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Introduction (Frangais)

Groupes quantiques localement compacts

Le terme groupe quantique peut faire référence a une grande variété d’objets mais
dans chaque cas, il fait toujours référence a la généralisation de la notion de groupe, et
dans chaque cas, un groupe quantique est systématiquement défini comme une algebre de
Hopf (ou un autre type d’objet similaire). Dans notre cas, les groupes quantiques sont
une généralisation des groupes localement compacts et sont généralement appelés groupes
quantiques localement compacts. L’une des motivations de cette généralisation provient
de la dualité de Pontryagin. En effet, tout groupe abélien localement compact possede
un groupe dual, lui-méme localement compact et abélien. Cette dualité est une vaste
abstraction de la transformée de Fourier et a été largement utilisée dans la théorie de
I’analyse harmonique. Cependant, si I’on souhaite appliquer cet outil aux groupes non
abéliens, on constate que 'objet dual d’un groupe n’a plus la structure d’un groupe, ce
qui rompt la dualité. Or, la catégorie des groupes quantiques localement compacts est
stable par une certaine dualité, qui coincide avec la dualité de Pontryagin dans le cas
des groupes abéliens classiques. En plus de donner un cadre solide et tres général a la
transformée de Fourier, la théorie des groupes quantiques localement compacts a donné
lieu a de nombreux exemples. On cite le célebre exemple de [PW90], ou les auteurs
définissent le groupe quantique SL4(2,C), une déformation quantique, avec le parametre
0 < g < 1, du groupe localement compact SL(2,C). L’axiomatisation rigoureuse de cette
théorie a présenté de nombreuses difficultés, en particulier parce que cette théorie fait un
usage massif d’opérateurs non bornés, qui apportent des complications analytiques (ceci
est discuté dans le chapitre 1). Mais une définition satisfaisante et complete a finalement
été proposée par Kustermans et Vaes dans [KV00]. Ce travail, qui est maintenant re-
connu comme la notion corrélative d’un groupe quantique localement compact, fournit

une théorie extrémement riche intégrant une grande variété d’exemples.

D’autre part, une axiomatique particulierement simple a été développée par Van Daele
[Dae98] via la notion de groupe quantique algébrique, qui comme son nom l'indique est

presque exclusivement algébrique. Bien que simple, ce cadre permet d’exprimer clairement



la dualité de Pontryagin et de définir de nombreux exemples de groupes quantiques locale-
ment compacts, dont SLy(2,C), et de fait les groupes quantiques algébriques représentent
la plupart des exemples traités dans cette these. Cependant, cette catégorie présente
I'inconvénient majeur de ne pas contenir les groupes classiques localement compacts et
semble donc trop restrictive pour servir de base a la théorie des groupes quantiques lo-
calement compacts.

Inspiré par les travaux de Van Daele et visant toujours a formaliser la dualité de
Pontryagin dans un cadre général, Voigt a proposé dans [Voi08|, la notion de groupe
quantique bornologique. Bien que faisant appel a des notions analytiques avancées, ce
formalisme s’avere en pratique particulierement proche de celui de Van Daele (cette these
se veut une illustration de ce fait) et répond au probléme que nous venons de mentionner

grace aux résultats suivants.

Proposition 0.0.1. [Voi08, Proposition 9.2]. Soit G un groupe de Lie. Alors l’algébre

C°(Q) de fonctions lisses a support compact sur G est une algébre de Hopf bornologique.

Theorem 0.0.2. (Montgomery et Zippin, [MZ55]). Soit G un groupe localement compact

presque connecté, alors G est isomorphe a une limite projective des groupes de Lie.

Ces deux résultats combinés suggerent que, pour G un groupe localement compact
presque connexe, 'algebre C°(G) des fonctions lisses de Bruhat avec support compact
sur G. a support compact sur G peut étre dotée d’une structure de groupe quantique

bornologique.

Groupes quantiques semisimples et induction parabolique
L’exemple le plus élémentaire d’'un groupe quantique semisimple est donné par SU,(2). 11
a été découvert par Woronowicz, dans le contexte actuel des algebres de fonctions quan-
tifiées. Cette découverte a été le point de départ de la théorie des groupes quantiques
compacts. Comme mentionné précédemment, les groupes quantiques qui nous concernent
ici sont précisément ceux qui ne sont pas compacts. Cependant, c’est & partir de SU,(2)
que nous pouvons étudier notre exemple élémentaire, le groupe quantique SL4(2,C). En
effet, la remarque décisive de [PWI0] était la suivante : En considérant le dual de Pon-

tryagin SU,(2) de SU,(2), nous observons qu'il existe une décomposition, utilisant la

construction produit croisé
SL,(2,C) = SU,(2) 1 ST, (2).

Cela généralise en quelque sorte la décomposition d’Iwasawa

SL(2,C) = SU(2) > AN,



avec la différence majeure que dans le cas classique, il n’y a a priori aucun lien étroit entre

les groupes SU(2) et AN, alors que dans le cas quantique on peut écrire
AN, = 5U,4(2).

De plus, étant le dual d’un groupe quantique compact, @) est un groupe quantique
discret et est donc analytiquement assez simple (c’est en particulier un groupe quantique
algébrique au sens de Van Daele). C’est la raison pour laquelle SL4(2,C), est algébrique,
comme produit bicrossé de deux groupes quantiques algébriques. La notion de sous-groupe
fermé est au cceur du principe d’induction, et dans cette thése nous allons passer beaucoup
de temps & définir et étudier cette notion dans le cas quantique. Dans notre exemple,
SU,(2) admet pour sous-groupe fermé le tore T' = S!, c’est-a-dire que par définition d’un
sous-groupe quantique fermé, il existe un morphisme de groupe quantique entre les algebres
de fonctions sur SU4(2) et T.

71 A(SU,(2)) — A(T).

Notez que dans le cas classique, un tel morphisme entre les algebres de fonctions correspond
a la carte de restriction sur le sous-groupe concerné. En étudiant de plus pres la structure

bicrossée, on peut alors voir que la carte
7 ®id : A(SLy(2,C)) — A(T 1 AN,).

est également un morphisme *-Hopf et réalise ainsi B, = T 1 AN, en tant que sous-
groupe quantique de SL,(2,C). Bien str le choix de la notation B, n’est pas anodin et ce
sous-groupe possede toutes les propriétés pour étre considéré comme un sous-groupe de
Borel. De plus, puisque la dualité de Pontryaguin s’applique également aux morphismes,

notre morphisme 7 : A(SU,(2)) — A(T") donne lieu & un morphisme

70 A(T) = M(A(ST,(2))),

—

. ou M(A(SU,(2))) désigne le multiplicateur de 1’algebre non unitaire A(@)), voir
chapitre 1. Il est bien connu que T 27 et clest précisément ce groupe, que nous notons
Ay, qui joue le role de la partie non compacte du sous-groupe de Cartan. Dans le chapitre
5, nous verrons que A, n’apparait pas comme un sous-groupe quantique mais seulement
comme un groupe ”quotient” de AN,. Nous avons découvert au cours de ce travail de these
qu’il existe une algebre qui a de bonnes raisons d’étre dénommée A(G,/N,). En particulier
cette algebre est dotée d'une action & gauche par SL4(2,C) et d’une action & droite L, =
T x Ag, qui prendra le role du facteur de Lévy. Cette observation conduit naturellement
a I'émergence d'un C*(Ly)-module £(G4/N,), avec une représentation de C*(SL4(2,C)).



L’inspiration pour cette construction vient de |[CCHIG6], ou les auteurs construisent le
foncteur d’induction a partir de ’algebre des fonctions sur 1’espace homogene G/N. Nous
montrerons qu’il implémente I'induction parabolique pour SL4(2,C) et que nous avons le

résultat suivant.

Theorem 0.0.3. En considérant W = Zsy le groupe de Weyl de SL(2,C), on a
C*(SLy(2,C)) = R(E(SLy(2,C) /N,
ou R indique 'algébre des opérateurs compacts au sens des modules de Hilbert.

Cela donne un point de vue différent sur un résultat de Monk et Voigt [MV19]. No-
tons qu’il existe une grande catégorie de groupes quantiques semisimples, incluant les
déformations SLy(n,C) pour tout n < 2. Les groupes quantiques semisimples complexes
sont largement étudiés dans [VY20] et nous introduisons la définition et les résultats de
base dans le chapitre 1. Un des résultats principaux de cette these est une généralisation
du théoreme précédent a tous les groupes quantiques semisimples complexes.

Le chapitre 1 détaille les généralités mentionnées ci-dessus et complete cette introduc-
tion. Le chapitre 2 présente les notions d’espaces vectoriels bornologiques, d’algebres et
enfin de groupes quantiques. Dans le chapitre 3 nous étudions le lien entre bornologique
et groupe quantique localement compact dans le sens de [KV00], Ces résultats ont été
publiés dans le preprint [RY21]. Dans le chapitre 4, nous développons un cadre général
pour linduction et établissons le lien avec les travaux de Vaes [Vae05]. Le chapitre 5
se concentre sur ’exemple des groupes quantiques semisimples. Tous les résultats de ces

deux derniers chapitres sont présentés dans le preprint [Riv19].



Introduction

Locally compact quantum groups

The term quantum group can refer to a wide variety of objects but in each case it always
refers to the generalization of the notion of group, and in each case, a quantum group
is systematically defined as an Hopf algebra (or another similar type of object). In our
case quantum groups are a generalization of locally compact groups and are usually called
locally compact quantum groups. One of the motivations for this generalization comes from
Pontryagin duality. Indeed, every locally compact abelian group has a dual group, itself
locally compact and abelian. This duality is a vast abstraction of the Fourier transform
and has been used extensively in the theory of harmonic analysis. However, if one wishes
to apply this tool to non-abelian groups, one finds that the dual object of a group no
longer has the structure of a group, breaking the duality. Now, the category of locally
compact quantum groups is stable by a certain duality, which coincides with Pontryagin’s
duality in the case of abelian classical groups. In addition to giving a solid and very
general framework to the Fourier transform, the theory of locally compact quantum groups
has given rise to many examples. One cites the famous example of [PW90], where the
authors define the quantum group SL,(2,C), a quantum deformation, with parameter
0 < g < 1, of the locally compact group SL(2,C). The rigorous axiomatization of this
theory presented many difficulties, in particular because this theory makes massive use of
unbounded operators, which bring analytical complications (this is discussed in Chapter
1). But a satisfactory and complete definition has finally been proposed by Kustermans
and Vaes in [KV00]. This work, which is now recognized as the corrext notion of a locally
compact quantum group, provides an extremely rich theory incorporating a wide variety

of examples.

On the other hand, a particularly simple axiomatic has been developed by Van Daele
[Dae98] via the notion of algebraic quantum group, which as its name indicates is almost
exclusively algebraic. Although simple, this framework allows to express Pontryagin du-
ality clearly and to define many examples of locally compact quantum groups, including

SL4(2,C), and in fact algebraic quantum groups represent most of the examples treated in

7



this thesis. However, this category has the major drawback of not containing the classical
locally compact groups and thus seems too restrictive to be a basis for the theory of locally
compact quantum groups.

Inspired by Van Daele’s work and still aiming at formalizing Pontryagin’s duality in a
general framework, Voigt in [Voi0§|, proposed the notion of bornological quantum group.
Although calling for advanced analytical notions, this formalism turns out in practice to
be particularly close to Van Daele’s (this thesis is intended to be an illustration of that

fact) and it answers the problem just mentioned thanks to the following results.

Proposition 0.0.4. [Voi08, Proposition 9.2]. Let G be a Lie group. Then the algebra

C(Q) of smooth functions with compact support on G is a bornological Hopf algebra.

Theorem 0.0.5. (Montgomery and Zippin, [MZ55]). Let G' be an almost connected locally

compact group, then G is isomorphic to a projective limit of Lie groups.

These two results combined suggest that, for G an almost connected locally compact
group, the algebra C2°(G) of Bruhat smooth functions with compact support on G can

be endowed with a structure of bornological quantum group.

Semisimple quantum groups and parabolic induction The most
elementary example of a semisimple quantum group is given by SU,(2). It has been
discovered by Woronowicz, in the current context of quantized functions algebras. This
discovery has been the starting point of the theory of compact quantum groups. As
mentioned before, the quantum groups which concern us here are precisely those which
are not compact. However, it is starting from SU,(2) that we can study our elementary
example, the quantum group SL,(2,C). Indeed, the decisive remark of [PW90] was the
following: Considering the Pontryagin dual Sﬁq(\2) of SU,(2), we observe that there exists
a decomposition, using the bicrossed product construction
SL,(2,C) = SU,(2) 1 ST, (2).
This generalizes in a way the Iwasawa decomposition

SL(2,C) = SU(2) > AN,

with the major difference that in the classical case, there is a priori no close link between

the groups SU(2) and AN, while in the quantum case we can write

Moreover, being the dual of a compact quantum group SU,(2) is a discrete quantum group

and thus is analytically quite simple (it is in particular an algebraic quantum group in the



Van Daele sense). This is the reason why SL,(2,C), is algebraic, as a bicrossed product
of two algebraic quantum groups.

The notion of closed subgroup is at the heart of the induction principle, and in this
thesis we will spend a lot of time defining and studying this notion in the quantum case.
In our example SU,(2) admits for closed subgroup the torus 7' = S!, i.e., by definition of
a closed quantum subgroup, there exists a quantum group morphism between the algebras
of functions over SU,(2) and T'

7 A(SUL(2)) — A(T).

Note that in the classical case, such a morphism between the algebras of functions corre-
sponds to the restriction map over the concerned subgroup. By studying more closely the

bicrossed structure, one can then see that the map
7 ®id : A(SLy(2,C)) — A(T > ANy)

is also a *-Hopf morphism and thus realizes B, = T 1 AN, as a quantum subgroup of
SL4(2,C). Of course the choice of the notation By is not insignificant and this subgroup
has all the properties to be considered as a Borel subgroup. Furthermore, since Pon-
tryaguin duality also applies to morphisms, our morphism 7 : A(SU,(2)) — A(T) gives
rise to a morphism

7 A(T) — M(A(SU4(2))),

— —

where M (A(SU,(2))) denotes the multiplier of the non unitary algebra A(SU,(2)), see
chapter 1.

It is well known that 7' 2~ Z and it is precisely this group, which we note A,, which plays
the role of the noncompact part of the Cartan subgroup. In Chapter 5 we will see that
A, does not appear as a quantum subgroup but only as a ”quotient” group of AN,. We
discovered during this thesis work that their exists an algebra has good reasons to be
denoted A(Gy/Ny). In particular this algebra is equipped with an action on the left by
SL4(2,C) and an action on the right L, = T x A,, which will take the role of the Lévy
factor. This observation naturally leads to the emergence of a C*(L,) module £(G4/Ny),
with a representation of Cj;(SLg(2,C)). This idea of considering homogeneous spaces was
first used by Woronowicz in [Wor00], where he constructs bundles over G,/B, to define
princpal series representations. The inspiration for the construction of a G,/N, comes from
[CCH16], where the authors build the induction functor from the algebra of functions over
the homogeneous space G/N. We will show that it implements the parabolic induction
for SLq(2,C) and that we have the following result.
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Theorem 0.0.6. Consider W = Zgy the Weyl group of SL(2,C), we have
O (SLq(2,C)) 2 R(E(SLy(2,C) /N,
where R indicates the algebra of compact operators in the sense of Hilbert modules.

This gives a different point of view on a result of Monk and Voigt [MV19]. Let us
note that there exists a large category of semisimple quantum groups, including the de-
formations SLg(n,C) for any n < 2. complex semisimple quantum groups are extensively
studied in [VY20] and we introduce the definition and basic results in Chapter 1. One of
the main result of this thesis is a generalization of Theorem[0.0.6]to all complex semisimple
quantum groups.

Chapter 1 goes into detail on the generalities mentioned above and completes this
introduction. Chapter 2 presents the notions of bornological vector spaces, algebras and
finally, quantum groups. In Chapter 3 we study the link between bornological and locally
compact quantum group in the sens of [KV00], These results have been published in the
preprint [RY21]. In Chapter 4 we develop a general framework for induction and establish
the link with works of Vaes [Vae05]. Chapter 5 focuses on the example of semisimple
quantum groups. All the results of these two last chapters are presented in the preprint
[Riv19].



11



12



Contents

M1

T2

3

T4

2

R.1

P2

2.3

15

Hopt algebras, x-Hopt algebras and their representations| . . . . . . . .. .. 15
[1.1.1  Hopf algebras. Examples.| . . . . . ... ... ... ... 15
[1.1.2  s-structures and pairing| . . . . . . . . . . ... 18
[1.1.3  Modules and comodules . . . . .. . ... ... 0oL 20
[L.1.4  Structure of SU,(2)] . . . . ... ... ... o 21
Algebraic quantum groups and Pontryagin duality] . . . .. ... ... ... 22
Complex semisimple quantum groups|. . . . . . . . . . . ... ... .. ... 25
[1.3.1 Compact semisimple quantum groups and their duals| . . .. . . .. 25
[1.3.2  Definition and structure of complex semisimple quantum groups| . . 27
[1.3.3  The Borel subgroup and its characters| . . . . . . .. ... ... ... 29
[1.3.4  Principal series Representations|. . . . . . . . .. .. .. ... .... 29
Locally compact quantum groups| . . . . . . . . . .. .. ... L. 30
.41  Definitions and basicresultsf. . . . . . ... ... ... ... 31
[1.4.2  Morphisms and closed quantum subgroups| . .. ... ... ... .. 35
Bornological quantum groups| 37
Bornological Vector spaces|. . . . . . . . . . ... ... . L. 38
RIT Basicd . . . . . . o 38
[2.1.2 Convergence and Completeness| . . . . . . ... ... .. ... .... 39
[2.1.3  The category of bornological spaces| . . . .. ... ... ... .... 40
[2.1.4  The approximation property| . . . . . . . .. .. ... ... ..... 41
Bornological algebras and multipliers| . . . . .. ... ... ... ... .... 42
Bornological quantum groups| . . . . . . . ... oo 0oL 43
[2.3.1 Modular properties of the integral| . . . . ... ... ... .. .... 46
[2.3.2  Pontryagin duality| . . . . ... ... ... ... .. .. . .. 48
[2.3.3 Modular properties of the dual quantum group and Radford’s S* |
formulal . . . ... 50




14

[2.3.4  The bornological multiplicative unitary| . . . . . . ..

[2.3.5  Morphisms and closed subgroups| . . . . . ... .. ..

[3 From bornological to locally compact quantum groups|

[3.1 The left regular representation : Construction of C{(G) |

[3.2  The modular element at the C*-algebraic level . . . .. . ..

|3.3  Preliminary remarks on the modular group| . . ... ... ..

[3.4 The automorphism group associated to S?[. . . . .. ... ..
[3.5  The modular groups of C(G) and Cj(G)| . . . ... ... ..
[3.6 A Left Haar weight for (Cj(G),A)| . . .. ... ... .. ...
[3.7 C{(G) as a reduced C*-algebraic quantum group| . . . . . . .

[3.8  Von Neumann, Fourier and universal algebras| . . . . . . . ..

13.9  Homomorphisms and closed quantum subgroups| . . .. . ..

[4 Rieffel induction for bornological quantum groups|

4.1 The generalized conditional expectation| . . . . . . . ... ..

4.2 The induction module E(G)| . . . ... ... ... ...
4.3 Link with Vaes’ approach to induction| . . . . . . . . ... ..

[5 The parabolic induction module|

b.1  The quotient map| . .. ... ... ... ... ... ...,

5.2 The parabolic induction modulef. . . . . . . ... ... .. ..

5.3 Geometric presentation of the induction module|. . . . . . . .

CONTENTS



Chapter 1

Preliminaries and notations

In this chapter, we recall all the “basic notions” required to understand the context of this
thesis and introduce all the “protagonists” that we will meet all along this manuscript.
We progress from Hopf algebras to locally compact quantum groups, passing by discrete

and compact groups.

Definition 1.0.1. Let 0 < g < 1 be a real number and n be an integer, we define the

quantum number [n], as
n

[n], = -
g —q!
Note that we have lim,_,1[n], = n. The number [n], can then be seen as a quantum
deformation of the number n.

Remark 1.0.2. This notation only occurs at Example but it seems important to us to

introduce it for cultural reasons.

1.1 Hopf algebras, x-Hopf algebras and their representa-

tions

1.1.1 Hopf algebras. Examples.

We refer to [KS97, Section 1.2] for detailed definitions of algebras and coalgebras. This
Section is largely based on that reference. We give a certain number of examples that are

more or less closely related to SLy(2).

Definition 1.1.1. Let H be an associative algebra over a field K, with multiplication
pw:H®H — H and unit n : K — H such that H is also a coassociative algebra with
comultiplication A : H — H ® H and counit € : H — K, such that A and € are algebra

15



16 CHAPTER 1. PRELIMINARIES AND NOTATIONS

homomorphism. We call H is a Hopf algebra if there exists a linear map S : H — H

(called the antipide) such that the following diagram commutes.

HoH 2% . geoH
A H
H € s K i H
A 1%

11>Q§ }{ “?a&i§445 }¥>Q§ }{

Throughout this thesis, K will be the field of complex numbers C and all vector spaces
will be over C.
The fundamental examples of Hopf algebras are Hopf algebras of finite groups, as

defined in the two following examples.

Ezample 1. Let G be a finite group and consider the group algebra C[G]| = Vect{[g], g € G}
(where multiplication is given by [g] * [k] = [gk]. There exists a comultiplication A on
C[G] such that

A(lg)) = lg] @ lg], Vg € G.
Endowed with antipode S defined by S([g]) = [¢~!] and conuit such that e([g]) = 1), C[G]

is a (cocomutative) Hopf algera.

Remark 1.1.2. In reference to this example, an element = of a Hopf algebra H is called

group-like if A(z) =2 ® z.
Ezample 2. One can also consider the algebra of functions over G, C(G) = {f : G — C}

with usual pointwise multiplication. There exists a comultiplication A on C(G) such that,
A(f)(g,h) = f(gh), Vf € C(G), Vg,h € G,

where we make the identification C(G) ® C(G) = C(G x G). Here we consider antipode
S given by S(f)(g) = f(g7'), Vg € G and counit €(f) = f(e), where e is the identity
element of G. We then obtain a Hopf algebra structure on C'(G).
Denoting d, the Dirac function in element g € G, the coproduct can be given explicitly
via

A(dg) = > 6 ® b

h,keG
hk=g

This Hopf algebra is not cocomutative, as soon as G is not abelian.
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Ezample 3. Let G be an infinite discrete group, then the algebra C[G] with comultiplication
A and antipode S defined as in Example[l]is also a Hopf algebra. However C(G) cannot be
endowed with the structure defined in Example[2} indeed the identification C'(G)®C/(G) =
C(G x G) is false in this case. However ¢.(G) the algebra of finitely supported functions
can “almost” be endowed with a Hopf algebra structure and this is the starting example

of our next section.

