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Resumé

La dynamique moléculaire (DM) est un outil puissant pour étudier les propriétés de systèmes complexes.

Cependant, cette méthode simule le mouvement des particules selon une approche classique via les équations

de Newton. Les effets quantiques nucléaires (EQNs), tels que l’énergie du point zéro ou l’effet tunnel, ne sont

donc pas pris en compte bien qu’ils aient une influence importante sur les mécanismes de réactions physico-

chimiques impliquant des éléments légers, et ce, même à température ambiante. La méthode de référence

pour inclure les EQNs est la dynamique moléculaire par intégrales de chemin (PIMD), issue du formalisme de

Feynman appliqué à la fonction de partition quantique. Elle repose sur un isomorphisme entre une particule

quantique et une châıne d’oscillateurs harmoniques, appelé beads, reliées par des ressorts. Cependant, le

nombre de beads pour converger reste un facteur limitant pour l’application de cette méthode, augmentant

drastiquement le temps de calcul (typiquement plusieurs dizaines de fois celui d’une simulation classique) et

réduisant la possibilité d’étudier les EQNs sur des systèmes d’intérêt biologique.

Le bain thermique quantique (ou QTB) est une alternative intéressante. Cette méthode repose sur

l’équation de Langevin où les différents degrés de liberté classiques du système sont couplés à un ensemble

d’oscillateurs harmoniques quantiques. Dans le cas classique, l’équation de Langevin obéit au Théorème de

Fluctuation-Dissipation (TFD) classique, qui correspond à l’équipartition de l’énergie. Au contraire, le QTB

vise à imposer le TFD quantique qui implique d’injecter davantage d’énergie dans les hautes fréquences que

dans les basses fréquences pour reproduire les effets d’énergie de point zéro. Cependant, une fuite d’énergie

apparâıt lorsque la méthode est appliquée à des systèmes réalistes à cause du couplage des modes de hautes

fréquences avec ceux de basses fréquences. Pour corriger cela, une méthode adaptative (adQTB) a été

proposée où le théorème de fluctuation-dissipation quantique est utilisé comme un critère afin de corriger de

façon systématique la fuite d’énergie au cours d’une simulation.

Les travaux menés dans cette thése ont porté sur l’eau, qui est un composé chimique principalement

constitué d’hydrogène. La faible masse de cet atome rend l’impact des EQNs non négligeable. Ces derniers

jouent donc un rôle crucial dans la dynamique du solvant. De plus, il a été montré que la prise en compte

des EQNS au cours d’une dynamique est déterminante pour l’obtention de propriétés telles que la densité

ou l’enthalpie de vaporisation. Afin de vérifier la validité de la méthode adQTB sur un système très an-

harmonique comme l’eau, les différentes méthodes (PIMD et adQTB) ont été implémentées dans le code de

dynamique moléculaire TINKER-HP (CPU et GPU). Les différents résultats obtenus avec le modèle d’eau

q-TIP4P/F étant très encourageants pour l’adQTB, un nouveau modèle d’eau polarisable a été développé :

Q-AMOEBA. Ce nouveau modèle a permis d’étudier l’effet des EQNs sur une forme fonctionnelle de champ

de forces plus complexe qui inclut la polarisation. Cette étude a démontré que l’impact des EQNs dépend

du modèle choisi et qu’une généralisation de leurs effets n’est pas possible. Ainsi, avec ce nouveau champ de

forces polarisable et grâce au coût de calcul quasi-classique de l’adQTB, les EQNs peuvent maintenant être

inclus dans les simulations de DM. Ceci ouvre la voie à l’étude des EQNs dans des systèmes complexes tels

que les protéines offrant de potentielles nouvelles applications en Biologie et Pharmacologie.





Abstract

Molecular dynamics (MD) is a powerful tool to study properties of complex systems. However, it treats par-

ticles as classical ones by using Newton’s equations of motion. Therefore, Nuclear Quantum Effects (NQEs),

such as zero point energy or tunneling, are not taken into account, although they can have an influence on

the different mechanisms of chemical reactivity that imply light atoms even at ambient temperatures. The

reference method to include NQEs is the Path Integral Molecular Dynamics (PIMD) based on Feynman’s

formalism of quantum mechanics applied to the quantum partition function. It relies on an isomorphism

between a quantum particle and a chain of harmonic oscillators, called beads, coupled through harmonic

springs. However, the number of beads needed to reach convergence (typically several tens) remains the

limiting factor and then reduces the possibility to study NQEs on more complex systems.

The Quantum Thermal Bath (QTB) is an interesting alternative. This method relies on the Langevin

equation where the different classical degrees of freedom are coupled to a chain of quantum oscillators. In

the classical case, the Langevin equation obeys the classical Fluctuation-Dissipation Theorem (FDT), which

corresponds to the equipartition of energy. The QTB aims to impose the quantum FDT which implies to

inject more energy in the high frequency modes to reproduce the effects of the zero point energy. However,

an energy leakage appears when the method is applied to realistic systems due to the coupling between high

and low frequency modes. To correct this leakage, an adaptive method has been proposed where the FDT is

used as a criterion to systematically correct this unphysical flow of energy.

The work presented in this thesis focuses on water which is an important chemical with a large proportion

of hydrogen atoms. Because of their low mass, NQEs cannot be neglected. These NQEs can have a major

impact on the solvent dynamics. Moreover, it has been shown that NQEs should be included in the dynamics

to correctly recover some thermodynamical properties such as the density or the enthalpy of vaporization. In

order to validate the method on highly anharmonic systems such as water, the PIMD and adQTB methods

were implemented inside the molecular dynamics software TINKER-HP (CPU and GPU). The different

results obtained with the q-TIP4P/F water model were very promising for the adQTB and a new polarizable

water model has been developed: Q-AMOEBA. This new model allowed to study NQEs on a more complex

functional form which includes polarization. This study shows that the impact of NQEs can no longer be

generalized to all water models. Therefore, with this new model and the classical cost of the adQTB method,

NQEs can now be included in MD simulations to study more complex systems such as proteins, opening the

paths for their extended study in Biology and Pharmacology.
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Introduction

The first molecular dynamics (MD) simulation was performed in the 50’s by Fermi, Pasta and Ulam. [1].

Indeed, the equations of motion for a one-dimensional chain of nonlinear oscillators were for the first time

integrated numerically to quantify the degree of ergodicity and energy equipartitioning in it. Thanks to de-

velopments in computing hardware, high-performance computing [2–5] and improved simulation techniques

[6, 7], it is now possible to run molecular dynamics simulations even on personal computers. These advances

enable the study of larger and more complex systems to compute the structural and thermodynamical prop-

erties of molecules and solids, but also to reach time scales of milliseconds [4]. Then, it helps to predict

unobserved phenomena, such as protein folding or DNA-protein interactions, which makes molecular dy-

namics a powerful valuable tool to design new drugs and materials [8–10]. Although MD is a powerful tool

to investigate and predict the properties of complex systems, it relies on Newton’s equation of motion and

treats particles from a classical point of view. It uses a potential energy function, called also Force Field

(FF), to compute the dynamical evolution of the nuclei of the system. However, the studied system should

also obey the laws of quantum mechanics. Therefore, Nuclear Quantum Effects (NQEs), such as tunneling,

delocalization and zero-point energy motion, are usually neglected, although they could play an important

role on the properties of the studied system [11, 12]. NQEs are relevant to describe processes occurring at

low temperature [13], high pressure [14, 15] but also at ambient conditions such as reactions involving proton

transfer [16] or isotopic effects [17–20], especially if it involves light atoms such as hydrogen [20–22].

Including NQEs in MD simulations is still a theoretical and computational challenge. To include NQES,

the standard method is based on Feynman’s path integral formulation of quantum mechanics (PIMD) [23, 24]

It provides a classical Hamiltonian which is isomorphic to a ring-polymer composed of P copies of the system,

called beads and which partition function approaches the quantum mechanical one. Although it requires only

the computation of energies and forces for P beads, the computational convergence is rather slow because

the number of replicas should be high enough to take into account for the Zero Point Energy (ZPE) given by

ℏω0β < P with ω0 the highest frequency of the system. Therefore, lot of efforts have been made throughout

the years to develop different methods to efficiently take into account NQEs inside MD. One of them is the

Quantum Thermal Bath (QTB) which uses a Langevin equation with a stochastic noise to simulate NQEs

[25, 26]. This stochastic noise includes both thermal and quantum fluctuations. However, it tries to impose

the second-kind Fluctuation-Dissipation Theorem (FDT). Therefore, the classical description of the forces

couples the different modes and energy of high frequency modes are transferred to the low frequency ones.

An alternative method, called adaptive QTB (adQTB), uses the first-kind FDT as a criterion to correct this

unphysical flow of energy and recover the correct energy distribution [27]. The method was already studied

on model-like systems and its good results motivate to extend the study of the adQTB method on more

realistic systems.



INTRODUCTION

Water is one of the most important liquids due to its role in many fields. Its various physical phenomena,

such as cooperative hydrogen bond network, large polarizability and strong permanent dipole, motivate

researchers to understand and model this compound [20, 21]. Moreover, given the low mass of hydrogen

atoms, classical mechanics is not accurate enough to describe the liquid, even at ambient temperature. It has

been shown that NQEs have an impact on the structural properties of water due to the interplay between the

stretching ZPE and bending ZPE. The former strengthens the hydrogen bonds whereas the latter weakens

it [26]. Then, NQEs have a critical impact on the solvent structure. Thus, they should be included in the

simulations to correctly recover some thermodynamical properties, such as the density or the enthalphy of

vaporization.

Through this thesis, the adQTB method was compared to PIMD on water to study its theoretical limit

on a complex and highly anharmonic system. Therefore, it allows to study both the adQTB method and also

the ubiquitous NQEs in water. To do so, these methods were implemented inside the TINKER-HP software

(CPU and GPU) [5, 28]. Several water models are available and can be used. However, most of them are

fitted without taking into account NQEs explicitly and recover different condensed phase properties mainly

through fitting of the experimental quantities. Then, using one of these FFs with the adQTB would give

a double counting of the NQEs: one time through their implicit inclusion in the FF parameters and one

more time with the dynamics. Moreover, many recent models use high quality ab initio data as a basis for

their FF functional parametrization and it has been shown that with such a high accuracy, NQEs should

be explicitly included to accurately reproduce thermodynamic observables [29]. Therefore, we have decided

to use the q-TIP4P/F water model [30]. It was specifically fitted on various thermodynamical properties,

such as radial distribution function and infrared spectra with RPMD simulations. Moreover, this model is in

good agreement for a broad range of thermodynamical observables outside the reference data. Thereby, the

adQTB accuracy and efficiency were studied with this model on different properties in Chapter 3. It gives

practical guidelines to use this method when studying NQEs on complex and anharmonic systems where the

deconvolution procedure and corrections added to the potential and kinetic energy terms become essential to

obtain reliable results. A comparison with PIMD results shows that, contrary to the QTB which suffers from

ZPE leakage, adQTB is able to capture accurately NQEs with a computational cost comparable to classical

MD simulations. Thanks to the promising results obtained with the adQTB, we have decided to develop

a new polarizable model by using the AMOEBA functional form [31, 32]. The AMOEBA water model

introduces more flexibility than the q-TIP4P/F water model, but it is fitted without taking into account

explicit NQEs. Therefore, our new FF, called Q-AMOEBA, was developed using the adQTB method and

AMOEBA functional form. The methodology used to derive this new polarizable model and the different

results obtained are presented in Chapter 4. As previously done with q-TIP4P/F study, we compared PIMD

(and TRPMD) results with the adQTB method with Q-AMOEBA on a broad range of properties. To study

the impact of NQEs in water, we have also decided to compare our different results with Q-AMOEBA but

without using adQTB (or PIMD) methods. The results obtained with classical MD simulations while using

Q-AMOEBA model highlight that the effect of NQEs can no longer be generalized to all FF. Thereby, with the

development and implementation of the adQTB method inside the TINKER-HP software and the different

results obtained during this thesis, an open path is now available to study NQEs on more complex systems

with a reasonable computational cost.
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CHAPTER 1. STATE OF THE ART IN MOLECULAR DYNAMICS SIMULATIONS

1.1 An Overview of Quantum Chemistry Methods

The beginning of the twentieth century behold a revolution in physics with the birth of quantum mechanics

(QM) thanks to the formulated energy quantization as a linear partial differential eigenvalue problem given

by Schrödinger in 1926 [33]. It allows to quantitatively describe the many spectroscopy experiments for which

classical mechanics failed. The main equation in QM is the time-dependent Schrödinger equation:

iℏ
∂

∂t
Ψ(r, t) = HΨ(r, t) (1.1)

The resolution of the quantum mechanical problem requires to find the eigenvalues and eigenstates of the

Hamiltonian H, which is usually done by solving the time-independent Schrödinger equation:

ĤΨ(r) = EΨ(r) (1.2)

Equation (1.1) is used to determine the wave function Ψ(r, t) of a system at a given time where r is the

collection of three-dimensional coordinates of the involved atomic nuclei and electrons. Most of the quantum

chemistry methods relies on solving equation (1.2) to find the energy E of a given system. The quantum

Hamiltonian operator Ĥ can be expressed as:

Ĥ = −
N∑

α=1

ℏ2

2Mα
∇2

α − ℏ2

2me

n∑
i=1

∇2
i +

∑
i<j

e2

|ri − rj |
−
∑
i,α

Zα e2

|Rα − ri|
+
∑
α<β

Zα Zβ e
2

|Rα −Rβ |
(1.3)

with ℏ the reduced Plank constant. The first two terms represent the kinetic energy of the nuclei and electrons

respectively with Mα the mass of the nuclei and me the electron’s mass. e2/|ri − rj | is the electron-electron

interaction and −Zα e2/|Rα − ri| is the electron-nuclei interaction with Zα the nuclear charge of the α-

nucleus. The last term represents the nuclei-nuclei interaction. Due to their high cost, these equations can

be exactly solved only for systems with one or two electrons. However, it is possible to separate the motion

of the nuclei from the motion of the electrons thanks to the Born-Oppenheimer (BO) approximation [34].

The BO approximation relies on the fact that the nuclei have a significantly greater mass than the electrons

(approximately three orders of magnitude) and moves much slower. Therefore, we assume that the electrons

react instantaneously to any change in the nuclear configurations. Hence, the electrons are always in their

ground state. On the other hand, the nuclei do not sense the different electrons on a particular position in

space but rather via a potential energy surface (PES) created by the wavefunction of the different electrons.

Therefore, the nucleus-nucleus repulsion potential can be treated as constant V̂ext. Thus, it is possible to

write equation (1.3) as:− ℏ2

2me

n∑
i=1

∇2
i +

∑
i<j

e2

|ri − rj |
−
∑
i,α

Zα e2

|Rα − ri|

Ψ0(R, r) = E0(R)Ψ0(R, r)

−ℏ2

2

N∑
α=1

∇2
α

Mα
+
∑
α<β

ZαZβe
2

|Rα −Rβ |

χ(R) = E(R)χ(R)

(1.4)

where χ(R) is the nuclear wave function and Ψ0(r,R) is the ground state electronic wavefunction, which

9



CHAPTER 1. STATE OF THE ART IN MOLECULAR DYNAMICS SIMULATIONS

depends parametrically on the position R of the nuclei. The eigenvalues give a PES which corresponds to

the ground state on which the nuclei evolves. It is a 3N -dimensional complex partial differential equations

where N is the number of electrons and atomic nuclei combined, which can be computationally expensive

if N becomes too large. For larger systems, finding exact solutions is not possible and approximations have

to be found. To do so, it is important to incorporate into these approximated solutions the same properties

carried by the exact ones. One of those is that the wave function should be antisymmetric with respect to

the interchange of the coordinate of two electrons:

Ψ(r1, r2, . . . , rNe) = −Ψ(r1, r2, . . . , rNe) (1.5)

To impose equation (1.5), it is possible to express the electronic wave function Ψ in terms of Slater determinant

(SD):

Ψ(ξ1, ξ2, . . . , ξNe
) =

1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣

ϕa(ξ1) . . . ϕm(ξ1)

ϕa(ξ2) . . . ϕm(ξ2)
...

...

ϕa(ξNe
) . . . ϕm(ξNe

)

∣∣∣∣∣∣∣∣∣∣∣
(1.6)

where ϕi(ξ), called as spin-orbitals, is composed by both the spatial part of the wave function and its spin.

To circumvent the high cost of solving equations (1.1) and (1.2), other methods can be used to calculate

approximate solutions. The simplest one is the Hartree-Fock (HF) method which transforms the electronic

Schrödinger equation for a system of Ne interacting electrons into Ne one particle equations. It computes

the anti-symmetrized product Ψ of one electron function to find the ’best’ set of spin orbitals {ϕi} to express

the electronic wave function as a single SD. To do so, it minimizes
∫
ΨH Ψdτ by using a finite (and thus

incomplete) basis set to approximate some eigenvalues E. Unfortunately, the electronic correlation, which is

a property of the wave function, is not taken into account.

To correct the missing electronic correlation contribution, other methods were developed such as Post

Hartree-Fock methods and the Density Functional Theory (DFT). The DFT method computes the molecular

electron density ρ instead of the wave function on the basis of the Hohenberg and Kohn theorem which states

that the non degenerated electronic ground state energy of a given system is uniquely defined by its electron

density [35]. Dealing with ρ instead of the wave function Ψ reduces the number of coordinates from 3Ne to

3 and allows to treat systems of a reasonable size (several hundreds of atoms). The energy E of the system

(as a function of the density ρ) is formulated as follows [36]:

E[ρ] = Ts[ρ] + Eexch[ρ] + J [ρ] + Vne[ρ] (1.7)

with Ts[ρ] being the Kohn and Sham kinetic energy evaluated as if the electrons were non-interacting [36].

Then, Ts[ρ] is defined as a fictitious one electron wavefunction called as Kohn and Sham orbitals. It is also

possible to compute Ts[ρ] from a SD. Eexch[ρ] is the exchange correlation energy, J [ρ] the electron-electron

10
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repulsion energy and Vne[ρ] the nuclei-electron interaction energy. Each terms can be expressed as:

Ts[ρ] =

N∑
i=1

〈
ϕi

∣∣∣∣−1

2
∇2

i

∣∣∣∣ϕi

〉

J [ρ] =
1

2

∫∫
ρ(r)ρ(r

′
)

|r − r′ |
dV dV

′

Vne[ρ] = −
N∑
j

Zj

∫
ρ(r)

|r −Rj |
dV

(1.8)

In practice, for a many electrons system, the exchange correlation functional is unknown. Therefore, several

approximations of Eexc[ρ] were made and can be divided into different classes:

• Local-Density Approximation (LDA) relies on the assumption that ρ is slowly varying and can be

locally treated as a uniform gas.

• Generalized Gradient Approximations (GGA) employ not only ρ but also its gradient in the exchange

correlation energy expression. Functionals containing also the Laplacian of the density in their expres-

sions are often called meta-GGA methods [37, 38].

• Hybrid functional where the HF exchange energy is included in the exchange correlation energy function

[39, 40]. They are successful for predicting bond lengths, atomization energies or, in general, short-range

properties. However, they have difficulties to describe long-range properties such as charge-transfer.

Even if DFT is a powerful method in the quantum field, it encounters difficulties to describe dispersion

forces [41] .

Concerning Post Hartree-Fock approaches, the Coupled Cluster (CC) theory is often used as a reference

in ab initio calculation due to its high accuracy. It is based on an exponential ansatz that can be written

as [42]:

ΨCC = eT̂Ψ0 (1.9)

where ΨCC is the CC wave function. T̂ is the cluster operator when applied to the reference wave function Ψ0

produces a new wave function ΨCC containing cluster functions where each of them correlated the motion of

electrons within specific orbitals. Usually Ψ0 is a SD constructed using HF orbitals. If T̂ includes all possible

contributions from all possible orbitals for the Ne systems, then the exact wave-functions within the given

one-electron basis may be obtained. The cluster operator is often called excitation operator because it is

described as a sum of cluster operators of different excitation level T̂ = T̂1+ T̂2+ ...+ T̂N . It can be truncated

at the single and double excitation (CCSD) or higher with adding triple excitation (CCSD(T)) which is the

’golden’ standard. Hence, CCSD(T) will be our ab initio energy reference when discussing results obtained

through this thesis.

These different methods allow to compute electronic structures of different systems, but one may be

interested in modeling analytical forces, spectrum or being able to study larger systems made of millions of

atoms. Hence, a different method which allows to sample the phase space is needed: Molecular Dynamics

(MD) where different approaches are possible:

11
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• ab initio MD where energies and gradients are derived from electronic calculations and used to com-

pute the classical dynamics of the nuclei. It became really popular thanks to the ’Car-Parrinello’

approaches where the classical dynamics of nuclei is computed simultaneously with the orbitals used in

the wavefunction allowing to study electrons as quantum particles. However, it is really computationally

expensive and the size of the studied system is still the major limiting factor [43].

• Classical MD allows to study larger systems (up to millions of atoms). It does not take into account

the dynamics of the electrons and hence are not suitable to study reactivity through forming/breaking

chemical bonds. However, thanks to the low computational cost of these approaches to compute the

potential energy surfaces, more complex systems can be explored. This is the method used during this

thesis.

1.2 Classical Molecular Dynamics

Molecular Dynamics (MD) was firstly introduced by Alder and Wainwright [44] and the work of Fermi, Pasta

and Ulam in 1955 to simulate systems consisting of hard spheres using a discontinuous potential [1]. However,

it is not based on QM and it uses a classical potential. Hence, to change from a fully quantum description

to a classical one, approximations have to be done. The first one is the BO approximation. Using Newton’s

second law of motion, it is possible to derive the classical equations of motion [45, 46]: mṙi = pi

mr̈i = Fi(r1, · · · , rN )
(1.10)

with m the mass of the i-th particle going from 1 to N. It is used to express the velocity vi as functions of

momenta pi. F is the vector of the forces that act on the particles and depend on their positions ri. In the

BO approximation, the effect of the electrons is approximated by a Potential Energy Surface (PES) function

V. In this case, the forces are related to V by:

Fi(r1, . . . , rN ) = −∇riV (r1, . . . , rN ) (1.11)

In the context of atomistic simulation equation (1.10) is often also expressed in the equivalent form of

Hamilton’s equation of motion :  q̇α(t) =
∂H
∂pα

ṗα(t) = − ∂H
∂qα

(1.12)

where pα(t) and qα(t) are the conjugate momenta and positions respectively with α going from 1 to 3N and

H is the classical Hamiltonian defined as:

H(p,q) =

N∑
i

p2
i

2mi
+ V (q) (1.13)

Hence, going from Newton’s second law of motion to Hamilton’s equation gives 6N first-order differential

equations instead of 3N second-order differential equations. Moreover, an another advantage of the Hamil-
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ton formulation is the connection between the Hamiltonian and the PES of a high-dimensional system. H

represents the total energy of the system. Furthermore, a trajectory which fulfills equation (1.12) implies

that:

dH

dt
=

3N∑
α=1

[
∂H

∂qα
q̇α +

∂H

∂pα
ṗα

]
= 0 (1.14)

It is the mathematical transcription of energy conservation, which defines a 6N -1 dimensional surface in

phase space.

1.2.1 Phase Space Sampling and Observables

Having access to the time evolution of the atomic coordinates and velocities of a system corresponds to

having access to its phase space which allows to predict the properties of a classical system. The aim of MD

simulations is to observe motion of atoms or molecules to understand chemical or biological processes such

as molecular arrangement or protein folding. Hence, one may ask how atomic (or microscopic) structures

are related to macroscopic properties like temperatures or pressure and how to deal with an immeasurable

number of degrees of freedom (1 mol = 6.022×1023 particles) and with the complex and non-linear interactions

which occur in realistic systems. The relation between macroscopic thermodynamics and microscopic laws

of motion is expressed by statistical mechanics [46, 47]. It gives a mathematical framework to explain how

macroscopic observables of a system do not depend on the explicit dynamical motion of each particles but

rather on a collection of systems sharing macroscopic properties. It is called an ensemble and was firstly

introduced by Gibbs. Hence, averages performed over an ensemble yield the thermodynamic quantities of a

system and it can be defined by a wide range of thermodynamic variables. So, it is important to know the

probability distribution P(p,q) in the canonical ensemble as:

P(p,q) = e−β H(p,q)/Z (1.15)

where the partition function is defined as Z =
∫
dp dq e−β H(p,q) and β = (kBT )

−1. One of the benefit of

the classical ensemble is that there is no correlation between p and q. Hence, the probability distribution

can be expressed and treated separately as:

P(p,q) = P(p) · P(q) =
e
−β

∑
i

p2
i

2Mi∫
dp e

−β
p2
i

2Mi

· e−β V (q)∫
dq e−β V (q)

(1.16)

The main difficulty is to determine the configurational part P(q) = e−β V (q)/
∫
dq e−β V (q) which depends

on the PES. Moreover, the expectation value of any configuration dependent property only depends on the

particle coordinates A(q) and can be expressed as an integral over the probability distribution:

⟨A⟩ =
∫

dqA(q)P(q) =

∫
dqA(q) e−β V (q)∫

dq e−β V (q)
(1.17)
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To calculate equilibrium observables which are ensemble averages, different approaches can be used such as

the Monte Carlo (MC) method. In this thesis we focus on the Molecular Dynamics (MD) family of methods.

By making the assumption that our system is ergodic (given an infinite amount of time, any MD will be

able to visit all configurations N on the PES), microcanonical phase space averages can be replaced by time

averages over the trajectory:

⟨A⟩ = lim
t→∞

1

T

∫ T

0

A(q) dt =

∫
dqP(q)A(q) ≡ A (1.18)

1.2.2 Integration Algorithms using Finite Differences

MD simulations are performed by solving the classical equations of motion and allow to know the trajectory

of the particles in the system. Unfortunately, equation (1.12) cannot be integrated analytically except for

simple problems. So, one may find a solution by using approximated schemes to evolve along a MD trajectory.

To do so, it requires the use of an integrator which will generate phase space vectors at discrete times that

are multiples of the time step of discretization ∆t. Then, using the initial conditions, MD will generate phase

space vectors xn∆t where n=0,...,Nstep are generated by applying the integration algorithm iteratively and

x is the 6N-1 dimensional phase space vector of the system. Thus, the ensemble average of a property is

related to the time step as:

⟨A⟩ = lim
Nstep→∞

1

Nstep

Nstep∑
n=1

A(xn∆t) ≡ A (1.19)

Due to the extreme sensitivity of the trajectory to the initial conditions, it is important to have an

integrator with good stability and accuracy. One of the simplest integrator uses Taylor expansion where the

position of a particle at time t+∆t and t−∆t are expressed in terms of position, velocity and acceleration

at time t according to:

ri(t+∆t) ≈ ri(t) + ∆t ṙi(t) +
1

2
∆t2 r̈i(t) +

1

3!
∆t3

...
ri (t) +O(∆t4)

ri(t−∆t) ≈ ri(t)−∆t ṙi(t) +
1

2
∆t2 r̈i(t)−

1

3!
∆t3

...
ri (t) +O(∆t4)

(1.20)

By adding both two previous equations and using Newton’s second law one may find:

ri(t+∆t) + ri(t−∆t) = 2ri(t) +
∆t2

2mi
Fi(t) (1.21)

where equation (1.21) is known as the Verlet algorithm which does not involve velocities [48]. If needed, it is

possible to compute velocities at any point in the trajectory via the centered difference formula [49]:

vi(t) =
ri(t+∆t)− ri(t−∆t)

2∆t
(1.22)

The Verlet algorithm is subjected to error in the order of O(∆t4) for positions whereas the error is in the

order of O(∆t2) for velocities. There is also the velocity Verlet algorithm which as an error in the order

of O(∆t3) for both velocities and positions. Other algorithms are available such as the leap-frog one which

allows to propagate positions coupled to velocities [50].
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1.2.3 The Need of Other Ensembles

Since the equations of motion conserve the Hamiltonian H(q,p), a trajectory computed using equation (1.12)

will generate configuration belonging to a microcanonical ensemble with fixed energy E (NVE). A disadvan-

tage of this ensemble is that conditions of constant total energy E are not those under which experiments are

performed. Even though it does conserve the canonical ensemble, and then a collection of trajectories with

the Boltzmann distribution would yield correct averages, a single trajectory does not allow for fluctuations of

the Hamiltonian H. However, it is possible to modify equation (1.12) to allow for energy fluctuations and to

obtain an ergodic sampling of the ensemble. This is referred as thermostats. Consequently, the particle num-

ber N, the volume V and the temperature T are control variables in simulations in the canonical ensemble,

also referred to as NVT. It characterizes a system in thermal equilibrium with a heat bath where the energy

of endothermic and exothermic processes are exchanged with a thermostat. The easiest way to drive the

system toward a desired temperature T0 is to scale all the velocities by a factor λ. The factor is chosen such

that equipartition of energy holds yielding an average kinetic energy of 3N/2kBT with N the total number

of particles. The difference between the reference temperature T0 and the instantaneous temperature T (t) is

given by:

T0 − T (t) =
1

3NkB

N∑
i=1

miλ
2 |ṙi|2 −

1

3NkB

N∑
i=1

mi |ṙi|2

= (λ2 − 1)T (t)

(1.23)

which gives λ =
√

T0

T (t) . Scaling the velocities by λ is referred as the isokinetic thermostat.

It is also possible to introduce a parameter τ to modulate the strength of the coupling between the system

and the thermal bath of temperature T0 by defining the temperature change occurring in a time step ∆t as:

dT

dt
=

T0 − T (t)

τ

∆T =
∆t

τ
(T0 − T (t))

(1.24)

Thus, it is possible to express λ as:

λ =

√
1 +

∆t

τ

(
T0

T (t)
− 1

)
(1.25)

which is referred as the Berendsen thermostat [51], but other thermostats following the idea of velocity

rescaling exist such as Nosé-Hoover [52]. Although these thermostats reach the desired temperature quickly,

they are not capable to reproduce the correct canonical fluctuations of the instantaneous T [53]. Hence, they

are mainly used for equilibration.

With the temperature, the pressure is also an important parameter to be controlled in MD simulation.

It means that a barostat has to be added where the pressure is controlled by scaling the system volume.

Following the ideas of velocity rescaling and assuming the simulation box being cubic, the rescaling factor
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λP can be expressed as:

λP = 3

√
1 +

β∆t

τp
(Po − P (t)) (1.26)

where β is the compressibility factor and τp is analogous to τ . Equation (1.26) is referred as the Berendsen

barostat [51]. By controlling the temperature and the pressure within the dynamics, the results obtained

belongs to the NPT ensemble and are closer to the laboratory conditions. Because the global thermostat

variables are coupled and control directly only global system quantities, they rely on the efficient energy

transfer within the system to achieve equipartition within the canonical distribution. Therefore, in a system

where the energy transfer between its different parts is different, the thermostat may have difficulties to

maintain the same temperature for the different parts of the system.

Stochastic processes, such as Langevin-type equations, can also be used as thermostats. They provide a

direct control of equipartitioning with their independent thermalization of each degree of freedom and hence

sample correctly the canonical ensemble, which is not the case of velocity rescaling. The Langevin equation

was initially developed in 1908 [54] to model the Brownian motion. It introduces two additional forces to

describe the effect of the fluid on the particle: a friction force γ and a random force R(t) such as it is possible

to re-write equation (1.12) as:

dq

dt
=

p

m

dp

dt
= −∇V (q)− γ p+R(t)

(1.27)

with R(t) a stochastic and stationary force described by a Gaussian distribution (technically the time deriva-

tive of a Wiener process). It has the following properties:

• It is a stationary process.

• Its mean value is zero

⟨R(t)⟩ = 0 (1.28)

• Its time-correlation τ is infinitely short-ranged:

⟨Ri(t)Rj(t+ τ)⟩ = 2mkBTγδ(τ)δij (1.29)

where for two different times t and t + τ , Ri(t) and Rj(t + τ) are uncorrelated and T is the target

temperature.

The magnitude of the random force and the friction are related to guarantee the Fluctuation-Dissipation

Theorem (FDT), hence the NVT statistics. So, the Hamiltonian follows a stochastic thermalization, which

acts locally (each degree of freedom is thermalized through its own noise). In this thesis, only the Langevin

thermostat was used to sample the NVT ensemble.
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1.2.4 Advanced Integrators

The different integrators presented in Section 1.2.2 are not exact. The energy of the exact Hamiltonian H is

not conserved throughout the numerical trajectory. Moreover, certain formal properties of the Hamiltonian

H should be preserved by numerical integration methods. Thus, it is important to develop a formal structure

that allows numerical solvers to be generated more rigorously. The framework is based on the phase space

integrator defined as:

iLa = {a,H} =
da

dt
(1.30)

where the curly bracket is the Poisson bracket. It introduces an operator L, called the Liouville operator on

the phase space. Equation (1.30) can also be written as a differential operator:

iL =

3N∑
α=1

[
∂H

∂pα

∂

∂qα
− ∂H

∂qα

∂

∂pα

]
(1.31)

where α runs over all the 3N degrees of freedom of the system (with N the number of atoms). Furthermore,

the equation da
dt = iLa can be solved formally for any function a(xt) to have a formal solution to Hamilton’s

equation:

a(xt) = eiLta(x0) (1.32)

where eiLt is the classical propagator. As equation (1.31) suggests, the Liouville operator can be written as

a sum of two terms L1 and L2:

iL1 =

3N∑
α=1

∂H

∂pα

∂

∂qα

iL2 = −
3N∑
α=1

∂H

∂qα

∂

∂pα

(1.33)

where iL1 corresponds to the kinetic energy part and iL2 to the forces. However, these two operators do not

commute and the classical propagator eiLt = e(iL1+iL2)t cannot be separated into a simple product eiL1teiL2t.

