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RESUME EN FRANCAIS

Que regardons-nous quand nous regardons des films ? Au dela de 'aspect naif
de cette question — quand nous regardons un film, nous regardons 1’écran — il est important
de s’intéresser a la fagon dont nous percevons notre environnement visuel et les nombreux
stimuli qui le composent, particulierement dans le contexte cinématographique.

En effet, pour faire face a I’écrasante masse d’information, nous avons développé un
ensemble d’outils cognitifs et biologiques destinés a réduire la quantité de données vi-
suelles a traiter par notre cerveau. L’ensemble de ces dispositifs est regroupé sous le
terme d’attention visuelle.

L’attention visuelle est intimement liée aux mouvements oculaires : en effet, cons-
ciemment ou non, nous dirigeons notre regard vers les zones de notre champ visuel qui
nous semblent étre les plus pertinentes, dans le but de réduire la charge cognitive due au
traitement des zones moins importantes. Ces mécanismes se révelent étre tellement effi-
caces que nous construisons une image mentale de notre environnement a la fois précise
et riche en détails, alors méme que la surface de notre rétine contenant la plus grande
densité de cellules photoréceptrices nous permettant de distinguer les couleurs ne repré-
sente qu’environ 3° de notre champ visuel, c¢’est a dire I’équivalent de I’aire couverte par
un pouce a bout de bras!

Ce lien étroit entre mouvements oculaires et attention visuelle suscite beaucoup d’inté-
rét dans de nombreux champs de recherche : en effet, I'utilisation de technologies de suivi
de I'eil et d’oculométrie a permis de récolter, puis d’expoiter, une quantité importante de
données concernant ce que nous regardons dans une image ou non, et par extension ce que
nous considérons comme visuellement pertinent ou non. Forts de ces connaissances, de
nombreux systemes de traitement d’image peuvent étre améliorés, comme les algorithmes

de compression d’images et de vidéo par exemple.

Lorsqu’un réalisateur congoit un film, il joue en permanence, volontairement ou non,
avec 'attention visuelle de ses spectateurs. En effet, I’ensemble du processus de création
d’un film est d’une certaine maniere consacrée a trouver la meilleure fagon de raconter ce

que I'auteur veut raconter, et ce visuellement. Tout d’abord, le spectateur est contraint



Résumé en francais

L’oculométrie : une facon d’observer le spectateur quand il observe Lee Van Cleef observer
Clint Eastwood dans Le Bon, la Brute et le Truand (Sergio Leone, 1966)

dans ses choix visuels par I'eeil de la caméra : I’'ensemble de la scéne lui est invisible, et
il ne peut la découvrir qu’a travers ce que le réalisateur décide de lui montrer. Ensuite,
par le montage et le choix des plans dans la séquence, le réalisateur décide également
de l'ordre dans lequel 'audience doit parcourir visuellement l'image, et contréle de ce
fait la dimension temporelle de I'attention visuelle. Enfin, une multitude de techniques
de réalisation peuvent étre utilisées pour inciter encore plus les spectateurs a porter leur
attention sur certaines zones de I’écran : le mouvement de la caméra, le choix de la valeur
de plan, la composition du plan, les déplacements des acteurs dans la scene, la profondeur

de champ, et bien d’autres encore.

Problématiques

Durant un peu plus d’un siecle, les réalisateurs ont créé, codifié et développé tout un
ensemble de régles, ainsi qu'une forme de langage visuel destinés a communiquer au mieux
leurs intentions narratives et artistiques. Deés lors, les chercheurs s’intéressant a la cinéma-
tographie ont tenté de comprendre comment ces techniques et ces conventions de
cinéma influencent ’attention visuelle du spectateur. Plusieurs relations entre les
propriétés cinématographiques d’une séquence et les mouvement des yeux des personnes
la regardant ont ainsi pu étre mises en évidence.

En parallele, la modélisation de I’attention visuelle humaine a suscité un intérét

particulier dans le domaine du traitement d’image et de la vision par ordinateur. Les

10
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approches orientées données récentes (machine learning, deep learning) ont permis d’im-
portantes hausses de performances dans la prédiction des fixations oculaires, a la fois sur
des stimuli statiques (i.e. images) et dynamiques (i.e. vidéos). Cependant, ces méthodes
se concentrent principalement sur des parametres dits bottom-up, c’est a dire des carac-
téristiques intrinseques des images (ou des vidéos), telles que la couleur, 1'éclairage, le
contraste ou le mouvement. Méme si I'utilisation de ces propriétés aboutit a de tres bons
résultats, on peut légitimement faire I’hypothese que de ’information de haut niveau
supplémentaire a propos des techniques de réalisation propres au cinéma de-
vrait améliorer significativement les performances de modéles d’attention sur

ce type particulier de stimuli.

De plus, la plupart des modeles de I'état de I'art actuel s’inscrivent dans le cadre de
la saillance visuelle, c’est a dire qu’ils prédisent une probabilité de distribution repré-
sentant ot des observateurs seront susceptibles de regarder lorsqu’ils seront confrontés a
un certain stimulus visuel. Cependant, une question tout aussi importante, en particulier
quand on considere des films, devrait étre : quelles sont les conditions pour que
des observateurs manifestent ou non des comportements oculaires similaires ?
Répondre a cette question nous ouvre ensuite de nombreuses possibilités : par exemple,
la congruence visuelle inter-observateurs (i.e. une mesure quantifiant a quel point
des observateurs regardent la méme zone de 'image, ou encore a quel point le chemin
visuel d'un individu permet de prédire les chemins visuels d’un groupe entier) peut étre
utilisée comme une borne supérieure aux performances des modeles de saillance visuelle.
Ce type de mesure est également tres utile pour des réalisateurs, qui peuvent volontaire-
ment adapter leur scéne afin que leurs spectateurs concentrent leur attention sur un point
unique du cadre, ou au contraire les laissent explorer ’ensemble de la scéene de maniere
dispersée.

En psychologie cognitive, dans le domaine de la cinématographie, le terme attentional
synchrony [SHO8] est utilisé pour décrire le phénomene ou lattention des observateurs
converge en un seul point, dans ’espace et dans le temps. De nombreuses études ont mon-
tré que cette convergence est particulierement importante lorsque ’on regarde des films,
comparativement a des images statiques ou a d’autre type de vidéos. Cela implique donc
que les séquences extraites de films possedent des caractéristiques propres qui tendent
a uniformiser les comportements visuels. Du point de vue de la modélisation, cela si-

gnifie qu’afin de prédire efficacement la congruence inter-observateurs, et par extension

11
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I’attention visuelle, il est nécessaire de prendre en compte ces propriétés.

Contributions

Dans cette these, nous proposons une exploration des caractéristiques cinématogra-
phiques et de leur impact sur l'attention visuelle, du point de vue de la vision par ordi-

nateur. Nous proposons les contributions suivantes :

1. Une nouvelle base de données oculométrique, destinée a étudier les fixations de
I'ceil sur des séquences cinématographiques. En plus des données oculaires et des
stimuli, nous fournissons également des annotations décrivant les caractéristiques
cinématographiques des séquences. Nous évaluons également leur influence sur ’at-
tention visuelle, et leur intérét a des fins de modélisation. Enfin, nous montrons
les failles des modeles d’attention actuels, et les situations dans lesquelles ils se

révelent insuffisants.

2. Un nouveau modele de saillance visuelle, prédisant la distribution des fixations
oculaires sur des séquences cinématographiques. Pour ce faire, nous avons congu
une maniere d’intégrer 'information cinématographique dans un modele orienté

données.

3. Une nouvelle métrique permettant de mesurer la congruence visuelle inter-observa-
teurs pour les stimuli dynamiques, congue particulierement pour prendre en compte

la dimension temporelle des chemins oculaires.

4. Deux nouveaux modeles d’apprentissage profond destinés a prédire la congruence
visuelle inter-observateurs : le premier pour des stimuli statiques, le second pour des
extraits cinématographiques. Similairement au modele de saillance visuelle, nous

incluons de I'information cinématographique afin d’améliorer les performances.

Pour chacun de ces modeles, nous donnons quelques idées d’applications tres simples,

dans I'objectif de montrer 'intérét de ce genre d’approche perceptuelle.

Organisation

Ce manuscrit est organisé en six chapitres principaux, en plus d’une introduction et
d’une conclusion générale. Le chapitre 1 est destiné a donner le contexte général concer-
nant 'attention visuelle et ses applications. Le chapitre 2 est une revue des travaux exis-

tants concernant la modélisation de l'attention visuelle. Le chapitre 3 consiste en une

12
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explication des spécificités des stimuli cinématographiques, ainsi que d’une revue des tra-
vaux existants faisant spécifiquement le lien entre attention visuelle et cinématographie.
Le chapitre 4 présente la base de données oculaires que nous avons récoltées, ainsi que
les conclusions que nous pouvons tirer de son étude. Le chapitre 5 présente une méthode
pour prédire I'attention visuelle sur des extraits de films, utilisant des caractéristiques ci-
nématographiques de haut niveau. Enfin, le chapitre 6 se concentre sur la problématique

de la congruence visuelle inter-observateur, sa quantification et sa modélisation.

Ci dessous, nous donnons un bref résumé de ces différents chapitres et des résultats

principaux associés.

Le chapitre 1 présente le contexte général lié a I'attention visuelle, et se concentre
sur le role des mouvements oculaires. Nous y décrivons les différents usages des don-
nées oculométriques dans les systemes de vision par ordinateur, et présentons quelques
applications.

Dans le chapitre 2, nous proposons un état de ’art des différents modeles d’attention
visuelle, en se concentrant sur les modeles de saillance visuelle. Nous y décrivons les
différentes bases de données, méthodes d’évaluation et métriques, puis nous passons en
revue les différents modeles de saillance, statiques et dynamiques. Ce tour d’horizon nous
permet d’identifier les différents probléemes et lacunes des approches actuelles.

Le chapitre 3 se concentre sur les caractéristiques propres aux stimuli cinématogra-
phiques. Nous décrivons différentes conventions et regles de cinéma, dans le but de décrire
et de formaliser le langage visuel utilisé par les réalisateurs pour transmettre leurs inten-
tions narratives. Nous passons également en revue les différents systemes de formalisations
de ce langage cinématographique. Finalement, nous proposons un bref tour d’horizon des
travaux reliant attention visuelle et cinématographie. Ces travaux se situant tres majori-
tairement dans le domaine de la psychologie cognitive, nous nous proposons d’apporter
dans cette these une perspective différente, en abordant le probleme du point de vue du
traitement de I'image et des approches de modélisation orientées données.

Dans le chapitre 4, nous présentons une base de données oculométrique destinée a
étudier I'influence des décisions cinématographiques sur 'attention visuelle. Nous avons
ainsi récolté les données de fixations oculaires de 24 participants, regardant 20 séquences
extraites de films de différentes époques et genres. En paralléle, nous avons annoté ces
séquences afin de caractériser certaines leurs propriétés cinématographiques : la valeur des

plans, les mouvements et angles des caméras, et leurs transitions entre les différents plans.

13
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Nous identifions certains biais dépendants de ces caractéristiques, comme par exemple
I'existence d’un biais centré sur la ligne de tiers supérieure, dont la dispersion dépend de
la valeur de plan. Les mouvements panoramiques de caméra tendent également a attirer
I’attention du spectateur, dans la direction du mouvement. Nous évaluons également les
performances d’un échantillon de modeles de saillance représentatifs de 1’état de 'art sur
cette base, et nous identifions différents cas d’échecs, également dépendants des caracté-

ristiques cinématographiques.

Dans le chapitre 5, nous proposons un nouveau modele de saillance visuelle, congu
de telle sorte a intégrer de I'information cinématographique de haut niveau. Pour ce faire,
nous proposons un modele d’apprentissage profond, utilisant une architecture two-stream :
une branche dédiée a I’extraction de caractéristiques visuelles liées aux séquences d’images,
et 'autre branche dédiée a 'extraction de caractéristiques temporelles, prennant en entrée
des séquences de flux optique. Les cartes de caractéristiques ainsi extraites sont ensuite
fusionnées ensembles, mais également avec des cartes de caractéristiques de haut niveau
extraites a partir des annotations cinématographiques : biais spécifiques aux valeurs de
plans et mouvement de caméra, carte de flicker, carte d’anticipation du mouvement, etc.
Apres avoir entrainé notre modele sur différentes bases de données, nous montrons qu’il
est effectivement plus performant que I'état de ’art quand il s’agit de prédire 'attention

visuelle sur des extraits de films.

Le chapitre 6 se concentre sur la congruence visuelle inter-observateur. Cette mesure
représente la diversité des comportements visuels de différents observateurs regardant un
stimulus identique. En effet, de nombreuses études (voir par exemple Smith et. al. [SM13])
tendent a indiquer des comportements de fixations oculaires particulierement similaires
entre les observateurs lorsque ceux-ci sont confrontés a des stimuli cinématographiques.
Nous proposons tout d’abord une métrique permettant de mesurer ce phénomene, tout
d’abord dans le contexte statique, puis dynamique. Pour ce faire, nous utilisons une ap-
proche leave-one-out, en comparant les fixations de chaque individu aux fixations de tous
les autres observateurs a l'aide de métriques utilisées dans le contexte de la saillance
visuelle. Nous proposons ensuite deux modeles permettant de prédire cette valeur de
congruence, pour des images, puis pour des séquences de films. De fagon similaire au
modele de saillance du chapitre 5, nous utilisons pour le modele dynamique des carac-
téristiques de haut niveau liées aux annotations cinématographiques, incluses dans une
architecture two-stream fusionnant des caractéristiques images et des caractéristiques tem-

porelles de mouvement.

14
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Enfin, nous proposons pour conclure plusieurs pistes de recherche, afin d’approfondir
les travaux présentés dans ce manuscrit. L’évaluation des modeles de saillance dynamique
nous semble étre I'un des problemes persistants : il n’existe en effet pas de méthode
permettant d’évaluer un modele de saillance visuel dynamique autrement qu’en évaluant
la qualité des cartes prédites frame par frame. Il parait des lors important de définir de
nouvelles méthodes prenant en compte ’aspect intrinsequement temporel du probleme.

Les travaux présentés dans ce manuscrit nous permettent également d’envisager des
applications dans le domaine de la cinématographie virtuelle : la prévision de mouve-
ment de caméras, ou encore le placement automatique de scenes pourrait grandement
bénéficier des différentes perspectives perceptuelles, en particulier des caractéristiques de
saillance. Enfin, les caractéristiques d’TIOC paraissent étre particulierement prometteuses
pour des systemes de montage automatiques, permettant de prendre en compte le phéno-

mene d’attentional continuity décrit notamment par Smith [Smil2].
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GENERAL INTRODUCTION

Where do we look when watching movies? This question might seem simple,
or even irrelevant: when watching movies, we look at the screen. However, it becomes
highly important when considering how humans perceive their environment: in order to
cope with the overwhelming amount of visual information, we developed a vast array of
biological and cognitive tools dedicated to process only a very small fraction of this data.
These mechanisms are gathered together under the name of visual attention.

Visual attention is intrinsically linked to eye movements: indeed, we direct our gaze,
consciously or not, so that we can spend more cognitive resources on the parts of our
visual field that we deem relevant, while reducing the processing load on less important
areas. This almost magic trick works so well that we build a mental image of the world
that is full of details and colors, while the area containing the highest density of color-
sensitive photoreceptor cells in our retina only accounts for around 3° of our visual field,
which is roughly the area covered by a thumb when viewed at arm’s length!

This relationship between eye movements and attention is tremendously interesting,
as it allows researchers in very diverse fields to use eye-tracking techniques to gather
data about what we look at and why we look at it, and by extension how we select and
decide what is relevant or not. With this knowledge, one can improve image and video
compression algorithms for instance, or learn about the reactions of an individual to a

specific stimulus.

When creating movies, filmmakers are always, voluntarily or not, playing with
the visual attention of their audience. The whole process of making a movie is, in
fact, dedicated to tell the story that the author wants to tell, and to do so visually. First,
the director forces the spectator to see only what the camera sees: the whole scene is now
restricted, and the only elements to focus on are the elements captured by the eye of the
camera. Then, by editing and choosing in which order to show the shots, the director also
restricts the order in which the viewer will look at things, and controls the timing of when
an element becomes relevant. Finally, a multitude of filmmaking techniques can be used

to direct the gaze of the viewers on specific areas of the frame, from the movement of the
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Figure 1 — Watching the audience watching Lee Van Cleef watching Clint Eastwood in
The Good, the Bad and the Ugly (Sergio Leone, 1966)

camera to the choice of the size of the shot, the staging of the objects or the depth of
field.

Problems

Over a little more than a century, filmmakers have developed a whole array of rules
and stereotypical ways of filming dedicated to convey at best their artistic and storytelling
intentions. Since then, cognitive film theorists have tried to understand how these con-
ventions and techniques influence the viewer, and showed several relationships
between the cinematographic properties of a sequence and the gaze patterns of people
watching it.

In the meantime, the computer vision community has taken a particular interest in
finding the ways of modeling human visual attention, on both images and videos.
Data-driven approaches have recently exhibited impressive performances in predicting
where humans will look. However, these methods are mostly focusing on bottom-up fac-
tors, i.e. the intrinsic features of the image (or the video), like color, lighting or motion.
While these characteristics allow for very decent results, we can legitimately make the
hypothesis that additional high-level information regarding the filmmaking tech-
niques should significantly improve the performances of data-driven visual

attention models on this very specific type of stimuli.
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Moreover, in the current state-of-the-art, most visual attention models from the com-
puter science part of the field are visual saliency models, i.e. models dedicated to
predict a probability distribution of where people look when watching something. How-
ever, we argue that an equally important question, especially when considering movies,
should be: when do people exhibit similar or different gaze behaviors? The an-
swer to this question is useful in many ways: for instance, when evaluating visual saliency
models, the inter-observer visual congruency (i.e. a measure of how much people look
at the same place, or how the gaze of a single individual is predictive of the gaze patterns
of a whole group) can be used as an upper-bound of the performances. Filmmakers can
also make a great use of knowing when people will focus on a single point, and when they
will explore the frame in a more dispersed way.

In the field of cognitive film theory , the phenomenon of people looking at the same
place at the same time is referred as attentional synchrony [SHO8|. Numerous studies
have shown that this synchrony is particularly high when viewers watch movies, compared
to static images or other type of videos. This would imply that movie clips possess certain
proper characteristics that tend to uniformize gaze patterns. From a modeling point of
view, it means that, in order to properly predict inter-observer congruency (I0C), and by

extension visual attention, we must take into account such features.

Contributions

In this thesis, we propose an exploration of filmmaking features and their impact on
gaze patterns, from a computer vision modeling point of view. The main contributions

are the following:

1. A new eye-tracking database, dedicated to study eye fixation patterns on cinematic
sequences. Alongside the eye-tracking data and the movie clips, we use hand-crafted
annotations about the cinematographic characteristics of the sequences, in order to

evaluate their influence on visual attention and to be used for modeling purposes.

2. A novel visual saliency model, dedicated to predict fixation distributions on movie
sequences. To achieve this, we designed a way to incorporate the cinematic infor-

mation previously mentioned.

3. A new inter-observer visual congruency metric for dynamic stimuli, specifically

designed to take into account the temporal dimension of the gaze tracks.

4. Two new models dedicated to predict inter-observer visual congruency: the first for
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static stimuli, and the second for movie clips. Similarly to the visual saliency model,

we also designed it to allow filmmaking information to improve the predictions.

For each of those models, we provide a few simple applicative examples, in order to show-
case the interest of these kinds of data-oriented approaches. Indeed, these can provide a
large amount of perceptual data, even though imperfect, that can be used for quantitative

studies regarding filmmaking.

Outline

This manuscript is organized as follows:

Chapter 1 provides a brief background on visual attention, and more specifically on
the role of eye movements. We describe the general ways of using eye-tracking data in
computer vision systems, and discuss a few applications.

Chapter 2 is a review of visual attention models, focusing on visual saliency. We
describe the main databases available, the evaluation metrics, and review the state-of-
the-art in static and dynamic visual saliency models.

Chapter 3 is dedicated to explaining what makes cinematographic videos different
from other kinds of dynamic visual stimuli. We review a few cinematic features, conven-
tions and rules, and different ways of formalizing them to be used by automated systems.
Finally, we give a quick review of previous work, mostly in the domain of cognitive psy-
chology, regarding visual attention and movies.

Chapter 4 introduces our dataset. We analyze how the cinematic features that we
gathered influenced the location of eye fixations, and provide an evaluation of visual
saliency models on it.

Chapter 5 proposes our visual saliency model, designed to improve fixation distribu-
tion predictions on movie clips. We show how our approach can give reliable predictions
in some of the situations where the other models failed.

Chapter 6 is dedicated to inter-observer visual congruency. We describe the way
that we compute visual agreement between observers, analyze the influences of cinematic
features on these scores, and propose our two models.

We conclude by discussing future research perspectives and possible applications.
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CHAPTER 1

VISUAL ATTENTION : HOW DO WE LOOK
AT THINGS ?

In this chapter, we define and describe the various mechanisms on which visual atten-
tion is built. We focus on overt visual attention, and the role of eye movements, and more
specifically eye fixations, as a marker of relevant information within a visual stimulus.
Finally, we introduce visual saliency, how it relates to visual attention, and its impact on

the field of computer vision through a few applications.

1.1 Introduction

In our visual environment, we are confronted to an overwhelmingly large amount of
information, as natural scenes are cluttered with various objects, textures, movements,
colors, lighting, and so on. As the human visual system is ultimately limited by its bi-
ology, for instance the amount of photoreceptor cells in the retina, this huge quantity
of information far exceeds its processing capacities. However, we seem to build an inter-
nal model of the world that is both rich in details and coherent, to such an extent that
we actually believe that this mental depiction where everything from our environment is
simultaneously present, describes in a stable and detailed way the reality of the world
around us [Gom72].

Indeed, in our everyday life, such a representation is tremendously helpful as it is
almost never challenged, except for some rare cases like optical illusions. This amazing
feature has been made possible by several mechanisms and strategies to reduce and process
the flow of information received by our eyes. Visual attention consists in this series of
mechanisms, designed to extract what is relevant in a visual stimulus, and to focus our
cognitive resources on the most important parts of it. This way, only a very small subset
of the visual information arriving to our eyes is transmitted to the visual cortex, but this

subset is enough for our brains to reconstruct a detailed representation of the world, even
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if not perfect [Ren00].

1.2 Visual attention

1.2.1 Passive attention mechanisms

These mechanisms include both passive characteristics of the eye, and active focalisa-
tions of the visual system. Passive attention first includes the photoelectric transduction
of the eye. Indeed, only a very small subset of the electromagnetic radiations, called the
visual spectrum, is transformed into code for the brain to process. A typical human visual
spectrum spans the wavelengths between 380 and 750 nanometers (see Fig. 1.1). The term

light is used to refer to any elecromagnetic waves in this range of wavelengths.
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Figure 1.1 — Human visual spectrum.

A second passive way to compress the visual information of an environment is through
the uneven distribution of photoreceptive cells on the retina. Indeed, the central part of
the retina, called the foveal area, contains a high density of cone cells, which are color-
sensitive photoreceptor cells. This high density allows for a very high spatial resolution in
the fovea, while other parts of the retina contain a much lower amount of cone cells, and
thus a low spatial resolution. On the other hand, peripheral areas of the retina contain
a higher density of rod cells, which are more sensitive to dim lights than cone cells, but

limited in terms of color vision. Fig. 1.2 shows this particular distribution of photoreceptive
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cells on the retina.
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Figure 1.2 — Cone and rod cells distribution on a typical human retina, from [MEP09]

Finally, when passing from the photoreceptor cells to the retinal ganglions, the spatial
information is compressed to eliminate redundancy, 7.e. it carries out contrast information.
This process is needed, as there are around a hundred times more photoreceptive cells
than retinal ganglion cells. It is carried out by center-surround structures implemented
by the bipolar and ganglion cells, and an easy equivalent to understand the way it works

is edge detection algorithms, using decorrelation.

1.2.2 Overt and covert visual attention

Active mechanisms refer to the focalisation of attention. Instinctively, we tend to think
about visual attention as to where we look and how our eyes are oriented, thus intuitively
linking attention to eye movements. However, we do not necessarily attend to objects
in the center of our gaze. Indeed, very early discoveries by James [Jam90] showed that

humans are able to focus their attention on peripheral areas of their vision field, without
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moving their eyes. This led to the distinction between overt visual attention and covert
visual attention.

Overt focalisations involve an eye movement, usually to put the object of attention into
the foveal zone, while covert focalisations refers to the action of focusing on areas in the
peripheral vision. While eye movements, and thus overt attention, are necessarily sequen-
tial (i.e. one focalisation after the other), covert attention can be deployed simultaneously
on multiple targets.

