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Chapter 1

Introduction

Throughout this thesis M is a connected smooth finite dimensional manifold. All tensor

fields, maps, connections...etc, are assumed to be smooth. The connectedness is needed,

for example, to conclude that a function is constant when its gradient vanishes on M ,

and also for reduction results.

1.1 Overview

In this chapter we introduce basic notions and results concerning biharmonic and bicon-

servative submanifolds. In Sections 1.2 and 1.3 we recall some definitions and properties

of Riemannian manifolds and Riemannian submanifolds which are foundation stones in

our work. Then, in Section 1.4, after recovering some definitions and notions of bihar-

monic submanifolds in arbitrary target manifolds, we focus on the case when the target

manifold is a Euclidean sphere, as our next chapter is concerned with spheres. The last

section of the introduction mainly tackles biconservative submanifolds in complex space

forms, where we present some classification results based on previous research works.

1.2 Riemannian manifolds

Let (M, g) be a Riemannian manifold. The Riemannian metric g defines the musical

isomorphisms flat

♭ : TpM → T ∗
pM

Xp 7−→ X♭
p,

by X♭
p(Yp) = g(Xp, Yp), ∀Yp ∈ TpM , and its inverse sharp

♯ = ♭−1 : T ∗
pM → TpM

αp 7−→ α♯p,

7
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by αp(Yp) = gp(α
♯
p, Yp), ∀ Yp ∈ TpM .

We can approach these correspondences in a global way. The map

♭ : C(TM) → Λ1(M) = C(T ∗M)

X 7−→ X♭, X♭(Y ) = g(X,Y ), ∀Y ∈ C(TM),

is well-defined, i.e. X♭ ∈ Λ1(M), C∞-linear and a bijection.

Denote

♯ = ♭−1 : Λ1(M) → C(TM)

α 7−→ α♯,

and we have

α(Y ) = g(α♯, Y ), ∀Y ∈ C(TM).

The most important example is the gradient of a function

(df)♯ = grad f

i.e.

g(grad f,X) = df(X) = X(f), ∀X ∈ C(TM).

If ∇ denotes the Levi-Civita connection of the metric g, then

∇Xα
♯ = (∇Xα)

♯ , ∀α ∈ Λ1(M), X ∈ C(TM).

The curvature tensor field of M , R ∈ C(T 1
3 (M)), is defined with the convention

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (1.2.1)

where X,Y ∈ C(TM) and ∇ is the Levi-Civita connection on M .

The (0, 4)-curvature tensor field of M , also denoted by R and, sometimes, simply

called the curvature tensor field, is given by

R(X,Y, Z,W ) = g(R(X,Y )W,Z) ∀X,Y, Z,W ∈ C(TM). (1.2.2)

The difference between the two tensors will be clear from the context.

The sectional curvature of a Riemannian manifold (M, g) for a 2-plane α spanned

by two linearly independent vectors X and Y is given by

RiemM (α) =
R(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2
. (1.2.3)

The Ricci tensor field of M , either as a (0, 2) or a (1, 1)-tensor, is

g(Ricci(X), Y ) = Ricci(X,Y ) = trace{Z → R(Z,X)Y }, (1.2.4)
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where X,Y ∈ C(TM).

The scalar curvature of M , is given by

Scal = traceRicci . (1.2.5)

An m-dimensional Riemannian manifold of constant sectional curvature c, i.e.

RiemM (α) = c for any 2-plane α tangent to M , will be called a real space form and

denoted by Mm(c). Its curvature tensor field is

R(X,Y )Z = c {g(Y, Z)X − g(X,Z)Y } , (1.2.6)

and its (0, 4) curvature tensor field is

R(X,Y, Z,W ) = c {g(X,Z)g(Y,W )− g(X,W )g(Y, Z)} . (1.2.7)

Its Ricci tensor field is

Ricci(X,Y ) = c(m− 1)g(X,Y ), (1.2.8)

or as a (1,1)-tensor

Ricci(X) = c(m− 1)X,

so

Scal = cm(m− 1). (1.2.9)

The Riemannian product manifold (M ×N, gM + gN ) of two Riemannian manifolds

(M, gM ) and (N, gN ), where gM and gN are the Riemannian metrics on M and N

respectively, is defined as the manifold M ×N equipped with the metric

gM×N ((X1, Y1), (X2, Y2)) = gM (X1, X2) + gN (Y1, Y2).

for all X1, X2 ∈ C(TM) and Y1, Y2 ∈ C(TN). Here we use the standard identifications

T(p,q)(M ×N) = TpM ⊕ TqN, (p, q) ∈M ×N,

and the pair (X,Y ) ∈ C(T (M ×N)) is defined by

(X,Y )(p, q) = (X(p), Y (q)).

Also, X ∈ C(TM) is identified with X ∈ C(T (M ×N)), X(p, q) = (X(p), 0).

