
HAL Id: tel-03859770
https://theses.hal.science/tel-03859770

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust learning for autonomous agents in stochastic
environments

Ugo Lecerf

To cite this version:
Ugo Lecerf. Robust learning for autonomous agents in stochastic environments. Performance [cs.PF].
Sorbonne Université, 2022. English. �NNT : 2022SORUS253�. �tel-03859770�

https://theses.hal.science/tel-03859770
https://hal.archives-ouvertes.fr

Robust Learning for
Autonomous Agents in
Stochastic Environments

Thesis presented by

Ugo LECERF

for the degree of Doctor of Philosophy

Renault Software Labs
Sorbonne Université – EURECOM
Industrial Supervisors: Sébastien Aubert, Christelle Yemdji-Tchassi
Academic Supervisor: Pietro Michiardi
Reviewers: Elena Baralis, Marco Lorenzi

Valbonne, France
October 26, 2022

Abstract

When learning to act in a stochastic, partially observable environment, an
intelligent agent should be prepared to anticipate a change in its belief of the
environment state, and be capable of adapting its actions on-the-fly to changing
conditions. This kind of behaviour is vital for agents in order to act correctly
in novel environments, and is par for the course of developing ‘intelligent’ au-
tonomous agents. A high degree of adaptability is often attributed to humans
as being one of the traits which separates us from the rest of the animal (and
robot) kingdom. When learning to tackle tasks in which risk is present, we
are able for example to form contingency plans in the face of an uncertainty to
ensure we are prepared for undesirable outcomes. This allows us to deal with
tasks requiring fast, on-the-fly decision-making in order to counteract high de-
grees of uncertainty. This is especially the case for autonomous vehicles (AVs)
in a road navigation environment, where inputs to the AV are both uncertain
and constantly evolving. In a context where safety is paramount and the risk of
catastrophic failure is high, a strong ability to react to a changing environment
is necessary.

In this work we explore data-driven deep reinforcement learning (RL) ap-
proaches for an autonomous agent to be robust to a navigation task, and act
correctly in the face of risk and uncertainty. We investigate the effects that
sudden changes to environment conditions have on an autonomous agent and
explore methods which allow an agent to have a high degree of generalization to
unforeseen, sudden modifications to its environment it was not explicitly trained
to handle. Inspired by the human dopamine circuit, the performance of an RL
agent is measured and optimized in terms of rewards and penalties it receives for
desirable or undesirable behaviour. Our initial approach is to learn to estimate
the distribution of expected rewards from the agent, and use information about
modes in this distribution to gain nuanced information about how an agent
can act in a high-risk situation. Later, we show that we are able to achieve
the same robustness objective with respect to uncertainties in the environment
by attempting to learn the most effective contingency policies in a ‘divide and
conquer’ approach, where the computational complexity of the learning task is
shared between multiple policy models. We then combine this approach with a
hierarchical planning module which is used to effectively schedule the different
policy models in such a way that the collection of contingency plans is able to
be highly robust to unanticipated environment changes. This combination of
learning and planning has shown promise in RL applications, and we are able
to make the best of both worlds in terms of the adaptability of deep learning
models, as well as the stricter and more explicit behavioural constraints that
can be implemented and measured by means of a hierarchical planner.

1

Acknowledgements

Conducting this research project has been a great source of both learning
and personal growth for me throughout its duration. I have had the pleasure
and benefit of being accompanied by many individuals who have significantly
contributed to this project, in both professional and personal qualities, without
whom this work would not have been possible. For this reason I would like to
extend my gratitude towards some individuals and organisations which have the
most impacted my time as a PhD student.

First of all, I would like to extend my gratitude towards the Renault Software
Factory path-planning team, most notably my supervisors Dr. Sébastien Aubert
for helping to build up this thesis project, and Dr. Christelle Yemdji Tchassi for
helping me to carry out this project till its completion. I would also like to thank
EURECOM’s data science department, and especially my PhD director Dr.
Pietro Michiardi for providing valuable insight to the most promising directions
of research, and for helping to publish this work to international venues.

On a personal note I would like to extend my appreciation to my fellow
PhD students at both Renault and EURECOM who have been a great source
of both support and motivation, especialy my deskmate Matthieu. I also more
broadly wish to thank my other colleagues in Renault and EURECOM for the
great work environment I have had the opportunity to be integrated into over
the course of the last 3 and a half years.

I would further like to thank my a couple of my dearest friends Alestair and
Eloi, who made the trip to attend my thesis defense, along with all those who
took the time to attend online. Finally, I would like to give a warm recognition
to my brothers and parents who have provided me with love and guidance and
who, I hope, have been able to gain an appreciation for the qualities of life in
southern France.

2

Contents

1 Introduction 9
1.1 Approach to Uncertainty in decision-making 9
1.2 Levels of Autonomy for Self-Driving Cars 11
1.3 Problem Statement . 11
1.4 List of publications & Thesis layout 14

2 Background 16
2.1 Reinforcement Learning . 16

2.1.1 Introduction . 16
2.1.2 Standard Notation . 19
2.1.3 Algorithmic Patchwork 25
2.1.4 Using RL for Control . 32

2.2 Deep Neural Networks . 35
2.2.1 Training a Network . 37

3 Distributional Perspective on MDP Optimization 39
3.1 Introduction . 39

3.1.1 Related Work . 41
3.2 Experiments . 51

3.2.1 Training Environment . 51
3.2.2 Results . 58
3.2.3 Conclusion on Distributional RL 69
3.2.4 Using Sub-Optimal Policies for Robustness 74

4 Learning Contingency Policies 76
4.1 Introduction . 76
4.2 Related Work . 77

4.2.1 Variable Elements of MDPs 78
4.3 Learning Contingency Policies . 79

4.3.1 Agents’ Behaviour . 80
4.3.2 Reward Augmentation . 83
4.3.3 Algorithm Description . 87

4.4 Experiments . 90
4.4.1 Intersection Environment 90

3

4.5 Results . 92
4.6 Conclusion . 96

5 Low-Level Policy Scheduling with Model-Based Planning 97
5.1 Introduction . 97
5.2 Related Work . 99

5.2.1 Hierarchical Reinforcement Learning 99
5.2.2 Agent Performance Estimation 100

5.3 Improvements to Training Contingency Policies 100
5.3.1 Policy’s Domain . 100
5.3.2 Illustrative Example of Contingency hand-off Point 102
5.3.3 Random Contingency Initialization 104
5.3.4 Replay Buffer Contingency Initialization 104

5.4 Hierarchical Controller and Planner 106
5.4.1 Hierarchical Controller Algorithm 106
5.4.2 Planner . 107
5.4.3 Sampling Environment Dynamics 108

5.5 Experiments . 108
5.5.1 Simulation Environment 108

5.6 Results . 109
5.7 Conclusion . 110

6 Conclusion and Perspectives 112
6.1 Conclusion . 112
6.2 Perspectives . 114

6.2.1 Continuation of our Work 114
6.2.2 Machine Learning for Autonomous Navigation 116

A Simulation Environment 119
A.1 Driving Scenarios . 120
A.2 Input and Output Spaces for Autonomous Agent 122

A.2.1 General Description . 122
A.2.2 Observations by Vehicle Sensors 125

A.3 Different Behaviours for Target Vehicles 127
A.4 Adapting the Environment for Training Deep Learning Models . 128

A.4.1 Gym Framework . 128
A.4.2 Computational Resources 129

B Derivations and Proofs 131
B.1 Contraction of Bellman Optimality Operator 131
B.2 Deriving Log-Gradients for Policy Updates 132
B.3 Properties of the Distributional Bellman Operators 133
B.4 Alternate Parametrization of the Return Distribution 135

B.4.1 Sufficient statistics . 138

4

List of Figures

1.1 Level of autonomy for self-driving systems, represented as a pro-
gressively decreasing need for human physical inputs and degree
of supervision. 11

1.2 Decision-making pipeline for autonomous navigation. 12

2.1 Basic reinforcement learning loop. 17
2.2 Example 5-state trajectory through an MDP. 18
2.3 Agent may choose between two actions, to chose between two

possible trajectories. 19
2.4 Markov decision process (MDP) as a directed graph 20
2.5 n-chain MDP, where optimal policy is difficult to find. 26
2.6 Training a policy with a replay buffer. 30
2.7 Artificial neuron . 36
2.8 Fully-connected network of artificial neurons 37

3.1 Mixture of Gaussians, and mean value. 40
3.2 Quantiles of the normal distribution 42
3.3 Quantile loss function for κ = 0.2, 0.5, 0.8. 43
3.4 Value of Wasserstein metric following sample updates with D̂π. . 47
3.5 Bellman operators from including sample-based and parametric

targets . 49
3.6 Left-hand turn intersection task 52
3.7 Density of speed profiles, over multiple episode runs 53
3.8 Intersection scenario (right), along with return distributions cor-

responding to each possible action (left). 58
3.9 Return estimation for a single action (0 acceleration action), dur-

ing training. 59
3.10 Return estimation for a single action (0 acceleration action), at

the end of training. 60
3.11 Intersection scenario (right), along with return estimations (left),

targets having Gaussian noise on their observed positions (σ2 = 5). 62
3.12 Increased uncertainty on target position (σ2 = 10m). 63
3.13 QR loss over 2.5M training steps. 64
3.14 Intersection scenario (left) with quantile estimates (right), with

high uncertainty on target position. 65

5

3.15 High variance on return estimation for 0 acceleration action. . . . 66
3.16 QR loss over 1M training steps. 67
3.17 QR loss over 14M training steps. 69
3.18 QR-DQN performance, over 14 Million samples. 70
3.19 (a) Return distributions from different agent behaviours. (b)

Combined return distribution with both behaviours being equally
likely. 71

4.1 Illustration of usefulness of a contingency plan to avoid unforeseen
uncertainty. ‘S’ indicates the starting state, ‘E’ indicated the end
or goal state . 84

4.2 Reward dependence for multiple contingency agents. 84
4.3 Illustration of RL training loop with a single contingency agent,

π1. Arrows shown in orange are part of the computation for
the trajectory penalty term. Inputs for the trajectory metric M
are taken from both the instantaneous trajectory for π1 and the
expected trajectory for the optimal agent, E[τπ∗] 90

4.4 Navigation task: ego makes a left turn across the intersection
with oncoming traffic. Target vehicles may either be aggressive
(i.e. disregarding presence of ego in intersection) or cooperative
(i.e. slowing down if ego is close to intersection point). 91

4.5 Training scores for both agents. Each is trained for 300k steps.
π∗ is the optimal agent, π1 is the pseudo-agent. 93

4.6 Pseudo-reward, Rpenπ∗ calculated for both agents. The values for
π∗ are computed only for comparison to the values used by π1. . 93

4.7 Average values for M on the final 100 episodes of each pseudo-
agent, for different pseudo-reward scaling α. 94

4.8 (a) Training scores for both agents during training phase. This
figure does not take into account the trajectory penalties Rpen

for π1, only the regular rewards R. (b) Evolution of computed
trajectory metric termM(·,E [τπ∗]) for optimal and contingency
policies. Although computed for both policies, the resulting tra-
jectory penalty is only attributed to π1. 95

4.9 Q-functions evaluated at different areas of feature space: (a) Qπ
∗

unaffected by the pseudo-reward, favors higher-speed trajecto-
ries. (b) Qπ1 using pseudo-rewards (α = 1) favors lower-speed
trajectories. (c) Qπ

∗
with increased uncertainty on target posi-

tion, higher-speed trajectories result in a collision with first target
vehicle. 95

5.1 Maze environment, with multiple exits (blue & red) 103
5.2 Training run with different values for β using (5.1) for initial state

distribution. 105
5.3 Structure of hierarchical controller composed of available policies

and model-based planner (High-level policy selection). 106

6

A.1 Capture of the simulated navigation task. 120
A.2 Intersection scenario with oncoming vehicles. Dotted lines rep-

resent the path for ego (green) and targets (red). Shaded ellipse
around the targets represent the uncertainty on their positions,
whereas the orange zone around the ego, of dimension rc repre-
sents the collision radius around the ego vehicle. 121

A.3 Different occupation grids from a single input state to the agent. 123
A.4 Example characteristics for LiDAR ranging 125
A.5 uncertainty on the position of incoming target vehicle 126

B.1 Difference between quantile and expectile losses 136
B.2 Training score for various distributional agents [Rowland et al.,

2019] . 138

7

List of Tables

5.1 Performances of various agent setups in the intersection environ-
ment. 109

8

Chapter 1

Introduction

1.1 Approach to Uncertainty in decision-making

Making good decisions in the face of uncertainty is a difficult task. For an agent
seeking the optimal behaviour in an environment, the presence of uncertainty
may compromise the expected performance as well as make the optimal solution
difficult to describe. In this work we are concerned with enabling an autonomous
agent to be as robust as possible in the face of uncertainty, with respect to the
possibility of high-consequence failure.

We can divide the uncertainties present in the environment into two cat-
egories: aleatoric and epistemic. Aleatoric uncertainty refers to the random
nature of the dynamics such as the result of a dice, whereas epistemic uncer-
tainty refers the uncertainty resulting from the lack of knowledge about the
environment, for example in cases of partial observability. If we look at how
human decision-making deals with both these kinds of uncertainties, we can see
that we apprach them in a fundamentally different way. Aleatoric uncertainty
is usually a question of expected value at the outcome, based on some threshold
value we intrinsically have as a kind of ‘decision boundary’ for a level of un-
certainty of outcome which we find acceptable. This boundary in and of itself
depends the tolerance for risk which may change from person to person, and is
also influenced by environmental factors. However in the case of aleatoric uncer-
tainty it is impossible to be 100% certain of the outcome resulting from actions
that are taken, and so some threshold for risk must be accepted in order for a de-
cision to be made. Since epistemic uncertainty describes incomplete knowledge
of the domain, often linked to the agent’s perception capabilities (and may even
vary between agents) it can be tackled by performing some exploratory actions
in order to increase knowledge about the environment at hand, whether it be
in terms of the state-space, or its dynamics. An example for this would be a
vehicle advancing slowly at an intersection to test the intentions of other drivers

9

as to whether they are cooperative or not, which is impossible to know before
actually going into the intersection. To this point, it is by definition possible to
eliminate all sources of epistemic uncertainty through of sufficient exploration,
although in practice we usually do not want to spend an excessive amount of
time tackling this uncertainty and instead reduce it to some acceptable threshold
before taking action.

The philosophy for autonomous agents to act in environments prone to ran-
domness and uncertainty is the same; we wish to simultaneously reduce epis-
temic uncertainty through exploration and learning the environment dynamics
by agent-environment interactions, as well as selecting trajectories which have
a good performance while maintaining a low aleatoric uncertainty for outcome
such that we are satisfied with the odds of success.

Although both aleatoric and epistemic have clear separate definitions, the
category in which we should consider uncertainties present in the environment
is often subjective. The determining factor is the level of detail and modeling we
wish to have to describe environment dynamics. In the case of a dice-throw for
example, we could theoretically say that knowing the speed, position, angular
momentum of the dice along with the friction of the table surface, air density
etc. along with the laws of motions we could then determine the outcome of the
throw. However due to the high complexity and how sensitive the outcome is
to small variations in initial conditions, we consider it as effectively random. A
common example in autonomous navigation are the behaviours of other vehicles
on the road: according to how we wish to model the problem, driver intentions
can be considered initially random, or we can consider driver behaviour as some
hidden variable which we can attempt to gather information about through
exploratory actions in the environment. In reality there are few events that can
be described as truely random - radioactive decay can be one such example. For
this reason we model as aleatoric variables those which we do not wish to model
otherwise.

Moreover in our work we also deal with the balance between performance
and safety aspects of an agent’s behaviour, specifically in an autonomous navi-
gation environment. This means we want to strike a balance between having the
safest possible action, without overly sacrificing the agent’s performance metric.
When considering safety as a primary objective in decision-making, a common
problem that arises is known as the freezing robot problem. This freezing prob-
lem is common when designing autonomous control algorithms where a robot
will spend so much time trying to plan ahead to reduce the risk and uncertainty
of its actions that it will end up taking no action at all, which in the end is very
sub-optimal. As in our case, in order for the autonomous vehicle (AV) not to
freeze up in the face of an uncertain outcome, we must be able to accept some
level of risk in order for the agent to learn some useful behaviours. We can
clearly make a parallel with human behaviour where we take acceptable levels
of risk every day, for example in driving situations, where we actually take a

10

relatively high amount of risk when considering the potential for negative con-
sequences associated to the driving task. Therefore a central aspect when it
comes to dealing with risky outcomes, is to prevent the agent from freezing up,
and be able to correctly estimate the amount of risk it is taking when pursuing
certain trajectories.

1.2 Levels of Autonomy for Self-Driving Cars

Figure 1.1: Level of autonomy for self-driving systems, represented as a pro-
gressively decreasing need for human physical inputs and degree of supervision.

Figure 1.1 shows how levels of autonomy ranging from 1-5 describes the
degree of transfer of responsibility from the human to the autonomous system
for a self-driving vehicle. Level 1 autonomy usually refers to driver assistance
systems which help in the driving task but generally do not allow the driver
to relinquish any of the usual physical inputs or attention from the driving
task. Today, many car models are being released with level 2 automation which
can take over longitudinal control for example, however always require a strong
element of human supervision. Some systems approaching level 3 are being
released into the market, however there is still much work to be done on both
technical and legal frameworks for vehicles with higher levels of automation to
be released onto public roads.

1.3 Problem Statement

The problem we are tackling in this work relates to the uncertainties inherent
to the sensors that an AV uses to perceive its environment, and how we may
use information about sensor uncertainties in order to increase the robustness of
the AV decision-making system. AV systems are typically built from a pipeline

11

of individual components, linking sensor inputs to motor outputs. Raw sen-
sory input is first processed by object detection and localization components,
resulting in scene understanding. Scene understanding can then be used by
a scene prediction component to anticipate other vehicles’ motions. Finally,
decision components transform scene predictions into commands that instruct
AVs trajectories and short-term movements. Any errors in the input to the
autonomous navigation pipeline will propagate through the system and are sus-
ceptible of causing a catastrophic failure by the agent, due to the sensitive and
high-risk nature of the driving task.

In the context of this thesis project, the focus is on the development of new
methodologies for dealing with the probabilistic nature of input sensor data and
generating probabilistic outputs which should be robust to the environment un-
certainties present, such that both safety considerations and objectives can be
systematically fulfilled. For this task we focus our approach on the domain of
probabilistic reinforcement learning, a branch of machine learning, which is able
to deal with control tasks in high-dimensional environments with complex and
unpredictable dynamics. With this computational approach we are able to learn
to control an autonomous agent by learning from sampled agent-environment
interactions. This allows us to use a simulated environment, capable of simulat-
ing a large number of interactions in a relatively short amount of time, such that
an agent may learn how to deal with the stochastic nature of the autonomous
navigation task in different contexts.

We have mentioned the balancing act that needs to happen between perfor-
mance and safety criteria. the performance metric is classically implemented as
blocs representing varying levels of temporal abstraction in the driving pipeline,
which we illustrate in figure 1.2, showing the typical 2 (sometimes 3) functional
blocs that make up the behavioural system for an AV.

Figure 1.2: Decision-making pipeline for autonomous navigation.

12

The mission planner is the highest level of trajectory planning and usually
corresponds to directions such as which roads to follow or which intersection
to go through in order to arrive at the desired destination; In terms of human
planning, this would be like reading a map. The behavioural planner is tasked
with providing control over lower-level actions such as changing lanes, or accel-
erating to pass through an intersection, the human equivalent of which would be
the decisions taken mentally to navigate through the environment. The lowest-
level abstraction for control is the trajectory planner which is responsible for
providing low-level actions such as steering wheel angle and desired acceleration
values which interfaces directly with the vehicle’s raw inputs. This lowest-level
bloc is equivalent to a human’s muscle control for turning the steering wheel or
pressing on the acceleration pedal. In some cases where the system dynamics
are too complex for the behavioural planner to output the actuator controls, it
instead provides a behavioural plan in the form of a path to be followed, which
is then fed into a path-following controller transforming that behavioural plan
back into the lowest levels of control to be provided to the vehicle actuators.

In our problem statement we only consider the behavioural planning module,
such that we assume the mission planner is able to provide us with a valid ob-
jective, and the trajectory planner is able to reproduce the desired trajectories
with sufficient precision. These two blocs usually each come with their respec-
tive safety constraints which are dealt post-trajectory generation. For safety
considerations related to the behavioural planner, there are two approaches: ei-
ther have a form of post-planner checks (high-level safety checks) like for the
other planners, or try to directly integrate the safety criteria in the behavioural
algorithm during optimization, or the training process of a learning algorithm.
Both approaches are possible, having a varying amount of hierarchical structure,
and possibility for nuanced optimization. One of the aims of using a machine
learning approach is to be able to integrate the safety considerations directly
into the behavioural planner such that the robustness of the autonomous agent’s
decision making is increased.

Due to the industrial component of this work, an important consideration
is that of degree of confidence for actions recommended by the autonomous
navigation system, or equivalently being able to provide an accurate estimate
for the probabilities of outcomes according to scene uncertainties. In order
for AVs to be legally allowed on roads alongside human drivers, we must have
strong assurances that the decisions made by the control algorithm are correct
and minimize the safety risk to other road users. Unfortunately this is not one of
the strong points for reinforcement learning in stochastic environments, which
relies on expected, mean values of performance to guide behaviour, meaning
that low-probability, and possibly high-consequence outcomes are difficult to
react to. For this reason, we anticipate having to adapt the RL framework for
autonomous navigation such that it may be good enough to deal with potentially
high-risk situations.

13

Considering the above discussion, we define the following objectives which
are the driving factors in our work:

• To integrate the notation of uncertainty in the decision-making pipeline,
such that the agent is able to be as robust as possible to the variance of
outcomes that arises when inputs are no longer known with high confi-
dence.

• To perform a multi-objective optimization taking into account both safety
and performance criteria, such that both are optimized during the learn-
ing process, and we are able to balance out satisfactory behaviours with
sufficiently high confidence in the face of an uncertain environment.

1.4 List of publications & Thesis layout

The work done during this thesis has lead to a couple of publications, cited
below:

Ugo Lecerf, Christelle Yemdji-Tchassi, Sébastien Aubert, and Pietro Michiardi.
“Automatically Learning Fallback Strategies with Model-Free Reinforce-
ment Learning in Safety-Critical Driving Scenarios”. International Con-
ference on Machine Learning Technologies (ICMLT 2022), March 2022.

Ugo Lecerf, Christelle Yemdji-Tchassi, and Pietro Michiardi. “Safer Au-
tonomous Driving in a Stochastic, Partially Observable Environment by
Hierarchical Contingency Planning”. Generalizable Policy Learning in the
Physical World Workshop (ICLR 2022), April 2022.

This manuscript contains an in-depth review and discussion of the work done
as part of the CIFRE project in cooperation with Renault Software Factory,
along with EURECOM, and is structured as follows:

Chapter 1 (this chapter) provides an introduction to the subject of decision-
making under uncertainty, and its application to the context of self-driving
vehicles in autonomous navigation tasks. Chapter 2 gives some background on
RL algorithms and how deep learning can be used to learn policies, along with
how a control task is modeled as a Makov decision process, in which the agent’s
behaviour is optimized. Chapter 3 presents how we use distributional rein-
forcement learning, where deep learning models aim to learn the distributions
representing outcomes and behaviours in the stochastic environment. Chapter
4 presents a multi-agent approach to learning a robust collection of policies in
an environment with uncertainties in dynamics and state-space, where modes
of behaviour in the return distribution are instead instantiated as individual,

14

separate policies. Building on this, chapter 5 presents a hierarchical controller
to schedule multiple policies available to the autonomous agent in such a way
that they become robust to sudden, unforeseen changes in environment dynam-
ics or agent observations. Finally, chapter 6 contains concluding remarks on our
approach, along with perspectives and insights to future work which may follow
the work presented in this manuscript.

15

Chapter 2

Background

2.1 Reinforcement Learning

2.1.1 Introduction

Reinforcement learning is a data-driven approach to control tasks, where the
objective can be formulated as a signal to be optimized by the controller over
the course of the control task, which can be of varying length (though typically
finite). The RL approach is inspired by the way humans and animals appear to
learn complex tasks where the notion of trade-offs due to temporal abstraction
(i.e. sacrificing immediate rewards in order to obtain a greater rewards later
in time) is an important consideration. Another main benefit of a data-driven
approach is the ability to use a model-free approach and let functions with a high
number of parameters (like neural nets) implicitly learn the complex, non-linear
dynamics of a model through many interactions with the task environment.

One of the theories on what drives human behaviour, is our reaction to the
dopamine signal released by the brain in response to some positive (or nega-
tive) stimulus from our environment. From observations of human and animal
behaviour, it seems that this dopamine reinforcement circuit allows for com-
plex patterns of behaviour to emerge for tasks where the optimal control is a
mix of short and long-term actions. Although the drivers for human behaviour
are much more complex than simply maximizing a single dopamine signal, re-
inforcement learning seeks to imitate this mechanism by means of an artificial
reward signal given to a controlling agent, in order encourage complex emergent
behaviours from a relatively simple problem formulation. This way if a positive
signal is given to an autonomous agent (reward for finding its way out of a
maze, for example), then the agent should seek out states which provide it with

16

Figure 2.1: Basic reinforcement learning loop.

this reward signal it has previously encountered. The goal of RL applications
is that we should be able to build a model of how good each possible action is
in the current environment. Since we don’t know what action the agent should
take in order to have the best performance, we must use a form of unsupervised
(or loosely-supervised) learning. As opposed to the supervised learning problem
often formulated in machine learning applications where ground-truth labels are
provided, these labels do not exist for individual actions taken in by the agent
in each subsequent environment state, and so a reward signal is provided as a
means of finding the best action in a state considering the ability for an agent
to perceive the highest possible rewards over the course of a sequence of states
(also referred to as an episode).

Therefore, the central concept of RL is to learn the ‘goodness’ of actions in a
given state, using an estimation for the expected value of reward the agent will
receive for taking actions in the environment. The focus on long or short-term
rewards can be balanced according to how future rewards are weighted with
respect to immediate ones. From here we can formulate the rough objective of
an RL algorithm:

We denote the reward perceived by the agent at each time-step, rt. Over the
course of an episode an agent will see a sequence of rewards {r0, r1, ..., rT } until
it reaches a terminal state, where the episode is ended. The sum of rewards seen
by the agent during the episode is termed as the return: Gt =

∑T
i=t ri. Although

we could aim for an agent to maximize this quantity, there is no distinction made
between short-term rewards which are more certain, and long-term rewards
which may be less certain for the agent. Due to the stochastic nature of tasks
we tend to prefer certain, immediate rewards over long-term rewards, and this
is modelled using a discount factor 0 < γ < 1 in order to reduce the weight
of long-term rewards. So when an agent estimates the sequence of rewards it

17

will achieve we can actually model it with: {r0, γr1, γ2r2, ..., γT rT }, and the
discounted return can now be written as

Gt =

T∑
i=t

γiri. (2.1)

Actions are taken by an agent’s policy, denoted π, such that a = π(s) ac-
cording to the state s in which the agent is currently in. Finding the optimal
policy π∗ which maximizes the expected discounted returns is our reinforcement
learning problem:

π∗ = arg max
π

Gt,∀t ∈ [0, T]. (2.2)

Note that the policy should be optimal for any starting time-step t. The basic
objective represented by (2.2) is the starting point for any reinforcement learning
agent, and there are multiple possible approaches for solving this.

Figure 2.2 shows an example 5-state trajectory, consisting of a sequence of
states {s0:4} with rewards associated to some of the transitions. In this case the
discounted return is computed as: G0 = γ0 · 0 + γ1 · 0 + γ2 · 1 + γ3 · 0 + γ4 · 3 =
γ2 + γ4 · 3. For example using γ = 0.8, then we can compute G0 ≈ 1.869 for
this particular state sequence starting at s0.

Figure 2.2: Example 5-state trajectory through an MDP.

Figure 2.3 shows the effect that the discount factor γ may have on the choice
of action for an RL agent. In this situation the agent must choose between two
actions a0 or a1 to choose between two different state trajectories. Using γ = 0.8,
we may compute that the discounted return after for each action is: Ga00 =
2.048, Ga10 = 1.6, and we will choose action a0 as the optimal. Repeating this
computation with γ = 0.7 however, yields Ga00 ≈ 1.201, Ga10 = 1.4, meaning that
a1 is now considered optimal, and the agent will prefer the short-terms benefits
over long-term ones. Since these example trajectories have no uncertainty of
outcome, it is always better to use γ = 1 and favor long-term rewards, however
in practice it is important to not over-value the possibility of distant rewards as
they may end up being impossible to collect. The discount factor is also useful
to bound the maximum return that an agent can collect, and allows for proof of
convergence even in cases of infinite length (i.e. non-terminating or continuous
tasks).

18

Figure 2.3: Agent may choose between two actions, to chose between two pos-
sible trajectories.

In practice, episodes are usually longer than 5 states, and so values for γ
will commonly be of the form 1− ε where ε is some small value close to 0. For
example γ = 0.99 will reduce rewards by a factor of 10 after approximately
200 steps. In the next sections we present the mathematical framework used
in deep reinforcement learning, along with the two ‘families’ of RL algorithms,
and some standard tricks and add-ons which are standard in RL applications.

2.1.2 Standard Notation

Markov Decision Process

The mathematical framework for applying a reinforcement learning algorithm is
to model the environment as a Markov Decision Process (MDP). This approach
models the environment as a directed graph (Figure 2.4 illustrates a simple 3-
state MDP), where nodes correspond to states in which the agent finds itself,
and edges represent the actions an agent can take to transit between nodes. The
model for transition between states is given by the dynamics of the environment
that this modeled. An important hypothesis that is made about environment
dynamics is the Markov property, which states that the dynamics cannot de-
pend on previous states encountered during the agent’s state-space trajectory.
This means an agent should be able to make the optimal decision using only
the current state it is in (at = π(st), instead of a = π((st, st−1, ...)). For many
control applications however this hypothesis does not seem reasonable; for ex-
ample in the case of an autonomous car it is impossible to deduce the speed

19

Figure 2.4: Markov decision process (MDP) as a directed graph

of a target from a still image. However in practice we can simply additional
information such as speed and other time-dependant information such as length
of the current trajectory, or even past agent actions, without invalidating the
Markov property of the MDP. For video games where the input to an agent are
the raw pixel values from which speeds of objects cannot be determined, it is
common practice to aggregate the past 3 or 4 frames together as the input state
to the control agent so that this information can be deduced from the input
space.

A finite MDP is defined by the following elements:

• Finite set of states s ∈ S. States are indexed by the time-step at which
they are encountered: st.

• Finite set of actions a ∈ A. Actions are also indexed by their respective
time-steps: at.