Ezample 4. Let G be an algebraic group and consider O(G) the algebra of polynomials
over G. Then O(G) can be turned into a Hopf algebra. For example, let us describe

G = SL(2,C) with a = u},b = u},c = u} and d = u3 the matrix coefficients evaluations

x
(where u} ( B ‘Z ) =z, etc). Then the coproduct given by

Alg)=a®a+boc, Ab)=axb+bxd, (1.1)
Ale)=c®at+d®c, A(d)=c@b+d@d, (1.2)

the counit is given by
e(a) =€(d) =1, €(b) = €(c) =0, (1.3)

and antipode given by
S(a) =d, S(d) =a, S(b) =-b,5(c) = —c,

make O(SL(2,C)) a Hopf algebra.

Example 5. Let q a real number with 0 < ¢ < 1 and let O(SLy(2)) be the associative

unital algebra with generators a, b, c and d and relations

ab = gba, ac = qca, bd = qdb, cd = qdc, bc = cb,
ad—da = (¢ — ¢~ )be,
ad — qbc = 1.
This algebra is usually called the algebra of polynomials over the quantum group SLg(2).
Endowed with the coproduct given by relations (1) and (2), counit with relations (3) and

antipode
S(a) =d, S(d) =a, S(b) = —q~'b,5(c) = —qe.

With this structure, O,(SLy(2)) is a Hopf algebra.
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Ezample 6. Let g be a Lie algebra and U(g) be its enveloping algebra. Then there exists

a Hopf algebra structure given by
AX)=X®1+10X, ¢X)=0, S(X)=-X, VX €g.

Example 7. Let Uy(slz) be the associative algebra with generators E, F' and K such that
K is invertible and with relations
K—-K!
KEK ' =¢E, KFK ' =q*F, [E,F] = ——.
q—q
There exists a Hopf algebra structure on U, (sly) given by

AE)=E®@K+1®FE, A(F)=F1+K'9oF AK)=K®K,
S(K)=K!', S(E)y=—-EK™!, S(F)=—KF, ¢(K)=1, ¢(E) =¢(F) =0.

This Hopf algebra is seen as a quantum deformation (with parameter ¢) of the classical
U(sl2(C)). Roughly speaking one can start with E,F and H the usual generators of
U(sl2(C)) and by setting the formal element K = ¢/, one obtain the preceeding relations

K-K~! _ quq_H : «@ : H” h
g T T gog-T Ccan be considered as “tending to when g goes to

and the element
0.

Definition 1.1.3. A Hopf morphism between two Hopf algebras A and B is an algebra

and coalgebra homomrphism.

Ezample 8. We denote by O(T') the algebra of polynomials over the circle T and z a
generator, that is such that O(T) = C[z, 27 !]. We consider m : O(SLy(2)) — O(T) the
Hopf algebra homomorphism such that

m(a) =z, w(d) = 271, n(b) =n(c) =0.
This morphism is surjective and we then say that it identifies T" as a quantum subgroup of
SLg(2).
1.1.2 x-structures and pairing

Definition 1.1.4. A *x-Hopf algebra is a Hopf algebra A together with an inovolution *
such that A is a x-algebra and the morphisms A and € are x-morphisms, that is A(a*) =
A(a)* (where the involution in H ® H is given by (a®b)* = a* @ b* and e(a*) = @, for all
a€ H.

One can check that in a *-Hopf algebra A we have for all a € A :

S(S(a)")* = a.
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Ezample 9. Let G be a finite group, the Hopf algebra C[G] endowed with involution simply
given by [g]* = [g7}] for all g € G makes C[G] into a *-Hopf algebra. One can also turn
C(G) into a x-Hopf algebra by defining

fr=1 rec),

the pointwise conjugation.

Remark 1.1.5. By analogy with this classical case, we often refers to the x-involution via
the notation f for an element f of a Hopf algebra A and this in particular when A is seen

as an algebra of “functions over a quantum group”.

Ezample 10. The Hopf algebra O(SU,(2)), endowed with #-structure given by
a*=¢, b =—qc, ¢ =—q¢te, df =a,

is a x-Hopf algebra.

Remark 1.1.6. Later in this work we shall use the notation A(SU,(2)) instead of O(SU,(2)).
What motivates this choice is the fact that SU,(2) is compact, i.e., O(SU,(2)) is unital.
We will see that A(SU,(2)) can be then considered as an algebraic quantum group and

we often refer to algebraic quantum groups via notation of type A(G).

Ezxample 11. The Hopf algebra U, (sl2) also admits different possible *-structures (in one to
one correspondence with those of O(SLy(2))), but we just mention Uy (suz), with involution
given by

E*=FK, F*=K 'E, K* = K.

Definition 1.1.7. Let (A, A, S,€) with involution denoted a — @ and (B,A,S’,é) with
involution denoted x — x* be two x-Hopf algebras. A Hopf x-pairing between A and B is
a bilinear map (-,-) : B x A — C such that for all a,b € A and x,y € B we have

(zy,a) = (z ®y,Aa)) (A(z),a ®b) = (2,ba)
é(z) = (z,1) (1,0) = e(a)
(S(x),a) = (z,5"(a)) (7' (x),a) = (x,5(a))
(z*,a) = (m,S(a)), (z,@) = (sfl(x)*,a)

Remark 1.1.8. We are using the convention of [VY20] in which the coproduct on B is dual
to the opposite product of A. In [KS97], this is refered as a skew-paring.

Ezample 12. Let G be a a finite group. There exists a dual pairing between C(G) and
C[G] given by
(l9]. f) = f(9), Vg € G, f € C(G).
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Ezxample 13. The *-Hopf algebras U,(suz) and O(SU,(2)) are dually paired via
(K.a)=q ', (K.d) =q, (B,c)=q¢"% (F.b)=q""?
the pairing between the other combinations of generators being 0.

Definition 1.1.9. A functional on A is called left invariant (resp. right invariant) if it
satisfies (L @ ¢) o Aa) = ¢(a)l (resp. (p @ 1) o Aa) = ¢(a)l) for all a € A.
If A is a x-Hopf algebra and

¢(a*a) >0, Yae A, a#0,

we say that ¢ is a left (resp. right) Haar functionnal.

Ezample 14. Consider O(T) = C[z,27'] as in Example [S| We define ¢7 as the functional
such that ¢r(1) = 1 and ¢7(2") = 0 for all n # 0. This defines a Haar functional on
o(T).

1.1.3 Modules and comodules
Let A be a Hopf algebra

Definition 1.1.10. Let V be a vector space.

A (left) A-module structure on 'V is given by a linear map p : AQV — V where we usually
write p(a ® v) = a - v, where a € A,v € V such that for a,b € A and v € V', we have
(ab) - v=a-(b-v).

A (left) A-comodule structure on V is given by a linear map o : V.— ARV, called a
coaction, such that

(A®id)(a(v)) = (id ® a)(a(v)), Vv e V.
We usually use Sweedler notations for coactions by writing a(v) = v(_1) ® v(g).

Definition 1.1.11. Suppose now that A is a *-Hopf algebra and V' is a Hilbert space with
inner product (-,-).

The space V is said to be a unitary module if
(a-v,w)y = (v,a*-w), Yaec A, Yo,weV.
The space V is said to be a unitary comodule if

vi_y) (Vo) w) = S Hw(-ny) (v, wee) -

Remark 1.1.12. We generally call a module a representation of A, and a comodule a

corepresentation of A.
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Ezample 15. (Regular representation and corepresentation). Let A be a Hopf algebra,
then A can be seen as a module with multiplication p, where we have a - b = ab. And a

comodule with coaction A, where we have a_1) ® a) = A(a).

Ezxample 16. Consider the *-Hopf algebra U, (suz) defined in Example [11| with its genera-
tors E, F and K. Let then [ be a nonnegative integer or half-integer and let w € {41, —1}.
Let V; be a (21 + 1)-dimensional vector space with basis e,,, m = —I, =l +1,...,] where
we set e;41 = e_;_1 = 0. Define operators T,,;(K), T, (E), T,,;(F) acting on V; by

Toa(K)em = w0 em, Ta(E)em = (L= mlgll + m + 1)) e,
Tt (F)em = w([l +m]g[l —m + 1)) e 1.
Then T, defines an algebra homomorphism 7;,; : U,(suz) — L£(V}). Furthermore, endowed
with inner product given by (e;, ej) = d; ;, Vi becomes a unitary representation of U,(suz).

The family (V7Twl)le§, wel{+1,-1

up to unitary equivalence.

y constitute all the irreducible representations of U, (suz),

Proposition 1.1.13. Let A and B be two paired *-Hopf algebras and let « be a corepre-

sentation of A on a space V. There exists a representation of B on V' given by

a-v=uv@)(a,S"(v_1))-

Remark 1.1.14. In some cases, there exists a way to build a corepresentation of B from a
representation of A. In this case we say that the representation in integrable. In particu-
lar the representations (77;); are precisely the integrable representations of U,(suz) with
respect to its pairing with O(SLy(2,R)).

1.1.4 Structure of SU,(2)

From now on, we always consider SL,(2) in its real form SU,(2). Let | € 5, we write

T; = T};. Consider the functional on Ugy(sus) of the form

X = (¢, Ti(X)E),
where £ € V; and ¢’ € V;*. This functional is denoted by (¢'| - |€) and refered as the

matrix coefficient of the representation 7T} associated to £ and &’. The space of all matrix
coefficients of the representation 7; is naturally isomorphic to V;* ® V;. Furthermore, this

space can be endowed with the coalgebra structure given by duality with the product of
Uq(suz). The element A((&'] - €)) : Ug(suz) ® Uy(suz) — C is such that

A(ET-IENX ®Y) = (] - [§) (XY).

One also has a counit given by (&'| - [§) — (&', £). One now states the Peter-Weyl theorem
for SU,(2).
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Theorem 1.1.15. We have coalgebra homomorphisms A(SU,y(2)) — V;*®@V, for alll € §
and the resulting map
A(SU,(2)) = PV ® Vi
1€l
18 an isomorphism.
One can endow @le§ V¥ ® V; with the algebra structure of A(SU,(2)) trough this

isomorphism and it can also be recovered by duality with Uq(sug). Let 11,15 € % and
(€]-16) € Vi © Viy, (| - In) € Vi2 @ Vi, for X € Uy (sua) we have

([(&1-1&) - (' - Im)(X) = (& @' [(T), © T, )(X)|E @n)
= <§/ ®77/‘(T111 ® Tllz)(A<X))|§ ® 77>'

Remark 1.1.16. e T}, ®Tj, is by definition the morphism Uy (suz) — L(V;, ®V},) defined
by (11, ® Ti,)(X) = (11, ® Ti, ) (A(X)).

e The fact that ((¢'|-|€) - (/] - |n)) is indeed a sum of matrix coefficients rests on the
fact that the representation V;, ® Vi, of U,(suz) can be decomposed as a direct sum
of irreducible representations.

The antipode can be expressed for any matrix coefficient (¢'| - (&) by S((¢'|-[€)) =
<£’ |S—L()|€ > To finish, we remark that from the element eg of Vj one can build the matrix
coefficient X +— (eg, Tp(X)eg). One see that its coincides with the counit of U,(suz) and
that this is a unital element with respect to the product mentionned above.

One can now easily build a Haar measure on SU,(2). For this one defines the funcitonal
bsu,(2) on @le§ V* ® V defined by

* dsy,2)(l) =1,
® dsu,2)(f) =0, for all f € V" ®V, where [ # 0.

The invariance propery is immediate since V;* @ V} are coalgebras and thus (id ® ¢gp,(2))
always vanishes on A(V* ® V}) as soon as [ # 0.

Theorem 1.1.17. ¢gy,(2) seen as a functional of A(SUy(2)), is a Haar functional.

1.2 Algebraic quantum groups and Pontryagin duality

In Example [3] we considered a discrete group G and noticed that the suitable algebra to
associate with G was ¢.(G). In this case we still have ¢.(G X G) = ¢.(G) ®@ c.(G). However
if one defines the coproduct A through

A(f)(gvh) = f(gh)¢ g,h € G,
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we see that A(f) cannot be finitely supported (unless f = 0). For example if f = §. where
e is the identity element then the support of A(f) is {(g,¢7!), g € G} which is infinite. To
overcome this issue, we consider the notion of multiplier Hopf algebra, due to Van Daele
[Dae9q].

In this section we consider an associative and algebra A with non-degenerate product.

One also supposes that A is essential i.e., the multiplication induces an isomorphism

A® 4 A

Definition 1.2.1. A left multiplier of A is a linear map p : A — A such that p(ab) =
p(a)bVa,b e A. A right multiplier of A is a linear map p : A — A such that p(ab) = ap(b)
Va,b € A. A multiplier of A is a pair (p1,p2) of a left and right multiplier so that
p2(a)b = apy(b) Va,b € A.

When p; and py are linear maps on A satisfying p2(a)b = api(b) Va,b € A, then
already (p1, p2) is a multiplier. We denote by M (.A) the set of all multipliers of .A. The

set M(A) is endowed with its natural (unital) algebra structure.

Remark 1.2.2. Let B be an essential and non-degenerate algebra. Any morphism 7 : A —
B can be (uniquely) extended to a morphism 7 : M (A) — M (B).

Ezxample 17. If A is unital then M(A) = A.
Ezample 18. Let X be a infinite discrete set. Then M (c.(X)) = ¢(X), the algebra of all

functions on X.

Definition 1.2.3. Let us consider the space A® A with is a natural algebra structure. A
comultiplication is a homomorphism A : A — M(A® A) such that :

1. A(a)(1®0b) and (a ® 1)A(b) are in A® A for all a,b € A,
2. (a®121) (A1) (ADG)(1®e) =012 A)((a®1)A(D)(1®1®c) for all a,b,c € A.

Definition 1.2.4. The following maps AQ M(A — A® A),

Y:a®b— (Aa)(b® 1),
pr:a®b— (1®a)(Ab)

and

Y:a®b— (Aa)(1®D),
pr:a®b— (a®1)(Ab),

are called the Galois maps associated to A.
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Definition 1.2.5. An algebra A endowed with a comultiplication A and such that the
Galois maps are isomorphisms of A® A is called a (regular) multiplier Hopf algebra.

Remark 1.2.6. A multiplier Hopf algebra always has a counit € and an antipode S. However
we cannot define them as we did for Hopf algebras. In the context of multiplier Hopf

algebras, the defining properties of the counit and the antipode are

(e ®id)(A(a)(1 ® b)) = ab,
(id®e€)((a® 1)A(b)) = ab,

and

u(S ®id)(A(a)(1® b)) = ()b,
u(id ® $)((a ® DA(b)) = e(b)a,

for all a,b € A and where p: A ® A — A designates the multiplication.
One can directly extend the notion of Haar functional from Definition to multi-

plier algebras. One can also easily the notion of multiplier x-Hopf algebra with a definition
similar to that of Definition [.1.4l

Definition 1.2.7. If A is a multiplier x-Hopf algebra equipped with a Haar functional,

we say that A is an algebraic quantum group.

Definition 1.2.8. Let A be an algebraic quantum group. If A is unital one says that A

is a compact quantum group. If A contains an element § such that
da = €(a)d, Va € A,
one says that A is a discrete quantum group.

Remark 1.2.9. Compact (and discrete) quantum groups can also be presented in another
formalism, developped by [Wor87], based on the utilisation of C*-algebras. The algebras
studied in this context are analogous to C(G), the C*-algebra of continuous functions over

a compact group G.

Let A be an algebraic quantum group with Haar functional ¢. We define A as the set
of functionals on A of the form ¢(- a),a € A. We have a pairing between A and A given
by

(¢(- a),b) = ¢(ba), Va,be A.

Through this pairing, A can be endowed with a multiplier *-Hopf algebra structure, dual
to that of A. Furthermore, with respect to this structure, the functional on A given by
¢(- a) — €(a) is a Haar functional. Thus A is an algebraic quantum group, called the dual

quantum group of A.
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Theorem 1.2.10. [Dae98] The double quantum dual A is isomorphic to A as an algebraic

quantum group.

Ezample 19. Let G be an abelian discrete group. The multiplier *-Hopf algebra c.(G)
endowed with the counting measure of GG is an algebraic quantum group for which the
quantum dual is (’)(G’), where G is the Pontryagin dual of G. In the context of algebraic
quantum groups we will typically use the notation A(G) = c.(G) and A(G) = O(Q).

Example 20. The x-Hopf algebra A(SU,(2)), endowed with its Haar functional defined
in [1.1.17] directly satisfies the axioms of a multiplier Hopf algebra. Its quantum dual is

T

denoted A(SU,(2)). Let us recall that

A(SU,(2)) = @ Vi* @ V.

N
e

—

One can explicitely describe the algebra structure of A(SU,(2)) via the following isomor-
phism of algebras
AST,®) = @ L)
1€l

The coproduct, however, is harder to describe explicitly.

The formalism of algebraic quantum groups is a simple and elegant alternative to the
more powerful and technical framework of locally compact quantum groups (see Section

1.4). However it does not apply to many classical groups.

Ezxample 21. Consider the group R. There does not exist an algebra of functions over
the locally compact group R which can be endowed with an algebraic quantum group
structure. The same applies for any locally compact group which is neither discrete nor
compact. The notion of locally compact quantum group can be an answer to this issue but

we will see that it can also be overcome with the notion of bornological quantum group.

1.3 Complex semisimple quantum groups

1.3.1 Compact semisimple quantum groups and their duals

Let g be a complex semisimple Lie algebra. We consider U(]]R(E), the quantized universal
enveloping algebra of the Lie algebra £ of the compact real form K of the simply connected
group G corresponding to g [VY20, Section 3.3]. We denote by P the weight lattice
associated to g. For all A € P, the element Ky € UF(t) verifies

A(K/\):K)\®K>\, K;:KA.
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We denote by p the half-sum of positive roots. The Hopf *-algebra generated by the
(Kx)aep is denoted by UF(t). The Hopf algebra UF(t) is commutative and cocomutative.
In fact it is isomorphic to the algebraic quantum group C[P]. By Pontryagin duality it is
isomorphic to ¢.(P) where P is a torus that we note 7.

We recall A(K,) is defined as the set of all matrix coefficients of finite dimensional
U (€)-modules. We have A(K,) C U¥(€)*. Then A(K,) is a *-Hopf algebra and we have

A(Ky) = P End(V(n)",

uePt

where V(1) is the highest weight U}f(?)—module associated with p.
The Hopf *-algebra A(T") = C[P] is a sub Hopf algebra of U(]IR(’:)*. A(T) is spanned by
the elements
e Ky e g,

where p is an element of P and (u, \) denotes the usual pairing on h*, normalized so that
(o, ) = 2 for all short root a. We write (e#, Ky) = ¢*». We denote by 77 the Hopf
*-morphism 77 : A(K,) — A(T') induced by the restriction map UqR(E)* — UC]IR(t)*. We
denote by ¢7 the Haar functional on A(7T) such that ¢r(1) = 1.

As in the previous section, one can define a Haar functional ¢, on A(K,) that turns
A(K,) into an algebraic quantum group. The dual quantum group A(I/(\q) of A(K,) has

the following algebra structure

A(K,) = @D End(V(u)).

ucPt

We denote by 1/K\q the element id € End(V'(0)). We have chosen this notation because this
element happen to be the Fourier transform of the unital element 1g, € A(K,). We have

I;;f::(ﬁa(f)IE;,

for all f € .A(I/(\q) We denote by ¢ the right invariant functional on A(I/(\(]) such that
q
¢ (k) = 1.

Remark 1.3.1. The functional ¢ = can in fact be defined as ¢= : §(a) — €k, (a), where
q q

a€ A(K,) and § : A(K,) = A(K,) denotes the Fourier transform. One also has

1 (§(@) = or, (a).

We introduce some further notation. Note that A(T") can be identified as the algebra

of polynomials over T" a group isomorphic to a maximal torus in K. We denote by A, its
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Pontryagin dual T, which is a classical group but we write A, for a reason that will be

detailled in Chapter 5. In fact there is a natural isomorphism A, = P. Finally, we write
Ly=Tx A,

We also write A(A,) and A(A, x T') for the associated algebras of functions.

To finish we remark that we have K, € M (A(I/(\q)) for all A\ € P. Explicitly let
T =) ,ep+ Ty €, one can set Knz =3 p+ Khzy and 2K\ = cp+(2,K)). One can
also see that K € M(A(T')). More generally for any A € h* we can define Ky € A(T)*
by (Ky,e") = ¢ M and then Ky € A(K,)* by (Ky,a) = (K, 7r(a)) for all a € A(K,).
Moreover we have Ky = K if and only if A — X € ih~1QY where h = % and QV
denotes the coroot lattice, see [VY20), Section 3.3.1] for details. Thus we have a family of

group-like elements K € M(.A(I/(\q)) indexed by A € by :=b*/ih 1 Q.

1.3.2 Definition and structure of complex semisimple quantum groups

Let K, be a compact semisimple quantum group. We will use the notation A(K,) for

—

the algebra of functions on K, and D(K,) = A(K,) for the dual algebraic quantum
group. Through the Fourier map, we have an identification D(K,) = A(K,). (A more
specific meaning will be given to the notation D(G) in later chapters when we consider a
bornological quantum group G). We define the associated complex semisimple quantum

group as the Drinfeld double
Gy = K, < [/(\q,

with respect to the dual pairing between A(K,) and A(l/(\(l).

Precisely, this means that we define the algebra
A(Gg) = A(Kq) © A(K,)
equipped with coproduct defined by
Ag, = ad(Wk,)32 0 Yoz 0 (Ak, ® qu),

where Wi, designates the multiplicative unitary associated to A(K,) and X is the flip
map. One can also express the antipode and counit of A(G,) as follows. Let f® x €
A(K,) ® D(K,).

Sa,(f ® ) = Wil(S(f) ® 8(2))Wk, = (S ® 8) (Wi, (f @ 2)Wp)),

€G, = €K, X €K,
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This structure can be made more explicit by the following consideration. Let (ug;) € A(K;)

denote the matrix coefficient associated to a weight basis of an irreducible representation

~

o of Kq and let (wf;) € A(Ky) denote the elements of the dual basis. We have

Wi, = ufowy, Wgl=3"Suf)euwf,

i,j,0 i,5,0
where the sums run over all equivalent classes of irreducible representations. In practice

we only write Wi, = uf; ® w;. As a consequence, for an element a ® f € A(G,) we have

Ag,(a® f) = ap) @ W fywrs @ ufam)S(uys) @ fia), (1.4)
Sc,(a® f) = ui;Srk,(a)S(uys) © Wi Se- (fwys: (1.5)

Proposition 1.3.2. Consider = the right invariant functional on A(I/(\CI) such that
q
1#[?(1(1;([1) = 1. A positive left and right invariant functional on A(Gy) is given by

b (f ©2) = 6, () © Ve (),
for for e A(K,) @ D(K,).

For a proof, see [VY20, Proposition 4.19].
The dual D(G,) of the algebraic quantum group A(G,) is given by

D(Gq) = D(Kq) > A(Ky),

equipped with tensor product comultiplication. The multiplication of two elements x ® f,
y®g € D(K,) = A(K,) is given by

(x5 f).(y =1 9) = 2(yys Fa)v2) 2 fo) (SW)s f3))g-
The pairing between D(Gy) and A(G,) is given by
(y>ag, f@x) = (y, )z, 5 (9))),

using the skew-pairing between A(K,) and D(K,), see [VY20, p. 219]. Furthermore, the
functional ¢4 on D(G,) given by
q

06 (2 ® f) = 6 (1) ® 0, (1), = ® [ € D(K,) 03 A(K,),

is a left Haar integral.

