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Ecole Doctorale Sciences Mécaniques, Acoustique, Electronique et

Robotique (SMAER)

Karen Tatarian

Synthesis of Multi-Modal Socially

Intelligent Human-Robot Interaction

Supervised by Professor Dr. Mohamed Chetouani

submitted in December 2021

Thesis jury:

Prof. Dr. Jonathan Gratch Reviewer University of Southern California

Prof. Dr. Dirk Heylen Reviewer University of Twente

Prof. Dr. Amal El Fallah Seghrouchni Examiner Sorbonne University

Dr. Joost Broekens Examiner Leiden University

Prof. Dr. Mohamed Chetouani Supervisor Sorbonne University





Dedication
To my beautiful parents Paul & Rita, who have always encouraged me to reach my full

potential and supported me throughout the years .. To my grandpa, General Georges, who

always saw so much greatness in me even when I could not .. To the endlessly curious little

girl I was and still am, who found so much joy and wonder in mathematics and physics

... this one is for you

"....We must have perseverance and above all confidence in ourselves. We must believe that

we are gifted for something, and that this thing, at whatever cost, must be attained."

- Marie Skłodowska-Curie



Acknowledgements

This thesis is the fruit of 3 years of research and work with Professor Mohamed Chetouani
at Sorbonne Université and with the support of Marine Chamoux from SoftBank Robotics
Europe (SBRE). I would also like to thank the entire Expressivity Team at SBRE for their
support throughout my PhD.

I want to also acknowledge the Marie Skłodowska-Curie Fellowship through the ANI-
MATAS project as this thesis received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 765955.





Abstract

By merely observing humans, one can directly infer that no social interaction takes place
without cues, whether verbal or nonverbal, that allow others to interpret behaviors and
reasonably estimate intentions. These powerful social signals and nonverbal behaviors
are complex and multi-modal, which means they are made of different combinations of
modalities and cues like gestures, gaze behavior, and proxemics (e.g., management of space
and environment). Thus for a robot to be perceived as a socially-intelligent agent by humans,
it is expected to be able to hold a successful social interaction, adapt to the social environment,
and exhibit appropriate multi-modal behavior. This thesis first investigates how one of these
modalities can help adapt another one, then explores the effects of the modalities when
performed multi-modally on behavioral interaction outcomes and perception of the robot’s
social intelligence, and finally presents an architecture using reinforcement learning for the
robot to learn to combine its multi-modal behaviors with a reward function based on the
multi-modal social signals of the human in an interaction.
Modalities are coupled in nature and for one to adapt to the changes in the environment it
may need to rely on other sensory modalities. For instance, in the first work, the robot would
autonomously adapt its gaze pattern to social interaction changes, i.e groups being formed
around it, based on its proxemics, which was used to estimate the roles of participants in
group formations around the robot, such as active speaker, bystander, or overhearer. A pilot
study looked into group formations made of a robot and two users. Results showed that
participants stood closer to the adaptive robot and ranked it higher in perceived adaptability
and perceived sociability as well as feeling attended to by the robot in comparison to a
robot that switched its gaze attention based on new sensory detection. In the second work,
multi-modal behaviors made up of gaze mechanisms, which are turn-taking, turn-yielding,
floor-holding, and joint attention, social gestures, which are emblem, deictic, and beat gestures,
proxemics, through social navigation, and social dialogue were implemented autonomously and
studied by extracting one modality in each condition and looking into behavioral outcomes
and subjective measurements. The data collection included 105 participants in a seven
minutes interaction alone with the robot to investigate behavioral outcomes including but
are not limited to distances of the users, speaking time, greetings performed, as well as
backchannels. The study showed the extent of which each modality within the multi-modal
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behavior allows the robot to influence how close the human stands, how they address the
robot, whether they take its suggestions or not, and how they greet and end the interaction
by mirroring nonverbal behaviors of the robot. Finally and after diving into a review of
reinforcement learning for adaptation in social robotics presented in the thesis, the last work
looks into the multi-modal social signals of the human, including distances, time spent looking
and deciding, as well as decisions made, to formulate the reward signal, which also includes
cost functions for the complexity of the multi-modal behavior performed by the robot and
whether or not the human followed the robot’s recommendation. This reward function was
then used to adapt the robot’s multi-modal behavior creating various possible combinations,
which are made of gaze, gestures, proxemics, and emotional expressions, with the goal to
increase the robot’s social intelligence and influence. In conclusion, this thesis work dives into
understanding how nonverbal modalities forming multi-modal behavior shape the success of
interactions as well human behaviors and attitudes about and towards the robot and thus
paving the way for a learning architecture allowing the robot to further adapt to human
preferences and social signals. These findings are crucial to unlock the advancement of the
social intelligence of future technologies in adapting to humans, learning from them, and
communicating with them beyond just verbal means.
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Chapter 1

Introduction

When Thorndike [169] first introduced the concept of social intelligence back in 1920 by
observing human-human interactions, the definition was reduced to the following: social
intelligence is the ability to understand and manage others and to "act wisely in human
relations". Thorndike also added that social intelligence can be best measured during social
interactions since it requires human beings to respond and adapt the responses, face, voice,
and gestures accordingly. A few decades and since the beginning of its origin, artificial
intelligence (AI) has been heavily driven and influenced by human intelligence. So it is
no surprise that when robots started gaining attention, the notion of building human-like
embodied robots and machines put forward the need to synthesize a human-like intelligence
to allow the robot to interact with the environment around it and to be expressive [30, 29].
This brought forward the desire to achieve social intelligence for robots to make them smarter,
have more believable behaviors, and better equipped in adaptation to social situations and
interactions [40]. Moreover, this has become crucial as more robots and agents are found in
human-centered fields such as healthcare, service assistance, retail, and even homes. Thus,
the need to address and solve for socially intelligent human-robot interactions has become
central to their success and evolution.

1.1 Motivation

Social Intelligence is defined to include two aspects that need to be considered: behavioral [57],
which refers to the ability to communicate and hold successful interaction, and a cognitive
[18], which refers to the ability to socially adapt to the other members of the interaction
and varying situations; while still considering social intelligence a multi-faced construct
[98, 153]. Moreover, human behavior is naturally multi-modal, where gaze aversion mecha-
nisms, gestures, body postures and orientations, and facial expressions play functional roles
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in regulating interactions and communicating intention and engagement [86, 65]. Moreover,
in his quest to formulate the success of an interaction, Erving Goffman highlights that this
success depends on the situation the person is in and the expressive order, which regulates
the flow of events through a specific order of social actions [61]. In parallel, a robot is
an embodied agent that can navigate to adjust its position in the space, avert its gaze to
portray cognitive processes, gesture using arm motions to emphasize key points, display joy
or anger, among others, to influence engagement, communicate effectively, and manipulate
the environment around it [11, 115, 132, 166, 12]. Thus, for a robot to be perceived as
a socially-intelligent agent, it must be able to hold a successful social interaction, adapt
to the social environment, and exhibit appropriate multi-modal behavior. The twofold of
this bidirectional relationship between the multi-modal behaviors of the robot and that of
the human it is interacting with needs to be addressed. The robot not only has to display
multi-modal behavior to influence interaction outcomes with the human user, but it must
also adapt to social signals and behaviors of humans. The thesis focuses on these two
aspects of an interaction to present the synthesis of multi-modal socially intelligent human-
robot interaction through investigating the effect of multi-modal behaviors of the robot on
the outcomes of an interaction and proposing an adaptation and personalisation of these
behaviors by taking into account the human social signals using Reinforcement Learning (RL).

1.1.1 State-of-Art

In the past decades, there has been considerable interest among psychologists, sociologists,
cognitive scientists, and neuroscientists to investigate non-verbal behaviors observed in hu-
mans and used as communication methods and tools. Inspired by those findings, social
roboticists have tried to synthesize these modalities on different robots in order to study
their impact on human-robot interaction (HRI). Multi-modal behaviors are made up of
several modalities carrying various functions. Some of these modalities include but are
not limited to: proxemics, which is the study of social spatial behavior [115, 114], vocalics,
which is the study of the nonverbal characteristics of speech such as volume, pitch, and rate
[128], oculesics, which is the study of gaze behavior [125, 81], kinesics, which is the study of
communicative body movement such as gestures [6, 48], and chronemics, which is the study
of timing in social interactions [34, 123]. More recently, there has been more attention given
to the modalities of haptics, which focuses on touch for communication by force, vibration,
texture, or hand motions [187, 9] as well as emotional expressions, which allow the robot to
simulate emotions by using facial expressions and/or body movements [132, 190]. However,
while most work and studies focus on examining one modality or a combination of two
at most [69, 142, 133, 184], there is a lack of comprehension of the impact and relevance
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of these modalities on the social signals of the human and the interaction outcomes when
performed in combination with several modalities forming multi-modal behavior. This thesis
investigates and contributes to the synthesis and adaptation of the following modalities: gaze,
gesture, proxemics and how they are combined to form multi-modal behaviors for robots.
While this thesis does not contribute to the synthesis of emotional expressions for robots, it
explores their effects when combined with other modalities to compose multi-modal behaviors.

Furthermore, a fundamental feature of achieving multi-modal socially intelligent interac-
tion is the ability to adapt to social interactive environments [40]. While interacting with
others, humans have a intrinsic tendency to adapt their manners with others by modifying
their behaviors and even tones and speech to the perceived needs of their interactive partners
[166, 107]. Moreover, adaptation and personalization is crucial in HRI to bring forth user-
personalized and socially intelligent interactions to fit for different user profiles and cultures
specially for elderly care [26, 150], assistive robots [185, 3], collaborative learning [136], and
many other use cases. While some have attempted to solve adaptation by creating cognitive
architecture for autonomous behavior, this approach still requires more understanding on the
perception of humans and their intentions, their past memories, and anticipation of future
behavior [166]. On the other hand, in reinforcement learning (RL), the agent learns through
trial-and-error by interacting with the environment around it much like how one would expect
social robot to behave. As such RL may provide a possible solution for achieving adaptation
in HRI as a way for the robot to evaluate its behavior. While RL for adaptation in HRI is
shown to be a promising approach [119, 58], it is still relatively new and not much work have
been done on it. This thesis explores a RL model for adaptation in HRI by also providing
potential solutions to current gaps and limitations.

1.1.2 Limitations & Challenges

First, while several studies have combined two or more of the robot’s modalities for specific
functionalities in order to assess the interaction between them, there is not enough work done
on studying larger sets of multi-modal behaviors. For instance, the most common studies
have focused on gaze behaviours combined with gestures [69] or proxemics [184, 54]. Work
combining other modalities, or comparing more than two or three modalities is rare. There
is also a large body of work comparing behaviors on robots categorized as ’social’ versus
‘non-social’ (present versus non-present) [181, 130]. However, the manipulations in these
cases typically combine multiple modalities and evaluate the overall system performance, as
opposed to investigating the effect of specific modalities. In addition, even when looking at
individual modalities of the robot’s behaviors, there has been mixed results and findings.
For instance, some studies show a positive effect of gesture on outcomes such as sociability,
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competence, engagement and enjoyment [20, 90, 143, 8], whilst others show no effect on trust,
persuasiveness, perceived human-likeness, or rapport [164, 160, 69]. Similar mixed findings
were found in exploring gaze behavior in robotics. In some studies, robots using gaze cues
have been found to improve impressions of competence and intelligence [125, 78], however, in
others it did not [159, 11]. As such, although potentially useful for coordinating task based
interactions and establishing participant roles, the importance of gaze in developing more
subjective robot impressions is yet to be determined. Conclusively, there is a clear need
to develop a more comprehensive perspective on how different combinations of modalities,
specially gaze, gesture, and proxemics, contribute to overall perceptions of social intelligence
during the course of an interaction.

Second, RL for the robot’s capabilities and learning from nonverbal social cues from
the human during HRI is still to a great extent underdeveloped. This has been mostly
due to two main reasons and limitations shown in the recent studies [89]: first due the
unpredictable and varying multi-modal human social signals and behaviors and second due
to the high-dimensional continuous state-space this creates for the robot to interact in such
scenarios. While some have tried to discretize the social signals to form smaller state spaces
[88, 17, 58, 96, 105], this may lead to a loss of information as well as prevent more generalized
models to deal with task-independent and various scenarios. In addition, there is a lack
of studies addressing the robot learning how to adapt multi-modal behaviors during HRI
for task-independent scenarios. Moreover, training of RL for HRI can be very costly and
challenging specially during the current COVID-19 pandemic. As such, contributions for
simulation of HRI to train RL algorithms for social robots are called for. Finally, there is a
need to study a generalized RL model for the robot to learn how to combine multi-modal
behaviors to adapt and personalize to the multi-modal social signals of the human during
HRI.

1.1.3 Research Questions and Contributions

The main research question this thesis aims at contributing to is the following: "When found
in an interaction set-up, how should the robot use its multi-modal behavior and understanding
of the interaction dynamics with the humans around it to act as a socially intelligent agent?".
The thesis focuses on trying to answer the question by exploring three fundamental sub-
questions: How can a human behavior be used to allow the robot to adapt to varying
interaction setups? How does each modality impact the outcomes of an interaction specially
when it is performed in a multi-modal manner by the robot and in which aspect of the
interaction is each modality relevant and significant? The findings of these questions would
help answer the third research question: how can the robot use human social signals during
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an interaction to adapt and personalize its own multi-modal behavior? Thus exploring the
multi-modal combinations formed as the robot interacts with the user.

First, group interactions were employed as a use case to contribute to the first question.
The thesis provides an adaptive autonomous rule-based system that allows the robot to
adapt its gaze behavior to the humans’ proxemics around it in order to manage a group
interaction. This also gives an insight into how human proxemics can allow the robot to
estimate conversational role intentions to understand whether the participant is playing
an active, bystander, or overhearer role within the multi-party interaction. This shows
the importance of human proxemics as a social signal to adaptation and the potential of
non-verbal behavior to display social adaptability.

Second, to inquire into the second question, the thesis discusses the design and imple-
mentation of multi-modal behaviors on a robot with respect to the human it is interacting
with. The modalities making up the multi-modal behaviors are: proxemics, gaze, and gesture.
Various combinations of these multi-modal behaviors are studied as conditions in a data
collection involving 105 participants interacting with an autonomous robot. The human
behavioral outcomes are observed and analyzed. Consequently, this thesis contributed to the
research question by providing a deeper understanding of multi-modal behavior in robotics
and the impact of each modality when performed in a multi-modal manner.

Third, two contributions are demonstrated in this thesis while looking into the third
question. First, as RL trainings for robots and HRI are costly and challenging specially
during the current COVID-19 pandemic, a simulation for HRI is presented and used for the
training. Second, a RL model is proposed and evaluated to answer the challenges and limits
of current RL for social robotics adaptations. The RL model proposed is used to let the
robot adapt its multi-modal behavior by looking into different combinations of modalities.
In addition, the RL model puts forward a reward function that considers both the human’s
multi-modal social signals and their decisions as well as the cost of high-degree multi-modal
behaviors of the robot.

As such, this thesis demonstrates the synthesis of socially intelligent multi-modal human-
robot interaction through investigating the effect of multi-modal behaviors of the robot on
the outcomes of an interaction and proposes an adaptation and personalisation of these
behaviors taking into account the human social signals using reinforcement learning.
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1.2 Outline of Thesis

The thesis is divided into two parts: Related Work and Contributions.

1.2.1 Part I: Related Work

In the Related Work part, two chapters are discussed as they cover the background and
state-of-the-art on the modality behaviors of social robots as well as an in-depth review on
the reinforcement learning methods explored for adaption in social robotics respectively. In
Chapter 2, background and literature review on the modalities making up robot and human
behaviors in human-robot interaction(HRI) are introduced including proxemics, gaze, gestures,
emotional expressions, and the impact of behavior on social intelligence and influence. In
chapter 3, reinforcement learning and its methods are explained and an in depth literature
review of reinforcement learning applications in social robotics for adaptation is presented.
The motivation for writing this chapter is the lack of in-depth reviews on the current work
and developments of using reinforcement learning for adaptation in social robotics.

1.2.2 Part II: Contributions

In the Contributions, the three main studies of the thesis are discussed and the key findings
highlighted.

Robot Gaze Adaptation using Human Proxemics through the use case of group

interactions

In the first study of Chapter 4, a pilot study exploring how one human modality can be
utilized by the robot to adapt one of its own modalities. Group interactions highlight this im-
portance by having participants of the group playing different roles such as active, bystander,
or overhearer. As such, the Chapter introduces a simple model that uses human proxemics
to estimate the intended conversational roles in the groups being formed with the robot and
consequently have the robot adapt its gaze modality to better coordinate the multi-party
interaction. The findings show that such adaptive behavior have positive behavioral outcomes
on the interaction by having participants stand closer to the robot regardless of their roles
and rated the adaptive robot higher in perceived sociability. This was a first step towards
looking at the bidirectional influence in human-robot relationship and more analysis is needed
to investigate how other modalities making up multi-modal behaviors of the robot impact the
human social signals and the interaction. This chapter was published as a conference paper as
[167]: K. Tatarian, M. Chamoux, A. K. Pandey and M. Chetouani, "Robot Gaze Behavior
and Proxemics to Coordinate Conversational Roles in Group Interactions," 2021 30th IEEE
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International Conference on Robot & Human Interactive Communication (RO-MAN), 2021

Investigating the Synthesis & Effects of Multi-Modal Robot Behavior

In the second study of Chapter 5, a multi-modal interaction focusing on the following
modalities: proxemics for social navigation, gaze mechanisms (for turn-taking floor-holding,
turn-yielding and joint attention), kinesics (for symbolic, deictic, and beat gestures), as well
as social dialogue was designed and implemented. The multi-modal behaviors were evaluated
through an experiment with 105 participants in a seven minute interaction to analyze the
effects on perceived social intelligence through both objective and subjective measurements.
The results show various insights of the effect of modalities in a multi-modal interaction onto
several behavioral outcomes of the users, including taking physical suggestions, distances
maintained during the interaction, wave gestures performed in greeting and closing, back-
channeling, and how socially the robot is treated, while having no effect on self-disclosure
and subjective liking. These findings allowed for a deeper understanding on the human social
signals within a human-robot interaction and how they are impacted by the behavior of
the robot. This set an important foundation to build the adaptation and personalization
layer still needed to achieve socially intelligent interactions with the robot. This chapter was
published as a journal paper as [168]: Tatarian, K., Stower, R., Rudaz, D. et al. How does
Modality Matter? Investigating the Synthesis and Effects of Multi-modal Robot Behavior on
Social Intelligence. Int J of Soc Robotics (2021).

Adaptation of Multi-Modal Behaviors using Reinforcement Learning

Chapter 6 first presents a simulation setup for HRI to enable cost-effective training of
reinforcement learning (RL) algorithms in social robotics applications as physical HRI
training can be very time consuming and challenging. The simulation design is based on the
data collection done in Chapter 5. In addition, the second contribution of Chapter 6 is a
proposed generalized adaptation and personalization RL model, where the reward function is
designed taking into consideration the human multi-modal social signals, their decisions, and
a cost function for high-degree robot multi-modal behaviors. The RL model is investigated
through ϵ-MAB, ϵ-UCB, and Q-Learning algorithms trained on the simulation setup. The
learning curves of these algorithms as well as the percentage of times the various combinations
of multi-modal behaviors of the robot were selected by the RL agents are studied. The
findings highlight the importance and priority of proxemics modality in a human-robot
interaction. In addition, the findings show that the roles of gaze and gesture modalities
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seem to be similar and may be interchangeable. The resulting generalized adaptation RL
model has room for personalization for different user profiles and social situations, utilizes the
bidirectional influential relationship between the robot and the human user, and demonstrates
a promising solution to achieve multi-modal socially intelligent human-robot interaction.

Discussion & Conclusion

Finally, Chapter 7 concludes the thesis by discussing and highlighting the key findings of
each study and their limitations It also sets forth possibilities of future work.
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Chapter 2

State-of-the-Art

This Chapter contains:

2.1 Proxemics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Gaze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Role Emotional Expressions in Decision Making . . . . . . . . . . . . . . . . . 16
2.5 Multi-Modal Social Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Behavior and Social Intelligence and Influence . . . . . . . . . . . . . . . . . . 17

This chapter introduces and highlights the work done in HRI for gaze, kinesics, specifically
gestures, proxemics, emotional expressions, and multi-modal behaviors. This chapter also
discusses relative work on the effect of behavior on social intelligence and influence.

2.1 Proxemics

In 1959, the term proxemics was defined by anthropologist Edward Hall [67] and he suggested
that the zones of proxemic distances are shaped by the culture and psychophysical features,
which are distance, sociofugal-sociopetal, visual, voice loudness, kinesthetic, olfaction, thermal,
and touch [68], [66], [65]. On the other hand, Mehrabian [116] analyzed proxemic behavior
and provided distance and orientation metrics between two individuals. In his interest for
spatial orientational alignments, Kendon [86] believed that a person’s postural shifts, rhythmic
organizations, and other actions provide further knowledge that can inform interlocutors of
their intentions. In addition, Kendon studied organizational patterns of social encounters
and defined the term F-formation, which is when two or more people adjust their spatial and
orientation relationship in order to have equal, direct, and exclusive access. Furthermore,
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Schegloff [148] also linked proxemics to the intentions of the participants. He used the poses
of the lower and upper parts of the body to derive the intentions, whether the involvement
of the participant would be dominant or subordinate. Moreover, as defined by Kendon
[86], proxemics is affected by the culture of the participants, so it is no surprise that the
investigating in the effects of personality and culture on proxemics for human-robot interaction
is gaining popularity. After a study on human-robot interactions with multiple participants
from three different nationalities, Chinese, American, and Argentinian, has concluded that
the cultural backgrounds of the participants have different affects based on the position of
the robot [82]. Additionally, in [13], nonverbal behavioral features including proxemics and
postures are used to detect extroversion in the personalities of the interlocutors of the robot.

There is a current trend in HRI to not only use proxemics to ameliorate social navigation,
but to also use it to initiate interactions in a more natural manner. For instance, Kruse et
al.[99] and Dautenhahn et al. [41] used Hall’s theory of proxemics to optimize social navigation
of the robot while taking into account the human’s safety and visibility. Additionally,
proxemics can be used to initiate interactions. Shi et al.[151] proposed a model based on
proxemics and navigation to initiate a conversation with a human inspired by the study of
human-human interactions. The robot with the implemented proxemics model was ranked
higher in a subjective evaluation of appropriateness of initiation. An understanding of
proxemics grants the robot a finer tool to perceive, predict, and manipulate the environment
around the interaction and provides greater naturalness [151]. More study on the initiation
and termination of interactions was done in Mead et al. [114] by extracting features to
analyze proxemics and recognizing spatiotemporal behaviors.

