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Abstract

In this thesis we address several problems formulated in an open multi-agent sys-
tem (OMAS) scenario where the set of agents can change in time, independently
of the evolution of the dynamics associated with the system. We analyze the case
of OMAS formulated in a fixed finite size network and we use two approaches for
the analysis of the systems. In the first approach we consider scenarios character-
ized by activation/deactivation of agents such that at each time instant a different
subset of active agents can interact in the system. In the second approach we
study scenarios characterized by replacements of agents where at a specific time
instant, an agent can be replaced while the rest of the agents remain the same. In
this case, all the agents are able to interact at all time.

Three different problems are considered in this thesis: randomized consen-
sus, resource allocation problem and epidemics. First, we analyze the problem of
randomized consensus subject to additive noise where different subset of agents
exchange information at each iteration. We define a noise index based on the ex-
pected mean squared error and we derive upper bounds. Then, we consider the
resource allocation problem where agents can be replaced during the implementa-
tion of an optimization algorithm. For this optimization problem, we analyze two
different algorithms: weighted gradient descent and random coordinate descent.
For the weighted gradient descent, we evaluate the performance of the algorithm
in an OMAS subject to packet losses by defining appropriate performance metrics.
For the random coordinate descent algorithm, we study the convergence to the
minimizer in an OMAS and we provide an alternative analysis using tools inspired
from online optimization. Finally, we study a SIS epidemic in continuous time sub-
ject to replacements of agents during the evolution of the disease. We perform the
analysis using an aggregate function to condensate the information of the system
and we derive upper bounds for its asymptotic behavior.
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Aperçu de la thèse

Systèmes multi-agents ouverts (OMAS)

Les systèmes multi-agents sont composés d’entités individuelles interagissant en-
tre elles dans un environnement commun pour accomplir une tâche collective ou
atteindre un objectif commun. Les interactions sont généralement définies à l’aide
d’un graphe composé d’un ensemble de nœuds représentant les agents et d’un en-
semble d’arêtes modélisant les échanges d’information entre les agents. En général,
les chercheurs considèrent un ensemble fixe d’agents pour la dérivation des résul-
tats, tandis que l’ensemble d’arêtes peut varier dans le temps. Cependant, dans
de nombreux scénarios, l’ensemble d’agents peut également changer puisque des
agents peuvent rejoindre ou quitter le système ou simplement être remplacés. Un
système multi-agents soumis à des ajouts, des suppressions ou des remplacements
d’agents est appelé un système multi-agents ouvert (OMAS). Si ces changements
potentiels dans l’ensemble des agents ne sont pas fréquents, l’étude des systèmes
multi-agents peut être effectuée sous l’hypothèse que les agents restent les mêmes
dans le temps, même si les connexions peuvent varier. Cependant, si des ajouts,
des suppressions ou des remplacements se produisent à une échelle de temps sim-
ilaire à celle du système dynamique sur le réseau, il est nécessaire de considérer
des OMAS pour l’analyser. Parmi les applications où l’usage des OMAS peut être
envisagée, on trouve par exemple les réseaux sociaux, les épidémies, les convois de
véhicules, les smart grids, la robotique en essaim, etc.

Les systèmes multi-agents soumis à des remplacements sont un cas particulier
d’OMAS, où le départ d’un agent est immédiatement suivi de l’arrivée d’un nouvel
agent de sorte que la taille du système ne change pas. Lorsque l’intervalle de temps
entre un départ et une arrivée est négligeable, l’occurrence de ces deux événements
peut être considérée comme simultanée, et l’analyse peut être effectuée en ne con-
sidérant que les remplacements. Ce comportement particulier peut également être
vu comme une approximation de l’OMAS où les taux d’arrivées et de départs sont
similaires.
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Principaux défis dans les OMAS

Les changements possibles dans la cardinalité de l’ensemble des agents augmentent
considérablement la complexité d’OMAS et posent de nombreux défis pour l’analyse
de ces systèmes.

Espaces d’états et trajectoires : lorsque l’ensemble des agents change de
cardinalité, les agents peuvent appartenir à différents espaces d’états et la définition
des trajectoires ne peut pas être facilement formulée.

Modèles d’événements : au cours de l’évolution du système, les OMAS se car-
actérisent par la survenance de trois types d’événements : les arrivées, les départs
et les remplacements. Une identification parfaite des instants temporels auxquels
ces événements se produisent ne semble pas plausible et des hypothèses appropriées
doivent être considérées pour modéliser des OMAS et garder l’analyse traitable.

Topologies de graphes : il existe quelques cas où les topologies de graphes
suivent un modèle spécifique qui peut être complètement étendu pour n’importe
quel nombre d’agents. Cependant, il est peu probable que les réseaux réels suivent
des topologies de graphes restrictives et conservent également les mêmes connex-
ions à tout moment.

Formulation en temps : la plupart des travaux antérieurs sur les OMAS con-
sidèrent une formulation en temps discret, où les agents n’interagissent qu’à des
instants de temps précis. Cependant, de nombreux phénomènes complexes, no-
tamment associés aux systèmes chaotiques, ne peuvent pas être reproduits par les
systèmes en temps discret et des formulations en temps continu sont nécessaires.

Approches potentielles de l’OMAS

Après avoir identifié les enjeux des OMAS, nous passons maintenant en revue les
principales approches qui pourraient être utilisées dans leur étude.

Sur-ensemble fini invariant dans le temps : des OMAS peuvent être sous-
approximés en considérant un sur-ensemble fini d’agents où l’ouverture du sys-
tème est caractérisée par la activation et la désactivation des agents, de sorte qu’à
chaque instant un nombre différent d’agents peut interagir dans le système. Cette
approche sera considerée dans le Chapitre 2.
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Espace d’état fixe : lorsqu’un OMAS est soumis uniquement à des remplace-
ments, la dimension du système ne change pas avec le temps, et lorsqu’un agent
quitte le réseau, un nouvel agent rejoint immédiatement le système en gardant le
même label. Cette approche sera poursuivie dans les Chapitres 3, 4 et 5.

Systèmes multidimensionnels multimodes : étant donné que la taille du
système peut changer en raison de l’occurrence d’événements liés aux OMAS, des
systèmes de commutation entre des espaces de différentes dimensions peuvent être
utilisés pour l’analyse.

Systèmes dynamiques de dimension infinie : le système dynamique de di-
mension infinie peut être utilisé comme sur-approximation de OMAS. L’objectif
est de résoudre le problème en dimension infinie puis d’utiliser des techniques
d’approximation pour obtenir la solution au cas d’OMAS avec une certaine marge
d’approximation.

Principales contributions de cette thèse
L’intérêt principal de cette thèse est l’analyse d’OMAS en utilisant deux approches
différentes : le sur-ensemble fini invariant dans le temps et l’espace d’état fixe.
Nous considérons trois problèmes différents : l’influence du bruit dans le consen-
sus randomisé, le problème d’allocation des ressources et la propagation d’une
maladie. Nous formulons ces problèmes en utilisant une approche stochastique et
nous donnons des bornes pour des quantités scalaires qui sont définies dans le but
d’évaluer les impacts des activations/désactivations ou des remplacements d’agents
dans le système.

Dans le Chapitre 2 nous analysons le problème du consensus randomisé per-
turbé par un bruit additif. Nous considérons la formulation en temps discret
d’un algorithme de consensus randomisé linéaire où les matrices d’interaction sont
symétriques et tirées d’une distribution commune. Ensuite, nous analysons le cas
où le bruit additif modifie les états des agents et nous dérivons une expression sous
forme fermée de l’erreur quadratique moyenne induite par le bruit, ainsi que des
bornes supérieure et inférieure plus simples à évaluer. Ensuite, nous considérons
le cas d’OMAS où les matrices à chaque instant correspondent au sous-ensemble
d’agents actifs dans le système. L’activation des agents est déterminée par des vari-
ables aléatoires de Bernoulli indépendantes associées à chaque agent potentiel du
système. Pour les OMAS, nous exprimons les bornes en utilisant les valeurs propres
de la matrice laplacienne du graphe sous-jacent ou la résistance effective moyenne
du graphe, prouvant ainsi leur qualité. Enfin, nous dérivons des expressions pour
les bornes sur quelques exemples de graphes et les évaluons numériquement.
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Le Chapitre 3 se concentre sur l’analyse de l’algorithme Weighted Gradient
Descent pour résoudre le problème d’allocation de ressources (RA) sous pertes de
paquets. Nous considérons le cas particulier des fonctions de coût quadratiques
par morceaux et définissons deux métriques de performance qui mesurent, respec-
tivement, l’écart à la contrainte et l’erreur sur la fonction de coût attendue. Nous
dérivons des bornes supérieures sur les deux métriques qui sont proportionnelles
à la différence entre la fonction de coût initiale et la fonction de coût évaluée au
minimiseur. Ensuite, nous étendons l’analyse de la violation de contrainte aux
OMAS où les agents peuvent être remplacés, ce qui implique un changement sur
la fonction de coût associée. Nous montrons que la combinaison des remplacements
et des pertes fait diverger l’erreur de violation de contrainte avec le temps.

Le Chapitre 4 est consacré à l’analyse de l’algorithme Random Coordinate De-
scent (RCD) pour résoudre le problème RA dans des OMAS sous l’hypothèse que
les fonctions locales sont lisses fortement convexes et ont leurs minimiseurs situés
dans une boule donnée. Nous établissons la convergence linéaire de l’algorithme
dans les systèmes fermés, en termes d’estimation vers le minimiseur, pour des
graphes généraux et des pas appropriés et nous estimons le changement de la so-
lution optimale après un remplacement pour évaluer son effet sur la distance entre
les estimation et le minimiseur. A partir de ces deux éléments, nous dérivons des
conditions de stabilité dans des OMAS où les agents peuvent être remplacés et
établissons la convergence linéaire de l’algorithme vers une erreur en espérance
en régime permanent. De plus, en considérant des paramètres plus simples, nous
analysons l’algorithme RCD dans des OMAS à l’aide d’outils similaires à ceux
couramment utilisés dans l’optimisation en ligne. En particulier, nous comparons
la solution issue de l’algorithme RCD avec la solution optimale et la stratégie
égoïste. Ce chapitre a été développé en collaboration avec Charles Monnoyer de
Galland et Julien Hendrickx de l’Université Catholique de Louvain (UCLouvain).

Dans le Chapitre 5 nous fournissons une analyse préliminaire de la propaga-
tion d’une maladie en temps continu dans des OMAS soumis à des remplacements.
Nous considérons le modèle épidémique SIS sur un graphe et définissons une fonc-
tion agrégée pour l’analyse du système. Premièrement, nous considérons le cas des
remplacements sur un graphe donné fixe où l’occurrence des remplacements est
déterminée par un processus de Poisson. Ensuite, nous étudions le cas de graphes
échantillonnés à partir de graphons où nous dérivons des bornes supérieures qui
dépendent des propriétés du graphon. Enfin, nous fournissons une analyse prélim-
inaire de scénarios où les connexions changent également lors des remplacements
selon un graphon, et nous formulons une conjecture pour le comportement asymp-
totique de la fonction d’agrégation.
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5.3.2 Pure replacements ẋ(t) = 0 . . . . . . . . . . . . . . . . . . 100
5.3.3 SIS epidemic with replacements on a given graph . . . . . . 102
5.3.4 SIS epidemic with replacements on a graph sampled from

graphon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.5 SIS epidemic with replacements with new neighborhoods de-

termined by graphons . . . . . . . . . . . . . . . . . . . . . 114
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Conclusion and Future Work 119
6.1 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



CONTENTS xi

Appendix

A Mathematical background 125
A.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.2 Graphons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2.1 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2.2 Sampling and Approximation . . . . . . . . . . . . . . . . . 128

A.3 Poisson processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130





List of Figures

1.1 Replacement of an agent in OMAS, while preserving the topology. . 4
1.2 Time-invariant finite superset of agents characterized by different

active agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Multi-mode multi-dimensional systems as a tool to study OMAS. . 7

2.1 Random interactions with different numbers of active agents na in
a network with n = 18 possible agents. . . . . . . . . . . . . . . . . 22

2.2 Computation of Jnoise and the relative error for a star graph Sn

with growing n. In the left plot, the solid blue line corresponds to
the lower bound (2.15) and the dashed red line is the upper bound
(2.16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Computation of Jnoise and the relative error for a line graph Pn with
growing n. In the left plot, the solid blue line corresponds to the
lower bound (2.17) and the dashed red line is the upper bound (2.18). 26

2.4 Computation of Jnoise for 2−D and 3−D grids with growing n. . . . 26
2.5 Computation of Jnoise and the relative error for a complete graph Kn

with growing n. In the left plot, the solid blue line corresponds to
the lower bound (2.19) and the dashed red line is the upper bound
(2.20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Computation of Jnoise and the relative error for a sequence of Erdős-
Rényi graphs with growing n. . . . . . . . . . . . . . . . . . . . . . 28

2.7 Computation of Jnoise and the relative error for a sequence of graphs
sampled from the graphon W (x, y) = 1− xy with growing n. . . . . 28

2.8 Computations of the relative error for different values of p for graphs
with n = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Computation of the upper bound for Jconstr for a complete, star and
line graph with n = 10, β = 1, ϵ = 0.5 and f(x0)− f ∗ = 1. . . . . . 40

3.2 Computations of the upper bound for Jfunct for a complete, star and
line graph with n = 10, ϵ = 0.5, f(x0)− f ∗ = 1 and two values of κ. 43

xiii



xiv LIST OF FIGURES

3.3 Simulation of E
[
(1Tx(k)− b)2

]
and of the lower bound in Proposi-

tion 3.2 for a complete graph under replacements with n = 7, α = 1,
β = 10, p = 0.8, pU = 0.5 by considering 10000 realizations of the
process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Simulation of E
[
(1Tx(k)− b)2

]
and of the lower bound in Propo-

sition 3.2 for a complete graph with no replacements with n = 7,
α = 1, β = 10, p = 0.8, pU = 1 by considering 10000 realizations of
the process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Bound of Proposition 4.1 with respect to the system size n for b = 1,
c = 1, respectively for κ = 50 with homogeneous agents (ai = 1 for
all i) on the left, and κ = 2 with heterogeneous agents (a1 = 10,
ai = 1 for i > 1) on the right. The figures show all three quantities
ψn,κ, θn,κ and χn,κ as well as the final bound M̄2

n,κ for both cases. . . 61

4.2 Evolution of the upper bound on
∣∣∣∣x(1) − x(2)

∣∣∣∣2 respectively with
respect to n for several values of κ (top) and with respect to κ for
several values of n (bottom). For each plot the bound obtained in
Proposition 4.1 (right) is compared with the empirical upper bound
derived using PESTO in the same settings (left). The top-right plot
also shows the asymptotic value expected to be reached by θn,κ as
n→ ∞ based on (4.16). . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Performance of the RCD algorithm in a complete graph constituted
of respectively n = 5 agents with κ = 5 (left) and n = 30 agents
with κ = 1.2 (right), with pU = 0.95 and b = 1, and where each
local objective function is defined by (4.57). The solid blue and
red dashed lines represent the actual performance of the algorithm
averaged over 500 realizations of the process, respectively for the
random and adversarial replacements cases. The yellow dotted line
is the upper bound (4.42) obtained from Corollary 4.4. . . . . . . . 75

4.4 Performance of the RCD algorithm with n = 5 agents, κ = 1.2, pU =
0.95 and b = 1, respectively in (left) a ring graph with homogeneous
agents (i.e., ai = 1 for all i) and (right) a complete graph with
heterogeneous agents (i.e., a1 = 10, ai = 1 for i > 1), and where
each local objective function is defined by (4.57). The solid blue and
red dashed lines represent the actual performance of the algorithm
averaged over 500 realizations of the process, respectively for the
random and adversarial replacements cases. The yellow dotted line
is the upper bound (4.42) obtained from Corollary 4.4. . . . . . . . 76



LIST OF FIGURES xv

4.5 Evolution of the function value fk evaluated with the RCD algo-
rithm x(k) defined in (4.64), the optimal solution x∗(k), and the
selfish strategy xs(k), in a system subject to replacements of agents
(i.e., simultaneous departures and arrivals) on average once every 4
RCD steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Evolution of the averaged asymptotic expected Potential Benefit
(on the left) and dynamical regret (on the right) in a system of 5
agents with ρR = 0.0125 and κ = 10. Each plot compares the upper
bounds, respectively from (4.70) and (4.84), with simulated results,
either with random replacements (RR) or adversarial replacements
(AR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Evolution of the expected averaged regret for a system of 5 agents
holding quadratic functions with ρR = 0.0125 and κ = 10. The solid
blue line and the dash-dotted red line respectively correspond to
the upper bounds of Theorems 4.3 and 4.4 respectively. The dotted
yellow line corresponds to simulation where we consider random
replacements (RR). . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Graph G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Evolution of the aggregate function V (x(t)) defined in (5.3) in con-
tinuous time for the graph determined by (5.9) with n = 11 agents,
β = 0.5 and δ = 5.3. The solid blue line corresponds to the sim-
ulation of V (x(t)) while the dashed red line is the upper bound
(5.8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Sample path of V (x(t)). . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Evolution of the aggregate function V (x(t)) defined in (5.3) in a
system subject only to replacements with λr = 30. In the right
plot, the solid blue line corresponds to the computation of V (x(t))
considering 10000 realizations of the process while the dashed red
line is (5.14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Evolution of the aggregate function V (x(t)) defined in (5.3) for the
graph determined by (5.9) with n = 11 agents, β = 0.5, δ = 2
and λr = 7. In the right plot, the solid blue line corresponds to
the computation of E [V (x(t))] considering 10000 realizations of the
process while the dashed red line is the upper bound (5.18). . . . . 105



xvi LIST OF FIGURES

5.6 Evolution of the second moments of the aggregate function V (x(t))
defined in (5.3) for the graph determined by (5.9) with n = 11
agents, β = 0.5, δ = 2 and λr = 7. In the left plot, the solid blue
line corresponds to the estimation of E [V 2(x(t))] while the dashed
red line is the upper bound (5.23). In the right plot, the solid blue
line corresponds to the estimation of Var(V (x(t))) while the dashed
red line is the upper bound (5.23) and the dash-dotted yellow line
is the upper bound (5.28) considering the linearized model. The
simulated values were obtained considering 10000 realizations of the
process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Pixel diagram of the stochastic block model graphon. . . . . . . . . 113
5.8 Upper bound E [V (x(∞))]n as a function of n for the stochastic

block model graphon WSB with β̄ = 1.5, δ̄ = β̄(λ1(TW ) + ϕ40) and
λ̄r = 2. The solid blue line corresponds to E [V (x(∞))]n while the
dashed red line corresponds to the limit when n→ ∞. . . . . . . . 114

5.9 Evolution of the aggregate function V (x(t)) defined in (5.3) for
graphs sampled from the stochastic block model graphon WSB with
n = 50 agents, β̄ = 1.5, δ̄ = β̄(λ1(TW )+ϑ50+1/50) and λ̄r = 2. The
solid blue line corresponds to the estimation of E [V (x(t))] while the
dashed red line corresponds to the approximation (5.40) of the real
process and the dash-dotted yellow line is the conjectured upper
bound (5.43). The expected values were computed by considering
1000 realizations of the process. . . . . . . . . . . . . . . . . . . . . 117

A.1 Graph G, adjacency matrix A and step graphon WG. . . . . . . . . 127
A.2 Sampling graphon procedure. . . . . . . . . . . . . . . . . . . . . . 128



List of symbols and acronyms

R Set of real numbers
Rn Set of n-dimensional real vectors
Rn

≥0 Set of n-dimensional real vectors with nonnegative entries
Rm×n Set of m× n-dimensional real matrices
Z≥0 Set of nonnegative integers
Z>0 Set of positive integers
In n× n identity matrix
0n n-dimensional vector of all zeros
1n n-dimensional vector of all ones
⊗ Kronecker product
⊙ Hadamard product
(·)T Transpose of a matrix or a vector
A−1 Inverse matrix of a matrix A
A† Moore-Penrose inverse matrix of a matrix A
⟨·, ·⟩ Inner product of two vectors
O(·) Order of magnitude
λi(L) i-th eigenvalue of a symmetric Laplacian matrix L given in

non-decreasing order of magnitude 0 = λ1(L) ≤ . . . ≤ λn(L)
λi(A) i-th eigenvalue of a symmetric matrix A given in

non-increasing order of magnitude λ1(A) ≥ . . . ≥ λn(A)
||·|| 2-norm of a vector or matrix in Euclidean space
||·||1 1-norm of a vector or matrix in Euclidean space
||·||A Norm induced by a positive definite matrix A
||·||F Frobenius norm of a matrix
||·||Sp

Schatten p-norm of a matrix or operator (p.19)
||·||□ Cut norm of a matrix or measurable function f : R2 → R (p.127)
||·||Lp Lp norm of a measurable function (p.127)
|||·||| Operator norm
B(x, r) Ball of radius r ≥ 0 centered at x
E [X] Expectation of a random variable X
Var(X) Variance of a random variable X
∇f Gradient of a function f

xvii



Acronyms

i.i.d. independent and identically distributed
ODE ordinary differential equation
OMAS open multi-agent system
PDMP piecewise deterministic Markov process (p.104)
RA resource allocation (p.33)
RCD random coordinate descent (p.54)
RIDL randomly induced discretized Laplacian (p.21)
SDE stochastic differential equation (p.102)

xviii



Chapter 1

Introduction

1.1 Classical multi-agent systems

In the last years, an increasing number of real-world problems are being understood
as constantly evolving towards a networked environment where single entities inter-
act with each other to accomplish a collective task or achieve a common objective.
Systems of this type are called multi-agent systems and have been extensively stud-
ied in the scientific community considering different types of dynamics, coupling,
goals and time formulation [1].

Regarding the dynamics, each agent is in itself a dynamical system that can be
modeled by ordinary differential equations (ODE). At the most basic level, each
agent i is commonly considered as a single integrator of the form:

ẋi(t) = ui(t),

where ui(t) is the input of the agent. However, this type of models does not reflect
the behavior of more complex systems. For this reason, researchers have considered
the use of more complex dynamics to model each single agent. In this line, models
such as double integrators, Lagrangian systems, etc. [2,3], have been studied with
the objective of extending well-known results to more complex dynamics.

With respect to the goals, researchers have considered several problems asso-
ciated with multi-agent systems including: stability, consensus, synchronization
and formation control. Stability corresponds to the analysis of the equilibrium
points of the system. Consensus is a special case of coordination of multi-agent
systems where the objective is to reach a common value for all the agents which
must be static [4]. As a generalization of consensus, many researchers also con-
sider the problem of synchronization where agents must reach a common value,
but this value is time-varying. The synchronization problem is often considered
in networks of oscillators, where the trajectories of agents are more chaotic [5]. In

1
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the case of formation control, agents must reach specific locations determined by
desired geometric patterns [6].

Furthermore, in the last years, the community has paid attention to the exten-
sion of optimization problems to the case of multi-agent system. In addition to its
states, an agent has a local cost function depending only on the state of the agent,
and the objective is the minimization of the sum of the cost functions of all the
agents while agents exchange information only with the neighbors 1. Additional
constraints can be added depending on the nature of the problem. Generally, most
of the algorithms make use of the well known subgradients of the cost fuctions to
solve the optimization problem [7]. However, other methods like primal duals have
been adapted to multi-agent systems [8].

While the links among the agents can be modified by nonlinear functions as in
the case of oscillators [5], the connections in most of the multi-agent systems are
characterized by diffusive couplings. For this particular case, the network can be
represented by a matrix and tools of Linear Algebra can be used for the analysis
of multi-agent systems. Furthermore, due to the link between specific type of
matrices and graphs, Spectral Graph Theory [9] plays an important role in the
study of interactions of agents over a network .

In many scenarios, the links in multi-agent systems do not remain static and
change with time. For this reason, researchers focused on the analysis of classical
problems applied to time-varying graphs, where under several assumptions on the
connectivity of the possible graph topologies in a time interval, many results were
easily extended [10–12]. Furthermore, in many cases, a complete knowledge of
a sequence of graph topologies is not available and the attention was focused on
randomized interactions, where the graph topologies are sampled from a common
distribution and tools from Probability Theory can be used [13–16]. In this way, the
complexity of multi-agent systems regarding the network topology were explored
considering only possible changes in the current set of edges while the set of agents
was assumed to be always static.

1.2 Open multi-agent systems (OMAS)

Even if models based on time-varying switching topologies provide a good approach
for studying the behavior of systems where communications among the agents do
not remain static, they do not encompass possible changes in the set of agents
that could significantly affect the evolution of several systems. In the real world,
agents can join and leave the network, and therefore the size of many multi-agent
systems is changing with time. A multi-agent system subject to additions, removals

1A neighbor of an agent i in a multi-agent system is an agent that is directly connected to i.
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or replacements of agents is called an open multi-agent system (OMAS) [17, 18].
If these potential changes in the set of agents are not frequent, the study of the
multi-agent system can be performed under the assumption that agents remain the
same in time, even if the connections may vary. However, if additions, removals
or replacements occur in a time-scale similar to that of the dynamical system on
the network, it is necessary to consider OMAS for the analysis of the dynamics.
Among the potential applications where OMAS can be used we have:

Social networks: users enter and leave communities, discussions, forums, etc.,
modifying the group behavior.

Epidemics: infected individuals can enter or leave towns, villages, cities, etc.,
affecting the spread of diseases.

Vehicle platoons: during transportation, vehicles may join or leave the platoon
according to their particular destinations.

Smart-grids: smart appliances are constantly switched on and off in a network
of electrical devices, modifying the number of active devices.

Swarm robotics: the size of a group of robots can change depending on the
environmental conditions and goals of the team.

Historically, computer science is one of the first research fields where the con-
cept of OMAS has been considered in the analysis of trust and security, however,
no dynamics are associated with the individual agents [19,20]. Also, in the field of
game theory, researchers have analyzed the problem of price of anarchy bounds in
dynamic populations where players can exit and be replaced by new participants
[21]. Regarding dynamical systems, several works have indirectly considered po-
tential cases of addition/removal of agents as an adverse scenario to analyze the
robustness of algorithms [22,23].

Preliminary works focused on consensus in OMAS consider the analysis of the
pairwise gossiping algorithm in a complete graph [17, 24], where a discrete time
formulation was used to analyze replacements and arrivals of agents determined by
deterministic and random time instants. Furthermore, in [25], authors extended
the results to the case of arrivals/departures when the time instants are determined
by Poisson processes. In these works, the variance of the system was the object of
study, which condensates the information of the system in a single value like an
aggregate function. Following this line of research, in [26], the authors provided
lower bounds on the mean squared error for any averaging algorithm applied to
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an OMAS. Another work based on gossip interactions is [27], where the MAX-
consensus in an OMAS over a complete graph is analyzed.

Regarding deterministic formulations of OMAS, one of the preliminary works is
[28], where authors study the dynamic consensus in a contractive OMAS under the
assumption that the arrival process is bounded. Other works related to the analysis
of the dynamic consensus in OMAS are [29] and [30] where the median value and
the max value are the object of the study respectively and the assumption of a
dwell time is used for the derivation of the results. In [31], the authors analyze the
stability of multi-dimensional switched systems, where restrictions are imposed on
the switching signal to guarantee practical consensus.

Other works include the analysis of OMAS under stochastic interactions in a
finite superset of agents where the activation of agents are determined by Bernoulli
random variables [32]. Using a similar approach, an algorithm based on dual
averaging was proposed to minimize a global cost function that depends on a
time-varying set of active agents in a fixed size network [33]. The study of the
Friedkin-Johnsen models where agents exchange roles at different time instant may
also be encompassed in OMAS since the set of agents can be seen as time-varying
due to the changes in roles [34].

1.2.1 The case of replacements

Multi-agent systems subject to replacements is a special case of OMAS, where the
departure of an agent is immediately followed by the arrival of a new agent such
that the size of the system does not change. When the time interval between a
departure and an arrival is negligible, the occurrence of these two events can be
considered as simultaneous, and the analysis can be performed considering only
replacements. This particular behavior can also be seen as an approximation of
OMAS where the rate of arrivals and departures are similar.
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Figure 1.1: Replacement of an agent in OMAS, while preserving the topology.

The particular case of replacements has been studied in opinion dynamics,
where researchers analyzed scenarios when the states of agents are reset [35]. In
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the analysis of consensus in OMAS, replacements have been studied in [17, 24],
where the authors considered the variance for the analysis of agents interacting in
a complete graph. Regarding replacements in optimization, in [36], the authors
analyzed the gradient descent algorithm in a network subject to replacements of
the cost functions of the agents.

1.2.2 Main challenges in OMAS

Possible changes in the cardinality of the set of agents increase considerably the
complexity of OMAS and pose many challenges for the analysis of these systems.

State spaces and trajectories: the concept of state spaces and trajectories
are fundamental in the study of classical multi-agent systems where it is assumed
that the agents always remain in the same state-space and they have an associated
trajectory for all time [1]. However, when the set of agents is changing in cardi-
nality, agents can belong to different state-spaces and the definition of trajectories
cannot be easily formulated since the states of the agents may not be well-defined
for some time intervals. For instance, during the removal of an agent, its associ-
ated trajectory is completely removed while when an agent joins the system, a new
trajectory is created. Even if only replacements occur in the system, trajectories
experiment jumps, which can drastically change the behavior of the current state.

Models of events: during the evolution of the system, OMAS are characterized
by the occurrence of three types of events: arrivals, departures and replacements
[17, 28]. A perfect identification of the time instants at which these events take
place do not seem plausible in a real application, and appropriate assumptions
must be considered to model OMAS and keep the analysis tractable. In this line,
while the use of dwell times can guarantee some lower bounds on the time interval
between the occurrence of two distinct events, the use of stochastic processes could
model richer behaviors of OMAS that may be closer to real applications.

Network topologies: there are few specific cases where the graph topologies
follow a specific pattern that can be completely extended for any number of agents
such as: line, cycle, grids, complete or bipartite graphs [37]. However, it is unlikely
that real networks will follow graph topologies that are restrictive, and also keep
the same connections at all time. For this reason, new graph topologies must be
explored, which could include random graphs [38] and graphons [39].

Time formulation: unlike few works in continuous time such as [29, 31], most
of the previous works in OMAS consider a discrete time formulation, where agents



6 CHAPTER 1. INTRODUCTION

only interact at discrete time instants. Even if a discrete time formulation can
in many cases reproduce the behaviors of classical dynamical systems formulated
as ordinary differential equations (ODE), many complex phenomena, specially
associated with chaotic systems, cannot be modeled with discrete time systems
[40]. For this reason, a continuous time formulation of OMAS is necessary to study
other types of dynamics, which implies the study of more complex processes, where
the state of the system also changes between arrivals, departures and replacements.

1.2.3 Potential approaches to OMAS: pros and cons

After having identified the challenges in OMAS, we now proceed to review the
main approaches that could be used in their study.

Time-invariant finite superset: OMAS can be under-approximated by con-
sidering a finite superset where it is assumed that we have the information about
all the potential agents [32, 33]. The openness of the system is characterized by
the activation and deactivation of agents, such that at each time instant different
number of agents may interact in the system. Since the dimension of the global
system is constant, standard tools from dynamical systems can be used for the
analysis. However, this approach is restricted to systems where a full knowledge
of all the possible agents is available such that unexpected agents cannot join the
network. This approach will be pursued in Chapter 2.

17 possible agents 6 active agents 5 active agents

Figure 1.2: Time-invariant finite superset of agents characterized by different active
agents.

Fixed state-space: when an OMAS is subject only to replacements, the dimen-
sion of the system does not change with time, and the state of the system always
remains in the same state-space. Unlike the time-invariant finite superset, all the
agents interact at the same time instants, but when an agent leaves the network,
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a new agent will join the system immediately keeping the same label. Trajectories
are well-defined but they may experience jumps during the replacements. Since
the state-space does not change, standard concepts of dynamical systems can be
applied. However, this approach is restricted to replacements and cannot be used
in the case of decoupled arrivals and departures. This approach will be pursued
in Chapters 3, 4 and 5.

Multi-mode multi-dimensional systems: since the size of the system may
change due to the occurrence of arrivals or departures, switching systems between
spaces of different dimensions may be used for the analysis. Preliminary works in
this field correspond to [41,42], where the author studied the switching between a
fixed number of spaces of different dimensions. The family of possible vector spaces
to which the state belongs is defined as a discrete vector bundle and concepts
of Topology are required for the analysis. For this framework, the concept of
trajectories is meaningful and a global equilibrium for the system can be defined,
allowing the use of some tools of hybrid systems [43]. However, the classical concept
of stability cannot be applied and the approach can be rigid for many applications
since it is required to know all the possible vector spaces to define the discrete
vector bundle.

Figure 1.3: Multi-mode multi-dimensional systems as a tool to study OMAS.

