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Abstract ix

Numerical studies on vortex dynamics
helical vortices and two-phase vortices

Abstract
Nous présentons des études numériques sur la dynamique des vortex homogènes et diphasiques. Dans une première
partie, nous étudions la structure des vortex hélicoïdaux homogènes tels qu’on peut les trouver dans le sillage des hélices
ou des turbines. Certaines propriétés des états d’équilibre non visqueux sont dérivées théoriquement et confirmées
numériquement sur des états de quasi-équilibre en utilisant des simulations numériques directes dans le cadre de la
symétrie hélicoïdale. Les modes d’instabilité de grandes et petites longueurs d’onde qui se développent sur ces états
sont ensuite étudiés et comparés aux théories asymptotiques existantes, avec un bon accord. L’intensité du jet axial au
cœur du vortex joue un rôle prépondérant, mais l’influence d’autres paramètres tels que le pas des vortex hélicoïdaux
et la taille du cœur est également étudiée. Dans une deuxième partie, nous étudions deux problèmes de dynamique
des vortex diphasiques. D’une part, on traite les instabilités se produisant dans les tourbillons diphasiques droits en
utilisant un code d’instabilité maison. En particulier, l’effet de stabilisation par la rotation sur les instabilités capillaires
avec un vortex dans le cœur gazeux est mis en évidence. D’autre part, on étudie la génération de bulles tourbillonnaires
toroïdales comme celles produites par les plongeurs, les bélugas ou les dauphins par des simulations directes à deux
phases. Les résultats d’instabilité sont utilisés pour expliquer la très grande robustesse de telles structures vis-à-vis des
perturbations.
Keywords: 〈 vortex; hélicoïdal; stabilité; écoulement diphasique 〉

Études numériques sur la dynamique des vortex
Vortex hélicoïdaux et Vortex diphasiques

Résumé
We present numerical studies on the dynamics of homogeneous and two-phase vortices. In a first part, we study the
structure of homogeneous helical vortices as can be found in the wake of propellers or turbines. Some properties of
inviscid steady states are derived theoretically and confirmed numerically on quasi-equilibria using direct numerical
simulations in the helical symmetry framework. Long- and short-wave instability modes growing on these states are
then investigated and compared favourably to existing asymptotic theories. Axial jet intensity within the core has a
prominent role, but the influence of other parameters such as helical vortex pitch and core size are also investigated. In
a second part, we study two problems concerning the dynamics of two-phase vortices. On the one hand, we investigate
the instabilities occurring in straight two-phase vortices using an original in-house instability code. In particular, the
stabilizing effect of rotation on capillary instabilities in vortices with a gaseous core is evidenced. On the other hand, we
study the generation of toroidal vortex bubbles as those produced by scuba divers, beluga whales or dolphins by direct
two-phase simulations. Previous instability results are used to explain the remarkable robustness of such structures
with respect to perturbations.
Mots clés : 〈 vortex ; helical ; stability ; two-phase flow 〉

Institut Jean Le Rond d’Alembert
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Chapter1
General Introduction
A vortex is a type of fluid motion in which fluid particles revolve around an axis. Such an organized structure
appears everywhere in nature, fromwater behind a bridge pier, tornadoes in the atmosphere to spiral galaxies
in the universe. Many industrial applications are designed based on properties of vortices to transfer energy,
momentum or mass. The importance of vortices has been recognized at both fundamental and applied levels
of fluid dynamics since they are described as the sinews and muscles of fluid motion [Küchemann, 1965] as
well as the sound of flow [Müller and Obermeier, 1988]. Vortices can be of different scales: in geophysics
they may be of a scale 100− 1000km, in a wake of a car from 0.01 to 10m. More generally, turbulent
flows are characterized by a large ratio between sizes of the smallest and largest eddies.

A more precise definition for a vortex is based on the physical quantity called vorticity: vorticity is
mathematically defined as the curl of velocity ωωω = ∇ ×uuu, where ∇ is the nabla operator and uuu is the
velocity field. A vortex is a region where vorticity is concentrated in tube like regions. Other structures
related to vorticity are vorticity layers: they are usually attached to velocity differences appearing at
a solid surface, or at the interface between two fluids. Such a finite-thickness vorticity layer may roll
up generating a unique vortex via a starting vortex or an array of vortices via the Kelvin-Helmholtz
instability. For instance, a constant velocity flow impinging a solid body produces a repetitive vortex
pattern, the von Kármán vortex street (figure 1.1) by shedding vorticity at an unsteady separation point
on a solid body. The subject of vorticity dynamics was initiated by [Helmholtz, 1858] and [Kelvin, 1869]
as an ideal inviscid fluid. This topic was then considerably developed: one may refer to classical texts
such as Théorie des tourbillons [Poincaré, 1893], Hydrodynamics [Lamb, 1932], Introduction to Fluid
Dynamics [Batchelor, 1967], Vortex Dynamics [Saffman, 1992]. This literature covers the generation,
motion of vortices, interaction between vortices, or between vortices and its surrounding environment.

Vortices may induce unwanted effects and sometimes we would like to eliminate such flow patterns. For in-
stance the Karman vortex street generates periodic forces on the solid body which may cause problems. This
is why the control of vortex shedding has been studied experimentally [Strykowski and Sreenivasan, 1990]
and numerically [Marquet et al., 2008]. Similarly, the wingtip vortices behind an aircraft should be
eliminated as much as possible because they constitute a danger for following aircrafts. Vortex destruction
can be due to different mechanisms: for instance, vortex breakdown [Hall, 1972] which is linked to the
presence of an axial flow in the vortex causing a backflow and an abrupt increase of the vortex core, or
various instabilities such as the Crow instability or the elliptical instability due to the deformation exerted
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Figure 1.1 – Visualisation of a von Kármán vortex street behind a circular cylinder in air using smoke.
Source: Wikipedia.

by other vortices or by boundaries. Many procedures to eliminate wingtip vortices behind an aircraft are
based on increasing the initial amplitude of a perturbation mode at the origin of the Crow instability. The
first part of the present Ph.D. thesis is dedicated to the study of helical vortices which are often observed in
the wake of rotating blades. It includes computations and characterisations of helical vortices with an axial
flow inside the core: the governing equations can be found in chapter 3, quasi-steady solutions in chapter 4.
Their linear stability analyses are performed in chapters 5–7).

A flow with more than one phase, is known as a multiphase flow. It is called disperse when many solid
particles or bubbles are present inside another fluid, or separated when two or more fluids domains are
separated by a large scale interface [Brennen, 2005], for instance the air-sea interface. Two-fluid flows are
present everywhere in our daily life: when pouring sparkling water into a glass, spherical bubbles form
inside the glass, while liquid drops with a tear shape can slide down outside the glass. The dynamics of
multiphase flows often depend on surface tension (or capillary forces) since pressure takes different values
across a curved interface. This phenomenon was first studied by Pierre Simon de Laplace (1749-1827) and
Thomas Young (1773-1829). It can be reduced for inviscid flows to equality

P1 − P2 = γκ (1.1)

between pressure P1 in fluid 1 at the interface, and pressure P2 of fluid 2 at the same point across the
interface. The mean curvature κ equals the sum of the inverse maximum radius R1 and inverse minimum
radius R2 of the interface

κ ≡
(
1
R1

+
1
R2

)
.

The surface tension γ depends on the characteristic of both fluids, on temperature or on the presence of
surfactants. Some typical values are given in Table 1.1.

Interface Water–air Benzene–air Nonane–air
Temperature (°C) 20 30 20
γ (mNm−1) 72.86 27.56 22.85

Table 1.1 – Values of surface tension for various substances.

The fluid-fluid interface is deformable: for instance a soap bubble with different pressures across the
interface, evolves spontaneously towards a spherical shape. This is explained by the minimization of
surface energy. This mechanism is also responsible for the famous Rayleigh-Plateau instability: the stream
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Figure 1.2 – Temporal evolution of non rotating Rayleigh-Plateau instability [enseeiht, 2013].

of tap water breaks into smaller droplets (see figure 1.2). Indeed, the cylinder liquid jet of radius R0 and
length L has a total surface of 2πR0L, larger than the more favorable situation of n droplets of radius r =
(3R2

0L/(4n))
−1/3 if r > 1.5R0. This behaviour is very different from a monophasic jet often dominated by

the Kelvin–Helmholtz instability leading to vortex rings and secondary instabilities [Brancher et al., 1994].
Lord Rayleigh gave the general stability analysis of an axisymmetric inviscid liquid jet [Rayleigh, 1892b]
and viscous jet [Rayleigh, 1892a]. In the linear framework, the growth of perturbation reads:

f ′ = f̂ est+i(kx+mθ) (1.2)

where f ′ is the perturbation term with f̂ its amplitude, s the growth rate, k the axial wavenumber and m
the azimuthal wavenumber. Even limited to an axisymmetric case, the stability of liquid jet can be affected
by various parameters, such as: (i) density ratio of the two phases; (ii) viscosity. The effect of the above
two parameters are rapidly recalled below.
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Figure 1.3 – Left: inviscid case for three density ratios ρ2/ρ1 (red: air column in water, blue: water column
in air). Right: viscous liquid column in air, for different Re values as indicated. Solid lines in left (resp.
right) graph: theoretical dispersion relation (1.5) (resp. 1.10); symbols: results from the instability code
used in part II.

In the inviscid framework, a two-phase jet of radius R0 at rest is unstable [Rayleigh, 1892b]. Indeed its
analytical dispersion relation reads(

1−
ρ2
ρ1

Km(k̄)I ′m(k̄)
K ′m(k̄)Im(k̄)

)
s2 =

γ

R3
0ρ1

k̄I
′
m(k̄)
Im(k̄)

(
1− k̄2 −m2

)
(1.3)

with ρ1 (resp. ρ2) the density of inner phase (resp. for ambient phase), s the growth rate and k̄ ≡ kR0.
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When k̄ is small (typically smaller than 1), the dispersion relation reduces to:

s2 ≈
γ

(ρ1 + ρ2)R
3
0

k̄I
′
m(k̄)
Im(k̄)

(
1− k̄2 −m2

)
. (1.4)

showing that the sign of growth rate s depends only on the term (1− k̄2 −m2). This also imposes that the
most unstable modes are axisymmetric (m = 0) and satisfy:

R3
0ρ1
γ

s2
(
1+

ρ2
ρ1

K0(k̄)I ′0(k̄)

K1(k̄)I0(k̄)

)
= k̄

(
1− k̄2

) I ′0(k̄)
I0(k̄)

. (1.5)

For 0 ≤ k̄ ≤ 1, the growth rate s is positive hence the jet is unstable. For a liquid jet (say of water, ρ1 = ρ(w))
without external fluid (ρ2 ' 0), the dispersion relation, in the vicinity of small k̄, takes a simplified form

s̄ ≡

√
R3
0ρ

(w)

γ
s =

√
k̄(1− k̄2) I1(k̄)

I0(k̄)
'

√
k̄2 − k̄4

2
. (1.6)

The initial perturbation with k̄m ' 0.7 has the largest growth rate close to 0.35 (see blue curve in figure 1.3,
left). For a hollow jet in water (ρ1 ' 0, ρ2 = ρ(w)) the dispersion relation becomes

s̄ ≡

√
R3
0ρ

(w)

γ
s =

√
k̄(1− k̄2)K1(k̄)

K0(k̄)
'

√
(1− k̄2)

ln(1 + 1/k̄)
(1.7)

and the initial perturbation with k̄m ' 0.48 has the biggest growth rate close to 0.80 (see red curve in
figure 1.3, left). When the densities of the two phases are equal (ρ1 = ρ2 = ρ(w)), we get, for small k̄:

s̄ ≡

√
R3
0ρ

(w)

γ
s =

√√√
k̄(1− k̄2)
I0(k̄)
I1(k̄)

+ K0(k̄)
K1(k̄)

'

√
k̄2(1− k̄2)

2 + k̄2 ln(1 + 1/k̄)
. (1.8)

In this case the initial perturbation with k̄m ' 0.7 has the maximum growth rate close to 0.31 (see magenta
curve in figure 1.3, left). The presence of a surrounding fluid slows down the instability and shifts the
wavenumber of maximal growth k̄m to a smaller value [Eggers and Villermaux, 2008].

Viscosity is also important for stability. From equation (1.6), viscosity may be taken into ac-
count [Rayleigh, 1892b, Eggers and Villermaux, 2008], for small k̄ and ρ2� ρ1 = ρ(w) it yields:

s2 =
1
2

γ

ρ(w)R3
0

(
k̄2 − k̄4

)
− s3ν
R2
0

k̄2 (1.9)

where ν = µ/ρ is the kinematic viscosity of the liquid, with µ the dynamic viscosity. Its importance
compared to surface tension is quantified by the Ohnesorge number

Oh = µ/
√
ργR0.

A larger Ohnesorge number corresponds to a greater influence of viscosity. For a rain drop with a radius of
nearly 3mm, the Ohnesorge number is typically 0.002. Put in nondimensional form, the dispersion relation
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reads

s̄ ≡

√
R3
0ρ

(w)

γ
s '

√
1
2

(
k̄2 − k̄4

)
+

9 k̄4

4Re2
− 3 k̄2

2Re
, (1.10)

where Re ≡ 1/Oh. Viscosity thus stabilizes the system and shifts the most amplified wavenumber to a
smaller value. The growth rate remains positive for 0 ≤ k̄ ≤ 1, but viscosity attenuates the instability, while
the most unstable wavenumber k̄m decreases as Re decreases. This is shown in figure 1.3 (right), where
asymptotic theory and exact values obtained numerically agree quite well, especially at low Re.

Another mechanism may alter the Rayleigh-Plateau instability: the presence of azimuthal velocity. The
second part of this thesis is precisely devoted to the influence of an azimuthal velocity profile on the
dynamics of two-phase liquid columns (chapters 9–12). A second problem is also studied: the formation
and time evolution (stretching and instability) of a two-phase vortex ring (chapter 13).



Part I

Instabilities of monophasic helical vortices

6



Chapter2
Introduction to wind turbines and helical
vortices

The world electricity consumption increased from 16.8 GWh in 2008 to 23.4 GWh in 2018. As a conse-
quence, the global energy-related CO2 emissions increased from 29.1 Gt (2008) to 33.5 Gt (2018). As
the supply of fossil fuels is declining every day and CO2 concentration in the atmosphere continues to
increase, governments and companies are investing heavily in sustainable and environmentally friendly
energy sources. As a consequence, renewable energy (wind power, solar power, hydro-power, ...) has
become a research hot-spot in the past decades with its many advantages: first, contrary to fossil fuels
which are often concentrated in a few countries, renewable energy resources exist in a large geographical
area, bringing more energy safety. Second, renewable energies generate less air pollution, as their emission
rates are much lower than for fossil fuels. According to the international renewable energy agency (IRENA),
from 2000 to 2019, world total electricity generation by renewable energy has increased from 3000 TWh
to 7000 TWh, of which wind energy is one of the fastest-growing energy sources. In France, wind energy
provided 5.7 TWh electricity generation in 2008 (out of 80 TWh for all renewable energy sources), which
increased to 34.7 TWh in 2018 (out of 115 TWh). The potential amount of wind energy however is greater.
Much wind energy is wasted because of the time lag between domestic electricity demand and natural
wind peaks. Improvements have been developed in recent years due to new technologies (hydrolysis): wind
energy is used to split water into hydrogen and oxygen in periods of low electricity demand and this process
can be reversed to recover energy in periods of high demand. In this context, more wind energy will be
generated in the coming years, especially with the growing use of off-shore windfarms. Off-shore capacity
represented in 2008 less than 1% of the total wind energy capacity installed over the world. In 2020, it
represented 4.7% at a level of 35 GW (out of 743 GW for the total wind capacity). The annual growth rate
of wind energy capacity worldwide exceeds 10%.

Wind energy technology uses wind turbines to extract wind resources. A wind turbine is a rotor system that
combines several evenly distributed rotating blades. As the wind passes through the turbine, the shape of
the blades generates asymmetric forces at the two blade sides. This effect is similar to what brings lift for
an airplane wing and, in that instance, causes the rotation of the rotor system. Vortices are generated both
at the root (hub vortices) and at the tip of each blade. Tip vortices dominate the flow behind the rotor and

7
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form a system of interlaced helical vortices. According to the distance from the rotor plane, one can define
a near-wake region and a far-wake region. The near wake refers to the vortices close to the rotor, where the
flow is governed by interaction dynamics. The topic of part 1 belongs to this regime. The far-wake is a fully
developed turbulent tail, which can be considered to be widely independent of the near wake, but results
from its spatial evolution: diffusion of the vortex filaments, growth of instabilities, reconnection events,
transition to turbulence... Such a transition is beneficial as it improves wake recovery: in a wind farm, other
wind turbines in the wake are more able to produce energy since the velocity deficit due to the leading
wind turbine weakens on shorter distances, thanks to the mixing which is enhanced with the surrounding
more energetic flow. Such wakes also exist behind helicopters or ship propellers, and can cause serious
problems, such as possible dangerous flight conditions, noise generation, cavitation and material fatigue.
With a better understanding of helical vortices, one may guide the layout of wind turbines in the field,
thus improving the efficiency of wind energy extraction, or a better control strategy for helicopters or ship
propellers.

Experiments on helical vortices
The studies on full-scale wind turbine experiments is limited due to the high cost of wind tunnel experiments
and the difficulty of controlling inflow conditions [Maeda et al., 2016]. Most experiments are obtained
from small-scale models conducted in a ideal environment. Figure 2.1 (a) shows a full size wind tunnel

(a) (b)

Figure 2.1 – (a): Visualisation of helical vortices with smoke in a wind tunnel test [Hand et al., 2001]. (b):
Visualisation of the axial flow within the vortex cores of the helical vortices [Quaranta et al., 2015].

test with a two-bladed turbine [Hand et al., 2001], where the wind comes from the forward direction,
the vortices generated at the tip are visualized by smoke, the helical-similar structure is observed in
the near wake, as well as the turbulence formation at the far end. This flow is almost periodic along
the axis perpendicular to the rotation plane : at each blade, a tip vortex is generated at a given radial
position of core size a taking the geometry of an almost perfect helix of spatial period 2πL which is
called the helix pitch. Figure 2.1 (b) shows a hydraulic channel experiment of a small-size rotor with one
blade [Quaranta et al., 2015, Quaranta et al., 2019]. The flow comes from the left side, and dye is injected
at the bottom near the edge of the rotor disk. The cross-sectional view shows the local vortex structure. In
addition to their rotation around the helical vortex centerline, fluid particles translate along this centerline :
this indicates the existence of an internal jet flow in the vortex core. The local flow velocity within the
core of helical vortices has been measured in different experiments, namely helical tip vortices generated
by a three-bladed rotor [Okulov et al., 2019] and a stationary vortex produced in a hydrodynamic vortex
chamber [Shtork et al., 2020]. In both instances, an axial velocity component is found.

Theory on helical vortices
Theoretical studies on helical vortices go back to the works of [Joukowsky and Vetchinkin, 1929] and
[Levy and Forsdyke, 1928]. The shape of an inviscid pure helical vortex filament remains invariant, as
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recalled by [Kida, 1981] using the local induction approximation. Later, [Kuibin and Okulov, 1998] de-
termined the motion of a helical filament with arbitrary pitches, using the induced velocity provided
by [Hardin, 1982]. The results were extended to multiple helical vortices [Okulov, 2004]. Torsion effects
were characterized by [Ricca, 1994] and shown to generate a dipolar correction at second order. Finite-
core helical vortices were considered by [Fukumoto and Okulov, 2005]: these authors used an asymptotic
expansion of the Biot–Savart law allowing to represent correction terms as a filament of dipoles and
of quadrupoles, correcting the monopole filament solution of Hardin. In the context of vortex rings,
[Fukumoto and Miyazaki, 1991] and [Fukumoto and Moffatt, 2000] showed the influence of such correc-
tions on the ring velocity. Most of these studies do not consider the presence of internal jet in the basic
flow, which leads to a more complex structure of the vortex [Blanco-Rodríguez et al., 2015]. In the past
few decades, theoretical and numerical studies have been conducted on the formation of helical tip vortices
behind blades, which forms the base state of subsequent stability studies explaining their evolution in the
wake and the transition to turbulence.

Present work on helical vortices
The present work numerically investigates the helically symmetric quasi-equilibrium state of tip vortices
with the presence of axial velocity and related instabilities using linearized Navier-Stokes equations. The
numerical code HELIX and the second nonlinear and linearized code HELIKZ were available and have
been exploited by the previous PhD students Benjamin Piton [Piton, 2011] and Can Selçuk [Selçuk, 2016].
During this thesis, more precise methods to generate specific base states in HELIX have been developed,
which enables to obtain helical vortices with prescribed stronger axial velocity. Some useful routines were
developed in HELIKZ for the post-processing of simulation results.

Part1 is organized as follows. The chapter 3 is dedicated to Navier-Stokes equations for general cases using
helical variables and the special case of helical symmetry. The chapter 4 is dedicated to the characterisation
of quasi-equilibrium states of a helical vortex with a jet component inside the core. In chapter 5, we
linearize the governing equations in the neighborhood of the base states, and present the numerical methods
of resolution. Numerical results are presented in chapter 6 for long-wave instability modes and in chapter 7
for short-wave instabilities, namely elliptical modes and curvature modes. When available, a comparison
between theoretical and numerical results is performed.



Chapter3
Equations for helical vortices

Contents
3.1 Governing equations for general flows written with helical variables . . . . . . . . 11
3.2 Governing equations for strict helically symmetric flows . . . . . . . . . . . . . . . 12

3.2.1 Boundary condition at r = Rext for mode m = 0 . . . . . . . . . . . . . . . . . 15
3.2.2 Boundary condition for Ψ (m) at r = Rext for m , 0 . . . . . . . . . . . . . . . 16

The dynamics of vortices found in the near wake of a rotor system such as a wind turbine and a propeller
may be well approximated by a flow with helical symmetry of helix pitch 2πL along a given axis. In
the inertial reference frame fixed with the wind turbine (called the laboratory frame (LB) in the sequel),
such a helical vortex is also characterized by a circulation Γ (resp. an external velocity U∞z ). For a
system with N helical vortices, the total circulation becomes N Γ . The quantity 2πruθ (resp. uz) tends
as r→∞ to N Γ (resp. U∞z ). Experimentally a helical vortex found in the wake of a rotor system is also
characterized by an internal jet component. This feature is important as it is known that for straight vortices,
an internal jet component may change the stability properties, in particular causing the famous swirling
jet instability [Lessen et al., 1974, Mayer and Powell, 1992]. In that framework, the evolution of realistic
helical vortices in the near-wake can be studied in terms of instability of a strict helical base flow consisting
of a quasi-equilibrium state. Let us define these two concepts more precisely.

An equilibrium state is a fixed point of the governing equations, i.e. an exact steady solution of the Navier–
Stokes equations. If one excepts spatially uniform and solid-body rotation flows, an unbounded viscous
flow without external forcing never remains steady, as its kinetic energy is converted into thermal energy
by viscosity. Nevertheless, it is standard to use the classical instability theory for a base solution which is
steady for the Euler equations, but unsteady for the Navier–Stokes equations. In such an instance, for high
Reynolds number, this base flow slowly changes over time by viscous diffusion. This flow will be called a
quasi-equilibrium state. Disturbances superimposed on this quasi-equilibrium state generally evolve on a
much faster scale than the diffusion time. Consequently, it is possible to freeze this time-dependent base
state and to treat its instability in a classical manner.

10
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A strict helical vortex of helix pitch 2πL along a given axis (in the following, this axis is called the z-axis),
means a helically symmetric flow along this axis that is a flow invariant with respect to a rotation of any angle
θs around the z-axis coupled with a translation of Lθs along the same axis (see f.i. [Selçuk et al., 2017b]).
This actually implies that a scalar field G such as the pressure field, depends only on two variables r and
ϕ ≡ θ − z/L, namely:

G = G(r,ϕ, t) (3.1)

and the velocity field is such that

uuu = ur (r,ϕ, t)eeer (θ) +uθ(r,ϕ, t)eeeθ(θ) +uz(r,ϕ, t)eeez (3.2)

where the basis (eeer ,eeeθ ,eeez) is the usual cylindrical coordinate basis. In the following work, we study such a
base state of pitch 2πL and its stability. It is hence worth changing variables from the standard cylindrical
coordinates (r,θ,z) to helical coordinates

r̃ = r, ϕ ≡ θ − z/L, z̃ = z , (3.3)

and writing the Navier-stokes equations in this new coordinate system.

3.1 Governing equations for general flows written with helical vari-
ables

One considers the Navier–Stokes equations in velocity–pressure formulation, where velocity uuu satisfy

∇∇∇ ·uuu = 0 , (3.4)
∂uuu
∂t

+NL = −∇∇∇G+ νVT with VT ≡ ∆uuu and NL ≡ωωω ×uuu , (3.5)

whereωωω stands for vorticity, ν for the kinematic viscosity and the scalar field G for

G ≡
p

ρ
+
1
2
uuu2, (3.6)

ρ for the fluid density and p for the pressure field. Let us change variables from the standard cylindrical
coordinates (r,θ,z) to helical coordinates (r̃ , ϕ, z̃). The first order and second order derivatives with
respect to the cylindrical coordinates in equation (3.5) can be expressed with the helical coordinates using
the relations:

∂
∂r

=
∂
∂r̃
,

∂
∂θ

=
∂
∂ϕ

,
∂
∂z

=
∂
∂z̃
− 1
L
∂
∂ϕ

; (3.7)

∂2

∂r2
=
∂2

∂r̃2
,

∂2

∂θ2
=
∂2

∂ϕ2 ,
∂2

∂z2
=
∂2

∂z̃2
− 2
L
∂2

∂z̃∂ϕ
+

1
L2

∂2

∂ϕ2 . (3.8)

The expression of operators in equation 3.5 changes accordingly. From now on, we only use the coor-
dinates (r̃ ,ϕ, z̃) and for the sake of simplicity, we remove the tilde. The divergence ∇∇∇ ·uuu of velocity
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vector uuu reads:
∇∇∇ ·uuu =

1
r

∂(rur )
∂r

+
1
r
∂uθ
∂ϕ

+
∂uz
∂z
− 1
L
∂uz
∂ϕ

. (3.9)

Similarly, the gradient∇∇∇G of the scalar G, now becomes

∇∇∇G =
(
∂G
∂r
,
1
r
∂G
∂ϕ

,
∂G
∂z
− 1
L
∂G
∂ϕ

)
. (3.10)

The three components of the Laplacian operator∆∆∆uuu of velocity field denoted as VTr ,VTθ ,VTz take the
following form:

VTr ≡
∂
∂r

(
1
r

∂(rur )
∂r

)
+

1
r2
∂2ur
∂ϕ2 +

∂2ur
∂z2

− 2
L
∂2ur
∂z∂ϕ

+
1
L2
∂2ur
∂ϕ2 −

2
r2
∂uθ
∂ϕ

(3.11)

VTθ ≡
∂
∂r

(
1
r

∂(ruθ)
∂r

)
+

1
r2
∂2uθ
∂ϕ2 +

∂2uθ
∂z2

− 2
L
∂2uθ
∂z∂ϕ

+
1
L2
∂2uθ
∂ϕ2 +

2
r2
∂ur
∂ϕ

(3.12)

VTz ≡
1
r
∂
∂r

(
r
∂uz
∂r

)
+

1
r2
∂2uz
∂ϕ2 +

∂2uz
∂z2

− 2
L
∂2uz
∂z∂ϕ

+
1
L2
∂2uz
∂ϕ2 . (3.13)

Equation (3.13) also defines as the Laplacian∆∆∆ of a scalar field in helical coordinates. Taking the curl of
velocity provides the vorticity components expressed with the helical variables

ωr =
1
r
∂uz
∂ϕ

+
1
L
∂uθ
∂ϕ
− ∂uθ
∂z

(3.14)

ωθ =
∂ur
∂z
− 1
L
∂ur
∂ϕ
− ∂uz
∂r

(3.15)

ωz =
1
r
∂
∂r

(r uθ)−
1
r
∂ur
∂ϕ

. (3.16)

Finally, each component of the non-linear part NL is a sum of two elements which are themselves products
of velocity and vorticity components namely

NLr = ωθuz −ωzuθ , (3.17)
NLθ = ωzur −ωruz , (3.18)
NLz = ωruθ −ωθur . (3.19)

3.2 Governing equations for strict helically symmetric flows

For flows with strict helical symmetry of helical pitch 2πL, the velocity components or the scalar field
written in helical coordinates do not depend on z. As a consequence, the derivative of ∂/∂z in the Navier-
Stokes equation (3.4)–(3.5) vanishes. In addition, one changes basis as well: instead of the cylindrical
coordinate basis (eeer ,eeeθ ,eeez), one may use the orthonormal Beltrami basis (eeer ,eeeϕ ,eeeB), where eeeB is directed
along the tangent of helical lines ϕ = cst and eeeϕ = eeeB ×eeer :

eeeB(r,θ) = α(r)
[
eeez +

r
L
eeeθ(θ)

]
, eeeϕ(r,θ) = α(r)

[
eeeθ(θ)−

r
L
eeez

]
(3.20)
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with the normalisation dimensionless factor

α(r) ≡ (1 + r2/L2)−1/2. (3.21)

In this new basis, a helically symmetric velocity field is expressed as:

uuu(r,ϕ, t) = ur (r,ϕ, t)eeer (θ) +uB(r,ϕ, t)eeeB(r,θ) +uϕ(r,ϕ, t)eeeϕ(r,θ) , (3.22)

with the relations
uB = α(uz +

r
L
uθ) , uϕ = α(uθ −

r
L
uz) (3.23)

uθ = α(uϕ +
r
L
uB) , uz = α(uB −

r
L
uϕ) (3.24)

The divergence operator in this new basis takes a simplified form as

∇∇∇ ·uuu =
1
r
∂ (rur )
∂r

+
1
rα

∂uϕ
∂ϕ

. (3.25)

This ensures that a stream function Ψ exists satisfying

rur = ∂ϕΨ , uϕ = −α(r)∂rΨ . (3.26)

As a consequence, only the helical velocity uB and the stream function Ψ are necessary to describe a
helically symmetric velocity field:

uuu(r,ϕ, t) = uB(r,ϕ, t)eeeB +α∇∇∇Ψ (r,ϕ, t)×eeeB . (3.27)

By taking the curl of equation (3.27), one obtains

ωr =
1
r
∂
∂ϕ

(uB
α

)
, ωϕ = −α ∂

∂r

(uB
α

)
, ωB = −LΨ +

2α2

L
uB , (3.28)

where L denotes a generalized Laplace operator:

L(•) ≡ 1
rα
∂r [rα

2∂r (•)] +
1
r2α

∂ϕϕ(•) . (3.29)

It can be checked that uB/α plays for the vorticity field ωωω the role played by Ψ for the velocity field.
Furthermore, the last equation in (3.28) connects these two fields Ψ –uB with ωB. Reversely, if fields ωB
and uB are known, the other flow components are obtained through the above set of equations.

If vorticity is localized in a bounded region of the (r,ϕ) plane — this occurs for instance when one or
several helical vortices are present— it is worth, instead of uB, to use the velocity uH defined by

uH ≡
uB
α
−C∞ , with C∞ ≡

N Γ

2πL
+U∞z . (3.30)

Indeed uH must vanish away from the vortices: velocity uH is bound to be constant away from the vorticity
region since ∂ruH = −ωϕ/α and ∂ϕuH = rωr both vanish, and this constant is zero by construction since
uB/α→ C∞ as r→∞. The dynamical equation for field uH is obtained as follows. First one rewrites the
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Navier–Stokes equation (3.5) introducing the vectorial relation∇∇∇2uuu = −∇∇∇×ωωω :

∂
∂t
uuu +ωωω ×uuu = −∇G − ν∇∇∇×ωωω. (3.31)

The above equation is then projected along the direction eeeB and divided by α yielding an equation for uH :

∂tuH +NLuH = νVTuH , (3.32)

where the viscous term takes the form

VTuH ≡ −
1
α
eeeB · [∇∇∇×ωωω] =

1
α
LuH −

2
L
αωB (3.33)

and the nonlinear term NLuH

NLuH =
1
α
eeeB · [ωωω ×uuu] =

1
α
[ωr uϕ −ωϕ ur ] =

uϕ
αr
∂ϕuH +ur∂ruH .

The scalar function G does not appear in the projection along eeeB since for any helically symmetric scalar
function, the property eeeB ·∇∇∇G = 0 holds. Finally, the nonlinear term can be also rewritten using a Jacobian
J(f ,g)

NLuH = J(uH ,Ψ ) with J(f ,g) ≡ 1
r

(
∂rf ∂ϕg −∂ϕf ∂rg

)
. (3.34)

The dynamical equation for vorticity ωB is obtained first by taking the curl of equation (3.31)

∂
∂t
ωωω+∇∇∇× (ωωω ×uuu) = −ν∇∇∇× (∇∇∇×ωωω) (3.35)

and second by projecting this equation along eeeB. This yields

∂tωB +NLω = νVTω , (3.36)

with the viscous term is

VTω ≡ −eeeB ·∇∇∇× [∇∇∇×ωωω] = L(
ωB

α
)−

(
2α2

L

)2
ωB +

2α2

L
L(uH ) (3.37)

and the nonlinear term

NLω =
1
rα

[∂r (rαωBur ) +∂ϕ(ωBuϕ)] +
2α2

L
(ωruϕ −ωϕur ) +

2α3

L2
(uH +C∞)∂ϕuH . (3.38)

This latter expression can be further simplified using incompressibility to yield

NLω =
1
α
J(αωB,Ψ ) +

2α3

L
J(uH ,Ψ ) +

α3

L2
∂ϕ[(uH +C∞)

2] . (3.39)

As a summary, the two governing equations (3.32) and (3.36) together with

ωB = −LΨ +
2α3

L
(uH +C∞) , (3.40)
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generalise the standard two-dimensional ψ–ω formulation. This Ψ –ωB–uH problem is solved numerically
using the numerical code HELIX. This code uses 2nd-order finite differences along r, Fourier expansions
along ϕ, 2nd-order time discretization and fully implicit viscous terms. Computation details can be found
in [Delbende et al., 2012b].

3.2.1 Boundary condition at r = Rext for mode m = 0

To impose boundary condition on HELIX, we made a slight change. Away from the vortex, the flow in
potential, and thus equation (3.28) reads:

∂r
[
rα2∂r (ψ)

]
= 2

rα4

L
C∞ with C∞ =

N Γ

2πL
+u∞z , (3.41)

which can be written as
∂x(2xα

2∂xψ) = α
4LC∞ with x = r2/L2 . (3.42)

By integrating the above equation, one obtains:

2x
1+ x

∂xψ = − LC∞
(x+1)

+A, that is ∂xψ = −LC∞
2x

+A
1+ x
2x

, (3.43)

where A is a constant to be determined. The zero order of velocity u(0)ϕ must satisfied:

u
(0)
ϕ = −α∂rψ = −α 2r

L2
∂xψ = −A

L

√
1+ x
x

+
C∞√
x(x+1)

(3.44)

then the expression of velocity u(0)B can be obtained through relation:

2
L
αu

(0)
B +

1
rα2

∂
∂r

(
rαu

(0)
ϕ

)
= 0 , (3.45)

leading to
u
(0)
B = αC∞ . (3.46)

Finally the azimuthal velocity reads:

u
(0)
θ = α(uϕ +

r
L
uB) = −

A
r
+C∞α

2(
L
r
+
r
L
) , (3.47)

since it must equal N Γ /(2πr) at infinity, the constant A must equal

A = u∞z L (3.48)

which lead to the final condition of velocity u(0)ϕ at boundary:

u
(0)
ϕ = −u∞z +C∞

Lα
r

(3.49)
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3.2.2 Boundary condition for Ψ (m) at r = Rext for m , 0

For all modes m , 0, in the potential region, the stream function Ψ (m) satisfied L(m)(Ψ (m)) = 0, where

L(m)Ψ (m) =
1
rα

∂
∂r

[
rα2 ∂

∂r
(Ψ (m))

]
− m

2

αr2
Ψ (m) (3.50)

Concerning the outer boundary condition at boundary r = Rext, one consider three cases: r/L� 1, r/L ∼ 1
and r/L� 1.

In the case r/L� 1, one replaces the operator α with L/r into equation (3.50):

L(m)Ψ (m) =
L
r
(
∂2Ψ (m)

∂r2
− 1
r
∂Ψ (m)

∂r
− m

2

L2
Ψ (m)) = 0 (3.51)

the asymptotic behaviour of streamfunction Ψ (m) can be written in form:

r̂2
∂2Ψ (m)

∂r̂2
− r̂ ∂Ψ

(m)

∂r̂
− r̂2Ψ (m) = 0 (3.52)

with
r̂ = kr , k = |m

L
|

The solution of equation (3.52) reads:

Ψ (m)(r̂) = Ar̂J1(ir̂) +Br̂Y1(−ir̂) (3.53)

where J and Y is the Bessel function of the first and second kind. This solution, with the property of Bessel
function, is equivalent to:

Ψ (m)(r̂) = Ai r̂I1(r̂) +Br̂(I1(r̂)−
2i
π
K1(r̂)) (3.54)

where A, B are two unknown constants, and I , K denotes the modified Bessel function of first and second
kind. Since the solution must decrease at infinity, the asymptotic behaviour of streamfunction with finite L
reads:

Ψ (m)(r̂) = C r̂K1(r̂) (3.55)

with its derivative along r:
∂r [Ψ

(m)(r̂)] = Ck (K1(r̂) + r̂∂r̂ [K1(r̂)]) (3.56)

where the derivative of Bessel function equals:

∂r̂ [K1(r̂)] = −K0(r̂)−
1
r̂
K1(r̂) (3.57)

one has

∂r [Ψ
(m)(r̂)] = −Ψ

(m)(r̂)
K1(r̂)

kK0(r̂) (3.58)

then the boundary condition on Ψ (m) is imposed through a Robin condition:

∂r [Ψ
(m)(Rext)] = −|m|CmΨ (m)(Rext) with Cm =

1
|L|
K0(|m/L|Rext)
K1(|m/L|Rext)

(3.59)
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m=0

m=1

m=2

Figure 3.1 – Comparison between potential flow profile (line) and DNS results from HELIX (dashed line)
for three velocity components in mode m ∈ (0,2), for base state with L = 0.7, a = 0.15, W0 = 0.2 and
Rext = 2. The potential flow profile is obtained by the relations mentioned in the appendix B.2.

This condition of finite L replaces the previous condition used in [Delbende et al., 2012b] for finite L. For
the case r/L� 1, or L = ∞ as the notion used in [Delbende et al., 2012b] , the boundary condition is
obtained by replacing α with 1 in equation (3.50), which can be expressed as:

r2
∂2Ψ (m)

∂r2
+ r
∂Ψ (m)

∂r
−m2Ψ (m) = 0 , (3.60)

The solution of Ψ (m) is given by

Ψ (m)(r̂) =
Am
rm

+Bmr
m , (3.61)

The requirement that the solution remains finite imposes Bm = 0 since one needs a decaying function. The
unknown coefficients Am is eliminated using the same method, such that:

∂r [Ψ
(m)(Rext)] = −|m|CmΨ (m)(Rext) with Cm =

1
Rext

(3.62)
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For axisymmetric vortex rings, a family of steady Euler flows can be found in classical text
books [Batchelor, 1967]. It is given in terms of cylindrical coordinates (r,θ,z), by the velocity com-
ponents

ur (r,z, t) = −
1
r
∂zΨS, uθ = 0, uz(r,z, t) =

1
r
∂rΨS, (4.1)

where the streamfunction ΨS(r,z) satisfies the nonlinear partial differential equation(
∂rr −

1
r
∂r +∂zz

)
ΨS(r,z) = −r2F0(ΨS) , (4.2)

with F0(ΨS) an arbitrary function. The associated vorticity components are given by

(ωr ,ωθ(r,z, t),ωz) = (0, rF0(ΨS),0) . (4.3)

18



CHAPTER 4. Quasi-equilibrium base states for helical vortices with swirl 19

An example is the spherical Hill vortex [Batchelor, 1967], which is an exact solution of the Euler equations
to model a vortex ring,. For such a vortex ring family, the azimuthal velocity component is zero but such
a component can be introduced in the core along the vortex axis: the new family of vortex rings is then
characterized by velocity components

ur (r,z, t) = −
1
r
∂zΨS , uθ =

1
r
K(ΨS) , uz(r,z, t) =

1
r
∂rΨS (4.4)

and by vorticity components

ωθ = rF(ΨS) +
1
2r

dK2

dΨS
, ωr =ωz = 0 (4.5)

where F(ΨS) and K(ΨS) are two arbitrary functions. Given these two functions, an exact Euler equilibrium
now satisfies the nonlinear partial differential equation(

∂rr −
1
r
∂r +∂zz

)
ΨS(r,z) = −r2F(ΨS)−

1
2
dK2

dΨS
(ΨS) . (4.6)

For instance, the family of Hicks solution [Hicks, 1884] is an extension of the Hill vortex with internal jet.