One thus need an approximation of the classical propagator known as the Trotter theorem which states that

given two operators A and B for which [A,B] ̸= 0, then:

eA+B = lim
P→∞

[
eB/2P eA/P eB/2P

]P
(1.34)

where P is an integer. By defining ∆t = t/P and taking 1/P power of both sides:

eiL∆t = eiL2∆t/2eiL1∆teiL2∆t/2 +O(∆t3) (1.35)

which is the velocity Verlet integrator.

One of the most ubiquitous aspects of complex systems in classical mechanics is the presence of forces

that generate motion with different time scales. The forces derived from the potential will have large and

rapidly varying components due to the intramolecular terms and smaller, slowly varying components due to
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long-range contribution to the non-bonded interactions. Hence, the derivative of the non-bonded terms are

computed as often we compute the bond-term forces, as it is done in the velocity Verlet scheme. However,

an ideal integrator will juggle between at least two time step lengths, one for high frequency and the other

for the low-frequency energy terms. Thus, L2 can be defined as:

iL2 = iLslow + iLfast

=

N∑
j=1

[Fj,slow(r) + Fj,fast(r)]
∂

∂pj

(1.36)

Then, it is possible to redefine two operators such as:

iL = iLslow + iL
′

fast

iLslow =

N∑
j=1

[
Fj,slow(r)

∂

∂pj

]

iL
′

fast =

N∑
j=1

[
Fj,fast(r)

∂

∂pj

+
pj

m

∂

∂rj

] (1.37)

Applying the Trotter schemes gives:

eiL∆t ≈ eiLslow∆t/2eiL
′
fast∆teiLslow∆t/2 (1.38)

It is possible to apply the Trotter theorem to the eiL
′
fast∆t term. If one defines a smaller time step δt = ∆t/n,

then:

eiL
′
fast∆t =

(
eiLfastδt/2eiL1δteiLfastδt/2

)n
(1.39)

By using equation (1.38) and (1.39) one may find:

eiL∆t ≃ eiLslow∆t/2
(
eiLfastδt/2 eiL1δt eiLfastδt/2

)n
eiLslow∆t/2 (1.40)

This leads to the so-called REference System Propagator Algorithm (RESPA) introduced by Tuckerman et

al [55] where the time step ∆t is chosen according to the time scale of the slow forces and δt is chosen

according to the natural time scale of Ffast.

When using the Langevin equations of motion (1.27), a slightly different splitting scheme is introduced to

integrate the friction and random forces. By applying the phase propagator and by splitting equation (1.27)

into three exactly solvable parts, one may finds [56, 57]:

d

dt

(
q

p

)
=

(
0

−∇V

)
︸ ︷︷ ︸

B

+

(
p/m

0

)
︸ ︷︷ ︸

A

+

(
0

−γp+ R(t)

)
︸ ︷︷ ︸

O

(1.41)

The three parts may be solved numerically within a time step ∆t. The A part corresponds to the evolution
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of the position due to the momentum. B is the evolution of the momentum due to the conservative forces.

The O step has its velocity propagated under the action of the friction and the random forces. The most

simple integration scheme would be to solve A first with a time step ∆t, then B to finally end with the O

part. This lead to the so-called ABO method. However, the splitting is asymmetric causing unstability in

the averaged phase space quantities [58, 59]. To circumvent that, symmetric splitting have been proposed,

such as BAOAB, with five time steps of three different types (A, B and O) which can be applied to the phase

space vector. The O part is a standard Ornstein-Uhlenbeck process which can be integrated analytically [59]:

p(t+∆t) = e−γ∆tp(t) +

√
m

β
(1− e−2γ∆t) r (1.42)

The random number r usually consists in a Gaussian white noise, which simulates the thermal fluctuations

of the system. Using this equation, it is possible to decompose the BAOAB algorithm such as:

B : v

(
t+

∆t

2

)
= v(t)− ∆t

2

∇V

m
(q(t))

A : q

(
t+

∆t

2

)
= q(t) +

∆t

2
v

(
t+

∆t

2

)

O : ṽ

(
t+

∆t

2

)
= e−γ∆tv

(
t+

∆t

2

)
+

√
m

β
(1− e−2γ∆t) r

A : q (t+∆t) = x

(
t+

∆t

2

)
+∆tṽ

(
t+

∆t

2

)

B : v (t+∆t) = ṽ

(
t+

∆t

2

)
− dt

2

∇V

m
(q(t+∆t))

(1.43)

The O part uses the previous velocity v calculated in the first step B. Hence, the velocity obtained with step

O is referred as ṽ. During this thesis, this was the integrator used.

1.2.5 Force Fields

The production of reliable trajectories and thus observables computed as time-averaged quantities strongly

depends on the accuracy of the PES from which the forces are computed. In chemistry and biology, the

functional form enabling to compute thes PES are referred as Force Field (FF) or as sometime interatomic

potential in physics. The general equation associated with a FF can be partitioned as [60]:

Etotal = Eintramolecular + Eintermolecular (1.44)

The intramolecular and intermolecular terms, also called respectively bonded and non bonded terms, can be

decomposed as:

Eintramolecular = Ebond + Eangle + Etorsion + Eimproper

Eintermolecular = Eelec + EvdW

(1.45)
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The Intramolecular Energy Terms

The intramolecular energy terms consist in bond stretching, angle bending and torsion energy terms and are

usually expressed as:

Estretching(r) =
∑
bonds

ks(lij − l0)
2

Ebending(θ) =
∑

angles

kb(θijk − θ0)
2

Etorsions(ϕ) =
∑

torsions

Vn[cos(nϕ− ϕ0)]

(1.46)

The bond stretching and angle bending are usually represented by a harmonic potential where ks and kb are

stiffness constant. lij is the bond length deformation (stretching or compression). l0 and θ0 are respectively

the equilibrium bond length and valence angle. The harmonic approximation is usually reasonable for the

bond stretching and angle bending since they usually involve small displacements from the equilibrium.

Anharmonicity can be taken into account by adding higher terms which is usually preferred to Morse-like

potentials due to computational reasons [61]. Sometimes, other terms are added to optimize the fitting to

the vibrational spectra such as the Urey-Bradley potential:

EUB =
∑

angles

kUB(sijk − s0)
2 (1.47)

with s the distance between two external atoms forming the angle. Although bond stretching and angle

bending terms involve small displacements from the equilibrium, this is not the case for torsion because the

PES is rather flat and larger displacements from the equilibrium usually take place. This lead to the use of

truncated Fourier series where ϕ is the torsional angle and Vn determines the height of the potential barrier

with n the number of minima or maxima between 0 and 2π [62]. To ensure the planarity of some particular

groups, an improper torsion term (out of plane motions) is added and defined as

Eimproper(ω) =
∑

impropers

kim(ω − ω0)
2 (1.48)

where kim is the improper torsion constant and ω the improper dihedral angle which deviated from planarity.

ω0 is the equilibrium improper dihedral angle between four atoms i, j, k and l. The different components of

the intramolcular energy terms are represented with the non-bonded ones in Figure 1.1.

Intermolecular Energies Terms

The intermolecular energy terms consist of electrostatics, dispersion and short-range repulsion interaction

where the latter two are often referred as the so-called van der Waals term (vdW). The vdW interaction

arises from the balance between repulsive and attractive forces where the repulsive one is due to the overlap

of the electrons clouds (Pauli repulsion) and the attractive one is linked to London’s dispersion. In most

classical FF, like CHARMM [63], AMBER [64], OPLS [65], the Lennard-Jones potential is generally used to
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Figure 1.1: Schematic representation of the different intramolecular energy terms (bond stretching, angle
bending and torsional rotation) with the non-bonded interactions (vdW and electrostatics).

describe these interactions where the attractive parts varies as 1/r6 and the repulsive part as 1/r12:

EvdW = 4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

(1.49)

with εij the depth of the potential (or more physically, the highest attraction energy between atom i and j )

and σij the distance at which particle-particle potential energy is zero (Figure 1.2). Improvement in the vdW

form can be made by including higher terms or by modeling the short-range repulsion by more physically

grounded expressions [66, 67].

To this potential is added the electrostatic component defined as:

Eelec =
1

4πε0

qiqj
rij

(1.50)

with ε0 is the dielectric constant. To model this electrostatic attraction between different polarized parts of

molecules (due to the asymmetric distribution of electrons), partial charges are assigned to each atom and

the interaction is calculated using Coulomb’s law by summing over atom pairs.

The choice of the different parameters is very important due to their impact on the accuracy of the FF.

Furthermore, it can be really challenging due to the very large number of parameters involved. Torsional,

k0 and r0 parameters are usually obtained either from ab initio or by fitting to experimental data such as

neutron, X-ray and electron diffraction, Raman and neutron spectroscopy. Moreover, neutron scattering deals

with the same properties obtained in MD simulations and the spatial/time scale which are measured through

experiments. The partial charges can be derivated from experimental data or by ab initio and deriving from

quantum mechanical potential. Coulomb’s law is then used to compute their contribution to the total energy.

Simulations of relevant systems require the introduction of empirically parametrized PES referred as

FF. One of the first FF was developed in the 1960’s to predict molecular structures, vibrational spectra

and enthalpies of isolated molecules. In the beginning, FF were developed to treat small organic molecules

[68, 69]. More widely applicable FF were developed to deal with more complex systems such as the previous
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σ

ε

Figure 1.2: Schematic representation of the Lennard-Jones potential: the blue dotted lines are the
attractive and repulsive energy parts of two particles. The plain red line is the total LJ intermolecular
energy where the depth of the potential ε and the distance at which particle-particle potential energy is

zero σ are represented in green and orange respectively.

cited which provided over the years very extensive results on many fields of applications ranging from biology

to ionic liquid [70]. However, the majority of FFs describe molecular electrostatics by fixed point atomic point

charges place at atomic center interacting via Coulomb’s law giving an inexpensive description of the PES.

Hence, these descriptions do not take into account the electron mobility which corresponds to a response of

the system to a change of its environment. Thus, a many-body polarization term must be added.

1.2.6 Polarizable Force Fields

In early developments, polarization was not taken explicitly into account. Hence, much effort has been made to

explicitly include many-body polarization in new FFs. This has been made by two main approaches. The first

one introduces polarization by allowing atomic charge to fluctuate as response of a change in the electrostatic

potential according to the electronegativity equalization principle. This is the so called fluctuating charge

method (FQ). The second approach introduces polarization by atomic dipole as a response of an electric

field. Two variations of this approach can be identified depending of the source of the induced dipole. In

the induced point dipole model (PD), the induced dipole are introduced at the dipole level by adding atom-

centered dipole polarizabilities. Polarization can be either included through Drude oscillators (DO) where

induced dipole are added through an additional charge virtual particle connected to the nuclei by a spring.

The Fluctuating Charge Model

The FQ model is based on a redistribution of the atomic partial charges to recreate the fluctuation of the

electronic density. Hence, the electrostatic energy Eelec is expressed as a second order Taylor expansion in

terms of atomic point charges {Qi} such as:

Eelec = E0 +Q†χ+
1

2
Q†ηQ (1.51)
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where χi and ηij are respectively the atomic electronegativities and hardness matrix elements. E0 is the ref-

erence energy term which is usually not considered [71]. The equilibrium charges are obtained by minimizing

equation (1.51) where global Lagrange multiplier was added to ensure that the total charge of the system is

conserved. Atomic electronegativities and diagonal hardness elements are free parameters while out off diag-

onal hardness elements are the interaction between charges which are usually given by Coulomb interaction.

However, at short distances, the Coulomb interaction must be screened, thus many other functional forms

have been proposed [72]. Because charge conservation is introduced through a Lagrange multiplier, unphysi-

cal effect arise where coupling between atoms appears regardless of their distances which induces long-range

charge transfer that should not be observed [73, 74]. To solve this problem, some groups have reformulated

the FQ model in terms of split charge variables where the charge is transferred between atoms pairs, the

so-called Split Charge Equilibration (SCQE) [75, 76]. It is used in FF such as CHARMM-FQ [77, 78].

The Drude Oscillators

In the DO model, the atomic partial charge is partitioned into a nuclear and a fictitious mass-less components,

called Drude particles, connected to the nuclei via harmonic springs [79]. Fluctuation of the electrostatic

environment will then have direct repercussions on the point charge’s dynamic, as a charge moving in an

external electric field. It can expressed as:

Edrude =

N∑
i=1

1

2
kD(rd(i)− ri)

2 +

i ̸=j∑
i=0,N
i,ND

qD(j)qi
|rD(j)− r(i)|

+

i̸=j∑
i,j=1
i<j

qD(j)− qD(i)

|rD(j)− rD(i)|
(1.52)

where rD(i), qD and kD are the position of the Drude particle attached to atom i, its partial charge and

the stiffness constant of the spring respectively. Equation (1.52) has to be minimized at each time step to

find the correct position of Drude’s particles which can be computationally expensive. To reduce this high

cost, extended Lagrangian techniques is usually used where the mass of each atom is partitioned between the

fictitious particle and the parent atom to which it is attached. However, the mass attached to the fictitious

particle should be chosen wisely. If it is too small, high-frequency motions will appear, then a very small

time step ∆t should be used to be correctly simulated. On the other hand, if it is too heavy, the response of

the Drude particles will not be fast enough compared to the evolution of the nuclei, which is contradictory

with the BO approximation. Moreover within the extended Lagrangian scheme, it is not possible for more

advanced multi-time steps integration techniques, due to the alteration of the dynamical properties. Hence,

it has made polarizable MD simulations based on PD model more effective [80].

The Polarizable Point Dipole Model

In the Polarizable point Dipole (PD) model, polarization is introduced at the dipole level where the electric

field perceived at an atomic position will drive the polarization of its electronic densities as [81]:

Eelec = E0 + F†µ+
1

2
µ†Tµ (1.53)

with E0 the interaction energy of the permanent dipole. µ is a 3N vector with all atomic induced dipole

moment components. F is the electric field components arising from the permanent dipole and T is the
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dipole-dipole interaction matrix defined as:

Tii = α−1
i (1.54)

α−1
i is the inverse atomic polarizabilities tensor of atom i. Therefore, derivating equation (1.53) with respect

to the induced dipole one finds:

∂Eelec

∂µ
=Tµ+ F = 0

µ =−T−1F

(1.55)

The PD model yields many advantages compared to the DO and FQ ones. It has a higher flexibility in terms

of time integration whereas the DO model was limited. It also allows to directly use experimental or ab

initio data thanks to the explicit presence of polarizabilities αi while the DO requires a non-trivial balancing

between kD and qd to reproduce correct polarizabilites. Moreover, because the atomic charges are purely

fixed parameters, there is no risk of non-physical charge transfer compared to the FQ model. Furthermore, it

has been shown that charge polarization are generally large than dipole ones and that polarization should be

included from scratch while developing a FF instead to be added to already existing FFs [82]. The induced

dipole model have proven to be best suited for polarizable systems such as ionic liquid than Drude oscillators

yielding a better accuracy [83–85]. The AMOEBA FF is a well-known polarizable FF based on PD model

where the set of permanent dipole are introduced up to quadrupoles [32]. Other models also exist which

combined fluctuating charges with polarizable dipoles [86, 87].

One may define the molecular polarizability as the inverse of the polarization matrix restricted to the atoms

within a single molecules. Then, it is related to the molecular induced dipole moment such as µ = µA+µB for

a diatomic system. However, Applequist et al. showed that the molecular polarizabilities could diverge when

atoms are close [88]. This is known as the polarization catastrophe. To circumvent that, they first choose

lower polarizability parameters to reduce the molecular polarizabilities amplitudes. Thole et al. proposed

a more general solution by using a damping function to compensate the divergence at short distances and

hence effectively avoiding the catastrophe in simulations [89]. Therefore, the Thole damping scheme is widely

use in MD and implemented in many FF.

1.2.7 Periodic Boundary Conditions and Particle Mesh Ewald

In most cases we are interested in the bulk properties of a liquid or solid system. Hence, some periodic

boundaries conditions (PBC) need to be imposed. Thus, the simulated box is surrounded by an infinite

number of replicas of itself. Only the number of atoms inside the main cell are considered explicitly but

as soon as the atoms leaves the cell an image particle enters from the opposite side of the box to replace

it as illustrated in Figure 1.3. However, electrostatic interaction are slowly decaying (r−1), so interaction

arising from many of the periodic image should be included. Hence, our system box has an infinite numbers

of neighbours which makes the non-bonded interaction very cumbersome to compute. A distance cutoff is

introduced to limit the interaction ranges, thus, the complexity of computing pairwise interaction with PBC

and a cutoff scale to O(N2).

However, electrostatic interactions have different scales. Electrostatics encompasses a part which is short-

ranged and that should be treated in the direct space and a long-range contribution to the Coulomb interaction
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Figure 1.3: Schematic representation of the periodic Boundary Condition: when a particle goes out of the
simulation box, an another one is reintroduced on the opposite side [90].

which needs to be handled separately in the Fourier space [85, 91]:

Eelec =Edirect + Erecip + Eself

Edirect =

N∑
i=1

N∑
j=i+1

qiqj
erfc(β rij)

rij

Erecip =

N∑
i=1

N∑
j=i+1

qiqj Φrec(rij , β)

Eself =
β√
π

N∑
i=1

q2i

(1.56)

where erfc is a complementary error factor defined as 2/
√
π
∫∞
x

e−t2 dt which allows to smooth the switching

off of the direct contribution as a function of the distance rij . The Φrec(rij , β) potential is defined as:

Φrec(rij , β) =
1

πV

∑
m ̸=0

e
−π2 m2

β2

m2
e2πim· r (1.57)

with m the linear combination of the reciprocal lattice vectors. β is a parameter which balances between the

ratio between Edirect and Erecip terms [91]. Hence, Ewald summation scales as O(N2) although a careful

choice of the parameter β allow to reduce the scaling to O(N3/2) which is called as smooth particle mesh

Ewald (SPME) [92].

Darden proposed a method to speed up the computation times of equation (1.57) called PME where the

complex exponential are interpolated on a grid which allow to write Φrec as a convolution product which

becomes a simple product in the Fourier space, allowing the algorithm to scale as O(N log N) [93].
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1.3 Conclusion

Molecular Dynamics is a powerful tool which allows a numerical ’thought experiment’ to be carried out on

computers using a model. Hence, it gives access to simulations at extreme conditions, where temperature and

pressure that could be difficult to create in a physical laboratory. One of the earliest example was done in

1955 by Fermi, Pasta and Ulam to quantify the degree of ergodicity and energy equipartitioning in a system

made of nonlinear oscillators. It was followed by the work of Alder and Wainwright to show that a solid-liquid

phase transition exists [44] and by Stillinger and Rahman who carried out the first MD simulations of liquid

water [94, 95]. The evolution of the field of MD has benefited by the many advances in high performance

computing and make it possible to carry them out on desktop computers nowadays. One of the challenge of

MD field is the long-time dynamics which is involved in many processes such as protein folding and hence new

algorithms and theoretical methods are developed throughout the years such as metadynamics [96] or hyper-

MD [97]. There is also the question of different length scales, where some phenomenon, such as catalysis,

require a two level description of the system that enclose atomistic level (where chemical bonds are broken

and formed) to the macroscopic one with the same level of detail. This problem was addressed by Warshel

and Levitt to study enzymatic reactions which lead to their sharing Nobel prize in 2013 [98]. After all, MD

is a key scientific tool used in many fields to help in the interpretation of experimental results or suggesting

new experiments.

Although really powerful to investigate and predict the properties of complex systems, MD has some

limitations. One of them, it that MD relies on Newton’s equation of motion. Hence, it treats nuclei from

a classical point of view. However, the studied system should also obey the law of QM due to the wave-

particle duality which make it computationally difficult reducing the size of the desired studied system. Thus,

Nuclear Quantum Effects (NQEs), such as zero-point energy (ZPE) and tunneling, are neglected, although

they could play an important role on the properties of the studied system. For example, at room temperature,

the ZPE of a typical chemical bond of frequency ω (∼ ℏω/2) exceeds the thermal energy scale (∼ kbT ) of that

coordinate at ambient temperature T by an order of magnitude [99]. These effects can make large changes to

the structure and dynamics from proton delocalization and tunneling in enzymes [100], to the phase diagram

of high pressure melts [101]. For this reason, these effects are important and cannot be neglected. Moreover,

the PES on which the nuclei evolves have become more accurate thanks to the many development in the QM

fields. It allows researchers to go beyond the previous empirical surfaces fit to experimental data and to uses

PES fit from electronic structure. Although these quantum mechanical PES are used, the different computed

properties are not accurate enough for many systems since it has been shown that NQEs should be included

in the simulation [102]. Therefore, lot of effort have been made throughout the years to include NQEs inside

MD by developing various approaches and theoretical methods to efficiently simulate them. Thereby, the

next chapter will be devoted on different methods to include NQEs inside a MD simulation.
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2.1 Introduction

Since direct resolution of Schrödinger’s equation is only possible for a few degrees of freedom, a lot of effort

is being made to develop various approximate approaches to treat Nuclear Quantum Effects (NQEs), in

complex molecular systems. In particular, methods based on Feynman’s path integral formulation of quantum

mechanics have been developed, such as path integral molecular dynamics (PIMD) and Path Integral Monte

Carlo (PIMC) [23, 103]. These methods are based on an isomorphism between a quantum particle and a

chain of classical beads, coupled by harmonic springs. It provides numerically exact estimates for thermal

equilibrium observables when then number of beads is sufficiently large (32 to 64 beads for water at room

temperature). Unfortunately, the number of beads to converge increases as the temperature decreases,

making low temperature simulations computationally expensive. Moreover, dynamical properties are not

directly accessible through the path integral formalism although it is exact for static equilibrium properties,

even for highly anharmonic systems [46]. Several approximate methods have been proposed to deal with this

issue such as Centroid Molecular Dynamics (CMD) [104] and Ring-Polymer Molecular Dynamic (RPMD)

[105]. These methods are described in Section 2.2 and have proved accurate for a wide range of systems

and properties [106, 107], although they still present some drawbacks, in particular their computational cost,

that can reduce their range of applicability. An overview of the different methods to include NQEs in MD

simulations can be found in the literature [22, 107–109].

To overcome this computational limitation, alternative methods based on a generalized Langevin equation

have been proposed. [25, 26]. The one used during this Thesis and described in Section 2.3 is the Quantum

Thermal Bath (QTB) that accounts for quantum statistics with a colored random noise. This noise simulates

both thermal and quantum fluctuations. It is chosen such that its power spectrum matches the quantum

Fluctuation-Dissipation Theorem (FDT) [110, 111], whereas in the classical Langevin dynamics, the random

force is a white noise which fulfills the classical FDT. The QTB allows to treat particles as quantum particles

within MD simulations at the same computational cost as standard MD. However, QTB has some drawbacks,

in particular the ZPE leakage (ZPEL) where part of the energy of high frequency modes is transferred to low

frequencies and leads to a wrong energy distribution [15, 112–116] Thus, an adaptive QTB method, called

adaptive QTB (adQTB), has been proposed to compensate the leakage and to recover the correct energy

distribution. Although not explicitly derivable from the quantum statistical formalism, the adQTB has

shown good results in different systems [27] and it will be further investigated in this thesis via a systematic

comparison with reference methods.

2.2 Path Integral Molecular Dynamics

In order to simplify notations, a one-dimensional system is considered in this section. All results can be

extended to a complex system in three dimensions where q is replaced by the 3N -dimensional vector q of all

atomic positions.
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Figure 2.1: Schematic representation of all discretized path in imaginary time which contribute to the
partition function (equation 2.6). Picture extracted from [47].

2.2.1 The partition function

Within Feynman’s path integral formalism [103], it is possible to express the quantum mechanical partition

function in the canonical ensemble as:

Z =

∮
D [q(τ)] e−S[q(τ)] (2.1)

where
∮
D [q(τ)] is a functional integral over all the possible closed paths in imaginary time τ . S is an

action-like integral over the path which can be defined as:

S[q(τ)] = −1

ℏ

∫ βℏ

0

H [q(τ)] dτ = −1

ℏ

∫ βℏ

0

[
V (q(τ)) +

m

2
q̇(τ)2

]
dτ (2.2)

where the Hamiltonian H is written as the sum of kinetic and potential energy terms. For the paths which are

statistically unlikely, the action S becomes large and their contribution to the partition function Z vanishes.

The imaginary time τ can be discretized as τ = nβℏ/P with n = 0, . . . , P − 1 and P an integer (Figure 2.1).

To derive equation (2.1), the quantum partition function in the position representation is used:

Z =

∫
dq
〈
q
∣∣∣e−βĤ

∣∣∣ q〉 (2.3)

Because, the kinetic and potential operators, denoted T̂ and V̂ respectively, do not commute, the Trotter

theorem defined in equation (1.34) has to be used:

e−βĤ =
(
e−

βĤ
P

)P
≈
(
e−βpV̂ /2e−βP T̂ e−βP V̂ /2

)P
+O(β2

P ) (2.4)

which becomes exact in the limit P −→ ∞. βP is defined as βP = β/P . Using P times the closure relation∫
dq|q⟩⟨q| = Id and equation (2.4), it is possible to re-write equation (2.3) as:

Z = lim
P→∞

∫
dq1, . . . ,dqP

P∏
j=1

[〈
qj+1

∣∣∣e−βPV (qj+1)/2e−βP T̂ e−βPV (qj)/2
∣∣∣ qj〉] (2.5)
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Figure 2.2: Schematic representation of classical and quantum particles within the path integral formalism.
In (a), a single classical particle corresponds to one ring polymer with P=6. In (b), two classical particles

are represented. They are interacting through a potential V (q(1), q(2)) which corresponds to two ring
polymers in the path integral formalism. Beads with the same index (represented with the same color in
the sketch) interact through the potential V with their corresponding bead in the second ring polymer.

Picture extracted from [47].

where q1 = qP+1. It can be understood as a product over several high temperature density matrices. Since

the terms involving the potential energy are simple scalar values, it is possible to evaluate the necessary

matrix elements, which are a series of terms corresponding to off-diagonal elements of the exponential of

the kinetic energy operator. Using the internal product of position and momenta and introducing the ring

polymer frequency as ωP = 1/βPℏ, one finally obtains the discrete path integral partition function as:

Z = lim
P→∞

(
1

2πℏ

)P (
2πm

βP

)P/2 ∫
dq1, . . . ,dqP e

−βP

P∑
j=1

{
mω2

P
2 (qj+1−qj)

2+V (qj)

}
(2.6)

It can be noticed that equation (2.6) does not depend on any operators and then corresponds to the classical

partition function of a cyclic polymer composed of P atoms connected by harmonic springs with spring

constant kP = mω2
P . Therefore, there is an isomorphism between the quantum system and a cyclic chain of

P classical particles. In this chain, each particle is called a bead and corresponds to a different imaginary

time slice. The isomorphism is in principle exact only when the number of beads P is infinite. The path

integral formalism samples the potential in an extended ring polymer phase space at a temperature P × T .

Hence, P should be high enough to provide enough energy to account for the ZPE (an empirical criterion

for convergence is that PkBT should be sufficiently larger than ℏω0, with ω0 the highest frequency of the

system). Therefore, when the temperature decreases, β −→ ∞ and P has to be very large compared to ℏω0β.

Moreover, in a system with many degrees of freedom, the highest vibrational frequency should be used to

estimate how many beads are needed. In practise, the number of beads P acts as a convergence parameter

and the ring-polymer density is sampled via molecular dynamics using different types of thermostats, such

as Nosé-Hoover chains or Langevin dynamics (the latter will be used in the rest of this Thesis).
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2.2.2 Sampling with Path Integral Molecular Dynamics

The path integral formalism was first exploited in MD simulations by Parrinello and Rahman in 1984 [117].

They introduced in equation (2.6) an effective kinetic energy as a function of effective momenta of the polymer

beads pj :

Z = lim
P→∞

(
1

2πℏ

√
m

m′

)P ∫
dq1, . . . ,dqpdp1, . . . ,dpP e

−βP

P∑
j=1

{
p2j

2m
′ +

mω2
P

2 (qj+1−qj)
2+V (qj)

}
(2.7)

where it can be identified:

HP =

P∑
j=1

{
p2j
2m′ +

mω2
P

2
(qj+1 − qj)

2 + V (qj)

}
(2.8)

HP referred to as the ring polymer Hamiltonian, also called effective Hamiltonian. It is a classical Hamiltonian

that can be used to generate a classical dynamics in the extended phase space of the beads. The masses m
′

have no physical meaning and one can choose them to arbitrary values with no effect on the configurational

ensemble generated by HP . Therefore, the molecular dynamics generated in this case is just a mean to

evaluate quantum statistical averages, and the concept of ’time’ has no physical meaning. The equations of

motion generated by equation (2.8) are given by:

ṗj = −mω2
P (2qj − qj+1 − qj−1)−

∂V (qj)

∂qj

q̇j =
pj
m′

(2.9)

The harmonic springs between the beads generally vibrate at frequencies much higher than the physical

frequencies of motion of the system. Then, a small time step will be required to integrate equation (2.9)

[46, 118]. To circumvent that, one may work in the normal mode representation of the ring polymer by

introducing new variables:

Qn =

P∑
i=1

Tinqi

Pn =

P∑
i=1

Tinpi

(2.10)

with n = 0, . . . , P − 1. T is the unitary transfer matrix whose columns are eigenvectors of the symmetric

P × P matrix Ω2
P defined as:

Ω2
P = ω2

P



2 −1 −1

−1
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 −1 2


(2.11)
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where all undefined terms are zeros. Therefore, it is possible to express equation (2.8) as:

HP =

P∑
i=1

V

(
P−1∑
n=0

TinQn

)
+

P−1∑
n=0

1

2m
P 2
n +

P−1∑
n=0

(
1

2
mω2

nQ
2
n

)
(2.12)

with Pn the normal mode momenta obtained with equation (2.10) and ω2
n the eigenvalues of equation (2.11).

Qn and Pn represent the phase-space coordinates of the normal modes of the free ring polymer, that are

coupled to one another via the physical potential V. Going to the normal mode representation allows not

to be obliged to use very small time steps, thanks to an appropriate splitting of the time integrator. Then,

the normal modes are harmonic oscillators which can be exactly integrated at each time step. Although the

harmonic frequencies involved in the system can be high, it is possible to use a moderately small time step.

Another possibility is to transform the representation to the so-called ’staging variables’ [46] which have a

similar effect. The normal mode decomposition is also at the basis of the ring-polymer contraction method

that allows to further reduce the computational cost by evaluating the long-range part of the interaction

potential on a smaller number of beads (potentially even only on the centroid) [119, 120].

2.2.3 Path Integral Estimators

Since the fundamental equations and background of path integral formalism have been derived previously,

one may be interested to obtain averages of observables of the form:

⟨Â⟩ = 1

Z
Tr
[
e−βĤÂ

]
(2.13)

In the case where the operator Â is a function of position only Â(q) and using the invariance under cyclic

permutation of the partition function, it can be shown that:

⟨Â⟩ = lim
P→∞

1

Z

∫
dq1, . . . ,dqPdp1, . . . ,dpP

 1

P

P∑
j=1

A(qj)

 e−βPHP (2.14)

where HP is given by equation (2.8). This expression can be sampled straightforwardly. by using molecular

dynamics. One can define the instantaneous estimator AP for the observable A as:

AP [q(t)] =
1

P

P∑
j=1

A[qj(t)] (2.15)

which is valid only for position-dependent observables. However, one may be interested in observables that

depend on the momentum such as the kinetic energy.

The Primitive Kinetic Estimator

To derive an estimator for the kinetic energy, the relation between the total energy and the partition function

is used:

⟨E⟩ = − 1

Z

(
∂Z
∂β

)
(2.16)
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Inserting the path integral partition function for a one-dimensional system given by equation (2.6) leads to:

⟨E⟩ =

〈
PkBT

2
−

P∑
j=1

1

2
mω2

P (qj+1 − qj)
2 +

1

P

P∑
j=1

V (qj)

〉
(2.17)

where the last term is the potential energy estimator. The average on the right-hand side is taken over the

ring-polymer statistical probability distribution. The last term of equation (2.17) corresponds to the average

potential energy, estimated according to equation (2.15). Therefore, the sum of the first two terms provides

an estimator for the kinetic energy Kprim:

Kprim =
PkBT

2
−

P∑
j=1

1

2
mω2

P (qj+1 − qj)
2 (2.18)

which is a difference between two terms. However, both grow larger with P, increasing the fluctuations in the

instantaneous values of Kprim along a path integral trajectory. Hence, the statistical error also grows with

P. Therefore, longer trajectories are needed to average out these fluctuations and obtain an accurate value of

the kinetic energy. To circumvent that, one may derive an alternative estimator Kvirial whose fluctuations

do not grow with the number of replicas P [121].