Lemma 1.2.1. The Levi-Civita connection of the Riemannian product manifold (M ×
N, gM + gN ) satisfies ∇M×N

(X1,Y1)
(X2, Y2) = (∇M

X1
X2,∇N

Y1
Y2).
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Proof. Using Koszul formula (see for example [20]), we have

2gM×N
(
∇M×N

(X1,Y1)
(X2, Y2) , (X3, Y3)

)
= (X1, Y1) gM×N ((X2, Y2) , (X3, Y3))

+ (X2, Y2) gM×N ((X1, Y1) , (X3, Y3))

− (X3, Y3) gM×N ((X1, Y1) , (X2, Y2))

+ gM×N ([(X1, Y1) , (X2, Y2)] , (X3, Y3))

− gM×N ([(X1, Y1) , (X3, Y3)] , (X2, Y2))

+ gM×N ([(X2, Y2) , (X3, Y3)] , (X1, Y1)) ,

where X1, X2, X3 ∈ C(TM) and Y1, Y2, Y3 ∈ C(TN). But

(X1, Y1) gM×N ((X2, Y2) , (X3, Y3)) = (X1, Y1) (gM (X2, X3) + gN (Y2, Y3))

= X1gM (X2, X3) + Y1gN (Y2, Y3) .

Similarly,

(X2, Y2) gM×N ((X1, Y1) , (X3, Y3)) = X2gM (X1, X3) + Y2gN (Y1, Y3)

and

(X3, Y3) gM×N ((X1, Y1) , (X2, Y2)) = X3gM (X1, X2) + Y3gN (Y1, Y2) .

Also, we have

gM×N ([(X1, Y1) , (X2, Y2)] , (X3, Y3))

= gM×N ((X1, Y1) (X2, Y2)− (X2, Y2) (X1, Y1) , (X3, Y3))

= gM×N ((X1X2, Y1Y2)− (X2X1, Y2Y1) , (X3, Y3))

= gM×N (([X1, X2] , [Y1, Y2]) , (X3, Y3))

= gM ([X1, X2] , X3) + gN ([Y1, Y2] , Y3) .

Similarly,

gM×N ([(X1, Y1) , (X3, Y3)] , (X2, Y2)) = gM ([X1, X3] , X2) + gN ([Y1, Y3] , Y2)

and

gM×N ([(X2, Y2) , (X3, Y3)] , (X1, Y1)) = gM ([X2, X3] , X1) + gN ([Y2, Y3] , Y1) .
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Hence,

2gM×N
(
∇M×N

(X1,Y1)
(X2, Y2) , (X3, Y3)

)
= X1gM (X2, X3) + Y1gN (Y2, Y3)

+X2gM (X1, X3) + Y2gN (Y1, Y3)

−X3gM (X1, X2) + Y3gN (Y1, Y2)

+ gM ([X1, X2] , X3) + gN ([Y1, Y2] , Y3)

− gM ([X1, X3] , X2) + gN ([Y1, Y3] , Y2)

− gM ([X2, X3] , X1) + gN ([Y2, Y3] , Y1)

= 2gM×N
((
∇M
X1
X2,∇N

Y1Y2
)
, (X3, Y3)

)
.

Therefore,

∇M×N
(X1,Y1)

(X2, Y2) =
(
∇M
X1
X2,∇N

Y1Y2
)
.

Then the curvature tensor field of the product manifold is

RM×N ((X1, Y1), (X2, Y2))(X3, Y3) =
(
RM (X1, X2)X3, R

N (Y1, Y2)Y3
)
, (1.2.10)

where RM and RN are the curvature tensor fields of (M, gM ) and (N, gN ) respectively,

X1, X2, X3 ∈ C(TM) and Y1, Y2, Y3 ∈ C(TN), and similarly, the (0, 4)-curvature tensor

field is

RM×N ((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4)) =R
M (X1, X2, X3, X4)

+RN (Y1, Y2, Y3, Y4), (1.2.11)

where RM and RN are the (0, 4)-curvature tensor fields of (M, gM ) and (N, gN ) respect-

ively, X1, X2, X3, X4 ∈ C(TM) and Y1, Y2, Y3, Y4 ∈ C(TN).

The Ricci tensor field of (M ×N, gM + gN ) is

RicciM×N ((X1, Y1), (X2, Y2)) = RicciM (X1, X2) + RicciN (Y1, Y2), (1.2.12)

where RicciM and RicciN are the Ricci tensor fields of (M, gM ) and (N, gN ) respectively,

and its scalar curvature is

ScalM×N = ScalM +ScalN , (1.2.13)

where ScalM and ScalN are the scalar curvatures of (M, gM ) and (N, gN ) respectively.

If (M(c1)×N(c2), gM + gN ) is a Riemannian product of space forms, where c1 and

c2 are the constant sectional curvatures of (M, gM ) and (N, gN ) respectively, then its

curvature tensor is

RM×N ((X1, Y1), (X2, Y2))(X3, Y3)

= (c1 {gM (X2, X3)X1 − gM (X1, X3)X2} , c2 {gN (Y2, Y3)Y1 − gN (Y1, Y3)Y2}) . (1.2.14)
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Recall the Divergence Theorem [6] relating the integral over a compact domain, with

smooth boundary of the manifold Mm, of the divergence of a one-form (or vector field)

to its values on the boundary. We will use this theorem repeatedly.