• Transition model st+1 ∼ T (s′|st, at), representing the probability of pass-
ing from st to st+1 after taking action at.

• Reward function rt ∼ R(r|st, at, st+1), representing the reward rt per-
ceived by the agent after transition from st to st+1 with action at.

• Discount factor γ ∈ (0, 1], controlling the weight in value of states further
along the Markov chain.

20

Value-Based Agent

Actions in the MDP are taken by a policy π : S → A mapping states to actions.
In order for the agent to maximize rewards in the MDP, we can model the
‘goodness’ of states as the estimation of the discounted returns the optimal
agent is able to get from that state. This is a family of RL algorithms known as
value-based learning, whereby the algorithm seeks to learn a good estimation
of the discounted return Gt achieved by the agent’s policy. The value of a state
under a policy π, is estimated by the state-value function V π : S → R, which
represents the expected future discounted sum of rewards, if policy π is followed
from s:

V π(s) := Eπ

[∞∑
t=0

γtrt

]
, (2.3)

s0 = s, at = π(st), st+1 ∼ T (s′|st, at), rt ∼ R(r|st, at, st+1).

An agent’s policy will therefore take actions such that the value for V π is max-
imized. In order for an agent to differentiate between available actions, instead
of estimating the value function for the current state, we can estimate the value
function for all possible future states (all states st+1 attainable by the agent’s
actions), and choose the action at which leads the agent to the most desirable
future next state st+1. This one step look-ahead dependant on the agent’s
action is known as the action-value function, or more commonly Q-function
Qπ : S × A → R which assigns values to actions according to the value of the
states that are reached. Equation (2.4) is known as the Bellman equation, and
is used to learn the Q-function from many samples of interaction between the
agent and the environment.

Qπ(st, at) := Est+1
[rt + γ · V π(st+1)] , (2.4)

s0 = s, a0 = a, st+1 ∼ T (s′|st, at), at = π(st), rt ∼ R(r|st, at, st+1).

We use the Q-function in order to define the optimal policy π∗, as the policy
taking actions that maximize the action-value function:

π∗(s) := arg max
a∈A

Qπ
∗
(s, a).

In value-based learning, we use samples of interactions between the agent and
the environment along with the immediate step-reward rt, in order to learn the
Q-function which in deep RL is modeled by a deep neural network with param-
eters θ. A single transition sample is made up of the current state st, action
at, next state st+1, and the reward rt given to the agent by the environment.
In order to learn the value function over many iterations, we use the Bellman
equation where rt + γ · V π(st+1) is considered a better estimation than V π(st)
for the value of current state st. Using the relationship between V π and Qπ

21

(V π(s) = Qπ(s, π(s))) we can write:

Qπ(st, at) = Est+1

[
rt + γ ·max

a′
Qπ (st+1, a

′))
]

(2.5)

so that only the Q-function appears on each side of the equation.

The Bellman equation is central to value-based RL, and provides some the-
oretical grounding in terms of convergence properties for learning the value
function through an iterative scheme. This can be shown by proving that an
operator, applying the Bellman equation to a value estimation (i.e. Bellman
operator), is a contraction mapping in the space of value estimations and there-
fore must have a fixed point which can be reached by recursively applying the
operator to an initial guess. The proof for the Bellman policy operator is given
below:

Let U, V be two value functions, and define the Bellman policy operator

Bπ such that BπV :=
∑
s′ T (s′|s, π(s))

[
R
π(s)
s,s′ + γV (s′)

]
(some notations of this

operator use T π, however this may be ambiguous with our use of T to denote

the MDP transition model, so we use Bπ instead). R
π(s)
s,s′ indicates the expected

reward received for the state transition i.e. E[R(r|s, π(s), s′)]. We show that Bπ
is a contraction mapping:

∥BπV − BπU∥∞
(a)
= max

s
γ
∑
s′

T (s′|s, π(s))|V (s′)− U(s′)|

≤

(∑
s′

T (s′|s, π(s))

)
γmax

s′
|V (s′)− U(s′)|

(sum of probabilities of transitions to s′ is 1)

≤ γmax
s′
|V (s′)− U(s′)|

≤ γ∥V − U∥∞

Where (a) uses the fact that that
∑
s′ T (s′|s, π(s))

[
R
π(s)
s,s′ −R

π(s)
s,s′

]
= 0.

The role of Bπ is to evaluate the value of a policy in the environment, such
that we are able to learn one of the value functions (either V π or Qπ) for the
current policy π. This is useful in order to be able to learn the shape of the
return function over the MDP state-space, and so to compare the expected
performance of different policies. We use the value function in order to define
the optimal policy π∗ in an environment as the one where the associated value
function V π

∗
is maximal over the entire state space. Hence we are able to say

that π∗ is the optimal policy iff:

∀s ∈ S,∀π ∈ Π, V π
∗
(s) ≥ V π(s) (2.6)

22

where π ∈ Π indicates the space of all possible policies. In the case where
the policy is parametrized by a a set of parameters πθ, then we refer to the
parameters of the optimal policy as the optimal parameters θ∗. In this case,
the domain of the discounted return function Gt, being approximated by the
value function V (st), is the entire parameter space. For complex policies such
as neural networks which may contain a very large number of parameters, the
return landscape is very high-dimensional and complex. For this reason the
correct parametrization of value estimators is important to be able to be able to
both correctly estimate Gt, and avoid being unnecessarily difficult to optimize,
amongst other problems which arise when over-parameterizing an estimation
function.

We can deduce the optimal policy π∗ if we are able to learn the associated
optimal value function V π

∗
, by simply navigating to the states maximizing the

associated return for the optimal policy. This way, we can transform the problem
of learning the optimal policy to that of learning the optimal value function,
which can be done via the Bellman optimality operator B:

BV := max
a

∑
s′

T (s′|s, a)
[
Ras,s′ + γV (s′)

]
(2.7)

The proof for contraction of the bellman optimality operator, B, follows a simi-
lar reasoning to that of Bπ and is given in appendix B.1. Although we are able
to ensure a proof of convergence for learning the optimal value function V π

∗
,

there are two additional factors to take into account when applying B to an
agent-environment setup: knowledge of the transition dynamics T , as well as
the sum over potential next states

∑
s′ . Knowing the dynamics T of the en-

vironment allows for the algorithm to evaluate the possible returns from many
possible state transitions simultaneously, since it is able to simulate these tran-
sitions without performing them. However in some environments the transition
dynamics are unknown, or only known over a limited domain. This can be the
case in a multiplayer game for example, where the opponent’s moves are difficult
to predict. On top of this, the Bellman operators assume that we are able to
perform a sum over the entire next-state-space s′; If there is a high amount of
possible next states in the environment, then it is not reasonable to assume that
we are able to perform computations over such a large space. For this reason,
in more complex environments we use a sampled approach where interactions
between the agent and the MDP are sampled over many episodes, so that over
a long enough period of time, the dynamics and state-space of the environment
are sufficiently well-represented such that they can be estimated by a learning
algorithm.

The convergence properties for the Bellman operators gives us a theoretical
foundation for constructing Bellman targets, in order to define a learning prob-
lem where we must learn to fit an estimator to the target values, and consider
these as improvements over our current estimation of the state-action value
function Qπ. In order to combine this approach with function estimation over a

23

large domain, these target values can then be used to construct a loss function
with respect to the current estimates, which in turn can be used to optimize a
model (a neural network with parameters θ, for example) by fitting a more ac-
curate current output to target values, as is done in supervised machine learning
approaches:

xt = Qπ(st, at) (2.8)

yt = rt + γ ·max
a′

Qπ(st+1, a
′) (2.9)

We can use for example the mean squared error loss function MSE(xt, yt) =
1
N

∑
i(xi − yi)2 for multiple samples in order to train model parameters. We

further discuss using learning algorithms in section 2.2 where we present how
neural networks are used with agent-environment interactions samples to learn
value estimators.

Policy-Based Agent

The second family of algorithms is known as policy-based learning. This ap-
proach seeks to directly optimize a policy function whose outputs are the prob-
abilities that each action is the optimal, instead of directly estimating the Qπ

function. Due to this we have a slightly different notation for the policy, writing
a ∼ π(a|s) instead of a = π(s) which is deterministic in the case of a value
network output. In this approach we look to perform a gradient ascent directly
on the policy model parameters θ (instead of a loss). Considering our base
objective given in (2.2), we can define an objective function in terms of the
policy parameters θ which we then maximize (the details for this derivation is
straightforward and given in Appendix B.2):

J(θ) = Eπθ
[Gt]

⇒ ∇θJ(θ) = Eπθ

[
Gt

T∑
t=0

∇θ log πθ(at|st)

]
(2.10)

The ∇θ log πθ(at|st) values in the sum are known as the log-gradients for a
policy’s trajectory, and Eπθ

stands for the expectation under trajectories gen-
erated by policy πθ.

One of the main differences between the two approaches is that the value-
based approach results in a deterministic policy (due to the argmax operator),
and the policy-based approach results in a probabilistic policy. There are fur-
ther differences between the two approaches which we discuss at the end of this
chapter, however recent popular algorithms seek to combine the two approaches
in an actor-critic dual-network architecture [Mnih et al., 2016] (one actor net-
work - the policy, and one critic network - the value estimation). The main

24

idea behind learning two networks concurrently is to replace the value of Gt in
the policy gradients by a value estimation Qπ so that we’re not dependant on
full episodes to train the policy network. Actor-critic architectures have been
combined with entropy regularization [Haarnoja et al., 2018] (soft actor-critic),
along with estimates of the discounted return gradients [Schulman et al., 2017]
(proximal policy optimization) to form some of the best-performing architec-
tures in RL.

Stochasticity and Partial Observability of the Environment

A stochastic environment will have non-deterministic, aleatoric dynamics rep-
resented by a distribution T (s′|st, at) of possible next states conditioned on the
agent’s action. To model this partial obervability we can consider that the agent
only has access to the MDP’s state through an observation model:

ot ∼ O(o|st).

Optimizing in a partially observable MDP (POMDP) in notoriously difficult,
due to the fact that uncertainties in current state, or transition to the next
state may have a very high impact on the value of the returns seen by the
agent. Due to the fact that classical RL algorithms deal with expectations on
trajectories and performance, this means we would have to obtain samples from
every significantly possible combinations of events in order for the agent to have
a good grasp of the expectation of performance in that environment. Due to the
overwhelming combinatorial complexity of such an approach, we usually make
simplifications to the POMDP framework, or apply an ad-hoc algorithm which
is designed to tackle that particular environment.

2.1.3 Algorithmic Patchwork

In the previous section we discussed the basic RL architectures of value and
policy-based agents. Though these are the basic building blocks for reinforce-
ment learning agents, there have been many advancements to increase the vi-
ability of RL algorithms in control tasks, from affecting the rate of random
exploration done by the agent, to reducing the variance in gradient updates to
give a couple of examples. Below we provide an overview of the most popu-
lar modifications to RL algorithms which are mostly all present in current RL
applications.

25

Exploration vs. Exploitation Trade-Off

During the training phase of an RL algorithm the agent collects interaction
samples according to a policy which it follows by actions that are estimated
to be good (learned policy and followed policy may be different - discussed
under on-policy vs. off-policy learning). Often, due to the complexity of the
control task, and when using a parametrized policy πθ, the space of returns
is susceptible to having local optima which correspond to global sub-optimal
solutions. There is a risk during training that if a policy is locally optimal,
the agent attempting to learn the optimal policy will be stuck in this trajectory,
although it is not the optimal one. Given how RL algorithms use the return as a
proxy for how good the agent’s behaviour is, if no higher returns are obtained by
the agent, then the algorithm will have converged and stop learning. However
for most environments, virtual or simulated, there are such a high number of
possible trajectories that it is impossible to correctly learn the expected returns
in all areas of state-space. The length of trajectories also contributes to the
complexity of learning correct behaviours in the environment, and the longer
the agent trajectories are, the harder it is for an agent to quantify all possible
trajectories to model the obtainable return. The error in return estimation for
some areas of trajectory-space may cause the agent to miss out on the global
optimal policy π∗ which we wish to learn.

For this reason, we implement an exploration mechanism into the agent’s
training phase, whereby we can make the agent take exploratory actions which
do not follow the agent’s training policy and hence can help to not get so easily
stuck in a local optimum. The idea being that the agent should initially explore
the state-space so as to obtain a reasonably good estimation of which trajectories
seem the most promising, and only once it has formed a good initial estimate
of how good each strategy is, we may refine the returns estimates for the most
promising areas of state-space.

Figure 2.5: n-chain MDP, where optimal policy is difficult to find.

Figure 2.5 shows an example MDP, where the agent starts in shaded state
s1, and can either go left or right, before reaching either s0, where it will receive
a reward of 1, or sN where it will receive a reward of 100. In this case the policy
going only left will obtain a discounted return of G0 = 1, and the policy going
only right will obtain the discounted return of G0 = γN ·(100), hence which is the
optimal policy will depend on the value of γ and N . To motivate our exploration
example we can simply take γ = 1 and N some large positive integer. Once the

26

policy is initialized at the beginning of training, the actions taken by the policy
will initially be random. With this n-chain MDP the probability for an agent to
reach sN is P (sN) = 1

N (general solution of a random walk with two absorbing

states at s0, sN is P (sN) = k
N when agent starts at sk, 0 < k < N), hence for

a value of N = 100 ⇒ P (s100) = 0.01 the agent already has very little chance
of observing the optimal return of G0 = 100. If we further use the policy’s
performance in order to update policy parameters, then this optimization will
likely push the policy towards preferring to go left, since it thinks that there
is no reward to be had while going right, and fail to converge to the optimal
policy. Because of this it is important for us to encourage exploratory action
from the agent so that it is able to discover these ‘hard-to-find’ strategies.

However, we must strike a balance between looking for new strategies, and
optimizing for exploiting the best available one. Excessive exploration prevents
the agent from correctly estimating the returns and comes at the cost of perfor-
mance when training is constrained by both time and computational resources.
This is known as the exploration vs. exploitation trade-off in RL, and is the
reason for some specific modifications to the agent’s policy during training so
that we don’t fall into the local optima trap. The most common solution is
to encourage exploratory behaviour in the beginning of training to obtain a
sufficiently good idea of what the returns look like for various strategies in the
environment, and then reduce the amount of exploration once we wish to exploit
the best strategies and maximize returns obtained by the agent. By far the most
common practice in RL is known as an ε-greedy policy, and uses an exponen-
tially decaying rate of random exploration over the course of the training phase,
going from ε = 1 down to εmin > 0, where a minimal value is maintained to
keep some chance of exploration still during the entire training phase. A typical
value used is εmin = 0.01 giving a small chance of random exploration so as
not to affect the return estimation too much. For each time-step, we sample a
random number r ∈ [0, 1], and use the following policy:

ε-greedy(π) =

{
π(o) if r < ε
U(A) otherwise

where U(A) is the uniform probability distribution over the agent’s actions-
space, and π(o) is the action recommended by the agent’s policy. To encourage
increased exploration at the beginning of the training phase, we use exponential
decay based on the duration of the training phase:

ε = max(C
nsteps

T , εmin)

where C ∈ R controls the rate of decay, nsteps are the number of training steps
passed, T ∈ R is a time constant.

There also exists other exploration strategies, which use information on the
state-space in order to improve upon the random-based ε-greedy policy. For
example some directed exploration approaches use an estimation of the model’s

27

confidence in the value of a state to encourage the agent to explore areas of
state-space where the Q-function is not well learned.

Algorithm 1 gives a pseudo-code implementation for a typical RL agent
training loop.

Algorithm 1 General RL learning algorithm

1: Init π
2: while training do
3: s0 ∼ pπ(s0) ▷ initialize new episode
4: o0 ∼ O(s0)
5: while episode not terminated do ▷ play episode
6: at = ε-greedy(π) ▷ random action with probability ε
7: st+1 ∼ T (st, at)
8: rt = R(st, at, st+1)
9: ot+1 ∼ O(st+1)

10: end while ▷ Collect interaction samples
11: TrainModel() ▷ Train policy from samples
12: end while

On-policy vs. Off-Policy Learning

The reinforcement learning algorithm we use in this work is based off of the
popular Q-learning algorithm. Broadly, an RL algorithm may either be on-
policy or off-policy. The difference being whether or not the acting and updating
policies are the same during the training phase. On-policy algorithms use the
same policy to both act and estimate the value of the future states for learning,
whereas off-policy algorithms use the value from a policy in updates that is
different from the one collecting interaction samples in the environment. This
affects the TrainModel() function mentioned in algorithm 1.

The policy being learned (i.e. the value function, in the case of Q-function
estimators) is the policy receiving updates from Bellman targets based on in-
teraction samples. From the Bellman equations, learning from samples means
that we must estimate the value of a future state using the policy which we
wish to learn, in order to have a converging fixed point scheme. We can see
the difference by comparing an on-policy algorithm, SARSA (named after the
(st, at, rt, st+1, at+1) sample tuple required for training, though we deal with ob-
servations ot instead of states to be as general as possible), with the off-policy
Q-learning. Both updates can be given as:

Qπ(ot, at)← rt + γQπ(ot+1, at+1) (SARSA)

Qπ(ot, at)← rt + γmaxa′ Q
π(ot+1, a

′) (Q-learning)

28

SARSA uses the current policy Qπ to evaluate the value of the next observa-
tion ot+1, by means of the action at+1 that was actually selected by the policy
from that state. On the other hand, uses the greedy action a′ (only maximizing
returns, no exploration) in order to determine the value of the next observa-
tion ot+1. This means that it estimates the value of states according a greedy
policy, even though the samples could have been collected by an exploratory
policy taking non-greedy actions. In the case where a greedy policy is collect-
ing samples from the environment, then the distinction disappears. Off-policy
learning allows us to use exploratory actions to learn better Q-estimates over
the policy’s domain, without biasing the value of the optimal policy with the
potentially bad exploratory actions. This however in turn has the tendency of
over-estimating the value of states due to the max operator being overly opti-
mistic about the return value of states obtainable by the agent, though there
are some ways of addressing this issue. Mnih et al. [2013] introduce the use of
deep neural networks in conjunction with Q-learning, using what is refered to as
a deep Q network, or DQN. DQNs are one of the most popular algorithms from
which stronger algorithms are built, and can be found in powerful approaches
such as Deepmind’s AlphaGo Silver et al. [2018], able to play the complex game
of Go at a super-human level.

The idea of de-coupling the acting and estimation (or learned) policies is
powerful not only because it allows for the use of exploration for a single agent
to better explore its domain, but also opens the door for samples collected
from other agents learning in parallel to be used on a same agent. This way,
experiences collected from agents attempting to learn one task can be used to
train an agent learning the returns for its own task, as it will judge the value
of the collected samples in terms of its own return function rather than the
action from the acting policy. Furthermore, we are also able to leverage past
samples collected by an agent in the environment, and use them to train the
current policy even though it will be different to the past one. This is useful
as it allows multiple agent to train on collected samples, or an agent to use the
same training samples multiple times over the course of a training phase. Since
sample efficiency is so core to data-based learning applications, and especially
so to reinforcement learning algorithms, having an algorithm which is able to
re-use multiple samples is very helpful. The next classical add-on to deep Q-
learning is a replay buffer from which past experiences are sampled multiple
times to increase the algorithm’s sample efficiency.

However, there are some disadvantages to the off-policy approach, such as
when there is too much of a difference between the acting and estimation poli-
cies, then the agent might have a hard time providing an accurate estimation
of the Q-function. This is seen when there is too much exploration for exam-
ple, where the agent is not able to converge to the optimal policy unless the
exploration term is annealed down to a low value for a prolonged period of time
(this is comparable to if a human would learn to do a task through only using
exploratory actions: not impossible, however inefficient and counter-intuitive).

29

Figure 2.6: Training a policy with a replay buffer.

In practice, due to the better sample efficiency and the ability to work around
some resulting inaccuracies in the return estimation, off-policy learning is much
more popular than on-policy approaches.

Hindsight Experience Replay

One major limitation of reinforcement learning is the amount of training sam-
ples that are required for training the agent’s policy. Each individual agent-
environment interaction has little effect on the policy updates which we per-
form, and we require a large number of updates before the agent effectively
learns the environment dynamics. Introducing off-policy learning, and being to
able to train on data that was generated by a policy different to the one being
learned means that we are also able to ‘recycle’ past interaction samples that
were generated by a past version of the agents policy, and use them multiple
times to increase the sample efficiency of the algorithm and avoid having to
re-generate similar samples using a simulation environment. This practice is
known as hindsight experience replay (HER) and uses a replay buffer containing
past samples which are then in turn used to train the policy’s parameters.

Figure 2.6 shows how the training loop is slightly modified to include a
sampling operation (dashed blue line from replay buffer to policy) from the
replay buffer. Now, the states used to train the policy are no longer the same as

30

the ones being collected at the same time in the environment. Sampling from an
independent buffer also allows us to increase the iid (independent and identically
distributed) property of the training data. For data-based approaches, of which
RL is a part, bias in the training data distribution will in turn result to bias in
the model learned from this data. Training from samples received immediately
may bias the model too much towards these immediate states and lose model
accuracy on other parts of its domain at test time. Additionally, the sampling
operation allows us to reduce the correlation between training samples as it
allows the model to train on interactions from different trajectories. Typically an
MDP generates highly correlated data (the next state depends on the previous
state), though between two samples of different episode, there is little correlation
(just from the fact that they would have been generated by the actions of a
similar policy, depending on how far back they were collected). Training from
samples in this way also makes it easier to perform batch updates when the
policy is modelled by a deep neural network, since we’re able to sample how
many interactions we want from the buffer at training time.

Following the size of the replay buffer, it may also be used to represent the
latest states and trajectories that are collected by the agent during training.
Later in our work, we make use of this past data available to the agent during
training in order to quantify which general areas of state-space it is optimizing
its policy around.

Double Q Learning with Target Networks

One issue with Q-learning is that of value overestimation when using the max
operator in (2.5), using a greedy policy to evaluate the value of the next state-
observation. Especially in the case of stochastic environments, where there are
multiple possible rewards for a single transition, using maxa′ Q(ot+1, a

′) will
only consider the highest expected return estimation from the next observa-
tion, and bias the agent into being over-confident about the returns, without
considering the fact that the return value may in fact be much less. For this
reason, Hasselt [2010] introduce double Q-learning, whereby the action selection
and value evaluation are separated in order to reduce this value over-estimation
which may lead the agent to not converge to the optimal policy. In the original
double Q-learning algorithm, we use two separate networks QA, QB to separate
the action of estimating the value of a state by the Bellman target.

QA(ot, at)← rt + γ QA(ot+1, arg max
a′

QB(ot+1, a
′)) (2.11)

Instead of taking the greedy action maximizing the same evaluation estimation,
we take the best estimated action from another return function, QB , such that
we avoid a kind of ‘confirmation bias’ of best estimated and selected action being
from the same Q-estimator. Though the original approach uses two different
networks, which would half the training efficiency since both networks would

31

have to be trained using different samples, Van Hasselt et al. [2016] combine
their double Q-learning approach with target networks introduced by Mnih et al.
[2015] for stabilizing target updates in their DQN implementation.

Target networks consist in remembering an offline version of model param-
eters θ′, and routinely updating them to match the online ones θ that change
much more dynamically. In the DQN algorithm, this allows us to have access
to an estimation of the return which is more constant, and allows for faster and
more effective learning. This replaces the DQN update with:

Qθ(ot, at)← rt + γmax
a′

Qθ′(ot+1, a
′) (2.12)

Replacing the double value functions QA, QB with online and offline versions
of the Q-function parameters, we obtain the following update, known as double
DQN to the use of double Q-learning and target networks used in the DQN
updates:

Qθ(ot, at)← rt + γ Qθ(ot+1, arg max
a′

Qθ′(ot+1, a
′)) (2.13)

This update is standard to use when learning Q-functions and provides both
better training performance and avoids some of the value over-estimation that
occurs when the selection and estimation policies are the same. This hybrid
implementation has the advantage of not requiring two entirely different net-
works which would heavily affect learning and sample efficiency, as the target
parameters θ′ can be easily memorized and simply updated according to some
time-constant so that every Ttarget steps, we set θ′ = θ. The frequency of up-
dating target parameters is set empirically so as to avoid value overestimation
from them being too close the online parameters, and also avoiding bias in the
target

2.1.4 Using RL for Control

Overall reinforcement learning is a tool that has the capability of learning com-
plex control laws in systems where classical approaches are more difficult to
implement, and benefits from the strengths (and weaknesses) of data-driven ap-
proaches to modeling. The central idea behind RL – optimizing a reward signal
– is based on the necessity for a reward signal to be provided to the agent. In
some tasks the values of rewards are straightforward: in a game of chess for
example the only objective is to win and so giving a positive reward for winning
a game and a negative reward for losing seems to encompass sufficiently well the
desired behaviour of a chess-playing agent. However in some environments the
reward value to be provided to the agent is not so obvious. If we wish to teach
a robot how to walk for example, is it better to give a reward based on distance
travelled (we risk the robot learning to crawl or just wiggle around to cover

32

the most distance)? Or we could combine distance along with some penalties
on incorrect posture (we risk stopping the agent from discovering more efficient
strides)? There are many examples in the literature of RL agents with poorly-
defined reward functions finding some ‘hack’ in the environment which allows
them to maximize the rewards they obtain but without attaining a behaviour
which we would heuristically describe as ‘good’ (for example running around in
infinite loops to collect redundant rewards instead of completing the task).

Still tied to the reward function, we have the notion of sparse vs. dense
rewards. This pertains to how often the agent receives a reward signal during
its training episodes. An example of a sparse signal would be only receiving
a reward at the end of a chess game depending on win or loss, and a dense
signal could be the inverse of the distance to a target location to which a robot
must navigate, which we can give to the agent at every time-step. Since the
performance of an RL agent is based on it modeling the expectation in returns,
we can see that a dense reward will tend to provide more training samples
and thus help the agent to learn faster. If a reward is too sparse the agent
may hardly ever encounter it and thus have a hard time re-tracing the correct
actions that caused the reward. On the flip-side, sparse rewards are preferred
for their simplicity and lack of potential bias towards behaviours that may not
have been foreseen. Taking the example of a chess game, a natural reward is
for either winning or losing the game, however we could additionally reward
the agent for taking enemy pieces for example, this could provide intermediary
objectives and help the agent to learn good behaviours faster. However in this
case we risk biasing the agent towards capturing pieces rather than winning the
game, and it may even end up losing some games if it is focused on obtaining
rewards for capturing pieces. This issue is not unique to RL, and arises in
any multi-objective optimization problem, where the presence of more than
one single objective leads to needing to balance the weight of each in order to
obtain the desired behaviour. RL can be seen as providing soft constraints on
the conditions modeled by the reward function, and any additional rewards that
are given add another implicit optimization objective to the agent. These then
need to be balanced out according to what we feel is an appropriate ratio, and
often several values must be tried and tested before ending up on the correct
combination for the desired behaviour the emerge from the agent.

We can use an autonomous vehicle task as an example for this dilemma, hav-
ing to balance both performance and safety criteria. Let’s say we give penalties
for the time it takes the agent to navigate through an intersection (encouraging
faster behaviour), and also a strong penalty for any collisions (encouraging safe
behaviour). If the penalty per second is -0.01 and the penalty for a collision
is -1, then we are implicitly telling the agent that it should cause a collision if
it is able to save 100 seconds of travel time. Or, if we factor the expectation
over all possible events, that it is worth it to gain 10 seconds on a trajectory
if the probability for collision is only 10%. Of course then we can modify the
scaling of performance to be 10,000 times less than that of safety (i.e. the agent

33

should gain 1s of trajectory time only if it is sure that there is less than an 0.1%
chance of collisions), which seems reasonable from a qualitative point of view,
however from an algorithmic perspective the time objective may become so neg-
ligible that it is ignored entirely, leading to the agent only avoiding collisions
and not wanting to complete the task (i.e. simply never moving could be the
safest behaviour). This ‘weighting’ of dense rewards when there are multiple
events included in the reward function is the reason for which it is often difficult
to design a good reward function for an task, and usually it will go through at
least some modification before the desired behaviour is learnt by the agent. One
approach to multi-criteria optimization problems is to use Pareto optimization,
where the improvement over one criteria is only acceptable as long as it does
not cause a less-optimal shift in the other criteria. Although this is a desirable
property it is often not realistic to assume that progress in one criteria can be
made with no trade-offs on any other objective.

Implementing a controller for AVs in a driving scenario is met with many
challenges: both from the point of view of perception and control [Yurtsever
et al., 2020]. As in most applications of real-world RL, the uncertainty linked
to the perception of the agent’s environment must be considered for an effective
controller to be developed. Even with the best possible road maps and sensors,
it is impossible to eliminate all sources of uncertainty from a driving scenario,
be they epistemic from imperfections in the vehicle’s sensors, or aleatoric from
the unpredictable interactions with other drivers [Depeweg et al., 2018].

Autonomous navigation requires a strong notion of safety, and notably ro-
bustness with respect to unexpected changes in the agent’s environment. For
example, sensor perception quality can be heavily susceptible to adverse weather
conditions [Zang et al., 2019]. Because of this the optimal behaviour is likely
to change dynamically according to the vehicle’s inputs, and a satisfactory con-
trol algorithm must be able to adapt on the fly. Safety criteria in autonomous
driving applications are traditionally based on perceiving when a situation is no
longer able to be handled by the acting controller, and then handing over the
controls to either the driver, or a special-case controller. For example, Bouton
et al. [2019] implement a deep neural network to detect the probability of a
catastrophic outcome when following recommended actions, whereas other ap-
proaches such as Clements et al. [2019] or Hoel et al. [2020b] look to estimate
the confidence an agent has in its predicted outcome for a sequence of actions
in the environment from uncertainties on neural network parameters.

RL techniques have been shown to be able to tackle the task of control in
progressively more complex environments [Badia et al., 2020a]. RL algorithms
learn by optimizing their expectation of performance in an environment. In
most cases, such as board games [Mnih et al., 2015] or video games [Berner
et al., 2019], the environment in which we seek to obtain the optimal behaviour
can be modeled as a Markov Decision Process (MDP) with no loss of generality
in the solution found by the RL agent. Through advancements in target updates

34

[Hessel et al., 2017], as well as agent architectures [Schaul et al., 2016], RL agents
have become increasingly efficient at finding the optimal solution to MDPs,
even when requiring high degrees of exploration, where the optimal sequence of
actions is hard to find [Sutton and Barto, 2018].