Moreover, one important application and use case of proxemics has been to understand
group formations. Proxemics and participation frameworks of groups have been further studied
in human-agent interactions whether the agent is a robot or a virtual agent. For instance,
for virtual agents, there is an interest to better understand the set-up of a conversation in a
multi-party interaction conveyed using nonverbal signals [103, 131]. In Lee et al. [103, 102],
human interactions were studied to model how the different roles of a multi-party conversation
affect the behavior of the participants and applied their findings to model the behavior of
active participants and bystanders. In addition, in [131], it was shown how the modalities of
proxemics and gaze in virtual agents can indicate and signal their conversational roles, also
known as footing [60], in groups such as the speakers, addressees, bystanders, and overhearers.
Furthermore the need to compute to footing and proxemics, especially F-formation, has
expanded beyond doing so for a specific agent. In [14], multi-party interactions were recorded
and used to model the participation framework, which is the conversational set-up of an
interaction; on the other hand, [111] observed humans to provide a model of the F-formation
proposed by Kendon done in [86].
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Proxemics is a very rich modality that does not only contain social information such
as intentions [116, 65], but it also grants one the ability move and manipulate the physical
space around it. Even though navigation is a basic robot skills today, there is still a need to
investigate how the synthesis of the robot’s social navigation, influenced by the theories of
proxemics, can impact human perceptions of the robot and their behavioral outcomes in an
interaction. In addition, there is a necessity to further explore how the human’s proxemics
can be used to allow the robot to have a better understanding of the interaction taking
place around it. This thesis, first, demonstrates how human proxemics can be used to give
insight to the robot on the conversational groups around it and adapt its behavior accordingly.
Second, this thesis also investigates how proxemics can be implemented within a multi-modal
behavior and the effects it has on an interaction when combined with different modalities.
Third, this thesis also presents how the proxemics of the human can be used as a social signal
among others for the robot to learn and adapt its multi-modal behaviors, which also includes
the proxemics of the robot.

2.2 Gaze

In 1967, Kendon [85] was the first to classify and analyze gaze aversion in human-human
interaction, claiming that humans in fact do not spend the majority of their time in a
conversation directing gaze straight at another human’s face. He concluded that gaze aversion
was done for four primary reasons: turn-taking, turn-yielding, floor-holding, and intimacy
regulation (used to regulate the level of shared emotional arousal) [86, 178, 171]. Today, gaze
mechanism, including gaze aversion, is still a study of interest for social roboticists. Research
in HRI has involved conducting studies to better understand social gaze [125, 11], using
gaze to reference an object of conversation by joint attention [93, 10], designing gaze cues to
modulate group conversation [125, 126], and regulating turn-taking in conversations [11, 126].
In addition, conversational social gaze constructed of gaze aversions to perform role-signaling,
turn-taking, and topic-signaling prompted high indices of likeability towards the robot [125].
Moreover, for robots which lack expressive eyes, head controlled tilts have been designed to
convey gaze aversion [11]. The former concluded that while social gaze aversions did not
increase the human’s comfort in eliciting more self-disclosure, it did decrease interruption
time caused by the user and the robot was perceived as more thoughtful. Additionally, the
study analyzed the direction of gaze aversions in human-human interactions with respect to
its three primary functions: cognitive, intimacy-regulation, and floor management [11].

An additional important function of gaze is joint attention. It supplies people with a way
of interpreting and predicting each other’s actions and focus attention [64]. For instance,
speakers tend to use deictic expressions followed by a glance towards the object of reference
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[38]. Thus it is no surprise that joint attention attracted the attention of researchers in the
HRI field. For instance, it was shown in [22] that users reached objects faster when they could
follow the gaze of the robot iCub, who was giving instructions while glancing at referenced
object. Similarly, [157] showed that users interacting with a robot that had a gaze with a
reference function found it easier to complete a task than with a robot that had random gaze.
Joint attention has proven to be functional for social robots to shift the human’s attention
to the spot at which it is looking [188]. In addition, for collaboration tasks involving object
selection, robot gaze shifts assisting its speech were shown to be advantageous for cooperation
specially when the human was required to choose the object being referred to by the robot as
fast as possible [2, 23]. Furthermore, in [121], during hand over tasks, users started reaching
for an item much sooner when a robot consistently gazes at the handover area than when it
gazes away from that point. In parallel, when gaze is used as part of a multi-modal behavior,
it often has a supportive and enhancing role to other social behaviors, notably speech and
gestures [4].

Furthermore, gaze is also used in HRI to allow the robot to adapt to the participation
framework in group interactions. In more recent work, it was shown that adapting robot’s
gaze orientation in group interactions leads to feelings of inclusion by the participants as well
as a sense of belonging to the robot’s group [176]. In the previous study, the robot would
either look at the middle of the group formed or give attention to the participant who was
speaking. Moreover, an adaptive robot gaze behavior could shape group interactions with
the robot guiding more even participation during collaborative games [59, 127]. For that,
the adaptive gaze behavior pattern was formed based on the speech participation of the two
participants interacting with the robot and forming the group [59]. While in Multu et al.
[127], a social robot used only gaze to signal the roles of the participants whether the role
was bystander, addressee, or over-hearer. However, the roles in that study were given to the
robot as such there was no autonomous role estimate done by it.

While there has been and still is on going research on the effects and functions of gaze
mechanisms for social robots in HRI, most of them are done independent of other modalities
that can be present on the robot such as gestures and proxemics. Thus there is a need to
investigate the influence of gaze functions when the robot is performing in multi-modality
to better understand the extend of the studied effects and how can it be adapted based on
the social signals of the human the robot is interact with. This thesis studies the extent of
which gaze can be used to have the robot adapt to changes of human signals, specially in
the case of conversational roles in groups. The thesis also designs and implements four gaze
mechanisms for a social robot for the functions of turn-taking, turn-yielding, floor-holding,
and joint attention and examines the effects of these mechanisms when combined with
different modalities making up the behavior of the robot.



2.3 Gestures 15

2.3 Gestures

Gestures for humans have been categorized and defined primarily based on their role in
communication and their functions as follows [113, 97, 6, 48]:

• Iconic gestures for describing physical objects and events mentioned in a conversation;
e.g., forming a small circle with the hand to refer to a small ball.

• Metaphoric gestures for depicting abstract concepts being referred to; e.g., fast back-
forth hand movement to indicate ‘ongoing’ work.

• Deictic gestures for indicating objects in the physical space where the conversation is
taking place; e.g., point at a road close by.

• Emblem gestures or symbolic gestures for expressing language-like features with agreed
upon culturally specific properties; e.g., the V hand gesture with the index and middle
fingers to indicate a peace sign.

• Beat gestures for emphasizing significant points or certain words in the speech using
rhythmic movements of hands and arms e.g., hand gesture to indicate the introduction
of a new topic

Gestures have also been studied and implemented on robots aiming to improve human-robot
interaction. While deictic, beat, iconic, and metaphoric gestures were all found to boost
the robot’s performance as a narrator in a narrative scenario, deictic gesture significantly
ameliorated the user’s recall of information on the story [79]. Additionally, the robot which
performed correctly timed nods in a conversation and proper gaze and gesture sharing
behaviors was ranked more highly than a robot who did not have such behaviors [83].
Moreover, gestures play a role in portraying emotional expressions. For instance, submissive-
ness can be expressed by an open hand shape; on the other hand, dominance can be portrayed
in a pointing hand shape [92]. Similarly in social robotics, modulating the robot’s body
movement by varying its head tilts and body expansiveness influenced perceived dominance
[132].

Another important aspect of social interaction is alignment, which refers to the convergence
of linguistic behavior and/or similarity in mental representation [134, 24]. Alignment is
an ubiquitous feature used to measure to which extent interactions shape behavior and
their success at communicating shared understanding [72]. For instance, it was shown
that alignment, through mimicry of postures, mannerisms, and facial expressions in dyadic
interactions (chameleon effect [35]), increased the rapport between the participants, the pro-
social behavior even beyond the interaction and smoothness of interaction [172]. Moreover,
a study found that users, when retelling a story to a third participant, were more likely to
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demonstrate the same iconic gestures they witnessed the first time [120]. Alignment equally
plays an important role in human-computer interaction in enhancing communicative success
[24]. In robotics, people have been found to nod more when interacting with a robot that
nods along in response to that in comparison to a robot who does not mirror their nodding
[152]. In addition, a computational method for evaluating and modeling of interpersonal
synchrony in behaviors during interactions offered a perspective for building social interfaces
for robots and embodied conversational agents [46]. Furthermore, motor resonance, which is
the activation of the observer’s motor control system during action perception, was used to
not only produce more natural interactions for robots with humans but also as an evaluation
method to determine quantitatively how the robot is perceived by the human [149].

2.4 Role Emotional Expressions in Decision Making

In the recent years, there has been growing interest in research on the interpersonal effects of
emotion, specially for autonomous socially intelligent machines. As it has been shown that
such machines can increase cooperation with human users by simulating emotional expressions
as well as perceiving and comprehending human users’ emotions [63]; thus influence their
decision making. While there are few research studying robotic emotional expressions
[44, 28, 91, 84, 71, 186], it is first important to highlight some of the fundamental theories
investigating how emotional expressions may influence behavior. For instance, according
to the appraisal theory [122, 158], a human’s emotions are a result of their evaluation and
assessment of a certain situation, as such it may lead to different reactions for different people
and situations. On the other hand, the reaction of the observer takes place through reverse
appraisal [42]. Moreover, according to Emotions As Social Information (EASI) of Van Kleef
[94], emotional expressions are used to modulate social interactions and shape behaviors,
specially for establishing cooperation between individuals [173].

In Human-Computer Interactions (HCI) through virtual agents and even anthropomorphic
robots, emotional expressions in cooperative and competitive relationships have been studied
to evaluate the impact on the decision making of the human. For instance, the emotional
expression of joy allows the actor to inform the observe that it favors the current situation
and would like the observe to continue their current behavior thus leading to a possible
cooperative relationship [31, 124, 138]. On the other hand, display of the emotional expression
of anger has shown mixed results; while for some studies it was used by the actor to show
the observer that they are not in favor of the current situation and the observer’s current
behavior [52, 137, 155], some studies have shown that anger may not be the optimal strategy
to get more compromises in negotiation [39, 154].
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In Wang et al. [182], it was shown that the roles of the actors and observers (follower
vs. leader) impact how the emotional expressions are received. It also highlighted that
persuasion was more probable when the person knew it was appropriate to exhibit emotional
expressions. In addition, in Melo et al. [45, 43], a prisoner’s dilemma study demonstrated
that the emotional expressions of a virtual agent strengthen cooperation. Similarly, the
study was replicated recently with a social embodied robot (a NAO robot) [165]. The
emotional expressions of the robot (joy, anger, shame, and sadness) were created using body
motion, speech, and colors of the eyes’ LEDs. The results showed that when the robot
behaved cooperatively and it displayed anger when participant betrayed it and joy when they
cooperated with it, the human was more cooperative. Moreover, in Broekens et el. [28, 118]
presented well-founded indications that show the potential advantage of having affective
communication with the human users in the reinforcement learning loop.

2.5 Multi-Modal Social Behaviors

Multi-modal behaviors have been studied by various fields beyond HRI including neuroscience
and psychology. For instance, it was found that humans rely on several modalities, such as
voice, facial expressions, and postures, at a time to perceive emotions [32, 189]. Moreover,
in neuroscience, it was shown that the human brain combines information from different
sensory inputs in order to strengthen perception and direct behavior [51, 50]. On the other
hand, in HRI, several studies have tried to study multi-modal behaviors by combining two
or more modality behaviors to assess an interaction. Most commonly, gaze behaviors are
combined with gestures [69], proxemics [184, 54] or verbal behaviors [25]. Work combining
other modalities [142, 133], or comparing more than two or three modalities [20, 87] are rare.
However, the manipulations in these cases typically combine some modalities and evaluate
overall system performance, as opposed to investigating the effect of specific modalities. As
such, there is a clear need to develop a more comprehensive perspective on how different
combinations of modalities (gaze, gesture, proxemics, and verbal content) contribute to
overall perceptions of social intelligence during the course of an interaction.

2.6 Behavior and Social Intelligence and Influence

Social influence has been broadly defined to include changes in an individual’s cognition,
attitudes, physiological responses, and behaviors that arise due to the presence of another
person and the attributions made about that person [7, 70]. Social influence can be manifested
in several ways, such as social norms, conformity, which includes shifting one’s attitude or
behavior to match another’s, and compliance, which is defined as accepting a request or
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desired behavior [37]. As such social influence is closely associated with emotion. For
instance, it has been shown promotion and prevention of a certain behavior is attributed
to an emotional response, which is linked to goal pursuit and defined as a combination of
the dimensions of valence and arousal [75, 27]. Thus, emotional behavior plays a major role
in the decision-making of everyday life decisions, especially for promoting ethical choices in
purchasing decisions, as shown in [80]. For instance, more recent work in social robotics has
been focused on designing emotional expressions and mood gestures for social robots and
investigating how they are perceived [132, 186] as well as how these emotional expressions
influence decision making of the user [129]. In addition, prior work on robot influence has
repeatedly found multi-modal behaviors during HRI to consistently outperform unimodal
ones, especially, when influencing people’s cognitive frames, emotional responses, and task
performance [145]. One recent study on this subject was conducted by [146]. They studied
how a robot’s persuasive behavior influences people’s decision making. The results showed
that a strategies based on emotion had significantly higher persuasive influence compared to
both the logic based strategy and control conditions. Moreover, in a human-agent interaction,
it was shown that the three factors that impact the virtual agent’s influence and persuasion
using emotional expressions are: the role the agent and person are playing (leader vs. follower),
the appropriateness of displaying an emotional expression with respect to the context, and
the verbal phrasing and dialogue [182].

Modalities making up the multi-modal social behavior have also played a role in shaping
the robot’s social presence. For instance, socially aware proxemics models proved to have a
positive influence on social presence [54]. However, some studies investigating the effect of
social dialogue found no impact for social-speaking versus neutral-speaking robots [106], nor
for subjective speaking versus fact-based speaking robots [174] on the robot’s social presence.
How other modalities may influence the robot’s social presence is yet to be investigated.
In addition to the modalities of nonverbal behaviors, dialogue plays an influential role in
forming impressions and manipulating social outcomes of the interaction. In human-human
interactions, one study has shown that starting a conversation by asking people how they
were feeling that day increases the likelihood of their compliance to a request for both charity
donations and/or commercial purchases [47]. Moreover, in human-agent interactions, it was
shown that having an agent start with a small request increased the chances of having the
participant accept a bigger request shortly after [47]. Furthermore, verbal phrases influence
social interactions with agents, e.g., separating emotional expressions targeted at an attitude
versus at a person such as“your opinion" versus “you should" [182]. In HRI, dialogue similarly
has an impact on the interactions including facilitating collaborations, managing errors, and
personalizing conversations. For instance, it is used to exchange information and assist in
human robot collaboration to achieve common goals [56]. Furthermore, social dialogue was
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shown to help robots recover from prior errors and gain future influence [110]. Additionally,
service robots with personalized dialogues reinforced participants’ rapport, cooperation, and
engagement [104].
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3.1 Reinforcement Learning

In RL, an agent learns the optimal way of interacting with its environment by evaluating its
actions to maximize its rewards [161]. The standard reinforcement learning framework is
shown in Figure 3.1.
The models and algorithms of RL and their taxonomies are summarized in Figure 3.2. One
class of RL is called multi-armed bandits (MAB), or k-armed bandits, and in which the
agent simultaneously tries to gain new knowledge by exploration and optimizes its decisions
based on existing knowledge by exploitation. By balancing exploration-exploitation, the agent
must find the best sequence of actions yielding the highest rewards and exploit them [177].
Furthermore, another class of RL is based on Markov Decision Process (MDP) and is divided
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Fig. 3.1 Standard Reinforcement Learning framework (inspired by [161])

into sub-classes Model-Free and Model-Based, in which the learning algorithms have to
explicitly reference the model. On the other hand, Model-Free RL can be Value-Based or
Policy-Based, which can be Gradient Free or Gradient Based. This study focuses on MAB’s
as well as Value-Based RL methods, which are further explained below:
Value-Based Reinforcement Learning:

1. On-Policy: where the agent learns the value of the policy used to make decisions
(target policy and behavior policy are the same) and learns policy π from experience
sampled from π (learning on the job). An example of this is SARSA: (state-action-
reward-state-action algorithm) where the agent interacts with the environment and
selects an action based on the current policy.

2. Off-Policy: where the agent learns about policy π from experience sampled from µ and
uses the experience from old policies or other agents to improve the policy (learning from
someone else’s behavior). An example of this is Q-learning: using discounted reward
and applying iteratively the Bellman equation. The target value is not dependent on
the policy being used but only on the state-action function. Furthermpre, DQN: is
Q-learning with Convolutional Neural Network (CNN), the agent utilizes an automatic
feature extractor through deep CNNs to approximate the action-value function of the
Q-learning method.

For the purpose of this study, two reinforcement learning algorithms, Multi-Armed Bandit
and Q-Learning, were used to investigate the adaptive multi-modal behavior system.
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Fig. 3.2 Map of Reinforcement Learning algorithms (inspired by [191])

3.1.1 Multi-Armed Bandit

The Multi-Armed Bandit (MAB) problem, also known as the k-Armed Bandit, is a non-
associative, evaluative feedback problem. Each of the k actions has an expected or mean
reward given to that action when it is selected. Then the value of an arbitrary action (a) is
described in Equation 3.1.

q∗(a)=̇E[Rt|At=a] ∀a ∈ {1, .., k} (3.1)

where At is the action at time step (t) and Rt is the corresponding reward.

3.1.2 Q-Learning

Q-learning is an off policy value-based RL algorithm and it seeks to find the best action to
take given the current state. In Q-Learning, the agent learns from actions that are outside
the current policy, like taking random actions, and for this reason it is considered as off
policy. More specifically, in Q-Learning the agent attempts to learn a policy that maximizes
the total reward. When the agent interacts with the environment, it updates the value the
state-action pairs Q(s, a) in the Q-table using Equation 3.2. Initialized at random variables,
as the Q-table gets updated, it serves the agent as a reference to select the best action based
on the q-values.

Q(st, at)← (1− α) ·Q(st, at) + α ·
(
rt + γ ·max

a
Q(st+1, a)

)
(3.2)
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where Q(st, at) is the value of the state-action pair, α is the learning rate, γ is the discount
factor, rt is the current reward, and Q(st+1, a) is the value of the action-state pair in the
next state (st+1).

3.1.3 Background and Definitions

It is important to go over and highlight some crucial concepts and parameters that will be
used and manipulated:

• Learning rate(α): or step size regulates to which extent newly obtained information
overrides old ones. A factor of 0 makes the agent exclusively exploit prior knowledge
without any learning. A factor of 1 makes the agent ignore prior knowledge to explore
new possibilities.

Qt(a)← Qt(a) + α(Rt −Qt(a)) (3.3)

• Discount Factor (γ): regulates the importance of future rewards. A factor of 0 makes
the agent short-sighted, myopic, by only taking into account current rewards. On the
hand, a factor of 1 makes an agent aim for long-term high rewards. Thus, choosing a
high gamma value would lead to an agent that considers the information to be obtained
from the next state more important than the current one. For adaptation, an ideal
discount factor would high so that the robot adds more value to the future rewards so
that its decisions optimally lead to adapted and personalized behavior. In this study,
the discount factor was set to γ = 0.95.

• ϵ-greedy Action Selection: An action k is selected at random (with uniform probability)
for a proportion ϵ and an action with the highest estimated values is selected for a
proportion 1− ϵ of the trials:

At = arg max
a

Qt(a) (3.4)

• Upper-Confidence-Bound with ϵ-greedy Action Selection: where uncertainty is used to
drive exploration. In this algorithm, the agent explores more at the beginning to reduce
uncertainty then exploration decreases. This method is not ideal for nonstationary
problems and large state spaces. Similarly to above, an action k is selected at random
(with uniform probability) for a proportion ϵ and for 1− ϵ of the trials:

At=̇ arg max
a

[Qt(a) + c

√
ln t

Nt(a) ] (3.5)
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where Qt(a) is the highest estimated value, c controls the amount of exploration, Nt(a)
is the number of times the action is taken, and c

√
ln t

Nt(a) is the upper-confidence bound
exploration term.

3.2 Reinforcement Learning In Social Robotics

In RL, an agent interacts with its environment by trial-and-error in order to achieve an
optimal behavior. Thus making RL a framework for decision-making problems. Similarly
to RL, interaction is also an integral part in social robotics. For this reason, RL is an
appropriate method to tackle real-world interactions and problems for physically embodied
social robots and human-robot interactions. In an article surveying reinforcement learning
(RL) approaches in social robotics, RL approaches in HRI were categorized based on the used
method and the design of the reward mechanisms [5]. The three categorizes were presented
as follows:

1. Interactive RL: The feedback received by the human user is done through evaluative
feedback, corrective feedback, or guidance. This feedback can be given in two ways:

• Explicit Feedback: After observing the agent’s actions, the human teacher gives
feedback to the agent either by direct manipulations, such as using the robot’s
touch sensors, or through an artificial interface or GUI.

• Implicit Feedback: The learning agent is trained by the human teacher indirectly
through a natural and spontaneous interaction. One of the biggest challenges is
that can be noisy.

2. Intrinsically Motivated Methods: The social robot tries to maintain and reach an
optimal internal state by evaluating internal and external factors.

3. Task Performance Driven Methods: Human task performance, Robot task performance,
and human and robot task performance

Furthermore, in Interactive RL, the feedback provided by the human teacher is integrated to
form the action policy, by being involved in the action selection mechanism, or to model the
reward function [5]. There are three categorizes of evaluative feedback: first is interactive
shaping, in which the feedback given by the human can be interpreted as a numeric reward;
second is learning from categorical feedback; and third is learning from policy feedback. Thus
by narrowing the action choices of the robot, the human instruction provided can shrink and
in turn making the training process faster to converge to the optimal path [5]. This study
focuses on Interactive RL through implicit feedback using multi-modal social signals from
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the human. Social signals may change continuously and as such cannot be discretised as
explicit feedback. Before further diving into the proposed model, relative work on using RL
in social robotics needs to be discussed.

3.2.1 RL for Robot Adaptation and Selecting Appropriate Behaviors

Some studies and literature in HRI have tried to implement and evaluate adaptation using
table-based algorithms and thresholding but faced limitations. For instance, Tanevska et al.
[166] introduced a socially adaptable framework, where the robot’s adaptation is guided by
an internal social motivation system. The robot takes into account input from the behavior
of the person it is interacting with by checking visual and tactile stimuli and then accordingly
adapts its behavior to engage and disengage from the interaction to reach optimal internal
comfort for itself (the robot). The comfort of the robot depended on the intensity of the
interaction with the human. For instance, if it was left along for a prolonged period of time,
the comfort level would decrease to critical. The implemented model is shown in Table 3.1.

Table 3.1 Summary of Adaptation Model using Thresholding in Tanveska et al.(2020)

Objective Internal social motivation system for robot
to maintain optimal comfort level

Method Thresholding with parameters of the decay
and growth rates calculating the comfort
value in relation to the previous comfort
value level (if there is visual (F(t))/tactile
stimuli (T(t)): C(t) = (F (t)+T (t)+C(t−
1) ∗ τ)/(τ + 0.1) else: C(t) = β ∗ C(t −
1). Start with comfort level at 50% of
maximum level.

Model During interaction, the behavior of iCub
was a result of a state machine with 3
main states: idle, interact, and suspend;
and 4 actions: moving its arms, looking,
straighten up action, and lean down ac-
tions.