Proposition 1.2.2. (Divergence Theorem) Let D be a compact domain with smooth

boundary of a Riemannian manifold (Mm, g). Let θ be a 1-form and X a vector field

defined on an open neighborhood of D. Then
∫

D
div θ dvg =

∫

∂D
θ(η) ∂vg

and ∫

D
divX dvg =

∫

∂D
〈X, η〉 ∂vg,

where ∂D denotes the boundary of D, ∂vg denotes the induced volume form on the

boundary and η = η(x) denotes the outward pointing unit normal at a point x ∈ ∂D.

Corollary 1.2.3. For any 1-form θ and vector field X with compact support included

in D, we have ∫

D
div θ dvg = 0 and

∫

D
divX dvg = 0.

We recall below the definition of a vector bundle.

Definition 1.2.4. Let E and M be two manifolds and π : E → M a map. Then E is

called a vector bundle of rank k over M if the following two conditions are satisfied:

1. π−1(p) is a k-dimensional vector space for each p ∈M .

2. There exists an open covering {Ui} of M and diffeomorphisms hi : Ui × Rk →
π−1(Ui) such that ϕi,p : Rk → π−1(p) are isomorphisms of vector spaces. In this

case, gji(p) = ϕ−1
j,p ◦ϕi,p : Rk → Rk, p ∈ Uj ∩Ui, is an element of the general linear

group GL(k;R).

Prior to Bochner’s work, Weitzenböck developed a formula very similar to the Boch-

ner Formula (see for example [35]).

Theorem 1.2.5. (Weitzenböck Formula)[35] Let π : E →Mm be a Riemannian vector

bundle on a Riemannian manifold Mm. Then for any r ≥ 1 and σ ∈ C (ΛrT ∗M ⊗ E),

the space of smooth r-forms on Mm with values in the vector bundle E, we have

∆Hodgeσ = − trace∇2σ + S(σ),

where the operator S ∈ C (hom (ΛrT ∗M ⊗ E,ΛrT ∗M ⊗ E)) is defined by S = 0 if r = 0,

and

(Spσ)(Y1, . . . , Yr) =
∑

i,a

(−1)a+1 (R (Xi, Ya)σ)
(
Xi, Y1, . . . , Ŷa, . . . , Yr

)
,
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if r ≥ 1, where {Xi}i=1,...,m is an orthonormal basis in TpM . The curvature R is given

by

(R (X,Y )σ) (X1, . . . , Xr) = RE(X,Y ) (σ (X1, . . . , Xr))

−
r∑

a=1

σ
(
X1, . . . , R

M (X,Y )Xa, . . . , Xr

)
.

The Bochner Formula follows from the Weitzenböck Formula.

Theorem 1.2.6. (Bochner Formula)[35] Let π : E → Mm be a Riemannian vector

bundle on a Riemannian manifold Mm. Then for any r ≥ 1 and σ ∈ C (ΛrT ∗M ⊗ E),

the Bochner Formula is given by

1

2
∆|σ|2 =

〈
∆Hodgeσ, σ

〉
− |∇σ|2 − 〈S (σ) , σ〉 ,

where ∆|σ|2 = − div grad |σ|2.

The following lower bound was proved by Lichnerowicz [61], while Obata [76] con-

sidered the equality case.

Theorem 1.2.7. (Lichnerowicz-Obata) Let M be an m-dimensional compact manifold

without boundary. Suppose that the Ricci curvature of M is bounded from below by

RicciM (X,X) ≥ (m− 1)ag(X,X), X ∈ C(TM),

for some constant a > 0, then the first non-zero eigenvalue of the Laplacian on M

satisfies

λ1 ≥ ma.

Moreover, equality holds if and only if M is isometric to a standard sphere of radius

1/
√
a.

1.3 Riemannian submanifolds

A submanifold of a given Riemannian manifold (Nn, h) is a pair (Mm, ϕ), where Mm

is a manifold and ϕ : M → N an immersion. We will always equip M with the

induced metric g = ϕ∗h, so ϕ : (M, g) → (N, h) becomes an isometric immersion

and, for simplicity, write ϕ : M → N without mentioning the metrics. We also write

ϕ :M → N , or even M , instead of (M,ϕ).

To fix the notations, we recall the first-order fundamental equations of a submanifold

in a Riemannian manifold, as these equations define the second fundamental form, the

shape operator and the connection in the normal bundle. Let ϕ : Mm → Nn be an
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isometric immersion. For each p ∈ M , Tϕ(p)N can be written as the orthogonal direct

sum

Tϕ(p)N = dϕ(TpM)⊕ dϕ(TpM)⊥, (1.3.1)

and NM =
⋃
p∈M

dϕ(TpM)⊥ is referred to as the normal bundle of ϕ (or of M) in N .

Denote by ∇ and ∇N the Levi-Civita connections on M and N , respectively, and

by ∇ϕ the induced connection in the pull-back bundle ϕ−1(TN) =
⋃
p∈M

Tϕ(p)N . Taking

into account the decomposition (1.3.1), we obtain the Gauss formula

∇ϕ
Xdϕ(Y ) = dϕ(∇XY ) +B(X,Y ), X, Y ∈ C(TM).

The symmetric tensor field B ∈ C(⊙2T ∗M ⊗ NM) is called the second fundamental

form of M in N , T ∗M being the cotangent bundle of M .