For reference, we record also that the C*-algebra of functions on Gy is given by

CO(Gq) = C(Kq)®0*(Kq),
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where the C*-algebras C(K,) and C*(K,) are obtained by closure with respect to the
regular representations on the Hilbert space LZ(Kq). We omit the details here, which will
be discussed fully in Chapter 3. The structure of C*(G,) is harder to describe because
of the twisted product in D(K,) >a A(K,). In this thesis we will be only interested in
tempered representations of Gy, which are precisely the principal series representations.
In Chapter 5, we will give an explicit expression of the reduced C*-algebra C;(G,) in

terms of operator algebras on those representations.

1.3.3 The Borel subgroup and its characters

The quantum Borel subgroup B, of Gy is defined as B, = T I/(\q. Specifically, we
consider the element (77 ®id)(Wx,) € M(A(T) @ D(K,)). It allows us to define a twisted

coproduct on the tensor algebra

Explicitly we have
Ap,(a® f) = an) @ wj; fayws, @ mr(uiS(u)))ae) @ fo),
SB,(a @ f) = mr(uS(uy,))Sr(a) @ wi St (f)w:,

For all a ® f € A(By). One can check that the map

mr ®id 1 A(Gy) = A(By)

is a surjective morphism of multiplier Hopf algebra. Thus, this map identifies B, as a
closed quantum subgroup of Gj,.

Finally, let us recall what are the characters of B;. We define h; = h* /ih~1Q" The
characters of D(B,) = D(T) 1 A(K,) are indexed by (u, \) € P x by and defined as

Xu,)\(x > f) = (euv JJ)(KA, f)

1.3.4 Principal series Representations

As in the classical case, principal series representations of G, are induced from the charac-
ters of the Borel subgroup By. Let (p1, ) € P x t*. In the quantum case, as in the classical
case, one also has the two usual pictures for the induced representation associated to the

parameters (4, A).
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The noncompact Picture. We first realise the space of the principal series represen-
tation associated to (i, A) as a subspace of M(A(G)):

A3 Cpup = {€ € M(A(G)) | (id ®75,)Ac, () = € ® (¢4 @ Kapia)}.

7

Note that this is the analog of the “Bj-equivariant functions over G,”, relative to the
character given by (i, A). As in the classical case, the added term Ky, is here to ensure
the unitary of the representation.
The restriction of Ag, to Indgz C,,,) induces a linear map Indgz Cpux — Hom g, (A(Gy), Indgg Cup®
A(G,)) and this is called a left coaction of A(G) on InngCu,)\. To endow InngCu,A with

a scalar product, we define the restriction map, denoted res,
res = id ® € : Ind;'Cy, » — A(K,).
The scalar product of two elements f, g € Indgz C,,x is given by

(f:9) = ¢(res(f)res(g)).

This scalar product turns Indgg C,, into a unitary corepresentation of A(Gy).

The compact Picture. Note that the map res is injective ([VY20, Lemma 5.18]) and
thus one can simplify the picture of this representation by considering it on the image of

res. It turns out that this space is precisely
L(Eun) ={§ € A(Ky) | (id@7r)(A(S)) = @€}

Once again, we refer to [VY20, Lemma 5.18]. One can also describe the inverse isomor-
phism ext : I'(E,\) — Inng(CM?)\, ext(§) = £ ® Kapn. Then one can endow I'(€,)) with
a structure of unitary representation through this isomorphism. The coaction of A(G,)

on I'(€,,)) is given by
¢ (id®id ®id ® &)(Ag, (€ ® Kapir))

Note that there is another approach to build this representation that we don’t discuss
here. The space I'(£,,), is naturally endowed with a structure of Yetter-Drinfeld module
for A(K,) ([VY20, 5.4.1]), which corresponds to the above coaction of the Drinfeld double
A(Gy) on (&, ).

1.4 Locally compact quantum groups

In the section we briefly recall the definition of a locally compact quantum group that can
be found in [KV00] and complements on weight theory can be found in [KV99]. Let G be
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a locally compact group, as we said earlier in this section, there is no algebra of functions
over G with a structure of algebraic quantum groups. Luckily, the C*-algebra Cy(G) has

good properties which in particular allow to define a coproduct
A Co(G) = M(Co(G)2Co(G)),

where ® refers to the spatial tensor product of C*-algebras and M designates the algebra
of continuous multipliers.

However as soon as GG is not compact, a Haar measure on GG does not lead to a well
defined functional over Cy(G) and this issue is at the root of the difficulty of defining
a locally compact quantum group. This problem is nevertheless circumvented using the
notion of weight.

1.4.1 Definitions and basic results

Definition 1.4.1. Let A be a C*-algebra, and let A>g denote the set of positive elements
of A. A weight on A is a function ¢ : A>o — [0,00] such that

e ¢(a1 + az) = ¢(a1) + ¢(az), a1,a2 € Ao and
o O(r-a)=r-¢(a), r€0,00), a € Asp.
Let ¢ be a weight on a C*-algebra A. We use the following notation:

. M; = {a € A>o | ¢(a) < oo}, which is called the set of all positive ¢-integrable
elements of A.

o Ny :={a € A| ¢(a*a) < oo}, which is called the set of all ¢-square-integrable
elements of A.

e My := Span /\/l;f =N ;/\@, which is called the set of all ¢-integrable elements of A.
Let ¢ be a weight on a C*-algebra A.
o We say that ¢ is faithful if and only if ¢(a) # 0 for each non-zero a € A>g

e We say that ¢ is lower semi-continuous if and only if the set {a € A>g | ¢(a) < A}
is a closed subset of A for every \ € [0, c0).

o We say that ¢ is densely defined if and only if M; is a dense subset of A, or
equivalently, if and only if either N or My is a dense subset of A.

o We say that ¢ is proper if and only if it is non-zero, lower semi-continuous and

densely defined.
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Definition 1.4.2. Consider a weight ¢ on a C*-algebra A. A GNS construction for ¢ is
a triple (Hy, mp, Ay) such that

e Hy is a Hilbert space

o Ay is a linear map from Ny into Hy such that

1. Ap(Ny) is dense in Hy
2. We have for every a,b € Ny that (Ay(a), Ay(D)) = ¢(b*a)

o 7, is a representation of A on Hy such that m(a)Ay(b) = Ag(ad), for every a € A
and b € Ny.

Definition 1.4.3. Let A be a C*-algebra. A one-parameter group on A is a family o =
(a)ter of *-automorphisms of A that satisfies as 0 oy = agyy for all s,t € R. We also

impose that for every a € A, the mapping R — A defined by t — «ay(a) is continuous.

Let us recall that such a one-parameter group « admits an analytic extension, that is
there exists a family o = («;),ec such that for all z € C, a, is a map D, C A — A which
verifies that for all a € A, a,(a) = f(z), where z — f(z) is the analytic extension of the
map t — a¢(a). Furthermore the set N,cc D, is dense in A.

Definition 1.4.4. Let A be a C*-algebra and ¢ : A>¢ — [0, 00| a weight on A. We say that
¢ is a K.M.S. weight on A if and only if ¢ is a proper weight on A and there exists a norm-
continuous one-parameter group (o¢)ier on A such that ¢ is invariant under o, i.e., oo, =
¢ for allt € R, and for every a € Dom(o;/), we have ¢p(a*a) = ¢(0;/2(a)(0i/2(a))®).

Definition 1.4.5. A C*-algebraic (reduced) locally compact quantum group is a pair
(A, A), where A is a C*-algebra and A : A — M(A®A) is a non-degenerate x-homomorphism,

that satisfies the following conditions:

e The comultiplication A is coassociative.

o The sets {w®id(A(a)) | w € A*, a€ A} and {idRw(A(a)) | w € A*, a € A} are

dense linear subspaces of A.

e There exists a faithful K.M.S. weight ¢ on A that is left-invariant, i.e., p(w ® id(A(a))) =
W(1aray) - #(a) for allw € A* and a € Mz Similarly to the previous sections, ¢ is
then called a left Haar state.

o There exists a faithful K.M.S. weight 1) on A that is right-invariant, i.e., ¥ (id @ w(A(a))) =
W(1ar(a)) - ¥(a) for allw € A* and a € /\/l;f; Y is called a right Haar state.



1.4. LOCALLY COMPACT QUANTUM GROUPS 33

The definition of a locally compact group can be weakened by introducing the notion

of approximate KMS weight. Let (Hg, 74, Ag) a GNS construction for ¢.

Definition 1.4.6. Consider a vector v € Hy, then we say that v is right bounded with
respect to (Hy,mg, Ny) if there exists a number M > 0 such that ||my(z)v|] < M|[Ay(2)||
for all x € Ny.

Definition 1.4.7. We say that ¢ is approximately KMS is the subspace of right bounded

elements is dense in Hy.

Remark 1.4.8. If one replace KMS weight by approximately KMS in Definition [I.4.5 one

also obtains a reduced locally compact quantum group.

Examples of locally compact quantum groups can be obtain from algebraic quantum
groups. We recall that the main result of [Kus02] is the following. Consider an algebraic
quantum group A. One can build a Hilbert space H and a unitary representation of
m : A — B(H) such that the completion CjA of m(A) in B(H) can be endowed with a

comultiplication A which extends to comultiplication of A such that:
Theorem 1.4.9. The pair (CjA, A) is a locally compact quantum group.

Remark 1.4.10. There also exist a definition of von Neumann algebraic locally compact
quantum group very similar to the C*-algebraic one and that we do not recall here (see
[KV00]. These two definitions are thus equivalent theoretically, but each of these two

formalisms can be useful for efficiently formulating definitions and results.

For the rest of this section (A, A) designates a locally compact quantum group, ¢ a
left Haar weight on A, (Hg, 74, Ay) the GNS construction associated to ¢ and (M, A) the
von Neumann algebraic quantum group associated to (A, A). We recall that M is the

strong closure in B(H) of m4(A).

Definition 1.4.11. Let H be a Hilbert space. A multiplicative unitary is a unitary oper-
ator W of HQH such that

WasWia = WiaWizWoas.
Proposition 1.4.12. There exists a unique operator W on H¢®H¢ that satisfies
W(Ap@Ag)(A(y)(x @ 1)) = A(z) @ Aly), Y,y € N
W is a multiplicative unitary.

Proposition 1.4.13. Let x € M, we have A(z) = W*(1 @ z)W.
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Proposition 1.4.14. The C*-algebra w(A) can be recovered as the norm closure of
{({d&w)(W), w € B(H).}.

Definition 1.4.15. We define the dual quantum group of (A, A) as the pair (A, A)
defined by

e A is the norm closure of {(w®id)(W), w € B(H).},
o Alz) =SW(z®1)W*S, z € A,
where ¥ is the flip map on H¢®H¢.

Remark 1.4.16. There exists a third definition of quantum group, that starts with the
definition of a multiplicative unitary. That is we first suppose the existence of such an
operator, and we build an algebra with coproduct in a second step as in Proposition|1.4.14
See [Worl2].

The authors of [KV00] proved the Pontryagin duality in this setting. We mention the

following result without specifying precisely what the term “isomorphic” refers to.

Theorem 1.4.17. The double quantum dual (A, A) is isomorphic to the original quantum
group (A, A).

Definition 1.4.18. Let B be a C*-algebra. A unitary corepresentation of (4,A) on a
C*-B-module £ is a unitary element X € L(ARE) satisfying

(A®id)(X) = X13X03.

We finish this section by introducing the notion of universal C*-algebra of a quantum

group and the associated definitions. This notion has been developed in [Kus01].

Definition 1.4.19. The Fourier algebra of A, denoted by L*(A) is a subspace of A* and
is defined the norm closure in B(H) of

{agb™| a,b € Ny},
where (apb*)(z) = ¢(axdb*),x € A.

Theorem 1.4.20. The algebra L'(A) admits a universal enveloping C*-algebra denoted
A, and there exists a comultiplication A, on A, that turns (Ay, Ay) into a (full) locally

compact quantum group.
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There is a surjective *~homomorphism A : A* — A, called the reqular representation of
A" which intertwinnes the coproducts. Moreover there exists an element W* € M (A®fl“)
called the universal multiplicative unitary satisfying analogous properties to multiplicative
unitary. For details see [Kus01, [DKSS12].

Notation : For the rest of this manuscript, a locally compact quantum group will be
refered to by a notation of type G and we then will denote Cfj(G) its reduced C*-algebraic
version, C¥(G) the universal one, L°°(G) its von Neumann algebra and L*(G) N LY(G)*
the Fourier algebra. Furthermore, we introduce the notations C}(G), C!(G) and L(G)

~ A~ ~

that stand respectively for C}(G), C§(G) and L*=(G).

1.4.2 Morphisms and closed quantum subgroups

Here we present the notion of morphism between locally compact quantum groups. We
will see that there is a simpler notion of morphisms in the context of bornological quantum
groups and that this definition is compatible with the following (see Section [2.3.5)).

Definition-Proposition 1.4.21. [MRWI12] Let G and H be locally compact quantum

groups. The following objects are in one to one correspondence :

1. A homomorphism from G and H, that is, a morphism between the universal func-

tion algebras

71 C(G) — M(Cy(H))
which intertwines the coproducts.

2. A bicharacter from G and H, that is

V e M(Ch(H) ® C5(G))

satisfying

(Ag®e)V = Vi3Vas, (LOAR)V = Vi3Via.

Note that in our conventions, the legs of the bicharacter are flipped with respect to
those of [MRW12], [DKSS12]. The following definition of a closed quantum subgroup is due
to Vaes [Vae05]. There is another possible definition due to Woronowicz which is weaker
that that of Vaes, see [DKSS12] Definition 3.2 and Theorem 3.5].
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Definition 1.4.22. Let G be locally compact quantum groups. A closed quantum subgroup
of G in the sense of Vaes is a locally compact quantum group H which fits into a commuting
diagram

i (H) — M(C3(G))

)\Hl l/\G

L(H) —=— L(G)

where the top arrow is an essential morphism of Hopf C*-algebras, the bottom arrow is an
ingective normal unital x-homomorphism, and the vertical maps are the reqular represen-

tations.



Chapter 2

Bornological quantum groups

As we said in introduction, Voigt proposed and succeeded to use bornological analysis
to overcome the issue raised in Example and build an axiomatic for quantum groups
almost as simple as these of algebraic quantum groups. In particular, by endowing the
algebra C2°(G) with the bornology coming from its structure of LF-space one can build
what he defined as a bornological quantum group. Furthermore, the category of bornolog-
ical quantum groups contains the algebraic ones. Voigt’s framework is then an attractive
generalisation of Van Daele’s framework. However, the case where a bornological quantum
group A is endowed with a x-structure hasn’t been described yet. Thus we propose to
slightly modify the definition of a bornological quantum group by adding the hypothesis
of a #-structure. This will allow us to study the corresponding locally compact quantum

groups is the sense of [KV00].

If G is a general locally compact group, it is a priori not easy to find an algebra of
functions over G that satisfies the axioms of a bornological quantum group. In particular
algebras of type C.(G) are not compatible with the bornological tensor product (a notion
very closed to the topological projective tensor product). However, we have the following
structure theorem. This is cited in [Mey04a, Theorem 2.1] and due to Montgomery and
Zippin [MZ55].

Theorem 2.0.1. Let G be an almost connected locally compact group, then G is isomor-

phic to a projective limit of Lie groups.

One benefit we have with the bornological framework is the compatibility with in-
ductive limits. Since that for any Lie group H, one can endow C2°(H) with the bornol-
ogy associated to its LF-space structure, we can get a natural bornological structure on

an algebra associated to G. We also refer to [Mey04b] for the various motivations for

37
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the introduction of the bornological framework for group representation theory and non-

commutative geometry.

2.1 Bornological Vector spaces

2.1.1 Basics

Definition 2.1.1. A bornology on a set X is a family B of subsets of X such that
1. Bis a covering of X, i.e. |Jgeg B = X,
2. B is hereditary under inclusion, i.e. if A€ B and B C A, then B € B,

3. B is stable under finite unions.

The pair (X, B) is called a bornological set and the elements of B are called the bounded
subsets of X.

Definition 2.1.2. Let V be a vector space and A a subset of V.. We say that A is circled
if NA C A for all A < 1. We say that A is a disk if it is both convex and circled.

Definition 2.1.3. Let V be a (complex) vector space, a bornology B on V is said to be a

vectorial bornology if
1. forall A,Be B and A € C, A+ B and \A are in B,

2. B is stable under the formation of circled hulls, that is, for all A € B, U&Sl aA
belongs to B.

Let A C V, the convex hull of A is the smallest convex set of V' that contains A. We say

that the vector bornology B is convex if it is stable under the formation of convex hulls.

Definition 2.1.4. A linear map f : V. — W between two bornological vector spaces is
called bounded if for all bounded subsets B C V', f(B) is a bounded subset of W.

Ezample 22. Let V be a Banach space, then the family B of bounded subsets of V' (with
respect to the norm of V') is a convex bornology on V. Thus, the two notions of bounded
linear maps coincide. One can generalize this to any vector space V' endowed with a family

of seminorms.

Ezxample 23. Let V be a locally convex vector space, a subset X of V is called bounded
if it is absorbed by any neighborhood of 0 (that is, for any neighborhood U of 0, there
exists A > 0 such that X C AU). The collection of all bounded subset of V' is a convex
bornology on V. This is called the Von Neumann bornology of V.
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Remark 2.1.5. For any convex bornological vector space V' one can build a locally convex
topology on V', called the “bornological topology” ([HN77, Chapter IV]). In the case where
V' is a metrizable locally convex space, The study of V equipped with its Von Neumann

bornology or with its topology are essentially equivalent (cf. [Mey04b]).

Ezxample 24. Let V be a locally convex vector space, the family of precompact subset of
V is a convex bornology on V, called the Precompact bornology. The vector space V

endowed with this bornology is denoted €omp(V').

Ezxample 25. Let V be any complex vector space, the family of compact subset of finite-
dimensional vector spaces is a convex bornology on V. We refer to it as the fine-bornology

and we will see that it allows to include Van Daele’s framework into the bornological one.

One can find many more examples in [HNT7T].
Let V and W be bornological spaces. We denote by Hom(V, W) the set of bounded

linear maps from V to W.

Definition 2.1.6. Let L be a subset of Hom(V, W). We said that L is equibounded if for
all bounded set S in 'V, | J;cp 1(S) is bounded in W.

Proposition 2.1.7. The family of all equibounded subsets of Hom(V, W) is a convex

bornology.

In the rest of this thesis, Hom(V, W) is always endowed with the equibounded bornology.
In particular we will write V* for Hom(V, C)

2.1.2 Convergence and Completeness

Definition 2.1.8. Let V be a vector space and X a subet of V.. We define the function
px :V —[0,00] by

px(v)=inf{reR:r>0|rvec X} foreveryveV.
We call px the gauge of the set X. If X is convex, px in a semi-norm on V.

Definition 2.1.9. Let V' be a bornological vector space and A a bounded disk in V. We
say that A is completant if the space V4 = Span(A), equipped with the gauge semi-norm

associated to A is a Banach space.

Definition 2.1.10. We say that V is complete if any bounded subset S is contained in a
completant bounded disk.
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Definition 2.1.11. Let (vy,)nen be a sequence in a bornological space V.. We say that (vy,)
converges bornologically towards a vector v € V if there exists a sequence (Ap)neny € C
converging toward 0 and a bounded subset S of V' such that (v, — v) belongs to A\, S for
alln € N.

Definition-Proposition 2.1.12. Let V' be a bornological space. There exists a complete
bornological space V¢ and a bounded linear map t : V. — V¢ with the following universal
property: For any complete bornological space W and bounded map | : V. — W, there
exists a bounded map 1¢: V¢ — W such that ]l =1¢o 4.

The bornological space V¢ is called the completion of V.

Remark 2.1.13. In all that follows, we only consider complete convex bornologies and refer
to a bornological vector space as a complex vector space enowed with a complete convex

vector bornology.

2.1.3 The category of bornological spaces

There exists a tensor product in the category of bornological spaces, defined similarly to
the projective tensor product for locally convex spaces. More precisely for two bornological
spaces V and W, one can endow the algebraic tensor product V ® W with a bornology
such that for any bornological space X, bounded bilinear maps V' x W — X correspond
canonically to bounded linear maps V @ W — X.

Definition 2.1.14. The bornological tensor product of V and W, denoted VW is defined
as the bornological completion of V@ W.

Proposition 2.1.15. The bornological tensor product is associative and commutative and

there is a natural adjunction isomorphism
Hom(V&W, X) = Hom(V, Hom(W, X)),
for all bornological vector spaces V,W, X.

The bornological tensor product is compatible with the topological projective tensor
product in the following sense (This result is formulated in the following way in [Voi08,
Theorem 2.1] and is originally due to Grothendieck. [Gro54]).

Theorem 2.1.16. Let V and W be Fréchet spaces and let V&,W be their completed

projective tensor product. Then there is a natural isomorphism
Comp(V)@Comp(W) = Comp(VR, W)

of bornological vector spaces.
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The following result can be found in [HNT7T7, Section 2:8].

Proposition 2.1.17. Let I be a directed partially ordered set and (Vi,uj;)i<jer be an
inductive system of bornological spaces. We denote by V' the vector space limit of this
system and u; : V; — V the associated maps. We denote B; the bornology on each V.
Then B = J;cr ui(B;) is a bornology on 'V and (V,B) is called the bornological inductive

limit.

2.1.4 The approximation property

The approximation property originally refers to a property of certain locally convex spaces
and a related notion has been introduced for bornological vector spaces. It is one of the
hypotheses required to get a bornological quantum group. Before giving a definition, we
introduce some terminology.

Let V be a bornological vector space. A subset S of V is precompact if there exists
a completant disk A such that S is a precompact subset of the Banach space V4. Recall
that for any Banach space E, the space Hom(F, V') carries the equibounded bornology
([HNTT]).

Definition 2.1.18. We say that V has the approximation property if for any compact
disk A, there exists a sequence (fy) of finite rank operators on V' such that (fy,) converges
to id in Hom(Vy4, V).

Example 26. If V carries the fine-bornology one can see that a disk A can be compact
only if it is contained in a finite dimensional vector space. Thus V}, is finite dimensional

and we see that the approximation property is trivial for V.

In order to show that classical Lie groups are bornological, we cite the following theo-
rem ([Mey04b|, Theorem 5.11]).

Theorem 2.1.19. Let V' be a Fréchet space. The following are equivalent :
1. 'V has the approximation property as a locally convex vector space.
2. V' endowed with the Precompact bornology has the approximation property.
We also need the following result.

Proposition 2.1.20. IfV is the limit of an countable inductive system (V;) of bornological

spaces with the approximation property, then V has the approximation property.

It is well known that for any compact Lie group K, the Fréchet space C°°(K) has the

approximation property, as well as C2°(G) for any Lie group.
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2.2 Bornological algebras and multipliers

Definition 2.2.1. A bornological algebra A is a bornological vector space with a bounded
multiplication A9A — A. If A is a *-algebra such that the x-involution is bounded then

on calls a bornological x-algebra.

A bornological module is essential if every bounded set of V is the image of a bounded
set in A®V. A bornological algebra is essential if it is essential as a module over itself. A
bounded morphism of bornological algberas ¢ : A — B is essential if it makes B into an
essential A-module.