Infinite dimensional dynamical systems: infinite dimensional dynamical sys-
tem may be used as an over-approximation of OMAS. In this case, the problem can
be formulated as a dynamical system in a space of sequences when we consider
a infinite network [44] or in a space of mesurable functions by using a graphon
[45]. The objective is to solve the problem in infinite dimensions and then use
approximation techniques to obtain the solution to the case of OMAS with a cer-
tain margin of approximation. The main advantages of this approach is that all
the possible agents can be considered in the analysis of the system and advanced
tools from infinite dimensional systems can be used. However, the definition of
appropriate mappings from the finite network to the infinite system and vice versa
could make it difficult to use this approach.
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1.3 Main contributions of this thesis

The main interest of this work is the analysis of OMAS using two different ap-
proaches: time-invariant finite superset and fixed state-space. We consider three
different problems: influence of noise in randomized consensus, resource allocation
problem and the spread of a disease. We formulate the problems using a stochastic
approach and we provide bounds for scalar quantities that are defined with the
objective of evaluating the impacts of activations/deactivations or replacements of
agents in the system.

In Chapter 2 we analyze the problem of randomized consensus perturbed by
additive noise. We consider the formulation in discrete time of a linear randomized
consensus algorithm where the interaction matrices are symmetric and drawn from
a common distribution. Then, we analyze the case where additive noise modifies
the states of the agents and we derive a closed form expression for the mean
squared error induced by the noise, together with upper and lower bounds that
are simpler to evaluate. Next, we consider the case of OMAS where the interaction
matrices at each time instant are generated by the subset of active agents in the
system. The activation of agents are determined by independent Bernoulli random
variables associated to each potential agent in the system. For OMAS, we express
the bounds by using the eigenvalues of the Laplacian matrix of the underlying
graph and the graph’s average effective resistance, thereby proving their tightness.
Finally, we derive expressions for the bounds for particular graph topologies and
numerically evaluate them.

Chapter 3 focuses on the analysis of the weighted gradient descent algorithm to
solve the resource allocation (RA) problem under packet losses. We consider the
particular case of piecewise quadratic cost functions and define two performance
metrics that measure, respectively, the deviation from the constraint and the error
on the expected cost function. We derive upper bounds on both metrics which
are proportional to the difference between the initial cost function and the cost
function evaluated at the minimizer. Then, we extend the analysis of the constraint
violation to OMAS where agents can be replaced, which implies a change on the
associated cost function. We show that the combination of replacements and losses
makes the constraint violation error diverge with time.

Chapter 4 is devoted to the analysis of the Random Coordinate Descent (RCD)
algorithm to solve the RA problem in OMAS under the assumptions that local
functions are smooth strongly convex and have their minimizers located in a given
ball. We establish the linear convergence of the algorithm in closed systems, in
terms of the estimate towards the minimizer, for general graphs and appropriate
step-size and we estimate the change of the optimal solution after a replacement to
evaluate its effect on the distance between the estimate and the minimizer. From
these two elements, we derive stability conditions in OMAS where agents can be
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replaced and establish the linear convergence of the algorithm towards a steady
state expected error. Additionally, by considering a simple setting, we analyze the
RCD algorithm in OMAS using tools similar to those commonly used in online op-
timization. In particular, we study the accumulated errors that compare solutions
issued from the RCD algorithm and the optimal solution or the non-collaborating
selfish strategy and we derive some bounds in expectation for these accumulated
errors. This chapter was developed in collaboration with Charles Monnoyer de
Galland and Julien Hendrickx of the Université Catholique de Louvain (UCLou-
vain).

In Chapter 5 we provide a preliminary analysis of the spread of a disease in
continuous time in OMAS subject to replacements. We study the SIS epidemic
model over a network and inspired by the seminal work in [17], we define an aggre-
gate function for the analysis of the system based on a macroscopic description.
First, we consider the case of replacements over a fixed given graph where the
occurrence of replacements follows a homogeneous Poisson process and the new
values of the replaced agents are determined by a random variable. We analyze
the expectation and variance of the aggregate function and we provide some up-
per bounds. Then, we study the case of graphs sampled from graphons where
we derive upper bounds which depend on properties of the graphon. Finally, we
provide a preliminary analysis of scenarios where connections also change during
the replacements according to a graphon, and we formulate a conjecture for the
asymptotic behavior of the aggregate function.

Thesis outline. Chapter 2 analyzes the influence of noise in randomized con-
sensus with an application to OMAS considering a finite superset of agents. Chap-
ters 3 and 4 focus on the resource allocation problem in OMAS where agents can
be replaced at each time instant. While Chapter 3 analyzes the weighted gradient
descent algorithm under packet losses, Chapter 4 studies the stability of the RCD
algorithm and considers the analysis in a particular setting using tools inspired by
online optimization. Chapter 5 provides a preliminary analysis of a SIS epidemic
in continuous time in an OMAS subject to replacements determined by a Poisson
process. In Chapter 6 we summarize the results of the thesis and propose direc-
tions for future research. Appendix A introduces some mathematical concepts and
results related to graphs, graphons and Poisson processes.

1.4 List of publications

The following is an exhaustive list of publications written during these three years
of thesis, that are either published, under review or still in preparation. It also
contains the publications related to graphons, whose objective is to develop tools
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for the analysis of OMAS using an infinite dimensional approach.
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Conference papers

C1. C. M. de Galland, R. Vizuete, J. M. Hendrickx, P. Frasca and E. Panteley,
"Random coordinate descent algorithm for open multi-agent systems with
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10.1109/CDC45484.2021.9683049. The contents of this conference paper
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C2. R. Vizuete, P. Frasca and E. Panteley, "Gradient descent for resource allo-
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Systems, 2022. Available at: http://doi.org/10.1016/j.ifacol.2022.
07.244. Corresponds to Chapter 3 of this thesis.
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Journal papers related to graphons
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analysis of OMAS and therefore are not included into this thesis.

J3. R. Vizuete, P. Frasca and F. Garin, "Graphon-Based Sensitivity Analysis of
SIS Epidemics," in IEEE Control Systems Letters, vol. 4, no. 3, pp. 542-547,
2020. DOI: http://doi.org/10.1109/LCSYS.2020.2971021

J4. R. Vizuete, F. Garin and P. Frasca, "The Laplacian Spectrum of Large
Graphs Sampled From Graphons," in IEEE Transactions on Network Sci-
ence and Engineering, vol. 8, no. 2, pp. 1711-1721, 2021. DOI: http:
//doi.org/10.1109/TNSE.2021.3069675

http://doi.org/10.1109/LCSYS.2020.2971021
http://doi.org/10.1109/TNSE.2021.3069675
http://doi.org/10.1109/TNSE.2021.3069675




Chapter 2

Randomized consensus with
activation/deactivation of agents
subject to noise disturbance

When the set of all the possible agents in the systems is available, OMAS can be
analyzed using a superset. The openness of the system is then characterized by
a continuous activation and deactivation of agents [32], with a network topology
determined by the induced subgraph. Moreover, if the time-scale is correctly
chosen such that the dependence of the activation/deactivation of agents between
iterations is negligible, the interaction matrices at different time instants can be
considered as independent events and the behavior of the system can be analyzed
using tools associated with randomized algorithms. This corresponds for example
to the case of smart devices connected to a large electrical network in a town or city,
where plugging/unplugging a device can be considered as an action independent
of the state of other devices on the network.

Randomized interactions have been extensively studied in consensus systems [46,
47], with a wide range of applications including social networks [48], sensor net-
works [49], and clock synchronization [50]. Even if consensus in random net-
works has been analyzed for a long time, researchers have mostly considered ideal,
noiseless interactions [14]. Instead, more realistic dynamical models should at
least include noise. The influence of noise has indeed been investigated in several
works [51–53] regarding deterministic consensus, both in discrete-time [54] and in
continuous-time [55,56] but, relatively little is known about the effects of noise on
randomized consensus. For instance, the authors in [57] studied additive noise in
random consensus over directed graphs, showing that, due to asymmetric loss of
links, uncommon phenomena such as Lévy flights can arise in the evolution of the
system. However, the emergence of this phenomenon is not possible for undirected
graphs, provided the links are deactivated in a symmetric way.

13
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In the case of OMAS, in addition to the variation of the number of active agents
interacting at each time instant, the effect of noise adds an additional perturbation
to the behavior of the system. It is clear that noise prevents the states of the nodes
from reaching consensus. For this reason, it is important to quantify the effects of
noise by a noise index, which is simply the steady-state normalized mean squared
error between the states of the nodes and their average. It is well known that for
symmetric matrices, this type of indexes are closely related to the spectrum of the
interaction matrices, such that closed forms and bounds are generally expressed
as a function of the eigenvalues [54].

In this chapter we study the steady-state normalized mean squared error in a
randomized consensus perturbed by additive noise considering agents with scalar
states. However, the majority of the results can be extended to agents with higher
dimensional states. In Section 2.1 we define a noise index and obtain an explicit ex-
pression for it. Since this closed form involves the calculation of an n2-dimensional
matrix, we derive an upper bound and a lower bound that depend on the eigenval-
ues of relevant n-dimensional matrices. These results generalize well-known results
about deterministic consensus with noise [54,56]. Section 2.2 presents the analysis
of randomized consensus with noise in OMAS characterized by activations and de-
activations of agents. We refine our analysis for a specific class of random update
matrices related to OMAS, which we refer to as Randomly Induced Discretized
Laplacians (RIDL). Given an underlying large graph, these matrices are generated
by sampling a subset of active nodes and considering the subgraph induced by the
active nodes. When the update matrices are RIDLs, our bounds can be expressed
as functions of the Laplacian eigenvalues of the underlying graph. Further rewrit-
ing of the bounds as functions of the graph’s average effective resistance reveals
that they are asymptotically tight. In Section 2.3 we illustrate the behavior of the
upper and lower bounds for several sparse and dense graphs. Finally, Section 2.4
presents the conclusions and future work of this chapter.

2.1 Randomized consensus with additive noise
We consider a system composed by n agents holding scalar values xi ∈ R,
i = 1, . . . , n, that interact through a randomized averaging algorithm in discrete
time given by:

x(k + 1) = P (k)x(k), for all k ∈ Z≥0 (2.1)

where x(k) = [x1(k), . . . , xn(k)]
T is a vector with the states of the nodes of the

network and P (k) is a stochastic matrix for all k. One of the most impor-
tant results on dynamics (2.1) is the determination of sufficient conditions to
achieve probabilistic consensus with independent and identically distributed (i.i.d.)
matrices P (k).
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Lemma 2.1 (Corollary 3.2 [14]) The dynamics (2.1) with i.i.d. matrices P (k)
reaches consensus with probability 1 if:

Pii(k) > 0 with probability 1 for all i ∈ V, (2.2a)
GP̄ has a globally reachable node, (2.2b)

where V = {1, . . . , n} and GP̄ is the graph associated1 with the expected matrix
P̄ = E[P (k)].

Condition (2.2a) is easy to satisfy in most cases since each agent usually has
access to its own state. For undirected graphs, condition (2.2b) is equivalent to
having a connected network. Moreover, for undirected graphs, the matrices P (k) of
dynamics (2.1) are usually symmetric and, therefore, doubly stochastic: if matrices
P (k) are doubly stochastic, then dynamics (2.1) reaches average consensus with
probability 1.

Even if under ideal conditions it is possible to reach average consensus for
undirected graphs, noise can affect the performance of the system. In order to
study its effects, additive noise can be included in the dynamics [37,54], by defining:

x(k + 1) = P (k)x(k) + w(k), (2.3)

where w(k) is a vector of noise. It is natural to define a performance index to
measure the deviation from the consensus point due to the perturbations as:

Jnoise :=
1

n
lim

k→+∞
E

[∥∥∥∥x(k)− 1

n
11Tx(k)

∥∥∥∥2
]
, (2.4)

where 1 is a vector of ones. The purpose is studying this index, under the following
standing assumption.

Assumption 2.1 The stochastic matrices P (k) are i.i.d., symmetric, and satisfy
(2.2a)-(2.2b) for all k.

Our first contribution in this direction is showing that, under suitable conditions
on the noise vector w(t), index Jnoise can be expressed in closed form.

Theorem 2.1 (Mean squared error index) Consider system (2.3) under As-
sumption 2.1 with a noise vector w(k) uncorrelated w.r.t. both i and k, with zero
mean and variance σ2. Then, the noise index (2.4) can be expressed as:

Jnoise =
σ2

n

(
vecT (In)(In2 −K)−1vec(In)− 1

)
, (2.5)

where K = E[P (k)Ω⊗ P (k)], Ω = In − 1
n
11T and In is the identity matrix of size

n.
1Graph GP̄ is formed by adding edges between two nodes i, j in V when P̄ij > 0, for all i, j,

including possible self-loops.
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Proof: For every k we have:

x(k) = Q(0, k − 1)x(0) +
k−1∑
s=0

Q(s+ 1, k − 1)w(s),

where Q(ℓ,m) = P (m)P (m − 1) · · ·P (ℓ + 1)P (ℓ). Let us denote H = 1
n
11T and

δ(k) = x(k)− 1
n
11Tx(k) = x(k)−Hx(k). Then,

δ(k) = (Q(0, k − 1)−H)x(0) +
k−1∑
s=0

(Q(s+ 1, k − 1)−H)w(s).

The expectation of its squared norm can be expressed as:

E[∥δ(k)∥2] = E
[
∥(Q(0, k − 1)−H)x(0)∥2

]
(2.6)

+ 2
k−1∑
s=0

xT (0)(Q(0, k − 1)−H)T (Q(s+ 1, k − 1)−H)E[w(s)]

+
k−1∑
s,r=0

E
[
[(Q(s+ 1, k − 1)−H)w(s)]T [(Q(r + 1, k − 1)−H)w(r)]

]
.

First, we analyze the third term of (2.6) which we denote by U . By applying the
trace on the scalar U , we obtain

U =
k−1∑
s,r=0

tr
(
E
[
(QT (s+ 1, k − 1)Q(r + 1, k − 1)−H)

]
E[w(r)wT (s)]

)
.

Due to the characteristics of the noise vector, we have:

E[w(r)wT (s)] =

{
σ2In, r = s

0, r ̸= s
,

which yields:

U = σ2

k−1∑
s=0

tr
(
E
[
QT (s+ 1, k − 1)Q(s+ 1, k − 1)−H

])
= σ2

k−1∑
s=0

tr
(
E
[
QT (s+ 1, k − 1)ΩQ(s+ 1, k − 1)

])
. (2.7)

Then, we express the trace using the vectorization operator
(tr(ATB) = vecT (A)vec(B)) as:

U = σ2

k−1∑
s=0

vecT (In)vec
(
E
[
QT (s+ 1, k − 1)ΩQ(s+ 1, k − 1)

])
.
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Due to the idempotence of Ω and commutativity of the product P (s)Ω, we can
write the matrix QT (s+ 1, k − 1)ΩQ(s+ 1, k − 1) as:

QT (s+ 1, k − 1)ΩQ(s+ 1, k − 1)=P (k − 1) · · ·P (s+ 1)ΩP (s+ 1) · · ·P (k − 1)

=P (k − 1) · · ·P (s+ 1)Ω2P (s+ 1) · · ·P (k − 1)

=P (k − 1) · · ·P (s+ 1)ΩP (s+ 1)Ω · · ·P (k − 1)

...
= P (k − 1) · · ·P (s+ 1)P (s+ 1)Ω · · ·P (k − 1)Ω.

(2.8)

Then, we can apply the property vec(ABC) = (CT ⊗ A)vec(B) and we get:

U = σ2vecT (In)

(
(In ⊗ Ω)vec(In)

+
k−2∑
s=0

E
[
(P (k − 1)Ω⊗ P (k − 1))vec(P (k − 2) . . . P 2(s+1)Ω . . . P (k − 2)Ω)

])
.

Following an iterative procedure we obtain:

U = σ2vecT (In)

(
(In ⊗ Ω)

+
k−2∑
s=0

E [(P (k − 1)Ω⊗ P (k − 1)) . . . (P (s+1)Ω⊗ P (s+1))]

)
vec(In).

Since the matrices P (s) are i.i.d., we get:

U = σ2vecT (In)

(
k−1∑
s=1

E[PΩ⊗ P ]s + (In ⊗ Ω)

)
vec(In)

= σ2vecT (In)

(
k−1∑
s=0

E[PΩ⊗ P ]s + (In ⊗ Ω)− In2

)
vec(In),

where we have avoided including the time dependence of matrices P (k). This
abuse of notation will be made multiple times in the rest of this chapter. Notice
that (In ⊗ Ω) − In2 = −(In ⊗ 1

n
11T ) and vecT (In)(In ⊗ 1

n
11T )vec(In) = 1. Let

us recall K = E[PΩ ⊗ P ] and consider the limit k → +∞. By applying Jensen
inequality to the spectral norm ∥ · ∥2, we can see that

∥E[PΩ⊗ P ]∥22 ≤ E[∥PΩ⊗ P∥22] = E[∥PΩ∥22∥P∥22] < 1.
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Therefore,
∑∞

s=0K
s = (In2 −K)−1, and we have:

lim
k→+∞

U = σ2
(
vecT (In)(In2 −K)−1vec(In)− 1

)
.

The second term of (2.6) is zero since the noise process has zero mean. The first
term of (2.6), denoted by F = E [∥(Q(0, k − 1)−H)x(0)∥2], can be expressed as:

F = E
[
[(Q(0, k − 1)−H)x(0)]T [(Q(0, k − 1)−H)x(0)]

]
= E

[
xT (0)(QT (0, k − 1)Q(0, k − 1)−H)x(0)

]
.

Being QT (0, k− 1)Q(0, k− 1) the product of doubly stochastic matrices, per The-
orem 4 in [46] it converges to H with probability 1, so that limn→∞ F = 0 by
applying the Lebesgue Dominated Convergence Theorem. Finally, Jnoise is given
by (2.5). ■

Remark 2.1 (Alternate expressions for Jnoise) Since Ω is idempotent and com-
mutes with any stochastic matrix, expression (2.8) could be arranged in two other
ways, so that instead of (2.5) one would obtain the analogous expression where the
symmetric matrix K = E[P (k)Ω ⊗ P (k)] is replaced by E[P (k)Ω ⊗ P (k)Ω] or by
E[P (k)⊗ P (k)Ω].

2.1.1 Upper and lower bounds on the noise index

The calculation of (2.5) requires the determination of the n2×n2 matrixK which is
impractical either for theoretical or numerical analysis. For this reason, we derive
a lower bound JLB and an upper bound JUB for the noise index, which depend on
the spectrum of symmetric n-dimensional matrices.

Theorem 2.2 (Upper and lower bounds) For the noise index (2.4) we have:

σ2

n

n∑
i=2

1

1− λ2i (P̄ )
≤ Jnoise ≤

σ2

n

n∑
i=2

1

1− λi(
¯̄P )
, (2.9)

where P̄ = E[P (k)] and ¯̄P = E[P 2(k)].

Proof: In order to obtain the lower bound for the noise index, we can express
the term (2.7) as:

U = σ2

k−1∑
s=0

tr
(
E
[
QT (s+ 1, k − 1)ΩQ(s+ 1, k − 1)

])
= σ2

k−1∑
s=0

E
[
∥Q(s+ 1, k − 1)Ω∥2F

]
,
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where ∥·∥F is the Frobenius norm. Then we can apply Jensen inequality obtaining:

U ≥ σ2

k−1∑
s=0

∥E [Q(s+ 1, k − 1)Ω] ∥2F .

Since the matrices P (s) are i.i.d., we can see that E[Q(s+1, k− 1)Ω] = P̄ sΩ such
that:

U ≥ σ2

k−1∑
s=1

∥P̄ sΩ∥2F + ∥Ω∥2F .

For a symmetric matrix P we have ∥P∥2F = ∥P 2∥S1 , where ∥A∥S1 =
∑n

i=1 |λi(A)|
is the Schatten 1-norm. Thus:

U ≥ σ2

k−1∑
s=1

∥(P̄ 2Ω)s∥S1 + ∥Ω∥S1 ≥ σ2

∥∥∥∥∥
k−1∑
s=1

(P̄ 2Ω)s + Ω

∥∥∥∥∥
S1

.

When k → +∞, we have:

lim
k→+∞

U ≥ σ2

∥∥∥∥∥
∞∑
s=0

(P̄ 2Ω)s + Ω− In

∥∥∥∥∥
S1

= σ2

∥∥∥∥(In − P̄ 2Ω)−1 − 1

n
11T

∥∥∥∥
S1

.

By using the definition of the Schatten 1-norm we get:

lim
k→+∞

U ≥ σ2

n∑
i=2

1

1− λ2i (P̄ )
,

which is the desired lower bound.
For the upper bound, we consider the summation element in (2.7), denoted by S:

S = tr
(
E
[
QT (s+ 1, k − 1)(In −H)Q(s+ 1, k − 1)

])
= tr

(
E
[
QT (s+ 1, k − 1)Q(s+ 1, k − 1)

])
− tr (H) .

At this point, we can use the inequality

tr(E[QT (s+ 1, k − 1)Q(s+ 1, k − 1)]) ≤ tr(E[P 2]k−s−1),

proved in [58, Cor. 5], which yields

U ≤
k−1∑
s=0

(
tr( ¯̄P k−s−1)− tr (H)

)
=

k−1∑
s=0

(
tr( ¯̄P s)− tr (H)

)
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Then, we obtain:

S ≤ tr( ¯̄P s)− tr (H)

= tr
(
¯̄P s −H

)
= tr

(
E
[
P 2(0)P 2(1) · · ·P 2(s− 1)−H

])
= tr

(
E
[
P 2(0)P 2(1) · · ·P 2(s− 1)Ω

])
.

Since Ω is idempotent and P (s)Ω = ΩP (s), we can express the latter as:

S ≤ tr (E [P (0)ΩP (0) · · ·P (s− 1)ΩP (s− 1)])

= tr (E [P (0)ΩP (0)] · · ·E [P (s− 1)ΩP (s− 1)])

= tr (E [P (k)ΩP (k)]s) .

Then, the sum in (2.7) is upper bounded by:

U ≤ σ2

k−1∑
s=1

tr (E [P (0)ΩP (0)]s) .

When k → +∞, we get:

lim
k→+∞

U ≤ σ2tr

(
∞∑
s=0

E [PΩP ]s −H

)
= σ2tr

(
(In − E [PΩP ])−1 −H

)
= σ2

n∑
i=2

1

1− λi(
¯̄P )
,

which gives the desired upper bound. ■

Remark 2.2 (Deterministic case) For the deterministic dynamics x(k + 1) =
P̄ x(k)+w(t), that is, P (k) = P̄ , the noise index is given by Jnoise = σ2

n

∑n
i=2

1
1−λ2

i (P̄ )
.

In this case, the upper and lower bounds of Theorem 2.2 coincide and recover the
well-known results about deterministic consensus [37, 54]. These questions have
also been extensively studied in continuous-time by the closely-related notion of
network coherence [55,56].

2.2 Noise index in OMAS
When studying OMAS, one is confronted with the issue of agents continuously
joining and leaving the system. When the pool of possible participating agents
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is known, arrivals and departures can be equivalently seen as activations and de-
activations [32]. In such a case, one can further assume that the interaction network
is a subgraph, induced by the active nodes, of a larger network of potential inter-
actions and specific sampling procedures can be used to generate the stochastic
matrices.

Let a set V of n nodes be given, together with an undirected graph Ḡ that
has V as node set and whose adjacency matrix is denoted by Ā. At each time k,
every node has an independent probability p of being active; at each time k, the
current graph G(k) is the subgraph of Ḡ that is induced by the set of active nodes.
Equivalently, the current adjacency matrix A(k) is generated as

A(k) = Γ(k) ĀΓ(k), (2.10)

where Γ(k) = diag[γ1(k), . . . , γn(k)] is a diagonal matrix with n independent iden-
tically distributed Bernoulli random variables corresponding to each node. The
value of the random variable γi(k) indicates the state of agent i at time k such
that when γi(k) = 1, the node is active.

Given the adjacency matrix A(k), we then define the time-varying doubly
stochastic matrix given by:

P (k) = In − ϵ(D(k)− A(k)), (2.11)

where D(k) is the diagonal matrix of the degrees of the induced graph G(k),
0 < ϵ < 1

dmax(Ḡ)
, and dmax(Ḡ) is the maximum degree of the graph Ḡ. After defin-

ing the time-varying Laplacian L(k) = D(k) − A(k), it becomes natural to refer
to stochastic matrices sampled according to (2.11)-(2.10) as Randomly Induced
Discretized Laplacians (RIDL). It is clear that RIDL can be used to study OMAS
under the assumption that the activation of each agent is an independent event,
as illustrated in Fig. 2.1, where at each iteration we have a different number of
active agents na.

We now study Jnoise for RIDL matrices. For an exact calculation as per (2.5),
it would be necessary to compute the matrix K = E[P (k)Ω⊗ P (k)]. To this end,
we can observe that

K = E[P (k)Ω⊗ P (k)]

= E
[
P (k)

(
In −

1

n
11T

)
⊗ P (k)

]
= E[P (k)⊗ P (k)]− E

[
1

n
11T ⊗ P (k)

]
= E[P (k)⊗ P (k)]− 1

n
11T ⊗ P̄ .
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Figure 2.1: Random interactions with different numbers of active agents na in a
network with n = 18 possible agents.

The second term only depends on P̄ , which is given by

P̄ = In − ϵp2(D̄ − Ā) = In − ϵp2L̄, (2.12)

where D̄ and L̄ are the degree and Laplacian matrices of graph Ḡ, but the first
term

E[P (k)⊗ P (k)] = In2 − ϵp2(In ⊗ L̄+ L̄⊗ In) + ϵ2E[L(k)⊗ L(k)]

cannot be written as a function of P̄ or L̄. Hence, Jnoise cannot be written as a
function of P̄ . Nevertheless, the upper and lower bounds of Theorem 2 can be
expressed as functions of the eigenvalues of P̄ .

Proposition 2.1 (Bounds for Discretized Laplacian) For the time-varying
stochastic matrix (2.11) generated with (2.10), the lower bound JLB and upper
bound JUB in (2.9) become:

JLB =
σ2

ϵp2n

n∑
i=2

1

2λi(L̄)− ϵp2λ2i (L̄)
, (2.13)

JUB =
σ2

ϵp2n

n∑
i=2

1

2(1 + ϵp− ϵ)λi(L̄)− ϵpλ2i (L̄)
, (2.14)

where 0 = λ1(L̄) < λ2(L̄) ≤ . . . ≤ λn(L̄) are the eigenvalues of L̄.

Proof: For the lower bound, we consider the expression (2.12). Since L̄ is
symmetric, the eigenvalues of P̄ are given by λi(P̄ ) = 1− ϵp2λi(L̄) and we obtain
(2.13).

For the upper bound, ¯̄P can be written as:
¯̄P = E[(In − ϵL)2] = In − 2ϵp2L̄+ ϵ2E[L2]

= In − 2ϵp2L̄+ ϵ2(E[D2]− E[DA]− E[AD] + E[A2])
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Since E[γi(k)] = E[γ2i (k)] = p, we have:

E[D2] = (p2 − p3)D̄ + p3D̄2, E[DA] = p3D̄Ā+ (p2 − p3)Ā,

E[AD] = p3ĀD̄ + (p2 − p3)Ā, E[A2] = (p2 − p3)D̄ + p3Ā2,

which yields:
¯̄P = In + 2ϵp2(ϵ− ϵp− 1)L̄+ ϵ2p3L̄2.

The eigenvalues of ¯̄P are λi( ¯̄P ) = 1 + 2ϵp2(ϵ − ϵp − 1)λi(L̄) + ϵ2p3λ2i (L̄) and we
obtain (2.14). ■

From expressions (2.13) and (2.14) we can observe that for the computation of
the bounds for Jnoise, we only need to know the topology of GP̄ through L̄.

Furthermore, inspired by the work in [59], we relate Jnoise with the well-studied
Average Effective Resistance (or Kirchhoff Index) of the graph. The latter can
indeed be expressed [37, Chapter 5] as a function of Laplacian eigenvalues by

Rave :=
1

n

n∑
i=2

1

λi(L̄)
.

Proposition 2.2 (Bounds and average effective resistance) For the noise in-
dex (2.4) with the time-varying stochastic matrix (2.11) generated by (2.10) we
have:

σ2

2p2
Rave

ϵ
≤ Jnoise ≤

σ2

2p3(1− rϵ)

Rave

ϵ
,

where rϵ = ϵdmax(Ḡ) < 1.

Proof: For the lower bound, we immediately observe from (2.13) that

JLB ≥ σ2

ϵp2n

n∑
i=2

1

2λi(L̄)
=

σ2

2ϵp2
Rave.

For the upper bound, we remind λi(L̄) ≤ 2dmax(Ḡ) and obtain:

2(1 + ϵp− ϵ)λi(L̄)− ϵpλ2i (L̄) = 2ϵ(p− 1)λi(L̄) + (2− ϵpλi(L̄))λi(L̄)

≥ 2ϵ(p− 1)λi(L̄) +
(
2− ϵp

(
2dmax(Ḡ)

))
λi(L̄)

≥ 2p(1− rϵ)λi(L̄),

which yields:

JUB ≤ σ2

ϵp2n

n∑
i=2

1

2p(1− rϵ)λi(L̄)
=

σ2

2ϵp3(1− rϵ)
Rave,

thereby completing the proof. ■
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The bounds of Proposition 2.2 can also be equivalently expressed as

σ2

2p2rϵ
dmax(Ḡ)Rave ≤ Jnoise ≤

σ2

2p3rϵ(1− rϵ)
dmax(Ḡ)Rave.

Since only dmax(Ḡ) and Rave depend on the graph (and therefore on n), this form
of the bounds implies that

Jnoise = Θ(dmax(Ḡ)Rave) as n→ ∞,

where Θ(·) corresponds to the Θ-notation 2, and proves that the bounds are asymp-
totically tight for RIDLs. For instance, for sparse graphs with bounded degree,
the rate of growth of Jnoise is equal to the rate of Rave. Instead, for dense graphs
where dmax(Ḡ) is linear in n, the rate of growth of Jnoise is the rate of nRave.

2.3 Particular graph topologies
In this section, we illustrate the behavior of the noise index for RIDL matri-
ces associated to graphs with particular structures, which allow for the explicit
computation of the bounds in Theorem 2.2 and Proposition 2.1. We consider
ϵ = rϵ/dmax(Ḡ) with rϵ ∈ (0, 1) and we perform computations for networks with
3 ≤ n ≤ 100, p = 0.9, and σ2 = 1.

2.3.1 Sparse graphs

Star graphs: for the star graph Sn we have dmax(Sn) = n − 1 and we choose
ϵ = rϵ/(n − 1). The eigenvalues of the Laplacian matrix are given by λi(L̄) = 1
for i = 2, . . . , n− 1 and λn(L̄) = n, so that the bounds are:

JLB =
σ2

ϵp2n

(
n− 2

2− ϵp2
+

1

n(2− ϵp2n)

)
; (2.15)

JUB =
σ2

ϵp2n

(
n− 2

ϵp+ 2− 2ϵ
+

1

n(2ϵp+ 2− 2ϵ− ϵpn)

)
, (2.16)

implying that

Jnoise =
σ2

2rϵp2
n+ o(n) as n→ ∞,

2For a given function g(n), we denote by Θ(g(n)) the set of functions [60]

Θ(g(n)) = {f(n) : there exist positive constants c1, c2 and n0 such that
0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.
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(a) Jnoise (b) Relative error

Figure 2.2: Computation of Jnoise and the relative error for a star graph Sn with
growing n. In the left plot, the solid blue line corresponds to the lower bound
(2.15) and the dashed red line is the upper bound (2.16).

where o(·) corresponds to the o-notation 3. Figures 2.2(a) and 2.2(b) present the
results of the computations for the star graph with rϵ = 0.8.

Line and grids: for the line graph Pn, dmax(Pn) = 2 and we select ϵ = 0.8/2
for all n. The eigenvalues of the Laplacian matrix are given by λi(L̄) = 2 −
2 cos

(
π(i−1)

n

)
for i = 2, . . . , n such that the corresponding bounds are:

JLB =
σ2

4ϵp2n

n−1∑
i=1

1

1− ϵp2 − ϵp2 cos2
(
πi
n

)
+ (2ϵp2 − 1) cos

(
πi
n

) ; (2.17)

JUB =
σ2

4ϵp2n

n−1∑
i=1

1

1− ϵ− ϵp cos2
(
πi
n

)
+ (ϵp+ ϵ− 1) cos

(
πi
n

) , (2.18)

and the rate of growth of the noise index is Jnoise = Θ(n). Fig. 2.3(a) and 2.3(b)
present the results of the computations for the line graph.

The maximum degree for a 2-D grid is dmax(2-D) = 4 and for a 3-D grid is
dmax(3-D) = 6. The spectrum of the Laplacian matrix for a m-D grid are given by:

3We define o(g(n)) as the set [60]

o(g(n)) = {f(n) : for any positive constant c > 0, there exists a constant
n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0}.
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(a) Jnoise (b) Relative error

Figure 2.3: Computation of Jnoise and the relative error for a line graph Pn with
growing n. In the left plot, the solid blue line corresponds to the lower bound
(2.17) and the dashed red line is the upper bound (2.18).