Definition 1.3.1. Let ϕ : Mm → Nn be an isometric immersion. If the second

fundamental form B vanishes then M is called totally geodesic.

The mean curvature vector field of M in N is then defined as the section of the

normal bundle NM

H =
1

m
traceB,

where the trace is taken with respect to the metric g.

We will often indicate metrics on various vector bundles by the same symbol 〈·, ·〉.
If η ∈ C(NM), the Weingarten formula is

∇ϕ
Xη = −dϕ(Aη(X)) +∇⊥

Xη, X ∈ C(TM),

where Aη ∈ C(T ∗M ⊗ TM) is called the shape operator of M in N in the direction

η, and ∇⊥ is the induced connection in the normal bundle. The tensors B and A are

related by

〈B(X,Y ), η〉 = 〈Aη(X), Y 〉 ,

for all X, Y ∈ C(TM), η ∈ C(NM).

For hypersurfaces, once we have chosen the unit normal vector field η, we can define

the mean curvature function by

f =
1

m
traceA,

where A = Aη. The mean curvature vector field H is given by

H = fη.
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Usually, when dealing with hypersurfaces, we assume them to be orientable (so there

exists two unit normal vector fields globally defined), therefore η, A and f are globally

defined. However, quantities like f2, A(grad f), |A|2, or expressions like ∆f = mf have

a global meaning, even if M is not orientable.

When confusion is unlikely, since locally the immersion ϕ is an embedding, we

identify M with its image by ϕ, X with dϕ(X) and ∇ϕ
Xdϕ(Y ) with ∇N

XY . With this

in mind, we can re-write the Gauss and the Weingarten formulas as

∇N
XY = ∇XY +B(X,Y ),

and

∇N
XY = −Aη(X) +∇⊥

Xη.

Next, we introduce some classes of submanifolds which are useful for our work.

Definition 1.3.2. Let ϕ :Mm → Nn be an isometric immersion. If the mean curvature

vector field H vanishes then ϕ is called a minimal immersion.

Definition 1.3.3. Let Mm be a submanifold of a Riemannian manifold Nn. If the

mean curvature vector field H of Mm is parallel in the normal bundle, i.e., ∇⊥H = 0,

then Mm is called a Parallel Mean Curvature (PMC) submanifold.

Definition 1.3.4. Let Mm be a submanifold of a Riemannian manifold Nn. If the

mean curvature vector field H has a constant norm, i.e. |H| is constant, then it is

called a Constant Mean Curvature (CMC) submanifold.

Now, we introduce two definitions for the case when the shape operator adopts a

very simple form.

Definition 1.3.5. A submanifold ϕ : Mm → Nn is called pseudo-umbilical if AH =

|H|2 I, where I is the identity tensor field of type (1, 1).

Definition 1.3.6. A hypersurface ϕ : Mm → Nm+1 is called umbilical if A = fI,

where I is the identity tensor field of type (1, 1) and f is the mean curvature function.

Remark 1.3.7. Any minimal submanifold is CMC, PMC and pseudo-umbilical. Of

course, a minimal hypersurface is not necessarily umbilical; a minimal hypersurface is

umbilical if and only if it is totally geodesic.

Consider ϕ : Mm → Nn a submanifold of N . Let {Ei}mi=1 be a local orthonormal

frame field on Mm and tangent to Mm, and {Ea}na=m+1 a local orthonormal frame field

on Mm normal to Mm. Then (using Gram-Schmidt) the frame field {EA}nA=1 along

Mm can be extended to a local orthonormal frame field defined on an open subset of
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Nn, tangent to Nn and denoted in the same way. We note that the pull-backs of the

1-forms {ωa} on M vanish, where {ωA} the dual basis of {EA}, and we simply write

ωa = 0 on M.

Denote by
{
ωBA
}

the Levi-Civita connection 1-forms corresponding to {EA} and ∇,

i.e. on Nn we have

∇·EA = ωBA (·)EB,

and by {ωA} the dual basis of {EA}.
We recall that the

{
ωBA
}

are the unique 1-forms on Nn such that

dωB = −ωBA ∧ ωA

and

ωBA + ωAB = 0.

The curvature forms
{
ΩAB
}

associated to the orthonormal frame
{
ωA
}

are defined by

dωAB = −ωAC ∧ ωCB +ΩAB.

We have

ΩAB +ΩBA = 0

and

ΩAB =
1

2
RABCDω

C ∧ ωD,

where RABCD is defined by

R(EC , ED)EB = RABCDEA.

Remark 1.3.8. For the particular case n = 2, we have

dω1
2 = Kω1 ∧ ω2,

where K is the Gaussian curvature of N2.

Remark 1.3.9. For the exterior product we choose the convention

ω1 ∧ ω2 = ω1 ⊗ ω2 − ω2 ⊗ ω1,

for 1-forms ω1, ω2 . Then, the exterior differential of ω is intrinsically defined by

dω (X,Y ) = X (ω(Y ))− Y (ω(X))− ω ([X,Y ]) .
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Along M , we have

∇EiEj = ωAj (Ei)EA.

On the other hand,

∇EiEj = ∇EiEj +B(Ei, Ej),

thus, comparing the tangent and the normal parts, we obtain

∇EiEj = ωkj (Ei)Ek,

and

B(Ei, Ej) = ωaj (Ei)Ea.