Stochastic control environments such as driving scenarios are more difficult
to optimize, given the probabilistic nature of both the observation and transition
dynamics. Stochastic environments may be modeled as POMDPs [Kochender-
fer et al., 2015]. Solving POMDPs is possible with methods combining learning
and planning, such as Hoel et al. [2020a]. However, a change in the values
of the stochastic model parameters, for example a change in a vehicle’s sensor
accuracy, scene obstruction, or simply unplanned behaviour from another ve-
hicle, may induce a sharp drop in the agent’s performance due to its inability
to generalize well to new environment parameters. Having access to a model of
the environment dynamics allows us to use planning algorithms, such as MCTS
[Browne et al., 2012], alongside learning to both increase sample efficiency, and
have access to a better representation of the environment’s state-space structure
(model-based RL). In cases where planning is possible, it is much easier to find
alternative strategies for an agent to solve its environment and hence be able to
better adapt to eventual changes in the state-space [McAllister and Rasmussen,
2017].

2.2 Deep Neural Networks

So far we have presented the framework of reinforcement learning, using samples
of interaction between an agent and an environment in order to learn optimal
control. These samples are used to reinforce good behaviour through updates
defined by the Bellman equation. This approach requires a policy that is able to
learn, and perform the Bellman updates in order to refine it’s value estimation
over its domain. Early implementations of RL algorithms on environments
whose domain is not high-dimensional (such as a 2-D maze, for example), use
tabular policies with hard-coded updates using some learning rate attached to
the Bellman targets to improve the return estimation of the agent’s policy. For
example we can store Q-values in a table for every possible state-action pair,
and perform the Q-learning update:

Qπot,at ← (1− α)Qπot,at + α(rt + γQπot+1,at+1
)

where 0 < α < 1 is the learning rate, and Qπo,a is the tabular value for
observation-action pair. With enough training data a tabular policy is able to
learn the optimal policy over a small domain. Once the domain starts getting
more complex, or even continuous, then there is no way for the agent to correctly
quantify the returns from each observation-action pair.

35

However with the Bellman targets, we are also able to construct a loss in
order to update differentiable parametric policies so that they better fit the
incoming data. One such candidate for modeling a policy is a deep neural
network, which is essentially a composition of differentiable functions, allowing
for a greater power of generalization while remaining able to optimize outputs
in order to learn to fit data. The composition operation of deep networks (the
output of one layer is the input of the next layer) allows for these models to
capture complex dynamics and patterns in the data which shallow networks,
even with a high number of parameters, are unable to represent. For this reason,
deep neural networks are very popular for reinforcement learning applications as
Q-value estimators or as policy networks. Neural nets also have the property of
having highly flexible architectures, meaning that we are able to directly affect
the composition operation that happens between the layers, in order to capture
some prior knowledge about the task which we wish to implicitly include in the
model conception. This can include embedding layers or recurrent architectures
for example.

Figure 2.7: Artificial neuron

Neural networks are composed of multiple layers of artificial neurons, whose
role it is to provide an activation value, as a function of multiple inputs (which
are typically are the outputs of other neurons). Figure 2.7 illustrates the opera-
tions done with a vector of inputs x. The trainable parameters are the weights
w which multiply the input signal, and the bias b acting as an adjustable offset.
In order to help the model capture non-linear dynamics, a non-linear activation
function is added to the neuron’s output. Without this non-linearity a network
of neurons could only capture linear boundaries for classifying data, and would
not be suitable to apply to more complex problems such as those tackled by RL
algorithms. The most popular activation function used in neural networks today
is the Rectified Linear Unit (ReLU), which performs the following operation:
ReLU(x) = max(0, x). This is an improvement over the previously-popular
sigmoid function S(x) = 1

1+e−x , due to the reduction in the vanishing gradient
problem (gradient used for learning parameter values can become small for large
positive or negative activation values), and the ease of computing simply a max

36

operation instead of an exponential.

Combining these neurons into multiple layers, as shown in figure 2.8, with
one ‘hidden’ or ‘deep’ layer, allows for the overall function to be designed re-
sulting from the composition of the artificial neuron operation ReLU(x ·w+ b).
Gathering the trainable parameters {W1,2, B1,2} into a single vector θ, we can
write the operation performed by the entire network as ỹ = fθ(x), for any input
x. The ỹ notation is used to indicate that f is used as an estimation for another
unknown function. This network architecture is known as a fully-connected
network, as all of the possible connections between the subsequent layers exist
and are parameterized. There has been much progress on alternative network
architectures in order to take advantage of the solution heuristics to make the
function better-adapted to tackle the input and output dimension expected from
the problem.

Figure 2.8: Fully-connected network of artificial neurons

2.2.1 Training a Network

Adjusting the neural network’s parameters θ by means of any optimization algo-
rithm is referred to as training, as we are improving the function’s performance
for estimating outputs y with its estimation ỹ. In our work, we use a fully-
connected network fθ, which is trained by gradient descent on a loss function
between targets ỹ and estimations y. A typical cost function we use is the mean
square error (MSE) between the estimated and labelled output:

MSE(y, ỹ) =

√√√√ n∑
i=1

(ỹ − y)2

n
.

Another commonly used loss function is the cross-entropy: H(y, ỹ).

37

In order to train the network parameters θ by gradient descent, we must
compute the partial derivatives of the loss function with respect to each of the
network’s weights and biases ∂L

∂θ . Since a neural network is a composition be-
tween the operations done in each of the layers, we may use the chain rule in
order to compute the gradients throughout the whole model. This is known as
the backpropagation algorithm [LeCun et al., 1989], whereby the values of gradi-
ents for the final layers are computed initially, and then propagated backwards
through the previous layers in order to compute those gradients via the chain
rule. Once the gradients ∂L

∂θ for each element of theta is computed, then we
may use a first-order optimization algorithm such as gradient descent in order
to optimize the loss function. It is important to note that a neural network loss
function is not convex, and thus the optimization of the can be quite difficult,
getting stuck in local optima if sufficient care is not taken during the training
phase. Affecting the learning rate is one method for preventing this, for example
setting the value to be initially large and then then annealing it down to a small
value can be a way to explore the loss landscape sufficiently before converging
to the best possible model parameter value on the testing data.

In the next chapter, we present the approach to modeling a probabilistic
environment as an MDP, along with a distributional perspective on the reward
signal in order for the agent to have more information about the possible out-
comes it has learned from all possible outcomes during its training.

38

Chapter 3

Distributional Perspective
on MDP Optimization

3.1 Introduction

A key limitation to applying RL algorithms to stochastic environments, is that
the value function used as a proxy for ‘goodness of outcome’ estimation is one-
dimensional. Although this allows for a nuanced optimization of the sequence of
intermediate states and actions which provide the return signal, the return value
functions as an expectation over all possible agent-environment interactions and
thus lacks some descriptive power when faced with a set of multiple possible
trajectories.

Figure 3.1 shows how the expectation can hide some more nuanced dynamics.
In this case the blue curve is a mixture of Gaussians with two components
centered at -3 and 3 respectively, and their mean is represented by the red line
centered at 0. If each of the modes of the distribution represent a potential
event related to the agent in the environment, encoded by the different values
of rewards that are attributed to it, then clearly we should wish that the agent
react differently to this reward distribution compared to say, a single Gaussian
centered at 0, which would have the same expected value represented by the
value estimation Qπ.

From this perspective, we can see that expected-value algorithms which only
deal with the mean value in terms of the expectation of returns can fall short in
some cases where the true distribution has a multi-modal shape. Additionally,
using the mean value gives us no indication about the likelihood that a sampled
trajectory will obtain that value of rewards, since we don’t take into account

39

Figure 3.1: Mixture of Gaussians, and mean value.

higher probability moments (variance, tails, etc...). We can posit that there is
much information about outcome probabilities linked to an agent’s performance
that is contained in the return distribution that is simply not available when
relying on only the mean of this distribution, which may be useful for safety
considerations. To this end we will investigate the usefulness of learning the
probability distribution of returns, using these in order for an agent to acquire
more information about its confidence in recommended actions, the certainty
of outcome, and the level of safety that can be attributed independently from
expectation of performance (even when safety criteria are included in the per-
formance metric).

Sample-based methods for learning probability distributions already exist
(K-means, moment-matching, or quantile regression for instance) and so we
wish to leverage one of these approaches in order for an agent to learn the full
distribution of returns it can expect to see in the environment. One particularity
about our problem statement is the difference in sparsity of the events which
we desire to model in the autonomous navigation task. We wish the agent to
be able to react to certain events (notably high-consequence failures such as
vehicle collisions) which may have a relatively low probability with respect to
other outcomes more common for the agent. Because of this desired sensibility
to low-probability events some parametrizations of the return distribution are
not reasonable to use. Notably due to combination of sparse and dense events
in the environment outcomes, we expect that the return distribution will have
some clear demarked modes corresponding to possible agent behaviour along
with possible outcomes. Because of this we should use parametrizations of the

40

learned distributions that take into account potentially sharp modes.

3.1.1 Related Work

Previous work has focused on using values other than the expectation of returns
to improve the performance of RL agents. Much of this work has focused on
applying these methods to the risk-sensitive exploration dilemma; Chow et al.
[2015] for example uses a specific low quantile of the return distribution as an
optimization objective.

Characterizing the uncertainty of an RL environment has been a key area
of research [Metelli et al., 2019, Brechtel et al., 2014, Clements et al., 2019]. for
example learning the observation model [Bouton et al., 2019]. A more thorough
use of the full distribution of returns, was first introduced by Morimura et al.
[2010] and in Bellemare et al. [2017] where the use of explicitly learning the
full distribution of returns was proposed. There has been some work done on
the applications sensitice to some risk factor [Dabney et al., 2018], as well as
improvement of the general framework used for learning return distributions
from agent-environment interaction samples [Rowland et al., 2019].

There has also been a link made between the different kinds of uncertainty
[Depeweg et al., 2018], [Clements et al., 2019] (epistemic & aleatoric) in an RL
environment, however no explicit link with the shape of the return distribution
observed during and after training.

Distributional RL (sometimes abbreviated as DRL – not to be confused
with deep RL which is sometime also often abbreviated as DRL – and also
different from distributed RL which deals with confederated learning between
multiple different parallel learning processes) is a sub-domain of value-based
reinforcement learning which aims to learn the full distribution of returns for a
policy using quantile regression in order to learn the full distribution of returns
for each action available to the agent. Though learning a collection of quantiles
adds complexity to the learning process, this allows for a parametric function
to be able to represent multiple modes in the return distribution around which
we can design an autonomous agent a higher degree of reactivity according
to the positions and sizes of the multiple modes. It has been shown through
experimental work [Rowland et al., 2019, Hessel et al., 2017] that RL algorithms
learning the entire distribution of returns perform better than their expected-
value counterparts. There have also been a few theoretical results [Lyle et al.,
2019] to motivate why this is the case for non-linear function approximation.

41

Quantile Regression

Distributional RL uses quantile regression in order to fit the outputs of a neural
network to the quantiles of the distribution. Quantiles of a distribution are
used to mark out ranges of a random variable, with equal probability. This
means that quantiles for a dense probability distribution will be closer together,
whereas if the distribution is more spread out, then the quantiles will also be
spread out. We can denote the κ-quantile as qκ, which for sampled random
variable x ∼ X, represents the point where P (x < qκ) = κ. Figure 3.2a gives an
example of the quantiles of the normal distribution for κ =

{
i
10 , i ∈ [0, 10]

}
. q0

and q1 are positioned at either end of the probability distribution’s support, in
this case at -3.5 and 3.5 respectively, however since the normal distribution has
its support over R, the true values should be −∞ and +∞). Figure 3.2b shows
a re-construction of the normal distribution, by assuming a uniform distribution
over the range of each neighbouring quantile.

(a) 0.1-quantiles of the Normal distri-
bution

(b) Uniform parametrization of Nor-
mal distribution from quantiles

Figure 3.2: Quantiles of the normal distribution

To learn values of qκ of a target distribution η through sampling, we can use
the following loss:

QR(qκ, η, κ) = E
z∼η

[(z − qκ)(κ1z>qκ + (κ− 1)1z<qκ)] (3.1)

which is a form of lop-sided loss which, for enough samples, will balance out
the positions of qκ according to the mass of samples z ∼ η either to the left or
to the right of the corresponding qκ. Figure 3.3 illustrates what this loss looks
like for different values of κ. We can see that for κ = 0.8, the loss will hardly
penalize the estimated qκ for being larger than the sampled value, since 80% of
samples should be below that value, and vice-versa for κ = 0.2. q0.5 is simply
the mean of the distribution, so the loss will fit it to be in the center of the
sampled values.

Learning the quantiles of a distribution gives us a great representative power

42

Figure 3.3: Quantile loss function for κ = 0.2, 0.5, 0.8.

to allow us to parametrize the target distribution, η. There are two main ap-
proaches to modeling η according to quantiles learned from samples: either with
a sum of uniform distributions whose range is defined by neighbouring quan-
tiles, as in figure 3.2b, or with a sum of diracs, one at each position of the
quantile estimate qκ. The implementation of either parametrization may de-
pend on the need to have a continuous distribution (as is the case for the sum
of uniform distributions), otherwise for a large number of estimated quantiles,
both parametrizations become increasingly equivalent. In our implementations
we tend to use the sum of diracs to parametrize the target distribution, since it
is slightly faster to sample from, rather than a sum of uniform distributions.

Notation and Properties of Random Variables

We first introduce some further notation which is useful when working with
probability functions:

Note: Operations on random variables, their pdfs and their cdfs are used
with some abuse of notation, for example E[Z] = E[ηZ], or T πZ = T πηZ .

Zπ(s, a): Random variable describing the distribution of returns for a
state-action pair (s, a), and policy π. The expectation of Zπ(s, a) is the
value of the corresponding Q-function Qπ(s, a): E [Zπ(s, a)] = Qπ(s, a).
For clarity we often drop the superscript from the notation to write Z(s, a),

43

as the relevant policy π is usually clear in the given context.

ηZ : R→ [0, 1]: pdf of the random variable Z. ηZ(z) = P (Z = z).

ηf(Z): pdf of the random variable obtained by applying function f to
the random variable Z. For example if x ∈ R, ηZ+x(z) = ηZ(z − x) or
ηZ+X(z) =

∫
ηZ(w)ηX(z − w)dw (sum of two random variables).

Equality in distribution Z
D
= X ⇔ ηZ(z) = ηX(z), ∀z. The two notations

can be used interchangeably to make equations more clear, especially as
the Bellman equations rely on sums of random variables.

We recall some useful properties when performing operations with random
variables (since we treat the return as a sum of scaled random variables, we
should take these into account when constructing the Bellman targets from 2.4
in the distributional setting).

Addition of two random variables:

Let X, Y , Z be random variables such that Z :
D
= X + Y , i.e. ηZ = ηX+Y ,

with a domain on R. Then,

P (Z = z) =
∑
x

P (X = x)P (Y = z − x) =

∫
R
ηX(x)ηY (z − x)dx

⇒ ηX+Y (z) =

∫
R
ηX(x)ηY (z − x)dx

This operation is also known as a convolution, where the distributions ηX , ηY
can be seen as the frequency domain representation of a series of sampling op-
erations x ∼ ηX and y ∼ ηY , and so the frequency representation (Fourier
transform) of the multiplication of the x(t) and y(t) series follows the convolu-
tional theorem:

F [x(t) · y(t)] = F [x(t)] ∗ F [y(t)]

⇔ ηX+Y = ηX ∗ ηY ,

where x(t) · y(t) is a point-wise multiplication.

Random variable multiplied by a scalar:

Let X, Z be random variables and γ ∈ R such that X :
D
= γZ, then:

ηX(x) =
1

γ
ηZ

(
x

γ

)

44

Reinforcement Learning with Distributions

Following the expression for the discounted return, we can write the distribution
of its associated random variable Z as:

Z(s, a) :
D
=
∑
t

γtRt (3.2)

where Rt is the random variable associated to the reward obtained by the agent,
and. This expression is the equivalent of (2.1), but with random variable nota-
tion.

We can build up Bellman targets just as in (2.4), only this time using dis-
tributions of random variables instead of expected values (we denote the distri-
butional Bellman operator as Dπ):

(DπZ)(s, a) :
D
= R(s, a) + γZ(X ′, A′), (3.3)

where Z(X ′, A′) represents the return distribution estimation over all possible
next state-action pairs when applying an action from π to the current state s.
However, as with classicalQ-learning, there are some extra steps needed between
the theoretical Bellman update, and the one that we are able to implement
in practice. Hence we define two additional elements that bridge this gap:
The stochastic Bellman approximation D̂π, and a parametrization operator Πθ.
equivalently to the expectation-based paradigm, we may use the Wasserstein
metric on probability distributions, to prove that the distributional Bellman
operator is a contraction, providing theoretical grounding for our use of Bellman
targets to learn the value function by means of a fixed-point iteration scheme.
The proof for this is provided in appendix B.3.

Though we would like to treat the environment rewards as random variables,
in practice when the agent takes actions in the environment it observes samples
r ∼ R(s, a). Hence in practice we are unable to compute the full distributional
form of Bellman targets as expressed in (3.3). Instead, we only have access
to a stochastic approximation of the true Bellman update, through the sam-
pled agent-environment interactions (s, a, r, s′, a′). This leads to a stochastic
approximation for the distributional operator, which we define below:

(D̂πZ)(s, a) :
D
= r + γZ(s′, a′) (3.4)

r ∼ R(s, a), s′ ∼ T (s′|s, a), a′ ∼ A′

Since the two forms of distribution targets are quite different, we must ensure
that D̂ and D have the same fixed point solution, such that it makes sense to
apply D̂ in order to find the solution to (3.3):

lim
Nsamples→∞

D̂πZ(s, a)
D
= DπZ(s, a).

45

The proof for this is quite straightforward, and so it is provided below:

D̂π is an unbiased estimate of Dπ:

let Z, R be two random variables with respective pdfs ηZ : R → [0, 1] and
ηR : R→ [0, 1].

It is straightforward to show, with the definition for the expectation:

E
r∼R

[ηr+Z(z)] = E
r∼R

[ηZ(z − r)]

=

∫
R
ηR(r)ηZ(z − r)dr

(a)
= ηR+Z(z)

Where (a) follows from the property of addition of two random variables.

ηZ(s′,a′), the next-state return estimation, is a distribution. However it is
also a sample from the true next-state distribution ηZ(S′,A′) where (S′, A′) are
themselves random variables distributed following the true (unknown) dynamics
of the environment, T (s′|x, a), and the resulting action taken from the acting
policy a′ = π(s′), forming a joint distribution p(s′, a′|s, a). Using the composi-
tion of probability laws:

ηZ(S′,A′)(z) =

∫
s′,a′

ηZ(s′,a′)(z)ηS′,A′(s′, a′)ds′da′

=

∫
s′,a′

ηZ(s′,a′)(z)p(s′, a′|s, a)ds′da′

We can evaluate the expectation of next-state return distribution Z(s′, a′)
where the next state-action pair (s′, a′) has been sampled from p(s′, a′|s, a):

E
(s′,a′)∼p(s′,a′|s,a)

[ηZ(s′,a′)(z)] =

∫
s′,a′

ηZ(s′,a′)(z)P (s′, a′|s, a)ds′da′

= ηZ(S′,A′)(z)

We have shown unbiased estimation of the distributional Bellman target for
sampled rewards as well as for sampled environment transitions. Hence the

stochastic Bellman target D̂πZ(s, a)
D
= r+ γZ(s′, a′) is an unbiased estimate of

the true distributional target DπZ(s, a)
D
= R(s, a) + γZ(S′, A′).

The variance of the updates (i.e variance of the incoming samples from the
true value function distribution), affects the rate of convergence of the esti-
mated pdf to the true one. Running some simple experiments (Figure 3.4) the

46

convergence measured with the Wasserstein metric between the true and esti-
mated distributions, follows an inverse square law with respect to the number
of samples.

Figure 3.4: Value of Wasserstein metric following sample updates with D̂π.

Control

Just as in the classical expectation-based RL, we must consider the extension of
distributional RL operators in both evaluation (previous section) and control.
Evaluation deals only with learning the distribution of returns for an agent
following a fixed policy π. During evaluation, the neural network weights will
converge towards the solution that gives the true value-function for that policy.
In the case of control, the policy that the agent follows is continuously improved
until the optimal policy is reached, and during which time the neural network
will converge to the policy that the agent is following at the time; eventually
learning the value function of the optimal policy.

The distributional Bellman optimality operator is defined as the following:

(DZ)(s, a) :
D
= R(s, a) + γZ(s′, a′), (3.5)

s′ ∼ T (s′|s, a), a′ = argmaxa′∈AM(Ztarget(s
′, a′))

Where M(Z(s, a)) is some measure of the distribution of Z(s, a), which a
greedy policy will maximize for the best performance. Most commonly this is

47

the mean (classical Q-learning), however having access to the whole distribution
M can be the variance, tail statistics or quantiles, for example, or another form
of action selection based on mode detection, in order for different actions to be
ranked from best to worst. In our application of distributional RL, we expect
to use some custom measure making use of the presence of modes, in order to
select the best possible action in the current state.

The stochastic approximation of the control operator D̂ corresponds to a
similar sample-based update as for the evaluation setting:

(D̂Z)(s, a) :
D
= r + γZ(s′, a′) (3.6)

r ∼ R(s, a), s′ ∼ S′, a′ = argmaxa′∈AM(Ztarget(s
′, a′))

T̂ is a biased estimate of T :

However, it has been shown that D̂ is actually a biased estimate of D ([Amor-

tila et al., 2020], Theorem 5.3), where if Z∗, Ẑ∗ are the fixed points ofD, D̂ repec-

fully, then E[Ẑ∗] ≥ Z∗, with the equality holding if and only if the expectation

and maximum operators commute (i.e. E[D̂Z] = D̂E[Z]). This unfortunately
means that, generally:

lim
Nsamples→∞

D̂Z(s, a)
D

̸= DZ(s, a),

And so there will be a slight over-estimation of the return distribution in the
case of the stochastic operator D̂. This is for similar reasons as for the value over-
estimation problem mentioned in section 2.1.3, though it can be compensated
for during training by double Q-learning, for example.

Parametric Probability Densities

A final consideration we must make before applying this framework to a working
algorithm, is the parametrization of the return distribution. In practice when
we are using the estimation of returns from next states, we have access to the
output parametrization, Πψ, of the return distribution:

Zψ
D
= ΠψZ ⇔ ηψ = Πψη

We then define the parametric form of the distributional Bellman operator as:
ΠψD.

It should be the case that the fixed point for ΠψD is the parametrized form
of the fixed point solution to D, such that if Z∗, Z∗

ψ are the fixed points of Dπ

48

Figure 3.5: Bellman operators from including sample-based and parametric
targets

and ΠψDπ respectively, (assume that the fixed point solutions exist) then we
wish the following to be true:

Z∗
ψ
D
= ΠψZ

∗. (3.7)

This property is referred to as Bellman closedness by Rowland et al. [2019], and
refers to the ability of a parametric update to converge to the same point as the
true Bellman update. A more in-depth discussion of distribution parametriza-
tion is present in appendix B.4.

A commonly used parametrization is the dirac-quantile parametrization,
where ψi is an estimation of the qκ quantile (κ = i

N for N total quantiles,
not considering quantile q0) of Z:

Zψ(s, a)
D
=

1

N

N∑
i=1

δψi

One advantage of quantiles is that they have the nice property of follow-
ing the same shift and translation as is applied to the corresponding random
variable: given two random variables, X,Z, r ∈ R, and γ ∈ (0, 1] such that

Z
D
= r + γX, then:

ΠψZ = γΠψX + r

This means we can directly apply the Bellman equation to each quantile in order

49

to compute its target for learning updates:

Dψi(s, a) = r + γψi(x
′, a∗) (3.8)

where a∗ can be chosen either for evaluation or control.

Figure 3.5 shows the effect of applying the various distributional RL oper-
ators to return estimations, which are then used as targets to train the value
network. We can see that the true update should take into account the prob-
abilistic nature of the reward signal that is perceived by the agent at every
timestep. However due to the sampled nature of an agent’s interaction with its
environment, we learn with an objective which is not representative of the true
return distribution we would like the agent to estimate.

Loss Function

The dirac parametrization Πψ of the return estimation allows us to slightly re-
write the quantile regression loss, taking into account the positions of each dirac
δψi

. Recalling the expression for quantile regression loss from (3.1), we re-write
it using the parameter ψi:

QR(ψi, η, κ) = E
z∼η

[(z − ψi)κ1z>ψi + (κ− 1)1z<ψi] (3.9)

In our case, the target distribution η is itself a mixture of diracs, obtained
from our estimation of the value of the next state, and taking into account the
perceived reward r along with scaling by γ, according to (3.8):

ηψ =
1

N

N∑
j=1

δr+γψ′
j
,

where the ψ′ contains the quantiles from the next-state estimated distribution:
ΠψZ(s′, a′) (output of our value network). We can now explicitly compute the
expectation over the new target distribution ηψ so that:

QR(ψi, ηψ′ , κ) =
1

N

N∑
j=1

[
(r + γψ′

j − ψi)(κ1r+γψ′
j>ψi

+ (κ− 1)1r+γψ′
j<ψi

)
]

(3.10)

We can sum the quantile loss over all the current quantile estimate ψi, to
find the loss that should be optimized per training step of the RL algorithm:

L(ψ, ηψ′) =

N∑
i=1

QR(ψi, ηψ′ , κ)

=
1

N

N∑
i=1

N∑
j=1

[
ξij · (κ1ξij>0 + (κ− 1)1ξij<0)

]
(3.11)

50

where ξij = r + γψ′
j − ψi.

3.2 Experiments

In this section, we present our main simulation environment which was used
to model an intersection task for an autonomous vehicle, along with the ini-
tial results that we obtained when applying distributional RL algorithms to
a task requiring both levels of performance and safety, in a partially observ-
able environment. Part of the work done during this thesis was to develop our
own intersection environment in order to have a greater flexibility for apply-
ing our algorithms to various different testing scenarios. There exist many free
open-source traffic simulators (CARLA, Sumo, Openroad, ...) that are used in
research projects, however they lack the modularity and ability to easily develop
and implement different task setups and vehicles behaviours, for example. For
this main reason, with the path-planning team in Renault Software Labs we
have developed a simple driving task simulator, allowing a controllable vehi-
cle to make decisions in order to complete the navigation task while avoiding
collisions with oncoming target vehicles.

The simplified nature of this environment also allowed us to perform more
simulation runs, which is often a crucial point to take into consideration when
training an agent to learn complex behaviours, with limited computational re-
sources. As a point of comparison, for the neural network architecture we used,
it would take no more than 500k training steps (approximately 2-3 hours) to
max out performance in most tasks, whereas popular benchmarks such as Hes-
sel et al. [2017] present training regimes of up to 200 million training frames
(the equivalent of over a month of training time with our resources). Hence,
especially with reinforcement learning which requires much hyper-parameter ad-
justment, having as efficient a simulator as possible is vital. In the next section
we briefly present the environment used for simulation an autonomous naviga-
tion task, however a more in-depth discussion about the design and implications
of designing a simulation environment is given in appendix A.

3.2.1 Training Environment

Our simulation environment consists of a road intersection, where the controlled
vehicle (ego vehicle) has the objective of passing through the intersection with-
out crashing into any of the other vehicles (target vehicles) present in the driv-
ing scenario. Figure 3.6 shows an illustration of the environment. Blue ellipses
around the targets represent uncertainty on their position in the scene, due
to sensor uncertainty. This kind of intersection scenario is commonly used in
state-of-the-art applications of RL to autonomous navigation, as it allows us to

51

Figure 3.6: Left-hand turn intersection task

model the need for nuanced decision-making in the face of uncertainty, from the
point of view of the ego vehicle [Brechtel et al., 2014, Hubmann et al., 2018,
Bouton et al., 2019, Bernhard et al., 2019, Rhinehart et al., 2021].

Ego and Target Behaviour

The ego vehicle is initialized with an objective direction, out of the following
possibilities: {straight, left, right}, and so the path is pre-determined. The
target vehicles’ path is also pre-determined, and in this use-case they keep going
straight ahead. Since the ego’s path is set at the beginning of training, the
navigation task boils down to planning a correct speed profile in order to avoid
any collisions while still making it through the intersection. The set of actions
available to the agent (ego vehicle) are:

A = {−4, 2,−1, 0, 1, 2} m/s2

which correspond to longitudinal acceleration values (i.e. ego is able to acceler-
ate, maintain speed, break, of perform a hard emergency break of -4 m/s2.

Target vehicles start off at some initial speed around 20 m/s, and in our ini-
tial use-case, have no reaction to the presence of the ego vehicle (i.e. we assume

52

Figure 3.7: Density of speed profiles, over multiple episode runs

right of way for the target vehicles). They are initially spaced in such a way
that the ego vehile has a couple of valid strategies for solving the navigation
task: either have an aggressive approach, and speed up in order to pass the in-
tersection before a dense series of targets pass through (higher performance but
higher risk strategy, denoted π1), or maintain a conservative approach and wait
for the dense train of vehicles to pass through the intersection before crossing
(lower risk but lower performance, denoted π2). This experimental set-up is
made to represent a core dilemma we wish to tackle in our probabilistic mod-
eling approach: how to balance out safety concerns with the goal of having a
well-performing agent in terms of time to complete the navigation task. Al-
though safety is a primary concern and takes precedence over the notion of time
performance, we do not wish for the autonomous agent to be overly cautious
– as this can lead to freezing robot problem, a situation where a robot freezes
up and does not act since it prefers not to act rather than risk taking an un-
safe action. A simple scenario such as this should allow the agent to represent
multiple modes of behaviour, represented by π1 and π2, and according to the
observability of the scene, be able to determine which course of actions is best
for that use-case.

In order to analyze the behaviour of the ego vehicle, we can analyze the ego’s
speed profile. Figure 3.7 shows the density of speed profiles, of a fully trained
expected-value policy, when reacting to oncoming vehicles with varying speeds
(over many episodes), under full observability. For every episode, the agent

53

makes the choice, through a sequence of actions, to either speed up (higher
ego speed values: π1), or slow down (lower ego speed values: π2). We can see
that the resulting behaviour of the ego is distributed along the two possible
modes of behaviour, one being low speed, and one being high-speed, with the
variance caused by the slight difference in initial positions from the oncoming
target vehicles. We can see due to the strong bright patch of initial increasing
speed, meaning that under full observability conditions the ego will prefer to
take higher-speed trajectories due to the low level of risk.

The aim for a distributional algorithm, is to be able to characterize the
reward function in a similar way, if the uncertainty in the observation model of
it’s environment allows for more than one of the ‘family’ of policies π1 or π2 to
be the best course of action.