Covert visual attention is obviously more difficult to investigate, as there are no obvious
measures to detect covert visual shifts. However, the easiest and most convenient way to
determine covert focalisations seems to be the measure of overt focalisations, or in other
words, eye-tracking. Indeed, the exact relationships between overt and covert attention
are still debated and studied, but a general consensus seems to be that covert attention
shifts precede eye movements [SFH86; SD95; Carll; Kowll; NM11]. This way, overt

focalisations act as a good substitute for covert focalisations.

1.2.3 Endogenous and exogenous visual attention

In 1890, William James [Jam90] described two kinds of attention mechanisms : an
involuntary and reflexive mechanism, called exogenous, and a voluntary and conscious
mechanism, referred as endogenous. Endogenous attention, sometimes also called sus-
tained attention, is the act of wilfully focusing on the information at a certain location.
This mechanism takes around 300 milliseconds to be deployed, and is driven by the task
at hand for the observers. The deployment of this kind of attention strongly depends
on the observers, and is highly task-dependent, relying on top-down characteristics (i.e.
observer-dependent). Fig. 1.3 shows several visual search strategies depending on different
tasks that the observers had to fulfill. Personal emotional states, cultural backgrounds, or
histories strongly influence top-down attention, and makes its modeling a difficult task.
However, certain recurrent behaviors can be exposed, such as center-bias [BBD14] (people
tend to look more at the center of an image), or lefward-bias [Fou+13] (people tend to
make their first saccades on the left side of an image when discovering it).

Meanwhile, exogenous attention, or transient attention takes around 100 to 120 mil-
liseconds to deploy, and is used, for instance, to spot new interesting locations in the
peripheral vision field. This mechanism is fundamentally signal-driven, by bottom-up fac-
tors (i.e. stimulus-dependent). This implies that this kind of visual attention does not rely

on prior knowledge of the stimulus, but rather on spatio-temporal features of the stimu-
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Figure 1.3 — Influence of the task on visual search on a painting of I.LE. Repin, Unexpected Visitors. (a)
no task is asked (free viewing); (b) observer is asked to estimate the social class of the characters; (c)
observer is asked to estimate the age of the characters; (d) observer is asked to guess what the family was
doing before the visitor entrance; (e) observer is asked to remember the clothes of the family members;
(f) observer is asked to remember the positions of objects and people; (g) observer is asked to estimate
how long the visitor had been away from the family. Adapted from Yarbus [Yar67].

lus. For instance, high-contrast areas (in terms of luminance, colors, texture, or motion)
tend to draw the attention of the observer [MRW97; RZ99; PN04]. Sudden appearance
of objects also has a strong impact on overt visual attention [YJ96; RJY92], as well as
contextual discrepancies (i.e. when an object seems to be out of place in a scene) [GS14].

Neurophysiological studies seem to find that bottom-up and top-down attention are
associated with two separated but communicating areas of the brain [DD95; CS02]. These
mechanisms are indeed intertwined, work jointly and interact when dealing with a nat-
ural scene. Moreover, even during a top-down attention phase, where the visual focus
is consciously controlled by the observer, bottom-up factors influence the attention. For
example, Theeuwes [The04] showed that when asked to find an a specific shape on an

image containing various objects, people tend to focus on a colour outlier if there is one.

1.3 Eye movements and overt visual attention

As mentioned earlier, one of the mechanisms of visual attention includes moving the eye
in order to put the image of an object of interest on the foveal area. Thus, eye movements
and overt visual attention are intrinsically linked, and a better understanding of the way

eyes move leads to a better understanding of the way we process visual information.
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1.3.1 Saccades

Saccades are quick movements of both eyes, which speed is typically between 100 and
700 degrees per second, but can sometime reach up to 900°/s. Saccades are intended
to shift the foveal area to another part of the visual stimulus. Thus, they are a crucial
piece of the mechanical processes that selects relevant visual information. Saccades do
not necessarily follow the shortest path from one fixation point to another, as they can
sometimes follow a incurved path. They can be classified into several categories, like
visually guided saccades (the eyes move towards a part of the stimulus, either because of
the appearance or disappearance of a salient object, or because of an endogenous decision
to scan the environment), antisaccades (the eyes move away from a visual cue), memory
guided saccades (the eyes move towards an area that was remembered) or predictive

saccades (the eyes anticipate a movement of an object).

1.3.2 Fixations

Eye fixations are not eye movements per se, but rather the moment between saccades
where the gaze is maintained on a single location. The alternance of saccade phases
and fixation phases is a common trait of almost all animals with good vision, including
vertebrates and most arthropods and cephalopods [Lan19]. For humans, fixations often
occur when the foveal area is located on a part of the visual stimulus deemed relevant,
consciously or not. However, even though the eye seems to be still during a fixation phase,
it can actually exhibit several eye movements, called fizational eye movements, namely

microsaccades, ocular drift and ocular microtremors.

Microsaccades

Microsaccades are a kind of fixational eye movement that occur involuntarily between
saccades. They usually have an amplitude of 2 to 12 min-arc of visual angle (i.e. bew-
teen 0.03 to 0.2 degrees) [CKO8], and occur once or twice per second during a fixation.
However, recent studies seem to highlight the existence of a saccade-microsaccade contin-
uum [Ote+08], with an asymptote in the distribution of the magnitudes of microsaccades
around 1 degree. Fig. 1.4 shows an example of microsaccades happening during the fixa-
tion phases of the visual exploration of a scene. The purpose of these microsaccades still
remains unclear, but several hypotheses are being explored, like the control of the fixa-

tion position, or the prevention of perceptual fading [Rol09]. Indeed, in the early 1950s,
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— Saccades
Microsaccades

O Fixations

Figure 1.4 — Example of saccades and microsaccades occuring during the free viewing of a
scene. B shows the ocular scanpath on a 45 seconds time period, and C shows the saccades
(green) and microsaccades (red) happening during a 10 seconds time period. Reproduced
from Martinez-Conde et. al. [Ote+08].
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several studies showed that, when an observed image is set in motion to counteract eye
movements, the observer sees the image fading away within a few seconds [Yar57|. Fi-
nally, neurological studies showed that microsaccades usually trigger an increase in neural
activities, especially in the V1 area of the visual cortex, which could give microsaccades

a rather important role in visual attention [MOM13].

Ocular drift

During a fixation, the eye follows an erratic, low velocity path. This slow motion
is called occular drift, and can be described as a random walk [Fin74]. The speed of
these drifts is usually below 30 min-arc/s. It also seems that these drifts are coordinated
between the two eyes. Recent studies showed that these movements are useful to process
spatio-temporal information on a scene, as well as the details on stationary objects [AA12;

RV15).

Ocular microtremors

Ocular microtremors are irregular wave-like movements, with a high frequency and
a very small amplitude (just around a few arcseconds), that happen during the drift
movements. Like the ocular drifts, the function of theses fixational eye movements is still
debated, but they seem to be linked to the process of perceiving high-grain details, and
correlates with the activity of several areas of the brainstem [RV15; MOM13].

The two following eye movements that we describe are secondary for the topic of this

thesis; we will just give a quick overview of their specificities and purposes.

1.3.3 Smooth pursuit

Smooth pursuit refers to the movement of the eye following a moving object, in order
to stabilize it in the visual field. Contrarily to saccades, the eye moves in a continuous way
during smooth pursuit, with a velocity usually under 30°/s. If the object moves faster than
that, follow-up saccades are necessary to keep tracking. Humans are ordinarily unable to
initiate a smooth pursuit movement without a moving visual stimulus. The purpose of
this movement is to stabilize the moving target in the foveal area, in order to examine it

with an important power of resolution.
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1.3.4 Vergence

Vergence is a movement where both eyes move in different horizontal directions. The
reason for that is to keep a binocular vision into an object that moves towards or away
from the observer. The eyes then have to rotate horizontally, towards each other when

the object is close, and away from each other when the object is farther away.

1.4 Studying eye fixations to inform on visual atten-
tion

As mentioned earlier, eye fixations are strongly linked to visual attention, whether
they are endogenous or exogenous. Moreover, extensive literature used this knowledge
and eye-tracking measurements to show that some visual features can draw and drive
attention [Wol98]. However, these studies mostly take place in the setting of the lab, and
use low-level features of the stimuli. A natural extension of this work was then to study
the allocation of visual attention on complex scenes, closer to the real world. One of the
computational approaches dedicated to model the deployment of visual attention on a

stimulus is the concept of saliency map.

1.4.1 Visual saliency maps

In 1985, Koch and Ullman [KU85] proposed a topographic representation of an image,
where the scalar values at each location represent the saliency of this area, i.e. the the
likelihood of an eye fixation to occur at said location. This notion of saliency is computed
using an array of visual features, that could influence overt or covert attention. The main
hypotheses of this approach are, that overt attention is driven by bottom-up characteristics
that can be extracted from the stimulus, and that overt visual shifts can serve as a proxy
for covert attention, as mentioned earlier. This idea was soon implemented in several
computational models by Itti, Koch and Niebur [TKN98; IK00]. In these original models,
saliency is inferred from low-level features extracted in parallel from a scene, at different
scales (see Fig.1.5).

It is worth noting that this approach is fundamentally bottom-up, and thus cannot
take into account top-down visual discrepancies; this is why these models are much more
accurate at explaining human attention allocation in free-viewing conditions, and when

the stimulus is still unknown to the viewer [PLN02].
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Figure 1.5 — Pipeline of Itti’s saliency model, from Itti et. al. citeltti98 The image is passed
through three channels of feature extraction (color, intensity and orientation), resulting
into three separate conspicuity maps, which are then merged together linearly.
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1.4.2 Visual saliency and eye fixations

In the work of Itti and Koch [TKN98], making the feature map was the first step to
compute visual attention. Once all of the features were combined, the overall distribution
was used to predict eye fixations, which were derived to be at the location of the local
maxima of the saliency map, in decreasing peak value order. To evaluate this model, and
other approaches to saliency, one must rely on ground-truth data, i.e. ground-truth fixa-
tions obtained through eye-tracking. However, due to the top-down component of visual
attention, it is difficult to just rely on a fixation map from a single or a few observers.
To solve the issue, most models rely on fization density maps as a ground-truth represen-
tation. The traditional way to create such maps is by extracting the location of fixation
points, and then convolving this binary map with a gaussian kernel, whose size is deter-
mined by the projected size of the fovea on the viewing device, as well as the precision
and accuracy of the eye-tracking device. Fig. 1.6 illustrates this classical pipeline, from
eye-tracking experiments to fixation density maps.

Maps created that way are fixation density maps, but are often referred to as ground-
truth saliency maps, thus allowing a certain confusion between the low-level set of features
described by Itti and Koch and these fixation densities. Moreover, there is not a single
way to build fixation density maps: these maps are highly dependent on the experiment
conditions, such as the viewing time, the number of observers, or the task at hand. Engelke
et. al. [Eng+13] showed that even though fixation density maps are usually very similar
and their differences have a very low impact on any kind of application, they strongly
depend on the experimental conditions of the laboratories. This should call for a cautious
approach when analyzing results of visual attention models, and more especially when

these models are data-driven.

1.5 Applications of eye fixations and visual attention

in image processing

Eye-tracking research has now reached an era of new innovations and applications.
Indeed, now that eye-tracking technologies become less and less invasive and expensive,
thus the knowledge about relationship between eye movements and visual attention gets
more and more extensive, so that a whole variety of applications are being investigated. In

this section, we will only focus on computer vision related applications, but eye-tracking
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Figure 1.6 — From eye-tracking to fixation density maps. Adapted from Le Callet and
Niebur [LN14]
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has become a tool used in many fields, like psychology, neurosciences, robotics or adver-
tising (see Duchowski [Duc02] for an extensive review, and Mancas and Le Meur [ML16]
for saliency specific applications). The aim here is not to give a comprehensive review
of visual attention applications, but rather to give a very brief overview of the diversity
of uses of eye-tracking data in the field of image processing. More complete and detailed
literature on each of the topics that we mention can be found in the various surveys and

reviews cited in the next subsections.

1.5.1 Attention-driven compression

Image and video content production and distribution has recently seen a rather radical
increase, due to the advances in communication technologies, and the always increasing
bandwidth of multimedia devices. This results in the very fast development of new video
and image compression methods, i.e. converting a visual signal in a way that reduces the
storage space, while maintaining a good visual quality. The first methods based on visual
attention were introduced in the late 1990’s [MDN96; KG96].

The main idea was either to find the less interesting areas in a frame and primarily
compress them, or transmitting the most salient areas first during a data transfer. By
treating the different regions of the image differently, depending on their visual appeal,
one can achieve compression without degrading too much the perceived quality. Since
then, these techniques have improved, following the advances in visual attention model-
ing [LE12; ZX18; Itt04; LQI11; HB14]. The generalization of low-cost eye-tracking devices
also lead to new compression techniques for network video streaming [Fen+11].

Recently, 360° image and video processing has gained a lot of attention, as the impor-
tant amount of data created by the spherical viewing range creates a great need for efficient
compression methods. While the main approach was to project the 360° images into the 2D
plan, and use more traditional compression techniques [SD18], several novel approaches

proposed models specific to this kind of content (see the review of Xu et. al. [Xu+20]).

1.5.2 Perceptual image quality assessment

As the transmission pipelines for images and videos get more and more complex, and
involve more and more steps susceptible to degrade the quality of a visual stimulus, quality
assessment plays an increasingly important role at every stage, from the acquisition of

the signal, to its compression, transmission and display. These metrics are used to ensure
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that the content delivered to the user aligns with the intentions of the transmitting entity.
Quality assessment methods are usually separated into two categories : objective and
subjective. Subjective assessment involves showing the visual stimulus to a set of human
observers, and thus is the most reliable and accurate technique. However, these subjective
tests are time and resources-consuming, and cannot be included in an automated pipeline.
This is why objective image quality assessment algorithms have been developed, in order
to approximate the quality evaluation of a human observer.

Visual attention was introduced in this field, as studies showed that artifacts are
usually more annoying when located in salient areas [Eng+11]. Several approaches were
proposed incorporating visual attention data, by giving more weight to salient areas when
penalizing image distortions during the pooling stage [Nin+07] (see Zhai and Min [ZM20]
for a detail review of such metrics). However, even though many studies show that visual
attention does indeed affect image quality assessment, there are still a number of issues
remaining, as this weighting is not always efficient [Nin+09; LH11].

Similarly to attention-driven compression, attention-driven quality assessment for 360°
images [Xu+20] and 3D stereoscopic content [ZM20] has gained a lot of attraction, as

saliency maps were found very useful for evaluating quality in these particular cases.

1.5.3 Medical imaging

Recent medical imaging techniques, such as computed tomography scanners or mag-
netic resonance imaging, opened the field to significant improvement in medical decisions.
Analysis of medical images has become a central part of many diagnostic processes, either
to detect and locate anomalies, like tumors or lesions, or to interpret the image itself.
However, the amount of data and the low number of experts makes it difficult to properly
get the full amount of information (and in some cases, the right medical decisions) from
these images.

By studying eye movements of medical imaging experts, Krupinsky [Krul2] showed
that gaze patterns vary depending on the amount of experience of the viewer. This opened
the idea that visual attention models could provide an interesting approach to partially
automate and eventually improve medical images analysis. These approaches were suc-
cessfully used to detect slices of CT scans containing tumors [Man+07], on MRI im-
ages [AK14], or for other various purposes (see Lévéque et. al. [Lév+18] for a recent
survey of the field).
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1.5.4 Other attentive systems in computer vision

Most data-oriented applications in computer vision, like for instance image captioning,
action recognition, segmentation or classification tasks, are based on human perception.
Indeed, annotations and labels are usually provided by humans, and thus heavily rely on
human visual attention. This led computer vision researchers to include visual saliency
and human attention in a whole variety of models, applied to a large number of tasks and
problems. These applications are often referred as attentive systems.

For instance, Karessli et. al. [Kar417] showed that gaze patterns are class-discriminative,
and thus can be used to perform efficient image classification. Object recognition tasks
also benefit from visual attention knowledge: indeed, knowing the spatial distribution of
eye fixations provides information about the likelihood that an object is in fact in that
area, before even knowing what this object is [WKO06; ADF10]. Segmentation [Che+15;
Qin+14], scene classification [BI11], caption generation|BA18] or object tracking [Bor+12]
can also be improved by using human attention characteristics.

More applications in computer vision and artificial intelligence can be found in the
reviews of Zhang et. al. [Zha+20] and Nguyen et. al. [NZY17].

1.6 Conclusion

In this chapter, we have seem various mechanisms that humans use to reduce the
cognitive load of processing their visual environment. We explored how eye movements
can inform about the visual attention of the viewer, and how computer vision systems
make use of this kind of data.

Visual attention as a research topic is particularly rich, in the sense that it benefits
from a whole variety of approaches and disciplines, from computer vision to cognitive
psychology, robotics, and many more. The numerous resulting applications have shown
how useful eye-tracking technology can be. For instance, we have not mentioned the vast
number of interactive systems that rely on quantitative measures of overt visual attention:
foveated rendering in virtual reality headsets, communication devices for disabled users,
and so on.

During the last decades, significant progresses have also been made in understanding
the various neurobiological mechanisms of visual attention. These insights have allowed
computer scientists to propose many models of visual attention inspired by the way we

process images, for example by simulating the operations taking place in the different
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areas of the visual cortex.

Finally, recent techniques in the field of image processing, like machine learning ap-
proaches, have considerably increased the sheer amount of data that is used by computer
vision systems. In this perspective, using eye-tracking and overt attention knowledge es-
sentially helps reducing this mass of information, by indicating what is -or is not- relevant

to the human visual system.

36



CHAPTER 2

MODELING VISUAL ATTENTION ON
IMAGES AND VIDEOS

In this chapter, we present a review of the most influential and relevant models of
visual saliency. We first present a variety of eye-tracking databases commonly used for
these tasks, and the methods used to evaluate visual saliency models. We then review
static, and more importantly dynamic saliency models. Finally, we give an overview of

other kinds of models, outside the visual saliency paradigm.

2.1 Introduction

Since the first theoretical method to compute visual attention using feature integration
outlined by Koch and Ullman [KUS85], and implemented later by Itti et. al. [IKN98], visual
saliency models have seen significant improvements, alongside with our comprehension
of how visual attention is deployed on all kind of stimuli. In the early 2000’s, a lot of
work have been dedicated to finding better hand-crafted features and learning methods
to compute saliency maps closer and closer to ground-truth fixation density maps. These
improvements lead the quality of the saliency predictions to grow at a relatively stable rate.
However, the growing availability of large quantity of eye-tracking data, alongside with
the recent resurgence of neural networks and the application of deep learning approaches
created a sharp difference in performances, and accelerated significantly the amount of
models and new methods. These improvements go to such extent that it is, in some cases,
almost impossible to differentiate ground-truth fixation densities from computed saliency
maps (see Fig.2.1).

Nevertheless, most of this work focuses on images, i.e. static stimuli. In comparison,
the same task applied to video, i.e. dynamic stimuli, still remains a little bit less explored,
although recent studies seem to indicate a growing interest in the challenges presented

by it. Multimedia approaches are also more and more investigated, with the addition for
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Key:M-M-H-M-M

Figure 2.1 — Images with ground-truth fixation densities and computed saliency predic-
tions from the SALICON model [Hua+15]. Maps in the second and third rows belong
to either Model (M) or Humans (H) (i.e. are complementary). Try to guess which one is
which. Zoom on the bottom-right text to see the answer for the second row. Reproduced
from Borji [Borl§]

instance of audio cues to dynamic saliency models.

It is important to distinguish visual saliency models from other kinds of approaches
related to visual attention, as the term "saliency" is sometimes used with different mean-
ings. In this thesis, it will only refer to bottom-up approaches dedicated to model human
fixation densities. Other kinds of frameworks will be shortly discussed in the last section

of this chapter.

2.2 Eye-tracking datasets for dynamic visual saliency

In order to evaluate dynamic attention models, or even to build them in the case of
data-driven methods, there is an important need for eye-tracking databases. Those bases
are usually built by showing visual stimuli to observers, and recording their gaze patterns.
However, as mentioned earlier, the experimental conditions in which the fixation points
are gathered can influence the collection of the data, and consequently have an impact on
the models built out of it. It is then necessary to have a good understanding of the existing
eye fixations databases, what kind of stimuli they contain, and in which conditions the
data was gathered. In the following, we list the most influential and relevant eye-tracking

databases, as well as their characteristics and limitations.
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2.2.1 Static stimuli

Eye-fixation datasets on static images play an important role on the development of
dynamic saliency models. Indeed, it is common to see a video saliency computation relying
at least partially on static features, extracted from such databases. The other advantage
is the time observers get to look at the images: for each image, one can follow a relatively
long gaze track, while for videos, a single fixation is often carried over several frames,
meaning that more observers are usually needed to obtain a reliable fixation density on a
single frame.

The MIT dataset [Jud+09] was the first large-scale database of eye-tracking experi-
ments dedicated to study visual saliency. It consists of eye-tracking data for 15 free-viewing
observers, aged 18 to 35, over 779 landscape images and 228 portrait images. Later, the
authors proposed a follow-up dataset, composed of 300 natural scenes, with held-out gaze
records from 39 observers, in order to use it as a benchmark for saliency models.

CAT2000 [BI15] includes eye-fixations records on 4000 images, separated uniformly
into 20 different categories. Gaze data was collected from 29 observers per image, free-
viewing each stimulus for 5 seconds. Half of the resulting fixation maps and saliency maps
are held-out, again for benchmark purposes. Alongside with the MIT set, they are used
to rank saliency models on the MIT /Tibingen benchmark [Kiim+].

OSIE [Xu+14] contains 700 natural images, with eye fixation data from 15 free-
viewing observers, each image being seen during 3 seconds. The particularity of this
database is the annotations the authors provide, including over 5000 segmented objects,
as well as semantic annotations.

SALICON [Jia+15] is a rather particular database: instead of eye fixations, it is
composed of mouse-tracking data, over more than 10000 images from the MS COCO image
database [Lin+14]. Using the OSIE dataset as an eye-tracking baseline, the authors show
that mouse-tracking data, with proper preprocessing, can be used as a good ground truth
to train visual saliency models. The large scale of this dataset makes it an important
contribution especially in the context of data-demanding methods, like deep learning.
However, Tavakoli et. al. [Tav+17] looked into the correlation between mouse tracking and
eye tracking at finer details, showing the data from the two modalities are not exactly the
same. They demonstrated that, while mouse tracking is useful for training a deep model,
it is less reliable for model selection and evaluation in particular when the evaluation
standards are based on eye tracking.

This list of databases is far from exhaustive; for a more complete view of the topic,
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we refer the interested reader to the MIT /T1ibingen list of saliency datasets [Kiim+]. To

this day, they list 31 saliency datasets, with various properties and purposes.

2.2.2 Dynamic stimuli

As for the static case, eye-tracking databases on videos are important to both under-
stand and model the way we watch dynamic stimuli. Several datasets have been proposed
over the last few years; in the following, we highlight some of the bases relevant to this
thesis, as well as their interest and shortcomings.

DHF1K [Wan+19] is considered as the main standard for evaluating dynamic saliency
models. It consists of eye fixations data over 1000 videos, from 17 observers. The authors
used videos from Youtube, based on searches using key words, in order to maintain a va-
riety of content and objects. The total duration of the set is around 5h20 (19420 seconds),
making it one of the largest dynamic saliency dataset. Out of the 1000 gaze-tracking
records, 300 are held-out to evaluate saliency models on the benchmark proposed by the
authors [Wan+].

Hollywood-2 [MS15] includes 1707 movie clips, from 69 Hollywood movies, as well as
fixation data on those clips from 19 observers. Observers were split into three groups, each
with a different task (3 observers free-viewing, 12 observers with an action recognition
task, and 4 observers with a context recognition task). Each group being relatively small,
the common way to use this data for visual attention modeling is by merging those
groups, thus introducing potential biases. The large scale of this dataset (around 20 hours
of video) is well fit for training deep saliency models, however few conclusions regarding
gaze patterns on movies can be drawn from the data itself, since it mainly focuses on
task-driven viewing mode, and that each clip is only around 15 seconds long.

SAVAM [Git+14] includes 41 high-definition videos, 28 of which are movie sequences
(or use movie-like realisation, like commercials for instance). Eye fixations are recorded
from 50 observers, in a free viewing situation. As for Hollywood-2, the each clip is quite
short, only 20 seconds on average.

The DIEM project [Mit+11] is an investigation of gaze patterns on videos. The au-
thors first released a dataset composed of eye-tracking records of 42 observers, on 26
movie sequences, for a total of 2605 seconds of content. In their study, the authors showed
that temporal features were the most predictive of eye fixations, compared to spatial and
static features. Since then, the dataset has grown, and now includes data from over 250 ob-

servers, on 85 videos. These videos cover a large range of genres, including advertisements,
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movie trailers, music clips, or sports videos.

Breeden and Hanrahan [BH17| proposed eye-tracking data from 21 observers, on
15 clips from 13 films, for a total of 38 minutes of content. Each clip is between 1 and
4 minutes. Alongside this data, they also provide high-level feature annotations, such as
the camera movements in shots, the temporal location and types of edits, the presence or
absence of faces on screen, and whether or not the characters are speaking. However, the
main limitations of this dataset are the relatively low precision of the eye-tracking device
used, and the duration of the total content of the base itself.