A multiplier of a bornological algebra is a pair of bounded maps ¢ = (¢, -¢,) from A

to itself satisfying
¢ - (ab) = (¢ -a)b, (ab)-c¢, =a(b-¢.), (a-c)b=ale-b),

for all a,b € A. The multipliers form a bornological algebra M (A), with the bornology
restricted from End(A) @ End(.A), and A sits in M (.A) as an ideal. We may thus suppress
the dots and the subscripts [ and 7 in the notation. For details, see [Voi0§].

Remark 2.2.2. The notation M(A) could be confusing since it could refer to general
multipliers and not only the bounded ones. However M (.A) will always refer to the set of

bounded multipliers.

It is an important fact that if 4 and B are essential bornological algebras then any
essential morphism ¢ : A(B) extends uniquely to a morphism on the multipliers ¢ :
M(A) — M(B). We shall use this frequently without mention.

A bornological algebra equipped with a bounded antilinear involution is called a
bornological x-algebra. If A is a bornological *-algebra then so is M (A).

We will make an unconventional choice of notation here. As we will describe later,
the space of functions on a bornological quantum group is equipped with two distinct *-
structures, associated to the pointwise product and the convolution product, respectively,
and it will be important to distinguish them. We will therefore use the notation a — @
for the “pointwise adjoint” and a + a* for the “convolution adjoint”. In particular, the
reader should keep in mind that ab = ba.

We equip the tensor product A®B of two bornological *-algebras with the involution
defined by

(a®b) =a®b.

Definition 2.2.3. Let ¢ be functional on A. We say that ¢ is positive if ¢p(a*a) > 0 for
all a € A.
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Proposition 2.2.4. Let ¢ be a bounded positive linear functional on A. We have that

oG (a*) = ¢g(a), for all a € A(G) and we have the Cauchy-Schwartz inequality
|66 (b"0)* < de(bb)ds(c"c),
for all b,c € A(G).

Proof. For any b,c € A(G) and A € C we calculate
0 < ¢6((b—Ae)"(b— Ac))) = ¢5(b"b) — Mg (b*c) — Adg (') + [N b (o).

Thus Agg(b*c) + Apg(c*b) € R for all A € C and thus ¢g(b*c) = ¢g(c*b). We replace c
with ¢* in this equality and use the essentialness of A(G) to conclude the first statement.
For the Cauchy-Schwartz inequality just put A = ¢g(c*b) /o (c*c). O

Let A be an essential bornological. We call a linear map p : A — A a left multiplier if
p(ab) = p(a)b for all a,b € A. A right multiplier is a linear map p : A — A a left multiplier
if p(ab) = ap(b) for all a,b € A. A multiplier of A is a pair (p1, p2) such that p; is a left
multiplier, ps is a right multiplier and p3(a)b = ap;(b).We denote by M (.A) the set of all
bounded multipliers of A. The space M(A) is an associative algebra and endowed with
the bornology of Hom(H, H), it becomes an essential bornological algebra. Furthermore

we have a bounded natural inclusion of A into M (A) whose image is a two sided ideal.

Definition 2.2.5. We say that a left multiplier m : A — A is adjointable if there exists
a left multiplier m* : A — A such that (m*a)*b = a(mb), Va,b € A.

Lemma 2.2.6. Letm : A — A be a left multiplier of bornological *-algebra. The following

are equivalent
1. m is adjointable.
2. m s a two-sided multiplier.

Proof. Given a left multiplier m, we define the right multiplier m’ such that m/(a) =
(m*(a*))*. Then (m,m’) is a two sided multiplier, which we again refer to as m. This
proves (1) = (2). For the converse, the same formulas allows us to define m* in terms
of m/. O

2.3 Bornological quantum groups

A coproduct on a bornological x-algebra A is an essential bounded *-homomorphism A :
A — M(A®.A) which is coassociative, meaning (id®A)A = (A®id)A as maps from A to
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M(A®ARA), and such that the Galois maps
Y:a®b— (Aa)(b®1), pria®b— (1®a)(Ad)

are bounded linear maps from A®A to itself. We write AP = ¥ o A for the co-opposite
comultiplication, where ¥ denotes the flip map. We note that Voigt [Voi08] does not
impose the condition on the Galois maps in his definition of a bornological coproduct,
although he does require it as a hypothesis in all his successive results.

We also define the maps

Yria®@b— (Aa)(1®0D), pr:a®b— (a®1)(Ab),

as well as the variants 77, 7;°P, /7P, etc, in which we replace the multiplication by

m°P and/or the comultiplication by AP, The resulting sixteen maps from ARA — ARA
will all be referred to as Galois maps. They all map A®.A into itself because they can all
be related to v; and p, via the flip maps and conjugation by the involution.

This condition on the Galois maps allows us to define, for any a € A and w € A*, a
multiplier (id®w)(A(a)) € M(A) by

b (idew)(Aa)) = ([dow)((b® 1)A(a)),
(id®w)(A(a)) - b = (idew)(A(a)(b@ 1)),

where b € A. We can define the multiplier (w®id)(A(a)) € M(A) similarly.

Some notational remarks are in order. Firstly, if w € A* and b,c € A, we will use
the notation bwe for the linear functional a — w(cab). This notation will be generalized
to linear functionals on other algebras. Secondly, to simplify formulas, we will often use

Sweedler notation for the coproduct, writing
Aa) = a1y @ aey,

where a € A. For classical Hopf algebras, this can be understood as a summation con-
vention, but here it is a purely formal notation. That is, the terms a(;) and a(z) have no
meaning on their own, but are only placeholders for the position of a coproduct in the
legs of the multipliers of the bornological tensor product M(A®.A). Thus, for instance,

we can write the Galois maps as
a®b) =amb®@apm), ¥ P(a®b)=apgbag), et
We extend this to iterated coproducts in the usual way, writing
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Thanks to the fact that all Galois maps have image in A®A, given any elements
a,bi,...,bp—1 € A the product bia) @ bea) ® - ®ag) & -+ @ by—1a(,) belongs to .A®",
where exactly one of the legs a;) is not multiplied by an element b; of A. The same is
true if any number of the b; is multiplied on the right instead of the left.

A coproduct A on a bornological x-algebra A is said to satisfy the cancellation property
if the Galois maps «y; and p, are linear bornological isomorphisms from A®.A to itself. Once
again, this implies all sixteen Galois maps are linear bornological isomorphisms from A®.4
to itself.

A left-invariant integral on an essential bornological x-algebra A with coproduct is a
bounded linear functional ¢ € A* such that

(id®¢)(A(a)) = d(a)l
for all a € A. Similarly, a right-invariant integral is ¢ € A* such that
(¥®id)(A(a)) = P(a)l.
The following theorem is due to Voigt, see [Voi08, Section 3].

Theorem 2.3.1. Let A be a bornological *-algebra equipped with a coproduct A and a

positive faithful left invariant integral ¢. The following are equivalent:
(i) A satisfies the cancellation property,

(ii) there exists a bounded essential homomorphism € : A — C, called the counit, and a
bounded algebra antiautomorphism coalgebra antiautomorphism S : A — A, called

the antipode, satisfying the following Hopf-type axioms: For all a,b € A(G),
(e®id)(A(a)) = a = (id®e)(A(a))

and
p(S®id)(A(a)(1 ® b)) = €(a)b, p(id®S)((a @ 1)A(b)) = €(b)a.

In this case, the maps € and S are uniquely defined and satisfy

e(a) = e(a), S(@) = S1(a).

Proof. The only new point here is the compatibility with the involution. Define the map
€¢: A— C by €(a) = €(@). Then

(€2id)(A(a)) = (e2id)(A@)) = a = ([d&e)(A(@)) = (1[d&e)(A(a)).

By uniqueness of the counit we have € = e. Similarly, if we define S : A — A by
S(a) = S—1(a@) then S satisfies the same properties as the counit S. O
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We note that the properties of € and S cited in Theorem [2.3.1] extend to the situation
where a is a multiplier and b € A.
We can now define a bornological quantum group (with involution) by adding an

involution to Voigt’s definition [Voi(8], and requiring positivity of the invariant integral.

Definition 2.3.2. A bornological quantum group algebra is a bornological *-algebra A

satisfying the equivalent conditions of Theorem [2.5.1)
As usual, we will use the notation A = A(G) when the algebra is to be thought of as
the algebra of functions on some quantum group G.

Ezxzample 27. Let A be an algebraic quantum group. If we endow .4 with the fine-bornology,
then A is a bornological quantum group. Indeed in this case, every linear map is bounded

and the bornological tensor product coincides with the algebraic one.

Ezample 28. Let K be a compact Lie group. As we have seen, C°°(K), endowed with the
precompact bornology associated to its Fréchet space structure, has the approximation
property. Furthermore, because of the nuclearity of the Fréchet space C*°(K), we have
that

C®(K)®,C®(K) = C®(K x K).

and thus it follows that
Comp(CP(K))@Comp(CP(K)) = Comp(C™(K x K)).
If G is a (non-compact) Lie group, we have
Comp(CX(G))@Comp(CX(G)) = Comp(CX(G x G)).

Proposition 2.3.3. Let (A(G;), Ag, )i an inductive system of bornological quantum groups.
Then the limit bornological algebra, endowed with the limit application A is a bornological
quantum group.

2.3.1 Modular properties of the integral

Let A = A(G) be a bornological quantum group. It is shown in [Voi08, Proposition 5.4],
following [Dae98|, Proposition 3.8|, that there exists a unique multiplier ég € M(.A), called

the modular element, such that

(p®id)(A(a)) = ¢(a)dg
for all a € A. It is group-like, so that

A(dg) = 6g ® g, €(0g) =1, S(dg)=0dg".
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Following the proof of [KvD97, Lemma 3.3], one sees that dg is strictly positive in the

sense that, for all nonzero a € A,

¢(a*oga) > 0. (2.1)

Hence g = 4g.

The Haar integral and the modular element are related by

p(adg) = ¢(S(a))

for all a € A. The proof of this is essentially the same as for [Dae98, Proposition 3.10].
Applying this twice gives ¢(5%(a)) = d)(éélaé@), and since ¢ o S? is again a left-invariant
integral, we have ¢(5%(a)) = pud(a) for some scalar p € C, called the scaling constant. It
is possible to show that |u| = 1. De Commer and Van Daele have shown that we always
have p = 1 in the case of algebraic quantum groups, see [DCVDI0, Theorem, 3.4]. At
present, we do not know if this is true for bornological quantum groups.

To simplify the exposition, we will assume in this thesis that © = 1, since all the
examples we have in mind satisfy this assumption. As a consequence we have ¢(dga) =
¢(adg) for all a € A. The situation p # 1 would not add any particular difficulties,
following the same methods as in [KvD97].

There is a unique bounded algebra automorphism o : A — A such that ¢(ab) =
¢(bo(a)) for all a,b € A, see [Dae98, Proposition 3.12] and [Voi08, Proposition 5.3]. This
continues to hold when one of a or b is a multiplier, and by taking b = 1 we have that ¢

is invariant under o. Our assumption that the scaling constant is 1 implies that
o(dg) = 0.
We record some further basic properties of o.
Proposition 2.3.4. For all a € A we have
o(S(0(a))) = b S(a)d o~ (S(07(a))) = dcS(a)dg",
§%(0(a)) = 0(5%(a)), o(@) = o~(a).

Proof. For any a,b € A, we have
¢(ba(S(0(a)))) = (S(o(a)b) = (S~ (b)o(a)dc)
= p(ade S~ (b)) = ¢(bdg ' S(a)dc).

This proves the first equality. The second follows by pre- and post-composing with o1,
and the third then follows by composing the first two. The final equality follows from

¢(bo(a)) = ¢(ab) = ¢(ba) = p(c~'(a)b) = ¢(bo~"(a)).
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The map o is not generally a coalgebra automorphism. Instead, we have the following
property.
Proposition 2.3.5. We have
Aoo=(5?®0)oA=(c@a)oA,
where a is the bounded algebra automorphism defined by a(a) = 55'S~%(a)dg.

Proof. Let a,b,c € A(G). Using the invariance of the Haar integral, we have

(¢20)((b® c)A(o(a))) = ¢(bS(cqy))d(c@yo(a))
= ¢(bS(c(1y))9lacz))

= ¢(b5*(a(1)))Blaz)c)

= ¢(bS*(aqy))d(co(a(z)),

which proves the first equality. For the second, we calculate

O]
One can also consider the automorphism o’ associated to the right-invariant integral

¢ oS, that is, ¢p(S(ab)) = ¢(S(bo’(a))). We get immediately that
o'(a) = (5@0(@)5«;1 = a(&gaéél) =S YHo71(S(a))). (2.2)

2.3.2 Pontryagin duality

Let A = A(G) be a bornological quantum group. We write @ or §(a) for the bounded
linear functional a : b — ¢(ba). The Pontryagin dual, denoted A or A(@), is the space of
bounded linear forms

AG) ={a|a € AG)} C AG)*
equipped with the bornology inherited from the bijection § : A — A and the Hopf
operations defined by skew-duality, namely, for a,b € A and x,y € A

(zy,a) = (x @y, Aa)) (A(2),a ®b) = (z,ba)
é(x) = (z,1) (1,a) = e(a)
(5(z),a) = (x,57"(a)) (57} (x),a) = (z,5(a))

)
(x*,a) = w,S(a)), (z,a) = (5’ L(z)* a).



2.3. BORNOLOGICAL QUANTUM GROUPS 49

Note that we are using @ for the involution of a € A(G) and z* for the involution of
z € A(G). The left Haar integral ¢ on A(G) is given by

The proof that A(@) is indeed a bornological quantum group with this structure is
done in [Voi08, Theorem 7.5], with the exception of the *-structure. We will confirm that
the s-structure is compatible with the quantum group structure on A(G) in Proposition
2.3.6] below.

Using the linear isomorphism F we can transfer the Hopf operations from A(G) to

A(G), Specifically, we introduce the convolution product and convolution adjoint on A(G),

fxg:=fyo(S™9) fi2)) = ¢S (9(1)) f)92): (2.3)

[T =5(f)dc- (2.4)

Then one can verify the following formulas for the dual operations:

Proposition 2.3.6. The involution * defined on A(G) by the duality relations above makes
A(G) into a bornological quantum group in the sense of Definition .

Proof. Using [Voi08, Theorem 7.5], we only need to check the compatibility of the invo-
lution. We see from the formula that the convolution adjoint maps A(G) to A(G),
so the involution is well-defined on A(G). The fact that z — 2* is a bounded involutive
antilinear algebra anti-automorphism and coalgebra auto-morphism is straightforward,
positivity and faithfulness of the left invariant integral ¢ follows from the following well-

known formula. O

Lemma 2.3.7. For any f,g9 € A(G) we have e(f* x g) = ¢(fg).
Proof. We have e(f* * g) = €(g(2))¢(S~ " (9(1))S ™' (f)dc) = 6(S~(f9)dc) = ¢(f9g)- O

We shall write D(G) for the linear space A(G) equipped with the Hopf operations
pulled back from .A(G) via F. In particular, as a x-algebra, D(G) is equipped with the
convolution product and convolution adjoint above, while the counit on D(G)
is € = ¢ and the antipode on D(G) is given by

S(f) = o (5S(f)).
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From this and Proposition 2.3.4] we get the notable formula
S2(f) = S*(f). (2.5)

We record the following compatibility between the pointwise coproduct and the con-

volution product.

Lemma 2.3.8. For any f,g € A(G) we have the formal equalities

A(f*g) = fa)y® (fioy x9) = (f *901)) @ 92)-

More precisely, for any a € A(G) we have

(a@DA(f*g) =afn) ® (fi2)*9) A(fxg)la®1) = fya® (fi2) * 9)
(I®@a)A(f*g) = (f*g9q)) ® ag() A(fxg)(1®a) = (f *gq)) ® g)a,
where the right hand side of the first equation is understood by first applying a Galois map

to a ® f and then taking the convolution with g in the second leg, and similarly for the

others.

Proof. We calculate

(a®@1)A(f*g) = (a® 1)A(f1) ¢(S™ (9)f2))
= (id®id ® ¢)(af) ® f2) ® ST (9) f(3))
= (af) ® f2)) * (1@ g),

where 1 denotes the unit in the convolution algebra M(D(G)). The other equalities are

similar. O

2.3.3 Modular properties of the dual quantum group and Radford’s S*
formula

From now on, we will write dg, og, etc. for the modular element and modular automor-
phism of G, and d, o for those of D(G) = A(G). We can give explicit formulas for the

modular automorphisms of G.

Proposition 2.3.9. Let f € D(G). We have

oe(f) = S*(f)og ", o5 (f) = 05" S7*(f)
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Proof. Let f,g € D(G). On the one hand we have

be(fxg9) =elf*g) =oc(S " (g)f)

and on the other hand

06 (9% (S*(f)05")) = de(STH(S*(f)dg")g)

which leads to the first equality. For the second equality we can dualize the identity ([2.2)
to obtain aé = g_laéls’. Hence,

Dualizing this formula and using Equation ({2.5)) yields the following.

Corollary 2.3.10. For f € A(G), we have

o6(f) = S°(f) 6.,
o (f) = 65"+ S2().

Proposition 2.3.11. The left and right actions of ég and dg on A(G) by multiplication

and convolution, respectively, all commute.

Proof. The fact that left and right multiplication by dg commute is obvious, as is the
commutativity of left and right convolution by d5. Using Corollary [2.3.10{ we have, for all
f e AG)

b f = 57205 (), f# 85 = 5205 ().
Therefore, noting that og(dg) = 0 (dg) = dg, we obtain
0g * (6af) = S2(0% ™ (9af)) = da(dg * f)-

The calculations for other combinations of actions are similar. O
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Remark 2.3.12. If the scaling constant p is not 1, these operators will commute up to a
scalar, and moreover left and right convolution by b will commute on the nose with the
conjugation operator f — dgfdg ! This shows that the proof of the next theorem remains

valid even if the scaling constant is not 1.

One can now generalize Radford’s S* formula to bornological quantum group. See

IDVDWO06] for a discussion about this formula in the algebraic case.

Theorem 2.3.13. (Radford’s S* formula) Let f € A(G), we have
SUS) = dc(d5" * [ *55)05"

Proof. Consider g = S?(f). We have og(g) = (5@,0(’[;(51)5(_;1 and thus
S #6851 = 0c(05" * f)og '

Since the actions of s and dg commute, we are done. O

2.3.4 The bornological multiplicative unitary

Amongst the sixteen Galois maps and their inverses, one is particularly favoured. This
choice, called the multiplicative unitary, comes from conventions fixed by Baaj and Skan-
dalis in their foundational work on analytical quantum groups [BS93|. Here we give the

bornological version.

Definition 2.3.14. The bornological multiplicative unitary is the linear bornological iso-

morphism

W= (0P) 1 A(G)RA(G) — A(G)GA(G)
a®b— Sil(b(l))a & b(2),

with inverse

Wltia®b— Ab)(a®1) = bya @ b(y).

Proposition 2.3.15. The bornological multiplicative unitary is a unitary multiplier of the
algebra A(G)®@D(G), in the sense that

W(a®b))*e(cod) =(a@b)* e W l(c®d), (2.6)

where o and * denote the product and involution in A(G)®D(G).



2.3. BORNOLOGICAL QUANTUM GROUPS 53

Proof. First, we check that W~! is right A(G)®D(G)-linear. Using Lemma we
calculate
W H(a®b)e(c®d)=Abxd)(ac®1)
=(A()-1®d))(ac®1)
=W Ha®b)e(c®d).

Thus W is a left multiplier. Using the fact that ¢( - J) is a right invariant integral, we

obtain

W a@b))" e W (c@d))
= (A®d)(a®1))" o (A(d)(c® 1))
= abgyydyc @ (S (bz))d * d(z))
= abgyydyc @ (S~ (d(2))S ™ (b2))d)d(3)
=aS(S™ (bayd(1)))e ® ¢(S™ " (bayd(2))0)ds)
= ac @ ¢(S™H(byd(1)))d(2)
= ac® ¢(S™ (d))b")d(a)
=ac®b* *d
=(a®b)" e (c®d).
This proves that the left multiplier W~! admits W as an adjoint in the sense of Equation
(2.6). It follows that W is a two-sided multiplier, since we can define the associated right
multiplier by
(a®b)- W= (W7 (a®b)*)".
This completes the proof. O
The bornological multiplicative unitary W satisfies the pentagonal equation
WigWisWag = WazWio
and the bicharacter properties
(ARIA)W = WizWhs3, (1dQAYW = WisWis, (2.7)
Let us record two further relations concerning the bornological multiplicative unitary.
Lemma 2.3.16. Considering W as a linear automorphism of A(G)®A(G), we have
(c@a)W = W(o®a),
where o is the automorphism o : a + §~1S™2(a)é defined in Proposition|2.3.5. Moreover,

(a®a)W = W(a®a).
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Proof. Let a,b € A(G). According to Proposition we have
W o®0)(a®@b) = A(o(b))(o(a) ® 1)
= (0’

&) (A(b)(a ® 1)) = (6&a)W L a® b),

which proves the first equality. The second follows from the fact that « is a Hopf morphism
(though not a Hopf *-morphism). O

2.3.5 Morphisms and closed subgroups

Definition 2.3.17. Let G and H be bornological quantum groups. A morphism of bornolog-
ical quantum groups from H to G is an essential x-algebra morphism 7 : A(G) — M (A(H))

which intertwines the coproducts:
Agom = (7®7) o Ag

If # maps A(G) surjectively onto A(H), then we call H a closed quantum subgroup of

G. In this case we write m = my and refer to it as the restriction map.

Any morphism 7 : A(G) — M(A(H)) of bornological quantum groups automatically

respects the antipode and counit:
Sgom=moSg, €G = €H O,
see Proposition 4.7 of [Voi0g].

Proposition 2.3.18. For any morphism of bornological quantum groups m from H to G,

there is a unique dual morphism 7 from G to H determined by
((z),a) = (z,7(a))
for all x € A(H) and a € A(G).

Proof. The well-definedness of 7 is Proposition 8.4 of [Voi08]. The compatibility of & with
the involutions follows from duality with A(G) and A(H). O



Chapter 3

From bornological to locally

compact quantum groups

Our goal in this chapter is to make clear the compatibility of bornological quantum groups
with the general framework of locally compact quantum group, as recalled in Section
That is, given a bornological quantum group as described in the previous chapter, we show
that it gives rise to a uniquely determined locally compact C*-algebraic quantum group.
We also discuss the important issue of closed quantum subgroups.

The results from the early part of this chapter are mostly bornological generalisations
of known results on algebraic quantum groups, particulary those in the article [KvD97].
We have however significantly altered their approach to the complex power of the modular
element which, combined with Radford S* formula, are used to streamline the proofs. The
final section on closed quantum subgroups is to our knowledge, new even in the context
of algebraic quantum groups.

We maintain the notation of the previous chapter. In particular, the left invariant Haar

functional on A(G) is denoted ¢g. We also recall that we are using f ~ f to denote the

“pointwise involution” on A(G) and f — f* = S(f)dg for the “convolution involution”
on D(G) = A(G).
3.1 The left regular representation : Construction of Cj(G)

We fix a GNS pair (L?(G), A) associated to ¢g. This means that L?(G) is a Hilbert space
with a linear map A : A(G) — L?(G) such that A(A(G)) is a dense subspace and we have

(M)A ey = 6(f9) = (f *9),  Vf.g € AG).