The Centroid Virial Kinetic Estimator

To obtain a better convergence behavior for the kinetic estimator, one can employ a coordinate scaling

approach [122, 123]. The ring polymer positions qj are scaled relative to their centroid position {qsj} via:

qsj = qc + λ(qj − qc) (2.19)

where the centroid qc is defined as:

qc =
1

P

P∑
j=1

qj (2.20)

The Jacobian associated with this transformation is:

dqs1, . . . ,dq
s
P = λP−1dq1, . . . ,dqP (2.21)

Therefore, a new expression for the partition function may be derived as:

Z =

λ( 1

2πℏ2

)P/2 ∫
dqs1, . . . ,dq

s
P e

− 1
2ℏ2

P∑
j=1

(qsj+1−qsj )
2− β

P

P∑
j=1

V (qc+λ−1(qsj−qc))

 (2.22)

where λ =
√

β′/β and β
′
a fictitious temperature. Equation (2.22) can be inserted in equation (2.16) to

evaluate the total energy in the temperature scaled coordinates. Transforming back to the unscaled ring

polymer gives the total energy estimator as:

⟨E⟩ =

〈
1

2β
+

1

2P

P∑
j=1

∂V (qj)

∂qj
(qj − qc) +

1

P

P∑
j=1

V (qj)

〉
(2.23)
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One may identify the centroid virial estimator for the kinetic energy as:

Kvirial =
kBT

2
+

1

2P

P∑
j=1

(qj − qc)
∂V

∂qj
(2.24)

Thanks to the use of the forces and the distances of each replica to the centroid, the virial estimator provides

an efficient way to evaluate the kinetic energy from a path integral molecular dynamics. It can also be derived

using the classical virial theorem [46] on the primitive kinetic estimator [121]. However, if the simulation is

correctly performed over a sufficiently long trajectory, the averaged kinetic and virial estimator are equal.

Hence, during the thesis, both estimators were computed to ensure they were equal. If they are not equal,

it highlights a fundamental error in the performed simulation. Therefore, with its smaller statistical errors,

the virial estimator was mainly used to evaluate the kinetic energy.

2.2.4 Quantum Mechanical Time Correlation Functions

Although the imaginary-time path integrals formalism is a powerful technique to compute equilibrium prop-

erties, it cannot directly yield information about the dynamics of the system. However, many interesting

quantities regarding the dynamic of a system can be expressed in terms of time-correlation functions. The

standard real time correlation function between two generic operators A and B can be expressed as [124]:

CAB(t) =
1

Z
Tr
[
e−βĤÂ(0)B̂(t)

]
(2.25)

where B̂(t) is propagated according to the quantum dynamics using:

B(t) = eiĤt/ℏB̂e−iĤt/ℏ (2.26)

However, CAB(t) can be a complex quantity contrary to its classical equivalent. Then, one may want to use

the real part, C̃AB(ω), of equation (2.25) which displays a more ’classical’ behavior. C̃AB(ω) can be related

to the standard correlation function by using Fourier transforms:

C̃AB(ω) = f(ω)CAB(ω) = f(ω)

∫ +∞

−∞
dt e−iωtCAB(t)

f(ω) =
βℏω

(1− e−βℏω)

(2.27)

It is also possible to reconstruct the standard correlation function from the Kubo-transformed correlation

function (and vice versa) which is defined as [125, 126]:

KAB(t) =
1

βZ

∫ β

0

dλTr
[
e−(β−λ)ĤÂ(0)e−λĤB̂(t)

]
(2.28)

where the Boltzmann operator e−βĤ as been ’smeared’ around Â(0). Working in the eigenstates basis of Ĥ

allows to express the standard correlation function as a function of the Kubo-transformed correlation function

as:

C̃AB(ω) =
βℏω

1− e−βℏωF [KAB(t)] (2.29)
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Then, the real part of the standard correlation function is:

C̃AB(ω) =
βℏω/2

tanh(βℏω/2)
KAB(ω) (2.30)

where F [·] is the Fourier transform. The Kubo-transformed correlation function has the same symmetry

properties as the corresponding classical correlation function [127]. Therefore, it plays the same role in

quantum mechanical linear response theory as the classical correlation function in classical linear response

theory [125, 126]. Centroid Molecular Dynamics (CMD) and Ring-Polymer Molecular Dynamic (RPMD) are

used to generate approximations to KAB and then compute dynamical properties, such as Infrared/ Raman

spectra or diffusion coefficients.

2.2.5 Centroid Molecular Dynamics

The centroid molecular dynamics (CMD) was firstly introduced by J. Cao and G. A. Voth in 1993 [128].

Using the definition of the centroid of equation (2.20), CMD relies on the following equations of motion:

q̇c =
pc
m

ṗc = −∂Vc(qc)

∂qc

(2.31)

where m is the physical mass, pc is the conjugated momentum of qc and ∂Vc(qc)/∂qc ≡ Fc(qc) is the derivative

of the centroid potential of mean force defined as:

Vc(qc) = − 1

β
ln

{(
2πβℏ2

m

)1/2 ∮
Dq(τ)δ (q0[q(τ)]− qc) e

−S[q(τ)]/ℏ

}
(2.32)

where

q0[q(τ)] =
1

βℏ

∫ ℏβ

0

q(τ)dτ (2.33)

is the centroid position of the path q(τ). The δ-function therefore restricts the integration to cyclic paths

whose centroid position is qc. Using the equation of motion of (2.31), it is possible to compute the forces

and integrate the effective centroid dynamics to obtain the CMD approximation to the Kubo-transformed

quantum time correlation function KAB(t) as:

⟨KAB(t)⟩ ≃ ⟨Bc(0)Ac(t)⟩ =
1

(2πℏ)PZ

∫
dpc

∫
dqc AcBc [qc(t), pc(t)] e

−β

[
p2c
2m+Vc(qc)

]
(2.34)

where the functionBc [qc(t), pc(t)] is evaluated using the time-evolved centroid variables generated by equation

(2.31) using {qc, pc} as initial conditions (equation (2.34) is valid for linear observables A and B, for non-linear

ones, additional terms are needed in the estimator [104]). However, CMD requires to compute Vc at each

time step of the trajectory which necessitates many PIMD steps. To reduce the computational cost, adiabatic

decoupling can be employed [104, 129–131] where the non-centroid modes are decoupled from the centroid’s

motion and therefore speed up the calculation. Despite this, CMD is still computationally expensive and

difficult for large and complex systems. Moreover, it is only exact in the limit of purely harmonic potential.

Far from this limit, position auto-correlation functions are accurate up to O(t3) [132]. In addition, CMD
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suffers from a ’curvature problem’ when applied to systems with both bond stretching and rotational modes

[133, 134]. As the temperature is lowered, the ring polymer spreads out around the rotational modes and

the centroid potential of mean force becomes softer in the stretching modes. It results in a spurious red-shift

of the stretching frequencies which can become a serious issue in ice at low temperatures. To correct this

curvature problem, several attempts have been made such as using curvilinear coordinates instead of cartesian

coordinates [135]. However, CMD has been shown to provide satisfactory results in different cases [107, 136–

138].

2.2.6 Ring-polymer Molecular Dynamics

The ring-polymer molecular dynamics (RPMD) was originally introduced by Craig and Manolopoulos [127]

in 2004. The fictitious masses m
′
in equation (2.8) are chosen such that each imaginary time slice or bead

have the physical mass m. Compared to CMD, RPMD uses the full chain to approximate time correlation

functions. Hence, a quantum observables Â(q) is represented by the following RPMD estimator:

AP (t) =
1

P

P∑
k=1

A [qj(t)] (2.35)

For observables which linearly depend on the position or momenta, equation (2.35) reduces to qc and pc

respectively. The RPMD Kubo-transformed time correlation function KAB is computed as:

⟨KAB(t)⟩ = ⟨BP (0)AP (t)⟩ =
1

(2πℏ)PZ

∫
dpc

∫
dq1, . . . ,dqp AP (0)BP (t)e

−βHP (2.36)

where HP is defined in equation (2.8). Because qc(t) and pc(t) are propagated using the instantaneous

centroid potential in RPMD, whereas in CMD they were propagated using the average centroid potential of

mean force, the equations of motions are different and are given by:

q̇j =
pj
m

ṗj = − m

β2
Pℏ2

(2qj − qj−1 − qj+1)−
∂V

∂qj

(2.37)

making it less computationally expensive. In the original RPMD implementation, equations (2.37) where

used without thermostat when computing correlation functions, in order to not perturb the dynamics.

Although RPMD is an approximation and cannot be rigorously derived from the quantum dynamics, it was

shown to provide accurate results in a variety of cases [107, 136–139]. The performance of CMD compared to

RPMD highlight that the chain frequencies from the ring polymer can interfere with the physical frequencies

leading to non-physical peaks in the vibrational spectrum [133]. The lowest internal modes of a free ring

polymer have frequencies of:

ωj =
2P

βℏ
sin

(
jπ

P

)
≈ 2πj

βℏ
(2.38)

These modes are combined with the physical modes of frequency ω, hence the internal mode frequen-

cies are shifted to
√
ω2 + ω2

j . For example, in water at 300 K, an interaction between the second in-

ternal mode of the ring polymer and the water bending modes was observed, which gave a frequency of
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√
26002 + 16002 = 3052 cm−1. An analogous calculation at 350 K gives an oscillation with a wavenumber of

√
30332 + 16003 = 3429 cm−1. Both values are close to the stretching frequencies. Therefore, the physical

peaks in the spectrum are not shifted as in CMD, but additional ones, called spurious peaks, can appear in

the final spectrum [140]. The spurious frequency problem is only a problem if these features overlap with

physical frequencies of the studied system which is the case for water. However, it has been shown that

RPMD provides an effective way to include NQEs in the diffusion of liquids [107], but also for the orienta-

tional correlation times of molecular liquids [30]. It should be stressed that the zero point energy leakage

does not happen in RPMD because its dynamic is consistent with the PIMD equilibrium distribution.

2.2.7 Thermostatted RPMD

To mitigate the spurious peaks problem one can apply a Langevin thermostat to the internal modes of the

ring polymer during the dynamics. The resulting thermostatted RPMD (TRPMD) is characterized by the

following equations of motion: [141]:

Q̇n =
Pn

m

Ṗn = −∂HP (Pn, Qn)

∂Qn
− γPn +

√
2mγ

βP
R(t)

(2.39)

Applying a Langevin dynamics in the normal mode representation allows to tune the friction coefficient γ to

match the critical damping value of each normal mode representation (while the centroid is under-damped).

Although the thermostat in RPMD damps the oscillations of the internal modes of the ring polymer, it does

not completely remove them which causes a broadening of the physical peaks that becomes more pronounced

at low temperatures.

In conclusion, PIMD is the reference method to include NQEs and yields exact results for static observables

when the number of beads is sufficiently large. Although structural properties of the system are exact, in

the PIMD formalism, dynamical properties are not. Then, to compute real time correlation functions,

approximate methods such as CMD and RPMD have to be used. However, their computational cost remains

high, which has stimulated the research of alternative methods, such as those based on generalized Langevin

equations presented in the next section [25, 26].

2.3 The Quantum Thermal bath for Molecular Dynamics

As an alternative to path integral methods, a Generalized Langevin Equation (GLE) can be used to approx-

imate the quantum statistical distribution (in particular ZPE). In this section, the classical version of the

GLE and the associated fluctuation-dissipation theorem (FDT) will be presented (first and second kind). In

Section 2.3.2, the Quantum Thermal Bath (QTB) framework will be studied. It modifies the time-correlation

of the stochastic forces to impose the quantum version of the second-kind FDT in the quantum case. How-

ever, this method suffers from Zero Point Energy Leakage (ZPEL). To overcome that, the recently developed

adaptive QTB (adQTB) will be introduced which aims to correct ZPEL by using a criterion derived using

the first-kind FDT.
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2.3.1 The Classical Fluctuation-dissipation Theorem

The Langevin equation was firstly introduced by Langevin [142, 143] to describe Brownian motion. It is

obtained by considering a small portion of the system that can exchange energy with its environment, called

the bath. It is widely used in MD simulations to sample the canonical ensemble as it has been presented in

Chapter 1 Section 1.2.3. Generalizations of the Langevin equation have later been introduced to account for

cases in which the strength of the interaction with the bath is frequency-dependent. This formulation allows

describing a wide range of processes in physics and chemistry [144, 145]. In order not to take into account

explicitly the bath degrees of freedom, a frequency-dependent stochastic thermostat is added to Newton’s

equation of motion. Then, the equations of motion of the dynamics become non-Markovian:

q̇ =
p

m

ṗ = −∂V

∂q
−
∫ ∞

0

dτ γ(τ)p(t− τ) +R(t)

(2.40)

where γ(τ) is the memory kernel. R(t) is a stationary Gaussian stochastic force with a correlation function

characterized by:

⟨R(t)R(t+ τ)⟩ = 2mkBTγ(τ) (2.41)

This formula relates the random force amplitude (fluctuations) to the memory kernel of the friction force

(dissipation) in the GLE. Both terms model the effect of the bath and ensure the canonical statistics. There-

fore, equation (2.41) is designated as second-kind Fluctuation-Dissipation Theorem (FDT) [146, 147]. In

the standard Langevin equation, the friction is Markovian (without memory), i.e. such that γ(τ) = γδ(τ)

with δ(τ) the Dirac delta function. In this case R(t) becomes a white noise with an amplitude given by

equation (1.29).

The second-kind FDT characterizes the interaction of the system with the thermostat, as it relates the

two Langevin forces (the friction and the random force), it is thus specific of the GLE. However, an other

relation can be derived from the linear response theory, the first-kind FDT, which is valid even outside the

context of the GLE and is therefore more general. It can be expressed as [110]:

Cvv(ω)
2

= Re [χvq(ω)] kBT (2.42)

where Cvv(ω) is the Fourier transform of the velocity time autocorrelation function. Equation (2.42) is called

first-kind FDT. The term χvq(ω) is the susceptibility that characterizes the velocity linear response ∆v(t) for

a system at thermal equilibrium undergoing a small perturbative force ∆R(t) = Re
[
∆R(ω)eiωt

]
, oscillating

at the angular frequency ω:

∆v(ω) = χvq(ω)∆R(ω) (2.43)

For a harmonic system, Re [χvq(ω)] is a sum of Dirac delta functions located at the different frequencies

which are characteristic of the system. Each vibrational mode yields a Dirac delta function, then Re[χvq(ω)]

represents the vibrational density of states. Therefore, equation (2.42) states that each vibrational mode at

frequency ω is thermalized with an average kinetic energy kBT/2. The first-kind FDT therefore expresses a

fundamental property of classical statistical physics, the equipartition of energy, each degree of freedom (or

each vibrational modes) have the same average energy kBT .
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2.3.2 The QTB and Zero-point Energy Leakage

The Quantum Thermal Bath (QTB) was introduced by Dammak and coworkers in 2009 [25] (similar ideas

were simultaneously developed by Ceriotti et al. with a slightly different formalism under the name Quantum

thermostat [26]). The QTB aims at accounting for what is usually the most relevant NQEs: the fact that the

quantum distribution of energy differs from the classical equipartition of the energy due to zero point energy

(ZPE). The classical fluctuation-dissipation theorem described above expresses the equipartition of energy.

However, in the quantum case, one expects the frequency distribution of the energy distribution of a system

to be:

θ(ω, T ) = ℏ|ω|
(
1

2
+

1

eℏ|ω|/kBT − 1

)
(2.44)

which depends on the angular frequency |ω| (since its zero-point energy is ℏω/2). The idea of the QTB is to

modify the Langevin thermostat to enforce the quantum energy distribution given by equation (2.44). To do

so, one may use a GLE as defined in equation (2.40) with a Markovian friction (as in standard Langevin),

but modifying the frequency energy distribution of the stochastic force to impose:

CRR(ω) = 2mγθ(ω, T ) (2.45)

The QTB method modifies the time-correlation of the stochastic forces according to equation (2.45) which

corresponds to the second-kind FDT in the quantum case. Since its spectrum depends on ω, the random

force R(t) of the QTB is not a white noise but a colored noise, even if the friction remains Markovian. At

high temperature the classical limit is reached and θ(ω, T ) ≈ kBT . On the other hand, at low temperature,

the function θ(ω, T ) diverges from the classical behavior and NQEs can no longer be neglected. In particular,

in the limit T → 0, where the function θ(ω, T ) → ℏω/2 is the ZPE of the harmonic oscillator. Therefore, the

equipartition theorem does not hold and the average kinetic energy of any degree of freedom includes ZPE

and thus is greater than kBT/2. Hence, the effective temperature is greater than the physical temperature

T and it only becomes equal to T in the classical high-temperature limit.

However, using a thermostat given by equation (2.45) is not sufficient to enforce the quantum FDT of

the first kind for anharmonic systems. The classical force −∂V/∂q couples the different modes and drives

the system towards the classical equipartition of energy whereas the thermostat tries to impose the quantum

distribution of energy. As the anharmonicity is increased, the energy in the high frequency modes decreases

while the energy in the low frequencies increases, getting closer to the equipartition of the energy. Therefore,

the average thermal energy per mode is lower than θ(ω, T ) for large ω and greater than it for small ω. This

unphysical energy flow from high to low frequencies constitutes the ZPEL. To correct the ZPEL, several

solutions have been suggested such as modifying the noise power spectrum to obtain the expected power

distribution [148]. Although really promising, this solution has the drawback to be system dependent.

Therefore, a study was done by Brieuc et al. to investigate the ZPEL by testing the QTB on different model

systems [149]. They increased the friction coefficient γ to prevent ZPEL. However, the increase of gamma

affects the dynamical properties of the system (in particular with a broadening of the vibration spectra),

and although it reduces ZPEL, it does not entirely suppress it. Even with large gamma coefficients, ZPEL

can remain problematic in some very anharmonic systems such as liquid water, where ZPEL is particularly

massive from the high-frequency intramolecular vibration modes to the slower intermolecular motion. To
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Figure 2.3: Schematic representation of the adQTB scheme to correct the ZPEL where γr(ω) is adapted
accordingly to the deviation from the quantum FDT ∆FTD(ω) (equation 2.51). γr(ω) will be increased at

high frequency and reduced at low frequency to minimize the deviation and reach the correct energy
distribution for each frequency [27].

address this problem, an adaptive QTB (adQTB) was developed based on the measurement of deviations

from the first kind of FDT.

2.3.3 The Adaptive QTB

In the QTB method, each degree of freedom follows a Langevin equation such as (2.40). Each vibrational

mode is thermalized at the effective thermal energy θ(ω, T ) which increases with the mode frequency ω

and accounts for ZPE. However, for anharmonic system, an unphyscial effect arises from the competition

between the classical Newtonian evolution and the thermostat. One may solve the problem by measuring

the deviations from the the first kind quantum FDT, which is equivalent to equation (2.42), only that the

thermal energy kBT is replaced by θ(ω, T ). The main difficulty is to estimate the linear susceptibility χvq(ω).

It has been shown that it can be expressed as a ratio of two correlation functions [27, 146]:

Re[χvq(ω)] =
Re[CvR(ω)]
CRR(ω)

(2.46)

Equation (2.46) was obtained by using the property that the frequency components of the force R are

independent from another (⟨R(ω)R(ω
′
)⟩ = 0 if ω ̸= ω

′
). Hence, the random force is treated at each particular

frequency as a small perturbative force and it is used to compute the linear response χvq(ω) using equation

(2.43). Moreover, CRR(ω) is given by equation (2.45), then the quantum FDT in the QTB framework can be

rewritten as:

Re [CvR(ω)] = mγCvv(ω) (2.47)

Note that Re [CvR(ω)] also represents the power injected by the thermostat at frequency ω and γCvv(ω)
corresponds to the dissipated power. Then, equation (2.47) relates the velocity response to the stochastic

force Re [CvR(ω)] and the internal dynamical properties. Equation (2.47) should be verified for each degrees

of freedom to ensure that the equilibrium distribution of energy follows the quantum FDT. As explained
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earlier, this is the case for harmonic potential. However, the equality is not generally fulfilled for anharmonic

systems. Thus, equation (2.47) is used as a criterion to quantify the deviations from the quantum FDT of

the first kind:

∆FDT (ω) = Re [CvR(ω)]− γmCvv(ω) (2.48)

To enforce the quantum FDT in QTB simulations, the power spectrum of the stochastic force given by

equation (2.45) is replaced by:

CRR(ω) = 2mγr(ω)θ(ω, T ) (2.49)

In the standard QTB γr(ω) = γ independently of ω. In the adaptive QTB, γr is an adjustable parameter of

the amplitude of the Langevin random forces. It is adapted to enforce the first kind FDT. Using equation

(2.49), it is possible to express the quantum FDT for this modified spectrum as:

Re [CvR(ω)] = mγr(ω)Cvv(ω) (2.50)

and then the deviation from the quantum FDT:

∆FDT (ω) = Re[CvR(ω)]−mγr(ω)Cvv(ω) (2.51)

When the quantum FDT of the first kind is enforced ∆FDT (ω) = 0. To be sure this relation is respected

during the dynamics, the right side is calculated regularly and the values of γr(ω) are then adapted for each

frequency to reduce ∆FDT (ω): it will increase at high frequencies (the modes that loose energy due to the

leakage), and decrease at low energy to compensate the effects of the ZPEL (Figure 2.3).

2.3.4 Colored Noise Generation

In the QTB and adQTB methods, one needs to generate a random force with any arbitrary correlation

function CRR(ω) = g(ω). Because the stochastic force is no more a white noise, the standard way to generate

the random force in Langevin thermostat cannot be used. A filter H̃(ω) is introduced such as [150]:

H̃(ω) =
√

g(ω) (2.52)

The inverse Fourier transform of H̃(ω) gives H(t). The noise R(t) is obtained by convoluting H(t) with a

white noise r(t):

R(t) =

∫ +∞

−∞
dsH(s)r(t− s) (2.53)

The noise can be implemented by making a discretization on the filter H̃(ω) such as:

H̃k = H̃(k∆ω) (2.54)

with ∆ω the angular frequency step defined as ∆ω = 2π/(Nseg∆t). Nseg is the length of a segment of

trajectory. In MD simulation, the time is discretized as tn = n∆t and a colored noise Rn = R(tn) is then
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generated for a segment of trajectory of duration Nseg∆t.

One may notice that equation (2.44) diverges for high frequency. These high frequencies are not expected

to be present in real systems. Thus, a cutoff frequency ωcut is introduced with the function f(ω) = 1/(1 +

e(ω−ωcut)/ωsmear ). A correction factor C(ω) is also used to account for finite time step errors defined as:

C(ω) =
1− 2e−γ∆tcos(ω∆t) + e−2γ∆t

γ2 + ω2

1

∆t2
(2.55)

Therefore, the filter H̃(ω) is defined as [150]:

H̃(ω) =
√

g(ω)C(ω)f(ω) (2.56)

Because H̃(ω) is real and even, its Fourier transform H(t) is given by:

Hn =
1

2Nseg

Nseg−1∑
k=−Nseg

H̃k cos

(
π

Nf
kn

)
(2.57)

with Hn = H(n∆t), for k = −Nseg, . . . , Nseg − 1. A convolution procedure is then performed to obtain the

discrete colored noise:

Rn = R(n∆t) =

Nseg−1∑
m=−Nseg

Hmrn−m (2.58)

with rm a white noise with a Gaussian distribution. The colored noise can be either stored, generated ’on

the fly’ or generated for each segment. To avoid the storage and allow to study more complex systems, the

random noise is generated regularly every Nseg time steps, for the next segment of trajectory during this

thesis.

2.4 Summary

NQEs are an important feature which should be taken into account in MD simulations. They are relevant

to describe processes occurring at low temperatures [151, 152] or high pressure [14, 15, 112], but also close

to ambient conditions such as reactions involving proton transfer [16, 20] or isotopic effects [19, 153–155].

The path integral formalism gives an elegant framework to include NQEs. The quantum thermal density is

evaluated as the Boltzmann probability distribution of an isomorphic classical system referred to as a ring

polymer. Within this isomorphism, each quantum particle is represented using beads coupled by harmonic

springs. However, the number of beads should be sufficiently large to converge to the exact solution. Conse-

quently, the numerical cost can be prohibitive for complex and large system or when computer resources are

limited. Therefore, it motivates the development of alternative methods such as the Quantum Thermal Bath.

Compared to path integrals methods, the QTB is much less computationally expensive because no replica

is needed. The quantum statistics is taken into account with a random colored noise which simulates both

thermal and quantum fluctuations. It is chosen such that its power spectral density matches the quantum

FDT. However, QTB has some drawbacks due to the ZPEL: part of the energy of high frequency modes is

transferred to the low frequency ones and leads to an incorrect energy distribution. Therefore, an adaptive
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method, called adQTB, was developed to correct the leakage and to recover the correct energy distribution.

It enforces the first kind quantum FDT by adjusting ’on the fly’ the parameters of the thermostat. The

method was already studied on model-like systems [15, 112] and shows good results which motivate further

investigation. To push the limits of the method further, in the next chapter it is studied on a water potential

derived from path integral formalism: q-TIP4P/F. It was parameterized to give the correct liquid structure,

diffusion coefficient and infrared absorption spectrum in quantum (path-integral-based) simulations. There-

fore, the next chapter will be the study of the adQTB method compared to the PIMD (and TRPMD for

dynamical observables) using the q-TIP4P/F force field.
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3.1 Nuclear Quantum Effects in Water

With its major role in physics, chemistry, biology and geophysics, water is one of the most important liquids.

It is still a challenge to understand how this molecule can have such a complex and unusual behaviour over

a broad range of temperatures and pressures, such as the bell shape of density around ambient temperature

and its strong permanent dipole which are some of the anomalous properties of this compound [21, 156].

These anomalies motivate researchers to understand its microscopic structure making water an issue of long-

standing interest. Modeling water at a molecular level is central for understanding its behaviour in many

physico-chemical processes and to understand its decisive role in life. Nevertheless, given the low mass of

hydrogen atoms, classical mechanics is not accurate enough to describe the liquid phase even at ambient

temperatures where NQEs can have significant contributions. The spatial delocalization, due to quantum

mechanics, is conflicting with the confinement due to the atomic environment. Furthermore, the ZPE in

the O-H stretching and bending vibrations is more than ten times larger than the thermal energy at room

temperature kBT . It makes the description of NQEs rather subtle: for instance, a simple classical MD

trajectory that would take ZPE into account in its initial energy distribution would rapidly lead the water

to boil, because of the ZPE leakage effect that drives the system toward the equipartition of this energy [22].

Furthermore, net NQEs on the hydrogen-bond network of water are relatively weak. This weakness is

created by the competition between two opposite trends: the stretching ZPE strengthens hydrogen bonding,

while the bending ZPE weakens it as shown in Figure 3.1. Quantum fluctuations allow the protons to be

more delocalized between hydrogen-bond pairs of water molecules which strengthens the bond, as illustrated

schematically in the right panel of Figure 3.1. However, it also allows the protons to spread in the per-

pendicular directions which weakens the hydrogen bonds [20, 157–159]. Many experiments have highlighted

differences between H2O and its heavier isotope D2O for various thermodynamic properties. Since such

isotope effects are entirely absent in MD simulations with classical nuclei (equilibrium static properties are

independent of the atomic masses in the classical framework), these discrepancies provide a clear indication

of the impact of NQEs. In particular, Vega et al. [17] have shown that only a quantum treatment can

reproduce the heat capacity of liquid water and ice. Studies also show that the hydrogen bond network in

Figure 3.1: Schematic representation of the competing quantum effects in the hydrogen bonds between two
water molecules which come from different contributions to the vibrational ZPE. The left panel illustrates
the effect of O-H stretching ZPE, whereas the right one comes from the bending vibrational modes. As the
distance R between the two oxygens decreases, the stretching contribution decreases while the bending
contribution increases. Therefore, the two contributions strengthen and weaken the hydrogen bond

respectively. Picture extracted from [20].
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D2O is stronger at 300K giving a 20-30% lower diffusion coefficient for H2O [20, 160, 161]. Harmonic or

quasiharmonic approximation are often used to model NQEs in molecules or solids. However, in liquids, such

as water, anharmonic and entropic effects must be taken into account and hence require a more extensive

treatment of NQEs, for instance using the path integral formalism described in Chapter 2.

Needless to say, a realistic model of water is vital to understand its behavior under different conditions

and environments, and to characterize its role in physicochemical phenomena. Such modeling should include

a proper treatment of the nuclear motion at a quantum mechanical level with an accurate description of the

interactions between the water molecules. To do so, numerous water models have been developed, ranging

from very simple one, based on atomic partial charges and rigid bonds [162–164], to more sophisticated

ones that include molecular flexibility [21, 165, 166] and explicit electronic polarization effects [31, 167–170].

Given the quantum nature of water, PIMD has been used to asses its quantum thermodynamic and structural

properties. However, many of the water model which have been studied using quantum methods assume that

the water monomers are rigid bodies [171, 172] and describe intramolecular flexibility with simple harmonic

potential [166, 173]. Moreover, many studies that have assessed the role of quantum fluctuations in water

have used empirical potential models which were parametrized on classical simulations and hence implicitly

include NQEs. Therefore, it leads to a ’double counting’ of the NQEs on structural and dynamical properties

of the liquid. To address this, a new empirical water model, called q-TIP4P/F, was specifically parametrized

to reproduce the liquid structure, diffusion coefficient and IR absorption spectra in quantum simulation using

RPMD [30]. It is based on the TIP4P/2005 classical rigid water model that was chosen for its satisfactory

description of the ice/water phase diagram in classical MC simulations [174].

In this chapter, we present the study of liquid water modeled by the q-TIP4P/F potential, including NQEs

via the adQTB method presented in Chapter 2. Before this thesis, the adQTB had been tested on simple

model systems, and shown encouraging results [27]. However, a complex and highly anharmonic system such

as liquid water presents a considerably more stringent test for the stability and robustness of the method

and allows to explore its limits. In particular, we will assess the efficiency of the adQTB to effectively correct

the ZPEL that affects standard QTB simulations in this extremely anharmonic system. The different results

will be compared to the one obtained with PIMD (and TRPMD for dynamical observables) throughout this

Chapter.

All the developments and computations presented throughout this chapter were implemented and carried

out using the Tinker-HP massively parallel software [28]. Tinker-HP is a high-performance version of the

Tinker package [175] firstly developed by Jay Ponder at Washington University. It was essentially designed for

experimenting, testing, creating FF, algorithms and models. However, the initial Tinker implementation was

purely sequential and not competitive with other simulation programs such as NAMD [176] and GROMACS

[177]. Therefore, Tinker-HP was designed with the most useful features of the original Tinker package to

which was added high performance computations thanks to its MPI parallel structure.

3.2 The q-TIP4P/F water model

Most of the popular FF, such as AMBER [178–181] and CHARMM [182] are based on three-site pair-

wise additive TIP3P water model [183]. TIP3P model was fitted to the experimental density and heat

vaporization at room temperature and 1 atm pressure. However, this model often fails on properties outside
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ambient conditions on which it was firstly parameterized [184]. Using long-ranged electrostatics and adding

more interaction sites allow the development of new water models such as TIP4P/Ew [185] and TIP4P/2005

[164]. They provide a good agreement for a much broader range of thermodynamical observables outside the

reference data used to parameterize them. Considering its correct predictions on various ice polymorphs, the

TIP4P/2005 classical rigid water model was used by Habershon et al. as a basis to develop a new potential

energy surface, q-TIP4P/F, for which the different thermodynamic properties used to fit the parameters were

calculated using the PIMD and RPMD methods [30].

The TIP4P/2005 model has four interaction sites, three of them are placed at the oxygen and hydrogen

atom. The last site, called M, is coplanar with the O and H sites and it is located at the bisector of the

H-O-H angle. Moreover, the oxygen site carries no charge but contributes to the Lenard-Jones interaction:

ELJ = 4ε

[(
σ

rOO

)12

−
(

σ

rOO

)6
]

(3.1)

with rOO the distance between the oxygen sites of two molecules. The H and M sites are charged but do not

contribute to ELJ . The electrostatic potential is defined as:

Eelec =
e2

4πε0

∑
a∈i

∑
b∈j

qaqb
rab

(3.2)

where e is the electron charge, ε0 is the dielectric permittivity of the vacuum and a and b are the charged

sites of molecules i and j. The distance between partial charge sites in molecules i and j are given by rab.

