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I. Foreword  

 

 

 

 

 

Continuously rising global temperatures led to 2011-2020 being the warmest decade including 

the six warmest years on record, with 2020 climbing on the first place with an average global 

temperature of 1.2°C above the pre-industrial level. Extreme climatic phenomena, such as 

sustained heat waves, wildfires, droughts, floods and hurricanes, tormenting every corner of the 

world are only some of the most obvious events caused by climate change. Apart from the 

evident environmental aspect, the ongoing crisis has significant societal and economic impacts 

as well. 

This realization has forced governments and international organizations to pay attention to 

climate change. Efforts are intensifying at every level, from private stakeholders and small-

scale initiatives to global organizations such as the United Nation’s Framework Convention on 

Climate Change. Important milestones towards fighting climate change include the 

establishment of the Paris Agreement and the launch of the United Nation’s Sustainable 

Development Goals, but also the shift towards green consciousness observed amongst the 

young generation sparking initiatives such as Fridays for Future. 

It is widely understood that immediate coordinated global action is imperative and that the 

climate is right for reforming the future.  

Nature-based solutions are of immense value and are thus in the centre of this effort with the 

spotlight turned on soils. To the French Agency for Ecological Transition and to the ANR 

project StoreSoilC, the two parties funding my research during the last three years ― I am 

grateful to have played a small part in this universal effort through our collaboration. 
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IV. Résume étendu en langue française 

 

 

 

 

 

 

1. Le défi climatique et le rôle des sols 

Le rapport spécial du GIEC1 (2018) sur "Le changement climatique et les terres émergées" 

souligne de façon explicite les conséquences causées par le changement climatique sur la Terre, 

ainsi que les risques associés pour la biodiversité, la santé humaine et écosystémique, et les 

systèmes alimentaires. Dans son dernier rapport, le GIEC (2021) prévient que seule une réaction 

immédiate menant à la neutralité carbone au niveau mondial avant 2050 pourrait permettre de 

rester sous la limite des 1.5–2 °C d'augmentation de la température globale par rapport aux 

niveaux pré-industriels. Pour atteindre cet objectif fixé par l'Accord de Paris (UNFCCC, 2015) 

afin d'éviter les conséquences sur le bien-être des humains et des écosystèmes, des technologies 

à émissions négatives sont nécessaires (GIEC, 2018; Anderson et al., 2019). En raison du fait 

que les solutions fondées sur la nature (SFN), comme la gestion durable des forêts, des zones 

humides et des prairies, sont des « solutions sans regret » mais aussi en raison de leur potentiel 

de réduction des émissions estimé à un niveau considérable de 37% de l'objectif de 2030, les 

scientifiques et les activistes environnementaux appellent à leur mise en œuvre extensive 

(Griscom et al., 2017).  

                                                 

 

 
1 Groupe d'experts intergouvernemental sur l'évolution du climat 
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L'accent est mis sur l'importance des pratiques appropriées de gestion des sols, qui constituent 

l'une des solutions les plus pratiques et les plus réalisables. De nombreuses politiques nationales 

et internationales (par exemple, l’initiative 4pour1000 et le pacte vert pour l’Europe) s'engagent 

à séquestrer du C dans les sols afin d'inverser la perte historique de carbone causée par des 

millénaires d'appropriation et d'utilisation non durable des terres par l'homme (Sanderman et 

al., 2017). Des pratiques appropriées de gestion des terres pourraient ralentir la dégradation des 

sols et contribuer à assurer la sécurité alimentaire et à lutter contre le changement climatique. 

Lors de la récente COP 26, 148 pays ont soumis des contributions déterminées au niveau 

national nouvelles ou actualisées. Dans l'ensemble, 61% des pays ont fait référence au carbone 

organique des sols (COS) ou à des mesures liées au COS. Les priorités pour les mesures 

d'atténuation ou d'adaptation liées au SOC comprenaient la gestion des zones humides (43%), 

l'agroforesterie (34%) et la gestion des prairies (22% ; Rose et al., 2021). L'urgence de cette 

situation, mais aussi les avantages socio-économiques qui peuvent être générés par une gestion 

correcte des sols m'ont incité à développer mes travaux de recherche autour d'eux. 

2. Les sols dans le cycle de carbone et l’importance de la matière organique 

du sol 

Sur une profondeur de 2 mètres les sols contiennent deux fois plus de carbone (1500–2400 GtC) 

que l'atmosphère (860 GtC) et la végétation (600 GtC) réunies (Friedlingstein et al., 2020). La 

taille ainsi que la position critique de ce réservoir, à la frontière entre la terre solide et 

l'atmosphère, soulignent son importance pour la régulation du climat (Batjes, 1996; Lal, 2004a). 

Des variations faibles de la taille du réservoir du carbone organique du sol (COS) peuvent avoir 

des effets majeurs sur la concentration de CO2 atmosphérique (Lal, 2004b).  Cette idée a suscité 

le "mouvement de séquestration du COS" et, entre autres, l'initiative "4 pour 1000", selon 

laquelle une augmentation annuelle relativement faible de 0,4 % des stocks de COS est 

suffisante pour compenser l'augmentation du CO2 atmosphérique causée par les émissions 

anthropiques (Minasny et al., 2017; Pellerin et al., 2019). Mais même en mettant de côté le 

débat sur le climat, les stocks du COS doivent être protégés et si possible augmentés, car la 

matière organique du sol (MOS) est essentielle pour sa santé et sa capacité à fournir de multiples 

services écosystémiques (Lal, 2004b; Fig.1). 

 

https://www.4p1000.org/fr
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_fr
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En outre, la MOS est considérée comme le composant le plus important qui peut être géré 

efficacement pour améliorer la santé du sol et parvenir à son utilisation durable. L'augmentation 

de la teneur en COS est bénéfique pour de nombreuses fonctions telles que leur fertilité  

(Tiessen et al., 1994; Six et al., 2004), leur capacité de régulation du climat (Heimann and 

Reichstein, 2008), et leur potentiel de filtration et de rétention de l'eau (Doran and Parkin, 1994; 

Hudson, 1994). 

 

Cependant, la réalisation de l’objectif noble de mieux gérer les sols et augmenter leurs stocks 

de carbone est actuellement entravée par notre compréhension limitée des processus contrôlant 

la persistance du COS et notre incapacité à prévoir son évolution. 

3. Principaux processus et mécanismes contrôlant l'évolution du COS 

3.1. Vue rapide des processus qui déterminent le COS  

Le principal processus d'apport de carbone organique dans le sol est la fixation du CO2 de 

l'atmosphère par les plantes par la photosynthèse, et le dépôt de ce carbone soit directement 

sous terre par les exsudats des racines, soit sous forme de résidus dans la couche de litière 

aérienne (FAO & ITPS, 2015). Dans le cas de sols gérées, d'autres ajouts de matière organique 

exogène peuvent se produire, comme l’apport de fumier ou de compost végétal. 

Figure 1 : Les services écosystémiques du sol qui dépendent son contenu en 

matière organique (source indiquée sur la figure). 
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La matière organique entre dans la voie métabolique de divers organismes hétérotrophes (verres 

de terre, champignons, bactéries ; Pellerin et al., 2019). Une partie du carbone est respirée et 

libérée dans l'atmosphère sous forme de CO2 en quelques heures, alors que les composants plus 

persistants peuvent résider dans le sol pendant des centaines à des milliers d'années (Trumbore, 

1997; Jenkinson and Coleman, 2008). 

3.2. Mécanismes de stabilisation de la matière organique du sol 

Jusqu'à récemment, trois catégories de mécanismes de stabilisation de la MOS étaient 

considérées : (1) augmentation de la récalcitrance de la MO par la minéralisation sélective des 

apports de litière plus biodégradables et la formation de macromolécules humiques stables (2) 

protection physique, par exemple par la formation d'agrégats, et (3) associations organo-

minérales par adsorption qui limitent l’accessibilité aux enzymes (Sollins et al., 1996; Six et 

al., 2002; von Lützow et al., 2006). 

Bien que leur importance relative ait été étudiée de manière intensive et qu'il a été démontré 

qu'elle varie d'un cas à l'autre, aucun des mécanismes mentionnés ci-dessus ne peut expliquer à 

lui seul la persistance de la MOS. Elle est plutôt considérée comme une propriété de 

l'écosystème (Schmidt et al., 2011) et, en tant que tel, ses associations avec les variables 

pédoclimatiques sont une autre façon de l'étudier. 

3.3. Les facteurs de contrôle de temps de résidence de la matière organique du sol 

Les facteurs qui influencent le renouvellement de la MOS ainsi que la distribution des stocks 

du COS comprennent la température, l’humidité du sol, le pH, la texture et la minéralogie, ainsi 

que le type d'apport de matière organique fraîche et la profondeur du sol (Balesdent et al., 2018; 

Luo et al., 2019; Luo and Viscarra-Rossel, 2020). Ces facteurs sont par essence liés aux 

mécanismes décrits ci-dessus (pour une description détaillée voir Pellerin et al., 2019), mais ils 

sont plus faciles à décrire et à inclure dans les approches de modélisation du COS.  
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4. Les différents types des modèles de dynamique du COS  

Depuis les années 1980, une approche valorisant la simplicité mathématique et basée sur 

l'exemple donné par Hénin et Dupuis (1945) a conduit au développement des modèles très 

utilisés de la dynamique du COS. Dans ces modèles, le continuum de décomposition du COS 

est représenté par une série de compartiments cinétiques, caractérisés par des temps de 

renouvellement différents. Parmi les avantages les plus importants de ces modèles, 

intrinsèquement liés à leur structure simple, figurent leur transférabilité, leur efficacité de calcul 

et leur paramétrage adéquat. Cette catégorie comprend des modèles de renommée mondiale tels 

que Century (Parton et al., 1987) et RothC (Jenkinson and Rayner, 1977), et des modèles bien 

paramétrés, principalement utilisés au niveau national, tels que le modèle suédois ICBM 

(Andrén and Kätterer, 1997), le modèle français AMG (Andriulo et al., 1999) ou le modèle 

danois C-TOOL (Taghizadeh-Toosi et al., 2014). 

Actuellement une nouvelle génération de modèles complexes, axés sur les mécanismes qui 

contrôlent le renouvellement des COS, est en train de gagner en popularité (Abramoff et al., 

2018; Sulman et al., 2018; Waring et al., 2020; Zhang et al., 2021). Cependant, leurs structures 

complexes et le nombre important de paramètres inconnus à contraindre, rend ces modèles très 

difficiles à calibrer et à valider par rapport aux données d’observation (Sulman et al., 2018). 

Cela entrave particulièrement leur potentiel à être utilisés comme outils opérationnels pour 

prédire l'évolution du COS à grande échelle. 

Les modèles multi-compartimentaux de la dynamique du COS sont la meilleure option dont 

nous disposons actuellement pour favoriser des actions de préservation et de séquestration du 

COS basées sur la science, étant donné la forte incertitude des modèles plus complexes 

(Cécillon, 2021a; Dangal et al., 2021; Lee et al., 2021; Shi et al., 2018; Crowther et al., 2019). 

Cependant, les prédictions d'évolution des stocks du COS fournies par ces modèles simples sont 

très sensibles à la distribution initiale du COS parmi les différents compartiments cinétiques 

(Luo et al., 2016; Smith and Falloon, 2000; Clivot et al., 2019). Cela fait de la question du 

partitionnement des compartiments cinétiques du COS une priorité pour améliorer leur 

précision (Luo et al., 2016; Taghizadeh-Toosi et al., 2020). 
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5. Les sites rares pouvant être utilisés pour estimer la persistance in situ du 

COS 

Divers types d'expériences agronomiques à long terme offrent différentes possibilités d'étudier 

la persistance in situ du COS dans des conditions pédologiques, climatiques et biologiques 

réelles. Il s'agit notamment de chronoséquences avec un changement de végétation (C3–C4), de 

jachères nues et d'expériences agronomiques avec des apports de carbone connus et des 

pratiques contrôlées. Dans le premier cas, le suivi de l'abondance naturelle du 13C depuis le 

moment du changement de végétation permet de simuler la décomposition du carbone natif 

idéalement sur plusieurs décennies et de calculer la taille de la fraction active du COS (Fig.2a ; 

Balesdent et al., 1987; Balesdent, 1991). Les sites en jachère nue de longue durée (LTBF), c'est-

à-dire les sites maintenus sans végétation pendant plusieurs décennies, offrent une occasion 

unique d'observer la décomposition du carbone natif sans interférence de la matière organique 

fraîche (Fig. 2b ; Rühlmann, 1999) et de calculer la taille de la fraction stable à l'échelle du 

siècle (Barré et al., 2010). Dans le troisième cas, les apports de carbone connus, les données 

pédoclimatiques, les pratiques de gestion du sol sur de longues périodes permettent une 

modélisation inverse et une optimisation des conditions telles que la répartition du COS entre 

le compartiment « stable » et le compartiment « actif » (Fig. 2c ; Clivot et al., 2019).  

 

A part ces sites d'expérimentation à long terme très spécifiques et très limités 

géographiquement, les moyens d'estimer efficacement la taille des compartiments cinétiques 

des modèles restent limités. 

Figure 2 : Représentation schématique de l'évolution des stocks du COS théorique lors de divers types 

d'expériences agronomiques à long terme (Barré, 2020 ; Adapté d’après Balesdent, 1991) 
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6. Méthodes actuellement utilisées pour estimer la taille des compartiments 

de modèles 

Des procédures d'initialisation des modèles du COS ont été proposées, mettant en relation les 

résultats des méthodes de fractionnement du COS avec les tailles des compartiments cinétiques 

du COS (par exemple, Zimmermann et al. (2007) ou Skjemstad et al. (2004) pour le modèle 

RothC). Cependant, cette approche souffre d'importants inconvénients. Premièrement, les 

procédures de fractionnement du COS sont laborieuses et ne peuvent pas être mises en œuvre 

dans des études à grande échelle. Deuxièmement, leur reproductibilité est discutable (Poeplau 

et al., 2013, 2018), et troisièmement, leur utilisation pour initialiser les tailles des 

compartiments des modèles du COS n'a jamais été correctement validée. 

Une validation correcte nécessiterait de montrer que (1) la taille des fractions du COS mesurées 

correspond à celle des bassins cinétiques du modèle, et que (2) les simulations de la dynamique 

du COS sont plus précises en utilisant cette stratégie d'initialisation, par rapport aux simulations 

par défaut (sur des sites de validation indépendants alors que les autres paramètres du modèle 

restent constants). Une correspondance raisonnablement bonne entre les fractions du COS 

mesurées et les pools conceptuels de COS modélisés a été rapportée dans un certain nombre 

d'études, avec toutefois quelques divergences notables (Zimmermann et al., 2007a; Leifeld et 

al., 2009a; Herbst et al., 2018). 

Les études qui ont tenté d'initialiser les tailles des compartiments modèles à l'aide d'un schéma 

de fractionnement du COS n'ont généralement pas signalé d'amélioration de la précision des 

simulations de la dynamique du COS par rapport à une approche d'initialisation par défaut ou 

par spin up (Leifeld et al., 2009b; Nemo et al., 2016; Cagnarini et al., 2019). Seules deux études 

ont montré qu'une initialisation basée sur un schéma de fractionnement du COS donnait des 

simulations plus précises de la dynamique du COS observée, mais au prix d'une modification 

du taux de décomposition des pools cinétiques du COS (Skjemstad et al., 2004 ; Luo et al., 

2014). 

La question de la partition des compartiments du COS reste cruciale et sans réponse. 
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7. Analyse thermique et le modèle d'apprentissage automatique PARTYSOC 

Au cours de la dernière décennie, l'analyse thermique en rampe a montré un grand potentiel 

pour obtenir des marqueurs de la stabilité biogéochimique du COS (Plante et al., 2013; 

Gregorich et al., 2015; Soucémarianadin et al., 2018). Surtout lorsqu'elle est accompagnée 

d'informations sur la chimie globale du COS, comme l'appauvrissement ou l'enrichissement en 

hydrogène (Barré et al., 2016) ou en fractions spécifiques (Sanderman and Grandy, 2020), la 

stabilité thermique a montré une forte corrélation avec les outils classiques utilisés pour estimer 

l'âge des atomes de carbone (14C ; Plante et al., 2013) et les estimations in situ de la stabilité 

biogéochimique du SOC (sites LTBF ; Barré et al., 2016).  

En utilisant les données de cette dernière étude, y compris des échantillons de sol d'archives 

provenant des jachères nues de longue durée et leur caractérisation connue par analyse 

thermique, Cécillon et al. (2018) ont développé un modèle d’apprentissage automatique. Ce 

modèle utilise des paramètres thermiques obtenus par analyse Rock-Eval® et permet d'estimer 

la taille de la fraction persistante du COS à l’échelle du siècle dans un échantillon. Cette 

première version a été adaptée récemment en élargissant son ensemble de calibration pour 

former la version la plus récente du modèle, nommée PARTYSOC (Cécillon et al., 2021; 

ANNEXE 1). 

Cependant, la question reste ouverte de savoir si le modèle PARTYSOC fonctionne sur des 

échantillons provenant de sites indépendants de son ensemble d'apprentissage et si les nouvelles 

informations fournies par l'analyse thermique Rock-Eval® et PARTYSOC peuvent réellement 

être utilisées pour initialiser la taille des compartiments cinétiques des modèles de dynamique 

du COS et si cela va améliorer la performance prédictive de ces modèles. Ce qui m'amène aux 

objectifs de cette thèse.  
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8. Mes questions de recherche et mon travail en trois chapitres 

Mon travail de thèse peut être résumé en trois objectifs.  

Comme décrit ci-dessus, la première série de questions de recherche est la suivante : Pouvons-

nous appliquer le modèle PARTYSOC à des sites en dehors de son ensemble de calibration et si 

oui, quel est le potentiel de cette approche pour améliorer la précision des simulations du COS ? 

Les deux parties suivantes se concentrent sur l’étude des limites et des possibilités de l'approche 

en utilisant des expériences de laboratoire. Plus précisément, dans la deuxième partie de cette 

thèse, nous demandons s'il est possible de comparer les paramètres Rock-Eval® d'échantillons 

provenant de différentes profondeurs d’un profil pédologique à des fins d'harmonisation des 

bases de données existantes.  

La question de la troisième et dernière partie est de savoir s'il est possible de progresser vers 

une compréhension plus mécaniste du lien entre la stabilité thermique et biogéochimique. Plus 

précisément, peut-on étudier le rôle de l'adsorption sur les surfaces minérales ― un mécanisme 

classique de protection du SOC ― à l'aide de Rock-Eval® et, si oui, quelle est son influence 

sur la stabilité thermique ?  
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Utilisation des estimations de la persistance du SOC prédites par l'apprentissage 

automatique et l'analyse thermique Rock-Eval® pour améliorer la précision des 

simulations de la dynamique du COS 

Mes objectifs étaient premièrement, de tester la dernière version du modèle PARTYSOC basé 

sur l'analyse thermique (fournissant des estimations du COS persistant) sur des échantillons 

indépendants et deuxièmement, d'utiliser les informations obtenues pour initialiser la taille des 

compartiments cinétiques du modèle AMG (actuellement le modèle le plus précis pour les 

grands cultures françaises) afin d'estimer l'amélioration potentielle des simulations du COS. 

Nous avons émis l'hypothèse que le modèle PARTYSOC peut être appliqué efficacement sur de 

nouveaux échantillons de sol provenant de pédoclimats similaires aux sites utilisés pour sa 

calibration (Europe du Nord-Ouest). Deuxièmement, puisque le modèle choisi de la dynamique 

du COS (AMG) et le modèle PARTYSOC ont la même architecture de compartiments de SOC, 

nous nous attendions à ce que le partitionnement des compartiments obtenu avec ces deux 

approches soit directement comparable. Troisièmement, nous avons émis l'hypothèse que 

l'utilisation du partitionnement de la taille des compartiments cinétiques prédit par PARTYSOC 

améliorerait la précision des projections des stocks de SOC, par rapport à l'initialisation par 

défaut du modèle. 

Ce travail a été mené sur des échantillons de sol d'archive et récents provenant de 9 expériences 

agronomiques françaises à long terme, incluant 32 traitements (Chapitre 1 de ce manuscrit ; 

Kanari et al., 2022). Nous avons montré que le modèle PARTYSOC prédit un partitionnement 

des compartiments de COS qui prend en compte les effets hérités de l'occupation du sol et des 

pratiques de gestion du sol et qui est optimal pour l’AMG. Le couplage des deux modèles, c'est-

à-dire l'initialisation de la partition des compartiments d’AMG à l’aide de PARTYSOC, nous a 

permis de reproduire les changements de COS observés à une échelle pluri-décennale dans les 

32 traitements. Les simulations ont été particulièrement améliorées dans les sites avec des 

histoires complexes de gestion du sol, où les stocks de COS étaient loin de l'équilibre (Fig. 3). 

Comme c'est le cas pour la plupart des terres cultivées européennes, nous estimons que le 

potentiel net d'amélioration apporté par cette méthode est substantiel.  
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De plus, cette méthode d'initialisation est rapide, a un faible coût et est facile à mettre en œuvre. 

En tant que telle, elle présente un grand potentiel pour obtenir des prédictions précises de 

l'évolution à grande échelle des stocks de COS au cours des prochaines décennies. 

Un autre message important que nous soulignons dans ce travail est la valeur des modèles multi-

compartimentaux simples de la dynamique du COS en tant qu'outil pour prédire avec précision 

l'évolution des stocks du COS. Nous démontrons que lorsqu'il est correctement initialisé, un 

modèle simple fournit des simulations non biaisées et précises à l'échelle pluri-décennale. 

Contrairement à une nouvelle génération de modèles mécanistes qui sont mathématiquement 

plus complexes et nécessitent un travail de paramétrisation et de validation supplémentaire, les 

modèles simples en revanche, une fois que leurs compartiments cinétiques sont correctement 

initialisés, peuvent fournir des projections fiables du SOC à l'échelle de la parcelle, de 

l'écosystème et du globe. 

  

Figure 3 : Deux exemples de la performance du modèle AMG après deux méthodes d'initialisation 

différentes. A droite, un exemple de site (Kerbernez) avec un historique complexe de gestion du sol. 
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Sur l'harmonisation des données Rock-Eval®  

L'augmentation exponentielle du nombre d'études axées sur la MOS, lancée par la prise de 

conscience de son importance pour l'atténuation du changement climatique, a entraîné la 

production d’une énorme quantité de données obtenues sur des échantillons de sol collectés à 

l'aide de différentes stratégies d'échantillonnage. L'harmonisation des données disponibles est 

plus impérative que jamais pour l'incorporation correcte des informations dans des études à 

grande échelle, notamment la modélisation et la cartographie des stocks et du potentiel de 

séquestration du COS. 

Le chapitre 2 aborde la question de la comparabilité des données entre les échantillons de sol 

obtenus à différentes profondeurs (Kanari et al., 2021). En utilisant des échantillons provenant 

de 10 parcelles, situées sur 8 sites forestiers en France, nous avons mené une expérience de 

mélange de sols, visant à trouver une méthode appropriée pour calculer les paramètres Rock-

Eval® d'un profil de sol (0–50 cm) en combinant les résultats Rock-Eval® enregistrés sur ses 

sous-couches (0–30 et 30–50 cm).  

Nous avons émis l'hypothèse que, dans les sols tempérés, la plupart des paramètres Rock-Eval® 

seront indépendants de la stratégie d'échantillonnage (c'est-à-dire que les paramètres Rock-

Eval® caractéristiques de la SOM d'une couche de sol donnée pourront être obtenus à partir des 

paramètres Rock-Eval® mesurés dans ses sous-couches), car nous nous attendons à ce que 

l'effet de matrice minérale soit faible dans ces sols. Cependant, il était également prévu que le 

mélange de matériaux contrastés pourrait entraîner des modifications du signal Rock-Eval® 

des échantillons composites.  

Les paramètres Rock-Eval® mesurés sur les échantillons composites étaient généralement en 

bon accord avec les paramètres calculés. Cependant, pour les paramètres dérivés du signal des 

hydrocarbures, la relation entre les valeurs mesurées et calculées n'était pas satisfaisante pour 

certains sites. Il s'agissait de sites avec une couche de sol profonde très riche en argile et une 

couche de surface avec une texture plus grossière, où le mélange a provoqué une addition 

d'argiles et donc une rétention des hydrocarbures par la matrice minérale pendant la pyrolyse. 

Par conséquent, dans le contexte du travail en cours pour l'harmonisation des bases de données, 

nous avons conclu que dans la plupart des sols tempérés, la caractérisation Rock-Eval® d'une 

couche de sol, y compris sa proportion de carbone persistante au cours du siècle, peut être 

déduite des caractéristiques des sous-couches. 
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En ce qui concerne les argiles et leur interférence avec le signal des hydrocarbures, nous 

fournissons une valeur seuil obtenue empiriquement de 20 % de différence de teneur en argile 

entre les sous-couches, au-dessus de laquelle le mélange des échantillons de sol pourrait 

entraîner des changements dans la forme du thermogramme des hydrocarbures et donc des 

paramètres liés (Fig. 4).  

 

Enfin, une dernière directive a été tirée de ce travail, concernant une catégorie spécifique de 

paramètres : les paramètres de température. Ceux-ci sont par définition particulièrement 

sensibles aux changements de forme du thermogramme et doivent être calculés après la 

reconstruction du signal.  

 

  

Figure 4 : Relation entre l'erreur de prédiction des paramètres Rock-Eval® et la différence de teneur 

en argile entre les sous-couches du sol (c.-à-d. la teneur en argile de la couche de surface − la teneur en 

argile de la couche souterraine) pour chaque parcelle. L'erreur de prédiction indiquée sur l'axe y est 

calculée comme la différence moyenne entre les valeurs calculées des paramètres Rock-Eval® et les 

valeurs mesurées par parcelle. 
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Ouverture de la boîte noire de Rock-Eval® : Pourquoi la stabilité thermique est-elle un 

bon indicateur de la persistance biogéochimique de la matière organique du sol ? 

Bien que la valeur de l'analyse thermique Rock-Eval® pour l'estimation de la persistance et de 

la modélisation du COS soit désormais indiscutable, notre compréhension mécaniste de la 

relation entre la stabilité thermique et biogéochimique au centre de cette approche est encore 

très limitée.  

Dans cette partie, sur la base d'un dispositif expérimental simple et d'un système modèle, nous 

nous sommes concentrés sur l'effet de l'adsorption comme mécanisme de protection potentiel 

de la matière organique vis-à-vis de la dégradation thermique. Nous avons analysé des 

composés biochimiques purs de plusieurs groupes (lignine, acide humique, protéines, glucides, 

lipides) pour obtenir leur signal Rock-Eval®. Nous avons préparé des mélanges organo-

minéraux en suivant un protocole simple de sorption par lots pour étudier les changements qui 

en résultent sur la stabilité thermique et les paramètres Rock-Eval®. Comme étape 

intermédiaire, nous avons évalué l'effet de la présence de minéraux dans des mélanges simples 

à sec. Nous avons utilisé des composés biochimiques et des minéraux artificiels purs ainsi que 

de la matière organique et des matrices minérales de sols naturels. 

Nous avons émis l'hypothèse que le degré et la force d'adsorption dépendraient des groupes 

fonctionnels des composés organiques ainsi que du pH, de la surface spécifique des minéraux 

et de leur réactivité. Nous nous attendions à ce qu'une association croissante entre la matière 

organique et les minéraux ait un effet plus fort sur les paramètres Rock-Eval® (précédemment 

corrélés empiriquement à la stabilité biogéochimique du COS). Nous avions également prévu 

des interactions entre les minéraux réactifs et les effluents de pyrolyse, ce qui se traduirait par 

un effet important de la présence de minéraux sur le signal Rock-Eval®, même dans les 

mélanges secs simples. 

Le choix de travailler avec des composés purs pour des raisons de simplicité du modèle 

expérimental a révélé un inconvénient important de la méthode Rock-Eval® lorsqu'elle est 

appliquée à certains composés, à savoir une déficience du rendement en carbone des composés 

purs oxygénés. Ce problème est actuellement négligé dans la littérature car la technique est 

surtout utilisée pour les échantillons de sols et de sédiments naturels contenant de la matière 

organique, pour lesquels les analyses Rock-Eval® présentent de bons rendements en carbone 

(90–100 %). En outre, l'efficacité de la détection du carbone a été influencée par la présence de 



Kanari Eva — Thèse de doctorat — 2022 

25 

 

goethite dans les mélanges pauvres en carbone (TOC≤1% en poids). Nous proposons que cette 

déficience est due au principe de fonctionnement du FID, et nous présentons des preuves 

obtenues en utilisant une configuration expérimentale de Rock-Eval® soutenant que le 

rendement en carbone manquant est associé à l'étape de pyrolyse. Pour des composés tels que 

les polymères organiques et la matière organique particulaire, le rendement en carbone de Rock-

Eval® était très bon (rendement en carbone > 95 %). 

Les expériences de sorption par lots ont été concluantes pour l'une des protéines, l'albumine de 

sérum bovin, et pour tous les minéraux (kaolinite, montmorillonite, goethite et trois matrices 

de sol naturel). Nous discutons des explications possibles de ce résultat, et du fait que pour les 

deux autres composés utilisés ici (acide humique et cystéine) l'efficacité d'adsorption était très 

faible. 

Les mélanges secs d'albumine de sérum bovin avec des minéraux ont montré que certains 

minéraux purs peuvent avoir un effet important sur le signal Rock-Eval®. Nous avons observé 

une forte oxydation des effluents de pyrolyse par la goethite, et une rétention des effluents par 

la montmorillonite (Fig. 5a & b). Bien que beaucoup moins intense, une certaine rétention et 

oxydation des effluents a également été observée pour les sols naturels. Parmi les différents 

thermogrammes, le signal hydrocarbure était le plus sensible à la présence de minéraux (Fig. 

5a & c). Une source importante d'incertitude remettant en cause l'origine de ces observations 

est la variabilité de la teneur en carbone entre les mélanges. 

L'effet des mélanges adsorbés sur les paramètres Rock-Eval® était très similaire à celui des 

mélanges secs correspondants (Fig. 5a–c). L'effet cumulatif des changements causés sur le 

signal Rock-Eval® a conduit à des valeurs légèrement plus élevées du COS persistent prédit 

par PARTYSOC pour les mélanges adsorbés. Cependant, les mélanges secs ont également eu un 

impact significatif sur les prédictions fournies par PARTYSOC (Fig. 5d). Par rapport à la 

détection du composé pur, la différence causée par l'adsorption était beaucoup plus faible que 

celle causée par la présence de minéraux. Nous attribuons ce manque d'importance de 

l'adsorption au choix spécifique des composés utilisés dans ce système modèle et nous upposons 

que l'adsorption réussie de molécules organiques plus petites pourrait conduire à une protection 

plus efficace contre la dégradation thermique. 
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Figure 5 : Effet des interactions organo-minérales sur les paramètres de Rock-Eval®. Les barres 

oranges représentent des mélanges secs d'albumine de sérum bovin avec différents minéraux, tandis 

que les barres bleues représentent des mélanges adsorbés du même composé. Les valeurs des 

paramètres indiquées ici présentent le changement par rapport au signal du composé pur (sable) 

normalisé par la plage de chaque paramètre. 
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9. Conclusions  

Ce travail présente plusieurs avancements concernant les objectifs principaux de cette thèse : 

« Comprendre et utiliser l'estimation de la persistance du carbone organique du sol par l'analyse 

thermique Rock-Eval® » 

 

Nos résultats montrent que le modèle PARTYSOC, une approche d'apprentissage automatique 

basée sur des données d'analyse thermique, peut fournir des informations précises sur la 

persistance du COS dans des échantillons inconnus. Nous soulignons la capacité de cette 

approche à prendre en compte les effets de l'histoire de l'utilisation des terres sur la dynamique 

du COS et nous montrons comment les informations qu'elle fournit peuvent être utilisées pour 

initialiser les simulations du COS et améliorer leur précision. La valeur de cette approche basée 

sur l'analyse thermique est claire, non seulement en raison de son pouvoir prédictif, mais aussi 

pour des raisons pratiques telles que la rapidité de l'analyse et son faible coût. 

Le besoin actuel d'estimer la persistance du COS satisfait par cette approche soutient 

l'expansion de cette méthode à une plus grande échelle. En outre, l'une de nos principales 

conclusions concerne la valeur d'AMG, le modèle simple de dynamique du COS utilisé dans ce 

travail. En raison de la précision optimale des simulations fournies par ce modèle, lorsqu'il est 

correctement initialisé, nous recommandons qu'il soit utilisé comme un outil de prédiction 

opérationnel pour développer des pratiques de gestion des terres appropriées. Nous pensons que 

la simplicité et l'efficacité du modèle AMG est un avantage important par rapport aux modèles 

du COS plus récents et plus complexes qui sont très difficiles à contraindre et à évaluer. 

L'approche proposée devrait aboutir à des prédictions plus précises de l'évolution des stocks du 

COS à l'échelle nationale, voire continentale, et pourrait soutenir la mise en œuvre de politiques 

efficaces d'atténuation du changement climatique. 

 

Dans le contexte de l'application de cette méthode à plus grande échelle, nous avons considéré 

la question de l'application de cette technique d'analyse thermique sur des échantillons de sol 

déjà disponibles mais obtenus à différentes profondeurs comme c'est souvent le cas dans 

différents projets de surveillance des sols. Nous montrons qu'il est possible de déduire la 
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caractérisation Rock-Eval® (y compris la persistance du COS) d'une couche de sol à partir des 

caractéristiques de ses sous-couches car les paramètres obtenus avec cette méthode sont 

linéairement additifs pour la plupart des sols de forêts tempérées testés ici. Nous soulignons 

que la méthode de calcul doit être adaptée au type de paramètre et nous fournissons des 

directives concernant les procédures les plus appropriées. Nous attirons l'attention sur un effet 

minéral qui entrave la prédiction des paramètres Rock-Eval® liés aux hydrocarbures dans les 

sols présentant une différence prononcée de teneur en argile entre les sous-couches du sol 

(ΔCLAY>20 % wt.). Notre travail peut être considéré comme un guide empirique ouvrant la voie 

à l'harmonisation des données obtenues avec cette technique. 

 

Enfin, dans un effort pour ouvrir la boîte noire de Rock-Eval®, nous avons tenté de mieux 

comprendre les interactions entre la matière organique et les minéraux qui influencent le signal 

de Rock-Eval® et les estimations associées de la stabilité thermique. Nous avons utilisé un 

système modèle composé de matières organiques et de minéraux purs ainsi que de la matière 

organique particulaire naturelle et de matrices de sol. Nous fournissons des informations sur les 

limites de la méthode Rock-Eval® lorsqu'elle est utilisée pour analyser des composés oxygénés 

et nous invitons à une révision des études antérieures utilisant des composés similaires et 

ignorant cet effet. Nous soulignons le fort effet des minéraux purs tels que la goethite et la 

montmorillonite sur le signal Rock-Eval®, cependant cette observation n'est pas pertinente pour 

l'environnement du sol en raison des grandes différences dans la nature des matériaux utilisés 

et des conditions occurrentes. L'analyse de la matière organique particulaire confirme la 

capacité de Rock-Eval® à détecter la SOM avec une grande précision. 

Une légère augmentation des prédictions de la proportion persistante de SOC est observée 

lorsque des mélanges organo-minéraux adsorbés sont analysés au lieu de simples mélanges secs 

de même composition. Cependant, il n'y a pas de tendance cohérente parmi les paramètres 

thermiques, ce qui permet de conclure que l'effet de l'adsorption produite dans cette étude sur 

le signal Rock-Eval® n'est pas significatif. De plus, cette observation est éclipsée par la forte 

influence de la matrice minérale et les fortes différences de teneur en carbone entre les 

mélanges. Nous discutons des options possibles pour favoriser la formation d'adsorption et nous 

suggérons que des travaux supplémentaires sont nécessaires pour déchiffrer le lien entre la 

stabilité thermique et biogéochimique.   
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10. Perspectives 

Une perspective immédiate concernant l'utilisation du modèle PARTYSOC à l'échelle nationale 

est son application sur un ensemble d'échantillons plus large. Un effort déjà en cours est 

l'utilisation de PARTYSOC sur des échantillons du réseau RMQS (Réseau de Mesures de la 

Qualité des Sols) comprenant un total de 2240 sites, répartis de façon homogène sur toute la 

France métropolitaine et la Corse selon une grille de 16 km². Ceci permettrait de générer une 

carte de persistance du COS qui pourrait contribuer à l'amélioration des simulations d'évolution 

des stocks du COS à l'échelle nationale, avec une importance claire en tant qu'outil d'aide à la 

décision (projet de thèse d'Amicie Delahaie). 

De plus, une priorité élevée est d'inclure plus de sites dans l'ensemble d'apprentissage du modèle 

PARTYSOC pour augmenter sa robustesse et sa généricité. Sur la base du bon accord entre les 

prédictions de PARTYSOC et la partition des compartiments post- optimisée par AMG observée 

dans cette étude, nous suggérons que la plupart des LTE agricoles avec des simulations AMG 

précises pourraient être utilisées comme sites de référence pour une future version du modèle 

PARTYSOC. Ceci pourrait améliorer la précision du modèle PARTYSOC dans des conditions 

pédoclimatiques tempérées et pourrait éventuellement lever une importante limitation 

technique à son expansion géographique. 

Avant la mise en œuvre continentale ou mondiale de PARTYSOC dans les études de 

modélisation du COS, ses performances devront être validées sur une gamme plus large de 

pédoclimats. De plus, comme dans cette étude, son potentiel pour améliorer la précision des 

simulations devra être démontré pour les nouveaux domaines d'application. Pour continuer à 

utiliser le modèle AMG pour ces étapes d'évaluation, il faudra disposer de LTE provenant d'une 

variété de lieux géographiques et de données de suivi à long terme (climat, couverture du sol, 

apports de C, pratiques de gestion, caractéristiques du sol) pour exécuter les simulations. 

Une autre possibilité serait de profiter de la littérature sur les travaux de modélisation déjà 

réalisés avec d'autres modèles multi-compartimentaux (par exemple, Century, RothC) et de 

tester le potentiel de PARTYSOC pour améliorer leurs simulations en initialisant leurs 

compartiments du COS "stable".  
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L'avenir à long terme de cette approche pourrait ressembler à un cycle constant d'adaptation, 

d'expansion et d'amélioration pour tirer le meilleur parti de ce que la caractérisation du COS a 

à offrir. À terme, d'autres paramètres (par exemple, le pH du sol) pourraient être ajoutés à 

l'ensemble d'étalonnage du modèle PARTYSOC et sa structure pourrait évoluer en testant 

d'autres algorithmes d'apprentissage automatique. 

 

Nos travaux sur la linéarité des paramètres de Rock-Eval® suggèrent qu'il est possible de 

déduire la caractérisation d'une couche de sol à partir des sous-couches qui la composent. Bien 

que cette observation soit en faveur de la mise en œuvre du modèle PARTYSOC sur des 

échantillons existants, il est important de ne pas dépasser les limites pédoclimatiques pour 

lesquelles cela est vrai.  

Nous suggérons de mener des expériences similaires mais plus étendues couvrant une plus 

grande variabilité de sols présentant une hétérogénéité texturale et minéralogique verticale. Des 

seuils mieux définis de l'effet minéral dans les sols naturels pourraient être utiles pour prédire 

les limites de la méthode.  

Une perspective intéressante liée de manière générale à la méthode Rock Eval® serait d'estimer 

l'incertitude associée à chaque paramètre. Des indications similaires existent mais uniquement 

pour des matériaux standards. Compte tenu de la forte hétérogénéité du matériau sol, une 

estimation de l'erreur correspondant aux différents types ou fractions de sol semblerait utile. 

Ceci permettrait la propagation de l'incertitude dans des calculs tels que celui présenté dans ce 

travail mais aussi dans d'autres cas où les paramètres d'acquisition de Rock-Eval® sont utilisés 

pour déduire des termes plus élaborés. 

 

En ce qui concerne notre compréhension des processus reflétés par le signal Rock-Eval® qui 

en font un indicateur approprié de la stabilité biogéochimique, des travaux supplémentaires sont 

nécessaires.  

Un inconvénient important des résultats présentés dans cette étude qui devrait être amélioré 

immédiatement est la variabilité de la teneur en carbone dans les mélanges produits.  
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Toutefois, au cas où cette perspective s'avérerait trop difficile, une approche intéressante 

consisterait à étudier l'effet de la concentration en carbone sur l'intensité de l'effet minéral, pour 

différents composés organiques et minéraux.  

Des efforts supplémentaires devraient être consacrés à la création d'associations plus fortes et à 

l'examen plus approfondi de leur influence sur la stabilité thermique. Le pH de la solution doit 

toujours être étroitement surveillé et contrôlé, car il peut avoir un impact sur le type de liaisons 

qui peuvent être générées. L'influence de la taille moléculaire des composés utilisés sur 

l'efficacité de la formation d'adsorption est un aspect intéressant à examiner. 

Bien qu'il semble trivial que la dissolution complète des composés dans une solution mère soit 

confirmée, soit par une mesure directe, soit par l'utilisation d'un contrôle, ceci n'est pas toujours 

pris en compte par les études de sorption par lots trouvées dans la littérature. La comparabilité 

des résultats obtenus avec ces expériences bénéficierait de procédures plus standardisées et 

communément acceptées.  

Il convient également d'étudier d'autres mécanismes qui pourraient influencer le lien entre la 

stabilité thermique et biogéochimique, tels que la récalcitrance et l'équilibre entre le gain 

d'énergie et l'énergie d'activation. L'utilisation de méthodes complémentaires telles que la 

calorimétrie différentielle à balayage et la microscopie électronique à transmission pourrait 

fournir des informations précieuses pour nous aider à mieux comprendre la formation des 

associations organo-minérales. 

 

 

 En conclusion, il serait trompeur de considérer que les sols sont la seule solution, ou qu'ils 

constituent à eux seuls une solution adéquate, pour compenser les émissions globales de gaz à 

effet de serre et lutter contre le changement climatique. Cependant, la gestion intelligente des 

sols à l'échelle globale reste une option pratique et avantageuse pour les humains ainsi que pour 

l’environnement, qui peut contribuer de manière significative à éviter des émissions 

supplémentaires et à garantir la sécurité alimentaire. La gestion des sols peut être une solution 

éthique et solidaire.  
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V. Synopsis 

 

 

 

Soil organic matter (SOM) is an important indicator of soil health, the ability of soils to provide 

various ecosystem services, such as water quality and storage, soil life support and biodiversity 

conservation. Moreover, this reservoir contains two times more carbon than the atmosphere and 

vegetation combined and it is located at a critical position, in direct exchange with the 

atmosphere. As a result, small changes in soil organic carbon (SOC) stocks have a major impact 

on atmospheric CO2 concentration and climate regulation. Improving land-management 

practices to increase SOC stocks is amongst the most practical and affordable solutions 

contributing to climate change mitigation and food security (4per1000). However, achieving 

this goal is currently hindered by our limited understanding of the processes controlling SOC 

persistence and our disability to predict its evolution. 

 

Part of SOC is characterized by a short turnover time counting only hours, whereas more 

persistent components can reside in the soil for hundreds to thousands of years. The amount of 

persistent carbon significantly varies between locations according to pedoclimatic conditions 

and land-use history. Models of SOC dynamics used to predict the evolution of SOC stocks 

divide SOC into conceptual stability pools and correct initialization of pool sizes is crucial for 

their accuracy. At the same time, apart from some very specific long-term experimentation sites 

(long-term bare fallow, C3 to C4 vegetation change chronosequences), means to efficiently 

estimate the size of model kinetic compartments remain limited. Recently, Rock-Eval® thermal 

analysis was proposed as an appropriate method for direct determination of SOC stability. 

Based on this technique, a machine learning model (PARTYSOC) was developed, calibrated on 

long-term bare fallow data, which allows the estimation of the size of the centennially persistent 

SOC fraction in a sample. However, it still remains an open question whether the new 

information provided by Rock-Eval® thermal analysis and PARTYSOC can actually improve 

the predictive performance of SOC dynamics models.  
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The first objective of my thesis was to use this novel approach to estimate the size of SOC 

stability fractions in unknown samples in an effort to evaluate its performance. Second, I aimed 

at using the obtained information to initialize the SOC pool sizes of the 2AMG model of SOC 

dynamics to test if this approach improved the accuracy of its simulations. Nine French long-

term agronomical experiments from the 3AIAL database and the 4SOERE PRO network, 

including 32 treatments, were used to test this hypothesis and estimate the potential 

improvement brought by this initialization approach. Using PARTYSOC on unknown samples 

from independent sites resulted in predictions of optimal pool partitioning, accounting for 

legacy effects of soil management history. Initializing the SOC pool partitioning of AMG using 

this approach improved its overall accuracy when reproducing the observed SOC dynamics in 

the nine sites. These results indicate that the simple AMG model combined with a robust 

initialization approach can simulate observed SOC stock changes with precision. Harnessing 

the predictive power of simple models for development of science-based land-management 

strategies is recommended. Finally, the proposed approach is quick and fully automated and 

can be easily implemented on soil monitoring networks, paving the way towards precise 

predictions of SOC stock changes over the next decades. 

Having obtained these encouraging results, for the second part of my thesis, I turned my focus 

back to the Rock-Eval® technique. My goal here was to understand more about the limits and 

the potential of this analytical method using two simple experimental designs.  

 

The first experiment aimed at predicting the response of Rock-Eval® parameters to mixing of 

soil layers to answer the practical question: Is the comparison of available Rock-Eval® data 

obtained on samples from different depths possible? The main idea was that if we can predict 

the behavior of Rock-Eval® parameters according to the sampling strategy, this would allow 

the comparison of results of studies using different sampling methods.  

                                                 

 

 
2 AMG is a French model of SOC dynamics used in this work and described in detail in Sect. 1.10 (Andriulo et 

al., 1999) 
3 AIAL is an extensive database including the majority of French long term agronomic experiments (Clivot et al., 

2019) 
4 SOERE PRO is an “Organic residues” research observatory including a network of long term field experiments 

studying recycling of organic residues in agriculture 
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The initial hypothesis was that there would be no major effect, considering that this study was 

conducted on temperate soil samples. Natural soil samples from ten forest plots in France were 

used. Carbon-enriched surface soil samples (0–30cm), mineral-enriched deeper soil samples 

(30–50cm) and their mixtures were analyzed with Rock-Eval®. The linearity of the Rock-

Eval® parameters of soil mixtures between theory and observation was investigated. For the 

calculation of theoretical values of Rock-Eval parameters® it was necessary to adapt the 

calculation method according to the type of parameter. In conclusion it was possible to predict 

Rock-Eval® parameters for the 0–50cm layer. The natural mineral matrix effect in temperate 

soils was indeed low. Only in cases where deep soil was much richer in clay than the surface 

layer (>20%), there was an interaction with pyrolysis effluents that affected the detection of 

hydrocarbons.  This work provides a first empirically developed guide towards harmonization 

of databases of Rock-Eval® data. 

 

The goal of the second experiment was to progress towards a more mechanistic understanding 

of the link between thermal and biogeochemical stability of SOC. Even though comparison of 

Rock-Eval® results with classical methods for estimation of carbon stability pools has shown 

a strong correlation, this link remains purely empirical. Here, the main goal was to understand 

the role of organo-mineral interactions. A simple model system was implemented involving 

pure organic compounds and minerals as well as particulate organic matter and natural soil 

mineral matrices. A series of batch sorption experiments were conducted with the objective of 

tracking the changes on the Rock-Eval® signal caused by the existence of adsorption between 

a compound and a mineral compared to pure compound detection and detection in dry simple 

mixtures. Preliminary results suggest that the apparatus in its current set-up has a limited ability 

to detect oxygenated pure organic compounds. The presence of dry reactive minerals such as 

goethite and montmorillonite can interfere strongly with the detection of organic effluents 

during the pyrolysis step. Moreover, our experiments showed that producing organo-mineral 

associations to a sufficient degree is quite challenging. Finally, although successfully formed, 

pre-existing adsorption between organic compounds (bovine serum albumin) and minerals had 

a non-significant increasing effect on the overall thermal stability.  These results allow a first 

estimate of the part of carbon stability attributed to the interaction of organic matter with 

minerals and very importantly they reveal previously unknown limitations of the Rock-Eval® 

technique regarding detection of pure compounds.   
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1. General introduction 

1.1. Current environmental and climate challenge  

Every year, human activities, such as burning fossil fuels and deforestation, release more than 

10 Gt of carbon into the atmosphere, mainly in the form of CO2. About 30% of the additional 

CO2 produced each year is absorbed by terrestrial ecosystems, 28% by the oceans, whereas 

49% is retained by the atmosphere (Friedlingstein et al., 2020), causing the atmospheric CO2 

concentration to rise. In 2019, the increase in CO2 compared to pre-industrial levels (1750) 

reached 148% (Fig. 6; WMO, 2021). This radical change in the composition of the atmosphere 

is contributing to global warming and climate change. While discussions at the global level 

about reducing emissions of greenhouse gases are intensifying (e.g., COP 26), the trend is 

currently still positive with global emissions increasing by approximately 90-300 Mt C each 

year (Peters et al., 2020). Global organisations such as the IPCC have been sounding the alarm 

for decades. In its last report IPCC (2021) warns that unless immediate large-scale action is 

taken, the 1.5–2 °C warming limit agreed upon by the Paris Agreement (UNFCCC, 2015) will 

be beyond reach.  

Figure 6: Atmospheric CO2 concentration rise in the last two 

millennia. Values before 1958 are inferred from gases trapped in 

Antarctic ice cores (Bereiter et al., 2015). Data from 1959 onwards 

are direct measurements of atmospheric CO2 concentration from the 

Mauna Loa observatory in Hawaii. Figure modified after sources 

mentioned on the figure. 

https://unfccc.int/process/bodies/supreme-bodies/conference-of-the-parties-cop
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Today, all areas of the world are already impacted in some way by climate change. This reality 

is not only an environmental crisis but it has serious economic and societal aspects as well.  

According to the Universal Ecological Fund’s report (FEU-US, 2017) the economic cost of 

climate change including extreme weather events and health hazards due to air pollution was 

estimated at a yearly average of 240 billion for the U.S. economy only. Worldwide, the price 

of the loss of ecosystem services due to land degradation alone, caused mainly by millennia of 

human land use (Sanderman et al., 2017) and aggravated by climate change, corresponds to 

10% of the annual global GDP (IPBES, 2018). Moreover, the World Meteorological 

Organization (WMO, 2021) estimated that extreme weather phenomena caused the 

displacement of about 10 million people just in the first half of 2021. The simultaneous climatic 

crisis, causing ecosystems to fall out of balance and contributing to land degradation, combined 

with the accelerating increase in human population expected to reach 10 billion by 2100 (UN, 

2019), raises a serious issue for feeding the global population.  

 

Governments and global organizations are called to take action including emission reductions 

and a shift to clean energy. In the frame of the European Green Deal the EU aims to become 

the first carbon-neutral economy by 2050 by reaching net-zero greenhouse gas emissions 

(European Commission, 2019). Programmes launched by the UN such as the Sustainable 

Development Goals, to be achieved by 2030, were designed to ensure a safer future for the 

global population (UN General Assembly, 2015). Nature-Based Solutions (NBS) and negative 

emission technologies (NET) are necessary to reach carbon neutrality, stabilize temperature and 

limit the effects of climate change (IPCC, 2018; Anderson et al., 2019). Due to the fact that 

NBS are no regret solutions but also because of their potential to reduce emissions estimated at 

a significant 37% of the 2030 goal, scientists and environmental activists urge for ecosystem 

conservation and restoration, and sustainable management of forests, wetlands and grasslands 

(Griscom et al., 2017) with the potential to sequester organic carbon in terrestrial ecosystems. 