We note that the pull-backs of the 1-forms ωkj on M , also denoted by ωkj , coincide with

the 1-forms defined by {Ei} and ∇.

Similarly, on M we have

∇EiEa = ωBa (Ei)EB,

and

∇EiEa = ∇⊥
EiEa −AEaEi.

By comparing the tangent and the normal parts of both equations, we obtain

∇⊥
EiEa = ωba(Ei)Eb, (1.3.2)

and

−AEaEi = ωja(Ei)Ej .

In the following we introduce the fundamental equations for submanifolds (see for

example [20]).

Proposition 1.3.10. (Gauss equation). Let ϕ :Mm → Nn be a submanifold. Then

〈
RN (X,Y )Z,W

〉
= 〈R(X,Y )Z,W 〉 − 〈B(X,W ), B(Y, Z)〉+ 〈B(Y,W ), B(X,Z)〉 ,

(1.3.3)

where X, Y , Z, W ∈ C(TM).

If Mm is a hypersurface in a space form Nm+1(c), then the Gauss equation becomes

R(X,Y )Z = c (〈Y, Z〉X − 〈X,Z〉Y ) + 〈A(Y ), Z〉A(X)− 〈A(X), Z〉A(Y )

for any X,Y, Z ∈ C(TM).
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Proposition 1.3.11. Let ϕ :Mm → Nm+1 be a hypersurface. Then we have

RicciM (X,Y ) =RicciN (X,Y )− 〈AX,AY 〉+mf〈AX, Y 〉
+ 〈RN (X, η)Y, η〉,

and

ScalM = ScalN −|A|2 +m2f2 − 2RicciN (η, η), (1.3.4)

where A is the shape operator of M in N , X, Y are tangent vector fields on M and η

is the unit normal vector field.

Corollary 1.3.12. Let ϕ : Mm → Nm+1(c) be a hypersurface in a space form. Then

we have

RicciM (X,Y ) = c(m− 1) 〈X,Y 〉+mf〈AX, Y 〉 − 〈AX,AY 〉, (1.3.5)

and

ScalM = cm(m− 1) +m2f2 − |A|2 . (1.3.6)

where A is the shape operator of M in N , X, Y are tangent vector fields on M and η

is the unit normal vector field.

Proof. As ScalN = cm(m + 1) and RicciN = cmI, where I is the identity operator,

replacing in (1.3.4), we obtain

|A|2 = cm(m− 1) +m2f2 − ScalM .

Proposition 1.3.13. (Codazzi equation). Let ϕ :Mm → Nn be a submanifold. Then

(∇XAη) (Y )− (∇YAη) (X) = A∇⊥
Xη

(Y )−A∇⊥
Y η

(X)−
(
RN (X,Y )η

)⊤
,

where X, Y ∈ C(TM) and η ∈ C(NM), or equivalently,
(
∇⊥
XB
)
(Y, Z)−

(
∇⊥
YB
)
(X,Z) =

(
RN (X,Y )Z

)⊥
, X, Y, Z ∈ C(TM), (1.3.7)

where (
∇⊥
XB
)
(Y, Z) = ∇⊥

XB(Y, Z)−B(∇XY, Z)−B(Y,∇XZ).

In particular, if N is a space form the Codazzi equation becomes

(∇XAη) (Y )− (∇YAη) (X) = A∇⊥
Xη

(Y )−A∇⊥
Y η

(X),

or, equivalently, (
∇⊥
XB
)
(Y, Z) =

(
∇⊥
YB
)
(X,Z) .

If Mm is moreover a hypersurface in Nm+1(c), then the Codazzi equation becomes

(∇XA)(Y )− (∇YA)(X) = 0.
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The following result holds for any submanifold in a Riemannian manifold, where by

tracing the above Codazzi equation we obtain the following (see for example [24,62]).

Proposition 1.3.14. Let ϕ :Mm → Nn be a submanifold. Then

trace∇AH =
m

2
grad

(
|H|2

)
+ traceA∇⊥

· H
(·) + trace

(
RN (·, H) ·

)⊤
. (1.3.8)

Corollary 1.3.15. Let ϕ :Mm → Nn(c) be a submanifold, c ∈ R. Then

trace∇AH =
m

2
grad

(
|H|2

)
+ traceA∇⊥

· H
(·). (1.3.9)

Proposition 1.3.16. (Ricci equation) Let ϕ :Mm → Nn be a submanifold. Then, for

X, Y ∈ C(TM) and η ∈ C(NM)

(RN (X,Y )η)⊥ = R⊥(X,Y )η +B(Aη(X), Y )−B(X,Aη(Y )),

or, equivalently,

〈
RN (X,Y )η, ξ

〉
=
〈
R⊥(X,Y )η, ξ

〉
− 〈[Aη, Aξ]X,Y 〉 (1.3.10)

where ξ ∈ C(NM), and [Aη, Aξ] = AηAξ −AξAη.

Theorem 1.3.17. An umbilical hypersurface in a space form is CMC.

Next, we recall the fundamental theorem for submanifolds [19].

Theorem 1.3.18.

