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Abstract

This dissertation consists of three chapters that examine from three different perspect-
ives how diversity affects the economy. The first chapter focuses on racial discrimination in
rental housing. Does discrimination generate a racial gap in housing rents? Usually, dis-
crimination is covert, which makes it difficult to study. In this paper I concentrate on the
unique market of Moscow rental housing, where landlords discriminate overtly: on average,
20 percent of ads from a major rental website include racial requirements. Using model with
building-level fixed effects, I document that discrimination generates a racial differential in
rents: non- discriminatory apartments have a 4% higher price. I also run a correspondence
experiment to explore the relationship between overt and subtle forms of discrimination. I
find that both forms coexist in the market. The proportion of overt to covert discrimina-
tion is stable across neighbourhoods. The average effect is consistent with a random search
model with discrimination. However, heterogeneity analysis contradicts some predictions
of the model. T show how adding neighbourhood sorting to the model can explain spatial
heterogeneity of a racial rent differential. The second chapter is devoted to the competition
between residents and tourists for urban amenities. Using TripAdvisor reviews, we construct
panel data on tourism and consumption in Paris. We document that during the pandemic
a drop in tourism caused an increase in Parisians’ satisfaction with restaurants and other
amenities. Among three mechanisms — overcrowding, supply-side changes and aversion to-
wards tourists — we only find support for the aversion mechanism. During the pandemic the
word ‘tourist’ became less frequent in reviews, while other words relating to food quality,
price and overcrowding stay on the same level. The improvement in ratings was stronger
in restaurants popular among tourists from countries with a weaker social connection to
France measured with Facebook connectedness index. The third chapter explores how con-
temporary social movements can expand their base. Prompted by the viral video footage
of George Floyd’s murder, the Black Lives Matter (BLM) movement gained unprecedented
momentum and scope in the spring of 2020. Using Super Spreader Events as a source of
plausibly exogenous variation at the county-level, we find that pandemic exposure led to an

increase in the likelihood of observing online and offline BLM protests. This effect is most

17



pronounced in whiter, more affluent and suburban counties. We show that this effect is
driven by higher social media take-up among non-traditional users. Specifically, we find that
a one standard deviation increase in pandemic exposure led to a doubling of new Twitter
accounts in counties with no BLM protest history. Our results suggest that the pandemic
acted as a demand shock to social media among non-traditional users, mobilizing new seg-
ments of society to join the movement for the first time. We find supporting evidence for
this mechanism using individual-level survey data and rule out competing channels, such as
pandemic induced salience of racial inequality, lower opportunity cost of protesting or higher

overall agitation and propensity to protest.
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Introduction

This thesis combines chapters on three diverse subjects with one thing in common: the
subject of diversity. I focus on a particular type of diversity: in race, identity, attitudes and
beliefs.

Since Becker| (1957)) race and identity have become a legit part of economic reasoning. In
his work on labor discrimination, Becker considered a situation where workers of two races
coexist in the market and some employers have a “distaste” for workers of one race. Becker’s
seminal work can be seen as a part of a broader question: “What happens when agents
of different races or identities operate in the same economy?” In the three chapters of this
thesis I consider three different scenarios that can happen.

The first scenario that has already been mentioned is discrimination — that is, exclusion
from the market. The second scenario is a conflict — when neither group is able to exclude
the other from the market, but the attitude of the groups is still reflected in their behavior.
An example of such a case would be consumer segregation (Davis et al,| (2019)). Finally,
inclusion is also possible when groups join a coalition, or when cultural transmission occurs.
The chapters presented here should be seen as examples, not as generalizations of these
scenarios. In the introduction, I will focus on the literature and the issues that surround all
three cases.

A key example of exclusion is racial discrimination. A vast economic literature has been
developed examining discrimination in various markets and configurations: labor, housing,
consumption, credit, schooling, and othersE].

Two types of discrimination have become the epitome of the theoretical literature: taste-
based discrimination and statistical discrimination. Taste-based discrimination is driven by
agent preferences (Becker| (1957); Arrow]| (1972); Black| (1995)). Statistical discrimination is
different. It does not suggest that agents are prejudiced. On the contrary, agents are rational
and use the identity of the counterparty as a proxy for its “performance” in a situation of
information asymmetry. If discriminated group has a lower performance on average, then

discrimination arises as a rational choice. Classical model of statistical discrimination was

IFor extensive reviews of the literature see |Lang and Lehmann| (2012); Bertrand and Duflo (2017)
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proposed by Phelps| (1972). More complex setting of this model, as introduced by [Tirole
(1996)), involves a prior stage in which the minority agent can choose how much he or
she wants to invest in building the skill that determines future performance. Then the
“bad reputation” of the group takes away the agent’s incentive to invest in the skill. It is
important to note that both forms of discrimination — statistical or taste-based — meet the
UN definition of discrimination and are illegal in many CountrieEE].

The frameworks of taste-based and statistical discrimination do not exhaust or represent
the multitude of potential mechanisms and institutional settings through which discrimina-
tion can occur. |Small and Pager| (2020) emphasis the importance of other frameworks and
show how they can complement and extend traditional approaches. They mention several
directions. Some of them have already appeared in the economic literature.

First, people can discriminate without realizing it, a phenomenon that has been called
”implicit discrimination” in |Bertrand et al. (2005). Second, discrimination can be reinforced
through organizational structure even without the intent of individual members. Third, past
discrimination (sometimes recorded in law) can have a strong influence on contemporary
inequality. For example, Aaronson et al. (2021)) show that 1930s “redlining” had long-run
socioeconomic effect. Fourth, minor forms of discriminatory behavior can have important
consequences. For example, a minority worker may be hired but treated differently in the
workplace (he or she has a higher workload, is more closely monitored). Finally, all together,
this will also require consideration of a broader set of consequences, such as experienced
discrimination and emotional strain.

From the perspective of the empirical literature on discrimination, the main challenge
is that discrimination is difficult to observe. In many communities, discrimination is illegal
and socially unacceptable. Therefore, in order to study discrimination, we must first learn
to detect it. However, this has not always been the case. For example, in the United
States before the Civil Rights Act of 1964, racial discrimination was overt and widespread.
Job advertisements published in the New York Times regularly contained explicit racial
requirements (Darity and Mason| (1998)). Housing complexes publicly informed tenants
about the "no blacks” policy. But importantly, discrimination in those days was not studied
with the statistical tools available today.

One way to identify discrimination is to compare the economic outcomes of different racial
groups. This approach has generated a literature that estimates racial gaps using regression
decomposition. Racial gaps in the housing market are well documented, with most studies
focusing on the United States: |[hlanfeldt and Mayock (2009); Bayer et al. (2017); Yinger
(1997); Early et al.| (2019). More specifically, for the U.S. rental housing market, Early et al.

2For the data on the anti-discriminatory laws across countries see Mipex.
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(2019) shows that blacks pay 0.6 to 2.4 % percent more than whites for identical housing in
identical neighborhoods.

It is debatable, however, whether these results hold when all the necessary controls are
included. Neal and Johnson (1996)) show that the racial wage gap shrinks or even disappears
when a variable measuring a job seeker’s cognitive skill is included in the equationf} This
has led researchers to question: perhaps the gaps previously found in studies are not the
result of discrimination, but reflect differences between groups before they enter the market.
Following this logic, pre-market differences in human capital can explain racial disparities
in wages, and differences in negotiating skills can explain disparities in housing. Relying on
regression decomposition, it is difficult to say to what extent racial differences are caused
by discrimination. Studies that can address this question in an empirically rigorous way are
rare (Fryer et al|(2013)).

Since the beginning of 2000, another strand of the literature has emerged. In order to
reveal the existence of differential treatment, researchers began to conduct correspondence
experiments. In their seminal work, Bertrand and Mullainathan| (2004)) sent out pairs of fic-
titious resumes with Black- or White-sounding names to employers in Boston and Chicago,
randomizing other characteristics. This approach allowed them to identify differential treat-
ment: candidates with Black-sounding names were less likely to receive a callback from
a potential employer. Correspondence experiments have attracted the close attention of
researchers. |Baert (2018) discusses its effectiveness and shortcomings. Correspondence ex-
periments have revealed discrimination in many markets, eliminating some of the blind spots
characteristic of previous studies of racial discrimination.

At the same time, correspondence experiments do not clearly explore the relationship
between discrimination and racial gaps. In the first chapter I identify this link drawing
on unique context of Moscow rental housing market, where landlords discriminate overtly:
around 20% of Moscow landlords from online marketplace Cian include racial requirements
to their rental ads. I am going to briefly summarize this chapter further in the introduction.

The second chapter illustrates another common scenario: a conflict between consumers
of different groups who meet in the same economic environment without supply-side dis-
crimination.

In this chapter, which is based on joint work Stefan Pauly, we look at intra-city compet-
ition between tourists and residents for urban amenities.

As [Faber and Gaubert| (2019) noted, “tourism involves the export of otherwise non-

traded local services by temporarily moving consumers across space, rather than shipping

3Neal and Johnson| (1996) measure skills with Armed Forces Qualification Test (AFQT), a test used to
determine qualification for enlistment in the United States Armed Forces
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goods”. Based on insights from the trade literature, Faber and Gaubert| (2019) conduct a
structural analysis of the economic benefits of tourism. Lanzara and Minerva (2019)) look
at the interactions between tourism and amenities, and consider the welfare consequences.
Dissatisfaction with tourism has rarely been explored in the economic literature. Rare ex-
ception is |Takahashi (2019) who examines the negative effects of tourism from a theoretical
perspective.

There are several factors to consider: tourists as imported consumers may have prefer-
ences and attitudes that differ from those of residents, they may put additional strain on
local infrastructure and services, and finally, residents may have negative attitudes toward
tourists. All these aspects are discussed in the second chapter, and a brief summary is
presented later in the introduction.

The literature on urban economics has other then tourism examples of conflict between
different groups. In many cities different racial groups co-exist, interact and consume in the
same environment. Mazzolari and Neumark (2012) observe that diversity among residents
correlated with diversity in consumption. This is also consistent with |Schiff] (2015 evidence
about the attractiveness of density in the city. In parallel, it is known that there can
be segregation in consumption in the city. Davis et al. (2019) examines segregation in
consumption in New York City, adding to the traditional notion of residential segregation in
the literature.

The third chapter, which is co-authored with with Annali Casanueva Artis, Sulin Sar-
doschau and Kritika Saxena, sheds light on another potential scenario: inclusion. Linked to
the political economy of protest, this chapter highlights a crucial aspect of diversity — the
ability of different groups to form a coalition to bring political change.

This chapter also stands out from the other two because it relates to the literature
examining the role of information and media in the economy. Previous work has shown that
social media can solve the collective action and coordination problem for individuals already
sympathetic to a political cause: Enikolopov et al. (2018)); Manacorda and Tesei (2020)). In
contrast, we focus on the role of social media as a tool that can expand coalition and mobilize
new protesters.

Studies that examine the impact of the Internet and new media tend to use a supply-
side shift in the early stages of Internet or social media adaptation: |Guriev et al.| (2019);
Miller and Schwarz (2021)); Enikolopov et al.| (2018); |Manacorda and Tesei (2020). To the
best of our knowledge, we are the first to investigate the role of social media in broadening
political coalitions through persuasion, rather than mobilizing individuals that are already
sympathetic to the movement’s grievances.

Another theme that unites these chapters is that of the digital economy. All chapters

22



benefit from new data coming from digital platforms. Consumption, housing, transportation
have moved online (Goldfarb and Tucker (2019)). Political and socially relevant information
is spreading through social media. This creates a digital footprint that can be used by
researchers. Economists of the past paid less attention to issues such as inequality, not
because these issues were not of social interest. On the contrary, they were always of prime
interest, but the data were difficult to obtain.

In the following parts of this introduction I will summarize the main results of each of
the chapters of the thesis.

Chapter 1: Consider the Slavs: Overt Discrimination

and Racial Disparities in Rental Housing

Today’s discrimination is mostly subtle. This makes its impact hard to measure. This
chapter is trying to overcome this challenge drawing on the unique context of Moscow’s rental
housing market, where landlords discriminate overtly. They include racial requirements to
ads, using phrases like “offer is only for slavic tenants”, where slavic denotes ethnically
Russian tenants or tenants of ethnically Russian appearance.

More specifically, I investigate how discrimination in the market for rental housing can
generate a racial rent differential.

I collect new data on rental ads from the major Russian online real estate marketplace
cian.ru. The dataset includes all available ads over a period of around six months. I categorise
ads by presence of racial requirements and combine it with other observable characteristics of
apartments and neighborhoods. Around 20 percent of ads include racial requirements. This
setting thus allows me to estimate the effect of discrimination on the racial rent differential.
To causally identify this effect, I include building-level fixed effects to the model to absorb
any geographic and building-level characteristics.

I find that discrimination generates a significant and sizeable racial rent differential:
comparing apartments in the same building with identical observable characteristics, nondis-
criminatory apartments have a 4 % higher price. This paper also examines the relationship
between overt and subtle forms of discrimination. I conduct classic correspondence experi-
ments, sending messages with non-Russian and Russian-sounding names to a random subset
of online ads. This experiment allows me to relate the results obtained from the observational
study to the existing body of evidence from the experimental literature. I find that both
subtle and overt forms of discrimination coexist on the rental housing market in Moscow.

Their relative prevalence is constant across neighbourhoods.
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Finally, I borrow a theoretical framework from the literature on labor search with discrim-
ination Black (1995) and apply it to the context of rental housing in Moscow. I demonstrate
that the search-based model can explain the existence of the racial rent differential. The
intuition is the following: when the search is costly and minorities have higher chances of
getting rejected, they are more likely than the majority to accept an unfavorable offer. Then
non-discriminating landlords who anticipate it will raise the rent price in equilibrium.

However, the standard search-based model cannot explain the results of the heterogeneity
analysis. I find that in neighborhoods (and buildings) with a higher share of discriminating
apartments the racial rent differential is lower. At first glance, this contradicts the implic-
ation of the model, which says that with a larger proportion of discriminating apartments
the gap should expand. However, this view assumes that neighborhoods are different and
isolated markets, while in fact potential tenants sort (but not necessarily strongly segregate)
between neighborhoods. I include a neighborhood choice stage in the search-based model to

explain the results obtained in the heterogeneity analysis.

Chapter 2: Urban Amenities and Tourism: Evidence

from Tripadvisor

This chapter is co-authored with Stefan Pauly.

In this paper we estimate the effect of tourism on residents’ satisfaction with restaurants
and other urban amenities. We use data on restaurant reviews from Tripadvisor — the
platform that aggregates user-generated content on restaurant and other travel experiences.
We construct unique panel data on consumption and amenities in the city. This data allows
us to achieve multiple goals at the same time.

First, we use it to produce a highly granular measure of tourism. The share of non-
French among all reviews serves as a close proxy of tourists’ presence, which we validate
using several other measures. The benefit of this measure is that it can be defined on a very
granular level, the restaurant itself. In addition, while many studies focus on the location
where tourists stay overnight to study the impact, the measure used here allows to study
the location of where tourists consume.

Second, the review data and the ratings given by locals can be used as an indicator of
locals’ satisfaction with restaurant experience. More generally, it serves as a measure of
satisfaction with urban amenities, which varies across space and time. The literature shows
that this indicator is meaningful: For example, Kuang| (2017) finds that restaurant ratings

are highly correlated with real estate prices.
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We match restaurant data with another source of information on residents’ quality of life:
number of complaints on the crowd-sourced platform DansMaRue. The platform is provided
by the city hall of Paris. Users can report any problem related to public space (abandoned
waste, tags, wild posting, etc.) through the mobile application or the web-site. Then the city
administration analyses the reports and try to solve the problems. We treat this disamenity
measure as another outcome relevant to our study.

We first document two stylized facts. First, more touristic restaurants receive lower
ratings by locals in the cross-section, suggesting a potential disamenity stemming from tourist
demand. Second, touristic neighborhoods have a lower variety of amenities which may
indicate that tourists value variety less than locals do. Using the pandemic as a source of
exogenous variation in international tourist arrivals, we find that the drop in tourism caused
an increase in residents’ satisfaction with urban amenities, both in terms of restaurant ratings
and a decreased number of complaints on DansMaRue. In particular, the average restaurant
increases its rating by close to 10 % of a standard deviation in the absence of tourists and
the number of complaints in the direct vicinity of the average restaurant decreases by at
least 8 %.

Importantly, our effect is not unique to the lockdown-induced tourism decline. We find
similar evidence when using the terrorist attacks that took place in November 2015. Our
results are also robust to using measures of tourism that are based on the self-declared
location of users rather than language.

Next, we consider three potential mechanisms driving our findings: overcrowding, supply
side change and residents’ aversion towards tourism. Our analysis only finds support for the
aversion mechanism. First, we find that the number of reviews explicitly mentioning tourism
(which are often negative) declines. Second, relying on a proxy of social connectedness
between countries derived from Facebook data, we find that restaurants with a clientele
that has little connections to France sees a larger increase in its rating post-lockdown. This
suggests that Parisians are less bothered by tourists from countries with which they have

strong social ties.

Chapter 3: Going Viral in a Pandemic: Social Media
and Allyship in the Black Lives Matter Movement

This chapter is co-authored with Annali Casanueva Artis, Sulin Sardoschau and Kritika
Saxena.

What led to the broadening of the Black Lives Matter movement’s coalition during the
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pandemic? We approach this question in two parts. First, we establish a causal link between
exposure to COVID-19 and protest participation at the county level, using Super Spreader
Events as a source of exogenous variation. We show that exposure to COVID-19 is associated
with an increase in protest behavior but only among those counties that have never protested
for a BLM-related cause before.

Second, we develop a novel index of social media penetration at the county level to show
that this effect is driven by higher social media take-up during the pandemic but before the
protest trigger. While we cannot fully rule out that other mechanisms were at play, we show
evidence that alternative explanations such as i) a pandemic-induced rise in the salience of
racial inequality, i7) lower opportunity costs of protesting, iii) higher overall propensity to
protest and iv) a scattering rather than a broadening protest are not driving our results.

Our identification is based on a small window between the end of March and mid April
of 2020 during which COVID-19 was prevalent enough but lock-down stringency lax enough
to allow for so-called Super Spreader Events (SSE) to occur. These events are characterized
by the presence of one highly infectious individual (a super-spreader) and took place mainly
at birthday parties, nursing homes or prisons. We exploit cross-sectional variation in the
number of SSEs within a 50 kilometer radius from the county border but not within the
county 6 weeks prior to the murder of George Floyd to construct our instrument for exposure
to COVID-19 at the county level. We include state fixed effects and a vast set of county
level controls, most notably the number of historical BLM events between 2014 and 2019,
as well as socio-demographic variables and proxies for political leaning and social capital.

We find robust evidence that exposure to COVID-19 increased BLM protest. We estimate
that a one standard deviation increase in the number of COVID-19 related deaths in a county
at the time of George Floyd’s murder (approximately 25 deaths per 100K inhabitants),
increases the likelihood of a BLM event occurring in the three weeks following the murder
by 5%. Our baseline result is entirely driven by counties with no prior BLM protests and
the effect doubles in size and is more precisely estimated for this sub-sample.

In addition, we propose three alternative identification strategies and show that our
results replicate. First, using large scale mobile phone mobility data by SafeGraph, we
instrument pandemic exposure with tourist flows to one of the largest SSEs in the US -
Florida spring break in March 2020. Second, we employ a difference in differences approach,
for which we scrape information on all similar BLM protest triggers since 2014 to estimate
the differential response to a protest trigger before and after the pandemic. Third, we use
a LASSO-based matching approach, comparing counties with similar pre-pandemic protest
probabilities.

In a next step, we investigate various sources of heterogeneity and show that - in line
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with the idea of a broadening movement - our baseline results are driven by whiter, more
affluent and sub-urban counties.

In the second part of the paper, we investigate whether the uptake in social media can
account for the pandemic-induced broadening of the BLM movement. We start by repeating
the above analysis, this time using a novel index of social media penetration as our main
outcome variable. We find that the pandemic has a positive and significant effect on our
social media index and that this is entirely driven by the sub-sample of counties that have
never protested before. For instance, we show that a one standard deviation increase in
pandemic exposure led to a doubling of twitter accounts among counties with no prior BLM
event, without affecting counties that traditionally protest.

In a next step, we zoom in on the role of twitter in mobilizing BLM protesters. First, we
interact baseline twitter penetration (before the pandemic) with exposure to COVID-19. We
address the concern that our results could capture underlying factors that drive both Twitter
penetration and protest participation, replicating the SXSW instrument for baseline Twitter
penetration used by [Miller and Schwarz| (2020). We show that counties with higher baseline
twitter penetration react more to pandemic exposure. Additionally, we interact pandemic
exposure with contemporaneous twitter penetration and find that the effect of COVID-19
on protest is entirely driven by counties with higher twitter take-up during the pandemic.

In the last part of our paper, we look at competing mechanisms. Naturally, the pandemic
has affected a number of important dimensions that are not limited to higher social media
take-up. First, we consider the possibility that our results are driven by a scattering rather
than a broadening of BLM protest. More specifically, we verify that the effect is not driven
by a substitution away from some locations to others. Second, the pandemic may have
increased the overall salience of racial inequality before the murder of George Floyd. We
test this by interacting COVID-19 with a proxy for disproportional death burden on Blacks
and the number of BLM-related search terms on Google before the protest trigger. Third,
we investigate whether the pandemic has decreased the opportunity cost of protesting. We
interact COVID-19 with the unemployment rate at the county level and stringency at the
state level. If individuals choose to protest in lieu of going to work or engage in social
activities, we should see a larger effect in counties with higher unemployment rates or stricter
stringency measures. Third, we look at the effect of COVID-19 on other protests. If the
pandemic increased overall agitation and propensity to protest, then we would expect this
to also hold for other causes beyond BLM. We show that these channels are unlikely to drive

our results.
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Chapter 1

Consider the Slavs: Overt
Discrimination and Racial Disparities

in Rental Housing

Abstract

Does discrimination generate a racial gap in housing rents? Usually, discrimination is covert,
which makes it difficult to study. In this paper I concentrate on the unique market of
Moscow rental housing, where landlords discriminate overtly: on average, 20 percent of ads
from a major rental website include racial requirements. Using model with building-level
fixed effects, I document that discrimination generates a racial differential in rents: non-
discriminatory apartments have a 4% higher price. I also run a correspondence experiment
to explore the relationship between overt and subtle forms of discrimination. I find that
both forms coexist in the market. The proportion of overt to covert discrimination is stable
across neighbourhoods. The average effect is consistent with a random search model with
discrimination. However, heterogeneity analysis contradicts some predictions of the model.
I show how adding neighbourhood sorting to the model can explain spatial heterogeneity of

a racial rent differential.
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1. Introduction

Racial discrimination is usually hidden from public view. Aiming to reveal the very
fact of discrimination, economists mainly resort to one of two approaches. The first type is
observational studies that estimate racial gaps in economic outcomes like wages and rents.
The second type is correspondence experiments that uncover the differential treatment. As
a result, both racial gaps and discrimination are well-documented in many markets and
countriesﬂ However, there are few pieces of evidence on the link between the two, so it is
still under discussion: to what extent does discrimination generate racial gaps?

Economists have repeatedly questioned the contribution of discrimination to racial gaps,
pointing out to the premarket factors (education, social capital, culture) as the main drivers
(Neal and Johnson| (1996),Heckman| (1998)). At the same time, the systematic evidence on
this link is hard to obtain mainly due to the private nature of discrimination. The rare
exception is Fryer et al. (2013)) who show that in the US labor market at least one-third of
the black-white wage gap can be attributed to discrimination.

While it is rare nowadays, overt discrimination has been widespread in the past. Writing

on the United States before the Civil Right Act of 1964, |Arrow| (1998) noted:

The presence of racial discrimination throughout American society was, to use
the words of Samuel Johnson, a fact too evident for detection and too gross
for aggravation. To establish the existence of discrimination, estimating wage
equations would have been beside the point. Of course, society and scholars
would want to know the quantitative implications of discrimination for income
as well as other indices of well-being. But the fact of discrimination would not

have needed testing.

Today’s discrimination is mostly subtle. This makes its impact hard to measure. This
paper is trying to overcome this challenge drawing on the unique context of Moscow’s rental
housing market, where landlords discriminate overtly. They include racial requirements to
ads, using phrases like “offer is only for slavic tenants”, where slavic denotes ethnically
Russian tenants or tenants of ethnically Russian appearance.

More specifically, I investigate how discrimination in the market for rental housing can
generate a racial rent differential.

I collect new data on rental ads from the major Russian online real estate marketplace

cian.ru. The dataset includes all available ads over a period of around six months. I categor-

!See Bertrand and Duflo (2017) for an extensive review of empirical studies on discrimination. It also
discusses the methodological difference between regression decompositions and field experiments, as well as
other original lines of research.
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ise ads by presence of racial requirements and combine it with other observable characteristics
of apartments and neighborhoods. Around 20 percent of ads include racial requirements.
This setting thus allows me to estimate the effect of discrimination on the racial rent differ-
ential. To causally identify this effect, I include building-level fixed effects to the model to
absorb any geographic and building-level characteristics.

I find that discrimination generates a significant and sizeable racial rent differential:
comparing apartments in the same building with identical observable characteristics, non-
discriminatory apartments have a 4% higher price.

This paper also examines the relationship between overt and subtle forms of discrimin-
ation. I conduct classic correspondence experiments, sending messages with non-Russian
and Russian-sounding names to a random subset of online ads. This experiment allows me
to relate the results obtained from the observational study to the existing body of evidence
from the experimental literature. I find that both subtle and overt forms of discrimination
coexist on the rental housing market in Moscow. Their relative prevalence is constant across
neighbourhoods.

Finally, I borrow a theoretical framework from the literature on labor search with discrim-
ination [Black (1995) and apply it to the context of rental housing in Moscow. I demonstrate
that the search-based model can explain the existence of the racial rent differential. The
intuition is the following: when the search is costly and minorities have higher chances of
getting rejected, they are more likely than the majority to accept an unfavorable offer. Then
non-discriminating landlords who anticipate it will raise the rent price in equilibrium.

However, the standard search-based model cannot explain the results of the heterogeneity
analysis. I find that in neighborhoods (and buildings) with a higher share of discriminating
apartments the racial rent differential is lower. At first glance, this contradicts the implic-
ation of the model, which says that with a larger proportion of discriminating apartments
the gap should expand. However, this view assumes that neighborhoods are different and
isolated markets, while in fact potential tenants sort (but not necessarily strongly segregate)
between neighborhoods. I include a neighborhood choice stage in the search-based model to
explain the results obtained in the heterogeneity analysis.

Racial gaps in the housing market are well documented, with most studies focusing on the
United States: [hlanfeldt and Mayock (2009),Bayer et al.| (2017), [Yinger (1997); |[Early et al.
(2019). More specifically, for the US rental market Early et al.| (2019) show that Blacks pay
0.6 - 2.4 % higher rent price than Whites for identical housing in identical neighborhoods.
From the landlord’s point of view these results suggest lost profits. There are few papers
that investigate the tread-off between decision to discriminate and lost profits. Hedegaard

and Tyran| (2014) conduct field experiments to measure the sensitivity of discrimination to
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changes in opportunity cost. Finally, in a simultaneous and independent research project
Veterinarov and Ivanov| (2018) perform similar analysis using data on overt discrimination
from Russian online marketplace and find the set of similar empirical results. In contrast
to |Veterinarov and Ivanov| (2018) my paper proposes different theoretical mechanism and
introduce the analysis of interaction between overt and subtle types of discrimination. It is
crucial to note that reproduction of the same observational study using different empirical
strategies increases the reliability of the existence of the racial rent differential.

There are numerous studies that document racial discrimination on the housing market
with the help of correspondence and audit experiments: [Yinger| (1986)), Carpusor and Loges
(2006)), Hanson and Hawley| (2011)) in the US, |Ahmed and Hammarstedt| (2008) in Sweden,
Acolin et al| (2016) in France. When it comes to the labor market, explicit racial require-
ments are rather rare in Russia: Bessudnov and Shcherbak| (2018)) conduct a correspondence
experiment and document substantial and statistically significant differences in callbacks
between majorities and minorities.

This study contributes to an emerging body of literature exploiting user-generated con-
tent and text analysis. As an example, Stephens-Davidowitz| (2014) uses Google search data
as a proxy for racial animus. Closest to my paper is Kuhn and Shen| (2012) who study overt
gender discrimination in Chinese online job listings, however, they do not estimate the effect
on prices, but instead try to determine the causes of discrimination. A detailed review of
the methods used for text analysis can be found in |Gentzkow et al.| (2017)).

The link between overt and subtle forms of discrimination is a recurring theme in the
sociological literature |[Small and Pager| (2020),Pager| (2007). The subtle form has several
notable features. First, the discriminating person can either be aware or unaware that he
or she is discriminating. “Unconscious” discrimination was conceptualised by psychologists
and economists as an implicit discrimination Bertrand et al.| (2005)). Second, the analysis of
subtle discrimination blurs the line between statistical and taste-based discrimination: the
qualitative studies show that employers narrate their prejudiced attitudes using “statistical”
arguments, but fail to update their believes when facing contradicting information Pager
and Karafin| (2009). This also corresponds to the observation that locals in many countries
highly overestimate the number of immigrants and perceive imprecisely their characteristics
Alesina et al.| (2018)).

Overt discrimination is often regarded as a pure manifestation of racial animus. At the
same time, anecdotal evidence suggests, that overt discrimination observed in the rental
housing in Moscow has a lot in common with typical subtle discrimination, where landlords
do not consider their behavior as discriminating.

The theoretical section of this paper is related to literature that implements taste-based
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discrimination to search models. Since the interest of this paper leans towards the impact of
discrimination and not its causes, it is reasonable to concentrate on a competitive taste-based
framework. Thereby, we leave aside the question of the rationality of landlords’ beliefs and
assume that landlords have an exogenous distaste of minorities.

A standard Beckerian perfect competition framework (Arrow (1972)), Becker| (2010)) does
not explain the existence of the cost of discrimination. Such an effect would persist if and only
if two markets would fully separate between the majorities and the minorities. It implies that
the majority rent only discriminating apartments, while discriminating apartments make up
only 20 percentage of the rental market. In a more realistic scenario perfect competition
leads to a unique price.

Racial discrimination on the labor market has been studied more extensively than dis-
crimination on the housing marketﬂ Following insights from the labor literature, I adapt the
search model proposed in Black (1995) to the context of rental housing in Moscow. In this
model discriminating landlords refuse to accept minorities at any price, which makes search
more costly for minorities. Therefore, landlords who do not discriminate increase their rent,
since minority tenants with increased search costs tend to accept more expensive offers.

Other important models of random search with discrimination are proposed in Bowlus
and Eckstein (2002) and Rosén (1997). Directed search with discrimination is presented
in Lang et al| (2005). When it comes to the rental housing market, search models with
discrimination are less common. A notable exclusion is an early model proposed by Courant
(1978), which has a lot of similarities with Black| (1995). Another original mechanism of
discrimination during the search, which is called “neighbour discrimination”, was proposed
by (Combes et al. (2018)). It captures the situation when landlords who own more than
one apartment in a building can discriminate minorities even if they do not have a distaste
for them. When a landlord rents an apartment to minority tenants, he or she reduces the
attractiveness of his or her other property, because other potential tenants on the market are
prejudiced against minorities. There are also several papers that study search and matching
on the housing market regardless of the discrimination context: |Albrecht et al. (2016]),
Carrillo| (2012), Ngai and Tenreyro| (2014).

The paper is organized as follows. Section [2| describes the data and background of the
online housing marketplace. Section |3| presents the major empirical findings on racial rent
differentials and the results of a correspondence experiment. Section 4] examines a theoretical
framework that sheds light on the mechanism of existence of the racial rent differential and

tries to explain the heterogeneity of this effect.

2See |Lang and Lehmann| (2012)) for an extensive literature review on the topic of racial discrimination on
the labor market
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2. Background and Data

Russia is a multinational state: 19% of the population are not ethnic Russians (Census,
2010). There is also a large population of immigrants. According to UN data, around 11
millions immigrants resided in Russia in 2019 (8% of the total population), which made
Russia the second country in the world by the population of immigrants after the US.
It is important to note that the overwhelming majority of immigrants residing in Russia
are citizens of the former Soviet Union or their descendants. Among the largest “non-
slavic” ethnic groups residing in Moscow, there are Tatars, Bashkir, Chuvashs, Chechens,
Armenians, Avars, Mordvins, Kazakhs, Azerbaijanis, Uzbeks, Kyrgyz, Tadjiks to name a
few.

Xenophobic attitudes are rather common in Russia. According to Russian independent
polling organisation Levada Center, 63 percent of Moscow respondents are permissive about
discriminating rental advertisements. Every second respondent approve the political slogan
“Rossiya dlya Russkikh”, which can be translated as “Russia should be for ethnic Russians”.
These attitudes have historical roots. The Soviet Union pursued a complex and controver-
sial ethnic policy, blending anti-discriminatory and discriminatory interventions, such as:
vigorous anti-racism propaganda, harsh control of the population mobility (restrictions on
mobility, or, on the contrary, waves of forced migration) and promotion of local languages
and cultures Martin et al.| (2001). Dissolution of the Soviet Union stimulated nationalist
movements and ethnic violence both among Russian and non-Russian populations.

Modern Russia pursues an ambivalent anti-discrimination policy. On the one hand, the
number of those convicted of hate speech has increased from 149 to 604 from 2011 to 2017
On the other hand, the judicial practice is poor when it comes to actual discrimination in
the labor and housing marketﬁ. In particular, a discriminating landlord does not pay any
fees and has no other constraints for including racial preferences in apartments ads.

While people of many ethnicities reside in Moscow, there is no evidence of apparent
racial segregation comparable to the one found in American and European cities Vendina
(2002)); [Vendina et al. (2019). The census also does not show signs of strong segregation
(Figure [L.4(a)). At the same time, the share of non-Russian residents is higher in the city
center — the more prestigious part of Moscow, where overt discrimination is rare. The lack of
strong segregation in Moscow is probably a heritage of the strict housing regulation imposed

in the Soviet Union.

3 According to the Judicial Department at the Supreme Court of the Russian Federation. The statistics
was published by newspaper Kommersant

4For the legal practices on discrimination in Russia see journalistic investigation by online newspaper
Meduza,
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https://www.levada.ru/2019/09/18/ksenofobskie-nastroeniya-v-rossii-rastut-vtoroj-god-podryad/
https://www.kommersant.ru/doc/360702
https://meduza.io/en/feature/2018/06/12/slavs-only

The empirical part of this paper benefits from the structure of the Russian housing stock:
it allows me to introduce building-level fixed effects to the model. The state of modern mass
housing in Russia is largely determined by Soviet post-war housing policy. Two crucial
features of this policy should be noted: the housing stock was state-owned and dwelling
allocation was state controlled. Since the 1970s, urban development has been focused on 9
and 16-storey buildings. The new private wave of development inherits the Soviet housing
approach of multi-story community blocks. The data used in this paper shows: the median
building is 12-storey with around 200 apartments. In addition, apartments in the same

building are usually homogeneous in quality.

2.1. Cian data

Every day the web-site cian.ru posts around two thousand rental offers, around two
thousand offers disappear from the site, and around 28 thousand offers remain available.
According to user statistics cian.ru is the biggest online platform to search for long-term
rentals in Russia. Over the last decade the property market has almost entirely gone online.
Therefore, data collected from cian.ru is the most feasible and complete representation of
rental supply in Moscow.

Potential tenants get access to the platform through the search interface, where they can
specify desired characteristics of the apartment: expected rent price, location, number of
rooms, surface area, layout. Then users can browse the list of search results. If a user is
interested in the offer, he or she can respond through an online form or call the given phone
number.

Each ad consists of the basic apartment’s characteristics, a text description and a set of
images. Descriptive statistics of ads are reported in Panel A of Table [I.1] For most apart-
ments, the exact address is indicated. I geocoded addresses, calculated distances between
buildings and the city center, distances between buildings and closest metro stations. Loc-
ation data also allows to group apartments at the building level, district level (12 okrugs,
according to Moscow administrative division) and subdistrict level (146 raions and set-
tlements). Descriptive statistics of buildings, districts and subdistricts characteristics are
presented in Panels B, C and D of Table [L.1]

The main observation period lasted from May 27 to November 11, 2018. There is also a
stand alone one-day snapshot, which was collected on April 2, 2017. Data were scraped from
the site every midnight Moscow time, when users are supposedly least active. There were
few days when it was not possible to collect data — I exclude these days from analysis. The
final dataset consists of 117 daily snapshots. Figure shows that the number of posted ads
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is a seasonal variable. It varies between 22 thousands and 35 thousands, increases in summer
and decreases in autumn. This fluctuation can be explained with seasonality of demand.

Figure (a) reports the map of Moscow, where each dot corresponds to an observed
building and the color indicates the share of discriminating apartments in each building. It
is clear that discrimination is uneven throughout Moscow. The city center and southwest
area are associated with low levels of discrimination, whereas outskirts tend to be most
discriminating. The map of discrimination aggregated by subdistricts is presented in the
Figure[L.1|(b). It can be seen that in some subdistricts the share of discriminating apartments
can reach as much as 54 %. The spatial pattern of discrimination is highly stable (see
Figure [1.3]).

The resulting panel consists of 213 thousands ads that appeared on the site during the
observation period. Using this data one can see how rent prices have been changing during
the observation period. Two groups of observations stand out: first, around 80 percent of
offers that have not changed rent price during the whole period, and, second, the group of
offers that decreased the rent price. This pattern motivates the use of the latest rent prices in
estimation of the cost of discrimination — these rent prices are closer to equilibrium prices.

