
HAL Id: tel-03859419
https://theses.hal.science/tel-03859419

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative cerebral metabolic imaging using sodium
and phosphorus nuclear magnetic resonance at 7 Tesla

Renata Porciuncula Baptista

To cite this version:
Renata Porciuncula Baptista. Quantitative cerebral metabolic imaging using sodium and phosphorus
nuclear magnetic resonance at 7 Tesla. Signal and Image Processing. Université Paris-Saclay, 2022.
English. �NNT : 2022UPAST123�. �tel-03859419�

https://theses.hal.science/tel-03859419
https://hal.archives-ouvertes.fr


T
H

E
SE

D
E

D
O

C
T

O
R

A
T

N
N
T

:2
02

2U
PA

ST
12

3

Quantitative Cerebral Metabolic Imaging
using Sodium and Phosphorus Nuclear

Magnetic Resonance at 7 Tesla
Imagerie métabolique cérébrale quantitative par résonance

magnétique nucléaire du sodium et du phosphore à 7 Tesla

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦575,Electrical, optical, bio : physics and engineering (EOBE)

Spécialité de doctorat: Imagerie et Physique Médicale

Graduate School : Sciences de l’Ingénierie et des Systèmes, Référent : Faculté

des sciences d’Orsay

Thèse préparée dans l’unité de recherche : BAOBAB, (Université

Paris-Saclay, CNRS, CEA), sous la direction du Fawzi BOUMEZBEUR,

directeur de recherche et le co-encadrement du Cécile RABRAIT-LERMAN,

ingénieure de recherche.

Thèse soutenue à Paris-Saclay, le 17 octobre 2022, par

Renata PORCIUNCULA BAPTISTA

Composition du jury

Jean-Marie BONNY Président
Directeur de recherche, INRAE - AgroResonance
Guillaume MADELIN Rapporteur & Examinateur
Maître de conférences, HDR, New York University
Lijing XIN Rapporteur & Examinatrice
Chargée de recherche, HDR, EPFL - CIBM
Julien VALETTE Examinateur
Directeur de recherche, HDR, CEA - MIRCen
Wafaa ZAARAOUI Examinatrice
Chargée de recherche, CNRS UMR 7339 - CRMBM
Fawzi BOUMEZBEUR Directeur de thèse
Directeur de recherche, HDR, CEA - NeuroSpin







Titre: Imagerie métabolique cérébrale quantitative par résonance magnétique nucléaire du sodium et du phosphore à 7 Tesla
Mots clés: Imagerie médicale, Imagerie par résonance magnétique, Cerveau, Physiologie, Metabolisme

Résumé: L’imagerie par résonance magnétique (IRM) permet l’étude
non-invasive du métabolisme des tissus. Cette thèse porte sur
le développement de méthodes innovantes pour l’IRM métabolique
cérébrale des noyaux sodium (23Na) et phosphore (31P) à ultra-
haut champ magnétique (UHF). Ces noyaux sont particulièrement in-
téressants car ils sont liés aux activités métaboliques. En raison de
divers défauts cellulaires ou d’anomalies mitochondriales, les cellules
du cerveau peuvent ne pas répondre aux besoins énergétiques, ce qui
peut causer un dysfonctionnement du cerveau et une neurodégénéres-
cence. L’objectif est donc de proposer les imageries quantitatives du
31P (et de ses métabolites) et du 23Na à UHF en tant qu’outils pour
l’étude de la progression des maladies neurodégénératives. Parmi les
techniques disponibles pour sonder le métabolisme énergétique de man-
ière non-invasive, la spectroscopie RMN (SRM) in vivo du 31P est l’une
des plus prometteuses pour la recherche clinique. Bien que la 31P-SRM
a été appliquée avec succès pour l’étude de syndromes métaboliques au
niveau des muscles, son application au domaine de la neuroénergétique
a souvent été limitée par les concentrations relativement faibles d’ATP
et de PCr dans le cerveau. Récemment, la 31P-SRM a bénéficié de
l’arrivée des scanners IRM cliniques à UHF favorisant le développe-
ment d’approches d’imagerie spectroscopique (MRSI). Cependant, la
pertinence clinique de ces approches MRSI pour l’étude des maladies
neurodégénératives est limitée par les temps d’acquisition (TA) long
notamment en 31P-MRSI 3D du cerveau entier. Nous avons donc pro-
posé une approche d’IRM 31P sélective en fréquence plus rapide focal-
isée sur l’imagerie de deux (ou plus) métabolites phosphorylés typique-
ment la PCr et l’ATP. Par l’ajout d’un module de saturation sélective
du γ-ATP, nous avons évalué un protocole permettant d’estimer sim-
ultanément dans divers régions corticales les concentrations absolue
d’ATP et de PCr ainsi que le flux à travers la créatine kinase (VCK).

Pour ce faire, nous avons développé une correction des inhomogénéités
du champ radiofréquence B+

1 . Nous avons calculé une carte moyenne
de l’angle de bascule (FA) sur la base d’acquisitions chez une cohorte
indépendante de 6 volontaires sains. Nous avons ainsi pu estimer et
prendre en compte les FA d’excitation et de saturation effectifs dans
notre quantification des concentrations en ATP et PCr et de VCK .
Nous avons également développé une variante de ce protocole pour
étudier le rapport PME/PDE dans le cadre d’une collaboration cli-
nique avec le CHU de Poitiers. La concentration totale en sodium
tissulaire (TSC) a démontrée à travers plusieurs études sa pertinence
en tant que biomarqueur de viabilité cellulaire en particulier dans les
maladies d’Alzheimer ou la sclérose en plaques. Les études actuelles
utilisent des séquences à temps d’écho ultra-court combinées à des
trajectoires déterministes non-Cartésiennes à travers l’espace k. Néan-
moins, le TA reste relativement long, même à UHF, en raison de la
sensibilité intrinsèque et des concentrations modérées du 23Na. Les
trajectoires déterministes n’exploitent pas au mieux la parcimonie de
l’espace k en raison de leurs motifs géométriques. Par conséquent,
nous avons proposé d’évaluer une approche stochastique d’encodage
de l’espace k, SPARKLING, dans le contexte de l’IRM 23Na cérébrale
sous-échantillonnée. Dans des régimes favorables (dépendant du rap-
port signal/bruit et de la taille des images) que nous avons déterminés
à travers une étude théorique basée sur un outil de simulation dédié,
cette approche permet de réduire drastiquement les TA tout en préser-
vant les détails anatomiques et le caractère quantitatif des cartes de
TSC, surpassant les trajectoires 3D non-Cartésiennes couramment util-
isées (TPI et Radial). Nous avons notamment validé in vitro et in vivo
l’approche SPARKLING dans certains de ces scénarios, observant une
qualité d’image similaire à celle de la TPI en dépit d’un TA moindre.

Title: Quantitative Cerebral Metabolic Imaging using Sodium and Phosphorus Nuclear Magnetic Resonance at 7 Tesla
Keywords: Medical imaging, Magnetic resonance imaging, Brain, Physiology, Metabolism

Abstract: Magnetic resonance imaging (MRI) allows for the non-
invasive study of metabolism in soft tissues. This thesis consists in
the development of innovative methods for metabolic cerebral imaging
using sodium (23Na) and phosphorus (31P) MRI at ultra-high magnetic
field (UHF). These nuclei are of interest because of the central roles
of their electrolytes and metabolites in cell physiology and biochem-
istry. Due to various cellular defects or mitochondrial abnormalities,
brain cells can fail to meet energy requirements, which can lead to
brain dysfunction and neurodegeneration. The idea is therefore to de-
tect and evaluate the evolution of neurodegenerative diseases using
these nuclei and their electrolytes/metabolites as biomarkers of dis-
ease progression. Among the different techniques that can be used
to probe energy metabolism non-invasively, in vivo 31P magnetic res-
onance spectroscopy (MRS) is one of the most promising for clinical
research. While in vivo 31P-MRS has been successfully applied to study
metabolic syndromes of the musculoskeletal system, its application to
the study of neuroenergetics has often been limited by the relatively
low concentrations of ATP and PCr in the brain. Recently, 31P-MRS
has benefited from the advent of UHF clinical MRI scanners promoting
the development of various 31P magnetic resonance spectroscopic ima-
ging (31P-MRSI) approaches. However, the clinical relevance of these
31P-MRSI approaches for the study of neurodegenerative diseases re-
main limited due to their long acquisition time (AT). Thus we have
proposed a rapid frequency-selective 3D 31P-MRI sequence capable of
measuring two (or more) phosphorylated metabolites typically Aden-
osine Triphosphate (ATP) and Phosphocreatine (PCr). By adding a
module for the selective saturation of γ-ATP, a saturation transfer 31P-
MRI protocol is proposed to estimate simultaneously in several cortical
areas the concentrations of PCr, ATP and the flux through the creatine

kinase (VCK). To account for the radiofrequency field (B+
1 ) inhomo-

geneities in our quantification pipeline, we generated a B+
1 template

map from data acquired on an independent cohort of 6 healthy volun-
teers. This B1+ template map was then used to estimate the effective
excitation and saturation flip angles in the quantification/modelling of
our 3D ST 31P MRI data. We also developed a variant of this se-
quence and protocol to study the PME/PDE ratio in the context of
our collaboration with the University Hospital of Poitiers. Total tissue
sodium concentration (TSC) has been confirmed through several stud-
ies as a relevant biomarker of cell viability and metabolic imbalance,
particularly in neurological diseases such as Alzheimer’s disease and
multiple sclerosis. Most of these studies have used ultra-short echo
time sequences combined with non-Cartesian deterministic k-space tra-
jectories such as TPI, radial or FLORET. Nevertheless, the TA remains
relatively long, even at UHF, due to the moderate intrinsic sensitivity
and concentration of sodium. Deterministic trajectories do not exploit
the inherent parsimony of k-space to the fullest extent due to their
geometric patterns. Therefore, we hypothesized that 23Na MRI could
benefit from stochastic compressed sensing (CS) approaches such as
SPARKLING that could lead to shorter TA while preserving good im-
age quality. Determining the scenarios of interest is not trivial because
CS performance depends on the signal-to-noise ratio and image size.
Our contribution consisted in conducting first a theoretical study to
find regimes in which the 3D SPARKLING approach outperforms the
non-Cartesian 3D trajectories commonly used today using a dedicated
brain 23Na MRI data simulation tool. The CS SPARKLING approach
was then applied in vitro and in vivo for validation, demonstrating that
in those scenario, it can outperform TPI by preserving image quality
with a significantly reduced TA.
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General Introduction

In the early 1980’s, magnetic resonance imaging (MRI) was introduced into clinical
use. Thanks to its innocuous and non-invasive character, this imaging technique has

become increasingly popular. The hydrogen nucleus (a single proton) is used for imaging
because of its abundance in water and fat. Since then, proton (1H) MRI has allowed health
professionals and researchers to exploit its different contrasts and diversify its fields of
application.

At its core, an MRI scanner consists of a huge magnet that generates an intense static
magnetic field (B0). Over the years, technological developments increased this B0 from
less than 0.1 Tesla (T) to 11.7 T for humans [Quettier 2020,Allard 2022] and 21 T for
rodents [Schepkin 2010]. As the NMR signal’s Signal-To-Noise ratio (SNR) is thought to
be proportional to the power 1.65 of the B0 magnetic field [Pohmann 2016], the subsequent
increase in SNR allows for higher spatial resolutions proton MRI with nominal resolution
up to 0.2 mm isotropic for human brain imaging [Stucht 2015].

Thanks to the recent advent of 7T clinical MRI scanners and the availability of
sub-millimeter anatomical brain images, physicians can diagnose and follow up more
precisely on focal epilepsy lesions, which were barely visible at weaker magnetic fields
[Feldman 2019,Opheim 2021]. Besides anatomical data, proton MRI can provide other
cognitive information. For instance, functional MRI (fMRI) has helped the development of
Neurosciences, allowing for a better, more objective understanding of how the brain works.
As for most proton MRI modalities, thanks to B0 increase, fMRI has gained sensibility
and specificity [Beisteiner 2011,Worthoff 2019].

Non-proton MRI, also named X-nuclei MRI (X-MRI), brings a whole new information
set. Sodium-23 (23Na) and Phosphorus-31 (31P) MRI, in particular, have the potential to
assess cell metabolism and energy metabolism as the activity of the sodium-potassium pump
(Na+K+-ATPase) is critical for maintaining cellular homeostasis, especially in neurons. If
the cell membrane is damaged or there is an acute or chronic deficit in energy metabolism,
this can lead to cell malfunction and, eventually, cell death [Mccarthy 2015].

Several studies have demonstrated the relevance of X-MRI to investigating neurode-
generative diseases such as Alzheimer’s disease [Haeger 2021], disease Parkinson’s, [Grim-
aldi 2021] and Multiple Sclerosis [Eisele 2019,Huhn 2019]. However, X-MRI presents its

1
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challenges, mainly due to the relatively low intrinsic sensitivities of those exotic nuclei
compared to the proton and the much lower in vivo concentrations of those chemical
species in living times compared to water. This results in a thousandfold less signal when
compared to proton MRI depending on the applications. Longer acquisitions times are
needed to obtain useful image quality. Researchers must reach specific compromises in
terms of spatial and temporal resolutions to tackle this issue while maintaining satisfactory
detection thresholds. In this battle, continuous software and hardware developments are
crucial to push forward the field and realize the promises of metabolic imaging using
X-MRI.

NeuroSpin is a department of the CEA (Commissariat à l’Energie Atomique et aux
Energies Alternatives - French Alternative Energies and Atomic Energy Commission). It is
a research center dedicated to developing neuroimaging using MRI at ultra-high magnetic
fields. It is equipped with three preclinical MRI scanners (7T, 11.7T, and 17T) and three
clinical MRI scanners at 3T, 7T, and 11.7T (figure GI.1), the latest being the largest and
strongest MRI scanner in the World (GI.2). There could not be a better place to develop
X-nuclei MRI and its applications than NeuroSpin.

Figure GI.1 – Iseult 11.7T MRI Scanner : ©F.Rhodes – CEA

Even though many studies have been established to study possible biomarkers on
the brain using 23Na [Thulborn 2018] and 31P MRI and MRS [Cadoux-Hudson 1989,
Wang 2017b]. Due to lower nuclear sensitivity, lower concentrations when compared to 1H
MRI, acquisition time is still a limitation on the use of this application. This Ph.D. thesis
aims to achieve methodological developments on 23Na MRI and 31P MRI to take a step
closer to using 23Na and 31P MRI in neurodegenerative clinical research by accelerating
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Figure GI.2 – Pumpkin images. From [Allard 2022]

X-MRI acquisitions. So, in the future, medical professionals could incorporate those
techniques into their clinical routine and, therefore, be able to access cell metabolism and
better understand neurodegenerative diseases.

Thesis objectives

So the goal of this thesis is to develop methods for cerebral metabolic imaging to investigate
neurodegenerative diseases. Specifically, we aim to:

• 31P MRI: Develop a clinical protocol able to quantify Vck in the brain:

– Estimate the absolute concentrations of high-energy phosphates: ATP and PCr;

– Estimate the forward kinetic constant of the creatine kinase reaction.

• 23Na MRI: Study the potential of 3D SPARKLING, an optimized k-space sampling
scheme for undersampled sodium MRI:

– Determine the optimal scenario in terms of spatial resolution and SNR for
SPARKLING at 7T;

– Study its ability to accelerate acquisition while preserving image quality when
compared to state-of-art techniques such as TPI;

– Quantify the impact of acceleration on quantification of total sodium concentra-
tion.

These developments should then be applied in clinical studies through collaborations.
The following two parts are dedicated to each of those sets of objectives: part II for

phosphorus MRI development and part III for sodium MRI development, respectively.

Thesis Overview

This thesis consists of three parts. Part I describes some basic concepts essential to
understanding this manuscript. The second one presents the work developed on 31P, and
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the third represents the work developed on 23Na MRI. Together they described the past
three years and the new research possibilities the contribution proposed here opens.

In detail, the first chapter 1 briefly describes the NMR phenomenon, the techniques
behind MRI acquisitions are made as well how images are acquired and reconstructed in
k-space. The chapter 2 presents the state-of-the-art of X-nuclei MRI, especially 23Na and
31P MRI, which were the focus of this thesis showing its motivation and challenges and
how literature tackles this problem nowadays.

In Part II, we focus on 31P MRI and propose a different way other than classical MRS
approaches to assess flux through creatine kinase. The medical motivation is that we believe
this could be a better imaging tool for the search of biomarkerers in neurodegenerative
diseases. Currently, techniques have limited use in brain regions due to long spectroscopy
acquisition. The part II presents our contribution for 31P MRI and 3D flux estimation,
developing a multiplex frequency selection sequence and protocol, and modeling applied
along with a post-processing pipeline. We also show results acquired in vitro and in vivo.

The part III presents our contribution to 23Na MRI and faster acquisitions. The
protocol [Haeger 2021] takes around 30 minutes to image tissue sodium concentration at
a spatial resolution of 3 mm isotropic. While this was possible in our clinical research
protocol, using it in a clinical routine seems far from reality. Our contribution consisted of
developing a simulation to evaluate the scenario of interest and parameters trajectories
optimization. Finally, we show the results obtained in vitro and in vivo at 7T. This
development multiplies clinical research possibilities, thanks to the reduction of time
acquisition.

] ] ]

] ]

]
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Fundamentals and State-of-the-art
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The goal of this chapter is to summarize important concepts necessary to understanding
this manuscript. Here, we briefly summarize basic concepts of nuclear magnetic

resonance (NMR) phenomenon, pulse sequences, image acquisition and reconstruction.
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8 Principles of X-nuclei NMR

For further information, the reader may referred to MR handbooks [Bernstein 2004, de
Graaf 2007].

1.1 NMR phenomenon

MRI is possible thanks to the Nuclear Magnetic Resonance (NMR) phenomenon. I. Rabi
first described this physical phenomenon in 1938 [Rabi 1938], which won him the Nobel
Prize in Physics in 1944. This phenomenon will be explained in this section.

All atomic and subatomic particles possess an intrinsic property called spin. The NMR
phenomenon can be observed in any atomic nucleus with a non-zero spin. This is typically
the case for atoms with an odd number of protons, neutrons, or both. A spin can be
defined by quantum mechanics’ quantized number I (half-integer). In the absence of a
magnetic field, the moment of spins cancels each other such that the atom’s nucleus has no
overall momentum. Each nucleus with a non-zero spin has a magnetic moment µ, which is
defined as:

µ = γI (1.1)

Where γ is the gyromagnetic ratio specific to the considered nucleus (Table 1.1), the proton,
i.e., the nucleus of the hydrogen atom, is the most commonly used nucleus in NMR and
MRI. Many other nuclei of interest for chemistry and biomedical research can be studied
using NMR, as summarized in (Table 1.1).

Table 1.1 – The gyromagnetic ratios for several common nuclei

Nuclei Spin (I) Gyromagetic Ratio γ (MHz/T) Natural Abundance (%)
1H 1/2 42.576 99.9985
13C 1/2 10.705 1.07
31P 1/2 17.235 100
27Al 5/2 11.103 100
23Na 3/2 11.262 100
7Li 3/2 16.546 92.41
29Si 1/2 -8.465 4.68
17O 5/2 5.772 0.038
15N 1/2 -4.361 0.368

To give the reader an idea of the relative sensitivity of 23Na applications, one must
consider that in the healthy brain, sodium concentration is about 40 mM. While water
abundance in human body is 88 M [Brown 2014]. This can lead to an signal-to-noise
ratio (SNR) for 23Na MRI of about 5500 fold less when compared to 1H MRI [Ladd 2018].
Regarding 31P, Phosphocreatine (PCr) concentration in an adult human brain [Buchli 1994],
is in the order of 3.4 mM, which can lead to a large SNR deficit of up to 42000 fold less
when compared to 1H MRI, which is imaging the signal of water.
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1.1.1 Precession

In the absence of a static magnetic field ( ~B0), each nuclear magnetic moment is oriented
randomly. However, once a ~B0 is applied, the spins will precess around ~B0 by aligning
their rotation vector parallel or antiparallel to ~B0, leading to two different low or high
energy states (for I=1/2).

The frequency of this precession is called Larmor angular frequency, and it is defined
as:

wo = γB0 (1.2)

for the ordinary Larmor frequency (in Hz): f0 = w0
2π .

Depending on the intensity of the ~B0 field, the nucleus of interest, and the sample
temperature, an average macroscopic magnetization ~M0 appears. The distribution of spins
in the high or low-energy states follows the Maxwell-Boltzmann statistic. This average
macroscopic magnetization is referred to as net magnetization. It can be observed from a
large sample as derived from the Boltzmann statistics (for kT � γ~B0):

~M0 = ργ2h2

16π2kT
~B0, (1.3)

Where ρ is the number of nuclei per unit volume, also known as spin density, k is the
Boltzmann constant, T is the temperature (in Kelvin), and h is the Plank’s constant. At
this thermodynamic equilibrium state, the net magnetization vector ~M is equal to ~M0

aligned along the static field ~B0. One can notice that the ~M depends on the intensity of
~B0, hence the benefit of working at ever more intense magnetic fields. Another way to
increase the magnetization is to decrease the temperature. Albeit this is not possible in

vivo, the principle of hyperpolarization is based on that fact. The high level of polarization
( nearly all the electrons are aligned in the same direction) can be transfered to 13C-
labeled probes, which increases their MRI signal. Details of this approach can be found in
Wang [Wang 2019].

1.1.2 Excitation

NMR signal can not be observed when ~M is aligned with ~B0. To detect this magnetization
M , a secondary radiofrequency (RF) field ~B1 is used to flip ~M onto the transversal plane
with regards to the orientation of ~B0. Initially, ~M is aligned with ~B0, and when ~B1 is
applied, ~M will be tipped out of alignment. This ~B1 field, oscillating at frequency wrf is
transmitted through an RF coil [Hernandez 2020].

To resonate with the spins, the B1 field oscillates at the Larmor frequency (wrf = w0).
We will describe this system on the rotation frame of reference, where the rotation speed is
set at the Larmor frequency. The magnetization now can be decomposed as:

~M =


Mx

My

Mz

 and ~Mxy =


Mx

My

0

 (1.4)
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when the ~Mxy is the transverse magnetization and ~Mz is called the longitudinal magnetiza-
tion.

The nutation angle α, also known as flip angle (FA), is:

α = arccos
(
Mz

|| ~M ||

)
for 0 ≤ α ≤ π

α = arcsin
(
|| ~Mxy||
|| ~M ||

)
if 0 ≤ α ≤ π/2

The longer and more intense ~B1 is, the larger the FA that the net magnetization ~M

experiences. When one does not consider ~B0 inhomogeneities in the sample (on-resonance),
the relationship between the radiofrequency pulse B1(t) and α can be defined as:

α = γ

ˆ
B1(t)dt (1.5)

If the pulse envelope is rectangular (the amplitude of B1(t) is a constant), the flip angle
is:

α = γTB+
1 (1.6)

where T is the duration of the pulse and B+
1 is the intensity of the transmission B1. Let us

define the transmit field generated by an RF coil as the B1 field in the positively rotating
frame of reference B+

1 , which can be defined in terms of x and y components of B1 field in
the laboratory frame of reference:

B+
1 = B1x + iBiy

2 (1.7)

B+
1 is assumed to be rotating in the same direction as nuclear precession.

1.1.3 Relaxation

Following RF excitation, the longitudinal magnetization ~M is restored through relaxation
processes characterized by two relaxation times: T1 for the longitudinal magnetization Mz

and T2 for the transverse magnetization Mxy. In the rotating frame of reference at angular
frequency ω0, the relaxation of the magnetization is modeled by the Bloch equations:

dMxy

dt
= −Mxy

T2
(1.8)

dMz

dt
= M0 −Mz

T1
(1.9)

The rotation of Mxy in the transverse plane induces an electromotive force (emf)
through a reception coil that is often the same one used to excite the spins. This emf can
be detected, and this signal is called the free induction decay (FID) [Hahn 1950] (Figure
1.1):

In MRI, the relaxation phenomenon brings information about the nuclei environment,
and these relaxation times are responsible for different images contrasts:
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Figure 1.1 – Free induction decay

• T1 weighted images: In complex biological environments such as tissues, molecules
(and therefore their constituent atoms) tend to possess slow to intermediate correlation
times, leading to shorter longitudinal (and transverse) relaxation times. Consequently,
steady-state magnetization is larger where the T1 is shorter, leading to brighter pixel
intensities on T1 weighted images. In opposition, free water has slower longitudinal
relaxation times and lower pixel intensities (even dark pixels if the inversion time is
set right).

• T2 weighted images: T2 is defined as the characteristic time governing the decay of
the macroscopic magnetization in the transverse plane. This arises from the loss
of phase coherence between magnetic moments intrinsically due to energy transfers
at the atomic or molecular levels between spins ("spin-spin" interactions). The T2

decay or amount of dephasing the spin population experience depends on multiple
factors. As for T1 times, T2 values for a considered molecule/atom differ between
tissues according to their correlation time, the longer the correlation time the shorter
the intrinsic T2.

• T ∗2 weighted images: in any actual NMR experiment, the transverse magnetization
decays much faster than can be predicted from its intrinsic T2 value. This effective
decay is characterized by the T ∗2 relaxation time. This faster T ∗2 decay results
essentially from the additional loss of phase coherence brought by the B0 static
magnetic field inhomogeneities at the microscopic and macroscopic levels. These
inhomogeneities might be the after-effect of natural deformities in the actual magnet
or vulnerability prompted by field distortions created by the tissue or different
materials set close to or within the sample/subject. The effects of those ~B0 changes
can be recovered when using spin-echo sequences such as Rapid Acquisition with
Relaxation Enhancement (RARE). For more details, one can refer to [Hennig 1986].

The term T ∗2 can be defined:

1
T ∗2

= 1
T2

+ γ∆B0
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where ∆B0 represents the variation of the effective B0 field across the considered pixel or
voxel.

On spin-echo (SE) imaging, the TR and the TE are used to control image contrast and
the "weighting" of the MR image. By varying the relationship between TR and TE, we
obtain the different contrast:

• short TR and short TE: T1 weighted images

• long TR and long TE: T2 weighted images or, possibly, T2
∗ weighted images

• long TR and short TE: Proton density weighted images

We say TE is short when compared to T2 and the ratio TE/T2 → 0. When TR is long
compared to T1, the T1-weighting term e−TR/T1 → 0.

Chemical Shift

In addition to the external static magnetic field B0, nuclei experience an induced local
magnetic field originating from their immediate electronic cloud. As a consequence, the
total magnetic field experienced by the nuclei is different depending on their electronic
orbitals (remember that electrons themselves have a magnetic moment). The electronic
cloud (or probability distribution) around a given nucleus (1H, 13C, 15N, etc.) depends
on the molecule it belongs to and its possible conformations/geometry (bond partners,
bond lengths, angles between bonds, etc...). Thus, nuclei in a molecule resonate at slightly
different resonance frequencies due to the "shielding effect" of their electronic cloud. One
can define a "shielding" constant σ:

In nuclear magnetic resonance spectroscopy (MRS), the chemical shift (expressed in
ppm) is defined as the relative resonance frequency of a single or a group of equivalent
nuclear spins typically from a specific molecular moiety with respect to a reference chemical
compound (e.g. TMS: tetra-methyl silane in 1H MRS) used as a standard of chemical shift
(δref = 0 ppm): δ = (−̂̂ref)/̂ref

The chemical shift values are independent of the intensity of the B0 field. Therefore, for
any given molecule, the set of chemical shift values (with the corresponding peak intensities)
serves as a "signature" of the molecule in question.

1.2 From FID to image

1.2.1 Excitation: selective and non-selective

The main characteristics of a ~B1 RF pulse are its waveform (amplitude and frequency/phase
modulation), duration, bandwidth, and effective/targeted flip angle. Short and intense
pulses, rectangles, also known as hard pulses, are most used to achieve uniform spin
excitation across a given frequency range [de Graaf 2007]. When a particular type of
spectral selectivity is needed, other pulses are preferable, such as gaussian and sinc pulses.
This is because the spectral selectivity profile is given by the Fourier transform (FT) of the
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considered pulse. In the case of the hard pulse, the sinc form of its FT leads to offresonance
excitation (Figure 1.2).

Figure 1.2 – A rectangle’s Fourier transform (FT) is a sinc pulse and vice versa. The
inverse FT converts the curve back to square on the left

.

Better selectivity profiles can be obtained with more sophisticated pulses such as Shinnar-
Le Roux (SLR) [Pauly 1991a]. Sinc pulses are still primarily used for easy implementation,
especially for small flip angles [de Graaf 2007]. Similar pulses can be used for inversion
and refocusing.

Spatially Selective Excitation

In some applications, spatially selective excitation is required. In theory, a perfectly
rectangular profile in the frequency/space domain can be obtained with an infinite sinc
pulse in the time domain combined with the appropriate selection gradient. However, this
is impossible in practice due to the limited T2 and T ∗2 times. Therefore truncation of the
RF pulse profile is needed.

During the application of spatially selective RF pulses, a gradient pulse G = [GxGyGz]T

must be applied to achieve the expected spatial selectivity (position, orientation, slice
thickness). This gradient modifies the static field at any given point r in the coordinates
system (x,y,z). The total static magnetic field is then:

B(r) = B0 + rG (1.10)

The resonance condition is then modified to:

w(r) = γB0 + γrG− ωrf (1.11)

where ωrf is the angular frequency of the radio-frequency pulse.
This means that the Larmor resonance frequency now depends on the position r.

