
HAL Id: tel-03863726
https://theses.hal.science/tel-03863726

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Power-Balanced Modeling of Nonlinear Electronic
Components and Circuits for Audio Effects

Judy Najnudel

To cite this version:
Judy Najnudel. Power-Balanced Modeling of Nonlinear Electronic Components and Circuits for Audio
Effects. Modeling and Simulation. Sorbonne Université, 2022. English. �NNT : 2022SORUS223�. �tel-
03863726�

https://theses.hal.science/tel-03863726
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ

Spécialité

AUTOMATIQUE ET TRAITEMENT DU SIGNAL

Power-Balanced Modeling of Nonlinear
Electronic Components and Circuits

for Audio Effects

Présentée par :
Judy NAJNUDEL

devant le jury composé de
Bernhard MASCHKE - Rapporteur
Udo ZÖLZER - Rapporteur
Benoît FABRE - Examinateur
Antoine FALAIZE - Examinateur
Stefania SERAFIN - Examinatrice
Manuel SCHALLER - Invité

Directeur de thèse :
Thomas HÉLIE

Co-encadrement :
Rémy MÜLLER, David ROZE

Soutenue le : 01 juillet 2022





iii

Abstract
This thesis is concerned with the modeling of nonlinear components and circuits for
simulations in audio applications. Our goal is to propose models that are sufficiently
sophisticated for simulations to sound realistic, but that remain simple enough for real
time to be attainable.

To this end, we explore two different approaches, both based on a port-Hamiltonian
systems formulation. Indeed, this formulation structurally guarantees power balance
and passivity, and is equipped with numerical methods that extend these guarantees in
the discrete time domain. This ensures the accuracy of simulations, provided that the
circuit constitutive laws also are accurate.

The first approach is comparable to "white box" modeling. It assumes that the circuit
topology is known, and focuses on the modeling of specific components found in vin-
tage audio circuits, namely ferromagnetic coils (found in wah-wah pedals, transform-
ers, passive equalizers among others) and opto-isolators (found in tremolos and optical
compressors). The proposed models are physically-based, passive, modular, and usable
in real time. In addition to accurate simulations (implemented into plugins for the mu-
sic software company UVI), a byproduct result of this work is a novel modeling method
combining statistical physics and port-Hamiltonian systems. This method produces re-
duced, macroscopic power-balanced systems from complex physical systems with nu-
merous degrees of freedom. Moreover, the statistical physics framework is responsible
for the emergence of explicit thermodynamic variables, and ensures thermodynamic
consistency in the final model.

The second approach is comparable to "grey box" modeling. It aims to retrieve the
topology and constitutive laws of a circuit from measurements. The learning of the
circuit topology is informed by a port-Hamiltonian formulation, and concomitantly,
nonlinearities are addressed through kernel-based methods. Thus, necessary physical
properties are enforced, while the use of reproducing kernels allows for a variety of
nonlinear behaviors to be described with a smaller number of parameters and a higher
interpretability compared to neural network methods. Finally, a possible generalization
of this approach for a larger class of circuits is outlined through the introduction of the
Koopman operator.
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Introduction

This thesis is concerned with the modeling of nonlinear components and analog cir-
cuits for simulations in audio applications. It is the result of a collaboration between
the research team S3AM 1 at the STMS laboratory (IRCAM-CNRS-SU), and the music
software publisher UVI 2. The S3AM team is interested in modeling, simulating, iden-
tifying and controlling physical systems that produce sound (in a broad sense), such
as acoustic musical instruments, electronic circuits, loudspeakers, vocal apparatus, etc.
A significant part of their research over these last years has been based upon the port-
Hamiltonian systems formalism. In particular, I relied on this formalism to model and
simulate an ondes Martenot circuit for my master’s thesis (see Appendix F for publica-
tions on this subject). The UVI company is a French software publisher that develops
virtual instruments and digital effects for sound designers and music producers. There-
fore, the objective of this thesis is twofold: (i) contribute to the state of the art in audio
circuit modeling and follow up on the work of our team colleagues on the subject [1, 2],
and (ii), propose tools that are relevant in a context of industrial applications, namely,
models that are sufficiently sophisticated for simulations to sound realistic, but that re-
main simple enough so that simulations can be performed in real time.

To this end, we explore two different approaches, both based on a port-Hamiltonian
systems formulation. Indeed, this formulation structurally guarantees power balance
and passivity, and is equipped with numerical methods that extend these guarantees
in the discrete time domain. This ensures the accuracy of simulations, provided that
the circuit constitutive laws also are accurate. The first approach assumes that the cir-
cuit topology is known, and focuses on the modeling of specific components found in
vintage audio circuits, namely ferromagnetic coils and opto-isolators. The second ap-
proach aims to learn the topology and constitutive laws of a circuit from measurements,
by enforcing physical properties through an underlying port-Hamiltonian systems for-
mulation, and by addressing nonlinearities through kernel-based methods.

After a short introduction to the port-Hamiltonian systems formalism in the first
chapter, we structure our contributions in three chapters for the first approach, and two
chapters for the second approach.

In the second chapter, we revisit equilibrium statistical physics with port-Hamiltonian
systems modeling in mind. Starting from a complex system with numerous degrees of
freedom, we propose a series of systematical steps in order to derive relevant macro-
scopic thermodynamic variables, given some experimental conditions.

In the third chapter, we follow the method developed in the second chapter and
derive a macroscopic port-Hamiltonian model for ferromagnetic cores, which exhibits
temperature-dependent nonlinear characteristics such as saturation and hysteresis. In
turn, this model can be connected to other components via magnetic and thermal ports.
We exploit this modularity to build a general model for ferromagnetic coils, and we
present simulations of a highpass circuit and a transformer based on this general model.

In the fourth chapter, we propose a port-Hamiltonian model of resistive opto-isolators
by studying doping mechanisms in semiconductors, and coupling between optical and
electrical domains. Based on this model, we identify a Vactrol from measurements, and
simulate a minimal optical compressor.

In the fifth chapter, we present an identification method for nonlinear circuits with
linear dissipation that preserves passivity. The method relies on optimal reconstruction
of energy through reproducing kernels and an underlying port-Hamiltonian formula-
tion. We apply the method to identify a nonlinear peaking EQ filter.

1 http://s3am.ircam.fr/
2 https://www.uvi.net/about-us

http://s3am.ircam.fr/
https://www.uvi.net/about-us
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Finally, in the sixth and last chapter, we aim to extend this kind of approach to a
larger class of circuits, in which dissipation can be nonlinear. To this end, we combine
the Koopman operator with a port-Hamiltonian formulation. This allows the derivation
of an approximated passive linear system in the dual space of observables on the state-
space. We apply the proposed method to identify and simulate a diode clipper circuit
with a non-iterative numerical scheme.

All publications relative to this thesis are compiled in Appendix E.
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Chapter 1

Modeling and Simulation of Circuits
as Port-Hamiltonian Systems

Contents
1.1 Virtual analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Port-Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 PH-DAE formulation . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 PH-ODE reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Numerical scheme for simulations . . . . . . . . . . . . . . . . . . . . . 6

1.1 Virtual analog

The aim of virtual analog modeling is to produce digital copies of analog systems.
The motivation behind virtual analog can range from obtaining identical functionali-
ties from cheaper and more flexible tools, preserve the technological legacy of obsolete
machines, or enhancing creativity by providing hybrid objects that would be otherwise
difficult or even impossible to engineer.

Several techniques are available to build virtual analog instruments (for a review,
see [3, 4, 5]). They include Modified Nodal Analysis [6, 7], the Nodal DK method [8,
9, 10], and Wave Digital Filters [11, 12, 13, 14, 15, 16, 17]). Real-time simulations of
circuits can be derived from time-continuous state-space representations combined with
numerical schemes [18, 19, 20, 21].

The approach used in this thesis is based on a state-space representation, which sat-
isfies the power balance of the physical system structured into conservative, dissipative
and external parts, known as Port-Hamiltonian Systems [22, 23]. This formulation can
be combined with numerical methods that preserve power balance and passivity in the
discrete-time domain for both linear and nonlinear systems. This has proven to be rele-
vant for simulations of audio (electronic or multiphysical) systems [24, 25, 26, 27].

1.2 Port-Hamiltonian systems

1.2.1 PH-DAE formulation

The PHS formalism provides a unified formalism for the modeling of multiphysical
systems, in the sense that it recognizes energy as a universal currency. Indeed, any
physical system can be divided into parts that interact with each other via energy ex-
changes. Moreover, due to the strong geometric structure underlying PHS, the analysis
of intrinsic properties such as symmetries or invariant quantities is facilitated.
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Detailed presentations of PHS are available in [28, 23]. In this thesis, we rely on a
differential-algebraic formulation adapted to multiphysical systems [26, 2]. This formu-
lation allows the representation of a dynamical system as a network of

1. storage components of state x and energy E(x);

2. passive memoryless components described by an effort law z : w 7→ z(w), such
as the dissipated power Pdiss = z (w)ᵀ w is non-negative for all flows w;

3. connection ports conveying the outgoing power Pext = uᵀy where u are inputs and
y are outputs.

The system flows f and efforts e are coupled through a (possibly dependent on x) skew-
symmetric interconnection matrix S = −Sᵀ, so that




ẋ
w
y




︸ ︷︷ ︸
f

= S



∇E(x)
z(w)

u




︸ ︷︷ ︸
e

. (1.1)

In the context of electronic circuits, flows can either be currents (e.g. for capacitors) or
voltages (e.g. for inductors), and vice versa for efforts. For convenience, to distinguish
storage, dissipative, and connection ports exchanges in the following, we introduce the
block-matrix notation:

S =







Jx −K −Gx

Kᵀ Jw −Gw

Gᵀ
x Gᵀ

w Jy
. (1.2)

Such systems satisfy the power balance

Pstored + Pdiss + Pext = 0 (1.3)

where Pstored = ∇E(x)ᵀ ẋ denotes the stored power.

Proof.

Pstored + Pdiss + Pext = ∇E(x)ᵀ ẋ+ z (w)ᵀ w+uᵀy = eᵀ f = eᵀSe = (eᵀSe)ᵀ = −eᵀSe = 0

due to the skew-symmetry of S.

Note that throughout this thesis, we adopt the passive sign convention (also called
receiver convention) for all components, including external sources. This means that the
current is defined positive when entering the component through the positive voltage
terminal [29].

Example 1. Consider a circuit constituted of a voltage source (input), a linear capacitor (stor-
age), a linear inductor (storage), and a resistor that obeys Ohm’s law (dissipative) connected in
series (Fig. 1.1a). The circuit state is given by x =

[
q, Φ

]ᵀ, where q denotes the electric charge
of the capacitor, and Φ denotes the magnetic flux linkage of the inductor. The (quadratic) energy
E is defined by

E(x) =
q2

2 C
+

Φ2

2 L
, (1.4)

where C is the capacitance and L the inductance. The corresponding flow ẋ gives the current
through the capacitor iC and voltage across the inductor vL, and the corresponding effort∇E(x)
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TABLE 1.1: Linear RLC circuit in series: state, flow, energy, and effort.

State x
[
q, Φ

]ᵀ

Flow
ẋ

[
q̇, Φ̇

]ᵀ
= [iC, vL]

ᵀ

w iR

Energy E(x) q2

2 C + Φ2

2 L

Effort
∇E(x)

[
q
C , Φ

L

]ᵀ
= [vC, iL]

ᵀ

z(w) R iR = vR

vin

iin

R

vR

iR L

vL

iL
C

vC

iC

(A) RLC circuit schematics

∇E(x) z(w) u
vC iL vR vin






ẋ
iC 0 1 0 0
vL −1 0 −1 1

w iR 0 1 0 0
y iin 0 −1 0 0

(B) Corresponding PHS.

FIGURE 1.1: RLC circuit in series: schematics and PHS.

gives the voltage across the capacitor vC and current through the inductor iL (Table 1.1). Kirch-
hoff’s laws in receiver convention yield the PHS formulation given by




iC
vL
iR
iin


 =




0 1 0 0
−1 0 −1 1
0 1 0 0
0 −1 0 0







vC
iL
vR
vin


 . (1.5)

From now on, such formulations will be given as in Fig. 1.1b for compacity.

1.2.2 PH-ODE reduction

Under certain conditions, Eq. (1.1) can be reduced into the PH-ODE formulation
[

ẋ
y

]
= (J − R)

[
∇E(x)

u

]
, (1.6)

where J = −Jᵀ is skew-symmetric, and R = Rᵀ � 0 is positive semi-definite. Both
matrices are possibly dependent on x. In particular, formulation (1.6) is possible when
the dissipative law z is linear, but more generally if algebraic constraints can be reduced,
for instance if the matrix that couples dissipative flows and efforts Jw = 0, and z(w) can
be expressed as

z(w) = Z(w)w, Z(w) � 0. (1.7)
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Indeed, using notation of Eq. (1.2), and denoting Z̃(x, u) = Z(w)|w=Kᵀ∇E(x)−Gw u, we
obtain

[
ẋ
y

]
=

[
Jx − K Z̃(x, u)Kᵀ K Z̃(x, u)Gw −Gx

Gᵀ
w Z̃(x, u)Kᵀ + Gᵀ

x −Gᵀ
wZ̃(x, u)Gw + Ju

] [
∇E(x)

u

]

=




[
Jx −Gx

Gᵀ
x Ju

]

︸ ︷︷ ︸
J=−Jᵀ

−
[
−K 0

0 Gᵀ
w

]
Z̃(x, u)

[
−Kᵀ 0

0 Gw

]

︸ ︷︷ ︸
R�0




[
∇E(x)

u

]
.

(1.8)

Note that such a reduction is not always desirable as it can increase the stiffness
of the system, that is, the difference of scale between “fast” phenomena and “slow”
phenomena within the system dynamics. For an Ordinary Differential Equation (ODE)

of the form ẋ = A x, stiffness can be characterized through the ratio |Re(λmax)|
|Re(λmin)| , with λmax

(resp. λmin) the maximal (resp. minimal) eigenvalue of A. Stiff systems require specific
iterative, multi-step solvers [30] for the numerical solution to be stable, which can be an
issue for real-time applications.

Example 2. For the RLC circuit of Fig. 1.1a, the PH-DAE can be reduced to the PH-ODE given
by

∇E(x) u
vC iL vin



ẋ

iC 0 1 0
vL −1 −R 1

y iin 0 −1 0

(1.9)

Example 3. Consider a diode clipper circuit with a linear capacitor, a linear resistor, and a
nonlinear diode with passive dissipation law ID : vD 7→ ID(vD) = iD (Fig. 1.2a). Kirchhoff’s
laws in receiver convention yield the canonical PH-DAE shown on Fig. 1.2b. As the matrix that
couples dissipative flows and efforts Jw = 0, the formulation can be reduced to the PH-ODE
given by

∇E(x) u
vC vin[ ]

ẋ iC −R− (ID(vD)/vD)|vD=q/C R
y iin R −R

(1.10)

1.3 Numerical scheme for simulations

In this thesis, we use a numerical scheme based on the discrete gradient (see [31, 26]),
the principle of which is recalled below. Define x[k] = x(k/ fs) where fs = 1/Ts denotes
the sampling rate. Moreover, define the state increment δx[k] = x[k + 1]− x[k] and the
discrete gradient ∇E(x[k], δx[k]). In the case of mono-variate storage components, i.e.,

the energy takes the form E(x) =
N
∑

n=1
En(xn), the nth component of the discrete gradient
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vin

iin

R

vR

iR

DvD

iD
CvC

iC

(A) Diode clipper schematics.

∇E(x) z(w) u
vC iD iR vin






ẋ iC 0 −1 1 0

w
vD 1 0 0 0
vR −1 0 0 1

y iin 0 0 −1 0

(B) Diode clipper: corresponding PHS.

FIGURE 1.2: Corresponding PHS.

is defined as

[∇E
(
x[k], δx[k]

)
]n =





En
(

xn[k] + δxn[k]
)
− En(xn[k])

δxn[k]
if δxn[k] 6= 0

dEn

dxn
(xn[k]) otherwise.

(1.11)

The method consists of replacing ẋ with δx[k]/Ts and ∇E(x) with ∇E
(
x[k], δx[k]

)
in

Eq. (1.1). As in Eq. (1.3), due to the skew-symmetry of S, the following discrete power
balance is satisfied:

∇E
(
x[k], δx[k]

)ᵀ δx[k]
Ts︸ ︷︷ ︸

δE[k]/Ts

+ z(w[k])ᵀw[k]︸ ︷︷ ︸
Pdiss[k]

+ u[k]ᵀy[k]︸ ︷︷ ︸
Pext[k]

= 0. (1.12)

Moreover, due to the positivity of z(w[k])ᵀw[k], the system is passive. Denoting ν =(
δx[k] fs, w[k]

)ᵀ
, the discretization of Eq. (1.1) yields the implicit equation

F (ν) := ν− S e(ν, x[k], u[k]) = 0, (1.13)

where

S =

[
Jx −K −Gx
Kᵀ Jw −Gw

]
, (1.14)

and e(ν, x[k], u[k]) =
[
∇E

(
x[k], δx[k]

)
, z(w[k]), u[k]

]ᵀ
.

Denoting J the Jacobian of F , Eq. (1.13) is solved using the Newton-Raphson itera-
tion [32]

νk+1 = νk −J (νk)−1F (νk), (1.15)

if J is invertible. Conditions for convergence of the method can be found in [33, 32].
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2.1 Statistical physics framework overview

A macroscopic system (of size 10−2 m or bigger) is constituted of matter, that is, billions
of microscopic particles (of size 10−9 m or smaller) which are collectively responsible
for the system’s behavior. However, studying a single particle tells nothing about the
macroscopic system, just as following the trajectory of a single person is not sufficient to
predict a crowd movement. Yet, solving exhaustive equations with billions of variables
would be all at once much too complex and irrelevant: at a high enough scale, indi-
vidual behaviors do not matter. Indeed, one is usually not interested in the particular
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trajectories of water molecules in one’s glass, but rather in the volume, on average, that
they take. Likewise, one is not (only) interested in the day’s weather report, but rather
in the global warming tendency.

Averages and tendencies belong to the domain of statistics, which aims to describe
complex systems with a reduced number of variables. Thus, Statistical Physics (SP)
computes averages on (fast) fluctuations of complex systems in order to derive (slower)
macroscopic quantities, given some experimental conditions. This leads to the predic-
tion of macroscopic thermodynamic phenomena such as temperature, entropy creation,
and phase transitions [34, 35].

While thermodynamics has been broadly studied in the context of PHS modeling
and control (see e.g. [36, 37, 38, 39, 40, 41, 42]), the proper derivation of macroscopic
thermodynamic variables from complex systems with numerous degrees of freedom is
seldom addressed. Therefore in this chapter, we propose a series of systematical steps in
order to construct a simplified yet physically-based, structured macroscopic PHS, from
a system that can be described by SP.

Note that in the scope of this work, we limit ourselves to equilibrium SP, in the sense
that average quantities are determined for a system at thermodynamic equilibrium, given
some experimental conditions. It is compatible with studying the system dynamics, as-
suming that thermodynamic relaxation (the process of reaching thermodynamic equi-
librium) is infinitely faster than the rate of change of experimental conditions. Based on
this assumption, a macroscopic trajectory is to be understood as a succession of equilib-
rium states.

This chapter is structured as follows. In Section 2.2, we formalize the microscopic
description of a system through the choice of (i) an ad hoc particle representation and
(ii) a set of characterizing functions. In Section 2.3, we investigate experimental con-
ditions and their influence on the system configuration space. Then in Section 2.4, we
introduce a stochastic description for configurations. We determine the probability dis-
tribution for a system at thermodynamic equilibrium in Section 2.5, which allows the
derivation of relevant macroscopic variables as expectations for this probability distri-
bution. Finally, by defining ports corresponding to those macroscopic variables, we
obtain a macroscopic PHS model in Section 2.6.

A part of this work has been presented at the LHMNC conference in 2021 [43].

2.2 Microstate of a system

2.2.1 Particle representation

In order to describe a system at a microscopic level, each of its particles must be de-
scribed in a relevant way. Depending on the system under study, one may choose to
represent a particle by its position, momentum, charge, magnetic moment, etc.

The set of all possible values for the chosen representation is denoted P.

Example 4 (Particle represented by its position). For a particle chosen to be represented by
its position in space r ∈ R3, P = R3.

Example 5 (Particle represented by its spin). For a particle chosen to be represented by its
spin s ∈ {−1/2, 1/2}, P = {−1/2, 1/2}.

Example 6 (Particle represented by its position and spin). For a particle chosen to be repre-
sented by both its position in space r ∈ R3 and its spin s ∈ {−1/2, 1/2}, P = R3×{−1/2, 1/2}.
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2.2.2 Configuration space

If an element of P represents a particle, then the concatenation of elements of P repre-
sent a particular configuration of particles. By analogy with formal language theory [44],
a particular configuration of particles is thus a word over the alphabet P.

We denote W := P? the configuration space of the system, where ? is the Kleene
operator ? defined by

P0 = {ε}, Pi+1 =
{

p1 · p2 | (p1, p2) ∈ Pi ×P
}
∀i ≥ 0, (2.1a)

P? =
⋃

i≥0

Pi, (2.1b)

with ε the empty configuration and · the concatenation operation. In other words, W is
the set of all possible configurations over P.

Property 1 (The configuration space is a monoid). By construction, the configuration space
W is a monoid (see Def. (1)) with associative binary operation · (concatenation) and identity
element ε (empty configuration).

Definition 1 (Monoid). A set S is a monoid if it is equipped with an associative binary op-
eration · : S× S 7→ S and identity element ε, so that for all (s1, s2, s3) ∈ S3, the following
properties hold

1. s1 · (s2 · s3) = (s1 · s2) · s3,

2. ε · s1 = s1 · ε = s1.

Note that here, we only consider distinguishable particles, in the sense that configu-
rations are sequences and not multisets 1 [45].

Based on the chosen representation, some configurations may not be admissible 2,
and we denote M ⊆ W the set of admissible configurations. An element m ∈ M is
called a microstate of the system. In the following, we do not forbid that two particles
share the same representation and choose M = W. Figure 2.1a shows examples of mi-
crostates for a system of particles described by their spin, and Fig. 2.1b shows a system
of particles described by their position and momentum.

Property 2 (The configuration space is measurable). The pair
(
M,P(M)

)
where P(M)

denotes the powerset of M is a measurable space, that is, it verifies

1. M ∈ P(M),

2. P(M) is closed under complements: M\P ∈ P(M), ∀P ∈ P(M),

3. P(M) is closed under countable unions:
⋃∞

i=1 Pi ∈ P(M) ∀P1, P2, . . . ∈ P(M).

1 In sequences, order matters but not in multisets. The sequence (p1, p2) is different from the sequence
(p2, p1), but the multiset {p1, p2} is equivalent to the multiset {p2, p1}. However, note that the configura-
tion space could also be built for multisets, cycles, etc.

2 For instance, if the chosen representation assigns a unique label to each particle, configurations in
which several particles share the same label are not admissible.
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(A) Examples of microstates for a system of two particles described by their spin s ∈ {−1/2, 1/2}.

(B) Examples of microstates for a system with three particles described by their position (circle)
and momentum (arrow).

FIGURE 2.1: Examples of microstates for different systems.

2.2.3 Associated characterizing functions

In order to characterize the system at a microscopic level, one may choose to equip M

with I characterizing functions Fi=1,...,I : M→ Fi.

Definition 2 (Extensivity). A function Fi is extensive if Fi is a R+-semimodule (see Def. 3)
and if it verifies

m3 = m1 ·m2 ⇒ Fi(m3) = Fi(m1) +Fi(m2) ∀(m1, m2, m3) ∈M3. (2.2)

Definition 3 (R+-semimodule). A set S is a R+-semimodule if for all (r1, r2) ∈ R+2 and
(s1, s2) ∈ S2, the following properties hold

1. r1 (s1 + s2) = r1 s1 + r2 s2,

2. (r1 + r2) s1 = r1 s1 + r2 s1,

3. (r1 r2) s1 = r1 (r2 s1),

4. 1 s1 = s1,

5. 0 s1 = 0.

Example 7. The function E : M 7→ R+ defined as

E : m 7−→ E(m) (2.3)

where E(m) is the energy of the system in microstate m is extensive for systems with non-
interacting particles.

Example 8. The function N : M 7→N+ defined as

N : m 7−→ N (m) (2.4)

where N (m) is the number of particles of the system in microstate m is always extensive.

Example 9. The functionR that gives the set of all particle positions for the system in microstate
m, defined as

R(m) =
(

ri
)

1≤i≤N (m)
, (2.5)

where ri ∈ R3 is the position of particle i.
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Example 10. The function V : M 7→ R+ defined as

V : m 7−→ V(m) (2.6)

where V(m) is the volume occupied by the system in microstate m.
Remark: the choice of such function V is hardly unique as the volume relates strongly with

that of the matter container. Here, we propose to define V(m) as the minimal bounding volume
enclosing all particle positions of microstate m that accounts for the container geometry and its
degrees of freedom. For instance, for a cylindrical container of fixed base A closed by a piston
moving freely along axis z, we can define the volume as

V(m) = A× h(m), with h(m) = max{ri
z | ri ∈ R(m)}. (2.7)

Note that it does not fulfill the extensivity property defined in Eq. (2.2).

In the following, we denote I = {1, . . . , I} the set of indices of characterizing func-
tions on M, F = {Fi}i∈I the set of characterizing functions on M, and set F1 = E .

2.3 Experimental conditions and accessible microstates

Experimental conditions may constrain characterizing functions to take values that are
compatible with these experimental conditions. Thus, under experimental conditions,
the configuration space becomes restricted to a set of accessible microstates Ma ⊂M.

Definition 4 (Set of accessible microstates Ma). Denote I0 ⊆ I the set of indices of char-
acterizing functions that are experimentally constrained. Then for all i ∈ I0, the experimental
constraint on Fi translates into a binary relation Ri ⊂ Fi × F0

i with F0
i ∈ P(Fi). Denoting

θ0 := (F0
i )i∈I0 , the set of accessible microstates Ma

(
θ0
)

is

Ma

(
θ0
)
=

{
m ∈M |

(
Fi(m), F0

i

)
∈ Ri ∀i ∈ I0

}
. (2.8)

Remark that I0 = I defines an isolated system with respect to the chosen character-
izing functions.

Example 11. Consider a gas of N0 particles in a closed tank. The system cannot exchange par-
ticles with the environment, therefore the number of particles N (m) is fixed to N0. Denoting

RN =

{(
N0, N0

)}
, the set of accessible microstates is Ma

(
N0
)
=

{
m ∈M |

(
N (m), N0

)
∈ RN

}
.

Example 12. Consider a gas of N0 particles in a closed tank occupying a space Π ⊂ R3.

Denoting RN =

{(
N0, N0

)}
and RΠ = ΠN0 × ΠN0

, the set of accessible microstates is

Ma

(
N0, Π

)
=

{
m ∈M |

(
N (m), N0

)
∈ RN ,

(
R(m), ΠN0

)
∈ RΠ

}
.

Other examples of experimental conditions are shown on Fig. 2.2.
In the following, we assume that all characterizing functions that are not explicitly

fixed by experimental conditions can still depend on microstate m, and we denote I1 :=
I\I0 the set of indices of characterizing functions not fixed by experimental conditions.
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(A) Fixed number of parti-
cles and fixed volume.

(B) Fixed number of parti-
cles.

(C) Fixed volume.

FIGURE 2.2: Examples of experimental conditions for a gas in a tank.

2.4 Stochastic representation and measure of uncertainty

2.4.1 Microstate stochastic description

The system fluctuates from one accessible microstate to another. As it is not possible to
predict these random fluctuations in a deterministic fashion, SP adopts a stochastic de-
scription. Indeed, from Prop. (2),

(
M,P(M)

)
is measurable, therefore so is

(
Ma, Tr

(
P(M)

)
Ma

)
,

where Tr
(
P(M)

)
Ma

denotes the trace of P(M) on Ma [46], so that we can define a
probability distribution p : Ma 7→ [0, 1], which assigns to each microstate m ∈ Ma a
probability p(m) to be the actual microstate of the system.

Assuming that Ma is countable and that the distribution p is discrete, the average of
a random quantity F (m) is given by its expectation Ep[F ], defined as 3

Ep[F ] = ∑
m∈Ma

p(m)F (m). (2.9)

2.4.2 Statistical entropy

Given some basis of units of information b > 1, a microstate m with probability p(m)
has a surprisal Sb

p(m) defined as

Sb
p(m) = logb

1
p(m)

with logb :=
ln

ln(b)
. (2.10)

The surprisal, or information content, quantifies how much the occurrence of microstate
m is surprising. For example, if some microstate m is the state of the system for certain,
it has probability 1 and surprisal 0.

As the probability of two independent events m1 and m2 verifies

p (m1 ·m2) = p(m1) p(m2), (2.11)

the surprisal function Sb
p verifies the extensivity property defined in Eq. (2.2).

The surprisal allows the definition of a measure of lack of information on average
for a probability distribution p and a basis b, namely, the statistical entropy Sb(p) [47]
defined as

Sb(p) = Ep[Sb
p]. (2.12)

The statistical entropy can be interpreted of as “the average number of questions to ask
with b possible answers per question” in order to know the actual microstate for certain.

3 It is similarly defined for a continuous distribution: the sum is replaced with an integral.
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(A) (B) (C) (D)

FIGURE 2.3: Possible outcomes for a coin tossed twice.

Example 13. Consider the outcomes of tossing a coin twice. The coin can come up heads or tails
after each toss, hence 2× 2 = 4 possible outcomes (Fig. 2.3). If all outcomes are equiprobable,
one needs at least two questions with two possible answers each to know the exact outcome:

1. Did the coin come up heads or tails after the first toss?

2. Did the coin come up heads or tails after the second toss?

As it happens, taking p1 : m 7→ p1(m) = 1
4 and b = 2 in Eq. (2.12) yields Sb(p1) = − log2

1
4 =

2.
However, if the probability distribution is not uniform, some outcomes are more probable

than others, and the uncertainty is lower; ditto the entropy. For instance, with a probability
distribution p2 assigning 1

2 to outcome (A), 1
4 to outcome (B), and 1

8 to outcomes (C) and (D),
the entropy becomes Sb(p2) = 1.75 < Sb(p1) = 2.

In information theory, statistical entropy relates to optimal encoding of information.
Suppose you repeat the coin toss experiment of Ex. (13) for a long period of time, and
wish to record every outcome on a computer. For a sequence of two tosses with distri-
bution p1, an outcome cannot be encoded in less than two bits; while with distribution
p2, outcome (A) can be encoded on one bit, outcome (B) on two, and outcomes (C) and
(D) on three, that is, 1× 1

2 + 2× 1
4 + 6× 1

8 = 1.75 bits on average. The most frequent
outcome takes the least encoding space; conversely, the comparatively large encoding
space taken by outcomes (C) and (D) is compensated by the rarity of their occurrence.
On the whole, exploiting the knowledge underpinned by distribution p2 reduces the en-
coding cost. This principle underlies Morse code (and, more generally, lossless entropy
encoding like Huffman coding [48]): very common letters such as “e” or “i” take much
fewer dots than less common letters like “j” or “q”.

In the following, we denote k := 1/ln b, so that the statistical entropy becomes

Sb(p) = −k ∑
m∈Ma

p(m) ln p(m). (2.13)

2.5 Microstate probability distribution at equilibrium and par-
tition function

2.5.1 Thermodynamic equilibrium

A system is at thermodynamic equilibrium when its statistics stops evolving. At this
point, the ergodic hypothesis postulates that over a “sufficiently long” period of time t,
the system explores all its accessible microstates. Assuming that a microstate m can
be measured at a time τ through M : R+ 7→ Ma, this means that at thermodynamic
equilibrium, the temporal mean of a quantity F i coincides with its expectation Ep[Fi]:

F i := lim
t→+∞

1
t

∫ t

0
(Fi ◦M) (τ)dτ = Ep[Fi]. (2.14)
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Therefore, for a given set θ1 of mean values (F i)i∈I1 , the ergodic hypothesis trans-
lates into a set of hypotheses H

(
θ1
)

defined as

H
(

θ1
)
=
(

Ep[Fi] = F i

)
i∈I1

. (2.15)

While still discussed [49] (especially regarding the definition of “sufficiently long”),
this hypothesis is the foundation of equilibrium statistical physics, and we assume its
validity in the following.

2.5.2 Maximum entropy at thermodynamic equilibrium (Boltzmann princi-
ple)

At equilibrium, the system provides minimal information: all available information
about its macroscopic state is summarized into a single observation. Recalling that sta-
tistical entropy is a measure of lack of information, we conclude that at equilibrium, the
entropy is maximal: this is the Boltzmann principle.

2.5.3 Resulting microstate probability distribution and partition function

It follows that the microstate probability distribution at thermodynamic equilibrium p?

is

p? =arg max
p

Sb(p)

subject to





∑
m∈Ma

p(m) = 1,

H
(

θ1
)

,

(2.16)

where H
(

θ1
)

accounts for the experimental conditions.

To solve Eq. (2.16), we introduce Lagrange multipliers λ0 and λ1 := (λi)i∈I1 , and
optimize the Lagrangian L defined by [50]

L :
(

p, λ0, λ1
)
7−→ Sb(p) + λ0


 ∑

m∈Ma

p(m)− 1


+ ∑

i∈I1

λi

(
Ep[Fi]−F i

)
. (2.17)

Theorem 1. Let θ1 :=
(
F i

)
i∈I1
∈ Xi∈I1Fi, where Xi∈I1Fi denotes the Cartesian product of

the (Fi)i∈I1 . Then for all m ∈Ma

(
θ0
)

,

p?
(

m | H
(

θ1
))

=

exp
(

∑i∈I1 λi Fi(m)

k

)

Z
(
λ1
) , (2.18a)

where

Z
(

λ1
)

:= ∑
m∈Ma

exp

(
∑i∈I1 λi Fi(m)

k

)
(2.18b)
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is the partition function of the system, and, for all i ∈ I1, λi verifies

∂

∂λi
k lnZ

(
λ1
)
= F i. (2.18c)

Proof. A necessary condition to optimize L is to solve δL
δp = 0, where δ denotes the func-

tional derivative. From Eq. (2.17)-(2.13)-(2.9),

δL

δp
= 0⇒ ∑

m∈Ma


−k

(
ln p(m) + 1

)
+ λ0 + ∑

i∈I1

λi Fi(m)


 = 0.

This is true in particular if p verifies

− k
(
ln p(m) + 1

)
+ λ0 + ∑

i∈I1

λi Fi(m) = 0 ∀m ∈Ma

⇒p(m) = exp

(
∑i∈I1 λi Fi(m)

k

)
exp

(
λ0

k
− 1
)
∀m ∈Ma.

A second necessary condition is to solve
∂L

∂λ0
= 0, which, combined to the first

condition, yields

∂L

∂λ0
= 0⇒ ∑

m∈Ma

p(m) = 1⇒ ∑
m∈Ma

exp

(
∑i∈I1 λi Fi(m)

k

)
= exp

(
1− λ0

k

)
,

so that for all m ∈Ma, p?(m) is of the form

p̂?
(

m | H
(

θ1
)

, λ1
)
=

exp
(

∑i∈I1 λiFi(m)

k

)

Z (λ1)
with Z (λ1) := ∑

m∈Ma

exp

(
∑i∈I1 λi Fi(m)

k

)
.

(2.19)

A third necessary necessary condition is to solve
∂L

∂λi
= 0 for all i ∈ I1, which,

combined with Eq. (2.19), yields

∂L

∂λi
= 0⇒Ep[Fi] = F i

⇒
∑m∈Ma

Fi(m) exp
(

∑i∈I1 λi Fi(m)

k

)

Z
(
λ1
) = F i

⇒ ∂

∂λi
k lnZ

(
λ1
)
= F i.

We deduce that the optimal distribution p? is

p?
(

m | H
(

θ1
))

= p̂?
(

m | H
(

θ1
)

, λ1
)

with λ1 such that
∂

∂λi
k lnZ

(
λ1
)
= F i ∀i ∈ I1.
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Definition 5 (Thermodynamic entropy). The thermodynamic entropy Sb
(

θ1
)

is defined as

the statistical entropy for the probability distribution at equilibrium given θ1:

Sb
(

θ1
)
= Sb

(
p?
(
· | H

(
θ1
)))

. (2.20)

Property 3. The thermodynamic entropy function Sb is a Legendre transform of k lnZ and we
have

Sb
(

θ1
)
= k lnZ

(
λ1
)
− ∑

i∈I1

λi F i. (2.21)

Proof. We have

Sb
(

θ1
)

(a)
= Sb

(
p?
(
· | H

(
θ1
)))

(b)
= −k ∑

m∈Ma

p?
(

m | H
(

θ1
))

ln p?
(

m | H
(

θ1
))

(c)
= −k ∑

m∈Ma

p?
(

m | H
(

θ1
))

ln




exp
(

∑i∈I1 λi Fi(m)

k

)

Z
(
λ1
)




= −k ∑
m∈Ma

p?
(

m | H
(

θ1
))(∑i∈I1 λi Fi(m)

k
− lnZ

(
λ1
))

(d)
= − ∑

i∈I1

λi F i + k lnZ
(

λ1
)

,

using (a) Eq. (2.20), (b) Eq. (2.13), (c) Eq. (2.18a), and (d) Eqs. (2.9)-(2.14).
We deduce that Sb is a Legendre transform of k lnZ (see [51] and Appendix A).

Property 4. It follows from Prop. (3) that for all i ∈ I1, the Lagrange multiplier λi is the
derivative of the thermodynamic entropy function with respect to average F i

λi = −
∂Sb

∂F i

(
θ1
)

. (2.22)

Example 14. In particular, this defines the system temperature T, chemical potential µ, and
pressure P as

1
T

:=
∂Sb

∂E
(

θ1
)

,
µ

T
:= − ∂Sb

∂N
(

θ1
)

,
P
T

:=
∂Sb

∂V
(

θ1
)

. (2.23)

System thermally insulated For a system thermally insulated, the surprisal is inde-
pendent of m so that

Sb
p?(m) = S0 ∀m. (2.24)

That implies that for such systems, all microstates have the same probability

p?(m) =
1
Ω

, with Ω = card (Ma) . (2.25)

From Eq. (2.18a), it follows that for thermally insulated systems, we have

∑
i∈I1

λi Fi(m) = C0, (2.26)
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where C0 is independent of m.

2.5.4 Identification of Boltzmann constant

To ensure that the statistical entropy does coincide with the thermodynamic entropy at
equilibrium, the constant k must be chosen as the Boltzmann constant kB = 1.38× 10−23

J.K−1. Indeed, consider an ideal gas of N non-interacting atoms in a box of volume V at
temperature T, represented by their position and momentum. The partition function Z
is given by (see Appendix B)

Z(T |N, V) = VN
(

2 π µ k T
h2

)3 N/2

, (2.27)

where here µ denotes the mass of an atom, and h is the Planck constant. From Prop. (3),
the thermodynamic entropy Sb(E , N, V) is given by

Sb(E , N, V) = k lnZ(T |N, V) +
E
T

. (2.28)

Moreover, from Eq. (2.23), the pressure P is given by

P = T
∂Sb

∂V
(E , N, V) =

N k T
V

. (2.29)

Therefore, k must be identified with kB so that the ideal gas law P V = N kB T is verified.

2.5.5 Summary

By applying Boltzmann principle, we are able to systematically derive the microstate
probability distribution and the thermodynamic entropy given some experimental con-
ditions, through the following steps:

1. Microstate representation Define P, W = P? and M ⊆ W equipped with char-
acterizing functions F = (Fi : M 7→ Fi)1≤i≤I , where F1 is the energy function E .

2. Experimental conditions and accessible microstates

(a) Partition F = F0 ∪ F1 into the set F0 of functions the values of which are
physically constrained by the experiment and its complement F1, with corre-
sponding sets of indices I0 and I1.

(b) Denote θ0 := (F0
i )i∈I0 ⊂ Xi∈I0Fi the set of experimentally admissible values

for functions (Fi)i∈I0

(c) Denote Ma

(
θ0
)

the corresponding set of admissible microstates.

3. Stochastic description For all probability distributions p : Ma

(
θ0
)
7→ [0, 1],

(a) Derive the surprisal Sb
p : m ∈Ma (θ0) 7→ logb

1
p(m)
∈ R+

(b) Derive the statistical entropy function Sb : p 7→ Ep[Sb
p] ∈

[
0, 1

card
(

Ma(θ0)
)

]

4. Boltzmann principle for ergodic systems at thermodynamic equilibrium
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(a) Introduce θ1 :=
(
Fi

)
i∈I1

the values of functions in F1 observed at a macro-
scopic sale

(b) Define p?
(

m | H
(

θ1
))

according to Th. (1).

(c) Define the thermodynamic entropy function Sb : θ1 7→ Sb

(
p?
(

. | H
(

θ1
)))

For common experimental constraints (i.e., constraints on F = {E ,N ,V ,Sb}), we obtain
the results in Table 2.1 (see also [52]).
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TABLE 2.1: Statistical ensembles and associated constraints for
usual experimental conditions. Ω denotes the cardinal of Ma (set

of accessible microstates).

Ensemble θ0 θ1 p?(m) Entropy Example

Micro-canonical
(

E0, N0, V0, S0
)

1
Ω kB ln Ω Gas in an isolated tank

Isoenthalpic-isobaric
(

N0, S0
) (

E , V
)

1
Ω kB ln Ω

Gas in a closed tank

No

with a piston,
thermally insulated

thermal contact Unnamed
(

V0, S0
) (

E , N
)

1
Ω kB ln Ω

Gas in a porous tank,
thermally insulated

Unnamed S0
(
E , N , V

)
1
Ω kB ln Ω

Gas in a porous tank
with a piston,
thermally insulated

Thermal contact

Canonical
(

N0, V0
)

E exp
(
− E(m)

kB T

)

Z(T) kB lnZ(T) + E
T

Gas in a closed tank,
in contact with a thermostat

Isothermal-isobaric N0
(
E , V

)
exp

(
− E(m)+P V(m)

kB T

)

Z(T, P)
kB lnZ(T, P) + E+P V

T

Gas in a closed tank
with a piston,
in contact with a thermostat

Grand-canonical V0
(
E , N

)
exp

(
− E(m)−µN (m)

kB T

)

Z(T, µ)
kB lnZ(T, µ) + E−µN

T
Gas in a porous tank,
in contact with a thermostat

Unnamed
(
E , N , V

)
exp

(
− E(m)+P V(m)−µN (m)

kB T

)
E+P V−µN

T

Gas in a porous tank
with a piston,
in contact with a thermostat



24 Chapter 2. Macroscopic PHS of Systems described by Statistical Physics

2.6 Final PHS model

2.6.1 Macroscopic state and energy

Denote S := Sb
(

θ1
)

, and θ2 := θ1\E the set of remaining macroscopic quantities with

corresponding set of indices I2. For convenience, we choose to define the (extensive)
macroscopic state x as

x =
[
S , θ2

]ᵀ
, (2.30)

so that the flow ẋ accounts for the time variation of extensive quantities. Assuming that
the entropy function Sb is invertible with respect to E , we define the macroscopic energy
function E as

E : x 7→ E(x) = E , (2.31)

so that the effort ∇E accounts for intensive quantities. Otherwise, the macroscopic en-
ergy function can be defined implicitly via Eq. (2.21) and contact forms [53].

Remark: the energy function E should be homogeneous of degree 1, so that it verifies
for all γ

E(γ x) = γ E(x). (2.32)

2.6.2 Connection to ports

The environment acts on the system flow so that at thermodynamic equilibrium, the
effort is shared at the system interface and we have

∂Esys

∂F sys
i

=
∂Eext

∂F ext
i

∀i ∈ I2. (2.33)

Proof. Consider the isolated total system constituted by the system under study and its
environment. For all i ∈ I1, we have

F total
i = F sys

i +F ext
i .

The entropy is extensive, therefore,

Sb
total

(
θ1

total

)
= Sb

sys

(
θ1

sys

)
+ Sb

ext

(
θ1

ext

)
. (2.34)

The total system is isolated, therefore the total entropy is maximal with respect to any
variable, so that for all i ∈ I1,

∂Sb
total

∂F sys
i

= 0

⇒
∂Sb

sys

∂F sys
i

+
∂Sb

ext

∂F sys
i

= 0

⇒
∂Sb

sys

∂F sys
i
− ∂Sb

ext

∂F ext
i

= 0

⇒λ
sys
i − λext

i = 0.
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Moreover, we have for all i ∈ I2

∂E
∂F i

=
∂E
∂S

∂Sb

∂F i
= −T λi.

We deduce that ∂Esys

∂F sys
i

= ∂Eext

∂F ext
i
∀i ∈ I2.

2.6.3 Conservative PHS

Conservative, reversible PHS Denoting σext the outgoing entropy flow, the conserva-
tive PHS interconnection matrix of an open system is found to be

∇E(x) u
T µ −P σext Ṅext V̇ext





Ṡ . . . −1 . .
ẋ Ṅ . . . . −1 .

V̇ . . . . . −1
Text 1 . . . . .

y µext . 1 . . . .
−Pext . . 1 . . .

. (2.35)

Conservative, irreversible PHS Consider a dissipative PHS with interconnection ma-
trix given by

∇E(x) z(w) u
T ∇0 z0(w0) σext u0





ẋ
Ṡ . . . −1 .
ẋ0 . Jx −K . −Gx

w w0 . Kᵀ Jw . −Gw

y
Text 1 . . . .
y0 . Gᵀ

x Gᵀ
w . Jy

, (2.36)

and dissipative law z0 that verifies z0(w0)ᵀw0 ≥ 0 for all w0. The entropy creation rate
−σi verifies

z0(w0)
ᵀw0 + T σi = 0, (2.37)

so that the memoryless flow w and effort z(w) of the irreversible PHS become

w = [w0, T]ᵀ , z(w) =

[
0 z0(w0)/T

−z0(w0)
ᵀ/T 0

]
w =

[
z0(w0), σi

]ᵀ . (2.38)

Furthermore, the system entropy is balanced so that

Ṡ = −σi − σext. (2.39)

We obtain the irreversible PHS with interconnection matrix given by
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∇E(x) z(w) u
T ∇0 σi z0(w0) σext u0





ẋ
Ṡ . . −1 . −1 .
ẋ0 . Jx . −K . −Gx

w
T 1 . . . . .

w0 . Kᵀ . Jw . −Gw

y
Text 1 . . . . .
y0 . Gᵀ

x . Gᵀ
w . Jy

. (2.40)

2.7 Conclusion

In this chapter, we revisited equilibrium SP in order to model complex systems with
numerous degrees of freedom as macroscopic PHS with a reduced number of variables.