2m − 2
∑m

i=1 cos(
π
n
hi) with hi ∈ {0, . . . , n − 1}. Due to the complexity of dealing

with the closed form from Theorem 1, we present only the behavior of the bounds
for the 2-D grid in Fig 2.4(a) and for the 3-D grid in Fig 2.4(b). These examples
also confirm the theoretical analysis.

(a) 2-D grid (b) 3-D grid

Figure 2.4: Computation of Jnoise for 2−D and 3−D grids with growing n.
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2.3.2 Dense graphs

Complete graph: since for a complete graph Kn, dmax(Kn) = n− 1, we select
ϵ = rϵ/(n− 1). The eigenvalues of the Laplacian matrix of the complete graph Kn

are λi(L̄) = n for i = 2, . . . , n such that the bounds for Jnoise are:

JLB =
σ2(n− 1)

ϵp2n2(2− ϵp2n)
; (2.19)

JUB =
σ2(n− 1)

ϵp2n2(2 + 2ϵp− 2ϵ− ϵpn)
, (2.20)

implying a rate of growth Jnoise = Θ(1). The limit when n→ ∞ is given by:

lim
n→∞

JLB =
σ2

p2rϵ(2− p2rϵ)
;

lim
n→∞

JUB =
σ2

p2rϵ(2− prϵ)
.

For the computations we choose rϵ = 0.8 and we obtain the results in Figures
2.5(a) and 2.5(b): the latter implies that the upper bound is equal to the noise
index.

(a) Jnoise (b) Relative error

Figure 2.5: Computation of Jnoise and the relative error for a complete graph Kn

with growing n. In the left plot, the solid blue line corresponds to the lower bound
(2.19) and the dashed red line is the upper bound (2.20).

Erdős-Rényi graph: each edge between two nodes is generated with a prob-
ability per, independently of any other edge. As an example, figures 2.6(a) and
2.6(b) present the results of the computations for the Erdős-Rényi graph per = 0.8
and ϵ = 0.8/(n− 1).
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(a) Jnoise (b) Relative error

Figure 2.6: Computation of Jnoise and the relative error for a sequence of Erdős-
Rényi graphs with growing n.

Graphon: we consider the graphon W (x, y) = 1−xy corresponding to the limit
of a randomly grown ranked attachment graph sequence 4 [61]. We generate graphs
from the graphon according to the Definition A.1 and we select ϵ = 0.8/(n − 1).
The results of the computations for the graphon W (x, y) = 1 − xy are presented
in Fig. 2.7(a) and 2.7(b).

(a) Jnoise (b) Relative error

Figure 2.7: Computation of Jnoise and the relative error for a sequence of graphs
sampled from the graphon W (x, y) = 1− xy with growing n.

4The sequence starts with a single node. At the n-th iteration, a new node is added and it is
connected to node i with probability 1− i/n. Then, every pair of nonadjacent nodes is connected
with probability 2/n.
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Variation of p: figures 2.8(a) and 2.8(b) present the behavior of the relative
error for the bounds of Theorem 2.2 for graphs with n = 100, ϵ = 0.8/dmax(Ḡ) and
0.1 ≤ p ≤ 0.9.

(a) Lower bound (b) Upper bound

Figure 2.8: Computations of the relative error for different values of p for graphs
with n = 100.

2.4 Conclusion
In this chapter, we analyzed the influence of noise in random consensus with an
application to OMAS by considering the random sampling of active nodes. We
derived an expression for a noise index that measures the deviation from the con-
sensus point and an upper and lower bound that depend on the spectrum of
expected matrices related to the network. For particular cases of OMAS charac-
terized by activations and deactivations of agents, we defined Randomly Induced
Discretized Laplacians and expressed the bounds as functions of the eigenvalues of
the expected Laplacian matrix and, more specifically, of its average effective resis-
tance. For sparse graphs, such as stars and paths, the noise index grows linearly
in n and the lower bound presents a better approximation of the real value. For
dense graphs, such as complete, Erdős-Rényi and graphs sampled from graphons,
the noise index is bounded in n and the upper bound is a better approximation.

For future work, we identify three main possible directions of the research.
Regarding the rich family of graphs sampled from graphons, the eigenvalues of
the Laplacian matrix are related to the degree function of the graphon [62]. It
would be interesting to consider approximations of the bounds by using appropriate
definitions that include the degree function of the graphon as in the case of the
average effective resistance in [62].
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A key assumption for the derivation of the results in this chapter is the inde-
pendence of active sets across time. However, it would be important to consider
the scenario where only few agents change their states from active to inactive
or vice versa while the activation state of other agents remain invariant. In this
case, independence in the stochastic matrices will not hold and a certain degree
of statistical dependence in the generation of the stochastic matrices should be
considered.

The metric (2.4) used for the analysis of OMAS was normalized considering the
total number of potential agents in the system, i.e., n. We would like to analyze
an alternative definition of this index function that could be more informative for
OMAS, by considering only the current number of active agents at each iteration,
i.e., na, as the normalization factor.



Chapter 3

Weighted gradient descent with
packet losses and agent replacements

The resource allocation (RA) is an important problem in optimization where a
budget must be optimally distributed among multiple entities or activities [63,64].
In the case of multi-agent systems, the objective is to find an optimal distribution
of the budget among the agents while each agent aims to minimize the whole cost
function but it can only access its own local cost and state and those of its neighbors
[65, 66]. Applications include energy resources [67], smart grids [68], actuator
networks [69] games [70], and distributed computer systems [71]. The majority
of the algorithms are designed for ideal scenarios with perfect communication
and a symmetric exchange of information through the network that maintain the
budget fixed (keeping the budget fixed is indeed the constraint of the optimization
problem). However, the RA problem can also be solved in digraphs by introducing
additional variables to preserve the constraint, which increases the complexity of
the algorithms [72, 73]. One of the most important algorithms used to solve the
RA problem in a multi-agent system is the weighted gradient descent proposed in
[74], where the update rule makes use of a matrix associated to the network that
preserves the constraint.

The classical formulation of the RA problem assumes that the set of agents
remains invariant during the optimization process; however, this assumption could
not be valid for some scenarios. Consider, for instance, the case of distributed
energy resources where a fixed amount of energy must be supplied by a network of
devices in an optimal way [67]. Nevertheless, in real life, some of the devices might
experience failures with higher probability as the system size increases, or change
their operating point due to environmental conditions, generating an open system
where the cost functions of agents can change. Optimization in OMAS is a recent
topic research, where two different types of formulations have been considered.
In [33, 75], the authors study the case of different active agents interacting in the

31
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network for the implementation of an optimization algorithm, while the size of the
system is fixed and all the possible cost functions are known. In [36], the openness
of the system is characterized by replacements, where new cost functions can be
assigned to the agents, implying a possible change of the global minimizer.

In addition to potential changes in the set of agents, communication networks
can suffer from errors in the communications that cause the loss of information.
In this case, even if the graph associated with the communication network was
originally undirected, interactions between the agents can effectively be asym-
metric when the packet loss occurs only in one direction. The symmetry of the
system being broken, relevant quantities may fail to be preserved in many sce-
narios [16, 76, 77]. In the case of the average estimation under packet losses, [78]
derived upper bounds for the mean squared error to evaluate the deviation from
the initial average for general graph topologies. While a possible deviation of the
initial average value is not necessarily problematic in the average estimation where
the main objective is to reach consensus in most cases, for optimization problems,
similar errors can be more consequential, since they may imply the violation of
the constraint. For example in the case of the RA problem, agents could perform
unnecessary tasks or the sum of the individual tasks may not satisfy the global
demand. Indeed, the analysis of the constraint violation in complex scenarios has
been the object of many works, specially in the framework of online optimization,
where it is assumed that cost functions change in time [79].

In this chapter, we analyze the effects of packet losses in the performance of
the weighted gradient descent algorithm to solve the RA problem. In Section 3.1
we introduce the formal formulation of the RA problem, including the assump-
tions used for the derivation of the results of this chapter. Section 3.2 presents
the problem of packet losses in the weighted gradient descent algorithm and the
conditions to guarantee convergence of the algorithm to the minimizer at least
in expectation. We define appropriate metrics to measure the deviation from the
constraint and the error of the expected value of the cost function and we derive
upper bounds. In Section 3.3 we analyze the weighted gradient descent in OMAS
where replacements of the agents can take place and we show that the constraint
error can diverge for this particular scenario. Finally, conclusions and future work
are exposed in Section 3.4.

3.1 Resource Allocation Problem

In multi-agent systems, the RA problem is formulated as the minimization of an
objective function f that is separable in local costs fi : Rd → R held by the agents,
subject to an equality constraint on the weighted sum of the states xi ∈ Rd with
respect to a budget composed by the sum of the demands of the agents di ∈ Rd.
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The problem can then be written as

min
x=[xT

1 ,...,xT
n ]T∈Rnd

f(x) =
n∑

i=1

fi(xi) subject to
n∑

i=1

aixi =
n∑

i=1

di, (3.1)

where ai > 0 is the weight of agent i to satisfying the constraint. When the agents
are isolated, their objective is to minimize the corresponding local cost functions fi.
In the RA problem (3.1), each agent aims at minimizing the global cost function f
while guaranteeing the budget. However, since each agent only has access to local
information, they need to exchange the current states of the gradients to achieve
the goal.

If the budget is fixed in time
∑n

i=1 di = b, then the constraint in (3.1) can be
equivalently expressed as

(
a⊤ ⊗ Id

)
x = b, where a = [a1, . . . , an]

T and we remind
that ⊗ denotes the Kronecker product. The feasible set of (3.1) is thus given by

Sa,b :=
{
x ∈ Rnd|

(
a⊤ ⊗ Id

)
x = b

}
. (3.2)

For the particular case d = 1, the resource allocation constraint can be expressed as
⟨a, x⟩ = b. We make the following classical assumption on the local cost functions.

Assumption 3.1 Each function fi is continuously differentiable, α-strongly con-
vex (i.e., fi(x) − α

2
||x||2 is convex) and β-smooth (i.e., ||∇fi(x)−∇fi(y)|| ≤

β ||x− y||, ∀x, y ∈ Rd).

Assumption 3.1 provides an upper and a lower bound to the curvature of the
functions. The value κ := β

α
≥ 1 is called the condition number of the functions.

The set of the functions satisfying Assumption 3.1 is denoted by Fα,β.
Since all the local cost functions fi are α-strongly convex and β-smooth, the

global cost function f from (3.1) also satisfies f ∈ Fα,β. As a consequence, As-
sumption 3.1 guarantees that the solution of the problem (3.1) denoted by x∗ is
unique. Therefore, for some ζ∗ ∈ Rd, a necessary and sufficient condition for the
optimality of x∗ is

∇f(x∗) = (a⊤ ⊗ Id)
⊤ζ∗ = a⊗ ζ∗. (3.3)

In this chapter, we restrict to the specific case defined by the following assump-
tions, while in Chapter 4 we consider the more general case of the RA problem.

Assumption 3.2 (1-D functions) The local cost function of any agent at any
time is one-dimensional: f t

i : R → R.

Assumption 3.3 (Fixed demand) The total demand associated with the sys-
tem at any time is

∑n
i=1 di = b.



34 CHAPTER 3. WEIGHTED GRADIENT DESCENT

Assumption 3.4 (Homogeneous agents) The weight associated with any agent
i at any time is ai = 1.

For this particular setting, the RA problem (3.1) can be formulated as

min
x=[x1,...,xn]∈Rn

f(x) =
n∑

i=1

fi(xi) subject to
n∑

i=1

xi = b, (3.4)

and the optimality condition implies that 1Tx∗ = b and ∇f ∗ = ζ∗1 for some
ζ∗ ∈ R where ∇f ∗ = ∇f(x∗). The feasible set of (3.4) is given by

S1,b :=
{
x ∈ Rn|1Tx = b

}
. (3.5)

3.2 Packet losses

We consider that agents interact through a connected undirected graphG = (V,E),
where V = {1, . . . , n} is the set of agents and E ⊆ V × V is the set of edges. To
the graph G we associate an adjacency matrix A = [aij] where aij = 1 if (i, j) ∈ E
and aij = 0 otherwise. We assume that the graph does not have self-loops (i.e.,
aii = 0). The Laplacian matrix of the graph G is defined as L = D − A where
D = diag[d1, . . . , dn] and di is the degree of agent i (i.e., di is the ith row-sum of
A). Notice that L is a symmetric matrix that satisfies L = LT .

To solve problem (3.4) at each iteration we apply the weighted gradient descent
algorithm with positive step-size h [74]:

x(k + 1) = x(k)− hL∇f(x(k)), (3.6)

where L determines the exchange of information between the agents according to
the network topology.

For the RA problem formulated in 3.4 with local cost functions satisfying As-
sumption 3.1 we provide an upper bound for the step-size h to guarantee linear
convergence of the cost function.

Proposition 3.1 Under Assumptions 3.1 to 3.4, for any initial point x0 ∈ S1,b,
the sequence {x(k), k > 0}, produced by (3.6) with h ≤ 2

βλn(L)
, satisfies:

f(x(k + 1))− f(x∗) ≤ (1− αhλ2(L)(2− hβλn(L))) (f(x(k))− f(x∗)) , (3.7)

where λn(L) and λ2(L) are the largest and the second smallest eigenvalues of L
respectively.
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Proof: Since the cost function is β-smooth we have:

f(x(k + 1)) ≤ f(x(k)) + ⟨∇f(x(k)), x(k + 1)− x(k)⟩+ β

2
||x(k + 1)− x(k)||2

= f(x(k)) + ⟨∇f(x(k)),−hL∇f(x(k))⟩+ β

2
||hL∇f(x(k))||2

≤ f(x(k))− h
∣∣∣∣L1/2∇f(x(k))

∣∣∣∣2 + βh2λn(L)

2

∣∣∣∣L1/2∇f(x(k))
∣∣∣∣2

= f(x(k))− h

2
(2− βhλn(L))

∣∣∣∣L1/2∇f(x(k))
∣∣∣∣2 .

Using a vector projection on 1, the gradient can be expressed as: ∇f(x(k)) =
ξ⊥1 + ∇f(x(k))⊥, where ξ⊥ = 1

n
⟨∇f(x(k)),1⟩. Since h ≤ 2

βλn(L)
, we can upper

bound the last expression by:

f(x(k + 1)) ≤ f(x(k))− h

2
(2− βhλn(L))

∣∣∣∣ξ⊥L1/21+ L1/2∇f(x(k))⊥
∣∣∣∣2

≤ f(x(k))− h

2
(2− βhλn(L))

∣∣∣∣L1/2∇f(x(k))⊥
∣∣∣∣2

≤ f(x(k))− hλ2(L)

2
(2− βhλn(L)) ||∇f(x(k))⊥||2 , (3.8)

where we used the fact that L1/21 = 0 since 1 belongs to the kernel of L1/2. The
expression (3.8) shows the convergence of the algorithm when the step-size satisfies
h ≤ 2

βλn(L)
. Furthermore, by using the properties of α-strongly convex functions,

we have the following inequality [80, Proof of Theorem 4.1]:

f(x(k))− f(x∗) ≤ 1

2α
||∇f(x(k))⊥||2 . (3.9)

Finally, by combining (3.8) and (3.9) we obtain:

f(x(k + 1))−f(x∗)≤f(x(k))−f(x∗)− hλ2(L)

2
(2− βhλn(L)) ||∇f(x(k))⊥||2

≤f(x(k))−f(x∗)− αhλ2(L)(2− βhλn(L)) (f(x(k))−f(x∗)) .

■
In this analysis, we consider that the communication network is unreliable and

some messages can be lost. Following the approach in [78] we assume that at each
time instant k ∈ Z≥0, we have a matrix Γ(k) = [Γ(k)ij] ∈ {0, 1}n×n composed of
Bernoulli random variables γijk independent across k, i, j with P(γijk = 1) = p and
p ∈ (0, 1). Then, for an edge aij = 1, if γijk = 1 then the link aij is active, otherwise
there was a failure of the link aij and the data transmitted was lost. If aij = 0,
the value of γijk does not have any effect.
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The topology of the network with possible packet losses at each time instant
is thus defined by:

A(k) = A⊙ Γ(k); (3.10)

L(k) = D(k)− A(k), (3.11)

and the weighted gradient descent algorithm becomes

x(k + 1) = x(k)− hL(k)∇f(x(k)). (3.12)

Due to the asymmetric loss of information, the graph topology at each time instant
is effectively directed with a non-symmetric Laplacian matrix L(k). Because of
this lack of symmetry, the constraint can be violated during an update of the states
of the network using (3.12) and hence, the minimizer of the problem (3.1) will not
be reached.

Nevertheless, it is desirable that algorithm (3.12) solves (3.1) at least in ex-
pectation. Since Γ(k) is independent in time and E [L(k)] = pL, the expected
dynamics is given by:

E [x(k + 1)] = E [x(k)]− hpLE [∇f(x(k))] . (3.13)

Dynamics (3.13) preserves the constraint in expectation since:

1TE [x(k + 1)]=1T (E [x(k)]− hpLE [∇f(x(k))])=1TE [x(k)] . (3.14)

However, the minimizer x∗ is not necessarily a stationary point of (3.13), as shown
by the following discussion. Let us assume that E [x(k)] = x∗, so that we have

E [x(k + 1)] = x∗ − hpLE [∇f(x(k))] .

Under the assumption that the local functions are β-smooth and α-strongly convex
we cannot guarantee that E [∇f(x(k))] = ∇ (f (E [x(k)])) = ζ1. For this reason,
we restrict the set of possible cost functions to continuous differentiable piecewise
quadratic functions, which are β-smooth and α-strongly convex.

Definition 3.1 (Piecewise quadratic function) A continuous differentiable func-
tion f : R → R is piecewise quadratic if there exists finitely many quadratic func-
tions {qi}Ii=1 such that f(x) ∈ {qi(x)}Ii=1 for all x ∈ R.

Assumption 3.5 (Piecewise quadratic functions) The local cost function of
any agent at any time is piecewise quadratic.
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In this case, the gradient is a vector of piecewise linear functions [∇f(x)]i =
mixi + ci and we have

E [∇f(x(k))] = ∇f (E [x(k)]) . (3.15)

Then, the expected dynamics (3.13) becomes:

E [x(k + 1)] = E [x(k)]− hpL∇f (E [x(k)]) , (3.16)

which corresponds to the original weighted gradient descent, thereby guaranteeing
that the constraint is preserved at each time instant and that the minimizer is
reached such that

lim
k→∞

E [x(k)] = x∗ and lim
k→∞

f (E [x(k)]) = f ∗,

where f ∗ = f(x∗). However, a similar equality is not true for the expected value
of the cost function. Since the functions are convex, by using Jensen’s inequality
we obtain:

E [f(x(k))] ≥ f (E [x(k)]) ,

and by taking the limit (whose existence will be discussed in the next section) we
get:

lim
k→∞

E [f(x(k))] ≥ f ∗, (3.17)

where the inequality is in general strict.

3.2.1 Constraint violation

Although the constraint is preserved in expectation according to (3.14), this fact
does not imply that the constraint is also preserved for any particular realization of
the process. We thus aim to measure the deviation from the constraint by deriving
an upper bound for the constraint violation metric:

Jconstr := lim
k→∞

E
[(
1Tx(k)− b

)2]
, (3.18)

which corresponds to the asymptotic mean squared error.
Before presenting the main result of this subsection, we recall a lemma derived

in [78].

Lemma 3.1 For L(k) given by (3.10) and (3.11):

E
[
L(k)TL(k)

]
= p2L2 + 2p(1− p)L (3.19)

E
[
L(k)T11TL(k)

]
= 2p(1− p)L. (3.20)
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Theorem 3.1 Consider the weighted gradient descent given by (3.10), (3.11) and
(3.12). Under Assumption 3.5, for any positive scalar h ≤ 2

β(pλn(L)+2−2p)
, the

constraint violation metric satisfies:

Jconstr ≤
4h(1− p)

2− hβ(pλn(L)− 2p+ 2)
(f(x0)− f ∗) . (3.21)

Proof: Let us denote by H(k) =
(
1Tx(k)− b

)
. For (3.12) we denote by

{Fk}k∈Z≥0
the filtration of σ-algebras generated by the process x(k). We compute

the expectation conditioned upon the filtration generated by x(k):

E
[
H2(k + 1)|Fk

]
= E

[(
1T (x(k)− hL(k)∇f(x(k)))− b

)2]
= H2(k) + h2∇f(x(k))TE

[
L(k)T11TL(k)

]
∇f(x(k))

− hH(k)1TE [L(k)]∇f(x(k))
= H2(k) + h2∇f(x(k))TE

[
L(k)T11TL(k)

]
∇f(x(k)),

where we have used the fact that 1TL = 0. Then, we use (3.20) to obtain:

E
[
H2(k + 1)|Fk

]
= H2(k) + 2h2p(1− p)∇f(x(k))TL∇f(x(k))

= H2(k) + 2h2p(1− p)
∣∣∣∣L1/2∇f(x(k))

∣∣∣∣2 .
If we take the total expectation we get:

E
[
E
[
H2(k + 1)|Fk

]]
=E
[
H2(k)

]
+ 2h2p(1− p)E

[∣∣∣∣L1/2∇f(x(k))
∣∣∣∣2] .

By using a recursive argument we have that at the time instant k:

E
[
H2(k)

]
= H2

0 + 2h2p(1− p)
k−1∑
i=0

E
[∣∣∣∣L1/2∇f(xi)

∣∣∣∣2]
= 2h2p(1− p)

k−1∑
i=0

E
[∣∣∣∣L1/2∇f(xi)

∣∣∣∣2] , (3.22)

where we used the fact that at the initial time k = 0, the constraint is not violated
H0 = 0. Now, let us consider the inequality corresponding to β-smooth functions:

f(x(k + 1)) ≤ f(x(k)) +
β

2
||x(k)− x(k + 1)||2 + ⟨∇f(x(k)), x(k + 1)− x(k)⟩

= f(x(k)) +
h2β

2
||L(k)∇f(x(k))||2 − h⟨∇f(x(k)), L(k)∇f(x(k))⟩

= f(x(k)) +
h2β

2
⟨∇f(x(k)), L(k)TL(k)∇f(x(k))⟩

− h⟨∇f(x(k)), L(k)∇f(x(k))⟩.
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We compute the expectation given the filtration generated by x(k) and we use
(3.19) to get:

E [f(x(k + 1))|Fk] ≤ f(x(k)) +
h2β

2
⟨∇f(x(k)),E

[
L(k)TL(k)

]
∇f(x(k))⟩

− h⟨∇f(x(k)),E [L(k)]∇f(x(k))⟩

= f(x(k)) +
h2β

2
⟨∇f(x(k)), (p2L2 + 2p(1− p)L)∇f(x(k))⟩

− h⟨∇f(x(k)), pL∇f(x(k))⟩

We use the upper bound ||L∇f(x(k))||2 ≤ λn(L)
∣∣∣∣L1/2∇f(x(k))

∣∣∣∣2 and we obtain:

E [f(x(k + 1))|Fk] ≤ f(x(k))−hp
(
1− hβ(1− p)− hβpλn(L)

2

) ∣∣∣∣L1/2∇f(x(k))
∣∣∣∣2 .

We denote ξ = hp
(
1− hβ(1− p)− hβpλn(L)

2

)
and we compute the total expecta-

tion to get:

E [E [f(x(k + 1))|Fk]] ≤ E [f(x(k))]− ξE
[∣∣∣∣L1/2∇f(x(k))

∣∣∣∣2] . (3.23)

Since h ≤ 2
β(pλn(L)+2−2p)

we guarantee that E [f(x(k + 1))] ≤ E [f(x(k))] such that:

E
[∣∣∣∣L1/2∇f(x(k))

∣∣∣∣2] ≤ 1

ξ
(E [f(x(k))]− E [f(x(k + 1))]) .

If we take the sum over the time instants s we have:

k−1∑
s=0

E
[∣∣∣∣L1/2∇f(x(s))

∣∣∣∣2] ≤ 1

ξ
(f(x0)− E [f(x(k))]) .

Notice that since E [f(x(k))] is monotonically decreasing and E [f(x(k))] ≥ f(x̄∗),
where x̄∗ is the minimizer of f(x) without constraints, the limit limk→∞ E [f(x(k))]
exists and we get:

lim
k→∞

k−1∑
s=0

E
[∣∣∣∣L1/2∇f(x(s))

∣∣∣∣2] ≤ 1

ξ

(
f(x0)− lim

k→∞
E [f(x(k))]

)
≤ 1

ξ
(f(x0)− f ∗) , (3.24)

where we used the fact that E [f(x(k))] ≥ f (E [x(k)]). Finally, by using (3.24) in
(3.22), we complete the proof. ■
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Figure 3.1: Computation of the upper bound for Jconstr for a complete, star and
line graph with n = 10, β = 1, ϵ = 0.5 and f(x0)− f ∗ = 1.

By inspecting the right-hand side of (3.21), we can make several observations.
The upper bound is decreasing in p and

lim
p→1

Jconstr = 0, (3.25)

which is consistent with the fact that the constraint is always preserved with no
communication losses. In the case of small values of p, which corresponds to a
network exposed to many failures, if we consider h = 2ϵ

β(pλn(L)+2−2p)
with ϵ ∈ (0, 1)

we obtain:
lim
p→0

Jconstr ≤
2ϵ

β(1− ϵ)
(f(x0)− f ∗) . (3.26)

From (3.26), we can observe that large values of ϵ, corresponding to large values
of the step-size, increase the potential violation of the constraint. Figure 3.1
presents the computation of the upper bound for the constraint violation metric
in a complete, star and line graph with n = 10 agents, β = 1 and ϵ = 0.5, where
we can observe the behavior of the upper bound and the limit values determined
by (3.25) and (3.26).

3.2.2 Error on the expected cost function

Due to the packet losses, f(x(k)) is a random process whose evolution depends
on the different realizations of L(k). When the algorithm (3.12) is executed, it
is important to know the distribution of f(x(k)), to evaluate the impact of the
perturbations on the performance of (3.12) and identify the additional cost cor-
responding to the deviation from the ideal cost f ∗. From (3.17) we can observe
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that this quantity is greater than f ∗. Since the objective is to remain as close as
possible to f ∗, we define the cost function metric:

Jfunct := lim
k→∞

E [f(x(k))]− f(x∗), (3.27)

which aims to measure this gap due to the packet losses during the application
of the weighted gradient descent algorithm. It is important to notice that (3.27)
corresponds to the limit of the so called Jensen gap [81].

Theorem 3.2 Consider the weighted gradient descent given by (3.10), (3.11) and
(3.12). Under Assumption 3.5, for any positive scalar h ≤ 2

β(pλn(L)+2−2p)
, the cost

function metric satisfies:

Jfunct ≤
(
1− 2− hβ (pλn(L)− 2p+ 2)

2− hαpλ2(L)

)
(f(x0)− f ∗) .

Proof: From (3.23), we have that the total expectation of f(x(k + 1))
satisfies:

E [f(x(k + 1))] ≤ E [f(x(k))]− ξE
[∣∣∣∣L1/2∇f(x(k))

∣∣∣∣2] ,
and by using Jensen’s inequality and (3.15) we get:

E [f(x(k + 1))] ≤ E [f(x(k))]− ξ
∣∣∣∣E [L1/2∇f(x(k))

]∣∣∣∣2
= E [f(x(k))]− ξ

∣∣∣∣L1/2∇f(E [x(k)])
∣∣∣∣2 .

If we take the sum over the time instants s we obtain:

E [f(x(k))] ≤ f(x0)− ξ
k−1∑
s=0

∣∣∣∣L1/2∇f(E [x(s)])
∣∣∣∣2 ,

and the limit satisfies:

lim
k→∞

E [f(x(k))] ≤ f(x0)− ξ lim
k→∞

k−1∑
s=0

∣∣∣∣L1/2∇f(E [x(s)])
∣∣∣∣2 . (3.28)

Now, we consider the dynamics in expectation given by (3.13), which satisfies the
inequality of α-strongly convex functions:

f(E [x(k + 1)]) ≥ f(E [x(k)]) + ⟨∇f(E [x(k)]),E [x(k + 1)]− E [x(k)]⟩

+
α

2
||E [x(k + 1)]− E [x(k)]||2

= f(E [x(k)]) + ⟨∇f(E [x(k)]),−hpL∇f(E [x(k)])⟩

+
α

2
||hpL∇f(E [x(k)])||2

= f(E [x(k)])−hp
∣∣∣∣L1/2∇f(E [x(k)])

∣∣∣∣2+h2αp2
2

||L∇f(E [x(k)])||2
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Notice that due to the Min-Max Theorem, for any vector z ∈ Rn, it holds

||Lz||2 =
∣∣∣∣L1/2L1/2z

∣∣∣∣2 ≥ λ2(L)
∣∣∣∣L1/2z

∣∣∣∣2 , (3.29)

since L1/2z is orthogonal to 1. Hence we obtain:

f(E [x(k + 1)]) ≥ f(E [x(k)])− hp
∣∣∣∣L1/2∇f(E [x(k)])

∣∣∣∣2
+
h2αp2λ2(L)

2

∣∣∣∣L1/2∇f(E [x(k)])
∣∣∣∣2

= f(E [x(k)])− hp

(
1− hαpλ2(L)

2

) ∣∣∣∣L1/2∇f(E [x(k)])
∣∣∣∣2

We denote δ = hp
(
1− hαpλ2(L)

2

)
, which is non-negative if h ≤ 2

αλ2(L)
. Since

2
β(pλn(L)+2−2p)

≤ 2
αλ2(L)

we get:

∣∣∣∣L1/2∇f(E [x(k)])
∣∣∣∣2 ≥ 1

δ
(f(E [x(k)])− f(E [x(k + 1)])) .

If we take the sum over the time instants s we obtain:
k−1∑
s=0

∣∣∣∣L1/2∇f(E [x(s)])
∣∣∣∣2 ≥ 1

δ
(f(x0)− f(E [x(k)])) ,

and for p > 0 the limit satisfies:

lim
k→∞

k−1∑
s=0

∣∣∣∣L1/2∇f(E [x(s)])
∣∣∣∣2 ≥ 1

δ
(f(x0)− f ∗) . (3.30)

We use (3.30) in (3.28) to get:

lim
k→∞

E [f(x(k))] ≤ f(x0)−
ξ

δ
(f(x0)− f ∗) ,

which yields

lim
k→∞

E [f(x(k))]− f(x∗) ≤
(
1− ξ

δ

)
(f(x0)− f ∗) .

■
To analyze the asymptotic behavior of the upper bound for Jfunct, let us con-

sider a step-size given by h = 2ϵ
β(pλn(L)+2−2p)

with ϵ ∈ (0, 1). For low values of
probabilities corresponding to non-robust networks we have:

lim
p→0

Jfunct ≤ ϵ (f(x0)− f ∗) , (3.31)
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Figure 3.2: Computations of the upper bound for Jfunct for a complete, star and
line graph with n = 10, ϵ = 0.5, f(x0)− f ∗ = 1 and two values of κ.

which implies that small step-sizes, characterized by small values of ϵ, reduce more
the gap between the expected value of the cost function and f ∗. In the case of
large values of probabilities, we have the following asymptotic behavior:

lim
p→1

Jfunct ≤
ϵ(1− κ−1κ−1

λ )

1− ϵκ−1κ−1
λ

(f(x0)− f ∗) , (3.32)

where κ = β
α

is the condition number of the cost functions fi and κλ = λn(L)
λ2(L)

. We
can observe that only for the particular case of a complete graph (i.e., λ2(L) =
λn(L)) and the particular value κ = 1 (i.e., α = β) we obtain

lim
p→1

Jfunct = 0, (3.33)

which implies a certain level of conservatism in the upper bound since (3.33) should
hold for any choice of κ and κλ in order to recover the behavior of a network without
packet losses. Figure 3.2 shows the computation of the upper bound for Jfunct for
a complete, star and line graph with n = 10 agents, ϵ = 0.5, f(x0) − f ∗ = 1 and
two values of κ where we can appreciate the behavior of the upper bound and the
limit values defined by (3.31) and (3.32).

3.3 Packet losses in OMAS
In this subsection, we consider the case when replacements of agents happen in the
system, making it open. Each agent i ∈ V gets replaced at random time instants,
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resulting in the change of its local cost function, and hence of the global minimizer
of the system x∗.

For the sake of simplicity, we assume that when an agent i is replaced, the
joining agent that takes its place retrieves its label i and its estimate xi, so that
the constraint 1Tx = b is preserved, but receives a new local cost function satisfying
Assumptions 3.5. Denoting fk

i the local cost function held by agent i at the time
instant k, we can then reformulate (3.1) as

min
x∈S1,b

fk(x) :=
n∑

i=1

fk
i (xi). (3.34)

The solution of (3.34) can thus differ from a time instant tk to another, and we
denote it by x∗(k) := argminx∈S1,b f

k(x).

