄k dvk, (4.24)

δΠck = (vek)Tf eck, f eck = −
∫

Γeck
NT
k tck dak. (4.25)

The spatially discrete weak form of the system is then obtained by assembling all elemental
contributions

(v)T [fint + fc − fext] = 0, (4.26)

where fint, fext, fc denote global force vectors. This implies, that at those nodes for which v is
arbitrary, the force equilibrium condition

f(u) = fint(u) + fc(u)− fext(u) = 0 (4.27)

must be satisfied. This equation system can now be solved by numerical integration.

4.1.5 Element Mapping

The elemental force vectors f e contain integrals over the corresponding bulk or surface el-
ements Ωe

k and Γek. Most of these integrals cannot be solved analytically and thus have to be
computed numerically by, e.g., a quadrature rule. In order to efficiently evaluate both, the
integrals and the shape function array Nk, in either the reference or current configuration, it
is useful to consider a so-called parent element Ω�. For quadrilateral and hexahedral elements,
which are mainly used in this work, Ω� corresponds to a square (or cube) with edge length 2
and is described in terms of a local coordinate ξ∗ ∈ [−1, 1]d on the parent element, where d
is the space dimension. Then, one can define the shape functions in Nk with respect to this
coordinate, as

NI = NI(ξ∗), I = 1, ..., nne,k. (4.28)

With respect to the local derivatives of the shape functions ∂NI/∂ξ
∗, one can define a mapping

from the parent element to the actual reference or current element as

jek = ∂xhk
∂ξ∗

≈
nne,k∑
I=1

xeI ⊗
∂NI

∂ξ∗
, Jek = ∂Xh

k

∂ξ∗
≈

nne,k∑
I=1

Xe
I ⊗

∂NI

∂ξ∗
, (4.29)

which are denoted the elemental Jacobians. These expressions can be used to determine, e.g.,
the deformation gradient F e

k and its determinant

F e
k = jek(Jek)−1, Jek = detF e

k = detjek
detJek

. (4.30)

Since the local derivatives of the shape functions ∂NI/∂ξ
∗ do not change during the computation,

they only need to be evaluated once at the beginning. The derivatives with respect to the global
coordinates are then given by

∂NI

∂xhk
= (jek)−T

∂NI

∂ξ∗
,

∂NI

∂Xh
k

= (Jek)−T
∂NI

∂ξ∗
. (4.31)
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Figure 4.3 – Mappings of the parent bulk and surface element Ω� and Γ� to their respective
reference and current configurations.

Similarly, one can define a parent element Γ� with coordinates ξ ∈ [−1, 1]d for the surface
elements, as well as a scalar representing the surface stretch

jeak =
√

det akαβ, JeAk =
√
detAkαβ, Jeck = jeak

JeAk
. (4.32)

The volume and the surface integrals in terms of the parent elements Ω� and Γ� can then be
reformulated as

dvk = det jek dξ∗, dVk = detJek dξ∗, (4.33)
dak = jeak dξ, dAk = JeAk dξ. (4.34)

An illustration of the mapping and the mapped components is shown in Figure 4.3.

4.2 Solution Procedure

Once the elemental force vectors are evaluated and assembled according to Eq. (4.27), the
system of equations must be solved. As both, the internal forces and the contact forces in
Eq. (4.27) are nonlinear with respect to the displacement u, the entire system of equations must
first be linearized (as shown in Section 3.5), so that it can be solved with the Newton-Raphson
method (Wriggers, 2008). This method solves a nonlinear equation system by repeatedly solving
its linearization around the current solution ui in load increment i and updating the solution

ui+1 = ui + ∆ui+1, i = 0, 1, ... (4.35)

for the next load increment. The update ∆ui+1 is obtained by solving the linear equation system

k ∆ui+1 + f(ui) = 0, k := ∂f(ui)
∂ui

. (4.36)
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The tangent or stiffness matrix k is composed of the internal stiffness kint, external stiffness
kext, and the contact stiffness kc:

k = kint + kext + kc, kint := ∂fint(u)
∂u , kc := ∂fc(u)

∂u , kext := ∂fext(u)
∂u . (4.37)

In analogy to the global force vectors these are assembled from the contributions of each single
FE. To solve the linear system, one starts with an initial guess ui = 0 and iterates until a certain
convergence criterion, e.g.,

rresi := f(ui) ·∆ui+1 < εtol, (4.38)

is satisfied, where εtol is a pre-defined tolerance.

4.3 Contact Projection Approaches

Traditional contact algorithms require the definition of a master surface ∂cB` and a slave
surface ∂cBk. Then, the contact traction tc is only evaluated on the slave surface ∂cBk, by

δΠc ≈ δΠh
c =

nk∑
e=1

(δxek · f eck + δxe` · f ec`), (4.39)

where nk denotes the number of elements of the slave surface. The elemental contact force
vectors

f eck = −
∫

Γe
k

NT
k tck dak, f ec` = −

∫
Γe
k

NT
` (ξ)tck dak, (4.40)

act on element Γek ⊂ ∂cBhk and partially on some elements Γe` ⊂ ∂cBh` (` 6= k). The contact
traction is carried over to the master surface as −tck. Although the so-called master-slave or
full-pass approach is widely used for contact between two deformable bodies, it introduces a bias
into the formulation and requires additional effort to integrate the quantities of the neighboring
surfaces (Sauer and De Lorenzis, 2013). To overcome these issues, one can use an unbiased
two-half-pass approach for contact (Sauer and De Lorenzis, 2013; Sauer and De Lorenzis, 2015).
There, the original weak formulation of the virtual contact work is considered and the contact
tractions tck are evaluated on each contact surface ∂cBk (k = 1 and k = 2) separately:

δΠc ≈ δΠh
c =

2∑
k=1

nk∑
e=1

δxek · f eck, (4.41)

f eck =
∫

Γe
k

NT
k tck dak. (4.42)

Although this formulation solves the drawback of the full-pass algorithm it introduces some other
drawbacks. The first issue is that this formulation does not fulfill the equilibrium of the contact
tractions exactly. However, the resulting error is of the same order as those errors stemming, e.g.,
from the finite element discretization and decreases to zero with further mesh refinement (Sauer
and De Lorenzis, 2013). The other important issue concerns over-constraining, which may
occur for the penalty method (introduced in Section 4.4) when used with many quadrature
points (Sauer and De Lorenzis, 2015). This can be circumvented by mesh refinement or the
choice of moderate penalty parameters. Both contact projection approaches are sketched in
Figure 4.4.
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slave

master slave

master

full–pass two–half–pass

Figure 4.4 – Contact projection approaches. Green dots denote FE nodes while blue crosses
represent the Gauss points. Black arrows denote quadrature point entries in f eck and red arrows
denote quadrature point entries in f ec`. Adopted and modified from Sauer and De Lorenzis
(2015).

4.4 The Penalty Method for Frictional Contact

The exact treatment of normal contact (without adhesion) requires that the normal contact
pressure pc is zero when the bodies Bk are not in contact (gn > 0) and that contact (gn = 0)
results in a negative contact pressure (pc < 0). These conditions are known as the Karush-
Kuhn-Tucker or Hertz-Signiorini-Moreau conditions and are summarized as

gn ≥ 0, pc ≤ 0, gn pc = 0. (4.43)

To simplify the numerical treatment, one can allow for small interpenetrations gn < 0 and a
small reversible tangential gap ∆ge, that are penalized by means of penalty parameters εn, εt.
The normal traction tn is then given by

tn =

εngnnk, gn < 0,
0, gn ≥ 0,

(4.44)

while the tangential traction becomes

||tt|| = min(εt||∆ge||, tslidet ). (4.45)
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(a) Normal traction of a single point for pure pres-
sure as a function of the normal gap gn (4.44).
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Figure 4.5 – Penalty contact traction. Here, L0 is a reference length and E0 is a reference
stiffness.
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An example for both traction components is shown in Figure 4.5. As the penalty parameters
approach infinity, the penetration gn approaches zero, thus converging to the exact solution.
However, the penalty parameters have to be chosen appropriately, as high values can lead to
ill-conditioning of the stiffness matrix k (4.36).

4.5 Predictor-Corrector Algorithms

One common strategy to distinguish between frictional sticking and sliding is a predictor-
corrector approach similar to those used in computational plasticity. This approach uses a
so-called trial traction tn+1

trial . First, sticking is assumed, such that

tn+1
trial = tn+1

stick. (4.46)

This trial traction can then be inserted into the slip criterion (3.36) to check the current contact
state:

1. If fs(tn+1
trial , t

n+1
slide) < 0, the point xn+1

p is sticking tangentially; in this case

tn+1
t = tn+1

trial , (4.47)

2. If fs(tn+1
trial , t

n+1
slide) ≥ 0, the point xn+1

p is sliding; in this case a corrector step has to be
performed to determine the actual traction tn+1

t satisfying fs(tn+1
trial , t

n+1
slide) = 0.

For the formulation of the sliding traction tn+1
slide and the sliding direction τ p from Eq. (3.37),

one can use elastoplasticity theory in order to incorporate a friction response in tangential
direction (see e.g. Wriggers (2006); Laursen (2013); Sauer and De Lorenzis (2015)). In the
context of this work, another approach is also used that is based on the surface potential-based
contact formulations of Duong and Sauer (2019) and Sauer and De Lorenzis (2013). Both
concepts will be summarized and explained based on Coulomb’s friction (3.38) and are sketched
in Figure 4.6.

∂cBk
ĝnn

gn+1
m

xn+1
` (ξ̂n) xn+1

` (ξm)
xn+1
` (ξn+1

p )

τ p

ĝnn
gn+1
m

xn+1
k

xn+1
` (ξn) xn+1

` (ξm)
∂cB`

τ p

∂cBk
xn+1
k

∂cB`

(a) (b)
Figure 4.6 – Comparison of formulations for the tangential sliding direction τ p: (a) τ p as the
secant direction (Sauer and De Lorenzis, 2015). (b) τ p as the tangent direction (Duong and
Sauer, 2019). Adopted and modified from Duong and Sauer (2019).

4.5.1 Elastoplasticity Based Formulation

Following Sauer and De Lorenzis (2015), the tangential contact traction during sticking is
defined by

tnt = εt
(
xn` (ξnp)− xn` (ξns )

)
. (4.48)
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At the new pseudo-time tn+1 the following trial traction is considered, which is associated to
sticking (predictor step)

tn+1
trial = εt

(
xn+1
` (ξn+1

p )− xn+1
` (ξns )

)
, ξαsn+1 = ξαsn. (4.49)

In case of sliding, the implicit Euler method is used to discretize ξαsn+1 in time:

ξαsn+1 ≈ ξαsn + ∆γn+1τ
n+1
p · aαsn+1, (4.50)

and thus
xn+1
` (ξn+1

s ) = xn+1
` (ξns ) + ∆γn+1τ

n+1
p . (4.51)

The scalar ∆γn+1 can then be determined by assuming

τn+1
p = tn+1

trial∥∥∥tn+1
trial

∥∥∥ , aαpn+1 ≈ aαsn+1 = τn+1
p , (4.52)

and inserting Eq. (4.51) into the traction at pseudo-time tn+1 (4.49) and enforcing the slip
criterion (3.36). This yields

∆γn+1 = fs(tn+1
trial , t

n+1
slide)

εt
, (4.53)

ξαsn+1 ≈ ξαsn + ∆γn+1τ
n+1
p · τn+1

p , (4.54)
tn+1
t = tn+1

trial − εt∆γn+1τ
n+1
p . (4.55)

For a more detailed derivation the reader is referred to Sauer and De Lorenzis (2015).

4.5.2 Surface Potential Based Formulation

In order to determine the contact traction at the current time step, according to the contact
formulation of Duong and Sauer (2019), a so-called interacting (elastic) gap vector ge(ξ̂) is
introduced. This gap vector is defined between the current slave point xk and the so-called
current interacting point x`(ξ̂) on the master surface ∂cB` (defined below), i.e.

ge(ξ̂) := xk − x`(ξ̂). (4.56)

The current gap vector can be further decomposed into a tangential and a normal component
ge(ξ̂) = gen + get, with

gen(ξ̂) := (n⊗ n) ge, get(ξ̂) := (aα ⊗ aα) ge. (4.57)

According to the penalty formulation, the total frictional contact traction is proportional to the
interacting gap vector ge(ξ̂), according to

tc = ε ge, (4.58)

which follows from using the contact potentialW := 1
2ε ge ·ge. At initial contact, the interacting

point x`(ξ̂) is equal to the closest projection point of xk. During sticking, the current interacting
point is equal to the previous interacting point ξ̂n. Therefore, for sticking, the current contact
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gap vector ge is determined from Eq. (4.56) with ξ̂ = ξ̂
n. During sliding, the current interacting

point ξ̂ is the solution of the kinematic constraint equation,

fg(ξ̂) := get − gmax
et = 0, (4.59)

in the current configuration. ge then follows from Eq. (4.56). The critical value during sliding
gmax
et is defined by the chosen friction law. For example, for Coulomb’s friction, it is defined as

gmax
et = µ ‖gen‖ τ p, (4.60)

where τ p can be computed by projecting the previous interacting gap gne onto the tangent plane
at the current interaction point x`(ξ̂):

τ p = (aα ⊗ aα) gne
‖(aβ ⊗ aβ) gne ‖

, (4.61)

where aα, aα are evaluated at x`(ξ̂).
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4.6 Solution Algorithm

Finally, the complete contact FE solution algorithm for frictional contact without adhesion
with the full-pass approach can be assembled and is sketched below. For the two-half-pass
approach the contact loop is performed for both contact surfaces ∂cBk and ∂cB`. For the contact
formulations and osseointegration models presented in Chapters 6-8 the code in the blue box
needs to be adjusted.

loading loop: at each quadrature point
— apply load step: n→ n+ 1
— provide initial guess for the nodal displacement u0 and the current contact surface con-

figuration ∂cBn+1
`

global Newton-Raphson loop: iterate for i→ i+ 1 until converged
1. loop over the bulk elements Ωe and their quadrature points

— compute and assemble the internal forces fint and tangent matrices kint

contact loop: loop over the slave contact elements Γe
k and their quadrature

point
2.1 determine current position xn+1

k of the quadrature point
2.2 closest point projection:

— solve Eq. (3.25) with Newton’s method to obtain the coordinates ξp of the
closest projection point xp ∈ ∂cB` of xn+1

k

2.3 contact computation: evaluate the normal contact distance gn and cor-
responding direction np:
— if gn ≥ 0: set tc and corresponding gradients to zero; set ξs = ξp

— if gn < 0:
— evaluate the normal contact traction tn = pc np based on Eq. (4.44)
— evaluate the tangential contact traction tt:

— elastic predictor step: assume sticking (4.47)
— check slip criterion (3.36): if fs > 0 perform inelastic corrector step

tt = tslide
t τp

— compute the gradients ∂tc/∂uek, ∂tc/∂ue` , according to Appendix A
— assemble tangent matrices kc

2. apply boundary conditions
3. solve k∆u = −f
4. update ui+1 = ui + ∆u and evaluate error norm
5. check the convergence of the global Newton-Raphson loop
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Chapter 5

Determinants of Initial Stability of
Cementless Implants

In the previous chapters, the required foundations in nonlinear mechanics, finite element
methods, and computational contact mechanics were introduced. In the following, the new
contributions of this work are presented, beginning with the assessment of the determinants of
primary stability of a cementless ACI.

Mayor parts of this chapter have been published in Immel et al. (2021a). The 2D results in
Sections 5.3.1, 5.3.3–5.3.5 were adopted from Raffa et al. (2019). Figures 5.3 (b)–(d), 5.4 and
5.6, as well as the data for Etb = 0.1, 0.5 GPa in Figures 5.9 and 5.10 and their discussion were
not part of these publications and have been added here.

5.1 Motivation

Cementless ACI have become more and more common for THA surgery (Toossi et al., 2013).
Initial stability is obtained during the surgical intervention through a diameter interference fit,
by reaming the host bone cavity (MacKenzie et al., 1994; Kim et al., 1995; Macdonald et al.,
1999). The ACI is inserted into the bone cavity using impacts and the initial fixation is achieved
through residual stresses, localized mostly at the ACI rim (Hothi et al., 2011; Mukherjee and
Gupta, 2014). To achieve an optimal primary stability, a compromise should be found between:
1. reducing the relative micro-motions at the bone-implant interface (BII), and avoiding large
gaps between bone and implant, which may lead to the formation of fibrous tissue in the peri-
implant region (Brånemark, 1977), the formation of low-quality bone tissue or even inhibit
bone growth (Jasty et al., 1988; Sandborn et al., 1988; Mukherjee and Gupta, 2014), and 2.
avoiding excessive stresses in peri-implant bone tissue, which may lead to bone necrosis or
local ischemia (Sotto-Maior et al., 2010). All these phenomena may jeopardize osseointegration
processes (Jasty et al., 1988; Schmalzried et al., 1992; Raffa et al., 2019), and can lead to implant
loosening. It remains difficult to predict ACI loosening because of its multi-factorial causes
related to the implant properties, the cavity geometry (e.g., its diameter), and to the patient’s
bone quality (Kwong et al., 1994; Hsu et al., 2007; Amirouche et al., 2014). Different pull-out
tests have been carried out in vitro and ex vivo to assess the ACI primary stability (Le Cann
et al., 2014; Goldman et al., 2016), with several studies focusing on the effect of bone quality
on the biomechanical behavior of the ACI (Hsu et al., 2007; Janssen et al., 2010). However,
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such biomechanical testing cannot be applied during surgery. It remains difficult to carry out a
systematic in vitro investigation of the multifactorial determinants of ACI stability because of
the difficulty to precisely control all parameters when using bone tissue.

For these reasons, several numerical models have been developed to assess the biomechanical
behavior of the cementless ACI with simplified bone geometries (Yew et al., 2006; Hothi et al.,
2011; Souffrant et al., 2012; Raffa et al., 2019). While such models offer some initial insight on
the biomechanical parameters and the contact behavior of the BII in a controlled environment,
their simplified geometry constitutes a strong limitation because it does not properly capture 3D
effects that have an important influence on the structural behavior of the pelvis. In particular,
Cilingir et al. (2007) investigated the influence of the bone geometry on the contact pressure and
stress distribution by comparing the performance of a 2D axisymmetric, 3D axisymmetric, and
3D hemi-pelvis model. They showed that, while all models predicted a similar contact pressure
distribution in the acetabular cavity, the maximum von Mises stress within the bone tissue
differed significantly. As the insertion of the ACI into the reamed cavity produces considerable
stresses at the bone cavity rim, anatomic 3D models must be considered to achieve more reliable
results. Consequently, more accurate models of the human pelvis have been developed to model
the contact behavior of the ACI (Anderson et al., 2005; Hsu et al., 2007; Janssen et al., 2010;
Amirouche et al., 2014; Rourke and Taylor, 2020). However, none of the aforementioned studies
analyzed both the insertion and the stability of the ACI, which are highly interdependent.
Moreover, only a small range of biomechanical parameters were analyzed so far.

The aim of this work is to provide a better understanding of the determinants of the primary
stability of cementless ACI in the human pelvis. The ACI primary stability is assessed through
the estimation of the pull-out force (Olory et al., 2004) and the polar gap (MacKenzie et al.,
1994; Amirouche et al., 2014). Therefore, geometrically nonlinear FE analyses are performed
to simulate the quasi-static insertion and subsequent pull-out of the ACI in a patient’s hemi-
pelvis. The influence of a broad range of different implant- and patient-specific parameters on
the ACI primary stability, such as the friction coefficient at the BII µ, the bone quality in terms
of cortical and trabecular bone Young’s moduli Ecb, Etb, and the diametric interference fit IF ,
are analyzed and compared to a previous 2D study (Raffa et al., 2019).

5.2 Setup

The choice of the input parameters and geometrical properties of the present FE model are
based on the study of Raffa et al. (2019). In contrast to their work, the geometry of a 3D human
pelvis is used here, instead of a simplified 2D trabecular bone block. Finite element meshing
and numerical analyses were carried out using ANSYS Workbench software (v.14, ANSYS, Inc.,
Canonsburg, PA, USA).

5.2.1 Geometry and Mesh

The geometry for the human hemi-pelvis is obtained from a free online data base (hipSTL).
The points comprising the contours of the hip are triangulated, decimated, and smoothed in
MeshLab (Cignoni et al., 2008). The thickness of the cortical bone layer may vary and its limit
with the trabecular bone is blurred because the properties of the bone change gradually, which
is not taken into account in the present model. Instead, a uniform thickness of the cortical bone
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tissue of 1 mm (Spears et al., 1999) is assumed. The corresponding cortical layer is created by
extrusion with Meshmixer (Autodesk, San Rafael, CA, USA). A hemi-spherical cavity is created
in the acetabula, using ANSYS Workbench. The cavity diameter is varied between 48.5 and
50.9 mm, which corresponds to different values of the diametric interference fit IF (0–2.5 mm),
according to values found in the literature (Kwong et al., 1994; Macdonald et al., 1999; Spears
et al., 1999; Yew et al., 2006; Hothi et al., 2011). The resulting pelvis geometry is shown in
Figure 5.1(a) and (b).

pubic symphysis
iliac joint

FR, d0

cortical
bone

(a) (b)

trabecular
bone

ancillary

ACI

hemi–pelvis

rigid fixation

x
y

z

Figure 5.1 – (a) Image of the pelvis geometry with the ACI and ancillary. Red elements indicate
fixed rigid boundary conditions. Blue elements indicate the region where the displacement is
applied. (b) Enlargement of the FE mesh at the cavity. Brown elements indicate cortical bone
and green elements represent trabecular bone. Adopted from Immel et al. (2021a).

The ACI is modeled after the Cotyle Cerafit (Ceraver, Roissy, France) and has an outer
radius of RI = 25.5 mm. Its thickness varies linearly as a function of the polar angle, with
values between 2.9 mm at the cup dome and 3.7 mm at the cup rim, similarly as what is used in
previous studies (Michel et al., 2017; Raffa et al., 2019). Moreover, a cylindrical ancillary, with
a radius and height of RA = 8.5 mm and HA = 190 mm, is rigidly attached to the ACI, as it is
done in the clinic during insertion. The complete model is shown in Figure 5.1(a).

The FE mesh is generated with ANSYS Workbench and it slightly varies for every value of
the interference fit IF . It typically contains approximately 125,000 tetrahedral and hexahedral,
quadratic Lagrangian elements, leading to a global system with approximately 615,000 degrees of
freedom. The mesh size is finer around the bone cavity surface (average size 0.8 mm) to provide
a sufficiently accurate geometrical approximation of the curved contact surface. An enlargement
of the mesh at the cavity is shown in Figure 5.1(b). A standard convergence study concerning
the element size he and the load step increment ∆ls is performed for the reference case (see
Section 5.2.2), with the pull-out force (see Section 5.2.4) as the convergence criteria. The mesh
and load step increment are refined until the relative change in the pull-out force was below 1 %
and quadratic Newton-Raphson convergence within 2 steps was ensured (see Appendix B.1). In
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Material Symbol Range Ref. value
Ancillary Stainless steel – – 210 GPa
Implant Titanium alloy – – 133 GPa
Outer bone Cortical bone Ecb 15–25 GPa (1993; 2011) 18 GPa (1993)
Inner bone Trabecular bone Etb 0.1–1 GPa (2010; 2017) 0.2 GPa (2017)
Interference fit IF 0.1–2.5 mm (1994; 1999; 1999) 1 mm (1994)
Friction coeff. µ 0.1–1 (1997a; 1999) 0.3 (1999)

Table 5.1 – Material properties of the four subdomains considered in the numerical model
as well as ranges and reference values of the studied parameters: interference fit IF , friction
coefficient µ, Young’s modulus of cortical bone Ecb and Young’s modulus of trabecular bone
Etb. Adopted from Immel et al. (2021a).

cases where parameter combinations with high stiffness or interference fit do not converge for
the determined load step increment, the load step increment is further decreased.

5.2.2 Material Properties and Varied Parameters

The ancillary and the ACI are made of stainless steel and titanium alloy (Ti-Al6-V4), re-
spectively. The pelvis is assumed to be composed of a uniform thin outer layer of cortical bone
(1 mm) and trabecular bone inside. However, due to the simulated reaming, no cortical bone
remains on the contact surface of the hip cavity (see Figure 5.1(b)). All materials are assumed
to be homogeneous, isotropic, and hypoelastic (3.2.2). The Poisson ratio for all materials is set
to ν = 0.3. Table 5.1 shows the elastic properties of the different materials used in this study.

Friction is modeled with a standard Coulomb’s law (3.38), with constant friction coefficient
µ. A wide range of values of µ (0–1) was considered in order to simulate the physiological range
of friction for various types of implant surfaces in contact with bone and for different clinical
situations of the BII (Dammak et al., 1997a; Spears et al., 1999; Novitskaya et al., 2011).
µ∗ = 0.3 is taken as the reference value (Dammak et al., 1997a). Variations of the Young’s
moduli of cortical bone Ecb and trabecular bone Etb are considered within their physiological
range (Shirazi-Adl et al., 1993; Phillips et al., 2007; Janssen et al., 2010; Watson et al., 2017)
and for some extreme cases: Etb between 0.1 and 2 GPa and Ecb between 0.2 and 25 GPa. The
bone’s elastic modulus in the cavity provides an indication of the bone quality and has been
previously investigated in FE studies (Hsu et al., 2007; Janssen et al., 2010). The reference
values are E∗cb = 18 GPa (Shirazi-Adl et al., 1993) and E∗tb = 0.2 GPa (Phillips et al., 2007),
respectively.

A broad range of the diametric interference fit IF (0–2.5 mm) is considered, to cover most
commonly used configurations, as well as extreme cases. The corresponding reference value is
IF ∗ = 1 mm, which is a standard value used in clinical practice (Kwong et al., 1994). Throughout
this study, the parameter set of E∗cb = 18 GPa, E∗tb = 0.2 GPa, µ∗ = 0.3, and IF ∗ = 1.0 mm is
referred to as the reference case. Table 5.1 lists the analyzed parameters with their corresponding
range and reference value.

5.2.3 Boundary and Loading Conditions

All simulations are performed with quasi-static analysis setting (i.e., excluding inertia and
viscosity) and considering large deformation effects. Frictional contact with the augmented
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Lagrange method is used. The hip cavity is set as the slave surface and the ACI is set as the
master surface.