Starting from the choice of a particle’s description and ad hoc characterizing func-
tions, we recalled how to derive the probability of a configuration of particles at equilib-
rium based on given experimental conditions. In the end, macroscopic variables are re-
vealed to be expectations of the chosen characterizing functions for this probability, and
the thermodynamic entropy to be a function of these macroscopic variables. Provided
that the energy has been chosen as a characterizing function from the start, the macro-
scopic energy can in turn be expressed as a function of the thermodynamic entropy and
other macroscopic variables. Through the PHS formalism, experimental conditions are
represented as an input flow that acts on the system so that the resulting output is an
effort shared with the system. With this formulation, the externality of the environment,
as well as its interactions with the system via exchanges of energy and entropy, are made
explicit.

As a result, we proposed two PHS formulations for conservative open systems, a re-
versible one (with no entropy creation), and an irreversible one (with entropy creation).

An immediate perspective would be to extend this work to non-equilibrium SP, so
that a macroscopic trajectory would not only be a succession of equilibrium states, and
experimental conditions could change faster.
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Ferromagnetic Coils and
Transformers
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3.1 Ferromagnetic coil overview

Coils and transformers built around ferromagnetic cores are often found in audio cir-
cuits, such as effect pedals, amplifiers and loudspeakers. Indeed, ferromagnetic ma-
terials have a much higher inductance compared to that of a simple winding. Con-
sequently, ferromagnetic coils have a higher quality factor 1. Nonetheless, they ex-
hibit temperature-dependent nonlinear characteristics such as saturation and hysteresis,
causing audible distortion and power loss. Reliably modeling this behavior is therefore
an essential first step in order to simulate these circuits accurately.

As a matter of fact, several empirical macroscopic models already exist in the litera-
ture. One of them is the Jiles-Atherton model [54, 55, 56]. This model is built around a
differential equation involving a saturation curve and a friction term. While it is rather
popular in the audio community, some concerns have been expressed regarding its
physical interpretation [57], and subsequent accuracy issues in simulations. Another

1 Defined in this context by the ratio between the inductive reactance and the winding resistance.
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widely used model is the Gyrator-Capacitor [58, 59, 60]. In this model, flows and ef-
forts are taken into the magnetic domain via a gyrator, and inductors are represented as
capacitors with a (passive) polynomial constitutive law. It is indeed a useful represen-
tation in order to understand the duality between electric and magnetic domains. Yet,
a polynomial law —even if it is passive— is an oversimplification, as we shall discuss
later on. Other recent models based on fractional derivatives [61] are able to reproduce
memory effects and dissipation [62], but as for the Jiles-Atherton or Gyrator-Capacitor
models previously mentioned, their parameters do not relate to actual physical quan-
tities. Moreover, neither of these models takes explicitly into account the significant
role of temperature in the shape of the hysteresis curve. Yet, temperature may vary
in circuits, especially after an extended use; therefore its influence should not be en-
tirely neglected. On the other hand, models explicitly built on energetic considerations,
such as variational models [63], rely on costly finite-element methods, making their
real-time use difficult. Similarly, the Preisach model [64, 65] thoroughly captures the
phenomenology involved in ferromagnetism, including thermodynamics; but it is too
complex for audio applications. Therefore, to our present knowledge, a model that is
both physically-based (allowing refined and realistic simulations in a wide range of con-
texts) and suitable for audio applications does not seem to exist.

In this chapter, we propose a nonlinear model of ferromagnetic coil that is physically-
based, passive, and modular, with reduced complexity (3 state variables and 5 parame-
ters).

This chapter is structured as follows. In Section 3.2, we apply SP to derive a macro-
scopic PHS for the ferromagnetic core, following the method developed in Chapter 2. In
turn, this model can be connected to other components via magnetic and thermal ports.
Then in Section 3.3, we present a PHS model for the coil and detail the temperature-
dependent effects of its interconnection with the core. In Section 3.4, we build a model
for the ferromagnetic coil by connecting a core and a coil together through the PHS for-
malism. This final model is used to simulate a highpass circuit and a transformer in
Section 3.5. Finally, we offer some perspectives in Section 3.6.

This work has been partially presented at the DAFX conference in 2020 [66] and
published in the JAES journal in 2021 [67].

3.2 Ferromagnetic core

A typical ferromagnetic core is constituted of about 1022 atoms 2 interacting with one
another. It is therefore a natural candidate for the SP to macroscopic PHS method. In
order to apply the method, we choose the following working hypotheses:

H1: The core is isochoric (constant volume V).

H2: The core is closed (constant number of atoms N).

H3: The core is in a thermostat (the core temperature T is —statically or quasi-statically—
constrained by that of the exterior).

Magnetostrictive phenomena are not addressed here. They have been extensively treated
in [68, 69].

2 Iron for instance has an atomic mass of 9.27 ×10−26 kg.
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FIGURE 3.1: Magnetic moment of a loop of current i
and area s directed by i.

(A) (B)

FIGURE 3.2: Trajectories of single electrons with identical spin (blue tri-
angles) in 2 atoms with overlapping orbitals, depending on their angu-
lar momentum (black arrow). Pauli’s exclusion principle states that two
fermions cannot share the same intrinsic spin and the same position at the
same time. In case (A), the two atoms have the same angular momentum,
and Pauli’s principle is verified. In case (B), the two atoms have opposite

angular momentums, and Pauli’s principle is violated.

3.2.1 Micro-state

In an atom, orbits and intrinsic spins of electrons all contribute to the atom total angular
momentum [70]. Because electrons are electrically charged, this angular momentum is
responsible for the apparition of a magnetic moment [71], similarly as in a current loop
(Fig. 3.1): an electron can be thought as a current loop of infinitely small area.

Due to Hund’s rules [72], single electrons in partially filled orbitals tend to have
the same intrinsic spin, as it minimizes the atom overall energy. Consequently, if two
atoms have overlapping orbitals that contain single electrons, these electrons tend to
have the same angular momentum. This ensures that the distance between them is
maximal and that Pauli’s exclusion principle, which states that two fermions 3 cannot
share identical spins and positions at the same time, is verified (Fig. 3.2). Therefore, the
magnetic moments of these atoms align with each other. In some crystalline structures,
in which billions of billions of atoms are involved, this phenomenon creates a non-zero
macroscopic magnetic moment. This is for instance the case in transition metals (iron,
cobalt, nickel, etc.), whose outer shells contain several single electrons. Such materials
are said to be ferromagnetic.

In 1925, Ernst Ising proposed a simplified model to represent this behavior [73, 74,
75]. In this model, the core is represented as a set of N adimensional magnetic moments
mi, i ∈ {1, ..., N}, interacting with one another. A micro-state of the core is a particular
configuration m ∈Ma = {−1, 1}N . Figures 3.3a-3.3b show an example of such a micro-
state for N = 9.

The energy of a micro-state m is given by the Heisenberg Hamiltonian:

E(m) = −1
2

mᵀJ exm, (3.1)

3 That is, particles with half-integer spin, such as electrons.
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(A) Possible configuration for a ferromagnetic
core with N = 9 moments.

m = [1,−1, 1, 1, 1,−1,−1, 1,−1]ᵀ

(B) Corresponding micro-state.

FIGURE 3.3: Example of micro-state for a ferromagnetic core
with N = 9 moments. A positive moment is represented as a red triangle,

a negative moment as a blue one.

where each coefficient J exi,j is the exchange energy between moment i and moment j
[76]. It extends to atoms the concept of exchange interaction between indistinguishable
particles of identical spin. Note that E does not define a positive-definite function but
only a lower bounded function. Indeed, the exchange energy actually corresponds to
the difference (hence the minus sign) between the energy of two atoms with opposite
magnetic moments and the energy of two atoms with identical magnetic moments. As
explained at the beginning of the section, for ferromagnetic materials this difference is
positive due to Pauli’s exclusion principle (it is negative for antiferromagnetic materials).
The Heisenberg Hamiltonian can thus take negative values, but it has a lower bound
nonetheless: it reaches a minimum for m = ±1, as expected.

Assuming isotropic interactions that affect nearest neighbors only, this exchange en-
ergy simplifies to

J exi,j =

{
J if i, j nearest neighbors and i 6= j,
0 otherwise,

(3.2)

where J is a constant energy characterizing the material.
In the following, we assume that the core topology ensures a constant number of

nearest neighbors q for each moment (typically, a torus, Fig. 3.4a), and neglect edge
effects. Figures 3.4b-3.4c show an example of such a topology with N = 9 moments and
q = 4 nearest neighbors, as well as the corresponding exchange matrix.

3.2.2 Micro-state probability distribution at thermodynamic equilibrium and
partition function

According to our working hypotheses, the statistical ensemble of interest for the SP to
macroscopic PHS method is the canonical ensemble (see Table 2.1 p. 23). The micro-state
probability distribution at thermodynamic equilibrium is therefore

p?(m | T) =
exp

(
− E(m)

kB T

)

Z(T) , Z(T) = ∑
m∈Ma

exp

(
−E(m)

kB T

)
, (3.3)

where T is the temperature, kB is the Boltzmann constant, and Z is the partition func-
tion. At a given temperature, a micro-state with a low energy E(m) has, as expected, a
higher probability than a micro-state with a high energy. What should be noted is that
the difference between their probabilities increases as the temperature decreases. Con-
versely, micro-states tend to become equiprobable as the temperature increases. In other
words, the temperature operates as a contrast parameter for probabilities. Accordingly,
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(A) Toroidal ferromagnetic coil.

•
1 2

•
3

4 5 6

•
7 8

•
9

(B) Flattened toroidal core
with N = 9 moments.

The q = 4 nearest neighbors of the fifth moment
(in white) are shown in grey.

J ex = J×

1 2 3 4 5 6 7 8 9





1 . 1 1 1 . . 1 . .
2 1 . 1 . 1 . . 1 .
3 1 1 . . . 1 . . 1
4 1 . . . 1 1 1 . .
5 . 1 . 1 . 1 . 1 .
6 . . 1 1 1 . . . 1
7 1 . . 1 . . . 1 1
8 . 1 . . 1 . 1 . 1
9 . . 1 . . 1 1 1 .

(C) Corresponding exchange matrix.
Dots represent zeros.

FIGURE 3.4: Toroidal ferromagnetic core with N = 9 moments
having q = 4 nearest neighbors, and corresponding exchange matrix.

FIGURE 3.5: Example of spontaneous symmetry breaking.

configurations that minimize the energy, that is, configurations in which moments align
with each other, are most probable below a critical temperature (to be determined in the
next sections). This is no longer the case above this critical temperature. At a macro-
scopic level, this corresponds to a phase transition from ferromagnetic to paramagnetic.

In Chapter 2, the internal energy and the entropy are both derived from the par-
tition function Z . Unfortunately here, there is no analytic expression for Z(T) for a
three-dimensional lattice. In these situations, Monte-Carlo methods [77] can be used for
simulations, but they are impractical for real-time purposes. Therefore, we choose to
consider a mean-field approximation of the partition function.

3.2.3 Mean-field approximation of the partition function

As the mean-field approximation is a classic result of statistical physics literature, we do
not expand on its theoretical aspects but only recall its principles.

The mean-field approximation is based on the idea that micro-states fluctuate around
a mean state, which is used to simplify the partition function computation. How-
ever, there is a subtlety. If the mean state is naively defined as the expectation over
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FIGURE 3.6: Axis of symmetry with respect to the Hamiltonian (dashed)
for a ferromagnetic core with N = 2 moments.

The states of lowest energy are not on the symmetry axis.
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M+ M−

FIGURE 3.7: Example of subsets M+ and M− for a ferromagnetic core
with N = 2 moments.

all micro-states m = Ep[m], it is found to be 0. Indeed, E(m) = E(−m), therefore
p?(m) = p?(−m) and the expectation vanishes. Yet, under a critical temperature (which
will be characterized later on), we do observe a non-zero macroscopic magnetic mo-
ment. This is due to spontaneous symmetry breaking [78] and subsequent partial er-
godicity, which can be invoked in order to define a mean state more adequately.

Spontaneous symmetry breaking occurs in systems for which physical laws are in-
variant under some symmetry transformation, but for which the state of lowest energy
does not necessarily retain the same invariance (Fig. 3.5).

Here, the Hamiltonian is invariant under the transformation T : m 7→ −m, since E ◦
T = E . This symmetry effectively partitions the set of accessible micro-states into two
subsets of identical size, M+ and M−. Nonetheless, the states of lowest energy are not
on the symmetry axis (Fig. 3.6). In practice, any random perturbation causes the system
to fall into one of these two subsets and to break the symmetry. At that point, the system
explores this subset, but not the other one, as this would mean going through a high
energy barrier. This leads to partial ergodicity, which allows the computation of a non-
zero mean state, as well as an (approximated) Hamiltonian for each subset. The mean-
field partition function is finally obtained using these approximated Hamiltonians.

As x 7→ x exp
(
− 1

x

)
is convex on R+, the free energy F(T) = −kB T lnZ(T) is

concave on R+. Since the internal energy E : S 7→ E(S) = F(T) + T S is a Legen-
dre transform of F (see Appendix A), E is convex and has an inferior bound. As this
is true for any partition function, in particular a partition function computed from an
approximated Hamiltonian, the mean-field energy also has a lower bound.

The partitioning of Ma into two subsets M+ and M− can be formalized as follows.
Define the total magnetic moment M(m) of micro-state m as

M(m) =
N

∑
i=1

mi. (3.4)
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Define the set M0 of neutral micro-states with respect to their total magnetic moment as

M0 = {m | M(m) = 0}. (3.5)

These neutral micro-states (which are on the symmetry axis) must be split between M+

and M− symmetrically. To this end, any arbitrary partitioning verifying

1. M+
0 ∪M−

0 = M0,

2. card(M+
0 ) = card(M−

0 ) =
card(M0)

2 ,

3. ∀m ∈M+
0 ,−m ∈M−

0 ,

is adequate. Then M+ and M− can be defined as

M+ = {m | M(m) > 0} ∪M+
0 ,

M− = {m | M(m) < 0} ∪M−
0 .

(3.6)

Figure 3.7 shows an example of such partitioning for a core with N = 2 moments.
For each subset, the mean magnetic moment is defined as

m+ =
1
N ∑

m∈M+

2 p?(m)M(m) ∈ [0, 1],

m− =
1
N ∑

m∈M−
2 p?(m)M(m) ∈ [−1, 0]

(3.7)

and the mean state m as

m =

{
m+ [1, . . . , 1]ᵀ in M+,
m− [1, . . . , 1]ᵀ in M−.

(3.8)

Assuming small deviations m−m in each subset, we obtain

E(m) ≈





1
2

N J q m+2 − J q m+M(m) if m ∈M+,

1
2

N J q m−2 − J q m−M(m) if m ∈M−,
(3.9)

and deduce the mean-field partition function ZMF defined by (see Appendix C for a
complete derivation)

ZMF(m, T) = exp

(
−N J q m2

2 kB T

)(
2 cosh

(
J q m
kB T

))N

, ∀m ∈ [−1, 1], T > 0. (3.10)

3.2.4 Macro-state and energy

The mean-field partition function allows the derivation of the mean-field internal energy
and the mean-field entropy.

Core energy From Chapter 2, Section 2.5, the macroscopic energy E for a canonical
ensemble is given by

E = T2 ∂

∂T
kB lnZ(T). (3.11)
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Taking the expression of ZMF described by Eq. (3.10) in Eq. (3.11), the mean-field inter-
nal energy EMF is found to be

EMF(m, T) := E0

(
m2

2
−m tanh

(
m Tc

T

))
, (3.12)

where E0 := N J q relates to the minimal possible energy of the core as EMF(±1, 0) =

− E0
2 = E(±1), and Tc := J q

kB
is the critical temperature of the core.

Core entropy Concomitantly, from Chapter 2, Section 2.5, the entropy S for a canoni-
cal ensemble is given by

S =
E
T
+ kB lnZ(T). (3.13)

Reinjecting Eq. (3.10) in Eq. (3.13), the mean-field thermodynamic entropy SMF is found
to be

SMF(m, T) := S0

(
ln 2 cosh

(
m Tc

T

)
− m Tc

T
tanh

(
m Tc

T

))
, (3.14)

where S0 := E0
Tc

relates to the maximal possible entropy of the core as SMF(0,+∞) =

S0 ln(2) = kB ln 2N = kB ln card(Ma).

Core energy as a function of extensive state xcore In the following, we choose to ex-
press the energy as a function of an extensive state xcore, so that the flow ẋcore accounts
for the time variation of extensive quantities and, concomitantly, so that the effort ac-
counts for intensive quantities shared with the exterior at the core interface. To this end,
we proceed in two steps. In the first step, we express the energy EMF as a function of (in-
tensive) m and of (extensive) entropy S := SMF(m, T) rather than a function of (m, T). In
a second step, we introduce an extensive magnetic state BVcore related to m, and express
the energy with respect to xcore := [S, BVcore ]

ᵀ.
Step 1 (T → S). From Eq. (3.14), we can write, for all positive T, Tc

m Tc

T
= sign(m) f−1

(
S
S0

)
, with f (x) = ln 2 cosh (x)− x tanh (x) , (3.15)

since f is even and invertible on R+ (Fig. 3.8). Replacing the expression of m Tc
T in

Eq. (3.12), we obtain, as tanh is odd

ẼMF(m, S) := E0


m2

2
−|m| tanh

(
f−1

(
S
S0

))
 . (3.16)

Step 2 (m → BVcore). We introduce the total magnetic flux BVcore = m µ0 Ms V, where
µ0 = 4 π× 10−7 H.m−1 is the vacuum magnetic permeability and Ms is the core satura-
tion magnetization. This corresponds to the core magnetic flux density (usually denoted
B) multiplied by the core volume V.
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FIGURE 3.8: Graph of function f : x 7→ ln 2 cosh (x)− x tanh (x).

We finally obtain the macroscopic state and energy of the core

xcore = [S, BVcore ]
ᵀ, (3.17a)

Ecore(xcore) = E0


1

2

(
BVcore

BVs

)2

−
∣∣∣∣∣
BVcore

BVs

∣∣∣∣∣ tanh

(
f−1

(
S
S0

))
 , with BVs = µ0 Ms V.

(3.17b)

The associated internal effort is

∇Ecore(S, BVcore) = [Tcore, Hcore]
ᵀ , (3.18)

where Tcore and Hcore denote the core temperature and the internal magnetic field, re-
spectively. Thus, the externality of the thermostat and external magnetic field is made
explicit, and their influence is taken into account exclusively through the core connec-
tion ports.

Note that the identity
∂Ecore

∂S
= Tcore restores, as expected, the temperature T used

in Eq. (3.12). The proof is given below.

Proof. From Eq. (3.19), we have

∂Ecore

∂S
(S, BVcore)

(a)
= −E0

S0

∣∣∣∣∣
BVcore

BVs

∣∣∣∣∣

(
f−1
)′ (

S
S0

)

cosh2
(

f−1
(

S
S0

))

(b)
=

E0

S0

∣∣∣∣∣
BVcore

BVs

∣∣∣∣∣

cosh2
(

f−1
(

S
S0

))

cosh2
(

f−1
(

S
S0

))
f−1

(
S
S0

)

=
E0

S0

∣∣∣∣∣
BVcore

BVs

∣∣∣∣∣
1

f−1
(

S
S0

)

(c)
= Tcore

using (a) tanh′ u = u′

cosh2 u
, (b)

(
f−1
)′

= 1
f ′◦ f−1 and f ′(u) = − u

cosh2(u)
, and (c) E0

S0
= Tc

and f−1( S
S0
) =

∣∣∣ BVcore
BVs

∣∣∣ Tc
Tcore

.
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(A) Graph of energy function.

(B) Graph of internal magnetic field, with re-
spect to the temperature (instead of entropy) for

visual purposes.

(C) Graph of internal temperature.

FIGURE 3.9: Graph of energy function, internal magnetic field, and in-
ternal temperature for the ferromagnetic core (adimensional quantities).
The core goes from two meta-stable equilibrium states to one stable equi-

librium state as the entropy increases.

Figure 3.9a shows the (normalized) energy as a function of the (normalized) entropy
and the (normalized) total magnetic flux. We can see the core going from two meta-
stable equilibrium states to one stable equilibrium state, as the entropy increases. The
phase transition from ferromagnetic to paramagnetic is thus retained by the mean-field
approximation.

3.3 Coil modeling and interconnection with the core

3.3.1 Coil modeling

We assume that the coil is a solenoid of section A, length ` and number of windings n,
and that it behaves linearly.

In the electric domain, its state is the magnetic flux linkage Φcoil and its energy is

Eelec
coil (Φcoil) =

Φ2
coil

2 Lcoil
, (3.19)

with coil inductance Lcoil = µ0 A n2

` . The corresponding effort is the current through the
coil

∇Eelec
coil (Φcoil) =

Φcoil

Lcoil
= icoil, (3.20)
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vext

iext
vcoil

icoil

≡ vext

iext
Hcoil

ḂVcoil

emag
fmag

eelec

felec

n/`

FIGURE 3.10: Coil as a converter between electric (red)
and magnetic (blue) domains.

and the corresponding flow is the voltage across the coil

Φ̇coil = vcoil. (3.21)

The current through the coil induces a magnetic field, so that the coil can be seen in
the magnetic domain as a component of state BVcoil , and energy

Emag
coil (BVcoil) =

B2
Vcoil

2 µ0 A `
. (3.22)

The corresponding effort is the coil magnetic field

∇Emag
coil (BVcoil) =

BVcoil

µ0 A `
= Hcoil, (3.23)

and the corresponding flow is the coil total magnetic flux ḂVcoil .

Assuming that both representations are equivalent, Eelec
coil (Φcoil) = Emag

coil (BVcoil). The
coil can therefore be seen as a converter between the electric and magnetic domains,
with a gyrator of gyration resistance n/` (Fig. 3.10). Indeed, the gyrator law is given by

[
emag
eelec

]
=

[
0 n/`

−n/` 0

] [
fmag
felec

]
. (3.24)

Moreover, from Kirchhoff’s laws, we can write

emag = Hcoil, eelec = vcoil, fmag = −ḂVcoil , felec = icoil. (3.25)

We deduce [
Hcoil
vcoil

]
=

[
0 n/`

n/` 0

] [
ḂVcoil

icoil

]
. (3.26)
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FIGURE 3.11: Connection of a coil and a core.

(A) Barkhausen jumps
without damping.

(B) Barkhausen jumps
with damping.

FIGURE 3.12: Barkhausen jumps and resulting hysteresis during a cycle,
with and without damping. The red curve is the theoretical core internal
magnetic field, the blue curve is the real trajectory followed by the core

total magnetic flux when constrained by an external magnetic field.

3.3.2 Constraints resulting from the interconnection

A ferromagnetic coil is formed when a coil is wound around a ferromagnetic core (Fig. 3.11).

As such, the magnetic flux of the coupled system is the sum of the magnetic fluxes

BVcoupled = BVcoil + BVcore , (3.27)

and they share their magnetic field

Hcoupled = Hcoil = Hcore. (3.28)

3.3.3 Barkhausen jumps and dissipation

Under the critical temperature, the constraint on the magnetic field of the core causes
jumps between meta-stable states, called Barkhausen jumps [79].

Suppose that the external magnetic field increases from a negative value. The core
state trajectory (Fig. 3.12a, in blue) follows the core theoretical effort (in red), until this
effort is no longer equal to the coil magnetic field. At this point, the state jumps to join
the upper branch, so that the constraint is still verified. A similar phenomenon occurs
when the coil magnetic field decreases. Because of these jumps, the state trajectory



3.4. Complete PHS model 39

depends on the coil magnetic field history (increasing, or decreasing), and we observe
hysteresis, similarly as in a relaxation oscillator [80].

In real ferromagnetic cores, there is a multitude of meta-stable states due to domain
structure and non-homogeneities [81]. Moreover, relaxation phenomena make these
jumps non ideally fast, but damped (Fig. 3.12b). This damping can be modeled with
a linear magnetic resistor rcore connected in series with the core. As the difference of
energy before and after a jump is entirely dissipated as heat [79], Barkhausen jumps
are also responsible for the entropy creation −σi in the core. The power conversion
(magnetic to thermal) is balanced, so that

rcore H2
rcore

+ Tcore σi = 0. (3.29)

We deduce the core dissipative flow and effort

w = [Tcore, Hrcore ]
ᵀ ,

z(w) =
rcore Hrcore

Tcore

[
0 −1
1 0

]
w =

[
σi, ḂVrcore

]ᵀ
.

(3.30)

3.4 Complete PHS model

In real coils, the conversion between electric and magnetic power is not lossless due to
Joule heating. These losses can be modeled with a linear resistor rcoil in series with the
coil, so that for the ferromagnetic coil, the dissipative flow and effort become

w =
[
Tcore, Hrcore , ircoil

]ᵀ

z(w) =




0 − rcore Hrcore
Tcore

0
rcore Hrcore

Tcore
0 0

0 0 rcoil


w =

[
σi, ḂVrcore

, vrcoil

]ᵀ
.

(3.31)

The complete PHS model of the ferromagnetic coil is derived from Eqs. (3.17b)-
(3.19)-(3.26)-(3.31) and Kirchhoff’s laws. That leads to the formulation on Fig. 3.13b,
which corresponds to the equivalent circuit on Fig. 3.13a.

3.5 Applications

3.5.1 Identification of Fasel inductors and simulation of a highpass filter

Our ferromagnetic coil model is used to simulate the behavior of two inductors: a Fasel
Yellow (Fig. 3.14a) and a Fasel Red (Fig. 3.14b). These inductors can be found in wah-
wah pedals for instance. They are appreciated for their soft saturation.

Identification Model parameters are estimated from measurements. To this end, an
inductor is connected in series with a resistor R = 100 Ω and driven with a voltage
source of the form vin(t) = v0 sin

(
2 π f0 t

)
(Fig. 3.15). The voltage across the inductor

vout is measured for several values of v0 (between 50 mV and 400 mV). The current iL is
obtained through the relation

iL(t) =
vin(t)− vout(t)

R
. (3.32)
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vext

iext

rcoil

vrcoil

ircoil
coil

vcoil

icoil rcore

Hrcore

ḂVrcore
core

Hcore

ḂVcore
n/`

(A) Voltage-controlled ferromagnetic coil: equivalent circuit schematics.

∇E(x) z(w) u
Tcore Hcore icoil σi ḂVrcore

vrcoil σext vext





Ṡ . . . −1 . . −1 .
ẋ ḂVcore . . . . 1 . . .

vcoil . . . . −n/` −1 . 1
Tcore 1 . . . . . . .

w Hrcore . −1 n/` . . . . .
ircoil . . 1 . . . . .

y
Text 1 . . . . . . .
iext . . −1 . . . . .

(B) Corresponding PHS. Dots represent zeros.

FIGURE 3.13: Voltage-controlled ferromagnetic coil:
equivalent circuit and corresponding PHS.

(A) Fasel Yellow. (B) Fasel Red.

FIGURE 3.14: Fasel Yellow and Fasel Red inductors.

Because of the parasitic resistance rcoil, the inductor magnetic flux linkage ΦL is actually

ΦL(t) =
∫ t

0

(
vout(τ)− rcoil iL(τ)

)
dτ. (3.33)

To estimate rcoil and the total inductance L, we consider small input amplitudes v0 and
assume that the inductor behaves linearly, so that

iL =
ΦL

L
. (3.34)

Then, we derive values of L and rcoil that minimize the mean-square error on the current,
namely

(L?, r?coil) = arg min
(L, rcoil)

∥∥∥∥
1
L

∫ t

0

(
vout(τ)− rcoil iL(τ)

)
dτ − iL(t)

∥∥∥∥
2
∀t. (3.35)
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vin

R

L vout ≡

vin

R

rcoil

coil

core rcore

vout

FIGURE 3.15: Experimental setup for measurements on an inductor,
where the core is represented in the electric domain for simplicity.

(A) Fasel Yellow constitutive law
in linear regime (v0 = 50 mV):

measurements and model.

(B) Fasel Red constitutive law
in linear regime (v0 = 50 mV):

measurements and model.

FIGURE 3.16: Fasel Yellow and Red constitutive laws in linear regime:
measurements and models.

Figures 3.16a-3.16b show the results of that minimization for v0 = 50 mV. In the follow-
ing, the estimated value of rcoil is used to compute ΦL according to Eq. (3.33).

In order to estimate the model parameters in nonlinear regime, a simplified model
is used. First, we assume that the temperature stays constant throughout the measure-
ments, so that we can use the free energy of the core F(T, BVcore) = Ecore(S, BVcore)− T S
and remove the entropy from the state. The core effort becomes

Hcore =
∂F

∂BVcore

(T, BVcore) =
E0

BVs


BVcore

BVs

− tanh

(
BVcore

θ BVs

)
 , (3.36)

where θ = T
Tc

= T S0
E0

is now a model parameter. From Eq. (3.26), this can be rewritten in
the electrical domain as

Hcore =
E0

BVs


Φcore `

BVs n
− tanh

(
Φcore `

θ BVs n

)
 . (3.37)
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(A) Fasel Yellow constitutive law
in nonlinear regime (v0 = 150 mV):

measurements and model.

(B) Fasel Yellow constitutive law
in nonlinear regime (v0 = 300 mV):

measurements and model.

(C) Fasel Red constitutive law
in nonlinear regime (v0 = 150 mV):

measurements and model.

(D) Fasel Red constitutive law
in nonlinear regime (v0 = 300 mV):

measurements and model.

FIGURE 3.17: Fasel Yellow and Red constitutive laws
in nonlinear regime: measurements at T = 303K and models.

Second, we assume that the inductance of the coil alone Lcoil is small compared to L 4,
so that

ΦL = Φcore + Φcoil ≈ Φcore. (3.38)

Therefore, assuming T = 303 K, ` = 0.016 m, and n = 150, the parameters rcore, E0, θ and
BVs are estimated jointly for several values of v0, by solving

(r?core, E?
0 , θ?, B?

Vs
) = arg min

(rcore, E0, θ, BVs )

∥∥∥∥∥
`

n
Hcore(ΦL(t)) +

`2

n2 rcore
Φ̇L(t)− iL(t)

∥∥∥∥∥
2

∀t. (3.39)

The estimated parameters are shown in Table 3.1. Figures 3.17a-3.17d show the simu-
lated model compared with measurements.

Highpass filter simulation The estimated model is then used to simulate the circuit
(which constitutes a highpass filter) on Fig. 3.15. The PHS of this circuit is given on
Fig. 3.18a. Figures 3.18b and 3.18c show the simulated output and the power balance
during simulation. The simulated output matches closely with the measurements, and
the power balance is comparable to the machine epsilon (ε ≈ 10−16).

4 As the magnetic permeability of the core is several orders of magnitude higher than that of vacuum.
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TABLE 3.1: Fasel inductors: estimated parameters.

Parameter L (H) rcoil (Ω) rcore (Ω) E0 (J) S0 (J.K−1) BVs (J.A−1.m)

Value
Yellow 0.705 16 3.98 × 10−6 29.38 9.70 × 10−2 7.34 × 10−6

Red 0.585 15.4 3.98 × 10−6 27.62 9.00 × 10−2 9.15 × 10−6

∇E(x) z(w) u
Hcore icoil vR ḂVrcore

vrcoil vext





ẋ
ḂVcore . . . 1 . .
vcoil . . −1 −n/` −1 1
iR . 1 . . . .

w Hrcore −1 n/` . . . .
ircoil . 1 . . . .

y iext . −1 . . . .

(A) Highpass filter: PHS. Dots represent zeros.

(B) Highpass filter: simulated output. (C) Highpass filter: power balance
during simulation.

FIGURE 3.18: Highpass filter: PHS, output and power balance
during simulation.

The power balance error is at its highest when the slope in the vicinity of the Newton-
Raphson solution is at its steepest. Indeed, recall from Eq. (1.15) that the root estimate
increment ∆ is of the form ∆(νk) = −J (νk)−1F (νk), where F is the function for which
the solver estimates a root, and J is its Jacobian. Values for which ‖J ‖ is high yield
a smaller increment compared to when ‖J ‖ is small, and slow down the solver con-
vergence. Therefore, for a given number of iterations, the error on the state estimate is
greater, which is naturally reflected in the power balance. As F is related to the energy
gradient, the Jacobian J is related to the energy hessian. We can see on Figs. 3.18b-3.18c
that the power balance peaks coincide indeed with the energy hessian maxima.
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TABLE 3.2: Transformer: simulation parameters.

Parameter r1 = r2 (Ω) rcore (Ω) L1 = L2 (H) R (Ω) E0 (J) S0 (J.K−1) BVs (J.A−1.m)

Value 15 3.3 × 10−6 5 × 10−3 1 × 103 13.09 4.32 × 10−2 6.61 × 10−6

3.5.2 Simulation of a transformer

Output transformers are generally present in amplifiers, to adapt the load impedance
seen by the loudspeaker [20, 21]. Transformers with a ferromagnetic core are considered
particularly interesting because of the core high magnetic permeability, which reduces
the leakage flux [82].

Modeling A nonlinear transformer model is built by coupling two ferromagnetic coils,
that is, letting them share the same core (Fig. 3.19a). The primary (resp. secondary) coil
inductor and associated resistor are denoted L1 and r1 (resp. L2 and r2), with number
of windings n1 (resp. n2). Figure 3.19b shows the corresponding circuit, with gyrators
defined by

[
e1
v1

]
=

[
0 n1/`

−n1/` 0

] [
f1
i1

]
,

[
v2
e2

]
=

[
0 n2/`

−n2/` 0

] [
i2
f2

]
.

(3.40)

Kirchhoff’s laws allow the PHS formulation on Fig. 3.19c (where the gyrators have been
reduced).

Simulation A simulation is performed with an input voltage of the form vin(t) =
v0 sin(2π f0 t), and parameters in Table 3.2. Figures 3.19d-3.19e show simulation results
for f0 = 100 Hz and v0 = 1 V and 20 V, which are a common range for line transformers
(note that some studio line input transformers can take up to 34 dBu, which corresponds
to approximatively 38 V). It can be seen that saturation and hysteresis arise for large in-
put voltages, while the transformer’s behavior for small input voltages is quasi-linear.
As expected, the presence of hysteresis coincides with an increased loss due to the mag-
netic resistor (this effect increases with the input voltage frequency). Thus, the trans-
former becomes less and less “ideal” as the input voltage increases. This corresponds
qualitatively to observations on real transformers.

It is worth noting that the modularity of the model would allow for more complex
transformer topologies (multiple primaries, multiple secondaries, air-gaps, etc.).

3.6 Conclusion

In this chapter, a new macroscopic model of ferromagnetic coil has been proposed. It
is based upon a component-wise, energetic approach. First the core and the coil were
treated separately, then their coupling, which determines both their electrical and ther-
mal dynamics, was addressed. This leads to a complete model characterized by a well-
established state, energy function, and entropy production rate law. Characteristics such
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FIGURE 3.19: Transformer: circuit schematics, PHS
and simulated outputs.
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as saturation and hysteresis are well reproduced, as well as the influence of thermody-
namics. This explicit influence is an improvement with respect to other models. More-
over, the modularity of the model makes it particularly versatile, as the component ap-
proach can be applied to various transformer topologies (multiple primaries, multiple
secondaries, etc.).

As an illustration, the model was used to simulate two representative audio sub-
circuits: a band-pass filter, and a transformer. Due to the reduced number of parameters
and variables, these simulations can be performed in real-time.

Nonetheless, even if the model has been successfully identified with real compo-
nents and exhibits a satisfactory qualitative behavior for audio applications, extensive
measurements should be conducted to assess the model relevance in a more quantita-
tive way. This shall be the object of future work.
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4.1 Resistive opto-isolator overview

A resistive opto-isolator consists of a photoresistor and a LED coupled optically (Figs 4.1a-
4.1b). Its operation principle is that the photoresistor resistance decreases (non-linearly)
with the light it receives.

Resistive opto-isolators were widely used from the 1960s to the early 2000s due to
their low fabrication costs, important dynamic range and low noise distortion (below -
80 dB). They could be found in cameras (in exposure meters and autofocus) and security
systems (for object detection) to name a few applications.

Apart from their nonlinear response to light, a remarkable feature of photoresistors
is their relatively long response times (compared to e.g. transistors in transistor opto-
isolators). Indeed, these response times vary from a few tens of microseconds (for the
turn-on, or attack, when light is switched on) to a few hundreds of milliseconds (for the
turn-off, or release, when light is switched off). Moreover, the attack time decreases with
the received light. These characteristics made resistive opto-isolators much appreciated
for automatic gain control in audio applications, in which adaptive treatment and tran-
sient preservation are essential. An emblematic example of optical dynamic compressor
from the late 1960s is the LA-2A built by Teletronix [83], which was used in prominent
broadcast studios such as CBS and RCA. A more recent example is the Langevin ELOP
built by Manley.
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(A) Resistive opto-isolator.

D RLDR

iD

vD

iRLDR

vRLDR

(B) Schematics of a resistive opto-isolator.

FIGURE 4.1: Resistive opto-isolator: component and schematics.

Resistive opto-isolators (also known as Vactrols) were manufactured by Perkin Elmer [84]
until 2010. They are still manufactured by Advanced Photonix, but their availability has
severely diminished since the 2000s due to a EU ban on cadmium sulfide, which is one
of the main components of photoresistors. As vintage optical dynamic compressors are
priced at tens of thousands of dollars, an accurate simulation would be a convenient
and much cheaper way to access optical dynamic compression.

Models of resistive opto-isolators for audio applications exist in the literature [85,
86]. Based on a signal representation, they associate static characteristics obtained from
measurements, and a combination of low-pass filters to account for the opto-isolator dy-
namic behavior. Although they demonstrate accurate results, these models are tailored
to a specific circuit and offer less modularity than purely physical models. In particular,
they are difficult to connect to other components modeled as PHS.

In this chapter, we propose a nonlinear model of resistive opto-isolators that is en-
tirely physically-based and passive. This chapter is structured as follows. In Section 4.2,
we provide a minimal, passive LED model. In Section 4.3, we recall the main doping
mechanisms in photoresistors and derive a model for their internal dynamics. Then in
Section 4.4, we infer laws for the optical coupling between the LED and the photore-
sistor based on the photoresistor dynamics, the photoresistor static resistance, and the
LED dissipative law. Finally, in Section 4.5, we obtain a complete PHS model for the
resistive opto-isolator by connecting all components through multiphysical ports. This
model is then used to identify a Vactrol from measurements, and to simulate a minimal
optical compressor in Section 4.6.

4.2 LED

We propose a model that is phenomenologically similar to the Shockley model [87],
passive by construction, and in which the LED threshold appears explicitly as a pa-
rameter. Moreover, as it does not require the use of the Lambert function (which arises
when using the Shockley model while taking the LED parasitic series resistance into
account [88]), its implementation is much simpler.

Denoting vD the LED voltage and iD the LED current, the LED is a dissipative com-
ponent of flow and effort given by

w = vD,

z(w) = is

(
sp
(

vD − vt

vs

)
− sp

(
− vt

vs

))
:= ID(vD) = iD,

(4.1)
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(A) Photoresistor.
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(B) Photoresistor: 2-port representation.
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(C) Photoresistor: energy levels of carriers before and after photoabsorption.

FIGURE 4.2: Photoresistor: component, 2-port representation,
and energy levels of carriers before and after photoabsorption.

where
sp : x 7→ ln(1 + exp x) (4.2)

denotes the softplus function and vt, vs, and is are positive model parameters. The
voltage vt is the LED threshold (from which it starts emitting light), and the ratio is

vs
corresponds to the LED conductance.

Due to the fact that the sp function is increasing, and that z(0) = 0, it is immediately
verified that z(w)ᵀw ≥ 0 for all w.

4.3 Photoresistor

A photoresistor consists of a thin layer of photoconductive material (i.e., cadmium sul-
fide) deposited on a ceramic substrate (Fig. 4.2a). In the following, we assume that
the photoconductive material is spatially homogeneous, so that no pn-junction can be
formed and that diffusion of free carriers is negligible.

A photoresistor is actually a 2-port component. The first port is an electrical port,
and allows connections to other electronic components. The second port is an optical
port, which allows interactions with the LED only (Fig. 4.2b), but is not accessible to the
user. In the next sections, the optical flow and effort are explicitly referred to as fRLDR

and eRLDR to avoid confusion with the electrical flow and effort iRLDR and vRLDR . Note that
both flows are in Amperes, and both efforts are in Volts.

4.3.1 Photoconductivity

Photoconductive materials are semiconductors: their electronic band structure enables
them to become conductive under certain conditions. Indeed, denote EC the energy
level of the conduction band, and EV the energy level of the valence band (Fig. 4.2c,
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left). The band gap eg is defined as

eg = EC − EV . (4.3)

In semiconductors, the band gap is low enough so that electrons can leave the valence
band and reach the conduction band with a small amount of additional energy.

In a photoresistor, this additional energy is provided through photoabsorption. The
absorption of the equivalent of eg generates a pair of free carriers (Fig. 4.2c, right): an
electron in the conduction band, and a hole in the valence band. The presence of free
carriers increases the photoresistor conductivity. Note that the overall conductivity de-
pends on the quantity of electrons, but also on the quantity of holes (which, as we shall
see, do not necessarily remain equal).

4.3.2 Doping

The conductivity of a photoconductive material can be artificially increased through
the inclusion of defects, the role of which is to lower the amount of energy needed to
generate free carriers [89]. To this end, defects must have adequate bound and ionized
energy levels. Indeed, denote EB the defect bound energy, EI the defect ionized energy,
and ei the ionizing energy, defined as (Fig. 4.3, left)

ei = EI − EB. (4.4)

For efficient n-doping, EB must lie in the band gap and EI must lie in the conduction
band, so that ei is smaller than eg and electrons reach the conduction band more easily
(Fig. 4.3, right). Conversely, for efficient p-doping, EI must lie in the band gap and EB
must lie in the valence band, so that ei is smaller than eg and electrons leave the valence
band more easily (or, equivalently, holes reach the valence band more easily).

As an illustration, consider some photoconductive material made of atoms with four
valence electrons, which can form tetrahedral bonds (for instance, silicium). N-doping
would consist of inserting an atom with five valence electrons, for instance arsenic (one
electron too many, see Fig. 4.4a). If enough energy is provided (through photoabsorp-
tion), the supplementary electron reaches the conduction band and the defect becomes
ionized (Fig. 4.4b). In this case, the defect is called a donor. Conversely, p-doping would
consist of inserting an atom with three valence electrons, for instance bore (one electron
too few, see Fig. 4.4c). If enough energy is provided (through photoabsorption), the
defect can "borrow" an electron from the valence band to achieve a fourth bond. The
defect becomes ionized and a hole remains in the valence band (Fig. 4.4d). In this case,
the defect is called an acceptor.

Note that in some materials, compensating native defects (electron "traps" for n-
doped materials or hole "traps" for p-doped materials) can form at some "pinning en-
ergy" [89]. If this pinning energy is lower (resp. higher) than the conduction band (resp.
valence band), doping fails: electrons (resp. holes) are neutralized by compensating
native defects before reaching the conduction band (resp. valence band).

In the following, we assume that the photoconductive material is correctly doped
and that the influence of compensating native defects is negligible.

4.3.3 Photoresistor internal dynamics

The internal dynamics of the photoresistor is the result of a competition between carrier
recombination processes, which can be classified into three types:
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FIGURE 4.4: Tetrahedral lattice with bound and ionized doping sites.

1. Radiative recombination: an electron and a hole recombine directly, emitting a
photon afterwards. This mechanism is the exact dual of the generation of free
carriers after photoabsorption.

2. Auger recombination: no photon is emitted, but the difference of energy is trans-
ferred to another particle.

3. Shockley-Read-Hall recombination: free carriers recombine with defects.

As Shockley-Read-Hall recombination is by far the most important recombination pro-
cess to take place in doped materials [89], we neglect radiative recombination and Auger
recombination in the following.

In this section, we consider n-doped materials only, as cadmium sulfide can be n-
doped [90]. The reasoning would be similar for p-doped materials.

Assume an initial state with only bound defects and no free carriers, denoted s0.
Photoabsorption can lead either to ionization (state si), or to electron-hole pair genera-
tion (state sg). The ionized defect can then return to state s0, followed by the dissipation
of the excess energy ei. Likewise, an electron-hole pair can recombine to state s0, fol-
lowed by the dissipation of the excess energy eg (Fig. 4.5a).

For convenience, and since this is transparent energy-wise, we consider that a tran-
sition from state sg to state s0, followed by a transition from state s0 to state si, is a
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transition from state sg to state si, dissipating eg − ei (Fig. 4.5b). For convenience also,
we assume in the following that the ionizing energy is exactly half the band gap, that is,

eg − ei = ei. (4.5)

Free carriers dynamics modeling To study the free carriers dynamics, denote g the
electron-hole pair generation rate per unit of volume, ρ− the volume density of elec-
trons, ρ+ the volume density of holes, τ+ the volume density of defects in ionized state,
and τ0 the volume density of defects in bound state. Denote ητ the total volume density
of defects, assumed constant in time:

ητ = τ+ + τ0, η̇τ = 0. (4.6)

The time variation of electron density ρ̇− corresponds to the electron-hole pair gen-
eration rate density minus the de-ionization rate density. This de-ionization rate density
is proportional to the ionized defect density and electron density [89] so that

ρ̇− = g−
(

v0 σ+
0 τ+

)
ρ−, (4.7)

with v0 the carrier velocity (electron or hole) and σ+
0 the ionized defect cross section.

In the following, we denote v−0 = v0 σ+
0 the volumetric flow rate of electrons (with

dimension [m3.s−1]).
Similarly, the time variation of hole density ρ̇+ corresponds to the electron-hole pair

generation rate density minus the ionization rate density. This ionization rate density is
proportional to the bound defects density and hole density so that

ρ̇+ = g−
(

v0 σ0
0 τ0

)
ρ+, (4.8)

with σ0
0 the bound defect cross section. In the following, we denote v+0 = v0 σ0

0 the
volumetric flow rate of holes (with dimension [m3.s−1]).

Charge neutrality of the photoresistor imposes that

q = q0 V0

(
τ+ + ρ+ − ρ−

)
= 0, (4.9)

with q the photoresistor total charge, q0 the elementary charge, and V0 the photoresistor
volume. Reinjecting Eq. (4.6) and Eq. (4.9) in Eqs. (4.7)-(4.8) yields

ρ̇− = g− v−0
(

ρ− − ρ+
)

ρ−,

ρ̇+ = g− v+0
(

ητ + ρ+ − ρ−
)

ρ+,
(4.10)

which corresponds to the homogeneous Iverson model [91]1.