Therefore, there will be coordinates for which the RF excitation pulse is on-resonance and
others for which it will be off-resonance, determining the achieved slice selection profile. In
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particular, the slice thickness is determined by the gradient strength and the bandwidth of
the RF pulse.

With the introduction of these static field gradients, there is now a linear relationship
between the off-resonance term ∆ω and location r. In particular, when neglecting B0

inhomogeneity, and when matching ωrf with ω0, the equation 1.11 simplifies to:

w(r) = γrG (1.12)

As pictured in the figure 1.3, a single gradient GZ is applied in the Z direction: we can
write ω(Z) = γGZZ. In order to selectively excite a slice of thickness W positioned at
Z = 0, one must apply a pulse of bandwidth BW = ∆ω(W/2)−∆ω(−W/2) = γGZW at
the Larmor frequency ω0.

A rectangular spectral response is achieved with a pulse of sinc temporal envelope (in
practice, a sinc pulse truncated after a few zero-crossings), with the main lobe of duration
2/BW = 2/γGZW . More generally, in the equation 1.11, the same pulse envelope can be
used to excite any slice centered around ZC by adjusting ωrf accordingly:

ωrf,C = ω0 + γGZZC (1.13)

Figure 1.3 – Illustration of spatial selection of a transversal slice by coupling a linear static
field gradient GZ along Z and a spectrally selective pulse with a sinc envelope. A slice of
thickness W around the isocentre (left, in black) is selected by applying a pulse whose
carrier frequency ωrf matches ω0 and whose envelope corresponds to a bandwidth BW =
γGZW. From [Tomi-Tricot 2018].

For 3D images, non spatially selective excitation is often applied. No gradient is needed
during the RF excitation. Typically, to avoid non-excitation due to ∆B0 broad pulses
in frequency spectra are used like the rectangle pulses. In this case, α = γB+

1 T , where
T represents the duration of the RF pulse. In this thesis, we are often interested in 3D
non-selective excitation because they provide the higher SNR possible.
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Spectrally selective excitation

The primary magnetic field ~B0 is shielded by electrons, reducing the net magnetic field
experienced by nuclei. Consequently, various intra-molecular and inter-molecular cir-
cumstances (e.g., atoms in different molecules or ionic/electronic interactions within and
between molecules) lead to slightly different Larmor frequencies due to this shielding.
Chemical shifts are quantified by a dimensionless metric δ which describes the relative
difference in the frequency with a "reference" Larmor frequency (expressed in ppm):

f = γ

2πB0(1− δ) (1.14)

Spectrally selective RF pulses selectively excite the spins of particular chemical species
(typically fat or water protons in conventional MRI). 31P spectra also have several meta-
bolites of interest (figure 1.4). To observe a specific metabolite, one must set the frequency
of their B1 RF field to match the resonance frequency of this metabolite. To obtain a
good selectivity, a narrow frequency bandwidth pulse is needed. As shorter bandwidths
are linked to longer RF pulses, spectral selectivity requires longer RF pulses and leads to
larger T2*-weighting and loss of signal. Gaussian pulses offer a good compromise. Altern-
atively, one can use Hermitian or sinc pulses. More sophisticated solutions are numerically
optimized pulses such as the Shinnar-Le-Roux (SLR) [Pauly 1991b] or even asymmetric
RF pulses [Starcuk 1993].

Figure 1.4 – Schema of simplified spectra of 31P at 7T in the human brain. PCr stands for
phosphocreatine, α-ATP stands for the α (first phosphate group) resonance of adenosine
triphosphate.

1.2.2 Spatial encoding

By default, the FID only gives spectral information about the sample without any spatial
specific information. To do so, magnetic field gradients are used to encode this spatial
information. This is the basis of MRI. Paul Lauterbur and Mansfield first discovered
this [LAUTERBUR 1973]. Lauterbur applied magnetic field gradients rotated successively
by 45°, and he was able to obtain four different one-dimensional projections of an object
via its NMR signal.

The Larmor frequency is proportional to the static field intensity; by adding time-
varying gradient pulses to ~B0, the precession frequencies (or phases) of spins would vary
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spatially. These different frequencies (or phases) can be separated and inform us about the
spatial distribution of these spins in the object:

ω(x) = γB(x)

• frequency encoding, a unique precession frequency to each spin at a distinct spatial
location, linearly depending on spatial location. This technique can be applied in
any physical direction during the signal readout.

ω(x) = γ(B0 +Gx(t))

• phase encoding consists in applying a gradient lobe with linearly incremented intens-
ities while the magnetization is in the transverse plane (before signal readout). For
Cartesian 3D MRI, phase encoding is usually applied orthogonally to the slice and
frequency encoding directions. For a y phase-encoding gradient Gy:

ϕ(x) = γ

ˆ
Gy(t)dt

1.2.3 RF Coils

Radiofrequency coils come in all shapes and sizes. There does not exist a single coil design
optimal for all MRI applications.

The "birdcage" volume was MRI’s first popular coil configuration [Bernstein 2004]
(Figure 1.5).

Figure 1.5 – Dual Tuned 31P-1H Quadrature
Head Coil for 7 T using birdcage coil design
from rapid biomedical.

Figure 1.6 – Helmet Head coil for 7T with
one channel in transmission and 32 channels
reception from Nova.

Ideally, a transmit coil generates a uniform RF field for a homogeneous excitation
throughout the brain. It is defined by its transmission profile (B+

1 ). Another critical
property is its transmission efficiency, i.e., the power needed to generate a unit of Rf field
(usually expressed in W/µT).

The primary property of a good reception coil is its sensitivity to the organ of interest.
Typically, the smaller the coil, the more sensitive it should be. However, the reception coil
or array of coils must also cover the whole organ of interest with minimal sensitivity bias
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throughout. Consequently, a trade-off needs to be found. The sensitivity is defined by its
reception profile (B−1 ).

Birdcage design privileges a homogeneous B+
1 field. However, their sensitivity is

compromised due to their large size and often poor filing factor (ratio of the volume
occupied in the coil and total volume) [de Graaf 2007]. Surface coils are more sensitive,
but their B+

1 is highly inhomogeneous.
Typically, a birdcage is desirable for transmission and a surface coil for reception.

Some commercial coils use the birdcage design for both transmission and reception. For a
single coil in transmission and reception, and at low frequency, B+

1 B−1 = 1. This idea of
reciprocity provides a handy approach for estimating the reception sensitivity from the
transmitted RF field pattern in NMR spectroscopy and MRI. Hoult et al. were the first to
describe the reciprocity principle for NMR. [Hoult 2000].

While complex, more efficient/sensitive designs exist. One such design is the helmet
coil which consists of an array of reception loops positioned close to the head in the shape
of a helmet. This design increases the SNR obtained, but as a trade-off, B+

1 maps are
inhomogeneous and need to be accounted for in the image reconstruction pipeline.

Power deposition

The transmit coil emits energy (via the E and H fields) that is dissipated in the brain/body
as heat. With higher static magnetic fields, this energy increases quadratically, leading to
potential heating hazards.

To address this problem (for MRI and another electromagnetic devices such as cell-
phones), authorities elaborated norms/guidelines to dictate the limits acceptable for specific
absorption rate (SAR). It is defined by:

SAR = 1
V

ˆ
sample

σ(r)|E(r)|2

ρ(r) dr (1.15)

where σ is the sample electrical conductivity, E is the root mean square of the electric
field, ρ is the sample density, and V is the sample volume. The human body can tolerate
up to a few watts per kilogram of tissue before its temperature increases. SAR constraints
directly impact the design of high-energy pulses such as adiabatic pulses, limiting their
clinical applications at UHF. Pulse optimization methods exist to lower the energy of such
pulses under SAR/B+

1 constraints as bandwidth-modulated adiabatic selective saturation
and inversion (BASSI) [Warnking 2004]. BASSI pulses are derived from an analytical
calibration equation that allows the determination of the precise amplitude to achieve any
effective flip angle. However, pulse optimizations are out of the skope of this thesis.

1.3 MRI pulse sequences

This section describes the sequences used in this Ph.D. thesis. The application of RF
pulses and gradients waveforms in a timely manner define an MRI pulse sequence. The
initial combination of these two elements is usually repeated within loops to acquire all the
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intended slices/weightings or dimensions of k-space incrementally. We focused on 23Na and
31P 3D MRI in this work. In those 3D MRI sequences, k-space encoding is realized using
non-Cartesian frequency encoding along so-called "Spokes," i.e., predetermined sequences
of points acquired in the k-space during each TR. In those sequences, the time between
the middle of the RF excitation pulse (when the nutation occurs) and the acquisition of
the first point (usually at the center of k-space) is called the echo-time (TE). In contrast,
the delay between two consecutive excitations is called the repetition time (TR). The TR,
TE, and FA values determine the (T1/T ∗2 ) contrast obtained in the MR image.

1.3.1 Gradient-recalled-Echo

The most generic MRI sequence is the cartesian gradient-recalled-echo (GRE) sequence.
The diagram of this sequence for a 3D non-selective non-cartesian acquisition is shown

in the figure 1.7. This sequence consists of a nutation of α followed by applying frequency
encoding gradients in XYZ during readout. By relying solely on frequency encoding, this
sequence avoids slice selection gradients during RF excitation and phase encoding gradients
just before readout saving time and allowing short or ultra-short TE.

Figure 1.7 – GRE sequence for 3D non-selective imaging for cartesian sampling.

The main problem of this sequence is that it assumes TR >> T1 to guarantee fully
longitudinal magnetization before the next RF pulse. In reality, this rarely happens because
it would lead to ineffective and long acquisition times.
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1.3.2 Spoiled Gradient-recalled-Echo

To shorten TR while avoiding unwanted coherence pathways, a technique called "spoiling"
is applied. Two types of spoiling are used: Gradient Spoiling and RF-Spoiling.

RF Spoiling consists in incremental a phase-cycling pattern on the RF pulses. The
design applied in this work is [Zur 1991]:θ0 = θinc

θn = θn−1 + nθinc

where θinc = 119°.
The gradients are counterbalanced by a spoiling gradient applied at intensity strong

enough at the end of each cycle. The purpose of these gradients is to scramble the phase
and destroy the chance of unwanted coherence. Without the spoiling, the resonant offset
will vary from cycle to cycle (because the phase encoding steps change). Therefore, the
phase encoding information from one cycle can "spill over" to the next cycle, creating
unwanted stimulus echoes and flash bands in the image.

Figure 1.8 – SPGRE sequence for 3D non-selective- imaging.

Assuming a perfect spoiling and that a steady-state is obtained, then the signal equation
of this sequence is [Ernst 1966]:

S(t) = kSD sinα
(

1− 1− E1
1− E1 cosα

)
E∗2 (1.16)

with E1 = exp
(
TR

T1

)
and E∗2 = exp

(
TR

T ∗2

)
where k is a constant and SD is the spin

density. From this equation, we can obtain that for a given (T1, TR), the MRI signal is
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maximized for α = αE , called the Ernst angle:

αE = arccos(E1). (1.17)

This sequence allows for a fast acquisition by controlling α for a given TR. A short
TR is often expected to avoid dead times. This sequence will be the base for all sequences
developed in this thesis. The shape of readout gradients will change depending on the
non-cartesian sampling scheme chosen.

1.3.3 Ultra short echo time sequences

In MR experiments, the transversal magnetization decays with T ∗2 . Standard MR sequences
offer echo times in the range of a few milliseconds for spin-echo sequences and down to
1 ms for gradient-echo sequences. Signals arising from tissues with a very short T2, well
below 1 ms, are therefore not visible using standard sequences, as the signal has already
decayed by the time of acquisition.

If the TE << T ∗2 , typically a fraction of an ms, this sequence qualifies as a ultra-short
echo time (UTE) sequence, and the T ∗2 -weighting is negligible. To minimize this TE delay,
slice selection gradients are turned off, and the acquisition starts as soon as possible after
the RF excitation. Typically, it takes about 10-50 µs of dead time between transmit
and receive is limited by post-transmit attenuation of the coil with stored RF energy
and reconditioning of the receive coil prior to acquisition. Since the aim is to start the
acquisition immediately, there is no time for phase encoding or phase relaxation read
gradient [Robson 2003], so a non-Cartesian spoke from the center to the rim of the k-space
is required. Classically in UTE MRI, k-space is sampled radially, but helical sampling
is also used for sampling with slightly longer signal lifetimes [Du 2008]. A center-out
sampling pattern is desirable because it minimizes T ∗2 -weighting and ensures that the
maximum signal is obtained at the center of k-space.

The following section will explore k-space sampling patterns used in those UTE MRI
sequences.

1.4 K-space sampling

1.4.1 K-space

The MRI signal at the end of the receive chain can be written as follows:

S(t) =
ˆ
Vs

ρ(r) exprΦ(r,t) dr (1.18)

where ρ(r) is the effective spin density, the Vs the volume sampled, and the accumulated
phase in radians is:

Φ(r, t) = γ

ˆ t

0
rG(τ)dτ (1.19)
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A function k(t) defined in what is called k-space, also known as the spatial frequency
domain, is a grid of raw MRI data, where the vector k= kx, ky, kz represents each coordinate
[Ljunggren 1983,Twieg 1983].

k(t) = γ

ˆ t

0
G(τ)dτ (1.20)

Now the equation 1.18 can be rewritten as:

S(t) =
ˆ
Vs

ρ(r) exp−ik(t)r dr (1.21)

The signal in each k-space point contains spatial frequency and phase information
about every pixel in the final image, and the overall set of k-space points corresponds to
a sampling of the spatial Fourier transform of the spin density function (to which one
could eventually add the different weightings and eventual bias). K-space is the Fourier
transform of the MR image measured (Figure 1.9). The low spatial frequencies near the
center of k-space contain most of the overall signal in the image, while the high spatial
frequencies contain finer contrasts/details.

Figure 1.9 – Central slice of MP-RAGE at 2 mm isotropic and its corresponding Magnitude
of Fourier Transform.

Nyquist-Shannon Theorem

The Nyquist-Shannon theorem is announced as follows [Shannon 1949]:

Theorem 1. If a function x(t) contains no frequencies higher than B (Hz), it
is entirely determined by giving its ordinates at a series of points spaced 1/(2B)
seconds apart.
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This means the digital sampling rate must be at least twice the highest frequency
within that signal to measure a signal correctly. B stands for bandwidth.

Figure 1.10 – Fourier transform of a time-domain signal (i) before sampling and (ii) after
discrete sampling at frequency fs. The frequency domain replication interval is fs = 1/δt.
Because fs < 2B, the replicates overlap resulting in aliasing. (iii) Fourier transform of the
signal in (ii) after windowing with a low-pass filter H of cut-off frequency Bs < B. (iv)
Resulting Fourier transform of (iii) after discrete sampling at frequency fs

For 3-D cartesian trajectories, the Nyquist-Shannon condition can be simply described
as Ns ≥ (kmaxL)2 where kmax = 1

2 ∗∆x , where ∆x stands for the target resolution. For
3-D radial trajectories, the Nyquist-Shannon condition is defined as : Ns ≥ 4π(kmaxL)2.

Point spread function

A valuable criterion to evaluate/compare k-space sampling schemes is the point spread
function (PSF), which is defined as the modulus of the Fourier transform of the sampling
pattern viewed as a set of Dirac impulses:

PSF (r) =
ˆ
eik(t)rdt (1.22)

If the object observed was a Dirac impulse, PSF is the image reconstructed. A more
general term for the PSF is a system’s impulse response. The perfect PSF, meaning a
system that does not induce a loss of spatial information via signal bleeding, would also be
a Dirac impulse. The degree of blurring of the point-like object is a measure of the quality
of an imaging system.

1.4.2 Methods of filling k-space

The most common way of acquisition used nowadays is the Cartesian sampling scheme. It
consists in filling k-space row by row. The advantage of this method is that it is easier to
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acquire and is the most efficient way of respecting the Nyquist-Shannon criteria. Cartesian
acquisitions also allow for easier/faster reconstructions via the direct application of FFT
techniques (for more details, the reader may refer to section 1.5). In the figure 1.11, we can
see examples of common 2D cartesian and non-cartesian trajectories.

However, a non-Cartesian sampling scheme offers significant advantages in acquisition
time, efficient use of MRI hardware, and reduction in sensitivity to motion and flow.
Cartesian acquisition schemes are not appropriate for UTE MRI and thus not often used to
acquire X-nuclei MRI data [Konstandin 2014]. This is because many of these nuclei have
short relaxation times, which makes it more interesting to use center-out spokes. Moreover,
they allow the physicist to focus on low spatial frequencies where most of the rare MR
signal is.

Figure 1.11 – K-space trajectories for some commonly used trajectories (a) standard
Cartesian, (b) radial, (c) echo-planar imaging, and (d) spiral from UTE sequences. From
[Bernstein 2004].

In general, for any MRI protocol, SNR varies according to this equation:

SNR ∝ SDBβ
0 fcoil(B

−
1 )∆V fseq(TR, TE, α)

√
NshotsTobsNavg, (1.23)

where SD is the spin density, B0 is the main magnetic field with a power β about
2 [Le Ster 2022], fcoil is a sensitivity function linked to the B−1 sensitivity profiles of
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the receiver coil elements, ∆V is the voxel volume, fseq the signal equation depending
on the sequence used and its core parameters, Nshot number of shots/spokes, Tobs the
observation/acquisition time per TR and Navg the number of average.

It is known that SNR is the bottleneck for X-MRI applications, and the equation
1.23illustrates the trade-off that needs to be found.

While some X-MRI applications have used 2D radial [Song 2004,Chandarana 2011] or
stack of spiral trajectories the [Irarrazabal 1995,Thedens 1999], 3D acquisition is often
more advantageous in term of SNR per unit of time. Indeed, for full 3D MRI acquisitions,
signal originates from the whole sample. Moreover, the TR for 3D MRI acquisitions can
usually be shorten further than for 2D multislice MRI acquisitions, which is advantageous
for nuclei with short T1 relaxation times. Yet, since the whole 3D k-space must be filled –
which takes time – before reconstructing, 3D imaging is more sensitive to patient motion.
Any spatial information damaged during acquisition impacts the quality of all pictures in
the volume. In 2D imaging, however, each slice is reconstructed individually. Thus motion
during the acquisition of one slice has no bearing on the remainder of the FOV. However,
as we work at relatively low spatial resolution in X-MRI, this limitation is less critical.

We can divide strategies of sampling of k-space into two types: parametric and
optimization-based trajectories. The two types are described below.

3D Non-cartesian parametric trajectories

Parametric trajectories are the trajectories for which a set of equations defines the gradient
waveforms. They are easy to compute and therefore adaptable on the MRI console for
different parameters. For the non-Cartesian k-space sampling scheme currently used, we
can cite radial, density-adapted three-dimensional radial projection reconstruction pulse
sequence (DA-3DPR) [Nagel 2009], Twisted Projection Imaging (TPI) [Boada 1997] or
Fermat-looped orthogonally-encoded trajectories (FLORET) [Robison 2017]. Some of
those are illustrated in the figure 1.12.

Due to their deterministic nature, the inherent sparsity of k-space is not fully exploited
by those parametric trajectories. Even though undersampling for those radial or TPI
trajectories affect notably the quality of the PSF, proper reconstruction techniques (density
compensation, regridding algorithms, iterative reconstruction ...) can lead to satisfactory
results [Hoge 1997,Block 2007, Stobbe 2008,Zeng 2013].

3D Non-cartesians non-parametric trajectories

Non-parametric trajectories, also known as optimization-based trajectories, offer better
exploitation of k-space. Several attempts have been made in proton MRI to improve the
sampling scheme [Kumar Anand 2008,Mir 2004, Dale 2004]. The idea is the base of
compressed sensing techniques: (i) global variable density sampling but (ii) locally uniform
coverage of k-space [Lustig 2007].

A promising CS technique that will be exploited in this thesis is SPARKLING [Laz-
arus 2019,Chaithya G R 2022]. SPARKLING stands for Spreading Projection Algorithm
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Figure 1.12 –K-space trajectories from UTE sequences. A. 3D radial. B. Twisted projection
imaging (TPI) or 3D cones types of sequences. From [Madelin 2012]. C. Floret.

for Rapid K-space samplING developed at NeuroSpin by Philippe Ciuciu and colleagues.
SPARKLING is an optimization-driven method that has been recently introduced for accel-
erated 2D T ∗2 −w MRI using compressed sensing. It has then been extended to address 3D
imaging using either stacks of 2D sampling patterns or a local 3D strategy that optimizes a
single sampling trajectory at a time. SPARKLING has the advantage of performs variable
density sampling (VDS) along a prescribed target density while maximizing sampling
efficiency and meeting the gradient-based hardware constraints.

The trajectory K̂ is optimized as:
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K̂ = arg min
K

Fp(K) = F ap (K)− F rp (K) (1.24)

where F ap (K) is the attraction term enforcing the sampling pattern K and F rp (K) the
repulsion term.

F rp (K) = 1
2p2

∑
||K[i]−K[j]||2 (1.25)

1.4.3 Evaluation of trajectories

In theory, to compare different trajectories, we need to keep in mind:

• SNR performance is the same for K-space sampling density with the same uniformity.
When sections of k-space are sampled more densely than other parts, the SNR
performance is worse than when all parts are sampled equally densely.

• The point spread function’s width is influenced by the trajectory (PSF). The PSF
broadening determines the effective resolution of the reconstructed image.

• T ∗2 relaxation during readout acts like a low-pass filter, creating image blurring and
lowering the effective spatial resolution. The magnitude of this effect is determined
by the readout length and relaxation properties of our nucleus of interest.

In practice, trajectory design is limited by maximum gradient strength, slew rates, and
duty cycle. The following section will explore how we reconstruct images acquired using
different k-space sampling schemes.

1.5 Reconstruction techniques

1.5.1 Fourier reconstruction

For MRI data acquired using a cartesian sampling pattern, reconstruction is straightforward.
The signal can be obtained by applying the Fourier Transform (FT). The discrete Fourier
transformation (DFT) for a signal s of N samples is defined as:

S(k) =
N−1∑
n=0

s(n)e−2iπk n
N pour 0 6 k

Several algorithms have been developed to compute the Fourier Transform of multidi-
mensional data in the complexity of O(N logN) where N is the size of the data. One of
the most famous is the Cooley–Tukey algorithm [Gentleman 1966].

To take advantage of those algorithms, a zero-filling step is typically necessary to set
the size of the grid signal at a power of 2. This increases reconstruction time. To avoid
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Gibbs ring artifacts, a filter in the form of a window is also applied before reconstruction
to reinforce Nyquist criteria by mitigating high frequencies.

For data acquired according to a non-Cartesian k-space sampling scheme, we mainly
have two ways of reconstructing the image: gridding [Schomberg 1995] and iterative
techniques [Yang 2009]. The first one is the current standard, which has the advantage
of being fast to compute. The latter is known for increased accuracy, the possibility to
account for off-resonance effects, and the ease with which a priori knowledge and image
models can be exploited.

1.5.2 Gridding techniques

The FFTs algorithms are faster for uniformly sampled rectilinear k-space trajectories. To
avoid using slower adaptations, gridding is used. This technique uses a convolution in
k-space to convert the input data to a uniform rectilinear data set. The choice of the
convolution function impacts reconstruction duration and interpolation accuracy. The
Kaiser-Bessel function is the most common using kernel.

For trajectories like TPI, radial, or other "center out" spokes, where the center of
the k-space is sampled multiple times, a data needs to be weighting accordingly. Image
reconstruction without compensation for the density variation can result in a severely
degraded point spread function. Determination of the density compensation term has been
an active topic for investigation with analytical and numerical approaches. Some studies
have been made to optimize the density compensation function for parametric trajectories.
For more complex trajectories, iterative methods of defining density compensation can be
used [Pipe 1999].

The nonuniform Fourier transform

The algorithm of non-uniform Discrete Fourier Transform (DFT) of Dutt and Rokhlin
[DUTT 1993] has been extended to 2D and is defined as:

Wk =
N−1∑
n=0

x(kt) exp(−2iπk.n/N) (1.26)

where x(kt) is the value of the samples at location k at instant t. This method
is more accurate than the Kaiser-Bassel regridding and requires similar computation
time [Sarty 2001]. However, Kaiser-Bessel methods are still more used in the literature
because of their convenience [Jackson 1991,Fessler 2007].

The kernel K(u) Kaiser-Bessel is defined by:

K(u) = 1
W
I0

(
β(12

u

W
)
)2

(1.27)

with I0 being the zero-order Bessel function of the first kind, W the width of the kernel,
and β is defined according to [Beatty 2005]:
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β = π

√
W 2

a2 ((a− 0.5)2 − 0.8) (1.28)

with a being an over-sampling factor.

1.5.3 Iterative techniques

These techniques approach the image reconstruction process as solving an inverse problem
and iteratively trying to optimize a given cost function by refining an image model. Its
non-Cartesian Fourier samples match the measured data. MRI image is known to be
sparse, some applications are sparse in the pixel domain like angiograms while others
more complicated images have a sparse representation in some transform domain–for
example, in terms of spatial finite-differences or their wavelet coefficients [Lustig 2007].
Evaluating the non-uniform Fourier transform of the image model is the main bottleneck
for such algorithms. Many researchers use the non-uniform FFT (NUFFT) approximation
to accelerate iterative algorithms.

We consider a discrete image and define x and y the observed signal, E the encoding
matrix that describes the principles of the physics of MRI. The model is then defined as
follows:

y = Ex (1.29)

We assume that a sparse representation can describe the signal in this context.
In this case, we adopt the discrete wavelet transform (DWT). The DWT being rep-

resented by the matrix W, we define M = EW. Therefore, we now have the following
problem to solve:

y = Mω (1.30)

where ω = W−1x.
Now, we are looking for an optimal solution ω∗ that will minimize the two terms of

the cost function. They represent respectively data fidelity F (b) and a regularization term
R(ω) that is added due to the ill-conditioned nature of the matrix E due to sub-sampling.
This is why inverting the matrix E is impossible. To tackle this problem, one needs to
define a regularization term. Thus, the optimization problem can be defined as:

ω∗ = arg min
ω

F (y−Mω) + λR(ω) (1.31)

where lambda (λ) is a regularization parameter balancing the two constraints, in the
context of MRI, the quadratic norm is often used because b, the noise, is assumed to be a
Gaussian process.

F (b) = ||b||2 (1.32)
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In this case, we reinforce the prior information of sparsity known from MRI signals.
Different functions and norms || · || can be used. Here we will adopt this model. The final
problem we will solve is then:

ω∗ = arg min
ω

1
2 ||y−Mω||22 + λ||(ω)||1 (1.33)

Other norms have been exploited as total variation (TV) norm defined in 1992
[Rudin 1992]:

V (y) =
∑
i,j

√
|yi+1,j − yi,j |2 + |yi,j+1 − yi,j |2 (1.34)

To solve this problem, several options are available like fast iterative shrinkage-
thresholding algorithm (FISTA) and proximal optimized gradient method (POGM) [Lin 2019].
As the POGM algorithm is the best algorithm to apply to a synthesis formulation of the
MRI reconstruction problem in a recent benchmark study [Fessler 2020], we adopted the
POGM algorithm whenever needed in this thesis.

Reconstruction quality can be measured using different metrics. A standard option
is the structural similarity index measure (SSIM) [Wang 2004]. It is a metric that has
demonstrated good agreement with human observers in reference image tasks. This metric
analyzes the viewing distance, edge information between the reference and the test images,
changed and preserved edges, textures, and structural similarity of the images. SSIM is
defined as:

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) (1.35)

where µx is the average of x, µy is the average of y, σ2
x is the variance of x, σ2

y is the
variance of y, c1 = (k1L)2, c2 = (k2L)2 are variable to stabilize the denominate is very
small. L is the dynamic values of the pixels. k1=0.01 and k2=0.003 by default.

However, SSIM is not robust to blurring, which limits its use [Renieblas 2017].
Once the image is reconstructed, an important step in studying cerebral metabolism is

quantification, which is the focus of the next section.

1.6 Quantification

1.6.1 Tissue concentration

The estimation of a tissue concentration for an electrolyte or a metabolite of interest is
often the goal of X-nuclei MRI applications. There are different techniques to obtain those
values. Usually, reference signals obtained from internal or external sources with known (or
assumed) concentrations calibrate the spin concentration per unit of signal. When several
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of these references are available, concentrations are estimated using linear regression of the
signal intensities of those references to their known concentrations.

Examples of references are given below [Tofts 1988,Kreis 1993,Ernst 1993,Dhamala 2019]:

• tissue-mimicking phantoms in the same FOV as the subject;

• tissue-mimicking phantom with comparable load to the subject;

• an organ/compartment within the patient with a stable/known concentration;

• another metabolite or groups of metabolites with a stable/known concentration;

• virtual reference methods;

External referencing

The first approach is called the external referencing method. In principles, tissue-mimicking
phantoms are prepared with known/measured concentrations and T1 and T2 relaxation
times if possible in the range of the values expected in vivo. At least one such phantom is
necessary. To improve the quantification, more phantoms are recommended.