Two positive charges qa/2 are placed on the hydrogen atoms of each molecule and a negative one is placed

at the site M, located at position ra, a fraction η along the vector connecting the O to the center of mass of

the two H:

ra = ηrO + (1− η)
rH1

+ rH2

2
(3.3)

A quartic expansion of a Morse potential is used to add intramolecular flexibility to describe the O-H bond

stretching. A simple harmonic potential is used for the bond angle:

Vintra =
∑
i

[
VOH(ri1) + VOH(ri2) +

1

2
kθ(θi − θ0)

2

]

VOH(r) = dr

[
α2
r(r − req)

2 − α3
r(r − req)

3 +
7

12
α4
r(r − req)

4

] (3.4)

with ri1 and ri2 the two O-H distance and θi the H-O-H bond angle in molecule i. The interaction potential

is parametrized to optimize the different parameters involved in the potential: ε, σ, qa and η for the inter-

molecular parameters and dr, αr, req and θeq for the intramolecular ones. These parameters were obtained

by using TRPMD simulations to fit structural, thermodynamic, and dynamic properties such as O-O, O-H

and H-H radial distribution functions, the self-diffusion coefficient and infrared absorption spectra.
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3.3 Study of the adQTB method in Liquid Water

To study the adQTB method on a highly harmonic system such as water, the q-TIP4P/F potential was

used to model interactomic interactions as it has been broadly used in the literature as a benchmark for

NQEs simulation methods. In this section we present some technical points about the adQTB that were

added to the method during this thesis. These methodological details are illustrated in the case of liquid

water but they are general and would be relevant for the application of the method to any system. The

different results obtained were compared to PIMD and classical Langevin dynamics using a small time step

∆t = 0.2 fs to ensure that the ’quantum’ dynamics is correctly sampled with 1000 water molecules. All

methods were included in the Tinker-HP package to see if the adQTB manages to correct the ZPEL from

which the standard QTB suffers. Because static averages are independent of the friction force in both PIMD

and classical Langevin dynamics, γ was chosen to γ = 1ps−1. However, this is not the case for the adQTB

method. Therefore, the choice of this parameter will be further studied.

3.3.1 Spectral Deconvolution and Choice of γ

In the adQTB method, the first-kind FDT (equation (2.51)) is used to accordingly adjust the coefficients

γr(ω). Although in classical Langevin MD and PIMD simulations static properties are independent of the

parameter γ, the adQTB requires large friction coefficients to prevent the ZPEL. It causes an excess of

energy at low frequency and if γ is too low, the friction forces cannot dissipate the excess energy, even if

the corresponding random force coefficients γr(ω) reach 0. The friction force γ, however, tends to broaden

the spectra. To suppress this broadening of the vibration spectrum, the harmonic reference was used with

a deconvolution procedure to eliminate the effect of γ [186]. The deconvolution procedure assumes that the

dipole velocity autocorrelation spectrum ĊLang
µ̇µ̇ (ω) can be expressed as:

ĊLang
µ̇µ̇ (ω) =

∫
dω′C(0)

µ̇µ̇ (ω
′)C(ω, ω′) (3.5)

where C(0)
µ̇µ̇ (ω

′) is the ideal vibration spectrum which should be obtained in a non-thermostated dynamics.

C(ω, ω′) is the Langevin convolution kernel derived for a harmonic reference:

C(ω, ω′) =
2γω2

π (γ2ω2 + ω4 − 2ω′2ω2 + ω′4)
(3.6)

which is valid in the case of a Markovian friction force with a friction coefficient gamma. One may ask

how this relation can hold in real anharmonic systems given that the kernel C(ω, ω′) was derived under

the assumption of harmonic dynamics. It was shown in Ref. [186] by Rossi et. al that even for strongly

anharmonic systems, the deconvolution procedure can be used to recover the unperturbed density of states,

which is related to the velocity-velocity autocorrelation function with good accuracy. However, it should be

used with caution in the zero-frequency range (ω ⪅ γ). If ĊLang
µ̇µ̇ (ω) is known, it is possible to compute the

deconvolued spectrum C(0)
µ̇µ̇ (ω) through an iterative procedure using the following recurrence formula [186]:

fn+1 =
fn(ω)h(ω)∫

dxD(ω, x)fn(x)
(3.7)
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Figure 3.2: Infrared absorption spectrum of water at 300K obtained in adQTB simulation with
γ = 20ps−1 and at fixed volume corresponding to a density ρ = 0.995 g.cm−3. The figure shows the initial

spectrum CLang
µ̇µ̇ (ω) computed directly from the adQTB trajectory (green) and the deconvoluted IRS

(purple) obtained after several iterations of the deconvolution procedure.

with f0(ω) = CLang
µ̇µ̇ (ω) and:

h(ω) =

∫
dx C(x, ω)f0(x)

D(ω, x) =

∫
dy C(y, ω)C(y, x)

(3.8)

The procedure converges to a local solution verifying
∫
dx C(ω, x)f∞(x) = CLang

µ̇µ̇ (ω). Therefore, f∞(ω) can

be used as an estimation of C(0)
µ̇µ̇ (ω) since it verifies equation (3.5) (in practice, the iterative procedure should

be stopped after a few tens of iterations in order to avoid over-fitting issues).

The deconvolution procedure was initially implemented to suppress the broadening due to the large

friction coefficient γ in the adQTB and to recover unaffected infrared absorption spectra (IRS). The IRS

is the product of the absorption coefficient α(ω) and the refractive index n(ω) which is proportional to the

Kubo-transformed dipole derivative autocorrelation spectrum [187]. In adQTB, as in linearized semiclassical

methods, the autocorrelation spectrum obtained by direct Fourier transform of the adQTB dipole trajectory

corresponds to the real part of the standard autocorrelation function given by equation (2.30) [188]. Therefore,

it is multiplied by tanh(βℏω/2)
βℏω/2 = kBT

θ(ω,T ) to obtain the Kubo autocorrelation that characterizes the IRS. The

initial spectrum CLang
µ̇µ̇ (ω) obtained in adQTB dynamic with γ = 20ps−1 is shown in Figure 3.2 with its

deconvoluted spectrum C0
µ̇µ̇(ω) obtained after 50 iterations. As expected, the deconvoluted spectrum in

purple yields sharper peaks compared to its initial spectrum in green.
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3.3.2 Finite Gamma Error Correction

An important specificity of QTB (or adQTB) simulations is that the value of the coefficient gamma does

not only affect dynamical observables, such as the vibration spectra considered previously, but also static

properties, contrary to classical Langevin simulations where the equilibrium probability density distribution

corresponds to the Boltzmann canonical density (and hence independent of the value of the friction coef-

ficient). Even for harmonic systems, the average potential and kinetic energies obtained in the QTB do

not exactly correspond to their quantum expected values but are subject to a small error that tends to in-

crease with gamma. This error, which is unrelated to ZPEL, can be predicted and quantified for a harmonic

oscillator at frequency ω0 where the average potential and kinetic energies are given by [189, 190]:

⟨Epot(ω0)⟩ =
∫ ωcut

0

dω

π

γω2
0

(ω2 − ω2
0)

2
+ γ2ω2

θ(ω, T )

⟨Ekin(ω)⟩ =
∫ ωcut

0

dω

π

γω2

(ω2 − ω2
0)

2
+ γ2ω2

θ(ω, T )

(3.9)

with ωcut a frequency cutoff introduced to avoid the divergence of the kinetic energy. In the limit γ −→ 0, the

Lorentzian tends to δ-function and both integrals have the same value: ⟨Epot(ω0)⟩ ≃ ⟨Ekin(ω0)⟩ ≃ θ(ω, T )/2.

However, for finite γ, the spectral broadening of the Lorentzian function modifies these averages and the

potential energy tends to be underestimated whereas the kinetic energy is overestimated. To address this

inaccuracy of the (ad)QTB methods, the colored random force given by equation (2.49) is modified such that

 0
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Figure 3.3: Correction factor
[
θ̃(ω, T )− θ(ω, T )

]
/θ(ω, T ) as a function of the frequency ω for γ = 20 ps−1

and ωcut = 3400 ps−1. The average power spectrum Cvv(ω) obtained for each atom type with the
q-TIP4/F. water model is also represented in arbitrary units for comparison. The sharp increase at the

cutoff frequency (≃ 18000 cm−1) is an artefact of the iterative procedure but it has no relevant impact on
the simulation results.
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θ(ω, T ) is replaced by θ̃(ω, T ) in order to verify:

〈
Ẽpot(ω0)

〉
=

∫ ωcut

0

dω

π

γω2
0

(ω2 − ω2
0)

2
+ γ2ω2

θ̃(ω, T )

=
θ(ω0, T )

2

(3.10)

This relation, which defines θ̃(ω, T ), has a similar structure as equation (3.5). Therefore, the deconvolution

procedure, previously used to correct the IRS, was also used to slightly modify θ(ω, T ) to compensate the

effect of γ on the potential energy. This correction of the potential energy is represented in Figure 3.3 with

γ = 20ps−1 and ωcut = 3400 ps−1. It should be noted that the frequency cutoff ωcut should be large enough

to enclose all relevant frequencies, including overtones, to obtain good average stretching energies and then

compute the potential correction factor. Over the whole relevant frequency range, the potential correction

factor is in the order of 1% to 2%.

To also study the choice of γ, the different potential energy terms in the q-TIP4P/F model are plotted

for different values of γ ranging from γ = 10THz to 44THz in Figure 3.4 with the different methods. One

may notice the differences between the PIMD - 64 beads and the QTB with γ = 20 THz. However, thanks

to the first-kind FDT used as a criterion (equation (2.51)) in the adQTB, the different energy terms in this

method get closer to the references values. As expected the energies depend weakly on γ where the most

important variations are on the intermolecular energies. It can be partly explained by the harmonic reference

used in equation (3.9) to compute θ̃(ω, T ) which is less accurate for the anharmonic low frequency modes.

An other possible explanation could be the presence of small residual ZPEL, that slowly vanishes when γ is

increased. Indeed, in the adaptation process, ∆FDT is averaged over all equivalent atoms and directions and

does not depend on the local molecular modes. To correct the overestimation of the average kinetic energy,

the previously defined deconvolution method is applied to the average power spectrum SLang(ω) as:

SLang(ω) =
∑
i

1

2
miCvivi(ω) (3.11)
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Figure 3.4: Thermodynamical averages of the different energy terms per water molecules of the q-TIP4P/F
water model with different value of γ computed in NVT at 300 K and ωcut = 3400THz. The intermolecular
energy is the sum of the Coulomb and vdW interactions. In classical and PIMD, the average energies are

independent of γ are were obtained with γ = 1ps−1 and are also represented by horizontal lines.
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Method adQTB PIMD - 64 beads

ωcut (THz) 1500 3400

γ (ps−1) 12 16 20 24 28 12 16 20 24 28

Ek ( kcal.mol−1) 8.52 8.48 8.45 8.43 8.40 8.64 8.61 8.60 8.59 8.58 8.55

Table 3.1: Average kinetic energy with different value of ωcut and γ. Because the PIMD method does not
depend on γ and ωcut no value is written.

where index i runs over all atomic degrees of freedom and Cvivi(ω) is the velocity-velocity autocorrelation

function computed from (ad)QTB trajectories via discrete Fourier transform. Before applying the deconvo-

lution procedure, SLang(ω) is divided by the kernel θ̃(ω, T ). Then the deconvoluted spectrum is re-multiplied

by the exact density θ(ω, T ) to yield the corrected power spectrum S0(ω). The corrected kinetic energy is

given by the integral of the corrected power spectrum S0(ω).

In equation (3.9) a cutoff frequency was introduced to avoid the divergence of the kinetic energy. Hence,

it has an effect on the average kinetic energy as shown in Table 3.1. Including the overtone by increasing

the cutoff frequency from ωcut = 1500THz to ωcut = 3400THz reduces the absolute difference between the

reference PIMD - 64 beads value and adQTB with different values of γ. The values which are obtained

with ωcut = 1500 ps−1 are generally slightly underestimated because this value of ωcut is almost equal to the

frequency of the stretching overtone, whose contribution to the vibrational energy is therefore only partially
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Figure 3.5: Plot of the average kinetic energy as a function of the friction coefficient γ computed in the
NVT ensemble at 300K with ωcut = 3400THz. In classical and PIMD methods, the average energies are
independent of γ and were obtained with γ = 1ps−1. Therefore, they are represented by horizontal lines.

The left plot is a focus on the PIMD and QTB average kinetic energies.
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Figure 3.6: Plot of the Oxygen-Oxygen RDF gOO(r) as a function of the atomic distance in Åwith different
values of γ and the same cutoff frequency ωcut = 3400 THz. The red curve is obtained using γ = 20 ps−1

but with an increased time step ∆t = 1 fs. The scale is chosen in order to highlight the small differences
between the curves.

accounted for in that case. To investigate further the choice of γ, the average kinetic energy was plotted

in Figure 3.5 at fixed value of ωcut = 3400THz within a larger fiction coefficient range with the different

methods. As expected, the average kinetic energy in classical MD is dramatically underestimated compared

to the PIMD references due to the lack of ZPE. However, including NQEs with the (ad)QTB methods allows

to recover an average kinetic energy close to the PIMD references within a large range of γ. The adQTB

recovers the PIMD - 64 beads reference, whereas the standard QTB is closer to the PIMD - 32 beads value

(note that in both QTB and adQTB, the kinetic energy is corrected for finite gamma errors). Furthermore,

without the kinetic correction, the Lorentizian function, defined in equation (3.9), is broadened resulting

in an overestimated average kinetic energy (orange curve in Figure 3.5). Moreover, in adQTB, the kinetic

correction increases from 8% to 29% when γ varies from 12 ps−1 to 44 ps−1 showing that the kinetic correction

is not negligible. It allows to recover an almost γ-independent estimation of the kinetic energy with less than

1% variation over the whole range of γ.

Looking at the different corrections presented in Figure 3.4 and 3.5, a value of the friction coefficient γ

can be set. It is important to choose it high enough so that the adapted value of γr does not reach 0, in

which case adQTB would not manage to entirely eliminate ZPEL. This is the case for all the values of γ

presented in Fig 3.4. Moreover, γ should not also be fixed arbitrary high due to its effect on the dynamics

(and more specifically on the self-diffusion coefficient, see below). Therefore, the friction coefficient was set

to γ = 20THz for all results presented throughout the thesis. It should also be noticed that thanks to the

potential and kinetic corrections applied while using the adQTB method, the different results obtained are

almost γ-independent and are also robust with respect to changes of this parameter, as it can be seen on the

Radial Distribution Function (RDF) O-O in Figure 3.6. The first peak is slightly affected by the changes

of the parameters. The sharper peak observed with the increased value of γ is consistent with the trend

observed for the intermolecular energies in Figure 3.4.

59



CHAPTER 3. NQES IN WATER VIA THE ADQTB

14

16

18

20

22

24

26

28

0 4000 8000 12000

(a)

γO(ω) (ps-1)

-10

-5

0

5

10

15

20

25

0 4000 8000 12000
Frequency (cm-1)

ΔFDT,O (arb.units)

0

10

20

30

40

50

60

70

0 4000 8000 12000

(c)

γH(ω) (ps-1)

-80

-60

-40

-20

0

20

40

60

80

0 4000 8000 12000
Frequency (cm-1)

ΔFDT,H (arb.units)

(b) (d)

Figure 3.7: Plots (a) and (c) are the converged γO(ω) and γH(ω) in ps−1. Plots (b) and (d) are the
corresponding ∆FDT (ω) in arbitrary units using the QTB (orange) and adQTB methods (green). All plots
were performed at 300 K at a fixed volume corresponding ρ = 0.995 g.cm−3. The average power spectrum

Cvv(ω) is represented as a blue dashed line in arbitrary units.

3.3.3 Adaptation Procedure

In the adQTB method, a different γr,α(ω) coefficient is associated to each atomic species and can be adjusted

to enforce the first-kind FDT where α is either O or H. The trajectory is decomposed into equal segments

of duration τ = 1ps−1. At the end of each segments, the spectra Cvivi(ω) and CviFi(ω) are estimated from

the previous segment for each degree of freedom via a discrete Fourier transform of the trajectory during

the past segment. Then, the γr,α(ω) values are adapted for each frequency and each atom type to reduce

∆FDT,O(ω) and ∆FDT,H(ω) using equation (2.51) and averaging over the three spatial directions and same

atom species. To start our simulations, the initial value of γr,α(ω) was fixed at γr,α(ω) = γ and they are

adapted for all discrete values ωj = 2πj/τ , inferior to the cutoff angular frequency ωcut as:

γ(n+1)
r,α (ω) = γ(n)

r,α + γAγτ
∆FDT,α

||∆FDT,α||
(3.12)

with Aγ the adaptation velocity coefficient. This term allows to ensure that the adaptation should not be

too fast such that the adaptation time is much larger than τ (with τ ≥ γ−1). A too high value can reduce

the accuracy of the method by adding excessive noise to γr,α. The normalisation factor is given by:
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||∆FDT,α|| =
√∑

ωj

∆FDT,α(ωj)2 (3.13)

The random force Fn+1(t) are then generated using the kernel γ
(n+1)
r,α (ω). The procedure is iterated until

γr,α(ω) converges. The adaptation process is kept active throughout the whole simulations so that γr,α

continues to fluctuate smoothly.

The different converged γr,α are shown in the top panel of Figure 3.7. They were obtained at 300 K and

at constant volume corresponding to a density ρ = 0.995 g.cm−3. Due to its low mass, the γr,H coefficient

for hydrogen atoms displays a higher variation in its value. Some oscillations around 1000-2000 cm−1 are

visible and correspond to the angle bending frequencies. It can be explained by the energies received by

the stretching modes but also by the leaking to lower frequency ones. These two phenomenon are both

competing, and looking at ∆FDT , the adQTB manages to correct this leakage highlighting the robustness of

the method. Moreover, for the intermolecular motions, γH(ω) is reduced to compensate for the ZPEL. It is

also increased around the stretching frequency ωstr ≈ 3300 cm−1, whereas γO(ω) counter-intuitively shows

a slight decrease. For both atoms, a sharp peak is noticed at the stretching overtone frequency. Therefore,

the ZPEL is corrected thanks to the relation ∆FDT (ω) = 0, enforcing the quantum distribution of energy for

each nuclear degree of freedom as it can be noticed on the bottom panel of Figure 3.7 for both atom types.

As expected, to correct the ZPEL, γr,α(ω) is reduced where an excess of energy occurs whereas it is increased

for negative deviations. Then, ∆FDT (ω) vanishes on average.

3.3.4 Adaptation Velocity

In equation (3.12) an adaptation velocity coefficient Aγ appears for the random forces kernel. The duration

of the adaptation procedure in the adQTB method can be adjusted thanks to this parameter. The adaptation

time, however, should be greater than τ (with τ > γ−1) in order to avoid large fluctuations in γr,α(ω) which

can reduce the accuracy of the adQTB method. The different results presented in this thesis were obtained

with a small Aγ = 0.1 ps−1 to reduce the fluctuations of γα(ω). With this value, the coefficient γr,α(ω)

converged over most of the frequency range after 100 ps of adaption process. However, the lowest frequency

(below 100 cm−1) and the stretching overtones required a longer adaptation time. Figure 3.8 shows that

Bond stretching Angle bending Intermolecular energies Kinetic energy

Standard QTB 5.81 1.2 -10.67 8.39

adQTB 6.37 1.17 -11.65 8.60

adQTB, ∆t=0.5 6.34 1.17 -11.66 8.50

Fast adaptation 6.38 1.16 -11.66 8.69

average FDT 6.35 1.19 -11.47 8.58

PIMD - 64 beads 6.43 1.18 -11.75 8.55

Table 3.2: Average potential and kinetic energy terms. Fast adaptation is obtained using Aγ,O = 1 ps−1,
Aγ,H = 10 ps−1 and adaptation segments of 100 fs, while average FDT procedure is obtained when

∆FDT (ω) is averaged over both atomic types.
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Figure 3.8: Plot of the adapted γO,H(ω) coefficients at different instants of the simulation, showing the
convergence of the adaptation process. In each case a fully converged reference curve is represented in

black. For the top panels a and b, we use an adaptation velocity coefficient Aγ = 0.1 ps−1 and a segment
length of 1 ps, while in the bottom panels c and d, we boosted the adaptation process by using

Aγ,O = 1 ps−1, Aγ,H = 10 ps−1 and a segment length τ = 100 ps. In each figure, the corresponding average
power spectrum Cvv(ω) is represented (in arbitrary units) as a dashed blue line for comparison. Note that
in the bottom panels, the spectral features are slightly broadened with respect to the top panels due to the

use of a smaller segment length τ .

the coefficients converged after 500 ps. It is also possible to reduce the length of the adaption procedure

by changing τ = 1 ps to τ =100 fs and using Aγ,O = 1ps−1 and Aγ,H = 10ps−1. The convergence is then

reached in about 10 ps. Although using a higher value of Aγ,α increases the fluctuations of the corresponding

γr,α(ω), it does not affect the average potential energy contributions as it can be noticed in Table 3.2. The

kinetic energy is slightly overestimated but it can be explained by the smaller τ which decreases the spectral

resolution 2π/τ and therefore affects the accuracy of the deconvolution procedure.

One may ask why different γr were used for each atom type. To answer this question, simulations were

performed in which ∆FDT is averaged over both atomic types so that γO(ω) = γH(ω). Although γ(ω)

converged, some ZPEL remains. Moreover, the ZPEL has an opposite trend on the converged γ(ω) of O and

H, showing that the mean ∆FDT (ω) is equal to zero even if some leakage is still present. As a consequence

of this remaining ZPEL, the RDFs of water is less structured than when different friction coefficients where

used for O and H. This is illustrated by the O-O RDFs in Figure 3.9. The results obtained while using

the average adaptation method indicated as average FDT in Table 3.2 also present a slightly higher average

intermolecular energy compared to the reference adQTB simulations. Hence, a less structured RDF O-O is
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Figure 3.9: Oxygen-oxygen RDF gOO(r) as a function of the atomic distance in Å with γ=20 ps−1 and
ωcut = 3400 Thz. The green curve labeled fast adaptation is obtained using Aγ,O = 1 ps−1, Aγ,H = 10 ps−1

and adaptation segments of 100 fs, while the purple curve corresponds to the average FDT procedure,
where ∆FDT (ω) is averaged over both atomic types. The vertical scale is chosen in order to highlight the

small differences between the curves.

expected as noticed in Figure 3.9. Although the difference is small and the averaged ∆FDT still allows to

eliminate the major part of the leakage, the figure illustrates the improvement achieved via atom-dependent

γα(ω) coefficients to better correct the ZPEL. Therefore, while using this method on inhomogeneous systems

(such as molecules in solution or structural interface), an independent set of γα(ω) for each atom type in the

system should be used to ensure the efficient compensation of the ZPEL.

3.3.5 Pressure Estimation and Langevin Barostat

One may be interested to perform simulation in the NPT ensemble to obtain different observables such as

the density ρ or the enthalpy of vaporization ∆Hvap. To do so, a Langevin piston method was implemented

adQTB

240 K 300 K

Kinetic energy Pressure Kinetic energy Pressure

9.81/8.88 1231/-138.2 9.38/8.50 1253/-92.89

PIMD - 32 beads

240 K 300 K

Kinetic energy Pressure Kinetic energy Pressure

8.06 32.51 8.41 -10.8

Table 3.3: Average energies and pressure estimator while using the adQTB and PIMD methods at two
different temperatures and constant volume corresponding to the density ρ = 0.995 g.cm−3. In the adQTB
the first value in each observable does not use the kinetic correction whereas the second value used the

kinetic correction. The kinetic energy is given in kcal.mol−1 and the pressure in atm.
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adQTB

240 K 300 K

Kinetic pressure Potential term Kinetic pressure Potential term

-13.99/12.58 -12.76/-12.72 14.26/12.91 -13.01/-13.00

PIMD - 32 beads

240 K 300 K

Kinetic pressure Potential term Kinetic pressure Potential term

12.27 -12.23 12.78 -12.79

Table 3.4: Values of the kinetic pressure and potential term part of equation (3.14) at two different
temperatures. The potential term refers to the second part of the equation. In the adQTB the first value in
each observable does not use the kinetic correction whereas the second one is given with it. All values are

given in kcal.mol−1.Ang−3.

in Tinker-HP [191–193] for which the isotropic pressure estimator is given by:

Pint =
2K

3V
− dU

dV
(3.14)

with V the simulation box volume and U the interatomic potential energy whose derivative with respect

to V is computed via finite difference. The first part of the equation is designated as the kinetic pressure

whereas the second part is the potential term. To compute the kinetic energy, the centroid virial estimator

was used in PIMD while in (ad)QTB the estimator used is defined as:

K(v1, . . . , v3N ) = η−1
∑
1

1

2
miv

2
i (3.15)

where η is the kinetic correction factor obtained through the deconvolution procedure and defined as the

ratio of the raw kinetic energy to the corrected one. Neglecting the kinetic correction would result in an

overestimation of the pressure of about 1000 atm at 240 K and 300 K as it can be seen on Table 3.3. It

would translate in an error of almost 5% on the evaluation of the density ρ. This sensitivity to the correction

arises because both terms of equation (3.14) almost cancel each other (Table 3.4) so that even a small error

on one of these terms can cause a non negligible error on the density calculation. Thus, the pressure depends

critically on the kinetic pressure estimation and therefore the kinetic correction factor η which is computed

via the deconvolution procedure.

In the Langevin piston method, the simulation box volume varies according to the following equation [192]:

V̇ = 3V α

α̇ =
3

µ
[V (Pint − Pext) + kBT ]− γV α+

√
2γV kBT

µ
R(t)

(3.16)

with α the piston velocity, µ the piston mass and R(t) a gaussian white noise. This is a Langevin dynamic

for the volume aiming at imposing the appropriate constant pressure with a probability density proportional

to e−β(PextV+ 1
2µα

2). In (ad)QTB dynamics, the volume degree of freedom couples to the atomic degrees
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240K

µ (g.Å2) 105 106 2.56 107

Tpiston (K) 346.76 264.45 254.13 243.62

ρ (g.cm−3) 0.999 1.000 1.000 1.000

300K

µ (g.Å2) 105 106 2.56

Tpiston (K) 389.39 313.38 310.51

ρ (g.cm−3) 0.997 0.997 0.997

Table 3.5: Values of the density and piston temperatures with different values of the piston mass µ.

of freedom which have an effective temperature higher than the physical temperature T. Therefore, the

piston temperature ⟨α2/kBµ⟩ can be higher than T which is not physical. To avoid the overestimation

of the piston temperature, a large mass µ and a small piston friction γV can be used. It slows down the

volume dynamics and reduces the coupling to the high frequency modes. As a consequence, the volume

couples essentially with the slow molecular motion whose effective temperature in adQTB is close to kBT

as: θ(ω −→ 0, T ) = kBT . Different values of µ were used to study the effect of the overestimation of the

piston temperature on the density and are summarized in Table 3.5. Increasing the piston mass allows to

recover the correct piston temperature which becomes higher of only a few K than T without affecting the

values obtained for the density. However, increasing µ slows down the piston dynamics and because it does

not have a significant effect on the density, the results presented throughout this chapter were obtained with

µ = 105 g.Å
2
. Nonetheless, it should be noted that increasing µ allow to enforce not only the correct average

volume, but also the correct volume fluctuations which can be important for other observables such as the

isothermal compressibility. Despite this, the volume fluctuates fast enough for an efficient sampling of the

density considering that only a few ns are required to reach statistical convergence. It is also in principle

possible to guarantee that the piston temperature is equal to T by changing the white noise R(t) of equation

(3.16) for a colored noise by adapting the adQTB procedure to enforce the classical FDT on α (though this

approach was not necessary here and was not implemented).

3.4 Results on the q-TIP4P/F Potential

The role of NQEs in liquid water has been a long work interest both experimentally and theoretically [194–

198]. The ability of the adQTB to capture the subtle balance between the stretching and bending ZPE

highlights the robustness of the method. Therefore, after the study of the influence of the different parameters

and corrections of the adQTB method presented in Section 3.3, we present here the main results of this study

with a choice of relevant thermodynamical observables. Since static averages are independent of the parameter

γ, it was chosen to be equal to γ = 1ps−1 in classical Langevin MD and PIMD (and TRPMD) simulations,

whereas for the (ad)QTB methods it was chosen to be equal to γ = 20ps−1. Simulations were essentially

converged with 32 beads and with a small time step of ∆t =0.2 fs (cf Table 3.2).
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Ek Ep AB BS vdW Coulomb rOH (Å) θHOH(deg)

classical 2.69 -10.22 0.41 1.18 2.20 -14.00 0.96 104.8

QTB 8.39 -3.63 1.23 5.81 1.72 -12.38 0.98 104.6

adQTB 8.60 -4.11 1.17 6.37 2.11 -13.76 0.98 104.7

PIMD 8.41 -4.29 1.17 6.26 2.15 -13.87 0.98 104.7

Table 3.6: Physical observables obtained with the different methods at 300 K. Ek and Ep denote the
kinetic and the total potential energy, while AB, BS and VdW and Coulomb refer to the different energy
terms in the q-TIP4P/F potential, respectively for molecular Angular Bending, Bond Stretching, van der
Waals interaction and direct Coulomb interaction. All energies are given in kcal.mol−1 per water molecule
and obtained from 1 ns simulations (preceded by 1.5 ns adaptation for the adQTB) at constant volume

corresponding to the density ρ = 0.995 g.cm−3. The standard errors on the energy values are all inferior to
0.01 kcal.mol−1 per molecule. The table also shows the averages of the oxygen-hydrogen distance rOH and

of the molecular angle θHOH .

3.4.1 Structural Properties of Water

Radial Distribution Function

In Figure 3.10 the different RDFs obtained with all the methods are presented. Comparing classical MD with

their quantum counterparts (PIMD and (ad)QTB curves) it appears that quantum RDFs are less structured.

This is a consequence of the inclusion of NQEs that slightly modifies the local water structure, which in

turn affects other properties such as the density. The intramolecular peaks are much broader in quantum

simulations due to strong ZPE effects on intramolecular modes. The ZPEL affecting these intramolecular

modes destabilizes the hydrogen bond network in QTB simulations. Hence, the different intermolecular

peaks are broadened. In contrast, the adQTB suppresses the leakage and the corresponding curves almost

superimpose with the PIMD reference thanks to the first-kind FDT used as a criteria.

Average Energies Terms

The impact of NQEs on the different equilibrium properties and energies of water at ambient conditions

were further analyzed and are reported in Table 3.6. As expected, the intermolecular energies (vdW and
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Figure 3.10: Radial distribution function at 300 K and constant volume corresponding to the density
ρ = 0.995 g.cm−3 using the different methods.
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Coulomb) are only slightly affected by NQEs and classical and PIMD values are close. However, in QTB

simulation, the intermolecular energies are overestimated by more than 1 kcal.mol−1 due to the ZPEL. This

error is well corrected by the adQTB that recovers values comparable to the PIMD ones. The adQTB is very

accurate on the intramolecular energy terms (angle bending and bond stretching), but also on the kinetic

(which comprises large amounts of ZPE) and potential energies thanks to the different correction procedures

added to the adQTB method and presented in Section 3.3. The adQTB method also manages to capture the

elongation of the OH distance induced by NQEs while the angle is unaffected.

3.4.2 Infrared Absorption Spectra

Although PIMD gives a numerically exact reference for static quantum properties, the computation of dy-

namical observables, such as the infrared absorption spectra (IRS), represents a theoretical challenge and it

is a subject of intense research [135, 141, 199–201]. There is no reference method to compute IRS exactly

while accounting for NQEs in large systems but several approximations have been developed [127, 128, 202].

Benson et al. have recently compared different state-of-the-art approximate methods to calculate IRS in

liquid water and ice [187]. They showed that the linearized semiclassical initial value representation (LSC-

IVR) gives the most accurate IRS whereas TRPMD is presented as the cheapest available approach to yield

reliable result. Although not formally derivable from first principles, the QTB method has already been used

to compute IRS and provided relevant results in comparison with experiments [15, 112]. Moreover, the short

time dynamics is only slightly affected by the thermostat and it is essentially classical, but the sampling of

the quantum space allows to explore configurations which would not be possible in classical MD. Therefore,

much like LSC-IVR, the QTB combines classical dynamics with approximate quantum initial value sampling.

Moreover, with the deconvolution procedure presented in Section 3.3.1 the main effect of the thermostat is

efficiently suppressed.

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000  2500  3000  3500  4000

n(
ω

)α
(ω

) (
a.

u)

ω (cm-1)

Classical
adQTB

TRPMD

 0
 0.4
 0.8
 1.2

 6000  7000  8000

Figure 3.11: Infrared absorption spectra in arbitrary units at 300 K using adQTB and TRPMD compared
to classical MD. The quantum spectra are obtained from the Kubo-transformed dipole correlation functions

given by equation (2.30).
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Indeed, adQTB is able to effectively compensate for the ZPEL in water molecule and yields a IRS which

is very close to that of the LSC-IVR (not shown here) approach, even for spectral features corresponding to

anharmonic resonances. [188]. The IRS computed from adQTB simulation is compared to those obtained

with TRPMD and classical MD in Figure 3.11. Compared to TRPMD, the low-frequency absorption band

computed with adQTB is slightly more intense and the bending peak around 1500 cm−1 is blue-shifted and

broadened. The O-H stretching peak at 3500 cm−1 is sharper in adQTB than in TRPMD. Compared to

classical MD, stretching peaks of adQTB and TRPMD are equally red-shifted, which is the most prominent

effect of the inclusion of NQEs. Moreover, the overtone at 7000 cm−1 has a higher intensity in adQTB which

is in agreement with LSC-IVR. These differences are mostly in favour of the adQTB approach, since TRPMD

has been shown to have spurious broadening and to strongly underestimate anharmonic resonances [187].