Projecting future climate change and developing appropriate climate policies requires an 

extensive understanding of the global carbon cycle and the ability to predict shifts between its 

reservoirs, especially land and the atmosphere. 
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1.2. Soils in the global carbon cycle 

 

 

 

 

 

 

 

 

 

 

The global carbon cycle (Fig. 7) refers to the distribution of carbon amongst various reservoirs 

and the flows that connect them. Shifts of carbon out of a reservoir increase its concentration 

into others and cause changes in the cycle balance. Because this cycle is inherently linked to 

climate, serious efforts have been made by the scientific community to acquire detailed 

knowledge to support policy development and action to mitigate climate change (Global 

Carbon Project, 2001). Although important amounts of carbon are found in reservoirs such as 

inorganic carbon in rocks or carbon dissolved in the deep ocean, exchanges between these 

reservoirs and the atmosphere are slow (Riebeek, 2011). The flows most relevant to climate 

regulation are the ones occurring faster, between the fossil fuel pool, soil, vegetation and 

atmosphere. Compared to the atmosphere, soils contain two to three times more carbon, in the 

form of soil organic matter (SOM), making them the largest terrestrial organic carbon reservoir 

(Jobbagy and Jackson, 2000; Houghton, 2007). 
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On a global scale the mass of soil organic carbon (SOC) is estimated to be 1500–2400 Gt, which 

corresponds to 3–4 times the total amount of carbon found in all biosphere (600 Gt). The size 

as well as the critical position of this reservoir, at the border between solid earth and 

atmosphere, underline its importance for climate regulation (Batjes, 1996; Lal, 2004a). 

Relatively small shifts of net SOC source or sink can have major effects on concentration of 

atmospheric CO2 (Lal, 2004a).  This idea sparked the “SOC sequestration movement” and 

among others the “4 per 1000” initiative promoting that a relatively small annual increase of 

0.4% in SOC stocks is enough to compensate for the increase in atmospheric CO2 caused by 

anthropogenic emissions (Minasny et al., 2017). But even setting aside the climate debate, SOC 

stocks must be protected and if possible increased, as SOM is essential for soil health and 

provision of multiple soil ecosystem services (Lal, 2004b). 

  

Figure 7: Diagram of the global carbon cycle including the natural fluxes and stocks in different 

reservoirs, as well as perturbations caused by anthropogenic activity, namely increase in fossil fuel 

emissions (EFOS) and land-use change related emissions (ELUC). Carbon emissions either retained in the 

atmosphere expressed as a CO2 growth rate (GATM), adsorbed by land (SLAND) or oceans (SOCEAN) are 

averaged over the last decade (2010-2019; Friedlingstein et al., 2020). 
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1.2.1. Quick view of the processes that drive SOC  

The main process of organic carbon input into soil is the fixation of CO2 from the atmosphere 

by plants through the process of photosynthesis, and deposition of this carbon either directly 

belowground through root exudates or in the form of residues in the aboveground litter layer 

(Fig. 8). In cases of managed land other exogenous organic matter additions might occur such 

as manure or compost amendment. Organic matter in soils enters the metabolic pathway of 

various heterotrophic organisms. Some of the carbon is respired and released back into the 

atmosphere in the form of CO2. The variety of microorganisms as well as the soil mineral 

substrate make soil a heterogeneous environment accommodating a myriad of biotic and abiotic 

interactions that will define the residence time (s. Sect. 1.8.) of organic carbon. Organic carbon 

can be lost from soils through erosion and leaching as well but the relative importance of these 

processes is low in most soils (FAO & ITPS, 2015).  

 

Figure 8: Schematic representation of the main SOC input and output processes controlling SOC 

stocks (FAO and ITPS, 2015). 
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1.3. Soil properties, functions and ecosystem services 

 

 

 

 

 

 

 

The term “soil functions” often refers to processes that are taking place in soils because of their 

inherent physical and chemical properties (e.g., texture, structure, mineralogy…), whereas “soil 

ecosystem services” are the associated benefits to the ecosystem seen from a human perspective 

(Spangenberg et al., 2014; Vogel et al., 2019). 

Soil functions include a wide range of processes, taking place under the unique conditions that 

exist only in the soil environment, “making this thin layer of loose material covering the Earth’s 

surface the difference between life and lifelessness” (Berhe, 2019). Seven soil functions are 

considered key for human well-being and are underlined in the EU Soil Framework Directive 

(European Commision, 2006): (1) biomass production for agriculture or forestry, (2) storage 

filtering and transport of nutrients and water, (3) support of the biodiversity pool through 

provisioning of an appropriate habitat for multiple species, (4) provisioning of a physical and 

cultural environment for humans, (5) acting as a source of raw materials, (6) as a carbon pool, 

and (7) as an archive of geological and archaeological heritage. 

The ability of a soil to host these functions requires that its properties remain intact. The 

inherent composition of a soil as a mixture of minerals, living organisms, soil organic matter 

and water gives it its characteristic texture, pH, bulk density, cation exchange capacity, 

electrical conductivity, porosity, aggregate stability and hydraulic conductivity (Hatfield et al., 

2017) – all crucial to soil health.   
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1.3.1. The influence of SOC content on soil properties and soil functions 

 

Soil organic matter is considered the most important component that can be efficiently managed 

to enhance soil health and achieve sustainable soil development. Increasing the organic carbon 

content of soils is beneficial to many functions such as their fertility (Tiessen et al., 1994; Six 

et al., 2004), their climate regulation capacity (Heimann and Reichstein, 2008), and their water 

filtration and retention potential (Doran and Parkin, 1994).  

An increase in SOC leads to a multitude of complex interactions; a few examples are provided 

here taken mainly from Pellerin et al. (2019). As a chemical element soil organic carbon is 

expected to directly influence the overall chemistry and thus the chemical properties of soil. 

These include but are not limited to its nutrient availability and cation exchange capacity. SOM 

has a cation exchange capacity that is up to ten times higher than clays (per unit of mass), thus 

it can increase the retention of nutrients (such as Ca2+, Mg2+, or K+) vital for plant growth, 

improving soil fertility.  

Physical properties of soil such as its porosity, bulk density, and structural stability are also 

influenced by its SOC content. A combined effect of the improvement of soil physical 

properties is the increase in its capacity to store water (Tisdall and Oades, 1982) and the 

improvement of its fertility (as more space becomes available for root growth), enhancing the 

resistance of soil to erosion.  

Moreover, biological properties of soil benefit from an increase in SOC content, namely 

through the provision of energy for microorganisms, supporting once again the plant soil 

interaction though an increase in biodiversity.  

 

Soils constitute the medium in which all plants grow, including feed, fibre and fuel production. 

They are the source of building material such as earth, sand, clay or peat. They are the 

foundation for all structure and infrastructure support. They filter and store water and they are 

immensely important for flood regulation. They are a conserve of our cultural heritage. Soils 

might even be considered as part of the recreational landscape important for human physical 

and even mental health (Sustainable Soils Alliance, 2022). 

https://www.sustainablesoils.org/
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1.4. Current status of global soil health 

 

Despite their importance the ability of soils to support ecosystem well-being is currently 

compromised through serious land degradation caused by human activity and climate change. 

Deforestation or inappropriate forest management, expanding agriculture and intensive 

agricultural practices are some of the most important direct human-induced drivers of land 

degradation (Olsson et al., 2019). It is estimated that one third of the world’s soils are currently 

under moderate or severe stress (Fig. 9; IPBES, 2018). The threat of land degradation is 

amplified by the positive feedback relationship with climate change through reduced rates of 

carbon uptake and increased GHG emissions in degrading soils (Olsson et al., 2019). With rates 

of soil erosion estimated to be 2–3 orders of magnitude greater than soil formation, soils are a 

limited and fragile resource that can be considered as non-renewable (JRC, 2016).  

  

 

 

Figure 9: Level of loss of ecosystem services caused by land degradation in different parts of the 

world (IPBES, 2018). 
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Soil degradation however, does not only involve the loss of soil mass through erosion but also 

the depletion of soil nutrients and organic matter, sealing of the soil surface through 

urbanisation, soil compaction, salinization, acidification and increase in toxic elements 

concentration causing partial or complete failure of soil functions (IPBES, 2018).   

Amongst EU members, 13 countries are reporting being affected at some degree by 

desertification (EEA, 2019), while erosion rates in Europe are expected to keep increasing in 

the next 30 years (Panagos et al., 2021) resulting in an estimated loss of 16% of the EU 

agronomic income by 2050 (EAA, 2019). Nevertheless, not all soils are susceptible to 

degradation to the same degree. Due to their sensitivity to rising temperatures, permafrost soils 

are a major concern. Even a small loss of carbon of their estimated current stocks could offset 

efforts for SOC sequestration (UNEP, 2019). Many peatland soils, intensively used for 

agriculture due to their high productivity, are also greatly affected by soil degradation and need 

to be carefully managed to maintain their potential and avoid additional emissions (Liu et al., 

2012). 

 

The current state of soils is predominantly a result of their exploitation by humans in past 

millennia heavily impacting their health and their and ability to stock carbon (Amundson et al., 

2015; Sanderman et al., 2017).  While inappropriate land management causing SOC depletion 

is a major threat for soils, increasing SOC is important both for soil conservation and climate 

regulation.   
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1.5. Historic trends in SOC stocks  

Understanding the causes, magnitude and consequences of historic SOC trends is considered a 

valuable reference point for estimating the current potential of soils to sequester carbon (FAO 

& ITPS, 2015). Evidence suggests that since the last ice age human-induced land cover changes 

and particularly unsustainable land management caused significant SOC depletion (Amundson 

et al., 2015; Sanderman et al., 2017). Estimates of the magnitude of historic SOC loss vary 

widely, with values at the lower end of the spectrum at 40–55 Pg C (Houghton, 1995; IPCC, 

1995) and maximal estimates in the range of 500 Pg C (Lal, 2001).  

In an interesting study combining land use data from a historical database with environmental 

variables using machine-learning, Sanderman et al. (2017) showed that SOC loss has been 

ongoing for at least 12 000 years. The global SOC loss saw an exponential increase in the last 

200 years (Sanderman et al., 2017; Fig. 10) coinciding with the industrial revolution and the 

expansion and intensification of agriculture. Most soils under agricultural use may have lost 

25–75% of their initial SOC stocks due to intensive cultivation, with a cumulative SOC loss of 

133 Pg C caused by agriculture alone (Lal, 2013; Sanderman et al., 2017). This loss showed 

spatial and temporal variability, whereas a strong correlation was found between degree of land 

degradation, including decrease in biomass and biodiversity, water and soil quality, and the 

SOC loss caused by land use change (Sanderman et al., 2017), indicating that not only land use 

change but also management has a significant impact. 

 

Figure 10: Historic evolution of conversion of undisturbed soils to grazing land and cropland and 

associated cumulative SOC loss (Sanderman et al., 2017) 
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1.6. Potential to reverse the SOC debt  

 

The suggestion that this accumulated SOC debt can be reversed (Lal, 2004a) initially led to 

SOC and soil health receiving increased political and scientific attention (4per1000, 2018) but 

it has also attracted intense criticism (Paustian et al., 2016; Amundson and Biardeau, 2018). 

This idea is still being debated while various studies focus on different aspects of SOC 

sequestration potential involving biophysical, technical, economic or even societal limitations 

(Minasny et al., 2017; Amundson and Biardeau, 2018; Rumpel et al., 2018).  

The optimistic scenario that best management practices can be achieved, allowing recovery of 

two thirds of the lost SOC corresponding to 88 Pg C (Lal, 2004a) is quite far from estimates 

provided by bottom-up approaches (taking into account that SOC equilibrium will be reached 

after 20–30 years), resulting in biophysical potential of SOC sequestration in the range of 8–28 

Pg C (West et al., 2004; IPCC, 2006; Smith et al., 2008; Bossio et al., 2020). Others warn that 

even this scenario might not be achievable taking into account the current rise in global 

temperature and the increase in soil erosion rates (Smith et al., 2005; Amundson et al., 2015). 

Instead they suggest that the amount of carbon loss that can be reversed might be in the order 

of 10–30% at best or even below 10% (Sanderman et al., 2017).  

 

A recent report specifically evaluating the potential of increasing SOC stocks and reaching the 

4 per 1000 goal in France on a national scale based on extensive observational data and 

modelling showed that improving agricultural practices can offset ~41% of annual national 

agricultural emissions or 7% of total national GHG emissions (Pellerin et al., 2019). This study 

found a clear increasing effect of change in practices on SOC stocks, using observations from 

a network of long-term monitored sites with land use or land management changes or space for 

time substitutions at neighbouring plots (Fig. 11; left). The study assumed that the maximum 

potential of additional SOC storage was the difference between SOC stock of undisturbed soils 

(at equilibrium) and the current SOC stock of a cultivated soil. By definition, carbon additional 

storage would then depend on carbon inputs and the mean residence time of SOC (defined in 

Sect. 1.8.1.). Changing practices however can change both of these variables and will result in 

soils eventually reaching a new SOC equilibrium (after an infinite time period).  

https://www.4p1000.org/fr
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Predictions of the future of SOC under a given climatic and management scenario are uncertain 

due to lack of knowledge of site history, defining the initial conditions. Moreover, since most 

field trials are not longer than 20–30 years, it is difficult to validate model predictions outside 

of this range (Fig. 11; right side). 

 

 

Although the magnitude of the potential of increasing SOC stocks is uncertain, the benefits to 

soil functions, resistance to degradation and climate change mitigation are undeniable (FAO & 

ITPS, 2015; FAO, 2017). Climate smart soil management practices are not only an efficient 

way of removing CO2 from the atmosphere but they also bring benefits to all soil functions 

including air quality, soil health, and biodiversity and are amongst the cheapest solutions 

currently available for promoting negative emissions (Griscom et al., 2017). 

Still, developing appropriate strategies requires confidence in our ability to predict the evolution 

of SOC stocks through better assessment methods.   

Figure 11: Potential of increasing SOC stocks by improving land management 

practices. Left side depicts observed changes in SOC stocks in field trials after 

change from a reference practice A to a new practice B. On the right side the graphs 

represent simulations of SOC evolutions under unchanged and new management 

practices for two climatic scenarios (translated from Pellerin et al., 2019). 
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1.7. Monitoring SOC change: Measuring vs. modelling 

 

 

 

Monitoring SOC stock changes in the field can be challenging. Not only do SOC stock changes 

occur slowly but the small magnitude of relative changes that are of interest for the exchange 

of CO2 with the atmosphere compared to the large size of the SOC pool and the natural seasonal 

and spatial variation of SOC are difficult to detect (Smith, 2004). Thus carefully monitored 

long-term experiments (LTEs) maintained over multiple decades are of immense value for 

having accurate observations of the effect of management practices on SOC dynamics. The 

estimated required period for detecting a change in SOC stocks is between five and ten years 

(Smith et al., 2020), while the period needed for SOC to reach equilibrium with modified C 

inputs after a change in land use exceeds the lifetime of most LTEs (>50 years). In various parts 

of the world LTEs were often set up with the initial purpose of examining the effect of 

agricultural practices on crop yields. A few are even dating back to the 19th century (e.g., 

Rothamsted, UK), while in their vast majority they are found in the temperate zone. Although 

the geographical distribution of these sites is an important limitation (Smith et al., 2012), they 

provide a unique opportunity to test the accuracy of SOC models or to estimate SOC turnover 

rates and in extend calibrate models of SOC dynamics. In France, a prominent example of a 

collection of LTEs that was used in this study is the AIAL (Arvalis-INRA-Agro-Transfert-RT-

LDAR) database, comprising all agricultural LTEs that started in France since 1970, including 

455 treatments in a total of 53 sites (Clivot et al., 2019). 

 

In the last decades, many countries have implemented soil monitoring networks (SMNs), with 

the purpose of obtaining reference soil data. Repeated soil sampling at constant locations after 

varying periods of time offers actual SOC stock change measurements over large spatial scales 

(Bellamy et al., 2005). However, land management and land use change is often not explicitly 

monitored in SMNs complicating the assessment of drivers of SOC change (Smith et al., 2007). 
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Such an example is the RMQS (Réseau de Mesures de la Qualité des Sols; Arrouays et al., 

2002) network in France, with 2200 locations distributed in a 16×16km grid and a sampling 

frequency of 10–15 years. After multiple sampling campaigns SMNs can also be used to test 

SOC model performance. However, their use might be more interesting for statistical data-

driven approaches combining the measurements on physical samples with spatial data (Luo and 

Viscarra-Rossel, 2020) or implementing space for time substitutions (Lugato et al., 2021) to 

infer environmental drivers of SOC change.  

An important limitation of all field measurement data collection strategies is that their 

maintenance is costly. Collecting, analysing and storing physical samples requires significant 

funding and human resources, while even the most extensive networks will not cover all areas 

of the globe. Finally, although they are extremely valuable for establishing a baseline and 

collecting reference information, measurements alone cannot provide estimates for future 

changes in SOC (Smith et al., 2020). A detailed description of the various issues that still need 

to be resolved to have harmonized and comparable analytical and remote sensing data is 

presented in FAO (2017).  

In contrast to physical measurements, modelling approaches are more flexible, cheaper and 

faster, but they also come with a greater uncertainty. Models of SOC dynamics are useful tools 

because they can provide estimates of SOC evolution on local or global scale. Nevertheless, 

their application has limits as well since they can only be applied in their range of calibration 

in terms of environmental, spatial and temporal dimension (Campbell and Paustian, 2015; 

Smith et al., 2020). Once a model has been correctly calibrated and sufficiently validated, it can 

be used to understand drivers of SOC change, or to estimate the impact of practices at unknown 

locations, or even be integrated into ecosystem models to link soil to the rest of the carbon 

cycle. Accurate operational models are indispensable for developing science-based strategies 

for better soil management (Eglin et al., 2010; Luo et al., 2016; Smith et al., 2020). 

 

Combining analytical data and models is the only way to obtain robust simulations of SOC 

evolution, and improve our understanding of the dynamics controlling the evolution of this 

reservoir under rapidly changing conditions.   

https://www.gissol.fr/le-gis/programmes/rmqs-34
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1.8. The Pandora box of SOC persistence 

 

 

 

As mentioned in the previous section, neither measuring nor modelling SOC evolution can be 

considered as trivial. A characteristic of SOC relevant to its quality that is particularly difficult 

to assess and that contributes to the complexity of understanding SOC dynamics is its 

persistence. The spectrum in SOC persistence results from observed variations in its age, with 

various proportions having turnover times of only hours or days, while others persist over 

millennia (Trumbore, 1997, 2009). 

1.8.1. So how old is SOC?  

As for all other organic materials, radiocarbon dating can be used to estimate the mean age of 

soil organic carbon. This dating technique is based on the principle that during their lifetime 

plants will incorporate CO2 from the atmosphere through photosynthesis, with the 14C 

concentration of that time. Since 14C is a radioactive isotope its decay can be quantified once 

that organism is dead. Knowing the concentration of 14C in the atmosphere through time and so 

at the moment of death as well, it is possible to measure the remaining 14C using mass 

spectrometry and calculate how long the organism has been dead for (Ellam, 2016).  

Estimations of SOC age vary strongly across studies. Mean SOC ages of various size and 

chemical separation fractions of two French topsoils had SOC ages from less than 15 to 280 

years (Balesdent et al., 1987). Using 14C data on a soil formation chronosequence, Torn et al. 

(1997), modelled turnover times of SOC slower than 20 000 years. The average age of SOC of 

forest topsoils ranged between 200 and 1200 years (Trumbore, 2000). Topsoil SOC ages were 

estimated at 253 years in a grassland and at 340 years in an arable field topsoil (Jenkinson et 

al., 2008), while the global mean age of SOC in the top 1 meter was estimated at 3100 ± 1800 

years (He et al., 2016), and at 4,830 ± 1,730 years (Shi et al., 2020).  
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Although it is evident that SOC is characterized by a wide spectrum of ages that can reach from 

very young to very old, using the 14C technique on SOC has several limitations. A few are 

explained below but a more extensive discussion can be found in Trumbore (2009). First, 

estimates obtained with this method are representative of the mean age of a fraction or a bulk 

soil which are always composed of compounds with varying ages. This method is not able to 

predict the proportion of SOC that will be labile and the amount that will persist (Trumbore, 

2000). Second, the mean age of SOC is not necessarily equal to its turnover5 or its residence 

time6. Because soil is an open system and because biotransformation of SOM components is 

constantly taking place, recycling of carbon means that old organic matter in terms of 14C can 

be present in a labile form and decompose fast (Gleixner et al., 2002; von Lützow et al., 2007; 

Sierra et al., 2014). Even though SOC with an older age is considered to have a slower turnover, 

as soil is an open system whose composition is changing with time, this is not an exact 

approximation (Six and Jastrow, 2002).  

Despite the uncertainties associated with this method, 14C ages clearly show that organic matter 

that should theoretically be thermodynamically labile can persist in the soil for thousands of 

years.  

1.8.2. What explains SOC persistence?  

The question can be viewed from two different perspectives: Either focusing on the 

conceptualization of the stabilization mechanisms that could be at play or on the environmental 

drivers that can be inferred empirically.  

Since in the following section we discuss stabilization mechanisms it is important to 

differentiate between the two terms: persistence and stability/stabilization. While persistence is 

the resulting effect of interactions taking place in soil and a characteristic that can be inferred 

from SOC ages and field observations from long-term experiments, stability or stabilization on 

                                                 

 

 
5 In systems at steady state (inputs=outputs), the turnover time is equal to the average age of the elements 

leaving the system, defined as the ratio of the total SOC pool size to the carbon outputs or inputs (Luo et al., 
2019). 
6 Mean residence time is an umbrella term used in literature to describe either the turnover time or the mean 
age of SOM (Sierra et al., 2017). 
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the other hand is a much less clearly defined term. As we will see below it depends on many 

aspects and it is difficult to understand and even more so to quantify. 

 

1.8.2.1. SOM persistence explained through conceptual mechanisms 

Even though the debate on the main mechanisms and processes influencing SOC persistence is 

an old one, it is still an unresolved matter over which new contrasting opinions are constantly 

emerging. Until recently, three categories of SOM stabilisation mechanisms were considered: 

(1) increasing OM recalcitrance through selective mineralisation of more biodegradable litter 

inputs (2) physical protection, e.g. through the formation of aggregates, and (3) physico-

chemical protection through the formation of organo-mineral associations (Sollins et al., 1996; 

Six et al., 2002; von Lützow et al., 2006; Campbell and Paustian, 2015)  

 

1.8.2.1.1. Chemical recalcitrance of SOM 

Early approaches aiming to study SOM fractions using chemical acid-base separation methods 

led to the development of the theory that complex humic acid macromolecules existed that were 

more stable and to the evolution of the humification model (e.g., Hayes, 1986). However, 

advancing SOM characterisation techniques have questioned the existence of these molecules 

in the soil environment and showed that the extracted humic substances were in reality a result 

of coagulation from smaller particles due to the experimental conditions (Schulten and 

Leinweber, 2000; Weil and Brady, 2016). The theory that inherent chemical recalcitrance of 

SOM is the main controlling mechanism responsible for its stabilization was discarded 

especially after the study by Schmidt et al. (2011). The authors present mean ages of different 

components of SOM showing that turnover of complex (e.g., lignin) and simple (e.g., glucose) 

molecules is not significantly different (Fig. 12). One exception is pyrogenic carbon showing 

consistently older ages than bulk SOM. Further studies support the idea that the soil decomposer 

community has the ability to mineralize SOC present in all natural compounds (e.g., Dungait et 

al., 2012) and suggest that other physico-chemical factors such as the ability of OM to form 

associations with minerals will define its persistence.  
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1.8.2.1.2. Physical protection of SOM in aggregates 

The second classic mechanism proposed for the stabilization of SOM is the existence of a 

physical barrier between the decomposer community and SOM in cases where the latter is 

occluded in soil aggregates (e.g., Oades and Waters, 1991; Six et al., 2000). According to this 

theory aggregation can limit the enzymatic accessibility and obstruct degradation reactions. 

Especially the role of microagggregates (<50μm; Virto et al., 2008) is highlighted. One aspect 

limiting the ability of this mechanism to account for overall SOM persistence is the non-stability 

of the aggregates themselves, which are regularly destroyed and reformed in the soil (Baldock 

and Skjemstad, 2000; Virto et al., 2010). This would suggest that SOM protected in aggregates 

would partially be susceptible to decomposition. Moreover, a difficulty lies in our ability to 

study aggregates and differentiate between the role of aggregation and physico-chemical 

interaction of OM and minerals present in the clay fraction.  

 

Figure 12 : Mean turnover times of various organic compounds found in SOM. The control of 

molecular structure on long-term decomposition of SOM is not significant, except in the case of 

pyrogenic carbon (Schmidt et al., 2011). 
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1.8.2.1.3. Physico-chemical protection of SOM through interaction with mineral 

surfaces 

The third mechanism of SOM stabilization is its adsorption on mineral surfaces. The formation 

of a variety of bonds (e.g., covalent, complexation, hydrogen bonds, …) between SOM and 

minerals present in the clay soil fraction (<2μm) can limit its accessibility to microorganisms 

from an energetic point of view. This theory suggests that the binding energy will correspond 

to an additional amount of energy that a microorganism will have to spend to consume that 

particular molecule of SOM (e.g., Chenu and Stotzky, 2002; Kaiser and Guggenberger, 2003; 

Kleber et al., 2015; Hemingway et al., 2019; Mikutta et al., 2019). The existence of a 

relationship between the size of the clay fraction and SOM mean age was confirmed in multiple 

studies (e.g., Torn et al., 1997; Paul et al., 2001). Moreover, the mineralogy of the clay fraction 

is considered important, with metal oxy-hydroxides, reactive phyllosilicates and poorly 

crystalized alumosilicates amongst the most efficient for SOM protection (Mikutta et al., 2007; 

Sanderman et al., 2014; Rasmussen et al., 2018). 

 In addition, characteristics of the organic matter (e.g., functional groups, molecular size) will 

define its ability to participate in adsorption or other association reactions. Smaller molecules, 

often residues of microbial metabolic reactions, that are more oxidized and more reactive can 

be increasingly associated to minerals (Kleber et al., 2015; Pellerin et al., 2020). 

The observation that SOM consists of organic residues of different sizes, at different 

decomposition stages and in different molecular groups, combined with the synergy of all of 

the above described mechanisms resulted in a complex view of overall SOM controls (Fig. 13; 

Lehmann and Kleber, 2015). The mechanical fragmentation of residual plant material by 

macrofauna such as earthworms and termites creates smaller SOM particles, but also the 

selective consumption of OM compounds by these organisms releases new metabolic products. 

These can either be stabilized or further decomposed by microbes. Further biotransformation 

reactions result through uptake of OM by microorganisms present in soils (fungi and bacteria) 

and their metabolic activity. Microbial biomass can degrade but also synthesize new organic 

matter components. Finally, SOM is constantly undergoing biotransformation reactions, 

transfers and stabilization and destabilization reactions. 
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1.8.2.1.4. Emerging views of SOM stabilization  

Evolution of imaging techniques at the molecular level offering information on the distribution 

of SOM has inspired the emergence of new ideas regarding the conceptualization of processes 

driving SOM stability. The common point of these views is that they put the activity of soil 

organisms in focus. An emerging theory considers SOM resistance to degradation as a result of 

functional complexity (Lehmann et al., 2020). For this idea, the 3-D structure of soil matrix, 

the habitat heterogeneity, and the microbial diversity will control the mineralization of SOM. 

The observation that organic matter distribution at the nano-scale occurs in patches and the idea 

that microbes have a limited motility, has been proposed as a different definition of accessibility 

as the main control of SOM mineralization (Ekschmitt et al., 2008; Nunan et al., 2020). 

Figure 13: Consolidated view of the SOM continuum model explaining SOM turnover as 

a result of constant biotic and abiotic interactions (Lehman and Kleber, 2015). 
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Other studies go even further to suggest that activity of soil organisms might even control its 

structure, proposing that the chemical and physical changes it generates (e.g., exudation of 

gluing agents, rearrangement of soil material through root activity) will define the formation of 

aggregates (e.g., Rillig and Mummey, 2006).  

Trying to predict the behaviour of the heterogeneous community of microorganisms that reside 

in soils, a complex environment by definition, is not an easy task. Therefore, for the 

incorporation of SOM mineralization controls in modelling frameworks a different approach is 

to focus on observed relationships between pedoclimatic characteristics and SOC stocks 

distribution. 

1.8.2.2. Drivers of SOM turnover  

Factors that have been shown to influence SOM turnover as well as the distribution of SOC 

stocks include temperature, soil water content, pH, texture and mineralogy, as well as the type 

of SOM input and soil depth (Balesdent et al., 2018; Luo et al., 2019; Luo and Viscarra-Rossel, 

2020). These factors are in essence related to the above described mechanisms, as they have a 

strong influence on their efficiency. The multitude of effects of the different pedoclimatic 

factors on processes taking place in soils was summarized by Pellerin et al. (2019). Here we 

briefly mention a few examples. Temperature is a major factor defining SOC turnover mainly 

through favouring or hindering microbial activity. However, temperature will also play a role 

on the formation of adsorption and on the efficiency of diffusion processes. Another important 

factor is soil pH, also controlling microbial activity and the formation of organo-mineral 

associations since it can influence the surface charges of minerals. The bulk chemistry of SOM 

entering the soil will not only influence its bioavailability but it will also have a control over its 

interaction with mineral surfaces.  

In the next section we will see how the evolution of theories regarding SOM stabilization has 

affected the evolution of models of SOC dynamics and how different models take into account 

drivers of SOM turnover. 
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1.9. A quick timeline of SOC models  

 

 

 

The inherent complexity of the soil system and the variety of SOM controlling processes have 

led to a wide spectrum of hypotheses and conceptualizations for governing mechanisms of 

SOM turnover. Additionally, the need to represent the system at different temporal and spatial 

scales resulted in an important number and variety of models available today.  

Here we draw a quick timeline that is in no way exhaustive. Its purpose is to provide a general 

overview with a few examples of the existing types of SOM models and their origin.  

In many reviews (Mcgill, 1996; Feller and Bernoux, 2008; Bleam, 2017) one of the first 

mentions of a mathematical SOM modelling attempt is the simple soil organic nitrogen turnover 

model proposed by Jenny (1941), developed to evaluate the impact of agricultural practices on 

soil fertility. Observations from long-term agronomic experiments in central North America 

(Salter and Green, 1933) had shown that soil N dynamics can be described as an exponential 

decay function with different rates in different soils, or under different cropping systems. 

However, projecting the evolution of soil N at the scale of a century, with the assumption that 

N content will not reach zero but rather an equilibrium value, required the use of an additional 

term defining N fixation, thus resulting in the following equation: 

𝑑𝑁

𝑑𝑡
= −𝑘𝑁 + 𝐴  

where dN = change in soil organic N, dt = simulated period, k = first order decay rate constant 

(t−1), and A = annual addition rate of soil organic N (in the form of organic matter; in mass t−1). 

The equation can be solved to calculate soil N content after a given period as: 

𝑁 = 𝑁𝐸 − (𝑁𝐸 − 𝑁0)𝑒
−𝑘𝑡 

where N0 = the initial amount of soil organic N, NE = the amount of organic N in the soil at 

equilibrium (whereas at equilibrium: dN/dt = 0 thus N = NE = A/k).  
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The model by Jenny was successfully used to describe soil organic N dynamics in different 

conditions (Woodruff, 1949; Jenkinson, 1990). It was also used in many studies with the 

objective of fitting long-term observations of N evolution to estimate model parameters such 

as the mineralization rate (k) and mean turnover time (1/k) (mentioned in Jenkinson, 1990). 

Meanwhile, the scientific community and farmers gradually shifted their attention to total SOM 

and SOC dynamics because of their importance for soil quality. Unlike soil organic N whose 

evolution is mainly controlled by the input of fresh organic matter to soil, SOM dynamics are 

more complex. The most prominent difference is probably the heterogeneous nature of SOM 

containing components with highly variable turnover times. As the various components 

decompose at different rates, their relative proportions are bound to change over time. To 

accurately simulate SOM or SOC evolution this spectrum of stabilities has to be taken into 

account. Mathematically, this translates to a change in the decay rate (k) with time. 

The different strategies for representing this change in k in SOM simulations, as enlisted in the 

review by McGill (1996), i.e., either adding more components or making k time-dependent, led 

to the different types of models available today. Here we distinguish two main categories: multi-

compartment models and non-compartmental models, while taking a closer look at the 

evolution of multi-compartment models through time. A complete classification would require 

mentioning sub categories and hybrid models and is not conducted here. 

 

1.9.1. A two-compartment model  

An important example resulting from the idea that more components are necessary for correctly 

simulating SOC evolution is the model of Hénin and Dupuis (1945). They were the first to split 

organic matter into two compartments: organic residues and soil carbon (humified C). As 

organic residues (m) are returned to the soil each year, a fraction is rapidly mineralized 

(m∙(1−k1)) and escapes into the atmosphere as CO2, whereas the remaining organic material 

(m∙k1) is “humified” and enters a more slowly cycling pool (humified C) that is also subject to 

mineralization (k2∙C; Fig. 14). 

 



Kanari Eva — Thèse de doctorat — 2022 

60 

 

This model can be described by the following differential equation and its integrated form: 

𝑑𝐶

𝑑𝑡
= −𝑘1 ∙ 𝑚 − 𝑘2 ∙ 𝐶  

 

𝐶 =  
𝑘1 ∙ 𝑚

𝑘2
+ (𝐶0 −

𝑘1 ∙ 𝑚

𝑘2
) 𝑒−𝑘2𝑡 

 

where C = SOC content, k1 = humification rate, m = fresh organic matter (in the form of organic 

residues), C0 = SOC content at the onset of simulated period, and k2 = mineralization coefficient 

(whereas at equilibrium: C = CE = k1∙m/k2). The humification rate depends on the type of 

organic matter (lower for fresh straw material and higher for manure) and the mineralization 

rate depends on climatic conditions and soil characteristics. 

 

The Hénin-Dupuis model was used in numerous studies over the following decades to evaluate 

agricultural practices (Jenkinson and Rayner, 1977; Jenkinson and Johnston, 1977; Boiffin et 

al., 1986; Jenkinson et al., 1987). This simple adaptation led to important improvements of SOC 

projections compared to the model by Jenny. Some decades later however, several studies 

argued that the two-compartment model structure was inadequate and that SOM should be 

divided into at least two fractions, each with a different turnover rate (Janssen, 1984; Andrén 

and Kätterer, 1997). 

Figure 14: Conceptual representation of the simple 

two-compartment Hénin-Dupuis model. The model 

considers two organic matter compartments, organic 

residues (m) and humified organic carbon (C). 

Fluxes are expressed by arrows. Incorporation of 

fresh organic matter into soil is controlled by the 

humification coefficient k1 and loss of humified 

carbon through mineralization is controlled by the 

mineralisation coefficient k2 (modified after Mary 

and Guerif, 1994). 



Kanari Eva — Thèse de doctorat — 2022 

61 

 

1.9.2. Multi-compartmental models with conceptual kinetically defined pools 

Since the 1980s, an approach valuing mathematical simplicity and based on the example set by 

Hénin and Dupuis led to the development of some of the simplest and most widely used models 

of SOC dynamics. In these models, the continuum of SOC decomposition is represented by a 

series of kinetically defined SOC pools characterized by different turnover times. 

Splitting of SOC into pools, allows multi-compartmental models to use first-order kinetic laws, 

i.e., the flux of material from a pool and the quantity of material it contains are linked by a 

simple linear relationship. Amongst the most important advantages of these models, 

intrinsically related to their simple structure, are their transferability, calculative efficacy and 

adequate parametrization. This category includes world-renowned models such as Century 

(Parton et al., 1987) and Roth-C (Jenkinson and Rayner, 1977), and well parameterized mostly 

nationally used models such as the Swedish ICBM (Andrén and Kätterer, 1997), the French 

AMG model (Andriulo et al., 1999) or the Danish C-TOOL model (Taghizadeh-Toosi et al., 

2014). 

Century is a prominent example of a conceptual SOC model, developed in the United States to 

model SOC dynamics in the Great Plains (Parton et al., 1987). Initially used to evaluate the 

impact of crop production and management practices on SOC, it has the potential of linking 

plant growth and SOC evolution. Its SOC module however is quite simple with only two 

actively cycling SOC pools, the active and the slow pool, with turnover times of 1.5 and 25 

years respectively. The model also has a passive pool with a very slow turnover (1000 years) 

that can be considered as inert for simulations at the decadal time scale.  

The second most widely used model of SOC dynamics (according to the review of Manzoni 

and Porporato, 2009) is RothC. Since its development in the 1990s at the Rothamsted 

Experimental Station in England (Jenkinson and Rayner, 1977), the RothC model has been 

continuously adapting to model SOC dynamics in grassland and in forest soils and it was 

calibrated and applied on different soil types and climates. Similar to Century, RothC divides 

SOC into two actively cycling and one stable pool. Pools are defined according to their 

composition, namely microbial biomass (BIO) with a turnover time of 1.5 years, humus (HUM) 

with a turnover time of 50 years and the purely stable inert organic matter (IOM) pool 
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representing black carbon7. The turnover process in the RothC model is controlled by soil type, 

temperature, soil moisture and plant cover. Inputs into the soil occur by a fraction of fresh 

organic matter, the resistant plant material (RPM), while a more labile fraction of decomposable 

plant material (DPM) is directly lost to mineralization (Fig. 15).  

 

Simple multi-compartmental models have been used in many climate zones and settings and 

they have served as operational predictive tools representing SOM in Earth System Models 

(ESMs). This wide geographical expansion and range in terms of applications was only possible 

because of the simple structure of these models, allowing sufficient parameterization, and 

mathematical and computational simplicity. Although the usefulness of these models to predict 

SOC evolution especially over the long-term has been proven through comparison with 

empirical data, they are currently being strongly criticized. Mainly, because their pools are only 

conceptual and kinetically defined and are thus difficult to measure and because they do not 

explicitly consider microbial processes.  

                                                 

 

 
7 Black or pyrogenic carbon is a residue of incomplete combustion found in soils affected by fire 

Figure 15: Conceptual diagram of the RothC model, including pool structure, fluxes, and 

turnover times (Coleman and Jenkinson, 1996). 
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1.9.3. Mechanistic process-based models 

Recent advances in analytical methods enabling precise imaging and chemical characterization 

of organic matter in undisturbed soil samples, have led to new understanding of processes 

involved in SOM stabilization (discussed in the previous section; (Schmidt et al., 2011; 

Lehmann and Kleber, 2015; Kögel-Knabner, 2017; Lehmann et al., 2020). The central role of 

microorganisms for the formation and degradation of SOM has inspired a new generation of 

models aiming to explicitly represent microbial interactions (Cotrufo et al., 2013; Wieder et al., 

2015; Abramoff et al., 2018; Robertson et al., 2019). This has re-sparked interest in a debate 

that took place in the 1970s as the first microbial process-based models (Smith, 1979; Mcgill 

et al., 1981) were being developed in parallel to the conceptually simpler ones. One objective 

of many new generation models is to transition towards more “measurable” pools representing 

functionally meaningful SOM fractions. However, this often leads to more complex model 

structures, and a higher number of unknown model parameters to constrain (e.g., Millennial 

model; Fig. 16). Although new generation models might provide a more elegant representation 

of the processes controlling SOM dynamics, they also have the major drawback that they are 

very difficult to calibrate, validate against field data and scale-up (Sulman et al., 2018). This 

hinders particularly their potential to be used as operational tools to predict SOC evolution at 

the large scale.  

 

 

Figure 16: Conceptual diagram of the Millennial SOC model, including compartments (black), 

structure and fluxes (arrows and coloured boxes). The colour legend represents controlling biotic and 

abiotic factors considered in the model (Figure changed after Abramoff et al., 2018).  



Kanari Eva — Thèse de doctorat — 2022 

64 

 

1.9.4. Non-compartmental models 

In parallel to the evolution of multi-compartmental models, a second category of models neither 

splitting SOM into compartments nor applying first order kinetics were being developed as well 

since the 1980s. Originally proposed by (Carpenter, 1981), these models focus on the idea that 

SOM decomposition is a continuum (e.g., Q-model; Ågren and Bossata, 1996; Bruun et al., 

2010). They represent SOM with all its heterogeneous compounds as one pool whose quality 

however changes over time. The issue of defining conceptual pool sizes and individual turnover 

rates is reformulated instead to defining patterns of mineralization dynamics. Since SOC decay 

in these models is not constant over time and is influenced by many factors these models are 

more complex to constrain (Jenkinson, 1990).  

So which is the best model? 

It has been clear to modellers that different types of models exist for different purposes (Mary 

and Guérif, 1994; Mcgill, 1996). It is important to recognize that models are developed to test 

specific hypotheses relevant at a specific spatial and temporal scale (Campbell and Paustian, 

2015). Each model can only be evaluated and applied in the range in which its parameters were 

calibrated and its structure was tested. The current trend of increasing structural complexity and 

non-linearity in SOC model development (Manzoni and Porporato, 2009) is also accompanied 

by an increasingly difficult parametrization and transferability. As put by Blankinship et al. 

(2018) a robust SOM modelling approach must integrate three aspects: emerging understanding 

(theory), analytical measurements (data), and mathematical representation (numerical 

modelling). Without the necessary data to inform and evaluate a model it is impossible to know 

how well a model functions and use it to predict changes in the modelled system. In conclusion, 

there is no silver bullet solution but for a model to be operational a balance between available 

quantitative data and numerical model structure is key. The choice of the most appropriate 

model should be taking into consideration all of the points mentioned above.  

In this work we chose to work with AMG (Andriulo et al., 1999), a simple multi-compartmental 

model of SOC dynamics widely used in France. The AMG model is described in detail in the 

next section, but briefly comparing its model structure to the ones of RothC and Century, we 

can see that it is similar, except the fact that it ignores the existence of the most labile carbon 

pool (residence time less than 1 year). All three models consider one pool to be stable at the 

pluri-decadal scale (<100 years), although it varies in size (~ 10% of SOC in RothC, 40–50% 

in Century, and 40–65% in the AMG model).     
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1.10. The French AMG model ― Development, parametrization and 

application 

Since its development in 1999 by Andriulo, Mary and Guérif (Andriulo et al., 1999), the AMG 

model has seen a wide use in France and worldwide for evaluating the impact of agricultural 

practices on SOC stocks in croplands (Saffih-Hdadi and Mary, 2008; Bouthier et al., 2014; 

Autret et al., 2016; Martin et al., 2019; Levavasseur et al., 2020; Nowak and Marliac, 2020). 

Throughout the decades the model has been constantly adapting to include important drivers 

according to current understanding and new concepts emerging in soil science (Saffih-Hdadi 

and Mary, 2008; Clivot et al., 2019; Mary et al., 2020). 

In this section a description of the current version of the model is provided, followed by a short 

review of important works regarding its development and parametrization and finally some 

prominent examples of its application.  

1.10.1. Model description 

The AMG model operates at an annual time step. It is characterized by a simple structure 

consisting of three carbon pools: fresh organic matter, and two SOC fractions, an active and a 

stable pool (Fig. 17). The model allows transfer of carbon from the fresh organic matter pool 

either to the atmosphere through microbial mineralization or into the active pool. Organic 

carbon from the active pool is also subject to mineralization, forming a second direct flux of 

CO2 from the soil into the atmosphere. SOM decomposition follows first order kinetics with a 

rate defined by the coefficient of mineralization k (year−1), controlled by climatic conditions 

and soil characteristics. The h coefficient controls the yield of crop residues transformation into 

active carbon and depends on the type of fresh organic matter. No carbon exchange with the 

stable SOC pool is possible since it is considered inert and remains unchanged over the 

simulation period (typically several decades). Mathematically the AMG model can described 

by two simple equations (Clivot et al., 2019). 

𝑄𝐶 = 𝑄𝐶𝑆 + 𝑄𝐶𝐴 

 
𝑑𝑄𝐶𝐴
𝑑𝑡

=∑𝑚𝑖ℎ𝑖
𝑖

− 𝑘 ∙ 𝑄𝐶𝐴 
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where QC is the total SOC stock (t∙ha−1), QCS is the stable SOC stock (t∙ha−1) defined as a 

fraction of initial SOC stock QC0 constant for a specific treatment, QCA is the active SOC stock 

(t∙ha−1), t is the time in years, mi is the annual C input from organic residue i (t∙ha−1∙yr−1), h 

represents the fraction of C inputs which is incorporated in SOM after 1 year, and k is the 

mineralization rate constant associated with the active C pool (yr−1).  

 

 

Moreover, the model can simulate simultaneously the evolution of C3 and C4 stocks (expressed 

below as QC3 and QC4) according to the equation proposed by Balesdent et al. (1987): 

𝑄𝐶3 =
𝛿13𝐶𝑆 − 𝛿

13𝐶4
𝛿13𝐶3 − 𝛿13𝐶4

∙ 𝑄𝐶 

𝑄𝐶4 =
𝛿13𝐶𝑆 − 𝛿

13𝐶3
𝛿13𝐶4 − 𝛿13𝐶3

∙ 𝑄𝐶 

 

where 𝛿13𝐶𝑆 is the measured 13C isotopic ratio in the soil, and 𝛿13𝐶3 and 𝛿13𝐶4 are the isotopic 

compositions of C3 and C4 plants in the crop rotation.  

 

 

Figure 17: Schematic representation of the pool structure and fluxes of the AMG model. A fraction 

(1-h) of fresh organic matter (m) is yearly mineralized and released in the atmosphere, whereas a 

fraction (h) is incorporated into the active SOC pool (CA). The coefficient of mineralization (k) 

controls carbon discharge from CA into the atmosphere, while no exchange is possible with the stable 

SOC pool (CS) (modified from Duparque et al., 2013 and Levavasseur et al., 2020). 
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The mineralization coefficient k of the active SOC pool is calculated according to a potential 

mineralization rate k0 and the cumulative effect of pedological and climatic characteristics 

including mean annual temperature (T; °C), soil moisture expressed as the difference between 

cumulative annual water inputs (through precipitation and irrigation) and potential 

evapotranspiration (H; mm), clay content (A; g kg−1), calcium carbonate content (CaCO3; g 

kg−1), soil pH and C/N ratio: 

𝑘 = 𝑘0 ∙ 𝑓(𝑇) ∙ 𝑓(𝐻) ∙ 𝑓(𝐴) ∙ 𝑓(𝐶𝑎𝐶𝑂3) ∙ 𝑓(𝑝𝐻) ∙ 𝑓(𝐶/𝑁) 

 

Graphical representations of the non-linear functions used in the above equation are shown 

below (Fig. 18; Clivot et al., 2017). Their fitting parameters and threshold values can be found 

in Clivot et al. (2019). 

 

Figure 18: Set of six non-linear functions showing the dependence of the mineralization rate k of the 

active carbon pool CA on environmental parameters. (a) Mean annual temperature, (b) soil moisture, 

(c) soil clay and CaCO3 content, (d) soil pH, and (e) soil C/N ratio (Plots (a) and (b) from Mary and 

Ferchaud personal communication; Plots c-e from Clivot et al., 2017) 
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The model does not include a module for the calculation of carbon inputs but a detailed method 

was developed and is provided in Clivot et al (2019). The authors propose using allometric 

coefficients from Bolinder et al. (2007) for estimating the distribution of carbon in the different 

parts of a plant, relating harvest index measured in the field with corresponding above and 

below carbon inputs for each crop (Fig. 19). The accumulation of carbon to a specific depth is 

taken into account in the method by Clivot et al. (2019) by an asymptotic equation proposed by  

Gale and Grigal (1987) and according to differences in root distribution of various crops (Fan 

et al., 2016).  

 

Finally, in the method by Clivot et al (2019) humification coefficients for aerial parts of plants 

returned to the soil as organic residues can be determined using their specific C/N ratio (Machet 

et al., 2017) and functions defined in Justes et al. (2009). Humification coefficient for 

belowground inputs is considered uniform and is calculated according to data published in 

Balesdent and Balabane (1996) and Kristiansen et al. (2005). A former study conducted with 

AMG inverse modelling of field observations and incubation experiments provides 

humification coefficients of various exogenous organic matter amendments (Bouthier et al., 

2014). 

Figure 19: Schematic diagram of the distribution of carbon in 

the different parts of a plant. CP is the carbon in the harvested 

product, CS is the carbon in the aboveground residue, CR is the 

carbon contained in the roots and CE is the carbon extracted by 

roots (from Bolinder et al., 2007). 
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1.10.2. Milestones in the development, parametrization and application of the AMG 

model 

 

 

 

Important works in the development and parametrization of the AMG model begun with the 

study of Mary and Guérif (1994) attempting to model SOC dynamics in different treatments of 

the long-term experimentation sites of Rothamsted (UK) and Grignon (FR), using the Hénin 

and Dupuis (1945) two-compartment model. The authors demonstrated that the model was 

unable to reproduce SOC evolution at contrasting treatments (in terms of organic matter inputs) 

of the same site using a constant mineralization coefficient. In other words, from a point of view 

regarding its dynamic evolution, SOM had to be heterogeneous. The simplest approach to 

represent this heterogeneity in a model was to divide SOM into an active and a 

biogeochemically stable pool, or very slowly cycling pool (Mary and Guérif, 1994). Based on 

observations from the Rothamsted long-term field experiment, they estimated that about one 

third of SOC should be in the active pool and they showed that the three-compartment model 

significantly improved simulations of long-term SOC stocks evolution at the studied sites.  

This adaptation of the Hénin-Dupuis model became the AMG model, named after Andriulo, 

Mary and Guérif (1999) who tested and calibrated the model to track the evolution of SOC 

stocks under crop rotations in Argentina. The monitored trials included changes from C3 (wheat 

or soybean) to C4 (maize) plants, offering the opportunity to follow the evolution of young and 

old carbon separately by measuring the natural 13C abundance change over time. The authors 

showed that the size of the stable SOC fraction ranged between 60–68% of the initial SOC 

stock, that the humification coefficient depended on type of organic matter input and that the 

mineralization rate was sensitive to management practices (tillage). 

The specific 65% estimate for the stable SOC proportion still used today was obtained for the 

first time in a study by Mary and Wylleman (2001). The authors followed a similar 

methodology taking advantage of 13C data series to fit the model on observations from a long-

term field experiment at Boigneville in France.  
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With the establishment of an estimate for the pool partitioning Saffih-Hdadi and Mary (2008) 

focused on the dependence of the mineralization rate on environmental factors, namely 

temperature and clay content. They borrowed a function describing the control of temperature 

on the mineralization rate proposed by Balesdent and Recous (1997), obtained from incubation 

experiments, and adapted to field conditions by Mary et al. (1999). For a given temperature 

range the temperature effect increased exponentially up to a threshold value after which a 

slower increase occurred. The effect of clay content on the mineralization rate was described 

by an exponential relationship according to observations from incubation experiments (Brisson 

et al., 2003). Although these functions would later be fine-tuned by Clivot et al. (2017, 2019), 

the authors showed that the model reproduced well the effects of straw residue export on SOC 

stocks in various pedoclimatic conditions (nine sites in Sweden, Denmark, France and 

Thailand). However, they argued that optimum values of stable SOC proportion could be lower 

(down to 40%) in some cases with varying in C inputs.  

The current version of AMG (Clivot et al., 2019), was developed by adding four additional 

environmental functions affecting the mineralization rate of the active carbon pool. The 

relationship between pedological characteristics (i.e., CaCO3 content, soil pH, and C/N ratio) 

and in-situ nitrogen mineralization was estimated by Clivot et al. (2017) at 65 field experiments 

under bare fallow (France). The obtained functions were incorporated in the SOC model that 

was evaluated against data from 60 long-term field experiments in 20 sites in France (Clivot et 

al., 2019). As described above, this study included an important amount of work for defining 

carbon inputs based on experimental data, thus allowing the optimization of the potential 

mineralization rate k0, resulting in a value of 0.29 yr−1 for the network of studied sites.  

 

The final above described version of the AMG model has been repeatedly used in the last years 

in France and in Europe and its performance to reproduce observed changes in SOC stocks was 

shown to be satisfactory. Comparative studies against other multi-compartmental models (such 

as RothC and Century; Martin et al., 2019; Bruni et al., 2021; Farina et al., 2021) confirm that 

the huge amount of parametrization work and the simple and efficient model structure of AMG 

make it a top candidate for use in cropland. 
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The model was used to simulate the evolution of SOC stocks at seven sites in Europe (Denmark, 

England, France and Sweden) with repeated exogenous organic matter application 

(Levavasseur et al., 2020) and performed well. Recently, the priming effect was incorporated 

in the model (Mary et al., 2020) and the evolution of SOC stocks in a 47-year experiment was 

improved in the topsoil layers of different tillage treatments. In a French national project 

designed to evaluate current inventory methods for croplands (CSOPRA) the AMG model was 

used alongside RothC, Century and ORCHIDEE, to simulate SOC stock evolution at long-term 

experiments (AIAL database) and to predict SOC stocks at sites of a soil monitoring network 

(RMQS). Overall, the study showed that AMG performed best, providing the least biased 

predictions and the lowest errors for the selected sample set.  

