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Résumé 
      L'eau est un besoin fondamental pour la vie humaine, notamment pour la boisson et les 

autres activités domestiques. Malheureusement, de grandes quantités d'eau potable traitée se 

perdent chaque jour de par le monde et plus particulièrement dans les pays en développement 

à cause de fuites dans les réseaux de distribution d'eau. Depuis plus d'une décennie, des 

systèmes de surveillance des canalisations d'eau basés sur des réseaux de capteurs sans fil – 

Wireless Sensor Network-based Water Pipeline Monitoring (WWPM) – sont utilisés pour 

détecter les fuites et permettre une intervention rapide pour les réparer. Cependant, la plupart 

des solutions de surveillance des canalisations d'eau sont confrontées à des problèmes tels que 

la difficulté de détecter les fuites en temps réel, le coût élevé et la difficulté d'installation. 

Récemment, les accéléromètres à faible coût conçus à base des systèmes micro-

électromécaniques (MEMS) ont gagné en popularité dans les systèmes WWPM en raison de 

leur faible coût, de leur faible consommation et de leur caractère non intrusif qui les rend faciles 

à installer. Cependant, la précision des systèmes WWPM utilisant des accéléromètres MEMS 

est faible et doit être améliorée. 

      L'objectif général de cette étude est d'augmenter la précision des mesures et la durée de vie 

des capteurs du reseau sans fil grâce à une approche distribuée. L'objectif spécifique est de 

proposer une solution WWPM en temps réel et à faible puissance utilisantdes accéléromètres 

MEMS à faible coût et un filtre de Kalman distribué (DKF) pour améliorer la précision de la 

détection des fuites. Pour atteindre une surveillance en temps réel, nous avons proposé une 

solution entièrement distribuée en mettant en œuvre un traitement distribuée de données dans 

le système WWPM; ici tout le traitement nécessaire à la détection des fuites est effectué en 

utilisant les ressources informatiques embarquées dans les nœuds de capteurs, sans nécessiter 

de communications multi-sauts vers une station de base. Pour améliorer les performances de 

détection des fuites tout en préservant la durée de vie du système WWPM, nous avons propose 

distribution des données fusionnéesen mettant en œuvre un DKF dans le système WWPM. 

Enfin, pour assurer à la fois une surveillance en temps réel et une faible consommation 

d'énergie, nous avons mis en œuvre une détection hiérarchique et un cycle de travail au niveau 

des capteurs. Dans cette thèse, nous avons commencé par pour un capteur capable de traiter in-

situ sous une faible contrainte énergétique. Cela nous a conduit à la sélection du 

microcontrôleur ESP32, de l'émetteur-récepteur nRF24L01+ et des accéléromètres LSM9DS1 
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et ADXL344 comme composants de notre capteur. Nous avons ensuite développé une solution 

WWPM qui utilise le calcul distribué en mettant en œuvre un DKF au sein du système WWPM. 

Les résultats des simulations et des expériences en laboratoire ont révélé que la propriété de 

distribution des données fusionnées du DKF a augmenté la précision de la détection des fuites 

et a également préservé la durée de vie du WWPM. En outre, nous avons évalué les 

performances de détection des fuites et la consommation d'énergie de trois DKF, choisis parmi 

les stratégies de fusion de données distribuées basées sur la diffusion, le bavardage et le 

consensus. Les résultats de simulation et de laboratoire ont révélé que le DKF basé sur le 

consensus avait la meilleure précision de détection des fuites, tandis que le DKF basé sur la 

diffusion avait la plus faible consommation d'énergie. Enfin, nous avons terminé l'étude en 

mettant en œuvre la détection hiérarchique et le cycle de travail sur chaque nœud en plus du 

calcul distribué. Les résultats ont montré une diminution significative de la consommation 

d'énergie tout en permettant une détection des fuites en temps réel. 

      En résumé, dans cette thèse, nous avons démontré que l'approche distribuée fonctionne bien 

et présente de réels avantages. La plupart des études de la littérature démontrant la faisabilité 

de l'approche distribuée se limitant à des simulations, nous avons validé le concept de manière 

expérimentale et proposé une approche complète qui inclut la conception, la simulation et le 

déploiement physique d'un réseau de capteurs, en tenant compte des enjeux énergétiques. 

Mots clés : calcul distribué ; réseaux de capteurs sans fil ; filtre de Kalman distribué ; 

surveillance des canalisations d'eau ; détection des fuites ; accéléromètres MEMS à faible coût, 

consommation d'énergie ; fusion de données distribuée. 
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Abstract 
Water is a basic necessity for human living, especially for drinking and other domestic and 

industrial activities. Sadly, in developing countries, large quantities of treated drinking water 

get lost daily through leaks on the water distribution networks. For over a decade now, wireless 

sensor network-based water pipeline monitoring (WWPM) systems have been used to detect 

leaks and prompt rapid repair intervention. However, most WWPM solutions face challenges, 

such as difficulty in achieving real-time leak detection, high cost, and installation difficulty. 

Recently, low-cost micro-electro-mechanical systems (MEMS) accelerometers have gained 

popularity in WWPM due to their low-cost, low-power and non-intrusive feature which makes 

them easy to install. However, the accuracy of WWPM systems employing low-cost MEMS 

accelerometers is low and needs improvement. The purpose of this study is to investigate a real-

time, and low-power WWPM solution that employs low-cost MEMS accelerometers and a 

distributed Kalman filter (DKF) to improve leak detection accuracy. The goal is to achieve an 

increase in measurement accuracy and network lifetime via a distributed approach. We began 

by providing specifications for a sensor node which is capable of in-situ processing under low 

energy constrain. This led us to the selection of the ESP32 microcontroller, nRF24L01+ 

transceiver, and LSM9DS1 and ADXL344 accelerometers as the components of our custom 

sensor node that was used for pipeline monitoring. We then developed a WWPM solution that 

employed distributed computing by implementing a DKF within the WWPM system. The 

results from both simulations and laboratory experiments revealed that the distributed data 

fusion property of the DKF increased the leak detection accuracy and also preserved the 

WWPM lifespan. Furthermore, we evaluated the leak detection performance and energy 

consumption of three DKF algorithms, selected from distributed data fusion strategies based on 

diffusion, gossip, and consensus. The simulation and experimental results revealed that the 

consensus-based DKF had the highest leak detection sensitivity while the diffusion-based DKF 

had the lowest energy consumption. Finally, we ended the study by implementing hierarchical 

sensing and duty cycling on each node alongside distributed computing. The results showed a 

significant decrease in the energy consumption while achieving real-time leak detection. 

Summarily, in this thesis we demonstrated that the distributed computing works well in wireless 

sensor networks (WSN) and has real advantages. With most studies in the literature 

demonstrating the feasibility of distributed computing in WSN being limited to simulations, we 
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validated the concept experimentally and proposed a complete approach that includes the 

design, simulation, and physical deployment of a WSN, taking into account the energy issues. 

Keywords: distributed computing; wireless sensor networks; distributed Kalman filter; water 

pipeline monitoring; leak detection; low-cost MEMS accelerometers, power consumption; 

distributed data fusion 
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Chapter 1 

Introduction 

This chapter introduces the applications and constraints of Wireless Sensor Networks (WSNs) and 

the need for shifting towards a distributed architecture in WSN applications. We briefly discuss 

Water Pipeline Monitoring (WPM) with a focus on the challenges of worldwide water distribution 

and in particular water distribution in developing countries; we also briefly discuss the need for 

reliable leak detection systems for WPM. The motivation for a distributed computing solution for 

WPM using WSN is also presented. The research objectives and the original contribution to 

knowledge are discussed, followed by the scope of the study and the organization of the thesis.   

1.1 Towards a Distributed paradigm in Wireless Sensor Networks  

1.1.1 Applications of WSN 
A Wireless Sensor Network (WSN) consists of several embedded nodes with sensing, processing, 

and wireless communications capabilities, distributed over an area of interest to monitor physical 

or environmental conditions [1]. Being spatially distributed systems, WSNs exploit wireless 

communication as the means of communication between nodes. This makes them effective for a 

myriad of applications. 

Application areas of WSNs include geographical monitoring, habitat monitoring, transportation, 

military systems, business processes, structural health monitoring, microclimate research, medical 

care and others [2]. Kandris et al. [3], in an up-to-date survey on the applications of WSN, 

classified the applications of WSN into six main categories (military, environmental, health, flora 

and fauna, industrial, and urban) based on the nature of their use as shown in Figure 1.1. The figure 

also depicts the sub-categories of each main category of WSN applications described in [3].  
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Figure 1. 1: Application areas for WSN. Adapted from  [3] 

1.1.2 Constraints of WSN 
A wireless sensor node is typically a compact sized hardware unit that acquires desired data from 

the environment and communicates wirelessly to other nodes in the network to relay the raw data 

gathered or extracted information to a central data sink. Its major components include: a 

communication unit, a control and processing unit, a memory unit, a power supply unit, and a 

sensing unit [4]. Thus, a WSN may consists of nodes which have the potential to sense, compute 

and communicate. However, wireless sensor nodes are inherently resource constrained, usually 

having limited processing capability, storage capacity, and communication bandwidth. These 

limitations are partly due to the two greatest constraints i.e., limited energy and physical size [5]. 

Over the years, due to technological advances, the hardware architecture of wireless sensor nodes 

has evolved from first-generation sensor nodes (e.g. Tmote Sky, MicaZ, Mica2, Micadot, etc.) that 

use of 8-bit microcontrollers, through second-generation sensor nodes (e.g. TelosB) that 

incorporate 16-bit microcontrollers such as the MSP430, and finally to third-generation sensor 

nodes that employ 32-bit microcontrollers (e.g. 32-bit microcontrollers based on ARM Cortex –

M0/M0+/M3/M4/M7, dual-core ESP32, and PIC32MZ) [6], [7]. The first- and second-generation 

sensor nodes performed little or no local processing due to the constrain in their onboard 

computing power and memory. However, the third-generation sensor nodes have a significant 

onboard computing power and memory that can achieve in-situ processing.  
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1.1.3 Shifting towards a distributed computing approach in WSN 
Most WSN monitoring applications in the literature and especially in WPM are centralized [8]–

[10]. This is because historically, the early sensor nodes acted as mere data collectors and wireless 

relays due to their low onboard computing power that could only enable them to sense and 

communicate data that was more or less pre-processed. This leads to the underutilization of the 

processing unit and overutilization of the communication unit of sensor nodes since their primarily 

role in such centralized architectures is to collect and transmit data periodically to an intelligent 

central base station, where all the processing is done to detect anomalous behaviours [8], [11], 

[12].  

In a large-scale WSN, one of the main objectives is to achieve low power consumption, to enable 

the sensor nodes to be operational for long periods without replacing their battery since the sensor 

nodes in such applications are usually battery-powered and often inaccessible physically [13]. The 

drawbacks of WSNs with centralized architectures deployed in large-scale monitoring applications 

include enormous bandwidth requirements and high energy consumption. This is because periodic 

transmission of raw data over long distances, via multiple hops, to the base station leads to fast 

depletion of sensor node’s battery and shortens the lifespan of a WSN [12], [14], [15], since 

research has shown that the communication unit consumes the greatest portion of a sensor node’s 

energy [1], [16], [17]. Thus, it is obvious that communication is a considerably more energy-

consuming venture than computation. To reduce the energy consumption of sensor nodes in a 

WSN, a wise thing to do is to invest more in computation within the WSN, whenever possible to 

save on communication costs. Therefore, by minimizing the amount and range of communications 

as much as possible through local collaboration among sensor nodes, one can significantly prolong 

the lifespan of a WSN. Finally, other drawbacks of centralized WSN applications include low 

reliability and robustness, longer response time, and low-level data security and privacy [12], [14], 

[15], [18], [19]. These disadvantages of centralized WSNs have led to active research in recent 

years directed towards distributed computing in WSNs. 

Recently, some works in the literature have demonstrated via simulations the feasibility of 

distributed computing in WSN and its promises of achieving a gain in performance and lowering 

of the power consumption [9], [12], [18]–[20]. By performing more local computation, limiting 
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exchanges only between neighbouring nodes, and reducing the number of messages that need to 

be transmitted, distributed computing in WSN has the potential of providing a solution to the 

drawbacks of the centralized approach [18], [20]–[22].

1.2 Water Pipeline Monitoring

1.2.1 Structure of Water Supply Systems
Water is a basic necessity for everyday life, required for many human activities such as drinking, 

irrigation of crops, recreational activities, and for the effective accomplishment of many industrial 

processes [23]. In most communities, water transportation via pipelines to users seems to be the 

most economical way [10] and consists of water supply systems comprising of two main parts

(Figure 1.2): (1) The transmission mains, which are pipes responsible for transporting water to 

tanks and (2) Water Distribution Networks (WDN) , which are pipes and service connections for 

distributing water to users. These infrastructures are usually not completely watertight as even in 

the most recent and well-built WDN, some level of leakage and occasional pipe bursts occur, 

leading to water losses [24].

Figure 1. 2: Water supply system
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1.2.2 The Problems of Water Distribution in Developing Countries 
Water pipeline leakages are one of a few problems faced by water utility companies all over the 

world as water loss through leakages is recognized as a costly problem worldwide, due to the waste 

of precious liquid, as well as from the economic point of view [25]–[27]. According to a 

publication by UNICEF in 2015 [28], the data revealed that more than 30% of the developing and 

less developed countries have no access to quality drinking water sources. Additionally, another 

report published by the World Bank in 2016 [29], indicated that in developing countries, roughly 

45 million cubic meters of water are lost daily with an economic value of over US $3 billion per 

year. The report also stated that saving half of those losses would provide enough water to serve 

at least 90 million people. In Cameroon, a sub-Saharan developing country, the level of Non-

Revenue Water (NRW), which is the portion of the total amount of water produced for which the 

water utility company generates no income (because it is lost via leaks/burst and/or theft) is at 

4.67% [30], [31]. Recently, the paper [32] revealed that the global volume of NRW is 346 million 

cubic meters per day. The high level of NRW is due to aging WDN infrastructures that create 

physical losses through leaks or bursts. 

1.2.3 The Need for Reliable Real-time Leak Detection Systems 
Water demand is increasing continuously and rapidly as a result of the growth of the Earth’s 

population, but water resources are facing a constant decrease caused by global heating and climate 

change [25], [33]. Unlike other more peculiar phenomena, water scarcity is common to both 

developing and developed countries [25]. The scarcity of water thus requires that water losses 

resulting from leaks be minimized by accurately detecting and localizing leakages in real-time, 

each time they occur. Furthermore, since the occurrence of leakages expose treated water to the 

external environment, it is necessary to protect treated drinking water from contamination (which 

may lead to it serving as a potential avenue for the outbreak of diseases) [23], by quickly 

identifying leaks in the WDN when they occur. Over the years, this has led to numerous research 

studies in the field [34]–[47], providing a wide range of methods for detecting and locating leaks 

on water pipelines. 
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1.2.4 WSN-based Water Pipeline Monitoring Systems 
WSN-based Water Pipeline Monitoring (WWPM) systems consist of a number of sensor nodes 

that periodically collect leak signals from the pipe. The signals are then processed to detect the 

presence or absence of a leak on the pipeline. Given that WDNs are linear structures, deploying a 

WWPM solution as a linear WSN is much feasible. However, most WWPM solutions in the 

literature have neglected the linear WSN design [10]. Even though very few WWPM studies have 

deployed a linear topology [10], we will focus in this study on the deployment of WWPM systems 

as a linear WSN.  

There are several factors affecting pipeline monitoring schemes such as communication 

mechanism, evaluation methods, power management, monitoring types, sensor connectivity, 

sensing coverage, sensing methods, and types of sensors [10]. Notwithstanding, the biggest 

challenge with leak detection in WWPM systems using low-cost sensors is that the leak signals 

may be inaccurate due to the low sensitivity of the sensors and environmental noise, and may result 

in false alarms in the leak detection system. Thus, the issue of reliably identifying a leak signal in 

the midst of errors from a number of sources (commonly called noise) is a fundamental challenge 

of any leak detection system [46], [48].  

Depending on where the leak signals from remote sensors are processed, WWPM solutions can be 

classified as either centralized, decentralized or distributed. Several studies have proposed 

centralized WWPM solutions in the literature [41], [42], [46], [49], [50]. In these studies, the 

sensor nodes periodically measure leak signals from the pipe where they are installed and transmit 

to a central base station (where the leak detection algorithm is found) for further processing in 

order to detect the presence of a leak on the pipeline. Such centralized schemes are characterized 

with a large number of multi-hop transmissions and may deplete the sensor node’s energy faster. 

Furthermore, some studies [13], [38], [40], [51] have proposed decentralized solutions where some 

processing for leak detection is performed at the sensor node. However, to the best of our 

knowledge, no study has proposed a fully distributed solution where all the processing required 

for leak detection is performed by the sensor node. 
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1.3 Statement of the Problem  

1.3.1 Context 
For more than a decade now, WWPM systems have been popularly used for monitoring of WDNs. 

However, existing WWPM solutions face a lot of the challenges such as high energy consumption 

and difficulty in achieving real-time leak detection, since they are centralized and also because 

they employ intrusive (pressure and flow) sensors that are costly, difficult to install, and consume 

more energy. In recent years, WWPM systems using vibration sensors have become popular [35], 

[43], [46]. Vibration sensors can be used for monitoring because water pipeline pressure 

monitoring can be transformed to vibration monitoring of the pipe surface [37], [52], [53], since a 

transient change in pressure when a leak occurs is always accompanied by an increase in the pipe 

surface acceleration at the corresponding locations along the pipe length [53]. The pressure 

fluctuations in a pipe are thus related to the pipe surface vibration via a nonlinear but proportional 

relationship [37], [53]. Vibration sensors (accelerometers, piezoelectric transducer, force sensitive 

resistors, etc.) are easy to install, less costly to maintain/operate, and consume less energy. In 

addition, the sensors offer the distinct advantage of providing real-time monitoring of the WDN 

which can prompt immediate interventions [46]. 

1.3.2 Problem 
In most developing countries, the WDN is made up of plastic pipes and it has been shown in the 

literature that the propagation of leak signals (vibration) does not go far in plastic pipes [54], [55]. 

Thus, reliable leak detection will require the sensors to be placed very close to each other to have 

a higher spatial resolution [56]. High accuracy accelerometers attached to the outer surface of the 

pipe can be used to accurately detect this sudden increase in the pipe surface acceleration caused 

by leaks on the pipeline. However, the need for lower inter-sensor distances and the expensive 

nature of such accelerometers will increase the overall cost, which makes them not suitable for 

installation in developing countries. Therefore, low-cost MEMS accelerometers can be a feasible 

and economically viable solution for deployment in developing countries. While previous WWPM 

studies using low-cost MEMS accelerometers have been useful in detecting leakages, they still 

have the challenge of reliably detecting leaks amid random environmental noise due to the low 

accuracy of the sensors [35], [46], [57], [58]. Another challenge is the inability of these previous 
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WWPM systems to provide reliable real-time leakage detection while preserving the WSN lifetime 

since most of them are centralized. However, since WWPM systems employ multiple low-cost 

sensors to monitor the pipeline, multi-sensor data fusion techniques, which have been successfully 

used in target tracking applications [59], can be used to increase the reliability of leak detection 

systems that use low-cost vibration sensors [57].  

1.3.3 Proposed Solution and Benefits 
Multi-sensor data fusion can combine redundant data from multiple low-cost sensors to achieve a 

more accurate information whose quality exceeds that achieved by using a single sensor [57], [60]. 

Moreover, the low energy consumption requirement and the need for a WWPM system to go 

unattended for a long period of time without any replacement of the sensor node’s battery [46], 

[61], [62], affects the choice of a multi-sensor data fusion technique that can be used. Thus, multi-

sensor data fusion in WSN can either be done via a centralized, decentralized or a distributed 

manner [59], [63]. The centralized data fusion technique will require multi-hop communications, 

which have a higher likelihood of developing an energy hole in the network, thus shortening the 

lifespan of the WSN [18], [21], [22]. However, using distributed data fusion may increase the 

lifespan of the WSN as there is no central point for fusion, and multi-hop communications will be 

eliminated entirely. The objective of distributed data fusion is to use distributed computations 

across the network such that the local information at each sensor node converges to an optimal 

value [64]. 

Implementing distributed data fusion in WWPM systems composed of a network of low-cost 

MEMS accelerometers will provide the following benefits: 

- It will enable the realization of real-time monitoring, permitting leaks to be detected as they 

occur. This will lead to fast intervention, thereby reducing the quantity of treated water that 

will be lost and prevention of the contamination of treated drinking water.  

- It has the capability of reducing the power consumption of the sensor nodes while 

preserving the WSN lifetime, thereby enabling the WWPM system to be operational for a 

long period without needing battery replacement. This is because processing is done at the 

node level and the number of multi-hop transmission is reduced. This reduces the energy 

spent on communication.  
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- It will reduce the bandwidth requirement of the WSN since processing is done by the sensor 

node’s processing unit, and sensor nodes will only communicate with neighbouring nodes 

to achieve some higher accuracy. This is advantageous since WSNs are bandwidth 

constrained. 

Inspired by the application of low-cost MEMS accelerometers in WWPM systems and the 

challenges of WWPM (such as real-time monitoring, low-cost and low-power consumption 

requirements) that have not been dealt with properly in previous studies, motivated us to conduct 

this study. In this study, we demonstrate the viability of Distributed Kalman Filter (DKF), which 

is a Kalman filter with distributed data fusion, as a distributed computing solution for leak 

detection in WWPM systems using low-cost MEMS accelerometers. Thus, the proposition of a 

fully distributed solution based on DKF that is real-time, low-power, and reliably detects leaks in 

WWPM systems using low-cost MEMS accelerometers will be the focus of this thesis. 

1.4 Research Aim and Objectives 
The main aim of this thesis is to establish an increase in the performance and the lifespan of a 

WSN via the use of a distributed computing approach. With WWPM being an application domain 

of WSN that requires low energy consumption [61], the challenge is how to achieve both high leak 

detection accuracy and maximum service lifetime of the WWPM system. Additionally, WWPM 

systems present a good application scenario where efficient distributed computing can be 

demonstrated in WSNs (due to their 1D linear topology which makes them easier to manage for a 

first demonstration). Thus, the purpose of this study is to investigate the application of DKF in 

achieving low-power, real-time, and reliable leak detection in WWPM systems using low-cost 

MEMS accelerometers. 

The aim of this research will be achieved by meeting the following specific objectives:  

1. Review popular water pipeline monitoring techniques available in the literature with a 

focus on WWPM solutions that use low-cost vibration sensors for monitoring. From there, 

identify the knowledge gaps in the field of leak detection in plastic WDNs using WWPM 

systems composed of low-cost MEMS accelerometers. 
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2. Establish specifications for a low-cost and low-power sensor node capable of in-situ 

processing under energy constraints. The sensor node should have sufficient computing 

capacity to perform local processing and be energy-aware. On this basis, design and 

implement a wireless sensor node based on the established specifications. 

3. Propose a fully distributed, real-time, and low-power WWPM solution based on DKF for 

reliable leak detection in plastic pipes. In this regard, perform a thorough literature search 

on DKF algorithms that can be implemented in WSNs and select three DKF algorithms 

whose leak detection performance and power consumption will be evaluated in the context 

of leak detection in WWPM systems using low-cost MEMS accelerometers. 

4. Demonstrate the feasibility of applying a DKF for reliable real-time leak detection in a 

WWPM system that uses low-cost MEMS accelerometers by deploying a sensor network 

that implements one of the selected DKF algorithms. On this basis, evaluate the leak 

detection performance and energy consumption of the proposed distributed solution by 

performing simulations and validating the simulation results using results obtained from 

physical experiments on a laboratory testbed. 

5. Evaluate the leak detection performance and power consumption of the three selected DKF 

algorithms using both simulations and physical experiments. On this basis, compare the 

leak detection performance and power consumption of the selected DKF algorithms and 

propose which of the DKF is optimal for implementation in WWPM systems using low-

cost MEMS accelerometers. 

1.5 Contributions 
While extensive research has already been conducted on WWPM systems using low-cost vibration 

sensors, several challenges still exist, such as providing a leak detection system that is fully 

distributed, real-time, low-cost, and consumes less power. Besides, the implementation and 

evaluation of fully distributed leak detection algorithms applicable for real-world WSNs and that 

use of distributed approaches are rare [10]. Based on the knowledge gaps in the literature, this 

work is novel and it is the first application of DKF in the context of leak detection in WWPM 

systems using low-cost MEMS accelerometers. 
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This thesis has made some research contributions that not only improve on the state-of-the-art of 

real-time leak detection in WWPM systems using low-cost MEMS accelerometers but that of 

linear WSN applications as well. They include: 

1. The proposition, design, and deployment of a low-cost custom sensor node based on low-

cost commercial off-the-shelf components (COTS) such as ESP32 microcontroller 

(processing unit), nRF24L01+ transceiver (communication unit), and ADXL344 and 

LSM9DS1 accelerometers (sensing unit).  

2. The demonstration of a reliable, real-time, fully distributed, and DKF-based solution for 

leak detection in plastic WDNs using WWPM systems composed of low-cost MEMS 

accelerometers. 

3. The evaluation of the performance and power consumption of the proposed DKF-based 

leak detection solution via simulations in CupCarbon 4.2 simulator and validation on an 

experimental testbed. The comparison of simulation results and experimental results is a 

key contribution for the real-life implementation of the proposed approach; since there are 

many studies in the literature that do not get to experimental analysis and the study of the 

behaviour of the sensor nodes under real-life conditions. The results showed that the 

distributed data fusion capability of the DKF improves the reliability of leak detection 

while preserving the WSN lifetime. 

4. The evaluation of the leak detection performance and power consumption of three selected 

DKF algorithms via simulation and validation on an experimental testbed. The results 

showed that diffusion-based DKF algorithms consume less energy (preserve the WSN 

lifetime) but have lower leak detection reliability whereas, consensus-based DKF 

algorithms consume more power but have a higher reliability. 

5. The implementation of duty cycling and hierarchical sensing at the sensor node level to 

reduce the power consumption of the proposed fully distributed leak detection solution. 

Summarily, the original contribution to knowledge of this thesis is the demonstration and 

evaluation of a low-cost, low-power, and fully distributed solution based on DKF for real-time 

leak detection in WWPM systems using low-cost MEMS accelerometers. 
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1.6 Thesis Scope 
Given that the Kalman filter can be applied as a state observer and data fusion algorithm, we focus 

in using the Kalman filter in this study as a sensor fusion algorithm to improve on the accuracy of 

leak measurements collected by local sensor nodes. As a state observer technique, the Kalman 

filter is used to compute an optimal estimate of an interested parameter (e.g., leak size and location) 

given only limited available information (e.g., pressure and flow) whereas as a sensor fusion 

algorithm, the Kalman filter is used for optimal state estimation of a parameter based on data from 

dynamic models and measurements from sensors or the fusion of measurements from multiple 

sensors. Kalman filter methods used for leak detection in WDN have largely been applied to 

pressure and flow measurements. In the literature, the Kalman filter and its variants have been 

used as model-based techniques for leak detection with flow and pressure measurements from 

intrusive sensors serving as data sources. However, we use the Kalman filter in this thesis as a 

signal processing algorithm acting on measurements from MEMS accelerometers and performing 

data fusion so as to isolate leak signals from noise. Additionally, we investigate only DKF 

algorithms that can be implemented on wireless sensor nodes. 

1.7 Thesis layout 
This thesis contains 7 chapters and is organized as follows: 

 Chapter 2 presents a background on energy management techniques and distributed 

computing in WSNs. It also provides a comprehensive literature review on WWPM 

solutions and the gaps in knowledge. 

 Chapter 3 presents the selection of COTS components used for the design and 

implementation of a custom sensor node that will be deployed on the laboratory testbed. 

 Chapter 4 presents a survey of DKF algorithms for implementation in WSN and the 

selection of three DKFs that will be implemented and whose leak detection performance 

and power consumption will be evaluated in the context of leak detection in plastic WDNs 

using WWPM systems composed low-cost MEMS accelerometers. 
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 Chapter 5 presents the results of an initial demonstration of the application of DKF in the 

realization of a fully distributed, real-time, reliable, and low-power leak detection solution 

for WWPM systems using low-cost MEMS accelerometers. 

 Chapter 6 presents the results of the evaluation of the leak detection performance and power 

consumption of the three selected DKF algorithms for experiments conducted on a 

simulation platform and a laboratory testbed. It also presents the results obtained from 

experimentally implementing of duty cycling and hierarchical sensing on the sensor nodes. 

 Chapter 7 presents a number of conclusions derived from the achievement of the objectives 

of this study and also provides recommendations for future works. 
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Chapter 2 

Distributed Computing and Wireless Sensor-Based Water 

Pipeline Monitoring 

This chapter presents the background and literature review of our study. It starts by classifying 

WSN monitoring applications into centralized, decentralized, and distributed, based on where data 

collected within the WSN are processed. This is then followed by a discussion on the drawbacks 

of centralized WSN monitoring applications. Next, the power management techniques available 

in the literature for maximizing WSN lifetime are later reviewed. The power management 

techniques are organized under energy harvesting, energy balancing, and energy conservation 

techniques. From there, a discussion on distributed computing in WSN and its benefits is then 

presented. A number of implementations of distributed computing in WSN, categorized under 

distributed query processing, collaborative signal processing, distributed state 

estimation/detection, and in-network processing are later discussed. We later move on to present 

water pipeline monitoring with a focus on WWPM systems using low-cost vibration sensors. 

Mention is made of the challenges of vibration-based leak detection methods in plastic pipes and 

the need for improving the reliability of leak detection. We also review WWPM solutions available 

in the literature and classify them as either centralized, decentralized, and distributed depending 

on where the pre-processing, leak detection and leak localization algorithms are executed. This is 

followed by a review of WWPM studies that applied energy conservation techniques to extend the 

WWPM system’s lifespan. Lastly, we present a summary of the identified gaps in knowledge.   

2.1 Classification of WSN Monitoring Applications  
There exist several criteria for classifying WSNs and hence several taxonomies. However, we are 

interested in the criterion that puts data and its management at the heart of the problem. Hence, the 

criterion chosen for our classification is based on data processing. The classification of WSNs 

based on data processing determines the location where data processing algorithms are 

implemented (sensor node or base station). It also determines whether the base station receives 
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raw data, processed data or decisions from the sensor nodes [65]. Additionally, it affects the 

computation and communication costs and also influences the scalability of the network and the 

kind of WSN applications where it can be applied [63]. In general, depending on the technique of 

data processing, WSN monitoring applications can be classified into three categories [40], [59], 

[60], [63], [65]: 

1. Centralized monitoring 

2. Decentralized monitoring, or  

3. Distributed monitoring 

 

Figure 2. 1: WSN monitoring schemes: Centralized, Decentralized, and Distributed [59] 

Figure 2.1 depicts the different WSN monitoring architectures based on the implemented data 

processing strategy. The circles denote the sensor nodes while the solid lines denote the 

communication links between sensor nodes.  

In centralized monitoring applications, there is a single global fusion centre [63] called the base 

station or sink that receives and processes the raw data collected and transmitted by all the sensor 

nodes in the WSN [59]. This implies that, most, if not all the intelligence is found at the base 

station and the sensor nodes have the sole responsibility of sensing certain phenomena of the 

physical world and transmitting them to this central site for processing. In such cases, there is little 

or no intelligence at the sensor node level and the sensor nodes act primarily in a sense-only fashion 

[66]. The presence of this single fusion centre increases the number of data transfer and reduces 

the scalability and energy efficiency of centralized WSNs. This is due to the fact that when a large 

number of nodes communicate with the base station, the network energy consumption is greater 

than when only a few nodes transmit their local decisions to the base station [40]. Nevertheless, 
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the centralized approach has the advantage of being Bayesian optimal in terms of performance, 

since all measurements are processed at single site.  

To utilize the processing power of sensor nodes for data processing at the node level, there are two 

ways to go about it, which include: the decentralized approach and the distributed approach. In the 

decentralized approach, local fusion centres (cluster heads) receive raw or pre-processed data from 

sensor nodes in a cluster and carry out further processing of the raw or pre-processed data, whereas 

in the distributed approach there is no need for local fusion centres as each node performs 

processing of its local data and only communicates with its neighbours to reach some desired 

accuracy [63]. 

The decentralized approach is a compromise between completely centralized and distributed 

versions of WSN monitoring scheme. It is also referred to as hierarchical data processing strategy 

[65] and consists of several fusion centres that are capable of communicating with their close 

neighbours or directly with the base station (global fusion centre). The sensor nodes in a 

decentralized WSN are grouped into clusters and each cluster head serves as a local fusion centre 

that the member nodes within the cluster communicate with. The local fusion centres process the 

raw data (local measurements) received from sensor nodes within the cluster and transmit it to the 

base station. Since the local fusion centres perform some processing on the raw data received from 

the sensor nodes and given that only fusion centres can communicate with the base station, the 

communication overhead is reduced, thereby improving the energy efficiency. However, the 

decentralized monitoring schemes are also limited by scalability in the case of large scale WSN 

[59].  

The distributed approach, also referred to as parallel data processing strategy [65], entails that each 

sensor node performs the data processing on its local measurements [59] without needing fusion 

centres [63]. In addition, the sensor nodes may communicate with their close neighbours to reach 

some desired accuracy. The absence of fusion centres in this approach increases its scalability and 

reduces communication costs [63]. This makes it suitable for applications requiring features such 

as real-time data capture, processing, and dissemination [40]. Furthermore, it has advantages such 

as increased robustness and reliability due to its built-in redundancy [40], [59]. As a disadvantage, 



18 

 

if not well designed, it may require a large number of iterative communications in order to achieve 

an accuracy comparable the centralized approach.  

Finally, it should be recalled that the base station in a centralized WSN receives raw data from all 

the sensor nodes, that of a decentralized WSN receives processed data from the local fusion 

centres, while that of a distributed WSN receives decisions from the sensor nodes. 

Now that we are done classifying WSN monitoring applications based on the underlying data 

processing strategy, we will move on to discuss the disadvantages and drawbacks of the centralized 

approach (which is predominantly used in most WSN monitoring applications).  

2.2 Drawbacks of Centralized Data Processing in WSNs  
When designing WSNs, the basic requirements for an efficient WSN are scalability, fault-

tolerance, and energy efficiency. In this section, we will discuss the drawbacks of centralized WSN 

monitoring applications in the context of these three requirements for efficient WSN design. The 

drawbacks of centralized WSNs include [15], [18], [63]: 

- Lack of scalability 

- Low energy efficiency 

- Increased latency 

- Reduced robustness and reliability 

- Low data privacy and security 

2.2.1 Lack of scalability 
According to Abdulkarem et al. [65], network scalability is the ability of a WSN to permit the 

addition of new sensor nodes, displacement of sensor nodes within the WSN, and the exit of 

existing sensor nodes while maintaining the performance and operation of the network. In the case 

of large-scale WSN, it is required that the WSN covers a large geographical area for monitoring. 

As such, the network architecture and data processing strategy play an important role on the 

scalability of the WSN by ensuring that it can be enlarged [65]. Given that in centralized WSN 

applications, data processing is performed only at the base station, the scalability of centralized 

WSNs is greatly reduced as the base station cannot effectively communicate with all sensor nodes 

in a large-scale WSN because of physical constraints such as limited communication range of 
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sensor nodes, increased communication delay resulting from multi-hop communications, low 

reliability due to loss of packets, and limited communication bandwidth [59]. This makes the 

centralized approach not suitable for implementation in large-scale real-time monitoring systems. 

2.2.2 Low energy efficiency and reduction in WSN lifetime  
Most sensor nodes in large-scale monitoring applications are far from the base station and will 

require much energy to transmit their data via a single hop to the base station. In most cases, the 

transmission of the sensor node’s data to the base station via multi-hop communications is 

employed. These multi-hop communications directly increase the number of data transmissions, 

which also increases the overall power consumption and thus shortens the lifespan of a WSN by 

decreasing the lifetime of every node serving as a relay. Furthermore, in the centralized approach, 

nodes directly connected to the base station are involved in relaying all the messages directed to 

the base station. This results in what is referred to as the energy hole effect [18], [21], [22], which 

is caused by the uneven distribution of the energy consumption among the nodes in the network. 

Thus, the energy of nodes directly connected to the base station depletes faster and when they 

finally get exhausted, the remaining one-hop neighbours of the base station face an even greater 

burden which quickly disables the network [18]. The existence of an energy hole in the WSN 

makes it difficult for data from sensor nodes to be delivered to the sink, resulting in a premature 

end of the WSN lifetime. Therefore, given that energy consumption in a WSN is proportional to 

the frequency of data transmission, the large number of data transmission involved in the 

centralized approach makes it not effective for prolonging WSN lifetime.  

2.2.3 Increased latency 
In large-scale WSN, the sensor nodes at the periphery of the network will have to involve in multi-

hop communications in order to get their sensed data to the base station. This multi-hop 

communications will induce delays thereby increasing the latency. Besides, there is a higher 

likelihood that some of the packets will be lost, which will further increase the latency via 

retransmission, since the communication links in WSNs are not very reliable. Furthermore, the 

centralized approach is not suitable for time-critical applications where the response time is 

required to be low. This is because decisions can be delayed due to the round-trip transmissions 

involved [15], [18], [67]. Finally, the limited bandwidth available in WSNs and the larger number 
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of data transmissions involved in the centralized approach will further increase the delays in the 

WSN. This makes the centralized approach not suitable for applications requiring real-time data 

capture, processing, and detection of events.  

2.2.4 Reduced robustness and reliability 
Fault tolerance of a network is a measure of its ability to do the intended job if some node(s), 

link(s) or both fail [8]. Centralized WSNs have a single point of failure and are less robust to node 

failures. This is because a complete reorganisation of the network is required each time a node 

fails or a node is added to the existing network [68]. In addition, there is a higher likelihood of 

packets being lost in the centralized approach due to the large number of data transmissions 

involved. This increase in packet lost is partly due to the fact that the sensor nodes are not very 

reliable since they are developed from cheap off-the-shelf components. Besides, the energy 

constrain nature of the nodes necessitates that they regularly go to sleep in order to reduce power 

consumption, which may also result in loss of packets when the nodes are at sleep. All these affect 

the reliability and robustness of centralized WSNs negatively. 

2.2.5 Low data privacy and security 
Another drawback in large scale WSNs employing centralized data processing is the issue of 

security. The major problem with multi-hop transmission in centralized WSNs is that it is liable to 

attacks on the source data and nodes’ identities during hopping. The reason is that for a resource-

constraint WSN with source node sending data to the destination through several intermediary 

nodes, there is a possibility of intrusion, identity tracing by an adversary, gleaning, and 

modification of source data by the intermediary nodes [69]. Lastly, the lack of data privacy is 

another issue with centralized processing in WSN, as data is processed out of out the network 

(away from the sensor nodes) where it is collected.  

Given that energy efficiency is a main requirement in WSN design and the need for a WSN to go 

unattended for a long period of time without replacement of the sensor nodes’ energy sources, we 

will in the next section briefly discuss the techniques available in the literature for prolonging 

WSN lifetime.  
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2.3 Power management techniques for maximizing WSN lifetime 
Energy efficiency is a critical aspect in most WSN applications because of the energy constrain of 

sensor nodes and the need to prolong WSN lifetime. As stated in the review of Yetgin et al. [70], 

there are different definitions of network lifetime depending on the specific application, the 

objective function and the network topology considered. However, we will stick to the definition 

of network lifetime being the total amount of time during which the WSN is capable of effectively 

performing its functions and meeting up with the application requirements. In that light, a WSN is 

considered dead when it is unable to forward any data to the base station [21]. 

As sensor nodes in most WSN applications are generally battery-powered, the WSN lifetime is 

constrained by the battery of the individual sensors in the WSN [16]. Thus, the critical issues to be 

considered when maximizing WSN lifetime are how to reduce the energy consumption of the 

nodes or how to replenish their energy sources in an efficient and realistic way [16], [71]. Most 

importantly, it is required that the WSN lifetime be long enough to permit the WSN fulfil the 

application requirements. The quest to prolong WSN lifetime, has in recent years led to a plethora 

of power management techniques in the literature. However, most of the techniques present in the 

literature can be broadly categorized into techniques either involved in reducing energy 

consumption of sensor nodes or those involved in replenishing the consumed energy in battery 

powered nodes [71]. 

In this section, we briefly discuss on WSN lifetime prolongation techniques available in the 

literature. We developed a taxonomy (Figure 2.2) for the classification of WSN lifetime 

prolongation techniques available in the literature. The prolongation techniques can broadly be 

classified as energy conservation techniques, energy balancing techniques, or energy harvesting 

techniques with each having a number of sub-categories as shown in Figure 2.2. 
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Figure 2. 2: Classification of WSN lifetime prolongation techniques

2.3.1 Energy harvesting techniques
Energy harvesting techniques convert energy from external sources (such as human and 

mechanical sources) or ambient environment sources (such as wind, vibrations, solar, acoustic, 

and thermal) into electrical energy that can be used to power wireless sensor nodes [71]. The 

energy harvested by these sources are used to replenish the energy depleted by the sensor node 

and thus prevent the development of an energy hole in the WSN. This increases the lifetime of the 

nodes and that of the WSN as a whole. Thus, the goal of energy harvesting techniques is to convert 

energy from one form to another that can be used to power sensor nodes and thus extend the 

lifetime of the WSN [72]. Moreover, as shown in Table 2.1, the source from which energy is 

harvested in a WSN is a valuable resource since it determines the amount of energy available to 

the network and the rate of conversion from the source to electrical energy [71]. This makes the 

ambient sources which are accessible within an environment and which do not need any external 

energy supply very attractive to WSN applications. 

From the literature, the most common energy harvesting techniques include: solar-based, thermal-

based, wind-based, vibration-based, and RF-based sources [71]–[73]. Prauzek et al. [72], reviewed 

and presented a comprehensive account of energy harvesting sources, energy storage devices, and 
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corresponding topologies of energy harvesting systems published within the last 10 years (from 

2008 to 2018). In another study, Peruzzi and Pozzebon [73], in their review paper provided a 

detailed overview of the existing Low Power Wide Area Network (LPWAN) systems relying on 

energy harvesting for their powering. In [73], the different LPWAN technologies and protocols 

are discussed alongside the applicable energy harvesting techniques as well as presentations of the 

architecture of the power management units. Finally, the magnitude of the energy harvested from 

the different energy sources reported by [74], is shown in Table 2.1. 

Table 2. 1: Amount of energy generated by different energy sources 

Energy source Typical power density Embedded nominal power Transducer 
Solar 15 mW/cm2 42 dBm (15 W) Solar panels 

Thermal 15 μW/cm3 22 dBm (150 mW) Thermoelectric 
Generator 

 
Vibration 

145 μW/cm3 19 dBm (74 mW) Electromagnetic 
330 μW/cm3 –7 dBm (200 μW) Piezoelectric materials 
50 μW/cm3 –7 dBm (200 μW) Electrostatic 

Directed RF 50 mW/cm2 20 dBm (100 mW) Antenna 
Ambient RF 12 mW/cm2 –23 dBm (5 μW) Antenna 

 

2.3.2 Energy balancing techniques 
Energy balancing techniques seek to ensure that the energy consumption is evenly distributed in 

the WSN such that nodes have a fairly equal amount of energy. This reduces the likelihood of a 

black hole (energy hole) developing in the WSN and prolongs the WSN lifetime [71]. Thus, the 

objective of the energy balancing techniques is to balance the communication burdens of the sensor 

nodes in the WSN by ensuring that they spend their energy at approximately the same rate. This 

is achieved via balancing the load of the sensor nodes in the WSN by employing techniques such 

as clustering. Clustering schemes are one of the most used methods for prolonging the network 

lifetime in WSNs via load balancing. They involve grouping sensor nodes into smaller groups 

called clusters, headed by a coordinator called the Cluster Head (CH). The CH performs 

specialized functions such as data fusion and aggregation, and communicates the aggregated data 

directly to the base station or to other CHs. The CH can be selected randomly or based on one or 

more criteria and this also largely affects the WSN lifetime. An ideal CH is the sensor node with 

the highest residual energy, the maximum number of neighbour nodes, and the smallest distance 

from base station [75]. The goal of clustering schemes is to reduce the number of redundant 
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communications in the WSN by reducing the number nodes that communicate with the base 

station. By performing aggregation on data within the cluster, the energy consumed in the network 

is far less than when all the raw data are sent to base station  

Other popular energy balancing techniques comprise on the one hand energy-efficient routing 

protocols with the ability to achieve uniform energy consumption and on the other hand mobile 

sink techniques that ensure that the energy consumed by nodes in a large-scale network is uniform 

by reducing the energy consumed by the sensor nodes when serving as relays. This is done by 

causing the sink to move closer to the sensor nodes to reduce the communication distance. Most 

of the energy-efficient routing protocols implement clustering since the cluster-based structure is 

considered by research community as an effective architecture for data-gathering in WSN [76]. 

2.3.2.1 Energy-efficient routing protocols 

Energy-efficient routing protocols are needed for large-scale battery powered WSNs to ensure 

uniform energy consumption and load balancing. Besides, they are also needed to achieve reliable 

and real-time data forwarding to the sink. This has led to many research efforts devoted to the 

design of energy efficient routing protocols and/or enhancement of existing ones. Routing Protocol 

for Low-Power and Lossy Networks (RPL) and Low Energy Adaptive Clustering Hierarchy 

(LEACH) are among the well-known energy efficient protocols used in WSNs [77].  

Heinzelman et al. [78] designed LEACH, a clustering-based routing protocol that minimises global 

energy usage by distributing the load to all the nodes at different points in time. The simulation 

results revealed that LEACH reduced the communication energy by 8 times when compared with 

direct transmission and minimum transmission-energy routing. In addition, the first node death in 

LEACH occurred 8 times later than the first node death in direct transmission, minimum-

transmission-energy routing, and a static clustering protocol. Furthermore, the last node death in 

LEACH occurred over 3 times later than the last node death in the other protocols. The authors of 

[79] and [80] addressed the load imbalance problem and proposed new load balancing methods 

for the RPL protocol. Simulations were conducted in cooja simulator and the results revealed an 

improvement in load balancing, which resulted in a reduction in power consumption and an 

increase in network lifetime.  
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2.3.2.2 Mobile Sink techniques  

In a typical large-scale WSN, the base station (sink) is static. As such, the data from the sensor 

nodes are transmitted to the base station through multi-hop communications. Hence, some sensor 

nodes in the WSN would not only sense and send their data, but also act as wireless relays that 

forwards the data of their neighbours towards the sink. Consequently, nodes near to the sink have 

their battery deplete faster, leading to nonuniform energy consumption which eventually causes 

the development of an energy hole in the WSN. The energy hole disables the WSN and thus 

reduces its lifetime regardless of the fact that there are still a number of sensor nodes in the WSN 

whose battery are not yet depleted. In recent years, contrary to static sink, the mobile sink approach 

has attracted much research interest because of increase in its potential WSN applications and its 

potential to improve network performance such as energy efficiency and throughput [76]. In this 

approach, the mobile sink visits the network in order to spread more uniformly the energy 

consumption [16]. However, this solution is not very common since the sink in most WSN 

applications is static. 

Nasir et al. in [76] proposed a Mobile Sink based Routing Protocol (MSRP) for prolonging the 

lifetime of a WSN implementing the clustered architecture. In their proposed methodology, the 

mobile sink moves in the clustered WSN to collect sensed data from the CHs within its vicinity. 

The movement of the mobile sink is guided by the residual energy of the CHs thereby causing the 

mobile sink move to the CHs having higher energy. The high energy CHs then assume the 

responsibility of relaying the data transmitted by all the sensor nodes in the WSN via either single-

hop or multi-hop communications. This results in the responsibility of relaying the data transmitted 

to the sink by far way sensor nodes alternating between different high energy CHs near the sink. 

The end result is the avoidance of an energy hole since there is a balance in the energy consumption 

and this improves the WSN lifetime. In a recent study, Zhang et al. [81] studied the lifetime of a 

mobile WSN where they used evolutionary computing algorithms to solve the mobile WSN model. 