PHS formulation and equivalent circuit Multiplying Eq. (4.10) by q0 V0 and intro-
ducing extensive states Q− = q0 V0 ρ− (total charge of electrons), Q+ = q0 V0 ρ+ (total

charge of holes), capacitance CLDR ∝ q2
0

eg
, and carrier generation flow fgen = −q0 V0 g, we

1 It also resembles Lotka-Volterra equations modeling the populations of predators and preys [92].



4.3. Photoresistor 53

τ0 τ+

−

τ0

−

+

photoabsorption of eg

dissipation of eg

photoabsorption of ei

dissipation of ei

s0 si sg

(A) Possible states and transitions for a n-doped photoresistor.

≡

τ0 τ+

−

τ0

−

+

photoabsorption of eg

dissipation of ei dissipation of eg − ei

s0 si sg

(B) Equivalent representation: a transition from state sg to state s0 followed by a transition from
state s0 to state si is replaced with a transition from state sg to state si, dissipating eg − ei.

FIGURE 4.5: Possible states and transitions for a n-doped photoresistor
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FIGURE 4.6: Photoresistor internal dynamics: equivalent circuit schemat-
ics and corresponding PHS.

obtain

Q̇− = − fgen − G−τ (Q
+, Q−)

Q−

CLDR
,

Q̇+ = − fgen − G+
τ (Q

+, Q−)
Q+

CLDR
,

(4.11)

where G−τ (Q+, Q−) := v−0
q0 V0

(
Q− −Q+

)
CLDR and G+

τ (Q+, Q−) := v+0
q0 V0

(
ητ q0 V0 + Q+ −Q−

)
CLDR

both have the dimension of a conductance 2.
The internal dynamics of the photoresistor can thus be described by two capacitors

C− and C+ modeling the storage of electrons and holes respectively, with flow (in Am-
peres) and effort (in Volts)

ẋ =
[

Q̇+, Q̇−
]ᵀ

:=
[

fC+ , fC−
]ᵀ

∇E(x) =

[
Q+

CLDR
,

Q−

CLDR

]ᵀ
:= [eC+ , eC− ]

ᵀ ,
(4.12)

and two conductors G−τ and G+
τ modeling the dissipation caused by de-ionization and

ionization respectively, of flow (in Volts) and (state-modulated) effort (in Amperes)

w =
[
eG+

τ
, eG−τ

]ᵀ
,

z(w) =
[

G+
τ eG+

τ
, G−τ eG−τ

]ᵀ
:=
[

fG+
τ

, fG−τ

]ᵀ
.

(4.13)

The schematics of the corresponding equivalent circuit are shown on Fig. 4.6a, with
corresponding PHS in Fig. 4.6b.

2 Indeed, [Gτ] = [s−1 × C.V−1] = [A.V−1].
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FIGURE 4.7: Photoresistor macroscopic model.

Photoresistor electrical flow and effort The instantaneous resistance of the photore-
sistor is given by [89]

R(t) =
V0

`0

(
µ+

0 Q+(t) + µ−0 Q−(t)
) , (4.14)

where µ+
0 (resp. µ−0 ) is the mobility of holes (resp. electrons) and `0 is the photoresistor

length.
In practice, the photoresistor exhibits a finite resistance Rd when it is not exposed to

light (d for dark), and a non-zero resistance R` when it is exposed to maximal light (` for
light). The total instantaneous resistance RLDR(t) can thus be modeled as (Fig. 4.7)

RLDR(t) =
Rd
(

R(t) + R`

)

Rd + R(t) + R`
. (4.15)

It is immediately verified that lim
R→+∞

RLDR = Rd and lim
R→0

RLDR = R`.

We deduce the electrical flow and (state-modulated) effort of the photoresistor:

w = iRLDR ,

z(w) = RLDR

(
Q+, Q−

)
iRLDR = vRLDR .

(4.16)

As a reminder, notations and units of all quantities involved are recapped in Ta-
ble 4.1.

Remark on passivity From Eqs. (4.6)-(4.9), we have

τ̇+ = v+0
(

ητ − τ+
)

ρ+ − v−0 τ+ ρ−,

τ̇0 = v−0
(

ητ − τ0
)

ρ− − v+0 τ0 ρ+.
(4.17)

with v−0 , v+0 ≥ 0. Assuming that initial densities τ+(0), τ0(0) = ητ− τ+(0) and densities
ρ+ and ρ− are all positive, it is verified that if τ+ reaches the constant ητ, it decreases,
thus remaining below ητ and ensuring the positivity of τ0; likewise, if τ+ reaches zero,
it increases, thus remaining positive. The same is verified for τ0.

Similarly, assuming that initial densities ρ−(0), ρ+(0) and densities τ+, τ0 are all
positive, it is verified from Eq. (4.10) that if ρ− (resp. ρ+) reaches zero, it increases, thus
remaining positive.
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TABLE 4.1: Notations and units for the photoresistor internal dynamics.

Quantity Notation Units
C

on
st

an
ts

photoconductive material band gap eg J
defect ionization energy ei J
defect volume density ητ m−3

carrier velocity v0 m.s−1

ionized defect cross-section σ+
0 m2

bound defect cross-section σ0
0 m2

electron mobility µ−0 m2.V−1.s−1

hole mobility µ+
0 m2.V−1.s−1

(positive) elementary charge q0 C
photoresistor volume V0 m3

photoresistor length `0 m
photoresistor equivalent capacitance CLDR F

V
ar

ia
bl

es

electron-hole pair generation rate volume density g(t) m−3.s−1

electron volume density ρ−(t) m−3

hole volume density ρ+(t) m−3

ionized defect volume density τ+(t) m−3

bound defect volume density τ0(t) m−3

total charge of free electrons Q−(t) C
total charge of free holes Q+(t) C
de-ionization conductance G−τ

(
Q+(t), Q+(t)

)
A.V−1

ionization conductance G+
τ

(
Q+(t), Q+(t)

)
A.V−1

carrier generation flow fgen(t) A

Therefore, provided that initial densities are positive, τ0 and τ+ are always positive,
and so are conductances G+

τ and G−τ .

4.4 Optical coupling

4.4.1 Power conversion between the LED and the photoresistor

Two types of power conversion take place between the LED and the photoresistor. The
first one is a conversion from electrical to optical and occurs during photoemission by
the LED; it can be modeled with a gyrator of gyration resistance γe. The second one is a
conversion from optical to electrical and occurs during photoabsorption by the photore-
sistor; it can be modeled with a gyrator of gyration resistance γa. These gyrators obey
the following conservative laws:

[
iD
f1

]
=

[
0 1/γe

−1/γe 0

] [
vD
e1

]
,

[
f2

fgen

]
=

[
0 1/γa

−1/γa 0

] [
e2

egen

]
.

(4.18)

However, as the photoresistor spectral response does not match exactly with the
LED spectral output (Fig. 4.8), some of the power emitted by the LED is not transmitted
to the photoresistor. Since the LED and photoresistor are enclosed in opaque resin, we
assume that the difference of power is absorbed by the resin and immediately converted
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FIGURE 4.8: Typical spectral response of an optocoupler
(extracted from [84]).

into heat. Therefore, for convenience, these losses are modeled with two equivalent
dissipative components ropt1 and ropt2 .

Schematics of this coupling are shown in Fig. 4.9a, where, for simplicity, the pho-
toresistor internal dynamics is not represented.

From Kirchhoff’s laws, we deduce the PHS in Fig. 4.9b. Using Eq. (4.18), the PHS
can be reduced to that of Fig 4.9c.

For simplicity, we choose to keep the gyrators linear, and model all nonlinearities
occurring during the power conversion with ropt1 and ropt2 .

4.4.2 Carrier generation flow as a function of LED current

The carrier generation flow depends on the amount of light absorbed by the photoresis-
tor. As we have access to neither photoemission (from the LED), nor photoabsorption
(into the photoresistor) characteristics, but only LED and photoresistor voltages and cur-
rents, we propose to derive the carrier generation flow as a function of the LED current
instead, through the following steps.

Free carriers steady state as a function of static resistance In steady state, Q̇+ = Q̇− =
0. From Eq. (4.11), that implies

G−τ (Q
+
st , Q−st)

Q−st
CLDR

= G+
τ (Q

+
st , Q−st)

Q+
st

CLDR
, (4.19)

where Q+
st (resp. Q−st ) denotes the steady state of Q+ (resp. Q−). By solving Eq. (4.19)

for a fixed Q+
st , we obtain the relationship between Q−st and Q+

st :

Q−st =

(
v−0 − v+0

)
Q+

st +

√(
v−0 − v+0

)2
Q+

st
2
+ 4 v−0 v+0

(
ητ q0 V0 + Q+

st

)
Q+

st

2 v−0
:= Q−(Q+

st).

(4.20)



58 Chapter 4. Resistive Opto-Isolators

vin

iin

eropt1

fropt1

eRLDR

fRLDR

eropt2

fropt2
iD f1 f2 fgen

vD e1 e2 egen

γe γa

LED electrical port LED optical port LDR optical port

(A) Optical power conversion from LED photoemission to photoresistor photoabsorption:
equivalent circuit schematics.

vin iD f1 eropt1
eropt2

f2 fgen eRLDR





iin . −1 . . . . . .
vD 1 . . . . . . .
e1 . . . 1 1 . . .

fropt1
. . −1 . . . . .

fropt2
. . −1 . . −1 . .

e2 . . . . 1 . . .
egen . . . . . . . 1
fRLDR . . . . . . −1 .

(B) Corresponding PHS.

vin eropt1
eropt2

eRLDR





iin . −1/γe −1/γe .
fropt1

1/γe . . .
fropt2

1/γe . . −1/γa

fRLDR . . 1/γa 0

(C) Corresponding reduced PHS.

FIGURE 4.9: Optical power conversion from LED photoemission
to photoresistor photoabsorption: equivalent circuit schematics,

corresponding PHS and reduced PHS.

Proof.

G−τ (Q
+
st , Q−st)

Q−st
CLDR

= G+
τ (Q

+
st , Q−st)

Q+
st

CLDR

⇒ v−0
q0 V0

(
Q−st −Q+

st

)
Q−st =

v+0
q0 V0

(
ητ q0 V0 + Q+

st −Q−st

)
Q+

st

⇒v−0 Q−st
2
+
(

v+0 − v−0
)

Q+
st Q−st − v+0

(
ητ q0 V0 + Q+

st

)
Q+

st = 0.

For a given Q+
st , we recognize a second-degree equation of the form a Q−st

2
+ b Q−st + c =

0. The general solution is given by Q−st =
−b±

√
∆

2 a , ∆ = b2− 4 a c. In this case,−4 a c ≥ 0
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FIGURE 4.10: Photoresistor static resistance as a function of steady state.

therefore −b ≤
√

∆. The physical solution is positive so that

Q−st =
−b +

√
∆

2 a
. (4.21)

Reinjecting Eq. (4.20) in Eq. (4.14), we deduce the static resistance resistive law as a
function of final state Q+

st :

Rst =
V0

`0

(
µ+

0 Q+
st + µ−0 Q−(Q+

st)
) := R(Q+

st). (4.22)

As the functionR is invertible on R+ (Fig. 4.10), we obtain the steady state of holes as a
function of the static resistance:

Q+
st = R−1(Rst) := Q+(Rst). (4.23)

For the function Q+, we propose an empirical model3 of the form

Q+(Rst) =
1

Q0 Ra0
st + Q1 Ra1

st
, (4.24)

with Q0, Q1, a0, a1 positive model parameters.

Static resistance as a function of LED current Measurements and datasheets (Fig. 4.11)
show that there is a relation between the photoresistor static resistance and the LED cur-
rent:

Rst = Rst(iD). (4.25)

Carrier generation flow as a function of LED current From Eq. (4.23) and Eq. (4.25),
we deduce

Q+
st =

(
Q+ ◦ Rst

)
(iD). (4.26)

3 Model intuitively derived from the curve ofR for usual values of ητ , v+0 and v−0 .
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FIGURE 4.11: Photoresistor static resistance vs LED current
for a resistive opto-coupler (datasheet).

Finally, from Eq. (4.11), we obtain

fgen = −G+
τ (Q

+
st , Q−st)

Q+
st

CLDR

=
v+0

q0 V0

((
Q− ◦ Q+ ◦ Rst −Q+ ◦ Rst

)
(iD)− ητ q0 V0

)(
Q+ ◦ Rst

)
(iD)

:= ϕgen(iD).

(4.27)

As explained at the end of Section 4.3, the ionization conductance as well as the hole
total charge are always positive for positive initial conditions. Therefore fgen must be
negative. We ensure that ϕgen is indeed a negative function in Section 4.6.1.

4.4.3 Optical resistors dissipation law

For convenience, we treat ropt1 and ropt2 jointly as a tripole, of flow and effort

w =
[

fropt1
, fropt2

]ᵀ
,

z(w) =
[
eropt1

, eropt2

]ᵀ
.

(4.28)

The LED dissipation law ID in Eq. (4.1) and the carrier generation flow ϕgen must be
reconstructed through ropt1 and ropt2 . To this end, we remark that from Kirchhoff’s laws
applied to the circuit in Fig. 4.9a, we have

fropt1
=

vD

γe
, fropt2

=
vD

γe
− egen

γa
, (4.29a)

eropt1
= γe iD + γa fgen, eropt2

= −γa fgen. (4.29b)

From Eqs. (4.1)-(4.27), we deduce

z
([

fropt1
, fropt2

]ᵀ)
=

[
γe ID(γe fropt1

) + γa

(
ϕgen ◦ ID

)
(γe fropt1

), −γa

(
ϕgen ◦ ID

)
(γe fropt1

)

]ᵀ
.

(4.30)
From Eq. (4.29), the condition of passivity z(w)ᵀw ≥ 0 corresponds to

iD vD + fgen egen ≥ 0, (4.31)

which ensures that the power absorbed by the photoresistor is equal or smaller than the
power emitted by the LED as expected. Recall that egen = eRLDR and that the highest
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value of eRLDR is attained for steady states Q+
st and Q−st . Then from Eqs. (4.1)-(4.12)-(4.20)-

(4.26)-(4.27), we deduce a condition on CLDR for the model to be passive:

CLDR ≥ max(C(v)), with C(v) := −

(
ϕgen ◦ ID

)
(v)

v ID(v)

((
Q− ◦ Q+ ◦ Rst +Q+ ◦ Rst

)
◦ ID

)
(v).

(4.32)
Parameter estimation in Section 4.6.1 shows that the function C has indeed a maximum,
and that a range of possible values for CLDR can be obtained experimentally.

4.5 Resistive opto-isolator complete model

By replacing the carrier generation flow fgen with eropt2
and connecting the PHS corre-

sponding to the photoresistor alone (Fig. 4.6b) with the PHS corresponding to the opti-
cal coupling (Fig. 4.9c), we obtain the complete PHS of the voltage-controlled resistive
opto-isolator. In this PHS, the LED and its transmission factor are scattered between the
optical resistors ropt1 and ropt2 (Fig. 4.12a- 4.12c).

Temperature effects The photoresistor band gap, carrier mobilities, and carrier ve-
locities are all temperature dependent. In particular, we have the following relation
between the temperature and the band gap [93]

eg(T) = eg(0)−
α T2

T + β
, (4.33)

where α and β are empirical model parameters. The relation between the temperature
and the carrier mobilities is more complex as it depends on the doping sites density,
and on various scattering mechanisms with phonons [89] which are beyond the scope
of this work. Therefore, details of these dependencies are not addressed here. Neverthe-
less, should an expression of the photoresistor stored energy as a function of its internal
entropy S be found, the PHS would be that given in Fig. 4.13. In this PHS, T is the pho-
toresistor internal temperature, σicomp = − zcomp(wcomp)ᵀwcomp

Tcomp
is the (irreversible) entropy

creation rate for each dissipative component, and σext is the entropy flow to the exterior.
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vD

iD

vin

iin

vRLDR

iRLDR

vout

iout

(A) Voltage-controlled resistive opto-isolator: schematics.

vin

iin

eropt1

fropt1

eropt2

fropt2

fC+

fC−

fG+
τ

fG−τ

eRLDR

fRLDR

R

R`

vout

iout

Rd vRLDR

iRLDR

iD f1 f2 fgen

vD e1 e2 egen

γe γa

(B) Voltage-controlled resistive opto-isolator:
equivalent circuit schematics. The photoresistance R is modulated by the states of C+ and C−.

∇E(x) z(w) u
eC+ eC− fG+

τ
fG−τ eropt1

eropt2
vRLDR vin iout






ẋ
fC+ . . −1 . . 1/γa . . .
fC− . . . −1 . 1/γa . . .

w

eG+
τ

1 . . . . . . . .
eG−τ . 1 . . . . . . .
fropt1

. . . . . . . 1/γe .
fropt2

− 1/γa −1/γa . . . . . 1/γe .
iRLDR . . . . . . . . −1

y
iin . . . . − 1/γe −1/γe . . .

vout . . . . . . 1 . .

(C) Corresponding PHS.

FIGURE 4.12: Resistive opto-isolator: schematics and corresponding
PHS. The photoresistor internal dynamics, optical coupling with the LED,
and interaction with electrical ports are highlighted in blue, green, and

red respectively.
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∇E(x) z(w) u
eC+ eC− T f

G+
τ

f
G−τ

σi
G+

τ

σi
G−τ

eropt1
eropt2

σiropt
vRLDR

σiRLDR
vin iout σext







ẋ
fC+ . . . −1 . . . . 1/γa . . . . . .
fC− . . . . −1 . . . 1/γa . . . . . .

Ṡ . . . . . −1 −1 . . −1 . −1 . . −1

w
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G+

τ
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e
G−τ
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τ
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fropt2
−1/γa −1/γa . . . . . . . . . . 1/γe . .

Tropt . . 1 . . . . . . . . . . . .
iRLDR

. . . . . . . . . . . . . −1 .
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FIGURE 4.13: Resistive opto-isolator: PHS accounting for temperature.
Dots represent zeros.
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FIGURE 4.14: Experimental setup for measurements on a Vactrol.

4.6 Applications

4.6.1 Identification of a Vactrol from measurements

The characteristics of a VTL5C3/2 are measured via the following experimental setup:
a voltage divider is formed with a potentiometer and a DC source. The LED is con-
nected in parallel with the potentiometer, so that the potentiometer controls the LED
voltage. Concomitantly, the photoresistor is connected with an independent DC source
(Fig. 4.14). Voltages vA, vB, as well as currents iA and iB are measured with a precision
multimeter, and voltages vD, vRLDR and currents iD, iRLDR are obtained through

vD = vA, iD = iA, vRLDR = vB, iRLDR = iB. (4.34)

The photoresistor resistance is obtained through RLDR =
vRLDR
iRLDR

. Parameters for the ex-
perimental setup are shown in Table 4.2.

The parameters R` and Rd are taken from the VTL5C3/2 datasheet, and the mobil-
ities µ+

0 and µ−0 are set according to [94]. Assuming that q0, V0, and `0 are known, the
resistive opto-isolator remaining parameters are estimated from measurements, in three
steps.
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TABLE 4.2: Experimental setup parameters for measurements
on a Vactrol.

Parameter R1 (Ω) R2 (Ω) Rp (Ω) vin1 (V) vin2 (V)

Value 105 10 100 5 5

FIGURE 4.15: Photoresistor turn-off: measurements and model.

Parameter identification for the LED The set of parameters θD = [vt, vs, is] is esti-
mated by solving

θD = arg min
θ

∥∥iD − ID(vD, θ)
∥∥2 , (4.35)

where ID is given by Eq. (4.1). The estimated parameters are shown in Table 4.3.

Parameter identification for the photoresistor internal dynamics For simplicity, the
set of parameters θLDR =

[
v+0 , v−0 , ητ

]
is estimated during turn-off. Denoting Rsim(θ)

the photoresistor instantaneous resistance simulated for a given set θ (using Eq. (4.11)
and Eq. (4.15) with fgen = 0), the set θLDR is obtained by solving

θLDR = arg min
θ

∥∥RLDR − Rsim(θ)
∥∥2 . (4.36)

The estimated parameters are shown in Table 4.3. Figure 4.15 shows that the instanta-
neous resistance simulated with these parameters matches closely with the measured
resistance.

Parameter identification for the carrier generation flow The set θLDR can now be
reinjected in Eqs. (4.20)-(4.22) to obtain the function R. The set of parameters θQ =
[Q0, Q1, a0, a1] is then obtained by solving

θQ = arg min
θ

∥∥∥Q−Q+
(
R(Q, θLDR), θ

)∥∥∥
2

, (4.37)
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FIGURE 4.16: Carrier generation flow.

(A) Photoresistor turn-on:
measurements and model.

(B) Photoresistor resistance vs LED current
after 800 ms.

FIGURE 4.17: Validation of the dynamic model:
photoresistor turn-on and resistance vs LED current after 800 ms.

for a large range Q. Replacing Q+
st with Q+(RLDR, θQ) in Eq. (4.27), we obtain experi-

mental data for fgen. Instead of successive function compositions, we propose a simpli-
fied empirical model for ϕgen of the form

ϕgen(iD) = −
iD

φ0 iα0
D + φ1 iα1

D + φ2 iα2
D + ε

, (4.38)

with the regularization parameter ε set to 10−16. This simplified model is easier to com-
pute and necessitates less parameters than the model given by Eq. (4.27). Moreover, it
ensures that ϕgen(0) = 0, and that ϕgen(iD) ≤ 0 for all iD (so that fLDR is indeed positive).
The set θϕ =

[
φ0, φ1, φ2, α0, α1, α2

]
is finally obtained by solving

θϕ = arg min
θ

∥∥∥ fgen − ϕgen(iD, θ)
∥∥∥

2
. (4.39)

The estimated parameters are shown in Table 4.3, and Fig. 4.16 shows the estimation
results. The simplified model matches well with the original model within the range of
LED currents observed under normal utilization.

In the following, the carrier generation flow is modeled with Eq. (4.38) and θQ is no
longer used.
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(A) Graph of function C. The value of CLDR
must be above its maximum for the resistive

opto-coupler to be passive.

(B) Optical resistors total dissipated power for
an adequate CLDR.

(C) Optical resistors total effort
compared to LED dissipative law.

FIGURE 4.18: Optical resistors: total dissipated power and total effort.

Model validation To confirm the parameter estimation results, the instantaneous pho-
toresistor resistance is simulated again with a non-zero carrier generation flow, for sev-
eral values of LED current. The turn-on time response matches with measurements
(Fig. 4.17a, for iD = 40 mA). After 800 ms of simulation, the simulated resistance values
match very closely with the measured static values (Fig. 4.17b).

For the estimated parameters, the function C (see Eq. (4.32)) has a maximum equal to
2.64× 10−6 (Fig. 4.18a). Therefore, from Eq. (4.32), choosing CLDR = 2.65× 10−6 ensures
that the power dissipated by the optical resistors is positive (Fig. 4.18b). Moreover, we
verify that the LED dissipation law ID is correctly reconstructed through the optical
resistors efforts (Fig. 4.18c).

4.6.2 Simulation of an optical compressor

The estimated parameters for the VTL5C3/2 are used to simulate a minimal optical com-
pressor, shown in Fig. 4.19a. This compressor consists in a voltage divider, in which the
output resistor is the photoresistor. If the output voltage is greater than the LED thresh-
old, the LED emits light, and the photoresistor resistance drops, decreasing the output
voltage in a feedback control loop. The operational amplifier-based voltage follower
reduces the electrical coupling between the photoresistor and the LED.



4.6. Applications 67

TABLE 4.3: Parameters for the Vactrol VTL5C3/2.

Parameter Value Dimension

G
iv

en

q0 1.60 × 10−19 C
V0 10−5 m3

`0 10−2 m
µ+

0 40 × 10−4 m2.V−1.s−1

µ−0 350 × 10−4 m2.V−1.s−1

R` 2 Ω
Rd 10 × 106 Ω

Es
ti

m
at

ed

ητ 6.11 × 1023 m−3

v+0 2.17 × 10−22 m3.s−1

v−0 2.87 × 10−16 m3.s−1

Q0 1.11 × 10−3 C
Q1 38.9 C
a0 1.98 dimensionless
a1 1. 00 dimensionless
φ0 1.62 × 10−6 A
φ1 4.83 × 10−2 A
φ2 45.5 A
α0 −2.21 dimensionless
α1 −0.83 dimensionless
α2 0.32 dimensionless
vt 1.52 V
vs 23.16 × 10−3 V
is 5.65 × 10−3 A
CLDR 2.65 × 10−6 F

Modeling The voltage follower is described by the conservative approximation de-
fined in [95], with flow and effort given by

w =
[
v+, io, v+ps, v−ps

]ᵀ
,

z(w) =




. . . .

. . f+(w) f−(w)

. − f+(w) . .

. − f−(w) . .


w :=

[
i+, vo, i+ps, i−ps

]ᵀ
,

(4.40)

with an infinite gain modeled by an ideal saturating function

f±(w) =
1
2


1± sat

(
v+ − vcm

vdm

)
 , sat(x) = min

(
max(x,−1), 1

)
(4.41)

and vcm and vdm defined by

vcm =
v+ps + v−ps

2
, vdm =

v+ps − v−ps

2
. (4.42)

Omitting the voltage follower power supplies (treated as constants), and reducing
the linear dissipation of R1 and R2, Kirchhoff’s laws yield the PHS in Fig. 4.19b. For
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(A) Schematics of a minimal optical compressor (OPA power supplies are dashed).
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


ẋ
iC −1/R2 . . . . −1/γe −1/γe . 1/R2 . .
fC+ . . . −1 . . 1/γa . . . .
fC− . . . . −1 . 1/γa . . . .

w

eG+
τ

. 1 . . . . . . . . .
eG−τ . . 1 . . . . . . . .
fropt1

1/γe . . . . . . . . . .
fropt2

1/γe −1/γa −1/γa . . . . . . . .
v+ . . . . . . . . . 1 .
io 1/R2 . . . . . . . −1/R2 . .

iRLDR . . . . . . . −1 . −1/R1 1/R1

y iin . . . . . . . . . 1/R1 −1/R1

(B) Corresponding PHS.

FIGURE 4.19: Generic optical compressor: schematics
and corresponding PHS.

simulation, we set the gyration resistances γe = γa = 1.

Simulation To simulate the compressor PHS model, the equation F(ν) := f (ν) −
(J − R) e(ν) = 0, with ν =

[
δx fs, w

]ᵀ, and fs the sample rate, must be solved at
each sample. Here we choose to use an iterative solver (typically, a Newton-Raphson
method [32]).

Since all capacitors are linear, the dynamics of the model can be pre-solved to reduce
the problem. This way, the only constraints left for the iterative solver are the algebraic
constraints. Indeed, for a quadratic energy, the discrete gradient regenerates the mid-
point method [1] and we have

∇E(x, δx) = Q
(

x +
δx
2

)
, (4.43)

with

Q =




1/C . .
. 1/CLDR .
. . 1/CLDR


 . (4.44)
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TABLE 4.4: Optical compressor: simulation parameters.

Parameter R1 (Ω) R2 (Ω) C (F) v+ps (V) v−ps (V) U0 (V) f0 (Hz) fs (Hz)

Value 1 ×105 & 1×103 5 4.7×10−9 10 −5 3 1×103 96×103

Adopting block-matrix notation

J − R =




M1 M2 M3
M4 M5 M6
M7 M8 M9


 , (4.45)

we have

δx fs = M1 Q
(

x +
δx
2

)
+ M2 z(w) + M3 u, (4.46)

hence

δx =

(
I3 fs −

1
2

M1 Q
)−1 (

M2 z(w) + M3 u + M1 Q x
)

. (4.47)

We deduce

w =
[

Q̃ M2 + M5, Q̃ M3 + M6, Q̃ M1 + M4

] [
z(w), u, Q x

]ᵀ , (4.48)

with Q̃ = 1
2 M4 Q

(
I3 fs − 1

2 M1 Q
)−1

. Therefore, the dependence on δx is removed, and
we only have to solve

F̃(w) := w−
[

Q̃ M2 + M5, Q̃ M3 + M6, Q̃ M1 + M4

] [
z(w), u, Q x

]ᵀ
= 0. (4.49)

After Eq. (4.49) is solved iteratively, the state increment δx is computed using Eq. (4.47),
and the state is updated by computing x + δx.

The compressor is driven with a ramped sinusoidal voltage of the form vin = U(t) sin(2π f0 t),
with U(t) defined for t ∈ [0, 2 t0] as

U(t) =





U0
t
t0

if t ≤ t0

U0

(
2− t

t0

)
if t0 < t ≤ 2 t0

(4.50)

for an arbitrary t0.
Simulation results for Vactrol parameters in Table 4.3, and simulation parameters in

Table 4.4, are shown in Fig. 4.20a to 4.20f. The dissipated power stays positive during
simulation as expected. Usual compression parameters such as threshold, ratio, attack
time, and release time can be directly linked to circuit parameters. Indeed, the com-
pression threshold corresponds to the LED threshold. The compression ratio can be
controlled with the resistances R1 and R2: the higher the ratio R1/R2, the higher the
compression ratio. The capacitance C influences the time response of the compressor,
which has consequences on the “knee” of the compression curve: the lower the capaci-
tance, the softer the knee. In all cases, we observe that the attack is much sharper than
the release, in agreement with the photoresistor time responses.
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4.7 Conclusion

In this chapter, we have proposed a PHS model for the resistive opto-isolator. First, we
modeled its subcomponents (LED and photoresistor) separately. Then, we addressed
their coupling. The photoresistor’s internal dynamics was obtained from the study of
doping mechanisms in semiconductors, while a law for the nonlinear optical coupling
between the LED and the photoresistor was derived from the LED’s dissipation law and
the photoresistor’s static resistance.

The model has been used to identify a real Vactrol, based on measurements. Simula-
tions using the estimated parameters closely match with measured dynamic and static
characteristics. The estimated parameters were then used to simulate a minimal optical
compressor. The dissipated power stays positive during simulation, and compression
parameters such as attack, release, threshold, ratio and knee adequately and intuitively
relate to circuit parameters.

Nonetheless, the proposed law for the optical coupling has a limitation in the sense
that its passivity is conditional on the value of the photoresistor’s equivalent capaci-
tance that is difficult to estimate at present. Unconditional passivity would constitute a
significant improvement. Moreover, supplementary measurements are needed in order
to assess the model’s accuracy with respect to overshoot phenomena, i.e. the exhibition
of a higher resistance (for a given light exposure) after long exposures to light than after
long exposures to dark.
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(A) Optical compressor: simulated output
with R1 = 100 kΩ.

(B) Optical compressor: simulated output
with R1 = 1 kΩ.

(C) Optical compressor: simulated output,
attack.

(D) Optical compressor: dissipated power
during simulation.

(E) Optical compressor: compression ratio
for different values of R1 and fixed R2.

(F) Optical compressor: compression curve
for different values of C.

FIGURE 4.20: Optical compressor: simulation results.
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5.1 Introduction

In the previous chapters, we proposed physically-based models of nonlinear compo-
nents used in audio circuits. These models are relevant in a context of white box model-
ing, which requires extensive knowledge of the circuit schematics and constitutive laws
in order to compute simulations.

However, if the circuit topology is unknown, white box modeling is no longer an op-
tion: constitutive laws are not sufficient, or even of no use if one does not know which
components a circuit comprises or how they are interconnected. In this case, it is inter-
esting to retrieve the circuit behavior from measurements, provided that measurements
on the circuit are available.

To this end, several approaches have been proposed over the years. Among them,
black box modeling is concerned with the reproduction of a global input-output be-
havior, without necessarily capturing local phenomena that take place inside the sys-
tem. Volterra-based methods [96, 97, 98, 99, 100], block-oriented models [101, 102]
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and neural networks [103, 104, 105] for instance are popular black box modeling tech-
niques. Though these techniques can be used on a fairly wide range of systems, limita-
tions include high sensitivity to model order selection (for Volterra and block-oriented
methods) and lack of interpretability (for neural networks); in particular, disentangling
model features and linking them to meaningful, intuitive parameters for the user is a
task in itself [106]. Moreover, interpolation quality and extrapolation outside the range
of measurements are both data-dependent.

Grey box modeling techniques on the other hand provide a middle ground between
white box and black box, and successfully combine desirable features from both paradigms.
Typically, prior knowledge about the system may be incorporated during parameter es-
timation in order to ensure certain properties in the final model. Such in-between mod-
eling techniques associate state-space representations and polynomial models [107],
state-space representations and neural networks [108], digital filters and neural net-
works [109], or energy-based modeling and neural networks [110] to name a few.

In this chapter, we propose a grey box approach combining a PH-ODE formula-
tion on the one hand, and kernel-based methods [111, 112] on the other hand. In-
deed, although identification of linear PHS from measurements has been extensively
addressed [113, 114], identification of nonlinear PHS is still little explored (see e.g. [115]
for an overview). In [116], the authors propose an identification method for a certain
class of (possibly nonlinear) constrained mechanical systems with no input, that focuses
on constraint preservation. Here, we are interested in nonlinear systems with input, and
aim for passivity preservation rather than constraint preservation. To address nonlinear
behavior, we rely on reproducing kernels, which have proven to be a flexible tool for
function approximation and solving of differential equations [117]. As such, they al-
ready have succesfully been implemented for audio circuit modeling [118]. Reproduc-
ing kernels are privileged here over deep learning approaches such as in [119], because
the number of parameters to infer is much smaller, and because they are generally more
interpretable. The specificity of our method resides in choosing a kernel and tailoring
the regression so that key physical properties of the system, such as power balance and
passivity, are retained.

This chapter is structured as follows. Section 5.2 recalls principles behind Repro-
ducing Kernel Hilbert Spaces (RKHS) theory and describes how Radial Basis Functions
(RBF) can be built from a reproducing kernel and exploited for optimal reconstruction.
Section 5.3 details the proposed energy and interconnection matrix parametrization. Fi-
nally, in Section 5.4, the method is applied to identify a nonlinear peaking EQ, and
perspectives are given in Section 5.5.

This work has been presented at the DAFX conference in 2021 [120].

5.2 Reconstruction based on Radial Basis Functions

5.2.1 Reproducing Kernel Hilbert Spaces

Consider an arbitrary set Ω ⊆ Rd, and real-valued functions on Ω forming a Hilbert
space K with inner product 〈·, ·〉K. If the point evaluation functional δx defined as

δx : K 7→ R

f 7→ f (x)
(5.1)

is continuous in K for all x, then K has a unique positive-definite kernel K : Ω×Ω 7→ R

verifying
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1. Positive-definiteness: K :=
[
K(xi, xj)

]
1≤i≤N, 1≤j≤N

� 0 ∀N ∈N, x ∈ ΩN ,

2. Symmetry: K(x, y) = K(y, x),

3. Membership: Kx := K(x, .) ∈ K,

4. Reproduction: 〈 f , Kx〉K = f (x).

In this case, K is said to be a Reproducing Kernel Hilbert Space (see [121]). Reciprocally,
any positive-definite kernel has a unique corresponding native RKHS.

Example 15. Consider K the space of bandlimited continuous functions of bandwith in [−ν0, ν0],
with 0 < ν0 < +∞. The kernel K defined for all (x, y) ∈ Ω2 with Ω = R as

K(x, y) = 2 ν0 sinc(2 ν0
(
x− y

)
), (5.2)

with sinc : u 7→





sin(π u)
π u

if u 6= 0

1 if u = 0
is the reproducing kernel of K.

Proof. Symmetry From the fact that sinc is even, it is immediately verified that K is
symmetric (Fig. 5.1).

Membership Denote TF (resp. T−1
F ) the Fourier transform (resp. inverse Fourier

transform) defined as

TF : f 7→ f̂ , f̂ : ν 7→
∫ +∞

−∞
f (y) e−2 π j ν y dy,

T−1
F : f̂ 7→ f , f : y 7→

∫ +∞

−∞
f̂ (ν) e2 π j ν y dν.

Denote gx := T−1
F (ĝx) ∈ K a bandlimited function of bandlimit ν0, with ĝx defined as

ĝx(ν) =

{
e−2 π j ν x if ν ∈ [−ν0 , ν0],
0 otherwise.

Actually, gx defines Kx. Indeed, for all y ∈ R,

gx(y) = T−1
F (ĝx)(y) =

∫ ν0

−ν0

e−2 π j ν x e2 π j ν y dν

= − 1
2 π j

(
x− y

)
[

e−2 π j ν (x−y)
]ν0

−ν0

=
1

π
(
x− y

) sin
(

2 π ν0
(
x− y

))

= 2 ν0 sinc
(

2 ν0
(
x− y

))

= Kx(y).

Therefore, Kx = gx ∈ K.
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Reproduction Let f ∈ K. Then ∀x,

〈 f , Kx〉K =
∫ +∞

−∞
f (y)Kx(y)dy

=
∫ +∞

−∞
f̂ (ν) K̂x(ν)dν (Plancherel theorem)

=
∫ ν0

−ν0

f̂ (ν) e2 π j ν x dν

= f (x).

Positive-definiteness Bochner theorem states that a positive-definite function is the
inverse Fourier transform of a positive function. As K̂x is positive for all x, we deduce
that Kx is positive-definite for all x and so is K (see e.g. [122]).

5.2.2 Properties of reproducing kernels

Optimal approximation Reproducing kernels provide a unique and optimal solution
to an interpolation problem. Indeed, consider the classic scattered data interpolation
problem, that is, finding an approximation of a function f ∈ K verifying

f (xi) = yi ∀i ∈ {1, ..., N}, (5.3)

for some given data {(x1, y1), ..., (xN , yN)}, [x1, ..., xN ] ∈ ΩN . The function f̃ defined
as

f̃ : x 7→
N

∑
j=1

K(x, xj) λ̃j (5.4)

with K the positive-definite kernel inducing the space K, is the optimal approximant of
f , in the sense that [121]

f̃ = arg min
{g∈K | g(xi)=yi ∀i∈{1,...,N}}

∥∥ f − g
∥∥

K
. (5.5)

In Eq. (5.4), the vector λ̃ =
[
λ̃1, . . . , λ̃N

]ᵀ
is the solution of the linear system Kλ = y,

where Ki,j = K(xi, xj). The positive-definiteness of the kernel K implies the positive-
definiteness of the matrix K, which in turn ensures that the problem is well-posed and
that the solution is unique.

FIGURE 5.1: Graph of function sinc.
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In practice though, for a given problem, the native space K of f , its norm‖·‖K, and its
corresponding reproducing kernel K are unknown. However, if some prior knowledge
about f is at hand, a common strategy is to exploit this knowledge and build a feature
map Φ : Ω 7→ F, where F is a Hilbert space of (generally) higher dimension than Ω, in
order to construct a kernel of the form

K(x, y) = 〈Φ(x), Φ(y)〉F. (5.6)

Example 16. Consider the function f : R2 7→ R defined as

f : (x1, x2) 7→ −2 x2
1 + x2

2 + 2 x1 x2 − 4 x1 + 2 x2 − 2. (5.7)

Assuming that f is polynomial of degree 2, a possible feature map Φ : R2 7→ R6 is

Φ : (x1, x2) 7→
[

x2
1, x2

2,
√

2 x1 x2,
√

2 x1,
√

2 x2, 1
]ᵀ

. (5.8)

Note that with this feature map, f can be exactly reconstructed using only two data points, as

f (x) = Φ(x)ᵀΦ(y1)− 3 Φ(x)ᵀΦ(y2), (5.9)

with y1 = [1, 1]ᵀ and y2 = [1, 0]ᵀ.

If no prior knowledge about f is available, the remaining strategy is to choose a ker-
nel and adjust its parameters, so that the resulting approximation has desirable prop-
erties such as generalization (new inputs close to given data inputs should result in
outputs close to given data outputs), and stability (small changes in the training data
should cause small changes in the final model).

These properties and how they relate to various kernel parameters are detailed in
the next section.

5.2.3 Radial Basis Functions (RBF)

In this section, we recall properties and results stated in [117, 123]. Radial kernels are

kernels of the form K(xi, xj) = φ

(
‖xi−xj‖

ρ

)
, with φ : R 7→ R a positive-definite func-

tion, and ρ a scaling parameter. As the function φ takes the distance
∥∥∥xi − xj

∥∥∥ for argu-
ment, the kernel evaluation reduces to the computation of a scalar function regardless
of the dimension of Ω. For that reason, such kernels are efficient for high-dimensional
approximation problems. Moreover, radial kernels are, by construction, invariant under
orthogonal transformations. In particular, they do not depend on the choice of orthonor-
mal basis for Ω.

RBF are formed by translating a radial kernel to span Ω (Figs. 5.2a-5.2b). An approx-
imant f̃ of a function f can then be written as

f̃ (x) ≈
N

∑
i=1

φi(x) λ̃i, with φi(x) = φ

(
‖x− xi‖

ρ

)
. (5.10)

Examples of radial kernels include Wendland functions, of the form (here at order
(2, 3), see [124, 117])

K(xi, xj) =




(1− r)4 (1 + 4 r) if r =

∥∥∥xi − xj

∥∥∥ < 1,

0 otherwise,
(5.11)
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(A) Radial kernel. (B) Corresponding radial basis.

FIGURE 5.2: Example of radial kernel and resulting basis.

or multiquadrics, of the form

K(xi, xj) =





√
1 + r2 if r =

∥∥∥xi − xj

∥∥∥ < 1,

0 otherwise.
(5.12)

They are shown on Fig. 5.3a.
Kernels yield very different results depending on the function to be approximated.

In practice, a Wendland kernel yields a better approximation than a multiquadric kernel
for a function with a lot of “dips” (Figs. 5.3b-5.3c). Conversely, a multiquadric kernel
yields a better approximation for a convex function (Figs. 5.3d-5.3e).

Moreover, reconstruction abilities of RBF depend on the number of centers N, the
choice of centers {xi}, the kernel smoothness, and the scaling parameter ρ (see [123] for
a study).

In particular, the interpolation error converges to zero when the fill distance h, that is,
the radius of the largest center-free ball in Ω:

h = sup
x∈Ω

min
i∈{1, ..., N}

‖x− xi‖ , (5.13)

tends to zero. The rate of convergence increases with the kernel smoothness (it is ex-
ponential for C∞ kernels). One could then be tempted to add as many data points as
possible. However, the conditioning of the matrix K, and the subsequent model sta-
bility and sensitivity to noise, relates strongly to the separation radius q, that is, half the
distance between the two closest centers:

q =
1
2

min
i 6=j

∥∥∥xi − xj

∥∥∥ . (5.14)

Indeed, a small q implies that two centers are nearly the same, and so are the corre-
sponding rows in K. Therefore, the optimal number of centers is a result of this trade-
off between generalization and stability, and is problem-dependent. As a direct conse-
quence, for a given number of centers, RBF behave best for quasi-uniform distributions
of centers, that is, if there is a positive constant c such that

q ≤ h ≤ c q. (5.15)

For analog reasons, the choice of scaling parameter ρ also has strong consequences
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(A) Wendland and Multiquadric kernels.

(B) Resulting interpolation of
f (x) = sin(2 π x) + sin(6 π x) + sin(10 π x) + 4

with different kernels.

(C) Corresponding relative error.

(D) Resulting interpolation of f (x) = x2 + 0.1
with different kernels.

(E) Corresponding relative error.

FIGURE 5.3: Resulting interpolations and corresponding relative errors
with different kernels for a function with dips (Figs. 5.3b- 5.3c) and a con-

vex function (Figs. 5.3d- 5.3e).
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(A) Resulting interpolation of
f (x) = sin(2 π x) + sin(6 π x) + sin(10 π x) + 4
for a Wendland kernel with different scalings.

(B) Corresponding relative error.

FIGURE 5.4: Interpolation results and corresponding relative error
for different kernel scalings ρ.

for the model interpolation error and stability. Indeed, for a given number of centers,
increasing ρ decreases the interpolation error. Unfortunately, increasing ρ also decreases
the model stability. To illustrate these facts, the function f defined as

f : x 7→ sin(2 π x) + sin(6 π x) + sin(10 π x) + 4 (5.16)

is interpolated using N = 16 data points uniformly distributed, and the Wendland ker-
nel defined in Eq. 5.11, for several scaling values. Figures 5.4a-5.4b show the approxi-
mation results as well as the relative error εr, defined as

εr(x) = 100

∣∣∣ f (x)− f̃ (x)
∣∣∣

∣∣ f (x)
∣∣ . (5.17)

As expected, the relative error decreases as ρ increases. In order to evaluate the
model stability with respect to ρ, random noise with a SNR of 46 dB and a normal
distribution is added to form M = 100 noisy datasets indexed by 1 ≤ m ≤ M. The
standard deviation σ(λ̃i) of each model set of coefficients λ̃i, where λ̃i = (λ̃i,1, . . . , λ̃i,M),
is then computed using

σ(λ̃i) =

√√√√ 1
M

M

∑
m=1

(
λi − λ̃i,m

)2
, with λi =

1
M

M

∑
m=1

λ̃i,m. (5.18)

Figure 5.5 shows that the deviation of model coefficients increases strongly with ρ.
For these reasons, in the following, the samples are distributed evenly along the

measured data range, and the scaling parameter is adjusted to the smallest value so that
some test function is approximated with an arbitrary degree of accuracy.

5.3 PH-ODE parametrization and estimation

In this section, we exploit the reproducing properties of kernels to reconstruct the energy
function of a circuit with linear dissipation, and estimate its interconnection matrix.
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FIGURE 5.5: Standard deviation (see Eq. (5.18)) of the model coefficients
estimated from noisy data, for different kernel scalings ρ.

Notations We recall that by convention, f (0) = f . Then for some positive integer k ≥ 1,
we denote f (k) the function defined by:

f (k) : x 7→ d
dx

f (k−1)(x).

Similarly, we denote f (−k) the function defined by:

f (−k) : x 7→
∫ x

0
f (1−k)(u)du,

so that f (−k)(0) = 0.

5.3.1 Working hypotheses

For this method, we consider circuits constituted of one-port components such as (pos-
sibly nonlinear) inductors and capacitors, linear conductors, and linear resistors. Since
the dissipation is assumed to be linear, all algebraic constraints can be reduced. There-
fore, such circuits admit the PH-ODE formulation

[
ẋ
y

]
= (J − R)

[
∇E(x)

u

]
, (5.19)

where J = −Jᵀ is skew-symmetric, R = Rᵀ is positive semi-definite, and coefficients of
J − R are constant. Moreover, we assume in the following that:

1. The energy law is a separable function of the state, i.e. it takes the form E(x) =

∑Nx
k=1 Ek (xk) , Nx = dim (x);

2. Each energy component Ek is at least C2 ∀k ∈ {1, ..., Nx};

3. The energy law is convex, i.e. E(2)
k (xk) ≥ 0, where E(2)

k denotes the second deriva-
tive of Ek.