State Space

The state space S is the input space to our agent policy π. In this scenario,
we use an input space based on a list of the 3 closest detected objects to the
ego vehicle, assuming the use-case where some sensor fusion pre-processing has
already been done by the car’s various sensors. In general, one of the challenges
of developing an autonomous agent is that the amount of information in the
input space can change dramatically: we expect an agent to be able to handle
an intersection whether there be no oncoming targets, or 10 of them. Some
approaches deal with this issue by using an occupancy grid on an area around
the ego, or convolutional filters on a version of this occupancy grid, so that the
dimension of the input space remains the same in any situation. In our case, we
use a list of the three closest target vehicles to the ego including their positions
(with some amount of noise represented as blue circles on the sample frame of
the environment), speeds (also subject to noise), and estimated time to collision
between the ego and relevant target under a constant speed hypothesis:

s = {sego, ṡego, s1, ṡ1, ttc1, s2, ṡ2, ttc2, s3, ṡ3, ttc3} (3.12)

Each of these values is normalized with respect to some maximum value in order
to normalize the input to our network.

We notice that there is some redundant information contained in the state,
between the positions and speeds of target vehicles, and the resulting estimated
time to collision between target and ego. Although this is the case, we quickly
found that adding the extra information of time to collision allows for faster
learning from the agent’s policy. This is probably due to the fact that time to
collision is an important part to deciding which action to take, and hence this
value was implicitly learned anyway. Since this value is quite straightforward
to compute and provide to the ego, we decided to include it in the available
information for the agent to best react to the current environment state.

54

In the case that there are less than 3 target vehicles in proximity to the ego,
the useless positions and speeds are set to 1 and 0 respectively, representing a
target vehicle that is already passed the intersection, and hence the ego should
have learned not to change its behaviour with respect to it.

Reward Function

As discussed at the end of chapter 2, designing a good reward function is a
challenging part of implementing an RL algorithm. In order to encourage the
agent to navigate through the intersection as fast as possible, we give it a small
negative penalty for every time step. Representing passenger comfort, we would
like to avoid any hard breaking if possible, also attributing some small negative
reward for any hard-breaking action. Finally we attribute the maximum penalty
of -1 if ever there is a collision between ego and target vehicles. The reward
function is as follows: each time step r = −0.001

ego hard brake r = −0.002
collision r = −1

We have previously discussed the limitations of having to include many dif-
ferent objectives (here speed, comfort, and safety) in a single optimization algo-
rithm. The design in this case is supposed to represent a hierarchy of objectives:
safety being the most important, and comfort and speed being optimized with
approximately the same level of importance. Our simulation environment uses
a time-resolution of 0.1s per agent action, so in this case we are telling this
agent that a 1% chance of collision is equivalent to saving 10 seconds of time
from the navigation task. This may seem small, though as we will see later on,
the desired hierarchy of objectives poses some issues when wanting to represent
them as part of the return distribution.

In terms of the reward distribution, we expect to see multiple modes emerge
from the various possible trajectories an agent can take during the navigation
task. For example any trajectory whose outcome results in a collision should
push the return distribution to represent a mode around the -1 value. After this,
any agent behaviour which completes the task without collisions should appear
as modes of return closer to 0 in the return distribution. The probability mass
associated to the modes should represent the probability of that outcome occur-
ring for the relevant agent following its expected trajectory. For example since
the returns around -1 group all collision trajectories, these should be treated as
the probability for a collision to occur, and can be estimated from the positions
of the quantiles in the return distribution.

55

Agent Policy Model

We model the agent’s policy with a deep neural network, with two hidden layers
of 200 neurons each. We use Rectified Linear activation Units (ReLU) as neuron
activation functions. We implement a distributional algorithm using quantile
regression (QR-DQN) in order to capture modes of behaviour in the environ-
ment. This uses the same basic network shape, only the output layer outputs
a set of N quantile estimates instead of a single expected value, so the shape is
11× 200 + 200× 200 + 200× (6×N). Theoretically, the number N of quantile
estimates depends on what kind of ‘resolution’ we wish to have for representing
low probability events, in terms of their return value. For example if the proba-
bility of occurrence for a certain outcome of agent trajectory τA is P (τA) = 0.05,
then we should have a number of quantiles N > 1

P (τA) = 20 in order to assign

probability mass to this event without also falsely assigning it to other return
values. For example in our experiments with a high quantile resolution we use
N = 31, resulting in approximately 80,000 weights and biases. We use an odd
number of quantiles so that the middle quantile is able to represent the mean
of the distribution.

For training, we use the same approach as a deep Q-netowork, the only
difference being the backpropagation of gradients using the quantile loss for
each action output. Algorithm 2 gives an overview of the training regime for
a distributional algorithm. The BackpropQR function shows how the loss is
computed from estimates of the return distribution using interaction samples
from the replay buffer. In order to use the Bellman optimality operator (3.5),
we must decide on a strategy M for choosing the optimal action according to
the estimated distribution. We have presented multiple possible approaches for
this, such as Conditional Value at Risk, reacting to specific quantiles of the
distribution which represent certain probabilistic likelihoods of worst-case sce-
narios for the agent. Though we anticipate using some form of mode detection
in order to inform agent behaviour, our initial implementation simply uses the
empiric mean of the estimated distribution: M(Qθ(o, a)) = 1

N

∑N
i=1 ψi. This

allows us to simply rank the actions making it easy to choose the best next exti-
mated action. Using the mean of the distribution should yield similar results to
expected-value algorithms, though what we are looking for is to be able to cor-
rectly represent the return modes first, and afterwards we may burden ourselves
with the task of having the agent qualitatively rank the return distributions to
choose the best action for the current time step.

In these experiments we use a memory buffer of size 10,000 along with an ε-
greedy exploration strategy with an exponential decay of 0.998 every 100 steps,
decaying to a minimum value of ε = 0.01 (1% chance of taking a random action)
after approximately 200k steps. We present experiments usingN = 11 quantiles,
making for a network with shape: 11 × 200 × 200 × 66 for a total of 110,800
trainable weights and biases. We use the learning rate lr = 2.5× 10−4.

56

Algorithm 2 Training Quantile Q-network

1: Init Qθ
2: while not converged do
3: s0 ∼ pπ(s0) ▷ init. episode state
4: o0 ∼ O(s0)
5: Exp = {} ▷ init. episode experience
6: while episode not terminated do ▷ play episode
7: at = ε-greedy(arg maxa∈AQθ(ot, a))
8: st+1 ∼ T (st, at) ▷ environment step
9: rt = R(st, at, st+1) ▷ step reward

10: ot+1 ∼ O(st+1)
11: Exp = Exp ∪ {ot, at, rt, ot+1}
12: end while
13: Memory(π)← Exp ▷ store samples in replay buffer
14: Exp′ ∼ Memory(π) ▷ sample from replay buffer
15: BackpropQR(Qθ,Exp′) ▷ train network on samples
16: end while

1: function BackpropQR(Qθ,Exp) ▷ compute loss according to (3.11)
2: for (ot, at, rt, ot+1) ∈ Exp do
3: ψ = Qθ(ot, at) ▷ current quantile estimate
4: a∗ = arg maxa′M(Qθ(ot+1, a

′)) ▷ next optimal action
5: ψ′ = Qθ′(ot+1, a

∗) ▷ next-step quantile estimate
6: ξij = rt + γψ′

j − ψi
7: QR = 1

N

∑N
i=1

∑N
j=1

[
ξij · (κ1ξij>0 + (κ− 1)1ξij<0)

]
8: Perform gradient descent on QR loss
9: end for

10: end function

57

3.2.2 Results

In this section we present an analysis of applying the distributional algorithm
QR-DQN to our simulated intersection scenario, under various conditions of
observability.

Return Estimation During Training Phase

We can look at the shape the return distribution has during the agent’s training
phase, before it converges to a single value when there is no uncertainty of
outcome. From value networks that had not yet converged, we can see some
evidence of the ego trying out both π1 (higher returns) and π2 (lower returns)
to avoid collisions with the target vehicle:

Figure 3.8: Intersection scenario (right), along with return distributions corre-
sponding to each possible action (left).

Figure 3.8 shows the estimated return distribution for each action, in a state

58

where the ego vehicle is approaching the intersection, with an oncoming target
vehicle. Superposed plots on the right show the estimated return for each of the
different actions, the black bar indicates the empirical mean of each distribution.
What immediately stands out is the similarity between the estimated return of
each possible action. This is due to two criteria: firstly, the time-step length for
the agent is 0.1 seconds for each action. This means that any major difference
in the return distributions of each action will be caused by if there is a clear
demarcation in strategy in the next 0.1 seconds. In other words, the shorter the
time scale, the less of an immediate impact a single action will have, until the
‘point of no return’ for one outcome or another.

Another consideration we must have is linked to value overestimation prob-
lem we have when learning the optimal policy. Assuming that the policy will
take the optimal action in the next state, this means that the algorithm does
not take into consideration the possibility of lower-return outcomes if it consider
that the agent is able to avoid them, and hence this acts as a sort of ‘optimism
screen’ whereby the agent judges the value of the state according to the best
possible outcome of the next states. If the timescale is short, then the next
states {s′ ∼ T (s′|s, a), a ∈ A} according to all available actions will be very
similar, and so the optimal strategy in each case will be equally similar. This
leads to a trade-off where analyzing the distribution of returns per action makes
it more difficult to predict the different effect of each of the possible strategies
π1, π2 which themselves are actually made up of a series of actions.

Figure 3.9: Return estimation for a single action (0 acceleration action), during
training.

Figure 3.9 shows the return distribution for a single action, the black bar
indicating the empirical mean of the parametrized distribution (i.e. the middle
quantile). We can see evidence of two return modes between 0 and -0.2, cor-
responding to strategies from the agent passing both in front and behind the
initial target crossing the intersection. This corresponds to the initial explo-
ration done by the agent such that random actions cause it to encounter both
possible outcomes. We also see a lack of any quantiles close to returns of -1
(collision event), such that we can deduce that at this point in the training
the agent has learned to avoid collisions and so does not consider any collision
outcomes in its return estimation.

However, the presence multiple modes in a fully observable environment
is in part due to the initial exploration of the agent, meaning that multiple

59

Figure 3.10: Return estimation for a single action (0 acceleration action), at the
end of training.

strategies are investigated at first, and what we see eventually is a collapse of
the modes of return that are not exploited anymore by the agent once it has
converged to a behaviour it finds suitable. This phenomenon is known in RL
and is usually referred to as catastrophic forgetting, where the agent discovers
potentially interesting behaviours during its initial environment exploration,
however since these alternate strategies are sub-optimal in terms of the returns
they obtain from the environment, they are gradually replaced by a single mode
of behaviour deemed optimal by the agent’s learned value function.

Figure 3.10 shows the return estimation from quantiles at the same state
as the previous Figure 3.9, at the end of training once the agent’s policy has
converged. We can see how the previous mode to the left of -0.1 is no longer
present in the distribution estimation, making the mean value shift to the right.
This is because of the reduced amount of exploration performed by the agent
during the later stages of training, meaning it has learned to exploit a single
mode of behaviour in order to solve the environment. This ‘mode collapse’ also
illustrates how a certain behaviour can be observed by the agent during training
and subsequently be forgotten if it is deemed sub-optimal. The leaning problem
is formulated such that we encourage the agent to explore the space of policies
by random state exploration. As mentioned in chapter 2, part of this reasoning
is so that the agent avoids getting stuck in local optima of the return function,
such that it is able to find the global optimum to the control task. However the
design means that local optima, or global sub-optimal solutions are discarded
during the training process even though they may have been learned at one
point during the agent’s training. We will see later on that this forgetfulness
may actually be detrimental to the ability for an agent to generalize to unseen
scenarios, where sub-optimal solutions have the capacity of still performing well
under certain conditions that may not have been represented in the training
data distribution.

In this example where the agent has full observability of the environment
(target speed, target position, target behaviour, etc.) it makes sense that it
is able to deterministically estimate the outcome of its policy, having observed
that outcome many times over the last training episodes.

60

Multi-modality in the return distribution

In the following part of our experiments, we wish to observe how adding un-
certainties to the environment will affect the shape of the reward distribution.
We make the hypothesis that higher values of uncertainty should induce clearer
demarcation between different modes corresponding to outcome probabilities in
the return distribution. To induce this multi-modality we add an observation
model O(o|s) to the MDP, affecting the agent’s perception of environment state.
In these experiments we add a Gaussian noise around the target vehicles’ true
position as expressed in (3.12), such that:

O(o|s) D= {(sego, ṡego,N (s1, σ), ṡ1, ttc1,N (s2, σ), ṡ2, ttc2,N (s3, σ), ṡ3, ttc3}
(3.13)

with a variance of σ2 = 5m (in meters. for reference the length of the
vehicles is 2m). Since the uncertainty related to the position of target vehicles,
the uncertainty affects only their longitudinal position inside the same lane, and
we assume a perfect detection of the lane the target vehicle is in. This is because
of the nature of the intersection environment which we are investigating here,
in which we do not consider any lane-changes from the part of the ego or any
of the targets (single lanes).

The uncertainty on position is represented by a circle with a radius of 2
standard deviations around the target vehicles, as illustrated on the left-hand
side of Figure 3.11. We can see from the estimated distribution that the current
observation model has had little to no effect in terms of new modes of outcome
being represented by the output quantiles of agent’s policy. We can clearly see
that the return estimation has converged to a single mode, and considers that
there is a 0 probability for there to be a collision with the target vehicle under
the agent’s current policy. When looking at sample episodes, we can indeed
see that the ego is still able to navigate this intersection environment without
entering into the 2σ zone around the target, i.e. avoiding any collisions with at
least 0.95 probability. The convergence of the policy to a single mode means
that this policy has a high confidence in its ability to solve the environment,
placing no probability mass around the returns for any other outcome.

61

Figure 3.11: Intersection scenario (right), along with return estimations (left),
targets having Gaussian noise on their observed positions (σ2 = 5).

We can further increase the noise on the target vehicles’ observed position
in order to observe the multiple possible outcomes as modes in the return dis-
tribution. We run the same training setup as in the previous experiment with
a single target vehicle crossing the intersection, though this time with a higher
uncertainty on its position (σ2 = 10m) in the agent’s observation model (3.13).
In this use-case we expect the learned quantiles to represent modes of outcomes
according to the probability of occurrence (indirectly the frequency at which
the network is trained to observe particular return values). Figure 3.12 shows
the result of training the same QR-DQN set-up as for the previous case, simply
increasing the variance linked to the agent’s observation model.

62

Figure 3.12: Increased uncertainty on target position (σ2 = 10m).

In this case, we can conclude that the increased uncertainty is not enough
to force the agent into having to make any significant trade-offs in terms of
expectation. This is seen from the low variance in the return estimation which
can be interpreted as a high confidence in terms of expected return estimated by
the policy. On the other hand, we do see that the agent has learned to steer clear
of the zone of uncertainty so that it can maintain as deterministic an outcome as
possible, though this is equivalent to increasing the radius for collision detection
between the ego and target vehicles. One point to note for these experiments
is that the model for sensor uncertainty (Gaussian noise) does not take into
account the variation in levels of uncertainty according to the distance of the
target vehicles to the ego’s sensors. This means we model the variance on
position as aleatoric meaning it cannot be reduced through exploratory actions,
although in real-world applications, some of the uncertainties linked to sensors
are actually epistemic and reduced, for example, as the detected targets gets
closer to the ego’s sensors. This should allow an agent to take actions in order
to reduce the uncertainty of outcome according to some exploratory actions,
for example slowly approaching an intersection if it is uncertain about exactly
where the target vehicles are located while they are far away. We could seek

63

to implement a more accurate model for sensor uncertainty, however this is not
yet vital to demonstrate the usefulness of the proposed approaches for tackling
these uncertainties when they are present in the environment.

Figure 3.13 shows the quantile regression loss computed during backpropa-
gation of loss through the Q-network. The convergence of this loss to a min-
imum value close to 0 indicates that the current and next-state quantiles ψi
and r + γψ′

j , are close and hence that the Qπ-network has been able to learn
the correct return distribution for that policy. We are able to see how fast the
estimation error of the return model Qθ falls to 0, even before the end of the
exploratory phase from the ε-greedy strategy at around 200k steps, meaning
that the agent is able to very quickly detect an optimal point in policy space
and converge to it. We see some continual ‘flickering’ in the loss ever after it
appears to have reached its minimum: this is due to the minimum value ε = 0.01
meaning that in 1% of cases the agent will take a random unexpected action
which has the potential of receiving an unexpected reward, causing some error
between the expected and observed returns. We can observe in this case that
the policy seems stable, since the loss is relatively small the updates on policy
parameters θ are rather small.

Figure 3.13: QR loss over 2.5M training steps.

Although the previous result is a testament to the adaptability of a neural
network policy model, we wish to place the agent in a situation where uncer-
tainty of outcome is inevitable, such that the policy is not confident with respect
to its performance because of the uncertainty present in the environment. It is
in these cases where policy confidence is low, and the agent is able to attribute
some probability mass to possible collisions, that we expect the qualitative anal-
ysis of the return distribution to prove useful. In order to force uncertainty of

64

outcome, instead of further increasing the uncertainty on the target vehicle’s
position, we can place the ego in a scenario such that it cannot steer completely
clear of a possible collision. Additionally we prevent the ego from simply wait-
ing for the target to pass through the intersection by placing a time constraint
on the agent for crossing the intersection.

Figure 3.14: Intersection scenario (left) with quantile estimates (right), with
high uncertainty on target position.

Figure 3.14 shows the effect of training the QR-DQN algorithm over a long
period of time (enough for an algorithm to converge – though we will see that
this is unfortunately not the case). We can see that the ego vehicle is clearly
within the 2σ radius of the target vehicle, meaning that there is a nonzero
probability of collision in this scene.

Figure 3.15 shows a close-up for the quantile estimates of the constant ac-
celeration action. The main difference we see with the previous low-uncertainty
experiment (Figure 3.11) is that the variance of the estimated distribution goes
up dramatically, though the shape of the return estimation remains difficult to
interpret from a qualitative standpoint: there are no clear modes of outcome
which we would expect to see for this situation, for example where the agent

65

Figure 3.15: High variance on return estimation for 0 acceleration action.

has some probability of crashing. We can see that there is no probability mass
attributed to the return values around -1, which would correspond to a collision
event. This should be the case however, since there is a nonzero probability that
the environment will result in a crash. Simply looking at the distribution mean
(expected Q value) might indicate that the expected performance of the agent
is quite good, though we can assume from the shape of the distribution that this
is due to some lack of convergence to a good estimation of the return quantiles.
We also see that some of the probability mass is in the positive domain of the
return space. This should not be possible since all reward terms are negative
hence episodic returns cannot be positive. This is further indication that the
estimates are off and probably invalid. Specifically relating to quantiles in the
positive domain, we can be certain that this comes from the intitialization of
the value network, where initial guesses for the return quantiles will be equally
positive or negative.

Seeing the lack of satisfactory convergence in the quantile estimates of the
distribution, we can look to change some of the hyper-parameters used to dur-
ing the distributional agent’s training. The lack of convergence from an RL
agent may be attributed to multiple causes: insufficient exploration may lead
to the agent missing optimal policies in the return landscape of the RL prob-
lem, network learning rates which are not well adapted to the learning problem
may hinder trainable parameters from learning the correct parametrization for
reproducing the distribution as their model output, or somehow the training
data distribution is not representative of the current episodes being played out
(linked to the sampling process from the agent’s replay buffer – changing the
size of the replay buffer has an effect of the iid property of the data which
may hinder convergence). Another factor to consider is the architecture of the
neural network model. Usually larger and deeper networks with more parame-
ters have more representational power, and are able to deal with more complex
environments due to their need to implicitly encode the environment and pol-
icy interactions through their weights and biases, although this comes at the
cost of increased training time and complexity (possible need for learning rate
annealing, for example) due to the high number of parameters to train.

66

Unstable Learning

Seeing the resulting distribution estimation in the last experimental set-up, we
can investigate the performance of the quantile estimates during training by
looking the the quantile regression loss function defined in (3.1). We should
expect this value to decrease over time while the neural network learns increas-
ingly better estimates of the return distribution. This is due to the quantiles
in the return estimation becoming increasingly accurate, and hence on average
the difference between ψi and r + γψ′

j should go down to a minimum.

Figure 3.16 shows the QR loss computed on the policy network model over
the course of 1M training steps. We see a stark difference when compared to
previous Figure 3.13 where the loss converged very rapidly to a minimum value
close to 0. In this set-up the network is clearly unable to correctly predict the
outcome return distribution, meaning that the agent is constantly being sur-
prised with respect to the outcome of its training episode. This of course is
undesirable as the whole idea behind using a deep model to model the return is
so that the agent is able to implicitly learn the environment dynamics and avoid
surprising outcomes. Seeing that the model must now learn an entire distribu-
tion (and not a simple dirac), we expect that training should take longer due to
the multiple possible returns possible from a single starting observation. How-
ever it seems that the addition of multiple simultaneous outcomes has proven
too complex for the agent to learn through quantile regression.

Figure 3.16: QR loss over 1M training steps.

We are able to tune various hyper-parameters of the agent’s training phase,
following some of the examples that were given earlier. To re-adjust the agent’s
training to this increased uncertainty we can now run training with a lower

67

learning rate, and over a longer period of time. This should stop the agent from
being too sensitive to outlier updates (at the risk of discarding low-probability
events). We can also reduce the size of the replay buffer to attempt to reduce
the variance of gradient updates. Modifying the exploration term is not relevant
in this use-case: the issue is not with the agent converging to a sub-optimal so-
lution, so increasing or decreasing the exploration rate in the ε-greedy function
will not affect convergence. We can make a similar argument with respect to the
depth or number of parameters in our deep neural network model. Although
it may happen that the agent-environment interaction dynamics are too com-
plex for a small and non-deep (less function composition gives reduced model
flexibility) neural net, in our case we have seen in Figure 3.8 for example the
distribution is able to capture multiple modes during training before collapsing
down to a single mode. Additionally the loss we observe is not typical of an
under-parametrized function, where we would still expect some convergence,
though to a higher minimum. We may also think of changing the number of
quantiles N , although using N = 11 we expect to capture modes of events with
P (τA) > 0.1 which seems sufficient for representing the probability of outcome
for the agent’s episode at least during the training phase (where much more
collisions will happen before the agent learns to avoid then), therefore a finer
parametrization doesn’t seems useful. It also doesn’t seem reasonable to think
that the model is over-parametrized since it has perfectly converged to the opti-
mal policy in the previous observation scenarios. For these reasons, we keep the
same model architecture and parametrization, and simply reduce the learning
rate, replay buffer size, and increase training time. Figure 3.17 shows the same
loss estimation during the agent’s training phase, over 14M training samples.
Initially there is no improvement in the training dynamic and the loss profile
looks the same as that of Figure 3.16, however letting the algorithm run un-
til almost 14M samples we see some instability grow which causes the loss to
explode. This is representative of the fact that the quantile estimate are way
off and we are certain that the network has not learned anything useful. At
the same time, Figure 3.18 shows the performance of the RL agent throughout
training, in terms of cumulated rewards over a single episode. Even though
there is some initial high performance, the more we train the deep Q-network,
the more random the policy performance becomes. This is in line with rapidly
changing policy parameters since the new points in policy space will be further
away and thus more likely to result in different, random behaviours. In this case
we can see that the training set-up is such that the agent eventually goes off to
some non-coherant, non-stable policy.

From looking at the profile of the loss, and in comparison to our other initial
experiments, we can assume that it is the increased variance in quantile regres-
sion updates that does not allow for our return esimation to converge in this
training paradigm. We recall the light theoretical results of the previous sec-
tion, where the Bellman optimality operator (3.5) is not a contraction mapping
and hence there are no strong theoretical guarantees for the Bellman updates
to converge to the distributions fixed point. It would appear that in the more

68

simple cases without multiple outcome modes this approach to learning is suffi-
cient, although we lose much of the potential representative power of modeling
entire distributions. We can imagine that there exists a set of training hyper-
parameters which would allow for a distributional algorithm to correctly model
the dynamics of a partially-observable set-up. Though recalling our objective
of using a qualitative analysis of the distribution modes in order to inform
safe ego behaviour, and seeing how far we are from learning interpretable and
thus exploitable return estimates, we can see how it could be difficult to push
this approach much further in terms of complexity and nuance in autonomous
decision-making. For this reason, in the next section we take a step back and
provide some analysis of our distributional implementation in order to attack
the problem using a potentially different approach than learning and explicitly
modelling all possible probabilities of outcomes.

Figure 3.17: QR loss over 14M training steps.

3.2.3 Conclusion on Distributional RL

In this section, we have presented the use of a distributional framework in order
to quantify uncertainties linked to the performance of an agent in a stochastic
environment. Although this framework is built from a theoretical basis there
are no mathematical guarantees for it to function as expected (as is the case
with many deep learning approaches), and we have seen this in applying it to
a relatively complex aleatoric environment. Distributional RL, and QR-DQN
specifically has seen some implementations in works using complex environments
[Hessel et al., 2017, Bellemare et al., 2019, Rowland et al., 2019], however none
of these are applied to environments with either aleatoric nor epistemic uncer-

69

Figure 3.18: QR-DQN performance, over 14 Million samples.

tainty, and use model sizes and computational resources which are substantial.

However, although we were not able to reach our objective of learning qual-
itatively representative distributions of policy returns, through the use and ap-
plication of this distributional approach to training an RL agent we have gained
some insights to our problem of training polices for robust behaviours. We
present the main takeaways from our use of a distributional algorithm below:

Modalities in Outcomes vs. Behaviours

We recall that the purpose of representing the entire return distribution was
so that an agent having access to return modalities could differentiate between
outcomes of different behaviours for a single policy facing an environment con-
taining some level uncertainty in either its transition or observation models.
Aside from the ability to correctly estimate this distribution, we make a few re-
marks on using the return as a proxy for qualifying different agent behaviours.
Firstly, we have to be clear by what we wish to model in terms of difference in
outcome versus difference in agent behaviour. The outcome of a policy relates
to the final performance or value of a trajectory realized by that agent, and for
the same sequence of actions from an agent, we may estimate the probability of
different outcomes resulting from that policy (for example an agent approaching
the intersection at high speed may either result in a collision or not, depending
on the uncertainty around the position of target vehicles around the intersec-
tion). One the other hand, an agent’s behaviour is a looser term and relates to
the heuristic ‘strategy’ used by the agent to solve its environment (for example

70

an agent may navigate through an intersection by either being aggressive with
high-speed trajectories, or with conservative low-speed trajectories). The policy
learned in Figure 3.11 learns to avoid collisions by giving way to the target vehi-
cle before crossing the intersection, obtaining the same (or very similar in terms
of return) outcome as the optimal policy in the fully-observable case, although
the heuristic behaviour is itself very different. We can easily think of a simple
example of a maze containing two exits, whose paths for finding each exit is
exactly the same length. In this case the behaviours of navigating to either
side of the maze are very different, although the outcome of exiting the maze is
exactly the same in both cases. In other words, policies that are close in return
space may actually be very far in parameter space. This also makes sense since
in some cases a single wrong action is liable to cause catastrophic failure such
as a collision.

Due to the single dimensional nature of the return estimation, there is the
possibility for confusion between which return modes correspond to which be-
haviours or outcomes. Figure 3.19 shows an illustrative example of this for
the return estimation in our intersection set-up, where we can imagine a pol-
icy learning two different behaviours in the environment: one considered more
‘risky’ with a higher chance of collision but with a chance of navigating the
intersection in less time, and another considered as being ‘safer’ with a lower
chance of collision, but taking a longer amount of time to complete the naviga-
tion task. The returns are roughly scaled to correspond to the reward function
defined in the intersection MDP so that a collision will provide a return around
-1, faster episode times will provide returns around the -0.1 value, and slower
episode times will provide return around the -0.2 value.

(a) (b)

Figure 3.19: (a) Return distributions from different agent behaviours. (b) Com-
bined return distribution with both behaviours being equally likely.

We place ourselves in a hypothetical situation where the agent has to chose
between the two strategies to crossing the intersection. In terms of expected
value, the return distributions for both behaviours actually have the same mean

71

value of -0.46, so we wish to use the shape of the return estimation for a better
decision strategy, for example the one which will carry the least amount of risk.
The true return distribution for each strategy is shown in Figure 3.19a. If each
behaviour has been explored with the same frequency during the training phase,
then the estimated return distribution available to the agent from its initial state
will be that represented in Figure 3.19b, combining the possible outcomes from
all previously seen behaviours. We can see that there is some overlapping in
the modes of the returns for each possible behaviour, notably at the value of
-1 where the probability for collision is reflected in terms of the total number
of times the agent has observed collisions for both ‘safe’ and ‘risky’ behaviours,
without distinction. In essence, we cannot guarantee that the mapping from the
space of policies to the space of returns be injective, and therefore we cannot use
modes in the return distribution to correctly identify the different behaviours
of a policy.

This leads us to look for an approach where we are able to make the dis-
tinction between uncertainty of outcome, and policy behaviour. Though the
terms behaviour or strategy are relatively heuristic, we can image some ways to
identify them in terms of sequences of states, sequences of actions, policy pa-
rameter space, or some other metric that is not dependant on the reward values
obtained by the agent. This perspective is discussed further in the following
chapter where we propose a more representative metric for measuring how close
two policies may be in terms of behaviour or strategy.

Hierarchy of Performance Objectives

There are multiple approaches to multi-objective optimization, according to the
desired output behaviour that is required from a controller. In our problem
statement for autonomous vehicles for example, we must balance out safety and
performance in order to obtain the best possible behaviour in each scenario.
However optimizing one criteria will most likely detrimentally affect another, for
example increasing performance (i.e. speed at which an ego navigates through
the intersection) will come at the expense of a safer driving behaviour. As
described for the intersection scenario we consider above, in RL these criteria are
implicitly weighted in importance according to the amplitude of rewards that are
attributed to reinforce each style of behaviour. Changing the reward function is
changing one of the defining elements of the MDP, and so the resulting optimal
policy will also be affected, meaning that logically a change in the ratio of
amplitude in the reward terms will most likely lead to a change in behaviour of
the resulting optimal policy that is learned in the MDP.

In our application though, we have a clear hierarchy between safety and
performance criteria, the former being of course more important. We wish to
model the fact that safety is always more important than performance, and so
we give a large amplitude ratio between the two corresponding reward terms.

72

Although it might seem reasonable that the ratio expresses that in expectation
an increase in trajectory time of 10 seconds is as good as a reduction of risk
of collision of 1%, this remains arbitrary, and we could easily use the same
heuristic justification for different values and relative weights of the reward
terms. Moreover, the difference in terms of many order of magnitude poses
a practical issue for a neural network learning to estimate the returns for a
policy: the large difference in output amplitudes leads to large differences in
amplitudes of gradients through the network, and hence each updates affects
the network parameters differently. The learning rate is a parameter used to
control the influence each update has on the network parameters, and is usually
set according to the amplitude of gradients being back-propagated through the
model along with the number of model parameters. Setting a single learning rate
for training may then cause the network to not learn to correctly represent some
of the returns with higher or lower orders of magnitudes, and this could explain,
for example, the lack of representation of the collision returns in Figure 3.15.
If we were to adjust the learning rate for rewards scaled to that of the collision
reward, the effect of the time-step reward on the model may be negligible and
this dynamic may not be captured by the model parameters.

