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Laboratoire de Mathématiques Blaise Pascal

Sous la direction de Robert Yuncken

Jury :

M. Christian Voigt, Reader, University of Glasgow

M. Kenny De Commer, Associate Professor, Vrije Universiteit

Brussel
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Date de la soutenance : 26 novembre 2021



2

Remerciements Il y a de nombreuses personnes qui ont contribué à l’aboutissement
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Introduction (Français)

Groupes quantiques localement compacts

Le terme groupe quantique peut faire référence à une grande variété d’objets mais

dans chaque cas, il fait toujours référence à la généralisation de la notion de groupe, et

dans chaque cas, un groupe quantique est systématiquement défini comme une algèbre de

Hopf (ou un autre type d’objet similaire). Dans notre cas, les groupes quantiques sont

une généralisation des groupes localement compacts et sont généralement appelés groupes

quantiques localement compacts. L’une des motivations de cette généralisation provient

de la dualité de Pontryagin. En effet, tout groupe abélien localement compact possède

un groupe dual, lui-même localement compact et abélien. Cette dualité est une vaste

abstraction de la transformée de Fourier et a été largement utilisée dans la théorie de

l’analyse harmonique. Cependant, si l’on souhaite appliquer cet outil aux groupes non

abéliens, on constate que l’objet dual d’un groupe n’a plus la structure d’un groupe, ce

qui rompt la dualité. Or, la catégorie des groupes quantiques localement compacts est

stable par une certaine dualité, qui cöıncide avec la dualité de Pontryagin dans le cas

des groupes abéliens classiques. En plus de donner un cadre solide et très général à la

transformée de Fourier, la théorie des groupes quantiques localement compacts a donné

lieu à de nombreux exemples. On cite le célèbre exemple de [PW90], où les auteurs

définissent le groupe quantique SLq(2,C), une déformation quantique, avec le paramètre

0 < q < 1, du groupe localement compact SL(2,C). L’axiomatisation rigoureuse de cette

théorie a présenté de nombreuses difficultés, en particulier parce que cette théorie fait un

usage massif d’opérateurs non bornés, qui apportent des complications analytiques (ceci

est discuté dans le chapitre 1). Mais une définition satisfaisante et complète a finalement

été proposée par Kustermans et Vaes dans [KV00]. Ce travail, qui est maintenant re-

connu comme la notion corrélative d’un groupe quantique localement compact, fournit

une théorie extrêmement riche intégrant une grande variété d’exemples.

D’autre part, une axiomatique particulièrement simple a été développée par Van Daele

[Dae98] via la notion de groupe quantique algébrique, qui comme son nom l’indique est

presque exclusivement algébrique. Bien que simple, ce cadre permet d’exprimer clairement
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la dualité de Pontryagin et de définir de nombreux exemples de groupes quantiques locale-

ment compacts, dont SLq(2,C), et de fait les groupes quantiques algébriques représentent

la plupart des exemples traités dans cette thèse. Cependant, cette catégorie présente

l’inconvénient majeur de ne pas contenir les groupes classiques localement compacts et

semble donc trop restrictive pour servir de base à la théorie des groupes quantiques lo-

calement compacts.

Inspiré par les travaux de Van Daele et visant toujours à formaliser la dualité de

Pontryagin dans un cadre général, Voigt a proposé dans [Voi08], la notion de groupe

quantique bornologique. Bien que faisant appel à des notions analytiques avancées, ce

formalisme s’avère en pratique particulièrement proche de celui de Van Daele (cette thèse

se veut une illustration de ce fait) et répond au problème que nous venons de mentionner

grâce aux résultats suivants.

Proposition 0.0.1. [Voi08, Proposition 9.2]. Soit G un groupe de Lie. Alors l’algèbre

C∞c (G) de fonctions lisses à support compact sur G est une algèbre de Hopf bornologique.

Theorem 0.0.2. (Montgomery et Zippin, [MZ55]). Soit G un groupe localement compact

presque connecté, alors G est isomorphe à une limite projective des groupes de Lie.

Ces deux résultats combinés suggèrent que, pour G un groupe localement compact

presque connexe, l’algèbre C∞c (G) des fonctions lisses de Bruhat avec support compact

sur G. à support compact sur G peut être dotée d’une structure de groupe quantique

bornologique.

Groupes quantiques semisimples et induction parabolique
L’exemple le plus élémentaire d’un groupe quantique semisimple est donné par SUq(2). Il

a été découvert par Woronowicz, dans le contexte actuel des algèbres de fonctions quan-

tifiées. Cette découverte a été le point de départ de la théorie des groupes quantiques

compacts. Comme mentionné précédemment, les groupes quantiques qui nous concernent

ici sont précisément ceux qui ne sont pas compacts. Cependant, c’est à partir de SUq(2)

que nous pouvons étudier notre exemple élémentaire, le groupe quantique SLq(2,C). En

effet, la remarque décisive de [PW90] était la suivante : En considérant le dual de Pon-

tryagin ŜUq(2) de SUq(2), nous observons qu’il existe une décomposition, utilisant la

construction produit croisé

SLq(2,C) = SUq(2) ./ ŜUq(2).

Cela généralise en quelque sorte la décomposition d’Iwasawa

SL(2,C) = SU(2) ./ AN,
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avec la différence majeure que dans le cas classique, il n’y a a priori aucun lien étroit entre

les groupes SU(2) et AN , alors que dans le cas quantique on peut écrire

ANq = ŜUq(2).

De plus, étant le dual d’un groupe quantique compact, ŜUq(2) est un groupe quantique

discret et est donc analytiquement assez simple (c’est en particulier un groupe quantique

algébrique au sens de Van Daele). C’est la raison pour laquelle SLq(2,C), est algébrique,

comme produit bicrossé de deux groupes quantiques algébriques. La notion de sous-groupe

fermé est au cœur du principe d’induction, et dans cette thèse nous allons passer beaucoup

de temps à définir et étudier cette notion dans le cas quantique. Dans notre exemple,

SUq(2) admet pour sous-groupe fermé le tore T = S1, c’est-à-dire que par définition d’un

sous-groupe quantique fermé, il existe un morphisme de groupe quantique entre les algèbres

de fonctions sur SUq(2) et T .

π : A(SUq(2))→ A(T ).

Notez que dans le cas classique, un tel morphisme entre les algèbres de fonctions correspond

à la carte de restriction sur le sous-groupe concerné. En étudiant de plus près la structure

bicrossée, on peut alors voir que la carte

π ⊗ id : A(SLq(2,C))→ A(T ./ ANq).

est également un morphisme *-Hopf et réalise ainsi Bq = T ./ ANq en tant que sous-

groupe quantique de SLq(2,C). Bien sûr le choix de la notation Bq n’est pas anodin et ce

sous-groupe possède toutes les propriétés pour être considéré comme un sous-groupe de

Borel. De plus, puisque la dualité de Pontryaguin s’applique également aux morphismes,

notre morphisme π : A(SUq(2))→ A(T ) donne lieu à un morphisme

π̂ : A(T̂ )→M(A(ŜUq(2))),

. où M(A(ŜUq(2))) désigne le multiplicateur de l’algèbre non unitaire A(ŜUq(2)), voir

chapitre 1. Il est bien connu que T̂ ∼= Z et c’est précisément ce groupe, que nous notons

Aq, qui joue le rôle de la partie non compacte du sous-groupe de Cartan. Dans le chapitre

5, nous verrons que Aq n’apparâıt pas comme un sous-groupe quantique mais seulement

comme un groupe ”quotient” de ANq. Nous avons découvert au cours de ce travail de thèse

qu’il existe une algèbre qui a de bonnes raisons d’être dénommée A(Gq/Nq). En particulier

cette algèbre est dotée d’une action à gauche par SLq(2,C) et d’une action à droite Lq =

T × Aq, qui prendra le rôle du facteur de Lévy. Cette observation conduit naturellement

à l’émergence d’un C∗(Lq)-module E(Gq/Nq), avec une représentation de C∗(SLq(2,C)).
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L’inspiration pour cette construction vient de [CCH16], où les auteurs construisent le

foncteur d’induction à partir de l’algèbre des fonctions sur l’espace homogène G/N . Nous

montrerons qu’il implémente l’induction parabolique pour SLq(2,C) et que nous avons le

résultat suivant.

Theorem 0.0.3. En considérant W = Z2 le groupe de Weyl de SL(2,C), on a

C∗(SLq(2,C)) ∼= K(E(SLq(2,C)/Nq))
W ,

où K indique l’algèbre des opérateurs compacts au sens des modules de Hilbert.

Cela donne un point de vue différent sur un résultat de Monk et Voigt [MV19]. No-

tons qu’il existe une grande catégorie de groupes quantiques semisimples, incluant les

déformations SLq(n,C) pour tout n ≤ 2. Les groupes quantiques semisimples complexes

sont largement étudiés dans [VY20] et nous introduisons la définition et les résultats de

base dans le chapitre 1. Un des résultats principaux de cette thèse est une généralisation

du théorème précédent à tous les groupes quantiques semisimples complexes.

Le chapitre 1 détaille les généralités mentionnées ci-dessus et complète cette introduc-

tion. Le chapitre 2 présente les notions d’espaces vectoriels bornologiques, d’algèbres et

enfin de groupes quantiques. Dans le chapitre 3 nous étudions le lien entre bornologique

et groupe quantique localement compact dans le sens de [KV00], Ces résultats ont été

publiés dans le preprint [RY21]. Dans le chapitre 4, nous développons un cadre général

pour l’induction et établissons le lien avec les travaux de Vaes [Vae05]. Le chapitre 5

se concentre sur l’exemple des groupes quantiques semisimples. Tous les résultats de ces

deux derniers chapitres sont présentés dans le preprint [Riv19].



Introduction

Locally compact quantum groups
The term quantum group can refer to a wide variety of objects but in each case it always

refers to the generalization of the notion of group, and in each case, a quantum group

is systematically defined as an Hopf algebra (or another similar type of object). In our

case quantum groups are a generalization of locally compact groups and are usually called

locally compact quantum groups. One of the motivations for this generalization comes from

Pontryagin duality. Indeed, every locally compact abelian group has a dual group, itself

locally compact and abelian. This duality is a vast abstraction of the Fourier transform

and has been used extensively in the theory of harmonic analysis. However, if one wishes

to apply this tool to non-abelian groups, one finds that the dual object of a group no

longer has the structure of a group, breaking the duality. Now, the category of locally

compact quantum groups is stable by a certain duality, which coincides with Pontryagin’s

duality in the case of abelian classical groups. In addition to giving a solid and very

general framework to the Fourier transform, the theory of locally compact quantum groups

has given rise to many examples. One cites the famous example of [PW90], where the

authors define the quantum group SLq(2,C), a quantum deformation, with parameter

0 < q < 1, of the locally compact group SL(2,C). The rigorous axiomatization of this

theory presented many difficulties, in particular because this theory makes massive use of

unbounded operators, which bring analytical complications (this is discussed in Chapter

1). But a satisfactory and complete definition has finally been proposed by Kustermans

and Vaes in [KV00]. This work, which is now recognized as the corrext notion of a locally

compact quantum group, provides an extremely rich theory incorporating a wide variety

of examples.

On the other hand, a particularly simple axiomatic has been developed by Van Daele

[Dae98] via the notion of algebraic quantum group, which as its name indicates is almost

exclusively algebraic. Although simple, this framework allows to express Pontryagin du-

ality clearly and to define many examples of locally compact quantum groups, including

SLq(2,C), and in fact algebraic quantum groups represent most of the examples treated in

7
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this thesis. However, this category has the major drawback of not containing the classical

locally compact groups and thus seems too restrictive to be a basis for the theory of locally

compact quantum groups.

Inspired by Van Daele’s work and still aiming at formalizing Pontryagin’s duality in a

general framework, Voigt in [Voi08], proposed the notion of bornological quantum group.

Although calling for advanced analytical notions, this formalism turns out in practice to

be particularly close to Van Daele’s (this thesis is intended to be an illustration of that

fact) and it answers the problem just mentioned thanks to the following results.

Proposition 0.0.4. [Voi08, Proposition 9.2]. Let G be a Lie group. Then the algebra

C∞c (G) of smooth functions with compact support on G is a bornological Hopf algebra.

Theorem 0.0.5. (Montgomery and Zippin, [MZ55]). Let G be an almost connected locally

compact group, then G is isomorphic to a projective limit of Lie groups.

These two results combined suggest that, for G an almost connected locally compact

group, the algebra C∞c (G) of Bruhat smooth functions with compact support on G can

be endowed with a structure of bornological quantum group.

Semisimple quantum groups and parabolic induction The most

elementary example of a semisimple quantum group is given by SUq(2). It has been

discovered by Woronowicz, in the current context of quantized functions algebras. This

discovery has been the starting point of the theory of compact quantum groups. As

mentioned before, the quantum groups which concern us here are precisely those which

are not compact. However, it is starting from SUq(2) that we can study our elementary

example, the quantum group SLq(2,C). Indeed, the decisive remark of [PW90] was the

following: Considering the Pontryagin dual ŜUq(2) of SUq(2), we observe that there exists

a decomposition, using the bicrossed product construction

SLq(2,C) = SUq(2) ./ ŜUq(2).

This generalizes in a way the Iwasawa decomposition

SL(2,C) = SU(2) ./ AN,

with the major difference that in the classical case, there is a priori no close link between

the groups SU(2) and AN , while in the quantum case we can write

ANq = ŜUq(2).

Moreover, being the dual of a compact quantum group ŜUq(2) is a discrete quantum group

and thus is analytically quite simple (it is in particular an algebraic quantum group in the
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Van Daele sense). This is the reason why SLq(2,C), is algebraic, as a bicrossed product

of two algebraic quantum groups.

The notion of closed subgroup is at the heart of the induction principle, and in this

thesis we will spend a lot of time defining and studying this notion in the quantum case.

In our example SUq(2) admits for closed subgroup the torus T = S1, i.e., by definition of

a closed quantum subgroup, there exists a quantum group morphism between the algebras

of functions over SUq(2) and T

π : A(SUq(2))→ A(T ).

Note that in the classical case, such a morphism between the algebras of functions corre-

sponds to the restriction map over the concerned subgroup. By studying more closely the

bicrossed structure, one can then see that the map

π ⊗ id : A(SLq(2,C))→ A(T ./ ANq)

is also a *-Hopf morphism and thus realizes Bq = T ./ ANq as a quantum subgroup of

SLq(2,C). Of course the choice of the notation Bq is not insignificant and this subgroup

has all the properties to be considered as a Borel subgroup. Furthermore, since Pon-

tryaguin duality also applies to morphisms, our morphism π : A(SUq(2)) → A(T ) gives

rise to a morphism

π̂ : A(T̂ )→M(A(ŜUq(2))),

where M(A(ŜUq(2))) denotes the multiplier of the non unitary algebra A(ŜUq(2)), see

chapter 1.

It is well known that T̂ ∼= Z and it is precisely this group, which we note Aq, which plays

the role of the noncompact part of the Cartan subgroup. In Chapter 5 we will see that

Aq does not appear as a quantum subgroup but only as a ”quotient” group of ANq. We

discovered during this thesis work that their exists an algebra has good reasons to be

denoted A(Gq/Nq). In particular this algebra is equipped with an action on the left by

SLq(2,C) and an action on the right Lq = T × Aq, which will take the role of the Lévy

factor. This observation naturally leads to the emergence of a C∗(Lq) module E(Gq/Nq),

with a representation of C∗u(SLq(2,C)). This idea of considering homogeneous spaces was

first used by Woronowicz in [Wor00], where he constructs bundles over Gq/Bq to define

princpal series representations. The inspiration for the construction of aGq/Nq comes from

[CCH16], where the authors build the induction functor from the algebra of functions over

the homogeneous space G/N . We will show that it implements the parabolic induction

for SLq(2,C) and that we have the following result.
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Theorem 0.0.6. Consider W = Z2 the Weyl group of SL(2,C), we have

C∗r (SLq(2,C)) ∼= K(E(SLq(2,C)/Nq))
W ,

where K indicates the algebra of compact operators in the sense of Hilbert modules.

This gives a different point of view on a result of Monk and Voigt [MV19]. Let us

note that there exists a large category of semisimple quantum groups, including the de-

formations SLq(n,C) for any n ≤ 2. complex semisimple quantum groups are extensively

studied in [VY20] and we introduce the definition and basic results in Chapter 1. One of

the main result of this thesis is a generalization of Theorem 0.0.6 to all complex semisimple

quantum groups.

Chapter 1 goes into detail on the generalities mentioned above and completes this

introduction. Chapter 2 presents the notions of bornological vector spaces, algebras and

finally, quantum groups. In Chapter 3 we study the link between bornological and locally

compact quantum group in the sens of [KV00], These results have been published in the

preprint [RY21]. In Chapter 4 we develop a general framework for induction and establish

the link with works of Vaes [Vae05]. Chapter 5 focuses on the example of semisimple

quantum groups. All the results of these two last chapters are presented in the preprint

[Riv19].
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Chapter 1

Preliminaries and notations

In this chapter, we recall all the “basic notions” required to understand the context of this

thesis and introduce all the “protagonists” that we will meet all along this manuscript.

We progress from Hopf algebras to locally compact quantum groups, passing by discrete

and compact groups.

Definition 1.0.1. Let 0 < q < 1 be a real number and n be an integer, we define the

quantum number [n]q as

[n]q =
qn − q−n

q − q−1
.

Note that we have limq→1[n]q = n. The number [n]q can then be seen as a quantum

deformation of the number n.

Remark 1.0.2. This notation only occurs at Example 15, but it seems important to us to

introduce it for cultural reasons.

1.1 Hopf algebras, ∗-Hopf algebras and their representa-

tions

1.1.1 Hopf algebras. Examples.

We refer to [KS97, Section 1.2] for detailed definitions of algebras and coalgebras. This

Section is largely based on that reference. We give a certain number of examples that are

more or less closely related to SLq(2).

Definition 1.1.1. Let H be an associative algebra over a field K, with multiplication

µ : H ⊗ H → H and unit η : K → H such that H is also a coassociative algebra with

comultiplication ∆ : H → H ⊗H and counit ε : H → K, such that ∆ and ε are algebra

15
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homomorphism. We call H is a Hopf algebra if there exists a linear map S : H → H

(called the antipide) such that the following diagram commutes.

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

S⊗id

µ∆

ε

∆

η

id⊗S

µ

Throughout this thesis, K will be the field of complex numbers C and all vector spaces

will be over C.

The fundamental examples of Hopf algebras are Hopf algebras of finite groups, as

defined in the two following examples.

Example 1. Let G be a finite group and consider the group algebra C[G] = Vect{[g], g ∈ G}
(where multiplication is given by [g] ∗ [k] = [gk]. There exists a comultiplication ∆ on

C[G] such that

∆([g]) = [g]⊗ [g], ∀g ∈ G.

Endowed with antipode S defined by S([g]) = [g−1] and conuit such that ε([g]) = 1), C[G]

is a (cocomutative) Hopf algera.

Remark 1.1.2. In reference to this example, an element x of a Hopf algebra H is called

group-like if ∆(x) = x⊗ x.

Example 2. One can also consider the algebra of functions over G, C(G) = {f : G → C}
with usual pointwise multiplication. There exists a comultiplication ∆ on C(G) such that,

∆(f)(g, h) = f(gh), ∀f ∈ C(G), ∀g, h ∈ G,

where we make the identification C(G) ⊗ C(G) ∼= C(G ×G). Here we consider antipode

S given by S(f)(g) = f(g−1), ∀g ∈ G and counit ε(f) = f(e), where e is the identity

element of G. We then obtain a Hopf algebra structure on C(G).

Denoting δg the Dirac function in element g ∈ G, the coproduct can be given explicitly

via

∆(δg) =
∑
h,k∈G
hk=g

δh ⊗ δk.

This Hopf algebra is not cocomutative, as soon as G is not abelian.
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Example 3. LetG be an infinite discrete group, then the algebra C[G] with comultiplication

∆ and antipode S defined as in Example 1 is also a Hopf algebra. However C(G) cannot be

endowed with the structure defined in Example 2; indeed the identification C(G)⊗C(G) ∼=
C(G×G) is false in this case. However cc(G) the algebra of finitely supported functions

can “almost” be endowed with a Hopf algebra structure and this is the starting example

of our next section.

Example 4. Let G be an algebraic group and consider O(G) the algebra of polynomials

over G. Then O(G) can be turned into a Hopf algebra. For example, let us describe

G = SL(2,C) with a = u1
1, b = u1

2, c = u2
1 and d = u2

2 the matrix coefficients evaluations

(where u1
1

(
x y

z t

)
= x, etc). Then the coproduct given by

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d, (1.1)

∆(c) = c⊗ a+ d⊗ c, ∆(d) = c⊗ b+ d⊗ d, (1.2)

the counit is given by

ε(a) = ε(d) = 1, ε(b) = ε(c) = 0, (1.3)

and antipode given by

S(a) = d, S(d) = a, S(b) = −b, S(c) = −c,

make O(SL(2,C)) a Hopf algebra.

Example 5. Let q a real number with 0 < q < 1 and let O(SLq(2)) be the associative

unital algebra with generators a, b, c and d and relations

ab = qba, ac = qca, bd = qdb, cd = qdc, bc = cb,

ad−da = (q − q−1)bc,

ad− qbc = 1.

This algebra is usually called the algebra of polynomials over the quantum group SLq(2).

Endowed with the coproduct given by relations (1) and (2), counit with relations (3) and

antipode

S(a) = d, S(d) = a, S(b) = −q−1b, S(c) = −qc.

With this structure, Oq(SLq(2)) is a Hopf algebra.
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Example 6. Let g be a Lie algebra and U(g) be its enveloping algebra. Then there exists

a Hopf algebra structure given by

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X, ∀X ∈ g.

Example 7. Let Uq(sl2) be the associative algebra with generators E, F and K such that

K is invertible and with relations

KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
.

There exists a Hopf algebra structure on Uq(sl2) given by

∆(E) = E ⊗K + 1⊗ E, ∆(F ) = F ⊗ 1 +K−1 ⊗ F, ∆(K) = K ⊗K,

S(K) = K−1, S(E) = −EK−1, S(F ) = −KF, ε(K) = 1, ε(E) = ε(F ) = 0.

This Hopf algebra is seen as a quantum deformation (with parameter q) of the classical

U(sl2(C)). Roughly speaking one can start with E,F and H the usual generators of

U(sl2(C)) and by setting the formal element K = qH , one obtain the preceeding relations

and the element K−K−1

q−q−1 = qH−q−H

q−q−1 can be considered as “tending to H” when q goes to

0.

Definition 1.1.3. A Hopf morphism between two Hopf algebras A and B is an algebra

and coalgebra homomrphism.

Example 8. We denote by O(T ) the algebra of polynomials over the circle T and z a

generator, that is such that O(T ) = C[z, z−1]. We consider π : O(SLq(2)) → O(T) the

Hopf algebra homomorphism such that

π(a) = z, π(d) = z−1, π(b) = π(c) = 0.

This morphism is surjective and we then say that it identifies T as a quantum subgroup of

SLq(2).

1.1.2 ∗-structures and pairing

Definition 1.1.4. A ∗-Hopf algebra is a Hopf algebra A together with an inovolution ∗
such that A is a ∗-algebra and the morphisms ∆ and ε are ∗-morphisms, that is ∆(a∗) =

∆(a)∗ (where the involution in H ⊗H is given by (a⊗ b)∗ = a∗⊗ b∗ and ε(a∗) = a, for all

a ∈ H.

One can check that in a ∗-Hopf algebra A we have for all a ∈ A :

S(S(a)∗)∗ = a.
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Example 9. Let G be a finite group, the Hopf algebra C[G] endowed with involution simply

given by [g]∗ = [g−1] for all g ∈ G makes C[G] into a ∗-Hopf algebra. One can also turn

C(G) into a ∗-Hopf algebra by defining

f∗ = f̄ , f ∈ C(G),

the pointwise conjugation.

Remark 1.1.5. By analogy with this classical case, we often refers to the ∗-involution via

the notation f̄ for an element f of a Hopf algebra A and this in particular when A is seen

as an algebra of “functions over a quantum group”.

Example 10. The Hopf algebra O(SUq(2)), endowed with ∗-structure given by

a∗ = c, b∗ = −qc, c∗ = −q−1c, d∗ = a,

is a ∗-Hopf algebra.

Remark 1.1.6. Later in this work we shall use the notationA(SUq(2)) instead ofO(SUq(2)).

What motivates this choice is the fact that SUq(2) is compact, i.e., O(SUq(2)) is unital.

We will see that A(SUq(2)) can be then considered as an algebraic quantum group and

we often refer to algebraic quantum groups via notation of type A(G).

Example 11. The Hopf algebra Uq(sl2) also admits different possible ∗-structures (in one to

one correspondence with those ofO(SLq(2))), but we just mention Uq(su2), with involution

given by

E∗ = FK, F ∗ = K−1E, K∗ = K.

Definition 1.1.7. Let (A,∆, S, ε) with involution denoted a 7→ a and (B, ∆̂, Ŝ, ε̂) with

involution denoted x 7→ x∗ be two ∗-Hopf algebras. A Hopf ∗-pairing between A and B is

a bilinear map (·, ·) : B ×A → C such that for all a, b ∈ A and x, y ∈ B we have

(xy, a) = (x⊗ y,∆(a)) (∆̂(x), a⊗ b) = (x, ba)

ε̂(x) = (x, 1) (1̂, a) = ε(a)

(Ŝ(x), a) = (x, S−1(a)) (Ŝ−1(x), a) = (x, S(a))

(x∗, a) =
(
x, S(a)

)
, (x, a) =

(
Ŝ−1(x)∗, a

)
.

Remark 1.1.8. We are using the convention of [VY20] in which the coproduct on B is dual

to the opposite product of A. In [KS97], this is refered as a skew-paring.

Example 12. Let G be a a finite group. There exists a dual pairing between C(G) and

C[G] given by

([g], f) = f(g), ∀g ∈ G, f ∈ C(G).
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Example 13. The ∗-Hopf algebras Uq(su2) and O(SUq(2)) are dually paired via

(K, a) = q−1, (K, d) = q, (E, c) = q1/2, (F, b) = q−1/2,

the pairing between the other combinations of generators being 0.

Definition 1.1.9. A functional on A is called left invariant (resp. right invariant) if it

satisfies (ι⊗ φ) ◦∆(a) = φ(a)1 (resp. (φ⊗ ι) ◦∆(a) = φ(a)1) for all a ∈ A.

If A is a ∗-Hopf algebra and

φ(a∗a) > 0, ∀a ∈ A, a 6= 0,

we say that φ is a left (resp. right) Haar functionnal.

Example 14. Consider O(T ) = C[z, z−1] as in Example 8. We define φT as the functional

such that φT (1) = 1 and φT (zn) = 0 for all n 6= 0. This defines a Haar functional on

O(T ).

1.1.3 Modules and comodules

Let A be a Hopf algebra

Definition 1.1.10. Let V be a vector space.

A (left) A-module structure on V is given by a linear map ρ : A⊗V → V where we usually

write ρ(a ⊗ v) = a · v, where a ∈ A, v ∈ V such that for a, b ∈ A and v ∈ V , we have

(ab) · v = a · (b · v).