2.3.3 Energy conservation techniques 
Conserving the energy of sensor nodes requires a compromise between various activities at both 

the node and network levels [21]. This can be done by implementing energy efficient protocols 

that are aimed at minimizing the energy consumption during network activities and/or 
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implementing power management schemes that involve switching off node components that are 

not temporarily needed. The reason is that a large amount of energy is consumed by node 

components (CPU, radio, sensor, etc.) even in the idle mode [16]. 

The techniques for minimizing energy consumption during network activities include energy-

efficient routing protocols and implementation of mobile sinks (discussed in sub-section 2.3.2) 

while the techniques for minimizing energy consumption at the node level include duty cycling 

techniques (radio optimization, sleep/wake-up schemes, transmission power control, dynamic 

voltage frequency scaling), and data-driven approaches (data compression, data aggregation, data 

prediction, hierarchical sensing, adaptive sampling, and model-based active sensing) [16], [71], 

[77]. Figure 2.3 presents a commonly adopted taxonomy of energy conservation strategies used 

for preserving WSN lifetime.
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2.3.3.1 Duty Cycling Approaches 

One commonly used method for reducing sensor node’s energy consumption is by turning off 

sensor node’s hardware components when they are not needed and waking them up whenever 

necessary. This establishes a small duty cycle for the nodes based on events occurring in the 

monitored environment [82]. Thus, techniques based on duty cycling rely on the fact that active 

nodes do not need to maintain their radios, processor, and sensing devices continuously on. 

According to the survey by Anastasi et al. [16], duty cycling is achieved by two complementary 

approaches, with one approach taking advantage of the redundancy in WSNs by adaptively 

selecting only a minimum subset of nodes to remain active for maintaining connectivity while the 

other approach ensures that active nodes do not maintain their radio continuously on by constantly 

switching them off (i.e., put it in the low-power sleep mode) when there is no network activity. 

The authors termed the former topology control and the latter power management.  

As generally known in the literature, the communication unit (radio module) consumes the most 

part of the sensor node’s energy [1], [17]. By reducing the activities (transmission, reception, idle 

listening) of the radio module, higher energy savings can be achieved at the node level. This is 

because the energy consumption of the radio module is of the same order of magnitude in the 

reception, transmission, and idle states, while the power consumption drops significantly in the 

sleep state [16], [17]. Therefore, the radio should be put to sleep (or turned off) whenever possible. 

Additionally, there are several factors that affect the power consumption characteristics of a radio 

module, including the radio duty cycle, modulation scheme, data rate, and transmission distance. 

To optimize the radio and minimize sensor node energy consumption, techniques used include 

sleep/wake-up schemes and optimization of radio parameters such as radio coding and modulation 

techniques, transmission power, and antenna direction [71]. Sleep/wake-up schemes adapt the 

node to the activities of the network to conserve energy by putting the radio to sleep (to minimize 

idle listening) while the transmission power control approaches dynamically adjust the 

transmission power of the radio to maintain an effective communication link between pairs of 

nodes while not transmitting at full power capacity. Furthermore, dynamic voltage frequency 

scaling is another means of achieving energy savings at the node level. This technique harnesses 

the ability of modern microprocessors to operate at different voltage and frequency settings in the 
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active state to achieve additional energy savings [77]. It also optimizes the sensor node’s 

performance in the active state  by adjusting the voltage and the operating frequency of  its CPU 

based on the instantaneous computational load requested by the application [82].  

2.3.3.2 Data-driven Approaches 

Data-driven approaches can be classified into either data reduction or energy-efficient data 

acquisition schemes depending the problem they address [16]. The data reduction schemes on the 

one hand are primarily involved in reducing the number of data transmissions and the amount of 

data transmitted, as data moves from the sensor nodes to the base station. Energy-efficient data 

acquisition schemes on the other hand are involved in reducing the energy spent by the sensing 

subsystem by typically reducing the number of samples generated by the sensors.  

The data reduction schemes include in-network processing techniques such as data aggregation, 

data compression, and data prediction [16], [71]. Data aggregation techniques increase the network 

lifetime by fusing data in an efficient manner as it traverses the network from one node to the 

another until it gets to the sink [83]. Likewise, data compression involves encoding information at 

the sensor nodes and decoding it at the sink and it can be applied to reduce the amount of 

information sent by source nodes [16]. This reduction in the amount of data transmitted and 

received also reduces the radio module’s active time, which also decreases the sensor node’s 

energy consumption. Similarly, data prediction techniques have as aim to reduce the network 

power consumption by minimizing the communication cost. They achieve this by building an 

abstraction of a sensed phenomenon, i.e., a model describing data evolution. The model can predict 

the values sensed by sensor nodes within certain error bounds, and resides both at the sensors and 

at the sink [16]. Transmissions between the nodes and the sink occur only when sensor nodes 

measure values outside the threshold of the prediction models [71]. This reduces the frequency of 

transmission and the energy needed for communication as well [16], [71]. Anastasi et al. [16] 

categorized data prediction techniques into: stochastic approaches, time series forecasting, and 

algorithmic approaches. Stochastic approaches such as Kalman Filter (KF) first derive a state space 

representation of the monitored phenomenon, then future samples can be guessed by filtering out 

a non-predictable component modelled as noise [59]. Time series forecasting techniques such as 

Moving Average (MA), Auto-Regressive (AR) or Autoregressive Moving Average (ARMA) 
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models, etc. are involved with predicting future values from historical values (time series) derived 

from periodic sampling. Lastly, algorithmic approaches rely on a heuristic or a state-transition 

model describing the sensed phenomenon. 

The energy-efficient data acquisition schemes include adaptive sensing techniques such as 

hierarchical sensing, adaptive sampling, and model-based active sensing [82]. By reducing the 

number of samples generated by the sensors, an efficient sensing strategy also reduces the amount 

of data to be processed and possibly transmitted by sensor nodes, and thus generate further energy 

savings [82]. In hierarchical sensing, a sensor node has multiple sensing devices monitoring the 

same physical parameter, but with each having a different sensing accuracy and power 

consumption. Accuracy can be traded-off for energy efficiency by using the low-power sensors to 

get a rough estimate of the monitored parameter [16]. Once an event has been detected, the accurate 

power hungry sensors can be activated to give more accurate readings of the physical property at 

the cost of greater energy consumption [82]. Adaptive sampling strategies reduce the number of 

measurements and the communications required to achieve an accurate estimate by exploiting the 

spatio-temporal correlations between the sensed data. This is achieved by first reducing the number 

of active sensor and also dynamically adjusting the sampling rate. They reduce the number of 

samples by exploiting spatio-temporal correlations between data [16], which in turn reduces the 

energy spent on sensing. Spatial correlation on the one hand tries to reduce the sensing energy 

consumption by exploring the fact that measurements taken by sensor nodes that are spatially close 

to each other do not differ significantly. In this light, only a few sensors can be activated. On the 

other hand, temporal correlations are based on the idea that if the monitored phenomenon does not 

change rapidly, then the sampling rate can be reduced without any loss of relevant information 

[82]. Finally, model-based active sampling reduces the number of data samples by using a 

computational model [16]. This involves the use of forecasting models to build an abstraction of 

the sensed phenomenon. The forecasting model is built with an initial set of sampled data. Then, 

the model is used to predict the data instead of performing a continuous sampling in the field [59]. 

Therefore, the energy dissipated for data sensing and transmission is saved. [82]. 

As has been shown in the presented literature, the data reduction techniques (which are 

applications of distributed computing in WSN) can be used to extend WSN lifetime. We saw that 
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distributed computing has the potential to reduce sensor nodes’ energy consumption and extend 

the WSN lifetime by using the on-board computing resources embedded within the sensor node to 

reduce the number of messages and the amount of data transmitted. This implies that the data 

processing task will be performed using the on-board processing unit of the sensor nodes and only 

decisions will be sent to the base station. Since this thesis is focused on distributed computing in 

WSN and how it can be used to extend WSN lifetime and increase performance, we will in the 

next section discuss the advantages of distributed processing in WSN especially in prolonging 

WSN lifetime and providing the possibility of real-time monitoring in WSNs. 

2.4 Distributed Computing in Wireless Sensor Networks 
In this section, we provide a brief review of distributed computing in WSNs by looking at the 

motivation for distributed computing in WSNs and its benefits. We also survey some studies that 

have applied distributed computing in WSNs. 

2.4.1 The relevance of distributed computing in WSN 
Based on the drawbacks of the centralized computing mentioned in section 2.2, a logical thing to 

do is to perform distributed computing within the WSN [17]. The core idea of distributed 

computing in WSN is to invest more into computation within the network by harnessing the 

onboard processing capabilities embedded in each node for local processing whenever possible to 

reduce communication costs. In this distributed approach, each node performs processing on its 

local data and only communicates with its direct neighbours to reach some desired accuracy. This 

has the potential to significantly reduce the amount of multi-hop communications and also 

eliminate data processing at the base station, since only final decisions will be sent to the base 

station. Such a system will be suitable for real-time monitoring of autonomous systems where 

there is need to prioritize local and real-time decisions [67].  

In recent years, advances in microelectronics has resulted in the development of  powerful and 

low-power processing units (e.g. microcontrollers) with higher computational power and memory 

capacity [4]–[6], [84]. This has also reduced the challenges of embedding intelligent data 

processing on sensor nodes, causing a paradigm shift where distributed computing is increasingly 

becoming very popular in most WSN monitoring applications [4], [5], [84]. The presence of 
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distributed sensing in a WSN and the availability of sufficient computing resources at each sensor 

node can be properly harnessed by using distributed algorithms that minimize communication and 

energy costs,  as well as provide robustness to node failures [19]. This creates a scenario where 

the sensor nodes can communicate among themselves and perform distributed computation over 

the sensed data to identify the occurrence of an event [8]. This improves on the scalability of 

WSNs, reduces latency as well as network energy consumption, and also improves data security 

and privacy [13], [15], [18], [67]. 

2.4.2 WSN and Edge Computing  
In the last decade, the term Internet of Things (IoT), has progressively gained dominance as the 

keyword to define connected embedded devices. It replaces the pioneer term WSN, which is one 

of the first physical implementations of Ubiquitous Computing, and finally integrates it as a part 

of IoT (the physical network mainly used for monitoring). 

With research progress in this field, numerous computing paradigms have emerged such as Mobile 

Cloud Computing (MCC), cloudlet computing, mobile clouds, mobile IoT computing, IoT cloud 

computing, fog computing, Mobile Edge Computing (MEC), and edge computing [85]. The latter, 

edge computing [86], could be considered as a related field of WSN distributed computing. 

However, what differs between WSN and IoT is the hardware computation capacity. Recently, the 

Internet Engineering Task Force (IETF) [87] standardized a classification for hardware devices 

used in IoT by demonstrating that a performance gap exists between the lowest class, i.e., Class 0, 

used in WSN [88] and Class 1 and above, which comprise of hardware devices commonly found 

in IoT [89]. 

Furthermore, given that wireless sensor nodes are highly constrained in terms of computation 

capacity and energy consumption, the promising capacity of edge computing has not been 

evaluated in this thesis due to the gap that exist between the hardware capacity of the hardware 

devices involved in each of the networks (WSN and IoT) [90] and those developed using a state-

of-the-art energy-aware hardware design for edge computing by Jiang et al. [91]. Even though 

paradigms and algorithmic propositions (such as deployment of artificial intelligence at the edge) 

emerging from edge computing could be of interest, issues such as portability efforts and shrinking 
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requirements needed to transfer software from medium- to high-performance computing units to 

highly energy-constrained and low-power computation capacity hardware targets, limited this 

thesis to focus only on distributed computing for low-cost/low-performance, battery-powered, and 

highly constrained sensor networks [59]. 

2.4.3 A Survey on Distributed Computing in WSN 
According to Stula et al. [92], distributed computing is any process conducted by multiple agents 

or entities that perform operations on information and together generate resulting information, and 

can be defined and observed in terms of memory, communication, and processing. Huang, in [9], 

classified the applications of distributed computing in WSN according to the following taxonomy: 

Distributed Query Processing, Collaborative Signal Processing, or Distributed Estimation and 

Detection. Additionally, other applications of distributed computing in WSN include: local (in-

node or on-sensor or edge) processing and in-network processing. 

2.4.3.1 In-network Processing 

In-network processing involves the processing of data as it travels via the WSN to the sink. It 

involves actions such as fusion and aggregation on the data as it moves within the WSN from one 

sensor node to another. This reduces the number of redundant data that needs to transmitted. For 

example, Serpen and Liu [20] demonstrated through simulations, a case study that leverages 

existing WSNs as a parallel and distributed hardware platform to implement computations for 

artificial neural network algorithms. The results of their simulation suggested that the WSN-based 

neurocomputing architecture is a feasible alternative for realizing parallel and distributed 

computation of artificial neural network algorithms. However, their study did not consider the 

energy constraint of WSN as they assumed that the sensor nodes were not limited in energy supply. 

In another study, Pascale et al. [18] proposed an in-network processing framework to tap into the 

collective computation capability of WSN devices by coupling data communication and 

processing for the transformation of raw data into appropriate actions as it travels via the network 

towards the actuating nodes. Their results showed that distributed computing (via in-network 

processing) decreases latency and improves the balancing of energy consumption among the 

sensor nodes, thus mitigating the energy hole effect and increasing the expected lifetime of the 

network. However, the results were validated by simulations in Cooja. 
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2.4.3.2 Collaborative Signal Processing 

In collaborative signal processing, also referred to as Wireless Distributed Computing (WDC), a 

master node which needs to perform a complex computational task in a limited time frame divides 

the computational task into a number of subtasks and then assigns these subtasks to some slave 

nodes (neighbouring nodes) [93]. In [14], the authors discussed some of the possible applications 

of WDC such as image processing and pattern recognition, distributed data storage and database 

search, Synthetic Aperture Radar (SAR) processing, etc. Energy savings in WDC were 

demonstrated in this study by a wireless ad-hoc network comprised of a tactical handheld, radio 

nodes attached to a UAV, or sensor nodes. The findings showed that the reduction in energy 

consumption of the wireless nodes was achieved firstly by the fact that WDC enables processing 

within the network which reduces number of bits transmitted over the long backhaul at the cost of 

computational energy consumption. Chiasserini  [94], extended the concept of collaborative signal 

processing in WSN by using a collaborative computational algorithm and communication scheme 

where the sensor nodes were made to operate as a Distributed Digital Signal Processor (DDSP). 

Fast Fourier Transform (FFT) algorithm was applied to the DDSP approach and the results showed 

that the energy consumption obtained at different processing frequencies when the FFT is 

computed by a single sensor node were higher compared to the results derived in the case where 

the computation is distributed among multiple sensor nodes. 

2.4.3.3 Local Processing 

In the case of local processing, raw data are processed locally at the sensor node using its 

processing unit, and only the analysed results are transmitted via the WSN to the sink. Data 

processing is done independently on the sensor nodes and the sensor nodes do not collaborate with 

other [65]. Feng et al. [95], implemented an envelope analysis algorithm on a WSN node composed 

of a cortex-M4F core processor for feature fault extraction in a condition monitoring application. 

The results from the study showed that the sensor node was able to identify simulated faults and 

achieve real-time condition monitoring while reducing the data transmission throughput by 95%. 

In another study, Kartakis et al. [13], presented an end-to-end water leak localization system, which 

exploits edge processing in battery-powered sensor nodes. The sensor nodes were based on Intel 

Edison development boards and the proposed system combined a lightweight edge anomaly 
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detection algorithm based on a Kalman filter and compression rates and a localization algorithm 

based on graph theory. According to the authors, the edge anomaly detection and localization 

elements of the system produced a timely and accurate localization result which reduced the 

communication by 99% compared to the traditional periodic communication. 

2.4.3.4 Distributed State Estimation and Event Detection 

In distributed state estimation and detection applications, the WSN makes a decision about the 

value of a physical variable (estimation) or the occurrence of an event (detection) in a distributed 

manner [9]. Distributed State Estimation (DSE) algorithms implement distributed data fusion, 

where neighbouring nodes communicate with each other to improve the accuracy of the monitored 

parameter whereas Distributed Event Detection (DED) enables evaluation of gathered data in a 

cooperative way within the network to detect the occurrence of an event [96]. In the DSE study by 

Alriksson and Rantzer [97], the performance of a local Kalman filter and a distributed Kalman 

filter was evaluated experimentally using an ultrasound-based positioning application composed 

of a sensor network with seven sensor nodes. There was no centralized computation and the goal 

was to make sure that every node in the network has an accurate estimate by performing 

computations in a distributed manner and communicating only once per sampling interval. 

Dziengel et al. [96], presented the deployment and evaluation of a fully applicable DED system 

for fence monitoring. Their goal was to solve the classification problem of distinguishing trained 

events within a WSN at a construction site fence and for which they implemented an in-network 

computation solution that uses data compression methods based on a classical pattern recognition 

system. Their solution deployed a WSN composed of 49 nodes which were integrated in the 

construction site fence elements and they evaluated the acceleration data of all triggered nodes for 

10 event classes within the network. Their results revealed that the in-network processing 

capability of their proposed solution clearly reduced the energy consumption beyond a 

communication distance of two hops to the base station and led to a prolonged lifetime of the 

network, while achieving an average event detection accuracy of more than 93%. In another study, 

Titouna et al. in [98] presented a Distributed Outlier Detection System (DODS) that implemented 

in-network outlier detection in which multiple sensed data types were considered and where 

outliers were detected locally by each node using a set of classifiers, so that neither information 
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about neighbours is needed to be known by other nodes nor a communication is required among 

them. The functionalities of the proposed scheme were validated via extensive simulations using 

real sensed data obtained from Intel-Berkeley Research Lab. The results showed that the proposed 

solution had an interesting performance and also consumed less energy.  

Now that we have established the importance of distributed computing in WSN and given that 

WWPM can serve as a good application area for distributed computing in WSN, we will in the 

following sections present the state-of-the-art of WWPM. In addition, since this thesis is interested 

in improving the performance and extending the lifetime of WWPM systems, we will review a 

number of signal processing techniques used for improving the performance (accuracy) of leak 

detection and the power management techniques existing in the literature for the extending the 

lifespan of WWPM systems.  

2.5 State-of-the-art of Leak Detection Techniques 

2.5.1 Taxonomy for Classifying Leak Detection Techniques 
In this sub-section, we present a general classification of the leak detection techniques used in 

water pipeline monitoring (WPM) and then focus on WWPM in the next section. Several 

taxonomies exist in the literature for classifying leak detection techniques, and there is no single 

unified taxonomy generally accepted. However, we developed a taxonomy for the classification 

of leak detection techniques, as shown in Figure 2.4. Based on our taxonomy, leak detection 

techniques used for WPM can be categorized as either static or dynamic depending on the mobility 

of the equipment used for detecting the leak signals. In addition, depending on whether the leak 

detection technique monitors external or internal parameters of the pipeline and depending on the 

usage of either specialized hardware equipment or low-cost sensors with computational algorithms 

for processing the leak signals, leak detection techniques can also be classified as external 

(hardware-based) or internal (software-based) methods. The software-based methods can either 

employ WSNs for monitoring the pipeline, in which case they are referred as WWPM techniques 

or use non-WSN technologies (e.g., wired telemetry and Supervisory Control and Data Acquisition 

–SCADA, that makes use of sensors connected to the main control centre via communication 

means such as copper cables or optical fibres) in which case they are referred to as non-WSN-

based techniques. The WWPM techniques can be further categorized into either intrusive methods 
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that make use of invasive sensors such as pressure, flow sensors, etc. to monitor internal pipeline 

parameters or non-intrusive methods that make use of non-invasive sensors such as 

accelerometers, acoustic sensors, etc. to monitor external pipeline parameters such as pipe surface 

acceleration, sound of leak signals, etc. Finally, depending on the data processing technique used 

for analysing leak signals, leak detection techniques for WPM can be classified into either model-

based, transient-based, signal processing or data-driven methods. 

Figure 2. 4: Taxonomy for the classification of leak detection techniques.

2.5.2 Classification of Leak Detection Techniques
The detection and localization of water pipeline leakages are important to water utility companies 

because of the need to conserve raw/treated water and save associated costs [26]. A lot of research 

efforts have been dedicated to the development of a vast variety of techniques for leak detection 

and localization to minimize water losses caused by leaks [36]. Based on their technical approach, 

Adedeji et al. [27], Baroudi et al. [57], Adegboye et al. [99], and Torres et al. [44] in their survey 

papers on pipeline monitoring broadly categorized leak detection techniques as either external or 
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internal. In other surveys, Ismail et al. [37] classified leak detection techniques into software-based 

methods and hardware-based methods, Chan et al. [100] classified them as active and passive 

systems, while Zaman et al. [47] classified them into direct and indirect methods. The software-

based and hardware-based methods of [37], active and passive systems of [100], and direct and 

indirect methods of [47] are likened to the internal and external methods of [27], [44], [57], [99], 

respectively, as shown in Figure 2.4. In another study, El-Zahab et al. [36] classified leak detection 

systems into two major classes, i.e., static leak detection systems and dynamic leak detection 

systems. Static leak detection systems rely on sensors capable of sensing leak signals and coupled 

with a communication technology while dynamic leak detection systems require the mobilization 

of a leak inspection team that carry specialized devices to the suspected leak site to perform an 

inspection and confirm or clear the suspicion [36]. Most software-based (internal or active) and 

hardware-based (external or passive) leak detection techniques are static, as shown in Figure 2.4. 

In the sub-sections below, we briefly explain software-based and hardware-based methods of leak 

detection, highlighting the various techniques in each of the categories and stating their advantages 

and disadvantages. 

2.5.2.1 Software-based Methods 

The software-based methods use field sensors to monitor the operational and hydraulic conditions 

of the pipeline, such as the measurement of the flow, pressure and temperature [10], [37], [57], 

[99] and smart computational algorithms to process the measurements in order to detect and 

localize the occurrence of leaks on the pipeline [44]. Some of the software-based methods available 

in the literature include balance/model-based methods (e.g., Kalman Filter [26], [44], [101], State 

Observer [102], System Identification [103], Impedance Method [104], Mass Balance [105], Real-

Time Transient Model [106]), pressure/transient-based methods (Negative Wave Pressure [40], 

Pressure Point Analysis [107], Inverse Transient Analysis [108], Transient Reflection Method 

[109], Transient Damping Method [110]), methods based on signal processing (Fast Fourier 

Transform [111], Wavelet Transform [112], Kalman Filter [13], [38], [50], Acoustic Correlation 

Analysis [113], Spectral Analysis Response [54]) and data-driven methods (Support Vector 

Machine [114], K-Nearest Neighbour [115], Naïve Bayes [114], Artificial Neural Network [116], 

[117]). They involve the use of either intrusive sensors or non- intrusive sensors to monitor the 
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internal pipeline parameters. As an advantage, they can make use of a WSN and they are also cost 

effective. We classified the software-based leak detection techniques that incorporate WSN as 

shown in Figure 2.5. 

 

Figure 2. 5: WSN-based leak detection techniques 

According to Figure 2.5, the main computational algorithms used for processing and analysing 

leak signals from field sensors to detect the presence of leaks on a WDN can be categorized into 

signal processing, model-based and data-driven algorithms. The signal processing algorithms 

extract information from the measured data and compare it with data sets from a fault-free 

benchmark to detect the presence or absence of a leak. Most signal processing algorithms analyse 

data in the frequency domain, and thus require some mathematical conversion [118]. This makes 

them computationally intensive and will result in huge power consumption when implemented on 

sensor nodes. However, the main advantage of this method is that an accurate mathematical model 

of the pipeline is not needed [119]. The model-based methods usually involve the use of 

mathematical functions or formulas to represent or replicate the operation of a WDN. They can 

determine the approximate leakage location by comparing pressure or flow measurement with the 

estimate obtained using the hydraulic network model [100]. The drawback with the model-based 
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methods is that they require a precise mathematical model of the pipeline system in order to 

accurately detect leaks. With the data-driven methods, large amounts of data are being collected 

and used to analyse, interpret, and extract useful information for operational and other purposes 

based on machine learning techniques and other data-driven methods [35], [101]. Their drawback 

is that they need a large amount of data and a long training time [101]. 

2.5.2.2 Hardware-based Methods 

The hardware-based methods detect the presence of leaks from outside the pipeline by visual 

observation or by using specialized equipment that range from simple listening rods to more 

sophisticated approaches such as inspection gauges sending magnetic fields, electromagnetic 

waves or ultrasound through a pipeline’s walls [10], [37], [57], [99], for physical monitoring. They 

use local sensors to send an alarm when a leak occurs, and do not perform computation for 

diagnosing a leak [44]. Some examples available in the literature include acoustic techniques 

[120], tracer gas techniques, fibre optic sensing techniques [121], ground-penetrating radar 

techniques [122], Magnetic induction techniques [123], etc. As a disadvantage, they may involve 

the use of expensive instruments, some are labour intensive and also do not make use of WSNs in 

monitoring. As an advantage, they are highly sensitive to leaks. 

Figure 2.4 illustrated the classification of leak techniques into static and dynamic methods, 

followed by hardware-based and software-based methods while Figure 2.5 depicted the detailed 

classification of WSN-based leak detection techniques. A detailed review of these techniques 

along with a comparison can be found in [10], [27], [34], [37], [47], [57], [99], [100].  

It should be noted that WPM schemes that incorporate WSNs are advantageous because WSNs 

provide effective solutions for pipeline monitoring, due to their low-cost, flexibility and ease of 

deployment in inaccessible terrain [10], [46], [57]. Consequently, we will focus our study on leak 

detection in WWPM systems. We will in the next section review some works in the literature that 

used WWPM systems to perform leak detection in WDNs.  
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2.6 Wireless Sensor Network Based Water Pipeline Monitoring 

2.6.1 Introduction  
WWPM systems are practically developed from two main parts: the sensors installed along the 

pipeline that periodically collect useful information relating to some pipeline parameters and the 

algorithms that process this information in order to detect and localize leaks in the pipeline [38]. 

Typically, the remote field sensors provide data to a centralized monitoring station (for centralized 

systems) or fusion centre (for decentralized systems), where the data undergo processing and are 

later fed into a leak detection algorithm to determine the presence or absence of a leak.  

The sensors used for collecting measurements from the pipe in WWPM systems can either be 

intrusive or nonintrusive sensors. On the one hand, the intrusive techniques (i.e., destructive 

methods which puncture the pipes to place sensors such as flowrate metres and/or pressure gauge) 

are expensive, consume more power, and difficult to install, but however provide a higher 

accuracy. On the other hand, nonintrusive techniques (i.e., non-destructive methods that use 

sensors such as accelerometers, acoustic sensors, force sensitive resistors, vibration sensors, etc., 

installed on the pipe surface) are low-cost, consume less power, easy to install, but however 

provide low leak detection accuracy. In spite of the low detection accuracy of non-intrusive 

sensors, the requirement for WWPM systems to be low-power and cost-effective, has made the 

use of low-cost nonintrusive sensors in the design, implementation, and deployment of WWPM 

systems very popular in recent years [35], [43], [45], [46], [58]. Consequently, we will focus our 

study on WWPM systems that make use of low-cost nonintrusive sensors and we will review some 

works on WWPM that employ low-cost nonintrusive sensors for monitoring.  

Nevertheless, we cannot proceed without mentioning that one of the biggest challenges with leak 

detection in WWPM using low-cost nonintrusive sensors is that the measurements collected by 

these sensors may be inaccurate due to their low sensitivity and the presence of measurement noise 

that may result in false alarms in the leak detection system. Therefore, the issue of reliably 

identifying a leak event in the midst of errors from a number of sources (commonly called noise) 

is a fundamental challenge of any leak detection system using low-cost sensors [46], [48]. 

However, to increase the leak detection accuracy, most WWPM solutions use computational 
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algorithms to increase the accuracy of the data measured by the low-cost sensors attached to the 

pipeline.  

In sub-section 2.6.2 we will detailly discuss the challenges of using nonintrusive sensor for leak 

detection in plastic pipes, in sub-section 2.6.3 we will present some computational algorithms 

based on signal processing techniques that have been used for leak detection, in sub-section 2.6.4 

we will review some selected vibration-based WWPM studies, and finally in sub-section 2.6.5 we 

will review studies that have applied one or more power management techniques, which we 

presented in section 2.3,  for extending the lifespan of their proposed WWPM solution. 

2.6.2 Challenges of Leak Detection in Plastic Pipes using Nonintrusive Sensors  
The occurrence of a leak on a pipe generates noise (a leak signal) that propagates on both sides of 

the leak position. The noise propagates along the pipe, both in the fluid (which can be detected by 

hydrophones) and along the pipe-wall (which can be detected by accelerometers). Appropriate 

sensors placed at convenient locations on both side of the leak position can be used to detect these 

leak signals [124] as shown in Figure 2.6.  

 

Figure 2. 6: Leak detection by acoustic/vibration sensors [125] 

The reliable detection of leak signals in WDN using non-intrusive sensors such as accelerometers 

is dependent on a number of factors such as pipe size and type; leak type and size; pipe pressure; 

interfering noise; and the sensitivity and frequency response of the accelerometer [126]. The pipe 
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material and diameter have the most significant effect on the attenuation of leak signals in the pipe. 

From the literature, it is known that leak signals travel farthest in metal pipes and are attenuated 

greatly in plastic pipes [55]. The attenuation is even greater for larger diameter pipes [126], thus 

making it harder to detect leaks. Furthermore, the pipe material and diameter also affect the 

predominant frequencies of the leak signals. The larger the diameter and less rigid the pipe 

material, the lower the predominant frequencies. This effect makes leak signals susceptible to 

interference from low-frequency vibrations, such as vibrations from pumps and road traffic [126]. 

In addition, the vibration is also proportional to the pressure, with the leak induced energy intensity 

being greater for higher pressures. 

Accelerometers respond to acceleration and so tend to be more responsive to higher frequencies. 

They are most effective on metallic pipes and tend to be less effective with non-metallic pipes. 

This is due to the increased attenuation of the high frequency components of the leak signal as they 

propagate through the pipe. This attenuation is partly caused by damping in the pipe wall and 

radiation of noise into the surrounding medium [125]. To reliably detect leaks in metallic pipes 

using accelerometers, the inter-sensor spacing can be as large as 500 m, even though a maximum 

spacing of 200 m is recommended [46]. However, for plastic pipes, the inter-sensor spacing cannot 

exceed 100 m (even in the case when high accuracy accelerometers such as those of the B&K 

brands are used). Thus, for reliable leak detection over longer distances in plastic pipes, the use of 

hydrophones is recommended. However, hydrophones are intrusive (destructive) methods of leak 

detection that require the sensor to be placed into the water at convenient fittings so as to detect 

the leak signal. This makes them difficult to install and not attractive in our context. Despite the 

drawbacks of accelerometers in detecting leaks in plastic pipes, their low-cost (especially MEMS 

accelerometers) and their ease of installation makes them very attractive for usage especially in 

our context. 

Conclusively, the challenges associated with leak detection in plastic pipes using low-cost MEMS 

accelerometers can summarised under: 

1. Short inter-sensor distance 

2. High false alarm rate 
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The short inter-sensor distance is due to the higher wave attenuation in plastic pipes causing leak 

signals not to go far [54]. This will require the sensors to be placed very close to each other to have 

a higher spatial resolution to permit them reliably detect leaks. Using high-cost sensors such as 

B&K accelerometers will result to an increase in the cost of the WWPM system. However, a 

reduction in the cost of the WWPM system can be achieved via the use of low-cost MEMS 

accelerometers, as demonstrated in the works of Ismail et al. [58]. Unfortunately, low-cost sensors 

have lower accuracy and this leads to an increase in the false alarm rate of the leak detection 

system. 

The high false alarm rate is due low sensitivity of low-cost MEMS and the difficulty in reliably 

capturing leak signals in the presence of environmental or background noise (such as vibrations 

from opening/closing the taps at user premises, moving vehicles, starting/stopping of pumps, 

opening/closing of valves, etc.). This results in false alarms caused by this environmental 

perturbations unrelated to the state of the pipe [46], [127].  

Decreasing the cost of the leak detection system by using low-cost MEMS accelerometers for leak 

detection in plastic pipes will eventually decrease the performance (accuracy) of the leak detection 

system. However, the accuracy of leak detection systems using low-cost MEMS accelerometers 

can be improved by employing some signal processing techniques [35]. The major role of the 

signal processing techniques is to extract features related to leak in the pipe and to further process 

them to improve on the leak detection accuracy.  

In the next sub-section, we discuss different signal processing techniques that have been used for 

leak detection in plastic WDNs using WWPM systems that employ nonintrusive sensors for 

monitoring. 

2.6.3 Signal Processing Techniques used for Leak Detection in WWPM 

Generally, signal processing methods are involved with extracting certain features from the 

captured signal. Subsequently, the extracted information, such as amplitudes, wavelet transform 

coefficients and other frequency response components are used to determine leak events by 

comparing them with a known threshold value that corresponds to a no-leak scenario [27], [51], 

[99]. Adegboye et al. [99], summarized the signal processing approach for leak detection in five 
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steps which include: (1) Data acquisition which involves the measurement of leak signals by field 

sensors (2) Signal pre-processing which involves pre-processing measurements to filter the 

background noise; (3) Feature extraction which involves applying various statistical, spectral and 

signal transform techniques to extract relevant features used to monitor the state of the pipeline; 

(4) Pattern classification which involves making a decision by comparing the pattern of the 

extracted feature with that of known pre-set signal or previous features; (5) Leak detection which 

is achieved by comparing the extracted pattern with the threshold value. Figure 2.7 depicts the 

step-by-step procedure of leak detection in WDN using signal processing techniques.  

 

Figure 2. 7: Step-by-step procedure for leakage detection in WDN using Signal processing 
techniques [99] 

The signal processing algorithms used for leak detection in WWPM can be broadly categorized 

into algorithms that operate entirely in the frequency domain (those that require signal 

transformation), algorithms that operate in the time domain (those that process data 

straightforwardly in the time domain without needing any mathematical conversion), and 

algorithms that operate both in the time and frequency domains. Those that operate in the 

frequency domain include and are not limited to Fast Fourier Transform (FFT) while those that 

operate in the time domain include and are not limited to Kalman Filter (KF), Moving Average 

Filter (MAF), Recursive Least Square (RLS). Additionally, signal processing techniques that 

operate in both the time and frequency domains include and are not limited to Wavelet Transform 

(WT), Short Time Fourier Transform (STFT), etc. A detailed comparison of the different signal 

processing techniques with their advantages and disadvantages is found in [128]. 
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2.6.3.1 Fast Fourier Transform 

Fourier analysis converts a signal from its original domain (often time or space) to a representation 

in the frequency domain. The decomposition of a sequence of values into components of different 

frequencies, which is performed by discrete Fourier transform (DFT), is useful in many fields. 

However, computing it directly from the definition is often too slow to be practical especially for 

large datasets. Fast Fourier Transform (FFT) algorithm rapidly computes the DFT of a sequence 

thus reducing the number of computations needed. FFT is one of the most utilized and oldest signal 

processing technique used in applications such as Structural Health Monitoring (SHM) because of 

its ease of implementation and efficiency of analysing stationary signals [128]. In the area of leak 

detection, FFT has been used in a myriad of studies for processing the leak signals detected by 

pressure transducers and/or vibro-acoustic sensors. Some studies that have used FFT for leak 

detection include: [54], [104], [111], [129]. 

2.6.3.2 Wavelet Transform 

The Wavelet Transform (WT) is similar to FFT (or much more to STFT) with a completely 

different merit function. The main difference between the two is that FFT decomposes the signal 

into the frequency domain whereas the WT decomposes the signal into both the time and frequency 

domain. That is, whereas FFT provide good frequency resolution, but no time resolution, WT 

provides both good time and frequency resolutions of a signal [130]. This inherent feature of the 

WT has contributed to its use in a myriad of engineering applications especially in SHM, as it 

provides a time–frequency representation of the signal through time and scale window functions 

[128]. Just like FFT, WT has been applied in a lot of studies involved in leak detection and 

localisation in water pipelines. Some studies that have used WT for leak detection include: [40], 

[54], [131]. 

2.6.3.3 Time Series Analysis 

Time series analysis is a statistical method that can analyse data sequences for the purposes of 

model identification, parameter estimation, model validation and prediction [132]. Time Series 

(TS) models develop an approximate mathematical model from input and output measurements 

recorded for a certain phenomenon [128] and can be used for prediction, signal extraction and 
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decision making for time series data (which is a record of a phenomenon irregularly varying with 

time). They can be classified into stationary and nonstationary, Gaussian and non-Gaussian or linear 

and nonlinear TS models. Linear TS models are among the most utilized techniques for signal 

processing and condition assessment of structures under dynamic loading owing to the fact that they 

can be implemented easily and are considered an efficient technique for modelling linear systems 

[128]. When considering stationary and linear TS, the most popular models are: Autoregressive (AR) 

model, Moving Average (MA) model, Autoregressive Moving Average (ARMA) model, as well as 

their variations such as Autoregressive Vector (ARV) model, Autoregressive model with eXogenous 

inputs (ARX), Autoregressive Moving Average with eXogenous input (ARMAX) , and 

Autoregressive-Autoregressive with eXogenous input (AR-ARX), and Autoregressive Integrated 

Moving Average (ARIMA) [128], [133]. Some representative studies that have used TS for leak 

detection include: [134], [135]. 

2.6.3.4 Kalman Filter 

The Kalman Filter (KF) is a signal processing technique for filtering information known to be prone 

to error, uncertainty, or noise. KF is a time series model that can be used for prediction, signal 

extraction and decision making for time series data. It is considered as a powerful mathematical 

tool that can be used to predict the state of a dynamic system in the presence of uncertainty [136]. 

With respect to leak detection in WDN, KF and its variants, on the one hand have been applied as a 

state observer algorithm to determine parameters such as leak size and leak position. Torress et al. 

in [44] provides a detailed review of KF used as a state observer technique for leak detection in water 

pipelines. Other studies such as [101] and [26] use KF as a state observer. On the other hand, there 

exists a few studies in the literature dealing with leak detection in WWPM that have used KF as a 

signal processing technique for processing data gotten from vibro-acoustic sensors. Karray et al. in 

[38] used KF for filtering out noise from vibration measurements obtained from a FSR attached to 

the pipe while Kartakis et al. in [13] also used KF for removing noise present in the pipe surface 

vibration data collected by an accelerometer. In both studies, the KF is embedded within the sensor 

nodes, allowing the nodes to perform local processing. As such, both studies actually implement 

distributed computing within the WSN. However, both studies deploy a decentralized WSN 

architecture where the nodes forward their processed data to a cluster head and there is no 
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collaboration between neighbouring sensor nodes. In addition, none of the studies utilizes low-cost 

MEMS accelerometers for leak detection. More recently, Zhang et al. [50] also used KF alongside 

other algorithms such as Median and Interquartile Range Analysis and Cumulative Sum (CUSUM) 

methods in a real life WDN in South Australia that has 305 permanent accelerometers installed for 

monitoring the water pipeline. Though KF algorithm has been used for leak detection in WWPM, 

distributed KF algorithms have not been applied to WWPM, to the best of our knowledge. 

In the following sub-section, we review some vibration-based WWPM studies available in the 

literature. The survey is based on the architectures of the sensor nodes, the type of sensors and pipe 

material used, and the location where the leak detection algorithms are implemented to analyse the 

leak signals. 

2.6.4 A Review on Vibration-based WWPM Studies  
Depending on where these computational algorithms (used for pre-processing of the leak signals, 

leak detection and leak localization) are executed, WWPM solutions can be classified as either 

centralized, decentralized or distributed. In order to have a good understanding of all the significant 

WWPM approaches available in the literature, we propose the criteria given in Table 2.2, which 

provides a description of the attributes we used to classify WWPM studies available in the literature. 

Our focus is on WWPM studies that monitor the pipe surface vibration as an indirect method of 

monitoring the pressure fluctuations caused by leaks in the pipeline and that make use of nonintrusive 

(vibration-based) sensors such as accelerometers, piezoelectric transducers, force sensitive resistor, 

etc. The algorithms used in these studies for processing the leak data (pipe surface vibration) fall in 

the data-driven, model-based, and signal processing methods of leak detection techniques shown in 

Figure 2.5. 
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Table 2. 2: List of criteria for comparing selected WWPM. 

Criterion Description 
Parameter 
monitored 

This is a feature of the pipeline system that is detected by the sensor and used for leak 
detection after processing. 

Sensor Type of sensor used in the study to detect leak signals 
Pipe material  Type of pipe that was used in the study. It can be metallic (e.g., steel) or plastic (e.g., 

Polyvinyl Chloride (PVC)) 
Processing unit This describes the on-board processing unit embedded in the sensor nodes 
Pre-processing 
(PP) 

Technique used for pre-processing (e.g., filtering) the leak signal 

Leak Detection 
(LD) 

Technique used for processing the leak signal to detect the presence or absence of a leak. 

Leak Localization 
(LL) 

Technique used for identifying the location of the leak. 

Location of 
Processing 

Processing can be done at the Base Station (BS), Fusion Centre (FC) or at the Sensor Node 
(SN). 

Monitoring type Classifies pipeline monitoring into Centralized, Decentralized, or Distributed based on the 
location where processing takes place. 
Centralized: all processing takes place at the BS. 
Decentralized: part of the processing (PP and/or LD) take place at the SN and/or FC. 
Distributed: all processing takes place at the SN. 

 

We focus on 16 representative vibration-based WWPM studies and compare them based on the 

criteria listed in Table 2.2. Table 2.3 provides a summary comparison of selected studies in the 

literature that monitor pipelines using WSNs and make use of nonintrusive sensors.  

The study of Stoianov et al. [42], referred to as PipeNet, is one of the pioneering vibration-based 

WWPM solutions that provides real-time leak detection. On the basis of an Intel commercial mote 

(Imote) composed of an ARM7 core, 64 kB of RAM, 512 kB of Flash, and a Bluetooth radio for 

communication, a laboratory pipe rig was built to demonstrate the detection and localization of 

leaks using acoustic and vibration data acquired from densely spaced hydrophones and 

accelerometers installed along the pipeline. Local processing was performed at each node by a 

Fast Fourier Transform (FFT) implementation combined with a compression, while cross-

correlation was implemented at the central server as the leak detection and localization algorithm. 

The study provides a real-time solution for leak detection, but it is not energy efficient due to the 

high sampling rate and processing algorithms that were used. 

In [41], Sadeghioon et al. present the design and development of a multimodal Underground 

Wireless Sensor Network (UWSN) for pipeline structural health monitoring. They developed a 
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sensor node consisting of a 16-bit microcontroller from Microchip, implementing their nano-watt 

XLP technology (PIC16LF1827), an eRA400TRS 433 MHz transceiver, two temperature sensors 

and one Force Sensitive Resistor (FSR) pressure sensor. According to the authors, the power 

consumption of the sensor nodes was minimized to 2.2 μW based on the collection of one 

measurement per 6 h in order to prolong the lifetime of the network. Two drawbacks could be 

highlighted from this work: the first one is its inability to perform real-time monitoring and the 

second one lies in the classic drawbacks from adopting a centralized approach for leak detection—

reduced efficiency for a large-scale WSN, as it induces high latency and uneven energy 

distribution. 

Martini et al. [39], in a series of tests in Bologna, used low-cost accelerometers attached to plastic 

pipes close to water meters in the city. They proposed to solve the problem of the high false alarm 

rate caused by the low accuracy of low-cost sensors and the inability of reliably detecting leakages 

in the midst of environmental noise, by taking measurements only during quiet times, for example, 

during the night when activities are reduced. However, one drawback with this approach is that 

does not operate in real time, as leaks cannot be immediately detected whenever they occur. 

Another reason is that it is difficult to find quiet times in certain areas such as city centres. 

In [38], Karray et al. propose a solution called EARNPIPE which is comprised of a Leak Detection 

Predictive Kalman Filter (LPKF) and Time Difference of Arrival (TDOA) to detect and locate 

leaks. The study implemented a decentralized cluster-based WSN architecture for monitoring. The 

data collected from sensors were filtered, analysed and compressed locally with the same Kalman 

Filter (KF)-based algorithm and then forwarded to the cluster head to detect and localize the leak. 

A laboratory testbed was set with plumbing components and a network was deployed, consisting 

of nodes composed of Arduino Due board (with an ARM cortex M3 microcontroller inside), FSR 

sensors used for measuring pressure and Bluetooth for communication. In this work, the high 

consumption of the Arduino Due board combined with the power hungriness of Bluetooth 

communication leads to high consumption profiles and thus not appropriate for battery-powered 

WWPM systems.  
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Ismail et al., in [37], [49], [58], presented the development of a WPM using low-cost off-the-shelf 

components. The experimental setup consisted of low-cost vibration sensors such as MPU6050, 

ADXL335 and MMA7361 sensors for the measurement of vibration occurring along the pipes, an 

Arduino Uno and an XBEE module for wireless transmission to a centralized decision support 

system. Their work showed that low-cost MEMS accelerometers with multiple axis can be 

effective for leak detection in plastic pipes. Their solution was capable of distinguishing a leak 

from a non-leak for a leak coming from a 1-mm hole when the pressure was above 58.8 kPa. The 

drawbacks of this solution include the high rate of false alarms and the fact that it does not operate 

in real-time. 

In [13], Kartakis et al. presented an end-to-end water leak detection and localization system, which 

exploits edge processing and enables the use of battery-powered sensor nodes. The proposed 

system combined a lightweight edge anomaly detection algorithm based on a Kalman filter and 

compression rates and a localization algorithm based on graph theory. It was validated by 

deploying nonintrusive sensors measuring vibrational data on a lab-based water test rig that had 

controlled leakage and burst scenarios implemented. The sensor nodes were based on Intel Edison 

development boards (embedding a dual-threaded Intel Atom CPU at 500 MHz and a 32-bit Intel 

Quark microcontroller at 100 MHz, 1 GB LPDDR3 POP memory as RAM and 4 GB eMMC as 

flash storage) and NEC Tokin ultra-high-sensitivity vibration sensors. The main drawback of this 

work is that the choice of commercial element (Intel Edison board) that constitutes the sensor node 

is not really a WSN node stricto sensu since it belongs to the Raspberry device class, with an 

energy efficiency and cost effectiveness that are beyond the specifications corresponding to WSN 

performances. In addition, the sensor used for monitoring the pipe surface vibration is not a low-

cost sensor. However, even though our study is focused on using low-cost, low-accuracy vibration 

sensors for reliable leak detection, this article shows that edge computing has an emerging presence 

in the field. 
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As can be seen from Table 2.3, most of the existing WWPM studies are either centralized or 

decentralized since they require processing at the base station in order to detect and localize leaks. 

Additionally, from the literature, studies like [35], [37], [37], [39], [42], [43], [54], have 

demonstrated that low-cost MEMS accelerometers can be used for detecting leaks in plastic pipes. 

Thus, we will focus our study on WWPM systems that use low-cost MEMS accelerometers for 

leak detection in plastic pipes. Another reason for focusing on plastic pipes is that in most 

developing countries WDNs are constructed from plastic pipes because of their lightweight that 

facilitates their deployment over large areas, protection from corrosion, and resistance to bursts 

resulting from hydraulic variations [45].  

Lastly, in order to achieve our dual goal of achieving improved accuracy and extending the lifespan 

of WWPM system, we will in the next sub-section review the power management techniques that 

have been used in WWPM to prolong the lifespan of WSNs used for monitoring WDNs.  

2.6.5 A Survey of Power Management Techniques for Extending the Lifespan 
of WWPM Systems 

In the literature of WWPM, very few studies have tackled the issue of power consumption and 

sought ways to reduce the energy consumption so as to prolong the monitoring lifetime. However, 

the issue of energy consumption in WWPM systems is of paramount importance since a WWPM 

system is required to go for long periods of time unattended as a result of the fact the nodes may 

be difficult to access, especially in the case of buried pipelines. In such cases, the Pipelines are 

required to be monitored throughout their life span, which can extend into years. In this sub-

section, we survey some power management techniques that were discussed in section 2.3 and 

how they have been applied to WWPM. 