The supply side is represented by two types of actors: landlords and agents. They both
can directly access the platform. Agents are licensed specialists hired by landlords who take
on the job of finding a reliable tenant at an optimal rent price. Anecdotal evidence suggests
that, when it comes to ethnic requirements, agents transmit preference of landlords with
whom they work. Both agents and landlords leave their phone numbers in rental ads, but it
is not always possible to distinguish whether the counterparty is the landlord or the agent.

Using accompanying ads’ texts, I was able to identify the presence of racial discrimination.
For the baseline analysis, I resorted to a dictionary approachﬂ . The algorithm consists
of several steps: first, I calculate frequencies of all unigrams, bigrams and trigrams, then
examine them manually to reveal the ones related to ethnicity of tenant and, finally, flagged
ads containing these n-grams. Discrimination in ads is manifested in a highly uniform way:
most of discriminating landlords use the phrase “Slavs only”. The rest of discriminating
landlords use words with roots: slav-, russ-, caucas-, asia-. For the key phrases, few instances
of reversed use were detected and excluded (for example, preceding “not only”, or following
“are allowed”). There are also specific inclusive phrases in the data, such as “all ethnicities
are allowed”.

In each specification controls for the individual characteristics of apartments are added.
Surface area, layout, floor number are explicit characteristics of apartment. To proxy for

more ambiguous characteristics, I construct two variables: the length of announcement in

5See |Gentzkow et al.| (2017) for the review of various approaches in text analysis.
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characters and the number of photos attached.

2.2, Other data

I complement the user-generated data from cian.ru with socio-economic data from the
Russian Census (2010). Data on population, ethnic composition, level of education, fluency
in Russian is grouped on rayon (subdistrict) level. I also use electoral statistics from the 2018
Russian presidential elections. This data is provided by the Central Election Commission of
the Russian Federation.

In Appendix [A] T report the design of a correspondence experiment. I respond to a
sample of ads through the online form and manipulate the names of potential tenants such
that one group of names could be perceived as “Russian-sounding” and another group as
“non-Russian-sounding”. There are no public data on birth names in Russia, so I construct
an approximate ranking of names using data from the Russian social network vk.com. I use
the data on the city of residence to make a rating of the most popular names in Moscow and

Makhachkala — a multi-ethnic city where Russians make up only 5.4 percent.
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3. Empirical analysis

3.1. FEstimating equation

The Moscow housing stock consists of multi-storey buildings with large number of apart-
ments. The median building is 12-storey and multiple apartments are often exposed in one
building.

When calculated for the entire observation period, the median building has around 12
apartments exposed. Apartments in the same building are usually of a similar quality, and
“vertical” or in-building segregation is uncommon in Moscow. This structure of the housing
stock is beneficial for my analysis: 1 employ a model with building level fixed effects to

estimate the racial rent differential. The baseline specification is:

log(Rent Pricey,) = aDiscrimgy, + X}, v + op + ¢r + €ir (1.1)

Each observation is an ad that was posted within the observation period. Subscript ¢
denotes a posted offer, b is an index of building and 7 is an index of the day when the
offer was posted. Discrim is a dummy variable of interest that indicates the presence of
discrimination in ad’s text. o, and ¢, are building and day of posting fixed effects.

Building fixed effects allow to absorb the spatial and building specific variations. Coef-
ficient of interest « is an estimate of the cost of discrimination. It reflects the difference
in the rent prices between discriminating and non-discriminating apartments. I also control
for apartments’ individual characteristics: the set of controls X;,,. The characteristics of
the apartment are divided into two types: one that can be measured directly, such as sur-
face area and apartment layout, and once that cannot be measured directly, such as general
cleanliness, quality of repair, lack of dysfunctions. I try to control for these “soft” features
using length of advertisement in characters and number of attached photos.

Less restrictive specifications were also tested: the model with rayon level fixed effects
and the model with okrug level fixed effects. Both of these specifications include controls for
distances to the city center and to the closest metro station.

This identification strategy holds several assumptions. First, I assume that discrimination
in the ad is a direct reflection of real intention of landlord to discriminate. In latter part of
this paper I also test the Moscow rental market for the presence of covert discrimination.

Second, I assume that the number of photos and length of text are good proxies for quality
of apartment. I include other text-based measures of apartment quality for robustness.

I also explore how the racial rent differential depends on neighborhood characteristics,

including the average level of discrimination in the neighborhood. The heterogeneity of the
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effect is crucial for understanding the mechanism of the racial rent differential — theoretical
discussion of the mechanism is presented in section To do the heterogeneity analysis I
interact the discrimination dummy with the share of discrimination in neighborhood and

building:

log(Rent Priceg,) = aDiscrimg, + BDiscrimg, x Discr Rateg, + X, v+op+ér+epr (1.2)

For both neighborhoods and buildings the discrimination rates are calculated as a share
of discriminating ads in total number of ads that were posted during the observation period
excluding the contribution of interacted observation. Maps of discrimination rate calculated
for buildings and subdistricts are shown in Figure [1.1]

DiscrimRate,, is the surrounding discrimination rate for offer ¢ in the unit w. This
specification is tested for discrimination rates on different levels: buildings, rayons and

okrugs.

3.2.  Main results
3.2.1.  Racial rent differential

Table presents the estimations of the racial rent differential. The extended table can
be found in Table in Appendix. The results bring out a strong and negative effect of
discrimination on the price. The first column shows the results of the preferred specification:
the one that includes building level fixed effects. I also include to the model time fixed effects
(through variables that indicate the day when the ad appeared on the site) which helps to
eliminate the impact of seasonality associated with the housing market. This specification
also includes controls for individual characteristics of the apartment. Standard errors are
clustered at the building level. This result indicates sizeable racial rent differential — around
4% of apartment’s rent price.

Column two and three presents the results of the models with rayon and okrug level fixed
effect correspondingly. These specifications also includes controls for logarithms of distances
to the city center and the closest metro station. The fourth column presents results of the
OLS regression without location-based fixed effects. It can be seen that the coefficient of
interest increases from the first to the fourth specification. It can be explained by the fact
that on average buildings and districts with less expensive property are also associated with

discrimination.
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3.2.2.  Placebo and robustness

I estimate several placebo regressions that have the same equation as in the main specific-
ation presented in column 1 of Table[I.2] Instead of the discrimination variable I introduce
two different text-based variables that also indicate preferences of the landlord: preference
for tenants without kids and preference for tenants without pets. Results are presented in
the Table [1.B.2] The coefficient for “no kids” variable is not significant, whereas the coeffi-
cient for “no pets” is significant, but relatively small — around 0.5% — and positive (unlike
the main result obtained for the discrimination dummy). This positive effect for apartments
that do not accept tenants with pets can be explained: potentially, landlords that historic-
ally did not accept tenants with pets were able to keep their property in better condition. I
also repeat the main specification which is presented in the Table [[.2] but with text-based
dummies from the placebo analysis as controls: the main result remains robust. Finally, I es-
timate the main specification including phone numbers fixed effects to absorb the variation
in counterparty identities (however, phone variable does not allow to distinguish between

landlords and agents). The coefficient decreases but not drastically — it stays around 3%

(Table [[B.3).

3.2.3.  Heterogeneity analysis

The racial rent differential is not uniform across Moscow neighborhoods. To investigate
how it changes, I perform heterogeneity analysis. Table indicates that in neighborhoods
with higher prevalence of discrimination the rent differential is smaller than in neighborhoods
where discrimination is relatively rare. The same is true for the level of building. A higher
share of discriminating apartments in a building is associated with a lower rent differential.

When it comes to other socio-economic characteristics of neighborhoods, we observe the
following: the racial rent differential is higher in neighborhoods with a higher share of non-
Russian residents, with a higher selling prices in housing, with a higher share of residents
with higher education, with a higher share of votes for presidential candidates in ’opposition’
to Vladimir Putin (Table |1.4]).

As a result, we see that both distributions of frequency of discrimination and of the value
of racial rent differential have the same center-periphery structure, but other meaningful
variables also have a similar spatial distribution: education, population, average rent and

purchase price of real estate, share of non-Russian residentsﬂ

6See maps in section |5 and Figure
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3.2.4. Impact of discrimination on search time

The landlords’ disadvantage from discriminating behaviour manifests itself through the
increased search timem Extra days spend on the market waiting should naturally be con-
sidered as a part of cost of discrimination. Table presents the estimated effect of
discrimination on the number of days offers have been exposed on the platform. The data
used in this analysis do not include observations that were available on the first day and
observations that stay on the site on the last day of the observation period. Specifications
in Table are similar to the ones from Table [1.2] but with the logarithm of number of
days in exposure in left-hand side. In each regression I control for logarithm of apartment’s
rent price.ﬂ

An apartment that do not accept non-slavic tenants remains on the market 10 % longer.
This effect is not particularly large if we take into account that for an average ad it turns into
one extra day. Though it is a costly delay, but one that landlords suffer only occasionally

— in contrast to the monthly rental discount.

3.3.  Results of experiment

The design of an experiment is presented Appendix [A]in Appendix. Table presents
the results of an experiment. Each column presents the outcomes of a probit regression
where the dependent variable is an answer dummy: one, if counterparty replied to the
message and answered the question, and otherwise — zero. This experiment provides us with
several important results. First, indeed, applicants with non-Russian sounding names have
significantly lower probability of receiving benevolent response from apartments’ accounts
that have racial preferences in ads. At the same, it is also true to a certain degree for non-
discriminating accounts: non-Russian applicants have a lower chance to receive a reply than
Russian applicants even from accounts that have no racial preferences in ads (Table .
This result speaks in favor of coexistence of overt and subtle forms of discrimination in
the Moscow rental housing. There is another important result, which can be seen in the
Table [I.6] This table presents subsample analysis: it takes ads without racial preferences
and splits the sample by neighborhoods. The city center is notable for the low level of
overt, discrimination, however, one could suggest that landlords in this elite neighborhood
switch from overt to subtle discrimination. The experiment’s results do not support this
hypothesis. Subtle discrimination is more prevalent in the outskirts, so, on the average,

subtle discrimination is proportional to neighborhood’s overt discrimination.

"However, despite the fact that it is impossible to observe whether the apartment is really rented out,
the date when the offer disappears from the platform can be used as the best possible approximation.
8Prices on the last day are used here.
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4. Theory

The Beckerian neoclassical framework fails to explain the persistence of the cost of dis-
crimination. In this setting both landlords and tenants are price-takers. Two markets,
discriminating and equally accessible, exists with two rents respectively: p; and pjq.

Assume that predictions of the model are in line with the empirical findings and p}; < p,.
This scenario intends full market segregation. Otherwise, the majority from the discriminat-
ing market will move to another market until rents equalize. However, the full segregation is
implausible since it means that majority constitutes only 20% of the rental housing market.

Literature on discrimination in the labor market solves this issue by introducing frictional
environment. The notable contributions in this direction were made by [Black (1995), Rosén
(1997), Bowlus and Eckstein (2002), Lang et al.| (2005).

4.1.  Baseline model

In this section I adapt the random search model from [Black| (1995) to the context of
Moscow rental housing. To take into account the heterogeneous structure of the Moscow
housing market, I consider the model with two "neighborhoods” between which potential
tenants are sorted.

There are two neighborhoods A and B. Both of them are functioning as independent
rental housing markets. There are two types of landlords in both neighborhoods: discrim-
inating (those who refuse to rent an apartment to a non-slavic tenant at any price), and
non-discriminating (those who are indifferent of tenant’s race). The share of discriminating
landlords in the neighborhood i is #;. 1 assume that the neighborhood B is more discrimin-

ating, i.e. g > 04.

4.1.1.  Sorting

There are two types of tenants: slavic and non-slavic. The share of slavic tenants is ,
and the share of non-slavic tenants is 1 — . Each slavic and non-slavic tenant chooses the
probability of entering the neighborhood A with probabilities gs and g, respectively, and of
entering the neighborhood B with probabilities 1 — ¢, and 1 — ¢,,5. As a result, the shares of

slavic tenants in the neighborhoods A and B are:

_ qsT
4T qsT + Qns<1 - 77')

(1 —go)m
(1 =g )m+ (1 — gns)(1 — )

™ —
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Slavic and non-slavic tenants extract reservation utilities V! and V', respectively from
the rental housing market. These reservation utilities will be described below.

In a general setting, when residents decide where to live, they take many factors into
account: prices, access to schools, proximity to workplace, amenities and more. While this
paper does not aim to model the sorting process in an extensive way, it is still important to
introduce to the model motives not related to rental housing. In this stylized model I assume
that neighborhood with a lower share of discrimination A is also a central district with rich
amenities and better access to work and schooling (which correspond to the Moscow context).
Assume, there are shares of both slavic and non-slavic potential tenants who are attached
to the central district A, us < ¢s and 1,5 < ¢ns- They do not choose between neighborhoods
and search apartments in A by default. After “mobile” tenants choose their neighborhoods,

tenants of all types start apartment search in their respective neighborhoods.

4.2.  Search

Within each neighborhood tenants of both types sequentially search for an apartment
paying k for each period of the search. When a tenant finds and rents an apartment, he or
she stops searching and lives in this apartment forever.

Tenants learn three features during the visit of the apartment online page: how much
they value this apartment — «, the type of landlord and the rent p that was set in advance
by the landlord. While this mechanism does not fully take into account the informational
structure of the online platform, it approximates the search process online: tenants need to
invest their time and effort in studying ads. The individual value of apartment « is randomly
distributed with distribution function F'(«)) and density function f(a). Following Black I
assume F'(«) is strictly log-concave.

There is an important deviation from Black (1995) when it comes to price setting. The
main interest of Black’s model is the racial wage gap, where employers can set different
wages for individual members of minorities and non-minorities. In my model I assume that
non-discriminating landlord sets a unique rent price for both slavic and non-slavic tenants,
and a discriminating landlord sets a price for slavic tenants and do not accept non-slavic

tenants at any price.

4.2.1.  Tenants’ problems

Tenants’ equilibrium strategies can be described with reservation utilities such that ten-
ants are indifferent between renting an apartment and continuing the search. Two options

available for slavic tenants: renting an apartment from a discriminating landlord and renting
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an apartment from a non-discriminating. This leads to the following dynamic equation:

V* = 0Emax{a — pg, V°} + (1 — O)Emax{a — pnq, V°} — k (1.3)
Minorities’ problem looks different: with probability 6 they meet a discriminating land-
lord and, therefore, they cannot rent this apartment and receive their reservation utility.

V™ = gV + (1 — 0)Emax{a — ppa, V™) — k (1.4)

4.2.2.  Landlords’ problem

Each landlord behaves as a monopsonistic competitor. Therefore, they maximize the rent,
considering probabilities of tenants’ acceptance. Discriminating landlords rent an apartment

if and only if tenant is slavic. Thus, their expected utility can be written as:

Eug = (1— F(V* + pa))pa (1.5)
Non-discriminating landlords accept tenants of both types and they set a unique price
to tenants of both types.

Etng = pra(m(1 = F(V® +pa)) + (1 = 7)(1 = F(V" + ppa)) (1.6)

4.2.3.  The Optimal Rents and the Racial Rent Differential in a Separate Neighborhood

Assume that « is drawn from uniform distribution on interval [0, 3]. Then the equilibrium
rent prices of both discriminating and non-discriminating apartments are defined by a system

of two equations. For a neighborhood i € {A, B} this system can be written as:
2k3 = 0"(p)” + (1 — 0")(2p4 — Pha)” (1.7)

1—7t | 2Bk 27t

: : 1.8
TR i p—— (1.8)

Pha =

, where p! , and pj, are rent prices of discriminating and non-discriminating apartments

in neighborhood i, # is a share of discriminating landlords in neighborhood i and 7’ is a
share of slavic tenants in neighborhood 1.

Several facts follow from of this system. First, it shows the existence of the racial rent

differential presented in the empirical part of this paper (Section .
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Proposition 1. A = p,g — pg > 0 for any value of 6 and ™ when non-slavic tenants

participate in a search, i.e. Vy(0,m) > 0.

Second, it can be shown that, consistently with the empirical findings, A*(#°, 7) is de-
creasing with an increase of 7, share of potential slavic tenants in the neighborhood i.
However, conflicting with the evidence I found, A’(¢%, %) is increasing with the share of

discriminating apartments 6°.

Proposition 2. For any given 0 € (0,1) A(0,7) is decreasing with w. For any given
m € (0,1) A0, ) is decreasing with 6.

The interpretation of this relationship is as follows: with an increase of the share discrim-
inating apartment frictions for non-slavic tenants increase and non-discriminating landlords
respond with increased rent prices, therefore the differential increases.

However, in this setting it is still possible that the neighborhood with a higher share of
discriminating apartments has a higher racial rent differential, because the differential also

depends on the share of slavic tenants in the neighborhood.

4.3.  Racial rent differentials in two neighborhoods

Suppose, there are two neighborhoods A and B, such that 6% > 64. Assume that the
shares of discriminating apartments 6 are exogenous characteristics of a neighborhood. It
can be shown that in an interval 7% € (0,1) function A(7?) can be well-approximated with a
linear function A(7") = —¢'(0") 7' +¢*(0"), where ¢'(6") is a coefficient that depends on a share
of discrimination in neighborhood €. Therefore, it can be shown that for neighborhoods A

and B two spaces consisting of pairs (74, 7P) exist: one, for which A* > AP and one, for

which A4 < AB,

B

A4 < AB
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Proposition 3. The city economy can reach such equilibrium that A4 > AP when

(7TA,7TB) _ ( HsT — (1 B H’S)ﬂ- )
HsT + ;uns(l - pZ) 1- HsT + (1 - :uns(l - W)

In this case, both slavic and non-slavic mobile tenants will sort to the neighborhood
B. For such equilibrium to appear we should assume sufficiently large share of non-mobile
non-slavic tenants, which in reality can be interpret as either high attachment to services
accessible in the city center or high attachment to non-discriminating environment.

Despite the fact that this model is highly stylized, it still shows how heterogeneous effects
found in empirical section of this paper can emerge. It also corresponds to the fact that the
share of non-Russian residents is higher in the Moscow city center than on the outskirts,
according to the Census (2010).
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5. Conclusion

Racial discrimination can generate significant racial disparities in economic outcomes: I
find that an apartment with a discriminatory ad has 4% lower rent price than an identical, but
non-discriminating apartment in the same building. This result complements well-established
theoretical insights on how differential treatment can generate racial differentials in the
housing market. While there are many channels through which racial differentials can occur,
pure discrimination in the market remains important and requires further research.

This paper touches on the uncovered topic of the relationship between overt and subtle
forms of discrimination. I analyse unique data from the Moscow rental housing, where
landlords do not hide there racial preferences. I show that overt and subtle forms of discrim-
ination are closely related. I find that they coexist in Moscow rental housing market and
that their relative prevalence is stable across neighborhoods.

Finally, I borrow theoretical framework from the literature on labor search with discrim-
ination and show how the racial rent differential can occur. I do heterogeneity analysis and
find that the racial rent differential is higher in neighborhoods with a lower share of discrim-
inating landlords. I show that this result can coincide with a random search model with

discrimination by introducing the stylized version of neighborhood sorting.
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6.

Tables

Table 1.1: Descriptive statistics

Panel A. Apartments exposed during the observation period

Obs Mean  Std. Dev Min Max
Price (rubles) 139,965 72,190 92,962 14,500 1,024,106
Kitchen area (sq.m.) 139,965  10.27 5.42 1 160
Living area (sq.m.) 139,965  38.14 27.58 9 450
Total area (sq.m.) 139,965  62.65 41.00 10 500
Floor number 139,965 7.06 5.74 1 85
Days in exposure 139,965  18.48 29.76 0 168
Length of text (symbols) 139,965 800.19 527.51 52 3743
Number of photos 139,965  12.09 7.59 50
Declare descrimination 139,965 .20 .40 1
Declare inclusivity 139,965 .005 .07 0 1
Panel B. Buildings’ characteristics
Number of floors 20,417 10.27 5.42 1 160
Distance to city center (km) 20,417 11.59 5.85 .24 59.80
Distance to closest metro 20,417 1.36 2.21 .005 55.89
(km)
Share of discriminating 20,417 .24 .28 0 1
apartments
Panel C. Subdistricts’ characteristics
Share of discriminating 140 .23 .08 .009 .54
apartments
Population (thousands) 125 92 43 3 247
Share of non-Russian 125 .08 .02 .04 .28
Share of Central Asian 124 .007 .006 .002 .03
population
Share of North Caucasian 122 .004 .002 .001 .02
population
Share of Jewish population 125 .005 .003 .0008 .02
Price per sq. m. (rubles) 140 886 267 443 1863
Panel C. Districts’ characteristics
Share of discriminating 12 23 .06 .05 .33
apartments
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Table 1.2: Main result: The Racial Rent Differential

Dep. Var.: Logarithm of rent price

(1) (2) (3) (4)

Discrimination dummy -0.0409%**  -0.0638***  -0.0670*** -0.0743%**
(0.001) (0.004) (0.008) (0.003)

Observations 139,965 139,965 139,965 139,965

Building FE Yes

Subdistrict FE Yes

District FE Yes

Day of posting FE Yes Yes Yes Yes

Controls (apartment char.) Yes Yes Yes Yes

Controls (building char.) Yes Yes Yes

Note: Estimation of the effect of overt discrimination in the ad on the rent
price. Each observation is an individual ad posted on the website cian.ru
during the observation period from May 27 to November 11, 2018. Standard
errors are clustered on the building, rayon and okrug levels in specifications
(1), (2) and (3) correspondingly. Standard errors in parenthesis.

®p < 0.01, ** p <0.05 *p<0.1
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Table 1.3: Heterogeneous effects: the Racial Rent Differential and the Share of Discrimina-
tion in Neighborhood

Dep. Var.: Logarithm of Rent Price
(1) (2) (3) (4)

Discrimination -0.0409***  -0.0488***  -0.1009*** -0.1030%**
dummy (0.001) (0.002) (0.006) (0.007)
Discrimination dummy 0.0339%**
x Share of (0.007)
discrimination in
building
Discrimination dummy 0.2463***
x Share of (0.022)
discrimination in
subdistrict
Discrimination dummy 0.2660***
x Share of (0.029)
discrimination in
district
Average of interacting variable 074 .052 .050
Maximum of interacting variable 1 .52 .33
Observations 139,965 139,965 139,965 139,965
Building FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Note: Estimation of the heterogeneous effect of overt discrimination in the ad on
the rent price. Interaction terms are dummy for discrimination interacted with
shares of discrimination in buildings, subdistricts and districts. Each observation
corresponds to an individual ad posted on the website cian.ru during the
observation period from May 27 to November 11, 2018. Standard errors are
clustered on the level of buildings. Standard errors in parenthesis.

¥ p <0.01, ¥ p <0.05 *p<0.1
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Table 1.4: Heterogeneous Effects: Interactions with Characteristics of Neighborhood

Dependent variable: Logarithm of rent price

1) (2) (3) )

Discrimination 0.7024***  0.0214*** 0.0112** -0.0168%**
dummy (0.061)  (0.007)  (0.005) (0.006)
Discrimination -0.0613***
dummy X (0.005)

Housing selling
price in district
Discrimination -0.1739%**
dummy x Higher (0.021)
education in
district
Discrimination -0.5560***
dummy x Votes (0.053)
for ’liberals’
Discrimination -0.20927***
dummy x Share (0.069)

7

of 'non-Russians
Observations 139,965 139,965 139,965 139,965
Building FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Note: Estimation of the heterogeneous effect of overt discrimination in the ad
on the rent price. Interaction terms are dummy for discrimination interacted
with characteristics of neighborhoods. Each observation corresponds to an
individual ad posted on the website cian.ru during the observation period from
May 27 to November 11, 2018. Standard errors are clustered on the level of
buildings. Standard errors in parenthesis.

K p < 0.01, ** p < 0.05, *p <0.1
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Table 1.5: Experiment: Main Results

Dependent variable: Reply rate (dummy)
All ads  Ads without Ads with

discrimination  discrimination

(1) (2) (3)

Non-Russian -0.5511%%* -0.3596*** -0.7631***
name (0.091) (0.130) (0.130)
Observations 874 444 430
Order dummy Yes Yes Yes
Text dummy Yes Yes Yes
Price (log) Yes Yes Yes
Total area (log) Yes Yes Yes
Length of text (log) Yes Yes Yes
Ground floor Yes Yes Yes
Last floor Yes Yes Yes

Note: Each column gives the results of a probit regression where
the dependent variable is the answer dummy: one denotes
benevolent reply from agent/landlord and zero denotes
non-response (while message has been read) or refusal. Robust
standard errors in parenthesis.

R p < 0.01, ** p < 0.05 *p<0.1
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Table 1.6: Experiment: Subset of ads without overt discrimination

Dependent variable: Reply rate (dummy)

All districts Less More
discriminating discriminating
districts districts

(1) (2) (3)
Non-Russian -0.3596%** -0.3079* -0.4923**

name (0.130) (0.168) (0.209)

Observations 444 272 172
Order dummy Yes Yes Yes
Text dummy Yes Yes Yes
Price (log) Yes Yes Yes
Total area (log) Yes Yes Yes
Length of text (log) Yes Yes Yes
Ground floor Yes Yes Yes
Last floor Yes Yes Yes

Note: Each column gives the results of a probit regression where the
dependent variable is the answer dummy: one denotes benevolent reply
from agent/landlord and zero denotes non-response (while message has
been read) or refusal. The sample consists of only ads without overt
discrimination. Robust standard errors in parenthesis.

K p < 0.01, ¥ p < 0.05, *p <0.1
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A. Appendix: Design of Correspondence Experiment

Moscow landlords and agents explicitly discriminate against minorities in rental ads.
However, it is not entirely clear whether discrimination in ads really turns into active dis-
crimination in marketplace. It is also not necessary that landlords, who do not use language
of discrimination, do not discriminate privately. In this section I explore these possibilities
with help of correspondence experiment.

Since seminal paper by Bertrand and Mullainathan| (2004 economists extensively use ap-
proach of correspondence study to reveal racial, ethnic or gender discrimination on various
marketsﬂ This approach is based on direct manipulation of applicants characteristics, spe-
cifically names, when it comes to the subject of racial discrimination. In this way, Bertrand
and Mullainathan randomly assigned African-American sounding names to job applicant’s
resumes, send these resumes to real employers in Boston and Chicago and compared call
backs rates of two racial groups. This study revealed that applicants with African-American
names have statistically and economically significantly lower probability of call back.

I conduct correspondence experiment using online contact form which is available on the
platform and which allows to reach a person behind the ad. I use design of paired-matched
applications and send couples of short messages with Russian and non-Russian identities.

Experiment was conducted in two separate rounds.

A.1. Messages

The platform provides users who are looking for apartments, two alternative ways to
contact landlords or agents: via a public mobile phone or through an online form. The
second is intended to ask the landlord or agent a short clarifying question about the proposal.
The online form was chosen as the communication device for the experiment for technical
reasons.

Following the way the online form is organized, I built two simple questions that were

used as the basis for the intervention. Translations of these two questions are following:

Q1. Hello, I'm interested in your apartment. May I contact you tonight? [First

name/

Q2. Good afternoon, your offer interested me. I would like to ask a clarifying

question. When could one move to an apartment? [First name/

9See [Baert| (2018)) for review of correspondence experiments
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As can be seen, the topics of the questions are not related to the topic of ethnic discrim-
ination. The sole purpose of these questions is to enable landlords (or agents) to react to the
name of the applicant. The online form is not the main means of communication: its role
is to be an intermediate stage before a telephone conversation, which in itself is an interme-
diate stage before a personal visit to the apartment. As a rule, the online form is not used
to conclude transactions or discuss conditions. Therefore, the experiment was designed in
such a way that the landlords could ignore the messages of the applicants with non-Russian

names and, thus, disrupt the interaction at the first stage.

A.2. Names and identities

When the applicant submits his message through the form, the landlords can observe
only the message itself. Despite this, separate accounts with realistic email addresses were
created for each identity.

The variation of perceived ethnicity of names is a treatment of the experiment. Two
rounds of experiment were conducted. They are different in terms of name selection ap-
proaches. It is important to note here that in Russia there is no common dataset on birth
names. For the first round of the experiment, only two names were chosen: the Russian-
speaking name Andrei and the Turkic name Arslan. Both names are popular and recognisable
in Russia.

In the second round, a more rigorous approach to names selection was used. Between
the first and second stages of the experiment, I created an original set of data on names in
Russia, using account statistics collected from the popular Russian social network wvk.com.
Ratings of names by popularity for each Russian city was constructed.

Two cities were selected among the entire set: Moscow and Makhachkala. The first is a
city in which the majority of the population is Russian: around 90 percent according to 2010
Russian Census. The second is plural city with only 6.3 percent of Russian residents. The
largest ethnic groups in this region are among the most discriminated groups in the Moscow
housing market and labor marketﬂ Most of the representatives of these ethnic groups are
citizens of Russia.

I take the 10 most popular names in Moscow and the 10 most popular names in Makhach-
kala, excluding the first places in the ranking and the names used in the first round of the

experiment. The resulting set of names was used in the second round.

10Bessudnov and Shcherbak! (2018)) find that Chechen job seekers have one of the lowest callback rates.
Given that the set of names of largest ethnic groups in Dagestan intersects widely with the set of Chechen
names, this result is valid for the most popular names of Makhachkala residents.
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A.3.  Sending messages

The experiment was conducted in two rounds: June 20-21, 2018 and December 13-14,
2019. The design of the second round was changed due to the fact that statistics on names
became available. In this section, I describe the procedure and schedule of the first round of
experiment and difference between first and second round.

The sample was constructed from the set of new offers that become available on the
platform during the night 19-20 June, 2018. To identify these offers, I select those ones that
appeared this night and were not available on previous days.

The next step, I randomly remove from the sample all offers with duplicate phone num-
bers, except one. Landlords or agents with duplicate phone numbers are coordinating the
rental processes of more than one apartment. By design of experiment it is necessary not to
contact one person through several different offers’ pages. Such messages can be perceived
as conspicuous and can bias results of experiment.

At this stage, 291 new discriminating offers were obtained. I randomly select other 291
offers among non-discriminating set. The resulting 582 observations become the sample of
the first round of experiment.

As a final preparatory phase, texts of messages and identities for the first request were
randomly independently attached to each offer. For the second paired message another text
and alternative identity were used.

Finally, during the day of June 20, I manually sent the first message through the form
of each offer. The process of sending messages is difficult to automate, because the platform
prevents such interventions. The next day, requests with alternative texts and names were
sent via forms with the same offers. The one day period was chosen as long enough to be
realistic and short enough to decrease the number of cases when offers are no longer available
to the time of second message.

Thanks to the randomization of the order and message texts, the influence of these two
factors do not influence results.

During the second round names of two groups were randomized.

A.4. Classification of responses

Landlords or agents can reply in free form, however several basic types were identified.

Classification is following:

1. Answer question or ask to call

2. Ask extended identification of potential tenant/ explicitly ask about ethnicity
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“Already rented”
Message was not read
Read, but not answered

Rejects, motivating this with the tenant’s ethnicity

NOo Tt W

Rejects, motivating this with the tenant’s gender

Landlords or agents do not have other ways to communicate with potential tenant, there-
fore there are no other possible response ways to be coded.

In analysis of experiment’s outputs, this classification was simplified. Point 1 was con-
sidered as “likely non-discriminating’, points 2, 3, 5, 6, 7 is combined in on category “likely

discriminating”. Observations with point 4 replies were excluded from the analysis.
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B. Appendix: Empirical Results

Table 1.B.1: The Racial Rent Differential: Extended Table

Dependent variable: Logarithm of rent price

(1) (2) (3) (4)
Discrimination -0.0409***  -0.0638***  -0.0670*** -0.0743***
dummy (0.001) (0.004) (0.008) (0.003)
Log total surface 0.7091%FF*  0.8817*FF  (0.8972***  (.9204***
(0.007) (0.025) (0.052) (0.010)
LivingArea / TotalArea 0.1964%#%  0.1918***  (0.2224**%F  (.2023***
(0.013) (0.037) (0.027) (0.026)
Number of floors 0.0095%*F*  0.0101***  0.0106***
(0.001) (0.000) (0.001)
Ground floor -0.0198*** -0.0078 -0.0022 -0.0040
(0.003) (0.005) (0.007) (0.006)
Last floor 0.0139*** 0.0057 0.0062 0.0060
(0.003) (0.005) (0.004) (0.005)
Log dist. to center -0.2741%%%  -0.3069***  -0.3383***
(0.029) (0.018) (0.006)
Log dist. to metro -0.0296***  -0.0400***  -0.0390***
(0.005) (0.005) (0.003)
Log(number of photo + 1) 0.0084***  0.0134***  (0.0144**F*  0.0168***
(0.001) (0.002) (0.002) (0.001)
Log length of text (10 chars) 0.0280***  0.0432%**  (0.0443%**  0.0468***
(0.001) (0.002) (0.003) (0.002)
Log days in exposure 0.0148%**%  0.0217**%  0.0217***  0.0229***
(0.001) (0.001) (0.003) (0.001)
Constant T.7410%%%  7.4413%**F 7 4171FF*F 738207
(0.023) (0.141) (0.260) (0.037)
Observations 139,965 139,965 139,965 139,965
R-squared 0.952 0.890 0.882 0.876
Building FE Yes
Subdistrict FE Yes
District FE Yes
Day of posting FE Yes Yes Yes Yes

Note: The sample consists of all ads posted on the web-site during the
observation period. Standard errors are clustered on the level of buildings,
subdistricts and districts in specifications (1), (2) and (3) correspondingly.

Standard errors in brackets.

¥k p < 0.01, ** p < 0.05, *p < 0.1
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Table 1.B.2: Placebo: Other Preferences of Landlords

Dependent variable: Logarithm of rent price

(1) (2) (3)
No animals 0.0050** 0.0164***
(0.002) (0.002)
No kids -0.0020 0.0048**
(0.002) (0.002)
Only for Slavs -0.0430***
(0.001)
Observations 139,965 139,965 139,965
Building FE Yes Yes Yes
Day of posting FE Yes Yes Yes
Controls (apartment char.) Yes Yes Yes

Note: Standard errors are clustered on the level of buildings. Standard

errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

Table 1.B.3: Robustness: Phone Numbers Fixed Effects

Dependent variable: Logarithm of rent price

(1) (2) (3) (4)

Discrimination dummy -0.0315%**  -0.0483***  -0.0506***  -0.0547***

(0.002) (0.003) (0.005) (0.002)
Observations 130,179 125,191 125,192 125,194
Building FE Yes
Phone FE Yes Yes Yes Yes
Subdistrict FE Yes
District FE Yes
Day of posting FE Yes Yes Yes Yes
Controls (apartment char.) Yes Yes Yes Yes
Controls (building char.) Yes Yes Yes

Note: Standard errors are clustered on the level of buildings,
subdistricts and districts in specifications (1), (2) and (3)
correspondingly. Standard errors in parenthesis. *** p < 0.01, ** p <
0.05, * p < 0.1
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Table 1.B.4: Increased Search Time: Discrimination and Number of Days before Ad Removed

Dependent variable: # of days before ad removed (log)

(1) (2) 3) (4)
Discrimination 0.1060***  0.1025%*%*  (0.0996%** 0.1002***
dummy (0.011) (0.014) (0.016) (0.012)
Log total surface 0.1065***  0.1167*F*  0.1420%** 0.1493***
(0.028) (0.029) (0.026) (0.025)
LivingArea / TotalArea -0.1014* -0.0025 -0.0188 -0.0225
(0.053) (0.064) (0.075) (0.051)
Number of floors -0.0027**%*  -0.0033** -0.0032%**
(0.001) (0.001) (0.001)
Ground floor 0.0270 0.0376* 0.0320** 0.0319*
(0.020) (0.019) (0.013) (0.018)
Last floor -0.0035 0.0231 0.0221* 0.0224
(0.017) (0.016) (0.011) (0.016)
Log dist. to center -0.0506 0.0327 0.0035
(0.042) (0.042) (0.012)
Log dist. to metro 0.0399**%*  0.0502%** 0.0543***
(0.009) (0.012) (0.006)
Log(number of photo + 1) 0.1239%**  (.1292%**  (.1293*** 0.1288%***
(0.006) (0.007) (0.007) (0.006)
Log lenght of text (10 chars)  0.0253***  0.0267***  0.0295** 0.0297***
(0.005) (0.006) (0.010) (0.005)
Log price 0.6007***  0.5011%**  0.4730%** 0.4659*+*
(0.030) (0.028) (0.035) (0.022)
Constant -5.1956***  -4.0956***  -4.0736%** -3.9579***
(0.251) (0.283) (0.423) (0.185)
Observations 116,278 112,497 112,498 112,498
Building FE Yes No No No
Subdisctrict FE No Yes No No
District FE No No Yes No
Day of posting FE Yes Yes Yes Yes
Controls (apartment char.) Yes Yes Yes Yes
Controls (building char.) Yes Yes Yes

Note: The Sample consists of ads posted on the web-site during the observation period
excluding ads that were available on the first and last days of the observations period.
Standard errors are clustered on the level of buildings, subdistricts and districts in
specifications (1), (2) and (3) correspondingly.
Standard errors in brackets.