Finally, in a work in preparation (Bruni et al., 2021), in an effort to evaluate the necessary 

carbon inputs to achieve the yearly 4‰ increase in SOC stocks goal set by the homonymous 

initiative, the authors compare predictions provided by six models (Century, RothC, ICBM, 

AMG, MIMICS and Millennial) at 17 sites in Europe. Amongst the used models, AMG was 

shown to simulate most accurately the changes in SOC stocks over time when all models are 

applied with their default parametrization.  

 

 

 

 

The simplicity and predictive value of AMG led to the development of a decision support tool 

(SIMEOS-AMG; Duparque et al., 2013) freely available and adapted for use by farmers, 

agricultural advisors, researchers, as well as for teaching purposes. SIMEOS-AMG uses as 

input soil and climatic data, information on land-cover and management practices, and provides 

predictions of the long term effect of current and alternative agricultural practices on SOC 

stocks. Moreover, the AMG model has been included in the structure of the STICS crop model, 

used to simulate crop growth, soil water, and C and N balance at a daily time step (Whisler et 

al., 1986; Brisson et al., 2003, 2010).     

  

http://www.simeos-amg.org/
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1.11. Assessing SOC persistence and estimating conceptual SOC pool sizes 

 

 

 

 

Multi-compartmental models reviewed in the previous section lack accuracy due to a current 

knowledge gap that is the correct partitioning of the various SOC pools they consist of at the 

onset of the simulation. Model SOC pools characterized by a given turnover time are 

conceptually defined and thus not directly measurable. The challenge of “measuring the 

modellable” (Elliott et al., 1996) fuelled numerous attempts aiming to develop methods to 

separate functionally homogeneous (non-composite) pools or infer SOC pool sizes and their 

turnover times resulting in a myriad of methods applied today.  

1.11.1. Processes of SOC fractionation  

Although the term “fractionation” usually refers to the variety of chemical and physical 

separation methods, that have been developed to isolate SOC fractions according to their 

chemical and physical characteristics, the same term can be used to describe the process of 

biological fractionation occurring in the soil.  

1.11.1.1. In-situ approaches  

Various kinds of long-term field experiments present different opportunities for studying the 

evolution of SOC in situ under real pedological, climatic and biological conditions. Such 

methods provide information characteristic of the undisturbed soil environment in real time. 

These are some of the greatest advantages of long-term field experiments as they allow for the 

evolution of different SOC fractions over time to be observed and the importance of different 

drivers to be estimated. A major limitation of these sites is their rare occurrence and their 

geographical limitation. 
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1.11.1.1.1. Long-term bare fallow sites 

A unique example for in situ biogeochemical fractionation of SOC are so called long-term bare 

fallow experiments (LTBF; Rühlmann, 1999). These are field experiments where soil plots are 

kept free of vegetation over multiple decades in order to eliminate organic carbon inputs. 

Through this extreme intervention (of constantly removing all plants), and through regular 

sampling and monitoring it is possible to observe and measure the decay of the organic carbon 

initially present at these sites (Fig. 20). Moreover, these experiments provide a unique 

opportunity to obtain soils enriched in persistent SOC, as the more labile SOC will decay first 

leading the relative proportion of persistent SOC to increase. Fitting an exponential decay 

model to the observed SOC evolution trend allows for estimation of parameters such as the 

decay rate and the persistent SOC content (plateau; Barré et al., 2010). This is the closest we 

can get to quantifying SOC behaviour under the influence of real temperature and precipitation 

variations, and in an undisturbed mineralogy and soil environment. This valuable information 

is only available at rare locations where soil scientists and agronomists have initiated 

experiments decades ago and continuously managed and maintained them ever since.  

One of the strongest criticisms associated with the LTBF trials is the disturbance of the SOC 

system through the removal of such an important ecosystem aspect, vegetation. In terms of SOC 

dynamics these experiments are lacking a representation of the priming effect (i.e., the emerging 

theory stating that fresh SOM inputs enhance mineralization of existing SOC by boosting 

microbial activity).  

 

Figure 20: To the left: Picture from the Versailles long-term bare fallow experiment (©INRAE). To the 

right: Schematic representation of the evolution of the different SOC pools at an LTBF site (Chenu, 2020). 
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In the next paragraph we discuss a different kind of agronomic experiment and we argue that 

SOC persistence estimated based on LTBF sites has a chance of being relevant in more realistic 

conditions as well. 

 

1.11.1.1.2. C3–C4 chronosequences and natural 13C abundance 

This is a method based on the principle of organic isotopic fractionation. Different 

photosynthesis mechanisms have evolved in plants impacting the distribution of C isotopes in 

the organic compounds they produce. The so called “C3” metabolic pathway is characteristic of 

plants such as rice, wheat, soya, and potatoes and it results in a (8)δ13C signature between −24 

and −34‰, averaging at −27 ‰, while “C4” plants such as maize, sugar cane, millet and 

sorghum have a δ13C between −6‰ and −19‰ with an average value of −12‰ (Balesdent et 

al., 1987; Ellam, 2016). The concept behind this method is that since the signature of the plants 

will be preserved upon organic matter incorporation into the soil or during its decomposition 

(Fig. 21), 13C natural abundance can be used as a tracer of SOM evolution. In cases with a 

known time of transition from one vegetation type to another, and where timeseries of soil 

samples are available, it is possible to track the change in 13C signature with time and estimate 

rates of fresh SOM incorporation and turnover of native SOM. This method has been used as a 

tracer for dynamics of total SOC (Rasse et al., 2006; Mary et al., 2020) as well as for following 

the behaviour of specific SOC fractions (Balesdent, 1987; Skjemstad et al., 1990; Fernández-

Ugalde et al., 2016). 

                                                 

 

 

8Definition of 𝛿13𝐶 =  [(
𝐶13

𝐶𝑠𝑎𝑚𝑝𝑙𝑒
12⁄ − 

𝐶13

𝐶𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
12⁄ ) − 1] × 1000 (Ellam, 2016) 

Figure 21: Schematic representation of the 

evolution of SOC at a C3–C4 chronosequence 

according to the change in δ13C signature after a 

vegetation change (Barré, 2020; adapted from 

Balesdent et al., 1991). 
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A unique opportunity for comparing SOC decay estimated with the 13C natural abundance 

method and with the LTBF method is provided at the experimental site of Versailles, which 

includes both a C3–C4 trial (“Les Closeaux”) and LTBF plots. Evidence shows that the 

observed decay of C3 follows a similar pattern as the decay of bulk SOC (C. Chenu, personal 

communication; mentioned in Barré, 2020), suggesting that the absence of SOC inputs does not 

have a significant impact on SOC turnover. 

1.11.1.1.3. Long-term monitored agronomic experiments  

Long-term monitoring of agricultural practices combined with precise knowledge over the 

long-term land-use history of a site allows for optimization of specific model parameters. When 

measurements of all the necessary data (e.g., pedoclimatic, C input, land cover) are available 

and precise the hypothesis can be made that fitting a model to the observed SOC evolution 

would result in obtaining the mathematically optimal value of a given parameter, such as 

mineralization rate or SOC pool partitioning (e.g., Clivot et al., 2019). This method is fast and 

mathematically elegant but its precision depends entirely on the accuracy of the collected 

measurements and on the suitability of the chosen model.  

 

1.11.1.2. Laboratory methods: chemical, physical, and physico-chemical fractionation  

Most of these procedures (reviewed by von Lützow et al. (2007) and summarized in a 

pedagogical manner by Don and Poeplau; https://www.somfractionation.org/) were developed 

with the goal of separating, studying and quantifying functionally homogeneous conceptual 

pools used in SOC models. The common basic principle behind the various developed 

approaches is the concept of the three traditionally considered mechanisms responsible for SOC 

stability mentioned previously (Sect. 1.8.2.1.). 

For example, physical fractionation is based on the idea that SOC physical properties are crucial 

to its persistence and that it is possible to separate SOC fractions along specific physical 

boundaries e.g., size, density, cohesive aggregate strength. The main assumption behind 

physical fractionation is that the various interactions between minerals and organic matter are 

crucial to its stabilization (Six et al., 2002; Eusterhues et al., 2003; Kaiser and Guggenberger, 

2003). 
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Often physical fractionation procedures apply various steps towards physical separation of 

particles, such as disaggregation, size and density separation, dispersion and sedimentation with 

the goal of defining the fraction of soil that is associated to minerals in various ways. One 

example of physical separation is the often used particle size fractionation, aiming to separate 

the fine clay fraction, or even sub-fractions of clay sized material (Christensen, 1992). Density 

fractionation is also often used to separate the light SOM fraction which is considered to be 

accessible and not associated to minerals from a heavier fraction composed of organo-mineral 

complexes. Another type of physical fractionation is based on the magnetic sensitivity of 

minerals present in the clay fraction, aiming namely at separating organic matter associated to 

oxides, known to form strong associations (Torn et al., 1997; Kleber et al., 2004)  

Chemical fractionation methods, on the other hand, aim to separate components with different 

inherent chemical recalcitrance, or to eliminate the soil mineral fraction entirely, in order to 

isolate and study SOM separately. These include extraction, hydrolysis and oxidation methods.  

Fractionation methods combining physical and chemical procedures aim to account for the 

combination of the effects of particle sizes, chemical composition, soil matrix and organo-

mineral associations and differentiate between protected and unprotected SOC.  

 

1.11.1.2.1. Important milestones and historical references   

Efforts to separate SOC fractions date back to 1923 as mentioned in Christensen (1992). In 

more recent years, many studies have concentrated on defining the distribution of SOC amongst 

stability pools of one of the most commonly used SOC dynamics model, the RothC (Jenkinson 

and Rayner, 1977). As a reminder, RothC divides soil organic matter into five compartments: 

one stable inert pool (IOM) and four active pools: decomposable, and resistant plant material, 

humus, and microbial biomass carbon (DPM, RPM, HUM and BIO), distinguished by different 

turnover times (see Sect. 1.9.2 for a more detailed model description; Fig. 22). 

An attempt to separate measurable SOC fractions correlated to conceptual pools of RothC is 

presented in Balesdent (1996). Using both physical and chemical procedures, the author 

assorted SOC into four fractions of decreasing particle sizes and increasing 13C ages. The 

presented method allowed to satisfactorily relate the >50μm fraction to the RPM pool. 
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However, the observed link was interpreted as an approximation and not an exact quantification 

since particles of higher stability are partially present in the larger-size fraction and vice-versa. 

Another fractionation procedure was proposed by Skjemstad et al. (2004), based on a 

combination of pre-existing protocols (Fig. 22). Using soils from two Australian LTE sites, the 

authors physically separated SOC into two size fractions, larger (9POC), and smaller than 53μm. 

They determined the proportion of the smaller-sized fraction that corresponded to charcoal by 

photo-oxidation and magnetic resonance spectroscopy (10ROC), and defined the humic pool 

(11HOC) by difference (i.e., HOC=TOC-(POC+ROC); Fig. 22). In this study, the three isolated 

fractions were related to the RPM, HUM and IOM pool of RothC, and they were successfully 

used to initialize dynamic SOC simulations at the two sites.  

 

The correlation of model and observed data was improved significantly, but only after 

optimizing the RPM decomposition rate to match pedoclimatic conditions. Moreover, although 

the use of this fractionation approach seems to be appropriate for Australian soils, its relevance 

to global or European soils is questionable, considering that the particularly important influence 

of wildfires in Australian soils might not hold true in different environments where mechanisms 

of SOC stabilization are more variable. 

                                                 

 

 
9
 POC: Particulate organic carbon 

10
 ROC: Resistant organic carbon  

11
 HOC: Humic organic carbon 

Figure 22: Schematic diagram of the fractionation 

method proposed by Skjemstad et al. (2004). 

Rectangles represent the various fractions (POC: 

particulate organic carbon, ROC: resistant organic 

carbon and HOC: humic organic carbon) while the 

arrows represent procedures (i.e., sieving, oxidation 

and calculation of HOC through subtraction). 
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In a study conducted on agricultural topsoils from Northern Germany, Weihermüller et al. 

(2013) were able to show that the >53μm fraction separated according to the protocol proposed 

by Skjemstad et al. (2004) was positively correlated (R² > 0.7) to the size of RPM pool of RothC 

under assumption of SOC equilibrium. The approach developed by Skjemstad et al. (2004) was 

slightly modified in a study by Herbst et al. (2018) and applied on soil samples from agricultural 

experimentation sites in Germany and the UK. The authors investigated the correlation of the 

POC and HOC fractions to the RothC pools RPM and HUM, respectively. Their results showed 

that under assumption of SOC equilibrium, there was a strong positive correlation (R² > 0.8) 

between the HOC fraction and the HUM pool. For the same conditions, a weaker correlation 

(R² = 0.5) was observed between the POC fraction and the RPM pool. The authors draw the 

ambiguous conclusion that although fractionation could be used to improve spin-up model runs, 

it can also lead to biases.  

 

In an effort to adapt the idea of physico-chemical SOC fractionation to European soils, 

Zimmermann et al. (2007a) attempted to design an analogous protocol (Fig. 23 & 24). In this 

study the authors use size-density fractionation as well as chemical oxidation (NaOCl) to divide 

SOC into five fractions: “DOC” (Dissolved organic carbon; <0.45μm), “rSOC” (resistant SOC; 

0.45-63μm and resistant to chemical oxidation), “s+c” (silt and clay; calculated as the fraction 

0.45-63μm minus the rSOC), “S+A” (sand and stable aggregates; >63μm and heavier than 1.8 

g cm−3) and “POM” (particulate organic matter; >63μm and lighter than 1.8 g cm−3; Fig. 23). 

The fraction of “rSOC” corresponds directly to the IOM pool of RothC, while the “POM” and 

“DOC” fractions are summed up and then split into DPM and RPM according to a coefficient 

calculated based on a SOC equilibrium scenario. Similarly, the SOC remaining in the “s+c” 

and “S+A” pools is distributed into the BIO and HUM fractions (Fig. 24).  
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The authors applied this approach on 123 agricultural and managed grassland soils in 

Switzerland and they showed that the size of the SOC fractions defined with this method was 

correlated with the size of the model pools in equilibrium.  

Although this approach is labour-intense it has been applied in numerous studies in lack of a 

more appropriate method. In a study using agricultural soils in Ireland, Dondini et al. (2009) 

repeated this procedure but showed that for the sites used in their study, a good correlation was 

found only between two out of the three physically separated fractions and RothC pools (HUM 

and IOM). Leifeld et al. (2009a) attempted to estimate RothC pool sizes for a collection of 

alpine grassland soils along an altitude gradient. The authors showed that the correlation 

between the size of model pools and the estimated SOC fractions was weak, and they conclude 

that the hypothesis of a relationship between fractions obtained with this fractionation protocol 

and conceptual model pools does not hold true for high altitude grassland soils.  

Figure 23: Schematic diagram of fractionation method proposed by Zimmermann et al. 

(2007). The five separated fractions are shown as ellipses. “s+c” stands for silt and clay, 

“rSOC” for resistant SOC, “DOC” for dissolved organic carbon, “S+A” for sand and 

stable aggregates and “POM” for particulate organic carbon (Zimmermann et al., 2007a).      



Kanari Eva — Thèse de doctorat — 2022 

80 

 

 

 

 

In an attempt to better understand the limitations of the method proposed by Zimmermann et 

al. (2007a) caused by its complexity, Poeplau et al. (2013)conducted a comparative study 

aiming to investigate its reproducibility. The authors followed an identical protocol to analyse 

the same soils at six independent laboratories. Their work showed significant disagreements for 

the estimation of all the stability pools (coefficient of variation 14–138%), caused by slight 

differences in sample treatment. Yet this method continues to be applied, often with slight 

adaptations, resulting in a multitude of different experimental protocols, which hinders direct 

comparison of studies following different procedures. Characteristically, Poeplau et al. (2018) 

conducted a study to evaluate 20 different currently used fractionation methods. Their work 

provides useful information as to which method might be more appropriate, depending on 

available samples and the research question, but it emphasizes an inconsistency issue as well. 

 

Figure 24: Conceptual diagram showing the procedure for splitting SOC fractions into 

pools (Zimmermann et al., 2007a).  
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A more universal and drastically simplified fractionation approach was recently proposed by 

(Lavallee et al., 2019), separating SOM into just two size-fractions, particulate organic matter 

(POM) and mineral-associated organic matter (MAOM). These two fractions are considered to 

differ in regards to their formation, functioning and more importantly their persistence. 

Moreover, they are easy to separate, as the procedure includes only two steps: soil dispersion 

to break apart occluded particles, and sieving at 53μm. Although this method has clear 

advantages such as its simple use compared to complex fractionation methods, discrepancies 

might still occur due to the variable effect of dispersion on different soil types (Just et al., 2021). 

Additionally, evidence suggests that SOC within these pools has variable turnover times. Even 

though the “unprotected” POM fraction is thought to cycle much faster (Gregorich et al., 2006), 

studies have shown that average age of POM can be similar to bulk SOC (Schmidt et al., 2011) 

and in some cases it can even exceed 100 years (Trumbore, 2000). It is evident that in all cases, 

SOC pools contain a mixture of labile and more persistent materials, which makes the question 

of actually testing and evaluating the performance of this and every fractionation method 

independently a crucial one. 

 

The lack of complete and independent validation as SOC pool initialization methods is a 

common drawback to all of the fractionation methods mentioned above. A sufficient validation 

would require that a fractionation method designed to separate measurable SOC pools is 

actually used to initialize SOC pool sizes and that the obtained projections of SOC dynamic 

evolution match actual observations. Currently SOC fractionation methods are evaluated based 

on their correlation to modelled compartments based on steady-state assumption. Yet, many 

studies argue that this assumption is unrealistic especially for arable land, even after long 

periods of known land-use history. In addition, such incomplete evaluation approaches entirely 

lack evidence regarding the added value brought to dynamic SOC simulations by fractionation-

based initializations. 

One of the few studies attempting to use a fractionation method to actually initialize SOC 

simulations and evaluate the improvement brought by this approach, was conducted by Leifeld 

et al. (2009b) using SOC time series from a long-term agronomical trial in Switzerland. The 

authors show that the improvement in the accuracy of simulations brought by the Zimmermann 

et al. (2007a) initialization was non-significant.  
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Another attempt at applying the same approach is presented in Nemo et al. (2016) who 

evaluated the fractionation procedure using four agronomical sites in Europe. Their conclusion 

was similar, as the improvement brought to the precision of model projections was non-

significant compared to a spin-up simulation.  

 

The sensitivity of SOC dynamic models to the correct initialization of the sizes of their kinetic 

pools emphasizes the need for appropriate and validated methods (Luo et al., 2016). 

Specifically, determining the size of the stable pool with precision is crucial for the accuracy of 

SOC projections (Clivot et al., 2019; Smith and Falloon, 2000; Taghizadeh-Toosi et al., 2020) 

The large uncertainties in SOC evolution predictions are an important issue not only in soil 

science and agronomy but also in ecosystem modelling (Todd-Brown et al., 2013). Poor 

representation of the SOC module in Earth system models can lead up to an overestimation of 

global SOC storage potential of up to 40% (He et al., 2016). 

 

Alternative, robust and validated initialization methods are imperative considering the complex 

non-standardized and time-consuming nature and the questionable performance of current 

approaches. 
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1.12. A recent advancement in estimation of SOC persistence: the 

PARTYSOC model 

1.12.1. Thermal instead of physico-chemical fractionation 

In the past decade, ramped thermal analysis has shown great potential to obtain proxies for the 

biogeochemical stability of soil organic carbon (Plante et al., 2013; Gregorich et al., 2015; 

Soucémarianadin et al., 2018). Especially when accompanied by information on SOC bulk 

chemistry, such as depletion or enrichment in hydrogen (Barré et al., 2016) or specific moieties 

(Sanderman and Grandy, 2020), thermal stability showed a strong correlation with classic tools 

used for estimating the age of carbon atoms (14C; Plante et al., 2013) and in situ estimations of 

biogeochemical SOC stability (LTBF sites; Barré et al., 2016). 

1.12.2. Link between thermal and biogeochemical stability in situ 

A pioneering study linking thermal stability to biogeochemical SOC persistence was conducted 

by Barré et al. (2016). Compiling a unique data set of archived samples from LTBFs in north-

western Europe, the authors analysed sequences of persistent SOC enrichment (with LTBF 

duration) using a variety of methods. They identified energetic and chemical characteristics of 

persistent SOC, namely its high thermal stability, low energy content and depletion in hydrogen 

(Fig. 25). Amongst the four analytical methods applied: Rock-Eval® thermal analysis, TG-

DSC, NEXAFS (Near Edge X-Ray Absorption Fine Structure) spectroscopy and Mid-IR 

spectroscopy, indicators obtained with Rock-Eval® showed the most systematic correlation to 

bare fallow duration and thus SOC persistence.  

1.12.3. The first quantitative thermal-analysis-based machine-learning model predicting 

SOC persistence 

As explained earlier in this manuscript, LTBF experiments offer the opportunity to infer the 

concentration of persistent SOC at a given site (see Sect. 1.11.1.1.1.; Barré et al., 2010). By 

applying a Bayesian curve fitting method to the observed SOC decay over the duration of the 

LTBF (longest trial ~80 years), Cécillon et al. (2018) estimated a site-specific concentration of  
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centennially persistent SOC at four European sites (Versailles, France; Grignon, France; 

Rothamsted, United Kingdom; and Ultuna, Sweden). The authors assumed that the persistent 

SOC concentration would remain unchanged over the scale of a century and that it would be 

uninfluenced by land-management practices. This assumption allowed (i) calculating the 

proportion of centennially persistent SOC at each sampling time during the experiment at LTBF 

plots and (ii) at neighbouring plots under different land-uses (manure amendment, straw or 

composted straw amendment, grassland, and cropland).  

Thus a database was generated consisting of time series of SOC evolution at various locations 

under various land-uses with known changes in persistent SOC proportion with time. Moreover, 

all archived samples (n=118) were analysed with Rock-Eval® and 30 parameters per sample 

were obtained, characterizing their organic matter thermal stability and bulk chemistry.  

Finally, based on the correlations between Rock-Eval® parameters and biogeochemical 

stability, Cécillon et al. (2018) trained a non-parametric machine-learning algorithm using a 

random-forest approach to accept Rock-Eval® parameters as predictor variables and generate 

a value of centennially persistent SOC proportion as a target variable.  

This model was internally validated in the same study (“out-of-bag” validation; R²=0.91, 

RMSEP=0.07) showing that the algorithm could efficiently predict the centennially persistent 

SOC proportion of samples from the same sites but which were not included in the learning set 

of the model.  

Figure 25: (a) Hydrogen index (in mg HC g TOC−1) and (b) Temperature at which 50 % of CO2 was 

released during oxidation as a function of bare fallow duration (Barré et al., 2016). 
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This version was recently adapted (Cécillon et al., 2021; ANNEX 1) to form the most up-to-

date version of the model currently available and used in this study. 

1.12.4. Rock-Eval® thermal analysis machine-learning models PARTYSOCv2.0 and 

PARTYSOCv2.0EU 

The complete work by Cécillon et al. (2021) presenting two new versions of the model and 

explaining in detail their differences compared to the older version (see ANNEX 1 

Supplementary Table S1) can be found in ANNEX 1 of this manuscript.  

Here we briefly discuss some of the most important updates. First, the network of sites used for 

model calibration was expanded in the geographical sense, including samples from Germany 

(Bad Lauchstädt) and Colombia (La Cabaña). Second, a new type of long term trial was 

included in the model’s training data set, a C3–C4 vegetation change chronosequence (La 

Cabaña, Colombia). Third, the calculation of persistent SOC concentration was adapted to 

account for errors or uncertainties in the Bayesian fitting method as follows: in LTBFs where 

modelled estimations of persistent SOC concentration exceeded the lowest SOC concentration 

observed in situ, the latter value was used instead. Fourth, the contribution of each reference 

site to the training set in terms of number of samples was equalized (n=15 per site). Fifth, the 

number of Rock-Eval® parameters used as predictors was reduced to 18, out of which some 

were directly related to SOC content, and which were all correlated to the proportion of 

centennially stable SOC (Spearman’s rho > 0.5).  

The conservative estimation of the prediction error of the European version of the model 

(PARTYSOCv2.0EU) was obtained with a leave-one-site-out validation and was in the order of 

RMSE=0.15 (RRMSE=0.27) for the six independent validation sites. These results showed 

promise for the use of the model on independent sites from similar pedoclimates.  

 

In this study we used the most up-to-date European (PARTYSOCv2.0EU) version of the 

PARTYSOC model. In this manuscript the name PARTYSOC is often used without any indication 

to the specific version. Since only the European (PARTYSOCv2.0EU) version of the model was 

used throughout this work, the name PARTYSOC refers to the European version, unless specified 

otherwise.     
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1.13. The principles and methodology evolution of the Rock-Eval® 

technique 

The apparatus was originally invented to assess the type, maturity degree and petroleum      

potential of source rocks (Espitalié et al., 1977). Rock-Eval® thermal analysis served for almost 

five decades as a standard technique in the petroleum industry(Espitalie et al., 1985b, a, 1986; 

Lafargue et al., 1998; Behar et al., 2001). Since the 1990’s after several upgrades on its 

hardware, the technique saw new alternative applications, such as characterization of recent 

sediments, soil organic matter analysis and even analysis of pure biochemical compounds 

(Lafargue et al., 1998; Di-Giovanni et al., 2000; Disnar et al., 2003; Hetényi et al., 2005; Carrie 

et al., 2012a; Baudin et al., 2015; Gregorich et al., 2015; Barré et al., 2016; Sebag et al., 2016; 

Soucémarianadin et al., 2018).  

1.13.1. The Rock-Eval® 6 device  

The Rock-Eval® 6 TURBO device (Vinci Technologies, France) used in this study, is equipped 

with two micro ovens, as well as a fully automated sampler, a flame ionisation detector (FID) 

and two infra-red (IR) cells. The apparatus set-up allows direct monitoring of HC, CO and CO2 

effluents during programmed heating of the sample (Fig. 26). More precisely, two successive 

steps can be applied, pyrolysis and oxidation, generating three and two thermograms 

respectively. For the analysis, 20–100 mg of sample (depending on its carbon content) are 

placed in a crucible made of an incolloy, designed for high corrosion resistance as well as 

strength at high temperatures. A fine grid forming the bottom and the top of the crucible allows 

the circulation of carrier gas. The crucible enters the micro oven automatically, where its top 

and bottom are in direct contact with the two ends of the thermocouple wires. Due to this setup 

the true temperature occurring in the micro ovens can be measured in real time with a precision 

of 0.5°C.  

In the case of sequential pyrolysis and oxidation, the sample first undergoes pyrolysis under an 

inert (N2) atmosphere. The released gas passes through a heated splitter (400 °C) where it is 

divided into two equal parts. One half is led to the FID, where the released hydrocarbons are 

quantified. Hydrocarbon effluents can be measured accurately with an FID sensitivity of 100 

pA to 1 μA. Simultaneously, the second half of the pyrolysis effluents is guided to the IR cells 

to register the CO and CO2 generation.  
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During the second analysis step, the residual carbon is oxidized under laboratory atmosphere, 

while CO and CO2 effluents are directly monitored by the IR detectors. The sensitivity of the 

IR cells is in the order of 12 ppm for CO and 25 ppm for CO2 (Vinci Technologies). 

 

1.13.1.1. Detection of gases during Rock-Eval® analysis 

1.13.1.1.1. Flame Ionisation Detection 

FID is an instrument that is often used to measure the concentration of organic species in a gas 

flow. The sample is burned in a hydrogen flame, which leads to the release of ions and electrons. 

As ions are generated inside the detector, they are transported between two electrodes where a 

difference of potential of a few hundred volts is occurring. The presence of the produced ions 

can generate an electric current in the order of Pico amps (10−12 A). This current can be 

recorded, converted to a voltage and then filtered and amplified as specified. The intensity of 

the resulting current is directly proportional to the amount of ions present in the detector (The 

Flame Ionization Detector, 2005). 

Figure 26: (a) The set-up of the Rock-Eval®6 apparatus including the two micro ovens, the used 

detectors and monitored gases. In the lower middle box are some of the acquisition parameters (the 

names of the obtained thermogram peak areas; Behar et al., 2001). (b) Closer look at a micro-oven and 

the positioning of the thermocouple in direct contact with the crucible (changed after Behar et al., 2001). 

(c) Schematic drawing of a crucible. 

https://www.vinci-technologies.com/Medias/documentation/RE7%20Data%20Sheet.pdf
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1.13.1.1.2. Infrared Spectroscopy 

This method is based on absorption spectroscopy. Through the interaction of radiation with 

matter, chemicals can be identified and studied. A beam of a specific spectrum (IR) is passed 

through the sample. Characteristically, matter absorbs the radiation that matches its vibrational 

frequency, also known as resonance frequency. By examining the transmitted light, the amount 

of energy and the specific frequency of absorption is revealed. Vibrational and thus absorbing 

frequency is dependent on the structure of a molecule. It can be influenced by the masses and 

the positions of the atoms forming a molecule as well as the associated vibronic coupling 

(interaction between electronic and nuclear vibrational motion). As a result, the infrared 

spectrum of a substance is characteristic of its chemical composition (Derrick et al., 1999). 

 

1.13.1.2. Output data 

The output data is displayed in five thermograms. Each thermogram presents time information 

on the x-axis (that can be converted to temperature if the heating routine is known) measured 

in seconds, and the intensity of the signal of a given detector (showing the evolution of a gas) 

on the y-axis (in mV for the FID or ppm for the IR signal). Peak areas are defined for each 

thermogram to interpret the origin of carbon (Behar et al., 2001). The FID signal recorded 

during pyrolysis (HC_PYR thermogram) consists of two peaks: S1, showing the release of free 

hydrocarbons, and S2, representing pyrolyzed hydrocarbons with respect to the oil generation. 

The IR signal monitoring CO2 released during pyrolysis (CO2_PYR thermogram) can be 

divided into two peaks: S3, formed through CO2 organic origin, and S3’, formed by CO2 of 

inorganic origin. The CO signal recorded by IR detection during pyrolysis (CO_PYR 

thermogram) also has two peak areas, S3CO and S3’CO, similarly representing effluents of 

organic and inorganic origin. The IR signal of CO2 detected during oxidation (CO2_OX 

thermogram) includes two peak areas as well, S4CO2 and S5, representing an organic and 

inorganic source respectively. A single peak area is considered for the CO gas detected by IR 

during oxidation (CO_OX thermogram), called S4CO, and is attributed to organic carbon. 

The peak area limits are pre-defined for the HC_PYR, and CO2_PYR thermograms and they 

can be located automatically or manually for the CO_PYR, CO2_OX and CO_OX 

thermograms.  
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The cut-off in each case is defined as the minimum value of gas production observed in a 

specific range, namely before the occurrence of the signal corresponding to inorganic carbon. 

A detailed overview of the limits and the interpretation of each area is illustrated in Fig. 27. The 

most important inorganic carbon signal due to the presence of carbonates has a characteristic 

peak recorded in the CO2_OX thermogram after 611°C (s. Fig. 27). 

 

 

 

1.13.1.3. Acquisition parameters 

Based on the generated thermograms, several parameters can be calculated based on      

integrated information on the carbon content, the size of different carbon fractions and the bulk 

chemistry and thermal stability of the analysed organic matter. In order to keep this section 

short and avoid repeating technical information too many times in the manuscript, we direct the 

reader to Chapter 2, Supplementary Table 1 for more details. The most important and relevant 

information is repeated in the methods section of each chapter. 

Figure 27: Representation of five thermograms obtained by Rock-Eval® analysis. Grey areas 

correspond to detection of carbon of organic origin while white areas correspond to inorganic carbon 

(©Baudin, after Behar et al., 2001). 
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2. The work conducted during this thesis in three chapters 

Structure of writing  

After this general introduction giving the context of this work and reviewing the current state 

of the art relevant to this topic follows a presentation of the work conducted in the frame of this 

thesis in the last three years. The work is presented in three chapters, each addressing a different 

research question.  

Organization of topics 

Each chapter is introduced by an overview reminding the reader of the objectives, hypotheses, 

highlights, conclusions and perspectives of each part. The body of each chapter consists of a 

journal paper produced during the thesis (chapter 1 and 2) or one in preparation (chapter 3). 

Each chapter can stand independently as it contains a summary of the work, its context, a review 

of relevant literature, a description of the methods and materials used, a results section, a short 

discussion section and a section with conclusions and perspectives. Still, the chapters are 

presented in an order chosen to create a story showing how these questions are relevant to each 

other. They are bound together by a general extended discussion at the end of the manuscript 

whose goal is to answer points mentioned earlier on and pave the way for the general 

conclusions and perspectives of this work.  
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Research questions 

My thesis work can be summarized in three objectives, which I tried to investigate and describe 

in the three following chapters. 

The research question of the first chapter is if we can apply the PARTYSOC model to sites 

outside of its calibration set and if so, evaluate the potential of this approach for improving the 

accuracy of SOC simulations. 

The next two chapters focus on learning more about the limits and possibilities of the approach 

using laboratory experiments. Namely, in the second chapter we ask if it is possible to compare 

Rock-Eval® parameters of samples originating from different depths for purposes of 

harmonisation of existing databases.  

The question of the third and final chapter is if it is possible to progress towards a more 

mechanistic understanding of the link between thermal and biogeochemical stability. 

Specifically, can we study the role of adsorption on mineral surfaces − a classic SOC protection 

mechanism – using Rock-Eval® and if so what is its influence on thermal stability?  
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Using estimations of SOC persistence predicted with 

machine-learning and Rock-Eval® thermal analysis to 

improve the accuracy of simulations of SOC dynamics. 

In this chapter we address the question of the poor accuracy of SOC projections by models, 

caused by the lack of precise information on initial SOC kinetic pool partitioning.  

Our objectives were: first, to test the latest version of the thermal analysis-based machine-

learning model PARTYSOC (providing estimations of persistent SOC) on independent samples 

and second, to use the obtained information to initialize the pool partitioning of AMG (Andiulo 

et al., 1999; currently the most accurate model for simulating SOC stock evolution in French 

cropland) to estimate the potential improvement on SOC simulations. 

We hypothesized that the PARTYSOC model can be applied efficiently on new soil samples 

from similar pedoclimates as its calibration set (North-western Europe). Second, since the 

chosen model of SOC dynamics (AMG) and the PARTYSOC model have the same SOC pool 

architecture, we expected the pool partitioning obtained with these two approaches to be 

directly comparable. Third, we hypothesised that the use of the pool partitioning predicted by 

PARTYSOC would improve the accuracy of SOC stock projections, compared to the models 

default initialization. 

This work was conducted on archive and recent soil samples from 9 French long-term 

agronomic experiments, including 32 treatments. We showed that the PARTYSOC model 

predicts a SOC pool partitioning that accounts for legacy effects of land cover and soil 

management practices and is optimal for AMG. Coupling the two models, i.e., initializing the 

pool partitioning of AMG using PARTYSOC allowed us to reproduce the observed SOC changes 

on a pluri-decadal scale at the 32 treatments. The simulations were especially improved in sites 

with complex land cover and soil management histories, where SOC stocks were far from 

equilibrium. As this is the case for most European croplands, we estimate the net potential for 

improvement brought by this method to be substantial. 
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Additionally, this initialization method is quick, has a low cost and is easy to implement. As 

such it presents a great potential for obtaining accurate predictions of SOC stocks evolution 

over the coming decades at large scale. 

Another important message we underline in this work is the value of simple multi-

compartmental models of SOC dynamics as a tool for accurately predicting SOC stock changes. 

We demonstrate that when properly initialized a simple model provides unbiased and precise 

simulations (on the pluri-decadal scale). Contrary to a new generation of mechanistic models 

that are mathematically more complex and require additional parametrization work and 

validation, simple models on the other hand, once their kinetic pools are correctly initialized, 

can provide reliable SOC projections at the plot, ecosystem and global scale. 

Nevertheless, before this initialization approach can be applied globally, multiple steps are 

necessary. First, more sites that allow for precise estimation of in situ SOC persistence (such as 

carefully monitored long-term agronomical experiments, long-term bare fallow sites, and C3-

C4 chronosequences) will have to be included in the calibration set of an updated version of the 

PARTYSOC model to cover a larger range of pedoclimates. The updated version of the model 

will have to be validated in relation to similar long-term experiments from the new cover areas. 

Moreover, for the final part of coupling PARTYSOC to a global SOC dynamics modelling 

scheme, several questions remain. Even though it is a simple model, and therefore easily 

transferable, the use of AMG at new sites will require a lot of data (especially for model 

evaluation purposes): climatic records, history of land cover and precise land management 

practices. Alternatively, the structure of PARTYSOC could be revised, to match the pool 

structure of more widely used models of SOC dynamics such as RothC (Coleman and 

Jenkinson, 1996) or CENTURY (Parton et al. 1987), in which case new indicators able to split 

SOC into a larger number of pools or pools with different mean turnover times will have to be 

determined. These points are discussed in more detail in the general discussion of this 

manuscript. 

 

The work presented in this chapter was conducted in close collaboration with Bruno Mary, 

Fabien Ferchaud, Hugues Clivot and Fabien Levavasseur. The result of this work was published 

in the EGU journal Biogeosciences. The paper under the title “A robust initialization method 

for accurate soil organic carbon simulations” can be found on the following pages. 
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Abstract 

Changes in soil organic carbon (SOC) stocks are a major source of uncertainty for the evolution 

of atmospheric CO2 concentration during the 21st century. They are usually simulated by models 

dividing SOC into conceptual pools with contrasted turnover times. The lack of reliable 

methods to initialize these models, by correctly distributing soil carbon amongst their kinetic 

pools, strongly limits the accuracy of their simulations. Here, we demonstrate that PARTYSOC, 

a machine-learning model based on Rock-Eval® thermal analysis optimally partitions the 

active and stable SOC pools of AMG, a simple and well validated SOC dynamics model, 

accounting for effects of soil management history. Furthermore, we found that initializing the 

SOC pool sizes of AMG using machine-learning strongly improves its accuracy when 

reproducing the observed SOC dynamics in nine independent French long-term agricultural 

experiments. Our results indicate that multi-compartmental models of SOC dynamics combined 

with a robust initialization can simulate observed SOC stock changes with excellent precision. 

We recommend exploring their potential before a new generation of models of greater 

complexity becomes operational. The approach proposed here can be easily implemented on 

soil monitoring networks, paving the way towards precise predictions of SOC stock changes 

over the next decades. 
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1. Introduction 

Soil organic carbon (SOC) plays an important role in sustaining soil functions and associated 

soil ecosystem services worldwide (IPCC, 2019). It is the largest terrestrial organic carbon 

reservoir, with the upper two meters of soil storing 2400 Pg C, three times more carbon than 

the atmosphere (Jobbagy and Jackson, 2000). A mere 4 per 1000 annual decrease in SOC stocks 

(ca. 10 Pg C yr−1) may double the global annual anthropogenic CO2 emissions, while an 

equivalent increase may compensate them (Balesdent and Arrouays, 1999). This is the concept 

behind the 4 per 1000 initiative (Rumpel et al., 2018) that aims at increasing SOC stocks to 

fight global warming while ensuring food security, two Sustainable Development Goals of the 

United Nations (UN General Assembly, 2015). This initiative and other political headway have 

placed the question of managing SOC stocks and assessing the global SOC sequestration 

potential at the top of political and scientific agendas (Vermeulen et al., 2019; FAO, 2019; 

Amelung et al., 2020). Despite this particular attention, the prediction of SOC stock changes 

remains very uncertain, which makes soils a major source of uncertainty for the evolution of 

atmospheric CO2 concentration (Todd-Brown et al., 2014; He et al., 2016; Shi et al., 2018). 

 

Models of SOC dynamics can predict future SOC stock evolution by simulating carbon transfer 

into the soil mostly through plant organic matter inputs, and microbial SOC mineralization 

resulting in a CO2 flux from the soil to the atmosphere. They can have structures of various 

complexities reflecting our mechanistic understanding of SOC dynamics (Luo et al., 2016; Shi 

et al., 2018). However, most models dedicated to prediction, including those used in Earth 

System Models, have a simple structure dividing SOC into conceptual pools with contrasted 

turnover times (Manzoni and Porporato, 2009; Todd-Brown et al., 2014; He et al., 2016). These 

multi-compartmental models of SOC dynamics are the best option we currently have to foster 

science-based SOC preservation and sequestration actions, given the strong uncertainty of more 

complex models (Shi et al., 2018; Crowther et al., 2019; Cécillon, 2021a; Dangal et al., 2021; 

Lee et al., 2021). Predictions of SOC stocks evolution provided by such simple models are very 

sensitive to the initial distribution of SOC amongst the different kinetic pools (Smith and 

Falloon, 2000; Luo et al., 2016; Clivot et al., 2019). This makes the question of SOC kinetic 

pool partitioning a priority for improving the accuracy of multi-compartmental SOC dynamics 

models (Luo et al., 2016; Taghizadeh-Toosi et al., 2020). 
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The most commonly used method to initialize the size of SOC kinetic pools is to run spin-up 

simulations until a steady-state equilibrium for SOC is reached, eventually matching the initial 

SOC stock measurement (Wutzler and Reichstein, 2007; Taghizadeh-Toosi et al., 2020). 

However, this method has two well-known limitations. First, climatic, SOC input, and land-use 

or land-cover data extending over long time periods required by this approach are highly 

uncertain. Second, assuming steady-state equilibrium for SOC at the onset of model simulations 

is often unrealistic. This is due to the history of the simulated sites that often includes 

disturbances (e.g. fire), as well as previous changes in climate, land-use and soil management 

that prevent SOC pools with slow turnover times from being at equilibrium (Wutzler and 

Reichstein, 2007; Poeplau et al., 2011; Oberholzer et al., 2014; Herbst et al., 2018; Clivot et al., 

2019). Alternative initialization procedures are needed to address these issues (Bruun and 

Jensen, 2002; Wutzler and Reichstein, 2007; Taghizadeh-Toosi et al., 2020).  

 

In some models of SOC dynamics, like the AMG model (Clivot et al., 2019), a default initial 

SOC pool size distribution is prescribed according to basic information on land-use history (i.e. 

long-term cropland vs. long-term grassland; Clivot et al., 2019). This approach does not take 

into account the effect of recent changes in land-use or historical soil management practices on 

SOC pool distribution. To better reflect the effect of the frequent state of non-equilibrium of 

SOC on its partitioning into conceptual kinetic pools, another approach has been proposed, 

relating results from SOC fractionation methods with SOC kinetic poolsizes (e.g. Zimmermann 

et al. (2007a) or Skjemstad et al. (2004) for the RothC model; Dangal et al. (2021) for the 

DAYCENT model). However, this approach also suffers from important drawbacks. First, SOC 

fractionation procedures are tedious and cannot be implemented on large-scale studies, though 

this problem may be solved by using soil infrared spectroscopy or environmental variables and 

machine- learning (Zimmermann et al., 2007b; Barthès et al., 2008; Baldock et al., 2013; 

Cotrufo et al., 2019; Viscarra Rossel et al., 2019; Dangal et al., 2021; Lee et al., 2021; Lugato 

et al., 2021; Sanderman et al., 2021). Second, their reproducibility is questionable (Poeplau et 

al., 2013, 2018), and third, their use for initializing model SOC pool sizes has never been 

properly validated. A proper validation would require showing that (1) the size of measured 

SOC fractions matches the one of model kinetic pools, and that (2) simulations of SOC 

dynamics are more accurate using this initialization strategy, compared to default simulations 

(on independent validation sites while other model parameters remain constant).  
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Reasonably good correspondence between measured or soil-spectroscopy-estimated SOC 

fractions and modelled SOC conceptual pools has been reported in a number of studies, though 

with some notable discrepancies (Zimmermann et al., 2007a; Leifeld et al., 2009a; Herbst et 

al., 2018; Dangal et al., 2021). Conversely, the studies that attempted to initialize model SOC 

pool sizes using a SOC fractionation scheme generally reported no improvement in the accuracy 

of simulations of SOC dynamics compared to a default or a spin-up initialization approach 

(Leifeld et al., 2009b; Nemo et al., 2016; Cagnarini et al., 2019). Only two studies showed that 

an initialization based on a SOC fractionation scheme yielded more accurate simulations of 

observed SOC dynamics, but at the cost of modifying the decomposition rate of SOC kinetic 

pools (Skjemstad et al., 2004; Luo et al., 2014). 

 

An alternative approach using Rock-Eval® thermal analysis has recently been proposed — 

under the name PARTYSOC model — to estimate SOC kinetic pool sizes (Cécillon et al., 2018, 

2021). PARTYSOC is a machine-learning model trained on Rock-Eval® data of soil samples 

from long-term experiments (LTEs) where the size of the centennially stable SOC fraction can 

be estimated (e.g. sites including a bare fallow treatment). PARTYSOC incorporates recent key 

elements of the new understanding of SOC dynamics (Dignac et al., 2017), showing that the 

centennially stable SOC fraction has specific chemical and energetical characteristics that are 

measurable quickly (ca. 1 h per sample) and at a reasonable cost (less than USD 60) using 

Rock-Eval®; it is thermally stable (i.e. high activation energy) and it is depleted in hydrogen 

(Gregorich et al., 2015; Barré et al., 2016; Hemingway et al., 2019; Poeplau et al., 2019; Chassé 

et al., 2021). 

 

In this study, we tested if the PARTYSOC machine-learning model, built on a totally independent 

data set from North-western Europe, could be used to initialize the distribution of SOC pools 

of the simple AMG model (Clivot et al., 2019) and improve the accuracy of its simulations. The 

default version of AMG is currently the most accurate model for reproducing the observed SOC 

stock dynamics in diverse French agricultural LTEs at the pluri-decadal scale (Martin et al., 

2019). The efficient use of this model at sites covering an important pedological and climatic 

variability (including oceanic, continental, and tropical climate) provides further support to its 

robustness (Levavasseur et al., 2020; Farina et al., 2021; Saffih-Hdadi and Mary, 2008).  
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In this model, SOC is simply divided into two pools, the “stable SOC (CS)” that is considered 

as inert at the time scale of the simulation and the “active SOC (CA)” that has a mean turnover 

time of a few decades. A recent study (Clivot et al., 2019) determined that the optimal initial 

proportion of stable SOC (CS/C0) can deviate from the model’s default value (0.65 in 

croplands), so that a more precise initialization of the CS/C0 proportion would significantly 

improve AMG simulations of SOC dynamics. Here, we hypothesized that the SOC pool 

partitioning as determined by the PARTYSOC machine-learning model (Cécillon et al., 2021, 

2018) would be close to the mathematically optimal one for the AMG model, therefore, 

improving the accuracy of its SOC dynamics simulations compared to default initialization. We 

tested our hypothesis on 32 treatments from nine independent French agricultural LTEs 

(experiment duration from 12 to 41 years with a median of 21 years) in which the AMG optimal 

SOC pool partitioning could be determined by ex-post optimization and for which topsoil 

samples collected at the onset of the experiment were available (Table 1). These LTEs were 

croplands established in different pedoclimates that have experienced contrasted soil 

management practices and land-use histories. All available initial topsoil samples were 

analysed with Rock-Eval® and the results were used in the European version of the PARTYSOC 

model, PARTYSOCv2.0EU (Cécillon et al., 2021), to compute the centennially stable SOC 

proportion of each topsoil sample. 
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2. Materials and methods  

2.1. Experimental sites  

This work was conducted on nine French agricultural LTEs (Supplementary Material Fig. 1). 

Seven LTEs including 29 treatments were selected from the dataset presented in Clivot et al. 

(2019), from sites with availability of initial topsoil samples. Two additional LTEs (Colmar and 

Feucherolles) including a total of three treatments were obtained from the dataset published in 

Levavasseur et al. (2020), selecting control treatments without organic amendments and with 

available initial topsoil samples. Basic site and topsoil characteristics are reported in Table 1 

and Supplementary Material Table 1. Information necessary to run AMG simulations on a total 

of 32 treatments (initial soil physico-chemical properties, detailed information on management 

practices and observed climatic data during all experiments) were obtained from Clivot et al. 

(2019) for the 29 treatments of the seven sites and from Levavasseur et al. (2020) for the three 

treatments of the sites of Colmar and Feucherolles.  

 Auzeville Boigneville Colmar Doazit Feucherolles 
Grignon-

Folleville 
Kerbernez Mant Tartas 

Soil type 

(WRB 

2014) 

Luvisol 
Haplic 

Luvisol 

Calcaric 

Cambisol 
Luvisol 

Gleyic 

Luvisol 
Luvisol Cambisol 

Dystric 

Luvisol 

Luvic 

Arenosol 

LTE onset 1968 1970 2000 1967 1998 1958 1978 1975 1972 

Simulated 

period 

1975–

2010 
1970–2011 

2000–

2018 

1977–

1989 
1998–2019 

1989–

2008 
1978–2005 

1975–

1992 

1976–

1997 

Number of 

treatments 
4 12 1 2 2 2 5 2 2 

Sampling 

dates 

(number of 

samples) 

1975 (4), 

2010 (8) 

1970 (29), 

1998 (10), 
2017 (32) 

2000 (4), 

2018 (6) 

1977 
(4), 

1989 

(4) 

1998 (8), 

2013 (8), 
2018 (8) 

1989 (8), 

2008 (8) 

1978 (6), 

1991 (6), 
2005 (12) 

1975 (4), 

1992 (4) 

1976 (4), 

1997 (4) 

Crop 

rotation 

Annual 

crop 
rotation 

Annual 

crop 
rotation 

Annual 

crop 
rotation 

Maize 

mono 
culture 

Annual crop 

rotation 

Annual 

crop 
rotation 

Silage maize 

monoculture 

(KERB_C 
incl. 

raygrass) 

Maize 

mono 
culture 

Maize 

mono 
culture 

Considered 

depth (cm) 
30 29 28 25 28 30 25 28 28 

Initial 

SOC stock 

(tC ha−1) 

34.68 42.40 45.20 26.35 43.80 55.85 81.98 38.75 45.25 

Reference 

(Colomb 

et al., 
2007) 

(Dimassi et 

al., 2014) 

(Obriot, 

2016) 

(Lubet 

et al., 
1993) 

(Noirot-

Cosson et 
al., 2016) 

(Barré et 

al., 2008) 

(Vertès et 

al., 2007) 

(Messiga 

et al., 
2010) 

(Morel et 

al., 2014) 

Table 1 : Main information on the nine French agricultural long-term experiments used in this study. 

All sites had been croplands for at least 20 years before the onset of all experiments. Additional site 

information including climatic variability amongst sites and long-term history of land cover is provided 

in Supplementary Material Table 1. 
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2.2. Archive soil samples from experimental sites 

Our final soil sample set included 181 topsoil samples. At each site the soil was sampled to 

include the whole ploughing depth (Table 1). At all sites, except Boigneville where the soil was 

sampled in five sublayers, the ploughing layer was sampled as one homogeneous layer. Of the 

final samples, 71 were from starting dates of the nine LTEs, 24 from LTEs intermediate dates 

and 86 from LTEs final dates. All samples were air-dried or dried at 40 °C, sieved to < 2 mm 

and finely ground to < 250 μm using a ball mill (Retsch, Germany).  

2.3. Rock-Eval® analysis of archive soil samples  

All soil samples were analysed using a Rock-Eval 6® Turbo apparatus (Vinci Technologies). 

The samples were first pyrolyzed in an inert N2 atmosphere, then oxidized under ambient air 

(O2). The heating routine applied during pyrolysis was as described in Disnar et al. (2003), 

starting with a three-minute isotherm at 200 °C followed by a heating ramp of 30 °C min−1 up 

to 650 °C. For the oxidation step, a one-minute isotherm was kept at 300 °C and was directly 

followed by a heating ramp of 20 °C min−1 until 850 °C was reached, followed by a five-minute 

isotherm at 850 °C (Baudin et al. 2015; adapted from Behar et al., 2001).  