1. Let Mm be a simply connected Riemannian manifold, π : E → M a Riemannian

vector bundle of rank k with a compatible connection ∇, and B a symmetric section

of the homeomorphism bundle hom(TM×TM,E) ≡ (TM⊗TM)∗⊗E = (TM)∗⊗
(TM)∗⊗E, i.e. B : C(TM)×C(TM) → E is a C∞(M)- bilinear and symmetric

map. Define, for each local section η of E, a map Aη : C(TM) → C(TM) by

〈Aη(X), Y 〉 = 〈B(X,Y ), η〉, X, Y ∈ C(TM).

For submanifolds of space forms, if, for some c ∈ R, B and ∇ satisfy the Gauss,

Codazzi and Ricci equations, then there is an isometric immersion ϕ : Mm →
Nn=m+k(c), and a vector bundle isomorphism ϕ̃ : C(E) → C(NM) along ϕ, such

that for every X,Y ∈ C(TM) and any local sections η, ξ of E:

〈ϕ̃(η), ϕ̃(ξ)〉 = 〈η, ξ〉, ϕ̃(B(X,Y )) = B̃(X,Y ), ϕ̃(∇Xη) = ∇⊥
X ϕ̃(η),

where B̃ and ∇⊥ are the second fundamental form, and the normal connection of

ϕ, respectively.
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2. Suppose that ϕ and ψ are two isometric immersions of a connected manifold Mm

into Nn=m+k(c). Let NMϕ, Bϕ and ∇⊥ϕ denote the normal bundle, the second

fundamental form and the normal connection of ϕ, respectively; and let NMψ,

Bψ and ∇⊥ψ be the corresponding objects for ψ. If there exists a vector bundle

isomorphism ˜̃ϕ : C(NM)ϕ → C(NM)ψ such that, for every X, Y ∈ C(TM) and

every η, ξ ∈ C(NM)ϕ:

〈
˜̃ϕ(η), ˜̃ϕ(ξ)

〉
= 〈η, ξ〉 , ˜̃ϕ(Bϕ(X,Y )) = Bψ(X,Y ), ˜̃ϕ(∇⊥ϕ

X η) = ∇⊥ψ
X

˜̃ϕ(η),

then there is an isometry F : Nn(c) → Nn(c) such that

ψ = F ◦ ϕ and dF |NMϕ = ˜̃ϕ.

Theorem 1.3.19. (The fundamental theorem for hypersurfaces)

1. Let Mm be a simply connected Riemannian manifold and let A : C(TM) →
C(TM) be a symmetric tensor field of type (1, 1) satisfying the Gauss and Codazzi

equations in the case of constant sectional curvature c. Then there is an isometric

immersion ϕ : Mm → Nm+1(c) such that A = Aη, for some unit normal vector

field η ∈ C(NM), where Aη denotes the shape operator of the immersion ϕ.

2. Let ϕ :Mm → Nm+1(c) and ψ :Mm → Nm+1(c) be two connected hypersurfaces,

and let ϕ̃ : C(NM)ϕ → C(NM)ψ be one of the two vector bundle isomorphisms.

Suppose that Bψ(X,Y ) = ˜̃ϕ(Bϕ(X,Y )) or Bψ(X,Y ) = − ˜̃ϕ(Bϕ(X,Y )), for every

X, Y ∈ C(TM), where Bψ and Bϕ denote, respectively, the second fundamental

forms of ψ and ϕ. Then there exists an isometry F : Nm+1(c) → Nm+1(c) such

that
{

ψ = F ◦ ϕ
dF |NMϕ = ˜̃ϕ or dF |NMϕ = ˜̃ϕ.

1.4 Biharmonic submanifolds

Denote by C∞(M,N) the space of smooth maps ϕ : (M, g) → (N, h) between two

Riemannian manifolds. A map ϕ ∈ C∞(M,N) is called harmonic if it is a critical point

of the energy functional

E : C∞(M,N) → R, E (ϕ) =
1

2

∫

M
|dϕ|2 dvg.

It is characterized by the vanishing of its tension field

τ(ϕ) = trace∇dϕ = 0.
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The tension field is a smooth section of the pull-back bundle ϕ−1(TN).

An isometric immersion, is a critical point of the energy functional if and only if it

is a minimal immersion, i.e. a critical point of the volume functional [36], because

τ(ϕ) = mH.

The study of biharmonic maps was introduced by G.-Y. Jiang in 1986 [54], as critical

points of the bienergy functional

E2 : C
∞(M,N) → R, E2(ϕ) =

1

2

∫

M
|τ(ϕ)|2 dvg.

The associated Euler-Lagrange equation is given by the vanishing of the bitension field

τ2(ϕ) = −∆τ(ϕ)− traceRN (dϕ(·), τ(ϕ))dϕ(·) = 0, (1.4.1)

where, in this case, as r = 0 in Theorem 1.2.5,

∆ = − trace∇2.