These are issues that arise when aiming to combine multiple criteria into a
single one. However the hierarchical nature of our task objectives may lead us to
look for another approach with respect to how each are optimized, differentiating
the criteria with an ad-hoc controller architecture rather than wieghting them
within the same RL problem. Hierarchical reinforcement learning is an area of
RL which deals with tasks of a hierarchical nature, and may provide some insight
to approaching the problem of safety-performance balance in agent behaviour.
We go into more detail on this subject in chapter 5, and investigate the use of
a hierarchical architecture to separate the criteria of performance and safety to
better tackle this issue.

Policy Forgetfulness

During the optimization of the RL agent’s policy, we have seen (Figure 3.8) that
it may encounter sub-optimal solutions to the MDP which are then eventually
discarded in favor of better global optima. Through this approach we unfor-
tunately run the risk of discarding strategies that may still be useful, simply
because they are sub-optimal. We have seen this in our experiments where in
cases where the agent was very confident during training (low uncertainty), a
more conservative strategy would initially be explored and then forgotten in
favor of the more aggressive driving style. Though these policies encountered
during training are sub-optimal with respect to the current training paradigm,
they may represent alternate behaviours for navigation through the environment
which could be considered as useful to the agent. Given the issue of different
behaviours having potentially overlapping return values, we can imagine a situ-

73

ation where two totally different strategies obtain very close values in terms of
rewards in an MDP task (global and local optima of very similar values, but at
different locations in policy parameter space). In this case it is might be possible
for an RL algorithm to initially converge to either of the two solutions, but ul-
timately ‘forget’ about the slightly sub-optimal one due to random exploration
designed to find the global optimal policy. Given that additional uncertainties
and different environment scenarios affect the shape of the return landscape, it
is reasonable to assume that local optima points may shift to being the global
optimum, and vice-versa. If this is the case, then we might have used a large
amount of training time simply to un-learn useful behaviours which would have
increased the robustness of the agent with respect to uncertainties changing the
shape of the return landscape.

3.2.4 Using Sub-Optimal Policies for Robustness

Given these lessons learned from our use of distributional RL, we seek to use
a different approach to our problem statement. One area in which we noticed
the agent compensate for environment uncertainty, was in the case illustrated
in Figure 3.11, where the agent learned a different strategy from the fully ob-
servable environment (Figure 3.8) in order to avoid the zone of uncertainty
altogether. In this use-case we saw the agent learn to adopt a more conserva-
tive driving style in order to avoid altogether an area of uncertainty in which
there is a possibility for a collision with a target vehicle. Following this line of
thought, we can imagine that some form of ‘super agent’ having access to both
policies learned in a low-uncertainty and high-uncertainty environment might be
robust to both cases, given a method of knowing what the level on uncertainty
present in the environment is. This comes back to the power of generalization
given to deep learning models, and although we can imagine cases where agent
are robust to uncertainties present in their training data distribution, directly
training an agent on multiple values of environment uncertainty gives an extra
dimension to the navigation task which will greatly increase both the required
size of the model along with the training time in order for the neural network
parameters to implicitly model the adaptation in behaviour required from an
agent in order to react to different levels of uncertainty as direct inputs to its
controller model. Moreover, as we have seen in the application of a distribu-
tional framework, adding additional dimensions to the model in this way adds
much difficulty and hyper-parameter tuning to the RL algorithm.

This leads us to imagining a multi-agent training set-up, where the com-
plexity of training for multiple sources of environment uncertainty would be
distributed across multiple agents instead of a single one, increasing the com-
putation required for training but not affecting the model complexity needed
to learn adequate behaviours for solving the MDP control task. Given this ap-
proach, each agent’s policy can learn a separate ‘behaviour’ for solving the task,

74

each adapted to the relevant training conditions. In the next chapter, we build
a multi-agent training framework with the objective of learning a set of policies
which are collectively robust to expected (but unencountered) epistemic and
aleatoric uncertainties.

75

Chapter 4

Learning Contingency
Policies

4.1 Introduction

The need for having different strategies for a single input state, leads us to want
to train multiple policies concurrently in an available training environment,
with some constraints which reflect the need for robustness with respect to the
uncertainty linked to environment uncertainties.

When learning to act in an uncertain environment, as humans, we intuitively
attempt to build a ‘plan B’ for when our usual solution to the task at hand might
not be valid. We build these alternative strategies by imagining a variation of
environment dynamics where our current approach becomes invalid, and then
attempting to find the best solution for that new case. The formation of multiple
strategies for solving a task has the potential to greatly increase the robustness
of an agent with respect to unanticipated changes to its environment. As a
simple example, we can imagine a person planning what to wear when going
out for a walk, according to the weather condition. If the weather has been
sunny all week, then a naive approach would be to dress accordingly to this
precedent information. However this leaves us vulnerable to the case where the
weather may suddenly change and start to rain. Naturally, we would imagine
a situation where we are able to plan for a dressing strategy to implement
specifically in cases such as rain, where the attire deduced from the previous
weather is unable to handle. This approach is called contingency planning [Pryor
and Collins, 1996], where our aim is to develop a way to learn contingency
solutions for cases where the expected optimal solution is unable to perform
well in the current environment setup. This approach is equivalent to wanting

76

to increase the generalization capabilities for an agent, with respect to scenarios
it may not have encountered during training or, if encountered, not retained the
appropriate solution for that use-case. Further, when uncertainty is involved, we
may wish to have multiple concurrent solution available according to the most
probable outcomes of random variables such as decisions made by other road
users, or presence of other vehicles obstructed from detection for some reason.

Designing controllers to have a high capacity for generalization is key to
applying control algorithms when there is a high degree of uncertainty and
combinatorial complexity in the environments in which we want autonomous
agents to perform well. In this chapter, we design an algorithm for concurrently
learning polices which are collectively able to act well enough over the whole
space, having trained only on a tractable subset of environment configurations.

4.2 Related Work

The main element susceptible to engineering in MDPs is the reward function,
which indirectly defines the agent’s goal; learning about multiple goals can be
translated into learning to solve MDPs with multiple reward functions. One
of the most common uses for augmenting the reward function is to artificially
boost the RL agent’s degree of exploration [Badia et al., 2020b], [Eriksson and
Dimitrakakis, 2020]. These methods dynamically change the value of the im-
mediate rewards an agent gains, in order to encourage actions towards areas of
state-space which are deemed more important. Our approach is similar to these
in that we base an extra reward term on an external factor in order to affect
the behaviour of exploring agents.

Although we base our approach on engineering the MDP’s reward function,
the problem we are tackling with our approach is distinct from the exploration
problem in RL, and our objective is not to find an optimal exploration scheme.
Exploration boosting methods are used within the context of a single environ-
ment, in order to avoid having the agent fall victim to being trapped within a
local optima. Our goal however is to have the RL algorithm be able to retain
sub-optimal solutions to the environment, once the training regime is ended.
In a similar spirit to how TRPO Schulman et al. [2015] seeks to mitigate the
concern that small changes in the parameter space may lead to sharp drops
in performance, we seek to mitigate sharp drops in performance resulting from
changes to stochastic environment parameters.

Moreover, the approach explored in this paper aims to learn policies with
different behaviours, given the same initial environment conditions. Compared
to methods which learn only the environment’s optimal policy, this allows us
to have sub-optimal policies to use as fallback strategies which we can switch
through using a hierarchical structure. This has an advantage over attempting

77

to have a single policy learn to generalize over the space of MDPs, since this task
(meta-learning) requires many more samples in order for an agent to achieve
a good performance [Kirsch et al., 2019], our approach is more attractive for
certain safety-critical applications.

Many previous works aim for agents to generalize to different goals within
the same MDP [Schaul et al., 2015], or even self-discover sub-goals that make
learning more efficient [Machado et al., 2017]. In these cases, a difference in
goals is translated through a change in the reward function for a goal-state g:
R(s, a, g) = Rg > 0. These methods take advantage of the underlying structure
in the goal-space in order to increase sample efficiency [Andrychowicz et al.,
2017], as well as the generalization capabilities of agents to tasks with goals
that were not present during training [Eysenbach et al., 2019a]. They provide
a good way of finding different behaviours within a same environment, where
the modification of the reward function is intended for a control algorithm to
be robust in terms of changing objectives. Our problem statement focuses on
dealing with scenarios when the objective (i.e. goal) of an environment remains
the same, but the environment is expected to change in some unknown way.

4.2.1 Variable Elements of MDPs

A vital component of a reinforcement learning algorithm is modelling the envi-
ronment as a Markov decision process, which means defining some elements in
order to both best represent the task being solved, and some further parameters
affecting the reward attributed to the acting agent, and the discounting factor.
The design of each MDP-defining element can be more or less arbitrary: most
likely the transition dynamics T (s′|s, a) are given by the optimization problem
and not susceptible to being changed if the environment itself does not change.
The state and action spaces S, A are subject to a little more design work be-
cause of the ability to define which information is the most relevant for the agent
to react, and which actions are possible in response to those states [Dalal et al.,
2018, Alshiekh et al., 2018]. However sometimes the state space must be aug-
mented for example in the case of Atari games, it is common practice to include
multiple frames of the game in the input space in order to give some information
of direction of movement for objects on the screen instead of the static image.
Action may additionally be constrained according to a set of pre-defined rules
to constrain the agent’s to not break a set of hard constraints during training,
or in order to reduce the learning complexity of the problem if there are some
states for which we already know the optimal actions to take. Furthermore, the
type of action is subject to an engineering decision: we may want to give the
agent the ability to take the lowest-level actions, or to simplify training give it
access to a complex combination of low-level actions which we know give the
agent sufficient ‘action resolution’ for solving the task at hand.

78

Changing only the value of the γ parameter for example, will affect the
ratio of weights between long and short-term rewards on the expected sum of
discounted rewards Gt, leading the agent to switch between preferring either
short-term or long-term future rewards [Xu et al., 2018]. Though the value for
this parameter is usually set to some value very close to 1 (usually 0.99 in most
RL applications), modifying it will also change the return landscape and by
extension the optimal policy resulted from training the agent.

In the related work section, we mentioned the use of modifying the reward
function to obtain a better agent performance in terms of exploration, sample
efficiency, and generalization capabilities. Modifying the reward function is by
far the most common approach for modifying the behaviour of a reinforcement
learning agent, since it is through this function that goals and incentives are
described in the optimization problem. Nevertheless modifying any of the ele-
ments of the MDP will change the optimization problem that is being modeled
and hence likely change the optimal policy π∗ associated to that MDP.

4.3 Learning Contingency Policies

In this section, we motivate the use of a new RL paradigm aimed at learning
policies which are robust to changes in the environment’s stochastic parameters.
We make the hypothesis that changes in environment dynamics affect its state-
space locally, meaning that the best way for maximizing the agent’s robustness
is to find alternative paths to the objective, with a trajectory through state
space that is sufficiently different from the other strategies such that a local
change in environment stochastic parameters will not affect at least one of the
strategies available to the autonomous agent.

We initially consider a model-free setting for learning, to make our approach
as general as possible, not being affected by possible model biases of real-world
applications. In a model-free approach however, efficient learning is notoriously
hard, one of the factors being the increased variance of target updates from of
the lack of a planner able to average out return values from multiple simulated
runs. A lack of an environment model also reduces the ability for an agent to
adapt to changes to the environment after training, since we are unable to use a
planner to explore the new dynamics before acting. Works such as Hausknecht
and Stone [2015] and Zhu et al. [2017] use deep recurrent Q-networks in order to
build up knowledge of the MDP’s state over time, and use a latent representation
of the history of states and actions in order to inform an agent about its current
state. In the case of stochastic parameter change, we are unable to predict how
the returns of a policy will be affected. Kumar et al. [2020] seeks to learn a set
of policies which are collectively robust to changes in environment dynamics,
through the use of latent-conditioned policies [Eysenbach et al., 2019b]. Our
approach is similar, though we use an explicit metric on trajectories to ensure

79

diversity in contingency behaviour rather than a learnt descriminator function.
Furthurmore we train our contingency plan to perform well when environment
parameters change during the execution phase, which couples well with an on-
line high-level controller.

4.3.1 Agents’ Behaviour

First of all, we wish to have some measure on the similarity in terms of behaviour
from different agents in the same environment. There are multiple possible
different interpretations for what defines similarities or differences in behaviour
[Cool to have some reference on this point]. In the context of an agent acting
in an MDP, we decide to use a metric on trajectories through state-space S to
measure similarities in behaviour. It could be possible for example to use the
action-space A or state-action space S × A. Though there is a slight nuance
between actions taken by an agent, and the states in which the agent finds itself
as a consequence of its actions. Since our application also considers uncertainties
in environment dynamics (i.e. results of actions), we stick to considering only
the state-space trajectory. Later on in this section, we formally define a degree
of behaviour similarity between agents in order to develop an algorithm for
learning behaviours which are different in terms of expected trajectory through
state-space. In practice, because of the partial observability of the environment,
we only have access to observations of the states encountered rather than the
states themselves. We denote τπ the trajectory through observation-space for
an agent:

τπ = {ot}|t∈[0,T]

s0 ∼ p(s0), at = π(ot), st+1 ∼ T (st+1|st, at), ot ∼ O(st)

However a difference in behaviour is not a sufficient condition for learning a
policy with that behaviour: we require learned behaviours to be useful in the
environment, which is a condition which also may vary according to the task at
hand. To this end, we define a property for when an agent’s behaviour may be
considered a valid strategy or not, depending on whether it sufficiently solves
the task modelled as an MDP.

Learning Valid Strategies

Definition. (Valid Strategy) An agent’s policy π is considered as having a
valid strategy in its respective MDP, if either of the following conditions are
met, depending on the nature of the control task:

(A1) Agent is able to reach a specific goal-state g ∈ S.

80

(A2) Agent is able to expect accumulated discounted rewards above a threshold
score V π(s0) > Gmin ∈ R, for s0 sampled from initial state distribution
(Note that V π is the true value function as in (2.3), not an approximation).

The use of either condition for what is considered a valid strategy depends
on the task, and what it heuristically means to solve it. For example, in the
case of an Atari game (e.g. Breakout), any behaviour from a policy which
reaches above a threshold score, is typically considered to be a valid strategy.
Another example would be an AV passing through an intersection, where any
behaviour passing the intersection (reaching goal-state g) without collisions is a
valid strategy.

The nature of completing a task will more often than not affect the shape
the reward function will take: most tasks where the end objective is for the
agent to find itself in a goal-state g, will have the MDP set-up so as to perceive
a large reward at the end of the task once the desired goal-state is reached.
This kind of MDP is described as having a sparse reward. Although the task
objective in this case is best described by the sparse reward, this sparsity in
terms of training signal can be a big hindrance for an agent’s learning speed.
For example in a game of Go where the average number of moves is 211, with an
intial action space of 361 moves, the link between which moves were the correct
ones and which ones are bad can be difficult to determine. This is why having
a dense reward function helps algorithm convergence speed, at the cost of the
bias introduced by the human design of additional reward terms. Dense rewards
lend themselves more naturally towards ongoing tasks, where the definition for
a valid strategy is closer to the second point in the aforementioned definition.
For example, collecting points in a video game, or a robot learning to balance
items in a certain way, are both examples of ongoing tasks where the reward
function can naturally be modelled as being dense.

In our application to an autonomous navigation task, we primarily use the
the former definition of aiming to reach a desired goal-state g, since it better
represents the objective of an autonomous navigation task which can be mod-
elled as correctly navigating through various sequential road ‘modules’, and the
ego vehicle’s objective is to make it to the end of the module while avoiding
any possible collisions. Hence this interpretation is more useful as it pertains to
our use-case. However, when modelling the navigation task we also use dense
rewards to represent the performance objective for the agent in the form of a
small negative term at every time-step. This is one of the differences in ob-
jective types between safety and performance which we can exploit to model
differently in the MDP. This way, we give the agent the opportunity to more
freely make sacrifices in performance in the interest of safer behaviour. This
is the idea behind implementing a contingency plan for the agent, where we
expect to be sacrificing some performance in order to obtain a better behaviour
from the point of view of the safety criterion. Following this, we introduce the
definition for a sub-optimal policy representing a policy which performs a little

81

worse in terms of gathered reward than the optimal, but is still a valid strategy
according to either part of the previous definition.

Definition. (Sub-optimal policy) A sub-optimal policy, denoted πsub, is a pol-
icy whose expectation of return is within a margin ϵ, to that of the optimal policy
π∗, at some given initial state s0 sampled from the initial state distribution:

V π
∗
(s0)− V πsub(s0) < ϵ. (4.1)

Condition (4.1) is equivalent to saying that policy πsub is a sub-optimal pol-
icy, whose behaviour is a valid strategy (in the threshold-score sense considered
in constraint (A2), ϵ = V π

∗
(s0) − Gmin). For example in the case of an Atari

game, any agent that achieves a score higher than the threshold, but less than
the one obtained by the optimal policy π∗, verifies condition (4.1). This defi-
nition is a little looser when considering constraint (A1), where the value for ϵ
may even be very large, as long as the goal-state g is reached. For example, in
the case of an autonomous navigation task, if an agent manages to reach the
goal-state g the task in a higher amount of steps than the optimal policy, we
consider it a sub-optimal policy. It is possible to specify a certain available per-
formance budget in terms of ϵ , to determine how much of the performance we
are willing to sacrifice in search of alternate solutions before we consider those
solutions non-valid as strategies.

Measuring Different Behaviour in Agents

In order for the two policies to be considered as having different behaviours,
they must be sufficiently different in the state-distributions that are encoun-
tered during execution. This implies the need for a metric M measuring the
difference between agents’ trajectories in state-space. There is no standard met-
ric for measuring the similarities for agent trajectories. The difficulty lies in the
potential high dimensionality of state-space, along with the variable trajectory
lengths. high dimensionality may be an issue due to the potential difference in
importance of various state features when determining the similarity of trajec-
tories. The different impact of various state features is something that can be
determined in a case-by-case basis for each implementation. The main differ-
ence however is the variable size of the trajectory vector. To be able to compare
trajectories of different lengths, the most straightforward approach is to com-
pare the density of states encountered. This works well, however we lose the
sequential nature of agent trajectories and similar states encountered at entirely
different times during the episode will have the same representation using state
densities. Another approach uses a descriminator function [Eysenbach et al.,
2019b, Kumar et al., 2020] in order to force states to correspond to identifiably
different policies, though this has the same issues ignoring the sequential nature

82

of state trajectories.

Definition. (Sufficiently different behaviours) We can say that two policies,
π1, π2 have Md-different behaviours, iff:

M (E [τπ1] ,E [τπ2]) ≥ d. (4.2)

Condition (4.2) is equivalent to saying that the behaviours of π1 and π2
can be described as being heuristically different. In our approach, we base this
heuristic on the similarity in terms of their respective trajectories through the
MDP state-space. Setting a value d ∈ R is subjective: for instance, human
experts may have arbitrary boundaries for when an agent’s path through state-
space is sufficiently different from a reference path, to consider both as having
different behaviours. Condition (4.2) can be thought of as a non-parametric
clustering with boundary d, whereM(·,E[τπref

]) is the feature map in a policy’s
state-trajectory space, with respect to a reference policy πref . Once more, the
correct segmentation of this space is subjective and may vary between experts
based on experience.

To recap, we propose that in order to increase the robustness of an RL
algorithm to changes in environment parameters, it should be able to learn sub-
optimal contignency strategies which have sufficiently different behaviours from
the optimal policy in a training environment, satisfying both conditions (4.1)
and (4.2). Changes in T or O may affect local areas of the environment’s state-
space differently, affecting some policies’ expected returns more than others,
depending on whether the introduced uncertainty affects their respective state-
space paths. Condition (4.1) ensures that we only learn policies with satisfactory
performance in the environment, whereas (4.2) aims to maximize the likelihood
that at least one of the learned policies will have an expected return that is
minimally affected by changes to either T or O.

Figure 4.1 gives some insight on how an agent having access to policies
with different policy behaviours has the potential of increasing the robustness
of the overall algorithm when the uncertainty is local, and able to be avoided
through intelligent trajectory planning. We can imagine the collection of all
possible agent trajectories from starting to final state, and that in the presence
of local uncertainty there should be at least one of these possible alternate valid
trajectories which will the be the least affected by modifications to environment
models.

4.3.2 Reward Augmentation

We wish to learn, on one hand, π∗, the optimal policy in our given environment,
and on the other, π1, a contingency policy able to navigate more safely through
the environment, at the cost of performance, if ever there is high uncertainty

83

Figure 4.1: Illustration of usefulness of a contingency plan to avoid unforeseen
uncertainty. ‘S’ indicates the starting state, ‘E’ indicated the end or goal state

Figure 4.2: Reward dependence for multiple contingency agents.

linked to following the optimal policy. We wish this contingency plan (or mul-
tiple instances thereof) to be both a valid strategy, and sufficiently different in
behaviour to the optimal, following both (4.1) and (4.2) respectfully.

Our approach is to introduce additional agents in modified versions of the
MDP, in order for those agents to converge to different policies, having different
behaviours. In section 4.2.1 we discussed the possible modifications to an envi-
ronment modeled as an MDP, and the effects these modifications can have on
the convergence point of the agents optimizing their respective behaviours. Due
to the desired property of wanting policies with explicitly different trajectories,
we chose to introduce an additional dense reward term to encourage policies to
take trajectories that are different from that of a reference agent (the optimal

84

agent in our case). We do this by introducing a reward penalty, Rpenπref
(τπ) ≤ 0,

as a function of the trajectory of the current policy π, as compared to that of a
reference policy πref . The trajectory penalty is based on the metricM between
agents’ state-space trajectories in order to satisfy (4.2). We use the following
expression for the trajectory penalty to discourage agents observing this term
to be too close to others’ expected path through state-space E

[
τπref

]
:

Rpenπref
(τπ) = − α

M
(
τπ,E

[
τπref

])
+ δ

, (4.3)

where 0 < δ < 1 avoids infinite penalties for exactly following E
[
τπref

]
, giving

the penalty an upper bound of −αδ . πref is the reference policy, which may
or may not be the optimal, according to the number of agents with unique
behaviours we wish to train. α is a scaling factor to adjust the amplitude of the
penalty term, compared to the regular rewards. Contingency policies will be
training concurrently to the optimal one, aiming to converge to distinct valid
strategies within the same environment.

General Approach for Multiple Contingency Agents

Theoretically this approach could be used for an arbitrary number of additional
contingency agents, as illustrated in Figure 4.2, where the soft constraint given
by trajectory penalties for trajectory similarities between agents can be imple-
mented for any pairs of agents meaning each subsequent agent can be given an
incentive to be different from the previous existing agents, following (4.2). Al-
though this adds complexity to the RL problem, the number N of total agents
should remain reasonably limited: we should increase N according to the an-
ticipated uncertainty on the environment parameters. If we denot the set of
all agents in the training environment as Π, then πref ∈ Ππ

ref represents all
previous agents (shown by the arrows in Fig. 4.2) whose trajectories are used
as references to compute the trajectory penalty term:

Ππn

ref = Π \ {πm|m ≥ n,m ∈ [0, N]}

As an example, Ππ∗

ref is empty in the case of the optimal agent, Ππ1

ref = {π∗}
for the 1st contingency agent, Ππ2

ref = {π∗, π1} for the 2nd contingency agent,
and so on. For N contingency agents, this approach adds a computational cost
of o(N2) in terms of trajectory penalty computation. Increasing state-space
size and dimensionality is susceptible to increase the number N of concurrent
agents we wish to maintain as there are more opportunities for alternate valid
strategies. However, N is limited by the number of expected changes in the
MDP’s state-space we wish the RL agent be robust to, hence the computational
cost is expected to remain within the same order of magnitude as without the
pseudo-reward implementation.

85

Implementing the additional trajectory penalties will impact the new value-
function estimate of agents learning sub-optimal policies. So (4.1) should be-
come:

V π
∗
(s0)− V πsub(s0) < ϵ+

∑
πref∈Π

πsubref

Rpenπref
(τπsub

) , (4.4)

such that πsub would still be considered a valid sub-optimal policy.

Trajectory Metric

We have put forward the need for an explicit metric between agent trajectories,
with the following properties:

• We must be able to compute differences between trajectories of different
lengths.

• This metric must represent the heuristic differences in behaviour between
agents generating those trajectories. This includes aspects of a trajectory
such as sequentiality of states (being consistent with describing loops for
example) or not being too sensitive to difference between states, since
some trajectories with all different states may have the same heuristic
behaviour.

To the first point, we can simply use a density function to represent the
distribution of states included in the trajectory vector. This approach is useful
since computing difference in densities is relatively straightforward, though this
will eliminate the sequentiality of states which would be ideal to model. Using
densities has the disadvantage that the positions of encountered states in the
trajectory vector are lost. For example the same trajectory but travelled in the
opposite direction will have the same state densities. Additionally, as mentioned
above, any loops in the state trajectory will not be represented: a trajectory
will have the same density as another which loops 100 times over it. This is in
part due to the fact that we wish to compare trajectories of different lengths,
so we eliminate the information of length from those trajectories, although this
clearly could be some important information to have when describing differences
in heuristic behaviours between agent trajectories.

To increase the relation to heuristic differences in behaviour for the metric,
we can use a feature map on states to not include the entire raw state, and seek
to use the most informative features to describe similarities in agent behaviour.
This is heavily correlated to the nature of the environment state-space, and
subject to change according to the environment with which the agent interacts.
Therefore we allow for additional design – and hence also additional bias – in

86

the information from states that is used to determine trajectory similarities. In
our experiments we mostly use a mask function to only select certain dimensions
of the state which we find best describe the behaviour of the autonomous agent.
For example in the case of an intersection where the path is pre-determined we
can use the speed of the ego vehicle to differentiate between age behaviours, dis-
regarding all other elements of the state such as those relating to target vehicles
which do not provide much information about the ego behaviour. Therefore we
implement the following expression for what we refer to as the trajectory metric
M:

M(τπ, τπref
) =

∫ ∣∣ν(ϕ(τπ))− ν(ϕ(τπref
))
∣∣ dϕ(o) (4.5)

Where ϕ is an feature map over state observations, and ν is the density
function. We integrate the difference in densities over the observation feature
space over which the densities are computed. It is possible to make this approach
as general as possible with ϕ(o) = o, however with some domain knowledge we
can modify ϕ to retain only the most informative features.

4.3.3 Algorithm Description

Algorithm 3 gives a pseudo-code description of our implementation for learning
contingency policies alongside the optimal policy. πref ∈ Ππ

ref represents the
same set of reference agents as in Fig. 4.2.

Both agents train concurrently, alternating training episodes. However the
contingency agent π1 starts its training only when the replay buffer of π∗ is full.
This is reflected in the training curves, though it is negligible with respect to the
order of magnitude of total training samples. Computing the value for Rpenπ∗ (τπ1

)
before π∗’s expected trajectory memory buffer has converged to a stable value
means that the MDP being solved by π1 is initially greatly changing, though we
did not do a detailed investigation of the effects of different training scheduling
for the contingency agent.

We must also decide to which state transitions samples (training samples
for the RL agent) the trajectory penalty is attributed to. In this case there
are two possible approaches: either the Rpen term can be computed at the end
of the agent’s trajectory hence considering the different in state distributions
for both entire trajectories, or Rpen can be computed on a state-by-state basis
where we input single states intoM to compute how similar a single state is to
the expected distribution of states of the reference agent. The latter approach
could be seen as more desirable since it is a denser reward function, however we
can notive that there will be a strong negative bias towards longer trajectories
which will have the tendency to accumulate a lot of negative reward terms if

87

Algorithm 3 Training Contingency Policies

1: Init Π = {π∗, π1, ..., πN}
2: while not converged do
3: for π ∈ Π do
4: s0 ∼ pπ(s0) ▷ init. episode state
5: o0 ∼ O(s0)
6: τπ = {o0}
7: while episode not terminated do ▷ play episode
8: at = π(ot)
9: st+1 ∼ T (st, at) ▷ environment step

10: rt = R(st, at, st+1) ▷ step reward
11: ot+1 ∼ O(st+1)
12: τπ = τπ ∪ {ot+1}
13: end while
14: rpen =

∑
πref∈Ππ

ref
Rpenπref

(τπ) ▷ compute trajectory penalty

15: rT = rT + rpen ▷ attribute rpen (only to contingency agent)
16: for t ∈ [0, T] do
17: Memory(π)← (ot, at, rt, ot+1) ▷ store samples in replay buffer
18: end for
19: end for
20: end while

they contain many more states than shorter trajectories. Because of this we
prefer to consider the vector of all states in the trajectory for computing the
similarity metricM, and we compute this value at the very end of the episode.
There are additional approaches known as eligibility traces [Sutton and Barto,
2018] which allow us to reduce the sparsity of a reward signal using a form of
reward attribution with exponential decay according to how far the states are
to the final state of the trajectory. However in our approach, we find that this
does not make a noticeable difference on the learning rate of agents perceiving
the additional trajectory penalty. Due to this, we only attribute the Rpen term
to the final episode transition that is then stored in the agent’s replay buffer.
Since we do not attribute any reward augmentation to the optimal agent, we
simply define that Rpenπ∗ (τπ∗) = 0 for a simpler notation, although inputting
these values into the expression for the trajectory penalty gives some non-zero
value, as is investigated in the results section of this chapter.

Training an Off-Policy Deep Q Network

The off-policy Q-learning algorithm [Mnih et al., 2015] is well-suited to learning
a policy’s Q-function in the discrete action space which we consider. Training
off-policy allows us to train on past transitions stored in a replay buffer [Schaul
et al., 2016] which both stabilizes training, and increases sample efficiency since

88

a single transition sample may be used during multiple training steps. We
perform a stochastic gradient descent on the MSE between the Q-estimate for
the current step, and the discounted 1-step ‘lookahead’ Q-estimate summed with
the transition reward:

L(ot, at, rt, ot+1) =
(
Qθ(ot, at)−

[
rt + γQθ′(ot+1, arg max

a′
Qθ(ot+1, a

′)
])2

,

where θ are the current parameters for the Q-network, and θ′ are parameters
that are ‘frozen’ for a certain amount of steps. This is known as double Q-
learning using target networks [Van Hasselt et al., 2016] and reduces the variance
of gradient updates.