Another type of external referencing is what is called the virtual reference method.
Electronic REference To access In vivo Concentrations (ERETIC) [Barantin 1997] is an
example of these methods. It uses a synthetic signal generated by an external RF source.
This source generates a stable and robust electronic quantitative reference signal. The
ERETIC method uses RF pulses synthesized during acquisition to generate the signal,
eliminating the need to add chemicals to the sample. Therefore, there are no concerns
about toxicity, chemical activity, binding, or visibility. The experimenter can easily change
the frequency, line width, and amplitude of the ERETIC signal, and the shape of the line
does not depend on the uniformity of B0. In addition, the line width is freely selectable, so
there are no relaxation time considerations when using ERETIC. When the spectrometer
is appropriately configured, the RF coil load caused by the sample reduces the ERETIC
signal by the same amount as the metabolite signal from the sample, as expected by the
quantitative reference [Ziarelli 2006]. Yet, such a solution requires the development of a
custom pulse sequence and modifying the system configuration, which is seldom possible
(figure 1.13).

The ERETIC method is used in spectroscopy techniques. For MRI, a new method
was developed called Virtual Phantom Magnetic Resonance Imaging (ViP MRI) [Saint-
Jalmes 2014, Salvati 2016]. The aim is to generate reference signals on MR images using
external radiofrequency signals. The idea is to design various numerical phantoms with a
given fat fraction, T ∗2 , and a field map. Then, the k-space of these numerical phantoms is
converted into RF signals by a waveform generator to generate virtual phantoms. Finally,
the RF signal is transmitted to the MR scanner bore by a dedicated RF coil.
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Figure 1.13 – (a) Pulse sequence diagram of the ERETIC sequence and (b) system diagram
of the Varian INOVA console highlighting the modifications required for generating an
ERETIC signal at the 1H frequency. The output of the 1H synthesizer was shared between
the waveform generators (WG) for channels 1 and 3. The ERETIC signal was taken directly
from the output of the Programmable Attenuator (PA) module, combined with the output
from channel 2 using a directional coupler, and transmitted through the X channel of the
nanoprobe. The transmission of the ERETIC waveform and the data acquisition were
synchronized in the pulse sequence. (d1, relaxation delay; satdly, presaturation delay; pw,
pulse width; acquisition time; BP, bandpass.. From [Albers 2009].

Phantom replacement

When a single large phantom is used as an external reference of concentration, it is referred
to as the phantom replacement method. In this case, the phantom (with comparable
dielectric constant) and the subjects must be measured using identical parameters and
positioned similarly relative to the coil to ensure equivalent coil loading and directly similar
signals. Identical B+

1 and B−1 fields can only be supposed in those circumstances. In
practice, co-registration and, in some situations, additional B+

1 and B−1 correction steps
are needed.

Internal reference

The second approach is referred to as the internal referencing method. In the case of an
organ/compartment of reference, it should be considered carefully as between patients or
experiments, variations exist. For 23Na MRI, the sodium concentration in the cerebrospinal
fluid (CSF) compartment [Insko 2002,Romanzetti 2014] or blood [Pabst 2001] is often used
as an internal reference of concentration ([Na]≈140 mmol/L). In the case of an internal
signal/metabolite of reference, it can also be problematic since one must assume a fixed
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and stable concentration which is not necessarily true for patients but is quite practical,
especially for data acquired in healthy volunteers. In 31P MRI/MRS, the ATP or PCr
signals have been used as an internal reference of concentrations ([ATP]≈3 mmol/L in the
brain or [PCr]≈33 mmol/L in the muscle).

1.6.2 Partial volume effect

MRI is inherently affected by the partial volume effect. This term means that the measured
intensity of concentration is inaccurate due to the relatively low image resolution and
the limited tissue sampling. The low resolution causes a blurring of the image so that
signal/concentrations are spread to the surrounding pixels, as illustrated below (Figure
1.14).

A c

Figure 1.14 – Circular source (diameter of 10 mm) of uniform activity (100 arbitrary units)
in the intensity of voxel measured image in which part of a signal emanating from the
source is seen outside the actual source. The maximum intensity in the measured image is
reduced to 85. From [Soret 2007].

This effect is called spill out. Quantification accuracy can be improved by increas-
ing spatial resolution (when possible) and using partial volume corrections techniques
[Niesporek 2015]. Partial volume correction methods can use a priori knowledge ana-
tomically to correct the impact of neighboring voxels. For instance, the Müller-Gärtner
(MG) method, [Müller-Gärtner 1992] which has been developed for PET imaging, assumes
that white matter uptake is homogeneous (Code available at https://github.com/UCL/
PETPVC). All brain pixels are classified as white matter or grey matter and sorted into
respective segments. Based on these segments and the assumed MRI resolution, the spill
out from WM to GM can be estimated and subtracted. Similarly, the spill-out from GM to
the surroundings can be assessed and compensated for. The result is a grey matter image
with corrected activity values in all pixels.

https://github.com/UCL/PETPVC
https://github.com/UCL/PETPVC
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In this chapter, we presented the necessary concepts to understand this thesis. Now,
we can explore the state-of-art techniques and the quantification of the electrolytes and
metabolites we are interested in.
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A fter explaining in chapter one the basic principles of MRI needed to comprehend
the work done during this thesis, here we will discussed the rationale that motivate

this work on metabolic imaging using x-nuclei MRI and its state-of-the-art. Proton
imaging allows the generation of different contrast between anatomically distinct soft
tissues. However, as shown in the table 1.1, the proton is not the only nuclei with a nonzero
spin quantum. This means that other nuclei can generate NMR signals. Here, we present
the different metabolites and ions of interest, as well as the creatine kinase activity, which
have been studied as possible biomarkers for Neurology or Psychiatry. We also present the
challenges related to sodium MRI and phosphorus MRI/MRS.

35
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2.1 Cerebral metabolism: who plays an important role?

The human brain represents 2% - 3% of the human weight, but it is responsible for
consuming 20% - 30% of the energy metabolized in the whole body [Clarke 1999]. The
principal actors of cerebral metabolism are metabolites; without being exhaustive here, we
will present some of the metabolites that drive cerebral metabolism.

2.1.1 Glucose

The human body has different sources of energy. However, the brain’s principal energetic
source is glucose, and its concentration is around 5 mM (1g/L) in the bloodstream and about
1-2 mM in the human brain. Glucose is not synthesized in the brain. The human body
does not produce glucose. Only vegetables produce glucose as a result of photosynthesis
reaction. Therefore, humans need to acquire glucose from their diet. Glucose can be found
in different aliments, but the principal source is plants such as potatoes or cereals (i.e.,
wheat, corn).

After ingestion, the human body will degrade the chain of carbohydrates through
digestion. The result of this process is monosaccharides. Amongst them, we found glucose.
Glucose goes through the blood-brain barrier after circulating in the brain vascular system.
It is then taken up by glial cells (astrocytes) and neurons. Two main pathways are available
to produce ATP according to oxygen availability.

When no oxygen is available, anaerobic glycolysis is the principal reaction. In both
cases, glucose is degraded in two pyruvate molecules, generating four ATP molecules and 2
reduced equivalents of NaDH+ per glucose unit. If oxygen is lacking, pyruvate is converted
into lactate via the lactate dehydrogenase enzyme. When oxygen is available, glucose’s
complete oxidation occurs via the Krebs cycle (called the citric acid or tricarboxylic acid -
TCA - cycle). One can find details of this reaction in the figure 2.1). Through glycolysis, the
TCA cycle, and the oxidative phosphorylation chain, which is coupled, 30 to 38 molecules
of ATP are produced per glucose unit.

Notably, lactate molecules produced via anaerobic glycolysis accumulate in tissue until
oxygen is available or drained to other organs for further oxidation or conversion back to
glucose (gluconeogenesis).

2.1.2 PME and PDE

Phosphomonoesters and phosphodiesters are needed as building blocks for synthesizing
Phospholipidic cellular membranes, especially those found in neurons. The NMR peaks
attributed to PME contain resonances from phosphoethanolamine (PE) and phosphocholine
(PC), both metabolites of the membrane synthesis pathways (such as the Kennedy path-
way), as well as negligible contamination from carbohydrate metabolism intermediates
such as fructose-6-phosphate or glucose-6-phosphate. The PDE signal contains mainly
contributions from glycerophosphoethanolamine (GPE) and glycerophosphocholine (GPC).
Both metabolites are also involved in membrane metabolism but have instead been linked
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Figure 2.1 – The Krebs cycle: this instructional diagram of the citric acid or tricarboxylic
acid or Krebs cycle shows the different chemical steps and reactions leading to the oxidation
of acetyl-coA, which is mainly produced from glycolysis. From Agrotman, vector version:
Flappiefh, CC BY-SA 3.0 Wikimedia Commonsm

to phospholipids degradation pathways. For instance, PME decreases while PDE in-
creases during the first 2-3 years of life [Clarke 2018]. At birth, the high PME peak is
attributed to an abundance of compounds for producing membrane phospholipids and
myelin. In contrast, the lower PDE peak matches the less active phospholipid breakdown
pathways [Buchli 1994]. Thus, the PME/PDE ratio change with brain maturation which
is associated with myelinogenesis and the proliferation of glial cells.

2.1.3 PCr and Cr

Creatine (Cr) and its phosphorylated form, phosphocreatine (PCr), play essential roles
in brain energy metabolism as an energy storage buffer for enzymatic activities in the
cytoplasm. Indeed PCr is available at a relatively large concentration in tissue (about 4 mM
in the brain) to regenerate locally and rapidly ATP from ADP. This reaction occurs through

https://creativecommons.org/licenses/by-sa/3.0
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Figure 2.2 – Average human brain spectra of volunteers from study ENERGYSEP and
its analysis by LCModel. PDE = GPE: glycerophosphoethanolamine; GPC: glycerophos-
phocholine; PME = PE: phosphoethanolamine; PC: phosphocholine. Courtesy of Fawzi
Boumezbeur.

the creatine kinase (CK) enzyme (Figure 2.5). While PCr is consumed to regenerate ATP
in the cytosol wherever it is needed, PCr is restored from ATP in mitochondria via the
mitochondrial CK.

The good functioning of CK is essential because it enables the activities of all ATPases.
One of the most critical ATPases for cell homeostasis is the Na+/K+ pump. This pump is
responsible for maintaining the electrochemical potential of neuronal membranes, which is
the basis for the generation and propagation of action potentials (Figure 2.4).

Phosphocreatine is more chemically stable than ATP and high PCr concentrations have
been shown to downregulate mitochondrial ATP production [Walsh 2001].

The couple Cr/PCr is a good marker for cell energy metabolism [Forstner 1998,
Snow 2001]. Those two metabolites are ubiquitous in all mammal cells, changes in
their concentrations being linked to pathological phenomena such as inflammation or
neurodegeneration.

In the muscle, the PCr/Cr ratio can be estimated by biopsy just after exercise at about
2.8 [Karatzaferi 1999, Smith 2004]. However, such approach is not nearly as acceptable in
the brain, due to its invasive manner. In 1H spectroscopy, Cr and PCr contents can be in
theory examined separately via the slight chemical shift difference between their methylene
resonances (CrCH2 at 3.91 and PCrCH2 3.93 ppm). It is nonetheless quite challenging
unless the experiment is performed at UHF in ideal B0 shimming conditions. Consequently,
1H spectroscopy yields almost exclusively total creatine (=Cr+PCr) levels [Fountas 2000].
Even tough, from these few ambitious 1H spectroscopy studies (mostly in animal models),
it is known that the PCr/Cr ratio is closer to 1.2 in the brain [Xu 2005,Dorst 2022].
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Thanks to the advent of chemical exchange saturation transfer (CEST) MRI two
decades ago, recent studies demonstrated that Cr (shift 1.8-1.9 ppm left of the water
peak) or PCr (shift 2.5-2.6 ppm) content can also be probed and mapped in the human
muscle tissue at moderate filed strength such as B0= 3T [Kogan 2014a] even it remain
more efficient at B0 = 7T and higher [Kogan 2014b]. Both studies showed that the increase
of the Cr-CEST signal correlates with the decrease of the PCr signal intensity as seen
directly using 31P MRS.

However, the Cr-CEST signal can be compromised by relaxation and concomitant
effects such as direct water saturation and semi-solid magnetization transfer (MT) effects
that can be prevalent in the brain due to its lower Cr content. Recently, the polynomial
lorentzian fitting (PLOT) method [Chen 2017] was developed to extract Cr/PCr CEST
signal from tissue Z-spectrum based on in vivo validation results. This enabled us to
optimize the Cr/PCr acquisition parameters on tissue directly. At higher fields, it is
possible to separate Cr and PCr contributions using CEST techniques as demonstrated at
17T in rats [Bardin 2022,Lecis 2022].

It is important to note that CEST approaches are not exactly quantitative limiting
the development of quantitative in vivo exploration of PCr/Cr equilibrium especially in
clinical studies for which accounting or correcting for B0 and B1 inhomogeneities at UHF
remain a challenge [Xu 2022].

2.1.4 Sodium and potassium

Even though sodium and potassium are ions, not metabolites, they are both crucial com-
ponents of any cell’s physiology. In the brain, sodium is present at different concentrations
in distinct compartments. In the CSF, the extracellular and vascular spaces, sodium
concentration is around 140-145 mM. The sodium concentration is approximately 10-15
mM in the intracellular compartment in healthy volunteers [Madelin 2015]. For potassium,
those concentrations are more or less reversed with low concentrations of K+ of about
4-5mM in the CSF, extracellular/vascular compartments, and high intracellular concen-
trations of around 140 mM. These concentration differences are significant factors in the
transmembrane electrochemical potentials observed in excitable cells (neurons in particular)
and maintained at a substantial cost (in terms of ATP) by the sodium-potassium pump
(fig 2.3).

This pump consumes ATP to open and keep the action potential of the membrane.
When a neuron is stimulated, one observes the sodium entering its interior through the
sodium canal. It moves two potassium ions into the cell where potassium levels are high
and pump three sodium ions out of the cell and into the extracellular fluid. In the case of
a strong enough stimulus, this creates an action potential, allowing the transmission of the
information from neuron to neuron. This scheme can be seen in figure 2.4.

A perturbation of this system can lead to severe consequences in the brain. Indeed,
abnormal sodium accumulation in the intracellular compartment can be caused by a pump
malfunction or if ATP is lacking due to mitochondrial dysfunction. This would upset
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Figure 2.3 – (a) Schematic of a eukaryotic cell and a zoom-in on the transmembrane
sodium-potassium pump. (b) Sodium ions bind to the pump, and phosphate groups from
ATP attach to the pump, changing the shape of the pump. The pump emits three sodium
ions in this new form and combines them with two potassium ions. When the potassium
ion binds to the pump, the phosphate group separates. This causes the pump to release
two potassium ions into the cytoplasm. Courtesy of Rebeca Araripe.

Figure 2.4 – Variations in potential through the sodium-potassium pump. Courtesy of
Fawzi Boumezbeur.

the resting potential and overall function of the neurons leading to neurological/cognitive
symptoms and ultimately neuronal cell death.

2.1.5 ATP and CK

ATP production is controlled mainly by the ATP synthase enzyme (at the end of the
oxidative phosphorylation chain in mitochondria). The activities of the ATPases drive its
consumption. In this picture, the creatine kinase (CK) reaction helps regulate cytosolic
ATP distribution, sub-compartmentation (in organelles), and utilization (figure 2.5). These
coupled reactions constitute a chemical exchange metabolic network of PCr ↔ ATP ↔ Pi

characterized by two forward and two reverse reaction fluxes, which can be studied non-
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invasively by in vivo 31P MRS combined with magnetization transfer (MT) preparation
modules [Chen 2018].

Figure 2.5 – a: Schematic diagram of the brain’s metabolic network, including the metabol-
ism of glucose, oxygen, and high-energy phosphate. These metabolic pathways control the
production (i.e., ATP production) and consumption (i.e., utilization of ATP) of chemical
energy and are tightly coupled to support brain function. b: A complete dynamic network
illustrates the PCr ↔ ATP ↔ Pi chemical exchange system using the 3-spin exchange
model (PCr, γ-ATP, and Pi). From [Du 2007].

2.2 Opportunities and challenges of X-nuclei Imaging

X-nuclei imaging aims to assess the underlying changes in physiological processes at the
cellular level. There are various membrane proteins when we observe the metabolism at
the cellular level. Those proteins are more or less permeable for specific ions. Sodium,
potassium, and oxygen, for instance, partake in vital functions of the human body as
homeostasis and respiration. They regulate cell volume, energy production, consumption,
and excitation of the muscle or neuronal cells. In pathological conditions, microscopic
changes affecting ionic homeostasis are expected to appear before macroscopic and structural
modifications of the tissues. For that reason, X-nuclei imaging has the potential to become
a tool for early preventive diagnostics as well as treatment evaluation.

Especially in recent years, most publications on clinical X-MRI applications have aimed
at quantifying those signals, obtaining concentrations values that can be directly compared
between X-MRI studies and with data obtained from other techniques. In theory, for
sodium MRI, one should aim to assess its intracellular concentration because it is more
directly linked to cell metabolism. However, differentiating this concentration in the MRI
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signal is not trivial. And there is a debate in the X-MRI community about its feasibility.
For 31P MRI, this question is not explored in literature because phosphorylated metabolites
such as ATP and PCr are known to be the intracellular reserve of energy, even though
both have been found in extracellular spaces [Lee 1988], extracellular ATP being notably
involved in cell signaling [El-Moatassim 1992].

Hardware improvements in B0 strength, gradient performance, and sophisticated pulse
sequences have allowed an influx of X-MRI publications using original [Utzschneider 2020,
Sørensen 2022] quantification approaches. They have also permitted methods with lower
SNR, such as multi-quantum filtering techniques [Hoesl 2022], which will be explained in
the next section.

Recently, improvements in multi-nuclear coil design have led to increased clinical sodium
MRI studies. Different setups have been reviewed for various applications, and multiple
transmit-and-receive coils allowed an increase in SNR [Wiggins 2016,Lakshmanan 2018,
Avdievich 2011]. Coil losses, rather than sample losses, prevail in X-MRI applications due
to the lower tissue-coil coupling. Broadband or mode matching can reduce the SNR losses
caused by coupling several receiver coil parts [Brown 2016].

As a challenge, one can cite low nuclear sensibility. As shown in the table 1.1, sodium
has approximately a quarter of gyromagnetic moment and phosphorus roughly a third,
impacting into the factor of (γ2) their intrinsic sensitivity as explained in chapter one.
Their concentrations are also several orders of magnitude lower than water, leading to
thousand folds less signal (the reader may refer to chapter one for more details).

Besides, sodium possesses a rather large quadrupolar moment (I=3/2). Consequently,
it exhibits rapid, bi-exponential T1 and T2 relaxation processes in complex media, which
represent an additional difficulty for quantification and compartment modeling. Due to
these short T2/T ∗2 decays, it is essential to use imaging sequences with fast and efficient
excitation and acquisition. For imaging, UTE MRI sequences are often used for 23Na,
while for 31P, MRS-based methods are still the most used, as we will explain later.

2.3 Phosphorus-31 MRS & MRI

After reviewing the relevant metabolites and reactions for this Ph.D. thesis in section2.1,
we provide here an overview of the current status of 31P-MRS and 31P-MRI techniques.
This should give the readership a better understanding of the context and interest of this
work.

2.3.1 31P MRS and MRI Techniques

Phosphorus has a chemical shift range in vivo of about 30 ppm in contrast to the relatively
narrow 10 ppm window for proton spectra (or even 5 ppm for conventional up-field spectra).
Also, the number of metabolites of interest for in vivo 31P NMR is much smaller than 1H
MRS. Indeed, as illustrated in the figure 2.2, there are about 10 main resonances or groups
of resonances that can be investigated: Phosphocreatine (δ = 0.0 ppm per convention), the
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three α, β and γ resonances of ATP, inorganic phosphate, the two PME (PC and PE) and
PDE (GPC and GPE) metabolites and the reduced and oxidized forms of Nicotinamide
adenine dinucleotide resonances (NAD+NADH=tNAD). Consequently, most 31P studies
are conducted using NMR spectroscopy techniques.

Among those metabolites of interest, PCr is the most concentrated in the brain or
muscles. In addition to estimating the (absolute or relative) concentrations of these
phosphorylated metabolites, 31P NMR spectra allow the estimation of the pH. Indeed,
pH can be deduced from the chemical shifts of PCr and Pi using the modified Henderson-
Hasselbach equation [Henderson 1908] as follow:

pH(i) = pKa + log
[(δ − δHA)

δA − δ

]
(2.1)

where pKa = 6.75 is the dissociation constant of Pi and δA = 5.63 and δHA = 3.27
are the chemical shifts of the mono-protonated (HPO2−

4 ) and di-protonated (H2PO
−
4 )

forms of Pi (i.e. phosphoric acid), respectively. The primary signal of Pi comes from the
cytoplasm. Therefore, the equation 2.1 computes the intracellular pH.

Due to the low intrinsic SNR of 31P-MRS, the most commonly used coils for those
applications are surface coils arrays which yield better sensitivities at the cost of more
inhomogenous B+

1 radiofrequency fields (C.f. chapter one for more details).

Single Voxel localization

To acquire single voxel spectroscopy (SVS) datasets, single shot Point REsolved Spec-
troscopy (PRESS) [Paul A. Bottomley 1984] and STimulated Echo Acquisition Mode
(STEAM) [Frahm 1985] are widely used in proton NMR experiments [Moonen 1989]. Due
to the short T2 relaxation times of ATP in particular, these techniques are not well suited
for 31P applications.

The Image Selected In vivo Spectroscopy (ISIS) sequence [Ordidge 1986] is one of the
most appropriate SVS pulse-acquire-based localization methods for 31P studies. It is a
multi-shot approach combining eight acquisitions with three spatially selective inversion
pulses to select a parallelepipedic volume along its three spatial dimensions.

However, due to its multi-shot nature, the ISIS sequence is prone to subtraction artifacts
due to motion. Consequently, it is not recommended for experiments requiring a high
temporal resolution, such as dynamic 31P MRS study of exercising muscles. For such
experiments, since the focus is on the PCr signal, the STEAM sequence [Frahm 1987] is
satisfactory for dynamic 31P MRS studies of a single muscle at 3T [Meyerspeer 2005].
However, its temporal resolution is worse than pulse-acquire approaches since it requires
averaging to achieve similar SNR. Thus, a strategy using slice selective excitation with
adiabatic selective refocusing (semi-LASER) has been proposed by Meyerspeer et al.
at 7T [Meyerspeer 2011], this is a spin-echo-based sequence and offer a more accurate
localization with a greater SNR for PCr (figure 2.6).
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Figure 2.6 – Schematic of the semi-LASER spectroscopic imaging pulse sequence. Crusher
gradients are positioned around every adiabatic full passage pulse. From [Scheenen 2008]

Multiple voxel localization

SVS techniques are not appropriate when one wants to investigate various targets simul-
taneously. Magnetic resonance spectroscopic imaging (MRSI) or Chemical Shift Imaging
(CSI) approaches combine MRS sequences with spatial encoding schemes usually seen
in MRI while preserving the spectral information content. One of the most common
sequences for 31P MRSI is the 2D or 3D CSI-FID sequence [Murphy-Boesch 1993,Hether-
ington 2001,Kan 2010]. This method presents the benefits of the pulse-acquire sequence
(i.e., minimization of signal loss due to T ∗2 -weighting, low SAR since only one RF pulse
is needed per TR) with a 2D or 3D phase-encoding scheme. However, such PE scheme
can be very time-consuming as at least one repetition is required for each point in k-space.
A solution is using short TR with small excitation flip (Ernst) angles to accelerate the
acquisition protocol. This way, 3D-CSI datasets were recently acquired at 7T within 29:00
minutes in very challenging conditions, precisely in lung carcinoma patients [Houtum 2021].

Some of the methods proposed for proton MRSI also have been translated to phosphorus.
For instance, Echo Planar Spectroscopic Imaging (EPSI) [Posse 1994,Weiss 2012]. This
method applies a rapidly oscillating gradient waveform encodes spatial and spectral
information. This method can accelerate the acquisition by up to the number of encoding
steps in one direction (figure 2.7). This technique has already been used for muscle
[Wilhelm 2001] and brain 31P MRSI studies [Ulrich 2007]. For these studies, a sinusoidal
gradient waveform was used. This waveform is sensible to timing errors because it needs
extra hardware to trigger the acquisition. Also, the required acquisition bandwidth for
EPSI is a limiting factor for its application at UHF.
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Figure 2.7 – Schematic of the EPSI pulse sequence. From [Weiss 2012].

31P MRI: Frequency selective techniques

Spectrally selective 31P-MRI is a more straightforward translation of proton MRI approaches
to phosphorus metabolic imaging applications. These methods allow for acquisition maps
of specific phosphorylated metabolites by using frequency selective RF pulses at the desired
frequency, followed by standard MRI frequency and phase encoding techniques for spatial
encoding, resulting in shorter acquisition times even at high spatial resolutions.

Multi-Dixon approaches have been used to quantify the PCr, Pi and ATP in human
calf [Rink 2015]. The authors compared the approach against spectrally selective methods
using a fully-balanced steady-state free precession (fbSSFP). They conclude that FS
sequences should be preferred for measurements where only a single metabolite resonance
is considered. MP-Dixon performs better in terms of SNR if a larger spectral width is of
interest. The complexity of model signal combined with the lower SNR in the brain when
compared to human calf, we decided to apply a frequency selective framework to avoid
propagating errors of modelling.

Because of their role in energy metabolism and their relatively long T2 relaxation times,
most of these experiments focus on PCr and Pi mapping. For instance, the encoding
methods have been considered as the T ∗2 -weighted Turbo spin-echo [Parasoglou 2013] or
RARE [Greenman 2011a] sequences. With an interleaved strategy, the RARE approach
has demonstrated its ability to construct several metabolic maps simultaneously [Green-
man 2011b].

Additional developments in the field with similar capabilities include using a gradient-
echo sequence [Schmid 2016] non-Cartesian FLORET k-space trajectory [Khegai 2018] or
a "compressed-sensing" acceleration strategy [Parasoglou 2012].
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Saturation and magnetization transfer techniques

Dynamic in vivo 31P-MRS is the only approach that can measure in-situ and non-invasively
chemical exchange rates between phosphorylated metabolites thanks to Saturation (ST) or
Magnetization Transfer (MT) methods [Forsén 1963] (figure 2.8). The MT presaturation
module consists of a train of multiple RF pulses of constant amplitude and duration
operating at the resonance frequency of a chosen metabolite.

Figure 2.8 – Pulse sequence diagram of the MT sequence in combination with a 3D ISIS
localization scheme. From [Chen 2018].

Several in vivo 31P-MT methods have been developed. Conventional two-spin magnet-
ization saturation transfer (CST), inversion-recovery transfer (IT), and two-dimensional
chemical exchange spectroscopy (2DEXSY) [Macura 1981]. These methods have been
applied to physiological studies of ATP metabolism in various organs, including the heart
and brain. Of these methods, the CST method is probably the most widely used in
biomedical research, probably because of the simplicity and efficiency of its methodo-
logy. This method is beneficial for measuring the forward rate constant, and flux of a
PCr ↔ ATP ↔ Pi chemical exchange system when applying a frequency-selective radio
frequency (RF) saturation pulse train to saturate the γ-ATP spins fully.

2.3.2 Clinical applications

The skeletal muscles and the brain are the most common organs explored using in vivo
31P-NMR.

Muscle

Muscle 31P explorations are probably the most numerous and widespread applications due
to their relative simplicity, notably thanks to the high PCr concentration compared to
other organs. These studies focus mainly on the analysis of resting and exercising legs.
Studies have reported low PDEs in sedentary individuals [Valkovič 2016], while high levels
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correlate with high-performance cyclists [Hug 2005,Hug 2006]. This shows the utility of
PDE levels in skeletal muscle as a marker of training status.

In the brain, PME/PDE ratio is also of interest. For instance, Shi et al. acquired
localized 31P spectra at 3T in patients with bipolar disorder in either a euthymic state (n
= 14) or a depressive state (n = 11). The spectra were compared with ones acquired in
healthy subjects (n = 23). Metabolite ratios from a brain region that includes the frontal
lobe, corpus callosum, thalamus, and occipital lobe were expressed as a percentage of the
total phosphorus (TP) signal. Brain pH was also investigated. The authors observed a
decrease in the PME/PDE ratio in patients with bipolar depression relative to healthy
comparison subjects [Shi 2015]. In Krikken et al., a 31P-MRSI study was conducted
at 7 T to investigate phospholipid metabolism in breast cancer patients subjected to a
neoadjuvant chemotherapy and correlate the eventual changes with treatment response.
They demonstrated that detecting subtle changes in 31P metabolites was possible after the
first treatment cycle. Nonresponders showed different changes in metabolic ratios compared
with partial and complete responders, particularly for PME/PDE [Krikken 2019].

In addition to "static" investigation (metabolic pool sizes or ratio corresponding to
long-term equilibrium), 31P MRS also allows the investigation of "dynamic" processes.
These dynamic 31P MRS studies are focused on intracellular pH homeostasis [Apps 2021]
and ATP or PCr synthesis regulation during exercise [Heskamp 2021].