A (left) A-comodule structure on V is given by a linear map α : V → A ⊗ V , called a

coaction, such that

(∆⊗ id)(α(v)) = (id⊗ α)(α(v)), ∀v ∈ V.

We usually use Sweedler notations for coactions by writing α(v) = v(−1) ⊗ v(0).

Definition 1.1.11. Suppose now that A is a ∗-Hopf algebra and V is a Hilbert space with

inner product 〈·, ·〉.
The space V is said to be a unitary module if

〈a · v, w〉 = 〈v, a∗ · w〉 , ∀a ∈ A, ∀v, w ∈ V.

The space V is said to be a unitary comodule if

v∗(−1)

〈
v(0), w

〉
= S−1(w(−1))

〈
v, w(0)

〉
.

Remark 1.1.12. We generally call a module a representation of A, and a comodule a

corepresentation of A.
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Example 15. (Regular representation and corepresentation). Let A be a Hopf algebra,

then A can be seen as a module with multiplication µ, where we have a · b = ab. And a

comodule with coaction ∆, where we have a(−1) ⊗ a(0) = ∆(a).

Example 16. Consider the ∗-Hopf algebra Uq(su2) defined in Example 11 with its genera-

tors E,F and K. Let then l be a nonnegative integer or half-integer and let ω ∈ {+1,−1}.
Let Vl be a (2l + 1)-dimensional vector space with basis em, m = −l,−l + 1, . . . , l where

we set el+1 = e−l−1 = 0. Define operators Tωl(K), Tωl(E), Tωl(F ) acting on Vl by

Tωl(K)em = ωq2mem, Tωl(E)em = ([l −m]q[l +m+ 1]q)
1/2em+1,

Tωl(F )em = ω([l +m]q[l −m+ 1]q)
1/2em−1.

Then Tωl defines an algebra homomorphism Tωl : Uq(su2)→ L(Vl). Furthermore, endowed

with inner product given by 〈ei, ej〉 = δi,j , Vl becomes a unitary representation of Uq(su2).

The family (Vl, Tωl)l∈N
2
, ω∈{+1,−1} constitute all the irreducible representations of Uq(su2),

up to unitary equivalence.

Proposition 1.1.13. Let A and B be two paired *-Hopf algebras and let α be a corepre-

sentation of A on a space V . There exists a representation of B on V given by

a · v = v(0)(a, S
−1(v(−1))).

Remark 1.1.14. In some cases, there exists a way to build a corepresentation of B from a

representation of A. In this case we say that the representation in integrable. In particu-

lar the representations (T1l)l are precisely the integrable representations of Uq(su2) with

respect to its pairing with O(SLq(2,R)).

1.1.4 Structure of SUq(2)

From now on, we always consider SLq(2) in its real form SUq(2). Let l ∈ N
2 , we write

Tl = T1l. Consider the functional on Uq(su2) of the form

X 7→
〈
ξ′, Tl(X)ξ

〉
,

where ξ ∈ Vl and ξ′ ∈ V ∗l . This functional is denoted by 〈ξ′| · |ξ〉 and refered as the

matrix coefficient of the representation Tl associated to ξ and ξ′. The space of all matrix

coefficients of the representation Tl is naturally isomorphic to V ∗l ⊗ Vl. Furthermore, this

space can be endowed with the coalgebra structure given by duality with the product of

Uq(su2). The element ∆(〈ξ′| · |ξ〉) : Uq(su2)⊗ Uq(su2)→ C is such that

∆(
〈
ξ′| · |ξ

〉
)(X ⊗ Y ) =

〈
ξ′| · |ξ

〉
(XY ).

One also has a counit given by 〈ξ′| · |ξ〉 → 〈ξ′, ξ〉. One now states the Peter-Weyl theorem

for SUq(2).
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Theorem 1.1.15. We have coalgebra homomorphisms A(SUq(2))→ V ∗l ⊗Vl for all l ∈ N
2

and the resulting map

A(SUq(2))→
⊕
l∈N

2

V ∗l ⊗ Vl

is an isomorphism.

One can endow
⊕

l∈N
2
V ∗l ⊗ Vl with the algebra structure of A(SUq(2)) trough this

isomorphism and it can also be recovered by duality with Uq(su2). Let l1, l2 ∈ N
2 and

〈ξ′| · |ξ〉 ∈ V ∗l1 ⊗ Vl1 , 〈η′| · |η〉 ∈ V ∗l2 ⊗ Vl2 , for X ∈ Uq(su2) we have

(
〈
ξ′| · |ξ

〉
·
〈
η′| · |η

〉
)(X) =

〈
ξ′ ⊗ η′|(Tl1 ⊗ Tl2)(X)|ξ ⊗ η

〉
=
〈
ξ′ ⊗ η′|(T1l1 ⊗ T1l2)(∆(X))|ξ ⊗ η

〉
.

Remark 1.1.16. • Tl1⊗Tl2 is by definition the morphism Uq(su2)→ L(Vl1⊗Vl2) defined

by (Tl1 ⊗ Tl2)(X) = (Tl1 ⊗ Tl2)(∆(X)).

• The fact that (〈ξ′| · |ξ〉 · 〈η′| · |η〉) is indeed a sum of matrix coefficients rests on the

fact that the representation Vl1 ⊗ Vl2 of Uq(su2) can be decomposed as a direct sum

of irreducible representations.

The antipode can be expressed for any matrix coefficient 〈ξ′| · |ξ〉 by S(〈ξ′| · |ξ〉) =〈
ξ′|S−1(·)|ξ

〉
. To finish, we remark that from the element e0 of V0 one can build the matrix

coefficient X 7→ 〈e0, T0(X)e0〉. One see that its coincides with the counit of Uq(su2) and

that this is a unital element with respect to the product mentionned above.

One can now easily build a Haar measure on SUq(2). For this one defines the funcitonal

φSUq(2) on
⊕

l∈N
2
V ∗l ⊗ Vl defined by

• φSUq(2)(1) = 1,

• φSUq(2)(f) = 0, for all f ∈ V ∗l ⊗ Vl where l 6= 0.

The invariance propery is immediate since V ∗l ⊗ Vl are coalgebras and thus (id⊗ φSUq(2))

always vanishes on ∆(V ∗l ⊗ Vl) as soon as l 6= 0.

Theorem 1.1.17. φSUq(2) seen as a functional of A(SUq(2)), is a Haar functional.

1.2 Algebraic quantum groups and Pontryagin duality

In Example 3, we considered a discrete group G and noticed that the suitable algebra to

associate with G was cc(G). In this case we still have cc(G×G) = cc(G)⊗ cc(G). However

if one defines the coproduct ∆ through

∆(f)(g, h) = f(gh), g, h ∈ G,
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we see that ∆(f) cannot be finitely supported (unless f = 0). For example if f = δe where

e is the identity element then the support of ∆(f) is {(g, g−1), g ∈ G} which is infinite. To

overcome this issue, we consider the notion of multiplier Hopf algebra, due to Van Daele

[Dae98].

In this section we consider an associative and algebra A with non-degenerate product.

One also supposes that A is essential i.e., the multiplication induces an isomorphism

A⊗A A.

Definition 1.2.1. A left multiplier of A is a linear map ρ : A → A such that ρ(ab) =

ρ(a)b ∀a, b ∈ A. A right multiplier of A is a linear map ρ : A → A such that ρ(ab) = aρ(b)

∀a, b ∈ A. A multiplier of A is a pair (ρ1, ρ2) of a left and right multiplier so that

ρ2(a)b = aρ1(b) ∀a, b ∈ A.

When ρ1 and ρ2 are linear maps on A satisfying ρ2(a)b = aρ1(b) ∀a, b ∈ A, then

already (ρ1, ρ2) is a multiplier. We denote by M(A) the set of all multipliers of A. The

set M(A) is endowed with its natural (unital) algebra structure.

Remark 1.2.2. Let B be an essential and non-degenerate algebra. Any morphism π : A →
B can be (uniquely) extended to a morphism π̃ : M(A)→M(B).

Example 17. If A is unital then M(A) = A.

Example 18. Let X be a infinite discrete set. Then M(cc(X)) = c(X), the algebra of all

functions on X.

Definition 1.2.3. Let us consider the space A⊗A with is a natural algebra structure. A

comultiplication is a homomorphism ∆ : A →M(A⊗A) such that :

1. ∆(a)(1⊗ b) and (a⊗ 1)∆(b) are in A⊗A for all a, b ∈ A,

2. (a⊗ 1⊗ 1)(∆⊗ ι)(∆(b)(1⊗ c)) = (ι⊗∆)((a⊗ 1)∆(b))(1⊗ 1⊗ c) for all a, b, c ∈ A.

Definition 1.2.4. The following maps A⊗M(A → A⊗A),

γl : a⊗ b 7→ (∆a)(b⊗ 1),

ρr : a⊗ b 7→ (1⊗ a)(∆b)

and

γl : a⊗ b 7→ (∆a)(1⊗ b),

ρl : a⊗ b 7→ (a⊗ 1)(∆b),

are called the Galois maps associated to ∆.
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Definition 1.2.5. An algebra A endowed with a comultiplication ∆ and such that the

Galois maps are isomorphisms of A⊗A is called a (regular) multiplier Hopf algebra.

Remark 1.2.6. A multiplier Hopf algebra always has a counit ε and an antipode S. However

we cannot define them as we did for Hopf algebras. In the context of multiplier Hopf

algebras, the defining properties of the counit and the antipode are

(ε⊗ id)(∆(a)(1⊗ b)) = ab,

(id⊗ ε)((a⊗ 1)∆(b)) = ab,

and

µ(S ⊗ id)(∆(a)(1⊗ b)) = ε(a)b,

µ(id⊗ S)((a⊗ 1)∆(b)) = ε(b)a,

for all a, b ∈ A and where µ : A⊗A → A designates the multiplication.

One can directly extend the notion of Haar functional from Definition 1.1.9 to multi-

plier algebras. One can also easily the notion of multiplier ∗-Hopf algebra with a definition

similar to that of Definition 1.1.4.

Definition 1.2.7. If A is a multiplier ∗-Hopf algebra equipped with a Haar functional,

we say that A is an algebraic quantum group.

Definition 1.2.8. Let A be an algebraic quantum group. If A is unital one says that A
is a compact quantum group. If A contains an element δ such that

δa = ε(a)δ, ∀a ∈ A,

one says that A is a discrete quantum group.

Remark 1.2.9. Compact (and discrete) quantum groups can also be presented in another

formalism, developped by [Wor87], based on the utilisation of C∗-algebras. The algebras

studied in this context are analogous to C(G), the C∗-algebra of continuous functions over

a compact group G.

Let A be an algebraic quantum group with Haar functional φ. We define Â as the set

of functionals on A of the form φ(· a), a ∈ A. We have a pairing between A and Â given

by

(φ(· a), b) = φ(ba), ∀a, b ∈ A.

Through this pairing, Â can be endowed with a multiplier ∗-Hopf algebra structure, dual

to that of A. Furthermore, with respect to this structure, the functional on Â given by

φ(· a) 7→ ε(a) is a Haar functional. Thus Â is an algebraic quantum group, called the dual

quantum group of A.
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Theorem 1.2.10. [Dae98] The double quantum dual
ˆ̂A is isomorphic to A as an algebraic

quantum group.

Example 19. Let G be an abelian discrete group. The multiplier ∗-Hopf algebra cc(G)

endowed with the counting measure of G is an algebraic quantum group for which the

quantum dual is O(Ĝ), where Ĝ is the Pontryagin dual of G. In the context of algebraic

quantum groups we will typically use the notation A(G) = cc(G) and A(Ĝ) = O(Ĝ).

Example 20. The ∗-Hopf algebra A(SUq(2)), endowed with its Haar functional defined

in 1.1.17 directly satisfies the axioms of a multiplier Hopf algebra. Its quantum dual is

denoted A(ŜUq(2)). Let us recall that

A(SUq(2)) ∼=
⊕
l∈N

2

V ∗l ⊗ Vl.

One can explicitely describe the algebra structure of A(ŜUq(2)) via the following isomor-

phism of algebras

A(ŜUq(2)) ∼=
⊕
l∈N

2

L(Vl).

The coproduct, however, is harder to describe explicitly.

The formalism of algebraic quantum groups is a simple and elegant alternative to the

more powerful and technical framework of locally compact quantum groups (see Section

1.4). However it does not apply to many classical groups.

Example 21. Consider the group R. There does not exist an algebra of functions over

the locally compact group R which can be endowed with an algebraic quantum group

structure. The same applies for any locally compact group which is neither discrete nor

compact. The notion of locally compact quantum group can be an answer to this issue but

we will see that it can also be overcome with the notion of bornological quantum group.

1.3 Complex semisimple quantum groups

1.3.1 Compact semisimple quantum groups and their duals

Let g be a complex semisimple Lie algebra. We consider UR
q (k), the quantized universal

enveloping algebra of the Lie algebra k of the compact real form K of the simply connected

group G corresponding to g [VY20, Section 3.3]. We denote by P the weight lattice

associated to g. For all λ ∈ P, the element Kλ ∈ UR
q (k) verifies

∆(Kλ) = Kλ ⊗Kλ, K∗λ = Kλ.



26 CHAPTER 1. PRELIMINARIES AND NOTATIONS

We denote by ρ the half-sum of positive roots. The Hopf *-algebra generated by the

(Kλ)λ∈P is denoted by UR
q (t). The Hopf algebra UR

q (t) is commutative and cocomutative.

In fact it is isomorphic to the algebraic quantum group C[P]. By Pontryagin duality it is

isomorphic to cc(P̂) where P̂ is a torus that we note T .

We recall A(Kq) is defined as the set of all matrix coefficients of finite dimensional

UR
q (k)-modules. We have A(Kq) ⊂ UR

q (k)∗. Then A(Kq) is a *-Hopf algebra and we have

A(Kq) =
⊕
µ∈P+

End(V (µ))∗,

where V (µ) is the highest weight UR
q (k)-module associated with µ.

The Hopf *-algebra A(T ) = C[P] is a sub Hopf algebra of UR
q (t)∗. A(T ) is spanned by

the elements

eµ : Kλ 7→ q(µ,λ),

where µ is an element of P and (µ, λ) denotes the usual pairing on h∗, normalized so that

(α, α) = 2 for all short root α. We write (eµ,Kλ) = q(µ,λ). We denote by πT the Hopf

*-morphism πT : A(Kq) → A(T ) induced by the restriction map UR
q (k)∗ → UR

q (t)∗. We

denote by φT the Haar functional on A(T ) such that φT (1) = 1.

As in the previous section, one can define a Haar functional φKq on A(Kq) that turns

A(Kq) into an algebraic quantum group. The dual quantum group A(K̂q) of A(Kq) has

the following algebra structure

A(K̂q) =
⊕
µ∈P+

End(V (µ)).

We denote by 1̂Kq the element id ∈ End(V (0)). We have chosen this notation because this

element happen to be the Fourier transform of the unital element 1Kq ∈ A(Kq). We have

1̂Kqf = ε
K̂q

(f)1̂Kq ,

for all f ∈ A(K̂q) We denote by φ
K̂q

the right invariant functional on A(K̂q) such that

φ
K̂q

(1̂Kq) = 1.

Remark 1.3.1. The functional φ
K̂q

can in fact be defined as φ
K̂q

: F(a) 7→ εKq(a), where

a ∈ A(Kq) and F : A(Kq)→ A(K̂q) denotes the Fourier transform. One also has

ε
K̂q

(F(a)) = φKq(a).

We introduce some further notation. Note that A(T ) can be identified as the algebra

of polynomials over T a group isomorphic to a maximal torus in K. We denote by Aq its
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Pontryagin dual T̂ , which is a classical group but we write Aq for a reason that will be

detailled in Chapter 5. In fact there is a natural isomorphism Aq ∼= P. Finally, we write

Lq = T ×Aq.

We also write A(Aq) and A(Aq × T ) for the associated algebras of functions.

To finish we remark that we have Kλ ∈ M(A(K̂q)) for all λ ∈ P. Explicitly let

x =
∑

µ∈P+ xµ ∈, one can set Kλx =
∑

µ∈P+ Kλxµ and xKλ =
∑

µ∈P+(xµKλ). One can

also see that Kλ ∈ M(A(T̂ )). More generally for any λ ∈ h∗ we can define Kλ ∈ A(T )∗

by (Kλ, e
µ) = q−(λ,µ) and then Kλ ∈ A(Kq)

∗ by (Kλ, a) = (Kλ, πT (a)) for all a ∈ A(Kq).

Moreover we have Kλ = Kλ′ if and only if λ − λ′ ∈ i~−1Q∨ where ~ = log(q)
2π and Q∨

denotes the coroot lattice, see [VY20, Section 3.3.1] for details. Thus we have a family of

group-like elements Kλ ∈M(A(K̂q)) indexed by λ ∈ h∗q := h∗/i~−1Q∨.

1.3.2 Definition and structure of complex semisimple quantum groups

Let Kq be a compact semisimple quantum group. We will use the notation A(Kq) for

the algebra of functions on Kq and D(Kq) = A(K̂q) for the dual algebraic quantum

group. Through the Fourier map, we have an identification D(Kq) = A(Kq). (A more

specific meaning will be given to the notation D(G) in later chapters when we consider a

bornological quantum group G). We define the associated complex semisimple quantum

group as the Drinfeld double

Gq = Kq ./ K̂q,

with respect to the dual pairing between A(Kq) and A(K̂q).

Precisely, this means that we define the algebra

A(Gq) = A(Kq)⊗A(K̂q)

equipped with coproduct defined by

∆Gq = ad(WKq)32 ◦ Σ23 ◦ (∆Kq ⊗∆
K̂q

),

where WKq designates the multiplicative unitary associated to A(Kq) and Σ is the flip

map. One can also express the antipode and counit of A(Gq) as follows. Let f ⊗ x ∈
A(Kq)⊗D(Kq),

SGq(f ⊗ x) = W−1
Kq

(S(f)⊗ Ŝ(x))WKq = (S ⊗ Ŝ)(WKq(f ⊗ x)W−1
Kq

),

εGq = εKq ⊗ ε̂Kq .
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This structure can be made more explicit by the following consideration. Let (uσij) ∈ A(Kq)

denote the matrix coefficient associated to a weight basis of an irreducible representation

σ of Kq and let (ωσij) ∈ A(K̂q) denote the elements of the dual basis. We have

WKq =
∑
i,j,σ

uσij ⊗ ωσij , W−1
Kq

=
∑
i,j,σ

S(uσij)⊗ ωσij ,

where the sums run over all equivalent classes of irreducible representations. In practice

we only write WKq = uσij ⊗ ωσij . As a consequence, for an element a⊗ f ∈ A(Gq) we have

∆Gq(a⊗ f) = a(1) ⊗ ωσijf(1)ω
ν
rs ⊗ uσija(2)S(uνrs)⊗ f(2), (1.4)

SGq(a⊗ f) = uσijSKq(a)S(uνrs)⊗ ωσijSK̂q
(f)ωνrs. (1.5)

Proposition 1.3.2. Consider ψ
K̂q

the right invariant functional on A(K̂q) such that

ψ
K̂q

(1̂Kq) = 1. A positive left and right invariant functional on A(Gq) is given by

φGq(f ⊗ x) = φKq(f)⊗ ψ
K̂q

(x),

for f ⊗ x ∈ A(Kq)⊗D(Kq).

For a proof, see [VY20, Proposition 4.19].

The dual D(Gq) of the algebraic quantum group A(Gq) is given by

D(Gq) = D(Kq) ./ A(Kq),

equipped with tensor product comultiplication. The multiplication of two elements x⊗ f ,

y ⊗ g ∈ D(Kq) ./ A(Kq) is given by

(x ./ f).(y ./ g) = x(y(1), f(1))y(2) ./ f(2)(Ŝ(y(3)), f(3))g.

The pairing between D(Gq) and A(Gq) is given by

(y ./ g, f ⊗ x) = (y, f)(x, S−1(g))),

using the skew-pairing between A(Kq) and D(Kq), see [VY20, p. 219]. Furthermore, the

functional φ
Ĝq

on D(Gq) given by

φ
Ĝq

(x⊗ f) = φ
K̂q

(x)⊗ φKq(f), x⊗ f ∈ D(Kq) ./ A(Kq),

is a left Haar integral.

For reference, we record also that the C∗-algebra of functions on Gq is given by

C0(Gq) = C(Kq)⊗̂C∗(Kq),
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where the C∗-algebras C(Kq) and C∗(Kq) are obtained by closure with respect to the

regular representations on the Hilbert space L2(Kq). We omit the details here, which will

be discussed fully in Chapter 3. The structure of C∗(Gq) is harder to describe because

of the twisted product in D(Kq) ./ A(Kq). In this thesis we will be only interested in

tempered representations of Gq, which are precisely the principal series representations.

In Chapter 5, we will give an explicit expression of the reduced C∗-algebra C∗r (Gq) in

terms of operator algebras on those representations.

1.3.3 The Borel subgroup and its characters

The quantum Borel subgroup Bq of Gq is defined as Bq = T ./ K̂q. Specifically, we

consider the element (πT ⊗ id)(WKq) ∈M(A(T )⊗D(Kq)). It allows us to define a twisted

coproduct on the tensor algebra

A(Bq) = A(T )⊗D(Kq),

Explicitly we have

∆Bq(a⊗ f) = a(1) ⊗ ωσiif(1)ω
ν
rr ⊗ πT (uσiiS(uνrr))a(2) ⊗ f(2),

SBq(a⊗ f) = πT (uσiiS(uνrr))ST (a)⊗ ωσiiST (f)ωνrr,

For all a⊗ f ∈ A(Bq). One can check that the map

πT ⊗ id : A(Gq)→ A(Bq)

is a surjective morphism of multiplier Hopf algebra. Thus, this map identifies Bq as a

closed quantum subgroup of Gq.

Finally, let us recall what are the characters of Bq. We define h∗q = h∗/i~−1Q∨ The

characters of D(Bq) = D(T ) ./ A(Kq) are indexed by (µ, λ) ∈ P× h∗q and defined as

χµ,λ(x ./ f) = (eµ, x)(Kλ, f).

1.3.4 Principal series Representations

As in the classical case, principal series representations of Gq are induced from the charac-

ters of the Borel subgroup Bq. Let (µ, λ) ∈ P× t∗. In the quantum case, as in the classical

case, one also has the two usual pictures for the induced representation associated to the

parameters (µ, λ).
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The noncompact Picture. We first realise the space of the principal series represen-

tation associated to (µ, λ) as a subspace of M(A(Gq)):

Ind
Gq

Bq
Cµ,λ = {ξ ∈M(A(Gq)) | (id⊗ πBq)∆Gq(ξ) = ξ ⊗ (eµ ⊗K2ρ+λ)}.

Note that this is the analog of the “Bq-equivariant functions over Gq”, relative to the

character given by (µ, λ). As in the classical case, the added term K2ρ is here to ensure

the unitary of the representation.

The restriction of ∆Gq to Ind
Gq

Bq
Cµ,λ induces a linear map Ind

Gq

Bq
Cµ,λ → HomA(Gq)(A(Gq), Ind

Gq

Bq
Cµ,λ⊗

A(Gq)) and this is called a left coaction of A(Gq) on Ind
Gq

Bq
Cµ,λ. To endow Ind

Gq

Bq
Cµ,λ with

a scalar product, we define the restriction map, denoted res,

res ≡ id⊗ ε̂ : Ind
Gq

Bq
Cµ,λ → A(Kq).

The scalar product of two elements f, g ∈ Ind
Gq

Bq
Cµ,λ is given by

〈f, g〉 = φ(res(f)res(g)).

This scalar product turns Ind
Gq

Bq
Cµ,λ into a unitary corepresentation of A(Gq).

The compact Picture. Note that the map res is injective ([VY20, Lemma 5.18]) and

thus one can simplify the picture of this representation by considering it on the image of

res. It turns out that this space is precisely

Γ(Eµ,λ) = {ξ ∈ A(Kq) | (id⊗ πT )(∆(ξ)) = ξ ⊗ eµ}.

Once again, we refer to [VY20, Lemma 5.18]. One can also describe the inverse isomor-

phism ext : Γ(Eµ,λ)→ Ind
Gq

Bq
Cµ,λ, ext(ξ) = ξ ⊗K2ρ+λ. Then one can endow Γ(Eµ,λ) with

a structure of unitary representation through this isomorphism. The coaction of A(Gq)

on Γ(Eµ,λ) is given by

ξ 7→ (id⊗ id⊗ id⊗ ε̂)(∆Gq(ξ ⊗K2ρ+λ))

Note that there is another approach to build this representation that we don’t discuss

here. The space Γ(Eµ,λ), is naturally endowed with a structure of Yetter-Drinfeld module

for A(Kq) ([VY20, 5.4.1]), which corresponds to the above coaction of the Drinfeld double

A(Gq) on Γ(Eµ,λ).

1.4 Locally compact quantum groups

In the section we briefly recall the definition of a locally compact quantum group that can

be found in [KV00] and complements on weight theory can be found in [KV99]. Let G be
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a locally compact group, as we said earlier in this section, there is no algebra of functions

over G with a structure of algebraic quantum groups. Luckily, the C∗-algebra C0(G) has

good properties which in particular allow to define a coproduct

∆ : C0(G)→M(C0(G)⊗̂C0(G)),

where ⊗̂ refers to the spatial tensor product of C∗-algebras and M designates the algebra

of continuous multipliers.

However as soon as G is not compact, a Haar measure on G does not lead to a well

defined functional over C0(G) and this issue is at the root of the difficulty of defining

a locally compact quantum group. This problem is nevertheless circumvented using the

notion of weight.

1.4.1 Definitions and basic results

Definition 1.4.1. Let A be a C∗-algebra, and let A≥0 denote the set of positive elements

of A. A weight on A is a function φ : A≥0 → [0,∞] such that

• φ(a1 + a2) = φ(a1) + φ(a2), a1, a2 ∈ A≥0 and

• φ(r · a) = r · φ(a), r ∈ [0,∞), a ∈ A≥0.

Let φ be a weight on a C*-algebra A. We use the following notation:

• M+
φ := {a ∈ A≥0 | φ(a) < ∞}, which is called the set of all positive φ-integrable

elements of A.

• Nφ := {a ∈ A | φ(a∗a) < ∞}, which is called the set of all φ-square-integrable

elements of A.

• Mφ := SpanM+
φ = N ∗φNφ, which is called the set of all φ-integrable elements of A.

Let φ be a weight on a C∗-algebra A.

• We say that φ is faithful if and only if φ(a) 6= 0 for each non-zero a ∈ A≥0

• We say that φ is lower semi-continuous if and only if the set {a ∈ A≥0 | φ(a) ≤ λ}
is a closed subset of A for every λ ∈ [0,∞).

• We say that φ is densely defined if and only if M+
φ is a dense subset of A≥0, or

equivalently, if and only if either Nφ or Mφ is a dense subset of A.