3.3.1 Discrete-event modelling

The evolution of the open network presented in the previous section is character-
ized by the instantaneous occurrence at random time instants of either interactions
of agents according to the network topology or replacements. We call such occur-
rences events, and we define the event set of the system, which contains all events
that can happen in the system, as

Ξ = U ∪R, (3.35)

where U is the update event corresponding to the application of the weighted
gradient descent, and R :=

⋃
i∈V Ri is the set of all events Ri, i.e., the replacement

of a single agent i in the system.
We assume that two distinct events never happen simultaneously, and following

the above characterization, we consider a discrete evolution of the time where each
time-step k corresponds to the random time instant at which the k-th event of the
system ξk ∈ Ξ takes place. Moreover, we consider the following assumption that
guarantees that replacements and interactions are independent processes, so that
at any iteration k, the event ξk is an interaction, i.e., ξk ∈ U , with fixed probability
pU , and a replacement, i.e., ξk ∈ R, with fixed probability pR = 1− pU .

Assumption 3.6 An event ξk is independent of any other event ξj, with j ̸= k,
and of any information in the system prior to time-step k, such as the estimates
or local cost functions.

More precisely, we assume that at each time instant k we can have an update
with probability pU or a replacement with probability pR = 1 − pU . If an update
occurs, the weighted gradient descent is applied and fk+1 = fk. If a replacement
occurs, a single agent i is uniformly randomly selected and receives a new (piecewise
quadratic) cost function.
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3.3.2 Constraint violation

When the open system does not suffer from packet losses, the constraint is always
preserved but the global minimizer x∗(k) is time-varying since the cost functions
change in time. In this analysis, we assume that the open system also suffers of
packet losses such that the weighted gradient descent algorithm becomes:

x(k + 1) = x(k)− hL(k)∇fk(x(k)). (3.36)

Similarly to the closed system we analyze the constraint violation metric Jconstr
defined in (3.18).

Proposition 3.2 Consider the weighted gradient descent given by (3.10), (3.11)
and (3.36). Under Assumption 3.5, for any positive scalar h ≤ 2

β(pλn(L)+2−2p)
, the

constraint violation metric satisfies:

Jconstr ≥
4pUh(1− p)

2− αh(pλ2(L) + 2− 2p)
lim
k→∞

k−1∑
s=0

E [f s(x(s))− f s(x(s+ 1))] .

Proof: Let us recall the notation in the proof of Theorem 3.1 for the error
H(k) =

(
1⊤x(k)− b

)
and the natural filtration {Fk}k∈Z≥0

. From (3.22) we have
that when an update U happens

E
[
H2(k + 1)|U

]
= E

[
H2(k)

]
+ 2h2p(1− p)E

[∣∣∣∣L1/2∇fk(x(k))
∣∣∣∣2] . (3.37)

When a replacement R occurs, the constraint is not violated at that event

E
[
H2(k + 1)|R

]
= E

[
H2(k)

]
.

Then, we compute the total expectation and we obtain:

E
[
H2(k + 1)

]
= pUE

[
H2(k + 1)|U

]
+ pRE

[
H2(k + 1)|R

]
= E

[
H2(k)

]
+ 2pUh

2p(1− p)E
[∣∣∣∣L1/2∇fk(x(k))

∣∣∣∣2] .
We use a recursive argument to get:

E
[
H2(k)

]
= 2pUh

2p(1− p)
k−1∑
s=0

E
[∣∣∣∣L1/2∇f s(x(s))

∣∣∣∣2] . (3.38)

Since the cost functions fk are α-strongly convex we have:

fk(x(k + 1)) ≥ fk(x(k)) +
α

2
||x(k)− x(k + 1)||2 + ⟨∇fk(x(k)), x(k + 1)− x(k)⟩

= fk(x(k)) +
h2α

2
⟨∇fk(x(k)), L(k)TL(k)∇fk(x(k))⟩

− h⟨∇fk(x(k)), L(k)∇fk(x(k))⟩.
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We compute the expectation given the filtration generated by x(k) and we use
(3.19) to get:

E
[
fk(x(k + 1))|Fk

]
≥ fk(x(k))+

h2α

2
⟨∇fk(x(k)), (p2L2 + 2p(1− p)L)∇fk(x(k))⟩

− h⟨∇fk(x(k)), pL∇fk(x(k))⟩.

By using (3.29), we have the lower bound
∣∣∣∣L∇fk(x(k))

∣∣∣∣2≥λ2(L)∣∣∣∣L1/2∇fk(x(k))
∣∣∣∣2

and we obtain:

E
[
fk(x(k + 1))|Fk

]
≥fk(x(k))−hp

(
1−hα(1− p)−hαpλ2(L)

2

)∣∣∣∣L1/2∇fk(x(k))
∣∣∣∣2.

We denote θ = hp
(
1− hα(1− p)− hαpλ2(L)

2

)
and we compute the total expecta-

tion to get:

E
[
E
[
fk(x(k + 1))|Fk

]]
≥ E

[
fk(x(k))

]
− θE

[∣∣∣∣L1/2∇fk(x(k))
∣∣∣∣2] .

Since h ≤ 2
β(pλn(L)+2−2p)

≤ 2
α(pλ2(L)+2−2p)

we guarantee that E
[
fk(x(k + 1))

]
≤

E
[
fk(x(k))

]
such that:

E
[∣∣∣∣L1/2∇fk(x(k))

∣∣∣∣2]≥ 1

θ

(
E
[
fk(x(k))

]
− E

[
fk(x(k + 1))

])
. (3.39)

By using (3.39) in (3.38) we complete the proof. ■
Unlike a closed system, we observe that in general

E [f s(x(s+ 1))] ̸= E [f s+1(x(s+ 1))] due to the possible replacements that take
place in the system. This mismatch implies that terms are not canceled in the
series in the lower bound and the error accumulates in time, so that Jconstr grows
to infinity. This intuition is corroborated by the simulations of E

[
(1Tx(k)− b)2

]
for a complete graph with n = 7 agents that are shown in Fig. 3.3. We can observe
in the plot that both the constraint violation metric and the lower bound diverge.
During the transient state, the accumulation of errors is considerable and the in-
crease of the constraint violation metric is significant, while in the steady state the
accumulation of errors is small and the metric increases with a lower rate. This
difference in the growth rates can be explained by the distance between the initial
state x(0) and the minimizer x∗. During the transient state, agents exchange large
values to reach the minimizer, such that a loss of information has a high impact in
the system. Nevertheless, in the steady state, the states of the agents are close to
the minimizer and the values exchanged are small, which implies that the potential
loss of information is not significant.
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Figure 3.3: Simulation of E
[
(1Tx(k)− b)2

]
and of the lower bound in Proposi-

tion 3.2 for a complete graph under replacements with n = 7, α = 1, β = 10,
p = 0.8, pU = 0.5 by considering 10000 realizations of the process.

When replacements do not take place, the lower bound of Proposition 3.2 is
given by:

Jconstr ≥
4h(1− p)

2− αh(pλ2(L) + 2− 2p)

(
f(x(0))− lim

k→∞
E [f(x(k))]

)
.

In Fig. 3.4 we present the behavior of Jconstr and the lower bound of Proposi-
tion 3.36 for a system without replacements considering the same parameters of
Fig. 3.3 where we observe a similar behavior for the transient state characterized
by a fast increase. However, unlike the case of replacements, during the steady
state, Jconstr converges to a value and remains bounded, which is also guaranteed
by Theorem 3.1.

When p = 1, corresponding to an ideal system without packet losses, even if re-
placements take place in the system (i.e., pU > 0), Jconstr is zero since
E [H2(k + 1)|U ] = E [H2(k)] as we can see in (3.37). This can also be derived
from (3.14), since the algorithm preserves the constraint independently of the cost
functions considered for the computation of x(k + 1).

3.4 Conclusion
In this chapter, we analyzed the effect of packet losses in the performance of
the weighted gradient descent algorithm. We defined two performance metrics
to measure the deviation from the constraint and the error of the expected cost
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Figure 3.4: Simulation of E
[
(1Tx(k)− b)2

]
and of the lower bound in Proposi-

tion 3.2 for a complete graph with no replacements with n = 7, α = 1, β = 10,
p = 0.8, pU = 1 by considering 10000 realizations of the process.

function and we derived an upper bound. We extended the analysis of packet
losses to OMAS and we showed that the constraint violation metric may diverge
in such a case due to the accumulation of errors during the replacements.

We showed that when the weighted gradient descent algorithm is applied in
a system subject only to packet losses, the constraint violation metric remains
bounded while in a system subject only to replacements, the constraint violation
metric is zero since the constraint is preserved during replacements. However,
when updates using the weighted gradient descent algorithm with packet losses
and replacements occur in the same system, the constraint violation metric di-
verges, showing the fragility of the algorithm in OMAS. This result presents a
similarity with the case of Lévy flights studied in [57], where an asymmetric loss
of information together with delays and noise can generate complex behaviors.

As for future work, natural continuations of the paper in closed and open sys-
tems can be explored. In the closed case, although an upper bound was derived for
the cost function metric, the expression presents a certain level of conservatism.
It would be important to improve the bound to obtain a tighter result that guar-
antees a zero value of the metric when p = 1 (no replacements). Regarding the
open case, it is necessary to improve the lower bound for the constraint violation
metric so that it does not depend on the trajectories but on the properties of the
system. Also, the error of the expected cost function should be studied in OMAS
to determine if it is bounded or if it could diverge.

Finally, regarding the objective of achieving an optimal resource allocation even
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under the perturbations generated by packet losses and replacements of agents, the
design of more complex algorithms to obtain better performances remains open.
One of the most interesting approaches is online optimization, where the problem of
time-varying functions is also analyzed from a different perspective and algorithms
based on several stages are proposed with the aim of achieving a good performance
in average [82,83].





Chapter 4

Random coordinate descent with
replacements

In OMAS, a fixed solution for the resource allocation problem (3.1) cannot be ob-
tained as in general, the size of the system is not fixed and the cost functions keep
changing, such that the goal of the agents is to track the time-varying solution of
(3.1) as well as possible at all times using an optimization algorithm. However, as
the size of such systems reaches large values, global optimization methods relying,
e.g., on the computation of the whole gradient of f are not suited since the com-
putational complexity would be high and in some cases, it would not be practical
to gather the whole gradient as agents may have entered/left in the meantime.
For this reason, it is important to consider optimization algorithms based on lo-
cal interactions, since they are more flexible. An alternative type of algorithms
that allow to considerably reduce the computational complexity is the so-called
Coordinate Descent algorithm introduced by Nesterov, where the optimization is
performed only along one direction at each iteration [84]. For multi-agent systems,
the selection of one coordinate is equivalent to the choice of a particular edge of
the network to perform the optimization. In such algorithms, the sequence of
edges is crucial, and hence a randomized choice denoted as Random Coordinate
Descent algorithm (RCD) was studied in [80], where convergence of the cost func-
tions is proved under standard assumptions when only pairwise interactions are
considered, so that the algorithm requires only the computation of a pair of local
gradients per iteration.

In the context of optimization, problems such as (3.1) typically imply a mini-
mization process on a long period, and thus in many situations, the cost is expected
to be paid on a regular basis. In such a setting, a natural way of measuring the
performance of an algorithm is to compute its accumulated error with respect to
a given strategy over a finite number of iterations. Similar metrics occur in the
context of online optimization [85], where the objective is to minimize the so-called
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regret, commonly defined as the accumulated error of the estimate x(k) with re-
spect to x∗ := argminx

∑T
k=1 f

k(x), or sometimes with respect to the time-varying
solution of (3.1) x∗(k) := argminx f

k(x) such as e.g., in [86].
In this chapter, we study the Random Coordinate Descent algorithm (RCD)

to solve the resource allocation (RA) problem in OMAS where agents get replaced
during the process, relying on a decoupled analysis of the RCD algorithm and of
replacements of single agents. In the first part, we analyze the RCD algorithm
using a time-varying optimization framework [87], where we focus in the conver-
gence of the algorithm towards the minimizer and its stability. In Section 4.1 we
introduce a more general setting for the RA problem where agents can be hetero-
geneous (i.e., that ai may be different) and hold d-dimensional local cost functions.
In addition, we consider an arbitrary distribution for the probabilities associated
with the choice of edges during the execution of the RCD algorithm. Section 4.2
presents an analysis of the behavior of the minimizer during a replacement. We
derive three different upper bounds for the difference between two possible mini-
mizers using different techniques. In Section 4.3 we prove the linear convergence
of the RCD algorithm in a closed system in a norm induced by a matrix associ-
ated with the network. In Section 4.4 we analyze the RCD algorithm in an open
system subject to replacements and we provide conditions for the convergence of
the algorithm inside a ball, whose size depends on parameters of the system. In
the second part, we analyze the RCD algorithm using tools similar to those used
in Online Optimization. Section 4.5 presents a simplified setting, where homoge-
neous agents, holding 1-dimensional cost functions, interact in a complete graph.
We introduce the performance metrics used in this work, which are inspired by the
loss accumulated by the RCD algorithm with respect to the time-varying optimal
solution x∗(k) over a finite number of iterations, and its gain with respect to the
selfish strategy xs(k), which consists in the absence of collaboration between the
agents (i.e., xsi (k) = dki ). We derive upper bounds for the performance metrics and
show that the metrics scale linearly with time. In addition, the case of quadratic
cost functions is analyzed, for which tighter results are obtained. Finally, the
conclusions and future work are exposed in Section 4.6.

4.1 Problem statement

4.1.1 Network description and open system

We consider the resource allocation problem (3.1) with a fixed budget b:

min
x=[xT

1 ,...,xT
n ]T∈Rnd

f(x) =
n∑

i=1

fi(xi) subject to
n∑

i=1

aixi = b, (4.1)
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where the local cost functions fi : Rd → R satisfy Assumption 3.1 (i.e., fi is
continuously differentiable, α-strongly convex and β-smooth).

In addition, we assume to have an undirected and connected graph G = (V,E)
where the set of nodes is given by V = {1, . . . , n} and the set of edges by E ⊆ V×V .
Each agent i ∈ V has access to a local cost function fi and to a local variable xi.
Agents can exchange information at random times through pairwise interactions
according to the network G. Whenever an interaction happens in the system, an
edge (i, j) ∈ E is selected with some fixed probability pij > 0 and agents i and j
can then exchange information in an undirected manner to update their respective
estimates.

Moreover, we consider that replacements of agents happen in the system, mak-
ing it open. Each agent i ∈ V gets replaced at random time instants, resulting in
the change of its local cost function, and hence of the global minimizer x∗.

The evolution of the open network presented in this section is characterized by
the instantaneous occurrence at random time instants of either pairwise interac-
tions or replacements. We call such occurrences events, and we define the event
set of the system, which contains all events that can happen in the system, as

Ξ = U ∪R, (4.2)

where U =
⋃

(i,j)∈E Uij is the set of all possible events Uij, i.e., the pairwise inter-
action between two connected agents i and j, and R :=

⋃
i∈V Ri is the set of all

events Ri, i.e., the replacement of a single agent i in the system.
Similarly to Section 3.3.1, we consider a discrete evolution of the time where

each time-step k corresponds to the random time instant at which the k-th event
of the system ξk ∈ Ξ takes place. Moreover, we consider that the events ξk sat-
isfy the Assumption 3.6 that guarantees that replacements and interactions are
independent processes, so that at any iteration k, the event ξk is an interaction,
i.e., ξk ∈ U , with fixed probability pU , and a replacement, i.e., ξk ∈ R, with fixed
probability pR = 1− pU .

Following the approach in [88], we restrict the location of the minimizers of the
local functions:

Assumption 4.1 For all i ∈ V , the minimizer of fi denoted as x̄∗i := argminx fi(x)
satisfies x̄∗i ∈ B(0d, c) for some c > 0. Moreover, without loss of generality
fi(x̄

∗
i ) = 0 for all i ∈ V .

Assumption 4.1 guarantees a certain level of uniformity among the local cost
functions. In particular, it prevents arbitrary changes of functions, and thus of x∗,
during replacements.

In the first part of this chapter, we assume that when agent i is replaced, the
joining agent that takes its place retrieves its label i and its estimate xi, so that
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the constraint
(
a⊤ ⊗ Id

)
x = b is preserved, but receives a new local cost function

satisfying Assumptions 3.1 and 4.1 1. This is consistent with e.g., the case of energy
distribution where the sources maintain the same value of generated energy but
with a different cost function. Denoting fk

i the local cost function held by agent i
at the time instant k, we can then reformulate the RA problem (4.1) as

min
x∈Sa,b

fk(x) :=
n∑

i=1

fk
i (xi), (4.3)

where Sa,b =
{
x ∈ Rnd|

(
a⊤ ⊗ Id

)
x = b

}
is the feasible set. The solution of (4.3)

can thus differ from a time instant tk to another, and we denote it by x∗(k) :=
argminx∈Sa,b

fk(x). The objective of the agents is to track x∗(k) as well as possible
even though replacements happen in the system.

4.1.2 Random Coordinate Descent (RCD) algorithm

To compute the solution of (4.3) we consider the Random Coordinate Descent
(RCD) algorithm introduced in [80]. This algorithm involves the update of the
states of only a pair of neighbouring agents at each iteration, so that the compu-
tational complexity is cheap. Hence, whenever two agents i and j interact (i.e., in
the event Uij), they perform an RCD update, which is defined as follows for some
nonnegative step-size h ≥ 0:

x(k + 1) = x(k)− hQij∇f(x(k)), (4.4)

where Qij is the nd × nd matrix defined as Qij = Qij ⊗ Id, with Qij the n × n
matrix filled with zeroes except for the four following entries:

[Qij]i,i =
a2j

a2i + a2j
; [Qij]j,j =

a2i
a2i + a2j

;

[Qij]i,j = − aiaj
a2i + a2j

; [Qij]j,i = − aiaj
a2i + a2j

.

With the update rule (4.4) only agents i and j update their estimates while all
the other agents keep it the same. For agents i and j, (4.4) essentially amounts to
perform a gradient step on the function fi(xi) + fj(xj) under the constraint that
aixi + ajxj remains constant. This ensures that the resource allocation constraint
is preserved as long as the starting point satisfies it. In particular, in the case
of homogeneous agents (i.e., where a = 1n), then one shows that x+i = xi −

1This assumption about the preservation of the value of xi by the new agent will be relaxed
in Section 4.5 corresponding to the second part of this chapter where tools inspired by online
optimization are used for the analysis.
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h
2
(∇fi(xi)−∇fj(xj)), so that the update follows both gradients with equal weight

while preserving the constraint.

Remark 4.1 The update rule (4.4) can be formally obtained by solving the fol-
lowing optimization problem, which corresponds to the interpretation given above
(we refer to [80] for details):

arg min
si,sj∈Rd:aisi+ajsj=0

〈[
∇fi(xi)
∇fj(xj)

]
,

[
si
sj

]〉
+
β

2

∥∥∥∥[sisj
]∥∥∥∥2 . (4.5)

Based on the approach of [80], one can then show that the optimal step-size that
solves (4.5) is given by h = 1/β.

We also introduce the following matrix that builds on the definition of the
update rule (4.4):

Lp =
∑

(i,j)∈E

pijQ
ij =

 ∑
(i,j)∈E

pijQ
ij

⊗ Id = Lp ⊗ Id. (4.6)

This matrix appears in the dynamics corresponding to the conditional expectation:

E [x(k + 1)|x(k)] = x(k)− hLp∇f(x(k)),

and will be used for the definition of an appropriate norm for the analysis of the
RCD algorithm. Observe that by definition of Qij and Lp, one has

Lpa = Qija = 0n, (4.7)

which means that zero is an eigenvalue of both Qij and Lp with corresponding
eigenvector a. We denote by λ2(Lp) and λn(Lp) respectively the second smallest
and the largest eigenvalues of Lp. One can show that λ2(Lp) > 0 since the graph
G is connected (we refer to Lemma 3.3 of [80] for a detailed proof).

Remark 4.2 For a graph G = (V,E), when a = 1n (homogeneous agents) and
the probabilities pij are uniformly distributed, one has Lp =

1
2|E|L, where L is the

usual Laplacian of the graph. Hence, we refer to Lp as a scaled Laplacian, as it
enjoys similar properties, especially in terms of eigenvalues.

4.2 Effect of replacements
In this section, we bound the distance by which the minimizer of f can change after
the replacement of a single agent, i.e., the modification of a single function. Our
first two results concern the location of the minimizer: Lemma 4.1 corresponds to
an analysis of the location of the global minimizer of the system, and Lemma 4.2
is an analysis of the location of the minimizer held by each individual agent.
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Lemma 4.1 Let x∗ := argminx∈Sa,b

∑n
i=1 fi(xi). If all fi satisfy Assumptions 3.1

and 4.1, then x∗ ∈ B(0nd, Rb,κ) with

Rb,κ =
√
nκ

(
c+

c√
κ
+

||b||√
n ||a||

)
, (4.8)

where c was defined in Assumption 4.1.

Proof: We prove by contradiction. Let us consider some x ∈ Sa,b such
that x /∈ B(0, Rb,κ), and let x̄∗ = argminx∈Rnd f(x) denote the global minimizer
without constraint. We have ||x|| > Rb,κ by definition and ||x̄∗|| ≤

√
nc since

x̄∗ ∈ B(0d, c)
n, and it thus follows that ||x− x̄∗|| > Rb,κ −

√
nc. Hence, since f

is α-strongly convex, and reminding that f(x̄∗) = 0 from Assumption 4.1, there
holds

f(x)≥ α

2
||x− x̄∗||2 > α

2
κ

(√
nc+

||b||
||a||

)2

=
β

2

(√
nc+

||b||
||a||

)2

.

Now let us define xb := 1
||a||2 (a⊗ Id)b, which is a feasible point with norm ||xb|| =

||b||
||a|| . Since f is β-smooth, and since f(x̄∗) = 0 from Assumption 4.1, there holds

f(xb) ≤
β

2
||xb − x̄∗||2 ≤ β

2

(√
nc+

||b||
||a||

)2

.

Finally, since xb ∈ Sa,b there holds f ∗ ≤ f(xb) by definition. Combining all the
inequalities above then yields

f(x) >
β

2

(√
nc+

||b||
||a||

)2

≥ f(xb) ≥ f ∗,

which implies that x cannot be the minimizer of the problem and concludes the
proof. ■

Lemma 4.2 Let x∗ := argminx∈Sa,b
f(x) =

∑n
i=1 fi(xi). If fi satisfies Assump-

tions 3.1 and 4.1 for all i = 1, . . . , n, then for ζ∗ defined in (3.3) there holds

||ζ∗|| ≤ β

||a||2
(||b||+ c ||a||1) ; (4.9)

and
||x∗i || ≤

ai

||a||2
κ (||b||+ c ||a||1) + c. (4.10)
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Proof: Let us denote x̄∗i the minimizer of fi without constraint which satisfies
fi(x̄

∗
i ) = 0 and ∇fi(x̄∗i ) = 0d. From β-smoothness of the local functions we have:

||∇fi(x∗i )||
2 ≤ β⟨∇fi(x∗i ), x∗i − x̄∗i ⟩.

Then, from the optimality condition (3.3), there holds

a2i ||ζ∗||
2 ≤ β⟨ζ∗, ai(x∗i − x̄∗i )⟩.

By summing over all the i, we obtain:

||a||2 ||ζ∗||2 ≤ β⟨ζ∗,
n∑

i=1

ai (x
∗
i − x̄∗i )⟩.

We use the Cauchy-Schwarz inequality to get:

||a||2 ||ζ∗||2 ≤ β ||ζ∗||

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

ai (x
∗
i − x̄∗i )

∣∣∣∣∣
∣∣∣∣∣ ,

and by using the triangle inequality and the fact that
∑n

i=1 aix
∗
i = b we obtain:

||ζ∗|| ≤ β

||a||2

(
||b||+

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

aix̄
∗
i

∣∣∣∣∣
∣∣∣∣∣
)

≤ β

||a||2
(||b||+ c ||a||1) ,

which corresponds to (4.9). From α-strongly convexity of the local functions we
have:

α ||xi − x̄∗i || ≤ ||∇f(xi)|| .
By using the reverse triangle inequality and the optimality condition we get

||x∗i || ≤
1

α
||aiζ∗||+ ||x̄∗i || ≤

ai
α
||ζ∗||+ c. (4.11)

Equation (4.10) then follows from combining (4.9) and (4.11). ■
We can now use these two lemmas to characterize the evolution of the distance

between the estimate x(k) and the minimizer x∗(k) after a replacement event.
Without loss of generality, we assume that agent n, and hence fn, is replaced, and
for the n+1 functions f1, f2, . . . , fn−1, f

(1)
n , f

(2)
n satisfying Assumptions 3.1 and 4.1

we define the minimizer before a replacement x(1), and after a replacement x(2) as

x(1) := argmin
x∈Sa,b

(∑n−1

i=1
fi(xi) + f (1)

n (xn)
)
;

x(2) := argmin
x∈Sa,b

(∑n−1

i=1
fi(xi) + f (2)

n (xn)
)
. (4.12)
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Proposition 4.1 Consider x(1) and x(2) as defined in (4.12), let a+ and a− re-
spectively denote the largest and smallest values in a, and let ρa :=

a2+
||a||2−a2+

, then
there holds ∣∣∣∣x(1) − x(2)

∣∣∣∣2 ≤ min{ψn,κ, χn,κ, θn,κ} =: M̄2
n,κ, (4.13)

with

ψn,κ = 4nκ

(
c+

c√
κ
+

||b||√
n ||a||

)2

; (4.14)

χn,κ = 8

(
a+

||a||2
κ(||b||+ c ||a||1) + c

)2

; (4.15)

θn,κ = 4

(
1 +

(κ+ 1)2

4κ
ρa

)(
a+

||a||2
κ(||b||+ c ||a||1) + c

)2

, (4.16)

Proof:
a) Proof of ψn,κ: Observe that x(1), x(2) ∈ B(0nd, Rb,κ) from Lemma 4.1, so

that there holds ∣∣∣∣x(1) − x(2)
∣∣∣∣2 ≤ 2

(∣∣∣∣x(1)∣∣∣∣2 + ∣∣∣∣x(2)∣∣∣∣2) ≤ 4R2
b,κ,

which yields (4.14).

b) Proof of χn,κ: We remind that for i = 1, . . . , n− 1, there holds ∇fi(x(q)i ) =
aiζ

(q), with q = 1, 2. From α-strongly convexity of the local cost functions, there
holds that for all i = 1, . . . , n− 1:

ai⟨ζ(1) − ζ(2), x
(1)
i − x

(2)
i ⟩ ≥ α

∣∣∣∣∣∣x(1)i − x
(2)
i

∣∣∣∣∣∣2 .
Let us define y(q) ∈ Rd(n−1) the vector such that y(q)i = x

(q)
i for q = 1, 2 and for

i = 1, . . . , n− 1. Using the fact that
∑n

i=1 aix
(q)
i = b for q = 1, 2 and summing up

the above inequalities over all i = 1, . . . , n− 1 yields

an⟨ζ(1) − ζ(2), x(2)n − x(1)n ⟩ ≥ α
∣∣∣∣y(1) − y(2)

∣∣∣∣2 ,
where we used the fact that

∑n−1
i=1 aix

(q)
i + anx

(q)
n = b. By using Cauchy-Schwarz

inequality and triangle inequality we obtain∣∣∣∣y(1) − y(2)
∣∣∣∣2 ≤ an

α

(∣∣∣∣ζ(1)∣∣∣∣+ ∣∣∣∣ζ(2)∣∣∣∣) (∣∣∣∣x(1)n

∣∣∣∣+ ∣∣∣∣x(2)n

∣∣∣∣)
Then, we use (4.9) and (4.10) to get∣∣∣∣y(1) − y(2)

∣∣∣∣2 ≤ 4

(
an

||a||2
κ (||b||+ c ||a||1) + c

)
. (4.17)
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By definition we have∣∣∣∣x(1) − x(2)
∣∣∣∣2 = ∣∣∣∣y(1) − y(2)

∣∣∣∣2 + ∣∣∣∣x(1)n − x(2)n

∣∣∣∣2 . (4.18)

We apply triangle inequality and (4.10) to obtain∣∣∣∣x(1) − x(2)
∣∣∣∣2 ≤ ∣∣∣∣y(1) − y(2)

∣∣∣∣2 + (∣∣∣∣x(1)n

∣∣∣∣+ ∣∣∣∣x(2)n

∣∣∣∣)2
≤
∣∣∣∣y(1) − y(2)

∣∣∣∣2 + 2
(∣∣∣∣x(1)n

∣∣∣∣2 + ∣∣∣∣x(2)n

∣∣∣∣2)
≤
∣∣∣∣y(1) − y(2)

∣∣∣∣2 + 4

(
an

||a||2
κ (||b||+ c ||a||1) + c

)
(4.19)

Finally, the result (4.15) yields by combining (4.17) and (4.19) and using the fact
that an ≤ a+.

c) Proof of θn,κ: Since the functions are α-strongly convex and β-smooth, there
holds that for all i = 1, . . . , n− 1:

ai(1 + κ−1)⟨ζ(1) − ζ(2), x
(1)
i − x

(2)
i ⟩ ≥ β−1a2i

∣∣∣∣ζ(1) − ζ(2)
∣∣∣∣2 + α

∣∣∣∣∣∣x(1)i − x
(2)
i

∣∣∣∣∣∣2 .
By summing up the above inequalities over all i = 1, . . . , n− 1 yields

an(1 + κ−1)⟨ζ(1) − ζ(2), x(2)n − x(1)n ⟩ ≥ mβ−1
∣∣∣∣ζ(1) − ζ(2)

∣∣∣∣2 + α
∣∣∣∣y(1) − y(2)

∣∣∣∣2 ,
where m =

∑n−1
i=1 a

2
i . By using Cauchy-Schwarz inequality we obtain:

an(1 + κ−1)
∣∣∣∣ζ(1) − ζ(2)

∣∣∣∣ ∣∣∣∣x(2)n − x(1)n

∣∣∣∣≥mβ−1
∣∣∣∣ζ(1) − ζ(2)

∣∣∣∣2+α ∣∣∣∣y(1) − y(2)
∣∣∣∣2 .

This can be written as follows

α
∣∣∣∣y(1) − y(2)

∣∣∣∣2 ≤ ϕ(
∣∣∣∣ζ(1) − ζ(2)

∣∣∣∣), (4.20)

where
ϕ(z) = −mβ−1z2 + an(1 + κ−1)

∣∣∣∣x(2)n − x(1)n

∣∣∣∣ z.
Since ϕ is a concave parabola, there exists ϕ∗ = maxz ϕ(z) <∞ such that ϕ(z) ≤
ϕ∗ for all z given by

ϕ∗ =
a2n(1 + κ−1)2

∣∣∣∣∣∣x(2)n − x
(1)
n

∣∣∣∣∣∣2
4mβ−1

,
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and it follows by using (4.20) that

∣∣∣∣y(1) − y(2)
∣∣∣∣2 ≤ a2n(1 + κ−1)2

αβ−1

∣∣∣∣∣∣x(1)n − x
(2)
n

∣∣∣∣∣∣2
4m

=

(√
κ+

1√
κ

)2 a2+

∣∣∣∣∣∣x(1)n − x
(2)
n

∣∣∣∣∣∣2
4
(
||a||2 − a2+

) .

Equation (4.16) then follows from (4.18) using the fact that x(1)n and x(2)n are upper
bounded by (4.10), which thus yields θn,κ, and the conclusion follows. ■
The bound M̄2

n,κ from Proposition 4.1 is obtained by taking the minimum between
three quantities: ψn,κ, χn,κ and θn,κ. The first one follows from the largest possible
distance existing between two minimizers, defined by the region in which they can
be located. The second and third ones rely on the largest possible distance between
the local minimizers corresponding to the replaced agents. While χn,κ and θn,κ are
derived using inequalities associated with α-strongly convex functions, the proof
of θn,κ also involves the use of additional properties corresponding to β-smooth
functions and the determination of the maximum value of a concave function. The
bound θn,κ shows a strong dependence on the weights of the agents through the
coefficient ρa, which is not present in the other two bounds. Notice that the bounds
χn,κ and θn,κ coincide when

(κ+ 1)2

4κ
ρa = 1.

Let ā and a2 respectively stand for the average value and average of the squared
values of a. One can more generally highlight the dependencies of the three quan-
tities with the parameters using standard algebraic manipulations, yielding

ψn,κ ≤ 4nκ

(
2c+

||b||
nā

)2

= O(nκ);

χn,κ ≤ 8

(
a2+

a2

(
||b||
nā

+ 2c

)
κ

)2

= O(κ2);

θn,κ ≤ 4
(

a2+
a2−

(
κ

2(n−1)
+ 2
))(

a2+

a2

(
||b||
nā

+ 2c
)
κ
)2

= O

(
κ2 +

κ3

n

)
,

where O(·) corresponds to the O-notation 2. The linear scaling of ψn,κ in both n

2For a given function g(n), we denote by O(g(n)) the set of functions [60]

O(g(n)) = {f(n) : there exist positive constants c and n0 such that
0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.
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and κ and the higher order scaling of both χn,κ and θn,κ in only κ suggest that
ψn,κ is tighter for small values of n and large values of κ, whereas θn,κ and χn,κ are
tighter otherwise. The main difference between χn,κ and θn,κ lies in a multiplicative
factor, constant for the former, and depending of the parameters and the values
in a for the latter. In general, χn,κ tends to be tighter than θn,κ as κ gets large
and n small. This difference becomes significant in heterogeneous settings, where
it can get tighter than ψn,κ as well. These behaviors are illustrated in Fig. 4.1.
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Figure 4.1: Bound of Proposition 4.1 with respect to the system size n for b = 1,
c = 1, respectively for κ = 50 with homogeneous agents (ai = 1 for all i) on the
left, and κ = 2 with heterogeneous agents (a1 = 10, ai = 1 for i > 1) on the right.
The figures show all three quantities ψn,κ, θn,κ and χn,κ as well as the final bound
M̄2

n,κ for both cases.