Note that assumptions 2. and 3. are sufficient but not necessary. Indeed, a sufficient
condition to ensure passivity of storage components is for the energy to have an in-
ferior bound [23]. Nevertheless, enforcing convexity results in a desirable asymptotic
behavior. Furthermore, as many energy laws are convex (with the notable exception of
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meta-stable ferromagnetic cores, see Chapter 3), this assumption is not overly restric-
tive.

Assuming that samples of x, u and y are available, we propose a data-driven method
to obtain a joint estimation of the energy law E, and interconnection matrix J − R, that
preserves the passivity of the system. To estimate the energy law, we build an op-
timal approximant using RBF. To estimate the interconnection matrix, we propose a
parametrization preserving its underlying structure.

5.3.2 Energy law parametrization

A simple way of enforcing the convexity of E is to construct a non-negative approximant
of each E(2)

k . An approximant of E can subsequently be obtained by integration. We also

choose to integrate E(2)
k so that E(1)

k (0) = 0. To ensure the non-negativity of each E(2)
k ,

we pick a continuous, positive-definite function φ and form NE RBF with centers xk,i
and scaling ρk

φk,i : x 7→ φ

(∥∥x− xk,i
∥∥

ρk

)
, i ∈ {1, NE}. (5.20a)

A positive approximant of E(2)
k then takes the form

E(2)
k (xk) ≈

NE

∑
i=1

θE
k,i φk,i(xk), θE

k,i ≥ 0 ∀k, i. (5.20b)

Finally, a convex energy law approximant takes the form

E
(

θE; x
)

:=
Nx

∑
k=1

NE

∑
i=1

θE
k,i φ

(−2)
k,i (xk) , θE

k,i ≥ 0 ∀k, i, (5.20c)

where φ
(−2)
k,i denotes the second antiderivative of φk,i.

5.3.3 Interconnection matrix parametrization

Parametrization of J

Since J = −Jᵀ is skew-symmetric, it can be written as

J = J(θJ) :=
NJ

∑
k=1

θ J
k Jk, θJ =

[
θ J

1, . . . , θ J
NJ

]
∈ RNJ , (5.21)

where NJ =
dim(J)(dim(J)−1)

2 , and {Jk} is the canonical base of skew-symmetric matrices
defined by

{Jk} =
{

Ei,j − Ej,i | 0 ≤ i ≤ NJ − 2, i + 1 ≤ j ≤ NJ − 1
}

, (5.22)

with Ei,j the matrix that has 1 at position (i, j) and zeros elsewhere.
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Example 17. For dim (J) = 3, {Jk} is found to be

{Jk} =








0 1 0
−1 0 0
0 0 0


 ,




0 0 1
0 0 0
−1 0 0


 ,




0 0 0
0 0 1
0 −1 0








.

Parametrization of R

Since R is positive semi-definite, it admits a Cholesky decomposition [125] and can be
written as

R = R(θR) = T(θR)T(θR)
ᵀ
, with T(θR) :=

NR

∑
k=1

θR
k Tk, θR =

[
θR

1 , . . . , θR
NR

]
∈ RNR ,

(5.23)

where NR =
dim(R)(dim(R)+1)

2 , {Tk} is the canonical base of lower triangular matrices
defined by

{Tk} =
{

Ei,j | 0 ≤ j ≤ NJ − 2, j + 1 ≤ i ≤ NJ − 1
}
∪
{

Ei,i | 0 ≤ i ≤ NJ − 1
}

, (5.24)

and diagonal coefficients are non-negative.

Example 18. For dim (R) = 3, {Tk} is found to be

{Tk} =








0 0 0
1 0 0
0 0 0


 ,




0 0 0
0 0 0
1 0 0


 ,




0 0 0
0 0 0
0 1 0


 ,




1 0 0
0 0 0
0 0 0


 ,




0 0 0
0 1 0
0 0 0


 ,




0 0 0
0 0 0
0 0 1








.

5.3.4 Parameter estimation

Denote fs the sample rate, f [j] the measured average flow at sample j

f [j] =

[
δx[j] fs

y[j]

]
, (5.25)

where δx[j] = x[j + 1]− x[j] and y[j] = y[j]+y[j+1]
2 . Similarly, denote Θ :=

(
θJ , θR, θE

)
,

and f̃ (Θ)[j] the estimated flow at sample j

f̃ (Θ)[j] =
(

J(θJ)− R(θR)
)

∇E

(
θE; x[j], δx[j]

)

u[j]


 , (5.26)

where u[j] = u[j]+u[j+1]
2 , θE � 0, diag

(
T(θR)

)
� 0, and ∇E is the average discrete

gradient [126] defined component-wise as

∇Ek

(
θE; x[j], δx[j]

)
=





NE

∑
i=1

θE
k,i

φ
(−2)
k,i

(
xk[j] + δxk[j]

)
− φ

(−2)
k,i

(
xk[j]

)

δxk[j]
∣∣δxk[j]

∣∣ > ε,

NE

∑
i=1

θE
k,i φ

(−1)
k,i

(
xk[j] +

δxk[j]
2

)
otherwise.

(5.27)
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vin

iin R

L

vL

iL
C

vC

iC

vout

Rp

(A) Passive peaking EQ: schematics. (B) Passive peaking EQ: frequency response for
several wiper positions.

∇E(x) u
vC iL vin



ẋ

iC 0 1 0
vL −1 −γ̃

(
(1− γ) Rp + R

)
γ̃

y iin 0 −γ̃ −Gp

(C) Passive peaking EQ: theoretical PHS.

FIGURE 5.6: Passive peaking EQ: schematics, frequency response and
theoretical PHS.

Denoting F (resp. F̃(Θ)) the dim(J) × n matrix of measured flows (resp. estimated
flows) at all n samples, we define the error ε(Θ) = F̃(Θ)− F, and the objective function

E(Θ) =
∥∥∥F̃(Θ)− F

∥∥∥
2
, where ‖‖ : M 7→ ‖M‖ =

√
tr(M∗M) is the Frobenius norm.

Finally, we look for the optimal

Θ? = arg min E(Θ)

subject to





θE � 0,

diag
(

T(θR)
)
� 0,

(5.28)

where diag
(

T(θR)
)

denotes the diagonal elements of T(θR).
The sample rate fs is considered high enough so that the numerical error is negli-

gible. Therefore, we consider that we identify the continuous system, and the specific
contribution of the discretization scheme to the global error [127] is not addressed here.

The constrained minimization of E can be performed using the Interior Point Method
(see Appendix D and [128]).

5.4 Application: identification of a nonlinear passive peaking
EQ

5.4.1 Circuit overview and data generation

We consider a passive peaking EQ (see Fig. 5.6a) [129]. The potentiometer wiper posi-
tion is parametrized by γ ∈ [0, 1], where γ = 0 corresponds to the lowest position, and
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TABLE 5.1: Virtual passive peaking EQ: data generation parameters.

Parameter Rp (Ω) R (Ω) γ C (F) I0 (A) Φsat (Wb) η U0 (V) f0 (Hz) fs (Hz)

Value 5 ×102 1 ×103 1 3.16 ×10−6 5 ×10−2 4 ×10−3 1.1 0.1 & 10 100 96 ×103

γ = 1 to the highest. This parameter determines the shape of the frequency response
(Fig. 5.6b). The potentiometer, resistor and capacitor are all considered to be linear. The
inductor is saturating with an effort law of the type (see Chapter 3)

iL = I0


 ΦL

Φsat
− tanh

(
ΦL

η Φsat

)
 , (5.29)

where I0 > 0, Φsat > 0, and η ≥ 1 are model parameters (hysteresis is neglected here).
Circuit parameters are set so that the center frequency is 100 Hz and the quality factor
is 1. They are shown in Table 5.1.

Synthetic measurements are generated for an input voltage of the form vin(t) =
U0 sin

(
2π f0 t

)
. The values of f0 and γ are chosen so that the circuit is maximally reso-

nant. This way, nonlinearities of the inductor can be accurately captured for a U0 within
the range of normal use. The theoretical PH-ODE of the passive peaking EQ is found to
be that in Fig. 5.6c, with

Gp =
1

Rp + R
, γ̃ =

γ Rp

Rp + R
. (5.30)

The measurements are generated by discretizing the PHS and performing a standard
Newton-Raphson iteration at each sample. Finally, some noise (SNR from 38 to 98 dB,
with a normal distribution) is added to the data to test the robustness of the identifica-
tion method.

5.4.2 Parameter initialization

Interconnection matrix initialization Because our problem is non convex, an initial
guess Θ0 should be estimated in order to facilitate the optimization. To this end, the
problem is linearized around x0 = 0. This is done by generating measurement data
with an input voltage small enough to observe a quasi-linear response (here, U0 = 0.1
V), so that we have [

ẋ
y

]
≈ (J − R)

[
Q 0
0 I

]

︸ ︷︷ ︸
Q

[
x
u

]
∀x, u, (5.31)

where Q := ∇2E(x0) is a diagonal matrix with positive coefficients and I is the identity
matrix of dimension dim(u). Denote F the dim(J)× n matrix of flows at all n samples,
and X the dim(J)× n matrix of (average) states and (average) inputs at all n samples.
Multiplying Eq. (5.31) with Q on the left (which amounts to preconditioning the prob-
lem [130]), we obtain the relation

Q F = Q (J − R) Q︸ ︷︷ ︸
J−R

X. (5.32)
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Denote Q0, J0 and R0 a solution of

(Q0, J0, R0) =arg min
Q, J, R

∥∥∥Q F −
(

J − R
)

X
∥∥∥

2

subject to





Q � 0,

R � 0,

J = −Jᵀ.

(5.33)

Equation (5.33) is a convex optimization problem with a Linear Matrix Inequality (LMI)
constraint, for which standard solvers exist. Note that due to the LMI constraint, Eq. (5.33)
does not have a unique solution: given a solution (Q0, J0, R0), the triplet (α Q0, α J0, α R0)
with α > 0, which corresponds to F = α (J − R) α−1QX, is also a solution. Conse-
quently, this method does not prevent compensating estimation errors on the intercon-
nection matrix and on the effort. Therefore, the estimation is valid up to a scaling factor.

Here, we rely on the open source Splitting Conic Solver [131], and Python library
CVXPY [132] to find a solution of Eq. (5.33). Finally, J and R are initialized to

J0 = Q−1
0 J0 Q−1

0 , R0 = Q−1
0 R0 Q−1

0 . (5.34)

Energy law initialization We choose φ compactly supported, so that interpolation ma-
trices are sparse and computation is efficient. A possible choice of positive-definite func-
tion verifying these properties is one of the Wendland functions defined as

φ(r) =





(
1− r

ρ

)2

r =
∥∥∥xi − xj

∥∥∥ < ρ,

0 otherwise.

(5.35)

At a minimum, the approximant must reproduce a linear effort on the measured
range of each state. To this end, we fix NE = 5. For this NE, we determine (for each
component) the smallest ρ so that the mean relative error mε(xi) defined as

mε(xi) =
1
n

n

∑
j=1

arctan

∣∣g(xi[j])− g̃(xi[j])
∣∣

∣∣g(xi[j])
∣∣ (5.36a)

with

g(xi) = Q0,i xi, g̃(xi) =
NE

∑
j=1

φ

(∥∥∥xi − xj

∥∥∥
)

λj (5.36b)

and [Q0,1, Q0,2] are the diagonal coefficients of Q0 obtained solving Eq. (5.33), stays
within some arbitrary bound b. This metric is privileged here over that of Eq. (5.17),
so that the relative error is bounded when the effort is zero, following [133]. Here, for
b = 0.03, ρC = 6.10−5 and ρL = 6.10−3 yield satisfying results (Figs 5.7c-5.7d, for the
inductor). Figure 5.7a (resp. 5.7b) shows the resulting basis for the approximation of
∇2E (resp. ∇E).
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(A) Passive peaking EQ: chosen radial basis
for ∇2E.

(B) Passive peaking EQ: antiderivatives
of chosen radial basis for ∇2E.

(C) Passive peaking EQ: approximation
of the test effort g(xi) = Q0,i xi.

(D) Passive peaking EQ: corresponding relative
error.

FIGURE 5.7: Passive peaking EQ: chosen radial basis for the inductor and
resulting approximation of the test effort g(xi) = Q0,i xi.

5.4.3 Results

The optimization procedure returns a set of estimated parameters after less than 50 it-
erations. Here, constraint enforcement is privileged over convergence speed 1 as there
are no real-time requirements. Still, the estimation is faster compared to deep neural
networks methods (mainly because there are far less parameters to estimate).

New simulations are computed with the parameters estimated for each SNR. Fig-
ures 5.8a-5.8c show that the simulated states match very closely with the "measured"
states (here with measured state SNR = 50 dB). Figures 5.8b-5.8d show the estimated ef-
fort laws. The estimated effort law for the capacitor is linear as expected, which shows
that the scaling parameter ρ has been correctly chosen. The saturating behavior of the
inductor is accurately captured within the range of measured data. Figure 5.9 shows
the simulated state Normalized Mean Square Error (NMSE = 20 log (‖x− x̃‖ /‖x‖)) vs
the measured state SNR. The NMSE for the inductor is higher than that of the capacitor
due to the nonlinearities of the inductor, but both stay around −60 dB regardless of the
SNR.

Finally, to evaluate the robustness of the estimated model, simulations and measure-
ments are also run with different input amplitudes and frequencies than those used for

1 That is, the damping parameter for the Newton-Raphson iteration is set low enough so that the iterate
stays within the constraint (see Appendix D).
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(A) Passive peaking EQ: capacitor measured
and simulated state.

(B) Passive peaking EQ: capacitor theoretical
and estimated effort.

(C) Passive peaking EQ: inductor measured
and simulated state.

(D) Passive peaking EQ: inductor theoretical
and estimated effort.

FIGURE 5.8: Passive peaking EQ: estimation results with SNR = 50 dB.

the estimation. Figures 5.10a-5.10h show that the simulated states match closely with
the measurements in that case also.

5.5 Conclusion

In this chapter, we have presented an identification method to retrieve parameters of a
circuit modeled as a port-Hamiltonian system, given measurements of state x, input u,
and output y. This method allows the joint estimation of constitutive laws of storage
components, as well as the interconnection matrix encoding the circuit topology, pro-
vided that the circuit dissipation is linear. In turn, the estimated model may be used for
passive guaranteed simulations.

The method has been tested on a virtual peaking EQ, with accurate results. How-
ever, the method needs to be more thoroughly assessed against real measurements. In
particular, we should control that the discretization scheme does not introduce too much
numerical dispersion, which would alter the optimization process. In that case, the dis-
cretization error would have to be taken into account [134], or the sample rate would
have to be increased.

Another limitation concerns the fact that the initialization procedure may introduce
compensating errors on the interconnection matrix and on the effort. A possible way
to prevent this would be to include some measurements (possibly on a reduced range)
of the effort as well. Identification from co-energy variables or partial measurements
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FIGURE 5.9: Simulated state Normalized Mean Square Error with respect
to measured state SNR.

(incomplete state, or input and output only) could be studied as well. This shall be the
object of future work.

Identification of systems with nonlinear dissipative components is addressed in the
next chapter.
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FIGURE 5.10: Passive peaking EQ: measured and simulated state
for different inputs with SNR = 50 dB.
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6.1 Koopman operator overview

In Chapter 5, we proposed a method to concomitantly recover the interconnection ma-
trix of a nonlinear circuit and constitutive laws of its components from data. How-
ever, this method suffers from an important limitation: it assumes that the dissipation
is linear, whereas most dissipative components that are not resistors are in fact non-
linear (diodes, transistors, vacuum tubes, etc.). In this chapter, we propose another
data-driven approach for identification which allows for nonlinear dissipation.

This approach is based on the Koopman operator [135]. In a nutshell, the Koopman
operator is a linear operator that encodes the trajectory of observables — i.e., functions
of the state. In the infinite-dimensional space of observables, or lifted space, the system
dynamics becomes linear, and standard prediction and optimization tools from linear
algebra can be of use.
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As such, the Koopman operator has been successfully exploited for model predic-
tive control, optimal control, stabilization, and identification [136]. Yet, passivity re-
quirements in the Koopman framework are still seldom addressed. In [137], the authors
investigate the synthesis of a stable Koopman operator from available trajectories of ob-
servables. However, passivity is a stronger property than stability, in the sense that
a passive system is always Lyapunov-stable in the absence of input [138], but not the
other way around. As methods that preserve passivity in discrete time are proven to be
numerically stable, ensuring the passivity of the model is preferable. In [139], a method
for learning a Koopman operator in discrete time under dissipativity constraints is pre-
sented. As the authors operate in discrete time, the dissipativity constraints result in
a nonlinear matrix inequality constraint, and successive changes of variables must be
performed in order to find a solution.

Here, we propose a PH-ODE formulation in lifted space, so that passivity constraints
result directly in a linear matrix inequality constraint. Once a passive approximation of
the Koopman operator has been found, a non-iterative numerical scheme can be used
for simulations, since the system dynamics is linear in lifted space.

This chapter is structured as follows. In Section 6.2, the theoretical framework be-
hind the Koopman operator is recalled. In Section 6.3, a PH-ODE formulation in lifted
space is proposed, as well as a subsequent non-iterative numerical scheme for simula-
tions. Finally, in Section 6.4, the method is applied in order to identify and simulate a
diode clipper circuit.

6.2 Koopman operator for continuous-time systems

6.2.1 Koopman operator for autonomous systems

Consider the autonomous dynamical system defined by

ẋ(t) = f (x(t)), x(0) = x0 (6.1)

with x ∈ X = RNx , TX = RNx , f : X 7→ TX. Denote S t : X 7→ X the flow of f :

S t : x0 7−→ S t(x0) = x(t). (6.2)

Koopman operator Denote (F, ‖.‖) a Banach space 1 and φ ∈ F an observable defined
as

φ : X 7−→ R

x 7−→ φ(x).
(6.3)

Examples of observables include the energy of the system (φ : x 7→ E(x)), components
of the effort (φ : x 7→ ∂E

∂xi
(x)) or components of the state itself (φ : x 7→ xi).

Definition 6 (Koopman operator). The (infinite-dimensional) Koopman operator in continu-
ous time Kt : F 7→ F associated to S t is defined as

Kt : φ 7−→ Kt φ = φ ◦ S t. (6.4)

In other words, applying the Koopman operator to an observable φ yields the eval-
uation of φ along the flow of f .

1 That is, a complete normed vector space.
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Property 5 (Linearity of the Koopman operator). The Koopman operator is a linear operator
(from linearity of the left composition):

∀(φ1, φ2) ∈ F2, (c1, c2) ∈ R2, Kt (c1 φ1 + c2 φ2
)
= c1Kt φ1 + c2Kt φ2. (6.5)

Proof.

Kt (c1 φ1 + c2 φ2
)
=
(
c1 φ1 + c2 φ2

)
◦S t = c1

(
φ1 ◦ S t

)
+ c2

(
φ2 ◦ S t

)
= c1Kt φ1 + c2Kt φ2.

Furthermore, if f is Lipschitz continuous (as assumed in the following), then {Kt}t≥0
is a strongly continuous semi-group, i.e., (i) it satisfies

KhKt = Kh+t ∀(h, t) ∈ R+2, (6.6)

and (ii) it admits an infinitesimal generator.

Definition 7 (Koopman operator infinitesimal generator). If f is Lipschitz continuous,
then {Kt}t≥0 has an infinitesimal generator L defined as

L : φ 7−→ L φ = lim
h→0+

(
Kh − I

)
φ

h
, (6.7)

where I denotes the identity operator on F.

Property 6 (ODE in lifted space). If f is Lipschitz continuous, then Kt satisfies the ODE

d
dt
Kt = LKt. (6.8)

Proof.

d
dt
Kt (a)

= lim
h→0+

Kh+t −Kt

h
(b)
= lim

h→0+

(
Kh − I

)
Kt

h
(c)
= LKt,

using (a) the time derivative definition and the Lipschitz assumption, (b) the semi-group
property given in Eq. (6.6), and (c) Def. (7).

Property 7 (Linearity of the Koopman operator infinitesimal generator). The infinitesimal
generator L is also a linear operator (from linearity of the differential operator).

Property 8. If f is Lipschitz continuous, an observable φ verifies along the flow of f

L φ = ∇φ · f , (6.9)

with

∇φ :=
[

∂φ
∂x1

, . . . , ∂φ
∂xNx

]ᵀ
.
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Proof. Let φ ∈ F. Then, for all x0 ∈ X,

L φ(S t(x0))
(a)
= LKt φ(x0)

(b)
=

d
dt
Kt φ(x0)

(c)
=

d
dt

φ(S t(x0))

(d)
=

d
dt

φ(x(t))

(e)
= ∇φ(x(t)) · ẋ(t)
( f )
= ∇φ(x(t)) · f (x(t))
(g)
=
(
∇φ · f

)
(S t(x0)),

using (a) Def. (6), (b) Prop. (6), (c) Def. (6) again, (d) Eq. (6.2), (e) the chain rule, (f)
Eq. (6.1), and (g) Eq. (6.2) again.

Koopman operator eigenfunctions

Definition 8 (Koopman operator eigenfunction). An eigenfunction ϕ ∈ F with associated
eigenvalue λ ∈ C of the Koopman operator Kt is a function that verifies, for all t

Kt ϕ = eλ t ϕ, (6.10)

or, equivalently,
L ϕ = λ ϕ. (6.11)

Example 19. Consider the dynamical system described by

ẋ = −x− x3. (6.12)

The function ϕ : R 7→ R defined by

ϕ : x 7−→ x√
1 + x2

(6.13)

is an eigenfunction (with eigenvalue λ = −1) of the Koopman operator associated with the
dynamical system described by Eq. (6.12).

Proof. For all x ∈ R,

L ϕ(x)
(a)
= ∇ϕ(x) · f (x)

(b)
=

√
1 + x2 − x2

(
1 + x2

)−1/2

1 + x2 · (−x− x3)

=

(
1 + x2 − x2

) (
−x− x3

)

(
1 + x2

)√
1 + x2

= − x√
1 + x2

= −ϕ(x),

using (a) Prop. (8), and (b) Eqs. (6.12)-(6.13).
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Eigenfunctions constitute a basis of the space of observables F. As such, they can
be seen as “intrinsic coordinates” of the system in F, and provide valuable geometric
properties about the system [136]. In particular, eigenfunctions with eigenvalue λ = 0
correspond to conservative eigenfunctions. An immediate example is the Hamiltonian

for an autonomous system, since
d
dt

E(x(t)) = 0 = 0× E(x(t)). For a nonconservative
system (which has an attractor), conservative eigenfunctions capture the asymptotic be-
havior of the system in the vicinity of the attractor. Conversely, eigenvalues that verify
Re(λ) < 0 correspond to dissipative eigenfunctions. They capture the transient behavior
of the system off the attractor.

6.2.2 Finite-dimensional approximation of the Koopman operator

In order to exploit the properties of the Koopman operator in data-driven methods, one
has to find a finite-dimensional approximation of its infinitesimal generator L. To this
end, the infinitesimal generator is projected on a finite-dimensional subspace of F, in
the following way.

Denote F′ the topological dual of F, i.e. the subset of linear bounded functionals
on F [140]. Denote FM a M-dimensional subspace of F spanned by {φj}1≤j≤M

2, and
Φ : RM 7→ FM the associated synthesis operator defined by

Φ : v 7−→ Φ v =
[
φ1, . . . , φM

]
v. (6.14)

Then there exists a dual operator Ψ∗ : F 7→ RM defined by

Ψ∗ : φ 7−→ Ψ∗ φ =
[
ψ∗1(φ), . . . , ψ∗M(φ)

]ᵀ (6.15)

with dual functionals
[
ψ∗1 , . . . , ψ∗M

]ᵀ ∈ F′M, such that the double resolution of identity
is verified

Φ Ψ∗ = IFM , Ψ∗Φ = IRM . (6.16)

This defines the projector PM : F 7→ FM as PM = Φ Ψ∗. Indeed, from Eq. (6.16), it is
immediately verified that P2

M = PM.
The approximation LM of L in FM and its matrix representation L are defined as

LM = PM LPM, L = Ψ∗ LΦ. (6.17)

In other words, the jth column of L contains the coordinates of L φj with respect to
{φj}1≤j≤M. Denoting z = φ(x) with φ =

[
φ1, . . . , φM

]ᵀ, the approximated dynamics in
FM

M is governed by
ż = Lᵀz. (6.18)

Proof.

d
dt
Kt Φ ≈ LMKt Φ = PM LPMKt Φ = Φ Ψ∗ LΦ︸ ︷︷ ︸

L

Ψ∗ Kt Φ︸ ︷︷ ︸
Φ◦S t

= Φ L Ψ∗Φ︸ ︷︷ ︸
I

RM

◦S t = (Φ L) ◦S t = Kt Φ L.

As Kt Φ(x0) = z(t)ᵀ for all x0, we deduce żᵀ = zᵀ L.
2 In practice, the set {φj}1≤j≤M can be any basis of functions, typically monomials, or RBF, as one rarely

has direct access to approximates of eigenfunctions in the subspace. However, these approximates can be
reconstructed from data with this basis, as shown below.
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Example 1 (Continued). Consider again the dynamical system of Eq. (6.12), and denote FM
the set of polynomial functions of at most degree 3. FM is spanned by {φj : x 7→ xj−1}1≤j≤4,
with dual basis {ψ∗j }1≤j≤4 defined for φ : x 7→ ∑∞

j=1 cj xj−1 as ψ∗j (φ) = cj. Then, L is found to
be

L =




0 0 0 0
0 −1 0 0
0 0 −2 0
0 −1 0 −3


 .

Proof.

L φj(x)
(a)
= ∇φj(x) · f (x) = (j− 1) xj−2

(
−x− x3

)
= −(j− 1)

(
xj−1 + xj+1

)
,

using (a) Prop. (8). The jth column of L contains the coordinates of L φj with respect to
{φj}1≤j≤4, that is

Ψ∗ L φj = S j−1
([
−j + 1, 0, −j + 1, 0

]ᵀ) ,

where S is the shift operator defined by S([c1, c2, . . .]) = [0, c1, c2, . . .], and its successive
compositions are defined by S0 = I , S i+1 = S ◦ S i.

Estimation of Koopman operator matrix representation and eigenfunctions from data
Assume that n samples of state x are available with n ≥ M. For a chosen collection of
observables {φj}1≤j≤M, denote Ż the matrix that contains the time derivative of z =
φ(x) for all samples, and Z the matrix that contains z for all samples, so that

Ż =
[
∂φ(x[1]) f (x[1]), . . . , ∂φ(x[n]) f (x[n])

]
,

Z =
[
φ(x[1]), . . . , φ(x[n])

]
,

(6.19)

with

∂φ(x) :=




∂φ1

∂x1
(x) . . .

∂φ1

∂xNx

(x)

...
. . .

...
∂φM

∂x1
(x) . . .

∂φM

∂xNx

(x)




. (6.20)

Estimation of L From Eq. (6.18), Ż = Lᵀ Z, and L can be estimated using

L ≈ L̂ with L̂ᵀ = Ż Z†, (6.21)

where Z† := Zᵀ (Z Zᵀ)−1 denotes the right pseudo-inverse of Z.

Estimation of eigenfunction ϕ Projections of eigenfunctions can be estimated from
data in a similar way, following

Property 9. If ϕ is an eigenfunction of L with associated eigenvalue λ, then v := Ψ∗ϕ is an
eigenvector of L with associated eigenvalue λ.

Proof. Let ϕ ∈ F an eigenfunction of L with associated eigenvalue λ.

L ϕ
(a)
= λ ϕ

(b)⇒ PM LPM ϕ = λPM ϕ
(c)⇒ LM φᵀv = λ φᵀv

(d)⇒ φᵀL v = λ φᵀv
(e)⇒ L v = λ v,
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(A) Trajectories of estimated eigenfunctions
for the system described by Eq. (6.12).
For the considered subspace, there is

one conservative eigenfunction
and three dissipative ones.

(B) Time derivatives of eigenfunctions vs esti-
mated eigenfunctions for the system described
by Eq. (6.12). Eigenfunctions are proportional
to their time derivatives as expected (grey
dashed lines have been added for visual pur-

poses).

FIGURE 6.1: Estimated eigenfunctions for the system described by
Eq. (6.12).

using (a) Eq. (6.11), (b) the projection of (a), (c) and (d) Eq. (6.17), and (e) multiplication
with (φφᵀ)−1 φ on the left.

As L can be estimated from data (see Eq. (6.21)), so can its eigenvalues and eigen-
vectors.

Example 1 (Continued). Figures 6.1b-6.1a show the estimated eigenfunctions for the system
described by Eq. (6.12), with x0 = 10.

6.2.3 Koopman operator for input/output systems

The Koopman operator for controlled systems is commonly defined by including the in-
put in the state, and by defining observables for this extended state [141]. However, for
systems without feedback control, the input dynamics is irrelevant. The corresponding
terms in the Koopman operator are left with no clear interpretation and are discarded,
as in [139]. To avoid this, we present an alternate definition of the Koopman operator
for input/output systems based on a bilinear map, as described in [142]. With this defi-
nition, the Koopman operator for input/output systems can be thought of as a family of
operators parametrized by the input, and the explicit linear dependency with respect to
the input facilitates their implementation in data-driven methods.

Consider the control-affine dynamical system defined by

ẋ(t) = f (x(t)) + B u(t), x(0) = x0, (6.22)

with u ∈ RNu . Denote L the infinitesimal generator of the Koopman operator associated
with Eq. (6.22) for u = 0, and introduce the bilinear map GB : F×RNu 7→ F defined as

GB : (φ, u) 7−→ GB(φ, u) = ∇φ · B u. (6.23)

It is verified that GB is linear with respect to observable φ (from linearity of the gradi-
ent operator), and that it is linear with respect to input u (from linearity of the matrix
multiplication and dot product).
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Property 10 (ODE in lifted space for input/output systems). For input/output systems,Kt

verifies the ODE
d
dt
Kt = LKt + GB(Kt, u(t)). (6.24)

Proof. Let φ ∈ F. For all x0 ∈ X,

d
dt
Kt φ(x0)

(a)
=

d
dt

φ(x(t))

(b)
= ∇φ(x(t)) · ẋ(t)
(c)
= ∇φ(x(t)) ·

(
f (x(t)) + B u(t)

)

= ∇φ(x(t)) · f (x(t)) +∇φ(x(t)) · B u(t)
(d)
= L φ(x(t)) + GB(φ(x), u(t))
(e)
= LKt φ(x0) + GB(Kt φ(x0), u(t)),

using (a) Def. (6), (b) the chain rule, (c) Eq. (6.22), (d) Prop. (8) and Eq. (6.23), and (e)
Def. (6) again.

Finite-dimensional approximation The operator GB can be rewritten as

GB(φ, u) =
[
∇φ · b1, . . . , ∇φ · bNu

]
u :=

[
G1(φ), . . . , GNu(φ)

]
u, (6.25)

where bj denotes the jth column of B. Denoting Gj := Ψ∗ Gj Φ the finite-dimensional
representation of Gj, we obtain, after projection, the approximated dynamics in lifted
space as the one described by

ż = Lᵀ z + G(z) u, (6.26)

with G(z) :=
[

Gᵀ
1 z, . . . , Gᵀ

Nu
z
]
. The proof is omitted as it is similar to that of Eq. (6.18).

6.3 PH-ODE realization in lifted space

In this section, we aim to show that under certain assumptions, a PHS that can be de-
scribed by a passive state-space representation also admits a passive representation in
lifted space and reciprocally. In a first step, we show that a PH-ODE admits a PH-ODE
realization in lifted space. Then in a second step, we show that a PH-ODE in lifted space
is also passive in state space. This equivalence allows the derivation of a non-iterative
numerical scheme that exploits the linearity of the dynamics in lifted space, while pre-
serving the passivity of the system in both spaces.

6.3.1 Existence of a quadratic energy realization in lifted space

Consider the passive PH-ODE given by
[

ẋ
y

]
= (J − R)

[
∇E(x)

u

]
, (6.27)

with J = −Jᵀ, R � 0, x ∈ X = RNx , E : X 7→ R � 0.
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Assume that there exists a M×M matrix Q � 0 with M ≥ Nx, a Nx ×M matrix C,
and a C1-regular function φ defined as

φ : X 7−→ RM

x 7−→
[
φ1(x), . . . , φM(x)

]ᵀ (6.28)

with {φ1, . . . , φM} linearly independent, such that

E(x) =
1
2

φ(x)ᵀ Q φ(x) ∀x, (6.29a)

x = C z with z = φ(x). (6.29b)

The matrix C is not uniquely defined, but one can always add the state components as
observables, so that

x =
[
INx , 0Nx×M−Nx

]
︸ ︷︷ ︸

C

ᵀ[
x1, . . . , xNx , φ1(x), . . . , φM−Nx(x)

]
︸ ︷︷ ︸

z

. (6.30)

Examples are given below in the case M = Nx (φ is a bijective change of state) and
M ≥ Nx (φ is an embedding).

Example 2 (Case of bijective φ: quadratization method). In the case of a separable energy
function of the form E(x) = ∑M

i=1 Ei(xi) (see [24, 143, 1] for details on complementary hypothe-
ses or for larger classes of energy functions), the change of state

φ(x) =
[

sign(x1)
√

2 E1(x1), . . . , sign(xM)
√

2 EM(xM)

]ᵀ

fulfills the assumptions with Q = I.

Example 3 (Case of embedding φ). The quadratization method can be applied on a subset of
{φ1, . . . , φM} and the set can be completed with linear or nonlinear functions.

Under assumptions (6.28)-(6.29a)-(6.29b), the system admits a PH-ODE realization
in lifted space given by

[
ż
y

]
=
(

J̃ − R̃
)
[

Q z
u

]
, J̃ − R̃ =

[
∂φ(C z) 0

0 I

]
(J − R)

[
∂φ(C z)ᵀ 0

0 I

]
. (6.31)
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Proof.
[

ż
y

]
(a)
=

[
∂φ(x) ẋ

y

]

=

[
∂φ(x) 0

0 I

] [
ẋ
y

]

(b)
=

[
∂φ(x) 0

0 I

]
(J − R)

[
∇E(x)

u

]

(c)
=

[
∂φ(x) 0

0 I

]
(J − R)

[
∂φ(x)ᵀ Q φ(x)

u

]

=

[
∂φ(x) 0

0 I

]
(J − R)

[
∂φ(x)ᵀ 0

0 I

] [
Q φ(x)

u

]

(d)
=

[
∂φ(C z) 0

0 I

]
(J − R)

[
∂φ(C z)ᵀ 0

0 I

]

︸ ︷︷ ︸
J̃−R̃

[
Q z
u

]
,

using (a) the definition of z and the chain rule, (b) the dynamics described by Eq. (6.27),
(c) the definition of E given in Eq. (6.29a), (d) the definition of z again and the inverse

map given in Eq. (6.29b). As J̃ =

[
∂φ(C z) 0

0 I

]
J

[
∂φ(C z)ᵀ 0

0 I

]
is anti-symmetric

from the anti-symmetry of J, R̃ =

[
∂φ(C z) 0

0 I

]
R

[
∂φ(C z)ᵀ 0

0 I

]
is positive semi-

definite from the positive semi-definiteness of R, and Q � 0, the system in lifted space
is also passive.

6.3.2 Passivity in state space from passivity in lifted space

Consider a dynamical system defined by

ẋ = f (x, u),
y = h(x, u).

(6.32)

It is passive if there is a positive, C1-regular storage function V such that

∂V
∂x

ᵀ

(x) ẋ + uᵀy ≤ 0 (6.33)

along all solutions x of Eq. (6.32) for input u.

Theorem 2. If a system described by Eq. (6.32) admits a PH-ODE realization in lifted space,
then it is passive with storage function V : x 7→ 1

2 φ(x)ᵀ Q φ(x).

Proof. Assume that there exists C1-regular φ : x 7→
[
φ1(x), . . . , φM(x)

]ᵀ := z, Q � 0,
J = −Jᵀ, R � 0, such that [

ż
y

]
= (J − R)

[
Q z
u

]
.
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Then from the passivity of a PH-ODE, we deduce

(Q z)ᵀ ż + uᵀy ≤ 0⇒
(

∂φ

∂x

ᵀ

(x) Q φ(x)

)ᵀ

︸ ︷︷ ︸
∂V
∂x

ᵀ
(x)

ẋ + uᵀy ≤ 0.

Remark that V(x) = 1
2 φ(x)ᵀ Q φ(x) defines a storage function for all linearly inde-

pendent {φ1, . . . , φM} since Q � 0.

6.3.3 Optimal realization

From Theorem 2, if a PH-ODE realization is found in lifted space, then the system is
also passive in state space. Therefore, in order to linearize the dynamics in lifted space
while retaining passivity, one can build a collection of C1 observables spanning a finite-
dimensional subspace, and look for a realization of the form

[
ż
y

]
=

[
J − R G(z)
−G(z)ᵀ −D

] [
Q z
u

]
, (6.34)

with J = −Jᵀ, R � 0, D � 0, Q � 0.

Preconditioning In order to (i) precondition the problem, and (ii) ensure that the
problem reduces to a LMI, we impose Q = I [130]. Using the Cholesky factorization
Q = Tᵀ

Q TQ, this is equivalent to performing the change of variable

z̃ = TQ z, (6.35)

in order to obtain [
˙̃z
y

]
=

[
J̃ − R̃ G̃(z̃)
−G̃(z̃)ᵀ −D

] [
z̃
u

]
, (6.36)

with J̃ − R̃ = TQ (J − R) Tᵀ
Q, and G̃(z̃) = TQ G(T−1

Q z̃).

Relaxation In practice, finding a collection of observables for which a realization such
as Eq. (6.36) can be derived is a delicate problem. Indeed, several numerical experi-
ments (not presented here) have shown that with usual basis functions (polynomials
or RBF), formulation (6.36) is too restrictive: the dynamics in lifted space is correctly
learned, but not the output y. This would suggest that even if a collection {φ1, . . . , φM}
is “sufficient” to approximate a dynamics (through the identification process detailed
below), it needs to be complemented in order to provide suitable approximation of the
output. An alternative to complementing is to distinguish command and observation
matrices G̃(z̃) and −G̃(z̃)ᵀ in order to include dissipation, so that formulation (6.36) is
relaxed into
[

ż
y

]
=

[
J − R Gs(z)−Gp(z)

−Gs(z)ᵀ −Gp(z)ᵀ −D

] [
z
u

]
, with J = −Jᵀ,

[
R Gp(z)

Gp(z)ᵀ D

]
� 0.

(6.37)
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Parameter estimation Denote f [k] the measured flow in lifted space at sample k

f [k] =

[
δz[k] fs

y[k]

]
, (6.38)

with fs the sample rate, δz[k] = z[k + 1]− z[k], and y[k] =
(
y[k + 1] + y[k]

)
/2.

Similarly, denote Θ = (J, R, D, Gs,1, . . . , Gs,Nu , Gp,1, . . . , Gp,Nu) and f̃ (Θ)[k] the
estimated flow at sample k

f̃ (Θ)[k] =

[
J − R Gs(z[k])−Gp(z[k])

−Gs(z[k])ᵀ −Gp(z[k])ᵀ −D

] [
z[k]
u[k]

]
, (6.39)

with z[k] =
(
z[k + 1] + z[k]

)
/2 and u[k] =

(
u[k + 1] + u[k]

)
/2.

Denote F the matrix of measured flows for all samples, F̃(Θ) the matrix of estimated
flows for all samples, and the objective function E : Θ 7→ E(Θ) =

∥∥F̃(Θ)− F
∥∥2.

Estimation of the set of parameters Θ is achieved by solving the minimization prob-
lem with LMI constraint

minimize E(Θ)

subject to





J = −Jᵀ,
[

R Gp(z)
Gp(z)ᵀ D

]
� 0.

(6.40)

This problem can be solved with standard optimization tools (see e.g. [131, 132]).

6.3.4 Numerical scheme for simulations

Assume that a realization in lifted space has been found, for a given collection of ob-
servables z, so that

ż = Lᵀ z + G(z) u. (6.41)

For efficiency, one may choose (when possible) to diagonalize the matrix Lᵀ and work
with eigenfunctions of the Koopman operator instead (see also [144, 145]) in the follow-
ing way. Denote Lᵀ = P Λ P−1 the eigendecomposition of Lᵀ and z̃ = P−1 z. Then, we
obtain

˙̃z = Λ z̃ + G̃(z̃) u, (6.42)

with G̃(z̃) = P−1 G(P z̃).
In both cases (Eq. (6.41) and Eq. (6.42)), a linear implicit scheme can be used for

simulations (see [24] for higher accuracy orders), as a continuous system of the form
ż = A z + B(z) u can be discretized into

δz[k] fs = A

(
z[k] +

δz[k]
2

)
+ B(z[k]) u[k], (6.43)

with δz[k] = z[k + 1]− z[k] and fs the sample rate. We obtain the following scheme:

z[k + 1] =
(

I fs −
1
2

A
)−1

((
1
2

A + I fs

)
z[k] + B(z[k]) u[k]

)
,

x[k + 1] = C z[k + 1],

(6.44)
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vin

iin

R

vR

iR

DvD

iD
CvC

iC

(A) Diode clipper: schematics.

vC iD vin[ ]iC −1/R −1 1/R
vD 1 0 0
iin 1/R 0 −1/R

(B) Diode clipper: corresponding PHS.

FIGURE 6.2: Diode clipper: schematics and corresponding PHS.

TABLE 6.1: Diode clipper: data generation parameters.

Parameter R (Ω) C (F) is (A) vs (V) vt (V) U0 (V) f0 (Hz) fs (Hz)

Value 8 ×105 1 ×10−9 4 ×10−3 1×10−2 0.9 10 100 96 ×103

where I is the identity matrix.
In summary, the state-space representation in lifted space provides a mean to derive

non-iterative solvers for which, as a major advantage, the existence and uniqueness of
the discrete-time solution holds.

6.4 Application: identification of a diode clipper circuit

6.4.1 Circuit overview and data generation

In this section, the Koopman operator framework is used in order to identify a virtual

diode clipper circuit (Fig. 6.2a). The capacitor is linear, of energy law E(qC) =
q2

C
2 C . The

resistor is linear and obeys Ohm’s law. The diode is a dissipative component, whose
flow and effort are given by (see Eq. 4.1):

w = vD,

z(w) = is

(
sp
(

vD − vt

vs

)
− sp

(
− vt

vs

))
:= ID(vD) = iD,

(6.45)

where sp is the softplus function defined as

sp : x 7−→ ln(1 + exp x). (6.46)

Kirchhoff’s laws yield the PHS with interconnection matrix detailed in Fig. 6.2b. Syn-
thetic measurements are generated by simulating this PHS with an input of the form
vin(t) = U0 sin(2 π f0 t) and parameters in Table 6.1.

6.4.2 Choice of observables

Observables are built with RBF (see Chapter 5, p.79), defined as

φj(x) =




(1− r)4 (1 + 4 r) if r =

∣∣∣x− xj

∣∣∣
ρ

< 1,

0 otherwise,

(6.47)



106
Chapter 6. PH-ODE Modeling Based on Passive, Finite-Dimensional Approximation

of the Koopman Operator

(A) Diode clipper: measured and
simulated state.

(B) Diode clipper: dissipated power in lifted
space with unconstrained Koopman operator.

(C) Diode clipper: dissipated power in lifted
space with constrained Koopman operator.

FIGURE 6.3: Diode clipper: simulated state and
dissipated power in lifted space.

with M = 10 centers xj uniformly distributed and ρ = 4.10−9. For simplicity, we also add
the state as an observable, so that x = C z with C = [1, 0, . . . , 0]. Indeed, once model
parameters have been estimated following Eq. (6.40), the state must be simulated as in
Eq. (6.44) in order to evaluate the model accuracy. Choosing a simple inverse mapping
considerably lowers the simulation computation cost.

6.4.3 Results

Model parameters for the passive representation in lifted space are estimated following
Eq. (6.40). Moreover, for comparison, an unconstrained Koopman operator approxima-
tion K is also estimated by computing

K = F E†, (6.48)

where E is the matrix of measured efforts e[k] =
[
z[k], u[k]

]ᵀ for all samples and †
denotes the pseudo-inverse.

Simulations are performed according to Eq. (6.44) for both models. The dissipated
power in lifted space Pdiss is defined for each sample by

Pdiss[k] = −u[k]ᵀ y[k]− z[k]ᵀ δz[k] fs. (6.49)
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Figure 6.3a shows that the unconstrained Koopman operator approximation yields a
more accurate simulation, but does not guarantee that the dissipated power in lifted
space stays above zero (Fig. 6.3b). On the contrary, the passive Koopman approximation
yields a slightly less accurate simulation, but the dissipated power in lifted space stays
above zero (Fig. 6.3c).

6.5 Conclusion

In this chapter, we have showed how to linearize the dynamics of a nonlinear PH-ODE
with input in a higher-dimensional space of observables, through the use of the Koop-
man operator and a bilinear map with respect to the input and observables. A finite-
dimensional approximation of the Koopman operator infinitesimal generator can be es-
timated from data, and passivity can be preserved during estimation with a continuous-
time PH-ODE formulation in lifted space and appropriate constraints. In turn, this al-
lows the derivation of a passivity-preserving, non-iterative numerical scheme for simu-
lations.

A relaxed version of the method has been applied to identify and simulate a diode
clipper circuit. The state trajectory is correctly reproduced within the range of available
data, and the dissipated power in lifted space stays positive during simulation.

However, this relaxed formulation presents some limitations as it causes overdissi-
pation. Therefore, further investigation is needed in order to find an alternative PH-
ODE formulation (with matrices possibly dependent on the input u) and appropriate
basis functions for which a relaxed form is not required. The accuracy of the simula-
tions with different types of inputs should also be assessed. This shall be the object of
future work.
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Conclusion

In this thesis, we investigated power-balanced modeling of nonlinear circuits for au-
dio applications. To this end, we explored two different approaches based on a port-
Hamiltonian formulation, that guarantees power balance and passivity in both contin-
uous and discrete-time domains.

The first approach is based on physics and requires knowledge of the considered
circuit’s schematics and constitutive laws. With schematics of targeted circuits at hand,
we proposed energy-based models of two multiphysical, highly nonlinear components
that are found in analog audio circuits, namely, ferromagnetic coils and resistive opto-
isolators.