Sampling Trajectory Expectation from Replay Buffer

Since we’re using the similarity in trajectories as a training signal for the contin-
gency agent, we wish this signal to be as stable as possible, so that the solution
to the MDP being solved by the contingency policy doesn’t move around to
much. Due to the fact that the trajectory penalty is based on the behaviour of
the optimal policy, a change in this reference behaviour will lead to a change in
the training signal given to the contingency agent and hence change the return
landscape with which it tries to optimize its behaviour. If the reference trajec-
tory changes often and with high amplitude, then the training signal provided
by Rpen will not enable the contingency agent to converge to a policy with dif-
ferent behaviour. In order to increase the stability of the signal, instead of using
the instantaneous trajectory from the reference agent τπref

, we can average out
its trajectories from the last K episodes E[τπref

]. If we make the hypothesis
that the reference agent will end up converging to a single policy, then the aver-
age trajectory should also converge to a single state distribution (as would the
instantaneous trajectory τπref

), but with a smoother trajectory penalty signal.
Hence we replace the equation given by (4.5) with the following:

M(τπ1
,E [τπ∗]) =

∫ ∣∣∣ν (ϕ (τπ1
))− ν (ϕ (E [τπ∗]))

∣∣∣dϕ(o), (4.6)

One nice way of getting the expectation over the density of states in an
agent’s trajectory, is to consider the states in its memory replay buffer. Due
to the fact that our implementation forM has no temporal information on the
states in the trajectory, we can simply sample states from the reference agent’s
replay buffer to represent the expectation over states encountered over past
episodes. This approach is also consistent with having a smooth training signal,
as the replay buffer becomes increasingly self-similar when an agent starts to
converge to the optimal policy in an environment, and hence the state density
distribution should become almost static at this point, giving a fixed objective
for the contingency agent. So when computing M(τπ1

,E[τπ∗]), in practice we

89

replace the expectation operator by the mean value over the last K samples of
the agent’s memory as illustrated in Figure 4.3.

Figure 4.3: Illustration of RL training loop with a single contingency agent, π1.
Arrows shown in orange are part of the computation for the trajectory penalty
term. Inputs for the trajectory metricM are taken from both the instantaneous
trajectory for π1 and the expected trajectory for the optimal agent, E[τπ∗]

4.4 Experiments

4.4.1 Intersection Environment

Environment Description

In our experiments we use the same simulation environment as for the previous
results. Figure 4.4 shows two frames of the environment with oncoming vehicles
in the intersection. The ego must still perform a left-hand turn in the face
of oncoming traffic, and must adjust its speed in order to pass through in the
shortest possible time while avoiding collisions with target vehicles. We expect a

90

contingency policy to be useful in this scenario, when there is a sudden change
in estimated target behaviour by the planner and the ego will have to either
slow down to let an aggressive target through, or speed up if it seems the target
is slowing down too much which may also cause a collision. More details on
this environment are provided in appendix A. We can anticipate that a change
in scene detection may affect the variance in detected positions of the target
vehicles, and cause less conservative behaviours to be too risky. In this case,
learning a fallback strategy that may be less affected by a drop in target position
confidence, may be considered safer and more useful.

(a) t = 3s (b) t = 5s

Figure 4.4: Navigation task: ego makes a left turn across the intersection with
oncoming traffic. Target vehicles may either be aggressive (i.e. disregarding
presence of ego in intersection) or cooperative (i.e. slowing down if ego is close
to intersection point).

Training Details

The state and action-space of the MDP are the same as described in the previous
chapter:

s = {sego, ṡego, s1, ṡ1, ttc1, s2, ṡ2, ttc2, s3, ṡ3, ttc3}

A = {−4, 2,−1, 0, 1, 2} m/s2

To penalize collisions and encourage faster episode termination, the reward
is set-up as follows per time step t:

rt =

{
−5 if collision
−0.1 otherwise

. (4.7)

In this version of the reward function we have eliminated the penalty for
hard-barking (i.e. −4m/s2 action). This is in part due to the small influence we
found it to have on the agent’s behaviour on one hand, but also since it represents
an objective of comfortable driving, which is not actually an objective we wish to

91

optimize for in the current state of our problem statement. Introducing a third
objective on top of efficiency of task completion and safety, might unnecessarily
complexify the behaviours which we wish to learn, and detrimentally affect the
quality of behaviours robust to incoming sources of uncertainty.

The scaling factors for the trajectory penalty are:

α = 1, δ = 0.1 .

These determine the relative weight of the pseudo-reward, with respect to the
regular reward function R. A lower value for α will hardly penalize the pseudo-
agent for having a similar state distribution to the reference agent, whereas
higher weighting will make the pseudo-agent seek to have a highly different
state-space trajectory, disregarding the original objective of the task given by
the regular reward function. They are fixed by a rough initial sweep. Figure
4.7 shows the effect of sweeping values of α on the final performance of the
contingency plan in terms of trajectory similarity to the optimal policy.

For the feature map ϕ used for computing M, we use a function selecting
only the ego speed out of the observation vector ϕ(s) = ṡego. In this application
where the ego’s control only applies to the longitudinal acceleration values due
to the path already being planned out as a left turn across the intersection, we
found that the speed feature alone is enough to differentiate between different
ego trajectories.

4.5 Results

Fig. 4.5 shows the training scores for both agents. We clearly see the second
agent’s convergence to its optimal performance ‘lags’ behind that of the optimal
agent. This is most likely due to the fact that the pseudo-reward term Rpenπ∗

depends on the states present in the memory buffer for π∗.

92

0 50000 100000 150000 200000 250000 300000

t raining steps

� 6

� 5

� 4

� 3

� 2

� 1

s
c
o

re

Figure 4.5: Training scores for both agents. Each is trained for 300k steps. π∗

is the optimal agent, π1 is the pseudo-agent.

0 50000 100000 150000 200000 250000 300000

t raining steps

� 3.5

� 3.0

� 2.5

� 2.0

� 1.5

� 1.0

� 0.5

p
s
e

u
d

o
-r

e
w

a
rd

Figure 4.6: Pseudo-reward, Rpenπ∗ calculated for both agents. The values for π∗

are computed only for comparison to the values used by π1.

93

10� 3 10� 2 10� 1 100 101 102

Scaling Factor (�)

0.6

0.8

1.0

1.2

1.4

1.6

A
v
e
ra

g
e
 V

a
lu

e
 f
o
r

M
e
tr

ic

Path Metric as a Function of Reward Scaling for Pseudo Agent

Figure 4.7: Average values forM on the final 100 episodes of each pseudo-agent,
for different pseudo-reward scaling α.

Hence Rpenπ∗ cannot be stable until π∗ has converged, and there is little change
in its memory’s state distribution. This prevents the corresponding pseudo-
agent, π1, from converging earlier. Interestingly, π1 reaches its best score before
π∗: in our implementation, the optimal path (accelerating before the 1st target
vehicle) is harder to find through exploration than the sub-optimal one (passing
in-between the target vehicles). Once the pseudo-reward is stable enough to
dissuade the pseudo-agent from copying the optimal agent’s path, it is faster to
converge to its new optimal policy (being the original sub-optimal policy).

Looking at Fig. 4.6, we see that both agents’ path metrics are similar for
approximately the first 50k steps, after which their policies start diverging.
This means both had similar state distributions (mainly due to a high degree of
random exploration) until that point. The value of Rpenπ∗ (τπ∗) keeps decreasing
while the optimal agent is converging to its best policy, and levels out once
it converges to its peak performance at approximately 200k steps. Rpenπ∗ (τπ1)
however levels out quite soon, closely corresponding to π1 reaching its peak
performance. Though it is still changing due to the changing state distribution
in π∗’s memory buffer, this is hardly seen on the plotted values compared to
the random oscillations.

Fig. 4.7 shows the effect that modifying the parameter α has on the result-
ing policy learned by the pseudo-agent π1. As mentioned in section 4.3, the
pseudo-reward must be scaled in such a way to fulfill both conditions (4.2) and
(4.4). Learning with pseudo-agents can fail if it is not scaled properly. We see
that there is a critical value for α, after which the pseudo-agent switches to a
sufficiently different behaviour, according to condition (4.2). In this case, we

94

0 100000 200000 300000 400000 500000

t raining steps

� 14

� 12

� 10

� 8

� 6

� 4

� 2

0
s
c
o

re

(a)

0 100000 200000 300000 400000 500000

t raining steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b)

Figure 4.8: (a) Training scores for both agents during training phase. This figure
does not take into account the trajectory penalties Rpen for π1, only the regular
rewards R. (b) Evolution of computed trajectory metric term M(·,E [τπ∗]) for
optimal and contingency policies. Although computed for both policies, the
resulting trajectory penalty is only attributed to π1.

can deduce that any value for d in the approximate interval [0.8, 1.4] is suitable.
Values d < 0.8 will not steer the pseudo-agent towards a trajectory different to
the optimal agent, whereas d > 1.4 would falsely rule out policies which we can
consider as being heuristically different.

0 2 4 6 8 10 12 14 16 18

t im e steps

12

14

16

18

20

22

24

26

28

30

e
g

o
 s

p
e

e
d

� 0.7

� 0.6

� 0.5

� 0.4

� 0.3

� 0.2

� 0.1

E
x

p
e

c
te

d
 R

e
tu

rn

(a)

0 2 4 6 8 10 12 14 16 18

t im e steps

12

14

16

18

20

22

24

26

28

30

e
g

o
 s

p
e

e
d

� 2.25

� 2.00

� 1.75

� 1.50

� 1.25

� 1.00

� 0.75

� 0.50

E
x

p
e

c
te

d
 R

e
tu

rn

(b)

0 2 4 6 8 10 12 14 16 18

t im e steps

12

14

16

18

20

22

24

26

28

30

e
g

o
 s

p
e

e
d

� 5

� 4

� 3

� 2

� 1

E
x

p
e

c
te

d
 R

e
tu

rn

(c)

Figure 4.9: Q-functions evaluated at different areas of feature space: (a) Qπ
∗

unaffected by the pseudo-reward, favors higher-speed trajectories. (b) Qπ1 using
pseudo-rewards (α = 1) favors lower-speed trajectories. (c) Qπ

∗
with increased

uncertainty on target position, higher-speed trajectories result in a collision with
first target vehicle.

Figs. 4.9a and 4.9b show the ground truth for Qπ
∗

and Qπ1 respectively,
in the ego trajectory feature space, represented as a 2D-tuple of ego vehicle
speed, along with the corresponding time step of the episode (t, ṡego). In our
use-case, this representation is sufficient to see the difference between varying
ego behaviours. We can see in Fig. 4.9a that with the unmodified reward, the
optimal agent π∗ prefers trajectories having higher speeds, as they correspond

95

to a shorter episode duration which is optimal in the sense of the original reward
structure. In Fig. 4.9b, adding an extra pseudo-reward changes the optimization
landscape, and tends to steer the pseudo-agent towards areas of lower ego speeds.
In all figures, we sampled 10 trajectories from different instances of both π∗ and
π1, and plotted the mean Q-value for each (t, ṡego) pair.

Fig. 4.9c shows the change in the expected returns in the case where there
is an increase in uncertainty around the first target vehicle’s position. In our
experiments, we modelled a local increase in sensor uncertainty by increasing the
effective collision radius of the first target vehicle by 50%. This modification
leads to a sharp drop in the performance of π∗, whereas the state-subspace
exploited by π1 remains safe and unaffected. We can see that the new optimal
policy in the case of Fig. 4.9c, is also reflected in Fig. 4.9b after adding the
pseudo-reward term. This will allow us to use π1 as a valid fallback strategy
during execution, if ever there is a change in the environment that would not
have been accounted for during the initial training phase.

4.6 Conclusion

In this chapter, we have introduced a new objective in an RL learning pipeline:
keeping track of, and learning, sub-optimal policies encountered during the ini-
tial training phase. We have shown that through an intuitive modification of the
reward model, that we are able to consistently learn these sub-optimal policies
in the case of a driving scenario.

The context of this approach is intended for methods to be applied to model-
free problem statements. In the case where the model, even a partial model, or
estimation thereof is available to the agent, we gain access to more powerful and
data-efficient methods for dealing with introduction of local uncertainties to the
MDP. In the next chapter, we combine this training paradigm with a hierarchical
controller, so as to quickly switch from optimal to available contingency policies
in the case of unexpected environment change during the execution phase. This
will allow an autonomous vehicle agent to make use of its fallback strategies
learned during training, according to its perception of the environment, much
like a human would.

96

Chapter 5

Low-Level Policy
Scheduling with
Model-Based Planning

5.1 Introduction

Planning, in the context of control tasks, is an incredibly useful tool when
dealing with environment in which there is potential high degree of uncertainty.
Although the act of planning for real-world applications requires a model which
invariably introduces some form of bias in to the predicted behaviours, in the
case of tasks where there is a strong constraint on the state-space an agent can
encounter, such as any task with a high concern for safety, planning allows us to
predict future actions and trajectories for the agent, and seek to mitigate any
future failures before the agent is faced with them. Training an agent with a
reinforcement learning algorithm is a form of planning: we use a model of the
environment to train the a value function to predict the return values according
to the reward function, over the course of many simulated agent-environment
interactions. This is akin to an outcome estimation, though the value function
also considers values of intermediate states and goals within the same return
estimation.

More often than not, we tend to use models when training RL agents. This
is due to the high number of agent-environment interactions required to learn an
effective policy, which disqualifies many real-world training applications. Due
to this fact we usually seek to model the task environment so that we’re able
to simulate many agent-environment interactions. When this is the case we

97

can use the model to perform some planning operations to increase the quality
of our estimation of the agent’s performance past the learned value function,
during either training or execution. Our problem statement seeks to deal with
the safety concerns of an autonomous navigation task during execution, which
is closely linked to the stochastic nature of the environment. Implementing
a planning module during the execution phase of the algorithm allows us to
better predict the possible outcomes of agent-environment interactions over long
periods of time, as well as compensate for the bias of the agent’s return estimator
inherited from a potential bias in the training data distribution. Bias inherited
from the training data is common in machine learning applications, and in RL
applications this can come from limitations in the environment model when
compared to the true world dynamics, or even environment parameters that
are different from those seen during training, once the agent is in the execution
phase.

Combining planning and learning has lead to some of the strongest ap-
proaches in reinforcement learning applications, such as the AlphaGo model
[Silver et al., 2018] developed to have better-than-human performances on the
game of Go which has traditionally been difficult for non-human players due to
the size of the state-space and the combinatorial complexity of various strategies
that can extend over a long chain of possible actions. As mentioned previously,
the strength of this approach is to help the value estimation function by explor-
ing the most probable outcomes according to the environment dynamics.

Hierarchical controllers can be used in tasks with multiple heuristic resolu-
tions of actions possible in the environment. In a sense it corresponds to the
‘divide and conquer’ reasoning for increasing the learning and performance effi-
ciency of controller. In most applications of hierarchical reinforcement learning,
we differentiate between micro and micro-level actions. While a low level policy
can learn the finer dynamics of the environment according to the raw actions
available to the agent, a higher level controller can be made to pick between
different low-level policies which each correspond to semantic actions with a
longer time-scale. This is presented in Sutton et al. [1999] as the options frame-
work, and is used in many RL applications such as videos games [Romac and
Béraud, 2019] which have a clear distinction between macro and micro strate-
gies which are fundamentally different in nature. As well as separating policies
with different temporal resolutions, we can use a hierarchical controller in or-
der to use separate criteria for shaping the behaviour of an agent, for example
safety and performance. In our case, the use of an additional layer of control
allows us to separate the computation of uncertainty from the estimation of
performance given an environment state. One of our objectives is to be able
to not confuse aleatoric and epistemic uncertainties in the same return estima-
tor. When mixing belief about environment dynamics (epistemic) with belief
on policy outcome given a set of environment dynamics (aleatoric) then the we
lose some of the understanding on the environment and are less able to react
accordingly when choosing the best policy for that situation. Additionally, dur-

98

ing the training phase of an RL agent, when using a simulated environment we
are able to train a policy without epistemic uncertainties, and hence it would
make sense to include a separate level of control for dealing with the epistemic
uncertainties of the real-world environment during the policy execution phase.

In our approach, we wish to use a hierarchical controller structure in order to
increase the robustness of the overall controller with respect to possible changes
to the environment dynamics from what was learned by the agent during train-
ing. We wish for this high-level controller to make use of the various contingency
policies learned during the training phase, and be able to switch between the
various policies according to it’s belief about the current environment state,
to be as robust as possible with respect to policy failure (in our autonomous
navigation use-case: vehicle collisions). In this chapter we present our work
on combining contingency plans with the optimal, along with a hierarchical
planning layer, with the following contributions:

• We improve our method for concurrently learning policies, with the aim
of the contingency policy being increasingly robust to switches between
low-level policies from the high-level planning module.

• We combine learned policies with a high-level model based controller, and
experimentally show through an autonomous navigation task that our ap-
proach is able to achieve a much safer agent performance in the case of
a stochastic environment, while sacrificing a minimal amount of perfor-
mance.

5.2 Related Work

5.2.1 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning [Dayan and Hinton, 1993, Sutton et al.,
1999] is a promising approach for helping RL algorithms generalize better in in-
creasingly complex environments. Several works apply the hierarchical structure
of control to navigation tasks, which lend themselves well to modular controllers
[Fisac et al., 2018]. Approaches such as Andreas et al. [2017], Nachum et al.
[2018] use sub-task or goal labelling in order to explicitly learn policies that
are able to generalize through goal-space. Our approach differs where we don’t
wish to learn different goals, rather striving to attain the same goal under mod-
ified environment conditions, moreover, we aim to learn alternative strategies
without having to subtask or goal labels. Works such as Machado et al. [2017],
Zhang et al. [2021] also have the same aim of self-discovering strategies to be
used in a hierarchical controller, though our method differs by targeting the
value function of the agent, through additional reward terms. Similar to our

99

approach, Cunningham et al. [2015] uses a form of voting through policy sim-
ulation, though our work also integrates training the contingency policy with
robustness to environment modifications in mind.

5.2.2 Agent Performance Estimation

Some approaches use an estimation of the confidence of the actions proposed by
an agent’s policy [Bouton et al., 2019, Clements et al., 2019, Hoel et al., 2020b]
to determine whether or not an agent’s policy is sufficiently good in the current
environment state. When this is not the case, control is typically given to a
separate, often open-loop controller looking to mitigate any possible negative
behaviour if failure cannot be avoided otherwise [Dalal et al., 2018, Filos et al.,
2020]. One issue with open-loop contingency plans – or any open-loop policy in
general – is that they do not take into account the closed-loop nature of most
real-world environments, whose dynamics are dependent on the actions of the
agent and may themselves fail if not implemented carefully. Rhinehart et al.
[2021], Killing et al. [2021], tackle the problem of high environment uncertainty,
by prioritizing information gathering if the agent is too uncertain about its
policy’s outcome. These approaches choose to approach by default with caution,
if ever there is missing or uncertain information in the agent’s input space.

5.3 Improvements to Training Contingency Poli-
cies

5.3.1 Policy’s Domain

In chapter 4 we presented a framework for learning one or more contingency poli-
cies concurrently to the optimal policy by augmenting the reward function with
a penalty term encouraging contingency plans to exploit trajectories through
sufficiently different areas of state-space, such that the collection of learned
policies will be more robust with respect to local changes in environment dy-
namics. When seeking to combine this approach with a higher-level controller
to determine the scheduling of those policies for acting in the environment, we
choose to retain the our initial approach of learning the contingency policies
since we were able to have multiple strategies with different behaviours consis-
tent with our objective of making the overall controller more robust to changing
environment dynamics.

However, there are further considerations to have once we plan on combining
the various low-level policies and make them all available to the agent. Notably,
the way we have set up the hierarchical controller is that the planner should

100

be able to dynamically allocate control of the agent to either of the available
low-level policies according to its belief of the current environment state. The
ability for an RL agent to act well is dependant on the distribution of data that
it has seen during its training phase, and in the case of reinforcement learning,
an agent will slowly converge to its expected trajectory to better learn the value
of states that it expects to find itself in. In environments with high-dimensional
state spaces, time and computing constraints prevent us from training the Q-
function over the policy’s entire domain. This means that the return estimator
(Q-function) will be less well-learned in states that are poorly represented in
its training distribution. This is due to the decreasing amount of exploration in
the exploration-exploitation trade-off during training where the agent seeks to
better learn areas of state-space that it considers as high in potential returns, in
order to converge more quickly to the optimal solution without having to explore
a lot of bad states before finding the desirable optimal trajectory. For example
in the case of an ε-greedy exploration strategy the rate of exploration is slowly
diminished so that 1 out of every 100 actions is exploratory (random action).
Following this, the probability that the agent takes 5 exploratory actions in
a row will be 1 out of 1005, which is extremely unlikely. Even if ε = 0.5,
the probability of taking 10 consecutive exploratory actions is approximately
0.1%. Although this is designed to help the policy converge faster, states that
are further along unlikely trajectories are quickly filtered out of the training
distribution, and the return estimation will have a high error at these lesser-
seen states. The contingency policies which we learn explicitly seek to converge
to trajectories which are far away in terms of state-space from the optimal’s
trajectory, meaning that the contingency agent’s policy will likely not be well-
learnt for states along the optimal’s expected trajectory, and vice-versa. This
becomes an issue when we wish to switch from one policy to another during
an episode run, since we’re giving control of the agent to a policy which will
find itself at some point along the trajectory of another, in a state where its
Q-function is potentially not well learnt.

We can call the state where control is switched from one low-level policy to
another as the ‘hand-off’ state. In order for a hand-off from one policy to an-
other to be done without issues, the return estimators for both policies must be
reasonable well learned on that point of their domain. For most applications of
this kind of hierarchical scheduling this is not an issue because the Q-functions
are sufficiently well-defined at all points of interest of the policy’s domain. Fur-
thermore, usually navigating agents do not take into account the difficulty of
going from one trajectory to another: for example, in the case of an autonomous
vehicle, in order to go from a high-speed trajectory to a low-speed one, the iner-
tia of the vehicle will mean that a series of breaking actions must happen before
the vehicle finds itself along the low-speed trajectory. If an ego vehicle starts
out at a high-speed trajectory, and at one point in time the planning module
estimates that a collision is about to happen and the ideal policy to follow is a
low-speed trajectory, then according to the time the ego has to react, we may
need some hard breaking actions which might not have been needed for either

101

training distributions of high and low-speed policies alone. Due to this fact the
contingency policy must be trained to not only solve the task using a different
strategy to that of the optimal agent, but also know how to correct for the initial
erroneous behaviour made from the intially acting policy. We can clearly see
that the effectiveness of this hierarchical set-up is dependent on the quality of
the planner and the environment parameter estimation, since the better we are
able to predict the outcomes of a scene, the less likely it is that the controller
will have to perform some last-minute policy switches at a hand-off point that
is difficult for the new acting policy to handle. Of course this could be seen
as insufficient exploration during training where this use-case could have been
covered, however due to the inherent limitations to the amount of exploration
an agent can do during training, it isn’t reasonable to assume we can predict
and cover every use-case in the training data.

In the following section we motivate the need for a contingency plan to
be able to correct for initial bad actions from the agent, with a simple maze
environment in which we have limited the amount of training each agent has
done.

5.3.2 Illustrative Example of Contingency hand-off Point

In order to illustrate the effect that lack of learning across the appropriate
domain might have when switching policies mid-run, we use a simple maze
environment having more than one possible valid strategy, in which we’ve pur-
posefully limited the amount of training two different policies have done. Figure
5.1 illustrates an example toy maze game, where an agent starts on the green
tile, and must navigate to exit the maze through either of two exits (red / blue).
Since we anticipate that some tiles may become blocked during the agent’s exe-
cution phase, we wish to learn a contingency agent alongside the optimal that is
capable of exiting the maze through either one of the exit tiles. In our case the
optimal agent’s policy is represented in blue, and successfully navigates from the
starting tile along the shortest path to the exit. A well-designed contingency
policy, represented by the red arrows, will be able to successfully navigate from
the starting tile to the maze exit by means of a different trajectory.

In our example, we have trained the policies such that their respective value
functions Qπ are well-learnt on a domain that we expect them to perform on.
However due to limitations in computational budget we are unable to correctly
train the Q-functions everywhere on the domain and so there are some states
for which the error on the Q-function is such that the correct behaviour is not
learnt yet. During the agent evaluation step, both agents always start from the
green tile and, crucially, this is also reflected in the training regime where the
initial state distribution is the same as for the evaluation part of the algorithm.
This is important to note, since we don’t consider the possibility of switching

102

Figure 5.1: Maze environment, with multiple exits (blue & red)

from one controller (policy) to the other during the execution step.

The resulting behaviour is that there are some states in which an agent
following the blue policy might end up, from which the red policy is then unable
to correctly navigate to the red exit tile. In Figure 5.1, states where the agent
can successfully navigate to either blue or red tiles are shaded in the objectives’
respective colors. States which are shaded both colors are ones in which the
agent is able to switch between objectives without losing the ability to navigate
to either of them. If one of the policies, say the red policy, is to be used as
a contingency plan, we must make sure that it’s functional domain is large
enough such that it covers the most probable so-called ‘hand-off’ points from
the optimal policy’s trajectory.

We observe that the need for this property becomes stronger in environments
where the agent has a hard time navigating between specific areas of state-space.
In our experiments on an autonomous navigation task, the inertia imparted
the ego vehicle by an overly aggressive policy may be difficult to handle for a
contingency plan which then requires strong breaking if, during training, the
contingency agent has not had to use strong breaking to reach it’s low-speed
state-space. This could potentially be fixed by changing the policy’s output to
be a desired speed, for example, and let a lower level controller handle the desired
acceleration values. However this is application-specific and moves complexity
from our machine learning model to a separate controller which may not be
desirable either.

103

5.3.3 Random Contingency Initialization

A standard approach for increasing the domain where the policy is valid is to
increase the variance of states present in the training data. This allows the value-
function to be better learned over a greater domain, at the cost of convergence
speed. To this end, our approach is to modify the initial state distribution for an
agent to force a greater initial state robustness for the contingency agent. Taking
inspiration from the maze example in Figure 5.1, a first naive implementation
is to randomize the starting state over all possible environment states. Given
the initial state distribution p(s0), we define the new initial state distribution
for the contingency agent as:

pπ1(s0) = (1− β)p(s0) + βp(s), (5.1)

where p(s) = U(S) is the uniform distribution over environment states, and
β ∈ [0, 1] is a parameter controlling the ratio of initial states sampled from the
regular initial state distribution and ones randomly sampled from the available
state-space. The optimal agent π∗ uses the standard environment initial state
distribution: pπ

∗
(s0) = p(s0).

However, with the aim of using the contingency policy to correct bad deci-
sions made by initial acting policy, we wish in fact for the contingency policy
to be specifically robust to areas of state-space heavily explored by the optimal
policy, being the most likely ‘hand-off’ point to the contingency policy. Having
both optimal and contingency policies train concurrently allows us to sample
random states in the replay buffer of the optimal, as initial states for the con-
tingency policy. This is equivalent to letting the optimal agent take the first
random number of steps in the environment before handing over control to the
contingency policy, mirroring the intended use-case for this training paradigm.
We use p(s̃π∗) to represent states sampled from the π∗’s replay buffer.

Moreover, our aim with replay buffer intialization is to help the robustness of
the contingency agent over the most probable ‘hand-off’ points with the optimal
agent when the latter is unable to handle the current environment parameters.
To this end, we may further use domain knowledge to constrain the states
sampled from p(s̃π∗) such that they best represent these possible ‘hand-off’
points, as explained in the next section.

5.3.4 Replay Buffer Contingency Initialization

To increase the likelihood that p(s̃π∗) well represents these states, using domain
knowledge, we constrain it to have a uniform density only over states where
the ego vehicle has not yet passed the intersection. This avoids the contingency
policy learning to act once the ego has passed the intersection which is not useful

104

in our use-case:

p(s̃π∗) = U(S̃), S̃ = {s ∈ Memory(π∗) | s|xego
< xint},

where s|xego
< xint represents all states in which the ego has not yet crossed

the intersection. In practice we only have access to observations of states in
the memory buffer hence we map the sampled observations, which contain the
ego’s position, back onto environment states which would result in the sampled
observation. Even though we’re not assured to map back onto the exact same
environment state as was encountered in the optimal agent’s state-space trajec-
tory, this nevertheless increases the contingency agent’s ability to be robust to
initial states sampled from the optimal agent’s trajectory.

Following Equation (5.1) we explore multiple values for β to see the trade-
off between increased generalization capability and convergence speed for the
contingency agent. Figure 5.2 shows how the training phase returns of the
contingency agent are affected by the modified initialization distribution. We
can see that the higher value of 0.8 leads to a higher variability of the returns,
which can be expected from the greater need for generalization to deal with the
difference in starting states.

(a) β = 0.8 (b) β = 0.2

Figure 5.2: Training run with different values for β using (5.1) for initial state
distribution.

From our experiments we found that a ratio of 0.5 between regular and
optimal-replay-buffer episode initializations gave the best results. Lower values
tended to decrease the contingency agent’s ability to function well at the ‘hand-
off’ points, whereas higher values tended to overly impact the convergence of
the contingency agent’s parameters; p(s̃π∗) adds a lot of variance in the state-
space encountered by the contingency agent, and hence increases the complexity
of correctly learning Qπ1 over this larger domain. In our experiments used for
training an agent in the intersection scenario we use the value β = 0.5 which we
observed to be the best compromise between generalization and convergence,
with an equal amount of initialization between the initial distribution p(s0) and

105

from the optimal agent p(s̃π∗):

pπ1(s0) =
1

2
p(s0) +

1

2
p(s̃π∗)

5.4 Hierarchical Controller and Planner

Model

Simulation Rollouts Low-level

policy

Sensor data

Environment

Available policies

ExecutionTraining

update

Figure 5.3: Structure of hierarchical controller composed of available policies
and model-based planner (High-level policy selection).

As mentioned in the beginning of this chapter, contingency plans alone are
not sufficient: a higher-level controller is required, capable of selecting the best
policy with respect to the current environment observation. In our approach,
we combine the learned optimal and contingency policies with a model-based
planner, in order to increase the robustness and safety of the acting agent with
respect to environment uncertainty. Figure 5.3 shows the structure of the hierar-
chical controller, whose high-level policy selection is in fact the planner module
responsible for estimating the safety of each of the available policies π ∈ Π, and
selecting the one with the lowest estimated chance of failure. A pseudo-code
description for the hierarchical controller is provided in appendix 5.4.1. In this
approach, we indirectly prefer trajectories with a low level of uncertainty, which
does not take into account a potential data collection step for areas of state
space which may have high epistemic uncertainty – able to be reduced through
further exploring the state-space.

5.4.1 Hierarchical Controller Algorithm

Algorithm 4 shows how the hierarchical controller chooses between available
policies. The idea is for it to choose the policy with the highest estimated safety
in the environment, using estimates of the environment dynamics.