Remark 4.3 The interpretation of the quantities ψn,κ, χn,κ and θn,κ actually
strongly depends on the implicit assumption that ||b|| is fixed and ||a||1 scales with
n (i.e., ā is fixed). This particular modelling choice is arbitrary, and implies that
the solution held by an agent x∗i (k) becomes smaller for large values of n. Other
choices might have different implications on the interpretation, and in particular
on the scaling of these quantities. For instance one could choose to either fix ||b||
and ||a||1, or that both ||b|| and ||a||1 scale with n, so that the x∗i (k) remain mostly
the same no matter n (observe that the latter yields the same scalings than those
presented above).

The result of Proposition 4.1 can be analyzed with respect to empirical results
derived with the PESTO toolbox [89], which allows computing exact empirical
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bounds for questions related to convex functions 3. For the sake of simplicity, the
analysis here is only done for the homogeneous case, and consequently does not
involve χn,κ, similar conclusions could however be drawn the same way e.g., using
heterogeneous agents.

We can observe in Fig. 4.2, that even though there is some gap between the
theoretical result and that obtained using PESTO, the scaling of the bounds with
respect to n and κ is well captured. In particular, the top plot shows that M̄2

n,κ =
θn,κ when n becomes large, resulting in the convergence of M̄2

n,κ towards a constant,
consistently with the result obtained with PESTO. In parallel, the bottom plot
shows that the bounds from PESTO scale linearly with κ, consistently with the
evolution of ψn,κ, which is the value taken by M̄2

n,κ for large values of κ.

4.3 Linear convergence of RCD in closed system

We now analyze the effect of the second type of events happening in the system,
i.e., pairwise interactions resulting in RCD updates. This corresponds to studying
the convergence of the RCD Algorithm in closed system.

4.3.1 Linear convergence and L†
p-seminorm

In this section, we derive the convergence rate of the RCD algorithm in terms of
the distance to the minimizer with the objective of characterizing the effect of a
single RCD step on that expected distance at interaction events. We introduce
the following standard definitions [90].

Definition 4.1 (Linear Convergence) Let {x(k)} be the sequence of points con-
verging to some point x∗ ∈ Rd generated by some algorithm. We say the conver-
gence is linear if there exists r ∈ (0, 1) such that for all k

||x(k + 1)− x∗|| ≤ r ||x(k)− x∗|| .

The number r is called the rate of convergence.

Definition 4.2 (Exponential Convergence) Let {x(k)} be the sequence of
points converging to some point x∗ ∈ Rd generated by some algorithm. We say

3We consider the setting of Proposition 4.1 with argminx fi(x) ∈ B(0, 1). We use PESTO to
evaluate max

∣∣∣∣x(2) − x(1)
∣∣∣∣2, where x(1) and x(2) are defined as in (4.12) and where we impose∑

i x
(1)
i =

∑
i x

(2)
i = vb, for some vector vb satisfying ||vb|| = b. The variables of the problem are

the functions fi, the vector vb and the decision variables xi, and PESTO derives the performance
achieved by the empirical worst-case instance of the problem.
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Figure 4.2: Evolution of the upper bound on
∣∣∣∣x(1) − x(2)

∣∣∣∣2 respectively with re-
spect to n for several values of κ (top) and with respect to κ for several values of n
(bottom). For each plot the bound obtained in Proposition 4.1 (right) is compared
with the empirical upper bound derived using PESTO in the same settings (left).
The top-right plot also shows the asymptotic value expected to be reached by θn,κ
as n→ ∞ based on (4.16).

the convergence is exponential if there exists r ∈ (0, 1) and some positive constant
C such that for all k

||x(k)− x∗|| ≤ Crk.

In optimization, exponential convergence is also known as R-linear convergence.
Clearly, exponential convergence is weaker than linear convergence since it is con-
cerned with the overall rate of decrease in the error, rather that the decrease over
each individual iteration of the algorithm [91].

In [80], the author proves linear convergence of the RCD algorithm in expec-



64 CHAPTER 4. RANDOM COORDINATE DESCENT

tation in terms of the function value, i.e., f(x)− f ∗. Hence, from the inequalities
corresponding to smooth functions and strong convexity [92, 93], it is straightfor-
ward to prove exponential convergence of the algorithm from [80, Eq. (26)]:

E [||x(k)− x∗||] ≤ κ(1− αλ2(Lp))
k ||x0 − x∗|| . (4.21)

However, due to the alternation of updates and replacements, our analysis in open
systems requires the strict contraction of some metric after each iteration. The
linear convergence was established in the preliminary work [94] for the Euclidean
norm under the assumption of a complete communication graph with homogeneous
agents and uniform probabilities pij. Nevertheless, the following example shows
that such contraction no longer holds for the Euclidean norm for general graphs.

Example 4.1 Consider a line graph with 3 agents satisfying the constraint
⟨1, x⟩ = −3 with probabilities p12 = 0.9, p23 = 0.1 (and hence p13 = 0), and
whose local cost functions and initial conditions are:

i fi(xi) x∗i xi(0)
1 50(x1 − 2)2 2 10
2 20(x2 + 2)2 −2 7
3 (x3 + 3)2 −3 −20

Starting from x(0) the expected result of the RCD operation with step-size h =
1/β = 0.01 is

E
[
||x(1)− x∗||2

]
= 437.204 > 434 = ||x(0)− x∗||2 , (4.22)

and hence linear convergence cannot be achieved at least in this case.

For this reason, we propose to study the problem in a different norm associated
with the algorithm. Since the RCD is performed along a network of agents, a
natural choice is to consider norms induced by associated matrices as in [95]. In
this case, we focus on the seminorm induced by the Moore-Penrose inverse of the
matrix Lp defined in (4.6), denoted by L†

p, which we remind is defined as follows
for some x ∈ Rnd:

∥x∥L†
p
:=

√
x⊤L†

px. (4.23)

We show with the next proposition that this seminorm is a norm on Sa,0, where
we recall that Sa,0 is the feasible set defined in (3.2) when b = 0d and corresponds
to the kernel of aT ⊗ Id. For the particular case d = 1, Sa,0 is the orthogonal
complement of a.

Proposition 4.2 The seminorm ∥·∥L†
p

is a norm on Sa,0.
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Proof: By (4.23), ∥x∥L†
p
= 0 implies that x must be in the kernel of L†

p,
defined as ker(L†

p) = {x ∈ Rnd |x = a⊗w,w ∈ Rd}. Since x ∈ Sa,0, it must satisfy
(a⊤ ⊗ Id)x = 0nd and we have:(

a⊤ ⊗ Id
)
x =

(
a⊤ ⊗ Id

)
(a⊗ w) = ||a||2w,

which is equal to 0d only for w = 0d. ■
If x, y ∈ Sa,b, then z = x − y belongs to Sa,0, so that the norm ∥·∥L†

p
can be

used to measure the distance between two vectors in the context of this work.

4.3.2 Contraction of an iteration in closed system

Let us remind the update rule of the RCD algorithm defined in (4.4) for some
positive step-size h as

x(k + 1) = x(k)− hQij∇f(x(k)). (4.24)

In the following proposition, we analyze the convergence of (4.24) with respect to
the norm induced by L†

p defined tn the previous section.

Proposition 4.3 Let f(x) :=
∑n

i=1 fi(xi) and x∗ := argminx∈Sa,b
f(x). Under

Assumption 3.1, for any positive scalar

h ≤ λ2(Lp)

λn(Lp)

2

α + β
, (4.25)

and for any initial point x ∈ Sa,b, then the update rule (4.24) applied on the
randomly selected pair of agents (i, j) ∈ E satisfies

E
[
∥x(k + 1)− x∗∥2

L†
p

]
≤
(
1− 2hαλ2(Lp) + h2α2λn(Lp)

)
∥x(k)− x∗∥2

L†
p
. (4.26)

Proof: There holds

E
[
∥x(k + 1)− x∗∥2

L†
p

]
=
∑

(i,j)∈E

pij∥x(k)− hQij∇f(x(k))− x∗∥2
L†
p

= ∥x(k)− x∗∥2
L†
p
+ h2

∑
(i,j)∈E

pij∥Qij∇f(x(k))∥2
L†
p

− 2h
∑

(i,j)∈E

pij⟨Qij∇f(x(k)), L†
p(x(k)− x∗)⟩. (4.27)
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Since Lp =
∑

(i,j)∈E pijQ
ij, it follows that

E
[
∥x(k + 1)− x∗∥2

L†
p

]
= ∥x(k)− x∗∥2

L†
p
+ h2

∑
(i,j)∈E

pij∥Qij∇f(x(k))∥2
L†
p

− 2h⟨Lp∇f(x(k)),L†
p(x(k)− x∗)⟩. (4.28)

We first treat the second term of the right-hand side of (4.28). Remember from
(4.7) that Qija = 0n, and from (3.3) that ∇f ∗ = a⊗ ζ∗ for some ζ∗ ∈ Rd. Hence,
since Qij = Qij ⊗ Id by definition, there holds

Qij∇f ∗ = (Qij ⊗ Id)(a⊗ ζ∗) = (Qija)⊗ ζ∗ = 0nd. (4.29)

It thus follows that

∥Qij∇f(x(k))∥2
L†
p
= ∥Qij(∇f(x(k))−∇f ∗)∥2

L†
p

≤ 1

λ2(Lp)

∣∣∣∣Qij(∇f(x(k))−∇f ∗)
∣∣∣∣2 , (4.30)

where the inequality follows from the fact that the eigenvalues of Lp are exactly
those of Lp repeated d times (by Theorem 13.12 of [96]), so that the smallest and
largest nonzero eigenvalues of L†

p are respectively 1/λn(Lp) and 1/λ2(Lp), yielding
for all z ∈ Rnd:

∥z∥2
L†
p
≤ 1

λ2(Lp)
||z||2 . (4.31)

Therefore, since Qij = (Qij)⊤ = (Qij)2, and using the fact that ||z||2Lp
≤ λn(Lp) ||z||2

for all z ∈ Rnd, there holds from (4.30):∑
(i,j)∈E

pij∥Qij∇f(x(k))∥2
L†
p
≤ 1

λ2(Lp)
||∇f(x(k))−∇f ∗||2Lp

≤ λn(Lp)

λ2(Lp)
||∇f(x(k))−∇f ∗||2 . (4.32)

We now analyze the third term of the right-hand side of (4.28). From (4.29) there
holds

Lp∇f ∗ =
∑

(i,j)∈E

pijQ
ij∇f ∗ = 0nd, (4.33)

yielding

⟨∇f(x(k))−∇f∗, x(k)− x∗⟩ ≥ β−1 ||∇f(x(k))−∇f∗||2

1 + κ−1
+
α ||x(k)− x∗||2

1 + κ−1
.
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Hence, using the result above and (4.31), it follows that

−2h⟨Lp∇f(x(k)),L†
p(x(k)− x∗)⟩ ≤ −2h

β−1 ||∇f(x(k))−∇f ∗||2

1 + κ−1

− 2h
αλ2(Lp)∥x(k)− x∗∥2

L†
p

1 + κ−1
. (4.34)

Injecting (4.32) and (4.34) into (4.27) yields

E
[
∥x(k + 1)− x∗∥2

L†
p

]
≤
(
1− 2h

αλ2(Lp)

1 + κ−1

)
∥x(k)− x∗∥2

L†
p

(4.35)

+

(
h2
λn(Lp)

λ2(Lp)
− 2h

β−1

1 + κ−1

)
||∇f(x(k))−∇f ∗||2 .

Observe that if h ≤ λ2(Lp)

λn(Lp)
2

α+β
then h2 λn(Lp)

λ2(Lp)
− 2h β−1

1+κ−1 ≤ 0, and hence we can use
the definition of α-strongly convex functions to find that

||∇f(x(k))−∇f ∗||2 ≥ α2λ2(Lp)∥x(k)− x∗∥2
L†
p
,

where we used the fact that ||x(k)− x∗||2 ≥ λ2(Lp)∥x(k)− x∗∥2
L†
p
. It follows that

E
[
∥x(k + 1)− x∗∥2

L†
p

]
≤ ∥x(k)−x∗∥2

L†
p
+(h2α2λn(Lp)− 2hαλ2(Lp))∥x(k)−x∗∥2

L†
p
,

which concludes the proof. ■
It is clear that the rate of convergence is less than one if h ≤ 2λ2(Lp)

αλn(Lp)
, which is

thus satisfied on all its range of validity since h ≤ 2λ2(Lp)

(α+β)λn(Lp)
≤ 2λ2(Lp)

αλn(Lp)
. We can

then find the step-size which minimizes (4.26) and the corresponding convergence
rate.

Corollary 4.1 The optimal rate of convergence in (4.26) under (4.25) is achieved
for h∗ = 2λ2(Lp)

(α+β)λn(Lp)
which yields

E
[
∥x(k + 1)− x∗∥2

L†
p

]
≤
(
1− λ2(Lp)

2

λn(Lp)

1

κ

)
∥x(k)− x∗∥2

L†
p
. (4.36)

Interestingly, Proposition 4.3 shows that linear convergence can be achieved by
the RCD algorithm with respect to the norm induced by L†

p with a convergence
rate similar to that of classical algorithms based on the gradient descent [92, 93].
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Remark 4.4 (Complete graph) For the particular case of a complete graph
with 1-dimensional homogeneous agents and uniform probabilities, the eigenvalues
of Lp are λ2(Lp) = λn(Lp) =

1
n−1

and the L†
p-norm coincides with the Euclidean

norm for all z = x − y, where x, y ∈ Sa,b. Then, the result of Proposition 4.3
becomes

E
[
||x(k + 1)− x∗||2

]
≤
(
1− αh

n− 1
(2− αh)

)
||x(k)− x∗||2 .

Since in that case by definition h ≤ 2
α+β

≤ 1
α
, it follows that

E
[
||x(k + 1)− x∗||2

]
≤
(
1− αh

n− 1

)
||x(k)− x∗||2 ,

which coincides with [94, Eq. (13)].

Remark 4.5 (Alternative rate) Starting from (4.35) in the proof of Proposi-
tion 4.3, one can use a similar argument to derive the following alternative con-
vergence rate, valid for λ2(Lp)

λn(Lp)
2

α+β
≤ h ≤ κ−1+κL

κ−1+1

λ2(Lp)

βλ2
n(Lp)

, with κL = λn(Lp)

λ2(Lp)
:

E
[
∥x(k + 1)− x∗∥2

L†
p

]
≤
(
1− 2βλ2(Lp)h+ h2β2λ

2
n(Lp)

λ2(Lp)

)
∥x(k)− x∗∥2

L†
p
. (4.37)

This result could be used in the rest of this chapter the same way as that of Propo-
sition 4.3 for the corresponding step-size. This development is however omitted as
it is only marginal progress.

4.3.3 Homogeneous agents and uniform probabilities

For the particular case of homogeneous agents (i.e., a = 1n) and uniform proba-
bilities pij = p, the matrix Lp can be expressed as Lp = p

2
L where L is the usual

Laplacian matrix. In this case, the matrix Lp can be associated to an electrical
circuit [97], and we can use the concept of effective resistance to find an upper
bound for the step-size of the algorithm independently of λ2(Lp).

Hence, the following proposition provides an alternative bound for the conver-
gence of the RCD algorithm in the specific case described above, and can be used
the same way as that of Proposition 4.3 in the remainder of this chapter for that
case. However, for the sake of generality, we express the main result in the next
section only in terms of Proposition 4.3.

Proposition 4.4 Let a function f(x) :=
∑n

i=1 fi(xi) and x∗ := argminx∈Sb
f(x).

Under Assumption 3.1, for any positive scalar

h ≤ 2p

λn(Lp)

2

α + β
,
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and for any initial point x ∈ Sa,b, then the update rule (4.24) applied on the
randomly selected pair of agents (i, j) ∈ E satisfies

E
[
∥x(k + 1)− x∗∥2

L†
p

]
≤
(
1− 2hαλ2(Lp) +

h2α2λ2(Lp)λn(Lp)

2p

)
∥x(k)− x∗∥2

L†
p
.

(4.38)

Proof: Since the matrices Qij are idempotent, the summation term of the
second element in (4.28) can be expressed as:

∥Qij∇f(x(k))∥2
L†
p
= ⟨Qij∇f(x(k)),QijL†

pQ
ijQij∇f(x(k))⟩

Then we can use an upper bound for the quadratic form and we obtain for each
term:

∥Qij∇f(x(k))∥2
L†
p
≤
∣∣∣∣Qij∇f(x(k))

∣∣∣∣2 λmax(Q
ijL†

pQ
ij).

Now, the matrix QijL†
pQ

ij is given by:

QijL†
pQ

ij =
(
QijL†

pQ
ij
)
⊗ Id,

which implies that λmax(Q
ijL†

pQ
ij) = λmax(Q

ijL†
pQ

ij). Then, we have:

QijL†Qij =
1

2

(
[L†

P ]ii + [L†
P ]jj − 2[L†

P ]ij

)
Qij =

1

2
rijQ

ij,

where rij is the effective resistance between the agents i and j. Since there is an
edge between i and j, we have rij ≤ 1/p. Then we have the following upper bound
for the largest eigenvalue:

λmax(Q
ijL†Qij) ≤ 1

2p
for all (i, j) ∈ E, (4.39)

and we get: ∑
(i,j)∈E

pij∥Qij∇f(x(k))∥2
L†
p
≤ 1

2p
||∇f(x(k))−∇f ∗||2Lp

≤ λn(Lp)

2p
||∇f(x(k))−∇f ∗||2 , (4.40)

which replaces (4.32). The rest of the proof follows the same steps as in the proof
of Proposition 4.3. ■

Similarly to Proposition 4.3, the rate of convergence is strictly decreasing if
h ≤ 4p

αλn(Lp)
, which is always satisfied since h ≤ 4p

(α+β)λn(Lp)
≤ 4p

αλn(Lp)
. Hence,

we can also find the optimal step-size for the algorithm, and the corresponding
convergence rate.
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Corollary 4.2 The optimal rate of convergence for the RCD algorithm is achieved
for h∗ = 4p

(α+β)λn(Lp)
which yields

E
[
∥x(k + 1)− x∗∥2

L†
p

]
≤
(
1− 2pλ2(Lp)

λn(Lp)

1

κ

)
∥x(k)− x∗∥2

L†
p
. (4.41)

The upper bound for the step-size derived in Proposition 4.4 is better suited
for graphs with a small λ2(Lp) (also known as algebraic connectivity), that is
non-robust networks that can be easily disconnected [98]. If we denote by µ the
eigenvalues of L, which satisfy λ = p

2
µ, we have that for Proposition 4.3 the

step-size must satisfy h ≤ µ2

µn

2
α+β

while for Proposition 4.4 the step-size is upper
bounded by h ≤ 4

µn

2
α+β

.

4.4 Convergence of RCD in open systems

In the following theorem we present the convergence rate of the RCD algorithm in
expectation in an open system. The derivation of this result relies on the separate
analysis of the effects of replacements and of RCD updates, which we remind is
allowed by Assumption 3.6.

Theorem 4.1 In the setting described in Section 4.1, the iteration rule (4.24)
with h ≤ λ2(Lp)

λn(Lp)
2

α+β
generates a sequence of estimates x(k) satisfying the following

for all k and for any η > 0:

E
[
∥x(k + 1)− x∗(k + 1)∥2

L†
p

]
− Γη ≤ Aη

(
E
[
∥x(k)− x∗(k)∥2

L†
p

]
− Γη

)
, (4.42)

with

Aη := 1− pUαh(2λ2(Lp)− αhλn(Lp)) + (1− pU)
Mn,κ

η
; (4.43)

Γη :=
(1− pU)Mn,κ(η +Mn,κ)η

pUηαh(2λ2(Lp)− αhλn(Lp))− (1− pU)Mn,κ

, (4.44)

where Mn,κ = 1
λ2(Lp)

M̄n,κ, with M̄n,κ defined in (4.13).

Proof: Let us denote C(k) := ∥x(k) − x∗(k)∥2
L†
p
. From Assumption 3.6,

there holds

E [C(k + 1)] = pUE [C(k + 1)|U ] + (1− pU)E [C(k + 1)|R] , (4.45)
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where U and R respectively stand for the occurrence of an RCD update and a
replacement event. Proposition 4.3 then yields for h ≤ λ2(Lp)

λn(Lp)
2

α+β

E [C(k + 1)|U ] ≤
(
1− 2hαλ2(Lp) + λn(Lp)α

2h2
)
E [C(k)] . (4.46)

Under a replacement event, there holds x(k+1) = x(k), and hence Proposition 4.1
yields

E [C(k + 1)|R] = E
[
∥x(k + 1)− x∗(k) + x∗(k)− x∗(k + 1)∥2

L†
p

]
≤ E

[(
∥x(k)− x∗(k)∥L†

p
+ ∥x∗(k)− x∗(k + 1)∥L†

p

)2]
= E

[(√
C(k) +Mn,κ

)2]
. (4.47)

Injecting (4.46) and (4.47) into (4.45) then yields the following nonlinear recur-
rence:

E [C(k + 1)] ≤ (1− pUαh(2λ2(Lp)− αhλn(Lp)))E [C(k)]

+ (1− pU)
(
2Mn,κE

[√
C(k)

]
+M2

n,κ

)
. (4.48)

Since 2x ≤ η+ x2

η
holds for all x ≥ 0 and η > 0, there holds

√
C(k) ≤ η

2
+ C(k)

2η
for

any η > 0. Hence, it follows that

E [C(k + 1)] ≤
(
1− pUαh(2λ2(Lp)− αhλn(Lp)) + (1− pU)

Mn,κ

η

)
E [C(k)]

+ (1− pU)Mn,κ(η +Mn,κ).

Solving the linear recurrence then yields the conclusion. ■
Let us now define the ratio

ρR :=
1− pU
pU

, (4.49)

which characterizes the expected number of replacements happening in the system
between two RCD updates. In particular, when ρR → 0, then the system converges
to a closed system, and when ρR → ∞, then replacements become so frequent that
RCD updates are negligible.

Corollary 4.3 Let η̄ := ρR
Mn,κ

αh(2λ2(Lp)−αhλn(Lp))
, then for any η > η̄ one has Aη < 1.

Moreover,

lim sup
k→∞

E
[
∥x(k)− x∗(k)∥2

L†
p

]
≤ Γη =

η̄(Mn,κ + η)

1− η̄/η
. (4.50)
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Proof: The proof follows from studying

Aη < 1 ⇐⇒ pUαh(2λ2(Lp)− αhλn(Lp)) + (1− pU)Mn,κ < 0,

and from rewriting Γη as

Γη =
ρRMn,κ(Mn,κ + η)η

αh(2λ2(Lp)− λn(Lp)αh)η − ρRMn,κ

=

ρRMn,κ

αh(2λ2(Lp)−αhλn(Lp))
(Mn,κ + η)

1− ρRMn,κ

αh(2λ2(Lp)−αhλn(Lp))η

,

which directly yields the conclusion. ■
Corollary 4.3 guarantees that one can always choose η such that the contraction

rate satisfies Aη < 1 for any parametrization of the system (as long as ρR < ∞,
i.e., if updates happen). This guarantees convergence to the corresponding Γη,
defined in (4.50). When η → ∞, then the contraction rate becomes minimal,
i.e., Aη → 1 − pUαh(2λ2(Lp) − λn(Lp)αh), and the asymptotic error becomes
extremely large, i.e., Γη → ∞. Observe that for η > η̄, then Γη is convex, and one
can determine the value of η that minimizes the asymptotic expected error Γη, as
presented in the following corollary.

Corollary 4.4 When η = η∗ = η̄
(
1 +

√
1 + Mn,κ

η̄

)
, then the convergence of the

RCD algorithm in open system is guaranteed with minimal asymptotic error Γη∗,
and there holds:

Aη∗ = 1− pUαh(2λ2(Lp)− αhλn(Lp))

√
1 + Mn,κ

η̄

1 +
√

1 + Mn,κ

η̄

; (4.51)

Γη∗ = (η∗)2 = η̄2

(
1 +

√
1 +

Mn,κ

η̄

)2

, (4.52)

where we remind η̄ := ρRMn,κ

αh(2λ2(Lp)−αhλn(Lp))
from Corollary 4.3.

Proof: Observe that Γη is convex for η > η̄, and there holds d
dη
Γ|η=η∗ = 0

with η∗ = argminη>η̄ Γη. Hence we compute

d

dη
Γη =

η̄

(η − η̄)2
(η2 − 2η̄η −Mn,κη̄) = 0, (4.53)

which is satisfied for

η∗1 = η̄ +
√
η̄2 +Mn,κη̄ ; η∗2 = η̄ −

√
η̄2 +Mn,κη̄.
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Since η∗2 < η̄, it must be rejected, and it follows that

η∗ = η̄ +
√
η̄2 +Mn,κη̄ = η̄

(
1 +

√
1 +

Mn,κ

η̄

)
.

We can then compute

Aη∗ = 1− pUαh(2λ2(Lp)− αhλn(Lp)) +
(1− pU)Mn,κ

η̄
(
1 +

√
1 +Mn,κ/η̄

) ,
and a few algebraic manipulations yield (4.51). Now observe that Γη = η2 if and
only if

η2 − 2η̄η −Mn,κη̄ = 0,

which is equivalent to (4.53) for η > η̄, so that the solution is η∗. Hence, Γη∗ =
(η∗)2, which yields (4.52). ■

The results of Theorem 4.1 and of Corollary 4.4, and in particular the minimal
expected asymptotic error and corresponding convergence rate, allow for some
interpretation.

When no replacements happen, i.e., ρR → 0, then the system behaves as a
closed system, and we retrieve the corresponding convergence behavior: the ex-
pected asymptotic error Γη → 0 and the contraction rate Aη → 1− αh(2λ2(Lp)−
αhλn(Lp)) for all η > 0, consistently with the convergence rate of the RCD in
closed system derived in (4.26). By contrast, as ρR gets larger, i.e., as replace-
ments become more frequent, then the expected asymptotic error increases, and
the contraction rate Aη∗ gets closer to 1 (observe that Aη∗ < 1 remains true as long
as ρR < ∞). In the particular limit case where ρR → ∞, then the minimal ex-
pected asymptotic error becomes Γη∗ → 4η̄ → ∞ and Aη∗ → 1. The conservatism
of the results essentially follow from Proposition 4.1, whose aim is to bound the
additive error injected at one single replacement, whereas tighter bounds might be
derived on the sum of those additive errors. This highlights one limitation of our
model.

Interestingly, within the allowed range of h, the minimal expected asymptotic
error Γη∗ decays as the step-size h increases, suggesting that choosing h as large
as possible leads to the smallest value of Γη∗ . This means that the only limitation
on the choice of the step-size comes from the analysis of the algorithm in closed
system (i.e., in our case h ≤ λ2(Lp)

λn(Lp)
2

α+β
from Proposition 4.3), and that no particular

precaution should be taken regarding the open character of the system.

Remark 4.6 The methodology we used in this section can easily be extended to
other algorithms than the RCD algorithm. In particular the results of Theorem 4.1,
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and hence of Corollaries 4.3 and 4.4, can be adapted to any algorithm with linear
convergence in closed system, that is, such that

∥x(k + 1)− x∗∥2
L†
p
≤ K∥x(k)− x∗∥2

L†
p
, (4.54)

with some positive K < 1. In that case, the same convergence rate as that presented
in Theorem 4.1 is obtained with

Aη := 1− pU(1−K) + (1− pU)
Mn,κ

η
; (4.55)

Γη :=
(1− pU)Mn,κ(η +Mn,κ)η

pUη(1−K)− (1− pU)Mn,κ

. (4.56)

We can show that convergence can be guaranteed in open system following a similar
argument as that used to prove Corollary 4.3 if K < 1. Hence, this analysis can
be applied e.g., to the results presented in Proposition 4.4 or in Remark 4.5.

To illustrate the results of Theorem 4.1, we consider systems with piecewise
quadratic local cost functions fi: for φi1, φi2 ∈

[
α
2
, β
2

]
, the cost function fi is given

by

fi(xi) =

{
φi1(xi − νi)

2, if xi < νi

φi2(xi − νi)
2, if xi ≥ νi

, (4.57)

where νi is the minimizer of fi satisfying Assumption 4.1. Such function therefore
satisfies Assumption 3.1 as well. Observe that no assumption on the way we
choose the local cost function fi of a joining agent at replacements is required in
the derivation of our results. Hence, we consider two possible cases for that choice:
random, where the parameters φi1 and φi2 are uniformly randomly chosen in

[
α
2
, β
2

]
,

and adversarial, where these parameters are arbitrarily chosen to maximize the
error ∥x(k)−x∗(k)∥2

L†
p
after the replacement among 100 realizations of such uniform

random choice.
In Fig. 4.3, we show the evolution of the expected error E

[
∥x(k)− x∗(k)∥2

L†
p

]
simulated for a network with interconnections defined by a complete graph, ho-
mogeneous agents and uniform probabilities. We consider two parametrizations of
κ and n in both random and adversarial replacement cases, and we compare the
simulations with (4.42) using the values given by Corollary 4.4. The figure shows
that convergence is indeed guaranteed for the RCD in the presented settings and
that the result of Corollary 4.4 shows some conservatism, which is inherited from
Proposition 4.1. It is interesting to point out that these settings respectively make
use of M̄2

n,κ = θn,κ for n = 30, κ = 1.2, and of M̄2
n,κ = ψn,κ for n = 5, κ = 5,

consistently with the description of M̄2
n,κ in the homogeneous case of Section 4.2.
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Figure 4.3: Performance of the RCD algorithm in a complete graph constituted of
respectively n = 5 agents with κ = 5 (left) and n = 30 agents with κ = 1.2 (right),
with pU = 0.95 and b = 1, and where each local objective function is defined by
(4.57). The solid blue and red dashed lines represent the actual performance of
the algorithm averaged over 500 realizations of the process, respectively for the
random and adversarial replacements cases. The yellow dotted line is the upper
bound (4.42) obtained from Corollary 4.4.

This highlights the impact of those parameters in the tightness of the bound M̄2
n,κ

used to derive our main results.

In Fig. 4.4, we compare the simulated performance in both replacement cases
with the upper bound from Corollary 4.4 for a ring graph with homogeneous agents
and a complete graph with heterogeneous agents. By contrast with the previous
illustrations, the ring graph setting implies a different, sparse, topology which
thus reduces the range of validity for the step-size h due to the small value of
λ2(L) that does not scale with n. Similarly, the heterogeneous setting impacts
λ2(L) and consequently reduces the range of h, due to the imbalance in Lp. Those
moreover affect the behavior of the norm ∥·∥2

L†
p
. Furthermore, the heterogeneous

setting influences M̄n,κ as well, and hence increases the effect of replacements on the
bounds. Nevertheless, even though they differ quantitatively, the results of Fig. 4.4
are qualitatively similar to the case of the complete graph with homogeneous agents
presented in Fig. 4.3.



76 CHAPTER 4. RANDOM COORDINATE DESCENT

0 20 40 60 80 100

Iterations

100

101

102

103

0 20 40 60 80 100

Iterations

100

101

102

103

104

Random Case
Adversarial Case
Bound

Figure 4.4: Performance of the RCD algorithm with n = 5 agents, κ = 1.2,
pU = 0.95 and b = 1, respectively in (left) a ring graph with homogeneous agents
(i.e., ai = 1 for all i) and (right) a complete graph with heterogeneous agents (i.e.,
a1 = 10, ai = 1 for i > 1), and where each local objective function is defined by
(4.57). The solid blue and red dashed lines represent the actual performance of
the algorithm averaged over 500 realizations of the process, respectively for the
random and adversarial replacements cases. The yellow dotted line is the upper
bound (4.42) obtained from Corollary 4.4.

4.5 Online optimization analysis
In this section we perform an analysis of the RA problem in OMAS by using perfor-
mance metrics inspired by online optimization. Due to the potential replacements
that occur in the system, the local cost functions of the agents can change in time.
Time-varying objective functions can remind an alternative line of work called on-
line optimization [85,86], where the approach is to minimize a regret function over
a finite period of time T , commonly defined as

RegsT :=
T∑

k=1

fk(x(k))−min
x

T∑
k=1

fk(x), (4.58)

where the superscript s indicates that the minimum of the sum is computed over
a static variable x [86]. The objective in online optimization is thus to determine
the sequence of estimates xt that keeps RegsT as small as possible over the time
period under some assumptions about the possible sequences of time-varying cost
functions.

In contrast, the objective of the algorithms in our work is to be at all times
as close as possible to the instantaneous minimizer while the possible changes
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of the cost functions do not follow a specific rule [87]. Nevertheless, even if the
minimization of the regret is not the objective of optimization in OMAS, a related
metric called dynamical regret, which is defined in (4.61), can be used along with
two other similar metrics to evaluate the performance of the algorithms. These
quantities are defined based on the assumption that the cost of performing an
operation by an agent (i.e., the cost function) must be paid at each iteration. In
this case, it is natural to consider the accumulated cost in time as a measure of
performance of the system.