Feedback
& Input

Visual and tactile stimuli from human user

The system was evaluated with the iCub robot in a physical interaction. However,
results showed that not all scenarios were equally explored as the critical level was much
more dominant than the saturation level (high intensity interactions with the robot). In
addition, while the Thresholding approach for adaptation is well suited for behaviors that
are linked to specific signals and allow for good reactive actions to that continuous flow
of data, it does not allow for complex reactive and dynamic behaviors for adaptation nor
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is it beneficial for long-term understanding of the user [100]. Thus there is a need for a
method that would allow for such dynamic and reactive behaviors while still taking into
account previous experiences with the user and exploring as well as exploiting; a possible
solution for this is RL. The rest of this subsection will discuss relevant work of RL in so-
cial robotics for adaptation and selection of appropriate behavior in human-robot interactions.

Bagheri et al. [17] presented a framework to enable cognitive empathy in social robots.
The robot first uses facial emotion recognition to perceive affective states of human users, the
robot is later provided with a RL model so that it learns the most appropriate empathetic
behaviors, which in this study were empathetic utterances, of different states based on the
emotional feedback response of users. The summary of the model, states, actions, and reward
is presented in Table 3.2.

Table 3.2 Summary of RL Model in Bagheri et al.(2020)

Objective Robot learns appropriate empathetic ut-
terances

Method RL Q-learning, with context bandit, to
learn optimal action-selection policy (ϵ =
0.1 for ϵ-greedy action selection, learning
rate α = 0.1, and no discount factor)

States 12 States = 4 Emotions (Anger, Sad-
ness, Happiness, Surprise) X 3 Personality
Types (Introvert, Ambivert, and Extrovert
based on extroversionscore by personality
questionnaire by [62])

Actions 4 Possible Empathetic Utterances pre-
defined (Mimical, Motivational, Distrac-
tional, Alleviational)

Reward R = +1 if state changes to neu-
tral/happiness/surprise & R = −1 if state
changes to anger/sadness

At the beginning, the Q-table was initialized all with zeros and thus the algorithm selected
random actions. The updating of the Q-table relied on two possibilities. First, when found
in a "undesirable" or negative state (i.e anger/sadness), the Q-value of that selected action
decreased. Second, if the state is "desirable" (i.e neutral/happiness/surprise), the Q-value of
that selected action increased. Evaluation study took place as a collaborative game with 28
participants, which were classified based on the three personality types and the emotional
recognition was done using Wizard-Of-Oz technique. The results showed that the negative
emotions were not detected often and thus the employed RL did not converge to the empa-
thetic utterances that could have impacted the affective state of participants. The evaluation
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was also done through questionnaires and showed higher ratings in Social Presence, Perceived
enjoyment, and engagement [17]. While this study relied only on emotional recognition for
the learning of the robot and created a large state-space, the employed RL did not converge
as some states were not visited. A possible solution for this is looking at other social signals
as well.

Hussein et al. [135] proposed a Multimodal Deep Q-Network (MDQN) for the robot to
learn human-like interaction skills through a trial and error method and using end-to-end
reinforcement learning. A Pepper robot was placed in an open-space, where people can freely
pass by, for 14 days to learn appropriate timing to handshake people. The input included
grayscale frames from top 2D camera of Pepper, depth frames from 3D camera, and touch
sensor from an external glove added on the robot’s right arm. The MDQN consisted of two
streams of Convolutional Neural Networks (NN) for action-value estimation. The dual stream
converts process the depth and grayscale images independently. The Algorithm divided into
two phases to avoid delay:

• Data Generation Phase: (during interaction) generations a memory that keeps the
most recent experiences (st, at, rt, st+1) to be used in training phase for updating the
network parameters.

• Training Phase: (during rest) from each experience replay, a mini buffer is randomly
sampled from memory and on which the model is trained. the network parameters are
updated iteratively in the direction of the bellman targets.

Table 3.3 Summary of RL Model in Hussein et al.(2017)

Objective Robot learns appropriate time to hand-
shake

Method Multimodal Deep Q-Network (MDQN) us-
ing end-to-end reinforcement learning

Actions 4 actions: waiting, looking towards human,
waving, and handshaking.

Reward R = +1 if handshake attempt was success-
ful, R = −0.1 if the handshake attempt
failed, and R = 0 for all other actions

The summary of the model, actions, and reward is presented in Table 3.3. First to evaluate
Model Performance, a separate test data-set was collected and used to evaluate decision-
making of the robot. Three volunteers judged the agent’s decision on whether the action
taken was appropriate or not. If the agent’s decision was considered wrong by the majority,
then the volunteers were asked to agree on the most appropriate action for that particular
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scenario. Second to validate use of two streams to improve social cognitive ability, accuracy
corresponding to how often the predictions by the Q-networks were correct was checked. The
networks compared were y-channel Q-network, depth-channel Q-network, MDQN on the test
data-set and the accuracy, true positive rate, false positive rate, and misclassification rate
were checked. MDQN had the highest accuracy with 95.3% . In addition, the learned factors
that formed the bases for intention inference were activity in progress, walking trajectory,
and head orientation. Furthermore, for designing the reward function, five different networks
with five different reward functions, where for unsuccessful handshake the rewards were
0,-0.1,-0.2,-0.5 were trained. The plot of the true positive rate of each model on test dataset
versus corresponding penalty given on unsuccessful handshake showed that the -0.1 penalty
achieved maximum accuracy on the test dataset [135].

Using a different modal of RL, Gao, Sibirtseva, et al. [58] presented a meta-learning
policy gradient method as an adaptation solution for HRI and to investigate its role in
modelling trust. The interactions were modelled as adversarial multi-armed bandit (MAB)
problems. In addition, to address the sample inefficiency problem of policy gradient method
using a meta-learning algorithm, model-agnostic meta-learning (MAML) [53] was used. The
experimental set-up was an escape the room scenario in a virtual-reality set and the players
were locked in the room with the robot and needed to solve a series of puzzles in order to
escape it under a time constraint. An important assumption made is that the interactive
space C is made of conation, cognition, and affection C ≡ {T, S, A} (inspired by by Hilgard’s
modern behavior psychology [76]). The robot’s behaviors and actions consisted of only verbal
replies. Additionally, the Meta Learning technique was made of M = {ζp, ζr}, where ζp is
the pre-training method with meta-policy πmeta = ζp(ϵx, π) and ζr is the refinement method.
The interactive space was further designed as follows:

1. The human feedback of each action of MAB, based on the human’s position in the maze,
was modelled as a Gaussian distribution rc N(µc, (σc)2) for all auxiliary environments
(εc∈{T,S,A}

x ).

2. ζc
p to train initial random πc in order to get a meta policy πmetac

3. Human experiments were conducted and studied with different subjective measures
along with interaction

For implementation, MAML was implemented in PyTorch, trust region policy optimization
(TRPO) as optimization algorithm for all policies,and MAB environment implemented with
OpenAI Gym. Table 3.4 summarizes the work and the study of [58]. Results from the study
show that the algorithm presented in this paper had a higher trust and faster adaptation in
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comparison to an algorithm based on Exp3 (Exponential-weight algorithm for Exploration
and Exploitation; a type of Bandits Algorithm) .
However, the findings are limiting as only the verbal reply of the robot was manipulated and
its embodiment was not used. Moreover, the adaptation proposed is task-dependent as the
only feedback is the position of the user within a maze they are trying to escape.

Table 3.4 Summary of Meta-RL adaptation for trust in Gao, Sibirtseva, et al.(2019)

Objective Adaptation in HRI and Investigation of
bidirectional trust

Method Policy gradient based solution for MAB
problem with meta-learning

Actions 12 actions in total: 4 actions, which were
verbal replies, for the 3 interaction in-
stances:conation, affection, and cognition.
Each instance was triggered by partici-
pant’s position via the Hololense → robot
chooses 1 of 4 actions(replies)/instance ac-
cording to a probability distribution pro-
vided by algorithm.

Moreover, in some RL work for social robots, manual input from humans were used
to train the robot. However, such studies would be well-suited to answer the adaptation
problem as the training for behaviors was long and computationally expensive and required
the human to give explicit feedback. For instance, Knox et al. [96] presented and used
TAMER(Training an Agent Manually via Evaluative Reinforcement) to enable the training
of interactive navigation behaviors on the Mobile-Dexterous-Social (MDS) robot "Nexi"[95].
The summary of the model, states actions, and reward is presented in Table 3.5.

TAMER agent is made of:

1. credit assigner, which takes in action a, delayed reward h by human, state s, and
output samples (s, a, ĥ). The credit assigner addresses the small delay in providing
feedback by spreading each human reward signal among multiple recent state-action
pairs, contributing to the label of each pair’s resultant sample for learning ˆRhH . The
probability density function fdelay used here was Uniform distribution.

2. supervised learner, which inputs the (s, a, ĥ), outputs the reward model R̂H : S×A→
R, and uses a regression algorithm chosen by agent designer. In this case study, the
R̂H was modeled using k-nearest neighbors with a separate sub-model per action.

3. action selector, which inputs the state s from environment and R̂H and outputs the ac-
tion a. The TAMER agent acts greedily by choosing the action a = argmaxa[R̂H(s, a)].
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(this is equivalent to performing RL with a discount factor of 0, where reward acquired
from future actions is not considered in action selection - myopic).

From the evaluation of the system, nearly all unsuccessful sessions failed due to a lack of
transparency, which was related to the mismatches between the state-action pair currently
occurring and what the trainer believes to be occurring due to the visibility range by the
infrared camera. The go to behavior was taught successfully early on with active training
time of 27.3 minutes; however, the transparency issues disabled any further success. For this
reason, for the remaining four behaviors, an out-of-range alarm was added. The 4 behaviors
were taught successfully in consecutive training sessions and a shorter amount of time (9.5
min, 5.9 min, 4.7 min, and 7.3 min).

Table 3.5 Summary of RL Model "TAMER" by Knox et al. (2013)

Objective Use TAMER for the robot to learn 5 interactive navigational

behaviors from the feedback signals provided by the human

trainer:

• Go To

• Keep Conversational Distance

• Look away

• Toy Tantrum

• and Magnetic Control

Method TAMER agent consisting of a credit assigner, supervised

learner, and an action selector

States 2 state features: distance between robot and object and

orientation angle θ between robot and object

Actions 4 actions: turn left, turn right, move forward, and stay still.

Reward Through remote buttons provided by the human giving +1

and -1 rewards
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Social interactions, specially even human-robot interactions, are dynamic, multi-modal,
and complex as the robot itself is an embodied agent capable of multi-modal behavior.
Previous work have mostly focused at each time one part of the interaction, either by making
the adaptation task-dependent or by generating only one type of robotic behavior or even by
only looking at one feedback from the human. Humans interact with the environment by
using social signals and in many dimensional ways. One way of capturing that would require
having very large state-spaces, which would in turn require a long learning time as well as
heavy computational efforts. On the other hand, another way to try and solve the problem is
to explore the reward function of the RL model.

3.2.2 Exploring Reward Functions for RL in HRI

RL-based approaches, in which the reward functions capturing social signals in real-time
during the interactions, were studied with an objective to have the robot quickly learn about
and dynamically adapt to individual human preferences.

In Ritschel et al. [139], a reward signal, which was calculated straight from the human’s
engagement, was used to try and optimize the user’s engagement as well as adapt the
robot’s personality. The robot’s personality was demonstrated through its linguistic style
by producing utterances with different degrees of extraversion using Natural Language
Generation (NLG). Moreover, the user engagement score Et was calculated based on the
multi-modal social signals captured by a Microsoft Kinect 2 sensor and analyzed by the Social
Signals Interpretation (SSI) framework [180], which processes and interprets the data in
real-time. Once the head, gesture, and posture features were extract, the user’s engagement
Et was estimated based on the Dynamic Bayesian Network (BN). The BN is a directed,
acylcic graph with nodes representing variables and edges describing conditional probabilaties.
The BN used in their system was modeled with GeNIe. The probabilities of the variables in
the network were learned based on the NoXi corpus, which includes interactions of experts
and novices about a certain topic, including Audio, Video, and Kinect 2 depth streams.
The measurements used during the interaction were:

• User Engagement at time t (Et):

Et > 0: user engaged

Et < 0: user not happy with the interaction

• Change in User Engagement: ∆Et (∆Et = Et − Et−1)

∆Et > 0: level of extraversion close to user’s preference
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• Robot’s Extraversion(X): as a discretized value in the integer interval [−2; +2]
translated as [very introvert, introvert, neutral, extravert, very extravert]. X then
influenced the NLG parameters.

Table 3.6 Summary of Proposed Simulated RL Model by Ritschel et al. (2018) [17]

Objective Dynamically adapt to individual human prefer-

ences in a story-telling setup

Method RL Q-learning with ϵ-greedy (ϵ = 0.2, explo-

ration high enough to handle noise; α = 0.5

learning rate low enough to not eliminate all

previous knowledge in case of noise)

States 2D state-space: [estimated user engagement,

robot’s current extraversion] ([Et, X]) (as integer

values ranging in [−2; +2]

Actions 3 actions to control the robot’s personality:

• Increase X by 1

• Decrease X by 1

• No change

The actions were chosen to prevent the robot

from changing X too fast and to learn faster

with less actions

Reward based on ∆Et and task independent:

• ∆Et > 0: Positive Reward

• ∆Et < 0: Negative Reward (Punishment)

• ∆Et = 0: reward R = +0.5



3.2 Reinforcement Learning In Social Robotics 33

The summary of the proposed model, states actions, and reward is presented in Table
3.6. At each description (step), when the robot stops speaking, a new user engagement Et

was used to calculate the reward based on ∆Et = Et − Et−1. The simulation consisted of
30 learning steps and started with neutral extraversion X = 0 and an empty Q-Learning
table. To evaluate how much would be needed to adapt to the preferences, changes for
the user preferences were introduced at time steps 15 and 26 to random values all in simulation.

Moreover, two separate reinforcement models were investigated to create an adaptive
multi-modal joke generation/humor of a social robot [183] [140]. Both RL approaches used a
linear function approximator with normally distributed initialized weights and then computed
the action value and updated it iteratively using gradient descent to find the optimal weight
vector; an algorithm based on Sutton et al. [162]. To find an approximation of the optimal
action value function Q ∗ (s, a), which is approximately the weighted function Q(s, a, ω), the
linear function approximation allowed to calculate the weight vector ω for every action a ∈ A

and use the equation 3.6 , where ϕ(s) was the representation of the current state 3.6:

Q(s, a, ω) := ϕ(s) ◦ ω,∀s ∈ S,∀a ∈ A (3.6)

In both approaches [183] and [140], a Social-Signal-Interpretation Framework (SSI) [180] was
used to capture and analyze the necessary audio-visual signals from the human interacting
with the robot. The audio and the visual signals were used to calculate the estimated
probability of the human’s vocal laughter and the human’s smile respectively Table 3.7.
While Ritschel et al. [140] ran a simulation of the user’s preference for noise probabilities at
0% (baseline), 5 %, 10 %, and 30 %, stability at R = 0.5 was reached with no noise and the
overall performance decreased with the added noise as randomness in reward but coping with
the noise was maintained. On the other hand, Weber et al. [183] ran a within-subjects user
study with 24 participants with two conditions a learning robot versus a random non-learning
robot. While there was no difference between the detected amusement level percentage
reward between the learner and nonlearner across all sessions, there was a carryover effect
when in the first session the robot was a learner [183].
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Table 3.7 Summary of Weber et al. (2018) and Ritschel et al. (2020) for their approach in
using RL to have an adaptive multimodal joke generator for a social robot

Studies Weber et al. (2018) Ritschel et al. (2020)
Objective Keep the user’s vocal laughs and facial

smiles as high as possible
Use human’s laughter and smiles to
optimize the use of the robot’s multi-
modality for the next joke

Method RL with linear function approximator
and gradient descent was used to find
optimal weight vector of Equation 3.6
using mean-squared error (MSE) as ob-
jective function, the derived of which
is the follow Equation 3.7:

∆ω = α
∑
Ps(Q ∗ (s, a)−
Q(s, a, ω))ϕ(s)

(3.7)

based on Sutton et al. [162]

RL with linear function approximator
using Equation 3.6. In order to calcu-
late the optimal weight vector ω, the
rewardRt is used to update the weight
vector ωt until convergence to the opti-
mal one using the following Equation
3.8:

∆ωt = α
(
Rt + γmaxQ(st+1, at+1, ωt)

−Q(st, at, ωt)
)
ϕ(st)
(3.8)

States 2D nondiscretized vector ϕ:

ϕ =
(
P(usercurrentfacialsmile)
P(usercurrentvocallaughter)

)
where P(usercurrentfacialsmile)
and P(usercurrentvocallaughter)
are the probabilities of the estimated
facial smiles and vocal laughter of
user detected respectively

state st defined as a 4-tuple
(pitch,speech rate,volume,break)
∈ S, which is then converted into the
vector ϕ(st), which is divided in four
sections:

1. Pitch: low, medium, high

2. Speech rate: slow, medium, fast

3. Volume: soft, medium, loud

4. Break (pause): short, long

Actions The action was selected by actions
made up of 23 sounds, 19 grimaces,
3 types of jokes (i.e 108 jokes into 3
categories), and combinations. In total
there were 43 grimace-sound combina-
tions and 2052 grimace-joke combina-
tions

A = {pitch (increase, decrease),
rate(increase, decrease), vol-
ume(increase, decrease), pause
(increase,decrease), nop },
where nop is an action that does not
change the current state and it is
intended to be used when the optimal
setup was found. An additional note
is that if a marker of the setup (state)
is already at maximum or minimum
value, it can no longer be increased or
decrease.

Reward set F1 and set F2 include all occurring
relevant smile and laughter events re-
spectively between st and st+1. The
reward function was designed as:
R(st, a, st+1) = 1

2E[F1] + 1
2E[F2]

Since smiles occur more frequently
than laughter, they were more
weighted in the reward
Rt = 3

4 .Esmile + 1
4 .Elaughter

where Esmile and Elaughter are the av-
erage probabilities of smiles and laugh-
ter detected after the joke of the robot
and Rt : S ×A → [0, 1] at time step t
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On the other hand, Mitsunaga et al. [117] integrated multi-modal social signals directly
in the reward function with a Policy Gradient RL to get a Behavior Adaption System. The
inputs to the system are focused on the human’s gazing at robot’s face and human movement
distance as indicators of human’s comfort and discomfort. The Behavior Adaption System
includes 6 parameters to be adapted:

• The Interaction Distances, based on Hall’s definitions [65]:

1. Intimate Distance

2. Personal Distance

3. Social Distance

• The extent to which robot would meet the human’s gaze

4. Gaze-meeting Ratio

• Waiting time between utterance and gesture

5. Waiting Time

• Speed at which the gestures are performed

6. Motion Speed

The reward function used was as shown in Equation 3.9:

R = −0.2× [Dm] + 500×
[ ∆tlooking

∆tinteraction

]
(3.9)

where Dm was the movement distance (mm), ∆tlooking was the time human spent looking at
robot, and ∆tinteraction time spent for the interaction behavior. The Dm was the sum of the
distances that the human moved in all the sampling periods of 200 ms of a behavior and
{
[ ∆tlooking

∆tinteraction

]
× 100} was the % of time the human’s face was turned towards the robot with

an allowance of ±10◦. The reinforcement method used was PGRL, which directly adjusts
the policy without calculating action value functions [163]. The model was evaluated with 15
participants and for most of the users, some of the parameters converged to human preference
after 15 to 20 minutes. In addition, it was found that there were some unsuccessful cases and
mainly caused by current parameters that were further away from the preferred values and as
such the behaviors of the participants did not make a difference for the policies. Consequently,
this study shows the possible need of training in simulation prior to interactions with users.
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Table 3.8 Summary of Proposed Empathy RL Model by Leite et al. (2012) [105]

Objective Adaptive Empathy Model to maximize positive feeling after

interaction

Method Multi-armed Bandit problem (for RL policy for selecting

empathetic strategies)

States 4 Empathetic Strategies

Actions Selecting next Strategy

• If not all strategies were initialised yet:

∗ select each strategy by turn

• Once all strategies were chosen at least once"

∗ the selection changes to selecting a strategy that

maximises: xi +
√

2 ln n
ni

∗ xi is the average reward obtained when selecting

strategy i

∗ ni is the number of times strategy i was selected

to that point

∗ n is the total number of strategies selected to that

point

Reward Ri = P (positive)after − P (positive)before where P (positive)

is the probability of the user feeling positive a few seconds

after he/she made a move and before the move was made

respectively

Leite et al. [105] presented a multimodal framework to model a user’s affective state
using visual and task-related input in order to adapt the robot’s empathetic responses to the
child being interacted with. First, to model the user’s affective states, the user’s valence of
feeling was measured. For a positive feeling to be measured, the user’s non-verbal behaviours
were either looking at the robot or smiling while task-related features either by user winning,
getting better at the game, or catching a piece in the chess game. On the other hand, for a
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negative feeling to be estimated user would be either looking at the chessboard or elsewhere
while task-related aspects were either the user losing, declining performance in the game, or
robot catching a piece in the chess game. Second, the empathetic responses were needed
at two points during the game: after the user makes a chess move and when the user was
expressing negative feelings. The four empathetic strategies were the following: encouraging
comments, giving feedback on move made, suggesting a better move, or intentionally playing
a bad move. The evaluation study had three conditions: neutral, where no empathy strategy
was chosen and the robot would only use facial expressions (e.g. act happy when the use
is losing), random empathy, where random strategies were selected, and adaptive empathy,
which is portrayed in Table 3.8. After 40 children interacted with the iCat robot for 10 to
15 minutes, they filled out a questionnaire to measure engagement, help, and self-validation.
A significant difference was only found in the help measurement with the robots exhibiting
random empathy and adaptive empathy ranked higher than neutral.

Human-robot interactions rely on social signals from humans in order to achieve adaptation.
However, these social signals are multi-modal in nature and can be dynamic. First, trying to
discretize them would not only lead to large state-spaces, which would require long learning
periods and cost computationally, it would also lead to possible losses of information. Thus,
defining a reward function that can capture the interaction may help solve that problem as
presented in this thesis. Second, in the literature work, most of the robot’s possible actions
to select from do not capture the robot’s embodiment through its multi-modal behavioral
capabilities. Consequently, there is still a need to investigate combinations of multi-modal
behaviors that are task independent and that can influence the quality of the interaction and
the robot’s social intelligence and this thesis aims at answering that. Third, training RL
models for adaptation and personalization through HRI user studies can be very costly. This
thesis additionally intends to contribute to the simulation of HRI environments by designing
a simulated human’s behaviors interacting with a social robot and portraying the effect of
the robot’s chosen behaviors on the human.
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4.1 Introduction

Social intelligence is comprised of many factors, such as how an agent acts, speaks, gestures,
and even stands. As a first step to understand how the multi-modal behaviors of the human
in an interaction can be utilized to adapt the robot’s own modalities and as such act as a
socially intelligent agent: this chapter focused on how one modality for human’s behavior
(proxemics) allows the robot to estimate an intention and adapt one of it’s modalities (gaze)
accordingly. More specifically, for example, multi-party interactions are a good use case in
which proxemics as modality is crucial and adaptation is necessary.