In [41], the authors used duty cycling with scheduled wake-up to reduce the power consumption 

and thus prolong the WWPM lifetime. The Power consumption of the sensor nodes was minimized 

to 2.2 μW based on taking one measurement every six hours, thus given the sensor node a 

theoretical lifespan of 100 years when powered with two AA batteries. Although the sleep/wake-

up method used in this study achieves great energy reduction, the WWPM solution does not 

provide real-time monitoring. In a more recent study, Liu et al. [62] proposed a leakage triggered 
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networking method (radio controlled wake-up) to reduce the wireless sensor network’s energy 

consumption and prolong the lifetime of their proposed WWPM system. The authors proposed the 

use of three types of control frames (i.e., join frame, active frame, and wave frame) to trigger the 

network according to the leakage detection results. The coordinator and routing nodes were 

consistently in the working state and the terminal nodes within the routing node network were 

sequentially working and sleeping. The terminal nodes only wake-up from sleep when they receive 

an active frame from the routing nodes. In [107], the authors fused duty cycling and data driven-

based schemes for maximizing the information gain about the leak, as well as minimizing the 

power consumption. The duty cycling-based schemes on the one hand work by putting the nodes 

into sleep mode when there is no activity. The authors exploited this idea to minimize the energy 

consumption. On the other hand, the data driven-based schemes focus on how energy can be 

conserved through efficient data reduction and data acquisition. In their proposed solution, the 

duty cycling part provides the sleep-wake-up schedule for the nodes to minimize the sensing, 

communication and processing-related energies while the data driven part implements adaptive 

sampling where nodes closer to the leak location operate at higher sampling rate whereas nodes 

farther away from the leak operate at a lower sampling rate. However, this study employed 

centralized data processing to detect and localise leaks. The same author in another study [139] 

combined duty cycling and data driven approaches like hierarchical sensing and compression. The 

scheme relies on implementing hierarchical sensing by using vibration sensors of different 

sensitivities to detect vibrations due to a leak [140], and on exploiting duty-cycling, and wavelet-

based signal compression, in order to reduce sensing, computation and communication energies. 

However, the results were validated only via simulations.  

Rashid et al. [40], used clustering and in-network processing to reduce the energy consumed in the 

network. The authors used wavelength transform and moving average filter to implement in-

network processing within the WSN. By integrating the signal processing algorithm in the sensor 

nodes for distributed event detection and by performing aggregation on data within the cluster, the 

energy consumed in the network is far less than when all readings are sent to the base station in a 

centralized network. [46] and [38] also implemented clustering whereby sensor nodes acquire 

vibration data from the pipe and transmit to a closely located cluster head node which performs 
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local processing and finally transmits to a centralized base station that performs the leak detection 

decision.  

A mobile sink approach is proposed in [141], to reduce the number of multi-hop communications 

involved in linear WSNs monitoring pipelines and to significantly reduce the energy consumption 

used in data transmission. The study presents a framework for monitoring linear infrastructures, 

where data collection and transmission in the linear WSN is done using Unmanned Aerial Vehicles 

(UAVs). 

Elleuchi et al. in [61] proposed a novel heterogeneous two-tiered routing model that uses DEEC 

and RPL to achieve the routing task for WWPM. RPL was applied in the upper tier while DEEC 

is executed in the lower tier. The simulation results revealed the advantages of using the two 

routing protocols at the same time in decreasing energy consumption and extending the lifetime of 

a WWPM system. Their solution was however based on a centralized WSN architecture. 

Kartakis et al. [13], presented an end-to-end water leak localization system, which exploits 

compression as the data reduction approach for conserving energy consumption. The proposed 

system combined a lightweight edge anomaly detection algorithm based on Kalman filtering on 

compression rate stream. The results revealed that the proposed solution reduced the 

communication by 99% compared to the traditional periodic communication, thus enabling the use 

of battery-powered sensor nodes for an extended period. 

2.7 Summary and Identified Gaps in Knowledge  

2.7.1 Summary 
Achieving accurate real-time leak detection while preserving the lifetime of the WWPM system 

for a long period of time is a major challenge in WWPM. As has been shown in the literature, most 

of the WWPM systems available are centralized and decentralized. The centralized systems tend 

to consume much power and do not permit real-time monitoring thus making them not an optimal 

solution for leak detection in WWPM. Contrary, very few WWPM studies provide a fully 

distributed solution for leak detection. However, in recent years, there has been an increase in the 

number of studies advocating for the development distributed solutions [10], [34].  
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In addition, the issue of energy conservation is of paramount importance in WWPM. However, 

most WWPM studies focus on leak localization while neglecting the energy consumption of their 

proposed WWPM solutions. As such, there are very few studies in the literature that concern 

themselves with the evaluation of the energy consumption of their proposed WWPM solution and 

means on how to conserve energy in order to extend the lifespan of the WWPM system. 

Additionally, most of the studies that have treated energy consumption of their proposed WWPM 

solutions have been based on simulations and very few studies go to the extent of performing 

physical experiments on either a laboratory testbed or a real WDN. 

Recently, studies seeking to achieve reliable leak detection in plastic pipelines using nonintrusive 

sensors like accelerometers have become popular, making WWPM using accelerometers a very 

active area of research. From the literature, most of the studies have proposed the use of high 

accuracy accelerometers and powerful signal processing algorithms for reliable leak detection. 

However, such solutions are not ideal for the low-cost and low-power requirements of WWPM 

systems as they neglect both cost and energy efficiency. Even though a number of recent studies 

have proposed the use of low-cost MEMS accelerometers for leak detection in plastic pipes. The 

combined issue of leak detection accuracy and power consumption have not been well treated. To 

the best of our knowledge, no study has investigated or applied redundant distributed data fusion 

algorithms such as DKF (which have been extensively used to increase the accuracy of tracking 

systems) in the area of WWPM so far. 

Furthermore, being aware of the fact that the choice of components that constitute a sensor node 

affects the cost, power consumption and overall performance of the node, we noticed in the 

literature that few WWPM studies actually paid attention to the choice of components that 

constitute their sensor nodes. In order to achieve the objectives of low-cost, low-power, real-time 

and high reliability (which are conflicting requirements) in WWPM systems, it is required to 

properly scrutinise the selection of COTS elements used as building blocks of sensor nodes. 

Thus, to provide a reliable, real-time, fully distributed and low-power consumption WWPM 

solution for monitoring plastic pipes, three things will be needed (hypothesis): 
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1. A sensor node with sufficient computing resources to perform in-situ processing while 

maintaining low-power consumption by efficiently implementing duty cycling. 

2. Sensors to reduce the sensing energy via the implementation of hierarchical sensing.  

3. A signal processing technique which is computationally less intensive and has both the 

capability of predicting sensed data so as to reduce communication cost and the ability to 

perform distributed data fusion so as to increase the accuracy of leak detection. 

2.7.2 Identified Gaps in Knowledge 
Following the literature search that has been conducted, the identified gaps in knowledge are 

summarised below: 

1. While several studies in the literature are involved in providing leak detection in WWPM 

systems, most of the solutions either employed centralized or decentralized data processing 

to detect leaks. To the best of our knowledge, little work has been done to implement a 

real-time and fully distributed solution for leak detection in plastic pipes using low-cost 

MEMS accelerometer. 

2. While most WWPM studies focus on leak detection and leak localization, very few studies 

have evaluated the power consumption of their solution and sought ways to reduce the 

energy consumption so as to prolong the monitoring lifetime. 

3. No study has combined the implementation of duty cycling, hierarchical sensing, and data 

prediction energy conservation techniques at the sensor node level to prolong the lifetime 

of WWPM systems used for monitoring plastic WDNs.  

4. No study has investigated a fully distributed WWPM solution based on DKF to improve 

the leak detection accuracy of plastic pipes monitored by low-cost MEMS accelerometers 

and evaluated its power consumption. 

5. While several studies have evaluated the performance of different DKF algorithms in target 

tracking applications, no study has evaluated both the leak detection performance and 

energy consumption of DKF algorithms in the context of WWPM of plastic WDNs, by 

using both simulations and physical experiments on a laboratory testbed. 

In order to fill in the gaps in knowledge identified above, we propose to answer the following 

research questions derived from our specific objectives in Section 1.4 of Chapter 1. 
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1. Which COTS components will be used to meet the requirements of a low-cost and low-

power sensor node that has sufficient computing resources to perform in-situ processing? 

2. How will the sensor node be designed, implemented, and configured so as to achieve high 

computational capacity and low power consumption? 

3. Why is the KF a suitable signal processing technique for in situ processing of vibration 

data measured from plastic pipes using low-cost MEMS accelerometers? 

4. How will distributed data fusion affect the leak detection accuracy? 

5. How do the different distributed data fusion techniques affect the leak detection accuracy 

and the power consumption of the WWPM system? 

6. Which DKF algorithm is optimal for real-time leak detection in plastic WDNs using 

WWPM systems composed of a network of low-cost MEMS accelerometers? 

7. How will hierarchical sensing and duty cycling affect the sensor nodes energy consumption 

and the WSN lifetime?  

Subsequent chapters of this thesis will provide answers to the research questions highlighted 

above. 
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Chapter 3 

Sensor Node Design  

The objective of this chapter is to determine the specifications of a cost-effective and low-power 

node with sufficient computing power (required for in-node processing) that will be constructed 

from low-cost commercial off-the-shelf (COTS) components as building blocks. This is important 

because we intend to achieve real-time leak detection by implementing all the processing required 

for leak detection within the sensor node and without the need for long distance communications 

via multiple hops to a base station. Thus, it is required that the processing unit of the sensor node 

have sufficient computing resources to perform the required computation and also consume less 

energy since the nodes are supposed to be battery-powered. Moreover, given that numerous sensor 

nodes will be required for monitoring plastic WDNs (since vibration signals do not go far in plastic 

pipes), it is necessary that the sensor node be low-cost.  

In this chapter, we present both the hardware design and the configuration of a custom sensor node 

and a power measurement device which we will use for the evaluation of our proposed fully 

distributed WWPM solution on an experimental setup. Firstly, we find an answer to the question 

of which COTS components will be optimal for achieving a low-cost and low-power sensor node 

with sufficient computing capacity required for in-node processing. Next, we determine what will 

be the specifications of a sensor node suitable for providing a fully distributed, real-time, and low-

power WWPM solution for monitoring plastic WDNs? To provide answers to the questions, we 

start the chapter by first performing a general overview of the constituent parts of a WWPM system 

and then review existing WSN hardware platforms (both commercial and research) with a focus 

on the processing and communication units. We later review low-cost MEMS accelerometers that 

can be used for measuring pipe surface acceleration on plastic pipes. Subsequently, we discuss the 

selection of the appropriate components for our custom sensor node and the reason for choosing 

them, based on our specific application requirements. This is then followed by a discussion on the 

design and configuration of the sensor node. The chapter ends by presenting the design and 
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configuration of a custom power measurement device for measuring the power consumption of 

sensor nodes on a laboratory testbed during the physical experiments.   
3.1 An Overview of the Constituent Parts of a WWPM System 
A WWPM system consists of sensor nodes placed along with the pipeline network at specific 

points. Like any WSN application, it has both a sensor layer and a cloud layer, as depicted in 

Figure 3.1.  

 

Figure 3. 1: Architecture of a WWPM system [142] 

The cloud layer traditionally consists of algorithms that process the data collected from the sensor 

layer and databases that store the processed information for online visualisation [38]. The 

measurements collected by the sensor nodes get to the base station (sink) via either multi-hop 

communications or with the help of cluster heads in a centralized approach. The base station thus 

serves as an interface between the cloud layer and the sensor layer. The sensor layer, which serves 
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as an interface between the physical world and the digital world, consists of sensor nodes, with 

each node having the components depicted in Figure 3.2.

Figure 3. 2: Main hardware components of a wireless sensor node. Adapted from [143]

Given that this thesis focuses only on the sensor layer of the WWPM system, we will limit our 

discussion on the sensor nodes that constitute the sensor layer, since the cloud is not necessary. 

The components present at each sensor node include:

1. Processing unit: is the core of a wireless sensor node and it is involved with the collection 

of data from the sensors, processing this data (data filtering, data compression, data 

aggregation, data routing, etc.), deciding when and where to send it, reception of data from 

other sensor nodes, and setting of actuator’s behaviours (if they are present). It has to 

execute various programs, ranging from time-critical signal processing to communication 

protocols of application programs [144]. Categories of processing and control units used 

in a sensor node include: Microcontroller (MCU), Digital Signal Processor (DSP), Field 

Programmable Gate Arrays (FPGA), and Application Specific Integrated Circuits (ASIC) 

[4]. 

2. Communication unit or Transceiver: is in charge of sending and receiving packets to or 

from other sensor nodes in the network via wireless communication. The transceiver has 

different modes of operation which include: transmitting, receiving, and idle/sleep modes, 

with each state consuming a different amount of energy [144]. The choice of the 
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communication unit is very crucial in determining the sensor node’s energy consumption, 

since this unit consumes the highest energy compared to the processing and sensing units 

[1], [17]. 

3. Memory unit: A wireless sensor node should have sufficient memory space to perform 

the needed tasks. Typically, the on-chip memory of the MCU(RAM and EEPROM) usually 

serve as the memory unit [144]. In addition, some sensor nodes are equipped with flash 

memories, which are used to expand their storage capacity. The flash memories are used 

because of their ability to provide high capacity at a considerably low-cost [4], and can be 

used to store application related data or programs.  

4. Power supply unit: The operations (sensing, data processing, and communication) of a 

sensor node consume power. Sensor nodes are usually powered via energy stored in 

batteries or capacitors in applications that require deployment in areas without access to 

the power grid. The batteries used can either be rechargeable or non-rechargeable and can 

also be classified into nickel–cadmium (NiCd), nickel–zinc (NiZn), nickel metal hydride 

(Nimh) and lithium ion, depending on the electrochemical material used by the electrodes 

[145]. For long-lasting WSN applications where there is a need for sensor nodes to go for 

long periods unattended and without replacing their energy source, the limited energy 

storage capacity of batteries is not attractive. Currently, most sensor nodes are designed to 

have the optional ability to recharge their battery from energy harvested through 

scavenging techniques such as photovoltaics, temperature gradients, vibrations, pressure 

variations, the flow of air/liquid etc. [71], [144], [145]. In addition, sensor nodes also 

employ power management techniques such as duty cycling and dynamic voltage scaling 

to prolong the lifespan of the batteries.  

5. Sensing unit: serves as an interface between the real world and the digital world. It is 

usually made up of transducer and signal conditioning (ADC, filter, and amplifier) parts. 

The transducer generates an electric signal proportional to the event or condition being 

monitored or measured [4] and the generated electric signal is typically converted to digital 

form using the ADC, since the processing unit of sensor nodes can only process digital data 

[145].  
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Now that we have discussed the constituent parts of a wireless sensor node, we review in the next 

section the different sensor node hardware platforms that exist in the literature to guide our 

selection of a sensor node to be used for our fully distributed WWPM solution. 

3.2 A Review of WSN Hardware Platforms 

3.2.1 Introduction 
The architecture and technology of a sensor node are crucial in determining its cost, performance, 

and power consumption. The fact that a fully distributed solution for WWPM will require 

distributed computations, where the onboard processing capabilities of each sensor node are 

involved in processing the filtering, leak detection, and localization algorithms, necessitates that 

the sensor nodes operate more than just data collectors as were intentionally designed for, to full-

fledged information processors. Besides, the requisite of low power consumption in a WWPM 

system to prolong its operational life will also be hugely affected by the components that constitute 

the sensor nodes. Thus, the choice of using either an MCU, DSP, FPGA or ASIC as the sensor 

node's processing unit depends on a trade-off between flexibility and performance. Figure 3.3 

depicts the trade-off between flexibility and performance for the different processing platforms, 

with ASICs (which are entirely hardware-based architectures) providing the highest performance 

and MCUs (which are software-based architectures) providing the most flexible solution [67].  

 

Figure 3. 3: Flexibility-Performance trade-off for different sensor node processing units [67] 
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1. MCUs: The increased use of MCUs in sensor nodes is because of their flexibility in 

connecting with other devices (like sensors), their instruction set being amenable to time-

critical signal processing, their inherent capability of integrating ADC and DAC for 

conversion and timers used for control, and their low power consumption; they are also 

convenient in that they often have built-in memory [144]. Moreover, they can easily be 

programmed and can harness system software such as embedded operating systems in 

programming complex applications. Furthermore, their ability to operate in different power 

modes, which permits only certain parts of the MCU to be active at any given time, can be 

harnessed in the power optimization of the sensor node’s power consumption [144]. Thus, 

MCUs are increasingly used in sensor nodes because of their reduced cost, low-power and 

easy interface [4], [67].  

2. DSPs: While the utilization of DSPs as the processing units in the sensor nodes of some 

WSN applications (e.g., SHM) is possible, [144], [145], they are more optimized than 

general-purpose processors for applications requiring dedicated signal processing 

functions like digital filtering and feature extraction [4]. However, unlike MCUs they are 

more expensive and complex for WSNs environments with relatively simple and low signal 

processing requirements. Their power consumption is also high, making them not a suitable 

candidate for battery-powered sensor nodes. They are usually serve as coprocessors in 

sensor nodes rather than the main processor [4].  

3. FPGAs: which are reconfigurable platforms, offer greater flexibility, speed, performance, 

and reliability and can be used in sensor nodes as a standalone processor, a coprocessor, a 

hardware accelerator, or as a reconfigurable unit [4]. The reconfiguration attribute of 

FPGAs permits them to be reprogrammed in the field after deployment to adapt to a 

changing set of requirements. However, compared to MCUs, the process of reconfiguration 

can take a long time and requires more energy.  

4. ASICs: implement the required functionality using only hardware and provide better 

energy efficiency and performance. However, ASICs lack flexibility, and their 

functionalities can be offered in a less expensive and more flexible way via MCUs using 

software means [144].  
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There are several studies in the literature that review the different processing platforms used in 

sensor nodes. Notably, Karray et al. in [4] presented a comprehensive review of the current state-

of-the-art background needed for the design of evolutionary nodes with a thorough analysis of the 

node design components and application trends. The paper classified existing node platforms based 

on the technology used, from simple MCUs to sophisticated high-processing platforms, providing 

a selective state-of-the-art review on sensor node platforms, architecture, and technologies. The 

authors also provided a detailed comparison of all the different architectures. According to the 

authors, selecting the most optimal node architecture is a very important step in determining the 

performance and lifespan of the node and the network as a whole. 

In summary, ASICs are preferred for WSN applications that do not change over time, that require 

better energy efficiency and high-speed performance, and there is sufficient finance for 

investment. Conversely, MCUs are suitable for WSN applications where there is a need for 

flexibility and implementation of a low-cost solution. FPGA-based platforms can provide the best 

of the two worlds as they offer high processing capabilities, resulting in higher performance when 

compared to MCUs, and the ability to be reconfigured in run-time, providing better flexibility 

when compared with ASICs[67]. However, they are not easy to use and are more expensive than 

MCUs. 

Now, given that one of the objectives of this thesis is to propose a low-cost fully-distributed 

WWPM solution, we will use an MCU as the processing unit of our sensor node since MCUs are 

software-based devices and they represent the most flexible platform, making them a widely used 

in simple embedded systems with low-budget requirements [4], [67], [144]. Thus, we will limit 

this review only to MCU-based WSN hardware platforms. 

Concerning the communication unit of sensor nodes, Radio Frequency (RF)-based communication 

is by far the most relevant communication means in WSN as it best fits the requirements of most 

WSN applications such as providing relatively long-range and high data rates, acceptable error 

rates at reasonable energy expenditure, and does not require line of sight between the transmitter 

and the receiver [4], [144]. So, we will focus our survey only on RF-based transceiver modules.  
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In the following sub-sections, we will review the MCU-based processing units and RF-based 

transceivers of commercial and research wireless sensor nodes. This is to facilitate the selection of 

a low-cost and low-power MCU and RF transceiver to constitute the building blocks of the sensor 

node to be deployed on our WWPM system.  

3.2.2 An Overview of Commercial and Research Sensor Node Platforms  
The deployment of a WSN application first requires the sensor nodes to be developed. There exist 

a myriad of research and commercial sensor nodes available in the literature from which one can 

choose from. However, the choice of a specific sensor node is usually influenced by specifications 

such as application requirements, cost, size, power consumption, sensor interface, computing 

power, memory resources, etc., as the nodes vary in their underlying properties and capabilities. 

Examples of research and commercial hardware platforms used in WSN and IoT applications 

include: Mica, Mica2, MicaZ, TelosB, Imote2, Sun SPOT, ESP8266, ESP32, Raspberry Pi, etc.  

Over the years, there have been several studies that have sought to classify hardware platforms 

used in WSN. In one of the studies, Hahm et al. [88] classified IoT devices into two categories 

namely: low-end and high-end devices, based on the performance and capability of the hardware. 

In a more recent study, Ojo et al. [89] classified IoT platforms into three categories by further 

splitting low-end devices into low-end and medium-end devices. The low-end, medium-end, and 

high-end are likened to embedded sensor modules, system on chip (SoC), and adapted general-

purpose computers, which was the classification of WSN hardware platforms provided in earlier 

studies such as [146], [147]. Each category shows a different hardware setup which can be matched 

to diverse monitoring applications and entails a different set of trade-offs in the design choices. 

 Low-end devices: These are devices that are constrained in terms of computing and 

memory of resources. Their memory footprint is so constrained that they are unable to run 

traditional operating systems [88], [89]. These platforms are assembled from COTS MCUs, 

with RAM and flash memories that are of the order of tens or hundreds of kilobytes and 

processing units incorporating an 8-bit or 16-bit architecture. However, recent years have 

seen an influx of devices supporting 32-bit architecture, and 64-bit architecture devices are 

expected in the future. In 2014, the Internet Engineering Task Force (IETF) [87] 
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standardized the classification of these low-end IoT devices into Class 0 ( << 10 kB of 

RAM and <<100 kB Flash), Class 1 ( 10 kB of RAM and 100 kB Flash), and Class 2 

( 50 kB of RAM and 250 kB Flash). In addition, these devices usually use IEEE 

802.15.4-based transceivers for communication since they are required to be low-power 

and their power sub-system usually consists of a battery. Examples of low-end devices 

include Mica, Mica2, MicaZ, TelosB, Imote2, OpenMote-B, etc. 

 Middle-end devices: They lie between low-end and high-end devices with respect to the 

constrain of memory and computing resources. These devices are usually developed as 

SoC, incorporating MEMS sensors, MCUs, and one or more wireless transceiver modules 

on a single chip. In addition, they usually have their clock speed and RAM in the order of 

hundreds of MHz and KB, respectively unlike low-end devices that have their clock speed 

and RAM in tens of MHz and KB, respectively [89]. Moreover, these devices usually have 

transceiver modules that implement wireless technologies such as Wi-Fi, Bluetooth, BLE, 

Thread, etc. In terms of power supply, these devices can be power supplied by a battery or 

by the mains power supply. However, since these devices are power-hungry, powering 

them using a battery is not a good option for cases where the nodes are required to be 

operational for long periods unattended. This is because the battery will be depleted very 

fast and will require constant replacement or recharging over short periods. Examples of 

middle-end devices include ESP32, Particle Electron, Argon, Neon, etc. 

 High-end devices: These platforms are low-power PCs, embedded PCs, and some 

personal digital assistants (PDAs), including single-board computers such as the Raspberry 

Pi and smartphones [88], [89]. They have sufficient memory and computing resources 

required to run a traditional OS such as Linux, Windows 10 IoT Core or other operating 

systems developed for mobile devices. Their boards are also incorporated with standard 

wireless communication devices like Wireless LAN (IEEE 802.11) and/or Bluetooth 

(IEEE 802.15.1) and they support networking protocols like IP. Their high computing and 

high bandwidth communication ability enables them to be used as IoT gateways to 

implement edge computing. They consume a considerable large amount of energy and are 

conveniently powered by the mains power supply or other means that provide large 

capacity power supplies.  
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Table 3. 1: Comparison of Research and Commercial Sensor Node Platforms 

Platform Processing Unit Communication Unit Research 
group/Vendor 

Cost 
($) 

Category 

IRIS (2007) Atmel ATmega1281 Atmel AT86RF23 radio Crossbow 115.00 Low-end 
Mica2 (2002) Atmel Atmega128L CC1000 Berkley/Crossbow 99.00 Low-end 
MicaZ (2002) Atmel Atmega128L CC2420 Berkley/Crossbow 99.00 Low-end 

TelosB/TmoteSky 
(2004) 

TI MSP430 CC2420 Berkley Moteiv 104.00 Low-end 

Waspmote (2016) Atmel ATmega1281 ZigBee 3/ 802.15.4/ Wi-Fi Libelium 210 Low-end 
Imote2 (2008) Intel PXA271 

XScale 
CC2420 Crossbow 300 Low-end 

LOTUS (2011) ARM Cortex M3 RF231 MEMSIC 300 Low-end 
OpenMote B 

(2019) 
ARM Cortex-M3 CC2538 + Atmel AT86RF215 Industrial Shields 166.84 Low-end 

Arduino UNO 
WiFi Rev.2 

(2018) 

ATmega4809 Wi-Fi Arduino 38.90 Low-end 

ESP8266 (2014) Tensilica L106 Wi-Fi Expressif 18.95 Middle-end 
Sun SPOT (2007) ARM9 CC2420 Sun microsystems 750.00 Middle-end 

ESP32 (2016) Dual-Core Xtensa 
LX6 

Wi-Fi + BLE Expressif 19.95 Middle-end 

CC2538 (2012) ARM Cortex-M3 IEEE 802.15.4 (Thread, Zigbee) Texas Instruments 14.68 Middle-end 
nRF52840 (2019) ARM Cortex-M4F Wi-Fi + Bluetooth + BLE + IEEE 

802.15.4/Zigbee/Thread 
Nordic 24.95 Middle-end 

NCS36510 (2018) ARM Cortex-M3 IEEE 802.15.4 Onsemi 201.15 Middle-end 
Particle Argon 

(2018) 
ARM Cortex-M4F Wi-Fi + Bluetooth + BLE + IEEE 

802.15.4/Zigbee 
Particle 27.92 Middle-end 

Raspberry Pi 4 
Model B (2020) 

Quad core 64-bit 
ARM-Cortex A72 

Wi-Fi + BLE + Gigabit Ethernet Raspberry Pi 55.50 High-end 

Samsung ARTIK 
710 (2016) 

Dual core ARM 
Cortex-A7 

Wi-Fi + Bluetooth + BLE + IEEE 
802.15.4/Zigbee 

Samsung 
Semiconductor, Inc 

 

44.13 High-end 

BeagleBone Black 
Wireless (2014) 

ARM Cortex-A8 Wi-Fi + Bluetooth Texas Instruments 78.75 High-end 

 

Table 3.1 provides a comparison of popular research and commercial sensor node hardware 

platforms, categorised as either low-end, middle-end, or high-end devices. The list is by no means 

exhaustive, but it makes mention of most of the popular sensor node platforms available in the 

literature and which have been used in both research and commercial applications. This is coherent 

with past studies such as [4], [89], [148] but with the addition of recent platforms that have 

emerged. It should also be noted that low-end devices are greatly used in WSN applications (where 
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nodes do not directly connect to the Internet) whereas the usage of middle-end and high-end 

devices is dominant in IoT applications (where the nodes directly connect to the Internet and make 

use of IP or IP-like protocols). 

3.2.3 A Survey on MCU-based Processing Units for WSN Hardware Platforms 
WSN hardware platforms based on MCUs have evolved from using 8-bit MCUs to 32-bit MCUs. 

The first generation of sensor nodes made use of 8-bit microcontrollers and examples include 

MicaZ, Mica2, IRIS, Imote, etc. [7]. They are not suitable for deployment in our fully distributed 

solution because of their limited computational performance (in terms of computing speed and the 

size of RAM and flash memory), which permits minimal or no processing of the collected raw 

data onboard. Subsequently, the combination of 16-bit MCUs such as MSP430 and the CC2420 

radio transceiver led to the development of second-generation sensor nodes [7] with examples such 

as TelosB. These devices permit some level of storage and pre-processing at the sensor node level 

but are still not sufficient for performing the considerable amount of local processing required at 

the sensor node of a fully-distributed WWPM solution. Recently, third-generation sensor nodes, 

initially introduced by a generation of 32-bit MCUs based on ARM Cortex –M0/M0+/M3/M4 and 

PIC32MX [6] (e.g., Sun SPOT, Imote2, and LOTUS), have become popular as they provide high 

processing power and consume less energy. The first release of 32-bit MCUs was later reinforced 

by the emergence of the second release of low-power 32-bit MCUs (led by ARM Cortex M7, dual-

core ESP32, and faster PIC32MZ) in the period between 2015 and 2016, which triggered the use 

of third-generation sensor nodes in most WSN applications requiring in-node processing [6]. 

Common features of this generation of MCUs include low power consumption, the integration of 

powerful digital signal processing units, support of both Wi-Fi and Bluetooth network connection 

and larger RAM and Flash memories necessary for performing complex processing on the 

collected data onboard [6].  

Table 3.2 provides a comparison of the specifications of popular MCU-based processing units used 

in the sensor node platforms mentioned in Table 3.1. 
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  Table 3. 2: Comparison of popular MCUs used in WSN hardware platforms 

MCU 
(Microprocessor) 

Bus Size 

(bits) 

CPU 
Speed 

(MHz) 

RAM 

 

EEPROM Flash Power Consumption  

Active 
(mA) 

Sleep 
(μA) 

Voltage 
(V) 

Atmel ATmega1281 8 8 4 KB 4 KB 128 KB 10 - 14 1 – 7.5 3 - 5 

Atmel Atmega128L 8 8 4 KB 4 KB 128 KB 17 - 19 < 25 3 - 5  

MSP430G2553 16 16 512 KB N.A. 16 KB 4 - 5 0.8 - 56 1.8 - 3.6 

Intel PXA271 XScale 32 13–416 256 (SRAM) 

32 MB 
(SDRAM) 

N.A. 32 MB 31 390 3.2 – 4.5  

Atmel SAM3X8E 

(ARM Cortex M3) 

32 84 86 16 512 KB 100 2.5  1.6 – 3.6 

STM32F102Cx 

(ARM Cortex M3) 

32 48 10/16 KB N.A. 64/128 8.6 -36.1 200 < 4 

ATmega4809 8 20 6 KB 256 Bytes 48 1.2 – 11.4 0.6 - 16 1.8 – 5.5 

ESP32 32 240 520 KB 448 KB 2 MB 20 - 68 10 - 150 2.2 – 3.6 

STM32F415RG 

(ARM Cortex-M4) 

32 168 192 KB N.A. 1024 KB 2 - 87 3 - 4 1.8 – 3.6  

Raspberry Pi 4B 

(ARM-Cortex A72) 

64 1500 1-4 GB N.A. N.A. 600 N.A. 5.1 

 

3.2.4 A Survey on RF Transceivers for WSN Hardware Platforms 
The RF transceiver unit (responsible for exchanging data between individual sensor nodes) is the 

most power-hungry component of the wireless sensor nodes, making its selection crucial, 

especially in battery-powered wireless sensor nodes. 
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Table 3. 3: Comparison of popular RF transceiver units used in WSN hardware platforms 

RF transceiver Power consumption Outdoor 
coverage 
range (m) 

Operational 
frequency band 

Max. Data 
Rate TX 

(mA) 
RX 

(mA) 
Idle 
(μA) 

Sleep 
(μA) 

RFM TR1000 12 8.0 N.A. 0.7 < 91.44 916.5 MHz 1 Mbps 
RFM TR1001 12 3.8 N.A. 0.7 < 91.44 868 MHz 115.2 kbps 

Chipcon CC1000 26.7 9.6 74 0.2 < 300 315 / 433 / 868 
and 915 MHz 

76.8 kbps 

Chipcon CC2420 17.4 18.8 426 20 < 100 2.4 GHz 250 kbps 
Atmel 

AT86RF215 
62 28 6.28 0.03 < 420 315 / 433 / 

868/915 MHz and 
2.4 GHz 

50 kbps 

Atmel 
AT86RF230 

16.5 15.5 N.A. 0.02 < 500 2.4 GHz 250 kbps 

Atmel 
AT86RF231 

14 12.3 0.4 0.02 N.A. 2.4 GHz 2 Mbps 

Nordic nRF903 29.5 22.5 600 1 < 1300 433 / 868/915 
MHz 

78.6 kbps 

Nordic nRF2401 13 19 12 1 < 500 2.4 GHz 1 Mbps 
Nordic 

nRF24L01+ 
11.3 13.5 26 0.9 < 500 2.4 GHz 2 Mbps 

Digi XBee S2C 
module 

33 28 N.A. 1.5 < 1200 2.4 GHz 250 kbps 

 

Table 3.3 displays the properties of popular radio transceiver units used in the sensor node 

hardware platforms presented in Table 3.1. We review only radio chips that conform to the IEEE 

802.15.4 standard since they are the most widely used in sensor node hardware platforms due to 

their low power and long-range transmission compared to Bluetooth (BT). BT (IEEE 802.15.1) 

and Wi-Fi (IEEE 802.11) radios are also used in sensor nodes, with the argument being that they 

allow easy interoperability with a range of existing devices such as mobile phones and laptop 

computers without the need for additional hardware. However, they provide this interoperability 

at the cost of high energy consumption, making them not suitable as transceivers for battery-

powered WSN applications.  

The IEEE 802.15.4-based RF transceivers have varying characteristics such as operational 

frequency band, outdoor coverage range, data rate, cost, and current consumption at different 

operational (transmitting, receiving, idle, sleep) states. Our selection of an IEEE 802.15.4-based 

radio chip as the communication unit of our sensor node was influenced by attributes such as 

current consumption, price, and data rate.  
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3.2.5 Selected RF Transceiver and MCU for the Custom Sensor Node 
After reviewing research and commercial sensor node platforms in sub-section 3.2.2, we did not 

find a specific sensor node platform that met all our requirements (low-cost, low-power and high 

computing capacity). But after reviewing several MCUs in sub-section 3.2.3 and RF transceivers 

in sub-section 3.2.4, we found out that we could construct a custom sensor node that conveniently 

meets all our requirements by adapting an MCU and RF transceiver selected from the reviews 

conducted in sub-sections 3.2.3 and 3.2.4. The advantage of building a custom node from COTS 

is that it leads to the development of a cheaper node that arguably provides comparable or 

improved performance in terms of power consumption, communication, and processing resources 

when compared to research and commercial nodes designed specifically for WSN applications 

[148]. 

From Table 3.3, it is evident that the nRF24L01+ transceiver compared to other IEEE 802.15.4-

based transceivers operating at the 2.4 GHz band, exhibits current peaks in RX/TX modes lower 

than 14 mA (one of the lowest consumptions on the market), a sub-μA power-down mode, 

advanced power management, and a supply voltage extending from 1.9 to 3.6 V. The nRF24L01+ 

is hence a true ultra-low power solution enabling months to years of battery life from coin cell or 

AA/AAA batteries. Besides, compared to other IEEE 802.15.4-based radio chips, the nRF24L01+ 

transceiver is low-cost. Finally, the enhanced ShockBurst feature of the nRF24L01+ enables it to 

achieve high data rates (up to 2 Mbps) at lower power consumption. The burst mode is particularly 

interesting for distributed computing, which involves only short-distance communications 

between neighbouring nodes. Consequently, all these features make nRF24L01+ radio the ideal 

IEEE 802.15.4 compliant radio transceiver unit for use in our custom sensor node which is required 

to be low cost and consumes less energy. 

From the Table 3.2, it can be seen that the ESP32, which was released in the last quarter of 2016 

is one example of a powerful, low-cost, and low-power MCU. It incorporates a double-core 32-bit 

Xtensa LX6 microprocessor and an ultra-low-power (ULP) coprocessor. The ULP coprocessor 

consumes minimal current (between 10 μA~150 μA) when the core is sleeping and can be used 

for simple control. This ULP feature makes the ESP32 a suitable processing unit for a sensor node 

that will be battery-powered. Thus, a great advantage of the ESP32 is its ULP coprocessor which 
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gives it the ability to achieve ultra-low power consumption for most WSN operations and only 

uses the dual-core processor when there is a need to perform powerful computations. Moreover, 

the ESP32 has a feature that permits the remaining charge of its battery supply to be estimated by 

reading the battery voltage from one of its analogue pins. This feature makes the ESP32 suitable 

for energy-aware applications as it can compute its energy consumption online and thus regulate 

its operations. Another advantage of the ESP32 is its lower cost, which is an attractive feature for 

sensor nodes that are to be deployed in a developing country’s WWPM system. Besides, the ESP32 

also incorporates Wi-Fi and Bluetooth modules which makes it IoT compatible. Incorporating such 

an MCU into the sensor node’s hardware will cause the nodes to evolve from simple sensors to 

powerful computing platforms [4]. 

Given that our fully distributed solution entails the embedding of data processing within the sensor 

nodes, an MCU with higher computational power will be ideal. Based on the classification of 

sensor nodes by Ojo et al. [89], the ESP32 SoC is a middle-end IoT device, and thus not suitable 

for battery-powered WSN applications. Even though SoC solutions have significantly reduced the 

amount of power consumption in the sleep mode, not much has been achieved in the transmission 

and receiving modes. This explained why we did not use the BLE and Wi-Fi transceiver modules 

of the ESP32 for communication between sensor nodes, but we instead had to perform a survey 

on low-power IEEE 802.15.4 compliant radio chips, and selected the low-power nRF24L01+ 

transceiver module. The reason for the low power consumption in the sleep mode is because the 

trend in this new generation of sensor nodes is to use low power processors that provide very low 

energy consumption when the node is inactive and to use the high-power processors when the node 

is active. Accordingly, the ESP32 incorporates a 32-bit dual-core Xtensa LX6 processor with a 

processing speed of up to 240 MHz as the core processor (operational when the ESP32 is in the 

active state) and a ULP coprocessor (operational when the ESP32 is in the inactive state). The core 

processor can achieve local processing while the ULP coprocessor can achieve real-time 

monitoring while maintaining low-power consumption by putting the core processor in an inactive 

state. Thus, by putting the core processor of the ESP32 in the inactive state regularly while making 

use of the ULP coprocessor, shutting down the Wi-Fi and BLE transceiver modules of the ESP32, 

and using a low-power transceiver module like the nRF24L01+ for communication, we can have 
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a custom sensor node with high computing power and whose energy consumption is similar to a 

low-end node. This custom node composed of the ESP32 and nRF24L01+ is low-cost and has 

sufficient computing power required for implementing low-power distributed computing in 

WWPM. Additionally, the ability of this custom node to be aware of its energy consumption makes 

it suitable for our computing energy-aware custom node. This is because it can adjust its operations 

to adapt to its currently available energy. Finally, the ESP32 being a middle-end device has been 

used extensively in IoT applications and not in WSN applications. However, using the ESP32 as 

the processing unit for our custom sensor node can also establish a scenario where we can examine 

the possibility of using IoT devices in WSN and their effect. 

Now that we have selected an MCU and RF transceiver to serve as the processing unit and 

communication unit, respectively, for our custom sensor node, it is time for us to select a low-cost 

MEMS accelerometer to serve as the sensing unit of our custom node. In the next section, we will 

review low-cost MEMS accelerometers.  

3.3 A Review of Low-cost MEMS Accelerometers 
Vibration-based methods for monitoring the health of water pipelines are popular in the literature 

of WPM because of their ease of installation/maintenance, low cost, and low-power consumption. 

Specifically, several WPM studies have used accelerometers for leak detection. To measure 

vibrations of small magnitude such as pipe surface vibrations will require an accelerometer of high 

sensitivity. Also, the noise floor level of the accelerometer is required to be very low since a high 

noise floor level would mask the low amplitude vibration signals, thereby preventing their 

detection [46]. Examples of accelerometers with high sensitivity, low noise floor level, and wide 

frequency response range are the Brüel & Kjær (B&K) accelerometers [149]. However, they are 

very costly, making them not a very good candidate for a low-cost WWPM solution. MEMS 

accelerometers are attractive for our proposed WWPM solution because of their low prices, low 

power consumption, small-sizes, and suitability for measurement of amplitudes of applications of 

low frequencies (which is the case of WPM) [150]–[152].  

The study by Stoianov et al. [42] is one of the pioneer studies that made use of MEMS 

accelerometers for leak detection in WWPM systems, though this study was carried out on a 
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metallic pipeline. Given that, the WDN of most developing countries is made up of plastic pipes 

and despite the challenges of detecting leaks in plastic pipes by using accelerometers that we 

presented in sub-section 2.6.2 of Chapter 2, studies such as [39], [54] have demonstrated the use 

of accelerometers in detecting leaks in plastic pipelines. However, these studies made use of high-

cost and high accuracy piezoelectric accelerometers which makes them not economically optimal 

for low-cost WWPM solutions. In the past few years, the use of low-cost MEMS accelerometers 

for leak detection has been demonstrated in studies such as [35], [37], [46], [58]. These studies 

made use of both analogue and digital accelerometers for leak detection. In a recent study, Tariq 

et al. [43] presented a comprehensive review of MEMs-based leak detection studies available in 

the literature.  

MEMS accelerometers can be categorised as either analogue or digital depending on the format of 

the output they deliver. WWPM solutions available in the literature have used both types of MEMS 

accelerometers for leak detection. One of the differences between the two is that the performance 

of digital MEMS accelerometers is not affected by other circuit components, unlike analogue 

MEMS accelerometers whose performance is dependent on the features such as the resolution of 

the external ADC [151]. The use of an external ADC with a higher resolution will, on the one 

hand, improve the sensitivity of the analogue accelerometer while, on the other hand, it will also 

increase the cost of the sensor node. Even though the ADC of the microcontroller (serving as the 

processing unit of sensor node) can be used, its low resolution (12 bits for the ESP32) will degrade 

the sensitivity of the analogue accelerometers when compared to the digital ones, which have 

dedicated internal ADC within their breakout boards. For this reason, we focus this survey 

primarily on digital MEMS accelerometers.  

Because the performance of the accelerometer used for measuring the pipe surface acceleration 

can affect the quality of the measurements and the overall accuracy of the leak detection system, 

it is imperative to pay attention to the selection of the accelerometer. This survey focuses on low-

cost commercially available MEMS accelerometers that are readily available in the market. 

Table 3.4 presents a survey of digital COTS MEMS accelerometers that can be used for measuring 

the pipe surface acceleration of plastic pipes. The characteristics used for comparing the sensors 
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include bandwidth, sensitivity, resolution, current consumption, sensing range, and cost. For 

boards like the MPU6050, LSM9DS1, and BMI160 (which are Inertia Measurement Units (IMUs), 

consisting of both an accelerometer and gyroscope on the same IC), we focus only on the 

accelerometer. The data presented in Table 3.4 for such boards is based on the accelerometer only, 

without considering the gyroscope.  

Table 3. 4: Survey of popular digital COTS MEMS Accelerometers  

Accelerometer Resolution Bandwidth 
(Hz) 

Sensitivity 
(LSB/g) 

Sensing Range Noise 
floor level 
(μg/√Hz) 

Current 
Consumption 

(μA) 

Voltage 
Supply 

(V) 

Cost 
($) 

ADXL344 13 0 - 1600 4096 ±2g, ±4g, ±8g, 
±16g 

530 23 1.7 – 2.75 38.54 

ADXL345 13 0 - 1600 4096 ±2g, ±4g, ±8g, 
±16g 

430 23 2.0 – 3.6 36.88 

ADXL362 12 0 - 200 2048 ±2g, ±4g, 
±8g 

550 1.8 1.6 – 3.5 40.10 

BMI160 16 5.06 - 684 32,768 ±2g, ±4g, ±8g, 
±16g 

180 180 1.71 – 3.6 25.48 

LIS2DS12 16 0.5 - 3200 32,768 ±2g, ±4g, ±8g, 
±16g 

120 150 1.62 -1.98 19.54 

LSM9DS1 16 0 - 400 32,768 ±2g, ±4g, ±8g, 
±16g 

N.A. 
 

600 1.9 – 3.6 18.63 

MMA8452 12 0 - 400 2048 ±2g, ±4g, ±8g 126 165 1.95 – 3.6 10.49 

MPU6050 16 5 - 260 32,768 ±2g, ±4g, ±8g, 
±16g 

400 500 2.4 – 3.5 29.95 

 

In selecting the accelerometer to be used by our sensor nodes, we focused on attributes such as 

sensitivity, noise floor, frequency of operation (bandwidth), current consumption, and cost. 

Besides, given that the amplitude of the surface vibrations on plastic pipes are of lower order 

magnitude and exist at low frequencies, the operation of the accelerometers in the ±2g is more 

suitable since it is more sensitive to small changes in acceleration compared to the other sensing 

ranges of the accelerometers. Hence, for accurate leak detection, we will need an accelerometer 

with high sensitivity and low noise floor level. From Table 3.4, we see that BMI160, LIS2DS12, 

LSM9DS1, and MPU6050 have very high sensitivities since they have a resolution of 16 bit. From 
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an energy consumption perspective, we see that LIS2DS12 provides the lowest current 

consumption, making it more suitable for a low-power solution. However, in terms of availability 

and cost, the LSM9DS1 was more available in the market. Thus, we selected the LSM9DS1 

because of its low cost, high sensitivity, and availability. To reduce the power consumption of the 

sensor node, we also selected a low-power accelerometer to compensate for the high-power 

consumption of the more sensitive LSM9DS1 accelerometer by implementing hierarchical 

sensing. The low-power accelerometer is less sensitive and is continuously used to monitor the 

pipeline. Once it detects an acceleration larger than a defined threshold, it triggers an interrupt to 

wake up the more sensitive accelerometer from sleep to collect more accurate measurements that 

will be used for leak detection. From Table 3.4, we see that ADXL344, ADXL345, and ADXL362 

have lower current consumption compared to the other accelerometers. ADXL362 has the lowest 

current consumption, but its sensitivity is low, which can compromise the accuracy of the leak 

detection system. Besides, the ADXL362 does not have a wide bandwidth (frequency of 

operation), unlike the ADXL344 that has a wide bandwidth that makes it suitable for detecting 

leaks on small diameter plastic pipes that are more visible at higher frequencies [153]. Thus, we 

selected ADXL344 because of its low-cost, low-power consumption, wide bandwidth, and finally 

its high sensitivity when compared to ADXL362. Another attractive property of the ADXL344 is 

its activity and inactivity sensing capability, which enables the sensor to generate an interrupt once 

the acceleration measured is above a predefined threshold value. This attribute is relevant in 

achieving low-power consumption, as the ultra-low power consumption and the threshold 

detection capability of the ADXL344 can permit continuous monitoring of the pipeline and only 

trigger a wake-up of the more sensitive accelerometer from sleep when an activity occurs (i.e., an 

acceleration greater than the predefined threshold value is detected). This can enable the 

achievement of our dual objectives of reliable real-time monitoring and low-power consumption. 

Now that we have selected all the components that will make up our custom sensor node, we will, 

in the next section, fully describe the COTS components selected as constituent parts of the sensor 

node hardware and also discuss the sensor node design and configuration. 
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3.4 System Design 
The requirement for a sensor node in a fully distributed WWPM system to be low-power and low-

cost and have sufficient onboard computing resources led us to select cheap and low-power COTS 

components to design a low-cost and low-power custom sensor node (rather than using the 

research and commercial nodes available in the literature) to meet the specifications suited for our 

fully distributed solution. This was to achieve our dual objective of producing a low-cost and low-

power sensor node for WWPM since we are aware that the choice of sensor node components is 

crucial in determining the cost, performance, and power consumption of the sensor node. Thus, in 

this section, we describe the specifications of the COTS components used to design the custom 

sensor node. 

3.4.1 Sensor Node Architecture  
Our proposed sensor node consists of an ESP32 from Espressif Systems as the processing unit, an 

nRF24L01+ transceiver module from Nordic as the communication unit and an LSM9DS1 

accelerometer from STMicroelectronics and an ADXL344 accelerometer from Analog Devices as 

the sensing unit.  