3.4.3 Thermodynamic Properties

Density and enthalpy of vaporization

Thanks to the study of the pressure estimation and the Langevin barostat in Section 3.3.5, it is possible

to explore fixed-pressure simulations using the Langevin piston barostat defined in equation (3.16). In the

adQTB framework, the pressure estimator is challenging because it is defined by the difference of two terms

which almost cancel each other. If small inaccuracies remain on either of these two contributions, it can

cause non negligible errors. The results obtained in Figure 3.12 were computed as a function of temperature

at P = 1 atm.

The competition between the stretching and bending ZPE on the hydrogen bonding explains why classical

MD and PIMD provide very similar results over the all range of temperatures. Moreover, both curves have

the characteristic bell-shape with a maximum around 280 K. This bell-shape is counter intuitive in water

which is one of the anomalous properties of this compound [156]. Then, it makes an interesting property on

which to study NQEs. The standard QTB fails to capture this temperature dependence: it gives values that

decrease monotonically and strongly overestimates the variations over the temperature range. Compensating

for the leakage in adQTB allows to recover the overall bell shape and a good agreement with the PIMD

reference. Moreover, the adQTB is very accurate within the temperature range interesting for biological

systems. However, the curvature of the density is slightly underestimated, leading to errors of the order of

0.005 g.cm−3 in the low and high temperature limits.

The enthalpy of vaporization, ∆Hvap, was also computed in the same NPT simulations. It has been

shown that NQEs play an important role on this observable and need to be explicitly included for accurate

predictions [203, 204]. It is defined as:

∆Hvap = Ug − Ul + P (Vg − Vl) (3.17)

where Ug and Ul are the internal energies in the gas and liquid phases and Vg and Vl are the corresponding

average volumes at pressure P. The classical ∆Hvap is always overestimated compared to the corresponding

PIMD values. By including NQEs with the standard QTB method, ∆Hvap decreases and becomes underesti-

mated due to ZPEL. Nonetheless, the adQTB allows recovering an almost perfect agreement with the PIMD

reference highlighting that the results are unaffected by the inaccuracy in the determination of the density

in the low and high temperature ranges.
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Figure 3.12: Infrared absorption spectra in arbitrary units at 300 K using adQTB and TRPMD compared
to classical MD.

Self-diffusion Coefficient

The dynamical properties related to the slow molecular motion of the dynamics cannot be assessed quan-

titatively in adQTB simulations because of the need for relatively large friction coefficient (γ = 20ps−1 in

(ad)QTB methods). Comparing TRPMD/classical self-diffusion coefficient D to (ad)QTB ones in Table 3.7,

a significant drop is observed which shows the higher viscosity induced by the larger friction coefficient γ.

On the other hand, the difference between classical MD and TRPMD can be explained by considering that

including NQEs increases the energy in the low-frequency modes which influences the most the diffusion co-

efficient. In adQTB, the diffusion coefficient D ≈ 0.8 cm2.s−1 is underestimated by a factor 2.5 with respect

to TRPMD value. This trend is confirmed by the results obtained in classical MD while using γ = 1ps−1 and

γ = 20ps−1 which give respectively D ≈ 1.9 cm2.s−1 and D ≈ 0.7 cm2.s−1. Unfortunately, the deconvolution

procedure cannot help here since D corresponds to the zero-frequency component of the vibrational spectrum

and the deconvolution procedure does not give reliable results in this spectral region [186]. It is possible

to reduce γ = 12ps−1 to increase the accuracy of D giving D ≈ 1.2 cm2.s−1 in adQTB. However, the γ

value cannot be reduced further than γ = 10ps−1 since the friction force will not be able to dissipate the

energy excess caused by the ZPEL. The coefficients γr will reach 0 which means that the adQTB would not

manage to entirely correct the ZPEL. Moreover, a too high value of γ will induce a less efficient sampling,

due to the reduced value of D. However, thanks to the low computational cost of the adQTB method, the low

self-diffusion constant is not as problematic as it would be for PIMD simulations. There is also the possibility

to use a fast-forward Langevin scheme [205] to improve the self-diffusion estimation although it has not been

tested and implemented yet.

Classical QTB adQTB TRPMD

D (105. cm2. s−1) 1.89 1.65 0.81 2.25

Table 3.7: Self-diffusion coefficient obtained in classical MD, (ad)QTB and TRPMD simulations.
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3.5 Conclusion

Different methods based on path integrals formalism exist to take NQEs into account in MD simulations.

However, they are computationally expensive, reducing their range of applicability. It explains the develop-

ment of alternative methods to include NQEs such as the QTB, which is faster. However, this method suffers

from an unphysical flow of energy which is corrected through an alternative method called adQTB. In this

chapter we presented some technical improvements that were made to the adQTB method with respect to the

original studies [15, 112]. The adaptation efficiency was enhanced by averaging the γr over the three direc-

tions but also for all same-type atoms. A deconvolution procedure was also added to correct the broadening

caused by the friction forces in the potential and kinetic energy terms which can be used on any systems.

The results obtained with adQTB on static properties as well as vibrational spectra presented throughout

this chapter are in very good agreement with the reference ones highlighting the efficiency of the method to

explicitly include NQEs. Therefore, the adQTB aims to renew with the original promise of the QTB method

to provide approximate quantum simulations at an almost classical cost.

The additional cost between classical MD and adQTB comes for the additional data needed. These data

are the colored noise of the atom and its velocity for each time step in the current simulation segment. They

are used for the dynamics and also to compute ∆FDT (ω) at the end of each segments. For the simulation

box used and the q-TIP4P/F water model, the communication overhead in our parallel implementation

inside TINKER-HP represents around 20% of the adQTB simulation time. However, some scalability tests

performed on systems containing over 1 million of atoms show that the overhead remains less than 25 %.

Moreover, it should be noted that q-TIP4P/F is a really inexpensive model (since it was firstly designed for

TRPMD simulations). Then, the communication overheads should become negligible compared to the total

simulation time if more complex and realistic interaction potentials were used.

The adQTB, with its cost comparable to classical simulations, is a powerful method to include NQEs for a

broad range of applications, in particular to the large-scale simulations required in the field of biophysics and

biochemistry. However, the potential used has an inexpensive description of the atomic forces and one may

ask how the different results obtained with q-TIP4P/F are affected if an another model is used. Different and

more sophisticated models are available such as AMOEBA [31, 206], SIBFA [207] or GEM [208]. Nonetheless,

most of them get some of their parameters from quantum mechanics calculations and other from fitting to

experimental data. Thus, using PIMD or adQTB methods to include NQEs on these models will result in a

double counting of these effects: one time with the FF parameters and a second time within the dynamic.

To avoid this and be able to use the adQTB method on more complex systems and realistic potential, a new

water model should be developed where the NQEs are explicitly taken into account on the onset. Thereby,

the next chapter will be devoted to the development of a new water model, designed to be used in simulations

that explicitly account for NQEs (via PIMD or adQTB) and avoid their double counting.
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4.1 The Need for a New Water Model

With the extensive development of computing hardware, such as GPU computing [2–5], and techniques

such as enhanced sampling [6, 7], MD is now capable to reach timescales of ms making it possible to study

macromolecules [4]. The quality of the different thermodynamical observables obtained through a dynamics

simulations relies on both the amount of phase-space sampling and on the accuracy of the PES. Most stan-

dard additive FFs, such as AMBER [209, 210], CHARMM [211–214] or OPLS [65, 215, 216] have been widely

used thanks to their low computational cost and they have been refined throughout the years. Although they

provide reliable results for various properties, their accuracy is still limited [217]. The major limitation of

these FFs is the use of fixed partial atomic charges to model electrostatic interactions and their lack of a

fine description of many-body polarization which inhibits their transferability when the atomic environment

changes. Therefore, to circumvent that, much effort has been made to explicitly include many-body polar-

ization in FFs by using different approaches such as Drude oscillators, fluctuating charges or induced dipoles

(see Chapter 1 - Section 1.2.6). Then, different versions of CHARMM [218, 219] and AMBER [219] have

been published where polarization was added to the existing non polarizable FF. Nonetheless, it has been

shown that FFs should include polarization from scratch [82]. Thus, much effort has been made to design

new FFs which include polarization from the outset such as PFF [220], AMOEBA [31, 206] or SIBFA [207].

However, these models were parameterized for classical simulations and do not take into account explicitly

NQEs hence reducing their transferability. Usually NQEs are implicitly included by fitting the analytical

PES to recover thermodynamic observables in classical MD simulations. Therefore, using adQTB or PIMD

methods to include NQEs inside a dynamics will end up in a double counting of these effects: one time in

the parameters involved in the FF and one more time with the dynamics. Moreover, many recent models use

high quality ab initio data as a basis for the PES and it has been shown that with such a high accuracy, NQEs

must be taken into account explicitly to accurately reproduce thermodynamic observables [29]. Although

q-TIP4P/F water model is fitted with TRPMD simulations to reproduce some properties, its inexpensive

description of the atomic forces does not make it suitable to study complex systems, even if it is widely used

as a benchmark for NQEs simulation method. Therefore, a new polarizable FF which explicitly takes into

account NQEs on the onset is needed.

We developed a new polarizable FF, called Q-AMOEBA, that explicitly include NQEs. The methodology

to obtain this new FF, with its different results, are presented in this Chapter. Q-AMOEBA uses the

AMOEBA PES as a basis which includes many-body polarization effects in its functional form to go beyond

the pairwise approximation. Thanks to the promising results obtained in Chapter 3, we have decided to

use the adQTB method to reliably approximate NQEs in liquid water with a cost similar to classical MD

to develop our new model. The Q-AMOEBA polarizable water model has been parametrized using the

ForceBalance (FB) software [184, 221] in combination with Tinker-HP [28] for MD simulations. This new

model enables us to finely study the net effects of NQEs by comparing the properties that are obtained with

it but with purely classical dynamics. All the different results obtained are compared with path integrals

results to ensure that adQTB correctly simulates NQEs in Q-AMOEBA.
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4.2 The AMOEBA Water Model

The AMOEBA FF has been used to develop a model which includes explicitly NQEs. The total potential

energy of AMOEBA [31] can be expressed as the sum of bonded and non-bonded energy terms:

Etotal = Ebonded + Enon−bonded

Ebonded = Ebond + Eangle + Ebθ

Enon−bonded = EvdW + Eperm
ele + Eind

ele

(4.1)

which is analogous to equation (1.45). The functional forms for bond stretching Ebond and angle bending

Eangle were taken from MM3 FF [222]. They include anharmonicity with the use of higher order deviations

from ideal bond lengths and angles. An Urey-Bradley term was added in order to better reproduce splitting

of the symmetric and asymmetric stretch vibrations. In the original AMOEBA model, the ideal bond length

was set to the experimental value of 0.9572 Å [223]. However, the ideal bond angle was set to 108.5◦, which

is 4◦ larger than the experimental gas-phase angle of 104.52◦ to better reproduce the average experimental

angle in liquid water.

The non-bonded terms are composed of the van der Waals (vdW) interactions and the electrostatic

contributions from both permanent and induced dipoles. The vdW functional term uses Halgren’s buffered

14-7 potential to model the pairwise additive interactions for dispersion at long-range and exchange-repulsion

at short range [224]:

EvdW = εij

(
1 + δ

σij + δ

)7
(

1 + γ

σ7
ij + γ

− 2

)
(4.2)

with εij the potential well depth and σij = rij/r
0
ij where rij is the i -j separation and r0ij is the minimum

energy distance (see Figure 1.2). In AMOEBA, the vdW parameters were set to γ = 0.12 and δ = 0.07. The

combining rules used for r0ij and εij are given by:

r0ij =

(
r0ii
)3

+
(
r0jj
)3

(r0ii)
2
+
(
r0jj
)2

εij =
4εiiεjj(√

εii +
√
εjj
)2

(4.3)

A hydrogen reduction factor is added which moves the hydrogen vdW center towards the oxygen along the

O–H bond. Permanent atomic monopole, dipole and quadrupole moments are placed on each atomic center.

They were computed via distributed multipole analysis (DMA) at the MP2/aug-cc-pVTZ level of theory and

then optimized against a high-level ab-initio PES [225]. Polarization effects are treated via mutual induction

of dipoles at atomic centers where a classical point dipole moment is induced at each polarizable atomic site

according to the electric field felt by that site. This molecular polarization is done via an induction scheme

where an induced dipole produced at any site i will induce dipoles at each site until the scheme reaches

convergence by using the Thole’s damped interaction method. Thole’s approach is damped at very short

range to avoid the polarization catastrophe [89]. Then, a smearing function is applied on the atomic multipole
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moments in each pair of interaction site. Subsequently, the dipole interaction energy has finite value instead

of becoming infinite as the separation distance becomes zero. In AMOEBA, the smearing function is defined

as:

ρ =
3a

4π
e−au3

(4.4)

with u = rij/(αiαj)
1/6 the effective distance as a function of the linear separation rij and atomic polariz-

abilities of site i and j. The factor a is dimensionless width parameter of the smeared charge distribution

and it controls the damping strength. In AMOEBA, it was chosen to be a = 0.39 which leads to a stronger

damping and less short-range polarization than the original value of 0.572 given by Thole [206]. However,

the atomic polarizabilities for oxygen (0.837 Å3) and hydrogen (0.496 Å3) were kept to the same value given

by Thole.

4.3 ForceBalance: A Systematic Force Field Optimization

The main challenge in FF development is to choose functional forms that are computationally efficient and

flexible enough to capture the relevant physical interactions involved in the different regions explored by the

sampling. The fit of the different parameters involved in the FF is also important and usually requires to

use fitting data from experimental results and QM calculations. Fitting the different parameters of the FF

is often done manually via a trial and error method or it can be performed automatically using different

procedure such as least square optimization. ForceBalance (FB), an automatic optimization framework, has

already been used to develop new FFs, such as iAMOEBA [184], and also to revise the parameters of existing

FFs, such as TIP3P/TIP4P water models. During this thesis, FB was also used to parameterize a revised

AMOEBA model with explicit NQEs by using experimental and ab initio data (Figure 4.1).

4.3.1 The Optimization Procedure

FB supports many different optimization schemes but the one used during this thesis is the Newton-Raphson

with an adaptive trust radius [226]. The overall objective (cost) function is expressed as a sum of weighted

mean-square errors over the experimental and theoretical target data sets. It requires the derivatives of

the different estimators of the experimental data used in the data set (for example densities, enthalpy of

vaporization, etc ...) with respect to the FF parameters. Although it is possible to use finite differences to

numerically perform these derivatives, they are very sensitive to statistical noise on average values (computed

over a molecular dynamics simulation). Then, very long simulations have to be performed. Furthermore,

multiple simulations with slightly different parameters would have to be performed to compute a single

derivative. Since the expression of the different observables depends on the parameters through the potential

energy E, it is possible to use the explicit form of the partition function to compute the parametric derivatives

as an average value over a single MD simulation with the current parameters. Then, one may express the

ensemble average of an observable A which depends explicitly on FF parameters as:

⟨A⟩λ =
1

Z(λ)

∫
A(r, V )e−β(E(r,V ;λ)+PV ) drdV (4.5)
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Figure 4.1: ForceBalance procedure. The optimization starts with an initial set of parameters which are
used to generate the new FF parameters and perform simulations. The objective function is a weighted sum
of squared differences between the simulation results and the reference data, plus a regularization term that
prevents overfitting. The optimization method updates the parameters in order to minimize the objective

function. Picture extracted from [184, 221].

with r a molecular configuration, λ the force field parameter, E(r, V ;λ) the potential energy and Z the

partition function. Therefore, the derivative can be expressed in classical NPT ensemble as:

∂⟨A⟩λ
∂λ

=

〈
∂A

∂λ

〉
λ

− β

[〈
A
∂E

∂λ

〉
λ

− ⟨A⟩λ
〈
∂E

∂λ

〉
λ

]
(4.6)

where ⟨·⟩λ denotes an expectation value over the distribution ρ(r;λ) ∝ e−β(E(r,V ;λ) + PV ). This equation

can be generalized to path integral simulations using the path integral partition function as:

∂AN,λ

∂λ
=

∂

∂λ

[∫
dr1 . . . drNA(λ)ρN (r1, . . . , rN ;λ)

]

=

〈
∂A

∂λ

〉
N,λ

− β

〈
A(λ)

(
1

N

N∑
i=1

∂E(ri;V ;λ)

∂λ

)〉
N,λ

− ⟨A(λ)⟩N,λ
1

ZN (λ)

∂ZN

∂λ

=

〈
∂A

∂λ

〉
N,λ

− β

[〈
A

∂E

∂λ

〉
N,λ

− ⟨A⟩N,λ

〈
∂E

∂λ

〉
N,λ

]
(4.7)

with the average value over the beads for any function O is denoted as O =
N∑
i=1

O(ri, V ;λ)/N and

ρN (r1, . . . , rN ;λ) =
e
−β

[
N∑

i=1

E(ri;V ;λ)

N +K(r1,...,rN )+PV

]
ZN (λ)

(4.8)

78



CHAPTER 4. DEVELOPMENT OF Q-AMOEBA

K(r1, . . . , rN ) is the path integral harmonic energy that couples the different beads and which is independent

of λ and ZN (λ) is the partition function which normalizes ρN .

To start the FB optimization procedure, we have decided to use the initial parameters of the AMOEBA

water model (denoted as AMOEBA03). Because most of its parameters (such as atomic permanent multipolar

moments) are obtained directly from ab initio calculations, only the vdW parameters were modified. More

specifically, the optimization was performed on both vdW radii and epsilon values of the Halgren 14-7

potential associated to oxygen and hydrogen atoms, as well as the buffer radius of the hydrogen atom

(equation (4.3)).

4.3.2 Results using Quantum Chemistry Data Only

One may want to obtain a new reliable FF using only ab initio data and be able to reproduce thermodynamical

observables. To do so, the ab initio references include properties for systems ranging from the monomer to

clusters of 22 water molecules. The charges, dipole, quadrupoles, polarizability, vibrations and optimized

geometries were used for the monomer. The ab initio energies and optimized geometries for the ground state

dimer, Smith dimer set (10 total) [227], trimer, tetramer, pentamer, eight hexamers [228], two octamers [229],

five 11-mers [230], five 16-mers, two 17-mers and four 20-mers [231] were also added in our target ab inito QM

data set. Using the previous work by Wang et al. [184], 42 000 cluster geometries obtained with AMOEBA

for temperatures ranging from 249 to 373 K were used where energies and gradients were computed for the

different clusters via RI-MP2/heavy-aug-cc-pVTZ [232, 233] with the Q-Chem 4.0 software [234]. These data

were already available in the FB software in the ’studies/015 amoeba tinker’ directory. Then, they were used

with FB to obtain a new set of vdW parameters fitted only on ab initio data.

Firstly we computed the binding energy (BE) of our new set of parameters to ensure that the FB procedure

worked. In ab initio calculations, the BE is defined as:

∆Ebinding = Ecluster − nEmonomer (4.9)

with Ecluster the total energy of the studied cluster, n the number of water molecules and Emonomer the

energy of an isolated optimized water molecule. Then, ∆Ebinding includes the intramolecular deformation

interaction energy of the cluster. Following this, it is possible to define the cluster binding energy computed

with our new set of parameters obtained through a FB procedure as:

∆EFF
binding = (Eintra + Einter)cluster − n(Eintra)monomer (4.10)

Moreover, the energy of an optimized water monomer n(Eintra)monomer is equal to 0 kcal.mol−1. Then, it is

possible to re-write equation (4.10) as:

∆EFF
binding = (Eintra + Einter)cluster (4.11)

Therefore, the binding energies of different clusters ranging from dimer to 20-mers were computed and

compared with ab initio references as well as AMOEBA03. To do so, the Root Mean Square Error (RMSE)

were computed. It is equal to 2.21 kcal.mol−1 for our new set of parameters whereas AMOEBA03 gives

3.33 kcal.mol−1. Then, this new set of parameters was used with PIMD and adQTB simulations with
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Figure 4.2: Density obtained with the FB optimization using only ab initio chemistry data. The red and
green curve correspond to the PIMD and adQTB methods respectively. Because the first FB procedure
which changed only vdW parameters does not give a reliable shape, the Thole parameter was reduced to
decrease the RMSE. The corresponding density with both methods are plotted with a dot and labelled

’Thole-’. The black curve corresponds to the density obtained while adding 26-mer [235] and 32-mer [236]
at MP2 level using aug-cc-pvDZ basis in the data set.

Tinker-HP to see if ab initio polarizable force fields and quantum simulations are able to reproduce different

observables such as the density. The adQTB and PIMD methods were used to compute the density in Figure

4.2 (cross curves). Both methods fail to reproduce the bell-shape of the density. Moreover, adQTB tends

to systematically slightly underestimate the density by roughly 1% with respect to the PIMD reference, but

this discrepancy is small compared to the difference between the experimental data. Consequently, the main

problem in our FF is the parameters obtained after the FB procedure and not the method used to include

NQEs.

So far, these results were obtained by modifying only the vdW parameters with respect to the initial set of

parameters of AMOEBA03. However, it is also possible to change the Thole parameter and see if the results

previously obtained improve. To do so, we have decided to change the width parameter a. The corresponding

RMSE obtained is equal to 1.99 kcal.mol−1 and its density with this new width parameter using adQTB

and PIMD methods is shown in Figure 4.2 (because the Thole parameter a was reduced, its corresponding

density is referred as Thole-). One may notice that no matter which method is used to compute ρ and how

the RMSE is changed, the over-all shape does not correspond to the one given by the experiment (purple

curve). Moreover, changing the parameter a has the only effect to shift the curves.

To reduce the number of parameters in the FB procedure, we have decided to keep the Thole parameter

a to its initial value. One may think that having a data set which includes more conformations will help to

recover the density since it gets closer to the bulk phase. Therefore, more ab initio data were also added to

study how the new vdW parameters obtained with this new target data set affect the density. This new data

set includes 26-mer [235] and 32-mer [236] at MP2 level using aug-cc-pvDZ basis set. Although the RMSE is

reduced (2.06 kcal.mol−1 while the previous parameter set gave 2.21 kcal.mol−1), its corresponding density

is strongly overestimated compared to the one previously obtained (black curve). Moreover, it is really close

to the density obtained using ab initio-based polarizable TTM2.1-F force field [237]. Therefore, we have also
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System Reference data Data type Data point Weight

Clusters Gas Phase Dipole-Quadrupole CCSD(T) 1.0

Gas Phase Vibrational modes CCSD(T) 1.0

Smith Dimer CCSD(T) BE 10 1.0

Small Gas Phase Cluster CCSD(T) BE 21 1.0

Large Gas Phase Clusters MP2 BE 18 1.0

PE and AF MP2 42.000 1.0

Liquid ρ Expt. 10 1.0 0.6

∆Hvap Expt. 10 0.4

Table 4.1: Reference data used in FB to derive the new sets of parameters. BE refers to Binding Energies,
PE to Potential Energies and AF to Atomistic Forces. The table also shows the weights that were applied
to the different target properties. The Clusters were only used in the objective function on the results

discussed in Section 4.3.2.

decided to only use the initial ab initio set of data already available in the FB software.

4.3.3 Results using thermodynamic observables

Although the RMSE is decreased while using only quantum chemistry data in FB, the density computed with

both methods are overestimated and the bell-shape is not recovered. Changing the Thole parameter as well

as the vdW ones did not give the expected results. Therefore, thermodynamic observables have to be added

to our objective function in FB to ensure that the new FF parameters obtained are capable to reproduce

different properties. The density ρ and enthalpy of vaporization ∆Hvap were added to the cost function

(Table 4.1) and then evaluated at different temperatures ranging from 249.15 K to 369.15 K under 1 atm

using with the TINKER-HP multi-GPUs software. All simulations were carried out for N=4000 molecules

in periodic boundary conditions with a cubic box. For each FB iterations, the MD simulation includes 1 ns

of equilibration and 4 ns of production.

Thanks to its low computational cost, the FB procedure done with the adQTB method was the first to

converge. The density obtained with this new set of parameters is shown in Figure 4.3. Including the density in

the objective function allows to recover the correct bell-shape. However, it is overall underestimated compared

to the experimental data. Therefore, we have decided to also modify the average O-H-O bond angle and bond

length. These new values get closer to theoretical value given in gas phase which makes our fit procedure

encouraging. By doing this, the density is improved in the low and high temperature ranges as it can be seen

in Table 4.2 and in Figure 4.3 (referred as adQTB finely tuned). The need to also modify these parameters

can be explained by the high frequencies of the intramolecular stretching and bending modes sampled by the

quantum dynamics, which are associated with high zero point energies, and then impact the average value

of the corresponding bond angle and bond length. Then, we have decided to use this set of parameters with

the PIMD method to ensure that the density is correctly sampled no matter which method is used to include

NQEs. However, at 298.15K, the corresponding density is ρ = 1.006 g.cm−3 whereas the same parameters

in adQTB gives ρ = 0.999 g.cm−3 . These differences can be explained by how the pressure estimator is

calculated between adQTB and PIMD. As explained in Chapter 3, the pressure estimator is composed of
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Figure 4.3: Density obtained with the FB procedure using thermodynamical observables in the cost
function. When only the vdW parameters were changed, the corresponding curve is labelled with a cross.
The PIMD curve uses the vdW adQTB parameters. Because at 298.15K, its density is overestimated, no

calculations at temperatures higher than 321.15K were done. The finely tuned referred to the intramolecular
terms changed which is labeled with a dot. Because PIMD and adQTB finely tuned give the best results,
they will be denoted as Q-AMOEBA in the rest of the Chapter. The purple curve is the experimental data.

two terms which almost cancel each other (equation (3.14)). In the PIMD framework, the kinetic energy

(from which depends the pressure estimator), is given by the centroid virial estimator whereas in adQTB it is

proportional to a correction factor obtained through the deconvolution procedure. Although the differences

between both terms in the adQTB method are really small, some differences remain with respect to the

PIMD calculations which result in some differences for the pressure estimation. These discrepancies cause an

error on the density estimation in adQTB. Then, by using the adQTB with FB, the corresponding objective

function will target the experimental density while having this error on the pressure estimation. Because FB

uses a series of thermodynamical fluctuation equations to obtain the converged parameters, the error on the

pressure in adQTB will have an impact on how the parameters are optimized. Therefore, two different set of

249.15 K 298.15 K 361.15 K

adQTB 0.983 0.988 0.945

adQTB finely tuned 0.989 0.999 0.961

PIMD 0.995 0.999 N/A

PIMD finely tuned 0.987 0.998 0.959

experimental data 0.991 0.997 0.967

Table 4.2: Density in g.cm−3 obtained with the new set of parameters while doing FB optimizations only
on the vdW parameters compared to experimental data. The ’finely tuned’ refers to the set of parameters

where intramolecular terms were also modified to reproduce the correct density over the all range of
temperatures with adQTB and PIMD methods.
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term parameter unit initial Q-AMOEBA (adQTB) Q-AMOEBA (PIMD)

vdW O vdW diameter Å 3.4050 3.405099 3.405099

O vdW epsilon kcal.mol−1 0.1100 0.120139 0.120190

H vdW diameter Å 2.6550 2.643027 2.642967

H vdW epsilon kcal.mol−1 0.0135 0.009943 0.010287

H vdW reduction none 0.910 0.93429 0.937788

bonded O-H bond length Å 0.9572 0.9472 0.9572

H-O-H angle Å 108.50 106.20 107.20

Table 4.3: Value of the initial/AMOEBA03 [31] water parameters compared to the ones obtained with FB
[184] with the adQTB and PIMD methods.

parameters have to be developed.

To obtain a reliable FF with FB while using PIMD, we have decided to start our optimization procedure

by using the set of vdW parameters previously derived with the adQTB method. However, the initial value of

AMOEBA03 for the bond length and bond angle were used. Therefore, a new set of parameters were obtained

and its corresponding density is shown in Figure 4.3 (denoted as PIMD). Contrary to what was observed

with the adQTB, the PIMD density is overestimated. Because of that, no calculation at temperatures higher

than 321.15 K were done. The bond length is already set to its experimental value (0.9572 Å), then only the

H-O-H bond angle was reduced to recover the correct density over the all range of temperatures (see Table 4.2

and Figure 4.3). The need to change the average bond and angle length in adQTB can be explained by the

discrepancies observed in the pressure estimator. It should also be noted that increasing the weight of ∆Hvap

in the cost function does not change the optimized vdW parameters in both methods. By using the density

and the enthalpy of vaporization in FB procedure, our new sets of parameters are now able to reproduce

some thermodynamical properties. Therefore, they will be denoted as Q-AMOEBA (PIMD/adQTB) in the

rest of the chapter. Both set of parameters and the initial AMOEBA03 values given by are shown in Table

4.3.

4.4 A new quantum polarizable water model: Q-AMOEBA

With the results obtained on the density, we have decided to use these two set of parameters (PIMD and

adQTB) and see if Q-AMOEBA is able to reproduce both gas phase and condensed phase properties. As

explained earlier, both set of data were used in FB. However, the parameters for the intramolecular energy

terms were not optimized automatically but adjusted manually. Therefore, to assess the accuracy of our

fitting procedure, the RMSE of the different conformations used as a reference data were computed. Because

the functional form and the initial set of parameters were taken from AMOEBA03, all the results will be

compared to this model.
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(H2O)2 CCSD(T) AMOEBA03 Q-AMOEBA (PIMD) Q-AMOEBA (adQTB)

Smith01 -4.97 -4.58 -4,96 -4,95

Smith02 -4.45 -3.98 -4.35 -4,34

Smith03 -4.42 -3.94 -4.3 -4.3

Smith04 -4.25 -3.54 -3.49 -3.43

Smith05 -4.00 -2.69 -3.06 -3.00

Smith06 -3.96 -2.59 -2,95 -2.90

Smith07 -3.26 -2.55 -2,81 -2.73

Smith08 -1.30 -0.8 -1.04 -0.95

Smith09 -3.05 -2.69 -2,97 -2.90

Smith10 -2.18 -1.89 -2.14 -2.07

RMSE 0.81 0.53 0.57

Table 4.4: Binding Energies in kcal.mol−1 of the 10 Smith’s water dimers using Q-AMOEBA compared to
the initial set of parameters AMOEBA03 and ab initio references. The table distinguishes Q-AMOEBA
(PIMD) and Q-AMOEBA (adQTB) depending on which method was used to include NQEs in the fit

procedure.

4.4.1 Binding energies of water clusters

Smith’s water dimers

The BE of the Smith’s water dimer are presented in Table 4.4. They are representative of the most favorable

(oxygen-hydrogen) and unfavorable (oxygen-oxygen and hydrogen-hydrogen) interactions that could occur

between two water molecules during a MD simulation. Therefore, they have been widely used as a benchmark

for modern potentials but also for ab initio methods. Both sets of parameters yield the same most stable

Smith dimer. Moreover, both set of parameters give a smaller RMSE (0.57 kcal.mol−1 and 0.53 kcal.mol−1

for adQTB and PIMD respectively) compared to the initial set of parameters (AMOEBA03 yields 0.81

kcal.mol−1).