The pelvis is rigidly fixed in all directions at the pubic symphysis and the iliac joint (see
Figure 5.1(a), red), following the literature (Shirazi-Adl et al., 1993; Anderson et al., 2005;
Clarke et al., 2013; Henyš and Čapek, 2017). All other location corresponding to bone tissue
are free. At the initial state (load step) ls0 = 0, the outer boundary of the ACI and the internal
boundary of the hip cavity are close but not in contact.

To simulate the insertion process, a uniform displacement d0 is applied to the ancillary. The
implant is displaced by d0 until the normal reaction force reaches Fz = F0 = -2500 N. The
reaction force F0 is chosen based on experimental measurements from Raffa et al. (2019) and is
similar to values found in the literature (Sotto-Maior et al., 2010; Souffrant et al., 2012; Le Cann
et al., 2014). The displacement d0 depends on the studied parameters and is not known a priori.
It is computed for each parameter combination individually by performing an initial insertion
simulation first to determine d0(µ, IF , Ecb, Etb, F0), s.t. Fz(d0) = F0.

To simulate the push-in and removal of the implant into and from the pelvis, the simulation
is divided into three stages: First, the displacement d0 is applied to the top surface of the
ancillary (see Figure 5.1(a), blue) in order to insert the implant into the hip until the normal
reaction force F0 is reached at load step ls1. Second, the implant and the ancillary are held in
place until load step ls2. This is done only for illustrative purposes; the actual holding time has
no influence in quasi-static simulations. Third, the uniform pull-out displacement -d0 is applied
to the top surface of the ancillary, until the implant is completely detached from the bone (load
step ls3). The quasi-static displacement uz in axial direction z can then be described by

uz =


d0 ·∆ls/ls1 for ls0 ≤ ls < ls1,

d0 for ls1 ≤ ls < ls2,

d0 · (ls3 −∆ls)/ls1 for ls2 ≤ ls ≤ ls3.

(5.1)

In most cases the load step size of ∆ls = d0/200 is used during the insertion and the extraction
phases (resulting in 440 load steps). For high friction coefficients (0.6–1.0) and a critical inter-
ference fit (1.0–1.8 mm), a smaller load step size, such as ∆ls = d0/5000 is needed to ensure
Newton-Raphson convergence.

5.2.4 Quantifying Primary Stability

In this chapter, the primary stability is quantified by the size of the polar gap after insertion
and by the values of the pull-out force. The pull-out force Fmax

z is defined by the positive
maximum normal reaction force Fz obtained at the upper surface of the ancillary during the
pull-out phase. The polar gap is determined as the distance between the pole of the ACI and
the pole of the hip cavity during the holding phase (load step ls = 220). The pull-out force
has already been used in previous works in order to assess the ACI primary stability (Spears
et al., 1999; Olory et al., 2004; Bishop et al., 2014; Le Cann et al., 2014; Raffa et al., 2019).
The pull-out force is a clinically relevant quantity because after inserting the ACI in the pelvis,
surgeons usually attempt to pull or lever-out the ACI to check manually for the stability and
motion of the ACI. Furthermore, it is commonly used as a determinant of primary stability in
in vitro studies (Hsu et al., 2007; Janssen et al., 2010; Le Cann et al., 2014; Goldman et al.,
2016). Moreover, the polar gap between the ACI and the hip is also frequently used in clinical
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studies (Janssen et al., 2010; Michel et al., 2017; Rourke and Taylor, 2020) in order to assess
the ACI stability. Large gaps indicate improper seating of the ACI and can affect the quality of
long-term fixation due to the formation of fibrous tissue in the peri-implant region (Brånemark,
1977), the formation of low-quality bone tissue or even inhibit bone growth (Jasty et al., 1988;
Sandborn et al., 1988; Mukherjee and Gupta, 2014). The polar gap is evaluated based on values
found in the literature (Jasty et al., 1988; Schmalzried et al., 1992; MacKenzie et al., 1994;
Udomkiat et al., 2002), where gaps below 500 µm (indicated in green in Figures 5.5(b),(d) and
5.7(b),(d)) are considered optimal, gaps between 500 µm and 1 mm are considered acceptable
(indicated in yellow), and gaps above 1 mm (indicated in red) are considered to be critical.

5.3 Results

The results obtained with the FE model are presented and compared to a previous 2D
study (Raffa et al., 2019). First, the main differences between the results obtained in the
previous 2D axisymmetric study and in the present study for the reference case are discussed.
Second, the structural response of the pelvis and the implant in terms of stress distribution
is analyzed. Last, the parametric study on the influence of the bone Young’s moduli Etb and
Ecb, the friction coefficient µ, and the interference fit IF on primary stability as well as optimal
combinations of these parameters are discussed.

5.3.1 Reference Case

Figure 5.2 shows the variation of the vertical reaction force Fz at the upper surface of the
ancillary as a function of time for the reference case.
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Figure 5.2 – Variation of the reaction force Fz applied to the ancillary as a function of load
step ls for the 2D and 3D model for the reference case. Adopted from (Immel et al., 2021a; Raffa
et al., 2019).

Three phases of the controlled displacement can be identified: 1) an insertion phase from
ls0 = 0 to ls1 = 200. As soon as contact is established, the reaction force decreases as a function
of the displacement until the predefined value F0 = -2500 N is reached. During the insertion
phase, the slope of Fz is first constant, which corresponds to constant stiffness of the bone-
implant system. 2) a holding phase from ls1 = 201 to ls2 = 240, where the implant is held in
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place. Here, the reaction force is constant with Fz = F0. 3) a pull-out phase from ls2 = 241
to ls3 = 440, until the ACI is completely removed, and no contact remains. The reaction force
increases up to a positive maximum Fpo, and then decreases to 0.

5.3.2 Stress Distribution

Figure 5.3 shows the distribution of the von Mises stress σM in the hip cavity for the reference
case and the optimal case for E∗tb (E∗cb, IF = 0.8 mm, µ = 0.6, see Section 5.3.5) during the
holding phase at ls = 220 and at Fz = Fmax

z .
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Figure 5.3 – Distribution of the von Mises stress σM in the hip cavity for the reference case and
the optimal case for E∗tb, after insertion (ls = 220) and at Fz = Fmax

z . Adopted and extended
from Immel et al. (2021a).

For the reference case, the maximal von Mises equivalent stress of 407 MPa is reached after
full insertion and is localized in several elements of the cortical shell around the acetabulum.
The von Mises equivalent stress inside the trabecular bone of the cavity is significantly lower
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than in the cortical shell. Inside the contact area, the highest stresses are found in the equatorial
rim with approximately 10 MPa. The stress distribution at the time where the maximal pull-
out force is reached remains similar to the holding phase. However, the maximum stress only
reaches 267 MPa during pull-out. For the the optimal case for E∗tb no sharp stress peaks and
a more homogeneous stress distribution are observed. The maximum stress after insertion and
at pullout are 226 MPa and 134 MPa, respectively. Similarly to the reference case, the highest
stresses are located in the cortical shell around the cavity. Although the pullout force of 426 N
is higher than in the reference case, the overall von Mises stress is considerably lower. However,
a higher stress is observed in the cavity with up to 20 MPa at the equatorial rim. As expected, a
higher pullout force corresponds to a higher stress in the cavity and thus a higher initial stability
of the implant.

5.3.3 Effect of Variations of the Young’s Modulus of Bone

Figure 5.4 shows the reaction force Fz as a function of the load step ∆ls for various bone
Young’s moduli Etb and Ecb. For all values of Etb and Ecb, Fz first decreases linearly at the
beginning of the insertion phase, which corresponds to the macroscopic rigidity of the bone-
implant system. For increasing Etb, the duration of this linear phase and the pull-out force
increase.
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Figure 5.4 – Variation of the reaction force Fz applied to the ancillary as a function of the
load step ls for (a) different trabecular bone Young’s modulus Etb and (b) cortical bone Young’s
modulus Ecb. Results are shown for E∗tb, E∗cb, µ∗, IF ∗, respectively.

Figure 5.5 shows the variation of the pull-out force Fmax
z (a) and the polar gap (b) as a

function of the trabecular bone Young’s modulus Etb for the 2D and the 3D model. While the
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results of the 2D model show a distinct peak of the pull-out force at Fmax
z = 667 N for Etb ≈

0.375 GPa, the 3D hemi-pelvis model behaves differently since the pull-out force is an increasing
function of Etb. A similar behavior can be observed for the polar gap (b), which increases as a
function of Etb. Note that the variation of the polar gap was not investigated in the 2D case,
so no comparison is possible with the 3D case.

A variation of the Young’s modulus of cortical bone Ecb within the physiological range (15–
23 GPa (Shirazi-Adl et al., 1993; Watson et al., 2017)) only has a negligible effect on the pull-out
force (207–219 N). The pull-out force only decreases for extreme cases with very low cortical
bone Young’s modulus (< 10 GPa). Up to Ecb = 8 GPa, the polar gap increases only slightly
and is less than several micrometers and may therefore be considered as negligible. In contrast
to Etb, all tested values of Ecb result in acceptable polar gaps (< 500 µm). Therefore, the
influence of Ecb within its physiological range is deemed negligible here and only different values
of Etb will be considered in what follows.

0 0.5 1 1.5 2

200

400

600

800

Young’s modulus Etb [GPa]

pu
ll–

ou
t
fo
rc
e
F
m
m
a
x
z
[N

]

2D
3D

(a)
0 5 10 15 20 25

50

100

150

200

250

Young’s modulus Ecb [GPa]

pu
ll–

ou
t
fo
rc
e
F
m
m
a
x
z
[N

]

(c)

0 0.2 0.4 0.6 0.8 1
0

250

500

750

1000

Young’s modulus Etb [GPa]

po
la
r
ga
p
[µ
m
]

(b)
0 5 10 15 20 25

0

50

100

150

200

250

Young’s modulus Ecb [GPa]

po
la
r
ga
p
[µ
m
]

(d)

Figure 5.5 – Variation of the pull-out force Fmax
z (left) and the polar gap (right) as a function

of the Young’s modulus of trabecular bone Etb (top) and cortical bone Ecb (bottom). Results
are shown for E∗tb, E∗cb, µ∗, IF ∗, respectively. The physiological range for Etb and Ecb is indicated
in gray. The polar gap is classified as optimal (< 500 µm, green), acceptable (< 1 mm, yellow),
or critical (> 1 mm, red). The reference case is marked with a star. Adopted from Raffa et al.
(2019); Immel et al. (2021a).

5.3.4 Effect of variations of the Friction Coefficient and the Interference Fit

Figure 5.6 shows the reaction force Fz as a function of the load step ∆ls for various values of
the friction coefficient µ and the interference fit IF . A similar behavior of the reaction force as
for the bone’s Young’s moduli can be observed. For all values of, Fz first decreases linearly at
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the beginning of the insertion phase, which corresponds to the macroscopic rigidity of the bone-
implant system. For increasing values of µ, the duration of this linear phase increases, while
for increasing IF this linear response phase becomes shorter. In contrast to the previous 2D
study (Raffa et al., 2019), the macroscopic rigidity for higher friction coefficients does not stay
constant during the entire insertion phase. Increasing µ does not necessarily lead to an increase
in pull-out force, as Fmax

z is visibly lower for µ = 1 than for µ = 0.6. Similar, increasing IF does
not necessarily increase the pull-out force. Instead, a peak value is found between IF = 1− 1.5
mm.

0 100 200 240 340 440
-2500

-1500

500

0

500

load step

re
ac
tio

n
fo
rc
e
F
z
[N

]

µ=0
µ=0.2
µ*=0.3
µ=0.6
µ=1

(a)

0 100 200 240 340 440
-2500

-1500

500

0

500

load step

re
ac
tio

n
fo
rc
e
F
z
[N

]

IF=0.2 mm
IF=0.5 mm
IF ∗=1 mm
IF=1.5 mm
IF=2 mm

(b)

Figure 5.6 – Variation of the reaction force Fz applied to the ancillary as a function of the
load step ls for (a) different friction coefficients µ and (b) interference fit IF . The results are
shown for E∗cb, E∗tb, IF ∗, µ∗, respectively.

Figure 5.7 shows the variation of the pull-out force Fmax
z (a),(c) and the polar gap (b),(d)

as a function of the friction coefficient µ and interference fit IF for different values of Etb. Fmax
z

increases for low values of µ, reaches a maximum at around µ = 0.6, and then slowly decreases
for all models and chosen values of Etb. The pull-out forces obtained with the present 3D
model are approximately halved, compared to the results of the 2D study. For µ < 0.17 the
pull-out force is zero for all values of Etb. Fmax

z increases as a function of the trabecular bone
stiffness, while maintaining a similar behavior for various friction coefficients. The polar gap
increases almost linearly as a function of the friction coefficient when a constant insertion force
is considered, which can be explained by the fact that a high value of the friction coefficient
inhibits the insertion process. Increasing the value of µ from 0.3 to 0.6 leads to an increase of
the polar gap from 162 µm and 614 µm, which is above the maximum recommended gap of 500
µm (Schmalzried et al., 1992; Cochran et al., 1998). In the present case, all values of µ > 0.5
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lead to polar gaps higher than 500 µm and values of µ > 0.8 lead to values of the polar gap
exceeding the commonly reported limit of 1 mm (Jasty et al., 1988; MacKenzie et al., 1994).
For Etb = 0.1 GPa, polar gaps below 500 µm are achieved with µ < 0.9, while for Etb = 0.5
GPa only µ < 0.3 results in sufficiently small polar gaps when an interference fit of IF = 1 mm
is considered.

A non-linear behavior of Fmax
z as a function of IF is obtained, similarly to the behavior of

Fmax
z as a function of µ. For both, the 2D axisymmetric model and the 3D geometry, Fmax

z

reaches a maximum value for an optimal interference fit of IF = 1.2–1.4 mm for E∗tb. The
pull-out force behaves similarly for different bone stiffness with a maximum value of 174 N for
Etb = 0.1 GPa and 361 N for Etb = 0.5 GPa. Moreover, the polar gap increases as a function
of the interference fit for all values of Etb. A polar gap equal to 162 µm is obtained for the
reference case and for IF =1.4 mm, the polar gap is equal to 493 µm. In the reference case,
IF > 1.4 mm lead to polar gaps values higher than 500 µm and IF > 1.8 mm lead to polar gaps
higher than 1 mm. For Etb = 0.1 GPa, acceptable gaps are achieved with IF < 2 mm, and for
Etb = 0.5 GPa with IF < 1 mm.
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Figure 5.7 – Variation of the pull-out force Fmax
z and the polar gap as a function of the friction

coefficient µ (top) and the interference fit IF (bottom) for different trabecular Young’s modulus
Etb. The results are shown for E∗cb, IF ∗, µ∗, respectively. The polar gap is classified as optimal
(< 500 µm, green), acceptable (< 1 mm, yellow), or critical (> 1 mm, red). The reference case
is marked with a star. Adopted from Raffa et al. (2019); Immel et al. (2021a).
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5.3.5 Optimal Conditions

In what follows, the optimal combinations of µ and IF for primary stability of the ACI are
discussed. Values or parameter sets that maximize the pull-out force while maintaining a polar
gap lower than 500 µm for a given bone stiffness are denoted optimal. Figure 5.8 shows the
variation of the pull-out force as a function of the interference fit IF and the friction coefficient
µ for E∗tb, E∗cb for the 3D model. The optimal interference fit IFopt for each value of µ is marked
with a diamond. The variation of the maximum pull-out force Fmax

z obtained for IFopt as a
function of µ is shown in Figure 5.9 and the variation of the optimal interference fit IFopt as a
function of µ is shown in Figure 5.10.
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Figure 5.9 – Variation of the maximal pull-out force Fmaxz obtained for the optimal interfer-
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et al., 2021a).
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The lowest value is IFopt = 0.2 for µ = 0.15 and the highest is IFopt = 1.4 mm for µ∗ in the
3D model. The variation of the optimal interference fit IFopt as a function of µ is qualitatively
similar in the 2D and the 3D case. However, the maximum pull-out force obtained with the
determined IFopt for the 3D case are consistently lower than in the 2D case.

Figure 5.9 shows that increasing µ higher than 0.6 does not lead to a higher pull-out force,
which is consistent with the results shown in Figure 5.7(a). Similar computations have also
been done for Etb = 0.1 and 0.5 GPa and the results show that an optimal case is also reached
between µopt = 0.5 − 0.6. Overall, the optimal parameter sets with respect to the three values
of trabecular bone stiffness Etb are shown in Table 5.2.
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Figure 5.10 – Variation of the optimal interference fit IFopt as a function of the friction
coefficient µ w.r.t. trabecular bone Young’s modulus Etb for constant Young’s modulus E∗cb.
Adopted and extended from (Raffa et al., 2019; Immel et al., 2021a).

Etb [GPa] IFopt [mm] µopt Fmax
z [N] polar gap [µm]

0.1 0.8 0.6 304 190
0.2 0.8 0.6 426 304
0.5 0.8 0.5 569 475

Table 5.2 – Optimal values of the interference fit IFopt and friction coefficient µopt with respect
to trabecular bone stiffness Etb with fixed cortical bone stiffness E∗cb. Adopted from (Immel
et al., 2021a).

5.4 Discussion and Limitations

This work aims to provide more insight into the biomechanical determinants of the primary
stability of an ACI, which is estimated through the assessment of the pull-out force and the polar
gap. The ACI primary stability is shown to depend on the elastic properties of the different
bone tissues (Etb and Ecb), on the friction coefficient µ, and on the interference fit IF . The
influence of these four parameters on the ACI primary stability was investigated within their
respective physiological range (see Table 5.1). For each parameter set, the insertion of an ACI
into a hip is simulated using a realistic FE model. When considering variations within their
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physiological ranges, Etb is shown to have a stronger influence on the pull-out force and the
polar gap than Ecb, which can be explained by the fact that no cortical bone is present in the
cavity. The results show that a maximum value of the pull-out force is obtained for specific
combinations of µ and IF (which depend on Etb), while the polar gap increases as a function of
all parameters. Based on these findings, optimal conditions for different bone stiffness can be
determined and related to µ and to IF .

5.4.1 Pull-Out Force

The pull-out forces for E∗tb are found to be comprised between 0 and 496 N in this study,
which agrees with the results found in the literature (Spears et al., 1999; Le Cann et al., 2014;
Raffa et al., 2019). The pull-out force increases along with the friction coefficient up to µ =
0.6, which can be explained by an increase of the tangential contact stresses at the equatorial
rim, and then decreases because higher values of the friction coefficient inhibit sufficient seating
of the cup and thus removal becomes easier (Spears et al., 1999). From the point of view of
implant manufacturers, the results shown in Figure 5.7(a) indicate that increasing the friction
coefficient beyond 0.6 may weaken the ACI primary stability. However, rough surfaces may
enhance osseointegration phenomena (Cochran et al., 1998) and thus long-term stability, which
is another constraint that should be taken into account. It has been shown that the pull-out
force cannot be taken as the sole determinant of implant stability, as a parameter set with a
maximal pull-out force can lead to excessive values of the polar gap, which can inhibit bone
ingrowth and thus long-term implant stability (Sandborn et al., 1988; Mukherjee and Gupta,
2014).

The pull-out forces predicted in the present study are significantly lower than the ones found
in comparable 2D axisymmetric studies (Spears et al., 1999; Raffa et al., 2019). Moreover,
while the results of the 2D model showed that the pull-out force reaches a maximum value
of Fmax

z = 667 N for Etb ≈ 0.375 GPa, the behavior of the pull-out force predicted by the 3D
hemi-pelvis model is different (see Figure 5.5(a)) since the pull-out force monotonically increases
as a function of Etb. Since in our study and in e.g., Spears et al. (1999) (Spears et al., 1999),
a 1 mm thick cortical layer is present, the difference in the magnitude of the pull-out force
obtained with the 2D models (Spears et al., 1999; Raffa et al., 2019) and with the present 3D
model might be explained by the differences in the geometry of the acetabulum, the boundary
conditions, and the corresponding structural stiffness. Both 2D studies (Spears et al., 1999;
Raffa et al., 2019) used axisymmetric, simplified models of the pelvis with 1) a lower surface
fixed in all directions and 2) a perfectly hemi-spherical cavity. In contrast, the present work
considered a 3D hemi-pelvis model, which is fixed at the pubic symphysis and the iliac joint only.
The cavity is not perfectly hemispherical since the acetabular wall is not present everywhere
(see Figure 5.1(b)), similarly to what is obtained in the clinic. Moreover, the wall thickness of
the cavity rim is much lower and non-uninform in the 3D model, implying lower wall stiffness,
and hence lower contact pressures and pull-out forces, as shown in Figure 5.2. In particular,
for the 3D model 1) the linear response during the insertion phase is considerably shorter, 2)
the reaction force rises more slowly during the insertion and the pull-out phase, and 3) the
pull-out force is much smaller than in the in the 2D model (Raffa et al., 2019). However, the
present study shows that the 3D hemi-pelvis geometry does not influence the overall response
of the pull-out force to different friction coefficients and interference fit when compared to a
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2D axisymmetric setup (Raffa et al., 2019) (see Figure 5.7(a), (c)). Nonetheless, the real 3D
geometry is shown to have a significant effect on the response of the pull-out force to trabecular
bone stiffness (see Figure 5.5(a)). Therefore, when analyzing the implant stability in terms of
the pull-out force and the polar gap, modeling a realistic pelvis geometry is necessary, which is
consistent with previous studies studies (Kim et al., 1995).

5.4.2 Polar Gap

While bone ingrowth has been shown for polar gaps up to 5 mm (Mukherjee and Gupta,
2014), the potential osteocyte jumping distance is deemed to be no greater than 1 mm (Jasty
et al., 1988; MacKenzie et al., 1994). Several studies agree that the initial polar gap should not
exceed 500 µm, as higher gaps can promote the growth of weaker bone tissue (Sandborn et al.,
1988; Mukherjee and Gupta, 2014) or inhibit bone growth completely, and thus jeopardize long-
term stability (Jasty et al., 1988; Schmalzried et al., 1992). Polar gaps observed in the clinic are
usually referred to being "lower than 500 µm and never higher than 1 mm" (Schmalzried et al.,
1992; Udomkiat et al., 2002). In this study, high pull-out forces often coincide with large polar
gaps (> 500 µm) and thus, a balance between maximizing the pull-out force and minimizing the
polar gap should be targeted.

As shown in Figures 5.5(b), (d), and 5.7(b), (d), the polar gap increases as a function of
Ecb, Etb, µ, IF . While assuming the reference values for all other parameters, values of Etb
higher than 0.4 GPa lead to polar gaps above 500 µm. Therefore, and as shown in Figure 5.7, to
balance out the pull-out force and the size of the polar gap, high friction coefficients and a large
interference fit should be avoided for patients with stiffer bone. Since low interfacial friction
may destabilize the implant (Janssen et al., 2010), a reduction of the interference fit might be
favorable in such cases.

Polar gaps values are found to be between 0 and 2483 µm in this study, which is in agreement
with the findings of other clinical (Schmalzried et al., 1992; Udomkiat et al., 2002; Mukherjee and
Gupta, 2014), experimental (Kwong et al., 1994; MacKenzie et al., 1994) and FE studies (Yew
et al., 2006; Amirouche et al., 2014; Rourke and Taylor, 2020). The polar gap is found to increase
with larger interference fit (MacKenzie et al., 1994), as well as with bone stiffness and friction
coefficient. In our study, the best compromise between a high pull-out force and a polar gap ≤
500 µm for an interference fit of 1 mm is obtained for µopt = 0.5 for E∗tb and for µopt = 0.6 for
Etb = 0.1 GPa. For Etb = 0.5 GPa, only friction coefficients µ ≤ 0.2 lead to values of polar gaps
below 500 µm but in this case, an insufficient pull-out force is obtained. Accepting a polar gap
of up to 1 mm leads to µ = 0.5 as the optimal choice. In general, polar gaps predicted in this
study are significantly lower than in comparable 2D axisymmetric studies (Spears et al., 1999;
Raffa et al., 2019), which may be explained by the fact that 2D configurations are much stiffer
compared to the 3D case (see above). Optimal friction coefficients are found to be higher in our
study, compared to e.g., Spears et al. (1999) (Spears et al., 1999) (µ = 0.2 − 0.3), while Raffa
et al. (2019) Raffa et al. (2019) found an optimum for µ = 0.6, as only the pull-out force was
considered as a determinant of primary stability.

5.4.3 Contact Stresses

The maximal value of the contact stresses on the cavity surface is found to be localized at the
equatorial rim, which is in good agreement with previous works by several authors (Spears et al.,
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1999; Janssen et al., 2010; Hothi et al., 2011; Amirouche et al., 2014; Le Cann et al., 2014) who
established that the contact between the ACI and the surrounding bone tissue mostly occurs
around the equatorial rim. As shown in Figure 5.3, the maximum value of the contact pressure
for the reference configuration is found to be around 10 MPa, which is in good agreement with
similar studies (Widmer et al., 2002; Raffa et al., 2019). The maximal contact stress observed
in the optimal case for Etb is twice as high as in the reference case, which corresponds to the
increased pull-out force observed for the optimal case. However, excessive stresses can lead to
bone damage during the implantation or to bone resorption later and thus should be monitored
carefully.

5.4.4 Optimal Conditions for Primary Stability

Several studies suggest that the interference fit is one of the most important factors in order
to achieve adequate fixation (Curtis et al., 1992; Macdonald et al., 1999; Spears et al., 1999) and
that increased under-reaming can compensate low bone stiffness (Janssen et al., 2010; Rourke
and Taylor, 2020). As low interfacial friction may destabilize the implant (Janssen et al., 2010)
and thus has to be avoided, an adequate interference fit according to the bone quality must be
chosen instead.

While it was shown that higher interference fit values are required for softer bone (Etb = 0.1
GPa) to achieve similar pull-out forces as in the reference case E∗tb, common interference fit
values (between 1 and 2 mm) lead to excessive gaps for stiffer bone (Etb = 0.5 GPa) and thus
should be avoided. However, our findings suggest that the interference fit should not be increased
to more than around 1.3 mm, because it leads to a concomitant decrease of the pull-out force and
increase of the polar gap. For both, the 2D axisymmetric and 3D cases, an optimal interference
fit of IF = 1.4 mm for E∗tb and µ∗ is found, when only considering maximizing the pull-out force,
which is in agreement with other studies (Kwong et al., 1994; Macdonald et al., 1999).