106

Algorithm 4 Executing Hierarchical Controller

1: Π = {π∗, π1} ▷ available policies
2: Init o0 ▷ initial env observation
3: τ = {o0}
4: while episode not terminated do
5: for π ∈ Π do
6: for i in simulation budget M do
7: µi ∼ p(µ|τ) ▷ sample dynamics given observation history
8: Cπµi

= Simulate(π,µi) ▷ simulate env using µi, and env model
9: end for

10: end for
11: πchosen = arg minπ∈Π

1
M

∑M
i=1 C

π
µi

▷ choose estimated safest policy
12: at = πchosen(ot)
13: ot+1 ∼ Environment(at) ▷ policy acts, env returns new observation
14: τ = τ ∪ {ot+1}
15: Update p(µ|τ) ▷ Update conditional probability on µ
16: end while

5.4.2 Planner

The planner’s role is to estimate the chance of failure for each π ∈ Π available to
the controller. The approach we retain for our purposes is straightforward: we
perform roll-outs over the set of possible environment parameters µ for each π,
and return an estimated failure rate based on those roll-outs which will define
which policy is selected by the planner. This process estimates the probability of
policy failure given the current belief about environment stochastic parameters
µ. Let P (sfail|π,µ) denote the probability that policy π will fail for a given µ.
The planner’s goal is to select a policy according to:

π = arg min
π∈Π

P (sfail|π,µ∗),

where µ∗ are the true (unknown) parameter values. We may approximate it by
sampling from a probability density function conditioned on the history of agent
observations over the course of the episode µi ∼ p(µ|τ). Let C(π,µi) ∈ [0, 1]
represent whether or not there is a failure (collision) from policy π, after roll-out.
Then:

P (sfail|π,µ∗) ≈ 1

M

M∑
i=1

C(π,µi),

for M samples of µi. We note that the quality of the approximation relies
on how well the µi’s are sampled. The closer they are to µ∗, the better the
planner will be able to estimate the true probability of failure for each policy.
We use a simple approach consisting in eliminating µi’s from the sampling pool,
if targets are observed behaving in contradiction to the considered environment
parameters (based on vehicle speed, in our navigation task).

107

5.4.3 Sampling Environment Dynamics

The quality of our estimation of collision probability depends on the quality of
estimation of environment parameters. The estimation of the possible param-
eters is updated using the history of observations from the agent: p(µ|τ). We
start with a uniform density on µ at the start of each episode, and with every
new observation ot+1, we compare the actions taken by target vehicles, with
the actions according to either possible target behaviour model (bi ∈ {0, 1}). If
the observed target speed vobs is within a certain threshold εv of the simulated
behaviour speeds vsimbi , then that target behaviour is retained in p(µ|τ). Using
a stricter notation we can write µ|i = bi, where:

p(bi) = U(B), B = {b |
∣∣vsimb − vobs

∣∣ < εv, b ∈ {0, 1}},

where vsim0 , vsim1 are the simulated speeds for a cooperative and aggressive
target, respectfully. All bi’s are independent, meaning there is no correlation
between target behaviours.

To obtain our success rate and average score results, we sample without
replacement M = 200 values for µ, and average out both the success rate
(i.e. how many times the ego successfully navigated the intersection without
crashing), and the score (i.e. regular reward function in the environment).

5.5 Experiments

5.5.1 Simulation Environment

In our experimental setup we use a similar navigation task to the presented
in chapter 4, although the position initialization for target vehicles has been
modified to make them more random, and prevent biasing the agents towards
a pre-defined, well-known solution. We also augment the targets with different
behaviours, to which the ego must now learn to be robust to. For these exper-
iments, we have moved the uncertainty of observation from the positions and
speeds of target vehicles, to their behaviours. This is a better representation of
the kinds of uncertainties that are present in the autonomous navigation envi-
ronment, as the intentions of target vehicles in the scene are one of the major
factors in the difficulty of planning trajectories in this environment. This also
allows us to implement a variety of different behaviours for target vehicles that
might resemble those encountered in real-world scenarios. However the consid-
eration for uncertainty of outcome is similar whether we were to consider lack
of knowledge about the positions of targets, or their behaviours.

108

Stochastic environment parameters

The environment dynamics depend on the targets’ behaviours. The behaviour
for each target vehicle is a random variable Bi representing degree of aggres-
siveness, which are collected in µ where µ|i = Bi for i ∈ [1, N] for N targets. In
practice we use either bi = 0 for a cooperative target, or bi = 1 for an aggressive
target.

During training we set bi = 1, ∀i ∈ [1, N]. Both optimal and contingency
policies are trained on these environment parameters.

Trajectory Penalty

We use the same implementation of the trajectory penalty as for learning con-
tingency policies in the previous chapter: we replace the expectation operator
E [τπ] in (4.6) by the mean value over the last 100 samples of π∗’s replay buffer.
In these experiments we also use the speed of the ego vehicle as an observa-
tion feature ϕ(o) = ṡego. Trajectory penalty scaling factors used in (4.3) are:
α = 3, δ = 0.1 , which are fixed by a rough initial sweep.

5.6 Results

To evaluate the overall performance of our hierarchical controller, we compute
the number of successes vs. failures on the navigation task, over a range of
environment parameter values µ for different agents. Table 5.1 compiles the
results for each tested controller, over an environment parameter sample size of
M = 200.

Table 5.1: Performances of various agent setups in the intersection environment.

Controllers Success rate Average Score

π∗ 0.496 −1.200
π1 without replay buffer init. 0.885 -1.500
π1 with replay buffer init. 0.954 -1.466
H-control without replay buffer init. 0.890 -1.380
H-control with replay buffer init. 1.000 −1.238

Table 5.1 presents the performances of a range of agents in the intersec-
tion scenario. Success rate gives ratio of number of successes vs. failures over

109

all sampled environment configurations. Average score gives us the mean of
scores obtained in cases where the agent does not fail. Results are obtained by
averaging 4 runs over the same random seed.

From our results we clearly deduce that a single agent has a hard time gen-
eralizing to new target behaviours, even though it may have achieved optimal
performance within its training environment. Although π∗ has the highest aver-
age score in cases when it does not fail, it does not generalize well and performs
very poorly in unseen environment instances. In our navigation task, the con-
tingency policy that is learnt corresponds to the ego having a more conservative
driving attitude; this explains why the success rate is higher for π1 with respect
to π∗, although the average score decreases due to sacrificing performance for
safer behaviour. When adding the replay buffer initialization to π1, the success
rate further increases due to the increased ability of the contingency agent to
generalize to greater areas of observation-space.

Compared to the individual policies, we expect the hierarchical controller to
perform better, due to its access to a model-based planner combined with both
policies. Interestingly, we find that the contingency policy with replay buffer
initialization has a higher success rate than the hierarchical controller using
π1 without the initialization. This highlights the importance of generalization
when designing safe, robust algorithms. Finally, we see that the highest success
rate is achieved by our proposed approach of combining optimal, and robust
contingency policies. More importantly, though success rates are similar with
the single π1 with replay buffer initialization, we are able to obtain a good
performance score close to the optimal policy, due to π∗ being available to the
hierarchical controller. This demonstrates how our approach is able to ensure
much safer behaviour in unseen environment configurations than a single policy,
without sacrificing performance by being overly cautious.

5.7 Conclusion

In conclusion, we have presented an approach for learning multiple policies in
an autonomous navigation task and adapting the approach to specifically learn
a robust contingency policy, which when combined with a model-based plan-
ner, is able to increase the robustness of the agent with respect to stochastic
environment parameters. In our intersection use-case, we are able to reach a
rate of no collisions for any (sampled) environment configuration, even when
we only had access to a single one of these configurations during training. We
acknowledge that the planner module has a simple behavioural prediction for
target vehicles, and although it is sufficient in our simulation environment to
obtain good performance, better detection of the environment’s stochastic pa-
rameters µ will increase the robustness of the overall agent, and ultimately the
effectiveness of having an available contingency policy.

110

One main advantage of this hybrid approach is the ability to separate per-
formance and safety in an RL framework. Whereas using a single reward func-
tion and relying on reward engineering to obtain the correct behaviour can be
arbitrary, in this case we are able to optimize for performance in a complex
environment, and ensure a high level safety in unseen instances of environment
dynamics without having to tweak performance and safety terms in a single
reward function.

111

Chapter 6

Conclusion and
Perspectives

6.1 Conclusion

During our work we have investigated an approach to ensure the robustness of
an autonomous agent’s behaviour in the face of environment uncertainty, addi-
tionally taking into consideration the balance between safety and performance
in the navigation task. We use the data-driven deep reinforcement learning ap-
proach which is well-suited for tackling environments with complex state-spaces.
Given the nature of the objectives for implementing autonomous navigation in
an industrial context, we must keep in mind the need for explicitly measuring
the level of risk that is taken by the autonomous agent, such that it may also
provide a way for judging whether or not the level of risk associated with a
proposed trajectory is acceptable. This has been implemented in the form of a
hierarchical planner which has been presented in the final chapter, and allows for
a stricter control over the performance of an agent in the stochastic navigation
environment.

Our initial work dealt with learning the distribution for episodic returns as
a proxy for potential outcomes. The idea behind this approach is that clas-
sical RL algorithms use the expectation of outcome (i.e. the mean value) in
order to inform decisions in the agent’s current state. However the presence of
uncertainty may lead to the presence of multiple outcome modes, which may
change the value of this proxy to something which will not actually correspond
to any meaningful outcomes that might occur, since only one of the present
modes will be realised during the episode run. This approach seems sensible,
due to the ability of using quantile regression in order to learn quantiles of the

112

return distribution. The formulation in terms of learning quantiles gives us the
added benefit of being able to specify a minimum resolution for the probabil-
ity of events, setting a threshold for probabilistic mass (total probability) for
outcomes which we wish to be sensitive to.

Though when we apply the distributional RL framework to a stochastic
navigation task with high episode lengths, we notice that there are some issues
with both the practical application, and the way of using the return values as a
proxy for estimating the probability of certain outcomes. Asides from the ability
for the model to converge to a meaningful, qualitatively exploitable distribution,
the ambiguity between the use of modes as separate strategy indicators, and the
fact that return values to outcomes is a non-injective mapping, means that this
approach is not well suited for our application of wanting an agent choose a
suitable strategy according to the possible episodic outcomes.

To counter this issue, we instead develop a framework based on a hierar-
chical structure, dealing with aleatoric and epistemic uncertainties at separate
levels. This approach has a greater focus on the robustness of a policy being
able to act correctly following a changing perception of the environment. The
presence of multiple concurrent policies also allows us to increase the learning
efficiency of the algorithm by the logic of ‘divide and conquer’, since we are
no longer attempting to learn a single policy model for all possible use-cases
of environment dynamics and agent perception quality. We have shown that
this approach has the ability of increasing the overall safety of an agent in an
autonomous navigation task, without overly sacrificing the performance as can
be the case for the ‘freezing robot problem’. This property is crucial for an au-
tonomous agent to be able to interact with an environment with some measure
of success, especially in the case of autonomous vehicles which are expected to
interact with humans in a navigation task where common sense is often referred
to as a means for balancing the amount of acceptable risk associated to our
actions on the road, as well as in terms of cooperation with other vehicles.

Overall, results from our proposed hierarchical model are promising, and
moreover remain general enough in its formulation to have the potential for
application to a greater domain of tasks, not just automotive navigation. There
is a point to be made about the use of a simulation environment for validation,
which is still one step removed from applying the algorithm to an industrial
context, along with the integration of the proposed controller to a real-world
vehicle architecture. Making the bridge between performance in simulation
vs the real world is complex and RL applications are no exception. For this
reason the experiments and results of this work are focused on validating the
autonomous agent’s behaviour inside of a simulation environment, such that
they can be developed more quickly and efficiently; adapting the controller
to a real-world prototype is another task in and of itself. In conclusion, our
work has investigated a couple of approaches to adapting a machine learning
algorithm to a stochastic decision-making problem, with some good measure of

113

success. We have been able to highlight some of the most important aspects to
take into consideration for this problem statement, mainly concerning the need
for generalization from the agent, to both be able to switch between different
behaviours during an on-line run, as well as of course generalizing to other areas
of its task domain. This is shown in our need for including a specific modification
to the training regime (section 5.3.2) such that multiple policies are able to be
combined in a hierarchical structured controller.

6.2 Perspectives

6.2.1 Continuation of our Work

Given the current state of our work, there are some clear directions for further
development of our hierarchical controller, notably the way multiple policies
with different strategies are learned in the environment, the planning module,
and the method for stochastic parameter update.

We recall that the aim for learning multiple policies with different behaviours
in the environment is so that we may expect them to be robust to local modifi-
cations of the environment dynamics, or local changes to the agent’s perception
(such as obstruction of one spatially correlated part of the input space), as is
shown in figure 4.1. However in our logic of learning ‘plan B’s’, we make the
assumption that exploiting different areas of state space will result in an overall
robust environment. A better way of looking at the problem, and the apparent
way that contingency strategies are formulated by humans, is that the contin-
gency strategy is actually generated as the optimal solution of an ‘environment
B’ which is imagined by the agent as having the most expected modification to
the original environment, and whose optimal policy is different from the current
one. With this in mind we can formulate this objective in the same terms which
we have used in this work: instead of aiming to learn π1 with a condition of
distance between policy behaviours

M (E [τπ1
] ,E [τπ∗]) ≥ d,

we should instead attempt to learn µ′ (which defines the dynamics and obser-
vation model of the environment), such that:

M
(
E
[
τπ∗

µ

]
,E
[
τπ∗

µ′

])
≥ d,

and then retain the relevant contingency policy π∗
µ′ where π∗

µ denotes the op-
timal policy in the environment defined by stochastic parameters µ. This way,
we are actually learning to anticipate changes in the environment rather than
blindly learning policies with different strategies from one another in the hope
that they will be useful in a modified version of the training environment. We

114

can think of an example where we are learning what clothes to wear when going
on a walk outside when it is currently sunny, though it may rain later. With our
current approach, we may learn to use an umbrella, or even go out without a
shirt at all, since both of these can be different enough from our optimal policy
of using just a shirt for sunny weather. However clearly only one of these two
‘different strategies’ (i.e. the umbrella) is the correct solution for if there is
rainy weather, and the no-shirt strategy – although being sufficiently different
from the shirt and umbrella strategies – will be useless in the new environment.
We can expect that by using the ‘environment B’ perspective, the learning of
useless policies will have been eliminated.

Moreover, the field of reinforcement learning is seeing some big advance-
ments in terms of robustness with respect to both domain generalization, and
task generalization, known as meta-RL (learning to learn). Models which use
architectures that are able to decompose the defining elements of tasks into
some value that can be treated as an input to the autonomous agent, such as
Kirsch et al. [2019], are seeing some good results for knowing how to adapt
to new unseen tasks. However, as discussed in Badia et al. [2020a] the ability
for agents to learn over a great number of environments is a challenging one,
showing how far we still are from the equivalent of a ‘general AI’ in terms of
agent control, even for domains with similar structures and goals such as the
Atari suite. We have considered a more ad-hoc approach for increasing the ro-
bustness of an agent faced with different data distributions due to the element
of safety being so crucial, since this method gives us a more explicit estimate
for outcome probabilities and allows us to have greater control for the agent’s
performance. However a more general solution with perhaps a greater ability
for adaptation across all autonomous navigation tasks (i.e. not just intersec-
tion scenarios), might require such an approach as meta-RL, and this direction
of work is definitely an interesting one to pursue in order for a comprehensive
autonomous solution to be developed for AVs.

A natural continuation for this work, as mentioned in the previous section,
would be to validate the decision-making in a more advanced simulation environ-
ment, taking into account real models for sensor uncertainties, and interactions
with target vehicles, as well as realistic vehicle dynamics. Some assumptions
that we have made during this work have been for example: incoming objects
are always detected, the agent has full knowledge about the direction of travel
for the target vehicle, or that the actions recommended by the autonomous nav-
igation algorithm are able to be exactly executed by the vehicle’s actuators (no
feasibility issues, no communication errors within the vehicle’s systems). Al-
though this work strays away from the machine learning element of the project,
it is nonetheless vital for integrating such a system into a modern vehicle’s
software architecture.

115

6.2.2 Machine Learning for Autonomous Navigation

Achieving autonomous agent control is possible with a wide range of algorithms
using different approaches than data-driven machine learning. However one
clear advantage that data-driven algorithms have is the ability to improve over
time, and improve with additional data collected by different agents performing
the same – or similar – tasks. This is part of the strength of off-policy learning for
example (section 2.1.3), where an agent can improve its performance by learning
from experiences of other agents’ interactions. The ability for collaborative
learning might mean an exponential improvement in an autonomous vehicle’s
ability to react to the various scenarios it encounters whilst driving, since they
will have been learned by at least one of the other agents collecting data about
the driving environment. We could benefit from an implementation using data
sets between different physical zones where the driving style is different (say,
more or less cooperative), in order to rapidly adapt an agent behaviour on the
road from one driving style to another. The value of having extra data to use
for both training and validation is the reason why modern car companies are
collecting driving data from both test vehicles as well as commercially sold ones,
in some cases. As we have seen primarily in the world of social media, we might
expect that the value of personal driving data will increase as an increasing
number of autonomous driving systems are rolled out.

The initial push for developing AVs has been motivated by the aim of reduc-
ing the amount of deaths and accidents that happen on the road each year. Our
work largely follows the same motivations, and the general problem statement
that has been considered for this task has been that of an autonomous agent
having the capabilities of co-existing in an environment with human actors.
One of the reasons why the development of a truly autonomous vehicle is such
a complex task is due to the unpredictability of human actors which may not
always be considered as rational actors especially during driving scenarios. For
example, many autonomous transport systems have already been implemented
such as trains or trams which usually do not have to take into consideration the
high combinatorial complexity associated with such human-robot interactions.

For this reason there is still some need to balance out safety and performance
criteria, however this entails the necessity for placing some kind of threshold
between the two, which can at times seem quite arbitrary. If we consider the
natural human approach to risk in such a situation, we also have some type of
natural threshold past which we will change our behaviours due to the situation
being more or less risky. However this of course is not some pre-set constant
value: firstly, the level for risk tolerance may vary greatly between individuals,
and secondly your personal tolerance for risk is susceptible to be influenced by
external factors which may lead to a variation is decision-making according to
when the task is performed. We may also consider the fact that the ‘decision-
boundaries’, which represent the limits in our input space which may make us

116

consider multiple possible courses of action, are not hard-drawn lines, but rather
blurry boundaries for which we can attribute a probability for taking either pos-
sible course of actions that is considered ‘good enough’. Following this, the way
we code safety requirements into an autonomous algorithm attempts to evalu-
ate the realistic probability for collision according to expectations of outcomes,
and then react to the best available strategy according to these expectations.
However in human decision-making, realistic levels of expectation are always
distorted such that even an action that is good in expectation may appear as
not desirable due to the uncertainty tied to it. Veritasium [2015] shows a version
of this, where in spite of good odds for winning money, some people may decide
not to take a bet simply due to the risk associated with the decision, indepen-
dently from the fact that the expectation of outcome is to win money. The
level of risk-aversion should be taken into consideration when designing an au-
tonomous agent to not only interact with human agents, but to imitate human
behaviour in the driving task. We may ask the question pertaining to the level
of risk-aversion a self-driving car should have in order to be considered reason-
able in order to implement it into the driving environment. Even when learning
to drive and obtaining a driving license, we are taught that an excessive level of
risk-aversion may be dangerous during the driving task, due to the behaviour
being not expected by other actors in the environment. Considering this, we
could make the argument that the safest form of driving is the one which is the
most expected from other agents in the environment. From the point of view of
our autonomous algorithm there is certainly some truth to this, since having a
high degree of knowledge about the future actions of other agents in the envi-
ronment diminishes the total uncertainty of the environment and makes it much
easier to plan optimal trajectories. This reasoning is further supported by some
of the most effective safety features on modern vehicles, namely indicators and
break lights, which are used in order to indicate intention to other road users
so that they may formulate the best plan to adapt to your driving trajectory.

Implementing deep machine learning algorithms for AV control shows some
promise, most notably for their ability to generalize over a large domain of
scenarios with a high-dimensionality, as well as their ability to use incoming data
to continuously improve their performance over time in a collaborative manner,
potentially using data from a large fleet of AVs. The most constraining elements
of implementing an autonomous control algorithm is the high dimensionality of
the input space, and a high degree of uncertainty related to both scene detection,
and behaviour of other road users. Nonetheless AVs are already seeing some
use on use-cases with the lowest probability for unplanned interactions such as
highways, or intersections with clear traffic rules where nuanced decisions do
no have to be made. The added constraints that come with limiting the use
to simple use-cases allows us to make simplify the input space and reduce the
need to make safety-performance trade-offs since we are able to almost always
ensure a high degree of safety due to the high observability of the environment.
Validation of such algorithms in terms of safety can be given by some threshold
value in terms of the amount of ‘wrong’ decisions taken by the agent, normalized

117

to the distance travelled on roads or road-types, and given as some very small
value such that the error rate is not only on par with, but much lower than for
human actors. This can be done when there exist clear labels for correct and
incorrect behaviour, however if we should want to use AVs in navigation tasks
with inherently higher degrees of uncertainty where it is challenging to define
an objectively correct behaviour, then the combination of both planning and
learning algorithms seem to provide the best compromise between verifiable
safety and strength of adaptation. This factor of explainability, which is so
crucial for justifying the actions taken by the autonomous agent, is a weakness
of deep reinforcement learning which can be complimented by a non-machine
learning algorithm, such as that which we have used in our hierarchical planner
which learns to schedule contingency policies learned by deep models.

118

Appendix A

Simulation Environment

This appendix presents a more in-depth view of the simulation environment
developed for our work for both training and validation. This simulation tool
was continuously developed over the course of this thesis by Renault’s path-
planning team with the purpose of being able to provide a proof-of-concept
for autonomous algorithms by validating autonomous agents in more or less
complex driving scenarios.

In the context of this work as an industrial CIFRE PhD, we had to decide
on a training and validation pipeline in order for our work to later be integrated
in Renault’s models as a part of their path planning project. The algorithm
training and validation is done in a simulated driving environment, and as a
part of this PhD project we must choose a simulation environment to fulfill this
role. Renault already has simulation environments such as SCANeR, which it
uses for validating ADAS functions. SCANeR is a powerful tool, and includes
models which account for chassis dynamics, as well as tyre-road contact me-
chanics, amongst others. Although these are an important consideration to have
before implementing algorithms into real-world prototypes, model complexity
during simulation is something that we strive to reduce as much as possible
in reinforcement learning applications, due to the limitation on computational
resources for generating as many agent-environment interactions as possible dur-
ing the algorithm’s training phase. For this reason, we have decided to develop
our own lightweight framework for training and validation. This approach not
only allows us to optimize the computations done with an application to ma-
chine learning, but also gives us the flexibility of adapting the framework for
being able to contain additional testing scenarios, along with modifying vehicle
behaviours more quickly than if it were a larger, more widely used tool.

119

A.1 Driving Scenarios

The main driving scenario that was considered in our work is the intersection
scenario, and most of our work has been focused on various implementations of
the intersection scenario, with the overall structure of the task remaining the
same.

As can be seen in figure A.1 the intersection environment consists of a 4-way
intersection where each road allows for both directions of travel for vehicles. We
consider that a single one of the vehicles is controllable and referred to as the
ego, the rest of the vehicles in the driving scenario being referred to as targets.

Figure A.1: Capture of the simulated navigation task.

In this situation, a vehicle has three possible path choices once reaching
the intersection: turn left, turn right, or follow straight ahead. The path for
either one of these options is pre-determined such that once the intention of the
vehicle is known, then it will follow this path and not have to act on any lateral
movement in order to reach its destination. This means that an agent will only
have control over its longitudinal position along this path. For this reason we
use a Frenet frame of reference for each vehicle to describe their position relative
to their path, with the tangent part always being 0 (always on the path), and
the longitudinal variable changing according to the speed control of the vehicle.
The path while crossing the intersection is made up of a straight line until the
vehicle is onto the intersection, and then a quarter circle until the center of the

120

objective lane, if the vehicle turns either way, or continues straight if the vehicle
crosses straight through the intersection.

Figure A.2: Intersection scenario with oncoming vehicles. Dotted lines represent
the path for ego (green) and targets (red). Shaded ellipse around the targets
represent the uncertainty on their positions, whereas the orange zone around
the ego, of dimension rc represents the collision radius around the ego vehicle.

In practice, each vehicle has access to a relative frame of reference (Frenet),
along with a transformation available to the environment, which provides a way
to compute the absolute position of the vehicle with respect to the intersection,
according to the different starting points of that vehicle which may vary accord-
ing to starting lane and initial offset (how close it is to the intersection). As
a standard value, we initialize most vehicles at approximately 100m from the
intersection which corresponds to 5s of driving at the initialized speed of 20m.
In almost all of our experiments, the ego vehicle is initialized at 100m from the
intersection.

With this intersection set-up, we have a large number of possibilities in terms
of navigation tasks for the ego to learn to solve, according to the possibilities
for target vehicles to arrive from either sides of the intersection. Due to the
symmetry of the scenario, we may fix the ego as always coming from a single
lane (the bottom lane, for example). As our nominal scenario for performing

121

initial experimentation, we pick one where the target vehicle must cross an
incoming flow of vehicles which may or may not give way when crossing at the
intersection. In our implementation we consider a case where there are no pre-
determined traffic rules pertaining to giving or having the right of way in the
intersection. This gives no prior information about the expected trajectory for
the target vehicles and allows for the ego to learn in a slightly more complex
use-case. Moreover, since we are designing and algorithm to have a high degree
of safety it is reasonable to consider an adversarial target vehicle which would
not respect the right of way indication. We use the left-hand turn scenario
where targets are oncoming from the opposite top lane, and cross the ego’s
path. Given the symmetry of the problem, including target vehicles in other
lanes is almost equivalent to placing additional targets in the oncoming lane due
to the fact that multiple vehicles cannot be in the intersection at the same time
due to the collision radius attributed to the vehicles. In order for the ego vehicle
to avoid collisions, it must wait outside the intersection and only go through
once all other vehicles have exited the intersection.

During our work, we have maintained the same task topology for training and
validation, though the behaviours as well as action and observation spaces are
modified in order to add complexity and variation to the autonomous navigation
task. During development, we have kept the simulator as general as possible so
as to implement different topologies in the future such as merges, or roundabouts
for example.

A.2 Input and Output Spaces for Autonomous
Agent

A.2.1 General Description

There are multiple approaches for modeling the observation space for an au-
tonomous vehicle. By far the two most popular are the occupation grid, or a
list of objects. Figure A.3 shows an example of what occupation grid inputs
look like to the agent. In real-world applications sensors will return information
such as depth and angular position, making the radial occupation grid the most
realistic, however in some control environments such as mazes or video games,
a square occupation grid makes more sense.

The same information that is contained by the occupation grids can also be
more compactly represented as a single vector containing relevant information
such as the relative positions of targets in the environment, along with speed
and other information about the targets and/or the ego which are not able to

122

(a) Square occupation grid (b) Radial occupation grid

Figure A.3: Different occupation grids from a single input state to the agent.

be conveyed by the occupation grid representation:

sinput =

Xego

X1

X2

X3

Each approach has its own advantages and disadvantages. When using an

occupation grid, the size of the input remains fixed, while the size of a list of
objects may be of varying size according to the amount of vehicles in the scene.
Additionally, an occupation grid by itself does not transmit any information
about the speed or acceleration values of target vehicles in the environment.
This can be overcome though, just as in Atari game implementations which use
raw pixel data as inputs, by stacking multiple subsequent frames together as the
input to the agent’s policy, so that the notion of speed and acceleration may be
transmitted to the agent, although these values have to be learned. Moreover,
the occupation grid is useful for transmitting information about spatial corre-
lation of objects in the scene. This may help to capture the spatial interactions
between vehicles in a more succinct way than if the raw position values were
to be fed in the agent’s policy. This property of the observation grid treats the
scene just like an image containing pixel values, and for this reason an occu-
pancy grid input space is usually paired with a convolutional network model
which is well-adapted to extracting information about spatial correlation. It
is important to note though, that additional information that we may wish to
be given to the agent for its decision-making, such as intentions of other cars,
driving style, or trajectory history is more difficult to be given in observation
grid form, and will require a more complex design of the policy’s architecture

123

in order to accommodate the different nature and dimensionality of the input
variables.

On the other hand, we can choose to supply the agent’s policy with a list
of target vehicles present in the navigation scenario, that is commonly what
is returned by the vehicle’s sensor fusion module. This approach contains less
spatial correlation information, however we’re able to more easily pass informa-
tion such as speed, acceleration, or driver intention for example, to the agent’s
policy. This allows us to combine the input information into a single vector to
feed to a deep neural network model, and doesn’t require a special considera-
tion for extracting relevant information such as is the case for an occupation
grid. However there are two difficulties relating to dealing with a list of objects:
firstly the agent should be agnostic to the ordering of the objects in the list,
and secondly the variation in the number of vehicles in the scene means that a
list containing these objects will be of variable size.

To the first point, we wish for the agent to react in the same way to vehicles
in the scene, regardless of their ordering in the input vector. If we say that
all information about a single target vehicle can be written as Xi, then the

agent’s recommended action for either

[
X1

X2

]
or

[
X2

X1

]
should be the same. In

practice this is difficult to achieve, especially in the case of learning algorithms,
if the policy function is not designed with this property in mind. One way of
compensating for this is how the targets are ordered in the input vector to the
agent’s policy. If for example we can make sure that the targets are always
ordered according to the most critical target first, then we make sure that the
vehicles will always be given as inputs in the same order for a similar scene.
The second point is more difficult to treat, though it is important to take into
consideration when feeding this input into a policy model. The input dimension
for deep neural networks is not designed to change, and so it is set in advance
according to the kind of data that will be seen by the model. However if we
dimension the network for a list of 3 target vehicles for example, then we have
to ‘crop out’ any extra vehicles from the policy’s input (i.e. tell the policy
to disregard any non-important vehicles when making a decision). If on the
other hand there are less than 3 target vehicles, then we cannot simply set the
respective input values to 0 since this will still affect the weights and biases of
the policy model. Instead, one solution is to create imaginary target vehicles
which are sufficiently out of the way of the ego such that they would not affect
the ego’s decision making.

In our implementation, along with the positions and speeds of both ego and
target vehicles, we augment the input state with an estimation of the time to
collision (ttc) between the ego and each of the targets. In the case where ego
and target vehicles are on a collision course, while maintaining current speeds,
this value represents the estimated time to collision between the two. How-
ever if the hypothesis of constant speed does not result in a predicted collision,

124

Figure A.4: Example characteristics for LiDAR ranging

this value is set to a maximum value. Although this information is redundant
with the positions and speeds of the targets, providing this information as an
explicitly computed value may help the policy in making appropriate decisions
in the environment. In our experiments, we observed that the inclusion of this
information on average helped the policy to converge, meaning that doing this
allowed to alleviate some of the complexity for learning this computation from
the neural network.