The second equality is from Lemma [2.3.7

95
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Remark 3.1.1. The map A : A(G) — L?(G) is bounded with respect to the von Neumann
bornology of L?(G). This is because the map || - || o A, which maps a € A(G) to qﬁ@,(a*a)%,
is bounded as the composition of bounded maps a — a ® a* — a*a > (b@(a*a)%.

We denote by m the left action of A(G) on A(A(G)) € L?(G) by multiplication and
by A the left action of D(G) by convolution, that is

o m(f)A(g) = A(fg),

o Mf)A(g) = A(f*g).

Our first goal in this section is to show that densely defined operators m(f), f € A(G)
extend to bounded operators on L?(G). This will be done by looking at the multiplicative
unitary on L?(G) ® L*(G). First, note that A x A : A(G) x A(G) — L*(G) ® L*(G)
is a bounded bilinear map and thus extends to a bounded map A®A : A(G)®A(G) —
L*(G) ® L*(G).

Proposition 3.1.2. There exists a unique unitary operator W of L*(G) ® L*(G) s.t.
W(ARA)(A(g)(f @ 1)) = A(f) ® Ag), for all f,g € A(G). It is a multiplicative unitary
on Lz(G) in the sense that W12W13W23 = W23W12.

Proof. First, by the hypothesis on the Galois maps, it is clear that this operator W
is well defined and invertible on A®A(A(G)®RA(G)). To check the unitarity let a ® b,
c®de AG) ® A(G) and observe that

(A()(a®1),A(d)(c® 1)) = pc@pc((a® 1)A(bd)(c ® 1))
= ¢¢(ac)oc(bd)
=(a®b,c®d).

Recall that the bornological multiplicative unitary W belongs to M (A(G)®D(G)).
From Lemma the inner product on L?(G) ® L?(G) is given by

(A(a) ® A(b), A(c) @ A(d)) = (dc®e)(ADA) (@@ %) o (c® d))),

for all a,c € A(G), b,d € D(G), where o denotes the product in A(G) ® D(G). It follows
from Proposition [2.3.15| that the densely defined operator

(m@A)W) : A&A(a®b) = AQAW(a @ b))
extends to a unitary operator W on L?(G) with the stated properties. O
Given &,n € L*(G), we denote by wg, the state on B(L*(G)) given by
we (1) = (€ Tn) .

This will allow us to define the left and right slices of the multiplicative unitary.
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Lemma 3.1.3. For any f,g € A(G), the endomorphism m((id®ég)W~L(f ® g))) of
A(A(G)) eatends to a bounded operator of L*(G). Explicitly, it extends to the left slice
(id®wag),a(r)) (W), where wygyas) : T+ (M@), TA(f)), T € B(L*(G)).

Proof. A straightforward calculation, as in [KvD97, Lemma 2.3], shows that for all h €
A(G) we have

(i[d&wa(p),a(0) (WIA(R) = A((id@¢c)(A(F)(1 ® g))h). (3.1)

On the right hand side we have m(W~=1(g ® f))A(h) and on the other side the operator
acting on A(h) is (id®wy(f) ) (W), and this is a bounded operator. O

Proposition 3.1.4. The left reqular representation m : A(G) — End(A(A(G))) extends
to a bounded *-representation m : A(G) — B(L*(G)).

Proof. The bilinear map (f,g) — (id®wa(p),a(e))(W) from A(G) x A(G) into B(L*(G))
is clearly bounded. Thus it extends to A(G)®A(G). Let z € A(G) such that ¢g(z) = 1.
For all a € A(G), using Lemma [3.1.3] one can obtain m(a) as the composition of bounded
maps

mo(id®¢g)ow =1
—

a—~a®z— W) m(a).

O

Definition 3.1.5. We define the reduced C*-algebra of functions on G, denoted C}(G),
as the closure of m(A(G)) in B(L*(G)).

Proposition 3.1.6. We have that {(id&w, () () (W) | f,9 € AG)} = m(A(G)).

Proof. We have that W~! is an isomorphism of A(G)®A(G) into itself and because
id2eog : A(G)BA(G) — A(G) is surjective we obtain that A(G) = {(id®¢g)((A@)(1 ®
b)) | a,b € A(G)}. Thus the result follows from Equation (3.1)). O

We also derive from (3.1)) the following result

Proposition 3.1.7. The C*-algebra C§(G) is the norm closure in B(L?(G)) of {(id®w)(W) |
w € B(L%(G))4}.

Definition 3.1.8. We define the mapping A from C§(G) into B(L*(G) ® L*(G)) such
that A(z) = W*(1 @ z)W.

The proof of the following result can be readily adapted from the proof of the corre-
sponding result in the algebraic case [KvD97, Theorem 2.11].
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Theorem 3.1.9. We have that C(G) is a non-degenerate C*-subalgebra of B(L*(G))

and A is a non-degenerate injective x-homomorphism from C§(G) to M(Cj(G) @ Cj(G))
such that:

o (Adid)oA = (id®A) o A.

e The vector spaces A(CH(G))(Cy(G)®1) and A(CH(G))(10CH(G)) are dense subsets
of C5(G) ® C(G).

A similar construction yields the regular representation A of D(G), as follows.

Proposition 3.1.10. For any = € D(G), \(z) extends to a bounded operator on L*(G).
Explicitly, if f,g9 € A(G) we have

(@Wa(DAEIDW = Ngoc(f)).
The resulting map X : D(G) — B(L?(G)) is a bounded x-representation.
Proof. This is another standard calculation. For any a,b € A(G) we have

<)\(a), ((wA(f)’A(g)®id)W)A(b)> = <A®A(f ®a), WARA(g ® b)>
= (pc®dc) (S~ (b)) goc(f) ® ab))
= (A(a), A(goc(f) * b)),

which proves the displayed formula. Since A(G) is essential, it follows that A(z) extends
to a bounded operator for every x € D(G). O

Note that, from the definition of W in Proposition the bornological and C*-
algebraic multiplicative unitaries can now be related by W = (m @ \)(W).

Definition 3.1.11. We define the C*-algebra C¥(G) as the norm closure of {(w®id)(W) |
w € B(L%(G))4}.

Proposition 3.1.12. The bornological multiplicative unitary for the Pontryagin dual G
is given by W = S(W*), where % denotes the involution of A(G)QA(G) = A(G)&D(G).

Proof. Let f,g € D(G) and a,b € A(G). We recall that the counit € of A(G) is the identity
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element of M (D(G)). We have

A~

W (f®g),a@b) = (A(g
= (Alg
(9,bay)(f,a))
G(ba(1)9)¢6(a(2)f)
c(bS™ ! (fu))9)da(af(z)
f©) ®5_1(f(1))9»a®b)
= (EW(E(f©g),a®b)
=(EW H(feg),a®b),

x(f®e),a®b)
& (f & 6), a() & b(l) & a2) ® b(g))

and we know from Proposition [2.3.15|that W~! = W*. ]

The map F : A(G) — A(G) extends to an isometric isomorphism of L2(G) with L2(G)
thanks to Lemma [2.3.7 Using this, we obtain the following result, which should be no

surprise.

Proposition 3.1.13. We have that C*(G) = C}(G).

3.2 The modular element at the C*-algebraic level

In order to extend dg to a positive operator on L?(G) we shall introduce another GNS
construction. For the inspiration here, see [KvD97, Section 3].
Recall from Equation (2.1 that g € M (A(G)) is strictly positive:

¢g(adga) >0  for all nonzero a € A(G).

We can therefore define a Hilbert space L?(G)s together with an injective linear map As
from A(G) to L?(G)s such that

1. As has dense range in L?(G)s,

2. (As(f),As5(9)) = dc(focy) for all f,g € A(G).

We now define the closed operator L from L?(G) to L?(G)s with core A(A(G)) such
that for every f € A(G) we have LA(f) = As(f). Then

(Lo, As(f)) = (v, A(dc f))

for any v € Dom(L) and f € A(G). It follows that As(A(G)) is a subset of Dom(L*) and
that L*As(f) = A(dg.f).
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Definition 3.2.1. We set § = L*L, so that § is a positive unbounded operator on L*(G).
Note that for all f € A(G) we have

SA(f) = A(de f).
We denote by § the operator associated to d¢ via the analogous construction.

We now recall a technical lemma that will be used regularly in the rest of this chapter.
For the proof see [KvD97, Lemma 3.7].

Lemma 3.2.2. Consider Hilbert spaces K1, Ko, Hy, Hy, a unitary operator U from K;
to Ho, a unitary operator V from Hi to Ka, a closed linear operator F from within K
into Hy, a closed linear operator G from within Hs into Ko. Suppose there exists a core C
for F such that U(C') is a core for G and such that V(F(v)) = G(U(v)) for every v € C.
Then we have that VF = GU.

Lemma 3.2.3. The operator U from L*(G)&L*(G)s to L*(G)s®L?(G)s such that U(A(f)®
As(9)) = (As@As)(A(9)(f ® 1)) is well defined and unitary.

Proof. Let f,g,a,b € A(G). We have

fa1)0cbaya) e (F2)0cbe)

(
6(f(669)1)b1) )96 ((069) (2)b2))
c(fa)pc(0cgb2))

= (A(f) ® As(9), A(f) @ As(g)) -

Lemma 3.2.4. We have (1® )W =W (J ®9).
Proof. Let f,g € A(G), we have
(LOL)YW*(A(f) ® Alg)) = (LOL)(AA)(A(g)(f @ 1))

= (As@As)(Alg)(f ® 1))
= U(1&L)(A(f) ® A(g)).

Using Lemma we deduce that (L&L)W* = U(1&®L). Composing this with its adjoint,
the result follows. O

Proposition 3.2.5. We have that § is a strictly positive element affiliated with C§(G) in
the C*-algebraic sense. Furthermore, A(6) =0 ® 4.
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Proof. Our proof is similar to the proofs of [KvD97, Propositions 8.5 and 8.6]. From the
preceding lemma, we obtain that W*(1 ® §) = (0 ® 6)W* and thus

(1 ® 5—it)W*(1 ® 5115) — ((5” ® 1)W*,
for all t € R. Let w € K(L?*(G))*. Applying id®w to this equality we get
ST (dRW)W* = id&d~ W™ (W),

where the notation 6~ “wé™ refers to the functional w(6~% - §%). Thus, by Proposition
(which remains true if we replace W by W*) we conclude that §C5(G) C C§(G)
for all ¢t € R. By definition this says that ¢ is an unbounded element affiliated to Cj(G).

We also derive from Lemma [3.2.4] that W*(1 @ §)W =6 ® 4, i.e. A(6) =6 ®34. O

By induction on n, one can deduce the following lemma.

Lemma 3.2.6. Consider f € A(G) and n € Z. Then A(f) belongs to Dom(6™) and
a"A(f) = ASgf)-
Lemma 3.2.7. Consider f € A(G) and z € C. Then A(f) belongs to Dom(6%).

Proof. We already saw in Proposition that A(f) € Dom(6%) for all ¢ € R, so an

interpolation using the previous lemma proves the result. O

Similarly, the proof of [KvD97, Lemma 8.9] is still valid for the following two propo-
sitions. Here we are writing Dom(T) C C§(G) for the domain of a positive element T°
affiliated to the C*-algebra C{j(G).

Proposition 3.2.8. For every n € Z and f € A(G), we have that m(f) belongs to
Dom (6¢) and 0"m(f) = m(ogf).

Proposition 3.2.9. For every z € C and f € A(G), we have that m(f) belongs to
Dom(57).

As in the algebraic framework, we will prove more: that the complex powers 6% of the
C*-algebraic modular element multiply the bornological subalgebra m(A(G)) into itself
and moreover defines bounded multipliers of A(G) in the bornological sense. To do so, we
need a series of technical lemmas.

Firstly, we observe that by Pontryagin duality, elements of the bornological dual A(G)

also give elements of the pre-dual of the von Neumann closure L>(G).

Lemma 3.2.10. For every f € A(G), the linear functional f = F(f) € A(G)* extends
to a mormal linear functional on L*°(G) and we obtain a bounded linear map A(G) —
L>®(G)..
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Proof. The linear map

p: AG) ® A(G) — B(L*(G)).

a®b > ab = Wa(s(r)).A)
is bounded so extends to A(G)®.A(G). Let a,b,f € A(G), we have that

ab(m(f)) = ¢g (oG (b")* fa)
= ¢g(fab).

Thus elements of the form ac ® b — a ® ¢b, a,b,c € A(G) belong to the kernel of p. As
a consequence, p descends to a map on the balanced tensor product A(G) ® 4) A(G)
and we obtain a bounded map A(G)® 4(G)A(G) = B(L*(G))x, that is a bounded map
A(G) — B(L?*(G))., using the essentialness of A(G). O

The next Lemma is the bornological analogue of [KvD97, Lemma 7.6]. It essentially
says that slices of the C*-algebraic coproduct by elements of the bornological dual yield

bornological multipliers.

Lemma 3.2.11. Consider f,g € A(G) and x € M(C5(G)), then (id ® f)(A(z))m(g)
belongs to m(A(G)).

Proof. Let x € M(C}(G)) and consider the bilinear map L, : A(G)) x A(G) — B(L*(G))
defined by (f,g) — (id&f)(A(z))m(g). On the one hand the map f — id ® f from
A(G) to B(L*(G))®B(L?*(G)), is bounded, according Lemma On the other hand
g — m(g) is bounded too. Finally L, is bounded since the evaluation map B(L?*(G)). and
the product map B(L?*(G)) x B(L*(G)) — B(L*(G)) are bounded. On can thus consider
the linear map L, : A(G))®A(G) — B(L*(G)).

Let ¢,7 € A(G) and consider A(q)(r®1) € A(G)®RA(G). For every y € A(G), we have

Ly (A(g)(r @ 1)) = m((id®¢g ) (A(y) Alg)(r @ 1))
= ¢c(yq)m(r).

Using Lemma|3.2.10} and because m(A(G)) is strictly dense in M (Cj(G)), one can replace
m(y) by any x € M(C{(G)) in this equality. Therefore L, o~ is bounded and extends to
A(G)®A(G). Thus L, maps A(G)®.A(G) into A(G) as required. O

Now we return to the complex powers of the modular element.

Lemma 3.2.12. Let z € C and f € A(G), The linear functional f o 6% om : A(G) — C
1s well-defined and bounded.
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Proof. Consider the linear map A(G) @ A(G) — A(G)*defined by a @b — abo 67 om. We
must show that this map is bounded. Let a,b € A(G). For all x € A(G) we have

)
)

= W57 (o (5*)),A(a) (M(T))-

(za

(abo 8% om)(z) = (A(og(b*)), 6" A(za)
= (6"A(o(b")), A(za)
Thus abo §° = Wz Ao (b)),A(a)- Lhe result follows.

It is sufficient to check that b — f(6%m(b)) is bounded. For that observe that, since
*m(b) € m(A(G)) according to Proposition the map f o 6% o m can be expressed
as b — ¢g(0*m(b)m(f)) where here ¢¢ is seen as the functional on m(A(G)) such that
¢c(m(a)) = ¢c(a),a € A(G). We have ¢g(8*m(b)m(f)) = ¢g(m(og'(f))6*m(b)). Since
m(og'(f))6* also belongs to m(A(G)) then the result follows.

O

Next we recall Lemma 8.11 of [KvD97], for which the proof also remains valid.

Lemma 3.2.13. Consider an element o affiliated with Cj(G) and elements x € Dom(c),
y € C§(G). Then A(z)(1®y) belongs to Dom(A(a)) and A(a)A(z)(1®y) = Ala(x))(1®
y)-

Proposition 3.2.14. Let z € C. Then *m(A(G)) € m(A(G)) and 6% is a bounded
multiplier of m(A(G)), where m(A(G)) is endowed with the bornology inherited from A(G)

through the injective linear map m.

Proof. In this proof we adapt the arguments of the proof of [KvD97, Proposition 8.12].
Let p,q € A(G) and f € A(G). We consider the element a = (id®(f 087 om))(A(p)(¢®1))
of A(G). We have

§*m(a) = (1[d&)((5* ® §°)(A(m(p))(m(q) @ 1))

(idef)(A(5*m(p)))(m(q) @ 1).

Since m(p) is an analytic element for ¢, we have that §*m(p) € M(C{(G)). By Lemma
3.2.11} it follows that 6*m(a) belongs to m(A(G)). Now, because of the boundedness of
the map id(®f 0 §%* om), see Lemma we can apply this method to any element
a = id&(f6% om)(X), X € A(G)RA(G), that is, to any element a of A(G). Thus one can
now define 6% as the unique multiplier of A(G) such that

m(dga) = 6*m(a).
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To prove that it is indeed a bounded multiplier, let a € A(G) and consider an element
b € A(G) such that ¢g(d5°b) = 1. We have A(0;°b) = (05" ® 05 °)A(D). It follows that

a = age(55°) = (1ddéc)(A(55°) (a © 1)) = 65°([ddeeds™)(AB)(a® 1)),

where ¢gd;* denotes the linear functional g — ¢g(d;*g). Thus, the multiplier 0 can be

expressed as the composition map
ara®b— Ab)(a® 1) — ([dRécds ) (A(b)(a @ 1)).

It remains to show that the last map in this composition is well defined and bounded. Let
z,y and f in A(G), we have

(id ® dd5™)(ef ®y) = (id ® deo ()657) (@ ® y)
— ({d@ (0 1(f) 0 6" om))(z @ y)

We then deduce the boundedness of (z,y) — (id ® ¢gdg;°)(z ® y) using the essentiality of
A(G). O

With the above proposition, the following theorem is now straightforward, compare
[KvD97, Section 8§].

Theorem 3.2.15. For all z € C, there exists a unique bounded mutliplier of A(G) denoted
0% such that for all a € A(G),
*m(a) = m(éga).

Furthermore, we have the following properties :

1. For any z € C, 6% = 6%

2. For any y,z € C, 6408 = 5&’;2,

3. For any t € R, 6% is unitary in M(A(G)),

. . . " t/2 ot/2 t/2 .
4. For anyt € R, dg is a positive element, in the sense that 6 = 63 70¢ " and 64”7 is a
self adjoint element.
With our assumption that the scaling constant is 1, we obtain the following.

Proposition 3.2.16. The right Haar functionnal ¢g o S of A(G) is positive.

Proof. Let f € A(G), we have

66(S(FF)) = ¢a(fféc) = da(f55 " 15%) > 0,

where we use that 5%;/ % is self-ajdoint. O
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3.3 Preliminary remarks on the modular group

A central point in the framework of locally compact quantum groups is a good under-
standing of the modular theory of the associated operator algebras. Let us briefly recall
the main definitions.

First, we define the closed operator T' on L?(G) as the closed antilinear operator with

core A(A(G)) such that TA(f) = A(f) for all f € A(G). We have

(TA(f); M9)) = ¢a(f9)

= og(gf)
= ¢c(foe(9)).

for all f,g € A(G). Then we have T*A(f) = A(og(f)) for all f € A(G). Hence the

modular operator V = T*T satisfies

VA(f) = AMoc(f))-

We denote by J the anti-unitary component of the polar decomposition of 7', so that
T=JV:=V2J.

Definition 3.3.1. Let x € B(L*(G). We define o(x) = V¥V =%, The family (o1)ier is

called the modular group associated to Cj(G).

Classically, the study of the modular group is undertaken using the unitary antipode
and the scaling group 7(x) = M®xM %, where M is the positive operator in the polar
decomposition G = IM 2 of the closed antilinear operator G with GA(f) = A(S(f)), see
IKvD97, [KV00Q].

Remark 3.3.2. Kustermans and Vaes [KV00] use N for the operator M, but since we are

mainly following [KvD97] here, we will stick with their notation.

In order to study the stability properties of an algebraic quantum group with respect
to these operator algebraic automorphism groups, Kustermans and Van Daele proceed as
for the complex powers of the modular element § in the previous section, namely they
seek out commutation relations between the positive operators M, V (and other auxiliary
operators) and the multiplicative unitary W, in order to obtain similar relations for the
associated automorphism groups.

We shall follow the same general strategy, but with a change of focus. Note that, by
Proposition m the modular operator V for the Pontryagin dual satisfies

VA(f) = AS*(f)d51), (3.2)
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for all f € D(G). This indicates that one can relate the modular group of the Pontryagin
dual (6¢)¢cr to the complex powers of the modular element dg, which we have already
studied, and the automorphism group associated to a closure N of the operator S2. This
can then be related to the usual scaling group and unitary antipode by the above formula
for @, or its dual version.

The advantage of this approach is that the operator S? is both an algebra and a

coalebra automorphism of A(G), so has very nice algebraic properties.

3.4 The automorphism group associated to S?

We denote by g the functional ¢g o S. We have seen at Proposition [3.2.16| that g

was positive and one can thus consider (A’, L?(G)’) the GNS construction associated to

(A(G), Yg).
In order to build a positive operator associated with S? we introduce the following

operator.

Definition 3.4.1. We define K as the closed unbounded antilinear operator from L?*(G)
to L*(G)' such that A(A(G)) is a core for K and KA(f) = A'(S(f)).

Lemma 3.4.2. Let f € A(G). We have that K* N (f) = A(S(f))
Proof. Let f,g € A(G), we have

Definition 3.4.3. We set N = K*K.

Thus N is a positive operator on L?(G) such that NA(f) = A(S%(f)) for all f € A(G).
We remark (again) that this NV differs from the operator N in [KV00], which corresponds
to the operator denoted by M here and in [KvD97].

Lemma 3.4.4. The operator V from L*(G)'®L?(G)" to L*(G)'®L?*(G)" such that V* (N (f)®
N(g)) = (NRN)(A°P(g)(f ®@1)) is well defined and unitary.

Proof. Using the right invariance of g we directly get

((WOA)AP(9)(f @ 1)), (NSA)(AP(D)(a® 1)) = ve([Te)bea)ve(dn)bay)
= (N(H)eN(g),N(a) @ N'(D)),

for all f,g,a,b € A(G). dJ
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Using the fact that S? is both an algebra and coalgebra automorphisms, it follows im-
mediately that $2®S5? commutes with all Galois maps. This gives a formal justification for

the next lemma although one needs to be careful when passing to unbounded extensions.
Lemma 3.4.5. We have that (NQN)W = W(N&®N).

Proof. First we prove that (KQK)W* = V*(K&K) :
Let f,g9 € A(G), we have

(KQK)W*(A(f) @ Ag)) = (KOK)(ADA)(A(g)(f @ 1))
= (NA)(AP(S(9)(f @ 1))
=V (EQK)(A(f) @ N'(g))-

Using Lemma we get that (KQK)W* = V*(K®K). Similarly we also get that
(K*QK*)W* = V*(K*®K*) and the result follows. O

Definition 3.4.6. Let (p;)icr designate the one parameter group of automorphims B(L*(G))
generated by N, that is, for allt € R and z € B(L*(G)), we define pi(x) = Ntz N~

We will see that the automorphism group (p;):cr is closely related to the scaling group

(Tt)ier.-
Proposition 3.4.7. For all t € R we have that p(Cj(G)) C C5(G).
Proof. From (N®N)W = W (N®N) we obtain
(N*QD)W(N"*®1) = 1N W (1&N™)
Let w € B(L?*(G)).. Applying id®w to this equality we get
N (id@w)(W)N~H = (i[d&N ~HwN*) (W),
so the result follows from Proposition O
Lemma 3.4.8. The operators § and & strongly commute with N.