Study Forrest [Prol4] is a large-scale project centered on the movie Forrest Gump,
and dedicated to understanding a large spectrum of the sensory impact of the movie. It
includes a huge amount of data, including extensive neurological imagery, movie-related
annotations and gaze-tracking data [Han+16]. The gaze pattern dataset includes eye-
tracking data of 30 observers watching the movie, 15 of the participants being in a fMRI
scanner, and the other 15 in a lab setting.

In this list, we focused mainly on movie-related databases. A more complete list,
dedicated to the visual saliency paradigm, can be found on the DHF1K benchmark
page [Wan+].

2.3 Evaluation of saliency models

Measuring the differences or similarities between two gaze behaviors can be a challeng-
ing task, but is fundamental for our understanding of human visual attention. Obviously,
it plays a key role in evaluating the performances of saliency models. However, there is not
a single unified metric that is used as a consensus reference when it comes to evaluating
saliency maps. Le Meur and Baccino [LB13], and later Bylinskii et. al. [Byl+19] offered re-
views of the way scanpaths, fixations density maps and saliency maps could be compared,
and how those metrics behave and what they actually measure. Li et. al. [Li+15] used
human evaluations of saliency maps to define a subjective ranking, against which they
evaluated other metrics. However, human perception is not a very good discriminator for
visual saliency, as humans tend to favor certain features of the saliency maps over other.
For instance, small variations of the saliency values in low-saliency areas tend to go unno-
ticed. Finally, Emami and Hoberock [EH13| proposed to rank the metrics based on how
well they discriminate between human fixations density maps and randomly-generated

saliency maps.
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In the following, we list the main metrics used to evaluate saliency models, as we will

extensively use them in the remainder of this thesis.

2.3.1 Distribution-based metrics

Pearson’s correlation coefficient (CC)

The Pearson’s correlation coefficient (CC) evaluates the linear relationship between
two variables, and thus can be used to interpret differences between saliency maps and
fixations density maps. For a predicted saliency map S and a fixation density D, the value

of the correlation coefficient is:

CcCo(D,$) = (% (2.1)

where (D, S) is the covariance of D and S. The correlation coefficient takes values
between -1 and 1, 1 indicating perfect correlation, -1 perfect correlation in the other
direction, and 0 no correlation. It is symmetric, and thus does not distinguish between
false positives (i.e. a predicted salient area where no fixations occur experimentally) and

false negatives (i.e. a predicted non-salient area where fixations occur).

Similarity (SIM)

The similarity metric (SIM), or histogram intersection, measures the similarity be-
tween two distributions represented as histograms. For a predicted saliency map S and a
fixation density D, both normalized (i.e. }; S, = > D; = 1) the value of the metric is:

SIM(S,D) = > min(D;, S)) (2.2)

where 7 are the pixel locations. A value of 0 indicates no histogram overlap at all, while
a value of 1 indicates perfect overlap. The similarity metric is highly sensitive to false

negatives, and penalizes them significantly more than false positives.

Kullback-Lieber divergence (KL)

The Kullback-Lieber divergence (KL), also called relative entropy, comes from the field

of information theory. It is used to measure how a probability distribution differs from an

42



2.8. Evaluation of saliency models

other. In the context of visual saliency maps, there exists several ways to compute this
metric. However, the most common is the following, for a predicted saliency map S and

a fixation density D:

}ﬂmip)=§:pm%<s+ DC) (2.3)
i 5+Sz

where 7 iterates over the pixels of the map and ¢ is a regularization constant. The value
of ¢ will affect how pixels with a prediction of zero will be penalized; it is usually set to
built-in epsilon value of the language used (usually 2752 & 2.22e—16 for 64-bit systems).
KL divergence is very sensitive to zero-values, and thus penalizes a lot sparse predictions.
Identical maps will score very close to zero, and the score gets higher as the compared
distributions differ. The upper-bound for the metric depends on the size of the maps and

the chosen value of €.

Earth mover’s distance (EMD)

The earth mover’s distance (EMD) measures the minimal cost needed to transform
one histogram into another (or in our case, a saliency map into another). It incorporates
a ground distance, as to include the notion of space into the computation of the metric.

For a saliency maps S and a fixation density D, the EMD is defined as

N o fiid
EMD@Jn:mmgi&;lsj

fii i fig (2.4)

(1) fi 20, (2) 32 fi <5 (3) 3° fiy < Dj (4) 3 fij = min (Z SZZDJ)

where f;; represents the flow (i.e. the amount of value transported from pixel i to pixel j),
and d;; is the spatial distance between pixel ¢ and pixel j. In our case, the euclidean norm
is commonly used for the ground distance. However, this computation is very costly; we
then use the following variant, proposed by Pele and Werman [PWO08]|, for which there

exists a linear-time algorithm:

EMD(S, D) = min (Z fijdij) +

” 0]

> 8=2D
i J

X I’I%EIJJXd” s.t.
’ (2.5)
(1) fi; >0, (2) Zfij < S, (3) Zfij <Dj;(4) Zfij = min (Z Si,ZDj)
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An EMD of zero indicates that the distributions are the same, while a larger value indicates
more differences. EMD penalizes false positives, depending on the spatial distance between
them and the ground truth. As this metric requires to solve an optimal transportation
problem (and so a global optimization over the whole saliency map), it still remains
computationally costly, which is why it is sometimes not reported when evaluating saliency
models.

All of those distribution-based metrics can of course be used to compare a predicted
saliency map to a ground-truth fixation density, but also to compare two predicted saliency

maps, and so are useful to evaluate saliency models relatively to each others.

2.3.2 Location-based metrics

Area under ROC curve (AUC)

One way of interpreting a visual saliency map is to consider it as a classifier of which
areas are fixated or not. This advocates for the use of signal detection metrics to evaluate
saliency maps performances. The Receiver Operating Characteristic (ROC) curve repre-
sents the rate of false positives (FPR) as a function of the rate of true positives (TPR),
when treating the saliency map as several binary classifiers, based on a set of thresholds.
The area under the ROC curve (AUC) then provides a measure indicating the perfor-
mances of the overall classification. Several implementations of the AUC metric exist, in
the context of visual saliency, depending on the way the true and false positive rates are
calculated. A value of 1 indicates perfect classification, while 0.5 is the chance level.

Judd et. al. [Jud+09] proposed a first AUC variant (AUC-J), by computing the TPR
as the ratio of true positives (i.e. fixation pixels where the predicted saliency value is
above the considered threshold) to the total number of fixations, and the FPR as the
ratio of false positives (i.e. unfixated pixels where the predicted saliency value is above
the considered threshold) to the total number of pixels of the saliency map above the
threshold.

Another variant (AUC-B) was proposed by Borji et. al. [BSI13], by using a random
uniform sampling of the pixels as negatives, and so defining false positives as the pixels
in this set where the saliency map values are higher than the threshold. This is a discrete
approximation of the FPR made by AUC-J, and thus is less computationally costly.

Finally, a common shortcomming of visual saliency models is the way they include

center bias. Indeed, eye fixation densities on an image will often exhibit higher values
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towards the center of the image [Tat07]. Because of that, a model including such bias will
be able to predict well at least a part of the fixations, independently from the considered
stimulus, especially if the considered dataset has a strong center-bias. In order to penal-
ize this behavior, Tatler et. al. [TBGO5] introduced the shuffled AUC metric (sAUC),
where the negatives are sampled among fixation locations from other images rather than
uniformly random. This results in sampling negatives mostly from the center, and thus
penalizes models incorporating center biases.

AUC metrics are then computed by varying the threshold, and doing so, measure dif-
ferent aspects of the saliency map compared to ground truth. Indeed, lower thresholds
will measure the coverage similarities, while higher thresholds will measure peak similar-
ities [Byl+19].

Normalized scanpath saliency (INSS)

The normalized scanpath saliency (NSS) is a metric comparing a predicted saliency
map to ground truth fixations [Pet+05]. The saliency map is first normalized, such that
the mean is zero, and unit standard deviation. Then, the normalized saliency values are
evaluated at the fixation locations. For a predicted saliency map S and a ground-truth
binary fixation map F' (i.e. a matrix where the value of the fixated pixels is 1, and has 0

on all of its other coordinates), the value of the NSS is:

~ 1 _
NSS(S, F) = 1= > SiFf
' (2.6)

where ;:ZE and S:u

D=

o

iterating over the pixels 7, and N is the number of fixated pixels. The chance level of the
NSS metric is 0, negative values indicate anti-prediction, and the higher the value, the

better the prediction. This measure is particularly sensitive to false positives.

Information gain (IG)

Information gain (IG) is a metric inspired by information theory, proposed by Kiim-
merer ef. al. [ KWB15] to measure the amount of information predicted by a saliency model
beyond a given baseline, usually a centered-bias. It assumes that the saliency map output

by the model is a fixation probability density, properly regularized, and that the model
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includes a center prior. In this case, given a predicted saliency map S, a ground-truth

binary fixation map F' and baseline map B, the information gain is:
~ 1 ~
IG(S,F.B) = -3 F, (log(z + Si) — log(z + By)) (2.7)

iterating over the pixels ¢, with IV the number of fixations and € a regularization parameter,
similarly to the KL case. An IG score above zero will indicate that the model predicts
fixation locations better than the considered baseline. Another interesting property of this
measure is that it allows model comparison: the baseline map can be a saliency prediction
from another model; the metric will then quantify how much improvement is brought by

the new model.
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Figure 2.2 — Variation of parameters of a saliency map in order to quantify effects on
metric scores. Each row corresponds to varying a single parameter value of the prediction:
(a) variance, (b-c) location, and (d) relative weight. The x-axis of each subplot spans the
parameter range, with the dotted red line corresponding to the ground truth parameter
setting (if applicable). The y-axis is different across metrics but constant for a given
metric. The dotted black line is chance performance. EMD and KL y-axes have been
flipped so a higher y-value indicates better performance across all subplots. Reproduced
from Bylinskii et. al. [Byl+19]
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2.3.3 The probabilistic framework

Recently, Kiimmerer et. al. [KWB18| proposed a new framework to evaluate visual
saliency methods. They argue that the variety of the metrics, and the fact that they
each evaluate different properties of the saliency predictions makes it difficult to consis-
tently rank and benchmark models. Indeed, they show that a saliency map usually cannot

perform well according to every metric.

Instead, they propose to differentiate the notions of saliency model and saliency map.
A saliency model should be intrinsically probabilistic and output a fization probability
density, while a saliency map should be a metric-related computation, derived from the
density prediction. For each metric, they propose a method to derive the optimal saliency
map from the density prediction, maximizing the expected performance on that metric.

This way, accurate models should perform well according to all measures.

This approach has become a standard, as it has become the new way of evaluation of
the MIT /Ttbingen benchmark [Kiim+-]. However, this implies radical changes to saliency
models, and makes the comparison with older saliency models harder, as the desired
saliency output is fundamentally different. Moreover, the process of designing a saliency
map for each metric from a fixation density prediction makes it computationally costly.
This also explains why this approach is not yet used to evaluate dynamic saliency models,
which usually involve way more data (i.e. one prediction per frame). This is why, while
acknowledging the interest of the probabilistic framework, we will use the more traditional

metrics in the rest of this thesis.

2.4 Static models of attention

In the two following sections (Section 2.4 and 2.5), we give an overview of the methods
used to predict bottom-up human visual attention. The objective is not to give an ex-
haustive review of all the existing models and their performance (we refer the interested
reader to the following reviews: Riche et. al. [Ric+13], Borji and Itti [BI13], Borji [Bor19],
Wang et. al. [Wan+19]), but rather to give a short exploration of the main frameworks

and models used to create saliency maps.

47



Chapter 2 — Modeling visual attention on images and videos

2.4.1 Traditional methods

During the pre-deep learning period, a significant number of saliency models was
introduced, and numerous survey papers looked into these models and their properties.
Most of those models usually used a three-stage approach : (1) feature extraction,
where feature vectors are extracted from the image at various locations, (2) activation,
where one or multiple activation maps are computed based on the feature vectors, and
(3) normalization (and/or combination), where the activation maps are unified into a

single saliency prediction.

In their seminal 1998 paper, Itti et. al. [[KN98] used cognitive and neuro-physiological
concepts to extract features from the images. Inspired by the feature integration theory in
the study of human visual system, they create three feature channels, for color, intensity
and orientations. The image is subsampled by a Gaussian pyramid, and these features
are extracted at each level of the pyramid, before being normalized and linearly summed
into "conspicuity maps', once more linearly combined into a single saliency map. A lot
of cognitive-influenced models were proposed, in the idea of modeling the structure of
the human visual system, or a subset of it. Le Meur et. al. proposed one [Le +06], where
they implemented contrast sensitivity functions, early visual features extraction, masking,
perceptual grouping and centered-surround interactions. Murray et. al. [Mur+11] also
introduced an interesting model following this idea, where the image is processed based
on early human pathway (color and luminance channels, with a multiscale decomposition),
followed by a normalization inspired by the inhibition mechanisms performed by the visual
cortex cells, and the integration of the resulting maps with an inverse wavelet transform,

using biologically-justified weights.

Several other approaches have been proposed, for instance based on information max-
imisation [BTO05]: they use Shannon’s self-information measure on RGB patches of images,
which dimension is reduced using independent component analysis, to compute the infor-
mation a region conveys relatively to its surroundings, and infer the saliency map from
there. Other techniques involve for instance graph-based methods to normalize and com-
bine feature vectors [HKPO06b; AL10], or Bayesian modeling to combine feature vectors

to contextual priors [Zha+08].
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2.4.2 Deep-learning era

Thanks to the deep learning revolution in the early 2010’s, and alongside with the
growing availability of large-scale eye-fixation databases, the field of saliency models has
seen a renewed interest, while the performance of saliency models drastically improved.
The characteristics of most of the models shifted towards data-oriented models based
on deep convolutional neural networks (CNNs). The deep saliency models fall into two
categories, (1) those using CNNs as fixed feature extractors and learn a regression from
feature space into saliency space using a non-neural technique, and (2) those that train a
deep saliency model end-to-end.

The number of models belonging to the first category is limited, as it quickly ap-
peared that end-to-end approaches lead to significantly better performance. For instance,
Vig et. al. [VDC14] use a hyperparameters search to optimize the blending of features
learned by several deep neural networks on image classification tasks. They then use the
resulting feature vector to learn a linear support vector machine (SVM) to perform fixa-
tion prediction. Similarly, Tavakoli et. al. [R T+17] extracts deep CNN features, and then
uses a set of extreme learning machines trained on an image similar to the input image.

Within end-to-end deep learning techniques, the main research has been on architec-
ture design. Many of the models borrow the pre-trained weights from an image recognition
network and experiment combining different layers in various ways. In other words, they
engineer an encoder-decoder network that combines a selected set of features from different
layers of a recognition network. In the following we discuss some of the most well-known
models.

Huang et. al. [Hua+15] proposed a multi-scale encoder based on VGG networks [SZ14b]
and learns a linear combination from responses of two scales (fine and coarse). Kiim-
merer et. al. [KTB15] use a single scale model using features from multiple layers of
AlexNet. Similarly, Kiimmerer et. al. [Kiim+17] and Cornia et. al. [Cor+16] employed
single scale models with features from multiple layers of a VGG architecture.

There has been also a wave of models incorporating recurrent neural architectures. Han
and Liu [LH18] proposed a multi-scale architecture using convolutional long-short-term
memory (ConvLSTM). It is followed by [Cor+18b] using a slight modified architecture
using multiple layers in the encoder and a different loss function. Recurrent models of
saliency prediction are more complex than feed-forward models and more difficult to
train. Moreover, their performance is not always significantly better than some recent
feed-forward networks such as EML-NET [Jial§].
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Generative adversarial networks (GAN) have also been investigated by Pan et. al. [Pan+17],
where they train a traditional encoder (VGG16)-decoder backbone, with a trained adver-
sarial loss function, discriminating between the generated saliency map and the ground-
truth fixation density. Che et. al. [Che+20] used the same idea, with a modified U-Net as
the generator and a "centered-surround connection" module to increase the model non-
linearity.

More recently, Kroner et. al. [Kro+20] proposed an architecture where multi-level ac-
tivation maps from a VGG16 backbone to capture information at different scales, before
using an atrous spatial pyramidal pooling module, and a decoder composed of convolution
and upsampling layers. Finally, Droste et. al. [DJN20] proposed a light-weighted struc-
ture incorporating new domain adaptation techniques (domain-adaptive priors, fusion and
smoothing, and bypass RNN), in order to unify saliency prediction for both static and

dynamic stimuli.

2.5 Dynamic models of attention

In recent years, the prediction of eye fixations on dynamic stimuli has received a
significant gain of research interest. As the number of applications including video content
(video compression, captioning, action recognition, etc) increases, video saliency detection
has become a more and more important part of the visual attention research field. Similarly
to the static case, the methods to predict visual saliency on videos can be separated into
recent deep-learning based methods, and older more traditional approaches. We refer the

reader to Wang et. al. [Wan+19] for a review and quantitative benchmark of those models.

2.5.1 Traditional methods

In 2005, Le Meur et. al. [Le +05] proposed, and later refined [LLBO07] a dynamic visual
saliency model, where they include temporal features, inspired by certain areas of the
visual cortex, and justified by the assumption that motion contrast is a strong attentional
attractor. They compute a temporal feature map using a hierarchical block matching to
infer the local motion at each point, and create a motion-contrast map by removing the
local motion to the dominant motion, computed using M-estimators. Finally, similarly
to the static traditional approaches, they normalize and combine linearly the motion-

saliency map and a traditional spatial saliency map, including inter-map competition to
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detect redundancy.

These types of approaches, consisting of extending traditional static models using
temporal features, before combining the resulting maps, was widely used. In an extension
of the seminal model [IKN98|, Peters and Itti [P108] included to the previous color, ori-
entation and intensity channels, a motion and a flicker channel, dedicated to grasp the
temporal content. The overall architecture of the model remains the same, with extracting
center-surround maps from multiscale feature pyramids, creating conspicuity maps, and
finally combining all of it into a single dynamic saliency map. Similar approaches were
used by Marat et. al. [Mar+08] and Gao et. al. [GMVO07].

Guo and Zhang [GMZ08] later proposed a new method: instead of combining conspicu-
ity maps, they consider each pixel of a frame as a quaternion consisting of color, intensity
and motion features. Then, they use the phase spectrum of the quaternion Fourier trans-
form (PQFT), and convolve a Gaussian kernel to this representation to create the final
saliency map.

While, in compression algorithms, visual saliency maps are commonly used as inputs,
Khatoonabadi et. al. [Kha+15] use the inverse assumption. They use a score of compress-
ibility, the operational block description length, to measure the saliency of an area in a
video. The idea is that video compressors usually process spatio-temporal blocks differen-
tially, predicting a block from its neighbours (spatially or temporally). If this prediction is
ineffective, the block will require more bits to compress, as the residuals of the prediction
are higher. By measuring this number for each block, and then smoothing with a spatial
and a temporal Gaussian kernel, this results into a prediction of the saliency.

Finally, Leboran et. al. [Leb+17] proposed an approach based on whitening of the
spatio-temporal features to remove the correlations and variances of the data, only to use
high-order statistical information. Blocks of seven frames are separated into three color
channels, chromatically whitened, and then passed through a temporal and a spatial fre-
quency decomposition, to compute the spatial and the temporal components of the final
saliency map. These representations are then normalized and combined using a competi-
tive weighted sum, where the weights are proportional to the relative significance of the

corresponding maps.

2.5.2 Deep-learning models

Similarly to static saliency models, deep learning techniques allowed the performance

of the saliency prediction to drastically improve, and created a significant gap, both in
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accuracy and run-time, between deep dynamic models and other approaches. Most of
these new models fall into two general frameworks : (1) a two-stream approach, where the
temporal and static information are extracted separately and then fused together, and (2)
a sequential approach, where the spatial saliency features are extracted on each frame,
and fed to a LSTM network to incorporate the temporal content. Recently, multimedia
approaches have also been investigated, with the addition of audio streams to the dynamic

saliency models.

Bak et. al. [Bak+18] proposed the first deep dynamic modeling in 2018. It consists
in two encoding CNN streams, one for the spatial and one for the temporal features,
and a fusion CNN to predict the saliency map. In order to only consider motion in the
temporal stream, they use the optical flow of the sequence as an input. Zhang et. al. [ZC19]
introduced a similar architecture, where they use a VGG16 features extractor backbone
to get features from successive frames, and process them using 3D convolutions in the

motion stream to get temporal cues.

Jiang et. al. [Jia+18] proposed a mixed architecture: two CNN streams are used to
extract objectness (using a pruned YOLO [Red+16] network) and motion (using a pruned
FlowNet [Dos+15] network) features from consecutive frames, before concatenating the
resulting spatio-temporal features. They are then passed through a convolutional LSTM
network, generating inter-frames saliency maps. This idea of combining extracted features
with a convolutional LSTM is also used by Wang et. al.[Wan+18|, where a deep CNN
based on a VGG16 network is used to learn intra-frames static features, which are then
used by the convolutional LSTM to learn sequential saliency representations. A similar
two-streams recurrent approach is also successfully used by Zhang et. al. [ZCL21] and
Lai et. al. [Lai+20].

TASEDNet [MC19] relies on another different type of approach: the authors propose a
3D fully-convolutional network, with an encoder part extracting spatio-temporal features,
and a decoder part, creating the spatio-temporal saliency map. This choice of architec-
ture is motivated by the recent good performance of action-recognition 3D convolutional
networks, proving that these kinds of models are successfully extracting relevant motion
features. For the encoder network, they use pre-trained weights from an action-recognition
model. The decoding network takes inputs from different pooling layers in the encoder, in
order to treat features at different levels. Finally, Bellitto et. al. [Bel+21] take a similar
approach, using a 3D convolutional encoder, from which they extract feature at each level.

The features are then passed through a multi-branch convolutional decoder to create mul-
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tiple layers of conspicuity maps, which are then fused using a point-wise convolution into

the final saliency prediction.

Audio-visual approaches

Recently, audio-visual approaches have been investigated, with the idea that directed
sound also affects visual attention. While performance can marginally be improved by
including this information, the interest of the approach is still very much linked to the
experimental conditions in which the data was gathered (headsets or speakers, mono oro
stereo, number of sources, etc.).

Tavakoli et. al. [Tav+20] proposed a two-stream network based on 3D ResNets [HKS18].
The frames are fed to a 3D ResNet pretrained on action-recognition tasks, and the au-
dio channel is converted into a sequence of Mel spectrograms, also fed to a 3D ResNet,
retrained on audio-classification task. The visual and auditory features are then concate-
nated and fed to a 2D CNN to create the final saliency map. The overall model is trained
end-to-end on both static (for the visual branch) and dynamic stimuli. Similar approaches
(i.e. a two-stream method, separating the visual branch and the audio branch) are also
used by Chang et. al. [CZZ21] and Jain et. al., using 3D CNNs to extract spatio-temporal

information.

2.5.3 Static saliency for dynamic stimuli

Even though previously mentioned models are specifically designed to extract and
make use of temporal information, their overall performance can be a little bit disap-
pointing when compared to performance of static models. Indeed, on the DHF1K bench-
mark [Wan+]|, for instance, static models (like SALGAN, or SALICON) applied to frames
one-by-one sometimes rank higher than some dynamic models (DeepVS for example).
Tangemann et. al. [Tan+20] explored this phenomenon, and showed that on the LEDOV
dataset, more than 75% of the information defined by a gold standard model (i.e. hu-
mans fixations predicting other humans fixations, or inter-observer visual congruency)
can be explained by static features, completely ignoring temporal information. They con-
clude that this is probably due to a representation bias in the existing video datasets:
while temporal effects affecting visual deployment exist, and can have a tremendous influ-
ence on attention, they occur relatively rarely in the datasets usually used to benchmark

dynamic saliency models. This highlights the shortcomings of the fully data-driven ap-
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proaches, where a lack of relevant examples in the data can lead to bad performance.
Indeed, they show that the recent dynamic saliency models all fail in the same situations

and on the same sequences.

2.6 Conclusion

In the last few years, thanks to the advances in deep supervised learning, the per-
formance of visual saliency models have significantly improved. The growing availability
of large datasets of eye fixations, allowed by the technological advances in eye-tracking,
makes this kind of architectures and designs particularly efficient, from an application
point of view. However, there still remain important shortcomings that need to be ad-
dressed by future efforts.

Datasets remain challenging to create, and the largest ones, like SALICON [Jia+15],
often rely on heuristics, like using mouse-tracking instead of eye-tracking. The lack of
unified framework to conduct eye-tracking experiments for visual saliency prediction make
for somewhat inconsistent datasets that can prove difficult to merge together for training
a model. It also induces various biases caused by the variations in experiment conditions:
the task at hand, the resolution of the displayed stimuli, the lighting settings of the screens,
and many more factors can have an impact on the gathered eye fixations.