¥k p < 0.01, ** p < 0.05, *p <0.1
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Table 1.B.5: Heterogeneity of Search Time Effect: Interaction with Share of Discrimination
in Neighborhood

Dependent variable: Number of days in exposure (log)

(1) (2) (3) (4)

Discrimination 0.1060***  0.2455%*F*  0.1090%** 0.0768*

dummy (0.011) (0.017) (0.036) (0.045)
Discrimination dummy -0.5873*#*

x Share of (0.062)

discrimination in

building
Discrimination dummy -0.0122

x Share of (0.145)

discrimination in

subdistrict
Discrimination dummy 0.1250

x Share of (0.186)

discrimination in

district
Observations 116,278 116,278 116,278 116,278
R-squared 0.396 0.397 0.396 0.396
Building FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Note: The sample consists of ads posted on the web-site during the
observation period. Standard errors are clustered on the level of buildings.
Standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

Table 1.B.6: Experiments Outcomes

Slavic names

Non slavic names Answer back  Ask id Isrented Notread Read, no answer | Total
Answer back 162 2 0 0 18 182
Ask id 12 1 0 0 3 16
Is rented 0 0 1 0 0 1
Not read 2 0 0 63 3 68
Read, no answer 77 1 3 4 142 227
Reject (due to ethnicity) 13 1 0 0 0 14
Reject (due to gender) 1 0 0 0 0 1
Total 267 5 4 67 166 509
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C. Appendix: Theory

C.1. Tenants” problems

Emaz{a — ppa, V} = P(a — ppa > V™) X E(a — ppa) + P(a — ppa < V™) x V¥ =

/OO fla)da x E(a — ppa) + (1 — / fla)da) x V™ =

V"S+pnd V"S-H?nd

/00 (@ = ppa — V™) f(a)da + V™

VS +pna

o0

s gy = (1 — 9)(/ )@ = poi — V) f(a)a + V™) — &

ns

k o0
— = / (@ = ppg — V™) fa)dax
Emaz{a —p;,V°} = (a—pi — V) fla)da + V?
Vetp,

Non-slavic tenants’ problem when « is distributed uniformly:

k /ﬁ O =ppa=V" (B pua— V™)
1—46 a

= (07
Ve tpng /6 2/6

Slavic tenants’ problem when « is distributed uniformly:
2kB =08 —pa—V*)?+ (1 —0)(B —ppa — V*)?

C.2.  Optimal Rents and Rent Differential in a Separate Neighborhood

Tenants problems can be rearranged such that ([1.3]) and (1.4)) respectively become:

kze/oo (v —pg — V) f(a)da+ (1 —0) /OO (@ — ppg — V) f(a)da (1.9)
V3+p5 Vs+pnd
1f9 :/V (@ = pna = V™) fe)da (1.10)
" 4+Pnd

Then assume that « is drawn from uniform distribution on interval [0, 5]. The equations

can be rewritten as:
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2k =0(8—pa—V°)?+ (1 —0)(8—pna— V*)* (1.11)

20k
1-46

With 8 both mean and variance of « increase. The parameter § can be interpret as

V™ =5 — ppa — (1.12)

likelihood of finding tenant who values the apartment highly.
First order conditions for landlords problems (|1.5)) and (1.6]) respectively are :

1= F(VE+py)
Pa = V%) (1.13)
T(Pnd = Pral"(V® 4 pna) + (1 = 7) (pra = puaF' (V"™ + pra)) = 0 (1.14)

In the same way as in tenants’ problems assumption on uniform distribution is imposed.

Hence the equations appear as follows:

zm—%W—Vﬂ (1.15)

put = (8 = (1V° + (1= m)V™) (1.16)

Four equations (first-order conditions of two tenants’ and two landlords problems) con-
tains four unknown variables: prices and reservation values. Therefore, together these equa-
tions define equilibrium. With simple rearrangements this system can be reduced to two

equations that bind two prices: on discriminating and non-discriminating markets.
2kB = 0p3 + (1 — 0)(2pg — Pna)* (1.17)

-7 Qﬂk_i_ 2m
147V 1I-0 147w

Pnd Pa (1.18)

C.3.  Equilibrium

The model can be defined with four equations:

73



2kB =08 —pa—V°)*+(1=0)(B—pna — V*)?
Vnszﬁ_pnd_ 25k

16
pa=35(6-V?)
DPrd = %(ﬁ — (nVF+ (1 —m)V™))

This can be reduced to the system of two equations that define optimal rent sums:

2kB =08 —pa—V*)?+ (1= 0)(B = pna — V*)°

s 21

_ 28k
Pnd = 157\ 129 T 14 Pd

The fact that rent differential is positive in optimum (p,q — ps > 0) can be proved

geometrically. The first equation is equation of ellipse sloped to the right, and the second

equation defines straight line with slope that equals to 2. For any = this line is less step

147

28k
el
point of intersection of straight line given by second equation and axis p,q is v/28k, which

28
1-0°

than line p,qy = pgs. The point of intersection of ellipse and axis p,q is whereas the

is less than Therefore, for any values of parameters p,q — ps > 0.
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Chapter 2

Urban Amenities and Tourism:

Evidence from Tripadvisor

Abstract

Using TripAdvisor reviews, we construct panel data on tourism and consumption in Paris.
We document that during the pandemic a drop in tourism caused an increase in Parisians’ sat-
isfaction with restaurants and other amenities. Among three mechanisms — overcrowding,
supply-side changes and aversion towards tourists — we only find support for the aversion
mechanism. During the pandemic the word ‘tourist’ became less frequent in reviews, while
other words relating to food quality, price and overcrowding stay on the same level. The
improvement in ratings was stronger in restaurants popular among tourists from countries

with a weaker social connection to France measured with Facebook connectedness index.

1)



1. Introduction

“Are there too many tourists in Paris?” — was a title of the conference organised by
the city hall of Paris on June 24, 2019. While the speakers of the conference agreed that
overtourism in Paris has not yet reached the same scale as in Amsterdam or Barcelona, they
also admitted that “rapid and poorly regulated growth” of tourism can be harmful to the
cityfl There were reasons for concern. The number of foreign tourists to France has more
than doubled over the previous 15 years. In 2019 France was the most visited country in the
world, and Paris was the third most visited city. During the year 35.4 million tourist stayed
in the city’s hotels, which is approximately 16 times more than the population of Paris.

In the years preceding the pandemic, concerns about tourism have became common in
Europef| Anti-tourist protests took place in Barcelona, San Sebastian, Mallorca, Venice
and other European cities. Anti-tourist graffities, typically saying “tourist go home”, were
spreading across the cities including Paris.

However, during the summer of 2020, there were no crowds of tourists in Paris. The
problem of overtourism raised at the city hall conference faded into the background, when the
COVID-19 pandemic and the stringency measures, imposed by the governments, disrupted
tourist inflows, causing, as was coined by the World Tourism Organization, “the worst year
in tourism history”.

It is still unclear what the tourism industry will face after the pandemic: whether it will
continue to grow at the pre-pandemic rate, slow down or start to shrink. While the industry
is on hold, the questions posed by researchers and policy-makers before the pandemic remain
relevant and open. What is an optimal level of tourism? What are its costs and benefits?
At the same time, the unexpected shock in tourism created a proper setting to explore
the question: “What would life be for residents of Paris if there were no tourists?” In
fact, during the summer of 2020 Parisians were not bothered by an excess of tourists, while
restaurants and other urban amenities remained accessible, and COVID-19 cases and deaths
were relatively low, as the first pandemic wave was fading out. In addition, restaurants
were kept open artificially through heavy government subsidies, providing a unique setting
to study demand-related factors without an endogenous adjustment of supply.

In this paper we estimate the effect of tourism on residents’ satisfaction with restaurants

and other urban amenities. We use data on restaurant reviews from 'Tripadvisor — the

1See CNews. The World Tourism Organization (UNWTO) defines overtourism as “the impact of tourism
on a destination, or parts thereof, that excessively influences perceived quality of life of citizens and/or
quality of visitor experiences in a negative way” (Carvao et al.| (2018). For a review on overtourism from the
tourism management literature see |Capocchi et al.| (2019).

2See the Guardian
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platform that aggregates user-generated content on restaurant and other travel experiences.
We construct unique panel data on consumption and amenities in the city. This data allows
us to achieve multiple goals at the same time.

First, we use it to produce a highly granular measure of tourism. The share of non-
French among all reviews serves as a close proxy of tourists’ presence, which we validate
using several other measures. The benefit of this measure is that it can be defined on a very
granular level, the restaurant itself. In addition, while many studies focus on the location
where tourists stay overnight to study the impact, the measure used here allows to study
the location of where tourists consume.

Second, the review data and the ratings given by locals can be used as an indicator of
locals’ satisfaction with restaurant experience. More generally, it serves as a measure of
satisfaction with urban amenities, which varies across space and time. The literature shows
that this indicator is meaningful: For example, Kuang| (2017) finds that restaurant ratings
are highly correlated with real estate prices.

We match restaurant data with another source of information on residents’ quality of life:
number of complaints on the crowd-sourced platform DansMaRue. The platform is provided
by the city hall of Paris. Users can report any problem related to public space (abandoned
waste, tags, wild posting, etc.) through the mobile application or the web-site. Then the city
administration analyses the reports and try to solve the problems. We treat this disamenity
measure as another outcome relevant to our study.

We first document two stylized facts. First, more touristic restaurants receive lower
ratings by locals in the cross-section, suggesting a potential disamenity stemming from tourist
demand. Second, touristic neighborhoods have a lower variety of amenities which may
indicate that tourists value variety less than locals do.

Using the pandemic as a source of exogenous variation in international tourist arrivals,
we find that the drop in tourism caused an increase in residents’ satisfaction with urban
amenities, both in terms of restaurant ratings and a decreased number of complaints on
DansMaRue. In particular, the average restaurant increases its rating by close to 10% of
a standard deviation in the absence of tourists and the number of complaints in the direct
vicinity of the average restaurant decreases by at least 8%.

Importantly, our effect is not unique to the lockdown-induced tourism decline. We find
similar evidence when using the terrorist attacks that took place in November 2015. Our
results are also robust to using measures of tourism that are based on the self-declared
location of users rather than language.

Next, we consider three potential mechanisms driving our findings: overcrowding, supply-

side change and residents’ aversion towards tourism. Our analysis only finds support for the
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aversion mechanism. First, we find that the number of reviews explicitly mentioning tourism
(which are often negative) declines. Second, relying on a proxy of social connectedness
between countries derived from Facebook data, we find that restaurants with a clientele
that has little connections to France sees a larger increase in its rating post-lockdown. This
suggests that Parisians are less bothered by tourists from countries with which they have
strong social ties.

This study is most closely related to a growing literature studying the interaction of
tourism and local amenities. |Allen et al| (2020) study the effects of tourism on residents’
welfare in Barcelona. Building on a quantitative spatial model and credit card expenditure
data, they derive the incidence of tourism on locals’ welfare and find a largely heterogeneous
impact which negatively affects those living in the center, while resulting in welfare gains
for those living in less central parts of the city. While they are able to quantify the welfare
effects of tourism, our paper focuses on how tourism affects the reported satisfaction with
the quality of specific amenities and highlights the channels through which tourism operates.

This paper is also related to the literature on endogenous amenities. In contrast to
historical sites and natural landmarks, endogenous amenities such as restaurants and bars
are reactive to demand. In particular, |Almagro and Dominguez-lino, (2019)) study how
amenities and location sorting by residents endogenously adjust to a large increase in tourist
demand, focusing on the city of Amsterdam. Relative to their paper, we focus on relatively
short-term effects where amenities and residence location are essentially fixed )

More generally, our paper builds on the literature emphasizing the importance of amen-
ities. In their seminal paper |Glaeser et al.| (2001) explore the role of cities as centres of con-
sumption. They show that high-amenity cities have been growing faster than low-amenity
cities, highlighting the importance of amenities for location choices. Generally, on the im-
portance of urban amenities for attracting residents see also (Carlino and Saiz (2019), Lee
(2010) and |Couture and Handbury| (2020).

This paper is not the first to use data on restaurant reviews to study urban amenities.
Kuang| (2017) argues that quality of urban amenities are important for city residents, which
is revealed in real estate prices. She measures the quality of amenities using restaurant
ratings posted by users on Yelp.

It is worth noting that tourism can have a substantial positive economic impact, and
tourism suspension causes deep economic damage to the local economy (see e.g. [Faber and
Gaubert| (2019)). This paper does not focus on the direct effects of tourism on the local
economy, but rather its impact on local amenities.

Finally, this paper belongs to the growing and diverse literature on the COVID-19 pan-

3The government was essentially freezing the local economy through heavy subsidies.
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demic and its interaction with the urban structure |Gupta et al.| (2021)); Althoff et al.| (2020);
De Fraja et al| (2020)); [Miyauchi et al. (2021)); (Couture et al| (2021)); |Gupta et al| (2020));
Coven et al.| (2020).

2. Background and Data

In this section we first discuss how in the summer of 2020 the Covid-19 pandemic led to
a sharp drop of tourists coming to Paris, while there were few restrictions for locals. Next,
we discuss our main dataset on restaurant reviews that were collected from the website

Tripadvisor and additional datasets from other sources that we use.

2.1. COVID-19 in Paris

The first restrictions related to Covid-19 took effect in early 2020. On March 12, Em-
manuel Macron announced in a televised address that all schools and universities across
France would be closed. On March 13, 2020, Prime Minister Edouard Philippe announced
the closure of all pubs, restaurants, cinemas and nightclubs. After three months of strict
lockdown measures, on June 14, cafes, restaurants and pubs reopened in Paris.

While the restaurant sector returned to normality, tourism remained heavily affected
by the global pandemic. The Ile-de-France region which encompasses Paris was especially
heavily hit. Relative to July 2019, it saw a drop of 70.8% in overnight stays in its hotels in
July 202(f] The following months saw a similar drop in demand in the hospitality sector.
This drop was especially pronounced among tourists not residing in France. Compared to
2019, France saw 71.8% less non-residents in overnight stays in 2020, whereas overnight stays
by residents declined only by 10.5%. To summarize, Paris saw a large drop in tourism in the

summer of 2020 which was mainly concentrated in international arrivals.

2.2.  Tripadvisor Data

Tripadvisor is a user-generated social media review site, which publishes user reviews
on restaurants, hotels and other attractions. We collected data on all Parisian restaurants
that were listed on the site on November 17, 2020] We obtained information on restaurant
characteristics, such as the type of cuisine and the address, and individual review data,

including the review’s date, text, language, user, user location and rating. We geocode

4See INSEE FOCUS No. 235 here https://www.insee.fr/fr/statistiques/5369851#consulter
5In this analysis, we restrict ourselves to restaurants located in Paris intra-muros — the city of Paris that
consists of 20 municipal arrondissements and excludes the surrounding Greater Paris area.
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restaurants’ addresses. We leverage the data on review’s language and user location to
separate consumption of residents and tourists. As a result we construct unique and highly
detailed panel that reflects city’s restaurant consumption across space and time.

Figure Figure 2.1 presents the daily number of reviews of the roughly 15,000 Parisian
restaurants, cafes and bars left on the platform since its launch. The time trends are repres-
ented by smoothing splines. Reviews are split into two categories: reviews written in French
and written in other languages. The figure shows both the process of technology adoption
and the fluctuations in restaurant consumption. French users began adapting the platform
in 2007, and their usage peaked in 2017.

Figure Figure zooms in the same time series to a period starting from 2018 when the
platform’s penetration is relatively stable. The beginning and the end of the “first-wave”
lockdown imposed by the French government are marked with a blue dotted line. During the
lockdown both French and non-French reviews dropped to near zero. Then, starting in June,
French reviews revived, but foreign reviews remained on a negligible level. The observational
period ends with both French and non-French review numbers going back to zero due to the
introduction of a second wave of restrictions. As a whole, these figures demonstrate that the

review data allows us to differentiate between demand by residents and tourists.

2.3.  Measuring Tourism

In this paper we use review data to construct a highly granular measure of tourism at
the restaurant level. Importantly, it gives us an indicator of where tourists consume in the
city rather than where they stay. Our preferred proxy of tourism is constructed as a share of
reviews written in languages other than French. In Section section in the Appendix we
repeat our analysis using an alternative measure of tourism based on users’ home locations.

The Figure Figure [2.3) shows a map of our tourism measure. A lighter color indicates
a higher share of non-French reviews. As expected, restaurants with the highest levels
of tourism are located in the areas known for Paris’ major attractions: the Eiffel tower,
Montmartre, Notre-Dame de Paris and the Arc de Triomphe.

To validate our proxy for tourism more formally, we use data from the Enquétes de
fréquentation des sites culturels provided by the Observatoire économique du tourisme par-
isien (Observatory of the Parisian tourism economy). This survey contains the share among
all tourists coming to Paris visiting different tourist attractions. We consider tourists visiting
from 2015 to 2019 and geocode the 18 attractions that are located intra-muros contained in
the survey. Then, we construct a measure for demand by tourists that follows the market

access framework widely used in the economic geography literature:
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Visitors;

Tourist Access; = Z

Distance;;

Note that we are implicitly assuming a distance elasticity of tourist consumption trips
of -1. While we are not aware of a paper estimating this parameter specifically for demand
by tourists, Miyauchi et al| (2021) look at the distance elasticity of location choice for
consumption trips. They find a value of -1.09 and thus close to -1.

Next, we correlate our tourism proxy with the tourist demand measure. As Figure Fig-
ure shows, we find a strong positive correlation between the two (the R? of a linear
regression is 0.19). The correlation is robust to controlling for quartier fixed effects, meaning
that, even after controlling for a relatively fine-grained spatial unit, the remaining variation
in our tourism proxy is correlated with tourist access (see Table Table . Together,
this shows that our proxy for tourism correlates strongly with other, external measures of
tourism.

Finally, to further corroborate our proxy for tourism, we rely on user location information.
In particular, we compute the share of users by restaurant who indicate a location in a country
other than France. As figure Figure shows, the two measures are highly correlated (the

R? of a linear regression is around 0.77).

2.4. Content of Reviews

We perform text analysis of reviews to better understand users’ concerns. We distinguish
five topics that are relevant to the mechanisms we want to test for: discussion on tourism,
concerns about low food quality, high price, long waiting time and noisy environment.

The mapping of the review texts to topics is determined by manually constructed dic-
tionaries. The procedure of constructing the dictionary is the following. First, we examined
around one thousand randomly selected reviews to find a sample of words that relates to
the topic in a non-ambiguous way. Second, we validate these terms searching for counter-
examples in the corpus — the “false-positives”, the reviews where these terms are mentioned,
but in fact these reviews are not related to the topic. Third, we extend our dictionary with
common misspellings of the selected terms. We also take partial forms of the words. Lastly,
we we create a list of 'minus’ phrases, so that wordings such as “pas cher” (not expensive)
will not be flagged as “cher” (expensive).

Overall , our approach minimises false positives (the probability that the text is attributed
to the topic, when in fact it is not related to the topic), but is does not minimise false negatives
(the probability that the text is not attributed to the topic, when in fact it is related to the

topic). The short version (without misspellings and versions) of our dictionary is presented in
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the Table 2.D.1] The summary statistic of topics is presented in the Table 2.D.2] Notably,
all topics occur with relatively similar frequency (between 2% and 6%) and thus allow a

meaningful comparison.

2.5. Dans Ma Rue

Most of our analysis is based on the TripAdvisor data. To externally validate that our
the presence of tourists affects locals’ satisfaction with amenities, we draw on an additional
dataset from the application Dans Ma Rue created by the Municipality of Paris. With the
help of this application, citizens can register and geolocalise anomalies’ observed in public
space in Parisﬂ Users upload the complaints directly from their smartphones, specifying
the location, date and the subject. The aim of the application is to improve the quality of
Parisian public space by giving access of user-generated data on ’anomalies’ to municipal
service. The application was launched in 2012. For our analysis we focus on complaints
about commercial activity which is the category most related to restaurant activity.

The high resolution of the data allows us to only consider complaints that are possibly
related to a particular restaurant. We assign complaints to a given restaurant within a 100m

radius.

2.6. Social Connectedness Index

Below we want to test whether the origin of tourists has an impact on locals’ perception
of them. To proxy for cultural proximity between foreign countries and France we rely on
the Social Connectedness Index (SCI) published by Facebook.m It is based on the number
of Facebook friendships between users located in a pair of countries. More precisely, it is

computed as

FB Friends;;

Social Connectedness;; = B U TBU
sers; sers;

where FB Friends;; are the number of friendships between users residing in countries %
and j and FB Users; the number of users in country ¢. For further details on the methodology
see [Bailey et al. (2018)). Relying again on the information on users’ origin, we compute the
average social connectedness between the French population and the non-French customers

of a particular restaurant.

6The set of potential ’anomalies’ includes overflowing litter bins, illegal graffiti, abandoned objects, road
damage and many others.
"The version we use dates from October 2021.
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3. Stylized Facts

This section presents stylized facts about the geography of tourism in Paris.

More touristic restaurants receive lower ratings.

To compare the perceived value of more and less touristic places, we run the following

regression at the review level

Rating,;; = BTourism; + X + v; + €4 (2.1)

where Rating,,;; is the rating given by user ¢ for restaurant j in review r. Our variable
of interest is Tourism; which is a measure of how touristic restaurant j is. We add other
controls at the restaurant level (X;) and control for user-level fixed effects (;). This means
we are comparing different reviews made by the same user, controlling for all unobservables
at the level of the user. We also estimate a variation of this specification with quartier fixed
effects. This captures any geographic amenity shifter, e.g. restaurants located along the river
Seine receiving systematically higher ratings because of a nice view. We cluster standard
errors at the restaurant level.

Table displays the results of estimating equation Eq. . The estimation is based
on pre-Covid data in order to avoid any confounding effects. We estimate the regression
separately for Parisians only, since we are interested in the value of amenities for the local
population. We find that overall more touristic places receive lower ratings (5 < 0), after
controlling for the (log) number of reviews received by the restaurant and for user and grid
cell fixed effects. Using the most stringent specification with quartier-level fixed effects in
column 3, we find that an increase in tourism demand by one standard deviation is associated
with a rating that is around 2% lowerf’|

More touristic neighborhoods have less diverse restaurants

While more touristic venues seem to receive lower ratings, we also find that tourism
systematically correlates with other characteristics of neighborhood amenities. We start
from the idea that tourists often visit foreign places to get an impression of the local culture.
Thus, local businesses may cater to this demand by offering a version of French culture that is
particularly appealing to tourists. Indeed we find that the share of restaurants offering French

cuisine is much higher than in neighborhoods more dominated by locals (see Figure .

8The standard deviation of tourism intensity is around 0.125 and the mean rating is around 3.82
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To capture diversity more broadly, we compute the market share of each cuisine type
(weighted by the number of reviews). We then compute the Herfindahl index and show that
more touristic areas have a systematically more concentrated market for restaurants (see

Figure 2.7). This illustrates that tourism is associated with a less diverse set of amenities.

4. Empirical Strategy

We employ a standard difference-in-differences framework at two different levels of ag-
gregation to study the impact of the absence of tourists on locals’ valuation of amenities.
First, a restaurant-level approach gives us a broad picture of whether more and less tour-
istic venues evolved differently over time. Second, review-level regressions allow us to asses
whether the same users evaluated initially more touristic restaurant differently when borders

were closed.

4.1.  Restaurant-level Approach

At the restaurant level, we use the following specification

Y ;i = 8 x Post-Lockdown; x Tourism; + v; + &; + € (2.2)

where Y, is an outcome of restaurant j in month ¢. Post-Lockdown, is a binary variable
indicating whether month ¢ belongs to the post-lockdown period. Tourism; measures to what
extent restaurant j is frequented by tourists. We include restaurant fixed effects (v;) and
month fixed effects (J;). In a more stringent variation of this specification we also include
quartier-time fixed effects. This controls for any unobserved time-varying factors at the
neighborhood level, such as an increased share of remote working that may affect residential
neighborhoods differently than the business district. Standard errors are clustered at the
quartier level.

Below we will focus on one main outcome. We look at the average rating that restaurant
J receives in month ¢, only looking at reviews by local residents. Our hypothesis is that
tourism lowers the utility locals derive from amenities (visiting a restaurant in our case). We

thus expect 5 > 0.

4.2.  Review-level Approach

At the review level, we use the following specification
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Yt = B x Post-Lockdown,; x Tourism; + v, + 0; + 11; + €5 (2.3)

where Y}, is a rating by user ¢ for restaurant j in month ¢. As above, Post-Lockdown, is
a binary variable indicating whether month ¢ belongs to the post-lockdown period. Tourism;
measures to what extent restaurant j is frequented by tourists. In addition to restaurant and
month fixed effects (v, d;), we also include user fixed effects, relying on within-user changes
pre- to post-lockdown. Again, we cluster standard errors at the quartier level.

While including user fixed effects is already restrictive, identification can still come from
comparing the magnitude of within-user changes across users, depending on whether they
visited a touristic restaurant or not. If e.g. an increased life satisfaction post-lockdown and
the propensity to visit more touristic restaurants were both determined by an unobserved
third factor, our findings would be spurious. We thus, in a final step, interact user fixed
effects with a post-lockdown dummy. This restricts identification to users who review at least
two restaurants either before or after the lockdown. Intuitively, this specification captures
whether the penalty for more touristic places decreased after the lockdown relying only on
different ratings for more or less touristic restaurants by a user in the same period.

Our parameter of interest is . Our hypothesis is that tourism is bad for locals’ utility
derived from a restaurant visit. Hence, we should observe that post-lockdown, when restaur-
ants were open, but tourists were not present, initially touristic places start receiving higher

ratings (8 > 0).

5. Results

Table shows the results of estimating equation Eq. using the average monthly
rating by Parisians at the restaurant level as the outcome variable. H We find that initially
more touristic venues receive higher ratings when tourists are no longer around. Importantly,
the effect is not driven by neighborhood-level trends as including quartier-time fixed effects
only marginally changes the coefficient.

The magnitude of the coefficient can be best understood when considering the average
tourism share of around 31.6%. The estimate in column 2 then implies that in Paris without
tourists, which comes close to the reality of the post-lockdown summer, locals rate the
average restaurant around 0.1 (or around 8% of a standard deviation) higher. At the 90th
percentile of the tourism share this estimate more than doubles to around .22 (or around
17% of a standard deviation).

9Note that the sample is thus constrained to restaurants that receive at least one rating by a Parisian in
a given month.
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Table shows the results of a user-level estimation (see equation Eq. (2.3))). Import-
antly, this econometric approach allows us to exploit within-user changes in behavior while
holding fixed time-invariant characteristics, such as preferences for certain types of neigh-
borhoods or restaurant types. We confirm our results at the user level, i.e. Parisians rate
their experience higher in places previously frequented by many reviewers not from Paris.

The coefficient is of similar magnitude as at the restaurant level.

6. Robustness & Further Results

In this section we first present results using the data on neighborhood complaints as
a different measure of disamenities. Then, we show that our result is not specific to the
pandemic-induced shock to tourism, not driven by pre-trends, not affected by spillovers and

present minor robustness exercises such as different levels of clustering.

6.1. Neighborhood Complaints

So far we have focused only on data coming from Tripaduvisor. To provide further evidence
that the lower influx of tourists improved locals’ perceived satisfaction with local amenities,
we analyze data on complaints registered within 100m of the restaurants in our sample by
local residents (see section for a detailed description). The goal of this exercise to show
that tourism not only affects people going to restaurants but also local residents.

We estimate equation Eq. , replacing the average rating of the restaurant with the
number of complaints in the vicinity of a restaurant within a given month. As this is a count
variable which contains zeros, we use a Poisson model to estimate this equation.

Table presents the results. We find that complaints around touristic restaurants
decline relative to less touristic ones. Using the most conservative estimate in column 2,
complaints around a restaurant with an average share of tourists among its customers de-
crease by around 8%/

The positive impact of a decrease in the arrival of tourists is thus not only reflected in
restaurant ratings, but also confirmed by an entirely external data source, namely crowd-

sourced complaints that are used to improve municipal services.

6.2. Bataclan Attacks

We exploit the Covid-19 pandemic as an exogenous shock to tourism. However, the

pandemic also affected the mobility of residents and thus the spatial mobility patterns in

10We use the average tourism share of 31.6% and multiply it with the coefficient in column 2.
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the city. While there were little restrictions in place during the summer of 2020, some
people continued to work from home. In the empirical analysis above we control for trends
that happen at the level of neighborhoods. Thus, a general shift in where the working
population consumes is controlled for. In addition, we present results at the user level,
thereby abstracting from compositional changes in the restaurants’ visitors.

Still the pandemic may have affected restaurants in ways that are unobservable to us
and correlated with our measures of tourism. For example, restaurants with larger outdoor
facilities may have benefited most after the lockdown was lifted, as people continued to
be cautious because of the risk to get infected. If the availability of outdoor facilities is
correlated with our measure of tourism, we are wrongly attributing the observed changes in
ratings and demand to tourism.

To alleviate concerns related to the specific nature of the pandemic, we instead use the
the terrorist attacks that took place on November 13, 2015 as an exogenous shock to tourism.
Three groups launched a total of six attacks that day in Paris, killing 130 people. These
gruesome attacks shocked France and were widely covered in the international press. In the
months that followed, Paris saw a strong decline in tourism. Occupancy rates were down by
13.1% in the three months following the attacks compared to the same period in the year
before[l]

Table display the results of estimating equation Eq. using reviews from Janu-
ary 2015 to June 2016 and defining tourism intensity based on data from 2014. November
2015 is dropped from the analysis and December 2015 onwards is defined as post-Bataclan.
We find that initially more touristic restaurants received better ratings by Parisians after
the November attacks. Compared to Table the coefficient is substantially smaller which
is in line with a lower drop in tourism arrivals than during the summer of 2020. Overall, this
very different natural experiment lends support to our hypothesis that tourism negatively
affects the quality of amenities as perceived by locals. This does not seem to be driven by
factors specific to the pandemic.

In addition, the November attacks allow us to look at the reaction of reviewers that are
not from Paris. Interestingly, there is no effect on their ratings of touristic places. This

suggests that the externalities caused by tourism specifically affect locals.

6.35. Pre-Trends

In order to asses the timing of the effect that we find, we estimate equation Eq. (2.2

allowing for § to be time-varying. In particular, we estimate one coefficient per quarter

1Gee https://www.costar.com/article/724916287| for reporting on the impact of terrorist attacks on
hotel occupancy rates.

87


https://www.costar.com/article/724916287

and set the first quarter of 2020 as reference group. If the effect is driven by the sudden
and unexpected absence of tourists due to the pandemic, we should observe no differential
trends for more touristic restaurants prior to the outbreak of Covid-19. Figure plots
the estimated coefficients along with 90% confidence intervals. The figure shows that prior
to the Covid-19 outbreak coefficients are close to and not statistically different from zero.
Then, in Q3 and Q4 of 2020 coefficients are positive and statistically different from zero.
This lends further support to the interpretation that Covid-19 led to a shift in locals’ ratings

of touristic venues.

6.4. Spillovers

The analysis is focused on tourists visiting a particular restaurant. We thus far have
not tested if this effects spills over to restaurants located close by. In this case the effect of
tourism would be further amplified. We thus include in our baselin specification, equation
Eq. , measures of many tourists visit restaurants in the surrounding area. As Table
shows, using different distances, we do not find strong evidence for that. The impact of a

reduced influx of tourists seems to be mostly limited to the restaurant itself.

6.5. Further Robustness Checks

In order to lend further credibility to our main result we perform several robustness
exercises. First, we report our main result clustering standard errors at different levels. As
Table shows, clustering at the quartier level as done throughout our analysis is on the
conservative side. Second, we use different measures of tourism. In Table we vary the
period over which we compute the initial tourism share. Again, our results are robust to
these different permutations. Third, we use the share of reviews left by non-Parisians instead
of the share of reviews not written in French. As Table [2.B.2]illustrates, using this different

proxy results in a qualitatively similar effect.E

7. Mechanisms

To get at the mechanism, we use two different approaches. First, we use the text-based
classification of reviews described in section [2.2] In particular, we estimate the following

equation

12Note that this measure likely also captures domestic tourism. Since travel restrictions mainly applied to
international visitors, we focus on the share of non-French reviews below.
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Share Reviews;; = § x Post-Lockdown; x Tourism; + v; + &; + € (2.4)

where Share Reviews;; is the share of reviews of restaurant j in month ¢ referring to a
particular type of topic, such as overcrowdingﬁ The rest of the specification is as described
in section [4 We also estimate a review-level version of this specification. The results are
displayed in Table [2.5]

Second, we split the coefficient on the tourism-post interaction by variables defined at the
restaurant level. This allows us to see if the effect is driven by certain types of restaurants.

Below, we will discuss three main mechanisms: overcrowding, supply-side changes and a

direct aversion against the presence of tourists.

7.1.  Qvercrowding

A long waiting time and a noisy environment are distinctive features of overcrowding.
Congestion caused by tourists should lead to an in increase of frequencies of these topics. As
Table shows, we find no evidence pointing in this direction. More touristic restaurants
did not receive relatively less reviews mentioning a long wait or noise after the lockdown.

We interpret this as congestion not being a major driver of our results.

7.2.  Supply-Side Changes

Low quality of food can be associated with the supply-side mechanism. According to this
mechanism, restaurants change their technology when they are oriented to the tourist market
— automatize the production, but also decrease the quality perceived by residents, since in
this case the restaurants face lower incentives to provide consistent quality (tourists are not
repeat consumers). This tendency should reflect in reviews left by residents. A similar logic
can be applied to the concerns of too high prices. When consumers say that the price is too

high, it likely means that price does not correspond to the perceived quality of the product.

7.8.  Aversion

Another driver of our results could just be a direct, taste-based aversion of locals against
tourists, closely linked and probably not distinguishable of xenophobia. As Table shows,

the only reviews that explicity meantion tourists appear significantly less after the lockdown

13Similarly, we estimate equation Eq. (2.3) with a dummy as dependent variable indicating whether a
topic is mentioned in the review or not.
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in initially touristic places. This suggests that it is something about the presence of tourists
themselves rather than perceived overcrowding or decreases in quality.

To further test whether a direct aversion against the presence of tourists is at play, we
test whether the increase in ratings is higher when the tourists are socially more distant
to the local population. In particular, we exploit the information on users’ origin provided
in their profile. This allows us to compute for each restaurant the share of reviewers from
a given country of origin. We combine this with the Social Connectedness Index (SCI) to
compute the average SCI between restaurants’ foreign reviewers and France[]

If Parisians have a distaste for foreigners from less familiar countries, we should see a
higher increase in satisfaction for restaurants with many visitors from these countries. We
thus estimate the treatment effect separately for restaurants with above and below-median
SCI value. Table [2.6| shows that the increase in ratings of touristic places is indeed driven
by low-SCI restaurants. For example, in column 4, the treatment effect for high-SCI is close
to and not statistically different from zero. The coefficient for low-SCI places on the other
hand suggests that touristic, low-SCI restaurants increased their average rating by around
0.13. This evidence is thus consistent with homophily among locals.

One concern might be that social connectedness is correlated with actual tourist arrivals
from a country during the post-lockdown summer. However, the nature of the shock is such
that arrivals from all countries drop to almost zero. Identification is thus almost entirely
based on the pre-Covid exposure to tourism. In unreported results we control for differential
changes in demand by nationality using a Bartik-style shock and find almost no change in

our estimates.

8. Conclusion

This paper studies the impact of tourism on urban amenities. Exploiting a large decline
in international travel during the COVID-19 pandemic, we find that tourism decreases the
perceived quality of restaurants among locals. We find suggestive evidence that the negative
effect of tourism operates through direct aversion against the presence of tourists, rather
than overcrowding or supply-side changes. The effect is concentrated in restaurants where
the tourist clientele was from countries that have few social ties with the French population.

This paper contributes to an emerging literature on the effects of tourism on locals’
welfare. While the existing literature emphasizes price channels, i.e. tourists driving up
prices |Allen et al. (2020) and endogenous adjustment of amenities |Almagro and Dominguez-

lino, (2019), we show that tourism has an additional effect on existing amenities which

14Gee section for a description of the SCI.
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lowers their experienced quality. While we do not aim to evaluate the overall welfare impact
of tourism in this paper, we highlight an additional source of discontent that can be caused
by tourism. This adds to the debate preceding the pandemic on limiting tourism inflows in
some of the most popular tourist destinations. It remains an open question whether tourism
will rebound to its pre-pandemic levels. If it does not, our paper provides a preview how

persistently lower inflows may affect locals’ quality of life.
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Map of restaurants by share of non-french reviews
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Diversity of Cuisine Types
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Dynamic Effects
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9. Tables

Table 2.1: Stylized Facts: User Preferences

Dependent Variable: Rating

Model: (1) (2) (3)

Variables

Tourism Share -0.3932%*  -0.2541** -0.3068"**
(0.0856)  (0.0710)  (0.0700)

log(Num of Reviews) 0.0245* 0.0089 0.0189*

(0.0130)  (0.0100)  (0.0093)

Fized-effects
User Yes Yes

Quartier Yes

Fit statistics

Observations 109,210 109,210 109,210
R? 0.00274 0.61455 0.61866
Dependent variable mean  3.8669 3.8669 3.8669

Notes. This table reports OLS estimates. In all columns the unit of analysis is an individual review.
Dependent variable is a review’s rating. The tourism share is measured as the share of non-French
reviews left on a restaurant’s page until 2020. Standard-errors clustered at the quarters level are in
parentheses.