In order to model the ferromagnetic coil, we revisited equilibrium statistical physics
and derived a macroscopic model for the ferromagnetic core that accounts for thermo-
dynamic phenomena such as meta-stability, phase transitions, and entropy creation.
These phenomena, combined with the coil’s coercion on the core, were found to be re-
sponsible for the hysteresis that arises when the component is driven by high voltages.
Parameters of the model were estimated from measurements on real inductors. These
parameters were in turn used to simulate two circuits, a highpass filter and a loaded
transformer, with satisfactory results. Nonetheless, extensive measurements should be
conducted to assess the model more quantitatively, in particular with respect to different
input signals, and at different temperatures.

To model the resistive opto-isolator, we modeled its subcomponents —namely, a
LED and a photoresistor— separately, then we addressed their coupling. The pho-
toresistor’s internal dynamics was obtained from the study of doping mechanisms in
semiconductors, while a law for the nonlinear optical coupling between the LED and
the photoresistor was derived from the LED’s dissipation law and the photoresistor’s
static resistance. Parameters of the model were estimated from measurements on a real
Vactrol. These parameters were in turn used to simulate a minimal optical compressor,
with qualitatively satisfactory results. However, as of now, the passivity of the law for
the optical coupling between the LED and the photoresistor depends on the value of the
photoresistor’s equivalent capacitance. Finding an unconditionally passive law instead
would constitute a significant improvement. Moreover, supplementary measurements
should be conducted in order to assess the model’s accuracy with respect to overshoot
phenomena that theoretically occur after long exposures to light.

The second approach is based on data and aims to retrieve the topology and consti-
tutive laws of a circuit from measurements of the input, output, and state.

For circuits with linear dissipation, we proposed an identification method based on a
parametrization of the interconnection matrix that accounts for an underlying PH-ODE
structure, and on the optimal reconstruction of the system’s energy through reproduc-
ing kernels. In turn, the estimated model may be used for passive guaranteed simula-
tions. The method was tested on a virtual peaking EQ, with accurate results. However,
the method should be more thoroughly assessed against real measurements. Another
perspective is to limit the introduction of compensating errors on the interconnection
matrix and on the effort during the estimation. A possible way to prevent this would be
to include some measurements (possibly on a reduced range) of the effort as well.

For circuits with nonlinear dissipation that admit a PH-ODE representation, we
proposed a method based on the linearization of the system dynamics in the space
of observables, through the Koopman operator. We showed how to estimate a finite-
dimensional approximation of the Koopman operator from measurements, and how to
preserve passivity during estimation via appropriate constraints. The linearity of the
dynamics in the space of observables allowed the derivation of a passivity-preserving,
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non-iterative numerical scheme for simulations. A relaxed version of the method was
applied to identify and simulate a virtual diode clipper circuit. The state trajectory was
correctly reproduced within the range of available data, and the dissipated power in
the space of observables stayed positive during simulation. However, this relaxed for-
mulation presents some limitations as it causes over-dissipation. Therefore, further in-
vestigation is needed in order to build an adequate collection of observables for which
a relaxed formulation is not required. Moreover, the model’s accuracy with respect to
different input signal should be assessed, as well as the robustness of the method with
real measurements. Furthermore, an immediate perspective of this work would be to
extend the method to PH-DAE. This shall be the object of future work.
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Appendix A

Legendre Transforms

In this appendix, we recall definitions and properties of Legendre transforms (see also [51].
For simplicity, here we only consider scalar functions but note that Legendre transforms
can be extended to functions defined on convex sets.

Definition 9 (First Legendre transform). Consider an interval I ⊂ R, an interval I? ⊂ R,
and a function f : I 7→ R. The first Legendre transform of f is the function f ? : I? 7→ R

defined for all x? ∈ I? as
f ?(x?) = inf

x∈I
{ f (x)− x? x}. (A.1)

Example 4. Consider the function f defined as f : x 7→ x3 + x for all x ∈ R. The set
{ f (x)− x? x} has a minimum if x? ≥ 1, therefore f ? is well defined on [1,+∞]. Figure A.1a
shows how to obtain f ?(x?) according to Def. (9) for x? = 2, and Fig. A.1b shows the complete
graph of f ?.

In the following, we restrict ourselves to convex functions f , so that f ′ is invertible
and f ? can be directly computed.

Definition 10 (First Legendre transform of convex functions). Consider a convex function
f : I 7→ R. Its first Legendre transform according to Def. (9) is

f ? : x? 7→ f ?(x?) = TL( f )(x)|x=( f ′)
−1

(x?)
(A.2)

where TL is defined as

TL : f 7→ f − I f ′ with I the identity function. (A.3)

Note that with Def. (9), the first Legendre transform of a convex function is concave.
Another definition of the Legendre transform is f ?(x?) = sup

x∈I
{x? x− f (x)}, which pre-

serves convexity. However, in thermodynamics, Def. (9) is more common.

Property 11 (Derivative of the first Legendre transform). The derivative of the first Legen-
dre transform of a convex function f is minus the inverse of the derivative of f :

f ? ′ = −
(

f ′
)−1 . (A.4)
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(A) Construction of f ?(x?) for f : x 7→ x3 + x
and x? = 2.

(B) Graph of f ?.

FIGURE A.1: Construction of the first Legendre transform of f according
to Def. (9), and resulting graph.

Proof.

f ? = TL( f ) ◦
(

f ′
)−1

= f ◦
(

f ′
)−1 −

(
f ′
)−1 ×

(
f ′ ◦

(
f ′
)−1
)

= f ◦
(

f ′
)−1 − I ×

(
f ′
)−1

⇒ f ? ′ =
((

f ′
)−1
)′
×
(

f ′ ◦
(

f ′
)−1
)
− I ×

((
f ′
)−1
)′
−
(

f ′
)−1

= I ×
((

f ′
)−1
)′
− I ×

((
f ′
)−1
)′
−
(

f ′
)−1

= −
(

f ′
)−1 .

Definition 11 (Second Legendre transform). The second Legendre transform of a convex
function f is the function f̃ defined as

f̃ : x̃ 7→ f̃ (x̃) = TL( f )(x)|x=−( f ′)
−1

(x̃)
. (A.5)

Property 12 (Second Legendre transform of first Legendre transform.). The second Leg-
endre transform of the first Legendre transform of a convex function f is the function f :

f̃ ? = f . (A.6)
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Proof.

f̃ ? = TL( f ?) ◦ −
(

f ? ′
)−1

= f ? ◦ −
(

f ? ′
)−1

+
(

f ? ′
)−1
×
(

f ? ′ ◦ −
(

f ? ′
)−1

)

= f ? ◦ −
(

f ? ′
)−1
− I ×

(
f ? ′
)−1

= f ? ◦ f ′ + I f ′

=
(

f ◦
(

f ′
)−1 − I

(
f ′
)−1
)
◦ f ′ + I f ′

= f − I f ′ + I f ′

= f .

Example 5 (Internal energy and free energy.). Consider the (convex) internal energy E de-
fined as E : S 7→ E(S) with S the entropy. The temperature T is defined as T = E′(S). From
Eq. (A.3), we have

TL(E)(S) = E(S)− TS, (A.7)

and we define the free energy F as the first Legendre transform of E given by

F : T 7→ TL(E)(S)|S=(E′)−1(T). (A.8)

From Prop. (11), we have
F′(T) = −S, (A.9)

and from Prop. (12), we have
F̃ = E. (A.10)
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Appendix B

Partition Function of an Atom in a
Box

Consider N non-interacting atoms in a closed, rigid cube of length a at temperature T.
A microstate of an atom is a vector m = [mx, my, mz] ∈ N∗3, where mi is the energy
quantization along axis i. Denote µ the atom mass, and h the Planck constant. The
momentum p of an atom is

p =
‖m‖ h

2 a
, (B.1)

and the Hamiltonian is given by its kinetic energy [146]

E(m) :=
p2

2 µ
=
(

m2
x + m2

y + m2
z

) h2

8 µ a2 . (B.2)

The partition function for a single atom Z0 is defined as

Z0(T) = V
(

2π µ k T
h2

)3/2

, with V = a3. (B.3)

Proof. Denote ε0 = h2

8 µ a2 , and Ma the set of accessible microstates. From Eq. (2.18a), we
have

Z0(T) = ∑
m∈Ma

exp

(
−E(m)

k T

)

=
+∞

∑
mx=1

+∞

∑
my=1

+∞

∑
mz=1

exp
(
−
(

m2
x + m2

y + m2
z

) ε0

k T

)

=

(
+∞

∑
n=1

exp
(
−n2 ε0

k T

))3

≈
(∫ +∞

0
exp

(
−x2 ε0

k T

)
dx

)3

=


1

2

√
π k T

ε0




3

=

(
2π µ k T a2

h2

)3/2

= V
(

2π µ k T
h2

)3/2

.
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Since the atoms are not interacting, the total energy of the gas is the sum of the
atomic energies, and the partition function Z for N atoms becomes

Z(T |N, V) = Z0(T)N = VN
(

2 π k T µ

h2

)3 N/2

. (B.4)
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Appendix C

Mean-Field Partition Function of the
Ferromagnetic Core

Consider a ferromagnetic core constituted of N magnetic moments in {−1, 1}. Denote
m ∈ Ma = {−1, 1}N a microstate of the core, and p?(m) its probability at equilibrium.
Denote M(m) = ∑N

i=1 mi the total magnetic moment of microstate m, M+ and M− two
symmetric subsets of Ma with respect to M (see Eq. 3.6), and m+ (resp. m−) the mean
moment in M+ (resp. M−) defined as

m+ =
1
N ∑

m∈M+

2 p?(m)M(m) ∈ [0, 1],

m− =
1
N ∑

m∈M−
2 p?(m)M(m) ∈ [−1, 0].

(C.1)

We have

E(m) ≈





1
2

N J q m+2 − J q m+M(m) if m ∈M+,

1
2

N J q m−2 − J q m−M(m) if m ∈M−.
(C.2)

Proof. Denote m = m+ 1ᵀ the mean state of M+ where 1ᵀ is a vector of N ones, and
consider m ∈M+. Assume small deviations m−m. Then, we have

E(m) = −1
2

mᵀJ exm

= −1
2
(m + m−m)ᵀJ ex (m + m−m)

= −1
2


mᵀJ exm + 2 mᵀJ ex (m−m) + (m−m)ᵀJ ex (m−m)︸ ︷︷ ︸

neglected




≈ −1
2
(
mᵀJ exm + 2 mᵀJ ex (m−m)

)

=
1
2

mᵀJ exm−mᵀJ exm.

Recall that each column of J ex contains J (q times) and zeros (N − q) times (Fig. 3.4c),
so that

mᵀJ ex = J q m+ 1ᵀ.

Hence
E(m) ≈ 1

2
N J q m+2 − J q m+M(m).
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By replacing m+ with m−, we derive a similar result for m ∈M−.

We deduce the mean-field partition function ZMF defined as

ZMF(m, T) = exp

(
−N J q m2

2 kb T

)(
2 cosh

(
J q m
kb T

))N

, ∀m ∈ [−1, 1], T > 0. (C.3)

Proof. Denote S the set of all permutations of {−1, 1}N .

ZMF(m, T) = ∑
m∈Ma

exp

(
−E(m)

kb T

)

= ∑
m∈M+

exp

(
−N J q m+2

2 kb T

)
exp

(
J q m+M(m)

kb T

)

+ ∑
m∈M−

exp

(
−N J q m−2

2 kb T

)
exp

(
J q m−M(m)

kb T

)

=
1
2

exp

(
−N J q m+2

2 kb T

)
∑

σ∈S
∏
i∈σ

exp

(
J q m+ i

kb T

)

+
1
2

exp

(
−N J q m−2

2 kb T

)
∑

σ∈S
∏
i∈σ

exp

(
J q m− i

kb T

)

=
1
2

exp

(
−N J q m+2

2 kb T

)
exp

(
J q m+

kb T

)
+ exp

(
− J q m+

kb T

)


N

+
1
2

exp

(
−N J q m−2

2 kb T

)
exp

(
J q m−

kb T

)
+ exp

(
− J q m−

kb T

)


N

= exp

(
−N J q m2

2 kb T

)(
2 cosh

(
J q m
kb T

))N

,

using m+ = −m− so that m+2
= m−2 and cosh

(
a m+

)
= cosh

(
a m−

)
.
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Appendix D

Interior Point Method

This Appendix presents the outline of the Interior Point Method for solving constrained
optimization problems. For more details, we refer to e.g. [128].

Consider a constrained optimization problem of the form

minimize f (x)
subject to Ax � b.

(D.1)

This can be reformulated as

minimize f (x)

subject to

{
Ax + s = b,
s � 0,

(D.2)

where s denotes a slack variable. Denote Ib the identity matrix of dimension dim(b), 0b
a vector of dim(b) zeros, A = [A, Ib], x = [x, s]ᵀ, and f (x) =

[
f (x), 0b

]ᵀ. Then problem
(D.2) is equivalent to

minimize f (x)

subject to

{
Ax = b,
s � 0.

(D.3)

To solve (D.3), introduce the loss function L

L : (x, λ) 7−→ f (x) + λᵀ
(

Ax− b
)
− 1

t

dim(b)

∑
i=1

ln si

︸ ︷︷ ︸
logarithmic barrier

, with t > 0. (D.4)

The logarithmic barrier [128] increases the loss if coefficients si get close to 0. The user-
defined parameter t enforces or relaxes the constraint (Fig. D.1).

A necessary condition to minimize L is finding a solution to

F (x, λ, µ) :=



∇ f (x) + λᵀA− µ

Ax− b
µ� x− 1/t


 = 0, (D.5)

where µ is the derivative of the logarithmic barrier with respect to x, and � denotes
the element-wise product. A solution is estimated with a damped Newton-Raphson
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FIGURE D.1: Logarithmic barrier for several values of parameter t.

iteration [32]. Starting from a particular x0, the set is improved iteratively applying:
[

xk+1, λk+1, µk+1
]ᵀ

=
[

xk, λk, µk
]ᵀ
− α J −1

(
xk, λk, µk

)
F
(

xk, λk, µk
)

(D.6)

where α ∈ [0, 1] is a damping coefficient computed with a line search [128] and J is the
Jacobian of F given by

J (x, λ, µ) =



∇2 f (x) Aᵀ −I

A 0 0
diag (µ) 0 diag(x)


 . (D.7)

Here diag(µ) (resp. diag(x)) denotes the square diagonal matrix with the elements of µ
(resp. x) on its diagonal. The parameter t can be increased dynamically during iteration.
The iteration is stopped when the error is sufficiently low, or, if f is non convex, when
the error starts increasing.

Example 6. Consider the constrained (convex) optimization problem

minimize
1
2

xᵀQx + cx

subject to Ax � b,
(D.8)

with

Q =

[
4 −1
−1 4

]
, A =




2 1
6 5
2 5


 , b = [18, 60, 40]ᵀ , c = [−34, −14]ᵀ . (D.9)

Figures D.2a-D.2d show the results obtained for different initial values and different t.
With a low t, the estimated solution respects the constraint even if the initial value does not
(Figs. D.2a-D.2c). On the contrary, with a high t, the estimated solution is the absolute mini-
mum and does not respect the constraint, even if the initial value does (Figs. D.2b-D.2d).
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(A) Initial value meeting the constraint, low t. (B) Initial value meeting the constraint, high t.

(C) Initial value not meeting the constraint,
low t.

(D) Initial value not meeting the constraint,
high t.

FIGURE D.2: Successive iterates (blue crosses) during constrained opti-
mization with the interior point method. The constraints are represented

as red lines. The interior is the left bottom corner.
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ABSTRACT

This paper proposes a new macroscopic physical model of fer-
romagnetic coils used in audio circuits. To account for realistic
saturation and hysteretic phenomena, this model combines sta-
tistical physics results, measurement-driven refinements and port-
Hamiltonian formulations that guarantee passivity, thermodynamic
consistency and composability according to both electric and ther-
mal ports. As an illustration, the model is used to simulate a pas-
sive high-pass filter. Different types of audio inputs are considered
and simulations are compared to measurements.

1. INTRODUCTION

Ferromagnetism is frequent in analog audio: it is involved in trans-
ducers (dynamic microphones, loudspeakers), tape recorders, coils
and transformers. As major non-linearities arise from ferromag-
netic components (saturation, hysteresis), the need of refined mod-
els is critical to accurately simulate behaviors in circuits.

Since the 1980s, a large body of empirical models have been
proposed, among them the Jiles-Atherton model [1], the Gyrator-
Capacitor model [2, 3], or the Preisach model [4]. But very few
have a strong physical meaning [5] and those retaining some ener-
getic interpretation [6] either lose major phenomenological prop-
erties or are heavy to implement [7]. As a consequence, preserving
the model passivity (no artificial hidden sources of energy) comes
with a price — computation time.

In this paper, we propose a new nonlinear model of ferro-
magnetic coil that is physically-based, passive, modular (allowing
electric and thermal connections) and with a reduced complexity
(few state variables and parameters). As it is built on statistical
physics results on magnets, it is thermodynamically consistent. It
also inherits macroscopic characteristics (hysteresis and its condi-
tioned activation) from underlying microscopic phenomena (meta-
stability and phase transition). This lumped-element model is used
to simulate a passive high-pass filter. The circuit modeling relies
on Port-Hamiltonian Systems [8, 9] (PHS) that structurally ful-
fill the power balance. Simulations are based on numerical meth-
ods [10] that preserve this guarantee in the discrete-time domain.

The paper is structured as follows: Section 2 first presents
some short recalls on PHS. Section 3 develops a primary model

∗ The authors acknowledge the support of the ANR-DFG (French- Ger-
man) project INFIDHEM ANR-16-CE92-0028.
Copyright: © 2020 Judy Najnudel et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

derived from statistical physics. This model exhibits saturation
and hysteresis but does not take into account some other phenom-
ena, such as non-homogeneities, thermal fluctuations and eddy
currents. Section 4 refines the primary model with a polynomial
interpolation based on measurements of a Fasel inductor. In sec-
tion 5, the final nonlinear model is implemented to simulate a pas-
sive high-pass filter.

2. REVIEW OF PORT-HAMILTONIAN SYSTEMS

The following modeling relies on Port-Hamiltonian systems [11,
9], under a differential-algebraic formulation [10]. A dynamical
system is represented as a network of: (i) storage components of
state x and energy E (x), (ii) dissipative components described
by an efforts law w 7→ z(w) that dissipates the power Pdiss =
z (w)⊺ w ≥ 0 for all flows w, and (iii) connection ports conveying
the outgoing power Pext = u⊺y for inputs u and outputs y. The
flows f and efforts e of all the components are coupled through a
skew-symmetric interconnection matrix J = −J⊺: ẋw

y


︸ ︷︷ ︸

f

= J

∇E(x)
z(w)
u


︸ ︷︷ ︸

e

. (1)

Such systems satisfy the power balance Pstored+Pdiss+Pext = 0
where Pstored = ∇E(x)⊺ẋ denotes the stored power. Indeed,
Pstored + Pdiss + Pext = e⊺f = e⊺Je is zero since e⊺Je =
(e⊺Je)⊺ = −(e⊺Je) due to the skew-symmetry of J .

All models herein will be formulated as (1).

3. PRIOR THEORETICAL MODEL

3.1. Macroscopic model of a ferromagnetic core

This section presents a bi-stable core model rooted in the mean
field Ising model [12, 13, 14, 15, 16]. Using statistical physics,
Ising derives a macroscopic scalar state (the core magnetization)
from a microscopic representation of the core (a set of normalized
atomic magnetic moments, which can be either up or down), at a
given temperature T . For simplicity, additional assumptions are:
a homogeneous, isochoric (constant volume V ) and closed (con-
stant number of atoms N ) ferromagnetic crystal with one (local)
magnetization axis and periodic boundaries (typically, a toroidal
geometry often found in audio circuits [17]). In this section, there
is no external magnetic field (issue addressed in section 3.2).
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3.1.1. Macroscopic quantities and laws

Following [18] with our assumptions, the core internal energy is

E = Nα

(
1

2
m2 −m tanh

(
m

θ

))
, (2)

where parameter α (≈ 5 × 10−21 J for transition metals) denotes
the exchange energy between one moment and its nearest neigh-
bours [19, 20, 21], and where variables m and θ are average in-
tensive quantities (homogeneous over the body) that statistically
characterize the core configuration at a macroscopic scale:

• m ∈ [−1, 1] is the mean normalized magnetic moment:
m = ±1 if all moments are aligned in the same direction,
and m = 0 if no particular direction is favored;

• θ = T/Tc ∈ R+ is the reduced temperature relative to
the core Curie temperature Tc [22]: if θ < 1, there are
multiple equilibria m (ferromagnetism), and only m = 0
(disordered moments) otherwise (paramagnetism).

Note that the core parameters α and Tc are related through the
Boltzmann constant kb = 1.38× 10−23J.K−1 as α = kb Tc.

A measure of the number of possible microscopic states (atomic
moments) consistent with the core macroscopic configuration is
given by the entropy [23], which is found to be

S = N kb f

(
m

θ

)
with f(χ) = ln(2 coshχ)−χ tanhχ, χ ∈ R.

(3)
This statistical entropy coincides with the thermodynamic entropy
for a core in internal thermodynamic equilibrium (possibly time-
varying at macroscopic scale). This variable is extensive (propor-
tional to N ) and quantifies the macroscopic "order degree" of the
core, on which phase transitions and hysteresis depend.

In addition to E and S, a third extensive variable is introduced,
namely, the total magnetic flux of the core (of volume V )

BV = B V, (4)

where B is the magnetic flux density. For the core, B is related
to the core magnetization M = mMs through B = µ0 M where
µ0 is the vacuum magnetic permeability and Ms is the saturation
magnetization (see Table 1).

3.1.2. Choice of state and energy function

We choose to express the core energy E as a function of the state

xcore = [BV , S]⊺, (5)

so that, in (1), the flow ẋcore accounts for the time variation of ex-
tensive quantities (to balance with quantities external to the core,
or equilibrium-establishing) and, concomitantly, the effort accounts
for intensive quantities (shared with the exterior at the core in-
terface, or equilibrium-determining). Choosing extensive energy
variables over intensive co-energy variables stems from two argu-
ments. The first one is physical: except for linear, mono-variate
components, constitutive laws derived from the co-energy are not
equal to those derived from the energy, and should be handled with
care. The second is numerical: solving an ODE by integration in-
stead of differentiation is generally preferable [11].

This function is derived from (2), in which m/θ and m are
expressed with respect to S and BV using (3-4) and noting that

f is smooth, even on R and strictly monotonic1 (so invertible) on
R+. Its formula expressed w.r.t. (5) is given by (see Fig. 1),

Ecore

(
[BV , S]⊺

)
E0

=
1

2

(
BV

BVs

)2

−
∣∣∣∣BV

BVs

∣∣∣∣ tanh
(
f−1

(
S

S0

))
,

(6)
with core constants E0 = Nα, S0 = N kb and BVs = V µ0Ms.
The energy gradient (effort) is

∇Ecore = [Hcore, Tcore]
⊺, (7)

where, omitting variables in functions, the core internal magnetic
field is

∂Ecore

∂BV

=
E0

BVs

BV

BVs

− sign (BV ) tanh

(
f−1

(
S

S0

)) := Hcore

(8)
and the core temperature is

∂Ecore

∂S
=

E0

S0

∣∣∣∣BV

BVs

∣∣∣∣ / f−1

(
S

S0

)
:= Tcore. (9)

Fig. 1 shows that as S increases, the core goes from two ordered
(aligned moments) meta-stable equilibrium states to one non-ordered
(no alignment) stable equilibrium state: it exhibits a phase tran-
sition (from ferromagnetic to paramagnetic). Table 1 recaps the
physical quantities involved and their units.

Figure 1: Core energy function with respect to BV and S.

3.2. Connection to coil and external electrical ports

3.2.1. Ideal coil model

The coil is considered to be linear. Choosing BV as its state vari-
able, the coil energy is

Ecoil(BV ) =
B2

V

2µ0V
, (10)

and its derivative with respect to BV is the coil magnetic field
Hcoil(BV ) = BV /(µ0V ).

1Indeed, f ′(χ) = −χ/ cosh2 χ ≤ 0 ∀χ ∈ R+.
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Symbol Quantity S.I. units

N atoms nb. dimensionless
α nearest neighbours exchange energy kg.m2.s.−2

m norm. magnetic moment dimensionless
M magnetic moment A.m2

M magnetization A.m−1

H magnetic field A.m−1

B magnetic flux density kg.s−2.A−1

µ0 vacuum magnetic permeability kg.m.s−2.A−2

Φ magnetic flux linkage kg.m2.s−2.A−1

n coil turns nb. dimensionless
kb Boltzmann constant kg.m2.s−2.K−1

T temperature K
S entropy kg.m2.s−2.K−1

V = Al volume = section x length m3

Label
L coupled core and coil

Table 1: Physical quantities and labels.

ḂVL

HL
coil

ḂVcoil

Hcoil
core

ḂVcore

Hcore

Figure 2: Coil and core connection.

3.2.2. Coupled system

To express the coupled system L as a PHS, one needs to determine
the relations between the core and coil flows and efforts. Using the
extensivity of the total magnetic moment ML [24], one gets

ML = Mcore +Mcoil ⇔ BVL = BVcore +BVcoil , (11)

since BV = µ0M. Differentiating Eq. (11) with respect to time,
one obtains the relation between the flows:

˙BVL = ḂVcore + ḂVcoil . (12)

Conversely, the coil and core share their efforts, namely,

HL = Hcoil = Hcore. (13)

Fig. 2 represents the coupling as a series connection.
For any fixed entropy S and for all x = [BVcoil BVcore ]

⊺, we in-
troduce the function ES : x 7→ Ecore(BVcore , S) + Ecoil(BVcoil)
(total energy of the system). With these notations, the core and coil
coupling can be expressed as the constrained Dirac structure [25]ẋ0

y

 =

 . A B
−A . .
−B . .

 ∂ES
∂x
λ
u

 , (14)

with A = [1, −1]⊺, B = [0, 1]⊺, λ = ḂVcoil , u = ḂVL and
y = −HL (dots indicate zeros). This constrained Dirac structure

can be reduced to (see also [25] for more details):[
ż
y

]
=

[
. Br

−Br .

] [
∂EL
∂z
u

]
, (15)

with Ã such as Ã⊺A = 0 to eliminate the constraint, Br = Ã⊺B,
z = Ã⊺x, EL the total energy with respect to z.
Taking Ã = [1, 1]⊺, this yields Br = 1 and z = BVcoil +BVcore .
Therefore, for any given entropy S, the dynamics of the coupled
system is that of an equivalent component of state xL = [BVL , S],
energy EL(xL) and magnetic field HL = ∂EL

∂B
VL

. This equiva-

lent component energy can be computed (see [26] for a detailed
derivation) through the expression

EL(BVL , S) =
(
Ecoil ◦H−1

coil + Ecore ◦H−1
core

)
◦
(
H−1

coil +H−1
core

)−1

(BVL , S),
(16)

where the symbol ◦ stands for function composition. In practice,
all mathematical functions in this expression can be defined as
piecewise affine functions (computation of inverse efforts in par-
ticular becomes straightforward when analytical expressions are
not available, as is the case here).

3.2.3. Connection to external electrical ports

Denoting n the number of turns, l the length of the coil, A its sec-
tion, Φ the magnetic flux linkage, the magnetic field HL is related
to coil current iL through

HL =
n

l
iL, (17)

and the state BVL is related to the coil voltage vL through

ḂVL =
Φ̇

nA
V =

l

n
vL. (18)

In section 4.4, variables iL and vL will be related to external ports
u and y of Eq. (1).

3.3. Thermodynamics

In this section (only), we assume that the ferromagnetic coil is put
in a isothermal bath (i.e. the exterior is much larger than the coil
size), so that the temperature of the system TL is considered con-
stant and equal to the exterior temperature Text during a change
of state, supposedly below the Curie temperature. A convenient
and classical way to study the energetic behavior of the ferromag-
netic coil is to examine how, for all BVL , the energy EL(BVL , S)
of the component subject to a constant magnetic field H0, deviates
from the energy H0 BVL . The energy deviation of this conditioned
component, called the Gibbs free energy [27], is defined by, for all
BVL , S, and all constant-in-time H0 as

GH0(BVL , S) = EL(BVL , S)− TLS −H0 BVL . (19)

For any given S, at H0 = 0, two symmetric meta-stable equi-
librium states corresponding to GH0 minima with respect to BVL

are available (Fig. 3a, red curve). For H0 ̸= 0, the symmetry
is broken and a previously stable equilibrium state can be made
unstable. We suppose now H0 slowly controlled (so it is still con-
sidered constant during a change of state). When decreasing H0
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(a) Gibbs free energy GH0 for H0 decreasing from
Hmax (green curve) to Hcoerc (solid blue curve), at
constant temperature, and trajectory of BVL

(black
curve) for a complete cycle. In the yellow area, two
local potential minima coexist but only one direction
is possible for BVL

to follow (blue arrows).

(b) Observed state BVL
during a complete cycle, re-

sulting in Barkhausen jumps (blue curve), and theo-
retical effort ∂EL

∂B
V

for BV ranging from min(BVL
)

to max(BVL
) (red curve). The area between the blue

and red curves is the energy dissipated during a cycle.

Figure 3: Gibbs free energy GH0 for decreasing values of mag-
netic field H0 (3a), and observed state BVL during a complete cy-
cle of magnetic field variations (3b).

from Hmax ≥ 0 (Fig. 3a, green curve) to −Hmax, BVL starts
from its initial equilibrium state and follows a trajectory solution of
∂GH0
∂B

VL

= 0 (Fig. 3a, black curve), until the minimum degenerates

into an inflection point at H0 = Hcoerc (Fig. 3a, solid blue curve).
Then, a Barkhausen jump occurs [27] so that BVL occupies the
remaining stable equilibrium state (Fig. 3a, intersection of solid
blue curve and left yellow area). Since EL is even with respect
to BVL for all S, GH0(BVL , S) = G−H0(−BVL , S). Therefore,
when increasing H0 from −Hmax to Hmax, the Barkhausen jump
occurs at −Hcoerc. Consequently, BVL follows a different path
depending on whether H0 decreases or increases (Fig. 3a, black
curve and arrows), hence the hysteresis (Fig. 3b) between Hcoerc

and −Hcoerc.
Thermodynamics laws show that the difference of energy before
and after the jump is irreversibly dissipated as heat. Indeed, the
first principle of thermodynamics states that the internal energy
variation dEL is the work performed on the ferromagnetic coil
δW = H0dBVL , plus the received heat δQ = TLδeS where δeS
is the variation of incoming entropy and δ denotes an inexact dif-
ferential [28]:

dEL = H0 dBVL + TLδeS. (20)

U

i

iL

iEL

rth

ith

vL

Figure 4: Voltage-controlled ferromagnetic coil with thermal dis-
sipation.

The second principle of thermodynamics states that the internal
heat TLdS is the received heat plus the heat internally produced
by irreversible phenomena TLδiS:

TLdS = TLδeS + TLδiS. (21)

Replacing TLδeS from Eq. (21) in Eq. (20) yields

dGH0 = dEL − TLdS −H0dBVL = −TLδiS, (22)

which is consistent with the assertion that the difference of energy
is entirely and irreversibly dissipated as heat.
Now, let us denote HL the observed effort law such as H0 =
HL(BVL) (definition given in appendix A). Replacing H0 with
HL, the entropy production rate δiS/dt is obtained differentiating
Eq. (22) with respect to BVL and multiplying with ḂVL :

δiS

dt
=

1

TL

(
HL(BVL)−

∂EL

∂BVL

(BVL , S)

)
ḂVL . (23)

To model the conversion between excess electro-magnetic power
and thermal power, the ideal thermal exchanger rth is introduced
(Fig. 4) so that

ithvth = TL
δiS

dt
(24)

where vth is the exchanger voltage and ith its current. Introducing
the function

Pth : xL 7→
(
HL(BVL)−

∂EL
∂B

VL

(BVL , S)

)
ḂVL , (25)

equations (23-24) allow to model the dissipation in the PHS for-
malism:

w = [vth, TL]
⊺

zPth(xL)(w) = [
Pth(xL)

vth
,−Pth(xL)

TL
]⊺ = [ith,−

δiS

dt
]⊺.

(26)

The passivity condition Pdiss ≥ 0 is fulfilled as z(w)⊺w = 0.
The complete PHS structure is given in section 4.4.

4. REFINED MODEL BASED ON MEASUREMENTS

4.1. Measurements and observations

As thermodynamically meaningful as the bi-stable model is, it
does not capture the variety of phenomena contributing to hys-
teresis, as measurements on real ferromagnetic coils reveal. To
conduct such measurements, a Fasel Red inductor (which can be
found in Cry Baby wah-wah pedals [29] for instance) in series with

DAFx.4

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

206

Appendix E. Related Publications 127



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

U

i

R

vR

iR

iL

vL

(a) Measurements setup (thermal
dissipation not represented). (b) Measured HL and M .

Figure 5: Measurements setup and results.

Figure 6: Core energy and coupled system equivalent energy com-
puted with piecewise affine functions.

a resistance R is driven with a sinusoidal voltage source U(t) =
U0 sin(2πf0t) with f0 = 8 Hz and U0 = 0.35 V (Fig. 5a). The
voltage vL is measured and the current iL is obtained through the
relation iL = (U − vL)/R. The number of turns is roughly n
= 150. The torus diameter d1 and the torus section diameter d2
are about respectively 10 mm and 3 mm, which yields l = πd1 =
3.14 cm, A = π(d2/2)

2 = 7.06 mm2 and V = Al = 22.2 mm3.
The magnetic field HL and state BVL are then obtained using Eq.
(17)-(18) and the relation Φ(t) =

∫ t

0
vL(τ) dτ . As the coil and

the core share the same volume V , Eq. (11)-(13) yield the rela-
tion BVL = µ0V (HL +M) from which M is obtained. These
measurements (Fig. 5b) lead to two observations.

• First, M has an order of magnitude of 6, whereas HL has
an order of magnitude of 1, as expected for soft materials
[17].

• Second, instead of the large jumps predicted by the bi-stable
model, one observes a continuous progression, which calls
for a model refinement to determine the entropy production
rate law responsible for hysteresis.

4.2. Model reduction

According to measurements, for this inductor BVcore = µ0MV ≫
BVcoil = µ0HLV and Ecore ≫ Ecoil. The influence of the coil
on the overall energy of the coupled component is negligible (Fig.
6) and we thus may use

EL(BVL , S) ≈ Ecore(BVL , S). (27)

The dynamics of the coupled system is therefore that of a driven
core alone.

4.3. Entropy production rate law

In real ferromagnetic cores, domain structure and non-homogeneities
[30] yield an energy function with not two but multiple local min-
ima. Consequently, multiple Barkhausen jumps give the effort law
the shape of a staircase. The Preisach model generates this effort
law by computing a statistical mean on a collection of bi-stable
systems such as the one presented in section 3, each one represent-
ing a domain. This averaging "damps" the large bi-stable jumps.
Here, to obtain a similar result while remaining at a macroscopic
level, the hysteresis loop is modeled using a cubic polynomial
P (χ) = p0 + p1χ+ p2χ

2 + p3χ
3 interpolating the effort ∂EL

∂B
VL

,

and an additional friction term of the form rfḂVL , rf ≥ 0, to ac-
count for thermal fluctuations [31] and eddy currents [32]. The
coefficients of P are computed through

[p0 p1 p2 p3]
⊺ = X−1Y

where, given two interpolation data points χ1 and χ2, X and Y
are defined as

X =


1 · · · χ3

1

1 · · · χ3
2

0 · · · 3χ2
1

0 · · · 3χ2
2

 ,Y =

[
∂EL
∂B

VL

(χ1) ...
∂2EL

∂B2
VL

(χ1) ...

]⊺
.

The final hysteresis loop P̃ (BVL) is thus defined by

P̃ (BVL) = δBP (δBBVL) + rfḂVL , (28)

where δB = sign(dBVL), and the entropy production rate δiS/dt
is:

δiS

dt
=

1

TL

(
P̃ (BVL)−

∂EL

∂BVL

(BVL , S)

)
ḂVL , (29)

which is the expression given in Eq. (23) where HL has been re-
placed with P̃ . For a given ferromagnetic coil, such a loop is accu-
rate in a range from saturation approach to saturation and higher,
provided that the data points are taken in that range. At lower fields
though, a Rayleigh law would be more adequate [27].

4.4. Final model

Finally, Kirchhoff laws on the equivalent circuit shown on Fig. 4,
together with Eq. (21), yield the PHS in Fig. 7 structured as in Eq.
(1), in which EL is given by Eq. (27)-(6), w and z(w) are given
by Eq. (26)-(29), u = [U, δeS/dt]⊺, y = [i,−Text].

4.5. Model identification with the Fasel inductor

The measurements are taken during an isothermal transformation,
so that, replacing S from Eq. (3) in the magnetic field, one can use
the expression

∂EL

∂BVL

=
E0

BVLs

 BVL

BVLs

− tanh

(
BVL

BVLs
θ

)
for identification. A least squares optimization between the Eq. (28)
spline model and the measurements, i.e. solving

p = argminp

∥∥ (HL − P̃p

(
BVL

))2 ∥∥2 with p = [E0, BVLs
, θ, rf ]

yields the parameters in Table 2. Figure 8 shows a good match be-
tween measurements and the estimated model.
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∇E(x) z(w) u

TL
∂EL
∂B

VL

ith − δiS
dt U δeS

dt


ẋ Ṡ . . . -1 . 1

ḂVL . . . . l
n

.
w vth . . . . 1 .

TL 1 . . . . .
y i . - l

n
-1 . . .

−Text -1 . . . . .

Figure 7: PHS of the voltage-controlled ferromagnetic coil with
thermal dissipation. Dots in the interconnection matrix indicate
zeros.

Figure 8: Measurements (red curve) and estimated spline model
(blue curve).

5. APPLICATION TO A PASSIVE HIGH-PASS FILTER

5.1. Circuit modeling

The ferromagnetic coil model is used to simulate a high-pass filter
(Fig. 9). The resistance R is linear of constitutive law vR(iR) =
RiR. Kirchhoff laws yield the PHS shown in Fig. 10.

5.2. Simulation

5.2.1. Discretization

The state vector x(t) is discretized to x[k] = x(hk) where h =
1/Fs is the sampling step, and we denote δx[k] = x[k+1]−x[k].
To preserve the passivity of the PHS in discrete time and reduce
the energy gradient sensitivity to the state indexing, we rely on the
symmetric discrete energy gradient [10]. Denoting nx the num-
ber of states, P(nx) the set of all possible permutations on the

Estimated

E0 BVLs
θ rf p̄0 p̄1 p̄2 p̄3

2.43.10−5 3.09.10−7 1.10 6.07.104 0 8.69 0 8.78

Given

µ0 kb n V z̄1 z̄2
4π.10−7 1.38.10−23 150 2.22.10−7 -1 1

Table 2: Physical parameters of the model where z̄i = zi/BVLs

and p̄i = piB
i
VLs

. The units are S.I. units given in Table 1.

U

i

R

vR

iR

rth

ith iEL

vL

Figure 9: Passive high-pass filter.

∇E(x) z(w) u

TL
∂EL
∂B

VL

ith − δiS
dt vR U δeS

dt



ẋ Ṡ . . . -1 . . 1
ḂVL . . . . - l

n
l
n

.
vth . . . . -1 1 .

w TL 1 . . . . . .
iR . l

n
1 . . . .

y i . - l
n

-1 . . . .
−Text -1 . . . . . .

Figure 10: PHS of the passive high-pass filter.

nx state indexes, xπ a permutation on the state indexes and Eπ

its corresponding energy, the symmetric discrete energy gradient
∇E(x, δx) is defined component-wise by:

∇E(x, δx)i =


1

nx! δxi

∑
π∈P(nx)

△i(xπ, δxπ) δxi ̸= 0

∂E
∂xi

otherwise
(30)

where △i(x, δx) = E(x + δxi) − E(x + δxi−1) and δxi =
[δx1, ..., δxi, 0, ..., 0]

⊺. The discrete energy variation is obtained
with the chain rule:

δE[k]

h
= ∇E(x[k], δx[k])⊺

δx[k]

h
. (31)

The PHS of Fig. 10 is then approximated at sample k replacing
ẋ with δx[k]/h, ∇E(x) with ∇E(x[k], δx[k]), w with w[k], u
with u[k] and y with y[k].

5.2.2. Newton-Raphson iteration

The interconnection matrix is decomposed as J = [JstoredJdissJext]
⊺.

We denote ē(x[k], δx[k]) = [∇E(x[k], δx[k]) z(w[k]) u[k]] ⊺,
ν = δx[k] and

F : ν 7→ Jstoredē(x[k], ν)− ν/h (32)

At each sample k, δx[k] is solution of F (ν) = 0. If F ′(νi) is
invertible and given an initial value ν0 and a relative error ϵr, this
solution can be computed iteratively with the update

νi+1 = νi +∆νi (33)

where ∆νi = −
(
F ′(νi)

)−1
F (νi), until ∥∆νi∥/∥∆ν0∥ ≤ ϵr.

The state x[k+1] is then computed using x[k+1] = x[k]+δx[k].
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(a) Measured and simulated currents. (b) Measured and simulated voltages.

(c) Simulated entropy flows. (d) Simulated temperature.

(e) Bass sample spectrogram. (f) Filtered bass sample spectrogram.

Figure 11: Simulation results.

Parameter Fs U0 f0 R
Value 96 kHz 0.35 V 8 Hz 100 Ω

Table 3: Simulation parameters.

5.2.3. Simulation parameters

The circuit is driven with a sinusoidal voltage whose parameters
are given in Table 3, as well as with an instrumental bass sam-
ple. The ferromagnetic coil model parameters are those indicated
in Table 2. The incoming entropy flow δeS/dt is set so that the
ferromagnetic coil temperature stays constant.

5.2.4. Results and comparison to measurements

The circuit is simulated with the non-linear coil model and a sim-
ple linear coil model (iL = ΦL/L with L = 840 mH) for compar-
ison. Simulation results on Fig. 11a-11b show a good correspon-
dence between the non-linear model and measurements. Fig. 11c-
11d show that the produced entropy is always positive and that the
coil temperature stays constant. Spectrograms of the bass sample
is shown on Fig. 11e-11f. Sound results on the bass sample can be
heard at https://github.com/JNaj/dafx20-ferromag.

6. CONCLUSION

In this paper, a physical and passive model of ferromagnetic coil
has been developed. It is explicit and maintains a reduced number
of variables and parameters.

First the core and the coil were treated separately, then their
coupling, which determines both their electrical and thermal dy-
namics, was addressed. This lead to the building of an equivalent
component, characterized by a well-established state, energy func-
tion, and entropy production rate law. A refined entropy produc-
tion law based on measurements was then proposed.

As an application, this model was used to simulate a passive
high-pass circuit. The simulations are in close agreement with
measurements, though extensive measurements (a set of different
frequencies, amplitudes, waveforms) would be required to validate
the model on a broader scale.

Besides these complementary measurements, further work aims
to assess real-time performances, and build a transformer model on
the same principle by coupling two ferromagnetic coils.
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A. DEFINITION OF THE BI-STABLE MODEL
OBSERVED EFFORT LAW HL

Denoting BVL0
≥ 0 such as ∂2EL

∂B2
VL

(BVL0
) = 0 (Fig. 3b, green

cross), and B̃VL0
≤ 0 such as ∂EL

∂B
VL

(B̃VL0
) = Hcoerc (Fig. 3b,

green plus), one can define HL as:

HL(BVL) =

−sign(dBVL)Hcoerc BVL ∈ [BVLinf
, BVLsup

]

∂EL
∂B

VL

otherwise
,

where [BVLinf
, BVLsup

] = [B̃VL0
, BVL0

] if dBVL ≤ 0 and [−BVL0
,−B̃VL0

]
otherwise.
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This paper is concerned with the modeling of ferromagnetic coils with audio applications in
mind. The proposed approach derives a macroscopic, energy-based formulation from statistical
physics. This choice allows for thermodynamic variables to be explicitly taken into account.
As a consequence, macroscopic features such as saturation and hysteresis arise directly. As
the proposed model is expressed through a port-Hamiltonian formulation, power balance and
passivity are guaranteed. Moreover the model may be straightforwardly connected to other
multi-physical components and included in more complex systems. The proposed model is
compared to measurements on a real ferromagnetic coil. Simulations of a passive band-pass
filter and a transformer built around the model are presented as an illustration.

0 INTRODUCTION

Coils and transformers built around ferromagnetic cores
are largely present in audio circuits, from emblematic effect
pedals to amplifiers and loudspeakers. Ferromagnetic ma-
terials are sought for their high inductance, which increases
the coil quality factor. On the other hand these materi-
als exhibit non-linear characteristics such as saturation and
hysteresis, which may cause audible distortion and power
loss. Understanding ferromagnetic materials is therefore
necessary in order to accurately predict a coil’s behavior so
that one may carefully avoid—or exploit—distortion when
designing or simulating circuits.

Ferromagnetism is a long-enduring research field and
several empirical macroscopic models already exist in the
literature. One of the most widely used in the audio com-
munity is the Jiles-Atherton model [1–3], which is built
around a differential equation involving a saturation curve
and friction term. However some concern has been ex-
pressed regarding its physical interpretation [4] and sub-
sequent accuracy issues in simulations. Another popular
model is the Gyrator-Capacitor [5–7], whose strength re-
sides in its simplicity. Indeed, it essentially consists in a
Gyrator-Capacitor representation where the capacitor has
a polynomial law. Other recent models based on fractional
derivatives [8] have proved particularly accurate but like
the Jiles-Atherton or GC models previously mentioned,
their parameters are not related to actual physical quanti-

ties. Moreover neither of these models takes explicitly into
account the significant role of temperature in the shape of
the hysteresis curve. Yet temperature may vary in circuits,
especially after an extended use; therefore its influence
should not be entirely neglected. On the other hand models
explicitly built on energetic considerations, such as vari-
ational models [9], rely on costly finite-element methods,
making real-time use difficult. Similarly the Preisach model
[10, 11] thoroughly captures the phenomenology involved
in ferromagnetism, including thermodynamics; but it is ob-
viously too complex for audio applications. Therefore to
our present knowledge a model both physically based (al-
lowing refined and realistic simulations in a wide range of
contexts) and suitable for audio applications does not seem
to exist.