For instance, in his quest to formulate the success of an interaction, Goffman highlighted
the notion of footing, which is the concept used to understand the set-up of a conversation,
specially in group interactions [61, 60]. Diving into understanding footing, Goffman introduced
the concept of face engagements, which is the set of all instances where two or more participants
in a situation are jointly maintaining focus on a single mutual activity [60]. He defined
bystanders as participants who are officially present in a situation, where more than two
participants are also in, but are also officially excluded from the encounter and are not
engaged. The situation was referred to as a partially-focused gathering [60]. However, when
there are only two participants in the situation and there is an encounter, the situation is a
fully-focused gathering. Group dynamics are an integral part of the make-up of interactions
yet can be complex: there are different roles participants can play within a group and their
respective spatial distance and orientations give an insight into that.

In human robot interaction, a social robot is not an isolated agent but rather an active
participant in social interactions and conversations. As such, it needs to be able to identify the
different roles of participants in group dynamics. In addition, it should be able to recognize
its own role and adapt accordingly, whether as a speaker, listener, or bystander. Thus it
is crucial for the robot to be robust to any changes in the group dynamics being formed
around it. Building on findings in proxemics and group interactions, this chapter presents an
autonomous adaptive robot gaze behavior based on a conversational role coordinator system,
which assigns the roles for the participants in the multi-party human-robot interaction. The
system takes into account the position and orientation of the participants to estimate the
status of all group members around the robot in addition to the status of the robot itself.
Based on the statuses assigned to the participants, the robot adapts its gaze behavior. A pilot
study was conducted to investigate how adaptive gaze behavior and group understanding
impacts the multiparty interactions with the robot through both behavioral and subjective
outcomes.
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4.2 Background and Definitions

The aim of this section is to briefly introduce key concepts and definitions based on group
HRI literature and based on which the system introduced was inspired. The key definitions
are shown in Figure 4.1.

• Transactional Segment: In Kendon [86], the transactional segment is defined as the
individual’s space in which they aim their attention and have the capability of manip-
ulating objects. Additionally, the sizee of this space may differ based on the activity
being conducted and as such by moving their head or upper body orientation they can
direct their gaze out of it. For an HRI setting, in [151], the transactional segment is
defined as the half circle around the forward direction of the person with a radius of
2 meter. This identifies an object in that segment as the person’s implicit attention
target.

• F-formation: also known as the face formation [112], it is established when two or more
individuals arrange themselves so that their transactional segments overlay to form a
joint transactional space (known as the o-space). Individuals would then have equal
and exclusive access to this space so F-formation system is made of cooperative spatial
and postural behaviors. Additionally, if someone wishes to join the group then the
F-formation needs to be reconfigured [86]. Technological intervention on the structure
of F-formations showed that people position themselves to have screen visible [77, 111].

• Front Zone: In estimating the participation status of a person based on observations
of human interactions, [151] defined the front zone as the area across an angle of 120
degree from the front of the person. Moreover, it was concluded that there is a perceived
obligation to participate in a conversation when people are in each other’s front zones.

• Gaze Zone: When two people fall in each other’s gaze zones thus having their gazes
meet, there is now an obligation for the participation in a conversation [151].

4.3 Adaptive System

In this work, an adaptive gaze mechanism system for the robot was developed that allows
the robot to react and adjust its gaze based on the current estimate of the conversational
role played by the participants in the group. The current estimate is calculated based on the
proxemics of the humans around the robot. This aims at making the robot robust to changing
group dynamics. Robot gaze cues and shifts have the ability to shape participant roles in
a group [127, 131]. This chapter introduces the conversational role coordinator algorithm
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Fig. 4.1 Set-up of Transactional, Front, and Gaze Zones

and the adaptive gaze behavior in the flow of the interaction. It is important to note that
this chapter focuses on small group interactions made of three participants in total with the
robot and two human participants.

4.3.1 Conversational Role Coordinator Using Human Proxemics

The set-ups parameters, which are shown in Figure 4.1, need to be re-calulated at several
instances during the interaction: the distance between the human and robot (dh) and the
angle between the direction of the base of the robot and the direction of the face frame of the
human (α). In addition, the remaining parameters need to be set and maintained prior to
the interaction and include: β, which is the front zone angle, δ, which is the gaze zone angle,
which determine the angular range of the front and gaze zones around the robot respectively,
and dt, which is the distance from the robot that sets the transactional zone.

The robot gathers information needed to evaluate the conversational role status and adapt
its gaze behavior accordingly every six seconds, which is a time chosen that give the robot



44 Robot Gaze Adaptation using Human Proxemics

enough time to naturally finish exhibiting its gaze pattern before re-adapting to changes if
detected. The information needed for the robot includes extracting and calculating of the
following frames, as shown in Figure 4.2:

• Human Face Frame: the face frame of the humans around the robot

• Robot Base Frame: the base frame the robot

• Robot Gaze Frame: the head frame of the robot in order to adapt it’s gaze behavior

Fig. 4.2 Representation of Human Face Frame, Base Frame of Robot, and Gaze Frame of
Robot

The parameters defined in Figure 4.1 were set relative to the base frame of the robot.
First, the transactional zone, referring to the half circle in front of the robot, had its radius
fixed at dt = 1.6. The distance was set less than that of [151] since the social robot used
throughout this chapter has a tablet as part of its design and functionality. The tablet must
be visible and accessible to the users. Second, the front zone defined as the 120◦ degree
fan-shaped area with a 1.6 meters in front of the robot; thus β = 60◦. Third, the gaze zone
set to a 30◦ degree fan-shaped area with dt and δ = 15◦. From these frames, dh and α are
calculated for all humans around the robot. Attention refers to the head orientation and gaze
direction based on the face frame of the human. For example, it describes whether or not the
human is looking to their right or left or straight in front of them (thus looking at the robot).

Algorithm 1 shows how the robot evaluates the information input to decide the conversa-
tional role status. The three roles that the humans around the robot and the robot itself can
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have are: overhearer, bystander, and active. First, if a human was detected to be outside the
transactional zone, an overhearer role would be assigned since they do not yet show intent
of high desire to interact with the robot directly. If all humans detected are overhearers,
then the robot is an overhearer as well. Second, if within the transactional zone, there is one
human alone, then he/she and the robot both have their respective statuses changed to active.
Third, if there are multiple people in the transactional zone, more examination in proxemcis
is needed. For all participants within that zone, primary investigation is to check whether
equidistant F-formation was formed between participants and the robot, indicating preferred
equal access to the conversation, giving the participants in the F-formation an active status.
If that is not the case, thus no F-formation was formed, next is the gaze zone check, which is
within the transactional zone. The participant inside the gaze zone and the robot gain the
active status while all participants outside the gaze zone have the bystander status. However,
if there are multiple people in the gaze zone, an attention check is conducted, the participant
directly looking at the robot is assigned the active status with the robot while the rest within
the transactional zone get a bystander status. The algorithm 1 is reran as the perception
of the environment by the robot changes. In addition, Figure 4.3 gives an overview on how
the robot adapts its gaze mechanism based on the estimation of role coordination algorithm
using proxemics of the changing group dynamics.

Fig. 4.3 Flow Chart of the adaptive gaze behavior mechanism based on the status evaluation
of the conversational role coordinator
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Algorithm 1: Group of 3 Conversational Role Decision Making
Data: [dh1,dh2] = distances between humans and robot; [α1,α2] = angles between robot base

and human face frame; dt = transactional distance; β = front zone angle; δ1 = gaze
zone angle; f-formation = whether or not f-formation was detected; attention[] =
attention direction of participants

Result: status = [status1, status2, statusr] : status of participants and robot
while i < n do

if dh[i] > dt then
status[i] = overhearer ;
count ++;

end
end
if count == 0 then

if f-formation == true then

// Equidistant f-formation Check

status1 = status2 = statusr = active;
else if |αi| < β and |αj | > β then

// Inside the Front Zone

if |αi| < δ and |αj | > δ then

// Inside the Gaze Zone

if attentioni == towards robot and attentionj == away from robot then

// Attention Check

statusi = statusr = active ;
statusj = bystander ;

else

// Gaze Zone Check

statusi = statusr = active ;
statusj = bystander ;

else

// Front Zone Check

statusi = statusr = active ;
statusj = bystander ;

else
statusi = statusj = statusr = active

else
if count == 1 then

// Transactional Zone Check

while i < n do
if status[i] != overhearer then

statusi = active;
statusr = active;

end
else

// all are overhearers

statusr = overhearer;
end
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4.3.2 Adaptive Robot Gaze Behavior

Once the status of the participants and the robot are set, they are used to have the gaze
behavior of the robot adapted accordingly, as seen in the flowchart Figure 4.3. Most social
robots by design lack articulated eyes, thus head rotations are implemented in coordination
with intended gaze movement. In addition, eye gaze alone may not be sufficient to be noticed
by participants emphasizing the significance of coordination of head movement and gaze
[176]. When the robot has an overhearer status, no direct engagement gaze behavior is
activated. The robot instead keeps running algorithm 1 in the background until an active
participant is present in the interaction. Once the robot’s status is turned to active, an
adaptive gaze mechanism is animated. Participants with an overhearer status are ignored by
the robot. However, the adaptive gaze behavior is equally split between active participants.
For instance, if there are two active participants then a pattern of equal time gazing at each
active participant is formed. On the other hand, bystander participants are also recognized
by the gaze behavior of the robot but not allocated the same amount of time or attention as
the active speaker. The robot glances at the bystander for one third of the amount time it
gives to the active speakers. This short amount of time is intended to show the bystander
participants that the robot acknowledged his/her presence. For instance, if there is one active
and one bystander human in the group interactive around the robot, the robot would form
an adaptive gaze behavior patter, in which six seconds are spent engaged with the active
speaker and two seconds to glance at the bystander, the pattern is repeated until a change of
status is detected.

4.4 Study Design

In order to evaluate the effects of the conversational role coordinator system using adaptive
gaze mechanism and proxemics have in a small group interaction with the robot, a pilot
mixed study was conducted with two conditions. The study employed a 2× 3 independent
groups design. In total, N = 16 participants (average age 27) were recruited in 8 pairs. Two
participants were needed for each trial per condition thus forming a group of 3 with the robot.
The participants were instructed to play a trivia game with the robot made of 3 levels: 1 two
player level, where both participants could contribute to answering the question, and 2 one
player levels, where only one of the two participants could answer. They were free to choose
as they please whose turn it would be for the one player levels without informing the robot.
In addition, the participants were instructed that they are free to move in the room however
they want.
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Fig. 4.4 Overview of two sets of interactions between the robot and participants forming a
small group. The statuses represent each conversational role for each participant estimated
by robot in different contexts and times during the interaction

4.4.1 Conditions

In the first condition, the robot displayed an autonomous and adaptive gaze mechanism using
the output statuses of algorithm 1 as discussed in the previous Section 4.3. In the rest of the
chapter, this condition and system is referred to as Group Conversational Role Coordinator
and shown in Figure 4.4. On the other hand, in the second condition, which is the control
condition, the robot was in a basic awareness behavior. The Basic Awareness Behavior refers
to an autonomous ability on the Pepper Robot.1 Basic Awareness Behavior enables the robot
to react to certain stimuli, which include touches on bumpers, touches on hands, or human
detection, by looking in the direction of that stimuli using the head rotation of the robot.
Thus, the robot would look only at the first person it found until another stimuli would be
detected. When no person was detected, the robot would return to a neutral position.

1Pepper Robot by SoftBank Robotics (https://www.softbankrobotics.com/emea/en/pepper)

https://www.softbankrobotics.com/emea/en/pepper
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Did you feel attended to by the robot?
Was the robot giving you enough attention?
Did you feel that the robot was looking at you?
Do you think the robot considered you as an important player?

Table 4.1 Extra Questions: Feeling Attended To (cronbach’s alpha = 0.71)

4.4.2 Hypotheses

According to literature review discussed in Chapter 2, it was suggested that a robot’s gaze
behavior can shape conversational roles [127] and adaptive gaze behavior to group dynamics
increase feelings of inclusion, sense of belonging to the robot’s group [176], and encourage
even participation within the group [59] . Based on the state-of-the-art findings, the following
hypotheses were formulated:

• H1 Participants will stand closer to the robot even when playing a bystander role
while they interact with the robot having the adaptive gaze mechanism based on the
conversational role coordinator.

• H2 Robot with an adaptive conversational role coordinator will be perceived as more
adaptable, enjoyable, sociable, and socially present.

• H3 Participants will feel more attended to by the robot with the conversational role
coordinator than by the robot performing basic awareness behavior.

4.4.3 Measurements

In order to evaluate H1, the distances dh of each human around the robot and the angle α

they were forming with the robot, as shown in Figure 4.1, were extracted every six seconds
throughout the entire interaction.
Subjective measurements were used to assess H2 and H3. The participants were asked to
answer a questionnaire ranked from 1 (strongly disagree) to 5 (strongly agree) and composed
of an ALMERE questionnaire and additional questions to evaluate whether participants felt
attended to by the robot. The ALMERE questionnaire was designed to assess the acceptance
of assistive social agent technology [73]. The questionnaire includes the following constructs:
anxiety (ANX), attitude towards technology (ATT), perceived adaptability (PAD), perceived
enjoyment (PENJ), perceived sociability (PS), and social presence (SP). The additional
questions asked in the questionnaire after the ALMERE questions are presented in Table 4.1.
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4.4.4 Experimental Procedure

Each interaction required a small group of two participants at a time to play a trivia game
with a Pepper robot. The trivia game consisted of general knowledge questions to which
the players had to answer by either ’True’ or ’False’. The game was made up of three levels
not based on difficulty but rather on whether it was for one player or two players. The
robot announced the type of level before asking a set of questions. The first level was for
two players and the second and third levels were for one player where the participants had
to switch turns amongst each other. It was designed as such to create different scenarios
with various possible combinations of statuses such as two active and one active with one
bystander. At the beginning, the robot would greet the players and at the end of the game
say goodbye and thank them for playing. During all levels, the participants were informed
that they were free to move as they wish. For levels two and three, the participants were told
that they were free to choose amongst each other which one would be the main player. Thus
the robot was ambiguous to the main player decisions made. The robot in the condition
of conversational role coordinator relied only on the proxemics and Algorithm 1 to predict
statues of participants around the robot and accordingly adapt its gaze behavior, while in
the basic awareness behavior condition the robot chose the participant to look at based on
which of the two was detected first. The participants were randomly assigned to the two
conditions. The interactions with the robot took on average 15 minutes. At the end of the
entire interaction, the participants were given the questionnaires to answer.

4.5 Results

First, a factorial ANOVA analysis with post-hoc Tukey HSD was done on the distances
measured by all participants throughout all three levels of the interaction per condition,
shown in Figure 4.5. A significant difference was found between the two conditions, robot
with an adaptive conversational role coordinator and robot with a basic awareness behavior,
with F (1, 44) = 7.635 and p < 0.01. The average distance for participants interacting with
the basic awareness behavior was dh = 1.637, SD = 0.833; meters while that of the ones
interacting with the conversational role coordinator was dh = 1.31, SD = 0.328 meters. In
addition, there was a significant difference between the distances of the various roles played
by participants in the interaction (a bystander player, a main player, and one of the two
main players) with F (2, 44) = 25.665 and p < 0.001. Furthermore, when playing a bystander
role, participants interacting with the Group Conversational Role Coordinator stood closer
at (M = 1.68, SD = 0.11) meters where as participants stood further away when interacting
with the Basic Awareness Behavior at (M = 2.03, SD = 0.83) meters. All distances are
summarized in Table 4.2.
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Fig. 4.5 Distances (meters) maintained by participants per condition and per role they played
during the interaction: when they were playing a bystander role, main player role, and one of
the two players. There was a (**) significance, for p < 0.01, between the two conditions. In
addition, (*) represents significance of p < 0.05 between the two conditions for the Bystander
Player and (***) represents significance of p < 0.0001 between different roles in the group
interaction.

Distances (in meters) of Participants around the Robot
Roles Group Coordinator Basic Awareness Total

M SD M SD M SD
One of Two Main
Players

1.25 0.23 1.29 0.2 1.27 0.21

Main/Active
Player

0.99 0.13 1.22 0.25 1.11 0.23

Bystander Player 1.68 0.11 2.39 1.09 2.03 0.83
1.31 0.32 1.63 0.83 1.47 0.64

Table 4.2 Summary of average distances held by participants throughout the different roles
in the interaction per condition and in total

Second, taking a closer look at the angle α, defined in Figure 4.1, done by group members
around the robot, a factorial ANOVA with a post-hoc Tukey was performed, shown in
Figure 4.6. No significant differences were found between the two conditions, robot with
Basic Awareness behavior and Group Conversational Role Coordination, nor between the
different roles participants played throughout the interaction with F (1, 44) = 0.991, p > 0.05
and F (2, 44) = 0.107, p > 0.05 respectively. Additionally, when the interaction was at two
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Fig. 4.6 α Angles (degree) maintained by participants per condition and per role they played
during the interaction: when they were playing a bystander role, main player role, and one
of the two players. Alpha angle refers to the angle define in Figure 4.1

players level, the angle α was smaller when interacting with the robot with the conversational
role coordinator than with that with basic awareness; thus participants were more aligned
with the facing direction of the robot. With the findings based on distances and angle α of
participants, H1 was partially supported.

Third, regarding the subjective measurements, a Two-way ANOVA analysis was conducted
for the ALMERE Questionnaire constructs rated by participants, shown in Figure 4.7. A
significant difference was found between the two conditions with F (1, 41) = 4.526, p < 0.05
with an effect size η2 = 0.46. The robot with the Conversational Role coordinator rated
significantly higher on the Perceived Adaptability, Perceived Sociability, and Social Presence
constructs. This supported H2 .

Fourth, the additional questions asked to better understand whether or not participants
felt attended to by the robot had a Cronbach’s α = 0.71. Accordingly, the combined
questions presented as one construct in Figure 4.8. An One-way ANOVA with pairwise
comparison analysis revealed a significant difference between the two conditions, robot with
a group conversational role coordinator versus a robot with a basic awareness behavior,
with F (1, 41) = 4.526, p < 0.05. The participants rated the questions higher after having
interacted with the group conversational role coordinator robot than with the robot with
basic awareness behavior. H3 was supported.
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Fig. 4.7 Ratings of ALMERE Constructs per condition by participants with (*) significance
for p < 0.05 between the two condition. (**) refers to p < 0.01 and (***) to p < 0.001

Fig. 4.8 Ratings from extra questions related to ’Feeling Attended To’ per condition by
participants with (*) (p < 0.05) significance between the two conditions

4.6 Discussion

While this was a primary study to get an insight on the subjective and behavioral outcomes
of having an adaptive gaze behavior for group conversational role coordinator, there were
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leading primary findings. First, the distances of participants in the small groups being formed
with the robot showed that people stood significantly closer to the robot when it performed
group conversational role coordination through adapted gaze behavior based on the roles
they were playing with the group, partially supporting H1. When both members of the
group were active participants/ main players, they stood at similar distances away from the
robot. However, when the level switched to one player, the main/active player moved even
closer to the robot when interacting with an adaptive group gaze behavior robot. On the
other hand, the bystander player moved much further away when interacting with the basic
awareness robot than with the adaptive group coordination robot with a difference between
the two averages of ∆dh = 0.7m. This relative big difference may be due to the bystander
participant thinking they needed to move further away to not disrupt the interaction between
the main player and the robot specially if the robot was prior gazing at the bystander player.
On the other hand, in the adaptive group behaving robot, the bystander participants felt
more comfortable staying close to the interaction between the main player and the robot
since it did not take away attention from the main player. The participant interacting with
the conversational role coordinator robot was also able to listen in on the interaction and be
acknowledged by the robot.

Even though, there was no significant difference between the two conditions in the α

angle,it was smaller in the case when there were two main players in the interaction with
the group conversational role coordinator robot. This shows that the members of the small
group with the adaptive gaze behavior robot were standing closer to each other and closer to
the direction of the robot than in the group with the basic awareness robot. This may be an
interesting insight as to how participants form groups with the robot when it is able to give
equal adaptive attention to the small group members; however, a bigger study is needed to
investigate that.

Second, the subjective measurements presented a significant difference between the two
conditions. Through the ALMERE questionnaires ratings, H2 was supported. Participants
interacting with the robot having an adaptive conversational role coordinator was rated
higher on perceived adaptability, perceived enjoyments, perceived sociability, and social
presence. Third, the ratings on the extra questions asked addressing the perception of being
attended to by the robot were significantly different between the two condition supporting
H3. Furthermore, in Figure 4.8, there was a larger standard deviation and variation in the
basic awareness behavior condition. This may be due to the fact that within that condition
and because of the behavior of the basic awareness, one of the two members of the small
group got the most engagement and attention from the robot while the other was excluded
from the gaze direction of the robot even when they played the main player role. On the
other hand, the conversation role coordinator gave relatively equal attention to both players.
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Furthermore, it is also important to note the limitations of this study and its findings. Group
dynamics are very complex in nature and involve multiple nonverbal and verbal modalities
to be taken into account including culture and personalities of the participants [13, 82]. The
system presented in the chapter is a primary and simplified approach to try and allow the
robot to estimate the conversational roles. Algorithm 1 depended on inputs from the sensors
of the Pepper robot used. Technical limitations in the application may have included false
positives of human positions detected by the robot and/or noise in the signals. Moreover, this
study is a primary pilot study and perhaps a greater number of groups with more participants
or more robot need to be explored.

4.7 Conclusion

Prior work has shown that proxemics is a crucial tool in understanding group formations and
dynamics and gaze can be an adaptive tool in group interactions. Building on prior work, this
chapter introduces an autonomous conversational role coordinator system that assigns to the
group participants around the robot three different statuses, which are active, bystander, and
overhearer, based on their proxemics, including distance and orientation. Once the statuses
are assigned, the robot readjusts its gaze pattern in order to adapt to the group dynamics
giving active participants equal gaze attention, bystanders simple acknowledgements, and
ignoring overhearers. This system was evaluated through a pilot study where participants
played a trivia game with the robot and had different roles within the interaction. Primary
results have shown that participants interacting with a robot having this system are more
likely to stand closer to the robot, perceive the robot as more adaptable, sociable, and
socially present as well as feel more attended to by the robot. These findings may lead to a
better understanding of group interactions with social robots as they become more present in
everyday life, such as hospitals, retail stores, schools, and perhaps even homes, thus ushering
the way for more socially intelligent interactions.

This Chapter gave an initial insight into how the behaviors of humans can be utilized by
the robot to adapt its own behavior and appear as a socially intelligent agent. This was done
by only looking at one modality exhibited by the human and one modality adapted by the
robot. The primarily findings from the pilot study hint into promising results for further
development. The next Chapter builds on this and investigates how each modality making
up the multi-modal behavior of the robot can be designed and implemented and studies the
extend of their effects and impacts on an interaction, specially the behavioral outcomes of
the human.
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5.1 Introduction

By merely observing humans, one can directly infer that no social interaction takes place
without cues, whether verbal or nonverbal, that allow others to interpret behaviors and
reasonably estimate intentions [147]. Furthermore, those verbal and nonverbal cues have an
effect on others by eliciting tangible change in their observable behavior or even internal
changes, e.g., awareness of a particular social setting [179]. Moreover, proper communication
and exchange of information is crucial to a human’s need to feel connected, promote well-
being, and gain acceptance by social groups [144]. However, these powerful social signals and
nonverbal behaviors are complex and multi-modal. They are made of different combinations of
modalities and cues such as kinesics (e.g., gestures) [97, 48], gaze behavior [85], and proxemics
(e.g., management of space and environment) [68]. Similarly, these multi-modal nonverbal
behaviors hold several functions, which include the ability to understand and manage others
in social interactions and “act wisely in human relations", and as such contribute to one’s
social intelligence. [169].

