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Abstract

The inconsistency problems in databases and knowledge bases have been largely tack-
led and discussed in the last forty years. Inconsistency is one of the main dimensions
of data quality. In our era, data is the new gold, but data without quality or lack of
quality measures is another burden leading to erroneous and uninformative analy-
sis results from data. The inconsistency problem arises when a set of constraints that
have to be satisfied by the database instance are violated by this database instance.
All the previous works that deal with the problem of inconsistency are focused on
either the repair of the inconsistent database to obtain a new database that is consis-
tent (i.e, there is no violation of constraints), or quantification of the inconsistency in
the entire database. In this thesis, we propose a new approach to handle inconsis-
tency in relational database by quantifying it on the level of tuples, and then ranking
tuples/answers according to their inconsistency to enable choosing among query an-
swers the most consistent/inconsistent ones. So, we define different new of measures
of inconsistency degrees that based either on tuples violation (tuple-based approach)
or on constraints violation(constraint-based approach). We consider the class of denial
constraints as class of constraints and the class of conjunctive queries as class of queries.
We leverage why-provenance and polynomial provenance to identify inconsistent tu-
ples and to compute inconsistency degrees of query answers, respectively. We convert
each denial constraint into a boolean conjunctive query and evaluate this last one on
database to compute the why-provenance of the true answer. Using why-provenance,
each tuple in the database is annotated with the set of constraints that it violates and its
identifiers in a monomial form (otherwise, i.e, the tuple does not involve in violation
of any constraint, then it is annotated by the monomial 1), then we obtain an annotated
database. Given a conjunctive query Q, Q is evaluated on the annotated database and
each answer is computed with a polynomial provenance that encodes in a polynomial
formula the set of constraints violated by the answers as well as the set of tuples used to
compute answer and involved in violation of these constraints. Then, we define twelve
measures of inconsistency degrees using the polynomial provenance of answers. Once,
measures of inconsistency are defined, it is interesting to allow ranking of answers (tu-
ples in database) according to their inconsistency degrees. We design a set of top-k
algorithms, including TopINC on which the idea of other algorithms is based, allow-
ing to rank the query answers according to their inconsistency degrees. We introduce
a new class of algorithms with a new cost model and shown the optimality of these
top-k algorithms in some specifics conditions. Also, for each top-k algorithm, we give
its theoretical complexity. We have conducted a large experiment to show the feasibil-
ity of our approach in practice and also to show the efficiency of our top-k developed
algorithms.
Key words: Inconsistency, Inconsistency Measure, Top-K Algorithm, Provenance, Conjunc-
tive Query, Denial Constraint
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Résumé

Les problèmes de l’incohérence dans les bases de données et les bases de connais-
sances ont été largement abordés et discutés au cours des quarante dernières années.
L’incohérence est l’une des principales dimensions de la qualité des données. À notre
époque, les données sont le nouvel or, mais les données sans qualité ou l’absence de
mesures de qualité peuvent entraîner d’autres fardeaux qui conduisent à des résultats
d’analyse erronés et peu informatifs à partir des données. Le problème de l’incohérence
survient lorsqu’un ensemble de contraintes qui doivent être satisfaites par l’instance
de la base de données sont violées par cette instance. Les travaux précédents qui trait-
ent du problème de l’incohérence se sont intéressés soit de la réparation de la base
de données incohérente pour obtenir une nouvelle base de données qui est cohérente
(c’est-à-dire qu’il n’y a pas de violation des contraintes), soit sur la quantification de
l’incohérence dans la base de données entière. Dans cette thèse, nous proposons une
nouvelle approche pour gérer l’incohérence dans les bases de données relationnelles en
la quantifiant au niveau des tuples, puis en classant les tuples/réponses selon leur in-
cohérence pour permettre de choisir parmi les réponses aux requêtes celles qui sont les
plus cohérentes/inconsistantes. Ainsi, nous définissons différentes nouvelles mesures
de degrés de l’incohérence basées soit sur la violation des tuples. Nous considérons la
classe des contraintes de déni( denial constraint en anglais) et la classe des requêtes con-
jonctives. Nous tirons parti des méthodes why-provenance et polynomial provenance
pour identifier les tuples incohérents et pour calculer les degrés de l’incohérence des
réponses aux requêtes, respectivement. Nous convertissons chaque contrainte de déni
en une requête booléenne conjonctive et évaluons cette dernière sur la base de données
pour calculer le why-provenance de la réponse true. En utilisant le why-provenance,
chaque ligne de la base de données est annotée avec l’ensemble des contraintes qu’elle
viole et son identifiant sous une forme de monôme (dans le cas contraire, c’est-à-dire si
la ligne de donées n’est impliquée dans aucune violation de contrainte, elle est alors an-
notée par le monôme 1), on obtient alors une base de données annotée. Étant donné une
requête conjonctive Q, Q est évaluée sur la base de données annotée et chaque réponse
est calculée avec une provenance polynomiale qui encode dans une formule polynomi-
ale l’ensemble des contraintes violées par les réponses ainsi que l’ensemble des lignes
de données utilisées pour calculer la réponse et impliquées dans la violation de ces
contraintes. Ensuite, nous définissons douze mesures de degré de l’incohérence en
utilisant la provenance polynomiale des réponses. Une fois les mesures d’incohérence
définies, il est intéressant de permettre le classement des réponses aux rêquetes en
fonction de leur degré d’incohérence. Nous concevons un ensemble d’algorithmes de
top-k, dont TopINC sur lequel est basée l’idée des autres algorithmes, permettant de
classer les réponses aux requêtes en fonction de leurs degrés d’incohérence. Nous in-
troduisons une nouvelle classe d’algorithmes avec un nouveau modèle de coût et mon-
trons l’optimalité de ces algorithmes de top-k dans certaines conditions spécifiques. De
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plus, pour chaque algorithme de top-k, nous donnons sa complexité théorique. Nous
avons mené une grande expérience pour montrer la faisabilité de notre approche en
pratique et aussi pour montrer l’efficacité de nos algorithmes de top-k développés.
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«Il n’y a le défaut que s’il est entraitenu».
«Maitriser l’incohérence c’est se rapporcher de la perfection».

«Mais l’incohérence n’est pas le monopole des fous: toutes les idées essentielles d’un homme
sain sont des constructions irrationnelles». André Maurois
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Chapter 1

INTRODUCTION

In the last twenty years, special attention has been given to the problem of data qual-
ity [15, 54, 55, 99]. Poor data quality can cause major problems in decision making in
private companies and public organizations[57]. Hence, It is essential to alleviate this
problem and bring concrete solutions. Nowadays, with the evolution of artificial in-
telligence, the quality of the data plays an important role in the quality of models and
algorithms.

There are several dimensions of data quality[127, 133]. Among which the most
important ones are [133]:

• data completeness: it treats the missing data problem; it gives also information
about how the real world is entirely represented by data [14].

• data accuracy: it is concerned with the design of a set of tools to ensure the cor-
rectness of stored data [14, 145].

• data currency: it is about the data freshness [14, 127].

• data consistency: it concerns the reliability of data in compliance with a set of
constraints that have to be satisfied by data [14]. Integrity constraints are notable
class of such constraints.

This thesis focuses on data inconsistency. There is inconsistency in data when at least
one of the set of these constraints, that have to be satisfied, is violated by these data.
Inconsistency can be introduced in database for various reasons, among these reasons
we have:

• data integration, that consists to combine (heterogeneous) data from many sources
[46, 100],

• temporary disabling of constraints checking in relational databases [46],

• application of new constraints to stored data in databases [46],

• human mis-typing during data entry in database,

• inconsistency in set of constraints defined on databases, etc..

Several research problems around inconsistency have been conducted such as fix-
ing the inconsistency problem in knowledge databases[17, 18, 38, 79], database repair-
ing and consistent query answers[9, 22], data cleaning [36], constraints checking (by
quantifying inconsistency, for example, before any update operation in databases) [46].
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However, little attention has been paid to leaving the database instances intact and
quantifying their degrees of inconsistency at different levels of granularity (tuple, sets
of tuples, attribute, set of attributes, etc..). Such a characterization enables the users
of a DBMS to quantify the level of trust that they shall expect from the data that they
query and manipulate. In our work, we are interested in augmenting relational in-
stances with novel inconsistency measures that can also be propagated to query results.
The inconsistency degrees of an answer of a given query is determined by relying on
provenance-based information of the input tuples involved in the computation of this
answer. We first leverage why-provenance in order to identify the inconsistent base
tuples of a relational instance with respect to a set of denial constraints. Then, we rely
on provenance polynomials [74] in order to propagate the annotations of inconsisten-
cies from the base tuples to the answer tuples of conjunctive queries. Building upon
the computed annotations, we define twelve measures of inconsistency degrees, which
consider single and multiple violations of constraints and tuples. Since some of our
measures are non-monotonic functions, we design new top-k algorithms to rank the
top-k results of a query w.r.t. the inconsistency measures, as presented in table 1.1.
Since the existing cost models are not suited to our context, we introduce a new class
of algorithms called SBA and a new cost function denoted cost∆ tailored to generic
scoring function(monotonic and non monotonic). We show the optimality our top-k
algorithms in SBA w.r.t the cost function cost∆.

We envision several applications of our framework, as follows.
Inconsistency-aware queries for analytical tasks, as we expect that our framework enables
inconsistency quantification in querying and analytical tasks within data science pipelines.
Our annotations are not merely numbers and convey provenance-based information
about the violated constraints, the latter being viable for user consumption in data sci-
ence tasks.
External annotations for data cleaning pipelines, as our approach can also ease data clean-
ing tasks in tools such as OpenRefine, Wrangler and Tableau by injecting into them
the external information of inconsistency indicators and putting upfront the resulting
ranking prior to cleaning and curation.
Approximation schemes for integrity constraints that have been used in order to guarantee
a polynomial number of samples in recent probabilistic inference approaches for data
cleaning [128]. We believe that an alternative to constraint approximation would be to
build samples based on the top-k number of constraints leading to the most consistent
(the least consistent, respectively) tuples.
Combined ranking as our quality-informed ranking can be combined with other ranking
criteria, e.g. user preferences in recommender systems and unfairness and discrimina-
tion in marketplaces and search sites [5].

Contributions

We introduce a novel framework to manage inconsistency in relational database. As
shown in figure 1.1, we consider as an input of the framework a database and a set of
denial constraints, then, we deploy two-steps process:

• Preprocessing step, we convert this input database, according to the set of de-
nial constraints, into another database where each tuple is annotated with the set
of constraints it violates. We rely on why-provenance [49, 73] to compute such
annotations.

14



Constraint-based measures
Measure Monotonic Top-k algorithms

CBM 3 NA, TopIncMem, TopINC
CBS 7 NA, TopINC

CSMmin 3
NA, TopMultiSet, TopINCDECSMmax 3

CSSmin 7
NA, TopIncSet, TopINCDECSSmax 7

Tuple-based measures
TBM 3 NA, TupIncRank
TBS 7 NA

TSMmin 3
NA, TopMultiSet, TopINCDETSMmax 3

TSSmin 7
NATSSmax 7

Table 1.1: Measures with their associated top-k algorithms

• Query evaluation step, we consider as class of queries the class of conjunctive
queries. The queries are evaluated on the converted database using polynomial
provenance [74]. In the step of query evaluation, query answers can be ranked
according to their inconsistency degrees and the k first interesting answers (the
most consistent/inconsistent) are chosen using one of the top-k algorithms de-
fined in this thesis.

In this thesis we make the following technical contributions:

1. We design novel measures of inconsistency degrees of answer for conjunctive
queries over an inconsistent database in the presence of a set of denial constraints
4.4. In particular, we consider two approaches to quantify inconsistency of query
answers:

• Tuple-based approach, let t be a query answer, this class of measures counts
the number of inconsistent tuples involved in computation of t. We propose
six different measures of inconsistency of query answers in this class [86].

• Constraint-based approach, considering t a query answer, this class of mea-
sures counts the number of constraints violated by the tuples involved in
computation of t. We proposed six measures of inconsistency of query an-
swers in this class [87].

2. We define top-k problems and threshold problems based on these measures [87].

• We classify the top-k algorithms into two classes, Disk-based algorithms and
Memory-based algorithms, according to the nature of the cost model that
they minimize.

• We design new top-k algorithms to efficiently compute top-k answers in the
context where the input scoring functions are the set of measures defined
above.

3. We theoretically show the efficiency of these algorithms

15
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Figure 1.1: Framework aware inconsistency in relational database

• We define a new class of algorithms called semi-blind algorithms (SBA) that
contains both algorithms working with monotonic scoring functions and
those working with non-monotonic scoring functions.

• We introduce a new cost model denoted cost∆ that minimizes the number
of tuples read on disk while avoiding indeterminism caused by the tuples
having the same score but different values in join attributes.

• We show optimality of these top-k algorithms in SBA class w.r.t our new cost
model cost∆ for algorithms in Disk-based. For the algorithms in Memory-
based, we show that they are polynomial in data complexity.

4. We experimentally show efficiencies of our main algorithm [87].

• The running time of some measures is studied and analyzed.

• The time consumed by the preprocessing phase is also analyzed.

• We experimentally lead a quality evaluation of some measures.

5. We develop a tool, called INCA system, that allows users to explore data profiling
and query answering profiling based on inconsistency quantification.

6. We present a preliminary work to handle inconsistency in a setting where the set
of constraints are inconsistent.

Organization

This thesis is organized as follows: Chapter 2 presents the background; Chapter 3 dis-
cusses the state of art; Chapter 4 introduces the set of measures of inconsistency degrees
proposed in this thesis; Chapter 5 presents different top-k algorithms for the proposed
inconsistency measures; Chapter 6 extends measures of inconsistency with new mea-
sures in the context of presence of inconsistency in the set of constraints; Chapter 7 is
dedicated to the experimentations and evaluations of the proposed measures and top-k
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algorithms; Chapter 8 explores our inconsistency prototype INCA system; Chapter 9
concludes this thesis and gives some perspectives.

In the next chapter we describe the necessary background to this thesis in database
management field.
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Chapter 2

PRELIMINARY NOTIONS

This chapter introduces some basic notions and notations used throughout this the-
sis. First, we recall some relevant concepts in relational database and then we present
different notions in top-k processing and optimal join processing.

2.1 Relational Database

We assume that the reader is familiarized with relational database [4].
We provide the formal definition of a relational database [4] and different nota-

tions used throughout this thesis. The domain of the database is an infinite set of
constants, denoted by D. The database schema, denoted S = {R1, . . . , Rn} is a fi-
nite set of relations/predicates such that D ∩ S = ∅. Let SetAttrs be a countable
infinite set of attribute names such that S ∩ SetAttrs = ∅ and D ∩ SetAttrs = ∅. On
each relation R ∈ S the function Attr associates a set of attributes from SetAttrs (i.e,
Attr : S → P f in(SetAttrs), with P f in(SetAttrs) the finitary powerset of SetAttrs).
Given a relation R, then Attr(R) is called the set of attributes of R. A tuple t is a func-
tion from a finite subset A ∈ P f in(SetAttrs) to the domain D; we say that t is a tuple
from set of attributes A. A relation R ∈ S is a finite set of tuples from Attr(R). We
denote by R(t) with t a tuple to mean that the tuple t is in a relation R, denoted also
by t ∈ R. A relational database (or shortly database or instance) from a schema S and
a domain D, is a finite set of relations from the schema S [4]. A relation in a database
instance I is denoted by I(R). Let id be a function that associates to each tuple an
unique identifier, so the identifier of a tuple t is denoted id(t). We denote Γ by the set
of all identifiers of the instance of the database considered.

Example 2.1. Consider the relational schema education consisting of the following relations
education = {Student, Course} and the domain D is from the (infinite) set of strings.
We have Attr(Student) = {Register_Number, Name, Pre f _Course} and Attr(Course) =
{Course_ID, title}. An example of a database instance from education and D is

REGISTER_NUMBER NAME PREF_COURSE

M01 Alice C02
M02 Bob C01

COURSE_ID TITLE

C01 Computer Science
C02 Physics
C02 Biology

The first relation Student records students with their preferred courses and the second relation
(Course) records courses.
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2.2 Conjunctive Query

In the following, we introduce conjunctive query, i.e, the main class of queries used in
this thesis. The class of conjunctive queries (CQ) is defined as a set of queries of the
following form:

Q(u)← R1(u1), ..., Rn(um), φ(u1, . . . , um) (2.1)

where each Ri is a relation symbol in S and Q is a relation symbol in the output
schema O, each ui is a tuple of variables or/and constants having the same arity as Ri,
and u is a tuple of distinguished variables. Those are variables occurring in query in
tuples ui with i ∈ {1, . . . , m}, i.e, Var(u) ⊆ ⋃

i∈{1,...,m}
Var(ui) with Var a function that

returns the set of variables in a tuple) or/and constants. The formula φ(u1, . . . , um) is a
conjunction of built-in atom under the form x op y where op ∈ {=, 6=,≥,≤,<,>} (op
is a arithmetical predicate), with x and y being either variables from

⋃
i∈{1,...,m}

Var(ui) or

constant. The set of variable in a query Q is denoted Vars(Q). When the conjunctive
query does not contain a built-in part or the built-in part contains only equal (=) pred-
icates then it is called an equi-conjunctive query. Any equi-conjunctive query can be
converted into an equi-conjunctive query that contains no built-in formula (each built-
in predicate x = y is eliminated by rename each instance of y to x). We say that Q is a

full conjunctive query if Var(u) =
m⋃

i=1
Var(ui).

A valuation of Q over a domain D is a function v : Vars(Q) → D, extended to be
the identity on constants, i.e, for each e ∈ D then v(e) = e. For a tuple t = (a1, . . . , ap)
consisting of variables and/or constraints, v(t) = (v(a1), . . . , v(ap)). The result (or
query answers) Q(I) of executing a query Q over an instance I is: Q(I) = {v(u)|v is
a valuation over Vars(Q) and ∀i ∈ [1, n], v(ui) ∈ I(Ri) and φ(v(u1), . . . , v(um)) is true
}.

An union of conjunctive queries, denoted UCQ, is a set of conjunctive queries with
the same output predicate. Let Q be a conjunctive query, Q is a self-join conjunctive
query if there are at least two relation atoms in Q, Ri and Rj, such that Ri = Rj, i 6= j
and i, j ∈ [1, m]. The query Q is a free self-join conjunctive query if Q is not a self-join
conjunctive query.

Example 2.2. Consider the following query Stu_Cour(name, title) :-Student(mat, name, CourI D),
Course(CourI D, title), title 6= ”Physics”. The query Stu_Cour extract all the student names
with their preferred courses, only for courses different from ”Physics”.

NAME TITLE

Bob Computer Science

Only one valuation v (v(name) = ”Bob”, v(title) = ”Computer Science”, v(mat) =
”M02”, v(CourI D) = ”C01”) satisfies the query Stu_Cour, any other valuation fails to sat-
isfy this query.

2.3 Denial Constraints

Various classes of database constraints have been studied in the context of relational
database [16, 37, 56]. In this thesis, we consider the class of denial constraints that is
the one of the most used classes of constraints [126]. The class of denial constraints
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covers many other classes of constraints such as functional dependencies, conditional
functional dependencies, metric functional dependencies [37, 128]. Informally, a denial
constraint expresses a forbidden pattern in database. The class of denial constraints
(DC) is defined as the set of constraints of the following form:

← R1(u1) ∧ ...∧ Rn(um) ∧ φ(u1, . . . , um) (2.2)

where the Ri(ui) are defined as previously, in section 2.2 and in Equation 2.1, and φ is
a conjunction of a built-in atoms. Let C be a denial constraint, we denote by Var(C) all
the variables present in C. We denote by Cid an unique identifier of C. We denote Υ the
set of the identifiers of the denial constraints considered.

A denial constraint C is satisfied by an instance I , denoted I |= C (otherwise, we
denote I 6|= C), if and only if for any valuation v over Vars(Q) then: there exists at
least i ∈ [1, n], v(ui) /∈ I(Ri) or φ(v(u1), . . . , v(um)) leads to false. So, we say that the
database instance is consistent with respect to the constraint C (or shortly, we say it is
consistent). Otherwise, we say that the database is inconsistent.

Let DC be a set of denial constraints over a schema S , DC is consistent if there
exists an instance I 6= ∅ on schema S such that I |= DC. Otherwise, we say that DC
is inconsistent.

Given a set of denial constraints DC, an instance I is consistent if and only if I is
consistent with each constraint C ∈ DC in the set of constraints DC (denoted I |= DC),
otherwise we say that the instance I is inconsistent with respect to the set of denial
constraints DC (denoted I 6|= DC).

Example 2.3. Let C1 ← Student(mat, name, pre f _course), Student(mat, name1, pre f _course1
), name1 6= name and C2 ← Course(id, title), Course(id, title1), title1 6= title be two denials
constraints. The constraint C1 is about the uniqueness of the student number according to the
name and the second constraint (C2) is about the uniqueness of the course identifier. As one can
easily note, the constraint C1 is satisfied by the instance in example 2.1 since there are no two
students with the same number. By opposite, the constraint C2 is violated by the instance given
in Example 2.1 since there are two courses that have the identifier (the identifier C02).

In the remaining of this thesis, denial constraint is abbreviated constraint, unless
otherwise specified.

2.4 Provenance in relational databases

We recall the provenance semiring framework, introduced in [74] as a unifying frame-
work able to capture a wide range of provenance models at different levels of granu-
larity [49, 74, 74]. This framework is based on a general data model that extends the
relational model with the so-called K-relations in which tuples are assigned annota-
tions from a given semiring. An extension for Postgresql, called ProvSQL, enabling to
evaluate queries and return answers of queries with their provenances is developed in
[132].

A monomial M over N and a finite set of variables X is defined by M = a× xm1
1 ×

... × xmn
n with a, m1, ..., mn ∈ N and x1, ..., xn ∈ X . A null monomial is a monomial

where a = 0, otherwise we call the monomial a non null monomial. Let M = a× xm1
1 ×

...× xmn
n be a monomial. We denote by Var(M) = {x1, . . . , xn} the set of variables that

appear in the monomial M. The weight of a variable xi ∈ Var(M) w.r.t a monomial M,
denoted by W(M, xi), is equal to mi, the exponent of the variable xi in M. The weight
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of a non null monomial M, denoted by W(M), is defined as the sum of the weights
of its variables, i.e.: W(M) = ∑

x∈Var(M)
W(M, x). A polynomial P over N and a finite

set of variables X is a finite sum of monomials over X . We denote by M(P) the set of
monomials of P.

Example 2.4. Consider the following monomials (arbitrarily chosen)

• M1 = 4X2
1X2X3X4, W(M1) = 5, V(M1) = 4

• M2 = X1X2X4
3 , W(M1) = 6, V(M2) = 3

• P = M1 + M2, M(P) = {M1, M2}

K-relations

A commutative semiring is an algebraic structure (K,⊕,⊗, 0, 1), where 0 and 1 are two
constants in K and K is a set equipped with two binary operations ⊕ (sum) and ⊗
(product) such that (K,⊕, 0) and (K,⊗, 1) are commutative monoids1 with identities 0
and 1 respectively, ⊗ is distributive over ⊕ and 0⊗ a = a⊗ 0 = 0 holds ∀a ∈ K.

Example 2.5. The following structures are commutative semirings structures:

• (N,+, ∗, 0, 1) the Natural semiring

• (B,∨,∧, f alse, true) the Boolean semiring

Definition 2.1 (K-relations.). An n-ary K-relation is a function R : Dn → K such that its

support, defined by supp(R)
def
= {t : t ∈ Dn, R(t) 6= 0}, is finite.

Hence, a K-relation is an extension of the classical notion of relation to allow tuples
to be annotated by the elements of a any semiring but not only by the elements from
the Boolean semiring.

Let R be an n-ary K-relation and let t ∈ Dn, the value R(t) ∈ K assigned to the tuple
t by the K-relation R is called the annotation of t in R. Note that R(t) = 0 means that
t is "out of" R [74]. A K-instance is a mapping from relations symbols in a database
schema S to K-relations (i.e, a finite set of K-relations over S). If J is a K-instance
over a database schema S and Ri ∈ S is a relation symbol in S , we denote by J (Ri)
the K-relation corresponding to the value of Ri in J (otherwise we use only Ri is J is
understood).

Conjunctive queries on K-instances

Let Q(u) ← R1(u1), ..., Rn(um), φ(u1, . . . , um) be a conjunctive query and let J be a K-
instance over the same schema than Q, with (K,⊕,⊗, 0, 1) a semiring. A valuation of
Q over a domain D is a function v : Vars(Q) → D, extended to be the identity on
constants. The result of executing a query Q over a K-instance J , using the semiring
(K,⊕,⊗, 0, 1), is the K-relation Q(J ) defined as follows:

Q(J )
def
= { (v(u), Πn

i=1Ri(v(ui))) | v is a valuation over Vars(Q)}
1i.e., ⊕ (resp. ⊗) is associative and commutative and 0 (resp. 1) is its neutral element.
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The K-relation Q(J ) associates to each tuple t = v(u), which is in the answer of the
query Q over the K-instance J , an annotation Πn

i=1Ri(v(ui))) obtained from the prod-
uct, using the ⊗ operator, of the annotations Ri(v(ui)) of the base tuples contributing
to t. Since there could exist different ways to compute the same answer t, the complete
annotation of t is obtained by summing the alternative ways (i.e., the various valua-
tions) to derive a tuple t using the ⊕ operator. Consequently, the provenance of an
answer t of Q over a K-instance J is given by: Q(J )(t) = ∑

v s.t v(u)=t
Πn

i=1Ri(v(ui))).