Proof. Thanks to Lemma [3.2.2] in order to show that § and N strongly commute it is
enough to show that § and N commute on A(A(G)) for any t € R. Since 6% is a group-like
element of M (A(G)) we have that S?(0%) = 0, and thus for all f € A(G) we have
NOA(f) = A(S*(3ES))
= A(65S*(f))
= 0UNA(f).

A similar argument applies for . Note that S2(f) = S2(f) for all f € D(G). O
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We define §’ as the unbounded operator ¢’ = J§J. This is merely a convenient way
to introduce the appropriate unbounded closure of the operator of right multiplication by

dg, since one can show that for all f € A(G),
I'A(f) = A(fg).
Dually, we make the analogous definition of the operator & , so that
O'A(f) = A(f % b¢,).
The following then follows in an analogous fashion to Lemma [3.4.8
Lemma 3.4.9. The operators & and &' strongly commute with N.

In order to define p, at the bornological level, which informally can be understood
as the operator (52)?/2, we will generalize Radford’s S* formula. For this we need the

following lemmas.
Lemma 3.4.10. There ezists a constant v > 0 such that o(6%) = v**6% for all z € C.
Proof. First, applying Proposition to 0%, we derive that

0(0g) ® 0 = 0 ® 0 (0%)

and thus there exists c(z) € C such that o(6%) = c(2)dg. Clearly, ¢ : C — C* is a
homomorphism.

Now consider f,g € A(G). Since ¢g is invariant by o we have

(67A(f), Alg)) = o (fo%g)
= c(2)¢c(a(f)d%a(g)).

The function z — (§7*A(f), A(g)) is holomorphic, then so is z — ¢(z). Using Proposition
for t € R we have

o(6%) = o (65"

= 0_1(5(5“)

and thus c(it) = c(it). The result follows. O
Note that the scaling constant is given by u = v/°.

_ 21
Lemma 3.4.11. The operators 68 and 68’ on L?(G) strongly commute.
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Proof. In fact, we will prove a stronger statement, namely that 6 and &’ both strongly com-
mute with 68’ ~*. From the proof of Proposition [2.3.11| we have that f x og = 52(0(51(]“)).

Now, using the preceding lemma, let ¢ € R and observe that

O'SUA(f) = A((5ES) * Jg)
= A(S$%(0g ' (6E))))
= v A(6¢S* (05 ()
= V'S A(f).
In the same way, we have
35 TEN(F) = vt T A(S).
Combining these, we see that & strongly commutes with 66’1, A similar argument shows

that § strongly commutes with 68" O

Theorem 3.4.12. Let z € C, for any f € A(G) we have that p,(m(f)) belongs to
m(A(G)). More precisely we have

pa(m(f)) = mlog (05"« 1 0,20,

Proof. Considering Radford’s §* formula, Theorem [2.3.13] and Lemma [3.4.10, we deduce
that for any g € A(G),

NA(g) = Aog (5572 5 g+ 62/%)057%).
The result follows. O

Remark 3.4.13. We note that the formula for N*A(g) in the proof is self-dual, up to a
sign. It follows that the bornological subalgebra A(D(G)) C C}(G) is also stable with

respect to the automorphism group (p.).cc-

3.5 The modular groups of C¥(G) and Cj(G)

As mentioned above, our approach for the construction of the modular group of Cj(G) is
somewhat different from that of [KvD97]. We start by building the the modular group of
C}(G) and then apply duality to get that of C{j(G). The motivation for this is Equation
, which gives a formula for V in terms of the strongly commuting operators N and
o', explicitly, V = §IN. Thus, the modular group can be expressed in terms of the
automorphism groups (p,) and (§'%), both of which we have already shown to stabilize
A(G).

Recall that we use A : D(G) — C}(G) to denote the regular representation. We may

extend (6¢) to a complex 1-parameter group on analytic elements.
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Proposition 3.5.1. Let f € D(G), and n € Z. Then 6, (A(f)) = MST2"(f)R).

Proof. A direct calculation using the above formula for V shows that, for all g € A(G),

The result follows by induction. O

A standard interpolation argument allows us to conclude that the elements of A(D(G))
are analytic for the modular group (6.).cc. Moreover, since N and ¢’ strongly commute,

we have

a:(\(f)) = 0" p2(A(f))d"*,
for all f € D(G). Applying Theorem for the dual group G and Remark we

obtain the following result.

Proposition 3.5.2. We have 6,(A(D(G))) C A(D(G)).
By duality, one can deduce the analogous result for o,.

Proposition 3.5.3. We have o,(m(A(G))) C m(A(G)).

Finally, although we shall not need it here, let us remark that the bornological algebra
A(G) is preserved by the scaling group (7;),ec. Indeed, the scaling group is given by
Ti(x) = M~®xM™ where M is defined as a closure of the operator A(f) — A(S%(f)d) =
O NA(f). Therefore, using the strong commutativity of the operators N and ¢’, the
stability of A(G) by 7; follows from the results above.

3.6 A Left Haar weight for (C}(G),A)

Remark 3.6.1. In this section we will use an approximate unit of A(G), that is, a
sequence (e,), € A(G) which converges toward 1 in the bornology of M(A(G)). We
impose as an hypothesis for the rest of this Chapter that there exists an approximate unit
(én)n such that (m(en))n and (m(o;/5(en))n are both uniformly bounded in B(L*(G))
(where o; /2 is considered in its bornological version). One could remark that, from the

above, (0;/5(en))n is an approximate unit of A(G) since it converges toward o;/5(1) = 1

in M(A(G)).
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The fact that the Haar functional ¢g can be extended into a Haar weight of Cj(G) is
not trivial and, in the algebraic case, this is the whole consideration of [KvD97, Section
6]. Here we follow the ideas of that section.

To begin we recall the following result of [KvD97, Section 6]. This result can be
directly applied in our case because it uses only common properties shared by algebraic
and bornological quantum groups. This result uses the standard machinery of Hilbert
algebras, which we will appeal to without comment. For details, we refer the reader to
[KvD97] and to the books [Dix81l [Tak70].

Proposition 3.6.2. There exists a faithful lower semi-continuous weight of Cj(G), de-
noted ¢, such that m(A(G)) is a subset of Ny and ¢(m(f)) = ¢c(f) for all f € A(G).
Moreover we have that ¢ is invariant under o and more generally, Ag(or(z)) = VA4 (),
we Ay : Ny — L*(G) is the GNS map.

Next, we relate this construction more specifically with the bornological structure.

Remark 3.6.3. One of our main motivation to study z-th powers of the modular automor-
phism ¢ and show that o7 stabilizes our bornological algebra was to simplify the proof of

the following theorem, which is the analogous of [KvD97, Theorem 6.12].
Theorem 3.6.4. The set m(A(G)) is a core for Ag.

Proof. The linear map Ao : m(A(G)) — L*(G), m(f) — A(f) satisfies Ag < Ag. Thus it
is closable and we again denote Ag its closure, with domain denoted by Ap. Our goal is
to show that Ay = Nj.

First, we observe that Ay is a left ideal. Let a € Ay and = € Cj(G). Because of the
closedness of Ag, one can choose a sequence a,, € m(.A(G)) such that (a,) converges to a in
Cy(G) and (Ag(an))n converges to Ag(a). We also consider a sequence z,, € m(.A(G)) that
converges to x. The sequence (zna,) converges to za and for all n we have Ag(xna,) =
TnAg(an) = xnho(an). Thus (Ag(zpan)), is convergent and so xa belongs to Ap.

Let us now consider an approximate unit (e, ), in A(G) such that (m(ey)), satisfying
hypothesis of Remark Since (m(ep))n is uniformly bounded, the sequence (m(e,))n
converges toward 1 in the strict topology of M(C{(G)), that is, (xm(e,)), converges
toward z for all x € C§(G)). Let = € Ny, each xm(e,) belongs to Ag and we have

Ao(zm(en)) = Ag(xm(en)) = Joja(mle;,)) ] (Ag (),

where we recall that J denotes the anti-unitary component of the polar decomposition
of T such that TA(f) = A(f), see Section From Remark we deduce that
(Ao(zm(en))) converges toward Ag(x). Thus Ag = Ny, so m(A(G)) is a core for Ay. O
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Lemma 3.6.5. Consider z,y € m(A(G)) and w € C;(G)*. We have that (yw®id)(A(z))
belongs to m(A(G)) and (yw®e)(A(z)) = w(y)p(z), where we are using the notation yw
for the functional yw : a — w(ay).

Proof. Let f,g € A(G). We have

(m(g)weid)(A(m(f))) = (wid)(A(m(f))(m(g) ® 1))
= (w®id)(m&m)(A(f) (g ® 1))
= m((wom®id)(A(f)(g ® 1))).

Note that the last equality rests on the fact that (wom ®1id) is a bounded map and thus
(wom ®id)(A(f)(g®1)) is well defined and belongs to A(G). One can then conclude

using the left invariance of ¢g. d

This lemma is a preliminary version of the left-invariance of the Haar weight ¢. To
convert it into the desired result, given the technical result Theorem we can appeal
exactly to the proof of [KvD97, Theorem 6.13].

Theorem 3.6.6. Let x € My and w € C5(G)*. We have that (w®id)(A(z)) belongs to
My and (w®¢g)(A(7)) = w(1)p(z).

3.7 C}(G) as a reduced C*-algebraic quantum group

It remains to show that the left Haar weight is KMS. In the context of algebraic quantum
groups, Kustermans and Van Daele [KvD97] show the KMS property directly. Kustermans
and Vaes [KV00] have since showed that approximately KMS suffices. By Definition m
this means we must show that for a dense subset of elements v € L?(G), there is a constant
M = M, such that |lzv||r2G) < M[|A(2)| 12g) for all z € Nj.

Proposition 3.7.1. The Haar state ¢ is an approzimate KMS state.
Proof. Let a € A(G). For all z € Ny and w € L*(G) we have
(As(za),w) = (TA(a"s"), w)
= (Joa(m(a*)TAg(x). w)

Using Proposition we know that o;/5(m(a*)) = m(0;/2(a*)) and thus is a bounded
operator and we have [|xA(a)|| < [lo/2(m(a®))|pr2(@))l[Ag(z)||. The result follows. [

As usual, we use the notation R for the unitary antipode, that is, the unitary closure
of the densely defined operator 7;/5 0.S. Note that po R = ¢ 0.5 on m(A(G)) and because
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¢ o S is positive on that dense subspace and ¢ o R is a well defined weight, we see that
¢ o R is a positive right Haar weight on (Cj§(G), A).
With the same arguments as in the preceding proof, we obtain the following proposi-

tion.

Proposition 3.7.2. The weight right Haar weight ¢ o R of (C}(G),A) satisfies the ap-

prozimate KMS condition.

We now know that our quantum group (C}(G), A) satisfies the definition of a reduced

C*-algebraic quantum group.

Theorem 3.7.3. The pair (C§(G), A) is a reduced C*-algebraic quantum group.

3.8 Von Neumann, Fourier and universal algebras

With the reduced C*-algebraic quantum group Cj(G) built from a bornological quantum
group G comes the algebras L°(G) and L' (G). It should be no surprise that the bornolog-
ical algebra A(G) is dense in each of these, for the appropriate topologies. To complete
this section, we make the necessary remarks to confirm this.

The fact that A(G) is weak operator dense in L>°(G) is obvious, since L>°(G) is the
weak operator closure of C(G).

For the Fourier algebra, defined in Section we start with the Fourier algebra of
the dual A(G), L'(G), which is defined as the predual of L®(G).

Proposition 3.8.1. The convolution algebra D(G) is a dense in the convolution algebra
LY (G) N LY(G)*. Explicitly, for every x € D(G), the linear functional

z: AG) = G, z:aw— ¢(ax)

extends to an ultraweakly continuous linear functional on L>(G), and the map x +— & is

a bounded *-algebra homomorphism of D(G) into L'(G) with dense range in the Banach

topology.

Proof. First consider x = fg where f, g € A(G) and the product is the pointwise product
of A(G). Then

i(a) = p(afg) = ¢(o" (g)af) = (A(o(7)), m(a)A(f))
for all a € A(G). This obviously extends to an element of the predual of L*°(G). Moreover,
the sequence of maps
AG) x AG) — L*G)®L*(G) —  L>=(G).
feg — A0(9)) @ A(f) — (Alo(g)), m( e )A(S))
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induces a bounded map A(G)®4)A(G) = A(G) — LY(G), where we use the same
argument as in the proof of Lemma [3.2.10

Suppose now that a € L*°(G) is such that z(a) = 0 for all x € D(G). Then the above
calculations show that (A(g), m(a)A(f)) =0 for all f,g € A(G). But A(A(G)) is dense in
L?*(G), so we get a = 0. This proves that the image of D(G) in L'(G) is dense.

The convolution products on D(G) and its image in L!(G) clearly coincide because
both are dual to the product in A(G) C L>®(G). O

By duality, the bornological algebra A(G) is dense in the Fourier algebra A(G) =
L(G),. We will frequently use the notation z — & for the inclusion of D(G) into L'(G),
and likewise a — a for the inclusion of A(G) into A(G).

Finally, the universal C*-algebraic quantum group C{'(G) is the enveloping C*-algebra

of A(G). We will write mg¢ for the universal representation of A(G), namely,
mg : AG) - A(G) — C5(G).
This is an injective *-algebra map with dense range. Dually, we write
A D(G) — C3(G)

for the universal representation of the convolution algebra. We may also consider elements
of the Fourier algebra A(G), or indeed the dense subalgebra A(G), as forms on C}(G), by
precomposing with the regular representation C;;(G) — C(G).

3.9 Homomorphisms and closed quantum subgroups

One of the major advantages of bornological quantum groups is the simplicity of the
notion of a quantum subgroup. In this section we define closed quantum subgroups of
bornological quantum groups, and show that they give rise to closed quantum subgroups
of the corresponding locally compact quantum groups.

Our goal in the next section is to show the compatibility of this definition with that
given at the locally compact level in[.4.21] The proof of the equivalence of these definitions
relies on lifting bicharacters to the universal algebras. Explicitly, there is a bicharacter
W € M(CY(G)&C;(G)), called the universal multiplicative unitary, which is uniquely
characterized by the fact that its image under the regular representations is the usual
multicative unitary W € M (C}(G)®C;(G)). The universal bicharacter can be defined by
VU = (r&id)(WY).

To make the connection with bornological quantum groups, we have the following

simple construction.
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Proposition 3.9.1. Let 7 : A(G) — M(A(H)) be a morphism of bornological quantum

groups. The element
(my o T@Ag)(W) € M(CH(H)RC(G))
is a bicharacter from G to H as locally compact quantum groups.

Proof. Given a morphism 7 of bornological quantum groups from H to G as above, we

define a bornological bicharacter
V = (7@id)W € M(A(H)®D(G)).
It satisfies the properties
(Ag®id)V = Vi3Va3, (id®A@)V = Vi3V12, (3.3)

thanks to the analogous properties of W, see Equation .

Moreover, it is a unitary multiplier in the same sense as W from Proposition
Therefore, it maps under the regular representations mg®Ag to a unitary Hilbert space
operator V on L?(G)®L?(H) which is therefore a unitary bicharacter in the C*-algebraic

sense. n

Combining Proposition [3.9.1] with Definition-Proposition the above proposition
yields a Hopf *-morphism
7 CH(G) — M(C (ED)
associated to any morphism 7 of bornological quantum groups. As mentioned above, this

morphism is obtained by passing via the universal bicharacter V*, which can be made

explicit as follows.

Lemma 3.9.2. The element
V" = (mi o 7EAL) (W)

is the universal bicharacter associated to the bicharacter V' from Proposition [3.9.1), where

my and A\¢ denote universal representations of A(H) and D(G), respectively.

Proof. The proof is essentially the same as that of Proposition m The operator (mf; o
T&@AL) (W) is a densly defined multiplier of C(G)®C(G). It is unitary on its domain, so
extends to a bounded multiplier, and again satisfies the bicharacter properties. Applying
the regular representations, V* maps to the reduced bicharacter V € C§(H)®C}(G) from

the previous lemma. This characterizes the universal bicharacter uniquely, see [MRW12].
O
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We are now in a position to directly compare the bornological and C*-algebraic maps

arising from a homomorphism of bornological quantum groups.

Theorem 3.9.3. Let 7 : A(G) — M(A(H)) be a morphism of bornological quantum

groups from H to G. We have a commuting diagram

u u
mGJ( J/muﬂ

CH(G) — M(Cy(H)
where the vertical arrows are the natural inclusions.

Remark 3.9.4. Note that one cannot define the right-hand vertical map directly on the
bornological multipliers in M (A(H)), since these will generally map to unbounded multi-
pliers of C{(H).

The extension of the universal representation mg; : A(H) — C{'(H) to 7(A(G)) is made

explicit in the proof below.

Proof. It is a consequence of Proposition that any element a € A(G) can be written
as a = (id®w)Wg for some w € A(G) C D(G)*. Then we have

m(a) = (T@w)Wg = (id®w)V,

where V = (7®id)W is the bornological bicharacter associated to the morphism 7, as
above.
We can then define

mi(m(a)) = ((mfg o m)@w)(Wg) = (idow)(V*"),

where the second equality uses Lemma and @ denotes the image of w in the Fourier
algebra A(G), see Proposition and the remarks that follow it. This map is well-
defined because if 7(a) = 0 then (7 ® w)Wg = 0 and so the expression defining m(7(a))
is zero.
To check that the diagram commutes, we note that the image of a = (id ®w)Wg under
m is (id@w) W, so that 7 o mé(a) = (id®@w)(V"*), as desired.
O

Theorem 3.9.5. Let H be a closed quantum subgroup of a bornological quantum group G.
Then the corresponding locally compact quantum group H is a closed quantum subgroup
of the locally compact quantum group G in the sense of Vaes (and hence also the sens of

Woronowicz).
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Proof. Explicitly, we will show that there is a commuting diagram

D(H) —" #(D(H)) € M(D(G))

AU Pg

Recall, from Definition that we need to prove the commutativity of the bottom
square as well as the injectivity of the bottom arrows. The top square is the dual of the
commuting square from Theorem m (we are suppressing the tilde from the horizontal
C*-algebra map 7 to simplify the notation). For the von Neumann morphism, for any
x € D(H) and b € A(G) we have (7(x),b) = (x,w(b)), and it follows that 7 is ultraweakly
continuous, so can be extended to a normal unital *-homomorphism. The outer rectangle
is commutative and thus, by the density of D(H) in C}(H), the bottom square is also
commutative. The crucial point is to prove that the von Neumann algebra map is injective.

From Proposition A(H) = D(H) embeds as a dense subspace of the predual
L(H).. Explicitly, we identify a € A(H) with the functional a € L(H). where

a(x) = ¢u(F(x)F(a)) = en(z * a)
for a € A(H), x € D(H). Choose b € A(G) with m(b) = a. Using Proposition ??, we have
a(z) = ez * 7(b)) = eu(w(7(x) * b)) = eg(#(x) * b) = b(7(x)),

for all z € D(H), and hence a(x) = b(7(x)) for all z € L(G) by ultraweak continuity.
Therefore, if z € L(H) is in the kernel of 7 then z is annihilated by all of the functionals
a with a € A(H). These are dense in the L(H), so z = 0. O



7TS8CHAPTER 3. FROM BORNOLOGICAL TO LOCALLY COMPACT QUANTUM GROUPS



Chapter 4

Rieffel induction for bornological

quantum groups

Our main purpose in this thesis is to study induced representations of quantum groups.
Methods of induction for locally compact quantum groups are discussed in [Kus02] and
[Vae05]. In Chapter 1, we have seen an ad hoc construction of parabolically induced
representations for complex semisimple quantum groups, which has been developed by
[Aral4] and [VY20].

Let us briefly recall the classical construction. Let G be a locally compact group and
H a closed subgroup with a unitary representation « on a Hilbert space V. The unitary
induction procedure developed by Mackey in [Mac52] works as follows. One build a space
of H-equivariant functions on G valued in the Hilbert space V. Mackey showed that this
space is naturally a unitary representation of G.. In the case of parabolic induction for a
semisimple Lie group, this construction yields the unitary principal series representations,
which are generically irreducible.

Mackey’s method is one of the fundamental operations in representation theory of
locally compact groups. After Mackey’s publication, it was realised that this process can
be generalized. Rieffel proposed a framework for induced representations of C*-algebras
in [Rie74]. The ideas of Mackey are formulated in a geometrical setting and inspired by
algebraic methods and Rieffel made them compatible with C*-algebras. In short, if one
starts with a C*-algebra A and a C*-subalgebra B and given a *-representation V of B,

one obtains a representation of A on the space
A®pV.

By using C*-Hilbert module techniques [Lan95], one can turn A®gV into a Hilbert space

and even more generally, a C*-Hilbert module for any C*-algebra C'if V' is also chosen to

79
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be a C-Hilbert module.

Of course, one of the main motivations of Rieffel was to apply this procedure to group
C*-algebras in order to generalize Mackey’s induction. This approach has been adapted to
quantum groups; the main references for this are [Vae05][Kus02][KKSS]. One the one hand
in [Vae05], Vaes succeeded to get a very general and elegant framework for quantum group
induction where he proved the various versions of the imprimitivity theorem. Nevertheless,
this work is formalized in the Von Neumann algebraic setting which does not make the
calculations easy. On the other hand, Kalantar et al. in [KKSS] suggested something
more computable but limited to the case where one has a quantum sugroup H of a locally
compact quantum group G which is both closed and open. The problem is that, as noticed
by Rieffel in the classical case, the C*-algebra C*(H) does not sit as a subalgebra of C*(G)
in general.

In [Rie74) Section 4], Rieffel suggested to work with the algebras C.(G) and C.(H) and
consider the restriction map C.(G) — C.(H) as a kind of (non-continuous) conditional
expectation. So far, we have no way to build a similar algebra out of a general locally
compact quantum group G. This is why we propose to use the bornological framework
in order to start with an appropriate dense convolution algebra, which then allows us
to imitate the Rieffel construction. The goal of this chapter is to show that this trans-
lation is compatible with Vaes’ approach when one considers the C*-algebraic quantum
group associated to the starting bornological quantum groups, in the sense of the previous
chapter.

Throughout this chapter we consider bornological quantum groups A(G) and A(B)
such that there exists a morphism 7 : A(G) — A(B) that identifies A(B) as a closed
quaantum subgroup of A(G). The choice of the notation B is motivated by the application
to semisimple quantum groups where B will be the Borel subgroup. It is further assumed
that B is amenable that is we have C;;(B) = C(B). We will simply denote this C*-algebra
C*(B)

Remark 4.0.1. In general we have op(7(dg)) = pm(dg) for some complex number p with
modulus 1 (this can be proved exactly as Lemma . As for the scaling constant, we

1
make the hypothesis that this constant equals 1. In particular we have op(7(53)) =
1
7(6¢)-

4.1 The generalized conditional expectation

The convolution algebras D(G) and D(B) are, by definition, identified as linear spaces
with the spaces A(G) and A(B). Therefore the map 7 : A(G) — A(B) can also be seen as
a map from D(G) to D(B). However as it stands, this map does not have the properties
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of what we will call a generalized conditional expectation. Instead, we first define
7= w(651)65 € MIA(®))
which is a group-like element. And now we modify the map 7 into
E:D(G) = D(B), E(f) =n(f).