3.4.1.1 ESP32  

ESP32 is a low-cost, low-power SoC increasingly used in the hobby and research development of 

IoT systems. This chip is widely used in tiny devices embedding Python or its derivatives 

(MicroPython, CircuitPython, etc.) for wireless embedded systems driven by a strong community 

such as Pycom [154] or CircuitPython [155]. This chip, although quite unused in traditional WSN 

hardware [4] as a result of it being a middle-end device [88], [89], has two main advantages: a 32 

bit dual-core unit and an ULP coprocessor for low computation tasks. Last but not the least, it 

presents a wide support for conventional Operating Systems but also for more prospective Real-

Time Operating Systems such as RIOT [156], Zephyr or Zerynth [157], FreeRTOS [88], etc. 

From a technical point of view, the ESP32 offers: 

 for computation: an Xtensa Dual-Core 32-bit LX6 microprocessor operating at up to 240 

MHz, a 520 kB Static Random-Access Memory (SRAM), a 4 MB flash memory 
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 for interfacing: a 12-bit ADC with up to 18 channels and 40 physical General Purpose Input 

Output (GPIO) pads, which can be used as general purpose I/O to connect new sensors, or 

can be connected to an internal peripheral signal [15]. 

 for communication: a built-in Wi-Fi card supporting IEEE 802.11 b/g/n standards, 

Bluetooth version 4.2 and 486 BLE. Dedicated RF transceivers (such as nRF24L01+) can 

be added through GPIO to extend the RF physical layer support of ESP32 to IEEE802.15.4 

protocols commonly used in the WSN community. 

Figure 3.4 displays the functional block diagram of the ESP32 with all the features listed above 

and Table 3.5 presents a summary of the features of the ESP32.  

 

Figure 3. 4: Functional block diagram of the ESP32 [158] 

Engineered for mobile devices, wearable electronics, and IoT applications, the ESP32 offers 

advanced power management features such as ULP consumption through power saving features 

including fine-resolution clock gating, multiple power modes, and power scaling [15]. The ESP32, 

when active (with the modem being off and CPU being operational), consumes currents in the [20 

mA–68 mA] range and in the [10 μA–150 μA] while performing in the ULP state (only the RTC 

memory, RTC peripherals and the ULP co-processor are functional).  
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Table 3. 5: Summary of features of the ESP32 

 Chip 
Features ESP32 

Logic/DSP 
Processor Tensilica Xtensa LX6 32 bit Dual-Core at 80/160/240 MHz 
DSP Block 32-bit multiplier 

32-bit divider 
40-bit MACC 

Memory 
SRAM 520 KB 
Flash 2 MB (max. 16 MB) 

Connectivity 
Wi-Fi 802.11 b/g/n 
Bluetooth 4.2 BR/EDR + BLE 
UART 3 
SPI 4 
I²C Interface 2 
I²S Interface 2 

Input/Output 
GPIO 32 
PWM 8  
ADC 18 (12-bit) 
DAC 2 (8-bit) 

Power consumption 
Operating Current Modem Active 95 mA – 240 mA 

Modem Sleep 
(main CPU powered on) 

@ 240 MHz CPU speed 30 mA ~ 68 mA 
@ 160 MHz CPU speed 27 mA ~ 44 mA 
@ 80 MHz CPU speed 20 mA ~ 31 mA 

Light sleep 0.8 mA 
Deep sleep (ULP active) 10 μA - 150 μA 

Operating Voltage 2.2 – 3.6 V (typical 3.3 V) 
 

From Table 3.5, we see that the ESP32 has enough onboard computational resources that can be 

used for in-situ processing, thus making it a good candidate for the processing units of sensor 

nodes that need to implement distributed computing. However, the power consumption is high, 

which makes it not very suitable for battery-powered WSN applications. But this power-hungry 

nature of the ESP32 chip can be taken care off by putting the main CPU at sleep most of the time 

while using the ULP coprocessor of the ESP32 as the control unit of the sensor node. The main 

CPU is only woken from deep sleep when there is powerful processing that needs to performed. 

By activating the ULP coprocessor and putting the main CPU of the ESP32 into deep most of the 

times, we can have a node which is computationally powerful, but consumes less energy. By so 

doing, we can achieve real-time monitoring and low-power consumption. Finally, there are several 
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development boards available for the ESP32 module. However, we used the ESP32 board 

produced by Adafruit called the Adafruit feather Huzzah32.  

3.4.1.2 nRF24L01+  

The CCXXXX (i.e., CC1000—the first generation of WSN, CC2420—the majority of WSN nodes 

developed in 2000s and 2010s, and CC2520—the new generation of WSN nodes) transceiver 

series from Texas Instruments are the most commonly used communication units in Wireless 

Sensor Nodes hardware development. However, we decided to use the nRF24L01+ due to its low 

power consumption on the one hand and for its burst mode (increased data rate) on the other hand. 

Even though the nRF24L01+ does not directly implement a mesh network at the MAC layer, the 

single dimensional aspect of WWPM systems reduces this drawback significantly. 

At the physical layer, nRF24L01+ implements Gaussian Frequency Shift Keying (GFSK) 

modulation, with data rates ranging from 250 Kbps to 2 Mbps. A communication range of nearly 

100 m and 500 m can be achieved with and without an external antenna, respectively, at maximum 

power [159], [160]. It is the perfect complementary RF transceiver for our node since it covers a 

longer range compared to Bluetooth, consumes less power than Wi-Fi and it is quite cheap from a 

financial point of view. Table 3.6 depicts the properties of the nRF24L01+ transceiver. 

Table 3. 6: Summary of features of the nRF24L01+ 

 Chip 
Features nRF24L01+ 
Data Rate 250 kbps – 2 Mbps 
Operational frequency band 2.4 GHz 
Communication interface SPI 
Modulation GFSK 
Protocol ANT 
Transmission range 100 m (up to 500 m with external antenna) 

Power consumption 
Operating current Transmitter @ 0 dBm output power 11.3 mA 

@ -6 dBm output power 9.0 mA 
@ -12dBm output power 7.5 mA 

Receiver @ 2 Mbps 13.5 mA 
@ 1 Mbps 13.1 mA 
@ 250 kbps 12.6 mA 

Power down 900 nA 
Standby-I mode 26 μA 
Standby-II mode 320 μA 

Voltage Supply 1.9 – 3.6 V (typical 3.3 V) 
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Furthermore, the embedded baseband protocol engine (Enhanced ShockBurst) implemented by the 

nRF24L01+ transceiver permits it to achieve higher data rates and can help to reduce the power 

consumption of the sensor node. This burst mode is attractive for distributed computing in WSN 

since it allows the transceiver to be active only for a short period during transmission. Besides, the 

nRF24L01+ also has a ULP power-down state which consumes current of the order of 0.9 μA, 

which can be used to reduce the power consumption incurred via idle listening of the nRF24L01+ 

transceiver. Thus, rather than leaving the nRF24L01+ in the idle listening mode which consumes 

current in the order of 13 mA, the transceiver can be placed in the standby mode when there is no 

activity and will be awakened from sleep by an externally-controlled wake-up, which in our case 

can be an environmentally controlled wake-up such as interrupt from the accelerometer when the 

measured acceleration exceeds the predefined threshold. However, care must be taken in placing 

the transceiver in the power down mode to prevent the loss of packets from neighbouring sensor 

nodes. This can be attained by waking the transceivers of all neighbouring nodes once an activity 

has been detected by the accelerometer, i.e., when the measured acceleration is above the 

predefined threshold.  

A number of nRF24L01+ boards exist in the market. However, we made use of the nRF24L01+ 

board from Sparkfun.  

3.4.1.3 LSM9DS1 

LSM9DS1 is a 9 Degrees of Freedom (DOF) IMU which features a 3D digital linear acceleration 

sensor, a 3D digital angular rate sensor, and a 3D digital magnetic sensor. Additionally, the 

LSM9DS1 has a linear acceleration full scale of ±2 g/±4 g/±8 g/±16 g, a magnetic field full scale 

of ±4/±8/±12/±16 Gauss and an angular rate of ±245/±500/±2000 dps (degree per second). It also 

includes an I2C serial bus and an SPI serial standard interface for interfacing with the MCU. It has 

an analogue supply voltage ranging from 1.9 V to 3.6 V and provides an ultra-low current 

consumption of 600 μA when the accelerometer is in the normal mode [161]. It has three 16-bit 

ADCs for digitizing the accelerometer outputs which can result in more accurate digital outputs 

and has a wide accelerometer sensing range for tracking both slow and fast motions. In addition to 

the low-power consumption feature of the LSM9DS1 IMU, another interesting feature of this 

sensor which makes it relevant to achieving low-power consumption is the ability of the sensor to 
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generate an interrupt once the acceleration measured is above a predefined threshold value. With 

this property, the ESP32 can be programmed to operate in deep sleep mode most of the time. The 

LSM9DS1 will continuously monitor the pipes at all times for any deviation from the predefined 

threshold value. Upon deviation detection, the sensor sends an external wake-up interrupt signal 

to start the ESP32 main core. Thus, this threshold detection property of the LSM9DS1 makes it 

very useful in providing a low-power solution, as it can be used to reduce the power consumption 

of the sensor node and extend the lifespan of the WSN. It is also low cost. The features of the 

LSM9DS1 accelerometer are summarised in Table 3.7.  

Table 3. 7: Summary of features of the LSM9DS1 

 Chip 
Features LSM9DS1 
Resolution 16 bits 
Bandwidth 0 – 400 Hz 
Output Data Rate 10 – 952 Hz 
Communication 
interface 

SPI and I2C 

Zero-g level offset  X-axis Y-axis Z-axis 
0 g 0 g 1 g 

Zero-g level offset 
accuracy 

±90 mg 

Sensing range ±2g, ±4g, ±8g, and ±16g, 
Sensitivity 
(LSB/g) 

±2g ±4g ±8g ±16g 
16384 8192 4096 2048 

Power consumption 
Operating current 600 μA 

 
Voltage Supply 1.9 – 3.6 V 

 

A number of LSM9DS1 boards exists in the market. However, we made use of the LSM9DS1 

evaluation board from ST Microelectronics.  

3.4.1.4 ADXL344 

The ADXL344 sensor of Analog Devices is a MEMS three-axis accelerometer with a selectable 

sensing range (±2g, ±4g, ±8g, and ±16g) and bandwidth (0 – 1600 Hz) and configurable, built-in 

motion detection which makes it suitable for sensing acceleration in a wide variety of applications. 

The ADXL344 functions using a capacitive transduction mechanism and it is supplied in a small, 
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thin, 3 mm × 3 mm × 0.95 mm, 16-terminal, plastic package.  Table 3.8 summarizes the properties 

of the ADXL344 accelerometer.  

Table 3. 8: Summary of features of the ADXL344 

 Chip 
Features ADXL344 
Resolution 13 bits 
Bandwidth 0 – 1600 Hz 
Output Data Rate 0.1 – 3200 Hz 
Communication interface SPI and I2C 
Zero-g level offset  X-axis Y-axis Z-axis 

0 g 0 g 1 g 
Noise floor level 
(μg/√Hz) 

X-axis Y-axis Z-axis 
420 420 530 

Zero-g level offset 
accuracy 

±35 mg 

Sensing range ±2g, ±4g, ±8g, and ±16g, 
Sensitivity 
(LSB/g) 

±2g ±4g ±8g ±16g 
2048 1024 512 256 

Power consumption 
Operating current 23 μA 

 
Voltage Supply 1.7 – 2.75 V 

 

The ADXL344 has a resolution of 13 bits and can have a sensitivity as high as 2048 LSB/g. The 

measured acceleration from the ADXL344 can be sent to the interfacing MCU by means of SPI or 

I2C communication, since ADXL344 possesses both interfaces. The sensing range of the 

ADXL344 is user-programmable with options such as ±2g, ±4g, ±8g, and ±16g available. The 

ADXL344 also has a wide frequency response (bandwidth) ranging from 0 – 1.6 kHz and an output 

data rate (sampling frequency) ranging from 0.1 – 3.2 kHz. In terms of current consumption, the 

ADXL344 is an ultra-low power device consuming current as low as 23 μA. It also has a voltage 

supply range from 1.7 – 2.75 V. In addition, the activity and inactivity sensing to detect the 

presence or lack of motion are also special sensing functions provided by the ADXL344 

accelerometer. This activity and inactivity sensing capability of the ADXL344 can be used to 

achieve low power consumption for our custom sensor node by putting all the other components 

(ESP32 microcontroller, nRF24L01+ radio module, and LSM9DS1 accelerometer) to sleep and 

leaving only the ADXL344 (which consumes less power) active. That is, the sensor node goes to 

sleep when there is no activity (when the acceleration measured by the ADXL344 is below a 
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certain threshold) and a trigger from the ADXL344 when there is an activity will wake-up the 

sensor node from sleep. Finally, when the ADXL344 is taking measurements, it consumes a 

current of 140 μA while when it is not taking measurements, it is in the standby mode which 

consumes a current of 0.2 μA.  

In the next section, we will describe how we configured the hardware components of our custom 

sensor node.  

3.5 Configuration of the Sensor Node  
The nRF24L01+ transceiver module is interfaced with the ESP32 via the SPI interface, whereas 

the LSM9DS1 and ADXL344 sensors are interfaced with the ESP32 via the I2C interface. Figure 

3.5 represents the interconnection of the sensor node’s components. 

 

Figure 3. 5: Hardware interfacing of the sensor node’s components. 

3.5.1 Configuration of LSM9DS1 and ADXL344 
Since we are interested in measuring vibrations of low magnitude, the sensitivity of the LSM9DS1 

and ADXL362 accelerometer sensors are configured to ±2 g since this has the highest sensitivity 

(0.061 mg/LSB for LSM9DS1 and 3.9 mg/LSB for ADXL344), which makes it most appropriate 

for detecting vibrations of smaller magnitudes such as those on the surface of a water pipe.  

As we saw in sub-section 2.6.2 of Chapter 2, the reliability of leak detection in plastic pipes is 

dependent on the pipe size, interfering noise, and frequency response of the accelerometer. Thus, 

for reliable leak detection, it is required that the frequency response of the accelerometer 

accommodates the bandwidth in which leak noise is found. In a study carried out by Scussel et al. 
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[153], the results showed that when using accelerometers to detect leaks in small diameter plastic 

pipes, the leak noise is in a much higher frequency than in the case of large diameter pipes. Their 

results revealed that for a 35.8 mm plastic pipe, the leak noise is found in the frequency band 273 

– 746 Hz. This is because the measurements at lower frequencies are dominated by noise from 

low-frequency vibrations, e.g., noise from pumps. Based on this, we configured the bandwidth of 

the ADXL344 to 900 Hz and the sampling frequency to 1800 Hz, while we configured the 

bandwidth and sampling frequency for the LSM9DS1 to 400 Hz and 953 Hz, respectively. 

In addition, both accelerometers measure the vibration in 3D, i.e., in the X, Y, and Z directions 

given by Ax, Ay, and Az, respectively. The actual acceleration in each axis is computed by 

subtracting the zero-g offset from the measured acceleration in that axis and then the overall 

magnitude of the pipe surface acceleration is obtained by taking the resultant acceleration in all 

three directions. Lastly, when both accelerometers are used, the LSM9DS1 is always placed in the 

power-down mode and only gets to the normal mode once a wake-up is triggered by the ADXL344 

when an activity is detected. A predefined threshold value is set in the activity threshold register 

of the ADXL344 after leak characterization and it is used to determine the occurrence or absence 

of activity (leak). 

3.5.2 Configuration of nRF24L01+  
The transmitter of the nRF24L01+ radio module was configured to transmit at -12 dBm output 

power for two reasons. The first reason was to achieve low-power consumption since the 

transmitter consumes a current of 7.5 mA when transmitting at -12 dBm output power. The second 

reason was that at -12 dBm the transmission range of the transmitter is shorter. This is good for 

our fully distributed WWPM solution since nodes only communicate with their close neighbours 

and the internode spacing is short since leak vibrations do not go far in plastic pipes and because 

MEMS accelerometers were used to monitor the pipe surface vibrations. The receiver of the 

nRF24L01+ radio module was configured to operate at 2 Mbps with a sensitivity of –82 dBm. This 

was in order to reduce the amount of time the transceiver is active during reception and 

transmission. Another reason was to reduce the number of collisions between sensor nodes since 

they use the same radio channel, and the nRF24L01+ does not explicitly implement any MAC 

algorithm for channel access. To reduce packet loss resulting from packet collision, it is important 
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to implement retransmission and stagger the transmission intervals assigned to neighbouring 

nodes. Thus, the nRF24L01+ was configured to perform 15 retries every after 500 μs when a failed 

transmission occurred. In addition, to prevent the loss of packets resulting from the RX FIFO of 

the transceiver being full, the interrupt pin (IRQ) of the nRF24L01+ was configured to generate 

an external interrupt to the ESP32 each time a packet was received. This triggered the immediate 

reading of the packet from the RX FIFO. 

Finally, to provide power-efficient listening when there is no activity, it would be useful for nodes 

listening to sleep for extended periods if they know that they would not miss packets. Thus, the 

radios of the nodes were configured to go to sleep when there is no activity and only awaken when 

there is an activity i.e., when a trigger is received from the ADXL344 sensor. The idea is that the 

occurrence of a leak will cause the acceleration measured by the ADXL344 sensor to exceed the 

predefined threshold value stored in its activity threshold register. This will then generate an 

interrupt that serves as an environmentally controlled wake-up to a sensor node and its close 

neighbours (nodes found in the vicinity where the leak occurs). By so doing, low-power 

consumption can be achieved without a reduction in the reliability of the system. 

3.5.3 Configuration of ESP32 
The ESP32 was configured to operate in the modem sleep mode when there is an activity and in 

the deep sleep mode when there is no activity. The modem sleep mode rather than the modem 

active mode was used since we are not using the Wi-Fi or BLE module of the ESP32 for 

communication. The CPU clock speed of the ESP32 was set to 80 MHz (with a datasheet current 

consumption of 20 mA ~ 31 mA) since it is sufficient run the distributed algorithms that will be 

implemented on the sensor node and also consumes less energy compared to a CPU speed of 160 

MHz or 240 MHz. To reduce the node’s power consumption when there is no activity, it is 

advantageous to harness the ULP coprocessor of the ESP32 by putting the node into deep sleep 

mode (with current consumption in the range 10 μA –150 μA). Thus, the node will only be active 

for very short periods of time, i.e., when it needs to transmit data and perform some processing on 

data received from neighbouring sensor nodes. When there is no activity, the ESP32 goes into the 

deep sleep mode where the main CPU core is inactive and the ULP coprocessor is active and is 

used for controlling the sensor node peripherals. The ESP32 was configured to wake-up from deep 
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sleep by means of an external interrupt, which is the interrupt generated by the ADXL344 sensor 

when the measured acceleration exceeds the predefined threshold stored in the activity threshold 

register of the ADXL344 sensor. It should also be noted that in this study we did not use any real-

time operating system on the ESP32. The programs implementing the algorithms were written in 

C/C++ using the Arduino IDE since we were dealing with simple algorithms in this study. 

However, a real-time operating will be handy in future work. 

Now that we have completed the selection of the sensor node components, designed the node, and 

configured it, we will in the following sections discuss the design and configuration of a custom 

power measurement device. The purpose of this measurement device is to measure the power 

consumption of the sensor nodes in the laboratory experimental setup. It is important to measure 

the energy consumption of our proposed solution because minimizing the sensor node’s energy 

consumption and maximising WSN lifetime (which is one of the objectives of this thesis) is a 

major challenge in WWPM.  

3.6 Design of a Remote Power Measurement Device 
In this section, we describe the development of a power measurement device we call a USB power 

meter that we used to measure the power consumption of the sensor node in order to establish the 

energy profile of our distributed solution. This work was carried out by Khouloud Amira, a second-

year master’s student on an internship in Ampere Laboratory, under my guidance. We developed 

this device for two main reasons: (1) to enable us to measure very low currents in the μA range 

particularly current consumption of the node when the ESP32 is operating in deep sleep mode and 

(2) to be able to monitor and store the power consumption of the nodes without physically being 

present (i.e., recording of power measurements collected periodically over a long period of time). 

Current consumption monitoring is a very important aspect for battery-powered sensor nodes since 

they are constrained in terms of energy. Selecting the correct method to monitor the current 

consumption of a sensor node is critical in optimizing the system performance. There are three 

primary approaches used to profile the power of systems and components. They include simulator-

based power estimation, direct measurements, and event-based estimation [162]. We made use of 

the direct measurement method which can be done via either operational/difference (milliamps to 
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tens of amps), instrumentation (nanoamps to tens of amps), or current sense (tens of microamps to 

tens of amps) methods, and where power can be directly measured both intrusively or 

nonintrusively. The intrusive measurements require inserting precision (shunt) resistors into the 

power supply lines of components under study and use power meters to measure the voltage drop 

across the resistor. The current through the component is calculated by the voltage drop over the 

shunt resistor divided by its resistance. The nonintrusive approach uses ammeters to measure the 

current flow of the power supply lines directly [162]. Since the currents we were measuring were 

in the range of tens of microamps to amps, we used the INA226 device that employs the current 

sense method. Hence, our custom power measurement device was based on the intrusive direct 

measurement method and was composed of a 100 mΩ shunt resistor, INA226 module, STM 

nucleo-32 F303k8 microcontroller, nRF24L01+ transceiver, 128 × 64 OLED display, SD card and 

two USB ports. Figure 3.6 is a block diagram display of the USB power meter. 

 
Figure 3. 6: Block diagram of power measurement device 

The INA226, often used in instrumentation for low current monitoring, is a current shunt and 

power monitor with an I2C compatible interface. It was used to monitor both the shunt voltage 

drop across the shunt resistor (placed in series with the sensor node) and the bus supply voltage. 
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The INA226 can be used either in high-side sensing (where a shunt resistor is placed between the 

supply voltage and the load) or low-side sensing (where a shunt resistor is placed between the load 

and the system ground). High-side sensing was used since it is preferable when dealing with low 

currents given that it is more responsive to changes in the current flow and it adds no disturbance 

to system ground [163]. In addition, the INA226 is designed for a maximum input shunt voltage of 

81.92 mV and has a 16-bit ADC. Thus, the maximum current that can be measured by the device is 

819.2 mA and the resolution is 25 μA in the case where a 100 mΩ shunt resistor is used. Using the 

100 mΩ shunt resistor enabled us to measure the current consumption of the ESP32 when it is in the 

deep sleep mode (with currents in the μA range). Besides, the voltage drop across the shunt resistor 

allowed sufficient voltage to power the ESP32. We used the STM nucleo-32 F303k8 MCU to 

interface with the INA226 and also to configure its programmable calibration value, conversion 

time and averaging mode. For better accuracy in measurements, we configured the conversion 

time and averaging mode to 140 μs and 4, respectively. The OLED display was used for displaying 

the power measurements, the SD card for storing the power measurements over a long period of 

time and the nRF24L01+ transceiver permitted the remote reading of the power consumption. 

USB-IN was used to supply power to the measurement board while USB-OUT supplied the sensor 

node. 

3.7 Summary 
To provide a reliable, real-time, fully distributed, and low-power WWPM solution for monitoring 

plastic WDNs in developing countries, it is necessary that the sensor nodes be cheap and also 

consume less energy (since the nodes are to be powered by a battery and also because the WWPM 

is required to go unattended for a long time without replacing the battery). This led us to perform 

a thorough review of existing commercial and research sensor nodes by focusing on their 

computing power, energy consumption, and cost. The need for a sensor node that is low-cost and 

has a high computing power but consumes low power led us to design a custom node rather than 

using existing research or commercial sensor nodes. The custom node designed consisted of an 

ESP32 SoC as the processing unit and an nRF24L01+ transceiver module as the communication 

unit. The ESP32 was chosen because of its low-cost, high computing power (since it incorporates 

a dual-core 32-bit Xtensa LX6 processor with a processing speed of up to 240 MHz as the main 
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core), and low-power consumption (since it incorporates a ULP coprocessor with current 

consumption in the range 10 μA – 150 μA). The high computing power of the ESP32 main core 

permits our custom node to be capable of local processing while the ULP coprocessor permits it 

to achieve real-time monitoring while maintaining low energy consumption. This meets our 

objectives of a real-time, fully-distributed, and low-power WWPM solution. The nRF24L01+ 

transceiver module was selected because of its low-cost, burst mode, and low-power consumption 

(with TX/RX peak currents less than 14 mA). To achieve reliable leak detection on plastic pipes 

while maintaining low energy consumption, we proposed the implementation hierarchical sensing 

by selecting both a low accuracy (but low-power accelerometer) and a high accuracy 

accelerometer. The accelerometers selected consist of the ADXL344, which was chosen because 

of its low-power consumption and event detection capability, and the LSM9DS1 which was chosen 

because of its high sensitivity and low-power consumption. In this chapter, we also discussed the 

configuration of the sensor node’s component needed to achieve distributed computing, real-time 

monitoring, and low-power consumption. We ended the chapter by discussing the design and 

configuration of a custom power measurement device that will be used for measuring the power 

consumption of the sensor node.
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Chapter 4 

Distributed Kalman Filter for Wireless Sensor Networks 
The purpose of this study is to investigate and evaluate the implementation of a reliable, real-time, 

fully distributed, low-cost and low-power WWPM solution for leak detection in plastic WDN. We 

aim to achieve:  

1. cost-effectiveness by using low-cost COTS components as the building blocks of the 
sensor node,  

2. low-power consumption by implementing duty cycling and hierarchical sensing on the 
sensor node, and  

3. reliable and real-time leak detection by implementing distributed computing within the 
WWPM system.  

In this chapter, the objective is to select computationally less intensive distributed Kalman filter 

(DKF) algorithms to be implemented within the sensor nodes to enable reliable real-time leak 

detection while preserving the lifespan of the WWPM system. The challenge is that there exist 

numerous DKF algorithms in the literature with different performances, complexities, 

computational requirements, etc. Thus, it is necessary to select DKF algorithms that are suitable 

for WSN applications. The goal of this chapter is to get us close to the realization of point 3 above. 

We start this chapter by presenting the Kalman Filter (KF) with reasons why we selected it as the 

signal processing algorithm for improving the quality of pipe surface vibration measurements 

collected using low-cost MEMS accelerometers. We later review the categories of DKF algorithms 

for low-cost WSN applications such as WWPM systems. We then select three DKF algorithms 

that we will implement and evaluate their performance and power consumption via simulations 

and physical experiments. We end the chapter by presenting the metrics to evaluate the 

performance and power consumption of our proposed fully distributed leak detection solution and 

provide a layout of the experiments that will be conducted in chapters 5 and 6.   
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4.1 The Standard Kalman Filter and Data Fusion 

4.1.1 Reasons for choosing Kalman Filter 
As mentioned in sub-section 2.6.3, there are several signal processing techniques for processing 

leak data collected from plastic pipes using low-cost MEMS accelerometers. However, in this 

study, we used KF (which is undoubtedly one of the most popular data fusion technology used in 

WSN applications). 

The reasons for choosing KF as the signal processing technique for increasing the reliability of our 

proposed leak detection solution include: 

1. It requires less memory given that it does not need to store any previous history other than 

the previous state. This makes it suitable for implementation in sensor nodes which are 

constrained in memory, unlike other digital filtering algorithms which require taking a 

sliding window of noisy data in order to perform the filtering function. 

2. It can achieve rapid detection of events (e.g., leaks) as they occur in real-time. The fast-

processing capability of KF stems from the fact that it straightforwardly processes data in 

the time domain, making it a suitable choice for implementation in real-time embedded 

applications. With one of the objectives of this study being to provide a real-time solution 

for leak detection in WWPM, KF is a suitable choice for filtering noisy leak data because 

it is fast in processing time series data. 

3. It is also computationally less intensive, making it suitable for implementation in sensor 

nodes constrained in terms of computing power. Additionally, this particular feature of KF 

will reduce the energy consumed by the node when processing leak signals and thus extend 

the lifetime of the sensor nodes. 

4. There is a linear relationship between the measurement and the interested state, given that 

the state of interest (pipe surface acceleration) can be measured directly using the MEMS 

accelerometers. Therefore, KF applicable to linear dynamic systems can thus be utilized in 

our proposed WWPM solution. 
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4.1.2 Description of the Standard Kalman Filter 
As earlier stated in section 1.6, KF can be applied as a state observer or sensor fusion algorithm. 

In this study, we focus on applying KF as a sensor fusion algorithm [164]. The reason is that our 

proposed WWPM is categorized as a signal processing-based technique (Figure 2.1 of chapter 2), 

and like other WWPM techniques based on signal processing [13], [38], [50], it involves 

processing vibration data collected from low-cost MEMS accelerometers mounted on the pipe 

surface in order to detect leaks. In this case, the state of interest (pipe surface acceleration) is 

directly measured using the MEMS accelerometers. This is unlike the model-based methods (e.g., 

state observers) that need an accurate theoretical model of the pipeline dynamics to detect leaks 

since the state of interest (leak size, leak location, etc.) cannot be directly measured by the sensors 

[44], [101], [165]. 

Now, let’s consider the linear stochastic discrete-time system below:  

  (4.1)  

  (4.2)  

where  and  represent the state of the system at time k and k-1, respectively. A and B are 

matrices defining the system dynamics,  is the input vector, H is a matrix defining the 

relationship between the measurement and the interested state,  is the measurement at time k, 

 and  are the process noise and measurement noise, respectively.  

Applying KF as a sensor fusion algorithm to the linear stochastic discrete-time system described 

in equations (4.1) and (4.2) involves two steps: prediction (time update) and correction 

(measurement update). The prediction step is followed by a correction step to determine the states 

of the filter. This is sometimes called predictor–corrector or prediction–update [166]. 

In the first step, the state of interest, x at time k, is predicted from the updated state at time k-1. 

The prediction of the current state and the state error covariance matrix are given by: 

 (4.3) 

   (4.4) 
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where  is the predicted state vector at time k, is the previous estimated state vector, 

represents the predicted state error covariance matrix,  is the previous estimated state error 

covariance matrix, and  is the covariance matrix of the process noise . 

The second step is the correction or update step. This step aims to get an improved estimate by 

incorporating new measurements into the predicted estimate using the Kalman gain (Kk). KF at 

this step actually performs data fusion between predicted state and the measurements to obtain an 

optimal state estimate. 

  (4.5)  

 =  +   (4.6)  

  (4.7)  

where  is the measurement noise covariance, I is an identity matrix, is the estimated or 

updated state vector, and  is the updated state error covariance matrix. 

The equations (4.3) through (4.7) represent what is generally referred to as the standard KF. 

However, in this study we call it Local Kalman Filter (LKF) when it is implemented at the sensor 

node level to emphasize on the fact it is locally processed using the onboard computing resources 

of the sensor node. By actually performing KF using the onboard computing resources of each 

sensor node in the WWPM system, the LKF algorithm actually implements distributed computing 

within the WSN. However, the local estimates obtained at each node are not fused with those of 

other nodes given that the nodes in the LKF implementation do not communicate with each other. 

It should be recalled that the study conducted by Karray et al. [38] implemented an LKF, even 

though they used a force sensitive resistor rather than a low-cost MEMS accelerometer for pipe 

surface vibration measurements. 

Now that we have given reasons why KF was selected for use in this study and briefly described 

the KF technology and how it can implement data fusion at the node level, we will in the next 

section present a review of KF for WSNs. We will start by reviewing a number of KF algorithms 

that can be implemented in WSNs, and finally select and detailly describe three KF algorithms that 

we will implement in this study.  
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4.2 Application of Kalman Filter for Multi-sensor Data Fusion in 
Low-cost WSNs 
The implementation of KF in multi-sensor systems such as a WSN differs from the implementation 

of KF in single sensor systems. The implementation of KF in a WSN application can either be via 

a Centralized Kalman Filter (CKF) or Distributed Kalman Filter (DKF). CKF is a KF employing 

centralized data fusion, whereas DKF is a KF with distributed data fusion. In centralized data 

fusion, all the sensor nodes send their measurements to a central node, which fuses them to obtain 

an accurate global estimate. However, in distributed data fusion, the sensor nodes merge their 

estimates with those of their close neighbours via local communications that exist between them 

to obtain an accurate estimate rather than transmitting to a central site for centralized fusion. In the 

next sub-sections, we present a brief description of CKF alongside its drawbacks and how these 

drawbacks are handled by DKF. We then provide additional advantages of DKF that resulted in 

its selection and implementation in this study. 

4.2.1 Centralized Kalman Filter 
CKF is Bayesian optimal since it fuses data from all the sensor nodes. However, in large-scale 

WSN applications, it is difficult to fuse data from all the sensor nodes at a single fusion centre. For 

this reason, CKF is usually never implemented in practice, but it is used as a benchmark for 

evaluating the performance of distributed and decentralized KF algorithms [59].  

Now, let’s consider a discrete-time linear-stochastic and dynamic system which is being monitored 

by N sensor nodes described by the mathematical formulation below: 

  (4.8)  

 ,  i = 1, 2, 3, …, N  (4.9)  

where the measurement noise from two different sensors,  and  maybe cross-correlated at the 

same time step k. However, for simplicity, it is assumed that the measurement noise from different 

sensor nodes are uncorrelated [59].  

At the central fusion centre, all the measurements from the N sensors at time step k can be 

expressed as: 
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  (4.10)  

and the centralized estimate of the state , that takes into consideration sensor data from all N 

sensor nodes can be obtained using the equations of the standard KF (equations (4.3) through 

(4.7)). This results in an updated state estimate represented in the information form of the KF as 

[60]: 

 
 (4.11)  

where, the updated state error covariance of CKF is given by: 

 
 (4.12)  

As can be seen from equations 4.11 and 4.12, CKF requires all the sensor nodes to send their 

measurements to the central fusion centre. However, this is practically impossible for large scale 

WSNs as some sensor nodes may fail to send their estimates to the central fusion centre at certain 

times due to the unreliable nature of the communication links of WSNs. CKF is therefore not 

suitable for implementation in our context of WWPM because of the drawbacks of centralized 

monitoring in WSN applications which we mentioned in section 2.2 of chapter 2. Drawbacks such 

as uneven distribution of energy leading to the energy hole effect, fast depletion of sensor node’s 

energy due to frequent communication, reliability issues due to the unstable nature of wireless 

links, lack of robustness due to the presence of a single point of failure, high bandwidth 

requirement, and increase latency which undermines real-time applicability, are some of the 

disadvantages of centralized computing in WSN which is exploited by CKF. Due to these 

disadvantages, we switch to distributed computing by implementing a DKF instead. The 

drawbacks of CKF can be reduced by the distributed data fusion strategy employed in DKF 

algorithms. The aim is to perform distributed state estimation such that each sensor node is capable 

of obtaining an accurate estimate that is close to that obtained via centralized fusion [167] but at 

low computation and communication cost [64].  
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4.2.2 Distributed Kalman Filter 
Unlike CKF where there is only one fusion centre for fusing the measurements from all sensor 

nodes, in DKF, each sensor node acts as a local fusion centre for fusing its own measurements 

with those of its close neighbours to achieve an accurate estimate which is close to that obtained 

by the theoretical Bayesian optimal CKF algorithm. This makes DKF algorithms suitable for 

practical implementation in large-scale WSN applications.  

DKF algorithms have been used extensively in low-cost WSN-based target tracking applications 

[59]. They can also be used in any application where it is required to improve the accuracy of a 

monitored parameter by using redundant information from multiple low-cost sensors in order to 

complement the limitations of a single sensor node. They can be extended to applications such as 

navigation systems, environmental and power system monitoring, autonomous robot systems, 

large-scale camera networks, wireless channel monitoring, structural health monitoring of civil 

structures etc. 

Another novel application where DKF can also be applied is the real-time and reliable detection 

of leaks in WDNs monitored by WSNs. This is the main focus and contribution of this thesis, and 

to the best of our knowledge, this is the first work that uses WSNs consisting of sensor nodes with 

low-cost MEMS accelerometers and implements a DKF algorithm on each sensor node for leak 

detection. The goal is to improve the reliability of leak detection in real-time and provide a fully 

distributed solution that curbs the limitations of centralized solutions, i.e., high latency (due to 

multi-hop communication), scalability issues, and high-power consumption. In our proposed 

solution, each sensor node runs a local Kalman filter (LKF) to obtain an accurate local estimate 

from the local measurements, then later fuses it with those of its close neighbours to achieve a 

more accurate global estimate used for leak detection. In this way, our proposed solution is 

autonomous and does not need any central intelligence. 

In addition to the reasons for choosing the KF algorithm mentioned above, DKF was chosen as 

the as the distributed algorithm for implementing distributed computing within the WWPM system 

for the following reasons: 

1. Its prediction capability can be used to reduce the amount of data traffic by making 

predictions and inferences about the monitored parameter based on previous estimates and 
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measurements. The number of communications in the WSN can be reduced by using DKF 

because the measurements from neighbouring sensor nodes are correlated, and this can 

permit the DKF algorithm implemented on one sensor node to be able to predict the 

measurement of another sensor without necessarily communicating with the node. This 

reduces the number of data transmissions in the WSN and the power consumption of the 

sensor nodes and thus extends the WSN lifetime. 

2. Its data fusion capability can fuse sensor readings from neighbouring sensor nodes, thereby 

increasing the reliability, accuracy, and confidence of the pipe surface acceleration 

obtained from multiple sensors. This feature can improve leak detection accuracy. 

3. Its distributed nature, which permits only local communications (limited between 

neighbouring sensor nodes), can reduce data transmission rate and thus provide energy 

savings in the WSN since the sensor nodes do not send their measurements to a central 

fusion centre. 

4. It is more robust and scalable due to the lack of a single point of failure, given that each 
sensor node acts as a local fusion centre. 
 

In summary, DKF incorporates both data prediction (an energy conservation technique to extend 

the lifespan of the WWPM system) and distributed multi-sensor data fusion (to improve the 

accuracy of the leak detection system). 

In the next section, we will review DKF algorithms for low-cost WSNs and select three DKF 

algorithms that will be implemented in this study. 

4.3 A Review of DKF Algorithms for Low-cost WSNs 
Several DKF algorithms are available in the literature as can be seen in reviews on DKF [59], 

[168], [169]. In Addition, the DKF algorithms are widely categorized in the literature as either 

consensus-based or diffusion-based. However, He et al. [59] recently reviewed DKF algorithms 

for low-cost sensor networks and broadly classified them as either sequential, consensus, gossip, 

or diffusion, based on how local sensor nodes communicate with their neighbours to perform data 

fusion. The authors also evaluated DKF algorithms in terms of criteria such as global convergence 

(ability to converge to the value of the Bayesian optimal CKF asymptotically or in finite time), 
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local consistency (ability to maintain a consensus in the estimates of neighbouring sensor nodes), 

and communication burden (number of communication rounds involved during fusion).  

According to the study by [59], the sequential-based DKFs involve communication between two 

sensors at any point in time and the fusion is performed repeatedly and sequentially. Hence, this 

type of distributed data fusion in only possible in linear WSNs. Consensus-based DKFs require 

each sensor node to transmit its local information and also receive information from all its 

neighbours at every time step and consensus iteration. Each node implementing a gossip-based 

DKF transmits its local information and receives information from just a selected neighbour at 

every time step and gossip iteration while each sensor node implementing a diffusion-based DKF 

transmits its local information and receives information from all its neighbours at every time step 

and with only one communication iteration involved.  

In the sub-sections that follow, we describe in details consensus-based, gossip-based, and 

diffusion-based distributed data fusion techniques. 

4.3.1 Consensus-based DKF Algorithms 
Consensus-based DKF algorithms achieve global convergence by performing fusion in a 

distributed manner through an average consensus approach. The global estimate obtained from the 

distributed data fusion closely matches that obtained by the theoretical Bayesian optimal CKF 

algorithm. The sensor nodes achieve this global estimate by exchanging local information with 

their close neighbours in between measurements. Each exchange that occurs in between 

measurements is referred to as a consensus iteration and the number of consensus iterations 

between measurements is defined by L. Examples of popular studies where the consensus 

approach of distributed data fusion is applied in WSNs include: [64], [170]. 

Now considering that the system described by equations 4.8 and 4.9 is monitored by a WSN 

consisting of N sensor nodes and implementing a distributed architecture with each sensor node i 

having Ci connected neighbours, the goal of consensus-based DKF algorithms is to compute the 

CKF terms s =  and S =  in a distributed manner using the 

average consensus protocol [59]. At any time step, k, the updated state estimate and the updated 
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state error covariance at node i, after L consensus iterations between time step k-1 and k are given 

by: 

 
 (4.13)  

    j  Ci  (4.14)  

 

Now based on the type of information that is exchanged between neighbouring sensor nodes during 

consensus iterations, there are two variants of consensus-based DKF algorithms. There are those 

that perform consensus on measurement (CM) by exchanging  and  

during each consensus iteration and those that perform consensus on information (CI) by 

exchanging  and  during each consensus iteration. 

For consensus-based DKFs that employ CM, the correction step at each sensor node, i, at the end 

of the final consensus iteration is given by: 

  (4.15)  

  (4.16)  

where  =  and  , with  = 1.  

is used for compensating for the approximation of  and  

CI in consensus-based DKFs involves covariance intersection, with the correction step at sensor 

node, i, at the end of the final consensus iteration given by information pair 

 
 (4.17)  

 
 (4.18)  

where  = 1, , and  
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CM ensures global convergence while CI ensure local consistency. Thus, consensus-based DKF 

algorithms that implement CM enjoy global convergence, those that implement CI enjoy local 

consistency, and those that implement both CM and CI enjoy both global convergence and local 

consistency. To summarise, consensus-based DKFs have good estimation accuracy but high 

communication requirement.  

4.3.2 Diffusions-based DKF Algorithms 
Compared to consensus-based DKF algorithms, diffusion-based strategies do not require any 

knowledge of the network size [59] and neighbouring sensor nodes are involved in a single 

exchange in between measurements. Thus, the diffusion-based DKF strategy has a low 

communication requirement. This makes them very appropriate for real-time application in 

dynamic systems where the dynamics of the system is changing fast (given that measurements can 

be treated in a timely manner as they are obtained rather than waiting for a consensus on the 

estimates of neighbouring sensor nodes) and also in systems where the sensor nodes are 

constrained in energy (as a result of their low communication requirement). Examples of studies 

where the diffusion strategy of distributed data fusion is applied in WSNs include: [167], [171]–

[174]. 

The diffusion strategy is similar to the consensus strategy with only one consensus iteration 

between measurement updates. It consists of two steps, an incremental update step followed by a 

diffusion update step. For a sensor node, i, the incremental update and diffusion update are given 

by: 

Incremental update 

 
 (4.19)  

 
 (4.20)  

Diffusion Update 
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 (4.21)  

where  is an element of the diffusion matrix, with  if j  = 1 

As can be seen in equation 4.21, the diffusion update step of the diffusion strategy is similar to the 

covariance intersection implemented by the CI variants of consensus-based DKF algorithms. Thus, 

this gives diffusion-based DKF algorithms the ability to achieve local consistency. However, they 

do not converge to the CKF value since there is no consensus on measurements. Summarily, 

diffusion-based DKFs have low communication requirement but their estimation accuracy is poor.  

4.3.3 Gossip-based DKF Algorithms 
Gossip-based DKF algorithms try to obtain the best from both worlds of consensus-based and 

diffusion-based DKF algorithms. Unlike the consensus-based algorithms, every sensor node in 

gossip-based algorithms receives local estimates and performs averaging with only one selected 

neighbour during each gossip iteration that occur between measurement updates. The selection of 

a neighbour sensor node with whom averaging is performed during each gossip iteration can be 

via a randomised protocol [175], a greedy protocol [176], or a sample greedy protocol [177].  

Summarily, gossip-based DKF algorithms have a lower communication requirement compared to 

consensus-based DKF algorithms, but this lower communication requirement is achieved at the 

cost of slow convergence speed. 

Now that we have described the different categories of DKF algorithms, we will in the next section 

present the selected DKF algorithms that we will implement and evaluate in this study.  

4.4 Selected DKF Algorithms 
In low-cost WSN applications such as WWPM, criteria such as global convergence and local 

consistency of the DKF algorithm affect the accuracy of the WWPM system while the 

communication requirement of the DKF algorithm affects the energy consumption and thus the 

lifetime of the WWPM system. The effect of global convergence and communication requirement 

are contradictory to each other. Thus, a comprise is needed in order to achieve acceptable accuracy 

while prolonging the lifetime of the WWPM system. Given that communications in low-cost 
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WSNs deplete sensor node’s battery faster, the accuracy of a DKF algorithm is emphasized more 

on its ability to maintain local consistency than its ability to achieve global convergence. Local 

consistency is of vital importance because inconsistency in fused state estimate and covariance 

resulting from spurious measurements and the cross-correlations between the local estimates of 

neighbouring sensor nodes may cause the DKF to diverge [178]. Most DKFs implement the CI 

technique to handle the cross-correlation between local estimates of neighbouring sensor nodes 

and thus achieve local consistency. For this reason, we selected only DKF algorithms that maintain 

local consistency and have low transmission requirement. 

Based on the classification and evaluation of DKF algorithms by the study carried out by [59], the 

following algorithms (shown in Table 4.1) were selected for each distributed data fusion category. 

They include: Information-Weighted Consensus Filter (ICF) proposed by [64], Sample Greedy 

Gossip Information-Weighted Consensus Filter (SGG-ICF) proposed by [177], and Event-

triggered Diffusion-based Kalman Filter (EDKF) proposed by [171]. All the algorithms selected 

maintain local consistency as this is very crucial to the reliability of the WWPM system. For the 

communication requirement, ICF has the highest, followed by SGG-ICF, and lasty EDKF. 

Table 4. 1: Comparison of selected DKF algorithms 

DKF Algorithm Underlying 
fusion strategy 

Convergence 
to CKF 

Local 
consistency 

Communication 
requirement 

Fully 
distributed 

ICF [64] Consensus-based Yes Yes High No 
SGG-ICF [177] Gossip-based Yes Yes Moderate No 

EDKF [171] Diffusion-based No Yes Low Yes 
 

ICF [64] and SGG-ICF [177] both enjoy local consistency (stable estimate for each sensor node in 

the network) and global convergence (converge to the CKF value in a finite number of iterations) 

since they implement both CI and CM during the fusion process. However, they are not fully 

distributed since they need to know the network size during the fusion process [59]. Unlike ICF 

and SGG-ICF, EDKF [171] is a diffusion-based DKF algorithm since it involves just a single 

exchange between neighbouring sensor nodes at each time step and the local state and covariance 

are calculated and then corrected by a convex combination of the estimates of the neighbours [179]. 

It enjoys local consistency since it implements CI during the fusion process, but does not converge 

to the optimal CKF value since it does not implement CM. In addition, it is fully distributed, since 
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information on the network size is not required during the fusion process [59], [171], making it 

very scalable. 