We present a preliminary analysis by considering a special case of the RA
problem in a simplified setting.

4.5.1 Simplified setting

Regarding the RA problem defined in (3.1), where the local cost functions satisfy
the Assumption 3.1, we consider the following assumptions:

Assumption 4.2 (Nonnegative 1-D functions) The local cost function of any
agent at any time is nonnegative one-dimensional: fk

i : R≥0 → R≥0.

Assumption 4.3 (Minimizer) The local cost function of any agent satisfies
argminx∈Rp

≥0
fi(x) = 0p and fi(0p) = 0.

Assumption 4.4 (Homogeneous demand) The demand associated with any
agent i at any time k is dki = 1 such that b = n.

Assumption 4.5 The graph G = (V,E) is complete.

Let S1,n :=
{
x ∈ Rn

≥0 : 1
⊤x = n

}
be the feasible set, we can now express (3.1)

in our setting under the assumptions of this section:

min
x∈S1,n

fk(x) =
n∑

i=1

fk
i (xi). (4.59)

4.5.2 Performance metrics

Natural indexes for measuring the performance of an algorithm in our setting
consist in evaluating its accumulated error over a finite number of iterations with
respect to a given strategy. We define the two following strategies of interest in
the context of the RA problem:

• Perfect collaboration: at each time instant k the agents know the optimal
solution of (4.59) denoted x∗(k);
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Figure 4.5: Evolution of the function value fk evaluated with the RCD algorithm
x(k) defined in (4.64), the optimal solution x∗(k), and the selfish strategy xs(k),
in a system subject to replacements of agents (i.e., simultaneous departures and
arrivals) on average once every 4 RCD steps.

• Selfish players: the agents do not collaborate to minimize fk, and they
operate at their individual desired point so that xs(k) = 1n at all k.

Hence, for any T , the estimate x(k) obtained with a well-designed algorithm is
expected to satisfy

T∑
k=1

fk(x∗(k)) ≤
T∑

k=1

fk(x(k)) ≤
T∑

k=1

fk(xs(k)). (4.60)

The evolution of these strategies, compared with that of a given algorithm, is
illustrated in Fig. 4.5.

We define the following performance metrics to analyze the value provided by
the RCD algorithm x(k) with respect to the strategies above:

Dynamical Regret: RegT :=
T∑

k=1

(
fk(x(k))− fk(x∗(k))

)
; (4.61)

Benefit: BenT :=
T∑

k=1

(
fk(xs(k))− fk(x(k))

)
; (4.62)

Potential Benefit: PotT :=
T∑

k=1

(
fk(xs(k))− fk(x∗(k))

)
. (4.63)

The dynamical regret and benefit respectively measure the accumulated error
from using a given algorithm with respect to the optimal solution x∗(k) and the
accumulated gain from using it instead of the selfish strategy xs(k). The potential
benefit is independent of the algorithm; it represents the accumulated advantage
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of the optimal strategy with respect to the selfish one, and satisfies PotT = BenT +
RegT .

Remark 4.7 The regret (4.58), also known as static regret, which is commonly
used in online optimization, typically compares x(k) with the overall optimal so-
lution taken over all the iterations, i.e., x∗ = argminx∈S1,n

∑T
t=1 f

k(x). In that
sense, it differs from the dynamical regret in (4.61), which compares x(k) with the
time-varying instantaneous optimal solution x∗(k) = argminx∈S1,n f

k(x) at each
iteration, such as e.g., in [86].

4.5.3 RCD algorithm and replacements

For the particular case d = 1, the RCD algorithm (4.4) can be expressed as:

xi(k + 1) = xi(k)−
1

β
(f ′

i(xi(k))− f ′
j(xj(k)))

xj(k + 1) = xj(k)−
1

β
(f ′

j(xj(k))− f ′
i(xi(k))). (4.64)

Unlike the assumption used in Section 4.1.1 where the new agent retrieves the
value of the replaced agent, in this second part of the chapter we assume that
whenever an agent in joins the system, it initializes its estimate as

xin = din = 1, (4.65)

that corresponds to the selfish strategy of the agent, and whenever an agent out
leaves the system, it sends a last message to all its neighbours (i.e., all the other
agents in our setting) with its current estimate xout and its demand dout so the
agents i ̸= out update their estimates as

xi(k + 1) = xi(k) +
xout(k)− xi(k)

n
=

(
1− 1

n

)
xi(k) +

1

n
xout(k). (4.66)

We show in the following proposition that RCD iterations, arrivals and departures
as they are defined in (4.64) to (4.66) guarantee that as long as the initial estimate
x0 is feasible, then all the estimates remain feasible.

Proposition 4.5 (Well-posedness) The event set (4.2) guarantees that if x0 ∈
S1,n, then x(k) ∈ S1,n for all k.

Proof: We first consider arrivals: the nonnegativity of xi and preservation
of the constraint is a direct consequence of (4.65). In the case of departures, the
nonnegativity of xi is a direct consequence of (4.66). Moreover, if the constraint is
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satisfied at iteration k with nk = n, then under the departure of the agent labelled
out we have∑

i ̸=out

xi(k + 1) = n− xout(k) +
xout(k)

n
(n− 1)− n− xout(k)

n
= n− 1.

We finally consider iterations of the RCD algorithm. From Assumptions 3.1, 4.2
and 4.3, it follows that for any xi ≥ 0

xi(k)f
′
i(xi(k)) ≥ α |xi(k)|2 ≥ 0,

so that f ′
i(xi(k)) ≥ 0. Moreover, since fi is β-smooth, one has f ′

i(xi(k)) ≤ βxi(k),
and therefore at each update of the RCD algorithm between agents i and j there
holds

xi(k + 1) = xi(k)−
1

2β

(
f ′
i(xi(k))− f ′

j(xj(k))
)
≥ xi(k)−

1

2β
(βxi(k)) =

xi(k)

2
,

establishing the nonnegativity of xi(k). A similar analysis can be used for xj(k).
Due to the symmetry of the update rule, the constraint is always preserved and
we conclude the proof. ■

Our goal is to analyze the performance of the RCD algorithm (4.64) with the ar-
rival and departure rules (4.65) and (4.66) in the setting described in Section 4.5.1
using the metrics defined in Section 4.5.2 in expectation.

4.5.4 Upper bounds on the performance metrics

We now derive upper bounds on the evolution of the Potential Benefit and the Dy-
namical Regret respectively defined in (4.63) and (4.61) in expectation. Whereas
the former is only related to the problem itself, the latter actually depends on the
algorithm we consider.

We first provide the following lemmas, where Lemma 4.3 directly follows from
the equivalence of the norms.

Lemma 4.3 Let x ∈ S1,n, then n ≤ ||x||2 ≤ n2.

Lemma 4.4 Let f(x) =
∑n

i=1 fi(xi), where all fi satisfy Assumptions 3.1, 4.2
and 4.3, then for any x ∈ S1,n there holds

α

2
n ≤ f(x) ≤ β

2
n2. (4.67)



4.5. ONLINE OPTIMIZATION ANALYSIS 81

Proof: From Assumptions 3.1, 4.2 and 4.3, f(0) = f ′(0) = 0. Hence, since
f is β-smooth and using Lemma 4.3, there holds f(x) ≤ β

2
||x||2 ≤ β

2
n2 which

establishes the upper bound. Similarly, since f is α-strongly convex and by using
Lemma 4.3, it follows that f(x) ≥ α

2
||x||2 ≥ α

2
n, which establishes the lower

bound, and concludes the proof. ■
Lemma 4.4 provides a global upper bound on the difference between any two
solutions x, y ∈ S1,n: ∣∣fk(x(k))− fk(y(k))

∣∣ ≤ n

2
(nβ − α). (4.68)

This can be used to derive upper bounds on any of the metrics defined in Sec-
tion 4.5.2, e.g., BenT ≤ n

2
(nβ − α)T .

Potential Benefit

We first obtain in the following theorem an upper bound on the expected value
of the potential benefit, which we remind quantifies the accumulated advantage of
using the optimal strategy rather than not collaborating at all.

Theorem 4.2 In the setting of Section 4.5.1, there holds

PotT ≤ n

2
α (κ− 1)T, (4.69)

and in particular

lim
T→∞

PotT
T

≤ n

2
α(κ− 1). (4.70)

Proof: Remember that xs(k) = 1n by definition, and that fk(0n) = 0 and
∇fk(0n) = 0n from Assumption 4.3. Hence, there holds from the β-smoothness
of fk

fk(xs(k)) ≤ ∇fk(0n)
⊤(xs(k)) +

β

2
||xs(k)||2 = β

2
||1n||2 =

β

2
n.

Similarly, since fk is α-strongly convex, we get

fk(x∗(k))≥∇fk(0n)
⊤(x∗(k)) +

α

2
||x∗(k)||2 = α

2
||x∗(k)||2≥ α

2
n,

where the last inequality follows from Lemma 4.3. Hence

fk(xs(k))− fk(x∗(k)) ≤ β

2
n− α

2
n =

n

2
(β − α)

holds, and injecting it into (4.63) yields (4.69). The last result then follows from
dividing (4.69) by T . ■

Notice that when the constraint is always preserved, the dynamical regret is
nonnegative and the bounds (4.69) and (4.70) also hold for the benefit since BenT =
PotT − RegT ≤ PotT .
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Dynamical Regret

We now obtain an upper bound on the expected dynamical regret defined in (4.61),
where we remind x(k) is obtained with the RCD algorithm defined in Section 4.5.3.
For that purpose, we first introduce the following intermediate quantities:

C(k) := fk(x(k))− fk(x∗(k)); (4.71)
∆f(k) := fk+1(x(k + 1))− fk(x(k)); (4.72)
∆f ∗(k) := fk+1(x∗(k + 1))− fk(x∗(k)). (4.73)

Thus, C(k) corresponds to the instantaneous loss of the RCD algorithm with
respect to the optimal solution at iteration k, and ∆f(k) and ∆f ∗(k) respectively
stand for the instantaneous variation at one iteration of the total estimated cost
and optimal cost, such that C(k + 1) = C(k) + ∆f(k)−∆f ∗(k).

In the following proposition, we study the effect or replacements on ∆f(k) in
order to later characterize C(k) in expectation, and consequently the expected
dynamical regret.

Proposition 4.6 In the setting of Section 4.5.1 the replacement of an agent, de-
noted R, results in

E [∆f(k) | R] ≤ 5

2
β − 3

2
α. (4.74)

Proof: We analyze the effects of arrivals and departures separately. Let g
denote the local cost function of the joining agent at an arrival, then fk+1(x(k +
1)) = fk(x(k)) + g(1) and

∆f(k) = fk(x(k)) + g(1)− fk(x(k)) = g(1) ≤ β

2
, (4.75)

where the last inequality follows from Assumptions 3.1 and 4.3, and in particular
the β-smoothness of g.

Consider now a departure, and let ℓ denote the label of the leaving agent, such
that fk+1(x(k + 1)) =

∑
i ̸=ℓ f

k
i (xi(k + 1)), with xi(k + 1) = xi(k) +

xi(k)+xℓ(k)
n

from (4.66). From the definition of departures, ℓ is uniformly selected among the
n agents in the system and by taking the expected value ∆f(k) over the leaving
agent, one gets the following, where we omit the reference to time to lighten the
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notation:

E [∆f(k)] =
n∑

ℓ=1

1

n

(∑
i ̸=ℓ

fi

(
xi +

xℓ − xi
n

)
− f(x)

)

=
1

n

n∑
ℓ=1

(
f

(
n− 1

n
x+

xℓ
n
1n

)
− fℓ(xℓ)

)
− f(x)

=
1

n

n∑
ℓ=1

f

(
n− 1

n
x+

xℓ
n
1n

)
− n+ 1

n
f(x).

Since f is β-smooth from Assumption 3.1, one has

f

(
n− 1

n
x+

xℓ
n
1n

)
≤ f(x) +

1

n
⟨∇f(x), xℓ1n − x⟩+ β

2n2
||xℓ1n − x||2 ,

and it follows that

E [∆f(k)] ≤ 1

n2

n∑
ℓ=1

⟨∇f(x), xℓ1n − x⟩+ β

2n3

n∑
ℓ=1

||xℓ1n − x||2 − 1

n
f(x). (4.76)

From Assumption 3.1, in particular since f is β-smooth and α-strongly convex,
it satisfies α ||x||2 ≤ ⟨∇f(x), x⟩ ≤ β ||x||2 for any x. Hence, reminding that∑n

ℓ=1 xℓ = n, the first sum of (4.76) can be upper bounded by

n∑
ℓ=1

⟨∇f(x), xℓ1n − x⟩ = n⟨∇f(x),1n − x⟩

≤ n(βn− α ||x||2).

The second sum of (4.76) can be expressed as:

n∑
ℓ=1

||xℓ1n − x||2 =
n∑

ℓ=1

n∑
i=1

(
x2ℓ − 2xℓxi + x2i

)
=

n∑
ℓ=1

(
nx2ℓ − 2nxℓ + ||x||2

)
= 2n

(
||x||2 − n

)
.

Then (4.76) is upper bounded by

E [∆f(k)] ≤ 1

n

(
βn− α ||x||2

)
+
β

n2

(
||x||2 − n

)
− 1

n
f(x).
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Lemmas 4.3 and 4.4 yield ||x||2 ≤ n2 and f(x) ≥ α
2
n, so that

E [∆f(k)] ≤ 2β − 3

2
α. (4.77)

The conclusion follows from adding (4.75) and (4.77). ■
We can now use Proposition 4.6 to study the evolution of the expected dynam-

ical regret in the following theorem.

Theorem 4.3 In the setting of Section 4.5.1, there holds

E [RegT ] ≤ C0

T∑
k=1

ηk +
T−1∑
k=0

ηk (Mf + (1− pU)(T − k)θ) , (4.78)

where η = 1− pU
κ(n−1)

(with pU the probability that a given event is an update from
Assumption 3.6), Mf = n

2
(βn− α) and θ = 5

2
β − 3

2
α.

Proof: Let γ = 1− 1
κ(n−1)

denote the contraction rate of the RCD algorithm
as defined in (4.64) [80]. Remember that there holds C(k + 1) = C(k) + ∆f(k) +
∆f ∗(k) for all times k. Hence, at any time-step k one has

E [C(k + 1)] = E [C(k) + ∆f(k)−∆f ∗(k)] . (4.79)

From Assumption 3.6 the event at iteration k is an update, denoted Uk, with
probability pU , or a replacement, denoted Rk, with probability 1− pU .
In the case of an update, we have x∗(k + 1) = x∗(k), so that ∆f ∗(k) = 0. Hence,
we have ∆f(k) = C(k + 1)− C(k), and since E [C(k + 1)|C(k), Uk] ≤ γC(k) with
the RCD algorithm from [80]:

E [∆f(k)|, Uk] = E [C(k + 1)− C(k)|Uk] ≤ (γ − 1)E [C(k)] . (4.80)

In the replacement case, there holds

E [∆f(k)|Rk] ≤ θ =
5

2
β − 3

2
α, (4.81)

where θ comes from Proposition 4.6. Injecting (4.80) and (4.81) into (4.79) then
yields

E [C(k + 1)]≤E [C(k)]+pU(γ − 1)E [C(k)]+(1− pU)θ − E [∆f ∗(k)]

= ηE [C(k)] + (1− pU)θ − E [∆f ∗(k)] , (4.82)
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where η = 1 + pU(γ − 1). Expression (4.82) actually describes the evolution of a
discrete-time dynamical system of the type v(k + 1) ≤ Av(k) + Bu(k). Standard
results on that framework yield v(k) ≤ Akv(0)+

∑k−1
j=0 A

k−j−1Bu(j), and we obtain

E [C(k)] ≤ ηkC0 +
k−1∑
j=0

ηk−j−1 ((1− pU)θ − E [∆f ∗(k)]) . (4.83)

Injecting this last result into (4.61) then yields

E [RegT ] =
T∑

k=1

E [C(k)]

≤ C0

T∑
k=1

ηk +
T∑

k=1

(
k−1∑
j=0

ηk−j−1 ((1− pU)θ − E [∆f ∗(k)])

)
.

After some term re-organization, it becomes

E [RegT ] ≤ C0

T∑
k=1

ηk + (1− pU)
T−1∑
k=0

(T − k)ηkθ −
T−1∑
k=0

ηk

(
T−k∑
j=0

E
[
∆f ∗

j

])
.

Finally, using Lemma 4.4, one concludes that

−
T−k∑
j=0

E
[
∆f ∗

j

]
= −E

[
T−k∑
j=0

∆f ∗
j

]
= −E

[
fT−k+1(x∗(T − k + 1))− f 1(x∗(1))

]
≤ n

2
(βn− α),

and Mf = n
2
(βn− α) yields the conclusion. ■

We now analyze the asymptotic behavior of the averaged regret in the following
corollary.

Corollary 4.5 Let ρR := 1−pU
pU

. In the same setting as that of Theorem 4.3, there
holds

lim
T→∞

E [RegT ]
T

≤ ρR(n− 1)β

(
5κ− 3

2

)
. (4.84)

Proof: Starting from (4.78), we have

E [RegT ]
T

≤ C0

T∑
k=1

ηk

T
+

T−1∑
k=0

(
Mf

ηk

T
+ (1− pU)

(
1− k

T

)
ηkθ

)
.



86 CHAPTER 4. RANDOM COORDINATE DESCENT

Remember that η = 1− pU
κ(n−1)

≤ 1, so that
∑T

k=1 η
k < T , and limT→∞

∑T
k=1

ηk

T
= 0.

Hence

lim
T→∞

E [RegT ]
T

≤ lim
T→∞

(1− pU)
T−1∑
k=0

(
1− k

T

)
ηkθ.

Moreover, for η < 1, one shows
∑∞

j=0 η
j = 1

1−η
and

∑∞
j=0 jη

j = η
(1−η)2

. The latter
implies that limT→∞

1
T

∑T−1
k=0 kη

k = 0, and therefore there holds

lim
T→∞

E [RegT ]
T

≤ (1− pU)
1

1− η
θ =

1− pU
pU

κ(n− 1)θ,

and the conclusion follows from the definitions of θ in Theorem 4.3, and from
ρR := 1−pU

pU
. ■

The upper bounds for the potential benefit (4.69) and the dynamical regret
(4.78) linearly scale with T . This behavior is rather natural for the former, which
does not depend on the algorithm. For the latter, it is most likely unavoidable due
to the introduction at each replacement of perturbations of non-decaying magni-
tude and without any regularity [99]. Interestingly, this behavior contrasts with
standard results in online optimization, where a sublinear growth in T is desired to
cancel the asymptotic averaged regret [85, Ch. 1.1]. However, these results usually
apply on the static regret (4.58), where x(k) is compared with an overall time-
independent strategy x∗ computed over all T iterations, in opposition with x∗(k)
which is optimal for each iteration. In the case of the dynamical regret, it has
been showed that without any regularity in the variations of the cost functions, a
sublinear behavior cannot be achieved [99].

Moreover, the corresponding asymptotic upper bounds linearly grow with n
and α for (4.70), and with n− 1 and β for (4.84), consistently with their expected
behavior. In particular, the scaling of (4.84) with n−1 follows from the convergence
rate of the RCD algorithm γ = 1− 1

κ(n−1)
. Interestingly, (4.84) is proportional to

ρR(n − 1) = (1 − pU)
n−1
pU

, and the bound can thus be seen as the ratio between
the probability for a given agent to be involved in a RCD update pU

n−1
(involved in

γ), and the impact of replacements at the system level 1− pU , independently of n.
This is consistent with the bound on the impact of replacements in (4.74) which is
independent of n (by contrast, alternative situations such as e.g., if all agents were
to be reset at each replacement are expected to generate an impact growing with
n). Hence, for small values of ρR (i.e., rare replacements), the bound guarantees
that the asymptotic dynamical regret remains reasonably bounded, and decays to
zero when ρR → 0, i.e., for closed systems.

Finally, observe that (4.84) is proportional to 5κ−3
2

, consistently with the fact
that a larger interval for the possible curvature of the cost functions should gen-
erate a larger potential error at replacements. This factor is a potential source of
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conservatism, e.g., with respect to (4.70) where the scaling is in 1
2
(κ − 1). More

generally, it is not clear yet whether other algorithms than the RCD might provide
tighter bounds.

Remark 4.8 The proofs of Theorem 4.3 and Corollary 4.5 can directly be adapted
to any contraction rate γ < 1, and are thus easily generalized to any other algorithm
that guarantees linear convergence; in particular limT→∞

E[RegT ]
T

≤ ρR
θ

1−γ
.

4.5.5 The case of quadratic functions

The bound on the expected dynamical regret can be refined for the particular
case where all local functions are quadratic, i.e., satisfy the following additional
assumption.

Assumption 4.6 (Quadratic functions) The local cost function of any agent
i at time t is of the form

fi(xi) = ϕix
2
i , ϕi ∈

[
α
2
, β
2

]
. (4.85)

The parameter ϕi is randomly chosen according to a distribution with a finite
support determined by the interval

[
α
2
, β
2

]
. Observe that functions satisfying As-

sumption 4.6 necessarily satisfy Assumption 3.1 as well.
Under Assumption 4.6, we can obtain a tighter bound than that of Proposi-

tion 4.6, presented in the following proposition.

Proposition 4.7 In the setting of Section 4.5.1, and under Assumption 4.6, the
replacement of an agent R results in

E [∆f(k) | R] ≤ 3n2 − 3n+ 1

2n2
(β − α) . (4.86)

Proof: The arrival case is treated the same was as in the proof of Proposi-
tion 4.6, resulting in ∆f(k) ≤ β

2
. The departure case follows the same first steps

with fi(x) = ϕix
2, and

E [∆f(k)] =
n∑

ℓ=1

1

n

(∑
i ̸=ℓ

ϕi

(
xi +

xℓ − xi
n

)2

− f(x)

)

=
1

n

n∑
ℓ=1

(∑
i ̸=ℓ

ϕi

((
xi +

xℓ − xi
n

)2

− x2i

)
− ϕℓx

2
ℓ

)

=
1

n2

n∑
ℓ=1

∑
i ̸=ℓ

ϕi

(
1− 2n

n
x2i + 2xixℓ

n− 1

n
+
x2ℓ
n

)
− f(x)

n
.
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Using the fact that
∑n

ℓ=1

∑
i ̸=ℓ ϕix

2
i = (n − 1)f(x) and that ϕi ≤ β

2
for all i, we

obtain

E [∆f(k)] ≤
(

1

n2

1− 2n

n
(n− 1)− 1

n

)
f(x) +

β

2n2

n∑
ℓ=1

∑
i ̸=ℓ

(
2xixℓ

n− 1

n
+
x2ℓ
n

)
.

Observe that
∑n

ℓ=1

∑
i ̸=l xixℓ = n2 − ||x||2 and

∑n
ℓ=1

∑
i ̸=ℓ x

2
ℓ = (n − 1) ||x||2, so

that a few algebraic manipulations yield

E [∆f(k)] ≤ −3n2 − 3n+ 1

n3
f(x) + β

n− 1

2n3

(
2n2 − ||x||2

)
.

Using ||x||2 ≥ n (from Lemma 4.3) and f(x) ≥ α
2
n (from Lemma 4.4) then yields

E [∆f(k)] ≤ −3n2 − 3n+ 1

2n3
α + β

2n2 − 3n+ 1

2n3
,

and combining with the arrival case concludes the proof. ■
The result above allows us stating the following theorem, which improves The-

orem 4.3 and Corollary 4.5 respectively for the case of quadratic functions.

Theorem 4.4 In the setting of Section 4.5.1, and under Assumption 4.6, there
holds

E [RegT ] ≤ C0

T∑
k=1

ηk +
T−1∑
k=0

ηk (Mf + (1− pU)(T − k)θ) , (4.87)

where η = 1− pU
κ(n−1)

(with pU the probability that a given event is an update from
Assumption 3.6), Mf = n

2
(βn− α) and θ = (β − α)3n

2−3n+1
2n2 . In particular,

lim
T→∞

E [RegT ]
T

≤ ρR(n− 1)
3n2 − 3n+ 1

2n2
β (κ− 1) . (4.88)

Proof: The proof follows the exact same steps as those of Theorem 4.3 and
Corollary 4.5 where Proposition 4.7 is used instead of Proposition 4.6. ■

The upper bound for the quadratic case is qualitatively better than that of
the general case; it was derived based on an additional information of the cost
function, thus resulting in tighter bounds. In this case, the dependence of (4.88)
is in 3

2
(κ− 1), which is consistent with the result derived for the potential benefit

(4.70). In particular, for n becoming large, (4.88) and (4.84) become equivalent
up to a constant β. Moreover, (4.88) becomes 0 when κ = 1, consistently with the
expected behavior of the RCD algorithm for quadratic functions since all the cost
functions would then be the same.
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Figure 4.6: Evolution of the averaged asymptotic expected Potential Benefit (on
the left) and dynamical regret (on the right) in a system of 5 agents with ρR =
0.0125 and κ = 10. Each plot compares the upper bounds, respectively from
(4.70) and (4.84), with simulated results, either with random replacements (RR)
or adversarial replacements (AR).

4.5.6 Numerical results

To illustrate the results of Theorems 4.2 to 4.3, we consider a system of 5 agents
with κ = 10 and ρR = 0.0125, the latter implies that on average there is one
replacement every 80 events. We consider two possibilities: random replacements
(RR) where the local function is randomly uniformly chosen among the set of
piecewise quadratic functions satisfying Assumptions 3.1, 4.2 and 4.3, and adver-
sarial replacements (AR), where these functions are quadratic functions ϕix

2, with
ϕi ∈

{
α
2
, β
2

}
. The AR setting is expected to be less favorable than the RR setting,

since replacements might result in the largest change of local functions. Notice
that the bounds (4.69) and (4.78) are independent of the distribution from which
the local cost functions are assigned to the agents when they join the system, so
that they hold for any such assignment rule.

Fig. 4.6 compares the results of Theorem 4.2 and Corollary 4.5 with simulations
for both random and adversarial replacements in the setting described above. Even
though the theoretical bounds are conservative, they capture well the qualitative
behavior of these metrics. In particular, consistently with PotT and E [RegT ]
that grow linearly with T , the bounds in the figure do not converge to zero, and a
remaining asymptotic error is observed. Our bounds are tighter for the adversarial
replacement case than the random replacement case, this suggests that our bounds
might be tight for some particular choice of the joining functions at replacements,
especially that on the potential benefit.

Fig. 4.7 compares the results of Theorems 4.3 and 4.4 with simulations in



90 CHAPTER 4. RANDOM COORDINATE DESCENT

0 50 100 150 200 250

Iterations

10-1

100

101

102

Figure 4.7: Evolution of the expected averaged regret for a system of 5 agents
holding quadratic functions with ρR = 0.0125 and κ = 10. The solid blue line
and the dash-dotted red line respectively correspond to the upper bounds of The-
orems 4.3 and 4.4 respectively. The dotted yellow line corresponds to simulation
where we consider random replacements (RR).

the same setting as described previously, with random replacements (RR). The
figure shows that bound (4.88) is tighter for quadratic functions, following the fact
that we have access to more information regarding the local cost functions, thus
improving the estimation of the effect of replacements on the expected regret.

4.6 Conclusion

In this chapter, we studied the Random Coordinate Descent algorithm in a re-
source allocation problem by analyzing the distance to the minimizer and by using
metrics inspired from online optimization. Regarding the behavior of the distance
to the minimizer, we proved linear convergence of the RCD algorithm in an appro-
priate norm for the closed system. We analyzed the algorithm for a general graph
topology and possible heterogeneous agents in OMAS when agents can be replaced
during the iterations. Under replacement events, we proved that for an appropri-
ate step-size, the algorithm cannot converge to the instantaneous minimizer due
to the perturbations generated by the replacements but is stable. We derived an
upper bound for the error in expectation which depends on the variation of the
minimizer due to replacements and the frequency of these events.

Inspired by the similarities with the online optimization, we considered a simple
preliminary setting where the budget is homogeneous and the graph is complete,
and show that it is not possible to achieve convergence to the optimal solution
with the RCD algorithm in expectation in OMAS, but that the error is expected
to remain reasonable. We have derived upper bounds on the evolution of the
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dynamical regret and the potential benefit in expectation and showed that due to
the random choice of the new local cost function during replacements, an error
is expected to be accumulated with time and cannot be compensated. A natural
continuation of this work would be to extend the results to more general graph
topologies, improve the current bounds for the three metrics and derive lower
bounds that allow us to support the analysis regarding the linear behavior of the
metrics.

This chapter opens several questions for future research. Scenarios where the
budget in the constraint is time-varying looks more appropriate for OMAS where
the occurrence of a replacement may imply a modification of the constraint in
the optimization problem. In this case, it would be interesting to analyze possible
violations of the constraint as in Chapter 3. In addition, the case of agents replaced
with new values of the corresponding weights ai is also linked to this future line
of research, where the contributions of new agents to the budget can be different.

A possible varying size of the system is an interesting direction for future work,
where agents could join and leave the network independently of the current state
of the system. In this scenario, it would be important to specify the potential
changes in the constraint due to arrivals and departures since the budget of the
system would be defined by the sum of the states of a different number of agents.

In this chapter, the constraint in the RA problem was simply defined as the
weighted sum of the states of the agents. However, it would be interesting to
analyze scenarios where the constraint has the form Ax = b, where the matrix
A is used to model more complex relationships between the state variables of the
agents. Finally, block updates at each iteration [100], looks also as an interesting
direction for future work, where at each iteration the optimization is performed
along more than one edge, such that the convergence of the algorithm is faster.





Chapter 5

Contagion in OMAS

In this chapter, we consider a continuous time formulation of a SIS epidemic over
a network of individuals and perform an analysis of the system when replacements
take place. Section 5.1 introduces the general characteristics of epidemic models
used to model the spread of diseases. In Section 5.2 we present the nonlinear
model of a SIS epidemic over a network and the aggregate function used for the
analysis. We also present the linearized version of the model, which will be used
for the derivation of an upper bound for the variance of the aggregate function. In
Section 5.3 we analyze the SIS epidemic when replacements of agents take place
during the evolution of the disease. We consider that the time instants at which
replacements occur are determined by a homogeneous Poisson process. The expec-
tation and variance of the aggregate function for the system are studied by deriving
an upper bound for their asymptotic values when the network of connections is
given. Additionally, we provide an analysis of the expectation of the aggregate
function when the graph is sampled from a piecewise Lipschitz graphon. We give
some insights into the analysis of more complex scenarios where the connections
of the network can change during the replacements according to a piecewise Lips-
chitz graphon, and we formulate a conjecture on a potential upper bound for the
asymptotic value of the aggregate function in expectation. Finally, in Section 5.4
we present the conclusions and future work of this chapter.

5.1 Epidemic models

Epidemic models are dynamical systems used to model the spread of a disease in
a community of individuals. The importance of epidemic models has grown in the
last years, specially due to the COVID-19 outbreak that impacted the entire world.
Different types of mathematical models were used to describe the spread of epi-
demics. For instance, mean field approximations, non-markovian epidemics, per-

93
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colation process, partial differential equations, among others, [101], which model
specific characteristics and properties of the spread of the disease. Depending on
the nature of the disease, the models can include different compartments (division
of the population); for instance, M for immune class, S for susceptible class, E for
exposed class, I for infective class and R for recovered class [102].

One of the most important models is the SIS (Susceptible-Infected-Susceptible)
epidemic model, which describes diseases where the agents, after being recovered,
can acquire the disease again. The dynamics of this epidemic is determined by the
following equation [101]:

ẋ(t) = βx(t)(1− x(t))− δx(t),

where x(t) is the fraction of a fixed population infected at time t.

In real life, the evolution of the epidemic is not the same in all the infected
agents since each individual may be exposed to different external conditions that
can have a significant impact in the infection and recovery processes. One of
the most important factors that contribute to the propagation of a disease is the
network of contacts of an individual, which allow to model the influence of social
interactions in the evolution of the disease. SIS models have been extended to the
spread of diseases over networks where nodes can have two different interpretations.
If the node i is considered as a small population, xi(t) represents the fraction
of infected people at time t. If the node i is considered as an individual, xi(t)
represents its probability of infection at time t [103].

Most of the stability results derived using network models depend on the spec-
tral radius of the adjacency matrix associated with the network, assuming that the
composition of the system is fixed [104]. Nevertheless, in more realistic environ-
ments, individuals do not stay in a fixed place for a long time and are constantly
moving between different locations. Different works begin to consider the mobility
as an important aspect that must be taken into account to obtain more accurate re-
sults in the study of the spread of diseases [105,106]. In this case, open multi-agent
systems appear as an important tool for the analysis of more realistic epidemics
where the set of agents is time-varying. Even, if the total number of individuals
in a specific place could remain almost invariant, it is unrealistic to assume that
exactly the same agents stay in a fixed location during all the evolution of the
epidemic. If we consider a similar rate of departures and arrivals, which preserve
the number of individuals, epidemics under these conditions can be modeled as a
dynamical system subject to replacements of individuals.
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5.2 SIS networked model

We consider a system composed by n agents interacting through a connected undi-
rected graph G = (V,E). The SIS epidemic model over a network is given by [104]:

ẋi(t) = −δxi(t) +
n∑

j=1

aijβxj(t) (1− xi(t)) ,

where xi(t) ∈ [0, 1] is the probability of infection of an individual at time t, δ is
the recovery rate, β is the infection rate, aij = 1 if there is an interaction between
agents i and j, and aij = 0 otherwise.