A polynomial provenance is the provenance/annotation obtained when the semir-
ing structure considered to evaluate the query is (N[X],+, ∗, 0, 1).

Example 2.6. Consider the database instance in Example 2.1. We associate randomly annota-
tion from the Natural semiring to each tuple as follows, each annotation represents the number
of times tuples is present in the instance (in this case, the instance is a bag):

• Student(〈M01, Alice, C02〉) = 1

• Student(〈M02, Bob, C01〉) = 2

• Course(〈C01, ”Computer Science”〉) = 3

• Course(〈C02, ”Physics”〉) = 1

• Course(〈C02, ”Biology”〉) = 2

Let’s denote the previous N-instance by J . Consider now the query in Example 2.2, then we
have the unique answer with its annotation is as follows: Stu_Cour(〈Bob, ”Computer Science”〉)
= Student(〈M02, Bob, C01〉) ∗Course(〈C01, ”Computer Science”〉) = 6. The annotation 6
means that this answers can be obtained six times in the N-instance J (represented as bag)

2.5 Hyper Graph and Join Tree

In this section, we overview a set of approaches introduced to efficiently evaluate the
relational join operation. The join operator is the expensive operation in query pro-
cessing. We consider only the equi-conjunctive queries. An equi-conjunctive query
(shortly, in the following we use/say query) has the following form :

Q(u)← R1(u1), ..., Rn(um)

A hypergraph HG is tuple HG = (V, HE) composed from a finite set of nodes
(elements from V) and a set of non empty subsets from V called the set of hyper edges
(elements in HE).

Definition 2.2 (Query Hyper graph). Let Q(u)← R1(u1), ..., Rn(um) be an equi-conjunctive
query, the query hypergraph of Q, denoted H(Q), is an hypergraph H with the set of nodes
Var(Q) and the set of hyperedges the set {Var(ui) : i ∈ {1, . . . , m}}, defined as follows :

H(Q) = (Var(Q), {Var(ui) : i ∈ {1, . . . , m}})

An hypergraph HG is acyclic if and only if it can be turned into a tree T of the
following features: the nodes of T are the set of hyperedges and each two n1 and n2 in
T, with their hyperedges having at least one node from HG(V) in common, so n1 and
n2 are connected in a sub graph (sub tree) of T [13]. We say that also, an hypergraph
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is acyclic if the GYO algorithm (from Graham-Yu-Ozsoyoglu), that takes as input an
hypergraph and returns an other hypergraph, outputs an empty hypergraph [158]. The
GYO algorithm is as follows:

• Choose on arbitrary node N of the hypergraph H(Q) such that one can divide its
set of variables into two parts

– The first one, denoted Isolated(N), is the set of variables that are present in
only N.

– The other one is the set of variables present in N and only another node.

• Remove N and the set of variables Isolated(N) from the hypergraph H(Q).

A query is acyclic if its underling hypergraph is acyclic.

Example 2.7. Consider a database I from this arbitrary schema {R1(A1, A2, A3), R2(A4, A5, A6),
R3(A7, A8, A9)}. Let Q(x, u, x2) :- R1(x, y, z), R2(u, y, w), R3(x2, v, w) be the query. By
GYO algorithm Q is acyclic. The hypergraph H(Q) = (V, HE) where V = {x, u, x2, y, z, v, w}
and HE = {{x, y, z}, {u, y, w}, {x2, v, w}}.

x z y u w x2 v

H(Q) x, y, z

u, y, w

x2, v, wThe tree of Q

The Yannakakis’s algorithm [156] designed for acyclic query Q evaluation over an
instance I runs in a complexity O(|I|+ |Q(I)|), it is an optimal. The main lines of this
algorithm are:

• Associate to each node of the tree a map. Given a node n, the set of keys of the
map of n is from the valuation values of common variables between n and its
parent and the its set values is from the tuples of the relation represented by this
node;

• The root r node has one key that is the empty tuple since its has no parent, and
the set of values corresponding to this key is the set of tuples from relation that r
represents;

• Remove the dangling tuples in each node

– in each parent node remove tuples that do not match any tuple in a least
one of its children nodes, using its associated map (top down traversal to
remove other dangling tuple);

– in each node, remove all the tuples that do not match any tuple in its parent
node, using the its associated map (bottom up traversal to remove some
dangling tuple);

• Answers are computed by doing just a Cartesian product using the result tree

So, any acyclic query can be performed in linear time in data complexity. The fol-
lowing example illustrates the Yanakakis’s algorithm.
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Example 2.8. Consider the query and the schema of the example 2.7. Consider the following
instance from this schema.

R1
A1 A2 A3
a1 1 3
a2 2 4

R2

A4 A5 A6
b1 1 1
b2 3 0
b3 4 4

R3

A7 A8 A9
c1 0 1
c2 10 1
c3 11 3

The matching between the variables and the attributes is as follows: x → {A1} y→ {A2, A5}
z → {A3} u → {A4} w → {A6, A9} x2 → {A7} v → {A8}. On this instance we run the
Yannakakis’s algorithm as follows:

x, y, z

Key Tuples
〈1〉 [〈a1, 1, 3〉]
〈2〉 〈a2, 2, 4〉]

u, y, w Key Tuples
〈〉 [〈b1, 1, 1〉, 〈b2, 3, 0〉, 〈b3, 4, 4〉]

x2, v, w

Key Tuples
〈1〉 [〈c1, 0, 1〉, 〈c2, 10, 1〉]
〈3〉 [〈c3, 11, 3〉]

(a.) The tree of Q with data structures

x, y, z

Key Tuples
〈1〉 [〈a1, 1, 3〉]

u, y, w Key Tuples
〈〉 [〈b1, 1, 1〉]

x2, v, w

Key Tuples
〈1〉 [〈c1, 0, 1〉, 〈c2, 10, 1〉]

(b.) The tree of Q after dangling tuples eliminations

The set of answers is the set 〈b1, 1, 1〉 × [〈a1, 1, 3〉] × [〈c1, 0, 1〉, 〈c2, 10, 1〉] after projection on
variable x, u, x2. So, the set of answers is:

• πx,u,x2(〈b1, 1, 1〉 × 〈a1, 1, 3〉 × 〈c1, 0, 1〉) = 〈a1, b1, c1〉

• πx,u,x2(〈b1, 1, 1〉 × 〈a1, 1, 3〉 × 〈c2, 10, 1〉) = 〈a1, b1, c2〉

When the query is not acyclic then, it can be decomposed into a tree in a way that
the cycle is removed. This approach merges some nodes of the hypergraph to obtain
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an acyclic hypergraph and then obtain the tree [66]. The merged nodes implies inter-
mediary results, i.e, one needs to first compute the result of these merged nodes before
computing the final result. Hypergraph decomposition is an active research area. One
of the main challenge is to find the hypergraph decomposition that minimizes the in-
termediary result [66].

Example 2.9. Consider now the query Q1(x, u) : - R1(x, y, z), R2(u, y, w), R3(x, v, w) simi-
lar as the query Q in Example 2.7. As one can easily note, the query Q1 is a cyclic query since
the GYO algorithm does not return an empty result after its running with H(Q1) = (V ′, HE′)
as input hypergraph: any hyperedge among HE′ = {{x, y, z}, {u, y, w}, {x, v, w}} has com-
mon variables from at least two other hyperedges. The H(Q1) is as follows:

x
z

y u w

v

H(Q1)

It is possible to merge some hyperedges to have a tree, then an hypergraph that is acyclic. For ex-
ample, merge the node {x, y, z} and {u, y, w} to obtain the following {{{x, y, z, u, w}, {x, v, w}}}
hypereadges that forms an acyclic hypergraph. But one has to materialize first the result of join
between {x, y, z} and {u, y, w}.

The fractional vertex cover of an hypergraph H(Q) = (V, HE), for a query Q, is a
solution of the following system of inequalities [66]:

∑
e∈HE:v∈e

Xe ≥ 1 ∀v ∈ V

with Xe ≥ 0

The variables Xe are real number that represent each hyperedge (an hyperedge cor-
responds e ∈ HE to a relational atom in Q). The minimum vertex cover of H(Q) cor-
responds to the minimum among vertex covers (with summation of their components)
of H(Q). So, the minimum vertex cover is obtained by resolving the above system of
inequalities with the following objective function to minimize:

∑
e∈HE

Xe

Let NR = |R| be the number of tuples in the relation R. The AGM bound [12] of the

query answers size of a query Q evaluated over an instance I is Q(I) ≤ ∏
i∈{1,...,m}

N
Xei
Ri

,

in the case where Var(u) =
⋃

i∈{1,...,m}
Var(ui), with ei the hyperedge corresponding, in

the hypergraph H(Q), to the relational atom Ri. The sum ∑
e∈HE

Xe is called the fractional

width. This maximum fractional width bound allows to choose the best merging of the
nodes of a cyclic hypergraph to have a small size of intermediary result. The largest
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fractional width among all the merged nodes during the decomposition of the hyper-
graph to a tree is called the tree fractional width of the resulting tree. The tree fractional
width enables to give the largest intermediary result size.

These efficient techniques to compute the join result are used in Chapter 5 to do
enumeration of query answers in order of their score (inconsistency degrees according
to a measure of inconsistency degrees). The next chapter presents the state of the art.
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Chapter 3

STATE OF THE ART

We overview related works in the following areas: inconsistency handling in knowl-
edge bases and relational databases (section 3.1) and top-k queries processing algo-
rithms (3.2).

3.1 Data Inconsistency

We discuss related works in the areas of knowledge bases and relational databases.

3.1.1 Inconsistency in knowledge bases

The problem of inconsistency in knowledge bases is studied since more than forty years
ago [38]. In the literature, the inconsistency problem in knowledge bases is handled in
two manners: defining new class of logic with new rules of inference that take account
inconsistency, called paraconsistent logic system[28, 67, 71, 79, 80, 139, 141] or quanti-
fying the level of inconsistency in the knowledge bases[7, 40, 50, 68, 90, 94, 109, 112–
114, 116, 122, 129, 137, 142–144, 153, 159].

The paraconsistent logic systems are defined to tackle the problem of triviality
arisen in classical logic caused by the occurrence of inconsistency [10, 17, 18, 24, 25, 154].

To reason in a context of inconsistency in a knowledge bases K, Rescher et al, in [2],
propose two notions of logical consequence: one that is strong called W-consequence,
in this case a proposition is true if it is a consequence of at least one maximal consistent
set (under set-inclusion) of K; the second one called I-consequence, considers all the
maximal consistent sets from K to valid a proposition. Benferhat et al [18] tackle the
problem of inconsistency by using argue consequence notion, in other word, any for-
mula valid φ using an inconsistent knowledge bases K is a consequence of a minimal
consistent subset (under set-inclusion) S (i.e, S ⊆ K and S |= φ and 6 ∃S ′ ⊆ S such
that S ′ consistent and S ′ |= φ ) of K; and the contradictory formula of φ (¬φ) is not a
consequence of any other minimal consistent subset S ′ of K (S ′ |= ¬φ).

Besnard et al [25] introduce a new class of logical system called quasi-classical logic,
designed from classical first order logical by making strict inference rules enabling to
avoid triviality during deduction (i.e, to avoid to deduce any formula). One of the
paraconsistent logic introduced is the four values logic [10, 17]. The four values logic
introduces two new truth values. One of the two values concerns formulas that are
neither true nor false. The second one is about propositions that are true and false at
the same time. An interesting discussion about these paraconsistent systems is done in
[28]. These approaches assume a specific logic system to query knowledge bases and
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limit query answers to a specific subset of answers, instead of our approaches that keep
standard query language and quantify inconsistency of query answers.

Concerning quantification of inconsistency in the knowledge base, a set of measures
of inconsistency levels, that measure inconsistency in the entire knowledge bases, are
introduced [69, 82, 88, 89, 91, 121, 123, 124, 134, 135, 138]. The inconsistency level of
the entire knowledge base enables to compare two knowledge bases [82]. This level of
inconsistency can be also used to help the engine of integrity constraint checking [41–
47]. Jabbour et al introduce in [91] two measures, measuring inconsistency in whole of
the database; one measure counts the number of minimal inconsistent subsets of the
knowledge bases and the second counts the number of conflicts(a conflict arises when
an atom and its negation are both present in the knowledge base) that one can find in
the knowledge bases. Thimm et al propose in [134] a set of measures for probabilistic
knowledge bases.

An overview of measures of inconsistency level of knowledge bases in literature
is presented in [81]. A study about the quality of the measures of inconsistency level
defined in literature is investigated in [70, 136]. All these works quantify inconsistency
in the entire knowledge bases opposed to our works that quantify inconsistent at the
level of tuple. We quantify inconsistency for each tuple in database and for each query
answer.

3.1.2 Inconsistency in relational database

Concerning the inconsistency problem in relational databases, it has been mainly tack-
led by the database repair approaches; also, the consistent query answering approach
(CQA) based on these database repair approaches is developed to answer queries on
inconsistent databases [6, 8, 19–21, 32, 58, 59, 64, 72, 98, 103, 104, 106, 107, 111, 119,
120, 120, 146, 146, 150, 155]. The repairing approach consists to restore the database
consistency by making deletion of tuples from database, or addition of new tuples in
database, or modification of values of some attributes, etc [20–22]. These actions to re-
store the database consistency are called semantic of repairs [22]. A database in which
the consistency is restored is called repair. Each semantic of repair can generate many
repairs (possible infinite set of repairs) [22]. Given a query Q and a semantic of repair
Sem, the consistent query answers is the intersection of answers of Q computed over
all the repairs obtained with the semantic Sem [22].

The repairing and CQA notion have been first introduced by Arena et al [9], and in
this seminal paper they propose repair by deletion. The main semantics of repairs are:
repair by deletion [9, 32, 106, 146, 150] consisting to restore consisting by deleting some
tuples, repair by insertion[120] that restores consistency by inserting (possibly fictive)
tuples and repair by update [19, 72, 104, 107, 111, 120] that modifies values of attributes
to restore consistency.

The theoretical complexity of CQA have been largely investigated in literature [31,
33–35, 52, 60, 75, 92, 92, 93, 95–97, 110, 118, 120, 147–149, 151], these research works
have shown that computing CQA is a Co-NP complete problem. Other works are
focused on specific classes of queries and constraints. So, they have proposed for
these classes a rewriting approach that enables to compute CQA in polynomial time
in data complexity [61–63]. Also, in the same direction to find efficient algorithm to
compute CQA, some quantitative approaches that quantify inconsistency are defined
[97, 105, 108, 117], but all these works depend to a repairing approach. For more details
about repairing and CQA, the reader can be referred to the Bertossi’s book [22].
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Several repairs approaches have been defined in literature [22]. Depending to the
repair approach, the consistent query answers can be different from a repair approach
to an other and CQA keeps only a subset of answers of the query [9]. Another problem
of the repairing and CQA approach is the fact that the number of repairs generated is
exponential (can be infinite) in the size of the database; and in the best case, the com-
plexity of CQA is CO-NP-complete [148]. Opposed to our work, we propose a set of
measures that quantify inconsistency and that do not assume any repairing approach.
Also, we allow a ranking of query answers according to the their inconsistency degrees.

3.2 Top-k algorithms

In this section, we discuss the works related to top-k queries. Two classes of algorithms
have been considered: Disk-based algorithms and Memory-based algorithms.

3.2.1 Disk-based algorithms

In this class of top-k algorithms, the top-k answers are computed while optimizing
the input/output operations (i.e, read and write operations made on disk). A seminal
work in this area is developed by Fagin [51] through the famous FA(Fagin algorithm)
instance optimal algorithm [53]. Given m lists of items and each item has a score (the
lists contains the same items with not necessary the same scores), the FA algorithm
sorts first each list and in each one it takes the k first items with the high scores; in sec-
ond step, it aggregates the scores of items (by an aggregate monotone scoring function)
from different lists and when an item is not loaded in one or more of the lists then it
is accessed by a random access. The FA is extended to TA algorithm by integration of
notion of scoring bound [53]. The TA algorithm works exactly as the FA algorithm and
assumes the same conditions as FA but the items in lists are sequentially accessed one
after one and a threshold score is computed after each read of item; this threshold score
enables to know what item, among seen items, belongs to the top-k. The algorithms FA
and TA assumes a random access and a sequential access; NRA [53] is developed to
work only with sequential access. Similar works have been investigated in [29, 76, 115].
The above top-k algorithms assume a simple input selection query with only natural
join on key attributes. Then, Natsev et al [125] introduce the J∗ algorithm that works
with the general join, J∗ assumes only the sequential access. Other top-k algorithms for
general join are proposed in [77, 83, 84, 101, 130, 131], all these works assume a sequen-
tial access (with sorted relations). In [102] the authors propose a top-k algorithm for
queries with aggregation clause and/or aggregation function. A survey of the top-k
algorithms is presented in [85].

These research works have developed top-k algorithms to work only for mono-
tonic functions and the input data are, at least, sequentially accessed in sorting order of
scores. In this thesis, we design top-k algorithms for non-monotonic scoring functions.

3.2.2 Memory-based algorithms

The class of Memory-based algorithms does not take into account minimization of in-
put/output operations, it loads all the database in main memory and computes top-k
answers while minimizing operations in main memory.

The referential work in this area is investigated by Tziavel et al in [140]. The authors
combine the new techniques developed to efficiently compute the join [65, 66, 157]
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and ranking enumeration while assuming to have monotonic functions. These efficient
techniques generate first the join tree of the query, and based to the properties of this
join tree [66], an efficient technique can be used to compute join results. So, in [140], the
authors fusion efficient join and ranking to enumerate the k answers of queries in order
of their scores (where the aggregate scoring function is the sum). First they perform
for path queries (where the join tree of the query can be converted into a path), so they
convert the problem of finding the k answers enumeration into a problem of finding
the k shortest paths. They generalize beyond path queries. For an acyclic query, one of
their algorithms computes the top-k in O(n + k ∗ log(k)) in data complexity with n the
size of data. The authors of [48] propose a recursive version of enumeration of answers
of queries in order of their scores, their approach works also with monotonic functions,
for an acyclic query it runs in O(n + k ∗ log(n)). Other top-k algorithms, in this class,
are also proposed in [26, 30, 39, 78, 160].

Aside from algorithm developed in [160], that is designed for generic function (not
necessary a monotonic function), all these algorithms work with monotonic aggregate
scoring function. In addition, these algorithms do not work for queries with aggrega-
tion clause. In this thesis, we develop top-k algorithm for some aggregate queries (with
MIN and MAX functions) and for non monotonic functions.

3.3 Conclusion

We presented in this chapter, the state of art. We divided this start of art into four parts.
The first part described works concerning the handling of inconsistency in knowledge
bases; the second one was about inconsistency problem fixing in relational database,
mainly it was consecrated to the database repairing and consistent query answering
notions; the third part was dedicated to the top-k algorithms in Disk-based algorithms
class(algorithms that minimize the input/output operations on disk); and the last part
have presented the top-k algorithms in Memory-based algorithms (i.e, those algorithms
that load all data in main memory and minimize the number of operations in main
memory).

In the next chapter, we present one of our main works that is about the introduction
of a set of measures of inconsistency degrees.
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Chapter 4

QUANTIFYING INCONSISTENCY

In this chapter, we propose a set of measures to quantify inconsistency degrees in rela-
tional databases. We focus on the problem of quantifying the inconsistency degrees of
query answers.

A set of constraints SC is consistent if only if there exists a non empty database D
such that D |= SC. We assume that the considered set of constraints, in this chapter, is
consistent. This assumption will be lifted in chapter 6. The proposed measures enable
to quantify the inconsistency degrees of a given tuple that can be a base tuple or a query
answer. We introduce two classes of measures: tuple-based measures and constraint-
based measures that we describe below in detail.

Let I be a database instance over a schema S and let DC be a set of denial con-
straints over S . We proceed in three steps in order to define the set of measures of
inconsistency degrees.

• Identifying inconsistent tuples: We first start by identifying the inconsistent tuples
of an instance I over S with respect to a set of denials constraints DC. To achieve
this task, we turn each denial constraint C ∈ DC into a Boolean conjunctive query
denoted QC. We use the why-provenance (also known as lineage) of each QC

to compute the set of inconsistent tuples in I with respect to DC. The set of
inconsistent tuples of an instance I with respect to a set of denial constraints DC
is denoted by IncT(I , DC).

• Annotating the initial database instance: Using the why-provenance of each Boolean
conjunctive query obtained from each denial constraint, we convert the instance
I into a K-instance by annotating each consistent tuple in I with the value 1
and each inconsistent tuple t ∈ IncT(I , DC) with id(t)× C1id × · · · × Cpid , where
C1, . . . , Cp ∈ DC and t appears in why-provenance of Ci with i ∈ [1, n].

• Defining inconsistency degrees of query answers: then, given an UCQ Q over the
instance I , we use polynomial provenance semi-ring to annotate the query an-
swers. The latter provenance is the most informative form of provenance an-
notation [73] and hence is exploited in our setting in order to define different
inconsistency degrees for query answers.

In the next section, we illustrate our approach to quantify inconsistency degrees.
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PID RefD Date
02 d4 2 t1
01 d2 4 t2
Diagnosis(D)

PID RefD Date
01 d2 1 t3
01 d2 3 t4
02 d4 4 t5
01 d2 5 t6

Surgery(S)

PID RefD Date
01 d2 3 t7
02 d4 3 t8
Vaccination(V)

Constraint Id Denial Constraint
C1 ← D(x, y, z) ∧ S(x, y, u) ∧ z > u
C2 ← D(x, y, z) ∧V(x, y, u) ∧ z > u
C3 ← S(x, y, z) ∧V(x, v, z)
Set of denial constraints(DCs)

Qex(y, u) ← D(x, y, z) ∧ S(x, y, z1) ∧V(x, u, v)
Query (Qex)

Figure 4.1: A hospital database hdb with a set of denial constraints (DCs) and a query
Qex.

Answers Contrib.
tuples

Violated
Constr.

# Constr.
Violations

〈d2, d2〉 t2, t3, t7 C1 × C2 × C3 C2
1 × C2

2 × C3 a1
〈d2, d2〉 t2, t4, t7 C1 × C2 × C3 C2

1 × C2
2 × C2

3 a2
〈d2, d2〉 {t2, t6, t7} C1 × C2 × C3 C1 × C2

2 × C3 a3
〈d4, d4〉 {t1, t5, t8} 1 1 a4

Table 4.1: Annotated answers of query Qex

4.1 Illustrative Example

Consider a relational database instance I in Figure 4.1 consisting three relations D, V
and S with a corresponding number of denial constraints IC and a query Qex. In each
relation in I , the first column is the patient identifier PID, the second column is the de-
sease reference RefID and the third column is the Date of a given event. Notice that the
schema of the three tables is the same solely for illustration purposes and to maximize
the number of joins across the tables. In fact, our methods are generalizing to relations
with an arbitrary schema. The denial constraint (C1) imposes to have any diagnosis
for a patient’s disease before surgery for the same disease concerning the same patient.
The constraint (C2) and (C3) establish that a patient cannot be diagnosed a given dis-
ease for which he/she has been administered a vaccine on a previous date1. Finally, a
conjunctive query Qex extracts pairs of diseases for which the same patient underwent
surgey and was administered a vaccine. The tuples in the relations highlighted in red
are those that violate one or more constraints (C1), (C2) or (C3).

Before evaluating the query Qex, we annotate each tuple in the databases instance
I with an unique identifier. When applying the why-provenance to the tuples aug-
mented with their identifiers, and for each answer tuple of query Qex, the correspond-
ing possible derivations in terms of tuple identifiers are shown (see Table 4.1). We can
notice that each answer tuple contains bold tuple tuple identifiers. By counting the
number of bold identifiers, we can compute the inconsistency degree of the tuple. For
instance, the answer tuple {R1, R2} has inconsistency degree equal to 3, whereas the
answer tuple {R7, R4} will have inconsistency degree equal to 3 or 2, depending on
whether we favor a greater or smaller number of derivating inconsistent tuples, and so
on. We can also obtain duplicates in the provenance column that might be taken into
account in the counting or not. These considerations led us to precisely define twelve
measures of inconsistency degrees under set- and bag-semantics and to provide prac-

1Notice that there are exceptions to the last two constraints when a second shot of a vaccine is som-
ministrated or when the immunization offered by a vaccine did not work properly. These cases would be
covered by associating probabilities to the constraints, which we do not consider in our work for the time
being.
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tical methods to compute them starting from plain database instances. We tackle these
questions in the remainder of the thesis.

In the next section, we shall detail the proposed three-step approach.

4.2 Identifying inconsistent tuples

Let I be an instance over a database schema S and let DC be a set of denial contraints
over S . We first convert the set denial constraints DC into a set of boolean conjunctive
queries denoted QDC as follows. For each constraint C ∈ DC of the form:

← R1(u1) ∧ ...∧ Rn(un) ∧ φ(u1, . . . , un)

we generate a boolean conjunctive query QC:

QC()← R1(u1) ∧ ...∧ Rn(un) ∧ φ(u1, . . . , un)

Example 4.1. The set DC of denial constraints depicted in Figure 4.1 leads to the following set
of boolean conjunctive queries:

QC1() ← D(x, y, z) ∧ S(x, y, u) ∧ z > u
QC2() ← D(x,′ R2′, y) ∧V(x,′ R2′, z) ∧ y > z
QC3() ← D(x,′ R4′, y) ∧V(x,′ R4′, z) ∧ y > z

It is easy to verify that an instance I violates the set of denial constraints DC iff
at least on boolean conjunctive query from QDC evaluates to true over the instance I
(i.e., ∃C ∈ DC, QC(I) = {<>}, where the empty tuple <> denotes the true value of a
boolean query). The lineage of the empty tuple <> enables the identification of the set
of all contributing source tuples in violation, and hence all the tuples that "contribute"
to make the instance I inconsistent w.r.t. DC. We shall use the provenance semirings [73]
to compute it.