As mentioned in the previous chapter, experiments show that helical vortices in a rotor system are also
characterized by an internal jet. In the first section of this chapter, our purpose is to find, for helical vortices,
relations similar to those found for vortex rings that is to derive relations between vorticity, velocity and
streamfunction satisfied by Euler equilibria of helical solutions with a jet velocity inside the core. This
family of solutions of the Euler and Navier-Stokes equations contains the case of a single helical vortex with
an axial flow component along the vortex core. Through Navier–Stokes simulations, it is then shown that
these relations hold for quasi-steady viscous solutions and become independent of the Reynolds number
when sufficiently large. In addition we elaborate a procedure which generates a quasi-equilibrium with
prescribed characteristics (circulation, helix radius, helix pitch, vortex core size, swirl level). In section 4.4,
this state is also compared to results of an asymptotic theory which provides the field structure for a small
self-strain parameter. Finally in section 4.6, the effect of the intensity of the initial axial flow is discussed :
we illustrate how a strong axial flow jeopardises such an evolution towards a quasi-equilibrium. This work
has been accepted for publication in the Journal of Fluid Mechanics.

In the following, we use three inertial reference frames and one non-inertial reference frame:

• The laboratory frame (LB) in which the fluid velocity at infinity equals U∞z and the vortex structure
rotates with the angular velocity Ω0 along the z-axis.

• The frame (L0) translating along the z-axis at velocity U∞z eeez with respect to the frame (LB). In this
frame, the fluid velocity at infinity vanishes and the vortex structure rotates with the angular velocity
Ω0 +U∞z /L along the z-axis.

• The inertial frame (T) translating along the z-axis at velocity U0eeez ≡ −Ω0Leeez with respect to the
frame (LB). In this frame, the fluid velocity at infinity equals U∞(T)

z =U∞z −U0 =U∞z +Ω0L and
the vorticity structure is steady.

• The non-inertial frame (R) which rotates with the angular velocityΩ0 with respect to frame (LB).
In this frame, the vorticity structure is also steady.
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4.1 A family of inviscid equilibria of helical vortices with swirl

Let us look for the conditions satisfied by an Euler equilibrium solution which is helically symmetric. Such
an inviscid solution is not steady in the (LB) reference frame and is governed by equations (3.32) and (3.36)
when the viscous terms (3.33) and (3.37) are neglected:

∂tuH + J(uH ,Ψ ) = 0 , (4.7)

and
∂t(αωB) + J(αωB,Ψ ) +

2α4

L
J(uH ,Ψ ) +

α4

L2
∂ϕ

[
(uH +C∞)

2
]
= 0 . (4.8)

In the reference frame (T), this inviscid state becomes steady and characterized by the following fields
u
(T)
B = uB −αU0, U0 ≡ −Ω0L

u
(T)
ϕ = uϕ +αU0r/L

u
(T)
r = ur

. (4.9)

Since z(T) = z −U0t, the variable ϕ(T) associated to the translating frame (T) is defined by

ϕ(T) ≡ θ − z
(T)

L
= θ − z

L
+
U0t
L

= ϕ +
U0t
L
.

Since U∞(T)
z =U∞z −U0, neither quantity ωB nor quantity uH depend on the reference frame, as

uH
(T) =

u
(T)
B

α
−
(
U
∞(T)
z +

Γ

2πL

)
= uH .

By contrast, the streamfunction is modified according to

Ψ (T) = Ψ − U0

L
r2

2
= Ψ +

1
2
Ω0r

2 , (4.10)

which imposes

J(uH ,Ψ ) = J(uH ,Ψ
(T)) +

U0

L
J(uH ,

1
2
r2) = J(uH ,Ψ

(T))− U0

L
∂ϕ(T)uH .

Using the identity
∂tuH (r,ϕ, t) =

(
∂t +

U0

L
∂ϕ(T)

)
uH (r,ϕ

(T), t),

equation (4.7), re-written for a steady state (∂t = 0) in the translating frame, becomes

J(uH ,Ψ
(T)) = 0 . (4.11)

As a consequence, velocity uH is a constant on any streamline Ψ (T) = cst.
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Similarly, equation (4.8) for the same steady state yields

J(αωB,Ψ
(T)) +

α4

L2
∂ϕ(T) [(uH +C)2] = 0 , with C ≡ C∞ −U0 . (4.12)

Note that uH +C = u(T)B /α. Equation (4.11) imposes

J(α2(uH +C),Ψ (T)) +
2α4

L2
(uH +C)∂ϕ(T)Ψ

(T) = 0 ,

hence
− d(uH +C)

dΨ (T)
J(α2(uH +C),Ψ (T))− α

4

L2
∂ϕ(T) [(uH +C)2] = 0 . (4.13)

Due to equation (4.11), one can also derive:

d(uH +C)

dΨ (T)
J(α2(uH +C),Ψ (T)) + J

(
−α

2

2
d(uH +C)2

dΨ (T)
,Ψ (T)

)
= −α2(uH +C)J

(
d(uH +C)

dΨ (T)
,Ψ (T)

)
= 0 . (4.14)

Summing relations (4.12), (4.13) and (4.14) yields

J($,Ψ (T)) = 0 , where $ ≡ αωB −
α2

2
d(uH +C)2

dΨ (T)
, (4.15)

which indicates that quantity $ is a constant on any streamline Ψ (T) = cst. Equations (4.15) and (4.11)
show that, in the reference frame (T) in which the flow is steady, there exist two functions f and g such that

ωB =
1
α
f (Ψ (T)) +

α
2

dg2

dΨ (T)
,
u
(T)
B

α
= uH +C = g(Ψ (T)) . (4.16)

The above relations for helical equilibria extend the relation (4.5) valid for axisymmetric equilibria of the
Euler equations, which is recovered in the limit L→ 0, since then α ∼ 1/r and eeeB→ eeeθ .

In the following, we show that such a family can be obtained as quasi-equilibria of the Navier–Stokes
equations at large Reynolds number. In the computations, we set the fluid velocity at infinity to be zero
U∞z = 0 : the laboratory frame (LB) and the frame (L0) are thus identical. This removes one parameter
which has no impact on the dynamics because of Galilean invariance. From now on, we only consider the
case with single helical vortex, that is N = 1.

4.2 From Euler equilibria to viscous quasi-equilibria

Let us consider an initial 2D vortex with an elliptical shape as in figure 4.1. The initial condition reads:

ωz(xxx,0) =
Γ

πa1a2
exp

[
−x

2

a21
−
y2

a22

]
with a1 = a

√
1− δ , a2 = a

√
1+ δ . (4.17)
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Figure 4.1 – Time evolution of a 2D elliptic vortex, with Re2D = Γ /(2πν) = 104. Contours of ω/ωmax at
(a) t = 0, (b) t = 40, (c) t = 80, (d) t = 130, (e) t = 220, (f) t = 300, with the black dashed circle indicates
one unit radius.

The two-dimensional DNS simulation atRe2D = Γ /(2πν) = 104 shows a two-stage process. First a transient
called the relaxation stage is observed, where filaments form and decay towards an axisymmetric state.
This axisymmetric flow profile is close to an Euler equilibrium profile. Second the velocity profile evolves
approaching a typical Gaussian profile on a slow diffusion time scale. More generally, a two-dimensional
initial flow with three velocity components evolves towards a viscous Batchelor vortex [Rossi, 2000].
Furthermore, when an external potential flow is imposed on top of the two-dimensional vortex, the initial
vortex evolves by emitting filaments during a transient stage, and rapidly reaches a quasi-equilibrium state.
This state is now characterized by a slightly elliptic shape due to presence of the external strain, which is small
with respect to the characteristic vorticity of the vortex [Jiménez et al., 1996, Le Dizès and Verga, 2002].

Let us come back to viscous helical quasi-steady states. For large pitch L, the dynamics of each transversal
section of a helical vortex can be approximated by a two-dimensional vortex with three velocity components
subjected to a strain originating from the remaining part of the vortex. It is thus reasonable to assume that a
similar process occurs for a helical vortex at finite L. The potential flow deforming the vortex core takes its
origin from the three-dimensional geometry of the vortex itself: after a rapid relaxation process, a helical
vortex with thin core evolves towards a generic quasi-equilibrium helical state. This solution approaches a
slightly deformed Gaussian profile. The present section describes the relaxation process, starting from a
helically axisymmetric vortex, and checks that a quasi-equilibrium is indeed reached after a transient.

4.2.1 Building an appropriate initial flow

In this subsection, we define an initial flow which is helically symmetric along the z-direction, of spatial
period 2πL and characterized by a vorticity fieldωωω which tends at least exponentially to zero away from a
given helical line. Let us first define this helical line. As illustrated in figure 4.2, the line intersects the
z = 0 plane (thereafter called Π0) at a point A? defined by its cylindrical coordinates rA? and θA? , The
angle is set to θA? = 0 without loss of generality. This helical line is thus located at

xxx(θs) = rA?eeer (θs) +Lθseeez , θs ∈ R . (4.18)
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Figure 4.2 – Geometry for building the initial condition.

The plane perpendicular to this helical line at point A? is called the planeΠ?
⊥. The unit vector eeeBA? defines

the upward normal vector to plane Π?
⊥:

eeeBA? = α(rA? )
[
eeez +

rA?

L
eeeθ(0)

]
.

In the plane Π?
⊥, a Cartesian basis

(
eeerA? ,eeeϕA?

)
is defined as well

eeerA? ≡ eeer (0) , eeeϕA?
≡ α(rA? )

[
eeeθ(0)−

rA?

L
eeez

]
,

associated with local polar coordinates (ρ,ψ) centered at point A? with local basis
(
eeeρ,eeeψ

)
:

eeeρ = cosψ eeerA? + sinψ eeeϕA?
, eeeψ = cosψ eeeϕA?

− sinψ eeerA? .

Since the initial condition is assumed to be a thin-core vortex along the helical line: one chooses a compact
profile for ωB(ρ,ψ) and for uH (ρ,ψ) around point A? . This ensures that ωϕ and ωr are also compact. For
instance, one assumes axisymmetric profiles similar to a local Batchelor vortex:

ωB(ρ) = ω
?
B exp(−

ρ2

a?2
) , uH (ρ) = u

?
H exp(−

ρ2

a?2
) , (4.19)

From these analytical profiles in the planeΠ?
⊥ as well as the values of the helical radius rA? and pitch L,

it is possible to compute the initial fields ωB(r,ϕ) and uH (r,ϕ) on theΠ0 plane used in simulations. To
do so, we establish the connections between (r,ϕ) given by a point in Π0 and the polar radius ρ of the
corresponding point inΠ?

⊥, using invariances along the lines ϕ = θ − z/L = cst (details on such procedure
can be found in [Selçuk et al., 2017b], appendix A).

We simulate two initial conditions called case A and B. Case A is characterized by a circulation Γ = 1, a
helical radius rA? = 1, a reduced helical pitch L = 0.3, an initial core size a? = 0.1, an initial axial flow
intensity u?HrA? /Γ = 1. Using some conservation relations (see section 4.3.3), this yields (using equation
(4.44))ω?B r2A? /Γ = 32.68. On theΠ?

⊥ plane, the fields are axisymmetric and Gaussian (figure 4.3a) whereas
in the Π0 plane, they take a bean-like shape (figure 4.3b).
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Figure 4.3 – Contours of ωB/ωBmax for case A (see text) (a) in plane Π?
⊥ and (b) in plane Π0. The dashed

circle in graph (a) represents the initial vortex core size ρ = a? . Contour levels Cp = ωB/ωBmax with√
− log(Cp) = 1

10p
√
log(103) and p = 1, · · · ,10.

For the second simulation (case B), the jet component is initially more intense: as before Γ = 1, rA? = 1 but
the initial axial flow intensity is larger u?HrA? /Γ = 2. In addition, the reduced helical pitch is set to L = 1.5
and the initial core size to a? = 0.2. This yields ω?B r2A? /Γ = 9.52.

4.2.2 Reaching a viscous helical quasi-equilibrium state

Starting from the previous initial condition, the Navier–Stokes equations with helical symmetry are
integrated over time. This is performed by the numerical code Helix using a polar grid in a circular
sub-domain of plane Π0 (see the generalized Ψ –ωB–uH formulation described in section 3.2). In the code
HELIX, we define dimensionless units, based on the characteristic length [L] = rA? and the characteristic
time [T ] = r2A? /Γ leading to the Reynolds number

ReDNS =
Γ

ν
(4.20)

and the dimensionless equations
∂tωB +NLω =

1
ReDNS

VTω , (4.21)

∂tuH +NLuH =
1

ReDNS
VTuH , (4.22)

ωB = −LΨ +
2α3

L
(uH +C∞). (4.23)

For case A, the DNS Reynolds number is set to ReDNS ≡ Γ /ν = 2π104. It is observed that filaments are
emitted during the early relaxation stage (see t = 4 at figures 4.4–4.5), and then quickly dissipate (t = 10).
After this stage the vortex becomes quasi-steady for instance at t = 20. Note that the core of the helical
vortex tends to an elliptical shape. This is due to the strain field induced by the helical geometry, through
vortex curvature and interaction with the other turns of the helical vortex. Such a deformation is the cause
of instabilities (see following chapters concerning instability).
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Figure 4.4 – Case A at t = 4, 10 and 20: contours of ωB/ωBmax(t) in plane Π⊥(t). Contours levels are as
defined in figure 4.3.
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Figure 4.5 – Case A at t = 0, 4, 10 and 20: contours of uH /uHmax in plane Π⊥(t). Contours levels are
defined in the same way as in figure 4.3 for ωB/ωBmax.

We now check how the DNS solution approaches an Euler equilibrium using conditions (4.16). First, we
determine the angular velocity Ω0(t) along the z-axis by the best correlation of the vorticity field between
successive time steps. This provides the translating reference frame : velocity U0(t) = −Ω0L. Second, the
streamfunction Ψ (T) in the translating frame is computed using (4.10). From now on, we only consider
streamfunction Ψ (T) which will be simply denoted Ψ . Figure 4.6a displays scatterplots of uH versus Ψ at
several times for case A. As time increases, it is observed that the points converge to a single continuous
curve, supporting the existence of the function g such that uH +C = g(Ψ ).

The second condition (4.16) requires the derivative duH /dΨ . This quantity is a priori defined only if a
steady state is reached. The following procedure however allows us to estimate this quantity during the
whole time evolution, based on averages and least square interpolation. This quantity converges to the exact
value when the quasi-steady state is reached. More specifically, we discretize the Ψ -axis in NΨ intervals of
length ∆Ψ between the minimum and the maximum value of Ψ . In each interval [Ψi − 1

2∆Ψ ,Ψi +
1
2∆Ψ ],

there is a certain number Ki of points (Ψ (k),u
(k)
H ) indexed by k. The mean value αi of u

(k)
H and the estimate

βi of duH /dΨ at point Ψi are such that

Kiαi + βi
∑
k

(Ψ (k) −Ψi) =
∑
k

u
(k)
H (4.24)

αi
∑
k

(Ψ (k) −Ψi) + βi
∑
k

(Ψ (k) −Ψi)2 =
∑
k

[u(k)H (Ψ (k) −Ψi)] (4.25)
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where it has been assumed that u(k)H can be estimated with the linear interpolation:

u
(k)
H = αi + βi(Ψ

(k) −Ψi) . (4.26)

Quantities duH /dΨ are computed using a linear interpolation along the variable Ψ as follows:

duH
dΨT

(Ψ (k)) = βi +
{
βi+1 − βi
βi − βi−1

}
Ψ (k) −Ψi

∆Ψ

{
if Ψ (k) > Ψi
if Ψ (k) < Ψi

. (4.27)

For the first and the last half-intervals, one uses an extrapolation from the neighbouring half-interval.

In figure 4.6b, scatterplots of quantity $ versus Ψ are found to support the existence of a function f such
that $ = f (Ψ ). For case A, however, quantity αωB dominates the value $ (see figure 4.6c) : when the jet

(a) (b) (c)

Figure 4.6 – Case A: scatterplots at times t = 0 (top), t = 2 (middle) and t = 20 (bottom): (a) uH vs Ψ
(the red curve is an estimate of g(Ψ ) obtained via formula (4.26)); (b) $ vs Ψ ; (c) αωB (black dots) and
α2d(uH +C)2/dΨ (blue dots) vs Ψ . Note that only grid points such that ωB/ωBmax > 10−3 have been
represented.

component is weak, quantity $ almost equals αωB, which visually becomes a function of Ψ .

We present a second simulation (case B) where the jet component is initially more intense. The Reynolds
number is set toReDNS = 2π103. As time evolves, velocity uH converges to a function ofΨ (see figures 4.7a
and b). For case B, partial quantities αωB and α2d(uH +C)2/dΨ have same orders of magnitude (see
figure 4.7c) so that the corresponding points remain scattered even at late times. Quantity $ = αωB −
α2d(uH +C)2/dΨ however clearly converges towards a function ofΨ (see figure 4.7b). This fully confirms
the new finding expressed by relations (4.16).

Figure 4.8 represents the relation reached in the quasi-equilibrium state between $ and uH . When axial
vorticity dominates over axial velocity (figure 4.8a) there is a linear relationship between $ ≈ αωB and
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Figure 4.7 – Same as figure 4.6 but for case B (see text) plotted at times t = 0 (top), t = 50 (middle) and
t = 100 (bottom).

uH [Selçuk et al., 2017a]. When both effects have comparable orders of magnitude, this relation becomes
highly nonlinear (figure 4.8b). Finding an analytical expression for such relations remains an open issue.

4.3 Generating a quasi-equilibrium helical vortex with prescribed
parameter values

In this section, a procedure is introduced to generate by DNS a flow with prescribed parameter values.
This is an alternative to the method employed by [Brynjell-Rahkola and Henningson, 2020]. The goal is
to generate a quasi-equilibrium to be used as a base flow in an instability study. Hence we would like
to prescribe the final state obtained through the DNS rather than the initial state (4.19) which is not a
quasi-equilibrium. In section 4.2.1, however, the viscous quasi-equilibrium reached after certain relaxation
time depends on five dimensional parameters used to initiate the simulation namely circulation Γ , helical
radius rA? , helical pitch 2πL, vortex core size a? , axial flow intensity u?H . The vorticity amplitude ω?B is a
function of circulation Γ and velocity u?H . To implement this procedure, we first need to characterize the
final state, that is to define five parameters based on the final state. These are defined in section 4.3.1.

4.3.1 Determination of the parameters characterizing the final helical vortex

The first parameter is the helical radius rA of centre A of the vortex. In order to characterize the centre of
the vortex, the most convenient way is to look for the point A where Ψ reaches a maximum in the plane
Π0 (for most single helical vortices, this point is unique). One then defines the associated planeΠ⊥ in a
similar way asΠ?

⊥ was defined from A? (see section 4.2.1 and figure 4.2). Since the field Ψ depends on
(r,ϕ), there is a one-to-one relation between its values in the planeΠ⊥ and in the planeΠ0. Consequently,
it also reaches a maximum in the Π⊥ plane at point A. Other properties can be useful to locate this central
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Figure 4.8 – Quantity $ as a function of uH at quasi-equilibrium for (a) case A (see figure 4.6) and (b)
case B (see figure 4.7).

αωB uH Ψ

case A 1.008 1.008 1.008
case B 0.983 1.015 1.015

Table 4.1 – Radial location of the maximum for different quantities, as measured in the DNS for cases A
and B.

point. Since rur = ∂ϕΨ and uϕ = −α(r)∂rΨ , velocity at point A is such that ur = uϕ = 0 and is thus
tangent to a helical line, i.e. uuu(A) = uBeeeB. Furthermore, if the solution is a quasi-steady equilibrium, then
relation uH +C = g(Ψ ) holds and necessarily, velocity uH has an extremum at point A since at this point

∂ϕuH =
duH
dΨ

∂ϕΨ = 0, ∂ruH =
duH
dΨ

∂rΨ = 0 .

Since ∂ϕuH = rωr and ∂ruH = −ωϕ/α, vorticity components ωr and ωϕ hence vanishes at point A and
the vorticity vector is thus tangent to a helical line, i.e. ωωω(A) = ωBeeeB. Finally note that the points where uH
and αωB reach an extremum generally do not coincide. Only in the particular case when uH = 0, quantity
αωB is also a function of Ψ and thus reaches an extremum at point A. This is illustrated in table 4.1: for
case A with relatively small axial flow, these radial locations differ by less than 0.1%, while they differ by
3% for case B because of the larger axial flow. The angle θA is not dynamically pertinent and is set to zero
for the base state that is θA = 0. A local Cartesian basis (eeeb,eeer (A),eeeϕ(A)) is defined onΠ⊥ where the unit
vector eeeb ≡ eeeBA is the upward normal vector to plane Π⊥ and eeeϕ(A) ≡ eeeBA ×eeer (A).

The four remaining parameters that define the final helical vortex, are the helical pitch 2πL and circulation
Γ is given by

Γ ≡
"

Π0

ωz rdrdθ . (4.28)

Both parameters are constant during the simulations. The core size could be obtained through an integral
in the plane Π⊥ associated with point A:

a2 ≡ 1
Γ

"
Π⊥

ωωω ·eeeBA (xxx −xxxA)
2 dS⊥ (4.29)
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where eeeBA ≡ eeeB(A) and xxxA ≡ xxx(A). But in practice, the core size is obtained by fittingωωω ·eeeBA on Π⊥ plane
by:

ωωω ·eeeBA =
Γ

πa2
exp(−

ρ2

a2
) . (4.30)

The last parameter is the axial velocity parameter

WB ≡
α2
A

πa2

"
Π0

uHdS with αA ≡ α(rA) . (4.31)

Note that from the reduced pitch L and helical radius rA, the curvature κ of the helix at r = rA is given by

κ ≡ rA
r2A +L2

= α2
A
rA
L2
, with α2

A ≡ α
2(rA) =

L2

r2A +L2
, (4.32)

and its torsion τ by
τ ≡ L

r2A +L2
. (4.33)

If profiles are those of a thin curved Batchelor vortex (4.19), the core size a is almost equal to a? and the
quantityWB is close to the amplitude of helical velocity αAu?H . Indeed, for a thin core, dS⊥ ≈ αdS ≈ αAdS
and

WB ≈
αA
πa2

"
Π⊥

uHdS⊥ =
αA
πa2

u?H2π
∫ ∞
0

e−(ρ/a
? )2ρdρ =

αA
πa2

u?Hπa
?2 ≈ αAu?H . (4.34)

4.3.2 Relations for some global quantities in viscous helical flows

For a viscous flow periodic along z of period 2πL and characterized by a compact vorticity field, the
circulation Γ and the axial momentum per unit length Pz given by

Γ =
"

Π0

ωz rdrdθ , Pz =
1

2π|L|

(
ρ

2

$
V
xxx ×ωωωdV

)
·eeez =

ρ

4π|L|

$
V
rωθ dV , (4.35)

are two global viscous invariants. In (4.35), Π0 denotes the plane z = 0 and V the volume defined by
z ∈ [−π|L|,π|L|]. For such periodic flows, the axial angular momentum per unit length

Lz = −
ρ

4π|L|

$
V
xxx2ωzdV

is not an invariant but evolves according to

dLz
dt

= −2ρΓ ν . (4.36)

These conservation laws applied to viscous helical flows [Selçuk et al., 2017a] provide relations between
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the following unsteady quantities

H1 ≡
"

Π0

αωBdS , H2 ≡
"

Π0

α4uH dS , H3 ≡
"

Π0

r2αωB dS , H4 ≡
"

Π0

uH dS .

Since ωz = α(ωB − rωϕ/L) for helical flows, the conservation circulation Γ yields

Γ =
"

Π0

αωBdS +
"

Π0

α2r
L
∂uH
∂r

dS .

Integrating by parts the last integral leads to

Γ =H1(t)−
2
L
H2(t) . (4.37)

Similarly the conservation of axial momentum per unit length Pz, implies for helical flows that

Pz =
ρ

4π|L|

∫ π|L|

−π|L|

["
Π0

rωθ rdrdθ
]
dz =

ρ

2

"
Π0

r2ωθ drdθ .

Introducing ωθ = α(ωϕ + r
LωB) and integrating by parts, yields

Pz
ρ

=
1
2L
H3(t) +H2(t) . (4.38)

Finally, helical symmetry imposes$
V
xxx2ωzdV =

$
V
(z2 + r2)ωzdV =

2Γ (π|L|)3

3
+2π|L|

"
Π0

r2ωzdS .

Upon introducing ωz = α(ωB − rωϕ/L), one gets"
Π0

r2ωzdS =
"

Π0

αr2ωBdS +
"

Π0

α2r3

L
∂uH
∂r

dS

=H3(t) +
"

Π0

rL(1−α2)
∂uH
∂r

dS .

Integrating by parts the last integral yields

Lz(t) = −
ρ

4π|L|

$
V
xxx2ωzdV = −

ρΓ (πL)2

6
−LPz + ρLH4(t) .

Since circulation Γ and axial momentum per unit length Pz are global viscous invariants for a compact vor-
ticity field and that the axial angular momentum per unit length Lz(t) evolves according to equation (4.36),
one gets

dH4

dt
= −2Γ

L
ν or equivalently H4(t) =H4(0)−

2Γ
L
νt . (4.39)
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4.3.3 Iterative algorithm to obtain the prescribed base states

All variables are put in dimensionless form using as characteristic dimensional length scale [L] = rA and
time scale [T ] = r2A/Γ of the final state. Since the dimensionless radius at point A and dimensionless
circulation are equal to one, the quasi-equilibrium state depends only on two dimensionless lengths L/rA
and a/rA, and a third dimensionless number

W̄B ≡
2πaWB

Γ
. (4.40)

This inverse swirl number W̄B is the ratio of the axial velocity parameterWB and the typical azimuthal
velocity in the core Γ /(2πa). In addition the dimensionless curvature can be helpful in comparing the DNS
results with the theory

ε = κa = α2
A
rA
L
a
L
. (4.41)

From now on in this section, all variables are assumed dimensionless. The algorithm presented below
converges towards a base flow configuration denoted by [L; a; W̄ B] when the prescribed dimensionless
parameters are L, a, W̄B, with Γ = 1 and rA = 1. The main building block of this procedure is based on a
viscous simulation towards the quasi-equilibrium. To do so we select two values: the Reynolds number
ReDNS ≡ Γ /ν and a dimensionless simulation time denoted as Tsim. In the pure two-dimensional framework
L =∞, it is known that the characteristic time necessary for the vortex with a Lamb-Oseen type profile to
reach a quasi-equilibrium is of order a2Re1/3DNS with a pre-factor of order 40 [Bernoff and Lingevitch, 1994].
This pre-factor changes with the vortex profile considered. We here select the final simulation time
Tsim ∼ 60a2Re1/3DNS and, in practice, check a posteriori that it is large enough to reach a quasi-equilibrium.
For ReDNS = 2π104, for instance, we selected Tsim = 20,40,100 for a = 0.11,0.174 and 0.3 respectively.

The reduced pitch L and circulation Γ of the initial condition are identical to those of the quasi-equilibrium
we are looking for, that is the prescribed final state values L and Γ = 1. By contrast, initial parameters rA? ,
a? differ from quantities rA = 1 and a of the prescribed final state. Similarly u?H differs fromWB/αA. This
is why an iterative procedure determines these three unknown dimensionless initial parameters rA? , a? and
u?H . First, we select guess values for a? and rA? , so that we link the two initial parameters u?H and ω?B to
parameters a, L, and W̄B. This connection is obtained via the two “conservation" laws (4.37) and (4.39)
obtained in section 4.3.2 written in dimensionless form

H1(t)−
2
L
H2(t) = 1 , H4(t) =H4(0)−

2t
LRe

, (4.42)

where
H1 ≡

"
Π0

αωBdS , H2 ≡
"

Π0

α4uH dS and H4 ≡
"

Π0

uH dS . (4.43)

Let us introduce the quantities

I?p (a
? , rA? ,L) ≡

"
Π0

αp exp(−(ρ/a?)2) rdrdθ

with p positive integers. Such quantities depend on L via the quantity ρ, itself depending on r, θ, rA? and
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L (see figure 4.2). Inserting the initial condition (4.19) into (4.42) allows one to write

ω?B I
?
1 −

2
L̄
u?HI

?
4 = 1 , u?HI

?
0 =H4(Tsim) +

2Tsim
L̄Re

. (4.44)

where the value ofH4(Tsim) is evaluated from the prescribed parameters a, W̄B and L with

H4(Tsim) =
1
2
W̄Bā(1 + L̄

−2). (4.45)

Introducing relation (4.40) leads to determine u?H and ω?B :

u?H =
1
I?0

[
W̄Bā

2α2
A
+
2Tsim
L̄Re

]
, ω?B =

1
I?1

(
1+

2
L̄
u?HI

?
4

)
. (4.46)

After a simulation from t = 0 to Tsim, we obtain a quasi-equilibrium state with same circulation and same
H4 as the reference state at Tsim. Of course, since a? and r?A have only been guessed at this stage, the
DNS initiated by the above procedure does not lead at once to the prescribed values of a and rA = 1 at
t = Tsim. We have to use a standard iterative procedure to search for the proper pair (a? , rA? ) leading, after
a simulation time of duration Tsim, to the prescribed values (a,1), with a typical tolerance of 10−4.

4.3.4 Checking the effect of Reynolds number
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Figure 4.9 – Relations (a) uH = g(Ψ ) − C and (b) $ = f (Ψ ) for quasi-equilibria obtained at different
Reynolds numbers: ReDNS = π103 (red dots, Tsim = 4), ReDNS = 2π103 (blue dots, Tsim = 4), ReDNS =
π104 (magenta dots, Tsim = 10) and ReDNS = 2π104 (black solid line, Tsim = 20). The dimensionless
parameters of these states are L = 0.3, a = 0.11 and W̄B = 0.2.

The ability to prescribe the final state parameters presented in the previous section makes it possible to use
several distinct Reynolds numbers to try to achieve the same quasi-equilibrium state. Figure 4.9 shows
the influence of Re = ReDNS/(2π) on the two curves uH = g(Ψ ) and $ = f (Ψ ) obtained numerically. The
cases ReDNS = π104 and 2π104 cannot be visually distinguished, yet at lower Reynolds numbers (see
ReDNS = 2π103), the equilibrium curves shift more significantly as the value of Ψmax also decreases. In
the following, we always will adopt a sufficiently large Reynolds number (typically ReDNS = 2π104) to
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make sure that the quasi-equilibrium state obtained is Re-independent.

4.4 Asymptotic theory

This section discusses asymptotic theory [Moore and Saffman, 1972, Callegari and Ting, 1978] in the con-
text of helical vortices. These techniques are valid when the core size is much smaller than the radius of
curvature i.e. a� rA or the pitch i.e. a� L. It is assumed that locally the profiles are close to an axisym-
metric Batchelor vortex [Batchelor, 1964] of core size a0 which must be very close to a. A dimensionless
self-strain parameter ε = κa0 as defined in (4.41) is then small ε� 1 and can be used to expand velocity field
components in power series of ε. In the matched asymptotic expansions [Blanco-Rodríguez et al., 2015],
the vortex core structure is at leading order an axisymmetric Batchelor vortex [Batchelor, 1964] of
core size a0. Thereafter, small amplitude perturbations around this reference axisymmetric state in-
troduce local effects due to curvature and torsion, and global ones due to the remote vorticity of
nearby helix turns that modify this reference structure. It has been shown in [Callegari and Ting, 1978]
and [Blanco-Rodríguez and Le Dizès, 2016, Blanco-Rodríguez and Le Dizès, 2017] that the dominant de-
formation stems from local curvature, and sets in as a dipolar first order term in ε. Local torsion and remote
vorticity effects only appear at second order by a quadrupolar correction. We focus here on first order
effects characterizing how local curvature deforms the vortex core.

We work in the translating reference frame (T ) in which the vortex is steady. The internal structure, in
particular the jet flow component within the vortex core, is described using local polar coordinates (ρ,ψ)
centered at point A with local cylindrical basis (eeeρ,eeeψ ,eeeb). These variables and bases are defined from the
local Cartesian basis (eeeb,eeer (A),eeeϕ(A)) (see section 4.3.1) :

eeeρ = cosψ eeer (A) + sinψ eeeϕ(A) , eeeψ = −sinψ eeer (A) + cosψ eeeϕ(A) , eeeb = eeeB(A) .

Since the reference state is a straight Batchelor vortex of core size a0, we adopt in this section only,
dimensionless quantities using as characteristic size the core size [L] = a0 and as characteristic time
[T ] = 2πa20/Γ , the Reynolds number for the asymptotic analysis being Re = Γ /(2πν). To avoid ambiguity,
we denote dimensionless quantities based on such characteristic size and time with a bar, for instance
ρ̄ = ρ/a0 stands for the non-dimensional radial distance to point A in the plane Π⊥ and we use cylindrical
coordinates (ρ̄,ψ,b), where b denotes the component parallel to the vortex axis. As mentioned above, the
velocity field

ūuu = ūρ eeeρ + ūψ eeeψ + ūb eeeb ,

can be expanded in power series in ε
ūρ = εū

(1)
ρ + . . . ,

ūψ = ū(0)ψ + εū(1)ψ + . . . ,

ūb = ū
(0)
b + εū(1)b + . . . ,

with similar expansions for vorticity.

Leading order term
The leading order term ūuu(0) is assumed to be a Batchelor vortex. Indeed, this vortex model is known to be
a self-similar attracting viscous solution for two-dimensional vortices with axial flow. This means that the
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velocity distribution in the plane Π⊥ is assumed to be equal to

ū
(0)
ρ = 0 , ū

(0)
ψ =

1− exp(−ρ̄2)
ρ̄

, ū
(0)
b = W̄0 exp(−ρ̄2) + W̄00 . (4.47)

The parameter W̄0 indicates the jet strength in the axial direction and the parameter W̄00 is a correction at
leading order deduced from the background velocity outside the vortex. Based on these velocity fields, the
vorticity field at zeroth order in ε is

ω̄ωω(0) = ω̄B
(0)eeeb + ω̄

(0)
ψ eeeψ ,

with
ω̄B

(0) = 2exp(−ρ̄2) , ω̄
(0)
ψ = 2W̄0ρ̄exp(−ρ̄2) .

For any point M in plane Π⊥(A) except A itself, the velocity component uB along direction eeeB(M) is
different from the velocity component ub along the direction eeeb ≡ eeeB(A) orthogonal to the plane. Quantity
uB/α is given by

uB
α

=
uρ
α
eeeρ ·eeeB +

uψ
α
eeeψ ·eeeB +

ub
α
eeeb ·eeeB

where α ≡ α(M). Using relations

eeeρ ·eeeB = 0 , eeeψ ·eeeB = ααA
ρ

L
, eeeb ·eeeB = ααA

(
1+

r2A
L2
− rA
L

ρ

L
cosψ

)
,

one obtains, at zeroth order in ε:

ūB
α

=
ū
(0)
b (ρ̄)

αA
+ ū(0)ψ (ρ̄)αA

ρ̄

L̄
=

1
αA

[W̄0 exp(−ρ̄2) + W̄00] +
αA
L̄

[1− exp(−ρ̄2)] . (4.48)

or
ūH =

(
1
αA
W̄0 −

αA
L̄

)
exp(−ρ̄2) . (4.49)

Using relation (4.49) at ρ̄ = 0 , one gets at zeroth order in ε that quantity W̄0 is given by

W̄0 = αAū
(0)
H (0) +

α2
A
L̄
. (4.50)

The latter term is originally presented at O(ε) [Blanco-Rodríguez et al., 2015]. However it was found
numerically, that taking this term into account at main order, a better fit of the numerical data is obtained,56
as shown in section 4.5 (see figure 4.12 as a example). For a thin core, the constant W̄0 can be related to
the base state prescribed parameters

W̄B =
α2
A
π

"
Π0

ūHdS ≈
αA
π

"
Π⊥

ūHdS⊥. (4.51)



4.4. Asymptotic theory 35

Performing the integration using the relation (4.49) yields

W̄0 ≈ W̄B +
α2
A
L̄
. (4.52)

The other velocity W̄00 is obtained by matching the constant introduced in (4.12):

C̄ =
2πaC
Γ

=
1
L̄
+ Ū∞(T)

z (4.53)

to the value reached by ūB/α outside the vortex. Since for ρ̄→∞, expression (4.48) tends to W̄00/αA +
αA/L̄, the matching yields

W̄00 = αA
(
C̄ − αA

L̄

)
= αAŪ

∞(T)
z +

αA(1−αA)
L̄

. (4.54)

In [Blanco-Rodríguez et al., 2015], the simplified expression W̄00 = αAU
∞(T)
z was used. As above the

latter term forW0, the new expression (4.54) better agrees with the numerical results as shown in section 4.5.
Since the base state is computed with Ū∞z = 0, one deduces Ū∞(T)

z = −Ū0 = Ω̄0L̄. The constant W̄00 is
expressed also as

W̄00 = αAΩ̄0L̄+
αA(1−αA)

L̄
. (4.55)

The evaluation of W̄00 requires the knowledge of Ω̄0. Here we deduce this quantity from the DNS results
in a quite accurate way. We could have also used a theoretical evaluation [Okulov, 2004].

Order ε
Going now to order ε, the perturbation is purely dipolar [Blanco-Rodríguez et al., 2015]:

ū
(1)
ρ = − Ψ̄

(1)

ρ̄
sinψ , ū

(1)
ψ =

[
ρ̄ū

(0)
ψ −

dΨ̄ (1)

dρ̄

]
cosψ , (4.56)

ū
(1)
b =

ρ̄ū(0)b − 1

ū
(0)
ψ

dū(0)b
dρ̄

Ψ̄ (1)

cosψ , (4.57)

where the first order streamfunction perturbation Ψ̄ (1)(ρ̄) satisfies

Ψ̄ (1) = Ψ̄
(1)
0 + W̄ 2

0 Ψ̄
(1)
1 + W̄00W̄0Ψ̄

(1)
2 .

The three contributions Ψ̄ (1)
0 , Ψ̄ (1)

1 and Ψ̄
(1)
2 are solutions of

LΨ̄ (1)
0 = K̄0 , LΨ̄

(1)
1 = K̄1 , LΨ̄

(1)
2 = K̄2 , (4.58)
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where the linear operator L(•) is defined as:

L(•) ≡ ∂
2(•)
∂ρ̄2

+
1
ρ̄

∂(•)
∂ρ̄
−
(
1
ρ̄2

+H0(ρ̄)
)
(•) (4.59)

and

H̄0(ρ̄) ≡
1

ū
(0)
ψ

dω̄B
(0)

dρ̄
=

−4ρ̄2

exp(ρ̄2)− 1
,

K̄0(ρ̄) ≡ 2ρ̄ω̄(0)
b + ū(0)ψ =

1− exp(−ρ̄2)
ρ̄

+4ρ̄exp(−ρ̄2) , (4.60)

K̄1(ρ̄) ≡ −
4ρ̄3

exp(ρ̄2)− 1
exp(−ρ̄2) , K̄2(ρ̄) ≡ −

4ρ̄3

exp(ρ̄2)− 1
.

The boundary conditions at ρ̄ = 0 are

Ψ̄
(1)
i (0) = 0 ,

∂Ψ̄
(1)
i

∂ρ̄
(0) = 0 , i = 0,1,2 . (4.61)

We hence compute the first order streamfunction perturbation Ψ̄ (1) numerically. For large ρ̄, Ψ̄ (1)(ρ)
expands as [Fukumoto and Miyazaki, 1991]:

Ψ̄ (1)(ρ̄) ∼ 1
2
ρ̄ log ρ̄+ ρ̄Ā+O(

1
ρ̄
) ,

where
Ā =

1
4
[1− W̄0(W̄0 +4W̄00) +γ − log2] , γ ≈ 0.577 .

This formula corrects the typo 2W̄00 in equation (3.12) of [Blanco-Rodríguez et al., 2015].

4.5 Helical base states

All variables are again put in dimensionless form using as characteristic dimensional length scale [L] = rA
and time scale [T ] = r2A/Γ of the final state. For a helical vortex of reduced pitch L, the dimensionless
curvature κ = 1/(1 + L2) decreases from 1 to 0 as L increases from 0, while dimensionless torsion τ
first increases from 0 to 0.5 (reached for L = 1), and then slowly decreases to 0 (see figure 4.10). In
the asymptotic theory presented in 4.4, we used parameter ε ≡ aκ to quantify the curvature effects on a
straight axisymmetric vortex. A given value of ε can be achieved from different pair values (L,a), thus
corresponding to different curvature and torsion levels.

We choose five helical vortex states which are presented in table 4.2. The first three states correspond to
the same value ε = 0.1. States BS1, BS2 are characterized by the same strain ε = 0.1 and inverse swirl
parameter W̄B but different pitch L and core size a: for BS1 relatively small values leading to high curvature
and low torsion, for BS2 larger values leading to low curvature but near-maximum torsion. State BS3 is
the same as BS1 except that the inverse swirl parameter W̄B is twice as much that of BS1. State BS4 is
identical to BS3 a state with a larger core size a hence a larger strain ε = 0.16. State BS5 is similar to BS4,
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yet with reversed axial flow (hence negative inverse swirl). In the following, the base states are also named
under the form [L; a; W̄ B] where L, a and W̄ B are the dimensionless prescribed parameters.
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Figure 4.10 – Non-dimensional curvature κ (solid line) and torsion τ (black dashed line) as functions of
the reduced pitch L. Pitches L and 1/L lead to the same value of the torsion but to different curvature levels,
as illustrated for L = 0.7 and 1/0.7 ≈ 1.43.

case ε κ τ
BS1 = [0.3 ; 0.11 ; 0.2] 0.1 0.92 0.28
BS2 = [1.43; 0.3 ; 0.2] 0.1 0.33 0.47
BS3 = [0.3 ; 0.11 ; 0.4] 0.1 0.92 0.28
BS4 = [0.3 ; 0.174; 0.4] 0.16 0.92 0.28
BS5 = [0.3 ; 0.174;-0.4] 0.16 0.92 0.28

Table 4.2 – Base states [L; a; W̄ B] with corresponding parameter ε, curvature κ and torsion τ .