4.4.1 Information-Weighted Consensus Filter Algorithm 
The information-weighted consensus filter proposed by Kamal et al. [64] consists of five main 

steps (initialization, computation of local information pair, information fusion, measurement 

update and prediction). Every sensor node implementing the algorithm goes through the iterative 

process shown in Figure 4.1. At time step k, every local sensor node (i) starts by getting inputs 

such as the predicted state ( ), the predicted state error covariance ( ), the observation matrix 

(Hi), the consensus speed factor (ε), the number of consensus iterations (L), the measurement ( ), 

and the measurement information matrix ( ). This is followed by the computation of the 

local information pair (  and ) by using the inputs received in the initialization step. The next 

step involves the fusion of local information with those of neighbouring sensor nodes by using a 

consensus protocol. During each consensus iteration, the sensor node sends its local information 

pair (  and ) to all its neighbours and also receives the local information pair (  and ) of 

all its neighbours. A consensus algorithm is then used to compute the average of each of the 

element in the information pair during the information fusion step. At the end of L consensus 

iterations, the fused information pair is obtained (  and ). The fused information pair is then 

used in the measurement update step to compute the state estimate ( ) and estimated state error 

covariance  at time step k. Lastly, the prediction step involves propagating the estimated state 

and estimated state error covariance in time by at time by computing predicted state ( ) and 

the predicted state error covariance ( ) at time step k + 1. 
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Figure 4. 1: Flowchart of ICF algorithm

4.4.2 Sample Greedy Gossip Information-Weighted Consensus Filter algorithm
The gossip-based DKF algorithm proposed by Shin et al. [177] consists of four main steps 

(prediction, computation of local information pair, information fusion and measurement update). 
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Every sensor node implementing the algorithm goes through the iterative process shown in 

Figure 4.2. At time instant , every local sensor node (i) computes the predicted state ( ) and 

predicted state error covariance ( ) based on the previous state estimate ( ) and estimated 

state error covariance (  at k-1, respectively. The next step involves computing the local 

information pair (  and ) which is exchanged with a neighbour node during each gossip 

iteration. This is then followed by the information fusion step which is repeated iteratively for a 

total of L gossip iterations. During each gossip iteration, each sensor node first determines a set of 

active neighbours by generating a probability (p) and comparing it with a sample (qi) generated 

from a uniform distribution and stored in each of its neighbours. If the value of the sample stored 

by the neighbouring sensor node is greater than or equal to the probability generated by the sensor 

node, then the neighbour sensor is placed into the active set of the sensor node, otherwise the 

neighbour node is considered as inactive. Once the active neighbour nodes have been determined, 

the next task performed by the algorithm is to determine for each sensor node the neighbour node 

with the largest information discrepancy with whom it is going to perform averaging with during 

the information fusion step. This neighbour node is actually determined via a greedy algorithm 

that computes the Mahalanobis distance ( ) between the information pair of the sensor node and 

those of its active neighbours. The neighbour node, j*, with the largest Mahalanobis distance ( ) 

is selected. The information fusion continues iteratively till after a total of L iterations is reached. 

After L gossip iterations, the fused information pair information pair (  and ) is available 

and is used to compute the updated state estimate ( ) and estimated state error covariance  at 

time step k, during measurement update. 
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Figure 4. 2: Flowchart of SGG-ICF algorithm

4.4.3 Event-triggered Diffusion-based Kalman Filter Algorithm
The DKF algorithm proposed by Battistelli et al. [171] consists of four main steps (correction, 

information exchange, information fusion and prediction) and every sensor node implementing the 

algorithm goes through the iterative process shown in Figure 4.3. Each node starts by updating a 

local information pair, which consist of the local estimate and the estimation error covariance 

matrix. This is immediately followed by the exchange of the information pair to the out-neighbours 

of each node if and only if the transmission flag of the sensor node is set to 1. The transmission 

flag is set to one when the difference between the current updated local estimate and the last 
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transmitted local estimate exceeds some threshold, which is determined by some transmission 

parameters designated in the study as α, β, and δ (which can be varied to achieve a desired 

behaviour in terms of transmission rate and performance). By this, the algorithm possesses an 

event-triggered communication capability and information is only shared when the data currently 

computed by a node’s out-neighbours are no longer consistent with the data locally available at 

the node. The transmission test ensures that in the case of no transmission, the data currently 

computed by the out-neighbours of a node are close to the data locally available at the node, both 

in terms of mean and covariance, thus maintaining local consistency. The information exchange 

step is then followed by an information fusion step where every node computes a fused information 

pair from its local information pair and those received from in-neighbours at the current time step, 

k. During the information fusion step, each node computes an approximate local pair for its in-

neighbours that did not transmit at time step k (because their transmission flag was not set), from 

the most recent local information pair last received from them. As the final step in each iteration, 

the prediction step involves propagating the fused information pair in time by applying the Kalman 

filter prediction step to compute the local predicted information pair at time k + 1. 
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Figure 4. 3: Flowchart of EDKF algorithm

Now that we are done describing the DKF algorithms that will be implemented in this study, 

we will in the next section present the metrics that will be used to evaluate the performance 

and power consumption of our proposed WWPM solution. 
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4.5 Evaluation Metrics 
In this section we present the different metrics that can be used to measure the accuracy of leak 

detection algorithms and energy consumption of WWPM systems. Though information about 

these parameters is very important especially in the context of WWPM, very few studies provide 

an evaluation of both the reliability and energy consumption of their solution. While some WWPM 

studies provide an assessment of the reliability (performance) of their leak detection techniques, 

very few ever mention the power consumption of their proposed solution. Nevertheless, there exist 

some studies that have accessed both the accuracy and power consumption of their proposed 

WWPM solution [40], [41], [51].   

4.5.1 Performance metrics 
Chan et al. [100], surveyed the different metrics used by WPM studies available in the literature 

for evaluating the performance of their proposed leak detection algorithms. The performance 

metrics range from sensitivity, specificity, false alarm rate, precision, accuracy, etc. They 

presented a confusion matrix (which is mostly used for statistical classification in machine 

learning), which we adapted to a leak detection system as shown in Table 4.2. 

Table 4. 2: Leak detection confusion matrix 

 Event 
Leak No leak 

Alarm ON TP FP 
OFF FN TN 

 

Now, assuming that a ‘leak event’ is a represented by a Boolean ‘1’, a ‘no leak event’ by a Boolean 

‘0’, ‘alarm ON’ by a Boolean ‘1’, and ‘alarm OFF’ by a Boolean ‘0’, we generated the leak 

detection truth table given in Table 4.3. 

Table 4. 3: Leak detection truth table 

Event Alarm Description 
0 0 TN 
0 1 FP 
1 0 FN 
1 1 TP 
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 TP: represent the cases where there is truly a leak on the WDN and the system triggers an 
alarm 

 TN: represent the cases where there is no leak and the system does not trigger an alarm 
 FP: represent the cases of false alarm i.e., cases where the system triggers an alarm but 

there is actually no leak  
 FN: represent the cases where the detection of a leak was missed i.e., a leak actually occurs 

but the system does not trigger an alarm. 

The different metrics that can be used to evaluate the reliability of a leak detection system using 

the confusion matrix in Table 4.2 include: 

1. Sensitivity 
It also referred to as the True Positive Rate (TPR) and it represents the ability of the leak 
detection system to accurately detect all the actual leak events that occur on the WDN and 
is it expressed as:  

                               (4.22) 
 

2. Miss Detection Rate (MDR) 
It is also referred to as False Negative Rate (FNR) and it represents the ability of the leak 
detection system to fail to trigger an alarm when a leak occurs on the WDN. It is expressed 
as:  

           (4.23) 
 

3. Specificity 
It is also referred to as the True Negative Rate (TNR) and it represents the ability of the 
alarm of the leak detection system in staying off when there is actually no leak on the 
WDN. It is expressed as:  

                               (4.24) 
 

4. False Alarm Rate (FAR) 
It is also referred to as False Positive Rate (FPR) and it represents the ability of the leak 
detection system detect outliers in measurement which do not actually represent the 
existence of a leak, as a leak on the WDN. It is expressed as:  

          (4.25) 
 

5. Positive Predictive Value (PPV)  
It represents the percentage of leaks events that truly occurred out of the number of leak 
alarms that were triggered by the leak detection system. It is expressed as:  

                                        (4.26) 
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6. Negative Predictive Value (NPV) 
It represents the actual proportion of correctly identified no leakage scenarios in the total 
number of no leakage scenarios detected by the leak system i.e., how many of the events 
labelled by the leak detection system as no leakage scenarios were truly no leakage 
scenarios. It is expressed as: 

                                        (4.27) 
 

7. Accuracy 
It is the sum of the correctly identified leakage and no leakage scenarios over the total 
number of detect events. It is expressed as:  

                            (4.28) 
 

One method of detecting the existence of a leak on the WDN is by comparing the value of the 

measurement at time step k ( ) with the predicted pipe state ( ) obtained from DKF prediction 

step. If the difference is greater than a certain defined threshold (δ) then a leak alarm will be turned 

on, else no alarm will be triggered [38], [50], [180].  

 No leak scenario  
             (4.29) 

  Leak scenario 

Another method of determining the presence or absence of a leak on the WDN is by comparing 

the estimated pipe state at time k ( ) with a baseline value ( ) of the pipe state when there is no 

leak on the WDN. If the difference is greater than a certain defined threshold (δ) then a leak alarm 

will be triggered, else no alarm will be triggered [51], [181]. 

   No leak scenario  
             (4.30) 

  Leak scenario 

4.5.2 Energy consumption metrics 
The energy consumption metric represents the total amount of energy spent by the sensor node 

while performing sensing, processing and communication operations. It is expressed as:  
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  (4.31)  

where  are the energy consumed by the sensor node’s processing unit, 

communication unit, and sensing unit, respectively, at time step k. 

  (4.32)  

where  is the current consumption of the MCU,  is the operation voltage of the MCU 

and  is the time used by the MCU for processing. 

  (4.33)  

where  is the current consumption of the sensor,  is the operation voltage of the sensor 

and  is the amount of time sensor is active during the sensing process. 

  (4.34)  

where L is the length of the packet transmitted/received, R is the data rate,  is the operational 

voltage of the transceiver, while  and  are the current consumption of the transceiver when 

operating in the transmit and receive modes, respectively. 

When the node is powered by a lithium-polymer (Li-Po) battery, the state of charge (SOC) of the 

battery is estimated and used as the energy consumption metric. There are several techniques for 

estimating the SOC of a battery. They include coulomb counting method, voltage method, Kalman 

filter method, impedance spectroscopy, etc [182]. However, we used the voltage method because 

the battery voltage can be read directly from one of the ESP32 pins without needing extra circuitry. 

From the SOC versus Voltage discharge curve obtained from the 3.7 V 2000 mAh Li-Po 

rechargeable battery’s datasheet [183], [184], we used polynomial interpolation to derive the 

analytic relationship between SOC and the voltage of the battery given by equation (4.35). 

 

 (4.35)  

where V is the battery’s voltage 
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4.5.3 Selected Evaluation Metrics 
Given that the objective of this study was to propose a WWPM system with low-power, real-time, 

and reliable leak detection, we selected sensitivity, specificity, and accuracy as the metrics for 

evaluating the performance (reliability) of our proposed WWPM solution. They were selected 

because they frequently used by most WWPM studies in the literature that evaluated the 

performance of their solution [35], [40], [51], [181], [185]. This permits us to easily compare the 

results of our proposed solution with those of existing solutions available in the literature. We 

evaluated the energy consumption by measuring the current consumption and voltage of the sensor 

nodes.  

4.6 Summary 
In this chapter, we reiterated the need for a low-cost, real-time and low-power WWPM solution 

for detecting leaks on the plastic WDNs of developing countries. Motivated by the need for an 

algorithm with low complexities (in terms of computational power, storage, and communication) 

requirement at the sensor node level, we selected KF technology for implementation. We provided 

reasons why KF was chosen as the signal processing algorithm for processing leak data measured 

by the low-cost MEMS accelerometers attached to the pipeline. Additionally, we did a survey of 

different variants of the KF technology that can be implemented in WSNs. We finally ended up 

using a KF that implements distributed data fusion (DKF) rather than a KF that implements 

centralized data fusion (CKF) because of the drawbacks of centralized monitoring (implemented 

by CKF) in WSN which we had highlighted in chapter 2 of this thesis. Guided by the review on 

DKF algorithms for low-cost WSNs presented by [59], we selected three DKF algorithms for 

implementation and evaluation in our proposed WWPM solution. One of the selected DKF 

algorithms is a consensus-based DKF algorithm referred to as Information Consensus Filter (ICF) 

and proposed by [64]. This algorithm has a good estimation accuracy as it converges to the optimal 

CKF value and also maintains local consistency of the estimate amongst neighbouring sensor 

nodes. However, it has a high communication requirement as each node transmits its local 

information and receives information from all its neighbours at every measurement update and it 

also requires multiple consensus iteration between measurement updates to achieve a good 

estimation accuracy. Another DKF algorithm that was selected the event-triggered diffusion-based 

KF (EDKF) proposed by [171]. This algorithm has a low communication requirement (as each 
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node transmits its local information and receive information from all their neighbours at every 

time step and with only one communication iteration involved between measurement updates). 

This makes it suitable for implementation in WSN applications where there is a strict deadline and 

the nodes are constrained in energy. However, the estimation accuracy of this algorithm is low. 

The last algorithm selected is a gossip-based DKF algorithm referred to as sample greedy gossip 

information consensus filter (SGG-ICF) and proposed by [177]. This algorithm seeks to get the 

best from both worlds of consensus-based and diffusion-based DKFs by achieving high estimation 

accuracy while reducing the communication burden. Finally, we ended the chapter by presenting 

the evaluation metrics that will be used for evaluating the performance of our proposed WWPM 

solution. We selected sensitivity, specificity, and accuracy as the metrics for evaluating the 

performance (reliability) of our proposed WWPM solution and we chose to measure the current 

consumption and voltage of the sensor nodes as the evaluation metric for the power consumption. 

4.7 Layout of the Validation procedure 
 

To validate our proposed fully distributed approach for leak detection, it is important to first 

demonstrate the viability of our DKF-based solution (distributed data fusion) by implementing the 

selected DKF with the worst theoretical estimation accuracy and comparing the results with those 

of reference models: LKF-based solution (no data fusion) and CKF-based solution (centralized 

data fusion). After demonstrating the feasibility of our fully distributed approach, we will then 

evaluate and compare the performance of the selected DKF algorithms. Thus, in the following two 

chapters, we will describe the design approach, the deployment and the validation of our 

distributed approach. We will proceed in two steps. Firstly, we will validate the pertinence of using 

DKF in WSN with low-cost accelerometers for leak detection. This first step will also be used to 

validate the global design approach coupling simulation phase and experimental setup. Secondly, 

we will implement and evaluate the three DKF algorithms selected in Section 4.4 and determine 

which solution is the best in regards to the selected metrics. Therefore, the next two experimental 

chapters will be laid out as follows: 
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1. Demonstrate the feasibility of a DKF-based solution for leak detection in WWPM systems 

using low-cost MEMS accelerometers by implementing the worst-case scenario, i.e., the 

selected DKF algorithm with the lowest theoretical accuracy (Chapter 5). 

2. Use a combined approach involving simulations on a WSN simulator and physical 

experiments on a laboratory testbed. This will lead to the construction of a laboratory 

testbed in Cameroon and the development of an accurate energy model for simulation 

(Chapter 5). 

3. Validate that DKF provides a better leak detection performance when compared to LKF, 

and it is more scalable and energy-efficient when compared to CKF (Chapter 5). 

4. Evaluate the performance and power consumption of the three selected DKF algorithms 

using the combined approach of simulations and physical experiments once the pertinence 

of DKF is established. From there, determine which of the selected DKF algorithm is 

optimal for leak detection in WWPM systems using low-cost MEMS accelerometers 

(Chapter 6).  
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Chapter 5  

Demonstration of a DKF-based leak detection solution in 
WWPM Systems using Low-Cost MEMS Accelerometers. 

The objective of this chapter is to validate that distributed computing in a WWPM system 

composed of a network of low-cost MEMS accelerometers for leak detection in plastic WDN is a 

viable approach. This chapter will be divided in 3 parts: first we will describe the methodological 

approach composed of a simulation phase and an experimental deployment phase. We will then 

discuss the implementation of the KF algorithms (LKF, CKF, and DKF) in the simulation and 

experimental deployment phases. This will be followed by a description of both the simulation 

setup used for performing simulations and the laboratory setup used for validating the results 

obtained from simulations. The results of both phases will be presented and discussed in regards 

to two working hypotheses: comparison with LKF on the one hand and comparison with CKF on 

the other hand. The first comparison will demonstrate that DKF is viable approach for leak 

detection and will deliver an efficient simulation model for energy consumption evaluation. The 

second comparison will show the advantages of this approach compared with conventional 

centralized approach in terms of energy. We will conclude this chapter by a summary of the 

obtained results, the necessary evolution of the initial working hypothesis. It should be noted that 

the results presented in this chapter have already been published in [186], [187].  

5.1 Method 
5.1.1 Description of Methodological Approach 
Our method is a combined approach involving simulations and laboratory experiments. The reason 

for the combined approach is as follows: we use the simulation results to obtain a first-hand 

assessment of our proposed solution, then later use the experimental results to validate the 

simulation results and prove the viability of our proposed solution. 

5.1.2 Implementation of KF Algorithms 
In this sub-section, we provide the implementation details for the different KF algorithms that were 

implemented in this first set of experiments. The KF algorithms implemented include: LKF, DKF, 
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and CKF. LKF and DKF are implemented and evaluated on both the simulation platform and the 

laboratory testbed while CKF is implemented and evaluated only on the simulation platform. The 

details of the simulation platform and laboratory testbed are provided in sub-sections 5.1.3 and 

5.1.4, respectively. In this first set of experiments, the sensor nodes emulated on the simulation 

platform and deployed on the laboratory testbed consists of an Adafruit Huzzah32 ESP32 feather 

as the processing unit [188], Nordic nRF24L01+ as the communication unit [159], and ST 

Microelectronics LSM9DS1 accelerometer as the sensor unit [161].  

5.1.2.1 Implementation of LKF Algorithm 

In the implementation of the LKF represented by equations (4.3) through (4.7), we assigned A the 

value one (A = 1). The reason is that steady-state leak detection methods assume that the pipe 

vibration remains relatively constant until an event such as a leak occurs on the pipeline [189], 

meaning that the next value of the pipe surface acceleration will be the same as the previous one. 

Also, we assigned the value of H to one (H = 1) since there is a single state of interest (pipe surface 

acceleration), and it is linearly related to the measurement. The measurement is assumed to be 

composed of the state value and some noise. Furthermore, with the assumption that there is no 

control input to the pipeline system, we assigned  the value zero (  = 0). Finally, we derived 

R from the LSM9DS1 datasheet, and Q was obtained after some experimentation. According to 

the LSM9DS1 datasheet, the linear acceleration typical zero-g level offset accuracy of the 

LSM9DS1 accelerometer is ±90 mg, which means the maximum value of R is 0.0081 

(R = 0.0081). The datasheet of the LSM9DS1 accelerometer states that the sensor when placed in 

a steady state on a horizontal surface will output 0 g on both the X-axis and Y-axis, and 1 g on the 

Z-axis. With this in mind, we did some experiments by tuning Q to different values (10, 1, 0.1, 

0.01, and 0.001) and selected the one that best approximated the acceleration values at zero-g. 

After the experiments, Q was assigned the value 0.001 (Q = 0.001) in the implementation since it 

best approximated the zero-g acceleration values. 

For the simulations, a script written using SenseScript (the language supported by the CupCarbon 

4.2 simulation platform) was used to implement the LKF algorithm and finally uploaded to each 

of the sensor nodes. For the physical implementation, the LKF algorithm was written in C/C++ 

using the Arduino 1.8.9 Integrated Development Environment (IDE). According to Adafruit 
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recommendations, the Huzzah32 ESP32 feather should be programmed using either the Arduino 

IDE or the low-level ESP32 IDF [188]. After compiling the LKF algorithm using the Arduino 

IDE, the firmware which was uploaded to each of the sensor nodes occupied a memory space of 

222 kB.  

5.1.2.2 Implementation of DKF Algorithm 

We already selected three DKF algorithms in section 4.4 of chapter 4 that we will evaluate in the 

context of WWPM. However, in this preliminary study, we tested the feasibility of implementing 

DKF to improve leak detection accuracy in WWPM by first investigating the worst-case scenario 

(in terms of performance). Amongst the three selected DKF algorithms, we started by 

implementing the DKF algorithm with the lowest theoretical estimation accuracy. Based on this, 

EDKF proposed by [171] and described in sub-section 4.4.3 of chapter 4 was implemented as the 

DKF algorithm in this preliminary study.  

The values of the model parameters (A, H, R, and Q) of the LKF algorithm embedded within the 

EDKF algorithm are the same as those of the LKF implementation earlier mentioned in sub-section 

5.1.2.1 above. In addition, the distributed data fusion parameters that determine the information 

transmission rate of the proposed DKF algorithm, represented in [171] as α, β, and δ, were assigned 

the values 0.001, 40 and 40, respectively. 

Scripts implementing the EDKF algorithm were written using the SenseScript language and were 

uploaded to each of the sensor nodes during simulations. For the physical experiments, the nodes 

were programmed in the same way as in the LKF implementation. Additionally, given that the 

sensor nodes in the DKF implementation communicate with their neighbours, the RF24 [190] and 

RF24Network [191] libraries, which provide the MAC and Network layer functions, respectively, 

were used to control the nRF24L01+ transceiver which was interfaced to the Huzzah32 via SPI. 

Finally, the firmware uploaded to the nodes after compiling the EDKF algorithm using the Arduino 

IDE occupied a storage space of 225 kB. 
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5.1.3 Simulation Setup 

5.1.3.1 Selected WSN Simulation Platform 

The implementation and deployment of a WSN incurs cost and it is also time consuming. So, it is 

important to simulate the operation of a specific design before deploying it. In this chapter, we 

performed simulations to evaluate and provide first-hand information on the performance of the 

algorithms being studied. Simulations were carried out in Cupcarbon 4.2, which is a Smart City 

and Internet of Things Wireless Sensor Network (SCI-WSN) simulator that is used to design, 

visualize, debug and validate distributed algorithms for monitoring, e.g., the collection of 

environmental data [192]. It offers two simulation environments; one enables the design of 

scenarios with mobility and the generation of natural events while the other enables the simulation 

of discrete events in WSNs. It should be noted that CupCarbon simulation is based on the 

application layer of the nodes, and it is composed of four modules: a microcontroller, radio unit, 

sensing unit and a battery [193]. It also includes a script called SenScript, which allows the 

programming and configuration of each sensor node individually. From this script, it is also 

possible to generate codes for hardware platforms such as Arduino/XBEE [193]. These features 

make it suitable for simulating distributed algorithms and demonstrating distributed computing in 

a WSN environment, given that it permits us to write and simulate applications that will be 

implemented on real sensor nodes. In addition, CupCarbon simulator also provides a feature to 

monitor the energy consumption and display the detailed energy profile of each sensor node. This 

can enable us evaluate the power consumption and test the feasibility and realistic implementation 

of a given distributed solution before its real deployment, as it enables the identification of critical 

nodes and can give us information on the lifetime of the sensor network. This provides an initial 

revelation of which algorithm is more energy efficient. This particular feature of CupCarbon 

simulator is important to our work, as we are interested in evaluating the energy consumption of 

our proposed distributed solution. Finally, from simulations in CupCarbon, we can also obtain 

information of the number of messages transmitted which reveals the communication requirement 

of a given distributed algorithm. 
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5.1.3.2 Description of Simulation Setup 

The simulation setup shown in Figure 5.1a is composed of two sensor nodes (S1 and S2) and 

natural event generators (A4 and A5). The natural event generator enables the generation of 

analogue values and its objective is to simulate random or given values from the environment. The 

simulation setup shown in Figure 5.1b consists of three nodes (S1, S2 and S3). The simulation 

carried out in the simulation setup depicted in Figure 5.1b was used to show that there is no 

significant difference in the results obtained from simulating the DKF algorithm in a linear 

network composed of two nodes and that composed of three nodes. The natural event generators 

(A4 and A5) were used to simulate acceleration values measured by the LSM9DS1 sensors. One 

thousand acceleration values generated by the natural events were used in the simulations. 

 
(a) 

 
(b) 

Figure 5. 1: Simulation setup in CupCarbon: (a) with two nodes; (b) with three nodes. 

5.1.3.3 Simulated Scenarios 

We simulated two scenarios using the linear WSN consisting of two sensor nodes (Figure 5.1a). 

In the first case, we simulated a scenario where the data measured by both sensor nodes (S1 and 

S2) were erroneous (noisy) while in the second case, only the data measured by sensor nodes S1 

were erroneous and the data measured by sensor node S2 were error free. For each case, we 

implemented both the LKF (without data fusion) and the DKF (with data fusion) and compared 

the results. The simulation results will be discussed alongside the experimental results in section 

5.2 to validate the approach. 
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5.1.4 Experimental Setup 

5.1.4.1 Description of Experimental Setup 

We installed a laboratory testbed at the Electrical and Electronic Laboratory of the University of 

Buea in Cameroon, based on technical and real-field observations of a WDN in Cameroon. The 

installation is composed of two plastic water storage tanks of capacity 1000 L (one tank for storage 

placed on a tower of height 9 m and one supply tank placed beneath the tower), a U-shaped 13 m 

long low-pressure PVC pipe with an external diameter of 32 mm and an internal diameter of 30 

mm for the plumbing part. This installation distributes water by using an electrical pump (0.7 HP 

motor) providing a maximum pump capacity of 40 L/min to fill the upper storage tank. Water is 

supplied to the WDN by gravity using the upper storage tank, to mimic the WDN of the city of 

Buea and also to avoid external disturbances caused by operational changes such as the 

starting/stopping of pumps, etc. Leakage emulation in the pipeline was realized by a valve situated 

4 m away from the inlet of the water into the system. The laboratory WWPM system consisted of 

two sensor nodes, namely S1, placed 1 m before the leak position and S2, placed 1 m after the leak 

position, as shown in Figure 5.2. In this laboratory setup, the LSM9DS1 accelerometer sensor of 

each sensor node measured the pipe surface acceleration of the pipe, which was later processed by 

the ESP32 MCU to detect the presence or absence of leaks in real-time.  
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Figure 5. 2: Laboratory testbed setup 

5.1.4.2 Validation of the two-node linear WSN implementation 

In a chain of sensor nodes forming a linear WSN, which is the case of a WWPM system, the nodes 

at the beginning and ending of the chain have one directly connected neighbour, while all the 

intermediate nodes have two directly connected neighbours each. To demonstrate distributed data 

fusion in a linear WSN, an ideal case is to have a network of at least three nodes, as it represents 

all the relationships that can be found in a larger linear WSN. However, our laboratory testbed 

only permits us to perform a two-node physical evaluation. For this reason, we restrained our 

approach to two nodes for simulation and physical experimentation. 

To validate that this two-node approach is still valid, we simulated a DKF algorithm 

implementation on a two-node linear WSN (results shown Figure 5.3a) and three-node linear WSN 

(results shown Figure 5.3b). Figure 5.4 depicts a comparison of the root mean square error (RMSE) 

of node S1 when the simulations were performed in the two-node linear WSN and three-node 

linear WSN depicted in Figure 5.1. The RMSE of S1 in the two-node linear WSN converges to 

 

Sensor node S1 placed 1 m 
before the leak position 

Sensor node S2 placed 1 m 
after the leak position 

 

Valve for simulating leaks 
on the pipeline 
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0.066 while it converges to 0.064 in the three-node linear WSN. From these results that confirm 

the strong similarity between Figure 5.3a, b, we can infer that a linear WSN consisting of two 

sensor nodes can be used to provide a first-hand yet precise evaluation of the performance and 

validate the feasibility of the distributed approach. Thus, in this preliminary study, we conducted 

our physical experiments and analysis on a linear WSN comprising of two nodes.  

 

Figure 5. 3: Simulation results for S1: (a) two-node linear WSN; (b) three-node linear WSN. 

 

Figure 5. 4: RMSE for node S1 in the case of two-node and three-node linear WSN. 

5.1.4.3 Experimental Scenarios 

To measure the performance of our leak detection solution based on the EDKF algorithm, we 

emulated a leak at a single location along the pipeline, as shown in Figure 5.2. In this deployment, 

the leak location is fixed, but variations in the position of the sensors can be made to evaluate the 
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effectiveness of our solution at different leak distances. We carried out measurements for two 

scenarios: an LKF implementation and a DKF implementation. For these experiments, we 

recorded and plotted traces of data collected from the two sensors, and compared the effectiveness 

of the approach, i.e., the effect on leak detection when the sensor nodes implemented the EDKF 

algorithm and in the case where LKF algorithm was implemented on each sensor node. 

5.2 Viability of DKF Approach in regards to the LKF Approach 
5.2.1 Performance Metrics 
We plotted the traces of the estimated acceleration recorded from simulations and lab experiments. 

The ease of isolating or distinguishing a leakage scenario from a non-leakage scenario on the 

plotted data was used as the metric to compare the performance of our DKF solution with the 

reference LKF solution. We did not use the evaluation metrics discussed in section 4.5 of chapter 

4 because of the following reasons: 

- Most of the reference papers we used when conducting this first set of experiments made 

used of measurement traces for performance evaluation [13], [38], [41], [58]. 

- We learned about the performance metrics presented in section 4.5 only after we had 

already conducted this first set of experiments. 

5.2.2 Presentation of Simulation Results and Discussions 
In this sub-section, we present and discuss the results of the vibration estimates obtained for the 

simulation scenarios described in sub-section 5.1.3.3. 

Figures 5.5 and 5.6 show the results obtained from simulations when the DKF algorithm was 

implemented on both nodes (S1 and S2). Figure 5.5 illustrates the results obtained for the scenario 

where the measurements of both sensors were correlated (noisy to the same extent) while Figure 

5.6 illustrates the results obtained for the scenario where the acceleration data measured by both 

sensor nodes were uncorrelated (measurements from the sensor node (S1) were erroneous and that 

of sensor node (S2) were error free). 



130 

 

 
Figure 5. 5: EDKF implementation with noisy measurements from both sensor nodes. (a) Sensor 

node S1. (b) Sensor node S2. 

 
Figure 5. 6: EDKF implementation with noisy measurements from a single sensor node. (a) 

Sensor node S1. (b) Sensor node S2. 

From the results depicted in Figure 5.5, it can be seen that there is no significant improvement in 

the estimates after filtering and fusion, since the measurements of both nodes are noisy to the same 

extent in this scenario. This is because when the number of incorrect data sources are greater than 

the number of correct data sources, the overall performance of the fusion process can be reduced 

[60], [164]. In Figure 5.6, there is a significant improvement in the estimates of the sensor node (S1) 

with noisy measurements, since it fuses its local estimate with the local estimate of sensor node S2 

(with noise-free measurements). The results of sensor S1 in Figure 5.6 are closer to the true value 

compared to those in Figure 5.5. However, when the LKF algorithm was implemented, there was no 
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difference in the results obtained from both scenarios. There was no improvement in the estimates 

of S1 even when its close neighbour S2 had error-free measurements. This is because there is no 

fusion of local estimates from neighbouring nodes in the LKF implementation.  

The fact that the nodes in LKF implementation perform local processing but do not communicate 

with each other implies that the LKF implementation consumes lesser energy compared to the DKF 

implementation. However, its leak detection performance is lower. Additionally, there is no local 

consistency in the estimates of both sensor nodes in LKF implementation. The implication is that at 

any given time, one node can be signalling a leak alarm while the other is signalling no leak, thereby 

deteriorating the reliability of the leak detection system. Therefore, though the LKF implementation 

provides a low-power solution, to achieve better leak detection accuracy and also maintain local 

consistency, the nodes must communicate with each other to perform sensor fusion. The simulation 

results presented reveal the importance of distributed data fusion in improving the accuracy in a fully 

distributed solution. We validate this assertion via physical measurements in sub-section 5.2.3, 

where we implement both the LKF and DKF algorithms for leak detection in a laboratory WDN and 

compare their performance. 

5.2.3 Presentation of Experimental Results and Discussions 
In this section, we present and discuss the results obtained for the physical experimentation 

scenarios described in sub-section 5.1.4.3 so as to validate the simulation results presented in sub-

section 5.2.2. 

Figures 5.7 and 5.8 are results obtained from the laboratory testbed. Figure 5.7 represents the data 

obtained from sensor nodes S1 and S2 when the EDKF algorithm was implemented on both sensor 

nodes while Figure 5.8 represents the results obtained when the LKF algorithm was implemented 

on both sensor nodes.  
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Figure 5. 7: Estimated acceleration from EDKF implementation (a) sensor node S1 (b) sensor 
node S2. 

 

Figure 5. 8: Estimated acceleration from LKF implementation :(a) sensor node S1;  
(b) sensor node S2. 

When there is no leakage, the measured acceleration on the pipe surface is 1.00 g while the 

estimated acceleration on pipe surface after performing Kalman filtering is 0.99 g. As shown in 

the results obtained in the field (Figure 5.7), the estimated acceleration of the pipe when there is 

no leakage is below 1.01 g while an estimated acceleration greater than 1.01 g corresponds to a 

leakage on the pipe. This is because when there is a leak, there is a fast drop in pressure, leading 
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to an increase in the flow turbulence which is significantly responsible for the vibrations of the 

pipe walls, since the source of vibration is dissipated energy caused by turbulence. 

Comparing the results in Figure 5.7 (distributed data fusion) with those of Figure 5.8 (no data 

fusion), reveals that we can easily isolate a leakage scenario from a non-leakage scenario in the 

DKF implementation. This increases the reliability of detecting leaks and minimizes the rate of 

false alarms. However, it was difficult to distinguish a leakage scenario from a non-leakage 

scenario in the LKF implementation. The data depicted in Figure 5.8 have a higher likelihood of 

producing false alarms since the estimated acceleration computed by the LKF still has a lot of 

uncertainties. As shown in Figure 5.8, the estimated acceleration is fluctuating rapidly over short 

time periods. Applying the fixed threshold acceleration of 1.01 g will lead to multiple leak alarms 

and alarm clears. The reason is that a leak alarm is declared each time the estimated acceleration 

fluctuates above the threshold value of 1.01 g, and as it fluctuates back below the threshold, the 

leak alarm clears, resulting in a higher false alarm rate. These results reveal that the DKF 

implementation provides a higher leak detection accuracy compared to the LKF implementation. 

The results are also consistent with those obtained in prior literature [97], which experimentally 

evaluated the performance of DKF and LKF applied to an ultrasound-based positioning application 

with seven sensor nodes. Additionally, they agree with the results of [45], that showed that the 

measurements from a single sensor node were insufficient for providing reliable leak detection. 

5.2.4 Comparison of Simulation/Experimental Results and Validation of the 
Approach 
In this sub-section, we compare the results obtained from laboratory experiments with the 

simulation results so as to validate our approach. 

An interesting observation from comparing the results obtained from simulations (Figure 5.6) and 

those obtained from laboratory experiments (Figure 5.7) is the maintenance of consistency in the 

estimates of sensor nodes S1 and S2. The local consistency is very important in achieving reliable 

leak detection as it eliminates conflicting leak decisions from neighbouring sensor nodes. This 

implies that if there is an outlier in the measurements of one sensor node while its neighbour has 

accurate measurements, the tendency of that false measurement causing a false alarm in the leak 
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detection system can be minimized by performing distributed data fusion between the neighbouring 

sensor nodes. Therefore, unlike the solution of Karray et al. [38] where a local fusion centre (cluster 

head) is required to determine the final leak detection result after the sensor nodes have already 

performed LKF on the measurements, our solution is fully distributed as there is no need for any 

fusion centre.  

Furthermore, examining the results from simulation and physical deployment, we can draw the 

conclusion that with the EDKF algorithm implemented, there is a significant of improvement in 

the reliability of leak detection compared to when the LKF is implemented. This improvement can 

be attributed to the distributed data fusion capability of the EDKF algorithm. However, one very 

challenging issue for distributed algorithms in a WSN is their robustness to failed transmissions 

during the communication process. The results obtained in simulations assumed that no messages 

were lost during the communications between neighbouring sensor nodes and also did not account 

for delays due to packet loss. Notwithstanding, the results obtained from simulations were close 

to what we observed from the physical experimentation. We also observed that in the physical 

implementation the packet loss rate was very low (<5%). This can be explained by the fact that the 

distributed data fusion strategy employed by the EDKF algorithm limits the number of 

communicating nodes for each node to just the directly connected neighbours. Applying this to 

our context of a linear WSN limits the number of directly connected neighbouring nodes to an 

upper bound of 2. By properly making use of the transmission time schedule capability of the 

RF24Network [191] library, the number of collisions is significantly reduced, thus reducing the 

packet loss rate. In addition to this is the event-triggered capability of the EDKF. The event-

triggered nature of the EDKF algorithm reduces the packet transmission rate which also reduces 

the packet loss rate. From the results presented by the authors in [171], it is clear that the 

transmission rate of the EDKF algorithm is not uniform over time [171]. The EDKF algorithm has 

a higher packet transmission rate at the beginning when the estimation error is large. The packet 

transmission rate reduces when the estimation error is low due to consistency in local estimates 

and increases again in correspondence with variations in the monitored parameter. Applying this 

to our WWPM solution implies that the data transmission rate will be very low when there is no 
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leak on the pipeline and will only increase for a short period of time in the event of a leak appearing 

on the pipeline. 

5.3 Power Consumption Evaluation and Validation of Simulation 
Model  
In this section we present the power profile of the sensor nodes of our DKF-based fully distributed 

WWPM solution, obtained from simulations and physical measurements. We used the physical 

measurements to validate the results of our simulated datasheet model. In addition, we present 

results from physical measurements that show how to reduce the power consumption of the sensor 

node via duty cycling by using the ULP coprocessor of the ESP32. 

5.3.1 Presentation and Discussion of Simulation Results  
We used the current consumption data from the datasheets of the different components (ESP32, 

nRF24L01+, and LSM9DS1) that constitute our sensor node to develop a datasheet model of the 

sensor node’s energy consumption. These data were used in CupCarbon to emulate the power 

consumption of the sensor node when operating in the different states (sensing, transmitting, 

computing, receiving, sleeping). Figure 5.9 shows the current profile of the sensor node derived 

from simulations when the ESP32 is operating at 240 MHz.  

To evaluate the energy budget of the node per cycle, we established Table 5.1 from the datasheets 

of our sensor node’s constituent components. As shown in Table 5.1, the sensor node will consume 

most of its battery energy when it is listening for packets. The reason is that the radio has to be 

continuously listening for packets since we are dealing with a real-time application where there is 

a need to minimize the packet loss rate. In sub-section 5.3.3, we present a corresponding table of 

the node’s energy consumption obtained from physical measurements and compare it with those 

we obtained from simulations. 
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Table 5. 1: Simulated current consumption of the sensor node at different states. 

ESP32 
Speed 
(MHz) 

State Current 
Consumption 

(mA) 

Duration When Node 
Is at This State 

(msec) 

Energy 
Consumption 

(mJ) 
80 CPU idle + radio down 20 50 3.3 

CPU idle + radio listening 31.8 1000 105 
CPU active + radio listening 36.8 900 109 
CPU active + radio transmitting 48.1 50 7.9 

240  CPU idle + radio down 40 50 6.6 
CPU idle + radio listening 51.8 1000 171 
CPU active + radio listening 79.8 900 237 
CPU active + radio transmitting 91.1 50 15 

 

 
Figure 5. 9: Sensor node’s current profile from simulation. 

5.3.2 Presentation and Discussion of Experimental Results  
We measured the power consumption of the sensor nodes on our laboratory testbed using the 

custom power measurement device described in section 3.6 of chapter 3. As per the measurements, 

the average power consumed by the node, depicted by Figure 5.10, is about 100 mW (35 mA at  
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3.3 V), which is relatively very high for a node that will be powered by a battery. The high-power 

consumption is explained by the fact that our current implementation uses the ESP32 in modem sleep 

mode (with current consumption in the range 20 – 31 mA at 80 MHz clock speed) and the radio was 

always in the listening mode throughout. In modem sleep mode, the ESP32 is actually a power-

hungry chip and, as such, is not suitable for battery-powered WSN applications. One way of reducing 

the power consumption of the sensor node is by reducing the amount of time for which the main 

core of the ESP32 is active by preferably using the ULP coprocessor for basic control. 

 
Figure 5. 10: Sensor node’s current profile from physical measurements. 

To reduce the node’s power consumption, we decided to harness the ULP coprocessor of the 

ESP32 by putting the node frequently into deep sleep mode (with datasheet current consumption 

in the range 10 μA –150 μA). Thus, the node will only be active for very short periods of time, 

when it needs to transmit data and perform data fusion. We demonstrated this by using a timer 

interrupt, which awakened the ESP32 main core when the sleeping period expired. The ESP32 

main core was programmed to sleep for 2 s while the ULP coprocessor was functional and it was 

awakened from sleep using an internal interrupt. Figure 5.11 illustrates the results obtained from 

putting the ESP32 main core into deep sleep mode while using the ULP coprocessor.  
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As shown from in the results displayed in Figure 5.11, when the node is in deep sleep mode, the 

measured current consumption of the node can be as low as 11.8 mA, which corresponds to the 

current consumed by the nRF24L01+ transceiver in listening mode (11.83 mA), the LSM9DS1 

IMU when the accelerometer is operational (600 μA) and the current consumed by the ESP32 in 

deep sleep mode (10 μA~150 μA). From the results, we can infer that by continuously putting the 

node into deep sleep mode and only waking it up and keeping it awake for short periods to perform 

transmission and data fusion with neighbouring nodes, the power consumption of the node can be 

significantly reduced, thereby increasing the lifespan of the WSN. 

 
Figure 5. 11: Sensor’s node current profile with deep sleep implemented. 

5.3.3 Energy Budget Analysis and Validation of Simulation Model 
In this sub-section, we perform an energy budget analysis of the sensor node’s power consumption 

obtained from physical measurements and also validate the simulation model of the sensor node’s 

power consumption. 
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Table 5.2 depicts the energy consumption of the sensor node at different states, obtained from 

physical measurements, when the ESP32 is operating at 80 MHz and 240 MHz clock speed. It is 

used for analysis and validation of the energy consumption of the simulation model presented in 

Table 5.1. 

Table 5. 2: Measured current consumption of the sensor node at different states. 

ESP32 
Speed 
(MHz) 

State Current 
Consumption 

(mA) 

Duration When Node 
Is at This State 

(msec) 

Energy 
Consumption 

(mJ) 
80 CPU idle + radio down 23.7 N.A. N.A. 

CPU idle + radio listening 31.8 1000 105 
CPU active + radio listening 35 900 104 
CPU active + radio transmitting 51 50 8.4 

240 CPU idle + radio down 39  N.A. N.A. 
CPU idle + radio listening 50  1000 165 
CPU active + radio listening 69.3 900 206 
CPU active + radio transmitting 102 50 16.8 

 

From the physical measurements taken when the ESP32 of the sensor node was operating at 80 

MHz and 240 MHz, we observed that the node operating at 80 MHz is sufficient to run the DKF 

algorithm and consumes a current which is approximately half of what it consumes when operating 

at 240 MHz, as shown in Table 5.2. Besides, it is evident that the ESP32 when operating in modem 

sleep mode at a processing speed of either 80 MHz or 240 MHz, is not energy efficient and not 

suitable for battery-powered WSN applications. However, as shown in the results in Figure 5.11, 

proper optimization and harnessing of the ULP coprocessor of the ESP32 while putting the ESP32 

core to sleep can significantly reduce the power consumption, thus enabling its usage as a low-end 

device in battery-powered WSN applications. 

Furthermore, as shown in Table 5.2, much of the sensor node’s energy is consumed when the radio 

is listening. The sensor node’s radio transceiver (nRF24L01+) has to always be in the listening 

mode so as to prevent the loss of packets since we are dealing with a real-time application and also 

because the communications are asynchronous. Even when we harness the ULP coprocessor of 

the ESP32 to reduce the node’s current consumption as shown in Figure 5.11, we still incur much 

current consumption from the radio transceiver which has to be left in listening mode to prevent 

the loss of packets. There are two externally-controlled wake-up techniques that can be used to 
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reduce the energy wasted in idle listening [194]. One way can be to use a radio-controlled wake-

up, which incorporates an ultra-low power wake-up receiver to the sensor node’s circuitry. By this, 

we have the possibility of putting the nRF24L01+ transceiver in the power down mode (which 

consumes 900 nA) while still preventing the loss of packets required for our real-time application. 

The nRF24L01+ transceiver will only switch from the power-down mode to the listening when 

there is an interrupt from the wake-up receiver indicating the availability of a packet. Though this 

will make the sensor node more energy efficient and thus suitable for a battery-powered 

application, it will nevertheless increase the cost of the sensor node. Another way to reduce the 

power consumption is to place all the sensor node’s components (ESP32 and nRF24L01+) into 

deep sleep mode and use an external interrupt to awake them from sleep. Given that in our context 

of fully distributed WWPM, sensor nodes communicate with only their close neighbours to 

perform fusion, the activity/inactivity feature of the accelerometers (LSM9DS1 or ADXL344) of 

the sensor nodes can be used to generate an external interrupt (environmentally controlled wake-

up) to awaken the sensor nodes from sleep. When there is no leak (no activity) on the pipeline, the 

ESP32 and nRF24L01+ go into deep sleep mode while the accelerometer (LSM9DS1 or 

ADXL344) is active. Once a leak (activity) occurs, it is detected by the accelerometer, which then 

sends an external wake-up to both the ESP32 and nRF24L01+. This way we can achieve low-

power consumption while also preventing the loss of packets, because neighbouring sensor nodes 

will wake up at almost the same time given that they are all within the vicinity of the event. 

Additionally, since the LSM9DS1 consumes more energy than the ADXL344 and it is also more 

accurate, the ADXL344 can be used for activity detection to awake the LSM9DS1, ESP32, and 

nRF24L01+ from deep sleep mode, after which the LSM9DS1 can then collect accurate readings 

which are used by the leak detection algorithm to confirm the presence of a leak on the pipeline. 

Thus, by using duty cycling and hierarchical sensing, the WWPM solution can achieve both real-

time leak detection and low-power consumption. 

Finally, when we compared the power consumption of the sensor node obtained from the datasheet 

model with those obtained from physical measurements, we realize that the power consumption of 

the node derived from the model was close to that obtained from physical experiments. For 

instance, the current consumption of the sensor node when transmitting is 91.1 mA derived from 
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the model and 102 mA obtained from physical measurements. From these results, we realize that 

the power consumption of the sensor derived from simulation can provide us with a first-hand, yet 

precise approximation of the power consumption of the sensor nodes when embedded with a given 

distributed algorithm we intend to study before physical implementation. This can be used to 

quickly evaluate the power consumption of a distributed algorithm and its influence on the lifespan 

of the WSN before physical implementation. Hence, it can be used to predict which distributed 

algorithm is more energy efficient. This model will be greatly utilized in our future experiments 

where we will evaluate all the selected DKF algorithms for their power consumption and their 

performance in reliably detecting leaks. 

From the results presented in sections 5.3 and 5.4, we have shown practically that DKF can be 

used for leak detection in plastic WDN using WWPM systems composed of low-cost MEMS 

accelerometer sensors. We have also validated the combined approach (simulations and laboratory 

experiments) and developed a simulation model for the power consumption. In the following 

section, we will evaluate the scalability of DKF in a large-scale deployment. 

5.4 Performance Comparison between DKF and CKF  
5.4.1 Aim 
Now that we have demonstrated via simulations and physical experiments that the distributed data 

fusion capability of a DKF can be of interest in improving the reliability of leak detection using 

low-cost MEMS accelerometer sensors, and also established a model for the power consumption 

and validated it via physical experiments, we intend to extend our solution to a large-scale WSN. 

The goal is to measure interesting elements such as the lifetime of the network and also carry out 

real large-scale analyses that compare the scalability of CKF and DKF. 

5.4.2 Method 
In this section, we compare the power consumption and communication requirement of the 

implemented DKF algorithm (that implements distributed data fusion) and the benchmark CKF 

algorithm (that implements centralized data fusion) in a large-scale WSN. The WSN consists of 

10 sensor nodes (S1–S10) connected in a linear topology and it was simulated in CupCarbon as 

shown in Figure 5.12. We used the datasheet energy model developed in sub-section 5.3.1 and 

validated in sub-section 5.3.3 to compare the power consumption of the implemented DKF 
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algorithm and the benchmark CKF algorithm. For the power consumption metric, we displayed 

the results of the state of the battery for each sensor node for both the DKF and CKF 

implementations. For the communication requirement, we provided results for the number of 

messages transmitted for both the DKF and CKF algorithms.  

 

Figure 5. 12: Simulation of a linear WSN consisting of ten sensor nodes and one sink node. 