Let P(Γ) be the powerset of the set of tuple identifiers Γ. Consider the following
provenance semiring: (P(Γ) ∪ {⊥},+, .,⊥, ∅), where ∀S, T ∈ P(Γ) ∪ {⊥}, we have
⊥+ S = S +⊥ = S,⊥.S = S.⊥ = ⊥ and S + T = S.T = S ∪ T if S 6=⊥ and T 6= ⊥.
This semiring consists of the powerset of Γ augmented with the distinguished element
⊥ and equipped with the set union operation which is used both as addition and mul-
tiplication. The distinguished element ⊥ is the neutral element of the addition and the
annihilating element of the multiplication.

We convert the instance I over the schema S into a K-instance, denoted by ILP,
with K = P(Γ) ∪ {⊥}. The K-instance ILP is defined below.

Definition 4.1 (Lineage provenance database). Let I be an instance over a database schema
S and let DC be a set of denial contraints over S . Let K = P(Γ) ∪ {⊥}. The K-instance ILP,
called lineage provenance database from I , is constructed as follows:

• ∀Ri ∈ S a corresponding K-relation is created in ILP,

• A K-relation ILP(Ri) ∈ ILP is populated as follows:{
ILP(Ri)(t) = {id(t)} i f t ∈ I(Ri)
ILP(Ri)(t) = ⊥ otherwise

Example 4.2. Figure 4.2 shows the lineage provenance database hdbLP obtained from the hos-
pital database hdb by annotating each tuple t ∈ hdb with a singleton set {id(t)} containing
the tuple identifier. The column lprov contains the annotation of each tuple.
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PID RefD Date lprov
02 d4 2 {t1}
01 d2 4 {t2}

Diagnosis (D)

PID RefD Date lprov
01 d2 1 {t3}
01 d2 3 {t4}
02 d4 4 {t5}
01 d2 5 {t6}

Surgery (S)

PID RefD Date lprov
01 d2 3 {t7}
02 d4 3 {t8}

Vaccination (V)

Figure 4.2: The Lineage provenance databases hdbLP obtained from the hospital
database hdb

Using the provenance semirings, we define below the inconsistent tuples of a given
instance w.r.t. a set of denial constraints.

Definition 4.2 (Inconsistent tuples). Given an instance I and a set of denial constraints DC,
the set of inconsistent tuple identifiers, denoted by IncT(I , DC), is defined as follows

IncT(I , DC)
def
=

⋃
Q∈QDC

Q((I)LP)(〈〉)

Consequently, a tuple t ∈ I is inconsistent w.r.t. DC if id(t) ∈ IncT(I , DC).
In the following, we define the notion of violated constraints by a tuple from input

database.

Definition 4.3 (Violated constraints). Given an instance I and a set of denial constraints
DC, the set VC(I , DC, t) of constraints of DC violated by a tuple t ∈ I is defined as follows:
VC(I , DC, t) = {C ∈ Υ | t ∈ QC(ILP)(<>)}

Example 4.3. Consider the set of boolean conjunctive queries QDC of Example 4.1 which is
obtained from the set of denial constraints of the hdb database. The execution of each query
QC from QDC over the lineage provenance database hdbLP of Figure 4.3 leads to the answer
true (i.e., the tuple <>), if it is violated, annotated with the set of tuples from database hdb that
involve in violation of C, i.e.,:

• QC1(hdbLP)(<>) = {t2, t3, t4}

• QC2(hdbLP)(<>) = {t2, t7}

• QC3(hdbLP)(<>) = {t4, t7}

So, the set of inconsistent tuples is the following:

incT(hdb, DC) = {t1, t17, t2, t18, t3, t19, t7, t10, t6, t11, t5, t13}

The violated constraints by tuple t2 are VC(I , DC, t1) = {C1, C2}, that are violated by t7 are
VC(I , DC, t7) = {C2, C3}.

In the next section, we show how the final instance is annotated.

4.3 Annotation of Database

In the next section, we will show how to use the provenance polynomials to define the
inconsistency degrees of query answers. To achieve this task, we first need to convert
the instance I into a N[Υ ∪ Γ]-instance, denoted IΥ∪Γ. As shown in the following
definition, an instance IΥ∪Γ is derived from I by tagging each tuple t ∈ I with a
monomial with variables in Υ ∪ Γ. These monomials, during query evaluation, are
propagated to query answers thus enabling to identify the inconsistent tuples used to
computed a given answer as well as the constraints violated by this last one.
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PID RefD Date prov
02 d4 2 1
01 d2 4 t2C1C2

Diagnosis (D)

PID RefD Date prov
01 d2 1 t3C1
01 d2 3 t4C1C3

02 d4 4 1
01 d2 5 1

Surgery (S)

PID RefD Date prov
01 d2 3 t7C2C3

02 d4 3 1
Vaccination (V)

Figure 4.3: The K-instances hdbLP (without prov column) and hdbΥ (without lprov
column).

Definition 4.4 (IΥ∪Γ instance). Let I be an instance over a database schema S and let DC
be a set of denial constraints over S . Let K = N[Υ ∪ Γ]. The K-instance IΥ∪Γ is constructed
as follows: ∀Ri ∈ S a corresponding K-relation is created in IΥ∪Γ. A K-relation IΥ∪Γ(Ri) ∈
IΥ∪Γ is populated as follows:

IΥ∪Γ(Ri)(t) =

{
0 i f t /∈ IΥ(Ri)
td
id × ∏

Cid∈Υ
Cl

id otherwise

with l = 1 if Cid ∈ VC(I , DC, t) or l = 0 otherwise; and tid is identifier of t considered as
a variable and d = 1 if t ∈ IncT(I , DC) or d = 0 otherwise.

Hence, an annotation IΥ∪Γ(Ri)(t) of a tuple t is equal to 1 if the base tuple t is
consistent (i.e., VC(I , DC, t) = ∅), otherwise it is equal to a monomial expression that
uses as variables the identifiers of the constraints violated by t (i.e., the elements of
VC(I , DC, t)).

Example 4.4. Continuing with our example, the hdbΥ instance obtained from the hospital
database hdb is depicted in Figure 4.3. We illustrate below the computation of the annota-
tions of the tuples t1 (a consistent tuple) and t2 (an inconsistent tuple). From the previous
example, we have VC(I , DC, t1) = ∅ and hence the annotation of t1 is computed as follows:
hdbΥ(Ri)(t1) = 1 because t1 /∈ IncT(I , DC). For the tuple t2, we have VC(I , DC, t2) =
{C1, C2} and hence: hdbΥ(Ri)(t2) = t2 × C1

1 × C1
2 × C0

3 = t2C1C2.

Constraint-based formula, denoted Cs(P) : N[Υ ∪ Γ] → N[Υ] is a function that takes
as input a polynomial of variables from Υ ∪ Γ and returns a polynomial of variables
from Υ where each variable from Γ takes value 1.
Tuple-based formula, denoted Tp(P) : N[Υ ∪ Γ] → N[Γ] is a function that takes as
input a polynomial of variables from Υ ∪ Γ and returns a polynomial of variables from
Γ where each variable from Υ takes value 1.

Example 4.5. Consider Γ = {t1, t2, t3, t4, t5} and Υ = {c1, c2, c3, c4}. Let P = t2
1c1t3 +

c3c4c2 + t1t2 be a polynomial of variables from Γ ∪ Υ, then

• Cs(P) = c1 + c3c4c2 + 1

• Tp(P) = t2
1t3 + 1 + t1t2

In the sequel, we assume that the relations of an annotated instance IΥ∪Γ are aug-
mented with an attribute prov that stores the annotations of the base tuples. As an
example, Figure 4.3 shows the annotated relations of the instance hdbΥ∪Γ together with
their respective prov columns.

Now, it is ready to define the measures of inconsistency degrees. In the next section,
we define the twelve measures of inconsistency degrees (shown in figure 4.4).
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Provenance polynomial of an output t: E = Q(IΥ∪Γ)(t)

Constraint-based : P = Cs(E) Tuple-based : P = Tp(E)

Set Seman. Bag Seman.

Single Occ. Multi Occ.

TBS TBM

Single Occ. Multi Occ.

Min Max Min Max

TSSmin TSSmax TSMmin TSMmax

Set Seman. Bag Seman.

Single Occ. Multi Occ.

CBS CBM

Single Occ. Multi Occ.

MIN MAX

CSMmin CSMmax

MIN MAX

CSSmin CSSmax

Figure 4.4: The various quantification of inconsistency that can be obtained along with
their criteria.

4.4 Query answers inconsistency

Given a query Q, we evaluate Q over the N[Υ ∪ Γ]-instance IΥ∪Γ and use the prove-
nance polynomials semiring in order to annotate each answer t of Q. The computed
annotations, expressed as polynomials with variables from the set Υ ∪ Γ consisting of
the identifiers of tuples and identifiers of constraints, are fairly informative as they al-
low to fully record how the constraints are violated by base tuples that contribute to
each answer and how inconsistent tuples are used to compute these answers. Such an-
notations are hence exploited to compute the various inconsistency measures needed
for query answers.

Example 4.6. Continuing with the example, evaluating the query Qex over hdbΥ∪Γ and com-
puting its polynomial provenance leads to the following annotated answers:
Qex(hdbΥ)(〈d2, d2〉) = t2t3t7C2

1C2
2C3 + t2t4t7C2

1C2
2C2

3 + t2t7C1C2
2C3

Qex(hdbΥ)(〈d4, d4〉) = 1.
The monomial t2t3t7C2

1C2
2C3 that appears in the annotation of the answer 〈d2, d2〉 of Qex

encodes the fact that this answer can be computed from inconsistent base tuples t2, t3, t7 that
lead to the violation of the constraints C1 and C2 twice and to the violation of the constraint C3
once.

Hence, the polynomial expression Q(IΥ∪Γ)(t) fully records the inconsistency of an
output t in terms of violations of constraints, the inconsistent tuples used to compute
it and therefore can be used to quantify the inconsistency degrees of a query outputs.
Consider a polynomial P = Q(IΥ∪Γ)(t) of an output t of a given query Q. Each mono-
mial M from P gives an alternative way to derive the output t.

Let I , Q, DC be an instance database, an union of conjunctive queries, a set of denial
constraints with identifiers the set Υ, respectively. It is straightforward to notice that in
bag semantic answers, ∀t ∈ Q(I) then Q(IΥ∪Γ)(t) is a monomial.

We categorize the inconsistency measures into two classes:
Tuple-based measures, which quantify inconsistency by using exclusively inconsistent
tuples.

36



Constraint-based measures, the measures in this class quantify inconsistency using
exclusively violated constraints.

These measures of inconsistency are described below.

4.4.1 Definition of measures

Given an UCQ query Q, we evaluate Q over the instance IΥ∪Γ in order to compute the
answers of Q as well as the provenance polynomials semiring annotations associated
with each answer. The annotations, which come in the form of polynomial expressions,
are then exploited to define several inconsistency measures for query answers.

Let I , Q and DC be, respectively, an instance, an UCQ query and a set of denial
constraints over a database schema S . Let t ∈ Q(I) be an answer of the query Q over
the instance I . Let K = N[Υ∪ Γ]. Applying the query Q to the K-instance IΥ∪Γ, enables
to compute the provenance annotation Q(IΥ∪Γ)(t) = P associated with each answer
t ∈ Q(I). This tuple based annotation consists in a polynomial expression P over the
set of variables Γ. Recall that the variables that appear in P correspond to identifiers of
inconsistent tuples (i.e., elements of IncT(I , DC)). Hence, the polynomial P fully doc-
uments how inconsistent source tuples contribute in the computation of the output t.
This polynomial also encodes the violated constraints and their occurrence violations.
In particular, each monomial M ∈ M(P) gives an alternative way to compute the out-
put t. Based on the polynomial annotation P of a tuple t, different measures can be
defined in order to quantify the inconsistency degree of t depending in particular on
how one deals with the following three issues:

• Considering query answers semantics, either bag semantics or set semantics, dif-
ferent measures can be developed depending on query answers semantics. When
set semantics of query answers is considered, a query answer is computed in sev-
eral alternative ways. Opposite to the case of bag semantic where a query answer
is compute from only one alternative. So, in the case of set semantics, the mea-
sures defined consider all the alternative ways while measures in the case of bag
semantics have to consider only one alternative way.

• How to deal with a base tuple that contribute more than one time in the computa-
tion of the same query answer t? We define two cases: single occurrence, in which
a contribution of a source tuple in the computation of an answer is counted at
most once, and multiple occurrence, where the exact number of contributions of a
source tuple is taken into account when quantifying the inconsistency degree of
a given answer.

• What kind of measures to consider? Either tuple-based measures or constraint-
based measures.

The combination of the previous dimensions leads to the following twelve mea-
sures of inconsistency, as reported in table 4.2. In the rest of this chapter, we assume
that t is an answer of Q from a database instance I in presence of a set of denial con-
straints DC and P = Q(IΥ∪Γ)(t). We assume the following notations: Tp = Tp(P) and
Cs = Cs(P).

• Set semantic of query answers. In this semantic, as a given answer t is computed
from different ways then |M(P)| ≥ 1, i.e the provenance polynomial of t is a
polynomial composed from different monomials.
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– Single occurrence, in this semantics, the quantification of an inconsistency de-
gree from a monomial M ∈ M(P) is achieved by counting the number of
variables in M (since duplicate contributions are not counted, the exponents
of the variables are dropped). The set semantics leads to two measures de-
pending on how alternatives are dealt with:

∗ MIN alternative: is the alternative that considers the way to compute
the answer with a minimum inconsistency. Depending to the class of
measures, we have the following two measures:
· Tuple-based measure: this measure allows to compute the given an-

swer with the possible minimum number of inconsistent tuples. Here-
after, this measure is denoted by TSSmin and it is formally defined
as follows:

TSSmin(t, I , Q, DC) = min
M∈M(Tp)

Var(M)

· Constraint-based measure: this measure quantifies inconsistency by
considering the alternative way to compute a given answer contain-
ing the minimum possible violated constraints. Hereafter, this mea-
sure is denoted by CSSmin. It is formally defined as follows:

CSSmin(t, I , Q, DC) = min
M∈M(Cs)

Var(M)

Example 4.7. Continuing our running example, the valuation of the query
Qex of Figure 4.1 is processed as illustrated in Table 4.5. Consider the anno-
tation Qex(hdbΥ)(〈d2, d2〉) = C2

1C2
2C3t2t3t7︸ ︷︷ ︸

M1

+C2
1C2

2C2
3t2t4t7︸ ︷︷ ︸

M2

+C1C2
2C3t2t7︸ ︷︷ ︸
M3

.

This annotation conveys the information about the violated constraints by each
of the three possible ways to derive the output 〈d2, d2〉 as an answer to the
query Qex. It shows also the inconsistent tuples used to compute the output
〈d2, d2〉, also the violated constraints. We have Tp = t2t3t7 + t2t4t7 + t7 and
Cs = C2

1C2
2C3 + C2

1C2
2C2

3 + C1C2
2C3, and TSSmin(〈d2, d2〉, I , Q, DC) = 1

CSSmin(〈d2, d2〉, I , Q, DC) = 3 since we have only t7 that is necessary as
inconsistent tuple to compute 〈d2, d2〉 and C1, C2, C3 are violated.
∗ MAX alternative: this alternative considers the way to compute the an-

swer with a maximum inconsistency. Considering the class of measures,
we have the following measures:
· Tuple-based measure: this measure takes the alternative way to com-

pute answer with the maximum number number of inconsistent tu-
ples. We denote this measure by TSSmax and it is formally defined
as follows.

TSSmax(t, I , Q, DC) = max
M∈M(Tp)

Var(M)

· Constraint-based measure: it considers the alternative way to com-
pute a given answer with the possibly large number of violated con-
straints. We denote this measure by CSSmax. It is formally defined
as follows

CSSmax(t, I , Q, DC) = max
M∈M(Cs)

Var(M)
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Example 4.8. Considering example 4.7, we have TSSmax(〈d2, d2〉, I , Q, DC) =
3 and CSSmax(〈d2, d2〉, I , Q, DC) = 3 since the maximal number of incon-
sistent tuples used is 3 (t2, t3, t7 or t2, t4, t7) and C1, C2, C3 are violated.

– Multiple occurrence. In this semantics, the quantification of an inconsistency
degree from a monomial M ∈ M(P) is achieved by computing the weight of
M. Hence, if an inconsistent source tuple is used n times in the monomial M
or a constraint is violated n times in the monomial M, it will then be counted
n times in the quantification of the inconsistency degree from M. The mul-
tiple occurrence leads to four measures depending on how alternatives are
dealt with:

∗ The MIN alternative shows the option of minimum inconsistency while
considering multiple occurrence. Two measures can be defined depend-
ing to the classes of measures.
· Tuple-based measure: counts the number of inconsistent tuples used

to compute the given answer with the minimum number of use of
inconsistent tuples. Denoted by TSMmin, it is formally defined as
follows:

TSMmin(t, I , Q, DC) = min
M∈M(Tp)

W(M)

· Constraint-based measure: takes as inconsistent degrees the number of
times the constraints are violated in order to compute the given an-
swer when the minimum number of times constraints are violated.
Denoted by CSMmin, it is formally defined as follows:

CSMmin(t, I , Q, DC) = min
M∈M(Cs)

W(M)

Example 4.9. Considering example 4.7, we have TSMmin(〈d2, d2〉, I , Q, DC) =
1 and CSMmin(〈d2, d2〉, I , Q, DC) = 4 since the at least t7 is used to compute
answer and C1, C2, C3 are violated one time, two times, one time respectively.
∗ The MAX alternative corresponds to the pessimist option opposite to Min

alternative, i.e, in this option, we consider the maximum number of vio-
lations of constraints or the maximum use of inconsistent source tuples
contribute in computation of an answer.
· Tuple based approach: counts the maximum number of times incon-

sistent tuples are used in different derivations to compute the given
answer, this measure is denoted TSMmax and is defined as follows

TSMmax(t, I , Q, DC) = max
M∈M(Tp)

W(M)

· Constraint based approach: counts the maximum number of times
the constraints are violated among alternative ways to compute the
given answer, it is called CSMmax and it is defined as follows

CSMmax(t, I , Q, DC) = max
M∈M(Cs)

W(M)

Example 4.10. Considering example 4.7, we have TSMmax(〈d2, d2〉, I , Q, DC) =
3 and CSMmax(〈d2, d2〉, I , Q, DC) = 6 since the at most t2, t3, t7 are used to
compute answer and C1, C2, C3 are violated two time, two times, two times
respectively.
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Tuple-based measures Constraint-based measures
Multi-occurrence Single-occurrence Multi-occurrence Single-occurrence

Set Sem.
TSMmin ≡ min

M∈M(Tp)
W(M) TSSmin ≡ min

M∈M(Tp)
Var(M) CSMmin ≡ min

M∈M(Cs)
W(M) CSSmin ≡ min

M∈M(Cs)
Var(M)

TSMmax ≡ max
M∈M(Tp)

W(M) TSSmax ≡ max
M∈M(Tp)

Var(M) CSMmax ≡ max
M∈M(Cs)

W(M) CSSmax ≡ max
M∈M(Cs)

Var(M)

Bag Sem. TBM ≡W(Tp) TBS ≡ Var(Tp) CBM ≡W(Cs) CBS ≡ Var(Cs)

Table 4.2: Different proposed measures of inconsistency with their formal definitions.
The notation α ≡ β means α(t, I , Q, DC) = β with α a measure of inconsis-
tency and β its definition

• Bag semantic of query answers, in this semantics, each answer is computed in one
processing manner. It corresponds to the semantics of SQL language. For this
semantic, given an answer t of an union of conjunctive queries Q evaluated over
an instance I in the presence of a set of denial constraints DC, Q(IΥ∪Γ)(t) is a
monomial, so P is a monomial.

– Single occurrence. In this case, we count one time a violation, either con-
straints violations or violations of base tuples.

∗ Tuple based approach, counts the number of inconsistent tuples used to
compute answer. It is called TBS and it defined as follows

TBS(t, I , Q, DC) = Var(Tp)

∗ Constraint based approach, counts the number of constraints violated by
base tuples used to compute answer. It is denoted CBS.

CBS(t, I , Q, DC) = Var(Cs)

– Multiple occurrence. We count exactly the number of violations, either con-
straints violations or violations of base tuples.

∗ Tuple based approach, called TBM, counts the number of inconsistent tu-
ples (with repetition) used in computation of answer.

TBM(t, I , Q, DC) = W(Tp)

∗ Constraint based approach, it counts the number of violated constraints,
with repetition, by answer. It is called CBM.

CBM(t, I , Q, DC) = W(Cs)

Example 4.11. Under bag semantics, each derivation corresponds to a distinct an-
swer annotated by a single monomial. This means that the answer 〈d2, d2〉 is com-
puted three times leading to three answers, a1 = a2 = a3 = 〈d2, d2〉, each of
which annotated, respectively, with one of the monomials M1, M2 and M3. For
this example, consider CBM and CBS. The inconsistency degrees of these three an-
swers can then be computed as follows: CBS(ai, Q, I , DC) = 3, for i ∈ [1, 3], and
CBM(a1, Q, I , DC) = 5, CBM(a2, Q, I , DC) = 6 and CBM(a3, Q, I , DC) =
4. We have also TBM(a1, Q, I , DC) = TBS(a1, Q, I , DC) = 3.

A summary of the definitions of these measures is reported in table 4.2.
Given a query Q and an instance I and a set of denial constraints DC, Q(IΓ∪Υ) can

be computed in polynomial time in data complexity [49, 74]. Hence, all these measures
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Bag semantic answers
TBA CBA

Answer Prov TBM TBS CBM CBS
〈d2, d2〉 M1 3 3 5 3
〈d2, d2〉 M2 3 3 6 3
〈d2, d2〉 M3 2 2 4 3
〈d4, d4〉 1 0 0 0 0

Set semantic answers (TBA)
Answer Prov TSMmax TSMmin TSSmax TSSmin

〈d2, d2〉
M1 +

3 2 3 2M2 +
M3

〈d4, d4〉 1 0 0 0 0
Set semantic answers (CBA)

Answer Prov CSMmax CSMmin CSSmax CSSmin

〈d2, d2〉
M1 +

6 4 3 3M2 +
M3

〈d4, d4〉 0 0 0 0 0

Figure 4.5: Answers of query Qex over hdbΓ and their inconsistency degrees for each
respective inconsistency measure.

of inconsistency degree of answers of a query Q over I (Q(IDC)) can be computed in
polynomial in the size of the database instance I .

We consider TBA be the set of measures of inconsistency degrees from tuple-based
measures class and CBA be the set of measures from constraint-based measures.

This approach goes beyond the traditional methods that give only information
about if a tuple is consistent or inconsistent. So, our approach extends these traditional
methods and enables us to compare tuples deeply according to their inconsistencies,
each one to the other.

Given a conjunctive query Q, each measure of inconsistency degree of tuple based
approach as defined above is bounded by the size of Q (i.e, |Body(Q)|). Also, in the
case where Q is a self-join free query the set semantics and the bag semantics coincide.
The lemma 4.1 shows these two properties.

Lemma 4.1. Let I , Q and DC be respectively an instance, a conjunctive query and a set of
denial constraints, for each tuples t ∈ Q(I)

1. α(t, I, Q, IC) ≤ |Body(Q)| with α ∈ TBA

2. If Q is also self-join free then: TBM(t, I, Q, IC) = TBS(t, I, Q, IC), TSMmax(t, I, Q, IC) =
TSSmax(t, I, Q, IC) and TSMmin(t, I, Q, IC) = TSSmin(t, I, Q, IC)

Proof. 1. Easy. Q : Q(X) ← P1(X1), ..., Pn(Xn), φ. Each monome M in Q(IIC)(t),
∀t ∈ Q(I), is in a form a ∗Πn

i=1Pi(v(Xi)) with v a valuation for Q and a ∈N. So,
|Var(M)| ≤ |W(M)| ≤ n = |Body(Q)|.

2. Q : Q(X) ← P1(X1), ..., Pn(Xn), φ a CQ free self-join ⇒ there is no valuation v
of Q where id(v(Xi)) = id(id(Xj)) with Pi 6= Pj, so each monome in Q(IIC)(t)
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is in form a × x1 × ... × xm with a ∈ N and {x1, ..., xn} is the set of variables
(identifiers of inconsistent tuples). There is no repetition, thus the bag semantics
and set semantics match one with another.

While our approach is orthogonal to that of CQA in general (as explained in Section
3), our notion of consistency is much stronger than the notion of consistent answers in
CQA as stated by the following lemma (lemma 4.2).

Lemma 4.2. Let I , Q, DC, α be an instance, an union of conjunctive query and a set of denial
constraints, a measure of inconsistency degrees among measures defined above, respectively.
∀t ∈ Q(I) we have:
α(t, Q, I , DC) = α(t, Q, I , DC) = 0⇒ t is a CQA.

Lemma 4.2 is straightforward to prove as any answer that has inconsistency degree
equal to 0 is computed from tuples that do not violate any constraint. As these tuples
do not involve any violation, they belong to all the repairs of database regardless of
the repair semantics. Clearly, the set of CQA can be larger by including the tuples that
involve violations and leveraging a given repair semantics.