Quasi-equilibrium states listed in table 4.2 are obtained as final states of simulations through the procedure
explained in section 4.3. For each state, there exists an inertial frame of reference (T) in which the helical
vortex is steady. In that frame, the helical vortex is located around a centre line xxx0(θs) = rAeeer (θs) +Lθseeez
where θs is a continuous parameter, with associated tangent vector

eeeb ≡ eeeBA = αA
[ rA
L
eeeθ(θs) +eeez

]
. (4.62)

For a helical vortex filament, the velocity and vorticity fields are given by their distribution around the
centerline in the plane Π⊥(A). Figure 4.11a (resp. figure 4.11b) shows the axial vorticity in the plane Π⊥
for BS1 (resp. BS2).

The internal structure computed by Helix DNS code can be compared to the results obtained by the
asymptotic theory presented in section 4.4. One needs to rewrite the Helix results by

1. Performing the transformation uB −→ uB −αU0 and uϕ −→ uϕ +αU0r/L to adopt the frame (T)
translating at velocity U0eeez with the vortex.

2. Computing the velocity field onto the planeΠ⊥(A) and expressing its components (uρ,uψ ,ub) in
the cylindrical basis used in the theory. The procedure is explained in Appendix A.1.
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Figure 4.11 – (a) Contours of ωB in plane Π⊥ for the quasi-equilibrium state BS1. (b) Same for BS2,
with the same spatial range represented. Contour levels are as in figure 4.3. The Reynolds number is
ReDNS = 2π104, and the simulation time Tsim = 20 (resp. 100) for BS1 (resp. BS2).

prescribed core size Helix DNS results Theory
case a a0 W̄0 W̄00 W̄0 W̄00
BS1 0.110 0.1108 0.2293 0.0057 0.230 0.0059
BS2 0.300 0.3001 0.3421 −0.1017 0.341 −0.1108
BS3 0.110 0.1109 0.4271 0.0071 0.430 0.0069
BS4 0.174 0.1767 0.4419 0.0289 0.448 0.0255
BS5 0.174 0.1730 −0.3524 0.0262 −0.352 0.0238

Table 4.3 – For helical vortex states BS1–BS5: prescribed parameter a ; effective core size a0; W̄0 and W̄00
computed using Helix DNS results; theoretical values W̄0 and W̄00 obtained through (4.52) and (4.55).

3. Performing an azimuthal decomposition of such components

u
(m)
ρ,ψ,b(ρi) =

1
Nψ

Nψ∑
j=1

uρ,ψ,b(ρi ,ψj )e
−imψj (i = 1, · · · ,Nρ) (4.63)

where (ρi ,ψj ) are the locations of Nρ ×Nψ nodes of a polar mesh in plane Π⊥;
4. Using the same nondimensionalization units as in the theory that is using the reference scales a0 and

2πa20/Γ where the value a0 is obtained using a Gaussian fit of the axisymmetric component of fields
uH .

Based on the above procedure, the parameters presented in table 4.2 correspond to the values of effective
core size a0, inverse swirl W̄0 and constant W̄00 reported in table 4.3. Comparisons between asymptotic
theory and internal structure of base states found by DNS of helical vortices are shown in figures 4.12–4.13.
The adequacy of the asymptotic theory up to relatively large values of ε (for BS5 ε = 0.16) is shown : the
contributions m = 0 to (u(m)

ρ ,u
(m)
ψ ,u

(m)
b ) are plotted and excellent agreement is found for the axisymmetric

part. A fairly small mismatch subsists for components m = 1.
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Figure 4.12 – Case BS1: radial distributions of velocity components (ū(m)
ρ , ū

(m)
ψ , ū

(m)
b ) for m = 0 (top) and

m = 1 (bottom). Blue solid line: DNS results; red dashed line: theory.
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Figure 4.13 – Same as figure 4.12 for case BS5.
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Figure 4.14 – Same as figure 4.12 for case BS2.

Figure 4.15 – Same as figure 4.12 for case BS3.

Figure 4.16 – Same as figure 4.12 for case BS4.
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4.6 Effect of large axial flow

When a moderate axial flow is present in a helical vortex, a quasi-equilibrium can be reached, that can
be linked to an equilibrium of a family of inviscid helical flows. We have exhibited the constraints of
such equilibria: equations (4.16) extend formulae known for vortex rings. Such constraints are confirmed
in the framework of quasi-equilibria of a single helical vortex with axial flow computed by DNS. When
W̄B is increased, the possibility of a quasi-equilibrium state disappears. There is a threshold above which
centrifugal forces cannot be counter-balanced by swirl. This phenomenon has been studied in vortex rings
by [Cheng et al., 2010].

0 0.5 1 1.5 2
1.5

2

2.5

3

Figure 4.17 – Axial flow critical level W̄ c
B(L) above which the initial condition does not relax towards a

quasi-steady equilibrium. Simulations with a? = 0.11, ReDNS = 2π103 and Tsim = 4.

The procedure to reach the quasi-equilibrium relies on the assumption that the initial condition rapidly
relaxes towards a quasi-equilibrium. However, when the axial flow becomes large, such an equilibrium
ceases to exist because the swirling motion can no more counter-balance the centrifugal forces generated by
axial velocity in the curved vortex. In terms of vorticity, negative helical vorticity emerges and may persist
over large evolution times. We can define a threshold value W̄ c

B above which negative vorticity is still present
at t = Tsim (here Tsim = 4 at ReDNS = 2π103). In figure 4.17, we present the evolution of this threshold W̄ c

B
as a function of the helical pitch starting the simulation with a fixed initial core size a? = 0.11. For given L
and W̄B < W̄

c
B(L), the simulation converges towards a quasi-equilibrium state as shown in figure 4.18a. For

W̄B > W̄
c
B(L), the system does not rapidly reach such an equilibrium (figure 4.18b). A dipolar structure can

even emerge, as illustrated in figure 4.19. This phenomenon is similar to what is observed in vortex rings
by [Cheng et al., 2010] when the axial flow becomes significant. Note also that the threshold value shown
in figure 4.17 pinpoints the existence of an equilibrium up to relatively large values of W̄B. However, we
suspect this helical equilibrium state to be itself unstable with respect to the swirling jet instability that
occurs as soon as W̄B > 0.7 for a straight Batchelor vortex [Lessen et al., 1974, Mayer and Powell, 1992].
In our simulations, enforcing the helical symmetry filters out such instabilities.

In the present study, the method and the data are presented in the case of a single helical vortex. This could
be easily extended to an arbitrary number of vortices with same pitch in quasi-equilibrium arrangement.
These states are of great significance for helical vortex instability studies, e.g. in the wake of wind
turbines, marine propellers, helicopter rotors... Let us stress the importance of monitoring the axial
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(a)

(b)

Figure 4.18 – Time evolution of a helical vortex at L = 0.3, a? = 0.11 and ReDNS = 2π103 with axial flow
(a) W̄B = 1.8 (below the critical threshold) and (b) W̄B = 1.9 (above it). Contours of ωb/ωbmax in plane
Π⊥(t). Contour levels are regularly spaced in the range [−1/e,1/e] (from blue to red).

velocity in such vortices, since curvature and elliptic short-wave instabilities crucially depend on the swirl
parameter [Hattori and Fukumoto, 2014]. In this perspective, the present work provides a procedure to
generate basic states with prescribed values of the numerous parameters characterizing the helical vortex,
namely circulation, helix radius, helix pitch, vortex core size, swirl level.

Figure 4.19 – Time evolution of a helical vortex at L = 1.43, a? = 0.3 and ReDNS = 2π103 with axial flow
W̄B = 4.0 (above the threshold) . Contours are as in figure 4.18.
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In the chapter 4, we obtained the helically symmetric quasi-equilibrium states with a jet inside the vortex
core. From now, we study the stability properties of such flows by adding small amplitude perturbations,
which depend on r, ϕ, and also on z. This topic has already been studied by [Selçuk, 2016] in the context
of very weak jet component. In the present work, we study helical vortices with larger jet in the core.

5.1 Governing equation for infinitesimal perturbations

The base states found in chapter 4 represent helical vortices characterized by a circulation Γ and an external
velocity U∞z in the laboratory frame (LB). In the computations, we set the fluid velocity at infinity to be
zero U∞z = 0 : the laboratory frame (LB) and the frame (L0) are thus identical. In such a reference frame,
the base states are rotating with a constant angular velocity Ω0eeez along the z axis. In the translating frame
(T) or in the rotating frame (R), such base states become steady. We could write the stability equations in
one of these two frames: here we choose the rotating frame (R) mainly for “historical" reasons.

The stability governing equations are put in dimensionless form using as characteristic scales and Reynolds

43
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number

[L] = rA , [T] =
r2A
Γ
, and ReDNS =

Γ

ν
. (5.1)

In the rotating frame (R), velocity and vorticity fields of the base state are such that

uuuBF(r,ϕ) ≡
(
uBFr (r,ϕ),uBFθ (r,ϕ),uBFz (r,ϕ)

)
, ωωωBF(r,ϕ) ≡

(
ωBF
r (r,ϕ),ωBF

θ (r,ϕ),ωBF
z (r,ϕ)

)
, (5.2)

and the Navier-Stokes equations become

∂tuuu +NL = −∇∇∇G+
1

ReDNS
VT , with NL =ωωω ×uuu +2Ω0eeez ×uuu , VT = ∆uuu , (5.3)

∇∇∇ ·uuu ≡ 0 . (5.4)

These fields are thereafter written as the sum of the base state and a perturbation of order ε with ε� 1:

uuu(r,ϕ,z, t) = uuuBF(r,ϕ) + εuuu′(r,ϕ,z, t) , (5.5)

ωωω(r,ϕ,z, t) =ωωωBF(r,ϕ) + εωωω′(r,ϕ,z, t) , (5.6)
p(r,ϕ,z, t) =Π(r,ϕ) + εp′(r,ϕ,z, t) , (5.7)

Once the Navier-Stokes equations have been linearized, one obtains in the classical way the linear system
governing perturbations that is incompressibility∇∇∇ ·uuu′ = 0 and momentum equation

∂tuuu
′+ωωωBF ×uuu′ +ωωω′ ×uuuBF +2Ω0eeez ×uuu′︸                                    ︷︷                                    ︸

LNL

= −∇∇∇G′+ 1
ReDNS

∆v′v′v′︸︷︷︸
VT

with G′ ≡
p′

ρ
+uuuBF ·uuu′ . (5.8)

Note thatωωωBF(L0) =ωωωBF +2Ω0eeez, so that the term LNL can be written as

ωωω(L0) ×uuu′ +ωωω′ ×uuuBF .

Written in cylindrical basis (eeer ,eeeθ ,eeez) with helical coordinates, one gets the same linear operators as in
section 3.1 for instance incompressibility reads:

∇∇∇ ·uuu′ = 1
r

∂(ru′r )
∂r

+
1
r

∂u′θ
∂ϕ

+
∂u′z
∂z
− 1
L

∂u′z
∂ϕ

= 0 . (5.9)

The nonlinear terms LNL read

LNLr ≡ω′θu
BF
z +ωBF

θ u′z −ω′zuBFθ − (ω
BF
z +2Ω0)u

′
θ , (5.10)

LNLθ ≡ω′zuBFr + (ωBF
z +2Ω0)u

′
r −ωBF

r u′z −ω′ruBFz , (5.11)

LNLz ≡ω′ruBFθ +ωBF
r u′θ −ω

′
θu

BF
r −ωBF

θ u′r . (5.12)

Because the base state does not depend on z, t, the linear system (5.8) is not explicitly dependent on these
two variables. Hence one may look for solutions under the form:

u′r
u′θ
u′z
G′

 =

ũr (r,ϕ)
ũθ(r,ϕ)
ũz(r,ϕ)
G̃ (r,ϕ)

exp[i(kzz −$t)] (5.13)
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where the wavenumber kz along the z-axis is real, and the complex frequency $ =ω+ iσ is based on the
real frequency ω and growthrate σ . By introducing ansatz (5.13) into equation (5.8), we could transform
these governing equations into an eigenvalue problem, providing the complex eigenfunctions ũr , ũθ , ũz, p̃.
However, the eigenvalue problem to be solved will be too large, this is why we use another procedure.

The alternative procedure consists in two steps. First, we restrict the study to a solution corresponding to
given axial wavelength kz, 

u′r
u′θ
u′z
G′

 =

ũr (r,ϕ, t)
ũθ(r,ϕ, t)
ũz(r,ϕ, t)
G̃ (r,ϕ, t)

exp(ikzz) . (5.14)

Second, we simulate equations (5.8) from a noisy perturbation using the code HELIKZ-LIN (see below).
The idea is that the most unstable mode (that is the mode evolving with exp([σmax − iω]t) where σmax is
the maximum growthrate) emerges once the system has evolved during a sufficient long time.

5.2 Simulating perturbation evolution: code HELIKZ-LIN

The assumed form (5.14) imposes the derivative ∂/∂z in the linearized Navier-Stokes equations (5.8)–(5.9)
to reduce to a multiplication by ikz. Furthermore, quantities are 2π periodic in the ϕ direction and can be
expanded using a Fourier decomposition along ϕ

 ũr (r,ϕ, t)
ũθ(r,ϕ, t)
ũz(r,ϕ, t)

 = m=+∞∑
m=−∞


û
(m)
r (r, t)

û
(m)
θ (r, t)

û
(m)
z (r, t)

exp(imϕ) , (5.15)

G̃(r,ϕ, t) =
m=+∞∑
m=−∞

Ĝ(m)(r, t)exp(imϕ) . (5.16)

Quantities û(m) are complex and there is no relation between modes û(m) and û(−m). By introducing these
relations into equations (5.8)–(5.9), one obtains for each mode m

∇∇∇ · ûuu(m) = 0 , (5.17)

∂ûuu(m)

∂t
+LNL(m) = −∇∇∇Ĝ(m) +

1
ReDNS

V̂T(m)
. (5.18)

These equations are discretized in the code HELIKZ–LIN. Boundary conditions must be satisfied at r =∞
(that is at some r = Rext in practice) and r = 0. They are presented in Appendix B.1.

Most of the linear operators above take simpler expressions when the various fields are of the form

uuu = uuu(m) exp(i(mϕ + kzz)) =


û
(m)
r (r, t)

û
(m)
θ (r, t)

û
(m)
z (r, t)

exp[i(mϕ + kzz)] , G = Ĝ(m)(r, t)exp[i(mϕ + kzz)] .

(5.19)
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Indeed the divergence operator becomes in modal form

∇∇∇ ·uuu = (∇∇∇ ·uuu(m))exp[i(mϕ + kzz)], ∇∇∇ ·uuu(m) ≡ 1
r

∂(rû(m)
r )

∂r
− im

r
û
(m)
θ + iβû(m)

z , (5.20)

with

β(m,kz) ≡ kz −
m
L
. (5.21)

The gradient∇∇∇G of the scalar G becomes

∇∇∇G =∇∇∇G(m) exp[i(mϕ + kzz)], with ∇∇∇G(m) =
(
∂Ĝ(m)

∂r
,
im
r
Ĝ(m), iβĜ(m)

)
. (5.22)

Similarly, the viscous operator
VT = VT(m) exp(i(mϕ + kzz)) (5.23)

possesses three components

VT(m)
r =

∂
∂r

1r ∂(rû
(m)
r )

∂r

−χ2û
(m)
r − i

2m
r2
û
(m)
θ , (5.24)

VT(m)
θ =

∂
∂r

1r ∂(rû
(m)
θ )

∂r

−χ2û
(m)
θ − i

2m
r2
û
(m)
r , (5.25)

VT(m)
z =

1
r
∂
∂r

r ∂û(m)
z

∂r

−χ2û
(m)
z , (5.26)

with

χ2(m,kz) ≡
m2

r2
+ β2 . (5.27)

Finally the vorticity field is expressed as

ωωω = (ω̂(m)
r , ω̂

(m)
θ , ω̂

(m)
z )exp[i(mϕ + kzz)], (5.28)

with

ω̂
(m)
r =

im
r
û
(m)
z − iβû

(m)
θ , (5.29)

ω̂
(m)
θ = iβû(m)

r −
∂ûz
∂r

(m)

, (5.30)

ω̂
(m)
z =

1
r
∂
∂r

(r û(m)
θ )− im

r
û
(m)
r . (5.31)

In order to integrate equations (5.18), one needs to compute LNL(m). This quantity is obtained using a
pseudo-spectral method explained in Appendix B.1. In this approach, the three components (5.10)–(5.12)
of LNL must be determined at specific locations on a grid in the physical space (r, ϕ). In turn, variables
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(ur , uθ , uz, p) of the base state and of perturbations should be evaluated at the same grid points.

5.2.1 Initial Perturbation for the code HELIKZ–LIN

Given an axial wavelength kz, we run the code HELIKZ–LIN starting from a noisy perturbation. The
initial velocity field is a complex quantity determined in several steps as follows:

1. In Fourier space, for each mode m, one computes real and imaginary radial components

v
(m)R
r (r),v(m)I

r (r) =
( rr1 )

p

1+ ( rr1 )
p ξ(r)M(r), p = ||m| − 1| (5.32)

real and imaginary azimuthal components

v
(m)R
θ (r),v(m)I

θ (r) =
( rr1 )

p

1+ ( rr1 )
p ξ(r)M(r), p = ||m| − 1| (5.33)

real and imaginary axial components

v
(m)R
z (r),v(m)I

z (r) =
( rr1 )

p

1+ ( rr1 )
p ξ(r)M(r), p = |m| (5.34)

where function ξ(x) denotes a noisy signal with a probability density function uniform on the interval
x ∈ [−1

2 ,
1
2 [ and functionM(r) = exp(−( rr2 )

6) is a mask function. Parameter r1 (resp. r2) is chosen
as r1 = 0.5 (resp. r2 > r1, is chosen to be smaller than radius of the outer boundary r = Rext) to
ensure the correct behavior near r = 0 (resp. to avoid noise near the outer boundary and to ensure
zero circulation at “infinity").

2. One transforms these complex fields into the physical space, and multiplies them by a smooth
function g(x,y) which is non-zero in the rotational area of the base stateωωωBF(L0). More precisely
this function is built so that it remains smooth and

g(x,y) is based on spline functions when |
ωBF(L0)(x,y)

ω
BF(L0)
max

| ∈ [0.01,0.1] (5.35)

g(x,y) = 0 when |
ωBF(L0)(x,y)

ω
BF(L0)
max

| < 0.01 , g(x,y) = 1 when |ω
BF(L0)

ω
BF(L0)
max

| > 0.1 . (5.36)

3. One transforms back into spectral space. At this point the divergence is not zero.
4. One performs a standard projection step to enforce zero divergence and to satisfy boundary conditions

at r =∞ (that is r = Rext in practice) and r = 0. Note that this step uses a gradient field which is not
singular. As a consequence, the circulation is not modified.

Figure 5.1 presents an example of initial condition in theΠ0 plane with Rext = 2,Nr = 1024 andNθ = 256.
The perturbation outside the vortex region is principally in a corona. This is due to the numerical error
generated by the back and forth transform from spectral space to physical space. The perturbation amplitude
in the corona however is of order 10−3 compared to the one in the vortex region. The time evolution using
the code HELIKZ–LIN is shown in figure 5.2 for a case of short wavelength instability mode of kz = 19.9.
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Figure 5.1 – An example of initial perturbation: the real part of axial vorticity ω′B is displayed in theΠ0
plane for base state [0.7;0.15;0.13].

Figure 5.2 – The same perturbation as in figure 5.1, at (left) t = 10, (center) t = 30 and (right) t = 100.

5.3 Linear stability : the studied base states

Chapters 6-7 investigate the linear stability of several base states which are listed in table 5.1. This table
presents the same quantities as tables 4.2–4.3, and cases BS1 and BS3 present in 4.2–4.3 are recalled.

In chapter 4, base states were computed with prescribed parameters, using an iterative process and the
code HELIX. The stability study however is written in primitive variables, we hence need base states in
primitive variables (ur , uθ , uz, p). These quantities could be computed from the fields Ψ , uH and ωB
obtained by HELIX for the final state BSi . Because of truncation errors, however, this generates spurious
effects. To avoid such problems, we proceed as follows : (1) we run the iterative loop with the code HELIX
as previously and obtain the adequate set (a? , r?); (2) instead of running HELIX with the initial condition
(named ICi) corresponding to this set (a? , r?), we compute (ur , uθ , uz, p) from ICi and run another code
in primitive variables (see below) for the identical simulation time Tsim. This procedure generates the final
base state (5.2) in primitive variables without spurious effects.
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L a W̄B ε κ τ W̄0 W̄00

0.3 0.110

−0.03

0.1 0.917 0.275

0.00 0.0054
0.00 0.03 0.0055
0.17 0.20 0.0058
−0.26 −0.23 0.0058
0.20 0.23 0.0059
0.37 0.40 0.0067

0.4 0.116 −0.24 0.1 0.862 0.435 −0.20 −0.0112
0.16 0.20 −0.0117

0.5 0.125 −0.25 0.1 0.800 0.400 −0.20 −0.0262
0.15 0.20 −0.0117

0.6 0.136 −0.26 0.1 0.735 0.441 −0.20 −0.0396
0.14 0.20 −0.0416

0.7 0.15

0.13

0.1 0.671 0.470

−0.20 −0.0523
−0.27 0.20 −0.0545
0.20 0.27 −0.0544
0.25 0.32 −0.0541

Table 5.1 – In addition to Γ = 1 and rA = 1, prescribed dimensionless parameters of the base states used
for linear stability analysis. The two last columns provide the theoretical values given by equations (4.52)
and (4.55).

5.3.1 Computing the base state in primitive variables: code HELIKZ–NL

For flows with strict helical symmetry of helical pitch 2πL, the velocity components or the scalar field
written in helical coordinates do not depend on z. As a consequence, the derivative of ∂/∂z in the Navier-
Stokes equations written in helical coordinates disappears. These equations can be solved using the spectral
representation in which quantities are Fourier decomposed along ϕ

uuu(r,ϕ, t) =

 ur (r,ϕ, t)
uθ(r,ϕ, t)
uz(r,ϕ, t)

 = m=+∞∑
m=−∞

uuu(m)(r, t)exp(imϕ) =
m=+∞∑
m=−∞


û
(m)
r (r, t)

û
(m)
θ (r, t)

û
(m)
z (r, t)

exp(imϕ) , (5.37)

G(r,ϕ, t) =
m=+∞∑
m=−∞

G(m)(r, t)exp(imϕ) . (5.38)

The base state field being real, it must satisfy

[û(−m)
j (r, t)]∗ = û(m)

j (r, t) j = r,θ,z, [Ĝ(−m)(r, t)]∗ = Ĝ(m)(r, t) , (5.39)

where symbol ∗means complex conjugate. By introducing relations (5.37)–(5.38) into equations (3.4)–(3.5)
one obtains for each mode m

∇∇∇ ·uuu(m) = 0 , (5.40)

∂uuu(m)

∂t
+NL(m) = −∇∇∇G(m) +

1
ReDNS

VT(m) , (5.41)
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where the linear operators are those defined as in section 5.2 but with kz = 0, that is

β(m) ≡ −m
L
, χ2(m) ≡ m

2

r2
+ β2 . (5.42)

In addition, one computes NL(m) by a pseudo-spectral method: the nonlinear termωωω ×uuu is determined
in the physical space and then projected on mode m. This procedure is discussed in Appendix B.1. The
projection PSM(m) on the mode m yields

NL(m)
r = PSM(m) (ωθuz −ωzuθ) , (5.43)

NL(m)
θ = PSM(m) (ωzur −ωruz) , (5.44)

NL(m)
z = PSM(m) (ωruθ −ωθur ) . (5.45)

These equations are discretized and forms the code HELIKZ–NL. The base state is computed in the
frame (L0) = (LB) using HELIKZ, which gives uuu(L0). It is then expressed in the rotating frame (R) inside
HELIKZ–LIN by equation:

uuuBF = uuu(L0) −Ω0reeeθ . (5.46)

5.3.2 Checking the base states: comparison between HELIX and HELIKZ–NL

prescribed parameters HELIX DNS results
L a W̄ B Γ Ω0 a0 W̄0

0.3 0.110

−0.03 1.0245 −0.0892 0.1102 0.0006
0.00 1.0234 −0.0893 0.1103 0.0274
0.17 1.0231 −0.0896 0.1107 0.1996
−0.26 1.0062 −0.0879 0.1097 −0.2304
0.20 1.0231 −0.0896 0.1108 0.2293
0.37 1.0230 −0.0892 0.1112 0.3967

0.4 0.116 −0.24 1.0131 −0.0607 0.1151 −0.2019
0.16 1.0143 −0.0117 0.1160 0.2004

0.5 0.125 −0.25 1.0086 −0.0492 0.1249 −0.1999
0.15 1.0078 −0.0508 0.1264 0.1992

0.6 0.136 −0.26 1.0059 −0.0423 0.1358 −0.2004
0.14 1.0056 −0.0439 0.1373 0.2000

0.7 0.15

−0.27 1.0046 −0.0385 0.1493 −0.2010
0.13 1.0043 −0.0406 0.1517 0.2006
0.20 1.0042 −0.0407 0.1521 0.2698
0.25 1.0041 −0.0406 0.1524 0.3179

Table 5.2 – HELIX DNS results of base states [L;a;Ŵ B] (prescribed parameters in table 5.1).

In chapter 4, for a given set of prescribed parameter [L;a;Ŵ B], we get a set of (a? , r?) for initial condi-
tions (4.19). The simulation is then performed over a time Tsim using both codes HELIX or HELIKZ–NL.
In table 5.2 (resp. table 5.3), we give the total circulation Γ , that is the integral of ωz over the planeΠ0, the
angular velocityΩ0 in each simulation. We provide also other characteristic values of the quasi-equilibrium
states obtained by HELIX (resp. HELIKZ-NL). Namely we compute the location where vorticity field
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prescribed parameters HELIKZ–NL DNS results
L a W̄ B Γ Ω0 a0 W̄0

0.3 0.110

−0.03 1.0240 −0.0893 0.1102 −0.005
0.00 1.0095 −0.0887 0.1108 0.0294
0.17 1.0228 −0.0898 0.1108 0.1997
−0.26 1.0232 −0.0881 0.1098 −0.2308
0.20 1.0232 −0.0887 0.1108 0.2294
0.37 1.0226 −0.0893 0.1112 0.3969

0.4 0.116 −0.24 1.0132 −0.0635 0.1153 −0.2023
0.16 1.0127 −0.0623 0.1161 0.2007

0.5 0.125 −0.25 1.0085 −0.0495 0.1250 −0.2003
0.15 1.0072 −0.0511 0.1265 0.1993

0.6 0.136 −0.26 1.0058 −0.0427 0.1358 −0.2004
0.14 1.0055 −0.0443 0.1372 0.1997

0.7 0.15

−0.27 1.0041 −0.0392 0.1493 −0.2010
0.13 1.0039 −0.0414 0.1518 0.2010
0.20 1.0038 −0.0414 0.1520 0.2687
0.25 1.0032 −0.0414 0.1522 0.3156

Table 5.3 – HELIKZ–NL base flows [L;a;Ŵ B] with prescribed parameters.

ωBmax reaches its maximum. This point is chosen as the point that defines a planeΠ⊥ orthogonal to the
helix located at this point. We then calculate on Π⊥ a core size a0 and an axial flow parameter W̄0 of the
axisymmetric part of uH . The comparison between both simulations indicates that the base state at Tsim
is very similar as shown by comparing table 5.2 obtained via the code HELIX and table 5.3 obtained via
HELIKZ-NL, and hence fits our requirements.
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5.3.3 Comparison of base states in spectral space

In the previous section 5.3.2, we compared the base states obtained by HELIX and HELIKZ-NL in physical
space with the core size of vortex, the position of maximum vorticity and some other parameters. In this
section, we redid the comparison of two basic states in the spectral space, with methods described in
appendix B, which allow to compare the basic states mode by mode.

The dependence of the convergence of the base state on the azimuthal discretization number Nθ was
first studied with the base flow [0.13,0.7,0.15] in HELIX. Two numbers Nθ = 256 and Nθ = 512 are
used, with a fixed initial condition a? = 0.1460403064 and r?A = 0.9793868424468 with initial angle
of vortex center at θ0 = 0.1. The inverse of time step is chosen as 1/δt = 5000, with Reynolds number
ReDNS = 2π104. The results of mode m ∈ [−3,3] are plotted in figure 5.3, excellent agreements are found
for all the modes.

In the same way, the results obtained by HELIKZ with initial condition duplicated from HELIX is plotted
in in figure 5.4, excellent agreements are also found for all the modes. That is to say the requirement on
Nθ = 256 are both satisfied for HELIX and HELIKZ–NL.
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Figure 5.3 – Spectral function (a) v(m)
r , (b) v(m)

ϕ and (c) v(m)
B at plane Π0 of base state [0.13;0.7;0.15]

obtained by HELIX for (top) initial condition at t = 0 and (bottom) final state at t = 30. line: Nθ = 512;
dashed line: Nθ = 256.

The states obtained by HELIX and HELIKZ are then compared, one obtains a good fit between the spectral
functions from the two simulation results, as shown in figure 5.5. Here to eliminate the difference in
azimuthal position of the vortex in the two codes, one shall take the modulus of the spectral function

f (|m|) =
√
(f (m))2 + (f (−m))2 .
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Figure 5.4 – Spectral function (a) v(m)
r , (b) v(m)

θ and (c) v(m)
z obtained by HELIKZ–NL. Others are idem to

figure 5.3.
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Figure 5.5 – Spectral function (a)|v(m)
r |, (b) |v(m)

θ | and (c) |v(m)
z | at plane Π0 of base states (top)

[0.13;0.7;0.15] and (bottom) [0.2;0.3;0.11]. line: HELIKZ–NL; dashed line: HELIX.
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5.3.4 Characterisation of the base states

To characterise the base state, we follow the prescription described in section 4.4 which was based on the
stagnation point called point A. To locate this point, we iterate on the position where velocity uH or stream
function Ψ reaches its maximum. A priori the local azimuthal velocity u(1)ψ must be zero at this point
since ρ = 0. However it was found because of numerical truncation errors this is not the case but the two
locations are near r = 1 with differences of order 10−4. As a consequence, we slightly shift point A so
that u(1)ψ be zero at this point. The characteristic values, namely a0, W̄0 and W̄00, are then estimated using

an optimal fit of the axisymmetric part of the local axial velocity in the translating frame u(T )b on theΠ⊥
plane by the following relation:

u
(T ,m=0)
b =

Γ

2πa0

[
W̄0 exp(−(

ρ

a0
)2) + W̄00

]
. (5.47)

In table 5.4, we present the characteristic values of the base states measured in table 5.1, these values will
be used for instability studies.

When the core size is reasonably small with respect to the pitch and the curvature radius, the asymptotic
theory adequately describes the structure of the numerical velocity field up to relatively large values of
ε. Comparisons between asymptotic theory and DNS are not presented here but are similar to results of
section 4.4.

prescribed parameters HELIKZ–NL DNS results with fitting on u(0)b
L a W̄ B rA L/rA Γ Ω0 a0/rA W̄0 W̄00

0.3 0.110

−0.03 0.9933 0.3019 1.0240 −0.0893 0.1112 −0.0008 0.0042
0.00 0.9932 0.3025 1.0095 −0.0887 0.1109 0.0226 0.0052
0.17 0.9936 0.3019 1.0228 −0.0868 0.1116 0.1953 0.0061
−0.26 0.9940 0.3018 1.0232 −0.0852 0.1106 −0.2236 0.0039
0.20 0.9936 0.3019 1.0232 −0.0869 0.1110 0.2245 0.0060
0.37 0.9944 0.3016 1.0226 −0.0870 0.1122 0.3874 0.0072

0.4 0.116 −0.24 0.9936 0.4025 1.0132 −0.0596 0.1159 −0.1977 −0.0132
0.16 0.9931 0.4027 1.0127 −0.0623 0.1176 0.1986 −0.0124

0.5 0.125 −0.25 0.9931 0.5034 1.0085 −0.0481 0.1255 −0.1952 −0.0287
0.15 0.9928 0.5035 1.0072 −0.0512 0.1289 0.1997 −0.0292

0.6 0.136 −0.26 0.9930 0.6042 1.0058 −0.0415 0.1361 −0.1954 −0.0426
0.14 0.9935 0.6039 1.0055 −0.0446 0.1399 0.2014 −0.0446

0.7 0.15

−0.27 0.9926 0.7052 1.0041 −0.0379 0.1493 −0.1953 −0.0555
0.13 0.9918 0.7057 1.0039 −0.0416 0.1551 0.2027 −0.0590
0.20 0.9931 0.7048 1.0038 −0.0414 0.1530 0.2687 −0.0562
0.25 0.9932 0.7047 1.0032 −0.0415 0.1522 0.3156 −0.0560

Table 5.4 – The characteristic values of base flows [L;a;Ŵ B] in table 5.1. Quantity rA is the radial position
of point based on u(1)ψ = 0 and the values are obtained via a fitting on u(0)b .
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5.4 Characterizations of most unstable perturbations

5.4.1 Procedure to compute the growth rate and frequency of a mode

The value of growth rate σ is obtained from the temporal evolution of the norm Ec based on kinetic energy

Ec ≡
∫
Π0

(uru
∗
r +uθu

∗
θ +uzu

∗
z)dS (5.48)

where ∗ stands for complex conjugate. Indeed for the most unstable mode which grows exponentially as
exp[(σ − iω)t], this norm varies as

Ec = E0 exp(2σt) , hence σ =
1
2
dlnEc
dt

. (5.49)

In figure 5.6 (a), one displays the norm Ec at different times t (black dots), the energy first decreases with
time as the initial perturbation contains also damped modes, then the most unstable mode emerges and
dominates the evolution. The growthrate of this unstable mode is calculated in the linear regime with
equation (5.49) (red curve with value).

For the frequency in the rotating frame ω(R), one can use any arbitrary field at two different times: take
vorticity fieldω′B for example, one uses the “ancient" fieldω′B(t1) and the new fieldω′B(t2)with t2 = t1+δt.
Theoretically the two fields satisfy the relation:

ω′B(t2) = ω
′
B(t1)exp[(σ − iω

(R))δt] . (5.50)

One defines a new variable f at t1 (resp. g at t2), which is a normalization of ω′B:

f =
ω′B(t1)√!

Π0
ω′B(t1)ω

′∗
B (t1)dS

, g =
ω′B(t2)√!

Π0
ω′B(t2)ω

′∗
B (t2)dS

. (5.51)

One then introduces the correlation coefficient I :

I(ω) =
"

Π0

f e−iωδtg∗dS , (5.52)

which equals 1 at the exact value of frequency ω = ω(R). In practice, one starts with the guess value
ω(R) = 0 and one increases ω(R) until I = 1 is reached, the time interval δt having to be sufficiently
small to avoid the periodicity. In figure 5.6 (b), an example corresponding to the unstable mode found in
figure 5.6 (a) is presented. One uses the vorticity perturbation ω′B at times t1 = 129 and t2 = 130, the
frequency obtained is ω(R) = 2.52.

Another method could be employed to obtain growthrate and frequency. It is based on the complex
perturbation v′z at the stagnation point A. The real part of this quantity reaches its maximum at time
t3 ∼ 0.53 and t4 ∼ 3.12 (see figure 5.6 (c), solid line). It is possible to shift in time the companion
imaginary part, so that they both reach their maximum at the same time (see figure 5.6 (c), black dashed
line). We can check that this quantity indeed evolves with frequencyω(R) and grows according to exp(σ∆t):
the relation v′(A,t4) = v′(A,t3)exp([σ − iω](t4 − t3)) should be verified. Based on this rough estimate,
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Figure 5.6 – An example of computation from numerical results of dimensionless growthrate σDNS and
frequency ωDNS. (a) Temporal evolution of energy Ec (black dots) and corresponding growthrate (red
curve) obtained by eq. (5.49). (b) Correlation coefficient I(ω) given by eq. (5.52). (c) Superimposed
temporal evolution of the real (solid) and imaginary (dashed) part of perturbation v′z at a fixed point PA
in planeΠ0 in the linear regime as a final check for assessing the values σ and ω(R) obtained in (a)–(b),
represented by the colored dashed line.

one gets σ = 0.045 (resp.ω(R) = 2.43), which is close to the value 0.045 obtained in figure 5.6 (a) (resp.
2.52 in (b)).

5.4.2 Helical projection of perturbations

Consider the complex instability mode obtained through the linear simulation. It is characterized by
vorticity components ωr , ωϕ , ωB or velocity components ur , uϕ , uB, obtained by the code HELIKZ–LIN
in the plane Π0. In order to have a clear picture of the mode structure (and compare with asymptotic
theory), it is convenient to display these fields in the planeΠ⊥. When computing the values inΠ⊥ from
those in Π0, a phase shift should be taken into account:

fΠ⊥(M1(ρ,ψ)) = fΠ0
(M(r,ϕ)) · exp(ikz∆z) . (5.53)

whereM ∈Π0,M1 ∈Π⊥ are two points on the same helical line and ∆z = zM1
− zM . This is similar to

the method applied for base flows (yet without phase shift) as introduced in appendix A.2. Field f can then
be normalized to yield f ′:

f ′(ρ,ψ) =
fΠ⊥(ρ,ψ)

fΠ⊥(ρm,ψm)
(5.54)

where (ρm,ψm) is the field component at the location of maximum |fΠ⊥ |. An example on the perturbation
velocity component u′B is given in figure 5.7.

In figure 5.7 left, the contours of fΠ0
(r,ϕ) for real part (top) and imaginary part (bottom) of u′B(r,ϕ) at

planeΠ0 is presented, with its zoom-view at the bottom right corner. The field is then projected onto plane
Π⊥ with equation (5.53), In figure 5.7 (right), one presents the normalized perturbation mode u′B(ρ,ψ)
obtained with equation (5.54) . The shape of the perturbation at right-top is clearly one of the helical
unstable modes we are looking for.
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Figure 5.7 – Examples of helical projection from plane Π0 to Π⊥ and normalization for axial velocity
perturbation u′B showing real parts (top raw) and imaginary parts (bottom raw). [left] Contours for fΠ0

(r,ϕ)
in planeΠ0. The inset in the bottom-right corner is a zoom on the vortex location; blue (resp. red) represents
negative (resp. positive) values. [right] Contours of normalized field f ′(ρ,ψ) in planeΠ⊥.

Mode decomposition

One reveals the spatial structure of this mode in the plane Π⊥ by applying Fourier decomposition:

f ′(m)(ρ) =
1
2π

∫
f ′(ρ,ψ)exp(−imψ)dψ , (5.55)

or in a discrete form:

f ′(m)(ρi) =
1
Nψ

Nψ∑
j=1

f ′(ρi ,ψj )e
−imψj (i = 1, · · · ,Nρ) . (5.56)

In practice, we analyse the axial velocity perturbation component uuu′ ·eeeB(A) in planeΠ⊥. The energy of
mode m for this field f ′ can be obtained by taking the integral in the radial direction:

E
(m)
f =

1
4

∫
ρ
‖f ′(m)‖2ρdρ . (5.57)

For the total kinetic energy mode distribution E(m)
c , the three components of velocity perturbation (u′ρ, u′ψ ,

u′b) are taken into account using
E(m) = E(m)

uρ +E(m)
uψ +E(m)

ub (5.58)

as well as the sum of all energy modes with E =
∑
E(m). An example of energy ratios E(m)/E is plotted in

figure 5.8 (c, top).
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Figure 5.8 – Example of instability mode structure. (a) Contours of vorticity component ω′B in plane
Π⊥(ρ̄,ψ). (b) Contours of velocity component u′b in plane Π⊥(ρ̄,ψ). (c) Top: ratio of total energy per
mode on velocity field uuu′ . Bottom: radial distribution of |u′(m)

b | for m = 0 and m = −2.

5.5 Convergence study on the linear stability analysis

The dependence on mesh refinement varies according to several parameters

• a larger vortex pitch L usually requires a more refined mesh in azimuthal direction;
• a smaller vortex core a usually requires a more refined mesh in both directions;
• a base states with stronger jet component usually requires a more refined mesh in both directions.
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Figure 5.9 – Contours of unstable mode (top) and the mode decomposition of ω′B for base state
[0.7;0.15;0.13] with Re = 104, ksa = 1.75. Different mesh configuration (Nr ×Nθ ,Rext) are used: (a)
(512× 128,2), (b) (512× 256,2), (c)(1024× 256,2).

In figure 5.9, one presents the short wavelength instability mode for the base state [L = 0.7;a = 0.15;W̄ B =
0.13] obtained with three different mesh configurations (Nr ×Nθ ,Rext). Clearly, the configuration (512×
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128,2) is not sufficient. When the mesh configuration (512× 256,2) is used, we observe the expected
instability structure. This is confirmed by the refined mesh configuration (1024× 256,2) yielding close
results. For the same value L = 0.7, the long wavelength mode is more difficult to obtain numerically
(figure 5.10): the modes m = ±1 become dominant with equal energy and radial distribution (that is the
classic structure of long wavelength mode) only after a much longer time evolution (t = 50 is not enough,
because of the slow decay of an axisymmetric component, almost disappeared at t = 120).