Brain

The brain is the seat of the most intense energy metabolism due to its ever-active neurons.
It is no surprise that the neuron-rich gray matter has been found to have higher ratios
of PCr/ATP and PCr compared to white matter in healthy volunteers [Mason 1998,
Hetherington 2001,Ruhm 2021].

The brain is particularly reliant on (oxidative) energy production compared to other
organs. As a result, it stands to reason that numerous brain illnesses are linked to
imbalances in pH or abnormal levels of high-energy phosphates, ATP, or PCr. Many
of these conditions have been studied with 31P-MRS, including Alzheimer’s disease
[Rijpma 2018, Forlenza 2005] and Parkinson’s disease [Hu 2000, Rango 2006], Mul-
tiple Sclerosis [Husted 1994, Guillevin 2019], migraine [Schulz 2007, Schulz 2009], epi-
lepsy [Laxer 1992,Chu 1998], and cerebral ischemia [Levine 1992,Azzopardi 1989,Mar-
tin 1996]. 31P-MRS also offers a tool to better determine the metabolic profile of brain
cancers, with the primary findings indicating that meningiomas, glial tumors, lymphomas,
and astrocytomas tend to alkalinize.

In 2021, a massive study [Rietzler 2021] was conducted on over 100 volunteers to
investigate the influence of brain region, hemisphere, age, sex, and brain volume on phos-
phorylated metabolites concentrations in healthy adults. They focused on the supratentorial
brain with a 3D 31P-MRSI sequence at 3T, and the concentrations and ratios of PCr,
inorganic phosphate (Pi), ATP were examined. From these data, significant regional
differences were found, and sex differences were found in several regions. In some brain
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regions and for some metabolites, hemispheric differences were detected. In addition,
changes with (normal) aging were also found, which also differed between women and men.

To properly study a three-pool system, one needs to analyze the corresponding three
metabolites (figure 2.9). In dynamic 31P MRS, the 3-pool chemical exchange system
requires studying ATP, PCr, and Pi signals to evaluate the flux through the creatine kinase
reaction and the ATP synthesis/degradation flux.

Figure 2.9 – Two and three pool models. Where k1, k−1, k2, k−2 are the forward and reverse
reaction rates; and [ATP], [PCr] and [Pi] are the concentrations of the three phosphate
metabolites.

In this Ph.D. thesis, we adopted a simplified two-pool model for practical reasons.
This focus on the creatine kinase activity and the PCr and γ-ATP resonances are justified
because they are more sensitive to brain activation [Chen 1997,Chen 2018]. This suggests
that Vck is less tightly regulated than VATP which could translate into pathological states
where energy imbalances occur. Recently, the flux through the creatine kinase enzyme
was measured using spectroscopy [Ren 2015] and fingerprinting techniques [Wang 2017a].
These techniques focus on one brain region at a time using 31P spectroscopy. However, it
would be interesting to simultaneously measure that information on the whole brain. This
is what will be explored in Part II.

2.4 Sodium-23 MRI

After introducing some basic knowledge on cerebral metabolism and the importance of
sodium ions for neuronal cell homeostasis, in this section, we describe the leading techniques
and clinical applications for sodium MRI to better understand the goals and interests of
our research.

2.4.1 23Na MRI Techniques

Multi-quantum filtering imaging

Possessing a 3
2 spin value, 23Na nuclear magnetic moments can occupy four different energy

levels. Consequently, three transitions are possible by a single quantum of energy ( ±γ~B0).
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The correlation time describes the variations of electrostatic field close to the 23Na nuclei.
These electrostatic field gradients are generated by the electrons from the surrounding
environment/molecules as lipids, proteins. Therefore, in a biological sample, there are
varying quadrupolar interactions, which are combined to the Zeeman effect splitting acting
as an additional relaxation mechanism leading to bi-exponential T2 and T1 relaxation
processes with fast and slow components.

The coherence pathway is the sequence of coherence levels the NMR signal passes
through between the first pulse and the time it is acquired. To measure and filter for
different coherence pathways, in general, a 3-pulse sequence is needed along with RF phase
cycling to select the coherence of interest. In an MQF sequence, the coherence pathway is
manipulated by applying RF pulses, flipping the magnetization at angles θ and with phase
shifts ϕ according to a predetermined phase cycling sequence. The coherence of interest is
then selected by adding/subtracting the acquired signals, such as the signals of the other
coherences cancel each other out [Bain 1984].

However, multiple quantum coherences (MQCs) can be sought after to investigate those
interactions of the sodium ions with their environment (mainly from the slow-moving cell
membranes and macromolecules). They can be separated using multiple quantum filtering
(MQF) sequences [Jaccard 1986]. For sodium, Double Quantum Filtering (DQF) [Gast 2018]
and Triple Quantum Filtering (TQF) [Worthoff 2019] sequences manipulate the NMR
signal to select the double and triple coherence pathways that are thought to be more
sensitive/specific to the intracellular compartment.

TQF (and even more so for DQF) methods suffer from a very low sensitivity of about
10% of SQ. This leads to longer acquisition times and worst spatial resolutions. In addition,
the use of at least three 90-degree pulses that are repeated throughout the phase cycle
leads to problematic SAR levels for clinical applications, especially at UHF.

Still, multiple quantum filtering methods may help sodium multi-compartment modeling
and quantification.

In principle, the T2 relaxation-based MQF allows the separation of sodium signals from
different compartments due to the variably restricted mobility within each compartment
[Worthoff 2019]. However, MQF is inclined to artifacts prompted via B0 field-inhomogeneity,
low SNR or long acquisition times, and its indirect calculation of sodium concentrations,
similar to IR techniques [Gast 2018]. Recent quantitative multicompartment-multipulse
methods exploit differences in T1 and T2 instances of different sodium compartments. This
approach may also enable separating intracellular, extracellular, and cerebrospinal fluid
signals but is hampered by low SNR [Gilles 2017].

These difficulties make the use of MQF sequences limited. Therefore, this is not the
approach we explored in this thesis.

In a recent review on the potential and challenges of sodium MRI [Huhn 2019],
it is recommended that the 23Na MRI community focus on (1) improving SNR and
resolution, (2) diminishing partial volume effects and scanning times, and (3) enabling
precise differentiation of sodium compartmentalization as an ax of development. In this
thesis, we worked on item (2) by developing and applying compressed sensing techniques
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Figure 2.10 – Single-, double-, and triple-quantum coherences (SQC, DQC, and TQC,
respectively) are illustrated as transitions between energy levels. Three single-quantum
transitions are possible: one inner and two outer transitions. The TQ transition is threefold
the frequency of the SQ transition. From [Hu 2020].

to quantitative 23Na MRI as described in the following subsection.

Compressed sensing techniques

In sodium MRI, a movement to apply compressed sensing-based techniques started in
2012 [Madelin 2012]. A review [Chen 2021] summarizes all the compressed sensing
studies published until 2021. These studies have in common different reconstruction
techniques in addition to the standard l1-norm and TV penalty (equation 1.34). Several
innovative sparsity regularizations have been employed to apply CS to sodium MRI, such
as second-order TV and dictionary-based learning [Behl 2016a,Lachner 2019,Kratzer 2020,
Kratzer 2021].

Lachner et al. spearheaded the blend of multichannel imaging with CS sodium MRI
in a study about breast cancer utilizing a multichannel dual-tuned sodium and proton
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RF coil [Lachner 2019]. He found that using multiple sodium coils improved the results
obtained using the proposed CS algorithm with higher picture quality [Lachner 2021].
As of late, Adlung et al. verified that convolutional brain networks could recreate 4-
overlap undersampled sodium MRI images using regularization while keeping up with
SNR and TSC measurement exactness for ischemic stroke patients [Adlung 2021]. Most
studies investigating CS-based sodium MRI have involved data acquired at ultra-high field
strengths, typically 7 T, with different types of non-Cartesian 3D spiral k-space sampling
schemes with undersampling factors going from 2 to 10.

Figure 2.11 – Summary of compressed sensing sodium MRI studies compiled by [Chen 2021].
flexible TPI stands for flexible Twisted projection imaging [Lu 2010]. density-adapted
three-dimensional radial projection reconstruction pulse sequence (DA-3DPR).

However, as shown in the figure 2.11, those studies did not explore original sampling
schemes optimized with the goal of compressed sensing imaging. This could constitute a
missing opportunity for 23Na MRI as such optimized sampling schemes have been proposed
successfully for CS-based proton MRI [Kumar Anand 2008,Vasanawala 2010,Lazarus 2019,
Chaithya G R 2022,Chaithya 2022]. That is why one of this thesis’ objectives was to
develop such acquisition schemes for CS-based sodium MRI.

2.4.2 Clinical Applications

The first in vivo sodium image was acquired in 1985 [Hilal 1985]. Since then, sodium
MRI has been continuously developed and applied to various organs (kidney, brain, heart,
knee...) or pathological conditions (tumor, stroke, multiple sclerosis...) to gain an insight
into (patho)physiology.

During ischemic stroke, blood flow in the brain is reduced or blocked due to artery
constriction or occlusion. As a consequence of reduced oxygen inflow, oxidative ATP
production is brutally limited, causing rapid neuronal dysfunction and a cascade of molecular
events called apoptosis, leading ultimately to neurons’ death. If possible, thrombolytic
treatment needs to be applied in fewer than six hours. As it is difficult to place the onset
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of the stroke, imaging biomarkers are required to determine this time, and TSC is one
candidate for that [Thulborn 2018].

Tumors also affect TSC. Due to the rapidity of cell division rates in tumors, homeostasis
is disturbed. Also, the pH value is altered. The fast disorganized growth of malignant
cells leads to increased Na concentration due to larger interstitial spaces, even edema and
necrotic tissues due to the lack of oxygen supply at the center of the tumor [Ouwerkerk 2003,
Zaric 2021a]. For example, in one study, tissue sodium concentrations were measured
within normal prostates and tumors in prostate cancer patients, using prostatectomy as a
pathological criterion standard. Fifteen patients with biopsy-proven magnetic resonance
imaging visible, intermediate- or high-risk prostate cancer underwent a sodium MRI
examination before treatment with radical prostatectomy. Inversion-recovery sodium
imaging acquisition time was 19 minutes. Results showed that peripheral zone tumors
demonstrated a significantly increased TSC [Barrett 2018].

Inflammation is the initial cause of Multiple Sclerosis (MS). In the long term, the pro-
gressive demyelination of axons is coupled with overexpression of Na+ channels. Therefore,
23Na has been used to monitor the inflammatory process [Eisele 2016,Eisele 2019]. In one
such study, 26 relapsing-remitting multiple scleroses (RRMS) patients were examined using
sodium MRI using the DA-3DPR sampling scheme at 3T. The authors compared patients
after a 5-year disease period with healthy controls [Zaaraoui 2012]. They examined TSCs
in three different compartments: GM, normal-appearing white matter (NAWM), and T2

lesions. In T2 lesions in all MS patients, TSC was higher than control WM. In contrast,
only the RRMS cohort with advanced disease duration exhibited significantly increased
TSC for GM and NAWM. Both MS groups showed similar TSCs in T2 lesions and NAWM.
The GM TSC was higher in the RRMS cohort with advanced duration. Nonetheless, this
study was able to detect sodium accumulation in the brain even in the early stages of
RRMS. Analyzing the anatomical distribution of TSCs, the same research team found
extensive brain regions with elevated TSCs in both MS cohorts. In advanced RRMS,
increased TSC was scattered in the splenium of corpus callosum, thalamus, cingulate, and
parietal lobe, frontal lobe, and prefrontal cortex.
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Chapter 3
Introduction

I presented a preliminary version of our study on cortical creatine kinase activity at an
international conference as:

R. Porciuncula Baptista, F. Mauconduit, A. Vignaud, C. Lerman-Rabrait and F. Boumezbeur.
Estimation of cortical creatine kinase activity by dynamic 31P brain MRI in healthy volunteers

at 7T. In Proceedings of the 38th European Society of Magnetic Resonance in Medicine, 2021.

A corresponding paper was submitted to NeuroImage and rejected earlier this year. It
will be resubmitted once the necessary changes will be made.

Energy metabolism plays a fundamental role in cellular function. In the intensely active
brain, neurons rely mainly on aerobic energy synthesis through cellular respiration, i.e.,

the oxidation of glucose (and a few other energy substrates such as Lactate) via the Krebs
cycle and the oxidative phosphorylation chain. This process takes place in mitochondria
and leads to the generation of a H+ gradient across the inner mitochondrial membrane
which is consumed to convert adenosine diphosphate (ADP) to Adenosine triphosphate
(ATP) via the ATP-synthase activity. Moreover, the constant need for ATP (e.g., for
ion homeostasis via Na+/K+ pump activity and other ATPases) is also sustained by
the creatine kinase (CK). This enzyme catalyzes (reversibly) the conversion of ADP and
phosphocreatine (PCr), an energy buffer, into ATP and creatine (Cr). The equations that
describe this system were described at section 2.3.2.

Chronic energy deficits have been incriminated as critical factors in the physiopathology
of many neurodegenerative diseases such as Multiple Sclerosis [Trapp 2009] or Alzheimer’s
Disease [Butterfield 2019]. The generic hypothesis is that mechanism implies a “virtual
hypoxia state” in which energy demand in neurons fails to be met, leading to the disruption
of the most energy-intensive processes such as neurotransmission, hence the development
of impaired motor or cognitive dysfunctions.

It is hypothesized that at early, asymptomatic stages of these neurodegenerative diseases,
(young) neurons would manage to increase their energy production rates, which would then
cause up-regulated fluxes through the ATPsynthase and CK (with eventually augmented
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ATP and PCr stores). In later, prodromal stages, the accumulated oxidative damage
and declining mitochondrial function would lead to low ATP synthase and CK activities
(possibly decreased ATP and PCr levels), unmet basic energy requirements, and ultimately
cell death. It is thus believed that investigating in a quantitative manner brain energetics
and high-energy phosphate (HEP) metabolites using dynamic in vivo Phosphorus-31 (31P)
NMR spectroscopy (31P-MRS) could provide direct insight into the etiology and progression
of such diseases [Zhu 2018a,Hoang 1998,Brown 1989].

Among the techniques one can use to probe energy metabolism non-invasively, in
vivo 31P-MRS is one of the most promising for clinical research since it allows several
different results in clinical application [Zhu 2012]. Moreover, it does not require costly,
exogenous 18F, 13C or 2H labeled energy substrates or derivatives [Barros 2018]. While in

vivo 31P-MRS has been successfully applied in musculoskeletal system studies to investigate
metabolic syndromes [Bogner 2009, Schmid 2016] thanks to the large PCr concentration
in muscles (about 30-38 mmol/L), the application of 31P-MRS to study neuroenergetics
has often been limited by the relatively low concentrations of ATP and PCr in the brain.
In recent years, 31P-MRS has greatly benefited from the advent of clinical MRI scanners
at UHF, which allowed the development of 31P-magnetic resonance spectroscopy imaging
(31P-MRSI) approaches [Ruhm 2020].

Yet, the relevance of those 31P-MRSI approaches to the study of neurodegenerative
diseases is limited in two ways. First, those studies have relied on a relative quantification
of the HEP concentrations assuming a homogeneous, stable concentration of γ-ATP in
the brain [Ren 2015,Chen 2018,Ruhm 2020]. While this hypothesis is somewhat valid
in healthy controls, such an assumption could mask the metabolic changes expected in
patients suffering from those neurodegenerative diseases.

To achieve absolute quantification of HEP metabolites, one could use a synthetic signal
generated by an external RF source, such as in the ERETIC method [Barantin 1997]. Yet,
such a solution requires tampering with the MRI scanner electronics, which is seldom
possible. Due to the low spatial resolution of 31P applications, it is impossible to put
an external and small phantom simultaneously on the human head. On the one hand,
a phantom small enough to fit with the patient would have a few centimeters. Then
the image with the resolution with a comparable size would suffer from a partial volume
effect and therefore have few vowels available to measure concentration. On the other
hand, phantoms big enough to have a sufficient number of voxels to do a linear regression
would be too big to accommodate in the coil with the volunteer. Therefore, we adopted
a phantom replacement approach using two references of signal, i.e., two phantoms with
comparable load to the human brain [Stout 2017,Stout 2019]. Due to low spatial resolution,
the acquisitions were made separately from the in vivo acquisitions.

To obtain absolute concentrations, the B+
1 field heterogeneity of our 31P radiofrequency

coil was accounted for (details in method section) as well as the differential relaxation
effects using previously measured T1 relaxation times of 31P metabolites in the human
brain at 7T [Ren 2015] (Table 3.1).

HEP metabolites concentrations do not necessarily reflect the intensity of energy
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Metabolite Pi Pi PCr α-ATP β-ATP γ-ATP
T1[s] 5.80 3.70 3.39 1.35 1.13 1.70

Table 3.1 – Relaxation time T1 of metabolites in resting human brain at 7T from [Ren 2015]

metabolism or mitochondrial function univocally. To offer an analogy, it is not enough to
know how many vehicles per square meters (concentration of metabolites) are on the road
to characterize the traffic conditions in a city [Hiller 2013]. To precisely determine whether
the cars are stalled or moving freely, one must check how fast the cars are moving through
the city streets (flux through the metabolic pathway). If there is traffic congestion, one
can then interrogate how many people are driving on each road (abundance of transcripts
or proteins) or wonder about the reasons why people would be driving at any given
time (genetic events and environmental factors). Ideally, dynamic 31P-MRS permits the
estimation of production and degradation rates of ATP via the creatine kinase (CK) (Vck)
or ATPase/ATP-synthase activities. Those direct measures of energy metabolism can be
obtained with the addition of a saturation transfer (ST) module with varying duration or
saturation intensities [Zhu 2012,Chaumeil 2009].

Due to the modest concentrations of HEP in the brain and 31P intrinsically low
sensitivity (compared to 1H), dynamic 31P-MRS protocols using ST techniques to estimate
Vck have often required long acquisition time (TA) [Bottomley 2002]. These long TA are
related to the choice of working in fully-relaxed conditions (TR»T1). Since the T1’s of Pi
and PCr are quite long, the standard magnetization transfer experiment is rather inefficient
in generating sufficient contrast-to-noise ratio (CNR) per unit time. Consequently, those
studies could only probe ATPase or CK activities in one region of interest (ROI) at a
time [Zhu 2012].

Thanks to the improved spectral resolution and signal-to-noise ratio (SNR) achievable
at UHF, three-dimensional (3d) multi-point Dixon [Dixon 1984] or frequency selective
(FS) 31P magnetic resonance imaging (MRI) sequences constitute attractive alternatives to
31P-MRS or 31P-MRSI approaches [Ren 2015]. Thus, we propose an frequency selective
(FS) multiplex (alternate excitations of γ-ATP and PCr resonances) magnetic resonance
imaging (MRI) sequence combined with a γ-ATP presaturation module to perform regional
Vck measurements in conditions compatible with a clinical research setting.

For this study, we used a 1H/31P dual resonance 8-elements transceiver phased array
coil developed by N. Avdievich [Avdievich 2011]. While phased-array head volume coils
outperform birdcage volume coil designs in terms of SNR, especially in cortical areas, one
needs to manage their heterogeneous transmission profiles in return. Ideally, one would
acquire a B+

1 map for each subject as it is done for 1H using the double-angle method
(GRE-DA) [Insko 1993] or a single shot method using spectral selection like magnetization
prepared turbo-FLASH (XFL) [Amadon 2010] or even adopt the Variable Flip Angle
approach that we proposed for quantitative 23Na MRI [Coste 2019]. Unfortunately, such
acquisitions would be too long or too noisy to be compatible with our objective of proposing
a clinically viable dynamic 31P-MRI protocol. To tackle this problem, we developed an
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original approach to correct those B+
1 inhomogeneities based on a B+

1 template calculated
from a set of independent 3D B+

1 maps acquired using a modified version of GRE-DA,
which we call variable multiple flip angle (VMFA). The idea of using a B+

1 template is in
agreement with the one driving recent innovations for 1H parallel-transmission such as the
universal pulses [Gras 2017].

Overall, we aimed at demonstrating the feasibility of estimating absolute ATP and PCr
concentrations as well as the flux through the CK reaction (Vck) in various cortical ROI in
a time frame acceptable for with clinical research applications at 7 Tesla. We used a FS
multiplex sequence to achieve this goal while controlling for the effective excitation and
saturation flip angles using a VMFA template.



Chapter 4
Methods

Chapter Outline

4.1 Data acquisition. . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Test-objects . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 MR System. . . . . . . . . . . . . . . . . . . . . . . 61
4.1.4 Multiple Frequency Selective Sequence . . . . . . . . . . . . 61
4.1.5 In vivo MR Imaging protocols . . . . . . . . . . . . . . . 66
4.1.6 In vitro MR Imaging protocols . . . . . . . . . . . . . . . 67

4.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 31P image reconstruction . . . . . . . . . . . . . . . . . 68
4.2.2 FA correction . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Definition of our cortical ROI . . . . . . . . . . . . . . . 70
4.2.4 Concentrations quantification . . . . . . . . . . . . . . . 70
4.2.5 Flux Estimation . . . . . . . . . . . . . . . . . . . . . 70

4.1 Data acquisition

This section describes the materials and methods needed for our 31P MRI data acquisition.

4.1.1 Participants

This study was approved by local and French national ethics committees (CPP Sud
Méditerranée 4, number 18 09 13, IDRCB: 2018-A011761-53), and written informed
consent was obtained from all participants. This study was divided into two parts: (i) a
dedicated VMFA mapping protocol to generate our 3D B+

1 template and (ii) our dynamic
31P-MRI protocol to estimate cortical ATP and PCr absolute concentrations and Vck

values.
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For the first part, six volunteers were recruited (3M/3F, 29±6 years old). For the
Vck estimation, two groups of three volunteers were recruited: the first group allowed us
to test the version of the sequence without saturation bands (2M/1F, 26±3 years old),
and the second group allowed us to test the version of the sequence with saturation bands
(2M/1F, 31± 18 years old). The three cohorts were disjointed. The reasoning for applying
the saturation bands is explained in the section 4.1.4.

4.1.2 Test-objects

Two types of phantom were used in this project, one for the validation of the spectral
selectivity of the sequence and the other to validate our quantification approach. They
are described below. The solutions were mixtures of phosphate buffered saline (PBS)
and tripolyphosphate (TPP). PBS is similar to Pi (a mixture of H2PO

−
4 and HPO2−

4

with a pinch of NaCl in water) [Kogan 2014b, Thapa 2016, Valkovič 2021] and TPP
is used as a practical alternative to ATP as it is less expensive and more stable over
time [Chmelík 2008].

FS validation phantom

This phantom is composed of a cylinder containing 50 mmol/L of PBS. Inside four 50 mL
tubes are placed containing respectively 12,5 mM, 25 mM, 50 mM, and 100 mM of TPP,
the schematic can be seen in figure 1.1.

Figure 4.1 – Description of the validation phantom used for validation of the frequency
selective excitation. (a) schematic of the frequency validation phantom (green represents
PBS and blue TPP); (b) graphic of the frequency selection validation phantom. This
phantom was machined in the mechanical workshop of NeuroSpin by Jeremy Bernard.

Quantification phantoms

Two identical 4.5L bottles containing either 25 or 50 mmol/L of PBS were used as external
references of signal (figure 4.2). Their coil loading was judged comparable to a human head
based on the allure of the experimental B+

1 maps, voltage reference values and reception
profiles. These phantoms were also used to validate our FA mapping method. I used the
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top part of the bottle to simulate the head by positioning the bottle half outside the coil. I
thus used the bottle part to simulate the load of the shoulders.

Figure 4.2 – Illustration of one of our quantification phantom

We recognize the limitations in the shape of these phantoms. Realistic phantoms have
been studied in the literature [Collins 1998,Wood 2017, Marques 2021]. Later in the
study, we 3Dprinted a realistic phantom based on the geometry proposed by Jona and
all [Jona 2021]. Once a head-shape-like phantom was made available, we validated the
FA maps with it. The phantom in figure 4.2 was then used to simulate the shoulder by
coupling together.

This phantom was filled with 10 and 100 mM PBS solution for the outer and brain-like
inner compartments respectively (see figure 4.3 for illustration).

4.1.3 MR System

MRI examinations were performed on a 7 Tesla Magnetom MRI scanner (Siemens Health-
ineers, Erlangen, Germany) using a whole-body gradient coil (Gmax=100 mT/m, slew rate
of 200 T/m/s) and a dual-resonance 1H/31P phased-array coil consisting in 8 transceiver
elements for each nucleus. Each coil element is part of an inductively decoupled split
elliptical transceiver-phased array with selectable geometry, which provides an easy and
efficient way of compensating for changes in mutual inductive coupling associated with
differences in loading due to variability in head shape and size (figure4.4) [Avdievich 2011].
The coil was manufactured by Resonance Research Inc. (Billerica, MA, USA) and used in
circular polarization (CP) mode for transmission with eight receive channels (1Tx/8Rx).

4.1.4 Multiple Frequency Selective Sequence

All 31P measurements were based on our MFS sequence with or without saturation transfer
module, as represented in figure 4.5.
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Figure 4.3 – Illustration of "Skully" phantom. The left side represents the inner com-
partment. The right side represents the outside compartment— a courtesy of Thaddée
Delebarre (Ph.D. Student at NeuroSpin).

Figure 4.4 – An illustration of a dual-resonance RF coil similar to the one used for this
study. (a) Back view of the elliptical 8-channel (1 × 8) split transceiver-phased array. The
bottom part is shown assembled with the medium size top. (b) Three tops of the split
array (c) Individual surface coils in the first (1 through 8). Adapted from [Avdievich 2011].

During this thesis, I developed this sequence from the canonical code for the FLASH
(SPGR) sequence provided by Siemens as part of their IDEA toolkit. I modified it into a
UTE sequence and added the alternating aspect and the saturation module. I developed
a saturation module from zero to account for the variable saturation angles at different
frequencies. I first developed this sequence for VB17 and later for VE12 in the Siemens
IDEA development toolkit.
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Figure 4.5 – Schematic of the MFS sequence. The core MFS sequence consisted in alternate
frequency selective excitations of γ-ATP (at -2.5 ppm) and PCr (at 0 ppm) every TR. The
main parameters are TE/TR=5/250 ms, number of spokes 3600, and TA=15 min. For
the estimation of Vck, FA was equal to 25°, and a saturation transfer module was applied
every TR/2 consisting of two 40 ms Gaussian pulses selective for γ-ATP, the saturation
intensity B1,sat being varied. No saturation were applied for the FA mapping protocol
which focused on the acquisition of PCr images at increasing FA=(12,24,36,48)°.

Interface

The goal of this sequence was to allow for maximal flexibility. Therefore, several parameters
of the sequence were kept adjustable in the "special card" accessible on the Siemens Syngo
interface (figure 4.6). A non-exhaustive list of parameters is given below:

• Gradient File Selection: this parameter allows the user to change sampling scheme
acquisition. Here we used TPI.

• FreqSel Offset: it defines the variation in the B0 frequency (∆f ) in (Hz) from the
system frequency for the first and the second excitation pulse. This parameter is a
list.

• FreqSel Offset MT: it defines the variation in the B0 frequency (∆f ) in (Hz) from
the system frequency for the saturation transfer pulse.

• Flip angle MT: it defines the saturation pulses’ intensity in degrees.

• MT pulse duration: duration of each saturation pulse in µs.

• MT total duration: duration of the overall saturation transfer module in µs, thus
defining the intervals between pulses.

• Number of pulses MT: quantity of saturation pulses.
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• Readout OS factor: it defines the factor by which the dwell time will be divided.
For instance, if OS=5 while the data was acquired with a dwell time δt = 2µs (∆t =
10µs) at the analog-to-digital converter level. For this study, value was set at default
default = 1.

Figure 4.6 – Schematic of the MFS sequence "special card" on VB17.

Common parameters

To improve our point-spread function, a Twisted Projection Imaging (TPI) non-Cartesian
k-space sampling scheme [Boada 1997] with radial fraction parameter (p) set at 0.3 was
combined with a spoiled FID sequence. To limit T2*-weighting and loss of signal, frequency
selective 8 ms Gaussian pulses (FWHM = 2 σ = 328Hz from simulation) were used for
alternate excitation of either PCr (at 0 ppm) and γ-ATP (at -2.5ppm), resulting in an
effective TE of 5 ms.

The spectral selectivity was controlled in vitro. Ideally, we would test spectral selectivity
with a phantom with two peaks that have the same spectral distance than γ-ATP and Pi.
However, due to cost of obtaining a γ-ATP like peak, we fabricated a phantom with PBS
and TPP instead. This two metabolite have a peak distance in order of 1300 Hz which is
fourfold bigger than the Pi-γ-ATP pair. For this reason, we decided to observe spectral
selectivity by shifting the excitation in one peak (PBS) and observe the signal acquire the
peak without any shifts.
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For this reason, we acquired in Skully with only PBS four images at different ∆f =
[0, 160, 320, 480] Hz based on value expected from simulations, and we observed that for
∆ = 350 Hz, we had a mitigation of 95 % of the signal intensity (figure 4.7).

Figure 4.7 – Validation of FWHM of the Gaussian pulses of 8 ms. (A) Reconstructed
images acquired at ∆f = [0, 160, 320, 480]. (B) Fit of the gaussian data

Short TR (250 ms) and small excitation flip angles (FA=25°) were used to improve
our SNR per unit of time. Noise scans (FA=0°) were included for noise measurements,
which were then used to prewhiten the data from each reception channel [Martens 2003].