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.2: Main Result: Tourism and Restaurant Ratings by Parisians (Restaurant-Level)

Avg. Rating by Parisian

(1) (2) (3) (4)

Variables
Tourism share x Post-Lockdown 0.3008***  0.3244***

(0.0789)  (0.0952)
Top 25% Most Touristic x Post-Lockdown 0.1110"*  0.1037**

(0.0368)  (0.0410)

Fixed-effects
Restaurant Yes Yes Yes Yes
Month Yes Yes
Month x Quarter Yes Yes
Fit statistics
Observations 75,876 75,876 75,876 75,876
R? 0.35637  0.38035  0.35631  0.38029
Dependent variable mean 3.8599 3.8599 3.8599 3.8599

Notes. This table reports OLS estimates. In all columns the unit of analysis is a pair Month x Restaur-
ant. Dependent variable is an average rating of restaurants among users with home location in Paris.
The tourism share is measured as the share of non-French reviews left on a restaurant’s page until 2020.
Post-lockdown is a dummy, which is switched on in June, 2020 — after the first COVID-19 lockdown.
Standard-errors clustered at the quarters level are in parentheses.

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.3: Main Result: Tourism and Restaurant Ratings by Parisians (Review-Level)

Rating

(1) (2) (3) (4)

Variables
Tourism Share x Post-Lockdown 0.2781**  0.1866* 0.2587** (0.3393**
(0.0830) (0.0969) (0.1205) (0.1558)

Fized-effects

Restaurant Yes Yes Yes Yes
Month Yes Yes

User Yes Yes

Month x Quarter Yes Yes
User x Post-Lockdown Yes

Fit statistics

Observations 120,314 120,314 120,314 120,314
R? 0.28145  0.73488 0.74564 0.76153
Dependent variable mean 3.8803 3.8803 3.8803 3.8803

Notes. This table reports OLS estimates. In all columns the unit of analysis is an individual review. The
sample consists of reviews left by users with home location in Paris. Dependent variable is a review’s
rating. The tourism share is measured as the share of non-French reviews left on a restaurant’s page
until 2020. Post-lockdown is a dummy, which is switched on in June, 2020 — after the first COVID-19
lockdown. Standard-errors clustered at the quarters level are in parentheses.

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.4: Tourism and “Dans Ma Rue” Complaints

# Complaints

(1) (2) (3) (4)

Variables
Share Tourism x Post-Lockdown -0.6570*** -0.2581*
(0.2272)  (0.1364)

Top 25% Most Touristic -0.3527*  -0.1504**
x Post-Lockdown (0.1213)  (0.0726)

Fized-effects

Restaurant Yes Yes Yes Yes

Month Yes Yes

Month x Quarter Yes Yes

Fit statistics

Observations 366,930 305,332 366,930 305,332

R? 0.48157  0.68477  0.48024  0.68481

Dependent variable mean 0.40114  0.48207  0.40114 0.48207

Notes. This table reports PPML estimates. The dependent variable is the number of complaints re-
gistered on the “Dans ma rue” platform within 100m of a restaurant in a given month. The tourism share
is measured as the share of non-French reviews left on a restaurant’s page until 2020. Post-lockdown
is a dummy, which is switched on in June, 2020 — after the first COVID-19 lockdown. Standard-errors

clustered at quartier level are in parentheses.Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.5: Textual Outcomes

Tourists  Low Food Quality Too Expensive Too Noisy Long Wait
(1) (2) (3) (4) (5)
Panel A: restaurant-level
Variables
Tourism Share x Post-Lockdown -0.0646*** -0.0032 0.0044 0.0093 -0.0132
(0.0112) (0.0190) (0.0142) (0.0109) (0.0123)
Fized-effects
Restaurant Yes Yes Yes Yes Yes
Month x Quarters Yes Yes Yes Yes Yes
Fit statistics
Observations 75,997 75,997 75,997 75,997 75,997
R? 0.24881 0.23065 0.19966 0.18782 0.19802
Dependent variable mean 0.02306 0.07168 0.04727 0.02365 0.02561
Panel B: review-level
Variables
Tourism Share x Post-Lockdown -0.0891*** -0.0032 -0.0334 0.0145 -0.0332
(0.0222) (0.0311) (0.0278) (0.0265) (0.0223)
Fized-effects
User-Post-Lockdown Yes Yes Yes Yes Yes
Restaurant Yes Yes Yes Yes Yes
Month x Quarters Yes Yes Yes Yes Yes
Fit statistics
Observations 111,756 111,756 111,756 111,756 111,756
R? 0.56827 0.60988 0.53738 0.47727 0.53808
Dependent variable mean 0.02274 0.07506 0.05095 0.02816 0.02702

Notes. This table reports OLS estimates.
restaurant X month. In all columns of Panel B the unit of analysis is an individual review. Dependent

In all columns of Panel A the unit of analysis is a pair

variable is constructed from reviews’ texts with the help of dictionaries described in Appendix. In panel

A dependent variable is a share of reviews related to the corresponding topic (by restaurant-month). In

panel B depended variable is a dummy that switch on when a review is related to a topic. The tourism

share is measured as the share of non-French reviews left on a restaurant’s page until 2020. Post-lockdown
is a dummy, which is switched on in June, 2020 — after the first COVID-19 lockdown. Standard-errors
clustered at the quarters level are in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.6: Social Proximity

Avg. Rating by Parisian

(1) (2) (3) (4)

Variables
Tourism Share x Post-Lockdown 0.3073**
(0.1206)

Tourism Share x Post-Lockdown x High SCI 0.1623

(0.1506)
Tourism Share x Post-Lockdown x Low SCI 0.3379***

(0.1209)
Top 25% Most Touristic x Post-Lockdown 0.0865

(0.0571)
Top 25% Most Touristic x Post-Lockdown x High SCI 0.0384
(0.0674)
Top 25% Most Touristic x Post-Lockdown x Low SCI 0.1209*
(0.0637)

Fized-effects
Restaurant Yes Yes Yes Yes
Month x Quarter Yes Yes Yes Yes
Fit statistics
Observations 62,050 62,050 62,050 62,050
R? 0.36701  0.36705  0.36696  0.36698
Dependent variable mean 3.8055 3.8055 3.8055 3.8055

Notes. This table reports OLS estimates. In all columns the unit of analysis is a pair Month x Restaur-
ant. Dependent variable is an average rating of restaurants among users with home location in Paris.
The tourism share is measured as the share of non-French reviews left on a restaurant’s page until 2020.
Post-lockdown is a dummy, which is switched on in June, 2020 — after the first COVID-19 lockdown.
Measure of network proximity between countries of origin are constructed using Facebook data. Res-
taurants with different proximity score were divided into two groups: above and below median proximity,
High and Low SCI respectively. Standard-errors clustered at the quarters level are in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.7: Textual Outcomes and Social Proximity

Tourists  Low Food Quality Too Expensive Too Noisy Long Wait

(1) (2) (3) (4) (5)
Variables
Tourism Share -0.0491*** 0.0197 0.0295 0.0043 -0.0162
x Post-Lockdown (0.0096) (0.0177) (0.0334) (0.0241) (0.0130)
(0.0153)
x High SCI
Tourism Share -0.0816*** -0.0221 0.0077 0.0171 -0.0135
x Post-Lockdown (0.0160) (0.0247) (0.0183) (0.0120) (0.0135)
x Low SCI
Fized-effects
Restaurant Yes Yes Yes Yes Yes
Month x Quarter Yes Yes Yes Yes Yes
Fit statistics
Observations 62,079 62,079 62,079 62,079 62,079
R? 0.24497 0.22017 0.18684 0.18442 0.18753
Dependent variable mean 0.02580 0.07424 0.04878 0.02452 0.02618

Notes. This table reports OLS estimates. In all columns the unit of analysis is a pair Month x Restaurant.
Dependent variable is constructed from reviews’ texts with the help of dictionaries described in Appendix.
It is a share of reviews related to the one of corresponding topics (by restaurant-month). The tourism
share is measured as the share of non-French reviews left on a restaurant’s page until 2020. Post-lockdown
is a dummy, which is switched on in June, 2020 — after the first COVID-19 lockdown. Measure of network
proximity between countries of origin are constructed using Facebook data. Restaurants with different
proximity score were divided into two groups: above and below median proximity, High and Low SCI
respectively. Standard-errors clustered at the quarters level are in parentheses.

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.8: Spillovers

Dependent Variable:

Avg. Rating by Parisian

Model: (1) (2) (3) (4)

Variables

Tourism Share x Post-Lockdown 0.3053** 0.2790***  0.3095***  0.2775***

(0.0836)  (0.1007)  (0.1020)  (0.1036)

Touristic Area (<100m) x Post-Lockdown -0.1396 0.0018
(0.1512) (0.1551)

Touristic Area (100m-300m) x Post-Lockdown 0.4084* 0.4558*
(0.2432) (0.2657)

Touristic Area (300m-500m) x Post-Lockdown 0.0834 0.1179
(0.2977) (0.3427)

Touristic Area (500m-1000m) x Post-Lockdown -0.3662 0.0816
(0.2911) (0.4458)

Fized-effects

Restaurant Yes Yes Yes Yes

Month Yes Yes

Month x Quarter Yes Yes

Fit statistics

Observations 63,410 63,410 63,410 63,410

R? 0.34439  0.34445  0.37327  0.37333

Dependent variable mean 3.8157 3.8157 3.8157 3.8157

Notes. This table reports OLS estimates. In all columns the unit of analysis is a pair Month x Restaur-

ant. Dependent variable is an average rating of restaurants among users with home location in Paris.

The tourism share is measured as the share of non-French reviews left on a restaurant’s page until 2020.
Post-lockdown is a dummy, which is switched on in June, 2020 — after the first COVID-19 lockdown.

Standard-errors clustered at the quarters level are in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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A. Additional Plots

Tripadvisor interface

= @ Tripadvisor
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B.

B.1.

Robustness Checks

Alternative Identification: November 2015 Paris attacks

Table 2.B.1: Tourism and Rating: November 2015 Paris attacks

Rating by Parisians

Rating by Non-Parisians

(1) (2) (3) (4)

Variables
Tourism Share x Post-Attack 0.0992**  0.1096** 0.0216 0.0248

(0.0445)  (0.0508) (0.0264) (0.0314)
Fixed-effects
Restaurant Yes Yes Yes Yes
Month Yes Yes
Month x Quarter Yes Yes
Fit statistics
Observations 44 572 44 572 64,387 64,387
R? 0.35707  0.37938 0.31664 0.33293
Within R? 0.00015  0.00015 1.36 x 107> 1.36 x 107

One-way (Restaurant) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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B.2. Location-Based Tourism Measure

Table 2.B.2:  Location-Based Measure: Tourism and Restaurant Ratings by Parisians:
Restaurant-Level Analysis

Avg. Rating by Parisian

(1) (2) (3) (4)

Variables

Tourism Share (location-based) x 0.4356***  0.3984***
Post-Lockdown (0.0925)  (0.0985)

Top 25% Most Touristic (location-based) x 0.1569***  0.1438***
Post-Lockdown (0.0409)  (0.0442)

Fized-effects

Restaurant Yes Yes Yes Yes
Month Yes Yes

Month x Quarter Yes Yes

Fit statistics

Observations 75822 75,822 75822 75,822
R2 0.35615  0.38011  0.35608  0.38007
Dependent variable mean 3.8505  3.8595  3.8595  3.8595

Clustered (quarter level) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.B.3: Location-Based Measure: Tourism and Restaurant Ratings by Parisians:
Review-Level Analysis

Rating
(1) (2) (3) (4)

Variables
Share Tourism (location-based) x  0.4290*** 0.3172*** (0.3592** (.3868"**

Post-Lockdown (0.0983)  (0.1156)  (0.1288)  (0.1430)
Fized-effects
Restaurant Yes Yes Yes Yes
Month Yes Yes
User Yes Yes
Month x Quarters Yes Yes
User x Post-Lockdown Yes
Fit statistics
Observations 120,252 120,252 120,252 120,252
R? 0.28131  0.73480  0.74557  0.76145
Dependent variable mean 3.8800 3.8800 3.8800 3.8800

Clustered (quarter-level) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.B.4: Location-Based Measure: Textual Outcomes

Tourists  Low Food Quality Too Expensive Too Noisy Long Wait

(1) (2) (3) (4) (5)
Variables
Tourism Share -0.0562*** -0.0213 0.0013 -0.0014 -0.0165
(location-based) (0.0111) (0.0186) (0.0155) (0.0109) (0.0119)
x Post-Lockdown
Fized-effects
Restaurant Yes Yes Yes Yes Yes
Month x Quarter Yes Yes Yes Yes Yes
Fit statistics
Observations 75,943 75,943 75,943 75,943 75,943
R? 0.24864 0.23044 0.19964 0.18781 0.19802
Dependent variable mean  0.02308 0.07171 0.04730 0.02367 0.02563

Clustered (quarter-level) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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B.3.  Aggregation of Language-Based Tourism Measure by Different Periods

Table 2.B.5: Tourism and Ratings: Language-Based Tourism Aggregated by Different Peri-
ods

Avg. Rating by Parisian

(1) (2) (3) (4) (5)

Variables

Tourism share (before 2017) x  0.2659**
Post-Lockdown (0.1114)

Tourism share (before 2018) x 0.3171***
Post-Lockdown (0.1082)

Tourism share (before 2019) x 0.3451*
Post-Lockdown (0.0987)

Tourism share (before 2020) x 0.3244*
Post-Lockdown (0.1016)

Tourism share (before 2021) x 0.3290"**
Post-Lockdown (0.1095)

Fized-effects
Restaurant Yes Yes Yes Yes Yes
Month x Quarter Yes Yes Yes Yes Yes

Fit statistics

Observations 57,292 65,515 72,112 75,876 76,350
R? 0.37559  0.37228  0.37469  0.38035  0.38273
Dependent variable mean 3.7902 3.8156 3.8433 3.8599 3.8626

Clustered (quarter-level) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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B.4. Clustering

Table 2.B.6: Tourism and Ratings: Different Clustering

Avg. Rating by Parisian

(1) (2) (3) (4)

Variables
Tourism Share x Post-Lockdown 0.3244*** 0.3244***  0.3257**  (0.3257***
(0.1016)  (0.0979) (0.0952) (0.0952)

Fized-effects

Restaurant Yes Yes Yes Yes
Month x Quarter Yes Yes Yes Yes
Clustering

Quarter  Grid cell Restaurant No

Fit statistics

Observations 75,876 75,884 75,961 75,961
R? 0.38035  0.38046 0.38098 0.38098
Dependent variable mean 3.8599 3.8598 3.8592 3.8592

Clustered (quarter-level) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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C. Validation of Tourism Measures

Table 2.C.1: Tourist Access

Tourism Share

(1) (2) (3) (4)

Variables

log(Tourist Access) 0.2443"*  0.2170**  0.2450** 0.1409***
(0.0171)  (0.0369) (0.0215)  (0.0326)

Weighted Yes Yes

Fized-effects

Quartier Yes Yes

Fit statistics

Observations 10,179 10,179 10,179 10,179

R? 0.22746  0.31021  0.26590  0.39319

Dependent variable mean  0.31451  0.31451  0.31451  0.31451

Clustered (quarter-level) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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D. Text Analysis

Table 2.D.1: Dictionary for Text Analysis

Low Food quality

pas bon
pas tres bon
mauvaise cuisson

pas assez cuit

sans golt
aucun gout
gout bizzare

trop cuit

aucun saveur
fade
industriel

supermarch

réchauff
cuisine bof
avarié

tombé malade

pas cuit sans saveur mauvaise qualité vomir
indigestion intoxication pas frais surgel
insipid dégueulass degueulass micro-ond
pas fait maison
Too Expensive
prix élevés cher prix sont élevés prix sont tres élevés
Too Noisy
bruyant beaucoup de bruit
Long Wait
long lent
Tourism
touris

Notes. This table reports phrases that were used in our text analysis. Terms are not always the full forms of the words, which helps to take

into account the syntax. We also do not include to this table potential distortions of the same phrases, which were also used in our analysis

(missing accent marks, common misspellings).

Table 2.D.2: Summary Statistics for Textual Variables

Variable N Mean  St. Dev.
Tourism 1,154,860  0.025 0.157
Low Food Quality 1,154,860  0.066 0.248
Too Expensive 1,154,860  0.050 0.218
Too Noisy 1,154,860  0.028 0.165
Long Wait 1,154,860  0.024 0.153
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Table 2.D.3: Ratings and Textual Variables

Rating

(1) (2) (3) (4) () (6)
Variables
Tourists -0.3413*** -0.2868***

(0.0370) (0.0363)
Low Food Quality -1.163** -1.138***
(0.0208) (0.0207)
Too Expensive -0.4439** -0.3939**
(0.0228) (0.0214)
Too Noisy -0.2186™** -0.1930**
(0.0275) (0.0255)
Long Wait -0.4257*  -0.3845**
(0.0280) (0.0255)

Fized-effects
User Yes Yes Yes Yes Yes Yes
Restaurant Yes Yes Yes Yes Yes Yes
Date Yes Yes Yes Yes Yes Yes
Fit statistics
Observations 112,905 112,905 112,905 112,905 112,905 112,905
R? 0.74586  0.76787  0.74789 0.74560 0.74653 0.77195

Dependent variable mean 3.8863 3.8863 3.8863 3.8863 3.8863 3.8863

Clustered (quarter-level) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Chapter 3

Going Viral in a Pandemic:

Social Media and Allyship in the
Black Lives Matter Movement

Abstract

How can modern social movements broaden their base? Prompted by the viral video footage
of George Floyd’s murder, the Black Lives Matter (BLM) movement gained unprecedented
momentum and scope in the spring of 2020. Using Super Spreader Events as a source of
plausibly exogenous variation at the county-level, we find that pandemic exposure led to
an increase in the likelihood of observing online and offline BLM protests. This effect is
most pronounced in whiter, more affluent and suburban counties. We develop a novel index
of social media penetration at the county level to show that this effect is driven by higher
social media take-up among non-traditional users. Specifically, we find that a one standard
deviation increase in pandemic exposure led to a doubling of new Twitter accounts in counties
with no BLM protest history. Our results suggest that the pandemic acted as a demand
shock to social media among non-traditional users, mobilizing new segments of society to
join the movement for the first time. We find supporting evidence for this mechanism using
individual-level survey data and rule out competing channels, such as pandemic induced
salience of racial inequality, lower opportunity cost of protesting or higher overall agitation

and propensity to protest.
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1. Introduction

There is a far more representative cross-section of America out on the streets [...]

That didn’t exist back in the 1960s. That broad coalition.
- Barack Obama, June 3rd 2020

The effectiveness of social movements depends on their ability to mobilize allies, build coali-
tions and inspire reform through collective action |Olson| (1989); Ostrom (1990); Della Porta
and Diani (2015, 2020). Traditionally, mobilization was carried out at the local level via
face-to-face interactions. Today, activism is organized in the virtual space. For instance, the
Civil Rights Movement in the 1960s depended heavily on local chapters as decision making,
mobilization, coordination and persuasion tools Morris| (1986). One of its successors - the
Black Lives Matter (BLM) movement - was born on Twitter in 2013 and relies primarily on
social media to communicate with the broader public and mobilize protesters]]

The #BlackLivesMatter hashtag has become one of the most frequently used hashtags on
Twitter, peaking at 8.8 million tweets per day in May 2020 (PEW, 2020). Videos on Twitter
about the murder of George Floyd by the police officer Derek Chauvin were watched over
1.4 billion times within two weeks| The ensuing protest in May of 2020 were labeled the
“largest” and the “broadest” social movement in the history of the United States.rf]

What led to the broadening of the movement’s coalition during the pandemic? We
approach this question in two parts. First, we establish a causal link between exposure to
COVID-19 and protest participation at the county level, using Super Spreader Events as a
source of exogenous variation. We show that exposure to COVID-19 is associated with an
increase in protest behavior but only among those counties that have never protested for a
BLM-related cause before.

Second, we develop a novel index of social media penetration at the county level to show
that this effect is driven by higher social media take-up during the pandemic but before the
protest trigger. While we cannot fully rule out that other mechanisms were at play, we show
evidence that alternative explanations such as i) a pandemic-induced rise in the salience of
racial inequality, i7) lower opportunity costs of protesting, ii) higher overall propensity to
protest and iv) a scattering rather than a broadening protest are not driving our results.

Previous work has shown that social media can solve the collective action and coordina-

tion problem for individuals already sympathetic to a political cause [Enikolopov et al.| (2020));

L As McKersie, (2021)) notes: "Even though an organization like BLM does not have a constituent base
like the CCCO, through which affiliated congregations and neighborhood organizations issued calls for parti-
cipants, current BLM organizations more than compensate by utilizing the power of social media to mobilize
participants for protests.”

2See Listing of Twitter Videos with George Floyd and BLM hashtag

3See New York Times and [Washington Post
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Manacorda and Tesei| (2020). In contrast, we focus on the role of social media as a tool that
can broaden alliances and mobilize new fractions of society. In addition, previous papers
exploit supply side constraints (informal networks or infrastructure) in the early stages of
internet or social media roll-out going back to the early 2000s (Guriev et al. (2019)); Miiller
and Schwarz| (2020)); |[Enikolopov et al.| (2020)); [Manacorda and Tesei| (2020). However, initial
constraints become less relevant over time and do not account for more recent determinants
of social media penetration. To the best of our knowledge, we are the first to show that
COVID-19 acted as a demand shock for social media among "non-traditional” users and
that this is an important driver behind the broadening of the BLM movement during the
pandemic.

Our identification is based on a small window between the end of March and mid April
of 2020 during which COVID-19 was prevalent enough but lock-down stringency lax enough
to allow for so-called Super Spreader Events (SSE) to occur. These events are characterized
by the presence of one highly infectious individual (a super-spreader) and took place mainly
at birthday parties, nursing homes or prisons. We exploit cross-sectional variation in the
number of SSEs within a 50 kilometer radius from the county border but not within the
county 6 weeks prior to the murder of George Floyd to construct our instrument for exposure
to COVID-19 at the county level. We include state fixed effects and a vast set of county
level controls, most notably the number of historical BLM events between 2014 and 2019,
as well as socio-demographic variables and proxies for political leaning and social capital.

We find robust evidence that exposure to COVID-19 increased BLM protest. We estimate
that a one standard deviation increase in the number of COVID-19 related deaths in a county
at the time of George Floyd’s murder (approximately 25 deaths per 100K inhabitants),
increases the likelihood of a BLM event occurring in the three weeks following the murder
by 5%. Our baseline result is entirely driven by counties with no prior BLM protests and
the effect doubles in size and is more precisely estimated for this sub-sample.

We summarize all robustness checks on our instrument and main results in section [7] and
present them in more detail in Appendix Appendix [A] and Appendix [B We preview here
that we perform several exercises to probe the plausibility of the exclusion restriction. Most
importantly, we i) show in a placebo test that SSEs do not predict past BLM events, and
using LASSO ii) we weight SSEs by their inverse probability of occurrence and iii) include
a control variable that captures the pre-pandemic protest propensityf_f] Our results hold for
various iterations of our SSE instrument (varying distance, time lag, and cases associated
with SSEs). Moreover, we check the robustness of our main results with respect to changes

in sample composition, spatial correlation, and definition of the treatment and outcome

4We describe the LASSO selected model in detail in Appendix section
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variables.

In addition, we propose three alternative identification strategies and show that our
results replicate. First, using large scale mobile phone mobility data by SafeGraph, we
instrument pandemic exposure with tourist flows to one of the largest SSEs in the US -
Florida spring break in March 2020. Second, we employ a difference in differences approach,
for which we scrape information on all similar BLM protest triggers since 2014 to estimate
the differential response to a protest trigger before and after the pandemic. Third, we use
a LASSO-based matching approach, comparing counties with similar pre-pandemic protest
probabilities.

In a next step, we investigate various sources of heterogeneity and show that - in line
with the idea of a broadening movement - our baseline results are driven by whiter, more
affluent and sub-urban counties. We also look at alternative outcomes and find that exposure
to COVID-19 increases the frequency of BLM protest without diminishing its scope (total
number of participants or average number of participants per event). Moreover, we also find
evidence that exposure to COVID-19 increases online protest, measured as the number of
BLM-related tweets and the number of followers of the official BLM twitter account. Lastly,
we geo-localize street art related to George Floyd from the Urban Anti-Racist Street Art
Mapping project and find no effect of exposure to COVID-19 on pro-BLM street art. We
interpret this outcome as form of BLM protest with high barriers to entry (unlike offline and
online protest) as it relies on existing networks and cultural capital.

In the second part of the paper, we investigate whether the uptake in social media can
account for the pandemic-induced broadening of the BLM movement. We start by repeating
the above analysis, this time using a novel index of social media penetration as our main
outcome variable. The index is measured before the protest trigger but after the outbreak
of the pandemic in the United States (i.e. the first detected case on January 20, 2020 prior
to George Floyd’s murder on May 25th). We use the first principle component of multiple
variables: i) the (log) cumulative number of new twitter accounts, which we obtain by
scraping and geo-coding information on the creation date of new twitter accounts at the
county level from approximately 45 million tweets, ii) the (log) number of new followers of
the official BLM account #ii) Google searches for the term ”Twitter”, hypothesizing that
new users will Google the term first to create an account and iv) Google mobility data at
the county level, assuming that increased residential stays (time spent at home) as well as

lower social, work and leisure mobility is associated with more time spent online

5We use a normalized index of search activity for the term ’twitter’ provided by Google Trends. Search
activity indices are provided as integers from zero to 100 with an unreported privacy threshold. Each
observation is the number of searches of the given term divided by the total searches from the geography
and time range, which is then normalized between regions such that the region with the largest measure is
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We find that the pandemic has a positive and significant effect on our social media index
and that this is entirely driven by the sub-sample of counties that have never protested
before. For instance, we show that a one standard deviation increase in pandemic exposure
led to a doubling of twitter accounts among counties with no prior BLM event, without
affecting counties that traditionally protest.

In a next step, we zoom in on the role of twitter in mobilizing BLM protesters. First, we
interact baseline twitter penetration (before the pandemic) with exposure to COVID-19. We
address the concern that our results could capture underlying factors that drive both Twitter
penetration and protest participation, replicating the SXSW instrument for baseline Twitter
penetration used by [Miller and Schwarz| (2020). We show that counties with higher baseline
twitter penetration react more to pandemic exposure. This is in line with two mutually
non-exclusive interpretations. First, counties with higher baseline twitter penetration may
react more to the social media demand shock, as the marginal users has a bigger incentive
to join social media when the existing network is large. Second, the pandemic may also
serve as a demand shock at the intensive margin with existing users spending more time on
social media. Additionally, we interact pandemic exposure with contemporaneous twitter
penetration and find that the effect of COVID-19 on protest is entirely driven by counties
with higher twitter take-up during the pandemic.

To probe the social media mechanism further, we use individual-level survey data. In-
terpreting these results with caution, we find that individuals living in a county with higher
COVID-19 deaths are more likely to receive news about George Floyd through social media
than through other channelsf] We also find that COVID-19 exposure is associated with
more sympathy for the movement and higher salience of racial injustice among respondents
(controlling for race, gender, education, income, and political leaning) without changing
attitudes towards other progressive issues, such as ”illegal” immigration.

In the last part of our paper, we look at competing mechanisms. Naturally, the pandemic
has affected a number of important dimensions that are not limited to higher social media
take-up. First, we consider the possibility that our results are driven by a scattering rather
than a broadening of BLM protest. More specifically, we verify that the effect is not driven
by a substitution away from some locations to others. Second, the pandemic may have
increased the overall salience of racial inequality before the murder of George Floyd. We
test this by interacting COVID-19 with a proxy for disproportional death burden on Blacks
and the number of BLM-related search terms on Google before the protest trigger. Third,

set to 100. The Google Trends data is defined on a designated market area (DMA) level.

6The data set does not contain information on the location of the respondent but only whether they live
in a low, medium or high COVID-19 county. Therefore, we cannot employ our instrument for exposure to
COVID-19.

121



we investigate whether the pandemic has decreased the opportunity cost of protesting. We
interact COVID-19 with the unemployment rate at the county level and stringency at the
state level. If individuals choose to protest in lieu of going to work or engage in social
activities, we should see a larger effect in counties with higher unemployment rates or stricter
stringency measures. Third, we look at the effect of COVID-19 on other protests. If the
pandemic increased overall agitation and propensity to protest, then we would expect this
to also hold for other causes beyond BLM. We show that these channels are unlikely to drive
our results.

We contribute to the nascent literature on the effect of the internet on political outcomes
Falck et al.| (2014)); Lelkes et al. (2017)); [Boxell et al.| (2017)); |Campante et al.| (2018); Guriev
et al.| (2019) and the effect of social media on xenophobia, polarization, political preferences,
social capital and protests more specifically |Acemoglu et al.|(2018]); Enikolopov et al.| (2018));
Bursztyn et al.| (2019)); [Enikolopov et al.| (2020); Manacorda and Tesei| (2020); Miiller and
Schwarz| (2020); Zhuravskaya et al.| (2020)); Miiller and Schwarz| (2021); |Fujiwara et al.| (2021);
Campante et al.| (2021)). To the best of our knowledge, we are the first to investigate the role
of social media in broadening political coalitions through persuasion, rather than mobilizing
individuals that are already sympathetic to the movement’s grievances.

Typically, these papers consider (the lack of) protest mobilization as a collective action
problem, where access to information reduces coordination costs and therefore increases
participation. For instance, |Cantoni et al.| (2019) and Bursztyn et al.| (2021) show in an
experimental setting in Hong-Kong that information about other people’s turnout encourages
individual protest participation and that this has longer-run effects on the propensity to
protest if a sufficiently large fraction of the network is mobilized. They conclude that one-
time mobilization shocks can have persistent effects on the dynamics of social movements.

Most similar to our study, |[Enikolopov et al.| (2020) show that social media helps to solve
the collective action problem in a one-shot setting, where the expansion of a social media
platform coincides with a contested election in Russia. Similarly, Manacorda and Tesei| (2020))
exploit the expansion of mobile phone reception in Africa to show that access to information
and communication technologies will only increase protest if economic grievances are high and
opportunity costs are low (e.g., during economic downturns). In contrast to these papers,
we are able to identify for which groups exposure to social media is particularly effective
and how it can persuade individuals at the margin. In addition, we overcome important
challenges in identifying the causal effect of social media in saturated markets.

Our analysis also contributes to a large literature that analyzes the determinants of
social movements and protests, ranging from macro level drivers, such as local institutions
or socio-economic conditions |Lipsky| (1968)); [Eisinger| (1973]); McCarthy and Zald| (1977));
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Besley and Persson| (2011); Dube and Vargas| (2013)); |[Berman et al.| (2017), to micro level
drivers, including individual decision making processes |[Ellis and Fender| (2011)); (Guriev and
Treisman| (2015); [Sangnier and Zylberberg (2017) and different aspects of individual and
social psychology, as well as protest as a collective action problem |Guriev and Treisman
(2015);|Sangnier and Zylberberg) (2017)); Passarelli and Tabellini| (2017)); Cantoni et al.| (2019);
Enikolopov et al.| (2020)); [Manacorda and Tesei (2020); Gonzalez and Prem, (2020); Hager
et al.| (2020); Bursztyn et al.| (2021).

The remainder of the paper is organized as follows. In section 2, we provide some back-
ground on the BLM movement, present some motivating evidence and describe our main
data sources. We present our empirical strategy in section 3 before moving to our main
results in section 4. Section 5 provides various pieces of evidence for the social media mech-
anism. Section 6 addresses competing mechanisms. Section 7 provides a summary of all

robustness checks performed and section 8 concludes.

2. Background and Data

2.1. BLM History and Motivating Evidence

The Black Lives Matter (BLM) movement emerged on social media after the acquittal of
George Zimmerman in the deadly shooting of a Black teenager named Trayvon Martin. The
movement was founded by three Black activists, Alicia Garza, Patrisse Cullors, and Opal
Tometi in July of 2013 with the aim to end systemic racism, abolish white supremacy and
state-sanctioned violence Black Lives Matter| (2020), and more generally, to “fundamentally
shape whites’ attitudes toward Blacks” Mazumder| (2019).

Over the following months, an ever-increasing but small number of activists coalesced
under the hashtag #BlackLivesMatter on Twitter and Facebook. In August of 2014, after
a court decision to not indite the responsible police officer in the fatal shooting of Michael
Brown in Ferguson, #BLM became one of the most widely used hashtags on Twitter (the
hashtag was used 1.7 million times in the three weeks following the court decision, compared
to 5000 tweets in all of 2013, see [Freelon et al.| (2016);|Anderson and Hitlin|(2016))), confirming
its status as a mainstream social media phenomenon. The shooting of Michael Brown was
followed by a large and protracted protest in the city of Ferguson. The consequences of
this shooting rippled throughout American society, generating counter-movements under the
hashtag #AllLivesMatter and #BlueLivesMatter and mobilizing protesters (for and against
the cause) far beyond the city’s borders.

BLM played a crucial role in transforming localized activism into a coordinated move-
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ment across various locations within and outside of the United States. The founders state
that ”[...] when it was time for us to leave, inspired by our friends in Ferguson, organ-
izers from 18 different cities went back home and developed Black Lives Matter chapters in
their communities and towns — broadening the political will and movement building reach
catalyzed by the #BlackLivesMatter project” Black Lives Matter| (2020). The Black Lives
Matter Global Network Infrastructure was designed to provide decentralized actors with re-
sources and guidelines to organize protests, receive information about the movement, and
coordinate through social media/l

In the following years, the BLM movement expanded geographically and demographically,
attracting an unprecedented number of participants after the murder of George Floyd in
Minneapolis on May 25th 2020. Protesters took to the streets when a video of the murder of
George Floyd went viral on social media, showing how police officer Derek Chauvin suffocated
George Floyd using a choke-hold. The video spurred unrest in Minneapolis but the protests
quickly expanded to other parts of the United States, including communities that had never
engaged in BLM protests before. The number of BLM protests quadrupled in May and June
of 2020, compared to previous peaks in 2016 (see Figure .

The surge in BLM protests in the spring of 2020 is all the more remarkable as the
COVID-19 pandemic was well underway. At the time of George Floyd’s murder almost
100,000 COVID-19-related deaths had been recorded in the United States and the country
was reeling under the first wave of the pandemic (see Figure [3.2). Tough lockdown and
social distancing measures were imposed in many counties to prevent the spread of the
virus. Average lockdown stringency peaked in May Hale et al. (2020) and the Center for
Disease Control and Prevention urged the public to “remain out of congregate settings, avoid
mass gatherings, and maintain distance from others when possible” (CDC (2020).

A key motivating observation for our study is the exceptionally high level of participation
in BLM protests after the murder of George Floyd (see Figure . While the outbreak of the
pandemic and the peak in BLM protests coincided, the surge in protests may still have been
driven by counties that were less exposed to the pandemic. If we split the sample into above
and below median COVID-19-related deaths at the county level and plot the BLM protests
in 2020 in the top panel of Figure |3.3] we also find a geographical link between exposure to
COVID-19 and BLM protests. In the bottom panel of Figure |3.3] we plot the evolution of
tweets that mention the hashtags #BLM or #BlackLivesMatter. Using an algorithm that
assigns tweets to geographic locations, we are able to assign these tweets to counties that
experience above and below median COVID-19-related deaths. We find that locations that

were more affected by COVID-19 increase their online protest activity. These descriptive

"https://blacklivesmatter.com/herstory/
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plots suggest that - despite the fear of contagion and the stringency of social distancing
measures - there is both a temporal and a geographical relationship between COVID-19
intensity and occurrence of BLM protests.

Lastly, we find that - in line with public perception - the BLM movement has broadened
in scope. We divide the counties into those that always protest for BLM and those that pro-
tested for the first time after George Floyd was murdered | Figure[3.4) plots in black counties
that had at least one BLM protest pre-pandemic and also protested after George Floyd’s
death. Counties that recorded their first BLM protest only after George Floyd’s murder are
shown in green. Our data reveals that the geographic spread of first time protesters does
not follow the typical coastal geographic clusters, but rather spread across all of the United
States. Interestingly, counties with no BLM events prior to George Floyd’s murder make up
half of the counties protesting in the weeks following Floyd’s murder.

There are three takeaways from this evidence. First, the BLM movement has gained
unprecedented scope during the pandemic. Second, there is a geographic link between
COVID-19 exposure and online and offline BLM protests. Third, a meaningful propor-
tion of protesters in 2020 come from counties that have never protested for a BLM-related

cause before. We use these observations to guide our empirical analysis.

2.2, Main Data Sources

In this section, we present the primary data sources on the COVID-19 pandemic, BLM
and other protests, Twitter data and other county-level socio-demographic and political
information. Summary statistics are presented in Table [3.1] and a breakdown of summary
statistics by sub-samples (counties with and without prior BLM events) is presented in
Appendix Table [3.C.1] We describe the additional data sources in more detail in Appendix
Appendix [D] and provide an overview of the main sources in Appendix Table 3.D.1]

COVID-19. Data on COVID-19 related deaths and cases in the USA at the county level
comes from the New York Times. This data set provides the cumulative count of cases
and deaths every day for each county in the USA, starting from January 21, 2020 when
the country’s first COVID-19 case was reported. A key limitation of COVID-19 cases data
is that it depends on the testing facility and availability of the test kits in the region. We
therefore mainly rely on COVID-19 related deaths as a measure of exposure to the pandemic.
We also obtain data on daily COVID-19 hospitalizations and deaths by race and ethnicity

at the state-level from the |Center for Disease Control and Prevention.