Previous studies confirm our findings concerning the existence of an optimal primary stability
condition linking press-fitting and friction (Kwong et al., 1994; Spears et al., 1999; Le Cann et al.,
2014; Raffa et al., 2019). In our study an interference fit of around 1.3 mm is found to be optimal
in terms of maximal pull-out force for friction coefficients ranging between µ = 0.25–0.5 and
E∗tb, while a mean interference fit of 1.1 mm is found optimal when considering a polar gap less
than 500 µm as well, similar to comparable studies (Kwong et al., 1994; Spears et al., 1999;
Le Cann et al., 2014; Raffa et al., 2019). However, there are also studies that suggest a larger
interference fit of IF = 2− 3 mm (Le Cann et al., 2014).

The optimal values of IF and µ in terms of maximal pull-out force and minimal polar gap for
the different values of trabecular bone stiffness are listed in Table 5.2. As the optimal friction
coefficient is higher than in the reference case, while the interference fit is lower, the determined
optimal cases suggest that a higher friction coefficient (up to µ = 0.6) enhances primary stability
more than an increased interference fit. While being optimal in terms of the polar gap and the
pull-out force, the determined optimal cases exhibit a higher stress in the equatorial rim of the
cavity compared to the reference configuration. Excessive stresses in the cavity can become
critical because they can cause bone damage during the insertion and bone resorption during
the healing phase (Sotto-Maior et al., 2010). Therefore, future analyses of optimal primary
stability should also include and classify the hoop stress in the cavity.
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5.4.5 Limitations

This study has several limitations. First, only a single pelvis geometry of unknown sex and
age was considered. Moreover, in the context of hip replacements, pathological degeneration of
the bone structure and damage often need to be considered. Due to the numerous parameters
considered and to the considerable computation time, different patient geometries and implan-
tation angles could not be taken into account here and the impact of changes of the anatomy
should be considered in future work, since bone geometry and stiffness have an effect on implant
stability (Clarke et al., 2013). Several recent studies analyzed the influence of different patient
geometries and bone stiffness (Phillips et al., 2007; Clarke et al., 2013), as well as the influence of
different implantation angles (Janssen et al., 2010; Goldman et al., 2016). Second, all materials
were assumed to be homogeneous and isotropic as is mostly done in the literature (Cilingir et al.,
2007; Janssen et al., 2010; Clarke et al., 2013). This assumption allows to assess the influence
of a small number of parameters in a controlled manner.

Furthermore, the observed stress in the contact area was below the yield stress of human
bone (Bayraktar et al., 2004; Morgan et al., 2018). Therefore, it may be assumed that no
bone damage took place for the simulated insertion and pull-out tests, allowing to consider a
hypoelastic material model as a valid simplification. While trabecular bone damage may occur
during the insertion process, an experimental study showed that bone damage has no impact
on the pull-out force (Bishop et al., 2014). As our study focuses on initial stability in terms of
the pull-out force, bone damage was neglected as well.

Several studies consider the inhomogeneous (Clarke et al., 2013; Rourke and Taylor, 2020),
an-isotropic (Nguyen et al., 2017), and plastic (Souffrant et al., 2012) nature of bone tissues,
by using data obtained from CT scans or experiments with sawbones. Other studies have
also considered elasto-plastic effects (Janssen et al., 2010; Le Cann et al., 2014; Ovesy et al.,
2020), debonding (Immel et al., 2020, 2021b,c), and damage of the interface (Rittel et al., 2018;
Ovesy et al., 2020). While some studies point out the need to explicitly model the nonuniform
thickness of the cortical layer (Hsu et al., 2006; Clarke et al., 2013), realistic results have also
been achieved with a uniform cortical thickness around 0.9–1.5 mm (Anderson et al., 2005;
Phillips et al., 2007; Watson et al., 2017). Due to the simulated reaming in our study, there is
no cortical bone remaining in the contact area for any interference fit value (see Figure 5.1(b))
so the ACI only comes into contact with trabecular bone. As shown in Figure 5.5, the influence
of the cortical bone stiffness on the pull-out force and on the polar gap in our model is relatively
small compared to other studied parameters. Thus, we assumed that the effect of the cortical
bone thickness was negligible compared to the effect of other parameter, which is in agreement
with the literature (Anderson et al., 2005; Phillips et al., 2007; Watson et al., 2017). However,
when considering the stress and deformation distributions over the whole pelvis, the cortical
bone thickness must be taken into account.

Third, as this study focuses on primary stability during surgery, only a pull-out test and no
cyclic loading (e.g., walking) was simulated. Thus, the influence of muscle tissue and ligaments
on the deformation behavior and load response was neglected, which is in agreement with what
is done in the literature (Hao et al., 2011; Clarke et al., 2013). However, it has been shown
that muscles and ligaments have to be taken into account when analyzing the stress distribution
inside the acetabulum (Shirazi-Adl et al., 1993). To draw comparisons to a previous study (Raffa
et al., 2019), a normal pull-out test was chosen, although lever-out tests have also been used in
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the literature (Macdonald et al., 1999).
Fourth, a quasi-static configuration was considered, and all dynamic aspects were neglected,

similarly to what was done in some comparable works (Spears et al., 1999; Le Cann et al., 2014;
Raffa et al., 2019). Note that a previous study precisely focuses on the insertion process of an
ACI by considering dynamic modeling (Michel et al., 2017), which is important when modeling
the insertion by hammer impacts. However, using dynamic modeling would not modify the
pull-out test performed in this study.

Fifth, only the pull-out force and the polar gap have been chosen as determinants of the ACI
primary stability and the detailed stress distribution at the BII for each parameter set was not
studied specifically. The stress distribution especially at the equatorial rim of the cavity should
be analyzed and classified as well, as is done in other works (Janssen et al., 2010; Rourke and
Taylor, 2020). Micromotion at the BII, as well as contact area are other determinants of initial
stability used in the literature (Janssen et al., 2010; Rourke and Taylor, 2020). Furthermore, the
polar gap was obtained at a given insertion force, which is the same for all cases considered in
this work. However, when the insertion force is removed once the implant is inserted, the polar
gap can increase due to relaxation (Michel et al., 2017). Although this situation is clinically
relevant, it is out of the scope of this work but will be considered in future studies. In addition, a
mathematical relationship for the trends of the relationship between bone stiffness, interference
fit, and friction coefficient (shown in Figures 5.7(a) and (c), and 5.9) should be established.
Including the aforementioned factors in future works could provide a more complete picture
on implant primary stability and facilitate the choice of an implant configuration for a specific
patient and provide a basis for modeling osseointegration.

Eventually, the proposed model should be validated experimentally as is partially done in the
2D case (Raffa et al., 2019). However, drawing comparisons to e.g., clinical studies is difficult,
due to all the assumptions described above. Moreover, it remains difficult to measure the actual
friction coefficient of the BII (Gao et al., 2019), as well as the elastic bone modulus (bone being
heterogeneous, viscoelastic, and anisotropic) experimentally. Furthermore, as the hip cavity is
reamed by hand, it is difficult to achieve a perfectly hemispherical cavity and it has been shown
that the actual interference fit differs from what is determined by the implant and the last
reamer size used (Kim et al., 1995; Macdonald et al., 1999).

5.4.6 Conclusion

All studied parameters Etb, Ecb, IF , and µ significantly influence the ACI primary stability.
Quadratic regression analyses were used for the dependence of the pull-out force on the different
parameters and linear regression analyses were performed to analyze the dependence of the polar
gap on the same parameters. All p-values were p < 0.01 (where p is the probability that the
null hypothesis is true). An optimal combination of µ and IF was determined. For Etb = 0.1
GPa, the optimal configuration corresponds to IF = 0.8 mm and µ = 0.6, while for Etb = 0.2
GPa, it corresponds to IF = 0.8 mm and µ = 0.6 and for Etb = 0.5 GPa, it is IF = 0.8 mm and
µ = 0.5. The strong correlation between the aforementioned parameters may therefore require
particular attention of implant manufacturers and of surgeons in order to maximize the ACI
primary stability. The numerical results are found to be consistent with previous experimental
and numerical studies and can help surgeons select the optimal interference fit in a patient-
specific manner, based on the patient’s bone quality and the chosen implant. The results also
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show that increasing IF above 1.4 mm and µ above 0.6 has no benefit on ACI primary stability,
which can aid in ACI implant conception and selection of appropriate surface treatments. In
addition, this study provides detailed knowledge of the local contact state and the influence of
implant- and patient-specific parameters and hence, is an important step towards modeling and
understanding osseointegration. The results presented in this work can be used as a basis for
modeling long-term stability, e.g., for stress-, strain- or micro-motion-dependent osseointegration
models and the subsequent debonding of osseointegrated implants (Rittel et al., 2018; Immel
et al., 2020, 2021b), as is done in the following chapters. This model can also be applied to hip
geometries with osseous defects to provide suggestions for ensuring primary stability for these
challenging and clinically relevant cases. However, the proposed in silico model needs to be
improved to better match the clinical conditions, e.g., by simulating lever-out tests or including
different hip geometries and inhomogeneous bone stiffness. As the problem is characterized
by multi-parameter optimization, a rigorous determination of optimal parameter combinations
requires corresponding optimization algorithms, which should be considered in future works.
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Chapter 6

Tangential Debonding of Partially
Osseointegrated Implants

In the previous chapter, the determinants of primary stability of a cementless ACI were
identified and discussed. Based on these findings, different models for the secondary stability
of osseointegrated implants are introduced in the following chapters. This chapter presents a
phenomenological model for the frictional contact behavior of tangentially debonding, osseoin-
tegrated implants, to model and assess long-term implant stability. The classical Coulomb’s law
is extended from a constant to a varying friction coefficient, that models the transition from an
unbroken to a broken state, based on a state variable depending on the total sliding distance of
the BII. While the unbroken state denotes osseointegration and thus the presence of adhesive
bonds and a higher friction coefficient, the broken state denotes pure frictional contact behavior
of the interface with a lower friction coefficient. Thus, this model can account for the higher
tangential forces observed in osseointegrated implants compared to unbonded implants.

The content of this chapter has been published in restructured form in Immel et al. (2019,
2020).

6.1 Motivation

Most studies on bone attachment to implants have used push-in or pull-out in vitro tests
(Bishop et al., 2014; Wennerberg et al., 2014; Berahmani et al., 2015; Damm et al., 2015). As
the implant geometry influences the test results (Brånemark et al., 1998) and leads to spatially
complex, non-uniform, multiaxial stress fields (Shirazi-Adl, 1992) and instantaneous, unstable
crack propagation, using realistic implant geometries makes it difficult to estimate a physically
meaningful value for the interfacial mechanical strength. Therefore, models with a planar BII
were designed to minimize the effects of friction and mechanical forces introduced by the geom-
etry (Skripitz and Aspenberg, 1999; Rønold and Ellingsen, 2002; Rønold et al., 2003). However,
the measured pull-out force in these experiments cannot be used to retrieve information about
the strength of the interface. More recently, mode III cleavage experiments applied to CSI have
been proposed by Mathieu et al. (2012a). A rotation of the implant with respect to the bone
was imposed and the resulting moment was recorded. This resulted in stable crack propagation,
which allows to assess the adhesion energy. However, the agreement between the analytical and
experimental results was only moderate and significant discrepancies were obtained.
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The tangential load-displacement behavior at the BII was found to be nonlinear (Rancourt
et al., 1990; Shirazi-Adl et al., 1993; Dammak et al., 1997b). However, numerical analyses of
implant stability still only consider either fully bonded, frictionless contact or pure Coulomb’s
friction (Pettersen et al., 2009; Chong et al., 2010; Ghosh and Gupta, 2014). While such assump-
tions may be valid for the assessment of initial stability, prediction of failure of osseointegrated
implants requires a more accurate description of the contact behavior and the inclusion of fric-
tional and adhesive effects (Castellani et al., 2011; Tschegg et al., 2011).

A simple way to model macroscopic friction phenomena that are related to different states
of the BII are state variable friction laws, introduced by Rice and Ruina (1983); Ruina (1983),
which were motivated by the experimental findings of Dieterich (1978, 1979a). These laws focus
on the observed phenomena of (i) fading memory and steady state, (ii) positive dependence on
the instantaneous slip rate, and (iii) negative dependence on past slip rates. In general, it is
assumed that at any given time, the contact surface has a certain state and the frictional stress
only depends on that state, the slip rate and the contact pressure. Similarly, the rate of change
for the state only depends on the current state, the slip rate, and the pressure at the analyzed
point. Although these laws have so far been mainly applied in geology and geophysics, one can
also interpret the state variable as the degree of osseointegration and current debonding state
of the BII.

6.2 State Variable Friction Laws

In so called rate-state or state variable friction laws (Rice and Ruina, 1983; Ruina, 1983) it
is assumed, that at any given time, any point x on the contact surface has a state φ = φ(x, t).
The tangential contact traction then depends in general on the contact pressure pc, the sliding
rate ġs = ‖ġs‖, and the state variable φ, i.e.,

tt = tt(pc, ġs, φ). (6.1)

For a given x, the state φ is assumed to be a continuous function of ġs(t). Moreover, the rate of
change of φ at x generally only depends on the pressure, the sliding rate and the instantaneous
state of this point, i.e.,

φ̇ = F(pc, ġs, φ). (6.2)

Since φ does not depend on the state at other points, Eq. (6.2) is a local evolution law. State
variable friction laws are able to model a change in the frictional contact traction due to past
states (referred to as memory (Rice and Ruina, 1983; Ruina, 1983)). They are also able to
model an asymptotic approach to steady state sliding when ġs becomes constant (Rice and
Ruina, 1983).

6.3 Modified Coulomb’s Friction Law

In contrast to a constant friction coefficient as is used in the classical Coulomb’s law (3.38),
we propose to model µ as a function of the scalar state variable φ, as

µ := µ(φ) = φµub + (1− φ)µb, (6.3)
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where µub and µb are the friction coefficient for the unbroken (initial) and broken state, re-
spectively, that are weighted according to the state variable φ. As this is a local friction model,
where φ and thus µ can change pointwise, it allows for the description of locally varying bonding
states, such as occur in crack propagation and partial osseointegration.

According to Eq. (6.3), the state variable φ determines whether a point is in an unbroken,
partially broken or fully broken state. Here, φ is considered to depend on the accumulated
sliding distance

gs =
∫ t

0
ġs dt (6.4)

at a certain point x, according to the smooth function

φ(gs) = φ0 ·


1 if gs

as
< 1,

1
2 −

1
2sin

(
π

2bs

(
gs
as
− bs − 1

))
if 1 ≤ gs

as
≤ 1 + 2bs,

0 if gs
as
> 1 + 2bs.

(6.5)

The parameter as represents the sliding threshold up to which tangential adhesion takes effect
(µ = µb for gs ≤ as), while bs defines the size of the transition zone between the two friction
coefficients. This implies, that up to a sliding length of gs = as we have a higher resistance
to tangential displacement, similar to the effect of adhesion. After the sliding distance as is
reached, the friction coefficient starts to decrease to µ = µb, corresponding to the sliding of a
fully debonded body. The sliding distance needed for a certain point on the contact surface to
fully debond is then controlled by the parameter bs.

Eq. (6.5) was designed such that it captures the experimental behavior shown in Section
6.4.5.2 (see Figure 6.5). Equation (6.5) depends on the initial bonding state φ0 = [0, 1], where
φ0(x) = 0 denotes no initial bonding and φ0(x) = 1 represents full initial bonding. 1 The
bonding state variable indicates that for φ(x) > 0 tangential contact at x is governed by the
proposed friction law (6.3), while for φ(x) = 0 it is governed by classical Coulomb’s law (3.38)
with µ = µb. This definition results in three possible states for every point on the contact
surface: fully bonded (φ = 1), debonding (0 < φ < 1) and fully debonded/sliding (φ = 0), which
is illustrated in Figures 6.1(a) and 6.1(b).

The computation of the friction coefficient µ in Eq. (6.3) requires the knowledge of the
accumulated sliding distance gs. Here, we approximate Eq. (6.4) by accumulating the distance
from the initial interacting point to the current interacting point, i.e.,

gn+1
s ≈

n+1∑
i=1

∥∥∥x` (ξ̂i)− x` (ξ̂i−1)∥∥∥ . (6.6)

For simple cases, this model can be solved analytically, as presented in Section 6.4.3. However,
for the complex geometries of endosseous implants, the nonlinear and anisotropic behavior of
bone tissue and loading conditions inside the human body may require a numerical solution.
This becomes particularly important when considering inhomogeneous initial bonding (where
φ0(x) 6= const ∀x), due to imperfect or partial osseointegration, as presented in Section 6.4.5.4.

1. In principle Eq. (6.5) can be brought into the form of Eq. (6.2) if a dot is applied to Eq. (6.5) and
then gs is eliminated by the inverse function of (6.5). φ0 follows from an evolution law that describes the
healing/osseointegration process (φ0 increasing from 0 to 1). However, this is not considered here. Here, only the
(further) evolution of φ during debonding (φ decreasing from 1 to 0) is studied.

67



6. Tangential Debonding of Partially Osseointegrated Implants

0 0.1 0.2 0.3 0.6 0.8 1
0

0.5

1

sliding distance gs

tr
ac
tio

n
‖t

t‖
/
tm

ax
t

as = 0.1
as = 0.2
as = 0.3

(a) Variation of the sliding threshold as for bs = 1.

0 as 0.4 0.6 0.8 1
0

0.5

1

sliding distance gs

tr
ac
tio

n
‖t

t‖
/
tm

ax
t

bs = 0.5
bs = 0.75
bs = 1

(b) Variation of the transition factor bs for as =
0.22.

Figure 6.1 – Modified Coulomb’s law: Tangential contact traction ‖tt‖ /tmax
t as a function

of the sliding distance gs for varying sliding threshold as and transition factor bs for φ0 = 1.
Adopted from Immel et al. (2020).

6.4 Application to Coin-Shaped Implants

To calibrate the friction model described above, it is applied to the mode III debonding of
an osseointegrated implant. The test case is originally presented by Mathieu et al. (2012a) (in
the following also referred to as the reference study).

6.4.1 Experimental Setup

In Mathieu et al. (2012a), two CSI made of titanium alloy (Ti-6Al-4V), with a radius RI = 2.5
mm and a height HI = 3 mm, were implanted into the tibiae of a rabbit and left in vivo
during seven weeks. Polytetrafluoroethylene (PTFE) caps were placed around the implants, to
ensure that bone in-growth only occurred at the bottom of the cylindrical implants. After seven
weeks, the rabbit was sacrificed and the bone samples including the implants were extracted
and conserved. Then, mode III cleavage experiments were carried out. The bone specimen was
rigidly fixed to minimize the remaining normal force. The implant was fixed by a chuck screwed
to a torque meter. Then, a 10◦ rotation with a constant rotation speed of 0.01◦ s−1 was imposed.
Finally, the torque and rotation angle as a function of time were extracted via post processing.

6.4.2 Analytical Model of Mathieu et al. (2012a)

To explain the experimental results, Mathieu et al. (2012a) developed an analytical model
that couples crack propagation with friction, based on Chateauminois et al. (2010). The model
assumes that the crack starts from the outside and propagates purely in a circular manner and
in mode III to the center of the contact surface, using a Dugdale crack model, without any
normal force. In this description, the interfacial forces are supposed to be constant up to a given
separation distance between the surfaces.

Let R be the radius of the implant and the initial contact area, then c defines the radius of
the current crack (see Figure 6.2(a)), corresponding to the twisting angle

θ =

√
πEadh
4cG + τ0

2Gcosh−1
(
R

c

)
, (6.7)
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(a) Schematic representation of the setup and the
crack propagation in the uniformly bonded case.

(b) NURBS-enriched finite element mesh showing
an enlargement of the contact surface.

Figure 6.2 – Illustrations for the analytical and numerical setup. Adopted from Immel et al.
(2020).

where Eadh denotes the adhesion energy. c separates the contact area into an adhering/sticking
region for r < c and a debonded/sliding region for c < r < R. In the sliding region, the
orthoradial shear stress σθz is assumed to be constant, according to

σθz(r) = τ0 for c < r < R, (6.8)

with constant τ0 = 3M∞z /2πR3, whereM∞z corresponds to the torque for a rotation angle equal
to infinity (i.e., where the surface is fully debonded), and z denotes the axial direction. In the
sticking region, the orthoradial stress becomes

σθz(r) = 2
π


√
πGEadh

c

r√
c2 − r2 + τ0 sin−1


√√√√√√
(
R
c

)2
− 1(

R
r

)2
− 1


 for r < c. (6.9)

6.4.3 New Analytical Model

Given the modified Coulomb’s law (6.3), a new analytical model can be derived. Due to
symmetry, the tangential traction component σθz is distributed radially symmetric along the
BII, while the radial traction component σzr is zero (as in the model presented in Section 6.4.2).

In general, the torqueMz, as a function of the rotation angle θ, can be computed analytically,
as

Mz(θ) = 2π
∫
r
r2 · σθz(r, θ, gs) dr. (6.10)

We assume both bodies to be linear elastic (see Section 3.2.1) and the normal contact pressure
p̄c to be distributed homogeneously along the contact surface. We define the hyperbola

c(θ) := θlin
θ
R (6.11)

to be the function of the critical radius for the stick/slip transition, such that r < c denotes the
sticking region and c ≥ r ≥ R denotes the sliding region. Furthermore, we define θlin as the
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Figure 6.3 – New analytical model: Critical radius for stick/slip transition c as a function of
the imposed rotation angle θ from Eq. (6.11). Adopted from Immel et al. (2020).

limit for which the tangential traction will be a linear function of the implant radius and θmax
is the rotation angle for which the whole contact surface starts sliding (see Figure 6.3). It also
marks the location of the maximal torque Mmax

z in the torque-angle-curve (see e.g. Figure 6.5).
With the definition of the critical radius c from Eq. (6.11) we have c(θlin) = R and

σθz(θlin, c(θlin)) := tmax
t . (6.12)

Assuming bone and implant to be linear elastic bodies, we know that for sticking, the tangential
traction will be proportional to the applied rotation angle θ and the current radius r, i.e.,

σstickθz (θ, r) = λθr, λ = const, (6.13)

where λ is a constant stress per length. Thus, the torque for the sticking region becomes

Mz(θ) = 2π
∫ R

0
r2 · λθr dr = 1

2πR
4λθ, for θ ≤ θlin. (6.14)

If we calculate the slope of the torque at θ = θlin and c(θlin), we get

dMz(θlin, R)
dθlin

= 1
2πR

4λ. (6.15)

We also know that for linear elasticity

dMz(θ)
dθ = C, θ ≤ θlin, (6.16)

where C is the effective shear stiffness of the system, that is approximately proportional to the
shear modulus of bone. If we equate Eqs. (6.15) and (6.16), we obtain

λ = 2C
πR4 , (6.17)

and inserting λ into Eq. (6.13) yields

σstickθz (θ, r) = 2C
πR4 θr. (6.18)

Applying the definition in Eq. (6.12) to Eq. (6.18) yields

σstickθz (θlin, R) = 2C
πR4 θlinR = tmax

t → 2C
πR3 = tmax

t
θlin

. (6.19)
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the radius r/R of the contact surface (see Eq. (6.23)) at different rotation angles. Adopted
from Immel et al. (2020).

Together with Eq. (6.11) we obtain the tangential traction component for sticking

σstickθz (θ, r) = θr
tmax
t
θlinR

= r

c(θ) t
max
t . (6.20)

In the sliding region r ≥ c, the tangential traction follows the modified Coulomb’s law

σslideθz = µp̄c, (6.21)

with µ = µ(gs) from Eq. (6.3). As long as a part of the interface remains sticking

gs = 0, otherwise gs = r (θ − θmax + θlin) . (6.22)

The tangential contact traction as a function of the rotation angle can then be summarized by

σθz(θ, r) =

tmax
t

r
c(θ) , for r < c (sticking),

µp̄c, for r ≥ c (sliding),
(6.23)

Figure 6.4 illustrates the variation of the tangential contact traction (6.23) for θ = θlin, θ = θmax,
and some θ larger than θmax.

While the two analytical models presented in Sections 6.4.2 and 6.4.3 both assume circular
crack propagation from outside to inside and determine the stick/slip transition by a critical
(or crack) radius, the analytical model from the reference study imposes the crack radius and
computes the corresponding rotation angle, while the new model directly imposes the rotation
angle.

6.4.4 Numerical Setup

As in the experiments, we consider a CSI with the same dimensions RI = 2.5 mm and
HI = 3 mm. The bone sample is modeled as a rectangular cuboid with dimensions 12.5 × 12.5
× 5 mm. The implant is positioned at the center of the upper bone surface. The bodies are
meshed according to the parameters given in Table 6.1, where ne denotes the number of elements
of the body/surface and ngp denotes the number of Gauss-points per element. While the bulk
is discretized with linear Lagrangian shape functions, the contact surfaces are discretized with
quadratic NURBS (see Section 4.1.3). The FE mesh is pictured in Figure 6.2(b). To justify this
coarse discretization, a refinement analysis of the mesh and the load step size is performed (see
AppendixB.2).
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body ne type of shape fcts. ngp
implant bulk 18 linear Lagrange 2× 2× 2
bone bulk 450 linear Lagrange 2× 2× 2

lower implant surface 9 quadratic NURBS 5× 5
upper bone surface 225 quadratic NURBS 5× 5

Table 6.1 – Parameters of the finite element mesh: Number of elements ne, type of shape
functions and number of Gauss-points per element ngp for the two bodies and their contact
surfaces. Adopted from Immel et al. (2020).

Contact is computed with a penalty regularization (see Section 4.4), and the corresponding
penalty parameter is set according to the Young’s modulus of bone to εt = εn = Ecb/L0, with
L0 = 0.01 m. The full-pass approach (see Section 4.3) with the predictor-corrector algorithm
from Section 4.5.2 are used.

The lower surface of the bone block is fixed in all directions, while the sides of the bone
block are fixed in their corresponding normal direction. The modified Coulomb’s friction model
requires a contact pressure during sliding, see Eqs. (3.38) and (6.23). We generate this pressure
by applying a uniform vertical displacement d0 at the upper surface of the implant. Then, the
implant is rotated by 10◦ around its central axis with a constant load step size of 0.01◦.

All computations in Sections 6.4.5.1–6.4.5.3 use homogeneous initial bonding (φ0(x) =
1, ∀x ∈ Sk), while Section 6.4.5.4 presents cases with inhomogeneous initial bonding. For
both bodies, the Neo-Hookean material model of Eq. (3.19) is used. The material properties
for the implant are those of titanium alloy (Ti-6Al-4V: Ei = 113 GPa, νi = 0.3). The material
properties of the bone and the friction parameters µub, µb, as, bs, and the contact pressure pc
have to be determined by a parameter study and are presented in 6.4.5.1.