Example 4.12. Consider the following database instance I with an example of constraint and

query: DC = {C1 : ← R(x, y, z), R(x, y1, z1), y 6= y1}
Q(z) : −R(x, y, z)

R
A B C Prov
1 a 1 C1 t1
2 b 2 C1 t2
1 c 1 C1 t3
3 a 3 1 t4
2 g 4 C1 t5

Consider repair by deletion that is the most repair semantics considered with class of denial
constraints [22]. The following set of repairs are obtained:

• Rep1 = {t1, t2, t4}

• Rep2 = {t1, t5, t4}

• Rep3 = {t3, t2, t4}

• Rep4 = {t3, t5, t4}

As t4 does not violate any constraint in DC, then it belongs to all the repair sets. The set of
consistent query answers of Q over I in presence of DC is:

CQA(Q, I , DC) = {〈1〉, 〈3〉}

since these two answers can be computed over any repair among {Rep1, Rep2, Rep3, Rep4}.
Now, consider the measure CSSmin (any measure can be chosen and the same analyses are

done). Our approach returns the query answers, as follows: {〈1〉, 〈2〉, 〈3〉, 〈4〉} with their
inconsistency degrees

• CSMmin(〈1〉, Q, I , DC) = 1

• CSMmin(〈2〉, Q, I , DC) = 1

• CSMmin(〈3〉, Q, I , DC) = 0
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• CSMmin(〈4〉, Q, I , DC) = 1

As one can note, in our case only 〈3〉 is consistent. It is also in the set of consistent query
answers. But, opposite to the CQA approach, all the query answers are considered and returned,
each one with its inconsistency degrees.

4.5 Conclusion

This chapter has presented the measures of inconsistency proposed in this thesis lever-
aging why-provenance and polynomial semiring provenance. We have categorized
these measures into two classes: tuple-based measures and constraint-based measures.
These proposed measures of inconsistency are intuitive. They also enable the compar-
ison of tuples, each one to the other, according to their inconsistency degree. Their
theoretical complexities are polynomial in data complexity.

The next chapter presents the different top-k algorithms developed to rank query
answers and enumerate them in a specific order of their inconsistency.
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Chapter 5

INCONSISTENCY-DRIVEN
QUERY ANSWERING

In this chapter, we study top-k ranking of inconsistency-aware tuples as defined below.
For this purpose, we leverage the set of measures of inconsistency introduced in the
Chapter 4. We consider as input an annotated instance IΥ∪Γ, where each base tuple t
of a relation R is annotated with the monomial IΥ∪Γ(R)(t) (c.f. Definition 4.4). Let α be
one of the previous measure of inconsistency degrees defined above, the main idea is
to use α as a scoring function over the results of a query Q where the score of an output
t of Q is given by α(t, Q, I , DC). The goal is then to rank the answer tuples while taking
into account the inconsistency degrees of the base tuples contributing to the answers.
The fundamental computation problem is then to be able to efficiently enumerate (part
of) query answers in a specific order w.r.t. their inconsistency degrees. We focus on one
particular instance of this problem where the goal is to return the query results with
the top k scores, hereafter called inconsistency-aware top-k ranking.

Informally, a top-k query Q is a query enabling to compute the first k answers of
Q with the highest/lowest scores. These scores are computed using an aggregate scor-
ing function. Depending on the order of the top-k, either k answers with the highest
scores or the k answers with lowest scores, we can define separately two types of top-k
query: Bottom up top-k(look for the k answers with lowest scores) and Top down
top-k queries (look for the k answers with highest scores). Below, we define formally
a top-k query in the context of measures of inconsistency degrees. In the rest of paper,
we assume that ι ∈ {↑, ↓}.

Definition 5.1 (Top-k queries). Let I , Q and DC be respectively a database instance, a con-
junctive query and a set of denial constraints over the same database schema. Let k be an integer,
let α be one of measure of inconsistency degrees defined above. The Bottom up top-k (resp.
Top down top-k) query answers of a query Q using the inconsistency measure α, denoted by
Qk,α↓(I) (resp. Qk,α↑(I)), is defined as follows:
(i) Qk,α ι(I) ⊆ Q(I),
(ii) |Qk,α ι(I)| = Min(k, |Q(I)|), and
(iii) ∀(t1, t2) ∈ Qk,α ι(I)× (Q(I) \Qk,α ι(I)), we have:

• α(t1, Q, I , DC) ≤ α(t2, Q, I , DC) for Bottom up top-k

• α(t1, Q, I , DC) ≥ α(t2, Q, I , DC) for Top down top-k

Condition (i) and (ii) ensure that a top-k query Qk,α ι(I) computes at most k answers
of Q(I) while condition (iii) ensures that the computed answers are the best answers
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in Q(I) w.r.t. the inconsistency measure α. The function α is called the scoring function
of the top-k problem. We use the notation Qk,α instead of Qk,α ι, when the orders do not
matter.The following example illustrates a top-k query over our running example.

Example 5.1. Assume k = 1 and α = CBM. Continuing with the database hdb and the query
Qex as in Figure 4.1, we have: Qk,α,↓

ex (hdb) = {〈d4, d4〉} and Qk,α,↑
ex (hdb) = {〈d2, d2〉}.

The complexity of evaluation of a top-k query is mainly depending on the nature of
the scoring function [85]. The scoring functions can be divided into two main classes:
those functions that are monotonic and those ones that are non-monotonic.

Definition 5.2 (Monotonic function w.r.t. aggregate operator ◦). Let A, B be two sets such
that B is totally ordered. Let f be a function from A→ B. Let x, y, z, v ∈ A and let ◦ an intern
operator in A called the aggregate scoring operator, respectively. The function f is monotonic
w.r.t ◦, if and only if

f (x) ≤ f (y) ∧ f (z) ≤ f (v)⇒ f (x ◦ z) ≤ f (y ◦ v)

The aggregate scoring operator ◦ is used to aggregate scores of tuples used to com-
pute an answer with either join(./) or intersection(∩) operators. As example of mono-
tonic function with an aggregate operator, we have the identity function from natural
numbers set (i.e, identity : N → N such that identity(x) = x with x ∈ N) that is
monotonic with addition (+) as aggregate score operator; since identity(x) = x ≤
identity(y) = y ∧ identity(z) = z ≤ identity(v) = v ⇒ identity(x + z) = x + z ≤
identity(y + v) = y + v. Any function that is not monotonic is called a non-monotonic
function.

Lemma 5.1. Let MS = {CBM, CSMmin, CSMmax, TBM, TSMmin, TSMmax} and NMS =
{CBS, CSSmin, CSSmax, TBS, TSSmin, TSSmax}. A scoring function that associates to each tu-
ple t a score computed using a measure of inconsistency degrees from MS (respectively, NMS)
is monotonic w.r.t. + (respectively, non monotonic).

The proof of the above lemma is trivial since the measures in MS can be reduced to
the identity function from N with sum (+) as aggregate operator; however, the mea-
sures in NMS are equivalent to cardinal function from subsets of violated constraints or
subsets of tuples that involve in violation of constraints (Card : 2Υ → N for constraint
based approach measures or Card : 2Γ → N for tuple based approach measures) with
the set union as aggregate operator.

In the rest of this chapter, we use the terms score and inconsistency degrees equiv-
alently.

Consider t an answer of a query Q over a database instance I . The set of derivations
of t is the minimum (under inclusion operator) subsets from I from which t can be
computed using Q. Denoted by deriv(t, Q, I), the set of derivations of t is formally
defined as follows:

deriv(t, Q, I) = {S ⊆ I : t ∈ Q(S) and 6 ∃S′ ⊂ S and t ∈ Q(S′)}

It is trivial to see that when the bag semantics query answers is considered, the set
of derivations of an answer is always a singleton.

Definition 5.3 (Order Compatible (O.C) ). Let α, I , Q, DC be a measure of inconsistency
degrees, an instance, a conjunctive query, and a set of denial constraints, respectively.
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• The measure α is Order Compatible with Bottom up top-k, denoted O.C↑, if only if

α(t, Q, I , DC) = min
S∈deriv(t,Q,I)

α(t, Q, S, DC)

• α is Order Compatible with Bottom up top-k, denoted O.C↓, if only if

α(t, Q, I , DC) = max
S∈deriv(t,Q,I)

α(t, Q, S, DC)

The Order Compatible property enables to exploit algorithms of top-k designed to
measures in bag semantics for the cases of set semantics.

Let’s denote by A = {CSSmin, CSMmin, TSSmin, TSMmin} and B = {CSSmax, CSMmax, TSSmax, TSMmax}.
By definition we have:

1. The measures in A are O.C↑

2. The measures in B are O.C↓

There exists a naive algorithm enabling to compute the top-k answers of a given
query Q with their scores regardless of the class of Q and the scoring function. This
naive algorithm computes all the answers of the given Q then sorts them and chooses
the k first ones. We shortly note this algorithm NA. The NA algorithm computes a
large number of query answers that do not have any utility. It is, then, an efficient
top-k algorithm.

The rest of this chapter is organized as follows:

• section 5.1 presents the different dimensions of the problem and the cost model
mainly used.

• section 5.2 is dedicated to the top-k algorithms developed for constraint-based
measures.

• section 5.3 presents top-k algorithms developed for tuple-based measures.

• section 5.3 concludes this chapter.

5.1 Cost-based query answers enumeration

This section discusses two dimensions of the top-k query answering problem: query
answers semantics and the query language. Then, it introduces a cost model, consist-
ing to a new cost function and a new class of top-k algorithms, evaluating the top-k
algorithms.

5.1.1 Problem Dimensions

Mainly the problem is to enumerate the query answers in order w.r.t. their inconsis-
tency degrees. For the designing of an algorithm to fix this problem, the following
dimensions have to be analyzed: Query answers semantics and Query language.
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Query answers semantics

We investigate two semantics of query answers: bag semantics and set semantics.
In bag semantics of query answers: each query answer is computed in one alter-

native way with its score(i.e, ∀t :answer, |deriv(t, Q, I)| = |{S1}| = 1). As, for each
query answer t there exists only one possible derivation, then the belonging of t to the
top-k answers, once it is computed, is less harder than the case where there exits many
possible derivations.

In the case of set semantics of query answers, many alternatives (finite derivations)
exist to compute the same query answer arising in many scores for the same answer(i.e,
∀t :answer, |deriv(t, Q, I)| = |{S1, . . . , Sp}| ≥ 1 with p ∈ N∗). Each derivation Si, with
i ∈ 1, . . . , p, gives a possible inconsistency degree of t (that is ICi = α(t, Q, Si, DC)). So,
we need another function f to aggregate these possible inconsistency degrees of t to
obtain the inconsistency degree of t (that is f (IC1, . . . , ICp)). So, it is harder to decide
the belonging of a query answer t, computed from a derivation d, to the top-k answers
based only from this derivation d of t.

So, a top-k algorithm for set answers semantic can be used for bag answers seman-
tic since bag semantic is a special case of set semantic (i.e, the case where the set of
derivations is a singleton). But, as we show in the rest of this chapter, it is harder to
design a top-k algorithm for set semantic than bag semantic. The following example
(example 5.2) illustrates this distinction.

Example 5.2. In this example, we assume that there exist three denial constraints DC =
{C1, C2, C3}. We consider below two relations R1 and R2, of an annotated instance I . We
consider the conjunctive query Q(z) : −R1(x), R2(x, z). The column prov contains the set of
violated constraints.

R1
A prov
0 C1 t1
1 C1C3 t2
2 C1C2 t3

R2
A B prov
0 a 1 t4
1 a C2C3 t5
2 b C2 t6

The goal is to enumerate first the most consistent query answers.

• Consider now bag semantics query answers and the measure CBS (any measure of bag
semantics query answers can be chosen). The query answers is then: Q(I) = [〈a〉 :
C1, 〈a〉 : C1C2C2

3 , 〈b〉] : C1C2
2 ; we denote by ai the identifier of the answer at position i

in Q(I), so Q(I) = [a1, a2, a3]; we have Q(IΥ)(a1) = C1, Q(IΥ)(a2) = C1C2C2
3 and

Q(IΥ)(a3) = C1C2
2 . So, we have CBS(a1, Q, I , DC) = 1, CBS(a2, Q, I , DC) = 3 and

CBS(a3, Q, I , DC) = 2. Once a1, a2, a3 computed, each one from only one derivation
(a1 from [t1, t4], a2 from [t2, t5] and a3 from [t3, t6]), the order a1, a3, a2(most consistent
answers first) can be established based on CBS measure.

• For set semantics, Q(I) = {〈a〉, 〈b〉}. We have Q(IΥ)(〈a〉) = C1 + C1C2C2
3 and

Q(IΥ)(〈b〉) = C1C2
2 . Consider the measure CSSmax, then CSSmax(〈a〉, Q, I , DC) = 3

and CSSmax(〈a〉, Q, I , DC) = 2. The top-2 query answers according to CSSmax are
then [〈b〉, 〈a〉]. As one can easily note, 〈a〉 is computed from two derivations {d1 =
[t1, t3], d2 = [t2, t4]}. Depending on the derivation considered the order [〈b〉, 〈a〉] can
be permitted. Assume that 〈a〉 is computed first from d1 and we decide to establish order
between 〈b〉 and 〈a〉 according to CSSmax, then we obtain the following order: [〈a〉, 〈b〉]
since based only to d1 the inconsistency degrees of 〈a〉 with CSSmax is equal to 1. This

47



leads to an incorrect result. So, for set semantics, it is difficult to rely only on one deriva-
tion of query answers to fix order in which query answers are computed according to a
measure.

Query language

In the rest of the thesis, we consider the relational algebra language. The expressive-
ness of conjunctive queries is equivalent to that of relational algebra queries. Depend-
ing on the operators of relational algebra used in the query Q, the algorithm used to
enumerate query answers in order of their scores can be more complex. An algorithm
that enumerates query answers in order of their score can be designed in analyzing the
following groups of operators:
Selection (σ), Projection (π), Union (∪): In this case, the algorithm simply consists of
accessing tuples in the right order according to their scores.

Example 5.3. Consider Example 5.2 and the query Q1(z) : −R2(x, z), x > 0 ≡ π(σA>0(R2)).
The set of query answers is {〈a〉, 〈b〉} and the inconsistency degrees of 〈a〉 and 〈b〉 are 2 and 1,
respectively.

Join (./), Intersection (∩): For the case of join and intersection, an answer is computing
by joining a set of tuples. Each tuple has its score, so we need an aggregate scoring
function ◦ to aggregate these different scores. An algorithm that enumerates answers
in a specific order of their score, has to consider the nature of this aggregate scoring
function. Since the difficulty of designing an algorithm, that enumerates in a specific
order the query answers according to their inconsistency degree, depends to the fact
that a measure of inconsistency α is monotonic or non-monotonic w.r.t. ◦.

5.1.2 Cost models

We introduce a new class of algorithms called SBA and a new cost function. The SBA
algorithms defines a set of algorithms that focus mainly and only on the scoring col-
umn to evaluate the top-k query. The new cost function enables us to better compare
algorithms in SBA than the classical I/O cost function in literature [85]. In fact, the
classical I/O cost model is sensitive to the non determinism caused by the read of tu-
ples having the same score. As the class of algorithms considered (SBA) does not have
any information about join attributes, the order in which these tuples(having the same
score) should not have an improve on the cost of the algorithm.

are read can have influence on the classical I/O cost.

Semi-blind algorithms

In this section, when we mention prov attribute so we refer to the attribute that con-
tains the annotation value, i.e, the set of constraints violated by the concerned tuple in
monomial form.

We define SA as a database schema where each table R has a set of attributesA. Let
I1 and I2 be two relational instances over SA, we define equivalent instances under at-
tributes A: I1 ≡A I2 iff ∀R ∈ SA, πA(I1(R)) = πA(I2(R)) with πA(R) the projection
over table R on attributes A.

Let Q(X) ← R1(X1), . . . , Rn(Xm) and I be respectively a conjunctive query and
an instance over schema S{prov}. Let AL be an algorithm that allows to compute the
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answers of Qk,α(I), with α ∈ {CBS, CBM}. A join test J of AL when processing Qk,α

over an instance I has the following form J = t1 ./ . . . ./ tm where ti ∈ I(Ri) with
i ∈ [1, m]. A score of a join test is defined as follows: α(J) = α(t1 ./ . . . ./ tm).
We define jPath(AL, Q, I) as the sequence of joins test performed by the algorithm
AL when evaluating Qk,α over I . The intuition is that jPath(AL, Q, I) enables to
capture the behavior of the algorithm AL when it evaluates Qk,α over I . Formally,
jPath(AL, Q, I) = [J1, ..., Jn], where Ji = ti

1 ./ . . . ./ ti
m, with ti

j ∈ I(Rj) and j ∈ [1, m].

We define label(Ji)
def
=
(
πprov(ti

1), . . . , πprov(ti
m)
)
. We are now ready to give the for-

mal definition of the class of Semi-Blind Algorithms (SBA), the algorithms that use only
information from the prov column when processing inconsistency-aware queries.

Definition 5.4 (SBA algorithms). Let Qk,α be a top-k query, let I1, I2 be two instances, and
let AL be an algorithm such that: jPath(AL, Q, I2) = [J′1, ..., J′n2

] and jPath(AL, Q, I1) =
[J1, ..., Jn1 ]. The algorithm AL belongs to the class SBA iff:
I1 ≡{prov} I2 ⇒ label(Ji) = label(J′i ), for i ∈ [1, max(n1, n2)]

According to this definition, an algorithm AL ∈ SBA will have a similar behavior
when evaluating a query Qk,α over different instances that are equivalent under prov,
i.e., AL will explore the same sequence of join tests but may stop earlier or later de-
pending on the success or failure of the join tests. The outcome of this latter test is
related to the content of the join attributes of each specific input instance and remains
independent from the prov column. As one can easily notice, TopINC belongs to SBA.
Indeed, it only relies on the information given by the prov column without exploiting
any auxiliary information.

Region-based cost function

A natural metric to measure the performance of an algorithm AL is to compute the
number of tuples of the input relations accessed by AL, denoted cost(Al, Q, I).

Let J = t1 ./ . . . ./ tm, we denote by tuple(J) = {t1, . . . , tm} the set of tuples
involved in a join test J. Consider an algorithm AL with jPath(AL, Q, I1) = [J1, ..., Jn1 ].

Then, the cost of AL is given by: cost(Al, Q, I) = |
n1⋃

i=1
tuple(Ji)|. The following theorem

states that there exists no algorithm in the class SBA that is optimal w.r.t. the cost metric
defined above.

Theorem 5.1. Let Qk,α be a top-k query. Then, we have: ∀Al1 ∈ SBA,c∃Al2 ∈ SBA and an
instance I such that, cost(Al1, I , Q) > cost(Al2, I , Q).

Proof. W.l.o.g, assume that m = 2 (i.e., Q is a join between two relations R1 and R2).
Take two integers l > 1, p > 1 such that k ≤ l ∗ p. We build an instance I1 as follows:

• The relation I1(R1) contains two subsets of tuples (the l-tuples and the p-tuples):
l tuples tl

1, . . . , tl
l with πprov(tl

i) = πprov(tl
j), ∀i, j ∈ [1, l] and p tuples tp

1 , . . . , tp
p with

πprov(t
p
i ) = πprov(t

p
j ), ∀i, j ∈ [1, p]. We take πprov(t

p
1) 6= πprov(tl

1).

• The relation I1(R2) contains two subsets of tuples (the l-tuples and the p-tuples):
l tuples t′l1 , . . . , t′ll with πprov(t

p
1) = πprov(t′li )∀i ∈ [1, l] and p tuples t′p1 , . . . , t′pp with

πprov(tl
1) = πprov(t

′p
i ), ∀i ∈ [1, p].
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The prov values are choosed such that they satisfy the following condition: α(πprov(tl
1)×

πprov(t
p
1)) < min(α(πprov(tl

1) × πprov(tl
1), α(πprov(t

p
1) × πprov(t

p
1)). Consider an algo-

rithm Al1 ∈ SBA with jPath(Al1, Q, I) = [J1, ..., Jn1 ]. We exhibit the following cases
regarding the first test join J1:

• Case when J1 = tp
1 ./ tp

2 or J1 = tp
1 ./ tl

2 (i.e., Al1 starts reading a p-tuple from R1).
We construct an instance I2 such that I2 ≡prov I1 and all the answers of Q over
I2 are exactly those answers obtained by joining l-tuples of I2(R1) with p-tuples
from I2(R2), i.e., any other join test between tuples of I2(R1) and tuples of I2(R2)
will evaluate to false. Clearly, Al1 is not optimal to evaluate Qk,α over I2 because
Al1 starts to process join test that does not lead to any output answer as a result of
the fact that label(jPath(Al1, Q, I2)[1]) = label(J1) (since I2 ≡prov I1) and hence
Al1 reads at least one useless tuple (the p-tuple tp

1 which, by contruction of I2,
do not contribute to any answer). It is easy to see that a round robbin algorithm
that alternate reading l-tuples from R1 and p-tuples from R2 and performing join
tests between the tuples loaded in the memory is optimal. Indeed, to maximize
the generated answers for a given cost s (i.e., reading s base tuples), the best
strategie is to read ds/2e base l-tuples from R1 and bs/2c base p-tuples from R2
(or inversely)1, which enables to compute the maximal number of ds/2e × bs/2c
answers. The behavior of such an algorithm Al2 is given by jPath(Al2, Q, I) =
[J′1, . . . , J′k] with J′1 = t1

l ./ t′1
p, J′2 = t2

l ./ t′1
p, J′3 = t1

l ./ t′2
p, J′4 = t2

l ./ t′2
p,

J′5 = t3
l ./ t′1

p, J′6 = t3
l ./ t′2

p . . .

Since, Al2 reads the minimal number of base tuples to compute k answers from I2
and Al1 reads at least one useless base tuple, we can conclude that cost(Al1, I2, Q) >
cost(Al2, I2, Q).

• Case when J1 = tl
1 ./ tl

2 or J1 = tl
1 ./ tP

2 (i.e., Al1 starts reading an l tuple from
R1). This case is the dual of the first one and can be proved following the same
reasoning while inverting the roles of p-tuples and l-tuples when building I2 and
Al2.

The intuition behind the above theorem 5.1 is that the SBA algorithms need to make
a non-deterministic choice among the join tests that have equivalent score. We illustrate
this case by relying on a corner case of an instance Î containing exclusively consistent
tuples. Consider a query Q over n inputs R1, . . . Rn such that |Q(Î)| = 1. Consider
now the evaluation of the query Q1,CBS by SBA algorithms. Since all the join tests
among the tuples of the input relations will have the same score, an SBA algorithm
needs to make a non-deterministic choice among the elements of R1 × . . .× Rn to de-
cide in which order the join tests will be performed. Hence, the best algorithm Al
would luckily pick the right tuples in the first round of choice which leads to an op-
timal cost: cost(Al, Î , Q) = n. The worst-case algorithm Al′ might end up with the
least good cost after exploring the entire cartesian product of the inputs, which leads

to cost(Al, Î , Q) =
n
∑

i=1
|Ri| (i.e., the algorithms Al′ needs to read the entire inputs).

Consequently, we argue that it is not worthwhile to distinguish between SBA algo-
rithms w.r.t. to the order of exploring join tests with equivalent score (since this is a
non-deterministic choice). We formalize this notion using regions, defined as maximal

1This is because the optimum of the function f (x) = sx− x2, for a constant s, is given by x = s/2.
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O.SBA E-k-answers Complexity
TopINC 3 3 O(nm)

TupIncRank 3 3 O(nm)
TopIncMem NaN 3 O(nδ + k)
TopINCDE 3 7 O(nm)

TopMultiSet NaN 3 O(nδ + log(n) ∗ k)
TopIncSet NaN 3 O(nδ ∗ k)

NA 7 7 O(nm + m ∗ log(n))
Table 5.1: Algorithms with their characteristics; n is the size of the database instance,

m is the size of the query and k is the number of answers to compute; δ <= n
measures the number of intermediary answers (it is 1 if the query is acyclic)

sub-sequences of join tests with equivalent score, and we define a new metric based on
the number of regions explored by the algorithm. The region-based cost enables us to
get ride of lucky choices when comparing the performances of SBA algorithms.

Below, we define the notion of a region. Let jPath(AL, Q, I) = [J1, ..., Jn]. A region
of jPath(AL, Q, I) is a maximal subsequence of jPath(AL, Q, I) made of join tests with
equal inconsistency degree. More formally, a sequence [Jl , ..., Jp], with l ≤ p, is a region
of jPath(AL, Q, I) = [J1, ..., Jn] iff l, p ∈ [1, n], and: (i) α(Ji) = α(Jj), ∀i, j ∈ [l, p], and (ii)
α(Jl−1) 6= α(Jl) and α(Jp+1) 6= α(Jp). We define Regs(Al, Q, I) to be the set of regions
of jPath(AL, Q, I). We define the cost model cost∇(Al, Q, I) as the number of regions
explored by the algorithm Al during processing of query Q over I :

cost∇(Al, Q, I) = |Regs(Al, Q, I)|

We call this cost model REGION-BASED COST FUNCTION. The introduced cost model
cost∇(Al, Q, I) conveniently prevents an algorithm to compute an answer that can be
dropped after to the top-k answers, thus avoiding more useless I/O operations.