8We use data from Elephrame on BLM events between 2014 and 2020 and describe this data set in more
detail in the next section and in Appendix Appendix @
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Super spreader events. We collect data on COVID-19 super spreader events from a
project started by independent investigators and researchers from London School of Hygiene
and Tropical Medicine Leclerc et al.| (2020). Data are put together based on scientific journals
and news reports on super spreader events, which are defined as ”clusters” or ”outbreaks”
of COVID-19 infections with a minimum of 2 infections outside of the home. For the whole
period (January 2020 to January 2021), we identify a total of 1074 super spreader events in
the USA. Most commonly, events occur in nursing homes, prisons, factories, and retribution
(correction facility) or medical centers. Figure shows the distribution of these events
by their type and Table provides descriptive statistics about each type of event. We
describe the nature of these events in more detail in section [3[ and lay out the limitations of
the SSE data set and how we address those in Appendix Appendix

Black Lives Matter. This data comes from the crowd-sourced platform Elephrame. It
provides information on the place and date of each BLM protest and estimated number of
participants, as well as a link to a news article covering the protest. We extracted records
of all protests from June 2014 to September 2020 and geo-coded| their location. We also
collected and geo-located cross-sectional information on street art with BLM and George
Floyd-related content from the Urban Art Mapping George Floyd and Anti-Racist Street Art
database. We add information on non BLM-related protests from the [US Crisis Monitor,
a joint project between ACLED and the Bridging Divides Initiative (BDI) at Princeton
University, that collects real-time data on different types of political violence and protests

in the US from Spring 2020 to present day.

Twitter. We collect three types of Twitter data at different points in time (before the
pandemic, during the pandemic but before the murder of Floyd and in the three weeks after
the murder of Floyd). First, from the Twitter API we collect the universe of tweets with
BLM related hashtags. This includes the hashtags #BlackLivesMatter, #BlackLifeMatters,
#BLM, #AllLivesMatter, and #BlueLivesMatterE] Second, we collect data to proxy the
broader use of Twitter by taking a random sample of tweets that use the most common 100
words in the English language. Third, we scrape information on all followers of the official
Black Lives Matter Twitter account (as of March 2022). With the help of a geo-location
algorithm, we can assign about 5 to 20% of Twitter users (depending on the sample) to
counties. We show in Appendix Table [3.D.3|that, reassuringly, the characteristics of counties
for which we have geo-located tweets are remarkably similar to the full sample of counties.

Using this data we are able to proxy i) online protest for and against BLM with the number

9We present a selection of tweet examples from our collected sample in Appendix Table m
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of tweets containing the relevant hashtags ii) the number of new Twitter accounts, using the
creation date of the Twitter accounts and ii) information on baseline Twitter penetration.
Finally, to reproduce the instrument for Twitter usage used by Miiller and Schwarz (2020)
we collect the list of followers of the account of the SXSW festival, which provided an initial
boost to Twitter usage. Appendix Appendix [D] provides more detail on the collection and

construction of the Twitter data used in this analysis.

Google. We use two main sources from Google. First, data on mobility to understand
the mechanism of observing protests during pandemics. This data collects information on
the time a person spent on certain mobility tasks like the time spent in parks, being at
home, doing groceries, in the transit stations and finally at their workplace (as identified by
Google). This information is then aggregated at the county level to measure the aggregate
daily mobility. Second, data on Google search terms from the Google Trends API| at the
Designated Market Area and day level. We use this information to proxy interest in Twitter,
George Floyd and the Black Lives Matter Movement at different points in time. In Appendix

Appendix [D] we describe the Google data and related search terms in more detail.

Survey Data. We use data from the American Trends Panel survey conducted by the
Pew Research Center to estimate the link between COVID-19 death rates and change in
use of social media and public opinion on racial disparities and the BLM movement. We
analyse data from wave 68 that took place between June 4th and June 10th, 2020. This data
set does not include information on the county of the respondent but only the exposure to
COVID-19 (categorized as low, medium or high) in their county of residence at the time of

the interview.

Additional county-level controls. We include unemployment data available on a monthly
basis at the county level from the Local Area Unemployment Statistics of the US Bureau of
Labor Statistics and the total population, population by ethnicity, income statistics (such as
Black poverty rate and median household income (all in 2018), as well as past Republican
vote share (in 2012 and 2016) from the American Community Survey. We use a dummy for
rural counties which is constructed from the Office of Management and Budget’s February

2013 delineation of metropolitan and micropolitan statistical areasF_U] The measure of social

102013 NCHS Urban-Rural Classification Scheme for Counties, Vintage 2012 postcensal estimates of the
resident U.S. population. NCHS Urbanization levels are designed to be convenient for studying the difference
in health across urban and rural ares. This classification has 6 categories: large “center” metropolitan area
(inner cities), large “fringe” metropolitan area (suburbs), median metropolitan area, small metropolitan
area, micropolitan area and non-core (nonmetropolitan counties that are not in a micropolitan area).
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capital that we use aggregates the information on the number of local organizationsﬂ In
addition, we include an index of county resilience towards a pandemic provided by the US
Census bureau, which incorporates health and infrastructure indicator and is described in

more detail in Appendix Appendix [D}

2.8.  Descriptive statistics

Table presents summary statistics on the main variables of interest for the full sample.
As outlined above, we use information that is available at different points in time. We present
5 panels that split the variables according to when they are measured: i) three weeks after
George Floyd’s murder, ii) the day of the murder, iii) before the murder but after the
pandemic started in January 2020, 7v) later outcomes and v) baseline county characteristics
before the outbreak of the pandemic. Our main outcome variables are measured in the
three weeks following the murder of George Floyd, from May 25th to June 14th of 2020.
COVID-19 related deaths and cases, our main treatment variables, are measured at the day
of the murder. We measure proxies for online activity and use of social media (new Twitter
account, Google searches for Twitter and BLM, mobility patterns etc.) before the murder of
Floyd. Some variables are not time-stamped and are only available cross-sectionally at the
time of scraping (followers of the main BLM Twitter account and street art were scraped
in February 2022). Control variables are drawn from various sources at the closest available
year. For instance, variables from the American Community Survey are measured in 2018,
vote shares are measured in 2012 and 2016. Appendix Table reports the exact time
frames of all variables used in our analysis.

The average likelihood of observing a BLM-related protest at the county level between
May 25th and June 14th lies at about 10%. There are on average 0.25 events per county
in the three weeks following George Floyd’s murder and the average number of participants
is approximately 270 with a maximum of over 320K participantsm If an event occurs, the
average number of participants per event is about 540. In the three weeks following George
Floyd’s murder we can identify about 820 tweets per county using BLM-related hashtags
and about 4 to 5 new users per county (those created after the pandemic started but before
the murder of Floyd) who start tweeting about BLM.

The per county average number of cumulative COVID-19 related deaths is 24 (or 0.113
per 1000 population) by May 25th 2020. Absolute cumulative cases are approximately 460

UThis includes: (a) civic organizations; (b) bowling centers; (c) golf clubs; (d) fitness centers; (e) sports
organizations; (f) religious organizations; (g) political organizations; (h) labor organizations; (i) business
organizations; and (j) professional organizations.

12The average sets the number of participants in places with no BLM protests as zero.
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per county (or 2.8 per 1000). The maximum number of deaths in a county at the time was
3,300, compared to 31,000 deaths in March 2022. While COVID-19 cases and deaths were
comparatively low, the salience of the pandemic was particularly high. In fact, lockdown
stringency in the United States peaked in late April 2020. We also report the Black Death
Burden (BDB) and find that Blacks were disproportionately affected by the pandemic. The
average BDB index is 1.3 indicating that Blacks died at a rate 30% higher than their share of
the population would predict. The average county experienced about three Super Spreader
Events in its immediate surroundings between January 2020 and April 2020.

In addition, we report detailed summary statistics for the different sub-samples in Table|3.C.1}|
We report the full sample in the left-hand columns and present a breakdown of the sum-
mary statistics by sub-sample in the middle and right-hand side of the table. We distinguish
between counties with no BLM events before the pandemic and those with prior BLM events.
The vast majority of counties where there was no history of protest for a BLM-related cause
continue to not protest after the murder of George Floyd (2,635 counties, which is approx-
imately 85% of all counties). However, we observe that among the sample of "no BLM
event before” 133 counties start to protest for the first time during the pandemic. We also
report summary statistics on the traditional protesters, i.e. counties that have had a prior
BLM protest. Among those 339 traditional protesters, 123 counties stop protesting after
the murder of George Floyd and 176 counties continue to protest. As expected, the average
probability of observing a protest in response to the murder of George Floyd is 10 times
higher among traditional protesters compared to other counties. Remarkably, however, the
first-time protesters make up nearly 50 percent of all counties that protested during the pan-
demic. Counties that traditionally protest have a higher Black population share and higher
median household income and are more urban and Democratic leaning than the counties

that had never protested before.

3. Empirical Strategy

3.1. Baseline Estimating Equation

To study the effect of exposure to COVID-19 on BLM protests, we estimate

BLM, = By + p1Covid.s + X Px + 05 + €cs (3.1)

where BLM, is a dummy variable for the presence of a BLM protest in county ¢ during the

three weeks following the murder of George Floyd [

13We restrict the sample for our main outcome of interest to the three weeks after the death of George
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We are interested in the coefficient 31, which captures the effect of one additional COVID-
19 related case per 1000 inhabitants in county ¢ of state s at the time of George Floyd’s
murder on May 25th 2020. In addition to state fixed effects 5, the vector X, includes an
array of county level controls (we describe all these variables in detail in Table . Spe-
cifically, we include variables that are associated with participation in the BLM movement,
such as a dummy for urban counties and Black population share and the poverty rate among
Blacks. Most importantly, we also include two major determinants of BLM protests fol-
lowing the murder of George Floyd, namely the number of BLM events before the murder
(starting 2014) and the use of deadly force by police (i.e. number of Black people who died
during an encounter with the police, excluding suicides, for two time periods: from summer
2014 to 2019 and in 2020 up to May 25th). We also control for underlying political and
attitudinal factors and socioeconomic drivers of protest and social media use, such as the
vote share for Republicans in the 2012 and 2016 presidential elections, median household in-
come, unemployment rate, community resilience, and two proxies for social capital (number
of civil organizations and number of religious organizations). We cluster standard errors at

the state level.

3.2. IV Estimation: Super Spreader Events

A key empirical challenge in ascertaining the causal impact of exposure to COVID-19 on
BLM protests is that both occurrences could be driven by unobserved factors. For instance,
tight-knit and socially active communities may both increase the spread of the virus and
protest more for a BLM-related cause. Alternatively, counties that are in favor of lax social
distancing rules (and thus more aligned with the president’s views at the time) are less
likely to engage in BLM protests. Additionally, we may be concerned that BLM protests
themselves could lead to COVID-19 infections. While we can assuage the latter concern
by measuring COVID-19 exposure at baseline (e.g. before the murder of George Floyd and
the onset of BLM protests), we address the former concern with an instrumental variable
approach.

We exploit plausibly exogenous variation in the occurrence of Super Spreader Events
(SSEs) to causally identify the effect of COVID-19 on BLM protests at the county level.
Specifically, we construct the IV as the sum of all SSEs that occur within 50 km of the

county border but not within the county until 6 weeks before the murder of George Floyd.

Floyd, that is the period from May 25th to June 14th for several reasons: we can capture a large share of
the protest behavior (66 percent of BLM protests following George Floyd’s murder can be observed in this
three week window) while limiting the potential for confounding factors to arise. Our results hold when we
extend this window to six or eight weeks, or reduce it to two weeks (see Table
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The first stage is written as:

COUZdC = Co + Clch + XcsCX + Ve + Nes (32)
t—6

Z, =Y  SSEstr (3.3)
m=1

The key identifying assumption of this instrument is that - given the set of controls and state
fixed effects - SSEs only affect BLM protests through an increase in exposure to COVID-19.
We exploit three features of our IV to argue for the validity of the exclusion restriction: )
epidemiological features of super spreader events, specifically small events with one highly
infectious person present ii) the temporal feature, e.g. the short window of opportunity for
SSEs to arise , and i) exposure to SSEs outside the county. In section , we also provide
a number of empirical tests to verify the plausibility of the exclusion restriction and probe

the robustness of our instrument.

Event types. Super Spreader Events are defined as the presence of a highly infectious
person (a super spreader) in a context where they can infect a large number of people.
Super-spreaders are individuals who are an order of magnitude more contagious than others.
This phenomenon, well-known in epidemiology, is instrumental in infectious disease spread
(e.g. |Galvani and May| (2005))) and of particular importance for COVID-19, where 70-80%
of transmissions can be traced back to just 10-20% of cases |Adam et al.| (2020); Endo et al.
(2020); Miller et al.| (2020). It is important to note that these events do not have to be
large gatherings or mass events. The majority of the approximately 1000 SSEs in our data/]
take place in prisons, nursing homes, and at birthday parties. SSEs are characterised by
the presence of a highly infectious individual. The size of the event is only relevant insofar
as it increases the likelihood of a super-spreading individual being present. Therefore, not
all mass gatherings are SSEs and not all SSEs are mass gatherings. This is relevant for the
exclusion restriction as far as it alleviates concerns about SSEs being a proxy for a county’s
propensity to organize large public events, including BLM events. In fact, the overwhelming

majority of SSEs is recorded — as expected — in the medical care sector (see Figure .

Window of opportunity. Next, we illustrate in Figure that the overwhelming ma-
jority of SSEs (solid blue line) occurred between the second week of March and the last
week of April. This was an opportune period for SSEs for two main reasons. First, infec-

tions were sufficiently high to introduce a significant number of super-spreader individuals.

4Data recorded by scientists from the London School of Hygiene and Tropical Medicine
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Second, lock-down measures were not yet stringent enough (in addition to the lack of public
awareness) to restrict group gatherings and encourage mask-wearing. The red dotted line
of Figure [3.6[ shows that the increase in the number of new COVID-19 cases coincided with
the increase in SSEs. The green dashed line illustrates that state-issued stringency measures
(as measured by the stringency index from the Oxford COVID-19 Government Response
Tracker) peaked around the time that SSEs leveled off. We argue that during this time
window, the occurrence of SSEs was mainly driven by the presence of a highly infectious
person, rather than heterogeneity in risk preferences or other underlying factors that could
drive both SSEs and BLM protests. We only include SSEs until April 13th 2020 - 6 weeks
prior to George Floyd’s murder, to account for the fact that SSEs further into the pandemic
may be more endogenous. We illustrate in Figure that this was well into the pandemic
(measured as the cumulative number of COVID-19 related deaths) but sufficiently distanced
from the surge in BLM protests and its trigger.

Geographic proximity. Lastly, we improve on the plausibility of the exclusion restriction
by exploiting SSEs outside the county and not within the county. Specifically, we use the
number of SSEs within a 50km (or approximately 30 mile) radius from the county border in
which we measure exposure to COVID-19 and BLM protests. We illustrate the construction
of our instrument in Figure using the example of Arizona. To create this instrument, we
rely on the geo-location information of the SSEs and county borders. We indicate as red dots
the SSEs used for our IV in this illustrating case. We first draw a circle from the location
of each super spreader event and then use the SSEs whose circle intersects with the county
boundary to instrument COVID-19 deaths. We argue that SSEs in geographic proximity
but not in the county itself are even less likely to affect BLM events in the county other than
through COVID-19 exposure.

In Figure |3.9| we show the geographical distribution of our instrument across US counties.
In the top panel, we map at the county level the cumulative number of SSEs 6 weeks
prior to Floyd’s murder. In the bottom panel, we illustrate the identifying variation of our
instrument, e.g. the number of SSEs in 50 km proximity to the county border up to April
13th. We present the first stage results in Table [3.C.3] Results show, as expected, that a
higher number of cumulative SSEs in a 50km radius of neighbouring counties is related to
a higher number of COVID-19 deaths per thousand population. On average, an increase
of one additional SSE increases the number of COVID-19 deaths per thousand population
by between 0.8 and 1.3 points, depending on the specification. For all specifications the
F-statistic is well above the standard threshold.

Overall, the features of our instrument (epidemiological feature, small window of oppor-
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tunity, geographic distance) lend confidence to a causal interpretation of our IV estimation.
We dedicate subsection section [7.1] and appendix Appendix [D] to carefully addressing con-
cerns about the validity and robustness of our instrument. Let us preview some of the most
important checks here. First, we show that SSEs do not predict past BLM events. Second,
we incorporate various weighting schemes and additional control variables to improve the
plausibility of the exclusion restriction. Third, we run a number of robustness checks, in-
cluding varying the distance and window of opportunity for SSEs, excluding SSEs in prisons,

and controlling for SSEs in the same county.

4. COVID-19 and BLM

4.1.  Main Results

We present our main results in Table showing the OLS and IV results for the full
sample (Panel A), the sample of counties without BLM events prior to George Floyd’s murder
(Panel B) and the sample of traditional protesters, e.g. those with at least one BLM event
before (Panel C). Reduced form regressions are presented in Appendix Table [3.A1]

Column 1 of Table reports the effect of COVID-19 deaths on the probability of ob-
serving a BLM protest without state fixed effects or controls. We find consistently strong
and positive effects of COVID exposure on protest behavior. In columns 2 to 6, we progress-
ively add state fixed effects, demographic controls (share of Black population and degree
of urbanization), economic controls (median household income, unemployment share, Black
poverty rate, 3+ risk factors/community resilience), and political controls (Republican vote
share in 2012 and 2016, social capital, i.e. the number of different types of civic organiz-
ations, the number of past BLM events between 2014 and 2019, and deadly force used by
police between 2000 and 2019).

Our preferred specification is presented in column 7 and includes state fixed effects and
the full set of controls. We find that one additional death per 10 000 population increases
the likelihood of at least one BLM event occurring in the three weeks following the death of
George Floyd by between 2 and 6 percentage points (p.p.) depending on the specification.
An increase of one standard deviation in the number of deaths per thousand increases the
likelihood of at least one BLM event occurring by between 5 and 14 p.p.

As shown in Figure [3.4] we observe that more than half the counties that take to the
streets in response to George Floyd’s murder have never protested for a BLM-related cause
before. In Panels B and C of Table |3.2, we turn to the sub-samples of counties with and

without protest history. Focusing on column 7 of Panel B, we find that the effect doubles
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in size and is more precisely estimated than the full sample. Specifically, we find that a
one standard deviation increase in the number of deaths (25 per 100 000), increases the
probability of protesting by 10%. On average, a marginal increase of around 1.2 points
in the number of COVID-19 deaths per thousand population in all counties that did not
protest before the murder of George Floyd would double the number of counties hosting a
first demonstration. In Panel C, we show that traditional protesters are not responding to
the exposure to COVID-19, confirming that our baseline result is entirely driven by counties
protesting for the first time.

Throughout all of our estimations (including the robustness checks presented in subsec-
tion section the IV estimates exhibit larger coefficients compared to the OLS. In the
absence of exogenous variation in changes to the COVID-19 infectious environment, the
OLS underestimates the role of COVID-19 as a trigger for BLM protests. The bias in the
OLS could stem from unobserved within state county-level determinants that drive both
BLM protests and lower levels of COVID-19 exposure[l’] This could be due to underlying
attitudes that disapprove of the Trump administration (beyond those that are captured in
the past Republican vote shares and the inclusion of state fixed effects). For instance, more
progressive counties, such as Travis county (capital Austin Texas) could be more favorable
towards the BLM movement and at the same time more cautious vis a vis the pandemic
outbreak and adhere to stricter social distancing rules than Montgomery, Texas. Using mo-
bile phone mobility data, we find that counties that protested for BLM after the murder of
George Floyd also decrease their workplace and leisure mobility, while increasing residential
stay. This is in line with Dave et al.| (2020) who show that BLM protesters adhere more to
social distancing measures.

Again, we preview here that our results are robust to changes in the construction of the
instrument, treatment and outcome variables, to changes in the sample composition, spatial
clustering, and additional controls. We describe all of these checks in section and provide
greater detail in Appendix Appendix[A] In addition, we we use three alternative identification
strategies to corroborate the results, including the use of an alternative instrument; an
instrumented difference-in-difference model and a LASSO propensity matching model. These
are summarized in section and described in detail in Appendix Appendix

4.2. Heterogeneity

What are the characteristics of counties that start to protest in response to the murder of
George Floyd? In Table we interact exposure to COVID-19 with baseline characteristics

15Since the treatment (exposure to COVID) is measured before the protest trigger, reverse causality is not
the driver of the difference in magnitude.
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for the full sample of counties and report the coefficient of the interacting variable in the
bottom row. We analyze heterogeneity over the full sample to identify which baseline county
characteristics determine protest in response to George Floyd’s murder. We instrument both
COVID and the interaction term with our SSE variable, and report the F statistics at the
bottom of the table.

In column 1, we show the baseline effect for reference. In columns 2 and 3, we consider
heterogeneity by race as recorded in the American Community Survey in 2018/ The coeffi-
cient of the interacting variable indicates that - as expected - counties with a higher non-Black
and non-white population share are less likely to protest overall. This is in line with our
prior that those who are most affected by the movement’s grievances are typically protesting.
However, counties with a higher non-Black population share (including whites, Hispanics,
Asians and ”others”) are more likely to respond to exposure to COVID-19, confirming the
idea of a broadening BLM coalition. Interestingly, if we look at the effect of counties with
higher non-white population shares (this includes other minorities beyond Blacks), we do
not see the same response, indicating that whites are driving the results in column 2.

In column 4, we move to the economic prosperity of the county, as proxied by the median
household income - again measured in 2018 from the American Community Survey. Richer
counties are more likely to protest overall and these counties protest even more in response
to the pandemic. This is in line with two mutually non-exclusive interpretations. First,
the literature on protest and conflict highlights that individuals need basic resources to be
able to engage in protest in the first place Bates et al|(2002); Bazzi and Blattman (2014));
Besley and Persson| (2011)). Only more affluent households may be able to protest when the
resources of other households are depleted due to the pandemic. Second, it is possible that
- similar to the non-Black counties in the previous columns - richer counties become aware
of racial inequalities through the murder of George Floyd and start to protest in response.

As expected, counties with higher vote shares for Donald Trump in the 2016 elections
(vote share Republican reported in column 5) are less likely to participate in BLM protests
overall. However, the coefficient of the interaction term is negative, not significant and very
noisy, indicating that the political leaning is less relevant for the likelihood of a BLM event
occurring in response to higher exposure to COVID-19. Conditional on state fixed effects
this may not be surprising, as they capture a large share of the variation in political leaning.

In columns 6 to 9, we consider different classifications for a county’s degree of urbanization
as defined by the 2013 NCHS Urban-Rural Classification Scheme for Counties. Typically,
BLM protests occur in large metropolitan areas, like New York or Los Angeles and less

frequently in smaller cities, suburban or rural areas. In column 6, we look at the effect

16Gelf reported racial identification with the categories: white, Black, Asian, Hispanic and ”other”.
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of the pandemic on counties that are not part of a large city. This encompasses fairly big
sub-urban areas like Bergen County, New Jersey (adjacent to Bronx County in New York) to
small rural areas like Mariposa County, California. Similarly, we also consider only suburban
counties in column 7. Both of these county types experience an increase in BLM protests in
response to the pandemic. Unsurprisingly, small towns and rural areas are less responsive
to COVID-19 exposure.

Overall, these results confirm our prior that the pandemic broaden the kind of counties
mobilizing for BLM. These recently joined counties are characterized by having a higher
share of non-Black and affluent populations and for having a higher probability of being
located in suburbs and smaller cities.

We repeat the analysis, now focusing on the sub-sample of counties with no prior BLM
protests. While the previous exercise sheds light on heterogeneity in the characteristics of
counties that respond to exposure to COVID-19, this analysis excludes traditional protesters
and investigates which of the counties join the movement in response to the pandemic, and
which counties remain inactive (rather than continue to protest). We present these results
in Table and find similar patterns. While the racial composition of the county points
in the same direction (but is more noisy), the effect of income and degree of urbanization

become larger and more precisely estimated.

4.8.  Alternative Outcomes

Our main variable of interest, so far, was the likelihood of observing any BLM protest in
the three weeks following the murder of George Floyd. In Table|3.3] we consider the frequency
and scope of BLM protests and include other forms of political expression, including online
protest and street art.

We report the baseline result for the sub-sample of counties with no prior BLM events
in column 1. In columns 2 to 4 we look at the structure of these protests, investigating the
number of BLM events in the three week window, as well as the total number of protesters
and the average number of protesters per event.

In columns 3 and 4, we look at the total number of participants and the average number
of participants, again including counties with no BLM events as zeros. We find negative
but non significant and very noisy estimates for the effect of COVID-19 on both measures
for the scope of BLM protests. We conclude that the pandemic increase the likelihood and
frequency of BLM protest without significantly impacting its scope.

Next, we investigate the impact on online protest. In column 5, we report as an outcome

the total number of geo-localized tweets in a county in the three weeks following George
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Floyd’s murder. These are based on the universe of tweets that use the hashtags #Black-
LivesMatter #BlackLifeMatters or #BLM. We find a large effect of pandemic exposure on
the number of BLM tweets. Our coefficient is eight times the average number of BLM re-
lated tweets in the full sample. In addition, we scrape information on all followers of the
official BLM account and geo-localize each Twitter user. We find that places that were more
exposed to the pandemic started following the BLM account in greater numbers. This has
potential implications for the medium-run mobilizing potential of the movement. The official
twitter account serves as a primary coordination, communication and mobilization tool for
BLM Black Lives Matter| (2020). Therefore, the expansion of the follower base may help
activate these groups, when similar protest triggers arise in the future.

While protests on the streets and online may have a low barrier to entry, there are other
forms of political expression that require more cultural or political capital. For instance,
street art (and art more generally) has become a major form of advocacy in anti-racist
movements (Cappelli et al. (2020); Mathieu (2018)) but is not as accessible and is harder
to replicate among counties that are new in hosting BLM events. We geo-locate street art
containing references to Black Lives Matter and George Floyd from the Urban Art Mapping
George Floyd and Anti-Racist Street Art database. In line with our priors, newly mobilized
counties can mobilize in the arena of online and offline protest but cannot quickly replicate

forms of protest that are more deeply rooted in the BLM movement.

5. Social Media and BLM

5.1. COVID-19 and the Use of Social Media

Average monetizable DAU [daily active users| grew 24 % year over year... The increase in
mDAU was driven by ... an increased engagement due to the COVID-19 pandemic.
Twitter letter to shareholders| of April 30th 2020

The literature on the effect of social media on protest and other political outcomes exploits
supply side constraints to the access to social media, typically leveraging a version of a
staggered roll-out design |[Enikolopov et al.| (2020)); [Manacorda and Tesei| (2020); Miiller and
Schwarz (2020). These approaches go back to the early 2000s and become less relevant as
social media becomes widely accessible. In this paper, we hypothesize that the pandemic shif-
ted a substantial proportion of communication and social interactions to the digital spaced.
More specifically, we argue that the pandemic acted as a demand shock to social media,
particularly Twitter. In this section, we will show that the pandemic-induced uptake in so-

cial media happened disproportionately in areas with no BLM history. We argue that these
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"non-traditional” users were then exposed to an unexpected and highly viral protest trigger
- the murder of George Floyd - which in turn mobilized them to take to the streets for the
first time during the pandemic.

To further motivate this prior, we show some descriptive figures in Appendix Figure[3.C.1
and Figure[3.C.2] We see that in the period prior to the protest trigger, the mean stringency
of social distancing and lockdown measures (as proxied by the Oxford Government Response
Tracker) increased substantially. Measures mostly included recommendations to socially
distance (interestingly, mask wearing recommendations - a sub-category in this index - only
started many weeks later). In Figure , we use Google mobility data and show that
residential stay increased, whereas other types of mobility (particularly, work, transit, and
retail) decreased substantially. This already points to a probable decrease in social activities
and an increase in online activities between March and May. Moreover, many online services
reported substantial increases in the number of users during the first months of the pandemic.
For instance, Netflix attributed 16 million new subscribers to lockdown measures [["] and
TikTok experienced growth of 180 percent during the pandemiﬂ

To test this hypothesis more systematically, we create a novel index of social media
penetration that comprises the first principle component of four main variables (plus the log
of two of them )’} 4) the (log) cumulative number of new Twitter accounts, which we obtain
by scraping and geo-coding information on the creation date of new Twitter accounts at the
county level from approximately 45 million tweets; i) the (log) number of new followers of
the official BLM Twitter account, which we obtain by scraping the BLM account followers,
identifying their creation date and localizing them; 7i7) the normalized index of search activity
for term "Twitter’ provided by Google Trends, hypothesizing that new users will Google the
term and then create an account m; and iv) Google mobility data at the county level,
assuming that increased residential stay (time spent at home) as well as lower social, work
and leisure mobility is associated with more time spent online.

All of these variables are measured between January 2020 and May 24th 2020, i.e. after

"https://www.bbc.com/news/business-52376022

18TikTok Usage

19We include both the absolute number of accounts and the log number of accounts (new Twitter accounts
and new BLM followers) for two reasons. On the one hand, we do not have a prior as to whether the
absolute number Twitter users or share of Twitter users is important for the occurrence of a BLM event.
It is possible that irrespective of county size or Twitter penetration at the county level, there is a threshold
level of individuals that need to be mobilized for a BLM event to occur. The average number of protesters
at a BLM event in counties with no prior BLM events is about 350 individuals. On the other hand, in the
absence of a good measure for relative importance of Twitter (by population, baseline Twitter usage, overall
social media users) we want to give less weight to counties with higher Twitter penetration. Including both
in the principle component will allow us to account for distributional features of Twitter penetration. The
principle component will only capture the residual correlation between the two variables.

20The Google Trends data is defined on a designated market area (DMA) level
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the outbreak of the pandemic but before the murder of George Floyd. We limit the observa-
tion period, such that the BLM events themselves do not impact online activity but we are
still able to observe the pandemic-induced increase in online activity. We show the features
of our index in Table [3.C.7] presenting the correlation between the different sub-components
in Panel a), the eigenvalues of the principle components in Panel b) and the factor loadings
in Panel c).

In Table [3.5, we show the results for the full sample (Panel A), counties with no BLM
events before George Floyd’s murder (Panel B) and counties with prior BLM events (Panel
C). Again, we use the instrumented exposure to cumulative COVID-19 deaths per 1000
population until May 24th as a main explanatory variable. In column 1, we confirm that
the pandemic has led to an increase in online activity as measured by our index for social
media penetration. Importantly, the effect is 10 times as large and more precisely estimated
for the subset of counties with no prior BLM protest history.

We then zoom into the specific sub-components of the index and find in column 2 that
increased exposure to the pandemic had no effect on the raw number of new Twitter accounts
created until May 24 (just before George Floyd’s murder) for the full sample, or the sample
of traditional protesters, but is large and significantly positive for the sub-sample of counties
with no prior BLM events. When we consider the log of new Twitter accounts in column 3,
we find an even stronger effect for the sub-sample of counties with no BLM before George
Floyd’s murder.

Focusing on Twitter search terms on Google as an additional proxy for the use of Twitter
in column 4, we find that - again - search terms only significantly increased among counties
with no prior BLM events. Then we show residential stay (column 5), using Google mobility
data at the county level in the month leading up to George Floyd’s murder and find that for
all samples there has been an increase in residential stay - and more so among counties with
no prior BLM events. Lastly, we find a positive but noisy effect of COVID-19 on the number
of new BLM followers and no effect on the log number of new followers. This is possibly due
to a noisy measure of BLM followers as we scrape this information in February 2022, when
many accounts may have been deleted or have unfollowed the BLM account.

Taken together, these results show, consistent with our prior, that the pandemic has
increased online activity and particularly the use of Twitter - but only among those counties
that never protested for a BLM-related cause before. It is important to note again that we
measure this online activity cumulatively at the day of George Floyd’s murder, capturing
the pandemic-induced increase in social media use and excluding the effect of George Floyd’s
murder on social media use directly. The pandemic acted as a demand shock to social media

in areas with lower prior BLM salience.
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5.2.  Twitter and BLM protests

In the previous subsection, we have established that the pandemic is associated with
higher online activities. Importantly, this is driven by the sub-sample of counties with no
prior BLM protest, which are also those that start to protest in response to the pandemic.
In this section, we establish a more direct link between online activity, particularly Twitter
usage, and protest behavior.

However, it is possible that among the sub-sample of counties with no prior BLM protest,
those counties that experienced an increase in social media uptake are not the same as those
where protests occurred. Therefore, we interact different measures of Twitter penetration
(we detail the construction of this variable in Appendix @ with (instrumented) exposure
to COVID-19 to see whether within the sub-sample of counties with no prior BLM ptotest.
We caveat now that baseline Twitter penetration may be related to unobserved factors that
co-determine BLM protests. Additionally, new Twitter accounts are a bad control as they
are co-determined by exposure to COVID-19. We will address this point in the subsequent
analysis but focus, for now, on the following heterogeneity. We estimate a second stage

regression of the form:

BLMcs =po + b C/O\Ec + By Twitter. (3.4)
+ 53Covidc/x\Twz'tte7"C
+ XfOx + 05 + €cs

where Twitter, is either (i) the number of users posting about BLM registered in 2020 before
May 24 in county c of state s, or (ii) the number of users from the county observed in
a sample of tweets collected on December 2019. The logarithm of this number (plus one,
to avoid missing values) is interacted with COVID 19 deaths per 1000 populationﬂ We
instrument COVID-19 deaths and their interaction with users by SSEs and their interaction
with Twitter,.

We present results in Table for the sample of counties with no prior BLM protests.
In column 1, we show the interaction effect between instrumented COVID-19 and baseline
twitter penetration, measured as the log number of users in December 2019. We find that
the effect of COVID-19 entirely runs through counties with higher levels of baseline users.
The baseline effect of both COVID-19 and baseline Twitter penetration are insignificant. In

column 2, we repeat the same exercise, this time interacting instrumented COVID-19 with

21'We use the logarithm instead of the actual number of tweets to overcome potential problems with outliers
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the log number of new accounts created during the pandemic. Remarkably, we find a positive
and significant coefficient of almost identical magnitude. We take this as first indicative
evidence that baseline penetration combined with COVID-19 exposure is a major predictor
of new users in the pandemic. This is in line with the literature on the path dependence
in technology adoption Arrow| (2000)); |Arthur (1989); Liebowitz and Margolis| (1999); Miiller
and Schwarz (2020). The marginal utility of joining a social network increases with the size of
the existing network. Therefore, it may be unsurprising that the pandemic induced increase
in the use of social media operates through the sub-sample of counties with sufficiently large
baseline network size.

In Table 3.7 we repeat the analysis for the subsample of counties that had already hosted
a BLM event before the murder of George Floyd. Results show no differential effect of
COVID-19 on protest neither in counties with higher baseline Twitter penetration (column
1), nor in counties with more new Twitter accounts created during the pandemic (column
2) for this subsample.

The different results of this exercise for the subsample with and without previous BLM
protest suggest that exposure to the George Floyd murder and the following reaction though
social media is important in the fractions of the population that are not yet conscious of
the problems faced by Black people and of systemic racism more generally. As shown in
previous sections, counties without previous BLM events are generally whiter, richer and
less urban. It is not surprising that people living in whiter, richer and less urban areas have
been less exposed (directly or indirectly) to the problem of racial inequality. Indeed, Black
people do not need external input to learn about racial inequality, and people who live in
counties that already hosted a BLM event are more likely to have already been exposed to
narratives highlighting the problem. This exposure could have happened through different
channels, and notably through BLM protest themselves as protests can serve as information
shocks [Lohmann, (1994)).

As cautioned some paragraphs above, these results cannot be interpreted causally: while
we have an instrument for COVID-19, the number of pre-existing and new Twitter users is
endogenous and potentially correlated with the error term. Even with the fixed effects and
various controls, Twitter usage at baseline could be driving BLM protest differentially for
counties with higher COVID-19 exposure.

To address this concern, we instrument pre-pandemic Twitter penetration in December
2019. Specifically, we reproduce the SXSW instrument for Twitter usage described by Miller
and Schwarz (2019). SXSW (South by Southwest) is an annual festival in Austin, Texas.
During the March 2007 edition Twitter was heavily promoted, leading to a rapid increase

in the social network’s popularity. To reproduce this instrument, we collect the location of
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all followers of the @SXSW account of the South by Southwest festival and the date they
joined Twitter.

The dataset we end up with is not entirely identical: some users created on or before
March 2007 might have started or stopped following SXSW later. They might also have
changed their location between the time Miiller and Schwarz collected their dataset and
when we collected ours (2019 versus November 2021). Finally, our geolocation method
might be different 7]

Following Miiller and Schwarz (2020), we compute for each county the number of followers
whose account was created in March 2007 and the number of users whose account was created
before this date. With our data collection and user localization strategy, this leads to users
being located in 172 counties, only 67 of which did not have BLM events before (Miiller and
Schwarz find 155 affected counties). To increase the number of treated counties, and thus the
power of our identification, we also consider users in neighboring counties created during this
period: assuming that Twitter presence diffuses geographically in part (again following the
Miiller and Schwarz approach), these counties should also have a higher number of Twitter
users. We find 817 such counties, 618 of which did not have a BLM protest before.

We estimate the log number of observed Twitter users in December 2019 using the number
of users that joined during SXSW controlled by the number of SXSW followers that joined
before | with the following regression:

Users, =&y + &S5 X SW Usersg. + ESXSW Pre Userss,
+ chX + Vs + Nes (35)

where SXSW Users,, is the log number of SXSW followers who created their account in March
2007 in the county and neighboring counties, and Pre SXSW Users,,. is the log number of
SXSW followers in the county and neighboring counties that created their account before
March 2007.