In today’s world, humans not only have to interact with each other, but also with
machines, including robots. With robots gaining further presence in a human’s everyday life,
synthesizing and understanding these multi-modal behaviors is crucial to designing better
and more appropriate human-robot interactions. In an attempt to solve this issue, some
studies have been inspired by human-human interaction to design rule-based algorithms
targeted at investigating individual modalities [11, 151, 109]. In contrast, other research
has focused on data-driven learning methods designed to synthesize multi-modal behavior,
however, lacking a clear understanding of the effect of each modality forming the multi-modal
behavior [101, 135]. Thus, there is still a need to investigate how such modalities can be
combined and the effect and function of each when performed in a multi-modal combination.
This will allow for a better understanding of how and when the robot could use combinations
of different modalities to appear as a socially intelligent agent and express intentions and
information using verbal and nonverbal behavior more naturally.
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This chapter presents a system of multi-modal behaviors comprised of the following
modalities: gaze, kinesics, proxemics, and social dialogue. The system was evaluated
objectively by studying the behavioral outcomes. In addition, critical to evaluating peoples
interactions with social robots is also the extent to which they like the robot, or form a
general positive impression during their interaction. Thus, in this study a subjective measure
of liking was also included through a self-report "liking" scale. Instead of analyzing the effects
of each modality by contrasting them in isolation and thus losing possible coupling effects,
this chapter compares a version with all implemented modalities together with versions, in
which each modality is subtracted in turn.

Fig. 5.1 Summary of Multi-Modal Social Cues

5.2 Implemented System for Multi-Modal Behavior

This section introduces the implemented system to achieve multi-modal behavior on the
Pepper robot. However, the system can also be implemented on other social robots. The
source code for the entire system has been made available online1. The overall scheme of the
multi-modal social cues synthesized are shown in Figure 5.1. The system is composed of the
following modalities: proxemics, gaze mechanism, gestures, and a social dialogue. A sample
extract of the system implemented is shown in Figure 5.2.

1Multi-modal Social Cues System Implementation GitHub Repository https://github.com/
KarenTatarian/multimodal_socialcues

https://github.com/KarenTatarian/multimodal_socialcues
https://github.com/KarenTatarian/multimodal_socialcues
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Fig. 5.2 Sample of time-line including speech, gaze mechanisms (turn-taking, floor-holding,
turn-yielding), and social gestures (deictic gestures: "You" vs "Me" if mentioned in speech,
beat gesture: emphasizing the two choices user needs to select from)

5.2.1 Social Gaze Mechanisms

Since several humanoid robots lack expressive eyes that can be controlled, the presented
social gaze aversions are achieved using head motion control. The social gaze mechanisms
presented here were designed and implemented to fulfill the following functions: joint atten-
tion, turn-taking, floor-holding, and turn-yielding. When not performing these gaze aversions,
the robot would be gaze tracking the human it is interacting with at all times. For this
reason, information about the human can be extracted, notably the 3-dimensional frames of
the human’s face and the robot’s gaze. This allows the robot to carry out all implemented
gaze-averted head motions on the robot with respect to the frame of the human’s face. Thus
the design of each social gaze head movement was a combination of dynamics, magnitude, and
duration, all of which are crucial for the social gaze motion to achieve its function naturally.
A summary of the gaze mechanisms can be found in Figure 5.3.

Gaze aversion for turn-taking in human-human interaction as well as human-robot inter-
action holds a cognitive function; it gives the speaker more time to better plan and address
their speech while also avoiding possible external extractions [15, 11]. For this reason, the
turn-taking gaze behavior was given the relatively longer duration of 2.5 seconds. As for the
floor management and turn-yielding functions, which take place during and at the of the
speaking turn, they were assigned a shorter duration of 1.5 and 1.2 seconds each respectively.
The longest duration was designed for the joint attention gaze, which has the duration of 3.8
seconds and the function of indicating and referring to an object of discussion. The angle
rotations, duration length, and directions of the gaze aversions were selected and designed
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based on the gaze aversion system, with similar functionalities, implemented on the NAO
robot (SoftBank Robotics) in [11], which are as well based on the findings of Kendon [86]
for gaze aversions in human-human interaction. In turn, these variables were tuned to be
suitable for the robot Pepper. Examples of how the duration of each gaze mechanism was
synthesized is shown in Figure 5.2.

Fig. 5.3 Summary of gaze mechanisms

The goal is to generate head motions, which serve as social gaze cues, and to realize
a natural and subtle appearance while still fulfilling their purpose. The directions of the
head rotations performed were chosen based on human-human as well as HRI studies done
to better understand gaze aversions during interactions [11, 85, 125]. For the turn-taking
and floor-holding cues, which signify that the robot is in a cognitive phase and holding the
speaking role, a vertical head movement was implemented. The gaze frame of the robot is
the frame it produces as it is tracking the human’s face as seen in Figure 5.3, thus the gaze
frame is aligned with the human’s face frame. At each instance in which the turn-taking and
floor-holding gaze mechanisms were called, the gaze frame performs a rotation of 33.7 degrees
in the (y-z) plane with respect to the frame on the human’s face resulting in an upward
slightly left-sided rotation. As for the turn-yielding gaze, in order to achieve a smoother
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and more subtle gaze to indicate the shift in speaking roles and after manually fine tuning,
Equation 5.1 represents the translations implemented for the (x, y, z) of the robot’s gaze
frame respectively

x” = [(1− cos θ)]x + sin θy − δ1

y” = − sin θx + (1− cos θ)y

z” = δ2

(5.1)

where θ = 12.318°, δ1 = 1.2, and δ2 = −0.6 and x, y, &z are the coordinates of the frame of
the human’s face.This resulted in a downward left-sided rotation as seen in Figure 5.4, which
illustrates an example of the execution. Finally, the head rotation for joint attention was
not intended to be subtle but rather draw the attention of the user towards the object it
is referring to. The head rotation was done with a head yaw of −46° and a head pitch of
−4.65° with respect to the object it is referring to and with a Bézier curve velocity profile
for smoothness in the animation. This resulted in an animation that starts slow, speeds
up during the main shift, and finally slows down before it ends. For instance, for the gaze
mechanisms implemented as head-motions, the head of the robot would start rotating slowly
then rapidly towards target frame then slowly returns back to its initial gaze frame as shown
in the example of Figure 5.4.

Fig. 5.4 Turn Yield Gaze Mechanism
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5.2.2 Gestures

Three of the five categories of gestures classified in [113, 97], are implemented in this multi-
modal system through five gestural designs. First, in the emblem category, two gestures were
implemented: the wave gestures for greeting users and closing interaction and nodding as
back-channeling. When the robot enters a listening state, it nods in response to additional
information the user provides while speaking. Whenever a new sentence is detected by the
robot, it executes a back-channeling nod animation and waits for a next sentence to be heard.
The back-channeling nod animation consists of three consecutive nods over a span of 2.5
seconds. Second, in the deictic category, two types were represented: object pointing gesture,
which accompanied the joint attention gaze and performed as a right arm extension, and
self/other references, which are the “you" vs “me" indicators, as portrayed in Figure 5.2. In
the latter, the “you" gesture was designed as both of the arms open and extended from the
robot’s body and pointing upwards towards the human with the open palms. The “you"
gesture accompanied questions,in which the robot infers about the user. On the other hand,
the self-pointing or the “me" gesture has the robot’s arms closed and directed towards the
body and it is used by the robot to introduce itself, its tablet modality, and state an opinion.
Furthermore, beat gestures were used in the question series to emphasize the options. In
order to generate smooth behavioral social cues, Bézier curves were used to implement the
velocity changes of all gestures.

5.2.3 Proxemics for Approaching Human

According to the findings in [156, 99], the most optimal and socially acceptable path to
navigate towards a static standing human is in a straight line in the human’s sight zone
while maintaining a minimum distance of about 0.5 meters (or 1.5 meters for sitting humans).
This is due to safety and visibility constraints to minimize human discomfort. In addition,
approaching the human for initiating an interaction was ranked as most appropriate when
the robot navigated in the human’s front zone (120° cone-shaped area in front of a person’s
head) or his/her gaze zone (30°) [151]. For this system, once the human has been detected
at the beginning of the interaction, the robot would first greet the human by speech and
a wave gesture before beginning navigation towards the human. The default speed of the
robot Pepper is 0.35 m/s. However to avoid a recoil movement by the human seen in some
user experience testing, the speed for greeting navigation was slowed down to 0.25 m/s. The
robot would then navigate to establish a distance of 0.85 meters between itself and the user.
The robot would navigate while maintaining gaze directed towards the participant. The
distance of 0.85 meters was chosen for four main reasons. First, this distance allows the robot
to continuously track the human’s face regardless of his/her height. Second, the human at
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this distance is able to clearly see the different gaze and gesture behaviors generated by the
robot. Third, this distance eases the access and view of the tablet on the robot. Fourth,
0.85 meters is still within Hall’s defined personal distance, in which friendly interactions take
place [65]. Once the desired distance has been reached, whether by navigation of the robot
or chosen distance by human, the start button pops up on the tablet to continue the rest of
the interaction.

5.3 Design Method and Evaluation

In order to directly compare the effects the different modalities of the robot’s behavior have
on the user’s behavior and attitude, the chosen scenario for the interaction was planning for
a hypothetical holiday. The robot acted as a travel agent helping the user plan his/her next
vacation and it exhibited one of five behavioral conditions:

• Multi-modal Interaction, which is all modalities including social dialogue, (Social Gaze
+ Gestures + Proxemics + Social Dialogue)

• Minus Proxemics, which is all the modalities excluding proxemics, (Social Gaze +
Gestures + Social Dialogue)

• Minus Social Dialogue, which is all the modalities excluding social dialogue(Social Gaze
+ Gestures + Proxemics )

• Minus Gestures, which is all the modalities excluding social gestures, (Social Gaze +
Proxemics + Social Dialogue)

• Minus social gaze, which is all the modalities excluding social gaze, (Gestures +
Proxemics + Social Dialogue)

Fig. 5.5 Summary of flow of interaction

The flow of interaction went as seen in Figure 5.5: first in the introductory phase, the
robot greeted the user (highlighting the gesture modality), approached the human until the
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desired distance is established, engaged the user in a short social dialogue and then offered
the participant some drinking water, using joint attention gaze and pointing gesture. Second
was the travel planning phase, where the robot started asking a series of questions about the
travel and vacation preferences, followed by a self-disclosure segment, where an open ended
question was asked to know more about the user and the robot entered a listening state
and demonstrated back-channeling. The third and final part was the closing phase, where
the robot suggested two options based on answers previously provided by participants and
recommended its personal preference between the two. Once the user made a final decision
on a travel destination, the robot concluded the interaction and waved goodbye.

Conditions
Multi-modal Interaction, Minus
Proxemics, Minus Gestures, and
Minus Social Gaze

Minus Social Dialogue

Openings/Closing
Social small talk Formal talk
ex: "How are you today?" ...
"great"

ex: "Is it the first time you come
here?"

ex: "I am so happy to meet you!" ex: "You are the fourth person to-
day whom I will help plan their
vacation"

Replies
Personal preference replies Non-personal general replies
ex: "Excellent choice, I also like
this location!"

ex: "Many people like this loca-
tion"

ex: "I also find it awesome to
travel by train because it’s much
more comfortable!"

ex: "Traveling by train is more
comfortable"

Table 5.1 Social dialogue designs per condition

5.3.1 Social Dialogue

The dialogue throughout all conditions was adaptive: the robot’s answers depended on
what the user’s previous choices were. In addition, since it was a travel planning scenario,
all replies from the robot were consistent with the decisions the user made. For instance,
if the person selected that they prefer to travel by train then the robot would suggest a
destination that can be reached from Paris by train (e.g., Amsterdam) and similarly for the
other descriptions, e.g., city or beach, solo trip or with friends and loved ones, culture or
activities etc. However, the social dialogue modality differs in the social and friendly openings
and replies as summarized in Table 5.1.
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5.3.2 Design & Materials

An independent groups design was used, with the independent variable being multi-modal
behavior with 5 levels: first: multi-modal interaction referring to all implemented modalities
(proxemics, social gaze, gestures, and social dialogue), second: minus proxemics - referring to
all implemented modalities except for proxemics, third: minus social dialogue - referring to
all implemented modalities except for social dialogue, fourth: minus gestures - referring to
all implemented modalities except for gestures, and fifth: minus social gaze - referring to all
implemented modalities except for social gaze mechanisms.
The dependent variables were extracted using recorded logs from the robot application, data
extracted from the recorded videos, and self-report questionnaires. First, the logs provided
from the robot application include information on the position of the human relative to the
robot extracted every 5 seconds as well as the angular facial frame information, which were
extracted before the execution of every social gaze aversion. In addition, the time it took the
user to press the buttons on the tablet and to take decisions as well as the decisions made
were recorded.

Second, the videos recorded were used to annotate and obtain the verbal and nonverbal
responses and behaviors of the user throughout the interaction, including if the user accepted
the water offer, back-channels performed, verbal responses, total speaking time, amount
of information shared, number of audio/voice recognition errors that may have occurred,
and gestures performed. It is critical to note that the back-channels of the users in this
set-up refer to both non-lexical back-channels, such as “uhh", “yeah", “mmm", .. etc., phrasal
back-channels, such as “wow", “great",.. etc., and gestural back-channels, e.g., nodding.
However, facial expressions were not considered.

Third, a self-report questionnaire was used to evaluate the subjective measurement for
robot’s Likeability or liking and was comprised of 9 items. The participants were asked to
rank how well they agree with the statements in Table 5.2 on a scale of 1 to 7, with 1 agree
with the least and 7 agree with the most. These items were then averaged to form a scale
with good reliability α = 0.88. The scale was normally distributed, W = 0.99, p = 0.35.

5.3.3 Participants & Procedure

115 participants were recruited for the experiment, of which 10 had to be excluded due to
technical difficulties with the robot. Thus the data of 105 participants were used for analysis
(mean age = 22.8, SD = 3.17) with (N = 21) participants per condition. All participants
were recruited by the INSEAD-Sorbonne University Behavioural Lab under ethics approval
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Questions Used, French Questions English
Pepper est gentil Pepper is friendly

Pepper est chaleureux Pepper is warm
Pepper est aimable Pepper is likeable

Pepper est accessible Pepper is approachable
Je demanderais volontiers des conseils à Pepper I would ask Pepper for advice

J’aimerais avoir Pepper comme collègue I would like Pepper as a colleague
J’aimerais avoir Pepper comme colocataire I would like Pepper as a housemate
J’aimerais que Pepper et moi soyons amis I would like to be friends with Pepper

Pepper et moi sommes similaires Pepper is similar to me

Table 5.2 Likeability Scale ranked from 1 to 7

Fig. 5.6 Schematics of the experimental room set-up with the robot during the travel agent
scenario

by INSEAD Institutional Review Board. All participants were native French speakers and
signed a consent form to participate. Separate consent was obtained for the use of video data.
The entire experiment took about 20 minutes to complete, including filling the questionnaires
at the end. As a compensation for their time each participant received 6 euros.

Participants were randomly assigned to one of the five conditions (21 per condition). In
addition, the participants were assigned randomly across the hours of the day to make sure
half of the users in each condition interacted in the morning before lunch time while the
other half in the afternoon after lunch.
Upon arrival, the participants filled out the consent forms. Then, one of the experimenters
introduced the experiment by explaining that they will interact with a robot that will help
them plan their vacation as if it were their real holiday. They were informed the interaction
would last 5-7 minutes and then they would have to fill a questionnaire, which included the
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liking scale as well as scales not relevant to the current study. They were also advised to
speak loudly and articulate clearly in order to avoid any audio or voice recognition problems.
Participants were then led to a room with the robot, as seen in Figure 6.2, and were asked
to place their belongings on the side and stand wherever they wished. Shortly after the
experimenter leaves the room, the interaction began. Besides the front and side cameras
set-up in the room, there was a webcam streaming the interaction live. The robot as shown
previously is completely autonomous, the videos and webcam are for recording and monitoring.
Once the interaction was over, the participants were asked to fill the questionnaire in a
different room and then they were debriefed on the study and were given their participation
compensation.

5.3.4 Hypotheses

To evaluate the modalities in a multi-modal interaction and their effects on perceived social
intelligence, the following hypotheses were formulated. First, the proxemics implemented
respected the personal distance established by [65] and visibility and safety [99] while still
initiating the interaction by approaching the user within his/her gaze zone [151]. Following
this, H1 was suggested:

• H1: Social distances established by the robot would be maintained throughout the
interaction in all conditions except Minus Proxemics.

Second, social gaze aversion was shown to play a major role in intimacy regulation during
human-human interactions to elevate the comfort of speakers ([85], [16]). In addition, gaze
aversion for turn-taking functioned as a social cue to hand the conversational floor to the user
and thus making him/her the speaker. Furthermore, gaze aversion is practiced by humans
specially when listening in order minimize the negative perception attributed to staring and
to promote the comfort of the speaker ([1], [36] ). While Andrist et al. [11] did not find that
a social robot with proper timings for gaze aversions increased self-disclosure and comfort in
humans more than a social robot with badly timed gaze aversions, we hypothesise that gaze
mechanisms supported by multi-modal behaviors would elicit more self-disclosure from the
participants, such that:

• H2: Time participants spend speaking in the self-disclosure segment would be the
shortest in the Minus Gaze condition relative to the other conditions.

Third, gesture and joint attention through gaze have shown to be modalities used to com-
municate and point at an object of reference in an interaction as well as asking to grab the
object referred to ([22], [10] [157]). With H3 formulated as:
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• H3: Water suggestions are more likely to be taken when participants interact with a
robot performing social gaze mechanisms and gestures.

Fourth, gestural alignment was proposed to measure the extent to which an interaction
shapes the behavior of the user and the smoothness of the interaction [24, 35]. As such, the
following hypotheses were formulated looking into gestural alignment at the greeting and
termination phases of the interaction in order to understand the possible change in gestural
alignment behavior of the users. The use of back-channels, which include nodding and verbal
content, throughout the interaction were also analysed as part of gestural alignment:

• H4a: Gestural alignment in the greeting and termination phases would be least present
in the Minus Gesture condition.

• H4b: the complete multi-modal behaviour condition would have the most participants
who at the beginning did not greet the robot but at the end did close the interaction
with the robot whether verbally or non-verbally.

• H4c: Back-channeling throughout the interaction would be least performed by partici-
pants in the Minus Gesture condition.

Fifth, all the modalities combined make up multi-modal social cues designed to facilitate a
more natural and friendly interaction. It was hypothesized that that would additionally have
an effect on the subjective attitude of the users.

• H5: The condition with all modalities and social dialogue would score higher on the
likeability scale questionnaire.

5.4 Results

5.4.1 Distances from Pepper

First, looking into the distances established throughout the interaction, one would expect no
difference in the initial distance, as no interaction has yet occurred, but rather a difference
after the navigation of the robot. We therefore conducted Kruskal-Wallis H-tests for the
average distance maintained from the robot at the beginning of the interaction (prior to the
social navigation phase), shown in Figure 5.7, as well as the average distance maintained
after the social navigation phase until the end of the interaction, shown in Figure 5.8. The
former model yielded no significant different for condition, however, the latter revealed a
significant effect of condition after the social navigation phase, see Table 5.3.
Follow up pairwise comparisons with Dwass-Steel-Critchlow-Flinger correction revealed
participants in the minus proxemics condition stood significantly further away from the robot
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throughout the interaction than in all other conditions (all W ′s ≥ 4.68, all p′s < 0.008).
No other differences between conditions were significant. This denotes that participants
maintained the close social distance due to the proxemics established by the robot, thus
validating H1.

Table 5.3 Kruskal-Wallis Tests for the Effect of Condition on Initial and Maintained Distances

Outcome χ2 df p ϵ2

Initial Distance 2.40 4 .663 0.02

Distance Maintained 23.92 4 <.001 0.23

Fig. 5.7 Initial Distance (meters) by participants per condition at the beginning of the
interaction with the robot before proxemics
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Fig. 5.8 Maintained Distance (meters) by participants per condition throughout the interaction
with the robot after proxemics.

5.4.2 Self-Disclosure

Second, we examined the effect of modalities on self-disclosure by looking into how comfortable
a human was in sharing information about themselves when asked by the robot. We again
conducted a Kruskal-Wallis H-test to evaluate the total speaking time (in seconds) the user
spent answering the robot’s open-ended question to talk about themselves, shown in Figure
5.9. The average total speaking time was M = 11.55, (SD = 6.05) seconds. However, there
was no significant effect of modality, χ2(4) = 4.09, p = .394, ϵ2 = 0.04. As such, H2 was
not supported. The number of pieces of information given, which is the number of new
facts or opinions revealed and provided by the user about him/herself, was annotated and
measured for each condition. The following is an example of how the data was annotated: if
a participant after the open-ended self-disclosure question answered “I like hanging out with
my friends...I like watching movies”, then this was annotated as two pieces of information
since two facts and/or opinions were revealed about the participant. The average number of
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pieces of information given was M = 3.429, (SD = 1.6), but there was again no significant
effect of condition, χ2(4) = 1.76, p = .780, ϵ2 = 0.02.

Fig. 5.9 Total speaking time (seconds) of participants per condition during self-disclosure
open-ended question

5.4.3 Accepting Water Offered

The number of participants who accepted the water offered in each condition is shown in
Figure 5.10. It is important to note that absent in this figure and those that follow refer to
the number of times the observed behavior was absent in each condition. For instance, in
Figure 5.10, the grey or absent plots indicate the number times the water suggestions was not
taken (and as as such absent). We ran a binomial logistic regression with condition as the
predictor variable, and accepting the water offered as an outcome variable. The overall test
of condition was marginally significant, χ2(4) = 8.18, p = .09, McFadden’s Pseudo R2 = 0.06.
Follow up pairwise comparisons with Tukey’s correction revealed a marginally significant
difference between the complete multimodal condition and the minus proxemics condition,
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Fig. 5.10 Number of times the water offer was accepted by participants per condition. Present
refers to appearance of the participant’s behavior of accepting the water offered by the robot
by grabbing the cup and/or drinking the water, while Absent refers to lack of this behavior
and as such not accepting the water offered by the robot.

β = 1.89, p = .095. The odds of accepting the water offered in the minus proxemics condition
were 0.15 [0.03, 0.62] times less than in the complete multi-modal condition.