The model of all the network can be expressed as:

ẋ(t) = (βA− δI)x(t)− βX(t)Ax(t), (5.1)

where A = [aij] is the adjacency matrix and X(t) = diag[x1(t), . . . , xn(t)].

Proposition 5.1 (Stability [104]) For the SIS epidemic (5.1), the equilibrium
x = 0 is globally asymptotically stable if and only if

λ1(A)
β

δ
< 1, (5.2)

where λ1(A) is the largest eigenvalue of A.

Since in OMAS the size of the system may change in time due to decoupled
arrivals and departures, it is desirable to perform the analysis with the use of
an aggregate function V (x(t)) that condensates the associated process in a scalar
value, independently of the size of the system. In the case of SIS epidemics, a
natural choice is the Lyapunov function V : [0, 1]n → R≥0:

V (x(t)) =
1

n
||x(t)||2 , (5.3)

which satisfies
lim
t→∞

V (x(t)) = 0, (5.4)

when the epidemic is stable.
This particular definition of V (x(t)) provides uniform bounds for the aggregate

function, independently of the size of the system:

0 ≤ V (x(t)) ≤ 1 for all t. (5.5)
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Figure 5.1: Graph G.

In a closed system, where the evolution of the states of the agents is fully
determined by (5.1), the dynamics of the aggregate function V (x(t)) can be upper
bounded by [107]:

V̇ (x(t)) =
2

n
xT (t)ẋ(t)

=
2

n
xT (t) (βA− δI)x(t)− βxT (t)X(t)Ax(t) (5.6)

≤ 2

n
xT (t) (βA− δI)x(t)

≤ 2(βλ1(A)− δ)V (x(t)), (5.7)

where we used the fact that xT (t)X(t)Ax(t) ≥ 0 since xi ∈ [0, 1]. Clearly, the
right-hand size of (5.7) is negative if βλ1(A) − δ < 0, which corresponds to the
stability condition (5.2). Finally, by applying the Comparison Lemma, we have
that V (x(t)) satisfies:

V (x(t)) ≤ V0 +

∫ t

0

2(βλ1(A)− δ)V (x(τ))dτ, (5.8)

where V0 denotes the value of V (x(t)) at the time t = 0.

To illustrate the behavior of the upper bound (5.8), we consider a graph with
n = 11 agents represented in Fig. 5.1, whose adjacency matrix is given by
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Figure 5.2: Evolution of the aggregate function V (x(t)) defined in (5.3) in con-
tinuous time for the graph determined by (5.9) with n = 11 agents, β = 0.5 and
δ = 5.3. The solid blue line corresponds to the simulation of V (x(t)) while the
dashed red line is the upper bound (5.8).

A =



0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0
0 0 1 1 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0


(5.9)

Figure 5.2 presents the evolution of V (x(t)) for the graph determined by (5.9)
with β = 0.5 and δ = 5.3, where the dashed red line corresponds to the right-hand
side of (5.8).

5.2.1 Linearized model

If the probabilities of infection of the agents xi(t) remain close to the equilibrium
point x = 0, it is possible to analyze the behavior of the epidemic by using the
linearization of (5.1) near the origin [108]:

ẋ(t) = (βA− δI)x(t). (5.10)



98 CHAPTER 5. CONTAGION IN OMAS

This linearization is exponentially stable [109] under condition (5.2). Another
motivation to consider the linear model in the analysis is that the frequency of
occurrence of arrivals, departures and replacements is low compared to the natural
evolution of the epidemic. For this reason, the system will remain close to the
equilibrium point most of the time and it will only be perturbed at specific time
instants. However, the jumps must be small since the analysis is local.

Similar to the nonlinear model, the aggregate function V (x(t)) for (5.10) also
satisfies (5.7) and (5.8). However, unlike the nonlinear case, the dynamics of
V (x(t)) can also be lower bounded by:

V̇ (x(t)) =
2

n
xT (t)ẋ(t)

=
2

n
xT (t) (βA− δI)x(t)

≥ 2(βλn(A)− δ)V (x(t)), (5.11)

where λn(A) is the smallest eigenvalue of A. By applying the Comparison Lemma,
the aggregate function V (x(t)) also satisfies:

V (x(t)) ≥ V0 +

∫ t

0

2(βλn(A)− δ)V (x(τ))dτ.

The lower bound (5.11) will be used for the derivation of a tighter upper bound
for the variance of V (x(t)) when the linearized model (5.10) is considered for the
analysis.

5.3 Replacements

5.3.1 What is a replacement?

In this subsection, we analyze the case when in addition to the continuous evolution
of the states of the individuals according to (5.1), the system also experiments
replacements of individuals consisting of a departure of an agent, which stops
spreading the infection in the network, followed immediately by the addition of a
new infected agent.

In Chapters 3 and 4 we define the replacements of agents as the change of the
cost function associated with the agents. However, in the case of a SIS epidemic
model, the replacement of an agent is related to the change of the probability of
infection associated with the agent 1.

1The state xi(t) in a SIS epidemic can also be interpreted as the fraction of a population
infected at time t. However, under this interpretation, the replacement of xi may not represent
the real behavior of a epidemic since a change of the state could imply that a considerable fraction
of the population became healthy abruptly.
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Definition 5.1 We say that an agent j ∈ {1, . . . , n} is replaced at time t if:

x+ = [x−1 , · · · , x−j−1, xr, x
−
j+1, · · · , x−n ]T , xr ̸= x−j ,

where x− = x(t−) is the state of the system before the replacement, x+ = x(t+) is
the state of the system after the replacement and xr is the value of the new agent.

Assumption 5.1 The set of edges E of the network remains invariant for all
time t.

In the following proposition we analyze the variation of the aggregate function
V (x(t)) under a replacement event where the replaced agent is chosen uniformly
and the value of the new agent is determined by a continuous distribution with
support in the interval [0, 1], with mean m and variance σ2.

Proposition 5.2 During the replacement of an agent, the aggregate function V (x(t))
defined in (5.3) satisfies:

E
[
V (x(t+))

]
− E

[
V (x(t−))

]
=

1

n

(
σ2 +m2 − E

[
V (x(t−))

])
. (5.12)

Proof: Let us assume that an agent j is replaced. We begin by computing
the conditional expectation of V (x(t+)) given x(t−) and the value of the replaced
agent Θ. Then, it holds

E
[
V (x(t+))|x(t−),Θ

]
=

1

n

n∑
i=1

(
1

n

∑
j ̸=i

x2j(t
−) +

1

n
Θ2

)

=
1

n2

n∑
i=1

(∣∣∣∣x(t−)∣∣∣∣2 − x2i +Θ2
)

=
1

n2

n∑
i=1

∣∣∣∣x(t−)∣∣∣∣2 − 1

n2

n∑
i=1

x2i (t
−) +

1

n2

n∑
i=1

Θ2

=
1

n

∣∣∣∣x(t−)∣∣∣∣2 − 1

n2

∣∣∣∣x(t−)∣∣∣∣2 + Θ2

n

= V (x(t−))− 1

n
V (x(t−)) +

Θ2

n
.

Then, we compute the total expectation and we obtain

E
[
E
[
V (x(t+))|x(t−),Θ

]]
= E

[
V (x(t−))

]
− 1

n
E
[
V (x(t−))

]
+
σ2 +m2

n
,

which completes the proof. ■
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Remark 5.1 (Other systems) The proof of Proposition 5.2 did not use the
equation (5.1), only the definition of V (x(t)). Therefore, this proof remains valid
for other systems.

Along this work, we make the following assumption about the occurrence of
replacements in the evolution of the epidemic.

Assumption 5.2 (Replacement process) The replacements instants are de-
termined by a homogeneous Poisson process with rate λr > 0. During a replace-
ment, an agent j ∈ {1, . . . , n} is chosen uniformly and it is assigned a new state xr
determined by a random variable Θ, which takes values according to a continuous
distribution with support in the interval [0, 1], with mean m and variance σ2.

5.3.2 Pure replacements ẋ(t) = 0

To analyze the behavior of the aggregate function during the jumps, first, we
consider the setting where V (x(t)) does not change between the jumps. Notice
that the jumps of the state x(t) corresponds to the jump of the aggregate function
V (x(t)). In this case, the value of V (x(t)) is given by:

V (x(t)) = V0 +∆V1 +∆V2 + · · ·+∆VNt

= V0 +
Nt∑
k=1

∆Vk

= V0 +
Nt∑
k=1

(
V (x(T+

k ))− V (x(T−
k ))
)

where ∆Vk is the size of the jump of the function V (x(t)) at the Tk jump time of
the Poisson process Nt and

V (x(T−
k )) = lim

t↑Tk

V (x(t)) and V (x(T+
k )) = lim

t↓Tk

V (x(t)).

The aggregate function satisfies V (x(t−)) = V (x(t+)) for almost all t, except in
a countable number of time jumps. Figure 5.3 presents a sample path of V (x(t))
where the jumps are determined by the Poisson process Nt. Then, we have that
the aggregate function can be expressed as [110]:

V (x(t)) = V0+

∫ t

0

(V (x(τ+))−V (x(τ−)))dNτ := V0+
Nt∑
k=1

(
V (x(T+

k ))− V (x(T−
k ))
)
.
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Figure 5.3: Sample path of V (x(t)).

An homogeneous Poisson process satisfies E [Nt] = λrt, which gives us E [dNt] =
dE [Nt] = λrdt [110]. Then, it holds

E [V (x(t))] = V0 +

∫ t

0

E
[
V (x(τ+))− V (x(τ−))

]
λrdτ,

which can be expressed as the ODE:

dE [V (x(t))] = λrE
[
V (x(t+))− V (x(t−))

]
dt. (5.13)

Proposition 5.3 Under Assumption 5.2 and inter-event dynamics ẋ(t) = 0, the
aggregate function V (x(t)) defined in (5.3) satisfies:

E [V (x(t))] =
(
V0 − σ2 −m2

)
e−

λr
n
t + (σ2 +m2). (5.14)

Proof: The result is obtained by applying (5.12) in (5.13) and solving the
corresponding ODE:

d

dt
E [V (x(t))] = −λr

n
E [V (x(t))] +

λr
n
(σ2 +m2).

■
Proposition 5.3 shows that in a system subject only to replacements, the ex-

pected value of the aggregate function is bounded and its asymptotic value is:

lim
t→∞

E [V (x(t))] = σ2 +m2, (5.15)

which corresponds to the second moment of the distribution used to generate the
new values of the replaced agents. The rate of the Poisson process λr only has an
influence in the rate of convergence of V (x(t)) such that a large value of λr will
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Figure 5.4: Evolution of the aggregate function V (x(t)) defined in (5.3) in a system
subject only to replacements with λr = 30. In the right plot, the solid blue line
corresponds to the computation of V (x(t)) considering 10000 realizations of the
process while the dashed red line is (5.14).

guarantee a fast convergence. The asymptotic value of V (x(t)) is independent of
the rate λr.

Figure 5.4(a) presents the evolution of V (x(t)) for one realization of a replace-
ment process following a Poisson process with intensity λr = 30 and where the
new value of the agent is taken from a uniform distribution U [0, 1]. Figure 5.4(b)
presents the evolution of E [V (x(t))] computed considering 10000 realizations of
the process.

5.3.3 SIS epidemic with replacements on a given graph

Now, we consider the behavior of the aggregate function in continuous time subject
to replacements at time instants determined by a Poisson process. Since the solu-
tion to (5.6) is unique and the jumps are determined by a homogeneous Poisson
process, the aggregate function V (x(t)) is given by [111]:

V (x(t)) = V0+

∫ t

0

2

n

(
xT (τ) (βA− δI)x(τ)− βxT (τ)X(τ)Ax(τ)

)
dτ+

∫ t

0

∆VkdNτ ,

(5.16)
which can be expressed as the SDE

dV (x(t)) =
2

n

(
xT (t) (βA− δI)x(t)− βxT (t)X(t)Ax(t)

)
dt+∆VkdNt. (5.17)
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Notice that by denoting ω(x(t)) = 2
n

(
xT (t) (βA− δI)x(t)− βxT (t)X(t)Ax(t)

)
,

(5.16) can be expressed as

V (x(t)) = V0 +

∫ T1

0

ω(x(τ))dτ +

∫ T2

T1

ω(x(τ))dτ + · · ·+
Nt∑
k=1

∆Vk,

which shows that V (x(t)) jumps at the time instants Tk determined by the Pois-
son process, corresponding to the sum, and between these time intervals, V (x(t))
evolves according to (5.6), corresponding to the integrals.

Even if the solution of (5.17) is unique, every realization of the stochastic pro-
cess can be completely different and the analysis of the asymptotic behavior is not
appropriate because the limit limt→∞ V (x(t)) does not exist due to the continuous
replacements. For this reason, we are interested in the statistical properties of
(5.17), corresponding to E [V (x(t))].

Theorem 5.1 (Expectation) Consider a SIS epidemic satisfying the stability
condition (5.2). Under Assumptions 5.1 and 5.2, the aggregate function V (x(t))
defined in (5.3) satisfies:

lim sup
t→∞

E [V (x(t))] ≤ λr(σ
2 +m2)

λr + 2δn− 2βnλ1(A)
. (5.18)

Proof: We take the expectation of both sides of (5.17) and we obtain:

dE [V (x(t))] =E
[
2

n

(
xT (t) (βA− δI)x(t)− βxT (t)X(t)Ax(t)

)]
dt

+
λr
n

(
σ2 +m2 − E [V (x(t))]

)
dt,

where we applied the Dominated Convergence Theorem to interchange the expec-
tation and the derivative E [dV ] = dE [V ] and we used the fact that E [∆V ] =
1
n
(σ2 +m2 − E [V ]) according to Proposition 5.2. Then we obtain the following

ODE:

d

dt
E [V (x(t))] = E

[
2

n

(
xT (t) (βA− δI)x(t)− βxT (t)X(t)Ax(t)

)]
+
λr
n

(
σ2 +m2 − E [V (x(t))]

)
≤ 2(βλ1(A)− δ)E [V (x(t))] +

λr
n

(
σ2 +m2 − E [V (x(t))]

)
(5.19)

=

(
2βnλ1(A)− 2δn− λr

n

)
E [V (x(t))] +

λr(σ
2 +m2)

n
. (5.20)
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By the Comparison Lemma, we can guarantee that E [V (x(t))] is upper bounded
by the solution of the right-hand side of (5.20). Then, it holds

E [V (x(t))] ≤ E [V0] e

(
2βnλ1(A)−2δn−λr

n

)
t

+ e

(
2βnλ1(A)−2δn−λr

n

)
t
∫ t

0

λr(σ
2 +m2)

n
e
−
(

2βnλ1(A)−2δn−λr
n

)
τ
dτ

= E [V0] e

(
2βnλ1(A)−2δn−λr

n

)
t

+
λr(σ

2 +m2)

λr+2δn−2βnλ1(A)
e

(
2βnλ1(A)−2δn−λr

n

)
t

[
e
−
(

2βnλ1(A)−2δn−λr
n

)
τ

]∣∣∣t
0

=

(
E [V0]−

λr(σ
2 +m2)

λr + 2δn− 2βnλ1(A)

)
e

(
2βnλ1(A)−2δn−λr

n

)
t

+
λr(σ

2 +m2)

λr + 2δn− 2βnλ1(A)
. (5.21)

Finally, the result follows by taking the limit t→ ∞ in (5.21). ■
Clearly, the bound (5.18) is a function of the parameters of the SIS epidemic

(i.e., β, δ and λ1(A)) and the parameters of the replacement process (i.e., λr, σ2

and m2). Similarly to (5.15), the bound is proportional to σ2 + m2, but in this
case the rate of the Poisson process λr also appears as a multiplication factor.
The upper bound for the rate of convergence of the SIS epidemic in a closed
system determined by (5.7) appears in the denominator of (5.18), but this value
is increased by the rate of the Poisson process λr. From (5.21), it can be seen
that a large value of λr will increase the rate of convergence of V (x(t)), such that
the convergence will be fast, but the asymptotic value will also increase. When
λr → ∞, the bound (5.18) is given by σ2 +m2, which coincides with the result of
Proposition 5.3 since the process will be characterized only by replacements.

Notice that the right-hand side in (5.19) corrresponds to the expectation of a
SDE of the form:

dV = f(V )dt+ g(V )dNt, (5.22)

which is also known as a Poisson Counter driven Stochastic Differential Equation
[111,112]. The solution of (5.19) is a cadlag function corresponding to a Piecewise-
deterministic Markov Process (PDMP) and can also be studied using the theory
of PDMP [113].

Figure 5.5 presents the computation of V (x(t)) for the graph determined by
(5.9) with n = 11 agents, β = 0.5, δ = 2 and λr = 7. The states of the replaced
agents are generated with a uniform distribution with m = 1/2 and σ2 = 1/12.
The expectation of V (x(t)) has been computed by considering 10000 realizations
of the process.
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Figure 5.5: Evolution of the aggregate function V (x(t)) defined in (5.3) for the
graph determined by (5.9) with n = 11 agents, β = 0.5, δ = 2 and λr = 7. In
the right plot, the solid blue line corresponds to the computation of E [V (x(t))]
considering 10000 realizations of the process while the dashed red line is the upper
bound (5.18).

Second order analysis

Although the asymptotic behavior of the expected aggregate function E [V (x(t))]
provides useful information of a system subject to the replacements of agents, it
does not give any information about the deviation of single realizations from the
expected value. For this reason, it is necessary to analyze the variance of the
aggregate function, denoted by Var(V (x(t))), and derive an upper bound. In this
case, we use the Itô Lemma formulated for SDEs of the form (5.22) [111, Section
2.3].

Lemma 5.1 (Itô Lemma) For a continuous differentiable function ϕ : R → R:

dϕ(V ) = ⟨ dϕ
dV

, f(V )⟩dt+ [ϕ(V + g(V ))− ϕ(V )] dNt,

where f(V ) and g(V ) are the mappings in the SDE (5.22) and Nt is a Poisson
process.

We first analyze the change of E [V 2(x(t))] during a replacement.
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Lemma 5.2 During the replacement of an agent, the aggregate function V (x(t))
defined in (5.3) satisfies:

E
[
V 2(x(t+))

]
− E

[
V 2(x(t−))

]
≤ − 2

n
E
[
V 2(x(t−))

]
+

E [Θ4]

n2

+

(
2E [Θ2] (n− 1) + 1

n2

)
E
[
V (x(t−))

]
,

where Θ is the new value of a replaced agent according to Assumption 5.2.

Proof: During the replacement of an agent xj, the function V 2 satisfies:

V 2(x(t+)) =

(
V (x(t−)) +

Θ2

n
−
x2j(t

−)

n

)2

= V 2(x(t−)) +
Θ4

n2
+
x4j(t

−)

n2
+

2Θ2

n
V (x(t−))

−
2x2j(t

−)

n
V (x(t−))−

2Θ2x2j(t
−)

n2
.

Then, we compute the conditional expectation:

E
[
V 2(x(t+))|x(t−),Θ

]
=

1

n

n∑
j=1

(
V 2(x(t−)) +

Θ4

n2
+
x4j(t

−)

n2
+

2Θ2

n
V (x(t−))

−
2x2j(t

−)

n
V (x(t−))−

2Θ2x2j(t
−)

n2

)

= V 2(x(t−)) +
Θ4

n2
+

1

n3

n∑
j=1

x4j(t
−) +

2Θ2

n
V (x(t−))

− 2V (x(t−))

n2

n∑
j=1

x2j(t
−)− 2Θ2

n3

n∑
j=1

x2j(t
−)

≤ V 2(x(t−)) +
Θ4

n2
+

1

n3

n∑
j=1

x2j(t
−) +

2Θ2

n
V (x(t−))

− 2V 2(x(t−))

n
− 2Θ2

n2
V (x(t−))

= V 2(x(t−))− 2V 2(x(t−))

n
+

Θ4

n2

+

(
1

n2
+

2Θ2

n
− 2Θ2

n2

)
V (x(t−))

Finally, we compute the total expectation to get the desired result. ■
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Proposition 5.4 (Second moment) Consider a SIS epidemic satisfying the sta-
bility condition (5.2). Under Assumptions 5.1 and 5.2, the aggregate function
V (x(t)) defined in (5.3) satisfies:

lim sup
t→∞

E
[
V 2(x(t))

]
≤ λrE [Θ4](λr+2δn−2βnλ1(A))+λ

2
rE [Θ2](2E [Θ2](n−1)+1)

2n(λr + 2δn− 2βnλ1(A))2
.

(5.23)

Proof: By applying Itô Lemma with ϕ(V ) = V 2, we obtain:

dV 2(x(t)) ≤ ⟨2V (x(t)), 2(βλ1(A)− δ)V (x(t))⟩dt+
(
V 2(x(t+k ))− V 2(x(t−k ))

)
dNt

= 4(βλ1(A)− δ)V 2(x(t))dt+
(
V 2(x(t+k ))− V 2(x(t−k ))

)
dNt. (5.24)

We take the expectation in (5.24) and we get:

dE
[
V 2(x(t))

]
≤ 4(βλ1(A)− δ)E

[
V 2(x(t))

]
dt

+
(
E
[
V 2(x(t+))

]
− E

[
V 2(x(t−))

])
λrdt

= 4(βλ1(A)− δ)E
[
V 2(x(t))

]
dt

+

((
2E [Θ2] (n−1)+1

n2

)
E [V (x(t))]+

E [Θ4]

n2
− 2

n
E
[
V 2(x(t))

])
λrdt

= 2

(
2βnλ1(A)− 2δn− λr

n

)
E
[
V 2(x(t))

]
dt

+ λr

(
2E [Θ2] (n− 1) + 1

n2

)
E [V (x(t))] dt+

λrE [Θ4]

n2
dt,

where we use the Dominated Convergence Theorem to interchange the expec-
tation and the derivative of V 2(x(t)) and we apply Lemma 5.2. Let us denote

aV =2
(

2βnλ1(A)−2δn−λr

n

)
, bV =λr

(
2E[Θ2](n−1)+1

n2

)
and cV =

λrE[Θ4]
n2 , so that we have

d

dt
E
[
V 2(x(t))

]
≤ aVE

[
V 2(x(t))

]
+ bVE [V (x(t))] + cV (5.25)

The solution of (5.25) is given by:

E
[
V 2(x(t))

]
≤ eaV tE

[
V 2
0

]
+ eaV t

∫ t

0

e−aV τ (bVE [V (x(τ))] + cV ) dτ

= eaV tE
[
V 2
0

]
+ bV e

aV t

∫ t

0

e−aV τE [V (x(τ))] dτ + cV e
aV t

∫ t

0

e−aV τdτ

= eaV tE
[
V 2
0

]
+ bV e

aV t

∫ t

0

e−aV τE [V (x(τ))] dτ − cV
aV

(
1− eaV t

)
.

(5.26)
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We recall that by (5.21), the function E [V ] satisfies:

E [V (x(t))] ≤ dV e
hV t +mV ,

where dV =E [V0]− λr(σ2+m2)
λr+2δn−2βnλ1(A)

, hV =
(

2βnλ1(A)−2δn−λr

n

)
t, mV = λr(σ2+m2)

λr+2δn−2βnλ1(A)
.

Then E [V 2(x(t))] satisfies:

E
[
V 2(x(t))

]
≤ eaV tE

[
V 2
0

]
− cV
aV

(
1− eaV t

)
+ bV e

aV t

∫ t

0

e−aV τ
(
dV e

hV τ +mV

)
dτ

= eaV tE
[
V 2
0

]
− cV
aV

(
1− eaV t

)
+ bV dV e

aV t

∫ t

0

e(hV −aV )τdτ

+ bVmV e
aV t

∫ t

0

e−aV τdτ

= eaV tE
[
V 2
0

]
− cV
aV

(
1− eaV t

)
+

bV dV
hV − aV

(
ehV t − eaV t

)
− bVmV

aV

(
1− eaV t

)
=

(
E
[
V 2
0

]
+
cV
aV

− bV dV
hV − aV

+
bVmV

aV

)
eaV t +

bV dV
hV − aV

ehV t

−
(
cV
aV

+
bVmV

aV

)
. (5.27)

Finally, the result follows by taking the limit t → ∞ in (5.27), where we recall
that aV and hV are negative. ■

The bound (5.23) is derived using (5.18), which corresponds to the asymptotic
behavior of E [V (x(t))]. Unlike the previous result (5.18), the value of (5.23) is
also affected by the fourth moment of Θ, while (5.18) only depends on the second
moment (E [Θ2] = σ2 +m2).

Proposition 5.4 can be used to derive an upper bound for the variance:

lim sup
t→∞

Var(V (x(t))) = lim sup
t→∞

(
E
[
V 2(x(t))

]
− (E [V (x(t))])2

)
≤ lim sup

t→∞
E
[
V 2(x(t))

]
.

Although the result is a bit conservative since we are neglecting the effect of
− (E [V (x(t))])2, we have an estimate of the deviation of the realizations from the
expected value. However, a stronger bound can be obtained for the linearized
model (5.10) by using the lower bound (5.11).

Corollary 5.1 (Variance) Consider the linearized model of a SIS epidemic sat-
isfying the stability condition (5.2). Under Assumptions 5.1 and 5.2, the aggregate
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function V (x(t)) defined in (5.3) satisfies:

lim sup
t→∞

Var(V (x(t)))≤ λrE [Θ4](λr+2δn−2βnλ1(A))+λ
2
rE [Θ2](2E [Θ2] (n−1)+1)

2n(λr + 2δn− 2βnλ1(A))2

− λ2r (E [Θ2])
2

(λr + 2δn− 2βnλn(A))2
. (5.28)

Proof: We compute the expectation of the aggregate funciton and we obtain

d

dt
E [V (x(t))] = E

[
2

n

(
xT (t) (βA− δI)x(t)− βxT (t)X(t)Ax(t)

)]
+
λr
n

(
σ2 +m2 − E [V (x(t))]

)
≥ 2(βλn(A)− δ)E [V (x(t))] +

λr
n

(
σ2 +m2 − E [V (x(t))]

)
=

(
2βnλn(A)− 2δn− λr

n

)
E [V (x(t))] +

λr(σ
2 +m2)

n
, (5.29)

where we used (5.11) for the lower bound. By the Comparison Lemma, we can
guarantee that E [V ] is lower bounded by the solution of the right-hand side of
(5.29). We follow similar steps as in the proof of Theorem 5.1 and we obtain:

lim inf
t→∞

E [V (x(t))] ≥ λr(σ
2 +m2)

λr + 2δn− 2βnλn(A)
. (5.30)

The result follows by applying (5.23) and (5.30) in the definition of the variance:

Var(V (x(t))) = E
[
V 2(x(t))

]
− (E [V (x(t))])2 ,

and remembering that E [V 2(x(t))] ≥ (E [V (x(t))])2. ■
Notice that the right-hand side of (5.30) is 0 only when λr = 0, so that

this lower bound can be used to prove that the linearized model of a SIS epi-
demic under replacements is not stochastically stable in the sense that it does not
satisfy [114]: ∫ ∞

0

E [V (x(t))] dt <∞.

In Figure 5.6, we present the computations of the second moments of V (x(t))
for the graph determined by (5.9) with n = 11 agents, β = 0.5, δ = 2 and
λr = 7 considering 10000 realizations of the process and a uniform distribution
with m = 1/2 and σ2 = 1/12 for the states of the replaced agents. Figure 5.6(a)
shows the evolution of E [V 2(x(t))] where the dashed red line corresponds to the
upper bound (5.23). Finally, Fig. 5.6(b) presents the evolution of Var(V (x(t)))
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where the dashed red line is the upper bound (5.23) and the dash-dotted yellow
line corresponds to the upper bound (5.28) considering the linearized model of the
SIS epidemic. Notice that Var(V (x(t))) does not go to zero with t and that the
upper bound obtained using the linearized model is also valid for the nonlinear
system for this particular network topology and parameters of the infection.
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(a) Second moment: E
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(b) Second central moment: Var(V (x(t)))

Figure 5.6: Evolution of the second moments of the aggregate function V (x(t))
defined in (5.3) for the graph determined by (5.9) with n = 11 agents, β = 0.5,
δ = 2 and λr = 7. In the left plot, the solid blue line corresponds to the estimation
of E [V 2(x(t))] while the dashed red line is the upper bound (5.23). In the right
plot, the solid blue line corresponds to the estimation of Var(V (x(t))) while the
dashed red line is the upper bound (5.23) and the dash-dotted yellow line is the
upper bound (5.28) considering the linearized model. The simulated values were
obtained considering 10000 realizations of the process.

5.3.4 SIS epidemic with replacements on a graph sampled
from graphon

From Proposition 5.1 and Theorem 5.1, it is clear that the analysis of the stability
and behavior of a SIS epidemic in OMAS is linked to the largest eigenvalue λ1(A)
of the adjacency matrix of the graph. However, in the case of large graphs, it is
difficult to obtain a complete representation of the network because of the presence
of noise and errors in data and the constant evolution of links and nodes. Also,
even if it is possible to obtain a good knowledge of network topology, their sheer
size prevents the full simulation or analysis of the dynamics, or the computation
of relevant network properties, because of limitations in computational resources.
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In this subsection, we consider that the graphs over which the epidemic takes
place are sampled from graphons using the Definition A.1 and we derive results
equivalent to Proposition 5.1 and Theorem 5.1 based on the spectrum of the
graphon operator. (For a description of the most important properties of graphons
see Section A.2). In the perspective approximating graphs with graphons, it is con-
venient to consider sequences of graphs parametrized by their size n. Therefore,
it is reasonable to assume that parameters δ or β be also dependent on n: upon
need, we shall emphasize this dependence by writing δn and βn.

Proposition 5.5 ([115]) Consider a SIS epidemic over a graph G with n nodes
sampled from a piecewise Lipschitz graphon W . Then for n large enough, the SIS
epidemic will reach the disease-free state with probability at least 1− ν if:

δn > nβn(λ1(TW ) + ϕn), (5.31)

where λ1(TW ) is the largest eigenvalue of the graphon operator TW .

Proof: Condition (5.2) is equivalent to δ > βλ1(A). By Lemma A.1, with n
large enough and probability at least 1− ν:

|nλ1(A)− λ1(TW )| ≤ ϕn,

λ1(A) ≤ n(λ1(TW ) + ϕn),

which yields the desired result. ■
Since almost surely λ1(A) grows linearly with n (except for the trivial graphon

W = 0), in order to ensure a uniform bound on λ1(A)βn/δn, we will assume that
the infection strength βn/δn satisfies

βn
δn

=
1

n

β̄

δ̄
(5.32)

for some positive constants β̄ and δ̄.
Assuming that δn = δ̄ is constant and βn = n−1β̄ means that, as the graph

grows in size, the healing rate (which depends on each individual) remains con-
stant, whereas the infection rate decreases. This natural scaling law is also chosen
in [116]. Indeed, on dense graphs this assumption means that in larger graphs,
even though there are more potential interactions, the average strength of the con-
nections is suitably adjusted: this fact accounts for natural limitations in the rates
of contact between individuals.

In the case of replacements, it is natural to assume that the frequency of these
events increases with the number of agents in the system. For this reason, we
assume:

λr = nλ̄r, (5.33)

for some positive constant λ̄r.
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Theorem 5.2 Consider a SIS epidemic over a graph G with n nodes sampled from
a piecewise Lipschitz graphon W with δn = δ̄ and βn = n−1β̄ satisfying condition
(5.31). Under Assumptions 5.1 and 5.2, for n large enough, with probability at
least 1− ν, the aggregate function V (x(t)) defined in (5.3) satisfies:

lim sup
t→∞

E [V (x(t))] ≤ λ̄r(σ
2 +m2)

λ̄r + 2δ̄ − 2β̄(λ1(TW ) + ϕn)
. (5.34)

Proof: The aggregate function V (x(t)) satisfies:

dV (x(t)) =
2

n

(
xT (t) (βnA− δnI)x(t)− βnx

T (t)X(t)Ax(t)
)
dt+∆VkdNt (5.35)

We compute the expectation and we obtain

d

dt
E [V (x(t))] = E

[
2

n

(
xT (t) (βnA− δnI)x(t)− βnx

T (t)X(t)Ax(t)
)]

+
λr
n

(
σ2 +m2 − E [V (x(t))]

)
≤ E

[
2

n

(
xT (t) (βnA− δnI)x(t)

)]
+
λr
n

(
σ2 +m2 − E [V (x(t))]

)
≤ 2(βnλ1(A)− δn)E [V (x(t))] +

λr
n

(
σ2 +m2 − E [V (x(t))]

)
(5.36)

Then, with probability at least 1− ν:

d

dt
E [V (x(t))] ≤ 2 (βnn(λ1(TW )+ϕn)−δn)E [V (x(t))]+

λr
n

(
σ2+m2−E [V (x(t))]

)
=

(
2βnn

2(λ1(TW ) + ϕn)− 2δnn− λr
n

)
E [V (x(t))] +

λr(σ
2 +m2)

n
,

=
(
2β̄(λ1(TW ) + ϕn)− 2δ̄ − λ̄r

)
E [V (x(t))] + λ̄r(σ

2 +m2), (5.37)

which replaces 5.20. The rest of the proof follows the same step as in the proof of
Theorem 5.1 ■

Remark 5.2 (Given graph) In the case of a given graph with a Poisson rate λr
given by (5.33), the upper bound (5.18) is equivalent to:

lim sup
t→∞

E [V (x(t))] ≤ λ̄r(σ
2 +m2)

λ̄r + 2δ − 2βλ1(A)
,

which is independent of the number of agents n.
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Figure 5.7: Pixel diagram of the stochastic block model graphon.