For the subsample of counties without BLM event before George Floyd’s muder, the
results of this first stage regression are reported in Appendix Table|3.C.6, The coefficient of
SXSW users is positive and highly significant, and the first stage is strong (F = 13.02). We re-
run the above specification, this time instrumenting pre-existing Twitter users by the SXSW

instrument. The results for the second stage are presented in column 3 of Table We report

22We automatically geocode the location given by the user using Nominatim, as described in the Data
section. Miiller and Schwarz| (2019) do not detail their geolocation method. |Fujiwara et al.| (2021)) indicates
that 58% of users that joined between 2006 and 2008 are geocoded; we attribute 52% of users to US counties
(excluding imprecise locations and locations outside the US).

23This variable controls for the interest in SXSW festival and also acts as a proxy control for the general
interest in Twitter in the county.
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the per-coefficient F statistic of weak identification following [Sanderson and Windmeijer
(2016]).

While this result supports our hypothesis, it needs to be interpreted with caution. First,
though we focus on new users, we do not observe the extensive margin of Twitter usage: our
collection method only allows us to observe users that actually post on Twitter or retweet
existing posts, but not users that only read and like tweets. In this way the results that we
capture underestimate the effect exposure to social media had on BLM protests.

Second, we cannot disentangle the effects of having higher share of users at the baseline
from the effect of additional people joining Twitter due to the pandemic. These two measures
may be related. On one hand, they are related by network effects. COVID-19 created a shock
increasing the demand for online activities, including social media. Potential social media
users faced a choice between different options of online activity to adopt. The likelihood of
adopting Twitter is higher for people that know a number of friends using Twitter, both
because they can use it to communicate with their friends, but also because it is more likely
that these friends share interesting tweets through other channels. On the other hand, there
is also a saturation effect: a higher Twitter penetration pre-pandemic in a county reduces
the potential number of people that can join Twitter or use it more. This is not likely to
be the case here, as the extra Twitter usage derives from a demand shock, where users have
more time to spend on Twitter, instead of an offer shock. Moreover, Twitter reports only 77
million users in January 2022 in the United States, while for instance Facebook reports 180
millions which makes an absolute saturation (i.e. saturation driven not by users’ maximum
level of willingness to join or spend time on social media but by the absolute availability of
time or of new possible users) unlikely.

Despite the limitations discussed above, we can interpret these results as suggestive
evidence that social media (either at baseline or its increase in usage during the pandemic)
played a crucial role in mobilizing for BLM in counties whose population is less likely to have
been exposed to narratives that denounce the presence of racial inequality and discrimination

(i.e. whiter, richer, less urban counties that have not hosted any BLM event before).

5.3. News Consumption and Attitudes towards BLM

In this subsection we examine the social media mechanisms more closely by exploiting
individual-level survey data. We ask whether exposure to COVID-19 at the individual level
caused a shift in news consumption away from traditional media and towards social media.
We then investigate whether this shift is accompanied by a change in attitudes towards

Blacks and the Black Lives Matter movement more generally.
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It is important to note that a causal interpretation of these results is not possible, as we
do not have precise information on the location of the respondent; we only have information
on the severity of exposure to COVID-19 in their county of residence at the time of the
interview in June 2020. However, the rich set of individual-level controls and placebo checks
assuage concerns about omitted variable bias.

We use survey data from the Pew Research Center to conduct individual-level mul-
tivariate regressions on different outcomes, controlling for respondent characteristics: race,
whether or not they live in a metropolitan area, gender, age, education, income and whether
or not they lean towards the Democratic party. Table [3.8| shows the results. Columns 1 - 3
show the intensity and form of news consumption in the context of George Floyd’s murder.
Higher levels of COVID-19 are positively and significantly associated with more news con-
sumption about George Floyd and more social media news consumption about George Floyd.
In column 3, we show that individuals in counties with higher COVID-19 exposure also con-
sume relatively more news about George Floyd on social media, confirming a change in the
information set - or at least their source.

Then, we analyze whether this change in mode of news consumption is accompanied
by a change in attitudes. In column 4, we find that individuals are more likely to report
that higher hospitalization rates of Blacks during the pandemic are caused by circumstances
beyond their control, rather than personal choices or lifestyle. Respondents are also more
likely to agree with the statement that the BLM protests arise because of structural racism
and not as an excuse for criminal behavior. To rule out that exposure to COVID-19 in
the earlier stages of the pandemic is just a proxy for more progressive leaning counties, we
use an additional question that deals with an unrelated progressive issue: legal status for
undocumented immigrants. Individuals living in counties with higher exposure to COVID-19
are not more likely to prefer more rights for undocumented immigrants, alleviating some of

the concern about unobserved heterogeneity.

6. Competing Mechanisms

In this section, we consider alternative (non-exclusive) mechanisms for the pandemic-
induced increase in BLM protests, considering i) a scattering rather than a broadening of
protest ii) pandemic-induced salience of racial inequality #ii) lower opportunity costs of

protesting and iv) increased overall agitation and propensity to protest.
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6.1. Broadening versus Scattering of Protest

In this section we discuss the possibility that spatial spillovers from BLM protest (say,
from the cities to the suburbs) are driving our results. Specifically, we investigate whether
the observed broadening of the coalition is in fact just a substitution of protesters in time and
space. In fact, it is possible that we observe new counties protesting for reasons unrelated
to the idea of an increase in allyship for the BLM movement. First, the pandemic may have
changed the scope and structure of BLM protests (smaller but more numerous). Second,
neighboring counties may inspire future protest in close proximity? Third, the pandemic
and its restrictions on mobility may have led to a geographic spread of the protest movement,
substituting large protests in cities with smaller protests in suburbs. We address the concern
that the pandemic may have simply led to a substitution of protest locations and frequencies,

rather than a true broadening of sympathizers.

Number of participants and protests. If the observed increase in the number of
counties hosting a BLM event for the first time after George Floyd’s murder is simply driven
by a substitution of protest across space (e.g. re-location of protesters themselves or creation
of multiple smaller protest events), we should observe that the number of protests increases
while the number of participants should decrease. We show in columns 2 to 4 of Table
that neither is the case. We take this as first evidence that the pandemic does not change
the structure of these protests.

Moreover, we consider the possibility that individuals who protest might, in response
to the pandemic, decide to protest closer to home and not protest in the city center of the
neighboring county. For instance, protesters could be affected by restrictions and closures of
public transport, preventing them from going to a demonstration further away. They might
also consider that a smaller, more local demonstration is safer, as they would come into

contact with fewer people, limiting the risk of spreading coronavirus between communities.

Traditional protesters as neighbors. While we should pick up some of this in the num-
ber of participants and protests in the previous analysis, we test this more systematically by
constructing a dummy variable equal to one if one of the county’s neighbors is a ”traditional
protester” (e.g. had a BLM related protest before May 25th 2020). We use this variable in
two ways. First we include it as an additional control (column 1 of Table and second
we interact this dummy variable with COVID-19 deaths per 1000 population (column 2 of
Table . Results show that having a traditional protester as a neighbor does not increase

241f SSEs and BLM protests themselves have spill-over effects, we may falsely attribute an increase in
protest to the pandemic.
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the probability of protesting overall within the sample of counties that had never protested
before. More importantly, the interaction term between exposure to COVID-19 and having
a traditional protester as a neighbor in column 2 is not significant, and if anything reduces
the likelihood of protesting in response to the pandemic. This seems to indicate that the

displacement effect is not a driver of our results.

Recent protesters as neighbors. Lastly, it is possible that protests in one county could
inspire protests in neighboring counties over time. While this would not go against the
idea of a broadening BLM coalition, it indicates that protests during the pandemic inspire
subsequent protests in neighboring counties. We therefore construct an indicator similar to
the "traditional protester as neighbor” but apply this to the period after George Floyd’s
murder. More specifically, we construct a dummy variable that indicates whether the county
has a neighboring county that protested before they start to protest. This allows us - even in
our cross-sectional setup - to account for spillovers in time. However, this approach suffers
from an important caveat: protests in neighboring counties during the pandemic could be
endogenous and therefore a bad control. We consider these effects in columns 3 and 4 of
Table B.9 with these caveats in mind.

If spillovers exist, we would expect that having a neighboring county that recently pro-
tested increases the likelihood of observing a protest yourself. We include this variable as
a control in columns 3 of Table and find no change in our results. In column 4 we
interact this variable with COVID-19 deaths per 1000 population and find that the effect
of COVID-19 on the likelihood of protest is not higher among counties who’s neighbours
protested before. This suggests that these temporal spillovers across neighboring counties
are not driving our main results.

Lastly, we analyze the geographic diffusion of protest. The viral video footage of police
officer Derek Chauvin murdering George Floyd inspired large scale protest in the city, starting
the day after the murder on May 26th 2020. President Trump infamously tweeted that ”when
the looting starts the shooting starts”, referring to the escalation of protests in Minneapolis
on May 27th. Minneapolis quickly became one of the main focal points in the Black Lives
Matter movement. In columns 5 and 6 of Table [3.9] we investigate whether proximity to
the earliest and largest protest hub affected protest behavior. We use the distance and
squared distance to Minneapolis and find no significant impact of proximity to Minneapolis.
If anything, counties further away may respond slightly more to COVID-19 exposure, with
the caveat that the first stage of the interaction term becomes weak in column 6.

Overall, we take these results as evidence that the observed spread of the BLM protest is

a true broadening of the BLM movement and not driven by the spread of existing protesters.
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In addition, we also find no evidence for learning or imitation through time and space. We
argue that this also consistent with the use of social media mechanism because exposure to
the protest trigger on social media is much less dependent on learning over time or through

geographic proximity.

6.2. Salience of Racial Inequality

The second alternative mechanism we test is a rise in the salience of racial inequality
due to the pandemic itself and not through exposure to BLM-related content online. For
instance, an a priori indiscriminate virus should affect whites and Blacks equally but if there
are racial disparities in death rates, then people may be more inclined to believe that there
are systemic disadvantages afflicting the Black community. We test this mechanism in two
ways. First, we hypothesize that if this mechanism is at place, counties facing a higher
proportion of Black deaths due to COVID-19 (respect to the total proportion of COVID-19
deaths) would be more likely to protest after the trigger of George Floyd’s death. Column 1
of Table shows the estimate of the interaction term between COVID-19 death per 1000
population and the Black death burden[z_gl. Results show that the effect on COVID-19 on
protest is not higher in counties with relatively more death burden of Blacks.

Additionally, we test whether the results are driven by an increase in the awareness and
sympathy towards BLM-related issues during the pandemic but before the murder of George
Floyd. We hypothesize that if people are empathizing with problems faced by the Black
community because of the pandemic itself, we would observe an increase in interest towards
BLM already before the murder of George Floyd. If this is the mechanism driving our results,
counties that have gained awareness about BLM-related issues before the murder of George
Floyd would be the ones that protest the most after the murder of George Floyd. We test
this in column 2 of Table [3.10, where we interact the relative popularity of BLM search terms
on Google in the month leading up to George Floyd’s murder with the number of COVID-19
deaths per 1000 population. We do not find that an increased interest in racial injustice
before the protest trigger (measured with BLM Google searches) increased the probability
of a demonstration.

Overall, we do not find that an increase in sympathy or interest towards BLM-related
issues before the murder can explain the effect of COVID-19 on BLM protest following
George Floyd’s death.

25Black death burden is computed as the ratio of the Black COVID-19 deaths per 1000 Black population
over the total COVID-19 deaths per 1000 population
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6.3.  Opportunity Cost of Protesting

Next, we test whether the results can be explained by a decrease in the opportunity cost
of protesting. It is possible that new people joined the movement because they had a lower
opportunity cost of protesting during the pandemic. We consider two possible channels.

First a decrease in the overall opportunity cost of protesting can be due to a decrease in
employment and economic opportunities due to the pandemic. According to Bureau of Labor
Statistics (2020): “in June 2020, 40.4 million people reported that they had been unable to
work at some point in the last 4 weeks because their employer closed or lost business due
to the coronavirus pandemic —that is, they did not work at all or worked fewer hours”
which “represented 16 percent of the civilian non institutional population”. We proxy the
decrease of economic opportunity cost using the unemployment rate before the murder of
George Floyd. Column 3 of Table [3.10] shows the interaction between unemployment and
COVID-19 deaths per 1000 population. Results show that the effect of COVID-19 on protest
is not higher in counties with higher unemployment rate.

Second, we consider the decrease of the social opportunity costs as a possible channel.
An alternative use of the time spent protesting, could a priori be spent in social and leisure
activities like going to a restaurant or to the cinema. Lockdown and social distancing meas-
ures made those alternatives uses of time not available, decreasing the social opportunity
cost of protesting. We proxy the decrease of social opportunity cost with the stringency of
social distancing measures at the state level. Columns 4 of Table [3.10| shows the interaction
between the stringency of social distancing measures and COVID-19 deaths per 1000 pop-
ulation. Results show that effect of COVID-19 on protest is not higher in counties having

stricter lock-down and social distancing measures.

6.4. Agitation and Propensity to Protest

Lastly, we investigate whether COVID-19 has increased agitation in the public space
generally. It is possible that the increase we find in protest is due to an increased general
agitation and discontent and has nothing to do with BLM itself. We therefore look at the
effect on other protests, using the ACLED US Crisis Monitor protest data. We exclude
BLM-related protests from this data set and expand the observation period to 3 months
after George Floyd’s murder to make sure we do not capture a substitution effect between
BLM protests and other protests immediately after the BLM protest trigger. We report the
results in column 5 of Table [3.10; we do not find an effect of COVID-19 on other protests.
This remains true (column 6) even if we consider only COVID-19 related protests (which are

largely comprised of anti-mask protests). Additionally, we verify whether the pandemic also
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mobilized the counter-movement to BLM. Two of the most popular hashtags in opposition
to BLM were #AllLivesMatter and #BlueLivesMatter. We show in columns 7 and 8 that

the pandemic did not lead to a counter-mobilization on Twitter.

7. Robustness

In this section, we describe the large set of robustness checks we conduct. We first consider
and test various possible threads to the validity of our instrument and the identification
assumption. We then move to a brief description of the battery of robustness check we
conduct to further validate the main results of this paper. We expand the discussion of the
different checks for the instrument and the main results in Appendix [A] Finally, we present
the three different alternative identification strategies we conduct that we explain more in
detail in Appendix [B]

7.1.  Instrument validity

We provide various checks to probe the validity of the identification assumption in
Table Specifically, we investigate whether - despite the features of our instrument
described above - SSEs capture some underlying factors that co-determine BLM protests.
We always present results for the full sample and the sub-sample of counties that never ex-
perienced a BLM protest before. Firstly and importantly, we show that SSEs in neighboring
counties do not predict the likelihood of past BLM events between 2014 and 2019. If our
instrument was related to some unobserved heterogeneity that drives BLM events, we should
observe a direct effect of SSEs on past BLM events. Reassuringly, this is not the case.

In addition, we consider the following possibility: the likelihood of being treated by our
instrument is not the same across all counties. For instance, counties neighboring large cities
may have a higher probability of having an SSE in close proximity.

This heterogeneity in the probability of being treated could be related to certain county
characteristics that relate to their intrinsic probability of participating in a BLM protest. We
address this issue by weighting each observation (i.e. each county) by their inverse probability
of being treated, using LASSO | In doing so, we give more weight to counties that had a low
a-priori likelihood of being treated by the instrument. As shown in Appendix Table [3.B.3]
this weighting procedure does not change our results, further alleviating concerns about a

violation of the exclusion restriction.

26We describe this approach in more detail in Appendix section
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Lastly, we expand on the idea of controlling for overall BLM protest probability, beyond
the important but simple (discrete) measure of past BLM protests. Using LASSO, we select
the subset of relevant county-level variables that determine past BLM events and create a
propensity score for protesting, based on the selection of these Variablesm This gives us
a continuous measure of protest probability that also covers counties that did not end up
protesting for a BLM-related cause in the past, despite having all the features typically
associated with protesters. We include this variable as an additional control in column 3
of Table B.AF and confirm that our results remain robust to the inclusion of this variable.
Finally, we group counties in sets of 10, 100 and 1000 with similar propensity to protest and
add a group fixed effect (Column 4 to 6 of Table .

We probe the robustness of our instrument in Appendix Table [3.A.2] and Table [3.A.3
(Appendix [A| provides a more detailed description of these exercises). We report the first
stage coefficient of our preferred specification where the instrument is the cumulative number
of SSEs in neighbouring counties within a 50km radius up to 6 weeks prior to the murder
of George Floyd. We include the full set of fixed effects and controls as specified in our
baseline estimation. In the top panel, we show results for the full sample; in the bottom
panel we focus on the sub-sample of counties with no prior BLM protests. We show both
the coefficient for SSEs on COVID-19 ("first stage coefficient”) and the second stage results
(IV: COVID). In this section, we focus on the first stage robustness but preview that our
second stage is largely robust to these changes.

In column 1 of Table |3.A.2] we show that one additional SSE increases the number of
COVID-19 deaths by 0.93 per 100 000 population for the full sample. The first stage F
statistics lie well above the conventional threshold (Kleibergen-Paap F of 36) and find a
slightly smaller coefficient and a weaker first stage (Kleibergen-Paap F of 27) for the sub-
sample of counties that have never protested before. In columns 2 to 4, we consider the
baseline time lag of 6 weeks, i.e. SSEs until April 13th 2020, but vary the distance to the
border between 25km and 200km. Our results hold but as expected, the coefficient decreases
and the first stage becomes weaker if we move too far from the county border. Next, we
use the number of cases associated with SSEs and our results largely hold. Then, we keep
the 50km distance but vary the time lag of SSEs until the protest trigger, reducing it to five
weeks and expanding it to seven and eight weeks in columns 6 to 8 and our results hold as
well.

In Appendix Table [3.A.3, we continue our robustness checks. Again, we report our
baseline in column 1. In column 2, we exclude SSEs in prisons as they may impact the

public perception of exposure to the pandemic differently and may also be related to factors

2"We describe this approach in more detail in Appendix section
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that drive BLM protests. Next, in column 3, we also include the number of SSEs in-county
to account for correlation between neighboring and own SSEs. Then we consider the specific
distance to the geo-located SSE. We include both the simple linear distance and squared
distance to the SSE in columns 4 and 5. Then, we also consider the extent of the overlap
of the 50km radius and the county’s territory in column 6. Our results remain robust to

changes in the definition of the instrument.

7.2.  Robustness of main results

In the previous section, we have provided an array of checks on the plausibility of the
exclusion restriction and robustness of our instrument to changes in definition (in the first
stage and reduced form). We describe these in more detail in Appendix [Al In the top row
of each panel of Appendix Table [3.A.2] and Table [3.A.3] we show the second stage results
and - reassuringly - find consistent results throughout. The coefficient of COVID-19 on the
likelihood of BLM protests among counties with no prior BLM history remains positive,
significant and similar in magnitude.

We now move on to the robustness of our results to changes in sample composition, spatial
correlation, and definition of the treatment and outcome variables. First, in columns 3 and 4
of Table we exclude counties and whole states on the coasts and our results hold. We
do this for two reasons: first, counties and states next to the ocean will mechanically have
fewer neighboring counties with SSEs. Second, when thinking about a "broadening” of the
BLM coalition, we want to verify that this does not just apply to states with pre-existing
progressive leanings. In columns 5 to 7, we shorten the time horizon to 2 weeks and to 6 and
8 weeks after the murder of George Floyd. In column 8, we use COVID-19 related cases,
instead of deaths. The last column includes, as an additional control, the number of COVID-
19 related deaths in the past seven days. This is designed to account for heterogeneity in the
trajectory of the COVID-19 pandemic when cumulative deaths over the whole period are
similar. All of these checks yield consistent results. We provide further robustness checks in
Table[3.A.5] In column 2, we run an IV Probit regression instead of a 2SLS. In column 3, we
include as an additional control the pre-pandemic protest probability, which we derive from
the LASSO matching strategy which we outline in more detail in Appendix Appendix [A]
In columns 4 to 6, we include fixed effects to compare counties with similar pre-pandemic
protest probabilities, in 3 groups (with 1000 counties each), 30 groups (with 100 counties
each) and 300 groups (with 1000 counties each). In columns 7 and 8, we replace the state
clustering with spatial clustering, allowing correlation in a 50 km radius for column 7, and

between neighbors for column 8. Column 9 omits clustering altogether. Reassuringly, our
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results are not sensitive to these changes.

7.3.  Alternative Identification Strategies

We complement our preferred estimation strategy in three ways: i) we design an alternat-
ive instrument ii) we exploit the panel dimension of our data set to estimate an instrumented
difference-in-differences model and iii) we perform a LASSO matching approach comparing
counties with a similar pre-pandemic protest probability. We give a brief summary of the
approaches here and describe the strategies in more detail in Appendix Appendix [B] All of

these approaches confirm the baseline results.

Alternative Instrument: Florida Spring Break

Instead of collecting information on multiple independent SSEs as in the previous section,
we now focus on one single, large-scale event known to have contributed substantially to the
spread of COVID-19, the Florida Spring Break in March of 2020 Mangrum and Niekamp
(2020). We use SafeGraph mobile phone data with over 45 million data entries to identify
spring break tourists and their home counties and calculate the share of devices that were
present at one of the main spring break beaches in March of 2020 relative to all devices of
the origin county. As expected, the first stage for this instrument (reported in Table
is below the conventional threshold. When we include the full set of controls the F-Stats

become weak but the results qualitatively hold.

Difference-in-Differences: Notable Deaths Sample

We expand our data set and include BLM events at the county-week level starting in
2014. We scrape information on all police-related deaths of Blacks since July 2014 that were
covered in a major national newspaper like the Washington Post, that were covered on TV
by CNN and/or have a dedicated Wikipedia page. We include county and state-week fixed
effects to account for all time-invariant county level heterogeneity and common time-varying
characteristics at the state level. We interact these ”Notable Deaths” (time variation) with
the instrumented exposure to COVID-19 (county variation). In this instrumented difference-
in-differences approach, we exploit differences in protest behavior following a "notable” death
in the presence and absence of COVID-19. We show the results in Table and we find
a sufficiently strong first stage and a strongly significant effect consistent with our baseline

results.
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LASSO Matching: Propensity to Protest

We additionally exploit the previously constructed dataset of notable deaths and BLM
events to construct a measure of the propensity of a county to protest after a notable death.
The controls used in the model are selected using LASSO logit regression. We use this
propensity measure to construct a matching of counties with and without COVID-19 deaths
and with a similar propensity to protest. The results (presented in Table are highly

significant and consistent with our baseline results.

8. Conclusion

Protests are an important tool for bringing about social change and holding politicians
and institutions accountable. Particularly in the context of minority rights, social move-
ments have to rely on allies to put pressure on decision makers and translate demands into
legislation, social and institutional change. However, the way to build and broaden allyship
in modern social movements is still poorly understood.

In this paper, we shed light on the role of social media in generating mobilization in
counties whose characteristics are closer to the median voter and where a larger part of
the population is not directly impacted by the movement’s grievances. We first document
that around half of the protests following George Floyd’s murder occur in counties that
are hosting a BLM event for the first time. We next show that exposure to the pandemic
increased protest behavior and that this effect is driven by those counties hosting a protest
for the first time. We then turn to the study of the role of social media in explaining this
effect. We first present evidence showing that the pandemic lead to an increase in the time
spent on online activities and in the use of social media in all counties, and more so in
counties hosting their BLM first event after George Floyd’s murder. Then, we show that
counties where social media was more widely used at the beginning of the pandemic and
counties where a higher number of new Twitter users were created during the pandemic
show a higher effect of COVID-19 on their protest behaviour. This differential effect is only
present in counties with no prior BLM-related protest activity, which suggests that exposure
to social media content related to a protest trigger can increase mobilization in parts of the
population that were not yet conscious of the problems faced by the aggrieved minority.

Our research highlights the importance of social movements’ online presence. Exogenous
changes in the use of social media may increase political mobilization, notably among people
not directly impacted by the movement’s grievances but close enough to sympathize. How-

ever, our research also ties into the potential drivers of an increasing political polarization in
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the United States. If this effect is symmetric across the ideological spectrum, we may expect
similar forms of political mobilization in response to other protest triggers, as the attack on

the Capitol on January 6, 2021 illustrates.
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9. Figures and Tables

BLM events over time
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Note: Number of BLM events per week in the US from June 2014 to September 2020. The green vertical
line denotes the week of the first confirmed COVID-19 case in the US (January 21, 2020), and the red vertical
line denotes the week of the murder of George Floyd (May 25, 2020).
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COVID-19 deaths and timing of GF’s murder
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and September 2020. New COVID-19 deaths are presented as a 7-day moving average. The red vertical line
denotes the day of the murder of George Floyd (May 25, 2020).
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BLM events and tweets in counties with above and below median COVID-19 deaths per-
capita
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Note: Evolution of two variables over time in counties with below and above median COVID-19 deaths
per capita. Subgraph (a) presents the average number of BLM protests per week between January and
September 2020. The red vertical line represents the day of the murder of George Floyd (May 25, 2020).
Subgraph (b) presents the average number of daily tweets mentioning “BLM” or “Black Lives Matter” from
May 25 to June 14, 2020.
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Spatial distribution of US counties based on their BLM protest activities before and after
George Floyd’s murder

Protesting counties
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George Floyd's death
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Note: Own visualization based on data from FElephrame. This map represents whether US counties that
protested in the three weeks following the murder of George Floyd (May 25 to June 14, 2020) already held
a BLM protest before the murder of George Floyd. Counties in black protested both before and after the
murder of George Floyd. Counties in green are counties whose first BLM protest was after George Floyd’s

murder. Counties in white did not protest after the murder.

165



Distribution of super-spreader events in the US by their type

Distribution of Super Spreader Events by type
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Window of opportunity for SSEs
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Timing of SSEs relative to Floyd’s murder, protest and COVID-19 deaths
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Construction of the super-spreading events instrument (example)

Coconino ‘
Mohave

Navajo Apache

Yuma

Note: Example of the
construction of the instrument. Red point are the super-spreader events assigned to the blue county. Gray

shaded area represents the 50km radius around each super-spreader event. Black points represent
super-spreader event that are not assigned to the blue county because are too far away from the border.
White points represents super-spreader events that are inside the county and therefore not assigned to the

county (to increase exogeneity).
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Geographic distribution of super-spreader events (SSEs)
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Table 3.1: Summary statistics

From 25th of May to 14th of June 2020: N Mean SD Min Max
Presence of BLM events 3106 0.099 0.298 0.000 1.000
Number of BLM events 3106 0.250 1.348 0.000 36.000
Participants in BLM events 3106 270.759 5968.521 0.000 323687.500
Participants per event 307 539.141 878.429 0.000 8991.319
Tweets mentioning BLM 3106 819.502 7187.496 0.000 243596.000
New users tweeting about BLM 3106 4.586 53.812 0.000 2442.000
Followers of @BlkLivesMatter created during the pandemic 3106 1.540 11.207 0.000 453.000
Tweets mentioning # AllLivesMatter 3106 134.741 833.066 0.000 28943.000
Tweets mentioning #BlueLivesMatter 3106 17.753 113.478 0.000 4117.000
Neighbor protested first 3106 0.348 0.477 0.000 1.000
Other Protests 3108 0.081 0.386 0.000 7.000
COVID-19 Protests 3108 0.030 0.204 0.000 4.000

On the 25th of May 2020:

COVID deaths (total) 3106 24.461 141.132 0.000 3304.000
COVID cases (total) 3106 459.678 2438.202 0.000 72010.000
COVID deaths (per 1000) 3106 0.113 0.248 0.000 2.935
COVID cases (per 1000) 3106 2.791 5.664 0.000 145.513
Super-spreader events, 6+ weeks ago, neighboring 3106 3.070 9.790 0.000 143.000
Black death burden 3106 1.346 0.963 0.000 4.104
Lockdown stringency index 3106 68.445 8.508 47.220 89.810

Before the 25th of May 2020:
Google searches for Twitter 3056 61.265 11.222 17.000 100.000
Residential stay 1348 10.633 3.387 3.600 26.286

Later outcomes:
Followers of @BlkLivesMatter 3106 63.198 495.174 0.000 20058.000
Street art count 3106 0.703 26.735 0.000 1467.000

County characteristics:

Black police-related deaths (2014-2019) 3106 0.677 3.207 0.000 84.000
Black police-related deaths (2020) 3106 0.047 0.301 0.000 6.000
Unemployment rate (year average) 3106 4.691 1.550 0.708 19.650
Black population share 3106 0.100 0.147 0.000 0.875
Non-white population share 3106 0.144 0.162 0.000 0.928
Large cities 3106 0.020 0.140 0.000 1.000
Suburban areas 3106 0.118 0.323 0.000 1.000
Smaller towns 3106 0.234 0.423 0.000 1.000
Rural areas 3106 0.628 0.483 0.000 1.000
BLM events (2014-2019) 3106 0.617 4.183 0.000 117.000
Black poverty rate 3106 0.281 0.225 0.000 1.000
Population share with 3+ risk factors 3106 25.899 5.019 10.685 48.448
Vote share for republicans (2016) 3106 0.633 0.156 0.083 0.960
Vote share for republicans (2012) 3106 0.596 0.148 0.060 0.959
Median household income (2016) 3106 48795.991 13277.575 20170.891 129150.343
Social capital 3106 1.384 0.705 0.000 6.887
Distance to Minneapolis 3106 1216.679 555.825 11.998 6474.706
Notable Deaths 3106 0.010 0.116 0.000 3.000
Log(SXSW followers created before March 2017) 3106 0.114 0.258 0.000 1.474
Log(SXSW followers created during March 2017) 3106 0.193 0.350 0.000 1.658

Note: Summary of main variables used in our analysis. The sample consists of 3,108 US counties. We
report the number of observations, the mean, the standard deviation as well as the minimum and maximum

value of each of the variables.
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Table 3.2: Main Result - COVID exposure and BLM protest

Presence of BLM events

(1) (2) (3) (4) (5)

Panel A: All counties

IV: COVID 0.647***  0.730%**  0.589***  0.296** 0.215*
(deaths/1000) (0.0930) (0.187) (0.167) (0.117) (0.121)
OLS: COVID 0.203** 0.158%** 0.0758%* 0.0382 0.0323
(deaths/1000) (0.0831) (0.0638) (0.0435) (0.0289)  (0.0264)
Observations 3,108 3,107 3,107 3,106 3,106

F first stage 95.03 31.92 27.44 38.38 36.05

Mean dep. var. 0.0994 0.0991 0.0991 0.0988 0.0988

Panel B: Counties with no BLM protest before

IV: COVID 0.555***  Q.675%F*  0.790%**  0.467FF*  (0.404**
(deaths/1000) (0.0745) (0.160) (0.177) (0.170) (0.187)
OLS: COVID 0.0661 0.0503 0.0562* 0.0407 0.0385*
(deaths/1000) (0.0445) (0.0319) (0.0310) (0.0247)  (0.0221)
Observations 2,768 2,767 2,767 2,767 2,767

F first stage 115.1 44.53 29.25 27.95 27.04

Mean dep. var. 0.0477 0.0477 0.0477 0.0477 0.0477

Panel C: Counties with BLM protest before

IV: COVID 0.277*** 0.502** 0.386* 0.116 0.0104
(deaths/1000) (0.0597)  (0.229)  (0.206)  (0.289)  (0.266)
OLS: COVID 0.252%**  (.435%**  (.224*** 0.0733 0.0682
(deaths/1000) (0.0494) (0.0963) (0.0740) (0.102) (0.102)
Observations 340 334 334 333 333
F first stage 105.3 37.56 32.01 29.27 28.09
Mean dep. var. 0.521 0.515 0.515 0.514 0.514
State fixed effects Y Y Y Y
Demographic controls Y Y Y
Economic controls Y Y
Political controls Y

Note: Estimation of the effect of COVID-19 deaths per 1000 population on the presence of at least one Black Lives Matter
event during the three weeks following the murder of George Floyd. Panel A presents 2SLS estimation, using number of
super-spreader events in neighbouring counties (50km radius) six weeks prior as an instrument and OLS results for all US
counties. Panel B presents these results for the sub-sample of counties with no BLM protest before the murder of George
Floyd. Panel C presents these results for the sub-sample of counties with at least one BLM protest before the murder of
George Floyd. Each column include sequentially different sets of additional controls. Demographic controls: share of Black
population, urban (category [1-6]). Economic controls: median household income, unemployment share, Black poverty rate,
3+ risk factors/community resilience. Political controls: Republican vote share in 2012 and 2016, social capital (number
of different types of civic organizations), number of past BLM events between 2014 and 2019, deadly force used by police
against Black people. We report Kleibergen-Paap rkWald F statistic. Standard errors (in parentheses) are clustered at the
state level. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.6: Effect of Twitter on BLM protest

Uninstrumented users Instrumented users
Sample: Counties with Presence of BLM events
no BLM protest before (1) (2) (3)
COVID (deaths/1000) -0.599 -0.0444 -0.578
(0.409) (0.277) (0.568)
x Log(Preexisting users) 0.245%*% 0.232%*
(0.0880) (0.118)
x Log(New users) 0.205%*
(0.0834)
Log(Preexisting users) 0.0128 0.0406
(0.00854) (0.0453)
Log(New users) 0.0193*
(0.0102)
Mean of dep. var 0.0477 0.0477 0.0477
F COVID 11.35 15.28 8.530
F users 19.31
F interaction 47.35 60.91 18.87
Observations 2,767 2,767 2,767
Instruments SSE SSE SSE & SXSW
All controls Y Y Y
Pre-SXSW users Y
State fixed effects Y Y Y

Note: Column 1 and 2 show the effect of uninstrumented pre-existing or new users interacted with
COVID deaths (instrumented by SSE) on the presence of BLM events in a county. Column 3 shows an
IV estimate of the model of column 1, with pre-existing users instrumented by SXSW users. The first
stage regression is reported on Table We present results for the sub-sample of counties with no
BLM protest before the murder of George Floyd. All specifications include state fixed effects and all
standard controls. First stage F statistic for weak identification per second-stage coefficient (F COVID,
F users, F interaction) following |Sanderson and Windmeijer| (2016). Standard errors (in parentheses)
are clustered at the state level. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.7: Effect of Twitter on BLM protest

Uninstrumented users Instrumented users
Sample: Counties with Presence of BLM events
BLM protests before (1) (2) (3)
COVID (deaths/1000) -0.338 0.368 -0.000256

(0.649) (0.341) (5.753)
x Log(Preexisting users) 0.0738 -0.0351

(0.107) (1.090)
x Log(New users) -0.133

(0.100)

Log(Preexisting users) 0.158%%* -0.462

(0.0404) (1.373)
Log(New users) 0.0744**

(0.0306)

Mean of dep. var 0.514 0.514 0.514
F COVID 22.99 43.74 0.859
F users 0.309
F interaction 30.31 56.90 0.750
Observations 333 333 333
Instruments SSE SSE SSE & SXSW
All controls Y Y Y
Pre-SXSW users Y
State fixed effects Y Y Y

Note: Column 1 and 2 show the effect of uninstrumented pre-existing or new users interacted with
COVID deaths (instrumented by SSE) on the presence of BLM events in a county. Column 3 shows
an IV estimate of the model of column 1, with pre-existing users instrumented by SXSW users. The
first stage regression is reported on Table We present results for the sub-sample of counties with
BLM protests before the murder of George Floyd. All specifications include state fixed effects and all
standard controls. First stage F statistic for weak identification per second-stage coefficient (F COVID,
F users, F interaction) following |Sanderson and Windmeijer| (2016). Standard errors (in parentheses)
are clustered at the state level. *** p<0.01, ** p<0.05, * p<0.1
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A. Appendix: Robustness Checks

Our robustness checks focus on three dimensions: i) robustness to changes in the defin-
ition and construction of our instrumental variable ii) robustness of our main results to
sample composition, spatial correlation and other confounding factors and i) the possibil-
ity that our results are driven by a relocation of protesters across time and space rather than
a ”"broadening” of the BLM coalition. We present our results in Table to Table [3.A.5]

A.1. Instrument Robustness

We present results on the robustness of the instrument in Table and Table [3.A.3],
showing the IV result and first stage coefficient for both the full sample (Panel A) and the
sub-sample of counties without prior BLM events (Panel B). Our baseline results are always

reported in column 1 for reference.

Changing the radius around SSEs. In the baseline specification, we choose the 50km
threshold as a distance of the SSE to the county border, as it is approximately two times
the average radius of a county in the US| To make sure that this choice is not driving
our results, we change the radius of influence to 25 km, 100 km and 200 km (columns 2, 3
and 4 of Table respectively). For both samples the coefficient remains significant and

becomes slightly larger in magnitude.

Changing the time window of SSEs. Similarly, in our preferred specification, we take
into account the SSEs that occurred in a specific time window that we call ”window of oppor-
tunity” where there were enough cases to observe SSEs and the social distancing measures
were not applied strictly or widely enough. Specifically, we count the number of SSEs between
the beginning of the COVID-19 outbreak until April 13th 2020 (e.g., six weeks before Floyd’s
murder). In columns 6 to 8 of Table we expand and narrow this window to make sure
our results are not driven by the specific timing of SSEs. In particular, we count SSEs until
April 20th, 5 weeks before the murder of Floyd (column 6), on April 6th, 7 weeks before
(column 7) and on March 30th, 8 weeks before (column 8). Results are robust to change in

the time window.

Excluding SSEs in prisons. A non-negligible number of SSEs occurred inside prisons.
We exclude SSEs in prisons in a robustness check in column 2 of Table for two reasons.