In his review of deep visual saliency models, Borji [Bor19] pointed out that one of the
most important failure case of recent models is their lack of understanding of high-level
information. The semantic gap is still an important issue: while models are very good at
detecting faces or text, and labeling it salient, it becomes way more difficult when it comes
to prioritizing which face or what pieces of text is the most important, for instance. It
is unlikely that the solution will solely come from larger and larger datasets, and deeper
and deeper models, but cognitive psychology studies on attention can probably be very
useful to both detect these shortcomings and help solving them.

The main drawback of these approaches is obviously the lack of explainability: while
deep learning models can inform us on the statistical patterns embedded in the eye-
tracking data, it remains very challenging to understand what is actually learned.

Finally, dynamic saliency prediction has gained a great deal of interest very recently.
However, it appears that very little work has been done to adapt the evaluation and
the analysis procedures from static stimuli to dynamic ones: the main metrics are sim-

ply applied on a frame-by-frame basis, discarding entirely the temporal dimension. The
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probabilistic framework proposed by Kimmerrer et. al. [KWB18], applied to a spatio-
temporal space, could be for instance an interesting first step in finding appropriate ways

of comparing deep visual saliency models on dynamic content.
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CHAPTER 3

CINEMATOGRAPHY : GIVING MEANING
TO THE MOVING IMAGE

In this chapter, we highlight the differences between cinematography and other types
of video content. We explore the way cinematic images are constructed and arranged
together through the process of editing, and how to formalize these characteristics and
rules. Finally, we give a literature survey of eye-tracking studies dedicated to understand

visual attention when it comes to movies.

3.1 Introduction

What makes movies such a specific type of stimuli 7 In the early twentieth century,
one could argue that cinematography was simply putting images into motion. However,
the appearance of television, and later low-cost cameras and digital videos has somewhat
blurred the lines. While a movie is a video, all sorts of videos are not necessarily movies:
newscasts, surveillance footage, sports broadcasts, YouTube tutorials, the list goes on and
on. It is then more accurate to describe cinematography as a set of narration techniques,
or at least a set of ways for conveying meaning, that, once put all together, creates the
film object. Similarly to the way comic books creators use paneling, framing, coloring,
dialogues (and so on) to tell a story, filmmakers use cinematography.

However, these features and techniques mostly rely on visual perception (with the
notable exception of sound characteristics, i.e. music, sound design and dialogues), and
therefore can have an impact on visual attention. This will be the core problematic of
this thesis : how to understand and model the relation between filmmaking
techniques and visual attention ?

We can easily understand that traditional ways of considering visual attention and
dynamic stimuli, as described in Chapter 2, might not be a suitable approach, as the

focus is on the video-object, i.e. a collection of frames and its low-level characteristics
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(color, contrast, motion, etc), rather than the high-level contextual information, such as
scene composition, that is carried out by a movie. In the following sections, we will describe
what are some of these cinematic-specific high-level features, and how to formalize them
in order to use quantitative approaches. Finally, we provide a survey of previous work

regarding movies and visual attention.

3.2 Cinematic stimuli and their specific features

The following section is highly inspired by the books of Thompson and Bowen [TB09],
and Brown [Brol6]. For more information and details about what cinematography consists
of, we refer the interested reader to these works.

Filmmakers have a tremendously large array of tools that they can use to convey infor-
mation and meaning, and to build a narrative. This collection of techniques creates a form
of visual language, that, like words combining into phrases, can combine to create mean-
ing. A good comprehension of these features is therefore needed, in order to understand

the director’s intentions, and how they influence the viewers.

3.2.1 The frame: a unit of space

The basic unit of space in a movie sequence is the frame. The picture composition,
the staging and blocking of the actors (i.e. their spatial position relatively to the camera,
and the way they move), the position of objects in the frame, all of those characteristics
are consciously (and conscientiously) chosen by the filmmakers to transmit a message, an
idea, or a storytelling point.

The size of the frame itself is of importance: the width to height ratio is called the as-
pect ratio, and is often written as the ratio to the standard frame height of 1. For instance,
classical Hollywood movies have used the 1.33:1 ratio for a long time, and progressively
switched to the wider 1.85:1, and even 2.40:1 nowadays (also called the anamorphic for-
mat), as the recording and projection equipment, as well as cinematography techniques
and preferences evolved.

The size of the shot is also an important feature. It refers to the area that is covered
by the main object or objects -by object, we include actors, text, or any actual object
that might be of interest- relatively to the size of the frame. The larger the object area,

the closer the shot. Shot sizes range from the extreme closeups, where, in the case of an
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Medium Closeup
MCcu

Extreme Closeup
Xcu

Medium Shot

Big Closeup
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Medium Long Shot
MLS

Closeup

Establishing
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Figure 3.1 — Example of nine framing sizes, all appearing in the same sequence of The
Good, the Bad and the Ugly (Segio Leone, 1966). Adapted from Wu et. al. [Wu+18].

actor, for instance, only a fraction of his face or body parts will take the full frame, to
very long and establishing shots, where the actors or objects are barely visible. Figure 3.1
shows an example of several shot sizes, for illustration. Closeup shots are often used to
give a detailed and specific view of an object, for instance to highlight the emotions
of a character. Medium shots are usually used to approximate the way we experience
our environment: characters not really close, but not too far away either, for example.
Finally, long shots often convey information about the way objects are included in their
environments, and how they might interact with one another: it gives an information not
only about an object, but also its surroundings.

The position of the objects within the frame, and relatively to each other, is also im-
portant, and is referred as framing. The depth of field, the geometry of the environment,
the chosen lens, the staging of the actors, all of those factors can be manipulated by the
filmmaker to build his or her frame. Several rules, born from the decades of practice in
cinematography and photography, also apply to framing. For example, the rule of thirds:
interesting visual elements are often positioned alongside the thirds lines, i.e. the imagi-
nary lines obtained when dividing the frame into thirds, both vertically and horizontally,

and at their intersections (see for instance Figure 3.2).

3.2.2 Following the eye of the camera

In a movie sequence, the camera acts like a virtual eye, forcing the viewer to adopt
its perspective and its motion. Playing with this forced point of view is obviously a very

important tool for filmmakers to direct the attention and to force the audience to focus
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Figure 3.2 — An example of the rule of thirds in The Lord of The Rings: The Fellowship
of the Ring (Peter Jackson, 2001). Note how both characters are positioned alongside
the vertical thirds lines, and how their heads appear at the intersection of vertical and
horizontal thirds lines, even though they do not have the same apparent size.

on what they want to show and tell.

Camera angles are a useful mean to this end. By varying the angle under which
a character or an object is filmed, the director can inform about the emotional state
of the character, or the balance of power between several objects. For instance, when
a character is filmed with a high angle (i.e. seen from above), the implied meaning is
usually that something or someone is looking down on this character, either figuratively
or literally. It can be used to suggest that the character is overwhelmed by its environment,
or dominated by other persons. In the opposite, a low camera angle will suggest a more
powerful, dominating persona. Horizontal angles can also be used to convey meaning : a
front angle, with a good view on the actor’s face is useful to understand the feelings of
the character, while a side or a back angle, by hiding parts of the face, can imply mystery.
Finally, rolled shots often convey a sense of discomfort, implying that something is wrong,
or abnormal.

As the viewer has to look at what the eye of the camera shows, he or she also has to
move when the camera moves. The most basic setup in this regard is the static shot : the
camera is stabilized on a support, and does not move during the shot. Cameras can also be
handheld, in order to track a moving object, for instance. This kind of camera motion will
often create small jerky movement of the frame. When placed on tripods, cameras can also
smoothly pan (i.e. rotate along the vertical axis) or tilt (i.e. rotate along the horizontal

axis). Finally, heavier equipment allows the filmmakers to translate the camera, or even
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Low Shot

High Shot Eye Shot

Vertical Angle

Back

Horizontal Angle
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Figure 3.3 — Example of various camera angles, all appearing in the same sequence of
Hunger Games (Gary Ross, 2012). Adapted from Wu et. al. [Wu+18].

to create very complex kind of motion, using cranes (Figure 3.4 illustrates some of the
types of camera motion). Camera movements are a particularly effective tool for directors
to direct the attention of viewers: often, a moving camera will be justified by a moving
object on screen, or a switch in areas of interest, like an object appearing on the border
of the frame or in the background. To this extent, zooms (i.e. a dynamic variation of
the focal length) and rack focus (i.e. switching the focus from one object to another by

changing the depth of field) are two other very useful techniques.

3.2.3 Editing, or how to put the shots together

Finally, when all the shots are captured, often with several cameras under several
angles and points of view, the editor cuts and puts together the shots. The same way
words are put together into sentences, which are then put together to form a text, shots
are combined into scenes, which are often combined into acts, to create the film. The
choice of when and how putting two shots together is important: it must be visually
coherent and consistent, maintaining a rhythm to keep control of the viewer’s attention,
and convey information and meaning.

The way shots are put together also obeys certain rules, which were developed (and
transgressed) over time, in order to optimize the flow of information while maintaining
a continuity and a coherence in the visual stimulus. For example, the 180° rule states

that, when editing a dialogue scene between two characters, the editor must establish an
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Figure 3.4 — Different types of camera motions

imaginary line between the actors, which must never be crossed by the camera in order
to maintain a smooth and continuous feeling of the scene. Deviations from this rule can
lead (intentionally or not) to confusing situations in which the viewer is somewhat lost,

and have a harder time understanding what is happening on screen.

3.3 Virtual cinematography and formalization of cin-

ematic rules

In order to perform quantitative studies relying on movies-specific features, various
techniques had to be developed to describe a frame, a shot or a scene. These descriptive
systems usually encompass a rather small set of features, like the frame composition,
camera motion, or film idioms (i.e. stereotypical ways to arrange a series of shots, in order
to capture at best a situation). Ultimately, these languages and features are used either
for film analysis, or for the automation of a part of the film making process.

Some of the first to propose such a descriptive system were Drucker and Zeltzer [DZ94]:
they proposed an idiom-based language to describe camera motion constraints, in order to

generate smooth camera paths in a virtual environment. Shortly later, He et. al. [HCS96]
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proposed to encode cinematic idioms using finite state machines, and used it alongside
with camera modules implementing the placement of the cameras in the scene. Chris-
tianson et. al. [Chr+96] also used such idioms to design the Declarative Camera Control
Language (DCCL), for camera placement planning. Other constraint-based systems for
optimizing the placement of the camera include information about the occurring events

in the scene [BGL9I8|, or geometrical constraints set up by the user [BTMOO].

More recently, Lino et. al. [Lin4+11] proposed an automatic camera placement tool,
included in a motion-tracked device, relying on an annotated script, which describes the
objects on the set and the actions taking place. Ronfard et. al. [RGB13] introduced the
Prose Storyboard Language, a descriptive language for cinematographic stimuli introduc-
ing elements describing the size of the objects, their placement in the frame, and their

movements.

In another application, Galvane et. al. [Gal415] proposed an automated editing method
based on continuity editing rules. They define the importance of characters and objects,
and use their apparent size an position in the frame to select which rush to select, while
also considering editing rhythm and continuity rules for the edits. Leake et. al. [Lea+17]
proposed another automated editing system based on a set of rushes and the script of a
dialogue, and using idioms to propose the edits. Finally, Wu et. al. [Wu+18| proposed a
language called Film Editing Patterns (FEP), that includes many properties of framing,
shot relations within a sequence, or objects positions. They show that this language is
both useful for movie analysis, but also for automated camera placement and editing of

3D animated scenes.

However, the main drawback of these approaches is that they rely on hand-crafted in-
puts: the various characteristics must be defined by the user itself, therefore limiting the
amount of data that can be efficiently processed. In order to automate this part, several
computational techniques to analyze movies have been proposed. For instance, Corridoni
and Del Bimbo [CD98] proposed an automated way to detect cuts and camera motions,
and used film making rules to derive high-level sequence information, such as the detec-
tion of shot-reverse shot sequences. Rasheed et. al. [RSS05] used several computational
features, such as shot length, color variance, lighting and motion to classify movie clips
into genres. This type of automated analysis can also focus on the type shot [Sva+15], or

the extraction of meaningful scenes [TZ04].

Finally, Huang et. al. [Hua+20] recently released a very large dataset, containing 1100

movies with various annotations: scripts, subtitles, scene segmentations, boxes tagging
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the characters on screen, actions annotations, shot scale and movement of the camera.
The huge scale of this database allows numerous approaches of quantitative analysis and
data-oriented models: for instance, Rao et. al. proposed a way of automatically predict
the size of the shot and the motion of the camera [Rao+20b], or a segmentation model

dedicated to divide a movie sequence into scenes and shots [Rao+20a].

3.4 Visual attention and cinema

Studying film perception and comprehension is still an emerging field, relying on
broader studies on scene perception [SLC12; Smil3]. While the effects of low-level features
have been studied in great detail, in part thanks to the progress of saliency models, the ef-
fects of higher-level film characteristics are far less well understood. Loschky et. al. [Los+14]
showed that the context of a sequence, meaning the prior knowledge of who the characters
are or what the action is about, is particularly relevant to understand the way humans
are viewing a particular shot, thus underlying the need for a better comprehension of
the high-level features. Valuch and Ansorge [VA15] studied the influence of colors during
editorial cuts, showing that continuity editing techniques result in faster re-orientations
of gaze after a cut, and that color contributes to directing attention during edits. Other
studies showed strong relationships between eye movement patterns and the number and
the size of faces in a scene [RPH14; CA16].

A few studies focused on gaze congruency, or attentional synchrony. Goldstein et.
al. [GWPO07] showed that observers tend to exhibit very similar gaze patterns while watch-
ing films, and that the inter-observer agreement would be sufficient for effective attention
based applications, like magnification around the most important points of the scene. In
subsequent studies, Mital et. al. and Smith [Mit+11; SM13] showed that attentional syn-
chrony was positively correlated with low-level features, like contrast, motion and flicker.
Breathnach [Brel6] also studied the effect of repetitive viewing on gaze agreement, show-
ing a diminution of the inter-observer congruency when movie clips were watched several
times.

More generally, it appears that understanding human visual attention while watching
movies ultimately requires a framework combining both low- and high-level features. From
a cognitive point of view, Loschky et. al. [Los+20] recently proposed a perception and
comprehension theory, distinguishing between the front-end processes, occurring during a

single fixation, and back-end processes, occurring across multiple fixations and allowing
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a global understanding of the scene.

3.5 Conclusion

In this chapter, we exposed some of the proper characteristics of cinematographic
stimuli, and the way these characteristics are formalized and used to automate parts of
the filmmaking process or for virtual cinematography.

While significant progress has been made in understanding people understanding
movies, there are still a number of complex challenges to address.

Similarly to the visual saliency problematic, the semantic gap in data-oriented models
on cinematographic content remains an important issue: this type of stimulus is indeed
very rich in subtext or contextual cues, and relies heavily on style and other high-level
information. While the recent efforts in building large-scale datasets of annotated movies
aim to address this issue, the complexity of the task and the many outliers breaking
conventional cinematographic rules — how to consider for instance the use of jumps cuts
in Jean-Luc Godard’s A bout de souffle (1960)? — will probably require a multidisciplinary
approach, combining knowledge from the computer vision field and cognitive film theorists.

From the point of view of visual attention, it appears that the problem have mostly
been tackled from the cognitive psychology part of the field. While we now understand
many effects of filmmaking techniques on the perception of the viewer, getting automated
and reliable predictions of the gaze behaviors of observers watching movies is still a chal-
lenging task, for which the new computer vision deep learning models can be helpful.

Finally, we argue that a perceptual approach of film editing can be of great interest
for several filmmaking applications: automated editing, virtual cinematography, camera
placement, and many more problems could benefit from the cues given by visual attention
modeling. In the following chapters, we will give simple examples of how this might be

included and taken into account.
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CHAPTER 4

AN EYE-TRACKING DATABASE TO
UNDERSTAND VISUAL ATTENTION ON
MOVIES

In this chapter, we introduce a new eye-tracking database dedicated to study the
influence of cinematographic features on visual attention. To this extent, we propose
a set of 20 movie clips, from different genres and epochs, alongside with hand-crafted
annotations regarding cinematographic characteristics, such as camera motion or shot
size. We then evaluate how visual attention models, and more specifically visual saliency
models perform on this kind of stimuli. Finally, we show that some of the considered
features tend to direct attention in a way that is not taken into account by these models.
This dataset and the results that we describe here are also detailed in the paper Where
to look at the movies: Analyzing visual attention to understand movie editing [BCM21],

submitted for publication.

4.1 Introduction

Over the last century -and a few years-, directors have come to develop an instinctive
knowledge of the different ways that they could direct the attention of their audience.
Filmmaking provided them with a very large array of tools to use, from camera motions
to stitching shots together through editing, all in the goal of conveying the message and
emotions they intent to convey. In this regard, they need to be particularly aware of what
draws or repels attention: the final scene of Citizen Kane (Orson Welles, 1941) would not
be as powerful, had Orson Welles not directed the attention of the spectator on the sleigh
-nor Christopher Nolan on the spinning top in the ending scene of Inception (Christopher
Nolan, 2010)-.

In this regard, studying visual attention in movies is of great interest, whether it is
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for better understanding the way human perceive movies, or for filmmakers to improve
and polish their craft. As developed in Chapter 3, a lot of progress has been made on
this topic, especially in the fields of cognitive psychology, leading to a deeper knowledge
of the relationship between visual attention and movie making. In order to offer another
point of view, this time from a computer science perspective, we want to be able to apply
data-driven approaches such as machine learning and deep learning, as these types of
methods offer a singular quantitative outlook.

In the case of cinematographic stimuli, high-level features directed by the filmmaker
play a great role in our understanding of what is on screen, and we can hypothesise
that such features should also be important for visual attention. However, while visual
attention on videos is a hot topic in the field of computer vision, most of the recent
work focuses on relatively low-level characteristics of the dynamic stimuli. It follows that
there is a need for data specifically related to cinematographic videos, in a relatively large
scale to allow data-driven approaches. As explained in Section 2.2, this kind of data is
somewhat scarce, or suffer from biases, like the Hollywood-2 eye tracking dataset [MS15],
where only 3 observers watched the considered movie clips without any task to do.

In this chapter, we propose a new eye-tracking database dedicated to study visual
attention in movies, extending the work of Breeden and Hanrahan [BH17]. Alongside the
eye fixations, we provide hand-crafted annotations regarding high-level cinematographic
features. Finally, we explore how such features can create visual biases, and how visual

saliency models perform on this kind of stimuli.

4.2 Dataset overview

In this section, we describe the movie clips that we considered, and their associated

cinematic annotations.

4.2.1 Films and clips selection

In their effort to formalize the visual grammar of cinematography, Wu et. al. [Wu+18]
proposed a language called Film FEditing Patterns (FEP) to annotate the production
and edition style of a film sequence. Alongside this way of describing cinematographic
rules, they present an open database of annotations on several film sequences, for pattern

analysis purposes. In order to simplify the annotation process of our dataset, we decided
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to use the same clips.

We selected 20 clips, extracted from 17 different movies. The movies span different

times (from 1966 to 2012) and genres, and are from different directors and editors, in

order to eliminate bias coming from individual style. Table 4.1 gives an overview of the

selected clips. The sequences were selected as they were the most memorable or famous

sequences from each movie, based on scenes that users uploaded to YouTube, indicating

popularity and interest to the general public.

Title Director Genre (IMDb) Nb. Frames | Aspect ratio | Year

American History X Tony Kaye Drama 5702 1.85 1998
Armageddon Michael Bay Action, Adventure, Sci-Fi 4598 2.39 1998

The Curious Case of Benjamin Button David Fincher Drama, Fantasy, Romance 4666 2.40 2008
Big Fish Tim Burton Adventure, Drama, Fantasy 3166 1.37 2003

The Constant Gardener Fernando Meirelles Drama, Mystery, Romance 5417 1.85 2005
Departures Yojird Takita Drama, Music 10117 1.85 2008

Forrest Gump Robert Zemeckis Drama, Romance 2689 2.39 1994

Gattaca (1) Andrew Niccol Drama, Sci-Fi, Thriller 3086 2.39 1997

Gattaca (2) Andrew Niccol Drama, Sci-Fi, Thriller 3068 2.39 1997

The Godfather Francis Ford Coppola Crime, Drama 1918 1.37 1972

The Good, The Bad & The Ugly Sergio Leone Western 9101 2.35 1966
The Hunger Games Gary Ross Action, Adventure, Sci-Fi 5771 2.35 2012
Invictus Clint Eastwood Biography, Drama, History 2203 2.39 2009

LOTR : The Fellowship of the Ring Peter Jackson Action, Adventure, Drama 5109 2.40 2001
Pulp Fiction Quentin Tarantino Crime, Drama 3211 2.39 1994

The Shawshank Redemption (1) Frank Darabont Drama 5374 1.85 1994
The Shawshank Redemption (2) Frank Darabont Drama 4821 1.85 1994
The Shining Stanley Kubrick Drama, Horror 4781 1.33 1980

The Help (1) Tate Taylor Drama 4151 1.85 2011

The Help (2) Tate Taylor Drama 5244 1.85 2011

Table 4.1 — Overview of the selected clips

Here we give a small description of each scene, and its most remarkable characteristics:
American History X: Flashback scene, dialogue between characters seated at a
table. Mostly static shots on the faces of the characters. This scene is in black and
white.

Armageddon: Action scene, high frequency of edits. The shot size varies a lot,
from extreme closeups to large establishing shots. A lot of camera movements.
Benjamin Button: Flashback scene. A lot of camera movements tracking the
characters. A narrator comments the whole sequence. Some of the shots are repli-
cated, with variations, in order to indicate alternative possibilities in the unfolding
of the narrated story.

Big Fish: Crowd scene, with two main characters walking through the crowd. A
few shots take place in a whole different location, with only the two characters

conversing.
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— The Constant Gardener: Dramatic scene, the camera is handheld, and follows
a single character throughout the sequence.

— Departures : Closing scene, alternation of static camera shots. Three characters
are present, but no dialogue.

— Forrest Gump: Flashback scene, narrated by a character. Camera movements are
used to reveal actors in the scene.

— Gattaca (1): Dialogue scene between two characters. A lot of play on camera
angles, since one of the characters is in a wheelchair, and the other one is standing.

— Gattaca (2): Dialogue scene between three characters.

— The Godfather : Dramatic sequence, where the edits alternate back and forth
from one central quiet scene to several simultaneous dramatic situations.

— The Good, The Bad and The Ugly: Mexican standoff scene, with three char-
acters, where the frequency of the edits accelerate and the shot sizes go from larger
to closer as the tension builds up.

— The Hunger Games: Dramatic scene, alternating a lot of different camera move-
ments, angles and shot sizes. A crowd is present, but several tricks (colored clothing,
focus) are used to distinguish the main characters.

— Invictus: Contemplative scene, starting in a cell and ending in outdoors. Charac-
ters appear and disappear as ghosts. A narrator reads a poem.

— Lord of The Rings: Dialogue scene between two characters, alternating with
flashbacks, mostly of action scenes. Different camera movements, angles and shot
sizes.

— Pulp Fiction: Dialogue scene between two characters seated face to face. The
exact same camera angle is used throughout the scene.

— Shawshank Redemption (1): Dialogue between several characters, various cam-
era movements, angles and shot sizes.

— Shawshank Redemption (2): Flashback scene, following a single character, ex-
plaining a prison escape. A narrator comments a part of the sequence. Various
camera movements, angles and shot sizes.

— The Shining: Dialogue scene between two characters. Very low frequency of edits,
and abundant presence of the color red in the scene.

— The Help (1): Flashback scene, dialogue between two characters.

— The Help (2): Flashback scene, in between a dialogue scene between two charac-

ters. A lot of faces and colored clothing.
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The length of the clips varies from 1 minute 30 to 7 minutes. This length is voluntarily
higher than in the other datasets presented in Section 2.3, in order to allow the observer
to feel immersed in the sequence, and thus exhibiting more natural gaze patterns. In total,
the dataset contains roughly one hour of content. Table 4.2 show the lengths of the average
shots for each sequence, and Figure 4.1 shows the overall distribution of shot lengths in
the database. The high diversity in terms of shot lengths underlines the diversity in terms
of editing styles. However, there is a clear tendency for relatively short shots: 70% of the

shots have a length of less than 100 frames, i.e. around 4 seconds.

Sequence Sequence Length (s) | Longest shot (s) | Shortest shot (s) | Average shot (s)
Armageddon 191.8 12.1 0.0 1.6
The Hunger Games 240.8 16.7 0.6 24
The Curious Case of Benjamin Button 194.7 11.8 0.3 2.5
The Godfather 80.0 6.8 0.5 2.7
Big Fish 132.1 7.6 0.7 2.8
The Constant Gardener 226.0 13.8 0.4 3.5
LOTR : The Fellowship of the Ring 213.1 8.4 0.5 3.6
The Good, The Bad & The Ugly 379,7 36.5 0.2 3.8
The Help (2) 218.8 14.0 1.0 4.0
Invictus 91.9 8.6 1.8 4.2
American History X 237.9 14.7 1.0 4.2
Pulp Fiction 134.0 12.2 14 4.6
The Shawshank Redemption (1) 224.2 19.2 0.8 4.7
The Help (1) 173.2 17.7 1.8 6.0
Gattaca (1) 128.7 23.7 0.2 6.1
Departures 422.0 21.8 1.8 6.6
Forrest Gump 112.2 16.6 1.8 6.7
Gattaca (2) 128.0 17.1 1.8 6.7
The Shawshank Redemption (2) 201.1 18.0 1.8 7.7
The Shining 199.5 107.1 8.8 39.9

Table 4.2 — Lengths of the sequences, and of the longest, shortest and average shots of
each sequence.