(a) (b) (c)

Figure 5.10 – Temporal evolution of long wavelength perturbation kzL = 0.5 (ω′B at planeΠ⊥ is displayed)
for base state L/R = 0.7, a0/R = 0.11,W0 = 0, and Re = 104 (a) t = 20, (b) t = 50, (c) t = 120.

It should be mentioned when the reduced pitch L decreases at fixed core size a the computation needs less
points Nθ . This is because in theΠ0 plane in which the simulation is performed, the vortex covers along
the radial direction a region of size 2a but along the angular direction a region of size 2a

√
1+ r2A/L

2 =

2a
√
1+1/L2. For a given Nθ , one obtains a cell along the radius at rA = 1 of size 2π/Nθ . For a vortex of

core size a, this means it is covered by
2a
√
1+1/L2Nθ
2π

points along the azimuthal direction in theΠ0 plane. To be coherent we need the same number of points in
the radial direction so that

2a
δr

=
2a
√
1+1/L2Nθ
2π

with δr = Rext/(Nr − 1) ,

or

Nr = 1+
Rext
√
1+1/L2Nθ
2π

.

For a vortex of reduced pitch L = 0.3, core size a = 0.11 and Nθ = 256, this means 30 points along
the azimuthal direction. For a domain size Rext = 3, this yields Nr = 426, thus the choice Nr = 512 is
enough along the radial direction. For larger L = 0.7, core size a = 0.11 and Nθ = 512, this means also 30
points along the azimuthal direction and yields Nr = 427. For some special cases, a vortex with extremely
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small core size a/rA less than O(10−2), strong axial componentsW0 > 0.5 more refined meshes in both
directions are required, resulting in a very long simulation times to get the growth rate and frequency.



Chapter6
Linear helical stability: Long wavelength
modes

Contents
6.1 Theoretical elements for long wavelength instability modes . . . . . . . . . . . . . 62
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Theoretical studies of helical vortices with finite core size a indicate the existence of two types of instability
modes: short-wave mode and long-wave mode. The present chapter focuses on the second kind of
perturbations: modes the wavelength of which is much larger than a. Our normal modes are of the form
exp(ikzz) or using the curvilinear abscissa s = z

√
1+ R2

L2
of the form

exp(ikss) = exp(ikzz) with kz =

√
1+

R2

L2
ks =

ks
αA

. (6.1)

For R/L� 1, the long-wave limit means

ks a =
1√

1+ R2

L2

kza ∼ kza� 1 .

For L/R� 1, the long-wave limit means

ks a =
1√

1+ L2

R2

(
a
R
)(kzL) ∼ (

a
R
)(kzL)� 1 ,

which is valid as soon as kzL ∼O(1).
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6.1 Theoretical elements for long wavelength instability modes

For such modes, the unstable mode is only a displacement mode: as its amplitude grows, the internal
structure of the vortex core remains invariant but the vortex is locally displaced as a whole. In figure 6.1
from [Leweke et al., 2016], the experimental vortex indicates a clear displacement occurring near the 4th
helical turn (position of white triangle). The shape of the perturbed filament is similar to the theoretical
studies by [Widnall, 1972] (illustration on left). In this seminal work the stability of helical vortices with
finite core size a has been studied in the context of filament theory taking into account the self-induced
velocity through the Biot-Savart line integral, associated with the cut-off method. Theoretically a long-wave
instability mode was found that is the filament was displaced by a mode of the form of wavelength ks where
ks is measured along the vortex central line (if s denotes the curvilinear abscissa). This means that unstable
modes dependence is of the form exp(ikss) with ksa� 1. The stability of long-wave modes has also been
considered by [Gupta and Loewy, 1974], [Okulov, 2004], [Okulov and Sørensen, 2007]. In a recent study,
the long-wave modes have been numerically investigated [Selçuk, 2016, Selçuk et al., 2017a] for single or
multiple helical vortices with weak internal jet velocity. A good agreement on the growth rates was found
for different reduced pitches L/R and perturbation wavenumbers.

In the thesis of [Selçuk, 2016], the long-wave instability had been numerically studied in the limit of zero
axial jet component. We extended the study to the case of axial jet components, with the base states listed
in previous chapter. These states are closer to the realistic model as the axial velocity of the helical vortices
are usually non-zero [Quaranta et al., 2015].

Figure 6.1 – Examples of long-wave instabilities cited from [Leweke et al., 2016]. Left: theoretical
predictions by [Widnall, 1972], Right: experimental visualisations of one-bladed rotor wakes in a water
channel.

For low pitch L/R, when visualized in the meridian plane, the situation is very similar to an infinite
row of point vortices. Consider an infinite array of two-dimensional point vortices of circulation Γ

situated at points (mb,0) with m ∈ Z. Its stability is known [Lamb, 1932]: the vortex m subjected
to a perturbation (mb+ xm(0), ym(0)) with xm(0) = A0e

imφ and ym(t) = −A0e
imφ evolves as xm(t) =

A0e
σt+imφ and ym(t) = −A0e

σt+imφ with growth rate given by

σ (φ) =
Γ

4πb2
φ (2π −φ) . (6.2)

Themaximum occurs forφ = π corresponding to an out-of-phase displacement of the neighbouring vortices.
Following [Bolnot, 2012], one may tentatively compare growth rates obtained for a helical vortex to those
obtained for an array of point vortices. For a helical vortex, the shortest length between two successive
coils is not the helical pitch h = 2πL [Quaranta et al., 2015] but b = hcosα with cosα = R/(L2 +R2)1/2.
The phase between two points in a period h is equal to kzh = 2πkzL. The phase between two points
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corresponding to the shortest length becomes

φ = kzhcos
2α = 2πkzLcos

2α,

and the expected growth rate (see [Quaranta et al., 2015]) can be replaced by

σ =
Γ

2h2
2πkzL

(
1− kzLcos2α

)
=

Γ

2h2
2πkzL

(
1− kzL

R2

R2 +L2

)
.

This can be rewritten as

σ = σ0
[
2πk̂

(
1− k̂

)]
, k̂ ≡ β0 kzL (6.3)

with

σ0 ≡
Γ

8π2

( 1
R2 +

1
L2

)
, β0 ≡

1

1+ L2

R2

. (6.4)

The maximum is equal to σ0π/2 and is attained at k̂ = 1/2. As mentioned in the arti-
cle [Quaranta et al., 2015], such an expression is only valid for small helix pitches, and for a helical
vortex with large pitch, the interaction between neighbouring filaments becomes weaker, the dynamics are
rather dominated by the vortex curvature and torsion.

In the following, the growth rate obtained by DNS σDNS is compared to the value obtained by the point-
vortex theory, by evaluating

σd =
σDNS
σ0

(6.5)

as a function to k̂ ≡ β0kzL. The largest value of σd is expected to be π/2 as for the case of point vortices
(see also [Selçuk et al., 2017a]). As mentioned in [Widnall, 1972], the stability property may change for
other parameters.

• For a helical filaments with L ≤ 0.3 (arctan(L/rA) < 0.3 in [Widnall, 1972]), in which neighbouring
turns are within a distance of one radius, a third instability may occur at k̂ = 3

2 and k̂ = 5
2 .

• Growth rates become smaller if the core size becomes larger.

[Fukumoto and Miyazaki, 1991] considered an axial flow along the vortex core, which was found to
suppress the instability for certain configurations with large pitch.

6.2 Numerical results of long wavelength instability

In this section long wavelength (ksa� 1) instability results are presented for a helical vortex with Gaussian
core structure, reduced pitch L = 0.3 and axial jet velocityW0 = 0,0.2,0.4.

In figure 6.2(a), contours of ω′B in plane Π⊥ are shown, where red (resp. blue) zones are for positive
(resp. negative) values. The structure of displacement mode, typical for the long-wave instability, is found.
In addition, an even distribution of mode m = 1 (black line) and m = −1 (green dashed line) (see mode
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Figure 6.2 – Mode structure of long wave-length instability for k̂ = 0.5,W0 ∼ 0, rA = 0.994, a0 = 0.1118,
L = 0.3 and Re = 104. [a] Contours of azimuthal vorticity ω′B (blue: ω′B < 0, red: ω′B > 0) [b] Fourier
decomposition of ω′B: (top) ratio of energy per mode, (bottom) radial distribution of ω′(m)

B .

decomposition in figure 6.2(b)), indicates the resonance of Kelvin modes m = −1 and m = 1 with same
energy and radial distributions, as predicted by theory.

In figure 6.3, the scaled growth rates σd are plotted for various dimensionless wavenumbers k̂ ≡ β0kzL
for different core sizes a, for axial velocity W0 ≈ 0 and fixed reduced pitch L = 0.3. An overall good
agreement is found with respect to the theoretical curve (equations (6.3)–(6.5)): the dispersion relations
take identical forms with maxima located near k̂ = 1/2. A non-negligible shift is observed for larger core
sizes a, which is not surprising since the theory is based on the assumption of small core sizes a� 1.
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Figure 6.3 – The comparison of scaled growthrate σd from DNS (dots) and theory (line, equation (6.5)),
for L = 0.3,W0 ≈ 0 with various core sizes: a = 0.08 (magenta), 0.11 (red), 0.15 (blue).

In figure 6.4, different axial velocities W0 are presented, with fixed reduced pitch L = 0.3 and
core size a/R = 0.11. Only slight differences are observed for different axial velocities. The work
[Fukumoto and Miyazaki, 1991] introduced an axial jet velocity inside the vortex core with the cutoff
method valid to the second order, extending the first-order scheme developed by [Widnall, 1972]. The
axial velocity was found to discriminate between right- and left-handed helices and the dispersion relation
to be modified by the axial velocityW0, for certain configurations (L = 1,0.3,0.2 with a = 0.33). When
W0 is increased from 0, the flow is first destabilized by the weak jet component (withW0 < 0.3), and then
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Figure 6.4 – The comparison of scaled growthrate σd from DNS (dots) and theory (line, equation (6.5)),
for L = 0.3, (left)a = 0.08, (right)a = 0.11 with different axial velocityW0 ≈ 0 (red), 0.2 (yellow), 0.43
(purple).

stabilized by the strong jet component. We could not find such a behavior because of numerical problems.
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This chapter presents linear stability for modes of wavelength comparable to the core size a, that is
such that ksa ≡ αAkza ∼ O(1). Contrary to long-wavelength modes, these instability modes modify
the vortex core structure. Physically, they originate from the resonance or near resonance between two
Kelvin waves propagating along the steady base vortex flow. These two waves couple via the base
flow deformation due to the action of a strain field. For a single vortex, this strain is induced by the
curvature and torsion of the vortex nearby and from region far apart. This constitutes the so-called elliptic
instability ([Kerswell, 2002, Meunier et al., 2005]) or curvature instability ([Fukumoto and Hattori, 2005,
Hattori and Fukumoto, 2009]). For vortex rings, the theoretical predictions have already been well verified
by [Bolnot, 2012, Hattori et al., 2019].

The elliptic instability is discussed in section 7.2, and the curvature instability in section 7.3. In partic-
ular, results of the procedure based on the code HELIKZ-LIN are compared to theoretical values given
in [Blanco-Rodríguez et al., 2015].
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7.1 Comparing numerical eigenvalues to theoretical predictions

In this section, let us use dimensional variables (denoted by ∗). Stability computations are performed in the
rotating reference frame (R) in which the basic flow is steady, and provide the frequency ω(R)∗ and growth
rate σ (R)∗. In the translating frame (T ) in which the basic flow is also steady, frequency and growth rate
become

ω(T)∗ =ω(R)∗ −U ∗0k
∗
z; σ (T )∗ = σ (R)∗ (7.1)

where U ∗0 is the translation velocity of the frame along the z axis and k∗z the dimensional wavenumber
along the z axis.

The theoretical dimensional growth rate σ ∗th and frequency ω∗th for the instability of a straight Batchelor
vortex are given in a reference frame with zero axial velocity outside the vortex; the unstable modes read:

v′ = v̂(r)exp(ik∗ss
∗ + imψ − iω∗tht

∗) exp(σ ∗tht
∗) , (7.2)

where the wavenumber k∗s is along the filament direction eees. In order to match the numerical results to
theory, one adds an axial flowW ∗00 to the Batchelor vortex. This leaves the growth rate unchanged, but
modifies the frequency into ω∗th +W

∗
00k
∗
s , where k∗s is the local wavenumber along the vortex axis. In the

code HELIKZ-LIN, the solution is searched in the eeez direction. The relation (6.1) in dimensional units
yields

k∗s = αAk
∗
z . (7.3)

Matching the two computations imposes

ω(T)∗ =ω∗th +W
∗
00k
∗
s ; σ (T )∗ = σ ∗th (7.4)

or equivalently

ω(R)∗ =ω∗th +
(
W ∗00αA +U

∗
0

)
k∗z; σ (R)∗ = σ ∗th . (7.5)

In the code HELIKZ-LIN, one uses the characteristic scales and Reynolds number

[L] = rA , [T] =
r2A
Γ
, and ReDNS =

Γ

ν
. (7.6)

One computes for the dimensionless wavenumber kDNS the dimensionless growth rate σDNS and frequency
ωDNS

σDNS(kDNS) =
r2A
Γ
σ (R)∗ , ωDNS(kDNS) =

r2A
Γ
ω(R)∗ with kDNS ≡ rAk∗z . (7.7)

For the asymptotic analysis in Ch 4, the scales and Reynolds number are chosen as follows

[L] = a , [T] =
2πa2

Γ
, and Re =

Γ

2πν
=

1
2π
ReDNS . (7.8)
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In these scales, one gets the dimensionless quantities

k̄z =
kDNS
r̄A

, k̄s = αAk̄z, with r̄A ≡
rA
a
, (7.9)

σ̄ (R) =
2π

r̄2A
σDNS(kDNS,ReDNS) , ω̄(R) =

2π

r̄2A
ωDNS(kDNS,ReDNS). (7.10)

In dimensionless form, equation (7.5) becomes

σ̄ (R) = σ̄th(k̄s;Re) , ω̄(R) = ω̄th(k̄s;Re) +
(
W̄00 +

Ū0

αA

)
k̄s , Ū0 = −Ω̄0L̄ . (7.11)

If we use the asymptotic form, this can be written as

ω̄(R) = ω̄th(k̄s;Re) +

αA(1−αA)L̄
−
αAΩ̄0r̄

2
A

L̄

 k̄s , (7.12)

where, from equation (4.55),

W̄00 = αAΩ̄0L̄+
αA(1−αA)

L̄
. (7.13)

7.2 Elliptical instability

Figure 7.1 – Cited from [Leweke et al., 2016]: Experimental dye visualizations (side views) of the elliptic
instability of strained vortices without axial flow, .

A number of experimental and numerical investigations are devoted to instability mechanisms for helical
vortices. For instance, short-waves and filament twisting were observed in two-phase flows experiments
by [Felli et al., 2011]. In [Quaranta et al., 2015, Leweke et al., 2016], the existence of short-wave elliptical
deformation for monophasic flows were found in experiments and their growth rates were quantitatively
compared with theoretical estimates. In figure 7.1, an experimental result is presented with a zoom-view
inside the helical vortex core [Leweke et al., 2016] in which green color dye has been introduced. The
elliptical instability is visualized by the light-green part indicating the deformation inside the vortex core.
In Large Eddy Simulations, these instability patterns were also recovered [Ahmed et al., 2020].
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The seminal works [Moore and Saffman, 1971] and [Widnall and Tsai, 1977] that understood elliptical
instability modes, concerned a straight vortex subjected to an exterior strain. This base flow is not
axisymmetric. Indeed, an elliptic deformation of the base state in cos(2θ) is observed and explains the
origin of a resonance or a near-resonance between two neutral Kelvin modes of characteristics (ωA, kA,mA)
and (ωB, kB,mB) when kc = kA = kB, ωc = ωA ∼ ωB and mA =mB − 2. More precisely it was shown that
a perturbation uuu′ of the form

uuu′ =
(
AũuuA(r)e

imAϕ +BũuuB(r)e
imBϕ

)
eikcz−iωt (7.14)

exists when amplitudes A and B are such that

[ω −ωc]A = εCABB, [ω −ωc]B = εCBAA hence [ω −ωc]2 = ε2CABCBA

where CAB and CBA are two coefficients due to the coupling through the base state deformation. When
CABCBA is negative, this leads to an instability. The work [Robinson and Saffman, 1984] validated
the above predictions with numerical simulations. Later, [Pierrehumbert, 1986], [Bayly, 1986] and
[Waleffe, 1990] studied the local stability properties of an unbounded elliptical flow for short-wave and
explained the physical mechanism. These results were obtained for a Rankine vortex for which the vorticity
is constant inside the core. A more realistic model is a Batchelor profile with Gaussian profiles for the axial
vorticity and the axial velocity. The work [Lacaze et al., 2007] determines the elliptic instability of this
vortex and analyses the effect of an axial flow. In figure 7.2, the instability diagram of elliptic instability
is presented for Reynolds number Re = 2 · 104 and ε = 0.01: in the plane (W0, k) withW0 the axial jet
parameter and k the wavenumber, grey levels correspond to the intensity of growth rate σ . Each resonance
involves an azimuthal mode mA and branch lA and a mode mB and a branch lB and only exists in a certain
interval ofW0 values. Note the presence of three main modes:

• mode (−1,1, [1,1]) for 0 ≤W0 ≤ 0.3 ;
• mode (−2,0, [2,2]) for 0.15 ≤W0 ≤ 0.35;
• mode (−2,0, [1,1]) for 0.3 ≤W0 ≤ 0.5,

where notations (mA, mB, [lA, lB]) are sometimes simplified into (mA, mB, lA = lB) as in figure 7.2. lA is
related to the number of radial oscillations of mode mA.

Figure 7.2 – Instability area and growth rates of the principal coupling modes (mA, mB, lA = lB) in plane
(W0, k) for Re = 2× 104 and ε = 0.01from [Lacaze et al., 2007].
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7.2.1 Asymptotic theory

A recent theoretical study by Blanco-Rodríguez [Blanco-Rodríguez and Le Dizès, 2016] analysed the
elliptic instability for vortex rings and helical vortices with a Batchelor profile. It was shown that at leading
order, the curvature of the helical vortex does not change the Kelvin mode structure but modifies the
local strain field hence changing the elliptic instability growth rate. More quantitatively, if (ωc, kc), is a
resonant set i.e. an intersection of Kelvin waves branches, the complex frequency $ =ω− iσ of the elliptic
instability mode depends on the axial wavenumber k̄ = k̄s close to kc so that(

$ −ωc − i Im(ωA)−QA
(
k̄ − kc

)
− iVA
Re
− ε2D(ε)

A

)
×
(
$ −ωc − i Im(ωB)−QB

(
k̄ − kc

)
− iVB
Re
− ε2D(ε)

B

)
=ε4

(
RABS +R

(ε)
AB

)(
RBAS +R

(ε)
BA

)
(7.15)

The r.h.s. terms are the coupling terms due to the base state deformation that couples Kelvin waves. All
coefficients (QA,QB,VA,VB,DA,DB,RAB,RBA,R

(ε)
AB,R

(ε)
BA) depend on parameterW0. The strain parameter

S only depends on L̃ = L/rA. For a single helical vortex with a Batchelor profile,

S =− 3
16

log

 L̃(
L̃2 +1

)3/2
ε

−
(
L̃2 +1

)2
24L̃2

− 1
4

(
L̃2 +1

)2
+
1
4
L̃
(
L̃2 +1

)3/2
(7.16)

+
1
96

(
28L̃2 +11

)
+
∞∑
m=1

Rm(L̃) , (7.17)

with the polynomial Rm

Rm(L̃) ≡
L̃
(
L̃2 +1

)3/2
2

+
3

16m
−

(
1+ L̃2

)3
m

2L̃2
(7.18)

+
m2

(
L̃2 +1

)5/2
L̃3

(
−Im−1

(m
L̃

)
+ L̃Im

(m
L̃

))(
Km−1

(m
L̃

)
+ L̃Km

(m
L̃

))
(7.19)

+m
(
L̃2 +1

)3/2
Im

(m
L̃

)(
Km−1

(m
L̃

)
+ L̃Km

(m
L̃

))
. (7.20)

Explicit expressions for coefficients (QA,QB,VA,VB,DA,DB,RAB,RBA,R
(ε)
AB,R

(ε)
BA) are given in table 2 in

[Blanco-Rodríguez and Le Dizès, 2016] (corrected in [Blanco-Rodríguez and Le Dizès, 2017] by a factor
2 affecting RAB and RBA) for the three main unstable modes mentioned above and some specific velocity
W0 namely

• Case a: mode (−1,1, [1,1]) forW0 = 0.;
• Case b: mode (−2,0, [2,2]) forW0 = 0.2;
• Case c: mode (−2,0, [1,1]) forW0 = 0.4;

Furthermore, an approximation provides the dependency of these coefficients with respect to W0.
It is given in the Appendix C in [Blanco-Rodríguez and Le Dizès, 2016] with corrections mentioned
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in [Blanco-Rodríguez and Le Dizès, 2017]. We noticed that a minus sign is also missing for term
Real(RBA). This approximation differs with the specific values : for the elliptical mode (−2,0, [2,2])
on a helical vortex withW0 = 0.2, L = 0.3 (S = −0.7427), ε = 0.1 and Re = 104, the approximate and
exact coefficients are given in table 7.1. The two sets yield two theoretical growth rates (figure 7.3 left) and
frequencies (figure 7.3 right): red lines are results based on exact coefficients, blue lines are based on the
approximation of Appendix C. There exist differences of order 15%.

Coef. Approximation Exact
QA 0.1250+0.0390i 0.116+0.042i
QB −0.0260 −0.027
VA −16.7860− 4.3200i −16.406− 4.324i
VB −26.4360 −26.419
D

(ε)
A −0.3660− 0.2460i −0.340− 0.258i

D
(ε)
B −0.2692+0.0192i −0.283+0.019i

RAB 6.8000+ 2.3800i 6.928+ 2.424i
RBA −0.7420 −0.824+ 0.040i

R
(ε)
AB 0.6400− 0.0220i 0.542− 0.027i
R
(ε)
BA −0.0466+0.0168i −0.057+0.025i

Table 7.1 – Coefficients in equation (7.21) cited from [Blanco-Rodríguez and Le Dizès, 2016] for elliptical
mode (case b), The column "approximation" are values obtained with the expressions given in Appendix
C, and column "exact" are given in Table 2. Numbers in bold are the corrected values as indicated
in [Blanco-Rodríguez and Le Dizès, 2017].
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Figure 7.3 – Theoretical growth rate (left) and frequency (right) of elliptical mode (−2,0, [2,2]) obtained
from equation (7.15) for a helical vortex with L = 0.3 (S = −0.7427),W0 ∼ 0.2, Re = 104 and ε = 0.1.
The two sets of coefficients given in table 7.1 are used : red (resp. blue) line corresponds to exact (resp.
approximated) coefficients. An error-bar with 15%σmax is added.

For zero torsion i.e. for a vortex ring, the theoretical growth rates computed using equation (7.15)
have been validated by DNS results (see for instance the figures 9-12 showing different modes
in [Hattori et al., 2019]). For non zero-torsion, unfortunately this equation (7.15) is not valid: some
terms in the expansion that yields this equation, have been forgotten. To be more precise, the authors
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in [Blanco-Rodríguez and Le Dizès, 2016] work in the non-orthogonal basis (r,ϕ,s). They forgot to intro-
duce the dependency with respect to torsion of operators defined in their appendix B. For the elliptical
resonance, this affects the values of coefficients in (7.15) originating from a modification of the linear
operator of each Kelvin wave as well as the coupling coefficient due to the base state deformation in the r.h.s.
of equation (7.15). In such a case, one needs to redo the computations. In the present thesis, we assume
the dependency on torsion of the r.h.s. coefficient to be negligible and we simply use a trick to get free of
charge, the correct coefficients due to the modification of l.h.s. terms! To do so, we use another viewpoint:
if one works in the associated orthogonal basis (r,θ, s), the normal perturbations exp(iks + imϕ) in the
non-orthogonal basis (r,ϕ,s) reads with a shift of wavenumber along s due to torsion since

iks+ imϕ = i(k −mε L
rA

)s+ imθ .

This supplementary term precisely contains the dependency with respect to torsion τ . Because of a
shift of wavenumber due to torsion [Hattori and Fukumoto, 2014], two terms in red should be added in
equation (7.15): (

$ −ωc − i Im(ωA)−QA
(
k̄−mAε

L
rA
− kc

)
− iVA
Re
− ε2D(ε)

A

)
×
(
$ −ωc − i Im(ωB)−QB

(
k̄−mBε

L
rA
− kc

)
− iVB
Re
− ε2D(ε)

B

)
=ε4

(
RABS +R

(ε)
AB

)(
RBAS +R

(ε)
BA

)
(7.21)

One solves the problem anew: growth rates and frequencies are plotted in figure 7.4 for the elliptical mode
(−2,0, [2,2]) with L/R = 0.3, |W0| = 0.2 and Re = 104. If one compares the growth rate and frequency
with correction terms (equation (7.21) and red line) or without correction terms (equation (7.15) and black
line), obvious differences are found : a shift in k̄, but the maximum growth rate changes only slightly.
Finally, note that equation (7.21) is valid for positiveW0 with k̄W0 > 0 or for negativeW0 with k̄ < 0. For
cases with k̄W0 < 0, if one changes the sign of ω andm, with the coefficient remains the same, the stability
equation should also works.
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Figure 7.4 – Comparison of growth rate (left) and frequency (right) for elliptical mode (−2,0, [2,2]) given
by equation (7.21) with L/R = 0.3, ε = 0.1,W0 = 0.2, Re = 104 and approximate values of the coefficients.
Black : original expression without terms mεL/R. Red: new expression with two correction terms.

The asymptotic equation (7.21) provides an estimate for the interval of unstable wavenumbers worth
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(a) mode (-1,1,[1,1]) (b) mode (-2,0,[2,2]) (c) mode (-2,0,[1,1])
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Figure 7.5 – Theoretical growth rates σ̄ (k̄s) of elliptical modes given by equation (7.21) for helical vortex
ε = 0.1, L = 0.3 and different Reynolds numbers Re.

(a) mode (-1,1,[1,1]) (b) mode (-2,0,[2,2]) (c) mode (-2,0,[1,1])
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Figure 7.6 – Theoretical growth rate σ̄ (k̄s) of elliptical modes given by equation (7.21) but with ε = 0.1,
L = 0.3, Re = 104 and differentW0.

studying numerically in k̄s space. For cases (a) , (b) and (c), figure 7.5 displays the dependency on Reynolds
number of theoretical growth rates (helical vortex with L = 0.3 and ε = 0.1). It seems that above Re = 104,
the growth rate does not change much. By contrast, growth rates are very sensitive to the jet valueW0
(figure 7.6). This is due to the presence of a critical layer damping.

7.2.2 Structure of the elliptical modes found by direct numerical simulation

We present numerical results of elliptical instability modes for different base states corresponding to a fixed
Reynolds number Re = 104, a0 = 0.11, L = 0.3 (ε = 0.1 from relation (4.41)) but different W̄B :

• mode A : branch (-1,1,[1,1]) for base state [0.3;0.11;0] corresponding toW0 ≈ 0.027.
• mode B : branch (-2,0,[2,2]) for base state [0.3;0.11;0.2] corresponding toW0 ≈ 0.224
• mode C : branch (2,0,[2,2]) for base state [0.3;0.11;−0.26] corresponding toW0 ≈ −0.23
• mode D : branch (-2,0,[1,1]) for base state [0.3;0.11;0.4] corresponding toW0 ≈ 0.427.

More details on these base states can be found in table 5.4. The structures of these unstable modes are now
presented, based on a Fourier decomposition revealing the azimuthal contributions m. The growth rates
and frequencies are presented in the next section.
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Figure 7.7 – The elliptical instability mode A with Re = 104 at k̄s = 2.24. (a) Contours of normalized
azimuthal vorticity ω′B in plane Π⊥: ω′B > 0 (red), ω′B < 0 (blue), with extreme values ±0.5. (b) Idem
to (a) but for the normalized u′b. (c) Fourier decomposition: (top) distribution of energy over modes m,
(bottom) radial distribution of u′(m)

b .

Elliptical mode A

The first unstable mode (−1,1, [1,1]) is studied with base state [0.3;0.11;0], which contains a negligible
axial jet componentW0 = 0.027. Figure 7.7 contains the main elements that identify the mode obtained
at k̄s = 2.24. Graph 7.7(a) [resp. (b)] displays contours of the normalized vorticity component ω′B (resp.
normalized velocity component u′b) in planeΠ⊥; graph 7.7(c) displays the relative contribution of each
mode (m) to the total energy, and graph 7.7(d) gives the radial distributions u′(m)

b (r) for the dominant
azimuthal contributions, here m = ±1. On this latter graph, the radial structure of each wave reveals a
single node typical for the branch labels [1,1]. This node is also seen on the contours of ω′B and u′b: the
circle ρ ≈ a0 is undisturbed, while the interior is shifted in one direction and the external region in the
opposite one. It shows the core structure deformation in the stretching direction due to the strain field from
base state. Due to the fact thatW0 ≈ 0, the two inertial waves are almost symmetric and each contains half
of the energy.

Elliptical mode B

At larger axial flow (W0 = 0.224), an elliptic mode B is found for base state [0.3;0.11;0.2], represented
for k̄s = 3.25 in figure 7.8. It is a branch (−2,0, [2,2]): the resonance now involves mA = −2 and mB = 0,
and the radial structure reveals two nodes characteristic of branch labels [2,2]. Again, the perturbation
vanishes near the circle ρ = a.

Elliptical mode D

When 0.3 ≤W0 ≤ 0.5, mode D become dominant. This is a branch (−2,0, [1,1]) obtained with base state
[0.3;0.11;0.4] (W0 = 0.427).

Figure 7.9 displays the characteristics of this mode at k̄s = 1.73. The resonance involves mA = −2 and
mB = 0, with a single node radially, which corresponds to branch labels [1,1]. The radial structure shows
that the perturbation does not vanish near ρ = a, contrarily to the two previous modes, and has a maximum
at ρ ≈ 1.5a. These three elliptical instability modes (A,B,D) are almost identical to the ones obtained
by [Hattori et al., 2019] for vortex rings, however different energy distributions and radial functions are
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Figure 7.8 – The elliptic mode B with Re = 104 and k̄s = 3.25. Graphs are similar to those in figure 7.7.
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Figure 7.9 – The elliptical mode D with Re = 104 and k̄s = 1.73. Graphs are similar to those in figure 7.7.

found in all cases. Figure 7.10 displays a 3D visualization.

(a) (b) (c)

Figure 7.10 – 3D iso-surfaces of perturbationω′B for elliptical instability modes (−1,1, [1,1]), (−2,0, [2,2])
and (−2,0, [1,1]) corresponding to three different base states. Red and blue iso-surfaces correspond to
±0.3 of the maximum. A close-up is presented in the central part of the plots.
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Figure 7.11 – Growth rate σ̄ (left, solid line) and frequency ω̄ (right, dashed line) obtained by theory
equation 7.21 and DNS results (dots) for elliptical mode A with Re = 104 and base state [0.3;0.11;0.]
(W0 ∼ 0.03).
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Figure 7.12 – Growth rate σ̄ and frequency ω̄ for mode B (black line or black dots) or mode C (red dots).
The branch is in both cases a branch (−2,0, [2,2]) but for mode B with W0 ∼ 0.23 and mode C with
W0 ∼ −0.23. Lines and symbols similar to those in figure 7.11.

7.2.3 Growth rates and frequencies for elliptical modes

We present growth rates and frequencies of the three main elliptical modes. All base states have same
core size a = 0.11 and reduced pitch L = 0.3, but different axial jet parameterW0. In figure 7.11, values
found for the elliptical mode A are plotted. The theoretical growth rate σ̄ (left) or frequency (right) are
displayed : dots are DNS results and solid or dashed lines are obtained from equation (7.21). A fair
agreement between numerical results and theory (7.21) is found (theoretical values however are obtained
from estimated coefficients, which are uncertained of 15%).

Figure 7.12 gives a similar representation for base states [0.3;0.11;−0.26] (W0 = −0.2236, red) and
[0.3;0.11;0.2245] (W0 = 0.2301, black). This agreement between DNS results and theory 7.21 is rather
satisfactory (note that only W0 ≈ 0.23 could be compared). The effect of torsion, proves here to be
important for both the wavenumber of maximum amplification and the value of the maximum growth rate.
Unfortunately, we could not compare with the theory for mode C sinceW0 ≈ −0.23.

A similar agreement is found for mode D (see figure 7.13), however with a small shift between theoretical
and DNS results.
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Figure 7.13 – Growth rate σ̄ and frequency ω̄ for elliptical mode D. Lines and symbols are similar to those
in figure 7.11.

7.3 Curvature instability

Curvature deforms the core structure of a vortex ring and yields short-wave instability
modes [Fukumoto and Hattori, 2005, Hattori and Fukumoto, 2003]. In such a case, a resonance or
a near-resonance occurs between two Kelvin modes of characteristics (ωA, kA,mA) and (ωB, kB,mB) via
the dipolar deformation of the core in cos(θ). This implies that, as for the elliptic instability, kA = kB,
ωA ∼ωB but now the azimuthal wave numbers are such that mA =mB − 1 which differs from the elliptic
instability resonance.

7.3.1 Asymptotic theory

The curvature instability mode theoretically exists for helical vortices, as shown on a helical Rankine vortex
tube by [Hattori and Fukumoto, 2014]. Recently, [Blanco-Rodríguez and Le Dizès, 2017] analysed the
curvature instability of a curved Batchelor vortex. The theoretical stability analysis provided the formulae
for the complex frequency $[

$ −ωc −QA
(
k̄ − kc

)
− iVA
Re

][
$ −ωc − i Im(ωB)−QB

(
k̄ − kc

)
− iVB

Re

]
= ε2CABCBA (7.22)

with constants (QA,QB,VA,VB,CAB,CBA,RAB,RBA) depending only on the axial jet amplitudeW0. They
showed that the combination of modes mA = 0 and mB = 1 becomes the most unstable for moderate
viscosity, and that without axial flow, the elliptic instability is always dominant. The situation is different in
the presence of an axial flowW0: the region of the (ε,Re) plane where the curvature instability dominates
over the elliptical instability (see figure 9 of [Blanco-Rodríguez and Le Dizès, 2017]) changes for different
axial flow intensity.

For zero torsion i.e. for vortex rings, this theoretical evaluation has been validated, both the structure and the
growth rate of the unstable modes are found to be in good agreement [Hattori et al., 2019]. When torsion
is present as in helical vortices, for the same reasons which imposed to modify the elliptical instability,
correction terms (in red) should be added to the original expression (7.22) estimating the complex frequency
$ =ω − iσ as a function of the axial wavenumber k̄ = k̄s:(
$ −ωc −QA

(
k̄−mAε

L
R
− kc

)
− iVA
Re

)(
$ −ωc − i Im(ωB)−QB

(
k̄−mBε

L
R
− kc

)
− iVB

Re

)
= ε2CABCBA .

(7.23)
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For the curvature instability, the equation is obtained at first order instead of at second order. In that case
the r.h.s. terms represents the coupling terms with the base state deformation while the l.h.s. is the product
of two terms each one representing the dispersion curve for each one of the two Kelvin waves. Only the
latter product is thus affected inside the corrected version which estimates the complex frequency $ as a
function of the axial wavenumber k̄ = k̄s. As a consequence, by contrast with the elliptical instability, the
above modification is sufficient to take into account the effects of torsion.
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Figure 7.14 – Theoretical growth rate σ̄ (left) and absolute frequency |ω̄th| (right) of the curvature mode
(−1,0, [2,4]) for base state with ε = 0.1, Re = 104 and W0 = −0.2 (solid line given by equation 7.22).
Corrected curves (dashed lines given by equation 7.23) with L = 0.3 (blue); L = 0.4 (red); L = 0.5 (yellow);
L = 0.6 (purple); L = 0.7 (green).
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Figure 7.15 – Theoretical growth rate σ̄ of curvature modes (−1,0, [lA, lB]) given by equation (7.23) for a
base helical vortex with ε = 0.1, L = 0.7 and (Left)W0 = 0 the blue line corresponds to Reynolds Re = 106

and red to 5 · 105 , yellow to 3 · 105. (Right)W0 = −0.4 the blue line corresponds to Reynolds Re = 104

and red to 5 · 103 , yellow to 103.

Note that equation (7.23) is valid for positive W0 with k̄W0 < 0 or for negative W0 with k̄ > 0, but not
cases where k̄W0 > 0. For example, case A and B in table 7.2 are equivalent. One example case is plotted
in figure 7.14. Based on equation (7.23), the growth rate of dominant modes has been plotted for various
Re values and axial flowsW0 = 0 and −0.4 (figure 7.15). Compared to the elliptical instability, the growth
rate of curvature instability is much weaker in a vast majority of cases. Only in specific circumstances
(small ε and high Re), curvature instability is found to dominate the flow evolution, which makes it difficult
to implement in the real situation. To the best of our knowledge, no experimental study has succeeded yet
in evidencing curvature instability.



7.3. Curvature instability 79

Case Mode W0 kc ωc
A (0,1, [3,1]) 0.2 −1.14 0.11
B (−1,0, [1,3]) −0.2 1.14 −0.11

Table 7.2 – Symmetrical cases A and B, involving similar modes for opposite axial jet directions.

7.3.2 Curvature modes for the base state [0.7;0.15;0.13] (W0 = 0.2).
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Figure 7.16 – Growth rate σ̄ obtained by DNS as a function of wavenumber k̄s (dashed-dot lines) for
base state [0.7;0.150;0.13] (W0 ≈ 0.2) with Re = 104. Different colors correspond to different modes:
(−1,0, [1,3]) (blue) ; (−1,0, [1,4]) (red); (−1,0, [2,4]) (yellow).

The stability properties of base state [0.7;0.150;0.13] (W0 ≈ 0.2) are here studied. Figure 7.16 displays
the growth rates obtained numerically versus the wavenumber k̄s. Three dominant branches are found for
wavelengths k̄s ≤ 4 and Re = 104, namely near k̄s = 1.1 for mode (−1,0, [1,3]) (blue), near k̄s = 1.3 for
mode (−1,0, [1,4]) (red) and near k̄s = 1.8 for mode (−1,0, [2,4]) (yellow). The asymptotic theory for
W0 = −0.2 (see figure 7.17) predicts the same three dominant modes but for slightly shifted wavenumbers
(see below figure 7.25).
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Figure 7.17 – Theoretical growth rate σ̄ of curvature modes (−1,0, [lA, lB]) given by equation (7.23) for a
base helical vortex with ε = 0.1, L = 0.7 andW0 = −0.2. Blue line corresponds to Reynolds Re = 104,
red to 5 · 103 and yellow to 103.

Figure 7.18(a) (resp. figure 7.18 b) reveals the structure in planeΠ⊥ of the perturbation vorticity component
ω′B (resp. u

′
b ) corresponding to a curvature mode (−1,0, [1,3])with k̄s = 1.1. Since the resonance involves
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two modes with very different radial structures (figure 7.18 (c) bottom graph), the the obtained perturbation
has itself a quite complex structure. The energy distribution confirms the dominant contributions m = −1
and m = 0. Compared to the results for a ring vortex [Hattori et al., 2019], a good agreement is found.

Figure 7.19 shows the structure of a third mode (−1,0, [2,4]). When comparing to the case of vortex
rings [Hattori et al., 2019], the agreement is fair, but slight differences are observed: the amplitude of the
first peak in the radial structure of u′b for mode (m = −1) (orange line) is close to 0.4 (at ρ̄ ≈ 0.3) while it
is 0.7 for vortex rings. This also implies differences in the energy distribution. This may be a torsion effect
affecting slightly the structure of this unstable mode.
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Figure 7.18 – The contours of curvature instability mode (−1,0, [1,3]) with k̄s = 1.1 of the base state
[0.7;0.150;0.13] (W0 ≈ 0.2). Visualization is similar to figure 7.7.
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Figure 7.19 – Same as figure 7.18 (W0 ≈ 0.2) but for curvature instability mode (-1,0,[2,4]) with k̄s = 1.7.

The 3D structures of these two curvature modes are plotted in figure 7.20.

Growth rates obtained for larger wavenumbers k̄s ∈ (2,3.1) are presented in figure 7.21 (top graph).
Based on the structure of these modes (bottom graphs) and their theoretical unstable region (predicted
by [Blanco-Rodríguez and Le Dizès, 2017]), one concludes that these modes are identified. However, they
are not our main focus and are actually difficult to capture due to weak growth rates and complex structures:
well-converged results would require a much more refined mesh and a longer simulation times. These
modes are not investigated further in the following.

In addition, we studied a larger axial velocityW0 ≈ 0.32 andW0 ≈ 0.27. The valueW0 ≈ 0.32 corresponds
to the base state [0.7;0.15;0.25], the valueW0 ≈ 0.32 to the base state [0.7;0.150;0.2].
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Figure 7.20 – 3D iso-contours of perturbation ω′B for curvature instability modes (−1,0, [1,3]), and
(−1,0, [2,4]) for base state [0.7;0.150;0.13] (W0 ≈ 0.2). Red and blue iso-surfaces correspond to ±0.3
of the maximum.