All simulations were performed with an in-house, MATLAB-based solver (R2018b, The
MathWorks, Natick, MA, USA).

6.4.5 Results

In the following, the results obtained with the new analytical model and numerical study
are presented and compared to the experimental and analytical results corresponding to the
reference study. First, the parameter estimation and the subsequent error estimation for ho-
mogeneous osseointegration are presented. Second, the torque-per-angle curves corresponding
to the different models are compared and the debonding behavior of the implant is discussed.
Third, the work of adhesion and frictional energy loss of the models are compared. Last, several
cases of partial osseointegration are presented and compared with the homogeneous case.

6.4.5.1 Parameter Calibration

During the parameter estimation stage, the Poisson ratio of bone is fixed to νb = 0.3. The
remaining parameters Gcb, d, µub, as, bs are determined by minimizing the mean relative error

emp
Mz

= mean
θ∈[0◦,10◦]

(∥∥∥∥M exp
z (θ)−Mz(θ)
M exp
z (θ)

∥∥∥∥) , (6.24)

where M exp
z is defined as the torque over the rotation angle θ obtained from the correspond-

ing experiment. The shear modulus Gcb is calibrated using the initial slope of the linear
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part of the torque-per-angle curve (i.e., Mz(θ ≤ θlin)) (e.g. see Figure 6.5(a)). The other
parameters depend on the friction coefficient µb, which is investigated at the fixed values
µb = [0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5], which corresponds to the typical range found in the liter-
ature (Rancourt et al., 1990; Shirazi-Adl et al., 1993; Grant et al., 2007; Biemond et al., 2011).
The vertical displacement d0 is calibrated from steady state sliding, which is considered here
to occur for θ > 9◦. We thus minimize Eq. (6.24) for θ ∈ [9◦, 10◦] to calibrate d0. There, the
implant is assumed to be fully debonded and thus, tangential sliding contact is governed by
Coulomb’s law (3.38) with µ = µb. Once d0 is determined, it is considered constant for all
rotation angles θ.

The initial friction coefficient µub is calibrated using Mmax
z (as tmax

t = µub pc) (see Table
6.2). Finally, the parameters as and bs are then determined by minimizing Eq. (6.24) for the
whole torque-per-angle curve.

The bone shear modulus can be estimated from the new analytical model. Due to the non-
homogeneous pressure distribution, the displacement d0 and subsequently all other parameters
are determined using the numerical model. However, adjusting d0 for the new analytical model
of Section 6.4.3 leads to the same estimated values for µub, as, and bs.

data set Mmax
z [N m] M∞z [N m] θlin θmax

1 0.0538 0.0368 0.13◦ 1.13◦
2 0.0595 0.0444 0.11◦ 2.02◦

Table 6.2 – Data sets used for the parameter estimation. Data set 1 and 2 correspond to the
data shown in Figure 4a and 4b of Mathieu et al. (2012a), respectively. θlin denotes the limit
of the elastic part of the deformation, while θmax is the location of the maximum torque Mmax

z .
M∞z denotes the torque for a fully debonded implant and is taken at 10◦. Adopted from Immel
et al. (2020).

Table 6.3 shows the estimated shear moduli and the corresponding Young’s moduli obtained
from the numerical parameter estimation for the two data sets, compared to the computed
shear moduli obtained in the reference study. The estimated shear moduli of 7 and 8 GPa are
higher than the reported values of 2–6 GPa (Sharma et al., 2012; Tang et al., 2015)), while
the corresponding Young’s moduli of 18 and 21 GPa are in good agreement with experimental
data from the literature (Rho et al., 1993; Novitskaya et al., 2011) and previous studies (Vayron
et al., 2011, 2012). In the reference study the model was fit to match the peak and the decrease
in torsion, which results in a considerable error for the shear modulus, as shown in Table 6.3
and Figure 6.5. As our proposed model allows for more control, it is possible to match more
characteristics of the torque curve, such as the initial slope, the peak, the softening and the
torque for complete debonding.

Table 6.4 shows the results of the numerical parameter estimation of the different data sets
and the corresponding mean percentage error, for the chosen levels of friction coefficient µb. For
the analyzed µb, the corresponding initial friction coefficient µub lies between 0.29 and 0.73 and
agrees well with the values of 0.28–1.1 reported in the literature (Rancourt et al., 1990; Shirazi-
Adl et al., 1993; Zhang et al., 1999; Grant et al., 2007; Biemond et al., 2011; Damm et al., 2015).
Increasing µb results in a smaller normal force and a higher µub. Calibrating the parameters
using Mmax

z and M∞z results in almost identical curves for all tested values of µb. Therefore,
for the second data set only µb = 0.3 (Rancourt et al., 1990) and µub = 0.4 (Shirazi-Adl et al.,
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1993; Grant et al., 2007) are investigated, which are the values most commonly reported for the
interface between cortical bone and polished metal implants.

As shown in Table 6.4, the parameters as and bs only depend on the shear modulus and
on the overall shape of the torque curve, i.e., the width of the peak and the slope of Mz(θ).
The computed values for as indicate that adhesion takes effect for a sliding distance up to 22
and 26 µm, respectively. When these values are exceeded, the implant starts to debond, which
is indicated by a decreasing friction coefficient (see 6.7(b)). This observation is in agreement
with the reported threshold for micro-motion of the BII, where no deformation occurs. In most
studies, a value of up to 50 µm is reported (Bragdon et al., 1996; Fitzpatrick et al., 2014), while
values exceeding 150 µm have shown to inhibit bone growth and promote bone loss (Pilliar et al.,
1986; Jasty et al., 1997). However, these values were only reported for normal displacement and
may vary for tangential displacement.

data set model Gcb [GPa] Ecb [GPa]
literature (1993; 2011; 2011; 2012; 2012; 2015) 2–6 15–23

1 analytical solution from (2012a) 0.04 –
present numerical solution 7 18

2 analytical solution from (2012a) 0.02 –
present numerical solution 8 21

Table 6.3 – Results for the parameter estimation of the two data sets for values independent
of the friction coefficient µb. Shown are results from the analytical model presented in Mathieu
et al. (2012a) (see Eqs. (6.7),(6.9)) and the present numerical solution. The estimated parameter
is the bone shear modulus Gcb. The Young’s modulus Ecb then follows from Eq. (3.13). Adopted
from Immel et al. (2020).

data set µb d0 [µm] p̄c [MPa] µub as [µm] bs emp
Mz

[%]

1

ana. (2012a) – – – – – 7.7200
0.20 9.8 5.2 0.29

22 0.74

2.2390
0.25 7.8 4.2 0.37 2.2395
0.30 6.5 3.5 0.44 2.2397
0.35 5.6 3.0 0.51 2.2399
0.40 4.9 2.6 0.58 2.2400
0.45 4.4 2.3 0.66 2.2401
0.50 3.9 2.1 0.73 2.2401

2
ana. (2012a) – – – – – 11.6231

0.30 6.8 4.1 0.41 26 1.86 2.1499
0.40 5.1 3.1 0.55 2.1500

Table 6.4 – Results for the parameter estimation of the two data sets. Shown are results
from the analytical model presented in (Mathieu et al., 2012a) (see Eqs. (6.7),(6.9)) and the
present numerical solution. The estimated parameters are the enforced normal displacement
d0, corresponding average contact pressure p̄c , friction coefficient for the unbroken state µub,
sliding threshold as, and transition factor bs. Adopted from Immel et al. (2020).
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6.4.5.2 Torque Curves and Debonding Behavior

The corresponding curves representing the variation of the torque as a function of the angle
of rotation are shown in Figure 6.5(a) and 6.5(b). The resulting torque obtained with the new
analytical model described in Section 6.4.3 and the numerical solution of the proposed friction
model of Section 6.3 (using µb = 0.4) are very close. While the analytical solution shows a
slightly closer fit to the experimental data before the peak in torque (resulting in an error of
2.18 % for the first data set and 2.83 % for the second data set), the numerical solution provides
a better estimation of the behavior after debonding.
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Figure 6.5 – Variation of the torqueMz as a function of the imposed rotation angle θ. Adopted
from Immel et al. (2020).

The errors obtained with the numerical solution are given in Table 6.4 and are compared to
the analytical model from the reference study. Overall, the numerical solutions yield the best
agreement with the experimental data, especially concerning the initial slope (i.e. stiffness) of
the torque and the decrease after its peak. The torque curves show a flat plateau at the peak,
which comes from the behavior induced by the sliding threshold as. Increasing as induces an
offset of the debonding process and thus, results in an elongated peak. Another difference is
shown in Figure 6.5(b) for θ > 2.5◦, where the decrease of the torque is not exactly reproduced.
A different transition function φ may allow for a closer fit there.

The top row in Figure 6.6 shows the distribution of the friction coefficient µ in the contact
area for different angles of rotation. A transition zone (characterized by µb < µ < µub), which
may be understood as a crack front, cf. Mathieu et al. (2012a) and Figure 6.2(a), appears at
1.13◦. The transition zone propagates inward in the radial direction from the external radius R
into the center, which corresponds to the crack mode assumed by the analytical models. The
transition zone can also be observed in Figure 6.7(a), which shows the value of the friction
coefficient as a function of the implant radius for different angles of rotation. When the rotation
angle increases, the width of the transition zone decreases. It becomes apparent, that for the
numerical model no full debonding is achieved after a rotation of 10◦, since for the nodes close
to the center of the implant’s contact surface the appropriate sliding distance to start the
transitioning of µ has not been reached yet. In fact, under perfect twisting conditions, gs
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remains zero at the center of the implant. Thus the center of the implant will never debond for
(perfect) twisting.

The bottom row of Figure 6.6 shows the distribution of the sliding distance over the contact
surface for different angles of rotation. Although the body starts sliding before a twisting angle
of 1◦, the factor as prevents a change of the friction coefficient until a sliding distance of 22 µm
is reached. This is also shown in Figure 6.7(b), which illustrates the variation of the friction
coefficient as a function of the sliding distance gs for r = R and data set 1. The friction coefficient
stays constant as µ = µub for gs ≤ as and then decreases, until it reaches µ = µb at gs = 66 µm.
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Figure 6.6 – Evolution of the debonding of the BII: Value of the friction coefficient µ (top)
and the sliding distance gs (bottom) on the contact area of the implant for different angles of
rotation. Adopted from Immel et al. (2020).
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Figure 6.7 – Evolution of the debonding of the BII: Behavior of the friction coefficient and the
transition zone for the first data set. Adopted from Immel et al. (2020).

6.4.5.3 Work of Adhesion

Due to the poor agreement between the experimental results and the analytical model devel-
oped in Mathieu et al. (2012a), an energetic approach was proposed to determine the dissipated
frictional energy Wfric, the work of adhesion Wadh, and the total energy necessary for debonding
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Wdeb, 2 which are given by

Wdeb =
∫ θ=10◦

θ=0◦
Mz(θ) dθ, Wfric =

∫ θ=10◦

θ=θmax
M∞z dθ, Wadh = Wdeb −Wfric. (6.25)

Based on the experimental results, θ = 10◦ was chosen to be the angle of rotation where the
implant was completely debonded from the bone, indicated by a constant torque M∞z . The
area-specific average work of adhesion Eadh is then given by

Eadh = Wadh
πR2φ̄0

, (6.26)

where φ̄0 is the average of the initially osseointegrated area, see also Section 6.4.5.4. A visual
analysis of the implant surfaces after debonding yielded φ̄0 = 0.73 for the first data set (see
Figure 6.8(a)) and φ̄0 = 0.72 for the second (Mathieu et al., 2012a).

Table 6.5 gives the results for the different energies with respect to the values of φ̄0 determined
by the surface analysis. In the cases presented here, the analytical and the numerical models
use φ0(x) = 1∀x. Therefore, the true area-specific work of adhesion for these models E∗adh was
computed by using φ̄0 = 1 in Eq. (6.26). Results for Eadh where φ̄0 6= 1 is used during the
simulation are presented in Section 6.4.5.4.

For both data sets, the analytical solution by Mathieu et al. (2012a) underestimates the
total debonding work and the area-specific adhesion work, while the numerical results with the
modified Coulomb’s law lead to very good agreement with the experimental data. The analytical
solution with the modified Coulomb’s law yields less accurate results for the second data set.

For simplicity, the results in the remaining part of this work were obtained based only on
the estimated parameters for the first data set and µb = 0.4 (see Table 6.4).

data model Wdeb [N m] Wfric [N m] Wadh [N m] Eadh [N m−1] E∗
adh [N m−1]set

1

exp. 0.0070 0.0056 0.0014 98 71
ana. (2012a) 0.0066 0.0056 0.0010 70 51

ana. Eq. (6.23) 0.0071 0.0057 0.0014 98 72
sim. 0.0071 0.0057 0.0014 98 72

2

exp. 0.0088 0.0060 0.0028 198 143
ana. (2012a) 0.0080 0.0064 0.0016 120 81

ana. Eq. (6.23) 0.0087 0.0067 0.0020 141 102
sim. 0.0089 0.0062 0.0027 191 138

Table 6.5 – Total debonding energy Wdeb, frictional energy Wfric, work of adhesion Wadh, and
corresponding area-specific works of adhesion Eadh and E∗adh for the different models and data
sets. Adopted from Immel et al. (2020).

6.4.5.4 Partial Osseointegration

Mathieu et al. (2012a) showed that part of the limitations of their model lies in the assump-
tion of a fully bonded surface at the beginning of the experiment. The analysis of the implants’
surfaces after debonding indicated that most likely, full osseointegration was not achieved. This
resulted in regions where no bone tissue was initially attached to the implant surface, as seen
in Figure 6.8(a), and thus no adhesive or frictional effects can take place. This state of partial

2. The strain energy inside the bodies, which generally should also be accounted for, is negligible in this case.
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(a) (b) (c) (d)

Figure 6.8 – Original and constructed osseointegration patterns with average osseointegration
φ̄0 = 0.55. (a) Original pattern (Mathieu et al., 2012a). (b) Reconstructed pattern. (c) Circular
pattern. (d) Random pattern. Light areas represent full osseointegration (φ0 = 1), while
dark areas represent no osseointegration (φ0 = 0). For the corresponding elements in the
reconstructed and artificial patterns φe0 is set to 1. Adopted from Immel et al. (2020).

osseointegration can be readily investigated with the proposed numerical model. Therefore,
an analysis assuming inhomogeneous initial bonding was performed, with various distributions
φ0(x) in model (6.5).

In order to analyze the debonding behavior of the BII and to determine the influence of
the percentage and the distribution of osseointegration, different cases for a fine mesh with 400
contact elements on the implant surface were constructed: First, a bonding pattern based on
Figure 6.8(a), assuming that light gray areas indicate osseointegration, was reconstructed. From
a visual inspection of the photograph, the sample in Figure 6.8(a) is considered to have average
osseointegration φ̄0 = 0.55. Second, to compare the influence of osseointegration patterns, two
other patterns with φ̄0 = 0.55 were constructed. A simple circular pattern, where only the
center part of the interface is integrated and last, a random distribution. For patterns (b)–(d),
φ0 = 1 within the light gray surface elements. The corresponding osseointegration patterns are
shown in Figure 6.8.

Partial Osseointegration for Different Material Parameters

When the model parameters are fitted for every pattern (see Table 6.6), the torque-angle
curve only weakly depends on the various distributions of osseointegration, as seen in Figure 6.10,
resulting in a minimum error of 1.95 % for the reconstructed pattern, 1.99 % for the circular
pattern and 2.15 % for the random distribution, respectively. While the error is slightly larger
compared to the reconstructed pattern, the circular pattern has a closer fit to the experimental
data for θ < θmax, which leads to a small improvement of the prediction of Eadh. Since the
model parameters are unknown, fitting the parameters to the experimental data leads to similar
curves for every presented case. Out of the different osseointegration patterns, the random
pattern is the closest to the results obtained with full initial bonding. The random pattern still
has a balanced degree of osseointegration over the implant radius, while pattern (b) and (c)
are only weakly (or not) bonded on the outer part of the implant and thus, a bigger difference
is seen in the beginning of the torque curve. Overall, the aforementioned results lead to the
conclusion that without knowing the friction coefficients, the torque-per-angle curve does not
provide sufficient information on the degree and distribution of osseointegration of the BII.
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As the state of an element does not depend on the states of neighboring elements, the
total sliding distance is not affected by inhomogeneous initial bonding. Therefore, a similar
propagation of the transition zone as in the homogeneous case can be seen in Figure 6.9. In
contrast to the torque, partial osseointegration has a larger effect on the model parameters, as
shown in Table 6.6. In general, partial osseointegration leads to the estimation of higher µub,
that are still well within the range of reported values in the literature. In addition, the transition
time is notably lower and for the distinct patterns (b) and (c), the sliding threshold is lower, as
well.
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Figure 6.9 – Variation of the friction coefficient µ at the BII for different angles of rotation for
different patterns of partial osseointegration. Adopted from Immel et al. (2020).
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Figure 6.10 – Partial osseointegration: Variation of the torqueMz as a function of the imposed
rotation angle θ for different cases of the initial bonding state of the interface with the material
parameters shown in Table 6.6. Adopted from Immel et al. (2020).
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bonding
φ̄0 d0 [µm] µub as [µm] bs emp

Mz
[%] Wadh [N m] Eadh [N m−1]pattern

homog. 1 4.9 0.58 22 0.74 2.240 0.0014 130
(b) 0.55 4.8 0.80 21 0.63 1.949 0.0015 139
(c) 0.55 4.8 0.97 15 0.67 1.988 0.0014 130
(d) 0.55 4.9 0.73 22 0.66 2.152 0.0015 139

Table 6.6 – Change in model parameters and results for implants with partial initial bonding
compared to homogeneous bonding (see Figure 6.8). Adopted from Immel et al. (2020).

Partial Osseointegration for Equal Material Parameters

The effect of the different osseointegration patterns becomes much more distinct when study-
ing the results obtained for equal material parameters for bone tissue and the implant, as pre-
sented in Figure 6.11. Here, the parameters for the homogeneous case of the first data set
(µb = 0.4) were used (see Tables 6.3 and 6.4) with φ̄0 = 0.55 for all four patterns. Using partial
osseointegration only affects the part of the deformation where (tangential) adhesive forces are
expected to play a mayor role, represented by the peak in the torque curve. In general, partial
osseointegration patterns lead to a lower Mmax

z and differences in the softening of the curve.
The initial slope of the torque curve and M∞z are not affected by the different osseointegration
patterns. Applying φ0 = 0.55 to all contact elements in the homogeneous bonding case produces
the same result as using a randomly distributed pattern with φ̄0 = 0.55, where φ0 = 1 for the
osseointegrated elements. The distinct patterns (b) and (c) with weak or no boding on the outer
part of the implant produce a lower peak and longer softening periods.
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Figure 6.11 – Partial osseointegration: Variation of the torqueMz as a function of the imposed
rotation angle θ for different patterns of the initial bonding state of the interface with φ̄0 = 0.55
and the same material parameters for all patterns. M∞z = 0.0368 N m according to data set 1
(see Table 6.2). Adopted from Immel et al. (2020).

6.4.6 Discussion and Limitations

This work aims to provide a simple friction law to model the debonding of the BII. The
mechanical model is incorporated into an analytical model and is implemented into an accurate
and efficient contact algorithm with NURBS-enriched finite elements and thus, allows to predict

80



6.4. Application to Coin-Shaped Implants

the debonding of osseointegrated implants numerically. The model only depends on four physi-
ological parameters (µub, p, as, and bs), that can be determined by a parameter study based on
experimental results. Moreover, it allows for reasonable estimations of other parameters, such
as the bone’s Young’s modulus and adhesion energy. However, due to the limited experimen-
tal data analyzed here, no a-priori determination of the input parameters can be made yet.
While the analytical solution of the proposed friction law already leads to good estimates, the
results obtained by the finite element simulation are more accurate as they can also account for
non-linear material behavior, large deformations, and partial osseointegration.

One difficulty associated with the present study arises from the contact pressure, which is
required to establish frictional contact. In Mathieu et al. (2012a), it was reported that although
the experimental pressure was minimized, it could not be completely excluded nor measured.
Since the experimental torque does not go to zero for fully debonded implants, a normal pressure
is likely to remain applied to the implants. As friction coefficients and normal force are unknown,
no statement can be made about the accuracy of the estimated contact pressure. Furthermore,
in the beginning, pc accounts for applied normal forces as well as adhesive forces due to chemical
and mechanical bonding. The measurement or elimination of applied normal forces would clearly
determine the friction coefficient for the broken state and thus also for the unbroken state of
a certain sample. Therefore, an improvement of the testing machine used for the experimental
measurements is needed and is currently under development.

While the estimated parameters are within a reasonable range compared to the litera-
ture (Shirazi-Adl et al., 1993; Novitskaya et al., 2011; Damm et al., 2015), and result in a good
qualitative and quantitative representation of the torque-angle curve, there are still visible differ-
ences, in particular at the beginning of the peak. Following the argumentation of the reference
study, these differences might be explained by the assumption of a full initial bonding between
bone and implant, while an initial bonding of 30–70 % is reported in the literature (Brånemark
et al., 1997; Marin et al., 2010). Accounting for inhomogeneous osseointegration in our model
has shown an influence on the torque curves and the model parameters, such as the friction co-
efficient for the unbroken state. As these values were not or cannot be measured experimentally
yet, it is assumed that the parameters obtained by incorporating imperfect osseointegration are
more accurate than assuming a homogeneous distribution of osseointegration. Furthermore, a
partial bonding will most likely lead to a more complex crack front and propagation than what
is assumed by the analytical and numerical models.

Other factors that were not taken into account in the present work are the roughness of bone
and implant surfaces, as well as wear and debris. Furthermore, only a healing time of 7 weeks
was considered, while a comparison of different healing times in terms material parameters and
of osseointegration would be interesting. Thus, a study on the influence of the surface roughness
and healing time is planned for future work.

Another interesting aspect for future work is the application of the model to actual implant
and bone geometries, for example in artificial hip joints and dental implants. The latter have
been recently examined by Rittel et al. (2018) to study the influence of partial osseointegration
on implant stability and cohesive failure. In addition, only torsional debonding was tested in
this work while other loading conditions, such as push-in and pull-out of the implant are more
commonly analyzed (Bishop et al., 2014; Wennerberg et al., 2014; Berahmani et al., 2015; Damm
et al., 2015).

Although, bone is highly non-linear and anisotropic, the choice of an isotropic, non-linear

81



6. Tangential Debonding of Partially Osseointegrated Implants

elastic Neo-Hookean material model here leads to reasonable results for the planar mode III
debonding of titanium and cortical bone, due to the small deformation. It has to be investigated
if this still holds for, e.g., pull-out tests and contact with trabecular bone, as is presented in
Chapter 7. Especially for the modeling of cohesive failure of bone, a fracture model would be
needed.

6.4.7 Conclusion

Overall it is shown, that assuming a smooth transition from an unbroken to a broken state,
characterized by a decreasing friction coefficient during the debonding process leads to good
agreement with experimental data with both, an analytical and a numerical approach. While
the analytical model is simple, it is an efficient way to provide initial estimates for this kind
of experiment. The numerical results on the other hand are more accurate and allow for more
complex material behavior, stress distribution, and (partial) osseointegration. Both approaches
enable the estimation of several parameters of the BII. The proposed friction model is expected
to help in understanding the debonding phenomena at the BII. An extension to adhesive friction
(Mergel et al., 2019, 2021) as well as application to hip implants is presented in the following
chapter.
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Chapter 7

Normal and Tangential Debonding of
Partially Osseointegrated Implants

In the previous chapter, a contact model for the tangential debonding of partially osseoin-
tegrated implants was introduced. To increase the accuracy and applicability of this model,
this chapter introduces the extension of the modified Coulomb’s friction law (MC) in normal
direction and to adhesive friction. Consequently, a CZM (see Section 3.3.2) is used to extend
the normal traction for positive contact gaps and the tangential traction is shifted, accordingly.
This extended model (EMC) is tested with the CSI model from Chapter 6 and is then applied
to simulate the debonding of a 3D, osseointegrated ACI in different removal tests. The ACI
stability is quantified by the removal force/torque and the biomechanical determinants of the
long-term stability, such as primary stability and degree of osseointegration are assessed. The
results of the formulations with and without the CZM extension are compared to assess the
impact of adhesion and adhesive friction on the stability of osseointegrated implants.

Major parts of this chapter have been published as Immel et al. (2021b,c).

7.1 Adhesive Friction and Debonding

To account for normal adhesion and debonding in the extension of the modified Coulomb’s
law, the normal traction (3.31) is extended by an exponential CZM (Xu and Needleman, 1992)
(see Sauer (2016)), i.e.

tn =


0 gb ≥ gn or φ = 0,
φ0

t0
g0
gn exp

(
1− gn

g0

)
n 0 ≤ gn < gb and φ > 0,

−εn gn gn < 0,

(7.1)

where t0 is the maximum positive normal traction, g0 is the contact distance, where the max-
imum traction t0 occurs, and gb is a cut-off distance, where contact is lost. The parameters
t0, g0, gb depend on the interface. The normal traction model (7.1) is illustrated in Figure 7.1(a).

Equation (7.1) implies that, when pulling the contact surfaces apart in normal direction, as
long as the point remains fully or partially bonded (φ > 0) the normal traction keeps increasing
until gn = gb. As soon as the point is fully debonded (φ = 0) or the normal gap is gn > gb, the
contact is lost and the normal traction component becomes tn = 0. The sharp drop in the normal
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traction at gb is motivated by observations from experimental pull-out tests of osseointegrated,
coin-shaped implants (Rønold and Ellingsen, 2002; Nonhoff et al., 2015).

To enable sliding for tensile normal traction in the present extension of the contact model,
the tangential sliding limit (3.36) is shifted by

tslidet = µ(φ) (t0 − tn) , (7.2)

according to Mergel et al. (2019, 2021).
The slope of the function tn(gn) and tslidet (µ) at gn = 0 depends solely on the choice of the

parameters. It is smooth when
εn = φ0 e

t0
g0
, (7.3)

(where e is Euler’s number), otherwise it is discontinuous. A comparison of the standard
Coulomb’s law and the proposed extended modified Coulomb’s law based on adhesive friction
is shown in Figure 7.1.
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Figure 7.1 – Illustration of (a) the cohesive zone model and (b) the extended modified
Coulomb’s law with adhesive friction for φ0 > 0. Adopted from Immel et al. (2021c).