4.2.2 Handcrafted high-level features annotations

Films typically contain many high-level features aiming to attract or to divert the
observers’ visual attention [SLC12]. These features can be of different sorts : the presence
of faces or text, the framing properties, the scene composition, or the camera motion and
angle, for instance. The timing of the shots, the selection of the shots from rushes by
the editor and the narrative it creates are also high-level features specific to films. Audio
cues, like the presence of music or dialogue can also be considered as a form of high-level
movie features, and have been increasingly studied as a way to improve visual attention

models [Tav+20]. However, all of those features can prove very challenging to extract
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Figure 4.1 — Distribution of the shot lengths across the dataset. Note that 70 percent of
the shots have a length of less than 100 frames, i.e. around less than 4 seconds.

automatically, which can explain why saliency models seem to only learn non-temporal
image characteristics, at the scale of the frame, like contrast- or texture-like information.
We then used the database of Film Editing Patterns described in Wu et. al. [Wu+18] to
select a hand-crafted set of high-level annotations (described thereafter) that can help in
the study of visual attention and gaze patterns on films. More particularly, such annota-
tions enable us to conduct quantitative analysis on the influence of these cinematographic

features over visual attention.

Camera motion

Camera motion is an efficient tool used on set by the filmmaker to direct attention.
For each shot of the database, we differentiate several possible camera motions:
— Static: The camera is mounted on a stand and does not move.
— Track: The camera moves in order to keep an object or a character in the same
region of the image
— Zoom: The camera operator is zooming in or out

— Pan: The camera rotates on the horizontal plan
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— Tilt: The camera rotates on the vertical plan

— Dolly: The camera is being moved using a dolly

— Crane: Complex camera motion, where both the camera base and the mount are
in motion

— Handheld: The camera operator holds the camera by hand, creating a jerky motion

— Rack focus: The focus of the lens shifts from one point of the scene to an other

Those features are binary for each shot, and a single shot can include different camera

motions.

Camera angle

In order to convey the emotional states of the characters, or power relationships,
filmmakers often use camera angles [TB09]. For instance, a rolled plan will often indicates
that the characters are lost, or in an unstable state of mind, while filming actors with a
low angle will give them an impression of power over the other characters, as they tower

over the scene. We relied on six different degrees of camera angles [Wu-+17]:

— FEye: The camera is at the same level as the eyes of the actors

— Low: The camera is lower than the eyes of the actors, pointing up

— High: The camera is higher than the eyes of the actors, pointing down

— Worm: The camera is on the ground, or very low, pointing up with a sharp angle
— DBird: The camera is very high, pointing down with a sharp angle

— Top: The camera is at the vertical of the actors, pointing straight down

Shot size

The size of a shot represents how close to the camera, for a given lens, the main
characters or objects are, and thus how much of their body area is displayed on the screen.
Shot size is a way for filmmakers to convey meaning about the importance of a character,
for instance, or the tension in a scene. Very large shots can also be used to establish the
environment in which the characters will progress. To annotate the shot sizes, we use the
9-size scale defined by [TB09]: extreme closeup (XCU), big closeup (BCU), closeup (CU),
medium closeup (MCU), medium shot (MS), medium long shot (MLS), long shot (LS),
very long shot (VLS) and establishing shot (EST).
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Faces

As shown by Cerf et. al. [Cer+08], the presence of faces in images is a very impor-
tant high-level information to take into account when studying visual attention. We then
provide bounding boxes delimiting each face on each frame. Recent state of the art face
detection models show that deep learning models extract this information very well. It
is then probable that deep visual attention models are also great at extracting faces fea-
tures, making this hand-crafted feature redundant. However, we include it as it permits
an easier analysis of the editing style: for instance, continuity edits will often display faces
on the same area of the image, while shot/reverse shots often display faces on opposite
sides of the image [TB09].

4.3 Eye-tracking data collection

In this section, we describe the way that we gathered and preprocessed the eye-tracking

data that we will use in the rest of this thesis.

4.3.1 Participants and experimental conduct

We have collected eye-tracking data from 24 volunteers (11 female and 13 male), aged
19 to 56 (average 28.8). Participants were split into two groups, each group watching half
of the videos. Four observers were part of both groups, and viewed the whole dataset. In
total, we acquired exploitable eye fixation data for 14 participants for each video.

Viewers were asked to fill an explicit consent form, and to perform a pre-test form.
The objective of the pre-test form was to detect any kind of visual impairment that could
interfere with the conduct of the experiment (colourblindess, or strabism, for instance).
In order to ensure that they could understand English language well enough, as sequences
were extracted from the English version of the movies, all of the interactions between the
viewers and the operator (welcoming, description of the experiment, consent and pre-test
forms) were conducted in English. Participants were informed that they could end the
experiment at any moment.

During a session, subjects viewed the 10 movie sequences assigned to their group, in
a random order. Sound was delivered by a headset, and volume was set before the first
sequence. They could also adjust the volume at will during the experiment. After each

sequence, a 15 seconds dark gray screen was displayed. After a series of five clips (around
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4.8. Eye-tracking data collection

15 to 20 minutes of video), participants were asked to make a break, as long as they
needed, and fill a form, recording whether or not they could recall the scenes they saw,
whether or not they had seen the movies previously, or if they recognized any actors in
the scenes. After the second series of five clips, at the end of the experiment, they were
asked to fill the same form. The total duration of the experiment for a participant was

between fifty minutes and one hour.

4.3.2 Recording environment and calibration

Eye movements were recorded using a Tobii X3-120 eye tracker, sampling at 120 Hz.
The device was placed at the bottom of a 24,1" screen with a display resolution of 1920 x
1200 pixels. All stimuli had the same resolution of 96 dpi, and were displayed respecting the
original aspect ratio, using letterboxing. The participants were asked to sit at a distance
of 65cm from the screen. They were asked to sit as comfortably as possible, in order to
minimize head movements. In order to replicate natural viewing conditions, we did not

use chin rests.

Stereo sound, with a sampling frequency of 44100Hz, was delivered to the participant,
using a headset. Calibration was performed using the 9-points Tobii calibration process.
In the case of errors of more than one degree, the participant was asked to reposition, and
recalibrate. After the break, before viewing the five last clips, participants were asked to

validate the previous calibration, and to recalibrate if necessary.

After recording the data for all participants, we used the following cleaning procedure.
First, we ensured that every participant had a gaze sampling rate of more than 90% (i.e.
more than 90% of the sampled points were considered as valid). We then kept only points
that were flagged as fixations, eliminating tracking errors due to blinks or other factors,
as well as points recorded during saccades. This choice was motivated by the relatively
low frequency rate of the eye-tracker, making the analysis of saccadic data impossible.
Then, we discarded all points that fell in the letterboxing or outside the screen. Finally,
we used the position of the remaining raw points to construct binary fixation maps : for
each frame, we create an image the same size of the frame, where we give the value 1 to
each pixel where a fixation point was flagged during the time the frame was on screen

(i.e. 1/24th of a second), and 0 to each pixel where no fixation occurred.
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Figure 4.2 — Examples of saliency heatmaps created from the collected fixation points
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4.4 Exploring the effects of film making patterns on

gaze

In this section, we explore several characteristics throughout our database, and ana-
lyze underlying relationships between editing patterns and eye fixations patterns. In the
following, we will often refer to fixation maps and saliency maps. For each frame, the
fixation map is the binary matrix where each pixel value is 1 if a fixation occurred at the
pixel location during the frame, and 0 if not, as described previously. Saliency maps, as
explained in Chapter 1, are obtained by convolving the fixation maps with a 2-D Gaussian
kernel, which variance is set to one degree of visual angle (in our case, one degree of visual

angle equals to roughly 45 pixels), in order to approximate the size of the fovea.

4.4.1 Editing-induced visual biases

Studying the average of the saliency maps usually reveals strong attentional biases.
For instance, on static images, Tatler et. al. [Tat07] showed that humans tend to look
at the center of the frame. That center bias is also commonly used as a lower baseline
for saliency models. In order to avoid recording this bias too much, we did not take into
account for our analysis the first 10 frames of each clip, as people tend to look in the
middle of the screen before each stimulus. This center bias is also strong on video stimuli:
for instance, Fig. 4.3 (a) and (b) shows the average saliency map on our dataset and on
the DHF1K dataset [Wan+19] respectively. However, the latter is composed of Youtube
videos, with a great diversity in the content, and no cinematographic scenes, which might
cause a different viewing bias. Fig. 4.3 (a) shows a peak density slightly above the center of
the frame, which would indicate that filmmakers use a different composition rule. Fig. 4.3
(c) shows a centered Gaussian map, often used as a baseline for centered bias. Correlation
between the average saliency map on our dataset and this centered Gaussian is 0.81,
whereas the correlation between the average map on DHF1K and the centered Gaussian
is 0.84, which highlights this position discrepancy between the two average saliency maps.
This is consistent with the findings of [BH17|, and is most likely due to the rule of
thirds [Brol6] stating that in cinematography, important elements of the scene should be
placed on thirds lines, i.e. lines dividing the frame in thirds horizontally and vertically.

We also observe disparities in this bias depending on the size of the shot: the wider the

shot, the more diffuse that bias is, indicating that directors tend to use a bigger part of
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(a) (b) ()

Figure 4.3 — Average saliency map of our dataset (a) compared to DHF1K [Wan+19]
dataset (b) and to a centered gaussian map (c). Both average maps exclude the first 10
frames of each clip.

the screen area when shooting long shots, while using mostly the center of the frames for
important elements during closeups and medium shots (Fig. 4.4, (a,b,c). We also observe
a leftward (resp. rightward) bias during pans and dolly shots, where the camera moves
towards the left (resp. right), as exposed in Fig. 4.4 (d,e). This confirms that camera

movements are an important tool for filmmakers to guide the attention of the spectators.

(a) (b) ()
(d) (e)

Figure 4.4 — Average saliency maps for closeup shots (XCU-BCU-CU) (a), medium shots
(MCU-MS-MLS) (b) and long shots (LS-VLS-EST) (b). Subfigure (d) is the average
saliency map during pans and dolly shots moving to the left, and (e) is the average
saliency map during pans and dolly shots moving to the right.
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4.5 Visual attention modeling

In this section, we evaluate several visual saliency models on our database, and high-
light certain limitations of current dynamic saliency models. We also discuss how editing

patterns can explain some of the failure cases of the models.

4.5.1 Performance results

In Table 4.3, we show the performance of state-of-the-art static and dynamic saliency
models. In order to evaluate the models, we used the following six classic saliency metrics,
described in [LB13]:

— Pearson’s correlation coefficient (CC € [—1,1]) evaluates the degree of linear cor-

relation between the predicted saliency map and the ground truth map.

— SIM (SIM € [0, 1]) evaluates the similarity between two saliency maps through the
intersection between their histograms.

— AUC (AUC-J, AUC-B € [0,1]) is the area under the Receiver Operator Curve
(ROC). Differences between AUC-J and AUC-B relies on the way true and false
positive are computed (see [LB13] for more details).

— Normalised Scanpath Saliency (NSS € [0, +00[) is computed between the predicted
saliency map and the ground truth fixation map by measuring the saliency values
at the locations of the fixations.

— Kullback-Lieber Divergence (KLD € [0, +00[) between the two probability distri-
butions represented by the saliency maps.

In general, those results are quite low, compared to performance on non-cinematic

video datasets (see for instance [Wan+19]).

This would indicate, in the case of deep-learning models, that either the training sets do
not contain enough of videos with features specific to cinematic stimuli, or the deep neural
networks cannot grasp the information from some of those features. Even though the best
performing model is a dynamic one [ZC19], we observe that static models (DeepGaze 11
and MSINet) performance are quite close to those of dynamic models. This might support
the latter hypothesis, that dynamic models fail to extract important temporal features.

Recent work from [Tan+20] on the failure cases of saliency models in the context of
dynamic stimuli also highlight this point, refering to appearing objects, movements or
interactions between objects as some of the temporal causes of failure. Figure 4.5 shows

an example from our database of such a failure. It should be noted that all the deep
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Model CC?T |SIM1 | AUC-J1 | AUC-B1T | NSS1 | KLD |

Baseline Center Prior* 0.398 | 0.302 0.859 0.771 1.762 | 2.490
PQFT* [GZ10] 0.146 | 0.189 0.702 0.621 0.783 | 2.948

Two-stream [Bak+18] | 0.404 | 0.329 0.873 0.830 1.738 | 1.410

DeepVS [Jia+18] 0.457 | 0.361 0.880 0.829 2.270 | 1.245

Dynamic models |y y o [Wan+19) 0.544 | 0.429 | 0.892 0.858 2.54 | 1.387

ACLNet (retrained)f 0.550 | 0.423 0.890 0.858 2.592 | 1.408
Zhang et. al.[ZC19] 0.608 | 0.454 | 0.903 0.881 2.847 | 1.154

Itti* [IKN9S] 0.208 | 0.195 0.756 0.640 1.005 | 2.573

SalGAN [Pan+17] 0.533 | 0.390 0.897 0.781 2,622 | 1.372

Static models | DeepGaze II [Kiim+17] || 0.584 | 0.362 0.846 0.774 3.188 | 2.307
MSINet [Kro+20] 0.597 | 0.417 0.901 0.893 2.893 | 1.226

Table 4.3 — Scores of several saliency models on the database. Non-deep models are marked
with *. Best performances are bolded. TNote that the testing dataset for the retrained
ACLNet model is not exactly the same as the other models, as it is a subset of half of our
dataset.

learning models are trained on non-cinematic databases, with the exception of ACLNet,
which include the Hollywood 2 dataset in its training base. Indeed, this base is not well-fit
to learn meaningful cinematographic features, as explained in Chapter 2.

In order to confirm this hypothesis, we retrained the ACLNet model using the same
training procedure described in [Wan+18|. For the static batches, we used the same
dataset (SALICON [Hua+15]), and for the dynamic batches, we created a set composed
of half of our videos, randomly selected, leaving the other videos out for testing (roughly
490000 frames for training, and 450000 frames for test). We only obtained marginally
better results on some of the metrics (0.550 instead of 0.544 on the correlation coefficient
metric, 2.592 instead of 2.54 on the NSS metric), and did not outperform the original
model settings on the other. All of this would tend to indicate that some features, specific

to cinematographic images, could not be extracted by the model.

4.5.2 Editing annotation and model performance

We also studied how the two best dynamic models, [Zha+20] and ACLNet [Wan+19],
performed on our database, depending on shot, camera motion and camera angle charac-
teristics. Table 4.4 shows the average results of the models depending on the annotation
characteristics. We performed one-way ANOVAs to ensure that results within each table
would yield significant differences. In all cases, p-values were under 1075,

As shown in Table 4.4 (a), it appears that saliency models perform relatively well
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Zhang ACLIet Ground Truth

Deep Gaze |l

STt

Figure 4.5 — An example of failure case in Shawshank Redemption. Here, the camera pans
from the face of the prison director to the poster on the wall. While observers quickly shift
their attention towards the poster, as suggested by the camera movement, even though it
is not yet on screen, models tend to predict areas of interest on the faces.
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Model Metric | Static | Track | Zoom | Pan | Tilt | Dolly | Rack Focus
ACLNet CcC 0.561 | 0.545 | 0.538 | 0.466 | 0.488 | 0.517 0.545
NSS | 2.631 | 2.610 | 2.523 | 2.138 | 2.269 | 2.481 2.610
Zhang et al. CcC 0.637 | 0.608 | 0.643 | 0.556 | 0.584 | 0.615 0.675
NSS | 3.014 | 2.908 | 3.118 | 2.615 | 2.797 | 3.022 3.338
(a) Scores depending on camera motion
Model Metric | Eye | High | Low | Bird | Worm | Top
CC ]0.552 | 0.500 | 0.525 | 0.544 | 0.532 | 0.540
ACLNet
NSS | 2.602 | 2.343 | 2.465 | 2.699 | 2.679 | 2.628
Zhang et al CC ]0.621 | 0.582 | 0.605 | 0.648 | 0.679 | 0.672
NSS 2932 | 2.777 | 2.918 | 3.286 | 3.513 | 3.375
(b) Scores depending on camera angles
Model Metric | XCU | BCU | CU |MCU | MS | MLS | LS | VLS | EST
ACLNet CcC 0.526 | 0.532 | 0.586 | 0.549 | 0.497 | 0.510 | 0.473 | 0.520 | 0.512
NSS | 2.596 | 2.271 | 2.689 | 2.677 | 2.497 | 2.481 | 2.255 | 2.478 | 2.543
Zhang et al CcC 0.656 | 0.607 | 0.663 | 0.645 | 0.580 | 0.615 | 0.567 | 0.628 | 0.636
NSS |3.320 | 2.679 | 3.099 | 3.186 | 2.889 | 3.027 | 2.733 | 3.089 | 3.221

(¢) Scores depending on shot size

Table 4.4 — Scores of two saliency models on the database, depending on hand-crafted
editing features. Highest score for each metric and each model is bolded, lowest score is
italicized.

on static scenes, or when the camera movement tracks an actor, or an object on screen.
Performance are also quite good on shots including rack focuses, which was expected, as
this is a very strong tool for the filmmaker to direct attention, and deep feature extractors
distinguish very well blurry background from clear objects. However, when a more complex
camera motion appears, like pans or tilts, models seem to fail more often; this might
indicate that saliency models are unable to anticipate that an object is likely to appear

in the direction of the motion, which humans usually do.

With Table 4.4 (b), we observe that camera angles show little variations in the perfor-
mances of the models. However, it seems that scenes with high amplitude angles (Bird or
Worm) are easier for a model to predict. This is probably due to the fact that those cam-
era angles are often used when filming characters and faces, in order to convey a dominant
or a submissive feeling from the characters [TB09]; since deep learning models are very

efficient at recognizing faces, and faces tend to attract gaze, saliency models naturally
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perform better on those shots.

Finally, looking at Table 4.4 (c), saliency models seem to exhibit great performance on
closeups scenes, which could be, again, because closeup scenes often display faces. Medium
to long shots are however harder to predict, maybe because a wider shot allows the director
to add more objects or actors on screen, and as shown by [Tan+20], interactions between
objects is often a failure case for deep saliency models. Close-up shots also display one of

the lowest mean IOC, which could also explain why they are easier to predict.

4.6 Conclusion

In this chapter, we introduced a new eye-tracking dataset dedicated to study visual
attention deployment and eye fixations patterns on cinematographic stimuli. Alongside
with the gaze points and saliency data, we provide annotations on several film-specific
characteristics, such as camera motion, camera angles or shot size. These annotations
allow us to explain a part of the causes of discrepancies between shots in terms of the
performance of visual saliency models.

In particular, we highlight the conclusions of Tangemann et. al. [Tan+20] regarding
failure cases of state-of-the-art visual attention models. Video stimuli sometimes contain a
lot of non-static information, that, in some cases, is more important for directing attention
than image-related spatial cues. As directors and editors include consciously a lot of
meaning with their choices of cinematographic parameters (camera motion, choice of the
shots within a sequence, shot sizes, etc.), we would advocate researchers in the field of
dynamic saliency to take a closer look at movie sequences, in order to develop different
sets of features to explain visual attention.

Looking forward, we can investigate whether or not the high-level cinematic features
that we provided would be of help to predict visual deployment, by building a model that
includes this kind of metadata at the shot level. Another crucial point that we did not
pursue is the context of the shot : the order of the shots within the sequence has been
proven to influence gaze patterns [Los+14; Los+20]. As these questions have been tackled
from a psychological or cognitive point of view, they remain to be studied in computer
science, and to be included in visual attention models. This would greatly benefit multiple
areas in the image processing field, like video compression for streaming, or automated
video description.

Furthermore, we hope that this data would help cinema scholars to quantify potential
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perceptual reasons to filmmaking conventions, assess continuity editing on sequences and
hopefully improve models of automated edition [Gal415].

Finally, developing automated tools to extract similar high-level cinematic information
could be particularly of interest, both for the design of such tools, as it would give cues on
the way to design better visual attention models on cinematographic data, but also with
its outcome, as it would allow the provision of large-scale annotated cinematic databases,
which would help giving a — quantitative — dimension to research on movie contents by

film scholars.
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CHAPTER 5

A VISUAL SALIENCY MODEL FOR
STUDYING MOVIES

In this chapter, we propose a visual saliency model, designed to be particularly efficient
with cinematic stimuli. We explore how high-level information about the considered movie
clip can be useful to infer where observers will look, and we propose a way of including this
kind of information. Finally, we show how our model can overcome some of the difficult

situations detailed on the previous chapter.

5.1 Introduction

As shown in the previous chapter, current visual saliency models suffer from serious
limitations when it comes to processing videos. More specifically, they seem to fail when
it comes to motion, and high-level and long-term features, such as contextual information
for instance. This causes these models to perform quite poorly on movie clips, which are
very rich in this type of features. While Tangemann et. al. [Tan+420] advocate for the
development of larger databases, containing more of those difficult cases, we believe this
is probably just a partial solution to a more complex problem: deep saliency models seem
to be inherently unable to extract dynamic high-level characteristics which seem to play
an important role directing our gaze.

Recently, the field of action recognition has brought up interesting solutions, relying
on 3D convolutional networks. Deep feature extractors, like I3D [CZ17], have proven very
efficient to discriminate between different kinds of motion, and to detect interactions be-
tween objects. Using transfer learning, recent dynamic saliency models have relied on
such extracted features, which lead to significant improvements on the traditional bench-
marks [Wan+].

Simultaneously, alternative ways of including information are being explored. Archi-

tectures including audio cues have gained a lot of attraction, even if the performance gain
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remains yet unclear [Jai+21; Tav+20].

Similarly, we tried to find a way to include high-level movie information in a visual
saliency model. We propose here a new saliency model, inspired by the hierarchical ar-
chitecture of the ViNet model [Jai+21], and relying on two streams, one for motion and
dynamic features, and the other for the spatial cues. We designed a simple, yet efficient
way to include cinematic-induced bias, and manage to achieve state-of-the-art results on

cinematographic stimuli.

5.2 Proposed architecture

Considering the weaknesses of dynamic saliency model when it comes to temporal
features [Tan+20|, we decided to use a two-stream approach: one taking as an input
a stack of successive frames, and the other a stack of successive optical flow frames.
Both stacks are then passed through an S3D encoder, from which features at different
hierarchical levels are extracted. These feature maps are integrated at different levels by
a decoding module, consisting in a sequence of 3D convolutions and upsampling, using
trilinear interpolation. At the output of both streams, a saliency map is predicted. The
two predictions are then merged together by a shallow 2D convolution network, which
also integrates cinematic prior maps, computed upon available annotation and the frames
themselves. The overall architecture is shown in Figure 5.1.

The choice of using 3D convolutional feature extractor (or more precisely separated 3D
convolutions; more on that in subsection 5.2.1) is justified by the excellent performance
of such architectures in the field of action recognition. Indeed, we can argue that video
classification based on actions and visual saliency prediction are in some ways very similar,
as it is strongly dependant on motion and temporal features. It is then not surprising that
recent dynamic visual saliency models and action recognition models share similar traits.
For instance, Carreira and Zisserman [CZ17] considered four types of architectures for
feature extraction: (1) successive frames with 2D CNNs, fused with LSTM; (2) 3D CNNs,
taking a stack of successive frames as inputs; (3) two-stream with 2D CNNs, with a single
frame and successive optical flow maps as inputs; and (4) two-stream with 3D CNNs,
using both a stack of frames and a stack of optical flow maps as inputs.

Interestingly, most dynamic saliency models fall into these categories: ACLNet [Wan+18],
Linardos et. al. [Lin4+19] and UNISAL [DJN20] use 2D CNNs alongside with recurrent
units (1); TASEDNet [MC19], ViNet [Jai+21] and HD2S [Bel4-21] use 3D CNNs with a
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stack of successive frames (2); OM-CNN [Jia+18] use a two-stream approach, with a 2D
CNN to extract spatial information from a single frame, and a flow estimation CNN, and
similarly, STRA-Net [Lai+20] use 2D CNNs to extract features from a stack of optical
flow maps and a single frame (3). However, the best-suited framework to deal with motion
features in the work of Carreira and Zisserman was the fourth option, using two streams
of 3D CNNs based on optical flow and RGB frames. We then decided to use this approach,

hoping that this would remain true for saliency prediction.