For W0 ≈ 0.32 and Re = 104, the unstable wavenumbers are such that k̄s ≤ 2.5. Near the first mode
(−1,0, [1,3]), another mode (−1,0, [1,2]) is found with k̄s = 0.95, which is also predicted by the theory.
The structure of this mode is much simpler, as shown in figure 7.22: a slightly off-centered vorticity region
(positive) is surrounded by a region of opposite values (negative), the radial extent of the mode being
comparable to the size of the vortex core a.

In addition, we studied the base state [0.7;0.15;0.2] (W0 ≈ 0.27) for wavenumbers k̄s ≤ 2.5 and Re =
104. Figure 7.23 show 4 unstable modes found, plotted in blue for mode (−1,0, [1,3]), orange for mode
(−1,0, [1,2]), yellow for mode (−1,0, [2,3]) and purple for mode (−1,0, [3,4]). The mode (−1,0, [2,4]) is
not found for the numerical simulation, and is replaced by the modes (−1,0, [2,3]) and (−1,0, [3,4]).

7.3.3 The effect of jet strength

We investigated the effect of the jet strength for a range of wavenumbers k̄s ∈ (0.9,1.4). Three base states

• [0.7;0.15;0.13] forW0 ≈ 0.2
• [0.7;0.15;0.20] forW0 ≈ 0.27
• [0.7;0.15;0.25] forW0 ≈ 0.32 .

are used, leading toW0 ≈ 0.2, 0.27 and 0.32. Growth rates obtained by DNS are plotted in figure 7.24.
One observes that, as W0 increases, the mode (−1,0, [1,4]) becomes stable and the mode (−1,0, [1,2])
becomes unstable, which is in a good agreement with theoretical predictions as shown from figure 7.15
(right,W0 = 0.4 at k̄ ∼ 1.4) to figure 7.17 (W0 = 0.2).

7.3.4 The effect of torsion by varying the pitch

The effect of torsion was investigated on mode (−1,0, [2,4]) by varying the reduced pitch of the base state:

L ∈ {0.7,0.6,0.5,0.4,0.3} ,
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Figure 7.21 – Top: growth rates obtained by DNS for “weaker” curvature modes (dots) of base state
[0.7;0.150;0.13] (W0 ∼ 0.2) with Re = 104. Different colors correspond to different modes, and vertical
lines indicate the theoretical resonant wavenumber k̄c of each modes. Bottom: contours of ω′B for each
mode, visualizations are similar to those of figure 7.7.
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Figure 7.22 – Same as figure 7.18 but for curvature instability mode (−1,0, [1,2]) with base state
[0.7;0.15;0.25] (W0 ≈ 0.32) and k̄s = 0.95.

fixing the jet strength to beW0 = ±0.2 and fixing ε = 0.1 (the core size a is adapted to satisfy this value)
One uses the following base states to investigate the role of the axial flow direction, these base states have
same pitches and core sizes butW0 ≈ −0.2 orW0 ≈ 0.2:

• [0.7;0.15;0.13] and for negativeW0 [0.7;0.150;−0.27]
• [0.6;0.136;0.14] and for negativeW0 [0.6;0.136;−0.26]
• [0.5;0.125;0.15] and for negativeW0 [0.5;0.125;−0.25]
• [0.4;0.116;0.16] and for negativeW0 [0.4;0.116;−0.24]

These states are already listed in table 5.4. In addition the Reynolds number Re = 104 is adopted for the
dynamics of the perturbations.

In figure 7.25, the growth rates for base states [0.7;0.15;0.13] and [0.7;0.15;−0.26] are plotted. Since
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Figure 7.23 – Growth rate σ̄ obtained by DNS as a function of wavenumber k̄s for state [0.7;0.150;0.2]
(W0 ≈ 0.27) at Re = 104.
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Figure 7.24 – Growth rates of curvature instability modes obtained by DNS for base states [0.7;0.150;W B]
with k̄s ∈ (0.9,1.4) and Re = 104. Different colors correspond to different axial velocity parameter values
W0: W0 ≈ 0.2 (blue); W0 ≈ 0.27 (orange); W0 ∼ 0.32 (purple). Dots: mode (−1,0, [1,2]); diamonds:
mode (−1,0, [1,3]); triangles: mode (−1,0, [1,4]).

both states have identical parameters ε = 0.1, L = 0.7, Re = 104, similar core sizes, the two opposite axial
velocities (see exact values in Table 5.4) lead to two opposite values of torsion. Two effects are seen when
going fromW0 = 0.2 to −0.2: the increase of the most unstable wavenumber by 10%, and the decrease of
the maximum growth rate by a factor of 2. The shift of the most unstable wavenumber is also observed for
the cases at L = 0.6, 0.5 and 0.4, as shown in figures 7.25–7.25. The variations of the growth rate seem
however different.
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Figure 7.25 – Growth rate σ̄ obtained by DNS for base state [0.7;0.15;0.13] (circles) of curvature mode
(−1,0, [2,4]) and for [0.7;0.15;−0.26] (diamonds) of curvature mode (1,0, [4,2]). From top to bottom
L = 0.7, L = 0.6, L = 0.5, L = 0.4. The (purple) solid line is the theoretical estimation from equation 7.23
only available forW0 ≈ −0.2.
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Figure 7.26 – Frequencies ω̄ for the instability modes of base states W0 ≈ ±0.2, ε = 0.1, Re = 104.
Different colors correspond to different pitch values: L = 0.4 (green), 0.5 (magenta), 0.6 (yellow), 0.7
(red). The colored squares (resp. triangles) correspond to DNS results withW0 ≈ 0.2 (resp. -0.2). The
black curve corresponds to theoretical frequency given by [Blanco-Rodríguez and Le Dizès, 2017] where
L is not taken into account (L = 0).
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Chapter8
Introduction of two-phase flows vortex
dynamics
In the first part of the thesis, we studied the stability of monophasic vortices but in a complex geometrical
configuration. In the second part, we consider vortices in two-phase flows but in simpler configurations: a
two-phase straight or toroidal vortex. Such a situation is found for a liquid jet subjected to rotation. The
stability of such a flow is important for industrial design or safety analysis, including liquid atomization,
nozzle type spray, and combustion processes, jet imprint technology, among others.

Figure 8.1 – Experimental images of a rotating jet instabilities for azimuthal wavenumber varying from
m = 2 to m = 5, cited from [Kubitschek and Weidman, 2007b] (left) figure 4 and (right) figure 12.

An appropriate azimuthal velocity profile may modify the stability propriety of a liquid or gas jet, since a
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centrifugal force is added to the surface tension. This stability problem has been studied for the last seventy
years. [Hocking and Michael, 1959] considered an inviscid liquid jet with surface tension coefficient γ ,
density ρ, initial radius R0. destabilized by a perturbation of azimuthal mode numbers m and axial mode
k = 0, when the liquid jet was rotated at a large enough angular rotation rateΩ. Specifically the stability
criterion was

1
L
6m(m+1), with L ≡

γ

ρR3
0Ω

2
(8.1)

In subsequent studies, Hocking showed that the stability criterion of an inviscid or a highly viscous liquid
jet to axisymmetric m = 0 perturbations can be expressed by:

1
L
6 k̄2 − 1 with k̄ = kR0 (8.2)

[Gillis and Kaufman, 1962] gives the general stability criterion for three dimension disturbances on a
highly viscous jet:

1
L
6 k̄2 +m2 − 1 (8.3)

Thirty years later, [Weidman et al., 1997] quantified the dependency of the dominant azimuthal mode for
a two-phase axisymmetric rotating system with respect to the Reynolds number Re. An investigation of the
linear stability of a uniform rotating viscous liquid jet has been done by Kubitschek andWeideman later, they
validated their theoretical prediction [Kubitschek and Weidman, 2007a] from an experimental perspective
[Kubitschek and Weidman, 2007b](results shown in Figure 8.1). In more general cases, helical instability
will dominate the flow and the surface disturbance is usually not axisymmetric. The dominating mode of
helical instability depends on Re number and the rotation speed [Kubitschek and Weidman, 2007a].

In this second part, the linear and non-linear instability of a liquid jet in the presence of an azimuthal
velocity profile are investigated with two numerical tools: a house-made linear stability code extended for
two-phase flows during this thesis and the Basilisk solver [Popinet, 2015] to study the non-linear behavior
of the instability. In Chapter 9, the governing equations of two-phase fluids and several different stable
states are introduced. In Chapter 10, the governing equations are linearized and changed into an eigenvalue
problem with normal modes analysis. It is then discretized using a spectral decomposition in both phases
separately, and yields a general eigenvalue problem. In Chapter 11, the code is validated with some known
solutions. The dispersion relations for the axisymmetric case in the presence of azimuthal velocity is then
investigated. Later results are compared with the DNS method in chapter 12, where also non-axisymmetric
non-linear evolution are discussed for the liquid jet.

In chapter 13, one also presents the formation and evolution of a toroidal bubble. We simply reproduce the
article "Instability of a swirling bubble ring".
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9.1 Governing equations

9.1.1 Dimensional equations

In this section we present the governing equations for a two-phase columnar flow. This flow is composed
of a fluid core denoted as fluid k = 1, surrounded by a fluid of different nature denoted as fluid k = 2.
Both fluids are incompressible, with uniform and constant densities ρ(k) and viscosities µ(k). We write the
Navier–Stokes equation within each fluid (k = 1 or 2):

∇ ·uuu(k) = 0 (9.1)

ρ(k)
[
∂uuu(k)

∂t
+ (uuu(k) · ∇)uuu(k)

]
= −∇p(k) +µ(k)∇2uuu(k) (9.2)

where p(k) stands for the pressure, that may include gravity effects. In the following, whenever there is no
ambiguity, we remove the reference (k) to the fluid.

It is convenient to write the equation system using cylindrical coordinates, with unit vectors eeex along the
jet axis i.e. , eeer along the radial direction and eeeθ along the azimuth. Both fluids extend to infinity along the
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axial direction, and fluid 2 extends to infinity along the radial direction. The momentum equations read:

ρ
Dux
Dt

= −
∂p

∂x
+µ∇2ux (9.3)

ρ(
Dvr
Dt
−
w2
θ

r
) = −

∂p

∂r
+µ

(
∇2vr −

vr
r2
− 2
r2
∂wθ
∂θ

)
(9.4)

ρ(
Dwθ
Dt

+
vrwθ
r

) = −1
r

∂p

∂θ
+µ

(
∇2wθ −

wθ
r2

+
2
r2
∂vr
∂θ

)
(9.5)

where (ux,vr ,wθ) are the axial, radial and azimuthal cylindrical components of the velocity field uuu, where
D/Dt stands for the convective derivative:

D
Dt
≡ ∂
∂t

+ux
∂
∂x

+ vr
∂
∂r

+
wθ
r
∂
∂θ

(9.6)

and ∇2 represent the scalar cylindrical Laplacian:

∇2Φ ≡ ∂
2Φ

∂x2
+
∂2Φ

∂r2
+
1
r
∂Φ
∂r

+
1
r2
∂2Φ

∂θ2
. (9.7)

Incompressibility in cylindrical coordinates is expressed as:

∂ux
∂x

+
1
r

∂(rvr )
∂r

+
1
r
∂wθ
∂θ

= 0 . (9.8)

In the present columnar configuration, the interface between the two fluids is a surface that we assume to
be described by its radial location ζ:

r = ζ(θ,x, t) . (9.9)

This interface is characterized by an outward normal nnn (pointing from fluid 1 to fluid 2):

nnn =
(1,− 1

ζ
∂ζ
∂θ ,−

∂ζ
∂x )√

1+ (∂ζ∂x )
2 + ( 1ζ

∂ζ
∂θ )

2
. (9.10)

and two tangential vectors:

tttθ =
( 1ζ

∂ζ
∂θ ,1+ (∂ζ∂x )

2,− 1
ζ
∂ζ
∂x

∂ζ
∂θ )√

( 1ζ
∂ζ
∂θ )

2 + (1+ (∂ζ∂x )
2)2 + ( 1ζ

∂ζ
∂θ

∂ζ
∂x )

2
tttx =

(∂ζ∂x ,0,1)√
1+ (∂ζ∂x )

2
(9.11)

such that (nnn,tttθ ,tttx) forms an orthonormal basis.

A kinematic boundary condition comes from the fact that the radial velocity of fluid particles at the interface
must be compatible with the velocity of the interface itself. If we assume that the fluid particles which are
located on the interface remain on it at subsequent times, mathematically we differentiate equation (9.9)
with respect to time:

dr
d t

=
dζ
d t
≡ ∂ζ
∂t

+
∂ζ
∂x

dx
d t

+
∂ζ
∂θ

dθ
d t

(9.12)
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where (x,r,θ) here denote the coordinates of a fluid particule at the interface. Since by definition:

dx
d t

= ux(ζ,θ,x, t) ,
dr
d t

= vr (ζ,θ,x, t) , ζ
dθ
d t

= wθ(ζ,θ,x, t) , (9.13)

equation (9.12) leads to the kinematic condition:

vr (ζ,θ,x, t) =
∂ ζ
∂ t

+ux(ζ,θ,x, t)
∂ ζ
∂ x

+
wθ(ζ,θ,x, t)

ζ
∂ ζ
∂ θ

(9.14)

which can be written as well as :
dζ
d t

(θ,x, t) = vr (ζ,θ,x, t) . (9.15)

Let us introduce a notation for the jump of any field Q(r = ζ,θ,x, t) at the interface r = ζ:

JQK =Q(1)(ζ,θ,x, t)−Q(2)(ζ,θ,x, t) .

We impose the continuity of the velocity field across the interface:

JuxK = 0 , JvrK = 0 , JwθK = 0 . (9.16)

Dynamic conditions come from the balance between capillary force, pressure force and viscous constraints
on the interface [Batchelor, 2000]:

(σ (1)
ij − σ

(2)
ij )nj = γ(

1
R1

+
1
R2

)ni (9.17)

where R1,2 are the local main curvature radii of the interface and σ (k) denotes the stress tensor given by

σ
(k)
ij = −p(k)δij +2µ(k)e(k)ij

and e(k) the symmetric rate of strain tensor defined by

e
(k)
ij ≡

1
2
(
∂u

(k)
i

∂xj
+
∂u

(k)
j

∂xi
) .

In particular, the normal stress is balanced by surface tension. In cylindrical coordinates, the stress tensor
reads

2eee =



2
∂vr
∂r

1
r
∂vr
∂θ

+
∂wθ
∂r
− wθ
r

∂vr
∂x

+
∂ux
∂r

1
r
∂vr
∂θ

+
∂wθ
∂r
− wθ
r

2(
1
r
∂wθ
∂θ

+
vr
r
)

1
r
∂ux
∂θ

+
∂wθ
∂x

∂vr
∂x

+
∂ux
∂r

1
r
∂ux
∂θ

+
∂wθ
∂x

2
∂ux
∂x


. (9.18)
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The dynamic condition (9.17) thus reads:

Jµtttx ·eee ·nnnK = 0 (9.19)

J−p+2µnnn ·eee ·nnnK = γ( 1
R1

+
1
R2

) (9.20)

Jµtttθ ·eee ·nnnK = 0 . (9.21)

9.1.2 Dimensionless equations

In order to put the governing equations in dimensionless form, we choose three reference quantities
containing length, mass and time in an independant manner. For a columnar flow involving air and water,
we may select such quantities as the mean section radius R0, the water density ρ(w) and surface tension γ .
This yields the following reference scales :

length: L = R0 , mass:M = ρ(w)R3
0 , time: T = ρ(w)1/2R3/2

0 γ−1/2 .

Noting the dimensionless quantities with a bar, the Navier-Stokes equations now read

∇̄ · ūuu(k) = 0 (9.22)

ρ̄(k)
D̄ūuu(k)

D̄ t̄
= −∇̄p̄(k) + µ̄(k) 1

Re
∇̄2ūuu(k) . (9.23)

In the above equations, we have ρ̄(k) ≡ ρ(k)/ρ(w) as expected, but we have defined µ̄(k) as µ̄(k) ≡ µ(k)/µ(w)
for simplicity (using the above reference scales would have led to a different definition of µ̄(k)). In water
(w), the coefficient of the viscous term is the inverse of the Reynolds number

Re =

√
ρ(w)γR0

µ(w)
.

Sometimes, one uses the Ohnesorge number defined byOh = 1/Re. Concerning the kinematic and dynamic
conditions at the interface, one gets:

d̄ ζ̄
d̄ t̄

= v̄r (9.24)

JūuuK =000 (9.25)
Jµ̄tttx · ēee ·nnnK = 0 (9.26)

J−p̄+2 µ̄
1
Re
nnn · ēee ·nnnK = (

1
R̄1

+
1
R̄2

) (9.27)

Jµ̄tttθ · ēee ·nnnK = 0 . (9.28)

In the following, whenever there is no ambiguity, we remove the reference (k) to the fluid and the overbar.
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9.2 Two-phase columnar flow equilibria

In this section, we identify some equilibrium solutions for two-phase columnar flows, listed here in their
dimensionless form. These solutions are used as base states for instability studies.

9.2.1 Two-phase rest state

In the first equilibrium, all we have is a still column of fluid (1) surrounded by fluid (2), also at rest:

Ux(r,θ,x) = 0 , Vr (r,θ,x) = 0 , Wθ(r,θ,x) = 0 , (9.29)

the interface is located at ζ(θ,x) = 1, and the base pressure P is given by

P (1)(r,θ,x) = 1 for r ≤ 1 (9.30)

P (2)(r,θ,x) = 0 for r > 1 (9.31)

up to an additive arbitrary constant. Note that this base state can also be used for liquid jets with uniform
axial velocity if the presence of the surrounding fluid is overlooked. In the Galilean reference frame
translating with the liquid, the flow is at rest.

9.2.2 Two-phase columnar vortex

For this second class of base states, we assume a general form (Ux(r, t),0,Wθ(r, t)) for the base velocity
components, and P (r, t) for the base pressure. This can be written in terms of vorticity as

ωωω(x,r,θ, t) =
(
Wθ

r
+
∂Wθ

∂r
,0,−∂Ux

∂r

)
. (9.32)

possess azimuthal velocity, hence axial vorticity. The Navier-Stokes equations in each domain:

ρ
∂Ux
∂t

=
µ

Re

(
∂2Ux
∂r2

+
1
r
∂Ux
∂r

)
(9.33)

ρ
W 2
θ

r
=
∂P
∂r

(9.34)

ρ
∂Wθ

∂t
=
µ

Re

(
∂2Wθ

∂r2
+
1
r
∂Wθ

∂r
− Wθ

r2

)
. (9.35)

Because of the slow radial diffusion caused by viscosity, this base flow is actually unsteady. However, if we
expect the instability to grow on much faster time scales, we neglect the diffusion of this base flow. Note
that viscous diffusion still included in the equations governing perturbations.
If we remove all diffusion terms, we find that any velocity profile of the form

UUU = (Ux(r),0,Wθ(r)) (9.36)
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is an equilibrium of the Euler equations for the base state.
The velocity field should satisfy continuity at the interface r = ζ = 1:

U
(1)
x (1) =U (2)

x (1) , (9.37)

W
(1)
θ (1) =W (2)

θ (1) , (9.38)

but the continuity of tangential stresses:

µ(1)
∂W (1)

θ (1)
∂r

−W (1)
θ (1)

 = µ(2)
∂W (2)

θ (1)
∂r

−W (2)
θ (1)

 (9.39)

µ(1)
∂U

(1)
x (1)
∂r

= µ(2)
∂U

(2)
x (1)
∂r

. (9.40)

Introducing (9.32) into the above equations leads to:

µ(1)[ω(1)
x (1)− 2W (1)

θ (1)] = µ(2)[ω(2)
x (1)− 2W (2)

θ (1)] (9.41)

µ(1)ω
(1)
θ (1) = µ(2)ω(2)

θ (1) . (9.42)

The base pressure should satisfy (9.34) and the constraint JP K = 1 at r = 1, this yields

P (1)(r) = ρ(1)
∫ r

0

[W (1)
θ ]2

r
dr for r ≤ 1 (9.43)

P (2)(r) = P (1)(1)− 1+ ρ(2)
∫ r

1

[W (2)
θ ]2

r
dr for r > 1 . (9.44)

Building a base state

To build a base state that satisfies the above constraints, we can assume an arbitrary vorticity profile ω(1)(r)
in phase 1 and an –almost – arbitrary vorticity profile ω(2)(r) in phase 2. The velocity profiles can then be
obtained by radially integrating the vorticity profiles.
a) azimuthal velocityWθ
From equation (9.32), since

ωx =
1
r
∂
∂r

(rWθ) ,

we can first computeW (1)
θ (r) in the region r ≤ 1:

W
(1)
θ (r) =

1
r

∫ r

0
rω

(1)
x (r)dr for r ≤ 1 .

We then deduceW (2)
θ (r) in the region r > 1 as

W
(2)
θ (r) =

1
r

(∫ 1

0
rω

(1)
x (r) +

∫ r

1
rω

(2)
x (r)

)
dr =

1
r
W

(1)
θ (1) +

ω
(2)
x (1)
r

∫ r

1
rR0

x(r)dr
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where function R0
x is defined as

R0
x(r) ≡

ω
(2)
x (r)

ω
(2)
x (1)

and thus satisfies R0
x(1) = 1. As the vorticity in phase 2 eventually decays to zero as r→∞, so does R0

x .
At the interface, the vorticity in fluid (2) is determined through relation (9.41):

ω
(2)
x (1) =

µ(1)

µ(2)
ω

(1)
x (1)− 2

[µ(1) −µ(2)]
µ(2)

W
(1)
θ (1) .

b) axial velocity Ux
From equation (9.32), we first compute U (1)

x (r) in the region r ≤ 1:

U
(1)
x (r) = −

∫ r

0
ω

(1)
θ (r)dr for r ≤ 1 .

We then deduce U (2)
x (r) in the region r > 1:

U
(2)
x (r) = −

∫ 1

0
ω

(1)
θ (r)dr −

∫ r

1
ω

(2)
θ (r)dr =U (1)

x (1)−ω(2)
θ (1)

∫ r

r=1
R0
θ(r)dr

where function R0
θ is defined as

R0
θ(r) ≡

ω
(2)
θ (r)

ω
(2)
θ (1)

so that R0
θ(1) = 1. At the interface, the vorticity in fluid (2) is determined through relation (9.42):

ω
(2)
θ (1) =

µ(1)

µ(2)
ω

(1)
θ (1) .

9.2.3 Example solutions for columnar vortex base states

In this study, we wish to evaluate the role of the azimuthal velocity on the stability of the system. We
assume that the axial velocity is uniformly zero for the base state in both fluids (Ux = 0, ωθ = 0). We now
build two base states corresponding to a water column surrounded by air, and an air column surrounded
by water. The vorticity profiles are chosen arbitrarily (they are not meant to reproduce the vorticity that
could be measured in an experiment or obtained by a realistic three-dimensional DNS). However, we made
the assumption that vorticity has been in major part introduced in the liquid, which explains the profiles
selected below.

Base state A: water column surrounded by air

In the case of a liquid column surrounded by air, we assume that the vorticity in mainly present in the
liquid. Hence we assume that fluid (1) is in solid-body rotation with angular velocity q, or equivalently
that ω(1)

x = 2q. We get
W

(1)
θ (r) = qr for r ≤ 1 .
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In fluid (2), we assume that the vorticity has not penetrated much the region r > 1, and that it decays near
the interface over a small length δ. We get:

W
(2)
θ (r) =

q

r
+2

q

r

∫ r

1
rR0

r (r)dr for r > 1 ,

with
ω

(2)
x (r) = 2qR0

r (r) , R0
r (r) = exp

(
− (r − 1)

2

δ2

)
.

The azimuthal base velocity in the gas phase can be deduced:

W
(2)
θ (r) =

q

r

[
1+ δ2[1− exp

(
− (r − 1)

2

δ2

)
] + δ
√
πerf

( r − 1
δ

)]
for r > 1 , (9.45)

which involved the error function erf defined as:

erf(x) ≡ 2
√
π

∫ x

0
exp(−t2)dt .

We will need the first derivative:

W
(2)′
θ (r) =

q

r2

[
−1− δ2 + (δ2 +2r2)exp

(
− (r − 1)

2

δ2

)
− δ
√
πerf

( r − 1
δ

)]
and the second derivative:

W
(2)′′
θ (r) =

2q
r3

[
1+ δ2 +

(
2r3(1− r)

δ2
− δ2 − r2

)
exp

(
− (r − 1)

2

δ2

)
+ δ
√
πerf

( r − 1
δ

)]
.

An example of such distribution is plotted in figure 9.1.
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Figure 9.1 – Normalized axial vorticity (left) and azimuthal velocity (right) profiles in fluids (1) and (2) for
base state A with δ = 0.1, µ(1) = 1, µ(2) = 0.02.

Base state B: air column surrounded by water

In the case of an air column surrounded by water, we assume that the vorticity is present in the vicinity of
the interface in the outer liquid over a small distance δ2, and that it has also penetrated in the air column,
again only near the interface over a small distance δ1.
We propose ω(1)

x (1) = q at the interface which is the maximum vorticity, together with Gaussian decays
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from the interface location, described by

ω
(1)
x (r)

ω
(1)
x (1)

= exp(− (r − 1)
2

δ21
) for r ≤ 1,

ω
(2)
x (r)

ω
(2)
x (1)

= exp(− (r − 1)
2

δ22
) for r > 1 .

The azimuthal velocity in fluid (1) then reads as

W
(1)
θ (r) =

q

r

[
δ21
2
(exp

(
− 1

δ21

)
− exp

(
− (r − 1)

2

δ21

)
) + δ1

√
π
2

(
erf(

r − 1
δ1

)− erf(−1
δ1

)
)]
. (9.46)

and its first and second derivatives as

W
′(1)
θ (r) = q

[
(
δ21
2r2

+1)exp
(
− (r − 1)

2

δ21

)
−
δ21
2r2

exp
(
− 1

δ21

)
+
√
πδ1
2r2

(
erf(

r − 1
δ1

)− erf(−1
δ1

)
)]

W
′′(1)
θ (r) = q

[
exp

(
− (r − 1)

2

δ21

)(
−
δ21
r3
− 1
r
− 2(r − 1)

δ21

)
+
δ21
r3

exp
(
− 1

δ21

)
+
√
πδ1
r3

(
erf(

r − 1
δ1

)− erf(−1
δ1

)
)]
.

At the interface, the azimuthal velocity of fluid (1) is

W
(1)
θ (1) = q

δ1
2

[
δ1(exp

(
− 1

δ21

)
− 1) +

√
π

]
.

The azimuthal velocity in phase (2) is under the form :

W
(2)
θ (r) =

W
(1)
θ (1)
r

+
ω

(2)
x (1)
r

[
δ22
2
(1− exp

(
− (r − 1)

2

δ22

)
) + δ2

√
π
2

erf
(
r − 1
δ2

)]
where

ω
(2)
x (1) =

µ(1)

µ(2)
q − 2

(
µ(1) −µ(2)

)
µ(2)

W
(1)
θ (1) . (9.47)

The derivatives are

W
′(2)
θ (r) = −

W
(1)
θ (1)

r2
+
ω

(2)
x (1)
2r2

[(
δ22 +2r2

)
exp

(
− (r − 1)

2

δ22

)
− δ2
√
πerf

(
r − 1
δ2

)
− δ22

]

W
′′(2)
θ (r) = 2

W
(1)
θ (1)

r3
+ω(2)

x (1)
[
δ22
r3
−
(
δ22
r3

+
1
r
+
2(r − 1)
δ22

)
exp

(
− (r − 1)

2

δ22

)
+
δ2
√
π

r3
erf

(
r − 1
δ2

)]
.

An example of such distribution is plotted in figure 9.2.

Test base state: the Batchelor vortex

In the special case µ(1) = µ(2), no special care is needed at the interface to fulfill the equality of shear
stresses, and one may use whatever profile valid for a homogeneous flow. For instance, one may adopt the
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Figure 9.2 – Normalized axial vorticity (left) and azimuthal velocity (right) profiles in fluids (1) and (2) for
base state B with δ1 = δ2 = 0.1, µ(1) = 1, µ(2) = 1.

Batchelor vortex profile [Batchelor, 1964] given by:

Ux(r, t) =
β0
a2

exp
(
− r

2

a2

)
(9.48)

Wθ(r, t) =
Γ

2πr

[
1− exp

(
− r

2

a2

)]
(9.49)

where a(t) is the time-dependant core size and β0/a2 the centerline axial velocity. Again, if one assumes
that diffusion acts slowly with respect to instabilities, one adopts a fixed core size a = a0. This base state
will be used as a test case for the numerical instability code.
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In this chapter, we linearize the governing equations presented in Ch 9. After spatial discretization of the
linear system, we obtain a generalized eigenvalue problemAAAXXX = iωBBBXXX that rules the linear instability of
the two-phase columnar flow. The eigenvalues iω are complex: the imaginary part of ω is a growth rate
and its real part the oscillation frequency. Complex eigenvectorsXXX contain the discretized velocity and
pressure eigenfunctions. The chapter contains the main results, more computation details and complements
can be found in the appendix D.

10.1 Linearization approximation and eigenvalue problem

The velocity are written as the sum of the base state and small perturbations of order ε� 1:

vr = 0+ εv′r (r,θ,x, t) (10.1)
wθ =Wθ(r) + εw

′
θ(r,θ,x, t) (10.2)

ux =Ux(r) + εu
′
x(r,θ,x, t) (10.3)

p =Π(r) + εp′(r,θ,x, t) (10.4)
ζ = 1+ εζ′(θ,x, t) (10.5)

where (Ux(r),Vr = 0,Wθ(r)) and Π(r) are the cylindrical components of the velocity and the pressure
corresponding to one of the steady base flows listed in Sec 9.2.

99



10.1. Linearization approximation and eigenvalue problem 100

10.1.1 Linearization of the governing equations

Introducing expression (10.1) to (10.5) into Eq.(9.22) and Eq.(9.23), we linearize these equations by
keeping O(ε) terms and neglecting terms of higher order, and get the following system valid in each fluid
region:

∂u′x
∂x

+
v′r
r
+
∂v′r
∂r

+
1
r

∂w′θ
∂θ

= 0 (10.6)

ρ

(
∂u′x
∂t

+Ux
∂u′x
∂x

+ v′r
∂Ux
∂r

+
Wθ

r
∂u′x
∂θ

)
= −

∂p′

∂x
+
µ

Re
∇2u′x (10.7)

ρ

(
∂v′r
∂t

+Ux
∂v′r
∂x

+
Wθ

r
∂v′r
∂θ
− 2

Wθw
′
θ

r

)
= −

∂p′

∂r
+
µ

Re

[
∇2v′r −

v′r
r2
− 2
r2
∂w′θ
∂θ

]
(10.8)

ρ

(
∂w′θ
∂t

+Ux
∂w′θ
∂x

+
∂Wθ

∂r
v′r +

Wθ

r

∂w′θ
∂θ

+
Wθv

′
r

r

)
= −1

r

∂p′

∂θ
+
µ

Re

[
∇2w′θ −

w′θ
r2

+
2
r2
∂v′r
∂θ

]
. (10.9)

When linearizing the conditions at the interface, it is convenient to introduce the following jump notation.
For any field Q(r,θ,x, t), one introduces the jump LQM at the location of the unperturbed interface r = 1:

LQM ≡Q(1)(1,θ,x, t)−Q(2)(1,θ,x, t) .

We linearize Eqs. (9.24)–(9.28) using the above notation. When there is no ambiguity, the velocity in
capital letter refers to the base flow at r = 1 (for instance Ux(r = 1) is simply denoted as Ux).
The kinematic condition (9.24) then reads

v′r =
∂ζ′

∂t
+Ux

∂ζ′

∂x
+Wθ

∂ζ′

∂θ
at r = 1 . (10.10)

The continuity of the three velocity components (9.25) reads:

0 = Lu′x + ζ
′ ∂Ux
∂r

M (10.11)

0 = Lv′rM (10.12)

0 = Lw′θ + ζ
′ ∂Wθ

∂r
M . (10.13)

The dynamic condition along the axial direction (9.26) reads:

0 = Lµ
(
ζ′
∂2Ux
∂r2

+
∂v′r
∂x

+
∂u′x
∂r

)
M . (10.14)

The dynamic condition along the normal direction (9.27) reads:

L−p′ − ρζ′W 2
θ +2

µ

Re

[
∂v′r
∂r
− ∂ζ

′

∂θ
(
∂Wθ

∂r
−Wθ)−

∂ζ′

∂x
∂Ux
∂r

]
M = ζ′ +

∂2ζ′

∂x2
+
∂2ζ′

∂θ2
. (10.15)

The dynamic condition along the azimuthal direction (9.28) reads:

0 = Lµ
[
ζ′(
∂2Wθ

∂r2
− ∂Wθ

∂r
+Wθ) +

∂v′r
∂θ

+
∂w′θ
∂r
−w′θ

]
M . (10.16)
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10.1.2 Normal mode decomposition

The set of linearized equations presented above contains no explicit reference to θ, to x nor to t. The
solutions can thus be decomposed on an eigenmode basis of the form:

u′x
v′r
w′θ
p′

ζ′

 =

F(r)
G(r)
H(r)
P (r)
ζ0

e
i(kx+mθ−ωt) (10.17)

where m denotes the (integer) azimuthal wavenumber, k the axial wavenumber and ω the frequency.

In such problems, is it convenient, instead of vr and wθ , to use the two variables

v′+ = v′r + iw′θ and v′− = v
′
r − iw′θ . (10.18)

This makes the enforcement of boundary conditions at r = 0 easier and decouples the viscous terms in the
equation system. One then uses a decomposition of the form

u′x
v′+
v′−
p′

ζ′

 =

F(r)
G+(r)
G−(r)
P (r)
ζ0

e
i(kx+mθ−ωt) . (10.19)

For fluid 2 as example, the equation system valid for r > 1 reads:

ikF +
1
2r

[(1 +m)G+ + (1−m)G−] +
1
2
(G′+ + G

′
−) = 0

ρ(2)
[
(−iω+ iX)F +

1
2
(G+ + G−)U

′
x

]
+ ikP −

µ(2)

Re

[
F′′ +

1
r
F′ −

(
k2 +

m2

r2

)
F

]
= 0

ρ(2)
[
(−iω+ iX)G+ + i

(3
2
Ω+

1
2
W ′θ

)
G+ + i

(
−1
2
Ω+

1
2
W ′θ

)
G−

]
+ P ′ − n

r
P −

µ(2)

Re

[
G′′+ +

1
r
G′+ −

(
(m+1)2

r2
+ k2

)
G+

]
= 0 (10.20)

ρ(2)
[
(−iω+ iX)G− + i

(1
2
Ω− 1

2
W ′θ

)
G+ + i

(
−3
2
Ω− 1

2
W ′θ

)
G−

]
+ P ′ +

n
r
P −

µ(2)

Re

[
G′′− +

1
r
G′− −

(
(m− 1)2

r2
+ k2

)
G−

]
= 0

where ′ now indicates the derivative, and

Ω ≡ Wθ

r
, X ≡ kUx +mΩ . (10.21)
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For the inner fluid (1), a further change of variable is performed:

F(r) = r |m|f (r), G±(r) = r
|m±1|g±(r), P (r) = r |m|p(r) (10.22)

so that f , g+,g− and p can be considered as even functions of r, that will, in general, reach finite values at
r = 0. Neumann boundary conditions will thus be naturally enforced on these functions at r = 0.

We give here the equations for the case m ≥ 1. Introducing expression (10.22) into Eq.(10.20) leads to the
system valid for r < 1:

ikf + (m+1)g+ +
r2

2
g ′+
r

+
1
2
g ′−
r

= 0

ρ(1)
[
(−iω+ iX)f +

r2

2
U ′x
r
g+ +

1
2
U ′x
r
g−

]
+ ikp −

µ(1)

Re

[
f ′′ + (2m+1)

f ′

r
− k2f

]
= 0 (10.23)

ρ(1)
[
(−iω+ iX)g+ +

i
2

(
3Ω+W ′θ

)
g+ −

i
2
Y g−

]
+
p′

r
−
µ(1)

Re

[
g ′′+ + (2m+3)

g ′+
r
− k2g+

]
= 0

ρ(1)
[
(−iω+ iX)g− −

i
2

(
3Ω+W ′θ

)
g− +

i
2
r4Y g+

]
+2mp+ r2

p′

r
−
µ(1)

Re

[
g ′′− + (2m− 1)

g ′−
r
− k2g−

]
= 0

where
Y ≡

Ω−W ′θ
r2

. (10.24)

The systems for the cases m = 0 and m ≤ −1, as well as the details of the computations can be found in the
appendix D.

We now write the conditions at the interface r = 1. The kinematic condition (10.10) at r = 1 reads as

1
2
(G+ +G−) = i(−ω+ kU (2)

x +mW (2)
θ )ζ0 . (10.25)

The continuity (10.11) of the axial velocity component reads as

f + ζ0U
(1)′
x = F + ζ0U

(2)′
x , (10.26)

the continuity (10.12) of the radial velocity component as

g+ + g− = G+ +G− , (10.27)

the continuity (10.13) of the azimuthal velocity component as

i(g− − g+) + 2ζ0W
(1)′
θ = i(G− −G+) + 2ζ0W

(2)′
θ , (10.28)

the dynamic condition (10.14) along eeex reads as

µ(1)
[
2ζ0U

(1)′′
x + ik(g+ + g−) + 2(f ′ + |m|f )

]
= µ(2)

[
2ζ0U

(2)′′
x + ik(G+ +G−) + 2F′

]
, (10.29)
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the dynamic condition (10.15) along eeer as

p+ ρ(1)ζ0W
(1)2
θ −

µ(1)

Re

[
|m+1|g+ + g ′+ + |m− 1|g− + g ′− − 2iζ0[m(W (1)′

θ −W (1)
θ ) + kU (1)′

x ]
]

+ ζ0
(
1− k2 −n2

)
= P + ρ(2)ζ0W

(2)2
θ −

µ(2)

Re

[
G′+ +G

′
− − 2iζ0[m(W (2)′

θ −W (2)
θ ) + kU (2)′

x ]
]
, (10.30)

and the dynamic condition (10.16) along eeeθ as

µ(1)
[
2ζ0(W

(1)′′
θ −W (1)′

θ +W (1)
θ ) + i(m+1− |m+1|)g+ + i(m− 1+ |m− 1|)g− + i(g ′− − g ′+)

]
= µ(2)

[
2ζ0(W

(2)′′
θ −W (2)′

θ +W (2)
θ ) + i(m+1)G+ + i(m− 1)G− + i(G′− −G′+)

]
. (10.31)

10.2 Discrete eigenvalue problem

The continuous generalized eigenvalue problem obtained in previous section is discretized to yield a
matrix/vector form AAAXXX = iωBBBXXX, where matrices AAA and BBB come from the Navier–Stokes equations and
boundary conditions, and the vectorXXX contains the unknown velocity, pressure and interface deformation
variables. We first discuss the choice of the collocation points in each fluid domain as well as the collocation
method used and the tool used to solve the problem.

10.2.1 Collocation points and method

We present the discretization of the two fluid domains.

Fluid (1) : let
ξ
(1)
i ≡ cos(

πi
2N1

) , i = 0,1, · · · ,N1 . (10.32)

In the interval [0,1], one uses N1 +1 collocation points situated at r(1)i = ξ(1)i (no mapping). The points
are thus more dense near the interface at r = 1 (i = 0) than at the axis r = 0 (i =N1).

Fluid (2) : let
ξ
(2)
i ≡ cos(

πi
2N2

) , i = 0,1, ...,2N2 . (10.33)

In the interval [1,Rext], one uses 2N2 +1 collocation points situated at r(2)i = R(ξ(2)i ) where the mapping
function is defined by

R(ξ) ≡ 1+
1− ξ√

1+α − β(1− ξ)2
, (10.34)

the reciprocal of which reads

ξ(r) = 1−
√
1+α√
1+ βr2

r . (10.35)

The interface r = 1 corresponds to ξ = 1 (i = 0), the outer boundary r = Rext corresponds to ξ = −1
(i = 2N2 +1). The point where ξ = 0 (i =N2) corresponds to a radial location r = Rc: by construction,
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half of the collocation points in fluid (2) are between r = 1 and r = Rc, and the other half between r = Rc
and r = Rext. If we prescribe the values of Rc and Rext (typically, Rc = 2 and Rext = 30), since

Rext =
2√

1+α − 4β
, Rc =

1√
1+α − β

,

we can deduce the values of α and β of the mapping function as:

α =
4
3

(
1

R2
c
− 1

R2
ext

)
− 1 , β =

1
3

(
1

R2
c
− 4

R2
ext

)
.

The derivative of a function at the collocation points is expressed as a linear combination of the function
values thanks to the Tchebychev-collocation method. In fluid (1) for r ≤ 1, as only even functions q are
dealt with, only half of the Gauss–Lobatto collocation points is used (the points for i =N1 +1, · · · ,2N1
are not used), leading to differentiation formulas

q′(ri)
ri

=
N1∑
j=0

AAArijqj , q′′(ri) =
N1∑
j=0

BBBrijqj . (10.36)

In fluid (2) for r ≥ 1, the formulas are written for an arbitrary function Q and also involve factors due to
the mapping (see Eq. 10.35). They read

Q′(ri) = ξ
′(ri)

2N2∑
j=0

AAA∗ijQj , Q′′(ri) = ξ
′2(ri)

2N2∑
j=0

BBB∗ijQj + ξ
′′(ri)

2N2∑
j=0

AAA∗ijQj . (10.37)

The matricesAAAr ,AAA∗, BBBr and BBB∗ are given in Appendix E.