In order to describe the relevant properties of E, we must start with some preliminaries
concerning the action of D(B) on D(G). We consider the morphism 7 : D(B) — M (D(G)),
defined in Section and set for all f in D(G) and for all h € D(B)

foh=Ffxa(hy).

Proposition 4.1.1. The map f +— f-h defines a right action of the algebra D(B) on the
space D(G).

Proof. Let h,k € D(B). Since v is group-like we have (h x k)y = hy * kv and thus for
f € D(G) we have

[ (hxk) = frq(hy)*7(ky)
=(f-h)-k
O

We are going to prove that F preserves the *-involution and has a “conditional expec-

tation” property with respect to this action.
Lemma 4.1.2. The two multipliers ép and w(dg) commute.

Proof. We know that we have

¢B(S(h)) = ¢B(hdm),

for all h € A(B). By our hypothesis in Remark we also have that op(m(65')) =
7(0g"). Let then h € A(B). We have ¢p(S(7(dg)h)) = ¢r(S(hm(dg))). On the one hand

this gives

¢5(S(7(dg)h)) = ¢B(7(dc)his)
= ¢p(hdp7(dg)),

and on the other
¢B(S(hm(dc))) = ¢B(hm(0G)0B).
Therefore dp7(dg) = 7(dg)IB- O
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Proposition 4.1.3. Let f in D(G) and h € D(B). We have seen in Proposition 7?7 that

#(h) * f = foy¢8(m(S™ (f1)))h),
fa(h) = fayds(S™H (R)T(fi2))7°)-

Note that since 7(Jg) and dp commute, we have 7 (55" )dp = 72.

Proposition 4.1.4. The map E : D(G) — D(B), E(f) = ©(f)y, has the two following

properties :
1. E(f*)=E(f)*, for dall f € D(G),
2. E(f-h)=E(f)«h. forall f € D(G) and h € D(B).
The map E is the generalized conditional expectation we were looking to busld.

Proof. Let f € D(G). We have

Now let h € D(B). Using that o(y~!) = v~ we get

E(f-h) = E(f x7(h))
= (id®¢s) (1@~ S™H (W) (r@m)(A()) (1 © %)y
= (id&¢s)(1 ® S~ (1) (r&m)(A(f) (7 © 7))
= E(f) *h.

4.2 The induction module £(G)

The goal of this section is to define a Hilbert C*(B)-module with a left C(G)-action by
completing D(G). We equip the space D(G) with the right action of D(B) defined as in

Proposition [£.1.1]

Definition 4.2.1. Let V be a right D(B)-module. A D(B)-valued inner product on V will
mean a sesquilinear map (-,-) : V xV — D(B) such that for allv,w € V and h € D(B) we
have
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1. {(vy,w-h) = (v,w) *h,
2. (v,w)" = (w,v).
3. Ap({v,v)) is a positive element of C*(B) and (v,v) =0< v =0.

Such a module V endowed with a D(B)-valued inner product will be called a D(B)-inner

product space.

Remark 4.2.2. The fact that we have to call on the regular representation Ag is not very
aesthetic but this is because the notion of positivity in the bornological quantum group
D(B) cannot be defined intrinsically. Furthermore, in the case where B is not amenable,
we should use the universal representation Aj to ensure that V leads to a C;;(B)-module.
However, to build the induction module it seems necessary to work with the regular
representation, in the spirit of Lemma below. In the classical case Rieffel [Rie74]
used the existence of a Bruhat section, and one could imagine adding the hypothesis that
a quantum analogue of a Bruhat section exists in our case as well. Nevertheless, assuming
that a Bruhat section exists seems technically problematic, since it is not clear if one can
suppose its existence in A(G) or if one must work in C{(G). We will not pursue this line

of research further in the present work.

Proposition 4.2.3. The sesquilinear map ( >D(B) defined for f, g € D(G) by

(F.9)pge) = E(f* % 9).

defines a D(B)-valued inner product.

To prove the previous proposition we note first that the D(B)-linearity and compatibil-
ity with the involution of the above sequilinear map follow immediately from Proposition
It only remains to check the strict positivity, which will be a consequence of Propo-
sition below.

Remark 4.2.4. Let f, g € D(G). We have

E(f**g) = ¢c(S™ (901))S()de)m(g@)7
2

= ¢6(f91))m(9¢2))7-
Remark 4.2.5. In what follows we will often use the maps Ag : A(G) — L*(G), A\g :

D(G) — B(L?*(G)) defined in Chapter 3 and the analogous maps Ap and A, but we will
only write A and A. Their relation to B or G will depend on the context.
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Proposition 4.2.6. The linear map ps : D(G) — B(L?*(B), L*(G)) defined by f — py

where
pr(A(n)) = A(f-n), Vf € D(G),VYn € D(B),
satisfies

Ae((f, 9)p(w)) = PfPg-

Proof. First we claim that, as an operator from L?*(G) to L?(B), (ps)* acts on elements
of A(A(G)) as
(pr)* = Alg) = AT, 9)pm))-

For this, note that using eg(E(z)) = eg(x), for any = € D(G), we obtain eg(E(z xy)) =
(" *y) = (2,Y) 12(g) for any 2,y € D(G). Therefore, for all € A(B) and £ € A(G) we

have

= (M), AL ) 2wy -

We therefore have :

A((f, g>’D(]B) «n) =A(f,9- 77>’D(IB))
= Pppgh(n).

This concludes the proof of Proposition [£.2.3] We also record the explicit formula

(f.9)p@) = (bc@id)((f @ DA(g)(1@7)).

Definition 4.2.7. The Hilbert C*(B)-module obtained by completing D(G) with respect
to the inner product above is denoted £(G) and we call it the induction module (associated
toB).

See [Lan95| for details about the completion. The space £(G) is innately equipped
with a left C(G)-action, which commutes with the right C*(B)-action. We then get our

induction bi-module

)€ (G)oxm)-
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Now, for a a representation of C*(B) on an A-Hilbert module K (where A is any C*-
algebra) we consider, following Rieffel’s definition for induced representations in [Rie74],
the A-Hilbert module

IndgV = £(G)&c+(w) V.

where the tensor product is completed with respect to the interior inner product [Lan95,

Proposition 4.5].

4.3 Link with Vaes’ approach to induction

We consider in this Section our bornological quantum groups G and B as locally compact
quantum groups and we assume that B is a closed quantum subgroup of G in the sens of
We illustrate in what follows the induction procedure of [Vae05|. Let us recall that
we have at the bornological level a map # : D(B) — M(D(G)) defined in Section [2.3.5
and its operator algebraic version 7 : £L(B) — L(G), encountered in Theorem We
recall that those two maps are linked via the relation A(7(f)) = 7(A(f)), for all f € D(G).
Throughout this section we will be using the definitions and notations of Section

We recall first what Vaes’ induction process consists of. We begin with some definitions
and results from [Vae05l Section 3]. We consider (A, A) a locally compact quantum group
with von Neumann algebra M and GNS Hilbert space H. We also fix a C*-algebra B. If

V is a C*-B-module we write £()V) for the x-algebra of adjointable B-linear operators.

Definition 4.3.1. Let N be a von Neumann algebra and V a C*-B-module. A unital
*-homomorphism 3 : N — L(V) is said to be strict (or normal) if it is strong™* continuous
on the unit ball of N.

Definition 4.3.2. Let M and N be von Neumann algebras. We say that a C*-B-module

V is a B-correspondence from N to M if we have
e a strict *~homomorphism 5y : M — L(V),
e a strict *-antihomomorphism (B, : N — L(V), such that (M) and B,(N) commute.

Remark 4.3.3. In [Vae05] the notation 7 is used instead of 8. Here we keep 7 to designate
the morphism from A(G) to A(B).

We will denote z - v = f(z)v and v -y = f,(y)v for all z € M, y € N and v € V and
this correspondence will be denoted as MN.

Proposition 4.3.4. ([Vae05, Proposition 3.4]). Let X € L(A®V) be a unitary corepre-
sentation on a C*-B-module £. There is a B-correspondence MM given by

rv=Xx®1)X andv-y:(jgy*jq;,@l)v forz,y € M, ve HRV.
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Definition 4.3.5. ([Vae05, Definition 3.5]). Let MM be a B-correspondence from M to
M and suppose 3 : M' — L(F) is a strict *-homomorphism. We say that ( is bicovariant

when

(Bi®id)(A(z)) = (B&id)(V)(Bi(x) @ 1)(BRid) (V") and
(B:OR)(A(x)) = (B&id)(V)(By(z) ® 1)(B&id)(V*),

where V = (JQJ)W (J&J) and R denotes the unitary antipode of M, see [Vae05, Prelim-
M/
inaries/. In this case we call F a bicovariant B-correspondence and we write MM

Remark 4.3.6. We give this definition because we will need to deal with bicovariant
B-correspondences. However its technical aspect does not concern us directly. The
core of this section is to show the equivalence between two different bicovariant B-
correspondences, where their structure is already provided by the results of [Vae05]. Show-
ing such an equivalence is simply a matter of showing that the morphisms satisfy the right
commutation relations.

According to [Vae05, Remark 3.6], we have a structure of bicovariant B-correspondence

Ml
MM where the B-correspondence is given by Proposition [4.3.4] and 8 : M’ —
L(H®V) is given by B(z) =z ® 1.

Remark 4.3.7. Tt should be noted that there is a slight difference in conventions between
the current work and the article of Vaes. Namely the skew-pairing between A(@) and
A(G) is such that the coproduct on A(G) is reversed in our conventions, while it is the
multiplication which is reversed in Vaes’ conventions. Given that the modules discussed
here are defined primarily in terms of D(G)-actions, this means that the action of the
function algebra M’ = L°°(G) in the bicovariant modules we define below will be inter-
twined by the unitary antipode R. This forces us to slightly modify the definition of the
morphism 3 so that 8(z) = R(Jz*J) ® 1.

In practice, this means the following. If a € A(G) then the action of m/(a) € M’ on
the GNS space H = L?(G) in our conventions needs to be defined as

where £ € A(G) and R designates the unitary antipode of M. The fact that R stabilizes
the bornological algebra A(G) is a consequence of Chapter 3.

The following proposition will be the key result that we use to establish the equivalence

between our approach to induction and Vaes’.
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M/
Proposition 4.3.8. ([Vae05, Proposition 3.7]) [fMM is a bicovariant B-correspondence,
there exists a canonically determined C*-B-module €& and a corepresentation X € L(ARE),

unique up to equivalence, such that

M’ M’
R -V S R
lFlin =y HEE,
as bicovariant correspondences. So, we get a bijective relation between unitary corepresen-

tations on C*-B-module and bicovariant B-correspondences.

Note that from the corepresentation X € L£(A&)V), we obtain a *-morphism o : A% —
L(V) which verifies
(id&a)(W*) = X,
where W* designates the universal multiplicative unitary of the quantum group (A4, A).
We now set A = C5(G) and thus we have H = L*(G), M = L°(G) and M = L(G).
Let X € L(C}(G)®V) be a corepresentation of G on a Hilbert B-module V. We still denote

by « the corresponding s-morphism « : C(G) — L(V), as well as its bornological version,
a:D(B) — L(V), which can be defined by restriction of the original a to A*(D(G)).

Remark 4.3.9. One can describe explicitly the structure of the bicovariant B-correspondence
L=(G)

£(G) L*(G)&V ). Let f €D(G), £ € A(G) and v € V. We have

~

o A(f)- (A& ®v) = (A @) (A)(AE) @),
o (A§)®v)-N(f) = A+ f) v,
o B(m(£))(AE) ®v) = A(R(f)E) @ v.

Let us remark that if our conventions were coherent with those of Vaes we would have a
flipped coproduct A°P in first point. This is because in Proposition the left action is
defined by z-v = X (z®1)X*v, for z € M, v € H®V and we have W (z®1)W* = A% (z).

From now we consider X € L(C}(B)®V) a corepresentation of B on a Hilbert B-
module V, accompanied by the s-morphism a : C*(B) — L£(V). The aim of the next

paragraphs is to build the induced corepresentation of V with Vaes’ technique. Following

[Vae05, Lemma 4.5] we consider the B-correspondence . ) L*(G)&V £(G)-

Remark 4.3.10. The morphisms in this structure of B-correspondence can be made explicit
as is the previous remark. Let f € D(G), h € D(B), £ € A(G) and v € V. We have

o M) (A€) ®v) = (Ao @ a)(A(h)(A() ®v), heD(B),

o ((@v)-N(f)=(Exf)®w.
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The second point does not differ from the formula in Remark [£.3.9] The first point
requires justification. It is claimed in [Vae05, Lemma 4.5] that the morphism f; : L(B) —
L(L*(G)®V) is characterized by the property

Bila)(u@1)§ = (u© 1) X (a© 1) X7E,

for every a € L(B), ¢ € L*(B)®V and u € B(L*(B), L*(G)) satisfying ux = 7 (z)u for all
r € L(B). Let then u € B(L*(B), L*(G)) satisfying uz = #(x)u for all z € L(B) and let
h € D(B), n € AB) and v € V. According to Remark we have

X(a®1)X*(As(n) @ v) = (Ap ® a)(A(h))(Ap(£) @ v).

Therefore, since A\(h) € L(B), we have

[(u @ 1)XA(R) © DXT](AE) @ v) = (u@ D((A® a)(A(h)))(AE) @ v)
= (7o A® a)(A(h))(u® 1)(A(§) @ v)
= (Ao 7 ®a)(AR))(u@ 1)(AE) @ v
= (Ao 7 @ a)(A(R))[(u® 1)(A(§) @ v)]

and thus it coincides with what we claimed. Finally we note that we also have a *-

morphism Bj2gyzy @ L2(G) — L(L*(G)®V) given by Bra@ev(m (f))AE) ® v) =
A(R(f)E) © .

We introduce the space Z from [Vae05l Definition 4.2]:
T = {u € B(L*(B), L*(G)), ux = #'(z)u Yz € L(B)'},
where 7’ refers to the natural action of £L(B)’ on L?(G) given by
#(x) = Jer(JpaJs)Jg.

the space Z is endowed with

e its natural £(G) left action by composition,

e its natural £(B) right action by composition,

e an L(B)-inner product given by (u,v) ) = u*v, for all u,v € .

e a *-morphism f7 : L>®(G) — L(Z) given by Bz(m/(f))u = m(R(f))u, for all f €
A(G) and u € T.
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With this structure the space Z is a bicovariant W*-bimodule (see [Vae05, Section 3.2]).

Let K be a B-Hilbert module endowed with a left £(B)-action. One can consider the
space Z @) K which is a B-Hilbert module when it is endowed with the interior inner
product ([Vae05l, Section 12.3]) as follows. Let u,v € Z and z,y € K. The interior tensor
product is given by

<u®$,’l)®y>B = <.’E, <uav>E(B) y>B
Now, following Vaes’ induction procedure, we set K = L?(G)®). Vaes build a bico-

variant B-correspondence

£©)| I ®cm) (L(G)RV) |2 (c)-

Remark 4.3.11. On this balanced tensor product, the left action of £(G) is done via the
left action of £(G) on Z. The right action of £(G) via its right action on (L?(G)®)V), as
specified in Remark Finally the morphism 8 : L®(G) — L(Z @) (L*(G)&V))
is given by 8 = (/BI®BL2(G)®V) o A. Specifically, let f € D(G),£ € A(G) and v € V. We

have
* Ag) - (u(f) @A) ®v) = (g * [) ®A(E) @,
o (f)®AE®V) - N(g) =u(f)®A(E*g) @0,
o B(m/(9))(e(f) ® A§) ®v) = L(R(g(2)) ) ® A(R(g1))§) @ v.

Then, using Proposition we have the existence of a corepresentation of Cj(G) on
a B-Hilbert module Ind V such that there is an isomorphism of B-correspondences
L= (G) L= (G)
£@)|I0m) (LA (G) @ V) |r¢) & £@) L2 (G)&Ind V().

The aim of this section is therefore to establish an equivalence of corepresentations
Ind V = £(G)&¢-(m) V-

According to Proposition there exists a structure of bicovariant B-correspondence
LOO (G)/

£(G) L*(G) ® £(G) ®@pm) V |c(c)- Specifically, let g € D(G), &, f € A(G) and v € V. We

have

e Mg)- (M@ fev)=(Aeid)(Alg) (@ f)) @,
where * refers to the product of D(G)®D(G),

e (A fev) N =AErg)© [,
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o B(m(9))(A) @ f@v) = MR(9)§) ® f @v.

Proposition 4.3.12. We have an equivalence of bicovariant B-correspondences
£6)| 2@ (L2 (G)®V) |(6) & £(6)| LH(G)RE(G)&c-m)V |c(6)-

To prove this we need several results.

1

Lemma 4.3.13. Let h € D(B). We have that w(h)og is a well defined element of
1 1

M(D(G)) and we have w(h)og = w(hm(63)).

1 1
Proof. First, observe that, since 63 is group-like, f — fé3 is a bijective homomorphism
of the algebra D(G). As a consequence this map extends to a map M (D(G)) — M (D(G))
defined for m € M(D(G)) and f € D(G) by

1

(mdZ)  f = (m+ (f55°))52.

[ TSI

Then, setting m = 7 (h), we get

1

(#(R)62) * f = (R(h) * (f657))62
B(W(S_l(f(?)d(é%))h)f(l)é(g
5(m(S~1(fio)hos(m(52)) fo

D=
Qo=

J

S S

where tlhe last eqluality follows from the hypothesis we made at Remark which gives
og(m(63)) = m(63).
O

Lemma 4.3.14. Let h € D(B) and § € D(G). We have that 7' (N (h))A(§) = A(E) - h.

Proof. Let h € D(B). We recall that we have the polar decomposition of the operator
. . U SR B
Ty : A(f) — A(f*) as Ty = JgVj = V> Jg, so

=

A

N A AL
JeX (h)Jg = VZX (h*)Vg 2.

Recall also that VgA(n) = A(S?(n)dg'). Using the strong commutation of the operator
extensions of S? and dg from Section we obtain

JeN(R).Js = A(S|(h)"52)

where |S] : A(B) — A(B) is the automorphism induced by N, the operator defined in
Section Of course the same result stay true if we replace B by G. We use in the next
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calculation that the automorphisms |S| are intertwined by 7 and that |S|(dg) = dg. We

also have

. One can now calculate

Where for (%) we used Lemma [4.3.13] The result follows from the definition of the right

action. OJ

Lemma 4.3.15. The map pe from Proposition[{.2.0 defines an injection with dense image
E(G) — T (with respect to the weak topology of B(L?(B), L*(G)). Its image is denoted Iy.

Proof. Let f € D(G), h € D(B) and n € D(B). We have

pr(N(WA(n)) = A(f - (n* h))

Thus the operator py belongs to Z. It remains to show that the image of £(G) in T is
dense. Let ¢ € L?(G) and n € L?(B). Suppose we have

(A(&),ps(A(n))) =0

for all f € £(G). Let then u € Z, we want to obtain that (¢,u(A(n))) = 0. Let € > 0,

there exist

L. a€ AB) s.t. [[A(n—a)| 2@ < e (density of A(B)),
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2. be AB) s.t. [[A(bxa—a)l2m) < e (essentialness),
3. c € A(G) s.t. |lu(A(D)) — Ale))llr2(c) < € (density of A(G)).

Now, there exist ki, ks, ks > 0 (depending only on the norms of A(£), A(n) and u such
that

L[ {A(8), w(A()) — (A(E), u(A(a))) |< ke,
2. | (M), u(Aa))) — (A(E),u(A(bxa)) |< ke, and we mote that u(A(b* a)) —
N (a)u(A(D));
3. | (A(€), u(A(b) - Aa)) — (A(E), Alc - n)) |< kse,
Finally, since (€, ¢ - 1) = 0 we have
| (& um) | < (k1 + k2 + ks)e,

So (¢,u(n)) = 0 and we are done. O

Lemma 4.3.16. Let V be a representation of C(G) on any Hilbert module. One can

endow V with its von Neumann bornology and consider the bornological space
V> = D(G)@p(@)v,

equipped with the left convolution action of D(G) is a bornological D(G)-module and defines

a dense subspace of V.

Proof. First, from the associativity of the bornological tensor product we have that
D(G)®pc)(D(G)&pc) V) = D(G)&p@) )V,

and thus V*° is a bornological D(G)-module.

Now consider the linear map D(G) ®@pg)V — Cy(G) @V defined by f®@v — A(f) ®@v.
This map is bounded since bounded subspaces of V are precisely bounded subspaces of
V with respect to its Hilbert topology. Furthermore this map leads to an injective map
D(G)@pg)Y — Ci(G)®¢x ()Y =V which has dense range.

O

Remark 4.3.17. Using the duality between modules and comodules at the bornological

level, we obtain that V*° is also a comodule.

Lemma 4.3.18. Let h € D(B), n € A(G) and w € V*>°. We have

A(h) - (A(n) @ w) = A(n)) @ 7(S™ (na)))h - w,

where “ - 7 on the left hand side stands for the action of D(B) on V°.
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Proof. h € D(B), n € A(G) and w € V>*°. We have

A(h) - (A(n) @ w) = A(h) - (E@v) = Ao @ a)(A(h))(Aln) @)

D (7 @id)(A(R)), S~ (1)) @ S (w(_1)))Alng)) ® w(o)

= (h, S~ (w_1))m (S~ (1)) A(n(2)) @ w(o)
= ¢u(S™ (w1)) (ST T (n))h)) A1) © w,
= M) @ ©(S™ ()b - w,

—

where in equality (x) we apply the definition of the action associated to a coation, with

the same conventions as in Proposition [1.1.13 O

Proof of Proposition[{.3.13 Lemma allows us to consider the linear map
T:AG)®D(G)@V® = I® (L*G)®V)
ER fov =N (AE)(fel)®v
where ¢ stands for the injection D(G) — Z from Proposition
Let §,n € A(G), f,g € D(G) and v,w € V*°. We consider the elements [.(1)f) ®
A(&2)) ®v] and [1(n1)g) @ A1y @ w] of T @@y (L*(G) @ V) (where we us the notation

[ - ] to refer to a class of elements in the balanced tensor product). Using the Lemma
4.3.18|in the equality (*) below and the definition of the interior inner product we obtain

([l f) @ A&a) @ 0], [L(nayg) @ Alne) ® w]>z®£<m>(Lz(G)®v)

= (Ae) @ v (& 109)pie) - (M) D w))

= (A&e) @ v, ¢6(E0) )90 AT () 92)7)) - (M) @ ) o ey
(2 (A(&2)) ® v, da €1y fr1y90)) M) © (7(S™Hne))m(n@)9:2)7)) - W) 2(6)v
(Al&) @ v, 86 (f Euynm9m)Ane) @ (T(92)7) ) 12 gyey

= dc (€M) (v: 0 (f Eynmaw) (m(g@7) - w)),,
= (M©) @ v, A0 ® (£, 9)pge) - w)

= (A @[f @v],An) @9 @ w]) L2 @)0e(G)@pEV -

L2(G)®V

In particular, this shows that elements in the kernel of the quotient A(G) @ D(G) @ V> —
A(G) ® D(G) @p(p) V have null image in Z @) (L*(G) ® V) so the map ¥ descends to
a unitary map to the balanced tensor product.