/'4 g l:‘ 83D features \
|:| Concatenation layer
l:‘ Conv3D layer
Conv2D layer
| | Upsampling layer (Trilinear interpolation)

| | Dense layer
Motion stream

Flow prediction

s

éﬁf

Image stream

Fusion network

Cinematc piors n D

Visual saliency
prediction

‘.\\
\\\“

Figure 5.1 — Overview of the architecture of the proposed model.

5.2.1 S3D encoder

For the feature extraction, we relied on the popular S3D network [Xie+18]. It has
been used as a backbone in many recent visual saliency models, thanks to its excellent
generalization properties and its computational efficiency. Indeed, instead of relying on
3D convolutions, which are computationally heavy and prone to overfit, they disentangle

the spatial and the temporal operation by replacing each 3D convolution by a separable
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Figure 5.2 — Architecture of the S3D encoder. The green doted box shows the separable
convolution operation, and the blue doted box details the separable inception module.

convolution, i.e. a 2D spatial convolution, which learns spatial features, followed by a 1D
temporal convolution. The S3D network is then build by applying this to the whole 13D
network [CZ17].

Figure 5.2 shows the architecture of the model. A stack of successive 3-channels frames
of dimension [T, H, W] is passed to the network, and passed through several separable
convolutions, pooling layers and inception blocs. Inception modules are an efficient way to
deepen the network while remaining efficient and avoiding overfitting: instead of stacking
multiple kernel filters sequentially, they are operating on the same level, in parallel with
max pooling. The resulting feature maps are then concatenated and passed to the next
layer. [1 x 1 x 1] convolutions are also added before convolutions with higher kernel sizes,

in order to make the operation less costly, by reducing the dimension.

In our model, we extract features from this network at four different levels, at the
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Figure 5.3 — Architecture of the decoder module. It is based on the ViNet architec-
ture [Jai421], replacing the 3D convolution layers by separable convolutions.

end of each convolution (or inception) block. Doing so, we extract four feature tensors,
X1, X5, X3 and Xy, of respective dimensions [192 x T x 2 x W] [480 x T x & x W],
(832 x L x IL x W] and [1024 x L x £ x ). These features are extracted for both the
sequence of RGB frames and the sequence of optical flow maps; indeed, Xie et. al. [Xie+18]

showed that this architecture is also efficient to extract features from optical flow inputs.

5.2.2 Decoder module

The decoder module is based on the architecture of the ViNet model [Jai+21], and is
shown in Figure 5.3. We chose to use this design due to its simplicity, efficiency and robust-
ness, allowing us to build more components on top of it. The extracted X, X5, X5 and X4
tensors are injected at different levels of the decoding process, by concatenation with the

previous upsampled feature maps.

Inputs pass through several separable convolution blocks (as for the encoders, using
separable convolution instead of 3D convolutions is performed to reduce the possibilities
of overfitting, and to improve efficiency), and are regularly upsampled in the spatial

dimensions, using trilinear interpolation. Finally, a saliency prediction is built, of size

[ﬂﬂ
474

and optical flow inputs.

]. This prediction is done by two of these decoder modules, for both RGB inputs
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5.2.3 Cinematic feature maps

We then designed a way to include cinematographic information, by computing priors
and features maps based on the available high-level editing annotations. Five different
maps are included:

— a global centered-bias prior;

— a shot size specific bias;

— a camera motion bias map;

— a cut-dependent prior;

— a flicker map;

These different maps are then concatenated with the outputs of the motion and the image

streams, and passed through the fusion network.

Centered-bias prior

It is a common practice for saliency models to include a prior in order to take into
account the center-bias in eye fixations. In our case, for cinematic stimuli, as discussed
in Chapter 4, this bias is not centered, but rather located on the upper horizontal third
line. We then replace the traditionally used centered Gaussian by the average fixation

distribution map of our entire dataset.

Shot size bias

Similarly, we showed in Chapter 4 that the shot size also induces a specific bias. If
the information about the shot size is available, we then include the average fixation
distribution map on all the shots having the same size of our dataset; if it is not, an

empty map is used.

Camera motion bias map

In the shots where the camera is moving from one object to another, an interesting
phenomenon illustrated by Figure 4.5 is that observers sometimes tend to anticipate the
appearance of the new object by fixating the border of the frame in the direction of the
camera motion, and that even though there might still be salient objects elsewhere. It
is obviously a very hard task for a visual saliency model to predict such behaviors, as it

needs to anticipate the possibility of something salient appearing.
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ORB features and matching Average direction and border
keypoints are computed intersection point is found
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Figure 5.4 — Computation of the camera motion bias map

In order to account for this event, we compute a bias map based on the estimated
camera motion. First, we use editing annotations to assess whether or not the camera is
moving, and if it is, we ensure it is not a tracking motion. Indeed, the anticipation of the
appearance of an object on screen will not take place if the camera is just following a
salient object in order to keep it rather centered in the frame.

Then, if we consider the motion at time ¢, we extract keypoints using the ORB fea-
tures (Oriented FAST and Rotated BRIEF [Rub+11]) on the frames F; s, ..., F;. ORB
descriptors are an efficient and robust way to match spatial points in two scenes with
viewpoint changes, and in our case, will be used to interpolate the direction of the cam-
era motion in the plane of the frame. Keypoints are then matched between each pair of
frames {F,_;, F;_;11}, and for each match, we compute the direction and the amplitude
(as a Ly norm) of the shift. We then discard the 10% of matching pairs with the highest
shift amplitude, in order to account for eventual mismatches, and compute the average
direction. Finally, we average one more time the direction between the five pairs of frames,
and get a resulting vector representing the camera motion in the plane of the frame.

We then compute the intersection point between the border of the frame and the ray,
starting from the center of the frame and following the computed direction. The final step
is building the bias map, by creating a 2D Gaussian centered on the intersection border

point.

Cut-dependent prior

A common phenomenon, observed by Dorr et. al. [Dor+10], Mital et. al. [Mit+11] and
many other works, is the tendency, immediately after a cut, to make their first fixations

towards the center of the screen. To take that into account, we include a cut-dependent
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prior: if the current frame falls within 500ms following a cut (i.e. in the 12 frames following
a cut, for a 24 fps clip), we include a centered Gaussian map as a prior; in all the other

cases, we pass an empty map.

Flicker map

As pointed out by Tangemann et. al. [Tan+20], a difficult scenario to predict fixations
is the sudden appearance of objects on the screen. In order to do so, we include the flicker,
i.e. the change of luminance over time, as it might be an interesting feature to detect such
sudden appearances.

The flicker is integrated by computing a flicker map: at time ¢, we consider frames
Fi_4, ..., F}, and transfer them from RGB to the CIE-LAB color space. We then compute

the absolute difference of the frames luminance values (L;_y4, ..., L;), and average it:

1 N
Flt = N Z |Lt—i - Lt—i-i—ll (5]_)

i=1
Where F, is the flicker map at time ¢t and N is the number of successive frames considered.
In our case, we use N = 5, similarly to Smith and Mital [SM13], in order to reduce the

influence of noise due to compression artifacts.

5.2.4 Fusion network

The final stage of the model is a simple 2D CNN dedicated to fuse the outputs of the
image stream, the optical flow stream, and the cinematic feature maps all together. It
simply consists in two successive convolution layers with respective output channel sizes
64 and 128 and kernel size [3 x 3], and a final convolution to output the saliency prediction.

H W]'

The resulting map can be later upsampled if needed, as it is of dimensions [7, 7

5.3 Training

To train this model, we use sequences of 32 consecutive frames and optical flow maps.
To predict the saliency map for a frame F;, we use the previous frames F; 3y, ..., F;. If
the current frame is among the 31 first frames of a clip, we just repeat the first frame of

this clip the adequate amount of times. When training the model, random sequences of
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32 frames (and their associated flow) are selected, and passed forward. Frames are resized
and padded to keep the original aspect ratio, to dimensions [288 x 512]

The optical flow is computed the same way as the original S3D model: the TV-L1
algorithm [ZPBO07] is used to extract optical flow from the consecutive frames. The flow
is then truncated into the range [—20, 20], and encoded as JPEG files.

Pre-trained weights on the Kinetics dataset [CZ17] are used, for both the image and

the motion streams.

5.3.1 Training phases

We trained this model in three phases. First, each stream is trained separately on the
DHF1k dataset. For this, we use the annotated part of the dataset, composed of 700 clips.
We used the original split of 600 clips for training, and 100 clips for validation.

Then, the whole model is trained end-to-end using the Hollywood2 dataset [MS15];
the 823 train sequences are split into a training set of 700 training clips and 123 validation
clips. While, as discussed in Chapter 2, this dataset is not properly a free-viewing base,
the sheer amount of sequences proves very useful to train a deep architecture like ours.

Finally, we freeze the weights of the motion and image stream, and we use 15 movie
clips from our dataset (12 for training, 3 for validation) to fine-tune the fusion network,

making full use of the cinematic feature maps.

5.3.2 Loss function

As mentioned in Chapter 2, there are many ways to evaluate the quality of a saliency
prediction, and, as shown by Kiimmerer et. al. [KWB18], none of them is fully satisfactory.
It follows that no single loss function can capture every quality factor. In order to evaluate
this, we proposed a comparative study, dedicated to find the best strategies when designing
loss functions for deep visual saliency models [Bru+21].

In this work, we show that the best way to get an efficient loss is by combining several
metrics, especially those which measure fundamentally different properties: for instance,
a pixel-based metric with a distribution-based one. Bearing that in mind, we used the

following combination of losses to train our model:
L(D,F,8) = aly, wsu(D,S) + BLxss(F,S) +vLco(D, S) + 6Lk (D,S)  (5.2)
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where D is a ground truth fixation density map, F' the ground truth fixation map and S
is the predicted saliency map. The coefficients are set to a =2, § = —1, v = -2, § = 10.

Weighted MSE loss

The mean squared error is a traditional pixel-based loss. Here, similarly to Cor-

nia et. al. [Cor+16], we introduce a weighting term ﬁ dedicated to penalize more

the errors occurring on salient areas:

) (D~ 5) (5.3)

where D; represents the value of the i-th pixel of the density fixation map, IV is the total
number of pixels, and k is a constant, set to 1.1. This way, the error is multiplied by a
factor of 10 for a pixel on the ground truth map which value is 1, and by 0.9 for a pixel

which value is 0.

NSS loss

We included the normalized scanpath saliency metric into our loss, as it captures
several properties that are specific to saliency maps. Using a ground truth fixation map
also allows for a better inter-operability between datasets and experimental conditions, as
it does not rely on the choice of the smoothing Gaussian kernel used to create the fixation

density map.

A A

5= )

4
B (5:4)

1 N

CC loss

Similarly, we also use Pearson’s correlation coefficient, as it is an important (and

relatively robust) metric for visual saliency maps

o(D,5)

£l = S Do(s)

(5.5)

KLD loss

Finally, we consider the ground truth and predicted saliency maps as probability dis-

tributions, and thus, we use Kullback-Leibler divergence to measure the dissimilarity
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between the two histograms:

N .
Lrr(D,8) =Y D;log <g 4D > (5.6)
i=1 e+S;

where ¢ is a regularization constant set to 2752,

5.4 Experiments

5.4.1 Benchmark and state-of-the-art

We evaluated our model on three different datasets, containing cinematographic clips:
the 884 clips from the testing set of Hollywood-2, the 5 held-out clips from our dataset, and
the 15 clips from Breeden and Hanrahan’s whole dataset. We used five metrics to evaluate
the quality of the models: AUC-J, CC, SIM, sAUC and NSS (see Chapter 2 for more details
about these metrics). We compared our model with four static models, and eight dynamic
models: Itti [IKN98], SALICON [Hua+15], Deep Gaze II [Kiim+17], MSINet [Kro+20],
PQFT [GMZ08], Two-stream [Bak+18|, DeepVS [Jia+18], ACLNet [Wan+18|, TASED-
Net [MC19], UNISAL [DJN20], ViNet [Jai+21] and HD2S [Bel+21]. We selected these
models for how well they represent the diversity of the state-of-the-art, and used the
publicly available implementation for each model, using the parameters provided by the
authors. Figure 5.5 shows a few qualitative examples of saliency map predictions, com-

pared to the ground truth.

Hollywood-2

Table 5.1 shows the comparative results on the Hollywood-2 test dataset. Our proposed
model outperforms the other methods in most metrics. It improves the results of the ViNet
model, which was to be expected, as we added information using optical flow through a
motion stream, as well as the prior flicker map. The model scores well in all metrics, which

is probably due to the combination of losses used to train it.

Breeden and Hanrahan’s

Table 5.2 shows the comparative results on Breeden and Hanrahan’s dataset. In our
perspective, these results are particularly interesting, as this database includes cinemato-

graphic annotations, and thus allows us to evaluate the full potential of our model. We
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Hollywood-2

Model CCt SIM1T AUC-J1T sAUCT NSS1

Baseline Center Prior* 0.421 0.331 0.869 0.615 1.808
PQFT* [GZ10] 0.153 0.201 0.723 0.621 0.755

Two-stream [Bak+18] || 0.382 0.276 0.863 0.710 1.748

DeepVS [Jia+18] 0.446 0.356 0.887 0.693 2.313

ACLNet [Wan+19] | 0.623 0542 0913  0.757  3.086
TASED-Net [MC19] || 0.646 0507  0.918  0.768  3.302
UNISAL [DJN20] | 0.673 0542 0934 0795  3.901

Dynamic models

ViNet [Jai+21] 0.693  0.550 0.930 0.813 3.730
HD2S [Bel+21] 0.670  0.551 0.936 0.807  3.352
Itti* [TKN9S§] 0.257 0.221 0.788 0.607 1.076

SALICON [Hua+15] 0.425 0.321 0.856 0.711 2.013
Static models | DeepGaze II [Kiim+17] || 0.591  0.378 0.855 0.778  3.225
MSINet [Kro+20] 0.627 0.430 0.916 0.778 2.956

Proposed Ours 0.703  0.562 0.939 0.816 3.878

Table 5.1 — Scores of several saliency models on the Hollywood-2 database. Non-deep
models are marked with *. Best performances are marked in red, second best are marked
in blue.

observe that our model outperforms every other one, on every metric, except for the
shuffled-AUC, which can be explained by the use of centered priors, which is strongly
penalized by this metric. Moreover, it is interesting to note that it is the only model
which scores improved compared to the scores on the Hollywood-2 dataset, reinforcing

our hypothesis that additional cinematographic information is in fact useful for this task.

Ours

Finally, Table 5.3 reports the results of the models on the testing hold-out of our
dataset. As expected, our model still scores higher than all the other ones, as the dataset
also includes cinematic annotations. Results are quite similar to those obtained on Breeden
and Hanrahan’s base, which was to be expected, as both datasets are very similar, in terms
of type, content and length of the stimuli.

When looking at the predictions qualitatively, we observe that our model handles some
of the difficult cases way better than the rest of the models, especially when the camera
is moving. For instance, Figure 5.5 shows the predictions of our model on a sequence of

Forrest Gump, where the camera pans down from Forrest’s face to Jenny’s: while she is
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Breeden and Hanrahan

Model CC1T SIM+ AUC-J1 sAUCT NSS7

Baseline Center Prior* 0.356 0.297  0.848  0.763  1.679
PQFT* [GZ10] 0.130 0.170  0.683  0.625  0.748

Two-stream [Bak+18] || 0.376 0.269  0.859  0.704  1.722

DeepVS [Jia+18] 0430 0.342  0.880  0.684  2.155

ACLNet [Wan+19] 0.537 0.420 0.883 0.700 2.461
Dynamic models | TASED-Net [MC19] 0.638 0.493 0.911 0.759 3.146
UNISAL [DJN20] 0.664 0.522 0.928 0.777  3.780

ViNet [Jai+21] 0.679  0.536 0.909 0.807 3.591
HD2S [Bel+21] 0.668 0.550 0.931 0.806 3.287
Itti* [IKN9S§] 0.234 0.218 0.773 0.601 0.971

SALICON [Hua+15] 0.418 0.323 0.852 0.712 2.002
Static models | DeepGaze II [Kim+17] || 0.593 0.381 0.858 0.767  3.201
MSINet [Kro+20] 0.611 0.407 0.901 0.768 2.873

Proposed Ours 0.708 0.557 0.940 0.803 3.885

Table 5.2 — Scores of several saliency models on Breeden and Hanrahan’s database. Non-
deep models are marked with *. Best performances are marked in red, second best are
marked in blue.

not yet entirely on the frame, the model correctly anticipates the appearance of a salient

object, thanks to the vertical camera motion.

5.4.2 Ablation study

In order to validate the architecture choice and the benefits of the biases and feature
maps that we include, we tested some variations of our model, removing each component,
while keeping the same training procedure. We tested the following settings: (1) Image
stream alone; (2) Motion stream alone; (3) Two streams without cinematic biases; (4) Full
model without the center-bias prior; (5) Full model without the shot-size bias; (6) Full
model without the camera motion bias; (7) Full model without the flicker bias; (8) Full
model without the cut bias. Results for each configuration, alongside the results of the
full architecture are given in Table 5.4. All the configurations are evaluated on the test
hold-out set of our database.

Image stream alone performs very similarly to the ViNet model, as they share the same
design. However, the motion stream, while insufficient on its own, manages to improve

the results of the model when combined to the image stream, proving that 3D-CNN
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Ours GT Frames

TASED  ACL

DGII

Figure 5.5 — Example of predictions on a sequence from Forrest Gump (Robert Zemeckis,
1994). Frames: the frames sequence; GT: ground truth fixation density; Ours: our proposed
model; ACL: ACLNet [Wan+18] predictions; TASED: TASED-Net [MC19] predictions;
DGII: Deep Gaze IT [Kiim+17] predictions.
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Ours
Model CcCt SIM1T AUC-J1T sAUCT NSS1
Baseline Center Prior* 0.387 0.290 0.851 0.757 1.688
PQFT* [GZ10] 0.141 0.178 0.697 0.626 0.758
Two-stream [Bak+18] || 0.382 0.303 0.870 0.720 1.712
DeepVS [Jia+18] 0.441 0.356 0.874 0.687 2.159

ACLNet [Wan+19] 0.546 0.431 0.893 0.715 2.557
Dynamic models | TASED-Net [MC19] 0.637 0.489 0.905 0.743 3.108
UNISAL [DJN20] 0.669 0.533 0.931 0.804  3.824

ViNet [Jai+21] 0.685 0.542 0.924 0.801 3.585
HD2S [Bel+21] 0.657 0.546 0.930 0.797  3.291
Itti* [IKN9S§] 0.226 0.201 0.762 0.589 1.038

SALICON [Hua+15] || 0.437 0.331 0.860 0.708  2.084
Static models | DeepGaze II [Kim+17] || 0.586 0.384 0.862 0.754  3.301
MSINet [Kro+20] 0.619 0.428 0.909 0.766  2.920

Proposed Ours 0.711 0.574 0.937 0.800 3.905

Table 5.3 — Scores of several saliency models on our database. Non-deep models are marked
with *. Best performances are marked in red, second best are marked in blue.

architectures on their own are unable to grasp every aspect of the temporal dependencies
of visual attention.

We observe slight, yet significant improvements of the scores when adding the different
cinematic biases. It appears however that the least useful bias map is the general center-
bias prior; this is probably because this information is already at least partially taken
into account within the shot-size bias, which is somewhat similar. It follows that such
high-level information is indeed important, and that context is a crucial information to
take into account when designing visual saliency models. We would argue that, now that
there are very efficient general saliency models, a particular attention should be paid to

their use, and how to optimize their specificity for a specific task.

5.5 Application

In this section, we propose a very simple example of possible application for our
saliency model, dedicated to improve systems of automatic editing.

As explained on Section 3.3, automated movie editing is a difficult task, as it requires
a knowledge of what is happening on screen for each camera, contextual cues, traditional

film editing idioms, and so on. In order to improve such systems, we argue that attention
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Ablation study
Configuration CCtT SIM?T AUC-J1T sAUCT NSS1
Image stream (1) || 0.678 0.539 0.915 0.787  3.574
Flow stream (2) | 0.351 0.291 0.867 0.704 1.701
Two-streams (3) || 0.688 0.552 0.928 0.804 3.740
Two-streams (4) | 0.707 0570  0.935  0.802  3.894
Two-streams (5) || 0.705 0.571 0.934 0.794  3.890

(6)

(7)

(8)

Two-streams 0.693 0.566 0.933 0.795 3.843
Two-streams 0.697 0.570 0.933 0.798 3.856
Two-streams 0.697 0.571 0.931 0.799 3.892

Full model 0.711 0.574 0.937 0.800 3.905

Table 5.4 — Scores of several configurations of our model. Best performances are marked
in red, second best are marked in blue.

features such as visual saliency should be considered, as they allow a form of feedback
on what is important on screen or not, and how the audience will perceive the stimuli.
For instance, in order to make a cut seem seamless, an editor could decide to position a
salient object in the same area of the frame before and after the edit, so that the viewers

would not have to shift their attention to another part of the frame after the cut.

For dynamic stimuli, we propose a way to measure the activity of what is happening
on screen, by considering the temporal gradient of the visual saliency map. Considering

a predicted dynamic saliency map S (x,y,1):

Activity(t) ;Z (5.7)

$’y

95 (x,y,t)
a1

iterating and averaging over all pixels of the frame, where N is the number of pixels.

Values close to zero indicates that no significant motion is happening on screen. This
does not mean that the shot is necessarily uninteresting: for instance, a static closeup
shot on the face of a character speaking will exhibit very little activity in the saliency
map. However, it is very useful to spot sudden movements, and moments when potentially
interesting events are happening. To illustrate this, we compute the gradients of saliency
on different camera angles from a virtual scene modeled after a sequence of Back to
the Future (Robert Zemeckis, 1985). Figure 5.6 shows the evolution of those gradients
on several cameras, alongside with keyframes; we observe that spikes in the gradient
correspond to events happening on screen: a character entering or leaving the frame,

turning his head, or even moving in the background. Similarly, long sequences of frames
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in the first camera have a very low gradient value, due to nothing particular happening

on screen, and could be easily discarded by an automatic editing system.

5.6 Conclusion

In this chapter, we proposed a novel visual saliency model, dedicated to predict visual
attention on movie sequences. By using a two-stream approach, with both the sequence
of frames and the optical flow as an input, we are able to have a better —while still
imperfect— grasp on the temporal components of visual attention. We also show that
additional information regarding high-level features also contributes to the performances,
as such characteristics are difficult to handle for deep feature extractors.

Going forward, a few research ideas and directions can be explored to extend this
work. First, it seems important to find a way to automate the annotation process, so that
we can have a larger dataset of high-level cinematographic features, which will allow us
to design other ways of including them into the saliency prediction. In this perspective,
the work of Rao et. al. [Rao+20b| shows encouraging results, and should be extended.

It is also important to consider the contextual semantic information, which plays an
essential role in the context of a movie: as of today for instance, visual saliency models
will flag faces as salient, with the emphasis on the faces in the center of the frame, even
though they are not necessarily the main character’s of the scene. In the previous chapter,
Figure 4.5 shows this lack of understanding: the main character of the shot is clearly the
warden, in the right side of the frame, but all of the models consider the character played
by Morgan Freeman to be the most salient area. It becomes then crucial to find new ways
to take these semantic considerations into account, perhaps using data from the written

scripts.
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Figure 5.6 — Example of gradients of saliency on rushes of a 3D scene, modeled after

Back to the Future (Robert Zemeckis, 1985). Red dots indicates where the frames were
extracted.
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CHAPTER 6

INTER-OBSERVER VISUAL CONGRUENCY:
WHEN WILL PEOPLE LOOK AT THE SAME
PLACE ?

In this chapter, we introduce the concept of inter-observer visual congruency (I0C),
which reflects the amount of agreement between the gaze patterns of several observers
watching the same visual stimulus. We define a metric, for both the static and dynamic
cases, and propose two models, one for each case, to predict such scores, and we analyze
how IOC varies during movies, and how those variations relate to specific cinematic fea-
tures, such as camera motions or edits. Finally, we propose two deep learning models to

infer IOC from the stimulus, either static (image) or dynamic (video).

6.1 Introduction

As discussed in the introduction chapters, learning where a human will look when
watching a scene is important, and has a multitude of applications in various fields.
However, visual behavior is not always consistent between observers, either because of
top-down factors (for instance, observers with a previous knowledge of the stimuli will ex-
hibit different gaze patterns [Dor+10]), or bottom-up characteristics. For example, people
will tend to exhibit very similar behaviors when viewing a scene containing a single salient
object, while cluttered scenes, or scenes lacking strong visual attractors will induce more
diversity in eye fixation locations. This similarity, or dissimilarity between visual trajec-
tories among observers is referred as attentional synchrony, and metrics quantifying this
synchrony are commonly called inter-observer congruency (I0C) metrics.