The sequence was validated in vitro using a dedicated phantom with different concen-
trations of PBS and TPP. The schematic of the phantom and the results of the validation
test can be seen in figure 4.8.

Version with saturation bands

The concentration of PCr in the muscle is about ten-fold higher than in the brain
[Kemp 2007]. For this reason, signal contamination from the extracranial muscles can
lead to a notable overestimation of the PCr concentration, especially in cortical areas.
To investigate the possible impact of such contamination on our results, we repeated the
measures of the flux estimation, but this time adding two outer volume saturation (OVS)
bands over the maxillary muscles.

Two OVS bands were positioned as illustrated in figure 4.9. Saturation angles were
limited due to SAR constraints. Therefore, the saturation flip angle had to be reduced
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Figure 4.8 – Phantom is used to validate composed of PBS and TPP. (a) schematic of the
phantom, 100 mM concentration of PBS, and four tubes of TPP with 12.5 , 25, 50, and 100
mM concentration. (b) Raw images reconstructed for TPP (c) raw images reconstructed
for PBs.

from 90° to approximately 50°. Due to the short TR, this compromise was expected to
only limit the efficiency of the saturation to 80% instead of 100% (for PCr after few TR).

Figure 4.9 – Schema of the positioning of saturation bands. The head of the volunteer,
and red, is the position of the saturation bands.

To confirm that this compromise was satisfactory to dampen external signals from the
muscle to acceptable level minimizing their impact on HEP quantification in the brain, we
performed a test in phantom.

4.1.5 In vivo MR Imaging protocols

Proton acquisitions

Each examination included the acquisition of a T1-weighted image (MPRAGE, TE/TR/TI
= 4/2600/1100 ms, FA= 9°, 2 mm isotropic resolution, TA=4:32 min) for anatomical
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reference. An iterative second-order B0 shimming procedure was performed, and a B0 map
was acquired (2 mm in-plane resolution, 2.5 mm slice thickness, FA=27°. TA=1:36 min).

VMFA acquisitions.

Due to the larger PCr signal when compared to γ-ATP, in vivo FA maps were estimated
from the PCr images only, even though the same sequence was used in all protocols, and
therefore both PCr and γ-ATP were acquired.

I determined the nominal flip angle value α for our variable multiple flip angle (VMFA)
approach via Monte-Carlo (MC) simulations (figure A.0.1) considering our experimental
noise level and expected SNR (SNR = µsignal

σnoise
).

Noise levels were estimated through in vitro acquisitions with FA=0°, with the bottle
phantom in place. Then the noise was determined as the standard deviation of all
voxels from the reconstructed image. The signal level measured in a phantom of known
concentration was determined as the average signal in the phantom’s mask. However, the
concentration of the bottle phantom is superior to [PCr] in the brain. For this reason, we
adjusted the signal value according to the ratio of those concentrations.

µexpected signal in vivo = µsignal phantom
[concentration phantom] × [concentration in vivo] (4.1)

Considering the duration of each MRI examination (total=1h15 adjustments included),
we decided on acquiring four PCr images with FA=(12,24,36,48)°. Other acquisition
parameters were: isotropic spatial resolution of 25x25x25 mm3 (about 16 mL), number of
spokes=3600, TA=15 min. More details are available in the appendixA.

Dynamic 31P MRI acquisitions.

In order to estimate Vck, γ-ATP and PCr images were acquired using our FSM sequence
(fig. 4.5) with a saturation module consisting in two 40ms Gaussian pulses (FWHM=68Hz)
at four increasing saturation intensities (FAsat = (0,15,30,60)°). The largest saturation
angle was set at a nominal value of 60° so that the γ-ATP signal level would remain just
above the noise level of our acquisitions. Other acquisition parameters were: isotropic
resolution 12.5x12.5x12.5 mm3 ( 4 mL), number of spokes=3600, TA=15 min.

4.1.6 In vitro MR Imaging protocols

Phantom data were acquired from our two 4.5L phantoms using the two previously presented
31P-MRI sequences at the frequency of phosphate buffered saline (PBS) without saturation.
To validate our FA mapping approach, a 2d-XFL image of a central slice of our 50 mmol/L
phantoms were acquired (nominal FA=60°, TR/TE=10000/3 ms, number of averages 96,
in-plane resolution 25x25 mm2, slice thickness 50 mm, TA=32 min).
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4.2 Data processing

4.2.1 31P image reconstruction

Raw k-space data were tagged to separate PCr and γ-ATP signals; and both images
were reconstructed offline using a homemade Matlab script (The MathWorks Inc., Natick,
Massachusetts) using a non-uniform fast fourier transform (FFT) regridding algorithm
consisting of a Kaiser-Bessel kernel interpolation as well as density compensation and
Hamming filtering steps. The density compensation function we used was defined as:

Algorithm 1 Density compensation for TPI
Input p, coordinates
Output dcf
N ← size(coordinate, 1) ∗ size(coordinates, 2) ∗ size(coordinates, 3)
wi← zeros(N, 1)
temp← reshape(coordinates, 3, []);
w ←

√
(temp(:, 1)2 + temp(:, 2)2 + temp(:, 3)2

i← 1
for i < N do
if w(i) < 0.5 ∗ p then
wi(i)← w(i)2

else
wi(i)← wi(i− 1)

end if
i← i+ 1

end for
dcf ← reshape(wi, ro, 1, []);

Data were prewhittened [Martens 2003]. Magnitude images were combined using
sum-of-squares.

4.2.2 FA correction

As previously explained in sub-section 1.2.3, surface coils have greater sensitivity but suffers
from large B+

1 (and B−1 ) inhomogeneities. To tackle this issue, we corrected our data for
B+

1 inhomogeneities. One would need an hour to acquire an individual map of B+
1 at 3D,

as we do not dispose of an extra hour with the volunteer. Here, we opted for a template
approach. We also showed that it is a valid approach due to the similarity of FA maps
between human subjects. We used the same sequence described above for the computation
of FA maps. However, we only used the PCr images because they have greater SNR when
compared to γ-ATP, thus giving more precise FA maps.

FA map calculation.

Once reconstructed each image of our VMFA protocol=was submitted to a non-local
means denoising step (available from the scikit-learn image library [Pedregosa 2011]). The
individual B+

1 maps were then estimated from the numerical fit of the signal equation
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(Equation 4.2) using a non-linear least squares minimization algorithm, assuming the
previously reported T1 relaxation time of PCr at 7T (Table 3.1):

S ∝M0
sin(α)(1− exp

−T R
T1 )

1− exp
−T R

T1 cos(α)
exp

−T E
T2∗ (4.2)

The initial FA maps were then regularized spatially by fitting the values to a 8th degree
polynomial 3D function.

FA map validation.

The validity of our VMFA protocol was evaluated in vitro by comparing our FA map to
the reference map obtained using the XFL method using linear fitting and by computing
the corresponding Pearson correlation factor.

FA Template.

All individual FA maps were over-sampled by a factor of two to match the resolution
of the PCr and γ-ATP maps. Then it was co-registered to the MNI template space
[Mazziotta 1995] with the help of their anatomical reference images (following a first rigid
co-registration step). The FA template was then defined as the average FA map across all
subjects. An overview of the pipeline can be seen in figure 4.10.

Figure 4.10 – Pipeline for FA map template computation. 1: Individual FA maps fit using
the VFA approach. 2: Co-registration to the MNI template space via each anatomical
reference. 3: Averaging in the MNI space of the individual FA maps.

Once I computed the template, a correction factor (CF) map could be determined as:

CF (x, y, z) = S(FAeffective)(x, y, z)
S(FAtarget)(x, y, z)

(4.3)

Average CF values can then be calculated at the voxel level and applied in the individual
space.
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4.2.3 Definition of our cortical ROI

Masks for five large cortical ROI were defined from the Harvard-Oxford atlas [Frazier 2005,
Makris 2006, Desikan 2006], avoiding areas exhibiting lower and more variable signal
levels due to the phased-array coil geometry. The five ROI were constituted by aggregating
smaller adjacent brain areas (see figure 5.6): frontal & anterior cingulate cortices (#1 in
pink); frontal gyrus & opercular cortices (#2 in mustard); temporal, supramarginal &
angular cortices (#3 in red); precuneus & posterior cingulate cortex (#4 in blue); occipital
cortex (#5 in green).

4.2.4 Concentrations quantification

For each ROI, regional ATP and PCr concentrations were estimated from a two-point
linear calibration step by comparing their average signal values to the signal from our two
external references of concentration after correcting for the regional effective excitation
flip angle (correction factor (CF)) and differential T1 and T∗2 weightings. Experimental T∗2
were considered (estimated from the linewidths of our PCr, ATP, and PBS resonances).
The previously reported [Ren 2015] T1 relaxation times of PCr and γ-ATP at 7T were
considered (Table 3.1). For PBS, we measured a T1 of 5.8 s at room temperature. To
compensate for the Rician noise, its non-zero average value was subtracted, estimated from
acquisition with a FA=0°.

4.2.5 Flux Estimation

For each ROI, I estimated apparent ATP and PCr concentrations for each nominal
saturation angle. The Bloch-McConnell equations [Lei 2003] for the two-pool model of
chemical exchange between PCr and γ-ATP were considered as defined by Bottomley at
al [Bottomley 2002]:

PCr + ADP
kf−−⇀↽−−
kr

ATP + Cr (4.4)

d

dt
m = Am + c

Which has as for solution:

m = expAt(m(t = 0) + A−1c)A−1c (4.5)

Where M represents the compounded PCr and ATP magnetization in a given state:

m =
[
MPCr
x MPCr

y MPCr
z MγATP

x MγATP
y MγATP

z

]T
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And c and A is defined as follows:

c =
[
0 0 MPCr

0
T1PCr

0 0 MγATP
0

T1γATP

]T

A =



−1
T2PCr

− kf ∆w0 kr

−∆w0
−1

T2PCr
− kf kr

−1
T1PCr

− kf kr

kf
−1

T2γATP
− kr ∆w0

kf −∆w0
−1

T2γATP
− kr wγATP

kf wγATP
−1

T1γATP
− kr


With ∆w0 accounting for B0 inhomogeneities. Through mass conservation in our two pool
system, we can determine kr as:

kr = kf [PCr]/[γATP ] (4.6)

[PCr] and [ATP] were estimated in mmol/L from their respective images without saturation.
For simplification and considering the relatively short TE, the influence of ∆w0 was

considered negligible. Thanks to this hypothesis, the problem is reduced to the adjustment
of the sole kf value. Thus, for each ROI, kf values were grid searched within the range
(0.15-0.45) s−1 to minimize the mean-square-error between the apparent experimental
concentrations and our model (equation 4.5).

Finally, Vck was determined according to equation 4.7.

Vck = [PCr] ∗ kf (4.7)

An overview of the pipeline is shown in figure 4.11. Vck values are converted in
µmol/g/min after accounting for the brain tissue density of 1.1 g/mL.
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Figure 4.11 – Vck flux estimation pipeline. Each set of ATP and PCr images is processed
along the following steps: 1: Co-registration of the FA template to the individual space. 2.
Application of the FA correction. 3: Brain segmentation and definition of our five ROI
from the anatomical reference using the Harvard-Oxford atlas. 4: Quantification of the
apparent ATP and PCr concentrations using the images of the two PBS phantoms for a
two-point linear calibration. 5: Numerical fit of kf using the Bloch-McConnell formalism.
6: Calculation of the regional Vck values

.
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5.1 In vitro validation of our B+
1 mapping protocol

Figure 5.1 shows the agreement between our variable multiple flip angle (VMFA) mapping
method and the reference method XFL for a central slice, because the XFL is a 2D sequence.
The correlation factor between the two FA maps being R=0.95, we can consider the two
methods to be equivalent.

The images have been normalized as follow:

FAnormalized = FAmeasured
FAtarget

This normalization was done to allow the comparison, because each sequence (VFMA and
XFL) was optimized for different angles, i.e, their parameters were more robust to noise at
different FA. VFMA target angle was FA=12° and target angle of XFL was FA=60 °.
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Figure 5.1 – Comparison between 2D XFL and the 3D adaptive multiple flip angle method.
The scale shows the values obtained normalized to the target angle. Right, XFL method
in a central slice of phantom, target FA=60°. Left, VFMA result in a central slice of a
phantom, target FA=12°. Bottle phantom was used. The two FA are different because
they are the values optimized by each protocol.

.

5.2 In vivo FA template construction

Figure 5.2 shows the B+
1 template we obtained after averaging all individual maps in

the MNI space. I computed the correlation matrices between all maps, yielding a mean
R-value of 0.93± 0.02, the correlation factors ranging from 0.84 to 0.97, demonstrating
the consistency of the B+

1 fields between all our subjects (n=6).

5.3 In vivo 31P MRI of ATP and PCr using our MFS sequence

5.3.1 Without outer volume saturation bands

The fig 5.3 shows a set of ATP and PCr images (for volunteer #1 of the first dataset) after
reconstruction and co-registration to their anatomical reference. The effective resolution
(FWHM) of the point-spread function was estimated at (25x25x25) mm3 with a normalized
SNR of about 1.2 per mmol/L per min1/2 of acquisition time for γ-ATP.

5.3.2 With outer volume saturation bands

Figure 5.4 shows a set of ATP and PCr images (for volunteer #1 of the second data-
set) acquired with two lateral OVS bands after reconstruction and co-registration to its
anatomical reference.

The effective resolution (FWHM) of the point-spread function was estimated at
(25x25x25) mm3 isotropic with a normalized SNR of about 1.2 per mmol/L per min1/2 of
acquisition time for γ-ATP.

Thanks to the OVS bands, one can notice that we do not observe anymore the hyper-
signal on the lateral sides in the second dataset.
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Figure 5.2 – Template FA map in MNI space averaged from six healthy volunteers. Average
FA map in MNI space. The nominal excitation flip angle was 12°.

Figure 5.3 – After co-registration with their anatomical reference, a set of "raw" γ-ATP
and PCr images is presented for increasing saturation pulse intensities. Coronal views
for volunteer #1 (intensities in arbitrary unit). Acquisition parameters: TE/TR=5/250
ms, FA=25°, isotropic spatial resolution = 12.5 mm , TA=15 min, 3600 spokes, FAsat =
(0,15,30,60)°. T1-weighted images at 2 mm isotropic resolution.
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Figure 5.4 – After co-registration with their anatomical reference, one can appreciate
the efficiency of the two lateral OVS bands on a set of "raw" γ-ATP and PCr images.
Coronal views for volunteer #1 (intensities in arbitrary unit). Acquisition parameters:
TE/TR=5/250 ms, FA=25°, spatial resolution=12.5 mm isotropic, TA=15 min, 3600
spokes, FAsat = (0,15,30,60)° with two saturation bands. T1-weighted images at 2 mm
isotropic resolution.

5.4 B+
1 -corrected parametric maps

5.4.1 Without outer volume saturation bands

Cortical ATP and PCr concentrations values

Table 5.1 summarizes the results of our quantitative dynamic 31P imaging protocol (mean ±
standard deviation, N=3):= for [PCr], [ATP], forward CK kinetic rate kf and corresponding
Vck flux rates for the five cortical ROI.

Region [PCr] [mM] γATP [mM] kf [s−1] Vck [umol/g/min]
Frontal & Anterior cingulate Ctx 3.9 ± 0.7 2.6 ± 0.3 0.23 ± 0.02 57 ± 10
Frontal gyrus & opercular Ctx 4.8 ± 0.3 3.0 ± 0.3 0.32 ± 0.02 96 ± 12
Temporal, supramarginal & angular Ctx 5.2 ± 0.4 3.6 ± 0.5 0.33 ± 0.01 110 ± 15
Precuneus & posterior cingurate Ctx 3.8 ± 0.8 2.2 ± 0.3 0.31 ± 0.02 75 ± 10
Occipital Ctx 3.8 ± 0.5 2.5 ± 0.2 0.30 ± 0.01 71 ± 11

Table 5.1 – Concentration, kinetic constant kf and Vck values in resting human brain at
7T (N=3 subjects)

Values in the temporal ROI are superior when compared to other regions. This was
the reason why we investigated the impact of extra-cranial PCr signal contamination from
the maxillary muscle.
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Regional kfand VCKmaps

Figure 5.5 illustrates the 3D representation of those cortical Vck values for our volunteers.

Figure 5.5 – Regional Vck values for our three healthy individuals in the five considered
ROI.

Coronal views of the average values of [ATP], [PCr], kf , and Vck in the five ROI we
defined are shown in figure 5.6.

Figure 5.6 – Average B+
1 -corrected parametric maps. Our five cortical ROI (left) and

average cortical for [PCr], [ATP], kf and Vck (from left to right). (pink): frontal &
anterior cingulate cortices; (mustard): frontal gyrus & opercular cortices; (red): temporal,
supramarginal & angular cortices ; (blue): precuneus & posterior cingulate cortex; #5
(green): occipital cortex.



78 Results

5.4.2 With outer volume saturation bands

Cortical ATP and PCr concentration values

The table 5.2 summarizes the results of our quantitative dynamic 31P imaging protocol
(mean ± standard deviation, N=3) for [PCr], [ATP], forward CK kinetic rate kf and
corresponding Vck flux rates for the five ROI.

Region [PCr] [mM] γATP [mM] kf [s−1] Vck [umol/g/min]
Frontal & Anterior cingulate Ctx 5.8 ± 1.3 4.1 ± 0.9 0.23 ± 0.09 86 ± 10
Frontal gyrus & opercular Ctx 5.7 ± 0.08 3.3 ± 0.3 0.28 ± 0.11 100 ± 12
Temporal, supramarginal & angular Ctx 5.9 ± 0.1 3.3 ± 0.3 0.26 ± 0.01 98 ± 15
Precuneus & posterior cingurate Ctx 3.7 ± 0.5 2.4 ± 0.2 0.25 ± 0.02 61 ± 10
Occipital Ctx 3.5 ± 0.2 2.2 ± 0.2 0.30 ± 0.01 64 ± 11

Table 5.2 – Concentration, kinetic constant kf and Vck values in resting human brain at
7T (N=3 subjects)

Despite the obvious efficiency of the OVS bands to suppress extracranaial PCr signal,
concentrations and fluxes values observed in the temporal cortex are not significantly
different from those observed with the first version of the protocol.

Regional kfand VCKmaps

Figure 5.7 illustrates the 3D representation of those cortical Vck values for the second
version of the protocol with OVS bands.

Coronal views of the average [ATP], [PCr], kf and Vck are shown in figure 5.8.
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Figure 5.7 – Regional Vck values for our three healthy individuals in the five considered
ROI.

Figure 5.8 – Average B+
1 -corrected parametric maps. Our five cortical ROI (left) and

average cortical for [PCr], [ATP], kf and Vck (from left to right). (pink): frontal &
anterior cingulate cortices; (mustard): frontal gyrus & opercular cortices; (red): temporal,
supramarginal & angular cortices ; (blue): precuneus & posterior cingulate cortex; #5
(green): occipital cortex





Chapter 6

Discussion

In this study, we set up a 3D dynamic 31P imaging protocol. Specifically, we developed
a sequence with multiple frequency selective excitation capabilities along with satur-
ation/magnetization transfer and outer volume saturation modules. We developed a
dedicated analysis pipeline to quantify the absolute adenosine triphosphate (ATP) and
phosphocreatine (PCr) concentrations and the flux through the CK reaction in various
cortical ROI. The acquisition protocol last about 1 hour which is a time frame compatible
with clinical research applications (at least in research institutions such as NeuroSpin). All
codes are available in a github repository.

We divided this study in three parts. In total with our three protocols, twelve volunteers
participated in this study. An original variable multiple flip angle (VMFA) mapping
approach was developed and validated in vitro, and a B+

1 template was calculated using
data from six volunteers and used to account for the effective excitation and saturation
flip angles in our ROI-based analysis. We also investigated a variation of this protocol that
applies two lateral outer volume saturation bands placed above the maxillary muscles.

The similarity between individual FA maps constitutes a strong argument in favor of
the validity of our B+

1 template approach. We believe a similar approach could be adopted
for the 31P MRS studies using surface coils. This idea is not new, the most comparable
study being the one by Chmelik et al. [Chmelík 2014]. Comforted by these previous work,
this approach is definitively of interest for future X-MRI studies for which individual B+

1

maps can not be acquired. Another advantage of such B+
1 template is that it would allow

in theory the investigator to calculate the reference voltage needed to perform a targeted
flip angle anywhere in the brain. Indeed voltage calibration procedures are rarely reliable
in clinical and even preclinical settings for (transmitter) surface coils. This problem is
bound to be more critical with the increasing number of coils (and their smaller sizes) used
in X-MRI studies at UHF.

With the implementation of our OVS bands, we expected reduced PCr concentration
compared to the data acquired without OVS particularly in the temporal region. Instead,
we observed similar or slightly higher PCr concentrations. The OVS bands are obviously
efficient in saturating the extracranial PCr signal from the maxillary muscles as it can be
seen when comparing PCr images in Fig 5.4 with those shown in Fig 5.3. An explanation is
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that the impact of these PCr contaminations is smaller than the inter-individual variabilities
that are compounded in our acquisition protocol and quantification pipeline (FA estimation,
co-registration and segmentation errors,...).

Our results are consistent without and with OVS bands, as shown by their moderate
standard deviations and with the data reported in the literature. For instance, Ren et al.
have reported a cerebral [PCr] of 4.4± 0.4 mM [Ren 2015] assuming a [ATP]=3.0 mM. For
ATP, concentrations of 2.5 to 3.2 mmol/L were reported in healthy controls [Zhu 2021]
in the occipital lobe, while [PCr] was estimated between 3.9 and 5.4 in the same study.
Likewise, comparable kf and Vck values of 0.35± 0.03 s−1 and 94.3± 6.4 respectively were
reported by Zhu et al. [Zhu 2021].

To obtain these values, Zhu et al. took 32 minutes to acquire spectra with and without
γ-ATP resonance saturation from one region of interest. As a comparison, our study
required 60 minutes (four sequences of 15 minutes) to investigate five ROIs.

This 3D dynamic 31P imaging approach is also quite versatile. In particular, one could
easily degrade its spatial resolution, or less intensive saturation bands could be investigated
to accommodate shorter examination times while considering those same five large ROIs
or others, depending on the clinical/scientific context.

We are aware that at this sample size, this study remains a proof-of-concept. Larger
cohorts need to be recruited to evaluate the sensibility of this method and its ability to
distinguish between for instance healthy young volunteers from aged ones, or between
patients and aged-matched healthy controls, which at the end remains the goal of this
technique. A reproductibility study is also an important next step for a final validation
before clinical applications.

One of the main limitations of our protocol and analysis pipeline is its sensitivity to the
potentially large B0 inhomogeneities, especially at UHF. Indeed, the saturation transfer
pulses were rather selective (FWHM=68Hz), the effective saturation flip angles values
may have been slightly overestimated depending on the local γ-ATP resonance frequencies,
especially in the occipital and frontal lobes for which the largest frequency offsets have been
observed from the experimental B0 maps. Also, one of our eight 31P channels (placed on
the frontal right side) seemed to perform sub-optimally (Figure B.0.1) probably depending
on the head size. This led to the sensibly smaller kf values and larger variabilities observed
in those frontal areas.

Therefore, there is surely room for improvement regarding the design/choice of our
saturation transfer or excitation pulses. In particular, optimized sinc RF pulses (asymmetric
or SLR) could be considered in the near future to flatten their spectral selectivity profiles
reducing their sensitivity to B0 inhomogeneities while maintaining short effective TE and
TR.

Notably, most issues that our B+
1 template approach alleviates could be neglected if one

was to use a volume coil, for instance a birdcage coil for transmission thanks to its largely
homogeneous B+

1 field. However, multiple reception-only channels would have been needed
to maintain (or increase) the amount of signal we benefited from using our 8-channel
phased array coil.
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By relying on external references of concentrations for quantification, we assumed
comparable load and reception profiles between our phantoms and volunteers. Ideally, a
way to estimate correction terms for each reception channel would be needed to reach a
more satisfactory quantification of our ATP or PCr concentration maps. Attempts were
made in this direction by acquiring sensitivity profiles at low resolution (data not shown).
However, the subsequent correction was unsatisfactory due to their low spatial resolution.
Further developments could be considered in the future at even higher magnetic fields.





Chapter 7
Conclusion and perspectives

We aimed to assess the absolute concentration of γ-ATP and PCr in the brain and image
the flux of creatine kinase reaction. These biomarkers are of great interest to neurologists,
psychiatrists or neurobiologists because they directly assess the intensity of brain energy
metabolism and the good health of its cells.

I developed a multiple frequency selective sequence from a FLASH sequence by trans-
forming it into a UTE sequence, adding homemade saturation modules, and using a
spectrally selective pulse. This sequence alternatively acquires images of PCr and γ-ATP.
The corresponding signal is tagged in the raw Siemens files. I also adapted a reconstruction
code in Matlab to read those tags, separate and organize them.

Due to the characteristics of the coil, a second protocol and cohort were needed to correct
for B+

1 inhomogeneities. This protocol was optimized through Monte-Carlo simulations
to determine the set of FA values that were to be probed to acquire the most precise FA
maps.

I developed two scripts in Python, one to co-register, quantify the concentration, model
the saturation transfer via chemical exchange process, segment, and compute roi-based
parametric maps. The second was to fit the data according to the SPGR signal equation,
register the images into the MNI template space and compute a B+

1 template map. I
also evaluated the similarity between individual FA maps by computing their correlation
matrix.

I also considered the limitations of our protocol in regards to the frequency selectivity
of our pulses in the resulting parametric maps. Finally, I demonstrated the feasibility of
determining [ATP], [PCr], kf , and Vck regional values in a sensitive, quantitative way and
within a time compatible with clinical research (below 1h15) applications in several regions
of interest at 7T simultaneously.

Some of these results were presented at the ESMRMB meeting in 2021. A full article
was also submitted to NeuroImage. Unfortunately, it was rejected. The main concerns
expressed by the reviewers were the small number of volunteers examined and the variability
of the results obtained from the frontal areas which are possibly related to the instability
or insufficient load of one of the coil element. Our team at NeuroSpin will continue this
work using a new 32-channel 31P coil that should solve these issues and the paper should
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be resubmitted soon.
In the future, we will adopt this approach to investigate the Vck and concentrations

in neurodegenerative diseases. Also, we plan to adapt this protocol to investigate the
PDE/PME ratio as it will be shown in the next section.
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8.1 Introduction

Several clinical research collaborations have been discussed during this PhD thesis. Among
then, Prof. Rémy Guillevin from CHU Poitiers (figure 8.1) was especially interested
in translating our sequence and the clinical protocol for studying Alzheimer’s disease,
glioblastoma or stroke patients.

As discussed in section 2.3, PME and PDE are metabolites linked to the regulation,
synthesis and degradation of cell membrane-related phospholipids, PME are mobile mem-
brane phospholipid precursors while PDE are related to their breakdown products. Both
group of metabolites are reflecting membrane turnover. PME/PDE ratios are thus of
interest to examine abnormal membrane metabolism [Daly 1987,Kemp 2000,Albers 2005].
The driving hypothesis is that changes in the PME/PDE ratio reflect either an abnormal
cell proliferation (typically a decreased PDE/PME ratio is expected due to tumor growth)
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or tissue necrosis or apoptosis (increased PDE/PME is expected following successful
chemo/radiotherapy) [van der Kemp 2014, Sonkar 2019].

Figure 8.1 – CHU Poitiers Ultra High Magnetic Resonance Imaging Platform (from
https://www.chu-poitiers.fr/specialites/irm7tesla/?lang=en)

8.2 Methods

For our sequence to be available to 7T Terra system, we transposed the sequence initially
developed for VB17 to the VE12 version of Siemens MRI Scanner using IDEA Toolkit.

We executed some validation tests at NeuroSpin with the following protocol (see table
8.1). This protocol used the MFS sequence developed for ATP and PCr MRI (detailed in
section 4.1.4). We chose to use the version without saturation bands since PME and PDE
concentrations are not particularly prominent in muscles.

8.2.1 Data acquisition

One healthy volunteer was recruited at NeuroSpin to validate this protocol. Images were
acquired on the 7T MRI Magnetom MRI scanner using the dual-resonance 8-channels
31P/1H phased-array coil (details in section 4.1.3). The sampling scheme was a non
Cartesian TPI [Boada 1997], with p=0.3. The parameters used for this test were:

FA Spokes TE/TR [ms] Res [mm3] F1/F2 TA
10 ° 1500 4.5/250 20x20x20 860/320 6 min 15 s
20 ° 1500 4.5/250 20x20x20 860/320 6 min 15 s
30 ° 1500 4.5/250 20x20x20 860/320 6 min 15 s

Table 8.1 – Parameters of our validation protocol for the estimation of PDE/PME ratio in
one first healthy volunteer
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We chose to acquire images at three different FA, improving the robustness of the
derived M0 and T1 maps compared to a minimalist estimation based on only two points.

8.2.2 Data processing

As done previously, tagged raw k-space data were separated and reorganized into PDE and
PME specific k-space signals. Both images were reconstructed offline using a homemade
Matlab script (The MathWorks Inc., Natick, Massachusetts) using a non-uniform fast
fourier transform (FFT) regridding algorithm consisting of a Kaiser-Bessel one can find
kernel interpolation density compensation and Hamming filtering steps as detailed in
section4.2.1.