In the following sections, we present the different top-k algorithms. A summary
of these algorithms is depicted in table 5.1. The columns O.SBA, E-k-answers, Com-
plexity mean that the algorithm is optimal in SBA with region-based cost function; the
algorithm computes exactly k answers without computation of any additional answer;
and the data complexity of the algorithm, respectively.

5.2 Algorithms for constraint-based measures

This section presents top-k algorithms for constraint-based measures. These algorithms
can be divided into two classes: Memory-based algorithms and Disk-based algorithms.
These algorithms and measures for which they are designed are depicted in figure 5.1.

5.2.1 Disk-based algorithms

An algorithm is in the class of Disk-based if it only optimizes the input/output opera-
tions on disk.

TopINC algorithm

In this section, we present our top-k ranking algorithm, called TopINC, for top-k queries
under both inconsistency measures CBM and CBS. A general idea behind existing
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Query Answer semantics Bag semantics
Query Language σ, π,∪ ./,∩

Agg.Score.Fun. properties NaN Monotone Non-Monotone
Measures All CBM CBS

Algorithms TopINC, FA, TA,
NRA[51]

TopINC, J∗ [125],
rankJoin [84], Take2
[140]

TopINC, TopIncMem

Query Answer semantics Set semantics
Query Language σ, π,∪ ./,∩

Agg.Score.Fun. properties O.C ↑ O.C ↓ Monotone Non-Monotone
O.C ↑ O.C ↓ O.C ↑ O.C ↓

Measures CSSmin, CSMmin CSSmax , CSMmax CSMmin CSMmax CSSmin CSSmax
Algorithms TopMultiSet, TopINCDE TopMultiSet,

TopINCDE
TopIncSet, Top-
INCDE

Figure 5.1: Algorithms for constraint-based measures

rank join algorithms [85] is to process the tuples of the relations involved in a given
query in a specific order by considering at each step the most promising tuples at first.
However, when the scoring function is not monotonic with respect to the join operator,
which is the case for CBS due to single-occurrences, it is not straightforward to identify
the order in which tuples should be processed.

The core intuition of our top-k ranking algorithm consists of using an index based
on the inconsistency measures to access the most promising tuples at each step of query
processing. More precisely, we build for each relation R, an associated index, denoted
ind(R), whose nodes are labeled by a subset of the constraints. More precisely, each
node B of Ind(R) is labeled with label(B) ⊆ DC. A node B stores the set of tuples’s
ids of R, denoted B(R), that violate exactly the set of constraints label(B), i.e., the set
B(R) = {t ∈ R |VC(I , DC, t) = B}. We call B a bucket of the index Ind(R) and the set
B(R) the bucket content.

Example 5.4. In our example, the buckets of the index are labeled with subsets of the constraints
DC = {C1, C2, C3}. For instance, a bucket B0, with label(B0) = ∅, will store the consistent
tuples B0(D) = {t1}, B0(S) = {t5, t6} and B0(V) = {t8} of the relations D, S and V. The
labels of the buckets and the content of the buckets are given below.

B B0 B1 B2 B3 B4 B5 B6 B7

l(B) ∅ {C1} {C2} {C3} {C1, C2} {C1, C3} {C2, C3} {C1, C2,
C3}

B(D) {t1} ∅ ∅ ∅ {t2} ∅ ∅ ∅
B(S) {t5, t6} {t3} ∅ ∅ ∅ {t4} ∅ ∅
B(V) {t8} ∅ ∅ ∅ ∅ ∅ {t7} ∅

Each index ind(R) is defined as an ordered list of the nodes containing fragments of
R, where nodes are ordered with respect to the cardinality set of their labels, i.e., B ≤ B′

iff |label(B)| ≤ |label(B′)|.

Example 5.5. The following indexes are associated with the relations D, S and V of our example
database: Ind(D) = [B0, B4], Ind(V) = [B0, B6] and Ind(S) = [B0, B1, B5].

We now describe the Algorithm in detail. Let Q be a query Q(u)← R1(u1), . . . , Rm(um).
In order process the query Qk,α, with α ∈ {CBS, CBM}, the algoritm TopINC (c.f., Al-
gorithm 1) takes as input: the query Qk,α, the indexes ind(Ri), with i ∈ [1, m], one for
each input relation and the set ViolC of the violated constraints obtained by union-
ing the labels of all the buckets in the indexes. The algoritm uses as many temporary
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buffers HRi, i ∈ [1, m] as the number of indexes. Each temporary buffer contains the
bucket contents. In addition, the algorithm uses a vector jB of size m storing the ids of
the buckets that need to be joined during the course of the algorithm. The algorithm
TopINC follows a level-wise sequencing of the iterations, where each level denotes the
inconsistency degree of the answers computed at this level (c.f., lines 4-8 of algorithm
1). Level 0 means that consistent tuples are processed while the subsequent level l in-
dicates the number of constrainst that are considered for the violated tuples. When
processing a given level l, the algorithm resets the variable curVSet, used to keep track
of the violated constraints while exploring the input relations at level l, and makes a
recursive call to the IterateJoin procedure (line 7). For each level l, the IterateJoin proce-
dure (Algorithm 2) explores the input relations sequentially from R1 to Rm (lines 11 to
14). For each input relation Rp, IterateJoin uses the index ind(Rp) to identify the buck-
ets of Rp that are worthwhile to consider for the join (i.e., the buckets to be loaded in
jB[p]), i.e., those buckets whose label size’s is less than l (line 5). The relevant bucket
ids of input relations are loaded in the jB buffer (line 13 of algorithm 2) and when Rp is
the last input relation (i.e., p = m) (line 15) a join is performed between the buffers of
jB (lines 17-20 of the algorithm 2) in order to compute the answers with inconsistency
degree equal to the current level l. Note that the variable curVSet will contain duplicate
occurrences if α = CBM (line 10) and single occurrences if α = CBS (line 7). It enables
us to keep track of the current level of inconsistency while exploring the inputs. When
intermediate inputs are explored, the IterateJoin algorithm ensures that |curVSet| does
not exceed the current inconsistency level l (line 5 and line 11). When the last input is
processed, a join is performed between the buckets in jB only if |curVSet| = l (line 15)
which ensures that the computed answers have l as inconsistency degree.

Algorithm 1: TopINC

Input : ViolC: set of violated constraints
Qk,α : a top-k query over R1, . . . , Rm with α ∈ {CBM, CBS}
ind(R1), . . . , ind(Rm) : indexes of the input relations

Output: Res: k best answers w.r.t. α
Data structures: HR1, . . . , HRm: input buffers;
jB : an array of size m

1 begin
2 Res=[] be an empty list ;
3 /* Contr. violated by current answer */
4 level:=0 ;
5 while l ≤ |ViolC| ∧ Res.size < k do
6 curVSet := ∅ ;
7 IterateJoin(1, level, curVSet) ;
8 level:= level + 1 ;

9 return Res

Example 5.6. We assume that the input relations are processed in this order: D, S and V. We
illustrate the processing of query Q2,CBS

ex (I) by TopINC. Figure 5.2 exemplifies the iterations
of the algorithm. The gray cells, in each step, denote the newly read tuples in that step. The
final result (Level 3) is reported at the bottom of the Figure 5.2. Starting from level 0, the
selected buckets are jB = [B0, B0, B0], thus leading to join the contents of these buckets only at
the very beginning. The contents of HV(B0), HS(B0) and HD(B0) are shown in Figure 5.2.
The first answer corresponding to the join of the above buffers is found (i.e, res = [〈d4, d4〉]).
The TopINC continues to read in selected buckets in jB. It then tries to read in B0 of V but
no additional tuples, then it moves to read in B0 of V. Next, the tuple 〈02, d2, 5〉 is loaded in
HV(B0) but no additional answer is found. As there is no additional answers (because k=2)
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D S V
B0 B0 B0

jB

Key Tuples
B0 〈02, d4, 2〉

HD

Key Tuples

B0
〈02, d4, 4〉
〈02, d2, 5〉
HS

Key Tuples
B0 〈02, d4, 3〉

HV

〈d4, d4〉
Res

Level 0

D S V
B0 B1 B0

jB

Key Tuples
B0 〈02, d4, 2〉

HD

Key Tuples

B0
〈02, d4, 4〉
〈02, d2, 5〉

B1 〈01, d2, 1〉
HS

Key Tuples
B0 〈02, d4, 3〉

HV

〈d4, d4〉
Res

Level 1

D S V
B4 B1 B6

jB

Key Tuples
B0 〈02, d4, 2〉
B4 〈01, d2, 4〉

HD

Key Tuples

B0
〈02, d4, 4〉
〈02, d2, 5〉

B1 〈01, d2, 1〉
B5 〈01, d4, 3〉

HS

Key Tuples
B0 〈02, d4, 3〉
B6 〈01, d2, 3〉

HV

〈d4, d4〉
〈d2, d2〉

Res

Level 3

Figure 5.2: Illustraive example of TopINC

and all tuples are read in selected buckets, TopINC jumps to the next level, i.e, the level 1. At
this level, the first selected buckets are jB = [B0, B1, B0], thus leading to read the only one
tuple of bucket B1 of relation V into HV(B1). But no additional answer is found and no others
buckets in level 1 can be selected bringing TopINC to level 2. Finally, TopINC processes level 2
and then level 3 as shown in Figure 5.2 and halts when it reaches |res| = 2.

The following two lemmas state the correctness and the worst case complexity of
TopINC, respectively.

Lemma 5.2. Let α ∈ {CBM, CBS}. The algorithm TopINC computes correctly Qk,α(I).

Proof. The TopINC algorihtm proceeds one level at a time. It starts from inconsistency
degree 0 to upper inconsistency degrees. At each inconsistency degree d fixed, it looks
for all the joins of buckets (from join relations) where the union of their labels has
cardinality d; the join is only performed among the tuples within the buckets found.
It stops processing when k answers are found otherwise TopINC continues to look for
the remaining joins of buckets for the same inconsistency degree d; if there exists no
other join of buckets that leads to inconsistency degree d, the TopINC moves forward to
inconsistent degree d + 1. Hence, this processing ensures that the K answers output by
TopINC are correct.

Lemma 5.3. Let Q(X) ← R1(X1), . . . , Rm(Xm) be a conjunctive query, let s = |X| and
let k be an integer. A query Qk,α is evaluated by the TopINC in time O(nm) and in space
O(|I|+ k× s).

Proof. This lemma 5.3 is a consequence of the level-wise approach followed by TopINC
which ensures that query answers are computed in the ascending order of their incon-
sistency degree. Hence, TopINC strictly computes the answers that belong to the output
(and the algorithm stops when k answers are computed, hence the spatial complexity
in O(|I|+ k ∗ s) with the maximal size of an answer). The time complexity O(nm) is
due of the fact that tuples are read one by one according to their scores; with every
reading of one tuple, a join test is done to search a new answer. So, one can easily de-
note that the join algorithm can quickly become a nested loop algorithm: so the worst
complexity is O(nm) with n = |I| and m the size of the input conjunctive query Q.
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Algorithm 2: IterateJoin

Input: p, level, curVSet

1 begin
2 /* Index of input relation p */
3 Let idx := ind(Rp);
4 i:=1 ;
5 while i ≤ idx.size ∧ |label(idx[i])| ≤ level do
6 if α = CBS then
7 curVSet := curVSet ∪ label(idx[i])

8 else
9 /* d stands for bag union */

10 curVSet := curVSetd label(idx[i])

11 /* Case input Rp is not the last */
12 if p < m ∧ |curVSet| <= level then
13 jB[p]:=idx[i];
14 IterateJoin(p + 1, level, curVSet);;

15 if p = m ∧ |curVSet| = level then
16 jB[p]:=idx[i];
17 /* Compute the join from jB */
18 ans := HR1(jB[1]) ./ . . . ./ HRm(jB[m]) ;
19 /* Add the results to Res up to k */
20 Res.add(ans) ;
21 if Res.size = k then
22 EXIT;

23 i := i + 1;

Unsurprisingly, and like most of state of the art top-k join algorithms that do not
use specific knowledge related to the join attributes (e.g., see [85, 131]), the worst case
time complexity of TopINC is in O(|I|m), with m the number of input relations in Q.
Interestingly, the previous lemma also provides a tighter upper bound regarding the
space complexity. This lemma is a consequence of the level-wise approach followed by
TopINC which ensures that query answers are computed in the ascending order of their
inconsistency degree. Hence, TopINC strictly computes the answers that belong to the
output (and the algorithm stops when k answers are computed).

The following theorem shows the optimality of TopINC in the SBA algorithms.

Theorem 5.2. For any instance I and any top-k conjunctive query Qk,α, we have:

cost∇(TopINC, Q, I) ≤ cost∇(AL, Q, I), ∀AL ∈ SBA

Proof. Let Qk,α, with α ∈ {CBM, CBS}, be a top-k query over an instance I . Assume
that there exists an algorithm AL ∈ SBA that outputs Qk,α(I) with cost∇(AL, Q, I) <
cost∇(TopINC, Q, I). The intuition behind our proof is that if TopINC explores a region
Z that is not explored by AL then AL is not correct (i.e., it do not correctly compute the
top-k answers). Note that, when TopINC starts performing join tests with inconsistency
degree d, it fully explores the region (i.e., performs all the possible join tests with in-
consistency degree d) before moving to another region. In addition, TopINC processes
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the regions sequencially in increasing order of their inconsistency degrees (i.e, starting
from region of inconsistency degree 0 to upper degrees of inconsistency). Let Z be the
region having the biggest inconsistency degree, noted dz, among the regions explored
by AL. Two cases occur: (i) either AL has exhaustively explored all the regions with
inconsistency degree < dz and in this case cost∇(AL, Q, I) ≥ cost∇(TopINC, Q, I) (be-
cause TopINC will also explore the same regions or a subset of them), or (ii) AL skips
some regions with inconsistency degree < dz. In this case, one can prove that AL is
incorrect. Indeed, since AL ∈ SBA, one can build an instance I ′ ≡prov I such that AL
outputs incorrect answers when it evaluates Qk,α over I ′.

TopINCDE algorithm

We propose TopINCDE algorithms to evaluate top-k queries w.r.t set semantics query
answers while optimizing the input/output operations on disk. The algorithm Top-
INCDE is designed to work with measures CSSmin, CSSmax, CSMmin, CSMmax.

The main idea of TopINCDE is to use any top-k algorithm(called the kernel algo-
rithm) designed in a context of bag semantics answers; then, we use this algorithm to
enumerate query answers in order of their inconsistency degrees and eliminate the du-
plicate answers on the fly. The kernel algorithm can be TopINC algorithm or any top-k
algorithm in bag semantics.

But, one needs additional conditions with measures to enable TopINCDE to com-
pute correctly the top-k answers for these measures. This condition is about order
compatibility between measure and the top-k order. In fact, if a measure is not order
compatible with the top-k order needed, TopINCDE gives an incorrect set of answers.
The following example(example 5.7) illustrates this scenario.

Example 5.7. Consider the following instance I already annotated with the set of denial con-
straints DC = {C1, C2, C3}:

R
A E

r1 a 1 C1
r2 a 2 C1

S
B E

s1 b 1 1
s2 b 2 C2C3
s3 c 1 C2

Q(x, y) : −R(x, z), S(y, z)
Consider the measure α = CSMmax and

the measure α1 = CSMmin.
Compute the top-2 the most consistent

(i.e, the bottom up top-2 )
answer of query Q considering α1 first.

Q
A B

t1 a b C1
t2 a b C1C2C3
t3 a c C1C2

α(〈a, b〉, Q, I , DC) = 3
α(〈a, c〉, Q, I , DC) = 2
α1(〈a, b〉, Q, I , DC) = 1
α1(〈a, c〉, Q, I , DC) = 2

The algorithm TopINCDE computes

the top-2 answers in this order [t1 = 〈a, b〉 : C1, t3 = 〈a, c〉 : C1C2]. For the measure α1, the
result is correct since α1 is O.C↑.

But, for α the correct order of answers is [t3 = 〈a, c〉 : C1C2, t2 = 〈a, b〉 : C1C2C3]. Since α
is O.C↑ then TopINCDE can not compute correctly the top-2 answers consistent answers with
α.

Lemma 5.4. Let α be a measure of inconsistency degrees, so

• if α is O.C↑ then TopINCDE computes correctly Qk,α↑(I)

• if α is O.C↓ then TopINCDE computes correctly Qk,α↓(I)
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Proof. Trivial. The algorithm TopINCDE takes as kernel the algorithm TopINC with elim-
inating of duplicate on the fly. As α is order compatible with the top-k category, when
an answer, that is not yet computed, is computed then the current score is its true score
and one can keep it in the top-k answers. So, when the order compatibility of a scor-
ing function α is checked TopINCDE computes correctly the set of the top-k answers if
and only if TopINC runs correctly. We shown in 5.2 that TopINC runs correctly, so Top-
INCDE correctly computes the k answers when the property of order compatibility is
checked.

The following theorem shows that TopINCDE visits fewer regions than any other
algorithm in SBA.

Lemma 5.5. Let Q, I be a conjunctive query and an instance, respectively. For any algorithm
Al ∈ SBA, cost∇(Al, Q, I) ≥ cost∇(TopINCDE, Q, I)

Proof. As TopINCDE is based on TopINC, it iterates the regions one by one based on their
scores and when the k answers are found the running of the algorithm is stopped. So
any other algorithm in SBA that computes the top-k answers (in set semantic of query
answers) goes through at least the number of regions visited by TopINCDE −trivial−.
Then, the optimality of TopINCDE in SBA with cost∇ as cost measure.

The main deficiency of this new algorithm (TopINCDE) is the fact that additional
answers (the duplicate answers) can be computed and thrown out later.

The TopINCDE has the same time theoretical complexity than TopINC.

5.2.2 Memory-based algorithms

The class of Memory-based algorithms focuses on optimizing operations in main mem-
ory. Most of existing Memory-based top-k algorithms are based on monotonic function
[85]. Also, these algorithms consider only full conjunctive query. We propose, in this
section, Memory-based top-k algorithms that are either based on non monotonic func-
tion or extend full conjunctive query with projection. We assume that any query in this
section is an equi-conjunctive query. The algorithms in this class take advantage from
efficient techniques developed to evaluate efficiently the join operation.

TopIncMem algorithm

The TopIncMem algorithm is a top-k algorithm developed to work with CBS measure.
We apply the same principle as in the case of TopINC but we assume that the database
is loaded in main memory. The algorithm is depicted in algorithm 3.

The algorithm TopIncMem takes as input a tree (denoted by T) corresponding to the
join tree of the input conjunctive query and the input database. We associate with each
node of the tree, the underling index of the relations used to build this node. As in the
case of TopINC, it is denoted by buckets. The buckets represents the set of violated set of
constraints by each node of the tree.

During the building of the tree, on each node is associated a map structure with
keys from the set of join attribute values between the node and its parent. This map
builds a local index which is used to accelerate the join.
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Algorithm 3: TopIncMem
Input : T: tree from Q and I, k: integer, buckets: list of set of violated

constraints
Output: k most consistent answers of Q(I) w.r.t CBS

1 /* initialization of global variables */
2 level := 0;
3 while Res.size < k do
4 combinations := bucketComb(level, buckets);
5 for comb ∈ combinations do
6 T′ := f ilter(T, comb);
7 tempRes := compute(T′, k− Res.size);
8 Res.addAll(tempRes);
9 if Res.size = k then

10 break;

11 level := level + 1;

12 return topK ;

The algorithm TopIncMem is levelwise algorithm. Each level corresponding to the
value of inconsistency degrees with CBS. It start by the level 0. Given a level l, Top-
IncMem looks for the combinations of violated sets for each node such that the cardi-
nality of their union corresponds to this l (done by the function bucketComb in line 4).
After that, for each combination taken, the tree is filtered according to this combination
(shown in line 6) and after that the Yannakakis’s algorithm can be used to enumerate
query answers in this filtered tree. Only query answers that violate these constraints
are computed (in line 7).

Example 5.8. Consider the instance(I = {R1, R2, R3, R4}) and the conjunctive query Q in
figure 5.3.a with the set of denial constraints DC = {C1, C2, C3}. We directly annotate each
tuple with the set of constraints it violates. The illustration of TopIncMem running is depicted
in figure 5.4. Vertically, we have the iteration on levels and horizontally we have the iteration of
possible combinations for the same level. At the first level (level=0) only one combination exists
that corresponds to (1, 1, 1, 1) and this combination leads to the first answer in Res. After that,
TopIncMem moves to the level 1, as shown in 5.4, the first two combinations of level 1 leads to
no additional answers. The algorithm TopIncMem proceeds in this way until the k first answers
are obtained.

Lemma 5.6. The algorithm TopIncMem computes correctly the top-k answers that are the most
consistent/inconsistent w.r.t. the measure of inconsistency CBS.

Proof. By absurd. Assume that there is an answer a1 in the set answers computed us-
ing TopIncMem such that there exists an answer a2 that is not in the set of answers
returned by TopIncMemand the degrees of inconsistency of a2 is less than that of a1, i.e,
CBS(a1, Q, I , DC) = l1 > CBS(a2, Q, I , DC) = l2. The TopIncMem algorithm explores
all the combinations of violated constraints, such that the cardinality of the union of
each combination gives the current level and the answers corresponding to this level
are computed by filtering the join tree. As the level start from 0 to the number of con-
straints, it means that when an answer (as a2) is not yet computed any other already
computed answer by TopIncMem(as a1) has an inconsistency degrees less than that of
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R1
X Y Z

0 1 a 1
0 1 b C1

R2
X z1
0 5 1
2 6 C3

0 1 C2C3

1 3 C1C2

R3
Y z2

1 b 1
4 c C1C3

3 d C2

R4
z1 W

5 a 1
3 b C2

1 a C3

Q(x, y, z, z1, z2, w) : −R1(x, y, z), R2(x, z1), R3(y, z2), R4(z1, w)
a.

R1(x, y, z)

R2(x, z1) R3(y, z2)

R4(z1, w)

b.

R1
KEY VALUE

〈〉 〈0, 1, a〉 : 1, 〈1, 1, b〉 : C1

R2

KEY VALUE

〈0〉 〈0, 5〉 : 1, 〈0, 1〉 : C2C3

〈1〉 〈1, 3〉 : C1C2

R3

KEY VALUE

〈1〉 〈1, b〉 : 1
〈3〉 〈3, d〉 : C2

R4
KEY VALUE

〈5〉 〈5, a〉 : 1
〈3〉 〈3, b〉 : C2

〈1〉 〈1, a〉 : C3

c.

Figure 5.3: Example of Data to illustrate top-k Memory-based algorithms (a.). Tree
example (b.). Tree with data (c.)
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buckets = [[1, C1], [1, C3, C2C3, C1C3], [1, C1C3, C2], [1, C2, C3]]

Level = 0

comb = [1, 1, 1, 1]

KEY VALUE

〈〉 〈0, 1, a〉 : 1

KEY VALUE

〈0〉 〈0, 5〉 : 1
KEY VALUE

〈1〉 〈1, b〉 : 1

KEY VALUE

〈5〉 〈5, a〉 : 1

Res = {〈0, 1, a, 5, b, a〉}

level = 1

comb = [1, 1, 1, C2]

KEY VALUE

〈〉 〈0, 1, a〉 : 1

KEY VALUE

〈0〉 〈0, 5〉 : 1
KEY VALUE

〈1〉 〈1, b〉 : 1

KEY VALUE

〈3〉 〈3, b〉 : C2

Res = {〈0, 1, a, 5, b, a〉}

comb = [1, 1, 1, C3]

KEY VALUE

〈〉 〈0, 1, a〉 : 1

KEY VALUE

〈0〉 〈0, 5〉 : 1
KEY VALUE

〈1〉 〈1, b〉 : 1

KEY VALUE

〈1〉 〈1, a〉 : C3

Res = {〈0, 1, a, 5, b, a〉}

. . .

...

Figure 5.4: TopIncMem illustration
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the first one, i.e, l1 ≤ l2 . Absurd. So, TopIncMem computes correctly the first answers
that are the most consistent with respect to the measure of inconsistency CBS.

Lemma 5.7. The algorithm TopIncMem runs in a complexity O(2|Q|∗|DC| × |I|δ + k) (so,
O(|I|δ + k) in data complexity) where Q is the input query, I the input database instance, DC
the input set of denial constraints and δ the tree fractional width of Q, respectively. The spacial
complexity is O(2 ∗ |I|δ + k).

Proof. For each Ri relation in join, the index size (size of ind(Ri)) is bounded by the
size of the set of subsets formed from DC, so the size is 2|DC|. To find the combinations
of a given level, we have to search in the space ind(R1) × . . . × ind(Rm) with m =
|Q|, so if all the combinations are visited then we have visited 2|DC| ∗ . . . ∗ 2|DC| =
2|Q|∗|DC| combinations. For each combination, the algorithm filters the join tree and
computes the answers corresponding to the current level, this operation can be done in
|I|δ corresponding to the largest intermediary result. So the theoretical complexity is
bounded by 2|Q|∗|DC| ∗ |I|δ + k with k the set of number of answers kept (so, the data
complexity is |I|δ + k).

This algorithm can be effective in using for CBS than TopINC if a large main memory
is available and the database can be entirely and quickly loaded in this main memory.

TopMultiSet algorithm

The algorithm TopMultiSet is designed to compute the k answers of given query in I
that are the most consistent (or inconsistent) with respect to the measures of inconsis-
tency degrees CSMmin (or CSMmax). It is based on the algorithm developed in [48].
The algorithm designed in [48] assumes a monotone scoring function, and enumerates
answers in order of their scores. It is designed in a case of a bag semantics of query an-
swers. The is composed to two parts: a preprocessing part (performed by the function
called preprocess) that associate some data structures on each node during tree building
from the hypergraph that represents the conjunctive query, and an enumeration part
(performed by the function called enum) that allows to enumerate answers in order of
their scores.