Water Clusters

To go towards the bulk condensed-phase structure, BE of larger water clusters were also computed in Table

4.5. In the intermediate size of water clusters (3 ≤ n ≤ 8), Q-AMOEBA slightly overestimates the BE while

remaining within a 0.5 kcal.mol−1 per monomer range. For larger cluster, the accuracy of Q-AMOEBA is

improved, giving an overall smaller RMSE than AMOEBA03. It is approximately improved by 0.9 and 0.2

kcal.mol−1 for the PIMD and adQTB sets of parameters respectively. Moreover, it should be noted that

none of the two sets of parameters give a better RMSE compared to the one obtained while fitting only

on QM calculations in Section 4.3.2 (2.21 kcal.mol−1). It highlights that our ab initio references used were

not accurate enough to reproduce thermodynamical properties. Moreover, adding some properties in our

data set increase the RMSE. Therefore, it highlights that our CCSD(T) reference is not accurate enough to

fully reflect the experimental complexity of thermodynamical observables. Then, using explicit inclusion of

higher level of Coupled Cluster excitations could lead to better predictions of condensed-phase properties

while reducing the RMSE [238].
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(H2O)n geometry QM AMOEBA03 Q-AMOEBA (PIMD) Q-AMOEBA (adQTB)

n=3 cyclic -15.74 -15.03 -16.05 -16.11

n=4 cyclic -27.40 -27.63 -28.98 -29.32

n=5 cyclic -35.93 -36.38 -38.19 -38.72

n=6 prism -45.92 -45.71 -47.88 -48.36

cage -45.67 -45.82 -47.95 -48.39

bag -44.30 -44.79 -46.97 -47.53

cyclic chair -44.12 -44.62 -46.88 -47.60

book1 -45.20 -45.6 -47.8 -48.39

book2 -44.90 -45.37 -47.55 -48.11

cyclic boat1 -43.13 -43.78 -45.79 -46.65

cyclic boat2 -43.07 -43.84 -46.04 -46.73

n=8 S4 -72.70 -72.34 -75.71 -76.46

D2d -72.70 -72.39 -75.75 -76.50

n=11 434 -105.72 -101.74 -106.40 -107.52

515 -105.18 -102.08 -106.85 -108.11

551 -104.92 -101.85 -106.61 -107.86

443 -104.76 -101.86 -106.63 -107.78

4412 -103.97 -101.41 -106.26 -107.50

n=16 boat-a -170.80 -161.21 -168.83 -170.57

boat-b -170.63 -161.54 -169.12 -170.92

antiboat -170.54 -162.26 -169.98 -171.95

ABAB -171.05 -161.18 -168.69 -170.32

AABB -170.51 -160.98 -168.51 -170.13

n=17 sphere -182.54 -173.02 -181.21 -183.32

5525 -181.83 -172.32 -180.42 -182.46

n=20 dodecahedron -200.10 -197.03 -206.1 -208.54

fused cubes -212.10 -205.76 -215.35 -217.42

face sharing prisms -215.20 -206.13 -215.74 -218.05

edge sharing prisms -218.10 -208.46 -218.40 -220.85

RMSE 3.33 2.36 3.12

Table 4.5: Binding energies in kcal.mol−1 from trimer to 20-mer water clusters using Q-AMOEBA
compared to the initial set of parameters AMOEBA03 and ab initio references. The table distinguishes

Q-AMOEBA (PIMD) and Q-AMOEBA (adQTB) depending on which method was used to include NQEs
in the fit procedure.
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With these encouraging results obtained, other thermodynamical properties have been computed from tem-

peratures ranging from 249.15 K to 369.15 K under 1 atm. To reduce the computation time and be able to

do dynamics on big boxes (and get closer to the bulk-phase representation), both methods were implemented

in the TINKER-HP multi GPUs software. Then, a box of 4000 molecules with a RESPA integrator was used

with timesteps of 0.2 and 2 fs for the bonded/non-bonded part. PIMD simulations used 32 beads with a

mild Langevin thermostat on the centroid where the friction coefficient was set to γ = 1ps−1. In the adQTB

method, the friction was set to 20 ps−1.

4.4.2 Structural Properties of Water

Static Equilibrium Properties

In Figure 4.4, the different RDFs obtained with Q-AMOEBA (PIMD and adQTB) are shown. The exper-

imental RDF given by neutron diffraction (1986) [239] and X-ray scattering (2013) [240] were not included

in our parametrization. Then, this property will be used as a first test for our Q-AMOEBA model. Both Q-

AMOEBA (PIMD and adQTB) RDFs are almost indistinguishable and in close agreement with experiments.

Moreover, the differences between our results and the experiments are of the same order as the discrepancies

within experimental data. The first peak of the O-O RDFs is located at 2.73 Å and 2.80 Å in X-ray and

neutron diffraction respectively. This feature is well reproduced by Q-AMOEBA where this peak is located

at 2.80 Å (PIMD) and 2.79 Å (adQTB).

Properties of the ensemble-averaged water monomer are also given in Table 4.6 where the O-H bond

length and H-O-H angle are shown with Q-AMOEBA set of parameters. The average value of the H-O-H

angle in the liquid phase compared to its value in gas phase is known to be problematic with classical FF.

Then, it requires to artificially increase the equilibrium parameter [31] as it can been seen in Table 4.3. In
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Figure 4.4: Radial distribution function at 298.15 K and constant volume obtained with Q-AMOEBA
compared to X-ray (2013) [240] and neutron diffraction (1986) [239] experiments.

PIMD (32 beads) PIMD (64 beads) adQTB Expt.

rOH(Å) 0.985 0.985 0.975 0.97

θHOH(deg) 106.08 106.10 104.95 105.1

Table 4.6: Average O-H bond length and H-O-H angle while using Q-AMOEBA water model compared to
experimental values in liquid phase.
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Bond stretching Angle bending Urey-Bradley Van der Waals Atomic Multipoles Polarization Non-Bonded

Classical 0.75 0.43 -0.03 5.48 -11.43 -5.19 -11.14

adQTB 5.55 1.22 -0.11 4.37 -9.95 -4.43 -10.01

PIMD (32 beads) 5.43 1.19 -0.12 4.32 -9.87 -4.35 -9.9

PIMD (64 beads) 5.57 1.20 -0.12 4.33 -9.88 -4.38 -9.93

Table 4.7: Average energy terms per water molecules in kcal.mol−1 obtained with the different methods at
298.15 K obtained from 1 ns simulations at constant volume corresponding to the density ρ = 0.997 g.cm−3.

The classical row corresponds to the adQTB set of parameters.

AMOEBA03 it is equal to 108.2◦. However, both set of Q-AMOEBA parameters have a reduced ideal angle.

It is equal to 106.2◦ and 107.2◦ with adQTB and PIMD respectively. This is because NQEs tend to slightly

increase the average H-O-H angle of water molecules in the liquid phase. Hence, it has to be reduced in the

parameters set. Furthermore, NQEs also slightly increase the average O-H distance. Then, this effect was

compensated in both set of parameters. However, it was decreased further in adQTB. It went from 0.9572

to 0.9472 Å. It highlights the net effects of NQEs and the need to explicitly include them to design accurate

models of water, although adQTB water model tends to slightly overestimate their effects.

Average Energy Terms

The impact of NQEs on the different energy terms of water at ambient conditions were further analyzed

and are reported in Table 4.7. The Q-AMOEBA model also allows to finely study the practical effects of

NQEs by comparing the properties that are obtained with it but with purely classical dynamics. Therefore,

all results labelled ’Classical’ are obtained with classical MD simulations using Q-AMOEBA (adQTB) set

of parameters. All intramolecular energies obtained with classical MD are underestimated compared to

their quantum counterparts (adQTB and PIMD). However, the difference in the non-bonded part between

classical and quantum simulations are less significant (although still present) which highlights some error

compensation in the functional form of AMOEBA03.

4.4.3 Infrared Absorption Spectra

In AMOEBA, the total dipole moment is estimated as:

µ =

Nat∑
i=1

(qiri + µ0
i + µind

i ) (4.12)

with qi the permanent charges located on the atom’s position ri, µ
0
i the permanent dipoles and µind

i the

induced dipoles that are obtained at each step of the dynamics via a minimization procedure [28]. Because

no analytical form for the time derivative of the induced dipole is available, finite differences were used to

estimate the total dipole moment over the trajectory. As seen in Chapter 3, the IRS is directly evaluated

in TRPMD dynamics, however it is multiplied by tanh(βℏω/2)
βℏω = kBT

θ(ω,T ) in the adQTB framework to obtain

the Kubo-transformed spectrum. Moreover, in adQTB simulations, the high friction coefficient needed to

compensate ZPEL tends to broaden the IRS. Then, the deconvolution procedure is needed to recover the

unaffected spectrum. The different IRS are shown in Figure 4.5 using TRPMD and adQTB compared to the

experimental spectrum, classical AMOEBA03 and the classical spectrum obtained from a simulation using

the adQTB set of parameters. The spectra obtained from both quantum simulations (TRPMD and adQTB)
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are very similar in their peak positions and are in good agreement with the experimental reference. Although

relative intensities are similar between quantum and classical simulations, TRPMD spectrum is broadened

for the stretching peak which is a well-known discrepancy of this method. Moreover, including NQEs shifts

the intramolecular peaks, composed by the bending around 1600 cm−1 and stretching around 3500 cm−1,

towards the lower frequencies. The low-frequency area (0 to 1000 cm−1) is very similar for AMOEBA03,

TRPMD and adQTB which are red-shifted compared to the results obtained in classical simulation with

Q-AMOEBA (light blue). Then, it highlights the impact of NQEs even at those low frequencies. Moreover,

the general shape of this low-frequency area is in good agreement with the experiment and even display some

sub-structure at around 200 cm−1 due to the slow induced-dipole dynamics [30, 241]. This feature is absent

for non-polarizable models, even when including NQEs [30]. Moreover, the IRS were also computed using

only the linear dipole while including NQEs and this sub-structure were not on the spectrum. It should

also be noted that q-TIP4P/F water model only includes permanent charges and its corresponding spectrum

presented in Chapter 3 (Figure 3.11) does not have this feature showing that NQEs with permanent and

induced dipoles should be used to correctly recover IRS.

4.4.4 Thermodynamic Properties

Properties Used in the Objective Function: Density and Enthalpy

In Section 4.3.3 (Figure 4.2) results obtained using only Q-AMOEBA (adQTB and PIMD) set of parameters

in the density were shown. However, the enthalpy of vaporization ∆Hvap was also added to our objective

function. Then, to extend the study previously done, we also compute this property with both sets of

parameters and compared them to classical MD and AMOEBA03. Results are shown in Figure 4.6 for both

properties.

Compared to the experimental curve (purple), the deviations of the density at ambient temperature for
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Figure 4.5: IRS computed at 300 K and ρ = 0.997 g.cm−3 with Q-AMOEBA water model using adQTB
and PIMD methods with their respective set of parameters. The classical curve is obtained from classical
MD simulation with the Q-AMOEBA (adQTB) model. They are compared with AMOEBA03 (classical
MD) and experimental data. The right part of the plot is multiplied by 0.5 to put forward the stretching
mode. The quantum spectra are obtained from the Kubo-transformed dipole correlation functions given by

equation (2.30).
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Figure 4.6: Density ρ (left) and enthalpy of vaporization ∆Hvap (right) of liquid water at P = 1atm as a
function of the temperature for the different AMOEBA model. The dashed line represents the results

obtained with the Q-AMOEBA (PIMD) method whereas the dot-dashed lines are obtained with
Q-AMOEBA (adQTB) model.

the PIMD and adQTB methods are less than 0.2 % difference (see Table 4.2). In both low and high ranges of

temperatures, the density is slightly underestimated by a maximum of 0.85 % at 369.15 K. One may notice

that classical MD simulation using Q-AMOEBA (adQTB) set of parameters yields a significantly different

curve from both quantum (adQTB and PIMD) and AMOEBA03 density. This result highlights that the

different changes made in the FF have a non-negligible impact on the density. Moreover, the temperature

of maximum density, TMD, in the classical MD curve is shifted to higher values while the density is reduced

at low temperature and increased at high ones with respect to the results obtained including NQEs. To

explain the impact of NQEs, the peculiarities of liquid water are used to explain the unusual bell-shape of

the density. A loosely packed local structure is produced due to the tetrahedral arrangement of the water

molecules. Increasing the temperature for T < TMD allows hydrogen bond to strain and break more easily

which enables larger deviations from the tetrahedral order with a better packing efficiency and hence increases

the density. For T > TMD, the H-bonds breaking tends to increase nearest-neighbors distances which leads to

the more usual thermal expansion observed at high temperatures [17] and decreases the density. Therefore,

NQEs lead to an overall weakening of the hydrogen bonds over the whole temperature range. The study of

the different non-bonded energy contributions of the Q-AMOEBA model given in Table 4.7 confirmed this

reasoning. The values given by the PIMD parameter set are superior by approximately 1.0 kcal.mol −1 per

water molecule at 298.15 K compared to the classical counterpart. It should also be noted that the impact

of NQEs on the hydrogen bond strength depends on the model. In the q-TIP4P/F water model, densities

computed with PIMD or classical MD are very similar (see Figure 3.12). However, in TTM2.1-F, both curves

are overestimated and the PIMD density is lower than its classical counterpart over the all temperature range.

The enthalpy of vaporization, ∆Hvap, was also computed in the same NPT simulations. As shown in the

right plot of Figure 4.6, classical enthalpy of vaporization is overestimated and decreases with the inclusion

of NQEs. The Q-AMOEBA classical simulation yields 11.5 kcal.mol−1 at 298.15 K which is ∼ 0.5 kcal.mol−1

higher than the reference. Although Q-AMOEBA (PIMD and adQTB) results underestimate the ∆Hvap by

approximately ∼ 0.8 kcal.mol−1 (which is close to other sophisticated models [242]), the slope is correctly
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recovered over the whole range of temperatures. Moreover, the accuracy of this observable is strongly related

to the PES. Then, using a higher level of ab initio data as a reference could better reflect the complexity of

this observable.

Properties Outside the Objective Function

The thermodynamical properties presented so far were included in our data set. However, one may be

interested to see how Q-AMOEBA performs on properties outside the data used to fit it. Therefore, the

validity of the Q-AMOEBA water model was further studied by computing other equilibrium properties

which were not included in the objective function of FB.

The isobaric heat capacity (left) and thermal expansion coefficient (right) are shown in Figure 4.7 with

their classical counterpart to study the net effects of NQEs on this thermodynamic observable. The isobaric

heat capacity is defined as:

cp =

(
∂H

∂T

)
P

(4.13)

with H and T the enthalpy and the temperature at a given pressure P. A fourth-order polynomial interpolation

procedure of the temperature derivative of H at different temperatures was used to compute cp in Figure 4.7

(left panel). As the enthalpy of vaporization ∆Hvap, the heat capacity cp is strongly affected by NQEs. The

intramolecular modes have a frequency ℏω ≫ kBT which is mainly ZPE (which is approximately 1000 K for

the O-H stretching in water). Then, it is independent of the temperature and hence does not contribute to the

final isobaric heat capacity cp. However, in the classical case, intramolecular modes have an average energy

kBT and so contribute to the final cp. It leads to a significant overestimation in classical MD simulations as

it can be seen in Figure 4.7 with the classical and AMOEBA03 curves. On the other hand, including NQEs

 15

 20

 25

 30

 35

 40

 45

 260  280  300  320  340  360

(a)

c p
 (c

al
.m

ol
-1

.K
-1

)

Temperature (K)

-35

-30

-25

-20

-15

-10

-5

 0

 5

 10

 260  280  300  320  340  360

(b)

α
P 

(1
0-4

.K
-1

)

Temperature (K)

Experiment
PIMD

adQTB
Classical

AMOEBA-03

Figure 4.7: Isobaric heat capacity cp (left) and thermal expansion coefficient αP (right) of liquid water at
P = 1atm as a function of the temperature for the different AMOEBA models. The dashed line represents
the results obtained with the Q-AMOEBA (PIMD) method whereas the dot-dashed lines are obtained with

Q-AMOEBA (adQTB) model.
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Figure 4.8: Isothermal compressibility κT (left) and static dielectric constant εr (right) of liquid water at
P = 1atm as a function of the temperature for the different AMOEBA models. The dashed line represents
the results obtained with the Q-AMOEBA (PIMD) method whereas the dot-dashed lines are obtained with

Q-AMOEBA (adQTB) model.

with Q-AMOEBA (PIMD and adQTB) allows to recover lower values which are closer to the experimental

data with a smaller slope over the whole range of temperatures. The thermal expansion coefficient αP is

calculated using analytic differentiation of a polynomial fit of the simulated density ρ(T ):

αP =
1

V

(
∂V

∂T

)
P

= −dlnρ(T )

dT
(4.14)

As expected the same trend as the density is observed for this thermodynamical observable. Classical MD

gives too negative results at low temperatures which is corrected by the quantum simulations. At high

temperatures, all methods behave similarly.

Because the static dielectric constant, the isothermal compressibility and the self-diffusion coefficient

converge very slowly, longer NPT simulations were necessary. The isothermal compressibility characterizes

the volume change as a response to an applied pressure. It can be related to the volume fluctuations in an

NPT simulation:

κT = − 1

V

(
∂V

∂P

)
T

=
1

kBT

⟨V 2⟩ − ⟨V ⟩2

⟨V ⟩
(4.15)

Classical MD simulations with Q-AMOEBA (adQTB) amplify the variations with T and underestimate its

value at high temperature in Figure 4.8 (left panel). Explicitly including NQEs with Q-AMOEBA (PIMD

and adQTB) reduces its variations over the all range of temperatures. Although Q-AMOEBA (adQTB) gives

slightly higher values (overestimated by approximately 6× 106.bar−1 at 298.15 K compared to experiment),

both Q-AMOEBA (adQTB and PIMD) yield a shape closer to the experimental curve. Moreover, the

results obtained with Q-AMOEBA (adQTB) model are significantly improved with respect to the initial set

of parameters given by AMOEBA03. Furthermore, AMOEBA03 and Q-AMOEBA (PIMD) yield similar

results, even in the low-temperatures range which highlights the implicit inclusion of NQEs in the original

parameter set.
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Method Classical adQTB TRPMD Experiment

D ± 0.01 (105. cm2. s−1) 0.91 0.78 2.29 2.30

Table 4.8: Self-diffusion coefficient obtained with Q-AMOEBA (adQTB and TRPMD) with classical MD
simulations.

The static dielectric constant is calculated from the fluctuations of the total dipole moment as:

εr = 1 +
4π

3kBT ⟨V ⟩
(
⟨µ2⟩ − ⟨µ⟩ · ⟨µ⟩

)
(4.16)

with ⟨µ⟩ the average total dipole moment defined in equation (4.12) and ⟨V ⟩ the average volume of the

simulation box. Comparing classical MD (light blue) with quantum simulations with Q-AMOEBA shows the

importance of NQEs on this property, although NQEs have a smaller influence when T increases.

The self-diffusion coefficient was evaluated at 298.15 K under 1 atm using the Einstein equation:

D = lim
t→∞

d

dt
⟨
∣∣r(t) − r(t0)|2

〉
(4.17)

A mild Langevin thermostat (γ = 1ps−1) was applied in classical and TRPMD simulations. However,

in adQTB, a larger friction coefficient was used (γ = 20ps−1) to compensate the ZPEL. This affects the

diffusion as it was shown in Chapter 3 (Section 3.4.2) and by Maginn et. al [243]. As shown in Table 4.8, the

TRPMD value is 2.29 ± 0.01 × 105 cm2. s−1 which is in excellent agreement with the experimental value of

2.30× 105 cm2. s−1. Moreover, classical dynamics gives 0.91± 0.01 × 105 cm2. s−1 which is in accordance of

other studies which gave 1.5±0.1 ×105 cm2. s−1 [196, 237]. On the other hand, Q-AMOEBA (adQTB) value

is around three times lower than the expected value. Although this slower diffusion implies a less efficient

sampling [162], the computational speedup of the adQTBmethod compared to PIMD compensate it. It should

also be noted that q-TIP4P/F water model has a classical self-diffusion coefficient around 1.5 lower than its

TRPMD counterparts (see Chapter 3 Section 3.7). Moreover, the ab-initio based polarizable TTM2.1-F water

model has a classical value of 1.5 ± 0.1 × 105 cm2. s−1 and its TRPMD value gives 2.2 ± 0.1 × 105 cm2. s−1

[237] which is really close to the value obtained with Q-AMOEBA. Then, it highlights that the net effect of

NQEs can not be generalized to all models. It should also be noted that the self-diffusion coefficient goes

from 2.2 to 1.8 ±0.1×105 cm2. s−1 under deuteration which shows that this dynamical observables is strongly

impacted by NQEs as they tend to weaken H-bonds and hence increase the diffusion. Although Q-AMOEBA

slightly overestimates the net effect of NQEs, it recovers qualitatively the good behaviour when going from

quantum to classical MD simulations.

To conclude, the molecular dipole moments were also studied to confirm the interpretation of NQEs

and hydrogen bond strength. Figure 4.9 shows that classical MD simulations with Q-AMOEBA (adQTB)

parameters give a larger dipole moment than the original AMOEBA03 water model. Moreover, at 298.15 K,

classical simulations with Q-AMOEBA (adQTB) give 2.90 D whereas explicit inclusion of NQEs with Q-

AMOEBA (PIMD or adQTB) give 2.76 D and 2.78 D respectively and weaken the H-bonds. The values

obtained are close to those obtained in AMOEBA03 (showing again that it implicitly includes NQEs) and

also with ab initio simulations and experiments [244, 245].
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Figure 4.9: Molecular dipole moments of liquid water at P = 1atm as a function of the temperature for
the different AMOEBA model. The dashed line represents the results obtained with the Q-AMOEBA

(PIMD) method whereas the dot-dashed lines are obtained with Q-AMOEBA (adQTB) model.

4.4.5 Transferability Study

Q-AMOEBA was fitted with FB using thermodynamical properties which belongs only to the liquid phase.

One may be interested to see how Q-AMOEBA (PIMD and adQTB) perform on a different area of the phase

diagram. Then, to study the transferability, we have decided to investigate the density of ice phase Ic but

also isotopic effects with heavy water D2O.

Heavy Water: D2O

Isotope effects are an important maker of the relevance of NQEs, since classical MD predicts different isotopes

to have identical thermal equilibrium properties. Although deuterated water is often viewed as a ’classical’

analog of water, NQEs are visible while substituting H for D (or even T) [20], although D2O (or T2O) have

smaller NQEs compared to H2O. With the explicit treatment of NQEs, it is possible to further validate the

Q-AMOEBA approach. Different thermodynamic properties are presented in Table 4.9, focusing on those

known to be the most impacted by the isotopic substitution.

Both set of Q-AMOEBA parameters (PIMD and adQTB) yield the correct trends for the isotopic sub-

stitution of H to D which reduces the heat capacity cp and increases ∆Hvap. The enthalpy of vaporization

has an isotopic substitution amplitude overestimation of approximately 2, with a change of ∼ 0.6 kcal.mol−1

for Q-AMOEBA with respect to the experimental value of ∼ 0.3 kcal.mol−1. Isotopic effects increase the

isobaric heat capacity by ∼ 3.6 kcal.mol−1.K−1 for Q-AMOEBA (adQTB) whereas the experimental am-

plitude is ∼ 1.9 kcal.mol−1.K−1. One may notice that Q-AMOEBA (PIMD) captures more accurately the

increase of cp under deuteration, although its absolute value is slightly overestimated. These differences can

be explained by the intramolecular parameters of the two models which is related to the pressure estimator

discussion done in Section 4.3.3. Even though the change of the properties with isotope substitution are
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H2O D2O

PIMD adQTB Experiments PIMD adQTB Experiments

ρ (g.cm−3) 0.998 0.999 0.997 1.109 1.106 1.104

∆Hvap (kcal.mol−1) 9.65 9.55 10.52 10.25 10.28 10.85

cp (cal.mol−1.K−1) 21.297 18.297 18.002 22.724 21.885 20.148

Table 4.9: Thermodynamic properties computed at 298.15 K under 1 atm pressure for both Q-AMOEBA
models for H2O and D2O compared to experimental values [246, 247].

sometimes overestimated, the different results obtained with Q-AMOEBA (PIMD and adQTB) are really

promising. Since weak H-bonds tend to be further weakened by NQEs [20, 157], an overestimation of the

isotopic effect is expected. Then, the discrepancies observed highlight that FB optimization leads to slightly

too weak hydrogen bonds which is consistent with the slight underestimation of ∆Hvap. Finally, the experi-

mental TMD shifts from 277.15 K for H2O to 284.32 K for D2O [20]. This trend is also qualitatively observed

with the shift between the quantum and classical MD curves with Q-AMOEBA (see Figure 4.6 left panel).

Ice Ic

The transferability study was further extended by studying the density of ice phase Ic. The simulations

were performed at 78.0 K under 0 atm. 128 beads were used to converge Q-AMOEBA (PIMD) results. The

density with both set of parameters is 0.893 and 0.906 g.cm−3 in PIMD and adQTB respectively whereas

the experimental value is 0.931 g.cm−3 [60]. Classical MD simulations with AMOEBA03 yields a density

∼ 2% smaller than the experiment value, whereas PIMD with the same model underestimates the density by

∼ 6.8%. Although Q-AMOEBA (PIMD) tends to slightly overemphasize NQEs, its corresponding density

is still improved compared to PIMD simulations with the original AMOEBA03 parameters which highlights

some error compensations and an implicit inclusion of NQEs in the FF parametrization. Then, it reduces

the transferability of AMOEBA03 and one may expect Q-AMOEBA to offer more robust predictions in this

low temperature range.

4.5 Conclusion

With the extensive development of hardware and software, the different models used in MD become more

and more complex and go beyond the first pair-wise approximation to model electrostatic interactions. A

major limitation of the basic FFs is the lack of a fine description of many-body polarization which reduces

their transferability. To circumvent that, much efforts have been made to include it. Then, new FFs were

developed which include polarization from the onset, AMOEBA being one of them. Although the description

becomes more precise, it lacks an explicit inclusion of NQEs. Usually, they are included implicitly by fitting

the different parameters used in the model to obtain different thermodynamical properties (such as the density

ρ or the enthalpy of vaporization ∆Hvap). Then, using PIMD or adQTB methods would lead poor results due

to the double counting of NQEs. Therefore, we have decided to develop a new water model, Q-AMOEBA,

which is based on the AMOEBA functional form and it is optimized to accurately reproduce energies in

the gas phase as well as condensed phase properties with a quantum description of the nuclei using PIMD
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and adQTB. The final set of Q-AMOEBA parameters obtained while including NQEs led to an improved

intramolecular potential with the O-H bond length and H-O-H angle parameters closer to their gas phase

values compared to the initial set of parameters AMOEBA03. With the different thermodynamical properties

shown through the Chapter, our new quantum water model is very robust even on properties outside the

reference data used in FB during the fitting procedure such as the thermal expansion coefficient αP . The self-

diffusion constant was also studied and, although Q-AMOEBA (adQTB) tends to underestimate its value,

this dynamical observable is strongly affected by NQEs and the good trend is captured by our new quantum

water model. In order to study further the robustness of Q-AMOEBA, isotopic effects and heavy water

were also studied. Because they are not present in classical MD simulations, isotope effects are a valuable

indicator of NQEs. Q-AMOEBA is able to capture the experimental trends associated to the deuteration

of water, although it slightly overestimates the impact of NQEs. We interpreted it as a sign that hydrogen

bonds strength is slightly underestimated with Q-AMOEBA. These already promising results should be

improved with more advanced functional forms such as AMOEBA+ (which includes charge flux, charge

transfer and charge penetration effects [248, 249]) and by using better ab initio references computations

including higher levels of coupled cluster excitations. It should also be noted that the functional form for

the intramolecular terms of AMOEBA03 (and hence Q-AMOEBA) were taken from MM3 FF. Therefore,

changing these parameters can improve our Q-AMOEBA model and then Q-AMOEBA+. Moreover, the

inclusion of the many-body polarization effects lead to a non-trivial interplay with NQEs and need to be

further studied with more extended model of dispersion or polarization [250]. Since adQTB simulations can

be performed at near classical cost, the improved Q-AMOEBA model can easily be extended to organic

molecules and proteins opening the possibility for large scale study of the importance of NQEs in biophysics.
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Throughout this thesis, NQEs have been studied using different frameworks. The Feynman path integrals

provide an elegant framework to include them explicitly in MD simulations [23, 24]. However, due to the

number of beads required to provide enough energy to account for ZPE, this method is computationally

expensive reducing its range of applicability. To circumvent that, large efforts have been devoted to develop

different methods which aim to include NQEs at lower computational cost. Following this idea, the QTB

approach was introduced. It allows to include both thermal and quantum fluctuations in the thermostat,

via a stochastic force [25, 26]. Because it aims to impose the second-kind FDT, it suffers from ZPE leakage,

where some energy is unphysically transferred from the high frequency modes to the low frequency ones.

[146, 147] Such unphysical energy flow comes from the competition between classical Newton’s equation of

motion which drives the system towards equipartition of energy and the thermostat that tries to impose the

quantum distribution. Therefore, the adQTB [27] was developed which uses the first-kind FDT as a criterion

to correct the leakage. The adQTB has already provided accurate results on model systems which motivated

the extended study of this method on more realistic ones. NQEs are ubiquitous in water with its ZPE which

subtly influence hydrogen bonding due to a competition between delocalization over O-H stretching and

bending modes [20, 21]. Furthermore, given the low mass of hydrogen NQEs cannot be neglected. It has

been shown that they have a strong influence on the structure and the dynamics of this compound. Moreover,

it is an important benchmark for methods which aim to include NQEs. It is also an important step toward

biological systems Thus, at the beginning of this thesis, the adQTB seemed to be a promising alternative to

the computationally heavy PIMD to study NQEs in highly anharmonic systems such as water. Therefore,

the adQTB and PIMD were implemented in the Tinker-HP software (CPU and GPU) whose purpose is to

routinely perform MD simulations [5, 28].

We began our study with the q-TIP4P/F water model which was specifically parameterized using PIMD

simulations [30]. Because this potential is broadly used in the literature as a benchmark for NQEs simulation

method, the different results obtained with adQTB method are presented in Chapter 3. The different

parameters involved in the adQTB method, such as γ and ωcut were studied in details to know how they

influence the results and how to choose them to reduce their impact on the dynamics. Compared to the

previous studies [15, 112], γr(ω) coefficients were averaged on the three directions of space and also over

same-type atoms. On top of that, a deconvolution procedure [186] has been used to correct the broadening

of the spectrum caused by the friction force. It also aims to correct the overestimation and underestimation

of the average kinetic and potential energies terms respectively. Altought water is highly anharmonic and

QTB suffers from a major ZPE leakage, adQTB manages to recover almost identical results to PIMD on

various properties such as the density and infrared absorption spectra with a computational cost comparable
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to classical MD simulations. However, some questions remain open such as the possibility to improve the

results obtained for the self-diffusion coefficient with a fast-forward Langevin scheme [205]. The fact that the

adQTB method is not formally derivable from first principles and also the need to study how the method

behaves in inhomogeneous systems. Nonetheless, with its low computational cost, the different improvements

made to correct the kinetic and pressure estimators, and the results almost identical to the PIMD reference,

the adQTB method has become a promising method to include NQEs explicitly in MD simulation.

Although the results obtained in Chapter 3 were really encouraging, they were obtained with a very

inexpensive and simple water model. To extend the study of the adQTB method and NQEs to more complex

and realistic systems, a more sophisticated model was needed. More sophisticated water models are available

such as AMOEBA [31, 206], GEM [208, 251], HIPPO [252] or SIBFA [207, 253]. However, their parameters

were obtained by fitting on both quantum electronic structure calculations and some experimentally measured

properties. Then, using the PIMD or adQTB methods on one of these FFs will result in a double counting

of NQEs. To circumvent that and be able to study NQEs on more complex potential forms, we have decided

to develop a new FF by using the AMOEBA functional and explicitly including NQEs on the onset. The

methodology to develop this new polarizable water model, called Q-AMOEBA, is presented in Chapter 4.

We firstly intended to obtain our new water model by only using ab initio data. However, it showed that the

different data used were not accurate enough to correctly reproduce the density, highlighting that PIMD and

adQTB methods are as good as the PES is. Therefore, more accurate calculations including higher level of

coupled cluster excitations must be performed to be able to only use ab initio data in the fit procedure. To

circumvent that thermodynamical properties were added to our fit to obtain reliable results. To do so, we

have also used the adQTB method to derive the new parameters of Q-AMOEBA. The O-H bond length and

H-O-H angle parameters were also reduced which shows that explicitly including NQEs leads to an improved

intramolecular potential. We have also used the PIMD method to compute different properties and study the

accuracy of our strategy. All comparisons between PIMD and adQTB results were presented in Chapter 4 and

they demonstrate an improvement on properties of liquid water with respect to the original AMOEBA model,

making our new water model more robust. This study also revealed that many-body polarization effects lead

to a non-trivial interplay with NQEs which highlights that the effect of NQEs on different observables are

more subtle than usually assumed and can no longer be generalized a priory to all functional forms.

Nonetheless, our Q-AMOEBA water model could be improved by using even more complex FF functional

forms such as the one used in AMOEBA+ [248, 249]. This model includes short-range electrostatic Charge

Penetration (CP), 2-body Charge Transfer (CT) and Charge Flux (CF). It has been shown that these terms

improve the intra and intermolecular potential with respect to AMOEBA. Therefore, including them in the

fit used to derive Q-AMOEBA+ will certainly lead to even better results. Although this thesis presents

an extensive study of NQEs in pure liquid water (and these effects on hydrogen bond networks) by using

different potentials, it is crucial in the future to extend this study to inhomogeneous systems. Studying how

the adQTB behaves in such systems can lead to the development of biological models, such as AMOEBA

BIO [254–256], by explicitly including NQEs. Having a low computational cost method to include NQEs

in complex and big systems (several millions of atoms) could lead to the discovery of new phenomenon in

such complex systems. It could also be interesting to use Machine Learning on the intramolecular parts

of Q-AMOEBA to see how the different results are impacted. Moreover, the study performed in Chapter

4 highlights that the inclusion of many body polarization effects leads to non-trivial interplay with NQEs.