Such metrics have proven very useful in a whole variety of applications, such as im-
age ranking, quality assessment, or even visual saliency: indeed, IOC has been shown to

provide an upper-bound on the performances of models predicting the locations of eye fixa-
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tions. However, this measure in itself has received way less attention. Le Meur et. al. [MBR11]
offered a first image-processing approach, where they studied the influence of several im-
age features, such as the depth of field or the image complexity, on IOC scores. Following
this work, Rahman and Bruce [RB16] explored more image characteristics, coupled with
top-down features. They proposed a predictive model of IOC based on both those feature
sets, as well as information yielded by the predictions of visual saliency models.

In the context of movies, attentional synchrony has also been studied, from a more
cognitive point of view. Dorr et. al. pointed out several differences in the variation of
eye fixations and saccade amplitudes when watching the same stimulus several times
over two days, and compared the synchrony observed on Hollywood movies and natural
scenes. Mital et. al. [Mit+11] showed that the most predictive features for gaze clustering
when viewing dynamic stimuli were temporal and motion-related, like flicker or contrast
in motion. Smith and Mital [SM13] also studied the influence of the viewing task on
attentional synchrony, highlighting a significant influence of it, but mostly after the first
few fixations, which were usually guided by the exogenous attention mechanisms.

In the following, we first describe how to compute a reliable and adapted 1OC score,
inspired by visual saliency metrics. We start by defining a metric for still images, and
then extend it to dynamic stimuli. We then explore the influence of cinematographic
features on the variations of IOC scores, and how these measures can provide valuable
knowledge when studying filmmaking. Finaly, we propose two models dedicated to predict

10C scores, for static and dynamic stimuli, focusing on movie clips.

6.2 Measuring inter-observer congruency

6.2.1 Static stimuli
Previous metrics

A lot of methods have been proposed to describe the amount of visual congruency
among observers when viewing a stimulus. All of those methods use different hypotheses
about the distribution of gaze patterns, but overall, these metrics are highly correlated
to one another [Dor+10]. Rajashekar et. al. [RCB04] used the average z-score between
the individual human fixations and the overall fixation density, using Kullback-Lieber
divergence as a metric. Peters et. al. [Pet+05] used the normalized scanpath saliency

metric (NSS) to compare each individual gaze track to a global inter-observer model,
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composed of the aggregation of individual saliency heatmaps.

Sawahata et. al. [Saw+08] used a criterion based on information theory, the entropy
of the fixation distribution, or more precisely, the entropy of a Gaussian mixture model
(GMM) fitted on the the gaze points divided into clusters based on the Bayesian infor-
mation criterion (BIC). Similarly, Mital et. al. [Mit+11] used GMMs, and more specif-
ically the weighted covariance value, to discriminate between "tightly and loosely clus-
tered frames', i.e. frames in which attentional synchrony is higher or lower. Smith and
Mital [SM13] also used these GMM clusters and their covariance, expressed as the visual
angle enclosing 68% of gaze points. Finally, several area-based methods have been pro-
posed: for instance, Goldstein et. al. [GWPO07] computed the area of the best-fit bivariate
contour ellipse, whereas Breeden and Hanrahan [BH17] used the area of the convex hull
of the fixation points.

Finally, more saliency-inspired methods consist in comparing the gaze tracks of a single
observer to the joint distribution of all the other observers. This leave-one-out approach
was used by Torralba et. al. [Tor+06] and Le Meur et. al. [MBR11], where they use
the rate of fixations falling in a saliency classifier, created from a thresholded fixation
distribution map, and Rahman and Bruce [RPH14], where they compute the AUC score

between the individuals and the aggregated fixation distribution of all other observers.

Our approach

Since we are interested in the relations between inter-observer visual congruency and
other computing features, such as saliency, we used an IOC score inspired by the leave-
one-out approach. It is indeed justified as the metric used to quantify IOC is the same
that can be used to compare two saliency maps, and thus can be used, for instance, as an
upper bound on the performance of saliency models.

Assuming that an image have been seen by N, observers, we first threshold the scan-
paths of each observer to only consider the Ny, first fixations. This is done in order to
ensure that each observer has the same weight in the final score. Empirically, there is
very little variation depending on the chosen length of the scanpath, as long as there are
enough observers, as shown by Figure 6.1. A good rule of thumb can be to select Ny, as
the size of the shortest scanpath among all observers, as long as it is longer than 5, in
order to take into account the evolution of the gaze dispersion with the viewing time.

Once the number of fixation points per observer is thresholded, for each observer i, we

consider the aggregated binary fixation map of the (N, — 1) other observers, i.e. a binary
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Mean NSS Mean AUCJ

Mean NSS SD Mean AUCB SD

Figure 6.1 — First line shows the average IOC-NSS and IOC-AUC scores on the CAT2000
dataset, depending on the considered number of observers and length of scanpaths. Second
line shows the avereage standard deviation of IOC-NSS and IOC-AUC scores on the same
dataset.

matrix which pixel values are 1 if the pixel was fixated, and 0 otherwise. Similarly to a
fixation density map, we convolve these fixation maps with a 2D Gaussian kernel, which
covariance is set to roughly approximate the size of the fovea (around one degree of visual
angle). This operation is dependent on the conditions in which the fixation points have
been recorded, which allows for a fair comparison between datasets. If such comparison
is needed, one should also threshold the number of observers: indeed, the more observers,
the more likely it is that the scanpath of a viewer falls into the salient areas of the fixation

density map, and thus the higher the IOC score.

Once the leave-one-out fixation density map is computed, we can evaluate the prox-
imity between the observer’s fixations and the density using any of the metrics used to
evaluate visual saliency models. In our case, we only consider the AUC and NSS metrics,

as they do not require to transform the fixations of the left-out individual into a fixation
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Figure 6.2 — Examples of [OC-AUC scores on a few images of the CAT2000 dataset.

density, which would be tricky considering the relatively small number of fixations. The
whole process is then iterated and averaged, over all observers, to get a single IOC score
(either IOC-AUC or IOC-NSS). In the case of the two considered metrics, a high score
means that the observers will tend to exhibit similar fixation patterns, while a low score
will indicates more variety in the fixation locations.

Generally, a low IOC score is associated with either images exhibiting no particularly
salient content, or cluttered scenes, where there are too much salient locations, especially

if the viewing time is short. Examples of such situations can be observed on Figure 6.2.

6.2.2 Dynamic stimuli

Extending the measure of IOC to the spatio-temporal domain is not as straight forward

as it may seem. For instance, applying an IOC measure on a frame-by-frame basis can be
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problematic, as there might not be enough fixations to avoid a significant amount of noise:
indeed, in the case of cinematographic movies, each frame will be displayed for around
42 milliseconds, while the average eye fixation spans around a few hundred milliseconds,

implying that each frame will only display one or two fixations per observer.

More generally, designing an IOC measure for dynamic stimuli implies answering ques-
tions about what we actually want to measure. For example, let us consider a sequence
containing two spatially separate salient locations A and B (a dialogue between two char-
acters, for instance), and two observers. If, during a short time period, the first observer
fixates location A first and location B second, and the second observer does the oppo-
site, both observers will exhibit similar spatial gaze patterns, and only differ temporally.
However, a frame-by-frame measure will (in the worst scenario) treat the case as if the
first observer only fixated location A and the second only location B. We then argue
that a well-designed IOC metric should take into account the temporal continuity: two
non-simultaneous fixations at the same spatial location should be considered as "close"

based on the temporal dimension.

In order to address this issue, we propose a new approach to compute an IOC measure

in the spatio-temporal domain.

First, we define the spatio-temporal fixation density map for a stimulus. For each
frame, we compute the traditional fixation density map by convolving the binary fixation
map with a Gaussian kernel, which covariance is chosen so that it approximates the size
of the fovea. Figure 6.3 shows an example of this spatio-temporal representation. Then,
we stack those density map into a spatio-temporal volume, and smooth it in the temporal
dimension using a Gaussian kernel, which variance is set to approximate 250 ms, i.e. the
average duration of a fixation. In the case of a 24 frames per second cinematic stimuli,
this amounts to 6 frames. Now, this spatio-temporal map can be compared to ground

truth fixations using the NSS metric on the whole volume:

1 _
NSS(S,F) = N ZSZ-Fi
. ' (6.1)
where — = ZE and S =
N i
where N is the number of fixated voxels, S is the fixation density volume, F' is a spatio-
temporal binary fixation map, i.e. a volume where each voxel is either 1 if a fixation

occurred at its location and time, and 0 otherwise. The choice of the NSS metric in this

108



6.2. Measuring inter-observer congruency

case comes straight forward, as it is way less time- and memory-consuming than AUC

metrics.

Figure 6.3 — Example of spatio-temporal fixation density map on a sequence of Big Fish
(Tim Burton, 2004).

From there, we use the exact same leave-one-out approach than the static case. A
fixation density is computed for each group of (N, — 1) observers, and compared using
the NSS metric to the fixations of the remaining observer. The scores are then averaged
over the observers to get a global IOC value. In order to track the evolution of attentional
synchrony over time, we keep the global fixation densities and fixation maps, and compute
the NSS values over a sliding time-window, which size can be chosen depending on the
context: a shorter time window (e.g. four or five frames) allows for a finer-grained analysis,
but is more sensitive to noise, for instance.

However, the main drawback of this method is its memory consumption. Indeed, we
need to store a volume of size H x W x T (where H is the height of the frame, W the
width and T' the duration of the whole sequence) for each observer, which can quickly
become overwhelming when working with high-resolution stimuli and (relatively) long
movie sequences. In order to solve this issue, we designed a simple, yet useful heuristic.

We only consider a sliding time-window of size ¢; for each group of (IV, — 1) observers,
we gather all their fixations during this period, and report it on a 2D binary fixation map,
which is then smoothed into a fixation density. This map is then compared to the binary
fixation map of the remaining observer using the NSS metric. The process is iterated and
averaged over all the observers to get an IOC score over the considered time frame. The
duration of the time window can be freely chosen, once again depending on the context.
In our analyses, we considered two window sizes: 5 frames for a fine-grain approach and

20 frames for a more general view. On our database, described in Chapter 4, we found a
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strong significant correlation between this heuristic and the memory expensive approach
(for time windows of 5 frames: r = 0.7912, p < 0.001; for time windows of 20 frames:
r = 0.8531, p < 0.001). From now on, we will then only refer to this heuristic when we

mention spatio-temporal IOC.

6.3 Inter-observer congruency and cinematography

Now that we have a reliable measure of inter-observer congruency for dynamic stimuli,
we are interested in studying how cinematographic characteristics may influence it. Since
the annotations in our dataset are at the level of the shot, in the following, we use the
20-frames bin measure of the IOC, unless stated otherwise.

When observing the IOC values over the whole dataset, we first note that IOC values
are relatively high, especially compared to IOC values in the static case. Figure 6.4 shows
the distribution of IOC wvalues for static datasets and for our cinematic dataset. The
average IOC value over all the clips is 4.1273, compared to 2.9819 for the CAT2000 [BI15]
and MIT [Jud+09] datasets. This discrepancy corroborates the findings of Smith and
Mital [SM13], where they find smaller clusters of fixations during the free viewing of
dynamic scenes compared to free viewing of similar static scenes, implying that movement

on screen will tend to cause attentional synchrony.

[} 1 2 3 4 5 ] 7 8 [} 2 4 6 8 10 12 14
IOC-NSS Scores IOC-NSS Scores

(a) (b)

Figure 6.4 — Distribution of the IOC-NSS scores: (a) in the static case (CAT2000 [BI15]
and MIT [Jud+09] datasets), and (b) in the dynamic case (on our dataset).

We also observe a disparity in IOC scores across movies; the scene with the highest
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score on average is The Shining (I0C= 5.7621), while the lowest score is the clip from Ar-
mageddon (I0C= 3.4056) (see Figure 6.5). This would tend to indicate that inter-observer
congruency is influenced by certain editing features. Figure 6.6 shows the variations of IOC
on the beginning of several clips, and illustrates significant discrepancies, both between
the clips and within it. For instance, the scene from Invictus exhibits sudden variations

of IOC, while the scene from Pulp Fiction exhibits a smoother profile.
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Figure 6.5 — IOC score distribution among the different clips of the dataset.

6.3.1 Camera movements and I0C

In order to evaluate the impact of camera motion on inter-observer congruency, we
compared the IOC values on shots that contain at least one camera movement with fully
static shots, using one-way ANOVA. On average, static shots show slightly higher I0OC
values (M = 4.331, SD = 1.60) than shots exhibiting camera motion (M = 4.025, SD =
2.310) (p << 1079), but it is worth noting that standard deviation is significantly higher
in the shots where the camera moves, indicating that camera motion plays an important
role in increasing or decreasing IOC. This is consistant with the findings of Mital et.
al. [Mit+11], showing that motion-related features (not specifically camera motion) are a

good predictor of eye fixations clustering.
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Figure 6.6 — Examples of variations of IOC during the first 30 seconds of several movie
clips (Armageddon, Departures, Invictus and Pulp Fiction)

Considering this, we performed post-hoc pairwise t-tests (using Bonferonni correction
for multiple tests, i.e. multiplying the p-values by the number of comparisons) between
the annotation groups for camera movement, showing significant differences (p << 107°)
between most shot characteristics, except between static and dolly shots (p = 0.026). As
expected, the highest average IOC values are in zoom shots and rack focuses, which are
camera features specifically designed to direct visual attention; these values are shown in
Figure 6.7 (a).

Camera angles (Figure 6.7 (b)) show no significant differences between the choice of
camera angle and inter-observer congruency. At first glance, it may seem that extreme
camera angles (bird shots, worm shots and top shots) are associated with higher I0C
values, but this might just be an artifact due to the relatively low number of such shots

in the dataset.

6.3.2 Shot size and 10C

Similarly, we looked at the average scores depending on the size of the shots (Figure 6.7
(c)). Extreme closeup shots are associated with the highest IOC scores (M = 4.863,
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Figure 6.7 — IOC scores depending on camera movement features (a), camera angles (b)
and shot size (c)
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SD = 1.758), while interestingly, big closeups have the lowest IOC averages (M = 3.967,
SD = 1.840). This difference is confirmed by a t-test (p << 107°), and might be explained
by the way these shots are used in the overall scene: on average, extreme closeup shots are
very short (M = 34.111, SD = 26.434 frames) compared to big closeups (M = 78.683,
SD = 67.476 frames), thus leaving more time for exploration. A perfect example of this
is the Mexican standoff scene from The Good, the Bad and the Ugly (Sergio Leone, 1966):
the shots come closer and closer to the characters as the tension builds up; when it reaches
the big closeup shot size, a little bit of time is given to the spectator to read the characters
faces. After that, a series of very short shots show extreme closeups on the eyes and guns

of the characters, forcing eye fixations on the salient elements (i.e. the eyes and the guns).

Medium shot categories (MCU, MS, MLS and LS) show little to no significant differ-
ences of IOC. This might be due to categories sometimes not very well defined, as it can

be hard distinguishing between a medium shot and a medium-long shot, for instance.

6.3.3 Cuts and edits

As mentioned just before, the rhythm of the cuts and edits play an important role in
directing attentional synchrony. A well-known effect [Dor+10; Mit+11; SM13] is the sud-
den augmentation in inter-observer agreement immediately following a cut. This tendency
is observable in our dataset, when taking into account the binning effect linked to the size
of the temporal window used to compute IOC scores. Figure 6.8 shows this effect on a clip
from Armageddon (Michael Bay, 1998). We observe a significant difference (p << 107°)
between the IOC scores of the frames within the first 500ms immediately following a cut
(M =5.712, SD = 1.882) and the rest of the frames (M = 3.510, SD = 1.974).
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Figure 6.8 — Example of the variations of IOC scores (5-frames window: blue; 20-frames
window: green) on a clip from Armageddon (Michael Bay, 1998). Note the peak usually
following an edit.
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6.4 A first model of IOC prediction, for static stimuli

We propose to rely on a learning approach to predict the inter-observer congruency
score of an image. We exploit the IOC scores computed from the CAT2000 and Judd/MIT
databases to train a network in a two-staged approach: first (i) by designing an encoder
based on VGG19 [SZ14b] to extract deep features, and second (ii) by designing a straight-

forward shallow network as a decoder to perform the regression.

6.4.1 A two-staged model architecture

The lack of images labeled with eye tracking data makes the creation of a reliable and
robust model challenging. This is why we used transfer learning, using the pre-trained
weights from a feature extractor architecture. Moreover, the shallow regression network
seemed a good compromise between that lack of data, that precludes any kind of learning
that uses too many parameters, and the capacities of a method that is more complex and
efficient than simple linear regression.

The overall architecture is presented in Figure 6.9. The model first uses VGG19 net-
work for extracting a set of deep features. We chose that architecture for its excellent
performances in the field of visual attention, especially through popular models such as
DeepGazell [Kiim+17] and MLNET [Cor+16]. VGG-based networks are well-known for
their very good generalization properties, as well as their simplicity. The particularity
of that structure is the use of multiple convolution layers with small kernel size (3 x3).
The layer stacking is then more discriminative due the multiple non-linear rectification
layers. It also decreases the number of parameters, hence easing the training process. We
used two different versions of that encoder, one for AUCB-based IOC score, and one for
NSS-based score. The first is the full VGG19 feature extractor, containing 5 max-pooling
layers. In that case, the output of the encoder is a tensor of size [37 x 50 x 1472]. For the
NSS score, we observed better performances when removing two of the five max-pooling
layers, leaving the output dimensions as [37 x 50 x 1280].

We then design a simple shallow network as a decoder to perform the regression task.
After the input, a dropout layer is applied, followed by three convolution layers with [3 x 3]
kernel sizes, reducing the number of features maps to 320, 64 and 1. Batch normalization
is used to normalize the output, followed by a flattening layer, a second dropout and
three fully connected layers, reducing the dimension from 1850 to 1024, 256 and 1. The
final output is the predicted score of IOC. Best performances were achieved for AUCB

115



Chapter 6 — Inter-observer visual congruency: when will people look at the same place ¢

|:| Convelution layer N
I:‘ Pooling layer

I:‘ Concatenation layer

I:‘ Dense laver

H/8:<W/§=1472 | 32

h

HxWx64 H2xWi2x128 HM4=xW/4=256 H/3:xW/8x512 H/16:W/16:512

— | | |

Figure 6.9 — Architecture of the proposed static IOC prediction model.

by setting the dropout rate at 0.5, using sigmoid activation functions within the dense
layers, and binary categorical entropy as a loss function. For NSS, the dropout rate is set

as 0.2, with ReLU activation functions and mean squared error as a loss function.

6.4.2 Training database

To train our model and evaluate IOC prediction, we used the IOC scores (based on
AUCB and NSS) computed over the Judd/MIT database [Jud+09] and the CAT2000
database [BI15]. The Judd/MIT database includes 1000 images with different resolutions,
500 of them being used for training, 200 for validation along the training process, and 300
have been held out to evaluate the performances. For the CAT2000 we use 1200 images
for the training process, 400 for the validation and 400 for the test. This database is also
split into 20 different categories of images, which allows to compare the precision of the
prediction in each category.

Since the Judd/MIT database only contains 500 training images, we performed a first
training merging the two databases together. We also performed data augmentation by
flipping the images horizontally, making the assumption that such a transformation should
not disturb the IOC score. The images are then rescaled into [400 x 300 x 3] images. We
used the pre-trained ImageNet weights [Den+09] for the encoder network and froze those
layers during the training. A fine-tuning phase has also been performed, during which we

froze the first convolution layer of the decoder network.
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6.4.3 Results

Figure 6.10 shows the distribution of the ground truth and predicted IOC scores on
the CAT2000 dataset. For the AUCB prediction, the average is exactly the same as the
ground truth mean, but its standard deviation is slightly smaller. There is a tendency that
the prediction value is closer to the mean, meaning that the prediction of outliers is more
difficult. Similar effects can also be noticed with NSS score. When the global prediction
mean is slightly smaller than that of the ground truth, the spreading of prediction NSS
is significantly smaller than that of the ground truth. We also observe that when the
ground truth AUCB distribution is almost symmetric along the mean value, the ground
truth NSS is more right-skewed and has a long tail at high NSS values. It may explain the
poorer performance in NSS prediction. This is most probably due to the regularization
and dropout we used in the decoder network, in order to prevent overfitting issues. The
range of the predictions, for both scores, are also smaller than the ground truth, which is
due to the capacity of the model to generalize properties and to perform really well when
averaged over a few images.

Overall, Table 6.1 indicates that the correlation coefficient between ground truth and
prediction is 0.611 and 0.642 on Judd/MIT and CAT2000 databases, respectively. On
Judd/MIT database, the proposed method significantly outperforms Le Meur [6] and
Bruce [8] methods. We also applied our model on two other databases, namely the Mem-
orability [23] and Bruce’s database [24]. Compared to Bruce method [8], the proposed
model is better on Memorability database while Bruce method provides the best results
on Bruce database. Note that the proposed method has not been trained over neither
Memorability nor Bruce database. Both results suggest that the proposed method has

good generalizing properties.

Dataset Judd/MIT | CAT2000 | Memorability [ML13] | Bruce [BT09]
Le Meur [MBR11] 0.340 N/A N/A N/A
Bruce [BCJ16] 0.456 N/A 0.519 0.506
VGG19 Deep Features 0.611 0.642 0.537 0.473

Table 6.1 — Pearson correlation coefficient between predicted IOC scores and ground truth
IOC for several models

To confirm these hypotheses, we performed a study of the IOC per image category
based on the CAT2000 database. The mean ground truth IOC scores we computed consol-

idated our original intuitions about what kind of images should have a higher (or lower)
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6.5. A second model of I0C prediction, for dynamic stimuli

IOC score. For example, the category getting the lowest IOC score is composed of satellite
images, in which it is hard to distinguish specific objects. On the opposite, the highest
IOC scores are performed by sketch drawings, that offer very specific locations to look
at, a very high contrast between the drawing and the background, and display familiar
objects. It also appears that the predicted mean IOC scores are really close to the ground
truth (r = 0.953, p << 10 — 5 for AUCB, r = 0.845, p << 10 — 5 for NSS).

IOC values are therefore partly correlated with the high level information of the scene
(categories), and partly on the low level information in each individual image. When
the effect of individual features is lowered due to the averaging, the categorical visual
information becomes more important and leads to an improvement in correlation. This
reflects that our model has a capacity to partially understand high-level features common

in each category.

6.5 A second model of IOC prediction, for dynamic

stimuli

Similarly to the static case, we propose a bottom-up model dedicated to predict inter-
observer visual congruency on dynamic stimuli, and more specifically on cinematic stimuli.
For this purpose, we designed a two-stream deep neural network, inspired by the architec-
ture of our visual saliency model (see Chapter 5). This model would probably be useful

for a wide range of applications; we explore some of them in Section 6.6.

6.5.1 Architecture

The overall architecture of this model is very similar to our visual saliency model.
Indeed, we make the assumption that the features that drive attention in videos and that
are extracted in deep saliency models should also play an important role into determining
whether or not a stimulus will induce high or low visual congruency. This assumption
was also made by Rahman and Bruce [RB16], with their Histogram of Predicted Salience
features, where they use a stack of feature vectors extracted from several visual saliency
models.

Our model is divided into three parts: (i) first, a two-stream encoder extracts features
from the optical flow and the frames at different depths; (ii) then, similarly to the ViNet

model [Jai421], these features are passed through 3D convolution layers and upsampling,
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Figure 6.11 — Architecture of the proposed dynamic IOC model

mixing the different hierarchical features using skip connections; (iii) finally, the resulting
representation, alongside with IOC priors based on the cinematographic characteristics,
is passed through fully connected layers to obtain an IOC value. The overall architecture

is shown on Figure 6.11.

Two-stream encoder

Similarly to the visual saliency model (see Chapter 5 for more details and motivations),
the encoder part is composed of two S3D networks [Xie+18], one for the spatial features,
using a stack of 32 consecutive frames as the input, and the other using the same 32 stack
with optical flow. Following the approach of ViNet [Jai421], for a frame at time ¢, the
input is composed by the frames F}_ 3941, ..., F} and the optical low maps O;_3211, ..., O;.

The features are extracted at the end of the four convolution blocks, and passed

through skip connections to the decoder module, at different hierarchical levels. For an
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6.5. A second model of I0C prediction, for dynamic stimuli

input of shape [T x C' x H x W], where T is the time window (in our case, 32), C is the
number of channels of the input (in our case, 3) and H and W are the height and width of
the considered frame, the four features vectors, X, X5, X3 and X, have respective shapes

of [192 x 16 x & x W], [480 x 16 x & x ] [832 x 8 x £ x W] and [1024 x 4 x £ x 7],

Decoder module

The decoder module consists in a succession of concatenations alongside the tempo-
ral axis, gathering the hierarchical features from the two stream and the output of the
previous upsampling layer, 3D convolution layers, and upsampling using trinlinear inter-
polation. This integration part is then followed by three 3D convolution layers, to reduce
the feature tensor to one in the channel and temporal dimensions. The output features are
then flattened, batch-normalized and concatenated with IOC priors, before being passed
through three dense layers (similarly to the static IOC model) of size 1024, 256 and 1.