5.4.3 Results and Discussions 
In the distributed implementation, the sink node is not involved in the fusion, whereas in the 

centralized implementation, the sink node is involved in the fusion of the data obtained from all 

the sensor nodes. This requires numerous multi-hop communications and the sensor node (S10) 

directly connected to the sink node is involved in relaying the data from all the other sensor nodes 

to the sink. This makes S10 a critical node in the centralized implementation since it has a higher 

probability of developing an energy hole, which will affect the lifespan of the WSN. Figures 5.13 

and 5.14 display the simulation results of the sensor nodes' energy profiles for distributed and 

centralized solutions, respectively, for a simulation time of 1 day (86,400 s). 

Comparing the energy consumption of the DKF algorithm (Figure 5.13) with that of CKF (Figure 

5.14), we realize that the energy consumption of the implemented DKF is less than that of the 

benchmark CKF. From Figures 5.13 and 5.14, it can be seen that at time t = 80,000 s, none of the 

sensor nodes in the DKF implementation have a battery state below 1.8 × 104 J, whereas all the 

sensor nodes except S1 in CKF implementation had crossed that state at simulation time t = 80,000 

s. S1 is an exception because it is involved in less multi-hop communications compared to the 

other nodes. From the results obtained, we observed that for a day period (86,400 s) sensor node 

S10 had exhausted 47.8% and 3.6% of its battery energy in the CKF and DKF implementations, 

respectively. We also observed that the nodes’ energy consumptions in the DKF are almost 
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uniform. This can lead to an extension of the lifespan of the WSN since the likelihood of an energy 

hole developing at a sensor node when the majority of other nodes in the WSN still have sufficient 

energy is low. However, in the CKF implementation, the nodes’ energy consumptions are not 

uniform. For example, there is a greater likelihood of an energy hole occurring at S10, thereby 

shortening the lifespan of the WSN. 

 

Figure 5. 13: State of the battery of sensor nodes for the distributed implementation. 

 

Figure 5. 14: State of the battery of sensor nodes for the centralised implementation. 

A comparison of the communication requirement of the DKF and CKF implementation obtained 

from CupCarbon revealed that 198,380 and 3,265,479 messages were transmitted for the case of 

DKF and CKF implementations, respectively. From this simulation results, we observed that the 

communication requirement of CKF is about 16 times higher than that of the implemented DKF. 
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Though the CKF algorithm is Bayesian optimal, it has a very poor performance when it comes to 

energy consumption and bandwidth utilization. Other drawbacks are its lack of scalability, high 

degree of latency, and lack of robustness. This makes it an infeasible solution for large-scale 

WSNs. 

5.5 Summary 
In this chapter, we demonstrated and evaluated a fully distributed solution for leak detection in 

WSN-based Water Pipeline Monitoring (WWPM). With most of the state-of-the-art studies of 

distributed computing in WSN being theoretical and validated by simulations, we in this chapter 

demonstrated the feasibility of a reliable DKF-based solution for leak detection in WWPM systems 

composed of a network of low-cost MEMS accelerometers by using a combined approach that 

involved simulations on CupCarbon 4.2 simulator and physical experiments on a WDN laboratory 

testbed. We showed via simulations and laboratory experiments how DKF improved the accuracy 

and extended the lifespan of a WWPM system by implementing the DKF algorithm proposed by 

Battistelli et al.  [171]. In our proposed solution, all the processing required for leak detection is 

performed at the sensor nodes, without needing a centralized base station for the processing of leak 

signals. The implemented DKF algorithm was used for processing the vibration signals read by 

low-cost MEMS accelerometers attached to the pipe surface in order to detect the occurrence of 

leaks on the pipeline. Initially, simulations and physical experiments were first performed on a 

two-node linear WSN, where the leak detection performance of the implemented DKF were 

compared with the reference LKF implementation. This was later followed by simulations and 

laboratory experiments that evaluated the power consumption of our proposed DKF-based solution 

and validated the simulation model for energy consumption evaluation. Finally, simulations were 

conducted on a larger WSN consisting of ten linearly connected sensor nodes, where the power 

consumption of the implemented DKF was compared with that of the benchmark CKF algorithm. 

Our results showed the feasibility of applying a DKF-based fully distributed solution for reliable 

leak detection in WWPM systems composed of a network of low-cost MEMS accelerometers. In 

addition, the results established the importance of distributed data fusion in improving the 

reliability and power consumption of the leak detection system. From the physical implementation, 

the results showed that distributed data fusion implemented by the DKF increases the reliability 
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of leak detection when compared to the LKF while simulations on the ten-node linear WSN 

showed that the implemented DKF significantly preserved the WWPM lifetime when compared 

to the CKF.  

Now that we have demonstrated that DKF works and that it is an optimal solution in terms of 

reliability and energy consumption trade-offs, we will need more sophisticated performance 

metrics than just mere visualization of estimated acceleration traces used in this chapter to provide 

a better comparison of the performance of the three selected DKF algorithms. Thus, we will in the 

next chapter use the performance metrics (sensitivity, specificity, and accuracy) developed in 

section 4.5 of chapter 4 to compare the leak detection performance of the three selected DKF 

algorithms discussed in section 4.4 of chapter 4. Besides, the power consumption results in this 

chapter showed that in our proposed fully distributed solution, much energy is wasted on idle 

listening to maintain real-time and reliable leak detection. To curb the power consumption while 

maintaining real-time and reliable leak detection, we will in the next chapter implement duty 

cycling and hierarchical sensing at the sensor node level. Lastly, we realized that leak 

characterization is very important in order to determine the maximum sensor spacing and the 

minimum size of the leak that can be detected. Thus, in the next chapter, we will first perform leak 

characterization on a slightly modified WDN laboratory testbed before we perform experiments 

to evaluate the performance of the three DKF algorithms.
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Chapter 6 

Evaluation of the Leak Detection Performance and Power 
Consumption of the Three Selected DKF Algorithms.  

The first objective of this chapter is to implement the three selected DKF algorithms. The second 

is to compare their leak detection performance and power consumption and determine which of 

the three DKF algorithms is optimal for leak detection in WWPM systems composed of a network 

of low-cost MEMS accelerometer sensors. This is important because the three DKF algorithms 

implement different distributed data fusion strategies, which affect both the reliability and power 

consumption of the fully distributed WWPM system. Therefore, the challenge is to determine 

which DKF solution provides a better leak detection performance and consumes less energy. The 

third objective is to demonstrate how the power consumption of the proposed fully distributed 

solution can be reduced via duty cycling and hierarchical sensing. 

This chapter starts by presenting the methodological approach (similar to the combined method 

used in Chapter 5 but with slight modifications to the experimental setup) and the implementation 

of the selected DKF algorithms. This is followed by a presentation of the results of the leak 

characterization experiments performed on the laboratory testbed, where the pipe surface 

acceleration is measured at different distances from the leak position and for different leak sizes. 

Next, we present the results of simulations and laboratory experiments, evaluate the leak detection 

performance and power consumption of each DKF implementation, and compare the results 

obtained from simulations with those derived from experimentation. From the performance and 

power consumption results, we determine the optimal DKF algorithm for leak detection based on 

a performance and energy consumption trade-off. Finally, we end this chapter by presenting the 

results of power consumption reduction achieved for experiments conducted on the laboratory 

testbed, where we implemented hierarchical sensing and duty cycling at sensor node level.  
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6.1 Method 
We used the combined approach described in Section 5.1. The simulation setup is the same as in 

sub-section 5.1.3, but we did some slight modifications on the laboratory testbed cf. sub-section 

5.1.4. 

6.1.1 Implementation of Selected DKF Algorithms 
Similar to the experiments in chapter 5, the simulation scripts were written using the SenseScript 

language in CupCarbon while for the laboratory experiments, the firmware uploaded to the nodes 

were written in C/C++ and compiled using the Arduino IDE version 1.8.9. The KF parameters A, 

H, Q, and R were assigned the values 1, 1, 0.001, and 0.081, respectively. Table 6.1 provides a 

summary of the values of the parameters assigned to the various DKF algorithms. 

Table 6. 1: Values assigned to DKF parameters 

Parameter Value Concerned algorithms 

State transition matrix (A) 1 All 
Measurement matrix (H) 1 All 
Process noise covariance (Q) 0.001 All 
Measurement noise covariance (R) 0.0081 All 
Network size (N) 2 ICF and SGG-ICF 
Number of consensus or gossip iterations (L) 5 ICF and SGG-ICF 
Consensus speed factor (ϵ) 0.65 ICF 
Sensor activation probability (p) 0.5 SGG-ICF 
Information transmission rate (α, β, and δ) 0.001, 40, 40, 

respectively 
EDKF 

 

For the ICF algorithm, the value of the network size, N was set to 2 (since we are working on a 

two-node linear WSN), and the number of consensus iterations (L) was set to the value 5 for both 

the simulation and the laboratory experiments. The number of consensus iterations was chosen to 

be 5 based on the results of He et al. [59] which revealed that the ICF algorithm converges 

asymptotically to the CKF value and also achieves local consistency with the number of 

communication iterations, L, having the value of 5. The consensus speed factor (ϵ) was assigned 

the value 0.65 in both the simulation and laboratory implementations. For the laboratory 

experiments, the firmware uploaded to the nodes after compiling the ICF algorithm using the 

Arduino IDE occupied a storage space of 232 kB. 



149 

 

For the SGG-ICF algorithm, the value of the network size N was also set to 2, and the number of 

gossip iterations (L) was set to the value 5 for both the simulations and the physical experiments. 

The sensor activation probability (p) was assigned the value 0.5. The Arduino sketch implementing 

the SGG-ICF algorithm that was uploaded to the sensor nodes also occupied a storage space of 

232 kB. 

The implementation of the EDKF algorithm is the same as described in sub-section 5.1.2 of chapter 

5 for both the simulations and laboratory experiments.  

Now that we have described the implementation of the DKF algorithms, we will in the next section 

provide a detailed description of the simulation and experimental setups and the simulations and 

experiments conducted on the simulation platform and the laboratory testbed, respectively.  

6.1.2 Simulation Setup 

6.1.2.1 Description of Simulation Setup 

The simulation setup shown in Figure 6.1 is composed of two sensor nodes (S1 and S2) and natural 

event generators (A4 and A5). The natural event generators emulated the physical accelerometer 

sensors and were loaded with acceleration data collected from the laboratory testbed. The sensor 

nodes (S1 and S2) were loaded with scripts that implement the selected DKF algorithms during 

the simulations.  

 

Figure 6. 1: Simulation setup in CupCarbon  
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6.1.2.2 Simulations  

We conducted several simulations on the setup depicted in Figure 6.1, to assess the performance 

and power consumption of each of the selected DKF algorithm. Firstly, we ran simulations to 

evaluate the estimation accuracy of each DKF algorithm by computing the root mean squared error 

(RMSE). We then performed simulations to evaluate the leak detection performance of each DKF 

algorithm by loading the sensor nodes with datasets that contained a known number of leak and 

the no leak events. We finally ended by conducting simulations that ran for a period of 86400 s (1 

day) to monitor the power consumption of the nodes when executing each of the selected DKF 

algorithm. The results of these simulations are presented and discussed in Sections 6.3 and 6.4.  

6.1.3 Experimental Setup  

6.1.3.1 Description of the Experimental Setup  

The laboratory testbed used for this second set of experiments was similar to that described in sub-

section 5.1.4. However, high-pressure PVC pipes having an outer diameter of 25 mm were used 

for the laboratory WDN setup instead of low-pressure PVC pipes having a diameter of 32 mm that 

were used in the first set of experiments presented in chapter 5. The reason for the change was 

because pressure pipes, though expensive are commonly used in the WDN of Cameroon due to 

their low susceptibility to external damages and high resistance to burst. Our aim in this second 

set of experiments was to use pipe materials commonly used in real life WDNs. 

The laboratory WDN setup was made up of two 25 mm diameter pressure pipes, with each having 

a length of 6 m, joined together to produce an L-shaped structure. Two valves were installed on 

the pipeline, one at the end of the pipeline which is intended to act as the service valve to emulate 

water consumption at the client’s premise and one placed 8 m away from the inlet of the water into 

the distribution pipe that acted as the leak valve to emulate leaks in the WDN. Based on our 

assumption that there are no vibrations generated by the opening/closing of taps at the client’s 

premise, the service valve remained closed throughout these experiments. The only vibrations in 

the pipeline system were assumed to be vibrations caused by leaks emulated by opening the leak 

valve. Figure 6.2 below illustrates the laboratory testbed setup. 
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(a) (b) 

  

(c) (d) 

Figure 6. 2: Laboratory testbed setup (a) Distribution tank placed at a height of 9 m (b) Supply 
tank found beneath the tower (c) distribution pipeline (d) leak valve 
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Figure 6. 3: Two-node linear WWPM system (a) Position of sensor node’s S1 and S2 (b) Sensor 
node on PCB (c) Mechanical coupling of the accelerometer to the pipe surface 

The laboratory WWPM system was composed of two sensor nodes S1 and S2, which were placed 

before and after the leak valve, respectively, in the direction of water flow (left to right) as shown 

in Figure 6.3. The composition and interfacing of the sensor node components is the same as those 

used in the first set of laboratory experiments, with detailed description found in sub-section 5.1.2. 

The main core of the ESP32 MCU on each sensor node was configured to operate only at a speed 

of 80 MHz. The accelerometers of both sensor nodes were glued on the pipe surface using hot glue 

and wires were used to connect them to the ESP32 MCU. Figure 6.3c shows the mechanical 
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coupling of the accelerometer and the pipe surface. Hot glue was used because it provided good 

mechanical coupling between the accelerometer and the pipe. In addition, it made it easier to 

remove the sensor from the pipe surface without destroying the sensor.  

6.1.3.2 Laboratory Experiments  

Firstly, we conducted experiments to characterize the leak by varying the distance of the sensor 

from the leak position and also varying the size of the leak. The results and discussion of the leak 

characterization experiments are found in section 6.2. Secondly, to measure the leak detection 

performance of the selected DKF algorithms, we emulated a leak on the pipeline by opening the 

leak valve at specific times and then recorded the number of times each DKF implementation 

triggered an alarm when the valve was opened (true positive), failed to trigger an alarm when the 

valve was opened (false negative), triggered an alarm when the valve was closed (false positive), 

and when it did not trigger an alarm when the valve was closed (true negative). The results and 

discussions of the conducted leak detection performance experiments are found in section 6.3. 

Finally, we conducted experiments to measure the power consumption of each of the selected DKF 

algorithm. We used the USB power meter described in section 3.6 of chapter 3 to monitor the 

node’s power profile for each of the DKF algorithm for a period of 1 hour. We later supplied each 

node with a 3.7 V, 2000 mAh Li-Po battery and monitored the state of the battery discharge for a 

period of 1 day. The results and discussions of the power consumption of each of the DKF 

algorithms are found in section 6.4. Finally, we conducted experiments where we evaluated power 

consumption reduction by implementing hierarchical sensing and duty cycling at sensor node 

level. The results and discussions of the power consumption reduction are found in section 6.6. 

6.2 Leak Characterization 
In this section, we study the influence of the distance from the leak position and the size of the 

leak on the vibration data collected from the pipe surface using the LSM9DS1 accelerometer. The 

objective is to determine the maximum distance from which the accelerometer sensor should be 

placed from the leak position on the pipeline to effectively detect the presence or absence of a leak 

and the size of the leak that can be detected by the accelerometer. To study how the distance from 

the leak position affects leak detection, we varied the distance of the sensor from the leak position 

and collected vibration data at distances of 0.25 m, 0.5 m, 1 m, and 2 m from the leak position. For 
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each distance from the leak position, we varied the leak size by tuning the size of the leak valve, 

measured the flowrate and then observed how it influenced the leak detection. When the leak valve 

was completely closed, the measured flow rate was 0 L/min, which corresponded to no leak on the 

pipeline. Opening the valve by quarter, half, and fully corresponded to leaks with flow rates of 7 

L/min, 15 L/min, and 30 L/min, respectively, at a measured average pressure of 100 kPa. 

To obtain the magnitude of the vibration in the X-, Y- and Z-axis, the measured acceleration in 

each of the 3D direction were subtracted from the zero-g offset value (the acceleration in that 

direction when there is no motion) and the result squared. They were summed up and the square 

root of the sum of the squares of the actual acceleration in each of the direction represented the 

resultant pipe surface acceleration. Given that Xmea, Ymea, and Zmea represent the acceleration 

measured in the X, Y, and Z direction, respectively and X0g, Y0g, and Z0g represent the zero-g offset 

acceleration in the X, Y, and Z direction, respectively. The actual acceleration in all three 

directions (Xact, Yact, and Zact) were derived by subtracting the zero-g offset acceleration from the 

measured acceleration. 

Xact = Xmea - X0g  (6.1)  

Yact = Ymea - Y0g  (6.2)  

Zact = Zmea - Z0g  (6.3)  

 

The magnitude of the resultant acceleration, A, caused by a leak is given by: 

 
 (6.4)  

Figure 6.4 represents the resultant acceleration for the various leak distances and leak sizes. For 

each leak distance and leak size, 25000 samples of vibration data were collected for a time duration 

of 27 seconds.  
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Figure 6. 4: Leak characterization 

The results revealed that as the distance from the leak position increases, there exist no significant 

difference between the leak event data and the no leak event data. As shown in Figure 6.4, there 

was a significant difference between a leak event and a no leak event for distances of 0.25 m, 0.5 

m, and 1 m from the leak position. The results also revealed that the amplitudes of the vibration at 

a distance of 0.25 m are much higher compared to the others. The amplitude decreases as the 

distance from the leak position increases. This is because the vibration signals are attenuated as 

the move away from the leak position, resulting in a decrease in their amplitude. At some distance 

far away from the leak position, the vibration signals can no longer be detected [46], [54], [55], 

[153]. From the data collected, it shows that at a distance of 2 m from the leak position, it becomes 

difficult to separate leak event data from no leak event data when compared to the other leak 

distances. Additionally, the results revealed that for each of the leak distances, there is a significant 

difference in the magnitude of the measured acceleration for leak sizes of 15 L/min and 30 L/min 

when compared with no leak. However, there is no significant difference between a leak of 7 L/min 

and a no leak event. This means that the accelerometer can significantly differentiate a leak from 

a no leak for leak sizes starting from 15 L/min. This implies that only fast leaks can be detected 

by the accelerometer. This observation is in agreement with those reported by [45]. From the 

results presented above, we can confidently say that by placing the accelerometer sensor 1 m from 

the leak position, we can significantly detect most of the leaks having sizes ranging from 15 L/min 

to 30 L/min. These results are consistent with previous studies [46], [54], [58], [125], [126]. 



156 

 

Nonetheless, comparing our result with those of [58], we see that there is a difference in the 

maximum distance that the accelerometer can be placed from the leak position to effectively detect 

leaks. According to Ismail et al. [58], the maximum distance for effective leak detection derived 

using MPU6050 (which has similar characteristics as the LSM9DS1), was 0.5 m. However, our 

results revealed that we can effectively detect leaks at a distance of 1 m from the leak position 

using the LSM9DS1 accelerometer. The difference in the results can be explained by the fact that 

in our study we configured the accelerometer to the ±2 g sensing range which has more sensitivity 

(0.061 mg/LSB) whereas in [58], the authors configured the accelerometer to the ±16 g sensing 

range which has a lower sensitivity (0.732 mg/LSB). This means that to increase the sensor spacing 

and effectively detect leak in plastic pipes, it is necessary to configure the MEMS accelerometers 

to the lowest sensing range, since the magnitude of the vibrations on plastic pipes is low. 

To obtain the baseline value, 86400 samples of acceleration data were collected each day for a 

period of 3 days and an average was computed to obtain the baseline value when there is no leak 

on the pipeline. Figure 6.5 represents the acceleration data collected for one day. By performing 

an average of the acceleration data collected for 3 days, we obtained the value 1.00912 g. This led 

us to use the value of 1.01 g as the baseline value for leak detection. Thus, a leak alarm triggered 

each time the difference between the estimated pipe surface acceleration and the baseline value 

exceeds the threshold value ( ) by 0.01 g. 

 

Figure 6. 5: Baseline acceleration value 
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In the next section, we present the simulation and laboratory results of the performance evaluation 

of the selected DKF algorithms.  

6.3 Performance Evaluation 
To evaluate the leak detection performance of the selected DKF algorithms, simulations were 

performed on CupCarbon using acceleration data collected from the field. The performance results 

of the selected DKF algorithms obtained from simulations were validated by results obtained from 

physical experiments on the laboratory testbed. Thus, we start this section by presenting the 

performance results obtained from simulations and then end the section by presenting and 

discussing the results obtained from physical experiments for validation purposes. This will 

partially answer the question of which DKF algorithm is better and well suited for application in 

a fully distributed leak detection solution in WWPM systems using low-cost MEMS 

accelerometers. 

6.3.1 Performance Metrics 
We used the performance metrics (sensitivity, specificity, and accuracy) developed in section 4.5 

of chapter 4 to compare the leak detection performance of the three selected DKF algorithms. We 

used this metrics because of the following reasons: 

- We needed to know with certainty which DKF algorithm was more reliable and this could 

not be easily visualized by using plots of the estimated acceleration. 

- Recent WWPM studies (especially those implementing machine learning techniques) use 

this metric to evaluate the performance of their solution. Thus, this can enable us to easily 

compare the results of our proposed solution with those already existing in the literature. 

- These metrics are commonly used in the industry to evaluate the performance of leak 

detection systems used in computational pipeline monitoring [195], [196]. 

6.3.2 Presentation and Discussion of Simulation Results 
Figure 6.6 depicts the RMSE of the three selected DKF algorithms. For each DKF algorithm, the 

RMSE of both sensor nodes S1 and S2 are presented on the same plot.  
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Figure 6. 6: RMSE of the selected DKF algorithms 

From Figure 6.6, we see that there is no significant difference between RMSE of both sensor nodes 

S1 and S2 for all the DKF algorithms. The results in Figure 6.6 showed that a difference in the 

RMSE value of both sensor nodes S1 and S2 only occurred for the cases of ICF and SGG-ICF at 

the beginning of the simulation. However, this difference becomes insignificant with time as the 

RMSE values of both sensor nodes converge to the same value. This implies that all the three DKF 

algorithms compute consistent estimates and thus maintain local consistency in the estimates of 

neighbouring sensor nodes. This agrees with the results published in [59] , which showed that all 

the three DKF algorithms achieved local consistency when applied in a low-cost sensor network 

target tracking application. The property of local consistency is important for ensuring high 

reliability and reducing the false alarm rate of a WWPM system implementing DKF, given that it 

will prevent contradictory outputs from neighbouring sensor nodes as we saw in Section 5.2.  

To compare the estimation accuracy of the three DKFs, Figure 6.7 depicts the RMSE of sensor 

node S1 for all three DKF algorithms. From Figure 6.7 we see that the RMSE of EDKF converges 

to 0.0667 while the RMSE value of SGG-ICF is slightly greater than that of ICF at the beginning 

and they both converge to the value 0.0397 with time. Also, it can be seen that ICF and SGG-ICF 

have lower RMSE values and can provide better estimation accuracy compared to EDKF. These 

results are also consistent with the results of He et al. [59]. Thus, we expect the leak detection 

performance of ICF and SGG-ICF to be higher than that of EDKF. To further evaluate the 

performance of the selected DKF algorithms, we carried out simulations on the two-node linear 
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WSN presented in sub-section 6.1.2 using acceleration data collected from the field. The results 

of the performance of the selected DKF algorithms from simulations are depicted in Figure 6.8.  

 

Figure 6. 7: Comparison of RMSE values of sensor node S1 for the selected DKF algorithms 

 

Figure 6. 8: Performance evaluation result obtained from simulations 

From Figure 6.8, it can be seen that ICF and SGG-ICF have leak sensitivities which are 

significantly higher compared to that of the EDKF. ICF has the highest sensitivity (100%), 

followed by SGG-ICF with a sensitivity of 95% and finally the EDKF with a sensitivity of 65%. 

As shown in Figure 6.7, ICF had the lowest RMSE value and this explains why it has the highest 

sensitivity in Figure 6.8. However, the overall accuracy of the DKF algorithms revealed that SGG-

ICF has the highest accuracy (94%) followed by ICF (88%), and lastly EDKF (79%). This goes 

further to support the conclusions of [59], which stated that SGG-ICF is well suited for distributed 
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state estimation in low-cost sensor networks as it provides more flexibility and strikes a balance 

between estimation accuracy and communication burden. However, based on the claim by Chan 

et al. [100], that accuracy may not be an optimal metric for evaluating the performance of a leak 

detection system as it is dependent on class proportions, we cannot at this point state that SGG-

ICF is better. We will need further experiments to come to the conclusion of which DKF algorithm 

provides more reliable leak detection.  

The presented simulation results imply that SGG-ICF and ICF will provide more reliable leak 

detection compared to EDKF. This is because in ICF and SGG-ICF, the sensor nodes exchange 

their local information multiples times between measurement updates whereas in EDKF, the 

sensor nodes communicate with their neighbours at most one time in between measurement 

updates. In addition, the event-triggered-commutation attribute of EDKF (which allows 

neighbouring nodes to approximate the local information pairs of their neighbours and not to 

communicate when the difference between the predicted state and the last transmitted state is 

below a defined threshold) reduces its estimation accuracy. However, this attribute makes the 

EDKF to have a lower communication requirement unlike SGG-ICF and ICF that have higher 

communication requirements which will eventually lead to high power consumption. To validate 

these simulation results, we present in the next sub-section the results of the performance of the 

three algorithms obtained from experiments conducted on the laboratory testbed.  

6.3.3 Presentation and Discussion of Experimental Results 
In this section, we present and discuss the results (Figure 6.9) obtained from the laboratory 

experiment scenarios described in sub-section 6.1.3.2 in order to validate the simulation results 

presented in sub-section 6.3.2. 
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Figure 6. 9: Performance evaluation result obtained from laboratory experiments 

Figure 6.9 represents the values of the performance metrics obtained for each of the DKF 

algorithms during the laboratory experiments. From Figure 6.9, the leak sensitivities are 61%, 

77%, and 75% for EDKF, ICF, and SGG-ICF, respectively. From the sensitivity results, it can be 

seen that ICF detected most of the leak events that occurred and missed to detect fewer leak events 

compared to SGG-ICF and EDKF. EDKF with the lowest sensitivity of 61%, failed to detect 39% 

of the leak events that occurred on the pipeline, causing it to have the highest miss detection rate 

(MDR). This means that a high proportion of actual leaks will go unnoticed in the case of EDKF 

compared to the other algorithms. In terms of specificity, SGG-ICF is highest with 95% followed 

by EDKF with 93% and lastly ICF with 80%. From the specificity results, it can be seen that SGG-

ICF correctly recognized most of the no leak events and generated fewer false alarms compared to 

ICF and EDKF. ICF with the lowest specificity of 80% declared 20% of no leak events as leak 

events causing it to have the highest false alarm rate (FAR). For a good leak detection system, it 

is better for the FAR to be higher than the MDR because the false alarms generated by the leak 

detection system can be ignored without it affecting the Non-Revenue Water (NRW). However, a 

higher MDR has an adverse effect on the NRW as it represents true leaks which occur on the WDN 

and are undetected but actually lead to water losses and a high NRW.  

Knowing that sensitivity is a measure of how well the leak detection system detects true leak events 

while specificity is a measure of how well the system recognizes no leak events on the pipeline, 

this means that the DKF algorithm that has the highest sensitivity and specificity values is more 
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reliable. This combined effect of sensitivity and specificity is captured by the accuracy metric. 

From Figure 6.9, SGG-ICF has the highest accuracy (92%), followed by EDKF with 90%, and 

lastly ICF with 80%. This means that SGG-ICF is more reliable for leak detection compared to 

ICF and EDKF. This result is consistent with that obtained from simulations. 

6.3.4 Comparison of Simulation and Experimental Results 
In this sub-section, we compare the results obtained from laboratory experiments with the 

simulation results. 

Figure 6.10 depicts a summary of the comparison of the performance evaluation results obtained 

from both simulations and laboratory experiments, Figure 6.11 presents the error between the 

simulation and laboratory results categorized by DKF algorithm, and Figure 6.12 presents the error 

between the simulation and laboratory results categorized by performance metric. The laboratory 

results are taking as the reference to compute the error. 

 
Figure 6. 10: Comparison of simulation and experimental performance values  
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Figure 6. 11: Error categorized by DKF algorithm 

 
Figure 6. 12: Error categorized by performance metric 

Comparing the results of the sensitivities obtained from simulations with those obtained from the 

laboratory experiments (Figure 6.10), we realize that there is a general decrease in the sensitivity 

obtained from the laboratory experiments when compared with those obtained from simulations. 

This decrease can be explained by the existence of packet loss during communication between 

neighbouring sensor nodes in the physical experiments which is absent in the simulations. We see 

that there is no significant difference in the sensitivity of EDKF obtained from the laboratory 
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experiments (61%) when compared to those obtained from simulations (65%). However, there are 

significant differences in the sensitivities of ICF and SGG-ICF obtained from simulations and 

laboratory experiments. For ICF and SGG-ICF, the sensitivities are 77% and 75%, respectively 

from laboratory experiments as compared to 100% and 95%, respectively, recorded from 

simulations. This result implies that ICF and SGG-ICF are greatly affected by packet loss 

compared to EDKF. This can be attributed to the high communication requirement of ICF and 

SGG-ICF (which involves large amounts of exchanges between neighbouring sensor nodes) and 

the highly unreliable wireless links in low-cost WSNs. For EDKF, its diffusion property alongside 

with its event-triggered nature drastically reduces the number of exchanges between neighbouring 

sensor nodes and thus reduces the packet loss rate. We observed that in the physical 

experimentation of the EDKF, the packet loss rate was very low (<5%). This makes EDKF very 

appropriate for real-time application in systems where the dynamics of the system is changing fast. 

For ICF and SGG-ICF, which require multiple communications rounds between successive 

measurement updates to achieve excellent estimation accuracy, it is evident that their overall 

estimation accuracy depends on the packet loss rate. However, given that we are dealing with low-

cost sensor networks where the communication links are unreliable, this increase in the number of 

data exchange between neighbouring sensor nodes will increase the likelihood of packets being 

lost. We observed in the physical experiments that out of 5 data exchanges that occurred between 

neighbouring sensor nodes during the information fusion stage, only 60% of the transmitted 

packets were received successfully, meaning that only three out of five messages transmitted were 

successfully received. This explains the significant difference in the sensitivities of ICF and SGG-

ICF obtained from simulations and laboratory experiments. The results in Figure 6.11 confirm that 

EDKF is the DKF algorithm least affected by packet loss, followed by SGG-ICF and lastly ICF. 

Our results agrees with the proposition of He et al. [59], which suggested the use of diffusion-

based DKF algorithms in situations where the communication resources are limited. Furthermore, 

it can be seen from Figure 6.12 that sensitivity is the performance metric most affected by packet 

loss. This can be explained by the fact that the occurrence of a leak on the pipeline leads to a 

sudden increase in the measured pipe surface acceleration, which results in an estimated 

acceleration which is significantly different from the previously estimated acceleration when there 

was no leakage on the pipeline. The DKF algorithm is required to react fast in order to capture this 
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sudden change. As such, any delay resulting from packet loss and retransmission will minimize 

the chances of detecting this sudden increase in the pipe surface acceleration.  However, the 

response time for ICF and SGG-ICF is slow since they have to involve in numerous 

communication rounds between measurements. The loss of packets due to the unreliable wireless 

links in low-cost WSNs further worsens the estimation accuracy. Thus, to achieve high sensitivity, 

it is required that measurements be treated in a timely manner as they are obtained.  

The results in Figure 6.10 reveal that there is no significant difference between the specificity 

obtained from simulations and that obtained from physical experiments. From the results, we see 

that SGG-ICF has the highest specificity in the physical experiments as opposed to EDKF which 

has the highest specificity from the simulation results. Generally, from the simulation and physical 

experiments results, we observed that the specificities of the DKF algorithms are high. This means 

that there is a low likelihood of an alarm being triggered when there is no real occurrence of a leak 

on the pipeline and this increases the reliability of the leak detection system.  

In terms of accuracy, SGG-ICF still has the highest accuracy (92%) which is slightly lower than 

that obtained from simulations (94%). In the same light, the accuracy of ICF obtained from 

laboratory experiments (80%) is significantly lower than that obtained from simulations (88%). 

However, we noticed that the accuracy of EDKF obtained from laboratory experiments (90%) is 

significantly greater than that obtained from simulations (79%). We also noticed that the accuracy 

of ICF obtained from laboratory experiments is lower than that of EDKF, which contradicts the 

results obtained from simulations, where EDKF has the lowest accuracy value. This results also 

confirm that accuracy is not a perfect metric for evaluating the performance of leak detection 

techniques due to its biasedness, based on its dependence on class proportions as earlier stated in  

[100]. Thus, accuracy is not a preferred metric when dealing with skewed datasets. 

In the next section, we will evaluate the power consumption of the selected DKFs via simulations 

and physical experiments. This will permit us determine which DKF algorithm is optimal, taking 

both performance and power consumption into consideration. 
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6.4 Power Consumption Evaluation  
In this section we evaluate the power consumption of the three selected DKF algorithms by 

presenting and discussing the results obtained from both simulations and physical measurements. 

We start by presenting the results from simulations in sub-section 6.4.1 then validate them with 

results from laboratory experiments in sub-section 6.4.2. 

6.4.1 Results from Simulations 
We conducted the simulations on the two-node linear WSN presented in sub-section 6.1.2. For 

each of the selected DKF algorithm that was implemented on the two-node linear WSN, we ran 

the simulation for a period of 1 day (86,400 s). Figure 6.13 depicts the energy profile of sensor 

node S2 for all the three selected DKF implementations. 

 
Figure 6. 13: Comparison of the energy consumption of the selected DKF algorithms 

From Figure 6.13, it is clear that EDKF has the lowest energy consumption, while ICF consumes 

more battery energy compared to the other DKF algorithms. We also observed that the energy 

consumption of ICF and SGG-ICF were close. This is because both of them involved in the same 

number of consensus/gossip iterations. From the results displayed in Figure 6.13, we see at time 

t = 80,000 s, the battery energy of sensor node S2 has not crossed the 1.8 × 104 J level for the 

EDKF implementation, whereas the battery energy of S2 had crossed the 1.8 × 104 J level at time 

t = 10,000 s for both ICF and SGG-ICF. Summarily, the results revealed that for a period of 1 day 

(t = 86,400 s), sensor node S2 had exhausted 5.7%, 46.1%, and 47.1% of its total battery energy 

in the EDKF, SGG-ICF, and ICF implementations, respectively. Thus, we see that the energy 

consumption of SGG-ICF and ICF are over 8 times greater than the energy consumption of EDKF. 
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The results revealed that EDKF is a more energy efficient solution and will provide a longer 

WWPM lifetime when compared to ICF and SGG-ICF.  

The next sub-section presents physical experiments that measured the power consumption of the 

DKF algorithms and the comparison results with those obtained from simulations. 

6.4.2 Results from Laboratory Experiments 
For each of the DKF implementation, we measured the current and voltage of the nodes. Figure 

6.14 represents the power profile of sensor S2 in the case of the EDKF, ICF, and SGG-ICF 

implementations.  

 

Figure 6. 14: Power profile of the three DKF algorithms 

The average power consumed by the sensor node S2 for a period 1 hour was found to be 135.616 

mW for ICF and SGG-ICF, while it was 140.064 mW for EDKF. From these results we that the 

lifespan of sensor node S2 when powered by the 2000 mAh capacity Li-Po battery will be 

approximately 54 hours for ICF and SGG-ICF, and approximately 52 hours for EDKF. Thus, the 

lifespan for the sensor node is approximately 2 days for all the DKF implementations. We also 

observed that the difference in power consumption for EDKF when compared to ICF and SGG-

ICF was not as significant as what we had obtained from simulations. This can be explained by 

the fact that CupCarbon simulator only models the energy consumption of the communication unit. 

The energy consumption of the processing unit and sensing unit of the sensor node are not taking 

into consideration.  We also observed something unexpected from the power measurement results 

obtained from the physical experiments. As can be seen from Figure 6.14, the power consumption 
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of EDKF is higher than that of ICF and SGG-ICF. This is inconsistent with the results obtained 

from simulations and also from a theoretical perspective. For verification, we powered the sensor 

node for a period of 1 day using the Li-Po battery and monitored the rate of discharge of the 

battery’s supply voltage. Figure 6.15 illustrates the state of the sensor node battery’s voltage over 

a period of 1 day for each of the DKFs implementation.  

 
Figure 6. 15: State of charge of sensor node’s battery for the selected DKF implementations: (a) 

EDKF, (b) ICF, (c) SGG-ICF 

We then computed the state of charge (SOC) of the battery using equation (4.35). 

Table 6. 2: Battery energy consumption 

 Battery Voltage (V) SOC (%) Battery energy usage (%) 
Time (mins) 0 1440 0 1440 

EDKF 3.83 3.67 67.32 26.61 40.71 
ICF 3.85 3.67 71.14 26.61 44.53 
SGG-ICF 3.82 3.66 65.26 23.92 41.34 

 

Table 6.2 shows the battery energy consumption for the three selected DKF algorithms. As can be 

seen, EDKF has the lowest energy consumption (40.71%), followed by SGG-ICF (41.34%), and 

lastly ICF (44.53%). These results are consistent with those obtained from simulations. The results 

also show that there is no significant difference in the energy consumption of ICF and SGG-ICF, 

which also consistent with the result obtained from simulation. However, the difference between 

the energy consumption of EDKF and ICF is not as significant was revealed by the simulation 

results. From simulations, the energy consumption of ICF was 8 times higher than that of EDKF 
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whereas the results from the laboratory experiments revealed that the energy consumption of ICF 

is less than 2 times the energy consumption of EDKF. One reason for this great difference can be 

explained by the fact that the CupCabon simulator does not model the energy consumption of the 

microcontroller and the sensor.  

6.5 Optimal DKF Algorithm for Leak Detection in WWPM Systems 
using Low-cost MEMS Accelerometers 

From the results of leak detection performance and power consumption presented, a compromise 

between leak detection performance and energy efficiency shows that EDKF is more optimal for 

a fully distributed leak detection solution in WWPM when compared to ICF and SGG-ICF, since 

its estimation performance is less affected by packet loss. Rather than implementing ICF or SGG-

ICF which have higher sensitivities than EDKF, but have a high communication requirement 

(which has an adverse impact on the power consumption), we propose that the sensitivity of a 

WWPM solution implementing EDKF can be improved by using machine learning (ML) 

techniques at the decision level [45]. Thus, EDKF can be used for filtering at the feature extraction 

level to provide more accurate features which are then classified by a ML algorithm at the decision 

level to provide accurate leak detection. Since this approach involves more computation than 

communication, it will likely reduce the energy consumption at the sensor nodes, making it a good 

candidate for implementation in battery-powered sensor nodes used in WWPM, given that it is 

more energy-aware. 

Lastly, from the results displayed in Figure 6.14 and Table 6.2, it can be seen that the lifespan of 

the sensor node is short. This is because in these implementations, the ESP32 main core is 

operational throughout and as we saw in section 5.3 of chapter 5, the ESP32 is a very power-

hungry chip when operating in the modem sleep mode, given that it is a middle-end device. This 

huge power consumption is not appropriate for a WWPM system as it is required to operate for 

long periods without the need to recharge or replace the batteries. Thus, reducing the power 

consumption necessitates that the ESP32 be configured as a low-end device by putting it most of 

the time in the deep sleep mode. However, to ensure real-time leak detection, it is necessary that 

the ESP32 awakes from sleep when there is a leak event to perform the processing tasks required 
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to reliably detect the leak. Thus, the challenge is how to achieve low-power consumption without 

compromising the real-time performance of the WWPM system. We tackle this by proposing 

hierarchical sensing and duty cycling to achieve both low-power consumption and real-time 

detection. In the next section, we present how we reduced the sensor node power consumption via 

duty cycling and hierarchical sensing, while maintaining real-time leak detection. 

6.6 Power consumption Reduction via Duty Cycling and Hierarchical 
Sensing 

In this section, we present and discuss the results of the implementation of hierarchical sensing 

and duty cycling at the node level to achieve both low-power consumption and real-time 

monitoring.  

The operation at each sensor node is as follows: 

 The ADXL344 is in the active mode where it continuously monitors the pipeline to detect 

an activity. An activity (a leak event) is detected once the measured acceleration is above 

a predefined threshold value that is stored in the activity register of the ADXL344 

accelerometer. Once an activity is detected, an external interrupt is sent to wake up the 

other components of the sensor node. 

 When no activity is detected by the ADXL344 accelerometer, the ESP32 stays in the deep 

sleep mode with the ULP coprocessor active, while the nRF24L01+ transceiver and the 

LSM9DS1 accelerometer both remain in the power-down mode.  

 Once an activity is detected, the LSM9DS1 wakes up and collects more accurate 

measurements. The measurements are then processed by the ESP32 main core by running 

the DKF algorithm. The nRF24L01+ is used to communicate the local estimates of the 

sensor node to its direct neighbours to enable fusion.  

 Once the fusion of local estimates from neighbouring nodes has been performed, the 

computed estimate is then compared with the baseline value. If the final estimate exceeds 

the baseline value by some threshold value, then a leak alarm is triggered and the node 

goes back to sleep. Otherwise, no leak alarm is triggered and the node goes back to sleep. 
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Figure 6.16 depicts the flow of operations in our proposed fully distributed, real-time and low-

power leak detection solution for WWPM using low-cost MEMS accelerometers.  

For illustration purposes, we implemented the proposed solution on the laboratory testbed and 

evaluated the power consumption of the ICF algorithm (since it has the highest power consumption 

from previous experiments in section 6.4). Figure 6.17 illustrates the current profile of sensor node 

S2 and Figure 6.18 depicts the battery voltage discharge over a period of 1 day. 
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Figure 6. 16: Proposed fully distributed, real-time and low-power leak detection solution for 
WWPM using low-cost MEMS accelerometers 
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Figure 6. 17: Current profile of sensor node implementing duty cycling and hierarchical sensing 

 
Figure 6. 18: State of charge of sensor node’s battery when duty cycling and hierarchical were 

implemented.  

The results in Figure 6.17 revealed a current consumption of 300 μA (0.3 mA) when the node is 

in the deep sleep mode. This is significantly close to the theoretical datasheet value of 290 μA 
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(150 μA for ESP32 ULP coprocessor and 140 μA for ADXL344 measurement mode supply 

current). From the results, it can be seen that there is a significant decrease in the power 

consumption of the sensor node. When there is no leak on the pipeline, the sensor node consumed 

a current as low as 0.3 mA when duty cycling and hierarchical sensing were implemented 

compared to 31.8 mA when duty cycling and hierarchical sensing were not implemented. The 

results in Figure 6.18 showed that the battery voltage dropped from 3.78 V to 3.76 V for a period 

of 1 day when both duty cycling and hierarchical sensing were implemented at the sensor node 

level. This corresponded to a battery energy consumption of 5.03% compared to 44.53% when 

duty cycling and hierarchical sensing were not implemented. Thus, it can be seen that the 

implementation of duty cycling at the sensor node level can lead to an increase the sensor node’s 

lifetime by a factor of 8. This is because the node stays in the ultra-low power state (where its 

current consumption is 0.3 mA) whenever there is no leak on the pipeline. Finally, the results 

presented in this section demonstrates that our proposed solution can achieve reliable real-time 

leak detection while at the same time preserve the lifespan of the WWPM system. 

6.7 Summary 
In this chapter, we carried out leak characterization on the laboratory and the results obtained 

revealed that leak sizes ranging from 15 L/min could be effectively detected at a distance of 1 m 

when the accelerometer was configured to the ±2g sensing range. We also performed simulations 

and physical experiments to evaluate the leak detection performance and the power consumption 

of the selected DKF algorithms. The results from simulations and laboratory experiments revealed 

that ICF had the highest leak sensitivity while EDKF had the lowest leak sensitivity. The results 

of the leak detection performance for EDKF derived from simulations were closed to that obtained 

from the laboratory experiments. However, there was a significant difference between the leak 

detection performance of ICF obtained from simulations and that derived from the laboratory 

experiments. The difference was explained by the fact that there was loss of packets in the physical 

experiments during communications between sensor nodes that were not considered during 

simulations. Besides, the power consumption results obtained from simulations revealed that the 

power consumption of the EDKF was significantly lower than that of ICF and SGG-ICF. Thus, by 

performing a trade-off between leak detection performance and energy efficiency, it could be seen 
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that EDKF is optimal in a practical implementation compared to ICF and SGG-ICF, since its 

estimation performance is less affected by packet loss. In addition, its low communication burden 

reduces the power consumption of the sensor nodes. This makes EDKF a good candidate for 

implementation in battery-powered sensor nodes. Conclusively, a trade-off between energy 

consumption and leak detection performance revealed that EDKF is a better solution for the 

implementation of real-time leak detection in battery-powered WWPM solutions. Finally, we 

demonstrated how the power consumption of our proposed WWPM solution could be reduced by 

implementing duty cycling and hierarchical sensing at the sensor node level. The results revealed 

a decrease in the power consumption by a factor of 8. This revealed that our proposed solution can 

achieve reliable real-time leak detection and at the same time preserve the lifespan of the WWPM 

system.
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Chapter 7 

Conclusion and Outlook 
7.1 Conclusions 

In this thesis, we were interested in proposing a real-time, reliable, low-power, and fully distributed 

solution for leak detection in WWPM systems using low-cost MEMS accelerometers. Our main 

goal was to achieve an increase in measurement accuracy and network lifetime via a distributed 

approach. To achieve our goal, we had five specific objectives to attain (objectives 1 to 5), which 

we realized in chapters 2 to 6, respectively. In this section, we state the conclusions drawn from 

the realization of the objectives.  

In Chapter 2, it is shown that in centralized WWPM systems, there is high power consumption and 

degradation in the real-time performance due to the large number of multi-hop communications 

involved. Thus, distributed computing rather than centralized computing is required for achieving 

low-power and real-time leak detection in WWPM systems using low-cost non-intrusive sensors. 

Besides, the investigation of popular non-intrusive leak detection techniques in WWPM systems 

shows that low-cost MEMS accelerometers can be employed for detecting leaks in plastic pipes 

but still require additional signal processing in order to increase the leak detection accuracy. Signal 

processing techniques that process data straightforwardly in the time domain and that involve 

multi-sensor data fusion can increase the leak detection performance and lower the power 

consumption of WWPM systems. Implementing such algorithms at the sensor node level requires 

that the sensor nodes be low-power but have sufficient computing power. 

In recent years, advances in microelectronics have led to the development of low-power 

microcontrollers (e.g., ESP32) with higher computational power and memory capacity. Chapter 3 

reveals that by using the ESP32 more frequently in the ULP mode than in the modem sleep mode, 

the ESP32-based sensor node has a power consumption comparable to that of low-end devices 

used in battery-powered WSN applications but also possess sufficient computing resources to 

perform all the processing required for leak detection within the sensor node. Additionally, the 

ability of the ESP32 to monitor the voltage level of its battery supply without needing extra 
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circuitry gives the sensor nodes the capability of monitoring their energy consumption in real-time, 

making them energy-aware and adaptive.  

The existence of a myriad of DKF algorithms and the need for thorough survey of DKF algorithms 

to isolate DKF algorithms with the potential for implementation in WSNs is performed in Chapter 

4. Besides, the need for neighbouring sensor nodes to have consistent estimates hugely affects the 

leak detection accuracy of a fully distributed WWPM system using low-cost MEMS 

accelerometers. Thus, avoiding such controversies implies implementing only DKF algorithms 

that achieve consistent local estimates for leak detection in WWPM systems.  

In chapter 5, the viability of a fully distributed DKF-based solution for leak detection in WWPM 

systems using low-cost sensors is demonstrated practically. A combined approach involving 

simulations and laboratory experiments is validated and a simulation model for the power 

consumption developed. The results established the importance of distributed data fusion and the 

pertinence of the distributed approach in improving the leak detection performance and preserving 

the WWPM system's lifetime. The impact of these results is not only limited to WWPM systems, 

but it can be extended to time-critical IoT applications. In this case, instead of shipping raw data 

to the cloud for processing and sending back the decisions, processing the raw data of a time-

critical event monitoring application using the onboard computing resources of the sensor nodes 

can reduce the latency.  