In this paper we propose a non-linear model of ferro-
magnetic coil that is physically based, passive (no hidden
sources of energy), modular (allowing electric and thermal
connections), and with a reduced complexity (only three
state variables and five parameters). First we derive a core
macroscopic model from classic statistical physics results,
with a special care brought to the choice of state variables
for thermodynamic consistency and modularity. Then we
build a ferromagnetic coil model connecting a core and
coil. It ensues that typical characteristics (hysteresis or its
absence thereof) naturally arise from the interaction be-
tween the coil and core, in association with features intrinsi-
cally present in our core model (meta-stability or stability).
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Moreover as the model dynamics are expressed through a
Port-Hamiltonian Systems (PHS) formulation [12, 13] the
power balance is structurally fulfilled. This formulation also
makes the connection to other components straightforward,
so that including the model in more complex systems poses
no difficulty.

This ferromagnetic coil model is then used to simulate
two circuits: a passive band-pass filter and transformer. The
circuits are also modeled as PHS and the simulations are
based on numerical methods [14] that preserve the power
balance in the discrete-time domain.

The paper is structured as follows: in SEC. 1 the Port-
Hamiltonian formalism is briefly presented. In SEC. 2 the
core macroscopic model is constructed from statistical
physics and thermodynamics. Sec. 3 addresses the connec-
tion between the core and coil and describes the resulting
complete model. In SEC. 4 the model is assessed against
measurements on a Fasel inductor. Finally, simulations of
chosen audio circuits are presented in SEC. 5 before pro-
viding elements of discussion and work perspectives in
SEC. 6.

1 PORT-HAMILTONIAN SYSTEMS:
DIFFERENTIAL-ALGEBRAIC FORMULATION

All subsequent modeling relies on Port-Hamiltonian sys-
tems [15, 13] under a differential-algebraic formulation
[14]. This formulation allows the representation of a dy-
namical system as a network of:

1. storage components of state x and energy E(x);
2. dissipative components described by an effort law

w �→ z(w), such as the dissipated power Pdiss =
z(w)ᵀw is non-negative for all flows w;

3. connection ports conveying the outgoing power
Pext = uᵀ y where u are inputs and y are outputs.

The flows f and efforts e of all the components are
coupled through a skew-symmetric interconnection matrix
J = −Jᵀ:⎡

⎣ ẋ
w

y

⎤
⎦

︸ ︷︷ ︸
f

= J

⎡
⎣∇E(x)

z(w)
u

⎤
⎦

︸ ︷︷ ︸
e

. (1)

Here flows can either be currents (e.g., for capacitors)
or voltages (e.g., for inductors) and vice versa for efforts.
Such systems satisfy the power balance Pstored + Pdiss + Pext

= 0, where Pstored = ∇E(x)ᵀ ẋ denotes the stored power.
Indeed, Pstored + Pdiss + Pext = eᵀ f = eᵀ Je is zero since
eᵀ Je = (eᵀ Je)ᵀ = −(eᵀ Je) due to the skew-symmetry of
J . All models herein will be formulated as (1).

2 FERROMAGNETIC CORE MODELING

In this section a macroscopic model of the ferromagnetic
core is derived from a microscopic representation, known
in the literature as the Ising model [16–18]. The change of

Fig. 1. Possible micro-state m of a core with N = 9 moments.

scale is performed within the statistical physics framework.
As the use of statistical physics leads to the emergence of
thermodynamic variables, the latter are taken into account
explicitly in the modeling. Consequently the chosen macro-
scopic state and its corresponding internal energy allow the
connection of the core to both electro-magnetic ports and
thermal ports. These ports, through the PHS formalism,
control the influence of an external magnetic field on one
hand (ultimately responsible for the presence of hysteresis,
as will be shown), and the influence of phase transitions, on
the other hand (responsible for the amount of hysteresis),
on the core state and its subsequent dynamics.

Understanding the Ising model at a quantum level is
not the object of this paper. Here we only give necessary
elements in order to derive a macroscopic model. Similarly
we do not propose new results on statistical physics but
use it in a standard way as a means to an end. Therefore we
present the main concepts without detailing all intermediate
steps. Readers who wish to deepen their knowledge on the
subject may refer to [19–21].

2.1 Ising Model
In the Ising model a ferromagnetic core is represented as

a set of N adimensional magnetic moments interacting with
one another. A possible state m of the core (called micro-
state in the following) is therefore a particular configuration
of these moments: m ∈ M = {−1, 1}N . Fig. 1 shows a pos-
sible micro-state m = [

1, −1, 1, 1, 1, −1, −1, 1, −1
]ᵀ

for N = 9.
The interactions between the micro-state moments are

expressed through the Heisenberg Hamiltonian H(m):

H(m) = −1

2
mᵀJexm, (2)

where each coefficient Jexi, j is the exchange energy [22]
between moment i and moment j. Assuming isotropic in-
teractions affecting nearest neighbors only, this exchange
energy simplifies to:

Jexi, j =
{

J i, j nearest neighbours, i �= j,
0 else,

(3)

where J is a constant energy characterizing the material.
For ferromagnetic materials J is positive; consequently the
Heisenberg Hamiltonian minimizes itself for configurations
in which moments align with one another.

2.2 Statistical Physics
The micro-state of the core may fluctuate randomly over

time without affecting its overall macroscopic properties:
indeed, several micro-states yield the same Hamiltonian.
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Therefore the specific micro-state of the core at any given
time cannot be known from macroscopic observations.
Thus we rely on a probabilistic description of the core
(referred to as the system in the following) to predict its
macroscopic behavior.

To this end, we consider the canonical ensemble, which
is the thermodynamic ensemble (i.e., a time-invariant prob-
ability space) of interest for a system under the following
set of assumptions hyp:

1. The system is closed (constant number of atoms N).
2. The system is isochoric (constant volume V).
3. The system may exchange energy with the exterior

(its energy fluctuates over time).
4. The exterior is much larger than the system and be-

haves like a thermostat (Tcore = Text = T).

The first two assumptions are taken into account in the ex-
pression of the Hamiltonian in Eq. (2). The fourth assump-
tion constrains the energy exchanges between the system
and exterior.

With this set hypwe look for the micro-states probability
distribution for the canonical ensemble at thermodynamic
equilibrium, denoted p�

hyp. This distribution derives from
a fundamental principle of statistical physics: the statistical
entropy maximization at thermodynamic equilibrium.

Derivation. Given a probability distribution p of micro-
states, the statistical entropy measures the amount of in-
formation required to know the exact micro-state of the
system. It is defined as:

S : p �−→ −kb

∑
m∈M

p(m) ln p(m), (4)

where kb = 1.38 × 10−23JK−1 is the Boltzmann constant.
Indeed, for a distribution mapping some micro-state m0 to
1 and the others to 0, the system is entirely known to be in
the state m0. According to Eq. (4) this distribution would
yield a zero entropy (the definition of S can be extended
to 0 since lim

x �→0
x ln x = 0). Conversely an equiprobable dis-

tribution between all micro-states maximizes the lack of
information on the system. From Eq. (4), this distribution
also maximizes the entropy.

When a system reaches thermodynamic equilibrium it
stops evolving. At this point the only information available
is the information corresponding to our assumptions on the
system. Since this information is minimal (any less infor-
mation would characterize a different system), the system
entropy should be maximal. Moreover, at equilibrium the
third assumption in hyp actually translates into the ergodic
hypothesis. This hypothesis stipulates that at equilibrium
the internal energy defined as the mean energy over time Ē
also coincides with the expectation of the Hamiltonians of
all possible micro-states:

Ē = E[H] :=
∑
m∈M

p�
hyp(m)H(m). (5)

Therefore for the canonical ensemble the entropy maxi-
mization at equilibrium can be written as:

p�
hyp = arg max

p
S(p)

subject to Ē = E[H].
(6)

Solving Eq. (6) (usually with Lagrange multipliers)
yields the well-known Boltzmann distribution for the
canonical ensemble:

p�
hyp(m) =

exp
(
−H(m)

kb T

)
Z(T )

,

Z(T ) =
∑
m∈M

exp
(
−H(m)

kbT

)
.

(7)

The dependency to the temperature T is directly related
to the constraint on Ē . Indeed, it can be shown that the asso-
ciated Lagrange multiplier λ, which appears in p�

hyp during
the derivation, is λ = −∂S/∂ Ē = −1/Tcore = −1/T (see,
e.g., [23] for a detailed derivation). The denominator Z(T )
defines the partition function of the system and acts as a
normalization factor. From Eq. (7) it is clear that at low
temperatures, micro-states with a lower Hamiltonian (i.e.,
whose moments are aligned with each other) are favored,
whereas at high temperatures, all micro-states tend to be
equiprobable. It follows that the higher the temperature,
the higher the entropy, but the Boltzmann distribution is
nonetheless the distribution maximizing the entropy at a
given temperature.

Finally, reinjecting Eq. (7) in Eqs. (4) and (5) yields the
thermodynamic entropy and the internal energy as functions
of the temperature:

S = S(p�
hyp) = S(T ) := ∂

∂T
(kbT lnZ)(T ), (8)

Ē = E(T ) := kbT 2 ∂lnZ
∂T

(T ) (9)

(see, e.g., [24] for detailed proof).

2.3 Core Macroscopic State and Energy
The classic mean-field Ising model computes an approxi-

mation of the free energy, which corresponds to the amount
of energy convertible into work, at constant temperature.
This mean-field free energy depends on a macroscopic,
scalar order parameter m ∈ [ − 1, 1]. This order parameter
can be understood as a “mean magnetic moment.” It is ±
1 when moments tend to align for all micro-states and 0 if
there is no alignment tendency at all. The free energy, in its
classic formulation, also depends on the external magnetic
field (see, e.g., [25] for a complete derivation).

Here we also rely on a mean-field approximation but
choose to express the internal energy as a function of the
(extensive) entropy S and another extensive variable, the
total magnetic flux BV . This way, in (1), the flow ẋcore

accounts for the time variation of extensive quantities (to
balance with quantities external to the core, or equilibrium-
establishing) and, concomitantly, the effort accounts for
intensive quantities (shared with the exterior at the core
interface, or equilibrium-determining). Thus the externality
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of the thermostat and magnetic field is made explicit. The
core macroscopic state can only change if the core is in
contact with the exterior (or another component) through
connection ports.

Assuming the core has periodic boundaries (a toric geom-
etry for instance), and reinjecting the mean-field partition
function of a core isolated from any magnetic field (see
[18] for a complete expression) in Eq. (9), the mean-field
internal energy is found to be:

Ē ≈ EM F (m, T ) = E0

(m2

2
− m tanh

(mTc

T

))
. (10)

In Eq. (10) the energy E0 = NJq, with q the (constant)
number of nearest neighbors of each moment, relates to
the minimal possible energy of the core: EM F (±1, 0) =
−E0/2.

A similar operation in Eq. (8) gives the mean-field ther-
modynamic entropy:

S ≈SM F (m, T ) = S0 f
(mTc

T

)
,

f (χ) = ln(2 cosh(χ − χ tanh(χ), χ ∈ R.

(11)

In Eq. (11) the entropy S0 = Nkb relates to the maximal
possible entropy of the core: SM F (0,+∞) = S0 ln(2).

The ratio E0/S0 := Tc gives the critical temperature, above
which the core behavior becomes paramagnetic.

Simultaneously we introduce the (extensive) core total
magnetic flux BVcore , defined as:

BVcore = m μ0 Ms V, (12)

where the constant μ0 = 4π × 10−7 H.m−1 is the vacuum
magnetic permeability, the quantity Ms is the core saturation
magnetization, and V is the core volume. The term μ0MsV,
corresponding to the core saturation total magnetic flux, is
denoted BVs in the following for simplicity.

Finally, the core macroscopic state is chosen to be ex-
pressed as:

xcore = [
BVcore , S

]ᵀ
. (13)

Noting that f is smooth even onR and strictly monotonic1

(so invertible) on R+, we obtain the expression of the core
internal energy:

Ecore(xcore) = E0

(
1

2

( BVcore

BVs

)2

−
∣∣∣ BVcore

BVs

∣∣∣g(S)

)
, (14)

where g(S) = tanh
(

f −1
(

S
S0

))
, S ∈ R+. The effort is:

∇Ecore(xcore) =
[ ∂ Ecore

∂ BVcore

(xcore),
∂ Ecore

∂S
(xcore)

]ᵀ
:= [Hcore, Tcore]ᵀ ,

(15)

where Hcore and Tcore denote the core internal magnetic field
and core temperature, respectively. The quantity Tcore de-
fined in Eq. (15) coincides exactly with the temperature T
used in Eq. (7), thus ensuring the thermodynamic consis-
tency of the model (proof in APPENDIX A.1).

Fig. 2 shows how as the entropy S increases, the core goes

1Indeed, f ′(χ) = −χ/ cosh2 χ ≤ 0 ∀χ ∈ R+.

Fig. 2. Energy function of the core.

Fig. 3. Equivalent circuit and PHS for the flow-controlled core.

from two ordered (aligned moments) meta-stable equilib-
rium states to one non-ordered (no alignment) stable equi-
librium state: it exhibits a phase transition (from ferromag-
netic to paramagnetic). Note that all non-linearities of the
core are intrinsically encoded into its energy. Therefore any
PHS comprising a core will exhibit a non-linear behavior,
regardless of its interconnection matrix.

2.4 Flow-Controlled Conservative PHS
We suppose that the core is flow-controlled. The outgoing

total magnetic flux and incoming entropy variation from the
exterior are denoted BVin and δeS, respectively.2 Fig. 3(a)
shows the equivalent circuit. Kirchhoff’s laws in receptor
convention, as well as Eq. (14), yield the PHS formulation
in Fig. 5(b).

2.5 Effort-Controlled Dissipative PHS
We suppose now that the core is effort-controlled. In

this case the exterior magnetic field Hin constrains the core
magnetic field:

Hcore = Hin. (16)

2The symbol δ stands for an inexact differential [21].
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Fig. 4 . Barkhausen jumps and resulting hysteresis during a cycle,
with and without damping. The dotted curve is the theoretical
core internal magnetic field; the solid curve is the real trajectory
followed by the core total magnetic flux constrained by an external
magnetic field.

Below the critical temperature, this constraint causes
jumps between meta-stable states [called Barkhausen jumps
[26], Fig. 4(a)]. The subsequent relaxation is responsible for
hysteresis, similarly to a relaxation oscillator [27]. In real
ferromagnetic cores however domain structure and non-
homogeneities [28] generate an energy function with not
two but multiple local minima. Therefore on a macroscopic
scale the trajectory followed by the magnetic flux during
jumps is damped [Fig. 4(b)]. The damping is modeled with
a linear magnetic resistor rcore connected in series with the
core.

Above the critical temperature there is no meta-stability,
and the remaining hysteresis is mainly due to eddy currents.

As the difference of energy before and after a jump is
entirely dissipated as heat [26], the Barkhausen jumps are
also responsible for the variation of entropy creation δiS in
the core. The associated thermal power TcoreδiS/dt is equal
to the magnetic power dissipated through rcore, so that

rcore H 2
rcore

− Tcore
δi S

dt
= 0. (17)

We deduce the dissipative flow and effort:

w = [−Tcore, Hrcore

]ᵀ
z(w) =

[
rcore H 2

rcore

Tcore
, rcore Hrcore

]ᵀ

=
[
δi S

dt
, ḂVrcore

]ᵀ
.
(18)

Finally, the second law of thermodynamics [21] states:

Ṡ = δi S

dt
+ δe S

dt
. (19)

Fig. 5(a) shows the equivalent circuit. Kirchhoff’s laws
in receptor convention, as well as Eqs. (14), (18), and (19),
yield the PHS formulation in Fig. 5(b).

Fig. 5. Equivalent circuit and PHS for the effort-controlled core.

Fig. 6. Coil equivalent representations as interfaces between electric (left side) and magnetic (right side) domains.
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3 CONNECTION TO COIL

3.1 Coil Model
The coil is a (considered linear here) component that can

be described in either the electrical or magnetic domain. In
the electrical domain, its state is the magnetic flux linkage
�coil and its energy is:

Eelec
coil (�coil) = �2

coil

2L
, (20)

with L the coil inductance. Its energy derivative w.r.t. �coil

is the coil current icoil = �coil/L.
In the magnetic domain, its state is BVcoil and its energy

is:

Emag
coil (BVcoil ) = B2

Vcoil

2μ0Vcoil
, (21)

with Vcoil the coil volume. Its energy derivative w.r.t. BVcoil

is the coil magnetic field Hcoil = BVcoil/(μ0Vcoil).
Obviously Eelec

coil (�coil) = Emag
coil (BVcoil ). Moreover, denot-

ing n the number of turns and � the length of the coil, the
coil flows and efforts in both domains are related through:[

Hcoil

�̇coil

]
=

[
0 n

�
n
�

0

][
ḂVcoil

icoil

]
. (22)

The coil can therefore be seen as an interface between the
electric and magnetic domains. This leads to the equivalent
quadripole representations shown in Fig. 6. In the following
the coil will therefore be represented as such a quadripole
to account for its double nature.

3.2 Coupling Between the Core and Coil
A ferromagnetic coil is formed when a core and a coil

are connected (in series in the electrical domain, in parallel
in the magnetic domain). As such the magnetic flux of the
coupled system is the sum of the magnetic fluxes:

BVcoupled = BVcoil + BVcore , (23)

and they share their magnetic field:

Hcoupled = Hcore = Hcoil. (24)

Therefore the coil acts as an effort-controller for the core
and the core dynamics are those described in SEC. 2.5.

3.3 Complete Ferromagnetic Coil Model
The losses due to Joule heating in the coil are modeled

with a linear resistor rcoil in series (in the electrical do-
main) with the coil, so that for the ferromagnetic coil, the
dissipative flows and efforts are:

w = [−Tcore, Hrcore , ircoil

]ᵀ
z(w) =

[
rcore H 2

rcore

Tcore
, rcore Hrcore , rcoilircoil

]ᵀ

=
[
δi S

dt
, ḂVrcore

, vrcoil

]ᵀ
.

(25)

The ferromagnetic coil equivalent circuit is shown in
Fig. 7(a). Kirchhoff’s laws on the equivalent circuit, as
well as Eqs. (14), (19), (21), (22), and (25), allow the PHS
formulation in Fig. 7(b).

3.4 Isothermal Transformations
In the case of interactions with a ferromagnetic coil at

constant temperature, one may use an alternate formulation.
The entropy is removed from the state, which becomes:

x = [
BVcore , BVcoil

]ᵀ
. (26)

The core internal energy becomes the free energy:

E free
core (BVcore ) = E0

(
1

2

( BVcore

BVs

)2

− θ ln cosh
( BVcore

BVs θ

))
,

(27)

where θ = T/Tc is now a parameter of the model. The
dissipative flow becomes:

w = [
Hrcore , ircoil

]ᵀ
, (28)

and the only input is vin. The PHS of the ferromagnetic
coil is otherwise unchanged. Nonetheless the applications
presented in the next section will rely on the formulation
given in SEC. 3.3, as it is more general.

4 COMPARISON TO MEASUREMENTS

To assess the accuracy of the model measurements are
performed on a Fasel Red inductor. The inductor is con-
nected in series with a resistor R = 100 � and driven

Fig. 7. Equivalent circuit and PHS for the voltage-controlled ferromagnetic coil.
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Table 1. Simulation parameters for the band-pass and transformer.

r1&r2&rcoil (�) rcore (�) L1&L2 (H) R (�) VR1 (�) E0 (J) S0 (JK−1) BVs (JA−1m) fs (Hz)

15 3.3e−6 5e−3 1 k 5 k 13.09 4.32e−2 6.61e−6 192 k

Fig. 8. Experimental setup and comparison to measurements for
a Fasel Red inductor.

with a sinusoidal voltage source [Fig. 8(a)]. The volt-
age across the inductor vout is measured and the induc-
tor magnetic flux linkage is obtained through the relation
�L(t) = ∫ t

0 vout(τ)dτ. The current iL is obtained through
the relation iL = /R. Assuming that T = 303 K, � = 0.016
m, and n = 150, a least-squares minimization between the
model and measurements, as well as Eq. (22), yield the val-
ues of rcoil, rcore, E0, S0, and BVs in Table 1. Figs. 8(b) and

8(c) show that the simulations obtained with these param-
eters match the measurements quite well for several input
amplitudes (see also [29]).

5 ILLUSTRATIVE EXAMPLES

In this section we illustrate a possible use of our ferro-
magnetic coil model with two examples: a band-pass filter
and a transformer. In order to specifically highlight the ef-
fect of magnetic non-linearities, both examples are kept
minimal. For the band-pass filter we consider the passive
sub-circuit only and ignore transistors and feedback. For
the transformer the input stage (typically an amplifier) is
not considered.

5.1 Band-Pass Filter
We consider the passive band-pass filter of a well-known

wah-wah pedal circuit [Fig. 9(a)], for which the influence
of the core non-linearities on the resulting sound are promi-
nent.

For this band-pass filter the input is the Q2 transistor
emitter voltage and the output is the VR1 potentiometer
voltage [Fig. 9(b), where the component L1 represents the
entire ferromagnetic coil equivalent circuit]. Resistors are
linear and obey Ohm’s law vR = RiR. Capacitors are linear,
of state qC and energy EC (qC ) = q2

C/(2C). These relations,
associated with Kirchhoff’s laws and Eqs. (14), (19), (21),
(22), and (25), allow a PHS formulation of the band-pass.

The complete PHS is given in Fig. 9(c). A simulation is
performed using a Newton-Raphson algorithm on the dis-
cretized PHS (see, e.g., [29, 30] for more details on the
discretization and integration), with vin = U0sin (2πf0 t).
For the parameters given in Table 1 and component values
in Fig. 9(a), the center frequency is fc ≈ 2 kHz and the
bandwidth is �f ≈ 1 kHz. Figs. 9(d)–9(f) show the simula-
tion results for different input frequencies f0 and U0 = 25 V.
The core saturation and hysteresis are mostly observed for
input frequencies in the filter bandwidth. Sound examples
are available at https://github.com/JNaj/jaes_ferromag.

5.2 Transformer With Ferromagnetic Core
Output transformers are generally present in amplifiers

to reduce the load impedance seen by the loudspeaker [31,
2]. Transformers with a ferromagnetic core are considered
particularly interesting because of the core high magnetic
permeability, which reduces the leakage flux [32].

We build a non-linear transformer model by coupling two
ferromagnetic coils, that is, letting them share the same core
[Fig. 10(a)]. The primary (resp. secondary) coil inductor
and associated resistor are denoted L1 and r1 (resp. L2 and
r2), with number of turns n1 (resp. n2). To simplify the
interconnection matrix we define for the magnetic domain
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Fig. 9. Circuit, PHS, and simulation results for the passive band-pass filter.

the flow f = ḂV /� and effort e = H�. Fig. 10(b) shows the
corresponding circuit, with gyrators defined by:[

e1

v1

]
=

[
0 n1

−n1 0

][
f1

i1

]
,[

v2

e2

]
=

[
0 n2

−n2 0

][
i2

f2

]
.

(29)

Kirchhoff’s laws and Eqs. (14), (19), (20), (25), and (29)
allow a PHS formulation of the transformer.

The complete PHS is shown in Fig. 10(c). A simulation
is performed (same technique as for the band-pass) with vin

= U0sin (2πf0 t) and parameters in Table 1. Figs. 10(d) and
10(e) show simulation results for different input voltages
and f0 = 100 Hz. It can be seen that saturation and hysteresis
arise for large input voltages while the transformer’s behav-
ior for small input voltages is quasi-linear. This corresponds
qualitatively to observations on real transformers.

It is worth noting that the modularity of the model would
allow for more complex transformer topologies (multiple
primaries, multiple secondaries, air-gaps. . .) without diffi-
culty.

6 CONCLUSION

In this paper a new macroscopic model of ferromagnetic
coil has been developed. It is based upon a component-
wise, energetic approach. Characteristics like saturation and
hysteresis are well reproduced, as well as the influence of
thermodynamics. This explicit influence is an improvement
with respect to other models. Moreover the modularity of
the model makes it particularly versatile, as the component
approach can be applied to multiple combinations of cores
and coils.
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Fig. 10. Circuit, PHS, and simulation results for the transformer.

As an illustration the model has been used to simulate
two representative audio sub-circuits: a band-pass filter and
transformer. Due to the reduced number of parameters and
variables these simulations can be performed in real-time.

Nonetheless even if the model has been successfully
identified with real components and exhibits a satisfac-
tory qualitative behavior for audio applications, extensive
measurements should be conducted to assess the model
relevance more quantitatively. This shall be the object of
future work.
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APPENDIX

A.1 Energy Derivative w.r.t the Entropy
From Eq. (14) we deduce:

∂ EcoreS(xcore)
1= − E0

S0

∣∣∣ BVcore
BVs

∣∣∣ f −1 ′
(

S
S0

)
cosh2

(
f −1

(
S

S0

))
2= E0

S0

∣∣∣ BVcore
BVs

∣∣∣ cosh2

(
f −1

(
S

S0

))
cosh2

(
f −1

(
S

S0

))
f −1

(
S

S0

)
3= E0

S0

∣∣∣ BVcore
BVs

∣∣∣ 1

f −1

(
S

S0

) 4= T (1)

using 1. tanh ′u = u′/cosh 2u, 2. f−1′ = 1/(f′◦f−1) and
f′(u) = −u/cosh 2(u), 4. E0/S0 = Tc and f −1(S/S0) =
|BVcore |/BVs Tc/T , where the symbol ◦ stands for function
composition.
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Supérieure des Télécommunications de Bretagne (Ing.
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Rémy Müller graduated from Institut National des Sci-

ences Appliquées (Ing. Dipl. in 2003) and Université
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Abstract This paper addresses the power-balanced modeling of physical systems with nu-
merous degrees of freedom. The proposed approach combines statistical physics and port-
Hamiltonian formulation, to produce macroscopic power balanced systems with reduced com-
plexity. Thermodynamic variables are explicitly taken into account in the modeling to ensure
thermodynamic consistency. The method is illustrated on two applications: an ideal gas in a
thermostat, and a ferromagnet in a thermostat.
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1. INTRODUCTION

Physical modeling is concerned with the representation of
a system governed by laws of physics. An accurate physical
model provides insight into the system’s behavior, beyond
the conditions available to the experimenter.

Several physical modeling techniques have been devel-
opped over the years: see e.g. Ersal et al. (2008) for an
overview. In this paper, we consider in particular the state-
space form known as port-Hamiltonian systems (PHS)
introduced in Maschke et al. (1992); van der Schaft et al.
(2014). PHS are multi-physical (that is, mechanical, elec-
trical, thermal ... or a combination as well), and modular (a
power-conserving or dissipative interconnection assembly
of PHS is still a PHS). Most importantly, the PH formalism
structurally fulfills the physical power balance. Moreover,
numerical methods that preserve this guarantee in the
discrete-time domain are available for simulations: Falaize
and Hélie (2016). Nevertheless, simulating PHS with nu-
merous degrees of freedom can prove an issue, as it involves
very large matrices.

On the other hand, statistical physics is especially designed
to describe complex systems with a reduced number of
variables. From a collection of interacting elementary
particles subject to constraints, statistical physics predicts
macroscopic thermodynamic phenomena, such as entropy
creation and phase transitions: Stowe (2007); Landsberg
(2014).

While thermodynamics has been broadly studied in the
context of PHS modeling in e.g. Eberard and Maschke
(2004); Eberard et al. (2007); Ramirez et al. (2013); Del-
venne and Sandberg (2014); van der Schaft (2020), the
proper derivation of thermodynamic variables through sta-
tistical physics is seldomly addressed. In this paper, we
combine the two approaches and propose a series of steps
to systematically construct a simplified yet physically-
based, structured macroscopic PHS, from a complex sys-
tem described by statistical physics.

This paper is structured as follows. Section 2 presents
the key principles behind statistical physics, and details
the derivation of a macroscopic PHS from a stochastic
description. Section 3 applies the method to two illustra-
tive examples: an ideal gas, and a ferromagnet. Finally,
section 4 gives some conclusions and perspectives.

2. THEORETICAL FRAMEWORK

2.1 Micro-state of a system

Consider a system composed of particles of matter occu-
pying a volume. Denote M the set of all possible configura-
tions of all (or subsets of) countable particles for all volume
values. A particular configurationm ∈M is called amicro-
state of a system. For instance, each micro-state of a gas
can be described in classical mechanics by a particular set
of positions and momenta.

Each micro-state is mapped to a number of particles, a
volume, and an energy, corresponding to the following
functions:
N : M 7→ N∗

m 7→ N (m) micro-state number of particles,
V : M 7→ R+∗

m 7→ V(m) micro-state volume,
E : M 7→ R

m 7→ E(m) micro-state energy,
(1)

where the energy function E is assumed to have an inferior
bound, i.e., E(m) ≥ c for some c ∈ R.

2.2 Accessible micro-states under constraints

According to experimental conditions, any quantity ϕ ∈
F = {N ,V} can be fixed while E and the remaining
unfixed quantities in F are left free to fluctuate 1 . In this
1 Note that F is susceptible to contain other functions, depending
on the physics (electric, magnetic, etc) of the considered system.
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case, the experimental constraints determine the set of
accessible micro-states Ma. For instance, a closed system
(no exchange of particles with the environment) has a
fixed N (m) = N0 ∀m, while V and E can fluctuate.
However these fluctuations are coupled through the quan-
tity E(m) + P0V(m), where P0 is the (constant) exter-
nal pressure 2 . Similarly, an isochoric system has a fixed
volume V(m) = V0, and the fluctuations of N and E
are coupled through the quantity E(m)−µ0N (m), where
µ0 is the (constant) external chemical potential. Denote
Q = {E , E + P0V, E − µ0N , E + P0V − µ0N }. If the
system is thermally insulated, the constraint on Ψ ∈ Q is
Ψ(m) = Ψ0 with a given Ψ0 ∈ R, hence :

Ma = {m ∈M | Ψ(m) = Ψ0}. (2)

The case of a system in thermal contact with its environ-
ment is addressed in section 2.4.

2.3 Stochastic modeling and measure of uncertainty

The system may be in any accessible micro-state, and goes
randomly from one accessible micro-state to another. As
it is not possible to predict these fluctuations in a de-
terministic fashion, statistical physics adopts a stochastic
description. This description assigns to each micro-statem
a probability p(m) to be the actual state of the system.

Given a probability distribution p, a measure of the un-
certainty on the fluctuating micro-state is the statistical
entropy Gray (2011), defined as (for a discrete distribu-
tion 3 ):

S : p 7−→ −k
∑

m∈Ma

p(m) ln p(m), (3)

where k is a positive constant. The entropy is indeed a
measure of lack of information. For instance, a probability
distribution assigning 1 to some micro-state m0 and 0 to
all others would mean that the system is in the micro-state
m0 for certain. From (3), the system entropy would be
zero for such a distribution. Conversely, an equiprobable
distribution between all micro-states would maximize the
uncertainty for an observer, as well as the entropy.

The entropy is a positive quantity, since 0 ≤ p(m) ≤
1 ∀m. Moreover, the total entropy of two independent
systems is the sum of their entropies, since p(m,m′) =
p(m)p(m′). It follows that the entropy is an extensive
quantity.

2.4 Principle of maximum entropy at thermodynamic
equilibrium

Thermodynamic equilibrium is reached when the con-
straints on the system are met. At that point, the system
stops evolving and provides a minimal amount of informa-
tion. Therefore, at equilibrium, the micro-state probability
distribution maximizes the statistical entropy, given the
constraints on the system. Moreover, at thermodynamic
equilibrium, statistical physics assumes the ergodic hypoth-
esis (see e.g. Patrascioiu (1987) for a discussion about its
validity; here we will admit it as a working hypothesis).
2 The derivation of such coupling quantities is not detailed here.
However, they are listed in Table 1, see also Graben and Ray (1991).
3 It is similarly defined for a continuous distribution: the sum is
replaced with an integral.

This hypothesis states that at equilibrium, the system
visits all accessible micro-states, given a sufficiently long
period of time. As a result, the temporal mean Ψ̄ of a
fluctuating quantity Ψ ∈ Q coincides with its expectation:

E[Ψ ] :=
∑

m∈Ma

p(m)Ψ(m) = Ψ̄ . (4)

It follows that the micro-state probability distribution at
equilibrium p? is:

p? = arg max
p

S(p)

subject to


E[Ψ ] = Ψ̄∑
m∈Ma

p(m) = 1

(5)

In the following, the constant k in (3) is taken as the Boltz-
mann constant kb = 1.38× 10−23J.K−1. This ensures that
the statistical entropy coincides with the thermodynamic
entropy at equilibrium.

To solve (5), we introduce and optimize the Lagrangian:

L : (p, λΨ , λ0) 7→ − kb
∑

m∈Ma

p(m) ln p(m) + λΨ
(
E[Ψ ]− Ψ̄

)
+ λ0

 ∑
m∈Ma

p(m)− 1

 ,

(6)
where λΨ and λ0 are Lagrange multipliers.

Case 1: system thermally insulated. From (2), E[Ψ ] =
Ψ0. The Lagrangian simplifies, and solving ∂L = 0 yields
the equiprobable distribution:

p?
(
m | Ψ0

)
= 1/Ω, Ω = card (Ma) . (7)

Case 2: system in thermal contact. Solving ∂L = 0
yields:

p?
(
m | Ψ̄

)
=

exp
(
λΨΨ(m)/kb

)
Z (λΨ )

,

Z (λΨ ) =
∑

m∈Ma

exp
(
λΨΨ(m)/kb

)
.

(8)

A more detailed derivation can be found in Jaynes
(1982).

For systems in thermal contact with their environment,
the Lagrange multiplier λΨ has a direct physical interpre-
tation. Indeed, from (4)-(8), we deduce :

Ψ̄ =
∂

∂λΨ
kb lnZ (λΨ ) . (9)

Moreover, reinjecting (8) in (3) yields the thermodynamic
entropy S:

S = S(p?) = kb lnZ (λΨ )− λΨ Ψ̄ := S
(
Ψ̄
)
. (10)

It follows that S is a Legendre transform of kb lnZ and
that:

− λΨ =
∂

∂Ψ̄
S
(
Ψ̄
)

= − 1

T
, (11)

where T is the temperature (both internal and external,
at equilibrium).

By applying maximum entropy to each constraint, we
systematically derive the micro-state probability and the
entropy for the corresponding statistical ensemble (Ta-
ble 1, see also Ray (2005)).

IFAC LHMNC 2021
Berlin Germany, October 11-13, 2021

71

144 Appendix E. Related Publications



Table 1. Statistical ensembles and associated constraints.

Ensemble Constraint p?(m) Entropy Example
Micro-canonical E(m) = E0 1/Ω kb ln Ω Gas in an isolated tank

Isoenthalpic-isobaric E(m) + P0V(m) = H0 1/Ω kb ln Ω
Gas in a closed tank

No

with a piston,
thermally insulated

thermal contact Unnamed E(m)− µ0N (m) = L0 1/Ω kb ln Ω
Gas in a porous tank,
thermally insulated

Unnamed E(m) + P0V(m) 1/Ω kb ln Ω
Gas in a porous tank
with a piston,

−µ0N (m) = R0 thermally insulated

Thermal contact

Canonical E[E] = Ē exp(−E(m)/kbT)
Z(T )

kb lnZ(T ) + Ē/T Gas in a closed tank,
in contact with a thermostat

Isothermal-isobaric E[E + P0V] = H̄ exp(−H(m)/kbT)
Z(T,P0)

kb lnZ(T, P0) + H̄/T
Gas in a closed tank
with a piston,
in contact with a thermostat

Grand-canonical E[E − µ0N ] = L̄
exp(−L(m)/kbT)
Z(T,µ0)

kb lnZ(T, µ0) + L̄/T
Gas in a porous tank,
in contact with a thermostat

Unnamed E[E + P0V − µ0N ] = R̄ exp
(
−R(m)/kbT

)
R̄/T

Gas in a porous tank
with a piston,
in contact with a thermostat

2.5 Macro-state of a system and PHS formulation

Following the ergodic hypothesis, the macroscopic number
of particles at equilibrium is N = E[N ]. Similarly, the
macroscopic volume at equilibrium is V = E[V]. A third
macroscopic variable is the thermodynamic entropy S.
If all external efforts constraining the system (that is,
T, µ0, P0, or a combination of them depending on the
experimental conditions) are kept constant in time, there
is no dynamics since all macroscopic variables become
constant in time. However if these quantities are allowed to
vary (slowly, so that the ergodic hypothesis is still verified),
one can study the system dynamics between successive
equilibrium states.

In order to do that, we rely on port-Hamiltonian sys-
tems: Duindam et al. (2009); van der Schaft et al. (2014),
under a differential-algebraic formulation Beattie et al.
(2017). This formulation allows the representation of a
dynamical system as a network of:

(1) storage components of state x and energy E (x),
storing the power Pstored = ∇E (x)

ᵀ
ẋ;

(2) dissipative components of flow w and effort z (w),
such as the dissipated power Pdiss = z (w)

ᵀ
w is non-

negative for all w;
(3) connection ports conveying the outgoing power Pext =

uᵀy where u are inputs and y are outputs.

The flows f and efforts e of all components are coupled
through a skew-symmetric interconnection matrix J =
−Jᵀ (possibly dependent on x): ẋw

y


︸ ︷︷ ︸

f

= J

∇E (x)
z (w)
u


︸ ︷︷ ︸

e

. (12)

For instance, an open system in a thermostat is governed
by the conservative PHS in Fig. 1, where δeS/dt denotes
the outgoing entropy flow, int indexes internal flows and
efforts, ext indexes external flows and efforts.

∇E(x) u

Tint µint −Pint
δeS/dt Ṅext V̇ext


Ṡ . . . −1 . .

ẋ Ṅint . . . . −1 .
V̇int . . . . . −1
Text 1 . . . . .

y µext . 1 . . . .
Pext . . 1 . . .

Figure 1. Conservative PHS of an open system in a
thermostat (dots represent zeros).

2.6 Method recap

To sum up, the derivation of a macroscopic PHS from a
stochastic description is performed in 5 steps:

Step 1 Express micro-state m and laws N ,V, E .
Step 2 Pick a statistical ensemble of interest, according
to experimental hypotheses.

Step 3 Compute the corresponding micro-state probabil-
ity distribution at equilibrium.

Step 4 Compute the internal energy Ē and the macro-
scopic state x = [S,N, V ]ᵀ.

Step 5 Express the internal energy Ē as a function of the
macroscopic state to obtain E(S,N, V ).

A PHS is finally derived by adding ports accounting for
the environment, as shown for each example in the next
section.

2.7 Remark on thermodynamic potentials

If only some external efforts constraining the system are
kept constant, it is possible to work with an appropriate
Legendre transform of the internal energy, in order to re-
duce the PHS formulation. For instance, the (conservative)
PHS of an open system in a constant thermostat, becomes
that of Fig. 2, with F (T,N, V ) = E(S,N, V )− TS.
Table 2 recaps usual Legendre transforms of the internal
energy, also called thermodynamic potentials.
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Table 2. Thermodynamic potentials.

Constant Potential
Internal energy E(S,N, V )

T Helmholtz free energy F (T,N, V ) = E(S,N, V )− TS

P Enthalpy H(S,N, P ) = E(S,N, V ) + PV

T, P Gibbs free energy G(T,N, P ) = H(S,N, P )− TS

µ Hill energy L(S, µ, V ) = E(S,N, V )− µN

T, µ Grand potential J(T, µ, V ) = L(S, µ, V )− TS

P, µ Ray energy R(S, µ, P ) = E(S,N, V ) + PV − µN

T, P, µ Guggenheim energy R(S, µ, P )− TS = 0

∇F (x) u

µint −Pint Ṅext V̇ext
ẋ Ṅint . . −1 .

V̇int . . . −1
y µext 1 . . .

Pext . 1 . .

Figure 2. Conservative PHS of an open system in a
constant thermostat (dots represent zeros).

3. APPLICATIONS

3.1 Ideal gas in a thermostat

Consider N indiscernible, non-interacting atoms in a
closed, rigid cube (constant volume V ) in contact with
a thermostat at temperature T .
Step 1. A micro-state of an atom is a vector m =
[nx, ny, nz] ∈ N∗3, where ni is the energy quantization
along axis i. Denoting by m the atom mass, a the cube
edge length, and h the Planck constant, the Hamiltonian
of the atom is given by Davies (1998):

E(m) =
(
n2
x + n2

y + n2
z

)
h2
/8ma2. (13)

Step 2. From the hypotheses, the statistical ensemble of
interest is the canonical ensemble (see Table 1).
Step 3. The micro-state probability distribution at equi-
librium is p?(m) = exp

(
−E(m)/kbT

)
/Z(T ).

Step 4. From (8), the partition function for one atom is:

Z0(T ) =
(

2π T/T0

)3/2
, with T0 = h2

/ma2kb (14)
(proof in Appendix A). For N atoms, the partition func-
tion becomes:

Z(T ) = Z0(T )N/N ! =
(

2π T/T0

)3N/2
/N !. (15)

For the canonical ensemble, (9) can be rewritten as:

Ē = kbT
2 ∂ lnZ
∂T

(T ), (16)

so that:
Ē = 3/2 NkbT. (17)

From (10), we deduce:
S = kb lnZ(T ) + Ē/T = S0 + 3/2 Nkb ln

(
T/T0

)
,

S0 = 3/2 Nkb ln
(

2πe/
(
N !

2/3N
))
.

(18)

Step 5. From (18), we deduce:
T = T0 exp

(
2 (S−S0)/3Nkb

)
. (19)

Reinjecting in (17), we obtain:
E(S) = 3/2 NkbT0 exp

(
2 (S−S0)/3Nkb

)
. (20)

It is immediately verified that, as expected, ∂E/∂S = T .
As N and V are constant, they are removed from the state
of the PHS and the only state variable is the entropy S.
The constraint due to the thermostat is expressed at the
ports of the PHS. Finally, we obtain the following PHS:

∇E(x) u
Tint

δeS/dt[ ]
ẋ Ṡ . −1
y Text 1 .

.

3.2 Ferromagnetic core in a thermostat

Here, we sum up results of Najnudel et al. (2020). The
goal is to illustrate the modeling of a more complex system
exhibiting phase transitions and dissipation.

Consider a ferromagnetic core with constant number of
atoms N , constant volume V , in contact with a thermostat
at temperature T .
Step 1. Following the model of Ising Ising (1925) (see also
Newell and Montroll (1953); Strecka and Jascur (2015)),
the core is represented as a set ofN adimensional magnetic
moments, interacting with one another. A micro-state of
the core is a particular configuration m ∈ M = {−1, 1}N .
The corresponding energy is the Heisenberg Hamiltonian:

E(m) = −1/2 mᵀJexm, (21)
where each coefficient Jexi,j is the exchange energy be-
tween moment i and moment j Liechtenstein et al. (1984).
Assuming isotropic interactions affecting nearest neigh-
bours only, this exchange energy simplifies to:

Jexi,j =

{
J i, j nearest neighbours, i 6= j,

0 otherwise, (22)

where J is a constant energy characterizing the material.
Step 2. From the hypotheses, the statistical ensemble of
interest is the canonical ensemble (see Table 1).
Step 3. The micro-state probability distribution at equi-
librium is p?(m) = exp

(
−E(m)/kbT

)
/Z(T ).

Step 4. Above dimension 2 in space, there is no an-
alytic expression for Z(T ). Assuming small micro-state
fluctuations, we rely on the mean-field approximation:
Utermohlen (2018), which yields

ZMF (m,T ) = exp
(
−NJqm2

/2 kbT
) (

2 cosh
(
Jqm/kbT

))N
.

(23)
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Figure 3. Energy function of the ferromagnetic core.

In (23), the auxiliary variable m ∈ [−1, 1] can be in-
terpreted as a mean magnetic moment, while q is the
(constant) number of nearest neighbours of each moment.
Reinjecting (23) in (16), the mean-field internal energy is
found to be:
Ē ≈ EMF (m,T ) = E0

(
m2
/2−m tanh

(
mTc/T

))
, (24)

where E0 = NJq, and Tc = Jq/kb is the critical tem-
perature, above which the core becomes paramagnetic.
Reinjecting (23) in (10), we obtain the thermodynamic
entropy:

S ≈ SMF (m,T ) = S0 f
(
mTc/T

)
, (25)

where S0 = Nkb and f(χ) = ln
(
2 cosh (χ)

)
− χ tanh (χ).

Step 5. Finally, introducing the total magnetic flux
BVcore

= m µ0MsV , where µ0 = 4π × 10−7 H.m−1 is
the vacuum magnetic permeability and Ms is the core
saturation magnetization, we obtain:

Ecore(S,BVcore) = E0

(
1/2
(
BVcore/BVs

)2 −∣∣BVcore/BVs ∣∣ g(S)
)
,

(26)
where BVs

= µ0MsV and g(S) = tanh
(
f−1

(
S/S0

))
.

The internal effort is ∇Ecore(S,BVcore
) = [Tcore, Hcore]

ᵀ,
where Tcore and Hcore denote the core temperature and
the internal magnetic field, respectively. Figure 3 shows
the core going from two meta-stable equilibrium states to
one stable equilibrium state, as the entropy increases. This
corresponds to a phase transition from ferromagnetic to
paramagnetic.

Dissipation. When the core is constrained by an exterior
magnetic field Hin (created by a coil for instance), jumps
between meta-stable states, called Barkhausen jumps,
occur: Bertotti (1998). These jumps are damped (Fig. 4)
due to domain structure and non-homogeneities (see Kittel
(1949)). This damping can be modeled with a linear
magnetic resistor rcore connected in series with the core
(Fig. 5a). As the difference of energy before and after
a jump is entirely dissipated as heat Bertotti (1998),
Barkhausen jumps are also responsible for the variation of
entropy creation δiS in the core. The associated thermal
power is equal to the magnetic power dissipated through
rcore, so that:

rcoreH
2
rcore − Tcore

δiS/dt = 0, (27)
where dt stands for an infinitesimal increment of time. We
deduce the dissipative flow and effort:

w = [−Tcore, Hrcore ]
ᵀ

z(w) =
[
rcoreH

2
rcore/Tcore, rcoreHrcore

]ᵀ
=
[
δiS/dt, ḂVrcore

]ᵀ
.

(28)

Figure 4. Damped Barkhausen jumps and resulting hys-
teresis during a cycle. The red curve is the theoretical
core internal magnetic field, the blue curve is the real
trajectory followed by the total magnetic flux of the
core constrained by an external magnetic field.

Finally, the second law of thermodynamics Landsberg
(2014) states:

Ṡ = δiS/dt− δeS/dt. (29)
Kirchoff’s laws in receptor convention, as well as (26)-(28)-
(29), yield the PHS formulation in Fig. 5b. Note that in
addition to the power balance, the entropy balance is made
explicit in this formulation.