Now we can consider the associated map

U: LXG) R E(G) ®c+m) Y = I Rcm (L(G)@V).
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Let us check that ¥ intertwines the bicovariant B-correspondence structure. We start
with the left action of £L(G). Let g € D(G) and £ ® f @ v € A(G) @ D(G) ® V*°. We have

~

Ag) - (A @ [f ®v]) = (A®id)(A(g) ®id))(AE) ® [f ® v])
= ¢G(S_1(5(1)f(1))Q)A(§(2)) ® [fr2) @],

and

o6 (S (€ f1)9) T(A2) ® [f2) @ ]) = ¢ (S (€ f1)9) [t f2) @ AEs)) @ 0]
= [u(g*§) f) @ A(§2)) ® 1]
= Ag) - [tl§) f) @ A(§2)) ® ]

For the right action of £(G) consider again g € D(G) and {® f@v € A(G)@D(G) @ V™.
We have

V(A =g) @ [f @]) - Ag)

(L€ f) @ A(&2) * g) @ V]
T(AE) @ [f@u]) - N(g),

where we use Lemma [2.3.8] Let now g € L>°(G)’. We have

V(B(9)(A©) ® [f @ v])) = U(A(R(9)8) ® [ ® )
= 1(R(9(2))1)f) @ AR(91))&2))
= B(g)¥(A(E) @ [f @]),
where we use that R is an anti coalgebra homomorphism.
We finish with the surjectivity of U. Let f € D(G),g € A(G) and v € V> and
consider the element ¢(f) ® [A(g) ®v] of Z® . (g) (L?(G)®V). We observe that the element

[A(g@)) ® S‘l(g(l))f ® ] of L?(G) ® £(G) ®c+®) V is an antecedent of L(f)®[A(g) ® v
for U. We conclude with a density argument. O

Theorem 4.3.19. The representations Ind V and E(G) ®¢-m) V are equivalent.

Proof. This follows directly from Proposition [£.3.12] and Proposition [1.3.8| O



Chapter 5

The parabolic induction module

The goal of this Chapter is twofold. First it allows us to illustrate the general construction
of the preceding chapter. Secondly we use this construction to express in a simple way
the parabolic induction functor for a complex semisimple quantum group. By means of
that, we give an explicit expression for the reduced C*-algebra of such a quantum group.
As we have seen in Chapter 1, the construction of principal series representations are
very similar to the classical case. In particular those representations are induced from an
analog of the classical Borel subgroup. We thus propose to adapt the ideas of P. Clare et al.
[CCHI16]. Let G be a semisimple Lie group (here we suppose it complex in order to avoid
certain subtleties of the general real case) and let G = KAN, B = M AN be an Iwasawa
decomposition and the associated Borel subgroup. All the characters of B involved in
the parabolic induction are characters of the Levy factor L = MA extended trivially
to B. Thus the parabolic induction (associated to the chosen Iwasawa decomposition)
realizes a functor between the category of characters of L and the category of unitary
representations of G. In |[CCHI6], following an original construction of P. Clare, the
authors adapt Rieffel’s ideas [Rie74] to build a C*(G)-C*(L)-correspondence, that is, a
C*(L)-Hilbert module, denoted £(G/N), with a *-representation of C*(G). They show
that the parabolic induction functor is exactly £(G/N) ®¢+(ry — In the quantum case
we have an analog L, of L, but there does not seems to exist an analog the unipotent
radical N, at least not with a full quantum group structure. Despite this issue, we can
build a C*(Gy)-C*(L4) correspondence with the expected property. Furthermore, thanks
to the structure of a semisimple quantum group Gy = K, < I/(\q and the discreteness of

—

K, certain computations are made easier than in the classical case.

We remark that the quantum groups in this chapter are all algebraic quantum groups,

so that questions of bornology disappear.

We also remark that we have ég, = 1 so the hypothesis we have made on 7, (dg,) is

95
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trivially verified and we have that B, is amenable thus all the results of Chapter 4 can be

applied to implement the induction from B, to G.

5.1 The quotient map

In the classical case, with G = K AN, principal series representations are induced from
characters of the the Borel subgroup B = M AN. Explicitly, we choose first a character p
of M and A of A and then the identification M A = B/N allows us to extend u ® A to a

character of B. In this way we obtain the principal series representation
md§ p® A

In the quantum case we do not have an analog for the subgroup N. But, as we now

explain, we do have a “quotient” map
K, — A,.

Let us make this explicit. There are two versions of the map mp. First with the
canonical identification of x-algebras A(K,) = D(I/(\q) and A(T") = D(A,), one can consider

—

mr : D(Ky) = D(Ay),

which is a s-morphism and comes with its dual morphism 77 : A(4,) — M(A(K,)).
Secondly, using the identifications of vector spaces A(I/(\,I) = D(I/(\(Z) and A(A,) = D(4,)

the same map can be interpreted as a map

—

s A(Ky) — A(4,).

This is a conditional expectation is the sense of Proposition observing that K, and

o~

T are unimodular. In particular 7(fKy) = n(f)K) for all f € A(K,), A € P. This is the

—~

map 7 : A(K,) — A(A4,) that we call the quotient map. This map has also the notable
property
¢z (f) = ¢a,(mr(f)).

Indeed we have for all a € A(K,)
¢, (Fi,(a)) = ex,(a)

= er(mr(a))
= ¢a,(m7(Fk,(a))).
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Remark 5.1.1. In the rest of this Chapter we extensively use Sweedler notations. Since
one considers both A(K,) and .A( q), this can be Confusmg The convention is as follows.
If we write f € A(Gy) or f € D(Gyq) (where G, = Kq,Kq,T or Ay) then f(1) ® f(o) always
refers to the coproduct of A(G,).

Lemma 5.1.2. Let f € .A(I/(\q). We have
mr(f2)) ® fay = 7r(f)2) @ (7 (f)(1))-

In particular this means that the map A(A,) — M(.A(I/(\q) ® A(Ay)) given by mp(f) —
fay @ mr(f2)) is well defined.

Proof. Let f,g € D(K,). On the one hand we have
nr(g* f) = 7TT(f(2))¢;?q(5_1(f(1))9)
= mr(fi2))(9, 5 (f)))-
And on the other hand
mr(g) * 0 (f) = 70(f)@2)0a, (S (7 (f)ay)7r(9))

mr(f) ) (g, Tr(S™ Y (f)w))))
= 770(f) )9, S~ Fr(rr(f)a))))

One can thus identify the legs and we obtain

mr(f2)) @ foy = 7 (f)(2) @ 7r(mr(f)))-

O]

We denote by ay, : A(4,) — M(A(f/(\q)) ® A(Ag,) the A(l/(\(l) coaction we obtain on
A(Ay). For h € A(A,) we have

aa,(h) = 7r(ha)) @ ke,
and for f € A(I/(\q) one can also write

aa, (mr(f)) = fay @ mr(fi2)-

5.2 The parabolic induction module

In this section we use all the notation introduced in Section The goal here is to
build a Hilbert module which implements the parabolic induction functor. We define this
module in this section as a balanced tensor product £(G,) ®p(p,) D(Ly), where £(Gy)
is the induction module built from the closed quantum subgroup B, as defined in the

previous chapter and where we recall that we defined L, =T x A,.
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Lemma 5.2.1. The linear map (id ® 7r) : D(By) — D(Ly) is a *~Hopf homomorphism.
Proof. We first show that (id ® 7p) : A(Lg) — M(A(By)) is a *~Hopf homomorphism,

then we conclude with a duality argument. Before we start, we recall that 77 : A(A4,) —
M (A(I/(\q)) is a Hopf *-morphism. We have seen in Section m that

A, (a® f) = an) ® wi f1ywr @ mr(ufS(u),))a@) @ fo),
for all a ® f € A(By). Let a ® h € A(Lg). We have on the one hand
((d ® #7) ® (id @ 77)) (AL, (@ ® h)) = aq) @ Fr(h1)) ® az) @ Tr(h()).
And on the other hand
Ap,(a®@r(h)) = a@) @ wizr(ha))wy, @ Tr(ugS(u),))ae) @ Tr(he),
and since 7 maps A(Ay) into the set of diagonal elements of A(I/(\q), we obtain

ABq (CL & ﬁT(h)) = a) & w%ﬁ'T(h(l)) X WT(UZS(’UJ%))Q(Q) ® frT(h(g))
= aq) @ fr(h)) ® a@) @ fr(h).

Thus (id ® 77) is compatible with the coproducts. The *-algebra structure of A(B,) is
not twisted so there is no difficulty to see that (id ® 7) is a *-algebra homomorphism.
To conclude we just notice that since the pairing between D(B,) and A(By) is defined leg
by leg it is clear that the dual morphism of (id ® 77) is (id ® 7p). O

We now present the characters of B, in a different way to that given in Section
First, for (u,\) € P x t;, one can build the one dimensional representation of L, on
Cur=C,®C, via

(T®h)-1=¢r(e"1)pa,(K_x\h),
for all h € D(Ay), T € D(T). Since D(L,) is essential, we have D(L,) @p(r,) Cux = Cp .
Furthermore since D(L,) is a D(By) left module, one can consider the action of D(By) on
D(Lq) ®p(1,) Cpu, which happens to be exactly the character of B, associated to (u, A),
according to the previous lemma. In particular this shows that such character can be
factorized through the morphism (id ® 7r) : D(B,) — D(Ly).

Recall that we defined in Section the representation Inng(Cu, » in an ad hoc way.
We now confirm that this agrees with the general induction method we developed in
Chapter 4.

Lemma 5.2.2. Let a ® f € A(Gy). We have
(a® fay ® (rr @ 7r)((a® f)@) = aq) ® fu) @ (tr @ 7r)(a@) @ f2),

where (a ® f)1) ® (a ® f)(2) refers to the coproduct of A(Gy).
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Proof. Let a ® f € A(Gy). Using the formula given at Section we have

(a® f)uy @ (rr @ r)((a @ f)e2) = aq) @ wf; fywrs @ mr(S(uf;)ae)yurs) ® mr(f2))
= a(1) ® wy; fywr, @ Tr(u S (u),))Tr(aw) ® r(fz)

© aqy ® Wit (T (f)))wry @ Tr(ufS(u),)Tr(ae) © mr(f2)

=aq) ® fa) @ (@) @ mr(f2),
where at equality (%) we used the Lemma [5.1.2 O

We now consider the D(B,)-inner product on D(Gy), given by Proposition Ac-
cording to [VY20, Lemma 4.17] we have g, = 1 ® K_4,.

Lemma 5.2.3. Let a ® f,b® g € D(G,). We have
(& 77)((a® £,5@ ghpi,)) = 7r(a” +b) & 7 (f* + g)K s,

Proof. a® f,b® g € D(G,). Using Remark we obtain

(id@mr)({e® f,b @ g)pp,)) = (d @ mr)(dg, (e @ [)(0 @ g)q))(rr @id)((b© g)(2)) (1 © K_9,))

= ¢a,((a® [)(b®@g)a))(mr @ 77)(b® g)2)) (1 ® K2p)
() o7
= o6, (@@ f)(ba) @ ga)))mr(bey) @ T7(g9e2)) (1 ® K_2,)
=mp(a” xb) @ mr(f* * g)K_2,,
where for the equality () we use the previous lemma and that the involution on A(G,) is

leg-wise. For the last line we simply use that ¢¢, = ¢k, ® = and identify convolutions
q

on each legs. O

Proposition 5.2.4. The unitary representations D(Gy) ®@p(p,) Cpx and Inng(CM)\ of
D(G,) are isomorphic.
Proof. We consider the map ¥ such that
G
U : D(G,) — Ind§Cyz
(CL ® f) — a* frT(e’“‘) ® gﬁf(q(fK,)\,gp)K)\Jer.

We will show that this map is surjective, intertwines the A(Gy) coactions and descends
to the balanced tensor product D(G) ®pp,) Cux. Let a ® f € D(G,). We first show
that a x 1p(e”) ® gbl’eq(fK_A_i_Qp)K)\_A'_Qp belongs to IndCB:Z(CM’)\. It is enough to show that
(id @ m7)(Ak, (a * 7p(et))) = (a * 7r(et)) ® ek, For this, since e/ is group-like we have

(ld & 7TT)(A‘KQ (a * 7ATT(‘-?M))) = (bT(e*“ﬂT(a(:g)))a(l) X ﬂ'T(a(Q))
= ¢r(e Frr(ap)))an) @ e
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Next, let a ® f,b® g be in D(G,) and consider the elements [a ® f ® 1], [b® g ® 1] of
D(Gq) ®D(B,) C#,)\. We have

([a@f)el1][begel) = (e f,b@g)psm,) -1

— (e mr)(a® £,b® g)pgs) - 1

(mr(a” xb) @ mr(f* % g) K 3p) - 1

¢r(mr(a” +b)e ™ )og ((F* 9) K 2p-x)

= or(rr(a” «b)e " )og (f"K-2p-2)05 (9K 2p-2)
where at the last line we used that qbf{ (xxy) = qﬁf( (z )qﬁf( (y), Va,y € D(I? ). Note
also that qﬁkq(f*K_gp_,\) = (K*,, ,f") since K_5,_ is self-adjoint and oz (K 2p—N) =
K_5,_». For the calculation on the right hand side we will use that (e#)* = e“ and that

et x et = et. We also use Lemma [2.3.7, Using the definition of the inner product on

InngCu, » from Section [1.3.4] we have

(ax7ip(e!) @ Kxjop,b* Tp(e!) @ Kyyo,) = (a* wp(e!), bx p(et))

Kq((a x i (el))* « bx wp(et))
er(mr(7p(e")"  a®))  (b* wr(e"))
er(e’ x p(a* *b) x et)

r(mp(a” b) * ("))

r(mr(a” * b)et)

r(mr(a® *b)e ™).

|
M

¢
¢

This then shows that ¥ descends to an unitary map on the balanced tensor product
D(Gy) @p(8,) Cur — IndFIC, x.

To conclude, we show that W is surjective. To this end we first notice that InngCu, A
is spanned by elements of type a ® K)o, for a € I'(€,,x). This follows from the fact that
the map ext : I'(€, ) — InngCm a from [VY20, Lemma 6.18] is an isomorphism, where
I'(Ey,n) is defined in Section and we have ext(a) = a ® K49, for all a € T'(E, ).
Let then a € T'(§,x). We have that a * 7p(e#) = a; thus the element a ® 1/K\q ® 1 of
D(G4) @p(B,) Cpux is an antecedent of a® Ky 19,, where I/K\q is defined in Section O

One can now consider the D(L,)-inner product module D(G,) ®p(p,) P(Lq) and we
have
D(Gy) ®@p(B,) P(Lq) @p(L,) Cuxr = D(Gy) @p(B,) Cux-

As a consequence, D(Gy) ®@p(p,) D(Lg) is the parabolic induction module.
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5.3 Geometric presentation of the induction module

We consider the linear space
A(Gq/Nq) = A(Kq) ® A(Aq)a

equipped with its natural structure of untwisted *-algebra. We endow A(G,/N,) with a
left A(G,)-coaction given, for a ® h € A(G4/Ny), by

A, v, (a® h) = Wi (Ag, (a) @ a, (h)Ws2 € M(A(G,)) ® A(Gq/Ny),
where the coation a4, is defined after Lemma Let f € .A(I/(\q). We have
Ag, /N, (a@7r(f)) = Way' (ag) ® f1) @ aga) @ 7 (f(2))) Waz.

From this we see that Ag, /v, (a ® 7r(f)) = (id ® ®id ® id ® 71)(Ag, (e @ f)) and it
directly follows that the map Ag, /y, is coassociative. This remark also implies the next

proposition.

Proposition 5.3.1. The map id @ 7y : A(G,) — A(Gy/N,) intertwines the left-A(Gy)-
coactions where A(G,) is considered with its natural comodule structure given by the co-

product.

We now define a right A(L,)-coaction on A(Gy/N,), denoted A’Gq/Nq. Foralla® h €
A(Gy/Ny) we set

Ag, N, (a®h) = a@) ® hay @ mr(ag) ® hg) € A(Gq/Ng) ® A(Lg).
Proposition 5.3.2. The coactions A’C;q/Nq and Ag, /N, commute.
Proof. We first claim that we have
(id® 77 @ id ® 1) (Ag, /v, (@ ® h)) = (i[d ®id @ 77 ® id)[Ag, (a @ 77 (h))].
We calculate

(ld®id ® mr ® id)[Ag, (a ® 77 (h))]
= a1y @ wiwr (hay)wrs @ Tr(S(uf;)a@)urs) @ 7r(he)
= a() ® r(hay) @ mr(ap)) ® 7r(heo)
= (id @ 7r ®id ® 77)(Ag, /v, (@ ® b)),

We have also that

(id @ id ®id ® 7)(Ag, v, (a ® b)) = Ag, (a @ #(h)).
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Now we can prove the proposition. First we rewrite above equalities using the leg

notation (we write 7 and 7 instead of 7wy and 7r):

~ / N
(T ®)oq 0 AGQ/Nq =30 qu o Ty

T4 0 Ag, /N, = DG, © T2
Now observe that we have on the one hand

(7t @ T)aso(Ag, /n,)34 © Agy /N,
= ((f @ )24 0 Ag, /v, )34 © Dy,
= (m3 0 Ag, 0 72)31 0 Ag, /N,
= 150 (Ag, )31 0 Ag, 0 72

and on the other hand

(7 @ F)aso (A, /v, )12 © A, v,
= (Ag 20 (T @ T)aa 0 Ag /.
= (Ag,)120m30Ag, 0T

= 75 O (AGq)IQ o AGq (¢] 7AT2

and we conclude the proof using the coassociativity of Ag, and injectivity of 7p. O

Observe now that A(G,/Ny) = D(K,)®D(A,) as linear space. On the one hand D(K)
can be considered as a D(T)-inner product module, in the sense of Chapter 4, since T is
a closed quantum subgroup of K,. On the other hand K>, is a self-adjoint and group-like
element of M (A(A,)); thus D(A4,) has a structure of D(A,)-inner product module with

right action
h-l=hx (1K),

and the sesquilinear map defined by
(h, k)D(Aq) = (h* % k)K_3,,

for all h,k,l € D(A,;). One can thus endow A(G,/N,) = D(K,) ® D(A,) with the
structure of a (D(T") ® D(Ay))-inner product module induced by the tensor product. Let
a®h, b&® ke A(G,/Ny) and T ® | € D(L,). We have
(a®h,b@k)p, ) =mr(a”*b) @ (h" * k)K_2,
(a®@k)- (T®@1) =a*xip(T) ®k* (1Ks).
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Lemma 5.3.3. The left action of D(K,) on A(Gq/Ny) induced by Ag, /N, commutes with
the right D(Lg) action.

Proof. This is almost equivalent to Proposition Observe that if one precomposes
the right D(L,) action by the *-algebra homomorphism of D(Ly) given by x — x(1® Ka,)
we obtain exactly the action induced by the coaction A’Gq N, O

Proposition 5.3.4. The map defined by

® : D(Gy) ® D(Lg) — A(Gq/Ng)
(@@ f)©(r@h)— (a@mr(f)) - (T @ h),

is a D(Lgq)-linear map which intertwines the left action of D(G4) and descends to a unitary

isomorphism on the balanced tensor product D(Gy) @p(p,) D(Lq)-

Proof. The D(Lg)-linearity of ® is immediate from the definition since the right D(L,) ac-
tion on A(G,/N,) is associative. The intertwinning property directly follows from Propo-
sition and the previous proposition. Let (¢ ® f) @ (T ® h) and (b® ¢g) ® (( ® k) be
in D(G4) ® D(Lg) and consider the elements [(a ® f) ® (T ® h)] and [(b® g) ® (¢ ® k)] of
the balanced tensor product D(G,) @p(p,) P(Lg). We have

((a® f)@(T@h)][(b®g)® ([ @K)])pw,)
= (o0, (a® 58 g, - (COK))

D(Lq)
(r @ ), (rr(a® +5) @ mr(f* + 9)K-2,) * (C & Ky,

— {(r @ h), (mrla +b) £ ) @ (mr(F* 9K 2,) * Wiz,

= (" xmp(a” xb) * () ® (h* «mr((f* + g)K_2p) x k)
( ® (h* s mp(f* * g) K25 * k)
(mr(a*7p(T))* *b*ﬂ'T< ) ® (B s mp(f) Kop x mr(g)Kap * k) K_2,
((a@mr(f)) - (T@h),(b@mr(g) - (C®K))pp,) -

Thus the map ¥ descend to a unitary map on the balanced tensor product. With regard
to the surjectivity it is enough to observe that the right D(L,) action on A(G4/N,) is

essential. n

The following theorem is now immediate.

Theorem 5.3.5. The pre-Hilbert D(Ly)-module A(G4/N,) can be completed into a Hilbert
C*(Lg)-module £(G4/Nq) and we have

E(Gq/Nq) = E(Gq) ®C*(Bq) C*(Lq)a
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as Gg-representations. The tensor product £(Gy/Ny) Qcx(Ly) — defines a functor from the
category of unitary C*(Lg)-representations to the category of unitary C;(G)-representations

which coincides with parabolic induction.
By the Fourier transform, we have
C*(Ly) = Co(Ly) = Co(P x T)
such that the characters of C*(L,) become the evaluation maps
eviyy @ Co(P xT)—Cyx.
According to [VY20, Theorem 7.1] we have
Cr(Gy) = Co(P x t3, K(H))Y,

where H is a countable dimensional Hilbert space, and the action of the Weyl group W
is a lifting of its action by reflections on P x t; to an action on the bundle of C*-algebras.
More precisely, the Hilbert space H at the parameter (u, A) € P x t; is identified with the

parabolically induced representation of G,
Gy
H=H,)= Inqu(CM,)\
~H, = Ind2'C,,
(€ A(K,) [A(E) = €meny P20,

which is a trivial Hilbert bundle on each connected component {u} X t; of the parameter
space. The action of W is via intertwiners of principal series representations. In this way,

we have

Cr(Gy) = (R(EPCo(ty, H))"

neP

where & denotes compact operators on the right Hilbert Co(P X t;)-module.
By theorem [5.3.5 we have

Hyx = E(Gq) ®c+(B,) Cun
as left C?(G,)-module. Therefore
Co("} Hu) = 5(Gq/Nq) ®C*(Lq) CO(tZ)uy

as left C}(Gy)-module and right Co(t;)-Hilbert module, where Co(t;), denotes Co(t;)
equipped with the left action of C*(Ly) = C*(T)®C*(44) = Co(P)&Co(t;) such that
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Co(t;) acts by pointwise multiplication and Co(P) acts by evaluation at p. We thus
obtain

PCo(t;, Hy) = E(Gy/Ng) @c(1,) Co(P x £;)
nepP

= 5(Gq/Nq)-
We have therefore proven the following result.
Corollary 5.3.6. Let Gy be a complex semi-simple quantum group. Then
O (Gq) = R(E(G/Ny))Y,
where R indicates the algebra of compact operators in the sense of Hilbert modules.

In the classical case, this result has been first obtained in [Was87] and reformulated in
[CCHI16] with the Rieffel induction framework.
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