In chapter 6, the evaluation and comparison of the leak detection performance and power 

consumption of three selected DKF algorithms using the combined approach is demonstrated. 

From the simulation and laboratory experiment results, a trade-off between leak detection 

performance and energy efficiency reveals that diffusion-based DKF algorithms are optimal for 

practical implementation in battery-powered sensor nodes when compared to consensus-based and 

gossip-based DKF algorithms. Finally, implementing hierarchical sensing and duty cycling at the 

sensor node significantly decreases the energy wasted in idle listening. The results showed a 

reduction in the power consumption by a factor of 8. This implies that our proposed solution can 

achieve reliable real-time leak detection and at the same time preserve the lifespan of the WWPM 

system. 
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The conclusion of this thesis is that it is possible to implement a fully distributed DKF-based 

solution that increases the leak detection performance and lifespan of a WWPM system composed 

of a network of low-cost MEMS sensors. The original contribution to knowledge of this thesis is 

the proposition, demonstration and evaluation of this fully distributed DKF-based solution for 

reliable real-time leak detection in plastic WDNs using a WWPM system that employ low-cost 

MEMS accelerometers. 

7.2 Limitations and Recommendations for Future Work 
This study has some limitations based on certain assumptions that we made. In this section, we 

present the limitations of our study and also suggest future directions of research that can be 

explored.  

Limitation 1: We assumed there were no vibrations on the pipeline due to legitimate customer 

demands, i.e., vibrations resulting from the opening/closing of taps at the customer premises. In 

addition, the effects of pumps were neglected as we considered only cases where the distribution 

of water in the pipeline is by means of gravity. Furthermore, we considered above-the-ground 

pipelines in our laboratory experiments but most WDNs in developing countries are underground 

pipelines. Lastly, our study was limited to a two-node linear WSN. 

Recommendation 1: Though results obtained from the laboratory testbed were satisfactory, 

extending our experiments to a field study that involves the deployment of a large-scale linear 

WSN on a real WDN with real-life conditions is suggested for future work. This is important 

because the simplistic nature of the laboratory WDN does not capture all the complications in a 

real WDN. Another interesting point is that most WWPM studies are limited to simulations and 

experiments on laboratory testbeds. Thus, extending experiments to real WDNs will contribute to 

the literature of WWPM. 

Limitation 2: Another limitation of this study is the use of the thresholding method with a fixed 

baseline value for determining the presence or absence of a leak on the pipeline. Such a simplistic 

approach is more suitable in pipeline systems with a predictable operational characteristic. 

However, given that the operational conditions of real WDNs are not constant and might change 
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as a result of external conditions that are not related to a leak, it is required that the baseline value 

be able to vary. 

Recommendation 2: We suggest the implementation of machine learning techniques at the 

decision step of the leak detection algorithm. This implies that once the DKF has been used at the 

feature extraction phase to estimate the pipe surface vibration, the value can then be passed to a 

trained classifier at the decision phase to accurately determine the existence of a leak or no leak 

on the pipeline. 

Limitation 3: This study is only limited to leak detection. However, to have a complete WWPM 

system, it is necessary to incorporate leak localisation. 

Recommendation 3: Explore the implementation of leak localisation techniques such as acoustic 

correlation analysis in future experiments. 

Limitation 4: The CupCarbon simulator models only the energy consumption of the 

communication unit without considering the energy consumption of the sensing and processing 

units. 

Recommendation 4: Given that CupCarbon simulator is open source, we suggest for future work 

the modification of its source code to include the energy consumption of the processing and 

sensing units. This will lead to simulated power profiles of the sensor nodes close to those obtained 

from physical measurements. Such simulated power profiles can then be used as an accurate first-

hand assessment of the power consumption of distributed algorithms before physical 

implementation. 
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Chapitre 1 : Introduction 

Ce chapitre présente les applications et les contraintes des réseaux de capteurs sans fil - Wireless 

Sensor Networks (WSN) - ainsi que la nécessité de passer à une architecture distribuée dans les 

applications WSN. Nous discutons brièvement de la surveillance des canalisations d'eau - Water 

Pipeline Monitoring (WPM) - en mettant l'accent sur les défis de la distribution de l'eau dans les 

pays en voie de développement et sur le nécessité d’avoir des systèmes fiables de détection des 

fuites pour la WPM. La motivation pour une solution de calcul distribué pour le WPM utilisant le 

WSN est également présentée. Les objectifs de la recherche et la contribution originale à la 

connaissance sont discutés, suivis par la portée de l'étude et l'organisation de la thèse.  

1.1 Vers un paradigme distribué dans les réseaux de capteurs sans fil 

1.1.1 Applications de WSN 

Un réseau de capteurs sans fil (WSN) se compose de plusieurs nœuds intégrés avec des capacités 

de détection, de traitement et de communication sans fil, répartis sur une zone d'intérêt pour 

surveiller les conditions physiques ou environnementales [1]. Étant des systèmes spatialement 

distribués, les WSN exploitent la communication sans fil comme moyen de communication entre 

les nœuds. Cela les rend efficaces pour une myriade d'applications. 

Les domaines d'application des WSN comprennent la surveillance géographique, la surveillance 

de l'habitat, le transport, les systèmes militaires, les processus commerciaux, la recherche sur le 

microclimat, les soins médicaux et autres [2]. Kandris et al. [3], dans une récente étude sur les 

applications du WSN, a classé les applications du WSN en six grandes catégories (militaire, 

environnementale, santé, flore et faune, industrielle et urbaine) en se basant sur les la nature de 

leur utilisation.  

1.1.2 Contraintes des WSN 

Un nœud de capteurs sans fil est généralement une unité matérielle de taille compacte qui acquiert 

les données souhaitées dans l'environnement et communique sans fil avec d'autres nœuds du réseau 

de manière à relayer les données brutes recueillies ou les informations extraites vers un puits de 
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données central. Ses principaux composants comprennent : une unité de communication, une unité 

de contrôle et de traitement, une unité de mémoire, une unité d'alimentation électrique et une unité 

de détection [4]. Ainsi, un WSN peut être composé de nœuds qui ont le potentiel de détecter, 

calculer et communiquer. Cependant, les nœuds de capteurs sans fil sont intrinsèquement limités 

en termes de ressources, ayant généralement une capacité de traitement, une capacité de stockage 

et une bande passante de communication limitées. Ces limitations sont en partie dues aux deux 

plus grandes contraintes, à savoir l'énergie limitée et la taille physique [5]. 

Dans un WSN à grande échelle, l'un des principaux objectifs est de parvenir à une faible 

consommation d'énergie, afin de permettre aux nœuds de capteurs d'être opérationnels pendant de 

longues périodes sans remplacer leur batterie, car les nœuds de capteurs dans ces applications sont 

généralement alimentés par une batterie et souvent inaccessibles physiquement. Au fil des ans, en 

raison des progrès technologiques, l'architecture matérielle des nœuds de capteurs sans fil a évolué, 

passant des nœuds de capteurs de première génération (par exemple Tmote Sky, MicaZ, Mica2, 

Micadot, etc.) qui utilisent des microcontrôleurs de 8 bits, aux nœuds de capteurs de deuxième 

génération (par exemple TelosB) qui intègrent des microprocesseurs. g. TelosB) qui intègrent des 

microcontrôleurs 16 bits tels que le MSP430, et enfin aux nœuds de capteurs de troisième 

génération qui utilisent des microcontrôleurs 32 bits (par exemple, des microcontrôleurs 32 bits 

basés sur ARM Cortex -M0/M0+/M3/M4/M7, ESP32 à double cœur et PIC32MZ). [6], [7]. Les 

nœuds de capteurs de premières et deuxièmes générations n'effectuaient que peu ou pas de 

traitement local en raison de la contrainte de leur puissance de calcul et de leur mémoire 

embarquée. Par contre, les nœuds de capteurs de troisième génération disposent d'une puissance 

de calcul et d’une mémoire embarquée plus importantes qui leur permettent de réaliser un 

traitement in situ.  

1.1.3 Évolution vers une approche de calcul distribué dans les WSN 

La plupart des applications de surveillance WSN reportée dans la littérature, notamment le WPM 

sont centralisées [8]–[10]. Ceci s’explique par le fait que les premiers nœuds de capteurs agissaient 

comme de simples collecteurs de données et relais sans fil à cause de leur faible puissance de calcul 

embarquée qui ne pouvait leur permettre que de capter et de communiquer des données plus ou 
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moins prétraitées. Cela conduit à la sous-utilisation de l'unité de traitement et à la surutilisation de 

l'unité de communication des nœuds de capteurs puisque leur rôle principal dans ces architectures 

centralisées est de collecter et de transmettre périodiquement des données à une station de base 

centrale intelligente, où tout le traitement est effectué pour détecter les comportements anormaux 

[8], [11], [12]. En outre, dans les applications de surveillance à grande échelle, la plupart des nœuds 

de capteurs sont géographiquement éloignés de la station de base et sont généralement alimentés 

par batterie [13]. Les inconvénients des WSN à architectures centralisées déployés dans les 

applications de surveillance à grande échelle incluent des besoins énormes en bande passante et 

une consommation d'énergie élevée. En effet, la transmission périodique de données brutes sur de 

longues distances, via de multiples sauts, vers la station de base entraîne un épuisement rapide de 

la batterie des nœuds de capteurs et réduit la durée de vie d'un WSN [12], [14], [15], car les 

recherches ont montré que l'unité de communication consomme la plus grande partie de l'énergie 

d'un nœud de capteurs [1], [17]. Il est donc évident que la communication consomme beaucoup 

plus d'énergie que le calcul. Pour réduire la consommation d'énergie des nœuds de capteurs dans 

un WSN, il est judicieux d'investir davantage dans le calcul au sein du WSN, autant que possible, 

afin d'économiser sur les coûts de communication. De la sorte en minimisant autant que possible 

la quantité et la portée des communications par une collaboration locale entre les nœuds de 

capteurs, on peut prolonger de manière significative la durée de vie d'un WSN. Enfin, les 

applications WSN centralisées présentent d'autres inconvénients, notamment une fiabilité et une 

robustesse limitées, un temps de réponse plus long, ainsi qu'un faible niveau de sécurité et de 

confidentialité des données [12], [14], [15], [18], [59]. Ces inconvénients des WSN centralisés ont 

conduit à une recherche active ces dernières années orientées vers le calcul distribué dans les WSN. 

Récemment, certains travaux dans la littérature ont démontré via des simulations, la faisabilité du 

calcul distribué dans les WSN et ses promesses de gain de performance et de réduction de la 

consommation électrique [9], [12], [18], [20].C’est pourquoi, en effectuant davantage de calculs 

locaux, en limitant les échanges uniquement entre les nœuds voisins et en réduisant le nombre de 

messages à transmettre, le calcul distribué dans les WSN a le potentiel d'apporter une solution aux 

inconvénients de l'approche centralisée [18], [21], [22]. 
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1.2 Surveillance des canalisations d'eau 

1.2.1 Structure des systèmes d'approvisionnement en eau 

L'eau est une nécessité de base pour la vie quotidienne. Elle est requise pour de nombreuses 

activités humaines telles que la boisson, l'irrigation des cultures, les activités récréatives, et pour 

l'accomplissement efficace de nombreux processus industriels [23]. Dans la plupart des 

communautés, le transport de l'eau par canalisation jusqu'aux utilisateurs semble être le moyen le 

plus économique [10], et consiste en des systèmes d'approvisionnement en eau comprenant deux 

parties principales: (1) Les conduites de transmission, qui sont des canalisations chargées de 

transporter l'eau vers les réservoirs et (2) les réseaux de distribution d'eau (RDE) , qui sont des 

canalisations et des raccordements de service pour distribuer l'eau aux utilisateurs. Ces 

infrastructures ne sont généralement pas totalement étanches, car même dans les réseaux de 

distribution d'eau les plus récents et les mieux construits, il existe un certain niveau de fuite et des 

ruptures occasionnelles de tuyaux, ce qui entraîne des pertes d'eau [24]. 

1.2.2 Les problèmes de distribution de l'eau dans les pays en développement 

Les fuites de canalisation d'eau sont l'un  problèmes auxquels sont confrontées les entreprises de 

services publics de l'eau dans le monde entier, car la perte d'eau par les fuites est reconnue comme 

un problème coûteux dans le monde entier, en raison du gaspillage du précieux liquide, ainsi que 

du point de vue économique [25]–[27]. Selon une publication de l'UNICEF en 2015 [28], les 

données ont révélé que plus de 30% des pays en développement et moins développés n'ont pas 

accès à des sources d'eau potable de qualité. En outre, un autre rapport publié par la Banque 

mondiale en 2016 [29], a indiqué que dans les pays en développement, environ 45 millions de 

mètres cubes d'eau sont perdus chaque jour avec une valeur économique de plus de 3 milliards de 

dollars US par an. Ce rapport indiquait également que l'économie de la moitié de ces pertes 

permettrait de fournir suffisamment d'eau pour desservir au moins 90 millions de personnes. Au 

Cameroun, pays en voie de développement subsaharien, le niveau d'eau non rémunérée (NRW), 

qui est la partie de la quantité totale d'eau produite pour laquelle la compagnie de distribution d'eau 

ne génère aucun revenu (parce qu'elle est perdue par des fuites/éclatements et/ou des vols) est de 

4,67% [30], [31]. Des études récentes ont également révélé que le volume mondial de NRW est de 
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346 millions de mètres cubes par jour [32]. La raison de ce niveau de NRW est principalement due 

à l'infrastructure vieillissante du RDE qui crée des pertes physiques par des fuites et/ou des 

éclatements. 

1.2.3 Le besoin de systèmes fiables de détection des fuites en temps réel 

La demande en eau augmente continuellement et rapidement en raison de la croissance de la 

population de la Terre, mais les ressources en eau sont confrontées à une diminution constante 

causée par le réchauffement de la planète et le changement climatique [25], [33]. Contrairement à 

d'autres phénomènes plus particuliers, la pénurie d'eau est commune aux pays en développement 

et aux pays développés [25]. La rareté de l'eau exige donc que les pertes d'eau résultant de fuites 

soient minimisées en détectant et en localisant précisément les fuites en temps réel, chaque fois 

qu'elles se produisent. Aussi, étant donné que les fuites exposent l'eau traitée à l'environnement 

extérieur, il est nécessaire de protéger l'eau potable traitée de la contamination (qui peut l'amener 

à servir d'avenue potentielle pour l'apparition de maladies) [23], en identifiant rapidement les fuites 

dans le RDE lorsqu'elles se produisent. Au fil des ans, cela a donné lieu à de nombreuses 

recherches sur le terrain [34]–[37], [37]–[47], [197], fournissant un large éventail de méthodes 

pour détecter et localiser les fuites dans les canalisations d'eau. 

1.2.4 Surveillance des canalisations d'eau par WSN 

Les WSN pour la surveillance des canalisations d'eau - WSN-based Water Pipeline Monitoring 

(WWPM) - se composent d'un certain nombre de nœuds de capteurs dotés de capteurs à faible coût 

qui recueillent périodiquement des signaux de fuite sur la canalisation. Les signaux sont ensuite 

traités pour détecter la présence ou l'absence d'une fuite sur la canalisation. Étant donné que les 

RDE sont des structures linéaires, le déploiement d'une solution WWPM en tant que WSN linéaire 

est tout à fait envisageable. Cependant, la plupart des solutions WWPM dans la littérature ont 

négligé la conception linéaire des WSN [10].  Même si très peu d'études WWPM ont déployé une 

topologie linéaire [10], nous nous concentrerons dans cette étude sur le déploiement de systèmes 

WWPM en tant que WSN linéaire. 
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Il existe plusieurs facteurs affectant les schémas de surveillance des pipelines, tels que le 

mécanisme de communication, les méthodes d'évaluation, la gestion de l'énergie, les types de 

surveillance, la connectivité des capteurs, la couverture de détection, les méthodes de détection et 

les types de capteurs [10]. Nonobstant, le plus grand défi de la détection des fuites dans les 

systèmes WWPM utilisant des capteurs à faible coût est que les signaux de fuite peuvent être 

imprécis en raison de la faible sensibilité des capteurs et du bruit environnemental, et peuvent 

entraîner de fausses alarmes dans le système de détection des fuites. Ainsi, la question de 

l'identification fiable d'un signal de fuite au milieu d'erreurs provenant d'un certain nombre de 

sources (communément appelé bruit) est un défi fondamental de tout système de détection de fuites 

[46], [48]. 

En fonction de l'endroit où sont traités les signaux de fuite provenant des capteurs distants, les 

solutions WWPM peuvent être classées comme centralisées, décentralisées ou distribuées. 

Plusieurs solutions WWPM centralisées ont été proposées dans la littérature [41], [42], [46], [49], 

[50], où les nœuds de capteurs collectent périodiquement les signaux de fuite de la conduite où ils 

sont installés et les transmettent à une station de base centrale (où se trouve l'algorithme de 

détection des fuites) pour un traitement ultérieur afin de détecter la présence d'une fuite sur la 

conduite. Ces systèmes centralisés se caractérisent par un grand nombre de transmissions multi-

sauts et peuvent épuiser plus rapidement l'énergie des nœuds de capteurs. Aussi, certaines études 

[13], [38], [40], [51] ont proposé des solutions décentralisées où certains traitements pour la 

détection de fuites sont effectués au niveau du nœud de capteur. Cependant, à notre connaissance, 

aucune étude n'a proposé une solution entièrement distribuée où tous les traitements nécessaires à 

la détection des fuites sont effectués par le nœud de capteurs. 

1.3 Problématique 

1.3.1 Contexte 

Depuis plus d'une décennie, les systèmes WWPM sont couramment utilisés pour la surveillance 

des réseaux de distribution d'eau. Cependant, les solutions WWPM existantes sont confrontées à 

de nombreux défis tels qu'une faible efficacité énergétique et la difficulté de détecter les fuites en 

temps réel, car elles sont centralisées et aussi parce qu'elles utilisent des capteurs intrusifs (pression 
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et débit) qui sont coûteux, difficiles à installer et consomment plus d'énergie. Ces dernières années, 

les systèmes WWPM utilisant des capteurs de vibration sont devenus populaires, car ces capteurs 

offrent l'avantage distinct de fournir une surveillance en temps réel du RDE, ce qui peut entraîner 

des interventions immédiates [35], [43], [46]. Les capteurs de vibrations peuvent être utilisés pour 

la surveillance, parce que la surveillance de la pression des canalisations d'eau peut être 

transformée en surveillance des vibrations de la surface de la canalisation [37], [52], [53], puisque 

un changement transitoire de la pression est toujours accompagné d'une augmentation de 

l'accélération de la surface de la canalisation aux endroits correspondant sur la longueur de la 

canalisation [53]. Les fluctuations de pression dans une conduite sont donc liées à la vibration de 

la surface de la conduite via une relation non linéaire mais proportionnelle [37], [53]. De plus, les 

capteurs de vibrations (accéléromètres, transducteurs piézoélectriques, résistances sensibles à la 

force, etc.) sont faciles à installer, moins coûteux à entretenir/exploiter et consomment moins 

d'énergie. 

1.3.2 L’enjeux 

Dans la plupart des pays en développement, le réseau de distribution d'eau (RDE) est constitué de 

tuyaux en plastique et il a été démontré dans la littérature que la propagation des signaux de fuite 

(vibrations) ne va pas loin dans les tuyaux en plastique [54], [55]. De plus, une détection fiable des 

fuites nécessitera de placer les capteurs très près les uns des autres pour avoir une résolution 

spatiale plus élevée [56]. Des accéléromètres de haute précision fixés à la surface extérieure de la 

conduite peuvent être utilisés pour détecter avec précision cette augmentation soudaine de 

l'accélération de la surface de la conduite causée par des fuites sur le pipeline. Cependant, la 

nécessité de distances inter-capteurs plus faibles et la nature onéreuse de ces accéléromètres 

augmenteront la valeur économique globale et le coût d'installation, ce qui les rend peu adaptés à 

l'installation dans les pays en développement. Par conséquent, les accéléromètres MEMS à faible 

coût peuvent constituer une solution réalisable et économiquement viable pour le déploiement dans 

les pays en développement. Bien que les études précédentes sur les WWPM utilisant des 

accéléromètres MEMS à faible coût aient été utiles pour détecter les fuites, elles ont toujours le 

défi de détecter de manière fiable les fuites au milieu de bruits environnementaux aléatoires en 

raison de la faible précision des capteurs [35], [46], [57], [58]. Un autre défi est l'incapacité de ces 
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systèmes WWPM précédents à fournir une détection fiable des fuites en temps réel tout en 

préservant la durée de vie du WSN puisque la plupart d'entre eux sont centralisés. Cependant, étant 

donné que le WWPM utilise plusieurs capteurs à faible coût pour surveiller le pipeline, les 

techniques de fusion de données multicapteurs, qui ont été utilisées avec succès dans les 

applications de suivi de cibles [59], peuvent être utilisées pour augmenter la fiabilité des systèmes 

de détection de fuites basés sur des capteurs de vibrations à faible coût [57]. 

1.3.3 Solution proposée et ses avantages 

La fusion de données multicapteurs peut combiner les données redondantes de plusieurs capteurs 

à faible coût pour obtenir une information plus précise dont la qualité dépasse celle obtenue en 

utilisant un seul capteur [57], [60]. En outre, l'exigence de faible consommation d'énergie et la 

nécessité pour un système WWPM de rester sans surveillance pendant une longue période sans 

remplacement de la batterie du nœud de capteur [46], [61], affectent le choix d'une technique de 

fusion de données multi-capteurs qui peut être utilisée. C’est pourquoi la fusion de données 

multicapteurs dans les WSN peut être effectuée de manière centralisée, décentralisée ou distribuée 

[59], [63]. La technique de fusion de données centralisée nécessitera des communications multi-

sauts, qui ont une probabilité plus élevée de développer un trou énergétique dans le réseau, 

réduisant ainsi la durée de vie du WSN [18], [21], [22]. Cependant, l'utilisation de la fusion de 

données distribuée peut augmenter la durée de vie du WSN car il n'y a pas de point central pour la 

fusion, et les communications multi-sauts seront entièrement éliminées. L'objectif de la fusion de 

données distribuée est d'utiliser des calculs distribués à travers le réseau de sorte que les 

informations locales de chaque nœud de capteur convergent vers une valeur optimale [64]. 

La mise en œuvre de la fusion de données distribuées dans le WWPM apportera les avantages 

suivants : 

- Elle permettra la réalisation d'une surveillance en temps réel, permettant de détecter les 

fuites dès qu'elles se produisent. Cela conduira à une intervention rapide, réduisant ainsi la 

quantité d'eau traitée qui sera perdue et empêchant également la contamination de l'eau 

potable traitée ; 
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- Elle a la capacité de réduire la consommation d'énergie des nœuds de capteurs tout en 

préservant la durée de vie du WSN, ce qui permet au système WWPM d'être opérationnel 

pendant une longue période sans avoir à remplacer les batteries. En effet, le traitement est 

effectué au niveau du nœud et le nombre de transmissions multi-sauts est réduit. Cela réduit 

l'énergie dépensée en communication, qui consomme la majeure partie de l'énergie du 

nœud de capteur ; 

- Le besoin en bande passante du WSN sera réduit puisque le traitement est effectué par 

l'unité de traitement du nœud de capteur et que les nœuds de capteur ne communiqueront 

avec les nœuds voisins que pour obtenir une plus grande précision. Ceci est avantageux car 

les WSN sont limités en bande passante. 

Inspirés par l'application d'accéléromètres MEMS à faible coût dans les systèmes WWPM et 

par les défis de ces systèmes (tels que la surveillance en temps réel, les exigences de faible 

coût et de faible consommation d'énergie, etc.) qui n'ont pas été correctement traités dans les 

études précédentes. Nous avons décidé d'étudier l'application du filtre de Kalman distribué 

(DKF), qui est un filtre de Kalman avec fusion de données distribuées, comme une solution 

entièrement distribuée (calcul distribuée) pour la détection de fuites dans les systèmes WWPM 

utilisant des accéléromètres MEMS à faible coût. C’est pourquoi la proposition d'une solution 

de calcul distribué qui est en temps réel, à faible puissance, et qui détecte de manière fiable les 

fuites dans les systèmes WWPM utilisant des accéléromètres MEMS à faible coût sera le point 

central de cette thèse. 

1.4 Objectifs 

L'objectif principal de cette thèse est d'établir une augmentation de la performance et de la 

durée de vie d'un WSN via l'utilisation d'un paradigme de calcul distribué. Le WWPM étant 

un domaine d'application du WSN qui nécessite une faible consommation d'énergie  [61], le 

défi est d'atteindre à la fois une haute précision de détection des fuites et une durée de vie 

maximale du système WWPM. De plus, étant donné que les pertes d'eau dues aux fuites sont 

un défi majeur auquel sont confrontées les compagnies de distribution d'eau dans la plupart 

des pays en voie de développement et aussi parce que le système WWPM présente un bon 

scénario d'application où le calcul distribué efficace peut être démontré dans les WSN (en 
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raison de leur topologie linéaire 1D qui les rend plus faciles à gérer pour une première 

démonstration), nous concentrerons notre étude sur l'examen de la possibilité de déployer une 

solution en temps réel, fiable, à faible coût, à faible puissance et entièrement distribuée pour le 

système WWPM en utilisant des capteurs de vibrations à faible coût et DKF. Aussi, le but de 

cette étude est d'examiner l'application de DKF dans la réalisation d'une détection de fuites 

fiable, en temps réel et à faible consommation d'énergie dans le WWPM en utilisant les 

données de vibration des accéléromètres MEMS à faible coût. 

Le but de cette recherche sera atteint en répondant aux objectifs spécifiques suivants :   

1. Passer en revue les techniques populaires de surveillance des canalisations d'eau 

disponibles dans la littérature en mettant l'accent sur les solutions WWPM qui utilisent 

des capteurs de vibration à faible coût pour la surveillance. A partir de là, identifier les 

lacunes dans les connaissances dans le domaine de la surveillance des conduites en 

plastique à l'aide d'accéléromètres MEMS à faible coût ; 

2. Établir les spécifications d'un nœud de capteurs à faible coût et à faible puissance 

capable d'effectuer un traitement in situ sous contraintes énergétiques. Le nœud de 

capteurs doit avoir une capacité de calcul suffisante pour effectuer un traitement local 

et être sensible à la consommation d'énergie. Sur cette base, concevoir et mettre en 

œuvre un nœud de capteurs sans fil fondé sur les spécifications établies ; 

3. Proposer une solution WWPM entièrement distribuée, en temps réel et à faible 

consommation d'énergie, basée sur DKF pour une détection fiable des fuites dans les 

tuyaux en plastique. À cet égard, nous effectuerons une recherche bibliographique 

approfondie sur les algorithmes DKF pouvant être mis en œuvre dans les WSN et 

sélectionnerons trois algorithmes DKF dont les performances de détection de fuites et 

la consommation d'énergie seront évaluées dans le contexte de la WWPM à l'aide 

d'accéléromètres MEMS à faible coût ; 

4. Démontrer la faisabilité de l'application d'un DKF pour une détection fiable des fuites 

en temps réel dans un système WWPM qui utilise des accéléromètres MEMS à faible 

coût en déployant un réseau de capteurs qui met en œuvre l'un des algorithmes DKF 

sélectionnés. Sur cette base, évaluer les performances de détection de fuites et la 
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consommation d'énergie de la solution distribuée proposée en effectuant des 

simulations et en validant les résultats de simulation à l'aide des résultats obtenus lors 

d'expériences physiques sur un banc d'essai de laboratoire ; 

5. Évaluer les performances de détection des fuites et la consommation d'énergie des 

algorithmes DKF sélectionnés à l'aide de simulations et d'expériences physiques. Sur 

cette base, comparer les performances de détection de fuites et la consommation 

d'énergie des algorithmes DKF sélectionnés et proposer lequel des DKF est optimal 

pour la mise en œuvre dans les systèmes WWPM utilisant des accéléromètres MEMS 

à faible coût. 

1.5 Contributions 
Cette thèse se concentre principalement sur la proposition d'une solution entièrement distribuée et 

à faible consommation d'énergie pour une détection fiable et en temps réel des fuites dans les 

systèmes WWPM en utilisant des accéléromètres MEMS à faible coût. Bien que des recherches 

approfondies aient déjà été menées sur les systèmes WWPM utilisant des capteurs de vibrations à 

faible coût, plusieurs défis subsistent, tels que la fourniture d'un système de détection de fuites 

entièrement distribué, en temps réel, à faible coût et consommant moins d'énergie. En outre, la 

mise en œuvre et l'évaluation d'algorithmes de détection de fuites entièrement distribués 

applicables aux WSN du monde réel et qui utilisent des approches distribuées sont rares [10]. Sur 

la base des lacunes dans les connaissances de la littérature, ce travail est nouveau en ce sens qu'il 

est le premier à appliquer DKF dans le contexte de la détection de fuites dans les systèmes WWPM 

utilisant des accéléromètres MEMS à faible coût. 

Cette thèse a apporté des contributions à la recherche qui améliorent non seulement l'état de l'art 

de la détection de fuites en temps réel dans les systèmes WWPM en utilisant des accéléromètres 

MEMS à faible coût, mais aussi celui des applications WSN linéaires. Ces contributions 

comprennent : 

 La proposition d'un nœud de capteurs personnalisé à faible coût basé sur des composants 

commerciaux bon marché (COTS) tels que le microcontrôleur ESP32 (unité de traitement), 

l'émetteur-récepteur nRF24L01+ (unité de communication) et les accéléromètres 

ADXL344 et LSM9DS1 (unité de détection) ; 
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 Le développement d'un nœud de capteurs personnalisés à faible consommation mais à forte 

capacité de calcul, basé sur l'ESP32 et son coprocesseur Ultra-low Power (ULP), 

l'émetteur-récepteur nRF24L01+ avec sa faible consommation et son mode rafale, et la 

capacité de détection de seuil de l'ADXL344 et du LSM9DS1 ; 

 La démonstration d'une solution de détection des fuites entièrement distribuée, fiable et en 

temps réel, en mettant en œuvre un algorithme DKF pour améliorer la précision de 

l'accélération de la surface des tuyaux mesurée par les nœuds de capteurs dans un système 

WWPM ; 

 L'évaluation de la performance et de la consommation d'énergie de la solution de détection 

de fuites proposée basée sur le DKF via des simulations dans CupCarbon 4.2 et la 

validation sur un banc d'essai expérimental. La comparaison des résultats de simulation et 

des résultats expérimentaux est une contribution essentielle à la mise en œuvre réelle de 

l'approche proposée, car de nombreuses études dans la littérature ne vont pas jusqu'à 

l'analyse expérimentale et l'étude du comportement des nœuds de capteurs dans des 

conditions réelles. Les résultats ont montré que la capacité de fusion de données distribuées 

du DKF améliore la fiabilité de la détection des fuites tout en préservant la durée de vie du 

WSN ; 

 L'évaluation de la performance et de la consommation d'énergie de trois algorithmes DKF 

sélectionnés via la simulation et la validation sur un banc d'essai expérimental. Les résultats 

ont montré que les algorithmes DKF basés sur la diffusion consomment moins d'énergie 

(préservent la durée de vie du WSN) mais ont des performances inférieures en matière de 

détection de fuites, tandis que les algorithmes DKF basés sur le consensus, qui consomment 

plus d'énergie en raison du nombre accru de communications, offrent une meilleure 

fiabilité en matière de détection de fuites ; 

 La mise en œuvre d'un cycle de travail et d'une détection hiérarchique au niveau des nœuds 

de capteurs pour réduire la consommation d'énergie du système WWPM entièrement 

distribué proposé. 

Dans l'ensemble, l'étude et l'évaluation d'une solution peu coûteuse, de faible puissance et 

entièrement distribuée basée sur DKF pour la détection de fuites en temps réel dans les systèmes 
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WWPM en utilisant des accéléromètres MEMS peu coûteux est la contribution originale à la 

connaissance de cette thèse. 

1.6 Portée de la thèse 

Étant donné que le filtre de Kalman peut être appliqué en tant qu'observateur d'état et algorithme 

de fusion de données, nous nous concentrons dans cette étude sur l'utilisation du filtre de Kalman 

en tant qu'algorithme de fusion de capteurs pour améliorer la précision des mesures de fuites 

collectées par les nœuds de capteurs locaux. En tant que technique d'observation de l'état, le filtre 

de Kalman est utilisé pour calculer une estimation optimale d'un paramètre intéressant (par 

exemple, la taille et l'emplacement de la fuite) à partir d'informations disponibles limitées (par 

exemple, la pression et le débit), tandis qu'en tant qu'algorithme de fusion de capteurs, le filtre de 

Kalman est utilisé pour l'estimation optimale de l'état d'un paramètre basé sur des données 

provenant de modèles dynamiques et de mesures de capteurs ou la fusion de mesures provenant 

de plusieurs capteurs. Les méthodes de filtre de Kalman utilisées pour la détection des fuites dans 

les réseaux de distribution d'eau ont été largement appliquées aux mesures de pression et de débit.  

Dans la littérature, le filtre de Kalman et ses variantes ont été utilisés comme des techniques basées 

sur des modèles pour la détection de fuites avec des mesures de débit et de pression provenant de 

capteurs intrusifs servant de sources de données. Cependant, dans cette thèse, nous utilisons le 

filtre de Kalman comme un algorithme de traitement du signal agissant sur les mesures des 

accéléromètres MEMS et effectuant la fusion des données afin d'isoler les signaux de fuite du 

bruit. En outre, dans un premier temps, nous étudions uniquement les algorithmes DKF qui 

peuvent être mis en œuvre sur des nœuds de capteurs sans fil. 

1.7 Présentation de la thèse 

Cette thèse contient 7 chapitres et est organisée comme suit : 

 Le chapitre 2 présente un historique des techniques de gestion de l'énergie et du calcul 

distribué dans les WSN. Il fournit également une analyse documentaire complète sur les 

solutions de gestion de l'énergie dans les WSN et les lacunes en matière de connaissances ; 
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 Le chapitre 3 présente la sélection des composants COTS utilisés pour la conception et la 

mise en œuvre d'un nœud de capteurs personnalisé qui sera déployé sur le banc d'essai du 

laboratoire ; 

 Le chapitre 4 présente une étude des algorithmes DKF pour la mise en œuvre dans les WSN 

et la sélection de trois DKF qui seront mis en œuvre et dont les performances de détection 

de fuites et la consommation d'énergie seront évaluées dans le contexte du WWPM en 

utilisant des accéléromètres MEMS à faible coût ; 

 Le chapitre 5 présente les résultats d'une première démonstration de l'application de DKF 

dans la réalisation d'une solution de détection de fuites entièrement distribuée, en temps 

réel, fiable et de faible puissance pour les systèmes WWPM utilisant des accéléromètres 

MEMS à faible coût ; 

 Le chapitre 6 présente les résultats de l'évaluation des performances de détection de fuites 

et de la consommation d'énergie des trois DKF sélectionnés pour les expériences menées 

sur une plateforme de simulation et un banc d'essai de laboratoire. Il présente également 

les résultats obtenus par la mise en œuvre expérimentale du cycle de fonctionnement et de 

la détection hiérarchique sur les nœuds de capteurs ; 

 Le chapitre 7 présente un certain nombre de conclusions tirées de la réalisation des objectifs 

de cette étude et fournit également des recommandations pour les travaux futurs. 
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Chapitre 2 : Calcul distribué et surveillance des conduites d'eau à 

base de capteurs sans fil 

2.1 Introduction 

Ce chapitre présente le contexte et la revue de la littérature de notre étude. Il commence par classer 

les applications de surveillance WSN en trois catégories : centralisées, décentralisées et 

distribuées, en fonction du lieu et de la manière dont les données collectées au sein du WSN sont 

traitées. Cette classification est suivie d'une discussion sur les défis des applications centralisées 

de surveillance WSN, qui sont prévalents dans la littérature. Les techniques de gestion de l'énergie 

disponibles dans la littérature pour maximiser la durée de vie des WSN sont passées en revue. Les 

techniques de gestion de l'énergie sont classées en trois catégories : récolte d'énergie, équilibrage 

de l'énergie et conservation de l'énergie.  Ensuite, une discussion sur le calcul distribué dans les 

WSN et ses avantages est présentée. Un certain nombre d'implémentations de le calcul distribuée 

dans les WSN, classées dans les catégories suivantes : traitement distribué des requêtes, traitement 

collaboratif des signaux, estimation/détection distribuée de l'état et traitement au sein du réseau, 

sont par la suite discutées. Nous présentons ensuite la surveillance des canalisations d'eau en 

mettant l'accent sur les systèmes WWPM utilisant des capteurs de vibration à faible coût. Nous 

mentionnons les défis posés par les méthodes de détection des fuites basées sur les vibrations dans 

les conduites en plastique et la nécessité d'améliorer la fiabilité de la détection des fuites. Nous 

passons également en revue les solutions WWPM disponibles dans la littérature et les classons 

comme centralisées, décentralisées et distribuées en fonction de l'endroit où sont exécutés les 

algorithmes de prétraitement, de détection et de localisation des fuites. Enfin, nous examinons 

l'application des techniques d'économie d'énergie pour prolonger la durée de vie des systèmes 

WWPM et nous présentons un résumé des lacunes identifiées dans les connaissances. 

Ce chapitre est organisé comme suit : 

La section 2.1 présente la classification des applications WSN en fonction de l'architecture du 

réseau et de la stratégie de traitement des données employée. La classification des WSN en 

fonction du traitement des données est déterminée par l'endroit où le traitement des données est 
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mis en œuvre (nœud de capteurs ou station de base), c'est-à-dire si la station de base reçoit des 

données brutes, des données traitées ou des décisions des nœuds de capteurs [65]. En outre, elle 

affecte les coûts de calcul et de communication et influence également l'évolutivité du réseau et le 

type d'applications WSN où elle peut être appliquée [63]. En général, selon la technique de 

traitement des données, les applications de surveillance WSN peuvent être classées en trois 

catégories [40], [59], [60], [63], [65]: surveillance centralisée, surveillance décentralisée ou 

surveillance distribuée. Dans les WSN centralisés, tous les nœuds de capteurs envoient leurs 

données brutes, via des transmissions à un ou plusieurs sauts, à un seul centre de fusion (station de 

base ou puits) qui traite ensuite les données brutes. Les WSN distribués ne nécessitent pas de centre 

de fusion et tout le traitement des données est effectué au sein du nœud de capteur. Les WSN 

décentralisés sont un compromis entre les WSN complètement centralisés et les WSN distribués. 

Ils sont constitués de plusieurs centres de fusion qui reçoivent les données brutes ou partiellement 

traitées des nœuds de capteurs, et sont capables de communiquer avec leurs proches voisins ou 

directement avec la station de base. 

La section 2.2 présente les inconvénients des applications centralisées de surveillance WSN. Ces 

inconvénients sont les suivants : manque d'évolutivité, faible efficacité énergétique, augmentation 

de la latence, réduction de la robustesse et de la fiabilité, et faible confidentialité et sécurité des 

données. Cette section montre que l'efficacité énergétique est une exigence principale dans la 

conception efficace des WSN qui doivent être opérationnels pendant une longue période sans 

remplacement des sources d'énergie des nœuds de capteurs. 

La section 2.3 aborde brièvement les techniques de prolongation de la durée de vie des WSN 

disponibles dans la littérature. Les nœuds de capteurs étant généralement des dispositifs alimentés 

par batterie, la durée de vie du WSN est limitée par la batterie des capteurs individuels du WSN 

[16]. Ainsi, les questions critiques à prendre en compte pour maximiser la durée de vie du WSN 

sont de savoir comment réduire la consommation d'énergie des nœuds ou comment reconstituer 

leurs sources d'énergie de manière efficace et réaliste [16], [71] ? Il est nécessaire que la durée de 

vie du WSN soit suffisamment longue pour permettre au WSN de répondre aux exigences de 

l'application. Ces dernières années, cela a conduit à une pléthore de techniques de gestion de 

l'énergie dans la littérature pour prolonger la durée de vie du WSN. Les techniques de prolongation 
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de la durée de vie des WSN sont classées en trois grandes catégories : les techniques de 

conservation de l'énergie, les techniques d'équilibrage de l'énergie et les techniques de récolte de 

l'énergie, chacune d'entre elles comportant un certain nombre de sous-catégories. Dans cette 

section, on voit que le calcul distribué a le potentiel de réduire la consommation d'énergie des 

nœuds de capteurs et, par conséquent, de prolonger la durée de vie du WSN, car il réduit le nombre 

de messages et la quantité de données transmises en utilisant les ressources informatiques 

embarquées du nœud de capteur. 

La section 2.4 présente une brève revue du calcul distribué dans les WSN en examinant la 

motivation du calcul distribué dans les WSN, les avantages du calcul distribué dans les WSN et en 

présentant un bref aperçu de certaines études qui ont appliqué le calcul distribué dans les WSN. 

La section 2.5 présente une classification générale des techniques de détection des fuites et une 

taxonomie que nous avons développée pour classer les solutions de détection des fuites. Selon 

cette taxonomie, les techniques de détection des fuites utilisées pour la WPM peuvent être classées 

comme statiques ou dynamiques, en fonction de la mobilité de l'équipement utilisé pour recueillir 

les signaux de fuite. Selon que la technique de détection des fuites surveille des paramètres 

externes ou internes de la conduite d'eau et selon l'utilisation d'un équipement matériel spécialisé 

ou de capteurs associés à des algorithmes de calcul pour traiter les signaux de fuite, les techniques 

de détection des fuites sont classées en méthodes externes (matérielles) ou internes (logicielles). 

Les méthodes basées sur des logiciels sont également classées en sous-catégories qui utilisent les 

WSN pour surveiller le pipeline (appelées techniques WWPM) et en sous-catégories qui utilisent 

d'autres technologies que les WSN (par exemple, la télémétrie câblée et le contrôle et l'acquisition 

de données (Supervisory Control and Data Acquisition -SCADA), qui utilisent des capteurs 

connectés au centre de contrôle principal par des moyens de communication tels que des câbles en 

cuivre ou des fibres optiques), auquel cas elles sont appelées techniques non basées sur les WSN. 

Les techniques WWPM sont ensuite classées en deux catégories : les méthodes intrusives qui 

utilisent des capteurs invasifs pour surveiller les paramètres internes du pipeline, tels que la 

pression et/ou le débit, et les méthodes non intrusives qui utilisent des capteurs non invasifs, tels 

que des accéléromètres et/ou des capteurs acoustiques, pour surveiller les paramètres externes du 

pipeline, tels que l'accélération de la surface de la conduite, les signaux sonores de fuite, etc. Enfin, 
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en fonction de la technique d'analyse des signaux ou des données de fuite, les techniques de 

détection des fuites sont classées en méthodes basées sur des modèles, sur des transitoires, sur le 

traitement des signaux ou sur les données. 

La section 2.6 présente la surveillance des canalisations d'eau (WWPM) basée sur le WSN. La 

sous-section 2.6.2 examine en détail les défis posés par l'utilisation de capteurs non intrusifs pour 

la détection de fuites dans les conduites en plastique, notamment la courte distance entre les 

capteurs et le taux élevé de fausses alarmes. La sous-section 2.6.3 présente certains algorithmes de 

calcul basés sur des techniques de traitement du signal qui ont été utilisés dans des systèmes 

WWPM utilisant des capteurs non intrusifs pour améliorer la précision de la détection des fuites. 

La sous-section 2.6.4 présente un état des lieux complet de la WWPM avec une analyse et une 

comparaison détaillée des études importantes dans le domaine qui utilisent des capteurs non 

intrusifs. Il ressort de cet examen que les accéléromètres MEMS à faible coût constituent une 

solution peu coûteuse et de faible puissance pour la détection des fuites dans les RDE en plastique. 

Enfin, la sous-section 2.6.5 passe en revue les études qui ont appliqué une ou plusieurs techniques 

de gestion de l'énergie pour prolonger la durée de vie du réseau (présentée à la section 2.3) dans le 

contexte du WWPM. 

2.2 Synthèse et lacunes identifiées dans les connaissances 

2.2.1 Synthèse 

Obtenir une détection précise des fuites en temps réel tout en préservant la durée de vie du système 

WWPM pendant une longue période est un défi majeur dans WWPM. Comme cela a été montré 

dans la littérature, la plupart des systèmes WWPM disponibles sont centralisés et décentralisés. 

Les systèmes centralisés ont tendance à consommer beaucoup d'énergie et ne permettent pas de 

surveillance en temps réel, ce qui en fait pas une solution optimale pour la détection des fuites dans 

WWPM. Au contraire, très peu d'études WWPM fournissent une solution entièrement distribuée 

pour la détection des fuites. Cependant, ces dernières années, il y a eu une augmentation du nombre 

d'études prônant le développement de solutions distribuées [10], [34]. 
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De plus, la question de la conservation de l'énergie est d'une importance capitale dans le cadre de 

la WWPM. Cependant, la plupart des études WWPM se concentrent sur la localisation des fuites 

tout en négligeant la consommation d'énergie de leurs solutions WWPM proposées. Ainsi, il existe 

très peu d'études dans la littérature qui s'intéressent à l'évaluation de la consommation d'énergie de 

leur solution WWPM proposée et aux moyens de conserver l'énergie afin de prolonger la durée de 

vie du système WWPM. Par ailleurs, la plupart des études qui ont traité de la consommation 

d'énergie de leurs solutions WWPM proposées se sont basées sur des simulations et très peu 

d'études vont jusqu'à réaliser des expériences physiques sur un banc d'essai de laboratoire ou un 

RDE réel. 

Récemment, les études visant à obtenir une détection fiable des fuites dans les canalisations en 

plastique à l'aide de capteurs non intrusifs comme les accéléromètres sont devenues populaires, 

faisant de la WWPM utilisant des accéléromètres un domaine de recherche très actif. Dans la 

littérature, la plupart des études ont proposé l'utilisation d'accéléromètres de haute précision et de 

puissants algorithmes de traitement du signal pour une détection fiable des fuites. Cependant, ces 

solutions ne sont pas idéales pour les exigences de faible coût et de faible puissance des systèmes 

WWPM car elles négligent à la fois le coût et l'efficacité énergétique. Même si un certain nombre 

d'études récentes ont proposé l'utilisation d'accéléromètres MEMS à faible coût pour la détection 

de fuites dans les tuyaux en plastique. Le problème combiné de la précision de la détection des 

fuites et de la consommation d'énergie n'a pas été bien traité. À notre connaissance, aucune étude 

n'a jusqu'à présent examiné ou appliqué des algorithmes de fusion de données distribuées 

redondantes tels que DKF (qui ont été largement utilisés pour augmenter la précision des systèmes 

de suivi) dans le domaine du WWPM. 

De plus, conscients du fait que le choix des composants qui constituent un capteur affecte le coût, 

la consommation d'énergie et les performances globales du nœud, nous avons remarqué dans la 

littérature que peu d'études sur les systèmes WWPM s'intéressaient réellement au choix des 

composants qui constituent leurs nœuds de capteurs. Afin d'atteindre les objectifs de faible coût, 

de faible consommation, de temps réel et de haute fiabilité (qui sont des exigences contradictoires) 

dans les systèmes WWPM, il est nécessaire de bien examiner la sélection des éléments COTS 

utilisés comme blocs de construction des nœuds de capteurs. 
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Aussi, pour fournir une solution WWPM fiable, en temps réel, entièrement distribuée et à faible 

consommation d'énergie pour la surveillance des tuyaux en plastique, trois éléments seront 

nécessaires : 

1. Un nœud de capteurs doté de ressources informatiques suffisantes pour effectuer un 

traitement in situ tout en maintenant une faible consommation d'énergie grâce à une mise 

en œuvre efficace du cycle de fonctionnement ; 

2. Des capteurs pour réduire l'énergie de détection via la mise en œuvre d'une détection 

hiérarchique ; 

3. Une technique de traitement du signal qui nécessite moins de calculs et qui a la capacité de 

prédire les données détectées afin de réduire les coûts de communication et la capacité 

d'effectuer une fusion de données distribuées afin d'augmenter la précision de la détection 

des fuites. 