5.4.4 Social Behavior

We again constructed binomial logistic regression models assessing the effect of condition
on opening and closing waves. For both opening and closing waves, the logistic regression
model was significant for condition, χ2(4) = 19.20, p < .001, McFadden’s Pseudo R2 = 0.13
and χ2(4) = 35.54, p < .001, McFadden’s Pseudo R2 = 0.25, respectively. We conducted
follow up pairwise comparisons with Tukey’s correction. As the closing wave model exhibited
complete separation (i.e., no participants in the minus gesture condition waved goodbye), we
further applied Firth’s bias reduction method for this model. For both opening and closing
waves, participants were significantly less likely to wave in the minus gesture condition than
in the complete multi-modal condition and the minus Social Dialogue condition (see Table
5.4). No other comparisons were significant. See Figures 5.11 and 5.12.
Beyond waving gestures in greeting and closing the interaction, Table 5.5 shows the presence
and absence of all greeting and/or closing turns made by users, whether verbally or non-
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verbally. We classified participants behaviour as either consistent-social (both greeting and
closing turn). consistent-nonsocial (neither greeting nor closing), inconsistent-social (no
greeting turn, but a closing turn) or inconsistent-nonsocial (greeting turn, but no closing
turn). However, a chi-square test comparing participants consistency in social behaviour did
not reveal any differences between conditions, χ2(16) = 13.11, p = .664, Kramer’s V = 0.194
[0.00, 0.33].
In addition, to assess the effect of modalities on behavioral alignment, we analysed the back-
channeling performed by the participants in each condition. A binomial logistic regression
was conducted to analyze the effect of the modalities on the number of participants who
performed back-channeling, as shown in Figure 5.13. The regression model was statistically
significant with χ2(4) = 12.90, p = .012, McFadden’s Pseudo R2 = 0.09. Evaluation of the
log odds with Tukey’s correction revealed participants in the minus gaze condition were less
likely to produce back-channels than in the complete multi-modal condition, see Table 5.6.

Fig. 5.11 Number of greeting waves performed by participants at the beginning of the
interaction (with 95% CI errors). Present refers to appearance of the participant’s behavior
of waving to the robot at the beginning of the interaction, while Absent refers to lack of this
behavior, e.g., the participants not waving to the robot.[*] significant at the p < .05 level.
[***] significant at the p < .001 level
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Table 5.4 Comparison of the likelihood of producing opening and closing waves in each
condition

Contrast
Log Odds

(SE)
z p-value

Opening Wave

Minus Gesture vs Multi-Modal Interaction -3.10 (0.89) -3.49 .005**

Minus Gesture vs Minus Gaze -2.25 (0.87) -2.60 .071

Minus Gesture vs Minus Social Dialogue -2.54 (0.86) -2.94 .027*

Minus Gesture vs Minus Proxemics -2.16 (0.86) -2.50 .090

Multi-Modal Interaction vs Minus Gaze 0.85 (0.66) 1.28 .704

Multi-Modal Interaction vs Minus Social Dialogue 0.56 (0.66) 0.85 .915

Multi-Modal Interaction vs Minus Proxemics 0.94 (0.66) 1.44 .602

Minus Gaze vs Minus Social Dialogue -0.29 (0.63) -0.46 .991

Minus Gaze vs Minus Proxemics 0.10 (0.63) 0.15 .999

Minus Social Dialogue vs Minus Proxemics 0.38 (0.62) 0.62 .972

Closing Wave †

Minus Gesture vs Multi-Modal Interaction -4.35 (1.54) -2.83 .038*

Minus Gesture vs Minus Gaze -3.95 (1.53) -2.58 .074

Minus Gesture vs Minus Social Dialogue -4.63 (1.54) -3.01 .022*

Minus Gesture vs Minus Proxemics -3.30 (1.53) -2.15 .197

Multi-Modal Interaction vs Minus Gaze 0.40 (0.65) 0.61 .973

Multi-Modal Interaction vs Minus Social Dialogue -0.28 (0.67) -0.42 .994

Multi-Modal Interaction vs Minus Proxemics 1.05 (0.65) 1.62 .482

Minus Gaze vs Minus Social Dialogue -0.68 (0.66) -1.03 .840

Minus Gaze vs Minus Proxemics 0.65 (0.64) 1.03 .842

Minus Social Dialogue vs Minus Proxemics 1.33 (0.66) 2.03 .251

† With Firth’s bias reduction method

* significant at the p < .05 level

** significant at the p < .01 level
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Fig. 5.12 Number of closing waves performed by participants at the end of the interaction(with
95% CI errors). Present refers to appearance of the participant’s behavior of waving to the
robot at the end of the interaction, while Absent refers to lack of this behavior, e.g., the
participants not waving to the robot.[*] significant at the p < .05 level

Status Multi-

modal

Minus Minus

Social

Minus Minus Total

of Greeting/Closing: Interaction

(n1)

Proxemics

(n2)

Dialogue

(n3)

Gestures

(n4)

Gaze (n5) (N)

Greeted robot &
10 15 16 13 14 68

Closed Interaction

Greeted robot but
4 2 1 1 2 10

Did not Close Interaction

Did not Greet robot but
5 3 1 5 2 16

Closed Interaction

Did not Greet robot &
1 1 3 2 1 8

Did not Close Interaction

Table 5.5 Number of greeting and/or closing turns, which may be verbal or non-verbal,
present and absent in each modality in beginning and end of the interaction. The rows
represent the statuses in each condition as follows: 1) participants who greeted the robot
and also closed the interaction (no significance) 2) those who greeted the robot but did not
close the interaction 3) those who did not greet the robot but closed the interaction 4) those
who did not greet the robot nor did they close the interaction
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Fig. 5.13 Number of back-channels performed while interacting with the robot in each condition
(with 95% CI errors). Present refers to appearance of the back-channels performed by the
participants, while Absent refers to lack of back-channels detected during the interaction.[*]
significant at the p < .05 level. [**] significant at the p < .01 level

Table 5.6 Comparison of the likelihood of producing back-channels in each condition

Contrast
Log Odds

(SE)
z p-value

Minus Gesture vs Multi-Modal Interaction -0.41 (0.69) -0.59 .977

Minus Gesture vs Minus Gaze 1.79 (0.69) 2.58 .073

Minus Gesture vs Minus Social Dialogue 0.00 (0.66) 0.00 1.00

Minus Gesture vs Minus Proxemics 0.21 (0.65) 0.32 .998

Multi-Modal Interaction vs Minus Gaze 2.20 (0.73) 3.01 .022*

Multi-Modal Interaction vs Minus Social Dialogue 0.41 (0.69) 0.59 0.98

Multi-Modal Interaction vs Minus Proxemics 0.61 (0.69) 0.80 .899

Minus Gaze vs Minus Social Dialogue -1.79 (0.69) -2.58 .073

Minus Gaze vs Minus Proxemics -1.58 (0.69) -2.31 .140

Minus Social Dialogue vs Minus Proxemics 0.21 (0.65) 0.32 .998

* significant at the p < .05 level
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5.4.5 Liking

A Kruskal-Wallis H-test for participants subjective evaluations of their liking of the robot
revealed no differences between any of the conditions, shown in Figure 5.14, χ2(4) = 3.84, p =
.428, ϵ2 = 0.04; failing to support H5. Further exploratory investigation was done to look
into behavioral outcomes that might represent liking. First, Figure 5.15 shows the number
of addressee terms used to address the robot in each condition. In the french language, the
pronoun“tu" (referring to“you") is used in informal and/or friendly contexts, whereas, the pro-
noun “vous" is used for formal and/or acquaintance contexts. See Table 5.7 for the frequency
of each mode of address used by participants. A chi square test comparing participants
mode of address towards Pepper in each condition was significant χ2(12) = 23.01, p = .028,
Kramer’s V = 0.27, [0.00, 0.32]. Follow up tests with FDR correction, however, did not reveal
specific differences between conditions. As this analysis was exploratory, we then relaxed the
need for correction with multiple comparisons. Without correction, there was a significant
difference between the minus Social Dialogue and minus proxemics conditions.

Second, Figure 5.16 shows in each condition the number of participants who made
utterances while using the tablet (despite it being clear that speech was not needed to carry
out choice selection on the tablet of the robot).For instance, listening mode and speech
recognition in the robot was activated when the robot asked open ended questions; whereas
for making choices regarding the planning of the destination in this scenario, the interface to
select the preference was by using the tablet (as was instructed by the robot in the beginning).
There was no significant difference in how likely participants were to talk to Pepper in
addition to using the tablet, χ2 = 5.18, p = .270, McFadden’s Pseudo R2 = 0.04.
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Fig. 5.14 Mean Liking ranked by participants for the robot in each condition

Table 5.7 Frequency of modes of address used by participants towards Pepper in each condition

Condition
Mode of Address

Tu Vous Pepper Nothing

Multi-Modal Interaction 1 1 0 19

Minus Gaze 1 3 0 17

Minus Gesture 2 3 0 16

Minus Social Dialogue 0 1 3 17

Minus Proxemics 5 1 0 15

Totals 9 9 3 83
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Table 5.8 Comparison between modes of address used by participants towards Pepper in each
condition

Contrast
Raw

p-value

FDR-

corrected

p-value

Multi-Modal Interaction vs Minus Gaze .798 .886

Multi-Modal Interaction vs Minus Gesture .593 .740

Multi-Modal Interaction vs Minus Social Dialogue .232 .386

Multi-Modal Interaction vs Minus Proxemics .229 .386

Minus Gaze vs Minus Gesture 1.00 1.00

Minus Gaze vs Minus Social Dialogue .223 .386

Minus Gaze vs Minus Proxemics .207 .386

Minus Gesture vs Minus Social Dialogue .122 .386

Minus Gesture vs Minus Proxemics .347 .496

Minus Social Dialogue vs Minus Proxemics .022* .222

* significant at the p < .05 level

Fig. 5.15 Number of addressee terms used to address the robot in each condition. The
addressee terms are placed in four categories: absent, no term was used to directly address
the robot, informal/friendly pronoun, formal/acquaintance pronoun, and name of the robot
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Fig. 5.16 Number of Utterances while using the tablet of the robot in each condition.Present
refers to detection of utterances/speech while tablet was used by the participants, while
Absent refers to lack of detection.

5.4.6 Voice Recognition Errors

Although we attempted to limit the amount of autonomous voice recognition, the introductory
phase included some reciprocal interaction between Pepper and the participant (e.g., asking
“how are you"). Thus, there was still some potential for voice recognition errors to occur.
Although not initially part of the experimental design, based on observations of instances
where voice recognition errors occurred we decided to to explore if these (naturally occurring)
errors had any effect on participants behaviour.

A one-way Kruskal Wallis H-test performed on the number of voice recognition errors
occurring per condition was non-significant, χ2(4) = 2.04, p = .727, η2 = 0.02, indicating
there was no difference in the number of voice recognition errors occurring between conditions.

Significant negative correlations were identified between the number of voice recognition
errors, the total time the participant spent talking during the self-disclosure phase ρ = −0.20,
p < .05 and the number of pieces of information they disclosed ρ = −0.28, p < .01.

5.5 Discussion

First, H1 was supported, showing the influence of proxemics on the distances maintained by
the users throughout the interaction. Prior to the navigation of the robot, participants chose
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to stand far from the robot at a (M = 1.28, SD = 0.26) meters distance, with no significant
difference between conditions. The initial distance chosen was within the social distance
defined by Hall [65] and did not give accessibility to the robot’s tablet. In the conditions where
the robot navigated to establish the personal distance of 0.85 meters, distances maintained
during the rest of the interaction until the end were much closer. Conversely, in the minus
proxemics condition, participants kept a further distance from the robot. Proxemics once
again played an influential role on the behavioral outcomes of the interaction and was the
main reason users kept a close distance to the robot.

Second, H2 was not supported, social gaze mechanisms did not elicit an increase in self-
disclosure speaking time nor the amount of information the user revealed about themselves.
Further investigation was held to interpret what might have affected the self-disclosure
speaking turn of the users. It was found that voice recognition errors significantly predicted
total speaking time of participants and the amount of information shared. While gaze
aversions and their respective functions play a guiding role in intimacy regulation and comfort
in self-disclosure in human-human interactions, findings in this study seem to show that
for human-robot interactions technological voice recognition errors precede gaze aversions
in governing behavioral outcomes for such contexts. This shows that getting the robot
technologically ready may have a great impact on how naturally a user answers an open
ended question about themselves rather than how close a robot’s subtle behavior is to a
human.

Third, while H3 was not fully supported, the results gave an insight into the effect of
proxemics modality. The condition in which there was least water suggestions taken was
in the minus proxemics condition. Even though, the state of the art has been focused on
using deictic gesture and joint attention gaze for pointing at objects to grab for task-oriented
scenarios ([10], [157]), there was no significant difference for these modalities in this study.
In addition, the suggestion of object grabbing in this chapter was more focused on its social
context and implications. It was shown that the participants not only took the object
suggested by robot, in this case the water cup, but also drank the water. It may perhaps be
linked to the perception of the user to the robot’s situational awareness, which is the ability
to perceive and infer knowledge from the surrounding environment [21]. There is a need for
future work to better understand the potential of proxemics on object manipulation in the
shared environment between the user and robot.

Fourth, while H4a was validated, H4b was not validated and H4c was partially supported.
The lack of social gestures significantly affected the behavioral alignment for the greeting
and closing of the interaction in the minus gestures condition. In the greeting part of the
interaction, the minus gestures condition had significantly less wave gestures performed to
greet the robot than in the complete multi-modal and minus social dialogue conditions. For
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closing waves this difference was even more extreme, with, no wave gestures performed in
closing the interaction with the robot in the minus gestures condition. Even further, In Table
5.5, while the number of participants that did not greet the robot but eventually performed
a closing turn at the end of the interaction were highest in the multi-modal interaction and
minus gestures conditions, there was no significant difference. This may also imply that even
though there was no behavioral gesture done in the closing of the interaction in the minus
gestures condition, there was a verbal closing turn.
On the other hand, H4c was partially supported. While it was not the minus gestures
condition that had the least amount of back-channeling alignment performed by users as
hypothesized, it was instead the minus social gaze condition. This may indicate that gesture
mirroring was not the main cause of back-channeling alignment, but rather how naturally
the interaction flowed. Conditions with social gaze mechanisms included turn-taking and
floor-holding which hold cognitive functions and were accompanied by very short pauses in
speech. The users may have performed more back-channeling during these conditions as it
was a natural human behavior and as a way to provide the robot feedback that they were in
fact still listening to its speech and aligned in the interaction. Thus, the social gaze plays
a role in shaping the human-robot interaction seem more instinctive to the human and in
forming alignment.

Fifth, a self-reported questionnaire was used to measure liking or ‘likability’ of the robot
and it was hypothesized that the multi-modal interaction condition would score higher;
however H5 was not supported. Further behavioral outcomes were annotated and analyzed
that might be related to liking of the robot. First, the way the participants addressed the
robot was studied. The experiment took place in French with native french speakers and
in the french dialect the “you" pronoun is represented by “vous" for formal set-ups and/or
with acquaintances and by “tu" for rather informal set-ups and/or with friends. The minus
social dialogue condition was significantly different to the minus proxemics condition. The
minus social dialogue condition was the only one to have users address the robot by its
name, e.g., here being “Pepper". In addition, the minus proxemics condition had the highest
number of participants using informal/friendly pronouns. Further research needs to done
to better comprehend what that would signify but it can be concluded at this point that
modalities affect the terms participants exercise in the interaction with the robot. Second,
during the interaction, the robot is in listening mode at only two phases: at the beginning
during the social small talk shown in Table 5.1 and at the open ended question to measure
self-disclosure. At all other times during the interaction, the robot was not in a listening
mode and its tablet was required to be used by the participant to answer the questions asked
by the robot. However, it was noted that some participants chose to talk while using the
tablet and to sometimes justify their choices to the robot and discuss their thought process
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out loud. While no significant difference was found in the results, the multi-modal interaction
condition had the highest number of participants who chose to also talk while using the tablet
and the minus gestures condition had the least. This may give an insight into the effect of
social gestures on how social participants were with the robot. These findings hint into the
type of relationships users formed with the robot based on the multi-modal behaviors they
interacted with. There seems to be more to discover and investigate in future works.

5.6 Conclusion

Non-verbal behavior plays a key role in human communication not only by reinforcing and
enhancing speech in diverse formats of the interaction, but also by carrying fundamental
functions in communication that can stand-alone from speech. However, this non-verbal
behavior is not made of only one modality but rather of multi-modalities all composed
together to serve their purpose. For this reason, while studying each modality separately may
lead to improving human-robot interaction, a deeper understanding of the different modalities
when performed together and their combinations as well as their interaction outcomes is
imperative for effective use of the multi-modalities of robots in maximizing targeted outcomes.
This chapter presented work attempting to build such an understanding. The process involved
implementing a system of multi-modalities including social gaze mechanisms, different types
of gestures, proxemics for navigation in initiating conversations, and social dialogue followed
by an evaluation study where participants interacted with the robot in a travel agent scenario.
The system and methodology presented in this chapter can be as well utilized on other robots.
The results showed various insights into the contributions of modalities in a multi-modal
interaction onto several notable behavioral outcomes of the users, including taking physical
suggestions, distances maintained during the interaction, wave gestures performed in greeting
and closing, back-channeling, how the robot is addressed, and how socially it is treated. It
can be concluded that certain modalities in multi-modal behaviors particularly influence the
outcomes of the interaction, and at times not in the same way as seen in the state-of-the-art
of the modality on its own. Notably, this chapter showed how multiple modalities can be
combined in an interaction and how subtracting each modality at a time revealed insights
about the effect of that modality. For instance, it is now clear how proxemics influence the
distances maintained during an interaction and the probability of the user accepting the
robot’s offer. In addition, social gestures can predict how humans greet the robot and close
interactions with it and the utterances the user makes while using other modalities of the
robot such as the tablet. Moreover, social gaze shaped how naturally humans back-channel
when interacting with the robot but did not have an effect on how much they disclose to the
robot. All these findings may lead to further understanding on human-robot interaction and
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how multi-modal behavior can be used to increase the perceived social intelligence of the
robot.

While Chapter 4 demonstrated how one modality from the human’s behavior can be used
to adapt another modality in the robot’s behavior to interaction changes such as changes
in group dynamics, Chapter 5 synthesized and investigated the effect of modalities making
up the multi-modal behaviors of the robot on the behavioral outcomes of the participant
in a human-robot interaction. Building on the findings of the two previous chapters and
aiming at closing the loop, the next Chapter proposed a reinforcement learning model for
adaptation and personalization of multi-modal behaviors of the robot based on the human’s
social signals.
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6.1 Introduction

Human behavior is fundamentally multi-modal and includes gaze, hand gestures, facial
expressions, and body posture among other modalities to express engagement and regulate
social interactions [49]. In Chapter 4, it was shown how looking at distances and orientations
of individuals in small groups of three forming around the robot allowed the robot to estimate
footing, the conversational roles of the participants. Moreover, robots are embodied agents
that can interact and manipulate the environment they are in through their multi-modal
abilities as shown in Chapter 5. Consequently, multi-modal social signals of humans are
rich in information and can enable the robot to learn from them and adapt to changes in
interactions [141] and personalize behaviors for different human personalities and cultures to
optimize its social intelligence. In parallel, reinforcement learning (RL) is a computational
approach to learning from interactions. Thus, in recent years, there has been a growing
interest of using RL for adaptation in HRI. From literature review for RL in Social Robotics
in Chapter 3, several studies and models are either task dependent or require too large
state-spaces to take into account the social signals.

Furthermore, for human-human interactions, adaptation is crucial for interpersonal re-
lationships [33] and the social intelligence of an individual [57]. For instance, people adapt
their interaction patterns, behaviors, and conversational styles to one another’s to achieve
smooth and successful communication and increase the rapport between those participating
in the interaction [55]. Similarly, human users expect the agents, robots, and technologies
they are interacting with to also adapt to them [108, 19]. In addition, adaptation has shown
to improve the usability of these technologies [175]. In human-agent interaction, an adaptive
system does not necessarily have the agent learn new behaviors, but rather decide what to
adapt, by for instance combining different behaviors, and when or when not to make these
modifications [170]. Moreover, in human-computer interaction, adaptation relies on estima-
tion of utility, where utility refers to the effectiveness of an adaptation to the user, or how it is
assessed to improve the interaction specially when possible costs are considered [170]. While
utility may be hard to quantify, RL allows the agent to learn by interacting with the human
user and adapt its behavior by investigating the effect of the various multi-modal combinations.

This chapter introduces a RL model that avoids discretizing social signals and large
state-space actions by contributing a reward function that integrates the multi-modal social
signals from the human, the decisions of the users influenced by the robot, and a cost function
on the complexity of performing the multi-modal behavior. In addition, training of RL
models for HRI can be very costly and time consuming. Based on the data-set collected
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from the study in Chapter 5, this chapter also presents a simulated human in a human-robot
interaction for training and evaluation of RL models. Finally, the RL algorithms implemented
and studied are Multi-Armed Bandit problems, Upper Confidence Bound, and Q-Learning.
The objective is to have a robot that is capable of adapting its multi-modal behavior based
on the social signals from the human it is interacting with to create its social influence and
intelligence. Figure 6.1 shows an overview of the multi-modal adaptive behavior system using
RL.

Fig. 6.1 Overview of the multi-modal adaptive behavior system

6.2 RL Model

6.2.1 State-Space

The state-space S is a one-dimensional nondiscretized vector representing the state of the
multi-modal behavior of the robot as shown in Equation 6.1. Thus each state encodes
which modalities are currently making up the multi-modal behavior being applied during the
behavior generation. Srobot is defined as a four-tuple (Proxemics, Gesture, Gaze, Emotional
Expression) and each tuple is made up of {0, 1}, where 0 and 1 represent the deactivation
and action of that specific modality respectively. Thus a state st is a vector array of length 4
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and made of 0’s and 1’s indicating which modalities are present such that st =(proxemics,
gesture, gaze, emotional expression). For example, st = (1, 0, 1, 0) implies that the behavior
is a two-modality behavior made of proxemics and gaze.

S = Srobot = (Proxemics, Gesture, Gaze, EmotionalExpression) (6.1)

Thus the behavior of the robot is a combination of these modalities, where proxemics
refers to the social navigation of the robot to maintain a close social distance with the user
throughout the interaction, gesture refers to symbolic, deictic, and beat gestures, gaze refers to
the functional gaze aversions for turn-taking, floor-holding, turn-yielding, and joint attention,
and emotional expression refers to to the robot showing joyful emotional expressions when
the human user takes their recommendation and sad emotional expressions when they do
not (inspired by the literature review in Chapter 2). The proxemics, gesture, gaze modalities
refer to those designed and implemented in Chapter 5.

6.2.2 Action-Space

To allow the robot to create different combinations of modalities forming its multi-modal
behavior, two actions for every modality found in Srobot can be taken: activate (+1) and deac-
tivate (-1). Thus the action space A is defined as A = {Proxemics{−1, +1}, Gesture{−1, +1},
Gaze{−1, +1}, Emotional Expression {−1, +1}}. Thus the action at is a vector array. For
example, for the robot to display a multi-modal behavior made of proxemics, gaze, and
emotion expression starting from a state of no modalities exhibited, the action would be
at = (+1, 0, +1, +1). However, for simplification purposes, in this study, the agent/robot can
only activate or deactivate one modality at each step . The action-space in this study is thus
made of 8 possible discrete actions as follows:

1. proxemics = +1: add proxemics to current (behavior)

2. gesture = +1: add gesture to current state (behavior)

3. gaze = +1: add gaze to current state (behavior)

4. emotional − expression = +1: add gaze to current state (behavior)

If modality to be added is already present, no change is made

5. proxemics = −1: remove proxemics from current (behavior)
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6. gesture = −1: remove gesture from current state (behavior)

7. gaze = −1: remove gaze from current state (behavior)

8. emotional − expression = −1: remove gaze from current state (behavior)

If modality to be removed is already absent, no change is made

6.2.3 Reward Function

The reward function takes into account three important considerations. First, it needs to
reflect the trade-off between exploring and reaching the optimal multi-modal combination
and the degree of modality for each behavior by a cost function for high degrees of modality
(degreemodality). Second, in HRI, social signals of humans change continuously and rarely
take the form of explicit feedback. For this reason, the reward function includes the movement
distance (dh), time the human spent looking at an object (Tobjectlooking) referred to by the
robot, and time spent the human spent to make a decision (Tdeciding). Third, the reward
function also incorporates the decision made by the human (where D can be: +1 for taking
robot’s recommendation and -1 for did not take robot’s recommendation. The reward function
R is shown in Equation 6.2.