Since the aim is to derive PDE/PME ratio maps, corrections for B+
1 heterogeneities are

less relevant as they cancel out in the division. This makes this problem easier than the
Vck estimation presented in this thesis. Thus fewer parameters are be to estimated. Also
the target resolution was lowered to get a suitable SNR. We took advantage of reducing the
number of hypotheses fixed. Contrary to the previous work, T1 can be estimated instead
of considering values from the literature, which could be an advantage for clinical research
studies.

To do so, we implemented a faster algorithm called NOn-linear VarIable Flip Angle data
baSed T1 estimator (NOVIFAST) [Ramos-Llorden 2018]. Here is a short description of
this approach: 1) VFA T1 mapping is formulated as a non-linear least squares optimization
problem that can be iteratively solved as a two-by-two linear system, constituting a fixed-
point algorithm (NOVIFAST). Due to its formulation, NOVIFAST turns out to be very
easy to implement and computationally highly efficient; 2) it also gives the precise solution
for noiseless data.

This NOVIFAST permits the estimation of T1 and K [Ramos-Llorden 2018] simultan-
eously. It is based on the equation:

A(ck)ck+1 = v(ck). (29)

with solution:

ck+1
1 =

∣∣∣∣∣∣∣∣
〈z, b〉 〈b,a〉

〈z, ã〉 〈a, ã〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣∣∣
, ck+1

2 =

∣∣∣∣∣∣∣∣
〈b, b〉 〈z, b〉

〈b, ã〉 〈z, ã〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣∣∣
, (30)

The algorithm can be implemented as in the algorithm 2.
After computing M0 and T1, images were masked using k-means algorithm with k=2

using M0 as based image.
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Algorithm 2 Pseudo-code of NOVIFAST
Given parameters: TR and flip angle (αn)Nn=1
Initial values: Kini and Tini
c1

0 ← Kini(1− exp(−TR/Tini)
c2

0 ← exp(−TR/Tini)
k ← 0
ck ← (c1

k, c
2
k)

while convergence criterion is not met do
Solve Eq. 29
k ← k + 1

end while
return K̂ = ck1/(1− ck2) and T̂1 = −TR/ log ck2

I implemented this algorithm in Python3 and validated the results for noiseless data and
MC simulations with increasing noises levels to match the cited paper [Ramos-Llorden 2018].
Code is available at https://github.com/rpbaptista/PMEPDE_ratio.

8.3 Results

8.3.1 Raw images

The reconstructed images for each excitation flip angles (10°/20°/30°) can be seen in fig8.2.
Target spatial resolution was 20x20x20 mm3 (8 mL).

We can see, as expected a stronger signal from PDE than PME, which is expected in
the brain.

8.3.2 Quantitative maps

In figure 8.3, the T1 maps for the two metabolites are shown for a central slice. The outside
of the brain was masked. The T1 for PME was found 6.5± 1.5. For PDE, T1 was 6.8± 1.2.

The figure 8.4 shows the central slice of the PME/PDE ratio map. Spatial resolution
was still 20x20x20 mm3. The outside of the brain was masked.

The ratio for PME/PDE was found 0.68± 0.28.

https://github.com/rpbaptista/PMEPDE_ratio
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Figure 8.2 – A typical set of "raw" PDE and PME images, no co-registration with their
anatomical reference was made for lack of acquisition.

Figure 8.3 – Central slice of our T1 maps for PDE and PME. Spatial resolution of 20x20x20
mm3. The scale is given in milliseconds.
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Figure 8.4 – Central slice of ratio PDE/PME map in a healthy volunteer. Spatial resolution
of 20x20x20 mm3.
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8.4 Discussion

We managed to apply a simplified version of our pipeline to image PME/PDE in the brain
at 7T. The values for the PME/DME ratio and T1 are coherent with the literature. For
instance, Shi et al. found PME/PDE to be 0.628±0.104 when evaluating 23 healthy
volunteers and [Shi 2015]. For the T1: PME = PE + PC, theirs respective T1 are:
6.33± 1.10 and 4.31± 1.04. For PDE: GPE + GPC theirs respective T1 are: 6.79± 0.95
and 5.82± 0.88. The concentration of PE is around eight folds PC in the brain [Ren 2015]
and GPC is greater around 50% in concentration. This mean

This application is less disturbed by the three main limits of our technique. First, as
we estimate a ratio, B+

1 (nor B−1 ) inhomogeneities do not need to be corrected. Second,
contamination due to partial volume effects is less of a problem because there are not
higher concentrations of PDE or PME in the muscles compared to the brain. However,
this approach remains sensible to B0 inhomogeneites due to possible impact of Pi peak.

8.5 Conclusion and perspectives

The protocol is ready to be applied in a clinical study to a cohort of Alzheimer’s Disease,
glioblastoma or stroke patients versus age-matched controls. The next step we foresee
is to validate this approach at the CHU of Poitiers, considering that the coil is not the
same, which can lead to different levels of SNR. Consequently, a possible adjustment on
the resolution is possible.

Also, the algorithm chosen is fast enough to allow online reconstruction and it can be
easily implemented on ICE (Siemens reconstruction) or Gadgetron using the code available
at the GitHub repository.
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Chapter 9
Introduction

The SPARKLING algorithm has been developed in NeuroSpin for the parsimonious
acquisition of high spatial resolution images. In this part of my Ph.D. thesis, I evaluate
the application of SPARKLING to accelerate 23Na imaging.

I presented a preliminary version of our study at an international conference as:

R. Porciuncula Baptista, A. Vignaud, Chaithya G R, G. Daval-Frérot, F. Mauconduit,
M. Naudin, M. Lapert, R. Guillevan, P. Ciuciu, C. Lerman-Rabrait and F. Boumezbeur.
Evaluation of 3D SPARKLING for undersampled Sodium UTE MRI at ultra-high magnetic

field. In Proceedings of the 30th International Society of Magnetic Resonance in Medicine, 2022.

Cerebral sodium (23Na) magnetic resonance imaging (MRI) provides unique inform-
ation about brain tissue viability in vivo. Indeed, neurons rely on the energy-hungry
sodium-potassium pump (Na+K+-ATPase) to regulate their transmembrane Na+ and K+

concentration gradients, which in turn determinate their resting membrane potential. In
pathological conditions where the cell membranes are damaged or their energy synthesis
capabilities are compromised, an increase in Intracellular Sodium Concentration is bound
to occur, while Extracellular sodium concentration stays constant. This leads to an in-
crease in tissue sodium concentration (TSC), neuronal dysfunction, and ultimately cell
death [Mccarthy 2015].

Therefore changes in TSC are considered potential early biomarkers for many neuro-
degenerative diseases. Several studies confirmed the relevance of assessing tissue sodium
concentration (TSC) in neurological disorders such as Alzheimer’s [Haeger 2021], Multiple
Sclerosis [Zaaraoui 2012,Eisele 2019], Huntington’s, [Reetz 2012] and others [Zaric 2021b].

However, 23Na-MRI faces several technical challenges, limiting its clinical use. This is
mainly due to the moderate sodium concentration in the human brain (about 40 mM in
the white matter (WM) and 140 mM in the cerebrospinal fluid (CSF)) and its low intrinsic
nuclear magnetic resonance (NMR) sensitivity compared to proton MRI. In the healthy
brain white matter, those differences can lead to up 5500 fold less signal-to-noise ratio
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(SNR) [Ladd 2018]. Consequently, 23Na images are acquired at lower spatial resolutions
and require longer acquisition time (TA).

Another difficulty is the fast transverse relaxation time (T2/T
∗
2 ) of 23Na NMR signal,

which is typically less than 5 msec [Ridley 2018]. Consequently, ultra-short echo time
(UTE) sequences combined with deterministic non-Cartesian k-space trajectories have been
preferred [Konstandin 2014] by the 23Na MRI community. Among the most commonly
used non-Cartesian k-space sampling schemes, we can cite radial, density-adapted three-
dimensional radial projection reconstruction pulse sequence (DA-3DPR) [Nagel 2009],
Twisted Projection Imaging (TPI) [Boada 1997] or Fermat-looped orthogonally-encoded
trajectories (FLORET) [Robison 2017].

These standard non-Cartesian readouts are flexible, as they are analytically and
geometrically constrained, and, when combined with density-compensated reconstruction,
they can provide good image quality. However, they can be sub-optimal in sampling the
k-space, especially for higher k values which can lead to fast degrading spatial resolutions
when the k-space is undersampled (as demonstrated by the computed point spread function
(PSF) [Konstandin 2014]). In the recent years, to accelerate image acquisition while
preserving spatial resolution, compressed sensing (CS) approaches have been proposed for
proton MRI [Dale 2004,Mir 2004,Kumar Anand 2008,Vasanawala 2010].

In the past, proton MRI CS approaches were those which took advantage (i) of the
sparse characteristic of MRI signals, (ii) incoherent sampling schemes, and (iii) nonlinear
reconstruction with a sparsity promoting prior. Currently, the concept of an incoherence
sampling scheme is considered sub-optimal, [Adcock 2017] and new CS techniques focus on
(i) globally variable density sampling non-uniform between high and low frequencies but
(ii) locally uniform coverage of k-space [Donoho 2006].

Recently, Chen et al. reviewed CS attempts in 23Na MRI [Chen 2021]. Some of those
articles also evaluate the impact of acceleration on TSC, as TSC is one of the main goals of
23Na MRI. Twelve out of seventeen studies use radial or DA-3DPR as a sampling scheme,
and only one used a version of TPI, even though it has a slightly better SNR [Nagel 2009].

All cited studies did not explore optimized sampling schemes. Their CS definition is
based on the incoherence criteria. This criterion states that the measurement basis and
the sparse representation basis must be uncorrelated so that the k-space undersampling
artifacts add incoherently to the sparse signal coefficients. They assume the incoherence of
density-adapted three-dimensional radial projection reconstruction pulse sequence (DA-
3DPR) or TPI. No more specific CS trajectories have been studied. Several attempts have
been made in proton MRI to improve the sampling scheme by using a series of second-order
cone optimization sub-problems, ideas from the missile guidance field, or others [Kumar
Anand 2008,Mir 2004,Dale 2004].

Here, we apply SPARKLING [Lazarus 2019] to 23Na MRI. SPARKLING is inspired by
CS approaches with a (i) global variable density sampling but (ii) locally uniform coverage
of k-space. Compared to more classical approaches, this approach is an excellent candidate
for shortening the TA while improving image quality in 23Na MRI.

The application of CS techniques to sodium imaging presents its specific challenges
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because the ability of CS to accelerate depends on the image size and available SNR: for
both, the bigger it is, the better. Unfortunately for 23Na MRI, both are limitings factors
compared to 1H MRI.

In this study, for the first time, we aimed at demonstrating that we can accelerate in

vivo 23Na acquisitions at 7T and perform valid TSC quantification using 3D SPARKLING.
We compare to current state-of-the-art (TPI) with the same Tobs, bandwidth (BW), flip
angle, and repetition time (TR). Our study design was divided in three parts (i) simulations
to find the scenarios of SNR, spatial resolution, and density sampling parameters for which
SPARKLING outperforms TPI (ii) in vitro measurements to assess the impact of the
different AF on TSC quantification, (iii) in vivo experiments to analyze the resulting TSC
maps quality in the healthy human brain.
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10.1 Determination of scenarios of interest using simulations

As stated before, the determination of scenarios of interest for CS 23Na MRI is a non-trivial
task due to its relatively low SNR and spatial resolution compared to 1H MRI. To solve
this problem, rather than relying on a fastidious experimental work on phantoms or healthy
volunteers, we opted to develop a tool for synthesizing sodium images so as to investigate
in a more systematic manner the impact of these factors and determine sets of acquisition
parameters for which 3D SPARKLING may outperform TPI.

Please keep in mind that the generation of SPARKLING trajectories is time-consuming
and an exhaustive simulation study of all possible acquisition parameters and corresponding
SPARKLING trajectories was not possible.
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The first step for retrospective studies is to have a database representing the reality
of the target data. In proton MRI, several online databases are available as OpenNeuro
(https://openneuro.org/) and FastMRI [Zbontar 2018]. For sodium MRI, it is less common.
For that reason, we simulated synthetic images for retrospective studies taking into account
a four-compartment method that will be detailed below, using MP2RAGE images we had
acquired previously.

10.1.1 Creation of synthetic images

As proposed by Gilles et al. [Gilles 2017], the total 23Na signal S in this model corresponds
to the sum of the 23Na signals from three tissue compartments (Fig. 10.1) with different
sets of concentrations Cj , volume fractions αj , and weighting factors λj (with j=1,2 and
3). The fourth compartment (solid) contribution to the signal is negligible.

For the creation of synthetic images, we used the following bi-exponential model with
four compartments:

Figure 10.1 – Four-compartment model for brain tissue. 23Na ions are present in the
intracellular (1), extracellular (2), and CSF (3) compartments of the human brain. Sodium
signal from the solid compartment (4) is negligible. Notations are, for j = 1 to 4: Cj
= sodium concentrations, Vj = volumes, αj = volume fractions, w = water fraction.
Assumptions for this brain model: w = α1 + α2 + α3, with w = 0.8, total volume Vt = V1
+ V2 + V3 + V4, and C2 = C3 = 140 mM. Unknown values of interest are in red: C1, α1,
α2, and α3. From [Gilles 2017].

The volume fractions of each compartment are taken from [Fleysher 2009]. We used
MP2RAGE at 0.75 mm isotropic as reference images. Images were segmented into CSF,
WM, and GM using SPM12 [Penny 2011]. Once the masks were available, each compartment
was multiplied by its corresponding weight.

https://openneuro.org/
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For each compartment, the signal is computed as:

Si = f ∗ exp
(
− TE
T2i,s

)
+ (1− f) ∗ exp

(
− TE
T2i,l

)
(10.1)

where f is the fraction corresponding to short T2i,s.
The T1 and T2 values used in this model are from [Fleysher 2009].

T1 [ms] T2s [ms] T2l [ms]
Intracellular compartiment 24 2 12
Extracellular compartiment 46 3.5 30
CSF compartiment 64 56 56

Table 10.1 – Relaxation times on human brain sodium. From [Gilles 2017].

Then, signals maps were down-sampled to the target resolution. Based on the state-of-
the-art of 23Na MRI, we opted for the investigation of three targets resolutions: 2, 4 and 8
mm isotropic resolution. In the end, we obtained synthetic sodium images similar to those
shown in figure 10.2.

Figure 10.2 – Examples of synthetic 23Na images: axial central slice for (a) spatial resolution
2 mm isotropic (b) spatial resolution 4 mm isotropic and (c) spatial resolution 8 mm
isotropic using our fourcompartment model.

In figure10.2, we see images that are proportional to the signal MRI created with the
model described above.

I coded the scripts to generate synthetic data in Python3. I developed a class for
each compartment, and the user can choose the number of compartments and whether
they are mono-exponential or bi-exponential. They are available in a public repository
(https://github.com/rpbaptista/Quantification/).

I later added Gaussian noise in the k-space to match the input SNR of real acquisitions.
Input SNR was defined as the ratio of the maximum intensity of k-space for a given

spoke divided by the standard deviation of a spoke where FA=0°. To do so, we needed

https://github.com/rpbaptista/Quantification/
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extra acquisition in order to model the noise. We did so for the higher acceleration factor
we studied.

10.1.2 Creation of trajectories

TPI

Twisted projection trajectories (TPI) were introduced in 1997 by F. Boada et al. [Boada 1997];
at that time, the state-of-the-art sampling scheme acquisitions were radial. The premise
behind TPI is that improvements in the sampling efficiency of three-dimensional projection
imaging can be attained by removing the non-uniform sample density that results from
uniform sampling in time along radial lines in k-space.

In three dimensions, the improvement in efficiency is made through a twist in the
trajectories that preserves the sample density. In a thin spherical shell, the number of
trajectories will be constant if the number of samples inside a thin spherical shell is
proportional to the volume of the shell. This can be described through the equations
[Boada 1997]:

k̇ = α

k2 (10.2)

and

k̇ + k2(θ̇ + sin2 θϕ̇2) = γ2G2 (10.3)

The solutions of those equations give the k-space trajectory. For more details, the
reader may refer to the seminal article [Boada 1997]. The resulting trajectories can be seen
in the figure10.3.

I implemented the algorithm for generating TPI trajectories in MATLAB and another
sampling scheme (radial and density adaptive radial). The code gives an output of a .bin
file containing the gradient values to be passed to the machine. This integrates with our
sequence (one may refer to the chapter 4.1.4), giving flexibility to the experiments. If the
user wants it, he can also retrieve the k-space vector to use in their sequence. This program
is available in a public GitHub repository (https://github.com/rpbaptista/Trajectories/).

SPARKLING

The SPARKLING algorithm [Lazarus 2019] generates optimized k-space sampling patterns
K[i] = (kx,i, ky,i, kz,i) , where i represents a sample which comply to a target acquisition
density. At the same time, SPARKLING respects MR hardware limitations such as
maximum gradient amplitudes and slew rates. SPARKLING focuses on radially symmetric
densities, which present the advantage of yielding results invariant to translation and
rotation of the sample to the image. This target density is defined by two parameters:
cutoff (C) and decay (D) (figure 10.4). They are defined as follows:

https://github.com/rpbaptista/Trajectories/
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Figure 10.3 – Example of TPI "spoke": p represents the radial fraction.

πC,D(x) =


K |x| < C

K

(
C

|x|

)D
|x| > C

(10.4)

Where K is a constant obtained through normalization:

K = 1−D
2C(CD−1 −D)

This algorithm has been extended to 3D and is described in detail elsewhere [Chaithya 2022].
3D SPARKLING has a locally uniform coverage of k-space, differently from TPI or radial
strategies. The trajectory K̂ is optimized as:

K̂ = arg min
K

Fp(K) = F ap (K)− F rp (K) (10.5)

where F ap (K) is the attraction term enforcing the sampling pattern K and F rp (K) is
the repulsion term which guarantees a good filling of the k-space. The repulsion term
F rp (K) and F ap (K) are defined as:

F rp (K) = 1
2p2

∑
||K[i]−K[j]||2 (10.6a)

F ap (K) = 1
p

∑ˆ
ω
||(x−K[i])||2ρ(x)dx (10.6b)
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For an e

Figure 10.4 – Example of SPARKLING trajectory, parameters refer to the density function,
cutt-off (C), and decay (D).

Here, we adopted a variation of SPARKLING, called MORE SPARKLING, [Chaithya
G R 2022] to define sets of center-out spokes for 23Na imaging. In this variation, the F rp
factor incorporates a temporal weighting to enforce that the next point of the trajectory in
the same spoke is further away from the center and is defined as:

F rp (K) = 1
2p2

∑
exp|ti−tj | ||K[i]−K[j]||2 (10.7a)

where ti and tj correspond to the times when the samples K[i] and K[j] are acquired.
This is important to reduce off-resonance artifacts and avoid signal loss due to averaging

points in different observation times, which is especially important for the fast relaxing
sodium nuclei.

The calculation of F rp and F ap is made through a gradient descent algorithm. All code
has been optimized for GPU computing, [Chaithya 2022] and it is available on a python
package called SPARKLING. Interested researchers are requested to contact the authors
to obtain access to this package.
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Figure 10.5 – SPARKLING and MORE-SPARKLING sampling schemes: In left, SPARK-
LING illustration trajectory. In the right, MORE-SPARKLING center-out trajectory.
The color blue represents the beginning of the trajectory, and the color yellow is the end.
From [Chaithya G R 2022].

Figure 10.6 – TPI and SPARKLING sampling schemes: In left, TPI illustration trajectory.
In the right, SPARKLING center out trajectory. The color blue represents the beginning
of the trajectory and the color yellow the end. Each spoke on TPI and SPARKLING were
acquired over the same Tobs = 12.48 ms.

10.1.3 Comparison between scenarios

Once I generated the trajectories and synthetic images, I examined which SNR level is
needed for SPARKLING to outperforms TPI.

From the synthetic data in the image space, we transformed the data into k-space
datasets by performing an IFFT. In this preliminary study, I resampled the data using
density compensation [Pipe 2011] and NUFFT to avoid misleading the gain from the
different trajectories with the reconstructions gain.

Once in the k-space, I re-sampled the data according to each trajectory. Due to time
limitations, I set up our range of parameters in Table 10.3:

I added the noise directly in k-space to match the target SNR. The special case of infinity
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AF (2,8,32,64,128)
SNR (2,5,10,15,20,50,∞)

Table 10.2 – Parameters studied for our scenario evaluation

SNR is where I applied no extra noise, and the SNR was the one from the MP2RAGE
image. The SNR in MP2RAGE was at least 100. A NUFFT was applied to the new data
set to retrieve the reconstructed image.

This procedure was done with the python package PySap-mri.
Finally, SSIM was calculated between the reference (initial) image and the reconstructed

image for both scenarios (TPI vs SPARKLING).

10.2 Tuning of the trajectories parameters

10.2.1 TPI parameters

The TPI parameter p was set to p = 0.3 because it was already optimized in the literature
[Romanzetti 2014].

10.2.2 SPARKLING parameters

The creation of trajectories can be time-consuming, even in GPU computing. For instance,
computing a trajectory respecting the Nyquist criteria for a spatial resolution of 4 mm can
take about 24 hours. For this reason, we had to limit the grid of trajectories evaluated in
this study.

The cutoff values C were chosen around 30% because this parameter is related to the p
value of the TPI trajectory that has been set at p = 0.3 [Romanzetti 2014]. For the spatial
resolution, the target values were chosen to encompass the range of literature values. On
one hand of the spectrum, in a recent study by Wilferth et al., a theoretical resolution of
2.5 mm isotropic was achieved using a 32 channel coil at 7T [Wilferth 2022]. On the other
hand, multi-parametric sodium MRI has been implemented in our team using QUICS at
a much lower resolution of 6 mm isotropic [Leroi 2018]. The resulting set of parameters
grid-searched are summarized in Table 10.3.

Decay (2,3)
Cutoff (10,20,30,40,50)

Table 10.3 – Parameters studied for our evaluation of SPARKLING trajectories

The metric chosen to select the best set of parameters for cutoff and decay was the
FWMH of the point spread function (PSF) of each trajectory: the lower being better. We
chose this metric from the literature [Chaithya G R 2022]. We also avoided evaluating
PSF after reconstruction because PSF in 23Na data is known to be harder to estimate due
to low SNR [Polak 2022].
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10.3 Validation of our simulations

To evaluate if our simulations were valid, in vitro and in vivo 23Na MRI datasets were
acquired. The reference image was a 3D radial UTE at spatial resolution 8 mm isotropic with
number of shots (Ns4π(kmaxFOV )2) chosen to respect Nyquist criteria, [Bernstein 2004]
and 32 number of averages (NA) were used as the reference image for our simulations.

At this resolution, the number of averages was chosen for validation because we could
aim for a high SNR in a short acquisition time. For instance, the full Nyquist dataset
with 32 averages takes about 30 min. Therefore, validating this protocol in vivo would be
easier. If one has the time to do so, this validation can be done at any resolution as long
as a sufficient SNR is achieved.

This test explored different acceleration factors and resolutions and focused on a fixed
set of parameters: TR/TE=20/0.5 ms, FA=55°, FOV = (240 mm)3, dwell time = 10 µs,
1248 points per spoke, which has previously been optimized for in vivo 23Na acquisitions
on our 7T set-up [Coste 2019].

MRI data were acquired on Magnetom or Terra 7T MR Siemens scanners (Siemens
Healthineers, Erlangen, Germany) using respectively a dual-resonance 1H/23Na birdcage
(Rapid Biomedical) or a 32-channel helmet coil (Rapid Biomedical).

The input SNR per spoke was measured from these experiments. I added Gaussian
noise to the reference complex k-space data to simulate the performances of SPARKLING
and TPI strategies at lower input SNR. For each considered input SNR, k-space was
sub-sampled at various acceleration factors (AF=2, 4, 16, 32, 64, 128).

A reference radial image with full Nyquist k-space sampling was acquired and the
metric chosen was SSIM. Images were reconstructed using the density compensated method
[Pipe 1999] combined with CS reconstruction with density compensation using Pysap-
MRI [Farrens 2020]. This package allows the management of large 3D non-Cartesian
multichannel datasets. For each reconstruction, the regularization parameter (λ) was
chosen visually in the 10−7 to 10−20 range (30 steps) to maximize "human-evaluated"
image quality.

10.4 Impact of acceleration on TSC quantification

High-quality images are not the only goal of 23Na MRI since, as discussed before, 23Na
MRI aims at being quantitative. It is known that CS techniques can affect the performance
of quantification methods [Blunck 2020]. That is why we needed to study the impact of
acceleration on the TSC quantification.

10.4.1 Theory

Our quantification method is based on our variable flip angle (VFA) approach [Coste 2019],
which combines two images acquired at different FA to estimate M0 and T1 maps.
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Two steady-state gradient sequences were used to perform the Variable Flip angle
method:

S

sin(α) = a
S

tan(α) + b
(10.8)

with

a = exp
−TR
T1 (10.9)

b = KM0(1− exp
−TR
T1 ) (10.10)

from which M0 and T1 can be extracted from:

KM0 = b

1− a (10.11)

T1 = −TRln a (10.12)

M0 images are then used for the calibration phase to compute TSC maps.

10.4.2 23Na MRI Acquisitions

MRI data were acquired on the Terra 7T MRI scanner (Siemens Healthineers, Erlangen, Ger-
many) of the CHU of Poitiers equipped with a whole-body gradient coil (Gmax=80mT/m,
slew rate of 200 T/m/s) and a double-tune 1Tx/1Rx birdcage coil for 1H and 1Tx/32Rx
helmet coil for 23Na (Rapid Biomedical GmbH, Rimpar, Germany).

23NaMRI sequence parameters were those determined previously by our team [Coste 2019]
to maximize SNR for in vivo 23Na MRI: TE/TR=0.8/20 ms, FOV=296 mm isotropic,
FA= 50°, dwell time = 10 µs of ADC, 1248 points per ADC, 32 averages. The oversampling
factor, which indicates how many points are acquired per dwell time, was set to 5. The
reason is that SPARKLING optimization generates better trajectories for this parameter.
It does not affect the TPI trajectories generated.

One may notice a lengthening of the TE was needed from TE=0.5 ms to TE=0.8
ms due to the difference between the TERRA and MAGNETOM systems. Both were
corresponding to the minimum TE possible for the sequence, the excitation pulse being a
hard pulse with aduration of 860 µs in both cases.

MR Sequence

The sequence used for both trajectories I coded from a FLASH Siemens sequences and it
has been described in detail in section 4.1.4. The only parameter changed between a TPI
and a SPARKLING acquisitions was the file of trajectory, this guarantees the same RF
pulses, spoiling and all other relevant parameters that allow this comparison to be fair.
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10.4.3 Image reconstruction

Density compensation Pipe1999 using Pysap-MRI Gueddari2020 were performed in all
the data. This package allows the management of large 3D non-Cartesian multi-channel
datasets. The iterative method was the same for TPI and SPARKLING. The density
compensation function depends only on the k-space trajectories, this keeps the comparison
between TPI and SPARKLING fair. Density compensation is needed in non cartesian
acquisitions in order to avoid degradation of PSF.

While iterative reconstruction is expected to be used and generate better results for
CS acquisitions, only evaluating this reconstruction could make difficult to pinpoint the
benefits of the trajectory versus reconstructions. That is the reason whe both iterative
reconstruction using proximal optimized gradient method (POGM)Kim2021 and regridding
were evaluated.

Raw k-space datasets of each acquisition block were processed offline. For each iterative
reconstruction, the regularization parameter (λ) was chosen visually in the 10−7 to 10−20

range (30 steps) to maximize image quality. λ was constant between volunteers for a given
acceleration factor and trajectory.

In this thesis, our nonlinear reconstruction reads as follows:

ẑ = arg min
z

1
2 ||y − ||

2
2 + λ||z||1

10.4.4 Data processing for TSC quantification

Reconstructed images obtained for each flip angle (FA1 = 25° and FA2 = 50°) were
rigid-body realigned, to compute M0 and T1.

One may notice the change from FA=55° to FA=50° from the optimized protocol of
reference [Coste 2016]. This was needed thanks to the different coils, which led to an
increase in SAR. To compensate, we had to slightly decrease the second flip angle.

To estimate TSC, four calibration tubes were used. They were placed on the exterior
part of the coil (figure 10.7). The sodium concentrations in the four calibration tubes
were: T1 = 51 mmol/L (0.3% NaCl), T2 = 105 mmol/L (0.6% NaCl), T3 = 155 mmol/L
(0.9% NaCl), and T4 = 209 mmol/L (1.2% NaCl). The agarose gel was used to mimic the
relaxation times of sodium in brain tissues at a concentration of 1.2%. The tubes were
made at NeuroSpin chemical laboratory.

Image processing consisted in automatically segmenting the tubes on the images, the
segmentation takes into account the fixed geometry tubes. For each tube a mask was
generated, this allowed us to extract theM0 voxels distribution, and performing a four-point
linear regression of intra-tube intensity against tube concentrations.

The points used in the regression were a i-percentile of the concentration distribution in
the tube. The percentile of concentration was calibrated to match the known concentration
in the Skully phantom using a full Nyquist acquisition.