2.2.2 Lacunes identifiées dans les connaissances 

Suite à la recherche documentaire qui a été menée, les lacunes identifiées dans les connaissances 

sont résumées ci-dessous : 

1. Pendant que plusieurs études dans la littérature sont impliquées dans la détection de fuites 

dans les systèmes WWPM, la plupart des solutions utilisent soit un traitement centralisé ou 

décentralisé des données pour détecter les fuites. À notre connaissance, peu de travaux ont 

été réalisés pour mettre en œuvre une solution en temps réel et entièrement distribuée pour 

la détection de fuites dans les tuyaux en plastique en utilisant un accéléromètre MEMS à 

faible coût ; 

2. Alors que la plupart des études WWPM se concentrent sur la détection et la localisation 

des fuites, très peu d'études ont évalué la consommation d'énergie de leur solution et ont 

cherché des moyens de réduire la consommation d'énergie afin de prolonger la durée de 

vie de la surveillance ; 

3. Aucune étude n'a combiné la mise en œuvre de techniques de conservation de l'énergie par 

cycle de service, de détection hiérarchique et de prédiction des données au niveau des 
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nœuds de capteurs pour prolonger la durée de vie des systèmes WWPM utilisés pour la 

surveillance des RDE en plastique ; 

4. Aucune étude n'a examiné une solution WWPM entièrement distribuée basée sur DKF pour 

améliorer la précision de la détection des fuites dans les tuyaux en plastique surveillés par 

des accéléromètres MEMS à faible coût, ni évalué sa consommation d'énergie ; 

5. Alors que plusieurs études ont évalué les performances de différents algorithmes DKF dans 

des applications de suivi de cible, aucune étude n'a évalué à la fois les performances de 

détection de fuite et la consommation d'énergie des algorithmes DKF via des simulations 

et des expériences physiques sur un banc d'essai de laboratoire dans le contexte du WWPM 

des RDE en plastique. 

Afin de combler les lacunes dans les connaissances identifiées ci-dessus, nous proposons de 

répondre aux questions de recherche suivantes : 

1. Quels composants COTS seront utilisés pour répondre aux exigences d'un nœud de capteur 

à faible coût et à faible puissance qui dispose de ressources informatiques suffisantes pour 

effectuer un traitement in situ ? 

2. Comment le nœud de capteurs sera-t-il conçu, mis en œuvre et configuré de manière à 

obtenir une capacité de calcul élevée et une faible consommation d'énergie ? 

3. Quelles techniques de gestion de l'énergie seront utilisées pour réduire la consommation 

d'énergie des nœuds de capteurs et augmenter la durée de vie du WSN ?  

4. Quelle technique de traitement du signal sera appropriée (en termes de précision et de 

consommation d'énergie) pour traiter les signaux de fuite obtenus à partir de tuyaux en 

plastique en utilisant des accéléromètres MEMS à faible coût ? 

5. La fusion distribuée des données améliorera-t-elle la précision de la détection des fuites ? 

6. Quels algorithmes de fusion de données distribuées, avec KF, peuvent être mis en œuvre 

sur les nœuds de capteurs pour fournir une détection de fuites en temps réel et entièrement 

distribuée dans les réseaux de distribution d'eau en plastique ? 

7. Comment les différentes techniques de fusion de données distribuées affectent-elles la 

précision de la détection des fuites et la consommation d'énergie du système WWPM ? 

Les chapitres suivants de cette thèse fourniront des réponses aux questions de recherche soulignées 

ci-dessus. 
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Chapitre 3 : Conception des nœuds de capteurs 

L'objectif de ce chapitre est de déterminer les spécifications d'un nœud économique et de faible 

puissance, doté d'une puissance de calcul suffisante (requise pour le traitement au sein du nœud), 

qui sera construit à partir de composants commerciaux bon marché (COTS). Ceci est important 

car nous avons l'intention de réaliser une détection de fuites en temps réel en implémentant tout le 

traitement requis pour la détection de fuites dans le nœud de capteur et sans avoir besoin de 

communications longue distance via de multiples sauts vers une station de base. Il est donc 

nécessaire que l'unité de traitement du nœud de capteurs dispose de ressources informatiques 

suffisantes pour effectuer les calculs requis et consomme moins d'énergie puisque les nœuds sont 

censés fonctionner sur batterie. En outre, étant donné que de nombreux nœuds de capteurs seront 

nécessaires pour surveiller les réseaux de distribution d'eau en plastique (car les signaux de 

vibration ne vont pas loin dans les tuyaux en plastique), il est nécessaire que le nœud de capteur 

soit peu coûteux. 

Dans ce chapitre, nous présentons la conception et la configuration matérielle d'un nœud de 

capteurs personnalisé et d'un dispositif de mesure de la puissance que nous utiliserons pour évaluer 

la solution WWPM entièrement distribuée que nous proposons sur un dispositif expérimental. Tout 

d'abord, nous trouvons une réponse à la question de savoir quels composants COTS seront 

optimaux pour réaliser un nœud de capteurs à faible coût et à faible puissance avec une capacité 

de calcul suffisante pour le traitement dans le nœud.  Par la suite, nous cherchons une réponse à la 

question suivante : quelles sont les spécifications d'un nœud de capteur adapté pour fournir une 

solution WWPM entièrement distribuée, en temps réel et à faible consommation d'énergie pour 

surveiller les RDE en plastique? Pour répondre à ces questions, nous commençons ce chapitre par 

un aperçu général des éléments constitutifs d'un système WWPM, puis nous passons en revue les 

plates-formes matérielles WSN existantes (commerciales et de recherche) en nous concentrant sur 

les unités de traitement et de communication. Nous passons ensuite en revue les accéléromètres 

MEMS à faible coût qui peuvent être utilisés pour mesurer l'accélération de la surface des tuyaux 

en plastique. Ensuite, nous discutons de la sélection des composants appropriés pour notre nœud 

de capteurs personnalisé et de la raison de leur choix, en fonction des exigences spécifiques de 

notre application. Cette discussion est suivie d'une discussion sur la conception et la configuration 
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du nœud de capteurs. Le chapitre se termine par la présentation de la conception et de la 

configuration d'un dispositif de mesure de puissance personnalisé pour mesurer la consommation 

électrique des nœuds de capteurs sur un banc d'essai de laboratoire pendant les expériences 

physiques.    

Ce chapitre est organisé comme suit : 

La section 3.1 présente les éléments constitutifs d'un système WWPM, qui se compose en gros 

d'une couche de capteurs et d'une couche de nuages, puis examine les éléments constitutifs des 

nœuds de capteurs qui composent la couche de capteurs du système WWPM ; 

La section 3.2 passe en revue les unités de traitement MCU et les émetteurs-récepteurs RF des 

nœuds de capteurs sans fil commerciaux et de recherche. Cet examen a pour but de faciliter la 

sélection d'une unité de traitement MCU et d'un émetteur-récepteur RF à faible coût et à faible 

puissance en vue de leur mise en œuvre dans un nœud de capteurs personnalisé qui sera déployé 

sur le banc d'essai expérimental ; 

La section 3.3 présente une revue des accéléromètres MEMS à faible coût et finalement la sélection 

de deux accéléromètres MEMS (LSMDS1 et ADXL344) ; 

La section 3.4 décrit en détail les spécifications des composants COTS utilisés pour concevoir le 

nœud de capteurs personnalisé. Le nœud de capteurs personnalisé se compose d'un ESP32 

d'Espressif Systems comme unité de traitement, d'un module émetteur-récepteur nRF24L01+ de 

Nordic comme unité de communication et d'un accéléromètre LSM9DS1 de STMicroelectronics 

et d'un accéléromètre ADXL344 d'Analog Devices comme unité de détection ; 

La section 3.5 décrit la configuration des composants matériels du nœud de capteur personnalisé. 

Le module émetteur-récepteur nRF24L01+ est interfacé avec l'ESP32 via l'interface SPI, tandis 

que les capteurs LSM9DS1 et ADXL344 sont interfacés avec l'ESP32 via les interfaces I2C. 

La section 3.6 traite de la conception et de la configuration d'un dispositif de mesure de l'énergie 

personnalisé qui sera utilisé pour mesurer la consommation d'énergie des nœuds de capteurs dans 

le dispositif expérimental. 
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Chapitre 4 : Filtre de Kalman distribué pour les réseaux de capteurs 

sans fil 

L'objectif de cette étude est d'examiner et d'évaluer la mise en œuvre d'une solution WWPM fiable, 

en temps réel, entièrement distribuée, à faible coût et à faible puissance pour la détection des fuites 

dans les réseaux de distribution d'eau en plastique. Nous visons à atteindre :  

1. Un bon rapport coût-efficacité en utilisant des composants COTS à faible coût comme 

éléments constitutifs du nœud de capteur ; 

2. Une faible consommation d'énergie en mettant en œuvre un cycle de travail et une 

détection hiérarchique sur le nœud de capteur ; 

3. Une détection des fuites fiable et en temps réel en mettant en œuvre un calcul distribué 

dans le système WWPM. 

Dans le chapitre 3, nous avons discuté des spécifications d'un nœud de capteurs capable d'effectuer 

des traitements insitu. Nous avons également conçu un nœud de capteurs personnalisé à partir de 

composants COTS à faible coût et proposé une méthode pour réduire la consommation d'énergie 

du nœud de capteurs en mettant en œuvre un cycle de fonctionnement et une détection 

hiérarchique. Le contenu du chapitre 3, dans une certaine mesure, réalise les points 1 et 2 énumérés 

ci-dessus. Dans ce chapitre, l'objectif est de sélectionner des algorithmes de filtre de Kalman 

distribué (DKF) à faible intensité de calcul à mettre en œuvre dans les nœuds de détection pour 

permettre une détection fiable des fuites en temps réel tout en préservant la durée de vie du système 

WWPM. Le défi est qu'il existe de nombreux algorithmes DKF dans la littérature avec des 

performances, des complexités, des exigences de calcul, etc. différentes. Il est donc nécessaire de 

sélectionner des algorithmes DKF adaptés aux applications WSN. L'objectif de ce chapitre est de 

nous rapprocher de la réalisation du point 3 ci-dessus. 

Nous commençons ce chapitre par une présentation du Filtre de Kalman (FK) avec les raisons pour 

lesquelles nous l'avons choisi comme algorithme de traitement du signal pour améliorer la qualité 

des mesures de vibrations de surface des tuyaux collectées à l'aide d'accéléromètres MEMS à faible 

coût. Nous passons ensuite en revue les catégories d'algorithmes DKF pour les applications WSN 

à faible coût telles que les systèmes WWPM. Nous sélectionnons ensuite trois algorithmes DKF 
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que nous implémenterons et évaluons leurs performances et leur consommation d'énergie via des 

simulations et des expériences physiques. Nous terminons le chapitre en présentant les mesures 

permettant d'évaluer les performances et la consommation d'énergie de la solution entièrement 

distribuée que nous proposons pour la détection des fuites dans les systèmes WWPM. 

Ce chapitre est organisé comme suit : 

La section 4.1 donne un aperçu de l'algorithme KF standard et présente les techniques de mise en 

œuvre de la fusion de données au niveau des nœuds de capteurs ; 

La section 4.2 aborde les différentes techniques de mise en œuvre de l'algorithme KF dans les 

WSN. Elle commence par donner les raisons pour lesquelles le KF a été choisi pour être utilisé 

dans cette étude, puis passe à la discussion du filtre de Kalman centralisé (CKF) et du filtre de 

Kalman distribué (DKF), en soulignant leurs avantages et inconvénients ; 

La section 4.3 présente trois catégories différentes d'algorithmes DKF qui peuvent être mis en 

œuvre dans les WSN à faible coût et met en évidence leurs avantages et inconvénients ; 

La section 4.4 présente la sélection finale de trois algorithmes DKF (un de chaque catégorie 

présentée dans la section 4.3) et décrit en détail leur fonctionnement dans le contexte du WWPM. 

La section 4.5 présente les métriques qui seront utilisées pour évaluer les performances et la 

consommation d'énergie de notre solution WWPM proposée. 
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Chapitre 5 : Démonstration d'une solution de détection de fuites 

basée sur le DKF dans les systèmes WWPM utilisant des 

accéléromètres MEMS à faible coût 

Le premier objectif de ce chapitre est de démontrer le calcul distribué dans un système WWPM 

composé d'un réseau d'accéléromètres MEMS à faible coût surveillant un RDE en plastique. Etant 

donné qu'il existe plusieurs applications du calcul distribué dans les WSN, comme mentionné dans 

la sous-section 2.4.3 du chapitre 2, nous allons cependant démontrer dans ce chapitre le calcul 

distribué via le traitement local (implémenté par un filtre de Kalman local) et le calcul distribué 

via l'estimation d'état distribuée (implémenté par un filtre de Kalman distribué). Le deuxième 

objectif est de montrer que la fusion de données distribuée mise en œuvre par les algorithmes DKF 

consomme moins d'énergie que la fusion de données centralisée mise en œuvre par CKF et fournit 

une meilleure précision de détection des fuites par rapport à la mise en œuvre du filtre de Kalman 

local (LKF) (qui n'implique pas la fusion des estimations locales des nœuds de capteurs voisins). 

Cet aspect est particulièrement important en raison de la nécessité de détecter de manière fiable 

les fuites en temps réel, au moment où elles se produisent, afin de réduire les pertes d'eau traitée. 

De plus, l'obligation pour un système WWPM d'être opérationnel pendant de longues périodes 

avec une alimentation par batterie nécessite une solution à faible consommation d'énergie afin 

d'étendre sa durée de vie. En outre, l'utilisation de capteurs à faible coût imposée par l'exigence de 

faible coût du système WWPM affecte la précision de la détection des fuites. Ainsi, une fusion 

efficace des données multi-capteurs peut être utilisée comme technique de filtrage pour améliorer 

la fiabilité du système WWPM tout en préservant sa durée de vie. Enfin, étant donné que les 

ressources informatiques embarquées des nœuds de capteurs effectueront tout le traitement 

nécessaire à la détection des fuites, il est impératif que les sorties des nœuds de capteurs voisins 

soient cohérentes pour éviter les résultats contradictoires de la détection des fuites. Le défi est donc 

de parvenir à une détection fiable des fuites en temps réel et à une faible consommation d'énergie 

dans un système WWPM où les nœuds de capteurs sont constitués d'accéléromètres MEMS à 

faible coût, capables d'effectuer un traitement local et d'échanger des informations avec leurs 

proches voisins. 
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Ce chapitre présente les résultats et les discussions de la première série d'expériences qui ont été 

menées pour notre étude. Il commence par discuter de la composition et de la configuration des 

nœuds de capteurs et de la mise en œuvre des algorithmes KF (LKF, CKF et DKF). Nous décrivons 

ensuite la configuration de simulation utilisée pour effectuer les simulations et la configuration de 

laboratoire utilisée pour valider les résultats obtenus à partir des simulations. Ensuite, nous 

présentons les résultats et les discussions de la première série d'expériences, où nous avons 

implémenté un algorithme DKF et un algorithme LKF et comparé leurs performances en utilisant 

les résultats des simulations et des expériences physiques. Nous évaluons ensuite la consommation 

d'énergie de l'implémentation DKF par le biais de simulations (en utilisant les valeurs d'un modèle 

de fiche technique) et sa validation (en utilisant des mesures physiques dérivées du banc d'essai de 

laboratoire). Enfin, nous terminons le chapitre en comparant la consommation électrique de 

l'implémentation DKF et de l'implémentation CKF sur la base des résultats des simulations. Il 

convient de noter que les résultats obtenus à partir des expériences présentées dans ce chapitre ont 

déjà été publiés dans [186], [187]. 

Ce chapitre est organisé comme suit : 

La section 5.1 fournit les détails de l'implémentation des différents algorithmes KF qui ont été mis 

en œuvre dans la première série d'expériences ; 

La section 5.2 décrit les configurations de simulation et de laboratoire ainsi que les expériences 

menées sur la plate-forme de simulation et le banc d'essai de laboratoire ; 

La section 5.3 traite de l'évaluation des performances des algorithmes DKF et LKF à partir des 

résultats obtenus lors des simulations et des expériences physiques ;  

La section 5.4 présente le profil de puissance de notre solution DKF proposée, obtenu à partir des 

simulations et des mesures physiques. Elle présente également les résultats des mesures physiques 

qui montrent comment la consommation d'énergie de la solution peut être considérablement 

réduite en utilisant le coprocesseur ULP du microcontrôleur ESP32 servant d'unité de traitement 

du nœud de capteurs ; 
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La section 5.5 compare la consommation d'énergie et les besoins en communication de l'algorithme 

DKF mis en œuvre et de l'algorithme CKF de référence dans un réseau de capteurs composé de 10 

nœuds de capteurs connectés dans une topologie linéaire et simulé dans CupCarbon. 
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Chapitre 6 : Évaluation des performances de détection des fuites et 

de la consommation d'énergie des trois algorithmes DKF 

sélectionnés 

L'objectif de ce chapitre est de mettre en œuvre les trois algorithmes DKF sélectionnés et de 

comparer également les résultats de leurs performances en matière de détection de fuites et de 

consommation d'énergie obtenus à partir de simulations et d'expériences physiques. Ceci est 

important car les trois algorithmes DKF sélectionnés mettent en œuvre différentes stratégies de 

fusion de données distribuées, avec des exigences de communication, une vitesse de convergence 

vers la valeur optimale du CKF et une précision d'estimation distinctes. Ces paramètres des 

stratégies de fusion de données distribuées mises en œuvre par ces algorithmes DKF peuvent 

affecter à la fois la fiabilité et la consommation d'énergie du système WWPM entièrement 

distribué. Par conséquent, le défi consiste à déterminer quelle solution DKF offre une meilleure 

performance de détection des fuites et consomme moins d'énergie. 

Ce chapitre commence par une discussion sur l'implémentation des algorithmes DKF sélectionnés. 

Il est suivi d'une description de la configuration de simulation utilisée pour effectuer les 

simulations et du banc d'essai de laboratoire utilisé pour valider les résultats obtenus à partir des 

simulations. Nous présentons dans la suite les résultats des expériences de caractérisation des fuites 

réalisées sur le banc d'essai en laboratoire, où nous avons mesuré l'accélération de la surface de la 

conduite à différentes distances de la position de la fuite et pour différentes tailles de fuite. Aussi, 

nous présentons les expériences que nous avons menées sur la plateforme de simulation et le banc 

d'essai en laboratoire, où les performances de détection des fuites et la consommation d'énergie 

des algorithmes DKF ont été évaluées et comparées. Enfin, nous terminons ce chapitre en 

présentant les résultats de la réduction de la consommation d'énergie obtenue lors des expériences 

menées sur le banc d'essai de laboratoire, où nous avons mis en œuvre au niveau des nœuds de 

capteurs l'algorithme DKF présentant la consommation d'énergie la plus élevée avec détection 

hiérarchique et cycle de travail. 

Ce chapitre est organisé comme suit : 
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La section 6.1 présente les détails de la mise en œuvre des trois algorithmes DKF sélectionnés 

(EDKF, ICF et SGG-ICF), qui seront évalués par le biais de simulations effectuées sur une plate-

forme de simulation et d'expériences physiques réalisées sur un banc d'essai en laboratoire ; 

La section 6.2 fournit une description détaillée du dispositif expérimental et des expériences 

menées sur la plate-forme de simulation et le banc d'essai de laboratoire ; 

La section 6.3 présente les résultats de la caractérisation des fuites qui montrent comment la 

distance par rapport à la position de la fuite et la taille de la fuite influencent la détection des fuites 

en affectant les données de vibration collectées à partir de la surface de la conduite à l'aide de 

l'accéléromètre LSM9DS1 ; 

La section 6.4 présente les résultats de simulation et de laboratoire de l'évaluation des 

performances des algorithmes DKF sélectionnés ; 

La section 6.5 présente une évaluation de la consommation d'énergie des DKF sélectionnés à partir 

des résultats obtenus par des simulations et des expériences physiques ; 

La section 6.6 présente la mise en œuvre du cycle d'utilisation et de la détection hiérarchique au 

niveau du nœud de capteur pour réduire la consommation d'énergie du nœud de capteur tout en 

maintenant la détection des fuites en temps réel. 
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Chapitre 7 : Conclusions et Perspectives 

Dans ce chapitre, nous revenons tout d'abord sur les objectifs de recherche que nous nous sommes 

fixés, sur les résultats obtenus et sur les conclusions tirées de la réalisation des objectifs. Nous 

présentons également les limites de notre travail et proposons des suggestions pour les travaux 

futurs. 

7.1 Récapitulation des objectifs, des réalisations et des conclusions de la 

recherche 

Dans cette thèse, nous nous sommes intéressés à la détection de fuites en temps réel, de fuites 

fiables et de fuites à faible puissance dans les systèmes WWPM en utilisant des accéléromètres 

MEMS à faible coût. Notre objectif principal était d'augmenter la précision des mesures et la durée 

de vie du réseau grâce à une approche distribuée. Pour atteindre ce but, nous avions cinq objectifs 

spécifiques à réaliser. Nous présentons ci-dessous les objectifs, les réalisations et les conclusions 

tirées de la réalisation des objectifs.   

Objectif 1 : Passer en revue les techniques de surveillance des canalisations d'eau les plus 

courantes disponibles dans la littérature, en mettant l'accent sur les solutions WWPM qui utilisent 

des capteurs de vibrations à faible coût pour la surveillance. À partir de là, identifier les lacunes 

dans le domaine de la surveillance des conduites en plastique à l'aide d'accéléromètres MEMS à 

faible coût. 

Réalisation 1 : Dans le chapitre 2 de cette thèse, nous avons fait une revue complète de la 

littérature sur le calcul distribué dans les WSNs, les techniques de gestion de l'énergie utilisées 

dans les WWPM et les solutions WWPM basées sur des capteurs non-intrusifs et nous avons 

identifié les lacunes dans les connaissances mentionnées dans la sous-section 2.7.2 du chapitre 2. 

Conclusion 1 : Dans les systèmes WWPM à grande échelle, il y a une dégradation des 

performances en temps réel en raison de la latence accrue résultant d'un grand nombre de 

communications multi-sauts. Ainsi, pour parvenir à une détection des fuites en temps réel, il est 

nécessaire de mettre en œuvre un calcul distribué plutôt qu'un calcul centralisé dans le système 
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WWPM.  Récemment, il y a eu une recherche générale pour passer d'une surveillance centralisée 

à une surveillance distribuée dans les applications WSNs (en particulier dans les domaines de la 

surveillance de l'état des machines industrielles et du suivi des cibles) et cela peut également être 

étendu à WWPM. En outre, l'étude des techniques populaires de surveillance non intrusive montre 

que les accéléromètres MEMS à faible coût peuvent être utilisés pour détecter les fuites dans les 

tuyaux en plastique. Les accéléromètres MEMS à trois axes, plutôt que les accéléromètres MEMS 

à un axe, sont des candidats appropriés pour la détection des fuites dans les canalisations en 

plastique, mais ils nécessitent un traitement du signal supplémentaire pour augmenter la précision 

de la détection des fuites des systèmes WWPM qui les utilisent. En mettant en œuvre des 

techniques de traitement du signal qui traitent les données de manière directe dans le domaine 

temporel au sein des nœuds de capteurs et en impliquant la fusion de données multi-capteurs, il est 

probable d'augmenter les performances de détection des fuites et de réduire la consommation 

d'énergie. 

Objectif 2 : Etablir les spécifications d'un nœud de capteurs à faible coût et à faible puissance 

capable d'effectuer des traitements in situ sous contraintes énergétiques. Le nœud de capteurs doit 

avoir une capacité de calcul suffisante pour effectuer un traitement local et être sensible à la 

consommation d'énergie. Sur cette base, concevoir et mettre en œuvre un nœud de capteurs sans 

fil basé sur les spécifications établies. 

Réalisation 2 : Dans le chapitre 3 de cette thèse, nous avons effectué un examen approfondi des 

nœuds de capteurs commerciaux et de recherche existants en nous concentrant sur leur puissance 

de calcul, leur consommation d'énergie et leur coût. Le besoin d'un nœud de capteurs à faible coût, 

avec une puissance de calcul élevée mais une faible consommation d'énergie, nous a poussé à 

concevoir un nœud personnalisé plutôt que d'utiliser des nœuds de capteurs commerciaux ou de 

recherche existants. Notre nœud de capteurs personnalisé se compose d'un SoC ESP32 comme 

unité de traitement et d'un module émetteur-récepteur nRF24L01+ comme unité de 

communication. Nous avons choisi l'ESP32 en raison de son faible coût, de sa puissance de calcul 

élevée (car il intègre un processeur Xtensa LX6 32 bits à double cœur avec une vitesse de 

traitement allant jusqu'à 240 MHz comme cœur principal) et de sa faible consommation d'énergie 

(car il possède un coprocesseur ULP dont la consommation de courant est comprise entre 10 μA 
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et 150 μA). La puissance de calcul élevée du cœur principal de l'ESP3 a permis à notre nœud 

personnalisé d'effectuer un traitement local, tandis que le coprocesseur ULP lui a permis de réaliser 

une surveillance en temps réel tout en maintenant une faible consommation d'énergie, répondant 

ainsi à nos objectifs de solution WWPM en temps réel, entièrement distribuée et à faible 

consommation. Le module émetteur-récepteur nRF24L01+ a été sélectionné en raison de son faible 

coût, de son mode rafale et de sa faible consommation d'énergie (avec des courants de pointe 

TX/RX inférieurs à 14 mA). Pour parvenir à une détection fiable des fuites sur les tuyaux en 

plastique tout en maintenant une faible consommation d'énergie, nous avons proposé la mise en 

œuvre d'une détection hiérarchique en sélectionnant à la fois un accéléromètre de faible précision 

(mais de faible puissance) et un accéléromètre de haute précision. Les accéléromètres sélectionnés 

sont l'ADXL344 et le LSM9DS1. Nous avons choisi l'ADXL344 en raison de sa faible 

consommation d'énergie, de sa large bande passante et de sa capacité de détection d'événements, 

tandis que nous avons choisi le LSM9DS1 en raison de sa haute sensibilité et de sa faible 

consommation d'énergie. Nous avons également discuté de la manière de configurer le composant 

du nœud de capteurs pour obtenir un calcul distribué, une surveillance en temps réel et une faible 

consommation d'énergie. Nous avons terminé le chapitre en présentant la conception, la mise en 

œuvre et la configuration d'un dispositif de mesure de la puissance personnalisé pour mesurer la 

consommation d'énergie des nœuds de capteurs lors des expériences en laboratoire. Ce dispositif 

de mesure de la consommation était composé d'un INA226, d'un microcontrôleur STM nucleo-32 

F303k8, d'un émetteur-récepteur nRF24L01+, d'un écran OLED 128 × 64, d'une carte SD et de 

deux ports USB. 

Conclusion 2 : Dans une solution WWPM entièrement distribuée, les nœuds de capteurs doivent 

disposer d'une capacité de calcul suffisante pour effectuer un traitement local et consommer moins 

d'énergie, étant donné que les nœuds sont alimentés par batterie. En utilisant l'ESP32 plus 

fréquemment en mode ULP qu'en mode veille du modem, le nœud de capteurs a une 

consommation d'énergie comparable à celle des appareils bas de gamme utilisés dans les 

applications WSN alimentées par batterie, mais possède des ressources de calcul suffisantes pour 

effectuer tous les traitements nécessaires à la détection des fuites au sein du nœud de capteurs. La 

puissance de calcul élevée de l'ESP32 implique également qu'il lui faudra moins de temps en mode 
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actif pour traiter l'algorithme de détection des fuites et repasser ensuite en mode sommeil profond. 

Moins le nœud est en mode actif, moins il consomme d'énergie puisqu'il passe plus de temps en 

mode basse consommation.  Aussi, la capacité de l'ESP32 à surveiller le niveau de tension de sa 

batterie sans nécessiter de circuit supplémentaire est avantageuse car elle permet aux nœuds de 

capteurs de surveiller leur consommation d'énergie en temps réel. Cette caractéristique de l'ESP32 

en fait un bon candidat pour le déploiement d'applications WSN sensibles à l'énergie et nécessitant 

davantage de calcul au niveau du nœud, car elle permet aux nœuds de modérer leurs opérations en 

fonction de l'énergie restante de la batterie, ce qui les rend sensibles à l'énergie et adaptatifs. Enfin, 

en utilisant l'ESP32 comme unité de traitement de nos nœuds de capteurs, nous avons montré qu'il 

est possible d'étendre l'utilisation de l'ESP32 dans les applications WSN, étant donné que l'ESP32 

a été largement utilisé dans les applications IoT dans le passé. 

Objectif 3 : Proposer une solution WWPM entièrement distribuée, en temps réel et à faible 

consommation d'énergie, basée sur DKF pour une détection fiable des fuites dans les tuyaux en 

plastique. À cet égard, nous effectuerons une recherche documentaire approfondie sur les 

algorithmes DKF qui peuvent être mis en œuvre dans les WSN et sélectionnerons trois algorithmes 

DKF dont les performances de détection de fuites et la consommation d'énergie seront évaluées 

dans le contexte de la WWPM à l'aide d'accéléromètres MEMS à faible coût. 

Réalisation 3 : Motivés par le besoin d'un algorithme à faible complexité (en termes de puissance 

de calcul, de stockage et de communication) au niveau des nœuds de capteurs, nous avons choisi 

la technologie KF pour sa mise en œuvre dans le chapitre 4 de cette thèse. Nous avons expliqué 

les raisons pour lesquelles nous avons choisi KF comme algorithme de traitement du signal pour 

la détection de fuites, en utilisant les données obtenues à partir d'accéléromètres MEMS à faible 

coût de chaque nœud de capteur attaché au pipeline pour répondre aux objectifs de haute fiabilité, 

de surveillance en temps réel et de faible consommation d'énergie. Nous avons étudié les 

différentes variantes de la technologie KF mises en œuvre dans les WSN. Nous avons finalement 

choisi d'utiliser une KF qui met en œuvre la fusion de données distribuée (DKF) plutôt qu'une KF 

qui met en œuvre la fusion de données centralisée (CKF). La DKF a été choisie plutôt que la CKF 

en raison des inconvénients de la surveillance centralisée dans les WSN, que nous avons 

mentionnés dans le chapitre 2 de cette thèse. Guidés par la revue des algorithmes DKF pour les 
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WSN à faible coût présentée par [59], nous avons sélectionné trois algorithmes DKF pour les 

implémenter et les évaluer dans notre solution WWPM proposée. L'un des algorithmes DKF 

sélectionnés est un algorithme DKF basé sur le consensus, appelé Information Consensus Filter 

(ICF) [64]. Cet algorithme a une bonne précision d'estimation car il converge vers la valeur 

optimale du CKF, et il maintient également la cohérence locale de l'estimation entre les nœuds de 

capteurs voisins. Cependant, il a une charge de communication élevée car chaque nœud transmet 

ses informations locales et reçoit des informations de tous ses voisins à chaque mise à jour de 

mesure, et il nécessite plusieurs itérations de consensus entre les mises à jour de mesure pour 

atteindre une bonne précision d'estimation. Un autre algorithme DKF sélectionné est un KF basé 

sur la diffusion déclenchée par les événements (EDKF) [171]. Cet algorithme a une faible charge 

de communication (car chaque nœud transmet ses informations locales et reçoit des informations 

de tous ses voisins à chaque pas de temps et avec une seule itération de communication impliquée 

entre les mises à jour de mesures). Cette caractéristique le rend approprié pour la mise en œuvre 

dans les applications WSN où il y a un délai strict avec les nœuds contraints en énergie. Cependant, 

la précision de l'estimation de cet algorithme est faible. Le dernier algorithme sélectionné est un 

algorithme DKF basé sur les commérages, appelé sample greedy gossip information consensus 

filter (SGG-ICF)  [177]. Cet algorithme cherche à tirer le meilleur des deux mondes des DKF basés 

sur le consensus et sur la diffusion en obtenant une précision d'estimation élevée tout en réduisant 

la charge de communication. Enfin, nous avons terminé le chapitre en présentant les mesures 

d'évaluation couramment utilisées dans la littérature sur le WWPM pour évaluer les performances 

de la solution WWPM entièrement distribuée que nous proposons. Les mesures d'évaluation 

sélectionnées comprennent la sensibilité, la spécificité, le taux de détection des erreurs, le taux de 

fausses alarmes et la précision pour évaluer les performances de détection des fuites, ainsi que les 

mesures de courant et de tension pour la consommation d'énergie. 

Conclusion 3 : La myriade d'algorithmes DKF existant dans la littérature a nécessité une étude 

approfondie des algorithmes DKF afin d'isoler les algorithmes DKF ayant le potentiel d'être mis 

en œuvre dans les WSN.  Par ailleurs, la nécessité pour les nœuds de capteurs voisins d'avoir des 

estimations cohérentes affecte considérablement la précision de la détection des fuites d'un 

système WWPM entièrement distribué utilisant des accéléromètres MEMS à faible coût. La raison 
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en est que le traitement pour la détection des fuites est effectué au niveau des nœuds de capteurs 

et non au niveau d'un centre de fusion. Toute incohérence dans les estimations des nœuds de 

capteurs voisins entraînera des sorties contradictoires de ces derniers, ce qui conduira à des 

situations où un nœud déclenchera une alarme de fuite alors que son voisin n'indiquera par ailleurs 

aucune fuite. Pour cela, éviter de telles controverses implique de ne mettre en œuvre que des 

algorithmes DKF qui atteignent une cohérence locale dans leurs estimations pour la détection de 

fuites dans WWPM. Enfin, pour étudier l'influence d'une stratégie spécifique de fusion de données 

distribuées sur les performances de détection de fuites et la consommation d'énergie, il est 

nécessaire de sélectionner des algorithmes DKF qui atteignent une cohérence locale mais qui 

utilisent les différentes stratégies de fusion de données. 

Objectif 4 : Démontrer l'application de DKF pour une détection fiable des fuites en temps réel 

dans un système WWPM qui utilise des accéléromètres MEMS à faible coût en déployant un 

réseau de capteurs qui met en œuvre l'un des algorithmes DKF sélectionnés. Sur cette base, évaluer 

les performances de détection de fuites et la consommation d'énergie de la solution distribuée 

proposée en effectuant des simulations et en validant les résultats de simulation à l'aide des 

résultats obtenus lors d'expériences physiques sur un banc d'essai de laboratoire. 

Réalisation 4 : Dans le chapitre 5 de cette thèse, nous avons démontré l'application d'une solution 

de calcul distribué basée sur DKF pour réaliser une détection de fuites en temps réel, fiable et à 

faible consommation dans WWPM. La plupart des études de l'état de l'art sur le calcul distribué 

dans les WSN étant théoriques et validées par des simulations, nous avons dans ce chapitre validé 

expérimentalement la faisabilité de l'exécution du calcul distribué dans WWPM en mettant en 

œuvre un algorithme DKF, proposé par Battistelli et al. [171], sur un réseau de capteurs déployé 

sur un RDE de laboratoire pour valider les résultats de simulation. Dans la solution que nous avons 

proposée, les nœuds de capteurs ont effectué tous les traitements nécessaires à la détection des 

fuites sans avoir besoin d'une station de base centralisée pour traiter les signaux de fuite. L'objectif 

était d'éliminer les communications multi-sauts, de réduire la latence, de diminuer la 

consommation d'énergie des nœuds de capteurs et de prolonger la durée de vie du WSN. Le DKF 

implémenté a traité les signaux de vibration lus à partir de l'accéléromètre LSM9DS1 fixé à la 

surface du tuyau pour détecter l'apparition de fuites sur le pipeline. Nous avons réalisé les 
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simulations dans CupCarbon 4.2 et les expériences physiques sur un banc d'essai de laboratoire du 

réseau WSN. Nous avons effectué des simulations et des expériences physiques sur un WSN 

linéaire à deux nœuds, où nous avons comparé les performances de détection de fuites du DKF 

implémenté avec celles d'un filtre de Kalman local (LKF). Dans la suite, nous avons effectué des 

simulations et des expériences en laboratoire pour évaluer la consommation d'énergie de 

l'algorithme DKF implémenté. Enfin, nous avons effectué des simulations sur un réseau WSN 

global composé de dix nœuds de capteurs connectés linéairement, où nous avons comparé la 

consommation d'énergie du DKF implémenté avec celle du filtre de Kalman centralisé (CKF). 

Conclusion 4 : Les résultats obtenus ont montré la faisabilité de l'application d'une solution 

entièrement distribuée pour la détection des fuites dans les WWPM.  Par ailleurs, les résultats ont 

établi l'importance de la fusion de données distribuées dans l'amélioration de la fiabilité et de la 

consommation d'énergie du système de détection de fuites. En ce qui concerne l'implémentation 

physique, les résultats ont montré que le DKF implémenté augmente la fiabilité de la détection des 

fuites par rapport au LKF, tandis que les simulations sur le réseau mondial ont montré que le DKF 

implémenté a considérablement préservé la durée de vie du WWPM par rapport au CKF. Ces 

résultats indiquent que l'approche distribuée augmente les performances de détection des fuites et 

préserve la durée de vie du système WWPM. L'impact de cette approche n'est pas seulement limité 

à WWPM, mais aussi à son extension aux applications IoT critiques en termes de temps, où, au 

lieu d'envoyer des données brutes au cloud pour traitement et renvoi des décisions, le traitement 

nécessaire pour traiter les données brutes d'une application de surveillance d'événements critiques 

en termes de temps est effectué en utilisant les ressources informatiques embarquées des nœuds 

de capteurs. Cela permet de réduire la latence subie par ces applications critiques en termes de 

temps lors de la mise en œuvre de l'informatique centralisée. De plus, la capacité de la stratégie de 

fusion de données distribuée à maintenir la cohérence locale la rend très adaptée à la mise en œuvre 

dans des applications WSN de détection d'événements entièrement distribuées, où les nœuds de 

capteurs sont responsables de tout le traitement requis pour la détection d'événements. Cette 

caractéristique est nécessaire pour éviter les décisions contradictoires des nœuds de capteurs 

voisins, notamment dans les applications WSN linéaires telles que la surveillance des oléoducs et 

gazoducs, des ponts et tunnels ferroviaires, des frontières, des lignes électriques, etc. En 
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conclusion, la mise en œuvre du calcul distribué dans les applications WSN en temps réel utilisant 

des capteurs de faible précision qui impliquent la fusion de données distribuées des sorties locales 

des nœuds de capteurs voisins plutôt que la mise en œuvre du calcul distribué sans fusion de 

données distribuées peut améliorer les performances de surveillance. 

Objectif 5 : Evaluer les performances de détection des fuites et la consommation d'énergie des 

algorithmes DKF sélectionnés en utilisant à la fois des simulations et des expériences physiques. 

Sur cette base, comparer les performances de détection de fuites et la consommation d'énergie des 

algorithmes DKF sélectionnés et proposer lequel des DKF est optimal pour la mise en œuvre dans 

les systèmes WWPM utilisant des accéléromètres MEMS à faible coût. 

Réalisation 5 : Dans le chapitre 6, nous avons évalué les performances de détection des fuites et 

la consommation d'énergie des trois algorithmes DKF sélectionnés en effectuant des simulations 

et des expériences physiques sur un banc d'essai en laboratoire. Tout d'abord, nous avons effectué 

des expériences de caractérisation des fuites sur le banc d'essai de laboratoire, où nous avons 

mesuré l'accélération de la surface de la conduite pour différentes distances de la position de la 

fuite et différentes tailles de fuite, et nous avons dérivé l'espacement maximal entre l'accéléromètre 

et la position de la fuite pour une détection efficace de la fuite et la valeur de référence pour 

l'absence de fuite sur le pipeline. Ensuite, nous avons mis en œuvre les algorithmes DKF 

sélectionnés sur un WSN linéaire à deux nœuds, à la fois sur la plate-forme de simulation et sur le 

banc d'essai du laboratoire. Nous avons ensuite mesuré les performances de détection des fuites et 

la consommation d'énergie des algorithmes DKF et comparé les résultats obtenus à partir des 

simulations avec ceux des expériences physiques. Enfin, nous avons démontré par des expériences 

en laboratoire comment nous avons réduit de manière significative la consommation d'énergie de 

notre solution WWPM proposée en mettant en œuvre le cycle de service et la détection 

hiérarchique au niveau des nœuds de capteurs. 

Conclusion 5 : Les résultats obtenus à partir de la caractérisation des fuites ont montré une 

détection efficace des fuites d'une taille supérieure à 15 L/min à une distance maximale de 2 m de 

la position de la fuite lorsque l'accéléromètre a été configuré pour fonctionner à la plage de 

détection de ±2 g. Ainsi, pour les accéléromètres MEMS avec plusieurs plages de détection, en les 
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configurant pour qu'ils fonctionnent à des plages de détection inférieures augmente la distance de 

détection des fuites. Les résultats des simulations et des expériences en laboratoire ont révélé que 

l'ICF présentait la meilleure performance de détection des fuites, tandis que l'EDKF présentait la 

plus faible performance de détection des fuites. Les résultats de la performance de détection de 

fuites pour EDKF dérivés des simulations étaient proches de ceux obtenus à partir des expériences 

en laboratoire, tandis qu'il y avait une différence significative entre la performance de détection de 

fuites de ICF obtenue à partir des simulations et celle dérivée des expériences en laboratoire. Cette 

différence s'explique par la perte de paquets dans les expériences physiques lors des 

communications entre les nœuds de capteurs, qui n'ont pas été prises en compte lors des 

simulations. Aussi, les résultats de la consommation d'énergie obtenus à partir des simulations ont 

révélé que la consommation d'énergie de l'EDKF était huit fois inférieure à celle de l'ICF et du 

SGG-ICF. Cependant, il n'y avait pas de différence significative dans les résultats de 

consommation d'énergie obtenus à partir des mesures physiques. C’est pourquoi, pour évaluer 

pleinement la consommation d'énergie des DKF, des recherches supplémentaires seront 

nécessaires. Néanmoins, un compromis entre les performances de détection des fuites et l'efficacité 

énergétique du point de vue de la simulation a révélé que l'EDKF est plus optimal dans une mise 

en œuvre pratique par rapport à l'ICF et au SGG-ICF car ses performances d'estimation sont moins 

affectées par la perte de paquets. Par ailleurs, sa faible charge de communication réduit la 

consommation d'énergie des nœuds de capteurs. Cet attribut fait d'EDKF un bon candidat pour la 

mise en œuvre dans les nœuds de capteurs alimentés par batterie. Par conséquent, plutôt que 

d'implémenter l'ICF ou le SGG-ICF qui ont des sensibilités plus élevées que l'EDKF mais qui ont 

un besoin élevé en communication, nous proposons d'utiliser des techniques d'apprentissage 

machine (ML) au niveau de la décision pour améliorer la sensibilité d'une solution WWPM 

implémentant l'EDKF. En d'autres termes, EDKF pour le filtrage au niveau de l'extraction des 

caractéristiques pour fournir des caractéristiques plus précises, qui sont ensuite classées par un 

algorithme ML au niveau de la décision pour fournir une détection fiable des fuites. Puisque cette 

approche implique plus de calcul que de communication, elle réduira probablement la 

consommation d'énergie des nœuds de capteurs, ce qui en fait un bon candidat pour la mise en 

œuvre dans les nœuds de capteurs alimentés par batterie utilisés dans le WWPM. C'est pourquoi, 

nous pouvons partiellement conclure qu'à partir d'un compromis entre la consommation d'énergie 
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et les performances de détection de fuites révélées par les résultats de simulation, EDKF est une 

meilleure solution pour la détection de fuites en temps réel dans les systèmes WWPM alimentés 

par batterie. Enfin, les résultats obtenus à partir de la mise en œuvre de la détection hiérarchique 

et du cycle de travail au niveau du nœud de capteur ont révélé une diminution significative de la 

consommation d'énergie, car une grande partie de l'énergie gaspillée en écoute inactive par 

l'émetteur-récepteur est réduite. Les résultats ont montré une réduction de la consommation 

d'énergie d'un facteur 8, ce qui implique que la solution proposée peut permettre une détection 

fiable des fuites en temps réel et, en même temps, préserver la durée de vie du système WWPM. 

En résumé, notre contribution originale à la connaissance est la recherche et l'évaluation d'une 

solution peu coûteuse, de faible puissance et entièrement distribuée basée sur DKF pour la 

détection fiable en temps réel des fuites dans les systèmes WWPM en utilisant des accéléromètres 

MEMS peu coûteux. 

7.2 Limitations et recommandations 

Cette thèse présente les limites suivantes en fonction de certaines hypothèses formulées. Dans cette 

section, nous présentons les limites de notre étude et suggérons également des directions de 

recherche futures qui peuvent être explorées. 

Limitation 1 : Nous avons supposé qu'il n'y avait pas de vibrations sur la canalisation dues aux 

demandes légitimes des clients, c'est-à-dire les vibrations résultant de l'ouverture/fermeture des 

robinets chez les clients. Egalement, les effets des pompes ont été négligés car nous n'avons 

considéré que les cas où la distribution de l'eau dans la canalisation se fait par gravité. Par ailleurs, 

nous avons considéré des canalisations aériennes dans nos expériences en laboratoire, mais la 

plupart des réseaux de distribution d'eau dans les pays en développement sont des canalisations 

souterraines. Enfin, notre étude s'est limitée à un WSN linéaire à deux nœuds. 

Recommandation 1 : Bien que les résultats obtenus sur le banc d'essai de laboratoire soient 

louables, il est suggéré d'étendre nos expériences à une étude sur le terrain impliquant un véritable 

RFD dans des conditions réelles avec un WSN linéaire déployé à grande échelle. Ceci est important 

car la nature simpliste du RFD de laboratoire ne permet pas de saisir toutes les complications d'un 

RFD réel. Un autre point intéressant est que la plupart des études WWPM se limitent à des 
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simulations et des expériences sur des bancs d'essai en laboratoire. L'extension des expériences 

aux RDE réels contribuera largement à la littérature sur les WWPM. 

Limitation 2 : Une autre limitation de cette étude est l'utilisation de la méthode de seuillage avec 

une valeur de base fixe pour déterminer la présence ou l'absence d'une fuite sur le pipeline. Une 

telle approche simpliste est plus adaptée aux systèmes de pipelines dont les caractéristiques 

opérationnelles sont prévisibles. Cependant, étant donné que les conditions opérationnelles des 

RDE réels ne sont pas constantes et peuvent changer en raison de conditions externes qui ne sont 

pas liées à une fuite, il est nécessaire que la valeur de base puisse varier. 

Recommandation 2 : Nous suggérons la mise en œuvre de techniques d'apprentissage 

automatique à l'étape de décision de l'algorithme de détection des fuites. Cela implique qu'une fois 

que le DKF a été utilisé lors de la phase d'extraction des caractéristiques pour estimer la vibration 

de la surface de la conduite, la valeur peut ensuite être transmise à un classificateur entraîné lors 

de la phase de décision pour déterminer avec précision l'existence d'une fuite ou l'absence de fuite 

sur la conduite. 

Limitation 3 : Cette étude se limite uniquement à la détection des fuites. Cependant, pour avoir 

un système WWPM complet, il est nécessaire d'intégrer la localisation des fuites. 

Recommandation 3 : Explorer la mise en œuvre de techniques de localisation des fuites telles que 

l'analyse de la corrélation acoustique dans les expériences futures. 

Limitation 4 : Le simulateur CupCarbon ne modélise que la consommation d'énergie de l'unité de 

communication sans tenir compte de la consommation d'énergie des unités de détection et de 

traitement. 

Recommandation 4 : Étant donné que le simulateur CupCarbon est open source, nous suggérons 

pour les travaux futurs, la modification de son code source pour inclure la consommation d'énergie 

des unités de traitement et de détection. Cela conduira à des profils de puissance simulés des nœuds 

de détection proches de ceux obtenus à partir de mesures physiques. Ces profils de puissance 

simulés pourront alors être utilisés comme une première évaluation précise de la consommation 

d'énergie des algorithmes distribués avant leur implémentation physique. 
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