Adding Cinematic I0C priors

As for the visual saliency model, we tried to include high-level cinematic features into
the prediction, as we showed it can influence inter-observer visual congruency, and is most
likely not taken into account by the feature extractor (as shown in Chapter 4). We include
five prior values into the feature vector:

— A camera motion prior, which is the average IOC value for the type of camera

movement in the shot of the considered frame,

— A shot size prior, which is the average IOC value for the shot size of the considered
frame,

— A shot angle prior, which is the average IOC value for the shot angle of the con-
sidered frame,

— The entropy of the flicker map of the considered frame,

— A cut prior, which is the average IOC value of frames within the first 500 millisec-
onds following a cut if the frame is in this situation, and the average IOC value of
the other frames if not.

In their work, Mital et. al [Mit+11] showed that flicker, i.e. the change in luminance

over time, alongside with motion, is a strong predictor of gaze clustering. Since motion
is already taken into account by the optical flow stream, we include flicker by computing

the entropy of a flicker map: at time ¢, we consider frames F;_4, ..., F;, and transfer them
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from RGB to the CIELAB color space. We then compute the absolute difference of the

frames luminance values (L;_4, ..., L), and average it:

1 N
Flt - N Z |Lt—i - Lt—i-i—ll (62)
i=1

Where F, is the flicker map at time ¢t and N is the number of successive frames considered.
In our case, we use N = 5, similarly to Smith and Mital [SM13], in order to minimize the

influence of noise due to compression artifacts.

6.5.2 Training
Implementation details

The frames are first resized to [288 x 512], using letterboxing if needed to respect
the original aspect ratio of the frame. The optical flow frames are processed using the
same procedure as Xie ef. al. [Xie+18]: the optical flow is extracted using the TV-L1
algorithm [ZPBO07], the magnitude is truncated into [—20,20], and the maps are then
stored as 3-channels encoded JPEG files.

To process the frame F}, the sequence F; 39,1, ..., F} is fed to the model. If any of those
frames fall before the first frame of the clip, the first frame is just repeated the adequate
amount of times. In order to train the network, we select the 32-frames sequences in a
random order among all clips

The priors are computed based on available information; if no editing annotation is
provided, we take the average IOC value of the whole dataset for each IOC prior.

The S3D encoder are initialized using weights pre-trained on the Kinetics dataset [Kay-+17]
on an action-recognition task, using both RGB frames and optical flow. We use the L2
norm as a loss function, with the Adam optimizer, learning rate is initially set at 10e — 4,
and the batch size is set at 4.

Training datasets

The model is first trained on the DHF1k dastaset [Wan+]. Ground truth IOC scores
are computed based on the supplied scanpaths (using the 20-frames time window). The
500 first clips from the training set are used for training, and the remaining 100 are used
for validation, and for early stopping. While the Hollywood2 dataset would have been

useful to train on, as it features the type of clips we are interested in, its limitations
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6.5. A second model of I0C prediction, for dynamic stimuli

prevented us from using it. The low number of free-viewing observers makes it difficult
to get a reliable IOC score, and, while adding task-oriented data can be useful for visual
saliency, it induces too much of a bias for IOC prediction.

Then, we use 15 clips from our dataset to fine-tune the model (12 for training, 3 for
validation), using the IOC priors as we have cinematographic annotations, holding out

the 5 remaining clips for testing purposes.

6.5.3 Results

We used three datasets to evaluate the model: the validation set of DHF1k (100 clips),
the 5 held out clips from our dataset, and the dataset from Breeden and Hanrahan [BH17].

We observe a Pearson correlation coefficient score between the predicted IOC values
and the ground-truth of r = 0.691 (p < 10~°) for the DHF1k dataset, r = 0.731 (p < 107°)
for Breeden’s dataset and r = 0.755 (p < 107°) for ours. These scores are much higher
than those we obtained on the static case (see Section 6.4), which can be explained by
the prominent role played by motion features on IOC [Mit+11]. DHF1k results also seem
to be lower than the other, probably due to the absence of cinematographic priors and
annotations, that are used in Breeden’s and our dataset. Figure 6.12 shows an example
of the predictions from our model on a clip of The Lord of the Rings; we observe a pretty
good match between the ground truth scores and the predicted scores, especially when

peaks are observed.

Ablation study

In order to evaluate how each part of the model contributes to the overall performances,
and especially how the cinematic priors play, we performed and ablation study, retraining
different settings of the model. First, we tried both branches (RGB and Optical Flow)
separated, without any priors. Then, we use the two streams and all of the priors but one
each time: the camera motion prior (1), the shot size prior (2), the shot angle prior (3),
the flicker map entropy (4) and the cut prior (5). Results for each configuration is shown
in Table 6.2 As expected, on the DHF 1k set, as there is no significant prior, the correlation
scores do not vary when removing priors, except in configuration (4), where the entropy of
the flicker map is removed. The camera angle prior does not seem to have any impact on
the prediction, which is consistent with what we observed in Section 6.3, and can probably

be removed. A small improvement is seen when adding the optical flow stream to the RGB
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Dataset DHF1k [Wan+19] | Breeden [BH17] | Ours
RGB-stream (no prior) 0.631 0.624 0.657
Flow-stream (no prior) 0.471 0.473 0.469
Two-stream+-priors (1) 0.690 0.712 0.733
Two-stream+-priors (2) 0.689 0.731 0.728
Two-stream+-priors (3) 0.690 0.731 0.754
Two-stream+priors (4) 0.652 0.699 0.718
Two-stream+priors (5) 0.691 0.707 0.743

Full model 0.691 0.731 0.755

Table 6.2 — Pearson correlation coefficient between predicted IOC scores and ground truth
I0C for several models

stream. The relatively low value for this improvement can be explained by the fact that
the RGB-stream already extract at least some motion features, because of its 3D-CNN
feature extractor. Finally, overall, adding cinematographic high-level information through

these priors seems to be of interest for predicting inter-observer visual congruency.

6.6 Applications

In this section, we describe two simple applications for the IOC metric and the dynamic
I0C model.

6.6.1 A tool for style analysis

While studying the results of our IOC model and the ground truth IOC values on
our dataset, we made the hypothesis that inter-observer congruency could be a marker
of style in movies. We then applied our IOC model to 20 entire movies, from 4 different
directors who are known for having specific filmmaking gimmicks and techniques: Roland
Emmerich, Stanley Kubrick, Dennis Villeneuve and Robert Zemeckis. The average values
of IOC for each movie are summarized in Table 6.3.

The highest values of IOC are observed on Stanley Kubrick’s films 2001: A Space
Odyssey (1968) and The Shining (1980), which is consistent with his style of very care-
fully chosen camera movements and well composed shots, where salient elements are easily
distinguished from the background, often taking advantage of the symmetry. On the op-
posite, the cluttered shots of Roland Emmerich, combined with jerky camera motions

and the relatively high rhythm of his cuts, dedicated to make the audience feel the gi-
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Figure 6.12 — Example of predictions of dynamic IOC on a clip from The Lord of the
Rings: The Fellowship of the Ring (Peter Jackson, 2001). Ground truth IOC values are
displayed in blue, predictions in orange.
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Director Film Genre (IMDD) Year | Average 10C
Stargate Action; Adventure; Sci-Fi 1994 4,020
Independence Day Action; Adventure; Sci-Fi 1996 3,974
Roland Emmerich || The Day After Tomorrow Action; Adventure; Sci-Fi 2004 3,885
2012 Action; Adventure; Sci-Fi 2009 3,637
White House Down Action; Drama; Thriller 2013 3,711
2001: A Space Odyssey Adventure; Sci-Fi 1968 4,876
A Clockwork Orange Crime; Drama; Sci-Fi 1971 4,247
Stanley Kubrick Barry Lyndon Adventure; Drama; History; War 1975 4,324
The Shining Drama; Horror 1980 4,782
Full Metal Jacket Drama; War 1987 4,377
Prisoners Crime; Drama; Mystery; Thriller 2013 4,109
Enemy Drama; Mystery; Thriller 2013 4,360
Denis Villeneuve Sicario Action; Crime; Drama; Mystery; Thriller | 2015 3,983
Arrival Drama; Sci-Fi 2016 4,521
Blade Runner 2049 Action; Drama; Mystery 2017 4,618
Back to the Future Adventure; Comedy; Sci-Fi 1985 4,16
Who Framed Roger Rabbit Animation; Adventure; Comedy 1988 3,118
Robert Zemeckis Forrest Gump Drama; Romance 1994 4,294
Contact Drama; Mystery; Sci-Fi 1997 4,639
Cast Away Adventure; Drama; Romance 2000 4,143

Table 6.3 — Average IOC scores on several movies from 4 directors: Denis Villeneuve,
Stanley Kubrick, Roland Emmerich and Robert Zemeckis.

gantism and the importance of the events taking place, makes the average IOC scores
on his movies the lowest. It is worth noting that the IOC value for Who Framed Roger
Rabbit (Robert Zemeckis, 1988), which is particularly low, should be discarded as is is
certainly an artifact due to the model being trained on live action sequences, while this
movie combines live action with 2D animation.

Overall, it appears that there are significant differences of IOC between directors,
which supports the hypothesis that IOC can be used as a marker of style. However,
more complete studies on selected sequences with identified styles should be conducted

to further confirm this.

6.6.2 Attentional continuity

Most movies that are being made today follow more or less the same set of rules when
it comes to editing shots together. These rules were developed first in the beginning of
the 20th century in the US, and are gathered under the term of continuity style [BSTS85].
The aim of these common editing practices is to provide the audience with a smooth
and effortless viewing experience, where the narrative is coherent. While this style has

become today a global standard, it is worth noting that this has never been the only way
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of considering movie editing: for instance, the Soviet montage theory codified by Sergei
Eisenstein, or the editing style of the French new wave in the 1960s offer significantly

different visions of what movie editing conveys, and how it should do so.

The attentional theory of cinematic continuity (AToCC) was introduced in 2012 by
Smith [Smil2], as a way to explain and formalize this continuity editing style from the
perspective of the viewer and its visual attention and perception. A key point of continuity
editing is the use of attentional cues to tip the audience that a cut is about to take place,
in order to synchronize the cut with an attentional shift. If the viewer shifts his or her
attention during a cut, and if the following shot meets his or her expectations (e.g. no
sudden change of time, location, or characters if it was not implied before), the cut will

feel seamless — or even not be perceived at all.

As a result, if a filmmaker follows the continuity rules, we should expect to see an
increase in attentional synchrony right after a cut, as all viewers should shift their gaze
at the same time to the new object of interest of the scene. Using our IOC measure, we
can quantify this effect, and thus give an idea of how continuous a scene is. To do so, we
can simply count, on a sequence, the number of cuts for which the IOC score (computed
using the 5-frames window, in order to avoid taking frames before and after the cut for a
single measure, due to the binning) 5 frames before the cut is lower than the IOC score 5
frames after the cut. The ratio of such continuous cuts to the total number of cuts in the

sequence gives a measure of how continuous the editing is.

Figure 6.13 shows the distribution of the cuts from our dataset based on the value of
the IOC before and after the cut. Overall, 74.3% of the edits exhibit a higher IOC value
after the cut than before. Interestingly, the highest values are observed on dialogue scenes
(Pulp Fiction: 89,3%, Departures: 87,3%, Gattaca (2): 83,3%, The Help (1): 82,1%, The
Help (2): 81,5%), which make an abundant use of classical continuity rules, like the 180°

rule, or the traditional structure of shot-reverse shot.

In order to take into account the magnitude of the attentional synchrony peaks, we

can also weight each cut by the difference in IOC values after and before the cut:

Yiea|[10C;_5 — 10C; 5|
Yjec |]OCj_5 — IOC']-+5\

w — Continuity = (6.3)

where C is the set of frame numbers where a cut occurs in a sequence, IOC,, is the I0OC
value of the n-th frame of the sequence, and A C C is the set of frame numbers where a

cut occurs, and for which the IOC value after the cut is higher than before.
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Figure 6.13 — IOC values before and after the cuts, for each movie of our dataset and
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6.7. Conclusion

We then tried to evaluate whether or not our dynamic IOC model could predict these
continuity metrics (continuity or weighted-continuity rates) by computing them using
the predictions from our model on the testing part of our dataset. However, it appears
that the model is unable to give reliable predictions (correlation coefficients: r = 0.209,
p < 1072 for the continuity rate, r = 0.313, p < 1073 for the w-continuity rate).This
is probably caused by the complexity and the variety of attentional cues that are used
by continuity editing rules directing the attention during a cut, a lot of which are not
taken into account in our model (for instance, off-screen sounds, pointing gestures, gaze

directions of the characters, etc).

6.7 Conclusion

In this chapter, we focused our attention on inter-observer visual congruency, a mea-
sure of how similar gaze behaviors from different observers are when they are watching
the same stimulus. We proposed a way to measure this phenomenon on dynamic stimuli,
and introduced two models to predict it, on images and on movie sequences.

While inter-observer congruency (or attentional synchrony) is well known and studied
by cognitive psychologists, we argue that more attention should be payed to this measure
in computer vision, both from a modeling point of view and for the resulting applica-
tions. While its role as an upper bound of the performance of visual attention models is
well-known, it can also be used to constraint visual saliency predictions: for instance, a
predicted saliency map exhibiting a lot of salient areas will probably be wrong if the IOC
is high (meaning that observers tend to look at the same place). In this regard, predicting
IOC can be used to give an estimation of how "difficult" a saliency prediction will be, and
serve as a likelihood score.

It could also be interesting to evaluate the interest of this measure in the context of
image quality assessment: a high degree of visual congruency means that there might be a
single strong visual attractor on the image, and thus artifacts on other areas of the frame
could be overlooked.

From the perspective of filmmaking, knowing when viewers will focus their attention
in the same location is tremendously useful for directors, as it allows them even more
control on what the viewer experiences, in order to convey their narrative content and
messages at best. For virtual cinematography and automated editing, this can be used to

constraint the choice of the cuts, for instance, depending on the desired style.
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GENERAL CONCLUSION

In this thesis, we aimed to propose an exploration of cinematographic features from
the perspective of the viewer, and more specifically their visual attention. We investigated
the impact of the director’s choices under the lens of visual saliency and inter-observer
congruency, asking ourselves what impact these choices had on the viewers’ gaze patterns,
and how to include those in a modeling context. In this general conclusion, we give a
summary of the contributions of the thesis and propose several research perspective,
deriving from the outcomes of our work, but also from the experience gathered along the

way.

Contributions

An eye-tracking dataset for studying visual attention in movies

First, we proposed to evaluate the effects of editing and directing choices on visual
attention by conducting an eye-tracking experiment on movie clips, extending the work
of Breeden and Hanrahan [BH17]. Using hand-crafted high-level features regarding sev-
eral cinematographic aspects, such as the camera motion, the camera angle or the shot
size, we were able to quantify the influence of the film grammar. When evaluating visual
attention models on these specific kind of stimuli, it became obvious that state-of-the-art
models were unable to grasp these high-level semantics, and thus we found significant
discrepancies between their prediction and human visual attention. More importantly, a
lot of these discrepancies happen when the stimulus contains a lot of non-static informa-
tion, and is semantically rich. Studying these kind of cinematic stimuli seems then to be
of great interest in order to develop richer sets of attention features for a large array of

applications.

A visual saliency model for movie sequences

After having discussed the shortcomings of visual saliency models on cinematic stimuli,

we addressed the problem of reliably predicting visual attention on movie scenes. To this
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end, we have designed a deep saliency model based on two streams using 3D convolution
networks. The first stream deals with motion information in the form of optical flow,
and the second processes a succession of RGB frames. When each stream have output a
prediction, the resulting maps are fused together by a 2D convolutional network, alongside
with cinematic feature maps dedicated to include high-level knowledge of the scene. Using
ablation analysis, we showed that this approach allows for a significant improvement in
the predicting power of the model. We have also shown that our model outperforms other

state-of-the-art approaches on movie clips databases.

Inter-observer visual congruency and movies

Third, we considered the problem of inter-observer visual congruency and its entan-
glements with the cinematic features described earlier. We started by designing a robust
way of measuring inter-observer congruency on both static and dynamic stimuli. Using
the eye-tracking data that we collected, we were able to highlight several relations between
this measure and the cinematic properties of the considered movie clips, implying that
director’s choices have a high degree of influence on IOC. We then proposed a first IOC
prediction model for static images, using an encoder-decoder architecture that relies on 2D
convolution networks. By extracting features at different stages of the encoding process,
we were able to achieve a 0.642 correlation between our prediction scores and the ground
truth values on the CAT2000 dataset [BI15], and 0.611 on the MIT dataset [JDT12].
For the dynamic case, we also proposed a bottom-up IOC model, specifically designed to
perform well on cinematic stimuli. To this extent, we use a two-stage structure similar to
the visual saliency model of Chapter 5, where optical low and RGB frames are processed
separately, and features are extracted and fused together at different levels. While this
model performs very well on cinematic content (respectively 0.731 and 0.755 correlation on
Breeden’s dataset and ours), we also show that the method is robust enough to deal with

non-cinematographic content (0.691 correlation score on the DHF1K [Wan+] dataset.

Perspectives

Here, we briefly discuss a few ideas and research directions that either arose during

these last three years working on this topic, or extend the work presented in this thesis.
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Automated extraction of cinematic features

During our work, we heavily relied on hand-crafted features to describe the cinematic
language of a movie sequence. However, obtaining such features requires tedious work, by
annotating each shot, or even each frame of a clip for a finer-grained level of annotations.
In this light, automation of the extraction of cinematic features will allow for a better
comprehension of cinematographic patterns, which can then be applied to various tasks.

While some annotations can already be extracted automatically, such as bounding
boxes for characters, shot boundaries, and to a lesser extent, camera motion, many cine-
matographic properties still require the human eye to be recognized, like the size of the
shot for instance. The recent work of Courant et. al. [Cou+21] show promising results
being able to accurately detect camera motion, but also frame layering, which could be
used to infer a shot size.

Another trail that can be followed with regards to cinematic features is the explainabil-
ity of deep learning models trained on style-analysis tasks, like movie style classification.
By studying the latent representations of clips in such models, we could learn what kind
of features are actually extracted and their relative importance. Such knowledge will then
allow us to build a robust set of deep cinematic features that could be used in many

application, for both filmmakers and cinematic scholars.

Redefining the evaluation of dynamic visual saliency

When performing experiments on deep saliency models, it appeared that the way of
evaluating dynamic attention models could somewhat be related to why static saliency
models perform surprisingly well on video benchmarks. By only evaluating the generated
saliency maps frame-by-frame, the dynamics of the predictions are not taken into account.
A small temporal offset in the generated saliency maps for instance could have a dramatic
effect on frame-by-frame scores, while still being very close to the ground-truth fixation
densities.

An answer to this issue could be the use as ground-truth of 3-dimensional fixation
densities smoothed in the temporal domain, such as we did in Chapter 6. The intuition
behind this would be that if a fixation is likely to occur at a given pixel of given frame,
it is also likely to occur at the same location in temporally close frames.

Another way of evaluating dynamic saliency could also be the extension of the prob-

abilistic framework proposed by Kiimmerer et. al. [KWB18] to the temporal domain.
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Automated editing systems

Editing a video, i.e. gathering a collection of rushes and creating a narrative unit
by selecting the best frames, and cutting and joining them together, is a difficult and
tedious task. In order to alleviate the work of editors, recent research work have started
to introduce automated systems designed to help with the editing process. For instance,
Pardo et. al. [Par+21] proposed a model that, given two untrimmed shots, returns the
plausibility of a cut happening at any given moment, based on a deep representation
learned from a high volume of videos.

Considering the importance of perceptual cues in continuity editing, we believe that
such a system could greatly benefit from visual attention features, such as inter-observer
congruency. Indeed, knowing when the attention of the audience is focused on a specific
element or not, or where the attention might be guided to should a cut occur can without
a doubt help a model making choices, on whether to make a cut or not, or what clip to

cut to.
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Attention visuelle et cinématographie

Mot clés : Attention visuelle, cinématographie,

suelle inter-observateurs.

Résumé : Quand nous regardons un film,
nous ne traitons pas toute linformation vi-
suelle émise par I'image tout le temps. A la
place, nous dirigeons notre attention sur cer-
taines zones de I'écran que nous considérons
comme importantes, que ce soit a cause de
leurs propriétés visuelles, ou de leur impor-
tance sémantique pour la narration du film.
Depuis plus de cent ans, les réalisateurs de
films ont appris a jouer avec Iattention vi-
suelle de leur public, en utilisant un ensemble
varié d’outils et de techniques. Dans cette
thése, nous nous proposons d’explorer les
liens entre ces choix cinématographiques du
réalisateur et la perception visuelle qu’en a le
public. Bien qu’il existe de nombreux modéles

A perceptual approach to film editing

UNIVERSITE DE €

RENNES 1

oculométrie, saillance visuelle, congruence vi-

de saillance visuelle, prédisant les zones d’at-
tention visuelle d’observateurs sur des vi-
déos, nous montrons que les prédictions de
ces modeles s’avérent parfois fausses dans
le contexte particulier de stimuli cinémato-
graphiques. Nous proposons donc un nou-
veau modeéle de saillance visuelle, incluant
des caractéristigues de haut niveau concer-
nant les propriétés cinématographiques de
I'extrait de film considéré. Enfin, nous pro-
posons une étude de la congruence visuelle
inter-observateurs dans ce contexte, ainsi que
deux modeles visant a prédire l'intensité de
cette congruence, sur des images et des ex-
traits de films.

Keywords: Visual attention, movie editing, eye-tracking, visual saliency, inter-observer visual

congruency.

Abstract: When watching movies, we do not
grasp the full image that is displayed at all
time. Instead, we focus on several parts of the
frame, depending on what we deem relevant,
be it for the visual properties of this area or
its semantic importance in the narration. With
more than a century of cinematographic expe-
rience, filmmakers have developed a whole ar-
ray of tools and techniques to direct the atten-
tion of their audience, using cuts, camera mo-
tion, staging, and so on. In this work, we pro-
pose to explore the links between film editing
and the visual perception an audience has of
it, using a data-driven approach. While there

exists a lot of efficient models predicting where
people will look on a video, we found that
these models could often be wrong on cin-
ematographic stimuli. We then propose a vi-
sual saliency model dedicated to include the
high-level information created by the director’s
editing choices, and we show a significant im-
provement on cinematic stimuli compared to
the state-of-the-art. Finally, we propose two
models dedicated to predict the inter-observer
visual congruency on both static and dynamic
stimuli, with particular care to the case of cin-
ematographic stimuli.



	Résumé en français
	General introduction
	Visual attention : How do we look at things ?
	Introduction
	Visual attention
	Passive attention mechanisms
	Overt and covert visual attention
	Endogenous and exogenous visual attention

	Eye movements and overt visual attention
	Saccades
	Fixations
	Smooth pursuit
	Vergence

	Studying eye fixations to inform on visual attention
	Visual saliency maps
	Visual saliency and eye fixations

	Applications of eye fixations and visual attention in image processing
	Attention-driven compression
	Perceptual image quality assessment
	Medical imaging
	Other attentive systems in computer vision

	Conclusion

	Modeling visual attention on images and videos
	Introduction
	Eye-tracking datasets for dynamic visual saliency
	Static stimuli
	Dynamic stimuli

	Evaluation of saliency models
	Distribution-based metrics
	Location-based metrics
	The probabilistic framework

	Static models of attention
	Traditional methods
	Deep-learning era

	Dynamic models of attention
	Traditional methods
	Deep-learning models
	Static saliency for dynamic stimuli

	Conclusion

	Cinematography : Giving meaning to the moving image
	Introduction
	Cinematic stimuli and their specific features
	The frame: a unit of space
	Following the eye of the camera
	Editing, or how to put the shots together

	Virtual cinematography and formalization of cinematic rules
	Visual attention and cinema
	Conclusion

	An eye-tracking database to understand visual attention on movies
	Introduction
	Dataset overview
	Films and clips selection
	Handcrafted high-level features annotations

	Eye-tracking data collection
	Participants and experimental conduct
	Recording environment and calibration

	Exploring the effects of film making patterns on gaze
	Editing-induced visual biases

	Visual attention modeling
	Performance results
	Editing annotation and model performance

	Conclusion

	A visual saliency model for studying movies
	Introduction
	Proposed architecture
	S3D encoder
	Decoder module
	Cinematic feature maps
	Fusion network

	Training
	Training phases
	Loss function

	Experiments
	Benchmark and state-of-the-art
	Ablation study

	Application
	Conclusion

	Inter-observer visual congruency: when will people look at the same place ?
	Introduction
	Measuring inter-observer congruency
	Static stimuli
	Dynamic stimuli

	Inter-observer congruency and cinematography
	Camera movements and IOC
	Shot size and IOC
	Cuts and edits

	A first model of IOC prediction, for static stimuli
	A two-staged model architecture
	Training database
	Results

	A second model of IOC prediction, for dynamic stimuli
	Architecture
	Training
	Results

	Applications
	A tool for style analysis
	Attentional continuity

	Conclusion

	General conclusion
	List of publications
	Bibliography
	Filmography