Based on five generated Rock-Eval® thermograms, 18 parameters were calculated for each 

sample, and were then used as predictors by the random forests model. These include Total 

Organic Carbon (TOC; in g C kg soil−1) — the amount of organic C released during the analysis 

as a proportion of sample weight; Pyrolyzed organic Carbon (PC; in g C kg soil−1) — the sum 

of C released as HC, CO and CO2 during pyrolysis step; the ratio of PC to TOC (PC/TOC); S2 

peak area (g C kg soil−1) — the hydrocarbon gas released within the range of the pyrolysis 

temperature ramp; the ratio of S2 to PC (S2/PC); PseudoS1 peak area (g C kg soil−1) — the sum 

of C released as HC, CO and CO2 during the first 200 seconds of pyrolysis (after Khedim et al., 

(2021); Hydrogen Index (HI; in mg HC g TOC−1) — the amount of hydrocarbons released as a 

ratio of TOC; the ratio of HI to Oxygen Index (HI/OIRE6) — where OIRE6 is calculated as the 

amount of oxygen released as CO and CO2 gases normalized to TOC. Finally, various 

temperature parameters (T70HC_PYR, T90HC_PYR, T30CO2_PYR, T50CO2_PYR, T70CO2_PYR, 

T90CO2_PYR, T70CO_OX, T50CO2_OX, T70CO2_OX, T90CO2_OX; in °C) are included in the predictors 

set. They describe evolution steps, namely at which temperature a specific amount (e.g. 30, 50, 

70 or 90%) of a given gas was released according to each thermogram (Cécillon et al., 2018). 
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It is important to note that no pre-treatment of CaCO3-containing samples was necessary before 

Rock-Eval® analysis. The slow pyrolysis and oxidation steps of the Rock-Eval® method allow 

distinguishing carbon of organic and mineral form, since the latter is released above a given 

temperature. For the calculation of all of the above parameters, only the part of each 

thermogram corresponding to organic carbon was taken into account. For this purpose, upper 

temperature integration limits for Rock-Eval® temperature parameters were set at 560 °C for 

the CO and CO2 pyrolysis thermograms, and at 611 °C for the CO2 oxidation thermograms 

(Cécillon et al., 2018; Supplementary Material Fig. 2). R scripts used for computing Rock-

Eval® parameters are available on the Zenodo platform (Cécillon, 2021b). 

2.4. The PARTYSOC machine-learning model 

The most up-to-date European version of this model, calibrated on soils from North-western 

Europe, used in this study, is described in detail in Cécillon et al. (2021). This model uses the 

18 above-mentioned Rock-Eval® thermal analysis parameters as predictors and estimates the 

centennially stable SOC proportion in a topsoil sample. The model consists of a trained non-

parametric machine learning algorithm, using the random forests approach to estimate 

centennially stable SOC proportions in unknown topsoils from centred and scaled Rock-Eval® 

parameters. In this study the obtained centennially stable SOC proportion of each topsoil 

sample, was converted to centennially stable SOC content by multiplying the predicted 

proportion by the total SOC content. The PARTYSOCv2.0EU model, available on Zenodo 

(Cécillon, 2021b), was used without any adaptation. 

2.5. The AMG model of soil organic carbon dynamics 

The AMG model (Andriulo et al., 1999) was developed based on the two-compartment SOC 

model proposed by Hénin and Dupuis (1945). It is characterized by a simple structure consisting 

of three carbon pools: fresh organic matter, and two SOC fractions, an active and a stable pool 

(Supplementary Material Fig. 2). The model allows transfer of carbon from the fresh organic 

matter pool either to the atmosphere through microbial mineralization or into the active pool. 

Organic carbon from the active pool is also subject to mineralization, forming a second direct 

flux of CO2 from the soil into the atmosphere. SOM decomposition follows first order kinetics 

with a rate defined by the coefficient of mineralization k (year−1), controlled by climatic 
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conditions and soil characteristics. The h coefficient controls the yield of crop residues 

transformation into active carbon and depends on the type of fresh organic matter. No carbon 

exchange with the stable SOC pool is possible since it is considered inert and remains 

unchanged over the simulation period (here from 12 to 41 years; see Table 1). Considering the 

stable SOC pool as mathematically inert at this time scale is in line with consistent observations 

of a significant pluri-decadal persistent SOC fraction in long-term bare fallows and C3-C4 

vegetation change chronosequences (Barré et al., 2010; Balesdent et al., 2018). 

The AMG model can be mathematically described by two simple equations (Clivot et al., 2019):  

𝑄𝐶 = 𝑄𝐶𝑆 + 𝑄𝐶𝐴 ,          (1) 

 
𝑑𝑄𝐶𝐴

𝑑𝑡
= ∑ 𝑚𝑖𝑖 ℎ𝑖 − 𝑘 ∙ 𝑄𝐶𝐴 ,         (2) 

where QC is the total SOC stock (t∙ha−1), QCS is the stable SOC stock (t∙ha−1) defined as a 

fraction of initial SOC stock QC0 (s. Sect. 2.6) constant for a specific treatment, QCA is the 

active SOC stock (t∙ha−1), t is the time in years, mi is the annual C input from organic residue i 

(t∙ha−1∙yr−1), h is a coefficient representing the fraction of C inputs which is incorporated in 

SOM after 1 year related to the type of organic residue, and k is the mineralization rate constant 

associated with the active C pool (yr−1).  

The AMG parameters (h and k) have been determined by experimental results (Clivot et al., 

2019). This approach differs from most multi-compartmental SOC dynamics models for which 

decay rates of slower pools were calibrated indirectly, assuming an equilibrium state for SOC 

(Wutzler and Reichstein, 2007). The simple structure of the AMG model and the experimental 

determination of its decomposition rates make it less susceptible to the problem of equifinality 

compared to other multi-compartmental models of SOC dynamics (Luo et al., 2016; Clivot et 

al., 2019). Furthermore, AMG has been validated with δ13C tracer data of long term alternative 

sequences of C4 and C3 crops (Mary et al., 2020). 

The version of AMG used in this study was AMGv2, described in detail in (Clivot et al., 2019). 

Input data necessary to run simulations of SOC stocks with AMG include crop type, annual 

crop yields and information regarding management of crop residues. These are used to compute 

annual aboveground and belowground C inputs from plants, here according to the method 

proposed by (Bolinder et al., 2007) and adapted by (Clivot et al., 2019). 
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The coefficient of mineralization k (year−1) is calculated according to soil characteristics (clay 

and carbonate contents, pH and C:N ratio) and climatic conditions (mean annual temperature, 

precipitation and potential evapotranspiration; Clivot et al., 2019). 

2.6. Soil organic carbon pool partitioning in the AMG model 

2.6.1. Default CS/C0 initialization 

Two default values can be used for initialization of SOC pool distribution in AMG, depending 

on land-use history before the onset of simulations. The initial proportion of CS/C0 equals 0.65 

for sites with a long-term arable land-use history. Former long-term grassland sites are expected 

to have lower CS/C0 and the value of 0.40 was used in previous studies (Saffih-Hdadi and Mary, 

2008; Clivot et al., 2019). Since all sites used in this study had been under arable land for at 

least 20 years before the onset of the experiment, a default value of 0.65 was used.  

2.6.2. PARTYSOC-based initialization of CS/C0 

The PARTYSOC-based initialization of CS/C0 was derived from data obtained with Rock-Eval® 

analysis of initial topsoil samples from each LTE. Here, CS/C0 was estimated using the 

following simple 4-step procedure: first, topsoil samples from the LTE’s onset were analysed 

with Rock-Eval® and the 18 thermal parameters described in Sect. 2.3 were calculated for each 

sample. Second, the thermal parameters were used as input for the PARTYSOC machine-

learning model described in Sect. 2.4 which was run for this sample set resulting in a sample-

specific prediction of centennially stable SOC proportion. Third, the obtained values were 

averaged per LTE. Fourth, the site mean of the centennially stable SOC proportion was used 

(as CS/C0) to initialize simulations of SOC stocks for the various treatments of every site (the 

site standard deviation is reported on Fig. 28 and in Supplementary Material Table 2). 

Supported by the evident common land-use history shared by the multiple treatments of each 

site before the onset of simulations and as the SOC stocks and centennially stable SOC contents 

were very homogeneous amongst each site, we also performed simulations of 17 treatments for 

which soil samples from the onset of the LTE were not available. In these cases, we considered 

that the CS/C0 of the treatment was equal to the mean value of the respective site 

(Supplementary Material Table 1 and 2). 
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2.6.3. Ex-post optimization of CS/C0  

Following a least squares optimization approach, the best fit of the AMG model on observed 

SOC stocks time series was obtained and the optimal initial SOC pool partitioning (CS/C0) was 

estimated accordingly for each site (Clivot et al., 2019). In sites with C3-C4 vegetation change 

chronosequences where δ13C long-term monitoring data were available, the model was adapted 

to simultaneously match the observed evolution of C, C3 and C4 stocks (Clivot et al., 2019) for 

a given treatment. 

2.7. Calculation of the centennially stable SOC content 

The content of the centennially stable SOC pool of each LTE at initial, intermediate and final 

dates was estimated through multiplication of the PARTYSOC estimates of the proportion of the 

centennially stable SOC at a given date by the corresponding total SOC content previously 

determined using elemental analysis (Clivot et al., 2019; Levavasseur et al., 2020). For 

example, for the onset of an LTE where t=0: CS = CS/C0∙C0, where CS is the stable SOC content 

(g C kg soil−1), and C0 is the total SOC content (g C kg soil−1) at time t=0. 

2.8. Statistics 

The fit between PARTYSOC predictions of centennially stable SOC proportion and AMG ex-

post optimized stable SOC proportion was assessed by a linear regression model. The same 

approach was applied for the evaluation of the agreement between centennially stable SOC 

content and AMG ex-post optimized stable SOC content of initial samples. The evaluation of 

the performance of the AMG model, for the different SOC pool partitioning initialization 

methods, was also based on simple linear regressions between simulated and observed SOC 

stock values. Statistical terms used to express the strength and the statistical significance of the 

relationships were the coefficient of determination (R2), and the associated probability value (p-

value). Prediction bias and model error were expressed as mean difference (BIAS), and relative 

mean square error (RMSE). The relative root mean square error (RRMSE) and the normalized 

root mean square error (NRMSE) were used to compare the error of different data sets (with a 

different range of predictions; Smith et al., 1996; Wallach, 2006; Otto et al., 2018). 
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where: O and S are the observed and simulated values, n is the number of observations, �̅� and 

𝑆̅ are the means of observations and simulations, respectively, and Omax and Omin are the 

maximum and the minimum value observed. 

 

The observed and simulated total SOC stock change dQC was calculated as follows for each 

treatment: 

 

𝑑𝑄𝐶𝑜𝑏𝑠 =  𝑄𝐶𝑜𝑏𝑠,𝑡2 − 𝑄𝐶𝑜𝑏𝑠,𝑡1,        (8) 

 

𝑑𝑄𝐶𝑠𝑖𝑚 =  𝑄𝐶𝑠𝑖𝑚,𝑡2 − 𝑄𝐶𝑜𝑏𝑠,𝑡1,        (9) 

 

where QCobs is the observed SOC stock at time t, QCsim is the SOC stock at time t simulated 

with AMG, t1 indicates the start and t2 the end of simulation period. 

All data processing and statistical analyses were performed within the “R” programming 

environment (version 3.4.2; R Core Team, 2017). For plotting, packages ggpmisc (Aphalo, 

2016), reshape2 (Wickham, 2007) and ggplot2 (Wickham, 2016) were used. 
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3. Results 

3.1. Accurate soil organic carbon pool partitioning 

Centennially stable SOC proportion values were predicted by the PARTYSOC machine learning 

model (Cécillon et al., 2021) using Rock-Eval® data measured on initial topsoil samples. The 

mean value for each independent site was plotted against the stable SOC proportion as 

determined by AMG ex-post optimization (Fig. 28). The initial centennially stable SOC 

proportion values predicted with PARTYSOC ranged from 0.44 to 0.74, with a mean value of 

0.59, whereas AMG optimal ex-post estimations of stable SOC proportion covered almost the 

same range, from 0.45 to 0.74, with a mean value of 0.61. The two approaches were strongly 

correlated (R2 = 0.63, significant at the p < 0.05 level), with a linear regression slope close to 1 

(a = 0.9) and intercept close to 0 (b = 0.04), showing an unbiased relationship between 

PARTYSOC estimates of the centennially stable SOC proportion and the AMG ex-post 

optimized stable SOC proportion at the onset of the nine LTEs. Although a slight discrepancy 

was observed for higher stable SOC proportion values, the results validate our hypothesis 

showing that centennially stable SOC proportion determined by Rock-Eval® thermal analysis 

and the PARTYSOC machine-learning model built on fully independent data provides a good 

estimate of the optimal stable SOC proportion of the AMG model for unrelated French 

agricultural soils. When expressed as content (g C kg soil−1), the fit between the PARTYSOC 

predictions of the centennially stable SOC determined on initial topsoil samples and the ex-post 

optimized stable SOC content values was excellent (R² = 0.95; Supplementary Material Fig. 4; 

optimal stable SOC content ranged from 4.37 to 12.75 g C kg soil−1 across the nine sites). 

Furthermore, the method appears to be reliable since additional Rock-Eval® measurements on 

topsoil samples from intermediate and final dates of the LTEs showed that the PARTYSOC 

predictions of the centennially stable SOC content remained remarkably constant during the 

experimental period at most sites (Supplementary Material Fig. 5). 
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Figure 28 : Performance of the PARTYSOC model to predict the centennially stable SOC proportion 

compared to the AMG ex-post optimized stable SOC proportion. Points represent site-mean values 

based on initial topsoil samples from nine independent French long-term experiments. Statistics refer to 

the linear regression between x and y values (blue solid line). Horizontal error bars show the uncertainty 

associated with the AMG optimal stable SOC proportion, calculated as the standard deviation of 

treatment-wise AMG optimizations. Vertical error bars represent the prediction error of the centennially 

stable SOC proportion values, calculated as the standard deviation of the PARTYSOC model predictions 

on initial topsoil samples. 
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3.2. More accurate soil organic carbon simulations 

In a second step, we investigated if a PARTYSOC-based initialization of the SOC pool 

partitioning could improve the accuracy of SOC stock simulations of the AMG model. To do 

so, we compared SOC stock simulations obtained with three different initializations. We first 

ran AMG using the default initialization method for the SOC pool partitioning (CS/C0 = 0.65 

since all LTEs were under cropland for at least two decades before their onset; Table 1). Then, 

we ran AMG simulations using the PARTYSOC-based initialization method by defining CS/C0 

as the site-mean centennially stable SOC proportion determined by the PARTYSOC model. 

Finally, we ran AMG using the ex-post optimization method to initialize the SOC pool 

partitioning for each site. For all three initialization procedures, the simulated SOC stock 

change between the initial and last sampling date for each treatment of each site was plotted 

against the measured SOC stock change (Fig. 29a–c). Observed SOC stock change ranged from 

+6 to −24 Mg C ha−1 for the 32 treatments. In spite of a rather good mean agreement (RMSE = 

5.95 Mg C ha−1), the AMG model initialized with the default procedure provided predictions 

of SOC stock change rather far from what was observed in two out of nine LTEs (Fig. 29a). 

Using the PARTYSOC-based initialization method improved AMG simulations compared to the 

default method, bringing them much closer to the observed SOC stock changes (RMSE = 3.60 

Mg C ha−1; Fig. 29a, b). PARTYSOC-based initialization of AMG resulted to unbiased 

simulations (BIAS = 0.06 Mg C ha−1) and a strong decrease in the mean error of prediction. 

Unsurprisingly, AMG initialized using ex-post optimized CS/C0 proportions predicted SOC 

stock changes very close to the observed ones (RMSE = 2.12 Mg C ha−1; Fig. 29c). AMG 

simulations from ex-post optimized and PARTYSOC-based initializations were remarkably 

comparable (Fig. 29b, c). The SOC stock simulations produced with AMG for each independent 

treatment are presented in Supplementary Material Fig. 6. 
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Figure 29: Observed vs. simulated change in SOC stocks between the initial and final date of 32 

treatments from nine French long-term experiments. The three panels show the performance of the AMG 

model for three different initialization approaches. Initial SOC kinetic pool sizes were defined using a, 

the default value for cropland (CS/C0 = 0.65), b, the centennially stable SOC proportion predicted by the 

PARTYSOC model and c, the AMG ex-post optimized CS/C0 proportion. Statistics refer to the linear 

regression between x and y values (blue solid line). Points represent the values for the 32 treatments for 

which AMG simulations were run. 
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It is noteworthy that the PARTYSOC-based initialization improved the fit between observed and 

simulated SOC stock change, compared to AMG default initialization, especially for treatments 

that experienced the greatest SOC stock loss (Fig. 29a, b). In treatments that experienced no 

SOC stock change or a slight increase in SOC stock, the PARTYSOC-based initialization did not 

improve the simulations but resulted in highly reliable predictions, similarly to AMG default or 

optimized initialization methods (Fig. 29a–c). This is likely explained by the history of land 

cover and soil management practices of the different sites. Sites presenting treatments with no 

change or a slight increase in SOC stocks were predominantly sites with a long cropland history 

(e.g. site of Boigneville; Supplementary Material Table 1), for which the default AMG CS/C0 

value of 0.65 is nearly optimal. Conversely, the two sites, Kerbernez and Tartas, where the ex-

post optimized CS/C0 values were far below the default value (Fig. 28) have a more complex 

history of land use and soil management practices. The site of Kerbernez is a former grassland 

(during the first half of the 20th century; Supplementary Material Table 1) that was converted 

into a cropland two decades before the implementation of its arable LTE, in 1958. The site of 

Tartas was cultivated for a longer time before the LTE onset, however it was turned to grassland 

for a period in the 19th century (Supplementary Material Table 1) and received applications of 

poultry manure for several years before the LTE began. In these two sites, characterized by an 

optimal AMG CS/C0 much lower than the default value, the PARTYSOC machine-learning 

model predicted values very close to the optimal CS/C0 values (Fig. 28). 
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4. Discussion 

Our study demonstrates that the PARTYSOC method based on Rock-Eval® thermal analysis 

(Cécillon et al., 2018, 2021) can estimate the initial SOC pool partitioning of the AMG model 

of SOC dynamics while improving its accuracy in a series of diverse and independent French 

LTEs. Contrary to previous studies (Skjemstad et al., 2004; Luo et al., 2014), no modifications 

of the decomposition rate of SOC kinetic pools were necessary to improve model predictions. 

The PARTYSOC initialization method never severely affected the model simulations while it 

strongly improved them at sites where SOC stocks were far from an equilibrium state due to 

historical changes in soil management or land use. Areas with past changes in land use and soil 

management represent a large yet poorly known part of arable land in France and Europe (Fuchs 

et al., 2015; Erb et al., 2017) where SOC stocks and slow-cycling SOC pools are far from 

equilibrium (Wutzler and Reichstein, 2007; Herbst et al., 2018; Clivot et al., 2019; Taghizadeh-

Toosi et al., 2020). Therefore, by accounting for these legacy effects of site history on SOC 

pool partitioning, the PARTYSOC-based initialization of the AMG model should result in more 

accurate simulations of SOC dynamics at a national or continental scale. 

 

Our findings combined with results reported in recent ensemble modelling studies (Martin et 

al., 2019; Farina et al., 2021), suggest that despite its simple structure and when properly 

initialized (e.g. using the PARTYSOC model) the AMG model is unsurpassed for predicting 

observed SOC stock changes in French agricultural LTEs, and is amongst the best available 

modelling frameworks of SOC dynamics in European arable land (Martin et al., 2019; Farina 

et al., 2021). Our results demonstrate that there is still potential to increase the accuracy of 

simple multi-compartmental models of SOC dynamics, bringing their simulations very close to 

the observed values of SOC stock changes. Developing other Rock-Eval®-based initialization 

methods specifically designed to match the carbon pool design of other multi-compartmental 

SOC dynamics models such as RothC (Coleman et al., 1997) is a promising research area. More 

generally, we recommend that the potential of multi-compartmental SOC dynamics models be 

fully explored and exploited by soil biogeochemists before a new generation of models of 

increased complexity becomes operational. While new models including the diversity of 

microbial communities and related processes are emerging (Crowther et al., 2019; Lehmann et 

al., 2020), the uncertain structure and parametrization of more complex models is hindering 

their application as robust predictive tools (Shi et al., 2018). 
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At the same time, simple conceptual models of SOC dynamics like AMG combined with novel 

initialization methods and data-based approaches such as PARTYSOC show promising 

improvements (Cécillon, 2021a; Dangal et al., 2021; Lee et al., 2021). The low prediction error 

of the AMG model when its SOC pool distribution is initialized with the PARTYSOC method 

even challenges the ability of more complex modelling approaches to achieve better 

performance, given the uncertainty on observed values of SOC stock changes (Schrumpf et al., 

2011). 

The continental or worldwide implementation of the AMG model with the PARTYSOC-based 

initialization of SOC pools distribution will require additional work. First, the PARTYSOC 

machine-learning model (Cécillon et al., 2018, 2021) will have to be validated on a wider range 

of pedoclimates. This method initially built on LTEs coming from North-western Europe 

(Cécillon et al., 2018), has now been successfully extended to new soil types and a new climate 

(tropical; Cécillon et al., 2021). The good agreement between optimal AMG stable SOC 

proportion values and PARTYSOC predictions reported here suggests that most agricultural 

LTEs with accurate AMG simulations could be used as reference sites for the PARTYSOC 

model, lifting an important technical limitation to its geographical expansion (Cécillon et al., 

2021). Second, the improved accuracy of model simulations using a PARTYSOC-based 

initialization will also have to be demonstrated for a wider pedoclimatic range (i.e. worldwide 

LTEs; such as those referenced by the International Soil Carbon Network; Nave et al., 2015). 

Third, Rock-Eval® data from the new application areas will be required. Rock-Eval® is a high-

throughput technique that is well adapted to the analysis of large soil sample sets provided by 

large-scale soil monitoring programs. We recommend implementing Rock-Eval® 

measurements in national and continental soil monitoring networks. 

5. Conclusions 

Combining Rock-Eval® thermal analysis with the PARTYSOC machine-learning model should 

be considered as an emerging key approach with demonstrated ability to improve the accuracy 

of simulations of SOC dynamics, complementary to other SOC cycling proxies (Bailey et al., 

2018; Wiesmeier et al., 2019). The progressive large-scale delivery of these complementary 

data related to SOC dynamics will strengthen model predictions of SOC stock changes at the 

national to global scale, necessary for implementing efficient climate change mitigation policies 

(FAO, 2020).   
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On the harmonisation of Rock-Eval® data  

The exponential increase of studies focusing on SOM, kick-started by the realization of its 

importance for climate change mitigation, brought along an enormous amount of data recorded 

on soil samples collected using different sampling strategies (notably different sampling depth 

intervals). Harmonization of the available data is more imperative than ever for the correct 

incorporation of information into large scale studies including SOC modelling and mapping of 

SOC stocks and SOC sequestration potential. 

This chapter addresses the question of data comparability amongst soil samples obtained at 

different depths. Using samples from 10 plots, located at 8 forest sites in France, we conducted 

a soil mixing experiment, aiming at finding an appropriate method for calculating Rock-Eval® 

parameters of a soil profile (0–50 cm) by combining Rock-Eval® results recorded on its 

sublayers (0–30 and 30–50 cm).  

We hypothesized that in temperate soils most Rock-Eval® parameters will be independent of 

the sampling strategy (i.e., that Rock-Eval® parameters characteristic of SOM of a given soil 

layer could be obtained from Rock-Eval® parameters measured in its sublayers), as we expect 

the mineral matrix effect to be low in these soils. However, it was also anticipated that mixing 

of contrasting materials might cause changes on the Rock-Eval® signal of composite samples.    

The Rock-Eval® parameters measured on composite samples were generally in good 

agreement with the calculated ones. However, for parameters derived from the hydrocarbon 

signal (S2) the relationship between measured and calculated values was unsatisfactory for 

some sites. These were sites with a very clay-rich deep soil layer and a surface layer with a 

coarser texture, where mixing caused an addition of clays leading to increased hydrocarbon 

retention by the mineral matrix during pyrolysis. Therefore, in the context of the ongoing work 

towards harmonization of databases, we concluded that in most temperate soils, Rock-Eval® 

characterization of a soil layer, including its centennially persistent carbon proportion can be 

inferred from sublayers characteristics. 

Regarding clays and their interference with the hydrocarbon signal, we provide an empirically 

obtained threshold value of 20% difference in clay content between sub-layers above which 

mixing of soil samples might cause changes in the hydrocarbon thermogram shape and related 

parameters.  
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In addition, in this chapter we discuss the importance of an often neglected error introduced in 

many studies by the application of linear mixing equations on ratios. This error is of general 

interest and is not limited to soil studies. Moreover, since many Rock-Eval® parameters are 

complex terms, involving multiple acquisition parameters and correction factors, attention must 

be paid when calculating a mixed value. A simple approach is appropriate for most classic 

Rock-Eval® parameters with small adaptations depending on their defining equation. 

Finally, a last guideline was derived from this work, regarding a specific category of 

parameters; temperature parameters. These are by definition particularly sensitive to changes 

on the thermogram shape and should be calculated after signal reconstruction.   

Some interesting perspectives for future research could be to actually quantify the effect of 

different soil mineral matrices on the Rock-Eval® signal, to better understand the interactions 

between SOM and minerals. A more detailed insight could be gained by measuring specific 

surface area where this is possible either of the whole soil or of different fractions. As in this 

study the mineral effect was negligible in most cases, it was not possible to study the effect of 

changes in mineralogy rather than or in addition to texture. Using temperate and tropical soils 

or artificial soil samples with different composition but similar texture could be helpful for 

gaining a more detailed understanding of the importance of different soil characteristics and 

testing the limits of the Rock-Eval® approach. More perspectives and ideas for improvement 

are presented in the general discussion. 

A draft presenting this work entitled “Predicting Rock-Eval® thermal analysis parameters of a 

soil layer based on samples from its sublayers; an experimental study on forest soils” was 

published in Organic Geochemistry and can be found on the pages that follow. 
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Abstract  

Soil sampling depths strongly vary across soil studies. Stocks of elements (such as C, N) or 

organic matter in a soil layer can be simply calculated from stocks measured in its sublayers. 

This calculation is less obvious for other soil characteristics, such as soil organic carbon (SOC) 

persistence, complicating the comparison of results from different studies. Here, we tested 

whether Rock-Eval® parameters of a soil layer, characterizing soil organic matter and its 

biogeochemical stability, can be determined using Rock-Eval® data measured on its sublayers. 

Soil samples collected in 10 plots located in eight French forest sites, taken up at two different 

depths (0–30 cm, 30–50 cm), and their mixtures were analysed with Rock-Eval®. Expected 

values for the Rock-Eval® parameters of the soil mixtures were calculated either: (1) as the 

weighted mean of Rock-Eval® parameters measured on the two sublayers, or (2) based on a 

signal reconstructed as the weighted mean of Rock-Eval® thermograms recorded on the two 

sublayers. Our results showed a good agreement between measured and expected Rock-Eval® 

parameter values. However, when the clay content strongly differed between the two soil 

sublayers, the amount of pyrolyzed hydrocarbons measured on the soil mixtures was slightly 

lower than expected. We conclude that it is reasonable to calculate Rock-Eval® parameters of 

a soil layer, from the Rock-Eval® signature of its sublayers. Our findings facilitate the 

harmonization of Rock-Eval® data from large scale soil studies using different sampling 

depths. 
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1. Introduction 

Recognition of the central role of soil and soil organic matter (SOM) for food security and 

ecosystem functioning (FAO, 2005, 2017) has led to enhanced political and scientific attention 

on soil health and SOM dynamics (e.g., Global Soil Partnership, Montanarella, 2015; 

International Year of Soils, FAO 2015; 4per1000 initiative; 4p1000, 2018; Rumpel et al., 2018). 

As a result, over the last five decades the number of studies focusing on SOM has grown 

exponentially (Smith et al., 2017). The first large-scale soil monitoring projects with focus on 

soil organic carbon (SOC) were initiated (e.g., RMQS in France, Arrouays et al., 2003; LUCAS 

in Europe, European Commision Joint Research Centre, 2021; Orgiazzi et al., 2018; WoSIS, a 

worldwide soil profile database, Batjes et al., 2020; ISRIC, 2021) and an enormous amount of 

soil samples and data were collected worldwide, without any harmonization regarding the depth 

of the sampled soil layers. According to the research question, each soil study may follow a 

different strategy for the selected sampling depths, with possible complications regarding the 

comparability of available information. For instance, in some studies the 0–30 cm layer is 

divided in several sublayers (e.g., 0–10 cm, 10–20 cm and 20–30 cm) or sampled according to 

pedogenetic horizons, whereas in some other cases the 0–30 cm layer is sampled as one 

homogeneous layer. Independent of the sampling method, the SOC stock of a soil profile is 

calculated as the sum of the SOC stocks obtained in the layers comprising that profile (FAO, 

2018). Even though determining SOC stock of a given layer is straightforward, it may be much 

less obvious for other parameters such as SOM characterization results. 

One promising analytical technique in SOM research is Rock-Eval® thermal analysis. A time-

efficient and inexpensive method, it can be used on large sample sets to quantify soil organic 

and inorganic carbon and characterize SOC bulk chemistry and thermal stability (Saenger et 

al., 2013; Gregorich et al., 2015; Sebag et al., 2016; Soucémarianadin et al., 2018). Moreover, 

a strong empirical link exists between parameters obtained with this method and in situ 

observed SOM biogeochemical stability (Barré et al., 2016; Poeplau et al., 2019). Encouraged 

by this observation, Rock-Eval® thermal analysis was used to build a non-parametric random 

forests algorithm, PARTYSOC, providing quantitative information on SOC biogeochemical 

stability, by predicting the proportion of centennially stable SOC (Cécillon et al., 2018, 2021). 

As the application range of the Rock-Eval® method is increasingly expanding, samples from 

different projects and different sampling strategies are being analysed. 



Kanari Eva — Thèse de doctorat — 2022 

119 

 

Therefore, it is of great importance to determine whether Rock-Eval® parameters 

characterizing SOM of a given soil layer can be determined from Rock-Eval® parameters 

measured on its sublayers and, similarly, if centennially stable SOC assessed using PARTYSOC 

in a given soil layer can be determined from PARTYSOC estimates based on measurements on 

its sublayers. If true, this would simplify the comparison of data between studies and the 

building of datasets on harmonized sampling depths, for instance the 0–30 cm layer, a standard 

for soil studies (IPCC, 2006; FAO, 2018).  

Rock-Eval® analysis consists of thermal treatment of a soil sample following a predefined 

temperature ramp. Simultaneous and continuous detection of effluents generates five 

thermograms in total that describe the evolution of carbon containing gases (HC, CO and CO2) 

during the analysis. A large number of Rock-Eval® parameters can be calculated from the five 

thermograms (Behar et al., 2001; Saenger et al., 2013; Sebag et al., 2016; Cécillon et al., 2018, 

2021; Khedim et al., 2021). Parameters obtained with this method are characteristic of the SOM 

and its interaction with the soil mineral matrix, since soil samples are analysed with no previous 

isolation of SOM or removal of carbonates. We hypothesised that, in a large variety of 

temperate forest soils Rock-Eval® parameters characteristic of SOM of a given soil layer could 

be obtained from Rock-Eval® parameters measured on its sublayers. This hypothesis is far 

from trivial as differences in the composition of the mineral matrix can influence the Rock-

Eval® signal (Espitalié et al., 1980, 1984). This could considerably complicate the assessment 

of Rock-Eval® parameters of a given soil layer from Rock-Eval® parameters measured on its 

sublayers and comparison of results amongst studies with different sampling depth protocols. 

To test this hypothesis, we conducted Rock-Eval® analysis of surface (0–30 cm) and deeper 

(30–50 cm) samples from 10 plots located in eight forest sites in France as well as various 

binary mixtures of the two soil layers. Some parameters (i.e., ratios) required a minor adaptation 

of the calculation method used to determine Rock- Eval® parameters of the mixtures based on 

Rock-Eval® results obtained for the two sublayers, while for other parameters (i.e., temperature 

parameters) a new calculation method was introduced. Finally, this study provides some basic 

guidelines that facilitate the direct comparison of Rock-Eval® data of samples from different 

depths. 
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2. Materials and methods  

2.1. Sampling sites and soil characteristics 

Samples used in this study belong to 10 contrasting plots distributed amongst seven forest sites 

of the French “GNB” network (Gosselin et al., 2015; 9 plots) and one site of the “FCBA” 

network (Berthelot, 2018); 1 plot; part of the IN-SYLVA France national research facility 

(INRAE, 2020); Fig. 30, site map; Cécillon et al., 2017). At each plot, two composite soil layers 

(layer A (0–30 cm) and layer B (30–50 cm)) were sampled, resulting in two “natural” samples 

per plot (n = 20 samples for the 10 plots). Soil samples were dried, sieved to < 2 mm and ground 

to < 250 μm before further processing. Basic characteristics of the 20 “natural” samples are 

provided in Table 2. Soil bulk chemistry was highly variable with organic carbon content 

ranging from 0.38 to 11.28 wt.%, pH measured in water was between 4.1 and 8.2 and carbonate 

content was negligible in all samples except one that contained 35 wt.% CaCO3. The sample 

selection covered a wide range of soil textures with sand content varying between 4 and 85 

wt.% and clay content between 2 and 55 wt.% (Table 2).  

 

Figure 30: Map of the 10 plots used in this study, located in eight forest 

sites in France. 
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2.2. Soil mixtures 

Using the two “natural” soil samples available from each plot, we composed five binary soil 

mixtures per plot by combining 90:10, 75:25, 50:50, 25:75 and 90:10 in mass proportion of soil 

from layer A and layer B (Equation 1; n = 50 binary mixtures for the 10 plots). The exact used 

soil mass was measured using a precision scale whereas the weighting error allowed was in 

average 0.39% (calculated as the mean weighted error). In addition, two pure end-member 

samples per plot were set aside, composed of 100% layer A and 100% layer B soil respectively, 

resulting in a total number of 70 samples. 

𝑀𝑖𝑥𝑡𝑢𝑟𝑒𝐴𝐵 = 𝐿𝑎𝑦𝑒𝑟𝐴  ∙ 𝑓𝑖 + 𝐿𝑎𝑦𝑒𝑟𝐵 ∙ (1 − 𝑓𝑖),       (1) 

where LayerA: soil surface layer (0–30 cm), LayerB: soil sub-surface layer (30–50 cm), fi: 

mixing ratio = 1, 0.9, 0.75, 0.5, 0.25, 0.1, 0 ± 0.39%  

2.3. Rock-Eval® thermal analysis 

All 70 soil samples including the 20 “natural” samples and the 50 composed mixtures were 

analysed using a Rock-Eval® 6 Turbo apparatus (Vinci Technologies). A small amount of soil 

(approx. 60 mg), was required for the analysis that took place in two consecutive steps, during 

which carbon-containing effluents were directly detected. First, the sample underwent pyrolysis 

in an inert (N2) atmosphere, and then oxidation in the presence of O2 (ambient air). The heating 

routine applied during pyrolysis was as proposed by Disnar et al. (2003), including a three-

minute isotherm at 200 °C, succeeded by a heating ramp of 30 °C∙min−1 up to 650 °C. Oxidation 

started with a one-minute 300 °C isotherm followed by a heating ramp of 20 °C∙min−1 up to 

850 °C and a final five-minute isotherm at 850 °C (oxidation routine presented in Baudin et al. 

(2015) as “bulk rock/basic” method). Simultaneous detection of effluents during both analysis 

steps generated five thermograms per sample in total describing the evolution of hydrocarbons 

during pyrolysis (HC_PYR), and CO and CO2 during both pyrolysis and oxidation steps 

(CO_PYR, CO2_PYR, CO_OX, CO2_OX). A schematic representation of the analysis steps 

and the generated thermograms is presented in Supplementary Fig. 1. 
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Table 2: Information on the geographical location, soil type, soil texture and soil chemistry of the study plots. The reference coordinate system used here was 

WGS84 and texture analysis was done without previous decarbonisation of the samples. C org EA is the organic carbon content measured by Elemental Analysis. 

 

Plot ID Sampling 

depth 
(cm) 

Site Latitude  Longitude Soil type 

(WBR 2014) 

Clay 

(wt.%) 

Fine 

silt 
(wt.%) 

Coarse 

silt 
(wt.%) 

Total 

silt 
(wt.%) 

Fine 

sand 
(wt.%) 

Coarse 

sand 
(wt.%) 

Total 

sand 
(wt.%) 

pH 

(water) 

CaCO3 

(wt.%) 

C org 

EA 
(wt.%) 

ANO-2316 

 

0–30 Anost 47.10216 4.06001 Dystric Cambisol 20.8 24.3 10.3 34.6 7.6 37.0 44.6 4.1 0 11.28 

30–50 9.8 28.1 12.0 40.1 8.2 42.0 50.2 4.49 0 5.23 

CIT-463 0–30 Cîteaux 47.07216 5.06185 Luvic Stagnosol 11.6 28.4 31.5 59.9 24.9 3.6 28.5 4.75 0 1.65 

30–50 10.6 27.9 31.8 59.7 26.2 3.5 29.7 4.71 0 0.53 

RNCL-1023 0–30 Combe Lavaux 47.21097 4.94095 Calcaric Cambisol 

(Colluvic) 

44.7 35.3 16.5 51.8 2.6 0.9 3.5 6.6 0 3.42 

30–50 33.9 26.8 14.4 41.2 11.4 13.5 24.9 8.19 35.2 0.38 

ENG-RBI-294 0–30 Engins 45.23063 5.59497 Calcaric Cambisol  20.9 43.7 27.6 71.3 7.1 0.7 7.8 4.71 0 7.26 

30–50 23.4 40.4 27.8 68.2 7.7 0.7 8.4 5.45 0 2.21 

PAR-6316 0–30 Parroy 48.65225 6.61094 Vertic Cambisol 31.2 39.9 13.5 53.4 8.0 7.4 15.4 5.34 0 3.16 

30–50 55.1 25.1 7.8 32.9 5.2 6.7 11.9 6.6 0 0.86 

PAR-RBI-301 0–30 Parroy 48.63205 6.65036 Vertic Cambisol 15.6 45.4 26.7 72.1 5.3 6.9 12.2 4.64 0 2.60 

30–50 36.8 33.8 19.8 53.6 4.1 5.5 9.6 5.42 0 0.45 

RMB-579 0–30 Rambouillet 48.66017 1.77172 Luvic Stagnosol 16.1 20.1 22.3 42.4 23.1 18.4 41.5 4.65 0 1.77 

30–50 27.2 17.5 20.9 38.4 19.1 15.3 34.4 4.98 0 0.66 

RMB-941 0–30 Rambouillet 48.67083 1.71289 Entic Podzol 

(Arenic) 

2.3 5.8 8.0 13.8 55.9 28.0 83.9 4.23 0 1.66 

30–50 3.3 4.7 7.3 12.0 54.2 30.6 84.8 4.73 0 0.45 

SA_x1a 0–30 Saint-Amand 45.80000 1.77000 Dystric Cambisol 15.3 14.1 7.6 21.7 20.7 42.3 63.0 4.19 0 4.75 

30–50 11.8 11.1 6.2 17.3 21.7 49.2 70.9 4.54 0 1.18 

VER-540 0–30 Verrières 48.75656 2.24006 Stagnic Luvisol 13.7 28.3 46.7 75.0 8.1 3.2 11.3 4.15 0 2.32 

30–50 18.2 26.3 44.9 71.2 8.0 2.6 10.6 4.27 0 0.60 
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2.4. Measured Rock-Eval® parameters 

Although these parameters are calculated on the thermograms obtained from Rock-Eval® 

analysis of the “natural” samples and the composed mixtures, they will be referred to as 

“measured parameters” in this manuscript to avoid confusion with “calculated parameters” 

(defined in section 3 of this chapter). Classic Rock-Eval® parameters were acquired using the 

RockSix software (Vinci Technologies). These included: six automatically generated “peaks” 

defined as specific areas of the three pyrolysis thermograms (S1, S2, S3, S3’, S3CO and S3’CO; 

Supplementary Fig. 1, Supplementary Table 1), the amount of pyrolyzed carbon (PC 

corresponding to the sum of organic C released as HC, CO and CO2 during pyrolysis), total 

organic carbon (TOC corresponding to the amount of organic C released during the analysis), 

mineral carbon (MinC corresponding to the amount of C released through carbonate cracking), 

hydrogen index (HI corresponding to the ratio of released hydrocarbons to TOC), and oxygen 

index (OIRE6 corresponding to the ratio of the amount of oxygen of organic origin released to 

TOC). In addition, further parameters used as predictors by the PARTYSOCv2.0EU model were 

calculated based on the obtained thermograms using R scripts available on Zenodo 

(https://zenodo.org/record/4446138#.YDe84Xlw2SQ; Cécillon et al., 2021; Cécillon, 2021b). 

These included: PseudoS1 (the sum of carbon released during the first 200 seconds of 

pyrolysis—200 °C isotherm—in form of HC, CO and CO2), the ratio S2/PC (ratio of the amount 

of hydrocarbons released excluding the first 200 seconds of pyrolysis to pyrolyzed carbon), the 

ratio PC/TOC, the ratio HI/OIRE6, and ten temperature parameters (e.g., T30, T50, T70, T90) 

that describe evolution steps, i.e., at which temperature 30, 50, 70 and 90% of a given gas was 

released. Finally, we calculated three additional parameters proposed in previous soil studies 

using the Rock-Eval® technique. These were: The I-index (assessing the preservation of 

thermally labile “immature” hydrocarbons; Sebag et al., 2016), the R-index (describing the 

proportion of refractory SOM released as hydrocarbons after 400 °C; Sebag et al., 2016), and 

the thermolabile hydrocarbon index (TLHC-index corresponding to the proportion of 

hydrocarbons evolved between 200 °C and 450 °C; Saenger et al., 2015). A detailed description 

of the definition, units and equations used to calculate all parameters can be found in 

Supplementary Table 1.  

https://zenodo.org/record/4446138#.YDe84Xlw2SQ
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2.5. The Rock-Eval®-based PARTYSOC model 

In this study, we used the Rock-Eval®-based random forest model PARTYSOCv2.0EU 

(https://zenodo.org/record/4446138#.YDe84Xlw2SQ) proposed by Cécillon et al. (2021). This 

model was calibrated on data from 6 long-term agricultural experiments including a bare fallow 

treatment in Northwestern Europe and can predict the centennially persistent SOC proportion 

in a topsoil sample (0–30 cm). The model requires a set of 18 Rock-Eval® parameters 

(Supplementary Table 1) characteristic of a sample and provides a prediction of the stable SOC 

proportion for soils from similar pedoclimates. Here we run the model three times, first using 

measured Rock-Eval® parameters as predictors (obtained as described in section 2.4.) and then 

calculated ones obtained by two different methods (defined in section 3). The result of the first 

run was treated as one of the measured parameters during data processing. In the context of this 

work we merely aimed at evaluating the possibility of calculating the centennially stable SOC 

proportion of a soil profile based on its sublayers. As this statistical model does not include any 

forest or deep soil samples in its learning set nor has it been tested or validated on forest or 

deeper soil samples, we could not provide any interpretation regarding the absolute measured 

centennially stable SOC proportion values. Instead, we investigated the possible ways of using 

the model when combining several soil layers.  

2.6. Statistics 

To evaluate the performance of the two calculation methods in predicting measured Rock-

Eval® parameters for soil mixtures we conducted a statistical assessment of the relationship 

between measured and calculated values for each parameter. “Natural” samples were excluded 

from all calculations. The coefficient of determination R2 was estimated to assess the existence 

and strength of a correlation between the measured and calculated values. R2 was accompanied 

by the p-value, indicating the probability of a statistically significant relationship, whereas the 

threshold of significance level was set at 0.05. The mean difference between calculated and 

measured values (BIAS) was used to test if the relationship was biased. The root mean square 

error (RMSE) was used as an expression of the magnitude of the error of prediction, as it is 

defined as a sum of the residuals or deviations between calculated and measured parameters. 

To compare not only the two calculation methods but also the uncertainty associated with each 

parameter independent of unit or range, we estimated the normalized root mean square error 

(NRMSE) defined as the RMSE divided by the range of observations.  

https://zenodo.org/record/4446138#.YDe84Xlw2SQ
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𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛
 

where: Mi and Ci are the measured and calculated values, n is the number of observations, �̅� 

and 𝐶̅ are the means of measurements and calculations, respectively and Mmax and Mmin are the 

maximum and minimum of measured values. 

 

3. Calculation  

The central idea of our experiment is that by knowing the exact mixing ratios used to prepare 

the soil mixtures and having analysed “natural” samples composed only of Layer A or Layer B 

we can calculate expected values of Rock-Eval® parameters for the mixtures as a weighted 

mean of the recorded signals. Since many of the parameters are composite terms, involving 

multiple thermogram areas, mass balance corrections and ratios (Supplementary Table 1), we 

had to resort to their defining equations to find the most appropriate way of calculating expected 

parameters. According to the type of parameter, we calculated expected parameters for soil 

mixtures: (1) based on acquisition parameters (AP) and (2) for temperature parameters only, 

based on reconstructed thermograms (RT). 
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3.1. Rock-Eval® parameters calculated based on acquisition parameters (AP) 

Expected values of Rock-Eval® parameters defined as single thermogram areas (e.g., S1, S2, 

S3, etc.; Supplementary Fig. 1), as a sum of multiple thermogram areas (e.g., PC, TOC; 

Supplementary Table 1) or as evolution steps (e.g., T90HC_PYR; Supplementary Table 1) were 

calculated as a weighted mean, following Equation 2. For each parameter and each soil mixture 

we applied a weighting directly on the corresponding Rock-Eval® parameters measured for the 

two pure “natural” samples (100% Layer A, 100% Layer B) according to the known exact 

mixing ratio used for the mixture preparation. 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑜𝑐𝑘-𝐸𝑣𝑎𝑙® 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑀𝑖𝑥𝑡𝑢𝑟𝑒𝐴𝐵(𝐴𝑃) =  𝐴𝑃𝐿𝑎𝑦𝑒𝑟𝐴  ∙ 𝑓𝑖 + 𝐴𝑃𝐿𝑎𝑦𝑒𝑟𝐵 ∙ (1 − 𝑓𝑖)    (2) 

where AP: Measured Rock-Eval® acquisition parameter 

 

For parameters that represent ratios, a different procedure was followed. Directly applying a 

weighted mean equation on parameters that represent ratios (i.e., HI, OIRE6, S2/PC, PC/TOC, 

HI/OIRE6, R-index and TLHC-index; Supplementary Table 1) often leads to mathematical 

errors (Perdue and Koprivnjak, 2007). More precisely, following Equation 2 would mean 

neglecting to apply the weighted mean correction on the denominator of the ratio (see Equation 

3 below for the basic application of equation 2 to OIRE6 — defined as the proportion of O2 of 

organic origin relatively to TOC).  

𝑂𝐼𝑅𝐸6 𝐿𝑎𝑦𝑒𝑟𝐴 ∙ 𝑓𝑖  + 𝑂𝐼𝑅𝐸6 𝐿𝑎𝑦𝑒𝑟𝐵 ∙ (1 − 𝑓𝑖) =
𝑂2 𝐿𝑎𝑦𝑒𝑟𝐴  ∙ 𝑓𝑖

𝑇𝑂𝐶𝐿𝑎𝑦𝑒𝑟𝐴
+
𝑂2 𝐿𝑎𝑦𝑒𝑟𝐵  ∙(1−𝑓𝑖)

𝑇𝑂𝐶𝐿𝑎𝑦𝑒𝑟𝐵
 ≠

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑂𝐼𝑅𝐸6 𝑀𝑖𝑥𝑡𝑢𝑟𝑒𝐴𝐵  (𝐴𝑃)          (3) 

 

In this case, this would lead to an overestimation of OIRE6. The correct Equation for ratios 

Perdue & Koprivnjak (2007), is presented below for OIRE6 (Equation 4): 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑂𝐼𝑅𝐸6 𝑀𝑖𝑥𝑡𝑢𝑟𝑒𝐴𝐵 (AP) =
𝑂2 𝑀𝑖𝑥𝑡𝑢𝑟𝑒 𝐴𝐵

𝑇𝑂𝐶𝑀𝑖𝑥𝑡𝑢𝑟𝑒 𝐴𝐵
=

𝑂2 𝐿𝑎𝑦𝑒𝑟𝐴  ∙ 𝑓𝑖 + 𝑂2 𝐿𝑎𝑦𝑒𝑟𝐵  ∙(1−𝑓𝑖)

𝑇𝑂𝐶 𝐿𝑎𝑦𝑒𝑟𝐴  ∙ 𝑓𝑖 + 𝑇𝑂𝐶 𝐿𝑎𝑦𝑒𝑟𝐵  ∙ (1−𝑓𝑖)
   (4) 
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Having already calculated expected values of thermogram areas with the AP-based method, we 

made use of them to simplify the calculation approach. We calculated Rock-Eval® parameters 

representing ratios based on their defining equations (e.g., Equation 5 for OIRE6; or 

Supplementary Table 1 for further parameters). We simply replaced basic terms in the defining 

equation (e.g., S3, S3CO, TOC) with previously calculated expected values of Rock-Eval® 

parameters for the soil mixtures (e.g., S3Mixture AB (AP), S3COMixture AB (AP), TOCMixture AB 

(AP)). 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑂𝐼𝑅𝐸6 𝑀𝑖𝑥𝑡𝑢𝑟𝑒𝐴𝐵(𝐴𝑃) =
[𝑆3𝑀𝑖𝑥𝑡𝑢𝑟𝑒𝐴𝐵(𝐴𝑃) × 

32

44
]+[𝑆3𝐶𝑂𝑀𝑖𝑥𝑡𝑢𝑟𝑒𝐴𝐵(𝐴𝑃) × 

16

28
]

𝑇𝑂𝐶𝑀𝑖𝑥𝑡𝑢𝑟𝑒𝐴𝐵(𝐴𝑃)
    (5) 

 

Similarly, when calculating the I-index, applying a weighting to the logarithm itself would not 

have been mathematically correct, thus the weighting was applied on the areas of the HC_PYR 

thermogram that are used in the I-index formula (areas used to calculate A1, A2, A3; Sebag et 

al., 2016). 

3.2. Rock-Eval® parameters calculated based on reconstructed thermograms (RT) 

The above described way of calculating expected values for temperature parameters, as the 

weighted mean of temperature parameters measured on “natural” samples, is not 

mathematically correct. Expected values for temperature parameters of soil mixtures were 

therefore calculated following a reconstructed thermograms (RT) approach. Based on the 

mixing ratio that was used to compose each mixture we reconstructed the expected shape of the 

five thermograms of each soil mixture as the weighted mean of the shapes of the thermograms 

obtained for the two “natural” samples (Equation 6).  

𝑇ℎ𝑒𝑟𝑚𝑜𝑔𝑟𝑎𝑚𝑀𝑖𝑥𝑡𝑢𝑟𝑒𝐴𝐵 = 𝑇ℎ𝑒𝑟𝑚𝑜𝑔𝑟𝑎𝑚𝐿𝑎𝑦𝑒𝑟𝐴  ∙ 𝑓𝑖 + 𝑇ℎ𝑒𝑟𝑚𝑜𝑔𝑟𝑎𝑚𝐿𝑎𝑦𝑒𝑟𝐵 ∙ (1 − 𝑓𝑖) (6) 
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The RT method was used to calculate expected values for temperature parameters only 

(Cécillon et al., 2018, 2021; Supplementary Table 1), as by definition the AP and RT 

approaches are equivalent when considering all other parameters, whose calculation is based 

on thermograms areas. Since the RT approach is more complicated to implement, we also kept 

the AP method for the calculation of temperature parameters, to test whether the results were 

very different from what can be obtained using a correct but more time-consuming approach.  

Signal processing, integrations of thermogram areas and calculation of Rock-Eval® parameters 

were conducted using R version 3.4.2 (R Core Team, 2017), the trapz function of the pracma 

package (Borchers, 2018) and the hyperSpec package (Beleites and Sergo, 2018). The R script 

used to calculate the reconstructed thermograms is provided as supplementary material 

(Supplementary R script 1).  

3.3. Three ways of calculating stable SOC proportion of soil mixtures using the 

PARTYSOCv2.0EU model 

Expected values of stable SOC proportion of soil mixtures were calculated in three different 

ways. First, the stable SOC proportion of soil mixtures was calculated as a weighted average of 

PARTYSOCv2.0EU predictions obtained for layer A and layer B. Second, the stable SOC 

proportion of the soil mixtures was predicted by running the PARTYSOCv2.0EU model, using 

calculated Rock-Eval® parameters as predictors, obtained with the AP method. Third, we run 

the PARTYSOCv2.0EU model using the calculated predictors (AP method) but replacing 

temperature parameters with ones obtained with the RT method. 
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4. Results 

4.1. A general agreement between calculated and measured Rock-Eval® parameters 

Comparison of calculated and measured Rock-Eval® parameters showed that the AP method 

was able to accurately predict the values of Rock-Eval® parameters for the soil mixtures 

(overall median NRMSE obtained for the 29 parameters of 8.5%; Supplementary Table 2). For 

classic Rock-Eval® parameters such as TOC there was a perfect correlation between 

measurements and predictions (R2
AP = 1), with a negligible bias (BIASAP = −0.47 g C ∙ kg−1 

soil) and a very low percentage error (NRMSEAP = 1.1%; Fig. 31a). The calculated values of 

OIRE6 were also very close to the measured ones (NRMSEAP = 5.6%, Fig. 31b). An 

overestimation was observed for HI, for two out of ten plots (BIASAP = 17 mg HC ∙ g−1 C; Fig. 