R = −κ(dh) + τ

(
Tobjectlooking

Tdeciding

) 1
ϕ

+ β(D)− δ(degreemodality) (6.2)

Social signals of the humans making up the reward function may not be synchronous in time
and may not be performed at the same time. For this reason, window frames of 10 seconds,
which made be subject to change depending on the robot and use cases, are needed to collect
the social signals and calculate the average reward function in this frame.

Furthermore, modalities forming multi-modal behaviors of the robot have an impact on
certain behavioral outcomes from the user and their social signals, which are coupled in
nature. This played an important role in shaping the Reward Function (Equation 6.2) as
follows:

R = −κ(dh) + τ

(
Tobjectlooking

Tdeciding

) 1
ϕ

︸ ︷︷ ︸
Social Signals

+ β(D)︸ ︷︷ ︸
Decision Made︸ ︷︷ ︸

Human

−δ(degreemodality)︸ ︷︷ ︸
Cost of Modality Degree︸ ︷︷ ︸

Robot
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First, a cost function was included for the distances held by the users as it was shown that
proxemics of the human is an important social signal that may influence other behavioral
outcomes. As such, the further the participant stands from the robot, the more costly it
would be for the robot. Second, while Tobjectlooking, which is the time spent looking at referred
object, and Tdeciding, which is the time to make a decision on whether to grab object or take
a suggestion are valuable social signals, they are highly coupled and may overlap. For this
reason, they were presented in a form of a fraction in the reward function (Equation 6.2).
Additionally, the fraction was raised to the power of ( 1

ϕ) to smooth the highly fluctuating
social signals since human social signals inherently oscillate and this oscillations needs to be
decreased to have a clearly reading of the information. The former two make-up the human
social signals part of the reward function.

Third, while the the social signals making up the reward function are continuous signals,
the decision made by the user of either taking suggestion or the robot or not is a direct discrete
feedback given to the robot by the human and as such influencing the reward to be received.
If the human takes the recommendation of the robot, then it would positively influence the
reward with D = 1 but if they do not, then it would cost the robot with D = −1. Fourth, a
cost function for the degree of modality of the multi-modal behavior of the robot was added
such that a behavior including only one modality would have degreemodality = 1 but a behavior
including all four modalities in one multi-modal behavior would have degreemodality = 4. The
former cost function was inserted to create a trade-off between optimizing behaviors for social
signals of the user and the cost on the robot on generating high-degree modalities, and to
allow the robot to further explore various combinations of modalities.

6.3 Evaluation

This section focuses on discussing the experiment study, the proposed simulation of the
human’s behavior in a human-robot interaction based on the robot’s actions, and the
implementation of the RL algorithms.

6.3.1 Experiment Study

To train and evaluate the performance, social influence, and social intelligence of the robot,
the following experiment was designed. Prior to the experiment, the participants would be
informed that they need to gather a list of 10 items for either a travel trip or a survival kit if
stuck on an abandoned island or even perhaps a shopping list. Inside the experiment room,
the robot would be greeting the human in the middle of the room and on each side of the
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room are 10 different objects placed. The aim is to gather the required list while interacting
with the robot. At each checkpoint, the robot would recommend one of two items placed on
opposite sides of the room. The robot would communicate its recommendation using speech
and its nonverbal multi-modal behavior. At the very end of the list of items needed to be
gathered, the robot would explain to the paid participant about a certain Non-Governmental
Organisation (NGO) working towards a global cause and asks the participants if he/she might
be interested in donating its participation fee as a contribution to the NGO. In this study, no
physical data collection for the results was done. However, setting up the experiment study
was important to better define and implement the simulation of the human-robot interaction
and the use case.

6.3.2 Simulation of Human and Interaction

To investigate and tune the weights in the reward function shown in Equation 6.2 as well as to
explore simulations as close as possible to real life interactions, the data set used was collected
from a previous study, which evaluated the behavioral outcomes and subjective measurements
of multi-modal behaviors on a social robot with 105 participants in a seven minute interaction
[168], as described in Chapter 5. The former study presented a multi-modal interaction
focusing on the following modalities: proxemics for social navigation, gaze mechanisms (for
turn-taking floor-holding,turn-yielding and joint attention), gestures (for symbolic, deictic,
and beat gestures), and social dialogue.

Fig. 6.2 Schematics of the experimental room set-up with the robot of data-set used (Image
from Tatarian et al. [168])
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Data Collection

The experimental flow of the interaction for the data collection was that explained in Chapter
5. Among the various findings, it was shown that proxemics significantly increased how
close participants stood to the robot throughout the entire interaction even if initially they
started the interaction further away from the robot. In addition, it was found that proxemics
increased the likelihood of participants taking the water offered by the robot. Further
investigation of the data collected revealed that participants significantly looked longer at
the object referred to (water cup in this case) when they took the water offer than when they
did not take the water offer. The data also showed that when gesture or gaze modalities were
missing, the decision time demonstrated by users was longer than in conditions when these
modalities were present.

Data for Simulation of HRI

In order to have simulation results close to what one would observe in real world interactions,
data employed in the simulation is from the data collection of the study in [168]. In addition,
while the display of emotional expression was not studied, based on literature review in
Chapter 2, this study assumes that if the robot displays appropriate cooperative emotional
expressions, it would increase the likelihood of the human to take it’s suggestion and thus
have a D = +1 in the reward function (Equation 6.2).

The simulated human was designed as follows and shown in Figure 6.3 with a distribution
of 100 samples and all claims made are based on findings in [168]:

1. If the robot exhibits proxemics, the user would significantly stand closer to it, as shown
in Figure 6.3a.

• In the presence of proxemics: the distance of the user is selected randomly from
a normal distribution that has µdh = 0.801 meters and σdh = 0.112 and the
minimum distance dh was 0.51 meters.

• In the absence of proxemics: the distance of the user is selected randomly from a
normal distribution that has µdh = 1.03 meters and σdh = 0.216 and the minimum
distance dh was 0.71 meters.

2. If the robot displays proxemics behavior and/or emotional expressions, the user would
be more likely to take the recommendation.

• In the presence of robot’s proxemics behavior and/or emotional expressions,
the user has a 65% probability of taking the robot’s recommendation and 35%
probability of not following the robot’s suggestion.
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(a) (b)

(c)

Fig. 6.3 Histograms of data distributions for the simulation. Figure(a) shows the normal
distributions of the distances held by the user dh (meters) when the robot’s behavior includes
proxemics and when the robot’s behavior does not include proxemics. Figure(b) shows the
normal distributions of the time spent looking at the referred object when the user takes
the recommendation of the robot and when the use does not. Figure(c) shows the normal
distributions of the time the human spent making a decision when the robot’s behavior
includes gaze and/or gesture and when the robot’s behavior does not include gaze nor gesture.

• In the absence of robot’s proxemics behavior and/or emotional expressions, the user
has a 20% probability of taking the robot’s recommendation and 80% probability
of not following the robot’s suggestion.

3. If the user took the recommendation of the robot, they would more likely spend a
longer amount of time looking at the referred object by the robot (Tobjectlooking), as
shown in Figure 6.3b.

• If the simulated human followed the suggestion of the robot, Tobjectlooking is
randomly selected from a normal distribution of µT objectlooking = 4452.77 ms and
σT objectlooking = 1714 and having only positive values.
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• If the simulated human did not follow the suggestion of the robot, Tobjectlooking is
randomly selected from a normal distribution of µT objectlooking = 2164.24 ms and
σT objectlooking = 1032.25 and having only positive values.

4. If the robot displays gestures and/or gaze behaviors, the user would more likely spend
a shorter amount of time deciding (Tdeciding), as shown in Figure 6.3c.

• In the presence of robot’s gaze and/or gesture behaviors, Tdeciding of the user
is randomly selected from a normal distribution of µT deciding = 3111 ms and
σT deciding = 1817 ms and having only positive values.

• In the absence of robot’s gaze and/or gesture behaviors, Tdeciding of the user
is randomly selected from a normal distribution of µT deciding = 4314.6 ms and
σT deciding = 2026 ms and having only positive values.

6.4 Implementation of Reinforcement Learning Models

k k ∈ [0, 3] k ∈ [4, 9] k ∈ [10, 13] k ∈ [14, 15[

one-modality two-modalities three-modalities four-modalities

0: Proxemics
4: Proxemics +

Gaze
10:Proxemics+Gaze

+Gesture

5:Proxemics+
Gesture 14: Proxemics +

k: Multi-
Modal
Behavior

1: Gesture
6:Proxemics
+Emotional
Expression

11:Proxemics+Gaze+
Emotional
Expression

Gaze + Gesture

2: Gaze 7: Gesture+ Gaze
12:Proxemics+

Gesture+Emotional
Expression

+ Emotional
Expressions

8:Gesture+Emotional
Expression

3:Emotional
Expression

9:Gaze+Emotional
Expression

13:Gesture+Gaze+
Emotional
Expression

Table 6.1 k = 15 representing [0, k[ behaviors of varying degrees of modality
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6.4.1 Multi-Armed bandit

Multi-Armed Bandits, or k-Armed Bandits, were implemented as a first step to investigate the
weights of the reward function and its different parts as well as to serve as a baseline algorithm.
Moreover, it was a simple method to have a first look into the multi-modal combinations
different agents with varying ϵ’s and learning rates α’s might select. To do so, k = 15 was
chosen throughout the simulation to represent the number of possible combinations that can
exist for the chosen modalities (k = 15 implies k ∈ [0, 15[. k from [0, 3] represent one-modality
behaviors, [4, 9] represent two-modality combined behaviors, [10, 13] represent three-modality
combined behaviors, and 14 represents the four-modality combined behavior. The k-actions
representations are shown in Table 6.1.

6.4.2 Q-Learning

The Q-Learning algorithm and model was implemented to better suit the problem of adap-
tation and personalization in a HRI set-up, as shown in Algorithm 2. First, an ϵ-Decay
strategy for the ϵ-greedy action selection was used to fill the Q-table rather than a fixed
value ϵ. This was done so to allow high exploration in the beginning before converging into
exploitation. At first, the agent does not have information about the environment, in this
case the human, it is interacting with. Only once the agent has the information it needs
to interact optimally with the human/environment, it can better exploit its knowledge and
adapt more appropriately. The ϵ decayed after every episode as shown in Equation 6.3:

ϵ = ϵ ∗ edecayrate (6.3)

where edecayrate = 0.9998 and the start value of ϵ = 0.9. After running through a large
number of episodes, filling the Q-table, and letting ϵ decay to a smaller number, the filled
Q-table can then be used to rerun the algorithm with a fixed smaller ϵ this time to optimally
interact with the human while keeping a small window for exploration.

Moreover, the state-space and action-space were implemented as described in Subsection
6.2.



96 Adaptation of Multi-Modal Behaviors using Reinforcement Learning

Algorithm 2: Q-Learning with Adaptive Reward Function and ϵ-Decay
Initialize action-value function Q(s, a) with random values ∈ [0, 1[ ;
foreach episode e← 1 to M do

Initialize state st;
foreach step t← 1 to T do

With probability ϵ select a random action at otherwise select at = maxa Q(st) ;
Execute action at to observe state st+1;
Get current reward from observed state r(st+1)t ;
r(st+1)← −κ(dh) + τ

(Tobjectlooking

Tdeciding

) 1
ϕ + β(D)− δ(degreemodality) ;

Update Q(s,a) values:
Q(st, at)← (1− α)Q(st, at) + α(r(st+1) + γ maxa Q(st+1, at));

ϵ← ϵ ∗ edecayrate;

6.5 Results

6.5.1 Multi-Armed Bandit

In this section, several multi-armed bandit algorithms with ϵ-greedy action selection (ϵ-MAB)
and upper-confidence bound with ϵ-greedy action selection (ϵ-UCB) algorithms with varying
ϵ, c, and learning rate α were used. This was done so to better understand and evaluate the
outcome for different exploitation-exploration balance, upper-confidence bound exploration,
and learning rate respectively. Four ϵ-MAB algorithms were used: ϵ = 0.1 with α = 0.1,
ϵ = 0.1 with α = 0.5, ϵ = 0.5 with α = 0.1, and ϵ = 0.5 with α = 0.5. In addition, four
ϵ-UCB algorithms with a fixed learning rate of α = 0.1 were implemented: c = 2 with ϵ = 0.1,
c = 2 with ϵ = 0.5, c = 5 with ϵ = 0.1, and c = 5 with ϵ = 0.5.

First, the reward function with only the social signals part was used to evaluate the
effect it would have on the most and least selected multi-modal behaviors by the algorithms.
Second, the full reward function, shown in Equation 6.2, with two different δ values were
implemented and the algorithms were ran to study the effect of varying weights in the cost
function has on the multi-modal behaviors selected. The outcomes investigated for each
algorithm were their learning curves through the moving average episode reward and, in order
to highlight the adaptation through the combinations of modalities chosen by the robot, the
percentage of times each action, or k as shown in Table 6.1, was selected at various iteration
rates for 20 episodes with different random seeds. Additionally, these evaluations help better
understand the impact of the weights in the reward function and would later serve to design
and implement a baseline algorithm.
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Social Signal Reward

Before investigating the full reward function, a reward function using only the human’s social
signal parts was evaluated using the four ϵ-MAB and four ϵ-UCB algorithms. The social
signals reward function used is shown in Equation:

Rsocialsignal = −κ(dh) + τ
(Tobjectlooking

Tdeciding

) 1
ϕ (6.4)

where κ = 1.587, τ = 1.27, and ϕ = 2. The weights were fine-tuned to have a balanced
impact from both parts of the Rsocialsignal function.
All algorithms were ran using the social signals reward function for 100 and 5000 iterations.
The average episode social signal rewards for 100 and 5000 iterations are shown in Figure
6.4. At 5000 iterations, the algorithms have already converged with ϵ-MAB (ϵ = 0.1, α = 0.1)
yielding the highest reward. In addition, the multi-modal behaviors or k’s selected by
each algorithm were averaged over the 20 episodes with different random seeds and their
percentages are represented in Figure 6.5 after 100 iterations and figure 6.6 after 5000
iterations.

Fig. 6.4 The learning curves showing the episodic average social signal reward per algorithm
after 100 (left) and 5000 (right) iterations per 20 random seeds episodes respectively. The
mean and standard deviation over the 20 random seeds are plotted. The reward function
used contained only the human’s social signals part.

At 100 iterations, ϵ-MAB algorithms already favor high degree modalities, i.e. three-
modality, except the three-modality behavior gaze, gesture, and emotional expressions,
four-modality behaviors, as well as the two-degree modality behaviors, proxemics with gaze
behaviors (k = 4) and proxemics with gesture behaviors (k = 5). On the other hand, at
100 iterations, the ϵ-UCB select approximately all multi-modal behaviors (k-actions) at the
same percentage. After 5000 iterations and convergence of the algorithms, all algorithms
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favor selecting the three-modality behaviors (k ∈ [10, 11]), except the three-modality behavior
gaze, gesture, and emotional expressions, the four-modality behavior (k = 14), and the
two two-modality behaviors (proxemics with gaze behaviors (k = 4) and proxemics with
gesture behaviors (k = 5)). With algorithm ϵ-MAB (ϵ = 0.1, α = 0.1) yielding the highest
reward, most likely due to its exploitation rate, the multi-modal behavior most selected was
two-modality (proxemics with gaze) behavior, followed by three-modality behavior (proxemics,
gaze, and emotional expression), and tying in third place are two-modality behavior (proxemics
with gesture) and three-modality behavior (proxemics, gesture, and emotional expressions).
The least selected behaviors by ϵ-(MAB) (ϵ = 0.1, α = 0.1), ϵ-(MAB) (ϵ = 0.1, α = 0.5), and
ϵ-(UCB) (c = 2, ϵ = 0.1) are one-modality behavior (Emotional Expressions), two-modality
behaviors (Gesture with Emotional Expression and Gaze with Emotional Expression), and
three-modality behavior gaze, gesture, and emotional expressions.

Fig. 6.5 Percentage of k-actions (representing multi-modal behaviors) taken by each algorithm
after 100 per 20 episodes with the social signal reward respectively
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Fig. 6.6 Percentage of k-actions (representing multi-modal behaviors) taken by each algorithm
after 5000 iterations per 20 episodes with the social signal reward respectively

Full Reward

In this subsection, the entire reward function of Equation 6.2, which takes into account the
human social signals and their decisions as well as the robot’s cost of high-degree modality
behaviors, was used and all algorithms were run for 100, 1000, and 10000 iterations. The
weight value of β was set to 0.501. Two different values for the delta weight were examined to
further investigate the impact of the weights of the cost function on the multi-modal behavior
choices of the robot.

First, δ = 0.24 was set and the learning curves of all algorithms are shown in Figure 6.7.
At 10000 iterations, the convergence can be seen and the algorithm ϵ-MAB (ϵ = 0.1, α = 0.1)
yielded the highest reward. In addition, the percentage of selection for each k, which rep-
resent the multi-modal behaviors are plotted in Figure 6.8 at several instances: after 100
iterations (Figure 6.8a), 1000 iterations (Figure 6.8b), and 10000 iterations (Figure 6.9). At
100 iterations, the algorithms had not yet converged and most of which have an equally
distributed percentage selection for the k-actions (multi-modal behaviors). However, even at
this early point, for ϵ-MAB (ϵ = 0.1, α = 0.1) the most selected multi-modal behaviors are
the two two-modality behaviors: proxemics with gaze and proxemics with gesture. Moreover,
at already 1000 iterations, the previously mentioned two-modality behaviors become among
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the most selected along with one-modality behavior made of only proxemics. Finally at
10000 iterations and convergence, these three multi-modal behaviors (proxemics with gaze,
proxemics with gesture, and proxemics alone) become the most favored for all algorithms. As
an effect of the cost function, higher degree modality behaviors are least selected, especially
the four-modality behavior.

(a) At 100 iterations (b) At 1,000 iterations

(c) At 10000 iterations

Fig. 6.7 Average episodic reward per algorithm after (a) 100 (b) 1,000 and (c) 10000 iterations
for 20 random seeds episodes with the full reward respectively(δ = 0.24). The mean and
standard deviations are plotted.
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(a) At 100 iterations (b) At 1,000 iterations

Fig. 6.8 Percentage of k-actions (representing multi-modal behaviors) taken by each algorithm
after (a) 100 and (b) 10000 iterations per 20 episodes with the full reward respectively(δ =
0.24). The average percentage of the 20 random seeds is shown.

Fig. 6.9 The percentage of k-actions (representing multi-modal behaviors) taken by each
algorithm after 10000 iterations per 20 episodes with the full reward respectively(δ = 0.24).
The average percentage of the 20 random seeds is shown.
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Fig. 6.10 Average reward per episode of algorithms using full reward with weight δ = 0.09
after 10000 iterations for 20 random seed episodes

Fig. 6.11 Percentage of k-actions (representing multi-modal behaviors) taken by each algorithm
using full reward with weight δ = 0.09 after 10000 iterations for 20 random seed episodes
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Second, in order to not let the cost function limit exploration for the agent while
maintaining the trade off between optimizing behaviors for human’s social signals and the
cost high-degree modality behaviors may have on the robot, the weight δ was reduced to 0.09.
All algorithms were run for 10000 iterations and the learning curve is shown in Figure 6.10.
The percentage of selected k-actions (multi-modal behaviors) by each algorithm are shown in
Figure 6.11. Decreasing the value to δ = 0.09 allowed for three-modality behaviors to be more
selected than when δ = 0.24 was set, except for the three-modality behavior gaze, gesture,
and emotional expressions, as well as slightly increasing the percentage of selection for the
four-modality behavior. The most selected behaviors remain the two-modality behaviors:
proxemics with gaze and proxemics with gesture. However, in comparison to Figure 6.9
with δ = 0.24, the selection of other multi-modal behaviors with δ = 0.09 are more evenly
distributed giving more room for exploration. The least selected behaviors for δ = 0.09
are the the two-modality behaviors: gesture with gaze, gesture with emotional expressions,
gaze with emotional expressions, and three-modality behavior gaze, gesture, and emotional
expressions, in addition to the modality emotional expressions on its own.

6.5.2 Q-Learning

Fig. 6.12 Average episode reward after 15000 episodes for 10 random seeds. The means and
standard deviations are plotted. ϵ-MAB(ϵ = 0.1, α = 0.2) serves as a baseline.
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The Q-Learning algorithm was implemented as shown in Algorithm 2 resulting in a Q-Learning
(ϵ-decay). The weights for the reward function of Equation 6.2 were set similarly to the
ϵ-MAB and ϵ-UCB algorithms. In addition, δ was set to 0.09 to not restrict exploration of
multi-modal behaviors caused by the cost function. The learning rate was fixed at α = 0.2
and the discount factor at γ = 0.95. The initial epsilon was set at ϵ = 0.99 and the decay
rate at edecay = 0.9998. In addition, each episode would run 50 steps while updating the
Q-table. The number of steps were chosen to decrease the noise in the reward signal and
increase the average episode rewards.

The algorithm was ran for 15000 episodes for 10 random seeds and the learning curve
of the mean with standard deviation is presented in Figure 6.12. The value of ϵ through-
out decreased from 0.99 to 0.05 as the average episode reward curve converges. ϵ-MAB
(ϵ = 0.1, α = 0.2) with the same reward function was ran and serves as a baseline. Q-Learning
(ϵ-decay) yielded a much higher average episode reward than the baseline though it took
longer to converge.

Furthermore, the Q-table of Q(s, a) values is mapped up in Figure 6.13. For all states
where proxemics is absent, the q(s, a) values are highest for the action proxemics = +1 while
all other actions for the same states have the lowest values of q(s, a). On the other hand, for
all states where proxemics is present, the q(s, a) are more distributed between the actions.
For state (1, 0, 0, 0) (proxemics only), the action with the highest q(s, a) value is for action
gaze = +1.

In addition, the percentage each state was visited is shown in Figure 6.14. The states
most visited were the two-modality behaviors: proxemics with gaze and proxemics with
gesture, followed by three-modality behavior: proxemics with gaze and gesture, and then
three-modality behaviors: proxemics with gaze and emotional expressions and proxemics with
gesture and emotional expressions as well as one-modality behavior with proxemics alone.
On the other hand, the state least visited was the behavior with no multi-modality followed
by all states that do not include proxemics.
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Fig. 6.13 Q-Table with the average q(s, a) values after 15000 episodes for 10 random seeds
for Q-Learning(ϵ-decay) algorithm..
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Fig. 6.14 Average percentage of states visited after 15000 episodes for 10 random seeds for
Q-Learning (ϵ-decay) algorithm.