10.2.2 Boundary conditions at Rext

As the numerical domain has a finite extent, we select boundary conditions at the outer boundary r = Rext.
Such conditions are Robin conditions that mimick an outer potential flow of infinite extent:

dF
dr
−C(m)

r F = 0 (10.38)

dG+

dr
−
C
(m)
r +C(m)

θ

2
G+ −

C
(m)
r −C

(m)
θ

2
G− = 0 (10.39)

dG−
dr
−
C
(m)
r −C

(m)
θ

2
G+ −

C
(m)
r +C(m)

θ

2
G− = 0 (10.40)

where the values of the coefficients in the asymptotic expressions (10.38)–(10.39) are explained in Ap-
pendix F.
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10.2.3 Discrete generalized eigenvalue problem

If the unknown discrete variables relative to fluid (1) are gathered in vector

XXX(1) ≡
(
{fi , g+,i , g−,i ,pi}i=0,1,··· ,N1

)
,

the spatial discretization of system (10.20) leads to a problem of the formAAA(1)XXX(1) = iωBBB(1)XXX(1).

Similarly, the vector of unknown discrete variables relative to fluid (2) reads

XXX(2) ≡
(
{Fi ,G+,i ,G−,i , Pi}i=0,1,··· ,2N2

)
,

and the discretization of system (10.23) leads to a problem of the formAAA(2)XXX(2) = iωBBB(2)XXX(2).

The final problem involves the coupling between the two fluids at the interface, which deforms with complex
amplitude ζ0. The total vector of unknowns then contains (N1 +2N2)× 4+3 complex elements :

XXX ≡
(
{fi , g+,i , g−,i ,pi}i=0,1,··· ,N1

, {Fi ,G+,i ,G−,i , Pi}i=0,1,··· ,2N2
,ζ0

)
.

This leads eventually to a problem of the form

AAAXXX = iωBBBXXX (10.41)

where the matricesAAA and BBB are built from blocksAAA(k) and BBB(k) for k = 1,2, with some modifications and
add-ons, as explained below :

1. the additional equation needed (the last line ofAAA and BBB, corresponding to the index of variable ζ0 in
the vectorXXX) is directly taken to be the kinematic condition (10.25) at r = 1:

− 1
2
(G+,0 +G−,0) + i(kU (2)

x +mW (2)
θ )ζ0 = iωζ0 ; (10.42)

2. 6 conditions (10.26)–(10.31) at the interface r = 1 remain to be enforced: in the total equation
system, these relations are plugged into the 6 lines corresponding to variables f0, g+,0, g−,0,F0,G+,0
and G−,0;

3. 3 conditions at the outer boundary r = Rext given by (10.38) or (10.39) are plugged into the lines
corresponding to variables F2N2+1,G+,2N2+1 and G−,2N2+1;

4. the equations corresponding to the zero-divergence equation, to the above-mentioned group of
6 conditions at the interface and 3 at the outer boundary a priori do not contain iω, thus the
corresponding lines in the BBB matrix contain only 0 values. This would yield to a group of unphysical
zero eigenvalues associated to these conditions, that we prefer to monitor and displace far from the
origin. To do so, instead of directly coding the equation (say, Eq = 0), we implement (α− iω)Eq = 0,
where α is an arbitrary large constant (30 for instance). This will lead to a purely imaginary frequency
ωi = −α, thus strongly damped, which can be discarded from the set of obtained eigenvalues.
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Figure 10.1 – Normalized velocity and pressure eigenfunctions for the most unstable mode of the ho-
mogeneous Batchelor vortex with swirl q = 0.656 at Re = 100. Axial and azimuthal wavenumbers are
k = 1.582 and m = −3. Lines: two-phase code; dots: homogeneous code.

10.2.4 Extracting the most unstable mode in the linear regime

System (10.41) is solved using the subroutine F02GJF of the NAG library. The computation is done twice
with different numbers of grid points, so as to eliminate spurious (non-physical) eigenvalues that depend
on this numerical parameter. Physical eigenvalues are sorted from the most unstable to the most damped.
Here, only the dominant instability mode, i.e. the one with the largest growth rate ωi is considered. The
associated eigenvectorXXX provides the complex amplitude of the velocity and pressure eigenfunctions, once
the backward change of variables

F(ri) = r
|m|
i fi , G±(ri) = r

|m±1|
i g±,i , P (ri) = r

|m|
i pi

has been done in fluid (1), and the usual eigenfunctions G and H relative to radial and azimuthal velocity
components have been restored for both fluids (1) and (2):

G(ri) =
1
2
[G+(ri) +G−(ri)] , H(ri) =

1
2i
[G+(ri)−G−(ri)] .

The eigenmode is then normalized: first the location rm of maximum |F(ri)| over the whole domain is
found. All the eigenfunctions Q are then divided by the complex value F(rm) :

Q̄(ri) ≡
Q(ri)
F(rm)

,

or, using the real and imaginary parts:

Q̄(ri) =
Qr (ri) + iQi(ri)
Fr (rm) + iFi(rm)

=
[Qr (ri) + iQi(ri)] [Fr (rm)− iFi(rm)]

Fr (rm)2 +Fi(rm)2
.

An example of normalized eigenfunctions is given in Fig. 10.1. For the interface deformation amplitude,
on defines ζ̄0 ≡ ζ0/F(rm). In the following, whenever there is no ambiguity, we will remove the overbar.
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First we validate the instability code presented in chapter 10 by comparing its growthrates with results
known from the literature: the case of a homogeneous swirling jet flow, of the two-phase Rayleigh-Plateau
instability. We then study the role of azimuthal velocity profiles.

11.1 Validation of viscous instability code

The instability code for two-phase columnar flows has been built from an existing instability code for
homogeneous columnar flows [IQBAL, 2005]. A first test consists in running the two-phase instability code
with two identical fluids, and setting surface tension to zero: the same instability modes as the homogeneous
flow are to be found. The base profile used is that of the swirling jet:

Ux(r) = e
−r2 , Vr = 0, Wθ(r) = q

1− e−r2

r
, (11.1)

where the swirl number q characterizes the ratio between azimuthal and axial velocities.

Results obtained by our code are listed in table 11.1 (column Xu) and compared to those of Fabre &
Jacquin [FABRE and JACQUIN, 2004] (column FJ04) and of Iqbal [IQBAL, 2005] (column I05). Different
values of azimuthal number m, Reynolds number Re, swirl q and axial wave number k are tested: the code
is shown to yield the same results up to 4 digits, which is fully satisfactory. Note that the two combinations
(m,q) and (−m,−q) give, as expected, the same results.

107
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q k FJ04 I05 Xu
m = −1,Re = 102 0.406 0.769 0.1734 0.1734 0.1734
m = −1,Re = 103 0.448 0.811 0.2339 0.2339 0.2339
m = −1,Re = 104 0.457 0.812 0.2416 0.2416 0.2416
m = −2,Re = 102 0.622 1.108 0.1812 0.1812 0.1812
m = −2,Re = 103 0.680 1.174 0.2956 0.2956 0.2956
m = −2,Re = 104 0.691 1.180 0.3119 0.3119 0.3119
m = −3,Re = 102 0.656 1.582 0.1431 0.1431 0.1431
m = −3,Re = 103 0.761 1.659 0.3245 0.3245 0.3245
m = −3,Re = 104 0.776 1.664 0.3514 0.3514 0.3514
m = +3,Re = 104 -0.776 1.664 0.3514 0.3514 0.3514

Table 11.1 – Comparison of growth ratesωi for several maximum amplification cases: azimuhtal wavenum-
ber m, Reynolds number Re, swirl number q, axial wavenumber k. FJ04 indicates results by Fabre and
Jacquin [FABRE and JACQUIN, 2004], I05 by Iqbal [IQBAL, 2005], for comparing with those of the
present code (Xu).

For a two phase flow, comparisons between analytical and numerical code results are presented for the
Rayleigh–Plateau instability of inviscid and viscous case in Fig. 1.3 a for the dependency on density ration
and b for the dependency on Re number. Excellent agreement is found.

11.2 Effect of azimuthal velocity profile

11.2.1 Liquid column in solid body rotation (viscous)

Figure 11.1 – Liquid column in solid body rotation: preferred mode in the L − Req
plane [Kubitschek and Weidman, 2007a].

Works by Gillis & Kaufman [Gillis and Kaufman, 1962] and Kubitschek & Weid-
man [Kubitschek and Weidman, 2007a] describe the instability of a liquid column of radius R0
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rotating as a solid body. In fluid (1), the dimensional base velocity reads:

Ux = 0, Vr = 0, Wθ(r) =Ω r, (11.2)

and the motion of the outer flow is not taken into account (free-surface). The preferred instability mode is
axisymmetric or spiral depending on the values of the parameters (see figure 11.1): these authors used
the Hocking parameter comparing surface tension to centrifugal effects L ≡ γ/(ρR3

0Ω
2) = 1/q2, and a

Reynolds number based on the azimuthal motion Req ≡ ρR2
0Ω/µ. As shown in figure 11.1, at large Req, the

preferred mode is either axisymmetric (m = 0) at low rotation (high surface tension) or spiral (m = 2,3, . . . )
at larger rotation (lower surface tension). Viscosity tends to dampen the spiral modes, and at low Req and
low L, a m = 1 spiral mode dominates the instability (for instance, at q = 10 and Req = 0.05).

The present code is tested with a water/air interface (see model A in section 9.2.3), for the axisymmetric
mode (m = 0) of instability. The comparison is given in figure 11.2, with fair agreement. The small shift
may be due to the presence of air which affects the results.
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Figure 11.2 – Dimensionless growth rate of the axisymmetric instability mode in a liquid column in
solid body rotation, as a function of dimensionless wavenumber kR0 for different values of the Hocking
parameter L, at Req = 1000. Left: present results with two fluids (water/air, model A); right: results
from [Kubitschek and Weidman, 2007a] with free surface.

11.2.2 Hollow vortex

[Ponstein, 1959] gives the dispersion relation for an inviscid dense potential vortex of circulation Γ with a
cylindrical hollow core (no motion) of radius R0. The outer liquid rotates according to a potential vortex
solution: Wθ(r) = Γ /(2πr) for r ≥ R0. The dimensional growth rate of axisymmetric waves reads

s2 =
k̄K1(k̄)
K0(k̄)

[(
1− k̄2

) γ

ρR3
0

− Γ 2

4π2R4
0

]
, (11.3)

where ρ = ρ2 (one has ρ1 = 0). The critical wavenumber k̄c below which axisymmetric waves are unstable
can be deduced as

k̄c =

√
1− Γ̄ 2

4π2 , Γ̄ ≡
√

ρ

γR0
Γ . (11.4)
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Figure 11.3 – Influence of the rotation parameter q (base state B) on the growth rate of mode m = 0 when
δ1 = δ2 = 0.1, ρ(1) = 10−3, ρ(2) = 1, µ(1) = 10−3 and µ(2) = 1. Solid lines: theoretical inviscid dispersion
relation ; symbols: results from the instability code at Req = 103.

If the base state B of section 9.2.3 is taken as base flow to describe such a case, then Γ̄ ≈ π3/2qδ̄ and the
nondimensional dispersion relation becomes

s̄2 ≈ k̄ K1(k̄)
K0(k̄)

(1− k̄2 − 1
4
πδ2q2) (11.5)

The unstable range of wavenumbers and the maximum growth rate both reduce as q is increased from 0, until
the flow becomes totally stable with respect to axisymmetric perturbations. This behaviour can be explained
by the centrifugal force which becomes dominant over the capillary force and kills the Rayleigh-Plateau
instability. The way to the stabilisation due to rotation is seen in figure 11.3 at Req = 103. Stabilization
occurs for qc ≈ 11.28. Excellent agreement is found on the critical wavenumber values at all the q levels
investigated as well as a fair agreement between the growth rates from the inviscid theory with free surface
and those from the viscous numerics with an external layer.

11.2.3 Air column in water : another profile

The base state B adopted in the previous subsection is pertinent to describe a hollow vortex. Yet, in some
cases with air as inner fluid and water as ambient fluid, the azimuthal profile may be better described by
base state A with solid-body rotation in air. Indeed, the kinematic viscosity of air is larger than that of
water, which enhances the convergence to a solid-body in the gas. Other effects can accelerate the process,
such as stretching. This is precisely what occurs in a toroidal bubble as formed by scuba divers, beluga
whales or dolphins. After releasing a puff of gas into water, a small gaseous torus forms, that can then be
stretched up to large radii. This is the topic of the publication in chapter 13, which focuses both on the
formation of the toroidal bubble and on its stabilization due to rotation. The section 4.2.2 of this publication
is presented below.

Symmetry ******************************* We study the linear stability for the air-water column

of the base flow A. The Reynolds number used in article ReB =
√
γ (air)σR0/µ

(air). Figures 11.4–11.6
provide linear instability results for non axisymmetric modes m ± 1, ±2 and ±3. The first observation
is that, at given k̄ and |m| values, the growth rate is found almost the same for m > 0 and m < 0. The
equality exactly holds when q = 0 for symmetry reasons, and the fact that it holds also roughly for q , 0
can be explained by the uniform vorticity inside the bubble. Interestingly, rotation does not influence mode
|m| = 1, that remains stable. For sufficiently low Reynolds number and small δ, other azimuthal modes
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m , 0 for small k can be destabilized. For instance, the mode m = 2 is found unstable for ReB = 10 and
δ = 0.3 (figure 11.4b). The growth rate decreases as the Reynolds number increases (figure 11.6b). This is
reminiscent of planar modes k = 0 in Ref. [Kubitschek and Weidman, 2007a]. Note that for larger values
of δ, this mode is restabilized: for δ = 1, all modes tested are stabilized by rotation, this conclusion holding
irrespective of the Reynolds number as in figures 11.5.
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Figure 11.4 – Growth rate s̄ as a function of wavenumber k̄ for a viscous column of air surrounded by water
at δ = 0.3, ReB = 10 and various swirl q = 0.2,0.4,0.6. (a) m = ±1; (b) m = ±2; (c) m = ±3. Positive m:
symbols; negative m: bold line.

(a) (b) (c)

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0  0.2  0.4  0.6  0.8  1  1.2


s

k

Re=10, δ=1

q = 0.2,m=-1
q = 0.2,m=1

q = 0.4,m=-1
q = 0.4,m=1

q = 0.6,m=-1
q = 0.6,m=1

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  0.2  0.4  0.6  0.8  1  1.2


s

k

Re=10, δ=1

q = 0.2,m=-2
q = 0.2,m=2

q = 0.4,m=-2
q = 0.4,m=2

q = 0.6,m=-2
q = 0.6,m=2

-0.2

-0.15

-0.1

-0.05

 0

 0  0.2  0.4  0.6  0.8  1  1.2


s

k

Re=10, δ=1

q = 0.2,m=-3
q = 0.2,m=3

q = 0.4,m=-3
q = 0.4,m=3

q = 0.6,m=-3
q = 0.6,m=3

Figure 11.5 – Same as figure 11.4 but for δ = 1 (ReB = 10).
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Chapter12
Linear and non-linear evolution using
Basilisk flow solver
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In chapter 11, the solutions of the linearized Navier-Stokes equations for the problem were presented.
In this chapter we use an existing numerical code, the Basilisk flow solver [Popinet, 2015], to validate
these solutions with Direct Numerical Simulations (DNS). We also see the nonlinear evolution of some
non-axisymmetric instability mode. The code uses the Volume of Fluid (VOF) method to track the interface
position as well as an accurate method for the estimation of forces at the interface [Afkhami et al., 2009].

12.1 Validation of swirling air-column instability

In this section, we compare the growth rates of the instability of a swirling air column obtained using the
instability code of chapter 11and a DNS of perturbation growth.

12.1.1 Numerical set-up

We can write the Navier–Stokes equations in the whole fluid domain:

∇ ·uuu = 0 (12.1)

ρ

[
∂uuu
∂t

+ (uuu · ∇)uuu
]
= −∇p+µ∇2uuu +γκδs(n)nnn (12.2)
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where κ is the mean curvature of the interface and δs is a delta function centered at the interface location.
For a column of radius R0 and an initial perturbation of wavelength λ, by choosing the characteristic length,

time and mass scales as [L] = λ, [T ] =
√
ρ(w)λ3/γ , [M] = ρ(w)λ3, we get the dimensionless expression

as:

∇ · ũuu = 0 (12.3)

ρ̃

[
∂ũuu
∂t

+ (ũuu · ∇)ũuu
]
= −∇p̃+ µ̃∇2ũuu + γ̃κδs(n)ñnn (12.4)

with ρ̃ = ρ/ρ(w), γ̃ = 1, µ̃ = µ

µ(w)
1
Re

√
λ
R0

where Reynolds number equals Re =
√
ρ(w)γR0/µ

(w).

The general simulation setup consists in two immiscible fluids filling a square domain (x̃, ỹ) ∈ [0,1]× [0,1].
The equations are written in the axisymmetric configuration (the axis is the x axis, while y denotes the
radial direction), with a normal component of velocity (along the azimuth z) allowed. At the symmetry
axis, the radial and azimuthal velocity components are set to zero and the axial velocity satisfies a Neumann
condition. At the boundary at ỹ = 1 (top), we set a Dirichlet condition for the radial velocity and a Neumann
condition for pressure. Periodic conditions are applied along x so that finally:

ũr (ỹ = 0) = 0 , ũr (ỹ = 1) = 0 , ∂rp(ỹ = 1) = 0 , ũuu(x̃ = 0, ỹ) = ũuu(x̃ = 1, ỹ) .

The initial position of the interface is defined by

r = R̃0(1 + εcos(k̃0x̃)) , with R̃0 =
R0

λ
=
k
2π
R0 (12.5)

where ε is the the amplitude of the initial perturbation relatively to R̃0 and k̃0 = 2π is the nondimensional
wavenumber. The initial velocity field is set to the base state uuuBF (usually the states in section 9.2.3). In
the following when there is no ambiguity, the bar is removed.

One extracts the nondimensional perturbation amplitude η(t) = max(r(x, t) − R0), where r(x, t) is the
location of the interface. After a transient regime, this quantity should grow exponentially according to
the law η(t) = η0est . The growth rate s can be obtained by linear regression of log(η) and should then be
scaled with the relation s̄ = s(λ/R0)−3/2 to be compared with the results of the linear stability analysis. The
error on the growth rate is estimated in appendix G:

ξtot =
√
ξ2
∆x̃ + ξ

2
ε =

√
1402

N4 +0.5ε0.6 for N =
λ
∆x

, ε ∈ [10−3,10−1] . (12.6)

where ξ∆x̃ stand for the error from mesh size and ξε stand for the error from initial interface perturbation
amplitude. For instance, in the case kR0 = 0.7, N = 128, and ε = 0.01∆x/R0, one gets error ξtot =√
7.3× 10−5 +4.6× 10−4 = 0.0231.

12.1.2 Instability: linear regime

We validate the linear stability analysis obtained in section 11.2.3 for an air column in solid body rotation
within water. The base state used is the type A with δ = 0.1 (see section 9.2.3). The densities are set to
ρ(1) = 10−3, ρ(2) = 1, the viscosities to µ(1) = 10−3, µ(2) = 1. We choose several values of q and k, in the



12.1. Validation of swirling air-column instability 114

axisymmetric case. The growthrates obtained by DNS are represented by red dots in figure 12.1 and are
found to fit well with the predictions of the instability code.

Figure 12.1 – The dispersion relation of axisymmetric mode m = 0 for base state of type A with δ = 0.1,
Re = 10, ρ(1) = 10−3, ρ(2) = 1, µ(1) = 10−3, µ(2) = 1. Lines: instability code. Red dots: DNS results.

We then perform a second DNS, where we superimpose the base state uuuBF and the perturbation uuumode
obtained theoretically (see sec. 10.2.4). The DNS is initiated using the velocity field

uuuic = uuuBF + εuuumode (12.7)

where ε is a small amplitude. The results are shown in figure 12.2, in which a pure exponential growth is
found as expected, and the growthrate agrees with the theoretical prediction.

Figure 12.2 – The growth of interface perturbation amplitude for base state A with δ = 0.1, q = 0.5,
ρ(1) = 10−3, ρ(2) = 1, µ(1) = 10−3, µ(2) = 1, k̃0 = 0.5. The initial condition for velocity is given by (12.7).
Dotted line: DNS (Basilisk); solid line: theory. Left: Re = 10; right: Re = 103.



12.2. 3D DNS of a rotating water column 115

Figure 12.3 – Interface of a swirling water column with base state A at swirl number q =
√
10, δ = 0.1,

Re = 316 at different times t = 0,1.5,4.2,6.4,11. The initial interface is perturbed with m = 1, ε = 0.05,
k̄ = 1 and periodic number L = 2. Characteristic of two fluids reads ρ(1) = 1, ρ(2) = 10−3, µ(1) = 1,
µ(2) = 2× 10−2.

12.2 3D DNS of a rotating water column

We are also interested in non-axisymmetric modes developing naturally in a swirling column of fluid, as
presented earlier (see figure 8.1).

The simulations are carried out using Basilisk in a fully 3D configuration. The general simulation setup
consists in two immiscible fluids, while the inner column has an initial radius R̄0 = 1, filling a cube domain
(x̄, ȳ, z̄) ∈ [0,Lλ̄]× [−Lλ̄/2,Lλ̄/2]× [−Lλ̄/2,Lλ̄/2], with wavelength perturbation λ̄ = λ/R0, and domain
size of L periodic, by default L = 2. Periodicity is assumed along x. Conditions at the lateral boundaries
are imposed by the base state, namely the velocity profile and swirl intensity q, and one assumes that the
perturbations vanish there.

Using polar coordinates (r,θ,x), we then set the initial perturbation for the interface according to:

r = R0(1 + εcos(kx+mθ)) , (12.8)

where m is the azimuthal mode number considered and k̄ = kR0 is the wavenumber closed to maximal
growth, predicted by linear stability analysis at the given Reynolds number Re. If there is no ambiguity, the
hat will be removed in the following context . The results of 3D simulations from modes m = 1 to 4 are
plotted in figures 12.3–12.7.

In figure 12.3, the temporal evolution of the perturbation at m = 1 is presented. The liquid column is
observed to take a helical shape. At a certain helical radius, it breaks into droplets, resulting from both the
Rayleigh-Plateau instability and fluid motions inside the column.

In figure 12.4, the evolution of the m = 2 perturbation is presented. The dynamics is complex: the column
flattens into a twisted sheet (t < 1.5), then liquid rims are observed at the edges (t = 1.5), the column
contracts back (t = 4) while secondary perturbations grow: droplets form on the rim while the column is
again stretched (t = 6); after a second contraction of the column, ligaments are formed that connect to the
droplets (t = 7.6). In [Kubitschek and Weidman, 2007a] (see figure 8.1 a), the evolution of the perturbation
m = 2 did not go that far, presumably because of the limited downstream extent of the experimental setup.
However, the appearance of rims, sheets, droplets and ligaments observed here is very similar to the process
experimentally observed for mode m = 4 (see figure 8.1 right).

In figure 12.5 and 12.6, two possible evolutions of mode m = 3 are presented. Figure 12.5 corresponds
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Figure 12.4 – Similar to figure 12.3 for mode m = 2 and Re = 1000 at t = 0,0.8,1.5,4,6,7.6. Others
parameters are the same, except for ε = 0.1, k̄ = 0.5.

Figure 12.5 – Similar to figure 12.3 for mode m = 3 and Re = 100 at t = 0,0.5,0.8,1.1,1.4,1.8. Others
parameters are the same, except for L = 4, q = 4., k̄ = 1.0, ε = 0.01.

Figure 12.6 – Similar to figure 12.3 for mode m = 3 and Re = 100 at t = 0,0.5,0.8,1.1,1.4,1.8. Others
parameters are the same, except for q = 6., k̄ = 0.5, ε = 0.01.
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Figure 12.7 – Similar to figure 12.3 for mode m = 4 and Re = 100 at t = 0,0.5,0.9,1.4,1.6. Others
parameters are the same, except for q = 6., k̄ = 2.0, ε = 0.1

to a weak growthrate sth = 2.02 for q = 4, while figure 12.6 corresponds to a larger growth sth = 8.1 for
q = 6. In this latter case, the formation of helical rims dominates the dynamics, while the central part of
the column becomes thinner and disintegrates.

In figure 12.7, an example of perturbation with m = 4 at q = 6 is presented. Here, helical rims form while
a central liquid column persists in the vicinity of the axis.

In the previous cases showing non-axisymmetric dynamics of a swirling water column, a quantitative
agreement was found concerning the linear growth rate of instability modes. These simulations then
illustrate a rich variety of nonlinear evolution, with rim formation, thinning of the water column which
disintegrates, or reforms, or oscillates, sometimes with formation of ligaments... As full 3D simulations
cost huge computational resources, we did not go into further quantitative characterizations, for instance of
secondary instabilities or nonlinear mode competition.



Chapter13
Generation and stability of a vortex
bubble ring
In this chapter, we study several aspects of the dynamics of a vortex bubble in a liquid environment: the
generation of a vortex bubble (or not), the stretching of such a bubble and the investigation of its instability
properties, in order to understand its robustness with respect to perturbations. This chapter contains a
reprint of an article published in a special issue of the "Compte-Rendus de l’Académie des Sciences" under
the title "Instability of a swirling bubble ring", Volume 348, issue 6-7 (2020), p. 519-535.
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Abstract. A toroidal bubble or a cylindrical gas jet are known to be subjected to the Rayleigh–Plateau
instability. Air bubble rings produced by beluga whales and dolphins however are observed that remain
stable for long times. In the present work, we analyse the generation of such toroidal bubbles via numerical
simulations, in particular how the process depends on surface tension. Their stability properties are then
briefly analysed. For the estimated Reynolds and Weber numbers relative to the bubbles produced by these
animals, the presence of a vortex inside and around the bubble is found to strongly stabilize the Rayleigh–
Plateau instability.

Keywords. Instability, Vortex ring, Two-phase flow, Rayleigh–Plateau, Direct numerical simulation.

1. Introduction

This paper is written in memoriam Y. Couder. Yves was a colleague of deep thoughts and a
humanist. In everyday life, he was prone to enthusiasm and passion for knowledge. He was an
extraordinary observer and many of his breakthroughs originated from careful observations. As a
modest homage, this paper presents a topic that takes its origin from an observation on Youtube!
In his turbulence experiments [1, 2], Yves used bubbles to visualize vortices. The present work
concerns a topic somewhat related: the generation and dynamics of an air bubble in the form
of toroidal rings. It was some kind of surprise to see dolphins [3] or beluga whales [4] generate
bubble rings from their mouth or blowholes and thereafter play for a long period of time with
rings in which any sign of instability was absent.

∗Corresponding author.
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Indeed an axisymmetric columnar jet of fluid 1 embedded in a fluid 2, when slightly dis-
turbed, is known to break into small droplets or bubbles. This subject was first studied by Lord
Rayleigh [5, 6]. He computed how infinitesimal perturbations (more specifically normal modes
of axial k and azimuthal m wavenumbers) evolve in time and obtained analytically the complex
eigenvalue s(k,m) = sr + isi , and precisely sr their growth rate as a function of wavenumbers k
and m. For an inviscid two-phase column of radius a0, axisymmetric perturbations m = 0 are
the most dangerous ones and the dimensionless eigenvalue s̄ is a function of the dimensionless
wavenumber k̄:

s̄2

(
1+ ρ(2)

ρ(1)

K0(k̄)I ′0(k̄)

K1(k̄)I0(k̄)

)
= k̄

(
1− k̄2) I ′0(k̄)

I0(k̄)
with s̄ ≡

√
a3

0ρ
(1)

σ
s, k̄ ≡ ka0. (1)

For 0 É k̄ É 1, s̄ is real with the two possible signs, meaning that the jet is unstable. For k̄ Ê 1,
s̄ = isi is purely imaginary indicating a stable jet. This result can be explained by the theory
of minimal energy: a multiphase system tends to possess a minimum capillary energy at rest.
This instability known as Rayleigh–Plateau instability is due to a capillary mechanism. It breaks
the jet into several drops or bubbles when k̄ É 1 so that the interface area is minimized. In
order to stabilize Rayleigh–Plateau instability, an added rotation is an interesting possibility for
applications, e.g. liquid atomization, spray generation, combustion processes. Previous works on
the effect of rotation are those of [7–11]. In our case, we introduce this aspect to understand the
video of dolphins playing with ring bubbles!

The present paper covers the three stages observed during the dolphin’s video inside three
separate sections. First, Section 2 introduces the generation of bubble rings through blowhole or
mouth. To do so, one considers an idealized axisymmetric nozzle containing initially a gas bubble
which is rapidly expelled. This part uses direct numerical simulation. A second stage in which the
toroidal bubble is stretched is analyzed in Section 3 by analytical means. As an end result, this
provides the vorticity profile reached after the stretching period. The third stage is discussed in
Section 4 in which we study the stability of this new profile. The ring is replaced by a straight
columnar bubble embedded in a vortex and a standard linear stability method is employed to
investigate how superimposed infinitesimal perturbations evolve in time.

2. Two-phase ring generation

A bubble ring may appear in various ways: a first method consists in generating tiny gas bubbles
in advance in a region which is thereafter crossed by a vortex ring produced away from this
location [12]. The tiny bubbles migrate because of centrifugal force inside the vorticity ring core
and then coalesce to form a toroidal gas bubble transported by the pre-formed vortex ring. In
a second method, the vortex is generated at the same spot where tiny bubbles are located [13].
An other method consists in initializing a unique gas bubble inside a nozzle. Ejecting the fluid
then causes the bubble to deform and break, yielding a toroidal bubble at the same time and
location in which vorticity rolls up, e.g. near the trailing edge of the nozzle. This latter case is
probably pertinent for vortex ring bubbles produced through the mouth or blowholes by belugas
or dolphins. The presence of the tongue and its motion probably facilitate the toroidal bubble
formation as mentioned and demonstrated by a scuba diver [14] but it is shown here not to be an
essential feature.

We study below the toroidal bubble production through the mouth or blowholes in an ideal-
ized and simplest fashion without introducing the effect of the tongue. The geometry is an ax-
isymmetric nozzle of radius R0 and of thickness 2b0 = R0/4 with an edge at 26.5◦ (see Figure 1a).
The nozzle edge enables to fix the region of boundary layer separation and ends at x = 2.8R0.
Initially the two fluids are at rest and inside the tube, an air bubble of axial length LB is located

C. R. Mécanique, 2020, 348, n 6-7, 519-535
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Figure 1. (a) Scheme of the numerical nozzle. (b) The whole numerical domain. In the
yellow region, the mesh size is ∆c = 0.125R0 and in the red region, ∆c = 0.0078R0. (c) The
three initial cases: the flow is at rest and a gas bubble (in red) of length LB is contained in
the nozzle. From top to bottom: LB = 0.6R0, 1.2R0 and 2.4R0.

within the axial interval x ∈ [2.6R0 −LB,2.6R0] (see Figure 1c). The numerical domain (see Fig-
ure 1b) has been checked to be large enough to avoid boundary effects during the time of simu-
lation: it is a square box (x,r ) ∈ [0,16R0]× [0,16R0]. Outflow boundary condition (stress free) are
imposed at the downstream domain boundary x = 16R0, impenetrability and slip condition on
the lateral wall r = 16R0 and no-slip everywhere else except for the region x = 0 and r É R0 where
the velocity is imposed. The air bubble is suddenly expelled from the nozzle and injected inside
the ambient water. This occurs together with the phenomenon of roll-up of the boundary layer
vorticity. The velocity field far inside the nozzle (at x = 0) mimics this rapid ejection

ux (x = 0,r, t ) =U0 erf

(
t

τ

)
erf(η), ur = 0 with η= R0 − rp

ν(w)t
≥ 0, (2)

where

erf(x) ≡ 2p
π

∫ x

0
exp(−s2)ds

stands for the error function. The center velocity is changing from rest to a constant value U0

within a time scale τ. For this problem we assume that τ¿ R0/U0: the center velocity reaches its
constant value rapidly compared to the time of roll-up itself. In our simulations, this parameter is
fixed at τ̄ ≡ τU0/R0 = 0.1. Moreover the flow is almost spatially uniform inside the tube except
near the tube border r = R0 where a boundary layer is present to ensure no-slip at the wall.
This solution is close to what would be observed in a long tube subjected to a sudden pressure
gradient. Kinematical viscosity of air and water are taken to be respectively (dimensional values
are given in SI units) ν(a) ∼ 1.8×10−5 and ν(w) ∼ 9×10−7 and air and water density respectively
ρ(a) = 1, ρ(w) = 103. Finally, air-water surface tension is assumed to be σ= 73.4×10−3.

Based on the nozzle radius R0 as characteristic length scale and U0 as the velocity scale, as well
as water density and viscosity, this flow is defined by several dimensionless numbers: a Reynolds
number, a Weber number and the relative length rB of the bubble:

Re = U0R0

ν(w)
, W e = ρ(w)U 2

0 R0

σ
, rB ≡ LB

R0
. (3)

Note that Re/W e1/2 = (ρ(w)σR0)1/2/µ(w) is independent on velocity and is equal to Re/W e1/2 ≈
104R0

1/2 when R0 is expressed in SI units. The boundary layer thickness δ0 verifies δ0/R0 =p
t̄/Re, where a nondimensional time variable t̄ ≡U0t/R0 is introduced. This thickness remains

small for advective times much less than the Reynolds number t̄ ¿ Re. The largest vorticity
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Table 1. Estimated typical Reynolds and Weber numbers for scuba divers, beluga whales
or dolphins

SI units R0 = 0.02,U0 = 0.1 R0 = 0.1,U0 = 0.1 R0 = 0.02,U0 = 0.3 R0 = 0.1,U0 = 0.3
Re 2222 11111 6666 22222
W e 2.72 13.6 24.5 120

occurs at the tube wall. In the bubble, for times such that t̄ is of order one, the dimensionless
vorticity maximum is of order

R0

U0
max(ω) ∼− 2p

π

p
Rep

ν(a)/ν(w)
∼−

√
Re

15.7
. (4)

For Re = 5000, the maximum is close to the value 17.8. Using dimensionless quantities, the
entrance condition reads

ux = erf

(
t̄

τ̄

)
erf(η), ur = 0, with η= 1− rp

t̄/Re
. (5)

The axisymmetric flow is described by the velocity fields ui (x,r, t ) with i = 1,2 related to the
pseudo-scalar vorticity component ωθ(x,r, t ), the plane (x,r ) being oriented by the normal unit
vector ez . In the present work, we focus on the transient period once the ejection has started: we
hence study how the roll-up is modified by surface tension. For the formation process of the ring,
axisymmetry is an adequate hypothesis but later on, one expects three-dimensional instabilities
to appear on the starting bubble ring for a monophasic [15, 16] as for a two-phase vortex [15].
The numerical code we use in the present work is the Basilisk code [17, 18]. It has been largely
tested and used to simulate two-phase flow problems. One problematic aspect is the motion of
the triple line between bubble, solid and liquid, present during the initial ejection stage. We will
not go into numerical details here but let us simply mention en passant that Basilisk numerically
mimics the presence near the triple line of a Navier condition, i.e. the presence of a slip length
condition which is used in the phenomenology of triple line motion. Here the slip length is half
the mesh size near the solid boundary, namely 1

2∆c = 0.0039 R0.
The present work is not intended to be an extensive investigation of the parameter space of

this problem, which in itself would cover several articles. We simply provide here some evidence
about the generation of a bubble ring. Table 1 gives estimated Reynolds and Weber numbers
for the toroidal bubble produced by scuba divers, beluga whales or dolphins. As a consequence,
we use a realistic Reynolds number which is still affordable by numerical simulations running
on a standard workstation. For most simulations, the Reynolds number is set at Re = 5000. In
the monophasic case, the standard vortex is formed by vorticity sheet roll-up. In the two-phase
situation, this mechanism is still active but the bubble expelled from the tube may break up in the
same time interval. More importantly, the bubble contains and is surrounded by positive vorticity
transported from the boundary layer at the nozzle wall but also from positive and negative
vorticity produced at the interface. This interfacial vorticity (related in particular to capillary
waves and bubble retraction) is shed in the bulk in the form of vortices. At later times, such
vortices may induce a dynamics on the bubble as do the vortices generated by the nozzle wall
vorticity roll-up.

The first set of simulations corresponds to a small Weber number W e = 3. For a length rB = 0.6
(Figure 2), the toroidal vortex is not formed but a bubble remains with vortices inside. This means
that when surface tension is too strong, inertial effects are too weak to deform the bubble and
thus to generate a toroidal bubble. The second simulation (Figure 3) corresponds to a larger width
rB = 2.4. In this instance, the bubble ring is again not formed but the starting period is quite
complicated with phase of disconnection followed by reconnection. In this process, multiple
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Figure 2. Simulations at Re = 5000, W e = 3 and rB = 0.6. From left to right, the snapshots
correspond to times t̄ = 2, 3.2 and 6.4. The upper half displays phases and interfaces (red is
gas and blue water) and the lower half the vorticity field. The vorticity value is colored with
a maximum scale of ω = 3.75, which is one fifth of the absolute vorticity maximum at the
wall boundary layer (see (4)).

Figure 3. Simulations at Re = 5000, W e = 3 and rB = 2.4. From left to right, first row: t̄ = 4,
6, 8; second row: t̄ = 8.4, 10 and 16. Visualizations are similar to Figure 2.

Figure 4. Simulations at Re = 5000, W e = 100 and rB = 0.6. From left to right: t̄ = 2.8, 4.8,
7.2 and 15.2. Visualizations are similar to Figure 2.

vortices shed at the interface tend to favor this reconnection process. For larger bubbles, the
starting vortex is shed inside the air bubble. As a conclusion, it can be checked that for small
Weber numbers (e.g. W e = 3), the bubble that is formed is not toroidal!

The second set displayed on Figures 4–5 corresponds to a large Weber number W e = 100 for
rB = 0.6 and rB = 2.4 respectively. In the first case (rB = 0.6, Figure 4), the bubble becomes a thin
layer near the centre and a rim forms near r = R0 with the vorticity roll-up (t̄ = 2.8). The layer
breaks thereafter into small fragments since surface tension is too weak and a toroidal bubble is
formed near the edge attached to the nozzle edge (t̄ = 4.8). The flow then detaches the toroidal
bubble (t̄ = 7.2) and the system evolves through capillary waves dynamics and interactions with
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Figure 5. Simulations at Re = 5000, W e = 100 and rB = 2.4. From left to right, first row:
t̄ = 4.8, 7.2, 8, 11.2; second row: t̄ = 13.6 and 19.6. Visualizations are similar to Figure 2.

Figure 6. Simulations at Re = 5000, W e = 100 and rB = 8. From left to right: t̄ = 14, 20, 24
and 40. Visualizations are similar to Figure 2.

vortices (t̄ = 15.2). For a larger rB (here rB = 2.4, Figure 5), the boundary layer is not thin but the
roll-up of the vortex sheet is still located near r = R0 (t̄ = 4.8). At the center, the two interfaces get
nearby (t̄ = 7.2) and then reconnect forming a unique toroidal bubble (t̄ = 8). Later the bubble
is stretched (t̄ = 11.2) before being detached (t̄ = 13.6). The result is a larger toroidal bubble
(t̄ = 19.6). The process is identical for rB = 8 (Figure 6). For even larger values of rB, the bubble
does not break and the vorticity roll-up occurs inside the gas bubble. The largest toroidal bubble
appears for a value of rB which is clearly dependent on the Weber number.

The intermediate case W e = 20 is an in-between situation (Figures 7–9) in which a fine balance
between the classical roll-up of vorticity and the bubble break-up occurs. For rB = 2.4 (Figure 7),
the same process occurs as at larger W e: a toroidal bubble is formed, first attached to the edge
(t̄ = 9.6) then detached (t̄ = 14.4). Thereafter its cross-section becomes almost circular (t̄ = 20,
t̄ = 24). For rB = 1.2 (Figure 8), the bubble is detached (t̄ = 5.6) before being broken (t̄ = 9.6).
This is due to the presence of a vortex that was previously shed by the boundary layer. More
generally, vorticity production at the interface makes the process quite complex since the toroidal
bubble interacts with the vorticity generated at its interface beforehand, or generated by the wall
boundary layer (see Figure 8 at times t̄ = 9.6, 20 and 30). In many simulations for W e = 20, the
chaotic interaction between such vortices and the toroidal bubble brings this bubble towards the
symmetry axis, merging it into a simple bubble. This process is seen here on a simulation for
rB = 0.6 (Figure 9): the toroidal bubble is formed at t̄ = 4.8 but its reconnects towards the center
at t̄ = 8. This was also observed for rB = 2.4 by slightly changing the Navier condition for the
triple line.
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Figure 7. Simulations at Re = 5000, W e = 20 with rB = 2.4. From left to right, first row:
t̄ = 4.4, 7.2, 9.6; second row: t̄ = 14.4, 20 and 24. Visualizations are similar to Figure 2.

Figure 8. Simulations at Re = 5000, W e = 20 with rB = 1.2. From left to right, first row:
t̄ = 4.4, 5.6, 8, 9.6; second row: t̄ = 20, 30. Visualizations are similar to Figure 2.

Figure 9. Simulations at Re = 5000, W e = 20 with rB = 0.6. From left to right: t̄ = 2, 3.6, 4.8
and 8. Visualizations are similar to Figure 2.