The damage parameter gd(x) is composed of an accumulated irreversible tangential slip gs
(see Section 6.3) and the accumulated normal gap gsn, i.e. 1

gd = gs + gsn. (7.4)

This implies that during sticking, gd only increases if gsn increases. Otherwise, there is no change
in the debonding state. The irreversible normal slip gsn is defined as

gsn =
∫ t

0
ġsn dt. (7.5)

Here, we approximate gsn as (see Figure 3.2(a))

gn+1
sn ≈

n+1∑
i=1

∥∥∥gin − gi−1
n

∥∥∥ . (7.6)

Only the magnitudes of the slip gs and gsn are accumulated, not their direction. Thus, a load-
reversal in negative direction does not lead to a decrease in gd.

1. More accurately, the damage parameter could also be computed as gd =
√
g2s + g2n.
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7.2 Application to Coin-Shaped Implants

To demonstrate the new contact formulation (7.1) and (7.2) a CSI model is used to simulate
different debonding modes.

7.2.1 Setup

We consider the same basic setup as in Chapter 6.4.4. The parameters of the state func-
tion (6.5) are chosen to be as = 22 µm, bs = 0.74, µub = 0.44, and µb = 0.3, based on
Section 6.4.5.1. The initial osseointegration is constant across the bone-implant interface and is
set to be φ0 = 1 (perfectly integrated). Due to the lack of experimental data, the cohesive zone
parameters g0, gb are set to gb = g0 = 3as, for simplicity.

The maximum traction of the cohesive zone model, t∗0 = 1.8 MPa, is calibrated based on
the results of Rønold and Ellingsen (2002) for polished, titanium CSI. In that experimental
study, CSI with different surface roughness were implanted into rabbit tibiae and allowed to
osseointegrate for 10 weeks. Then, the implants were removed together the surrounding bone.
The bone and implant parts were fixed into a tensile test machine and the implant was pulled
constantly in the normal direction until it was completely debonded from the bone. For the
polished CSI an average degree of osseointegration of φ0 = 0.26 and an average maximum
pull-out force of 9 N were determined, which results in an approximate 35 N for φ = 1.

The boundary conditions and considered test configurations are shown in Figure 7.2. The
lower surface of the bone block is fixed in all directions. In this work, only quasi-static conditions
are considered. First, the implant is pressed into the bone block until a normal reaction force
of -70 N is reached, as is done in Section 6.4.4. Then, for the first three test cases, full and
homogeneous initial osseointegration (φ0 = 1) of the bone-implant interface is applied (Figure 7.2
(a) and (c)). For test cases with tension, the implant is then pulled in normal direction until
an average normal reaction force of 20 N is reached (Figure 7.2(b)). Last, debonding with no
initial pressure or tension is considered (Figure 7.2(d)).

Then, the new contact model is examined for five different debonding test cases:

1. mode II: the upper implant surface is moved in x-direction under constant compression
(mode IIa) or tension (mode IIb).

2. mode III: the upper surface of the implant is rotated around its z-axis under constant
compression (mode IIIa) or tension (mode IIIb).

3. mode I+II: the upper implant surface simultaneously pulled along the z-axis and in x-
direction, corresponding to an angle α = 30, 45, or 60◦. This is performed with initial
compression (mode I+IIci) and without initial contact force (mode IIIdi).

4. mode I+II: the upper implant surface is simultaneously pulled along the z-axis and in
x-direction, corresponding to an angle of α = 45◦ for different choices of t0 ∈ [t∗0/2, t∗0, 2t∗0].
This is performed with initial compression (mode I+IIcii) and without initial contact force
(mode IIIdii).

5. mode I+II: the upper implant surface is simultaneously pulled along the z-axis and in
x-direction, corresponding to an angle of α = 45◦ for increasing degrees of initial os-
seointegration φ0 ∈ [0, 0.25, 0.5, 0.75, 1]. This is performed with initial compression (mode
I+IIciii) and without initial contact force (mode IIIdiii).
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Figure 7.2 – CSI debonding: Illustrations of the boundary conditions for different debonding
cases. (a) Debonding under an initial compression of -70 N, either in mode II or III. (b)
Debonding under an initial tension of 20 N, either in mode II or III. Mixed mode debonding with
initial compression of -70 N (ci) and without initial contact force (di), and under various loading
angles α. Mixed mode debonding with initial compression of -70 N (cii) and without initial
contact force (dii), under loading angle α = 45◦ and various CZM parameter t0 in Eq. (7.1).
Mixed mode debonding with initial compression of -70 N (ciii) and without initial contact force
(diii), under loading angle α = 45◦ and various initial degrees of osseointegration φ0. Adopted
from Immel et al. (2021c).

All simulations are performed with an in-house, MATLAB-based solver (R2019b, The Math-
Works, Natick, MA, USA). Contact is computed with a penalty regularization, and the corre-
sponding penalty parameter is set to εn = εt = Etb/L0, with L0 = 0.01 m. The step size for all
load cases is ∆u = 0.65 µm (for applied displacement loads and ∆θ = 0.1◦ for applied rotations).
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7.2.2 Results

In the following, the results of the debonding tests for the CSI, in terms of load-displacement
curves, obtained with the MC and its new extension to adhesive friction (EMC) are presented
and compared with each other.

7.2.2.1 Test 1: Mode II Debonding

Figure 7.3 shows the normal and tangential reaction forces Fz and Fx for debonding and
possible subsequent sliding in (tangential) x-direction under prescribed constant compression or
tension. For a constant compression of -70 N, the slope of the curve of the tangential reaction
force is identical for the MC and the EMC. The maximum tangential reaction force increases
from 30 N to 45 N for the EMC. For a constant tension of 20 N, the tangential reaction force
reaches up to 6 N before decreasing and dropping to 0 because of the absence of contact. The
maximum tangential reaction force under tension is smaller than under compression, due to
the decrease in φ stemming from the accumulated deformation in normal direction before the
debonding started (due to pulling the implant back up before sliding). The contact is lost
abruptly after the limit for the accumulated deformation gd is reached, due to the positive
contact gap at the bone-implant interface.
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Figure 7.3 – CSI debonding: Variation of the normal reaction Fz (left) and the tangential
reaction force Fx (right) as a function of the tangential displacement ux for mode II debonding
under constant compression (mode IIa) or constant tension (mode IIb). The results illustrate the
difference between the modified Coulomb’s law (MC) and the new extension (EMC). Adopted
from Immel et al. (2021c).

7.2.2.2 Test 2: Mode III Debonding

Figure 7.4 shows the normal reaction force Fz and the debonding torque Mz for mode III
debonding due to rotation around the implant’s (normal) z−axis under prescribed constant
compression or tension for the considered contact laws. For a constant compression of -70 N,
the slope of the torque curve is identical for both contact laws. The maximal torque increases
by 0.027 Nm (about 50%) when including normal adhesion (EMC). For a constant tension of
20 N the torque reaches 0.011 Nm and then decreases down to zero due to loss of contact.
This loss is gradual, starting in the external region of the cylinder and propagating inward to
its center. These results emphasize the fact that torque tests yield a stable crack propagation,
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which is particularly interesting when it comes to assessing the effective adhesion energy of the
bone-implant interface (Mathieu et al., 2012a).

0 2 4 6 8 10
-80

-60

-40

-20

0

20

40

rotation angle θ [deg.]

no
rm

al
re

ac
tio

n
fo

rc
e
F

z
[N

]

compression, MC
compression, EMC
tension, MC
tension, EMC

0 2 4 6 8 10
-0.02

0

0.02

0.04

0.06

0.08

0.1

rotation angle θ [deg.]

de
bo

nd
in

g
to

rq
ue

M
z

[N
m

]

Figure 7.4 – CSI debonding: Variation of the normal reaction Fz (left) and the torque Mz

(right) as a function of the rotation angle θ for mode III debonding under constant compression
(IIIa) or constant tension (IIIb). The results illustrate the difference between the modified
Coulomb’s law (MC) and its new extension (EMC). Adopted from Immel et al. (2021c).

7.2.2.3 Test 3: Mode I+II Debonding for Varying Angles

Figure 7.5 shows the normal and tangential reaction forces Fz and Fx for mixed mode
debonding under different angles α (mode I+IIci) starting from an initial contact pressure, based
on the MC and the EMC. The normal reaction force Fz increases linearly until it reaches zero.
For each angle, the slope of the reaction force curve is identical for both considered contact laws,
respectively. In case of the EMC, the reaction force becomes positive at some point and follows
the debonding curve of cohesive zone model (7.1) seen in Fig. 7.1(a). In all presented cases, the
debonding occurs because the maximal normal gap exceeds gb, due to the prescribed upward
movement. Therefore, increasing the debonding angle α decreases the amount of tangential
deformation necessary for debonding, i.e. where contact is lost and the reaction force becomes
zero.

The tangential reaction force Fx increases linearly until the respective sliding limit is reached.
Then the implant starts sliding and the tangential reaction force decreases linearly, as long as
the normal force Fz is still negative. When the normal reaction force reaches zero, the cases
with the MC show zero tangential reaction force, as there is no contact anymore. For the cases
with the EMC, the bone-implant interface has not fully debonded yet and thus, there is still a
normal (adhesive) contact force building up. As a result, the tangential reaction force decreases
nonlinearly until it reaches zero.

While the maximum normal reaction force is the same for all three tested angles, the max-
imum tangential reaction force decreases for an increasing debonding angle. The respective
maximal tangential reaction force for each case is around 1.5 times higher for the EMC com-
pared to the MC, due to the shift in tangential contact traction (7.2).

Figure 7.6 shows the normal and tangential reaction forces Fz and Fx for mixed mode
debonding under different angles α (mode I+IIdi), with no initial contact force, based on the
EMC. The different curves of the normal reaction force Fz are identical to the positive part of
the curves in Figure 7.5. As there is no initial compression or tension in the beginning of this
loading case, all curves begin at the origin. Similarly, the different curves for the tangential
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reaction force Fx are identical to the exponential part of the curves in Figure 7.5 and are shifted
by the same displacement towards the origin, respectively, as the normal reaction force.
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Figure 7.5 – CSI debonding: Variation of the normal reaction force Fz (left) and the tangen-
tial reaction force Fx (right) as a function of the tangential displacement ux for mixed mode
debonding, starting from an initial contact pressure (mode I+IIci). The results illustrate the
difference between the modified Coulomb’s law (MC) and its new extension (EMC). Adopted
from Immel et al. (2021c).
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Figure 7.6 – CSI debonding: Variation of the normal reaction force Fz (left) and the tangential
reaction force Fx (right) as a function of the tangential displacement ux for mixed mode debond-
ing, starting from zero contact force (mode I+IIdi). The results show the extended modified
Coulomb’s law (EMC). Adopted from Immel et al. (2021c).

7.2.2.4 Test 4: Mode I+II Debonding for Varying CZM Parameter t0

Figure 7.7 shows the normal and tangential reaction force Fz and Fx for mixed mode debond-
ing under α = 45◦ as a function of the tangential displacement with different values of the
maximal CZM traction t0 when considering adhesive friction (mode I+IIcii). As expected, the
maximum normal and tangential reaction forces are proportional to t0 (see Eqs. (7.1) and (7.2)).
Furthermore, the slopes of Fz and Fx at the transition from compression to tension (Fx = 0,
ux = 6.5 mm) are smooth for about t0 = 2t∗0 (as 2t∗0 ≈ εng0/φ0e (see Eq. 7.3)).

Figure 7.8 shows the normal and tangential reaction forces Fz and Fx for mixed mode debond-
ing under α = 45◦, with no initial contact force, as a function of the tangential displacement
for different values of the maximal CZM traction t0 when considering adhesive friction (mode
I+IIdii). The different curves of the normal reaction force Fz are identical to the positive part
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of the curves in Figure 7.7. As there is no initial contact force in the beginning of this loading
case, all curves begin at the origin. Similarly, the different curves of the tangential reaction force
Fx are identical to the exponential part of the curves in Figure 7.7 and are shifted by the same
displacement towards the origin, respectively, as the normal reaction force.
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Figure 7.7 – CSI debonding: Variation of the normal reaction force Fz (left) and the tangential
reaction force Fx (right) as a function of the tangential displacement for mixed mode debonding
under α = 45◦ and varying CZM parameter t0, starting from an initial contact pressure (mode
I+IIcii). The results show the extended modified Coulomb’s law (EMC). Adopted from Immel
et al. (2021c).
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Figure 7.8 – CSI debonding: Variation of the normal reaction force Fz (left) and the tangential
reaction force Fx (right) as a function of the tangential displacement for mixed mode debonding
under α = 45◦ and varying CZM parameter t0, starting from zero contact force (mode I+IIdii).
The results show the extended modified Coulomb’s law (EMC). Adopted from Immel et al.
(2021c).

7.2.2.5 Test 5: Mode I+II Debonding for Varying Degree of Osseointegration

Figure 7.9 shows the normal and tangential reaction force Fz and Fx for mixed mode debond-
ing under 45◦ as a function of the tangential displacement with increasing degree of osseointe-
gration φ0 when considering adhesive friction (mode I+IIciii). Increasing the degree of initial
osseointegration increases the peak magnitude in the normal and tangential reaction force. This
is due to the fact that in this test case, debonding occurs first due to gn > gb and not due to
exceeding the limit of the deformation of the interface gd = as(1 + 2bs) (see Eq. (6.5)). The

90



7.2. Application to Coin-Shaped Implants

maximal normal and tangential reaction force increase proportionally with increasing φ0, while
the tangential displacement necessary for debonding remains the same.
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Figure 7.9 – CSI debonding: Variation of the normal reaction force Fz (left) and the tangential
reaction force Fx (right) as a function of the tangential displacement for mixed mode debonding
under α = 45◦ and initial degree of osseointegration φ0, starting from an initial contact pres-
sure (mode I+IIciii). The results show the extended modified Coulomb’s law (EMC). Adopted
from Immel et al. (2021c).

Figure 7.10 shows the normal and tangential reaction forces Fz and Fx for mixed mode
debonding under α = 45◦, with no initial contact force, as a function of the tangential displace-
ment with increasing degree of osseointegration φ0 when considering adhesive friction (mode
I+IIdiii). The different curves of the normal reaction force Fz are identical to the positive part
of the curves in Figure 7.9. As there is no initial contact force in the beginning of this loading
case, all curves begin at the origin. Similarly, the different curves of the tangential reaction force
Fx are identical to the exponential part of the curves in Figure 7.9 and are shifted by the same
displacement towards the origin, respectively, as the normal reaction force.
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Figure 7.10 – CSI debonding: Variation of the normal reaction force Fz (left) and the tangential
reaction force Fx (right) as a function of the tangential displacement for mixed mode debonding
under α = 45◦ and initial degree of osseointegration φ0, starting from zero contact force (mode
I+IIciii). The results show the extended modified Coulomb’s law (EMC). Adopted from Immel
et al. (2021c).
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7.3 Application to Acetabular Cup Implants

Both, the MC and the EMC have been examined for a simple implant model in Section 7.2.
Now, both models are applied to simulate the debonding of a 3D, osseointegrated ACI, under
different removal conditions, similar to the simulations in Raffa et al. (2019) and Chapter 5.
Here, the implant’s secondary stability is considered and is quantified by assessing the removal
force/torque. Furthermore, the biomechanical determinants of the long-term stability, such as
primary stability and initial degree of osseointegration are assessed. The results of the MC
and its extension to adhesive friction, EMC, are compared to assess the importance of adhesive
effects for long-term stability because it allows to distinguish the influence of primary stability
and osseointegration phenomena on the secondary stability.

7.3.1 Setup

A simple cylindrical block is considered, as it is a suitable simplification of the pelvis geometry
that qualitatively captures the relevant contact conditions. The same geometry of the ACI
including the ancillary used in Raffa et al. (2019) and Chapter 5 is considered herein and
is briefly summarized in the following. An idealized bone block with the same properties as
in Raffa et al. (2019) is used in order to calibrate the model and compare results. The bone
block is modeled as a cylinder with a radius of 50 mm and a height of 40 mm. A hemi-spherical
cavity is cut into the cylinder with a radius Rb based on the fixed radius of the implant Ri and
the chosen interference fit IF , i.e., Rb = Ri − IF/2. The edge of the cavity has a fillet radius of
2 mm.

As in Section 7.2, the bodies are meshed with surface-enriched hexahedral elements according
to the parameters given in Table 7.1. The finite element mesh is shown in Figure 7.11. A
refinement analysis of the mesh and the load step size is performed to ascertain mesh convergence
(see Appendix A) for the reference case (see Section 7.3.1.1).

(b) (c)

Figure 7.11 – (a) Finite element mesh of the ACI, bone block, and ancillary (Immel et al.,
2021b). (b) Bottom view of the ACI implant. (c) Top view of the bone block. A very fine mesh
is used around the rim of the cavity, as the contact forces are expected to vary most strongly
there. Adopted from Immel et al. (2021c).
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body nel type of shape fcts. ngp
implant bulk 338 linear Lagrange 2× 2× 2
ancillary 250 linear Lagrange 2× 2× 2
bone bulk 20000 linear Lagrange 2× 2× 2

outer implant surface 169 quadratic NURBS 5× 5
upper bone surface 4000 quadratic NURBS 5× 5

Table 7.1 – ACI debonding: Number of finite elements nel, type of shape functions and num-
ber of Gauss points per element ngp for the two bodies and their contact surfaces. Adopted
from Immel et al. (2021c).

7.3.1.1 Model Parameters

The ancillary and the ACI are assumed to be made of stainless steel (Ea = 211 GPa,
νa = 0.3) and titanium alloy (Ti-Al6-V4; Ei = 113 GPa, νi = 0.3), respectively. The bone block
is assumed to consist only of trabecular bone tissue (νb = 0.3 (Yew et al., 2006)), without an
outer cortical layer. This is in accordance with the study presented in Chapter 5 and findings
in the literature (Anderson et al., 2005; Phillips et al., 2007; Watson et al., 2017), that indicate
that the reaming of the hip performed during surgery may completely remove cortical bone
tissue from the contact area. For all bodies, the Neo-Hookean material model of Eq. (3.19) is
used. Furthermore, all materials are assumed to be homogeneous and isotropic and both contact
surfaces are assumed to be perfectly smooth.

In this work, the effect of various biomechanical properties of the bone-implant system on
the ACI long-term stability is assessed. Therefore, different degrees of osseointegration from
0 − 100% are considered. Furthermore, the influence of varying bone stiffness Etb = 0.1 − 0.6
GPa, interference fit IF = 0 − 2.0 mm, and friction coefficient µb = 0 − 0.7 on the long-term
stability are analyzed. The corresponding friction coefficient µub = 0.15 − 1 is taken from
Table 4 from Immel et al. (2020) and is roughly 1.5 times higher than µb. Based on previous
studies (Raffa et al., 2019; Immel et al., 2021a) the parameter set of E∗tb = 0.2 GPa, IF ∗ = 1 mm,
and µ∗b = 0.3 is denoted as the reference case and marked with ∗. The parameters of the state
function (6.5) are chosen to be as = 128 µm and bs = 1.84, which does not affect the maximum
of the removal force/torque. Due to the lack of experimental data, the values of as and bs are
chosen large enough so that the debonding process is visible and a removal force/torque can be
identified (see Figure 7.14). The coefficients of the cohesive zone model t0 = t∗0 = 1.8 MPa and
gb = g0 = 3as are calibrated based on the results of Rønold and Ellingsen (2002) for polished
CSI, as was done in Section 7.2.

7.3.1.2 Boundary and Loading Conditions and Solver Settings

The bone block is fixed in all directions at the bottom surface. As before, only quasi-static
conditions are considered. The simulations of implant insertion and subsequent removal are
comprised of three stages (see Fig. 7.12):

1. insertion: the implant is inserted vertically into the cavity, by pushing the upper surface
of the ancillary in negative z-direction, until the reaction force at the top of the ancillary
reaches F0 = −2500 N, similar to values found in the literature (Sotto-Maior et al., 2010;
Souffrant et al., 2012; Le Cann et al., 2014) and to what was done in previous studies (Raffa
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et al., 2019; Immel et al., 2021a). The downward displacement attained at the top of the
ancillary for F0 = −2500 N is denoted d0. It depends on the considered parameters Etb, IF ,
and µb and thus changes for each case, i.e. d0 = d0(µb, IF , Etb, F0).

2. osseointegration: the contact surfaces are assumed to be homogeneously osseointegrated
with an initial degree of osseointegration varying from φ0 ∈ [0, 0.25, 0.5, 0.75, 1].

3. removal: the implant is removed either
— mixed mode I: by displacing the upper surface of the ancillary in positive z-direction

by -d0,
— mixed mode II: by displacing the center of the upper surface of the ancillary in positive

x-direction by d0,
— mode III: by rotating the upper surface of the ancillary around its z-axis by θ = 10◦.

The three simulation stages are shown in Figure 7.12(a) and the different removal cases are
illustrated in Figure 7.12(b). The example of mode I debonding is shown, with the final output
of the load-displacement curve inside the red square (cf. Fig. 7.13 (a)).

The stability of the configuration is then assessed by determining the maximum pull-out
force in normal direction, Fmax

z , the maximum pull-out force in tangential direction, Fmax
x , or

the maximum debonding torque Mmax
z .

Contact is computed with a penalty regularization, and the corresponding penalty parameter
is chosen based on the Young’s modulus of trabecular bone as εn = εt = Etb/L0, with L0 = RI =
0.0255 m corresponding to the radius of the implant. The number of load steps for the different
simulation stages are: l1 = l3.modeI = l3.modeIII = 100 and l3.modeII = 1000 All simulations
were performed with an in-house, MATLAB-based solver (R2019b, The MathWorks, Natick,
MA, USA) with MATLAB’s own parallelization. Computations were performed on the RWTH
Compute Cluster (Intel HNS2600BPB, Platinum 8160) with 20 cores. The average computing
time for the different contact laws and loading cases is listed in Table B.3. The computing
time is sensitive to the parameter combination. Parameter combinations that produce high
pull-out forces/debonding torque have a longer computing time. The difference in computing
time between the debonding tests and the contact models is discussed in Section 7.4.3.

=

2. osseointegration φ = 0→ φ0

1. insertion 3. removal

uz

Fz Fmax
z

(a) Illustration of the three simulation stages on the example
of mode I debonding. The final output of the reaction force
and maximum pull-out force is shown in red.

mixed mode I

mixed mode II

mode III

xz

(b) Illustration of the three different
removal tests.

Figure 7.12 – ACI debonding: (a) Illustration of the three simulation stages and (b) the three
removal tests. Adopted from Immel et al. (2021c).
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7.3.2 Debonding without Adhesion in Normal Direction

First, the results of the removal tests, in terms of load-displacement curves and pull-out
force/ debonding torque, obtained with the MC are presented. The results with the EMC follow
in Section 7.3.3, and a comparison is given in Section 7.4.1.

7.3.2.1 Mixed Mode I: Normal Pull-Out Test

Figure 7.13 (a) shows the normal reaction force F ∗z for the reference case, which increases
and reaches a peak at a displacement of 0.25–0.32 mm and then slowly decreases to zero. This
maximum coincides with the start of the decrease of the average degree of osseointegration of the
bone-implant interface φ̄ (see Figure 7.13, (b)). At a displacement of 1.07 mm, the reaction force
becomes independent from φ0. At this point, the bone-implant interface is completely debonded
(φ̄ = 0) and only pure Coulomb’s friction is taking place until the contact at the bone-implant
interface is lost completely at a displacement of about 4.25 mm. In this test, osseointegration
only affects the magnitude of the peak, while the overall slope of the load-displacement curve
remains unchanged when increasing the initial degree of osseointegration. The location of the
peak does not change significantly with increasing φ0.
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Figure 7.13 – Normal debonding without adhesion for the reference case: (a) Variation of
the normal force F ∗z a function of the initial degree of osseointegration φ0. The maximum pull-
out force Fmax∗

z is marked with ∗. (b) Average degree of osseointegration of the bone-implant
interface φ̄ for an initial degree of osseointegration φ0 = 1. Adopted from Immel et al. (2021c).

Due to the lack of experimental data for this work, the values of a∗s = 128 µm and b∗s = 1.84
are chosen large enough so that the debonding process is visible and a removal force/torque can
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be identified. The effect of changing the value of as and bs on F ∗z (φ0 = 1) is shown in Figure 7.14.
Naturally, both parameters have no effect on the mechanical behavior before debonding and on
the maximum pull-out force. Decreasing or increasing as and bs decreases or increases the
amount of deformation that is necessary for the interface to fully debond (about 0.7, 0.75, 1.1,
1.75, 1.9 mm, respectively, see Fig. 7.14). After debonding, only pure Coulomb’s friction takes
place until the contact between bone and implant is lost completely (after a displacement of
about 4.25 mm).
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Figure 7.14 – Normal debonding without adhesion: Variation of the normal force F ∗z for φ0 = 1
as a function of the MC parameters as and bs. Adopted from Immel et al. (2021c).

Figure 7.15(a)–(c) shows the maximum normal pull-out force Fmax
z as a function of the

interference fit IF , trabecular bone stiffness Etb, friction coefficient µb, for different values of
the initial degree of osseointegration φ0. The results obtained for Fmax

z with φ0 = 0 are identical
to the results from Raffa et al. (2019), which constitutes a validation of the model. First, the
pull-out force increases as a function of IF,Etb, µb, then reaches a peak, and eventually decreases.
The maximum value of the pull-out force is obtained for around IF = 1.4 mm, Etb = 0.4 GPa,
and µb = 0.6. For µb ≤ 0.15 the pull-out force is zero, for all degrees of osseointegration.
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Figure 7.15 – Normal debonding without adhesion: Variation of the maximum normal pull-out
force Fmax

z as a function of the initial degree of osseointegration φ0 and (b) the interference fit
IF , (c) the trabecular Young’s modulus Etb, and (d) the friction coefficient µb. The reference
case is marked with ∗. Adopted from Immel et al. (2021c).
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7.3.2.2 Mixed Mode II: Tangential Pull-out Test

The tangential reaction force F ∗x for the reference case increases and reaches a peak at a
displacement of about 75 µm and then slowly decreases to zero (see Figure 7.16 (a)). The
average degree of osseointegration of the bone-implant interface φ̄ starts to decrease already
beyond 34 µm (Figure 7.16 (b)). At a displacement of about 0.3 mm, the reaction force becomes
independent from φ0. Similarly to the normal pull-out test, increased osseointegration only
affects the magnitude of the tangential pull-out force, while the location of the peaks and the
initial slope of the curves for different degrees of osseointegration are very similar.
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Figure 7.16 – Tangential debonding without adhesion for the reference case: (a) Variation of
the tangential force F ∗x as a function of the initial degree of osseointegration φ0. The maximum
pull-out force Fmax∗

x is marked with ∗. (b) Average degree of osseointegration of the bone-
implant interface φ̄ for an initial degree of osseointegration φ0 = 1. Adopted from Immel et al.
(2021c).