Then, it could be interesting to study Q-AMOEBA with a more developed polarization and dispersion model
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such as the Bond Capacity Charge Polarization Model [250] or the recently developed many-body dispersion

model presented in Ref [257].

Simulating NQEs for large and complex systems is still an issue that adQTB tries to address thanks to its

low computational requirements. Therefore, with the implementation of this method in the multi-CPU and

multi-GPU Tinker-HP software, it is now possible to study NQEs on a broader range of systems. However,

if one may want to study NQEs with PIMD and compared the different results obtained with adQTB, it is

also possible to do it with the implementation of PIMD in Tinker-HP. Therefore, this thesis provides a proof

of concept to routine production MD simulations while explicitly including NQEs and extend their study

within large scale simulations of complex systems.
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ABSTRACT: We demonstrate the accuracy and efficiency of a recently introduced
approach to account for nuclear quantum effects (NQEs) in molecular simulations:
the adaptive quantum thermal bath (adQTB). In this method, zero-point energy is
introduced through a generalized Langevin thermostat designed to precisely enforce
the quantum fluctuation−dissipation theorem. We propose a refined adQTB
algorithm with improved accuracy and report adQTB simulations of liquid water.
Through extensive comparison with reference path integral calculations, we
demonstrate that it provides excellent accuracy for a broad range of structural and
thermodynamic observables as well as infrared vibrational spectra. The adQTB has a
computational cost comparable to that of classical molecular dynamics, enabling
simulations of up to millions of degrees of freedom.

Nuclear quantum effects (NQEs) play a major role in a
wide range of physical and chemical processes where

light atoms, especially hydrogen, are involved.6,49,50,66 In
particular, a few studies point to their importance in biological
systems,2,58,71 where hydrogen bonding is ubiquitous, but
realistic atomic-scale simulations in that area remain scarce.
For such large and complex systems, the most common
approach has been to include NQEs implicitly by fitting
analytical potential energy surface models in order to recover
experimental thermodynamic properties when performing
simulations with classical nuclei.24,53 This strategy potentially
limits transferability, and its ability to make predictions outside
the fitting data set is questionable. Furthermore, the recent
developments of new-generation polarizable force
fields24,42,43,47,62 and machine learning (ML) poten-
tials24,51,68,69,72 have opened perspectives for atomistic
simulations of condensed matter systems. These approaches
enable high-fidelity modeling of the Born−Oppenheimer (BO)
energy and reproduce advanced quantum-chemical calcula-
tions at a fraction of their computational cost. When reaching
such precision on the BO energy, it becomes crucial to account
for NQEs explicitly in order to accurately reproduce
experimental observations and take full advantage of the high
accuracy achieved.22,27,55,56

The conceptual and computational complexity of the
methods that account for NQEs explicitly has hindered their
spread to a broad community. Reliable results can be obtained
in the imaginary-time path integral (PI) framework21,29 by
simulation of multiple classical replicas of the system (also
called beads). PI provides a numerically exact reference for

static properties (approximations have also been derived for
dynamical observables, as discussed below), but its numerical
cost increases linearly with the number of replicas and can
become very large compared with classical molecular dynamics
(MD). Several solutions have been proposed to mitigate this
cost, such as multiple timestepping in real and imaginary
time.23,38,45,46 However, this method is based on a decom-
position of the energy as a sum of cheap high-frequency and
expensive low-frequency terms that is not always feasible (in
particular in ML approaches). Other developments, such as
high-order PI37,57 or PI perturbation theory,60,61 allow the
number of necessary replicas to be decreased, but the
computational overhead remains important, typically increas-
ing the simulation load by an order of magnitude for hydrogen-
bonded systems at room temperature.
Recently, a different approach was introduced for the explicit

treatment of NQEs with the quantum thermal bath (QTB)12,26

and the related quantum thermostat,16,17 relying on general-
ized Langevin thermostats to approximate the zero-point
motion of the nuclei. Although elegant and inexpensive, these
methods suffer from zero-point energy (ZPE) leakage from
high- to low-frequency modes, which can lead to massive
errors.9,34 One possible workaround is to combine the
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generalized thermostat approach with path integrals.10,19 Even
though the number of required replicas is reduced compared
with standard PIMD simulations, the computational cost
remains significant (at least six beads are needed for water
under ambient conditions18). In this Letter, we focus on an
alternative approach, the adaptive QTB (adQTB), which
completely avoids resorting to PI.
In adQTB, a quantitative criterion derived from the

fluctuation−dissipation theorem (FDT) is used to compensate
for the ZPE leakage directly. The method was successfully
tested on model systems,44 but its applicability to more
realistic problems remained to be demonstrated. In the
following, we report the main theoretical aspects of the QTB
and adQTB methodologies and introduce two refinements to
the adQTB algorithm that improve its efficiency and accuracy
and broaden the range of its possible applications, in particular
enabling reliable constant-pressure simulations. We then apply
the method to liquid water. Careful comparison with PI
references for structural and thermodynamic properties as well
as infrared absorption spectra (IRS) shows that, contrary to
standard QTB, which is plagued by massive ZPE leakage,
adQTB is able to capture NQEs with remarkable accuracy,
while its computational overhead remains limited to less than
25% compared with classical MD, allowing the system size to
be scaled up to over a million atoms.
In (ad)QTB simulations, each nuclear degree of freedom

follows a Langevin equation:26
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where V(r1, ..., ri, ..., r3N) is the interatomic potential (i denotes
both the atom number and the direction x, y, or z). Equation 1
comprises a dissipative force (with friction coefficient γ)
balanced by a random force Ri(t) that injects energy into the
system. In classical Langevin dynamics, Ri(t) is a white-noise
function whose amplitude is proportional to the temperature.
In QTB, the random force is colored with the following
correlation spectrum:
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where γi(ω) is the random force amplitude, δij is the Kronecker
delta, and
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corresponds to the average thermal energy in a quantum
harmonic oscillator at frequency ω and temperature T.
Therefore, the aim of the QTB is to account for ZPE
contributions in an otherwise classical dynamics by thermal-
izing each vibrational mode with an effective energy θ(ω, T)
instead of the classical thermal energy kBT. However, in the
original formulation of the QTB (where γi(ω) = γ ∀ω), the
ZPE provided to high-frequency modes leaks toward low-
frequency modes, which leads to an incorrect energy
distribution and can dramatically alter the results. In adQTB,
this leakage is quantified precisely using a general result of
linear response theory: the quantum FDT.39 For each degree
of freedom i, we define the deviation from the FDT as

C m C( ) Re ( ) ( ) ( )i vR i i vvFDT, i i i i
ω ω γ ω ωΔ = [ ] − (4)

in which vi
r
t

d
d

i= is the velocity and Cvivi(ω) and CviRi
(ω) are its

autocorrelation and its cross-correlation spectrum with the
random force Ri, respectively. The FDT characterizes the
frequency-dependent distribution of energy in a quantum
system at thermal equilibrium. It implies that ΔFDT,i(ω) should
be zero for any ω, a condition violated in standard QTB
because of the ZPE leakage. In adQTB, ΔFDT,i(ω) is estimated
at regular intervals, and the coefficients γi(ω) are adjusted on
the fly via first-order dynamics to correct for this violation: a
negative ΔFDT,i(ω) reveals an excess of energy at frequency ω,
so γi(ω) is reduced, and conversely for positive deviations. The
adQTB results are produced once the γi(ω) are adapted and
ΔFDT,i(ω) vanishes on average.
Here we introduce two refinements with respect to ref 44,

both of which are presented in full detail in the Supporting
Information. First, to improve the adaptation efficiency, the
coefficients γi(ω) are adjusted according to the mean FDT
deviation averaged over all equivalent degrees of freedom (i.e.,
over the three directions and over all same-type atoms).
Second, we account for the fact that because of the spectral
broadening induced by the friction force, the QTB (and
adQTB) tends to slightly underestimate the average potential
energy and overestimate the kinetic energy. This error
(unrelated to ZPE leakage) can be predicted and quantified
for a harmonic oscillator.3,4 We use this harmonic reference
and the deconvolution procedure of ref 67 to correct for this
inaccuracy: we slightly modify θ(ω, T) to compensate for the
effect of γ on the potential energy, while the kinetic energy is
corrected a posteriori. The kinetic energy correction is
significant (more than 10%) and essential to enable reliable
isobaric simulations, as its neglect causes large errors in the
pressure estimation.
The role of NQEs in liquid water has been extensively

investigated both experimentally and theoretically.36,52,54,63,64

It also represents a major challenge for the adQTB, as massive
ZPE leakage takes place from the high-frequency intra-
molecular vibrations (O−H stretching and H−O−H bending
modes) to the slow intermolecular motion.31,34 Moreover, net
NQEs on the structural properties of water are relatively weak
because of the competition between two opposite trends: the
stretching ZPE strengthens hydrogen bonding, while the
bending ZPE weakens it.18,41 The ability of the adQTB to
capture this subtle balance is an important indication of its
robustness that opens perspectives for its broader application.
Interatomic interactions were modeled by the q-TIP4P/F

potential,32 which was included in a local version of the
Tinker-HP massively parallel package,40 where we also
implemented PIMD and (ad)QTB. Simulations were per-
formed with 1000 water molecules. The PIMD simulations
were essentially converged with 32 beads (the number typically
reported in the literature) and required short time steps; we
used a time step of 0.2 fs for all of the methods and checked
that increasing it to 1 fs had only a limited effect on the
accuracy of the adQTB results. In classical Langevin MD and
PIMD simulations, static averages are independent of the
parameter γ, and we used γ = 1 ps−1 in both cases to limit its
effect on the dynamical properties. On the other hand, adQTB
requires relatively large friction coefficients γ to prevent
vanishing of γi(ω) during adaptation (which would result in
incorrect compensation for the ZPE leakage44). We used γ =
20 ps−1 for all of the QTB and adQTB simulations (the
influence of these parameters and the scalabilty of the
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algorithm for large systems are assessed in the Supporting
Information).
In Figure 1, the QTB and adQTB radial distribution

functions (RDFs) are compared with their classical and PIMD
counterparts. The most salient NQE for this observable is the
strong broadening of the intramolecular peaks caused by ZPE
in the O−H and H−H RDFs. This effect is very well captured
by the adQTB simulations, whereas it is slightly under-
estimated by the standard QTB as a result of ZPE leakage.
Apart from this, the classical and quantum RDFs are very
similar because of the aforementioned competition of NQEs.
In standard QTB simulations, the leakage of the intramolecular
ZPE destabilizes the hydrogen-bonding network completely,
and the intermolecular peaks are excessively broadened. In
contrast, the adQTB procedure efficiently suppresses the
leakage, and the corresponding curves almost superimpose
with the PIMD reference.
This analysis is further confirmed by Table I, which reports

the averages of the different q-TIP4P/F energy terms.

Intermolecular interactions (labeled Coul. and VdW) are
only slightly affected by NQEs, and their classical and PIMD
values are close. In standard QTB, the total intermolecular
energy is overestimated by more than 1 kcal·mol−1 as a result
of ZPE leakage, but this is well-corrected in adQTB, where
accurate values are recovered. The adQTB is remarkably
precise for intramolecular energies (labeled AB and BS) and
for the kinetic energy (which comprise large amounts of ZPE).
It also captures the elongation of the OH distance induced by
NQEs, while the molecular angle is essentially unaffected. The
dielectric constant computed from the adQTB simulations at
300 K is 57, in good agreement with our PIMD estimation of
58 and with the value in ref 32 given the relatively large
statistical uncertainties.
Although PIMD provides a numerically exact reference for

static quantum properties, the computation of dynamical
observables, such as infrared absorption spectra, represents a
much steeper theoretical challenge and is a subject of intense
research.5,8,15,33,59,65,70 There is no reference method to
compute IRS exactly while accounting for NQEs in large
systems, but various approximations have been devel-
oped.13,14,25,48 Recently, Benson et al. compared different
state-of-the-art approximate methods for the calculation of IRS
in liquid water and ice.7 They showed that the linearized
semiclassical initial value representation (LSC-IVR) method,48

in which time-correlation functions are computed from short
classical trajectories initialized from an approximate sampling
of the Wigner distribution, provides the most accurate IRS
within their broad set of approaches, while PI-based
thermostated ring-polymer MD (TRPMD)65 is presented as
the cheapest available approach yielding reliable results. QTB
has formerly been used with some success as an empirical
method to compute approximate IRS.11,12 Although not
formally derivable from first principles except for the harmonic

Figure 1. Radial distribution functions at 300 K and constant volume corresponding to the density ρ = 0.995 g·cm−3.

Table I. Observables at 300 K: The Kinetic Energy (Ek),
Angular Bending (AB), Bond Stretching (BS), Van der
Waals (VdW), and Coulomb (Coul.) Energy Terms of the
q-TIP4P/F Potential32 (All Are Reported in kcal·mol−1 per
Water Molecule; the Standard Error Is <0.01 kcal·mol−1),
the Average Oxygen−Hydrogen Distance (rOH), and the
Average HOH Molecular Angle (θHOH)

Ek AB BS VdW Coul.
rOH
(Å)

θHOH
(deg)

classical 2.69 0.41 1.18 2.20 −14.00 0.96 104.8
QTB 8.39 1.23 5.81 1.72 −12.38 0.98 104.6
adQTB 8.60 1.17 6.37 2.11 −13.76 0.98 104.7
PIMD 8.41 1.17 6.26 2.15 −13.87 0.98 104.7

Figure 2. Infrared absorption spectra at 300 K (in arbitrary units).
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oscillator case, the use of QTB and adQTB for IRS calculations
can be justified qualitatively by noting that the short-time
dynamics is affected only a little by the thermostat and thus is
essentially classical. Therefore, much like LSC-IVR, the QTB
combines classical dynamics with approximate quantum initial
value sampling. Furthermore, the deconvolution procedure of
ref 67 efficiently eliminates the main effect of the thermostat,
namely, the broadening of the spectral peaks.
Figure 2 compares IRS computed with adQTB to those

obtained using classical MD and TRPMD (for which a mild
Langevin thermostat with γ = 1 ps−1 was applied). Compared
with TRPMD, the low-frequency absorption band computed
with adQTB is slightly more intense, and the bending peak
(around 1500 cm−1) is a little blue-shifted and broadened. The
OH stretching peak at 3500 cm−1 is sharper in adQTB than in
TRPMD, and its overtone at 7000 cm−1 has a much larger
intensity. These two discrepancies are in favor of the adQTB
approach since TRPMD has been shown to cause spurious
broadening of the spectral features and to strongly under-
estimate anharmonic resonances.7 Overall, the adQTB IRS are
very similar to the LSC-IVR results reported in ref 7. This
should be further confirmed by studies on different systems,
but it is extremely promising given the almost classical
computational cost of adQTB.
The dynamical properties related to slow molecular motions,

on the other hand, cannot be quantitatively assessed in our
present adQTB implementation because of the need for
relatively large friction coefficients. The diffusion coefficient D
≈ 0.8 cm2·s−1 is underestimated by almost a factor of 3 with
respect to its RPMD value32 (a similar decrease in D is
observed in classical Langevin MD using γ = 20 ps−1). The
deconvolution procedure is of no help here, since D
corresponds to the zero-frequency component of the vibra-
tional spectrum, and the deconvolution does not provide
reliable results in that spectral region.67 Improved diffusion
estimates might be obtained in future works by decreasing γ
selectively at low frequencies using a generalized friction force
or by appropriately redesigning the adQTB algorithm, for
example using the recently introduced fast-forward Langevin
method.35

We now explore the use of adQTB to perform fixed-pressure
simulations using a Langevin piston barostat.20,28 Pressure is a
challenging quantity to evaluate in the (ad)QTB framework:
its estimator is a difference between two large terms that
almost cancel (a potential term and a kinetic term, of the order
of 105 atm each). Therefore, even small inaccuracies in either
of these contributions can result in non-negligible errors (see
the Supporting Information). The results obtained for the
density as a function of temperature at P = 1 atm are shown in
Figure 3.
Because of the competition between NQEs, the classical and

PIMD results are very similar, both showing a characteristic
bell shape with a maximum at around 280 K. NQEs are
responsible for only a small decrease in the density in the
intermediate temperature range (270−330 K). The standard
QTB completely fails to capture this temperature dependence:
it gives values that decrease monotonously and strongly
overestimates the variations of the density. Compensating for
the leakage in adQTB results in recovery of the overall bell
shape and good agreement with the PIMD reference. In the
intermediate temperature range (most relevant for biological
systems), adQTB is very accurate. The curvature of the density
curve is only slightly underestimated, leading to small errors on

the order of 0.005 g·cm−3 in the low-temperature and high-
temperature limits. It should be noted that in barostated
simulations, ZPE leakage can take place from the atomic
system toward the fictitious piston degree of freedom, but this
leakage can easily be avoided by appropriate choices of the
piston mass and friction parameters (see the Supporting
Information).
These results show that adQTB can be a useful and

inexpensive tool for constant-pressure simulations of physical
and chemical properties. As an illustration, we present in
Figure 3b the enthalpy of vaporization (ΔHvap) computed from
the same isobaric simulations. The classical ΔHvap is
systematically overestimated compared with the corresponding
PIMD values.30,62 When NQEs are included with the standard
QTB, ΔHvap decreases markedly and becomes even under-
estimated, but this is due to ZPE leakage, and the adQTB
recovers an almost perfect agreement with the PIMD
reference.
Finally, we discuss the computational overhead of the

adQTB simulations with respect to classical Langevin MD. A
first additional cost comes from the generation of the colored
random forces and the adaptation of the γi(ω) coefficients. It
represents approximately 20% of the total simulation time, and
the scalability tests provided in the Supporting Information
show that even for systems containing over 1 million atoms it
remains less than 25% in our present implementationwhich
will be further accelerated using graphics processing units
(GPUs).1 The q-TIP4P/F water model is particularly
inexpensive, and we expect this overhead to become negligible
in comparison with atomic force calculations with more
realistic models. A second additional cost comes from the
adaptation procedure, which requires time for the γi(ω) to
converge. This necessary time can vary from one system to
another. In the Supporting Information we show that in our
liquid water simulations, with an appropriate choice of

Figure 3. (a) Density of liquid water and (b) enthalpy of vaporization
at constant pressure (P = 1 atm).
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adaptation parameters, the γi(ω) coefficients can converge in
about 10 ps. The minimum adaptation time is thus small
compared with the several nanoseconds required to reach
statistical convergence on some of the physical observables,
such as the density and the dielectric constant.
The adQTB renews the original promise of the QTB

method to provide approximate quantum simulations at an
almost classical cost, but with much-improved reliability. It is a
promising alternative to PI methods to account for NQEs
explicitely in the calculation of static properties as well as
vibrational spectra. Combined with accurate ML potentials or
polarizable force fields, it should provide a powerful tool with
broad applications, in particular for the large-scale simulations
required in biophysics and biochemistry.
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ABSTRACT: We introduce a new parametrization of the AMOEBA polarizable force field for water
denoted Q-AMOEBA, for use in simulations that explicitly account for nuclear quantum effects
(NQEs). This study is made possible thanks to the recently introduced adaptive Quantum Thermal
Bath (adQTB) simulation technique which computational cost is comparable to classical molecular
dynamics. The flexible Q-AMOEBA model conserves the initial AMOEBA functional form, with an
intermolecular potential including an atomic multipole description of electrostatic interactions (up to
quadrupole), a polarization contribution based on the Thole interaction model and a buffered 14−7
potential to model van der Waals interactions. It has been obtained by using a ForceBalance fitting
strategy including high-level quantum chemistry reference energies and selected condensed-phase
properties targets. The final Q-AMOEBA model is shown to accurately reproduce both gas-phase and
condensed-phase properties, notably improving the original AMOEBA water model. This development
allows the fine study of NQEs on water liquid phase properties such as the average H−O−H angle
compared to its gas-phase equilibrium value, isotope effects, and so on. Q-AMOEBA also provides
improved infrared spectroscopy prediction capabilities compared to AMOEBA03. Overall, we show
that the impact of NQEs depends on the underlying model functional form and on the associated strength of hydrogen bonds. Since
adQTB simulations can be performed at near classical computational cost using the Tinker-HP package, Q-AMOEBA can be
extended to organic molecules, proteins, and nucleic acids opening the possibility for the large-scale study of the importance of
NQEs in biophysics.

■ INTRODUCTION
Classical molecular dynamics (MD) has become a powerful
valuable tool to study the properties of complex systems, such
as condensed matter, organic molecules, and proteins, but also
to design new molecules and drugs.1−6 It provides access to
most of the relevant thermodynamic observables of a given
system. The quality of these observables relies not only on the
accuracy of the potential energy surface (PES), usually called a
force field (FF), but also on the amount of the phase-space
sampling. Thanks to the different advances in computing
hardware, such as GPU computing,7−10 and techniques such as
enhanced sampling,11,12 MD is now capable of reaching time
scales of milliseconds making it possible the extensive study of
macromolecules.13

Most standard additive FFs, such as AMBER,14,15

CHARMM,16−19 OPLS,20−22 and COMPASS,23 have been
widely used in MD thanks to their low computational cost due
to their relatively simple functional form and they have been
refined throughout the years. However, they lack a proper
description of many-body interactions, and although they
provide good results for various properties compared to
experiments, it appears that their accuracy is limited in other

contexts.24 The major limitation of these FFs is the use of fixed
partial atomic charges to model electrostatic interactions and
their lack of a fine description of many-body polarization which
hinders their transferability when the atomic environment
changes. To circumvent that, much effort has been made to
include explicitly many-body polarization in FFs by using
either Drude oscillators, fluctuating charges, or induced
dipoles.24−26 Versions of CHARMM27,28 and AMBER29 have
been published where polarization was added to the existing
nonpolarizable FF and new ones have been developed such as
PFF.30 Moreover, it has been shown that FFs should include
the polarization from scratch.31 Hence, more modern FFs such
as AMOEBA,32,33 AMOEBA+,34,35 or SIBFA36,37 have been
designed with polarization included on the outset.
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Due to its major role in many fields, water has been a central
focus of FF development. Over the past decades, many FFs
have been developed, such as TIP3P,38 SPC,39 and their
variants.40,41 Although widely used, these models struggle to
describe a wide part of the phase diagram of water and ice. For
example, the gas-phase binding of the water dimer is
overestimated by approximately 30% in the TIP5P model.41

Based on this, other water models have been developed such as
BK3,42 TIP4P/Ew,43 and TIP4P/2005,44 which use implicit
many-body effects through classical polarization to go beyond
the pairwise approximation. However, these models were
parametrized for classical simulations and do not take into
account explicitly Nuclear Quantum Effects (NQEs) which
reduce their transferability. Indeed, such effects are important
for systems involving light atoms such as hydrogen,45 and some
studies have highlighted their importance in biological
systems.46,47 In practice, such effects are usually implicitly
added by fitting the analytical PES to recover thermodynamic
observables. Moreover, many recent water models use high-
quality ab initio data as a basis for the PES, and it has been
shown that with such a high precision, NQEs must be taken
into account explicitly to accurately reproduce thermodynamic
observables.48

A rigorous and asymptotically exact approach to include
NQEs explicitly in MD simulations is provided by the path
integral molecular dynamics (PIMD) formalism where the
dynamics is performed on an extended classical system
consisting in several replicas (also called beads) of the physical
system.49,50 This method allows for a systematically improvable
treatment of NQEs but at a computational cost that is
considerably larger than that of classical MD. This increased
cost has so far limited the development of FF models based on
PIMD estimations of thermodynamic properties, with a few
notable exceptions such as TIP4PQ/2005,51 q-SPC/Fw,52 q-
TIP4P/F,53 and more recently ArrowFF.48 In parallel, different
methods have been developed to reduce the computational
cost of PIMD simulations, such as high-order PI,54,55 PI
perturbation theory,56,57 or path integral generalized Langevin
methods.58,59 Though these methods have enabled significant
progress, PIMD simulations remain significantly costlier than
classical MD (typically requiring 1 order of magnitude more
resources at room temperature). Other approaches, such as
ring-polymer contractions60,61 or imaginary multiple time-
stepping,62 allow reducing the number of replicas used in the
evaluation of long-range interaction terms, thereby achieving
almost classical computational cost in some applications.63

However, the splitting of the PES between long-range and
short-range terms is not always available, in particular in the
context of ab initio MD or when using machine learning
potentials. In this paper, we introduce a new polarizable force
field, Q-AMOEBA, based on the AMOEBA functional form
that is designed to be used with the explicit inclusion of NQEs.
Indeed, since experiments naturally contain “quantumness”,
the initial AMOEBA model intended to implicitly include
quantum nuclear effects. When adding explicitly NQEs, one
needs to reparameterize the force field potential to propose a
version of it that only tends to reproduce the Born−
Oppenheimer energy in order to avoid double counting
when NQEs are explicitly included through the dynamics. To
do so, we make extensive use of the quantum thermal bath
(QTB) a method based on a generalized Langevin thermostat
to approximate the zero-point motion of the nuclei. More
precisely, we use the adaptive QTB method (adQTB) that

relies on the quantum fluctuation−dissipation theorem to
systematically compensate the effects of zero-point energy
leakage (ZPEL).64 This approach was recently shown to
reliably approximate NQEs in liquid water at a computational
cost that remains similar to that of classical MD.65 The Q-
AMOEBA force field parameters are optimized with the
ForceBalance software (FB)66 in combination with the Tinker-
HP10,67 package for molecular dynamics simulations, in order
to accurately reproduce energies of various water systems in
the gas phase as well as a few condensed-phase properties
obtained with a quantum description of the nuclei. This model
will then make the extensive description of more complex
systems involving water with explicit NQEs possible. Q-
AMOEBA gives overall better results on energies and on key
observables such as the isobaric heat capacity or the thermal
expansion coefficient than the original AMOEBA model. Such
a model also allows us to finely study the practical effects of
NQEs by comparing the properties that are obtained with it
but with purely classical dynamics. We first describe our
parametrization strategy in detail and then test the accuracy
and transferability of our model on various thermodynamic
and structural properties as well as on the IR spectra, showing
the validity of our approach and its future applicability to the
development of new generation models.

■ METHODS
AMOEBA Model. The total potential energy of the

AMOEBA68 water model can be expressed as the sum of
bonded and nonbonded energy terms:

= +
= + +

= + +

E E E

E E E E
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total bonded nonbonded

bonded bond angle b

nonbonded vdW ele
perm

ele
ind

(1)

The bonded terms which include the anharmonic bond-
stretching and angle-bending terms are similar to the MM3
force field.69 The water intramolecular geometry and vibrations
are described with an Urey−Bradley terms Ebθ. In the original
AMOEBA model,32 the ideal bond length was chosen to be at
the experimental value of 0.9572 Å. The ideal bending angle
was 108.5°, and the Urey−Bradley ideal distance was set to
1.5326 Å. The angle is larger than the experimental gas-phase
angle of 104.52° which was shown to be necessary to
reproduce the correct average experimental angle in liquid
water.68

The nonbonded terms are composed of the vdW
interactions and the electrostatic contributions from both
permanent and induced dipoles. The vdW functional term uses
Halgren’s buffered 14−7 potential to model the pairwise
additive interactions for dispersion at long-range and exchange-
repulsion at short-range:70
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where εij is the potential well depth and σij = rij/rij0, where rij is
the i−j separation and rij0 is the minimum energy distance
(distances are calculated from the oxygen atoms, see ref 32). In
AMOEBA, the vdW parameters were set to γ = 0.12 and δ =
0.07. The combining rules used for rij0 and εij are given by

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04454
J. Phys. Chem. B 2022, 126, 8813−8826

8814



=
+
+

=
+

r
r r

r r

( ) ( )

( ) ( )

4

( )

ij
ii jj

ii jj

ij
ii jj

ii jj

0
0 3 0 3

0 2 0 2

2
(3)

A hydrogen reduction factor is added which moves the
hydrogen vdW center toward the oxygen along the O−H
bond. To compute the electrostatic interactions the AMOEBA
model uses point atomic multipoles truncated at quadrupoles
for each atom center. The atomic multipole moments are
derived using the distributed multipole analysis (DMA)
approach and then optimized against a high-level ab initio
PES.71 More details about the functional form of AMOEBA
can be found in reference.33

Parametrization of Q-AMOEBA. The Q-AMOEBA water
model has been parametrized toward liquid phase simulations
using the ForceBalance (FB) software.72−74 FB calculates the
derivatives of the target properties with respect to the FF
parameters to be optimized (see the “Derivatives of Average
Properties with Respect to Parameters in the Path Integrals
Formalism” section in the Technical Appendix for more
details) and uses a Newton−Raphson procedure to reach a
minimum with respect to a given objective function. In this
work, the target properties include both ab initio configura-
tional energies and experimental observables. The initial
parameters were taken from the original AMOEBA water
model32 (denoted as AMOEBA03 in the rest of the text) and
the weights of the different data included in the objective
function are summarized in Table 1. The different convergence
criteria used for FB are given in the Supporting Information.

Most parameters of AMOEBA03 (such as the atomic
permanent multipolar moments) are obtained directly from ab
initio calculations; therefore, only van der Waals parameters
and some well-chosen intramolecular terms were modified.
More specifically, the optimization was performed on both van
der Waals radii and epsilon values of the Halgren 14−7
potential70 associated with oxygen and hydrogen atoms, as well
as the buffer radius of the hydrogen atom and equilibrium
distances and angles of the intramolecular stretching and
bending terms. Our initial intent was to develop a single set of

parameters to be used with both PIMD and adQTB
approaches. In practice, we observed that separate FB
optimizations with both methods yielded slightly different
results. In particular, this is due to the particularities of
pressure estimation in adQTB simulations (see the “Pressure
Estimator” section in the Appendix), which leads to small
inaccuracies in the determination of the density with this
method (of the order of 1%, as was already noted in a former
study on a different FF model).65 Considering the importance
of this observable, we resorted to two sets of parameters with
specific optimization for each method: one for PIMD denoted
as (1) and a second for adQTB, denoted as (2). Because the
adQTB density appeared systematically slightly underesti-
mated, we decided to further modify the buffer radius of H and
the epsilon of O as they displayed the most significant
discrepancies compared to the PIMD ones. To do so, we used
the PIMD values as a guess and further used FB to finally
obtain a satisfactory density with adQTB. This strategy
ultimately led to the final adQTB parameters discussed in
the rest of the paper. We emphasize that the two final sets of
Q-AMOEBA parameters differ only slightly from each other.
To perform the simulations of the condensed-phase properties
with FB, we used the Tinker-HP software on GPUs for PIMD
and adQTB methods.

Geometries extracted from condensed-phase simulations
while using the original AMOEBA03 model at temperatures
ranging from 249.15 to 373.15 K and including cluster sizes
from 2 to 22 molecules were used to obtain ab initio references.
The calculations were performed using Q-Chem 4.0 and
include both energies and gradients calculated using the aug-
cc-pVTZ basis set. Optimal geometries and binding energies of
40 small water clusters ranging from 2 to 20 molecules were
also used. Each cluster has been used on the highest level of
theory available; see Table 1 for details.

The objective function includes two thermodynamic proper-
ties with experimental reference: the density ρ and the
enthalpy of vaporization ΔHvap. These properties were
evaluated at different temperatures ranging from 249.15 to
369.15 K under 1 atm. All simulations were carried out for N =
4000 molecules in periodic boundary conditions with a cubic
box. The van der Waals (vdW) cutoff was set to 12 Å, and
electrostatic interactions were computed with the SPME
method75 with a real space cutoff of 7 Å and a 60 × 60 ×
60 grid. A RESPA integrator using a bonded/nonbonded split
with time steps of 0.2 and 2 fs respectively was used. For each
FB iteration, the dynamics include 1 ns of equilibration and 4
ns of production. For the PIMD calculations, 32 beads were
used with the Thermostated Ring Polymer Molecular
Dynamics (TRPMD) algorithm76 combined with a mild
Langevin thermostat on the centroid (friction coefficient γ =
1 ps−1), whereas in the adQTB method the friction was set to
20 ps−1.

Because of the high frequencies of the intramolecular
stretching and bending modes, the associated zero point
energies are large, impacting the average values of the O−H
distance and H−O−H angle. We therefore modified the
corresponding parameters in Q-AMOEBA to recover exper-
imental values. The final parameters of our models can be
found in the Supporting Information.