It is worth mentioning that modifying the Reynolds number, as illustrated in Figure 10,
and/or the position of the bubble may change some dynamical features but does not modify the
overall picture described above. When the toroidal bubble is formed in the ejection problem, the
structure of the vorticity field is complex inside the bubble and around it (see Figure 11). This is
also seen on vorticity profiles (see Figure 12). One may define a bubble-ring total length LB which
is of order 2πR0, as well as the size aB of the toroidal bubble section S and the mean circulation
ΓB inside the bubble:

aB =
√

I1

π
R0 and ΓB = I2U0R0, with I1 =

∫

S
dx dr, I2 =

∫

S
ωdx dr. (6)
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Figure 10. Simulations with Re = 10000 and rB = 2.4. From left to right, top row: W e = 3
at t̄ = 8, 10, 14.6; bottom row: W e = 100 at t̄ = 8, 10 and 14.6. Visualizations are similar to
Figure 2.

Figure 11. Simulations with Re = 5000, rB = 4. Vorticity field near the bubble for (a) W e = 20
at t̄ = 20; (b) W e = 100 at t̄ = 26.4.

Figure 12. Profiles of vorticity ωθ(x,r ) at Re = 5000, W e = 100, rB = 4 and t̄ = 17.6
(corresponding to the second case of Figure 11) on two orthogonal lines passing through
the center of section S: (a) along the x direction, (b) along the r direction. The red dots are
located inside the gas bubble, blue dots are outside.
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Figure 13. Swirl number qS as a function of nondimensional time t̄ . Simulations at Re =
5000, W e = 100 with (a) rB = 4, (b) rB = 5.

Based on such quantities, one computes the mean vorticity inside the bubble ΓB/(πa2
B). For a

uniform vorticity inside a bubble of radius aB, the azimuthal velocity at the interface is equal
to ΓB/(2πaB). A dimensionless parameter called the swirl number qS can thus be defined as the
ratio of this azimuthal velocity and the characteristic capillary velocity Ucap ≡ [σ/(ρ(w)aB)]1/2:

qS ≡ ΓB

2πaB Ucap
. (7)

After a transient period, this swirl seems to fluctuate around an average value, as illustrated in
Figure 13.

3. The action of stretching on the bubble ring

In the videos [3, 4], dolphins or beluga whales play with the vortex rings and are able by a motion
of their head to increase the bubble length. This is typically known as stretching mechanism of
vortex tubes. Starting from a vorticity structure similar to the field obtained numerically at the
end of the simulations in the previous section (that is those corresponding to vorticity fields in
Figure 11), one should model the effect of the dolphin head. In order to remain simple, we analyse
the effect of this stretching mechanism by a simplified model which enables us to use analytical
methods. An air column of radius aB replaces the two-phase bubble ring with a vorticity field
vanishing away from the bubble and the effect of stretching for the ring is introduced in the
associated columnar bubble via an axial axisymmetric unsteady stretching

u = [
γ(t )x, uy (y, z, t )− 1

2γ(t )y, uz (y, z, t )− 1
2γ(t )z

]
. (8)

The vorticity structure at t = 0 is characterized by a unique vorticity component ωx (y, z) along
x which is identical to ωθ(r, z) obtained at the end of previous simulations (see for instance
Figure 11). The stretching occurs during a finite period of time between time t = 0 and t = TS .
The stretched solution is again characterized by the unique vorticity component ωx (y, z, t ). This
field satisfies the governing equation

Dωx

Dt
= γ(t )ωx +ν∆2Dωx , (9)

where ∆2D stands for the two-dimensional Laplacian and D ·/Dt for the material derivative:

∆2D ≡ ∂2

∂y2 + ∂2

∂z2 ,
D

Dt
≡ ∂

∂t
− 1

2
γ(t )

[
y
∂

∂y
+ z

∂

∂z

]
+uy

∂

∂y
+uz

∂

∂z
. (10)
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Across any point at the interface, the velocity field is continuous i.e. u(1)
y = u(2)

y and u(1)
z = u(2)

z ,
and the tangential stress is continuous as well. Let us now introduce the following change of
variables [19]

τ≡
∫ t

0
S(t ′)dt ′, with S(t ) ≡ exp

[∫ t

0
γ(t ′)dt ′

]
, χ=

√
S(t )y, η=

√
S(t )z, (11)

as well as a rescaling of vorticity and velocity fields

ω̃x (χ,η,τ) =ωx /S(t ), ũy (χ,η,τ) = uy /
√

S(t ), ũz (χ,η,τ) = uz /
√

S(t ). (12)

After such changes, the field [ũy (χ,η,τ), ũz (χ,η,τ)] has the dynamics of an unstretched solution
with the same initial condition:

Dω̃x

Dτ
= ν∆̃2Dω̃x , with ∆̃2D ≡ ∂2

∂χ2 + ∂2

∂η2 and
D

Dτ
≡ ∂

∂τ
+ ũy

∂

∂χ
+ ũz

∂

∂η
, (13)

associated to equivalent boundary conditions.
This trick allows one to obtain the effect of stretching on a vortex profile in two steps: first,

one solves the pure two-dimensional advection-diffusion equation (13) starting with the velocity
field at τ = t = 0 and ending the simulation at τ = τS ≡ ∫ t=TS

0 S(t ′)dt ′; second, one applies the
scalings (11)–(12) back to the initial variables pertinent to describe the physical state. In the
videos [3], the bubble ring length LB increases in a substantial manner: assume this increase to
be by a factor of F and γ to be constant, this means that F = exp(γTS ) and thus τS ≡ ∫ t=TS

0 S(t ′)dt ′

yields (F −1)/γ. Hence, the ratio τS /TS = (F − 1)/lnF is large: for a factor F = 10, its value is
around 4. The first stage of the simulation is thus a pure two-dimensional advection diffusion
equation applied during a time τS larger than TS . In the monophasic case, differential rotation in
such an equation is known to accelerate diffusion [20], so that the vorticity profile rapidly tends
towards a smoother axisymmetric one. More generally, two-dimensional vortical flows localized
in a finite region are known to decay towards an axisymmetric monopole or, in case the total
circulation is zero, towards a dipole [21, 22]. The present case is slightly different because of
the presence of two phases. Since ν(a)/ν(w) = 20 is large, vorticity actually diffuses much more
rapidly inside the bubble than outside. This implies that vorticity tends to become uniform
inside the bubble. Vorticity outside becomes smoother than initially and the interface becomes
axisymmetric by damping of capillary waves. This evolution is partially seen on Figure 14. In order
to go back to the vortex solution at t = TS (second step), one applies the transformation inverse of
(11)–(12). The stretching transformation leaves the vorticity uniform in the bubble, the section of
which is now circular with radius anew ¿ a(t = 0). Indeed, by conservation of mass, anew/a(t = 0)
is of the order of 1/

p
F . If we assume that the circulation ΓB inside the bubble is not changing

much, this stretched vortex also possesses a new swirl number

qnew
S ∼

√
a(t = 0)

anew
qS (t = 0) ∼

p
F qS (t = 0). (14)

The swirl number is thus expected to increase when the bubble ring length increases.

4. Instability of a columnar interface in the presence of surface tension and rotation

After the stretching phase, a toroidal gas bubble inside a vortex with an almost circular section is
generated. In order to understand its stability, we proceed again by studying the same simplified
problem: an air column of radius a0 = anew replaces a two-phase bubble ring with a vorticity field
vanishing away from the bubble. This simplified problem is much more tractable since the base
flow is homogeneous in the axial direction x. Whenever necessary, the notation Q(p) is explicitly
used to represent the quantity Q in the inner phase p = 1 or the outer phase p = 2. The jump of a
field Q across a point x of the interface is denoted by �Q� ≡Q(1)(x, t )−Q(2)(x, t ).
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Figure 14. Evolution of the vorticity field ω̃x (χ,η,τ) near the bubble, starting from the
initial condition corresponding to the second case in Figure 11 and evolving through the
two-dimensional advection-diffusion equation (13), represented (left to right and top to
bottom) at times τ= 0, 8, 16, 24, 32 and 40.

Figure 15. Growth rate s̄ as a function of wavenumber k̄ for axisymmetric modes m = 0.
(a) Inviscid column of liquid 1 surrounded by a liquid 2 at various density ratios ρ(2)/ρ(1) =
103, 102, 10, 1, 10−1 and 10−3. (b) Viscous air column surrounded by water at various
Ohnesorge numbers Oh between 10−3 and 10−1 with µ(2)/µ(1) = 50. The inviscid curve
almost concides with that of case Oh = 10−3.

The theoretical relation (1) indicates that the presence of an external liquid does not change
the stability criterion for various density ratios ρ(2)/ρ(1) (Figure 15a). Here, the density ratio is
ρ(w)/ρ(a) = 103, which simply makes the system of a columnar fluid 1 more stable: while the
Laplace pressure pushes fluid 1 outward, fluid 2 will oppose a force, which slows down the
instability and shift the most unstable wavenumber k̄ to a smaller value [23]. The significance
of dynamical viscosity µ(1) (fixing the ratio µ(2)/µ(1) to the value µ(w)/µ(a) ≈ 50) compared to
surface tension σ is described by the dimensionless Ohnesorge number Oh = µ(1)/(ρ(1)σa0)1/2,
a larger Ohnesorge number indicating an increased influence of viscosity. Since µ(1)/(ρ(1)σ)1/2 ≈
6.64×10−5, Oh ≈ 6.64×10−4 for a radius a0 = 1 cm. Figure 15b presents the classical dispersion
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relation for an air column surrounded by water when viscosity is taken into account. Again it is
found that viscosity makes the system less unstable and shifts the most amplified wavelength to
a longer on from Oh = 10−2 on. The added inertia and viscosity are hence incapable to bring the
system from an unstable to a stable configuration.

We assume here that an additional rotational motion stabilizes the toroidal bubble generated
by dolphins: with an appropriate azimuthal speed, the centrifugal force stabilizes the Rayleigh–
Plateau instability. The stability analysis for a swirling jet has been already studied by Hocking [7].
In the case of an inviscid fluid column with no external fluid and subjected to rotation of
constant angular rotation rate Ω0 (or equivalently of constant vorticity 2Ω0), a stability criterion
for azimuthal wavenumber m at k = 0 was obtained using the Weber number based on the
velocity Ω0a0, i.e. W e = ρ(1)a3

0Ω
2
0/σ (not to be confused with the Weber number used in (3)

which was based on U0 and R0). This criterion implies that a mode with k = 0 and m 6= 0 is
stable when W e É m(m + 1). The planar mode (k = 0,m = 1) being a displacement mode, it is
neutral and stability for (k = 0,m 6= 0) modes is ensured when W e ÉW ec = 6. In follow-on studies,
Gillis [10] provided a general stability criterion for three-dimensional disturbances on a viscous
fluid column with no external fluid

W e É (ka0)2 +m2 −1. (15)

Weidman [11] showed how the dominant azimuthal mode for a two-phase axisymmetric rotating
system depends on the Reynolds number Re. Finally the linear stability of a uniformly rotating
viscous liquid column has been investigated by Kubitschek and Weidman [8] and validated
experimentally [9]: the dominating mode depends on Re and on the rotation speed. In the
present work, we study how perturbations evolve when superimposed on an axisymmetric air
column in an infinite ambient fluid, namely water. We consider the case where surface tension,
viscosity, density contrast and centrifugal force act on the instability growth rate, and in which the
angular velocity profile Uθ(r )/r is not uniform outside the bubble. To the best of our knowledge,
this stability problem has not yet been performed.

4.1. The governing equation for a columnar flow with rotation

We adopt the model of an infinitely long two-phase capillary jet of radius a0. The inner and outer
fluid are both incompressible, immiscible and viscous. Using now radius a0, [ρ(1)a3

0/σ]1/2 and
ρ(1) as characteristic scales for length, time and density, we write the Navier–Stokes equations
inside each fluid p = 1 or 2:

∇̄ · ū(p) = 0 (16)

ρ̄(p) D

Dt̄
ū(p) =−∇̄p̄(p) + µ̄(p)

ReB
∇2ū(p),

1

ReB
=Oh = µ(1)

√
ρ(1)σa0

(17)

where the Reynolds number ReB of the vortex is the inverse of the Ohnesorge number. Ratios
µ̄(p) = µ(p)/µ(1), and ρ̄(p) = ρ(p)/ρ(1) are fixed : µ̄(2) = 50 and ρ̄(2) = 103 and by definition µ̄(1) =
ρ̄(1) = 1. In the following, we use only dimensionless quantities except when specified and the
bar notation is assumed. Since the inner fluid p = 1 is air and the outer fluid p = 2 is water, it is
clear that

ReB =
√

1

ρ(2)

√
a0

R0

Rep
W e

≈ 300
p

a0 (18)

when a0 is the bubble radius in SI units. When a0 ∼ 1 cm, this implies ReB ∼ 30, and when
a0 ∼ 10 cm, this implies ReB ∼ 100. Alternatively, if one assumes that a0/R0 ∼ 0.1, for simulations
Re = 10000 and W e = 100, one gets ReB = 10; for simulations Re = 10000 and W e = 1, one gets
ReB = 100.
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The Navier–Stokes equations are written in cylindrical coordinates. The radial position of the
interface between the two fluids can be described by a function ζ in cylindrical coordinates:
r = ζ(θ, x, t ). This interface is characterized by a outward normal n and two tangential vectors
tx and tθ:

tx =

(
∂ζ
∂x ,0,1

)

√
1+

(
∂ζ
∂x

)2
, n =

(
1,− 1

ζ
∂ζ
∂θ ,− ∂ζ

∂x

)

√
1+

(
∂ζ
∂x

)2
+

(
1
ζ
∂ζ
∂θ

)2
, tθ = tx ×n, (19)

forming an orthonormal basis (tx ,n,tθ). The velocity is continuous across the interface �u� = 0.
The normal velocity must be compatible with the interface motion

Dζ

Dt
= vr (ζ,θ, x, t ). (20)

The dynamic conditions express that normal stress and tangential shear must be balanced by the
surface tension effect:

�
−p +2

µ

ReB
n ·e ·n

�
= 1

R1
+ 1

R2
, �2µtθ ·e ·n� = 0 with e(p)

i j = 1

2


∂u(p)

i

∂x j
+
∂u(p)

j

∂xi


 . (21)

4.2. The rotating base state

Here, we mainly study a basic state u = Wθ(r, t )eθ which possesses the feature described in
Section 3: it is characterized by a non-uniform angular velocity Wθ/r and a non-uniform axial
vorticity ω = [Wθ/r + ∂Wθ/∂r ]ex in phase 2 only, and the interface is circular ζ(x,θ, t ) = 1.
If one neglects the unsteadiness due to bulk viscosity, such profile is a possible solution. In
physical terms, this approximation is pertinent since instability occurs a priori much faster than
the diffusion of the base state. To be mathematically correct, one introduces a body force to
counterbalance the bulk diffusion for the basic state. However viscous effects are still present
in the boundary conditions at r = 1:

W (1)
θ

(1) =W (2)
θ

(1), (22)

µ(1)

(
∂W (1)

θ

∂r
(1)−W (1)

θ
(1)

)
=µ(2)

(
∂W (2)

θ

∂r
(1)−W (2)

θ
(1)

)
. (23)

This latter condition can be rewritten as well as

ω(2)
x (1) = µ(1)

µ(2)
ω(1)

x (1)−2

(
µ(1)

µ(2)
−1

)
W (1)
θ

(1). (24)

In each phase (p), the basic pressureΠ(r ) should satisfy equation ρW 2
θ

(r )/r = ∂Π/∂r and a jump
condition at r = 1. This leads to a pressure of the following form:

Π(1)(r ) = ρ(1)
∫ r

0

[W (1)
θ

(r ′)]2

r ′ dr ′, Π(2)(r ) =Π(1)(1)+ρ(2)
∫ r

1

[W (2)
θ

(r ′)]2

r ′ dr ′−1. (25)

The vorticity profile is assumed to be uniform in fluid 1 that is

W (1)
θ

(r ) = qr, ω(1)
x = 2q for r < 1,

where the dimensionless parameter q is equal to the ratio of the dimensional azimuthal velocity
at the interface with respect to the characteristic capillary velocity [σ/(ρ(1)a0)]1/2 — this quantity
is equal to 0.27/a0

1/2 when a0 is expressed in SI units. Note that

q ≡
√
ρ(1)

ρ(2)
qS =

√
ρ(a)

ρ(w)
qS . (26)
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Figure 16. (a) Normalized vorticityωx (r )/(2q) and (b) normalized velocity Wθ(r )/q profiles
for the base state with ρ(2)/ρ(1) = 103, µ(2)/µ(1) = 50 for δ= 0.3 (left), δ= 1 (center) or δ= 2
(right).

Vorticity in phase 1 being uniform, Equation (24) imposes that ω(2)
x (1) = 2q . Apart from this

constraint, let us assume a vorticity profile ω(2)(r ) = ω(2)
x (1) f (r ) in phase 2, where function f is

chosen as f (r ) = exp[−(r −1)2/δ2] and decays in the radial direction, thus generating a vortex
ribbon of radial size δ in phase 2 surrounding the interface. It is easily seen that

W (2)
θ

(r ) = q

r
+2

q

r

∫ r

1
r ′ f (r ′)dr ′, ω(2)

x (r ) = 2q f (r ) for r > 1.

This expression, which can be written as well as

W (2)
θ

(r ) = q

r

[
1+δ2

(
1−e−(r−1)2/δ2

)
+δpπerf

(
r −1

δ

)]
for r > 1, (27)

is displayed in Figure 16.

4.3. The linear instability results

We study the linear stability of the above base flow using standard but cumbersome methods. In-
deed, the problem is an eigenvalue problem s̄(k̄,m) for given axial k̄ and azimuthal m wavenum-
bers, that contains viscous diffusion in the bulk as well as on the interface. A code has been specif-
ically developed, that solves coupled Orr–Sommerfeld equations in cylindrical coordinates for
the two phases. For obvious reasons, details on the implementation will be published elsewhere,
and only results for the air-water columnar bubble are presented here.

Figure 17 displays the growthrate s̄ as a function of wavenumber k̄ for the axisymmetric mode
m = 0, which is known to be the most unstable mode for q = 0. The presence of rotation is found
to stabilize axisymmetric modes, and for q larger than a critical value qc ≈ 0.03, waves become
stable for all wavelengths. This observation holds irrespective of the Reynolds number and δ

within the studied interval δ ∈ [0.3,2]. Actually the structure in the corona at r > 1 seems to play
a minor role for the axisymmetric mode.
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Figure 17. Growth rate s̄ as a function of wavenumber k̄ for axisymmetric mode m = 0
at various swirl numbers q = 0, 0.01, 0.02, 0.03. Reynolds number is (a) ReB = 10, (b)
ReB = 100. Viscous air column surrounded by water with δ= 0.3 (left) or δ= 2 (right), with
ρ(2)/ρ(1) = 103 and µ(2)/µ(1) = 50.

Figure 18. Growth rate s̄ as a function of wavenumber k̄ for a viscous column of air
surrounded by water at δ = 0.3, ReB = 10 and various swirl q = 0.2,0.4,0.6. (a) m = ±1;
(b) m =±2; (c) m =±3. Positive m: symbols; negative m: bold line.

Figure 19. Same as Figure 18 but for δ= 1 (ReB = 10).

Figures 18–21 provide linear instability results for non axisymmetric modes m ±1, ±2 and ±3.
The first observation is that, at given k̄ and |m| values, the growth rate is found almost the same
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Figure 20. Same as Figure 18 but for δ= 0.3 and ReB = 100.

Figure 21. Same as Figure 18 but for δ= 1 and ReB = 100.

for m > 0 and m < 0. The equality exactly holds when q = 0 for symmetry reasons, and the fact
that it holds also roughly for q 6= 0 can be explained by the uniform vorticity inside the bubble.
Interestingly, rotation does not influence mode |m| = 1, that remains stable. For sufficiently low
Reynolds number and small δ, other azimuthal modes m 6= 0 for small k can be destabilized. For
instance, the mode m = 2 is found unstable for ReB = 10 and δ= 0.3 (Figure 18b). The growth rate
decreases as the Reynolds number increases (Figure 20b). This is reminiscent of planar modes
k = 0 in Ref. [8]. Note that for larger values of δ, this mode is restabilized: for δ = 1, all modes
tested are stabilized by rotation, this conclusion holding irrespective of the Reynolds number
(Figures 19 and 21).

Finally, going back to the bubble ring, the axisymmetric Rayleigh–Plateau modes are stabilized
by rotation. Indeed, from the simulations in Section 2, the pertinent values of q (Figure 13
and (26)) are found to be q ∼ 10−3/2 ×30 ∼ 0.94. When a stretching factor is applied, q generally
increases (Equations (14) and (26)) and is thus larger than the stability threshold of qc ≈ 0.03.

5. Conclusions

This paper covers three different aspects of the dynamics of toroidal bubbles such as those
produced by scuba divers, beluga whales or dolphins. During the initial production of such
bubble, vorticity trailing from the nozzle or from the opening rolls up into a toroidal vortex ring
able to trap gas in its core; to do so, it has to overcome surface tension which would favor the
formation of a single spherical bubble. Simulations show that vortices shed from the nozzle or
generated at the bubble interface itself can influence the formation dynamics in a non trivial
way. Once formed, the bubble ring may be stretched by an appropriate flow so as to increase
its length. A theoretical model where curvature effects are overlooked shows that, during the
stretching process, the vorticity in the gas tends to become uniform, the cross-section tends to
circular while the core radius is highly reduced and the swirl is enhanced. This latter finding is
important since a linear stability study of a gas columnar vortex surrounded by water eventually
shows that the dominant axisymmetric Plateau instability is stabilized as swirl increases above a
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well-defined critical value. Put all together, these pieces of investigation give some serious clues
to physically understand the surprising stability of swirling bubble rings.
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Conclusion and perspectives

The work exposed in this manuscript is a contribution to the numerical studies on the dynamics of vortices
and their instabilities. Our objective was to estimate the occurrence of different instability modes at given
vortex configurations. These instabilities are the source of many applications or the cause of many problems,
such as in the context of in a vortex wake after a turbine. The original goal is to study the two-phase helical
vortices, however due to time limit, only two simplified models are analyses: the homogeneous helical
vortices, which contribute to the part one of the thesis, and the two-phase straight vortices, which lead to
the second part of the thesis.

In the first part, by using the DNS code HELIX, we have shown that, when a moderate axial flow is present
in a helical vortex, a quasi-equilibrium can be reached with various configurations. We have first exhibited
for such a equilibria the existence of two functions f and g, such that $ = f (Ψ (T)) and u(T)B /α = g(Ψ (T)),
where $ is defined in (4.15), Ψ (T) is the stream function and u(T)B is the axial velocity at translating frame.
We then developed a more accurate method for computing vortex solutions with all prescribed parameters,
namely circulation, helix radius, helical pitch, vortex core size and swirl level. Finally, when the core size
is reasonably small with respect to the helical pitch and the curvature radius, the asymptotic theory is
shown to adequately describe the structure of the DNS velocity field. Excellent agreement is found between
numerics and asymptotic theory. Long- and short-wave instability modes growing on these states are then
investigated, for the existence of different elliptical and curvature instability modes as well as the influence
of axial jet intensity within the core, helical vortex pitch and core size. Their growth rate are then compared
to existing asymptotic theories. Strong evidence shows that torsion modifies the stability properties of
helical vortices compared to vortex rings. An improvement of the theoretical solutions is proposed and
validated by numerical results. The effect of the direction of axial jet has also been demonstrated in a
preliminary way.

In the second part, we study the instabilities occurring in straight two-phase vortices using an original
in-house instability code. The code is first validated in a large range of viscosity Re and azimuthal mode
m for the homogenize flow by comparing to the theory predictions and the results from other numerical
studies. We then validate the growthrate of a uniform rotating gas jet as the results obtained numerically
fits well with the theory prediction, in which the stabilizing effect of rotation on capillary instabilities
in vortices with a gaseous core is evidenced. The similar results for certain cases are also obtained with
tool Basilisk by DNS, during which the code is validate by studying the convergence and performance of
error estimation techniques. The code is then used to verify the accuracy of analytical predictions from
the in-house instability code, good agreements are found in various cases. The non-linear evolution of
a swirling liquid jet are also qualitative studied with full 3D simulation with perturbation predicted by
analytical solutions. In the next we investigate the generation of toroidal vortex bubbles as those produced
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by direct two-phase simulations: the toroidal bubble is produced by a vortex trailing from the nozzle, which
rolls up into a toroidal vortex ring and is able to trap gas in its core by overcoming surface tension. We also
proved the bubble ring may be stretched by an appropriate flow so as to increase its length, the section
tends to be circular while the core radius is highly reduced and the swirl is enhanced above a well-defined
critical value. With the conclusion from second part, a physical explanation is given for the disappearance
of the Plateau instability which is usually observed on a classic bubble column.

perspectives

First, for homogeneous helical vortices, due to the complexity of the structure in the vortex core and the
requirement of a large simulation domain in some cases, an optimized solver with adaptive mesh refinement
(AMR) is a priori required. In addition, many interesting topics remain to be studied: strong axial flow
inside the vortex core may alter the quasi-equilibrium state structures of helical vortices ; we have only
demonstrated the existence of the effect of torsion on the stability properties, but have not provided a solid
theoretical explanation on it; the effect of axial flow direction is also open to discussion, we still have
no conclusion on this part. Secondly, an extension to the analysis of two-phase helical vortices can be
considered in the future. A priori on a helical vortex, the existence of interface should largely impact its
dynamics. This study may be essential to better understand the turbine system of a ship.



Appendix for part one
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AppendixA
Appendix: Relation between two planes
for helically symmetric flows

Contents
A.1 Relationships between planesΠ0 andΠ⊥ . . . . . . . . . . . . . . . . . . . . . . . 139
A.2 Projection of the velocity field on theΠ⊥ plane . . . . . . . . . . . . . . . . . . . . 140

A.1 Relationships between planes Π0 and Π⊥

The vortex characterization requires its local distribution in plane Π⊥ which is perpendicular to the vortex
centre helical line. The direct numerical simulation in code HELIX is fixed at plane Π0 orthogonal to the
vortex axis. It is necessary to connect the point M in the planeΠ0 to the point Mh which lies on a the same
helical line ϕ = ϕM and intersects the plane Π⊥, . We called point Mh the helical projection of point M at
plane Π⊥. Any point M located in the plane Π0 in polar coordinates (rM ,ϕM ) is given by

−−−→
OM = rM cosϕM eeex + rM sinϕM eeey , (A.1)

where (eeex,eeey) are unitary vectors along x and y respectively. For point Mh, vector
−−−−→
OMh can be expressed

by
−−−−→
OMh = zMh eeez + rM cosθMh eeex + rM sinθMh eeey (A.2)

with θMh = ϕM + zMh /L, or else

−−−−→
OMh =

−−−−→
OA? + ξ1eeerA? + η1eeeϕA?

= (rA? + ξ1)eeerA? + η1eeeϕA?
(A.3)
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where (ξ1,η1) = (ρcosψ,ρ sinψ) are the local Cartesian coordinates of Mh. Using both expressions, one
can compute the scalar products

−−−−→
OMh ·eeex,

−−−−→
OMh ·eeey and

−−−−→
OMh ·eeez. This yields

rM cos(θMh ) = (rA? + ρcosψ), (A.4)
rM sin(θMh ) = αA? ρ sinψ, (A.5)

ϕM = θMh +αA?
rA?

L

ρ

L
sinψ (A.6)

zMh = −αA?
rA?

L
ρ sinψ. (A.7)

From any (ρ,ψ) one gets rM and θMh from equations (A.4)–(A.5) and thereafter ϕM from (A.6). When
the point M is near A? , the local radius is small compared to pitch ρ/L� 1, the radial and azimuth values
are approximated to:

r2M = r2A? +2rA?ρcosψ, θMh =
1
rA?

αA? ρ sinψ .

It yields the expression of helical line:

ϕM = θMh + ε =
1
rA?

αA? ρ sinψ +αA?
rA?

L

ρ

L
sinψ = β2A?θMh

This yields two expressions

ρ2 = (rM cos(θMh )− rA? )
2 + β2A? (rM sin(θMh ))

2 = (rM cos(ϕM )− rA? )2 +α2
A? (rM sin(ϕM ))2 .

A.2 Projection of the velocity field on the Π⊥ plane

Point A denotes the vortex centre, with the associated Serret–Frenet basis (eeerA ,eeeϕA
,eeeBA ) such that

eeeϕA
(rA,θA) = αA

(
eeeθA −

rA
L
eeez

)
, (A.8)

eeeBA(rA,θA) = αA
( rA
L
eeeθA +eeez

)
, (A.9)

where αA = (1 + r2A/L
2)−1/2 (see figure 4.2 for a similar geometry). The plane Π⊥ is spanned by the

Cartesian basis (eeerA ,eeeϕA
), to which a local polar basis (eeeρ,eeeψ) is associated:

eeeρ = cosψeeerA + sinψ eeeϕA
, (A.10)

eeeψ = −sinψ eeerA + cosψeeeϕA
, (A.11)

and a normal vector to the plane is eeeb ≡ eeeBA .

In order to express the velocity field in planeΠ⊥ using the basis (eeerA ,eeeϕA
,eeeBA ), one first determines the

intersection M between the helical line passing through M0 in planeΠ0 and the planeΠ⊥, which is located
at rMeeer (θM ) +θMeeeθ + zMeeez. If O denotes O the origin of plane Π0, the vector

−−−→
OM reads

−−−→
OM =

−−→
OA +

−−−→
AM
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with
−−→
OA = rAeeer (θA) and

−−−→
AM = ξ1eeerA + η1eeeϕA , here (ξ1,η1) are the components in the local orthogonal

basis (eeerA ,eeeϕA ) in plane Π⊥. One then obtains

−−−→
OM = zMeeez + rMeeer (θM ) = (rA + ξ1)eeerA + η1eeeϕA . (A.12)

Quantity zM can be calculated using the projection:

zM =
−−−→
OM ·eeez = −

αArA
L

η1 . (A.13)

Equations (A.12)-(A.13) give the radial position:

r2M = (rA + ξ1)
2 +α2

Aη
2
1 .

The helical symmetric with point M0 and M can be expressed as:

rM sin(θM ) = (rA + ξ1) sinθA + η1αA cosθA (A.14)
rM cos(θM ) = (rA + ξ1)cosθA − η1αA sinθA (A.15)

where θM = θM0
−αA

rA
L2
η1 (A.16)

For a chosen point M in plane Π⊥(A), the values of (θA, ξ1, η1, rM ) are known, then the azimuthal
location θM can be deduced from equations (A.14)–(A.15), then one obtains the value of θM0

through
equation (A.16).

The velocity field at any point M0 in plane Π0 is given by

uuu(M0) = ur (M0)eeer (M0) +uϕ(M0)eeeϕ(M0) +uB(M0)eeeB(M0) .

and the velocity at corresponding point M in plane Π⊥ reads

uuu(M) = uρ(M)eeeρ(M) +uψ(M)eeeψ(M) +ub(M)eeeb(M) .

The helical symmetry implies that uuu(M) has the same components as uuu(M0) in the helical basis (eeer ,eeeϕ ,eeeB):

uuu(M) = ur (M0)eeer (M) +uϕ(M0)eeeϕ(M) +uB(M0)eeeB(M) .

Projected on the basis (eeerA ,eeeϕA
,eeeBA ), this yieldsurA(M)

uϕA(M)
uBA(M)

 = [ur (M0)eeer (M) +uϕ(M0)eeeϕ(M) +uB(M0)eeeB(M)] ·

eeerAeeeϕA
eeeBA

 .
Using projection relations of vector at point M in direction eeerA

eeer (M) ·eeerA = cos(θM −θA)
eeeϕ(M) ·eeerA = αM sin(θA −θM)

eeeB(M) ·eeerA = αM
rM
L

sin(θA −θM)



A.2. Projection of the velocity field on the Π⊥ plane 142

in direction eeeϕA

eeer (M) ·eeeϕA
= αA sin(θM −θA)

eeeϕ(M) ·eeeϕA
= αMαA

[ rMrA
L2

+ cos(θM −θA)
]

eeeB(M) ·eeeϕA
= αMαA

[
− rA
L

+
rM
L

cos(θM −θA)
]

and in direction eeeBA

eeer (M) ·eeeBA = αA
rA
L
sin(θM −θA)

eeeϕ(M) ·eeeBA = αMαA
[
− rM
L

+
rA
L
cos(θM −θA)

]
eeeB(M) ·eeeBA = αMαA

[
1+

rMrA
L2

cos(θM −θA)
]
.

Using the relation of new local basis (ρ, ψ) at point M

uρ = cosψ urA + sinψ uϕA , uψ = −sinψ urA + cosψ uϕA ,

one obtains the “helical projection relations [Selçuk et al., 2017b] linking point M0 in planeΠ0 to point
M in plane Π⊥:

uρ(M) = ur (M0) [cos(θM −θA)cosψ +αA sin(θM −θA)sinψ]

+uϕ(M0)αM
[
sin(θA −θM)cosψ +αA

( rMrA
L2

+ cos(θM −θA)
)
sinψ

]
+uB(M0)

αM
L

[rM sin(θA −θM)cosψ +αA(−rA + rM cos(θM −θA))sinψ] ,

uψ(M) = ur (M0) [−cos(θM −θA)sinψ +αA sin(θM −θA)cosψ]

+uϕ(M0)αM
[
−sin(θA −θM)sinψ +αA

( rMrA
L2

+ cos(θM −θA)
)
cosψ

]
+uB(M0)

αM
L

[−rM sin(θA −θM)sinψ +αA(−rA + rM cos(θM −θA))cosψ] ,

ub(M) = ur (M0)αA
rA
L
sin(θM −θA)

+uϕ(M0)
αM
L
αA[−rM + rA cos(θM −θA)]

+uB(M0)αMαA[1 +
rMrA
L2

cos(θM −θA)] .

With the coordinates of pointM0 in planeΠ0, the values of all fields can be obtained in planeΠ⊥ with
proper interpolations.
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B.1 Pseudo-spectral method

It is recalled that the non-linear operator NL in HELIKZ–NL equals to:

NLr =ωθuz −ωzuθ , (B.1)
NLθ =ωzur −ωruz , (B.2)
NLz =ωruθ −ωθur , (B.3)

and the linear operator LNL in HELIKZ–LIN equals:

LNLr ≡ω′θu
BF
z +ωBF

θ u′z −ω′zuBFθ − (ω
BF
z +2Ω0)u

′
θ , (B.4)

LNLθ ≡ω′zuBFr + (ωBF
z +2Ω0)u

′
r −ωBF

r u′z −ω′ruBFz , (B.5)

LNLz ≡ω′ruBFθ +ωBF
r u′θ −ω

′
θu

BF
r −ωBF

θ u′r . (B.6)

Both expressions contain the sum of terms, each one being the product of two fields, of the type f (r,ϕ) =
u(r,ϕ)v(r,ϕ). Let us define the Fourier modes in ϕ associated to both quantities:

u(j)(r) ≡ 1
2π

∫ 2π

0
u(r,ϕ)exp(−ijϕ)dϕ , v(k)(r) ≡ 1

2π

∫ 2π

0
v(r,ϕ)exp(−ikϕ)dϕ , (B.7)
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Since f in physical space equals:

f (r,ϕ) =
∞∑

j=−∞

∞∑
k=−∞

exp[i(j + k)ϕ]u(j)(r)v(k)(r) , (B.8)

its Fourier coefficient f (m) reads

f (m)(r) =
∞∑

k=−∞
u(m−k)(r)v(k)(r) . (B.9)

If the value of f (m) was estimated in spectral space by performing the above sums, the number of operations
would be of order N2.

One uses instead the pseudo-spectral method (PSM in short) to accelerate the calculation: it consists in a
Fast Fourier Transform (FFT). This algorithm is performed in N log2N operation, and provides quantity
uN (r,ϕj ) in physical space:

uN (r,ϕj ) =
N−1∑
m=0

u
(m)
N (r)exp(imϕj ) with ϕj = 2πj/N , j = 0,1, ...,N − 1 , (B.10)

and a similar transform for vN . This is followed by N products of fN (r,ϕj ) = uN (r,ϕj )vN (r,ϕj ) used to
evaluate the nonlinear term at the collocation points in physical space. Finally a direct Fourier transform is
performed to get the Fourier coefficients of fN :

f
(m)
N (r) =

1
N

N−1∑
j=0

exp(−imϕj )fN (r,ϕj ) . (B.11)

For instance, when N = 256, this reduces the number of operations by a factor of 32, and hence saves a
huge simulation time.

B.1.1 Spectral folding and anti-aliasing

When an arbitrary periodic function f is represented at collocation points ϕj using only a finite number of
modes:

f (r,ϕj ) =
∞∑

m=−∞
f (m)(r)exp(imϕj ) =

N−1∑
m=0

f
(m)
N (r)exp(imϕj ) , (B.12)

an effect named aliasing occurs. Indeed, since exp[i(m+pN )ϕj )] = exp[i(mϕj +2πp)] = exp(imϕj ), all
modes (m+ pN ) become indistinguishable at these collocation points, and one has by identification:

f
(m)
N (r) =

+∞∑
p=−∞

f (m+pN )(r) . (B.13)
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Here for nonlinear terms f (m)
N (r), the sum can be split into two parts: one involving both modes in the

range ]− 1
2N,

1
2N ], and one involving modes outside this range (the aliasing error):

f
(m)
N (r) =

− 1
2N<m−k≤

1
2N∑

− 1
2N<k≤

1
2N

u
(m−k)
N (r)v(k)N (r) +

m−k> 1
2N or m−k≤− 1

2N∑
− 1
2N<k≤

1
2N

u
(m−k)
N (r)v(k)N (r)

︸                                      ︷︷                                      ︸
aliasing error

. (B.14)

In order to prevent aliasing, so-called anti-aliasing (or de-aliasing) methods exist. The general idea is to
move the "indistinguishable" spectrum to a non-used range of the spectrum so as to keep the rest of the
spectrum that we are interested in free of aliasing. Practically for freeing −1

2N ≤ k ≤
1
2N from aliasing

errors, one performs Fourier transforms on the range −1
2Nϕ ≤m ≤

1
2Nϕ (rather than N ) with

ϕj = 2πj/Nϕ , j = 0,1, ...,Nϕ − 1 . (B.15)

the points number is chosen as Nϕ = 3
2N , which indicate the sub-spectrum range ]− 1

2N,
1
2N ] is then free

of aliasing:

• if m− k > 1
2Nϕ , then the coefficient will be aliased to m− k −Nϕ . To prevent aliasing, m− k −Nϕ

should be less than −1
2N . The largest value ofm−k isN−1 reached whenm = 1

2N and k = −1
2N+1:

this leads to Nϕ > 3
2N − 2.

• ifm−k ≤ −1
2Nϕ , then the coefficient will be aliased tom−k+Nϕ . To prevent aliasing,m−k+Nϕ

should be greater than 1
2N . The smallest value of m− k is −N +1 reached when m = −1

2N +1 and
k = 1

2N : this leads to Nϕ > 3
2N − 1.

To summarize, the pseudo-spectral method uses Nϕ collocations points. In the spectral domain, which
covers modes in the interval ]− 1

2Nϕ ,
1
2Nϕ], one can keep the sub-range ]−

1
2N,

1
2N ] free from aliasing,

by choosing Nϕ = 3
2N and setting to zero the amplitude of the modes outside this sub-range.

B.2 Boundary conditions at r = Rext

In the following we introduce the quantity

H|m|(r̂) ≡
1

K|m|(r̂)
∂K|m|(r̂)
∂r̂

. (B.16)

where the simplified expressions for H|m| are given in Appendix C.
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B.2.1 for HELIKZ–NL

In the potential region, the velocity field is derived from the potential Φ̂:

Φ̂(r,ϕ, t) = eimϕΦ (m)(r, t) . (B.17)

Boundary conditions to be imposed at r = Rext are Robin conditions (mixed boundary conditions)

∂Φ (m)

∂r
= C(m)

Φ
Φ (m) ,

∂p(m)

∂r
= C(m)

p p(m) , (B.18)

∂v
(m)
r

∂r
= C(m)

r v
(m)
r ,

∂v
(m)
θ

∂r
= C(m)

θ v
(m)
θ ,

∂v
(m)
z

∂r
= C(m)

z v
(m)
z , (B.19)

where C(m)
Φ
,C

(m)
p and C(m)

r ,C
(m)
θ ,C

(m)
x are constants to be determined in each case. We only give results

since computations are similar to those found in appendix F. In the following let us introduce the notations

β ≡ −m
L
, r̂ ≡ |β|r and R̂ext = |β|Rext.

B.2.2 Conditions for β , 0

C
(m)
Φ
≡ |β|H|m|(R̂ext) , C

(m)
p ≡ C(m)

Φ
+

2m

Rext
(
m− 2 $

ΩB(Rext)

) , (B.20)

C
(m)
z ≡ C(m)

Φ
, C

(m)
r ≡

β2 + m2

(Rext)2

C
(m)
Φ

− 1
Rext

, C
(m)
θ ≡ C(m)

Φ
− 1
Rext

. (B.21)

B.2.3 Conditions for β = 0 and m = 0 for HELIKZ–NL

For β = 0,m = 0, one has a potential flow Φ , the equation ∆Φ = 0 reads:

d2Φ (m=0)

dr2
+
1
r
dΦ (m=0)

dr
= 0 . (B.22)

The solutions of equation (B.22) reads:

Φ (m)(r) = A+B lnr .