31c). This effect increased with distance of the mixture composition from the “natural” samples 

and was the strongest for the 50:50 soil mixtures. However, the overall observed relationship 

between calculated and measured values was still very strong (R2
AP = 0.90). The correlation 

between measured T90HC_PYR and calculated with the AP method was equally strong (R2
AP = 

0.91) and the relationship was unbiased with a low percentage error (BIASAP = 1.66 °C, 

NRMSE = 8.8%; Fig. 31d).  
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Figure 31: Comparison of measured and calculated values for four Rock-Eval® parameters, 

presented in three simple plots and one twin plot. The measured values of Rock-Eval® 

parameters for TOC, OIRE6, HI and T90HC_PYR are plotted on the y-axes. On plots a, b and c and 

on the left side of the twin plot the x-axis represents values calculated on the acquisition 

parameters-based method (section 3.1.). On the right side of the twin plot the x-axis shows 

values obtained with the reconstructed thermograms method (section 3.2.). 
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Overall a strong agreement was also observed between measured temperature parameters and 

calculated with the RT method (Supplementary Table 2). Nonetheless, the RT calculation 

method resulted in a less strong correlation and slightly biased relationship for T90HC_PYR 

(R2
RT = 0.78, BIASRT = −3.6 °C, NRMSE = 14%; Fig. 31e). T90HC_PYR was underestimated by 

the RT calculation method for the same two plots, for which the HI overestimation was 

observed and the same pattern, with the prediction bias increase towards the 50:50 mixtures 

was evident. 

 

Finally, all three ways of calculating the expected stable SOC proportion of soil mixtures using 

the PARTYSOCv2.0EU model performed well. Values of stable SOC proportion calculated as a 

weighted average of PARTYSOCv2.0EU predictions obtained for layer A and layer B were 

relatively close to the actual stable SOC proportion predictions obtained using the measured 

Rock-Eval® parameters as predictors in the PARTYSOCv2.0EU model (R2 = 0.85, BIAS = 0.03, 

NRMSE = 13%; Supplementary Table 2). The relationship between theoretical and observed 

stable SOC proportions improved when Rock-Eval® parameters calculated with the AP method 

or with the RT method were used as predictors in the PARTYSOCv2.0EU model (R2
AP = 0.94, 

BIASAP = −0.01, NRMSEAP = 7%, R2
RT = 0.94, BIASRT = −0.02, NRMSERT = 9%). An 

overview of summary statistics of Rock-Eval® parameter values measured on “natural” 

samples is presented in Supplementary Table 3. 

 

4.2. Clay content difference between sublayers explains the poorer agreement 

between calculated and measured HC_PYR thermogram-derived parameters 

Our results suggested a strong agreement between calculated and measured values for all Rock-

Eval® parameters of soil mixtures except those derived from the HC_PYR thermogram. 

Calculated values of S2, HI (obtained with the AP calculation approach) and temperature 

parameters of the HC_PYR thermogram (obtained with the RT calculation approach) were 

either positively or negatively biased, leading to a slight overestimation of S2 and HI, and an 

underestimation of HC_PYR temperature parameters respectively (Fig. 31c and e; 

Supplementary Fig. 2; Supplementary Table 2).  
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The overestimation bias observed for S2 was magnified for HI, which can be explained by the 

mathematical definition of the latter parameter (HI = S2/TOC × 100). We investigated the 

relationship of the overestimation of S2 and HI with various soil characteristics of each plot 

presented in Table 2. The mean difference between measured and calculated S2 and HI values 

was averaged per plot and it was compared to the difference in various soil characteristics 

between layer A and layer B (Table 2). This comparison revealed a strong correlation between 

overestimation of S2 and HI and difference in clay content between soil layers (Spearman 

rho = 0.90 and R2 = 0.71 for S2, and Spearman rho = 0.85 and R2 = 0.84 for HI; Fig. 32a and 

b). The bias was the highest for the two plots of the Parroy site, where the clay content 

difference between layer A and B was the highest (clay content difference > 20 wt.%). 

Investigation of the relationship of this bias with other soil characteristics, such as soil pH, and 

TOC content did not explain any of the observed variation. The clay content difference between 

the two layers was also negatively correlated with the bias observed for T90HC_PYR (not shown 

here).  

 

 

 

 

Figure 32: Relationship between prediction bias in Rock-Eval® parameters (S2 and HI) and difference 

in clay content between soil layers (i.e., clay content of the surface layer – clay content of the 

subsurface layer) for each plot. Prediction error shown on the y-axis is calculated as the mean 

difference between calculated Rock-Eval® parameter values (obtained with the acquisition 

parameters-based method) and measured values per plot. 
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5. Discussion 

5.1. Recommendations for inferring Rock-Eval® parameters of soil mixtures 

According to the type of parameter, two calculation methods are discussed for combining Rock-

Eval® analysis results of different sublayers to obtain the Rock-Eval® signature of a soil layer. 

The first method based on acquisition parameters (AP method; see section 3.1.) is fast and easy 

to implement, and perfectly adequate, when classic Rock-Eval® parameters (such as PC, TOC, 

OIRE6, MinC, etc.) or results of the PARTYSOCv2.0EU model are of interest. Even though this 

method is simple and effective, attention must be paid when applying weighting on parameters 

representing ratios (e.g., HI, OIRE6; Perdue & Koprivnjak, 2007) or more complex terms such 

as logarithms (I-index). One drawback of this method is related to its use to predict temperature 

parameters. Although empirically in this work the AP method performed well for the 

calculation of temperature parameters, from a purely mathematical point of view it cannot be 

recommended. The accuracy of this method for the calculation of temperature parameters 

specifically is very sensitive to mineral-induced changes on the Rock-Eval® signal. 

Temperature parameters do not represent surface areas (like S1, S2, etc.) but instead they mark 

a limit on the x-axis of a thermogram (time axis), defining the moment (translated into the 

corresponding temperature) when a specific proportion of a thermogram surface area was 

reached. Therefore, if an interaction causes a change in the shape of a thermogram, this will not 

be reflected in the AP based calculation method.  

A second approach is presented (Section 3.2.) for the calculation of temperature parameters, 

based on signal processing. According to this method, the expected Rock-Eval® thermograms 

of a soil layer can be calculated based on the thermograms obtained on its sublayers (RT 

method; Supplementary Fig. 2). Rock-Eval® temperature parameters representative of a soil 

layer can subsequently be calculated on the reconstructed thermograms. This method might be 

considered as more demanding in terms of manipulation but it is also more suitable for the 

calculation of temperature parameters. In soils where a mineral matrix effect might be expected 

and in cases where precise information on the hydrocarbon signal is important, the RT method 

is more appropriate. However, in cases where the mineral matrix effect is expected to be low, 

or if the hydrocarbon signal is not particularly of interest, this approach might be unnecessarily 

cumbersome since its performance is expected to be equally good as the AP method. 
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For the variety of soil types and the range of sampling depths studied here, the most appropriate 

way to combine Rock-Eval® results of sublayers to obtain the stable SOC proportion of a soil 

layer, is to follow the AP method to calculate values of Rock-Eval® parameters to be used as 

predictors by the PARTYSOCv2.0EU model.   

Regardless of the chosen calculation method, one additional aspect to consider when adding 

information obtained on sublayers, is the content of fine fraction in each sublayer. This study 

focuses on linear mixing regarding the concentration of SOC and other parameters measured 

on a given soil mass. However, when averaging existing data, a correction will have to be 

undertaken to account for the soil mass contribution of each soil layer to the final sample. Thus, 

information on the fine fraction content, and the density difference between layers when 

calculating stocks of elements, will be required. 

 

5.2. Results should be considered with caution when mixing samples with contrasted 

clay contents 

Our initial hypothesis, that classic Rock-Eval® parameters will be independent of the sampling 

strategy for temperate forest soils was confirmed, with one exception. Introducing a clay rich 

soil layer to a coarser soil layer through the mixing process caused changes in the hydrocarbon 

signal (Supplementary Fig. 2), and especially on the S2, HI and T90HC_PYR parameters. This 

effect was most pronounced for the two plots from Parroy, where the difference in clay content 

varied by more than 20% between layer A and layer B. After their release in the pyrolysis oven, 

hydrocarbon gases might be protected through retention by clay minerals (Espitalié et al., 1980). 

The observed increase in T90HC_PYR is an indication of a bulk increase in hydrocarbons thermal 

stability that could be explained by retention of light hydrocarbons on mineral surfaces causing 

them to evaporate at a higher temperature (Rahman et al., 2017). The decrease in S2 and HI 

however would require a sink in the total fraction of carbon released as HC, with a shift of the 

lost amount of carbon to the CO or CO2 signal, since TOC remains constant. However, due to 

the relatively low fraction of carbon released as HC compared to CO2 (in average ten times 

less) and the very low S2 overestimation bias, the difference is not detectable in any of the other 

signals. Previous studies involving Rock-Eval® analysis of soils before and after removal of 

the mineral matrix through acid hydrolysis support the hypothesis that clay particles may 
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influence the detection of pyrolysis effluents (Zegouagh et al., 2004; Czirbus et al., 2016). Both 

studies showed that hydrocarbon yield increased in the absence of minerals, causing up to an 

18-times increase in S2 (Zegouagh et al., 2004). Although qualitatively interesting, quantitative 

estimation of the mineral effect is problematic when the acid hydrolysis method is applied. 

While efficient for elimination of minerals, the acid attack also causes some loss of organic 

matter (e.g., 17% in Zegouagh et al. (2004)). Studies have shown that the occurring SOM loss 

is preferential, influencing the bulk composition of SOM (Rumpel et al., 2006; Spaccini et al., 

2013). Future experimental work should focus on quantifying the effect of different minerals 

on the Rock-Eval® signal of SOM, using simple model systems. To better understand the 

interactions between SOM and minerals it would be of interest to examine how different 

minerals and different degrees of interaction might influence the detection of SOM.  

For temperate forest soils, we can consider the difference in clay content (20%) observed in this 

study, as a first empirical threshold value, up to which the mineral matrix effect is insignificant. 

As the application range of the Rock-Eval® method extends to new climates and new soil types, 

it is important to know that the linear mixing assumption holds true in temperate forest soils. 

However, different guidelines might be necessary in tropical soils where, as shown by previous 

studies conducted on kerogens, the effect of more reactive clay minerals and iron oxides during 

pyrolysis of organic matter is expected to be stronger (Huizinga et al., 1987; Ma et al., 2018). 
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6. Conclusion 

Our study shows that the Rock-Eval® parameters of a soil layer, including the centennially 

stable SOC proportion predicted by the PARTYSOCv2.0EU model, can be obtained on Rock-

Eval® results of its composing sublayers. This observation has significant practical 

implications regarding the comparison of available Rock-Eval® soil data from studies applying 

different sampling depths. According to the parameter type, one of the two methods of 

calculating expected values for the Rock-Eval® parameters of composite samples can be 

recommended: (1) as the weighed mean of acquired Rock-Eval® parameters for classic and 

some extended parameters (i.e., S1, S2, S3, S3’, S3CO, S3’CO, PC, TOC, MinC, HI, OIRE6, 

Pseudo S1, S2/PC, PC/TOC, HI/OIRE6, I-index, R-index, TLCH-index, centennially stable SOC 

proportion), and (2) based on a signal reconstructed using Rock-Eval® thermograms measured 

on their composing endmembers for temperature parameters (i.e., T70HC_PYR, T90HC_PYR, 

T30CO2_PYR, T50CO2_PYR, T70CO2_PYR, T90CO2_PYR, T70CO_OX, T50CO2_OX, T70CO2_OX, 

T90CO2_OX). In the context of the ongoing work towards harmonization of databases it is 

important to keep in mind that in temperate soils, the linear mixing hypothesis is valid. 

However, in soils with pronounced clay content heterogeneities between sublayers (clay 

content difference > 20 wt.%) averaging HC_PYR-derived parameters over a soil profile might 

lead to biases. Although the reconstructed thermogram method is more demanding, it is more 

appropriate for the calculation of temperature parameters and it can offer valuable insight on 

mineral-induced changes in the Rock-Eval® signal. This work can be considered as an 

empirical guide, paving the way towards harmonized Rock-Eval® databases for soil studies.  
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Opening the back box: Why is thermal stability a suitable 

proxy for biogeochemical persistence of soil organic 

matter? 

Earlier in this manuscript, both the complex nature of SOM with the associated difficulty in 

estimating its persistence and the potential of Rock-Eval® thermal analysis for a use as a proxy 

were thoroughly discussed. Although the value of this technique for estimating persistence and 

advancing SOC modelling is so far undisputable, our mechanistic understanding of the 

relationship between thermal and biogeochemical stability at the centre of this approach is still 

very limited.  

In this chapter, based on a simple experimental setup and a model system, we focused on the 

effect of organic matter adsorption on minerals as a potential protection mechanism during 

thermal degradation of SOM. We analysed pure biochemical compounds from multiple groups 

(lignin, humic acid, proteins, carbohydrates, lipids) to obtain their Rock-Eval® signal. We 

prepared organo-mineral mixtures following a simple batch sorption protocol to study the 

resulting changes on thermal stability and Rock-Eval® parameters. As an intermediate step, we 

evaluated the effect of the presence of minerals in dry simple mixtures. We used pure artificial 

biochemical compounds and minerals as well as organic matter and mineral matrices 

encountered in natural soils. 

We hypothesized that adsorption degree and strength would be dependent on organic compound 

functional groups as well as pH, mineral specific surface area and reactivity. We expected 

increasing association between organic matter and minerals to have a stronger effect on Rock-

Eval® parameters (previously empirically correlated to SOC biogeochemical stability). We 

also anticipated interactions between reactive minerals and pyrolysis effluents resulting in a 

strong effect of the presence of minerals on the Rock-Eval® signal even in simple dry mixtures. 

The choice of working with pure compounds for the sake of experimental model simplicity, 

revealed an important drawback of the Rock-Eval® method when applied to certain 

compounds, namely a deficiency in carbon yield of oxygenated pure compounds.  
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This issue is currently neglected in literature as the technique is mostly used for natural soil and 

sediment samples containing organic matter, whose Rock-Eval® analyses present good (90-

100%) carbon yields. Furthermore, carbon detection efficiency was influenced by the presence 

of goethite in carbon poor mixtures (TOC≤1% wt.). We argue that this deficiency is due to the 

functioning principle of the FID, and we present evidence obtained using an experimental 

configuration of Rock-Eval® supporting that the missing carbon yield is associated to the 

pyrolysis step. For compounds such as organic polymers and particulate organic matter the 

carbon yield of Rock-Eval® was very good (carbon yield>95%). 

Batch sorption experiments were successful for one of the proteins, bovine serum albumin, and 

all minerals (kaolinite, montmorillonite, goethite, and three natural soil matrices). We discuss 

possible explanations for this outcome, and for the fact that for the other two compounds used 

here (humic acid and cysteine) the adsorption efficiency was very low. 

Dry mixtures of bovine serum albumin with minerals showed that some pure minerals can have 

a strong effect on the Rock-Eval® signal. We observed a strong oxidation of pyrolysis effluents 

by goethite, and a retention of effluents by montmorillonite. Although much less intense, some 

retention and oxidation of effluents was observed as well for natural soils. Amongst the 

different thermograms, the hydrocarbon signal was the most sensitive one to the presence of 

minerals. An important source of uncertainty questioning the origin of these observations is the 

variability in carbon content across mixtures. 

The effect of adsorbed mixtures on the Rock-Eval® parameters was very similar to the one of 

corresponding dry mixtures. The cumulative effect of the changes caused on the Rock-Eval® 

signal led to slightly higher values of centennially stable SOC predicted by PARTYSOC for 

adsorbed mixtures. However, dry mixtures had a significant impact on predictions provided by 

PARTYSOC as well. Compared to the pure compound detection the difference caused by 

adsorption was much smaller than the difference caused by the presence of minerals. We 

attribute this lacking importance of adsorption to the specific choice of compounds used in this 

model system and we hypothesize that successful adsorption of smaller organic molecules 

might lead to a more efficient protection against thermal degradation.  
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An immediate research perspective is to homogenize as much as possible the ratio of organic 

compound to available mineral surface mixtures with a constant carbon content. Additional 

steps that could improve the current experimental protocol by providing more detailed 

information during the different stages of the experiment include: optimization of adsorption 

conditions by pH regulation, extended elemental analysis (C, H, N, S, O) of the mixtures before 

and after adsorption, and analysis of organic compounds in rinsing water to ensure that there is 

no preferential removal of some parts of the macromolecule during rinsing. 

Future work should focus on understanding these associations at smaller scales, for example by 

studying the distribution of organic matter in adsorbed and dry mixtures using scanning or 

transmission electron microscopy. Similar composed mixtures could be analysed by differential 

scanning calorimetry to obtain information on the difference in energy gain when organic 

matter is adsorbed. Further research could also focus on the impact of other mechanisms 

potentially influencing thermal stability, such as chemical recalcitrance.  
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Understanding the influence of organo-mineral interactions on 

organic matter thermal stability expressed by Rock-Eval® 

parameters 

 

The work presented in this chapter was conducted in collaboration with François Baudin, 

Pierre Barré, Tracy Boucher, Nicolas Bouton, Laure Soucémarianadin, Florence Savignac and 

Lauric Cécillon 

 

Abstract 

Thermal analysis has recently gained popularity as a quick and simple way to assess 

biogeochemical stability of soil organic matter (SOM). However, an important question 

remains: How can we explain the correlation between the processes of thermal and 

biogeochemical degradation of SOM? The objective of this work was to improve our current 

understanding of this relationship using a simple model system focusing on the influence of 

organo-mineral interactions.  

First, pure biochemical compounds including lipids, proteins, carbohydrates and organic 

polymers were analysed by Rock-Eval® in order to register the Rock-Eval® signal of each of 

these substances. Then, we composed organo-mineral complexes by a batch sorption 

experiment using a selection of minerals (kaolinite, montmorillonite, goethite, and three natural 

soil matrices) and organic compounds (cysteine, bovine serum albumin and humic acid). 

Successfully adsorbed compounds and their respective simple dry mixtures were analysed by 

Rock-Eval® and the effect of organo-mineral associations as well as the pure mineral matrix 

effect were evaluated as the observed changes in Rock-Eval® parameters.  

The main results of this chapter include: (i) an evaluation of the detection efficiency of pure 

biochemical compounds by Rock-Eval® that strongly varied according to the type of organic 

compound, with the highest yield for organic polymers (e.g., lignin) and the lowest yield for 
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lipids (e.g., palmitic acid), (ii) a first estimation of the effect of the presence of minerals during 

analysis of organic matter, with reactive minerals such as goethite and montmorillonite having 

a strong oxidizing and protecting effect respectively during the pyrolysis step, while natural soil 

matrices showed weaker interference, and (iii) an estimation of the influence of pre-existing 

adsorption between one organic compound (bovine serum albumin) and various minerals, 

namely causing a slight to negligible increase on the overall thermal stability assessment. The 

insights presented in this chapter are a step towards understanding the influence of different 

mechanisms on thermal stability and very importantly they reveal limitations and strengths of 

the Rock-Eval® technique. 

1. Introduction 

The importance of SOM for ecosystem and human well-being has been discussed multiple 

times throughout this manuscript (General introduction Sect. 1.3.). We also discussed the wide 

encountered spectrum of SOM persistence, a critical quality for understanding and predicting 

the evolution of this reservoir in the future which has proven to be particularly complex to 

estimate (General introduction Sect. 1.8. and 1.11.). Efforts to understand the processes behind 

this wide spectrum of SOM persistence have come to a consensus that interactions with plants, 

microorganisms and minerals are what is causing SOM ―that should decay fast in a soil 

environment according to thermodynamics― to persist in soils for millennia (Trumbore, 1997; 

Lehman and Kleber, 2015). Influenced by many biotic and abiotic factors, SOM persistence is 

best described as an ecosystem property (Schmidt et al., 2011; Kleber et al., 2015). Sorption 

onto mineral surfaces leading to chemical, biological or physical protection is accepted as a 

crucial mechanism for SOM stabilization (Six et al., 2002; Eusterhues et al., 2003; Kaiser and 

Guggenberger, 2003, Mikutta et al., 2006), whereas the role of soil mineralogy is emphasized 

(Doetterl et al., 2015).  

 

To date, efforts to understand the influence of organo-mineral associations on SOM stability 

either focus on the overall effect of conceptual interactions, leading to conceptual fractionation 

protocols (e.g., Lugato et al., 2021) that however do not achieve homogeneous separation of 

stable SOM (Soucémarianadin et al., 2019; Chassé et al., 2021), or they are focusing on 

understanding organo-mineral interactions at the microscale. Batch sorption and desorption 
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experiments for example offer indirect interpretations of dominant organo-mineral associations 

(Mikutta et al., 2007; Wagai and Mayer, 2007; Hayakawa et al., 2018). Molecular level imaging 

and mapping techniques offer impressive insight into SOM distribution at the nanoscale (e.g., 

NanoSIMS; Vogel et al., 2014). Dynamic force spectrometry (Newcomb et al., 2017) presents 

a great opportunity at understanding the importance of the energetic balance at the molecular 

level. However, these techniques are still far from being able to provide quantitative 

information and they are particularly problematic regarding upscaling.  

 

Earlier in this manuscript we discussed the potential of Rock-Eval® to characterize persistent 

SOM (General introduction Sect. 1.12.; Gregorich et al., 2015; Barré et al., 2016; 

Soucémarianadin et al., 2018; Poeplau et al., 2019) and providing parameters that are used as 

input variables in a machine learning model (PARTYSOC) offering quantitative predictions of 

centennially persistent SOC (Cécillon et al., 2021; in ANNEX 1). In chapter 1, we discussed 

the independent validation of the PARTYSOC approach together with its usefulness for 

improving the accuracy of predictions of SOM dynamics. As this technique, initially developed 

for use on kerogens, is becoming increasingly applied on soils, a fundamental question becomes 

more pressing, namely to gain a better mechanistic understanding of the observed link between 

thermal and biogeochemical degradation of SOC.  

 

The work presented in this chapter involves thermal analysis and a batch sorption experiment 

combined in an effort to decipher the importance of organo-mineral interactions during Rock-

Eval® analysis. Specifically, we aim at studying the effect of pre-existing association as a 

parallelism to sorption of organic matter in soils and as a potential protection mechanism that 

may or may not be reflected on the Rock-Eval® signal.  

 

We developed a simple protocol involving pure organic and mineral compounds of known 

composition as well as natural soil organic matter and soil minerals. Although we worked with 

a simple model system, we expected multiple simultaneous interactions to have a complex 

effect on the detection and the thermal stability of analysed organic matter.  
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We expected the adsorption efficiency of the different mineral matrices to increase with 

increasing specific surface area and cation exchange capacity. Also, we anticipated that reactive 

pure minerals would cause a change on Rock-Eval® parameters through interaction with 

pyrolysis effluents. We hypothesized that the hydrocarbon signal would be particularly 

sensitive to the presence of minerals and that pre-existing association (i.e., adsorption) between 

organic compounds and minerals would be reflected on the obtained signal. Finally, we 

expected thermal stability to increase with increasing degree of association.  

 

To test these hypotheses, multiple steps were necessary, given the very limited use of Rock-

Eval® for analysis of pure biochemical compounds (Carrie et al., 2012) and the extensive 

literature on evidence for strong mineral matrix effect during thermal analyses (Espitalié et al., 

1980; Davis and Stanley, 1982; Espitalié et al., 1984; Alcañiz et al., 1989; Czirbus et al., 2016; 

Bu et al., 2017; Ma et al., 2018; Pan et al., 2010). To overcome these complications, we first 

evaluated the detection efficiency of Rock-Eval® for pure compounds. Second, we produced 

adsorbed mixtures of organics and minerals and third we composed and analysed simple dry 

mixtures of the same compounds to quantify the effect of pre-existing associations 

independently of the “dry” mineral matrix effect.  

 

In this chapter the terms “association” and “interaction” are used repeatedly, thus it is important 

to underline that they are not synonymous. First, interaction is used as a more general term that 

describes any reaction taking place between organic matter or organic effluents and minerals, 

including the existence of bonds, or the spontaneous retention or oxidation of effluents by 

minerals. Association on the other hand is more specific and indicates precisely the existence 

of a bond (presumably adsorption) between organic compounds and minerals, generated by the 

batch sorption experiment. To be considered as “associated”, the organic compound should 

have not been leached out after several rinsing steps using deionized water.  
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2. Materials and methods 

2.1. Materials 

2.1.1. Organic compounds  

We selected 10 pure biochemical compounds, including carbohydrates (glucose monohydrate, 

starch and cellulose), lipids (cholesterol and palmitic acid), proteins (cysteine, reduced 

glutathione and bovine serum albumin), lignin and humic acid, which were all purchased from 

Sigma-Aldrich® in dry powder form. In addition, we used particulate organic matter (POM), 

extracted from a surface horizon (0–5cm) of a grassland soil collected next to the “Les 

Closeaux” Field Experiment in Versailles, France (Fernández-Ugalde et al., 2013; Table 3). 

Following a simple protocol, 60 g of soil were immersed in milli-Q water and shaken overnight 

in a container with five 1cm-diameter glass beads to break apart aggregates. The organic matter 

fraction not associated to minerals was separated through wet sieving using a 200 μm sieve. 

The obtained material was dried at 40 °C and ground to obtain a homogeneous powder. 

2.1.2. Mineral compounds  

Our mineral selection included four pure minerals: kaolinite, montmorillonite, goethite and 

sand, and three naturally occurring SOC-poor soils (TOC<0.2% wt.). The low SOC content was 

sought so that the Rock-Eval® signal due to this organic matter can be considered as negligible 

compared to that of the added compounds. All pure minerals were purchased by Sigma-

Aldrich® except sand, which was collected from the Fontainebleau quarry in France (~98% wt. 

SiO2, TOC<0.2% wt.). The three natural soil samples (soil 1: HET 03, soil 2: CHS 27, and soil 

3: CHS 72) collected from deep soil layers (0.8–1.0m) of temperate forested sites 

(RENECOFOR network, the French part of the European ICP Forests Level 2 network; Nicolas 

et al., 2018) were selected according to their texture and clay mineralogy. Soil 1 had a lower 

clay content (11% wt.) compared to the other two (~30% wt.) and contained a large fraction of 

sand (60% wt.). According to XRD analysis of extracted clays from the three soil matrices, the 

samples shared a similar mineralogy, with mainly kaolinite, chlorite and illite. Soil 2 and soil 3 

showed some illite-smectite interstratification as well. The clay minerals in soil 1 had a 

particularly well defined crystal form. In soil 3 the influence of kaolinite was more important 

than in the other two soils (Table 3; Fig. S1). 
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Table 3: Chemical and textural (where applicable) characteristics of the organic compounds and 

minerals used in this study. 

Organic compounds Minerals 

Name Formula Theoretica

l 

C content 

(% wt.) 

Solubility 

in H2O, 25°C 

(mg/ml) 

Name Formula/Composition 

Soil type (WRB, 2014) 

Bovine serum 

albumin (BSA) 

― 51.1 † ≥40 ‡ Sand SiO2 

L-Glutathione reduced C10H17N3O6S 39.1 ∗ ≥1000 § Kaolinite Al2Si2O5(OH)4 

L-Cysteine C3H7NO2S 29.8 ∗ ≥1000 § Montmorillonit

e 

(Na,Ca)0.3(Al,Mg)2Si4O10(OH)2·n

H2O 

Cellulose (C6H10O5)n 44.4 ∗ none ‖ Goethite FeOOH 

Starch (wheat) (C6H10O5)n 44.4 ∗ none ‡ Soil 1 (HET 03) Clay/Silt/Sand: 11/29/60 (% wt.) 

Dystric Cambisol 
D(+)-Glucose 

Monohydrate 

C6H12O6 ∙ 

H2O 
36.4 ∗ 1000 ‡ 

Cholesterol C27H46O 83.9 ∗ <0.1 § Soil 2 (CHS 27) Clay/Silt/Sand: 29/63/8 (% wt.) 

Luvisol 
Palmitic acid C16H32O2 75.0 ∗ <0.1 § 

Humic acid ― 42.4 † none ¶ Soil 3 (CHS 72) Clay/Silt/Sand: 35/33/32 (% wt.) 

Luvisol 
Lignin ― 47.9 † <0.1 # 

Particulate organic 

matter (POM) 

― 13.9 † none 

(by 

definition) 

  

∗ According to the chemical formula, † According to elemental analysis, ‡ Product safety data sheet [Sigma, 2021; SigmaAldrich, 2021a, b] 

§ Haynes et al., 2017, ‖ Alves et al., 2016, ¶ Brigante et al., 2007, # Thakur et al., 2014 

 

 

2.2. Sample preparation 

2.2.1. Adsorption experiment 

For the adsorption experiment we used a limited selection of organic compounds that were 

previously used to form organo-mineral complexes: cysteine (Faghihian and Nejati-

Yazdinejad, 2009; Vieira et al., 2011; Hu et al., 2020), bovine serum albumin (Chevallier et al., 

2003; Phan et al., 2015) and humic acid (Feng et al., 2005; Chen et al., 2017). Glucose was also 

used due to its high solubility, even though it is not expected to sorb on minerals. First, a stock 

solution of each organic compound (2g∙l−1) and a background electrolyte (0.01M CaCl2) was 

prepared. Only for the stock solution of humic acid, we regulated the pH at 12, by adding 0.1M 

NaOH and we avoided the use of CaCl2 to ensure complete dissolution (Brigante et al., 2007). 

Second, 30ml of stock solution were added to 1g of each of the selected mineral compounds, 

resulting in a constant theoretical initial ratio of 60mg organic compound per 1g mineral, 

assuming a homogeneous stock solution. Consequently, the theoretical initial TOC of 



Kanari Eva — Thèse de doctorat — 2022 

147 

 

composed mixtures was in the range of 1.8–3.1% wt., with cysteine on the lower and BSA on 

the higher end. The mixtures were shaken for 24 hours in the dark and then centrifuged for ten 

minutes at RCF 4300×g. The supernatant was collected and after an addition of 5μl of 85% 

H3PO4 solution (to prevent DOC microbial degradation) it was set aside for dissolved organic 

carbon (DOC) analysis. Five rinsing and centrifuging steps per mixture were conducted in total 

using a simple 0.01M CaCl2 solution (or pure milli-Q water for the humic acid mixtures) and 

all rinsing liquids were collected and set aside. Considering the important role of pH for the 

formation of adsorption, a measurement of pH was taken in the first and last rinsing liquids 

from each mixture (Table S1). Finally, the obtained pellets were dried for 48 hours at 30 °C and 

ground by hand to a homogeneous powder. 

2.2.2. Dry mixtures 

Simple mixtures were composed using bovine serum albumin powder and all the mineral 

matrices used in the adsorption experiment, except sand. The mixing ratio was adapted to match 

the end C content of each mixture after the adsorption experiment (1–2 % wt. TOC; see below 

Sect. 3.2.; Fig. 32). The weighted components were ground by hand in an agate mortar to ensure 

a homogeneous mixing. 

2.3. Analytical techniques and calculation of parameters 

2.3.1. Rock-Eval® thermal analysis 

Organic compounds underwent no pre-treatment before thermal analysis. Samples were 

prepared simply by adding 5mg of compound into the crucible, covered by approx. 50mg of 

pure SiO2 sand. For all dry mixtures and adsorbed mixtures, we used a constant quantity of 

60mg of sample for Rock-Eval® analysis. A Rock-Eval 6® Turbo apparatus (Vinci 

Technologies) was used with the same heating routine as described in Chapters 1 and 2 (see 

Chapter 1 Sect. 2.3.). Briefly, pyrolysis was conducted under inert (N2) atmosphere starting at 

200 °C with a three-minute isotherm followed by a temperature increase of 30 °C∙min−1 up to 

650 °C. 

Oxidation temperature started at 300 °C with a one-minute isotherm and then increased by 20 

°C∙min−1 min up to 850 °C with an additional isotherm of five minutes at the end (Behar et al., 
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2001; Disnar et al., 2003; Baudin et al., 2015). A detailed description of the obtained Rock-

Eval® thermograms and parameters can also be found in the previous sections (e.g., General 

introduction Sect. 1.13.). Here we focused on classic Rock-Eval® parameters, such as total 

organic carbon (TOC in % wt.), pyrolyzed carbon (PC in gC∙kg−1―the sum of organic C 

released during pyrolysis), hydrogen index (HI in mgHC∙gC−1―the ratio of released 

hydrocarbons to TOC) and oxygen index (OIRE6 in mgO2∙gC−1―the ratio of oxygen of organic 

origin to TOC). In addition, further parameters were calculated such as PseudoS1 (in 

mgC∙g−1―the sum of carbon released during the first 200 seconds of pyrolysis; Khedim et al., 

2021), S2/PC (unitless―the ratio of the amount of hydrocarbons released after the first 200 

seconds of pyrolysis to pyrolysed carbon; Poeplau et al., 2019), the ratio PC/TOC (unitless), 

the ratio HI/OIRE6 (in mgHC∙mgO2
−1) and ten temperature parameters (i.e., T70HC_PYR, 

T90HC_PYR, T30CO2_PYR, T50CO2_PYR, T70CO2_PYR, T90CO2_PYR, T70CO_OX, T50CO2_OX, T70CO2_OX, 

and T90CO2_OX in °C) that describe evolution steps, e.g., at which temperature 30, 50, 70 and 

90% of a given gas (HC, CO and CO2) was released during which step of the analysis (pyrolysis 

and oxidation). These parameters were calculated for all analysed samples.  

2.3.2. The machine-learning PARTYSOC model 

We used a selection of 18 of the obtained Rock-Eval® parameters as predictors for the 

European version of PARTYSOC (PARTYSOCv2.0EU; Cécillon et al., 2021; in ANNEX 1) 

available on Zenodo (https://doi.org/10.5281/zenodo.4446138) to generate predictions of 

centennially persistent SOC proportion for pure compounds, and composed dry and adsorbed 

mixtures. Here, we were interested in investigating the effect of organo-mineral interactions on 

the predictions and the sensitivity of the model rather than the absolute values themselves.  

2.3.3. Emelental analysis 

The carbon content of all samples including pure compounds, and prepared adsorbed and dry 

mixtures was verified using a Thermo Scientific™ Flash2000™ elemental analyser, at the 

laboratory of ISTeP, Sorbonne University. Carbon content obtained with elemental analysis 

(CEA) was used to evaluate the carbon yield of Rock-Eval®. 

https://doi.org/10.5281/zenodo.4446138
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2.3.4. Carbon yield calculation 

One particularity of this study regarding the calculation of the carbon yield of Rock-Eval® for 

the analysed organic compounds and mixtures is that all of the carbon released during Rock-

Eval® analysis (TOC+MinC) was taken into account. For all comparison of Rock-Eval® and 

elemental analysis the carbon yield was calculated as: C-yield=(TOC+MinC)/CEA.   

2.3.5. Dissolved Organic Carbon analysis 

The concentration of DOC in the rinsing liquids was measured by a TOC-V CSH (Shimadzu) 

analyser, at the laboratory of IEES, Sorbonne University. After thermal oxidation of the sample 

at 680°C the produced CO2 gas was detected by gas chromatography combined with an NDIR 

(nondispersive infrared) detector. Results confirmed that the applied rinsing steps were 

sufficient to remove any carbon not in association with minerals (Fig. S2) since a plateau value 

close to the detection limit was reached after the first two to three rinsing steps for all mixtures. 

2.3.6. Standardized relative change in Rock-Eval® parameters in the presence of 

minerals  

Parameter values were normalized by the range recorded for each parameter to set the 

importance of the change independent of the parameter unit (Eq. 1). Finally, the change caused 

in Rock-Eval® parameter values was evaluated in comparison to the respective parameter value 

recorded during pure compound analysis (Eq. 2). 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
           (1) 

𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 − 𝑥𝑝𝑢𝑟𝑒 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑        (2) 

 

where 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 indicates a Rock-Eval® parameter normalized by its range, 𝑥 is a recorded 

Rock-Eval® parameter value for the analysed mixtures, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and 

maximum values recorded for the same parameter, 𝑥𝑐ℎ𝑎𝑛𝑔𝑒 is the change in a parameter value 

compared to the value recorded during pure compound analysis, 𝑥𝑝𝑢𝑟𝑒 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 (also 

normalized). 
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3. Results 

3.1. Detection of organic matter by Rock-Eval® depends on the type of organic 

compound 

The overall carbon yield of the Rock-Eval® method for the selected group of organic 

compounds was correlated to the carbon yield obtained by classic elemental analysis (R2=0.52, 

mean carbon yield=79%; Fig. 33). The compound-specific carbon yield of Rock-Eval® varied 

strongly according to the type of organic compound. The detection of POM and lignin was 

nearly perfect (carbon yield=97% compared to elemental analysis). The carbon yield was also 

very satisfactory for glutathione, humic acid, bovine serum albumin, glucose and cholesterol 

(≥85%), and it was acceptable for cysteine (>75%). It was not satisfactory for starch and 

cellulose (65% and 58% respectively) and it was particularly poor for palmitic acid (37%). It is 

noteworthy that consideration of palmitic acid as an outlier and its removal from the sample set 

significantly improved the correlation between the two methods, increasing the coefficient of 

determination (R2=0.89), bringing the intercept close to zero (b=0.81) and the slope close to 

one (a=0.85). Compounds used in the next part of the experiment all had an acceptable carbon 

yield, above an arbitrary threshold value of 75%.    

Figure 33: Performance of Rock-Eval® to detect pure compounds (TOC+MinC) compared to classic 

flush combustion elemental analysis. Points represent mean values based on duplicate analysis. The 

equations in black and in grey represent the linear regressions between x and y values, with and 

without palmitic acid, shown by the black and grey lines, respectively. 
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3.2. Efficiency of adsorption formation depends on the type of organic compound 

Four compounds were used in the batch sorption experiment: glucose, cysteine, bovine serum 

albumin, and humic acid. Total carbon content (CEA) was measured by elemental analysis for 

all mixtures (n=28) composed with the sorption experiment to evaluate the success of 

compound adsorption. Mixtures involving sand and glucose for which organo-mineral 

formation was not expected had indeed a negligible carbon content (CEA<0.15% wt. and 

CEA<0.25% wt., respectively; Fig. 34). These results combined with the plateau value close to 

zero reached in DOC concentration of rinsing solutions (Fig. S2) confirmed that our 

experimental design was appropriate for eliminating carbon not associated with minerals.  

Out of the four organic compounds used here, only organo-mineral mixtures composed with 

bovine serum albumin contained a significant amount of organic carbon, in the range of 1–2% 

wt. (Fig. 34). The amount of carbon retained in bovine serum albumin mixtures varied in the 

following decreasing order: kaolinite, soil 3, montmorillonite, soil 2, soil 1 and goethite. All 

humic acid mixtures had a very low carbon content (CEA<0.25% wt.). Carbon content of 

cysteine mixtures was slightly higher (CEA<0.5% wt.), whereas the cysteine-goethite mixture 

contained 1% wt. carbon. 

Evaluation of the carbon detection of these samples with Rock-Eval® compared to elemental 

analysis showed a strong correlation between the two methods (R2=0.9; Fig. 34). Moreover, it 

revealed that goethite-containing samples had a particularly poor carbon yield (56% for bovine 

serum albumin and 34% for cysteine). Thus, the cysteine-goethite mixture was excluded from 

further consideration, along with the rest of the mixtures containing less than 1% wt. carbon, 

resulting in a final selection of six successfully adsorbed and adequately detected samples (i.e., 

bovine serum albumin mixtures with goethite, kaolinite, montmorillonite, soil 1, soil 2 and soil 

3). While the bovine serum albumin-goethite mixture was retained for further consideration, 

related results were treated with great caution and only as a first qualitative impression because 

of the low Rock-Eval® carbon yield for this sample. 
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Figure 34: Evaluation of the adsorption formation efficiency in organo-mineral mixtures according to 

their carbon content and comparison of carbon yield obtained with elemental analysis and Rock-Eval® 

(TOC+MinC). Points represent individual measurements of duplicate analysis. The equation 

represents the linear regression between x and y values. 
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3.3. Effect of organo-mineral interactions on Rock-Eval® parameters 

3.3.1. Satisfactory detection of bovine serum albumin by Rock-Eval® in the 

presence of minerals  

Before investigating the effect of adsorption on Rock-Eval® parameters, we evaluated the 

impact that the simple presence of minerals can have on effluent detection. First, bovine serum 

albumin detection by Rock-Eval® in the presence of minerals was evaluated. We found that 

the Rock-Eval® carbon yield was close to the theoretical carbon content of the mixtures (known 

mixture composition) and strongly correlated with the carbon yield of elemental analysis 

(R2=0.93; Fig. 35). Although Rock-Eval® tended to slightly underestimate the carbon content 

of the samples, the mean carbon yield of Rock-Eval® compared to elemental analysis was 

satisfactory (93%) and didn’t show significant variation for the different minerals. 

 

 

 

  

Figure 35: Performance of Rock-Eval® for detecting carbon (TOC+MinC) in simple dry mixtures 

compared to classic flush combustion elemental analysis. Points represent duplicate measurements. 

The equation represents the linear regression between x and y values. 
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3.3.2. Shifts in Rock-Eval® parameters in dry and adsorbed bovine serum 

albumin mixtures  

The strongest mineral influence in dry mixtures was observed for goethite. Goethite strongly 

decreased the HI and increased the OIRE6 (Fig. 36a and b). All minerals in dry mixtures except 

kaolinite caused some decrease in HI, which was observed as well, slightly weaker nevertheless, 

for the adsorbed mixtures. In contrast, an increase in HI was observed in the kaolinite adsorbed 

mixture (Fig. 36a). OIRE6 was less affected by the presence of minerals in dry and adsorbed 

mixtures. The change recorded in this parameter as well was less pronounced for the adsorbed 

mixtures than for the dry mixtures (Fig. 36b).  

All minerals in dry mixtures had an increasing effect on PseudoS1, which was stronger in 

adsorbed mixtures with the three soil matrices and montmorillonite, for which the increase was 

particularly strong (Fig. 36c). 

All minerals had an increasing effect on temperature parameters of the pyrolysis step (Fig. 36d 

and e). The effect on the HC_PYR thermogram was stronger in simple dry mixtures than in 

adsorbed mixtures of the same minerals (Fig. 36d), whereas the increase in T70HC_PYR was 

particularly strong for montmorillonite mixtures. The opposite was true for the CO2_PYR 

thermogram, where adsorption caused an even stronger increase in the T70CO2_PYR parameter 

compared to dry mixtures (Fig. 36e). All minerals in dry mixtures except goethite caused an 

increase in temperature parameters related to the oxidation step, whereas this effect was 

generally weaker for adsorbed mixtures (Fig. 36f and g).  

Finally, although the change caused in the value of centennially stable SOC proportion 

predicted by PARTYSOC was slightly higher for adsorbed mixtures, it was similar to that caused 

by the simple dry mixtures (Fig. 36h). The increase in the value of centennially stable SOC 

proportion observed for mixtures with the various minerals was almost exactly inversely 

proportional to the amount of carbon retained in each mixture (i.e., increase was higher for 

goethite > soil 1 > soil 2 > soil 3 > montmorillonite > kaolinite, whereas retention increased in 

the order goethite > soil 1 > soil 2 > montmorillonite > soil 3 > kaolinite). 
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Figure 36: Effect of organo-mineral interactions on Rock-Eval® parameters. Orange bars represent dry 

mixtures of bovine serum albumin with different minerals, whereas blue bars represent adsorbed 

mixtures of the same compound. Parameter values shown here present the change relative to the pure 

compound signal (sand) normalized by the range of each parameter (see Sect. 2.3.6).   
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4. Discussion 

4.1. Detection of organic compounds by flame ionization detector 

4.1.1. Deficiency of FID for oxygenated compounds   

Evaluation of the carbon yield obtained with Rock-Eval® compared to classic elemental 

analysis showed particularly poor performance for some of the compounds such as cellulose, 

starch and palmitic acid. This deficiency was ignored in the only study known to us analysing 

pure compounds with Rock-Eval® (Carrie et al., 2012), which calls for revision of the results 

presented in that study. The carbon yield was also poor for the goethite adsorbed mixtures with 

cysteine and bovine serum albumin. A common attribute of these samples is the presence of 

oxygen, either due to the composition of the organic compounds or through the addition of an 

iron oxide. A known limitation of the FID method directly associated with its functioning 

principle, is that it is only able to detect specific moieties, namely H-C bonds. A possible 

explanation of the detection deficiency could be the higher presence of heteroatoms in pyrolysis 

effluents in samples enriched in oxygen. This is a common issue underlined in many studies 

focusing on the ability of FID to detect oxygenated organic compounds and leading to the 

consensus that a calibration for the specific compound analysed is needed, known as the 

response factor (Dewar, 1961; Dietz, 1967; Maduskar et al., 2015). 

4.1.2. A quick look into the FID method  

A closer look at the principle of the FID method is required for better understanding why an 

appropriate response factor is crucial. Starting with a hydrogen flame, effluents are burned to 

produce ions transported between two electrodes where a difference of potential is occurring 

(Fig. 37). The presence of the produced ions generates an electric current which is directly 

measured, and translated into amount of organic moieties using the compound-specific 

response factor (The Flame Ionization Detector, 2005). Dietz (1967) showed that although 

hydrocarbons are generally well detected, with response factors between 0.98–1.12, correction 

is much more important for non-hydrocarbons, e.g., alcohols have response factors between 

0.23–0.85, and acids between 0.01–0.65. 
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4.1.3. The FID is a suitable method for analysis of kerogens and SOM  

For the typical use of Rock-Eval® on kerogens and even SOM the FID is an appropriate 

detector. Moreover, in soils the use of this method is not influenced by the performance of the 

FID (Disnar et al., 2003). Our results are in agreement with literature since POM analysis 

resulted in a perfect yield and soil matrices did not cause a problem in carbon detection. The 

only mineral interfering with the detection of carbon was goethite and only in adsorbed 

mixtures. This might be an important warning to keep in mind for the analysis of tropical soils 

rich in reactive iron minerals. 

4.1.4. Explaining the carbon yield deficit during the pyrolysis step 

The hypothesis that carbon yield deficiency comes from the pyrolysis step was tested by an 

experimental configuration of Rock-Eval®, called the “elemental analyser mode”. This 

configuration (currently under patent protection) allowed for complete detection of carbon in 

pyrolysis effluents and resulted in an excellent carbon yield for all compounds (Fig. S4), 

verifying our hypothesis that some carbon passes undetected during pyrolysis.  

 

Figure 37: Functioning principle of a flame ionization detector, starting with a hydrogen flame, 

through which the pyrolysis effluents are burned to create CHO+ ions, creating an electric current that 

is then detected and translated back into amount of organic moieties. 
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4.2. Insights on optimizing adsorption conditions 

Our batch sorption experiment resulted in successful adsorption of bovine serum albumin on 

kaolinite, montmorillonite, goethite, and the three soil matrices. On the contrary, the adsorption 

of humic acid and cysteine was below our expectation. 

The amount of detected carbon in final mixtures of bovine serum albumin ranged from 1–2% 

wt., corresponding to amounts of adsorbed compound between 19.7–39.1 mg bovine serum 

albumin per 1 g of mineral assuming the carbon content and molecular mass of this compound 

remained unchanged throughout the adsorption experiment. A study using a similar batch 

sorption protocol (replacing CaCl2 with a phosphate buffer and setting pH at 7) mentioned 

adsorption capacity of up to 240 mg bovine serum albumin per 1 g of extracted clay fraction 

(Chevallier et al., 2003). However, this value might be an overestimation of the adsorption 

potential of bovine serum albumin on clay, due to the presence of organic matter in the initial 

clay fraction (13.9 gC kg−1), shown to promote adsorption of proteins (Calamai et al., 2000). 

The ability of bovine serum albumin to form adsorption on various surfaces can be explained 

by its complex composition (Phan et al., 2015). In general, solution pH affects the formation of 

adsorption since at pH values above or below the isoelectric point of compounds (IEP) or the 

point of zero charge (PZC) of minerals their surface charge changes sign (Sposito, 2008), thus 

favouring or hindering electrostatic attraction. The bovine serum albumin molecule however, 

is characterized by the occurrence of both negatively charged amino acids and positively 

charged residues, resulting in an ability to adsorb to both positively and negatively charged 

surfaces (Servagent-Noinville et al., 2000; Kudelski, 2003). This composition renders the 

molecule highly stable, soluble in water and appropriate for sorption studies (Kudelski, 2003; 

Kopac et al., 2008).  

 

For cysteine and humic acid the importance of pH is more important than for bovine serum 

albumin. Cysteine, as all amino acids, is distinguished by the occurrence of two functional 

groups an amine group (-NH2) and a carboxyl group (-COOH) in the same molecule (UK: CHE 

103 - Chemistry for Allied Health, 2019). At solution pH values above its isoelectric point 

(IEP=5.02), available OH− ions in excess bind with the amine group of cysteine, forming NH2 

and water, and leading to dominance of the negative charge of the COO− group, and reversely 

at solution pH values lower than the IEP of cysteine.  
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In our sorption experiment the solution pH exceeded the IEP of cysteine only in the case of the 

goethite mixture. For the cysteine-goethite mixture at a pH (7.6; Table S1) higher than the IEP 

of cysteine (5.02) and the PZC of goethite (6.4; Sposito, 2008) the surface charge of cysteine 

should be negative and that of goethite as well. The observed retention of cysteine in this 

mixture in the order of C=1% wt., corresponding to 33.11 mg g−1 could be explained by the 

presence of free Ca2+ (introduced by the use of background electrolyte) favouring electrostatic 

attraction. In the case of clays (kaolinite and montmorillonite) in our experiment the conditions 

were not ideal. As the naturally occurring solution pH (4.3 and 3.3, respectively; Table S1) in 

both cases was lower than the IEP of cysteine and lower than the PZC of the minerals (5.2 for 

kaolinite (Sposito, 2008) and between 3.4-5.9 for montmorillonite (Helmy et al., 1994; Ijagbemi 

et al., 2009). This would indicate that at these low pH values both cysteine and the mineral 

surfaces were always positively charged, hindering electrostatic attraction. Maximal values of 

cysteine adsorbed on clays reported in the literature were in the order of 43.56 mg/g on 

bentonite clay (Faghihian and Nejati-Yazdinejad, 2009) and 57.87 mg/g on K-Montmorillonite 

(Hu et al., 2020). Adsorption efficiency was very strongly dependent on pH with the maximum 

reached at pH=4 and maintained only for a very short pH range (3.5–4.5) in the absence of 

background electrolyte for the bentonite clay. This observation is in agreement with the PZC 

theory and with the values mentioned above. Reaching this optimal pH range can be challenging 

however, especially in the case of the cysteine-kaolinite pair. An alternative strategy could be 

to imitate the example of the cysteine-goethite pair described above, by increasing the pH in 

order to obtain negatively charged materials and use Ca2+ to form cation bridges.  

 

Humic acid is by definition negatively charged, except at very low pH values (Sposito, 2008). 

In this experiment, conducted at pH~12 well above the point of zero charge of goethite 

(PZC=6.4) and kaolinite (PZC=5.2), both minerals were negatively charged. Thus, electrostatic 

repulsion could be an explanation, hindering humic acid adsorption. Efforts to conduct this 

experiment at lower pH (~7) resulted in incomplete dissolution (not shown here), as described 

in literature (humic acid dissolves at pH>10; Brigante et al., 2007). The authors also underline 

the decrease in solubility caused by even low concentrations of Ca2+ and the increase in 

flocculation of dissolved humic acid at Ca2+ concentrations of 3∙10−3M or higher. Despite these 

fundamental insights on the behaviour of humic acid, many studies focusing on the protection 

of SOM by minerals present batch sorption experiments conducted at low pH and using CaCl2 

as background electrolyte. Values of humic acid adsorption on clays mentioned in Feng et al. 
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(2005) were in the order of C=0.26 % wt. for kaolinite and C=0.43 % wt. for montmorillonite 

in a 0.01M CaCl2 solution and at pH=4. The authors suggest that the use of CaCl2 favours 

bridging the repulsive (negative) charges between humic acid and mineral surfaces. Chen et al. 