• We say that φ is proper if and only if it is non-zero, lower semi-continuous and

densely defined.
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Definition 1.4.2. Consider a weight φ on a C∗-algebra A. A GNS construction for φ is

a triple (Hφ, πφ,Λφ) such that

• Hφ is a Hilbert space

• Λφ is a linear map from Nφ into Hφ such that

1. Λφ(Nφ) is dense in Hφ

2. We have for every a, b ∈ Nφ that 〈Λφ(a),Λφ(b)〉 = φ(b∗a)

• πφ is a representation of A on Hφ such that π(a)Λφ(b) = Λφ(ab), for every a ∈ A
and b ∈ Nφ.

Definition 1.4.3. Let A be a C∗-algebra. A one-parameter group on A is a family α =

(αt)t∈R of ∗-automorphisms of A that satisfies αs ◦ αt = αs+t for all s, t ∈ R. We also

impose that for every a ∈ A, the mapping R→ A defined by t 7→ αt(a) is continuous.

Let us recall that such a one-parameter group α admits an analytic extension, that is

there exists a family α = (αz)z∈C such that for all z ∈ C, αz is a map Dz ⊂ A→ A which

verifies that for all a ∈ A, αz(a) = f(z), where z 7→ f(z) is the analytic extension of the

map t 7→ αt(a). Furthermore the set ∩z∈CDz is dense in A.

Definition 1.4.4. Let A be a C∗-algebra and φ : A≥0 → [0,∞] a weight on A. We say that

φ is a K.M.S. weight on A if and only if φ is a proper weight on A and there exists a norm-

continuous one-parameter group (σt)t∈R on A such that φ is invariant under σ, i.e., φ◦σt =

φ for all t ∈ R, and for every a ∈ Dom(σi/2), we have φ(a∗a) = φ(σi/2(a)(σi/2(a))∗).

Definition 1.4.5. A C∗-algebraic (reduced) locally compact quantum group is a pair

(A,∆), where A is a C∗-algebra and ∆ : A→M(A⊗̂A) is a non-degenerate ∗-homomorphism,

that satisfies the following conditions:

• The comultiplication ∆ is coassociative.

• The sets
{
ω⊗̂id(∆(a))

∣∣ ω ∈ A∗, a ∈ A} and
{

id⊗̂ω(∆(a))
∣∣ ω ∈ A∗, a ∈ A} are

dense linear subspaces of A.

• There exists a faithful K.M.S. weight φ on A that is left-invariant, i.e., φ(ω ⊗ id(∆(a))) =

ω(1M(A)) · φ(a) for all ω ∈ A∗ and a ∈M+
φ . Similarly to the previous sections, φ is

then called a left Haar state.

• There exists a faithful K.M.S. weight ψ on A that is right-invariant, i.e., ψ(id⊗ ω(∆(a))) =

ω(1M(A)) · ψ(a) for all ω ∈ A∗ and a ∈M+
φ ; ψ is called a right Haar state.
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The definition of a locally compact group can be weakened by introducing the notion

of approximate KMS weight. Let (Hφ, πφ,Λφ) a GNS construction for φ.

Definition 1.4.6. Consider a vector v ∈ Hφ, then we say that v is right bounded with

respect to (Hφ, πφ,Λφ) if there exists a number M ≥ 0 such that ||πφ(x)v|| ≤ M ||Λφ(x)||
for all x ∈ Nφ.

Definition 1.4.7. We say that φ is approximately KMS is the subspace of right bounded

elements is dense in Hφ.

Remark 1.4.8. If one replace KMS weight by approximately KMS in Definition 1.4.5, one

also obtains a reduced locally compact quantum group.

Examples of locally compact quantum groups can be obtain from algebraic quantum

groups. We recall that the main result of [Kus02] is the following. Consider an algebraic

quantum group A. One can build a Hilbert space H and a unitary representation of

m : A → B(H) such that the completion Cr0A of m(A) in B(H) can be endowed with a

comultiplication ∆ which extends to comultiplication of A such that:

Theorem 1.4.9. The pair (Cr0A,∆) is a locally compact quantum group.

Remark 1.4.10. There also exist a definition of von Neumann algebraic locally compact

quantum group very similar to the C∗-algebraic one and that we do not recall here (see

[KV00]. These two definitions are thus equivalent theoretically, but each of these two

formalisms can be useful for efficiently formulating definitions and results.

For the rest of this section (A,∆) designates a locally compact quantum group, φ a

left Haar weight on A, (Hφ, πφ,Λφ) the GNS construction associated to φ and (M,∆) the

von Neumann algebraic quantum group associated to (A,∆). We recall that M is the

strong closure in B(H) of πφ(A).

Definition 1.4.11. Let H be a Hilbert space. A multiplicative unitary is a unitary oper-

ator W of H⊗̂H such that

W23W12 = W12W13W23.

Proposition 1.4.12. There exists a unique operator W on Hφ⊗̂Hφ that satisfies

W (Λφ⊗̂Λφ)(∆(y)(x⊗ 1)) = Λ(x)⊗ Λ(y), ∀x, y ∈ Nφ.

W is a multiplicative unitary.

Proposition 1.4.13. Let x ∈M , we have ∆(x) = W ∗(1⊗ x)W .
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Proposition 1.4.14. The C∗-algebra π(A) can be recovered as the norm closure of

{(id⊗̂ω)(W ), ω ∈ B(H)∗}.

Definition 1.4.15. We define the dual quantum group of (A,∆) as the pair (Â, ∆̂)

defined by

• Â is the norm closure of {(ω⊗̂id)(W ), ω ∈ B(H)∗},

• ∆̂(x) = ΣW (x⊗ 1)W ∗Σ, x ∈ Â,

where Σ is the flip map on Hφ⊗̂Hφ.

Remark 1.4.16. There exists a third definition of quantum group, that starts with the

definition of a multiplicative unitary. That is we first suppose the existence of such an

operator, and we build an algebra with coproduct in a second step as in Proposition 1.4.14.

See [Wor12].

The authors of [KV00] proved the Pontryagin duality in this setting. We mention the

following result without specifying precisely what the term “isomorphic” refers to.

Theorem 1.4.17. The double quantum dual (
ˆ̂
A,

ˆ̂
∆) is isomorphic to the original quantum

group (A,∆).

Definition 1.4.18. Let B be a C∗-algebra. A unitary corepresentation of (A,∆) on a

C∗-B-module E is a unitary element X ∈ L(A⊗̂E) satisfying

(∆⊗̂id)(X) = X13X23.

We finish this section by introducing the notion of universal C∗-algebra of a quantum

group and the associated definitions. This notion has been developed in [Kus01].

Definition 1.4.19. The Fourier algebra of A, denoted by L1(A) is a subspace of A∗ and

is defined the norm closure in B(H) of

{aφb∗| a, b ∈ Nφ},

where (aφb∗)(x) = φ(axb∗), x ∈ A.

Theorem 1.4.20. The algebra L1(A) admits a universal enveloping C∗-algebra denoted

Au and there exists a comultiplication ∆u on Au that turns (Au,∆u) into a (full) locally

compact quantum group.
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There is a surjective *-homomorphism λ : Au → A, called the regular representation of

Au which intertwinnes the coproducts. Moreover there exists an element W u ∈M(A⊗Âu)

called the universal multiplicative unitary satisfying analogous properties to multiplicative

unitary. For details see [Kus01, DKSS12].

Notation : For the rest of this manuscript, a locally compact quantum group will be

refered to by a notation of type G and we then will denote Cr0(G) its reduced C∗-algebraic

version, Cu0 (G) the universal one, L∞(G) its von Neumann algebra and L1(G) ∩ L1(G)∗

the Fourier algebra. Furthermore, we introduce the notations C∗r (G), C∗u(G) and L(G)

that stand respectively for Cr0(Ĝ), Cu0 (Ĝ) and L∞(Ĝ).

1.4.2 Morphisms and closed quantum subgroups

Here we present the notion of morphism between locally compact quantum groups. We

will see that there is a simpler notion of morphisms in the context of bornological quantum

groups and that this definition is compatible with the following (see Section 2.3.5).

Definition-Proposition 1.4.21. [MRW12] Let G and H be locally compact quantum

groups. The following objects are in one to one correspondence :

1. A homomorphism from G and H, that is, a morphism between the universal func-

tion algebras

π : Cu0 (G)→M(Cu0 (H))

which intertwines the coproducts.

2. A bicharacter from G and H, that is

V ∈M(Cr0(H)⊗ Cr0(Ĝ))

satisfying

(∆H⊗̂ι)V = V13V23, (ι⊗̂∆Ĝ)V = V13V12.

Note that in our conventions, the legs of the bicharacter are flipped with respect to

those of [MRW12, DKSS12]. The following definition of a closed quantum subgroup is due

to Vaes [Vae05]. There is another possible definition due to Woronowicz which is weaker

that that of Vaes, see [DKSS12, Definition 3.2 and Theorem 3.5].
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Definition 1.4.22. Let G be locally compact quantum groups. A closed quantum subgroup

of G in the sense of Vaes is a locally compact quantum group H which fits into a commuting

diagram

C∗u(H)
π̂ //

λH
��

M(C∗u(G))

λG
��

L(H)
π̂ // L(G)

where the top arrow is an essential morphism of Hopf C∗-algebras, the bottom arrow is an

injective normal unital ∗-homomorphism, and the vertical maps are the regular represen-

tations.



Chapter 2

Bornological quantum groups

As we said in introduction, Voigt proposed and succeeded to use bornological analysis

to overcome the issue raised in Example 21 and build an axiomatic for quantum groups

almost as simple as these of algebraic quantum groups. In particular, by endowing the

algebra C∞c (G) with the bornology coming from its structure of LF-space one can build

what he defined as a bornological quantum group. Furthermore, the category of bornolog-

ical quantum groups contains the algebraic ones. Voigt’s framework is then an attractive

generalisation of Van Daele’s framework. However, the case where a bornological quantum

group A is endowed with a ∗-structure hasn’t been described yet. Thus we propose to

slightly modify the definition of a bornological quantum group by adding the hypothesis

of a ∗-structure. This will allow us to study the corresponding locally compact quantum

groups is the sense of [KV00].

If G is a general locally compact group, it is a priori not easy to find an algebra of

functions over G that satisfies the axioms of a bornological quantum group. In particular

algebras of type Cc(G) are not compatible with the bornological tensor product (a notion

very closed to the topological projective tensor product). However, we have the following

structure theorem. This is cited in [Mey04a, Theorem 2.1] and due to Montgomery and

Zippin [MZ55].

Theorem 2.0.1. Let G be an almost connected locally compact group, then G is isomor-

phic to a projective limit of Lie groups.

One benefit we have with the bornological framework is the compatibility with in-

ductive limits. Since that for any Lie group H, one can endow C∞c (H) with the bornol-

ogy associated to its LF-space structure, we can get a natural bornological structure on

an algebra associated to G. We also refer to [Mey04b] for the various motivations for

37
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the introduction of the bornological framework for group representation theory and non-

commutative geometry.

2.1 Bornological Vector spaces

2.1.1 Basics

Definition 2.1.1. A bornology on a set X is a family B of subsets of X such that

1. B is a covering of X, i.e.
⋃
B∈B B = X,

2. B is hereditary under inclusion, i.e. if A ∈ B and B ⊂ A, then B ∈ B,

3. B is stable under finite unions.

The pair (X,B) is called a bornological set and the elements of B are called the bounded

subsets of X.

Definition 2.1.2. Let V be a vector space and A a subset of V . We say that A is circled

if λA ⊂ A for all λ < 1. We say that A is a disk if it is both convex and circled.

Definition 2.1.3. Let V be a (complex) vector space, a bornology B on V is said to be a

vectorial bornology if

1. for all A,B ∈ B and λ ∈ C, A+B and λA are in B,

2. B is stable under the formation of circled hulls, that is, for all A ∈ B,
⋃
α≤1 αA

belongs to B.

Let A ⊂ V , the convex hull of A is the smallest convex set of V that contains A. We say

that the vector bornology B is convex if it is stable under the formation of convex hulls.

Definition 2.1.4. A linear map f : V → W between two bornological vector spaces is

called bounded if for all bounded subsets B ⊂ V , f(B) is a bounded subset of W .

Example 22. Let V be a Banach space, then the family B of bounded subsets of V (with

respect to the norm of V ) is a convex bornology on V . Thus, the two notions of bounded

linear maps coincide. One can generalize this to any vector space V endowed with a family

of seminorms.

Example 23. Let V be a locally convex vector space, a subset X of V is called bounded

if it is absorbed by any neighborhood of 0 (that is, for any neighborhood U of 0, there

exists λ > 0 such that X ⊂ λU). The collection of all bounded subset of V is a convex

bornology on V . This is called the Von Neumann bornology of V .
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Remark 2.1.5. For any convex bornological vector space V one can build a locally convex

topology on V , called the “bornological topology” ([HN77, Chapter IV]). In the case where

V is a metrizable locally convex space, The study of V equipped with its Von Neumann

bornology or with its topology are essentially equivalent (cf. [Mey04b]).

Example 24. Let V be a locally convex vector space, the family of precompact subset of

V is a convex bornology on V , called the Precompact bornology. The vector space V

endowed with this bornology is denoted Comp(V ).

Example 25. Let V be any complex vector space, the family of compact subset of finite-

dimensional vector spaces is a convex bornology on V . We refer to it as the fine-bornology

and we will see that it allows to include Van Daele’s framework into the bornological one.

One can find many more examples in [HN77].

Let V and W be bornological spaces. We denote by Hom(V,W ) the set of bounded

linear maps from V to W .

Definition 2.1.6. Let L be a subset of Hom(V,W ). We said that L is equibounded if for

all bounded set S in V ,
⋃
l∈L l(S) is bounded in W .

Proposition 2.1.7. The family of all equibounded subsets of Hom(V,W ) is a convex

bornology.

In the rest of this thesis, Hom(V,W ) is always endowed with the equibounded bornology.

In particular we will write V ∗ for Hom(V,C)

2.1.2 Convergence and Completeness

Definition 2.1.8. Let V be a vector space and X a subet of V . We define the function

pX : V → [0,∞] by

pX(v) = inf{r ∈ R : r > 0 | r−1v ∈ X} for every v ∈ V.

We call pX the gauge of the set X. If X is convex, pX in a semi-norm on V .

Definition 2.1.9. Let V be a bornological vector space and A a bounded disk in V . We

say that A is completant if the space VA = Span(A), equipped with the gauge semi-norm

associated to A is a Banach space.

Definition 2.1.10. We say that V is complete if any bounded subset S is contained in a

completant bounded disk.
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Definition 2.1.11. Let (vn)n∈N be a sequence in a bornological space V . We say that (vn)

converges bornologically towards a vector v ∈ V if there exists a sequence (λn)n∈N ∈ C
converging toward 0 and a bounded subset S of V such that (vn − v) belongs to λnS for

all n ∈ N.

Definition-Proposition 2.1.12. Let V be a bornological space. There exists a complete

bornological space V c and a bounded linear map ] : V → V c with the following universal

property: For any complete bornological space W and bounded map l : V → W , there

exists a bounded map lc : V c →W such that l = lc ◦ ].
The bornological space V c is called the completion of V .

Remark 2.1.13. In all that follows, we only consider complete convex bornologies and refer

to a bornological vector space as a complex vector space enowed with a complete convex

vector bornology.

2.1.3 The category of bornological spaces

There exists a tensor product in the category of bornological spaces, defined similarly to

the projective tensor product for locally convex spaces. More precisely for two bornological

spaces V and W , one can endow the algebraic tensor product V ⊗W with a bornology

such that for any bornological space X, bounded bilinear maps V ×W → X correspond

canonically to bounded linear maps V ⊗W → X.

Definition 2.1.14. The bornological tensor product of V and W , denoted V ⊗̂W is defined

as the bornological completion of V ⊗W .

Proposition 2.1.15. The bornological tensor product is associative and commutative and

there is a natural adjunction isomorphism

Hom(V ⊗̂W,X) ∼= Hom(V,Hom(W,X)),

for all bornological vector spaces V,W,X.

The bornological tensor product is compatible with the topological projective tensor

product in the following sense (This result is formulated in the following way in [Voi08,

Theorem 2.1] and is originally due to Grothendieck. [Gro54]).

Theorem 2.1.16. Let V and W be Fréchet spaces and let V ⊗̂πW be their completed

projective tensor product. Then there is a natural isomorphism

Comp(V )⊗̂Comp(W ) ∼= Comp(V ⊗̂πW )

of bornological vector spaces.
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The following result can be found in [HN77, Section 2:8].

Proposition 2.1.17. Let I be a directed partially ordered set and (Vi, uji)i≤j∈I be an

inductive system of bornological spaces. We denote by V the vector space limit of this

system and ui : Vi → V the associated maps. We denote Bi the bornology on each Vi.

Then B =
⋃
i∈I ui(Bi) is a bornology on V and (V,B) is called the bornological inductive

limit.

2.1.4 The approximation property

The approximation property originally refers to a property of certain locally convex spaces

and a related notion has been introduced for bornological vector spaces. It is one of the

hypotheses required to get a bornological quantum group. Before giving a definition, we

introduce some terminology.

Let V be a bornological vector space. A subset S of V is precompact if there exists

a completant disk A such that S is a precompact subset of the Banach space VA. Recall

that for any Banach space E, the space Hom(E, V ) carries the equibounded bornology

([HN77]).

Definition 2.1.18. We say that V has the approximation property if for any compact

disk A, there exists a sequence (fn) of finite rank operators on V such that (fn) converges

to id in Hom(VA, V ).

Example 26. If V carries the fine-bornology one can see that a disk A can be compact

only if it is contained in a finite dimensional vector space. Thus VA is finite dimensional

and we see that the approximation property is trivial for V .

In order to show that classical Lie groups are bornological, we cite the following theo-

rem ([Mey04b, Theorem 5.11]).

Theorem 2.1.19. Let V be a Fréchet space. The following are equivalent :

1. V has the approximation property as a locally convex vector space.

2. V endowed with the Precompact bornology has the approximation property.

We also need the following result.

Proposition 2.1.20. If V is the limit of an countable inductive system (Vi) of bornological

spaces with the approximation property, then V has the approximation property.

It is well known that for any compact Lie group K, the Fréchet space C∞(K) has the

approximation property, as well as C∞c (G) for any Lie group.
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2.2 Bornological algebras and multipliers

Definition 2.2.1. A bornological algebra A is a bornological vector space with a bounded

multiplication A⊗̂A → A. If A is a ∗-algebra such that the ∗-involution is bounded then

on calls a bornological ∗-algebra.

A bornological module is essential if every bounded set of V is the image of a bounded

set in A⊗̂V. A bornological algebra is essential if it is essential as a module over itself. A

bounded morphism of bornological algberas φ : A → B is essential if it makes B into an

essential A-module.

A multiplier of a bornological algebra is a pair of bounded maps c = (cl·, ·cr) from A
to itself satisfying

cl · (ab) = (cl · a)b, (ab) · cr = a(b · cr), (a · cr)b = a(cl · b),

for all a, b ∈ A. The multipliers form a bornological algebra M(A), with the bornology

restricted from End(A)⊕End(A), and A sits in M(A) as an ideal. We may thus suppress

the dots and the subscripts l and r in the notation. For details, see [Voi08].

Remark 2.2.2. The notation M(A) could be confusing since it could refer to general

multipliers and not only the bounded ones. However M(A) will always refer to the set of

bounded multipliers.

It is an important fact that if A and B are essential bornological algebras then any

essential morphism φ : A(B) extends uniquely to a morphism on the multipliers φ :

M(A)→M(B). We shall use this frequently without mention.

A bornological algebra equipped with a bounded antilinear involution is called a

bornological ∗-algebra. If A is a bornological ∗-algebra then so is M(A).

We will make an unconventional choice of notation here. As we will describe later,

the space of functions on a bornological quantum group is equipped with two distinct ∗-
structures, associated to the pointwise product and the convolution product, respectively,

and it will be important to distinguish them. We will therefore use the notation a 7→ a

for the “pointwise adjoint” and a 7→ a∗ for the “convolution adjoint”. In particular, the

reader should keep in mind that ab = b a.

We equip the tensor product A⊗̂B of two bornological ∗-algebras with the involution

defined by

(a⊗ b) = a⊗ b.

Definition 2.2.3. Let φ be functional on A. We say that φ is positive if φ(a∗a) ≥ 0 for

all a ∈ A.
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Proposition 2.2.4. Let φ be a bounded positive linear functional on A. We have that

φG(a∗) = φG(a), for all a ∈ A(G) and we have the Cauchy-Schwartz inequality

|φG(b∗c)|2 ≤ φG(b∗b)φG(c∗c),

for all b, c ∈ A(G).

Proof. For any b, c ∈ A(G) and λ ∈ C we calculate

0 ≤ φG((b− λc)∗(b− λc))) = φG(b∗b)− λφG(b∗c)− λ̄φG(c∗b) + |λ|2φG(c∗c).

Thus λφG(b∗c) + λ̄φG(c∗b) ∈ R for all λ ∈ C and thus φG(b∗c) = φG(c∗b). We replace c

with c∗ in this equality and use the essentialness of A(G) to conclude the first statement.

For the Cauchy-Schwartz inequality just put λ = φG(c∗b)/φG(c∗c).

Let A be an essential bornological. We call a linear map ρ : A → A a left multiplier if

ρ(ab) = ρ(a)b for all a, b ∈ A. A right multiplier is a linear map ρ : A → A a left multiplier

if ρ(ab) = aρ(b) for all a, b ∈ A. A multiplier of A is a pair (ρ1, ρ2) such that ρ1 is a left

multiplier, ρ2 is a right multiplier and ρ2(a)b = aρ1(b).We denote by M(A) the set of all

bounded multipliers of A. The space M(A) is an associative algebra and endowed with

the bornology of Hom(H,H), it becomes an essential bornological algebra. Furthermore

we have a bounded natural inclusion of A into M(A) whose image is a two sided ideal.

Definition 2.2.5. We say that a left multiplier m : A → A is adjointable if there exists

a left multiplier m∗ : A → A such that (m∗a)∗b = a(mb), ∀a, b ∈ A.

Lemma 2.2.6. Let m : A → A be a left multiplier of bornological ∗-algebra. The following

are equivalent

1. m is adjointable.

2. m is a two-sided multiplier.

Proof. Given a left multiplier m, we define the right multiplier m′ such that m′(a) =

(m∗(a∗))∗. Then (m,m′) is a two sided multiplier, which we again refer to as m. This

proves (1) =⇒ (2). For the converse, the same formulas allows us to define m∗ in terms

of m′.

2.3 Bornological quantum groups

A coproduct on a bornological ∗-algebra A is an essential bounded ∗-homomorphism ∆ :

A →M(A⊗̂A) which is coassociative, meaning (id⊗̂∆)∆ = (∆⊗̂id)∆ as maps from A to
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M(A⊗̂A⊗̂A), and such that the Galois maps

γl : a⊗ b 7→ (∆a)(b⊗ 1), ρr : a⊗ b 7→ (1⊗ a)(∆b)

are bounded linear maps from A⊗̂A to itself. We write ∆cop = Σ ◦∆ for the co-opposite

comultiplication, where Σ denotes the flip map. We note that Voigt [Voi08] does not

impose the condition on the Galois maps in his definition of a bornological coproduct,

although he does require it as a hypothesis in all his successive results.

We also define the maps

γr : a⊗ b 7→ (∆a)(1⊗ b), ρl : a⊗ b 7→ (a⊗ 1)(∆b),

as well as the variants γop
l , γcop

l , γop,cop
l , etc, in which we replace the multiplication by

mop and/or the comultiplication by ∆cop. The resulting sixteen maps from A⊗̂A → A⊗̂A
will all be referred to as Galois maps. They all map A⊗̂A into itself because they can all

be related to γl and ρr via the flip maps and conjugation by the involution.

This condition on the Galois maps allows us to define, for any a ∈ A and ω ∈ A∗, a

multiplier (id⊗̂ω)(∆(a)) ∈M(A) by

b · (id⊗̂ω)(∆(a)) = (id⊗̂ω)((b⊗ 1)∆(a)),

(id⊗̂ω)(∆(a)) · b = (id⊗̂ω)(∆(a)(b⊗ 1)),

where b ∈ A. We can define the multiplier (ω⊗̂id)(∆(a)) ∈M(A) similarly.

Some notational remarks are in order. Firstly, if ω ∈ A∗ and b, c ∈ A, we will use

the notation bωc for the linear functional a 7→ ω(cab). This notation will be generalized

to linear functionals on other algebras. Secondly, to simplify formulas, we will often use

Sweedler notation for the coproduct, writing

∆(a) = a(1) ⊗ a(2),

where a ∈ A. For classical Hopf algebras, this can be understood as a summation con-

vention, but here it is a purely formal notation. That is, the terms a(1) and a(2) have no

meaning on their own, but are only placeholders for the position of a coproduct in the

legs of the multipliers of the bornological tensor product M(A⊗̂A). Thus, for instance,

we can write the Galois maps as

γl(a⊗ b) = a(1)b⊗ a(2), γcop
l (a⊗ b) = a(2)b⊗ a(1), etc.

We extend this to iterated coproducts in the usual way, writing

∆(n)(a) = a(1) ⊗ · · · ⊗ a(n+1).
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Thanks to the fact that all Galois maps have image in A⊗̂A, given any elements

a, b1, . . . , bn−1 ∈ A the product b1a(1)⊗ b2a(2)⊗ · · · ⊗ a(i)⊗ · · · ⊗ bn−1a(n) belongs to A⊗̂n,

where exactly one of the legs a(i) is not multiplied by an element bi of A. The same is

true if any number of the bi is multiplied on the right instead of the left.

A coproduct ∆ on a bornological ∗-algebra A is said to satisfy the cancellation property

if the Galois maps γl and ρr are linear bornological isomorphisms fromA⊗̂A to itself. Once

again, this implies all sixteen Galois maps are linear bornological isomorphisms from A⊗̂A
to itself.

A left-invariant integral on an essential bornological ∗-algebra A with coproduct is a

bounded linear functional φ ∈ A∗ such that

(id⊗̂φ)(∆(a)) = φ(a)1

for all a ∈ A. Similarly, a right-invariant integral is ψ ∈ A∗ such that

(ψ⊗̂id)(∆(a)) = ψ(a)1.

The following theorem is due to Voigt, see [Voi08, Section 3].

Theorem 2.3.1. Let A be a bornological ∗-algebra equipped with a coproduct ∆ and a

positive faithful left invariant integral φ. The following are equivalent:

(i) ∆ satisfies the cancellation property,

(ii) there exists a bounded essential homomorphism ε : A → C, called the counit, and a

bounded algebra antiautomorphism coalgebra antiautomorphism S : A → A, called

the antipode, satisfying the following Hopf-type axioms: For all a, b ∈ A(G),

(ε⊗̂id)(∆(a)) = a = (id⊗̂ε)(∆(a))

and

µ(S⊗̂id)(∆(a)(1⊗ b)) = ε(a)b, µ(id⊗̂S)((a⊗ 1)∆(b)) = ε(b)a.

In this case, the maps ε and S are uniquely defined and satisfy

ε(a) = ε(a), S(a) = S−1(a).