Since no source is present, one supposes B = 0 (so that v(0)r = 0).
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The velocities are expressed as:

v
(0)
r =

∂Φ (0)

∂r
= 0 , v

(0)
θ =

Γ

2πr
, v

(0)
z = 0 , (B.23)

assuming that the total circulation Γ is known.

B.3 for HELIKZ–LIN

In the potential region, the velocity field is derived from the potential Φ̂

Φ̂(r,ϕ, t) = ei(mϕ+kz)Φ (m)(r, t) . (B.24)

From this remark, one can infer that the boundary conditions to be imposed at r = Rext are Robin conditions
(mixed boundary conditions)

∂Φ (m)

∂r
= C(m)

Φ
Φ (m) (B.25)

∂v
(m)
r

∂r
= C(m)

r v
(m)
r ,

∂v
(m)
θ

∂r
= C(m)

θ v
(m)
θ ,

∂v
(m)
z

∂r
= C(m)

z v
(m)
z , (B.26)

where C(m)
Φ
,C

(m)
p and C(m)

r ,C
(m)
θ ,C

(m)
x are constants to be determined in each case. We only give results

since computations are similar to those found in appendix F . In the following let us introduce the notations

β ≡ kz −
m
L
, r̂ ≡ |β|r and R̂ext = |β|Rext.

B.3.1 Conditions for β , 0

C
(m)
Φ
≡ |β|H|m|(R̂ext) , C

(m)
p ≡ C(m)

Φ
+

2m

Rext
(
m− 2 $

ΩB(Rext)

) , (B.27)

C
(m)
z ≡ C(m)

Φ
, C

(m)
r ≡

β2 + m2

(Rext)2

C
(m)
Φ

− 1
Rext

, C
(m)
θ ≡ C(m)

Φ
− 1
Rext

. (B.28)

B.3.2 Conditions for β = 0 , k =m/L and m , 0

C
(m)
Φ
≡ − |m|

Rext
, C

(m)
r ≡ −|m|+1

Rext
, C

(m)
θ ≡ −|m|+1

Rext
,u

(m)
x = 0 . (B.29)
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The case β = 0 and m = 0 is not pertinent as a perturbation.

B.4 Boundary conditions at the axis r = 0

The boundary conditions at the axis r = 0 come from regularity considerations: while the cylindrical
coordinates have a singularity at r = 0, all physical quantities, when written in Cartesian coordinates, must
remain infinitely differentiable there [Lopez et al., 2002].

The transformation between the Cartesian and cylindrical coordinates reads:

x = r cosθ , y = r sinθ , (B.30)

with θ = ϕ + z/L. Using the complex variable ζ = r exp[i(ϕ + z/L)], one has x = 1
2 (ζ + ζ̄), y = −

i
2 (ζ − ζ̄).

Any function f (r,ϕ) can be expressed as a function h(ζ, ζ̄) through the linear change of variables

f (r,ϕ) = f
[
1
2 (ζ + ζ̄),−

i
2 (ζ − ζ̄)

]
≡ h(ζ, ζ̄) . (B.31)

Function h is infinitely differentiable, especially at ζ = ζ̄ = 0 where its Taylor expansion reads:

h(ζ, ζ̄) =
+∞∑
p,q=0

hp,qζpζ̄q .

For a scalar field f , the Taylor expansion of the Fourier coefficient f (m) reads, for m ≥ 0:

f (m)(r) =
1
2π

∫ 2π

0
f (r,ϕ)e−imϕdϕ =

+∞∑
p,q=0

hp,qr
p+q 1

2π

∫ 2π

0
ei(p−q−m)ϕdϕ

=
+∞∑

p−q=m; p,q=0

hp,qr
p+q = rm

+∞∑
q=0

h(q+m,q)r
2q .

One defines F(r) =
∑+∞
q=0(hq+m,q)r

2q, which is by construction an even function, then f (m)(r) has the form:

f (m)(r) ∼ rmF(r) when r→ 0 .

For a vector field vvv, one can express vvv = vx eeex + vy eeey + vz eeez = vr eeer + vθ eeeθ + vz eeez, the transformation
between the Cartesian and cylindrical coordinates reads vx = vr cosθ−vθ sinθ and vy = vr sinθ+vθ cosθ.
One defines two new variables:

v± ≡ vr ± ivθ = exp(∓iθ)(vx ± ivy) . (B.32)

The Taylor expansion of Fourier coefficient v(m)
± for m ≥ 1 reads:

v
(m)
± (r) =

+∞∑
p−q=m±1; p,q=0

h±,p,qr
p+q = rm±1

+∞∑
q=0

(h±(q,m±1+q))r
2q . (B.33)
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The Fourier coefficients of v± for |m| ≥ 1 can be expressed as:

v
(m)
+ (r) = r |m|+1Km(r) , v(m)

− (r) = r |m|−1Lm(r) , (B.34)

where Km,Lm are regular even functions.

Equation (B.32) reads as vr = 1
2 (v+ + v−) and vθ = i

2 (v− − v+). Accordingly, one can express the Fourier
coefficients v(m)

r and v(m)
θ as:

v
(m)
r (r) =

1
2

rm−1 +∞∑
q=0

h−(q,m−1+q)r
2q + rm+1

+∞∑
q=0

h+(q,m+1+q)r
2q

 , (B.35)

v
(m)
θ (r) =

i
2

rm−1 +∞∑
q=0

h−(q,m−1+q)r
2q − rm+1

+∞∑
q=0

h+(q,m+1+q))r
2q

 . (B.36)

The relations between velocity components and potential:

vr =
∂Φ
∂r

, vθ =
1
r
∂Φ
∂θ

give in the spectral space when r goes to zero:

v
(m)
r (0) =

∂Φ (m)

∂r

∣∣∣∣∣∣
r=0

, v
(m)
θ (0) = lim

r→0
im

Φ (m)

r
= im

∂Φ (m)

∂r

∣∣∣∣∣∣
r=0

= imv(m)
r (0) .

For m ≥ 1, the Fourier coefficients of field vvv thus read:

v
(m)
r (r) = Cmr

|m|−1 + r |m|+1Gm(r) , (B.37)

v
(m)
θ (r) = imCmr

|m|−1 + r |m|+1Hm(r) , (B.38)

v
(m)
z (r) = r |m|Jm(r) , (B.39)

where Gm,Hm, Jm are regular even functions.

For m = 0, the components are of the form:

v
(0)
r = rG0(r), v

(0)
θ = rH0(r), v

(0)
z = J0(r), (B.40)

where G0,H0, J0 are regular even functions.

The behaviour of all velocity components have been determined, so that we can write the boundary
conditions at axis r = 0 for the different modesm. Ifm > 1, one may introduce r = 0 into equations (B.37)–
(B.39), leading to Dirichlet zero conditions for all the velocity components:

v
(m)
r = 0 , v

(m)
θ = 0 , v

(m)
z = 0 at r = 0 . (B.41)
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If m = 1, equations (B.37)–(B.39) at r = 0 indicate that the velocity components vr and vθ are finite at
axis with:

v
(1)
r =

∂Φ (1)

∂r
, v

(1)
θ = i

∂Φ (1)

∂r
, v

(1)
z = 0 at r = 0 .

As Φ (1)(r) = r F(r), and F(r) a regular even function such that F′(0) = 0, the boundary conditions then
read:

∂v
(1)
r

∂r
= 0 ,

∂v
(1)
θ

∂r
= 0 , v(1)z = 0 at r = 0 . (B.42)

If m = 0, the boundary conditions read:

v
(0)
r = 0 , v

(0)
θ = 0 ,

∂v
(0)
z

∂r
= 0 at r = 0 . (B.43)
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Let us evaluate the function

H|m|(r̂) ≡
1

K|m|(r̂)
∂K|m|(r̂)
∂r̂

. (C.1)

where K|m|(r̂) is a modified Bessel function of the second kind [Abramowitz and Stegun, 1964].

Let us introduce one small parameter ε = 0.01 and the integer mLarge = 10

C.1 Expressions for m = 0

C.1.1 For r̂ ≤ ε

The asymptotic form of the Bessel function K0 reads:

K0(r̂) ∝ − log
( r̂
2

)
−γc (C.2)

with the Euler–Mascheroni constant γc ≈ 0.58 . As a consequence, the function H0 behaves as:

H0(r̂) =
K ′0(r̂)
K0(r̂)

∝ 1

r̂(γc + log( r̂2 ))
. (C.3)
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C.1.2 For ε < r̂ < 1
ε

One uses a standard algorithm (subroutine IK01A) to compute Bessel function of the second kind K0(r̂)
and thus the function H0

H0(r̂) =
K ′0(r̂)
K0(r̂)

. (C.4)

C.1.3 For 1
ε ≤ r̂

For large r̂ ≥ 1
ε , an asymptotic expression can be used for the Bessel K0 func-

tion [Abramowitz and Stegun, 1964]

K0(r̂)|r̂→+∞ ∝ e
−r̂

√
π
2r̂

(
1− 1

8
1
r̂
+O(r̂−2)

)
. (C.5)

As a consequence, H0(r̂) is expressed as:

H0(r̂) =
K ′0(r̂)
K0(r̂)

∝ −
(
1+

1
2r̂

)
. (C.6)

C.2 Expressions for 0 < |m| ≤mLarge

For |m| > 0 the function H|m|(r̂) is such that

H|m|(r̂) ≡
1

K|m|(r̂)
∂K|m|(r̂)
∂r̂

= −
K|m|−1
K|m|

− |m|
r̂

. (C.7)

C.2.1 For r̂ < ε

Since

H1(r̂) =
K ′1(r̂)
K1(r̂)

∝ −1
r̂

for |m| = 1, (C.8)

K|m|−1(r̂)
K|m|(r̂)

' r̂
|m| − 1

si |m| ≥ 2, (C.9)

then

H|m|(r̂) ∝ −
|m|
r̂

. (C.10)



C.3. Expressions for |m| > mLarge 153

C.2.2 For ε ≤ r̂ ≤m2
Large

One uses an iterative standard algorithm to compute the ratio of Bessel functions of the second kind and
thus the function H|m|. One evaluates K0(r̂)/K1(r̂) using a standard algorithm (the subroutine IK01A) and
then computes K|m|−1(r̂)/K|m|(r̂) using the recurrence

K|m|(r̂)
K|m|+1(r̂)

=
[
K|m|−1(r̂)
K|m|(r̂)

+
2 |m|
r̂

]−1
. (C.11)

C.2.3 For m2
Large < r̂

An asymptotic expression can be used for the Bessel K|m| function [Abramowitz and Stegun, 1964]

K|m|(r̂)
∣∣∣
r̂→+∞ ∝ e

−r̂
√
π
2r̂

(
1+

4m2 − 1
8

1
r̂
+O(r̂−2)

)
. (C.12)

As a consequence, H|m|(r̂) is expressed as:

H|m|(r̂) =
K ′|m|(r̂)

K|m|(r̂)
∝ −

(
1+

1
2r̂

)
. (C.13)

C.3 Expressions for |m| > mLarge

C.3.1 For r̂ < ε|m|

The asymptotic form of the Bessel function K|m| reads:

K|m|(r̂) ∝
1
2
(|m| − 1)!

( r̂
2

)−|m|
, (C.14)

K|m|−1(r̂)
K|m|(r̂)

' r̂
|m| − 1

. (C.15)

As a consequence, the function H|m| behaves as:

H|m|(r̂) ∝ −
|m|
r̂
. (C.16)

C.3.2 For ε|m| < r̂ < |m|ε

H|m|(r̂) =
K ′|m|(r̂)

K|m|(r̂)
= −
|m|

√
1+ r̂2

|m|2

r̂
|m| −V
|m| −U

, (C.17)
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with
V ≡ 1

24
(−9p+7p3) , U ≡ 1

24
(3p − 5p3) , p ≡ 1√

1+ r̂2

|m|2

.

C.3.3 For |m|ε < r̂ < |m|
2

To be solved but never used in our computations.

C.3.4 For |m|2 ≤ r̂

An asymptotic expression can be used for the Bessel K|m| function [Abramowitz and Stegun, 1964]

K|m|(r̂)
∣∣∣
r̂→+∞ ∝ e

−r̂
√
π
2r̂

(
1+

4m2 − 1
8

1
r̂
+O(r̂−2)

)
. (C.18)

As a consequence, H|m|(r̂) is expressed as:

H|m|(r̂) =
K ′|m|(r̂)

K|m|(r̂)
∝ −

(
1+

1
2r̂

)
. (C.19)
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Appendix: linearization and modal form
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D.1 Linearization of the conditions at the interface

In order to linearize the boundary conditions at the deformed interface r = ζ(θ,x, t) = 1+ εζ′(θ,x, t), we
must at first linearize the expressions (9.10) and (9.11) of the normal and tangential vectors. We introduce
the velocity decomposition (10.1), and keep only 1st-order terms O(ε):

nnn = (1,0,0) + ε(0,−∂ζ
′

∂θ
,−∂ζ

′

∂x
) tttθ = (0,1,0) + ε(

∂ζ′

∂θ
,0,0) tttx = (0,0,1) + ε(

∂ζ′

∂x
,0,0) .

Using Taylor expansions for uuu and p at the interface, and again linearizing leads to

vr (ζ) = εv
′
r (1 + εζ

′) ' εu′r (1) (D.1)

wθ(ζ) =Wθ(1 + εζ
′) + εw′θ(1 + εζ

′) 'Wθ(1) + εζ
′ ∂Wθ

∂r
(1) + εw′θ(1) (D.2)

ux(ζ) =Ux(1 + εζ
′) + εux′(1 + εζ′) 'Ux(1) + εζ′

∂Ux
∂r

(1) + εu′x(1) (D.3)

p(ζ) =Π(1 + εζ′) + εp′(1 + εζ′) 'Π(1) + εζ′
∂Π
∂r

(1) + εp′(1) . (D.4)
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The rate of stain tensor (9.18) can be written as the sum of a base state and the linear perturbation eee = eeeb+eee′:

2eee =


0 ∂Wθ

∂r (1)−Wθ(1)
∂Ux
∂r (1)

∂Wθ
∂r (1)−Wθ(1) 0 0

∂Ux
∂r (1) 0 0


+ ε


2∂v

′
r

∂r
∂v′r
∂θ +

∂w′θ
∂r −w

′
θ

∂v′r
∂x + ∂u′x

∂r
∂v′r
∂θ +

∂w′θ
∂r −w

′
θ 2

∂w′θ
∂θ +2v′r

∂u′x
∂θ +

∂w′θ
∂x

∂v′r
∂x + ∂u′x

∂r
∂u′x
∂θ +

∂w′θ
∂x 2∂u

′
x

∂x


+ εζ′


0 ∂2Wθ

∂r2
(1)− ∂Wθ

∂r (1) +Wθ(1)
∂2Ux
∂r2

(1)
∂2Wθ
∂r2

(1)− ∂Wθ
∂r (1) +Wθ(1) 0 0

∂2Ux
∂r2

(1) 0 0

 . (D.5)

Using (D.1)–(D.5) leads to the linearized expressions

txtxtx ·eee ·nnn =
1
2

(
∂Ux
∂r

+ εζ′
∂2Ux
∂r2

(1) + ε(
∂v′r
∂x

+
∂u′x
∂r

)
)
,

nnn ·eee ·nnn = ε
(
∂v′r
∂r
− ∂ζ

′

∂θ
(
∂Wθ

∂r
(1)−Wθ(1))−

∂ζ′

∂x
∂Ux
∂r

(1)
)

and

tθtθtθ ·eee ·nnn =
1
2

[
∂Wθ

∂r
(1)−Wθ(1) + εζ

′
(
∂2Wθ

∂r2
(1)− ∂Wθ

∂r
(1) +Wθ(1)

)
+ ε

(
∂v′r
∂θ

+
∂w′θ
∂r
−w′θ

)]
and to the linearized conditions (10.11)–(10.16) at the interface necessary for the linear instability study.

D.2 Linearized equations using v+ and v−

Here, we write the set of linearized equations using, instead of v′r and w′θ , the auxillary variables

v′+ ≡ v′r + iw′θ v′− ≡ v′r − iw′θ . (D.6)

Reciprocally, one has

v′r =
1
2
(v′+ + v

′
−) w′θ =

i
2
(v′− − v′+) .
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The linearized system (10.6)–(10.9) now reads

∂u′x
∂x

+
v′+ + v

′
−

2r
+
1
2
(
∂v′+
∂r

+
∂v′−
∂r

) + i
1
2r

(
∂v′−
∂θ
− ∂v

′
+

∂θ
) = 0 (D.7)

ρ

[
∂u′x
∂t

+Ux
∂u′x
∂x

+
(v′+ + v

′
−)

2
∂Ux
∂r

+
Wθ

r
∂u′x
∂θ

]
= −

∂p′

∂x
+
µ

Re
∇2u′x (D.8)

ρ

[
∂v′+
∂t

+Ux
∂v′+
∂x

+
Wθ

r
∂v′+
∂θ

+ i
Wθ

2r
(3v′+ − v′−) + i

(v′+ + v
′
−)

2
∂Wθ

∂r

]
= −

∂p′

∂r
− i
r

∂p′

∂θ
+
µ

Re

[
∇2v′+ −

v′+
r2

+ i
2
r2
∂v′+
∂θ

]
(D.9)

ρ

[
∂v′−
∂t

+Ux
∂v′−
∂x

+
Wθ

r
∂v′−
∂θ

+ i
Wθ

2r
(v′+ − 3v′−)− i

(v′+ + v
′
−)

2
∂Wθ

∂r

]
= −

∂p′

∂r
+
i
r

∂p′

∂θ
+
µ

Re

[
∇2v′− −

v′−
r2
− i 2
r2
∂v′−
∂θ

]
. (D.10)

In terms of v+ and v−, the boundary conditions (10.10)-(10.16) read (variables in capital letters are for
r = 1):

1
2
(
∂v′+
∂r

+
∂v′−
∂r

) =
∂ζ′

∂t
+Ux

∂ζ′

∂x
+Wθ

∂ζ′

∂θ
(D.11)

Lu′x + ζ
′ ∂Ux
∂r

M = 0 (D.12)

Lv′+ + v
′
−M = 0 (D.13)

Li(v′− − v′+) + 2ζ′
∂Wθ

∂r
M = 0 (D.14)

0 = Lµ
[
2ζ′

∂2Ux
∂r2

+
∂v′+
∂x

+
∂v′−
∂x

+2
∂u′x
∂r

]
M (D.15)

ζ′ +
∂2ζ′

∂x2
+
∂2ζ′

∂θ2
= L−p′ − ρζ′W 2

θ +
µ

Re

[
∂v′+
∂r

+
∂v′−
∂r
− 2∂ζ

′

∂θ
(
∂Wθ

∂r
−Wθ)− 2

∂ζ′

∂x
∂Ux
∂r

]
M (D.16)

0 = Lµ
[
2ζ′(

∂2Wθ

∂r2
− ∂Wθ

∂r
+Wθ) +

∂v′+
∂θ

+
∂v′−
∂θ

+ i
∂v′−
∂r
− i∂v

′
+

∂r
− iv′− + iv′+

]
M . (D.17)

D.3 Linearized system for m = 0 in fluid (1)

The linearized system of equations is given in the main text only for m ≥ 1 (see 10.23). For axisymmetric
modes (m = 0), the change of variables (10.22) done for fluid (1) becomes

F(r) = f (r), G+(r) = rg+(r), G−(r) = rg−(r), P (r) = p(r) (D.18)
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where f ,g+, g− and p are even functions of r. Introducing (D.18) into (10.20) leads to the linearized
equation system valid for m = 0 only, involving only even terms:

ikf + (g+ + g−) +
r2

2

(
g ′+
r

+
g ′−
r

)
= 0

ρ(1)
[
(−iω+ ikUx)f + r

2 (g+ + g−)
2

U ′x
r

]
+ ikp −

µ(1)

Re

(
f ′′ +

f ′

r
− k2f

)
= 0

ρ(1)
[
(−iω+ ikUx)g+ +

i
2
(3
Wθ

r
+W ′θ)g+ +

i
2
(−Wθ

r
+W ′θ)g−

]
(D.19)

+
p′

r
−
µ(1)

Re

(
g ′′+ +3

g ′+
r
− k2g+

)
= 0

ρ(1)
[
(−iω+ ikUx)g− +

i
2
(
Wθ

r
−W ′θ)g+ −

i
2
(3
Wθ

r
+W ′θ)g−

]
+
p′

r
−
µ(1)

Re

(
g ′′− +3

g ′−
r
− k2g−

)
= 0 .

D.4 Linearized system for m ≤ −1 in fluid (1)

The linearized system of equations is given in the main text only for m ≥ 1 (see 10.23). For m ≤ −1, one
gets in fluid (1)

ikf +
1
2
g ′+
r

+ (−m+1)g− +
r2

2
g ′−
r

= 0

ρ(1)
[
(−iω+ iX)f +

1
2
U ′x
r
g+ +

r2

2
U ′x
r
g−

]
+ ikp −

µ(1)

Re

[
f ′′ + (−2m+1)

f ′

r
− k2f

]
= 0 (D.20)

ρ(1)
[
(−iω+ iX)g+ +

i
2

(
3Ω+W ′θ

)
g+ −

i
2
r4Y g−

]
− 2mp+ r2

p′

r
−
µ(1)

Re

[
g ′′+ + (−2m− 1)

g ′+
r
− k2g+

]
= 0

ρ(1)
[
(−iω+ iX)g− −

i
2

(
3Ω+W ′θ

)
g− +

i
2
Y g+

]
+
p′

r
−
µ(1)

Re

[
g ′′− + (−2m+3)

g ′−
r
− k2g−

]
= 0 .

D.5 Symmetry of the linearized equations

The following transform

k→ k

m→−m
F→ F

G+→ G−
G−→ G+

Wθ→−Wθ

P → P
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leaves the system unchanged if no axial velocity is present. This remark is used to test the validity of the
part of the code relative to m ≤ −1 using the part of the code relative to m ≥ 1.
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In this appendix, the explicit formulas of the matrices AAAr , AAA∗, BBBr and BBB∗ used for first and second
differentiation are given. We deal first with arbitrary functions (fluid 2), then with even functions (fluid 1
around the axis).

E.1 Chebychev-collocation method: arbitrary function

One wishes to express the first and second derivative of an arbitrary function Q defined at points ri = R(ξi)
where ξi are the Gauss-Lobatto points in [−1;1] and R a mapping function. If function ξ designates the
reciprocal function of the mapping function (ξi = ξ(ri)), then, using the chain rule:

Q′(r) =
dQ
dξ

ξ ′(r) (E.1)

Q′′(r) =
d2Q

dξ2
ξ ′2(r) +

dQ
dξ

ξ ′′(r) . (E.2)
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The derivative of Q with respect to ξ can be approximated using the Chebychev-collocation
method [Canuto et al., 2012]:

dQ
dξ

(ξi) ≈
2N∑
j=0

A∗ijQ
(
ξj

)
, i = 0,1, · · · ,2N (E.3)

where ξi are the 2N +1 Gauss-Lobatto points

ξi = cos
( iπ
2N

)
, i = 0,1, · · · ,2N

and matrixAAA∗ is defined by:

A∗ij ≡



ci (−1)i+j

cj(ξi−ξj)
i , j

−ξi
2(1−ξ2i )

1 ≤ i = j ≤ 2N − 1
2(2N )2+1

6 i = j = 0

−2(2N )2+1
6 i = j = 2N

, with ci =
{

2 if i = 0 or 2N
1 otherwise .

The second derivative is given by

d2Q

dξ2
(ξi) ≈

2N∑
j=0

B∗ijQ
(
ξj

)
with B∗ij ≡

2N∑
k=0

A∗ikA
∗
kj . (E.4)

The derivatives of Q with respect to r are then deduced by (10.37). This is used for peripheral fluid (2).

E.2 Chebychev-collocation method: even function

For the inner fluid (1), the equations are written using only even terms. If Q is even in [−1;1], one has
the symmetry relation Qi =Q2N−i . Let q be the restriction of Q on [0;1]. Using only the N +1 positive
Gauss-Lobatto points

ξi = cos
( iπ
2N

)
, i = 0,1, · · · ,N ,

the derivative of q can be written at these points as:

dq

dξ
(ξi) =

2N∑
j=0

A∗ijQj (E.5)

=
N−1∑
j=0

A∗ijQj +A
∗
iNQN +

2N∑
j=N+1

A∗ijQj (E.6)

=
N−1∑
j=0

(
A∗ij +A

∗
i,2N−j

)
qj +A

∗
iNqN (E.7)
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Thus the first derivative of q is such that

q′(ξi) ≈
N∑
j=0

Aeijqj

{
Aeij ≡ A

∗
ij +A

∗
i,2N−j (j = 0, · · · ,N − 1)

AeiN ≡ A
∗
iN

(E.8)

and the second derivative can expressed as:

q′′(ξi) ≈
N∑
j=0

Beijqj

{
Beij ≡ B

∗
ij +B

∗
i,2N−j (j = 0, · · · ,N − 1)

BeiN ≡ B
∗
iN

. (E.9)

A last step is needed since only even terms are used, we have to express the ratio q′(ξj )/ξj , rather than
q′(ξj ) which is odd. Eventually one has (formulas (10.36) in main text)

q′(ξi)
ξi
≈

N1∑
j=0

Arijqj , q′′(ξi) ≈
N1∑
j=0

Brijqj , (E.10)

with

Arij ≡


Aeij
ξi

if ξi , 0 (i = 0, · · · ,N − 1)

Beij if ξi = 0 (i =N )
(E.11)

Brij ≡ B
e
ij . (E.12)
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Appendix: Conditions at the outer
boundary r = Rext
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If vorticity perturbation remains localized in a region around the vortex axis, the perturbation velocity
field becomes potential at large r that is uuu′ =∇∇∇Φ ′ . Incompressibility imposes that Φ ′ satisfies the Laplace
equation

∇∇∇ · (∇∇∇Φ ′) = 000 . (F.1)

In turn, this implies that viscous terms vanish at large r since

∆uuu′ = ∆(∇∇∇Φ ′) =∇∇∇(∆Φ ′) = 000 . (F.2)

and perturbations thus satisfy:

ρ

(
∂u′x
∂t

+ΩB∂u
′
x

∂θ

)
= −

∂p′

∂x
, (F.3)

ρ

(
∂v′r
∂t

+ΩB∂v
′
r

∂θ
− 2ΩBw′θ

)
= −

∂p′

∂r
, (F.4)

ρ

(
∂w′θ
∂t

+ΩB∂w
′
θ

∂θ

)
= −1

r

∂p′

∂θ
. (F.5)

withΩB the angular velocity of base flow

ΩB ≡ Γ

2πr2
,
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Γ being the total circulation. For normal modes, the perturbation potential, velocity and pressure take the
form:

Φ ′ = ei(kx+mθ−$t)Φ (m)(r) , (F.6)

uuu′ = ei(kx+mθ−$t)uuu(m)(r) , (F.7)

p′ = ei(kx+mθ−$t)p(m)(r) . (F.8)

Under the potential flow condition, a Robin condition (mixed boundary condition) is imposed on the above
quantities at r = Rext

∂v
(m)
r

∂r
= C(m)

r v
(m)
r ,

∂v
(m)
θ

∂r
= C(m)

θ v
(m)
θ ,

∂v
(m)
x

∂r
= C(m)

x v
(m)
x , (F.9)

∂Φ (m)

∂r
= C(m)

Φ
Φ (m) ,

∂p(m)

∂r
= C(m)

p p(m) , (F.10)

where C(m)
r ,C

(m)
θ ,C

(m)
x and C(m)

Φ
,C

(m)
p are constants to be determined in each case.

Since Φ ′ satisfies Laplace equation, relation (F.6) implies that

∂2Φ (m)

∂r2
+
1
r
∂Φ (m)

∂r
− (k2 + |m|

2

r2
)Φ (m) = 0 . (F.11)

F.1 Conditions for k , 0

In the following we introduce the notations

r̂ ≡ |k|r and R̂ext = |k|Rext .

F.1.1 Conditions on potential Φ

Relation (F.11) implies that

∂2Φ (m)

∂r̂2
+
1
r̂
∂Φ (m)

∂r̂
− (1 + |m|

2

r̂2
)Φ (m) = 0 . (F.12)

The general solution of the above equation is of the sum

Φ (m)(r) = AI|m|(r̂) +BK|m|(r̂) ,

where I|m|(r̂) denotes the modified Bessel function of first kind and K|m|(r̂) the modified Bessel function
of second kind [Abramowitz and Stegun, 1964]. Since I|m| diverges as r̂ → +∞, A must vanish. One
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introduces this condition in the code by enforcing a Robin condition at the outer boundary r = Rext

C
(m)
Φ
≡ |k|H|m|(|k|Rext) , (F.13)

where H|m| is defined by equation (C.1).

F.1.2 Condition on the pressure perturbation

Equations (F.3)–(F.4) lead to three equations

iρ
(
$ −mΩB

)
Φ (m) = p(m) , (F.14)

iρ
(
|k|H($ −mΩB)− 2mΩB

r

)
Φ (m) =

∂p(m)

∂r
, (F.15)

iρ
(m
r
($ −mΩB)

)
Φ (m) =

m
r
p(m) . (F.16)

which are equivalent providing the pressure condition at r = Rext:

C
(m)
p ≡ C(m)

Φ
+

2m

Rext
(
m− 2 $

ΩB(Rext)

) . (F.17)

F.1.3 Condition on axial velocity

Since the axial velocity v′x satisfies v′x = ∂Φ/∂x, equations (F.6)–(F.7) imply that v(m)
x = ikΦ (m). The

boundary condition for v(m)
x (r) is thus the same as for the potential:

C
(m)
x ≡ C(m)

Φ
. (F.18)

F.1.4 Condition on radial velocity

Since the radial velocity v′r satisfies v′r = ∂Φ/∂r, one has

v
(m)
r (r) = |k|H|m|(r̂)Φ (m)(r) .

The mixed boundary condition for v(m)
r reads:

∂v
(m)
r

∂r
= |k|H|m|(r̂)

∂Φ (m)

∂r
+ |k|

∂H|m|
∂r̂

v
(m)
r

H|m|(r̂)
(F.19)
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∂v
(m)
r

∂r
= |k|H|m|(r̂)v

(m)
r + |k|2

∂H|m|
∂r̂

v
(m)
r

|k|H|m|(r̂)
(F.20)

This yields
∂v

(m)
r

∂r
= |k|

(
H|m|(r̂) +

1
H|m|(r̂)

∂H|m|
∂r̂

)
v
(m)
r , (F.21)

The following property [Abramowitz and Stegun, 1964]

H|m| +
1
H|m|

∂H|m|(r̂)
∂r̂

=
(1+ |m|

2

r̂2
)

H|m|
− 1
r̂
.

finally yields at r = Rext,

C
(m)
r ≡

k2 + |m|2
(Rext)2

|k|H|m|
− 1
Rext

=
k2 + |m|2

(Rext)2

C
(m)
Φ

− 1
Rext

. (F.22)

F.1.5 Condition on azimuthal velocity

Since the azimuthal velocity perturbation satisfies w′θ = (1/r)∂Φ ′/∂θ, one has

w
(m)
θ (r) =

imΦ (m)

r
.

The mixed boundary condition for w(m)
θ at r = Rext reads:

C
(m)
θ ≡ C(m)

Φ
− 1
Rext

. (F.23)

F.1.6 Condition on auxilliary variables (v+,v−)

We have introduced the velocity components (v′+,v′−):

v′+ = v′r + iw′θ , v′− = v
′
r − iw′θ , (F.24)

or reciprocally
v′r =

1
2
(v′+ + v

′
−) , w′θ =

1
2i
(v′+ − v′−) . (F.25)
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One assumes

v′+ = ei(kx+mθ−$t)v(m)
+ (r)

v′− = e
i(kx+mθ−$t)v(m)

− (r) .

Then it is possible to derive boundary conditions for v+ and v− since

∂v
(m)
±
∂r

=
∂v

(m)
r

∂r
± i
∂w

(m)
θ

∂r

At r = Rext, one gets

∂v
(m)
±
∂r

=
∂v

(m)
r

∂r
± i
∂w

(m)
θ

∂r
= C(m)

r v
(m)
r ± iC

(m)
θ w

(m)
θ = C(m)

r
v
(m)
+ + v(m)

−
2

± iC(m)
θ
v
(m)
+ − v(m)

−
2i

∂v
(m)
+

∂r
=
C
(m)
r +C(m)

θ

2
v
(m)
+ +

C
(m)
r −C

(m)
θ

2
v(m)
− (F.26)

∂v(m)
−
∂r

=
C
(m)
r −C

(m)
θ

2
v
(m)
+ +

C
(m)
r +C(m)

θ

2
v(m)
− , (F.27)

The expressions for H|m| are given in Appendix C.

F.2 Conditions for k = 0

The case k = 0 and m = 0 is not pertinent as a perturbation. The case k = 0 and m , 0 is treated below.
Variables read

Φ ′ = ei(mθ−$t)Φ (m)(r) , (F.28)

uuu′ = ei(mθ−$t)uuu(m)(r) , (F.29)

p′ = ei(mθ−$t)p(m)(r) . (F.30)

so that the amplitude of the potential Φ (m)(r) satisfies

d2Φ (m)

dr2
+
1
r
dΦ (m)

dr
− m

2

r2
Φ (m) = 0 . (F.31)

If m , 0, the general solution to (F.31) reads

Φ (m)(r) = Ar |m| +Br−|m| . (F.32)

one imposes A = 0 to avoid the divergence of the solution as r→ +∞.
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C
(m)
Φ
≡ − |m|

Rext
, (F.33)

Concerning axial velocity perturbation u′x = ∂Φ ′/∂x, one deduces

u
(m)
x = 0 .

Concerning on radial velocity perturbation v(m)
r (r) = − |m|r Φ

(m)(r), condition at r = Rext imposes

C
(m)
r ≡ −|m|+1

Rext
. (F.34)

Concerning azimuthal velocity, w(m)
θ (r) = imΦ(m)(r)

r the condition at r = Rext reads

C
(m)
θ ≡ −|m|+1

Rext
. (F.35)

Finally, the constants for the auxilliary velocity components v(m)
± reads

1
2 (C

(m)
r +C(m)

θ ) = −|m|+1
Rext

1
2 (C

(m)
r −C

(m)
θ ) = 0

. (F.36)



AppendixG
Convergence study for Basilisk

This work was performed under the guidance of my supervisor Daniel Fuster.

The accuracy of the code was estimated with the classic Rayleigh-Plateau instability of a liquid jet at
rest with Oh = 0.001. The ambient liquid is set to be gas (ρ2/ρ1 = µ2/µ1 = 10−3) with dimensionless
wavenumber k̄ = 2π/9 ∼ 0.7. The differences between simulation results and theoretical values can be
attributed to two main sources of error:

1. We use the symbols ξ∆x̄ to denote the errors related to the dimensionless mesh size ∆x̄ = ∆x
λ (with

∆x = λ/N ), controls the spatial discretization errors.
2. We use the symbol ξλ̄0 to denote the difference between analytic and numerical predictions controlled

by the finite size of the domain λ̄0.
3. We use the symbol ξεt to denote the difference between analytic and numerical predictions due to

the finite amplitude of the initial perturbation.

The impact of mesh size and the border effect are first studied with constant regular meshes. We vary
the number of discretization points in one spatial period N = λ/∆x, form 32 to 1024, and the simulation
domain λ0 from λ to 5 λ. We calculate the convergence speed with the offset between the discrete solution
f and the exact solution fh for arbitrary variable f . As the scheme we use here is centered, the error should
converge at order 2.

ξ∆x̄ = |
fh − f
fh
| ∼

(
∆x
λ

)2
(G.1)

In figure G.1 (right) we find that for λ
∆x > 64, the error almost converges at order 2, while for smaller λ

∆x it
converges at order between 1 and 2. Here we estimate that the offset between the results and the converged
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Figure G.1 – The growthrate s̄ (left) and the error ξ∆x (right) as a function of λ/∆x. With Oh = 0.001,
initial perturbation ε = 0.01 and simulation domain λ̄0 ∈ [1,2,3,4,5].

value due to the size of grid can be fitted according to the following empiric formula:
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In figure G.1 (left) we look at the influence of λ̄0 = [1,2,4], We see that the error is mainly controlled by
the grid size, λ

∆x , thus we conclude that there is no border effect for λ̄0 ≥ 1.

Then the influence of initial perturbation amplitude ε is discussed in Figure G.2. The results are obtained
by first keeping the mesh size constant and varying ε from order O(10−4) to O(10−1), and then repeating
the same protocol for different resolution levels. As expected, we find that there is a competition between
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bold lines: the maximum oscillation values (Green), the analytic growthrate(Yellow), and the convergence
results for different ε (Red). With Oh = 0.001, λ̄0 = 1. (right) The error ξε as a function of ε. With
viscosity Oh = 0.001, N = 1024 and simulation domain λ̄0 = 1

the grid resolution and the optimal perturbation amplitude. For very small values of εr0/∆x we find that
the growthrates obtained oscillate due to the poor resolution of the initial perturbation amplitude. In the
mean time, there is a limit on the maximum values of ε that can be used, as the condition ε� 1 has to
be respected. In figure G.2 left, we see that for ε ≥ 0.1 the errors induced by the finite size of the initial
amplitude are significant. We then conclude that to obtain accurate results we need a nondimensional
amplitude that satisfies 0.005∆x

r0
< ε < 0.1. In figure G.2 right we plot the relative error as a function of ε.
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The offset between analytic and numerical values due to the presence of initial perturbation amplitude can
be fitted according to the following empiric formula

ξεt = ξε(ε) ' 0.5ε0.6 (G.3)

provided that condition 0.001∆x
r0
< ε < 0.1 is satisfied. Thus, if we choose the minimum ε for which we

obtain acceptable results, ε = 0.01∆x
r0
, the error scales as

ξεt = ξε(ε) ' 0.0315
(
∆x
r0

)0.2
(G.4)

We conclude that for a given grid size and finite amplitude of the perturbation ε = 0.01∆x
r0
, we can obtain

the accuracy of the numerical predictions by the empirical formula:
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Based on these analyses we calculate the dispersion relation for a classical Rayleigh-Plateau instability
of a cylindrical liquid jet at rest. As shown in figure G.3, the DNS results obtained fitted well with the
analytic solutions. While the error bar is added, all the values obtained by Basilisk are located inside the
the empirical formula G.5 of error prediction.
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Numerical studies on vortex dynamics
helical vortices and two-phase vortices

Abstract
Nous présentons des études numériques sur la dynamique des vortex homogènes et diphasiques. Dans une première
partie, nous étudions la structure des vortex hélicoïdaux homogènes tels qu’on peut les trouver dans le sillage des hélices
ou des turbines. Certaines propriétés des états d’équilibre non visqueux sont dérivées théoriquement et confirmées
numériquement sur des états de quasi-équilibre en utilisant des simulations numériques directes dans le cadre de la
symétrie hélicoïdale. Les modes d’instabilité de grandes et petites longueurs d’onde qui se développent sur ces états
sont ensuite étudiés et comparés aux théories asymptotiques existantes, avec un bon accord. L’intensité du jet axial au
cœur du vortex joue un rôle prépondérant, mais l’influence d’autres paramètres tels que le pas des vortex hélicoïdaux
et la taille du cœur est également étudiée. Dans une deuxième partie, nous étudions deux problèmes de dynamique
des vortex diphasiques. D’une part, on traite les instabilités se produisant dans les tourbillons diphasiques droits en
utilisant un code d’instabilité maison. En particulier, l’effet de stabilisation par la rotation sur les instabilités capillaires
avec un vortex dans le cœur gazeux est mis en évidence. D’autre part, on étudie la génération de bulles tourbillonnaires
toroïdales comme celles produites par les plongeurs, les bélugas ou les dauphins par des simulations directes à deux
phases. Les résultats d’instabilité sont utilisés pour expliquer la très grande robustesse de telles structures vis-à-vis des
perturbations.
Keywords: 〈 vortex; hélicoïdal; stabilité; écoulement diphasique 〉

Études numériques sur la dynamique des vortex
Vortex hélicoïdaux et Vortex diphasiques

Résumé
We present numerical studies on the dynamics of homogeneous and two-phase vortices. In a first part, we study the
structure of homogeneous helical vortices as can be found in the wake of propellers or turbines. Some properties of
inviscid steady states are derived theoretically and confirmed numerically on quasi-equilibria using direct numerical
simulations in the helical symmetry framework. Long- and short-wave instability modes growing on these states are
then investigated and compared favourably to existing asymptotic theories. Axial jet intensity within the core has a
prominent role, but the influence of other parameters such as helical vortex pitch and core size are also investigated. In
a second part, we study two problems concerning the dynamics of two-phase vortices. On the one hand, we investigate
the instabilities occurring in straight two-phase vortices using an original in-house instability code. In particular, the
stabilizing effect of rotation on capillary instabilities in vortices with a gaseous core is evidenced. On the other hand, we
study the generation of toroidal vortex bubbles as those produced by scuba divers, beluga whales or dolphins by direct
two-phase simulations. Previous instability results are used to explain the remarkable robustness of such structures
with respect to perturbations.
Mots clés : 〈 vortex ; helical ; stability ; two-phase flow 〉
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