(2017) investigating the adsorption of humic acid on kaolinite and montmorillonite in the 

presence of 0.1 M KCl at varying pH (4–8), report values in micromole of humic acid per g 

mineral between 4–9 μmol/g, corresponding to C≈7–17 % wt., while maximum values were 

obtained at pH=4. These contradictory results suggest that it might be necessary to measure and 

report dissolution efficiency or alternatively, use control treatments to ensure that incomplete 

dissolution or flocculation is not contributing to the final concentration of humic acid.  

 

4.3. On the effect of dry or adsorbed minerals on the Rock-Eval® signal and why it 

should be carefully considered  

As organo-mineral complexes were successfully formed for bovine serum albumin only, this 

compound was further considered to study the effect of adsorption on the Rock-Eval® signal. 

In the effort to estimate the effect of adsorption on Rock-Eval® parameters, it is important to 

remember that even the simple presence of minerals in the pyrolysis oven can cause strong 

changes on the signal. As presented in Sect. 3.3.2. of this chapter, a similar change in a 

parameter such as HI might have an entirely different origin for example (i) decrease through 

oxidation of effluents by iron minerals, (ii) decrease through retention of effluents by reactive 

clays, or (iii) decrease through adsorption of the organic matter on mineral surfaces.  

 

Careful observation of the thermogram shapes is helpful in interpreting the resulting changes 

on parameter values. First, the thermogram intensities revealed that most of carbon was released 

as HC during pyrolysis and as CO2 during oxidation, with the two thermograms (HC_PYR and 

CO2_OX) sharing approximately equal amounts of carbon (Fig. S3), while the remaining three 

thermograms (CO2_PYR, CO_PYR, CO_OX) combined accounted for approximately ten 

times less the amount of carbon. For goethite, shifts between pyrolysis thermograms took place 

(e.g., sink in HC_PYR and increase in CO2_PYR), explaining the simultaneous decrease in HI 

and increase in OIRE6. Also, an interesting observation was the peculiar shape caused by 

montmorillonite mixtures, which had a “flattening” effect on the HC_PYR signal, formed by 



Kanari Eva — Thèse de doctorat — 2022 

161 

 

lowering the intensity of the S2 peak and by shifting the detection of HC towards a more 

advanced analysis stage compared to the rest of the minerals (Fig. S3). The opposite was 

observed for kaolinite mixtures, where the combined effect of more carbon present in this 

mixture and the presumably lower capacity of kaolinite to adsorb hydrocarbon effluents led to 

the formation of a particularly high and “pointed” S2 peak. Visual checking of the thermogram 

shapes confirmed that goethite had the tendency to shift the CO2_OX signal towards earlier 

release, in line with the observed decrease in CO2_OX-derived temperature parameters. 

However, the decrease in CO_OX temperature parameters caused by goethite might have a 

different origin since for both dry and adsorbed mixtures, the CO_OX signal decreased 

significantly to the order of the baseline level (Fig. S3).  

 

4.3.1. The strong effect of reactive clay minerals and iron oxides during thermal 

analysis 

The main trends in the effect of the mineral matrix were in agreement with literature. Clay 

minerals are known to cause retention of hydrocarbons, partially attributed to their large specific 

surface area (Espitalié et al., 1984; Spiro, 1991; Hayakawa et al., 2018; Ma et al., 2018; Kanari 

et al., 2021). Studies restricted to pyrolysis (without oxidation) of kerogens, support that 

retention of pyrolysis products on clays caused a lower amount of consumed organic carbon 

and stabilisation of organic matter (Espitalié et al., 1984; Spiro, 1991). Similarly, in our study 

we observed a decrease in the ratio of carbon released during pyrolysis to total organic carbon 

(PC/TOC; not shown here) in the presence of montmorillonite and a sustained increase in 

temperature parameters indicating resistance to thermal degradation. Several studies mention a 

catalytic effect of montmorillonite during the generation of light hydrocarbons, explained by 

its solid acidity (Bu et al., 2017). This is in line with the increase in PseudoS1 (due to a shift in 

the hydrocarbon signal; Fig. S3) observed in the adsorbed montmorillonite mixture. 

 

Considering the implications of these results for soil studies, the fact that reactive minerals such 

as goethite can lead to extremely high OIRE6 values and even affect carbon detection, while 

causing higher centennially persistent SOC predictions is partially alarming.  
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For testing the limits of the approach and improving our understanding of the importance of the 

effect of minerals, estimating a threshold value of iron oxide content or carbon to iron oxide 

ratio above which this effect is problematic would be an interesting objective. However, in 

temperate soils the scenario of such a high amount of reactive oxides is quite unrealistic thus 

the results do not raise any red flags regarding the use of the Rock-Eval® method. Even for 

tropical soils the limitations caused by soil mineralogy would have to be investigated, 

preferably using natural soil samples.  

 

4.3.2. The low effect of pre-existing adsorption on the Rock-Eval® signal 

Our final hypothesis of an increased protection against thermal degradation with an increasing 

degree of association (namely in the adsorbed mixtures compared to the dry ones) could not be 

validated here. Based on the only successfully adsorbed compound, bovine serum albumin, the 

impact of adsorbed and dry mixtures on the Rock-Eval® signal and its effect on the thermal 

parameters was similar. According to our results, in this model system the effect on the Rock-

Eval® signal is mostly due to the presence of the minerals and much less due to the existence 

of adsorption. Although, the combined effect on the most important parameters led to 

predictions of higher centennially persistent SOC proportion values for adsorbed mixtures 

compared to simple dry mixtures, and was thus in favour of our initial hypothesis, the difference 

was still very small compared to the effect of the dry minerals.  

 

The unexpected low impact of pre-existing adsorption on the Rock-Eval® signal could be 

related to the large size of the bovine serum albumin molecule. Assuming that only specific 

sites of this large and complex protein are capable of building bonds with a given mineral 

surface, this would mean that although a small part of the molecule is adsorbed, and might 

require more energy in order to be thermally degraded, the remaining larger part of the molecule 

can still react and be pyrolyzed or oxidized without delay. Testing this hypothesis would require 

repeating this experiment and successfully forming associations between smaller organic 

molecules and minerals. 
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4.4. The role of carbon content variations across mixtures and perspectives for future 

work 

An important source of uncertainty remains, associated with the observations presented in this 

chapter, namely the difference in carbon concentrations across mixtures. The different ratio of 

organic compound per mineral surface present in each mixture does not allow us to exclude the 

hypothesis that the observed changes in Rock-Eval® parameters and centennially persistent 

SOC proportion predictions between mixtures with different minerals are not an effect of the 

variation in carbon content. Even though the majority of parameters used in this study are 

considered relatively to the total organic carbon content of each mixture, previous studies 

showed that the importance of the mineral effect can increase with decreasing carbon content, 

especially when TOC < 3% wt. (Dahl et al., 2004; Zegouagh et al., 2004). As a result, the 

homogenization of carbon content across mixtures is a clear and immediate perspective that 

would help increase our confidence in the results presented in this study. 

 

Other perspectives to complement the results presented in this study include conducting 

differential scanning calorimetry measurements on adsorbed and dry mixtures and evaluating 

the change in energetic balance due to the existence of organo-mineral associations. Some 

precise elemental analysis of all elements present in the organic compounds used (e.g., C, H, 

N, S, and O for cysteine) before and after adsorption could offer useful information on potential 

stoichiometric shifts caused during the adsorption experiment. Additionally, imaging and 

chemical mapping techniques such as scanning and transmission electron microscopy could 

provide an idea of the distribution of organic matter in the different mixtures.  

 

Finally, the relevance of these results for the natural soil environment should not be over 

interpreted, due to the orders of magnitude of difference in experimental conditions such as 

water content, biological activity, temperature, time scale and degree of complexity. 
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5. Conclusions 

In this study we analysed pure biochemical compounds, and adsorbed and dry model mixtures 

using Rock-Eval®. Evaluation of the detection efficiency of pure compounds by Rock-Eval® 

showed that especially for oxygenated compounds such as fatty acids, the carbon yield is not 

satisfactory. We recommend the application of a correction factor on the FID signal according 

to the type of organic compound and call for revision of former studies dealing with similar 

compounds and ignoring this effect. We underline that this limitation does not apply for analysis 

of soil organic matter or kerogens.  

Our main insights from the analysis of simple dry organo-mineral mixtures were (i) the 

observation of a strong oxidizing effect of goethite, (ii) interfering with the FID detection and 

causing a carbon yield deficiency and (iii) the retention of hydrocarbons as well as (iv) cracking 

of light hydrocarbons by montmorillonite.  

Adsorption of bovine serum albumin on mineral surfaces only slightly increased its thermal 

stability, showing that the produced sorption was not a particularly efficient mechanism and 

that its influence of the Rock-Eval® signal was negligible for this specific compound. Changes 

in Rock-Eval® parameters caused by the existence of adsorption between minerals and bovine 

serum albumin were similar to those caused by the simple presence of dry minerals in the 

crucible. These included decrease in hydrogen index, increase in temperature parameters 

(negatively and positively correlated to biogeochemical SOC stability, respectively) and an 

increase in the values of centennially persistent SOC proportion predicted by the machine-

learning PARTYSOC model. This study provides a first idea about the part of thermal stability 

attributed to the mineral matrix effect and to organo-mineral associations. More effort should 

be devoted to create stronger associations and further examine their influence on thermal 

stability. Other mechanisms at interplay that might influence the link between thermal and 

biogeochemical stability such as recalcitrance and the balance between energy gain and 

activation energy should also be studied.  
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3. General discussion 

In the context of food security and climate change mitigation, appropriate land management 

policies are crucial. Due to the ability of soils to provide numerous vital ecosystem services and 

the importance of soil organic carbon (SOC) for soil health, understanding the dynamics 

controlling the evolution of this reservoir is key. In this work we discussed the advancements 

regarding the understanding of processes controlling the fate of SOC, as well as the 

development of modelling approaches leading to the current ability of the soil scientific 

community to predict SOC changes. We underlined the naturally occurring significant 

variations in SOC persistence and we identified the lack of appropriate methods for quantifying 

it as a major knowledge gap as it is an important source of uncertainty for SOC projections. We 

tackled this challenge with the use of a thermal-analysis-based machine-learning approach, 

providing information on SOC characterization and SOC persistence, combined with a well-

calibrated simple SOC dynamics model. Considering the clear value of thermal analysis for 

assessing SOC persistence, we conducted experiments to progress our understanding of the 

potential and limitations of this technique. Using natural soil samples and pure biochemical and 

mineral compounds we tried to answer questions such as the comparability of available thermal 

analysis data and the role of organo-mineral interactions during thermal analysis. 
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3.1. Using thermal analysis to improve SOC simulations 

3.1.1. Thermal analysis can estimate the size of the stable-SOC pool in unknown sites 

In the first chapter of this work we examined the potential of PARTYSOC (Cécillon et al., 2021; 

presented in ANNEX 1), a thermal-analysis-based machine-learning model, to estimate the 

centennially persistent carbon proportion of independent soil samples, meaning samples from 

sites not included in its training set. We used archived and recent soil samples from long-term 

experimentation (LTE) sites with known land management practices and a carefully monitored 

SOC stock evolution over several decades (median LTE duration 21 years). The observed SOC 

stock changes at these sites were previously simulated using AMG, a simple multi-

compartmental model of SOC dynamics (Clivot et al., 2019; Levavasseur et al., 2020) 

considering two SOC pools: stable SOC and active SOC. The detailed monitoring information 

(C inputs, climatic data and soil characteristics) available at these sites offer the opportunity of 

conducting inverse modelling, i.e., fitting the model to the observed SOC evolution to obtain 

the mathematically optimal pool partitioning at the onset of the simulation period (Clivot et al., 

2019).  

3.1.1.1. Independent validation of the PARTYSOC model 

To evaluate the performance of the PARTYSOC model on this independent dataset we compared 

its predictions with post optimized pool partitioning obtained with the AMG model. We showed 

that there was a strong correlation between the estimations of SOC stable at the scale of a 

century obtained by the two methods (R2=0.63 for stable SOC expressed as proportion and 

R2=0.95 for stable SOC expressed as concentration). Moreover, compared to the AMG default 

pool partitioning (depending only on long-term land-use history; here 0.65 at all sites as they 

were former croplands) the PARTYSOC model provided more variable predictions (0.44–0.74). 

These were in the same range as optimal values, and they reflected which sites were far from 

SOC equilibrium (e.g., Tartas, Kerbernez). Although the default pool partitioning was 

appropriate for sites with exceptionally uniform land-management history (e.g., Boigneville), 

in cases where “recent” (~decades) disturbances occurred, values predicted by the PARTYSOC 

model revealed the legacy effect of land management practices at the different sites. 
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More specifically, at the site of Tartas the intense application of poultry manure amendment 

before the onset of the LTE led to an increase of SOC in the active pool, lowering the proportion 

of stable SOC. Similarly, in Kerbernez the low stable SOC proportion values could be explained 

by the fact that this site was turned from grassland to cropland 20 years before the onset of the 

LTE. 

3.1.1.2. The PARTYSOC model trained on bare fallows can be successfully used on 

soils with vegetation cover 

A different way to evaluate the suitability of the PARTYSOC model for use outside its calibration 

set would be to compare its performance on these new independent sites to its internal validation 

conducted in Cécillon et al. (2021). Using a conservative error estimation by a leave-one-site-

out assessment method, the authors calculated a root mean square error of predictions (RMSE) 

and a relative root mean square error (RRMSE; RMSE divided by mean of observations) in the 

order of 0.15 and 27%, respectively. In our study, both estimations resulted in lower values, 

namely RMSE=0.06 and RRMSE=10%. This is particularly encouraging for the use of the 

PARTYSOC model in French and eventually European croplands, since it could indicate that (i) 

despite the use of long-term bare fallow plots in the calibration set of PARTYSOC it can 

successfully be used on sites with a vegetation cover and (ii) that since the current training set 

of the PARTYSOC model is able to account for the pedoclimatic variability of the sites used 

here, the same is probably true for most of Europe (training sites from France, Germany, 

Sweden, Denmark and England; Cécillon et al., 2021).   

3.1.1.3. Absolute values of centennially persistent SOC concentration  

Other methods used to estimate the proportion of SOC that is stable at the scale of a century, 

such as radiocarbon ages assessed it at 35–60% of total SOC (e.g., Mills et al., 2014). The 

natural 13C abundance method applied at LTEs with vegetation change chronosequences 

produced a mean estimation of persistent SOC at 50% (Balesdent et al., 1987). Centennially 

stable SOC proportions derived from decay modelling at long-term bare fallow sites were 

between 30–70% (Barré et al., 2010), while inverse modelling based on detailed long-term 

monitoring of SOC dynamics at agronomical experiments resulted in a similar range, namely 

40–75% (Clivot et al., 2019).  
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Expressed as concentration, centennially persistent SOC in North-western Europe ranges 

roughly between 5–15 gC kg−1. Our results obtained based on characterization of SOC by 

means of thermal analysis are in agreement with the above methods since the percentage of 

centennially stable SOC was between 44–74%, while its concentration varied amongst sites 

between 2–12 gC kg−1. 

3.1.1.4. Inferring information on the sensitivity of the stable SOC faction using 

PARTYSOC on archived samples 

The availability of physical soil samples not only from the onset of the LTEs but also from the 

end and in some cases intermediate dates of the simulation period, offered us the opportunity 

to study the evolution of the persistent SOC fraction with time.  This assessment showed that 

PARTYSOC predictions of persistent SOC concentration based on samples taken at different 

dates of an LTE resulted in a similar value. Even though the amount of active SOC changed 

during the LTE (and thus the proportion of persistent SOC) due to SOC gains or losses 

associated to management practices, the amount of persistent SOC remained constant. Even at 

LTEs covering approximately the last 50 years (i.e., Boigneville) the climatic change 

(temperature increase since the 1970’s) had no influence on the concentration of persistent 

SOC. This is a particularly important insight in favour of the validity of the concept of a 

centennially stable SOC pool, as well as regarding its limits. Another important indication of 

the constant persistent SOC concentration with time, is the possibility to use recent samples 

more easily available than archived ones to initialize the persistent SOC content at the onset of 

SOC simulations. 

 

The good overall performance of PARTYSOC encouraged us to use this approach to initialize 

SOC simulations with exceptional advantages compared to traditional initialization methods.  
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3.1.2. Precise SOC simulations obtained with PARTYSOC-based initialization  

The second objective of Chapter 1 was to use the PARTYSOC predictions of centennially 

persistent carbon to initialize the pool partitioning of AMG (Andriulo et al., 1999; Clivot et al., 

2019). The improvement brought to SOC simulations compared to the AMG default 

initialization was evaluated for 32 treatments from nine agricultural LTEs. The performance of 

the AMG model improved significantly (RMSEdefault=5.95 tC ha−1; RMSEPARTYsoc-based=3.6 tC 

ha−1) and the model was able to reproduce the observed changes in SOC stocks at the 32 

treatments with high precision (BIASPARTYsoc-based=0.06 tC ha−1). The AMG model initialized 

using the default and the PARTYSOC pool partitioning had a similar performance for sites with 

optimal pool partitioning close to the default value (0.65; e.g., Boigneville). An important 

improvement was observed with the PARTYSOC-based initialization for sites with complex 

land-use or land management history (i.e., Tartas and Kerbernez as mentioned above) due to 

the inaccuracy of the pool partitioning by default in these cases. For these sites, the AMG model 

initialized using the default pool partitioning underestimated the observed decrease in SOC 

stocks (BIASdefault=2.33 tC ha−1). Finally, the performance of the AMG model initialized with 

PARTYSOC was comparable to the optimal pool partitioning runs (RMSEoptimal=2.12 tC ha−1). 

It is interesting to note that the error of the AMG model initialized using PARTYSOC was of the 

same order of magnitude as the measurement error of SOC stocks. Therefore, on the studied 

dataset, the possibilities of improving the simulations of SOC evolution are marginal to zero. 

3.1.2.1. Advantages of PARTYSOC compared to current initialization methods 

In this section we discuss one of the most important highlights of the first chapter, the 

independent and complete validation of the PARTYSOC model as an appropriate pool 

partitioning initialization method.  

3.1.2.1.1. Escaping the unrealistic SOC equilibrium hypothesis  

First, the PARTYSOC approach avoids the unrealistic SOC equilibrium assumption made by 

definition by all spin-up initialization approaches. As information on SOC persistence is 

difficult to obtain, modelling studies often assume that after a long enough period under a given 

land use has passed an equilibrium will be reached where SOC inputs will equal SOC outputs 

(Wutzler and Reichstein, 2007).  
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However, this assumption is unrealistic even at sites with decades of continuous land use 

(Wutzler and Reichstein, 2007; Poeplau et al., 2011; Oberholzer et al., 2014; Herbst et al., 2018; 

Clivot et al., 2019). Another important drawback of spin-up methods as explained in Chapter 1 

is associated to the data required by this approach (such as C inputs and climatic data) covering 

thousands of years, which are impossible to know with precision. Evidently, PARTYSOC does 

not depend on such uncertain datasets, as it is a method exclusively built on empirical data. 

3.1.2.1.2. Complex fractionation based on conceptual mechanisms versus automated 

characterization of in situ persistent SOC enrichment 

Other studies recognizing the need for alternative initialization methods suggested a variety of 

physico-chemical fractionation protocols (Balesdent, 1996; Skjemstad et al., 2004; 

Zimmermann et al., 2007; Lavallee et al., 2020). Yet, the heterogeneous nature of SOM and the 

many mechanisms controlling its persistence, make the arbitrary limits set by these laboratory 

methods incapable of isolating homogeneous stability fractions. In essence, separated fractions 

(e.g., POM and MAOM; Lavallee et al., 2020) are in reality composed of different proportions 

of centennially labile and persistent SOC (Balesdent, 1996; Lutfalla et al., 2017; Sanderman 

and Grandy, 2020; Chassé et al., 2021). In contrast, the estimations provided by PARTYSOC 

have the advantage of being based on observations from sites where decade-long SOC input 

elimination and native SOC decay guarantee that only SOC that is biogeochemically persistent 

remains. 

Moreover, it has been shown that even slight inconsistencies in the complex fractionation 

schemes as well as the varying susceptibility of different soils to the same procedure make these 

methods difficult to compare and transfer (Poeplau et al., 2013; Just et al., 2021). In comparison, 

the PARTYSOC model benefits from being a fully automated approach based on SOC 

characterization following standardized analysis steps.  

3.1.2.1.3. The concept of proper complete validation of initialization approaches 

Furthermore, in lack of pluri-decadal SOC monitoring field experiments SOC projections 

initialized according to fractionation methods are often irrationally validated against 

equilibrium runs instead of observed SOC evolution (e.g., Dondini et al., 2009; Leifeld et al., 

2009a; Xu et al., 2011; Weihermüller et al., 2013).  
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Although understandable due to the enormous time, financial and human resource investment 

required to obtain real SOC stock time series, this remains an important issue. Without assessing 

the effect of an initialization method on the precision of SOC simulations, how can we evaluate 

its efficiency? 

In the rare cases found in literature when fractionation schemes were used to initialize SOC 

simulations of observed SOC evolution, either (i) no significant improvement was found 

compared to spin-up or default initializations (Leifeld et al., 2009b; Nemo et al., 2016; 

Cagnarini et al., 2019), or (ii) other model parameters (i.e., decomposition rate) needed to be 

adjusted in order to yield more accurate simulations, failing once again to confirm the 

independency and transferability of the method (Skjemstad et al., 2004; Luo et al.,2014). 

As we showed in this Chapter 1, not only do the estimations of pool partitioning of PARTYSOC 

correspond well to observations from fully independent sites but we also demonstrate that its 

use has the potential to improve the accuracy of SOC simulations. The simple coupling of the 

two models (PARTYSOC and AMG) without any changes in their internal structure or 

parameters provides strong evidence not only of the effectiveness but also the transferability of 

the PARTYSOC method.  

3.1.2.1.4. The particular improvement of SOC simulations at sites far from SOC 

equilibrium  

As we note above and in the discussion of Chapter 1, in our study the largest improvement to 

SOC simulations due to the PARTYSOC-based initialization was observed at sites far from SOC 

equilibrium. The fact that past changes in land use and soil management are common over a 

large yet unknown surface of arable land of France and Europe (Fuchs et al., 2015; Erb et al., 

2017), highlights the importance of the ability of PARTYSOC to account for legacy effects of 

site history on SOC pool partitioning. We thus expect PARTYSOC-based initialization of SOC 

models to result in significantly improved simulations of SOC dynamics at a national and even 

continental scale. 
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3.1.3. The power of SOC characterization information included in PARTYsoc 

The rare long-term bare fallow experiments are only one out of the three pillars on which the 

PARTYSOC model was built. The archived samples available at these sites present an 

extraordinary case of enrichment of an undisturbed soil in persistent SOC and they provide the 

opportunity to characterize this change by laboratory methods. Rock-Eval® thermal analysis 

includes information on thermal fractionation but also on bulk chemistry of SOM through 

parameters such as oxygen index and hydrogen index. This characterization method allows 

PARTYSOC to include information such as the activation energy and redox state of SOM; key 

elements of new understanding of SOC dynamics (Dignac et al., 2017). In agreement with 

literature, persistent SOC is hydrogen depleted and thermally stable (Gregorich et al., 2015; 

Barré et al., 2016; Hemingway et al., 2019; Poeplau et al., 2019; Chassé et al., 2021). The third 

strong point of PARTYSOC is the well-built machine-learning algorithm transforming the 

correlation between thermal and biogeochemical stability into quantification of the centennially 

stable SOC fraction. Due to the combination of these three powerful components, PARTYSOC 

is able to estimate the pool partitioning based on experimental data, keeping assumptions at a 

minimum.  

Other more straight-forward but also important advantages of PARTYSOC model compared to 

fractionation methods are its low cost and short analysis time making it easy to apply on large 

scale studies. Upscaling of this approach to a global scale remains however a challenging 

objective.  

3.1.4. Extending the use of the PARTYSOC model to other pedoclimates 

For the geographical expansion of PARTYSOC to new regions with different pedoclimates, a 

first step was taken from the development of the first version of the model (Cécillon et al., 2018) 

to the second (Cécillon et al., 2021). Namely, two new European sites with bare-fallow 

treatments, Askov (Denmark) and Bad Lauchstädt (Germany), and a tropical site with a C3–C4 

vegetation change chronosequence from Colombia were added to the model training set. 

Similarly, more sites from new regions of the world will be necessary in order to increase the 

diversity of pedoclimates covered by the training set of the PARTYSOC model.  
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Sites will need to fulfil criteria such as (i) long-enough periods of monitoring and sampling 

allowing for (ii) in situ estimations of SOC persistence (e.g., through inverse modelling, decay 

modelling or isotopic methods) and (iii) archived samples covering the period of the field 

experiment will be necessary in order to be analysed with Rock-Eval® and train the PARTYSOC 

model using the information provided by thermal analysis. Then the updated version of the 

PARTYSOC model will have to be tested and validated on independent sites from the new 

pedoclimatic range, similar to the work presented here, before it can be used to initialize SOC 

simulations. For this final step, the importance of well calibrated SOC dynamics models able 

to reproduce with accuracy observed SOC stock changes is of major importance. 

3.1.5. The need for well-calibrated operational SOC dynamics models 

In the core of the independent validation concept, as well as for the evaluation of the 

improvement brought to SOC simulations by an initialization approach, is the assumption that 

SOC dynamics models correctly account for drivers of SOC change. The work presented in 

Chapter 1 relies heavily on the previous extensive parametrization work of the AMG model 

(presented in Sect. 1.10) bringing its accuracy to the highest level for French cropland (Martin 

et al., 2019). The precision of the AMG model for reproducing observed changes in SOC stocks 

when its pool partitioning was correctly initialized was in the margin of the error of SOC stock 

measurements in this study (mean confidence interval=10 tC ha−1; see also Schrumpf et al., 

2011).  

We believe that this point should not be overlooked. On the contrary we consider this an 

important proof of the value of simple SOC dynamics models with kinetically defined pools 

against more complex process-based multi-compartmental models (Manzoni and Porporato, 

2009; Campbell and Paustian, 2015). Simple models are often judged as outdated because they 

do not explicitly represent processes controlling SOC mineralization such as sorption of organic 

matter onto mineral surfaces and microbial activity. Conducting simulations at the pluri-decadal 

scale using AMG however shows that the representation of drivers controlling SOC 

mineralization seems to be sufficient to accurately reproduce SOC evolution at the plot to 

landscape scale (Martin et al., 2019; Bruni et al., 2021). Models like AMG were developed with 

the main purpose to simulate observations from the plot scale in the simplest mathematical way 

possible and with the highest computational efficiency (e.g., Mary and Guerif, 1994). Their 

mathematical simplicity is a great advantage regarding their transferability.  
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As there are less parameters to constrain it is easier to transfer these models to new conditions 

and zoom out to the ecosystem and the global scale, justifying their use in Earth System Models 

(Todd-Brown et al., 2014). 

On the other hand, mechanistic models are conceptually interesting, since they advance our 

thinking and ideas about processes controlling SOC dynamics (Wieder et al., 2015; Abramoff 

et al., 2018; Zhang et al., 2021). Theoretically, if we could parametrize them correctly, they 

could provide valuable insights for assessing sensitivity of specific processes important for 

SOM evolution, e.g., under environmental changes. They provide a different perspective to the 

system, regarding the time and space dimension, since they focus on rapid processes (minutes 

– hours) occurring at the microscale. This complexity makes it more difficult to summarize all 

these detailed interactions to infer the reaction of the entire system. Not only are we currently 

missing the knowledge to constrain these models but also mathematically integrating them into 

ecosystem models would be extremely demanding.  

Even though each model type has its own interest, when choosing a model for use as a predictive 

tool, model validation should be higher up the list of priorities (Campbell and Paustian, 2015). 

AMG might not represent detailed microbial processes but through the incorporation of 

variables such as pH, C/N ratio and clay content for the adjustment of the mineralization rate, 

the model indirectly accounts for aspects such as protection by clay minerals or type of organic 

matter input. Support to the idea that pedoclimatic characteristics can explain SOC variance is 

provided in a recent study from Luo and Viscarra-Rossel (2020) who showed that climatic and 

edaphic variables could account for 70–80% of the SOC variance observed amongst 141,584 

worldwide soil profiles, whereas the potential of biotic factors was only at 5–10%. For further 

details on the ability of the AMG model to explain the variance of SOC stocks and the 

importance of the different pedoclimatic variables see ANNEX 2.  

Going back to the objective of expanding the PARTYSOC initialization method to new 

pedoclimates and assuming that the simple AMG model could be used in new areas, still a 

significant amount of data would be required to run SOC simulations. The model requires 

climatic data at an annual time step (temperature, precipitation), soil characteristics (pH, C/N 

ratio, clay and carbonate content, bulk density) as well as detailed information on land cover 

and management practices (crop yields, irrigation, residue return or export). 
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An alternative to be considered would be to use some of the more popular models found in 

literature such as Century and RothC, with which SOC simulations have already been 

conducted all over the world and data sets to run the models are already available.  

3.1.6. Adapting PARTYSOC to other SOC dynamics models  

In the case of using other SOC dynamics models, the procedure regarding the calibration and 

validation of the PARTYSOC model would be similar. However, additional internal changes in 

the PARTYSOC model would be needed to adapt the format of its predictions to the pool 

structure of the chosen SOC dynamics model (3–5 pools instead of 2). The increase in number 

of pools causes a problem of equifinality, as not enough data is available to constrain 5 pools 

with confidence. However, similar to this work, initializing the size of the “stable” pool of other 

models could be a good starting point. A potential difficulty would be estimating the size of 

pools with residence times of 1000 years (i.e., IOM pool of RothC or passive SOC pool of 

Century), when the oldest monitoring sites are less than 100 years old. Moreover, finding SOC 

time series against which the precision of the model for projections this long could be evaluated 

would be challenging.  

3.1.7. Transferring PARTYSOC to other land-uses  

The ultimate challenge, creating a national or global map of SOC persistence will require 

covering areas other than cropland, such as managed and unmanaged grasslands and forests. 

Our ability to transfer SOC models to other land uses will depend on the advancement of our 

knowledge and understanding of SOC stock dynamics in these cases. Yet, the precious LTEs 

monitoring SOC stock evolution based on which all the necessary calibration and validation 

steps are executed are very rare for land uses other than cropland. Models currently used to 

simulate SOC evolution in forest soils do not provide any reliable projections (e.g., Yasso07 

model; Mao et al., 2019). However, the development and increasing availability of databases 

presenting SOC stock changes in forest soils over several decades (Jolivet et al., 2006; Jonard 

et al., 2019) offer potential prospects for testing the improvement that PARTYSOC could bring 

to the accuracy of simulations of SOC stock changes in forests.  
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3.1.8. Modelling SOC stocks in deeper soil layers  

All the studies presented above using LTEs to understand SOC dynamics focus specifically on 

the ~0–30cm topsoil layer. Recent work however underlined the significance of subsoil carbon 

(down to 2m) representing more than 50% of SOC (Jobbágy and Jackson, 2000; Batjes, 2016) 

for the soil-atmosphere C exchange cycle. This SOC present in subsoil is in exchange with the 

atmosphere in relevant temporal scales, as according to isotopic studies recently incorporated 

SOC (50 years) represents in average 13% of subsoil SOC (30–200 cm; Balesdent et al., 2018). 

Moreover, land management such as cropping and grazing have an effect on subsoil SOC 

concentration (Sanderman et al., 2017). As a result, subsoil SOC is considered important for 

the role of soils as a potential solution or hazard to climate change. A vertical expansion of SOC 

models is recommended to better account for the behaviour of this reservoir (Balesdent et al., 

2018; Luo and Vsicarra-Rossel, 2020).  

Finally, regarding the Rock-Eval® analytical technique and its limits, some questions we have 

to ask   does the correlation between thermal stability and biogeochemical stability still hold 

true in other regions, in other land-uses and in deeper soil layers? Where are the limits of the 

Rock-Eval® as a SOM characterization technique and when does the interference of minerals 

become too important? 

We try to partly answer these questions in the next part of the discussion according to the 

experimental work conducted during this thesis. We start by discussing the potential to combine 

information obtained on soil sublayers to predict parameters of the 0–50 cm soil layer.  
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3.2. Additivity of Rock-Eval® parameters 

3.2.1. Predicting Rock-Eval® parameters of a soil layer based on its sublayers  

The central question of Chapter 2 regarding the comparability of Rock-Eval® parameters of 

soil samples from different depths is a practical one, as it could support harmonization of 

available data. Using samples from 10 plots, located at 8 forest sites in France, we conducted a 

soil mixing experiment. We discuss two methods for calculating Rock-Eval® parameters of a 

soil profile (0–50 cm) by combining Rock-Eval® results recorded on its sublayers (0–30 and 

30–50 cm). We show that it is possible to infer the Rock-Eval® characterisation of a soil layer 

from sublayer characteristics and we provide guidelines regarding the most appropriate 

calculation procedure according to the type of Rock-Eval® parameter. We draw attention to a 

mineral effect hindering the prediction of hydrocarbon-related Rock-Eval® parameters in soils 

with pronounced clay content difference between the two soil sublayers. 

3.2.1.1. Calculating acquisition and classic Rock-Eval® parameters of a soil layer 

Overall, Rock-Eval® acquisition parameters such as thermogram peak areas (S1, S2, S3, etc.), 

and classic Rock-Eval® parameters such as total organic carbon (TOC), pyrolyzed carbon (PC), 

oxygen index (OIRE6), and hydrogen index (HI) were linearly additive for the temperate forest 

samples examined here. A weighted mean calculation was the simplest and most efficient way 

of predicting these parameters. Although this calculation method is easy and efficient, we 

underline the importance of the correct mathematical solution of the weighted mean equation 

when it comes to parameters representing ratios (e.g., HI, OIRE6; Perdue and Koprivnjak, 2007) 

or more complex terms such as logarithms (I-index). 

Although this calculation method resulted in empirically correct values for temperature 

parameters as well (e.g., T70HC_PYR, T90HC_PYR, T30CO2_PYR, T50 CO2_PYR) for the samples used 

here we discuss below why this method is mathematically wrong and we suggest an improved 

approach for predicting temperature parameters. 
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3.2.1.2. Calculating Rock-Eval® temperature parameters of a soil layer 

The main difference between acquisition parameters and temperature parameters is that the 

latter do not represent surface areas (like S1, S2, etc.) but instead they mark a limit on the x-

axis of a thermogram (time axis), defining the moment (translated into the corresponding 

temperature) when a specific proportion of a thermogram surface area was reached (e.g., 

T70HC_PYR is the temperature at which 70% of the total HC_PYR was released). The issue 

created due to this particular definition is that the arithmetic weighted mean calculation method 

cannot take into account the relative contribution of each endmember to the final signal of the 

mixture. For the example of a mixture composed by 50% of a thermally labile carbon-rich 

sample (endmember A) and 50% of a thermally stable carbon-poor sample (endmember B), the 

weighted mean calculation will consider the T70HC_PYR as a simple average of the two samples. 

However, in reality the signal of this mixture will be mainly controlled by endmember A since 

this will release more gas, forming the majority of the detected signal. The reconstructed signal 

calculation has the advantage of accounting for the contribution of each endmember since it 

takes into consideration the intensity of their respective signals. Hence we recommend 

calculating temperature parameters based on the reconstructed Rock-Eval® thermograms. For 

the rest of the parameters mentioned in the last section (acquisition parameters and classic 

Rock-Eval® parameters) the reconstructed thermogram method is equivalent to the simple 

weighted mean calculation. 

3.2.1.3. Three ways of calculating persistent SOC proportion of a soil layer based on 

its sublayer characteristics 

Naturally, we were interested in the effect of the different calculation methods on the 

predictions of persistent SOC proportion of the complete 0–50 cm soil layer. We investigated 

three different ways of obtaining PARTYSOC predictions. First, by calculating the persistent 

SOC proportion of soil mixtures as a weighted average of PARTYSOC predictions obtained for 

the two sublayers. Second, by running the PARTYSOC model, using calculated Rock-Eval® 

parameters as predictors, obtained with the simple weighted mean method. Third, by running 

the PARTYSOC model using mostly the same weighted-mean-calculated predictors but 

replacing temperature parameters with ones obtained with the reconstructed-thermogram 

method. All three ways of calculating the expected persistent SOC proportion of soil mixtures 

using the PARTYSOC model performed well.  
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However, the most appropriate method was the second one, based on weighted-mean-calculated 

predictors. The observation that persistent SOC proportion is a parameter we can predict is 

particularly encouraging since it indicates the possibility to incorporate existing samples 

(potentially collected at different depths) to the PARTYSOC model. Regarding the expansion of 

the model (currently 0–30 cm) to deeper soils layers, the absolute values of persistent SOC 

predictions will have to be validated first.  

3.2.1.4. Interference of clays introduced through soil mixing  

The simple picture described above, validating our initial hypothesis, that classic Rock-Eval® 

parameters will be independent of the sampling strategy for temperate forest soils was slightly 

different at two out of the ten investigated plots. A disagreement (prediction error) was observed 

between calculated and observed hydrocarbon-signal(HC_PYR)-derived parameters at these 

plots. The prediction error was strongly correlated to the difference in clay content between the 

two sublayers (ΔCLAY). We obtained a preliminary threshold value of ΔCLAY=20% below which 

the prediction error was insignificant. We explain this effect as retention of hydrocarbon 

effluents on clay mineral surfaces during pyrolysis as this is a common observation in literature 

(Espitalié et al., 1980; Zegouagh et al., 2004; Czirbus et al., 2016; Rahman et al., 2017). At 

these plots, none of the two calculation methods could account for the mineral effect. 

Qualitatively, we could observe that introducing clay-rich subsoil in the mixture caused a 

decrease in S2 and HI while it increased HC_PYR-derived temperature parameters (e.g., 

T90HC_PYR). Studies attempting to quantify the mineral effect of clays using the acid hydrolysis 

method propose values in the order of magnitude of 18-fold increase in S2 in the absence of 

minerals (Zegouagh et al., 2004). Although qualitatively interesting, these quantitative results 

are questionable due to the important loss of organic matter caused by this method (e.g., 17% 

in Zegouagh et al., 2004), that is believed to be preferential, influencing the bulk composition 

of SOM (Rumpel et al., 2006; Spaccini et al., 2013). 

It would be helpful to have correction factors able to account for the changes in the hydrocarbon 

signal caused by specific textural differences. However, it is important to differentiate between 

the effect caused by textural differences and the influence of carbon content and clay 

mineralogy. This objective was not possible to achieve in this study, since the clay effect was 

an issue only in two plots from a single site.  
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A more extensive sample set including samples with similar texture and carbon content but 

different mineralogy (or reversely but most importantly changing only one variable at a time) 

would be necessary to assess the real effect of clay texture or clay mineralogy.  

Finally, this first estimate of a mild mineral effect observed in natural soils due to clays is only 

characteristic of temperate soils. In different pedoclimates (e.g., tropical, Mediterranean) the 

linearity and comparability of Rock-Eval® parameters could be influenced by other minerals 

such as reactive clays and iron oxides (shown to interfere strongly with pyrolysis effluents; 

Huizinga et al., 1987; Ma et al., 2018). 

3.2.1.5. Importance of equivalent soil mass  

One aspect very shortly discussed in Chapter 2 is the role of equivalent soil mass in the 

calculation of Rock-Eval® parameters based on sublayers. The particularity of our experiment 

compared to real conditions of combining soil sublayer characteristics to infer information on 

a soil layer, is that we control and know precisely the mass of each endmember in each mixture. 

In reality, when averaging existing data, a correction will have to be undertaken to account for 

the soil mass contribution of each soil layer to the final “mixture”. Thus, information on the 

fine fraction content and the density difference between layers will be required when calculating 

stocks of elements (Ellert and Bettany, 1995). 

3.2.1.6. Uncertainty of Rock-Eval® parameters and error propagation 

A general drawback of soil studies using Rock-Eval® is the lack of information regarding the 

uncertainty associated with the different parameters. However, a statistical analysis of a large 

soil sample data set, would probably lead to a conservative estimation of uncertainty due to the 

inherent heterogeneity of the soil material. Especially in this study, we can imagine that a 

propagation of the analytical error could have been insightful since it would allow to compare 

the prediction error to the propagated uncertainty, especially for more complex parameters 

calculated on multiple measurements (e.g., HI, PC/TOC, I-index). 
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3.3. Opening the black-box of Rock-Eval®; studying the effect of organo-

mineral interactions in model systems 

In Chapter 3 we attempt to progress towards a more mechanistic understanding of the link 

between in situ biogeochemical SOC stability and thermal stability assessed with the Rock-

Eval® method. Based on a simple experimental set-up combining Rock-Eval® thermal analysis 

and a batch sorption experiment, we investigate the role of adsorption as a potential protection 

mechanism during thermal degradation of SOM. For simplification and reproducibility 

purposes we used pure biochemical compounds from multiple groups (lignin, humic acid, 

proteins, carbohydrates, lipids), pure minerals (kaolinite, montmorillonite, goethite) and three 

naturally occurring SOC-depleted soil mineral matrices. We prepared organo-mineral mixtures 

following a simple batch sorption protocol to study the resulting changes on thermal stability 

and Rock-Eval® parameters. As an intermediate step, we evaluated the effect of the presence 

of minerals in dry simple mixtures.  

3.3.1. Detection of pure compounds using Rock-Eval® 

Working with pure compounds revealed an important drawback of the Rock-Eval® method, 

namely a deficiency in carbon yield of oxygenated compounds (e.g., starch, cellulose, palmitic 

acid). We argue that this deficiency is due to the functioning principle of the FID as shown 

before (Dewar, 1961; Dietz, 1967; Maduskar et al., 2015), and we present evidence obtained 

using an experimental configuration of Rock-Eval® supporting that the missing carbon yield is 

associated to the pyrolysis step. This major issue is currently neglected in the only case we 

could find in literature that uses this technique to analyse pure compounds (Carrie et al., 2012). 

Very importantly, although this failure is crucial for our study it does not question the use of 

Rock-Eval® for soils as particulate organic matter carbon yield is >95%.  

Ideally, to continue using Rock-Eval® for analysis of pure compounds, correction factors 

should be calculated to account for the missing yield (Dietz, 1967). Yet, valuable information 

such as the shape of the thermograms and the calculation of temperature parameters would still 

be lost. 
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3.3.2. Aspects defining the success of batch sorption experiments  

Keeping only compounds with sufficiently good detection (>75%) we attempted to produce 

organo-mineral associations through a batch sorption experiment between each of three organic 

compounds (bovine serum albumin, cysteine, humic acid) and each of six minerals (kaolinite, 

montmorillonite, goethite, three natural mineral matrices). Our effort was successful for one of 

the proteins, bovine serum albumin, and all minerals (1>TOC>2 % wt.). In Chapter 3 we discuss 

in detail possible explanations for this outcome, and for the fact that for the other two 

compounds used here (humic acid and cysteine) the adsorption efficiency was very low 

(TOC<1% wt.). Below we list the main criteria which were not always ideal in this first attempt 

to form organo-mineral associations. 

3.3.2.1. Selection of materials 

The main requirement to create adsorption between organic matter and minerals is the 

formation of bonds depending on the attraction or repulsion forces and the physical barriers of 

the system. When selecting materials to use in a batch sorption experiment biochemicals with 

charged functional groups and smaller-sized molecules are better candidates. At the same time, 

minerals with high specific surface area and cation exchange capacity should be more prone to 

interact with organic compounds (Kleber et al., 2007; Sposito, 2008).  

3.3.2.2. Solution pH and background electrolyte  

Probably even more important than the selection of materials is the solution pH and the use of 

a background electrolyte when necessary, since they will define the type of bonds that can be 

created. According to the isoelectric point (IEP) of an organic compound and the synonymous 

point of zero charge (PZC) of a mineral, an ideal solution pH range should exist for a given pair 

of compounds in which one of the compounds is positively and the other one negatively 

charged. Setting the solution pH in this range would result in increased electrostatic attraction. 

In cases where this pH range cannot be reached, an alternative is to set the pH solution at high 

values, above the IEP of the mineral compound and the PZC of the mineral, causing them both 

to be negatively charged. Then, using a background electrolyte solution is recommended since 

it can favour formation of Ca2+ cation bridges. Although this is a tedious and time consuming 

step adjusting pH is crucial for the success of adsorption formation.  
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3.3.2.3. Solubility  

A basic criterion but noteworthy due to its relevance to humic acid is the solubility of organic 

compounds in water-based solutions. For this specific example, although humic acid dissolves 

at pH>10 (Brigante et al., 2007) studies report maxima of adsorption formation at pH=4 (Chen 

et al., 2017). Moreover, the use of a background electrolyte is known to have a flocculating 

effect on humic acid even at very low Ca2+ concentrations (Brigante et al., 2007). Yet, 

references found in literature suggest using CaCl2 to favour bridging the repulsive (negative) 

charges between humic acid and mineral surfaces (Feng et al., 2005). These contradictory 

results suggest that it might be necessary to measure and report dissolution efficiency or 

alternatively, use control treatments to ensure that incomplete dissolution or flocculation is not 

contributing to the final concentration of humic acid.  

3.3.3. A strong mineral effect on the Rock-Eval® signal 

As organo-mineral associations were successfully formed for bovine serum albumin, this 

compound was further considered to study the effect of adsorption on the Rock-Eval® signal. 

To distinguish the effect of adsorption from the effect of the presence of minerals in the 

pyrolysis oven we prepared and analysed simple dry mixtures with the same composition in 

terms of materials and carbon content as the produced adsorbed mixtures. We observed that 

goethite had the strongest influence on the Rock-Eval® signal, oxidizing pyrolysis effluents (in 

agreement with literature; Huizinga et al., 1987; Ma et al., 2018) and causing a carbon-yield 

deficit in the adsorbed mixture. Moreover, montmorillonite had a strong influence particularly 

on the hydrocarbon signal. The observed retention of hydrocarbons is a known effect of clay 

minerals, partially attributed to their large specific surface area (Spiro, 1991; Espitalié et al., 

1984; Ma et al., 2018; Hayakawa et al., 2018). Soil mineral matrices had similar effects on the 

Rock-Eval® signal although less pronounced.  

3.3.4. Inferring the effect of adsorption on thermal stability   

Subtracting effect of the mineral presence is necessary to infer the effect of adsorption. Contrary 

to the effect of the mere presence of minerals, the adsorption had an unexpectedly low impact 

on the Rock-Eval®. We attribute this observation to the large size of the bovine serum albumin 

molecule. 
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Assuming that only specific sites of this large and complex protein are capable of building 

bonds with each mineral surface, this would mean that although a small part of the molecule is 

adsorbed, and might require more energy in order to be thermally degraded, the remaining 

larger part of the molecule can still react and be pyrolyzed or oxidized without delay. Testing 

this hypothesis would require repeating this experiment and successfully forming associations 

between smaller organic molecules and minerals. 

3.3.5. The importance of differences in C content  

Studies show that the less carbon there is in a sample the stronger the influence of the minerals 

becomes (Dahl et al., 2004; Zegouagh et al., 2004). Here although we adjusted the carbon 

content of dry mixtures to match the one of adsorbed mixtures to infer the effect of adsorption, 

the differences between the pairs are still important (e.g., bovine serum albumin-kaolinite 

mixture contains twice the amount of carbon present in the bovine serum albumin-goethite 

mixture). Moreover, the observed increase on thermal parameters of the pyrolysis step and 

persistent SOC proportion in adsorbed and dry mixtures is inversely proportional to the carbon 

content of the mixtures. This leads us to believe that for samples with low carbon concentrations 

(TOC<2 % wt.) even small differences (such as 1% wt.) might be important. 

An interesting perspective would be to homogenize carbon content for all mixtures. At the 

moment, the easiest way to achieve this is to make the availability of carbon the limiting factor 

instead of the capacity of the system to support adsorption formation. In essence, that would 

require setting the initial carbon content in all solutions equal to the lowest adsorbed value 

observed (here 1% wt. for goethite). On the one hand it might be more difficult to achieve this 

objective in practice than in theory, as change in initial availability of organic compound will 

influence the system balance. Additionally, aiming for lower carbon values seems 

counterintuitive since mixture homogenization and detection issues become more important. 

On the other hand, in the optimistic case that optimal adsorption conditions can be reached 

through adaptations of the experimental protocol (mainly pH regulation) this might lead to 

overall higher final carbon concentrations in the produced organo-mineral associations.  
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3.3.6. Complementary methods 

The interest of successfully produced organo-mineral associations extends further than the 

information that can be obtained with the Rock-Eval® method. Complementary methods could 

provide additional information at a smaller scale and help us understand better the formation of 

organo-mineral associations. Some examples include differential scanning calorimetry (DCS) 

to evaluate the change in energetic balance due to the existence of organo-mineral associations, 

precise elemental analysis of mixtures (e.g., C, H, N, S, and O for cysteine) with and without 

adsorption to detect potential stoichiometric shifts caused during the adsorption experiment. 

Additionally, imaging and chemical mapping techniques such as scanning and transmission 

electron microscopy could provide an idea of the spatial distribution of organic matter in the 

different mixtures.  

3.3.7. Towards quantification 

For the preliminary qualitative information obtained here to be useful for providing threshold 

values and guidelines and even for their incorporation into modelling approaches it is necessary 

to progress towards quantitative estimations and associated uncertainty. Regarding the limits of 

the Rock-Eval® method and its application in soil environments this study does not raise any 

red flags, since the materials and conditions of this experiment are far from any natural system.  
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4. Conclusions and perspectives 

 

The work presented in this thesis relies on an enormous amount of work conducted over the 

past decades by soil scientists, agronomists and technicians involved in the creation of the long-

term field trials included in the LTBF, the AIAL and the SOEREPRO networks. Maintenance 

of these experimental sites, sample collection and analysis amounting to countless hours allow 

me to present this work today. Moreover, the work of my team of supervisors, advancing our 

understanding and quantification of SOC persistence for longer than a decade and creating the 

machine-learning model offered me a great and generous opportunity to use it and test it 

directly. Finally, the important parametrization work conducted on the AMG model in the last 

two decades and the access to the data necessary to run SOC simulations equipped me with a 

tool of immense value. 

We present several advancements regarding the main objectives of this thesis— “Understand 

and use the estimation of soil organic carbon persistence by Rock-Eval® thermal analysis”.  

 

General conclusions  

Our results show that the PARTYSOC model, a thermal-analysis-based machine-learning 

approach, can provide accurate information on SOC persistence in unknown samples. We 

highlight the ability of this approach to account for legacy effects of land-use history and we 

show how the information it provides can be used to initialize SOC simulations and improve 

their precision. The value of this thermal-analysis-based approach is clear, not only because of 

its predictive power but also due to practical reasons such as quick analysis time and low cost. 

The current need to estimate SOC persistence fulfilled by this approach supports the expansion 

of this method to a larger scale. Moreover, one of our main conclusions concerns the value of 

AMG, the simple SOC dynamics model used in this work. Due to the optimal precision of 

simulations provided with this model, when correctly initialized, we recommend that it should 

be used as an operational predictive tool for developing appropriate land management practices.  
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We believe that the simplicity and the efficiency of the AMG model is an important advantage 

over more recent and more complex SOC models that are very challenging to constrain and 

evaluate. The proposed approach combining simple SOC models with experimentally defined 

kinetic pools should result in more accurate predictions of SOC stock evolution on a national 

and even continental scale and it could support the implementation of efficient climate change 

mitigation policies. 

 

In the context of applying this method on a larger scale we considered the question of applying 

this thermal analysis technique on soil samples already available but obtained at different depths 

as is often the case across different soil monitoring projects. We show that it is possible to infer 

the Rock-Eval® characterisation (including SOC persistence) of a soil layer from sublayer 

characteristics as the parameters obtained with this method are linearly additive for most 

temperate forest soils tested here. We underline that the calculation method has to be adapted 

to the type of parameter and we provide guidelines regarding the most appropriate procedures. 

We draw attention to a mineral effect hindering the prediction of hydrocarbon-related Rock-

Eval® parameters in soils with pronounced clay content difference between soil sublayers 

(ΔCLAY>20 wt.%). Our work can be considered as an empirical guideline paving the way 

towards harmonization of data obtained with this technique. 