Proof. The only new point here is the compatibility with the involution. Define the map

ε : A → C by ε(a) = ε(a). Then

(ε⊗̂id)(∆(a)) = (ε⊗̂id)(∆(a)) = a = (id⊗̂ε)(∆(a)) = (id⊗̂ε)(∆(a)).

By uniqueness of the counit we have ε = ε. Similarly, if we define S : A → A by

S(a) = S−1(a) then S satisfies the same properties as the counit S.
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We note that the properties of ε and S cited in Theorem 2.3.1 extend to the situation

where a is a multiplier and b ∈ A.

We can now define a bornological quantum group (with involution) by adding an

involution to Voigt’s definition [Voi08], and requiring positivity of the invariant integral.

Definition 2.3.2. A bornological quantum group algebra is a bornological ∗-algebra A
satisfying the equivalent conditions of Theorem 2.3.1.

As usual, we will use the notation A = A(G) when the algebra is to be thought of as

the algebra of functions on some quantum group G.

Example 27. LetA be an algebraic quantum group. If we endowA with the fine-bornology,

then A is a bornological quantum group. Indeed in this case, every linear map is bounded

and the bornological tensor product coincides with the algebraic one.

Example 28. Let K be a compact Lie group. As we have seen, C∞(K), endowed with the

precompact bornology associated to its Fréchet space structure, has the approximation

property. Furthermore, because of the nuclearity of the Fréchet space C∞(K), we have

that

C∞(K)⊗̂πC∞(K) ∼= C∞(K ×K).

and thus it follows that

Comp(C∞(K))⊗̂Comp(C∞(K)) ∼= Comp(C∞(K ×K)).

If G is a (non-compact) Lie group, we have

Comp(C∞c (G))⊗̂Comp(C∞c (G)) ∼= Comp(C∞c (G×G)).

Proposition 2.3.3. Let (A(Gi),∆Gi)i an inductive system of bornological quantum groups.

Then the limit bornological algebra, endowed with the limit application ∆ is a bornological

quantum group.

2.3.1 Modular properties of the integral

Let A = A(G) be a bornological quantum group. It is shown in [Voi08, Proposition 5.4],

following [Dae98, Proposition 3.8], that there exists a unique multiplier δG ∈M(A), called

the modular element, such that

(φ⊗̂id)(∆(a)) = φ(a)δG

for all a ∈ A. It is group-like, so that

∆(δG) = δG ⊗ δG, ε(δG) = 1, S(δG) = δ−1
G .
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Following the proof of [KvD97, Lemma 3.3], one sees that δG is strictly positive in the

sense that, for all nonzero a ∈ A,

φ(a∗δGa) > 0. (2.1)

Hence δG = δ∗G.

The Haar integral and the modular element are related by

φ(aδG) = φ(S(a))

for all a ∈ A. The proof of this is essentially the same as for [Dae98, Proposition 3.10].

Applying this twice gives φ(S2(a)) = φ(δ−1
G aδG), and since φ ◦ S2 is again a left-invariant

integral, we have φ(S2(a)) = µφ(a) for some scalar µ ∈ C, called the scaling constant. It

is possible to show that |µ| = 1. De Commer and Van Daele have shown that we always

have µ = 1 in the case of algebraic quantum groups, see [DCVD10, Theorem, 3.4]. At

present, we do not know if this is true for bornological quantum groups.

To simplify the exposition, we will assume in this thesis that µ = 1, since all the

examples we have in mind satisfy this assumption. As a consequence we have φ(δGa) =

φ(aδG) for all a ∈ A. The situation µ 6= 1 would not add any particular difficulties,

following the same methods as in [KvD97].

There is a unique bounded algebra automorphism σ : A → A such that φ(ab) =

φ(bσ(a)) for all a, b ∈ A, see [Dae98, Proposition 3.12] and [Voi08, Proposition 5.3]. This

continues to hold when one of a or b is a multiplier, and by taking b = 1 we have that φ

is invariant under σ. Our assumption that the scaling constant is 1 implies that

σ(δG) = δG.

We record some further basic properties of σ.

Proposition 2.3.4. For all a ∈ A we have

σ(S(σ(a))) = δ−1
G S(a)δG, σ−1(S(σ−1(a))) = δGS(a)δ−1

G ,

S2(σ(a)) = σ(S2(a)), σ(a) = σ−1(a).

Proof. For any a, b ∈ A, we have

φ(bσ(S(σ(a)))) = φ(S(σ(a))b) = φ(S−1(b)σ(a)δG)

= φ(aδGS
−1(b)) = φ(bδ−1

G S(a)δG).

This proves the first equality. The second follows by pre- and post-composing with σ−1,

and the third then follows by composing the first two. The final equality follows from

φ(bσ(a)) = φ(ab) = φ(ba) = φ(σ−1(a)b) = φ(b σ−1(a)).
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The map σ is not generally a coalgebra automorphism. Instead, we have the following

property.

Proposition 2.3.5. We have

∆ ◦ σ = (S2 ⊗ σ) ◦∆ = (σ ⊗ α) ◦∆,

where α is the bounded algebra automorphism defined by α(a) = δ−1
G S−2(a)δG.

Proof. Let a, b, c ∈ A(G). Using the invariance of the Haar integral, we have

(φ⊗̂φ)((b⊗ c)∆(σ(a))) = φ(bS(c(1)))φ(c(2)σ(a))

= φ(bS(c(1)))φ(ac(2))

= φ(bS2(a(1)))φ(a(2)c)

= φ(bS2(a(1)))φ(cσ(a(2))),

which proves the first equality. For the second, we calculate

φ((b⊗ c)∆(σ(a))) = φ(b(1)σ(a))φ(cS−1(b(2))δG)

= φ(ab(1))φ(b(2)S(c))

= φ(a(1)b)φ(S−1(a(2))δGS(c))

= φ(bσ(a(1)))φ(cδ−1
G S−2(a(2))δG).

One can also consider the automorphism σ′ associated to the right-invariant integral

φ ◦ S, that is, φ(S(ab)) = φ(S(bσ′(a))). We get immediately that

σ′(a) = δGσ(a)δ−1
G = σ(δGaδ

−1
G ) = S−1(σ−1(S(a))). (2.2)

2.3.2 Pontryagin duality

Let A = A(G) be a bornological quantum group. We write â or F(a) for the bounded

linear functional â : b 7→ φ(ba). The Pontryagin dual, denoted Â or A(Ĝ), is the space of

bounded linear forms

A(Ĝ) = {â | a ∈ A(G)} ⊂ A(G)∗

equipped with the bornology inherited from the bijection F : A → Â and the Hopf

operations defined by skew-duality, namely, for a, b ∈ A and x, y ∈ Â

(xy, a) = (x⊗ y,∆(a)) (∆̂(x), a⊗ b) = (x, ba)

ε̂(x) = (x, 1) (1̂, a) = ε(a)

(Ŝ(x), a) = (x, S−1(a)) (Ŝ−1(x), a) = (x, S(a))

(x∗, a) =
(
x, S(a)

)
, (x, a) =

(
Ŝ−1(x)∗, a

)
.
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Note that we are using a for the involution of a ∈ A(G) and x∗ for the involution of

x ∈ A(Ĝ). The left Haar integral φ̂ on A(Ĝ) is given by

φ̂(F(a)) = ε(a).

The proof that A(Ĝ) is indeed a bornological quantum group with this structure is

done in [Voi08, Theorem 7.5], with the exception of the ∗-structure. We will confirm that

the ∗-structure is compatible with the quantum group structure on A(Ĝ) in Proposition

2.3.6 below.

Using the linear isomorphism F we can transfer the Hopf operations from A(Ĝ) to

A(G), Specifically, we introduce the convolution product and convolution adjoint on A(G),

f ∗ g := f(1)φ(S−1(g)f(2)) = φ(S−1(g(1))f)g(2), (2.3)

f∗ =S(f)δG. (2.4)

Then one can verify the following formulas for the dual operations:

F(f)F(g) = F(f ∗ g), F(f)∗ = F(f∗),

ε̂(F(f)) = φ(f), Ŝ(F(f)) = F(σ(δG S(f))).

Proposition 2.3.6. The involution ∗ defined on A(Ĝ) by the duality relations above makes

A(Ĝ) into a bornological quantum group in the sense of Definition 2.3.2.

Proof. Using [Voi08, Theorem 7.5], we only need to check the compatibility of the invo-

lution. We see from the formula (2.4) that the convolution adjoint maps A(G) to A(G),

so the involution is well-defined on A(Ĝ). The fact that x 7→ x∗ is a bounded involutive

antilinear algebra anti-automorphism and coalgebra auto-morphism is straightforward,

positivity and faithfulness of the left invariant integral φ̂ follows from the following well-

known formula.

Lemma 2.3.7. For any f, g ∈ A(G) we have ε(f∗ ∗ g) = φ(fg).

Proof. We have ε(f∗ ∗ g) = ε(g(2))φ(S−1(g(1))S
−1(f)δG) = φ(S−1(fg)δG) = φ(fg).

We shall write D(G) for the linear space A(G) equipped with the Hopf operations

pulled back from A(Ĝ) via F . In particular, as a ∗-algebra, D(G) is equipped with the

convolution product (2.3) and convolution adjoint (2.4) above, while the counit on D(G)

is ε̂ = φ and the antipode on D(G) is given by

Ŝ(f) = σ(δGS(f)).
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From this and Proposition 2.3.4, we get the notable formula

Ŝ2(f) = S2(f). (2.5)

We record the following compatibility between the pointwise coproduct and the con-

volution product.

Lemma 2.3.8. For any f, g ∈ A(G) we have the formal equalities

∆(f ∗ g) = f(1) ⊗ (f(2) ∗ g) = (f ∗ g(1))⊗ g(2).

More precisely, for any a ∈ A(G) we have

(a⊗ 1)∆(f ∗ g) = af(1) ⊗ (f(2) ∗ g) ∆(f ∗ g)(a⊗ 1) = f(1)a⊗ (f(2) ∗ g)

(1⊗ a)∆(f ∗ g) = (f ∗ g(1))⊗ ag(2) ∆(f ∗ g)(1⊗ a) = (f ∗ g(1))⊗ g(2)a,

where the right hand side of the first equation is understood by first applying a Galois map

to a ⊗ f and then taking the convolution with g in the second leg, and similarly for the

others.

Proof. We calculate

(a⊗ 1)∆(f ∗ g) = (a⊗ 1)∆(f(1) φ(S−1(g)f(2)))

= (id⊗̂id⊗ φ̂)(af(1) ⊗ f(2) ⊗ S−1(g)f(3))

= (af(1) ⊗ f(2)) ∗ (1̂⊗ g),

where 1̂ denotes the unit in the convolution algebra M(D(G)). The other equalities are

similar.

2.3.3 Modular properties of the dual quantum group and Radford’s S4

formula

From now on, we will write δG, σG, etc. for the modular element and modular automor-

phism of G, and δĜ, σĜ for those of D(G) ∼= A(Ĝ). We can give explicit formulas for the

modular automorphisms of Ĝ.

Proposition 2.3.9. Let f ∈ D(G). We have

σĜ(f) = S2(f)δ−1
G , σ′Ĝ(f) = δ−1

G S−2(f)
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Proof. Let f, g ∈ D(G). On the one hand we have

φĜ(f ∗ g) = ε(f ∗ g) = φG(S−1(g)f)

and on the other hand

φĜ(g ∗ (S2(f)δ−1
G )) = φG(S−1(S2(f)δ−1

G )g)

= φG(δGS(f)g)

= φG(S−1(g)f),

which leads to the first equality. For the second equality we can dualize the identity (2.2)

to obtain σ′
Ĝ

= Ŝ−1σ−1

Ĝ
Ŝ. Hence,

σ′Ĝ(f) = S−1(δ−1
G σ−1

G (S−2(σG(δGS(f))δG)))

= δ−1
G S−3(δGS(f))δG

= δ−1
G S−2(f).

Dualizing this formula and using Equation (2.5) yields the following.

Corollary 2.3.10. For f ∈ A(G), we have

σG(f) = S2(f) ∗ δ−1

Ĝ
,

σ′G(f) = δ−1

Ĝ
∗ S−2(f).

Proposition 2.3.11. The left and right actions of δG and δĜ on A(G) by multiplication

and convolution, respectively, all commute.

Proof. The fact that left and right multiplication by δG commute is obvious, as is the

commutativity of left and right convolution by δĜ. Using Corollary 2.3.10 we have, for all

f ∈ A(G)

δĜ ∗ f = S−2(σ′G
−1

(f)), f ∗ δĜ = S2(σ−1
G (f)).

Therefore, noting that σG(δG) = σ′G(δG) = δG, we obtain

δĜ ∗ (δGf) = S−2(σ′G
−1

(δGf)) = δG(δĜ ∗ f).

The calculations for other combinations of actions are similar.
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Remark 2.3.12. If the scaling constant µ is not 1, these operators will commute up to a

scalar, and moreover left and right convolution by δ̂G will commute on the nose with the

conjugation operator f 7→ δGfδ
−1
G . This shows that the proof of the next theorem remains

valid even if the scaling constant is not 1.

One can now generalize Radford’s S4 formula to bornological quantum group. See

[DVDW06] for a discussion about this formula in the algebraic case.

Theorem 2.3.13. (Radford’s S4 formula) Let f ∈ A(G), we have

S4(f) = δG(δ−1

Ĝ
∗ f ∗ δĜ)δ−1

G .

Proof. Consider g = S2(f). We have σG(g) = δGσ
′
G(g)δ−1

G and thus

S4(f) ∗ δ−1

Ĝ
= δG(δ−1

Ĝ
∗ f)δ−1

G .

Since the actions of δĜ and δG commute, we are done.

2.3.4 The bornological multiplicative unitary

Amongst the sixteen Galois maps and their inverses, one is particularly favoured. This

choice, called the multiplicative unitary, comes from conventions fixed by Baaj and Skan-

dalis in their foundational work on analytical quantum groups [BS93]. Here we give the

bornological version.

Definition 2.3.14. The bornological multiplicative unitary is the linear bornological iso-

morphism

W = (ρop
l )−1 : A(G)⊗̂A(G)→ A(G)⊗̂A(G)

a⊗ b 7→ S−1(b(1))a⊗ b(2),

with inverse

W−1 : a⊗ b 7→ ∆(b)(a⊗ 1) = b(1)a⊗ b(2).

Proposition 2.3.15. The bornological multiplicative unitary is a unitary multiplier of the

algebra A(G)⊗̂D(G), in the sense that

(W(a⊗ b))∗ • (c⊗ d) = (a⊗ b)∗ •W−1(c⊗ d), (2.6)

where • and ∗ denote the product and involution in A(G)⊗̂D(G).
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Proof. First, we check that W−1 is right A(G)⊗̂D(G)-linear. Using Lemma 2.3.8, we

calculate

W−1((a⊗ b) • (c⊗ d)) = ∆(b ∗ d)(ac⊗ 1)

= (∆(b) · (1⊗ d))(ac⊗ 1)

=W−1(a⊗ b) • (c⊗ d).

Thus W is a left multiplier. Using the fact that φ( · δ) is a right invariant integral, we

obtain

(W−1(a⊗ b))∗ • (W−1(c⊗ d))

= (∆(b)(a⊗ 1))∗ • (∆(d)(c⊗ 1))

= ab(1)d(1)c⊗ (S−1(b(2))δ ∗ d(2))

= ab(1)d(1)c⊗ φ(S−1(d(2))S
−1(b(2))δ)d(3)

= aS(S−1(b(1)d(1)))c⊗ φ(S−1(b(2)d(2))δ)d(3)

= ac⊗ φ(S−1(b(1)d(1))δ)d(2)

= ac⊗ φ(S−1(d(1))b
∗)d(2)

= ac⊗ b∗ ∗ d

= (a⊗ b)∗ • (c⊗ d).

This proves that the left multiplier W−1 admits W as an adjoint in the sense of Equation

(2.6). It follows that W is a two-sided multiplier, since we can define the associated right

multiplier by

(a⊗ b) · W = (W−1 · (a⊗ b)∗)∗.

This completes the proof.

The bornological multiplicative unitary W satisfies the pentagonal equation

W12W13W23 =W23W12

and the bicharacter properties

(∆⊗̂id)W =W13W23, (id⊗̂∆̂)W =W13W12, (2.7)

Let us record two further relations concerning the bornological multiplicative unitary.

Lemma 2.3.16. Considering W as a linear automorphism of A(G)⊗̂A(G), we have

(σ⊗̂σ)W =W(σ⊗̂α),

where α is the automorphism α : a 7→ δ−1S−2(a)δ defined in Proposition 2.3.5. Moreover,

(α⊗̂α)W =W(α⊗̂α).
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Proof. Let a, b ∈ A(G). According to Proposition 2.3.5, we have

W−1(σ⊗̂σ)(a⊗ b) = ∆(σ(b))(σ(a)⊗ 1)

= (σ⊗̂α)(∆(b)(a⊗ 1)) = (σ⊗̂α)W−1(a⊗ b),

which proves the first equality. The second follows from the fact that α is a Hopf morphism

(though not a Hopf *-morphism).

2.3.5 Morphisms and closed subgroups

Definition 2.3.17. Let G and H be bornological quantum groups. A morphism of bornolog-

ical quantum groups from H to G is an essential ∗-algebra morphism π : A(G)→M(A(H))

which intertwines the coproducts:

∆H ◦ π = (π⊗̂π) ◦∆G

If π maps A(G) surjectively onto A(H), then we call H a closed quantum subgroup of

G. In this case we write π = πH and refer to it as the restriction map.

Any morphism π : A(G) → M(A(H)) of bornological quantum groups automatically

respects the antipode and counit:

SH ◦ π = π ◦ SG, εG = εH ◦ π,

see Proposition 4.7 of [Voi08].

Proposition 2.3.18. For any morphism of bornological quantum groups π from H to G,

there is a unique dual morphism π̂ from Ĝ to Ĥ determined by

(π̂(x), a) = (x, π(a))

for all x ∈ A(Ĥ) and a ∈ A(G).

Proof. The well-definedness of π̂ is Proposition 8.4 of [Voi08]. The compatibility of π̂ with

the involutions follows from duality with A(G) and A(H).



Chapter 3

From bornological to locally

compact quantum groups

Our goal in this chapter is to make clear the compatibility of bornological quantum groups

with the general framework of locally compact quantum group, as recalled in Section 1.4.

That is, given a bornological quantum group as described in the previous chapter, we show

that it gives rise to a uniquely determined locally compact C∗-algebraic quantum group.

We also discuss the important issue of closed quantum subgroups.

The results from the early part of this chapter are mostly bornological generalisations

of known results on algebraic quantum groups, particulary those in the article [KvD97].

We have however significantly altered their approach to the complex power of the modular

element which, combined with Radford S4 formula, are used to streamline the proofs. The

final section on closed quantum subgroups is to our knowledge, new even in the context

of algebraic quantum groups.

We maintain the notation of the previous chapter. In particular, the left invariant Haar

functional on A(G) is denoted φG. We also recall that we are using f 7→ f̄ to denote the

“pointwise involution” on A(G) and f 7→ f∗ = S(f)δG for the “convolution involution”

on D(G) = A(Ĝ).

3.1 The left regular representation : Construction of Cr
0(G)

We fix a GNS pair (L2(G),Λ) associated to φG. This means that L2(G) is a Hilbert space

with a linear map Λ : A(G)→ L2(G) such that Λ(A(G)) is a dense subspace and we have

〈Λ(f),Λ(g)〉L2(G) = φG(f̄g) = ε(f∗ ∗ g), ∀f, g ∈ A(G).

The second equality is from Lemma 2.3.7.

55
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Remark 3.1.1. The map Λ : A(G)→ L2(G) is bounded with respect to the von Neumann

bornology of L2(G). This is because the map ‖ · ‖ ◦Λ, which maps a ∈ A(G) to φG(a∗a)
1
2 ,

is bounded as the composition of bounded maps a 7→ a⊗ a∗ 7→ a∗a 7→ φG(a∗a)
1
2 .

We denote by m the left action of A(G) on Λ(A(G)) ⊂ L2(G) by multiplication and

by λ the left action of D(G) by convolution, that is

• m(f)Λ(g) = Λ(fg),

• λ(f)Λ(g) = Λ(f ∗ g).

Our first goal in this section is to show that densely defined operators m(f), f ∈ A(G)

extend to bounded operators on L2(G). This will be done by looking at the multiplicative

unitary on L2(G) ⊗ L2(G). First, note that Λ × Λ : A(G) × A(G) → L2(G) ⊗ L2(G)

is a bounded bilinear map and thus extends to a bounded map Λ⊗̂Λ : A(G)⊗̂A(G) →
L2(G)⊗ L2(G).

Proposition 3.1.2. There exists a unique unitary operator W of L2(G) ⊗ L2(G) s.t.

W (Λ⊗̂Λ)(∆(g)(f ⊗ 1)) = Λ(f) ⊗ Λ(g), for all f, g ∈ A(G). It is a multiplicative unitary

on L2(G) in the sense that W12W13W23 = W23W12.

Proof. First, by the hypothesis on the Galois maps, it is clear that this operator W

is well defined and invertible on Λ⊗̂Λ(A(G)⊗̂A(G)). To check the unitarity let a ⊗ b,

c⊗ d ∈ A(G)⊗A(G) and observe that

〈∆(b)(a⊗ 1),∆(d)(c⊗ 1)〉 = φG⊗̂φG((ā⊗ 1)∆(b̄d)(c⊗ 1))

= φG(āc)φG(b̄d)

= 〈a⊗ b, c⊗ d〉 .

Recall that the bornological multiplicative unitary W belongs to M(A(G)⊗̂D(G)).

From Lemma 2.3.7, the inner product on L2(G)⊗ L2(G) is given by

〈Λ(a)⊗ Λ(b),Λ(c)⊗ Λ(d)〉 = (φG⊗̂ε)((Λ⊗̂Λ)((a⊗ b∗) • (c⊗ d))),

for all a, c ∈ A(G), b, d ∈ D(G), where • denotes the product in A(G)⊗D(G). It follows

from Proposition 2.3.15 that the densely defined operator

(m⊗ λ)(W) : Λ⊗̂Λ(a⊗ b) 7→ Λ⊗̂Λ(W(a⊗ b))

extends to a unitary operator W on L2(G) with the stated properties.

Given ξ, η ∈ L2(G), we denote by ωξ,η the state on B(L2(G)) given by

ωξ,η(T ) = 〈ξ, Tη〉 .

This will allow us to define the left and right slices of the multiplicative unitary.
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Lemma 3.1.3. For any f, g ∈ A(G), the endomorphism m((id⊗̂φG)(W−1(f ⊗ g))) of

Λ(A(G)) extends to a bounded operator of L2(G). Explicitly, it extends to the left slice

(id⊗̂ωΛ(g),Λ(f))(W ), where ωΛ(g),Λ(f) : T 7→ 〈Λ(ḡ), TΛ(f)〉, T ∈ B(L2(G)).

Proof. A straightforward calculation, as in [KvD97, Lemma 2.3], shows that for all h ∈
A(G) we have

(id⊗̂ωΛ(f),Λ(g))(W )Λ(h) = Λ((id⊗̂φG)(∆(f)(1⊗ g))h). (3.1)

On the right hand side we have m(W−1(g ⊗ f))Λ(h) and on the other side the operator

acting on Λ(h) is (id⊗̂ωΛ(f),Λ(g))(W ), and this is a bounded operator.

Proposition 3.1.4. The left regular representation m : A(G) → End(Λ(A(G))) extends

to a bounded ∗-representation m : A(G)→ B(L2(G)).

Proof. The bilinear map (f, g) 7→ (id⊗̂ωΛ(f),Λ(g))(W ) from A(G) × A(G) into B(L2(G))

is clearly bounded. Thus it extends to A(G)⊗̂A(G). Let x ∈ A(G) such that φG(x) = 1.

For all a ∈ A(G), using Lemma 3.1.3, one can obtain m(a) as the composition of bounded

maps

a 7→ a⊗ x 7→ W(a⊗ x)
m◦(id⊗̂φG)◦W−1

7−→ m(a).

Definition 3.1.5. We define the reduced C∗-algebra of functions on G, denoted Cr0(G),

as the closure of m(A(G)) in B(L2(G)).

Proposition 3.1.6. We have that {(id⊗̂ωΛ(f),Λ(g))(W ) | f, g ∈ A(G)} = m(A(G)).

Proof. We have that W−1 is an isomorphism of A(G)⊗̂A(G) into itself and because

id⊗̂φG : A(G)⊗̂A(G) → A(G) is surjective we obtain that A(G) = {(id⊗̂φG)((∆(a)(1 ⊗
b)) | a, b ∈ A(G)}. Thus the result follows from Equation (3.1).

We also derive from (3.1) the following result

Proposition 3.1.7. The C∗-algebra Cr0(G) is the norm closure in B(L2(G)) of {(id⊗̂ω)(W ) |
ω ∈ B(L2(G))∗}.

Definition 3.1.8. We define the mapping ∆ from Cr0(G) into B(L2(G) ⊗ L2(G)) such

that ∆(x) = W ∗(1⊗ x)W .

The proof of the following result can be readily adapted from the proof of the corre-

sponding result in the algebraic case [KvD97, Theorem 2.11].
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Theorem 3.1.9. We have that Cr0(G) is a non-degenerate C∗-subalgebra of B(L2(G))

and ∆ is a non-degenerate injective ∗-homomorphism from Cr0(G) to M(Cr0(G)⊗Cr0(G))

such that:

• (∆⊗̂id) ◦∆ = (id⊗̂∆) ◦∆.

• The vector spaces ∆(Cr0(G))(Cr0(G)⊗1) and ∆(Cr0(G))(1⊗Cr0(G)) are dense subsets

of Cr0(G)⊗ Cr0(G).

A similar construction yields the regular representation λ of D(G), as follows.

Proposition 3.1.10. For any x ∈ D(G), λ(x) extends to a bounded operator on L2(G).

Explicitly, if f, g ∈ A(G) we have

(ωΛ(f),Λ(g)⊗̂id)W = λ(g σG(f)).

The resulting map λ : D(G)→ B(L2(G)) is a bounded ∗-representation.

Proof. This is another standard calculation. For any a, b ∈ A(G) we have

〈
λ(a), ((ωΛ(f),Λ(g)⊗̂id)W )Λ(b)

〉
=
〈
Λ⊗̂Λ(f ⊗ a),WΛ⊗̂Λ(g ⊗ b)

〉
= (φG⊗̂φG)(S−1(b(1))gσG(f)⊗ ab(2))

=
〈
Λ(a),Λ(gσG(f) ∗ b)

〉
,

which proves the displayed formula. Since A(G) is essential, it follows that λ(x) extends

to a bounded operator for every x ∈ D(G).

Note that, from the definition of W in Proposition 3.1.2, the bornological and C∗-

algebraic multiplicative unitaries can now be related by W = (m⊗ λ)(W).

Definition 3.1.11. We define the C∗-algebra C∗r (G) as the norm closure of {(ω⊗̂id)(W ) |
ω ∈ B(L2(G))∗}.

Proposition 3.1.12. The bornological multiplicative unitary for the Pontryagin dual Ĝ
is given by Ŵ = Σ(W∗), where ∗ denotes the involution of A(G)⊗̂A(Ĝ) ∼= A(G)⊗̂D(G).