Figure 7.17(a)–(c) shows the maximum tangential pull-out force Fmax
x as a function of the

interference fit IF , trabecular bone stiffness Etb, friction coefficient µb, for different values of the
initial degree of osseointegration φ0. First, the pull-out force increases as a function of IF,Etb
and µb, then reaches a peak, and eventually decreases. The maximum value of the pull-out force
is obtained for around IF = 1.4 mm, Etb = 0.4 GPa, and µb = 0.6 – the same values as for the
normal pull-out test. For µb ≤ 0.15 the pull-out force is zero for all degrees of osseointegration.
Tangential pull-out forces are roughly one magnitude lower than the corresponding normal
pull-out force, which agrees with observations from clinical practice. During surgery, after the
insertion of the ACI, surgeons often attempt to lever out an acetabular cup to test the seating
of the ACI. That is, the surgeon applies a tangential force, such as is considered here, instead
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of a normal force since normal pull-out would require too much force.
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Figure 7.17 – Tangential debonding without adhesion: Variation of the maximum tangential
pull-out force Fmax

x as a function of the initial degree of osseointegration φ0 and (a) the inter-
ference fit IF , (b) the trabecular Young’s modulus Etb, and (c) the friction coefficient µb. The
reference case is marked with ∗. Adopted from Immel et al. (2021c).

7.3.2.3 Mode III: Torsional Debonding Test

Figure 7.19 (a) shows the debonding torque M∗z as a function of the rotation angle for
different values of φ0 and the reference case. The torque increases, reaches a peak at an angle
of about 3◦ and then decreases to reach a constant torque of 47 Nm at about 4.5◦ due to the
present compressive normal force. The degree of osseointegration starts to decrease at an angle
of about 2.6◦ and becomes zero at about 4.5◦ (see Figure 7.19 (b)). As for the normal and
the tangential pull-out cases, only the magnitude of the peak of the load-displacement curve is
affected when increasing the degree of osseointegration φ0.
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Figure 7.18 – Torsional debonding without adhesion: Variation of the maximum debonding
torqueMmax

z as a function of the initial degree of osseointegration φ0 and (a) the interference fit
IF , (b) the trabecular Young’s modulus Etb, and (c) the friction coefficient µb. The reference
case is marked with ∗. Adopted from Immel et al. (2021c).

Figures 7.18 (a)–(c) show the variation of the maximum debonding torqueMmax
z as a function

of the parameters IF,Etb, µb, and φ0. First, the torque increases with increasing parameter
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IF,Etb, µb, reaches a peak, and then decreases. The maximum values of the torque are obtained
around IF = 1.4 mm, Etb = 0.4 GPa, and µb = 0.6, which correspond to the same parameters
as for the pull-out tests. For the interference fit IF , a larger plateau for IF = 1.0 − 1.5 mm as
compared to the pull-out tests is obtained. The maximum torque obtained for φ0 = 1 is 55 Nm,
68 Nm, and 65 Nm, respectively.
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Figure 7.19 – Torsional debonding without adhesion for the reference case: (a) Variation of
the debonding torque M∗z a function of the initial degree of osseointegration φ0. The maximum
debonding torque Mmax∗

z is marked with ∗. (b) Average degree of osseointegration of the bone-
implant interface φ̄ for an initial degree of osseointegration φ0 = 1. Adopted from Immel et al.
(2021c).

7.3.3 Debonding with Adhesion in Normal Direction and Adhesive Friction

The results corresponding to the load-displacement curves and pull-out force/ debonding
torque obtained with the three removal tests and with the EMC are presented below. In addition
to the modified Coulomb’s friction law (6.3), the EMC includes a CZM in normal direction (7.1)
and adhesive friction (7.2).

7.3.3.1 Mixed Mode I: Normal Pull-out Test

Figure 7.20 shows the variation of the normal reaction force F ∗z as a function of the tangential
displacement and the initial degree of osseointegration φ0 for the reference case. The normal
reaction force increases, reaches a peak at a displacement of about 0.25 mm and then decreases.
The effect of osseointegration and adhesive friction on the load-displacement curve is more
pronounced than for the MC. This can be seen as the magnitude increase of the pull-out forces
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is higher and the peaks are wider (compare Figures 7.13 (a) and 7.20). In contrast to the MC,
here, F ∗z depends on φ0 throughout the whole debonding process, which is due to the adhesion
in normal direction. However, the initial slope of the normal reaction force curves does not
change significantly when increasing φ0. Compared to the results obtained when considering
only tangential debonding (see Fig. 7.13 (a)), some small oscillations after the peak are visible.
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Figure 7.20 – Normal debonding with adhesive friction: Variation of the normal force F ∗z as
a function of the initial degree of osseointegration φ0 for the reference case. The maximum
pull-out force Fmax∗

z is marked with ∗. Adopted from Immel et al. (2021c).

Figures 7.21 (a)–(c) show the maximum normal pull-out force Fmax
z as a function of the

parameters IF,Etb, µb, and φ0. The slopes of the different curves of pull-out forces are similar
to the ones obtained with the MC (cf. Section 7.3.2.1), with the peak values obtained for the
same values of IF,Etb, and µ. For µb ≤ 0.15 the pull-out force remains equal to zero, regardless
of the degree of osseointegration.
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Figure 7.21 – Normal debonding with adhesive friction: Variation of the maximum normal pull-
out force Fmax

z as a function of the initial degree of osseointegration φ0 and (a) the interference
fit IF , (b) the trabecular Young’s modulus Etb, and (c) the friction coefficient µb. The reference
case is marked with ∗. Adopted from Immel et al. (2021c).

7.3.3.2 Mixed Mode II: Tangential Pull-Out Test

Figure 7.22 shows the tangential reaction force F ∗x as a function of the tangential displacement
for different values of φ0. The effect of osseointegration and adhesive friction on the load-
displacement curve is more pronounced with the EMC than with the MC. As for the normal
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pull-out test, F ∗x remains dependent on φ0 throughout the whole debonding process. The peak
in tangential reaction force is reached at a displacement of about 0.08 mm. Furthermore, the
increase in magnitude is considerably larger than for the MC, while remaining roughly one
magnitude lower than the results for the normal pull-out case with adhesive friction. Here,
larger oscillations are visible, which are discussed in Section 7.4.3.
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Figure 7.22 – Tangential debonding with adhesive friction: Variation of the tangential force
F ∗x a function of the initial degree of osseointegration φ0 for the reference case. The maximum
pull-out force Fmax∗

x is marked with ∗. Adopted from Immel et al. (2021c).

Figures 7.23 (a)–(c) show the variation of the maximum tangential pull-out force Fmax
x as a

function of the parameters IF,Etb, µb, and φ0. While the peaks in tangential pull-out force are
obtained for the same parameters as before, the slope of Fmax

x as a function of all parameters
(IF,Etb, µb) depends on the initiak degree of osseointegration. As before, for µb ≤ 0.15 the
tangential pull-out force remains zero independent of the degree of osseointegration.
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Figure 7.23 – Tangential debonding with adhesive friction: Variation of the maximum tan-
gential pull-out force Fmax

x as a function of the initial degree of osseointegration φ0 and (a) the
interference fit IF , (b) the trabecular Young’s modulus Etb, and (c) the friction coefficient µb.
The reference case is marked with ∗. Adopted from Immel et al. (2021c).

7.3.3.3 Mode III: Torsional Debonding Test

Figure 7.24 shows the variation of the debonding torqueM∗z as a function of the rotation angle
and the initial degree of osseointegration φ0 for the reference case. In contrast to the results
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obtained with the MC, the peak in torque is obtained at a rotation angle of approximately
θ = 3.5◦. Then the torque decreases to a constant value due to the present compressive normal
force. When considering adhesive friction, the torque after full debonding does not reach the
same constant values for each φ0 due the the shift in the tangential sliding threshold (7.2), that
depends on φ0.
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Figure 7.24 – Torsional debonding with adhesive friction: Variation of the debonding torque
M∗z a function of the initial degree of osseointegration φ0 for the reference case. The maximal
torque Mmax∗

z marked with ∗. Adopted from Immel et al. (2021c).

Figures 7.25 (a)–(c) show the variation of the maximum debonding torqueMmax
z as a function

of the parameters IF,Etb, µb, for different values of φ0. In contrast to the pull-out test, the
removal torque curves are very similar to the corresponding results obtained with the modified
Coulomb’s law. Peaks in torque are obtained for the same values of IF,Etb, µb as for the pull-out
tests and the modified Coulomb’s law.
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Figure 7.25 – Torsional debonding with adhesive friction: Variation of the maximal debonding
torqueMmax

z as a function of the initial degree of osseointegration φ0 and (a) the interference fit
IF , (b) the trabecular Young’s modulus Etb, and (c) the friction coefficient µb. The reference
case is marked with ∗. Adopted from Immel et al. (2021c).
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7.4 Discussion

This work studies the contact and debonding behavior between implant and bone using a
new adhesive friction model that accounts for partial osseointegration. The new extension to
adhesive friction is first demonstrated on a simple model of an osseointegrated implant, following
previous studies (Rønold and Ellingsen, 2002; Rønold et al., 2003; Fraulob et al., 2020a,b,c;
Immel et al., 2020). Then, both the original and the extended debonding model, are applied
to the debonding of a partially osseointegrated acetabular cup implant, which corresponds to
a situation of clinical interest. The effect of increasing the osseointegration level on implant
stability is examined by analyzing the behavior of the maximum removal force/torque, for three
patient- and implant-dependent parameters: IF,Etb, and µb. Overall, both debonding models
provide reasonable qualitative estimates of long-term stability with higher estimates of implant
stability for the extension to adhesive friction.

7.4.1 Comparison of the Modified and Extended Coulomb’s Law with
Respect to their Biomechanical Relevance

Figure 7.26 shows the ratio between the maximum removal forces/torque obtained for per-
fect initial osseointegration (φ0 = 1) and no initial osseointegration (φ0 = 0) (Fmax(φ0 =
1)/Fmax(φ0 = 0)) for the studied parameters and removal tests when considering both pro-
posed models. Table 7.2 shows the corresponding average percentage increase in the maximum
pull-out forces/torque. The relative variation of the pull-out force/debonding torque obtained
by considering the modified Coulomb’s law is qualitatively similar when varying IF and Etb,
with values ranging between 38 and 62%, with a slightly higher increase of the reaction force
for lower values of IF and Etb. Concerning the friction coefficient µb, the modified Coulomb’s
law shows the largest effect on the pull-out force/torque for a value of µb = 0.2. This effect
then decreases when increasing the friction coefficient. The increase of the maximum pull-out
force is much higher for the EMC compared to the MC with values ranging between 46–172%.
In addition, osseointegration modeled with the EMC leads to a larger increase of the maximum
removal force/torque for low parameter values, which corresponds to low initial stability but
high contact area.

While the relative variation of Fmax
x , Fmax

z ,Mmax
z produced by the two debonding models

due to changes of µb are very similar, the slopes of the curves in Figure 7.26 for IF and Etb
show considerable differences between the two contact models. The MC only has a small effect
on the maximum torque for all observed parameters with a total increase in torque of 7–15%.
The present extension produces a higher increase in the maximum torque of 21–35%, due to the
shift in the tangential traction Eq. (7.2). Overall, the effect on the maximum torque remains
considerably lower compared to the pull-out tests, as no contact is lost during the torsion test.
Table 3 lists the average percentage increase in the maximum pull-out forces Fmax

z , Fmax
x and

debonding torqueMmax
z from 0 to 100% osseointegration for interference fit IF , Young’s modulus

Etb, and friction coefficient µb for both contact laws.
Both presented contact models produce reasonable estimates for the long-term stability of

the ACI, when compared to existing numerical results for the initial stability (Raffa et al., 2019)
(see Figures 7.13 and 7.20, φ0 = 0). Overall, the maximum pull-out forces Fmax

x , Fmax
z and the

debonding torqueMmax
z all increase nearly linearly with increasing degree of osseointegration φ0
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for every chosen parameter IF, µb, Etb. In this work, osseointegration is shown to significantly
increase implant stability (see Figure 7.26). However, the dependence of the maximum pull-
out force/debonding torque on the different parameter sets remains essentially the same as for
primary stability.
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Figure 7.26 – Ratio between the maximum removal forces/torque obtained for perfect initial
osseointegration (φ0 = 1) and no initial osseointegration (φ0 = 0) as a function of (a) the
interference fit IF , (b) the trabecular Young’s modulus Etb, and (c) the friction coefficient µb
for the different removal tests. Shown are results for the modified Coulomb’s law (MC) and
the new extension (EMC). The reference case is marked with ∗. Some results for IF = 0
mm, Etb = 0, and µb = 0 − 0.15 are omitted, as there is no measurable increase in removal
force/debonding torque. Adopted from Immel et al. (2021c).

force/torque Fmax
z Fmax

x Mmax
z

model MC EMC MC EMC MC EMC
interference fit IF 42% 81% 50% 116% 12% 26%

Young’s modulus Etb 48% 74% 50% 106% 15% 24%
friction coefficient µb 41% 73% 41% 108% 12% 21%

Table 7.2 – Average percentage increase in the maximum pull-out forces Fmax
z , Fmax

x and
debonding torqueMmax

z from 0 to 100% osseointegration for interference fit IF , Young’s modulus
Etb, and friction coefficient µb for the modified Coulomb’s law (MC) and its new extension
(EMC). Adopted from Immel et al. (2021c).

The two presented contact models indicate that poor initial stability will lead to poor or
suboptimal long-term stability, which emphasizes the crucial role of primary stability for the
implant outcome. This finding is in agreement with the literature, where initial stability is
determined as the governing factor of long-term stability (Pilliar et al., 1986; Engh et al., 1992,
2004; Rittel et al., 2018), as the mechanical conditions at the bone-implant interface have a
significant effect on bone growth and remodeling. Furthermore, the present extension has a
higher effect on poor initial stability, stressing the importance of adhesion for low initial stability.

Both presented debonding models also allow the assessment of how loading that does not
result in complete debonding affects the remaining osseointegration state φ of the bone-implant
interface (see e.g. Figure 7.13 (b)). Future studies that couple the EMC with cyclic loading
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and bone growth and remodeling could e.g. provide answers on how daily loading affects the
bonding state of the interface during and after healing.

7.4.2 Comparison with Similar Studies

Since most numerical studies that model osseointegrated interfaces assume perfectly bonded
surfaces and thus, do not simulate the actual debonding of the interface, only few comparisons
with existing work can be made. One comparable work is the study of Rittel et al. (2018),
where the influence of partial osseointegration on dental implant stability and cohesive failure
was studied. There, a tie constraint was applied to parts of the bone-implant interface through-
out the simulation, such that bone-implant debonding occurred as cohesive failure in the bone
around the bone-implant interface. Partial osseointegration was modeled by defining a relative
osseointegrated area with a random distribution and restricting non-integrated areas to frictional
contact. One key finding of the study of Rittel et al. (2018) was that none of their removal tests
was able to distinguish osseointegration above 20% and that the torque test was more accurate
than a pull-out test in determining the degree of osseointegration. Based on these findings, it
was concluded that osseointegration of only 20% of the bone-implant interface provides sufficient
long-term stability. In the present study, opposite findings are obtained. Here, all considered
debonding tests show consistent increase in stability for increasing initial degree of osseointe-
gration. Furthermore, osseointegration showed the least effect on the debonding torque and the
highest for mode II debonding. The difference between the two studies might stem from the
difference between the cohesive failure model of Rittel et al. (2018) and the adhesive failure
models presented here, and/or the difference in geometry and contact conditions.

Further studies and especially experimental testing, as proposed in Section 7.2, are necessary
in order to calibrate and validate the proposed contact models.

7.4.3 Numerical Stability

Mesh convergence was investigated for the reference case and the modified Coulomb’s friction
law (see Appendix B.3). The load-displacement curves obtained when considering adhesive
friction (see Figures 7.20 and 7.22 (a)) show oscillations in the reaction force after the peak
and require an increased number of Newton-Raphson iterations and thus, increased computing
(see Appendix A). In the cases of normal and tangential debonding, the added adhesion in
normal direction results in alternating sticking and sliding (so called stick-slip motion), producing
oscillations in the results. The quasi-static assumption used in this work is not suitable in those
cases and a dynamic simulation should be performed instead to account for the inertia in the
system.

Due to the lack of experimental data and comparable numerical results, the a priori as-
sessment of the choice of mesh, boundary conditions and relevance of inertia, remains difficult
and thus the results can only provide a qualitative statement of the relevance of the analyzed
parameters on implant stability.

7.4.4 Perspectives and Guidelines for Future Work

In the following, perspectives for future extensions and applications of the proposed bone
and contact models are discussed. Furthermore, we state guidelines for future experimental
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testing, in order to obtain relevant data to calibrate and validate the proposed models.

7.4.4.1 Modeling Perspectives

Bone Modeling

This work uses idealized bone geometries. This was done in order to use results from Raffa
et al. (2019) as calibration for cases with φ0 = 0. Further, our work focuses on the contact
behavior of the osseointegrated bone-implant interface. The contact geometry and contact
conditions of the hemispherical cavity are very similar to a generic pelvis. While the simplified
bone geometry is a justified simplification in this work, an analysis of e.g. different pelvis shapes
and defects on the contact behavior of the bone-implant interface would be of clinical relevance.

The bone block was modeled with trabecular bone without a cortical layer and the bone was
rigidly fixed at the entire bottom surface. The absence of cortical bone in the contact area is in
accordance with a previous study (Immel et al., 2021a) and findings in the literature (Anderson
et al., 2005; Phillips et al., 2007; Watson et al., 2017), that indicate that the reaming performed
during surgery may completely remove cortical bone tissue from the contact area. Due to the
simplified setup, the influence of muscle tissue and ligaments on the deformation behavior and
load response was neglected as well, which is in agreement with what is commonly done in
the literature (Hao et al., 2011; Clarke et al., 2013). However, it has been shown that muscles
and ligaments have to be taken into account when analyzing the stress distribution inside the
acetabulum (Shirazi-Adl et al., 1993), which is beyond the scope of the present study. Future
studies should consider more realistic and physiological geometries and boundary conditions to
improve the accuracy of the numerical results and provide more reliable estimations of implant
stability.

No actual bone ingrowth or bone remodeling was modeled and homogeneous osseointegration
over the whole bone-implant interface was assumed. In reality, only certain parts of the bone-
implant interface are osseointegrated depending on the contact conditions, such as contact stress,
micromotion, and initial gap. In addition, initial gaps after surgery might be filled with bone
tissue during the healing phase and thus increase the contact area and bonding strength over
time. In future works, the presented debonding models should be coupled with suitable osseoin-
tegration models and bone remodeling algorithms (Caouette et al., 2013; Mukherjee and Gupta,
2016; Chanda et al., 2020; Martin et al., 2020), to achieve a more reliable assessment of implant
long-term stability. These models should account for pressure- and micromotion-depended bone
apposition and resorption, as well as changes in the contact gap and the maturation of new bone
tissue, e.g. by changing the bone’s elastic properties with respect to healing time. Furthermore,
due to bone growth and the change in elastic properties of the bone during osseointegration
and remodeling, the stress inside the bone changes during the healing process and might be sig-
nificantly different after healing compared to the state directly after surgery. As the change in
stress can significantly affect secondary stability, remodeling related effects should be considered
in future works.

Contact Modeling

This work neglects the roughness of the implant surface and of the reamed bone cavity. While
a simple modeling of rough surfaces by adjusting µb, µub, t0 is possible, the explicit modeling of
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rough surfaces should be considered in future works, as surface roughness affects initial stability
and osseointegration and thus also long-term stability. Furthermore, due to the rise of additive
manufacturing in implantology, complex implant surface topologies become more and more
relevant and should be studied.

The CZM in Eq. (7.1) is modeled with a sharp drop in tn at gn = gb. Future studies should
explore CZM models that depend on φ instead of φ0 and have a smooth decline in tn for gn > gb.

The removal force/debonding torque were chosen as determinants of long-term stability.
The stress distribution could be used as another determinant, as is done in other works (Janssen
et al., 2010; Rourke and Taylor, 2020). However, the stress distribution inside the bone changes
during healing and osseointegration, as the mechanical properties of the bone tissue change when
the new bone tissue mineralizes. This makes comparisons of stress fields of initial stability and
secondary stability scenarios difficult, when this temporal change is not accounted for.

As in previous studies by our group (Raffa et al., 2019; Immel et al., 2020, 2021a), a quasi-
static configuration was considered, and all dynamic aspects were neglected, similarly to what
was done in comparable works (Spears et al., 2001; Le Cann et al., 2014; Raffa et al., 2019).
Note that a previous study focuses on the insertion process of an acetabular cup implant by
considering dynamic modeling (Michel et al., 2017), which is important when modeling the
insertion by hammer impacts. Furthermore, the stick-slip results with the present extended
contact model (see Figures 7.20 and 7.22) indicate that dynamic simulations become necessary
when considering high frictional and adhesive forces.

7.4.4.2 Experimental Perspectives

Model EMC depends on two additional physiological parameters t0, g0 that can be deter-
mined based on some of the few experimental results available in the literature (Rønold and
Ellingsen, 2002). However, to the best of our knowledge, no suitable measurements have been
obtained for osseointegrated acetabular cup implants yet, which is why we calibrated our models
with measurements for coin-shaped implants instead. Future experimental tests of osseointe-
grated implants under mixed mode or mode III debonding under constant tension (as presented
in Section 7.2) can provide important insight on the adhesive behavior of the osseointegrated
interface to calibrate and validate the proposed debonding models.

Last, the strong influence of biological as well as mechanical factors and the bone geome-
try on the long-term stability make validation of the presented numerical models difficult. At
present, experimental studies that provide sufficient information on the behavior and stability
of the partially osseointegrated bone-implant interface, are lacking in the literature (Helgason
et al., 2008). We suggest to perform mixed mode debonding and mode III debonding under
constant tension, as demonstrated in Section 7.2. These results would provide important infor-
mation on the debonding behavior of osseointegrated interfaces and allow to further calibrate
and validate the extension of the modified Coulomb’s law. Further computational studies can-
not reliably provide more insight on the in vivo behavior, as the level of sophistication of the
models is beyond the point of verification with current in vivo, ex vivo, and even some in vitro
measurement techniques (Taylor and Prendergast, 2015). Therefore, it becomes more and more
difficult to reliably assess the performance of numerical models for the bone-implant interface.
If FE models are to be trusted and accepted by clinicians, they need to demonstrate that they
are capable of predicting realistic in vivo behavior. Thus, further development of experimental
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measurement techniques and quantification of relevant biomechanical metrics (e.g., stress-strain
behavior, micromotion, friction, adhesion, debonding under tension) is essential to provide the
data necessary to develop and improve numerical models. However, the development of new and
more accurate experimental machinery and techniques that are able to provide the necessary
data is difficult and time consuming and provides a constant challenge. While experimental and
numerical methods keep improving, a certain acceptance that FE studies may not be represen-
tative of the in vivo conditions yet but are an approximate model, needs to be established.

7.5 Conclusion

This work presents a new extended debonding model for the bone-implant interface, which
can describe the debonding behavior of osseointegrated acetabular cup implants and thus assess
their stability. In addition to the modified Coulomb’s law in Chapter 6, it includes a cohesive
zone model in normal direction and adhesive friction in tangential direction.

The modified Coulomb’s law and its extension show that friction and adhesion increase the
pull-out force/debonding torque of osseointegrated implants, and thus are relevant for long-term
stability. Furthermore it is shown that, while osseointegration increases implant secondary sta-
bility, a sufficient primary stability remains crucial for long-term stability, which is in agreement
with the literature. These findings underline the importance of the development of surgical
decision support systems such as the surgical hammer instrumented with a force sensor to
measure the displacement of an osteotome or implant and determine when full insertion has
taken place (Michel et al., 2016a,b; Dubory et al., 2020; Lomami et al., 2020) or contactless
vibro-acoustic measurement devices that can monitor implant seating (Goossens et al., 2021).
Furthermore, a future detailed study would be able to answer how cyclic loading affects the
bonding state of the interface during and after healing. Last, this work provides directions for
important experimental testing of osseointegrated coin-shaped implants. Mixed mode debond-
ing and mode III debonding under constant tension could provide important information on the
debonding behavior of osseointegrated interfaces and allow for further calibration and valida-
tion of the proposed contact models. Furthermore, osseointegration algorithms based on, e.g.,
the contact state, should be considered instead of pre-defined or homogeneous osseointegration
as has been done in this and the previous chapter. Coupling simulations of initial stability,
subsequent osseointegration and bone remodeling, and long-term stability and debonding can
provide more reliable assessments of implant stability and aid in implant conception and indi-
vidual patient treatment. A simple example of coupling the developed debonding models from
Chapters 6 and 7 with an osseointegration algorithm instead of using pre-defined osseointegra-
tion is presented in the next chapter. There, three simple evolution laws for osseointegration,
based on the primary stability of the implant are introduced and demonstrated on a CSI.

108



Chapter 8

Evolution Laws for Osseointegration
Based on Initial Stability

In the previous chapters, numerical models for the secondary stability of partially osseoin-
tegrated implants with pre-defined osseointegration patterns or homogeneous distribution were
presented. To complete the workflow of the numerical modeling of implant stability and the
implant life cycle presented in this thesis, this chapter provides an outlook on how to model
osseointegration and healing, and how to incorporate it into the workflow of simulating implant
stability. Therefore, three simple evolution laws for osseointegration are outlined. These models
depend on the contact gap and the contact pressure of the BII after insertion, and the healing
time. Thus, the pressure and displacement fields created during the simulation of implant inser-
tion, such as presented in Chapter 5 can be used as input for the modeling of bone apposition
and the creation of osseointegration patterns. This computed osseointegration setting can then
be used instead of the pre-defined patterns presented in Chapter 6 or the homogeneous approach
used in Chapter 7. This procedure provides a more accurate representation of osseointegration
and thus, a more realistic assessment of long–term stability. Furthermore, this allows to have
one streamlined workflow for the whole life cycle of an implant, where all three steps of implant
stability analysis (insertion, osseointegration, debonding) are governed by the same key param-
eters and macroscopic contact phenomena. A summary of existing osseointegration and bone
remodeling algorithms is given in Section 2.3.3.2.