This model has been successfully implemented in several
applications simulating audio circuits (see Najnudel et al.
(2020)).

4. CONCLUSION

In this paper, we presented a method for deriving an
ad hoc macroscopic port-Hamiltonian formulation for a
constrained system described by statistical physics.

This method is based on two key principles of statistical
physics (that is, maximum entropy and the ergodic hy-
pothesis), and expresses the internal energy of the system
as a function of extensive thermodynamic variables. The
exchanges of energy and entropy are made explicit through
the PH formulation. Constraints are modeled in ports as
inputs, and entropy creation is modeled as dissipation. Al-
ternative formulations based on thermodynamic potentials
are also possible, under certain conditions.

The method is applied to model two systems: an ideal
gas in a thermostat, and a ferromagnet in a thermostat.
In the case of the ferromagnet, the method successfully
captures complex phenomena such as phase transitions,
meta-stability, dissipation and entropy creation, with only
two state variables and one dissipative component.

A perspective of this work is to extend the method to
other microscopic quantities and constraints, not restricted
to the system number of atoms and volume. Another
perspective is to generalize the mean-field approximation
(for systems composed of particles interacting with one
another), and introduce appropriate auxiliary variables in
order to obtain approximations of the partition function
with an arbitrary degree of accuracy. This shall be the
object of future work.

REFERENCES

Beattie, C., Mehrmann, V., Xu, H., and Zwart, H. (2017).
Port-Hamiltonian descriptor systems. arXiv preprint

IFAC LHMNC 2021
Berlin Germany, October 11-13, 2021

74

Appendix E. Related Publications 147



Hin
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Appendix A. PARTITION FUNCTION OF AN ATOM
IN A BOX

Denoting ε0 = h2
/(8ma2), we have

Z0(T ) =
∑
m

exp
(
−E(m)/kbT

)
=

+∞∑
nx=1

+∞∑
ny=1

+∞∑
nz=1

exp

(
−
(
n2
x + n2

y + n2
z

)
ε0/kbT

)

=

+∞∑
n=1

exp
(
−n2ε0/kbT

)3

≈

(∫ +∞

0

exp
(
−x2ε0/kbT

)
dx

)3

=
(

1/2
√
πkbT/ε0

)3

=
(

2π T/T0

)3/2
, T0 = h2

/ma2kb.

(A.1)
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ABSTRACT

This paper addresses identification of nonlinear circuits for
power-balanced virtual analog modeling and simulation. The pro-
posed method combines a port-Hamiltonian system formulation
with kernel-based methods to retrieve model laws from measure-
ments. This combination allows for the estimated model to retain
physical properties that are crucial for the accuracy of simulations,
while representing a variety of nonlinear behaviors. As an illus-
tration, the method is used to identify a nonlinear passive peaking
EQ.

1. INTRODUCTION

Virtual analog modeling is an active research field, in particular
within the audio community. Indeed, vintage analog audio effects
are still appreciated among musicians, but original devices are now
rare and delicate to maintain. A virtual replica then becomes a
compelling alternative.

Historically, modeling methods have been roughly classified
into two categories, white box and black box. White box modeling
relies heavily on physics, and requires extensive knowledge on the
circuit, from components datasheets to circuit schematics. Such
modeling include Wave Digital Filters [1, 2, 3] and State-Space
representations [4, 5, 6]. Black box modeling on the other hand is
more concerned with reproducing a global input-output behavior,
without necessarily capturing local phenomena taking place inside
the system. It is usually more adaptable, but less physically inter-
pretable. Neural Networks [7, 8] are popular black box models.
Volterra-based methods can be either white box oriented [9, 10],
or black box oriented [11].

A crucial counterpart of modeling is system identification, that
is, retrieving model laws and parameters from measurements. Ob-
viously, one designs an identification method with a specific model
—white box or black box— in mind (see e.g. [12, 13] for Volterra,
or [14] for WDF). In recent years nonetheless, hybrid modeling,
or grey box, has gained considerable momentum for identification.
Indeed, it often successfully combines desirable features from both
paradigms. Such in-between modeling associates State-Space rep-
resentations and polynomial models [15], State-Space represen-
tations and Neural Networks [16], digital filters and Neural Net-
works [17] to list a few.

In this paper, we consider an identification method relying on
the State-Space representation known as port-Hamiltonian systems
(PHS) [18, 19] on one hand, and kernel-based methods [20, 21] on

Copyright: © 2021 Judy Najnudel et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

the other hand. PHS are built as interconnected components with
physical constitutive laws, so that the power balance of the system
is structurally satisfied. This energy-based formulation can be as-
sociated with numerical methods that preserve the power balance
and passivity in the discrete-time domain, for both linear and non-
linear systems. The PHS approach has proved relevant to simulate
audio systems [22]. Although extensive work is concerned with
linear PHS identification [23, 24], nonlinear PHS identification is
still little explored (see e.g. [25] for an overview). To address non-
linear behavior, we rely on reproducing kernels. Reproducing ker-
nels have long proven to be a valuable and flexible tool for function
approximation and solving of differential equations [26]. As such,
they already have succesfully been implemented for audio circuit
modeling [27]. Reproducing kernels are privileged here over deep
learning approaches such as in [28], because the number of param-
eters to infer is much smaller, and because they are generally more
interpretable. The specificity of our method resides in choosing a
kernel and tailoring the regression so that key physical properties
of the system, such as power balance and passivity, are retained.

This paper is organized as follows. In section 2, we give a
brief overview of PHS. In section 3, we propose a parametrization
of the PHS interconnection matrix. In section 4, we present an en-
ergy modeling based on reproducing kernels. Section 5 describes
an optimization procedure to retrieve PHS parameters from mea-
surements. In section 6, the complete method is tested on a virtual
passive peaking EQ. Finally, some conclusions and perspectives
are given in section 7.

2. PORT-HAMILTONIAN FORMULATION AND
WORKING ASSUMPTIONS

2.1. Port-Hamiltonian formulation

The identification method described in this paper relies on port-
Hamiltonian systems [29, 19], under a differential-algebraic for-
mulation (PHS). This formulation allows the representation of a
dynamical system as a network of:

1. storage components of state x and energy H (x), storing
the power Pstored = ∇H (x)⊺ ẋ;

2. dissipative components of flow w and effort z (w), such as
the dissipated power Pdiss = z (w)⊺ w is non-negative for
all w;

3. connection ports conveying the outgoing power Pext =
u⊺y where u are inputs and y are outputs.

The flows f and efforts e of all components are coupled through
a skew-symmetric interconnection matrix S = −S⊺ (possibly de-
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iin

R

vR

iR L

vL

iL
C
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iC

(a) RLC circuit in series.

∇H (x) z (w) u
vC iL vR vin


ẋ iC . 1 . .

vL −1 . −1 1
w iR . 1 . .
y iin . −1 . .

(b) Corresponding PHS. Dots indicate zeros.

∇H (x) u
vC iL vin[ ]

ẋ iC . 1 .
vL −1 −R 1

y iin . −1 .

(c) Corresponding PH-ODE. Dots indicate zeros.

Figure 1: RLC circuit in series and its PHS representations.

pendent on x):  ẋw
y


︸ ︷︷ ︸

f

= S

∇H (x)
z (w)
u


︸ ︷︷ ︸

e

. (1)

Here, flows can either be currents (e.g. for capacitors) or voltages
(e.g. for inductors), and vice versa for efforts. Such systems satisfy
the power balance Pstored + Pdiss + Pext = 0. Indeed, Pstored +
Pdiss + Pext = e⊺f = e⊺Se is zero since e⊺Se = (e⊺Se)⊺ =
− (e⊺Se) due to the skew-symmetry of S.

Under some additional assumptions (not detailed here), this
formulation can be reduced to the following PH-ODE representa-
tion [19]: [

ẋ
y

]
= (J −R)

[
∇H (x)

u

]
, (2)

where J = −J⊺ is skew-symmetric, and R = R⊺ is positive
semi-definite. Both matrices are possibly dependent on x. In par-
ticular, formulation (2) is possible when the dissipative law z is
linear.

Throughout this paper, we adopt the passive sign convention
for all components, including ports and external sources. This
means that the current is defined positive when entering the com-
ponent through the positive voltage terminal [30].

2.2. Example

As an illustration, consider the linear RLC circuit in series (Fig.
1a). The resistor obey Ohm’s law, with flow iR (current through
the resistor) and effort z(iR) = R iR = vR (voltage across the
resistor). The inductor has state ΦL (magnetic flux linkage through
the inductor), energy HL(ΦL) = Φ2

L/2L and effort H′
L(ΦL) =

ΦL/L = iL (current through the inductor). The capacitor has state
qC (electric charge in the capacitor), energy HC(qC) = q2C/2C
and effort H′

C(qC) = qC/C = vC (voltage across the capacitor).
Kirchhoff’s laws in receptor convention yield the PHS and PH-
ODE representations in Fig. 1b and Fig. 1c, respectively.

2.3. Working assumptions

In the following, we limit ourselves to circuits verifying that:

1. The dissipation law z is linear.

2. The coefficients of J −R are constant.

3. Separability: the energy law is a separable function of the
state, i.e. it takes the form H (x) =

∑Nx
k=1 Hk (xk) , Nx =

dim (x).

4. Smoothness: Hk is at least C2 ∀k ∈ {1, ..., Nx}.

5. Convexity: the energy law is convex, i.e. H(2)
k (xk) ≥

0 ∀k, xk, where H(2)
k denote the second derivative of Hk

(a formal definition can be found in Appendix A).

Assumptions 1 to 3 cover electronic circuits constituted of
one-ports such as (possibly nonlinear, see [31]) inductors, (pos-
sibly nonlinear, see [32]) capacitors, linear conductors and lin-
ear resistors, which admit a PH-ODE formulation such as Eq. (2).
This deliberately excludes nonlinear dissipative components such
as diodes, transistors and vacuum tubes, which will be the object
of future work. Assumptions 4 and 5 are stricter than necessary:
actually, a sufficient condition to ensure passivity of storage com-
ponents is for the energy to have an inferior bound [19]. Neverthe-
less, enforcing convexity results in a desirable asymptotic behav-
ior, and most energy laws are convex anyway (a notable exception
concerns meta-stable ferromagnetic cores [31]).

In the next sections, we assume that we can measure x, u
and y, and look for an estimation of the reduced matrix J − R
and an approximant of H, verifying both Eq. (2) and our working
assumptions.

3. INTERCONNECTION MATRIX MODELING

3.1. Decomposition of J

Since J = −J⊺ is skew-symmetric, it can be written as:

J = J(θJ) :=

NJ∑
k=1

θJk Jk, θJ =
[
θJ1 , . . . , θ

J
NJ

]
∈ RNJ , (3)

where {Jk} is the canonical base of skew-symmetric matrices, and
NJ = dim (J)

(
dim (J)− 1

)
/ 2.

For the example of section 2.2, we have:

{Jk} =


 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

 ,

θJ = [1, 0, 1].
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3.2. Decomposition of R

Since R is positive semi-definite, it admits a Cholesky decompo-
sition [33, 34] and can be written as:

R = R(θR) = T (θR)T (θR)⊺,

T (θR) :=

NR∑
k=1

θRk Tk, θR =
[
θR1 , . . . , θ

R
NR

]
∈ RNR ,

(4)

where {Tk} is the canonical base of lower triangular matrices,
NR = dim (R)

(
dim (R) + 1

)
/ 2, and diagonal coefficients are

non-negative. For convenience, we choose the first dim (R) coef-
ficients to be the diagonal coefficients.

For the example of section 2.2, we have:

{Tk} =


1 0 0
0 0 0
0 0 0

 ,

0 0 0
0 1 0
0 0 0

 ,

0 0 0
0 0 0
0 0 1

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 0
1 0 0

 ,

0 0 0
0 0 0
0 1 0


θR =

[
0,
√
R, 0, 0, 0, 0

]
.

4. ENERGY LAW MODELING

4.1. Optimal approximant

We consider the reproducing kernel theory to build an approximant
of H. We refer to [35, 26] for a complete theoretical overview of
Reproducing Kernel Hilbert Spaces (RKHS). In this section, we
only recall practical results.

Consider the classic scattered data interpolation problem, which
is finding a function f verifying:

f (xi) = yi ∀i ∈ {1, ..., N}, (5)

for some given data {(x1, y1), ..., (xN , yN )}, [x1, ..., xN ] ∈ ΩN .
Assuming that f belongs to a RKHS K, the optimal approximant
of f in K is the function f̃ defined as:

f̃ : x 7→
N∑

j=1

λ̃jK (x, xj) , (6)

with K : Ω × Ω 7→ R the positive definite kernel inducing K. In
Eq. (6), the vector λ̃ is the solution of the linear system Kλ = y,
where Ki,j = K (xi, xj). For instance, the kernel defined as:

K (xi, xj) =
a

π
sinc

(
a(xi − xj)

)
,

where 0 < a < +∞ and sinc(u) = sin(u)/u, is the reproducing
kernel of the space of bandlimited continuous functions of band-
with in [−a, a].

In practice, the RKHS K of interest for a given problem is of-
ten unknown. Therefore what motivates the choice of kernel boils
down to the properties one wishes to attach to the approximant,
such as locality1, smoothness, interpolation behavior, sensitivity
to noise, etc. However, there is an inherent tradeoff between these

1that is, how much influence a data point has over its neighborhood.

Figure 2: Two different approximants of the same function f(x) =
sin(2πx) + sin(6πx) + sin(10πx) with noisy data.

properties. Indeed, if locality is desirable (typically, because f
contains high frequencies), choosing a local kernel is necessary.
Nonetheless good reconstruction with a highly local kernel neces-
sitates a high number of samples N . But a high number of samples
can in turn lead to overfitting, especially with noisy data. There-
fore, N is usually chosen low enough so that the approximant gen-
eralizes well and small changes in the given data do not impact the
reconstruction too much. Concomitantly, the kernel support is ad-
justed through a scaling parameter ρ > 0, so that the approximant
is reasonably smooth for the chosen N .

Once N is fixed, several strategies are available in order to
find optimal parameters (the N samples and the scaling parameter
ρ) for a given kernel, see e.g. [36, 37, 38]. In this work, as the in-
put space dimension is only 1 due to the separability of the energy
law, we adopt a grid-based approach: the samples are distributed
evenly along the measured data range, and the scaling parameter
is adjusted so that some test function is approximated with an ar-
bitrary degree of accuracy. The advantage of this approach resides
in its simplicity. Should the energy law not be separable though, a
more sophisticated strategy would be preferable. Figure 2 shows
approximations from noisy data (SNR = 14 dB with a normal dis-
tribution) for different values of N , and K defined as:

K (xi, xj) =

{
(1− r)4 (1 + 4r) r =∥xi − xj∥ < 1,

0 otherwise.

4.2. Choice of kernel

The only assumption we have on the energy H is the convexity
assumption. Therefore, any kernel reproducing the convexity of
H should be relevant. A simple way of enforcing the convexity of
H is to construct a positive approximant of ∇2H. An approximant
of H can then be obtained by integration. To ensure the positivity
of each H(2)

k , we look for approximants of the form:

H(2)
k (xk) ≈

NH∑
i=1

θHk,i K (xk, xk,i) , with θHk,i ≥ 0 ∀k, i, (7)

where K is positive definite and continuous. Additionally, we
choose K radial, of the form K (xi, xj) = ϕ

(
∥xi − xj∥

)
. In-

deed, a radial kernel is local by construction. We also choose
K compactly supported, so that interpolation matrices are sparse
and computation is efficient. A possible choice of kernel verifying
these properties is one of the Wendland functions [39, 26] defined
as:

ϕ(ρ; r) =


1

ρ

(
1− r

ρ

)2

r =∥xi − xj∥ < ρ,

0 otherwise,
(8)
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where the scaling parameter ρ is different for each component.

4.3. Energy law model

To simplify notations in the following, we denote

ϕk,i : x 7→ ϕ
(
ρk;∥x− xk,i∥

)
. (9)

Finally, the energy law approximant we look for has the form:

H
(
θH;x

)
:=

Nx∑
k=1

NH∑
i=1

θHk,i ϕ
(−2)
k,i (xk) , θ

H
k,i ≥ 0 ∀k, i, (10)

where ϕ(−2)
k,i denotes the second antiderivative of ϕk,i (formal def-

inition in Appendix A). The {ϕk,i} constitute a compactly sup-
ported radial basis of ∇2H. The {xk,i} are called the centers of
the radial basis [40].

5. PARAMETER ESTIMATION

5.1. Objective function

We denote f [j] the measured average flows at sample j:

f [j] =

[
δx[j]fs
y[j]

]
, (11)

where δx[j] = x[j+1]−x[j] and fs is the sample rate. Similarly
we denote f̃(Θ)[j] the estimated flows at sample j:

f̃(Θ)[j] =
(
J(θJ)−R(θR)

)[∇H
(
θH,x[j], δx[j]

)
u[j]

]
,

(12)
where θH ⪰ 0, diag

(
T (θR)

)
⪰ 0, and ∇H is the discrete gra-

dient [41] defined component-wise as:

∇Hk

(
θH,x[j], δx[j]

)
=

NH∑
i=1

θHk,i
ϕ
(−2)
k,i

(
xk[j] + δxk[j]

)
− ϕ

(−2)
k,i

(
xk[j]

)
δxk[j]

∣∣δxk[j]
∣∣ > ϵ,

NH∑
i=1

θHk,i ϕ
(−1)
k,i

(
xk[j] +

δxk[j]

2

)
otherwise.

(13)

Denoting F (resp. F̃ (Θ)) the dim(J) × n matrix of measured
flows (resp. estimated flows) at all n samples, we define the er-
ror ϵ(Θ) = F̃ (Θ) − F , and the objective function E(Θ) =∥∥∥F̃ (Θ)− F

∥∥∥2, where∥∥ is the Frobenius norm. Finally we look
for the optimal:

Θ⋆ = argmin E(Θ)

subject to θH ⪰ 0,

diag
(
T (θR)

)
⪰ 0.

(14)

Here diag
(
T (θR)

)
denotes the diagonal elements of T (θR).

The sample rate fs is considered high enough so that the nu-
merical error is negligible. Therefore we consider that we identify
the continuous system, and the specific contribution of the dis-
cretization scheme to the global error [42] is not addressed here.

5.2. Constrained optimization

To perform a constrained minimization of E , we rely on the Interior
Point Method [43]. As this method is well documented, in this
section we only provide a basic mathematical layout as a reminder.

We define the loss function L:

L : Θ 7→ E(Θ)− 1

t

Nx∑
k=1

NH∑
i=1

ln θHk,i +

dim(J)∑
k=1

ln θRk


︸ ︷︷ ︸

logarithmic barrier

. (15)

The logarithmic barrier [43] penalizes the minimization if all co-
efficients are not strictly positive. The parameter t is set by the
user to enforce or relax the constraint2. A necessary condition to
minimize L is finding a solution to:

F (Θ,µ) =

[
∂ϵ(Θ)⊺ϵ(Θ)− µ
µ⊙Θ− 1/t

]
= 0, (16)

where ∂ϵ is the Jacobian of ϵ, µ is the derivative of the logarith-
mic barrier w.r.t Θ, and ⊙ denotes the element-wise product. A
solution is estimated with a damped Gauss-Newton iteration [44].
Starting from a particular set of parameters Θ0 meeting the con-
straints, the set is improved iteratively using:[
Θk+1,µk+1

]⊺
=
[
Θk,µk

]⊺
−α J−1

(
Θk,µk

)
F
(
Θk,µk

)
(17)

where α ∈ [0, 1] is a damping coefficient computed with a line
search [43] and J is the Jacobian of F defined as:

J (Θ,µ) =

[
∂ϵ(Θ)⊺∂ϵ(Θ) −I

diag (µ) diag(Θ)

]
. (18)

Here diag(µ) (resp. diag(Θ)) denotes the square diagonal matrix
with the elements of µ (resp. Θ) on its diagonal. The iteration is
stopped when the error is sufficiently low, or, since the objective
function is non convex, if the error starts increasing.

6. RESULTS FOR A VIRTUAL PASSIVE PEAKING EQ

6.1. Circuit parameters and data generation

We consider a passive peaking EQ [45] (Fig. 3a). The poten-
tiometer wiper position is parametrized by γ ∈ [0, 1], where γ
= 0 corresponds to the lowest position, and γ = 1 to the highest.
This parameter determines the shape of the frequency response
(Fig. 3b). The potentiometer, resistor and capacitor are all consid-
ered to be linear. The inductor is saturating with an effort law of
the type [31]:

iL = I0

(
ΦL

Φsat
− tanh

(
ΦL

η Φsat

))
, (19)

where I0, Φsat, and η are model parameters (hysteresis is ne-
glected here). Circuit parameters are set so that the center fre-
quency is 50 Hz and the quality factor is 1. They are shown in
Table 1.

Synthetic measurement data are artificially generated for an
input voltage of the form vin = U0 cos (2πf0t). The values of f0
and γ are chosen so that the circuit is maximally resonant. This

2it can be increased dynamically during iteration.
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vin

R

L C

vout

Rp

(a) Passive peaking EQ circuit.

(b) Frequency response for several wiper positions.

Figure 3: Passive peaking EQ and its frequency responses.

way, nonlinearities of the inductor can be accurately captured for
a plausible U0. The theoretical PH-ODE of the passive peaking
EQ is found to be that in Appendix B. The generation is achieved
discretizing Eq. (2), and performing a standard Newton-Raphson
iteration at each sample (a detailed numerical scheme can be found
in [46]). Finally, some noise (SNR from 38 to 98 dB, with a nor-
mal distribution) is added to the data to test the robustness of the
identification method.

6.2. Choice of kernel parameters and initialization

A minima, the approximant must reproduce a linear effort on the
measured range of each state. We fix NH = 6. For this NH, we
determine (for each component) the smallest ρ so that the relative
error

∣∣(g(x)− g̃(x))/g(x)
∣∣ × 100 on the test effort g(x) = x

stays within some arbitrary bounds, chosen to be 10 %. Here, ρC
= 4.10−5 and ρL = 4.10−3 yield satisfying results (Figs 4c-4d, for
the inductor). Figure 4a (resp. 4b) shows the resulting basis for the
approximation of ∇2H (resp. ∇H).

Before performing the optimization procedure, an initial guess
Θ0 has to be estimated. To this end, the problem is linearized
around the desired solution. Measurement data are generated with
an input voltage small enough to observe a quasi-linear effort, so
we have:

F ≈ (J −R)D︸ ︷︷ ︸
M

X, (20)

where D is a diagonal matrix with positive coefficients, and X is
the dim(J)×n matrix of average states x̄[i] = (x[i]+x[i+1])/2
and inputs at all n samples. Since n ≫ dim(J), the matrix M is
extracted using M = FX†, where † denotes the pseudo-inverse.
Denoting Ms = −(M + M⊺)/2 the opposite of the symmetric
part of M , the matrix R is initialized to a positive-definite matrix
close to Ms. To this end, Ms is decomposed as:

Ms = UΣV ⊺. (21)

Then the matrix R̃ defined as:

R̃ = UΣU⊺ (22)

(a) Chosen radial basis for ∇2H. (b) Antiderivatives of the chosen ra-
dial basis for ∇2H.

(c) Resulting approximation of the
effort g(x) = x.

(d) Relative error on the effort.

Figure 4: Chosen radial basis for the inductor and resulting ap-
proximation of the test effort g(x) = x.

is positive-definite, and R is initialized to:

R0 = R̃/
∥∥∥R̃∥∥∥ , (23)

to account for the (unknown) contribution of D. Finally, all θJk
and θHk,i are initialized to 1.

6.3. Results

The optimization procedure returns a set of estimated parameters
after less than 50 iterations. Here, constraint enforcement is priv-
ileged over convergence speed as there are no real-time require-
ments. Still, the estimation is faster compared to deep neural net-
works methods (mainly because there are far less parameters to
estimate).

New simulations are computed with the parameters estimated
for each SNR. Figures 5a-5c show that the simulated states match
very closely with the "measured" states (here with measured state
SNR = 50 dB). Figures 5b-5d show the estimated effort laws. The
estimated effort law for the capacitor is linear as expected. The sat-
urating behavior of the inductor is accurately captured within the
range of measured data. Figure 6 shows the simulated state Nor-
malized Mean Square Error (NMSE = 20 log

(
∥x− x̃∥ /∥x∥

)
) vs

the measured state SNR. The NMSE stays low (around −60 dB)
regardless of the SNR.

Finally, to evaluate the robustness of the estimated model, sim-
ulations and measurements are also run with different input am-
plitudes and frequencies than those used for the estimation. Fig-
ures 7a-7d show that the simulated states match closely with the
measurements in that case also.

7. CONCLUSION

In this paper, we have presented an identification method to re-
trieve parameters of a circuit modeled as a port-Hamiltonian sys-
tem, given measurements of state x, input u, and output y. This
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Table 1: Data generation parameters for the virtual passive peaking EQ.

Rp (Ω) R (Ω) γ C (F) I0 (A) Φsat (Wb) η U0 (V) f0 (Hz) fs (Hz)

251.3 502.6 1 12.6×10−6 50×10−3 4×10−3 1.1 0.5 & 10 50 10×103

(a) Capacitor simulated state. (b) Capacitor estimated effort.

(c) Inductor simulated state. (d) Inductor estimated effort.

Figure 5: Estimation results for the virtual passive peaking EQ, with measured state SNR = 50 dB.

Figure 6: Simulated state Normalized Mean Square Error with re-
spect to measured state SNR.

method allows the joint estimation of constitutive laws of storage
components, as well as the interconnection matrix encoding the
circuit topology. In turn, the estimated model may be used for
passive guaranteed simulations.

The method has been tested on a virtual peaking EQ, with ac-
curate results. However, the method needs to be more thoroughly
assessed against real measurements. In particular, we should con-
trol that the discretization scheme in the simulation error does not
introduce too much numerical dispersion, which would alter the
optimization process. In that case, the discretization error would
have to be taken into account [47], or the sample rate would have
to be increased.

Another immediate perspective for this work is to extend the
method in order to include nonlinear dissipative components. This
would allow the inclusion of transistors and vacuum tubes, which
are an important part of audio circuits.

It would also be interesting to adapt the method to a co-energy
variables formulation. This way, measurements would only need

to be voltages and currents, instead of charges and magnetic fluxes,
which are much more difficult to obtain in practice. Identification
from partial measurements (incomplete state, or input and output
only) could be studied as well. This will be the object of future
work.
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A. DERIVATIVE AND ANTIDERIVATIVE NOTATIONS

By convention, f (0) = f . Then for some positive integer k ≥ 1,
we denote f (k) the function defined by:

f (k) : x 7→ d

dx
f (k−1)(x). (24)

Similarly, we denote f (−k) a function defined by:

f (−k) : x 7→
∫ x

0

f (1−k)(u)du+ C, (25)

where C is a constant. In this work, C is taken so that f (−k)(0) =
0.

B. PH-ODE OF THE PASSIVE PEAKING EQ

With

αp =
R

Rp +R
, Gp =

1

Rp +R
, Rp ∥ R =

RpR

Rp +R
, (26)

the PH-ODE of the passive peaking EQ on Fig. 3a is given by:

vC iL vin iout


iC . 1 . .

vL −1 −γRp ∥ R
(

Rp

R
(1− γ) + 1

)
γRpGp γRp ∥ R

iin . −γRpGp −Gp −αp

vout . γRp ∥ R αp −Rp ∥ R

.

(27)
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The Onde Martenot is a classic electronic musical instrument. This paper focuses on the
power-balanced simulation of its ribbon-controlled oscillator, composed of linear and nonlinear
as well as time-varying components. To this end, the proposed approach consists of formulating
the circuit as a Port-Hamiltonian System for which power-balanced numerical methods are
available. A specificity of the Martenot oscillator is to involve parallel capacitors, one of them
having a capacitance that nonlinearly depends on the time-varying ribbon position state. In
the case of linear time-invariant (LTI) capacitors in parallel, an equivalent component can be
deduced using the classic impedance approach. Such a reformulation into a single equivalent
component is required to derive a state-space Port-Hamiltonian representation of a circuit. One
technical result of this paper is to propose a method to determine such an equivalent component
in the non-LTI case. This method is applied to the present Martenot oscillator. Then, power-
balanced numerical experiments are presented for several configurations: fixed ribbon position,
realistic, and over-speed movements. These results are examined and interpreted from both the
electronic and mechanical points of view.

0 INTRODUCTION

As the audio industry is moving toward the digital era,
the question of the preservation of analog machines and in-
struments is paramount. This question is especially relevant
for the Onde Martenot, one of the first electronic musical in-
struments [1] invented in 1928, for it is no longer produced
and some of its components are now obsolete. A satisfying
solution consists of modeling its circuit in order to build a
virtual instrument so that the community of composers, mu-
sicians, and musicologists may at least have access to fac-
simile. To model electronic circuits for audio applications,
the state-space form known as Port-Hamiltonian Systems
(PHS) has proven to be a powerful approach as it guaran-
tees the power balance of the considered system, therefore
preserving the passivity of simulations [2] even when its
components are not linear. It is multi-physical (a system
can be electrical, mechanical, thermal, or a mix as well)
and modular (a system made of several connected PHS is
still a PHS). Yet for some circuit configurations, a direct
state-space form cannot be derived—the circuit is said not
to be realizable—and an equivalent circuit must be com-
puted in order to perform simulations. This is the case with

parallel capacitors that must be replaced by a single equiva-
lent capacitor. However, when the components involved in
the circuit are not LTI, as some are in the controllable oscil-
lator of the Onde Martenot, the classic impedance approach
is no longer suitable and equivalent components must be
computed through a specifically designed method.

This paper is structured as follows: The Martenot con-
trollable oscillator circuit is presented in Sec. 2, with a par-
ticular attention drawn to the realization problem it poses. In
Sec. 3, the PHS formalism is briefly described. In Sec. 4, a
method to compute equivalent components in this formal-
ism is developed. A modeling of the complete oscillator
is then derived, and several configurations are simulated
in Sec. 5. Finally, the simulation results are discussed in
Sec. 6.

1 ONDES MARTENOT RIBBON-CONTROLLED
OSCILLATOR AND PROBLEM STATEMENT

1.1 Circuit Overview
The Onde Martenot, invented by Maurice Martenot in

1928, is one of the first electronic musical instruments and
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Fig. 1. Schematic of the Onde 169 controllable oscillator (source:
Musée de la Musique, Paris).

Fig. 2. Equivalence between two parallel capacitors and a single
capacitor.

is based on heterodyne processing. Heterodyning is a tech-
nique used to shift high frequency signals into the audio
domain. In the Onde Martenot specifically, each one of two
oscillators generate a high frequency quasi-sinusoidal volt-
age (around 80 kHz); one is fixed, and the player controls
the second frequency using a sliding ribbon. The sum of
these two voltages is an amplitude-modulated signal. Its
envelope is detected using a triode vacuum tube, producing
an audible sound, for which the frequency is the difference
between the two oscillators’ frequencies. The triode vac-
uum tube in the detector is a nonlinear component that adds
harmonics to the signal. This enriched signal is then routed
toward special kinds of loudspeakers (called diffuseurs) se-
lected by the musician, adding another layer of coloration
to the sound. The oscillators are made of an LC circuit cou-
pled to a triode vacuum tube (for amplification) through
a transformer. In the controllable oscillator, one of the ca-
pacitors of the LC circuit is variable and controlled by the
ribbon. Fig. 1 shows that the total capacitor is in fact made
of several capacitors connected in parallel, some of them
LTI but one of them time-varying.

1.2 Problem Statement
Two capacitors CA and CB connected in parallel are

equivalent to a single capacitor CC (Fig. 2). In the case of

an LTI system, the notion of impedance allows us to deter-
mine the equivalent capacitor. Indeed, denoting the capaci-
tors’ impedances Z A = 1

jCAω
and Z B = 1

jCBω
, respectively,

Kirchoff’s laws iC = iA + iB and vC = vA = vB yield the
relation

1

ZC
= 1

Z A
+ 1

Z B
(1)

This relation characterizes entirely the equivalent com-
ponent CC and gives the value of its capacitance:

jCCω = jCAω + jCBω ⇒ CC = CA + CB (2)

However, this classic impedance approach is no longer
suitable for non-LTI systems: if we were to naively de-
fine impedance by the ratio v/i (transfer function), that of
nonlinear capacitors would still depend on the charge q, it-
self time dependent. By definition, time-varying capacitors
would also yield a time-dependent transfer function. As the
ribbon-controlled capacitance depends on the ribbon posi-
tion, which itself depends on time, an adapted method to
characterize the equivalent capacitor is needed. The PHS
formalism allows us to represent an energy-storing compo-
nent by its energy function instead of its impedance. We
may thus rely on this notion in a non-LTI case, as it is more
general.

2 PORT-HAMILTONIAN SYSTEMS: FORMALISM
AND EXAMPLES

This section recalls basics on Port-Hamiltonian Systems
(PHS).

For detailed presentation, readers can refer to Refs. [3]
and [4].

2.1 Formalism
Here we rely on a differential-algebraic form adapted to

multi-physical systems [5, 6], which allows us to represent
a dynamical system as a network of storage components
with their state variable x and total energy of the state H (x),
dissipative components with their variable w and constitu-
tive law z(w), and connection ports as control inputs u and
their associated outputs y such as uᵀy is the external power
brought to the system. The variables are generally time de-
pendent and can be vectors. If such a system is realizable
[7, 8], the flows and efforts exchanges between the system
components are coupled through a skew-symmetric matrix
S = −Sᵀ:⎛

⎝ dx
dt
w

−y

⎞
⎠

︸ ︷︷ ︸
F(flows)

= S.

⎛
⎝∇H (x)

z(w)
u

⎞
⎠

︸ ︷︷ ︸
E(efforts)

(3)

The skew-symmetry of S guarantees that the system re-
mains passive, i.e., there is no spontaneous creation of en-
ergy. Indeed, from Eq. (3), the scalar product of the efforts
and flows yields

EᵀF = EᵀSE = (EᵀSE)ᵀ = −EᵀSE
= −EᵀF = 0,

(4)
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meaning that the following power-balance is satisfied

d E

dt︸︷︷︸
∇ H (x)ᵀ dx

dt

= Pext︸︷︷︸
uᵀ y

− Pdiss︸︷︷︸
z(w)ᵀw≥0

, (5)

where E = H(x) is the energy, Pext is the (incoming) external
power, and Pdiss ≤ 0 the dissipated power. Appendix A.2
and Ref. [2] describe a numerical scheme preserving those
properties in discrete time.

2.2 Capacitors Constitutive Laws
For LTI capacitors, the charge q and voltage v are mapped

according to a constitutive law q = Cv, which depends on a
unique characteristic constant (capacitance C in Farad). The
electric power P = i v received by such a component makes
its stored energy E vary as dE

dt = P . With current i = dq
dt and

voltage v = q
C and assuming a zero energy for a discharged

component, a time integration yields E = H(q) with H (q) =
q2

2C . This energy is sometimes expressed independently of
value C as E = qv

2 .
For nonlinear capacitors, the last expression is no longer

true. But a description based on an energy function q�→H(q)
is still applicable. The constitutive law is described by the
voltage function H′ (derivative of H), namely,

v = H ′(q), (6)

with power balance v i = H ′(q) dq
dt = dH (q)

dt = dE
dt .

Remark 1 (Constitutive laws based on q or v). In prac-
tice, constitutive laws are usually formulated (and mea-
sured) with respect to the voltage (effort) rather than the
charge (state). Formally (if possible), such a description
corresponds to invert v = H′(q) (=q/C for linear capacitors)
into q = F(v) (=Cv for linear capacitors) with F = H′−1

and formulates the energy as E = H(H′−1(v)) = Cv2

2 . Note
that differentiating this formula yields a (correct) power
balance but more difficult interpretations. Note also that
such a change of state can be achieved using the Legendre
transform of H in the weaker case of convex nonsmooth H.

This remark applies to varactors proposed in [9], with
model H ′−1 = F : v �→ Cv/

√
1 + v/v2. Another example

is tanh type which is of the form q �→ H ′(q) = v1 tanh( q
q0

).
Fig. 3 shows the voltage functions and corresponding

energy functions of these different capacitors types (for
q0 = 7 nC, v1 = 80 mV, C = 50 nF, and v2 = 0.2 V).

3 EQUIVALENT COMPONENT DESCRIPTION OF
NON-LTI PARALLEL CAPACITORS

3.1 Problem Statement and Hypotheses
Consider two capacitors connected in parallel (Fig. 2).

These components are flow controlled ( dx
dt = q̇ = i , cur-

rent). As they are connected in parallel, their dual efforts
(voltages) are equal and there is no skew-symmetric matrix
S, such that⎛

⎝ i A

iB

−V

⎞
⎠ = S.

⎛
⎝vA

vB

I

⎞
⎠,

Fig. 3 . (a) Voltage functions H′ (associated with constitutive law
Eq. (6)) and (b) energy functions H for different capacitor types.

and formulation Eq. (3) cannot be retrieved. Replacing
those parallel capacitors by a single equivalent capacitor
(with common voltage vC := vA = vB and total current iC =
iA + iB) allows us to restore such a formulation. For linear
time-invariant (LTI) laws, the use of transfer functions of
impedance type makes this operation straightforward. For
non-LTI laws, no characterization can be based on usual
transfer functions. In this case, energy-storing components
are characterized by their energy function to be used in the
PHS formalism.

The purpose of this section is to derive the energy func-
tion HC of the equivalent component from the energy func-
tions Hk (k = A, B) of isolated components, including for
non-LTI laws, under the following hypotheses:

(i) The energy function Hk is C1 positive-definite (Hk(0)
= 0 and Hk(x) > 0 for x 
= 0);

(ii) The voltage function H ′
k (derivative of Hk) is strictly

increasing and definite (H ′
k(0) = 0).

According to Eq. (6), this means that the voltage vk =
H ′

k(qk), continuously and strictly increases with the charge
qk, and is zero for a zero charge. In particular, the consti-
tutive law Eq. (6) makes vk and qk in one-to-one relation,
allowing therefore its invertibility.

3.2 Method
To express the total energy HC as a function of the total

charge qC = qA + qB under the constraint that capacitors in
parallel share the same voltage vA = vB = vC, the method
is decomposed into three steps.
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Step 1: Express the total charge qC = qA + qB as functions
of the common voltage vA = vB = vC.

From Eq. (6), the charge of isolated components is

qk = H ′
k
−1(vk), for k = A, B, (7)

so that the total charge depends on the common voltage
as

qC = [
H ′

A
−1 + H ′

B
−1](vC ). (8)

This function continuously and strictly increases and is
zero at zero.

Step 2: Express this common voltage vC as a function of
the total charge qC.

vC = [
H ′

A
−1 + H ′

B
−1]−1

(qC ). (9)

Step 3: Express the total energy as a function of qC.
The energy values Hk(qk) of elementary components

k = A, B can be reformulated as functions of the total

charge, using the composed functions qC
(9)�−→ vC

(7)�−→
qk . Their sum yields the total energy function; that is,

HC (qC ) = [
HA ◦ H ′

A
−1 + HB ◦ H ′

B
−1]

◦[
H ′

A
−1 + H ′

B
−1]−1(qC ). (10)

These steps are detailed in examples in Appendix A.3.

Remark 2 (Time-varying case). For capacitors that de-
pend on other additional state variables (e.g., the time-
varying space variable in Eq. (15), Sec. 4.1.1), steps 1 to 3
are unchanged (these additional variables are considered as
parameters in this method).

This is applied to the ribbon controlled-oscillator in
Sec. 4.

3.2.1 Generalizations
This method can also be extended to K non-LTI capaci-

tors connected in parallel, leading to

Htot(qtot) =
[

K∑
k=1

Hk ◦ H ′
k
−1

]
◦

[
K∑

k=1

H ′
k
−1

]−1

(qtot) (11)

In this case, the charge of each component k is

qk = H ′
k
−1(vC )

= H ′
k
−1 ◦

[∑K
k=1 H ′

k
−1

]−1
(qtot)

(12)

This method is adapted to other types of storage compo-
nents that pose similar realization problems. For instance,
it is suitable for coils in series, for which the state is the
magnetic flux ϕ, i = H′(ϕ) provides the current law and
the voltage is v = φ̇ (see [10] for a general description of
such causality conflicts and their resolution based on this
method). Moreover, when the constitutive laws of the com-
ponents are not well known, this method can still be used
with laws interpolated from measurements. An implemen-
tation of the method using piecewise linear functions is
available in the PyPHS library, a python library developed
at Ircam dedicated to PHS modelling and simulations [11].

Fig. 4 . Variable capacitor of the Onde Martenot with its ribbon
control. h is the ribbon height, l is the width of a tooth, x is the
ribbon position, and d is the distance between the ribbon and
capacitor.

4 SIMULATION OF THE RIBBON-CONTROLLED
OSCILLATOR

4.1 Ribbon-Controlled Oscillator Modeling
Constitutive laws of components R1, L, C1, C2, C13, and

C14 are supposed to be linear and described in Table 4,
in Appendix A.1. The transformer is also supposed to be
linear and of ratio M. The remaining component models are
described in the next section.

4.1.1 Equivalent Variable Capacitor
The ribbon slides between the faces of a comb-shaped

capacitor. As it slides, its conductive part hides and acti-
vates complementary parts of the teeth that compose the
capacitor, according to the ribbon position (Fig. 4). Sec. 4.2
validates that the LTI capacitors C13 and C14 and the vari-
able capacitor C15 connected in parallel are equivalent to a
single variable capacitor. In order to evaluate how the equiv-
alent capacitor behaves with respect to its charge q and the
ribbon position x, the position is mapped with the heard
frequency. The ribbon follows a dummy piano keyboard on
which the width

x0 = 11.10−3m (13)

is a semitone [12].
Denoting n the semitone number where the reference

is A1 (110 Hz, n = 0), we roughly have x = nx0 (except
when the ribbon slides between a B and a C or between
an E and an F where the displacement is greater). The
Onde Martenot is tuned on equal temperament; therefore
the heard frequency from A1 is fm = A12

x
12x0 . Denoting F

the carrier frequency, the actual oscillator frequency is f =
F − fm and the corresponding capacitance of the LC circuit
for a static configuration is (ignoring the dissipative effects
of the triode vacuum tube for simplicity):

C(x) = 1

4π2(F − A12
x

12x0 )2L
. (14)

Fig. 5 shows C in function of x with L = 2 mH and F =
10 kHz.
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Fig. 5. Capacitance of the variable oscillator in function of the
ribbon position from A1 to A6.

Fig. 6 Energy function of the variable capacitor.

Fig. 7 Constitutive law of the variable capacitor.

Based on the linear electric behavior v = q
C(x) observed

for any static position x, the total energy of the elec-
tromechanical component has the form H (q, x) = H (q =
0, x) + ∫ q

0
ξ

C(x) dξ. Moreover, the discharged component
(then purely mechanical) applies no force F on the rib-
bon whatever the position x. This means that F = ∂ H

∂x is
zero at any state (q = 0, x), leading to H(q = 0, x) =
H(q = 0, x = 0) = 0: the discharged component stores no
pure mechanical energy. Finally, the internal energy of the
electromechanical component is given by (see also Fig. 6)

Hcap(q, x) = q2

2C(x)
. (15)

Remark 3 (Energy time-variation). The total energy E =
H(q, x) varies as dE

dt = Pe + Pm where

• Pe = ∂ H
∂q (q, x) dq

dt accounts for the incoming elec-

trical power due to current dq
dt and voltage v =

∂ H
∂q (q, x) = q

C(x) ,

• Pm = ∂ H
∂x (q, x) dx

dt accounts for the incoming me-
chanical power due to velocity dx

dt and a spring reac-

tion force F = ∂ H
∂x (q, x) = −C ′(x)q2

2C(x)2 , induced by the
capacitance variation.

4.1.2 Triode
The triode vacuum tube is modeled with an enhanced

Norman Koren model [13]. This gives the anode current ipc

and grid current igc in function of the voltages vpc and vgc:

i pc =
{

2E Ex
1 /Kg if E1 ≥ 0

0 else
(16)

igc =
⎧⎨
⎩

0 if vgc < Va

vgc−Va

Rgk
else

(17)

with

E1 = vpc

K p
ln

⎛
⎝1 + exp

⎛
⎝K p

⎛
⎝ 1

μ
+ vgc + Vct√

Kvb + v2
pc

⎞
⎠

⎞
⎠

⎞
⎠

The parameters set θ = (μ, Ex, Kg, Kp, Kvb, Vct, Va, Rgk)
is retrieved from the datasheet [14] through a least squares
minimization. This allows the modeling of the triode as
a dissipative component in the PHS formalism, with w =(

vpc

vgc

)
and zθ(w) =

(
i pc

igc

)
.

4.1.3 Transformer and Feedback Loop
The oscillation starts with a voltage noise Vstart at the tri-

ode grid, which is amplified and filtered by the LC circuit at
the triode plate before being re-injected in the grid through
a transformer of ratio M. Under open circuit (negligible
influence of the following stages) and small-signal (pos-
sible linearization around an operating point) hypotheses,
the oscillator can be represented as a system of input Vstart

and output Vout (Fig. 8, with μ the triode amplification fac-
tor and ra the anode resistor). The plate load is constituted
by an LC parallel circuit with impedance (s is the Laplace
variable)

Z = sL

1 + s2LC
(18)

Moreover, as Vbias is constant, �Vout = −[Z/(Z +
ra)]�vpc where operator � denotes variations around
the operating point. Considering the triode amplification
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Fig. 8. Schematic of the simplified oscillator.

factor definition, this yields �Vout = [Z/(Z + ra)]μ(M�Vout

+ Vstart), so that

�Vout

Vstart
= Zμ

Z (1 − μM) + ra
. (19)

The poles of transfer function Eq. (19) are found to be
the roots (in s) of the characteristic equation

s2 + s
1 − μM

raC
+ ω2

0 = 0 (20)

with ω2
0 = 1

LC . The condition for the system to start oscil-
lating is that a complex pole has a positive real part. This
leads to

1

μ
≤ M <

1

μ
+ 2ω0C

gm
(21)

where gm = μ/ra is the triode transconductance. The closer
to 1/μ the chosen M, the more stable the oscillation ampli-
tude.