Proof. Let f, g ∈ D(G) and a, b ∈ A(G). We recall that the counit ε of A(G) is the identity
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element of M(D(G)). We have

(Ŵ−1(f ⊗ g), a⊗ b) = (∆̂(g) ∗ (f ⊗ ε), a⊗ b)

= (∆̂(g)⊗ (f ⊗ ε), a(1) ⊗ b(1) ⊗ a(2) ⊗ b(2))

= (g, ba(1))(f, a(2))

= φG(ba(1)g)φG(a(2)f)

= φG(bS−1(f(1))g)φG(af(2))

= (f(2) ⊗ S−1(f(1))g, a⊗ b)

= (Σ(W−1(Σ(f ⊗ g))), a⊗ b)

= (Σ(W−1)(f ⊗ g), a⊗ b),

and we know from Proposition 2.3.15 that W−1 =W∗.

The map F : A(G) 7→ A(Ĝ) extends to an isometric isomorphism of L2(G) with L2(Ĝ)

thanks to Lemma 2.3.7. Using this, we obtain the following result, which should be no

surprise.

Proposition 3.1.13. We have that C∗r (G) = Cr0(Ĝ).

3.2 The modular element at the C∗-algebraic level

In order to extend δG to a positive operator on L2(G) we shall introduce another GNS

construction. For the inspiration here, see [KvD97, Section 3].

Recall from Equation (2.1) that δG ∈M(A(G)) is strictly positive:

φG(aδGa) > 0 for all nonzero a ∈ A(G).

We can therefore define a Hilbert space L2(G)δ together with an injective linear map Λδ

from A(G) to L2(G)δ such that

1. Λδ has dense range in L2(G)δ,

2. 〈Λδ(f),Λδ(g)〉 = φG(fδGg) for all f, g ∈ A(G).

We now define the closed operator L from L2(G) to L2(G)δ with core Λ(A(G)) such

that for every f ∈ A(G) we have LΛ(f) = Λδ(f). Then

〈Lv,Λδ(f)〉 = 〈v,Λ(δGf)〉

for any v ∈ Dom(L) and f ∈ A(G). It follows that Λδ(A(G)) is a subset of Dom(L∗) and

that L∗Λδ(f) = Λ(δGf).
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Definition 3.2.1. We set δ = L∗L, so that δ is a positive unbounded operator on L2(G).

Note that for all f ∈ A(G) we have

δΛ(f) = Λ(δGf).

We denote by δ̂ the operator associated to δĜ via the analogous construction.

We now recall a technical lemma that will be used regularly in the rest of this chapter.

For the proof see [KvD97, Lemma 3.7].

Lemma 3.2.2. Consider Hilbert spaces K1, K2, H1, H2, a unitary operator U from K1

to H2, a unitary operator V from H1 to K2, a closed linear operator F from within K1

into H1, a closed linear operator G from within H2 into K2. Suppose there exists a core C

for F such that U(C) is a core for G and such that V (F (v)) = G(U(v)) for every v ∈ C.

Then we have that V F = GU .

Lemma 3.2.3. The operator U from L2(G)⊗̂L2(G)δ to L2(G)δ⊗̂L2(G)δ such that U(Λ(f)⊗
Λδ(g)) = (Λδ⊗̂Λδ)(∆(g)(f ⊗ 1)) is well defined and unitary.

Proof. Let f, g, a, b ∈ A(G). We have

〈U(Λ(f)⊗ Λδ(g)), U(Λ(f)⊗ Λδ(g))〉 = φG(f̄ ḡ(1)δGb(1)a)φG(ḡ(2)δGb(2))

= φG(f̄(δGg)(1)b(1)a)φG((δGg)(2)b(2))

= φG(f̄a)φG(δGgb(2))

= 〈Λ(f)⊗ Λδ(g),Λ(f)⊗ Λδ(g)〉 .

Lemma 3.2.4. We have (1⊗ δ)W = W (δ ⊗ δ).

Proof. Let f, g ∈ A(G), we have

(L⊗̂L)W ∗(Λ(f)⊗ Λ(g)) = (L⊗̂L)(Λ⊗̂Λ)(∆(g)(f ⊗ 1))

= (Λδ⊗̂Λδ)(∆(g)(f ⊗ 1))

= U(1⊗̂L)(Λ(f)⊗ Λ(g)).

Using Lemma 3.2.2 we deduce that (L⊗̂L)W ∗ = U(1⊗̂L). Composing this with its adjoint,

the result follows.

Proposition 3.2.5. We have that δ is a strictly positive element affiliated with Cr0(G) in

the C∗-algebraic sense. Furthermore, ∆(δ) = δ ⊗ δ.
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Proof. Our proof is similar to the proofs of [KvD97, Propositions 8.5 and 8.6]. From the

preceding lemma, we obtain that W ∗(1⊗ δ) = (δ ⊗ δ)W ∗ and thus

(1⊗ δ−it)W ∗(1⊗ δit) = (δit ⊗ 1)W ∗,

for all t ∈ R. Let ω ∈ K(L2(G))∗. Applying id⊗̂ω to this equality we get

δit(id⊗̂ω)W ∗ = id⊗̂δ−itωδit(W ∗),

where the notation δ−itωδit refers to the functional ω(δ−it · δit). Thus, by Proposition

3.1.7 (which remains true if we replace W by W ∗) we conclude that δitCr0(G) ⊂ Cr0(G)

for all t ∈ R. By definition this says that δ is an unbounded element affiliated to Cr0(G).

We also derive from Lemma 3.2.4 that W ∗(1⊗ δ)W = δ ⊗ δ, i.e. ∆(δ) = δ ⊗ δ.

By induction on n, one can deduce the following lemma.

Lemma 3.2.6. Consider f ∈ A(G) and n ∈ Z. Then Λ(f) belongs to Dom(δn) and

δnΛ(f) = Λ(δnGf).

Lemma 3.2.7. Consider f ∈ A(G) and z ∈ C. Then Λ(f) belongs to Dom(δz).

Proof. We already saw in Proposition 3.2.5 that Λ(f) ∈ Dom(δit) for all t ∈ R, so an

interpolation using the previous lemma proves the result.

Similarly, the proof of [KvD97, Lemma 8.9] is still valid for the following two propo-

sitions. Here we are writing Dom(T ) ⊆ Cr0(G) for the domain of a positive element T

affiliated to the C∗-algebra Cr0(G).

Proposition 3.2.8. For every n ∈ Z and f ∈ A(G), we have that m(f) belongs to

Dom(δnG) and δnm(f) = m(δnGf).

Proposition 3.2.9. For every z ∈ C and f ∈ A(G), we have that m(f) belongs to

Dom(δz).

As in the algebraic framework, we will prove more: that the complex powers δz of the

C∗-algebraic modular element multiply the bornological subalgebra m(A(G)) into itself

and moreover defines bounded multipliers of A(G) in the bornological sense. To do so, we

need a series of technical lemmas.

Firstly, we observe that by Pontryagin duality, elements of the bornological dual A(Ĝ)

also give elements of the pre-dual of the von Neumann closure L∞(G).

Lemma 3.2.10. For every f ∈ A(G), the linear functional f̂ = F(f) ∈ A(G)∗ extends

to a normal linear functional on L∞(G) and we obtain a bounded linear map A(G) →
L∞(G)∗.
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Proof. The linear map

ρ : A(G)⊗A(G) −→ B(L2(G))∗

a⊗ b 7−→ âb = ωΛ(σG(b∗)),Λ(a)

is bounded so extends to A(G)⊗̂A(G). Let a, b,f ∈ A(G), we have that

âb(m(f)) = φG(σG(b∗)∗fa)

= φG(fab).

Thus elements of the form ac ⊗ b − a ⊗ cb, a, b, c ∈ A(G) belong to the kernel of ρ. As

a consequence, ρ descends to a map on the balanced tensor product A(G) ⊗A(G) A(G)

and we obtain a bounded map A(G)⊗̂A(G)A(G) → B(L2(G))∗, that is a bounded map

A(G)→ B(L2(G))∗, using the essentialness of A(G).

The next Lemma is the bornological analogue of [KvD97, Lemma 7.6]. It essentially

says that slices of the C∗-algebraic coproduct by elements of the bornological dual yield

bornological multipliers.

Lemma 3.2.11. Consider f, g ∈ A(G) and x ∈ M(Cr0(G)), then (id ⊗ f̂)(∆(x))m(g)

belongs to m(A(G)).

Proof. Let x ∈M(Cr0(G)) and consider the bilinear map Lx : A(G))×A(G)→ B(L2(G))

defined by (f, g) 7→ (id⊗̂f̂)(∆(x))m(g). On the one hand the map f 7→ id ⊗ f̂ from

A(G) to B(L2(G))⊗̂B(L2(G))∗ is bounded, according Lemma 3.2.10. On the other hand

g 7→ m(g) is bounded too. Finally Lx is bounded since the evaluation map B(L2(G))∗ and

the product map B(L2(G))×B(L2(G))→ B(L2(G)) are bounded. On can thus consider

the linear map Lx : A(G))⊗̂A(G)→ B(L2(G)).

Let q, r ∈ A(G) and consider ∆(q)(r⊗1) ∈ A(G)⊗̂A(G). For every y ∈ A(G), we have

Lm(y)(∆(q)(r ⊗ 1)) = m((id⊗̂φG)(∆(y)∆(q)(r ⊗ 1)))

= φG(yq)m(r).

Using Lemma 3.2.10, and because m(A(G)) is strictly dense in M(Cr0(G)), one can replace

m(y) by any x ∈M(Cr0(G)) in this equality. Therefore Lx ◦ γl is bounded and extends to

A(G)⊗̂A(G). Thus Lx maps A(G)⊗̂A(G) into A(G) as required.

Now we return to the complex powers of the modular element.

Lemma 3.2.12. Let z ∈ C and f ∈ A(G), The linear functional f̂ ◦ δz ◦m : A(G) → C
is well-defined and bounded.
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Proof. Consider the linear map A(G)⊗A(G)→ A(G)∗defined by a⊗ b 7→ âb ◦ δz ◦m. We

must show that this map is bounded. Let a, b ∈ A(G). For all x ∈ A(G) we have

(âb ◦ δz ◦m)(x) = 〈Λ(σG(b∗)), δzΛ(xa)〉

=
〈
δz̄Λ(σG(b∗)),Λ(xa)

〉
= ωδz̄Λ(σG(b∗)),Λ(a)(m(x)).

Thus âb ◦ δz = ωδz̄Λ(σG(b∗)),Λ(a). The result follows.

It is sufficient to check that b 7→ f̂(δzm(b)) is bounded. For that observe that, since

δzm(b) ∈ m(A(G)) according to Proposition 3.2.9, the map f̂ ◦ δz ◦m can be expressed

as b 7→ φG(δzm(b)m(f)) where here φG is seen as the functional on m(A(G)) such that

φG(m(a)) = φG(a), a ∈ A(G). We have φG(δzm(b)m(f)) = φG(m(σ−1
G (f))δzm(b)). Since

m(σ−1
G (f))δz also belongs to m(A(G)) then the result follows.

Next we recall Lemma 8.11 of [KvD97], for which the proof also remains valid.

Lemma 3.2.13. Consider an element α affiliated with Cr0(G) and elements x ∈ Dom(α),

y ∈ Cr0(G). Then ∆(x)(1⊗y) belongs to Dom(∆(α)) and ∆(α)∆(x)(1⊗y) = ∆(α(x))(1⊗
y).

Proposition 3.2.14. Let z ∈ C. Then δzm(A(G)) ⊂ m(A(G)) and δz is a bounded

multiplier of m(A(G)), where m(A(G)) is endowed with the bornology inherited from A(G)

through the injective linear map m.

Proof. In this proof we adapt the arguments of the proof of [KvD97, Proposition 8.12].

Let p, q ∈ A(G) and f ∈ A(G). We consider the element a = (id⊗̂(f̂ ◦δz ◦m))(∆(p)(q⊗1))

of A(G). We have

δzm(a) = (id⊗̂f̂)((δz ⊗ δz)(∆(m(p))(m(q)⊗ 1))

= (id⊗̂f̂)(∆(δzm(p)))(m(q)⊗ 1).

Since m(p) is an analytic element for δ, we have that δzm(p) ∈ M(Cr0(G)). By Lemma

3.2.11, it follows that δzm(a) belongs to m(A(G)). Now, because of the boundedness of

the map id(⊗̂f̂ ◦ δz ◦ m), see Lemma 3.2.12, we can apply this method to any element

a = id⊗̂(f̂ δz ◦m)(X), X ∈ A(G)⊗̂A(G), that is, to any element a of A(G). Thus one can

now define δzG as the unique multiplier of A(G) such that

m(δzGa) = δzm(a).
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To prove that it is indeed a bounded multiplier, let a ∈ A(G) and consider an element

b ∈ A(G) such that φG(δ−zG b) = 1. We have ∆(δ−zG b) = (δ−zG ⊗ δ
−z
G )∆(b). It follows that

a = aφG(δ−zG b) = (id⊗̂φG)(∆(δ−zG b)(a⊗ 1)) = δ−zG (id⊗̂φGδ−zG )(∆(b)(a⊗ 1)),

where φGδ
−z
G denotes the linear functional g 7→ φG(δ−zG g). Thus, the multiplier δzG can be

expressed as the composition map

a 7→ a⊗ b 7→ ∆(b)(a⊗ 1) 7→ (id⊗̂φGδ−zG )(∆(b)(a⊗ 1)).

It remains to show that the last map in this composition is well defined and bounded. Let

x, y and f in A(G), we have

(id⊗ φGδ−zG )(xf ⊗ y) = (id⊗ φGσ−1(f)δ−zG )(x⊗ y)

= (id⊗ (σ̂−1(f) ◦ δz ◦m))(x⊗ y)

We then deduce the boundedness of (x, y) 7→ (id⊗ φGδ−zG )(x⊗ y) using the essentiality of

A(G).

With the above proposition, the following theorem is now straightforward, compare

[KvD97, Section 8].

Theorem 3.2.15. For all z ∈ C, there exists a unique bounded mutliplier of A(G) denoted

δzG such that for all a ∈ A(G),

δzm(a) = m(δzGa).

Furthermore, we have the following properties :

1. For any z ∈ C, δzG = δz̄G

2. For any y, z ∈ C, δyGδ
z
G = δy+z

G ,

3. For any t ∈ R, δitG is unitary in M(A(G)),

4. For any t ∈ R, δtG is a positive element, in the sense that δtG = δ
t/2
G δ

t/2
G and δ

t/2
G is a

self adjoint element.

With our assumption that the scaling constant is 1, we obtain the following.

Proposition 3.2.16. The right Haar functionnal φG ◦ S of A(G) is positive.

Proof. Let f ∈ A(G), we have

φG(S(f̄f)) = φG(f̄fδG) = φG(fδ
1/2
G fδ

1/2
G ) > 0,

where we use that δ
1/2
G is self-ajdoint.
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3.3 Preliminary remarks on the modular group

A central point in the framework of locally compact quantum groups is a good under-

standing of the modular theory of the associated operator algebras. Let us briefly recall

the main definitions.

First, we define the closed operator T on L2(G) as the closed antilinear operator with

core Λ(A(G)) such that TΛ(f) = Λ(f) for all f ∈ A(G). We have

〈TΛ(f),Λ(g)〉 = φG(fg)

= φG(ḡf̄)

= φG(f̄σG(ḡ)),

for all f, g ∈ A(G). Then we have T ∗Λ(f) = Λ(σG(f)) for all f ∈ A(G). Hence the

modular operator ∇ = T ∗T satisfies

∇Λ(f) = Λ(σG(f)).

We denote by J the anti-unitary component of the polar decomposition of T , so that

T = J∇
1
2 = ∇−

1
2J .

Definition 3.3.1. Let x ∈ B(L2(G). We define σt(x) = ∇itx∇−it. The family (σt)t∈R is

called the modular group associated to Cr0(G).

Classically, the study of the modular group is undertaken using the unitary antipode

and the scaling group τt(x) = M itxM−it, where M is the positive operator in the polar

decomposition G = IM
1
2 of the closed antilinear operator G with GΛ(f) = Λ(S(f)), see

[KvD97, KV00].

Remark 3.3.2. Kustermans and Vaes [KV00] use N for the operator M , but since we are

mainly following [KvD97] here, we will stick with their notation.

In order to study the stability properties of an algebraic quantum group with respect

to these operator algebraic automorphism groups, Kustermans and Van Daele proceed as

for the complex powers of the modular element δ in the previous section, namely they

seek out commutation relations between the positive operators M , ∇ (and other auxiliary

operators) and the multiplicative unitary W , in order to obtain similar relations for the

associated automorphism groups.

We shall follow the same general strategy, but with a change of focus. Note that, by

Proposition 2.3.9, the modular operator ∇̂ for the Pontryagin dual satisfies

∇̂Λ(f) = Λ(S2(f)δ−1
G ), (3.2)
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for all f ∈ D(G). This indicates that one can relate the modular group of the Pontryagin

dual (σ̂t)t∈R to the complex powers of the modular element δG, which we have already

studied, and the automorphism group associated to a closure N of the operator S2. This

can then be related to the usual scaling group and unitary antipode by the above formula

for ∇̂, or its dual version.

The advantage of this approach is that the operator S2 is both an algebra and a

coalebra automorphism of A(G), so has very nice algebraic properties.

3.4 The automorphism group associated to S2

We denote by ψG the functional φG ◦ S. We have seen at Proposition 3.2.16 that ψG

was positive and one can thus consider (Λ′, L2(G)′) the GNS construction associated to

(A(G), ψG).

In order to build a positive operator associated with S2 we introduce the following

operator.

Definition 3.4.1. We define K as the closed unbounded antilinear operator from L2(G)

to L2(G)′ such that Λ(A(G)) is a core for K and KΛ(f) = Λ′(S(f)).

Lemma 3.4.2. Let f ∈ A(G). We have that K∗Λ′(f) = Λ(S(f))

Proof. Let f, g ∈ A(G), we have〈
KΛ(f),Λ′(g)

〉
= φG(S(S(f)g))

= φG(S(g)f)

= 〈Λ(S(g)),Λ(f)〉

Definition 3.4.3. We set N = K∗K.

Thus N is a positive operator on L2(G) such that NΛ(f) = Λ(S2(f)) for all f ∈ A(G).

We remark (again) that this N differs from the operator N in [KV00], which corresponds

to the operator denoted by M here and in [KvD97].

Lemma 3.4.4. The operator V from L2(G)′⊗̂L2(G)′ to L2(G)′⊗̂L2(G)′ such that V ∗(Λ′(f)⊗
Λ′(g)) = (Λ′⊗̂Λ′)(∆op(g)(f ⊗ 1)) is well defined and unitary.

Proof. Using the right invariance of ψG we directly get〈
(Λ′⊗̂Λ′)(∆op(g)(f ⊗ 1)), (Λ′⊗̂Λ′)(∆op(b)(a⊗ 1))

〉
= ψG(f̄ ḡ(2)b(2)a)ψG(ḡ(1)b(1))

=
〈
Λ′(f)⊗ Λ′(g),Λ′(a)⊗ Λ′(b)

〉
,

for all f, g, a, b ∈ A(G).
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Using the fact that S2 is both an algebra and coalgebra automorphisms, it follows im-

mediately that S2⊗̂S2 commutes with all Galois maps. This gives a formal justification for

the next lemma although one needs to be careful when passing to unbounded extensions.

Lemma 3.4.5. We have that (N⊗̂N)W = W (N⊗̂N).

Proof. First we prove that (K⊗̂K)W ∗ = V ∗(K⊗̂K) :

Let f, g ∈ A(G), we have

(K⊗̂K)W ∗(Λ(f)⊗ Λ(g)) = (K⊗̂K)(Λ⊗̂Λ)(∆(g)(f ⊗ 1))

= (Λ′⊗̂Λ′)(∆op(S(g)(f ⊗ 1))

= V ∗(K⊗̂K)(Λ′(f)⊗ Λ′(g)).

Using Lemma 3.2.2 we get that (K⊗̂K)W ∗ = V ∗(K⊗̂K). Similarly we also get that

(K∗⊗̂K∗)W ∗ = V ∗(K∗⊗̂K∗) and the result follows.

Definition 3.4.6. Let (ρt)t∈R designate the one parameter group of automorphims B(L2(G))

generated by N , that is, for all t ∈ R and x ∈ B(L2(G)), we define ρt(x) = N itxN−it.

We will see that the automorphism group (ρt)t∈R is closely related to the scaling group

(τt)t∈R.

Proposition 3.4.7. For all t ∈ R we have that ρt(C
r
0(G)) ⊂ Cr0(G).

Proof. From (N⊗̂N)W = W (N⊗̂N) we obtain

(N it⊗̂1)W (N−it⊗̂1) = (1⊗̂N−it)W (1⊗̂N it)

Let ω ∈ B(L2(G))∗. Applying id⊗̂ω to this equality we get

N it(id⊗̂ω)(W )N−it = (id⊗̂N−itωN it)(W ),

so the result follows from Proposition 3.1.7.

Lemma 3.4.8. The operators δ and δ̂ strongly commute with N .

Proof. Thanks to Lemma 3.2.2, in order to show that δ and N strongly commute it is

enough to show that δit and N commute on Λ(A(G)) for any t ∈ R. Since δitG is a group-like

element of M(A(G)) we have that S2(δitG) = δitG, and thus for all f ∈ A(G) we have

NδitΛ(f) = Λ(S2(δitGf))

= Λ(δitGS
2(f))

= δitNΛ(f).

A similar argument applies for δ̂. Note that Ŝ2(f) = S2(f) for all f ∈ D(G).
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We define δ′ as the unbounded operator δ′ = JδJ . This is merely a convenient way

to introduce the appropriate unbounded closure of the operator of right multiplication by

δG, since one can show that for all f ∈ A(G),

δ′Λ(f) = Λ(fδG).

Dually, we make the analogous definition of the operator δ̂′, so that

δ̂′Λ(f) = Λ(f ∗ δĜ).

The following then follows in an analogous fashion to Lemma 3.4.8.

Lemma 3.4.9. The operators δ′ and δ̂′ strongly commute with N .

In order to define ρz at the bornological level, which informally can be understood

as the operator (S2)z/2, we will generalize Radford’s S4 formula. For this we need the

following lemmas.

Lemma 3.4.10. There exists a constant ν > 0 such that σ(δzG) = νizδzG for all z ∈ C.

Proof. First, applying Proposition 2.3.5 to δzG, we derive that

σ(δzG)⊗ δzG = δzG ⊗ σ(δzG)

and thus there exists c(z) ∈ C such that σ(δzG) = c(z)δzG. Clearly, c : C → C× is a

homomorphism.

Now consider f, g ∈ A(G). Since φG is invariant by σ we have〈
δ−zΛ(f),Λ(g)

〉
= φG(f̄ δzg)

= c(z)φG(σ(f̄)δzσ(g)).

The function z 7→ 〈δ−zΛ(f),Λ(g)〉 is holomorphic, then so is z 7→ c(z). Using Proposition

2.3.4, for t ∈ R we have

σ(δitG) = σ
(
δ−itG

)
= σ−1(δ−itG )

and thus c(it) = c(it). The result follows.

Note that the scaling constant is given by µ = νi.

Lemma 3.4.11. The operators δδ′−1 and δ̂δ̂′
−1

on L2(G) strongly commute.
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Proof. In fact, we will prove a stronger statement, namely that δ̂ and δ̂′ both strongly com-

mute with δδ′−1. From the proof of Proposition 2.3.11 we have that f ∗ δĜ = S2(σ−1
G (f)).

Now, using the preceding lemma, let t ∈ R and observe that

δ̂′δitΛ(f) = Λ((δitGf) ∗ δĜ)

= Λ(S2(σ−1
G (δitGf)))

= νtΛ(δitGS
2(σ−1

G (f))

= νtδitδ̂′Λ(f).

In the same way, we have

δ̂′δ′
−it

Λ(f) = ν−tδ′
−it
δ̂′Λ(f).

Combining these, we see that δ̂′ strongly commutes with δδ′−1. A similar argument shows

that δ̂ strongly commutes with δδ′−1.

Theorem 3.4.12. Let z ∈ C, for any f ∈ A(G) we have that ρz(m(f)) belongs to

m(A(G)). More precisely we have

ρz(m(f)) = m(δ
−iz/2
G (δ

iz/2

Ĝ
∗ f ∗ δ−iz/2

Ĝ
)δ
iz/2
G ).

Proof. Considering Radford’s S4 formula, Theorem 2.3.13, and Lemma 3.4.10, we deduce

that for any g ∈ A(G),

N zΛ(g) = Λ(δ
iz/2
G (δ

−iz/2
Ĝ

∗ g ∗ δiz/2
Ĝ

)δ
−iz/2
G ).

The result follows.

Remark 3.4.13. We note that the formula for N zΛ(g) in the proof is self-dual, up to a

sign. It follows that the bornological subalgebra λ(D(G)) ⊂ C∗r (G) is also stable with

respect to the automorphism group (ρz)z∈C.

3.5 The modular groups of C∗r (G) and Cr
0(G)

As mentioned above, our approach for the construction of the modular group of Cr0(G) is

somewhat different from that of [KvD97]. We start by building the the modular group of

C∗r (G) and then apply duality to get that of Cr0(G). The motivation for this is Equation

(3.2), which gives a formula for ∇̂ in terms of the strongly commuting operators N and

δ′, explicitly, ∇̂ = δ′−1N . Thus, the modular group can be expressed in terms of the

automorphism groups (ρz) and (δ′z), both of which we have already shown to stabilize

A(G).

Recall that we use λ : D(G) → C∗r (G) to denote the regular representation. We may

extend (σ̂t) to a complex 1-parameter group on analytic elements.
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Proposition 3.5.1. Let f ∈ D(G), and n ∈ Z. Then σ̂in(λ(f)) = λ(S−2n(f)δnG).

Proof. A direct calculation using the above formula for ∇̂ shows that, for all g ∈ A(G),

σ̂i(λ(f))Λ(g) = ∇̂−1λ(f)∇̂Λ(g)

= Λ(S−2(f(1))δG)φG(δGS(g)f(2))

= Λ(S−2(f(1))δG)φG(S−1(g)S−2(f(2))δG)

= λ(S−2(fδG)Λ(g).

The result follows by induction.

A standard interpolation argument allows us to conclude that the elements of λ(D(G))

are analytic for the modular group (σ̂z)z∈C. Moreover, since N and δ′ strongly commute,

we have

σz(λ(f)) = δ′−izρz(λ(f))δ′iz,

for all f ∈ D(G). Applying Theorem 3.2.15 for the dual group Ĝ and Remark 3.4.13, we

obtain the following result.

Proposition 3.5.2. We have σ̂z(λ(D(G))) ⊂ λ(D(G)).

By duality, one can deduce the analogous result for σz.

Proposition 3.5.3. We have σz(m(A(G))) ⊂ m(A(G)).