A.2.2 Observations by Vehicle Sensors

As mentioned in our overview of how an MDP is modeled, there may be an
associated observation model O : S → O which dictates how information about
the current state of the environment is perceived by the agent. This is the case
in most real-world applications where the agent will not have full observabil-
ity on all environment variables. In the case of our navigation scenario, the
full environment state contains information such as the true positions, speeds,

125

accelerations, and paths of target vehicles in order to carry out the simula-
tion process. However the agent is not able to perceive all of this information,
given the limitations and uncertainties linked to the performance of its sensors.
real-world sensors are calibrated and have their uncertainties quantified before
being integrated into a vehicle design so that these values may be taken into
consideration when used to decide the vehicle’s next action.

Different sensors have varying degrees of certainty, for example LiDAR (light
detection and ranging) is very useful for depth perception, whereas a camera is
more useful for detecting the relative angular position of objects. Figure A.4
shows the scanning range of a 3D LiDAR sensor, typically used for target de-
tection on roads, with the remission rate according to the distance to target.
The values given in this figure are just for reference, as there exist more expen-
sive and powerful sensors able to detect objects at up to 100m, for example.
Although LiDARs, RADARs and cameras are the most commonly used, other
sensors such as ultrasounds are a cheaper alternative for low-precision close-
range detection. The information from these sensors is combined in such a way
to give the vehicle a more complete picture of the environment around it. In our
experiments we consider various degrees of uncertainty ranging from positions
and speeds of target vehicles, as well as the driving style of the targets. Figure
A.5 shows how the uncertainty on the target’s position is seen by the agent.

Figure A.5: uncertainty on the position of incoming target vehicle

The shaded area corresponds to the 2-σ zone of a Gaussian distribution on
either side of the mean, along the 1-dimensional path that is defined for the
vehicle. In our application we assume there is no uncertainty on the direction

126

of travel of the vehicles which translates to no uncertainty on the lateral posi-
tion of the vehicles in their lanes (the 2-D shape of the Gaussian is simply for
visual effect). In practice, the true position of the vehicle is known by the sim-
ulation environment, but the position detected by the agent is sampled from a
1-dimensional normal distribution according to the relevant value of σ. This of
course increases the complexity of matching input states to return estimations,
as similar perceived states from the agent may have been generated by targets
at different true positions. In our experiments, we keep a constant value for
σ such that the uncertainty on target vehicle position doesn’t change with the
distance between the ego and target.

A.3 Different Behaviours for Target Vehicles

In chapter 5 we use an uncertainty on target behaviours in order to model
some level of uncertainty in the navigation environment. We define a degree
of aggressiveness that will affect the reactions of target vehicle with respect to
the ego. Along with modeling realistic epistemic uncertainties of the driving
environment, targets reacting to the ego creates a closed-loop system which is
more complex to plan behavior in than an open-loop environment which does
not react to the actions of the agent. With this in mind, we describe below the
different possible target behaviours that we used in experiments:

act aggro():
An aggressive target will act as if it has the right of way, and not react to
the presence of the ego in the intersection. In this situation it is up to the
ego to plan its trajectory around that of the aggressive target.

act coop():
A fully cooperative target will always give the right of way to the ego
when it is approaching the intersection at some minimum distance. In the
case where the target gives the right of way, it will come to a stop before
the intersection as long as it is able to within the limits of its possible
deceleration values.

act coop with slowing():
The same behaviour as for act coop, except that a cooperative target will
preemptively enter the intersection at a lower speed than an aggressive
target. This is done so that there is a difference in behaviour early on in
the episode trajectories between both types of target behaviours. Early
behaviour detection is an important factor in the ability for the ego to
react to the current environment state. If we are able to correctly plan
our the future behaviour of targets then the task of risk reduction becomes
much easier.

127

act coop without stopping():
In this iteration of cooperative behaviour, targets will slow down to a very
low speed if they detect the ego’s presence in the intersection, however
will not come to a complete stop. This use-case allows the ego to be more
confident in maintaining a high-speed trajectories to cross the intersec-
tion when the targets are more cooperative, however will not be able to
totally disregard the flow of incoming targets simply because the first one
is cooperative and will stop at the intersection.

Additionally targets are programmed in such a way that they aim to main-
tain a certain target speed (20 m/s), and will break in order to maintain a
minimum distance with respect to the vehicle directly in front of them. This
avoids same-lane collisions between the targets and makes collisions with the
ego the only possible source of collisions in the navigation environment.

In the experiments described in section 5.5, the random variable Bi = [0, 1]
corresponds to either act coop without stopping() or act aggro() as either
cooperative or aggressive behaviours respectfully.

A.4 Adapting the Environment for Training Deep
Learning Models

A.4.1 Gym Framework

In the interest of compatibility between various environments and reinforcement
learning agents, gym is a wrapper framework that help to model environments
as MDPs, and gives a common interface so that agents can be applied to mul-
tiple different control tasks. The Markov property of the MDP means that the
transition from one state to another is done using only information about the
current state and the action taken by the agent. The episodic nature of MDP
tasks also means that the episode must be repeatable. For this reason, the gym
wrapper requires the definition of 2 main functions:

step(action) → next observation, reward, done, info:

From the current state of the MDP, return an observation of the next
state, the reward corresponding to the transition, a flag value in order to
indicate whether or nor the episode is over (if the goal is reached or if the
task is failed), and an extra variable to pass any extra information about
the episode.

reset():
Reset the state of the environment to an initial state (can be drawn from

128

initial state distribution), after the done flag is set to 1.

Defining a gym environment also requires defining the observation space

and action space class attributes which respectfully define the input and out-
put dimensions of the policy function (this makes it easier to automatically
initialize network layer sizes, for example). Additional functions are able to be
overridden, such as render() which draws the current state for the purpose of
visualization. Using the gym wrapper is standard is RL applications, and al-
lows for use of pre-existing libraries of agents such as stable-baselines [Hill et al.,
2018] on custom-defined environments.

A.4.2 Computational Resources

Training time is a big factor is how efficient we can be in testing the efficiency
of deep learning algorithms. For this reason the use of GPUs and TPUs (tensor
processing units) for performing the computations needed for training neural
networks at a higher speed, is important and makes a big difference when run-
ning a large series of experiments. Today modern GPUs and even CPUs have
dedicated architecture in order to optimize computation times in deep neural
networks. In the context of this work, we had access to computational resources
within both Renault and EURECOM in the form of GPUs. Deep learning which
deals with image processing benefits the most from a GPU setup as both com-
putations on images and neural networks are optimized. However in the case of
reinforcement learning, a large share of computing power is needed for simulat-
ing the environment dynamics rather than image processing. These operations
are better performed by CPUs, and hence RL applications require us to balance
the share of GPU and CPU usage so as to obtain the best overall performance.
In planning algorithms, such as the famous AlphaGo [Silver et al., 2018], a
higher number of simulations equates to a better expected performance of the
agent as it allows it to explore a large area of trajectory-space and anticipate
as many outcomes as possible. Our implementation of a planning module in
the hierarchical controller uses a similar concept in that the higher amount of
environment parameters we are able to simulate out, the higher probability we
have of reacting to the correct one. In this sense, a greater simulation budget
is as important as the computational budget for training deep learning models.
In running experiments for our work, we often found that the limiting factor
in the total training time was often the simulation budget rather than that for
training neural network models.

Additionally, the use of a replay buffer to improve learning requires the
use of a potential large part of computer memory to store these. Since GPU
memory is rather scare and usually dedicated to storing the neural network
models on which the GPU-optimized computations are performed, the replay
buffer is stored on the computer’s memory. However this means that when

129

training, the samples have to be loaded into GPU memory in batches, which
further slows down training.

These dimensioning factors make up some of the reasons for choosing to
develop our own simulation environment so that we are able to use as light
a framework as possible in the interest of being able to run more extensive
experiments.

130

Appendix B

Derivations and Proofs

B.1 Contraction of Bellman Optimality Opera-
tor

We define the Bellman optimality operator, applied to a value function V :
BV := maxa

∑
s′ T (s′|s, a)

[
Ras,s′ + γV (s′)

]
. Let V,U be two different value

functions, we now prove the contraction of the mapping B:

∥BV −BU∥∞ =

∥max
a

∑
s′

T (s′|s, a)
[
Ras,s′ + γV (s′)

]
−max

a′

∑
s′

T (s′|s, a′)
[
Ra

′

s,s′ + γU(s′)
]
∥∞

≤ ∥max
a

∑
s′

T (s′|s, a)
[
Ras,s′ + γV (s′)

]
−
∑
s′

T (s′|s, a)
[
Ras,s′ + γU(s′)

]
∥∞

≤ γ∥max
a

∑
s′

T (s′|s, a) [V (s′)− U(s′)]∥∞

≤ γmax
a,s′

∑
s′

T (s′|s, a) [V (s′)− U(s′)]

≤ γ∥V − U∥∞

Along with the fact that (R, ∥·∥∞) is a complete metric space, we can use
the Banach fixed point theorem to conclude that there exists a unique optimal
value function V π

∗
for every MDP, associated to an optimal policy π∗, which

can be found by a fixed point iteration scheme using the Bellman optimality
operator B.

131

B.2 Deriving Log-Gradients for Policy Updates

In order to optimize the performance of a policy in terms of collecting discounted
rewards in an environment, instead of defining an explicit Q-function to be
maximized through actions, we can instead formulate a differentiable objective
function directly as a function of policy parameters θ. This is referred to as
policy gradients, and uses an objective function J(θ) defined as the expectation
over trajectories τ of the policy πθ, of the sum of discounted rewards over that
episode, denoted r(τ):

J(θ) = Eτ∼π [r(τ)] =

∫
π(τ)r(τ)dτ

Now we wish to take the derivative w.r.t. to the policy parameters. Here we
use the log-derivative trick: f · ∇ log(f) = ∇f :

∇θJ(θ) =

∫
∇π(τ)r(τ)dτ

=

∫
π(τ) · ∇ log π(τ) · r(τ)dτ

= Eτ∼π [r(τ)∇ log π(τ)]

Now looking at the log π(τ) term, we can use the log to simplify the product of
probabilities for the trajectory τ :

π(τ) = P (s0) · π(a0|s0)T (s1|a0, s0) · π(a1|s1)T (s2|a1, s1) . . .

= P (s0) ·
T∏
t=0

π(at|st)T (st+1|at, st)

⇒ log π(τ) = (s0) +

T∑
t=0

(log π(at|st) + log T (st+1|at, st))

⇒ ∇ log π(τ) =

T∑
t=0

∇ log π(at|st)

Plugging this result back into the initial expression we can write:

∇J(θ) = Eτ∼π

[
r(τ) ·

T∑
t=0

∇ log π(at|st)

]

This result is cool because we don’t actually need to know the exact en-
vironment dynamics to find the best policy. However in practice to find the
expectation under all possible trajectories, we need to sample a lot from these
dynamics. Sampling these trajectories is known as Markov Chain Monte Carlo

132

(MCMC), and requires averaging over many sampled trajectories to get unbi-
ased parameter updates. However due to the r(τ) term, the variance of the
updates can be quite large. Following this, there have been many improve-
ments upon the use of policy networks, notably in actor-critic methods such as
proximal policy optimization (PPO).

B.3 Properties of the Distributional Bellman Op-
erators

Wasserstein Metric

The Wasserstein metric originates from optimal cost theory, where the optimal
transport cost between two measures µ, ν is:

C(µ, ν) := inf
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y)

This can be generalized into a metric [Villani, 2009]:

Let (χ, d) be a Polish metric space, and let p ∈ [1,∞). For any two probability
measures µ, ν on χ, the Wasserstein distance of order p between µ and ν is
defined by

dp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
χ

c(x, y)pdπ(x, y)

) 1
p

=

(
inf

π∈Π(µ,ν)
E

X,Y∼π
[d(X,Y)p]

) 1
p

Where d is a distance, and Π(µ, ν) is the set of all probability measures on
χ×χ (couplings) with marginal µ and ν. This is useful as it can also be written
in terms of the inverse distribution functions of the random variables [Major,
1978]:

dp(X,Y) =

(∫
R
|F−1
X (x)− F−1

Y (x)|pdx

)1/p

=

∫ 1

0

|FX(u)− FY (u)| du if p = 1

The Wasserstein distance has the advantage of being a metric, we recall
below the proofs of some useful properties from Bickel and Freedman [1981].
Let a ∈ R, and X, Y , Z be independent random variables.

1. dp(aX, aY) ≤ |a|dpX,Y) :

133

dp(aX, aY) = inf
X,Y

E
[
∥aX − aY ∥p

]1/p
≤ inf
X,Y

E
[
|a|p∥(X − Y)∥p

]1/p
= |a| inf

X,Y
E
[
∥(X − Y)∥p

]1/p
= |a|dp(X,Y)

2. dp(Z + X,Z + Y) ≤ dp(X,Y) We prove the general case for the sum of
independent r.v’s :

dp

(∑
i

Xi,
∑
i

Yi

)
≤ inf
X,Y

E
[
∥
∑
i

(Xi − Yi)∥p
]1/p

(a)

≤
∑
i

inf
X,Y

E
[
∥Xi − Yi∥p

]1/p
=
∑
i

dp(Xi, Yi)

Where (a) is Minkowski’s inequality

3. dp(ZX,ZY) ≤ ∥Z∥pdp(X,Y) :

dp(ZX,ZY) = inf
X,Y

E
[
∥ZX − ZY ∥p

]1/p
≤
(
∥Z∥p

) 1
p inf
X,Y

E
[
∥X − Y ∥p

]1/p
= ∥Z∥pdp(X,Y)

Contraction of the Distributional Bellman Equation

Bellemare et al. [2017] has shown that under the maximal form of the Wasser-
stein metric, d̄p(Z1, Z2) := sup

x,a
dp(Z1(x, a), Z2(x, a)), the distributional Bellman

operator Dπ is a contraction. They also show however, that D (optimal Bellman
operator) is generally not a contraction.

Dπ : Z → Z is a γ -contraction in d̄p :

First of all we note some properties of the dp metric whose proofs are in the
previous section:

• dp(aU, aV) ≤ |a|dp(U, V)

• dp(A+ U,A+ V) ≤ dp(U, V)

• dp(AU,AV) ≤ ∥A∥pdp(U, V)

134

We recall the definition of d̄p, which is itself a metric:

d̄p(T πZ1, T πZ2) = sup
s,a

dp(T πZ1(s, a), T πZ2(s, a))

From the properties of dp we have that:

dp(T πZ1(s, a), T πZ2(s, a))

= dp(R(x, a) + γPπZ1(s, a), R(s, a) + γPπZ2(x, a))

≤ γdp(PπZ1(s, a), PπZ2(s, a))

≤ γsup
s′,a′

dp(Z1(s′, a′), Z2(s′, a′))

Combining with the definition of d̄p we get:

d̄p(T πZ1, T πZ2) = sup
x,a

dp(T πZ1(s, a), T πZ2(s, a))

≤ γsup
x′,a′

dp(Z1(s,′ a′), Z2(s′, a′))

= γd̄p(Z1, Z2)

Hence Dπ is a contraction in d̄p, and by Banach’s fixed point theorem (given that
the space of distributions is a complete space (it is)), we are able to iteratively

find a unique fixed point solution to the equation Z(s, a)
D
= DπZ(s, a)

Unfortunately there is no similar proof for the contraction of the control-
setting operator D. This does not mean however, that D is not a contraction
on its domain, however the theoretical basis for using bellman targets is not
present for this training paradigm.

B.4 Alternate Parametrization of the Return Dis-
tribution

In order to store the return distribution for updates, it has to be parametrized by
a set of statistics (e.g. mean and variance for a Gaussian). Though for modelling
more complex distributions, a greater amount of statistics are required.

Quantiles and Expectiles

One of the more popular statistics that have been used in recent implementa-
tions are quantiles and expectiles [Dabney et al., 2017], [Rowland et al., 2019].
Expectiles generalize the mean, in the way that quantiles generalize the median.
Another way to look at them, is that these statistics are the solutions to L1 and

135

Figure B.1: Difference between quantile and expectile losses

L2 lop-sided losses for quantiles and expectiles respectively on the expected val-
ues of samples from a distribution η. In the case of quantiles, this is also known
as the pinball loss. ∀κi ∈ [0, 1], Z is the sample from our pdf, ψ is the parameter
we are solving for:

qκi
(ν) = arg min

ψ∈R
E
Z∼η

[|Z − ψ| [1Z>ψ(κi) + 1Z≤ψ(1− κi)]]

eκi
(ν) = arg min

ψ∈R
E
Z∼η

[
(Z − ψ)2 [1Z>ψ(κi) + 1Z≤ψ(1− κi)]

]
Most commonly, the parameter ψ = {ψi, i ∈ [1, N]} is the positions of a

comb of diracs Πψη =
∑N
i=1 δψi

. Looking at the resulting cumulative distri-
bution function, this actually corresponds to the quantiles of the parametric
distribution Πψη.

Bellman Closedness

In order to keep track, and update a fixed set of statistics which characterize the
return distribution means that there must a a coherent Bellman-type equation
which we use to update them [Rowland et al., 2019].

A set of statistics is defined as being Bellman-closed if there exists a closed-
form equation of the sort:

ψ = T ψ

136

If this is the case, then the true statistics are the solution to the fixed point
equation define by that Bellman equation. However to find them through an
iterating scheme we have to prove the contraction of this new T under some
metric.

Which Statistics are Bellman-closed ?

If we take the example of a quantile-dirac parametrization for the return distri-
bution, we actually see that the quantiles are not Bellman-closed. This means
that we cannot learn the true parametrized distribution by passing the quan-
tile statistics through a Bellman-like equation. This is best illustrated by the
following counter-example:

Let a pdf η be parametrized by its 2i+1
2N quantiles, i ∈ 1, ..., N . i.e. Πψη =∑N

i=1 δq(κi). Since the quantile q0 is not taken into consideration, the support
of the parametrized pdf will be shrinked compared to the true one. Without
any furthur prior knowledge on the distribution, any quantile parametrization
will fail to capture the tail behavior.

We can see in an N-chain environment, that there will be an increase in
the W1-loss when propagating the reward back. This means that the accurate
reward pdf will eventually be more and more distorted the more it “travels”
through the mdp.

Rowland et al. [2019] proposes that the expectation of the (sub-)gradient of
the loss function at the true parameter value ψ∗ is always 0, if:

(i) The true statistic ψ∗ of a distribution ν satisfies ψ∗ = argminψ∈RLk(ψ; ν)

(ii) The loss Lk is affine w.r.t. ν

Huber [2009] show that this is the case with M-estimators and their associated
statistics. Quantile DRL is an example of this.

Stochastic Bellman Updates of Statistics

Analogously to the way a stochastic Bellman update is used when dealing with
the entire distribution, we must consider the same limitations when computing
statistics through the bellman equation. The proof of non-biased sample gra-
dients on the loss function, should assure us that the pdf will converge to the
correct value.

137

B.4.1 Sufficient statistics

Following previous work done on distributional RL, we mention the effect that
increasing the number of estimated statistics has on the mean performance of
agents during training.

Figure B.2: Training score for various distributional agents [Rowland et al.,
2019]

Figure B.2 shows that different statistics along with the amount thereof may
be more applicable to learning the return distribution. In the case of expectile
regression for example (ER-DQN), 11 statistics are sufficient to give a good
enough representation of the value distribution function, so that the agent may
take good decision with respect to it, as opposed to a higher number of statistics
used in less well-adapted algorithms. This work was conducted by Rowland et al.
[2019] over a suite of Atari games. As discussed in chapter 3, although these
authors’ work (along with others’) has shown that distributional RL has the
potential for improving the performance of agents in some environments, this
does not take into account the modeling of stochastic dynamics which we have
aimed to do in our work.

138

Bibliography

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer,
Scott Niekum, and Ufuk Topcu. Safe reinforcement learning via shielding.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

Philip Amortila, Doina Precup, Prakash Panangaden, and Marc G Bellemare. A
distributional analysis of sampling-based reinforcement learning algorithms.
arXiv preprint arXiv:2003.12239, 2020.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforce-
ment learning with policy sketches. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, pages 166–175, 06–11 Aug 2017.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-
ciech Zaremba. Hindsight experience replay. In Advances in Neural Informa-
tion Processing Systems, volume 30, 2017.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann,
Alex Vitvitskyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Out-
performing the Atari human benchmark. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume 119, pages 507–517, Jul
2020a.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo,
Bilal Piot, Steven Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexan-
der Pritzel, Andrew Bolt, and Charles Blundell. Never give up: Learning
directed exploration strategies. In International Conference on Learning Rep-
resentations, 2020b.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional per-
spective on reinforcement learning. CoRR, abs/1707.06887, 2017. URL
http://arxiv.org/abs/1707.06887.

Marc G. Bellemare, Nicolas Le Roux, Pablo Samuel Castro, and Subhodeep
Moitra. Distributional reinforcement learning with linear function approx-

139

imation. In Proceedings of the 22nd International Conference on Artificial
Intelligence and Statistics, 2019.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys law
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. Dota 2 with large scale deep reinforcement learning. 2019. URL
http://arxiv.org/abs/1912.06680.

Julian Bernhard, Stefan Pollok, and Alois Knoll. Addressing inherent uncer-
tainty: Risk-sensitive behavior generation for automated driving using dis-
tributional reinforcement learning. In IEEE Intelligent Vehicles Symposium
(IV), pages 2148–2155, 2019.

Peter J Bickel and David A Freedman. Some asymptotic theory for the boot-
strap. The annals of statistics, pages 1196–1217, 1981.

M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer. Safe reinforce-
ment learning with scene decomposition for navigating complex urban envi-
ronments. In IEEE Intelligent Vehicles Symposium (IV), pages 1469–1476,
2019.

Sebastian Brechtel, Tobias Gindele, and Rüdiger Dillmann. Probabilistic
decision-making under uncertainty for autonomous driving using continuous
pomdps. In 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC), pages 392–399, 2014.

Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyri-
don Samothrakis, and Simon Colton. A survey of monte carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in
Games, pages 1–43, 2012.

Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-
sensitive and robust decision-making: a cvar optimization approach. CoRR,
abs/1506.02188, 2015. URL http://arxiv.org/abs/1506.02188.

William R. Clements, Benôıt-Marie Robaglia, Bastien Van Delft, Reda Bahi
Slaoui, and Sébastien Toth. Estimating risk and uncertainty in deep rein-
forcement learning. arXiv Preprint, 2019.

Alexander G. Cunningham, Enric Galceran, Ryan M. Eustice, and Edwin Ol-
son. Mpdm: Multipolicy decision-making in dynamic, uncertain environments
for autonomous driving. In IEEE International Conference on Robotics and
Automation (ICRA), pages 1670–1677, 2015.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos.
Distributional reinforcement learning with quantile regression. CoRR,
abs/1710.10044, 2017. URL http://arxiv.org/abs/1710.10044.

140

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile
networks for distributional reinforcement learning. CoRR, abs/1806.06923,
2018. URL http://arxiv.org/abs/1806.06923.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin
Paduraru, and Yuval Tassa. Safe exploration in continuous action spaces.
arXiv preprint, 2018.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances
in Neural Information Processing Systems, volume 5, pages 271–278. Morgan-
Kaufmann, 1993.

Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Stef-
fen Udluft. Decomposition of uncertainty in Bayesian deep learning for ef-
ficient and risk-sensitive learning. In Proceedings of the 35th International
Conference on Machine Learning, volume 80, pages 1184–1193, Jul 2018.

Hannes Eriksson and Christos Dimitrakakis. Epistemic risk-sensitive reinforce-
ment learning. In Proceedings of European Sympiosium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, 2020.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay
buffer: Bridging planning and reinforcement learning. In Advances in Neural
Information Processing Systems, volume 32, 2019a.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diver-
sity is all you need: Learning skills without a reward function. In Proceedings
of the International Conference on Learning Representations, 2019b.

Angelos Filos, Panagiotis Tigkas, Rowan Mcallister, Nicholas Rhinehart, Sergey
Levine, and Yarin Gal. Can autonomous vehicles identify, recover from, and
adapt to distribution shifts? In Proceedings of the 37th International Con-
ference on Machine Learning, volume 119, pages 3145–3153, 2020.

Jaime F. Fisac, Eli Bronstein, Elis Stefansson, Dorsa Sadigh, S. Shankar Sastry,
and Anca D. Dragan. Hierarchical game-theoretic planning for autonomous
vehicles. In 2019 IEEE Internation Conference on Robotics and Automation
(ICRA), pages 9590–9596, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In International conference on machine learning, pages
1861–1870. PMLR, 2018.

Hado Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing
Systems, volume 23. Curran Associates, Inc., 2010.

M. Hausknecht and P. Stone. Deep recurrent q-learning for partially observable
mdps. In AAAI Fall Symposia, 2015.

141

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Daniel Horgan, Bilal Piot, Mohammad Ghesh-
laghi Azar, and David Silver. Rainbow: Combining improvements
in deep reinforcement learning. CoRR, abs/1710.02298, 2017. URL
http://arxiv.org/abs/1710.02298.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave,
Anssi Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher
Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines.
https://github.com/hill-a/stable-baselines, 2018.

Carl-Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine, and
Mykel J. Kochenderfer. Combining planning and deep reinforcement learning
in tactical decision making for autonomous driving. IEEE Transactions on
Intelligent Vehicles, 5:294–305, 2020a.

Carl-Johan Hoel, Krister Wolff, and Leo Laine. Tactical decision-making in
autonomous driving by reinforcement learning with uncertainty estimation.
In IEEE Intelligent Vehicles Symposium (IV), pages 1563–1569, 2020b.

Peter J. Huber. Robust Statistics, pages 1248–1251. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

Constantin Hubmann, Jens Schulz, Marvin Becker, Daniel Althoff, and
Christoph Stiller. Automated driving in uncertain environments: Planning
with interaction and uncertain maneuver prediction. IEEE Transactions on
Intelligent Vehicles, 3:5–17, 2018.

Christoph Killing, Adam Villaflor, and John M. Dolan. Learning to robustly
negotiate bi-directional lane usage in high-conflict driving scenarios. In IEEE
International Conference on Robotics and Automation (ICRA), pages 8090–
8096, 2021.

Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving gen-
eralization in meta reinforcement learning using learned objectives. arXiv
preprint arXiv:1910.04098, 2019.

Mykel J. Kochenderfer, Christopher Amato, Girish Chowdhary, Jonathan P.
How, Hayley J. Davison Reynolds, Jason R. Thornton, Pedro A. Torres-
Carrasquillo, N. Kemal Üre, and John Vian. Decision Making Under Un-
certainty: Theory and Application. The MIT Press, 1st edition, 2015.

Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. One solution
is not all you need: Few-shot extrapolation via structured maxent rl. In
Advances in Neural Information Processing Systems, volume 33, pages 8198–
8210, 2020.

142

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, R. Howard,
Wayne Hubbard, and Lawrence Jackel. Handwritten digit recognition with
a back-propagation network. In D. Touretzky, editor, Advances in Neural
Information Processing Systems, volume 2. Morgan-Kaufmann, 1989.

Clare Lyle, Pablo Samuel Castro, and Marc G. Bellemare. A compara-
tive analysis of expected and distributional reinforcement learning. CoRR,
abs/1901.11084, 2019. URL http://arxiv.org/abs/1901.11084.

Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. A Laplacian
framework for option discovery in reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning, volume 70, pages
2295–2304, 2017.

Péter Major. On the invariance principle for sums of independent identically
distributed random variables. Journal of Multivariate analysis, 8(4):487–517,
1978.

Rowan McAllister and Carl Edward Rasmussen. Data-efficient reinforcement
learning in continuous state-action gaussian-pomdps. In Advances in Neural
Information Processing Systems, volume 30, 2017.

Alberto Maria Metelli, Amarildo Likmeta, and Marcello Restelli. Propagating
uncertainty in reinforcement learning via wasserstein barycenters. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 4333–
4345. Curran Associates, Inc., 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,
and Demis Hassabis. Human-level control through deep reinforcement learn-
ing. Nature, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International confer-
ence on machine learning, pages 1928–1937. PMLR, 2016.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and
Toshiyuki Tanaka. Nonparametric return distribution approximation for re-
inforcement learning. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, page 799–806,
Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

143

Ofir Nachum, Shixiang (Shane) Gu, Honglak Lee, and Sergey Levine. Data-
efficient hierarchical reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, volume 31, 2018.

Louise Pryor and Gregg C. Collins. Planning for contingencies: A decision-based
approach. Journal for Artificial Intelligence Research, 4:287–339, 1996.

Nicholas Rhinehart, Jeff He, Charles Packer, Matthew A. Wright, Rowan McAl-
lister, Joseph E. Gonzalez, and Sergey Levine. Contingencies from observa-
tions: Tractable contingency planning with learned behavior models. In 2021
IEEE International Conference on Robotics and Automation, pages 13663–
13669, 2021.

Clément Romac and Vincent Béraud. Deep recurrent q-learning
vs deep q-learning on a simple partially observable markov deci-
sion process with minecraft. CoRR, abs/1903.04311, 2019. URL
http://arxiv.org/abs/1903.04311.

Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi Munos, Marc G. Belle-
mare, and Will Dabney. Statistics and Samples in Distributional Reinforce-
ment Learning. arXiv e-prints, art. arXiv:1902.08102, Feb 2019.

Tom Schaul, Dan Horgan, Karol Gregor, and David Silver. Universal value
function approximators. In Proceedings of the 32nd International Conference
on Machine Learning, volume 37, pages 1312—-1320, 2015.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. In Proceedings of the International Conference on Learning
Representations, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on
machine learning, pages 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A
general reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144, 2018.

Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-
mdps: A framework for temporal abstaction in reinforcement learning. Arti-
ficial Intelligence, 1999.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. The MIT Press, second edition, 2018.

144

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

Veritasium. Would you take this bet?, 2015. URL
https://www.youtube.com/watch?v=vBX-KulgJ1ot=247s.

Cédric Villani. The Wasserstein distances, pages 93–111. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2009.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient rein-
forcement learning. In Advances in Neural Information Processing Systems,
volume 31, 2018.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A
survey of autonomous driving: Common practices and emerging technologies.
IEEE Access, 8:58443–58469, 2020.

Shizhe Zang, Ming Ding, David Smith, Paul Tyler, Thierry Rakotoarivelo,
and Mohamed Ali Kaafar. The impact of adverse weather conditions on
autonomous vehicles: Examining how rain, snow, fog, and hail affect the per-
formance of a self-driving car. IEEE Vehicular Technology Magazine, PP:1–1,
03 2019.

Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning
by discovering intrinsic options. In International Conference on Learning
Representations, 2021.

Pengfei Zhu, Xin Li, and Pascal Poupart. On improving deep reinforcement
learning for pomdps. 2017. URL http://arxiv.org/abs/1704.07978.

145