I developed these scripts for the analysis of our SPARKLING data in Python3. They are
available in a public GitHub repository (https://github.com/rpbaptista/StudySparkling/).

https://github.com/rpbaptista/StudySparkling/
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Figure 10.7 – Placement of tubes on the coil.

10.4.5 Evaluation Metrics

To evaluate the robustness of our quantification, we filled a realistic phantom (represented
in fig. 10.8) with a known sodium concentration, and we measured the difference between
the real concentration and the mean of the estimated concentration for each acceleration
factor (AF=8,32,64,128). This phantom was 3D printed at NeuroSpin by J. Bernard, and
is based on the geometry proposed by Jona and all [Jona 2021].

The relative errors in the obtained TSC values were compared between the accelerated
datasets, the 4-point calibration method robustness being evaluated through the r2 of the
linear regression of the signal extracted from the reconstructed and segmented reference
tubes.
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Figure 10.8 – Illustration of "skully" phantom. The left side represents the inner com-
partment. The right side represents the outside compartment. The photo is courtesy of
Thaddée Delebarre (Ph.D. Student at NeuroSpin). The internal compartment is filled with
40 mM of NaCl, and the exterior is filled with 100 mM of NaCl. NaCl was chosen thanks
to its stability over time.
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11.1 Comparison of SPARKLING and TPI in silico

In this section, we present, for the considered scenarios of SNR and spatial resolution,
the impact on SSIM of the different acceleration factors for both SPARKLING and TPI
acquisitions.

For each considered spatial resolution, our simulations led us to a certain number of
average to reach the target SNR.

In figure 11.1, one can see that high SNR levels are required for SPARKLING to
outperforms TPI for a resolution of 3 mm isotropic. Unfortunately, obtaining these
SNR levels at such resolution would require hundreds of averages which would make the
acquisitions last hours. Consequently, we did not investigate further neither this 3 mm
resolution nor the even more challenging resolution of 2 mm that we had examined through
our simulations.

Figure 11.2 shows the SSIM for SPARKLING and TPI acquisitions at different SNR
levels for a resolution of 4 mm isotropic.
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Figure 11.1 – Different evolution of SSIM computed for different SNR and acceleration
factors for a simulated acquisition at resolution 3 mm isotropic. SNR=(20,50) are shown
here.

Figure 11.2 – Different evolution of SSIM computed for different SNR and acceleration
factors simulated acquisitions at resolution of 4 mm isotropic. SNR=(2,5,10,15,20,50) were
explored.

At SNR = 2, we can already see the interest of using SPARKLING. One can notice
that the levels of SSIM are somewhat low (0.2-0.4). Figure shows the central slice of the
images for a resolution of 4 mm. One can appreciate that for a SSIM of 0.22 (TPI/AF=64)
the image quality is quite degraded (bottom right of the grid). Comparatively, SSIM values
above 0.30 correspond to rather neat images.

From this analysis, we concluded that a minimal SNR level of 10 was required to observe
an advantage of SPARKLING over TPI for high accelerations factors, i.e. to achieve SSIM
> 0.3 . To reach this level of SNR in our experimental set-up for a 4 mm resolution, 32
averages are deemed necessary.

Overall, the SSIM were found to be lower than what an observer would score the images.
This shows the limits of SSIM, which will be discussed in the next chapter.
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Figure 11.3 – Central slice of reconstructed simulated image at resolution for and SSIM for
different SNR. Reference image synthetic sodium image from MP2RAGE. SNR=∞.

Considered all-together, these simulation data summarized in figure ?? show that
SPARKLING should outperform TPI for high acceleration factors such as AF=64 (for any
SNR) or even at lower AF=8 as long as a high enough SNR is achieved.

11.2 Tuning of SPARKLING parameters

Table 11.1 summarizes the FWHM of the PSF for SPARKLING acquisitions with different
parameters. Based on this table, we chose parameters C=30 and D=2 to continue this
work.

FWHM

Decay
Cutoff 10 20 30 40 50

2 (2.2,2.2,2.2) (2.2,2.2,2.2) (2.0,2.0,2.0) (2.2,2.2,2.2) (2.2,2.2,2.2)
3 (2.2,2.2,2.2) (2.2,2.2,2.2) (2.2,2.2,2.2) (2.2,2.2,2.2) (2.2,2.2,2.2)

Table 11.1 – FWHM for different parameters at AF = 1. Unit is voxels.

Figure 11.4 shows the central slice of the log of PSF for the investigated TPI and
SPARKLING trajectories. Parameters for SPARKLING were C=30 and D=2.

We chose a log scale to better visualize the ripples surrounding the central lobe of the
PSF (to enhance smaller values).
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One can notice that the peak of the PSF for SPARKLING trajectories is thinner than
for TPI trajectories.
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Figure 11.4 – Log of PSF of the central slice in Z for different accelerations for SPARKLING
and TPI
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11.3 Comparison between experimental data

11.3.1 In vitro

Figures 11.5 and 11.6 show the results between in vitro and simulation at 8 mm spatial
resolutions. Good compatibility between SSIM simulated, and SSIM acquired. Even at
AF=128, the object can still be discerned even at a lower quality for the SPARKLING
sampling scheme. For TPI, at AF=64, the image becomes completely blurred.

Figure 11.5 – Comparison between TPI and SPARKLING SSIM scores for in vitro acquisition
and simulation data with acceleration factors of 2, 4, 16, 32, 64, and 128, images acquired
and simulated with a spatial resolution of 8 mm isotropic.

In figure 11.6, one can see that at AF=16, TPI images become significantly blurred,
and the contours of the tubes can barely be differentiated. At the same time, this happens
only at AF=64 for SPARKLING.
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Figure 11.6 – Central slice of 3D reconstruction for TPI acquired and Sparkling acquired
and their correspondent simulation for different accelerations factors of 2, 4, 16, 32, 64,
and 128 at constant input SNR per spoke and spatial resolution of (8 mm)3 on a phantom.
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11.3.2 In vivo

Figures 11.7 and 11.8 show the results between in vivo and simulation at 8 mm resolutions.
Values of SSIM for SPARKLING remain close to 1 in simulation for all acceleration factors.
In reality, this value is closer to 0.90, but it also remains constant for all acceleration
factors. This shows the stability and robustness of SPARKLING.

It also shows the interest in averaging images. We see here with NA=32. We can
accelerate over 32 because we achieved a threshold SNR of interest, for TPI simulation
show a decrease in SSIM, which is also seen in acquisitions. SSIM closes to one was not
obtained in acquisitions for in vivo data.

Figure 11.7 – Comparison between TPI and SPARKLING SSIM scores for in vivo acquisition
and simulation with acceleration factors of 2, 4, 16, 32, 64, and 128, images acquired and
simulated with a spatial resolution of 8 mm isotropic.

Figure 11.8 shows, one of the main results of this thesis, that at AF=32, TPI images
become significantly blurred, and the contours of the CSF can barely be differentiated. At
the same time, this happens only at AF=128 for SPARKLING. So even though the values of
SSIM do not align precisely with the simulation, experimental data agree with simulations
regarding the differences between the impact of acceleration on TPI a SPARKLING, thus
validating (at least partially) our simulation tool.
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Figure 11.8 – Central slice of 3D TPI and Sparkling experimental images and their
corresponding simulation for different accelerations factors (AF= 2, 4, 16, 32, 64, and 128)
for a constant input SNR per spoke and a target spatial resolution of (8 mm)3 in a healthy
volunteer at 7T.
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11.4 Impact of acceleration on TSC quantification

11.4.1 PSF and accelerated trajectories

The FWHM of the PSF corresponding to each trajectory examined in our in vivo and in

vitro tests were evaluated and are summarized in the table below:

FWHM (in pixels)
AF=8 AF=32 AF=64 AF=128

TPI (2.4,2.4,2.4) (2.6,2.6,2.6) (2.6,2.6,2.6) (2.6,2.6,2.6)
SPARKLING (2.2,2.2,2.2) (2.2,2.2,2.2) (2.4,2.4,2.4) (2.4,2.4,2.4)

Table 11.2 – FWHM for trajectories at 4 mm and cutoff of 30 and decay of 2 for SPARKLING
and p=0.3 for TPI

11.4.2 In vitro

For all our linear regressions performed across different accelerations factors for calibration,
R2 values were systematically superior to 0.96, showing good robustness with the low
variance of the calibration method. An example of linear calibration regression is shown in
figure 11.9 for illustration.

Figure 11.9 – Calibration curve for AF=128, SPARKLING in vitro.
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The line does not cross at (0,0) due to the background noise with a non-zero mean due
to its Rician nature.

The table 11.3 shows the concentration across different acceleration factors for images
reconstructed with NUFFT. The true concentration is 40 mM in the inner compartment.

NUFFT reconstruction: Concentration [mM]

Trajectory
AF AF=8 AF=32 AF=64 AF=128

TPI 40 ± 4 42 ± 2 56 ± 4 74 ± 5
SPARKLING 42 ± 3 41 ± 2 55 ± 3 67 ± 4

Table 11.3 – Average concentration in inner compartment of skully for different acceleration
factors for NUFFT reconstruction.

One can notice that TPI displays slightly worst results at higher acceleration factor
than SPARKLING which is consistent with its worse PSF. For AF=32, the relative
quantification error was about 2.5% for SPARKLING and 5% in NUFFT.

These results show that AF=128 generates 85% for TPI and 67.5% for SPARKLING
of bias in the quantification. This is why AF=128 should probably not be considered as a
viable acceleration factor for quantitative 23Na MRI.

Table 11.4 shows the concentrations across different acceleration factors for images
reconstructed with iterative reconstruction.

Iterative reconstruction: Concentration [mM]

Trajectory
AF AF=8 AF=32 AF=64 AF=128

TPI 42 ± 2 51 ± 3 70 ± 5 110 ± 7
SPARKLING 44 ± 2 39 ± 2 65 ± 5 103 ± 6

Table 11.4 – Average concentration in inner compartment of skully for different acceleration
factors for reconstruction iterative.

As for the concentrations obtained from the iterative reconstruction, quantification
errors were worst for TPI, especially at higher acceleration. For AF=32, the relative
quantification error was about 2.5% for SPARKLING and 27.5% for TPI.

These results show that AF=128 generates 175% for TPI and 153% for SPARKLING
of bias in the quantification. This is why AF=128 should probably not be considered as a
viable acceleration factor for quantitative 23Na MRI.

11.4.3 In vivo Sodium MRI images

Figures 11.10 show the reconstructed images for the NUFFT algorithm for two healthy
volunteers. One can see that cortical details are better preserved for the SPARKLING
acquisition reconstructed with NUFFT.

For AF=32, one can barely see any cortical details for TPI, while they are still visible
for SPARKLING at AF=64. From only an image quality point-of-view, SPARKLING
at AF=128 is still a decent representation of the brain. NUFFT reconstruction has the
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advantage of being fast, and it could be available on the console, even though this was not
the case in our work.

Figure 11.10 – Reconstructions for volunteers: TPI and SPARKLING reconstruction for
volunteers 1 & 2 with NUFFT with density compensation.

Figures 11.11 show the same data reconstructed using the POGM algorithm.
Overall the same observations can be made when comparing SPARKLING to TPI.

However, when comparing NUFFT and POGM algorithm, images reconstructed using
POGM looks better as expected from the regularization.

The examination of the tubes used for calibration can be a good indicator to compare
the effective resolutions. One can see that for TPI images, the tubes appear larger than
they are. Image quality seems similar between both subjects for all reconstructions.
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Figure 11.11 – Reconstructions for volunteers: TPI and SPARKLING reconstruction for
volunteers 1 & 2 with POGM iterative reconstruction with density compensation.

11.4.4 TSC Maps in vivo

For all our linear regressions performed across our cohort for calibration, R2 values were
systematically superior to 0.95, showing good robustness with a low variance of the
calibration method. An example of linear calibration regression is shown in figure 11.12 for
illustration.

Figure 11.12 – Calibration curve for AF=128, SPARKLING in vivo.
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The line does not cross at (0,0) due to the background noise with a non-zero mean due
to its Rician nature.

Figure 11.13 shows the concentration maps for our volunteers for both TPI and SPARK-
LING acquisitions with an acceleration factor of 32 (acquisition time = 5’40").

Figure 11.13 – Central slice of concentration maps of sodium using POGM reconstruction.

As observed for our in vitro data, TSC values were found slightly higher for TPI
compared to SPARKLING the average difference is 11± 2 mM .



Chapter 12
Discussion

This study compared sub-sampled SPARKLING and TPI acquisitions for quantitative
23Na MRI at 7T. TPI is one of the state-of-the-art sampling schemes in X-nuclei MRI.
SPARKLING is an optimization-based sampling scheme that uses CS techniques to ac-
celerate acquisitions. To the best of our knowledge, this is the first optimization-based
sampling scheme to be applied to 23Na MRI.

We set up a simulation tool to study different SNR and spatial resolution scenarios
and tune SPARKLING parameters. This tool describes reality well enough, as illustrated
by our in vitro and in vivo acquisitions. We quantified image quality in phantom through
structural similarity index measure (SSIM) using a reference full Nyquist radial acquisition.
High SSIM scores between simulations and in vitro data were also found. Our in vivo

data showed that SSIM displayed a bias compared to our simulations. We attribute this
difference to the difference in PSF between the radial reference (full Nyquist acquisitions)
and the accelerated SPARKLING/TPI data. SSIM is known to be weakly sensitive to
blurring [Punga 2014]. For this reason, and due to time limitations to acquire a full Nyquist
reference, we did not evaluate/compare SSIM across our in vivo data [Wang 2015].

To simulate our scenarios, we used a database of synthetic images created from
MP2RAGE, we noticed that SSIM values were lower than expected when compared
to radial references. This can be attributed to the fact we did not model realistically the
T ∗2 decay in our simulation. While this can be negligible for simulated proton images, T ∗2
decay is much faster for 23Na MRI and different points in k-space do not exhibit a stable
signal intensity, impacting the PSF of 23Na MRI.

We showed that SPARKLING trajectories have a better PSF than TPI for the same
number of spokes. This was evaluated by comparing the full width at half maximum of
their PSF for different trajectories. The evaluation of PSF after reconstruction is not trivial
for CS reconstruction, which was not explored in this work.

We also showed that SPARKLING offers similar image quality for TPI/AF=8 and
SPARKLING/AF=32 at 4 mm isotropic with a 32 channel coil. We also showed that this
level of acceleration (AF=32) for SPARKLING leads to negligible 2,5% or 5% quantification
errors when reconstruction is realized using NUFFT or POGM algorithms respectively. The
difference in PSF can explain this difference. More blurred is the image, more overestimated
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the TSC should be. Another difference is that in the iterative reconstruction, B−1 mitigation
is already included, while it is not in NUFFT. Considering the positioning of the calibration
tubes at the rim of the birdcage, this correction could be significant and an independent
B−1 -correction step could be needed for NUFFT reconstructions. Notably, for AF=64 or
higher, the quantification errors observed in our in vitro data are higher than the TSC
differences found between healthy and Alzheimer’s patients, for instance by Haeger et
al. [Haeger 2021]. For this reason, we consider that in vivo quantitative 23Na MRI should
probably not be under-sampled beyond an acceleration factor of 32.

Recent studies [Gnahm 2014,Blunck 2020] explored CS techniques for 3 mm isotropic
at 7T using DA-3DPR. Here, we targeted a spatial resolution of 4 mm isotropic. The
extrapolation of these results for different resolutions and nuclei depends on the previous
evaluation of SNR and image sizes, which was the first part of this work. This means that
are in most scenarios, TPI (and other deterministic k-space sampling schemes) remains
highly relevant.

Determination of scenarios of interest for SPARKLING is not trivial because CS
performance depends on SNR and image sizes [Lazarus 2019]. One may wonder the
theoretical limíts of this application when compared to TPI. As input SNR depends on so
many factors such as coil perfomance, magnetic field strength, resolution etc..., we could
not establish such scenarios in an universal manner.

A reproducibility study is on-going with the recruitment of more volunteers. Unfortu-
nately, those data were not available to be presented in this manuscript.

Another limit of this strategy is that as we change from deterministic and parametric
sampling schemes to non-deterministic sampling scheme such as SPARKLING, we lose
flexibility at the console. Indeed the computing time necessary to calculate SPARKLING
trajectories is not compatible for rapid adjustment of the resolution, number of spokes or
points per spoke. For now, SPARKLING trajectories must be computed offline or available
in a library. However, we believe that improving image quality is worth investigating faster
optimization techniques that would increase flexibility.

Future results could be further improved by exploring the reconstruction side. For
instance, modeling the different averages acquired as samples of the same distribution
instead of only averaging them. This way, we would reinforce that all the acquisitions
represent the same object and that the average variability between each of the samples
comes from the noise. It would also be possible to add anatomical priors/constraints or
use dictionary learning techniques [Behl 2016b].
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Conclusion and perspectives

We managed to set up a simulation tool for TPI and SPARKLING 23Na acquisitions that
match well with reality. This was verified visually in vivo and in vitro. We also quantified
the resulting image quality through the SSIM metric.

With this simulation tool, we searched for an optimal SNR and spatial resolution
scenario in which SPARKLING is beneficial to accelerate 23Na acquisitions, and we tuned
the parameters of SPARKLING according to this scenario. SPARKLING is a new sampling
scheme driven by numerical optimization. This is the first time, to our knowledge, that
such type of k-space sampling scheme has been used for 23Na MRI or any other X-nuclei
MRI application.

We also studied the impact of different reconstruction methods and accelerations
factors on quantifying total sodium concentration. We showed that TSC estimated by
SPARKLING was slightly less biased when compared to TPI. This can be attributed
to the difference between their PSF. We also showed that the iterative reconstruction
POGM is more biased compared to NUFFT. This could be explained by the B−1 correction
implemented within the iterative reconstruction.

We showed that at 7T with a 32-channel coil for 4 mm isotropic resolution, we can
obtain similar results for TPI/AF= 8 and SPARKLING/AF=32 in terms of image quality
and total sodium quantification accuracy. This represents a huge gain in acquisition time
that could be harnessed for the future application of SPARKLING for clinical research.

As discussed, sodium MRI can potentially become a biomarker for neurodegenerative
diseases. Also, dynamic sodium MRI could become a complementary technique to fMRI
thanks to its ability to assess indirectly metabolism and neurotransmission, contrary to the
BOLD effect, which evaluates neurovascular coupling. The level of acceleration found in
this study, combined with even bigger magnetic fields such as 11.7T, could be of interest
to revisit sodium changes observed during neuronal activation as proposed [Bydder 2019].
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23Na MRI: Contributions to clinical

studies
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14.1 Alzheimer’s Study

A full version of this study was published in:

A. Haeger, M. Bottlaender, J. Lagarde, R. Porciuncula Baptista, C. Rabrait-
Lerman, V. Luecken, J. B. Schulz, A. Vignaud, M. Sarazin, K. Reetz, S. Romanzetti
and F. Boumezbeur. What can 7T sodium MRI tell us about cellular energy depletion
and neurotransmission in Alzheimer’s disease? Alzheimer’s and Dementia, vol. 39, no.
33, pages 3:65–3:76, 4243

An Alzheimer’s Disease study was set up at NeuroSpin to answer the question: "What
can 7T sodium MRI tell us about cellular energy depletion and neurotransmission in
Alzheimer’s Disease?" This study was a collaboration between Aachen University (Aachen,
Germany) , Sainte-Anne Hospital (Paris, France), and NeuroSpin, and it was led by Dr.
Alexa Haeger under the joint supervision of Drs. Sandro Romanzetti et Fawzi Boumezbeur
(figure 14.1).

Before this study at NeuroSpin, only two 23Na MRI preliminary studies in AD had
been published in the literature. One was with a small cohort of five patients with mild
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Figure 14.1 – At left, Aachen University, Aachen, Germany (from
https://www.easyuni.com/germany/rwth-aachen-university-10431/ ). Right, Sainte-Anne
Hospital, Paris, France (from https://commons.wikimedia.org/wiki/User:LPLT).

AD [Mellon 2009], limiting their findings’ statistical power. And a more recent one at 3
Tesla [Mohamed 2021] has limited spatial resolution (4 mm isotropic). They both showed
an increase in intensity from 23Na MRI in areas of the brain usually affected by AD, such
as the hippocampus.

Thanks to the favorable conditions available at NeuroSpin and Service Hospitalier
Frédéric Joliot (SHFJ, Joliot Institute for Life Sciences, CEA, Orsay, France), i.e. the
availability of a 7T MRI scanner and radiochemistry and PET facilities respectively, there
was an opportunity to conduct an ambitious study to investigate for the first time in the
same cohort of AD patients correlations between TSC changes using quantitative 23Na
MRI (with an improved 3 mm resolution), morphometric changes using high-resolution 1H
MRI (0.75 mm resolution), amyloid-β and Tau loads, and clinical scores.

In this analysis, the SENIOR cohort was used as matched-aged control [Haeger 2020].
The SENIOR study is a longitudinal study that has taken place at NeuroSpin/CEA since
March of 2012. This study recruited a cohort of 100 healthy volunteers (50F/50M) between
50 and 70 years old. Each volunteer participates in a day-long protocol of several exams
every year for ten years. The goal of this study is to look for biomarkers of brain aging.
Each year, identical base sequences are acquired, which allows the tracing along the years.
Also, new sequences are added for other studies. I participated in specific exploitation of
this ongoing study, which consisted in acquiring 23Na MRI datasets and computing the
TSC maps.

In this work, seventeen patients with AD (10 female, mean age 71.6 ± 7.9 years)
recruited from the memory clinic of Sainte-Anne Hospital in Paris (France) participated
willingly, their imaging and clinical results were compared to 22 age-matched control
subjects from the SENIOR cohort.

All subjects received a cognitive assessment, including cognitive screening tests with the
Mini-Mental State Examination (MMSE) [Folstein 1975] and the MoCA, [Nasreddine 2005];
Clinical Dementia Rating (CDR), verbal and visual episodic memory (Free and Cued
Selective Reminding Test [FCSRT] [Grober 1987] and the Rey Complex Figure Test
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[RCFT] [Shin 2006]). Executive and Visio-constructive function, working memory, and
gesture praxis were further assessed.

Figure 14.2 – Stage-dependent tissue sodium concentration (TSC) results and predictive
power of TSC. Left, Boxplots representing the median regional TSC values across eight
selected regions of interest (ROIs; i.e., hippocampus, anterior lateral temporal lobe, inferior
middle temporal gyri, fusiform gyrus, anterior cingulate gyri, posterior cingulate gyri,
superior frontal, and superior parietal gyri) for controls (blue) and the patients’ group
divided according to k-means classification in cognitively better (Patients A, n = 10) and
worse (Patients B, n = 7) subgroups. Right, Receiver operating characteristic (ROC)
analysis for TSC and volume in the fusiform gyrus for the effectiveness of discrimination
between controls and cognitively less affected patients (Patients A). The marker illustrates
the optimal operating point at a threshold of 36.1 mmol/L (True positive rate: 1.0; False
positive rate: 0.36). Area under the ROC curve (AUC) for TSC = 0.85; AUC for volume
= 0.58. From [Haeger 2021].

Among my contributions to the study, we can include participation in the 7T MRI
acquisitions and discussions. I have also been at the origin of the split between Patients
A and Patient B clusters. In reality, there were several clinical criteria to be considered,
and I proposed a clustering approach technique that considered all of them. The approach
was k-means and integrated Moca, MMSE, FCSRT, and ReyMemory. This generated a
homogeneous split between all the criteria. Therefore, it allowed a uniform comparison
between patients across criteria. Consequently, as illustrated by figure,14.2 we found a
statistically significant correlation between disease progression via the worsening of clinical
scores and TSC increases.

14.2 ENERGYSEP Study

Multiple sclerosis (MS) is related to an irreversible neuro-axonal degeneration, leading to
debilitating symptoms. However, the sequence of the events that leads to this irreversible
damage is still poorly understood [Ontaneda 2015]. This study is a collaboration with
Pr. Benedetta Bodini’s team at Institut du Cerveau et de la Moëlle (ICM, Paris, France -
figure 14.3).
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Figure 14.3 – Institut du Cerveau et de la Moëlle, CHU de la Pitié-Salpétrière. © Didier
Boy de la Tour

The ENERGYSEP study aims at answering two critical questions regarding the re-
lationship between early energy deregulation and neurodegeneration in MS: i) whether
the brain energy dysfunction measured at a given time point can predict the subsequent
occurrence of neurodegeneration; ii) to what extent and for how long neurons can bear
this virtual hypoxia before undergoing structural damage.

This study wants to tackle these questions by combining multiple in vivo imaging
techniques at 3 and 7 Tesla: 23Na MRI, 31P MRSI, diffusion-weighted MR spectroscopy
and imaging, high resolution T1 and T2 weighted imaging. 23Na MRI has shown its
interest when studying patients with MS. TSC in the brain was correlated with clinical
disabilities [Zaaraoui 2012,Paling 2013]. 31P MRSI has been used by several research groups
to measure the concentration of in vivo key energy products from the brain [Deelchand 2015].

My role in this study was setting up the 23Na MRI sequence, reconstruction. The
analysis pipeline was setup by our collaborator Sandro Romanzetti. I also trained the intern
MD Juliette DUFOUR (ICM, Paris) to perform the analysis independently. The pipeline
includes segmentation, B+

1 correction, quantification, and partial volume correction. The
study is still ongoing, but preliminary results can be found in figure 14.4.

Briefly, TSC differences were found between age-matched healthy volunteers and MS
patients. The largest was found in the Caudate region, at almost ten mM. In all regions
(caudate, hippocampus, inferior parietal, pallidum, parahippocampus, superior frontal,
and superior temporal cortex), MS patients exhibit higher TSC values than controls. The
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Figure 14.4 – Comparison of TSC between patients (n=17) and controls (n=11) in different
ROIs in the brain. The symbol (*) indicates where p < 0.05 statistical difference between
the two groups is found. C stands for control. P stands for patients. Courtesy from Dr
Juliette DUFOUR (ICM, Paris).

smallest difference was observed in the cerebellum and was not statistically significant.
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14.3 CHU Poitiers collaboration

The ENERGYSEP and Alzheimer’s studies used TPI acquisition following the protocol
developed by A. Coste, [Coste 2018] which takes around 30 minutes to acquire enough
images to enable quantification and B+

1 correction at 3 mm isotropic of theoretical resolution.
When considering the PSF of the chosen trajectories, the actual resolution is about 6
mm. We believe that it should be possible to realize shorter 23Na MRI acquisitions with
similar resolution, image quality and TSC quantification accuracy using SPARKLING for
a broader scope of clinical applications at 7T.

Based on my work on CS sodium MRI using SPARKLING, and rich from the experiences
provided by these two first clinical studies, our team is planning to set up in collaboration
with Pr. Remy Guillevin and Dr. Mathieu Naudin (Dactim Mis, LMA, UMR CNRS 7348,
Poitiers, Vienne, France) a 23Na MRI SPARKLING protocol at CHU Poitiers on their 7T
Terra system.

Indeed, several clinical research studies are in the works to investigate MS (group
size 250 patients) and other neurological diseases at CHU Poitiers using undersampled
SPARKLING instead of TPI to take advantage of its better PSF and acceleration factor,
enabling 23Na MRI in a real clinical setting. Those projects would start in early 2023.

] ] ]
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Conclusions

This thesis aimed at exploring new acquisition, reconstruction, and quantification schemes
for 23Na and 31P MRI at 7 T and higher, accelerating the access of their respective metabolic
information to better investigate neuroenergetics, in particular in patients suffering from
neurodegenerative diseases.

Our 31P MRI contribution consisted in developing and evaluating a novel protocol and
sequence capable of measuring the absolute concentration of γ-ATP and PCr, as well as
the creatine kinase flux in the whole brain simultaneously. We studied two variations of
this sequence, with and without saturation bands, to mitigate the contamination from
the extra-cranial PCr signal. I also developed a variation of this sequence and protocol to
study the PME/PDE ratio in the context of our clinical collaboration with the research
team of Pr. Guillevin at CHU Poitiers.

There are still many limitation or axis of improvement for this technique, the most
obvious is its sensitivity to B0 inhomogeneities, which could limit its applicability, especially
in challenging areas such as the hippocampus or the frontal and occipital cortices.

Our 23Na MRI contribution involved studying, modeling, and applying a compressed
sensing method called SPARKLING for 3D 23Na MRI. The goal was to speed up acquisitions.
Based on our results, we believe that a fourfold reduction in acquisition time could be
achieved at 7 T with a 32-channel coil with a relatively minor impact on quantification
accuracy.

The limitation of this technique is that its efficiency is dependent on the SNR available.
Therefore, its reproducibility and robustness could be questionable. Thus, depending on
the target resolution and acquisition time, traditional (deterministic) k-space sampling
schemes could still perform better. However, at ultra high magnetic fields, thanks to the
ever increasing SNR, SPARKLING should certainly constitute the better strategy.

In agreement with open-source philosophy and keeping in mind the reproducibility of
science, everytime it was possible, my code has been made available in open-source GitHub
repository. Due to ethical/regulatory constraints, the same could not be done with the
data.
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Perspectives

Regarding 31P MRI, a next step would be to apply this technique to examine old and young
healthy volunteers to investigate the regional variations of ATP, PCr and VCK in normal
brain aging. One could move on by comparing multiple sclerosis patients to age-matched
controls.