Finally, although we shall not need it here, let us remark that the bornological algebra

A(G) is preserved by the scaling group (τz)z∈C. Indeed, the scaling group is given by

τt(x) = M−itxM it, where M is defined as a closure of the operator Λ(f) 7→ Λ(S2(f)δ) =

δ′NΛ(f). Therefore, using the strong commutativity of the operators N and δ′, the

stability of A(G) by τt follows from the results above.

3.6 A Left Haar weight for (Cr
0(G),∆)

Remark 3.6.1. In this section 3.6 we will use an approximate unit of A(G), that is, a

sequence (en)n ∈ A(G) which converges toward 1 in the bornology of M(A(G)). We

impose as an hypothesis for the rest of this Chapter that there exists an approximate unit

(en)n such that (m(en))n and (m(σi/2(en))n are both uniformly bounded in B(L2(G))

(where σi/2 is considered in its bornological version). One could remark that, from the

above, (σi/2(en))n is an approximate unit of A(G) since it converges toward σi/2(1) = 1

in M(A(G)).
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The fact that the Haar functional φG can be extended into a Haar weight of Cr0(G) is

not trivial and, in the algebraic case, this is the whole consideration of [KvD97, Section

6]. Here we follow the ideas of that section.

To begin we recall the following result of [KvD97, Section 6]. This result can be

directly applied in our case because it uses only common properties shared by algebraic

and bornological quantum groups. This result uses the standard machinery of Hilbert

algebras, which we will appeal to without comment. For details, we refer the reader to

[KvD97] and to the books [Dix81, Tak70].

Proposition 3.6.2. There exists a faithful lower semi-continuous weight of Cr0(G), de-

noted φ, such that m(A(G)) is a subset of Nφ and φ(m(f)) = φG(f) for all f ∈ A(G).

Moreover we have that φ is invariant under σ and more generally, Λφ(σt(x)) = ∇itΛφ(x),

we Λφ : Nφ 7→ L2(G) is the GNS map.

Next, we relate this construction more specifically with the bornological structure.

Remark 3.6.3. One of our main motivation to study z-th powers of the modular automor-

phism σ and show that σz stabilizes our bornological algebra was to simplify the proof of

the following theorem, which is the analogous of [KvD97, Theorem 6.12].

Theorem 3.6.4. The set m(A(G)) is a core for Λφ.

Proof. The linear map Λ0 : m(A(G))→ L2(G), m(f) 7→ Λ(f) satisfies Λ0 ≤ Λφ. Thus it

is closable and we again denote Λ0 its closure, with domain denoted by A0. Our goal is

to show that A0 = Nφ.

First, we observe that A0 is a left ideal. Let a ∈ A0 and x ∈ Cr0(G). Because of the

closedness of Λ0, one can choose a sequence an ∈ m(A(G)) such that (an) converges to a in

Cr0(G) and (Λ0(an))n converges to Λ0(a). We also consider a sequence xn ∈ m(A(G)) that

converges to x. The sequence (xnan) converges to xa and for all n we have Λ0(xnan) =

xnΛφ(an) = xnΛ0(an). Thus (Λ0(xnan))n is convergent and so xa belongs to A0.

Let us now consider an approximate unit (en)n in A(G) such that (m(en))n satisfying

hypothesis of Remark 3.6.1. Since (m(en))n is uniformly bounded, the sequence (m(en))n

converges toward 1 in the strict topology of M(Cr0(G)), that is, (xm(en))n converges

toward x for all x ∈ Cr0(G)). Let x ∈ Nφ, each xm(en) belongs to A0 and we have

Λ0(xm(en)) = Λφ(xm(en)) = Jσi/2(m(e∗n))J(Λφ(x)),

where we recall that J denotes the anti-unitary component of the polar decomposition

of T such that TΛ(f) = Λ(f), see Section 3.5. From Remark 3.6.1, we deduce that

(Λ0(xm(en))) converges toward Λφ(x). Thus A0 = Nφ, so m(A(G)) is a core for Λφ.
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Lemma 3.6.5. Consider x, y ∈ m(A(G)) and ω ∈ Cr0(G)∗. We have that (yω⊗̂id)(∆(x))

belongs to m(A(G)) and (yω⊗̂φ)(∆(x)) = ω(y)φ(x), where we are using the notation yω

for the functional yω : a 7→ ω(ay).

Proof. Let f, g ∈ A(G). We have

(m(g)ω⊗̂id)(∆(m(f))) = (ω⊗̂id)(∆(m(f))(m(g)⊗ 1))

= (ω⊗̂id)(m⊗̂m)(∆(f)(g ⊗ 1))

= m((ω ◦m⊗̂id)(∆(f)(g ⊗ 1))).

Note that the last equality rests on the fact that (ω ◦m⊗ id) is a bounded map and thus

(ω ◦ m ⊗ id)(∆(f)(g⊗̂1)) is well defined and belongs to A(G). One can then conclude

using the left invariance of φG.

This lemma is a preliminary version of the left-invariance of the Haar weight φ. To

convert it into the desired result, given the technical result Theorem 3.6.4, we can appeal

exactly to the proof of [KvD97, Theorem 6.13].

Theorem 3.6.6. Let x ∈ Mφ and ω ∈ Cr0(G)∗. We have that (ω⊗̂id)(∆(x)) belongs to

Mφ and (ω⊗̂φG)(∆(x)) = ω(1)φ(x).

3.7 Cr
0(G) as a reduced C∗-algebraic quantum group

It remains to show that the left Haar weight is KMS. In the context of algebraic quantum

groups, Kustermans and Van Daele [KvD97] show the KMS property directly. Kustermans

and Vaes [KV00] have since showed that approximately KMS suffices. By Definition 1.4.7,

this means we must show that for a dense subset of elements v ∈ L2(G), there is a constant

M = Mv such that ‖xv‖L2(G) ≤M‖Λ(x)‖L2(G) for all x ∈ Nφ.

Proposition 3.7.1. The Haar state φ is an approximate KMS state.

Proof. Let a ∈ A(G). For all x ∈ Nφ and w ∈ L2(G) we have

〈Λφ(xa), w〉 = 〈TΛφ(a∗x∗), w〉

=
〈
Jσi/2(m(a∗))JΛφ(x), w

〉
.

Using Proposition 3.5.2, we know that σi/2(m(a∗)) = m(σi/2(a∗)) and thus is a bounded

operator and we have ‖xΛ(a)‖ ≤ ‖σi/2(m(a∗))‖B(L2(G))‖Λφ(x)‖. The result follows.

As usual, we use the notation R for the unitary antipode, that is, the unitary closure

of the densely defined operator τi/2 ◦S. Note that φ ◦R = φ ◦S on m(A(G)) and because
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φ ◦ S is positive on that dense subspace and φ ◦ R is a well defined weight, we see that

φ ◦R is a positive right Haar weight on (Cr0(G),∆).

With the same arguments as in the preceding proof, we obtain the following proposi-

tion.

Proposition 3.7.2. The weight right Haar weight φ ◦ R of (Cr0(G),∆) satisfies the ap-

proximate KMS condition.

We now know that our quantum group (Cr0(G),∆) satisfies the definition of a reduced

C∗-algebraic quantum group.

Theorem 3.7.3. The pair (Cr0(G),∆) is a reduced C∗-algebraic quantum group.

3.8 Von Neumann, Fourier and universal algebras

With the reduced C∗-algebraic quantum group Cr0(G) built from a bornological quantum

group G comes the algebras L∞(G) and L1(G). It should be no surprise that the bornolog-

ical algebra A(G) is dense in each of these, for the appropriate topologies. To complete

this section, we make the necessary remarks to confirm this.

The fact that A(G) is weak operator dense in L∞(G) is obvious, since L∞(G) is the

weak operator closure of C∗r (G).

For the Fourier algebra, defined in Section 1.4, we start with the Fourier algebra of

the dual A(Ĝ), L1(G), which is defined as the predual of L∞(G).

Proposition 3.8.1. The convolution algebra D(G) is a dense in the convolution algebra

L1(G) ∩ L1(G)∗. Explicitly, for every x ∈ D(G), the linear functional

x̂ : A(G)→ C; x̂ : a 7→ φ(ax)

extends to an ultraweakly continuous linear functional on L∞(G), and the map x 7→ x̂ is

a bounded ∗-algebra homomorphism of D(G) into L1(G) with dense range in the Banach

topology.

Proof. First consider x = fg where f, g ∈ A(G) and the product is the pointwise product

of A(G). Then

x̂(a) = φ(afg) = φ(σ−1(g)af) = 〈Λ(σ(g)),m(a)Λ(f)〉

for all a ∈ A(G). This obviously extends to an element of the predual of L∞(G). Moreover,

the sequence of maps

A(G)×A(G) −→ L2(G)⊗ L2(G) −→ L∞(G)∗

f ⊗ g 7−→ Λ(σ(g))⊗ Λ(f) 7−→ 〈Λ(σ(g)),m( • )Λ(f)〉
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induces a bounded map A(G)⊗̂A(G)A(G) ∼= A(G) → L1(G), where we use the same

argument as in the proof of Lemma 3.2.10.

Suppose now that a ∈ L∞(G) is such that x̂(a) = 0 for all x ∈ D(G). Then the above

calculations show that 〈Λ(g),m(a)Λ(f)〉 = 0 for all f, g ∈ A(G). But Λ(A(G)) is dense in

L2(G), so we get a = 0. This proves that the image of D(G) in L1(G) is dense.

The convolution products on D(G) and its image in L1(G) clearly coincide because

both are dual to the product in A(G) ⊂ L∞(G).

By duality, the bornological algebra A(G) is dense in the Fourier algebra A(G) =

L∞(Ĝ)∗. We will frequently use the notation x 7→ x̃ for the inclusion of D(G) into L1(G),

and likewise a 7→ ã for the inclusion of A(G) into A(G).

Finally, the universal C∗-algebraic quantum group Cu0 (G) is the enveloping C∗-algebra

of A(G). We will write mu
G for the universal representation of A(G), namely,

mu
G : A(G)→ A(G)→ Cu0 (G).

This is an injective ∗-algebra map with dense range. Dually, we write

λuG : D(G)→ C∗u(G)

for the universal representation of the convolution algebra. We may also consider elements

of the Fourier algebra A(G), or indeed the dense subalgebra A(G), as forms on C∗u(G), by

precomposing with the regular representation C∗u(G)→ C∗r (G).

3.9 Homomorphisms and closed quantum subgroups

One of the major advantages of bornological quantum groups is the simplicity of the

notion of a quantum subgroup. In this section we define closed quantum subgroups of

bornological quantum groups, and show that they give rise to closed quantum subgroups

of the corresponding locally compact quantum groups.

Our goal in the next section is to show the compatibility of this definition with that

given at the locally compact level in 1.4.21. The proof of the equivalence of these definitions

relies on lifting bicharacters to the universal algebras. Explicitly, there is a bicharacter

W u ∈ M(Cu0 (G)⊗̂C∗u(G)), called the universal multiplicative unitary, which is uniquely

characterized by the fact that its image under the regular representations is the usual

multicative unitary W ∈M(Cr0(G)⊗̂C∗r (G)). The universal bicharacter can be defined by

V u = (π⊗̂id)(W u).

To make the connection with bornological quantum groups, we have the following

simple construction.
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Proposition 3.9.1. Let π : A(G) → M(A(H)) be a morphism of bornological quantum

groups. The element

(mH ◦ π⊗̂λG)(W) ∈M(Cr0(H)⊗̂C∗r (G))

is a bicharacter from G to H as locally compact quantum groups.

Proof. Given a morphism π of bornological quantum groups from H to G as above, we

define a bornological bicharacter

V = (π⊗̂id)W ∈M(A(H)⊗̂D(G)).

It satisfies the properties

(∆H⊗̂id)V = V13V23, (id⊗̂∆Ĝ)V = V13V12, (3.3)

thanks to the analogous properties of W, see Equation (2.7).

Moreover, it is a unitary multiplier in the same sense as W from Proposition 2.3.15.

Therefore, it maps under the regular representations mG⊗̂λH to a unitary Hilbert space

operator V on L2(G)⊗̂L2(H) which is therefore a unitary bicharacter in the C∗-algebraic

sense.

Combining Proposition 3.9.1 with Definition-Proposition 1.4.21, the above proposition

yields a Hopf ∗-morphism

π̃ : Cu0 (G)→M(Cu0 (H))

associated to any morphism π of bornological quantum groups. As mentioned above, this

morphism is obtained by passing via the universal bicharacter V u, which can be made

explicit as follows.

Lemma 3.9.2. The element

V u = (mu
H ◦ π⊗̂λuG)(W)

is the universal bicharacter associated to the bicharacter V from Proposition 3.9.1, where

mu
H and λuG denote universal representations of A(H) and D(G), respectively.

Proof. The proof is essentially the same as that of Proposition 3.9.1. The operator (mu
H ◦

π⊗̂λuG)(W) is a densly defined multiplier of Cu0 (G)⊗̂C∗u(G). It is unitary on its domain, so

extends to a bounded multiplier, and again satisfies the bicharacter properties. Applying

the regular representations, V u maps to the reduced bicharacter V ∈ Cr0(H)⊗̂C∗r (G) from

the previous lemma. This characterizes the universal bicharacter uniquely, see [MRW12].
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We are now in a position to directly compare the bornological and C∗-algebraic maps

arising from a homomorphism of bornological quantum groups.

Theorem 3.9.3. Let π : A(G) → M(A(H)) be a morphism of bornological quantum

groups from H to G. We have a commuting diagram

A(G)
π //

mu
G
��

π(A(G)) ⊆M(A(H))

mu
H

��

Cu0 (G)
π̃ //M(Cu0 (H))

where the vertical arrows are the natural inclusions.

Remark 3.9.4. Note that one cannot define the right-hand vertical map directly on the

bornological multipliers in M(A(H)), since these will generally map to unbounded multi-

pliers of Cu0 (H).

The extension of the universal representation mu
H : A(H)→ Cu0 (H) to π(A(G)) is made

explicit in the proof below.

Proof. It is a consequence of Proposition 3.1.6 that any element a ∈ A(G) can be written

as a = (id⊗̂ω)WG for some ω ∈ A(G) ⊆ D(G)∗. Then we have

π(a) = (π⊗̂ω)WG = (id⊗̂ω)V,

where V = (π⊗̂id)W is the bornological bicharacter associated to the morphism π, as

above.

We can then define

mu
H(π(a)) = ((mu

H ◦ π)⊗̂ω)(WG) = (id⊗̂ω̃)(V u),

where the second equality uses Lemma 3.9.2 and ω̃ denotes the image of ω in the Fourier

algebra A(G), see Proposition 3.8.1 and the remarks that follow it. This map is well-

defined because if π(a) = 0 then (π ⊗ ω)WG = 0 and so the expression defining mu
H(π(a))

is zero.

To check that the diagram commutes, we note that the image of a = (id⊗ω)WG under

mu
G is (id⊗̂ω̃)W u

G, so that π̃ ◦mu
G(a) = (id⊗̂ω̃)(V u), as desired.

Theorem 3.9.5. Let H be a closed quantum subgroup of a bornological quantum group G.

Then the corresponding locally compact quantum group H is a closed quantum subgroup

of the locally compact quantum group G in the sense of Vaes (and hence also the sens of

Woronowicz).
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Proof. Explicitly, we will show that there is a commuting diagram

D(H)
π̂ //

λuH
��

π̂(D(H)) ⊆M(D(G))

λuG
��

C∗u(H)
π̂ //

��

M(C∗u(G))

��

L(H)
π̂ // L(G).

Recall, from Definition 1.4.22 that we need to prove the commutativity of the bottom

square as well as the injectivity of the bottom arrows. The top square is the dual of the

commuting square from Theorem 3.9.3 (we are suppressing the tilde from the horizontal

C∗-algebra map ˜̂π to simplify the notation). For the von Neumann morphism, for any

x ∈ D(H) and b ∈ A(G) we have (π̂(x), b) = (x, π(b)), and it follows that π̂ is ultraweakly

continuous, so can be extended to a normal unital ∗-homomorphism. The outer rectangle

is commutative and thus, by the density of D(H) in C∗u(H), the bottom square is also

commutative. The crucial point is to prove that the von Neumann algebra map is injective.

From Proposition 3.8.1, A(H) = D(Ĥ) embeds as a dense subspace of the predual

L(H)∗. Explicitly, we identify a ∈ A(H) with the functional ã ∈ L(H)∗ where

ã(x) = φ̂H(F(x)F(a)) = εH(x ∗ a)

for a ∈ A(H), x ∈ D(H). Choose b ∈ A(G) with π(b) = a. Using Proposition ??, we have

ã(x) = εH(x ∗ π(b)) = εH(π(π̂(x) ∗ b)) = εG(π̂(x) ∗ b) = b̂(π̂(x)),

for all x ∈ D(H), and hence ã(x) = b̂(π̂(x)) for all x ∈ L(G) by ultraweak continuity.

Therefore, if x ∈ L(H) is in the kernel of π̂ then x is annihilated by all of the functionals

ã with a ∈ A(H). These are dense in the L(H)∗ so x = 0.
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Chapter 4

Rieffel induction for bornological

quantum groups

Our main purpose in this thesis is to study induced representations of quantum groups.

Methods of induction for locally compact quantum groups are discussed in [Kus02] and

[Vae05]. In Chapter 1, we have seen an ad hoc construction of parabolically induced

representations for complex semisimple quantum groups, which has been developed by

[Ara14] and [VY20].

Let us briefly recall the classical construction. Let G be a locally compact group and

H a closed subgroup with a unitary representation α on a Hilbert space V . The unitary

induction procedure developed by Mackey in [Mac52] works as follows. One build a space

of H-equivariant functions on G valued in the Hilbert space V . Mackey showed that this

space is naturally a unitary representation of G. In the case of parabolic induction for a

semisimple Lie group, this construction yields the unitary principal series representations,

which are generically irreducible.

Mackey’s method is one of the fundamental operations in representation theory of

locally compact groups. After Mackey’s publication, it was realised that this process can

be generalized. Rieffel proposed a framework for induced representations of C∗-algebras

in [Rie74]. The ideas of Mackey are formulated in a geometrical setting and inspired by

algebraic methods and Rieffel made them compatible with C∗-algebras. In short, if one

starts with a C∗-algebra A and a C∗-subalgebra B and given a ∗-representation V of B,

one obtains a representation of A on the space

A⊗̂BV.

By using C∗-Hilbert module techniques [Lan95], one can turn A⊗̂BV into a Hilbert space

and even more generally, a C∗-Hilbert module for any C∗-algebra C if V is also chosen to

79
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be a C-Hilbert module.

Of course, one of the main motivations of Rieffel was to apply this procedure to group

C∗-algebras in order to generalize Mackey’s induction. This approach has been adapted to

quantum groups; the main references for this are [Vae05][Kus02][KKSS]. One the one hand

in [Vae05], Vaes succeeded to get a very general and elegant framework for quantum group

induction where he proved the various versions of the imprimitivity theorem. Nevertheless,

this work is formalized in the Von Neumann algebraic setting which does not make the

calculations easy. On the other hand, Kalantar et al. in [KKSS] suggested something

more computable but limited to the case where one has a quantum sugroup H of a locally

compact quantum group G which is both closed and open. The problem is that, as noticed

by Rieffel in the classical case, the C∗-algebra C∗(H) does not sit as a subalgebra of C∗(G)

in general.

In [Rie74, Section 4], Rieffel suggested to work with the algebras Cc(G) and Cc(H) and

consider the restriction map Cc(G) → Cc(H) as a kind of (non-continuous) conditional

expectation. So far, we have no way to build a similar algebra out of a general locally

compact quantum group G. This is why we propose to use the bornological framework

in order to start with an appropriate dense convolution algebra, which then allows us

to imitate the Rieffel construction. The goal of this chapter is to show that this trans-

lation is compatible with Vaes’ approach when one considers the C∗-algebraic quantum

group associated to the starting bornological quantum groups, in the sense of the previous

chapter.

Throughout this chapter we consider bornological quantum groups A(G) and A(B)

such that there exists a morphism π : A(G) → A(B) that identifies A(B) as a closed

quaantum subgroup of A(G). The choice of the notation B is motivated by the application

to semisimple quantum groups where B will be the Borel subgroup. It is further assumed

that B is amenable that is we have C∗u(B) = C∗r (B). We will simply denote this C∗-algebra

C∗(B)

Remark 4.0.1. In general we have σB(π(δG)) = µπ(δG) for some complex number µ with

modulus 1 (this can be proved exactly as Lemma 3.4.10). As for the scaling constant, we

make the hypothesis that this constant equals 1. In particular we have σB(π(δ
1
2
G)) =

π(δ
1
2
G).

4.1 The generalized conditional expectation

The convolution algebras D(G) and D(B) are, by definition, identified as linear spaces

with the spaces A(G) and A(B). Therefore the map π : A(G)→ A(B) can also be seen as

a map from D(G) to D(B). However as it stands, this map does not have the properties
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of what we will call a generalized conditional expectation. Instead, we first define

γ = π(δ
− 1

2
G )δ

1
2
B ∈M(A(B)),

which is a group-like element. And now we modify the map π into

E : D(G)→ D(B), E(f) = π(f)γ.

In order to describe the relevant properties of E, we must start with some preliminaries

concerning the action of D(B) on D(G). We consider the morphism π̂ : D(B)→M(D(G)),

defined in Section 2.3.5 and set for all f in D(G) and for all h ∈ D(B)

f · h = f ∗ π̂(hγ).

Proposition 4.1.1. The map f 7→ f · h defines a right action of the algebra D(B) on the

space D(G).

Proof. Let h, k ∈ D(B). Since γ is group-like we have (h ∗ k)γ = hγ ∗ kγ and thus for

f ∈ D(G) we have

f · (h ∗ k) = f ∗ π̂(hγ) ∗ π̂(kγ)

= (f · h) · k.

We are going to prove that E preserves the *-involution and has a “conditional expec-

tation” property with respect to this action.

Lemma 4.1.2. The two multipliers δB and π(δG) commute.

Proof. We know that we have

φB(S(h)) = φB(hδB),

for all h ∈ A(B). By our hypothesis in Remark 4.0.1 we also have that σB(π(δ−1
G )) =

π(δ−1
G ). Let then h ∈ A(B). We have φB(S(π(δG)h)) = φB(S(hπ(δG))). On the one hand

this gives

φB(S(π(δG)h)) = φB(π(δG)hδB)

= φB(hδBπ(δG)),

and on the other

φB(S(hπ(δG))) = φB(hπ(δG)δB).

Therefore δBπ(δG) = π(δG)δB.
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Proposition 4.1.3. Let f in D(G) and h ∈ D(B). We have seen in Proposition ?? that

π̂(h) ∗ f = f(2)φB(π(S−1(f(1)))h),

f ∗ π̂(h) = f(1)φB(S−1(h)π(f(2))γ
2).

Note that since π(δG) and δB commute, we have π(δ−1
G )δB = γ2.

Proposition 4.1.4. The map E : D(G) → D(B), E(f) = π(f)γ, has the two following

properties :

1. E(f∗) = E(f)∗, for all f ∈ D(G),

2. E(f · h) = E(f) ∗ h. for all f ∈ D(G) and h ∈ D(B).

The map E is the generalized conditional expectation we were looking to build.

Proof. Let f ∈ D(G). We have

E(f∗) = E(S(f)δG)

= S(π(f))π(δG)γ

= S(π(f))π(δ
1
2
G)δ

1
2
B

= S(π(f)γ)δB = E(f)∗.

Now let h ∈ D(B). Using that σ(γ−1) = γ−1 we get

E(f · h) = E(f ∗ π̂(hγ))

= (id⊗̂φB)((1⊗ γ−1S−1(h))(π⊗̂π)(∆(f))(1⊗ γ2))γ

= (id⊗̂φB)((1⊗ S−1(h))(π⊗̂π)(∆(f))(γ ⊗ γ))

= E(f) ∗ h.

4.2 The induction module E(G)

The goal of this section is to define a Hilbert C∗(B)-module with a left C∗u(G)-action by

completing D(G). We equip the space D(G) with the right action of D(B) defined as in

Proposition 4.1.1.

Definition 4.2.1. Let V be a right D(B)-module. A D(B)-valued inner product on V will

mean a sesquilinear map 〈·, ·〉 : V ×V → D(B) such that for all v, w ∈ V and h ∈ D(B) we

have
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1. 〈v, w · h〉 = 〈v, w〉 ∗ h,

2. 〈v, w〉∗ = 〈w, v〉.

3. λB(〈v, v〉) is a positive element of C∗(B) and 〈v, v〉 = 0⇔ v = 0.

Such a module V endowed with a D(B)-valued inner product will be called a D(B)-inner

product space.

Remark 4.2.2. The fact that we have to call on the regular representation λB is not very

aesthetic but this is because the notion of positivity in the bornological quantum group

D(B) cannot be defined intrinsically. Furthermore, in the case where B is not amenable,

we should use the universal representation λuB to ensure that V leads to a C∗u(B)-module.

However, to build the induction module it seems necessary to work with the regular

representation, in the spirit of Lemma 4.2.6 below. In the classical case Rieffel [Rie74]

used the existence of a Bruhat section, and one could imagine adding the hypothesis that

a quantum analogue of a Bruhat section exists in our case as well. Nevertheless, assuming

that a Bruhat section exists seems technically problematic, since it is not clear if one can

suppose its existence in A(G) or if one must work in Cu0 (G). We will not pursue this line

of research further in the present work.

Proposition 4.2.3. The sesquilinear map 〈 , 〉D(B) defined for f, g ∈ D(G) by

〈f, g〉D(B) = E(f∗ ∗ g),

defines a D(B)-valued inner product.

To prove the previous proposition we note first that the D(B)-linearity and compatibil-

ity with the involution of the above sequilinear map follow immediately from Proposition

4.1.4. It only remains to check the strict positivity, which will be a consequence of Propo-

sition 4.2.6 below.

Remark 4.2.4. Let f, g ∈ D(G). We have

E(f∗ ∗ g) = φG(S−1(g(1))S(f)δG)π(g(2))γ

= φG(f̄g(1))π(g(2))γ.

Remark 4.2.5. In what follows we will often use the maps ΛG : A(G) → L2(G), λG :

D(G)→ B(L2(G)) defined in Chapter 3 and the analogous maps ΛB and λB, but we will

only write Λ and λ. Their relation to B or G will depend on the context.
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Proposition 4.2.6. The linear map ρ• : D(G) → B(L2(B), L2(G)) defined by f 7→ ρf

where

ρf (Λ(η)) = Λ(f · η), ∀f ∈ D(G), ∀η ∈ D(B),

satisfies

λB(〈f, g〉D(B)) = ρ∗fρg.

Proof. First we claim that, as an operator from L2(G) to L2(B), (ρf )∗ acts on elements

of Λ(A(G)) as

(ρf )∗ : Λ(g) 7→ Λ(〈f, g〉D(B)).

For this, note that using εB(E(x)) = εG(x), for any x ∈ D(G), we obtain εB(E(x ∗ y)) =

εG(x∗ ∗ y) = 〈x, y〉L2(G) for any x, y ∈ D(G). Therefore, for all η ∈ A(B) and ξ ∈ A(G) we

have

〈ρfΛ(η),Λ(ξ)〉L2(G) = 〈Λ(f · η),Λ(ξ)〉L2(G)

= εB(〈f · η, ξ〉D(B))

= εB(η∗ ∗ 〈f, ξ〉D(B))

= 〈Λ(η),Λ(〈f, ξ〉)〉L2(B) .