Each node no of the tree represents an input relation or a join result of subset of
input relations (intermediary result), denoted rel(no). We denote by parent(no) the
node parent of no. Let comVarP(no) the common variables between the node no and
its parent. The node no contains a subset of variables from the input query denoted
var(no). It contains a map structure, denoted map(no), containing the input data of
the relation that this node represents. The keys values of the map(no) is the set of
tuples obtaining by making projection on comVarP(no) and in rel(no). Given a key ke,
the value corresponding in the map(no) is a priority queue containing all the tuples in
rel(no) that have projection value, on comVarP(no) and in rel(no), equal to ke.

The tuples in the priority queue are ordered according to a global score (i.e, score
obtained by aggregating score of tuples in join) of tuples. Let child(no) be the child
nodes of the node no. Consider t a tuple, we denote par t.score the score of t and the
global score of t is denoted by t.global. The global score of a tuple t in a left node is
equal to the score of the tuple(i.e, when t is a leaf node then t.score = t.global). For any
tuple t in a internal node n1, we have

t.global = t.score + ∑
n0∈child(n1)

map(n0)[t[comVarP(n0)]].top.global
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with t[V] the projection value of set of variables in V; and top calls on the priority queue
gives the tuple with the larger/smaller global score.

After the preprocessing, the first answer can be already enumerated. Once an an-
swer is enumerated, the tree is updated to prepare the next answer. The update of the
tree is done as follows: from the leafs to the root of the tree, for each node n0 let t be the
tuple used in the current answer; t is in a priority queue Qe; let [n1, . . . , np] the child
nodes of n0, then t is joined with [map(comVarP(n1)).top, . . ., map(comVarP(np)).top];
t is replaced by p other copies of t such that the ith is joined with

[map(comVarP(n1)).top, . . . , map(comVarP(ni−1)).top, next(map(comVarP(ni)).top),

map(comVarP(ni+1)).top, . . . , map(comVarP(np)).top]

where next(map(comVarP(ni)).top) is the top element in the priority queue after delet-
ing of the top element of the priority queue. If the next top element of map(comVarP(ni)
is null, i.e, it does not exist a new for the top element then the ith copy of t is ignored.
After this update of the tree, a new answer can be computed, if the root node is not
empty.

The TopMultiSet algorithm needs the satisfaction of the order compatibility be-
tween the top-k order and the scoring function. It performs such that during the enu-
meration of an answer, its duplicate instances are directly removed, i.e, an answer is
computed once. The pseudo code of this algorithm is given in algorithm 4.

Algorithm 4: TopMultiSet
Input : Q: conjunctive query, I : annotated database instance, k: integer, Attr:

set of attributes projected in Q
Output: Res: k most consistent answers of Q(I) (or inconsistent) w.r.t

CSMmin, TSMmin (or CSMmax, TSMmax)
1 T := preprocess(Q, I);
2 Queue := [T];
3 /* a priority queue, elements in Queue are ordered by their first

element */
4 while Res.size < k do
5 T′ := Queue.pop();
6 /* The best tree, i.e, tree with the best first element, is

removed and returned */
7 Ans := enum(T′);
8 /* The next best element in T′ is returned */
9 Res.add(Ans);

10 nextTrees := partition(T′, Ans, Attr);
11 for T” ∈ nextTrees do
12 Queue.push(T”);

13 return Res ;

First, a preprocessing is done to generate the join tree with all the necessary data
structures by the preprocessing algorithm designed in [48], as mentioned by the line
1 of algorithm TopMultiSet. The algorithm enables, in an iterative way, to enumerate
one by one the answer in order of their score developed in [48] is used to return at each
step the next best answer. As the enumeration algorithm developed in [48] is designed
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Algorithm 5: partition(T′, Ans, Attr)

1 nextTrees := {};
2 /* let linNodes be an array of nodes of T′, i.e, the T′ in linear

form */
3 prevNodes := [];
4 for i := 1 to linNodes.size do
5 Node := linNodes[i];
6 Let T” the tree from T′ in which ∀j ∈ [1, i− 1], linNodes[j] is replaced by

prevNodes[j] and Node is replaced by Node in which all the tuples with
attributes Attributes(Node) ∩ Attr value equal to Ans are removed;

7 Let newNode the node from Node where only tuples with attributes
Attributes(Node) ∩ Attr value equal to Ans are keeped ;

8 prevNodes.add(newNode);
9 Remove all the isolated nodes in T”;

10 if T” has the same nodes number than T′ then
11 Res.add(T”);

12 return Res ;

for a full conjunctive query (or in a context of bag semantics of query answers), at each
step we separate the problem into m(with m the size of Q) other join trees and these
join trees are sorted according to their first best element in a priority queue as the line
10 of algorithm TopMultiSet shows. Then, in the next round, the best tree (the tree that
has the answer of Q with the best score) is popped (in line 6) from Queue and its first
element is returned as shown in line 8 of algorithm TopMultiSet.

Using dynamic programming techniques [140], the function Partition allows to sep-
arate the problem into at most m other problems. This separation enables to avoid com-
putation of duplicate answers. Consider VarPro the set of variable in projection; let T
be the array of nodes of the tree and let m1 = |T|; let dropDup(t, var, no) be a function
that removes all the tuples, which have projection value on variable var equal to t, from
the node no; consider keepLast(t, var, no) a function that keeps only the tuples, which
have projection value on variable var equal to t, from the node no. Assume that the
current answer computed is t. The function Partition works as follows: convert T into
m1 other arrays of nodes(that are other trees); the ith tree, denoted Ti, is:

Ti =



Ti[1] = keepLast(t, VarPro, T[1])
...

Ti[i− 1] = keepLast(t, VarPro, T[i− 1])
Ti[i] = dropDup(t, VarPro, T[i])

...
Ti[i + 1] = T[i + 1]

...
Ti[m1] = T[m1]

In the following example, we illustrate the algorithm TopMultiSet.

Example 5.9. Consider the following instance.

• R1 = {〈a, 1〉 : 1, 〈a, 2〉 : 1, 〈a, 3〉 : 2}
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R2(z, z1, z2)

R1(x, z1) R3(y, z2)

a.

R2

KEY VALUE

〈〉 〈e, 1, 1〉 : 0, 〈e, 2, 2〉 : 0, 〈e, 3, 1〉 : 2

R1
KEY VALUE

〈1〉 〈a, 1〉 : 1
〈2〉 〈a, 2〉 : 1
〈3〉 〈a, 3〉 : 2

R3

KEY VALUE

〈1〉 〈b, 1〉 : 0, 〈c, 1〉 : 1
〈2〉 〈b, 2〉 : 2

b.

R2

KEY VALUE

〈〉 [〈e, 1, 1〉 : 0 : 1 : [r1
1, r1

3], 〈e, 2, 2〉 : 0 : 3 : [r2
1, r3

3], 〈e, 3, 1〉 : 2 : 4 : [r3
1, r1

3]]

R1
KEY VALUE

〈1〉 [r1
1 = 〈a, 1〉 : 1 : 1 : []]

〈2〉 [r2
1 = 〈a, 2〉 : 1 : 1 : []]

〈3〉 [r3
1 = 〈a, 3〉 : 2 : 2 : []]

R3

KEY VALUE

〈1〉 [r1
3 = 〈b, 1〉 : 0 : 0 : [], r2

3 = 〈c, 1〉 : 1 : 1 : []]
〈2〉 [r3

3 = 〈b, 2〉 : 2 : 2 : []]

c.

Figure 5.5: Join tree with data for TopMultiSet algorithm and the preprocessing step

• R2 = {〈e, 1, 1〉 : 0, 〈e, 2, 2〉 : 0, 〈e, 3, 1〉 : 2}

• R3 = {〈b, 1〉 : 0, 〈b, 2〉 : 2, 〈c, 1〉 : 1}

The value after the «:» gives the score of the tuple. The score means the number of constraints
violated by the tuple. Now consider the following conjunctive query

Q(x, y, z) : −R1(x, z1), R2(z, z1, z2), R3(y, z2)

The goal of this example is to find the top-2 answers that is the most consistent answer
w.r.t. the measure CSMmin. As CSMmin is compatible with this order of top-k, we can compute
correctly the top-2 using TopMultiSet algorithm.

The join tree of Q is depicted in the figure 5.5.(a), the tree with data of Q is depicted in the
figure 5.5.(a). After that, the preprocessing step runs and the first answer is directly computed
as shown in 5.5.(c). In the tree 5.5.(b), after the first «:» we have the score (i.e, number of
constraints violated) of the tuple, and after the second «:» we have the total best score aggregated
from the children nodes (global score). The array after the last «:» contains the addresses of
tuples joined with the current tuple. It is interesting to keep that since a tuple t used in a child
node is removed from its priority queue Qe. But the tuple t keeps a link with the next best
element of Qe.

The illustration of the algorithm TopMultiSet is done in figure 5.6. The first answer is then
〈a, b, e〉 : 1. As we need to compute the two first consistent answers, the algorithm TopMultiSet
continues to run. The join tree 5.6.(a) shows the state of the join tree 5.5.(c) after computation of
the first answer 〈a, b, e : 1〉. Once the answer 〈a, b, e : 1〉 is computed, the current tree 5.6.(a)
on which this answer is compute is divided into three other trees (tree 5.6.(b1), tree 5.6.(b2)
and tree 5.6.(b3)). In the tree 5.6.(b1), the tuples with projection value on the first column
equal to 〈a〉 are removed; in 5.6.(b1) and 5.6.(b3) are removed tuples with projection value on
the first column equal to 〈e〉 and tuples with projection value on the first column equal to 〈b〉,
respectively. Among these new trees only the tree 5.6.(b3) can give new answers, it is depicted
in 5.6.(c) after dangling tuples eliminations. Then the next answer is 〈a, c, e〉 : 2.
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R2

KEY VALUE

〈〉 [〈e, 1, 1〉 : 0 : 2 : [r1
1, r2

3], 〈e, 2, 2〉 : 0 : 3 : [r2
1, r3

3], 〈e, 3, 1〉 : 2 : 4 : [r3
1, r1

3]]

R1
KEY VALUE

〈1〉 (r1
1 = 〈a, 1〉 : 1 : 1 : [])→ []

〈2〉 [r2
1 = 〈a, 2〉 : 1 : 1 : []]

〈3〉 [r3
1 = 〈a, 3〉 : 2 : 2 : []]

R3

KEY VALUE

〈1〉 (r1
3 = 〈b, 1〉 : 0 : 0 : [])→ [r2

3 = 〈c, 1〉 : 1 : 1 : []]
〈2〉 [r3

3 = 〈b, 2〉 : 2 : 2 : []]

a.

R2

KEY VALUE

〈〉 [〈e, 1, 1〉 : 0 : 2 : [r1
1, r2

3], 〈e, 2, 2〉 : 0 : 3 : [r2
1, r3

3], 〈e, 3, 1〉 : 2 : 4 : [r3
1, r1

3]]

R1
KEY VALUE

〈1〉 (r1
1 = 〈a, 1〉 : 1 : 1 : [])→ []

〈2〉 [ r2
1 = 〈a, 2〉 : 1 : 1 : []]

〈3〉 [r3
1 = 〈a, 3〉 : 2 : 2 : []]

R3

KEY VALUE

〈1〉 (r1
3 = 〈b, 1〉 : 0 : 0 : [])→ [r2

3 = 〈c, 1〉 : 1 : 1 : []]
〈2〉 [r3

3 = 〈b, 2〉 : 2 : 2 : []]

b1. (for R1)

R2

KEY VALUE

〈〉 [ 〈e, 1, 1〉 : 0 : 2 : [r1
1, r2

3], 〈e, 2, 2〉 : 0 : 3 : [r2
1, r3

3], 〈e, 3, 1〉 : 2 : 4 : [r3
1, r1

3]]

R1
KEY VALUE

〈1〉 (r1
1 = 〈a, 1〉 : 1 : 1 : [])→ []

〈2〉 [r2
1 = 〈a, 2〉 : 1 : 1 : []]

〈3〉 [r3
1 = 〈a, 3〉 : 2 : 2 : []]

R3

KEY VALUE

〈1〉 (r1
3 = 〈b, 1〉 : 0 : 0 : [])→ [r2

3 = 〈c, 1〉 : 1 : 1 : []]
〈2〉 [r3

3 = 〈b, 2〉 : 2 : 2 : []]

b2. (for R2)

R2

KEY VALUE

〈〉 [〈e, 1, 1〉 : 0 : 2 : [r1
1, r2

3], 〈e, 2, 2〉 : 0 : 3 : [r2
1, r3

3], 〈e, 3, 1〉 : 2 : 4 : [r3
1, r1

3]]

R1
KEY VALUE

〈1〉 (r1
1 = 〈a, 1〉 : 1 : 1 : [])→ []

〈2〉 [r2
1 = 〈a, 2〉 : 1 : 1 : []]

〈3〉 [r3
1 = 〈a, 3〉 : 2 : 2 : []]

R3

KEY VALUE

〈1〉 (r1
3 = 〈b, 1〉 : 0 : 0 : [])→ [r2

3 = 〈c, 1〉 : 1 : 1 : []]
〈2〉 [ r3

3 = 〈b, 2〉 : 2 : 2 : []]

b3. (for R3)

R2

KEY VALUE

〈〉 [〈e, 1, 1〉 : 0 : 2 : [r1
1, r2

3], 〈e, 3, 1〉 : 2 : 4 : [r3
1, r1

3]]

R1
KEY VALUE

〈1〉 (r1
1 = 〈a, 1〉 : 1 : 1 : [])→ []

〈3〉 [r3
1 = 〈a, 3〉 : 2 : 2 : []]

R3

KEY VALUE

〈1〉 [r2
3 = 〈c, 1〉 : 1 : 1 : []]

c.

Figure 5.6: Illustration of TopMultiSet algorithm. Partitioning of the tree after com-
puting of the first answer
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Lemma 5.8. The algorithm TopMultiSet computes correctly the k most consistent (resp. in-
consistent) answers w.r.t the measures CSMmin, TSMmin (resp. CSMmax, TSMmax)

Proof. Assume that there are two a1 and a2 (a1 6= a2) such that the degree of incon-
sistency of a1 by CSMmin or by TSMmin is strictly greater than that of a2 and a1 is
in the set of top-k consistent answers computed by TopMultiSet w.r.t the measures
{CSMmin, TSMmin} but a2 is not in this set. That means that:

1. a1 is computed from a join tree different from the join tree of a2

2. a1 is computed from the same join tree than a2

If (1), it is absurd since the join trees are sorted in a priority queue according to their
first element. If (2) also, it is absurd because in the tree join the first element is returned
using the same technique as in [48]. Then, the algorithm computes exactly the correct
answers. Also by the partition strategy, there is no redundant answer in the answers
returned by the TopMultiSet algorithm.

Lemma 5.9. The data complexity of TopMultiSet running is O((|I|δ + log(|I|)) ∗ k)

Proof. The maximal intermediary result generating during the join tree building is |I|δ
and log(|I|) is for the internal priority queue in the tree join to find the first element of
the join tree. For each answer computed, at most |I|δ + log(|I|) operations are done.
So, the complexity is bounded by (|I|δ + log(|I|)) ∗ k

TopIncSet algorithm

Considering, the measures CSSmin and CSSmax, we obtain function that are not mono-
tonic opposed to CSMmin, TSMmin, CSMmax, TSMmax that are monotonic. So, we design
a new algorithm based on TopIncMem algorithm to handle the problem of top-k an-
swers w.r.t. CSSmin (for the most consistent answers) and w.r.t. CSSmax (for the most
inconsistent answers).

We proceed as in the case of TopMultiSet algorithm that takes as kernel the algo-
rithm of enumerating developed in [48]. The TopIncSet algorithm takes as kernel the
algorithm TopIncMem. When an answer is computed, in the same way as in Top-
IncMem, the algorithm of partition is used to partition the current join tree (i.e, the tree
used to generate the answer) into m other problems (trees). The Different trees are kept
in a set data structure, contrary to the case of TopMultiSet where they are kept in a pri-
ority queue. The choice of a set rather than a priority queue is the fact that we can not
know the best answer in the join tree easily. The algorithm TopIncSet runs as follows:
for each combination of violated sets found (as done in algorithm TopIncMem), all the
join trees generated by the partitioning operation are visited in an iterative way. Once
a tree is chosen, the current combination is used to compute the next answers of the
input query.

As one can easily note, this algorithm enable correctly to compute the k first an-
swers that are the most consistent w.r.t. the measure CSMmin and the k most inconsis-
tent answers w.r.t. to CSSmax.

Lemma 5.10. The algorithm TopIncSet runs O(|I|δ ∗ k) in data complexity.
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Query Answer semantics Bag semantics
Query Language σ, π,∪ ./,∩

Agg.Score.Fun. properties NaN Monotone Non-Monotone
Measures All TBM TBS

Algorithms TupIncRank, FA, TA,
NRA[51]

TupIncRank, J∗ [125],
rankJoin [84], Take2
[140]

TupIncRank(for
FSJCQ), NA

Query Ans.seman. Set semantics
Query Lang. σ, π,∪ ./,∩

Agg.Score.Fun.prop. O.C ↑ O.C ↓ Monotone Non-Monotone
O.C ↑ O.C ↓ O.C ↑ O.C ↓

Measures TSSmin, TSMmin TSSmax , TSMmax TSMmin TSMmax TSSmin TSSmax
Algorithms TopMultiSet, TopINCDE, NA TopMultiSet(FSJCQ),

NA

Figure 5.7: Algorithms for tuple-based measures

5.3 Algorithms for tuple-based measures

This section presents top-k algorithms for tuple-based measures. They can be also cate-
gorized into two classes: Memory-based algorithms and Disk-based algorithms. These
algorithms and measures for which they are designed are depicted in figure 5.7.

5.3.1 TupIncRank algorithm

The TupIncRank algorithm computes the top-k answers that are the most or less incon-
sistent with respect to the measure TBM. The algorithm TupIncRankcan be used with
TBS in the case where the input query is a free self join conjunctive query.

As input, TupIncRank algorithm takes an annotated instance database, a conjunc-
tive query and an integer k(that is the number of the first inconsistent/consistent an-
swers of the query). The database is annotated, in a way that each inconsistent tuple is
annotated by 1 and each consistent tuple is annotated by 0.

The algorithm TupIncRank works simply as follows. It maintains a set noted by
incSet (as shown in line 7), this set contains all the identifiers of relations that have to
be inconsistent in the next join performing. Any relation out of this set has its part
entirely consistent considered in the next joins to do. The set incSet starts with empty
set, in other word, in the next join only consistent parts of relations, in join, have to
considered. The algorithm TupIncRank iterates, in a descending order according to the
number of inconsistent relations considered, the lattice formed by the subsets of the set
of relation identifiers in join. For example to have all the answers of a query Q that have
inconsistency degrees equal to 2, we have to do join with 2 relations with their parts
entirely inconsistent, so the cardinality of incSet has to be two. Once the value of incSet
is found, TupIncRank read one by one the tuples from relations parts considered (as in
line 9 and line 17). At each step of read of new tuple the join is performed with the set
of tuples already read (at line 13 and at line 24). In line 9, readNext function is used.
ReadNext function takes a relation Ri and a binary value (0 or 1: InconsParts[i] value)
and read the next tuple in Ri with inconsistency 1 or 0 according to InconsParts[i] value.
This new tuple is added into the buffer HRi[InconsParts[i]]. Once, TupIncRank found
the k answers, its stops query processing and outputs the k answers. Let’s illustrate
TupIncRank algorithm in the example 5.10.
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Algorithm 6: TupIncRank
Input : I: binary annotated instance, k: integer,

Q(X) : −R1(X1), . . . , Rm(Xm), φ(X1, . . . , Xm)
Output: k most consistent answers of Q(I) w.r.t TBM (or TBS, Q free self-join

CQ)
1 /* initialization of global variables */
2 HRi := [];
3 topK := [];
4 remainds := [{1, . . . , m}];
5 incSets := [∅];
6 while |topK| < k do
7 incSet := incSets.remove(0);
8 per f ormJoin(incSet);
9 if topK.size < k then

10 break;

11 remaind := remainds.remove(0);
12 tempRemoveRemaind := ∅;
13 for e ∈ remaind do
14 tempIncSet := IncSet ∪ {e};
15 tempRemoveRemaind := tempRemoveRemaind ∪ {e};
16 incSets.add(tempIncSet);
17 remainds.add(remaind/tempRemoveRemaind);

18 return topK ;
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Algorithm 7: performJoin

1 inconParts := [];
2 rels := [];
3 for i := 1 to m do
4 if i ∈ incSet then
5 InconsParts[i] := 1;
6 else
7 inconsParts[i] := 0;

8 if HRi[inconsParts[i]] = nil then
9 tempTup := ReadNext(i, inconsParts[i]);

10 if tempTup 6= nil then
11 HRi[inconsParts[i]] := {tempTup};
12 rels.add(i);

13 Add in topK k− topK.size answers from
Q(HR1[inconsParts[1]], . . . , HRm[inconsParts[m]]) ;

14 ///* If rels is not empty, otherwise rel is equal to −1 */
15 rel := 1;
16 while rels.IsNotEmpty And |topK| < k do
17 tup := ReadNext(rels[rel], InconsParts[rels[rel]]);
18 if tup = nil then
19 remove rels[rel];
20 rel := ((rel + 1)%(rels.size + 1)) + 1;
21 continue;

22 HRrel [inconsParts[rels[rel]]] := HRrel [inconsParts[rels[rel]]] ∪ {tup};
23 Let Si := HRi[inconsParts[i]];
24 Add in topK k− topK.size answers from

Q({S1, . . . , Srel−1, {tup}, Srel+1, . . . , HRm}) ;
25 rel := ((rel + 1)%(rels.size + 1)) + 1;
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Example 5.10. Continuing with our illustrative database used in the previous examples. The
goal of this illustration is to find the 2 first answers that are the most consistent w.r.t the measure
TBM and TBS. By R[1] we mean the set of tuples read in R. The annotated database obtained
is the following:

PID RefD Date
02 d4 2 0 t1
01 d2 4 1 t2

Diagnosis(D)

PID RefD Date
01 d2 1 1 t3
01 d2 3 1 t4
02 d4 4 0 t5
01 d2 5 0 t6

Surgery(S)

PID RefD Date
01 d2 3 1 t7
02 d4 3 0 t8

Vaccination(V)

With the query Qex

• IncSet = ∅ TBS ≡ TBM ≡ 0

HD
Key Value

0 t1

HS
Key Value

0 t5

HV
Key Value

0 t8

Q({D[0], S[0], V[0]})→ TopK = [〈04, 04〉]
HD

Key Value
0 t1

HS
Key Value

0 t5,t6

HV
Key Value

0 t8

Q({D[0], {t6}, V[0]})→ TopK = [〈04, 04〉]

• IncSet = {D} TBS ≡ TBM ≡ 1

HD
Key Value

0 t1
1 t2

HS
Key Value

0 t5, t6

HV
Key Value

0 t8

Q({D[1], S[0], V[0]})→ TopK = [〈04, 04〉]

• IncSet = {S} TBS ≡ TBM ≡ 1

HD
Key Value

0 t1
1 t2

HS
Key Value

0 t5, t6
1 t3

HV
Key Value

0 t8

Q({D[0], S[1], V[0]})→ TopK = [〈04, 04〉]
HD

Key Value
0 t1
1 t2

HS
Key Value

0 t5, t6
1 t3,t4

HV
Key Value

0 t8

Q({D[0], {t4}, V[0]})→ TopK = [〈04, 04〉]

• IncSet = {V} TBS ≡ TBM ≡ 1

HD
Key Value

0 t1
1 t2

HS
Key Value

0 t5, t6
1 t3, t4

HV
Key Value

0 t8
1 t7

Q({D[0], S[0], V[1]})→ TopK = [〈04, 04〉]

• IncSet = {D, S} TBS ≡ TBM ≡ 2
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HD
Key Value

0 t1
1 t2

HS
Key Value

0 t5, t6
1 t3, t4

HV
Key Value

0 t8
1 t7

Q({D[1], S[1], V[0]})→ TopK = [〈04, 04〉]

• IncSet = {D, V} TBS ≡ TBM ≡ 2

HD
Key Value

0 t1
1 t2

HS
Key Value

0 t5, t6
1 t3, t4

HV
Key Value

0 t8
1 t7

Q({D[1], S[0], V[1]})→ TopK = [〈04, 04〉, 〈02, 02〉]

The running of TupIncRank algorithm is stopped since two answers are found.

Theorem 5.3. The algorithm TupIncRank computes correctly the top-k answers that are the
most consistent w.r.t measures TBM and TBS.

Proof. We proof this theorem by absurd . Let Q(X) : − R1(X1), . . . , Rn(Xn), φ(X1, . . . , Xn)
be a query. Consider the two answers t1 and t2 of Q with inconsistency degrees with
measures TBM(also with TBS) equal to a1 and t2, respectively, such that a1 > a2. So
there are S1 ⊆ {1, . . . , n} and S2 ⊆ {1, . . . , n} such that |S1| = a1 and |S2| = a2. We have
also, t1 ∈ Q({Ri[1] : i ∈ S1} ∪ {Ri[0] : i ∈ {1, . . . , n}/S1}) and t2 ∈ Q({Ri[1] : i ∈
S2} ∪ {Ri[0] : i ∈ {1, . . . , n}/S2}). Assume that TupIncRank computes t1 before t2. If
t1 is computed before t2 by TupIncRank then S1 is explored by TupIncRank before S2.
That is absurd since the lattice formed by the set of relations in join is iterated in order
of their size.