Parts of this chapter are in preparation for publication as Sauer and Immel (2022).

8.1 Simple Evolution Laws for Osseointegration

To model osseointegration over time, the formulation of chemical contact reactions is utilized.
Here, φ̂ = φ̂(t, pc, gn) is defined as the degree of osseointegration during healing 1. Then, φ0
introduced in Chapter 6 becomes equivalent to φ̂ after a certain healing time t and φ̂0 = 0
represents the initial state before healing. To define increasing bonding due to osseointegration,

1. Overall, a unified model where φ ∈ [0, 1] represents both the increasing degree of osseointegration during
healing and the (de)bonding state of the BII after healing and during loading can be established. Then, φ0
corresponds to the initial state before healing (usually φ0 = 0). φ increases and/or decreases during the osseoin-
tegration process (due to bone apposition and bone resorption) and decreases during debonding. In order to
emphasize the difference between modeling the osseointegration and the debonding processes, a different notation
φ̂ for osseointegration is chosen here.
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an evolution law for a chemical contact state (Sauer et al., 2022) is used:

˙̂
φ = ˙̂

φ(pc, gn, φ̂) ∀xc ∈ ∂cBk, (8.1)

e.g. depending on the contact pressure pc(x), the normal contact gap gn(x), and the current
state of osseointegration φ̂(x) of each Gauss-point. The simplest reaction model is the linear
reaction model

˙̂
φ = kr

−→
k
(
1− φ̂

)
, (8.2)

where
−→
k describes a forward reaction (bone apposition) and kr represents the reaction veloc-

ity, providing a simple time-dependent osseointegration and bone remodeling law. kr can be
dependent on e.g., the healing time t but also the contact state gn, pc. Here, for simplicity it is
considered to be kr = const. In order to consider not only bone apposition but also bone resorp-
tion, which is part of the processes of osseointegration and bone remodeling (see Section 2.2.3.2),
the extended linear reaction model is used, where

←−
k describes a backward reaction (bone re-

sorption). The overall reaction rate is then defined as

k =
−→
k −
←−
k , (8.3)

and the evolution law becomes
˙̂
φ = krk

(
1− φ̂

)
, (8.4)

In this work, three simple osseointegration models based on the extended linear model are
introduced.

8.1.1 Model A

First, a simple phenomenological model is derived. Here, for simplicity,

←−
k A = 1−

−→
k A, (8.5)

is assumed. When an uncemented implant has been inserted into the host bone cavity, an initial
gap gn between bone and implant can remain, e.g. as seen in Chapter 5. Therefore, some parts
of the implant can be under pressure, while other areas have no contact at all. Therefore, a
distinction between truly touching contact (gn ≤ 0, denoted "C") and short range reactions
(gn > 0, denoted "SR") has to be made. For touching contact,

−→
k A =

−→
k A
c (pc), with a reaction

rate based on the contact pressure is defined. The reaction rate is designed within the limits
of compressive stress pmin

c and tensile stress pmax
c for osseointegration (Kaneko et al., 2004;

Viceconti et al., 2004). Both can be assumed as constants or to evolve with bone maturation.
In this work, they are assumed to be constant. From pmin

c the reaction rate
−→
k A
c first increases

from 0 to 1, reaches a plateau from popt,1c to popt,2c , and then decreases back to 0 at pmax
c , i.e.

−→
k A
c (pc) =



1 popt,1c < pc < popt,2c ,

3
4 −

1
4sin

(
π

2b1

(
pc

popt,1
c
− b1 − 1

))
pmin
c ≤ pc ≤ popt,1c ,

3
4 −

1
4sin

(
π

2b2

(
pc

popt,2
c
− b2 − 1

))
popt,2c ≤ pc ≤ pmax

c ,

0 pc < pmin
c ∨ pc > pmax

c ,

, (8.6)
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with
b1 = pmin

c − popt,1c
2 popt,1c

, b2 = pmax
c − popt,2c

2 popt,2c
, (8.7)

and
popt,1c = pmin

c + |p
min
c |+ |pmax

c |
4 , popt,2c = pmax

c − |p
min
c |+ |pmax

c |
4 . (8.8)

The overall reaction rate for truly touching contact kAc =
−→
k A
c −
←−
k A
c is then

kAc (pc) =



1 popt,1c < pc < popt,2c ,

1
2 −

1
2sin

(
π

2b1

(
pc

popt,1
c
− b1 − 1

))
pmin
c ≤ pc ≤ popt,1c ,

1
2 −

1
2sin

(
π

2b2

(
pc

popt,2
c
− b2 − 1

))
popt,2c ≤ pc ≤ pmax

c ,

0 pc < pmin
c ∨ pc > pmax

c .

(8.9)

This model corresponds with observations from the literature where excessive stress or pressure
can inhibit bone growth (Sotto-Maior et al., 2010).

The reaction rate for short range contact, namely
−→
k =

−→
k A
SR(gn), is designed within the

limits for the contact gap gn, gopt = 500 µm and glim = 1000 µm, as introduced in Chapter 5.
For gn < gopt the reaction rate is 1. For gn >= gopt the reaction rate decreases until it reaches
0 at gn = glim, i.e.

−→
k A
SR(gn) =


1 gn < gopt,
3
4 −

1
4sin

(
π

2b3

(
gn
gopt
− b3 − 1

))
gopt ≤ gn ≤ glim,

0 gn > glim,

(8.10)

with b3 = glim − gopt
2 gopt

. (8.11)

The gap limit glim defines the maximal gap where contact reactions can occur, and thus os-
seointegration, and gopt is the gap until which full osseointegration (φ̂ = 1) is possible, and
corresponds to observations from clinical trials and experiments (Fernandes et al., 2002; Jasty
et al., 1988; MacKenzie et al., 1994; Schmalzried et al., 1992; Spears et al., 2000; Udomkiat
et al., 2002). The overall reaction rate for short rage contact kASR =

−→
k A
SR −

←−
k A
SR is then

kASR(gn) =


1 gn < gopt,
1
2 −

1
2sin

(
π

2b3

(
gn
gopt
− b3 − 1

))
gopt ≤ gn ≤ glim,

0 gn > glim.

(8.12)

The reaction rates kAc and kASR are shown in Figure 8.1.
The analytical solution of Eq. (8.4) for model A is given by

φ̂A(t) =
−→
k A

(
1− e−krt

)
, (8.13)

and the corresponding numerical solution obtained with the implicit backward Euler method is

φ̂n+1
A = ∆t kr

−→
k A + φ̂nA

1 + ∆t kr
. (8.14)

For model A, the maximal degree of initial osseointegration reduces to φ̂max
A =

−→
k A.
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Figure 8.1 – Illustration of the reaction rates for truly touching contact kAc and short range
contact kASR for model A.

8.1.2 Model B

The second evolution law models the bone apposition reaction (forward) and the bone re-
sorption reaction (backward) explicitly. The forward and backward reaction rates for touching
surfaces

−→
k B =

−→
k B
c and

←−
k B =

←−
k B
c are defined as

−→
k B
c (pc) = 1, (8.15)

←−
k B
c (pc) =


2

3(pmin+pmax)

(
pc − pmin+pmax

2

)2
pmin ≤ pc ≤ pmax,

1 elsewhere.
(8.16)

Here, it is assumed that due to contact, the forward reaction rate
−→
k B
c is always 1. However,

with increasing pressure or tension, the backward reaction rate
←−
k B
c increases. The reaction rates

cancel each other out at the pressure limits pmin and pmax and the overall reaction rate becomes
zero.

For short rage contact, it is assume that the forward reaction rate
−→
k B =

−→
k B
SR decreases

linearly from 1 to zero for an increasing contact gap, while the backward reaction rate for short
range contact

←−
k B =

←−
k B
SR increases quadratically from 0 to 1. The reaction rates cancel each

other out at gn = glim, i.e.
−→
k B
SR(gn) = 1− gn

gopt + glim
,
←−
k B
SR(gn) = goptg2

n
(gopt + glim)g2

lim
. (8.17)

The different reaction rates of model B are shown in Figure 8.2.
The analytical solution of Eq. (8.4) for model B is then given by

φ̂B(t) = 1

1−
←−
k B−→
k B

(
1− e−krkBt

)
, (8.18)

and the numerical solution obtained with the implicit backward Euler method is

φ̂n+1
B = ∆t kr

−→
k B + φ̂nB

1 + ∆t krkB
. (8.19)

Here, the maximal degree of initial osseointegration is φ̂max
B =

−→
k B/kB.
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Figure 8.2 – Illustration of the reaction rates for truly touching contact kBc and short range
contact kBSR for model B.

8.1.3 Model C

An even simpler but continuous model can be derived by modeling truly touching and short-
range contact based on the contact gap alone. The forward reaction is modeled as

−→
k C =

0 if gn < (gopt −∆g) ∨ gc > glim,
−→
k 0
2 ·

[
cos

(
gc−glim
glim−gopt

)]
if (gopt −∆g) ≤ gc ≤ glim.

(8.20)

The backward reaction is modeled as

←−
k C =


←−
k 0 (gc + glim + ∆g)2 gn < (gopt −∆g),
0 (gopt −∆g) ≤ gc ≤ glim,
←−
k 0 (gc − glim)2 gc > glim,

(8.21)

which allows to model actual bone resorption, when kC becomes negative. Here,
−→
k 0 =

←−
k 0 = 1,

for simplicity. The different reaction rates of model C are shown in Figure 8.3. The analytical
solution for Eq. (8.4) for model C is given by

φ̂C(t) = 1

1−
←−
k C−→
k C

+
(
1− e−krkCt

)
, (8.22)

and the numerical solution is given by

φ̂n+1
C = ∆t kr

−→
k C + φnC

∆t krkC + 1 . (8.23)

The maximal degree of osseointegration is given by φmax
C =

−→
k C/kC. An example for the evolution

of φ̂ at a certain point on the BII over time is given in Figure 8.4.
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Figure 8.3 – Illustration of the reaction rate
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Figure 8.4 – Example of the evolution of
osseointegration φ̂ at a certain point on the
BII over healing time t.

8.2 Application to Coin-Shaped Implants

To demonstrate the new osseointegration laws and the complete workflow from initial sta-
bility, over osseointegration, to long-term stability and debonding, the CSI model introduced in
Chapter 6 is used.

8.2.1 Setup

Unless stated otherwise, the same geometry, boundary conditions, material parameters, and
solver parameters as in Section 6.4.1 are used.

To adequately demonstrate the pressure- and contact gap-dependent osseointegration law,
the bone block is modeled with a rough upper surface by modifying the z-coordinate of the
upper bone surface according to

z(x, y) = γ

[
sin
(0.1π

λ
x

)
+ sin

(0.1π
λ

y

)]
, (8.24)

where γ = 500 µm is the peak-to-peak amplitude and λ = 10 µm is the wave period. The
implant surface remains perfectly flat.

The bodies are meshed according to the parameters given in Table 8.1, where ne denotes
the number of elements of the body/surface and ngp denotes the number of Gauss-points per
element. While the bulk is discretized with linear Lagrangian shape functions, the contact
surfaces are discretized with quadratic NURBS (Corbett and Sauer, 2014, 2015). The mesh of
the complete setup and an enlargement of the bone surface profile are shown in Figure 8.5.

The parameters from the evolution laws introduced in Sections 8.1.1-8.1.3 and the parameters
for the EMC from Section 7.1 are listed in Table 8.2 with values chosen based on previous works
and from the literature.

The simulation is divided into three steps:
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body ne type of shape fcts. ngp
implant bulk 800 linear Lagrange 2× 2× 2
bone bulk 5000 linear Lagrange 2× 2× 2

implant contact surface 400 quadratic NURBS 5× 5
bone contact surface 2500 quadratic NURBS 5× 5

Table 8.1 – Parameters of the finite element mesh: Number of elements ne, type of shape
functions and number of Gauss-points per element ngp for the two bodies and their contact
surfaces.

1. insertion: the upper implant surface is pushed downward into the bone block with the
displacement d0;

2. osseointegration: the evolution laws A, B, and C from Section 8.1 are applied for the
healing time t and the degree of osseointegration φ̂ is computed for every Gauss-point;

3. debonding: after the healing time t, the upper surface of the implant is rotated for
10°around its z-axis, until the implant is fully debonded.

Three different healing times are considered: t = 14, 30, 100 days.

(a) (b)

Figure 8.5 – (a) NURBS-enriched FE mesh of the rough bone block and the implant. (b)
Enlargement of the bone surface profile with coloring based on the z−coordinate.

parameter symbol value
compressive stress limit pmin

c -7.89 MPa (2004)
tensile stress limit pmax

c 0.8 MPa (2004)
optimal gap gopt 500 µm (2002; 1988; 1994; 1992; 2000; 2002)
gap limit glim 1000 µm (1988; 1994)
reaction velocity kr 0.05 1/d
unbroken BII friction coeff. µub 0.44 (2020)
broken BII friction coeff. µb 0.3 (1997a; 2020)
sliding threshold as 22 µm (2020)
transition factor bs 0.74 (2020)
adhesive traction t0 1.8 MPa (2021b; 2021c; 2002)
adhesive gap limit g0 22 µm (2021b)
initial displacement d0 6.5 µm (2020)

Table 8.2 – Parameters of the evolution laws for osseointegration and the EMC with corre-
sponding values from the literature.
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8.2.2 Results

Figure 8.6(a) shows the surface profile of the bone block z under the CSI before insertion,
the normal contact gap gn and the contact pressure pc at the BII after insertion, respectively.
The average contact pressure is -5.55 MPa, which is within the pressure limits pmin

c and pmin
c

of the two osseointegration models. Figures 8.6(b)- 8.6(d) show the distribution and degree of
osseointegration for model A, B, and C after a healing time of 14, 30, and 100 days, respectively.

-500 0 500
z [µm]

-5 0 5
gn [µm]

-7.89 -3.95 0
pc [MPa]

(a) Surface profile of the bone block z before insertion, normal gap gn, and contact pressure pc at the
BII after insertion.
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0
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1
φ̂A

(b) Progression and distribution of osseointegration φ̂A at the BII for model A.

t = 14 d t = 30 d t = 100 d
0
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1
φ̂B

(c) Progression and distribution of osseointegration φ̂B at the BII for model B.

t = 14 d t = 30 d t = 100 d
0

0.5

1
φ̂C

(d) Progression and distribution of osseointegration φ̂C at the BII for model C.

Figure 8.6 – Osseointegration of the CSI with respect to the healing time and evolution law.
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While the patterns of osseointegration correspond with the gap/pressure field and do not
change over time, the increase in the degree of osseointegration φ̂ is visible. The whole progres-
sion of the average degree of osseointegration ¯̂

φ for all models over time is shown in Figure 8.7.
The average degree of osseointegration is almost the same for the first two models until t ≈ 18
days. For increasing t the model A predicts a higher average osseointegration than model B,
due to the large plateau in cAc . The least increase in ¯̂

φ is predicted by model C, due to bone
resorption.

Last, the debonding of the osseointegrated implant is simulated by rotating the implant
around its z−axis, as is done in Section 6.4 and 7.2. Figure 8.8 shows the torque curves for
a respective healing time of 14, 30, and 100 days. As expected, only the magnitude of the
maximal torque is affected, while the rest of the torque curve remains independent of φ̂ and t.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

healing time t [days]

os
se
oi
nt
eg
ra
tio

n
¯̂ φ

model A
model B
model C

Figure 8.7 – Average degree of osseointegra-
tion φ̂ over time t for model A, B, and C.
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8.2.3 Discussion and Limitations

This work aims to provide an outlook on (i) how to couple osseointegration laws with simula-
tions of initial and long-term stability and (ii) how simple osseointegration laws can be designed
based on the same mechanical parameters that govern models for primary and secondary sta-
bility. Furthermore, due to the use of a state variable as the representation of osseointegration,
the presented approach is suitable for explicitly modeling the subsequent debonding of the (par-
tially) osseointegrated interface, in contrast to common osseointegration and bone remodeling
algorithms that result in fully bonded surfaces (Andreykiv et al., 2005; Chanda et al., 2020;
Fernandes et al., 2002; Spears et al., 2000; Viceconti et al., 2004). Due to the inclusion of re-
verse reaction rates, bone resorption and bone remodeling can simply be integrated into the
model. Full coupling would then allow to model the effect of applied loads during healing on the
osseointegration of the implant. The average degree of osseointegration predicted by the mod-
els and shown in Figure 8.7 corresponds well to the results of other more complex, numerical
approaches (Caouette et al., 2013; Chanda et al., 2020; Tarala et al., 2013).

Due to the idealized contact conditions and the lack of experimental results to adequately
choose the parameters of the evolution laws, the calculated osseointegration of over 70% after
complete healing (here, t = 100 days) is rather high. In reality, usually only 30-70% of the
implant surface is osseointegrated (Brånemark, 1977; Brånemark et al., 1997; Marin et al.,
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2010). Thus, more experimental results are needed to derive more realistic parameters for the
evolution laws.

Although, a rough surface profile was use to investigate osseointegration under truly touch-
ing and short range contact conditions, no contact gap remained. Therefore, the models should
be applied to rougher surface profiles and different pressure conditions (e.g. tension), to assess
if the models generally overestimate the degree of osseointegration. Especially the behavior for
mainly short range contact, as is the case for, e.g. acetabular cup implants (Jasty et al., 1997;
MacKenzie et al., 1994; Schmalzried et al., 1992; Udomkiat et al., 2002) would be of interest.

The presented evolution laws are simplified significantly and leave room for improvement
and extension. They were created mainly for illustrative purposes and are phenomenological at
best. Some limitations and possible extensions for future work need to be addressed nonetheless,
apart from the limitations introduced by the usage of the models from Chapters 6 and 7 (and
discussed in their respective sections).

First, in the presented example, it is assumed that no change in contact and loading condition
during the healing phase takes place. For a more realistic approach, a full coupling between
mechanical and chemical contact should be established, see, e.g. Sauer et al. (2022). Based
on this coupling, an explicit model of bone apposition and resorption based on, e.g. excessive
micromotion at the BII, could be established, as is done in Caouette et al. (2013); Chanda et al.
(2020); Tarala et al. (2013).

Second, not only the bonding state but also the maturation of bone tissue should be consid-
ered, by e.g., time-dependent change of material parameters such as bone stiffness, as is done
in Andreykiv et al. (2005); Dickinson et al. (2012); Mukherjee and Gupta (2017); Tarala et al.
(2013). Another approach would be to use evolution laws with focus on the biochemical pro-
cesses, as presented by Andreykiv et al. (2005); Chanda et al. (2020); Dickinson et al. (2012);
Mukherjee and Gupta (2017).

Third, these evolution laws do not model actual bone growth and thus no change in geometry
at the BII takes place. However, bone growth changes the geometry (e.g. contact gaps are filled
over time) and mechanical conditions (e.g. change in stress distribution, bone stiffness, and
material symmetry) at the BII, which needs to be accounted for.

Last, instead of using smooth or artificially rough surfaces, this model can also be used
with actual rough or porous implant surfaces, as well as geometries obtained from topology
optimization. Similarly, measurements or geometries obtained from µCT can be used for the
bone block.

8.2.4 Conclusion

Overall it is shown that simple evolution laws based on macroscopic parameters such as the
contact gap and contact pressure can provide reasonable initial estimations of osseointegration
over time and that a simulation workflow and analysis of the implant life cycle, where each step
is based on the same mechanical factors, is possible and easy to establish. While providing room
for improvements and the ability to be coupled with different models, the presented modeling
approach poses an initial step to a holistic approach towards modeling implant behavior inside
the patients body.
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Chapter 9

Conclusion

This chapter concludes this thesis by summarizing the most important aspects of the pre-
sented models of primary and secondary stability, and osseointegration. Furthermore, a per-
spective for future challenges and work is given.

9.1 Summary

The aim of this thesis was to develop adhesive and frictional contact models that can char-
acterize the contact behavior of the bone-implant interface during and after surgery, as well as
after osseointegration. Therefore, critical reviews of the current state of the art of numerical
models for primary and secondary stability, as well as osseointegration and bone remodeling
were given first.

The first project dealt with the determinants of initial stability of an uncemented ACI in
a 3D hemi-pelvis. The effect of variations of the bone stiffness, interfacial friction coefficient,
and diametric interference fit on stability in terms of pull-out force and polar gap was presented
and discussed. The data suggested, that increasing the interference fit and friction coefficient
excessively does not improve stability and a careful choice is more beneficial. Maximal initial
stability can be achieved by optimal combination of the friction coefficient and interference fit
based on the bone stiffness. Furthermore, it was shown that the pull-out force cannot be taken
as the sole quantification of initial stability (as is done in the clinic), as high pull-out forces
coincide with large polar gaps that can compromise long-term stability. This encourages the
development of guiding tools for surgeons to help achieving and quantifying initial stability
better.

To approach long-term stability and debonding of osseointegrated implants, a modified
Coulomb’s friction law was developed. This law utilizes a variable friction function, based on the
current bonding and deformation state of the BII, thus allowing to describe bonded, debond-
ing, and debonded interface behavior. Before debonding, a high friction coefficient is used to
mimic the effects of bonding and adhesion. During deformation and debonding of the BII, the
friction coefficient decreases to allow for complete debonding of the interface. This model poses
a contrast to common approaches that utilize perfectly bonded or fully sliding elements. Case
studies with simple geometries and homogeneous osseointegration can be solved analytically,
while complex contact conditions and inhomogeneous osseointegration require numerical analy-
sis. The model was applied to debonding, partially osseointegrated CSI and proved to be a good
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characterization of the debonding behavior when compared to experimental data. Furthermore,
both the analytical and the numerical model allowed for the estimation of the shear stiffness
and friction coefficient of the BII.

This new contact model was then applied to the debonding of osseointegrated ACI, to deter-
mine the importance of osseointegration on long-term stability, but also the relevance of initial
stability. Three different loading scenarios were considered: normal pull-out, tangential pull-out
and torsion. Stability increased almost linearly for increasing osseointegration for all studied pa-
rameters. The same parameter values of the interference fit, the bone stiffness, and the friction
coefficient as for initial stability produced peak values for pull-out force and torque.

To improve the modified Coulomb’s friction model and to account for adhesion in normal
direction, it was extended by an exponential cohesive zone model. Furthermore, the tangential
contact traction was shifted to allow for adhesive friction for positive contact stress (tension).
The models capabilities were first demonstrated on a CSI and then applied to the debonding of
osseointegrated ACI. While having only small impact on the overall load-displacement behavior
of the system, the addition of normal adhesion lead to a significant increase in predicted pull-out
force and torque, especially for cases with low initial stability, i.e. case with a larger contact
surface. While osseointegration increased stability up to 116% compared to the initial stability,
even perfect osseointegration could not overcome poor initial stability, further stressing the
importance of adequate primary stability and the development of corresponding measurement
and guiding techniques.

The two models for long-term stability presented in this thesis used either pre-defined os-
seointegration patterns or a homogeneous distribution of osseointegration of the contact surface.
To complete the workflow of the numerical modeling of implant stability and the implant life
cycle presented in this thesis, two simple evolution models for osseointegration were introduced
and coupled with simulating initial and long-term stability. The three evolution laws incorporate
bone apposition as well as bone resorption, based on the contact state after insertion in terms
of contact gap and contact pressure. The three laws were then applied to CSI and the result-
ing osseointegration was used as input for debonding tests. Although the presented evolution
laws are very simple, they produce similar results as more complex osseointegration and bone
remodeling laws. As the predicted osseointegration does not result in fully bonded elements, as
is the more common approach in the literature, the predicted osseointegration can be used as a
more accurate input for simulating long-term implant stability and debonding.

Overall, this thesis provides consecutive, numerical models of implant primary stability,
osseointegration, and secondary stability. The presented models provide insight on the behavior
of the bone-implant interface and help in understanding the phenomena of implant debonding.
They can also be used to help develop methods and guidelines for surgeons to support their choice
of implant and surgical technique for a specific patient. Furthermore, they enable a holistic
approach to model the in vivo behavior of bone implants during the surgery, osseointegration,
and cyclic loading after healing. Thus, the suggested models can be used as a tool in implant
conception, design, optimization, and evaluation. Last, the explicit modeling of the adhesive
and macroscopic debonding of the bone-implant interface in normal and tangential direction
poses a novel approach in modeling debonding of the osseointegrated bone-implant interface.
Although specifically designed for this purpose, the (extended) modified Coulomb’s friction law
can also be applied to simulation the debonding of all kinds of imperfectly bonded interfaces.
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9.2 Perspective

The presented formulations can be extended in different aspects apart from the limitations
and extensions already discussed in the respective chapters and above.

9.2.1 Coupled Models

FE models of orthopedic devices can be used to assess if new implant designs (or subtle
changes in design) can lead to significant improvements compared to existing implants and if they
are robust to patient and surgical variability. Furthermore, they can be used to develop decision
support tools for planing orthopedic surgery, such as computer assisted surgery, customized
patient implants and surgical techniques, and quantification of initial stability during surgery,
by providing additional information about the potential risk of failure on a patient-specific basis.
However, no single model will be able to address all relevant factors due to the multi-scale,
multi-time, and multi-body biomechanical problem of artificial joint replacements. Therefore,
the coupling of different models to simulate the complete life cycle of an implant from the
surgery, over osseointegration and bone remodeling, to long-term behavior and stability will
be necessary to make realistic predictions of the performance of new implants and surgical
techniques. In the case of this work, the deformation and stress data from the primary stability
model discussed in Chapter 5 can be used as input for stress- or micromotion-based prediction
of osseointegration and remodeling as demonstrated in Chapter 8. Then, the osseointegration
patterns and conditions provided by these models can in turn be used as input for secondary
stability models, as discussed in Chapters 6 and 7. Models of secondary stability can also
be combined with models that incorporate complex cyclic loading conditions and boundary
conditions that account for, e.g., muscle movement, tendons, and other soft tissues. Due to the
general nature of the models presented in Chapter 6 and 7 they can also be used to characterize
the behavior of other (imperfectly) bonded interfaces that exhibit tangential and normal bonding
and debonding.