This was first suggested by J. Eells and L. Lemaire in [35], as a variation on the

theme of harmonic maps, they considered polyharmonic maps, i.e. critical points of the

functional

Fk(ϕ) =
1

2

∫

M
|(d+ d∗)k(ϕ)|2 dvg, k ∈ N∗,

so that F2(ϕ) = E2(ϕ). Biharmonic maps generalize harmonic maps, and harmonic

maps are clearly biharmonic. Using a simple Bochner formula, G.-Y. Jiang proved

that biharmonic maps from a compact manifold to a non-positively curved space are

harmonic, so the first interesting target manifold is the Euclidean sphere. Biharmonic

submanifolds are defined as isometric immersions which are biharmonic maps.

Definition 1.4.1. Let ϕ : (M, g) → (N, h) be a smooth map between two Riemannian

manifolds. If ϕ is biharmonic non-harmonic map then it is called proper-biharmonic.

In [24], B.-Y. Chen independently defined biharmonic submanifolds of the Euclidean

space as isometric immersions with harmonic mean curvature vector field, that is, the

components of the immersion are biharmonic functions. In [28,52] biharmonic surfaces

in E3 were proved to be minimal. This has led to:

Chen’s Conjecture [23]: Biharmonic submanifolds of Euclidean spaces are min-

imal. Some particular subcases have been proved for example in [1, 34,46].

An isometric immersion of a manifold Mm into a Riemannian manifold Nn is said

to be biharmonic, if its mean curvature vector field H satisfies the following equation

τ2(ϕ) = −m(∆H + traceRN (dϕ(·), H)dϕ(·)) = 0,
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where ∆ denotes the rough Laplacian on sections of the pull-back bundle ϕ−1(TNn)

and RN is the curvature operator on Nn.

In the study of biharmonic submanifolds it is useful to split the bitension field with

respect to its normal and tangent components.

When the ambient space is an arbitrary Riemannian manifold, the splitting of the

biharmonic equation was obtained in [62].

Theorem 1.4.2. A submanifold Mm in a Riemannian manifold N is biharmonic if

and only if

{
∆⊥H + traceB(·, AH ·) + trace(RN (·, H)·)⊥ = 0

4 traceA∇⊥
(·)H

(·) +m grad(|H|2) + 4 trace(RN (·, H)·)⊤ = 0,
(1.4.2)

where RN is the curvature tensor of N . Moreover, the tangent part can also be written

as

4 trace(∇AH)(·, ·)−m grad(|H|2) = 0. (1.4.3)

By direct application of formula (1.4.3) we have

Proposition 1.4.3. Let Mm be a pseudo-umbilical biharmonic submanifold of a Rieman-

nian manifold Nn with m 6= 4. Then M is CMC, and moreover

|∇⊥H|2 +m|H|2 +
〈
trace(RN (·, H)·, H

〉
= 0.

Corollary 1.4.4. Let Mm be a pseudo-umbilical biharmonic submanifold of a Rieman-

nian manifold Nn. If m 6= 4 and RiemN ≤ 0, then Mm is minimal.

Formulas (1.4.2) and (1.4.3) were used to study biharmonic hypersurfaces in an ar-

bitrary Riemannian manifold, for the first time in [79] (see Theorem 2.7 and Proposition

2.8). However, they were explicitly written for this case in [82].

Theorem 1.4.5. Let Mm be a hypersurface in a Riemannian manifold N . Then M is

biharmonic if and only if

{
∆f +

(
|A|2 − RicciN (η, η)

)
f = 0

2A(grad f) +mf grad f − 2f
(
RicciN (η)

)⊤
= 0,

where η is a unit normal vector field.

We present some further non-existence results for proper-biharmonic submanifolds,

with the result of G.-Y. Jiang, the proof of which is a direct consequence of the Weitzen-

böck formula.
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Theorem 1.4.6. [54] Let ϕ : M → N be a smooth map, where M is compact and

RiemN ≤ 0. Then ϕ is biharmonic if and only if it is harmonic.

Replacing compactness with CMC, we can state the following proposition.

Proposition 1.4.7. [79] Let ϕ : Mm → Nn be an isometric immersion such that

|τ (ϕ)| is constant and assume that RiemN ≤ 0. Then ϕ is biharmonic if and only if it

is minimal.

For hypersurfaces, the next results hold.

Theorem 1.4.8. [79] Let ϕ :Mm → Nm+1 be a compact hypersurface and assume that

RicciN ≤ 0. Then ϕ is biharmonic if and only if it is minimal.

Proposition 1.4.9. [79] Let ϕ : Mm → Nm+1 be a hypersurface such that |τ (ϕ)| is

constant and RicciN ≤ 0. Then ϕ is biharmonic if and only if it is minimal.

Proposition 1.4.10. [79] Let ϕ : Mm → Nn be a smooth map such that |τ (ϕ)| is

constant, and assume that there exists a point p ∈M where rankϕ(p) ≥ 2. If RiemN <

0, then ϕ is biharmonic if and only if it is harmonic.

When the ambient space is the unit Euclidean sphere we have the following charac-

terization.

Theorem 1.4.11. [24,79] An immersion ϕ :Mm → Sn is biharmonic if and only if

{
∆⊥H + traceB(·, AH ·)−mH = 0

2 traceA∇⊥
(·)H

(·) + m
2 grad(|H|2) = 0,

(1.4.4)

where A denotes the shape operator, B the second fundamental form, H the mean

curvature vector field, ∇⊥ and ∆⊥ the connection and the Laplacian in the normal

bundle of ϕ, respectively.