We therefore have :

Λ(〈f, g〉D(B) ∗ η) = Λ(〈f, g · η〉D(B))

= ρ∗fρgΛ(η).

This concludes the proof of Proposition 4.2.3. We also record the explicit formula

〈f, g〉D(B) = (φG⊗̂id)((f̄ ⊗ 1)∆(g)(1⊗ γ)).

Definition 4.2.7. The Hilbert C∗(B)-module obtained by completing D(G) with respect

to the inner product above is denoted E(G) and we call it the induction module (associated

to B).

See [Lan95] for details about the completion. The space E(G) is innately equipped

with a left C∗u(G)-action, which commutes with the right C∗(B)-action. We then get our

induction bi-module

C∗u(G)E(G)C∗(B).
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Now, for α a representation of C∗(B) on an A-Hilbert module K (where A is any C∗-

algebra) we consider, following Rieffel’s definition for induced representations in [Rie74],

the A-Hilbert module

IndG
BV = E(G)⊗̂C∗(B)V,

where the tensor product is completed with respect to the interior inner product [Lan95,

Proposition 4.5].

4.3 Link with Vaes’ approach to induction

We consider in this Section our bornological quantum groups G and B as locally compact

quantum groups and we assume that B is a closed quantum subgroup of G in the sens of

1.4.22. We illustrate in what follows the induction procedure of [Vae05]. Let us recall that

we have at the bornological level a map π̂ : D(B) → M(D(G)) defined in Section 2.3.5,

and its operator algebraic version π̂ : L(B) → L(G), encountered in Theorem 3.9.5. We

recall that those two maps are linked via the relation λ(π̂(f)) = π̂(λ(f)), for all f ∈ D(G).

Throughout this section we will be using the definitions and notations of Section 1.4.

We recall first what Vaes’ induction process consists of. We begin with some definitions

and results from [Vae05, Section 3]. We consider (A,∆) a locally compact quantum group

with von Neumann algebra M and GNS Hilbert space H. We also fix a C∗-algebra B. If

V is a C∗-B-module we write L(V) for the ∗-algebra of adjointable B-linear operators.

Definition 4.3.1. Let N be a von Neumann algebra and V a C∗-B-module. A unital

*-homomorphism β : N → L(V) is said to be strict (or normal) if it is strong* continuous

on the unit ball of N .

Definition 4.3.2. Let M and N be von Neumann algebras. We say that a C∗-B-module

V is a B-correspondence from N to M if we have

• a strict *-homomorphism βl : M → L(V),

• a strict *-antihomomorphism βr : N → L(V), such that βl(M) and βr(N) commute.

Remark 4.3.3. In [Vae05] the notation π is used instead of β. Here we keep π to designate

the morphism from A(G) to A(B).

We will denote x · v = βl(x)v and v · y = βr(y)v for all x ∈ M , y ∈ N and v ∈ V and

this correspondence will be denoted as M V N .

Proposition 4.3.4. ([Vae05, Proposition 3.4]). Let X ∈ L(A⊗̂V) be a unitary corepre-

sentation on a C∗-B-module E. There is a B-correspondence M̂ H⊗̂V M̂ given by

x · v = X(x⊗ 1)X∗v and v · y = (ĴGy
∗ĴG ⊗ 1)v for x, y ∈ M̂, v ∈ H⊗̂V.
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Definition 4.3.5. ([Vae05, Definition 3.5]). Let M̂ F M̂ be a B-correspondence from M̂ to

M̂ and suppose β : M ′ → L(F) is a strict *-homomorphism. We say that β is bicovariant

when

(βl⊗̂id)(∆̂(x)) = (β⊗̂id)(V̂ )(βl(x)⊗ 1)(β⊗̂id)(V̂ ∗) and

(βr⊗̂R̂)(∆̂(x)) = (β⊗̂id)(V̂ )(βl(x)⊗ 1)(β⊗̂id)(V̂ ∗),

where V̂ = (J⊗̂J)W (J⊗̂J) and R̂ denotes the unitary antipode of M̂ , see [Vae05, Prelim-

inaries]. In this case we call F a bicovariant B-correspondence and we write
M ′

M̂ F M̂ .

Remark 4.3.6. We give this definition because we will need to deal with bicovariant

B-correspondences. However its technical aspect does not concern us directly. The

core of this section is to show the equivalence between two different bicovariant B-

correspondences, where their structure is already provided by the results of [Vae05]. Show-

ing such an equivalence is simply a matter of showing that the morphisms satisfy the right

commutation relations.

According to [Vae05, Remark 3.6], we have a structure of bicovariant B-correspondence
M ′

M̂ H⊗̂V
M̂

where the B-correspondence is given by Proposition 4.3.4 and β : M ′ →
L(H⊗̂V) is given by β(x) = x⊗ 1.

Remark 4.3.7. It should be noted that there is a slight difference in conventions between

the current work and the article of Vaes. Namely the skew-pairing between A(Ĝ) and

A(G) is such that the coproduct on A(Ĝ) is reversed in our conventions, while it is the

multiplication which is reversed in Vaes’ conventions. Given that the modules discussed

here are defined primarily in terms of D(G)-actions, this means that the action of the

function algebra M ′ = L∞(G)′ in the bicovariant modules we define below will be inter-

twined by the unitary antipode R. This forces us to slightly modify the definition of the

morphism β so that β(x) = R(Jx∗J)⊗ 1.

In practice, this means the following. If a ∈ A(G) then the action of m′(a) ∈ M ′ on

the GNS space H = L2(G) in our conventions needs to be defined as

m′(a) · Λ(ξ) = Λ(R(a)ξ),

where ξ ∈ A(G) and R designates the unitary antipode of M . The fact that R stabilizes

the bornological algebra A(G) is a consequence of Chapter 3.

The following proposition will be the key result that we use to establish the equivalence

between our approach to induction and Vaes’.
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Proposition 4.3.8. ([Vae05, Proposition 3.7]) If
M ′

M̂ F M̂ is a bicovariant B-correspondence,

there exists a canonically determined C∗-B-module E and a corepresentation X ∈ L(A⊗̂E),

unique up to equivalence, such that

M ′

M̂ F M̂
∼=

M ′

M̂ H⊗̂E
M̂

as bicovariant correspondences. So, we get a bijective relation between unitary corepresen-

tations on C∗-B-module and bicovariant B-correspondences.

Note that from the corepresentation X ∈ L(A⊗̂V), we obtain a *-morphism α : Âu →
L(V) which verifies

(id⊗̂α)(W u) = X,

where W u designates the universal multiplicative unitary of the quantum group (A,∆).

We now set A = Cr0(G) and thus we have H = L2(G), M = L∞(G) and M̂ = L(G).

Let X ∈ L(Cr0(G)⊗̂V) be a corepresentation of G on a Hilbert B-module V. We still denote

by α the corresponding ∗-morphism α : C∗u(G)→ L(V), as well as its bornological version,

α : D(B)→ L(V), which can be defined by restriction of the original α to λu(D(G)).

Remark 4.3.9. One can describe explicitly the structure of the bicovariantB-correspondence
L∞(G)′

L(G) L
2(G)⊗̂V L(G). Let f ∈ D(G), ξ ∈ A(G) and v ∈ V. We have

• λ(f) · (Λ(ξ)⊗ v) = (λ⊗ α)(∆̂(f))(Λ(ξ)⊗ v),

• (Λ(ξ)⊗ v) · λ′(f) = Λ(ξ ∗ f)⊗ v,

• β(m′(f))(Λ(ξ)⊗ v) = Λ(R(f)ξ)⊗ v.

Let us remark that if our conventions were coherent with those of Vaes we would have a

flipped coproduct ∆̂op in first point. This is because in Proposition 4.3.4, the left action is

defined by x ·v = X(x⊗1)X∗v, for x ∈ M̂, v ∈ H⊗̂V and we have W (x⊗1)W ∗ = ∆̂op(x).

From now we consider X ∈ L(Cr0(B)⊗̂V) a corepresentation of B on a Hilbert B-

module V, accompanied by the ∗-morphism α : C∗(B) → L(V). The aim of the next

paragraphs is to build the induced corepresentation of V with Vaes’ technique. Following

[Vae05, Lemma 4.5] we consider the B-correspondence L(B) L
2(G)⊗̂V L(G).

Remark 4.3.10. The morphisms in this structure of B-correspondence can be made explicit

as is the previous remark. Let f ∈ D(G), h ∈ D(B), ξ ∈ A(G) and v ∈ V. We have

• λ(h) · (Λ(ξ)⊗ v) = (λ ◦ π̂ ⊗ α)(∆̂(h))(Λ(ξ)⊗ v), h ∈ D(B),

• (ξ ⊗ v) · λ′(f) = (ξ ∗ f)⊗ v.
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The second point does not differ from the formula in Remark 4.3.9. The first point

requires justification. It is claimed in [Vae05, Lemma 4.5] that the morphism βl : L(B)→
L(L2(G)⊗̂V) is characterized by the property

βl(a)(u⊗ 1)ξ = (u⊗ 1)X(a⊗ 1)X∗ξ,

for every a ∈ L(B), ξ ∈ L2(B)⊗̂V and u ∈ B(L2(B), L2(G)) satisfying ux = π̂(x)u for all

x ∈ L(B). Let then u ∈ B(L2(B), L2(G)) satisfying ux = π̂(x)u for all x ∈ L(B) and let

h ∈ D(B), η ∈ A(B) and v ∈ V. According to Remark 4.3.9 we have

X(a⊗ 1)X∗(ΛB(η)⊗ v) = (λB ⊗ α)(∆̂(h))(ΛB(ξ)⊗ v).

Therefore, since λ(h) ∈ L(B), we have

[(u⊗ 1)X(λ(h)⊗ 1)X∗](Λ(ξ)⊗ v) = (u⊗ 1)((λ⊗ α)(∆̂(h)))(Λ(ξ)⊗ v)

= (π̂ ◦ λ⊗ α)(∆̂(h))(u⊗ 1)(Λ(ξ)⊗ v)

= (λ ◦ π̂ ⊗ α)(∆̂(h))(u⊗ 1)(Λ(ξ)⊗ v)

= (λ ◦ π̂ ⊗ α)(∆̂(h))[(u⊗ 1)(Λ(ξ)⊗ v)]

and thus it coincides with what we claimed. Finally we note that we also have a *-

morphism βL2(G)⊗̂V : L∞(G)′ → L(L2(G)⊗̂V) given by βL2(G)⊗̂V(m′(f))(Λ(ξ) ⊗ v) =

Λ(R(f)ξ)⊗ v.

We introduce the space I from [Vae05, Definition 4.2]:

I = {u ∈ B(L2(B), L2(G)), ux = π̂′(x)u ∀x ∈ L(B)′},

where π̂′ refers to the natural action of L(B)′ on L2(G) given by

π̂′(x) = ĴGπ̂(ĴBxĴB)ĴG.

the space I is endowed with

• its natural L(G) left action by composition,

• its natural L(B) right action by composition,

• an L(B)-inner product given by 〈u, v〉L(B) = u∗v, for all u, v ∈ I.

• a *-morphism βI : L∞(G) → L(I) given by βI(m
′(f))u = m(R(f))u, for all f ∈

A(G) and u ∈ I.
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With this structure the space I is a bicovariant W ∗-bimodule (see [Vae05, Section 3.2]).

Let K be a B-Hilbert module endowed with a left L(B)-action. One can consider the

space I ⊗L(B) K which is a B-Hilbert module when it is endowed with the interior inner

product ([Vae05, Section 12.3]) as follows. Let u, v ∈ I and x, y ∈ K. The interior tensor

product is given by

〈u⊗ x, v ⊗ y〉B =
〈
x, 〈u, v〉L(B) · y

〉
B
.

Now, following Vaes’ induction procedure, we set K = L2(G)⊗̂V. Vaes build a bico-

variant B-correspondence

L∞(G)′

L(G) I ⊗L(B) (L2(G)⊗̂V) L(G).

Remark 4.3.11. On this balanced tensor product, the left action of L(G) is done via the

left action of L(G) on I. The right action of L(G) via its right action on (L2(G)⊗̂V), as

specified in Remark 4.3.10. Finally the morphism β : L∞(G)′ → L(I ⊗L(B) (L2(G)⊗̂V))

is given by β = (βI⊗̂βL2(G)⊗̂V) ◦∆. Specifically, let f ∈ D(G), ξ ∈ A(G) and v ∈ V. We

have

• λ(g) · (ι(f)⊗ Λ(ξ)⊗ v) = ι(g ∗ f)⊗ Λ(ξ)⊗ v,

• (ι(f)⊗ Λ(ξ)⊗ v) · λ′(g) = ι(f)⊗ Λ(ξ ∗ g)⊗ v,

• β(m′(g))(ι(f)⊗ Λ(ξ)⊗ v) = ι(R(g(2))f)⊗ Λ(R(g(1))ξ)⊗ v.

Then, using Proposition 4.3.8 we have the existence of a corepresentation of Cr0(G) on

a B-Hilbert module Ind V such that there is an isomorphism of B-correspondences

L∞(G)′

L(G) I⊗̂L(B)(L
2(G)⊗ V) L(G)

∼=
L∞(G)′

L(G) L
2(G)⊗̂Ind V L(G).

The aim of this section is therefore to establish an equivalence of corepresentations

Ind V ∼= E(G)⊗̂C∗(B)V.

According to Proposition 4.3.4, there exists a structure of bicovariantB-correspondence
L∞(G)′

L(G) L
2(G)⊗ E(G)⊗D(B) V L(G). Specifically, let g ∈ D(G), ξ, f ∈ A(G) and v ∈ V. We

have

• λ(g) · (Λ(ξ)⊗ f ⊗ v) = (Λ⊗ id)(∆̂(g) ∗ (ξ ⊗ f))⊗ v,
where ∗ refers to the product of D(G)⊗̂D(G),

• (Λ(ξ)⊗ f ⊗ v) · λ′(g) = Λ(ξ ∗ g)⊗ f ⊗ v,
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• β(m′(g))(Λ(ξ)⊗ f ⊗ v) = Λ(R(g)ξ)⊗ f ⊗ v.

Proposition 4.3.12. We have an equivalence of bicovariant B-correspondences

L∞(G)′

L(G) I⊗̂L(B)(L
2(G)⊗̂V) L(G)

∼=
L∞(G)′

L(G) L
2(G)⊗̂E(G)⊗̂C∗(B)V L(G).

To prove this we need several results.

Lemma 4.3.13. Let h ∈ D(B). We have that π̂(h)δ
1
2
G is a well defined element of

M(D(G)) and we have π̂(h)δ
1
2
G = π̂(hπ(δ

1
2
G)).

Proof. First, observe that, since δ
1
2
G is group-like, f 7→ fδ

1
2
G is a bijective homomorphism

of the algebra D(G). As a consequence this map extends to a map M(D(G))→M(D(G))

defined for m ∈M(D(G)) and f ∈ D(G) by

(mδ
1
2
G) ∗ f = (m ∗ (fδ

− 1
2

G ))δ
1
2
G.

Then, setting m = π̂(h), we get

(π̂(h)δ
1
2
G) ∗ f = (π̂(h) ∗ (fδ

− 1
2

G ))δ
1
2
G

= φB(π(S−1(f(2)δ
− 1

2
G ))h)f(1)δ

− 1
2

G δ
1
2
G

= φB(π(S−1(f(2)))hσB(π(δ
1
2
G)))f(1)

= π̂(hπ(δ
1
2
G)) ∗ f

where the last equality follows from the hypothesis we made at Remark 4.0.1 which gives

σB(π(δ
1
2
G)) = π(δ

1
2
G).

Lemma 4.3.14. Let h ∈ D(B) and ξ ∈ D(G). We have that π̂′(λ′(h))Λ(ξ) = Λ(ξ) · h.

Proof. Let h ∈ D(B). We recall that we have the polar decomposition of the operator

T̂B : Λ(f) 7→ Λ(f∗) as T̂B = ĴB∇̂
1
2
B = ∇̂−

1
2

B ĴB, so

ĴBλ
′(h)ĴB = ∇̂

1
2
Bλ
′(h∗)∇̂−

1
2

B .

Recall also that ∇̂BΛ(η) = Λ(S2(η)δ−1
B ). Using the strong commutation of the operator

extensions of S2 and δG from Section 3.4, we obtain

ĴBλ
′(h)ĴB = λ(|S|(h)∗δ

1
2
B )

where |S| : A(B) → A(B) is the automorphism induced by N , the operator defined in

Section 3.4. Of course the same result stay true if we replace B by G. We use in the next
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calculation that the automorphisms |S| are intertwined by π̂ and that |S|(δB) = δB. We

also have

(hδ
1
2
B )∗ =S(hδ

1
2
B )δB

= h∗δ
− 1

2
B .

. One can now calculate

π̂′(λ′(h)) = ĴGπ̂(λ(|S|(h)∗δ
− 1

2
B ))ĴG

= ĴGπ̂(λ(|S|(hδ
1
2
B )∗))ĴG

= ĴGλ(|S|(π̂(hδ
1
2
B ))∗)ĴG

= ĴGλ(|S|(π̂(hδ
1
2
B ))∗δ

1
2
Gδ
− 1

2
G )ĴG

= ĴGλ(|S|(π̂(hδ
1
2
B )δ
− 1

2
G )∗δ

− 1
2

G )ĴG

(∗)
= ĴGλ(|S|(π̂(hγ)∗δ

− 1
2

G )ĴG

= ĴGĴGλ
′(π̂(hγ))ĴGĴG

= λ′(π̂(hγ−1)).

Where for (∗) we used Lemma 4.3.13. The result follows from the definition of the right

action.

Lemma 4.3.15. The map ρ• from Proposition 4.2.6 defines an injection with dense image

E(G)→ I (with respect to the weak topology of B(L2(B), L2(G)). Its image is denoted I0.

Proof. Let f ∈ D(G), h ∈ D(B) and η ∈ D(B). We have

ρf (λ′(h)Λ(η)) = Λ(f · (η ∗ h))

= Λ((f · η) · h)

= π̂′(λ′(h))ρf (Λ(η)).

Thus the operator ρf belongs to I. It remains to show that the image of E(G) in I is

dense. Let ξ ∈ L2(G) and η ∈ L2(B). Suppose we have

〈Λ(ξ), ρf (Λ(η))〉 = 0

for all f ∈ E(G). Let then u ∈ I, we want to obtain that 〈ξ, u(Λ(η))〉 = 0. Let ε > 0,

there exist

1. a ∈ A(B) s.t. ‖Λ(η − a)‖L2(B) ≤ ε (density of A(B)),
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2. b ∈ A(B) s.t. ‖Λ(b ∗ a− a)‖L2(B) ≤ ε (essentialness),

3. c ∈ A(G) s.t. ‖u(Λ(b))− Λ(c))‖L2(G) ≤ ε (density of A(G)).

Now, there exist k1, k2, k3 > 0 (depending only on the norms of Λ(ξ), Λ(η) and u such

that

1. | 〈Λ(ξ), u(Λ(η))〉 − 〈Λ(ξ), u(Λ(a))〉 |≤ k1ε,

2. | 〈Λ(ξ), u(Λ(a))〉 − 〈Λ(ξ), u(Λ(b ∗ a))〉 |≤ k2ε, and we note that u(Λ(b ∗ a)) =

λ′(a)u(Λ(b));

3. | 〈Λ(ξ), u(Λ(b)) · λ(a)〉 − 〈Λ(ξ),Λ(c · η)〉 |≤ k3ε,

Finally, since 〈ξ, c · η〉 = 0 we have

| 〈ξ, u(η)〉 | ≤ (k1 + k2 + k3)ε,

So 〈ξ, u(η)〉 = 0 and we are done.

Lemma 4.3.16. Let V be a representation of C∗u(G) on any Hilbert module. One can

endow V with its von Neumann bornology and consider the bornological space

V∞ = D(G)⊗̂D(G)V,

equipped with the left convolution action of D(G) is a bornological D(G)-module and defines

a dense subspace of V.

Proof. First, from the associativity of the bornological tensor product we have that

D(G)⊗̂D(G)(D(G)⊗̂D(G)V) = D(G)⊗̂D(G)V,

and thus V∞ is a bornological D(G)-module.

Now consider the linear map D(G)⊗D(G) V → C∗u(G)⊗V defined by f ⊗ v 7→ λ(f)⊗ v.

This map is bounded since bounded subspaces of V are precisely bounded subspaces of

V with respect to its Hilbert topology. Furthermore this map leads to an injective map

D(G)⊗̂D(G)V → C∗u(G)⊗̂C∗u(G)V ∼= V which has dense range.

Remark 4.3.17. Using the duality between modules and comodules at the bornological

level, we obtain that V∞ is also a comodule.

Lemma 4.3.18. Let h ∈ D(B), η ∈ A(G) and w ∈ V∞. We have

λ(h) · (Λ(η)⊗ w) = Λ(η(2))⊗ π(S−1(η(1)))h · w,

where “ · ” on the left hand side stands for the action of D(B) on V∞.
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Proof. h ∈ D(B), η ∈ A(G) and w ∈ V∞. We have

λ(h) · (Λ(η)⊗ w) = λ(h) · (ξ ⊗ v) = (λ ◦ π̂ ⊗ α)(∆̂(h))(Λ(η)⊗ v)

(∗)
= ((π̂ ⊗ id)(∆̂(h)), S−1(η(1))⊗ S−1(w(−1)))Λ(η(2))⊗ w(0)

= (h, S−1(w(−1))π(S−1(η(1))))Λ(η(2))⊗ w(0)

= φB(S−1(w(−1))(S
−1(π(η(1)))h))Λ(η(2))⊗ w(0)

= Λ(η(2))⊗ π(S−1(η(1)))h · w,

where in equality (∗) we apply the definition of the action associated to a coation, with

the same conventions as in Proposition 1.1.13.

Proof of Proposition 4.3.12. Lemma 4.3.15 allows us to consider the linear map

Ψ : A(G)⊗D(G)⊗ V∞ → I ⊗ (L2(G)⊗ V)

ξ ⊗ f ⊗ v 7→(ι⊗̂Λ)(∆(ξ)(f ⊗ 1))⊗ v

where ι stands for the injection D(G)→ I from Proposition 4.2.6.

Let ξ, η ∈ A(G), f, g ∈ D(G) and v, w ∈ V∞. We consider the elements [ι(ξ(1)f) ⊗
Λ(ξ(2))⊗ v] and [ι(η(1)g)⊗Λ(η(2)) ⊗w] of I ⊗L(B) (L2(G)⊗V) (where we us the notation

[ · ] to refer to a class of elements in the balanced tensor product). Using the Lemma

4.3.18 in the equality (∗) below and the definition of the interior inner product we obtain〈
[ι(ξ(1)f)⊗ Λ(ξ(2))⊗ v], [ι(η(1)g)⊗ Λ(η(2))⊗ w]

〉
I⊗L(B)(L

2(G)⊗V )

=
〈

Λ(ξ(2))⊗ v, λ(
〈
ξ(1)f, η(1)g

〉
D(B)

) · (Λ(η(2))⊗ w)
〉
L2(G)⊗V

=
〈
Λ(ξ(2))⊗ v, φG(ξ(1)fη(1)g(1))λ(π(η(2)g(2)γ)) · (Λ(η(3))⊗ w)

〉
L2(G)⊗V

(∗)
=
〈
Λ(ξ(2))⊗ v, φG(ξ(1)fη(1)g(1))Λ(η(4))⊗ (π(S−1(η(3)))π(η(2)g(2)γ)) · w

〉
L2(G)⊗V

=
〈
Λ(ξ(2))⊗ v, φG(f̄ ξ(1)η(1)g(1))Λ(η(2))⊗ (π(g(2)γ) · w)

〉
L2(G)⊗V

= φG(ξ(2)η(2))
〈
v, φG(f̄ ξ(1)η(1)g(1))(π(g(2)γ) · w)

〉
V

=
〈

Λ(ξ)⊗ v,Λ(η)⊗ 〈f, g〉D(B) · w
〉
L2(G)⊗V

= 〈Λ(ξ)⊗ [f ⊗ v],Λ(η)⊗ [g ⊗ w]〉L2(G)⊗E(G)⊗D(B)V .

In particular, this shows that elements in the kernel of the quotient A(G)⊗D(G)⊗V∞ →
A(G)⊗D(G)⊗D(B) V have null image in I ⊗L(B) (L2(G)⊗ V) so the map Ψ descends to

a unitary map to the balanced tensor product.

Now we can consider the associated map

Ψ̃ : L2(G)⊗ E(G)⊗C∗(B) V → I ⊗L(B) (L2(G)⊗ V).
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Let us check that Ψ intertwines the bicovariant B-correspondence structure. We start

with the left action of L(G). Let g ∈ D(G) and ξ ⊗ f ⊗ v ∈ A(G)⊗D(G)⊗V∞. We have

λ(g) · (Λ(ξ)⊗ [f ⊗ v]) = ((λ⊗ id)(∆̂(g)⊗ id))(Λ(ξ)⊗ [f ⊗ v])

= φG(S−1(ξ(1)f(1))g)Λ(ξ(2))⊗ [f(2) ⊗ v],

and

φG(S−1(ξ(1)f(1))g)Ψ̃(Λ(ξ(2))⊗ [f(2) ⊗ v]) = φG(S−1(ξ(1)f(1))g)[ι(ξ(2)f(2))⊗ Λ(ξ(3))⊗ v]

= [ι(g ∗ ξ(1)f)⊗ Λ(ξ(2))⊗ v]

= λ(g) · [ι(ξ(1)f)⊗ Λ(ξ(2))⊗ v]

For the right action of L(G)′ consider again g ∈ D(G) and ξ⊗f ⊗v ∈ A(G)⊗D(G)⊗V∞.

We have

Ψ̃(Λ(ξ ∗ g)⊗ [f ⊗ v]) · λ(g) = [ι(ξ(1)f)⊗ Λ(ξ(2) ∗ g)⊗ v]

= Ψ(Λ(ξ)⊗ [f ⊗ v]) · λ′(g),

where we use Lemma 2.3.8. Let now g ∈ L∞(G)′. We have

Ψ̃(β(g)(Λ(ξ)⊗ [f ⊗ v])) = Ψ̃(Λ(R(g)ξ)⊗ [f ⊗ v])

= ι(R(g(2))ξ(1)f)⊗ Λ(R(g(1))ξ(2))

= β(g)Ψ̃(Λ(ξ)⊗ [f ⊗ v]),

where we use that R is an anti coalgebra homomorphism.

We finish with the surjectivity of Ψ̃. Let f ∈ D(G), g ∈ A(G) and v ∈ V∞ and

consider the element ι(f)⊗ [Λ(g)⊗v] of I ⊗L(B) (L2(G)⊗V). We observe that the element

[Λ(g(2))⊗ S−1(g(1))f ⊗ v] of L2(G)⊗ E(G)⊗C∗(B) V is an antecedent of ι(f)⊗ [Λ(g)⊗ v]

for Ψ̃. We conclude with a density argument.