Theorem 5.4. Consider the problem of computing of the k first answers that are the most
consistent w.r.t measures TBM and TBS(case where query is fSJ CQ), then

1. the algorithm TupIncRank is optimal in the class of SBA with the most measure cost∆

2. no additional answer is computed outside of the k first answers that are the most consis-
tent w.r.t TBM and TBS

Proof. Let’s consider Q(X) := R1(X1), . . . , Rn(Xn), Φ(X1, ..., Xn) as the input query.
The algorithm TupIncRank is level-wise algorithm. It iterates the lattice formed by
the set of name/identifiers of relations in join (i.e, the set {R1, . . . , Rn}2). Assume that
there is an algorithm Al ∈ SBA that computes the k first consistent answers of Q for
measures TBM and TBS with p1 visited regions and TupIncRank computes the same
set of answers of Q with p2 visited regions such that p1 < p2. When an algorithm in
SBA start to visit a region, all the regions are crossed before starting to visit an other
region and no index on join attributes is available. As a region matches a set of join
tests with the same score (inconsistency degrees), in the case of TBS and TBM a region
corresponds to the cardinality of number of relation totally inconsistent in join. The
algorithm TupIncRank iterates the lattice of relations in join from empty set to the set
of all relation (i.e, in ascending order). Each set of relations SR selected means that
relation in SR have to be completely inconsistent and those are out of this set are com-
pletely consistent. So, if Al crosses less regions than TupIncRank after acclaiming the
top-k answers then Al skipped and ignored some regions − implies that Al does not
correctly the top-k answers. So, either any algorithm of SBA than TupIncRank is incor-
rect either it crosses more regions or equal than TupIncRank after acclaiming the top-k
results.
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The TopINCDE and TopMultiSet algorithms can be used to process top-k algorithm
with TSMmin, TSMmax measures and TSSmin, TSSmax measures if the query is free self
join.

A top-k algorithms can be used to fix some filtering problems such as: compute
the first answers that have the inconsistency/inconsistency degrees greater than or less
than or equal a given value.

5.4 Conclusion

We designed a set of algorithms to perform top-k query with our proposed measures
as scoring functions. We explain the different dimensions to consider for designing
a top-k algorithm for these measures. We categorize these algorithms according to
their cost models. We shown the optimality of some of these algorithms while given
their theoretical complexities. In the next chapter, we present our approach to fix
inconsistency in the case where the set of constraints are inconsistent.
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Chapter 6

PRESENCE OF INCONSISTENCY
IN SET OF CONSTRAINTS

In the previous chapters, we assume that the set of constraints considered is consistent.
We present in this chapter preliminary results considering a context in which the set
of denial constraints are inconsistent. In particular, we define in this context a set of
measures quantifying inconsistency of query answers.

Let DC be a set of denial constraints defined from schema S .
The set DC is inconsistent if only if: 6 ∃I 6= ∅, an instance database over the schema

S , such that I |= DC.

Example 6.1. Consider a schema S = {R(A, B, C)} and the following set of denial constraints
on S :

• C1 : ← R(x, y, z), x ≤ y

• C2 : ← R(x, y, z), z ≥ y

• C3 : ← R(x, y, z), z ≤ x

then the set {C1, C2, C3} is inconsistent because there is no instance from S (different from
empty set) that satisfies this set of constraints. Since there are no three real numbers x, y, z such
that x < y, y < z and z < x.

In the following, first, we define some measures of inconsistency degrees based
on the set of measures defined in chapter 4. In the second part, we introduce a top-k
algorithm, to compute the k first answers that are the most/less inconsistent answers,
that is also based on the TopINC algorithm.

6.1 Fixing inconsistency problem

One way to handle inconsistency of query answers in presence of inconsistent set of
constraints DC is to consider the set of maximal consistent subsets of constraints from
DC. The inconsistencies of tuples (in database instance) or query answers are com-
puted w.r.t a maximal consistent subset of DC. We denote by MC(DC) the set of maxi-
mal consistent subsets of a set of constraints DC. We define, in the following, formally
this notion of set of maximal consistent subsets of constraints.

MC(DC) = {S ⊆ DC : S 6= ∅ and S |= DC and ∀S1, S ⊂ S1 ⊆ DC ⇒ S1 6|= DC }
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In this thesis, we assume that this set exists and it is finite for any inconsistent
set of constraints considered. We do not study the computation problem of MC(DC).
The problem of satisfiability of set of denial constraints (i.e, checking if a set of denial
constraints is consistent) is studied in [16].

Example 6.2. Consider the set of constraints considered in the example 6.1. The set of max-
imal consistent subsets of DC is : MC(DC) = {S1, S2, S3} where S1 = {C1, C2}, S2 =
{C1, C2}, S3 = {C2, C3}.

6.1.1 Strong Consistent Query Answers (SCQA)

Given a database D and a set of denial constraints DC. If DC is inconsistent, it is not
possible to find a repair of D. Since by definition an inconsistent set of constraints DC
is a set of constraints for which there is no non empty instance that satisfies it. Hence, it
is impossible to handle inconsistency by repairing data as done in literature [22]. As we
can not define the notion of repair in the context of inconsistent set of constraints, what
about the CQA [22] handling ? As the notion of repair does not exist, so the notion of
CQA also does not exist.

In this section, we define a new semantic of query evaluation, based on the idea of
CQA, in a context of inconsistent set of denial constraints. This notion, called strong
consistent query answers, is based on MC(DC). For each maximal subset of consistent
constraints, we compute the consistent query answers using one of semantic of repair
defined in literature. Once, these consistent query answers are computed for each M ∈
MC(DC), the strong consistent query answers is obtained by doing intersection these
consistent query answers. The strong consistent query answers is useful since it means
that no matter the maximal consistent set of denial constraint from DC, these answers
can be obtained.

Definition 6.1 (SCQA). Let DC, Q, I be a set of constraints, a query and a database in-
stance on the same schema, respectively. The strong consistent query answers of Q, denoted
SCQA(DC, Q, I), is defined as follows :

SCQA(DC, Q, I) =
⋂

S∈MC(DC)

CQA(S, Q, I)

with CQA(S, Q, I) the consistent query answers of Q (with any semantic of database repair)
over I on which the set of constraints S are applied.

Example 6.3. Consider the maximal consistent set of the previous example 6.2 (S1, S2, S3).
Consider the following instance with the query Q. We consider the deletion repair semantic [9].

R
A B C
10 9 6
3 2 6
5 7 6
5 7 8

Q(z) : −R(x, y, z)

The repair according to the maximal subsets {S1, S2, S3} are the following

• For S1 we have {〈10, 9, 6〉} So CQA(S1, Q, I) = 〈6〉

• For S2 we have {〈3, 2, 6〉, 〈5, 7, 8〉} So CQA(S2, Q, I) = {〈6〉, 〈8〉}
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• For S3 we have {〈5, 7, 6〉, 〈5, 7, 8〉} So CQA(S3, Q, I) = {〈6〉, 〈8〉}

So, the strong consistent query answers of Q evaluated over I in presence of the set of
constraint DC is SCQA(DC, Q, I) = {〈6〉}.

The main challenge behind SCQA is its computation problem. Even the special case
where |MC(DC)| = 1, the computation problem of SCQA remains intractable(in data
complexity) in general [22]. Also, there exists some particular cases where SCQA is
always empty as shown in theorem 6.1.

Theorem 6.1. Let DC be an inconsistent set of constraints and let I be a database instance.
For any full conjunctive query Q, we have:

SCQA(DC, Q, I) = ∅

Proof. Let Q(X) : −R1(X1), . . . , Rm(Xm), φ(X1, . . . , Xm), DC, I be respectively a full
conjunctive query, a set of denial constraints and a database instance. As the query Q is
a full conjunctive query then each answer A corresponds to an unique set {R1(A1), . . .,
Rm(Am)}. Assume now that SCQA(DC, Q, I) 6= ∅ and assume that A ∈ SQCA(DC, Q, I).
This means that for each S ∈ MC(DC) there exists a repair R that contains at least the
elements from {R1(A1), . . . , Rm(Am)}. As this repair exists for each S ∈ MC(DC) then⋂
S∈MC(DC)

S = DC is satisfied at least by the set {R1(A1), . . ., Rm(Am)}. Absurd since

DC is inconsistent.

We can consider the computation problem of SCQA by maximal consistent subset
of DC. Given a maximal consistent subset S of DC, we use the classical techniques [23]
to compute the CQA w.r.t S. So, SCQA can be computed with the same data complexity
than the existing algorithms to compute CQA [23].

6.1.2 Quantifying inconsistency degrees of query answers

As preliminary work, we define below inconsistency degrees of query answers under
bag semantics in a context where the set of denial constraints is inconsistent. The idea
behind these new measures is to quantify inconsistency of a query answer t for each
maximal consistent set of constraints. And then, we have to use an aggregate func-
tion to aggregate these different inconsistency degrees to obtain a global inconsistency
degrees of t. We call this type of measure a relative measure.

Definition 6.2 (Relative measure). Let Q be a conjunctive query, DC be a set of denial
constraints and I be a database instance. Let α ∈ {CBS, CBM, TBS, TBM}; let f : Rp → R

with p ∈ N∗, an aggregate function. The relative measure of inconsistency degrees for an
answer t ∈ Q(I), based on α and f , is formally defined as follows

R f
α(t, Q, I , DC) = f (α(t, Q, I , S1), . . . , α(t, Q, I , Sp))

with MC(DC) = {S1, . . . , Sp}.

Example 6.4. Based on the previous example (example 6.3). The database annotated is the
following I
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R
A B C
10 9 6 C3
3 2 6 C2
5 7 6 C1
5 7 8 C1

Consider the query Q1(x, y, z) : −R(x, y, z) and the measure of inconsistency CBS. Consider
the answers t1 = 〈10, 9, 6〉.

• CBS(t1, Q1, I , S1) = 0

• CBS(t1, Q1, I , S2) = 0

• CBS(t1, Q1, I , S3) = 1

• Consider the aggregate function sum then Rsum
CBS(t1, Q, I , DC) = sum(0, 0, 1) = 1

• With the aggregate function min then Rmin
CBS(t1, Q, I , DC) = min(0, 0, 1) = 0

6.2 Query answers ranking by inconsistency degrees

In this section, we show how to modify TopINC algorithm to work with the relative
measures R f

CBS.

6.2.1 Top-k algorithm with R f
CBS

The algorithm designed in this section considers only the relative measure R f
CBS, i.e,

the relative measure that is based on CBS measure and any other aggregate function f .
It is denoted by RTopINC. The algorithm RTopINC has the same data complexity than
TopINC. In the rest of this chapter, we consider DC the set of denial constraints and we
assume that MC(DC) = {S1, . . . , Sp}. We use f as an aggregate function.

With the algorithm RTopINC, we proceed in two steps. The first step consists to
build an index. This index, denoted orderVio(DC, f ), is computed once, i.e, it is in-
dependent from input query. In the second step, the top-k query is evaluated by the
algorithm TopINC using orderVio(DC, f ).

Building of orderVio(DC, f)

We define formally OCBS(S, f , DC), where S ⊆ DC, as follows:

OCBS(S, f , DC) = f (|S ∩ S1|, . . . , |S ∩ Sp|)

Informally, we define orderVio(DC, f ) as list of elements of 2DC(i.e, the power set of
DC). Elements of orderVio(DC, f ) are ordered w.r.t measure R f

CBS. Formally orderVio(DC, f )
is defined as follows

orderVio(DC, f ) = [E1, . . . , E2|DC| ], ∀i, j ∈ [1, 2|DC|], i f i < j

then OCBS(Ei, f , DC) ≤ OCBS(Ej, f , DC)

where no Ei (i ∈ 1, . . . , Z|DC|) is repeated in orderVio(DC, f ). This index has exactly the
same size than the algorithm TopINC.

76



Example 6.5. Continuing with the previous example, we assume min as aggregate function.
In the following, we compute the OCBS for each subset of constraints:

• OCBS(∅, f , DC) = min(CBS(∅∩S1), CBS(∅∩S2), CBS(∅∩S3)) = min(0, 0, 0) =
0

• OCBS({C1}, f , DC) = min(|{C1} ∩ S1|, |{C1} ∩ S2|, |{C1} ∩ S3|) = min(1, 1, 0) =
0

• OCBS({C2}, f , DC) = min(|{C2} ∩ S1|, |{C2} ∩ S2|, |{C2} ∩ S3|) = min(1, 0, 1) =
0

• OCBS({C3}, f , DC) = min(|{C3} ∩ S1|, |{C3} ∩ S2|, |{C3} ∩ S3|) = min(0, 1, 1) =
0

• OCBS({C1, C2}, f , DC) = min(|{C1, C2} ∩ S1|, |{C1, C2} ∩ S2|, |{C1, C2} ∩ S3|) =
min(2, 1, 1) = 1

• OCBS({C1, C3}, f , DC) = min(|{C1, C3} ∩ S1|, |{C1, C3} ∩ S2|, |{C1, C3} ∩ S3|) =
min(1, 2, 1) = 1

• OCBS({C2, C3}, f , DC) = min(|{C2, C3} ∩ S1|, |{C2, C3} ∩ S2|, |{C2, C3} ∩ S3|) =
min(1, 1, 2) = 1

• OCBS({C1, C2, C3}, f , DC) = min(|{C1, C2, C3}∩S1|, |{C1, C2, C3}∩S2|, |{C1, C2, C3}∩
S3|) = min(2, 2, 2) = 2

So orderVio(DC, min) is the following

orderVio(DC, f ) = [∅, {C1}, {C2}, {C3}, {C1, C2}, {C1, C3}, {C2, C3}, {C1, C2, C3}]

Algorithm RTopINC

The RTopINC takes three parameters: an integer k, a query Q(X) : −R1(X1), . . .,
Rm(Xm), φ(X1, . . . , Xm) and an annotated instance I . This algorithm assumes the avail-
ability of the structure orderVio(DC, f ). The RTopINC algorithm is presented in algo-
rithm 8. The RTopINC algorithm iterates on the elements in the list orderVio(DC, f ).
For each element S in orderVio(DC, f ), RTopINC looks for the set of answers that vio-
late exactly S. The array ind(I(R)) in algorithm 8 contains the set of possible violated
subsets of constraints by tuples in R. By R1[E1] in algorithm 8, we mean all the tuples
that violate exactly E1.

As one can easily note, the algorithm RTopINC is optimal in term of the number of
tuples read on disk and in the class of semi-blind algorithms.

Theorem 6.2. For any instance I and any top-k conjunctive query Qk,R f
CBS , we have:

cost∇(RTopINC, Q, I) ≤ cost∇(AL, Q, I), ∀AL ∈ SBA

6.3 Conclusion

This chapter has presented preliminary results regarding the problem of inconsistency
in relational database in the context of a set of inconsistent set of constraints. We have
generalized the notion of consistent query answers to strong consistent query answers.
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Algorithm 8: RTopINC
Input : I : database instance, k : integer, Q
Output: Res : the k most consistent/inconsistent answers w.r.t. R f

CBS

1 Res := [] of max size equal to k;
2 i := 1 ;
3 for i ≤ 2|DC| do
4 S := orderVio(DC, f )[i];
5 for comb = (E1, . . . , Em) ∈ ind(I(R1))× . . .× ind(I(Rm)) do
6 if

⋃m
i=1 Ei = S then

7 tempAns := Q({I(R1[E1]), . . . , I(Rm[Em])});
8 add tempAns in Res ;
9 if |Res| ≥ k then

10 return Res;

11 i := i + 1;

12 return Res;

We have introduced a set of new inconsistency measures quantifying inconsistent in
this context. We designed an algorithm of top-k for one of these measures of inconsis-
tency degrees. The next chapter empirically evaluates our approach and algorithms of
top-k developed in this thesis.
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Chapter 7

Empirical Evaluation

In this chapter, we are going to show efficiency of our approach by empirically evaluate
the different algorithms. First, we show the feasibility of our measures in practice with
many queries in many different datasets. In the second part, we evaluate efficiency of
our top-k algorithms.

During all experiment, we use the following datasets. The most large of these
datasets are real-world datasets, only few of these datasets are synthetic datasets. Stock,
this dataset contains the market data of the United States. It mainly informs about the market
trend on a time interval, i.e. the minimum price, the maximum price, the initial selling price
of the interval period and the end price of the market of the same interval period. It also spec-
ifies the sales quantity of the market on the period. Hospital, registered a set of health data
about admissions in many hospitals. Food, this dataset registered the set of food inspec-
tions done, mainly in New York city, in restaurants. Adult, contains data about some
adult and their marital status in some countries in world (USA, India, Iran, ...). Tax,
is a synthetic dataset. An other synthetic dataset, that we call synthetic is added, this
dataset is randomly generated. Some complementary information about these datasets
are displayed in table 7.1. In Table 7.1, the column Inc denotes the percentage of incon-
sistency per relation, whereas #Tup and #Rel denote the number of tuples and relations
in the dataset, respectively. Finally, #Cons indicates the number of denial constraints
per dataset. The column #atom gives interval of number of atoms for the constraints of
a given dataset. The column Syn indicates the type of dataset (synthetic or not). All the
queries used are described as follows: Q1 to Q5 are on the Hospital dataset and they
contain one join; Q6 to Q9 are on the Tax dataset and they contain one join; Q10 to Q14
are on the synthetic dataset; Q10, Q11 have a join across three tables, Q12, Q13 have a
join across four tables and Q14 has a join across five tables.

We have implemented our framework in PostgreSQL 10 by leveragingPLSQL and
JDK 11. All the experiments have been executed on a DELL Core i7 2.5 GHz laptop
with 16 GB RAM running Linux OS.

Our approach of treatment of inconsistency degrees suppose existing of a set of
denial constraints and availability of set of conjunctive queries for each dataset. So,
we used Metanome [1], that is a tools allowing generation of a set of denial constraints
from a dataset. Metanome implements a set of algorithm of discovery of constraints
(functional dependency constraints and general denial constraints) developed by many
works [37, 126]. Also, we use denial constraints generated by Metanome to convert into
a of conjunctive queries that are used as set of conjunctive queries.
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Dataset Syn #Rel #Tup
#Cons

#atom Inc(%)
#Equal #(In-)equal

Stock % 1 244992 1 9 [1, 2] 18.62
Hospital % 1 114919 3 39 2 100

Tax X 1 99999 1 49 2 100
Synthetic X 5 1012524 6 9 [1, 3] 89.34

FoodInspection % 1 204896
Adult % 1 48842 N/A
Rand1 X 4 1000000

Table 7.1: Datasets used in our empirical evaluation.

7.1 Measures Evaluation

This section evaluate our measures, we evaluate the running time of the annotation
phase, the running time to compute each measure and a qualitative study.

7.1.1 Database Annotation

This preprocessing of data can take more running time. It is done once, only when
there are some update in database. The approach that consists to do that once is in-
teresting in the case of data warehouse. Because, in data warehouse, there are less
updates. So, in the following, we evaluate our approach, begin with the conversion of
the set of denial constraints into conjunctive, the evaluation of these converted denial
constraints to compute the why-provenance until the annotation phase of each tuple in
the database. Before annotation four columns, vioset, viobag, inc and incbag contain-
ing the set of violated constraints in binary format for set answers semantics measures
with constraint-based approach, the number of violated constraints for bag semantics
answers with constraint-based approach, a monomial (either 1 or identifier of the tu-
ple) for set semantics answers and tuple-base approach and 1 either 0 for bag semantics
answers and tuple-based approach, respectively, are added on each relation. Once, the
why-provenances of each obtained conjunctive query is computed, each tuple in the
instance is annotated through its four columns. This empirical evaluation is done only
for STOCK, HOSPITAL, TAX, SYNTHETIC data since these databases contain more large
set of denial constraints.

Figure 7.1 shows the runtimes for each dataset while varying the number of con-
straints. We can observe that the runtimes of the K-instance transformation linearly
scale with the number of constraints for all datasets. They range between tens and
thousands of seconds, depending on the dataset. We observed the highest runtimes
only with one dataset (Tax), which has fifty denial constraints and took approximately
1h to transform 100000 tuples. Such a transformation is part of the pre-processing and
only done one time for the annotated instances, thus it remains quite reasonable.

One can also notice that there is a huge gap between runtimes of transformation of
Tax (Figure 7.1.a) and Hospital (Figure 7.1.b) despite the fact that these two datasets
have similar characteristics. The observed gap is due to the fact that the constraints in
the dataset Tax are more sophisticated than the constraints in the dataset Hospital (i.e.,
with larger built-in atoms).
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Figure 7.1: Transformation of an instance into a N[Υ ∪ Γ]-instance
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Query #Answers CBM CBS
Q1 1 s 2 891 897 119 s 59 s
Q2 214 ms 560 161 22 s 11 s
Q3 41 ms 114 919 2 s 2 s
Q4 31ms 50 3 ms 2 ms
Q5 57 ms 625 31 ms 19 ms
Q6 23 ms 99 999 546 ms 546 ms
Q7 97 ms 100 777 903s 558 ms
Q8 518 ms 488 505 6 s 4 s
Q9 61 ms 303 83 ms 80 ms
Q10 231 ms 582 12 ms 12 ms
Q11 472 ms 505 046 7 s 4 s
Q12 3 s 14831052 5 mn 2 mn
Q13 1 s 7 384 207 2 mn 1 mn
Q14 938 ms 287 242 9 s 3 s

Across all tuples in the query output
(a)

CBM CBS
Q1 41 µs 20 µs
Q2 39 µs 19 µs
Q3 17 µs 17 µs
Q4 60 µs 40 µs
Q5 49 µs 30 µs
Q6 5 µs 5 µs
Q7 9 µs 5 µs
Q8 12 µs 8 µs
Q9 273 µs 264 µs
Q10 20 µs 20 µs
Q11 13 µs 7 µs
Q12 20 µs 8 µs
Q13 16 µs 8 µs
Q14 31 µs 10 µs

One tuple at a time
(b)

Figure 7.2: CBS and CBM computation overhead.

7.1.2 Measures Computation

In order to gauge the overhead of running a query Q with inconsistency degrees, we
have employed our 14 queries and measured the overhead per each tuple in the an-
swer (Table 7.2.a) as well as the total overhead for the complete output of the query
(Table 7.2.b). The obtained results are reported in Table 7.2. The greater is the size of
the output of a query the larger is the overhead of query execution with inconsistency
degrees. The columns query and #answers in Table 7.2.a are the total query runtime of
the original query on an inconsistency-free database instance and the size of query an-
swer, respectively. Depending to the size of output of the queries, the overhead ranges
between 2ms and 6m, respectively for queries Q4 and Q12. (respectively, yellow and
red cells in Table 7.2.a). The difference can be explained by looking at the size of the an-
swer set of Q4 and Q1 that are 50 tuples and 15M tuples, respectively. These overhead
are, however, not trustworthy to understand the overhead of our approach, since they
concern the entire output set of queries, whereas our algorithms (developed in chapter
5) returns the top-k results tuple by tuple. Thus, one should look at the overhead per
tuple in Table 7.2.b. We can observe that the overheads per tuple are reasonable in all
cases, and range between 5 microseconds and 293 microseconds (yellow and red cells
in Table 7.2.b, respectively).

7.1.3 Qualitative Study

We have designed an experiment devoted to show the utility of our inconsistency mea-
sures on real-world inconsistent data. We chose two real-life datasets, namely Adult,
used and containing census data, along with and Food Inspection including information
about inspections of food establishments in Chicago. The features of the two datasets
are shown in Table 7.1 Table 7.2.b reports the constraints of Adult, namely A1 and A2,
that have been derived using Holoclean [128]. While A1 indicates that men who have
‘married’ as marital status are husbands, A2 expresses the dual constraint for women.
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A1:← Adult(A,MS,Re,S,. . . )∧ S=‘Female’ ∧ Re=‘Husband’
A2:← Adult(A,MS,Re,S,. . . ) ∧ S=‘Male’ ∧ Re=‘Wife’
A3:← Adult(A,MS,Re,S,. . . ) ∧ Re=‘Husband’ ∧MS=‘Marr-civ-sp.’

(b) Constraints on Adult.
F1:← Inspection(I1,FT1, V1, Re1, L1, . . .) ∧ L1 = L2 ∧ Inspection(I2,FT2, V2,

Re2, L2, . . . ) ∧ N1 6= N2
F2:← Inspection(I1,FT1, V1, R1, L1, . . . ) ∧ Inspection(I2,FT2, V2, R2, L2, . . . ) ∧

L1 = L2 ∧ R1 6= R2
F3:← Inspection(I1,FT1, V1, R1, L1, D1, . . . ) ∧ Inspection(I2,FT2, V2, R2, L2,

D2, . . . ) ∧ IT1 =′ consultation′ ∧ IT2 6=′ consultation′ ∧ D2 < D1
(c) Constraints on Food Inspection.

AQ1:SELECT * FROM adult a1, adult a2 WHERE a1.sex = ’Male’ AND a2.sex =
’Female’AND a1.country = a2.country AND a1.income = a2.income

FQ1:Select t2.license From inspection t1, inspection t2, inspection t3 where
(t1.results = ’Fail’ or t1.violations like ’%food and non-food contact %’)
and t1.license=t2.license and t1.license=t3.license and t2.results 6= ’Fail’
and t2.inspection_type = ’Canvass’ and t3.inspection_type=’Complaint’
and t1.inspection_date<t3.inspection_date and t3.inspection_date
<t2.inspection_date and t1.zip >= 60666 and t2.zip > 60655 and
t3.zip > 60655

(d) Queries on Adult and Food Inspection.
Table 7.2: Real-world datasets with their denial constraints.