 

Finally, in an effort to open the black-box of Rock-Eval® we attempted to gain a better 

understanding regarding the interactions between organic matter and minerals influencing the 

Rock-Eval® signal and the associated estimations of thermal stability. We used a model system 

composed of pure organics and minerals as well as natural particulate organic matter and soil 

matrices. We provide insights regarding the deficiency of the Rock-Eval® method when used 

to analyse oxygenated compounds and we call for revision of former studies using similar 

compounds and ignoring this effect. We underline the strong effect of pure minerals such as 

goethite and montmorillonite on the Rock-Eval® signal, however this observation is mostly 

irrelevant to the soil environment due to the big differences in the nature of the used materials 

and the occurring conditions. The analysis of particulate organic matter confirms the ability of 

Rock-Eval® to detect SOM with high precision.  
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A slight increase in predictions of persistent SOC proportion is observed when adsorbed 

organo-mineral mixtures are analysed instead of simple dry mixtures of the same composition. 

However, there is no consistent trend amongst thermal parameters leading to the conclusion 

that the effect of the adsorption produced in this study on the Rock-Eval® signal is not 

significant. Moreover, this observation is overshadowed by the strong influence of the mineral 

matrix and the strong differences in carbon content across mixtures. We discuss possible 

options for favouring adsorption formation and we suggest that more work is necessary to 

decipher the link between thermal and biogeochemical stability.   

 

General perspectives 

An immediate perspective regarding the use of the PARTYSOC model on a national scale is its 

application on a wider sample set. An effort already underway is the use of PARTYSOC on 

samples from the RMQS network (Réseau de Mesures de la Qualité des Sols) comprising a 

total of 2240 sites, evenly distributed all over metropolitan France and Corsica according to a 

16 km2 grid. This would offer the opportunity of generating a map of SOC persistence that 

could contribute to the improvement of SOC stock evolution simulations at a national scale, 

with a clear significance as a decision making support tool (thesis project of Amicie Delahaie).  

Moreover, a high priority is to include more sites in the learning set of the PARTYSOC model 

to increase its robustness and its genericity. Based on the good agreement between PARTYSOC 

predictions of SOC persistence and AMG-post-optimized pool partitioning observed in this 

study, we suggest that most agricultural LTEs with accurate AMG simulations could be used 

as reference sites for a future version of the PARTYSOC model. This could improve the precision 

of the PARTYSOC model in temperate pedoclimatic conditions and it could eventually lift an 

important technical limitation to its geographical expansion. 

Before the continental or worldwide implementation of PARTYSOC in SOC modelling studies, 

its performance will have to be validated on a wider range of pedoclimates. Moreover, similar 

to this study, its potential to improve the precision of simulations will have to be demonstrated 

for the new application areas. To continue using the AMG model for these evaluation steps, 

LTEs from a variety of geographical locations and long-term monitoring data (climate, land 

cover, C inputs, management practices, soil characteristics) will be required to run simulations.  
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Another possibility would be to take advantage of literature on modelling work already 

conducted with other multi-compartmental models (e.g., Century, RothC) and test the potential 

of PARTYSOC to improve their simulations by initializing their “inert” or “passive” SOC pools.  

The long-term the future of this approach could look like a constant adapting-expanding-and-

improving cycle to make the most out of what SOC characterization has to offer. Eventually, 

other parameters (e.g., soil pH) could be added to the calibration set of the PARTYSOC model 

and its structure could evolve by testing other machine-learning algorithms.  

 

Our work on linearity of Rock-Eval® parameters suggests that it is possible to infer the 

characterization of a soil layer based on its composing sublayers. Although this observation is 

in favour of the implementation of the PARTYSOC model on existing samples, it is important 

not to surpass the pedoclimatic limits for which this is true.  

We suggest conducting similar but more extensive experiments covering a greater variability 

of soils with vertical textural and mineralogical heterogeneity. Better defined thresholds of 

mineral effect in natural soils could be helpful for predicting the limits of the method.  

An interesting perspective related generally to the Rock Eval® method would be to estimate 

the uncertainty associated with each parameter. Similar indications exist but only for standard 

materials. Considering the strong heterogeneity of soil material, an estimation of the error of 

corresponding to different soil types or soil fractions would seem useful. This would allow 

uncertainty propagation in calculations such as the one presented in this work but also in others 

cases where Rock-Eval® acquisition parameters are used to infer more elaborate terms. 

 

Regarding our understanding of the processes reflected in the Rock-Eval® signal that make it 

a suitable proxy for biogeochemical stability more work is necessary.  

An important drawback of the results presented in this study that should be improved 

immediately is the variability in carbon content across mixtures. However, in case this 

perspective proves too challenging, an interesting approach would be to investigate the effect 

of carbon concentration on the intensity of the mineral effect, for different organic and mineral 

compounds.  
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More effort should be devoted to create stronger associations and further examine their 

influence on thermal stability. The solution pH should always be closely monitored and 

controlled since it can impact the type of bonds that can be generated. The influence of the 

molecular size of the used compounds on the efficiency of adsorption formation is an interesting 

aspect to be examined. 

Although it seems trivial that complete dissolution of compounds in a stock solution should be 

confirmed, either by direct measurement or by use of a control, this is not always taken into 

account by batch sorption studies found in literature. Comparability of results obtained with 

these experiments would benefit from more standardized and commonly accepted procedures.  

Also, other mechanisms at interplay that might influence the link between thermal and 

biogeochemical stability such as recalcitrance and the balance between energy gain and 

activation energy should also be studied. Use of complementary methods such as differential 

scanning calorimetry and transmission electron microscopy might provide valuable insights to 

help us understand better the formation of organo-mineral associations.  

 

 

 

 

 

 

 

As a closing remark, it would be misleading at best to consider that soils are the only solution, 

or that they are an adequate solution on their own, for compensating global greenhouse gas 

emissions and fighting climate change. However, climate-smart management of global soils 

remains a practical win-win option that can significantly contribute to avoiding additional 

emissions and ensuring food security. It can be an ethical and socially responsible solution if 

we allow it.  
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Supplementary material to Chapter 1 

A robust initialization method for accurate soil organic carbon 

simulations 

 

 

Supplementary Material Figure 1: Location of the nine French long-term agricultural experiments used 

in this study. 

 

 

Supplementary Material Figure 2: Schematic representation of the two stages and output of the Rock-

Eval® thermal analysis method. The sequential pyrolysis and oxidation produce five thermograms, from 

which thermal parameters are calculated. The temperature ramps shown here represent the analysis 

routine used in this study. The grey thermogram areas are used for the calculation of the organic carbon 

content and the white areas for the mineral carbon content. 
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Supplementary Material Figure 3: Conceptual schematic diagram of the AMG model of SOC dynamics 

(modified from Levavasseur et al., 2020 and Duparque et al., 2013), showing SOC pools, fluxes and 

transport rates. A fraction (1-h) of fresh organic matter (m) is yearly mineralized and released in the 

atmosphere, whereas a fraction (h) is incorporated into the active SOC pool (CA). The coefficient of 

mineralization (k) controls carbon discharge from CA into the atmosphere. There is no exchange with 

the stable SOC pool (CS). 

 

 

 

 

Supplementary Material Figure 4: Centennially stable SOC content predicted by the Rock-Eval®-based 

PARTYSOC machine-learning model compared to the AMG ex-post optimized stable SOC content. 

Points represent site-mean values based on initial topsoil samples. Statistics refer to the linear regression 

between x and y values (blue solid line). Horizontal error bars show the uncertainty associated with the 

AMG optimal stable SOC content, calculated as the standard deviation of treatment-wise optimized 

stable SOC content. Vertical error bars represent the prediction error of the centennially stable SOC 

content values, calculated from the standard deviation of the PARTYSOC model predictions on initial 

topsoil samples. 
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The apparent decrease in centennially stable SOC content for the site of Kerbernez could be 

explained by changes in soil bulk density, caused by the change in land-use (from grassland to 

cropland) in 1958. The subsequent soil compaction may have led to inclusion of deeper soil 

during standard sampling of the 0–25cm layer, causing a false effect of SOC content decrease. 

Lack of regular soil bulk density measurements during the experiment (1978–2005) hinders 

explicit analysis of this hypothesis. 

 

Supplementary Material Figure 5: Centennially stable SOC content predicted by PARTYSOC as a 

function of time of the experiment. The points on the plot represent site mean values for the shown dates 

and the vertical error bars represent the standard deviation of the sample set used for averaging.   
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Supplementary Material Figure 6: AMG simulations of observed SOC dynamics for the 32 treatments 

used in this study. The black points represent observed SOC stocks in topsoils, the vertical error bars 

indicate the confidence interval of the measurements, and each coloured line corresponds to a simulation 

resulting from a different initialization method, namely initial pool partitioning according to: 

PARTYSOC-based CS/C0 initialization in blue, AMG default CS/C0 in cyan, and AMG ex-post optimized 

CS/C0 in magenta. Note the different y-axis range across sites. The treatment names and their 

corresponding sites are presented in Supplementary Material Table 1.   
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Supplementary Material Table 1: Information on site location, long-term land cover history, climate and 

soil characteristics. Note that the arable land cover class may include temporary grassland in crop 

rotations, while the grassland land cover class does not include cultivated crops. 

∗ French “Carte de l’Etat Major”, IGN 
† aerial photography, IGN 

‡ Treatments from which samples were available for Rock-Eval® analysis are in bold 

§ Mean annual temperature 
|| Mean annual precipitation-potential evapotranspiration 

¶ LTEs for which changes in bulk density with time were measured and considered for the calculation of SOC stocks are in bold 

 

  

 Auzeville Boigneville Colmar Doazit Feucherolles 
Grignon-

Folleville 
Kerbernez Mant Tartas 

Latitude ° N 43.527479 48.327843 48.059271 43.700824 48.896501 48.841722 47.946698 43.5917 43.865475 

Longitude ° 

E 
1.506059 2.382406 7.328160 −0.629406 1.972125 1.936675 −4.127084 −0.5028 −0.729405 

∗Historical 

land cover 

1820–1866 

arable land arable land 
arable 

land 

arable 

land 
arable land arable land 

arable 

land 

arable 

land 
grassland 

†Historical 

land cover 

1950–1965 

arable land arable land 
arable 

land 

arable 

land 
arable land arable land grassland 

arable 

land 

arable 

land 

‡Treatment 

AUZ1_P0C0 

AUZ1_P0C1 

AUZ1_P4C0 

AUZ1_P4C1 

CM1_L0 

CM1_L2 

CM2_L0 

CM2_L2 

CM3_L0 

CM3_L2 

CM4_L0 

CM4_L2 

CM5_L0 

CM5_L2 

CM6_L0 

CM6_L2 

TEM+N 
DOA2_K0 

DOA2_K3E 

QU_TEM-N 

QU_TEM+N 

FOL_S2P0K0 

FOL_S2P2K2 

KERB_A 

KERB_B 

KERB_C 

KERB_F 

KERB_G 

MAN_P0 

MAN_P3 

TART_K0 

TART_K2 

§MAT (°C) 
13.5 10.9 11.2 13.1 10.8 11.0 11.9 13.1 13.4 

||MAP-PET 

(mm) 
−290 −87 −222 384 5 −69 489 364 383 

¶Bulk 

density (g ∙ 

cm−3) 

1.40 1.44 1.30 1.40 1.38 1.40 1.30 1.40 1.40 

Considered 

soil mass 

(Mg ha−1) 

4200 4103 3640 3500 3864 4200 3023 3920 3920 

Clay 

(g kg soil −1) 
275 248 180 72 170 244 163 94 43 

Silt 

(g kg soil −1) 
339 672 628 403 779 601 391 554 166 

Sand 

(g kg soil −1) 
372 80 76 525 51 97 446 349 791 

CaCO3 

(g kg soil −1) 
15 0 115 0 0 58 0 3 0 

C:N ratio 8.0 9.0 9.2 10.6 9.3 9.8 11.4 9.4 13.0 

pH 7.6 6.8 8.3 6.4 6.9 8.1 5.7 7.6 6.0 

Reference 
(Colomb et 

al., 2007) 

(Dimassi et 

al., 2014) 

(Obriot, 

2016) 

(Lubet et 

al., 1993) 

(Noirot-

Cosson et 

al., 2016) 

(Barré et al., 

2008) 

(Vertès et 

al., 2007) 

(Messiga 

et al., 

2010) 

(Morel et 

al., 2014) 
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Supplementary Material Table 2:  Measurement error and variation of initial SOC stock values, and 

variation of initial centennially stable SOC proportion amongst sites. Left part: Comparison of the 

variation (standard deviation) and uncertainty (confidence interval) associated with initial SOC stock 

measurements. Right part: variation of initial centennially stable SOC proportions predicted by the 

PARTYSOC machine-learning model for each site. 

 

 

 

 

  

Site Initial SOC stock (tC∙ha−1) 
Initial centennially stable SOC 

proportion  predicted using the 
PARTYSOCv2.0EU statistical model 

 Mean 
Standard 
deviation 

Confidence 
interval 

Mean 
Standard 
deviation 

Auzeville 34.68 2.66 13.30 0.74 0.01 

Boigneville 42.40 0.10 2.30 0.68 0.05 

Colmar 45.20 - 6.74 0.64 0.02 

Doazit 26.35 1.25 5.38 0.57 0.01 

Grignon-
Folleville 

55.85 2.15 3.93 0.64 0.04 

Feucherolles 43.80 0.42 3.49 0.62 0.02 

Kerbernez 81.98 1.29 24.01 0.44 0.02 

Mant 38.75 0.35 17.55 0.52 0.05 

Tartas 45.25 0.15 13.14 0.44 0.05 
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Supplementary material to Chapter 2 

Predicting Rock-Eval® thermal analysis parameters of a soil 

layer based on samples from its sublayers; an experimental 

study on forest soils.  

 

 

 

 

 

 

Supplementary Figure 1: Schematic representation of the Rock-Eval® thermal analysis process. 

Pyrolysis is followed by oxidation, resulting in 3 and 2 thermograms respectively. The grey areas 

correspond to detection of carbon effluents of organic origin. For the calculation of temperature 

parameters, the integration is restricted to temperature limits of 560 °C for pyrolysis and 611 °C for 

oxidation to separate effluents emitted from an organic source from those caused by thermal 

decomposition of carbonates.  
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 Supplementary Figure 2: Example of recorded and reconstructed HC_PYR thermograms of a plot with 

a heterogeneous clay content profile (Parroy) and a plot with little change of clay content with depth 

(Saint-Amand). 
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Supplementary Table 1: List of abbreviations and definitions of classic and extended Rock-Eval® 

parameters that were both measured and calculated in this study. The 18 Rock-Eval® parameters used 

as predictors by the latest version of the PARTYSOC model (Cécillon et al., 2021) are indicated with an 

asterisk. The S2 parameter, typically given in mg HC ∙ g−1soil is converted to g C ∙ kg−1soil in the 

PARTYSOC model. 

 
# Rock-Eval® Parameters Definition 

1 S1 (mg HC ∙ g−1soil) Free hydrocarbons; HC_PYR thermogram area corresponding to the 200 °C isotherm 

2* S2 (mg HC ∙ g−1soil) HC_PYR thermogram area corresponding to the temperature ramp (200–650 °C) 

3 S3 (mg CO2 ∙ g−1soil) CO2_PYR thermogram area corresponding to the temperature ramp (200–400 °C) 

4 S3’ (mg CO2 ∙ g−1soil) CO2_PYR thermogram area corresponding to the temperature ramp (400–650 °C) 

5 S3CO (mg CO ∙ g−1soil) CO_PYR thermogram area corresponding to the temperature ramp (200–560 °C) 

6 S3’CO (mg CO ∙ g−1soil) CO_PYR thermogram area corresponding to the temperature ramp (560–650 °C) 

7* PC (g C ∙ kg−1soil) 

Pyrolyzed Carbon 

𝑃𝐶 =  [(𝑆1 + 𝑆2) × 0.83] + [𝑆3 ×
12

44
] + [(𝑆3𝐶𝑂 +

𝑆3′𝐶𝑂

2
) ×

12

28
] 

8* TOC (g C ∙ kg−1soil) 

Total Organic Carbon 

𝑇𝑂𝐶 =  𝑃𝐶 + [𝑆4𝐶𝑂 ×
12

28
] + [𝑆4𝐶𝑂2 ×

12

44
] 

9 MinC (g C ∙ kg−1soil) 

Mineral Carbon 

𝑀𝑖𝑛𝐶 =  𝑃𝐶 + [𝑆4𝐶𝑂 ×
12

28
] + [𝑆4𝐶𝑂2 ×

12

44
] 

10* T70HC_PYR (°C) Temperature at which 70% of HC of organic origin was pyrolyzed 

11* T90HC_PYR (°C) __________________  90% _______________________________ 

12* T30CO2_PYR (°C) Temperature at which 30% of CO2 of organic origin was pyrolyzed 

13* T50CO2_PYR (°C) __________________ 50% _______________________________ 

14* T70CO2_PYR (°C) __________________ 70% _______________________________ 

15* T90CO2_PYR (°C) __________________ 90% _______________________________ 

16* T70CO_OX (°C) Temperature at which 70% of residual CO of organic origin was oxidized 

17* T50CO2_OX (°C) Temperature at which 50% of residual CO2 of organic origin was oxidized 

18* T70CO2_OX (°C) __________________ 70% _______________________________ 

19* T90CO2_OX (°C) __________________ 90% _______________________________ 

20* Pseudo_S1 (g C ∙ kg−1soil) 
Peak area 0–200 seconds of the sum of pyrolysis thermograms 

(SUMPYR=HC_PYR+CO_PYR+CO2_PYR) 
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21* HI (mg HC ∙ g−1C) 

Hydrogen Index; amount of HC released relatively to TOC 

𝐻𝐼 =  
𝑆2 × 100

𝑇𝑂𝐶
 

22 OIRE6 (mg O2 ∙ g−1C) 

Oxygen Index; amount of O2 released relatively to TOC 

𝑂𝐼𝑅𝐸6 = 
[𝑆3 ×

32
44
] + [𝑆3𝐶𝑂 ×

16
28
]

𝑇𝑂𝐶
 

23* S2/PC 
Ratio of S2 peak area (200–1263s or 200 − 650  °𝐶, in g C ∙ kg−1soil) to Pyrolyzed 

Carbon 

24* PC/TOC Ratio of Pyrolyzed Carbon to Total Organic Carbon 

25* HI/OIRE6 Ratio of Hydrogen Index to Oxygen Index 

26 I-index 

Thermally labile hydrocarbons 

𝐼 − 𝑖𝑛𝑑𝑒𝑥 =  log10 (
𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 200 − 400 °𝐶 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 400 − 460 °𝐶
) 

27 R-index 

Refractory hydrocarbon fraction 

𝑅 − 𝑖𝑛𝑑𝑒𝑥 =
𝐻𝐶_𝑝𝑦𝑟 𝑡ℎ𝑒𝑟𝑚𝑜𝑔𝑟𝑎𝑚 𝑎𝑟𝑒𝑎 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 400 − 650 °𝐶 

𝐻𝐶_𝑝𝑦𝑟 𝑡ℎ𝑒𝑟𝑚𝑜𝑔𝑟𝑎𝑚 𝑎𝑟𝑒𝑎 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑟𝑎𝑚𝑝 
 (200 − 650  °𝐶 𝑜𝑟 200 − 1263 s) 

 

28 TLHC-index 

Thermo-labile hydrocarbon index 

𝑇𝐿𝐻𝐶 − 𝑖𝑛𝑑𝑒𝑥

=  
𝐻𝐶_𝑝𝑦𝑟 𝑡ℎ𝑒𝑟𝑚𝑜𝑔𝑟𝑎𝑚 𝑎𝑟𝑒𝑎 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 200 − 450 °𝐶

𝐻𝐶_𝑝𝑦𝑟 𝑡ℎ𝑒𝑟𝑚𝑜𝑔𝑟𝑎𝑚 𝑎𝑟𝑒𝑎 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑟𝑎𝑚𝑝 
(200 − 650  °𝐶 𝑜𝑟 200 − 1263 s)

 

29 Stable SOC proportion 
Proportion of centennially persistent soil organic carbon, predicted with the 

PARTYSOCv2.0EU model 
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Supplementary Table 2: Statistical evaluation of the two calculation methods (see Sections 3.1 and 3.2). 

Rows show calculated metrics for each method averaged for all plots. The last row provides the median 

value of the R2 and NRMSE statistical parameters.  

 

# Parameter 
Acquisition parameters weighted mean Reconstructed thermograms calculation 

R2 p-value BIAS RMSE NRMSE R2 p-value BIAS RMSE NRMSE 

1 S1 0.22 0.00061 0.01 0.05 40.16 

 

2 S2 1.00 3.95E-60 0.12 0.38 1.51 

3 S3 1.00 4.88E-72 0.00 0.14 0.88 

4 S3' 0.98 4.12E-41 -0.13 0.52 3.95 

5 S3CO 0.99 7.38E-56 -0.03 0.08 2.11 

6 S3'CO 0.94 6.44E-31 -0.04 0.14 6.28 

7 PC 1.00 4.13E-65 0.07 0.30 1.11 

8 TOC 1.00 7.43E-68 -0.47 0.86 1.14 

9 MinC 0.99 2.11E-49 -0.03 0.08 2.24 

10 T70HC_PYR 0.80 3.63E-18 -1.46 3.12 12 0.75 5.50E-16 -2.22 3.57 13.73 

11 T90HC_PYR 0.91 4.88E-27 1.66 3.87 8.79 0.78 1.94E-17 -3.65 6.21 14.11 

12 T30CO2_PYR 0.85 4.36E-21 -0.11 2.64 8.53 0.87 1.25E-22 -1.97 2.99 9.66 

13 T50CO2_PYR 0.85 9.82E-22 0.83 3.81 8.86 0.88 2.25E-23 -2.03 3.71 8.62 

14 T70CO2_PYR 0.86 2.04E-22 1.02 4.28 8.74 0.89 5.89E-25 -1.44 3.70 7.56 

15 T90CO2_PYR 0.74 1.32E-15 0.43 4.73 12.12 0.76 1.81E-16 -0.90 4.55 11.65 

16 T70CO_OX 0.83 7.29E-20 0.59 16.31 10.95 0.77 4.33E-17 -6.60 19.57 13.13 

17 T50CO2_OX 0.93 6.63E-30 4.30 6.27 11.2 0.93 1.06E-29 -1.69 3.98 7.1 

18 T70CO2_OX 0.96 1.11E-34 2.72 5.55 6.68 0.95 4.48E-32 -3.66 6.25 7.53 

19 T90CO2_OX 0.93 3.33E-29 -0.25 5.40 7.1 0.93 1.14E-28 -4.04 6.79 8.94 

20 Pseudo S1 0.94 2.71E-31 0.01 0.05 9.18 

 

21 HI 0.90 2.02E-25 17.82 26.56 9.8 

22 OIRE6 0.94 4.73E-31 3.33 8.23 5.56 

23 S2/PC 0.88 1.51E-23 0.02 0.04 10.22 

24 PC/TOC 0.85 4.29E-21 0.01 0.02 12.32 

25 HI/OIRE6 0.95 1.06E-32 0.07 0.12 5.95 

26 I-index 0.84 1.28E-20 0.15 0.18 58.91 

27 R-index 0.80 1.56E-18 -0.02 0.03 14.71 

28 
TLHC-

index 
0.76 1.08E-16 0.01 0.02 13.53 

29 

++Stable 

SOC 

proportion 

0.94 0 -0.01 0.03 7.23 0.94 0 -0.02 0.04 8.59 

 MEDIAN 0.93 0  8.74  

++Additional to the table: Results of alternative way of obtaining the stable SOC proportion on soil mixtures as weighted 

average of PARTYSOCv2.0EU predictions obtained for layer A and layer B: R2 = 0.85, p-value = 9.28E-22, BIAS = 0.03, 

RMSE = 0.06, NRMSE = 12.94% 
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Supplementary Table 3: Summary statistics of Rock-Eval® parameters measured on the 20 “natural” 

soil samples.  

 

# Parameter Minimum Maximum Mean Median 
Standard 

Deviation 

1 S1 0.01 0.3 0.05 0.04 0.06 

2 S2 0.47 26.17 5.01 3.84 5.9 

3 S3 0.68 17.8 4.99 3.25 4.31 

4 S3' 0.7 13.7 4.71 3.3 3.55 

5 S3CO 0.15 4.1 1.32 0.98 1.08 

6 S3'CO 0.2 2.3 0.84 0.7 0.6 

7 PC 0.8 29.1 6.3 4.8 6.61 

8 TOC 2.9 83.2 21.52 15.7 20.28 

9 MinC 0.03 4.09 0.4 0.16 0.88 

10 T70HC_PYR 448 482 462.3 462 6.94 

11 T90HC_PYR 488 544 511.5 506 14.56 

12 T30CO2_PYR 315 353 332.75 332 8.73 

13 T50CO2_PYR 356 410 381.15 380 12.9 

14 T70CO2_PYR 407 467 433.7 430.5 14.64 

15 T90CO2_PYR 481 527 503.45 500.5 11.57 

16 T70CO_OX 394 522 460.55 450.5 44.53 

17 T50CO2_OX 392 459 421.45 417 20.14 

18 T70CO2_OX 422 512 465.85 456.5 27.95 

19 T90CO2_OX 485 565 530.8 532.5 23.91 

20 Pseudo S1 0.05 0.83 0.2 0.14 0.17 

21 HI 102 387 206.65 206.5 71.49 

22 OIRE6 150 333 225.45 210 53.54 

23 S2/PC 0.35 0.8 0.59 0.63 0.13 

24 PC/TOC 0.22 0.4 0.28 0.28 0.04 

25 HI/OIRE6 0.32 2.58 1.02 0.99 0.55 

26 I-index -0.1 0.3 0.1 0.12 0.1 

27 R-index 0.53 0.72 0.62 0.6 0.05 

28 TLHC-index 0.51 0.71 0.63 0.64 0.04 

29 
Stable SOC 

proportion 

0.26 0.78 0.47 0.37 0.19 
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Supplementary material to Chapter 3 

Understanding the influence of organo-mineral interactions on 

organic matter thermal stability expressed by Rock-Eval® 

parameters.  
 

 

 

Table S1: Measurements of pH in the initial solution containing the organic compound and mineral 

mixture. For sand and montmorillonite, which exhibited the strongest positive and negative influence 

on pH for the BSA mixtures a measurement was taken also during the last rinsing step to give an idea 

of the range of variation in pH during the experiment. 

 
 Bovine serum albumin Cysteine Humic acid 

 Initial 

solution 

Last rinsing 

step 

Initial 

solution 

Last rinsing 

step 

Initial 

solution 

Last rinsing 

step 

Sand 6.53 5.90 5.60 6.91 12.47 7.10 

Montmorillonite 3.61 3.83 3.33 3.87 10.84 8.93 

Kaolinite 5.51  4.27  12.49  

Goethite 5.95  7.62  12.50  

Soil 1 4.55  4.19  12.50  

Soil 2 4.60  4.15  12.50  

Soil 3 5.20  4.53  12.52  
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Figure S1: X-Ray diffraction spectra of the selected soil matrices, obtained with a Rigaku XMAX 2500. 

Peaks represent crystalline phases. Their position on the diffractogram given here as the scattering angle 

(2θ) in ° may be translated into distance between two crystallographic planes according to Bragg’s law 

(Bragg, 1934) and it allows the identification of the mineral phases present. 
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Figure S2: Measurements of dissolved organic carbon in rinsing solutions. Points represent mean values 

of triplicate analyses. Error bars (although not visible after the first step because they are too small) are 

given as the standard deviation calculated using the three replicates.  
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Figure S3: Changes on the shape of the five thermograms of bovine serum albumin (BSA) 

caused by the presence of dry and adsorbed minerals. The x-axis shows the time of analysis in 

seconds and corresponds to an increase in temperature. 
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Figure S4: Improvement of carbon yield when using a Rock-Eval® apparatus in Elemental Analyser 

mode. Smaller points represent the detection of compounds by Rock-Eval® 6, whereas bigger ones 

show the detection of the same compounds by the specialized experimental Elemental Analyser mode 

configuration of Rock-Eval®. Black and blue equations and trend lines correspond to the linear models 

of organic compound detection with classic Rock-Eval® 6 and Elemental Analyser mode configuration 

of Rock-Eval® respectively in relation to classic Elemental Analyser. 
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Short non-technical abstract: 

One of the most important solutions to climate change lies literally right under our feet. Soils store twice 

the amount of carbon that is found in atmosphere and vegetation combined. They act as a buffer between 

solid earth and atmosphere and exercise a major control on the atmospheric concentration of CO2 

through the release or sink of greenhouse gases. Moreover, organic carbon in soils in the form of organic 

matter is essential to soil health and fertility, to nutrient availability and water quality. My work is 

centred around the most valuable tool at our disposal for understanding and predicting the evolution of 

this reservoir in the future: soil organic carbon (SOC) dynamics models. A missing key influencing the 

accuracy of SOC model projections and a major challenge in soil science is our ability to estimate the 

proportion of SOC that will remain unchanged over projection-relevant timescales. This important 

amount of carbon that has been present in soils for centuries or millennia, and is therefore considered to 

be “stable”, can vary greatly from one location to another. The goal of my thesis project was to explore 

a new approach based on thermal analysis of SOC and machine learning, to characterise SOC, estimate 

the proportion of “stable” carbon in soil samples, and eventually use this information to improve the 

accuracy of SOC dynamics models. In a second step, I focused on the thermal analysis technique in the 

heart of this approach to understand better the important information it offers, based on model laboratory 

experiments. Finally, the main results of my thesis consist, on the one hand, of a complete and validated 

operational approach improving the accuracy of SOC models with a clear and significant value for 

“climate-smart” soil management. On the other hand, an experimental part offers new insights into the 

working principle, limitations and possibilities of the thermal analysis technique at the heart of this 

approach. 

Keywords: [carbon cycle; soil organic matter; SOC modelling; pyrolysis; organo-mineral associations] 

Comprendre et utiliser l'estimation de la stabilité du carbone organique du sol par 

l'analyse thermique Rock-Eval® 

Résumé populaire en langue française : 

L'une des solutions les plus importantes au réchauffement climatique se trouve sous nos pieds. Les sols 

forment le plus grand réservoir terrestre de carbone organique. A la croisée de la terre solide et de 

l'atmosphère, ils constituent un contrôle majeur sur le flux des gaz à effet de serre. En outre, 

l'augmentation de la quantité du carbone organique dans les sols favorise leur santé et leur fertilité, ainsi 

que la qualité de l'eau. J'ai développé mon travail autour de l'outil le plus précieux dont nous disposons 

pour prédire l'évolution de ce réservoir : les modèles de dynamique du carbone organique des sols 

(COS). Une information clé pour leur précision et une problématique majeure en sciences des sols est 

notre capacité à estimer la proportion du COS qui persistera sur le long terme. Cette quantité importante 

de carbone présente dans les sols depuis des siècles ou des millénaires, et donc considérée comme « 

stable », peut varier fortement d'un endroit à l'autre. L'ambition de mon projet de thèse était d’explorer 

une nouvelle approche basée sur l'analyse thermique du COS et l’apprentissage automatique, pour 

caractériser le COS, estimer la proportion du carbone « stable » dans les échantillons de sol et ensuite 

utiliser cette nouvelle information pour améliorer la précision des modèles de dynamique du COS. Cette 

nouvelle approche est une clé essentielle pour développer une gestion « intelligente » des sols face au 

changement climatique. Dans un deuxième temps, je me suis concentrée sur la technique de l'analyse 

thermique pour déchiffrer et comprendre les informations importantes qu'elle offre de manière plus 

approfondie, à la base des expériences modèles en laboratoire. Enfin, les résultats principaux de cette 

thèse consistent, d'une part, en une approche opérationnelle complète et validée améliorant la précision 

des modèles du COS avec une valeur claire et significative et, d'autre part, en une partie expérimentale 

offrant de nouveaux aperçus sur le principe de fonctionnement, les limites et les possibilités de la 

technique d'analyse thermique au cœur de cette approche. 

Mots clés : [cycle du carbone ; matière organique du sol ; modélisation du SOC ; pyrolyse ; associations 

organo-minérales] 
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Abstract. Partitioning soil organic carbon (SOC) into two ki- 

netically different fractions that are stable or active on a cen- 

tury scale is key for an improved monitoring of soil health 

and for more accurate models of the carbon cycle. However, 

all existing SOC fractionation methods isolate SOC fractions 

that are mixtures of centennially stable and active SOC. If 

the stable SOC fraction cannot be isolated, it has specific 

chemical and thermal characteristics that are quickly (ca. 1 h per 

sample) measurable using Rock-Eval® thermal analysis. An 

alternative would thus be to (1) train a machine-learning 

model on the Rock-Eval® thermal analysis data for soil sam- 

ples from long-term experiments for which the size of the 

centennially stable and active SOC fractions can be estimated 

and (2) apply this model to the Rock-Eval® data for unknown 

 

soils to partition SOC into its centennially stable and active 

fractions. Here, we significantly extend the validity range of 

a previously published machine-learning model (Cécillon et 

al., 2018) that is built upon this strategy. The second version 

of this model, which we propose to name PARTYSOC, uses 

six European long-term agricultural sites including a bare 

fallow treatment and one South American vegetation change 

(C4 to C3 plants) site as reference sites. The European version 

of the model (PARTYSOCv2.0EU) predicts the proportion of 

the centennially stable SOC fraction with a root mean square 

error of 0.15 (relative root mean square error of 0.27) at six 

independent validation sites. More specifically, our results 

show that PARTYSOCv2.0EU reliably partitions SOC kinetic 

fractions at its northwestern European validation sites
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on Cambisols and Luvisols, which are the two dominant soil 

groups in this region. We plan future developments of the 

PARTYSOC global model using additional reference soils 

developed under diverse pedoclimates and ecosystems to 

further expand its domain of application while reducing its 

prediction error. 

potential contribution of a soil to climate regulation would be 

most dependent on its stable organic matter pool size (He et 

al., 2016; Shi et al., 2020). 

A myriad of methods has been developed and tested to par- 

tition SOC into active and stable fractions that would match 

kinetic pools for the assessment of SOC dynamics and re- 

   lated soil functions since the second half of the 20th cen- 

tury (Balesdent, 1996; Hénin and Turc, 1949; Monnier et al., 

1962; Poeplau et al., 2018). Some of these methods based 

1 Introduction 

 

Soil organic carbon (SOC) is identified as a key element con- 

tributing to soil functions such as primary productivity, water 

purification and regulation, carbon sequestration and climate 

regulation, habitat for biodiversity, and recycling of nutrients 

(Keesstra et al., 2016; Koch et al., 2013; Schulte et al., 2014; 

Wiesmeier et al., 2019). While the magnitude and the his- 

torical dimension of the decrease in SOC at the global level 

are progressively being unveiled (IPBES, 2018; Sanderman 

et al., 2017; Stoorvogel et al., 2017), SOC stock preserva- 

tion and even increase is a major challenge for human so- 

cieties in the 21st century (Amundson et al., 2015). With 

widespread beneficial effects on soil functioning at the local 

level (Pellerin et al., 2020), increasing the size of the global 

SOC reservoir contributes directly to the Sustainable Devel- 

opment Goal related to life on land (https://www.globalgoals. 

org/15-life-on-land, last access: 17 June 2020). It is also one 

of the few land-management-based intervention options that 

has a broad and positive impact on food security and climate 

change mitigation and adaptation, two other Sustainable De- 

velopment Goals set by the United Nations (IPCC, 2019; Lal, 

2004). 

There is experimental evidence showing that in all soils, 

SOC is made of carbon atoms with highly contrasting res- 

idence times ranging from hours to millennia (Balesdent et 

al., 1987; Trumbore et al., 1989). This continuum in SOC 

persistence is often simplified by considering SOC as a mix- 

ture formed of several fractions, also called kinetic pools by 

modellers (Hénin and Dupuis, 1945; Jenkinson, 1990; Niki- 

foroff, 1936). The most drastic conceptual simplification of 

SOC persistence considers only two pools: (1) one made of 

young SOC with a short turnover rate (typically 3 decades on 

average; the active SOC pool) and (2) one made of older SOC 

that persists much longer in the soil (more than a century; the 

stable, passive, or persistent SOC pool). This dualistic 

representation of SOC persistence was considered “a 

necessary simplification, but certainly not a utopian one” 

4 decades ago (Balesdent and Guillet, 1982) and is still con- 

sidered meaningful (e.g. Lavallee et al., 2020). The active 

and stable soil organic matter pools contribute differently to 

the various soil functions (Hsieh, 1992). The active organic 

matter pool efficiently fuels soil biological activity (with car- 

bon, nutrients, and energy) and plant growth (with nutrients) 

through its rapid decay, and it sustains soil structure devel- 

opment (Abiven et al., 2009; Janzen, 2006). Conversely, the 

on chemical or physical (size, density, or thermal) fraction- 

ation schemes can separate SOC fractions with, on average, 

different turnover rates (Balesdent, 1996; Plante et al., 2013; 

Poeplau et al., 2018; Trumbore et al., 1989). Of these meth- 

ods, only a few are reasonably reproducible and easy to im- 

plement such as the ones based on rapid thermal analysis and 

chemical extractions (Gregorich et al., 2015; Poeplau et al., 

2013, 2018; Soucémarianadin et al., 2018a). Other methods, 

such as size and density SOC fractionation, need to be inferred 

from machine-learning models or infrared spectroscopy to be 

implemented for large soil sample sets (Baldock et al., 2013; 

Cotrufo et al., 2019; Jaconi et al., 2019; Viscarra Rossel et 

al., 2019; Viscarra Rossel and Hicks, 2015; Vos et al., 2018; 

Zimmermann et al., 2007b). However, all SOC fractionation 

methods fail to achieve a proper separation of stable from 

active SOC, and the isolated SOC fractions are thus mixtures 

of centennially stable and active SOC (Fig. 1; Balesdent, 

1996; Hsieh, 1992; von Lützow et al., 2007; Sanderman and 

Grandy, 2020). This limitation is common to all existing SOC 

fractionation methods and com promises the results of any 

work using them directly to quantify soil functions 

specifically related to SOC fractions or to parametrize SOC 

partitioning in multi-compartmental models of SOC 

dynamics (Luo et al., 2016). Simulations of SOC stocks 

changes by multi-compartmental models are very sensitive to 

the initial proportion of the centennially stable SOC fraction, 

underlining the importance of its accurate estimation (Clivot 

et al., 2019; Falloon and Smith, 2000; Jenkinson et al., 1991; 

Taghizadeh-Toosi et al., 2020). 

If the stable SOC fraction cannot be isolated, it has spe- 

cific chemical and thermal characteristics: stable SOC is de- 

pleted in hydrogen and thermally stable (Barré et al., 2016; 

Gregorich et al., 2015). These characteristics are measur- 

able quickly (ca. 1 h per sample) and at a reasonable cost (less 

than USD 60 per sample in private laboratories) using Rock-

Eval® thermal analysis, and they could be of use to identify 

the quantitative contribution of stable SOC to total SOC. An 

alternative to the elusive proper separation of stable and 

active SOC pools could thus be to directly predict their sizes 

by training a machine-learning model based on Rock-Eval® 

data to estimate the size of the stable and active SOC 

fractions without isolating them from each other (Fig. 1). 

This model would need a training set of soil samples for 

which SOC partitioning into its active and stable pools can 

be fairly estimated. Such soil samples are available in long-

term (i.e. at least longer than 3 decades) bare fallow 

https://www.globalgoals.org/15-life-on-land
https://www.globalgoals.org/15-life-on-land
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Figure 1. Conceptual representation of soil organic carbon fractionation methods vs. the PARTYSOC approach to quantify the size of the 

centennially stable and active soil organic carbon fractions. All existing soil organic carbon fractionation methods isolate fractions that are 

mixtures of centennially stable and active soil organic carbon. PARTYSOC is a machine-learning model trained on the Rock-Eval® thermal 

analysis data for soil samples from long-term experiments in which the size of the centennially stable SOC fraction can be estimated. When 

applied to the Rock-Eval® data for unknown topsoils, PARTYSOC partitions soil organic carbon into its active and stable fractions (i.e. 

without isolating soil organic carbon fractions from each other). SOC: soil organic carbon. Credits for photos: SOC physical fractionation 

methods, Mathilde Bryant; SOC thermal fractionation using Rock-Eval®, Lauric Cécillon. 

 

experiments (LTBF; soils kept free of vegetation and thus 

with negligible SOC inputs) and long-term vegetation change 

(C3 plants to C4 plants or vice versa) experiments, as 

described by Balesdent et al. (1987, 2018), Barré et al. 

(2010), Cerri et al. (1985), and Rühlmann (1999). Cécillon 

et al. (2018) used this strategy to develop a machine-learning 

random forest regression model for topsoil samples obtained 

from the archives of four European long-term agricultural 

sites including an LTBF treatment. This model, which we 

propose to name PARTYSOC, related thermal analysis 

parameters of topsoils measured with Rock-Eval® to their 

estimated proportion of the centennially stable SOC fraction 

(Fig. 1). This previous work positioned PARTYSOC as the 

first operational method quantifying the centennially stable 

and active SOC fractions in agricultural topsoils from 

northwestern Europe. However, the ability of this machine-

learning model to fairly partition the centennially stable and 

the active SOC fractions of soil samples from new sites in 

and outside northwestern Europe is largely unknown because 

its training set is (1) rather limited with a low number of 

reference sites and (2) based on centennially stable SOC 

contents that are exclusively inferred from plant-free LTBF 

treatments. 

In this study, we aimed to improve the accuracy and 

the genericity of the PARTYSOC machine-learning model 

that partitions SOC into its centennially stable and active 

fractions developed by Cécillon et al. (2018). (1) We in- 

creased the range of soil groups, soil texture classes, cli- 

mates, and types of long-term experiments through the ad- 

dition to the training set of topsoils from three new reference 

sites (two additional European long-term agricultural sites 

with an LTBF treatment and one South American long-term 

vegetation change site). (2) We integrated new predictor vari- 

ables derived from Rock-Eval® thermal analysis. (3) In this 

second version of the model, we also changed the following 

series of technical details. We added a new criterion based 

on observed SOC content to estimate of the size of the cen- 

tennially stable SOC fraction at reference sites to reduce the 

risk of overestimating this site-specific parameter. We calcu- 

lated the proportion of the centennially stable SOC fraction 

differently in reference topsoil samples using SOC content 

estimated by Rock-Eval® rather than by dry combustion. We 

changed some criteria regarding the selection of reference 

topsoils in the training set of the model: we removed sam- 

ples from agronomical treatments with compost or manure 

amendments, and preference was given to samples with good 

organic carbon yield in their Rock-Eval® thermal analysis. 

We better balanced the contribution of each reference site to 

PARTYSOCv2.0. (4) We also aimed to build a regional ver- 

sion of the model restricted to the reference sites available 

in Europe (named PARTYSOCv2.0EU). (5) Finally, we care- 

fully evaluated the performance of the models on unknown 

soils, and we further investigated the sensitivity of model per- 

formance to the training and test sets. For clarity, the main 

changes between the first version of PARTYSOC (Cécillon et 

al., 2018) and this second version of the model are summa- 

rized in Supplement Table S1. 

 

2 Methods 

2.1 Reference sites and estimation of the centennially 

stable SOC fraction content at each site 

This second version of PARTYSOC uses seven long-term 

study sites as reference sites (i.e. sites where the size of the 

centennially stable SOC fraction can be estimated). The main 

characteristics of these seven reference sites, their respective 

soil group, and basic topsoil properties are presented in Sup- 

plement Table S2 and more thoroughly in the references cited 
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below. Six reference sites for PARTYSOCv2.0 are long-term 

agricultural experiments located in northwestern Europe that 

include at least one LTBF treatment. (1) The long-term ex- 

periment on animal manure and mineral fertilizers (B3 and B4 

fields) and its adjacent LTBF experiment started in 1956 and 

terminated in 1985 at the Lermarken site of Askov in Denmark 

(Christensen et al., 2019; Christensen and Johnston, 1997). (2) 

The static fertilization experiment (V120) started in 1902, and 

the fallow experiment (V505a) started in 1988 at Bad 

Lauchstädt in Germany (Franko and Merbach, 2017; 

Körschens et al., 1998; Ludwig et al., 2007). (3) The “36 

parcelles” experiment started in 1959 at Grignon in France 

(Cardinael et al., 2015; Houot et al., 1989). (4) The “42 

parcelles” experiment started in 1928 at Versailles in France 

(van Oort et al., 2018). (5) The Highfield bare fallow 

experiment started in 1959 at Rothamsted in England (John- 

ston et al., 2009). (6) The Ultuna continuous soil organic matter 

field experiment started in 1956 in Sweden (Kätterer et al., 

2011). These six reference sites are used in the European 

version of the machine-learning model, PARTYSOCv2.0EU. 

One additional long-term vegetation change site completes the 

reference site list for the PARTYSOCv2.0 global model. This 

site is a 56-year chronosequence of oil palm plantations (with 

C3 plants) established on former pastures (with C4 plants) 

located in South America (La Cabaña in Colombia) and 

sampled as a space-for-time substitution (Quezada et al., 

2019). 

For each reference site, data on total SOC content in topsoil 

(0–10 to 0–30 cm depending on the site; Supplement Table S2) 

were obtained from previously published studies (Barré et al., 

2010; Cécillon et al., 2018; Franko and Merbach, 2017; 

Körschens et al., 1998; Quezada et al., 2019). 

Total SOC content was measured by dry combustion with an 

elemental analyser (SOCEA, g C kg−1) according to ISO 10694 

(1995) after the removal of soil carbonates using an HCl 

treatment for the topsoils of Grignon. For the site of La 

Cabaña, data on 13C content (measured using an isotope ratio 

mass spectrometer coupled to the elemental analyser, the 

results being expressed in δ13C abundance ratio, which is ‰ 

relative to the international standard) were obtained from 

Quezada et al. (2019), and the relative contributions of new 

(C3-plant-derived) and old (C4-plant-derived) carbon to total 

SOC in topsoils (0–10 cm) were calculated using Eq. (3) of 

the paper published by Balesdent and Mariotti (1996), as 

done in Quezada et al. (2019). 

Based on these published data, the content of the centennially 

stable SOC fraction (g C kg−1) at each reference site was 

estimated by modelling the decline of total SOC present at the 

onset of the experiment with time (sites with an LTBF 

treatment; SOC inputs are negligible in bare fallow systems) 

or by modelling the decline of C4-plant-derived SOC present 

at the time of vegetation change with time (La Cabaña site; 

SOC inputs from C4 plants are negligible after pasture con- 

version to oil palm plantation). For the seven reference sites, 

the decline in total SOC or C4-plant-derived SOC over time 

had a similar shape, as shown in Barré et al. (2010), Cécillon  et 

al. (2018), Franko and Merbach (2017), and Quezada et al. 

(2019), and it could be modelled using a first-order expo- 

nential decay with a constant term following Eq. (1): 

γ (t) = ae−bt + c, (1) 

where γ (t) (g C kg−1) is the total (sites with an LTBF treat- 

ment) or C4-plant-derived (La Cabaña site) SOC content at 

time t, t (year) is the time under bare fallow (sites with an 

LTBF treatment) or since pasture conversion to oil palm 

plantation (La Cabaña site), and a, b, and c are fitting 

parameters. Parameter a (g C kg−1) corresponds to the content 

of the active SOC fraction and b (yr−1) is the characteristic 

decay rate. The parameter c (g C kg−1) represents the content of 

theoretically inert SOC. Following Barré et al. (2010), Cécillon 

et al. (2018), and Franko and Merbach (2017), we considered 

this parameter c to be a site-specific metric of the centennially 

stable SOC fraction content. As already stated in Cécillon et 

al. (2018), in our view, the centennially stable SOC fraction is 

not biogeochemically inert; its mean age and mean residence 

time in soil are both assumed to be high (centuries) though not 

precisely defined here. As a result, its decline with time is 

negligible at the timescale of the long-term agricultural 

experiments and the long-term vegetation change site. We thus 

considered the centennially stable SOC fraction content at 

each experimental site to be constant. In this study, we used 

the centennially stable SOC fraction content already estimated 

by Franko and Merbach (2017) for the site of Bad Lauchstädt 

(on the LTBF experiment started in 1988) and by Cécillon et 

al. (2018) for the sites of Versailles, Grignon, Rothamsted, and 

Ultuna. We estimated the content of the centennially stable 

SOC fraction for the Askov and La    Cabaña sites using the 

same Bayesian curve-fitting method described by Cécillon et 

al. (2018). The Bayesian inference method was performed 

using Python 2.7 and the PyMC library (Patil et al., 2010). 

For the second version of PARTYSOC, we aimed at reducing the 

potential bias towards an overestimation of the centennially 

stable SOC fraction content at reference sites using Eq. (1) 

(Supplement Table S1). This overestimation is possible at 

reference sites with an LTBF treatment, as SOC inputs to bare 

fallow topsoils are low but not null (e.g. Jenkinson and 

Coleman, 1994; Petersen et al., 2005). Similarly, C4-plant-

derived SOC inputs are possible after conversion to C3 plants at 

the site of La Cabaña. We thus used the lowest observed total 

(sites with an LTBF treatment) or C4-plant- derived (La Cabaña 

site) topsoil SOC content value as the best estimate of the 

centennially stable SOC fraction content at reference sites 

where this measured value was lower than the fitted value of the 

site-specific parameter c in Eq. (1). 
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2.2 Rock-Eval® thermal analysis of topsoil samples 

available from reference sites 

 

Surface soil samples (0–10 to 0–30 cm depending on the site; 

see Supplement Table S2) were obtained from the seven ref- 

erence sites described in Sect. 2.1. As described in Cécillon et 

al. (2018), the first version of the PARTYSOC model was based 

on a set of 118 topsoil samples corresponding to time series 

obtained from the soil archives of the sites of Rothamsted 

(12 samples from the LTBF treatment and   8 samples from 

the adjacent long-term grassland treatment), Ultuna (23 

samples from the LTBF treatment and 11 samples from the 

associated long-term cropland treatments), Grignon (12 

samples from the LTBF treatment, 6 samples from the LTBF 

plus straw amendment treatment, and 6 samples from the 

LTBF plus composted straw amendment treatment), and 

Versailles (20 samples from the LTBF treatment and 20 sam- 

ples from the LTBF plus manure amendment treatment). All 

118 topsoil samples were previously analysed using Rock- 

Eval® thermal analysis (Cécillon et al., 2018). 

For the second version of the machine-learning model, 78 

additional topsoil samples were provided by managers of the 

three new reference sites. A total of 35 topsoil samples were 

obtained from the soil archives of the Askov site (19 samples 

corresponding to different dates of the LTBF treatment and 16 

samples corresponding to different dates of the associated 

long-term cropland treatments). A total of 27 topsoil samples 

were obtained from the soil archives of the Bad      Lauchstädt site 

(8 samples from two dates of the mechanical LTBF treatment, 

8 samples from two dates of the chemical LTBF treatment, 

and 11 samples from two dates of several long-term cropland 

treatments of the static fertilization experiment, with 8 of the 

latter coming from treatments with manure applications). A 

total of 16 topsoil samples were ob tained from the site of La 

Cabaña (13 samples from different C3-plant oil palm fields 

planted at different dates and three samples from different 

long-term C4-plant pastures). 

The 78 additional topsoil samples from Askov, Bad 

Lauchstädt, and La Cabaña were analysed using the same 

Rock-Eval® 6 Turbo device (Vinci Technologies, France; see 

Behar et al., 2001, for a description of the apparatus) and the 

same setup as the one used for the sample set in the first 

version of PARTYSOC, described by Cécillon et al. (2018). 

Briefly, ca. 60 mg of ground (< 250 µm) topsoil samples were 

subjected to sequential pyrolysis and oxidation phases. The 

Rock-Eval® pyrolysis phase was carried out in an N2 atmo-

sphere (3 min isotherm at 200 °C followed by a temperature 

ramp from 200 to 650 °C at a heating rate of 30 °C min−1). 

The Rock-Eval® oxidation phase was carried out in a lab- 

oratory air atmosphere (1 min isotherm at 300 °C followed by 

a temperature ramp from 300 to 850 °C at a heating rate of 20 

°C min−1 and a final 5 min isotherm at 850 °C). Each Rock-

Eval® analysis generated five thermograms corresponding to 

volatile hydrocarbon effluent (HC_PYR ther- mogram), CO 

(CO_PYR thermogram), and CO2 (CO2_PYR thermogram) 

 
measured each second during the pyrolysis phase and to CO 

(CO_OX thermogram) and CO2 (CO2_OX thermogram) 

measured each second during the oxidation phase (Behar et 

al., 2001). 