Theorem 4.3.19. The representations Ind V and E(G)⊗C∗(B) V are equivalent.

Proof. This follows directly from Proposition 4.3.12 and Proposition 4.3.8.



Chapter 5

The parabolic induction module

The goal of this Chapter is twofold. First it allows us to illustrate the general construction

of the preceding chapter. Secondly we use this construction to express in a simple way

the parabolic induction functor for a complex semisimple quantum group. By means of

that, we give an explicit expression for the reduced C∗-algebra of such a quantum group.

As we have seen in Chapter 1, the construction of principal series representations are

very similar to the classical case. In particular those representations are induced from an

analog of the classical Borel subgroup. We thus propose to adapt the ideas of P. Clare et al.

[CCH16]. Let G be a semisimple Lie group (here we suppose it complex in order to avoid

certain subtleties of the general real case) and let G = KAN , B = MAN be an Iwasawa

decomposition and the associated Borel subgroup. All the characters of B involved in

the parabolic induction are characters of the Levy factor L = MA extended trivially

to B. Thus the parabolic induction (associated to the chosen Iwasawa decomposition)

realizes a functor between the category of characters of L and the category of unitary

representations of G. In [CCH16], following an original construction of P. Clare, the

authors adapt Rieffel’s ideas [Rie74] to build a C∗(G)-C∗(L)-correspondence, that is, a

C∗(L)-Hilbert module, denoted E(G/N), with a ∗-representation of C∗(G). They show

that the parabolic induction functor is exactly E(G/N) ⊗C∗(L) −. In the quantum case

we have an analog Lq of L, but there does not seems to exist an analog the unipotent

radical N , at least not with a full quantum group structure. Despite this issue, we can

build a C∗(Gq)-C
∗(Lq) correspondence with the expected property. Furthermore, thanks

to the structure of a semisimple quantum group Gq = Kq ./ K̂q and the discreteness of

K̂q, certain computations are made easier than in the classical case.

We remark that the quantum groups in this chapter are all algebraic quantum groups,

so that questions of bornology disappear.

We also remark that we have δGq = 1 so the hypothesis we have made on πBq(δGq) is

95
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trivially verified and we have that Bq is amenable thus all the results of Chapter 4 can be

applied to implement the induction from Bq to Gq.

5.1 The quotient map

In the classical case, with G = KAN , principal series representations are induced from

characters of the the Borel subgroup B = MAN . Explicitly, we choose first a character µ

of M and λ of A and then the identification MA = B/N allows us to extend µ ⊗ λ to a

character of B. In this way we obtain the principal series representation

IndGB µ⊗ λ.

In the quantum case we do not have an analog for the subgroup N . But, as we now

explain, we do have a “quotient” map

K̂q � Aq.

Let us make this explicit. There are two versions of the map πT . First with the

canonical identification of ∗-algebrasA(Kq) = D(K̂q) andA(T ) = D(Aq), one can consider

πT : D(K̂q)→ D(Aq),

which is a ∗-morphism and comes with its dual morphism π̂T : A(Aq) → M(A(K̂q)).

Secondly, using the identifications of vector spaces A(K̂q) ∼= D(K̂q) and A(Aq) ∼= D(Aq)

the same map can be interpreted as a map

πT : A(K̂q)→ A(Aq).

This is a conditional expectation is the sense of Proposition 4.1.4, observing that Kq and

T are unimodular. In particular π(fKλ) = π(f)Kλ for all f ∈ A(K̂q), λ ∈ P. This is the

map πT : A(K̂q) → A(Aq) that we call the quotient map. This map has also the notable

property

φ
K̂q

(f) = φAq(πT (f)).

Indeed we have for all a ∈ A(Kq)

φ
K̂q

(FKq(a)) = εKq(a)

= εT (πT (a))

= φAq(πT (FKq(a))).
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Remark 5.1.1. In the rest of this Chapter we extensively use Sweedler notations. Since

one considers both A(Kq) and A(K̂q), this can be confusing. The convention is as follows.

If we write f ∈ A(Gq) or f ∈ D(Gq) (where Gq = Kq, K̂q, T or Aq) then f(1)⊗ f(2) always

refers to the coproduct of A(Gq).

Lemma 5.1.2. Let f ∈ A(K̂q). We have

πT (f(2))⊗ f(1) = πT (f)(2) ⊗ π̂T (πT (f)(1)).

In particular this means that the map A(Aq) → M(A(K̂q) ⊗ A(Aq)) given by πT (f) 7→
f(1) ⊗ πT (f(2)) is well defined.

Proof. Let f, g ∈ D(K̂q). On the one hand we have

πT (g ∗ f) = πT (f(2))φK̂q
(S−1(f(1))g)

= πT (f(2))(g, S
−1(f(1))).

And on the other hand

πT (g) ∗ πT (f) = πT (f)(2)φAq(S−1(πT (f)(1))πT (g))

= πT (f)(2)(g, π̂T (S−1(πT (f)(1))))

= πT (f)(2)(g, S
−1(π̂T (πT (f)(1))))

One can thus identify the legs and we obtain

πT (f(2))⊗ f(1) = πT (f)(2) ⊗ π̂T (πT (f)(1)).

We denote by αAq : A(Aq) → M(A(K̂q)) ⊗ A(Aq) the A(K̂q) coaction we obtain on

A(Aq). For h ∈ A(Aq) we have

αAq(h) = π̂T (h(1))⊗ h(2),

and for f ∈ A(K̂q) one can also write

αAq(πT (f)) = f(1) ⊗ πT (f(2)).

5.2 The parabolic induction module

In this section we use all the notation introduced in Section 1.3. The goal here is to

build a Hilbert module which implements the parabolic induction functor. We define this

module in this section as a balanced tensor product E(Gq) ⊗D(Bq) D(Lq), where E(Gq)

is the induction module built from the closed quantum subgroup Bq as defined in the

previous chapter and where we recall that we defined Lq = T ×Aq.
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Lemma 5.2.1. The linear map (id⊗ πT ) : D(Bq)→ D(Lq) is a *-Hopf homomorphism.

Proof. We first show that (id ⊗ π̂T ) : A(Lq) → M(A(Bq)) is a *-Hopf homomorphism,

then we conclude with a duality argument. Before we start, we recall that π̂T : A(Aq)→
M(A(K̂q)) is a Hopf *-morphism. We have seen in Section 1.3.3 that

∆Bq(a⊗ f) = a(1) ⊗ ωσiif(1)ω
ν
rr ⊗ πT (uσiiS(uνrr))a(2) ⊗ f(2),

for all a⊗ f ∈ A(Bq). Let a⊗ h ∈ A(Lq). We have on the one hand

((id⊗ π̂T )⊗ (id⊗ π̂T ))(∆Lq(a⊗ h)) = a(1) ⊗ π̂T (h(1))⊗ a(2) ⊗ π̂T (h(2)).

And on the other hand

∆Bq(a⊗ π̂T (h)) = a(1) ⊗ ωσiiπ̂T (h(1))ω
ν
rr ⊗ πT (uσiiS(uνrr))a(2) ⊗ π̂T (h(2)),

and since π̂T maps A(Aq) into the set of diagonal elements of A(K̂q), we obtain

∆Bq(a⊗ π̂T (h)) = a(1) ⊗ ωσiiπ̂T (h(1))⊗ πT (uσiiS(uσii))a(2) ⊗ π̂T (h(2))

= a(1) ⊗ π̂T (h(1))⊗ a(2) ⊗ π̂T (h(2)).

Thus (id ⊗ π̂T ) is compatible with the coproducts. The *-algebra structure of A(Bq) is

not twisted so there is no difficulty to see that (id ⊗ π̂T ) is a *-algebra homomorphism.

To conclude we just notice that since the pairing between D(Bq) and A(Bq) is defined leg

by leg it is clear that the dual morphism of (id⊗ π̂T ) is (id⊗ πT ).

We now present the characters of Bq in a different way to that given in Section 1.3.

First, for (µ, λ) ∈ P × t∗q , one can build the one dimensional representation of Lq on

Cµ,λ = Cµ ⊗ Cλ via

(τ ⊗ h) · 1 = φT (e−µτ)φAq(K−λh),

for all h ∈ D(Aq), τ ∈ D(T ). Since D(Lq) is essential, we have D(Lq)⊗D(Lq) Cµ,λ ∼= Cµ,λ.

Furthermore since D(Lq) is a D(Bq) left module, one can consider the action of D(Bq) on

D(Lq)⊗D(Lq) Cµ,λ, which happens to be exactly the character of Bq associated to (µ, λ),

according to the previous lemma. In particular this shows that such character can be

factorized through the morphism (id⊗ πT ) : D(Bq)→ D(Lq).

Recall that we defined in Section 1.3 the representation Ind
Gq

Bq
Cµ,λ in an ad hoc way.

We now confirm that this agrees with the general induction method we developed in

Chapter 4.

Lemma 5.2.2. Let a⊗ f ∈ A(Gq). We have

(a⊗ f)(1) ⊗ (πT ⊗ πT )((a⊗ f)(2)) = a(1) ⊗ f(1) ⊗ (πT ⊗ πT )(a(2) ⊗ f(2)),

where (a⊗ f)(1) ⊗ (a⊗ f)(2) refers to the coproduct of A(Gq).
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Proof. Let a⊗ f ∈ A(Gq). Using the formula given at Section 1.3.2 we have

(a⊗ f)(1) ⊗ (πT ⊗ πT )((a⊗ f)(2)) = a(1) ⊗ ωσijf(1)ω
ν
rs ⊗ πT (S(uσij)a(2)u

ν
rs)⊗ πT (f(2))

= a(1) ⊗ ωσiif(1)ω
ν
rr ⊗ πT (uσiiS(uνrr))πT (a(2))⊗ πT (f(2))

(∗)
= a(1) ⊗ ωσiiπ̂T (πT (f(1)))ω

ν
rr ⊗ πT (uσiiS(uνrr))πT (a(2))⊗ πT (f(2))

= a(1) ⊗ f(1) ⊗ πT (a(2))⊗ πT (f(2)),

where at equality (∗) we used the Lemma 5.1.2.

We now consider the D(Bq)-inner product on D(Gq), given by Proposition 4.2.3. Ac-

cording to [VY20, Lemma 4.17] we have δBq = 1⊗K−4ρ.

Lemma 5.2.3. Let a⊗ f, b⊗ g ∈ D(Gq). We have

(id⊗ πT )(〈a⊗ f, b⊗ g〉D(Bq)) = πT (a∗ ∗ b)⊗ πT (f∗ ∗ g)K−2ρ.

Proof. a⊗ f, b⊗ g ∈ D(Gq). Using Remark 4.2.4 we obtain

(id⊗ πT )(〈a⊗ f, b⊗ g〉D(Bq)) = (id⊗ πT )(φGq((a⊗ f)(b⊗ g)(1))(πT ⊗ id)((b⊗ g)(2))(1⊗K−2ρ))

= φGq((a⊗ f)(b⊗ g)(1))(πT ⊗ πT )((b⊗ g)(2))(1⊗K−2ρ)

(∗)
= φGq((a⊗ f)(b(1) ⊗ g(1)))πT (b(2))⊗ πT (g(2))(1⊗K−2ρ)

= πT (a∗ ∗ b)⊗ πT (f∗ ∗ g)K−2ρ,

where for the equality (∗) we use the previous lemma and that the involution on A(Gq) is

leg-wise. For the last line we simply use that φGq = φKq ⊗ ψK̂q
and identify convolutions

on each legs.

Proposition 5.2.4. The unitary representations D(Gq) ⊗D(Bq) Cµ,λ and Ind
Gq

Bq
Cµ,λ of

D(Gq) are isomorphic.

Proof. We consider the map Ψ such that

Ψ : D(Gq) −→ Ind
Gq

Bq
Cµ,λ

(a⊗ f) 7−→ a ∗ π̂T (eµ)⊗ φ
K̂q

(fK−λ−2ρ)Kλ+2ρ.

We will show that this map is surjective, intertwines the A(Gq) coactions and descends

to the balanced tensor product D(Gq) ⊗D(Bq) Cµ,λ. Let a ⊗ f ∈ D(Gq). We first show

that a ∗ π̂T (eµ) ⊗ φ
K̂q

(fK−λ+2ρ)Kλ+2ρ belongs to Ind
Gq

Bq
Cµ,λ. It is enough to show that

(id⊗ πT )(∆Kq(a ∗ π̂T (eµ))) = (a ∗ π̂T (eµ))⊗ eµ. For this, since eµ is group-like we have

(id⊗ πT )(∆Kq(a ∗ π̂T (eµ))) = φT (e−µπT (a(3)))a(1) ⊗ πT (a(2))

= φT (e−µπT (a(2)))a(1) ⊗ eµ.
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Next, let a⊗ f, b⊗ g be in D(Gq) and consider the elements [a⊗ f ⊗ 1], [b⊗ g ⊗ 1] of

D(Gq)⊗D(Bq) Cµ,λ. We have

〈[(a⊗ f)⊗ 1], [(b⊗ g)⊗ 1]〉 = 〈a⊗ f, b⊗ g〉D(Bq) · 1

= (id⊗ πT )(〈a⊗ f, b⊗ g〉D(Bq)) · 1

= (πT (a∗ ∗ b)⊗ πT (f∗ ∗ g)K−2ρ) · 1

= φT (πT (a∗ ∗ b)e−µ)φ
K̂q

((f∗ ∗ g)K−2ρ−λ)

= φT (πT (a∗ ∗ b)e−µ)φ
K̂q

(f∗K−2ρ−λ)φ
K̂q

(gK−2ρ−λ)

where at the last line we used that φ
K̂q

(x ∗ y) = φ
K̂q

(x)φ
K̂q

(y), ∀x, y ∈ D(K̂q). Note

also that φ
K̂q

(f∗K−2ρ−λ) = (K∗−2ρ−λf
∗) since K−2ρ−λ is self-adjoint and σ

K̂q
(K−2ρ−λ) =

K−2ρ−λ. For the calculation on the right hand side we will use that (eµ)∗ = eµ and that

eµ ∗ eµ = eµ. We also use Lemma 2.3.7. Using the definition of the inner product on

Ind
Gq

Bq
Cµ,λ from Section 1.3.4 we have

〈a ∗ π̂T (eµ)⊗Kλ+2ρ, b ∗ π̂T (eµ)⊗Kλ+2ρ〉 = 〈a ∗ π̂T (eµ), b ∗ π̂T (eµ)〉

= εKq((a ∗ π̂T (eµ))∗ ∗ b ∗ π̂T (eµ))

= εT (πT (π̂T (eµ)∗ ∗ a∗)) ∗ (b ∗ π̂T (eµ))

= εT (eµ ∗ πT (a∗ ∗ b) ∗ eµ)

= εT (πT (a∗ ∗ b) ∗ (eµ)∗)

= φT (πT (a∗ ∗ b)eµ)

= φT (πT (a∗ ∗ b)e−µ).

This then shows that Ψ descends to an unitary map on the balanced tensor product

D(Gq)⊗D(Bq) Cµ,λ → Ind
Gq

Bq
Cµ,λ.

To conclude, we show that Ψ is surjective. To this end we first notice that Ind
Gq

Bq
Cµ,λ

is spanned by elements of type a⊗Kλ+2ρ for a ∈ Γ(Eµ,λ). This follows from the fact that

the map ext : Γ(Eµ,λ) → Ind
Gq

Bq
Cµ,λ from [VY20, Lemma 6.18] is an isomorphism, where

Γ(Eµ,λ) is defined in Section 1.3.4 and we have ext(a) = a ⊗ Kλ+2ρ for all a ∈ Γ(Eµ,λ).

Let then a ∈ Γ(Eµ,λ). We have that a ∗ π̂T (eµ) = a; thus the element a ⊗ 1̂Kq ⊗ 1 of

D(Gq)⊗D(Bq)Cµ,λ is an antecedent of a⊗Kλ+2ρ, where 1̂Kq is defined in Section 1.3.1.

One can now consider the D(Lq)-inner product module D(Gq) ⊗D(Bq) D(Lq) and we

have

D(Gq)⊗D(Bq) D(Lq)⊗D(Lq) Cµ,λ ∼= D(Gq)⊗D(Bq) Cµ,λ.

As a consequence, D(Gq)⊗D(Bq) D(Lq) is the parabolic induction module.
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5.3 Geometric presentation of the induction module

We consider the linear space

A(Gq/Nq) = A(Kq)⊗A(Aq),

equipped with its natural structure of untwisted ∗-algebra. We endow A(Gq/Nq) with a

left A(Gq)-coaction given, for a⊗ h ∈ A(Gq/Nq), by

∆Gq/Nq
(a⊗ h) = W−1

32 (∆Kq(a)⊗ αAq(h))W32 ∈M(A(Gq))⊗A(Gq/Nq),

where the coation αAq is defined after Lemma 5.1.2. Let f ∈ A(K̂q). We have

∆Gq/Nq
(a⊗ πT (f)) = W−1

32 (a(1) ⊗ f(1) ⊗ a(2) ⊗ πT (f(2)))W32.

From this we see that ∆Gq/Nq
(a ⊗ πT (f)) = (id ⊗ ⊗id ⊗ id ⊗ πT )(∆Gq(a ⊗ f)) and it

directly follows that the map ∆Gq/Nq
is coassociative. This remark also implies the next

proposition.

Proposition 5.3.1. The map id ⊗ πT : A(Gq) → A(Gq/Nq) intertwines the left-A(Gq)-

coactions where A(Gq) is considered with its natural comodule structure given by the co-

product.

We now define a right A(Lq)-coaction on A(Gq/Nq), denoted ∆′Gq/Nq
. For all a⊗ h ∈

A(Gq/Nq) we set

∆′Gq/Nq
(a⊗ h) = a(1) ⊗ h(1) ⊗ πT (a(2))⊗ h(2) ∈ A(Gq/Nq)⊗A(Lq).

Proposition 5.3.2. The coactions ∆′Gq/Nq
and ∆Gq/Nq

commute.

Proof. We first claim that we have

(id⊗ π̂T ⊗ id⊗ π̂T )(∆′Gq/Nq
(a⊗ h)) = (id⊗ id⊗ πT ⊗ id)[∆Gq(a⊗ π̂T (h))].

We calculate

(id⊗ id⊗ πT ⊗ id)[∆Gq(a⊗ π̂T (h))]

= a(1) ⊗ ωσij π̂T (h(1))ω
ν
rs ⊗ πT (S(uσij)a(2)u

ν
rs)⊗ π̂T (h(2))

= a(1) ⊗ π̂T (h(1))⊗ πT (a(2))⊗ π̂T (h(2))

= (id⊗ π̂T ⊗ id⊗ π̂T )(∆′Gq/Nq
(a⊗ h)),

We have also that

(id⊗ id⊗ id⊗ π̂)(∆Gq/Nq
(a⊗ h)) = ∆Gq(a⊗ π̂(h)).
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Now we can prove the proposition. First we rewrite above equalities using the leg

notation (we write π and π̂ instead of πT and π̂T ):

(π̂ ⊗ π̂)24 ◦∆′Gq/Nq
= π3 ◦∆Gq ◦ π̂2

π̂4 ◦∆Gq/Nq
= ∆Gq ◦ π̂2

Now observe that we have on the one hand

(π̂ ⊗ π̂)46◦(∆′Gq/Nq
)34 ◦∆Gq/Nq

= ((π̂ ⊗ π̂)24 ◦∆′Gq/Nq
)34 ◦∆Gq/Nq

= (π3 ◦∆Gq ◦ π̂2)34 ◦∆Gq/Nq

= π5 ◦ (∆Gq)34 ◦∆Gq ◦ π̂2

and on the other hand

(π̂ ⊗ π̂)46◦(∆Gq/Nq
)12 ◦∆′Gq/Nq

= (∆Gq)12 ◦ (π̂ ⊗ π̂)24 ◦∆′Gq/Nq

= (∆Gq)12 ◦ π3 ◦∆Gq ◦ π̂2

= π5 ◦ (∆Gq)12 ◦∆Gq ◦ π̂2

and we conclude the proof using the coassociativity of ∆Gq and injectivity of π̂T .

Observe now that A(Gq/Nq) = D(Kq)⊗D(Aq) as linear space. On the one hand D(Kq)

can be considered as a D(T )-inner product module, in the sense of Chapter 4, since T is

a closed quantum subgroup of Kq. On the other hand K2ρ is a self-adjoint and group-like

element of M(A(Aq)); thus D(Aq) has a structure of D(Aq)-inner product module with

right action

h · l = h ∗ (lK2ρ),

and the sesquilinear map defined by

〈h, k〉D(Aq) = (h∗ ∗ k)K−2ρ,

for all h, k, l ∈ D(Aq). One can thus endow A(Gq/Nq) = D(Kq) ⊗ D(Aq) with the

structure of a (D(T )⊗D(Aq))-inner product module induced by the tensor product. Let

a⊗ h, b⊗ k ∈ A(Gq/Nq) and τ ⊗ l ∈ D(Lq). We have

〈a⊗ h, b⊗ k〉D(Lq) = πT (a∗ ∗ b)⊗ (h∗ ∗ k)K−2ρ,

(a⊗ k) · (τ ⊗ l) = a ∗ π̂T (τ)⊗ k ∗ (lK2ρ).
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Lemma 5.3.3. The left action of D(Kq) on A(Gq/Nq) induced by ∆Gq/Nq
commutes with

the right D(Lq) action.

Proof. This is almost equivalent to Proposition 5.3.2. Observe that if one precomposes

the right D(Lq) action by the *-algebra homomorphism of D(Lq) given by x 7→ x(1⊗K2ρ)

we obtain exactly the action induced by the coaction ∆′Gq/Nq
.

Proposition 5.3.4. The map defined by

Φ : D(Gq)⊗D(Lq) −→ A(Gq/Nq)

(a⊗ f)⊗ (τ ⊗ h) 7−→ (a⊗ πT (f)) · (τ ⊗ h),

is a D(Lq)-linear map which intertwines the left action of D(Gq) and descends to a unitary

isomorphism on the balanced tensor product D(Gq)⊗D(Bq) D(Lq).

Proof. The D(Lq)-linearity of Φ is immediate from the definition since the right D(Lq) ac-

tion on A(Gq/Nq) is associative. The intertwinning property directly follows from Propo-

sition 5.3.1 and the previous proposition. Let (a ⊗ f) ⊗ (τ ⊗ h) and (b ⊗ g) ⊗ (ζ ⊗ k) be

in D(Gq)⊗D(Lq) and consider the elements [(a⊗ f)⊗ (τ ⊗ h)] and [(b⊗ g)⊗ (ζ ⊗ k)] of

the balanced tensor product D(Gq)⊗D(Bq) D(Lq). We have

〈[(a⊗ f)⊗ (τ ⊗ h)], [(b⊗ g)⊗ (ζ ⊗ k)]〉D(Lq)

=
〈

(τ ⊗ h), 〈(a⊗ f, b⊗ g〉D(Bq) · (ζ ⊗ k)
〉
D(Lq)

= 〈(τ ⊗ h), (πT (a∗ ∗ b)⊗ πT (f∗ ∗ g)K−2ρ) ∗ (ζ ⊗ k)〉D(Lq)

= 〈(τ ⊗ h), (πT (a∗ ∗ b) ∗ ζ)⊗ (πT (f∗ ∗ g)K−2ρ) ∗ k)〉D(Lq)

= (τ∗ ∗ πT (a∗ ∗ b) ∗ ζ)⊗ (h∗ ∗ πT ((f∗ ∗ g)K−2ρ) ∗ k)

= (πT (a ∗ π̂T (τ))∗ ∗ b ∗ π̂T (ζ))⊗ (h∗ ∗ πT (f∗ ∗ g)K−2ρ ∗ k)

= (πT (a ∗ π̂T (τ))∗ ∗ b ∗ π̂T (ζ))⊗ (h∗ ∗ πT (f)∗K2ρ ∗ πT (g)K2ρ ∗ k)K−2ρ

= 〈(a⊗ πT (f)) · (τ ⊗ h), (b⊗ πT (g)) · (ζ ⊗ k)〉D(Lq) .

Thus the map Ψ descend to a unitary map on the balanced tensor product. With regard

to the surjectivity it is enough to observe that the right D(Lq) action on A(Gq/Nq) is

essential.

The following theorem is now immediate.

Theorem 5.3.5. The pre-Hilbert D(Lq)-module A(Gq/Nq) can be completed into a Hilbert

C∗(Lq)-module E(Gq/Nq) and we have

E(Gq/Nq) ∼= E(Gq)⊗C∗(Bq) C
∗(Lq),
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as Gq-representations. The tensor product E(Gq/Nq)⊗C∗(Lq)− defines a functor from the

category of unitary C∗(Lq)-representations to the category of unitary C∗u(Gq)-representations

which coincides with parabolic induction.

By the Fourier transform, we have

C∗(Lq) ∼= C0(L̂q) = C0(P× T )

such that the characters of C∗(Lq) become the evaluation maps

ev(µ,λ) : C0(P× T )→ Cµ,λ.

According to [VY20, Theorem 7.1] we have

C∗r (Gq) ∼= C0(P× t∗q ,K(H))W ,

where H is a countable dimensional Hilbert space, and the action of the Weyl group W

is a lifting of its action by reflections on P× t∗q to an action on the bundle of C∗-algebras.

More precisely, the Hilbert space H at the parameter (µ, λ) ∈ P× t∗q is identified with the

parabolically induced representation of Gq,

H =Hµ,λ = Ind
Gq

Bq
Cµ,λ

∼=Hµ = Ind
Kq

T Cµ

={ξ ∈ A(Kq) | ∆(ξ) = ξ ⊗ eµ}‖·‖L2(Kq) ,

which is a trivial Hilbert bundle on each connected component {µ} × t∗q of the parameter

space. The action of W is via intertwiners of principal series representations. In this way,

we have

C∗r (Gq) = (K(
⊕
µ∈P

C0(t∗q , Hµ)))W ,

where K denotes compact operators on the right Hilbert C0(P× t∗q)-module.

By theorem 5.3.5 we have

Hµ,λ
∼= E(Gq)⊗C∗(Bq) Cµ,λ

as left C∗u(Gq)-module. Therefore

C0(t∗q , Hµ) ∼= E(Gq/Nq)⊗C∗(Lq) C0(t∗q)µ,

as left C∗u(Gq)-module and right C0(t∗q)-Hilbert module, where C0(t∗q)µ denotes C0(t∗q)

equipped with the left action of C∗(Lq) = C∗(T )⊗̂C∗(Aq) = C0(P)⊗̂C0(t∗q) such that
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C0(t∗q) acts by pointwise multiplication and C0(P) acts by evaluation at µ. We thus

obtain ⊕
µ∈P

C0(t∗q , Hµ) = E(Gq/Nq)⊗C∗(Lq) C0(P× t∗q)

= E(Gq/Nq).

We have therefore proven the following result.

Corollary 5.3.6. Let Gq be a complex semi-simple quantum group. Then

C∗r (Gq) ∼= K(E(Gq/Nq))
W ,

where K indicates the algebra of compact operators in the sense of Hilbert modules.

In the classical case, this result has been first obtained in [Was87] and reformulated in

[CCH16] with the Rieffel induction framework.
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