In addition, we handcrafted a third constraint A3 establishing that adults who are not
in a family should not have ‘married’ as marital status. This third constraint allows to
capture violated tuples that overlap with the tuples violated by the two former con-
straints. We also built meaningful denial constraints for the second dataset as shown
in Table 7.2.c. The constraint F1 (respectively, F2) states that a licence number, which is a
unique number assigned to an establishment, uniquely identifies the legal name of the
establishment (respectively, its risk category). The constraint F3 states that if a given es-
tablishment has been inspected for ‘consultation’ at a date d, one cannot expect to have
an inspection of a different type prior to d for the same establishment. This is because
the attribute Inspection type takes the value ‘consultation’ when the inspection “is done
at the request of the owner prior to the opening of the establishment.”

We report in Table 7.2.d the considered queries for the two datasets. The query AQ1
on Adult finds all couples of male and female living in the same country and earning the
same income. The query FQ1 on Food Inspection retrieves the licenses of establishments
in a specific area that were subject to three inspections: the first one having either a
failing inspection or a violation related to “food and non-food contact surface”, followed
by an inspection issued as a response to a complaint and then a non-failing normal
inspection.

Table 7.3.a. shows the violations of constraint for the two datasets.
We can notice that there are different kinds of tuples returned by AQ1 as illustrated

in Table 7.3.b. The majority of the results (276M tuples) are consistent, thus both CBS
and CBM are equal to 0, while the remaining answers exhibit 1 or 2 as inconsistency
degrees. Most of the inconsistent tuples violate one constraint at a time (in the order
A3, A1 and A2) while the rest of the tuples violate two constraints. For this dataset, in
the majority of the cases a constraint is violated at most once and hence CBS and CBM
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measures are not discriminating, except for the 23 answers where violations occur twice
(5th line of Table 7.3.b). These tuples are captured when running TopINC for top-100
tuples starting from the most inconsistent ones as illustrated in Table 7.3.c. Note that,
while CBM does not distinguish between the 71 most inconsistent answers of AQ1
(answers with CBM = 2 corresponding to the first four rows of Table 7.3.c), the CBS
measure provides a different ranking for the 23 answers of the 4th row of this Table.

We show in Table 7.3.d the inconsistency degrees of the answers when evaluating
query FQ1 on the second dataset. Note that for this query the CBS degrees vary from
0 up to 3 while the CBM degrees range from 0 up to 9. We observe now that many
answers are not distinguishable under CBS while they exhibit a wider range of CBM
degrees (e.g., CBM varies from 1 to 3 for answers having CBS = 1). This again shows
that CBS and CBM provide the user with two different types of information, both being
useful to carry out the ranking.

Finally, we show by means of examples the remarkable difference between our ap-
proach and CQA1. Note that as we already pinpointed in chapter 4 (lemma 4.2), these
are complementary approaches. Table 7.3.e shows three CQA-consistent answers for
query FQ1. First, we note that all our consistent answers (i.e., with CBS = CBM = 0)
are also CQA-consistent as stated in Lemma 1. The converse is not true as it can be
observed in Table 7.3.e where the answer 〈34183〉 is CQA-consistent but not consis-
tent in our framework (with CBS and CBM 6= 0). On another note, we can notice that
the CQA approach does not distinguish between the three CQA-consistent answers of
Table 7.3.e. In particular, the information that the CQA-consistent answer 〈34183〉 is
computed using inconsistent base tuples (violation of F1) is not conveyed by CQA.

7.2 Top-k Algorithms Evaluation

This section is dedicated to the evaluation of some algorithms of top-k developed in
chapter 5.

7.2.1 TopINC Performance vs. Baseline.

We have implemented a baseline algorithm leveraging PostgreSQL, where all answers
of a query are computed beforehand and then sorted (ORDER BY) and filtered (LIMIT
k). Figure 7.3 shows the performance of TopINC (with k varying from 10 to 300) as
opposed to the aforementioned baseline algorithm. We have chosen five queries as
representatives of different datasets and join sizes ranging from one join (Q1,Q2, Q8)
and three joins (Q11) to five joins (Q14). The algorithm TopINC (blue bar) can be up
to 28 times faster than the baseline approach as shown in Figure 7.3.a. There is only
one query, i.e. the most complex query Q14, for which TopInc has lower performance
compared to the baseline, starting from a value of k ≥ 200. The reason for that is
the fact that TopInc for higher values of k and higher number of joins in the query
will inspect more buckets and try to perform more joins that will likely produce no
answers. Furthermore, notice that in all these experiments the baseline turns to have
advantageous with respect to TopInc, as it leverages the query planning of Postgres and
opportunistically picks the most efficient join algorithm. Despite these advantages, our
approach is still superior in terms of performance in the majority of the cases.

1We consider repair by deletion and symmetric set difference as measure of minimality [9].
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In Figure 7.4, from 7.4.f to 7.4.j, we measure the memory consumption of our ap-
proach for the same queries. We observe that TopINC always consumes less memory
than the baseline.

We also ran another experiment on synthetic datasets to study the impact of other
parameters on the performance of TopINC. The results are reported in Figure 7.5.

Precisely, we wanted to study the dependency of TopINC on the following param-
eters: the number of answers to be returned (k), the number of violated constraints
(DC), the size of search space formed by DC (i.e, the number of subsets of constraints
violated by base tuples) and the exact size of output of Q (i.e, |Q(I)|).

In these results, we focused on a relatively simple query Q containing a join be-
tween two synthetic relations (of size 1000 each one) and we kept constant the value of
k (equal to 20). We ran this experiment with varying number of denial constraints DC
from 10 to 30, respectively in Figures 7.5.a, 7.5.b and 7.5.c. In each of these plots, we
vary the selectivities of Q and the size of the search space of the algorithm. One can
see that TopINC outperforms the baseline in all cases and is particularly advantageous
with larger query outputs and smaller search space.. The underlying reason is that
the greater is the output size of the query, the larger is the probability to find answers
within the first combinations scanned within the search space.

7.2.2 TupIncRank Performance

In this section, we compare the TupIncRank algorithm to the naive algorithm, the base-
line algorithm and the rankJoin algorithm developed in [84], that is one of the best top
join algorithms. We compare the running time of rankJoin to our TupIncRank since this
last one works for monotone function TBM and TBS (in the case where the query is a
free self join conjunctive query).

In this last experiment, we consider the database Rand1 that is a synthetic database.
The Rand1 database is composed to four relations generated randomly. No set of denial
constraints is considered in this database, so we randomly associate to each 1 or 0 as
annotation (in colum incbag) to specify its inconsistency nature. As the TupIncRank
algorithm, that is designed to the measures TBM and TBS, only needs to have the
database annotated by 0 (consistent) or 1 (inconsistent), this nature of the database
is enough. The database Rand1 contains one million of tuples, each relation contains
250000 tuples.

SO, first we compare the running time of these algorithms, then the number of
tuples read from input relations by each algorithm after acclaiming the top-k algorithm
and the number of additional answers computed by each algorithm outside the top-k
answers. So, we consider the two following queries (QX1 and QX2). We vary the
value of k from 20 to 200 with step equal to 20 between two consecutive value of k.
This interval is randomly chosen, these algorithms remain with similar behavior with
other values of k.

QX1(X1) : − R(a, b, c, d, e, f ), T(a, c1, e1, j, f ), c < c1 ∧ b ≥ j ∧ e <> e1
QX2(X2) : − G(d, e, f , k), S(g, h, e, j, k1),∧ f <> k

With X1 = a, b, c, d, e, f , c1, e1, j and X2 = d, e, f , k, g, h, j, k1.

The queries QX1 and QX2 have 1518203018 and 11175284 answers, respectively,
when evaluated over Rand1.

The figure 7.6 shows the performance of TupIncRank algorithms compared to some
top-k algorithms that work with a monotonic scoring function. The TupIncRank al-
gorithm remains the best no matter the query. It largely exceeds in performance the
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Figure 7.3: TopINC performance vs baseline (α = CBS): Runtime
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Figure 7.4: TopINC performance vs baseline (α = CBS): Memory footprint
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Figure 7.6: Performance comparison between TupIncRank and other algorithms in
running time
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RANKJOIN algorithm that is one of the best top join algorithms in literature. The TupIn-
cRank algorithm is best than RANKJOIN since RANKJOIN starts with a preprocessing
phase that sorts first the input relations instead of the TupIncRank algorithm scans just
the relation with selectivity (consistent tuples first and then inconsistent tuples). This
experiment shows the non usability of the naive algorithm in practice, as one can de-
note the naive algorithm is not present in figure 7.6.(b) because it takes more than four
days to run for ten different values of k. The running time of TupIncRank algorithm is
also compared to the running time of baseline algorithm (The execution of the query in
Postgresql with ORDER BY and LIMIT clauses).

The figure 7.7, we show the number of tuples read in input relations by different
relations. We show that the naive algorithm reads all the input tuples before acclaim-
ing the top-k answers. But, the RANKJOIN and TupIncRank algorithms have the same
number of tuples read before acclaiming of the top-k answers. These two last algo-
rithms read less than three thousand tuples before acclaiming of top two hundred an-
swers instead of the naive and the baseline algorithm that read one million of tuples
before acclaiming of the top-k answers.

We are also interested by the number of additional answers computed outside
the top-k answers. In this direction, the figure 7.8 compares the naive algorithm,
RANKJOIN algorithm and TupIncRank algorithm in term of additional computed an-
swers. Our algorithm (TupIncRank) computes always exactly only the top-k answers
without any additional answer (so, the number of additional answers is always 0) op-
posed to the RANKJOIN algorithm that, some times, computes some few additional
answers since the maximum bound remains smaller than the bound of the last of the
k first answers computed, so the RANKJOIN can not stop the running otherwise the
current set of answers can be incorrect (can contain answers that are not in the top-k
answers, for example the last one in this set). So, these additional answers computation
is unavoidable. As the figure 7.8 shows, the naive algorithm computes more than one
million answers as additional set of answers.

7.3 Conclusion

We extensively evaluated our approach. First, we empirically shown the running time
of the preprocessing phase. We have noticed that this step can take more but as it is
done only one time, it is reasonable. In the second part, we evaluated the overhead
that measures of inconsistency can add on the queries processing time. We also done
a qualitative experiment of these measures and compared our approach with CQA
approach. In the last section, we confronted the performance of some of our algorithms,
developed in chapter 5, to the baseline algorithm (algorithm of top-k implemented
in Postgresql) and naive algorithm. Our algorithms remain the best. In the next
chapter, we are going to describe the new tool, called INCA, that enables profiling of
inconsistency in whole of the database and the query answers.
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Figure 7.7: Performance comparison between TupIncRank and other algorithms in
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Figure 7.8: Performance comparison between TupIncRank and other algorithms in ad-
ditional computed answers
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Viol.
Const.

#Viol. F.Insp. Viol. Const. #Viol. Adult

∅ 191K ∅ 48K
F1 7715 A1 7
F2 360 A2 5
F3 2366 A3 23
F2F1 1977 A1A2 0
F3F1 181 A1A2 0
F3F2 2 A2A3 0
F3F2F1 439 A1A2A3 0

(a) Data Inconsistency.
CBS CBM #Ans Annot.

0 0 276M ∅
1 1 99K A1
1 1 28K A2

1 1 13K A3

1 2 23 A2
3

2 2 10 A1A2

2 2 32 A1A3

2 2 6 A2A3

(b) Distrib. of AQ1 Answ.

CBS CBM #Ans Annot.
2 2 32 A1, A3

2 2 6 A2, A3

2 2 10 A1, A2

1 2 23 A2
3

1 1 29 A1
(c) Top-100 AQ1 Answ.

CBS CBM Ans.
0 0 〈1141505〉
0 0 〈1042895〉
1 3 〈34183〉

(e) Comparison with CQA.

CBS CBM #Ans Annot.
0 0 6239 ∅
1 3 495 F3

1
2 6 17 F3

2 F3
1

1 1 6 F3

1 2 16 F2
3

1 3 3 F3
3

2 4 72 F3F3
1

3 8 135 F2
3 F3

2 F3
1

3 9 36 F3
1 F3

3 F3
2

(d) Distrib. of FQ1 Answ.
Table 7.3: Results of the qualitative study.
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Chapter 8

INCA: INCONSISTENCY-AWARE
DATA PROFILING and QUERYING

As quantifying the level of inconsistency of base tuples is crucial for numerous data
curation, data science and machine learning tasks, so it is useful to have a tool allowing
to manage inconsistency by quantifying its degrees. INCA quantifies inconsistency of
database tuples and queries answers tuples. It makes also profiling of inconsistency in
database and in queries answers. Based on our knowledge, there is no tool that allows
to make profiling of inconsistency.

Whereas cleaning is a prominent step of data preprocessing workflows, it might be
difficult to choose the repairing parameters and values in all cases, especially when ap-
plying updates to the underlying data [11, 152] or when the underlying data is sensitive
or cannot be modified in situ. It is often the case in real-world applications involving
data science workflows in which domain-specific data needs to be assessed from a
quality viewpoint.

In particular, in INCA, we first leverage why-provenance [27] in order to identify
the inconsistent base tuples of a relational instance with respect to a set of DCs. Then,
we rely on provenance polynomials [74] in order to propagate the annotations of in-
consistencies from the base tuples to the answer tuples of Conjunctive Queries (CQs).
Ultimately, these annotations can be used in conjunction with data cleaning steps to
provide explainable results enriched with provenance-based information about incon-
sistency. Building upon the computed annotations, we use (choose) four measures
of inconsistency degrees, which consider single and multiple violations of constraints
both in the context of bag answers semantics (CBS and CBM measures) [87], and set
answers semantics (CSSmin and CSMmin measures). The system INCA implements
TopINC that efficiently execute top-k and threshold queries on top of the annotated
data, respectively aiming at computing the top-k most (in-)consistent results and the
results satisfying an inconsistency threshold. With this tool, we engage the user in the
following scenarios with INCA:

• Precise statistics of the number and proportions of violations as well as the viola-
tions per constraint or per subset of constraints in a given database.

• Inconsistency-aware profiling of the underlying data encompassing inconsistency-
aware data exploration by constraint and set of constraints.

• Value grouping allows to show a flexible distribution of the violations and to
identify values that lead to most violations.
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• Inconsistency-aware profiling of top-k and threshold queries allowing to dis-
play inconsistency degrees (according to the four aforementioned measures CBS,
CBM, CSSmin and CSMmin) and violation distributions of the result tuples.

These scenarios can be seamlessly applied to any data science pipeline. Whereas
a swathe of data profiling and data discovery tools exist for a variety of constraints
(from functional dependencies to denial constraints) as extensively documented in
the literature [3], to the best of our knowledge INCA is the first system to (1) enable
inconsistency-aware data profiling leveraging the constraint-based view of the viola-
tions; (2) allow inconsistency-aware top-k and threshold query execution building on
the inconsistency measures. These features pave the way to clear-cut use cases, such
those underpinning explainable and selective data cleaning as well as quality-driven
ranking of query results.

This chapter is organized as follows: the section 8.1, we briefly describe INCA sys-
tem, section 8.2 is consecrated to the description of INCA implementation and in sec-
tion 8.3 we present a user case with some database described in previous chapter.

8.1 Overview of INCA

The system INCA is in a form of a web application. It is composed from many compo-
nents. In the following, we describe the architecture of INCA system.

8.1.1 Architecture of INCA System

The INCA system architecture is depicted in figure 8.1. The system INCA comes
equipped with a range of methods that enable to efficiently analyze a given dataset
and collect inconsistency-based statistics and information based on the inconsistency
degrees computed at the preprocessing step. We describe in the sequel the main com-
ponents of INCA.

• The Preprocessing module is in charge of annotating base tuples with monomial
expressions encoding the constraints violated by each base tuple.

• The Data I-Profiling (Inconsistency-based Profiling) module enables a better under-
standing of data inconsistencies. Based on the annotations computed at the pre-
processing step, it offers a set of tools to extract and aggregate information about
inconsistent data. In particular, it encompasses a dashboard which provides in-
sights into various dimensions of data inconsistencies, e.g., percentage of con-
sistent/inconsistent data, distribution of data values in the columns that cause
constraints violations, histograms of inconsistent tuples distribution w.r.t. con-
straints, and so forth. This module includes an I-Explore (Inconsistency-based data
exploration) tool, which can be used to identify and summarize the portion of the
data causing the inconsistency.

• The Query I-Profiling module allows inconsistency-aware query processing w.r.t.
the four inconsistency measures defined above. In particular, it provides the fol-
lowing main functionalities:

– computing query answers together with their associated inconsistency de-
grees,
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Figure 8.1: Architecture of INCA

– computing top-k answers w.r.t. inconsistency degrees (i.e., k most or less
inconsistent answers),

– computing query answers having an inconsistency degree below a given
threshold (threshold queries).

This module implements the TopINC algorithm and its specific index [87].

8.2 Implementation of INCA

The system INCA is implemented in JAVA. The back-end part is implemented us-
ing SpringBoot framework in an MVC structuring. The front-end is implemented in
HTML, CSS and JAVASCRIPT. To describe graphically the analyze of inconsistency, we
use ChartJS that is a JAVASCRIPT library to make graphical representations. As data
source, we allow only Postgresql database manager.

We adopt to separately develop the useful functions as service web (in back-end by
SpringBoot) and the user interface (front-end). This separation allows a quick and an
easy maintenance. The complete code base of INCA is available on Github1.

8.3 User interaction with INCA

The audience will be able to use INCA to execute the following main steps:

• identifying inconsistent base tuples using why-provenance and annotating the
initial database with inconsistency degrees,

• examining data inconsistencies using I-Profile and I-Explore and

1https://github.com/oussissa123/INCA
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• running inconsistency-aware top-k and threshold queries.

In the rest of this section, we focus on presenting the functionalities of INCA using
Food Inspection, a dataset which includes information about inspections of food estab-
lishments in Chicago. The dataset Food Inspection is a long with a five meaningful
denial constraints manually set up. In the following, we demonstrate step by step the
diverse tools contained in INCA.

8.3.1 Annotating the initial database

Users can access INCA through a GUI. The first step is to connect to the Postgresql
server and select one of the provided databases. The user can then select the con-
straints to be considered in the scenario from a list of predefined denial constraints.
The user has the possibility to update, delete or create new denial constraints. Once
an input database and its associated set of constraints have been selected, the user can
launch the annotation process. As a result, each tuple in the database is annotated with
a monomial, which encodes the constraints violated by the tuple. For each table, the
generated annotations are stored in a new column, named prov and the number of vi-
olations are stored in column violation. Each monomial is encoded as an integer whose
binary representation indicates the violated constraints.

8.3.2 Data I-profiling

In the second step of our demonstration, users will use the Data I-profiling module to
analyze the annotated data and collect statistics and information about data inconsis-
tencies. Figure 8.2 depicts the Simple statistics dashboard, which shows statistics on the
number and proportions of violations as well as the violations per constraint or per
subset of constraints. The «Proportion of violations» section of the dashboard informs
the user about the percentage of inconsistent and consistent tuples, respectively, using a
pie chart. The three other sections of the dashboard show the distribution of violations
of constraints according to the input database. The board entitled «Distribution of vio-
lations» shows the percentage of tuples violating the same number of constraints. The
board «Violation by Constraint» and «Violations by Subset of Constraints» expose the
percentage of tuples violating the same constraint and the same subset of constraints,
respectively.

Throughout the entire process, the users can decide to disable some constraints and
perform the analysis only on the selected subset of the constraints.

Figure 8.3 depicts the GUI of the I-Exp.C tool that enables an inconsistency-based
exploration by constraint. In the scenario, the user starts by selecting a constraint that
will be analyzed. The «Constraints Correlation» section displays information about the
correlation of the selected constraint with the other constraints in terms of proportion
of common tuples that violate the two constraints.

The user is also assisted by a graphical query builder in order to build queries that
show a flexible distribution of the violations and to identify values that lead to most
violations w.r.t. the selected constraint.

The last Data I-Profiling functionality enables the user to explore subsets of con-
straints. The GUI of this module is depicted in Figure 8.4. After a user selects a subset
of constraints to be analyzed, statistics about number of violations and number of con-
straints violated per each tuple are displayed.
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Figure 8.2: Simple statistics

Figure 8.3: Inconsistency Exploration by Constraint
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Figure 8.4: Inconsistency exploration by subset of constraints

Figure 8.5: Inconsistency-aware query answering
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8.3.3 Inconsistency-aware query answering

In this third step, we allow a user to explore the querying capabilities of INCA using
the Query I-Profiling module. Two main classes of queries are supported by INCA:

• Top-K query, i.e. a conjunctive query that uses as parameters an integer k and an
operator o ∈ {<,>} and outputs the k best answers w.r.t. the considered measure
α and the operator o. In the sequel, a top-k query is denoted Qk,o,α.

• Threshold query, i.e. a conjunctive query that, given an integer s and an operator
op ∈ {=,<,>,≤,≥}, outputs all the answers having their inconsistency degree
d w.r.t. α satisfying the condition: d op s. In the sequel, a threshold query is de-
noted Qs,op,α. The system INCA enables to show the maximum and the minimum
inconsistent degrees that the set of answers of a query can have depending to the
set of measures of inconsistency degrees selected.

The GUI of the Query I-Profiling module is depicted in Figure 8.5. As input, the user
provides the following parameters:

• the subset of constraints to be considered, the format of a denial constraint is as
follows: constraint is composed from two parts and the parts are separated by ” :
”, the first part is the list of relations in the denial constraint (each one is followed
by an alias) and the second part is a conjunction of built-in atoms from predicates
{≤,≥,<,>,=, 6=} and the set of attributes of relations in the first part and con-
stants (example: Person t1, Person t2: t1.id = t2.id AND t1.name 6= t2.name that
is the denial constraint ¬(Person(id, name1, . . .), Person(id, name2, . . .), name1 6=
name2): with one person is associated only one name);

• the input query, that is a conjunctive query in SQL format and each relation in
join is associated to an alias;

• the type of query (i.e., top-K query vs. threshold query) with its associated pa-
rameters; and

• the inconsistency measure α to consider (α ∈ {CBM, CBS, CSMmin, CSSmin}).

For both classes of queries, the Query I-Profiling module returns the output of the
query, together with the inconsistency degree associated with each answer. Additional
statistical information is computed and displayed as show in Figure 8.5: distribution
of answers by inconsistency level and by subset of violated constraints.

To assist users in specifying the parameter s of a threshold query Qs,op,α, INCA
shows the range of possible values for s by computing the min and max inconsistency
degrees of the answers of the associated conjunctive query Q. Interestingly, INCA
uses the TopINC algorithm to efficiently compute the min and max bounds without
computing the whole output of the associated conjunctive query Q.

The Query I-Profiling module enables also to analyze query outputs w.r.t. multiple
inconsistency measures at a time. In this case, the module provides a synthetic view to
summarize the collected information as illustrated in Figure 8.5 for example showing
the combined analysis of CBM and CBS.
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8.4 Conclusion

In this chapter, we presented the system INCA that contains a set of tools enable to
characterize inconsistency. Profiling of inconsistency in whole database and query an-
swers are done by INCA. After extensively described the system INCA, we performed
a demonstration using a real dataset (food inspection) with meaningful set of denial
constraints.
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Chapter 9

CONCLUSION AND
PERSPECTIVES

In this thesis, we have addressed the problem of inconsistency in relational databases.
For this purpose, we defined a set of measures to quantify inconsistency levels of
base tuple and we investigated how to propagate them to query answers. We have
grounded the computation of inconsistency degrees in why-provenance annotations
and polynomial provenance annotations. In addition, we have designed novel top-k
algorithms suitable for the above measures while proving their optimality. These pro-
posed algorithms are derived from a base algorithm, called TopINC. We designed exper-
iments to evaluate empirically the performance of the TopINCalgorithm. We developed
a tool (called INCA) that can be used for data profiling in the context of inconsistency
database.

In the following, we give some perspectives that can be derived following the work
conducted in this thesis.

• It would be interesting to extend our work to more expressive query languages as
for example negation and aggregation. For example, in the case of the presence
of negation in the query the connection between provenance and inconsistency
degrees of base tuples remains unclear and raises intriguing research questions.

• Explore more inconsistency handling in the case where the constraints are incon-
sistent. One interesting research problem would be to design an efficient algo-
rithm to handle the top-k problem for the measure R f

CBM. It would also be inter-
esting to enhance the approach proposed in this thesis so that the orderVio(DC, f )
list is eliminated or not entirely materialized. Finally, we envision to explore ad-
ditional measures of inconsistency degrees, taking account the inconsistency of
constraints, in the case of set semantic of query answers.

• It remains open whether it is possible to design efficient top-k algorithms, that go
behind the naive algorithm for the following measures of inconsistency degrees

– TBS when the query is a self-join conjunctive query
– TSSmin, TSSmax, TSMmin, TSMmax, CSMmin, CSMmax, CSSmin, CSSmax with-

out any particular condition on these measures

• From the practical point of view, it would be useful to conduct a comparative
study of measures of inconsistency degrees to identify in what application context
a given measure is more adequate.
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• Another research direction would be to explore the properties of the proposed
measures, in the spirit of [109], as for example the Reliability that ensures that
any measure of inconsistency gives an inconsistency value greater than zero when
any tuple in the database is inconsistent.
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