Remark 5.3 (Asymptotics for n→ ∞ ) When we let n go to infinity, if ν is
constant or if ν = 1/nα for some constant α, we can see that the upper bound given
in Theorem 5.2 goes to λ̄r(σ2+m2)

λ̄r+2δ̄−2β̄λ1(TW )
. Hence, by choosing α > 1 and applying

Borel-Cantelli Lemma, we obtain that for n large enough, with probability 1:

E [V (x(∞))]n ≤ λ̄r(σ
2 +m2)

λ̄r + 2δ̄ − 2β̄(λ1(TW ) + ϕn)
→ λ̄r(σ

2 +m2)

λ̄r + 2δ̄ − 2β̄λ1(TW )
as n→ ∞,

where E [V (x(∞))]n := lim supt→∞ E [V (x(t))].

Remark 5.4 (Stochastic latent variables) An alternative procedure for the gen-
eration of the complete weighted graph Ḡ from graphons is the use of stochastic
latent variables proposed in [117]. All the results of this section easily extend to
this stochastic sampling by considering the appropriate values of the probability ν
and the bound ϕn, which are established in [117].

To illustrate the results on graphons, we consider the stochastic block model
graphon WSB with pixel diagram in Fig. 5.7, where the values of the blocks are:

WSB =


0.9 0.7 0.6 0.5 0.2
0.7 0.4 0.1 0.3 0.1
0.6 0.1 0.5 0.9 0.8
0.5 0.3 0.9 0.5 0.5
0.2 0.1 0.8 0.5 0.7

 .
The largest eigenvalue of the graphon operator TWSB

is ρWSB
= 0.5275. We assume

βn = β̄/n, with β̄ = 1.5, and ν = 0.02, which satisfies condition (A.2c) for n ≥ 40.
The value of the rate of replacements is λ̄r = 2 while δn = δ̄ = β̄(λ1(TW ) + ϕ40)
is selected, satisfying condition (5.31). We compute the value of the upper bound
E [V (x(∞))]n for 40 ≤ n ≤ 1000 and we present the results in Figure 5.8 where
the dashed red line corresponds to the limit when n→ ∞.
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Figure 5.8: Upper bound E [V (x(∞))]n as a function of n for the stochastic block
model graphon WSB with β̄ = 1.5, δ̄ = β̄(λ1(TW ) + ϕ40) and λ̄r = 2. The solid
blue line corresponds to E [V (x(∞))]n while the dashed red line corresponds to the
limit when n→ ∞.

5.3.5 SIS epidemic with replacements with new neighbor-
hoods determined by graphons

Now, we consider the case of a SIS epidemic where during a replacement, the
topology of the network may also change. The dynamics of the system is given by

ẋ(t) = (βnA(t)− δnI)x(t)− βnX(t)A(t)x(t), (5.38)

where the adjacency matrix A(t) is time-varying.
We assume that at time t = 0, the graph of the network is sampled from a

graphon W according to Definition A.1 and the network interconnections are pre-
served between the switching times determined by a Poisson process with intensity
λr, which implies that the dynamics (5.38) also remains invariant. However, we
consider that during the replacement of an agent the topology of the network also
changes.

Assumption 5.3 During the replacement of an agent, the connections of all the
agents are sampled again according to the piecewise Lipschitz graphon W .

The motivation for this particular choice of the change of the network topology
is that stochastic block model graphons are used to model community structures
in social networks. In this case, the replacement of an agent may impact all the
network such that connections between individuals may also change but preserve
the same pattern determined by the graphon.



5.3. REPLACEMENTS 115

By definition, the aggregate function V (x(t)) satisfies:

dV (x(t)) =
2

n

(
xT (t) (βnA(t)− δnI)x(t)− βnx

T (t)X(t)A(t)x(t)
)
dt+∆VkdNt,

where A(t) is sampled from a graphon. Unlike Theorem 5.2 which is based on the
computation of the expectation given a simple graph G sampled from a graphon,
in this section, we compute the expectation of all the graphs that can form the
sequence Gt on which the process takes place. Then, the expectation is given by

d

dt
E [V (x(t))] = E

[
2

n

(
xT (t) (βnA(t)− δnI)x(t)− βnx

T (t)X(t)A(t)x(t)
)]

+
λr
n

(
σ2 +m2 − E [V (x(t))]

)
. (5.39)

We consider an approximation of (5.39) by assuming independence between the
evolution of x(t) and the adjacency matrix A(t) such that we have:

d

dt
E [V (x(t))] = E

[
2

n

(
xT (t)

(
βnĀr − δnI

)
x(t)− βnx

T (t)X(t)Ārx(t)
)]

+
λr
n

(
σ2 +m2 − E [V (x(t))]

)
(5.40)

≤ E
[
2

n

(
xT (t)

(
βnĀr − δnI

)
x(t)

)]
+
λr
n

(
σ2 +m2 − E [V (x(t))]

)
≤ 2(βnλ1(Ār)− δn)E [V (x(t))] +

λr
n

(
σ2 +m2 − E [V (x(t))]

)
,

(5.41)

where Ār = E [A(t)]. Notice that Ār = Ā − D̄, where Ā is the adjacency ma-
trix of the complete weighted graph Ḡ according to Definition A.1 and D̄ =
diag[W (ui, ui)]. Then by applying Lemma A.1, we have that for n large enough:

λ1(Ār) =
∣∣∣∣Ār

∣∣∣∣ ≤ ∣∣∣∣Ā∣∣∣∣+ ∣∣∣∣D̄∣∣∣∣ ≤ nλ1(TW ) + nϑn + 1,

where ϑn = 2
√
L2−K2+Kn

n
. Under this approximation, the stability condition for

the SIS epidemic in expectation is given by:

δn > nβn(λ1(TW ) + ϑn + 1/n). (5.42)

By following similar steps in the proof of Theorem 5.2 with (5.41) instead of (5.36),
we formulate the following conjecture.

Conjecture 5.1 Consider a SIS epidemic over a sequence of graphs Gt with n
nodes sampled from a piecewise Lipschitz graphon W with δn = δ̄ and βn = n−1β̄
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satisfying condition (5.42). Under Assumptions 5.2 and 5.3, for n large enough,
the aggregate function V (x(t)) defined in (5.3) satisfies:

lim sup
t→∞

E [V (x(t))] ≤ λ̄r(σ
2 +m2)

λ̄r + 2δ̄ − 2β̄(λ1(TW ) + ϑn + 1/n)
. (5.43)

Theorem 5.2 holds with probability 1−ν because of the upper bound for λ1(A)
in terms of the spectral radius of the graphon operator TW , as per Lemma A.1.
However, in the case of Conjecture 5.1, it can be seen from (5.40), that the poten-
tial result is based on an epidemic process with replacements over a time-invariant
graph with adjacency matrix Ār, which is sampled from the graphon using deter-
ministic latent variables and does not involve the use of random variables.

Figure 5.9 presents the computation of V (x(t)) for graphs sampled from the
stochastic block model WSB with n = 50 agents, β̄ = 1.5, δ̄ = β̄(λ1(TW ) + ϑ50 +
1/50) and λ̄r = 2 where the states of new agents are drawn from a uniform
distribution with m = 1/2 and σ2 = 1/12, and the expected values were calculated
considering 1000 realizations of the process. We can observe that the behavior of
the approximated model (5.40) in dashed red line is similar to the behavior of the
real model (5.39) in solid blue line, and both seem to converge to the same limit
when t → ∞. Furthermore, the upper bound (5.43) in dash-dotted yellow line is
valid for both processes, which supports the conjecture.

5.4 Conclusion
In this chapter, we analyzed a SIS epidemic in OMAS when replacements occur at
time instants determined by a Poisson process. We defined an aggregate function
to analyze the epidemic and derived upper bounds for the expectation and variance
when t→ ∞. We derived a similar result in expectation when graphs are sampled
from graphons. When the connections of the network can change according to
a graphon during the occurrence of replacements, we performed a preliminary
analysis based on the assumption of independence of some random variables and
formulated a conjecture for the asymptotic value in expectation of the aggregate
function, which is corroborated by simulations.

Due to the versatility of graphons to generate different graph topologies with a
given number of nodes, they are an important tool to be used in the case of OMAS
over dynamic networks, which are more realistic, since it is unlikely that in a large
network, during the replacement of an agent, the connections remain invariant.
Graphons also appear to be a promising tool for analyzing OMAS under arrivals of
agents, where the connections of the new agents can be well defined by generating
edges based on the graphon and the values of the latent variables associated with
the agents of the network.
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Figure 5.9: Evolution of the aggregate function V (x(t)) defined in (5.3) for graphs
sampled from the stochastic block model graphonWSB with n = 50 agents, β̄ = 1.5,
δ̄ = β̄(λ1(TW ) + ϑ50 + 1/50) and λ̄r = 2. The solid blue line corresponds to the
estimation of E [V (x(t))] while the dashed red line corresponds to the approxima-
tion (5.40) of the real process and the dash-dotted yellow line is the conjectured
upper bound (5.43). The expected values were computed by considering 1000 re-
alizations of the process.

For future work, it would be important to extend the results by considering
potential departures and arrivals of agents, which would imply a time-varying size
of the network. In this case, the arrivals and departures of agents can be studied
as birth and death events respectively and the theory of birth-death process [118]
can provide useful tools for the analysis of more general situations. This approach
has been used in [25], where a linear death process has been considered for the
departure of agents. In this line of research, it is necessary to determine if the
aggregate function used for replacement remains valid for possible changes on the
number of agents of the system or if a new definition is needed to condensate the
behavior of the system in a more appropriate way.

In the case of graphs sampled from graphons, we only considered the case
of deterministic latent variables. However, the use of stochastic latent variables
could provide a more appropriate sampling procedure during arrivals where the
connections of the current agents in the network are preserved and new connections
are established only with new agents.





Chapter 6

Conclusion and Future Work

Open multi-agent systems (OMAS) allow to model more realistic dynamic net-
works where agents can enter, leave or being replaced in the system. Unlike single
changes in the network topology, these variations in the set of agents make the
analysis more complex since the dimension of the system may change and tradi-
tional concepts associated to dynamical systems might not be applied in many
cases. In this thesis, we analyzed OMAS considering different problems associ-
ated with classical multi-agent systems. In all of these problems, we selected a
set of assumptions to make the problem realistic and tractable at the same time,
and performed an analysis based on the study of an appropriate scalar quantity
independent of the size of the system.

The problem of consensus was analyzed in Chapter 2. We considered a random-
ized algorithm where the interaction matrix is drawn from a common distribution
and we studied the effect of additive noise in the performance of the algorithm. To
perform the analysis, we considered the mean squared error and derived a closed
form and bounds based on the eigenvalues of the expected matrices. This ap-
proach allowed us to study the problem in an OMAS when we consider a finite
superset of agents, where at each time instant, only a subset of agents is active,
determined by independent Bernoulli random variables associated with each agent
in the system. We expressed the bounds derived for the general case as a function
of the parameters associated with the OMAS and provided some expressions for
particular graph topologies.

In Chapter 3, we focused on the weighted gradient descent algorithm to solve
the well-known problem of resource allocation (RA) in multi-agent systems where
the transmission of information is subject to packet losses. First, we proposed a set
of assumptions to guarantee that the problem can be solved at least in expectation,
which justifies the application of the algorithm. Then, we proposed two metrics
to measure the deviation from the constraint and the ideal expected cost, and we
derived bounds for the metrics which are proportional to the difference between

119
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the initial cost function and the ideal cost function. Next, we extended the results
to the case of OMAS, where the cost functions of the agents can be replaced with
a certain probability. Unlike the closed system, we showed that the constraint
violation error diverges and does not remain bounded due to the accumulation of
errors. This result showed that a well-defined metric, which is bounded in a closed
system, could diverge in an OMAS.

Chapter 4 continued the analysis of the RA problem in OMAS but considering
the application of the RCD algorithm to perform the optimization. In this chapter
we analyzed the problem from a perspective of dynamical systems, focusing on
the stability of the time-varying minimizer. We proved that for a general graph
topology, it is not possible to guarantee linear convergence in a closed system, and
we performed an analysis based on a norm induced by a matrix associated with
the network. Some bounds for the difference between the minimizers where proved
using different approaches related to the properties of β-smooth and α-strongly
convex functions. We proved that the RCD algorithm applied to an OMAS subject
to replacements will converge inside a region determined by the parameters of the
system. Additionally, by considering a simple setting, we proposed an alternative
approach based on online optimization, where the states of the agents may also
change during the replacements. We defined three metrics based on a cooperative
and selfish strategy and derived some bounds for them which grow linearly with
time. We provided a detailed analysis to justify this linear behavior, which is
mainly due to the accumulation of errors during the replacements, similar to the
constraint violation metric studied in Chapter 3.

In Chapter 5, we analyzed a SIS epidemic in OMAS where agents can be
replaced during the evolution of the dynamics. Unlike the previous chapters,
we used a continuous time formulation of the system, which made the analysis
more complex since the states of the agents can change between replacements.
Inspired by Lyapunov functions, we defined an appropriate aggregate function for
the analysis of the system and used a stochastic differential equation (SDE) to
model its evolution. We performed an analysis in expectation of the aggregate
function and derived an upper bound for its variance. An extension of the results
was provided when the graphs are sampled from graphons. In the case of possible
changes of the connections during replacements following a sampling procedure
from graphons, we presented a preliminary analysis of this scenario and formulated
a conjecture about the asymptotic behavior of the aggregate function that was
corroborated by simulations.
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6.1 Future research

Although different types of problems and applications of OMAS were analyzed in
this thesis, there are still many problems, questions, extensions and improvements
that can be considered to develop a further understanding of the main character-
istics of OMAS and the best tools to address more complex scenarios.

Regarding Chapter 2, the results were derived by considering independence in
the stochastic matrices. However, scenarios where only few agents change their
states from active to inactive or vice versa still need to be explored. In addition,
it would be important to analyze an alternative performance metric where the
normalization term includes only the number of active agents, which could provide
a more informative result for OMAS.

In Chapter 3, considering that the upper bound derived for the cost function
metric presents a certain level of conservatism, it would be important to improve
this bound to obtain a tighter result. Regarding open systems, it would be impor-
tant to improve the lower bound for the constraint violation metric. Finally, an
analysis of the cost function metric for OMAS needs to be developed.

Chapter 4 analyzed the RCD algorithm in OMAS only in the case of possible
replacements of agents while the budget remains the same. The case of time-
varying budget and weights is a natural continuation of this work. A possible
time-varying size of the system is also an interesting direction for future work,
where the size of the system can change in time due to arrivals and departures of
agents. In the case of the metrics inspired from online optimization, it would be
important to extend the results for more general graph topologies and develop the
corresponding lower bounds.

In Chapter 5, we analyzed a SIS epidemic in OMAS subject to replacements.
It would be natural to extend the work to the case of scenarios where arrivals
and departures can take place such that the size of the system can change in time
[25]. In the case of graphons, there is a conjecture that still needs to be verified
to validate the results obtained in simulations. Also, for graphs sampled from
graphons, it would be important to consider more complex sampling procedures,
to study scenarios where the connections of the new agent do not follow a specific
pattern and the connections of the other agents are preserved.

Finally, regarding OMAS in general, many questions and problems remain
open. For instance, in this thesis we have considered only two approaches for the
analysis of OMAS: time-invariant finite superset and fixed state-space. In the case
of multi-mode multi-dimensional systems, preliminary works only considered the
case of a fixed number of spaces with different dimensions [41, 42], which does
not seem suitable for a general OMAS where the dimension of the system could
take an arbitrary value. For this reason, further work is needed in this field to
extend this approach for systems with arbitrary dimensions. Regarding infinite
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dimensional dynamical systems, during this thesis two works focused on the use of
graphons for the study of epidemics [115] and the analysis of the spectrum of the
Laplacian matrix corresponding to sampled graphs [62] were developed. Since most
of the dynamics in multi-agent systems are formulated in terms of the Laplacian
matrix, it is important to extend the theory of graphons for this matrix through
the definition of an appropriate operator. In this line of research, the authors in
[119] studied the case of consensus in first-order graphon models, while in [120],
the authors analyzed the spectrum of the Laplacian matrix for particular types of
graphons. However, the relation between the spectrum of the Laplacian operator
associated with an arbitrary graphon and the eigenvalues of the Laplacian matrix
of a sampled graph is still under analysis.

In most of the works, OMAS have been analyzed only in the case of undirected
graphs. In [31], the authors analyzed the case of switching between multi-agent
systems of different dimensions where agents interact through digraphs. However,
the approach used in this work disregards the impacts of the processes associated
with arrivals, departures and replacements, limiting the potential applications of
the work. Since most of the results derived form OMAS rely on the symmetry
of the Laplacian matrix, it seems possible that new techniques of analysis are
required for the extension of the results to the case of digraphs. In addition, the
definition of appropriate graph topologies is critical in this case, specially in the
case of arrivals where the connections of the new agents could play an important
role in the preservation of the connectivity of the network.

Agents with more general dynamics like double integrators or nonlinear dynam-
ics (Kuramoto oscillators, Lotka-Volterra, etc.) should be analyzed in the context
of arrivals/departures of agents, which would extend the analysis of OMAS to more
complex phenomena. In this line of research, the approach used in Chapter 5 seems
promising for these cases, where Lyapunov functions could be used to study the
systems in terms of a SDE. Alternatively, the theory of stochastic hybrid systems
appear as an important framework that can be used for the analysis of OMAS
when the objective is the determination of conditions to guarantee the stability of
OMAS [121,122].

Heterogeneity is an important characteristic that should be explored in future
works. In simple settings, it is assumed that all the agents that interact in the
system have the same dynamics. However, in many scenarios, this assumption
could not be appropriate as in the case of robotics, where different types of robots
need to interact to achieve a desired goal [123]. Several approaches could be used
for this analysis, including the study of emergent dynamics [124, 125], which has
provided promising results in the case of switching systems with heterogeneous
agents [126].
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Finally, as it was remarked in [127, 128], OMAS look as a promising tool to
handle opinion dynamics where agents are constantly entering and leaving the sys-
tem as in the case of social networks, forums, discussions, etc. Models based on
opinion-dependent connectivity like the Hegselmann-Krause model [129–131] and
k-nearest neighbors [132] seem to be more suitable for OMAS where the interac-
tions are determined only by the values of the opinions. This type of intercon-
nections simplifies the definition of the network topology in OMAS in the case of
arrivals and departures, since it is not necessary to define the connections of new
agents or reconfigure the connections of the network when agents leave the system.





Appendix A

Mathematical background

A.1 Graphs
A graph can be defined as a pair G = (V,E) where V = {1, . . . , n} is a set of
vertices or nodes and E ⊆ {(i, j) ∈ V × V : i ̸= j} is the set of edges. An
undirected graph has edges with no direction and a simple graph does not contain
self-loops or multiedges. A graph is connected if each node is reachable from any
other node via a path (a sequence of adjacent edges).

The adjacency matrix of a graph A = [aij] ∈ Rn×n is defined by aij > 0 if
(i, j) ∈ E and aij = 0 otherwise. This matrix is real symmetric non-negative
with real eigenvalues [133]. If the graph has weights wij in the edges, we design
the entries of the adjacency matrix as aij = wij. If we do not consider weights
in the edges, we define the entries of the adjacency matrix as aij = 1 for all
the edges. We consider the order of the eigenvalues of the adjacency matrix as:
λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A).

Another matrix associated with a graph is the Laplacian matrix defined as

L = [ℓij], where ℓij =
n∑

j=1

aij if i = j, and ℓij = −aij if i ̸= j. According to

its definition, L is diagonally dominant (ℓii ≥
n∑

j=1

|ℓij|), and all the eigenvalues

λi(L) have nonnegative real part. Furthermore, 0 is always an eigenvalue of the
Laplacian matrix. We consider the order of the eigenvalues of the Laplacian matrix
as: λ1(L) = 0 ≤ λ2(L) ≤ . . . ≤ λn(L). Specifically, this matrix is symmetric and
positive semidefinite if the graph is undirected. If the graph is connected, we have
λ2(L) > 0. The Laplacian matrix can be expressed as:

L = D − A, (A.1)

where D = diag[d1, . . . , dn] and di is the degree of the node i (i.e., di is the ith
row-sum of A).
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A.2 Graphons
We denote by W the space of all bounded symmetric measurable functions W :
[0, 1]2 → R. The elements of this space are called kernels given their connection
to integral operators. The set of all kernels W ∈ W such that 0 ≤ W ≤ 1 is
denoted by W0 and its elements are called graphons, whose name is a contraction
of graph-function. By analogy with degrees in finite graphs, the degree function
of a graphon is defined as dW (x) :=

∫ 1

0
W (x, y) dy. In order to consider differences

between graphons, we shall sometimes work in the set W1 of kernels W such that
−1 ≤ W ≤ 1.

Every function W ∈ W defines an integral operator TW : L2[0, 1] → L2[0, 1]
by:

(TWf) (x) :=

∫ 1

0

W (x, y)f(y) dy.

This operator is compact and has a discrete spectrum with 0 as the only accumu-
lation point. Every nonzero eigenvalue has finite multiplicity [39]. A graphon W
is said to have finite rank if the spectrum of the associated operator contains a
finite number of nonzero eigenvalues [39].

A step graphon is a graphon defined as a step function. A function is called
a step function if there is a partition S1 ∪ · · · ∪ Sk of [0, 1] into measurable sets
such that W is constant on every product set Si × Sj where the sets Si are the
steps of W . This type of graphon is also called stochastic block model graphon
because of its relation to stochastic block models [134]. Step graphons are finite
rank graphons with a rank at most equal to the number of steps. Also, graphons
expressed as a finite sum of products of integrable functions have finite rank [117].

Each graph G has an associated step graphon WG obtained by considering a
uniform partition of [0, 1] into the intervals Bn

i , where Bn
i = [(i − 1)/n, i/n) for

i = 1, . . . , n− 1 and Bn
n = [(n− 1)/n, 1] such that:

WG(x, y) :=
n∑

i=1

n∑
j=1

aij1Bn
i
(x)1Bn

j
(y),

where 1A(x) is the indicator function. The operator associated to the step graphon
is

(TWG
f)(x) :=

n∑
j=1

aij

∫
Bn

j

f(y) dy for any x ∈ Bn
i

and the spectrum of TWG
consists of the normalized spectrum of the graph (i.e.,

λi(TWG
) = λi(A)/n), together with infinitely many zeros.

A graphon is usually visualized with a pixel picture, where each point (x, y) ∈
[0, 1]2 is colored with a grey level representing W (x, y). For a step graphon asso-
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Figure A.1: Graph G, adjacency matrix A and step graphon WG.

ciated to a graph G, we visualize a 0 as a small white square and a 1 as a small
black square as we can appreciate in Fig. A.1.

A.2.1 Norms

In the study of kernels, various norms are relevant to consider [39, 117, 135]. For
1 ≤ p <∞, we define the Lp norm of a kernel as

∥W∥Lp :=

(∫
[0,1]2

|W (x, y)|pdx dy
)1/p

and its cut norm by

∥W∥□ := sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W (x, y) dx dy

∣∣∣∣ .
For W ∈ W1, we have the following inequalities between Lp norms and the cut
norm:

∥W∥□ ≤ ∥W∥L1 ≤ ∥W∥L2 ≤ ∥W∥1/2L1 ≤ 1.

By considering the operator TW associated to a kernel W ∈ W , we can define the
operator norm:

|||TW ||| := sup
f∈L2[0,1]
∥f∥L2=1

∥TWf∥L2 .

For graphons, the operator norm is equal to the largest eigenvalue of the operator:
|||TW ||| = λ1(TW ). For the elements of W1, the cut and operator norms are related
by:

∥W∥□ ≤ |||TW ||| ≤
√
8∥W∥1/2□ .
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Figure A.2: Sampling graphon procedure.

Finally, we can define the Hilbert-Schmidt norm of the operator as:

∥TW∥2HS :=
∑
i

|λi(TW )|2,

which corresponds to the Schatten 2-norm of TW . For all W ∈ W , ∥TW∥HS is finite
(i.e., kernel operators are Hilbert-Schmidt operators), and moreover
∥TW∥HS = ∥W∥L2 .

A.2.2 Sampling and Approximation

A graphon W can be used to generate random graphs using a sampling method
[39].

Definition A.1 (Sampled Graph [117]) Given a graphon W and a size n ∈
Z>0, we say that the graph G is sampled from W if it is obtained through:

1. Complete weighted graph Ḡ: fixing deterministic latent variables
{ui = i

n
}ni=1, we generate the complete weighted graph Ḡ with n vertices,

whose adjacency matrix is defined as: Ā(i, j) = W (ui, uj) for all i, j in
{1, . . . , n}.

2. Simple graph G: taking n vertices {1, . . . , n} and randomly adding undi-
rected edges between vertices i and j independently with probability W (ui, uj)
for all i > j.

Definition A.2 (Piecewise Lipschitz graphon [117]) Graphon W is said to
be piecewise Lipschitz if there exists a constant L and a sequence of non-overlapping
intervals Ik = [αk−1, αk) defined by 0 = α0 < · · · < αK+1 = 1, for a finite



A.2. GRAPHONS 129

non-negative integer K, such that for any k, l, any set Ikl = Ik × Il and pairs
(x1, y1) and (x2, y2) ∈ Ikl we have that:

|W (x1, y1)−W (x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|).

Definition A.3 (Large enough n [117]) Given a piecewise Lipschitz graphon
W (as per Definition A.2) and ν < e−1, n is large enough if n satisfies the following
conditions:

2

n
< min

k∈{1,...,K+1}
(αk − αk−1), (A.2a)

1

n
log

(
2n

ν

)
+

1

n
(2K + 3L) < max

x
dW (x), (A.2b)

ne−n/5 < ν. (A.2c)

Lemma A.1 (Theorem 1 [117]) Let W be a piecewise Lipschitz graphon (as
per Definition A.2) and G a graph with n nodes sampled from W . Then for n
large enough with probability 1:∣∣∣∣∣∣TWḠ

− TW
∣∣∣∣∣∣ ≤ 2

√
L2 −K2 +Kn

n
=: ϑn,

and with probability at least 1− ν:

|||TWG
− TW ||| ≤

√
4 log(2n/ν)

n
+

2
√
L2 −K2 +Kn

n
=: ϕn.

By considering a constant value of ν, the difference between the graphons in
the operator norm is bounded by: |||TWG

− TW ||| = O
(
(log n/n)1/2

)
.

Lemma A.2 Let W be a piecewise Lipschitz graphon and G a graph with n nodes
sampled from W . Then for n large enough, with probability at least 1− ν:

∥W −WG∥L2 ≤ 4
√
2n
√
ϕn.

Proof: First, we have

∥W −WG∥□ ≤ |||TW − TWG
||| ≤ ϕn.

It is easy to see that WG is a step graphon that takes values in {0, 1} and we can
apply the inequality derived in [135, Remark 10.8], so that:

∥W −WG∥L1 ≤
√
2n∥W −WG∥□ ≤

√
2nϕn.

Applying the relation ∥W −WG∥L2 ≤ ∥W −WG∥1/2L1 yields the desired result. ■
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A.3 Poisson processes
A stochastic process (Nt)t≥0 is a counting process if Nt represents the total number
of events that have occurred up to time t. More specifically, a stochastic process
is said to be a counting process if [136]:

1. Nt ≥ 0

2. Nt ∈ Z≥0

3. If s < t, then Ns ≤ Nt

4. For s < t, Nt − Ns equals the number of events that have occurred in the
interval (s, t]

A counting process has independent increments if the numbers of events that
occur in disjoint time intervals are independent. A counting process has stationary
increments if the distribution of the number of events that occur in any interval
of time depends only on the length of the time interval [136].

Definition A.4 (Poisson process [136]) The counting process (Nt)t≥0 is said
to be a homogeneous Poisson process with rate λ > 0 if

1. N0 = 0

2. The process has independent increments

3. The number of events in any interval of length t is Poisson distributed with
mean λt. That is, for all s, t ≥ 0,

P {Nt+s −Ns = n} = e−λt (λt)
n

n!
, n = 0, 1,

The last property implies that a Poisson process has stationary increments and
that

E [Nt] = λt.

By construction, a homogeneous Poisson process only has a finite number of jumps
on any interval and is a Markov counting process (i.e., has the Markov property),
as the exponential distribution has the memoryless property.
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Résumé: Dans cette thèse, nous abordons dif-
férents problèmes formulés dans un scénario de sys-
tème multi-agents ouvert (OMAS) où l’ensemble
des agents peut changer dans le temps, indépen-
damment de l’évolution de la dynamique associée
au système. Nous considérons des OMAS formulés
à l’aide d’un réseau fixe de taille finie, et utilisons
deux approches distinctes pour les analyser. Dans
la première approche, nous considérons des scé-
narios caractérisés par l’activation et la désacti-
vation d’agents, de sorte qu’à chaque instant un
sous-ensemble différent d’agents actifs peut inter-
agir dans le système. Dans la deuxième approche,
nous étudions des scénarios caractérisés par des
remplacements d’agents où, à un instant donné,
un agent peut être remplacé alors que les autres
ne changent pas. Dans ce cas, tous les agents
peuvent interagir à tout moment.

Trois problèmes différents sont considérés dans
cette thèse : le consensus randomisé, le problème
d’allocation des ressources et les épidémies. Pre-
mièrement, nous analysons le problème du con-
sensus randomisé soumis à un bruit additif où
différents sous-ensembles d’agents échangent des
informations à chaque itération. Nous définis-

sons un indice de bruit basé sur l’erreur quadra-
tique moyenne attendue et nous dérivons des
bornes supérieures. Ensuite, nous considérons le
problème d’allocation de ressources où les agents
peuvent être remplacés lors de l’implémentation
d’un algorithme d’optimisation. Pour ce problème
d’optimisation, nous analysons deux algorithmes
différents : la descente de gradient pondérée
(weighted gradient descent) et la descente de
coordonnées aléatoires (random coordinate de-
scent). Pour la descente de gradient pondérée,
nous évaluons les performances de l’algorithme
dans un OMAS soumis à des pertes de paquets
en définissant des métriques de performances ap-
propriées. Pour l’algorithme de descente de coor-
données aléatoires, nous étudions la convergence
vers le minimiseur dans un OMAS et nous pro-
posons une analyse alternative à l’aide d’outils in-
spirés de l’optimisation en ligne. Enfin, nous étu-
dions une épidémie SIS en temps continu sujette
à des remplacements d’agents lors de sa propaga-
tion. Nous effectuons l’analyse en utilisant une
fonction d’agrégation et en dérivant des bornes
supérieures pour son comportement asymptotique.
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Abstract: In this thesis we address several prob-
lems formulated in an open multi-agent system
(OMAS) scenario where the set of agents can
change in time, independently of the evolution of
the dynamics associated with the system. We
analyze the case of OMAS formulated in a fixed
finite size network and we use two approaches
for the analysis of the systems. In the first ap-
proach we consider scenarios characterized by ac-
tivation/deactivation of agents such that at each
time instant a different subset of active agents can
interact in the system. In the second approach we
study scenarios characterized by replacements of
agents where at a specific time instant, an agent
can be replaced while the rest of the agents remain
the same. In this case, all the agents are able to
interact at all time.

Three different problems are considered in this
thesis: randomized consensus, resource allocation
problem and epidemics. First, we analyze the prob-
lem of randomized consensus subject to additive

noise where different subset of agents exchange
information at each iteration. We define a noise
index based on the expected mean squared error
and we derive upper bounds. Then, we consider
the resource allocation problem where agents can
be replaced during the implementation of an op-
timization algorithm. For this problem, we ana-
lyze two different algorithms: weighted gradient
descent and random coordinate descent. For the
weighted gradient descent, we evaluate the perfor-
mance of the algorithm in an OMAS subject to
packet losses by defining appropriate performance
metrics. For the random coordinate descent algo-
rithm, we study the convergence to the minimizer
in an OMAS and we provide an alternative analysis
using tools inspired from online optimization. Fi-
nally, we study a SIS epidemic in continuous time
subject to replacements of agents during the evolu-
tion of the disease. We perform the analysis using
an aggregate function and deriving upper bounds
for its asymptotic behavior.
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