For 23Na MRI, aside from the aforementioned optimization and application of SPARK-
LING to future clinical investigations at CHU Poitiers, we would like next to revisit
the exciting work from Bydder et al. [Bydder 2019] using under-sampled SPARKLING
23Na MRI. This would help in shortening 23Na acquisitions so as to match with the time
resolution of conventional fMRI and its various activation paradigms.

Another interesting perspective of both works concerns their extension to other X-nuclei
MRI techniques in particular around the new 11.7T Iseult scanner of NeuroSpin. Indeed,
while 23Na and 31P are two of the most concentrated (and endogenous) NMR-visible nuclei
in vivo, other, even less concentrated or sensitive nuclei (7Li, 39K, 35Cl, 2H, 13C, 17O...)
could benefit from SPARKLING optimized trajectories or frequency selective excitation
thanks to respectively the additional signal [Le Ster 2022] and spectral resolution available
at such high magnetic field.

The first study on healthy volunteers on the 11.7 T clinical scanner is scheduled for
2023. Hopefully, this work shall be soon applied to this unique MRI scanner.

] ] ]

] ]

]



Appendices

141





Appendix A

Protocol Optimization

For tackling the difficulty of FA estimation in 31P, we performed a Monte-Carlo simulation
to optimize flip angles for FA mapping. For doing so, we considered the signal:

y = K0P (αi) (A.1)

where,

P (αi) = sin(αi)(1− e
−T R

T1 )

1− e
−TR

T1 cos(α)
(A.2)

.
Therefore, we can define the mean square error (MSE) ε as:

ε =
∑
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∑
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Taking the partial derivate of equation A.3 in relation to α:

∂ε

∂α
= 2

∑
K0P

2(αi)− 2
∑

P (αi)yi

Now, we can compute the minimum mean square error (MMSE) by making ∂ε
∂α = 0,

which gives us:

K0 =
∑
P (αi)yi∑
P 2(αi)

With this mathematical frame, we performed simulations N=1000 for different noise
levels considering a giving T1 and TR.
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Figure A.0.1 – Monte Carlo for optimization of FA for B1
+ mapping using VMFA. Blue

curve represents the ground truth, gray area represents ranges of values between mean
±σ. Finally, value adopted was 12° because its presents no bias and it was a compromise
between low standard deviation and bias. Level of SNR was estimated from experimental
in vivo data. Number of repetitions was 1000.
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Reception profile

Figure B.0.1 – Sensitivity profile
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Appendix C

Résumé en français

Abstract in French

Sujet : Imagerie Métabolique Cérébrale Quantitative par Résonance Magnétique Nu-
cléaire du Sodium et du Phosphore à 7 Tesla

L es différents aspects abordés dans cette thèse sont résumés ici. On commence par
introduire le contexte et l’état de l’art, pour ensuite décrire les nouvelles méthodologies

et instrumentation développés dans ce travail pour s’attaquer aux défis de l’imagerie
par résonance magnétique nucléaire du Phosphore et du Sodium à très hauts champs
magnétiques.

C.1 Contexte et état de l’art

Au début des années 1980, l’Imagerie par Résonance Magnétique (IRM) a été introduite
dans le domaine clinique. Grâce à son caractère non-invasif et à son innocuité, cette
technique d’imagerie est devenue de plus en plus populaire. Le noyau d’hydrogène (ou
proton) est utilisé à des fins d’imagerie en raison de son abondance dans l’eau et les graisses
du corps humain et de son excellente sensibilité intrinsèque (seul le noyau de tritium possède
une meilleure sensibilité RMN). Depuis, l’IRM du proton (1H) a permis aux professionnels
de santé et aux chercheurs d’exploiter les différents contrastes disponibles et de diversifier
ses champs d’application : de la routine clinique aux neurosciences cognitives.

Un scanner IRM clinique est usuellement constitué d’une bobine supraconductrice
d’approximativement un mètre de diamètre générant un champ magnétique statique
intense (B0). Au fil des années, les évolutions technologiques ont permis d’augmenter
l’intensité du champ B0 de moins de 0,1 Tesla (T) jusqu’à 11,7 T aujourd’hui pour
l’Homme [Quettier 2020,Allard 2022] et jusqu’à 21 T pour les rongeurs [Schepkin 2010].
En IRM, le rapport signal-à-bruit (SNR) augmente avec l’intensité du champ magnétique
B0 selon une loi de puissance quadratique (β 1,96) [Le Ster 2022]. Cette augmentation du
SNR disponible permet d’améliorer les résolutions temporelles, spatiales et les seuils de
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sensibilité en IRM. En IRM du 1H, on peut ainsi atteindre une résolution spatiale nominale
aussi fine que 0,2 mm isotrope pour l’imagerie du cerveau humain [Stucht 2015].

Grâce à la démocratisation récente des scanners IRM cliniques à 7T et à la mise à
disposition d’images anatomiques du cerveau à résolutions submillimétriques, les médecins
peuvent d’ores et déjà diagnostiquer et suivre plus précisément les lésions épileptiques
focales, qui étaient à peine visibles dans des champs magnétiques plus faibles [Feldman 2019,
Opheim 2021]. Outre les données anatomiques, l’IRM du 1H permet d’accéder à de
nombreuses autres informations. L’IRM fonctionnelle (IRMf), par exemple, a contribué
au développement des neurosciences, en permettant une meilleure compréhension, plus
objective, du fonctionnement du cerveau. Comme pour la plupart des modalités d’IRM du
1H, grâce à l’augmentation du champ B0, l’IRMf a gagné en sensibilité et en spécificité
[Beisteiner 2011,Worthoff 2019].

L’IRM des noyaux exotiques (autres que le proton), également désignée par le terme
d’IRM des noyaux X (IRM-X), apporte un tout nouvel ensemble d’informations. L’IRM du
sodium-23 (23Na) et du phosphore-31 (31P), en particulier, a le potentiel d’évaluer le métabo-
lisme cellulaire et le métabolisme énergétique, car l’activité de la pompe sodium-potassium
(Na+K+-ATPase) est essentielle au maintien de l’homéostasie cellulaire, notamment dans
les neurones. Si la membrane cellulaire est endommagée ou s’il y a un déficit aigu ou
chronique du métabolisme énergétique, cela peut conduire à un dysfonctionnement cellulaire
et, finalement, à la mort cellulaire [Mccarthy 2015].

Plusieurs études ont démontré la pertinence de l’IRM-X pour étudier les maladies
neurodégénératives telles que la maladie d’Alzheimer [Haeger 2021], la maladie de Parkinson,
[Grimaldi 2021] ou la sclérose en plaques [Eisele 2019, Huhn 2019]. Cependant, l’IRM-
X présente des difficultés, principalement en raison des sensibilités RMN intrinsèques
relativement faibles de ces noyaux exotiques par rapport au proton et des concentrations
in vivo beaucoup plus faibles de ces espèces chimiques par rapport à l’eau. Il en résulte
des signaux de l’ordre de 103 à 105 fois plus faibles que celui de l’IRM du 1H, selon
les applications. Les chercheurs doivent trouver des compromis spécifiques en termes de
résolutions spatiale et temporelle pour résoudre ce problème tout en maintenant des seuils
de détection satisfaisants. Dans cette bataille, les développements continus de logiciels
et de matériels sont cruciaux pour faire avancer le domaine et réaliser les promesses de
l’imagerie métabolique par IRM-X.

NeuroSpin est un département du CEA (Commissariat à l’Energie Atomique et aux
Energies Alternatives). C’est un centre de recherche dédié au développement de la neuroi-
magerie par IRM à ultra-hauts champs magnétiques. Il est équipé de trois scanners IRM
précliniques (7T, 11.7T et 17T) et de trois scanners IRM cliniques à 3T, 7T et 11.7T (figure
C.1.1), le dernier étant le scanner IRM le plus grand et le plus puissant au Monde (C.1.2).
A ce titre, il ne pourrait y avoir de meilleur endroit que NeuroSpin pour développer l’IRM
des noyaux exotiques et ses applications.

Bien qu’il existe de nombreuses méthodes de spectroscopie (SRM) ou d’imagerie
RMN permettant d’étudier les potentiels biomarqueurs du métabolisme cérébrale [Cadoux-
Hudson 1989,Wang 2017b], leur sensibilités, résolutions (ou couverture) spatiales et tempo-
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Figure C.1.1 – Iseult 11.7 MRI Scanner : ©F.Rhodes - CEA

Figure C.1.2 – Des images de potiron. De [Allard 2022]

relles (temps d’acquisition) constituent souvent un obstacle à leur application en recherche
clinique. Cette thèse de doctorat vise à réaliser des développements méthodologiques en
IRM du 23Na et du 31P afin de faire un pas en avant vers leur plus large utilisation en
recherche clinique en particulier pour l’étude des maladies neurodégénératives en accélérant
leurs acquisitions sans compromettre la qualité et la quantitativité des images. Ainsi, à
l’avenir, les professionnels de santé pourraient intégrer ces techniques dans leur routine
clinique et, par conséquent, être en mesure d’accéder à des informations inaccessibles autre-
ment sur le métabolisme cellulaire et de mieux comprendre les maladies neurodégénératives
et leurs progressions.
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C.2 Estimation de l’activité corticale de la créatine kinase par

IRM dynamique du 31P chez des volontaires sains à 7T

C.2.1 Introduction

Le métabolisme énergétique joue un rôle fondamental dans la fonction cérébrale et des défi-
cits chroniques ont été associés à de nombreuses maladies neurodégénératives [Zhu 2018b].
Grace aux des approches de transfert de saturation (ST) [Zhu 2012], la spectroscopie RMN
du phosphore-31 (31P) in vivo permet d’estimer les activités des enzymes responsables de
la synthèse et de la dégradation de l’adénosine triphosphate (ATP), unité d’énergie de
la cellule eucaryote et de la Phosphocréatine (PCr), un métabolite phosphaté de hautes
énergies servant de tampon énergétique. Ces enzymes sont d’une part l’ATP synthase
présente dans les mitochondries en bout de la chaine de phosphorylation oxydative et
d’autre part les ATPases comme la pompe Na+K+ auxquelles s’ajoute la créatine kinase
(CK) qui convertie (de façon réversible) l’ADP (adénosine diphosphate) en ATP.

Cependant, les longs temps d’acquisition (TA) limitent son utilisation à quelques régions
d’intérêt (ROI). Ici, nous proposons et évaluons un protocole d’imagerie 3D sélectif en
fréquence (FS) entrelacé pour quantifier les concentrations de γ-adénosine triphosphate
(γ-ATP) et de phosphocréatine (PCr) et estimer simultanément le flux réactionnel à travers
la CK (Vck) dans plusieurs ROI corticales dans un délai compatible avec les applications
de recherche clinique.

C.2.2 Méthodes

Des volontaires sains (2M/1F, 26±3 ans) ont été scannés sur une IRM 7T corps entier
(Siemens Healthineers, Erlangen, Allemagne) en utilisant une antenne volumique à réseau
phasé 1H/31P 8Tx/8Rx [Avdievich 2011] en mode CP. Quatre images de PCr et γ-ATP ont
été acquises en utilisant une séquence FS SPGR combinée à un module de ST γ-ATP C.2.1.
Des références anatomiques ont également été acquises. Pour contrôler les FA effectifs
appliqués pour l’excitation et la saturation, une carte B+

1 in vivo modèle a été calculée
à partir d’une cohorte dédiée (3M/3F, 29±6 ans, Fig. C.2.2). Les deux cohortes étaient
disjointes.

Les images ont été corrigées des inhomogénéités de champ B+
1 après leur recalage à

l’espace modèle et leur segmentation à l’aide de nipype [Gorgolewski 2011]. Cinq ROIs
corticales ont été définies à partir de l’Atlas Harvard-Oxford (Fig. 3) et les signaux γ-
ATP et de PCr ont été moyennés dans chaque ROI. L’étalonnage des concentrations a
été effectué à l’aide de deux références externes (PBS à 25 et 50 mM) [Soher 1996], les
pondérations de relaxation T1 et T ∗2 différentielles étant pris en compte, à l’aide de données
expérimentales ou de la littérature [Ren 2015]. Afin d’estimer, pour chaque volontaire et
ROI, la constante cinétique kf de la réaction CK (PCr+ADP ⇐⇒ γ-ATP +Cr) et donc
le flux Vck (VCK=[PCr] kf ), le processus de transfert de saturation sur les aimantations
de la PCr et de γ-ATP pour les différentes valeurs effectives de saturation fut simulé en
utilisant les équations de Bloch-McConnell [Lei 2003,Ren 2015]. Pour compenser le bruit
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Figure C.2.1 – Schéma des séquences MFS. La séquence MRS de base consistait en des
excitations sélectives alternées à la fréquence de l’γ-ATP (à -2,5 ppm) et du PCr (fixée à
0 ppm par convention) à chaque TR. Paramètres TE/TR=5/250 ms, nombre de rayons
3600 et TA=15 min pour chaque paire d’images. Pour l’estimation de Vck, FA ciblé était
égal à 25° et un module de transfert de saturation était appliqué tous les TR/2 consistant
en deux impulsions gaussiennes de 40 ms sélectives pour γ-ATP, l’intensité nominale des
impulsions de saturation B1,sat étant croissante FA=(12,24,36,48)°. Pour le protocole de
cartographie du champ B+

1 , aucune saturation n’a été appliquée et seules les images de
PCr ont été considérés en raison de leur SNR plus élevés.

Ricien, nous avons soustrait sa valeur moyenne non nulle, estimée à partir d’une acquisition
avec un FA=0°. Ensuite, kf a été déterminé en utilisant l’algorithme de minimisation des
moindres carrés.

C.2.3 Résultats et discussion

La figure C.2.3 illustre nos résultats. Les concentrations d’ATP, de PCr, les valeurs de kf
et de VCK sont toutes conformes à la littérature [Zhu 2012] pour les ROIs frontal, occipital
et posterior.

Cette methode montre la possibilité d’examiner les Vck et concentrations absolues.
Cependant, il est sensible aux inhomogeinties de B0. Et l’optimisation des pulses est une
prochaine voie à être étudiée.

C.2.4 Conclusion

En conclusion, nous avons réussi à mettre en place un protocole d’IRM 3D dynamique
du 31P sensible et dont le temps d’acquisition est compatible avec les contraintes de la
recherche clinique, présentant une résolution relativement élevée (résolution isotropique
théorique de 12,5 mm).
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Figure C.2.2 – Carte FA moyenne dans l’espace MNI à travers notre cohorte de six
volontaires sains. L’angle de bascule nominal de l’excitation était de 12°.

Figure C.2.3 – Cartes parametriques moyennes corrigées pour les inhomogénéités de
champ B+

1 . Définition de nos cinq ROI corticales (à gauche) suivie des cartes des valeurs
régionales moyennes pour [PCr], [ATP], kf et Vck (de gauche à droite). (rose) : cortex frontal
et cingulaire antérieur ; (moutarde) : gyrus frontal et cortex operculaire ; (rouge) : cortex
temporal, supramarginal et angulaire ; (bleu) : cortex précunéen et cingulaire postérieur ;
(vert) : cortex occipital.

.
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C.3 Évaluation de SPARKLING pour l’IRM du 23Na 3D

sous-échantillonnée à trés haut champ magnétique

C.3.1 Introduction

L’IRM cérébrale du sodium (23Na) fournit des informations uniques sur la physiologie du
tissu cérébral in vivo. Plusieurs études ont confirmé la pertinence de l’évaluation de la
concentration tissulaire de sodium (TSC) dans différentes maladies neurologiques telles
que la maladie d’Alzheimer [Haeger 2021] ou la sclérose en plaques [Eisele 2016]. Les
études actuelles utilisent des séquences à temps d’écho ultra-court (UTE) combinées à
des trajectoires déterministes non-cartésiennes de l’espace k (espace des phases ou encore
espace des fréquences spatiales) telles que les trajectoires radiale, TPI (pour Twisted
Projection Imaging) [Boada 1997] ou FLORET (pour Fermat Looped, Orthogonally
Encoded Trajectories) [Robison 2017]. Pourtant, les temps d’acquisition (TA) restent
relativement longs, même à haut champ magnétique, en raison de la sensibilité intrinsèque
RMN modérée du sodium et de sa faible concentration (par rapport à l’eau). Bien que
plus efficaces que les trajectoires cartésiennes, ces trajectoires non cartésiennes "standards"
ne couvrent pas entièrement l’espace k car elles sont contraintes analytiquement et donc
géométriquement. Par conséquent, nous supposons que l’IRM des noyaux X en général et
les acquisitions d’IRM du 23Na en particulier pourraient bénéficier d’approches de détection
comprimée (CS) axées sur des algorithmes d’optimisation numérique [Lustig 2007] comme
SPARKLING [Lazarus 2019,Chaithya G R 2022] qui aboutissent à (i) un échantillonnage
global à densité variable ainsi qu’à (ii) une couverture localement uniforme de l’espace k.
Comme l’a montré une étude préliminaire en IRM de susceptibilité (Susceptibility Weighted
imaging - SWI), cette approche est un bon candidat pour raccourcir le TA sans dégrader
la qualité de l’image en IRM du 23Na. Toutefois, la détermination de scénarios d’intérêt
pour l’IRM du 23Na n’est pas triviale car les performances du CS dépendent du rapport
signal-à-bruit disponible (SNR) et de la taille des images ( [Lazarus 2019]). Dans cette
étude, notre objectif est d’identifier la meilleure combinaison de sous-échantillonnage et
de SNR d’entrée (dépendant de la densité de spin et de la taille du voxel) pour laquelle
SPARKLING surpasse la TPI.

C.3.2 Méthodes

Tant pour nos tests in vivo qu’in vitro, des acquisitions 3D selon les trajectoires TPI et
radiale à une résolution nominale isotrope de (8mm)3 et un nombre de rayons (spokes en
anglais) (Ns = 4π(kmaxFOV )2) nécessaires pour répondre au critère de Nyquist [Bern-
stein 2004] ont été réalisées avec 32 acquisitions (NA) moyennées afin de servir d’images
de référence pour nos simulations.

Cette étude explore différents facteurs d’accélération (AF = ( Nsradialfullnyquist)
(Nscurrentacquisition

)) et

adopte un ensemble prédéterminé de paramètres : TR/TE=20/0.5 ms, FA=50°, FOV =
(240 mm)3, temps de séjour = 10 µs, 1248 points, qui ont été précédemment optimisé pour



154 Abstract in French

l’acquisition d’IRM du 23Na in vivo à NeuroSpin [Coste 2016].
Les données IRM ont été acquises sur des scanners Magnetom ou Terra 7T MR Siemens

(Siemens Healthineers) en utilisant respectivement une cage d’oiseau 1H/23Na à double
résonance ou une bobine à 32 canaux (Rapid Biomedical).

Le SNR d’entrée par rayon a été mesuré à partir des données de référence. Un bruit
gaussien a été ajouté aux données complexes de l’espace k de référence pour simuler les
performances des stratégies SPARKLING et TPI (Fig. C.3.1) pour diverse valeurs de
SNR d’entrée plus ou moins faibles. Pour chaque SNR d’entrée considéré, l’espace k a été
sous-échantillonné à différents AF (2, 4, 16, 32, 64, 128).

Figure C.3.1 – Schémas d’échantillonnage TPI et SPARKLING : A gauche, trajectoire
d’illustration TPI. A droite, trajectoire centrée par SPARKLING. La couleur bleue repré-
sente le début de la trajectoire et la couleur jaune la fin. Chaque rayon, à la fois sur TPI
et SPARKLING ont été acquis sur la même Tobs = 12.48 ms

Les images ont été reconstruites par CS avec compensation de densité [Pipe 2011] à l’aide
de Pysap-MRI [Farrens 2020], qui traite de grands ensembles de données multicanaux 3D
non-cartésiens. Pour chaque reconstruction, le paramètre de régularisation [Lazarus 2019]
(lambda) a été choisi visuellement dans la plage de 10−7 à 10−20 (30 pas) pour maximiser
la qualité de l’image.

La métrique choisie pour la comparaison était le score SSIM qui [Wang 2004] tente
de modéliser et d’imiter le système visuel humain. Afin de valider nos simulations, des
images de sodium in vitro d’un fantôme fait maison ont été acquises à l’aide des schémas
d’échantillonnage TPI et SPARKLING en utilisant les mêmes paramètres d’acquisition
pour une résolution de 8 mm isotrope et NA=32. Des ensembles de données distincts ont
été acquis à AF=2, 4, 16, 32, 64, 128.

Une fois nos simulations validées in vitro (Fig. C.3.2), des jeux de données d’IRM
du 23Na in vivo ont été acquis chez un volontaire humain à AF=2, 4, 32, 64, 128. La
résolution et la NA ont été réglées pour correspondre au SNR utilisé avec succès dans les
simulations tout en maintenant la durée totale de l’examen en dessous de 60 minutes.

Les images 23Na in vivo acquises avec l’antenne 32 canaux présentaient un meilleur SNR
que l’antenne cage d’oiseau (birdcage en anglais) disponible à NeuroSpin. Les SNR d’entrée
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attendus à 9,4 et 11,7T ont été extrapolés en considérant la relation quasi-quadratique

observée experimentalement pour le 1H [Pohmann 2016]. SNRTarget
SNR7T

= B0,Target
7

1.65
.

C.3.3 Résultats

La figure C.3.2 représente les scores SSIM obtenus pour chaque FA et montre un bon
accord entre les simulations et les données du fantôme.

Figure C.3.2 – Comparaison entre les scores TPI et SPARKLING SSIM avec des facteurs
d’accélération de 2, 4, 16, 32, 64 et 128 sur un fantôme, avec une résolution spatiale de 8
mm isotrope.

La figure C.3.3 illustre la comparaison entre trajectoires TPI et SPARKLING à une
résolution nominale de (4mm)3 réalisée sur le scanner IRM Terra 7T du CHU de Poitiers
et leur antenne sodium 32 canaux démontrant des performances similaires pour l’IRM du
23Na sous-échantillonnée avec TPI à AF=8 et SPARKLING à AF=32.

C.3.4 Discussion

Comme illustré par nos images, nous avons obtenu un bon accord global entre nos résultats
expérimentaux et simulés. Les différences résiduelles peuvent être attribuées à de légères
différences dans les fonctions d’étalement du point, en particulier en raison de la pondération
T ∗2 . Le SSIM est connu pour être faiblement sensible au flou. Dans les résultats in vitro et
in vivo, les résultats de SPARKLING résistent à des facteurs d’accélération plus élevés
par rapport aux images TPI. Cependant, une valeur minimale de SNR d’entrée doit être
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Figure C.3.3 – TPI et SPARKLING reconstructions pour volontaires 1 & 2 avec recons-
truction iterative POGM avec compensation de densité.

atteinte pour voir cet avantage se manifester. Pour des champs magnétiques ou des antennes
moins sensibles, la TPI ainsi que d’autres trajectoires déterministes non-cartésiennes de
l’espace k restent pertinentes.

C.3.5 Conclusion

À 7T avec une antenne volumique à cage d’oiseau, le schéma de sous-échantillonnage
SPARKLING 3D centré est plus performant que le TPI pour l’IRM du 23Na à une résolution
de (8mm)3. Cet avantage est particulièrement prédominant pour les AF>8. Toujours à
7T mais avec une antenne plus sensible à 32 canaux, cet superiorité du SPARKLING se
manifeste pour une résolution de (4 mm)3, le SPARKLING accéléré 32 fois donnant des
résultats similaires au TPI accéléré 8 fois. Sur la base de nos simulations extrapolant le
SNR d’entrée pour l’IRM du 23Na à 11,7T, nous envisageons l’acquisition d’IRM dynamique
du sodium en 90 secondes avec une résolution de (3 mm)3, ce qui pourrait être intéressant
pour revisiter les changements de TSC pendant l’activation neuronale comme proposé par
Bydder et al. [Bydder 2019].

C.4 Conclusion Générale

Le but de cette thèse était d’explorer de nouveaux schémas d’acquisitions, de reconstructions
et de quantification pour l’IRM du 23Na et du 31P à 7 T et ainsi d’accélérer la translation
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de ces méthodes d’exploration du métabolisme cérébral vers la recherche clinique. En
particulier, ces mesures métaboliques pourraient constituer des biomarqueurs objectifs et
quantitatifs pour l’étude des maladies neurodégénératives et de leur progression dès le
stage précoce/prodromal.

Notre contribution à l’IRM du 31P a consisté à développer et à évaluer un nouveau
protocole et une nouvelle séquence capables de mesurer simultanément les concentrations
absolus d’ATP et de PCr ainsi que le flux à travers la créatine kinase dans le cerveau entier.
Nous avons étudié deux variantes de cette séquence, avec et sans bandes de saturation pour
atténuer le signal musculaire de la PCr. Nous avons également développé une variation de
cette séquence et un protocole pour étudier le rapport PME/PDE dans une collaboration
clinique avec le CHU de Poitiers.

Cette technique présente néanmoins des limitations en particulier une sensibilité aux in-
homogénéités du champ B0 qui pourrait etre minimiser par une optimisation des impulsions
radiofréquences sélectives en fréquence que ce soit pour l’excitation ou la saturation.

Notre contribution à l’IRM du 23Na a consisté à étudier, modéliser et appliquer une
stratégie d’acquisition 3D comprimée/parcimonieuse dénommée SPARKLING. L’objectif
était d’accélérer les acquisitions 23Na, ce que nous avons démontré possible, avec des
facteurs d’accélération de 8 à 32 résultant en des cartes de TSC acceptables en terme de
résolution effective et de quantitativité.

Cette technique est toutefois limitée dans son applicabilité par sa forte dépendance au
SNR disponible. En conséquence, pour une résolution et un temps d’acquisition visés, les
schémas d’échantillonnage traditionnels restent pertinents. Enfin, à l’horizon de l’aimant
Iseult à 11.7T, il sera intéressant d’explorer les bénéfices de l’approche SPARKLING pour
d’autres noyaux exotiques que le sodium.
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Abbreviations and Acronyms

2d two-dimensional
3d three-dimensional

AD Alzheimer’s Diseases
AF acceleration factor
ATP Adenosine triphosphate

BASSI bandwidth-modulated adiabatic selective saturation and inversion
BOLD blood-oxygenation-level dependent
BW bandwidth

CEA Commisariat à l’énergie atomique et aux énergies alternatives
CEST chemical exchange saturation transfer
CF correction factor
CK creatine kinase
cNR contrast-to-noise ratio
CP circular polarization
CS compressed sensing
CSF cerebrospinal fluid
CSI Chemical Shift Imaging

DA-3DPR density-adapted three-dimensional radial projection reconstruction pulse
sequence

DAM double angle method
DFT discrete fourier transform
DQC double-quantum coherence
DWI Diffusion-weighted magnetic resonance imaging
DWT discrete wavelet transform
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EPSI Echo Planar Spectroscopic Imaging
ERETIC Electronic REference To access In vivo Concentrations

FA flip angle
FFT fast fourier transform
FID free induction decay
FISTA fast iterative shrinkage-thresholding algorithm
FLASH fast low angle shot
fMRI functional MRI
FOV field of view
FS frequency selective
FWHM full width at half-maximum

GPC glycerophosphocholine
GPE glycerophosphoethanolamine
GRE gradient-recalled-echo

HEP high-energy phosphate

ISIS Image Selected In vivo Spectroscopy
IT inversion recovery transfer

MC Monte-Carlo
MMSE minimum mean square error
MP-RAGE magnetisation-prepared rapid gradient echo
MRI magnetic resonance imaging
MRSI magnetic resonance spectroscopic imaging
MSE mean square error
MT magnetization transfer

NAD nicotinamide adenine dinucleotide
NMR nuclear magnetic resonance
NOVIFAST NOn-linear VarIable Flip Angle data baSed T1 estimator
NUFFT non uniform fast fourier transform

OVS outer volume saturation

PA programmable attenuator
PBS phosphate buffered saline



Abbreviations and Acronyms 193

PC phosphocoline
PCr phosphocreatine
PD proton density
PDE phosphodiesters
PE phosphoethanolamine
PI Phosphore inorganic
PLOT polynomial lorentzian fitting
PME Phosphomonoesters
POGM proximal optimized gradient method
ppm parts per million
PRESS single shot Point REsolved Spectroscopy
PSF point spread function

RARE Rapid Acquisition with Relaxation Enhancement
RF radiofrequency
ROI region of interest

SAR specific absorption rate
SD sample standard deviation
SLR Shinnar-Le Roux
SNR signal-to-noise ratio
SPGR spoiled gradient sequence
SPSP spatial-spectral pulses
SQC single-quantum coherence
SSIM structural similarity index measure
STEAM STimulated Echo Acquisition Mode
SVS single voxel spectroscopy

TA acquisition time
TCA tricarboxylic acid
TE echo time
TI inversion time
TP total phosphorus
TPI Twisted Projection Imaging
TPP triphenylphosphate
TQC triple-quantum coherence
TR repetition time
TSC tissue sodium concentration
TV total variation
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UHF ultra-high field
UTE ultra-short echo time

VFA variable flip angle
ViP MRI Virtual Phantom Magnetic Resonance Imaging
VMFA variable multiple flip angle

WG waveform generator
WM white matter

XFL magnetization prepared turbo-FLASH
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