■ RESULTS AND DISCUSSION
Binding Energy of Water Clusters. Tables 2 and 3 show

the comparison of the configuration energies obtained with

Table 1. Reference Data Used in FB to Derive the Q-
AMOEBA Sets of Parametersa

system reference data data type
data
point weight

clusters

gas-phase dipole−
quadrupole CCSD(T) 1.0

gas-phase vibrational
modes CCSD(T) 1.0

Smith dimer CCSD(T)
BE 10 1.0

small gas-phase cluster CCSD(T)
BE 21 1.0

large gas-phase clusters MP2 BE 18 1.0
PE and AF MP2 42.000 1.0

liquid
ρ expt. 10 1.0 0.6
ΔHvap expt. 10 0.4

aBE, binding energies; PE, potential energies; and AF, atomistic
forces. The table also shows the weights that were applied to the
different target properties.
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AMOEBA and Q-AMOEBA compared to accurate quantum
references for water clusters of different sizes. For numbers of
atoms n < 6, the CCSD(T) level of theory has been used
whereas larger clusters, such as octamers,77 16−17-mers78 and

20-mers79 were investigated at the MP2 level. These studies
provide the optimized structures and binding energies (BEs) of
these clusters that were used as a reference for the Q-
AMOEBA parametrization. For a given model, the binding
energy is defined as the difference between the optimized
cluster energy and the sum of the energies of the optimized
monomers. Over all the configurations explored, both Q-
AMOEBA models give very similar and accurate results. In
particular, Q-AMOEBA consistently yields more accurate BE
for the Smith dimers than AMOEBA03 with root mean
squared errors (RMSE) of 0.53 and 0.57 kcal·mol−1 compared
to 0.81 kcal·mol−1 for AMOEBA03. For water clusters of
intermediate sizes (3 ≤ n ≤ 8), Q-AMOEBA slightly
overestimates BEs while remaining within a 0.5 kcal·mol−1

per monomer range. The accuracy of Q-AMOEBA improves
for the largest clusters, yielding an overall smaller RMSE than
AMOEBA03 (overall improvement of approximately 0.9 and
0.2 kcal·mol−1). This agreement should translate into a better
representation of condensed-phase properties.
Structural Properties of Water. Radial distribution

functions (RDFs) are a good indicator of the local molecular
structure in the liquid phase both in terms of the different peak
positions and their width. They were computed from NVT
simulations at 298.15 K and the corresponding equilibrium
volume. In Figure 1, the PIMD (dash red curve) and adQTB

Table 2. Binding Energies of the 10 Smith Dimers Using Q-
AMOEBA Compared to the AMOEBA03 Model and Ab
Initio Referencesa

(H2O)2 CCSD(T) AMOEBA03
Q-AMOEBA

(PIMD)
Q-AMOEBA
(adQTB)

Smith01 −4.97 −4.58 −4.96 −4.95
Smith02 −4.45 −3.98 −4.35 −4.34
Smith03 −4.42 −3.94 −4.3 −4.3
Smith04 −4.25 −3.54 −3.49 −3.43
Smith05 −4.00 −2.69 −3.06 −3.00
Smith06 −3.96 −2.59 −2.95 −2.90
Smith07 −3.26 −2.55 −2.81 −2.73
Smith08 −1.30 −0.8 −1.04 −0.95
Smith09 −3.05 −2.69 −2.97 −2.90
Smith10 −2.18 −1.89 −2.14 −2.07
RMSE 0.81 0.53 0.57
aThe table distinguishes between Q-AMOEBA (PIMD) and Q-
AMOEBA (adQTB) depending on which method was used to include
NQEs in the calibration of the model. CCSD(T) results come from
ref 80.

Table 3. Binding Energies of Trimer to 20-mer of Water Clusters Computed Using Q-AMOEBA Compared to AMOEBA03
and Ab Initioa

(H2O)n geometry QM AMOEBA03 Q-AMOEBA (PIMD) Q-AMOEBA (adQTB)

n = 3 cyclic −15.74 −15.03 −16.05 −16.11
n = 4 cyclic −27.40 −27.63 −28.98 −29.32
n = 5 cyclic −35.93 −36.38 −38.19 −38.72
n = 6 prism −45.92 −45.71 −47.88 −48.36

cage −45.67 −45.82 −47.95 −48.39
bag −44.30 −44.79 −46.97 −47.53
cyclic chair −44.12 −44.62 −46.88 −47.60
book1 −45.20 −45.6 −47.8 −48.39
book2 −44.90 −45.37 −47.55 −48.11
cyclic boat1 −43.13 −43.78 −45.79 −46.65
cyclic boat2 −43.07 −43.84 −46.04 −46.73

n = 8 S4 −72.70 −72.34 −75.71 −76.46
D2d −72.70 −72.39 −75.75 −76.50

n = 11 434 −105.72 −101.74 −106.40 −107.52
515 −105.18 −102.08 −106.85 −108.11
551 −104.92 −101.85 −106.61 −107.86
443 −104.76 −101.86 −106.63 −107.78
4412 −103.97 −101.41 −106.26 −107.50

n = 16 boat-a −170.80 −161.21 −168.83 −170.57
boat-b −170.63 −161.54 −169.12 −170.92
antiboat −170.54 −162.26 −169.98 −171.95
ABAB −171.05 −161.18 −168.69 −170.32
AABB −170.51 −160.98 −168.51 −170.13

n = 17 sphere −182.54 −173.02 −181.21 −183.32
5525 −181.83 −172.32 −180.42 −182.46

n = 20 dodecahedron −200.10 −197.03 −206.1 −208.54
fused cubes −212.10 −205.76 −215.35 −217.42
face sharing prisms −215.20 −206.13 −215.74 −218.05
edge sharing prisms −218.10 −208.46 −218.40 −220.85

RMSE 3.33 2.36 3.12

aThe table distinguishes between Q-AMOEBA (PIMD) and Q-AMOEBA (adQTB) depending on which method was used to include NQEs in the
calibration of the model. QM reference correspond to CCSD(T) for n ≤ 632,81 and to MP2 for n ≥ 8.77−79.
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(dotted and dashed green curve) radial distributions are
compared to the experimental data obtained from X-ray
scattering82 and neutron diffraction.83 These data were not
included in our parametrization and hence were used as a first
test.

Both Q-AMOEBA results are almost indistinguishable and
overall in close agreement with experiments. The difference
between simulation and experimental curves are of the same
order as the discrepancies within experimental data. For
instance, the first peak of the Oxygen−Oxygen RDF is located
at 2.73 Å in the X-ray scattering experiment whereas it is at
2.80 Å in the neutron diffraction one. It is well reproduced by
the two Q-AMOEBA models, with peaks located respectively
at 2.80 Å (PIMD) and 2.79 Å (adQTB).

Intramolecular structure is illustrated by the average O−H
distance and H−O−H angle as shown in Table 4. NQEs tend

to slightly increase the average O−H distance and H−O−H
angle of water molecules in the liquid phase. This is why both
sets of parameters have a reduced ideal angle compared to the
initial set of parameters (106.2° in adQTB and 107.2° in
PIMD compared to 108.2° in AMOEBA03). However, the
PIMD values of Table 4 are a little overestimated, whereas this
effect was compensated in our adQTB model by decreasing
further the associated equilibrium parameters (from 0.9572 to
0.9472 Å for the O−H distance and 108.2° to 106.2° for the

H−O−H angle). Interestingly, the modeling of the average
value of the H−O−H angle in liquid phase compared to its
average value in gas phase is known to be problematic with
classical force fields and requires to artificially increase the
equilibrium parameter.32 It has been shown that this can be
traced back to the absence of charge-flux effect.35 The former
effect of NQEs on these averages highlights the need to
explicitly include them to design accurate models of water.
Infrared Spectra. The infrared absorption spectrum can be

related to the total dipole derivative autocorrelation function
as85,86

=n
V

C( ) ( )
3

( )
0 (4)

where n(ω) is the refractive index, α(ω) is the Beer−Lambert
absorption coefficient, β = 1/kBT is the inverse thermal energy,
V is the system’s volume, and C ( ) is the Kubo
autocorrelation spectrum of the total dipole time derivative

. In the AMOEBA framework, the total dipole moment is
estimated as
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where qi are permanent charges located on the atom’s position
ri, μi0 are permanent dipoles (which magnitudes are fixed but
rotate with the water molecules), and μiind are induced dipoles
that are obtained at each step of the dynamics via a
minimization procedure.67 Since no analytical form for the
time derivative of the induced dipole is available, it is estimated
using finite differences of the total dipole moment over the
trajectory.

The IR spectrum is directly evaluated in path integrals
simulations in the framework of TRPMD,76 while it is
recovered from adQTB simulations through the following
relation in the Fourier domain:87

C C( )
tanh( /2)

/2
( )adQTB

(6)

In practice, it is directly estimated from the Fourier transform
of the dipole derivative trajectory (averaged over the beads in
TRPMD simulations) according to the Wiener−Khinchin
theorem. Furthermore, in the adQTB method, the relatively
high friction coefficient (that is required to compensate ZPEL)
tends to broaden spectral lineshapes so that it is necessary to
use the deconvolution procedure of ref 88 to improve the
spectrum.

Figure 2 shows the IR spectra calculated using TRPMD and
adQTB compared to the experimental spectrum (extracted
from ref 53), classical AMOEBA03 spectrum and the classical
spectrum obtained from a simulation using the parameters
optimized for adQTB. The spectra from both quantum
simulations are very similar in their peak positions and are in
good agreement with the experimental data. As already well-
documented,45,65,86 including NQEs shifts the intramolecular
peaks (bending around 1600 cm−1 and stretching around 3500
cm−1) toward lower frequencies. Relative intensities between
the spectral features are similar in quantum and classical
simulations and agree well with experimental results (although,
we can note that the TRPMD spectrum for the stretching peak
is broadened compared to the other simulations, which is a
well-known discrepancy of this method). The low-frequency

Figure 1. RDFs computed at 298.15 K with Q-AMOEBA compared
to the X-ray82 and neutron83 diffraction experiments.

Table 4. Average O−H Bond Length and H−O−H Angle
while Using the Q-AMOEBA Parameters Compared to the
Experimental Results83

PIMD (32 beads) PIMD (64 beads) adQTB expt.

rOH (Å) 0.985 0.985 0.975 0.97
θHOH (deg) 106.08 106.10 104.95 105.1
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features are very similar for AMOEBA03, TRPMD and adQTB
(although slightly more intense for the adQTB) and are red-
shifted compared to the results obtained in classical
simulations with Q-AMOEBA (light blue), showing the impact
of NQEs even at those low frequencies. The general shape of
these low-frequency features are in good agreement with the
experimental spectrum and even display some substructure at
around 200 cm−1 that is due to slow induced-dipole
dynamics53,89 and is absent for nonpolarizable models, even
when including NQEs.53

Thermodynamic Properties. Thermodynamic properties
of the two Q-AMOEBA set of parameters were computed from
temperatures ranging from 249.15 to 369.15 K under 1 atm. As
shown in Figure 3, the characteristic bell shape of the density
versus temperature curve is well captured by the Q-AMOEBA
force fields. The deviations from the experimental result are
minor, with average densities at ambient temperature of 0.998

and 0.999 g·cm−3 for the PIMD and adQTB methods
respectively, compared to the experimental value of 0.997 g·
cm−3 (less than 0.2% difference). In both high and low ranges
of temperature, the density is slightly underestimated by a
maximum of 0.85% at 369.15K. The figure also shows the
curve obtained from a classical MD simulation using the Q-
AMOEBA (adQTB) set of parameters (light blue curve). It
differs significantly from the AMOEBA03 classical reference,
which shows that the changes made to the force field
parameters have a sizable impact on the density. Even more
importantly, the classical MD curve displays strong discrep-
ancies with the corresponding adQTB and PIMD results: The
temperature of maximum density TMD is shifted to higher
values, while the density is significantly reduced at low
temperature and increased at high temperatures with respect to
the results obtained including NQEs. To explain this impact of
NQEs, we come back to the peculiarities of liquid water that
explain the unusual bell shape of the density curve. The latter is
related to the tetrahedral arrangement of the water molecules,
which tends to produce a loosely packed local structure. For T
< TMD, increasing the temperature allows hydrogen bonds to
strain and break more easily, which in turns enables larger
deviations from the tetrahedral order with a better packing
efficiency and therefore an increase of the density. However,
for T > TMD, a competitive process tends to dominate: The
breaking of H-bonds tends to increase nearest-neighbors
distances which leads to the more usual thermal expansion
observed at high temperature.91 Within the Q-AMOEBA
model, we observe that the inclusion of NQEs tends to
increase the density for T < TMD and to decrease it above TMD,
which indicates that NQEs lead to an overall weakening of the
hydrogen bonds over the whole temperature range. This is
consistent with experimental observations of isotope effects in
liquid water, most of which suggest that hydrogen bonds are
weaker in H2O than in D2O,45 the latter isotope being heavier
hence more classical. In particular, the experimental TMD shifts
from 277.15 K for H2O to 284.32 K for D2O and even 286.55
K for T2O, which agrees qualitatively with the observed shift
between the quantum and classical MD curves within the Q-
AMOEBA model.

Figure 2. IR absorption spectra computed at 300 K and ρ = 0.997 g·cm−3 with the Q-AMOEBA water model the adQTB and PIMD methods with
their respective set of parameters (green and red curves, respectively). The classical curve (light blue) is obtained from classical MD simulations
with the Q-AMOEBA (adQTB) model. They are compared with AMOEBA03 (classical MD) and experimental data.84 The right part of the plot,
corresponding to the stretching mode is multiplied by 0.5. The number in parentheses refers to the set of force field parameters used in the
simulations: (1) PIMD; (2) adQTB (see text).

Figure 3. Density of liquid water at P = 1 atm as a function of the
temperature for different AMOEBA models. The dashed line
represents the density while using the Q-AMOEBA PIMD method,
whereas the dot-dashed lines are obtained with the Q-AMOEBA
adQTB method. Experimental data come from ref 90. The number in
parentheses refers to the set of force field parameters used in the
simulations: (1) PIMD; (2) adQTB (see text).
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This reasoning is further confirmed by the study of the
different nonbonded energy contributions of the Q-AMOEBA
force field in Table 5. PIMD values are superior by
approximately 1.0 kcal·mol−1 per water molecule at 298.15 K
to their classical counterpart, a trend which is consistent over
the whole temperature range. Notably, the impact of NQEs on
the hydrogen bond strength strongly depends on the
underlying water model.92 For example, in the q-TIP4P/f
model, densities computed in PIMD or in classical MD are
very similar,65 whereas in the TTM2.1-F force field both curves
are overestimated93 and the PIMD density is lower than its
classical counterpart at all temperatures.

It has been recognized that NQEs also play an important
role in determining the enthalpy of vaporization ΔHvap of
water and that they should be taken into account explicitly for
accurate prediction of this observable.94,95 Assuming water
vapor to be an ideal gas, one may find

= +H E E P V V( )vap g liq g l (7)

where Eg is the average total energy in the gas phase and Eliq is
the average total energy per molecule in the liquid phase. As
shown in Figure 4, classical enthalpy of vaporization is

overestimated and decreases with the inclusion of NQEs.
The Q-AMOEBA classical result (dashed light blue line) yields
ΔHvap = 11.5 kcal·mol−1 at 298.15 K which is ∼0.5 kcal·mol−1

higher than the reference. However, the PIMD and adQTB
results underestimate the ΔHvap by approximately ∼0.8 kcal·
mol−1, similar to other sophisticated models,96 while capturing

the correct slope of the curve with increasing temperature.
Since the correct slope is recovered, some hypothesis tracking
back the small resulting Q-AMOEBA discrepancies (compared
to experiment) to the reference ab initio computations can be
introduced. First, as we discussed the impact of NQEs on the
hydrogen bond strength, it is highly probable that our
CCSD(T) reference level does not fully reflect the
experimental high complexity of the potential energy surfaces
of water dimers and clusters. Indeed, at this level of accuracy,
small changes in gas-phase reference computations could still
impact the predicted condensed-phase properties. If the
explicit inclusion of triple excitations clearly increases the
strength of interactions,97 then it has been shown that
CCSDTQ approaches yield to relatively small but non-
negligible improvement in the optimized CCSD(T) geometry
and interaction energy for the water dimer.98 Furthermore, one
can guess that the simple Q-AMOEBA functional form
probably reaches its limit in capturing highly complex electron
density delocalization/overlap effects that would require the
inclusion of higher-order excitations. Models like SIBFA36 or
AMOEBA+34,35 that include additional overlap/delocalization
effetcs such as electrostatic penetration, charge transfer, and so
on, could be potentially better able to capture such nontrivial
interactions.

The validity of Q-AMOEBA was further studied by
computing other equilibrium properties of liquid water which
were not included in the objective function of FB: the isobaric
heat capacity cp, the thermal expansion coefficient αP, the
isothermal compressibility κT, and the dielectric constant εr.
The isobaric heat capacity is defined as

=c
H
Tp

P

i
k
jjj y

{
zzz

(8)

where H and T are the enthalpy and the temperature at a given
pressure P. In practice, cp is estimated as the temperature
derivative of a fourth-order polynomial interpolating the values
of H obtained at different temperatures. It is well-known that
the heat capacity is strongly affected by NQEs. Indeed, at room
temperature, the fluctuations of the high-frequency intra-
molecular modes are almost exclusively due to zero-point
energy effects and essentially independent of the temperature.
Therefore, intramolecular energy terms give almost no
contribution to the heat capacity, which is not the case in
the classical picture, leading to a significant overestimation of cp
when NQEs are not included explicitly.94 Indeed, as shown in
Figure 5, classical MD simulations overestimate cp for both Q-
AMOEBA and AMOEBA03. On the contrary, including NQEs
allows recovering lower values much closer to experiment.

The thermal expansion coefficient αP is calculated using
analytic differentiation of a polynomial fit of the simulated
density ρ(T):

Table 5. Average Energy Contributions of Q-AMOEBA Obtained with the Different Methods at 298.15 Ka

bond stretching angle bending Urey−Bradley van der Waals atomic multipoles polarization nonbonded

classical (2) 0.75 0.43 −0.03 5.48 −11.43 −5.19 −11.14
adQTB (2) 5.55 1.22 −0.11 4.37 −9.95 −4.43 −10.01
PIMD (1) (32 beads) 5.43 1.19 −0.12 4.32 −9.87 −4.35 −9.9
PIMD (1) (64 beads) 5.57 1.20 −0.12 4.33 −9.88 −4.38 −9.93

aThe classical row corresponds to the adQTB set of parameter. All energies are given in kcal·mol−1 per water molecule and obtained from 1 ns
simulations at constant volume corresponding to the density ρ = 0.997 g·cm−3. The number in parentheses refers to the set of force field parameters
used in the simulations: (1) PIMD; (2) adQTB (see text).

Figure 4. Enthalpy of vaporization at P = 1 atm as a function of the
temperature with the different models. The dashed line represents the
PIMD results and the dot-dashed lines the adQTB ones. The number
in parentheses refers to the set of force field parameters used in the
simulations: (1) PIMD; (2) adQTB (see text). Experimental data
(continuous line) are taken from ref 99.
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It shows the same trend as described above for the density
(Figure 6): Classical MD yields too negative results at low
temperature, a trend corrected by the inclusion of NQEs. At
high temperatures, all the methods behave similarly.

Longer NPT simulations of 10 ns were performed to
converge the static dielectric constant and the self-diffusion
coefficient and 20 ns for the isothermal compressibility (Figure
7). The isothermal compressibility that characterizes the
volume change as a response to an applied pressure can also
be related to the volume fluctuations in an NPT simulation:

= =
V

V
P k T

V V
V

1 1
T

T N, B

2 2i
k
jjj y

{
zzz

(10)

Simulations with classical nuclei in the Q-AMOEBA model
tend to amplify the variations of this observable with T and to
underestimate its value at high temperature. The explicit
inclusion of NQEs reduces the variations of κT over the
explored temperature range, and yield a shape that is very
similar to the experimental curve, though with slightly larger
values (particularly for the PIMD model). Overall, the results
of the adQTB model are significantly improved with respect to
that of the original AMOEBA03, whereas the PIMD ones are
similar to it, which highlights that the original FF implicitly
takes into account NQEs in its parametrization.

The static dielectric constant is calculated from the
fluctuations of the total dipole moment as

= + ·
k T V

1
4

3
( )r

B

2

(11)

where ⟨μ⟩ is the average total dipole moment defined in eq 5
and ⟨V⟩ is the average volume of the simulation box. The
results (Figure 8) are satisfactory for εr with Q-AMOEBA and
show the impact of NQEs on this property: They significantly
reduce εr at low temperature and have a smaller influence
when T increases.

The self-diffusion coefficient was evaluated at 298.15 K
under 1 atm using the Einstein equation:

= | |D
t

r t r tlim
d
d

( ) ( )
t

0 0
2

(12)

The mild Langevin thermostat (friction of γ = 1 ps−1) applied
to the centroid in the TRPMD method has been shown to
have only a small effect on the computed diffusion whereas the
adQTB method requires larger frictions (γ = 20 ps−1) which
affects the diffusion.65,101 The PIMD (TRPMD) value is 2.29
± 0.01 × 105 cm2·s−1 which is in excellent agreement with the
experimental value of 2.30 × 105 cm2·s−1 and larger than the
associated classical one (0.91 ± 0.01 × 105 cm2·s−1). The
quantum/classical ratio of this quantity has been observed to
vary widely among water models.52,53,93 However, the adQTB
value is 0.78 ± 0.01 × 105 cm2·s−1 which is around 3 times
lower than the expected value due to the large γ of the
Langevin thermostat.65 The slower diffusion can be associated
with a less efficient sampling,39 but this is largely compensated

Figure 5. Isobaric heat capacity at P = 1 atm as a function of the
temperature with the different models. The dashed line represents the
PIMD results and the dot-dashed lines the adQTB ones. The number
in parentheses refers to the set of force field parameters used in the
simulations: (1) PIMD; (2) adQTB (see text). Experimental data are
taken from ref 99.

Figure 6. Thermal expansion coefficient at P = 1 atm as a function of
the temperature with the different set of parameters. The number in
parentheses refers to the set of force field parameters used in the
simulations: (1) PIMD; (2) adQTB (see text). Experimental data are
taken from ref 90.

Figure 7. Isothermal compressibility at P = 1 atm as a function of the
temperature with the different models. The number in parentheses
refers to the set of force field parameters used in the simulations: (1)
PIMD; (2) adQTB (see text). Experimental data are taken from ref
100.
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by the considerable speed up of the adQTB method compared
to path integral ones.

Finally, the molecular dipole moments were also studied in
order to further confirm the previous interpretation regarding
the impact of NQEs with respect to the underlying hydrogen
bonds strength. Figure 9 shows that in classical MD

simulations with the Q-AMOEBA model the dipole moment
is larger than in the original AMOEBA03 force field, indicating
stronger hydrogen bonds in the new model. At room
temperature, the value obtained from classical simulations
with the Q-AMOEBA model is 2.90 D, whereas explicitly
including NQEs via PIMD or adQTB weakens the H-bonds
and reduces the dipole moment to 2.76 or 2.78 D, respectively.
These values are close to those obtained in AMOEBA03, and
in agreement with ab initio simulations and experiments.102,103

Heavy Water. Isotope effects are an important marker of
the relevance of NQEs, since classical thermodynamics
predicts different isotopes to have identical thermal equili-
brium properties. Therefore, explicit treatment of NQEs is

necessary to describe effects such as those arising from the
substitution of H by its heavier isotope D.104 To further
validate the Q-AMOEBA approach, we present in Table 6 the
values for heavy water D2O of some thermodynamic properties
previously presented, focusing on those known to be most
impacted by the isotopic substitution.

Overall, Q-AMOEBA yields the correct trends for the
isotopic substitution of H by D with an increase of the heat
capacity cp and of ΔHvap. For the latter, the amplitude of the
change is overestimated by a factor of approximately 2, with a
change of ∼0.6 kcal·mol−1 for Q-AMOEBA, with respect to the
experimental value of 0.3 kcal·mol−1. Concerning cp, the
isotope effect is also overestimated by Q-AMOEBA (adQTB)
with an increase of ∼3.6 kcal·mol−1 compared to the
experimental 1.9 kcal·mol−1. The Q-AMOEBA (PIMD)
model is more accurate in its prediction of the increase of cp
under deuteration, but it slightly overestimates the heat
capacity in general (for both H2O and D2O). This different
behavior of the two Q-AMOEBA variants for this observable
might be related to the slight differences in the intramolecular
parameters of the two models. It is very promising that the Q-
AMOEBA model is able to capture qualitatively the effects of
the deuteration of water, even though the changes of the
properties with isotope substitution are sometimes over-
estimated (it was also the case for the isotope shift of the
temperature of maximum density TMD, discussed in the
“Thermodynamic Properties” section). The remaining discrep-
ancies indicate that, within the tunability offered by the
AMOEBA functional form, the optimization via FB leads to
parameters that yield slightly too weak hydrogen bonds, which
in turns leads to an overestimation of isotope effects since weak
H-bonds tend to be further weakened by NQEs.45,106 This
interpretation is also consistent with the slight underestimation
of ΔHvap by Q-AMOEBA and with the diffusion coefficient
found for D2O: 1.45 ± 0.02 × 105 cm2·s−1 compared to the
experimental value of 1.77× 105 cm2·s−1.45,107 More refined
FFs (such as the AMOEBA+ functional form), when suitably
reparametrized to include NQEs explicitly, might, in the future,
offer even more quantitatively accurate predictions for isotope
effects in water and biological systems.
Ice Ic. The study was further extended by studying the

density of ice phase Ic at 78.0 K under 0 atm of Q-AMOEBA.
A total of 128 beads were used to converge PIMD simulations.
Q-AMEOBA gives 0.893 and 0.906 g·cm−3 in PIMD and
adQTB, respectively, whereas the experimental value is 0.931
g·cm−3,108 thus giving a maximum difference of ∼4%. Although
classical MD simulations with AMOEBA03 yield a density

Figure 8. Static dielectric constant at P = 1 atm as a function of the
temperature with the different set of parameters. The number in
parentheses refers to the set of force field parameters used in the
simulations: (1) PIMD; (2) adQTB (see text). Experimental data are
taken from ref 99.

Figure 9.Molecular dipole moments at P = 1 atm as a function of the
temperature with the different set of parameters. The number in
parentheses refers to the set of force field parameters used in the
simulations: (1) PIMD; (2) adQTB (see text).

Table 6. Thermodynamic Properties Computed at 298.15 K
under 1 atm Pressure for Both Q-AMOEBA Models for
H2O and D2O Compared to Experimental Values

99,105,a

H2O D2O

PIMD
(1)

adQTB
(2) exp.

PIMD
(1)

adQTB
(2) exp.

ρ 0.998 0.999 0.997 1.109 1.106 1.104
ΔH 9.65 9.55 10.52 10.25 10.28 10.85
cp 21.087 18.297 18.002 22.724 21.885 20.148
aThe density ρ is given in g·cm−3, the enthalpy of vaporization ΔHvap
in kcal·mol−1 and the isobaric heat capacity cp in cal·mol−1·K−1. The
number in parentheses refers to the set of force field parameters used
in the simulations: (1) PIMD; (2) adQTB (see text).
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∼2% smaller than the experimental value, PIMD simulations
with the same model underestimate the density by ∼6.8%.
Hence, even if Q-AMOEBA probably tends to slightly
overemphasize NQEs, it still improves considerably compared
to PIMD simulations with AMOEBA03. This indicates that the
satisfactory results obtained for ice with AMOEBA03 in
classical MD simulations are due to error compensations and
an implicit inclusion of NQEs in the force field para-
metrization, which limits its transferability. We therefore
expect Q-AMOEBA to offer overall more robust predictions
in this low-temperature range.

■ CONCLUSION
The newly introduced Q-AMOEBA model allows capturing
NQEs with an improved accuracy thanks to their explicit
inclusion in the parametrization process. The computational
load of this parametrization was significantly reduced by
resorting to the adaptive Quantum Thermal Bath method. The
final Q-AMOEBA model is significantly different from the
original AMOEBA03 force field and the explicit inclusion of
NQEs led to an improved intramolecular potential with O−H
bond length and H−O−H angle parameters closer to their gas-
phase values compared to the original AMOEBA03. While Q-
AMOEBA is shown to accurately reproduce gas-phase
quantum chemistry computations, even for large molecular
aggregates, it is also shown to be extremely robust for the
prediction of condensed-phase properties. Improved results on
liquid water compared to AMOEBA03 are observed, while
transferability to ice is shown to be similar to previous models.
The IR absorption spectrum is also better reproduced with Q-
AMOEBA. Importantly, the model is also able to capture the
experimental trends associated with the deuteration of water.
Isotope effects are a valuable indicator of NQEs since they are
absent in a classical description of the nuclei. Q-AMOEBA
yields qualitatively correct predictions for the changes of
thermodynamic quantities in heavy water compared to normal
water, although it tends to overestimate these changes. We
interpret it as a sign that the hydrogen bonds strength is
slightly underestimated by Q-AMOEBA, which should be
improved with more advanced functional forms such as
AMOEBA+ and improved reference ab initio computations
including higher level of couple cluster excitations. Concerning
the functional form of the force field, it is shown that the
inclusion of the many-body polarization effects lead to
nontrivial interplay with NQEs. Since adQTB simulations
can be performed at near classical cost, the improved Q-
AMOEBA model can be easily extended to organic molecules,
proteins, and nucleic acids, opening the possibility for the
large-scale study of the importance of NQEs in biophysics.

■ TECHNICAL APPENDIX

Derivatives of Average Properties with Respect to
Parameters in the Path Integrals Formalism
In order to optimize, the parameters of the force field using
experimental data on average properties (for example,
densities, enthalpy of vaporization, etc.), ForceBalance must
be able to compute derivatives of these properties with respect
to the FF parameters. While it is possible to simply use finite
differences to numerically perform these derivatives, it is well-
known that they are very sensitive to statistical noise on
average values (computed over a molecular dynamics
simulation) so that very long simulations would be necessary.

Furthermore, one would have to perform multiple simulations
with slightly different parameters in order to compute a single
derivative. In ref 73, the authors propose to use the explicit
form of the partition function in order to compute parametric
derivatives as an average value over a single MD simulation
with the current parameters. For a parameter λ and an
observable A(r; λ), the derivative can be expressed in the
classical NPT ensemble as

=
A A

A
E

A
E

(13)

where E(r, V; λ) is the potential energy and ⟨...⟩λ denotes an
expectation value over the distribution ρ(r; λ) ∝ e−β(E(r,V;λ)+PV).

This expression can be generalized to PI simulations using
the same process with the path integral partition function. Let
us denote ⟨...⟩N,λ as the expectation value over the N-beads
path integral distribution:
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with K(r1, ..., rN) the PI harmonic energy that couples the
different beads (which is independent of λ) and ( )N the
partition function that normalizes ρN. For convenience, let us
denote = =O O V Nr( , ; )/i

N
i1 the average over the beads

for any function O. The parametric derivative of ⟨A⟩N,λ is then:
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which is almost identical to the classical expression except that
all observables are averaged over the beads. This expression
can be used in ForceBalance in order to fit the force field
parameters on properties computed using quantum nuclei in
the path integrals framework.
Pressure Estimator
NPT simulations were performed using the Langevin-piston
method to obtain all relevant constant-pressure properties. The
isotropic pressure estimator is given by

=P
K
V

U
V

2
3

d
dint (15)

with V the volume of the simulated box and U the interatomic
potential energy. In the PIMD framework, the kinetic energy K
is given by the centroid virial estimator, whereas in the adQTB
it is obtained as

=K v v v m v( , , ..., )
1
2N

i
i i1 2 3

1 2

(16)

where η is a correction factor obtained through a
deconvolution procedure in order to correct for the systematic
error in the adQTB estimation of the kinetic energy due to the
spectral broadening induced by the Langevin dynamics with
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relatively large friction coefficients γ.65 Despite this powerful
procedure to correct the pressure estimation in adQTB, some
differences remain with respect to PIMD calculations with the
same set of parameters. More precisely, within the Q-
AMOEBA (PIMD) model and for NVT simulations at 300
K, the average of the second term in eq 15 is −12840 and
−12680 atm in adQTB and PIMD respectively, i.e., a
difference of ∼1.3%. The averages of the term (kinetic part)
are equal respectively to 13040 and 12640 atm (∼3.2%
difference, though the PIMD value might still increase slightly
for larger bead numbers). These discrepancies result in a ∼160
atm difference in the total pressure estimation. Although
relatively small for condensed-phase simulations, this discrep-
ancy causes a slight error on the density estimation in adQTB
(of the order of 1%) which is the main reason for the use of
two different Q-AMOEBA sets of parameters for adQTB and
PIMD.
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in Journal of Physics: Conference Series (IOP Publishing, 2018), vol. 1055, p. 012003.

[116] T. Qi and E. J. Reed, The Journal of Physical Chemistry A 116, 10451 (2012).

[117] M. Parrinello and A. Rahman, The Journal of chemical physics 80, 860 (1984).

[118] R. W. Hall and B. J. Berne, The Journal of chemical physics 81, 3641 (1984).

[119] T. E. Markland and D. E. Manolopoulos, Chemical Physics Letters 464, 256 (2008).

[120] T. E. Markland and D. E. Manolopoulos, The Journal of chemical physics 129, 024105 (2008).

[121] M. Herman, E. Bruskin, and B. Berne, The Journal of Chemical Physics 76, 5150 (1982).

[122] W. Janke and T. Sauer, The Journal of chemical physics 107, 5821 (1997).

[123] T. M. Yamamoto, The Journal of chemical physics 123, 104101 (2005).

[124] B. Berne and G. Harp, Advances in chemical physics 17, 63 (2009).
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