First, it is likely that by the nature of prisons, the geographical spread of cases stemming

28For reference, the average radius of a county is 28 km and the average radius of a state is 220 km.
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from an SSE in a prison is quite limited and less relevant for the overall population and the
protesting population. In this case, we would expect a bigger effect when excluding these
SSEs. Second, SSEs in prisons may have an effect on BLM protests other than through
overall exposure to COVID, for instance, by raising the salience of the overproportional
incarceration of Black people. In this case, we would expect the coefficient to decrease in
magnitude when excluding these SSEs. While the salience of racial inequality in prisons may
be a possible mechanism, with this exercise we investigate whether our results are indeed
solely driven by this subsample of SSEs. We exclude SSEs in prisons in column 2 and find

that our results slightly increase in magnitude and precision.

Controlling for SSEs in the county. Our first stage compares the effect of having an
SSE outside the county within 50 km of the county border and excluding the effect of SSEs
that take place within its border. Therefore, in our analysis a county is "not affected” by an
SSE if its border is either further than 50 km from the SSE, or the SSE happened within its
boundaries. We expect the effect of SSEs to be different between these groups: presumably,
counties far away will have no COVID-19 cases from this SSE, while the county where the
SSE took place will have a lot of cases and deaths caused by the event. To assuage the
concern that correlation of SSEs across counties is driving the variation in SSE exposure, we
add as a control the number of SSEs that occurred within the county itself. Estimates are
presented in column 3 of Table [3.A.3| and show that the results of the baseline specification
are robust to the addition of this control for the counties with no BLM before, and become

imprecisely estimated for the sample of all counties (with a p-value of 0.122).

Weighting SSEs by distance. In our baseline specification, we count any SSE that
occurred in a 50 km radius outside the border of a county as an additional SSE affecting
the county. However, an SSE 1 km away from the border is likely to have a different level
of influence from a SSE 49 km away. To ensure that this simplification is not driving the
results, we refine the level of influence in three different ways. First we weight the SSEs by
a linear function decreasing with distance (column 4 of Table , giving less weight to
events that are more distant. Second, we repeat the analysis but with a quadratic function
(column 5 of Table , weighting distant events less and increasingly so. The results are

robust to these distance weighting procedures.
Weighting SSEs by the inverse probability of occurrence. The probability of being

near a county that has an SSE is not constant over all counties. For instance, counties

neighboring cities have likely a higher probability of being treated by our instrument as
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their neighbors may be more likely to experience an SSE. This could be a violation of the
exclusion restriction because the probability of being treated by our instrument at a certain
level is not uniform, and this heterogeneity could be related to certain county characterist-
ics that could in turn be related to the probability of protesting. To address this concern,
we weight each observation by the inverse probability of being treated.  Using LASSO
(a regularized regression procedure that performs variable selection and avoids overfitting,
Tibshirani (1996)), we select relevant variables predicting (by a logit model) the probability
of having a neighbor with an SSE among a set of county characteristics, including a large set
of socio-demographic and economic characteristics extracted from the American Community
Survey (such as population, population density, race distribution, age groups, poverty rates,
among others), indicators for different levels of urbanization, geographical indications (latit-
ude, longitude, and state dummies), as well as the minimum and maximum of these variables
for neighboring counties. We use the LASSO selected model to predict the probability of a
county having a neighbor with an SSE, then weight the observations by the inverse of this
probability. This means that counties with a higher probability of having a neighbor with an
SSE that actually had a neighbor with an SSE are weighted less than counties with a lower
probability of being treated that are actually treated. Estimates are presented in column 7

of Table [3.A.2| and show that our results are robust to this weighting procedure.

Plausibility of exclusion restriction. If our instrument were to pick up any underlying
factors correlated with the overall likelihood of protesting for a BLM-related cause, then this
would challenge a causal interpretation of our estimates. To probe the plausibility of the
exclusion restriction, we estimate the effect of instrumented COVID-19 on the likelihood of
observing past BLM protests. If our instrument were correlated with the county unobserv-
ables that also predict the likelihood of observing BLM protests, then we would expect to see
a statistically significant relationship between our instrumented COVID-19 and likelihood of
observing a BLM protest in the past. In column 2 of Table [3.A.4] we show that exposure to
COVID-19 does not predict the presence of BLM events between 2014 and 2019. We take

this as additional evidence for the plausibility of our identifying assumption.

A.2.  Robustness of Main Results

In this section, we focus on our main results and run robustness checks including chan-
ging definitions in treatment and outcome, estimation method, spatial correlation and con-
cerns about the overall propensity to protest. We present these checks in Table and
Table B.A5l
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Excluding coastal counties and states. Coastal states and counties might behave dif-
ferently, either with regard to our instrument or to the process of COVID-19 contagion.
Coastal regions are generally denser, which increases the chance of having an SSE (Fig-
ure shows the density of SSEs). On the other hand, our instrument behaves differently,
as half of the area where SSEs could affect affect the county is actually ocean. Coastal
regions are also more internationally connected, and were the first affected by COVID-19 in
the US (the first reported case was in the state of Washington, and the first reported death
in California). We show that our main result for the counties with no BLM protest before
is robust to excluding coastal counties (column 3 of Table [3.A.4)), as well as coastal states
(column 4). Estimates for panel A remain with similar magnitude but become imprecisely

estimated.

Time window of protests. In our baseline specification, we choose the three week window
following Floyd’s murder since it captures the vast majority of BLM-related protests (see
Figure [3.3), while being close enough to the exposure to COVID-19 on May 24th, right
before the protest trigger. We show that our main results (Panel B) are robust to reducing
this time window to 2 weeks and expanding this time window to 6 and 8 weeks (columns 5
to 7 of Table respectively). The coefficient of interest in both samples is more precisely

estimated the further we expand the time window of protest.

COVID-19 cases. In our baseline specification we use the number of COVID-19 deaths
per thousand in the county as an explanatory variable for protest. It is possible that COVID-
19 deaths may have a different or distinct effect on BLM protest. This could be due to -
for instance - different threat perceptions or salience of the pandemic. In column 8 of
Table we show that the results hold when using the number of COVID-19 related
cases instead of the number of deaths. As expected, the number of COVID-19 related cases
exhibits significantly smaller coefficients but continues to significantly and positively affect

protest behavior.

Probit estimation. In our baseline specification the effect of COVID-19 is additive. It
might be the case that the effect would be multiplicative of some characteristics of the
counties. Using a Probit model accounts for this possibility. Non-linear models with many
covariates (typically when using fixed effects) suffer from the incidental parameter problem
resulting in bias of the estimates Heckman| (1987)); Lancaster| (2000)); [Wooldridge| (2015)). To
reduce the extent of this problem we omit the state fixed effects, which significantly reduces

the number of covariates. We use an OLS in the first stage, but estimate the second stage
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with a Probit model. Results are presented in column 2 of Table [3.A.5] The Probit model
delivers larger and more precisely estimated coefficients for the sub-sample of counties with
no prior BLM event and positive (and largely similar in size) but more imprecisely estimated

coefficients (with a p value of 0.11) for the full sample.

Controlling for propensity to protest. Our main specification already controls for the
number of BLM events that took place in the county in previous years. While this gives
some indication of the county’s propensity to protest, this is essentially an imprecise measure,
since counties having a non-zero probability of protesting might simply not have protested
before by random chance. We re-use the propensity to protest that we constructed for
our matching-based alternative identification (the construction of this propensity measure is
detailed in Appendix section as a control in our regression. We first use it directly as a
control (column 3 of Table . This holds constant the overall probability of observing
BLM protests in the past, improving on identification. Our results remain robust and are
more precisely estimated.

In addition, we include fixed effects for different levels of the propensity to protest. We
group observations by groups of 1000, 100 and 10 units with similar propensity to protest
and add fixed effects for each group. Results are shown in columns 4 to 6 of Table [3.A.5]
This is essentially a matching-like strategy, where the fixed effects ensure that observations
with similar propensity are compared. Results are robust to the inclusion of fixed effects
for the panel of interest (panel B) and become non-significant for some specifications of the

whole sample.

Accounting for spatial correlation. Observations are likely to be spatially correlated
for several reasons. For instance, there could be spatially-correlated unobserved factors
influencing the decision to protest (such as weather conditions or available TV and radio
stations). Clustering by state does not entirely remove these errors because correlation
across state borders remains [Colella et al.| (2019). To overcome this problem, we use Conley
standard errors that allow for spatial correlation within a certain distance. Column 7 of
Table |3.A.5[shows the estimates when allowing spatial correlation between observations in a
50 km radius. Column 8 of Table shows the estimates when allowing spatial correlation

with all neighboring counties. Reassuringly, our results remain robust.
Estimation without clustering. Our preferred specification clusters at the state level

and includes state fixed effects |Abadie et al| (2017). Column 9 of Table shows our

baseline results when we do not cluster the standard errors.
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B. Appendix: Alternative Estimation Strategies

B.1. Alternative Instrument: Florida Spring Break

In our preferred empirical strategy, we chose smaller and decentralized SSEs to argue for
a causal relationship between COVID-19 and BLM protests. Here, we add another cross-
sectional instrumental variable: the spatial distribution of touristic flows originating in major
Florida Spring Break destinations during March of 2020. Instead of collecting information on
multiple independent SSEs as in the previous section, we now focus on one single, large-scale
event that is known to have contributed substantially to the spread of COVID-19 Mangrum
and Niekamp) (2020)).

Despite the fact that COVID-19 infections had surged in Florida’s main spring break
destinations and despite the fact that the Center for Disease Control had issued multiple
warnings, Florida Governor DeSantis failed to implement social distancing orders until April
1st 202@. We exploit this unique, large scale event to track the diffusion of COVID-19
infections that originated in Florida during spring break and then spread across the United
States. To track these movements we benefit from exceptionally rich data on cell phone
mobility provided by SafeGraph. We can identify spring breakers’ home counties — locations
that they most likely returned to after vacationing in highly infectious spring break locations.

Specifically, we pick three Florida vacation destinations: Miami Beach, Panama Beach
and Fort Lauderdale. In early March these three destinations caught the attention of the
media, which reported congestion of tourists who did not respect social distancing measures
(BBC, CNN)). We are using anonymised mobile data for the period from March, 1, 2020 to
April 1, 2020, covering the majority of spring break periods across the country. With the
help of the Monthly Patterns data (MP), we measure unique devices that visited specific
<points of interest> in one of three popular spring break destinations.

The SafeGraph data provides us with a rich set of points of interest, which include more
than 3000 places such as restaurants, bars, hotels, gyms, public parks, malls and other
establishments. Using this data, we measure the number of devices that <pinged> in each
point of interest during March, 2020. The MP data also allows us to observe home locations
on the level of the US Census Block Groups (CBG). An individual “home” is defined as a
place where a user’s devices pinged most often in the night time between 6 PM and 7 AM
during the baseline 6-week period determined by SafeGraph.

Using this information, we calculate the number of unique visitors to points of interest

in three cities in Florida and group this number by device home counties. Given that cell

29Local officials had started to close some of the beaches for public access in mid March
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https://www.bbc.com/news/av/world-us-canada-51955362
https://edition.cnn.com/2020/03/19/politics/florida-coronavirus-beaches/index.html

phone data is anonymized, each device is counted as many times as it has visited different
places (such as restaurants and shops) in a given tourist destination. Therefore, this meas-
ure captures both intensity of tourism flow from the county and mobility of these tourists
during their spring break. Since higher mobility is associated with higher chances of disease
contraction, our variable captures both extensive and intensive margins of COVID-19 spread.
We see this variable as an improvement over ones used in literature examining stay at home
behaviour (Abouk and Heydari| (2020); Lasry et al.| (2020)); [Friedson et al. (2020)); |[Dave et al.|
(2020); Dave et al.| (2021)). The exposure to COVID-19 is therefore instrumented by the

number of spring-break tourists.

7 — ZPO]spingSPOI,c (3 6)
¢ devices, ’

Number of devices (log) by US counties pinged during March 1st, 2020

Device count (log)

125
- 10.0
75

5.0
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Spring Breakers by US counties. Own visualization based on SafeGraph data.

Spring breakers inflow

High

We normalise this variable calculating a ratio of the total number of devices detected
in spring breakers’ home counties at March 1, 2020 to account for differences in population
size and differences in resident device coverage between counties in the SafeGraph data. In
Figure the map of (log) number of devices by counties is presented. Figure
shows our resulting measure of “spring breakers” inflow split into five categories: high flow,
moderate-high flow, moderate-low flow, low flow, no flow (missing).

We use the same set of controls and connotations as in our baseline cross-sectional es-

timation. Our estimating equation is:
BLM,. = 50 + 5lcms + XCﬁX + 53 + €cs

We present our 2SLS results in Table[3.B.I] We use the same set of controls as in the pre-
vious cross-sectional estimations, successively introducing socio-economic, demographic and
political control variables. The inclusion of the Black population rates and Black poverty in-
dex in column 3 substantially decreases the F-Statistic (see First Stage results in Table[3.B.1)).
When including the full set of controls, the instrument remains at 7.3, well below the conven-
tional threshold. However, for all specifications we find a positive coefficient for COVID-19
on the presence of a BLM event and where the first stage is sufficiently strong, we find a

positive and statistically significant sign.
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Table 3.B.1: Spring breakers IV: Covid-19 deaths on the presence of BLM events, 2SLS

(1) (2) (3) (4) ()

Presence of BLM events

Panel A: IV

COVID 0.614%**  1.854** 1.859%* 1.441 0.832
(deaths/1000) (0.218) (0.876) (1.011) (0.908) (0.697)
Panel B: OLS

COVID 0.203*%*  0.158**  (0.0758* 0.0382 0.0323
(deaths/1000) (0.0831) (0.0638) (0.0435) (0.0289) (0.0264)

Panel C: First stage

Visits per device 1.239%#% (). 595%**  ().494%F*  (0.452%*F (). 430%**
(0.168)  (0.165)  (0.159)  (0.158)  (0.159)

State fixed effects Y Y Y Y
Demographic controls Y Y Y
Economic controls Y Y
Political controls Y
Observations 3,039 3,039 3,039 3,039 3,038
F first stage 54.41 13.06 9.677 8.223 7.305

Cross-sectional 2SLS estimation of the effect of the cumulative number of COVID-19 related deaths per
thousand population the day before the death of George Floyd on the likelihood of having at least one
BLM event during the first three weeks after George Floyd’s death. Each column include sequentially
different sets of additional controls. Demographic controls: share of Black population, urban (category
[1-6]). Economic controls: median household income, unemployment share, Black poverty rate, 3+ risk
factors/community resilience. Political controls: Republican vote share in 2012 and 2016, social capital
(number of different types of civic organizations), number of past BLM events between 2014 and 2019,
deadly force used by police against Black people. Cross-sectional data at the county level. We report
Cragg-Donald Wald F statistic. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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B.2.  Difference in Differences: Notable Deaths Sample

With this empirical approach, we use data on BLM at the county-week level starting in
2014 and exploit differences in protest behavior following what we call a "notable” death.
Deaths of Black people at the hands of the police have been - not only in the case of George
Floyd - a trigger for BLM protests across the country. Roughly, more than 300 Black people
die each year in the US either due to police brutality or under police custody. However, not
all of these deaths result in media coverage, which is crucial for generating public discourse or
action. Many of these events only received public traction since they were - mostly by chance
- recorded on a phone camera. We construct a data set of all police-related Black deaths
since July 2014 that were covered in a major national daily newspaper like the Washington
Post, received TV coverage by CNN and/or has a dedicated Wikipedia page.

We now exploit the full potential of our panel data by interacting our main COVID-19
variable with a dummy variable for a notable death occurring in a certain week. Following
the sample selection of our baseline estimation, we use information on BLM protests in
counties in the 3 weeks after the recorded notable death (we can reduce this to 2 weeks and
expand it to 4 weeks without significantly changing the first and second stage results). This
data set structure allows us to observe counties’ protest behavior after a protest trigger.
Following a difference in differences logic, we then look at whether the reaction following
this trigger differs in counties that were more exposed to the COVID-19 pandemic. Again,
we use the SSE IV to account for the fact that COVID-19 exposure may be endogenous to

past and present protest behavior.

Covidy = (o + (1 Notable_deaths + (3 Z.s + (3 Notable_deaths X Z.g + Xes(x + Ve + Ost + Nest
(3.7)

cht _ Z SSEneighbor (38)

cst

The second stage is written as:

BLM., = By + piNotable_deaths; + BgC’@st
+ B3Notable_deaths; X Cmst + XesCx + fle + 05t + €cst

where, Notable_deaths.q is a dummy variable that takes the value of one in the three
weeks following a nationally covered death and zero otherwise. We include county and state-

week fixed effects, as well as all police-related deaths of Black people at the county level.
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This is a crucial control as it allows us to exploit the "extra” trigger that nationally covered
deaths create, above and beyond the local level of deadly force used by local police. The key
coefficient of interest is B3 which is the difference in differences estimator.

Table shows the results of this estimation. Columns 1 and 3 report the effect of
notable deaths up to 4 weeks after they occurred and columns 2 and 4 report for up to 3
weeks. In both cases we find that the effect of notable deaths in predicting the likelihood
of observing a BLM protest is significantly higher in the presence of COVID death burden.
The results control for county specific time trends as shown in columns 3 and 4.

It is important to mention, particularly in the light of new literature on generalized
difference in differences - especially the designs that use two way fixed effects like our es-
timation model - that the underlying assumption for causal interpretation of 3 is that the
effect of treatment, which in our case is occurrence of notable death, is homogeneous across
space and time Roth et al. (2022)); |De Chaisemartin and d’Haultfoeuille| (2020); Marcus
and Sant’Annal (2021)). The assumption of a homogeneous effect of notable deaths relies on
the fact the occurrence of these deaths is random and their location and time cannot be
predicted. Therefore, each county of the country has an equally likely probability of being
affected by this. While the exposure to COVID-19 is staggered in time across the USA| in
this estimation we assume all counties to be equally exposed to the COVID-19 pandemic

since it broke out in the US in January 2020.
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Table 3.B.2: Notable Deaths Regression

(1) (2) (3) (4)
Presence of BLM
Covid deaths per thousand 0.0595***  0.06597***  0.0450%**  0.0451%**

(0.0166)  (0.0166)  (0.0116)  (0.0116)

Notable deaths x Covid deaths 1.4926***  2.0714***  1.4935%**  2.0707***
(0.1053)  (0.1095)  (0.1057)  (0.1102)

Notable deaths -0.0389***  -0.0391*** -0.0410*** -0.0412%**
(0.0125) (0.0128) (0.0127) (0.0130)
Black police-related deaths Y Y Y Y
Unemployment Y Y Y Y
Weeks post Notable Death 4 3 4 3
County FE Y Y Y Y
State-Week FE Y Y
County Week Trend Y Y
Observations 96286 96286 96329 96329
F First Stage (COVID) 18.03 17.92 32.23 32.09
F First Stage (Interaction) 13.05 13.87 14.59 14.97

Note: Estimation of the effect of Notable deaths and COVID-19 deaths on different Black Lives Matter
measures. This table presents 2SLS results, using the cumulative number of all super-spreader events
in neighbouring counties (50km radius) as an instrument. Columns (1) and (3) presents the effect of
instrumented cumulative number of COVID-19 deaths and notable deaths on the likelihood of having a
BLM event in the county within 4 weeks of the notable death. Column (2) and (4) presents the effect
of instrumented cumulative number of COVID-19 deaths and notable deaths on the likelihood of having
a BLM event in the county within 3 weeks of the notable death. All specifications include county fixed
effects and two time varying controls (the number of black police-related deaths and the unemployment
rate both at a county level) along with either state-week fixed effects or county week time trend to
increase precision. Weekly data by county from year 2014 until the 14th June 2020. Standard errors
clustered at the county level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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B.3. LASSO Matching: Propensity to Protest

We again exploit data on past protests, this time to predict the propensity of a county
to protest in response to a notable death using a wide variety of observable county charac-
teristics.

More precisely, we start by estimating the following logit model:

Pr(BLM,; = 1)
1— Pr(BLM, =1)

log = o+ i1 Xc + e

We select the most relevant subset of variables with LASSO regression [Tibshirani (1996]).
This avoids overfitting and gives confidence in using the model to predict the propensity
to react to another notable death. This model is estimated on the subset composed on all
counties, and we compute the estimated propensity to protest for each county.

We then perform a propensity score matching-like estimation: we consider the binary
treatment where counties are considered treated if they had at least one COVID-19 related
death on or before May 24th. We match counties with similar historical propensities to
protest, and consider as the outcome where these counties held a BLM protest in the 3
weeks following the murder of George Floyd. The results are presented in Table for
the whole sample, and the subsamples of counties that did and did not protest before. For
each of these samples, the propensity-to-protest model is estimated on the whole sample.
The results in each case are positive and significant; their magnitude is not comparable with
our main specification as the treatment is different. Unlike our main specification, with
this estimation strategy, the effect on counties that had BLM events is significant and much
higher in magnitude than the effect on counties that did not have BLM events before. This
might be consistent with a multiplicative effect of protest: the relative increase (relative to
the probability of having a BLM event after the death of George Floyd) is roughly similar.

Note that this is not a proper propensity score matching Rosenbaum and Rubin| (1983):
we are matching not on the propensity to have a COVID death but on the (past) probability
to hold a protest. With an usual propensity score matching, we would need to be concerned
about unobservable characteristics of the county that affect both the treatment probability
and the outcome. In this case, we can also get bias from observable characteristics of the
counties that may influence the probability of treatment and protests, but did not influence
the past propensity to protest as much. One such example would be the quality of the health
system: it raises both the probability of deaths from COVID, and people are likely more
concerned about the quality of the health care system than they were for past protests. In
the robustness checks section, we use this propensity as a control in our main specification

instead.
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Table 3.B.3: Matching on past propensity to protest
(1) (2) (3)

Presence of BLM events
All counties Never protested Protested

before before
Average Treatment Effect 0. 11775 0.0439%** 0.3247%%*
(0.0110) (0.00866) (0.0537)
Observations 3,108 2,768 340
Mean of dep. var. 0.0994 0.0477 0.521
Propensity to protest Y Y Y

Note: Estimation of the effect of having at least one COVID-19 death on presence of BLM protests.
The average treatment effect is evaluated by matching on the past propensity to protest after a notable
death. Column 1 presents the results for the whole sample, column 2 for counties that never protested
before and column 3 for counties that did protest before. Propensity-to-protest model estimated on the
full sample using logit LASSO regression using all available controls. Standard errors (in parentheses)
are not clustered. *** p<0.01, ** p<0.05, * p<0.1
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C. Appendix: Additional Figures and Tables

Evolution of lockdown stringency index, and masks recommendations
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Note: This graph represents two indicators of average health and lockdown measures in the US over the period
from March 1st to June 14th 2020. The blue continuous lines represent the mean lockdown stringency index.
The red dashed lined isolates only the indicator for mask recommendations and mandates. The vertical line

corresponds to the murder of George Floyd.
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Evolution of mobility index
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Note: This graph represents the components of the Google Community Mobility index: residential stay, and
mobility to different types of places, between March 1st and May 24th, 2020. The index is relative to the
average mobility to these places in the same day of the week between January 3 and February 6, 2020. The
displayed value is an average of the 7 previous days.
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Table 3.C.2: Summary statistics for super spreading events by their type

Type of SSE event Total events Total Events 6 weeks Mean  Standard Total Cases
before GF’s murder Deviation

Community 11 9 1.364 0.505 504
Development Center 12 12 3.833 1.404 1612
Event /group gathering 21 13 3 1.549 1083
Industry 125 87 15.656 8.642 17825
Medical 140 134 36.586  17.037 13731
Nursing Home 273 261 80.597  37.073 26684
Prison 193 187 45.487  19.674 49747
Rehabilitation / Medical 262 251 89.618  41.009 26979
Restaurant/Bar 1.5 0.535 1306
Retail 1 0 68
School 1.286 0.488 218
Other 20 15 2.5 1.051 1592

All super spreading (SSE) in the USA by their type. Total events are total number of SSE event of
each type occurring till 29 August. Total Events 6 weeks before GF’s murder is sum of all SSE events
by their type that occurred 6 weeks before GF’s death. Total cases is sum of all reported COVID-19

positive cases attributed to each type of SSE event.
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Table 3.C.3: First stage

COVID (deaths,/1000)

) o) ) ) &)
Panel A:All counties
Cumulative SSE 6 weeks ago, not in  0.0114***  0.0114***  0.0105%**  0.00935*** (.00930***
county, less than 50km away (0.00201)  (0.00201)  (0.00201)  (0.00151)  (0.00155)
Observations 3,107 3,107 3,107 3,106 3,106
F statistic 31.92 31.92 27.44 38.38 36.05
Mean dep. var. 0.114 0.114 0.114 0.113 0.113

Panel B: Counties with no BLM protest before
Cumulative SSE 6 weeks ago, not in  0.00881***  0.00881***  0.00797*** (0.00772*** (.00751***

county, less than 50km away (0.00132)  (0.00132)  (0.00147)  (0.00146)  (0.00144)
Observations 2,767 2,767 2,767 2,767 2,767
F statistic 44.53 44.53 29.25 27.95 27.04
Mean dep. var. 0.0990 0.0990 0.0990 0.0990 0.0990

Panel C: Counties with BLM protest before
Cumulative SSE 6 weeks ago, not in  0.0126***  0.0126***  0.0121*%**  0.00942*** (0.00961***

county, less than 50km away (0.00205)  (0.00205)  (0.00214)  (0.00174)  (0.00181)
Observations 334 334 334 333 333

F statistic 37.56 37.56 32.01 29.27 28.09
Mean dep. var. 0.233 0.233 0.233 0.227 0.227
State fixed effects Y Y Y Y
Demographic controls Y Y Y
Economic controls Y Y
Political controls Y

Note: Estimation of the SSE in neighbouring counties (50km radius) six weeks prior to George Floyd’s
murder on COVID-19 deaths. Panel A presents estimation for all US counties. Panel B presents these
results for the sub-sample of counties with no BLM protest before the murder of George Floyd. Panel
C presents these results for the sub-sample of counties with at least one BLM protest before the murder
of George Floyd. Each column include sequentially different sets of additional controls. Demographic
controls: share of Black population, urban (category [1-6]). Economic controls: median household in-
come, unemployment share, Black poverty rate, 3+ risk factors/community resilience. Political controls:
Republican vote share in 2012 and 2016, social capital (number of different types of civic organizations),
number of past BLM events between 2014 and 2019, deadly force used by police against Black people.
We report Kleibergen-Paap rkWald F statistic. Standard errors (in parentheses) are clustered at the
state level. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.C.5: Alternative Mechanisms

Presence of BLM Other COVID-19
Protests Protests

(1) (2) (3) (4) (5) (6)

Sample: All counties

COVID (deaths/1000) 0.279%% 0.570*  0.252 0.890 0.180 0.225
(0.119) (0.289) (0.424) (1.066)  (0.138) (0.104)
. xBlack death burden 1.017
(0.888)
. XxGoogle BLM search -0.015
(0.010)
. xUnemployment 0.006
(0.030)
. XStringency -0.007
(0.0146)
Interacting variable -0.195  0.001  0.008* 0.001
(0.176) (0.001) (0.005) (0.0013)
Observations 3,106 3,056 1,351 3107 3,106 3,106
F stat COVID 25.59 22.14 2749 96.71 31.4 31.4
F stat Interaction 12.46 58.19 27.49 96.04
Mean of dependent variable  0.099 0.099  0.099 0.099 0.081 0.030
All controls Y Y Y Y Y Y
State fixed effects Y Y Y Y Y

Note: Estimation of the effect of COVID-19 deaths per 1000 population on presence of BLM protest.
Column 1 shows estimates for instrumented COVID deaths. Columns 2 to 4 show heterogeneous effects
for Black death burden weeks prior to GF’s murder, Google searched for BLM 3 weeks prior to GF’s
murder, unemployment and stringency 3 weeks after GF’s murder. Column 5 presents results for other
protests. Panel A presents 2SLS estimation for all counties. Panel B presents these results for the sub-
sample of counties with no BLM protest before the murder of George Floyd. All specifications include
state fixed effects and standard controls. We report Kleibergen-Paap rkWald F statistic. Standard errors
(in parentheses) are clustered at the state level. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.C.6: Effect of SXSW users on Twitter presence

(1) (2) (3)
VARIABLES Log(Preexisting Log(New Presence of
users) users)  BLM events

Log(SXSW users) 0.373%%* 0.193%** 0.0151

(0.103) (0.0505) (0.0175)

SSE -0.00117
(0.00257)

x SXSW users 0.00439**
(0.00172)

Mean of dep. var 1.738 0.420 0.0477

F first stage 13.02

Observations 2,767 2,767 2,767

Instruments

All controls Y Y Y

Pre-SXSW users Y Y Y

State fixed effects Y Y Y

Note: Column 1 shows the first stage regression for predicting existing Twitter users at the end of
2019 in the county using SXSW followers that joined Twitter during the festival in the county and its
neighboring counties. Column 2 shows the same effect on the users created during COVID-19. Column
3 shows the reduced-form effect of SXSW followers interacted with superspreader event on the presence
of protest. We present results for the sub-sample of counties with no BLM protest before the murder
of George Floyd. All specifications include state fixed effects and all standard controls. Standard errors
(in parentheses) are clustered at the state level. *** p<0.01, ** p<0.05, * p<0.1
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D. Data Appendix

Super Spreader Events. Our identification strategy relies on records of Super Spreader
Events in the early stages of the pandemic. In this section, we discuss the limitations of the
SSE data set and how we address these in the empirical section. The data set is collected from
various sources by researchers from the London School of Hygiene and Tropical Medicine and
published as a free access data base| for researchers and the media under the SARS-CoV-2
Superspreading Events from Around the World Project.

A main challenge in the construction of this data base is that there is no standard defini-
tion of a Super Spreader Event. The data base mainly refers to "outbreak” and ”clusters” for
which they use the UK Government Public Health Definition: ”two or more test-confirmed
cases of COVID-19 among individuals associated with a specific non-residential setting with
illness onset dates within a 14-day period.” The outbreak definition is expanded to ”identified
direct exposure between at least 2 of the test-confirmed cases in that setting (for example
under one metre face to face, or spending more than 15 minutes within 2 metres) during the
infectious period of one of the cases when there is no sustained local community transmission
- absence of an alternative source of infection outside the setting for the initially identified
cases.”

The data base draws from one main source: Leclerc et al.| (2020) who performed a
systematic review of available literature and media reports to find settings reported in peer
reviewed articles and media with ”outbreak” or ”cluster” characteristics. There were various
extensions to this data set, using articles of journalists, expanding that data set to second
and third generation events by Swinkels (2020), and including the Western Pacific Region
for a project of the World Health Organisation (under the project lead of Fatim Lakha, also
from the London School of Tropical Medicine and Hygiene). We will primarily draw from
Leclerc et al.| (2020]), as we focus on SSEs in the United States during the early stages of the
pandemic.

There are various limitations in the measurement of SSEs. First, there exists some
uncertainty about the exact date of the SSE. If, for instance, there was a COVID-19 cluster
at a worker dormitory, the exact date of the transmission event is difficult to narrow down.
In these cases, researchers make an approximation based on the timing of tests and overall
case numbers. We address this concern by using the cumulative number of SSEs until a
certain cut-off date (first week of April in the baseline version of the instrument), thereby
not relying on the specific timing of the SSE. Second, for many SSEs it is not known exactly
how many people were infected (either directly at the SSE or by somebody who was infected

at the initial SSE). The database always uses the lowest number cited in the articles about
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https://docs.google.com/spreadsheets/d/1c9jwMyT1lw2P0d6SDTno6nHLGMtpheO9xJyGHgdBoco/edit#gid=1812932356
https://www.gov.uk/government/publications/covid-19-epidemiological-definitions-of-outbreaks-and-clusters/covid-19-epidemiological-definitions-of-outbreaks-and-clusters-in-particular-settings

the SSE but actual numbers can be much higher. The actual detected number of cases will
be related to testing capacity and potentially other unobserved factors at the county level.
For this reason, we use the most simple version of the instrument, i.e. counting the number
of SSEs rather than using the cases associated with the SSE. Third, the GPS coordinates
of SSEs are almost always approximate. For instance, when an SSE occurred somewhere in
city A, typically the database uses GPS coordinates for a random location within that city,
not the for precise location. In a robustness check, we make sure that our results are not
sensitive to changing the radius around SSEs to account for potential measurement error.
Overall, the measurement error in Super Spreader Events would only bias our results if it is
somehow related to the counties’ overall propensity to protest (and is not captured in the
set of controls or state fixed effects). One important exercise, addresses this concern: SSEs
do not predict past BLM events. If SSEs were disproportionately recorded in places with
a higher likelihood of a BLM event occurring, we should see a systematic relationship to

previous BLM protest, which is not the case.

Twitter usage during the protests. Twitter data is an important source when studying
social events and protests. Previous work on BLM events has used this data|Ince et al. (2017).
We collected tweets using the Twitter |Academic Research API. In particular, we collected
all tweets that contain the keywords “BLM”, “Black Lives Matter”, “Black Life Matters”
or “George Floyd” Y] including retweets, between May 25 and June 14. For each tweet, we
extract the time and text of the tweet, the user, the user’s stated location, and account

creation date. We present a selection of tweets that are part of our sample in Table [3.D.4]

Geo-location of tweets. We follow the literature in assigning the location of a tweet or
a user by extracting information on their self-reported location from their Twitter profile
Enikolopov et al.| (2020); [Takhteyev et al.| (2012); [Miiller and Schwarz| (2020). Not all users
report a location and among those who do, not all state a valid location (e.g., “in the heart
of Justin Bieber”) so we restrict the sample to the users that state a valid location that can
be matched to a USA county (in particular, we exclude users whose location only mentions
a state). The location is an arbitrary text field which is not meant to be machine-readable.
We use the Nominatim geocoding engine (based on the Open Street Map database) to find
the coordinates of the most likely match for the location. We then filter out all locations
outside the US and all locations that are too vague (i.e. that map the whole country or a

whole state). Finally, we map these coordinates to counties using the US Census Bureau

39These keywords are considered both in when appearing separated with space, or without spaces as a
hashtag (e.g. #BlackLivesMatter)

211


https://developer.twitter.com/en/products/twitter-api/academic-research
https://nominatim.org/
https://www.openstreetmap.org/#map=6/40.007/-2.488
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html

cartographic boundary files. Across our different tweet collections, we end up with 23.3
million tweets. This approach has clear limitations as it relies only on self-reported locations
and may not be representative of the whole Twitter universe. We report summary stats on
the counties for which we were able to assign tweets and compare them to the characteristics
of the full set of counties in Table [3.D.3] We would be particularly concerned if counties
with geolocalizable tweets were substantially different from other counties. Reassuringly,
counties without localizable tweets only form a tiny minority: out of the 3106 counties in

our universe, only 21 (0.7%) are not attributed any tweet.

Pre-existing Twitter usage and instrument. For the study of mechanisms, we use
a proxy of pre-existing Twitter usage measured in December 2019. This is measured by
sampling all tweets containing the word ”the” during random intervals in one week of Decem-
ber 2019. One million tweets were collected from 765 000 users. Users were attributed to
counties using the location in their profile. To study causally the effect of pre-existing Twit-
ter usage on the reaction to COVID-19, we collected data to reproduce the SXSW instrument
used by Muller and Schwarz| (2019)): we collected in November 2021 the locations of all 639
915 followers of the @QSXSW Twitter account as well as the date they joined the network.

BLM account followers. As an additional outcome, we use the number of all followers of
the official BLM account @Blklivesmatter. We collected the followers and their geolocation
in February 2022. This gap between the period of analysis and the date of data collection can
lead to measurement error because we do not know the starting date of following. Accounts
that followed the official BLM account may stop following it and accounts that are computed
as followers may start following just a few hours before the collection. Similarly, geolocation
of accounts may have changed between the period of study and the date of data collection.
Using this data we also compute the number of accounts created between the first COVID-19
death in the USA and the 24th of May (the day before the murder of George Floyd) that

are followers of the account @Blklivesmatter.

Google Searches. We also use the Google Trends data to analyze patterns of search
activity before and after the death of George Floyd. Each variable is a normalized index of
search activity for a given search term. The indices are specified on a Nielsen’s Designated
Market Area (DMA) level. A DMA is a region of the United States that consists of counties
and ZIP-codes. There are 210 DMA regions covering the US. Search activity is averaged
across the period of interest: each observation is a number of the searches of the given term

divided by the total searches of the geography and time range, which is then normalized
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between regions such that the region with the largest measure is set to 100. The important
limitation of the Google Trends data is that an index of search activity is an integer from

zero to one hundred with an unreported privacy threshold. The search terms that were used
in the analysis are presented in Table [3.D.2]

SafeGraph. We rely on two data sets provided by SafeGraph. Both of them are based on
anonymized mobile data. SafeGraph aggregates data from around 45 million smartphones on
the level of US Census Block Groups. With the help of the first data set, Monthly Patterns
(MP), we can answer such questions as: who visited each <point of interest>, where they
came from and where they go to. The set of <points of interests> consists of millions of
places such as hotels, restaurants, public parks, malls and other establishments. The MP
data allows us to observe home locations at the level of the US Census Block Group, which
we can use to construct our variable of touristic flows out of spring break locations in March
2020. In our alternative identification strategy we employ an instrumental variable based
on data provided by the data company SafeGraph. The SafeGraph data is GPS location
data that reveal the spatial mobility of population between the points of interest. For the
region of interest (three vacation destinations in Florida: Miami Beach, Panama Beach and
Fort Lauderdale) the SafeGraph data provide rich set of points of interest, which include
more than 3000 places such as restaurants, bars, hotels, gyms, public parks, malls and other
establishments. Using this data, we measure the number of devices that “pinged” in each
of the point of interest during March, 2020. Using these data we can also observe home
locations on the level of the US Census Block Groups (CBG). An individual “home” is
defined as a place where user’s devices pinged most often in the night time between 6 PM
and 7 AM during the baseline 6-week period determined by the SafeGraph.