Further evaluation was done to see the impact the RL models had on the simulated
human behaviors and the human’s social signals. The results are plotted in Figure 6.15.
First, Figure 6.15a shows the average simulated human’s distance in meters. With the
Q-Learning(ϵ-decay) model, the simulated human stood closer to the robot after about 4000
episodes as the robot was learning. Second, Figure 6.15b shows the average of times the
simulated human took the suggestion of the robot, where a value of 1 signifies that the human
took the robot’s suggestion and 0 the human did not. With the Q-Learning(ϵ-decay) model,
the human took the robot’s suggestion more throughout all 15000 episodes. Third, Figure
6.15c shows the average time the simulated human spent looking at the object referred to
by the robot in milliseconds. With the Q-Learning(ϵ-decay) model, the time spent looking
was higher throughout all 15000 episodes. Fourth, Figure 6.15d shows the time spent by the
simulated human deciding whether to take robot’s suggestion or not (in milliseconds). With
the Q-Learning(ϵ-decay) model, time spent deciding was lower than the baseline after about
4000 episodes and until the end of the 15000 episodes.

In addition, the time it takes for both Q-Learning(ϵ-decay) algorithm and baseline to run
the learning episodes needs to be considered. The average time it took to run one episode in
Q-Learning(ϵ-decay) was 211.24 seconds with a standard deviation of 7.07 seconds. On the
other hand, the average time it took to run one episode in the baseline ϵ-MAB algorithm was
65.61 seconds with a standard deviation of 7.25 seconds.
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(a) Average Human’s Distance (meters) (b) Average Times Human Took Suggestion of
Robot

(c) Average Human’s Time Looking at Object (ms) (d) Average Human’s Time Deciding (ms)

Fig. 6.15 Average Simulated Human’s Distance(meters), Average Times Human Took Sug-
gestion of Robot, Average Simulated Human’s Time Looking at Object (ms), and Average
Simulated Human’s Time Deciding (ms), after 15000 episodes of 10 random seeds, by each
algorithm: ϵ-MAB(ϵ = 0.1, α = 0.2) and Q-Learning(ϵ-decay). The mean and standard
deviations are plotted.

6.6 Discussion

In HRI, human’s social signals provide important information and the robot’s functional
multi-modal behavior allow it to effectively communicate and be perceived as a socially
intelligent agent. The continuous nature of human’s social signals was used in the reward
function to avoid discretizing them and losing information as well as to decrease the size of the
state-space and consequently increase the learning time. In addition, this chapter presented
simulation of HRI for training of algorithms and this is an important contribution to the
field of HRI specially during the COVID-19 pandemic, which made physical data collection
very difficult and as such slowing down many studies. Furthermore, the findings in the result
section may provide important lessons and guidelines for adaptation and personalization in
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HRI using reinforcement learning.

First, the results from running the ϵ-MAB and ϵ-UCB algorithms with only the social
signals part of the reward function showed that the high-degree modalities were favored, ex-
cept for the three-modality behavior gaze, gesture, and emotional expressions. High modality
behaviors contain all modalities needed for rich social interactions. However, the algorithms
selected just as much the two two-modality behaviors, proxemics with gaze and proxemics
with gesture. This demonstrated that these two-modality behaviors may be as effective and
rich in social interactions as the higher-degree modalities. In addition, the only three-degree
modality not highly selected was the one without proxemics. Already at this point, proxemics
may play an important role for the behavior of robots.

Second, the previous finding was also highlighted when using the full reward function with
the weight of the cost function on the degree of modality set as high as δ = 0.024. The cost
function caused the algorithms to disregard high-degree modality behaviors (three-modality
and more) and select much more the two two-modality behaviors (proxemics with gaze and
proxemics with gesture) as well as proxemics alone, which also had highest percentage of
selection by some of the algorithms. This emphasized the value and influence of the proxemics
behavior in social robots when compared to other modalities, specially as a modality that
can interact efficiently alone. Furthermore, proxemics is a modality that is inherent to robots
in comparison to other socially intelligent machines such virtual agents. Robots are able to
navigate and re-orient themselves by spotlighting that their embodiment allows them to be
in the same physical environment as the human.

Third, when δ was decreased to 0.09, the restrictions on high degree modality behaviors
was relaxed and increased the percentage of selecting them. The two most selected behaviors
remain the two two modality behaviors (proxemics with gaze and proxemics with gesture).
However, this time the percentage for selecting the one-modality behavior of proxemics alone
and the three three-modality behaviors(proxemics, gaze, and gesture, proxemics, gaze, and
emotional expression, and proxemics, gesture, and emotional expressions) were approximately
the same. This would allow the robot to explore more behaviors while still having a cost on
the degree of modalities making up its behavior.

Fourth, keeping δ = 0.09, the Q-Learning(ϵ-decay) and ϵ-MAB, which was a baseline, were
ran for 15000 episodes. The average episode reward by Q-Learning(ϵ-decay) was lower than
the baseline before reaching 2,000 episodes as it was a period of very high exploration. After
2,000 episodes, as the number of episodes increased and the ϵ decayed, Q-Learning(ϵ-decay)’s
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average episode reward reached a significantly higher value than the baseline. Similarly to
the previously ran algorithms, after 15000 episodes, the most visited states, which represent
the multi-modal behaviors of the robot, are those are includes proxemics. On the other hand,
the least visited state (behavior) was the one with no modalities. This also highlights the
value of modalities in improving the quality of interactions.
The two most visited states are the two two-modality behaviors, proxemics with gaze and
proxemics with gesture. Gesture and gaze play several functional roles such as referring
to objects in the environment of interaction and communicating internal processes such
as turn-taking, floor-holding, and turn-yielding in conversations as well as expressing a
listening state through back-channeling. In [168], it was shown that gestures significantly
increased user’s behavioral alignment with the robot by waving at it at the start and end of
the interaction. In addition, gaze significantly increased the likelihood of users performing
backchanneling while the robot was talking.

Fifth, the heat-map of the Q-table also reflected the importance of proxemics since the
action with the highest value for states with no proxemics was to activate proxemics. As
for the rest of the states, the values of the all of the actions were approximately equally dis-
tributed. This allows for further combinations of modalities to be formed and for exploration,
which is also needed for adaptation and personalization along with balanced exploitation.
The Q-table provided by Q-Learning(ϵ-decay) after training on the simulated human and
interaction is important as it can be used as an initial Q-table when the robot is to interact
in real life with human. Having an already trained and filled Q-table would allow for faster
learning and as such a faster adaptation.

Finally, when looking into the simulated behaviors of the human, the findings showed
that the human behaved in a more desired manner with the Q-Learning(ϵ-decay) algorithm
than with the baseline. After 15000 iterations, the simulated human was standing closer to
the robot, specially at a more social distance of approximately 0.81 meters, taking the robot’s
suggestions more, spending more time looking at the object referred to by the robot, and
taking less time deciding to take the robot’s suggestion. Moreover, the weights in the reward
function have shown that by increasing or decreasing their values, one can slightly drive the
exploration in one direction or another and as such further exploration of combinations of
modalities making up the robot’s behavior can be investigated.
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6.7 Limitations

While this study has put forward interesting findings, it has certain limitations that need
to addressed. First, the proposed RL model in this chapter has not been tested yet in
real-world environments. Future work includes implementing the model on a physical robot
and collecting data with humans to better investigate the adaptation, multi-modal behaviors
selected by the robot, and the learning of the robot. Second, the social signals of humans are
very complex and coupled in nature and while the reward function presented captures some,
it does not capture all. There may be more terms that can be added to the human social
signals part of the reward function. Third, emotional expressions may play a bigger role for
instance on the decision-making of humans and their responsive social signals. Moreover,
emotional expressions are themselves multi-modal behaviors in nature. This study has only
relied on findings from literature review, but more investigation and observation needs to be
done to better understand its impact and have its weight in the reward function adjusted
accordingly.

6.8 Conclusion

This chapter presented a simulation set-up of human-robot interactions and a RL model for
adaptation and personalization of interactions taking into account the human social signals,
human decisions, and the cost of the complexity of behaviors. The findings have allowed us to
learn the most influential modalities and combinations of multi-modal behaviors. For instance,
the findings highlighted the imperative need of proxemics for successful interactions with
embodied robots. Moreover, the equivalence between gaze and gesture for their functionalities
was brought into light. Such as, different situations may require and prefer one over the other.
To conclude, this chapter demonstrated a general adaptation, which can be used in real-life
interactions by making use of the resulting Q-table, specially since it has shown potential for
personalization for different user profiles and situations and it has illustrated the value of RL
in adaptation.



Chapter 7

Discussion & Conclusion

This chapter presents a discussion and conclusion to the work described in this doctoral
dissertation. It summarizes the key research findings in relation to the research aims and
questions and discusses the value and contribution thereof. It will also review the limitations
of the study and propose opportunities for future research.

7.1 Discussion

7.1.1 Thesis Overview & Contributions

The goal of this thesis is to investigate and synthesize multi-modal socially intelligent human-
robot interaction. For an interaction to be perceived as socially intelligent, the robot needs
to be able to assess and mange individuals it is interacting with and respond through its
capability of using and adapting its behavior. In addition, robots are embodied agents that
can communicate non-verbally and manipulate the environment around them using their
multi-modal behaviors. This thesis aimed at contributing to the field of HRI by designing
and implementing autonomous multi-modal behavioral solutions for a robot to investigate
their impact on the users interacting with it and presenting a RL model that allows the robot
to appropriately adapt and personalize its behavior by taking into account human social
signals. To demonstrate the findings, the thesis was divided into two parts: Relative Work
and Contributions.

The Relative Work part focused on discussing the state-of-the-art and literature review.
Chapter 2 introduced the studies done investigating the modality behaviors of robots including
proxemics, gaze, gesture, and emotional expressions and the link between behavior and social
intelligence and influence. While there has been many contributions on designing and
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understanding modalities individually, their impact when performed in combination in a
multi-modal behavior is still not clear. Moreover, there is a gap in apprehending the extent of
how human multi-modal behaviors can be used by the robot to manipulate social situations.
Thus, there is a need to develop a comprehensive perspective on how different combinations
of these modalities can impact and influence interactions. Chapter 3 presented a background
on RL and an in-depth literature review on RL in social robotics for adaptation. The recent
work have shown the potential of RL to solve for adaptation, but so far the exploration of
adaptation by combining modalities to form different multi-modal behaviors while taking
into account the continuous social signals of humans and the cost of complexity put on the
robot has not been achieved.

The Contributions part of the thesis focuses on addressing and contributing to the main
research question through three main studies: "When found in an interaction set-up, how
should the robot use its multi-modal behavior and understanding of the interaction dynamics
with the humans around it to act as a socially intelligent agent?". The three main studies
were presented in Chapter 4, which studied how one human modality may be used by the
robot to adapt its behavior to different situations, Chapter 5, which synthesized multi-modal
behaviors of the robot and investigated their effects on the outcomes of the interaction, and
Chapter 6, which presented a simulation setup of HRI for RL training and a RL model to
allow the robot to adapt its multi-modal behavior to human social signals through the reward
function.

RL for adaptation in HRI: An In-Depth Literature Review

Using RL as an approach to adaptation in HRI is relatively new and there is still a need to
further investigate it and answer the gaps and challenges present. However, in order to do so,
it is crucial to first dive into the literature of the recent RL models of adaptation in social
robotics. With a lack of such a literature review, the first contribution of the thesis is to
present an in-depth study on the RL approaches used for adaptation in HRI by demonstrating
the details of the proposed RL models, the findings of the studies, and their limitations. One
of the limitations is found in the studies that attempted to discretize human social signals
and having it lead to large state spaces [17, 139, 183]. Moreover, most of the studies focused
only on a one-modality behavior [117, 96] or only verbal responses [17, 58, 105]. In addition,
another limitation of some studies is being task-dependent and as such not allowing for
adaption in different interaction scenarios [135, 58, 96]. A promising approach seen is to use
human social signals to design the reward function of the RL model and avoid large state
spaces [139, 183, 117].
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Adapting one modal robot behavior to a human social signal

Chapter 4 puts forward a pilot study that explores part of the goal by looking into how
one human modality can be assessed by the robot to have it adapt one of its behavioral
modalities and as a consequence permitting the robot to have a socially intelligent interaction.
A social use case where adaptation is crucial is group interaction. The robot uses the human
proxemics through their distances and orientations to estimate the conversational roles they
want to play in the group formed: active, bystander, or overhearer. Accordingly, the robot
autonomously adapted its gaze behavior to portray its adaptation to the group and roles.
The primarily results showed how consequently the humans themselves also adapted to the
adaptive robot by standing closer to it in comparison to a robot that did not adapt its
behavior to the roles in the group formed. In addition, the users rated the adaptive robot
higher in the perceived adaptability and sociability. This study allowed to investigate one of
the sub-questions of the main research question: How can a human behavior be used to allow
the robot to adapt to varying interaction setups? by using group interaction as a use case.
Moreover, these primarily findings showed how one modality behavior of the robot can in its
turn influence the behavior of the users. To further investigate this as well as the impact of
each modality when performed in a multi-modal behavior, Chapter 5 presents the second study.

Synthesizing & Investigating Multi-Modal Behaviors of Robot

In Chapter 5, an autonomous multi-modal behavioral solution made of proxemics, gaze,
and gesture was proposed and implemented. First, proxemics was implemented as a social
navigation to maintain a close social distance. Second, gaze was designed as gaze aversions
relative the human for the functional purposes of turn-taking, turn-yielding, floor-holding,
and joint attention. Third, gesture carried out as a series of functional gestures including
symbolic, deictic, and beat gestures. To investigate their respective impact in interactions, a
study with 105 participants was done and with five conditions, where one condition has a
full multi-modal behavior made of all modalities and the rest have one different modality
each time subtracted from the full multi-modal behavior. The key findings showed that
proxemics has a significant impact on how close humans stand to the robot while interacting
with it in addition to influencing the human to take the robot’s suggestion of an object in the
same physical environment. In addition, one of the key findings pointed out to the strong
effect of gesture has on the human also performing gestural behaviors during greeting and
ending of interaction and as such adapting and aligning to the robot’s behavior. Further
findings show the significant impact of gaze on the backchanneling social signals performed
by the human during the interaction. Thus, this study showed how when performed in a
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multi-modal behavior the robot’s modalities differently impact and influence the social signals
of the human users and the outcome of the interaction. The bidirectional impact between
the multi-modal behavior of the robot and the social signals of the humans, which are also
inherently multi-modal, was demonstrated and thus moving closer to a socially intelligent
interaction. One more layer of adaptation and personalization is needed to achieve that.
Additionally, this study attempted to answer another sub-question: How does each modality
impact the outcomes of an interaction specially when it is performed in a multi-modal manner
by the robot and in which aspect of the interaction is each modality relevant and significant? .

Simulation of HRI setup & RL Model for Adaptation of Multi-Modal Behavior

The final study in Chapter 6 aims at closing the loop by proposing a RL model for multi-modal
behavior and a simulation setup of HRI, which was designed and implemented using the
data-set collected from the study in Chapter 5. Human social signals are continuous in
nature and there is a need to avoid losing information by discretizing them and creating large
state-spaces. The proposed RL model uses a reward function that takes into account the
human’s social signals and decisions and the cost on the complexity of the robot’s behavior.
The latter, which is the cost on the degree of multi-modal behaviors, allowed the investigation
of whether complexity in behaviors of the robot is required for the success of an interaction.
The reward signal is then used to adapt the behavior of the robot which may be a combination
of various modalities including proxemics, gaze, gesture, and emotional expressions. The RL
algorithms ϵ-MAB, ϵ-UCB, and Q-Learning were implemented and trained on the simulated
HRI. The findings showed that complex behaviors are not necessarily needed for a socially
intelligent interaction but rather appropriate combinations of behaviors that elicit the wanted
social influence on the users. One of the key findings showed the importance of proxemics
and how crucial it is for the engagement in HRI. All of the most selected multi-modal
behaviors included proxemics. A second key finding exhibited the close role of gaze and
gesture in an interaction. With Q-Learning, the most selected behaviors were the two
two-modality behaviors, proxemics with gaze and proxemics with gesture, and followed by
the three-modality behavior of proxemics with gaze and gesture. This demonstrated that the
use of gaze and gesture may be interchangeable depending on the user profile and situation
being adapted to. Finally, this thesis presents a generalized adaptation model that leaves
room for the robot to personalize to different users and interactions. Moreover, these two
contributions allowed to answer the following sub-question: How can the robot use human
social signals during an interaction to adapt and personalize its own multi-modal behavior? .
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7.1.2 Multi-Modal Behaviors & Social Intelligence: Perspective

Literature from various fields and sciences, including Psychology, Neuroscience, Sociology,
and many others, have shown how complex yet rich human behaviors are. So it is no surprise
that they have been observed, studied, and analyzed to help understand the social intelligence
found in humans across cultures and countries. Thus for a robot to communicate clearly,
increase engagement, and be perceived as socially intelligent during an interaction with
a human, it needs to be able to appropriately use its multi-modal behavior and adapt to
the multi-modal social signals of its interactive partner. In the first study, the significance
of proxemics was put forward. By evaluating the proxemics of the humans through their
distances and orientation using a simple rule-based system, the robot was able to estimate
the conversational role intentions of participants forming a group around it. This was the
first use of one of the modalities of the human’s social signals to adapt the robot’s behavior.
The robot displayed its estimation and understanding through gaze alone. By using one
modality alone, the robot was able to convey the message to the humans it is interacting
with. The findings from the first pilot study showed that the humans in their turn felt more
comfortable standing closer to the robot that adapted its gaze behavior than the one that
did not. All the bidirectional communication between the robot and the humans forming a
group around it to relay the conversational role intentions took place non-verbally and as
such showing the power of multi-modal behavior. This lead to question how would other
modalities and different combinations of them influence the human behavior in its turn.

In the second study investigating multi-modal behaviors, the findings further revealed the
significance of multi-modal behaviors of the robot. First, proxemics was shown to influence
the human to take recommendations made by the robot in the physical environment in
comparison to other modalities. Previous literature in HRI have focused on gaze as joint
attention and gesture as pointing to have the robot suggest objects in the environment around
it [92, 93]. However, this study showed that when gaze, gesture, and proxemics were compared
within multi-modal behaviors, it was proxemics that influenced the user taking the water
on the table offered by the robot. It may be because proxemics allows the robot to use its
embodiment to show that it exists in the space physical space as the human it is interacting
with. Second, gesture had the most impact on how humans greeted and ended the interaction
with the robot. Already from beginning of the interaction, performing gesture significantly
influenced people waving hello to the robot. By the end of the interaction, participants,
who interacted with the robot performing multi-modal behavior without gestures, did not
wave goodbye to the robot. This is important as it shows that gestures affect how humans
align their behaviors with the robot from early on. Even those who waved hello to the robot
despite it not waving did not wave goodbye at the end. First impressions performed through
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nonverbal behaviors impact the rest of the interaction with the robot. Third, gaze behavior
impacts the backchanneling done by the human the robot is interacting with. Backchanneling
is an interesting behavioral outcome to look at as it is done unconsciously by the human.
When talking to participants after the data collection, some commented that the robot lacking
gaze behavior seemed unnatural. It is important to remind that the condition lacking gaze
behavior had the robot continuously look straight at the human’s face. As humans, we are
inclined to avert our gaze to signify that one is thinking, holding the floor of the conversation,
or even giving the speaking role and similarly we respond and wait for such cues. Fourth,
while social dialogue was also evaluated in comparison to the other behavioral modalities,
no significant results for it were found. This further highlights the impact of non-verbal
behavior and its ability to communicate and engage the user by only using the embodiment
capabilities of the robot. Most literature in HRI have focused on parts of the interaction and
on comparing one modality to another. This study introduced findings after looking at the
whole interaction and performing multi-modal behaviors by removing a different modality
at each condition. This offered a new perspective on understanding the effect of modalities
making up the multi-modal behavior of the robot.

Finally, the proposed RL model trained on the simulation setup of HRI offered further
interesting insights into multi-modal behaviors through the choices made by the learning
agents. The importance of proxemics was again highlighted strongly. The effects of proxemics
on the outcomes of an interaction can be directly observed through the distances held by
the user and the decisions made as shown from the previous study. This impacted the
designed reward function to favor proxemics. On the other hand, other robot modalities have
more subtle effects on the human. Gaze and gesture seem to have an interchangeable role
allowing for further personalization and adaptation to different user profiles. In addition,
the study showed that multi-modal behaviors do not necessarily need to be complex and
of high-degree to achieve a socially intelligent interaction but rather be made up of the
appropriate modalities specially in the presence of proxemics. Throughout all three studies,
proxemics had the biggest effect and value to achieve a socially intelligent interaction. Robots,
unlike other virtual agents and computers, can navigate in the same physical space as the
human. This has shown to influence the perceived conversational role one wants to have in an
interaction as well as the decisions made throughout the rest of that interaction. Proxemics
is a modality that needs to be further studied.
Moreover, social intelligence is a powerful tool humans possess that allows them to communi-
cate effectively with the world and societies around them, manipulate situations, and even
shift the way they are perceived to the outside world. The findings of the all three studies
further put forward the significance of the robot’s multi-modal behavior in achieving social
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intelligence for the robot. It showed how potent the modalities of the robot’s multi-modal
behavior are in shaping the behavior of the interactive partner and the environment around
them. It allowed the robot to be perceived as not just a machine but as an embodied agent
present in the same physical space and capable of manipulating it just like, to a certain
extent, the human. There is still much work to be done on understanding the power of social
intelligence and synthesizing it in robots and virtual agents even, but the finding of this
thesis presented a foundation to build on socially intelligent robots.

7.1.3 Limitations & Future Work

While the thesis presents important findings, there are certain limitations to consider. First,
there are several functional behaviors that make up the modalities of gaze, gesture, and
proxemics beyond just the ones synthesized and studied in thesis. For instance, a gaze
mechanism may also be designed to convey the cognitive process the robot and be perceived
as thoughtful [74, 11] and there are various gesture mechanisms to be explored including
iconic and beat gestures that play certain roles in a conversation [6]. Second, there are other
modalities that may significantly influence an interaction such as haptics, which utilizes the
sense of touch, and vocalics, which focuses on the tone and pitch of the voice. These modalities
may impact how the user perceives a certain emotion or behavior. Future work would focus on
exploring further modalities making up multi-modal behaviors. Third, emotional expressions
were not sufficiently investigated in this thesis. Emotional expressions are themselves also
multi-modal and cover a vast range of synthesized emotions from joy and excitement to fear
and anger. It is important for future work to dive deeper into understanding the impact of
emotional expressions on the perceived social intelligence of the robot. Fourth, the proposed
RL model was only trained and analyzed using the simulation setup of HRI. Future work
needs to investigate the suggested model in real life interactions. It would be highly interesting
to see whether the choices of multi-modal behaviors selected by the learning agents would be
similar and how the adaptation would impact the outcomes of interaction.

7.2 Conclusion

As we look ahead, it is evident that robots will play an ever larger role in our world and
influence various fields such as healthcare, retail, and even enter our homes. Central to
their success will be socially intelligent interactions and the ability to adapt and personalize
to humans with different personalities, cultures, and disabilities through its multi-modal
behavior that allow it to be present in the same space as the user. Thus, it is important to
build inclusive technologies shaping a better and brighter future.
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