A series of Rock-Eval® parameters was calculated from 

these five thermograms. For each thermogram, five 

temperature parameters (all in °C) were retained: T10, T30, 

T50, T70, and T90, which respectively represent the 

temperatures corresponding to the evolution of 10 %, 30 %, 

50 %, 70 %, and 90 % of the total amount of evolved gas. The 

calculation of Rock-Eval® temperature parameters was 

performed using different intervals of integration depending 

on the maximum oven temperatures of 650 °C (HC_PYR 

thermogram), 560 °C (CO_PYR and CO2_PYR 

thermograms), 850 °C (CO_OX thermogram), and 611 °C 

(CO2_OX thermogram). These intervals of integration 

prevented any interference by inorganic carbon from most soil 

carbonates, and they ensured comparability with previous 

studies (Barré et al., 2016; Cécillon et al., 2018; Poeplau et al., 

2019; Soucémarianadin et al., 2018b). Automatic baseline 

correction (as calculated by the software of the Rock-Eval® 

apparatus; Vinci Technologies, France) was performed for all 

thermograms but the CO_PYR and the CO2_PYR 

thermograms. This correction can yield some negative values 

for the CO_PYR and CO2_PYR thermograms of soil samples 

with very low SOC content (data not shown). For the 

HC_PYR thermogram we also determined three parameters 

reflecting a proportion of thermally resistant or labile 

hydrocarbons: a parameter representing the proportion of 

hydrocarbons evolved between 200 and 450 °C (thermolabile 

hydrocarbons, TLHC index, unitless; modified from Saenger 

et al., 2013, 2015), as described by Cécillon et al. (2018); a 

parameter representing the preservation of thermally labile 

hydrocarbons (I index, unitless; after Sebag et al., 2016); 

and a parameter representing the proportion of hydrocarbons 

thermally stable at 400 °C (R index, unitless; after Sebag et 

al., 2016). We also considered the hydrogen index (HI, mg 

HC g−1 C) and oxygen index (OIRE6, mg O2 g−1 C) that 

respectively describe the relative elemental hydrogen and 

oxygen enrichment of soil organic matter (see e.g. Barré et al., 

2016). These 30 Rock-Eval® parameters are not directly 

related to total SOC content and were all included in the first 

version of the PARTYSOC model developed by Cécillon et al. 

(2018). 

In this second version of PARTYSOC, we considered 10 

additional Rock-Eval® parameters as possible predictors, 

some of these being directly linked to SOC content 

(Supplement Table S1). These 10 parameters were calculated 

for all 196 topsoil samples available from the seven reference 

sites. They included the content of SOC as determined by 

Rock-Eval® (TOCRE6, g C kg−1); the content of soil inorganic 

carbon as determined by Rock-Eval® (MinC, g C kg−1); the 

content of SOC evolved as HC, CO, or CO2 during the pyrol- 

ysis phase of Rock-Eval® (PC, g C kg−1); 
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the content of SOC evolved as HC during the temperature 

ramp (200–650 °C) of the pyrolysis phase of Rock-Eval® 

(S2, g C kg−1); the content of SOC that evolved as HC, CO, 

or CO2 during the first 200 s of the pyrolysis phase (at ca. 

200 °C) of Rock-Eval® (PseudoS1, g C kg−1; after Khedim 

et al., 2021); the ratio of PseudoS1 to PC (PseudoS1 / PC, 

unitless); the ratio of PseudoS1 to TOCRE6 (PseudoS1 / 

TOCRE6, unitless); the ratio of S2 to PC (S2 / PC, unitless; 

after Poeplau et al., 2019); the ratio of PC to TOCRE6 (PC / 

TOCRE6, unitless); and the ratio of HI to OIRE6 (HI / OIRE6, 

mg HC mg−1 O2). TOCRE6, MinC, PC, HI, and OIRE6 were 

obtained as default parameters from the software of the 

Rock-Eval® apparatus (Vinci Technologies, France). All 

other Rock-Eval® parameters were calculated from the 

integration of the five thermograms using R version 4.0.0 

(R Core Team, 2020; RStudio Team, 2020) and functions 

from the R packages hyperSpec (Beleites and Sergo, 2020), 

pracma (Borchers, 2019), and stringr (Wickham, 2019). 

 
2.3 Determination of the centennially stable SOC 

fraction proportion in topsoil samples from the 

reference sites 

 

Following the first version of PARTYSOC (Cécillon et al., 

2018), the proportion of the centennially stable SOC fraction 

in a topsoil sample of a reference site was calculated as the 

ratio of the site-specific centennially stable SOC fraction 

content (see Sect. 2.1) to the SOC content of this particular 

sample. We thus assume that the centennially stable SOC 

fraction content in topsoils is the same in the various 

agronomical treatments of a reference site and that it remains 

constant within the time period studied at each site. 

While for the first version of PARTYSOC, the proportion 

of the centennially stable SOC fraction in reference topsoils 

was inferred using SOC contents determined by elemental 

analysis (SOCEA), in this second version, we preferred the 

SOC content determined by Rock-Eval® (Table S1). The rea- 

son behind this choice was to link the Rock-Eval® parame- 

ters measured in a reference topsoil sample to an inferred 

proportion of the centennially stable SOC fraction that bet- 

ter reflected the organic carbon that actually evolved during 

its Rock-Eval® analysis. This choice was possible for refer- 

ence topsoil samples for which Rock-Eval® analyses showed 

a good organic carbon yield (TOCRE6 divided by SOCEA and 

multiplied by 100). This is generally the case for most soils, 

with typical organic carbon yields from Rock-Eval® ranging 

from 90 to 100 % SOCEA (Disnar et al., 2003). For the top- 

soils of the sites of Grignon, Rothamsted, Ultuna, and Ver- 

sailles used in the first version of PARTYSOC, the organic 

carbon yield from Rock-Eval® was greater than 96 % (linear 

regression model, R2 = 0.97, n = 118; Cécillon et al., 2018). 

Similarly, Rock-Eval® analyses of topsoil samples from the 

site of La Cabaña showed very good organic carbon yields 

(95 % on average, linear regression model R2 = 0.95, n = 16). 

For these five reference sites (corresponding to 134 reference 

topsoil samples), we thus used the Rock-Eval® parameter 

TOCRE6 as a measure of the SOC content of topsoil samples 

to calculate their respective proportion of the centennially 

stable SOC fraction. Conversely, Rock-Eval® analyses of 

topsoil samples from the sites of Askov and Bad Lauchstädt 

showed moderate organic carbon yields (90 % on average for 

topsoils of Askov, with a noisy linear regression model, R2 = 

0.68, n = 30; 92 % on average for topsoils of Bad Lauchstädt, 

yet with a very good linear regression model, R2 = 0.96, n = 

11). Using the total carbon measured by Rock-Eval® (i.e. the 

sum of TOCRE6 plus MinC Rock-Eval® parameters) as an 

estimate of the SOC content of top- soil samples for these two 

sites – that are not carbonated – increased the organic carbon 

yield of Rock-Eval® analyses (96 % on average at Askov, 

still with a noisy linear regression model, R2 = 0.66, n = 30; 

101 % on average at Bad Lauchstädt, with a very good linear 

regression model, R2 = 0.95, n = 11). For the two reference 

sites of Askov and Bad Lauchstädt (corresponding to 62 

topsoil samples), we thus used the sum of Rock-Eval® 

parameters TOCRE6 plus MinC as a measure of the SOC 

content of topsoil samples to calculate their proportion of the 

centennially stable SOC fraction. 

The uncertainty in the proportion of the centennially stable 

SOC fraction was calculated using Eq. (6) in the paper 

published by Cécillon et al. (2018), propagating the 

uncertainties in SOC content data (using a standard error of 

0.5 g C kg−1 following Barré et al., 2010) and in the site-

specific contents of the centennially stable SOC fraction (see 

above and Table 1). 

 
2.4 Selection of the training set and of meaningful 

Rock-Eval® predictor variables for PARTYSOCv2.0 

In machine learning, the selection of the model training and 

test sets influences the performance of the model, just like 

the selection of the predictor variables: here, the Rock-Eval® 

parameters (e.g. Cécillon et al., 2008; Wehrens, 2020). 

For this second version of PARTYSOC, we changed some 

criteria regarding the inclusion of the available reference top-

soil samples in the training set of the model (Supplement 

Table S1). We excluded from the training set all the topsoil 

samples experiencing agronomical treatments that may have 

changed the site-specific content of the centennially stable 

SOC fraction, in contradiction to our hypothesis of a constant 

content of this fraction at each reference site (see Sect. 2.3). 

These agronomical treatments concern the repeated applica-

tion of some types of exogenous organic matter such as com-

post or manure, which we suspect may increase the content 

of the centennially stable SOC fraction after several decades. 

Therefore, we excluded all reference topsoil samples from 

plots that experienced repeated applications of composted 

straw (six samples from Grignon) or manure (20 samples  
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Table 1. Main statistics for soil organic carbon contents, site-specific contents of the centennially stable SOC fraction, and resulting pro- 

portions of centennially stable SOC fraction in topsoils of the seven reference sites used as the training sets for PARTYSOCv2.0 and 

PARTYSOCv2.0EU. More details on agronomical treatments and sampling year of reference topsoil samples are provided in Supplement 

Table S3. Abbreviations are as follows. SOC: soil organic carbon; LTBF: long-term bare fallow; min: minimum; max: maximum; SD: 
standard deviation.  

 

 

from Versailles and 8 samples from Bad Lauchstädt) from 

the training set of the model. Yet, we kept some reference 

topsoil samples from Grignon and Ultuna experiencing 

repeated applications of straw. 

We also excluded from the training set of the model the 

reference topsoil samples for which the organic carbon yield 

from Rock-Eval® is below 86 % or above 116 %. For the site 

of Askov, with a noisy relationship between SOCEA and the 

sum TOCRE6 plus MinC (see Sect. 2.3), we excluded the five 

samples without an SOCEA measurement preventing the 

calculation of the organic carbon yield from their Rock-

Eval® analysis. Conversely, for the site of Bad Lauchstädt 

we kept topsoil samples without available SOCEA 

measurements, as the linear relationship between SOCEA and 

the sum TOCRE6 plus MinC was very good for this site (see 

Sect. 2.3). These criteria regarding the organic carbon yield 

from Rock-Eval® lead to the exclusion of nine samples from 

the site of Askov, four additional samples from the site of 

Versailles, and two from the site of Ultuna. 

Contrary to the first version of PARTYSOC, this second 

version is based on a balanced contribution of each reference 

site (Supplement Table S1). Each reference site contributes to 

the model with 15 samples so that the reference sample set of 

PARTYSOCv2.0 is composed of 105 topsoil samples (90 for 

the European version of the model PARTYSOCv2.0EU). 

Besides the above-mentioned exclusion criteria (that 

excluded 49 of the 196 topsoil samples available from the 

seven reference sites), the 15 topsoil samples retained for each 

reference site were selected (1) to have a range of the 

proportion of the centennially stable SOC fraction as wide as 

possible and (2) to have the best organic carbon yield from 

Rock-Eval® analysis. On average, the organic carbon yield 

of the Rock-Eval® analyses for the retained training set of 

reference top- soil samples (calculated as described above) 

was greater than 98 % SOCEA (SOCDETERMINED_BY_ROCK-EVAL® 

= 0.9924 SOCEA − 0.1051, R2 = 0.99, n = 91 topsoil samples 

with available SOCEA measurements). The list of the 105  
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reference topsoil samples retained as the training set for 

PARTYSOCv2.0 is provided in Table S3. This list includes, for 

each reference topsoil sample, information on its reference 

site, land cover, agronomical treatment, sampling year, and 

values for the 40 Rock-Eval® parameters. 

The 40 Rock-Eval® parameters calculated (see Sect. 2.2) 

captured most of the information related to SOC thermal 

stability, elemental stoichiometry, and content that is 

contained in the five Rock-Eval® thermograms. However, not 

all Rock-Eval® parameters necessarily carry meaningful in-

formation for partitioning SOC into its centennially stable and 

active fractions (Cécillon et al., 2018). PARTYSOCv2.0 and its 

European version PARTYSOCv2.0EU incorporate as predictor 

variables only the Rock-Eval® parameters showing a strong 

relationship with the proportion of the centennially stable 

SOC fraction (Supplement Table S1). The absolute value of 

0.50 for the Spearman’s ρ (nonparametric and nonlinear 

correlation test) was used as a threshold to select meaningful 

Rock-Eval® predictor variables (calculated from the reference 

topsoil sample set for the PARTYSOCv2.0 model, n = 105). 

Basic statistics of all Rock-Eval® parameters (training set for 

PARTYSOCv2.0) are reported in Supplement Table S4. 

2.5 Random forest regression models to predict the 

proportion of the centennially stable SOC fraction 

from Rock-Eval® parameters, performance 

assessment, and error propagation in the models 

The PARTYSOCv2.0 machine-learning model consists of a 

nonparametric and nonlinear multivariate regression model 

relating the proportion of the centennially stable SOC fraction 

(response vector or dependent variable y) of the reference soil 

sample set (n = 105 topsoil samples from the seven reference 

sites; see Sect. 2.4) to their Rock-Eval® parameters 

summarized by a matrix of predictor variables (X) made up of 

the selected centered and scaled Rock-Eval® parameters. As 

stated above, we also built a regional (European) version of 

the model based on the six European reference sites only 

(PARTYSOCv2.0EU, using the 90 reference topsoil samples 

from Askov, Bad Lauchstädt, Grignon, Rothamsted, Ultuna, 

and Versailles). 

Like the first version of PARTYSOC, this second version 

uses the machine-learning algorithm of random forests-

random inputs (hereafter termed random forests) proposed by 

Breiman (2001). This algorithm aggregates a collection of 

random regression trees (Breiman, 2001; Genuer and Poggi, 

2020). PARTYSOCv2.0 and its European version 

PARTYSOCv2.0EU are based on a forest of 1000 different 

regression trees made of splits and nodes. The algorithm of 

random forests combines bootstrap resampling and random 

variable selection. Each of the 1000 regression trees was 

grown on a bootstrapped subset of the reference topsoil 

sample set (i.e. containing ca. two-thirds of “in-bag” samples). 

The algorithm randomly sampled one-third of the selected 

Rock- Eval® parameters  

(see Sect. 2.4) as candidates at each split of the regression tree, 

and it used a minimum size of terminal tree nodes of five topsoil 

samples. The relative importance (i.e. ranking) of each 

selected Rock-Eval® parameter in the regression models was 

computed as the unscaled permutation accuracy (Strobl et al., 

2009). 

The performance of PARTYSOCv2.0 and PARTYSOCv2.0EU 

was assessed by statistical metrics comparing the predicted vs. 

the estimated values of their reference topsoil sample set using 

three complementary validation procedures. First, the 

predictive ability of both models was assessed by an 

“internal” procedure that used their respective whole 

reference topsoil sample sets (n = 105 samples for 

PARTYSOCv2.0, n = 90 samples for PARTYSOCv2.0EU). For 

this procedure, performance statistics were calculated only for 

the “out-of-bag” topsoil samples of the whole reference sets 

using a random seed of 1 to initialize the pseudorandom 

number generator of the R software. Out-of-bag samples are 

observations from the training set not used for a specific 

regression tree that can be used as a “built-in” test set for 

calculating its prediction accuracy (Strobl et al., 2009). 

Second, the predictive ability of the models was assessed by a 

“random splitting” procedure that randomly split their 

respective reference topsoil sample sets into a test set (made of 

n = 30 samples) and a training set (n = 75 samples for 

PARTYSOCv2.0, n = 60 samples for PARTYSOCv2.0EU). This 

procedure was repeated 15 times using random seeds from 1 

to 15 in the R software. Third, a fully independent “leave-one-

site-out” procedure was used to assess the predictive ability of 

the models. This procedure successively excludes topsoil 

samples of one reference site from the training set and uses 

them as a test set (n = 15) for the models. It used the random 

seed of 1 in the R software. For the second and third 

procedures, performance statistics were calculated (1) for the 

out-of-bag topsoil samples of the training sets and (2) for the 

topsoil samples of the test sets. The leave-one-site-out 

validation should be seen as the procedure giving the most 

accurate estimation of the uncertainty of both regression 

models for unknown topsoil samples. 

Finally, we assessed the sensitivity of model performance 

to the training and the test sets. For both sensitivity analyses, 

only the leave-one-site-out validation procedure was used 

(based exclusively on independent training and test sets). First, 

model sensitivity to the training set was assessed as its 

sensitivity to the independent reference sites included in the 

training set. It was performed successively using, as examples, 

two different test sets consisting of independent soils from the 

reference sites of Grignon and Versailles. Several random 

forest regression models were built using, as training sets, 

combinations of topsoil samples from a decreasing number of 

the remaining reference sites on the basis of their potential 

proximity to the topsoil samples of the test sets regarding their 

pedological or climatic conditions. The size of the various 

training sets ranged from n = 90 samples (six reference sites) to 
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n = 30 samples (only two reference sites). Second, model 

sensitivity to the test set was assessed as its sensitivity to 

independent test samples (1) from a reference soil group 

(FAO, 2014) not existing in the training set (i.e. excluding 

Chernozem soil samples from the test set) (2) that are unlikely 

to be encountered in agricultural soils (i.e. excluding from the 

test set soils sampled at late dates of bare fallow treatments 

more than 25 years after the experiment onset, which cannot 

represent soils with regular carbon input). Model sensitivity to 

the test set was performed only for PARTYSOCv2.0EU to 

further investigate its predictive ability for soil samples from 

independent Cambisols and Luvisols of northwestern Europe. 

Several statistics were used to assess the predictive ability 

of the regression models. The coefficient of determination, 

𝑅𝑂𝐵𝐵
2 , was calculated for the out-of-bag samples of the training 

set and R2 was calculated for the samples of the test set. The 

root mean square error of prediction, RMSEPOOB, was 

calculated for the out-of-bag samples of the training set, and 

RMSEP was calculated for the samples of the test set. The 

relative RMSEP, RRMSEP, was calculated as the ratio of the 

RMSEP to the mean value of the test set. The ratio of 

performance to interquartile range (RPIQ) was calculated as 

the ratio of the interquartile range of the test set (Q3–Q1, which 

gives the range accounting for 50 % of the test set around its median 

value) to the RMSEP (Bellon-Maurel et al., 2010). The bias of the 

random forest regression models was calculated as the mean 

of the model predictions for the test set minus the actual mean 

of the test set. Additionally, site-specific RMSEP and RRMSEP 

were calculated for the leave-one-site- out procedure (with the 

15 independent test samples from each site). The uncertainty 

 in the model predictions for new topsoils was determined 

using a methodology that was fully described by Cécillon et al. 

(2018). This methodology was adapted after the work of 

Coulston et al. (2016) to explicitly take into account the 

uncertainty in the reference values of the proportion of the 

centennially stable SOC fraction (see Sect. 2.3) that were used 

to build the models (Cécillon et al., 2018). 

PARTYSOCv2.0 and PARTYSOCv2.0EU were programmed 

as R scripts in the RStudio environment software (RStudio 

Team, 2020) and were run using the R version 4.0.0 (R Core 

Team, 2020). The R scripts use the random forest algorithm 

of the randomForest R package (Liaw and Wiener, 2002) and 

the boot R package for bootstrapping (Canty and Ripley, 2020; 

Davison and Hinkley, 1997). 

 

3 Results 

3.1 Content of the centennially stable SOC fraction at 

the reference sites 

 

The two newly fitted values of the centennially stable SOC 

fraction content (i.e. parameter c in Eq. 1; see Sect. 2.1) were 

5.10 g C kg−1 at the site of Askov (SD = 0.88 g C kg−1) and 

5.12 g C kg−1 at the site of La Cabaña (SD = 0.35 g C kg−1).  

The fitted values of parameter c in Eq. (1) for all reference 

sites and their standard errors are provided in Supplement Table 

S2. A total (reference sites with an LTBF treatment) or a C4-

plant-derived (La Cabaña site) SOC content value lower than 

the fitted value of the site-specific parameter c in Eq. (1) was 

measured at four of the seven reference sites for the 

PARTYSOCv2.0 model. At Bad Lauchstädt, an SOCEA value of 

15.0 g C kg−1 was reported by Körschens et al. (1998) for 

topsoils of the well ring experiment (Ansorge, 1966). At 

Rothamsted, an SOCEA measurement of 9.72 g C kg−1 was 

reported for topsoils of the Highfield LTBF experiment by 

Cécillon et al. (2018). At Versailles, an SOCEA measurement 

of 5.50 g C kg−1 was reported after 80 years of bare fallow by 

Barré et al. (2010). At La Cabaña, a C4-plant-derived SOC 

content of 4.75 g C kg kg−1 was calculated using data from 

Quezada et al. (2019). These values did not differ strongly 

from the values of the centennially stable SOC contents 

calculated from the Bayesian curve-fitting method (Tables 1, 

S2). In particular, the hierarchy in the centennially stable SOC 

content of the seven reference sites was unchanged whatever 

the calculation method. These values were retained as the best 

estimates of the site-specific content of the centennially stable 

SOC fraction in topsoils of the four sites to reduce the risk 

of overestimating the actual value of the centennially stable 

SOC content compared to the first published version of the 

model (see Sect. 2.1; Tables 1 and S1). As these site-specific 

values of the centennially stable SOC fraction content were 

derived from SOCEA measurements, we attributed a standard 

deviation of 0.50 g C kg−1 to each of them following Barré et 

al. (2010). The final estimates of the content of the 

centennially stable SOC fraction at the seven reference sites 

that were used in PARTYSOCv2.0 are provided in Table 1. 

They varied by a factor of 3 across the reference sites, ranging 

from 4.75 g C kg−1 at La Cabaña to 15.00 g C kg−1 at Bad 

Lauchstädt. The lowest value of the topsoil content of the 

centennially stable SOC fraction used in PARTYSOCv2.0EU 

differed only slightly from the one of PARTYSOCv2.0 (5.10 g 

C kg−1 at the site of Askov). 

 

3.2 Content and biogeochemical stability of SOC in the 

training sets and selection of meaningful Rock-

Eval® parameters as predictor variables for the 

PARTYSOCv2.0 and PARTYSOCv2.0EU models 

 
The SOC content in the topsoil samples of the seven 

reference sites ranged from 5.6 to 41.5 g C kg−1 in the training 

sets for the PARTYSOCv2.0 (n =  105) and PARTYSOCv2.0EU 

(n = 90) models (Table 1). As shown in Table 1, this resulted 

in proportions of the centennially stable SOC fraction ranging 

from 0.15 to 0.98 (PARTYSOCv2.0 training set) and from 0.23 

to 0.98 (PARTYSOCv2.0EU training set). All 25 calculated 

Rock-Eval® temperature parameters showed positive values of 

Spearman’s ρ coefficient with the response variable of the  
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PARTYSOCv2.0 model (n = 105; with Spearman’s ρ values 

up to 0.81 for T90HC_PYR; Table 2). While the inorganic 

carbon content was not correlated with the proportion of the 

centennially stable SOC fraction, TOCRE6 was significantly 

and negatively correlated with the response variable of the 

PARTYSOCv2.0 model (Spearman’s ρ = 0.55; Table 2). 

Other Rock-Eval® parameters linked to soil carbon content 

showed a stronger relationship than TOCRE6 with the 

proportion of the centennially stable SOC fraction. This 

was the case for S2 and PC that showed the highest absolute 

Spearman’s ρ coefficients, with a highly significant negative 

relationship (Spearman’s ρ = 0.85; Table 2). A total of 18 of 

the 40 calculated Rock-Eval® parameters showed an absolute 

value of Spearman’s ρ above 0.5 with the proportion of the 

centennially stable SOC fraction in the training set of the 

PARTYSOCv2.0 model (n = 105; Table 2) and were thus 

retained as predictor variables for the models. The 18 Rock-

Eval® parameters retained were the Rock- Eval® temperature 

parameters T70HC_PYR, T90HC_PYR, T30CO2_PYR, T50CO2_PYR, 

T70CO2_PYR, T90CO2_PYR, T70CO_OX, T50CO2_OX, T70CO2_OX, 

and T90CO2_OX and the Rock-Eval® parameters PseudoS1, 

S2, S2 / PC, HI, HI / OIRE6, PC, PC / TOCRE6, and TOCRE6. 

 
3.3 Performance assessment of the PARTYSOCv2.0 and  

PARTYSOCv2.0EU machine-learning models 

 

Using both the internal and the random splitting performance 

assessment procedures (see Sect. 2.5), the PARTYSOCv2.0 

and PARTYSOCv2.0EU models showed good to very good 

predictive ability for the proportion of the centennially stable 

SOC fraction (Fig. 2a; Table 3a). For most of the 

calculated statistics, the European version of the model 

PARTYSOCv2.0EU showed better performance than the 

PARTYSOCv2.0 model (Table 3). Using the random splitting 

procedure, the mean R2 of PARTYSOCv2.0EU was 0.87 (0.81 

for PARTYSOCv2.0); its RMSEP and RRMSEP were 

respectively 0.07 and 0.13 (0.09 and 0.17 for 

PARTYSOCv2.0), and its mean RPIQ was 4.6 (3.6 for 

PARTYSOCv2.0). The bias was low for both models (Table 

3a). 

The predictive ability of both models decreased when 

assessed using the leave-one-site-out procedure (see Sect. 

2.5; Fig. 2b). Again, PARTYSOCv2.0EU showed better 

performance statistics than the PARTYSOCv2.0 model (Table 

3; Fig. 2b), with an R2 of 0.45, an RMSEP of 0.15, an 

RRMSEP of 0.27, and an RPIQ of 2.4. The PARTYSOCv2.0 

model poorly predicted the proportion of the centennially 

stable SOC fraction in topsoil samples of two sites (Table 

3b; Fig. 2b): La Cabaña (overestimation; with a site-specific 

RMSEP of 0.28) and Bad Lauchstädt (underestimation; with 

a site-specific RMSEP of 0.32). The proportion of the 

centennially stable SOC fraction in topsoil samples of Bad 

Lauchstädt remained underestimated by the 

PARTYSOCv2.0EU model, though with a reduced site-specific 

RMSEP (0.23; Table 3b; Fig. 2b). All other site-specific 

RMSEPs were below 0.18 (0.17 at Versailles for  

PARTYSOCv2.0, 0.18 at Grignon for PARTYSOCv2.0EU; 

Table 3b), with remarkably low site-specific RMSEPs for 

the sites of Askov (below 0.05 for both models) and Ultuna 

(0.06 for PARTYSOCv2.0; 0.09 for PARTYSOCv2.0EU). 

The most important Rock-Eval® parameter for 

predicting the proportion of the centennially stable SOC 

fraction is S2 for both PARTYSOCv2.0 and 

PARTYSOCv2.0EU (Table 2). Conversely, the two models 

show only two Rock- Eval® parameters in common of their 

five most important ones: S2, PC, PC / TOCRE6, 

T70CO2_OX, and T90HC_PYR for PARTYSOCv2.0 and S2, 

T50CO2_PYR, PC, S2 / PC, and HI / OIRE6 for 

PARTYSOCv2.0EU (Table 2). 

3.4 Sensitivity of model performance to the training 

and test sets 

The sensitivity analysis to the training set showed that 

restricting the model training set to samples from fewer 

reference sites with pedoclimatic conditions closer to the 

ones of a fully independent test site changed its performance 

(Fig. 3). Removing from the training set a reference site with a 

climate (i.e. La Cabaña) or a soil group (i.e. Bad Lauchstädt) 

differing strongly from the independent test sites (here, 

Grignon and Versailles used as examples) reduced the site-

specific RMSEP and RRMSEP of the model (Supplement 

Table S5). When Grignon or Versailles were used as 

independent test sites, the model with the best predictive 

ability (i.e. the lowest site-specific RMSEP and RRMSEP) 

used a training set composed of 45 topsoil samples from three 

European reference sites (including the French site with the 

closest climate, despite its different soil group; Supplement 

Tables S2 and S5; Fig. 3). 

The sensitivity analysis to the test set showed that when 

excluding Chernozem samples from the test set (i.e. 

validating the model exclusively with independent samples 

from Cambisols or Luvisols), the performance statistics of 

PARTYSOCv2.0EU were improved (leave-one-site-out 

validation procedure: R2 of 0.56; RMSEP of 0.13; n = 75). 

The further removal of independent test soils that are 

unlikely to be encountered in agricultural Cambisols and 

Luvisols (soils sampled at late dates of bare fallow treatments 

more than 25 years after the experiment onset) also improved 

the performance statistics of PARTYSOCv2.0EU (Supplement 

Fig. S1; leave-one-site-out validation procedure: R2 of 0.71; 

RMSEP of 0.11; n = 58). 

 
4 Discussion 

The second version of the PARTYSOC machine-learning 

model incorporates a large number of modifications and 

improvements (Table S1), and its predictive ability was more 

thoroughly assessed compared to the first version of the 

model (Cécillon et al., 2018). The critical examination of the 
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Table 2. Spearman’s rank correlation coefficient test between the 40 calculated Rock-Eval® parameters and the proportion of the centennially 

stable organic carbon fraction in the reference topsoil sample set of the PARTYSOCv2.0 model (n = 105), with the variable importance (ranking) 

of the 18 selected Rock-Eval® parameters for predicting the proportion of the centennially stable SOC fraction in the PARTYSOCv2.0 and 

PARTYSOCv2.0EU random forest regression models. See Sect. 2.2 for a description of the units of the 40 Rock-Eval® parameters. The 18 

Rock-Eval® parameters retained as predictor variables for the second version of PARTYSOC are shown in bold. SOC: soil organic carbon. 
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Figure 2. Performance of PARTYSOCv2.0 and PARTYSOCv2.0EU machine-learning models based on Rock-Eval® thermal analysis for 

predicting the centennially stable organic carbon proportion in topsoils. (a) Results of the internal validation procedure. (b) Results of the 
leave-one-site-out validation procedure (see Sect. 2.5 for more details on model performance assessment). SOC: soil organic carbon. 

 

Figure 3. Sensitivity of model performance to the reference sites included in the training set using 15 topsoil samples from the sites of (a) 

Grignon or (b) Versailles as independent test sets. Predictions by models showing the lowest RMSEP and RRMSEP are plotted in green 

(using a training set composed of three independent reference sites to predict Grignon or Versailles as a test set). See Table S5 for more 

details on the training sets of the different models and their site-specific performance statistics. SOC: soil organic carbon. 

 

performance of PARTYSOCv2.0 and PARTYSOCv2.0EU pro- 

vides new insights (1) on the relationships between Rock- 

Eval® parameters and the century-scale persistence of SOC 

and (2) on both the current and potential capabilities of the 

model to partition the centennially stable and active organic 

carbon fraction in topsoils. Based on those insights, (3) we 

plan future developments of the PARTYSOC model to further 

expand its domain of application while reducing its 

prediction error. 

4.1 Rock-Eval® chemical and thermal information is 

related to the century-scale persistence of SOC 

The methodology used to estimate the centennially stable 

SOC proportion in reference topsoils has been revised for the 

second version of the PARTYSOC model (see Sect. 2.1 and 

2.3 and Supplement Table S1), and the training set now 

integrates a wider range of centennially stable SOC contents 

(4.75–15.00 g C kg−1) with a median value of 6.95 g C kg−1 

(n = 7; Table 1). This range covers most of the published 

size estimates of this fraction in topsoils, estimated us- 

ing different methods (Balesdent et al., 1988; Barré et al., 

2010; Buyanovsky and Wagner, 1998b; Cécillon et al., 2018; 

Franko and Merbach, 2017; Hsieh, 1992; Huggins et al., 

1998; Jenkinson and Coleman, 1994; Körschens et al., 1998; 

Rühlmann, 1999). The contribution of each reference site to 

the training set and the inclusion criteria for topsoil samples 

were also modified, and 10 Rock-Eval® parameters not 

considered in the first version of the model were proposed 

as potential predictor variables for this second version of the 

model (see Sect. 2.2 and 2.4 and Supplement Table S1). 

Using this improved design, all Rock-Eval® temperature 

parameters showed positive values of Spearman’s ρ coeffi- 

cient with the proportion of the centennially stable SOC frac- 

tion in topsoils (Table 2), while a few of them showed coun- 

terintuitive significant negative correlations using the train- 

ing set for the first version of PARTYSOC (Cécillon et al., 

2018). This confirms the generic link between SOC ther- 
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mal stability and its in situ biogeochemical stability: cen- 

tennially stable SOC is thermally stable, even though ther- 

mostable SOC fractions are a mixture of centennially sta- 

ble and active SOC (Fig. 1; Barré et al., 2016; Gregorich et 

al., 2015; Plante et al., 2013; Sanderman and Grandy, 2020; 

Schiedung et al., 2017). Some Rock-Eval® temperature pa- 

rameters were within the five most important predictor vari- 

ables for both PARTYSOCv2.0 (T70CO2_OX, T90HC_PYR) and 

PARTYSOCv2.0EU (T50CO2_PYR; Table 2). 

Contrary to the first version of PARTYSOC, the sec- 

ond version tested several Rock-Eval® parameters directly 

linked to soil carbon content as potential predictor variables. 

TOCRE6 was selected as a meaningful predictor variable for 

PARTYSOCv2.0 and PARTYSOCv2.0EU. Its negative correla- 

tion with the centennially stable SOC proportion (Table 2) 

was expected, according to the calculation of the latter (see 

Sect. 2.3). This is in line with results from SOC-dating tech- 

niques and with most multi-compartmental models of SOC 

dynamics, suggesting that the proportion of the most persis- 

tent SOC fraction is a decreasing function of total SOC (Hug- 

gins et al., 1998; Rühlmann, 1999). Indeed, the ex post op- 

timized initial value of the proportion of the inert SOC frac- 

tion for the simple model of SOC dynamics (AMG) is higher 

(0.60 on average) for SOC-depleted temperate topsoils with 

a long-term arable history than for SOC-rich temperate top- 

soils with a long-term grassland history (0.47 on average; 

Clivot et al., 2019). Contrarily, the empirical function com- 

monly used to initialize the size of the inert SOC fraction of 

the multi-compartmental RothC model predicts an increased 

proportion of inert SOC with increased total SOC (Falloon et 

al., 1998). This empirical function needs to be examined in 

light of these results. 

Interestingly, S2 (pyrolyzable volatile hydrocarbon efflu- 

ent) and PC (total pyrolyzable organic carbon), two other 

Rock-Eval® parameters linked to SOC content, showed a 

stronger negative relationship than TOCRE6 with the propor- 

tion of the centennially stable SOC fraction. Both variables 

are among the three most important predictor variables for 

PARTYSOCv2.0 and PARTYSOCv2.0EU, while TOCRE6 was 

ranked sixth or ninth out of the 18 predictor variables (Ta- 

ble 2). Other Rock-Eval® parameters related to the pyrolyz- 

able SOC fraction (PC / TOCRE6 and HI, both negatively re- 

lated to the centennially stable SOC proportion) were also 

important predictor variables for both models. The results 

suggest that a simple decreasing function of total SOC con- 

tent cannot accurately predict the centennially stable SOC 

proportion in topsoils according to the recent report by Clivot 

et al. (2019). They also confirm the generic elemental stoi- 

chiometry of the centennially stable SOC fraction in that it 

is consistently depleted in hydrogen (Barré et al., 2016; Gre- 

gorich et al., 2015; Poeplau et al., 2019), and they illustrate 

the usefulness of the pyrolysis step of Rock-Eval® thermal 

analysis and its volatile hydrocarbon effluent quantification 

to infer the proportion of the centennially stable SOC frac- 

tion in unknown topsoils.  
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4.2 Capability of the second version of PARTYSOC to 

partition the centennially stable and active SOC 

fractions 

 

The training set for the second version of PARTYSOC was 

significantly diversified compared with the first version. It 

now represents wider pedoclimatic conditions (Table S2), 

and it includes one long-term vegetation change site as a 

reference site (La Cabaña). Reference topsoils from the 

Colombian site of La Cabaña fit well into the training set of 

the global model: they did not alter its overall performance, 

as the root mean square errors of PARTYSOCv2.0 (internal or 

random splitting validation procedures) are comparable to 

the ones of the model’s first version, in which the content 

of the centennially stable SOC fraction was inferred 

exclusively from plant-free soils (Fig. 2a, Table 3; Cécillon 

et al., 2018). Similarly, the expansion of the training set to 

new pedoclimates (Supplement Table S2) did not alter the 

performance of the model when assessed using the internal 

or random splitting validation procedures (Fig. 2a, Table 3). 

The predictive ability of the second version of PARTYSOC 

was more thoroughly assessed compared to the first version 

of the model. Specifically, the sensitivity of model per- 

formance to the reference sites included in the training set 

demonstrates that local models – with training sets composed 

of soils from pedoclimates similar to the ones of the soils 

from the prediction set – showed better predictive ability for 

the centennially stable SOC proportion compared to a global 

model (Fig. 3). While the current training set is composed 

of too few reference sites to implement local modelling, this 

suggests that the European version PARTYSOCv2.0EU should 

be preferred to the global version PARTYSOCv2.0 when 

predicting the centennially stable SOC proportion in 

unknown soils from Europe. 

On the other hand, the leave-one-site-out validation pro- 

cedure, the most robust validation procedure (see Sect. 2.5), 

demonstrates that the second version of PARTYSOC is 

currently not capable of accurately partitioning SOC into its 

centennially stable and active fractions in soil samples from 

pedoclimates that differ strongly from the ones included in 

the training set (Fig. 2b, Table 3b). This indicates that, like 

all machine-learning approaches, the PARTYSOC model 

gains progressively more genericity (i.e. capability to fairly 

predict the centennially stable SOC proportion in unknown 

soils) as its training set integrates soils from new 

pedoclimates. In this respect, we consider applying the 

second version of PARTYSOC to unknown soils from 

pedoclimates outside its training set not recommended. The 

sensitivity analysis to the test set, however, shows that 

PARTYSOCv2.0EU reliably partitions SOC kinetic fractions at 

its validation sites for Cambisols and Luvisols (with a mean 

prediction error in the centennially stable SOC proportion of 

0.11; see Sect. 3.4 and Fig. S1). Cambisols and Luvisols are 

the two dominant reference soil groups in Europe, covering 

more than 41 % of European land areas (European 

Commission, 2008). 

Though the model test set does not include all the within-

group pedological variability of Cambisols and Luvisols 

(FAO, 2014), this suggests that PARTYSOCv2.0EU can 

accurately partition SOC into its centennially stable and 

active fractions for a significant portion of northwestern 

European agricultural soils. The relatively high prediction 

error, however, of both PARTYSOCv2.0 and 

PARTYSOCv2.0EU models at Rothamsted (high RRMSEP; 

Table 3), a site developed on a Chromic Luvisol, may be due 

to an inaccurate estimate (overestimation) of the centennially 

stable SOC content at this site. Indeed, a report from an 

ancient LTBF trial at Rothamsted (drain gauge experiment; 

Jenkinson and Coleman, 1994), on the same soil unit as the 

Highfield bare fallow experiment, showed a measured total 

SOC content of 7.9 g C kg−1, which is lower than our current 

estimate of the centennially stable SOC content (9.72 g C 

kg−1; Table 1). Yet, the conditions of the drain gauge 

experiment, with a basic soil pH value of 7.9 due to heavy 

dressing of chalk on Rothamsted’s arable lands before the 

19th century (Avery and Catt, 1995; Jenkinson and Coleman, 

1994), may not be directly comparable to the conditions of the 

Highfield bare fallow experiment, showing acidic pH values 

ranging from 5.2 to 6.3 (Supplement Table S2). 

 
4.3   Future developments of the PARTYSOC model 

 
The very first future improvements to the PARTYSOC 

machine-learning model are to increase the size and further 

expand the pedoclimatic diversity of its training set. A few 

additional LTBF sites and several C3-to-C4-plant (or C4 to 

C3) long-term vegetation change sites (including space-for- 

time substitution, like the site of La Cabaña) could be used to 

achieve this goal. A potential complement lies in a few long- 

term experimental sites with soil archives and treatments 

experiencing contrasting SOC stock changes. Radiocarbon 

measurements on recent and archived soil samples from such 

sites can be used to infer the content of the centennially stable 

SOC fraction in topsoils (Hsieh, 1992), but also in subsoils, 

to allow extending the model to deeper soil horizons. 

Following the method developed by Buyanovsky and 

Wagner (1998b, a) and Huggins et al. (1998), the content of 

the centennially stable SOC fraction can also be estimated in 

a few additional long-term experiments with contrasting 

SOC inputs. A promising complement to these strategies 

comes from numerous long-term sites where time series of 

SOC inputs, outputs, and stocks are well constrained (i.e. 

long-term experiments or long-term monitoring sites in 

various types of ecosystems including arable land, grassland, 

and forest). It is possible to reliably infer the content of the 

centennially stable SOC fraction at these sites using simple 

models of SOC dynamics like AMG (Clivot et al., 2019). 

Combining all these strategies could help significantly 

expand the train ing set of PARTYSOC to soil samples from 

diverse climates, ecosystems, soil types, and soil depths. 

When the training set for PARTYSOC integrates a sufficient 

diversity of soil samples, a second future improvement of the 
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model lies in the comparison of different machine-learning 

algorithms and a test of local modelling approaches, as 

commonly used in soil spectroscopy studies (Dangal et al., 

2019; Gogé et al., 2012; Ramirez-Lopez et al., 2013b, a). 

The independent validation of PARTYSOCv2.0EU at five 

sites with the two dominant reference soil groups in north- 

western Europe presented here (Figs. 2 and S1) constitutes 

significant progress in the metrology of SOC kinetic pools. It 

represents an improvement compared to other approaches that 

consistently fail to achieve a proper separation of active from 

stable SOC (Fig. 1; Hsieh, 1992; von Lützow et al., 2007). 

Methods such as physical and physico-chemical SOC 

fractionation schemes have been developed to initialize the 

size of SOC kinetic pools of models (Skjemstad et al., 2004; 

Zimmermann et al., 2007a), and some of them are now 

implemented for large topsoil sample sets at the national or 

continental scale in Europe (Cotrufo et al., 2019; Vos et al., 

2018) and Australia (Gray et al., 2019; Viscarra Rossel et al., 

2019). A similar implementation in soil monitoring networks 

of Rock-Eval® measurements combined with the second 

version of PARTYSOC can provide a more accurate 

quantification of the functionally different SOC fractions that are 

centennially stable or active (Fig. 1), at least for a portion of 

northwestern European agricultural land areas with Cambisols 

and Luvisols. Large-scale Rock-Eval® measurements and the 

combined application of PARTYSOCv2.0EU are already 

ongoing in the French soil monitoring network for soil quality 

assessment (RMQS; Jolivet et al., 2018). We recommend 

undertaking similar works in other national and international 

soil monitoring networks. The second version of PARTYSOC 

could also be directly employed as an SOC pool partitioning 

method for simple models of SOC dynamics that are built on 

the same dualistic conceptual approach of SOC persistence 

(i.e. active vs. stable SOC pools). The accuracy of these simple 

models, such as AMG, is highly sensitive to the proper 

partitioning of SOC kinetic pools (Clivot et al., 2019) and 

could thus strongly benefit from the second version of 

PARTYSOC. 

We envision a significant contribution of the PARTYSOC 

machine-learning model based on Rock-Eval® thermal 

analysis to the forthcoming large-scale availability of accurate 

information on the size of the centennially stable and active 

SOC fractions. Such accurate information will foster (1) 

initiatives for soil health assessment and monitoring as well 

as (2) modelling works of SOC dynamics and of the climate 

regulation function of soils. 

 

Code and data availability. The Rock-Eval® data for the 105 ref- 

erence topsoil samples in PARTYSOCv2.0 are provided in Table S3 as 

a CSV file. The R script used to extract Rock-Eval® raw data and 

calculate Rock-Eval® parameters, the Rock-Eval® data and the R 

script used to build the PARTYSOCv2.0 and PARTYSOCv2.0EU 

models and test their performance, and the PARTYSOCv2.0EU 

 
model (available as an R script and an R data file; please note 

that predictions of the centennially stable and active SOC con- 

tents – in g C kg−1 – are obtained by multiplying their respective 

proportions by the TOCRE6 Rock-Eval® parameter) can be 

accessed on GitHub at https://github.com/lauric-cecillon/PARTYsoc 

(last access: 17 June 2021) and on Zenodo at the permanent link 

https://doi.org/10.5281/zenodo.4446138 (Cécillon, 2021). 
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A quick analysis of AMG residuals for three initialization 

approaches 

 

Objective:  

Here we examined if the residuals of AMG predictions (i.e., the difference between the AMG 

model predictions and the observed SOC change) for the nine LTE sites introduced in Chapter 

1 of this manuscript were related to any of the pedoclimatic parameters included in the model. 

Moreover, we compared the behaviour of the residuals for three different initialization methods; 

using optimized, default, and PARTYSOC-based pool partitioning to obtain SOC simulations. 

 

How-to:  

Residuals represent the portion of the variability in SOC that is not explained by the model. 

Here we studied the relationship between the residuals and ten variables including time (yr−1), 

temperature (°C), potential evapotranspiration (P_ETP; mm yr−1), initial SOC content 

(SOCinitial; g C kg soil−1), clay content (g kg soil−1), CaCO3 content (g kg soil−1), soil pH, bulk 

density (g cm−3), C/N ratio, and initial SOC stock (QCinitial; tC ha−1).  

We calculated the residuals for a total of 32 trials from the nine LTEs, as the difference between 

simulated and observed total carbon stock change: 

 

𝑨𝑴𝑮 𝒅𝑪𝑺 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 =  𝒅𝑪𝑺𝒔𝒊𝒎 −  𝒅𝑪𝑺𝒐𝒃𝒔 

𝑑𝐶𝑆𝑜𝑏𝑠 =  𝐶𝑆𝑜𝑏𝑠,𝑡2 − 𝐶𝑆𝑜𝑏𝑠,𝑡1  

𝑑𝐶𝑆𝑠𝑖𝑚 =  𝐶𝑆𝑠𝑖𝑚,𝑡2 − 𝐶𝑆𝑜𝑏𝑠,𝑡1 

 

where CSobs=observed carbon stock at time t, CSsim=carbon stock at time t simulated with 

AMG, t1=start of simulation period, t2=end of simulation period 
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Plotting the residuals against the different parameters for each trial allowed us to find the best 

model describing the observed relationship; here linear regression. Only in cases where the 

correlation was strong and the linear regression parameters significant, could a part of the 

variability not accounted for by the model be explained by the corresponding variable. 

 

Results: 

As expected due to the exceptional performance of AMG when correctly initialized, we found 

very low values for the residuals of the AMG model initialized by optimized pool partitioning 

(Fig. 1). These were very weakly correlated to two out of ten parameters examined here, clay 

content (R2=0.12) and soil pH (R2=0.15; Fig.1; Table 1). For the default AMG initialization as 

we show in Chapter 1 the accuracy of the model was less good (i.e., residuals become more 

important; Fig. 2). The source of this uncertainty seems to be related to the consideration of 

initial SOC content (or initial SOC stocks) since there was a strong correlation between AMG 

residuals and both initial SOC content (R2=0.53) and SOC stocks (R2=0.42; Fig. 2; Table 2). 

As for the PARTYSOC-based initialization, it also increased the residuals of AMG predictions 

compared to the AMG initialization using optimized pool partitioning (Fig. 3). However, the 

correlations of the residuals to various parameters, namely time (R2=0.22), potential 

evapotranspiration (R2=0.37), clay content (R2=0.36), soil pH (R2=0.25), and bulk density 

(R2=0.16), was weaker compared to the default AMG initialization (Fig. 3; Table 3). 

    



Kanari Eva — Thèse de doctorat — 2022 

264  

 

Figure 1: Residual analysis of the AMG model initialized by optimized pool partitioning.  

 

 

 

Table 1: Linear regression parameters of the relationships between variables and AMG 

residuals after optimized AMG pool partitioning. Significant parameters are shown in 

bold. 

Variable R
2
 Slope p.value Intercept p.value 

Time 0.06 0.05 1.47e-01 -1.23 2.07e-01 

Temp 0.00 0.03 9.27e-01 -0.27 9.45e-01 

P_ETP 0.09 0 7.68e-02 0.23 5.20e-01 

SOC
initial

 0.03 0.06 3.58e-01 -0.62 4.69e-01 

Clay 0.12 0.01 4.86e-02 -1.86 7.54e-02 

CaCO
3
 0.01 0.01 5.53e-01 0.01 9.81e-01 

pH 0.15 1.00 2.59e-02 -6.69 2.88e-02 

Density 0.02 5.65 4.3e-01 -7.78 4.35e-01 

C/N ratio 0.11 -0.53 5.77e-02 5.17 5.56e-02 

QC
initial

 0.01 0.02 5.07e-01 -0.64 5.82e-01 
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Figure 2: Residual analysis of the AMG model initialized by default pool partitioning.  

 

 

Table 2: Linear regression parameters of the relationships between variables and AMG 

residuals after default AMG pool partitioning. Significant parameters are shown in bold.  

 

Variable R
2
 Slope p.value Intercept p.value 

Time 0.00 -0.02 8.21e-01 2.81 2.79e-01 

Temp 0.00 -0.31 7.2e-01 5.92 5.63e-01 

P_ETP 0.01 0.00 5.67e-01 2.15 3.26e-02 

SOC
initial

 0.53 0.64 9.73e-07 -5.93 4.15e-04 

Clay 0.01 0.01 5.16e-01 0.57 8.39e-01 

CaCO
3
 0.05 0.05 1.92e-01 1.81 7.44e-02 

pH 0.02 0.88 4.6e-01 -3.73 6.47e-01 

Density 0.09 -31.46 8.26e-02 46.07 6.87e-02 

C/N ratio 0.00 0.25 7.34e-01 -0.14 9.85e-01 

QC
initial

 0.42 0.22 2.98e-05 -8.18 1.04e-03 

120  5.5 8.5 1.30 
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Figure 3: Residual analysis of the AMG model ini tialized by PARTYSOC-based pool 

partitioning. 

 

Table 3: Linear regression parameters of the relationships between variables and AMG 

residuals after AMG pool partitioning according to PARTY SOC . Significant parameters 

are shown in bold.  
 

Variable R
2
 Slope p.value Intercept p.value 

Time 0.22 0.14 5.25e-03 -4.08 9.83e-03 

Temp 0.00 -0.16 7.82e-01 1.91 7.76e-01 

P_ETP 0.37 -0.01 1.28e-04 0.53 3.01e-01 

SOC
initial

 0.03 -0.11 3.02e-01 1.41 3.31e-01 

Clay 0.36 0.03 1.64e-04 -5.80 3.76e-04 

CaCO
3
 0.00 0.00 8.51e-01 0.01 9.86e-01 

pH 0.25 2.23 2.44e-03 -15.1 2.67e-03 

Density 0.16 27.54 1.85e-02 -38.29 1.87e-02 

C/N ratio 0.37 -1.66 1.24e-04 16.09 1.32e-04 

QC
initial

 0.05 -0.05 1.89e-01 2.49 2.02e-01 

120  5.5 8.5 1.30 
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Discussion and conclusions 

First, weak and marginally significant correlations between examined variables and residuals 

of AMG initialized using ex post optimized pool partitioning show that this version of the model 

is able to account for practically the entire variability in SOC. Even though the correlations 

between clay content and soil pH could be an indication of the importance of these two 

parameter as controls of SOC, their weak value shows that only very little space for 

improvement is left regarding the parametrization of the model. Better calibration of the model 

functions related to pH and clay content could eventually slightly improve the performance of 

the model, at least for the sites tested here. Second, for the initialization of AMG using default 

pool partitioning strong and significant correlations between residuals and initial SOC content 

and SOC stocks were observed. Imprecise information regarding initial SOC pool partitioning 

resulted in higher residuals. By definition, higher residuals can also be expressed as an 

underestimation of the observed change in SOC stocks. We interpret the weaker correlations 

observed between residuals and various parameters as a weaker and less biased uncertainty 

caused by the PARTYSOC-based initialization compared to the initialization by default.  

 

Overall the AMG model performs well, although the initialization method can influence the 

model performance and the behaviour of residuals. In agreement with Clivot et al. (2019) we 

underline once more the importance of correct pool initialization for the precision of 

simulations. 

 

DISCLAIMER: This part was conducted as a conceptual exercise and concerns the model 

performance only for the sites used here.  

 