4.1.4 Interconnection
Replacing parallel capacitors C1//C2 with equivalent ca-

pacitor C3 and C13//C14//C15 with equivalent capacitor C8,
the oscillator is realizable and can be represented as the
following PHS:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vL

iC8

iC3

vR1

vpc

vgc

−Ibias

−Istart

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
−1 0 0 0 1 −M 0 0
0 0 0 −1 1 1 0 0
0 0 1 0 0 0 0 0
0 −1 −1 0 0 0 1 0
0 M −1 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iL

vC8

vC3

iR1

i pc

igc

Vbias

Vstart

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.2 Numerical Experiments
We now simulate the complete variable oscillator, sliding

the ribbon from A 1 to A 6. The simulation is performed
according to the power-balanced numerical scheme pre-
sented in [2] (see also the PyPHS library [11]). In order
to observe the frequency changes, we choose a carrier fre-
quency F = 10 kHz (instead of the actual 80 kHz) and
perform the sweep in 2 ms (vel1) or 0.5 s (vel2). The simu-
lation parameters are presented in Table 1. Due to important

Table 1. Simulation parameters.

Fs F vel1 vel2

768 kHz 10 kHz 385 m/s 1.54 m/s

Table 2. Component parameter values.

6F5 μ Ex Kg Kp Kvb

98 1.6 2614 905 1.87
Vct Va Rgk

0.5 0.33 1300

R1 L C1//C2 C13//C14 Vbi as M
7.5 k� 2 mH 0.22 μF 440 pF 90 V 1

μ

Table 3. Reference values.

qC3re f qC8re f φre f

vel1 4.60.10−6C 3.13.10−8C 4.60.10−6Wb
vel2 4.58.10−6C 4.76.10−8C 4.58.10−6Wb

Fig. 9 . Velocity vel1 = 384 m/s: simulated flows and efforts of the
storage components, for a carrier frequency F = 10 kHz, during
a sweep from A1 to A6.

nonlinearities of some components, a large sample rate is
chosen to avoid any aliasing. Table 2 recaps the component
values. We denote C1//C2 = C3 and C13//C14//C15 = C8.

Figs. 9 and 10 show the observed flows and efforts of
the oscillator as the ribbon slides. Figs. 11 and 12 show the
states of the different storage components, reflecting the
frequency changes. Figs. 14 and 15 show the power balance
of the complete system during the simulation. Fig. 13
shows the spectrogram of the output voltage, suggesting
that the harmonic distortion is sufficiently negligible. It
is also worth noting that the PHS formalism gives access
to other physical parameters of the ribbon, which would
otherwise prove difficult to measure. Indeed, the quantity

∇x Hcap(x, q) = −q2C ′(x)

2C2(x)
(22)

is the force produced by the ribbon displacement (see Re-
mark 3); Figs. 16 and 17 show that the values taken by this

966 J. Audio Eng. Soc., Vol. 67, No. 12, 2019 December

Appendix F. Other Publications 163



PAPERS SIMULATION OF THE ONDES MARTENOT RIBBON-CONTROLLED OSCILLATOR

Fig. 10. Velocity vel2 = 1.54 m/s: simulated flows and efforts
of the storage components, for a carrier frequency F = 10 kHz,
during a sweep from A1 to A6 zoomed on the first 2 ms.

Fig. 11. Velocity vel1 = 384 m/s: simulated states of the storage
components during a sweep from A1 to A6. Table 3 shows the
reference values.

force during the sweep are negligible no matter the sweep
velocity.

5 INTERPRETATION AND DISCUSSION

Due to the nature of the Ondes Martenot instrument (rare,
fragile, and expensive), setting up extensive measurements
to evaluate the accuracy of the oscillator model is a complex
operation that is still ongoing. However, a preliminary ob-
servation is that with the chosen parameters, the oscillation
is quasi-sinusoidal (less than 0.1% harmonic distortion for
the second harmonic), which corresponds to observations
made in [15]: “on the whole ribbon range, the sinusoidal
quality of the signal produced by the oscillator is excel-
lent.” Moreover, the behaviors of the components are not
affected by the ribbon displacement speed and there is no
latency between the ribbon displacement and the frequency
changes. This suggests that for future simulations of the
complete circuit, the oscillator could be modeled with a
frequency-controlled sinusoidal voltage generator, which
would save computation time. It can be noted, though, that
the output voltage of the oscillator slightly decreases as the

Fig. 12. Velocity vel2 = 1.54 m/s: simulated states of the storage
components during a sweep from A1 to A6 zoomed on the first
2 ms. Table 3 shows the reference values.

Fig. 13. Spectrogram of the output voltage during a sweep from
A1 to A6.

Fig. 14. Velocity vel1 = 384 m/s: power balance of the system
during a sweep from A1 to A6.

heard frequency increases, which is not the case in a real
Ondes Martenot. Real instruments have a higher frequency
carrier; therefore frequency modulations are relatively less
important. The oscillator capacitance varies less and con-
sequently the triode amplification, which depends on its
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Fig. 15. Velocity vel2 = 1.54 m/s: power balance of the system
during a sweep from A1 to A6 zoomed on the first 2 ms.

Fig. 16. Velocity vel1 = 384 m/s: mechanical flow and effort
during a sweep from A1 to A6.

Fig. 17. Velocity vel2 = 1.54 m/s: mechanical flow and effort
during a sweep from A1 to A6.

load, is stable during the whole sweep. A second observa-
tion is that consistently with the PHS formalism, the power
balance is preserved despite the nonlinearities of some com-
ponents. A third observation is that the mechanical force
produced by the ribbon displacement is extremely low (less
than 10nN), thus presumably not detectable by the musi-

cian. This is likely to be what Maurice Martenot intended
as the interaction between the player and the instrument
should be as smooth as possible.

6 CONCLUSION AND PERSPECTIVES

In this paper a refined simulation of the ribbon-controlled
oscillator of the Ondes Martenot has been proposed, allow-
ing a numerical investigation of this circuit. It is based
on energy-balanced modeling adapted to LTI (capacitors,
resistor, inductor) and non-LTI (vacuum tube and the multi-
physical time-varying capacitor mechanically driven by a
ribbon) components. One contribution of this paper is the
design of a method to compute equivalent energy functions
of groups of components when required, to derive a PHS
state-space realization of a global circuit. This method re-
veals that LTI and variable capacitors in parallel build an
equivalent bi-variate capacitor, depending on an electric
state (total charge) and space state (ribbon position). As
a second contribution, the ideal energy function for the
ribbon-controlled equivalent capacitor is derived in corre-
spondence with the target keyboard designed by Martenot.
Numerical experiments on the nonlinear time-varying cir-
cuit lead to expected observations: (1) the combination of
the triode amplification and LC resonator produces a quasi-
sinusoidal oscillation with a stable amplitude for a static
configuration; (2) the mechanical force produced by the
variable capacitor due to the ribbon displacement is unde-
tectable by the musician (less than 10nN) for over-speed
movement (300 m/s); (3) the latency between the instanta-
neous frequency and ribbon position is also undetectable.
This corroborates that the Martenot’s ribbon-controlled cir-
cuit is close to an ideal oscillator.

Further work aims to model and simulate the complete
Martenot instrument, including all its stages and the dif-
fuseurs. Furthermore, for real-time sound synthesis pur-
poses, the examination of anti-aliasing methods [16] could
be profitable to handle the nonlinear heterodyne process at
reasonable sampling rates.
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9 APPENDIX

A.1 PHS Formalism: Example
Consider a linear parallel RLC circuit (Fig. 18). The ca-

pacitor C and inductor L are storage components whose

Fig. 18 Parallel RLC.

Table 4. State variables and constitutive laws for a
linear parallel RLC circuit.

x dx
dt H(x) ∇H(x)

C q q̇ = iC
q2

2C
q
C = vC

L ϕ φ̇ = vL
φ2

2L
φ

L = iL

w z(w)

R vR
vR
R = iR

states are given by the variables q (charge) and ϕ (magnetic
flux), respectively; the resistor R is a dissipative component
described by Ohm’s law. The system is current (flow) con-
trolled; its associated output is a voltage (effort). Table 4
recaps the variables and the constitutive laws of the three
components. Kirchoff’s laws in receptor convention yield⎛

⎜⎜⎝
iC

vL

vR

−V

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 −1 −1 1
1 0 0 0
1 0 0 0

−1 0 0 0

⎞
⎟⎟⎠.

⎛
⎜⎜⎝

vC

iL

iR

I

⎞
⎟⎟⎠

Currents are flows and voltages are efforts; therefore their
products are powers. Eq. (5) is thus naturally retrieved.
Note that in this simple example, the matrix S is sparse
with constant coefficients, but the properties of the PHS
formalism hold for nonlinear or coupled systems, which
yield more complex matrices.

A.2 PHS: Numerical Scheme for Simulations
The PHS formalism guarantees the passivity of the sys-

tem in continuous time. Introducing discrete gradient in the
numerical scheme [17] allows us to preserve this passivity
property in discrete time, therefore granting the stability of
the simulation as well. Here a one-step numerical scheme
is used, yielding

x(k + 1) = x(k) + δx(k) (23)

In the mono-variate storage component case (H (x) =∑N
n=1 Hn(xn), where N is the storage components number),

the discrete gradient [∇̄H (x, δx)]n is defined by

[∇̄H (x, δx)]n =
{ Hn (xn+δxn )−Hn (xn )

δxn
if δxn 
= 0,

H ′
n(xn) else.

(24)
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The discrete energy variation is retrieved by chain deriva-
tion:

δE(k)

ts
= ∇̄H (x, δx(k))ᵀ

δx(k)

ts
(25)

where ts is the sampling period. The simulation is achieved
replacing dx

dt with δx(k)
ts

and ∇H(x) with ∇̄ H (x, δx) in
Eq. (3). This yields a dynamic equation of the form

δx(k) = ts fk(x(k), δx(k)) (26)

where fk is a function depending on H, z, u, and S. Its solving
(using Newton-Raphson method for instance) allows us to
compute x(k + 1) and y(k).

A.3 Equivalent Component Method: Examples
The method steps (SEC. 3) are detailed on two examples:

(LTI) linear time-invariant capacitors with capacitances
Ck, (in order to illustrate how the standard results of
sec. 2 are restored and to be compared at each step
to)

(NL) capacitors with homogeneous laws of common de-
gree α > 0 (nonlinear for α 
= 1, see Fig. 19).

Label Energy function Hk Voltage function H ′
k

LTI Hk(qk) = q2
k

2Ck
vk = H ′

k(qk) = qk
Ck

NL Hk(qk) = Ek

∣∣∣∣qk

q0

∣∣∣∣1+α

vk = H ′
k(qk) = Vk

[
qk

q0

]α

In the model (NL), [x]α = sign(x) |x|α denotes the signed
power function and constant values q0 (charge), Ek (energy),
and Vk (voltage) are related by

Vk = (1 + α)Ek/q0. (27)

This leads to the following sequence of derivations.

Step 1. Eq. (7) yields qk = H ′
k
−1(vk) with

(LTI):∼H ′
k
−1(vk) = Ckvk, (28)

(NL):∼H ′
k
−1(vk) = q0

[
vk

Vk

]1/α

, (29)

and Eq. (8) yields qC = QC(vC) with QC (vC ) :=[
H ′

A
−1+ H ′

B
−1](vC ),

(LTI):∼QC (vC ) = (CA + CB)vC (30)

(NL):∼QC (vC ) = q0

[
vC

VA

]1/α

+ q0

[
vC

VB

]1/α

= q0

[
vC

VC

]1/α

, (31)

with VC =
[
V −1/α

A + V −1/α

B

]−α

.

Fig. 19 . (NL) (a) Energy functions Hk and (b) voltage functions
H ′

k for various degrees α (q0 = 0.9.10−8C and Vk = 0.5V).

Step 2. Eq. (9) yields vC = Q−1
C (qC ) with

(LTI):∼Q−1
C (qC ) = qC

CA + CB
(32)

(NL):∼Q−1
C (qC ) = VC

[
qC

q0

]α

. (33)

Step 3. Eq. (10) yields

(LTI):∼HC (qC ) =
(

CAqC

CA+CB

)2

2CA
+

(
CB qC

CA+CB

)2

2CB

= q2
C

2(CA + CB)
(34)

(NL):∼HC (qC ) =
∑

k=A,B

Ek

∣∣∣∣∣∣∣∣∣
q0

[
VC

[
qC
q0

]α

Vk

]1/α

q0

∣∣∣∣∣∣∣∣∣

1+α

= EC

∣∣∣∣qc

q0

∣∣∣∣1+α

(35)

where EC is found to be related to VC as Ek to Vk in
Eq. (27).

Note that the equivalent laws for (LTI) and (NL) have the
same expression. This is not the case in general.
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Sorbonne Université in 2018 and is now pursuing a PhD
at the STMS laboratory (Sciences and Technologies for
Music and Sound, IRCAM-CNRS-SU). Her research inter-
ests revolve around physical modelling and simulation of
nonlinear analog electronic circuits for audio applications.

•
David Roze received an engineering degree in Mechan-

ics from INSA de Rouen in 2005, a Master degree and a
PhD degree in musical acoustics from Université Pierre et
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Abstract—The ondes Martenot is a classic electronic musical
instrument based on heterodyning processing. This paper pro-
poses a power-balanced simulation of its circuit, in order to syn-
thesize the sound it produces. To this end, the proposed approach
consists in formulating the circuit as a Port-Hamiltonian System,
for which power-balanced numerical methods are available. Ob-
servations on numerical experiments based upon this formulation
allow simplifications of the circuit in order to achieve real-time
computation in home-studio conditions.

Index Terms—Electronic music instrument, non-linear, power-
balanced, simulation

I. INTRODUCTION

AS the audio industry is evolving from analog to digital,
the preservation of analog machines and instruments—

and with them, that of the craft of generations of engineers—
is proving critical [1], [2]. The concern has been especially
raised about the ondes Martenot; invented in 1928 by Maurice
Martenot, this pioneer electronic musical instrument [3] is
no longer produced in its original form and some of its
components are now obsolete, such as specific triode vacuum
tubes. A solution consists of modeling its circuit and building
a real-time virtual instrument, so that the community of
composers, musicians and musicologists may have access to
virtual facsimiles.

Several techniques are available to build virtual analog
instruments (for a review, see [4]–[6]). They include Modified
Nodal Analysis [7], [8], the Nodal DK method [9] (for audio
applications, see e.g. [10], [11]), Wave Digital Filters [12]
(see e.g. [13]–[19]). Real-time simulations of circuits with
vacuum tubes have been derived from such methods [20], [21]
or from time-continuous state-space representations combined
with numerical schemes [22]–[25]. The approach used in this
paper is based on a state-space representation, which satisfies
the power balance of the physical system structured into
conservative, dissipative and external parts, known as Port-
Hamiltonian Systems (referred to as PHS) [26], [27]. This
formulation can be combined with numerical methods that
preserve the power balance structure (and passivity) in the
discrete-time domain for both linear and non-linear systems.
This has proved to be relevant for simulations of audio
(electronic or multi-physical) systems [28]–[31]. In a previous
paper [32], the first stage of the ondes Martenot circuit (a
variable oscillator) has been modeled and simulated using this
method, with a special focus on electro-mechanical power
balance. This paper addresses the full modeling and simulation
of the circuit of the ondes Martenot No. 169, which is
composed of 5 coupled stages. Moreover, analyzing numerical
experiments allows some model simplifications, which in turn
grant access to real-time.

This paper is organized as follows. Section II describes the
history and the composition of the ondes Martenot as well
as the way the instrument is played. In section III, the PHS
formalism is briefly recalled and illustrated with a simple
example. In section IV, each isolated stage is first separately
modeled as a PHS and the coupling of the stages is then
addressed. In section V, the physical parameters for simulation
are examined and set. Section VI is devoted to off-line power-
balanced simulations of the complete circuit. Finally, in section
VII, simplifications are proposed based on the analysis of
numerical experiments. They lead to a reduced order PHS
from which a real-time audio plug-in is built for the sound
synthesis.

II. HISTORY, ORGANOLOGY, CIRCUIT AND PRINCIPLE

A. History

The advent of electrical engineering marked a disruption
in many industrial domains, amongst them musical instru-
ment making. Providing both new timbres and new playing
modalities, it gave the 20th century instrument corpus its
singularity. Nonetheless, instrument making is not immune to
technological obsolescence, and only few of these innovative
instruments are still played today. This is the case of the
ondes Martenot; only 264 ondes were built, but around 1500
pieces were composed for it [33]. As they were handmade and
subjected to successive enhancements, each ondes is unique
and identified by a reference number. The considerable task
of cataloguing and evaluating the condition of the remaining
instruments has been achieved by the Musée de la Musique in
Paris [34]. It appears that for some of the ondes, making them
playable again would necessitate irreversible interventions.
This poses a big deontological dilemma from the preservation
point of view and argues in favor of building facsimiles.

B. Organology

This paper focuses on the ondes No. 169, manufactured in
1937, and kept in the Musée de la Musique in Paris. This
specimen has a great heritage value, particularly because of
its electronic circuit with vacuum triodes. Also, it is kept in
playing conditions and is fully documented [35]. It is based
on heterodyne processing, like the Theremin [36] and the
Trautonium [37]. It generates a harmonic signal which feeds
specific loudspeakers (called diffuseurs, Fig. 1a). The player
controls the pitch with a sliding ribbon (continuous pitch
change) or—in later versions of the instrument—with a mobile
keyboard (discrete pitch change and vibratos, Fig. 1b). The
loudness is controlled with an intensity key, by pressing a
small bag containing a mixture of conductive and insulating
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(a)

(b) (c)

Fig. 1: Different parts of the ondes Martenot : diffuseurs (Fig.
1a on the right, from [33]), circuit, ribbon, keyboard (Fig. 1b),
intensity key with the powder bag underneath circled in red
(Fig. 1c).

powders. This key operates as a rheostat [38] (Fig. 1c). Thanks
to this intensity key, the instrument’s expressiveness has been
praised since its creation. However, the lack of robustness of
its circuit (subject to drifting, particularly in older models) is
dreaded by musicians (called ondists) who are accustomed to
perform repairs on the fly before concerts.

C. Circuit and operation

The technique of heterodyning was developed originally
for wireless telegraphy [39], in order to shift high frequency
signals into the audio domain. In the ondes Martenot specif-
ically, two oscillators generate quasi-sinusoidal voltages at
high frequency; one is set to 80 kHz and the other, variable
below 80 kHz, is controlled by the player. Their sum is an
amplitude-modulated signal, whose envelope is detected with a
triode vacuum tube in series with an RC circuit. The envelope
fundamental frequency, equal to the difference between the
oscillators’ frequencies, lies in the audible frequency range.
The resulting voltage is amplified through two successive
triode vacuum tubes, which increase the harmonic distortion
present in the signal, due to their non-linear characteristics.
Finally, the diffuseur, selected by the player, converts the

electrical waveform into sound and in turn modifies its spectral

content.
The complete circuit is structured into five stages devoted
to specific functionalities (see Fig. 2a), namely : (1) fixed-
frequency oscillator, (2) variable-frequency oscillator, (3) de-
modulator, (4) preamplifier, and (5) power amplifier. These
stages are connected through transformers that introduce cou-
pling: this will be naturally taken into account in the global
PHS model (addressed in section IV-C). However, in first step,
these stages are presented separately, ignoring coupling (no
load on the secondary winding, 2b-2d). Qualitative specificities
of these stages are stated below.

1) Oscillators: In both oscillators, a voltage noise Vstart
at the triode grid is amplified by the triode vacuum tube and
filtered by a LC circuit, before feeding the grid through a
transformer of ratio P . Each transformer has two windings on
the secondary; the second secondaries (for oscillators 1 and 2)
are connected in series to form the demodulator voltage input.

2) Demodulator: The voltage input, equal to the sum of
the oscillators’ outputs, can be assimilated to an amplitude-
modulated sinewave: cos(Φ) + cos(Φ − φm) = 2 cos(Φ −
φm/2)cos(φm/2), where F = Φ̇/2π = 80 kHz is the fixed
oscillator frequency, fm = φ̇m/2π is the target frequency, and
F − fm is the variable oscillator frequency. The demodulator
is composed of a triode vacuum tube in series with an RC
circuit (R4 and C21 on Fig. 2c). As the triode grid polarization
is close to zero, the qualitative behavior of the triode between
the grid and the cathode is that of a diode: grid current
only appears for positive grid voltages (Fig. 3). The triode
vacuum tube is loaded with capacitors in parallel with a
transformer. This load forms a resonant bandpass RLC filter
(Fig. 2c): the resistance Rp models the transformer losses, Lp

is the primary inductance, Cdem is the equivalent capacitor
of C9 and C10 in parallel. Its resonance frequency lies in the
audible range. The stage amplification in a common cathode
pattern increases with the triode load. As a consequence, the
oscillators’ frequencies and their intermodulation products are
filtered out before amplification.

3) Preamplifier and power amplifier: Both stages rely on
the triode vacuum tube amplification properties in a common
cathode pattern [40].

III. POWER-BALANCED MODELING

A. Framework

Detailed presentations of PHS are available in [27]. Here we
rely on a differential-algebraic formulation adapted to multi-
physical systems [30], which allows the representation of a
dynamical system as a network of

1) components storing energy E as a regular definite non-
negative function of their state x (E = H(x) ≥ 0),

2) instantaneous dissipative components for which efforts
ew are related to flows w through a constitutive law z
that dissipates power (ew = z(w), Pdiss = z(w)ᵀw ≥
0, ∀w),

3) connection ports as control inputs u and their associated
outputs y such as uᵀy is the outgoing power Pext.
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(a) Schematics of the complete circuit of the ondes No. 169 (as is from [35]).

CkRk

Cosc

6F5

1 : P

Losc

Vbias

Vstart

6F5

Vout

(b)

CkRk

Cdem Rp

Vbias

Lp

6C5

R4

C21

Vout

Vin

(c)

CkRk

Rp

Vbias

Lp

6C5

Vout

Vin

(d)

CkRk

Rpw

Vbias 2A3

Vout

Vin

(e)

Fig. 2: Complete circuit (top) and isolated stages simplified for modeling (bottom): oscillators (stages 1 and 2, Fig. 2b),
demodulator (stage 3, Fig. 2c), preamplifier (stage 4, Fig. 2d) and power amplifier (stage 5, Fig. 2e).

c g p

Lp

ra

ipc

vgc

R4 C21 Cdem Rp−Vin −Vout

Vin Vout

Fig. 3: Equivalent small signal schematic of the demodulator.
The nodes c, g and p denote the triode cathode, grid and plate
respectively; ra is the triode plate resistor.

The variables are generally time-dependent. For each com-
ponent, ẋ accounts for the incoming state flow. It is named
“flow” in the following.1 Jointly, ∇H(x) is named “effort”
(w.r.t. the state) in the following, so that the power received
by the energy-storing component ẋ∇H(x) is the product of
an effort and a flow. If such a system is realizable [41], [42],
the exchanges of generalized flows and efforts between the

1Note that, according to the component type, the “state flow” can be a
current (i = q̇ = ẋ for capacitors with charge q) or a voltage (v = φ̇ = ẋ
for induction coils with magnetic flux φ). Thus, the flow is not systematically
understood as the “charge flow” that is the electric current.

system components are coupled through a skew-symmetric
interconnection matrix S = −Sᵀ:



ẋ

w

y




︸ ︷︷ ︸
F (flows)

= S



∇H(x)

z(w)

u




︸ ︷︷ ︸
E(efforts)

. (1)

For convenience, to distinguish storage, dissipative, and con-
nection ports exchanges, we introduce the following block-
matrix notation:

S =

( )Jx −K −Gx

Kᵀ Jw −Gw

Gᵀ
x Gᵀ

w Jy

. (2)

The skew-symmetry of S guarantees the system power bal-
ance. Indeed,

∇H(x)ᵀẋ︸ ︷︷ ︸
dE
dt

+ z(w)ᵀw︸ ︷︷ ︸
Pdiss≥0

+uᵀy︸︷︷︸
Pext

= EᵀF , (3)

and

EᵀF = EᵀSE= (EᵀSE)
ᵀ

= −EᵀSE = 0, (4)

Appendix F. Other Publications 171



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 4

V

I

R

iR

L

iL

C

iC

Fig. 4: Current-controlled parallel RLC circuit.

TABLE I: State variables and constitutive laws for a linear
parallel RLC circuit.

x dx
dt

H(x) ∇H(x)

C q q̇ = iC
q2

2C
q
C

= vC

L φ φ̇ = vL
φ2

2L
φ
L

= iL

w z(w)

R vR
vR
R

= iR

so we have the following power balance:

dE

dt
= −Pext − Pdiss. (5)

Note that −Pext is the incoming power (since Pext is the
outgoing power). The passivity of the system stems from this
power balance and the positivity of Pdiss.

B. Example

Consider a linear parallel RLC circuit (Fig. 4). The ca-
pacitor C and the inductor L are storage components whose
states are given by the variables q (charge) and φ (magnetic
flux) respectively; the resistor R is a dissipative component
described by Ohm’s law. In order to represent it as a PHS, the
system is chosen to be current controlled. Table I recaps the
variables and the constitutive laws of the three components.
Based on Kirchoff’s laws, matrix S relating efforts (E) to flows
(F) in Eq. (1) is found to be







iC
vL
vR
V

=







0 −1 −1 −1
1 0 0 0
1 0 0 0
1 0 0 0







vC
iL
iR
I

.

Flows which are currents (resp. voltages) have associated
efforts which are voltages (resp. currents). Therefore their
products are powers and Eq. (3) is naturally retrieved. Note
that in this simple example, the matrix S is sparse with
constant coefficients, but the properties of the PHS formalism
also hold for non-linear or coupled systems (state depending
interconnection matrices, non-quadratic H , non-linear z).

IV. ONDES MARTENOT PHS MODELING

A. Ondes Martenot components

The ondes Martenot circuit contains resistors, capacitors,
inductors, transformers, and triode vacuum tubes. Among
those components, the ribbon-controlled capacitor and the
triode need to be carefully modeled to satisfy a physical power
balance and to admit a PHS formulation.

Fig. 5: Variable capacitor schematics where d denotes the
ribbon position (up to 1.2 m for the highest note) and ε(d)
the distance between the ribbon and the comb teeth (around
1 mm).

1) Ribbon-controlled capacitor: The variable capacitor C15

(Fig. 2a) is controlled by a partly conductive ribbon: as the
player moves the ribbon along, it hides or “activates” the teeth
of the comb-shaped electrical conductor, located at different
distances from the ribbon (Fig. 5). Previous work [32] showed
that the LTI capacitors C13, C14 but also the variable capacitor
C15 in parallel (Fig. 2a, stage 1) are equivalent to a single
variable capacitor whose energy function is given by

Hcap(q, d) =
q2

2Cosc(d)
, (6)

Cosc(d) =
1

4π2
(
F −A12

d
12d0

)2
Losc

, (7)

where d is the ribbon displacement relative to the position
corresponding to the lowest note A1, d0 is the ribbon displace-
ment for one semitone, F is the fixed oscillator frequency and
Losc is the inductance of the oscillator.

2) Triode vacuum tubes: Numerous models are available
for triode vacuum tubes [43], [44]. For audio applications, the
Norman Koren model [45] has proven to be accurate. Here
we will rely on an enhanced Norman Koren model [46] which
takes into account the triode grid current. Although this current
is small compared to that of the plate, it must be considered to
ensure the passivity of the component (since its power supply
is external, the triode is indeed passive). As a result, the triode
vacuum tube is a dissipative component with w = (vpc, vgc)

ᵀ

and zθ(w) = (ipc, igc)
ᵀ, where p, g and c respectively refer

to the triode plate, grid and cathode. The plate current ipc and
the grid current igc are given by

ipc =

{
2[E1

(
vpc, vgc

)
]Ex/Kg if E1 ≥ 0

0 else,
(8)

igc =





0 if vgc < Va
vgc − Va
Rgk

else,
(9)

with

E1

(
vpc, vgc

)
=
vpc
Kp

ln


1 + exp


Kp


 1

µ
+

vgc + Vct√
Kvb + v2pc








 .

For each type of vacuum tubes used in the circuit of
ondes Martenot No. 169, the set of constant parameters
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Fig. 6: Dissipated power for the triode 6C5.

θ = (µ,Ex,Kg,Kp,Kvb, Vct, Va, Rgk) is estimated by fitting
the model to the datasheets [47, Fig. 1] [48, Fig. 1] [49, Fig.
1] through a least squares minimization. The results of that
minimization fulfill the passivity criterion, i.e. zθ(w)ᵀw ≥ 0
for all w (Fig. 6). They are given in Table II, section VI.

3) Other components: Constitutive laws of R, L, C com-
ponents are supposed to be linear, as shown in Table I. In the
oscillators, the transformers are also supposed to be linear;
their ratios P being unknown a priori, they are subjected to
an estimation described in section V-A2.

B. PHS of isolated stages

For each stage, we denote Rk the regulation resistor between
the triode cathode and the ground, Ck the bypass capacitor in
parallel with Rk, Vbias the triode DC power supply, Vin the
input voltage and Vout the observed output voltage. We denote
Lp the transformer magnetizing reactance, Rp the transformer
resistance modeling the core losses in the demodulator and the
preamplifier and Rpw the input impedance of the diffuseur. For
each oscillator, we denote Cosc the capacitor equivalent to the
parallel capacitors and Losc the inductance equivalent to the
coils in series (Figs. 2b-2e). Kirchhoff’s laws yield the inter-
connection matrices for the oscillator (Fig. 7a), demodulator
(Fig. 7b), preamplifier (Fig. 7c), and power amplifier (Fig. 7d).

C. Stages coupling

The connection of two PHS is still a PHS. The total state
is the concatenation of the subsystems states, and the total
Hamiltonian is the sum of the subsystems Hamiltonians. A
conservative interconnection is then achieved by connecting
each output port of one system to exactly one input port of the
other. For two stages A and B connected through a transformer
of ratio ρ, we have VinB = ρVoutA and IoutA = −ρIinB , that
is, (

youtA

yinB

)
=

(
0 1/ρ

−1/ρ 0

)(
uoutA

uinB

)
.

The circuit A connected to the circuit B is then equivalent
to a circuit C whose PHS is given by Eq. (1), with notations
of Eq. (2): xC = (xA,xB)

ᵀ and ∇HC,wC, zC are defined
likewise,

JxC =

(
JxA 0

0 JxB

)

and JwC ,GxC ,GwC ,KC are defined likewise, uC =
(uinA ,uoutA ,uinB ,uoutB)

ᵀ and yC is defined likewise, and

JyC =







JyA

0 0
1/ρ 0

0 −1/ρ
JyB0 0

.

V. ESTIMATION OF THE INSTRUMENT PARAMETERS

Most parameters of the components are provided by the
circuit specifications [35]. The others have to be determined,
in particular the oscillator transformer re-injection ratio P
and bypass capacitor Ck, as well as the characteristics of the
transformers towards the amplification stages.

A. Oscillators (stages 1 and 2)

1) Voltage noise source: The oscillation arises from the
voltage noise Vstart at the grid of the triode at its operating
point. This broadband noise mainly results from thermal
agitation [50] and is modeled with a white noise source of
peak voltage 1 mV2.

2) Re-injection transformer ratio: The voltage noise is
amplified by the triode, filtered by a LC circuit at the plate and
sent back to the grid through a transformer of ratio P (Fig.
2b). To estimate a range of possible values for P , the oscillator
circuit is simplified: Losc acts as the transformer primary and
the cathode potential is considered constant. Moreover, the os-
cillator model is linearized around its operating point and it is
assumed that the influence of the load on the second secondary
is negligible. The oscillator can then be represented as a system
of input Vstart and output Vout. Under those assumptions, it
can be shown [32], [53] that the system characteristic equation
in Laplace domain is s2 + s(1−µP )/(raCosc) +ω2

0 (µ being
the triode amplification factor, ra the triode plate resistor and
ω2
0 = 1/(LoscCosc) the oscillation pulsation), and that the

condition on P for the system to oscillate is

1

µ
≤ P <

1

µ
+

2ω0Coscra
µ

. (10)

The closer to 1/µ P is chosen, the more stationary the
oscillation amplitude will be. Fig. 8 shows the range of P
values for which an oscillation is possible.

3) Inductance of the LC circuit: For a parallel LC circuit
of resonant frequency F , Losc = 1/

(
Cosc(2πF )2

)
. With F

set to 80 kHz and Cosc = 544 pF, this yields Losc = 7 mH.
4) Cathode bypass capacitor: The bypass capacitor Ck

stabilizes the cathode potential, which otherwise would depend
strongly on the plate current (through the regulation resistor
Rk), itself depending on the input voltage. This stabilization
ensures that the signal to be amplified vgc is the biased
input voltage and not a modulation of it. In parallel with

2The measured noise amplitude is around 1 µV RMS [51] for a vacuum
tube. However, as the noise is sufficiently filtered out by the oscillator, its
amplitude mainly affects the transient duration [52].
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∇H(x) z(w) u
iLosc vCosc vCk

igc ipc iRk
Vstart Iout Vbias






vLosc . 1 . . . . . . .
ẋ iCosc -1 . . -P 1 . . -1 .

iCk
. . . 1 1 -1 . . .

vgc . P -1 1 . .
w vpc . -1 -1 . . 1

vRk
. . 1 . . .

Istart . . . -1 . .
y Vout . 1 . . . .

Ibias . . . . -1 .

(a)
∇H(x) z(w) u

iLp vC21
vCk

vCdem
iR4

iRp igc ipc iRk
Vin Iout Vbias






vLp . . . 1 . . . . . . . .
iC21

. . . . -1 . 1 . . . . .
ẋ iCk

. . . . . . . 1 -1 . . .
iCdem

-1 . . . . -1 . 1 . . -1 .
vR4

. 1 . . . . .
vRp . . . 1 . . .

w vgc . -1 . . 1 . .
vpc . . -1 -1 . . 1
vRk

. . 1 . . . .
Iin . . . . . . -1 . .

y Vout . . . 1 . . . . .
Ibias . . . . . . . -1 .

(b)
∇H(x) z(w) u
iLp vCk

vRp igc ipc iRk
Vin Iout Vbias







ẋ vLp 1 . . .
iCk

. 1 1 -1
iRp -1 . . . 1 . . -1 .
vgc . -1 . . . . 1 . .

w vpc . -1 -1 . . . . . 1
vRk

. 1 . . . . . . .
Iin . -1 . .

y Vout 1 . . .
Ibias . . -1 .

(c)

∇H(x) z(w) u
vCk

vRpw igc ipc iRk
Vin Iout Vbias







ẋ iCk
. 1 1 -1

iRpw . . . 1 . . -1 .
vgc -1 . . . . 1 . .

w vpc -1 -1 . . . . . 1
vRk

1 . . . . . . .
Iin . -1 . .

y Vout 1 . . .
Ibias . . -1 .

(d)

Fig. 7: PHS interconnection matrices of the isolated stages: oscillators (Fig. 7a), demodulator (Fig. 7b), preamplifier (Fig. 7c),
power amplifier (Fig. 7d).

1
µ ≤ P < 1

µ + 2 ω0 Cosc ra
µ

Fig. 8: Location of s and regimes of oscillation for P ranging
between 1/µ and 1/µ+ β.

Rk, it constitutes a current-current high-pass filter whose
cutoff frequency is fc = 1/(2πRkCk). For the oscillator
amplification to be maximal at the frequency F , fc must verify
F ≥ 10fc. For the given value Rk = 7.5 kΩ, this yields Ck ≥
3 nF. In the following, Ck is set to 0.22 µF, a typical capacitor
value, for both oscillators.

B. Coupling transformer characteristics

Except for its ratio, the properties of the transformer be-
tween stage 3 (resp. 4) and 4 (resp. 5) are unknown and
accessing a real circuit to perform measurements has proven
to be delicate due to the instrument rarity and fragility. It is
assumed that Maurice Martenot chose the transformers with
audio applications in mind; the magnetizing reactance Lp and
the resistance modeling the core losses Rp will be thus set as
such in the following.
The capacitor Cdem in parallel with Rp and Lp (Fig. 2c) forms
a current-current band-pass filter, whose high cutoff frequency
is given by fch = (ra + Rp)/(2πraRpCdem), with Cdem

= 7 nF and ra = 10 kΩ. The instrument ambitus is C1-B7
corresponding to a fundamental frequency ranging from 32
Hz to 3951 Hz in A440 tuning. Therefore, choosing fch =
7.9 kHz (the highest possible note second harmonic) yields
Rp ≈ 4 kΩ. Similarly, the low cutoff frequency is given by
fcl = (raRp)/(2π(ra +Rp)Lp). Choosing fcl = 50 Hz yields
Lp ≈ 9 H. It is assumed that the transformer to the power
amplifier has the same properties.
The values of the other circuit parameters are provided by the
condition report of the ondes No. 169 [35].

174 Appendix F. Other Publications



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 7

VI. POWER-BALANCED SIMULATION

This section is devoted to the power-balanced simulation
of the ondes Martenot No. 169 complete circuit, composed
of the 5 coupled stages (the power amplifier being loaded by
a basic resistor equivalent to that of a diffuseur—around 1.5
kΩ). Table II recaps all components parameters values used
for simulation.

TABLE II: Component parameters values used for simulation.

Triode µ Ex Kg Kp Kvb

6F5 98 1.6 2614 905 1.87
6C5 20 1.5 2837 138 89
2A3 4.3 1.5 1685 43 102

Vct Va Rgk

6F5 0.5 0.33 1300
6C5 0.8 0.33 1300
2A3 -1.2 0.33 1300

Stage Vbias Ck Rk

osc 90 V 0.22 µF 7.5 kΩ
demod 100 V 0.277 µF 1 kΩ
preamp 180 V 0.277 µF 1 kΩ
poweramp 230 V 10 µF 750 Ω

Losc Cosc Cdem C21 R4 Lp

7 mH 544 pF 7 nF 200 pF 1 MΩ 9 H

Rp Rpw P ρ Iout Vstart

4 kΩ 1.5 kΩ 1/µ + β/35 3 0 A 1 mV

A. Discrete-time system
The simulation is performed using the PyPHS library [30],

[54]. It is based on the numerical method recalled below
in the case of mono-variate storage components (H(x) =
N∑
n=1

Hn(xn) where N is the storage components number).

Define x[k] = x(k/Fs) where Fs = 1/Ts denotes the
sampling rate. Moreover, define the state increment δx[k] =
x[k + 1] − x[k] and the discrete gradient (see [30], [55])
∇̄H

(
x[k], δx[k]

)
, the nth component of which is

[∇̄H
(
x[k], δx[k]

)
]n

=





Hn

(
xn[k] + δxn[k]

)
−Hn(xn[k])

δxn[k]
if δxn[k] 6= 0

dHn

dxn
(xn[k]) otherwise.

(11)

The method consists of replacing ẋ with δx[k]/Ts and∇H(x)
with ∇̄H

(
x[k], δx[k]

)
in Eq. (1). As in Eqs. (3-5), due to the

skew-symmetry of S, the following discrete power balance is
satisfied:

∇̄H
(
x[k], δx[k]

)ᵀ δx[k]

Ts︸ ︷︷ ︸
δE[k]/Ts

+ z(w[k])ᵀw[k]︸ ︷︷ ︸
Pdiss[k]

+u[k]ᵀy[k]︸ ︷︷ ︸
Pext[k]

= 0.

Moreover, due to the positivity of z(w[k])ᵀw[k], the system
is also still passive. Denoting ν =

(
δx[k]Fs,w[k]

)ᵀ
, the

discretization of Eq. (1) yields the implicit equation

F (ν) := ν − S̄Ē(ν,x[k],u[k]) = 0, (12)

where

S̄ =

( )
Jx −K −Gx

Kᵀ Jw −Gw

and Ē(ν,x[k],u[k]) =
(
∇̄H

(
x[k], δx[k]

)
, z(w[k]),u[k]

)ᵀ
.

Denoting F ′ the Jacobian of F , Eq. (12) is solved using the
Newton-Raphson iteration

νk+1 = νk − F ′(νk)−1F (νk), (13)

if F ′ is invertible. Conditions for convergence of the method
can be found in [56], [57].

B. Numerical experiments

The circuit is simulated based on the concatenation of the
stages PHS with component parameters values of Table II.
The control law of the ribbon position d is built to generate
a frequency sweep according to parameters in Table III and
Eq. (7). Fig. 9a-9c show the output voltages of stages 3, 4
and 5 during the simulation, and the effect of the successive
harmonic distortions. Fig. 9d shows the spectrogram of the
complete circuit output during the whole sweep. Fig. 9e shows
the stored power, outgoing power and dissipated power of the
complete circuit during the whole sweep. As shown in Fig.
9f, the total power, sum of these three contributions, amounts
to less than 10−13 W.

TABLE III: Simulation parameters.

sampling frequency Fs 768 kHz
fixed osc. frequency F 80 kHz
playing frequency fm 55 Hz-3520 Hz
duration 1 s

VII. AUDIO PLUGIN

A. Circuit simplification

The voltage generated by the oscillators, even when con-
nected to the other stages, is nearly sinusoidal: the harmonic
distortion is about 0.03% for harmonic 2 (Fig. 10a-10b). For
a real-time application, physically modeled oscillators may be
thus replaced with a sinewave generator.

Additionally, although the simulated performances of the
power amplifier are rather poor for a class A amplifier (almost
5% harmonic distortion for harmonic 2, Fig. 11), the stage
contributions to the final sound are of much less importance
compared to the demodulator and preamplifier. In practice,
based on numerical experiments, this stage may also be
removed for real-time application.

B. Oscillators frequency reduction

The original oscillator frequency F is around 80 kHz.
This choice, alongside with heterodyning, can certainly be
attributed to the cost and unreliability of high value capac-
itors in Maurice Martenot’s time: an oscillator at an audible
frequency, 3000 Hz for instance, would necessitate a capacitor
of 4 µF (the inductance being equal for both oscillators).
But in a virtual instrument context, the components may take
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(a) (b) (c)

(d) (e) (f)

Fig. 9: From top left to bottom right: simulated output voltages at stages 3 (9a), 4 (9b) and 5 with carrier residual (9c),
spectrogram of the simulated output voltage at stage 5 (9d), power balance of the circuit during the simulation (9e-9f).

(a) (b)

Fig. 10: Spectral density of the simulated fixed oscillator output voltage (10a) and spectrogram of the simulated variable
oscillator output voltage during a sweep (fm = 55 Hz to 3520 Hz, 10b).

Fig. 11: Spectral density of the simulated power amplifier
output voltage for an input of 1 kHz, amplitude 20 V.

any value, provided that the oscillator frequency stays above
20 kHz. Knowing that the carrier and its first harmonics
are not completely eliminated by the filtering, and that most
commercial audio cards do not offer a sampling rate above
192 kHz, F = 48 kHz is arbitrarily chosen to reduce the
sampling rate without introducing aliasing, for real-time appli-
cation. Fig. 12 shows the spectrogram of the poweramp circuit
output voltage for this new configuration. A small amount of

Fig. 12: Spectrogram of the simulated power amplifier output
voltage for F = 48 kHz and Fs = 192 kHz, fm = 55 Hz to
3520 Hz.

aliasing remains nonetheless. This can be improved either by
increasing the value of Cdem, therefore lowering the lowpass
frequency before amplification, or implementing methods such
as the ones described in [58]. Note: the detection time constant
τ = R4C21 = 0.0002 is still valid as the relation τ � 1/F is
still true.

176 Appendix F. Other Publications



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 9

C. GUI, real-time results and performances

The dimension of the complete PHS is defined as
n =dim E =dimF . For each sample and each element, the
matrix update computes n multiplications and n−1 additions,
and consequently Fs×n(2n−1) floating operations per second
(flops). Before the circuit simplification, the PHS contains
32 component variables, 5 voltage supply ports, 2 inputs
ports and 1 observation port. Using Fs = 768 kHz and n
= 40 requires 2.42 Gflops. After the circuit simplification
and the frequency reduction, 17 component variables and 3
ports are removed leading to n = 20. For Fs = 192 kHz, this
requires 149 Mflops (gain of about 16). The simplified PHS is
implemented in the JUCE framework using the PyPHS library
to generate C++ code [54]. The player controls the pitch and
sound intensity either with sliders or with commercial midi
interfaces. Additionally, the user has the possibility to adjust
the quantity of harmonics by changing the demodulator input
gain (a feature not present on the original instrument). While
running, the plugin consumes 85% CPU (i7-2720QM CPU at
2.20 GHz) and 0.9% RAM (4Go), which is still quite heavy
but allows real-time usage.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, a refined simulation of the ondes Martenot
circuit has been proposed, allowing a numerical investigation.
It is based on a power-balanced modeling adapted to LTI
(capacitors, resistor, inductor) and non-LTI (vacuum tubes and
the multi-physical time-varying capacitor mechanically-driven
by a ribbon) components. Due to the nature of the ondes
Martenot instrument (rare, fragile and expensive), setting up
extensive measurements to evaluate the accuracy of the circuit
modeling is a complex operation which is still ongoing.
However, numerical experiments on the modeled circuit lead
to the following observations:

1) the combination of the triode vacuum tube amplifica-
tion properties and the LC-resonator produces a quasi-
sinusoidal oscillation with stable amplitude;

2) the contribution of the power amplifier is minor in terms
of coloration compared to that of the preamplifier;

3) the overall result does not depend on the carrier fre-
quency value, provided that this frequency stays outside
the audio domain.

In consequence, the oscillators are replaced with sinewave
generators, the power amplifier is replaced with a multiplying
factor, and the sampling frequency is lowered by a factor of 4.
These simplifications lead to the implementation of the circuit
within a controllable audio plugin, functioning in real-time on
a common computer.

Further work aims to model the diffuseurs and the control
interfaces (ribbon and intensity key). Moreover, this work will
rely on anti-aliasing methods [58] to handle the non-linear
heterodyne process at lower sampling rates.
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[24] I. Cohen and T. Hélie, “Real-time simulation of a guitar power ampli-
fier,” in Proceedings of the 13th International Conference on Digital
Audio Effects (DAFx-10), Graz, Austria, 2010.

[25] J. Macak, J. Schimmel, and M. Holters, “Simulation of Fender type gui-
tar preamp using approximation and state space model,” in Proceedings
of the 10th International Conference on Digital Audio Effects (DAFx-
12), York, UK, 2012.

[26] B. M. Maschke, A. J. Van der Schaft, and P. Breedveld, “An intrinsic
Hamiltonian formulation of network dynamics: Non-standard Poisson
structures and gyrators,” Journal of the Franklin Institute, pp. 923–966,
1992.

[27] A. Van der Schaft, D. Jeltsema, et al., “Port-Hamiltonian systems theory:
An introductory overview,” Foundations and Trends R© in Systems and
Control, vol. 1, no. 2-3, pp. 173–378, 2014.
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