9.2.2 Additive Manufacturing and Shape Optimization

With the rise of additive manufacturing in implantology and the improvement of medical
imaging methods, numerical models will need to consider realistic and complex implant and
bone geometries. In the long-term, homogeneous material models will have to give way to
the non-homogeneous, anisotropic bone properties mapped from µCT and other measurement
techniques. Furthermore, a coupling of shape optimization algorithms, which are more and
more used to design implants, with osseointegration and debonding models could improve the
performance and life expectancy of implants as well allow for full customization based on the
patients complete physiological condition.

9.2.3 Experimental Measurement Techniques

Another factor is the amount of limitations and unknowns in the modeling of the BII, due to
the lack of experimental data to populate the numerical models or the need to better understand
the fundamentals of the biomechanics of the BII over time. Compared to other engineering dis-
ciplines like automotive or aerospace engineering, the knowledge of loading conditions acting on
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orthopedic devices, including the interaction of muscles, tendons and soft tissue, is still quite
limited. To the author’s knowledge there still exist no in vivo studies to, e.g., measure the full
stress-strain distribution at the BII of joint implants for different patient and loading scenarios
over time, due to the difficulties in obtaining that data. Further computational studies cannot
reliably provide more insight on in vivo behavior, as the level of sophistication of the models
is beyond the point of verification with current in vivo, ex vivo, and even some in vitro mea-
surement techniques. Especially, contact mechanics require experiments with a wide range of
loading and interface conditions to generate enough data to formulate, populate, and verify new
contact models. Therefore, it becomes more and more difficult to reliably assess the performance
of implants and surgical techniques with numerical models. If FE models are to be trusted and
accepted by clinicians, they need to demonstrate that they are capable of predicting realistic in
vivo behavior. Thus, further development of experimental measurement techniques and quan-
tification of relevant biomechanical metrics (e.g., stress-strain behavior, micromotion, friction,
adhesion, debonding under tension) is essential to provide the data necessary to develop and
improve numerical models. However, the development of new and more accurate experimental
machinery and techniques that are able to provide the necessary data is difficult and time con-
suming and provides a constant challenge. Until then, a certain acceptance that FE studies may
not be representative of the in vivo conditions but an idealized model, needs to be established.
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Résumé substantiel

Les implants osseux permettent le remplacement ou la réparation partiels ou complets de
structures ostéoarticulaires, et constituent actuellement l’approche thérapeutique la plus utilisée
pour soigner les articulations et les os endommagés. Du fait de la hausse continue de l’espérance
de vie, on assiste à une augmentation rapide du nombre de patients atteints d’affections et de
maladies musculosquelettiques telles que les fractures, l’ostéoporose et les métastases osseuses,
qui nécessitent un remplacement partiel ou total des articulations. Certains cas relativement
courants nécessitent le remplacement total de l’articulation, comme c’est le cas lors d’une arthro-
plastie totale de la hanche ou du genou. Bien que ces interventions soient les plus fréquentes
en chirurgie orthopédique, on constate de nombreux cas de descellements aseptiques entraî-
nant souvent des échecs implantaires difficiles à anticiper, car les phénomènes responsables du
remodelage osseux et de l’apposition osseuse sont complexes et restent mal connus.

L’un des facteurs les plus importants pour assurer le succès d’un implant osseux est sa
stabilité mécanique. Un bon contact initial entre l’os et l’implant, une bonne qualité osseuse et
une quantité appropriée de micromouvements à l’interface os-implant sont autant de facteurs
qui garantissent une bonne croissance de l’os néoformé et donc l’intégration de l’implant à
l’intérieur du corps du patient. Une mauvaise stabilité initiale, une mauvaise répartition de
la charge et des micromouvements importants peuvent au contraire entraîner une mauvaise
intégration de l’implant, puis un descellement et un échec chirurgical. Ces situations peuvent
augmenter le frottement au niveau de l’interface os-implant, ce qui peut également entraîner des
échecs implantaires.

On distingue deux types de stabilité implantaire : 1. la stabilité primaire (ou initiale) pen-
dant l’opération chirurgicale, qui est principalement régie par des facteurs mécaniques tels que
des phénomènes d’imbrication et la qualité osseuse du patient, et 2. la stabilité secondaire (ou
à long terme), qui est atteinte plusieurs semaines ou mois après l’opération par la formation
et la maturation de tissu osseux au niveau de l’interface os-implant, un processus appelé os-
téointégration. Alors que l’évolution de la stabilité secondaire de l’implant est régie par des
processus biomécaniques complexes, le comportement mécanique de l’interface os-implant reste
crucial pour le résultat chirurgical. Par conséquent, les modèles présentés dans cette thèse sont
basés sur la biomécanique.

Dans le domaine du génie mécanique et de la mécanique des structures, la modélisation
et la simulation numérique sont des approches déjà bien établies pour concevoir, simuler et
optimiser les procédures, les machines et les procédés mécaniques, biologiques et chimiques.
Cependant, le contact adhésif entre les os et les implants est un problème multi-physique et
multi-échelle complexe, qu’il reste difficile de modéliser finement en prenant en compte tous les
phénomènes pertinents. Il est donc encore difficile de comprendre et de prédire les phénomènes
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9. Résumé

se déroulant lors de l’ensemble du cycle de vie d’un implant. Comme la stabilité de l’implant
implique des phénomènes à différentes échelles spatio-temporelles, la biomécanique de l’implant,
qui comprend la mécanique tissulaire, structurale et du contact ainsi que la biochimie, présente
un certain nombre de défis uniques et absents des applications de modélisation informatique plus
traditionnelles. De plus, en raison de la taille et de la forme des prothèses articulaires usuelles et
de l’importance des phénomènes de remodelage osseux, les données expérimentales concernant
la stabilité à long terme sont rares, ce qui rend la validation des modèles numériques difficile.

L’objectif des modèles numériques en lien avec l’implantologie est de modéliser le remode-
lage osseux et l’ostéointégration, d’acquérir une compréhension fondamentale du comportement
mécanique de l’interface os-implant, d’aider à la conception de nouveaux implants et à leurs
tests précliniques, et de comparer leurs performances avec celle des implants existants. Bien
qu’il existe de nombreuses études numériques concernant ces aspects, la modélisation et la pré-
diction spécifiques au descellement dû à une ostéointégration imparfaite font encore défaut dans
la littérature. L’objectif de ce travail est de proposer plusieurs modélisations complémentaires
du contact adhésif à l’interface os-implant pendant et après l’opération chirurgicale. Les mod-
èles de contact développés prennent en compte le comportement non linéaire du matériau, les
grandes déformations, le frottement adhésif, l’ostéointégration et le décollement de l’interface
os-implant. L’os et l’implant sont modélisés comme des solides déformables. Ces modèles sont
d’abord appliqués à des implants de forme cylindrique pour vérification et validation, puis à une
cupule acétabulaire utilisée dans le cadre des prothèses de hanche pour en simuler la stabilité
primaire et secondaire. Trois approches complémentaires sont proposées.

Dans un premier temps, les déterminants biomécaniques de la stabilité primaire d’une cupule
acétabulaire non-cimentée sont présentés. Pour quantifier la stabilité primaire, l’insertion d’une
cupule acétabulaire dans un hémi-bassin humain et son retrait ultérieur sont simulés. La stabilité
primaire est quantifiée par l’espace restant entre la cavité de la hanche et l’implant après inser-
tion et par la force d’arrachement maximale. L’influence d’un ajustement serré lors de l’insertion
de la cupule, du coefficient de frottement à l’interface et de la rigidité du tissu osseux cortical et
trabéculaire sur la stabilité primaire est discutée. Sur la base de la rigidité osseuse d’un patient,
des combinaisons optimales de l’ajustement serré et du coefficient de frottement peuvent être
identifiées pour assurer une stabilité initiale optimale. Tous les paramètres étudiés influencent
significativement la stabilité primaire de la cupule acétabulaire. Une combinaison optimale de
coefficient de frottement et de l’ajustement serré a été déterminée. La forte corrélation entre
les paramètres susmentionnés nécessite donc une attention particulière de la part des fabricants
d’implants et des chirurgiens afin de maximiser la stabilité primaire de la cupule acétabulaire.
Les résultats numériques sont cohérents avec les études expérimentales et numériques précé-
dentes et aideront les chirurgiens à choisir l’ajustement serré optimal d’une manière spécifique
au patient, en fonction de sa qualité osseuse et de l’implant choisi. Les résultats montrent égale-
ment qu’une différence supérieure à 1,4 mm entre le diamètre de la cavité osseuse et celui de
la cupule ainsi qu’un coefficient de frottement supérieur à 0,6 ne permettent pas d’améliorer
la stabilité primaire de la cupule acétabulaire. Ces résultats peuvent aider à la conception des
implants et au choix des traitements de surface appropriés. De plus, cette étude fournit des
informations détaillées sur l’état de contact local et sur l’influence des paramètres spécifiques
à l’implant et au patient, et constitue donc une étape importante vers la modélisation et la
compréhension de la stabilité implantaire. Cependant, cette première partie ne prend pas en
compte les phénomènes d’adhésion à l’interface os-implant.
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Dans un second temps, un modèle phénoménologique du comportement de contact fric-
tionnel relatif aux implants ostéointégrés est développé. La loi de Coulomb est étendue en
considérant un coefficient de frottement variable modélisant la transition d’un état intact (in-
terface ostéointégrée) à un état décollé. Le coefficient de friction est déterminé sur la base
d’une variable d’état dépendant du glissement total à l’interface os-implant. Alors que l’état
intact correspond à une interface ostéointégrée, donc à la présence de liaisons adhésives et à un
plus grand coefficient de frottement, l’état décollé dénote un comportement en frottement pur
à l’interface avec un coefficient de frottement plus faible. Ainsi, ce modèle peut rendre compte
des forces de cisaillement tangentielles plus élevées observées dans les implants ostéointégrés
par rapport aux implants non-ostéointégrés. Ce modèle est appliqué au décollement en torsion
d’un implant cylindrique et les résultats sont comparés aux données expérimentales ainsi qu’à
un modèle analytique développé précédemment. L’hypothèse d’une transition en douceur d’un
état intact à un état cassé, caractérisée par un coefficient de frottement décroissant pendant le
processus de décollement, permet d’obtenir un bon accord entre les données expérimentales et
les approches analytique et numérique. Bien que le modèle analytique soit relativement simple,
il s’agit d’un moyen efficace de fournir des estimations rapides pour ce type d’expérience. Les
résultats numériques, en revanche, sont plus précis et permettent de modéliser plus finement un
comportement du matériau, une distribution des contraintes et une ostéointégration partielle
plus complexes. Les deux approches permettent d’estimer plusieurs paramètres importants de
l’interface os-implant. Le modèle de frottement proposé permet de comprendre les phénomènes
de décollement à l’interface os-implant.

Dans un troisième temps, la loi de Coulomb modifiée développée précédemment pour le
décollement tangentiel est appliquée pour simuler et estimer les déterminants de la stabilité à
long-terme d’une cupule acétabulaire. De plus, le modèle est complété en considérant l’adhésion
dans la direction normale via l’utilisation d’un modèle de zone cohésive afin de tenir compte du
décollement dans la direction normale et de permettre la prise en compte du frottement adhésif.
Ce modèle de contact est appliqué pour simuler en 3D le descellement d’une cupule acétabulaire
ostéointégrée à travers différents tests d’arrachement. La stabilité de l’implant est quantifiée
par la force et le couple d’arrachement, et les déterminants biomécaniques de la stabilité à long
terme, tels que la stabilité primaire et le degré d’ostéointégration, sont évalués. Les résultats sont
comparés au modèle purement tangentiel pour identifier la pertinence de l’adhérence normale
dans le descellement de la cupule acétabulaire. Tout en n’ayant qu’un faible impact sur le
comportement global charge-déplacement du système, l’ajout d’une adhérence normale conduit
à une augmentation significative de la force d’arrachement et du couple prédits, en particulier
pour les cas ayant une faible stabilité initiale, et donc une plus grande surface de contact. Bien
que le processus d’ostéointégration permette d’augmenter la stabilité d’un implant d’une valeur
pouvant aller jusqu’à 116% de sa stabilité primaire, même une ostéointégration parfaite ne suffit
pas à compenser une mauvaise stabilité primaire. Cela souligne en outre l’importance d’une
bonne stabilité primaire et le développement de techniques de mesure et de guidage adéquates
pour les chirurgiens.

Les modèles présentés jusqu’à présent portaient sur la stabilité initiale et à long terme et
s’appuyaient sur des distributions d’ostéo-intégration prédéfinies. Pour compléter le workflow
de la modélisation numérique de la stabilité des implants présenté dans cette thèse et pour
modéliser le cycle de vie complet de l’implant, l’ostéointégration de l’implant doit également
être modélisée. C’est pourquoi trois modèles simples d’évolution pour l’ostéointégration, basés
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9. Résumé

sur l’état de contact après l’insertion de l’implant, sont introduits.
Les trois lois d’évolution intègrent l’apposition ainsi que la résorption osseuse, en fonction de

l’état de contact après insertion en termes d’intervalles et de pression de contact. Les trois lois
sont ensuite appliquées aux implants cylindriques. Bien que les lois d’évolution présentées soient
très simples, elles produisent des résultats similaires à des lois plus complexes d’ostéointégration
et de remodelage osseux. Comme l’ostéointégration prédite par ces lois n’aboutit pas à des
éléments entièrement collés, ce qui constitue l’approche la plus courante dans la littérature, cette
ostéointégration prédite peut-être utilisée comme entrée plus précise pour simuler la stabilité et
le décollement de l’implant à long terme.

Dans l’ensemble, cette thèse fournit des modèles numériques complémentaires de stabilité pri-
maire, d’ostéointégration et de stabilité secondaire de l’implant. Les modèles présentés donnent
un aperçu du comportement de l’interface os-implant et aident à comprendre les phénomènes mis
en jeu lors du descellement de l’implant. Ils peuvent également être utilisés pour aider à définir
des méthodes et des lignes directrices pour les chirurgiens afin de les appuyer dans leur choix
d’implant et de technique chirurgicale spécifiquement à chaque patient. En outre, ils permettent
une approche holistique pour modéliser le comportement in vivo d’un implant osseux pendant
l’opération chirurgicale, l’ostéointégration et la mise en charge cyclique après cicatrisation et
peuvent donc être utilisés comme outil de conception, d’optimisation et d’évaluation d’implants.
En raison de leur caractère non-spécifique, les modèles présentés dans ce travail peuvent être
appliqués à toutes sortes d’implants osseux ou plus généralement d’interfaces imparfaitement
collées. De plus, les modèles peuvent être couplés à des algorithmes de remodelage ou à des
données de chargement réalistes pour mener à bien des simulations et des pronostics pour tout
le cycle de vie d’un implant, depuis l’opération chirurgicale jusqu’à sa stabilité à long terme sous
chargement cyclique en passant par les phases de remodelage osseux et d’ostéointégration.
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Appendix A

Linearization

The linearization of the internal mechanical contribution w.r.t. the deformation is given by

∆xδΠe
int = vT

e keint∆uek, (A.1)

with

keint =
∫
Bk

NT
k,ασαβNk,β dv +

∫
Bk

BT
cB dv, (A.2)

with the derivatives of the shape functions Nk,α, the tensor components σαβ, and the spatial
elasticity tensor c in the reference configuration, which depend on the chosen material model.
A detailed derivation is given in e.g. Wriggers (2008).

The linearization of the mechanical contact contribution w.r.t. the deformation is given by

∆xδΠe
int = vT

e kec∆uek. (A.3)

When using the classical full-pass approach, kec is given by

kec =
[
kec,kk kec,k`
kec,`k kec,``

]
, k, ` = 1, 2 ∧ k 6= `, (A.4)

A.1 Tangent Matrix for the Modified Coulomb’s Friction Law

For the MCFL, the unified model of Duong and Sauer (2019) (see Section 4.5.2) is used.
During tangential sticking, kec is evaluated for the previous interacting point ξ̂n (¯̀) (see Sec-
tion 4.5.2), i.e.

tck = εgc, gc = ĝn, εn = εt = ε, (A.5)

and thus

kec =

kec,kk kec,k ¯̀

kec,¯̀k kec, ¯̀̀̄

 , k, ¯̀= 1, 2 ∧ k 6= ¯̀. (A.6)
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A. Linearization

The components of kec are the given by

kec,kk =
∫

Γe
k

NT
k

∂tck
∂uek

da +
∫

Γe
k

NT
k tck ⊗ aαkNk,α da

kec,k ¯̀ = −
∫

Γe
k

NT
k

∂tck
∂ue¯̀

da

kec,¯̀k = −
∫

Γe
k

NT
¯̀
∂tck
∂uek

da −
∫

Γe
k

NT
¯̀ tck ⊗ aαkNk,α da

kec, ¯̀̀̄ =
∫

Γe
k

NT
¯̀
∂tck
∂ue¯̀

,

(A.7)

with
∂tck
∂uek

= εNk,
∂tck
∂ue¯̀

= εN¯̀. (A.8)

During tangential sliding, kec has to be evaluated for the current interacting point ξ̂ (ˆ̀) and
the previous interacting point ξ̂n (¯̀), i.e.

tck = εgc, gc = ĝn+1, (A.9)

and thus

kec =

kec,kk kec,k ˆ̀ kec,k ¯̀

kec,ˆ̀k kec, ˆ̀̀̂ kec, ˆ̀̀̄

 , k, ˆ̀, ¯̀= 1, 2 ∧ k 6= `. (A.10)

The components are defined by

kec,kk =
∫

Γe
k

NT
k

∂tck
∂uek

da +
∫

Γe
k

NT
k tck ⊗ aαkNk,α da

kec,k ˆ̀ = −
∫

Γe
k

NT
k

∂tck
∂ueˆ̀

da

kec,k ¯̀ = −
∫

Γe
k

NT
k

∂tck
∂ue¯̀

da

kec,ˆ̀k = −
∫

Γe
k

NT
ˆ̀,αtckM

α
k da −

∫
Γe
k

NT
ˆ̀
∂tck
∂uek

da −
∫

Γe
k

NT
ˆ̀ tck ⊗ aαkNk,α da

kec, ˆ̀̀̂ = −
∫

Γe
k

NT
ˆ̀,αtckM

α
ˆ̀ da −

∫
Γe
k

NT
ˆ̀
∂tck
∂ue¯̀

,

kec, ˆ̀̀̄ = −
∫

Γe
k

NT
ˆ̀,αtckM

α
¯̀ da +

∫
Γe
k

NT
ˆ̀
∂tck
∂ue`

da,

(A.11)

with

∂tck
∂uek

= ε(Nk − aαMα
k ), Mα

` := −cαβ (cβ −mβ) ·N`, (A.12)

∂tck
∂ueˆ̀

= ε(Nˆ̀ + aαMα
ˆ̀), Mα

ˆ̀ := −cαβ
[
(gc − gmax

τ ) ·Nˆ̀,β − cβ ·Nˆ̀− dγβ ·Nˆ̀,γ

]
, (A.13)

∂tck
∂ue¯̀

= εaαMα
¯̀ , Mα

¯̀ := −cαβmβ ·N¯̀, (A.14)
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and

cα := aα − µ sign(gn)ταn, (A.15)

dβα := µ
‖gn‖
‖ĝnτ ‖

(δβα − τβα )ĝnn − µ sign(gn)ταngβ, (A.16)

mα := µ
‖gn‖
‖ĝnτ‖

(
aα − ταβaβ

)
. (A.17)
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Appendix B

Convergence Studies

B.1 Acetabular Cup Implant in Human Hemi-Pelvis

To analyze the convergence behavior of the hemi-pelvis mesh, three different finite ele-
ment meshes were constructed, denoted coarse, medium, and fine with approximately 92,500,
125,000, and 250,000 elements, respectively. In addition, different numbers of load steps ls1 ∈
[100, 200, 400] were investigated. The reference case (E∗tb = 0.2 GPa, E∗cb = 18 GPa, µ∗ = 0.3,
IF ∗ = 1.0 mm) was chosen as the parameter set and the normal pull-out force F ∗z was chosen
as the target value.

Figure B.1 shows the convergence behavior of the different meshes. Computations with
ls1 = 100 did not converge. The estimated exact value of Fmax∗

z (φ = 1) = 181.91 N.
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(a) Normal pull-out force Fmax∗.
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Figure B.1 – Normal pull-out force F ∗z and corresponding computing time with respect to
number of contact elements on the bone block.

The corresponding error of the coarse, medium, and fine mesh for ls1 = 200 is 1.9, 0.6, and
0.2%, respectively. Due to the considerable difference in computing time while having a very low
error, the medium mesh was chosen over the fine mesh. The coarse mesh has a coarse resolution
especially at the contact surface in the bone cavity. Although having a small error for the
reference case, it was assumed that the mesh might be too coarse for parameter combinations
that result in stiffer systems. Therefore, the coarse mesh was discarded as well. The error for
the medium mesh with ls1 = 400 is 0.2% while the computing time is 67 hours. As the decrease
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B. Convergence Studies

in error was negligible compared to the increase in computing time, the number of time steps
ls1 = 200 (∆ls = d0/200) was chosen as a basis for all computations.

It should be noted, that the chosen parameter set has an influence on the computing time
and the accuracy. Parameter combinations that produce high pull-out forces also require more
computing time. Furthermore, Newton-Raphson convergence could not be achieved for all pa-
rameter combinations with ∆ls = d0/200. In those cases, the load step size had to be decreased
to ∆ls = d0/5000 to ensure convergence.

B.2 Modified Coulomb’s Friction Law on Coin-Shaped
Implants

To analyze the convergence behavior of the MC applied to the CSI, three different finite
element meshes were constructed, denoted coarse, medium, and fine with 3,390, 12,354, and
47,130 degrees of freedom, respectively. In addition, different load step sizes [0.1◦, 0.05◦, 0.02◦,
0.01◦, 0.005◦, 0.004◦] were investigated, corresponding to a number of load steps of [100, 200,
500, 1,000, 2,000, 2,500], respectively. For the parameters, data set 1 with µb = 0.4 was chosen.
To compare the different setups, we define the mean relative torque error

erelMz
= mean

θ∈[0,10◦]

(∥∥∥∥M exp
z (θ)−Mz(θ)

Mmax
z

∥∥∥∥) , (B.1)

where here Mmax
z is the maximum torque obtained by the numerical solution.

Load step Coarse Medium Fine

0.10◦ 0.02233 0.02195 0.02186
0.05◦ 0.02242 0.02197 0.02185
0.02◦ 0.02239 0.02191 0.02177
0.01◦ 0.02240 0.02190 0.02176
0.005◦ 0.02241 0.02190 0.02176
0.004◦ 0.02241 0.02190 0.02176

Table B.1 – Mesh sensitivity: mean per-
centage error emp

Mz
according to Eq. (6.24) for

different configurations of data set 1 (µb =
0.4). Adopted from Immel et al. (2020).
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Figure B.2 – Mesh sensitivity: mean rela-
tive error erelMz

according to Eq. (B.1) for dif-
ferent configurations of data set 1 (µb = 0.4).
Adopted from Immel et al. (2020).

Figure B.2 shows the convergence behavior of the different meshes. It can be seen that emp
Mz

reaches its limit for all meshes after 1,000 load steps to 0.0175, 0.0171, and 0.017, respectively.
This is also the case for the mean percentage error shown in Table B.1, with its lowest value
of 2.176 % for the fine mesh and the highest value of 2.241 % for the coarse mesh. In addition,
the error is increasing with the number of load steps for the coarse mesh. This stems from the
coarse resolution of the peak for larger load steps and thus leading to the torque values to be
closer to the experimental data. It should be noted, that the mesh size has a small effect on
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the outcome of the parameter study and thus, both emp
Mz

and erelMz
can be further minimized by

performing a separate parameter estimation for each mesh.

B.3 Modified Coulomb’s Friction Law on Acetabular Cup
Implants

To analyze the convergence behavior of the MC applied to the acetabular cup implant, five
different finite element meshes for the bone block were constructed with increasing refinement
of the elements in x- and y-direction. The number of elements for each mesh are shown in
Table B.2. The reference case (E∗tb = 0.2 GPa, µ∗b = 0.3, IF ∗ = 1.0 mm) was chosen as the
parameter set, and the maximum normal pull-out force Fmax∗

z (φ0 = 1) was chosen as the target
value.

body mesh 1 mesh 2 mesh 3 mesh 4 mesh 5
contact elements bone 1000 2000 4000 8000 16000

contact elements implant 49 81 169 361 676
bulk elements 5188 10252 20588 40972 81602
total elements 6237 12333 24757 49333 98278

Table B.2 – Number of elements of the finite element meshes. Adopted from Immel et al.
(2021c).
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Figure B.3 – Maximum normal pull-out force Fmax∗
z and corresponding computing time with

respect to number of contact elements on the bone block. Mesh 3, which is used for the compu-
tations in this work, is marked with ?. Adopted from Immel et al. (2021c).

Figure B.3 shows the convergence behavior of the maximum pull-out force. It decreases with
increasing number of elements, while the computing time increases exponentially. The estimated
exact value of Fmax∗

z (φ0 = 1) = 659 N. The corresponding relative error of the maximum pull-out
force of the meshes 1 to 4 is 10.5, 6.1, 2.1, and 0.4%, respectively. Due to the focus on contact
problems, the mesh was only refined in x- and y-direction. The number of elements in z-direction
remains 5, as a previous convergence study showed no measurable improvement with further
refinement in z-direction. Due to the lack of comparable experimental data and the amount
of computations (58 with standard Coulomb’s law, 435 with each of the two contact models)
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necessary for Section 7.3, mesh 3 was deemed to have a reasonable ratio between accuracy and
computing time and was thus chosen for all computations in Section 7.3.

The average computing time with both contact models for the different loading cases per-
formed with mesh 3 is listed in Table B.3. It should be noted, that the chosen parameter
combination has an influence on the computing time. Parameter combinations that produce
high pull-out forces also require more computing time.

load case avg. computing time [h] avg. # of Newton steps # of load steps
case 1 MC 2 3 100
case 2 MC 16 4 1000
case 3 MC 2 3 100
case 1 EMC 3 4 100
case 2 EMC 30 6 1000
case 3 EMC 3 4 100

Table B.3 – Average computing time, average number of Newton-Raphson steps, and corre-
sponding number of load steps for the simulations with the modified Coulomb’s law (MC) and
its extension to adhesive friction (EMC) for the different loading cases. The results are shown
for mesh 3. Adopted from Immel et al. (2021c).
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