Elephrame. Elephrame is a crowd-sourced platform that collects data on Black Lives
Matter and other protests. It provides information on the place and date of each BLM
protest and estimated number of participants, as well as a link to a news article covering the
protest. We extracted all protest records from June 2014 to September 2020 and geo-coded
their location. The observation period starts with the first BLM demonstration for Eric
Garner on 7/19/2014 and consists of any public demonstration or public art installation
focused on “communicating the value of a Black individual or Black people as a whole”.
Each observation is manually collected by the creator of Elephrame, Alisa Robinson, from

sources that include press, protest organizers, participants and observers.
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https://www.safegraph.com/weekly-foot-traffic-patterns

Lockdown stringency. We use data from the Oxford COVID-19 Government Response
Tracker Hale et al.| (2020) to measure the restrictiveness of the government’s pandemic policy.
Use of this data is inspired by recent work which shows that stringent policies lead to lower
mortality, mobility and consequently spread of infection during the pandemic |Jinjarak et al.
(2020); |Askitas et al.| (2020). This data provides four key indices (i) an overall government
response index, (ii) a containment health index, (iii) an economic support index, and (iv)
an original stringency index which captures the strictness of lockdown-style policies. Each

of this indices reports values between 1 and 100 and varies across states and weeks.

Community Resilience. One of the most important COVID-19 related control variables
used in our empirical analysis is the ability of counties to cope with the pandemic. This
variable comes from the United States Census Bureau. These estimates measure the capacity
of individuals and households to absorb, endure, and recover from the health, social, and
economic impacts of a disaster such as a hurricane or a pandemic. For each county the
population living under each of 11 risk factors is estimated and these factors are aggregated
into 3 composite risk factors: (i) population with 0 risk factors; (ii) population with 1-2
risk factors, and (iii) population with 3 or more risk factors. These risk factors are based
on households’” and individuals’ socio-economic and health conditions. Risk factors include:
Income-to-Poverty Ratio, single or zero caregiver household, unit-level crowding defined as
i, 0.75 persons per room, communication barriers (defined as either limited English-speaking
households or no one in the household over the age of 16 with a high school diploma), no one
in the household is employed full-time, disability posing constraint to significant life activity,
no health insurance coverage, being aged 65 years or older, households without a vehicle
and households without broadband Internet access. For our analysis we look at populations
within each county that are classified as living under 1-2 risk factors and 3 or more risk

factors.

Notable Deaths. We collect data on all notable Black deaths that have occurred in the
country since 2014. Notable deaths are defined as deaths of Blacks at the hands of a police
officer and which are covered in national media and /or have a dedicated Wikipedia page. This
data set includes personal information about the victim like their name, age, sex and race.
It also has details about the event, like the county and zip code of the place where shooting
took place, cause of death, whether the victim was armed, if a video of the incidence was
taken by onlookers and if the police officer wore a body camera. We also collect information
on date of the shooting, date of the official verdict from this incident and whether the police
officer was convicted. From 2014 till 2020, we have 34 notable deaths from all over the
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https://www.census.gov/data/experimental-data-products/community-resilience-estimates.html

country. Average age of victim is 34 years, 31 out of 34 are men. All victims in our data are

Black.

Use of deadly force by police. We obtain this from the collaborative platform Fatal
Encounters. This data is collected by a multi-disciplinary team at the University of Southern
California. The results are published as part of the National Officer-Involved Homicide
Database. The data is available from 2000 onward and contains the name, gender, race, and

age of each victim and the specific address where the death occurred, among other variables.

George Floyd Street Art. We extract information on the location of street art represent-
ing or referring to George Floyd from the Urban Art Mapping George Floyd and Anti-Racist
Street Art database. The crowd-sourced website run by researchers from the University of
St. Thomas documents street art from around the world created in the aftermath of the
murder of George Floyd. Their archive is a repository of images made available for research
and education. The website contains geo-tagged information and images of George Floyd
related street art, which we match to counties. The data does not contain time stamps and
has no information on when these images were added. For this reason, we can only interpret
the street art as cross-sectional snapshots at time of accessing the website in January of 2022.
Overall, we record 2183 images across 70 counties. Most of the images (1467) are recorded

in Minneapolis.
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https://elephrame.com/
https://elephrame.com/
https://elephrame.com/
https://elephrame.com/
https://fatalencounters.org/
https://developer.nytimes.com/covid
https://covid19settings.blogspot.com/p/about.html
https://www.safegraph.com/academics
https://data.cdc.gov/NCHS/Provisional-COVID-19-Deaths-Distribution-of-Deaths/pj7m-y5uh
https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
https://developer.twitter.com/en/products/twitter-api/academic-research
https://developer.twitter.com/en/products/twitter-api/academic-research
https://trends.google.fr/
https://trends.google.fr/
https://www.cdc.gov/nchs/data_access/urban_rural.htm
https://www.cdc.gov/nchs/data_access/urban_rural.htm
https://www.cdc.gov/nchs/data_access/urban_rural.htm
https://www.cdc.gov/nchs/data_access/urban_rural.htm
https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs
https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-detail.html
https://www.bls.gov/lau/#tables
https://www.census.gov/programs-surveys/acs
https://aese.psu.edu/nercrd/community/social-capital-resources
https://www.google.com/covid19/mobility/

Table 3.D.2: Search terms used in indices of search activity

Keywords Start of period End of period Duration
twitter 2020-01-01 2020-05-25 6 months
twitter 2020-04-20 2020-05-25 5 weeks
blm 2020-05-25 2020-06-15 3 weeks
floyd 2020-05-25 2020-06-15 3 weeks
george floyd 2020-05-25 2020-06-15 3 weeks
blm + black lives matter + floyd 4+ george floyd 2020-05-25 2020-06-15 3 weeks
blm + black lives matter + floyd 4+ george floyd 2020-04-20 2020-05-25 5 weeks

Note: The Google Trends data is generated on a designated market area (DMA) level. Keywords are
case-independent. The resulting outcomes are normalised measures generated by Google Trends.
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Conclusion

This dissertation aims to understand how racial diversity affects the economy. Each of
these chapters is an example of one of potential scenarios: exclusion, conflict, and inclusion.
Although the contexts of these chapters are different, together they complement each other
and reveal different facets of racial diversity in the economy.

In the first chapter I show that racial discrimination can generate significant racial dispar-
ities in economic outcomes: I find that an apartment with a discriminatory ad has 4% lower
rent price than an identical, but non-discriminating apartment in the same building. This
result complements well-established theoretical insights on how differential treatment can
generate racial differentials in the housing market. While there are many channels through
which racial differentials can occur, pure discrimination in the market remains important
and requires further research.

This paper touches on the uncovered topic of the relationship between overt and subtle
forms of discrimination. I analyse unique data from the Moscow rental housing, where
landlords do not hide there racial preferences. I show that overt and subtle forms of discrim-
ination are closely related. I find that they coexist in Moscow rental housing market and
that their relative prevalence is stable across neighborhoods.

Finally, I borrow theoretical framework from the literature on labor search with discrim-
ination and show how the racial rent differential can occur. I do heterogeneity analysis and
find that the racial rent differential is higher in neighborhoods with a lower share of discrim-
inating landlords. I show that this result can coincide with a random search model with
discrimination by introducing the stylized version of neighborhood sorting

The second chapter studies the impact of tourism on urban amenities. Exploiting a
large decline in international travel during the COVID-19 pandemic, we find that tourism
decreases the perceived quality of restaurants among locals. We find suggestive evidence
that the negative effect of tourism operates through direct aversion against the presence
of tourists, rather than overcrowding or supply-side changes. The effect is concentrated in
restaurants where the tourist clientele was from countries that have few social ties with the

French population.
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This paper contributes to an emerging literature on the effects of tourism on locals’ wel-
fare. While the existing literature emphasizes price channels, i.e. tourists driving up prices
Allen et al. (2020) and endogenous adjustment of amenities Almagro and Dominguezlino
(2019), we show that tourism has an additional effect on existing amenities which lowers
their experienced quality. While we do not aim to evaluate the overall welfare impact of
tourism in this paper, we highlight an additional source of discontent that can be caused
by tourism. This adds to the debate preceding the pandemic on limiting tourism inflows in
some of the most popular tourist destinations. It remains an open question whether tourism
will rebound to its pre-pandemic levels. If it does not, our paper provides a preview how
persistently lower inflows may affect locals’ quality of life.

The third chapter we shed light on the role of social media in generating mobilization
in counties whose characteristics are closer to the median voter and where a larger part of
the population is not directly impacted by the movement’s grievances. We first document
that around half of the protests following George Floyd’s murder occur in counties that
are hosting a BLM event for the first time. We next show that exposure to the pandemic
increased protest behavior and that this effect is driven by those counties hosting a protest
for the first time. We then turn to the study of the role of social media in explaining this
effect. We first present evidence showing that the pandemic lead to an increase in the time
spent on online activities and in the use of social media in all counties, and more so in
counties hosting their BLM first event after George Floyd’s murder. Then, we show that
counties where social media was more widely used at the beginning of the pandemic and
counties where a higher number of new Twitter users were created during the pandemic
show a higher effect of COVID-19 on their protest behaviour. This differential effect is only
present in counties with no prior BLM-related protest activity, which suggests that exposure
to social media content related to a protest trigger can increase mobilization in parts of the

population that were not yet conscious of the problems faced by the aggrieved minority.
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Resumé

Cette these se divise en trois parties distinctes ayant comme fil conducteur le sujet de la
diversité. Je me concentre sur un type particulier de diversité : dans la race, I'identité, les
attitudes et les croyances.

Depuis Becker| (1957)), la race et I'identité sont devenues des éléments légitimes du raison-
nement économique. Dans son travail sur la discrimination, Becker a considéré une situation
ol des travailleurs de deux races coexistent sur le marché et ol certains employeurs ont un
"dégotit” pour les travailleurs d'une race. Les travaux précurseurs de Becker peuvent étre
considérés comme faisant partie d’une question plus large : ”Que se passe-t-il lorsque des
agents de races ou d’identités différentes operent dans la méme économie ?”. Dans les trois
chapitres de cette these, j'envisage trois scénarios différents qui peuvent se produire.

Le premier scénario, qui a déja été mentionné, est la discrimination - ¢’est-a-dire ’exclusion
du marché.

Le second scénario est un conflit - lorsqu’aucun groupe n’est en mesure d’en exclure un
autre du marché, mais qu’ils continuent a avoir un comportement de rejet. Un exemple
serait la ségrégation des consommateurs (Davis et al.| (2019)).

Enfin, le troisieme scénario, l'inclusion est également possible lorsque des groupes re-
joignent une coalition, ou lorsqu’il y a transmission culturelle. Les chapitres présentés
ici doivent étre considérés comme des exemples, et non comme des généralisations. Dans
I'introduction, je me concentrerai sur la littérature a propos de ces trois cas.

La discrimination raciale est un exemple clé d’exclusion. Une vaste littérature économique
a été développée pour examiner la discrimination sur différents marchés: travail, logement,
consommation, crédit, scolarité, etc[].

Deux types de discrimination sont devenus I'épitomé de la littérature théorique : la
discrimination basée sur le gott et la discrimination statistique. La premier est déterminée
par les préférences des agents (Becker| (1957)); Arrow| (1972); Black| (1995)). Pour la second est

différente. Elle ne suggere pas que les agents ont des préjugés. Au contraire, les agents sont

!Pour des analyses approfondies de la littérature, voir [Lang and Lehmann| (2012); [Bertrand and Duflo
(2017)



rationnels et utilisent 1'identité de la contrepartie comme un indicateur de sa ”performance”
dans une situation d’asymétrie d’information. Si le groupe discriminé a une performance
inférieure en moyenne, alors la discrimination apparait comme un choix rationnel. Le modele
classique de discrimination statistique a été proposé par |Phelps (1972). Un cadre plus
complexe de ce modele, tel qu’introduit par [Tirole (1996)), implique une étape préalable dans
laquelle I’agent minoritaire peut choisir combien il ou elle veut investir dans le développement
de la compétence qui détermine la performance future. Ensuite, la "mauvaise réputation” du
groupe supprime l'incitation de 'agent a investir dans cette compétence. Il est important de
noter que les deux formes de discrimination - statistique ou fondée sur le gott - correspondent
a la définition de la discrimination des Nations unies et sont illégales dans de nombreux pays.

Les cadres de la discrimination fondée sur le gout et de la discrimination statistique
n’épuisent pas ou ne représentent pas la multitude de mécanismes potentiels et de cadres
institutionnels par lesquels la discrimination peut se produire. |[Small and Pager| (2020)
soulignent I'importance d’autres cadres et montrent comment ils peuvent compléter et étendre
les approches traditionnelles. Ils mentionnent plusieurs directions. Certaines d’entre elles
sont déja apparues dans la littérature économique.

Premierement, les gens peuvent faire de la discrimination sans s’en rendre compte,
un phénomene qui a été appelé "discrimination implicite” dans Bertrand et al. (2005)).
Deuxiemement, la discrimination peut étre renforcée par la structure organisationnelle, méme
sans l'intention des membres individuels. Troisiemement, la discrimination passée (parfois
inscrite dans la loi) peut avoir une forte influence sur l'inégalité contemporaine. Par ex-
emple, |Aaronson et al| (2021) montre que le "redlining” des années 1930 a eu un effet
socio-économique a long terme. Quatriemement, des formes mineures de comportement
discriminatoire peuvent avoir des conséquences importantes. Par exemple, un travailleur
issu d’une minorité peut étre embauché mais traité différemment sur le lieu de travail (il a
une charge de travail plus élevée, il est plus étroitement surveillé). Enfin, dans 'ensemble,
il faudra également tenir compte d’un ensemble plus large de conséquences, telles que la
discrimination vécue et la tension émotionnelle.

Du point de vue de la littérature empirique sur la discrimination, le principal défi est
que la discrimination est difficile a observer. Dans de nombreuses communautés, la dis-
crimination est illégale et socialement inacceptable. Par conséquent, afin d’étudier la dis-
crimination, nous devons d’abord apprendre a la détecter. Or, cela n’a pas toujours été
le cas. Par exemple, aux EtatS—Unis, avant la loi sur les droits civils de 1964, la discrim-
ination raciale était manifeste et répandue. Les offres d’emploi publiées dans le New York
Times contenaient régulierement des exigences raciales explicites (Darity and Mason| (1998))).

Les complexes immobiliers informaient publiquement les locataires de la politique ”pas de



Noirs”. Mais surtout, la discrimination a cette époque n’était pas étudiée avec les outils
statistiques disponibles aujourd’hui. Une fagon d’identifier la discrimination consiste a com-
parer les résultats économiques de différents groupes raciaux. Cette approche a donné lieu a
une littérature qui estime les écarts raciaux en utilisant la décomposition par régression. Les
écarts raciaux sur le marché du logement sont bien documentés, la plupart des études port-
ant sur les Etats-Unis : [Thlanfeldt and Mayockl (2009); Bayer et al.| (2017); [Yinger| (1997):;
Early et al. (2019). Plus précisément, pour le marché américain du logement locatif, Early
et al.| (2019) montre que les Noirs paient 0,6 & 2,4 % de plus que les Blancs pour un logement
identique dans un quartier identique.

On peut toutefois se demander si ces résultats tiennent lorsque tous les controles nécessaires
sont inclus. Neal and Johnson| (1996) montrent que I’écart salarial racial se réduit ou méme
disparait lorsqu’une variable mesurant les compétences cognitives d’'un demandeur d’emploi
est incluse dans 1’équation?] Cela a conduit les chercheurs & s’interroger : peut-étre que les
écarts constatés précédemment dans les études ne sont pas le résultat d’une discrimination,
mais refletent des différences entre les groupes avant leur entrée sur le marché. Selon cette
logique, les différences de capital humain avant I’entrée sur le marché peuvent expliquer les
disparités raciales en matiere de salaires, et les différences de compétences en matiere de
négociation peuvent expliquer les disparités en matiere de logement. En s’appuyant sur la
décomposition de la régression, il est difficile de dire dans quelle mesure les différences ra-
ciales sont causées par la discrimination. Les études qui peuvent aborder cette question de
manieére empiriquement rigoureuse sont rares (Fryer et al. (2013)).

Depuis le début des années 2000, un autre volet de la littérature est apparu. Afin de
révéler 'existence d’un traitement différentiel, les chercheurs ont commencé a mener des
expériences de correspondance. Dans leur travail de référence, |Bertrand and Mullainathan
(2004) ont envoyé des paires de CV fictifs avec des noms a consonance noire ou blanche a
des employeurs de Boston et de Chicago, en randomisant les autres caractéristiques. Cette
approche leur a permis d’identifier un traitement différentiel : les candidats dont le nom avait
une consonance noire avaient moins de chances d’étre rappelés par un employeur potentiel.
Les expériences de correspondance ont attiré I'attention des chercheurs. Baert| (2018)) discute
de son efficacité et de ses lacunes. Les expériences de correspondance ont révélé des discrim-
inations sur de nombreux marchés, éliminant certains des angles morts caractéristiques des
études précédentes sur la discrimination raciale.

En méme temps, les expériences par correspondance n’explorent pas clairement le lien

entre la discrimination et les écarts raciaux. Dans le premier chapitre, j'identifie ce lien

2Neal and Johnson| (1996)) mesurant les compétences avec I’Armed Forces Qualification Test (AFQT), un
test utilisé pour déterminer la qualification pour I’enrélement dans les forces armées des Etats-Unis



en m’appuyant sur le contexte unique du marché du logement locatif de Moscou, ou les
propriétaires pratiquent ouvertement la discrimination : environ 20 % des propriétaires
moscovites du marché en ligne Cian incluent des exigences raciales dans leurs annonces de
location. Je vais résumer brievement ce chapitre dans I'introduction.

Le deuxieme chapitre illustre un autre scénario courant : un conflit entre des consom-
mateurs de groupes différents qui se rencontrent dans le méme environnement économique
sans discrimination du co6té de loffre.

Dans ce chapitre, qui est basé sur un travail commun avec Stefan Pauly, nous examinons
la concurrence intra-urbaine entre les touristes et les résidents pour les équipements urbains.

Comme le souligne |Faber and Gaubert|(2019), ”le tourisme implique I’exportation de ser-
vices locaux autrement non commercialisés en déplagant temporairement les consommateurs
a travers 'espace, plutot qu’en expédiant des marchandises”. En s’appuyant sur les enseigne-
ments de la littérature commerciale, |[Faber and Gaubert| (2019) effectue une analyse struc-
turelle des avantages économiques du tourisme. Lanzara and Minerval (2019)) se penchent
sur les interactions entre le tourisme et les équipements, et examinent les conséquences en
termes de bien-étre. L’insatisfaction a I’égard du tourisme a rarement été explorée dans la
littérature économique. L’exception rare est Takahashi (2019)) qui examine les effets négatifs
du tourisme d’un point de vue théorique.

Plusieurs facteurs sont a prendre en compte : les touristes, en tant que consommateurs
importés, peuvent avoir des préférences et des attitudes différentes de celles des résidents,
ils peuvent exercer une pression supplémentaire sur les infrastructures et les services locaux,
et enfin, les résidents peuvent avoir des attitudes négatives envers les touristes. Tous ces
aspects sont abordés dans le deuxieme chapitre, et un bref résumé est présenté plus loin
dans l'introduction.

La littérature sur I’économie urbaine contient d’autres exemples, plus touristiques, de
conflits entre différents groupes. Dans de nombreuses villes, différents groupes raciaux coex-
istent, interagissent et consomment dans le méme environnement. Mazzolari and Neumark
(2012) observent que la diversité parmi les résidents est corrélée a la diversité de la consom-
mation. Ceci est également cohérent avec les preuves de [Schiffl (2015) concernant 'attrait
de la densité en ville. Parallelement, on sait qu’il peut y avoir une ségrégation dans la con-
sommation en ville. Davis et al. (2019)) examine la ségrégation dans la consommation dans
la ville de New York, ajoutant a la notion traditionnelle de ségrégation résidentielle dans la
littérature.

Le troisieme chapitre, rédigé en collaboration avec Annal’i Casanueva Artis, Sulin Sar-
doschau et Kritika Saxena, jette un éclairage sur un autre scénario potentiel : l'inclusion.

Lié a I’économie politique de la protestation, ce chapitre met en lumiere un aspect crucial



de la diversité : la capacité de différents groupes a former une coalition pour apporter un
changement politique.

Ce chapitre se distingue également des deux autres car il est lié a la littérature qui
examine le role de I'information et des médias dans 1’économie. Des travaux antérieurs ont
montré que les médias sociaux peuvent résoudre le probleme de 1’action collective et de la
coordination pour les individus déja sympathisants d’'une cause politique : [Enikolopov et al.
(2018); [Manacorda and Tesei (2020). En revanche, nous nous concentrons sur le role des
médias sociaux en tant qu’outil permettant d’élargir la coalition et de mobiliser de nouveaux
manifestants.

Les études qui examinent I'impact d’Internet et des nouveaux médias ont tendance a
utiliser un changement du coté de l'offre dans les premiers stades de ’adaptation d’Internet
ou des médias sociaux : (Guriev et al. (2019); [Muller and Schwarz| (2021)); Enikolopov et al.
(2018); Manacorda and Tesei (2020). A notre connaissance, nous sommes les premiers i
étudier le role des médias sociaux dans I’élargissement des coalitions politiques par la persua-
sion, plutot que par la mobilisation d’individus déja sensibles aux doléances du mouvement.

Un autre theme qui unit ces chapitres est celui de 1’économie numérique. Tous les
chapitres bénéficient des nouvelles données issues des plateformes numériques. La consom-
mation, le logement, le transport se sont déplacés en ligne (Goldfarb and Tucker| (2019)). Les
informations politiques et socialement pertinentes se répandent a travers les médias sociaux.
Cela crée une empreinte numérique qui peut étre utilisée par les chercheurs. Les économistes
du passé accordaient moins d’attention a des questions telles que 'inégalité, non pas parce
que ces questions ne présentaient pas d’intérét social. Au contraire, elles ont toujours été
d’un intérét primordial, mais les données étaient difficiles a obtenir.

Dans les parties suivantes de cette introduction, je résumerai les principaux résultats de

chacun des chapitres de la these.

Chapitre 1 : Considérons les Slaves : Discrimination

ouverte et disparités raciales dans les logements locatifs

Aujourd’hui, la discrimination est le plus souvent subtile. Son impact est donc difficile
a mesurer. Ce chapitre tente de surmonter ce défi en s’appuyant sur le contexte unique du
marché du logement locatif de Moscou, ou les propriétaires font preuve de discrimination.
Moscou, ou les propriétaires pratiquent ouvertement la discrimination. Ils incluent des exi-
gences raciales dans les annonces, en utilisant des phrases telles que "1'offre est réservée aux

locataires slaves”, ou "slave” désigne les locataires d’origine russe ou les locataires d’origine



russe. russes ou des locataires d’apparence ethniquement russe.

Plus précisément, j’étudie comment la discrimination sur le marché du logement locatif
peut générer un différentiel de loyer racial.

Je collecte de nouvelles données sur les annonces de location provenant de la principale
place de marché immobiliere en ligne russe, cian.ru. L’ensemble de données comprend toutes
les annonces disponibles sur une période d’environ six mois. Je classe les annonces en fonction
de la présence d’exigences raciales et je les combine avec d’autres caractéristiques observables
des appartements et des quartiers. Environ 20 % des annonces comportent des exigences
raciales. Ce parametre me permet donc d’estimer l'effet de la discrimination sur I'écart de
loyer racial. Pour identifier cet effet de maniere causale, j'inclus des effets fixes au niveau de
I'immeuble dans le modele afin d’absorber toute caractéristique géographique et au niveau
de I'immeuble.

Je constate que la discrimination génere un écart de loyer racial significatif et important :
si 'on compare des appartements du méme immeuble présentant des caractéristiques observ-
ables identiques, les appartements non discriminatoires affichent un prix supérieur de 4 %.
Cet article examine également la relation entre les formes manifestes et subtiles de discrim-
ination. Je réalise des expériences classiques de correspondance, en envoyant des messages
avec des noms a consonance russe et non russe a un sous-ensemble aléatoire d’annonces en
ligne. Cette expérience me permet d’établir un lien entre les résultats obtenus a partir de
I’étude d’observation et ’ensemble des preuves existantes dans la littérature expérimentale.
de la littérature expérimentale. Je constate que des formes subtiles et manifestes de discrim-
ination coexistent sur le marché du logement locatif & Moscou. Leur prévalence relative est
constante d'un quartier a ’autre.

Enfin, j’emprunte un cadre théorique a la littérature sur la recherche de travail avec
discrimination ? et 'applique au contexte des logements locatifs a Moscou. Je démontre
que le modele basé sur la recherche peut expliquer 'existence du différentiel de loyer racial.
L’intuition est la suivante : lorsque la recherche est cotiteuse et que les minorités ont plus
de chances d’étre rejetées, elles sont plus susceptibles que la majorité d’accepter une offre
défavorable. Alors, les propriétaires non discriminants qui 'anticipent augmenteront le prix
du loyer a I’équilibre.

Cependant, le modele standard basé sur la recherche ne peut pas expliquer les résultats
de T'analyse de I'hétérogénéité. Je constate que dans les quartiers (et les immeubles) ou la
proportion d’appartements discriminants est plus élevée, le différentiel de loyer racial est
plus faible. A premiere vue, cela contredit 'implication du modele, qui dit qu’avec une plus
grande proportion d’appartements discriminants, I’écart devrait se creuser. Cependant, ce

point de vue suppose que les quartiers sont des marchés différents et isolés, alors qu’en fait



les locataires potentiels font un tri (mais pas nécessairement une forte ségrégation) entre les
quartiers. J’inclus une étape de choix du quartier dans le modele basé sur la recherche pour

expliquer les résultats obtenus dans I'analyse de I’hétérogénéité.

Chapitre 2 : Aménagements urbains et tourisme : Les

données de Tripadvisor

Ce chapitre est co-écrit avec Stefan Pauly.

Dans cet article, nous estimons 'effet du tourisme sur la satisfaction des résidents a 1’égard
des restaurants et d’autres équipements urbains. Nous utilisons des données sur les critiques
de restaurants provenant de Tripadvisor - la plateforme qui regroupe le contenu généré par
les utilisateurs sur les restaurants et autres expériences de voyage. Nous construisons des
données de panel uniques sur la consommation et les commodités dans la ville. Ces données
nous permettent d’atteindre plusieurs objectifs en méme temps.

Premierement, nous les utilisons pour produire une mesure tres granulaire du tourisme.
La part des non-francais parmi ’ensemble des avis sert de proxy proche de la présence des
touristes, que nous validons a 1’aide de plusieurs autres mesures. L’avantage de cette mesure
est qu’elle peut étre définie a un niveau tres granulaire, celui du restaurant lui-méme. En
outre, alors que de nombreuses études se concentrent sur 'emplacement ou les touristes
passent la nuit pour étudier I'impact, la mesure utilisée ici permet d’étudier le lieu ou les
touristes consomment.

Deuxiemement, les données d’évaluation et les notes données par les locaux peuvent étre
utilisées comme un indicateur de la satisfaction des locaux quant a I’expérience du restaurant.
Plus généralement, il s’agit d’'une mesure de la satisfaction a 1’égard des aménagements
urbains, qui varie dans l'espace et dans le temps. La littérature montre que cet indicateur
est significatif : Par exemple, [Kuang (2017)) constate que les évaluations des restaurants sont
fortement corrélées aux prix de 'immobilier.

Nous associons les données sur les restaurants a une autre source d’information sur la
qualité de vie des résidents : le nombre de plaintes sur la plateforme de crowd-sourced
DansMaRue. Cette plateforme est fournie par la mairie de Paris. Les utilisateurs peuvent
signaler tout probleme lié a ’espace public (déchets abandonnés, tags, affichage sauvage,
etc.) via Papplication mobile ou le site web. L’administration municipale analyse ensuite
les rapports et tente de résoudre les problemes. Nous considérons cette mesure de désamour
comme un autre résultat pertinent pour notre étude.

Nous documentons d’abord deux faits stylisés. Premierement, les restaurants les plus



touristiques sont moins bien notés par les habitants, ce qui suggere une éventuelle nuisance
liée a la demande des touristes. Deuxiemement, les quartiers touristiques présentent une
plus faible variété d’équipements, ce qui peut indiquer que les touristes accordent moins
d’importance a la variété que les habitants. En utilisant la pandémie comme source de vari-
ation exogene des arrivées de touristes internationaux, nous constatons que la baisse du tour-
isme a entrainé une augmentation de la satisfaction des résidents a I’égard des équipements
urbains, a la fois en termes d’évaluation des restaurants et de diminution du nombre de
plaintes sur DansMaRue. En particulier, le restaurant moyen augmente sa note de pres de
10 % d’un écart-type en 'absence de touristes. d’écart-type en I'absence de touristes et le
nombre de plaintes dans le voisinage direct du restaurant moyen diminue d’au moins 8 %.

Il est important de noter que notre effet n’est pas unique au déclin du tourisme induit
par le lockdown. Nous trouvons des preuves similaires en utilisant les attaques terroristes
qui ont eu lieu en novembre 2015. Nos résultats sur résultats sont également robustes a
I'utilisation de mesures du tourisme basées sur la localisation auto-déclarée des utilisateurs
plutét que sur la langue.

Ensuite, nous examinons trois mécanismes potentiels a l'origine de nos résultats : la
surpopulation, les changements du c6té de l'offre et I’aversion des résidents pour le tourisme.
Notre analyse ne trouve que du soutien pour le mécanisme d’aversion. Tout d’abord, nous
constatons que le nombre d’avis mentionnant explicitement le tourisme (qui sont souvent
négatifs) diminue. Deuxiémement, en se basant sur un indicateur des liens sociaux entre les
pays, dérivé des données Facebook, nous constatons que les restaurants dont la clientele a
peu de liens avec la France voient leur note augmenter davantage apres la fermeture. Cela
suggere que les Parisiens sont moins génés par les touristes provenant de pays avec lesquels

ils ont des liens sociaux forts.

Chapitre 3 : Devenir viral dans une pandémie : Les
meédias sociaux et 1’allié dans le mouvement Black Lives
Matter

Ce chapitre est co-écrit avec Annali Casanueva Artis, Sulin Sardoschau et Kritika Saxena.
Qu’est-ce qui a conduit a 1’élargissement de la coalition du mouvement Black Lives Mat-
ter pendant la pandémie ? Nous abordons cette question en deux parties. Tout d’abord,
nous établissons un lien de causalité entre 'exposition a COVID-19 et la participation aux
manifestations au niveau du comté, en utilisant les événements de super propagation comme

source de variation exogene. Nous montrons que 'exposition a COVID-19 est associée a une
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augmentation du comportement de protestation, mais uniquement dans les comtés qui n’ont
jamais manifesté pour une cause liée au BLM auparavant.

Ensuite, nous développons un nouvel indice de pénétration des médias sociaux au niveau
du comté pour montrer que cet effet est dii & une plus grande utilisation des médias sociaux
pendant la pandémie mais avant le déclenchement de la protestation. Bien que nous ne
puissions pas totalement exclure que d’autres mécanismes soient en jeu, nous montrons des
preuves que des explications alternatives telles que 7) une augmentation de I'importance
de l'inégalité raciale induite par la pandémie, i7) des cotts d’opportunité inférieurs de la
protestation, #ii) une propension globale plus élevée & protester et iv) une protestation
dispersée plutot qu’étendue ne sont pas a l'origine de nos résultats.

Notre identification est basée sur une petite fenétre entre la fin mars et la mi-avril 2020,
pendant laquelle COVID-19 était suffisamment répandu mais la rigueur du verrouillage suf-
fisamment faible pour permettre a ce qu'on appelle les Super Spreader Events (SSE) de
se produire. Ces événements sont caractérisés par la présence d'un individu hautement in-
fectieux (un super diffuseur) et ont eu lieu principalement lors de fétes d’anniversaire, de
maisons de retraite ou de prisons. Nous exploitons la variation transversale du nombre
d’ESS dans un rayon de 50 kilometres de la frontiere du comté mais pas dans le comté 6
semaines avant le meurtre de George Floyd pour construire notre instrument d’exposition au
COVID-19 au niveau du comté. Nous incluons des effets fixes d’état et un vaste ensemble de
controles au niveau du comté, plus particulierement le nombre d’événements historiques de
BLM entre 2014 et 2019, ainsi que des variables socio-démographiques et des proxies pour
le penchant politique et le capital social.

Nous trouvons des preuves solides que I'exposition a COVID-19 a augmenté les protest-
ations de BLM. Nous estimons qu'une augmentation d’un écart-type du nombre de déces
liés au COVID-19 dans un comté au moment du meurtre de George Floyd (environ 25 déces
pour 100K habitants), augmente de 5% la probabilité qu'un événement BLM se produise
dans les trois semaines suivant le meurtre. Notre résultat de base est entierement déterminé
par les comtés sans manifestations antérieures de BLM et I'effet double en taille et est estimé
plus précisément pour ce sous-échantillon.

En outre, nous proposons trois stratégies d’identification alternatives et montrons que nos
résultats se répliquent. Premierement, en utilisant les données de mobilité des téléphones
mobiles a grande échelle par SafeGraph, nous instrumentons 1’exposition a la pandémie avec
les flux touristiques vers I'une des plus grandes ESS aux Etats-Unis - le spring break de
Floride en mars 2020. Deuxiemement, nous employons une approche de différence dans les
différences, pour laquelle nous grattons des informations sur tous les déclencheurs de prot-

estation BLM similaires depuis 2014 afin d’estimer la réponse différentielle a un déclencheur

11



de protestation avant et apres la pandémie. Troisiemement, nous utilisons une approche
d’appariement basée sur LASSO, en comparant les comtés ayant des probabilités de prot-
estation similaires avant la pandémie.

Dans une étape suivante, nous étudions diverses sources d’hétérogénéité et montrons que
- conformément a I'idée d’un mouvement d’élargissement - nos résultats de base sont portés
par des comtés plus blancs, plus aisés et suburbains.

Dans la deuxieme partie du document, nous cherchons a savoir si I'utilisation des médias
sociaux peut expliquer I'élargissement du mouvement BLM induit par la pandémie. Nous
commengons par répéter l'analyse ci-dessus, en utilisant cette fois un nouvel indice de
pénétration des médias sociaux comme principale variable de résultat. Nous constatons
que la pandémie a un effet positif et significatif sur notre indice de médias sociaux et que cet
effet est entierement du au sous-échantillon de comtés qui n’ont jamais manifesté auparav-
ant. Par exemple, nous montrons qu’une augmentation d’'un écart-type de I'exposition a la
pandémie a entrainé un doublement des comptes Twitter parmi les comtés n’ayant jamais
manifesté pour le BLM, sans affecter les comtés qui manifestent traditionnellement.

Dans un deuxieme temps, nous examinons le role de Twitter dans la mobilisation des
manifestants de BLM. Tout d’abord, nous faisons interagir la pénétration de base de Twitter
(avant la pandémie) avec lexposition a COVID-19. Nous répondons a la préoccupation
selon laquelle nos résultats pourraient capturer des facteurs sous-jacents qui déterminent
a la fois la pénétration de Twitter et la participation aux manifestations, en reproduisant
Iinstrument SXSW pour la pénétration de base de Twitter utilisé par Miiller and Schwarz
(2020). Nous montrons que les comtés ayant une pénétration de base de Twitter plus élevée
réagissent davantage a ’exposition a la pandémie. En outre, nous interagissons I’exposition
a la pandémie avec la pénétration contemporaine de Twitter et nous constatons que 'effet
de COVID-19 sur la protestation est entierement déterminé par les comtés ayant une plus
grande pénétration de Twitter pendant la pandémie.

Dans la derniere partie de notre article, nous examinons les mécanismes concurrents.
Naturellement, la pandémie a affecté un certain nombre de dimensions importantes qui ne se
limitent pas a une plus grande utilisation des médias sociaux. Tout d’abord, nous envisageons
la possibilité que nos résultats soient dus a une dispersion plutét qu’a un élargissement
des protestations de BLM. Plus précisément, nous vérifions que l'effet n’est pas diu a une
substitution de certains lieux a d’autres. Deuxiemement, la pandémie peut avoir augmenté la
saillance globale de 'inégalité raciale avant le meurtre de George Floyd. Nous testons cette
hypothese en faisant interagir COVID-19 avec un indicateur de la charge disproportionnée
des déces sur les Noirs et le nombre de termes de recherche liés a BLM sur Google avant le

déclenchement de la manifestation. Troisiemement, nous cherchons a savoir si la pandémie a
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diminué le cotit d’opportunité des protestations. Nous interagissons COVID-19 avec le taux
de chomage au niveau du comté et la rigueur au niveau de ’état. Si les individus choisissent
de protester au lieu d’aller travailler ou de s’engager dans des activités sociales, nous devrions
constater un effet plus important dans les comtés ou le taux de chomage est plus élevé ou
les mesures de rigueur plus strictes. Troisiemement, nous examinons l'effet de COVID-19
sur d’autres protestations. Si la pandémie a augmenté I'agitation générale et la propension
a protester, nous nous attendrions a ce que cela soit également vrai pour d’autres causes
que le BLM. Nous montrons qu’il est peu probable que ces canaux soient a l’origine de nos

résultats.
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