In the codimension one case, denoting by Aη = A the shape operator with respect to

a (local) unit section η in the normal bundle and putting f = (traceA)/m, so f2 = |H|2,
the above result reduces to the following.

Corollary 1.4.12. [24,32,79] Let Mm be an orientable hypersurface in Sm+1. Then ϕ

is biharmonic if and only if

{
∆f = (m− |A|2)f

A(grad f) = −m
2 f grad f.

(1.4.5)

Theorem 1.4.13. [53, 54] Let ϕ : Mm → Sm+1 be a non-minimal hypersurface of

constant mean curvature. Then ϕ is proper-biharmonic if and only if |A|2 = m.
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Corollary 1.4.14. Let ϕ : Mm → Sm+1 be a CMC proper-biharmonic hypersurface.

Then the scalar curvature is a positive constant given by

ScalM = m2(1 + |H|2)− 2m.

A special class of immersions in Sn consists of the parallel mean curvature immer-

sions (PMC). For this class of immersions Theorem 1.4.11 reads as follows.

Corollary 1.4.15. [11] Let ϕ :Mm → Sn be a PMC immersion. Then ϕ is biharmonic

if and only if

traceB(AH(·), ·) = mH,

or equivalently,
{

〈AH , Aξ〉 = 0, ∀ξ ∈ C(NM) with ξ ⊥ H,

|AH |2 = m |H|2 ,

where NM denotes the normal bundle of M in Sn.

The first example of a proper-biharmonic hypersurface [54] is the generalized Clifford

torus Sm1( 1√
2
)×Sm2( 1√

2
) in Sm1+m2+1, with m1 6= m2. Recall that when m1 = m2 this

Clifford torus is minimal. In [15], using umbilicality the authors observed that the 45-th

parallel Sm( 1√
2
) in Sm+1 is a proper-biharmonic hypersurface. These two examples have

constant mean curvature and motivate the following Conjecture:

C1 [10]: Any biharmonic submanifold in a Euclidean sphere is CMC.

In the same paper, the authors conjectured for hypersurfaces in Sm+1:

C2 [10]: Any proper-biharmonic hypersurface in Sm+1 is an open set of Sm1

(
1√
2

)
×

Sm2

(
1√
2

)
, m1 +m2 = m and m1 6= m2, or Sm

(
1√
2

)
.

Next, we construct examples considering first the hyperspheres of Sm+1 as follows;

Proposition 1.4.16. [15] Let M = Sm(a)× {b}

=
{
p =

(
x1, . . . , xm+1, b

)
|
(
x1
)2

+ · · ·+
(
xm+1

)2
= a2, a2 + b2 = 1, 0 < a < 1

}

be a parallel hypersphere of Sm+1. Then M is a biharmonic submanifold of Sm+1 if and

only if a = 1/
√
2 and b = ±1/

√
2.

Then, an analogue for the product of spheres is given by the following proposition.

Proposition 1.4.17. [14, 53, 54] Let ml, m2 be two positive integers such that m =

ml +m2, and let rl, r2 be two positive real numbers such that r21 + r22 = 1. Then we

have two cases:

1. ml 6= m2, and Sm1(r1) × Sm2(r2) is a proper-biharmonic submanifold of Sm+1 if

and only if rl = r2 = 1/
√
2;



1.4. Biharmonic submanifolds 25

2. ml = m2 = q, and the following statements are equivalent:

• Sq(r1)× Sq(r2) is a biharmonic submanifold of S2q+1.

• Sq(r1)× Sq(r2) is a harmonic submanifold of S2q+1.

• r1 = r2 = 1/
√
2.

Theorem 1.4.18. [14] Let ψ : M → Sn−1(a) be a minimal submanifold in a small

hypersphere Sn−1(a) ⊂ Sn, of radius a ∈ (0, 1) and denote by i : Sn−1(a) → Sn the

inclusion map. Then ϕ = i ◦ψ :M → Sn is proper-biharmonic if and only if a = 1/
√
2.

Theorem 1.4.19. [14] Let ψ1 :M
m1
1 → Sn1(a) and ψ2 :M

m2
2 → Sn2(b) be two minimal

submanifolds, where n1+n2 = n−1, a2+b2 = 1, and denote by i : Sn1(a)×Sn2(b) → Sn

the inclusion map. Then ϕ = i ◦ (ψ1 × ψ2) :M1×M2 → Sn is proper-biharmonic if and

only if a = b = 1/
√
2 and m1 6= m2.

When a biharmonic immersion has constant mean curvature (CMC) the following

bound for |H| holds.

Theorem 1.4.20. [78] Let ϕ : M → Sn be a CMC proper-biharmonic immersion.

Then |H| ∈ (0, 1], and |H| = 1 if and only if ϕ induces a minimal immersion of M into

Sn−1(1/
√
2) ⊂ Sn.

Theorem 1.4.21. [8] Let ϕ :Mm → Sm+1 be a CMC proper-biharmonic hypersurface.

Assume that RiemM ≥ 0. Then ϕ(M) is either an open part of Sm(1/
√
2), or an open

part of Sm1(1/
√
2)× Sm2(1/

√
2), m1 +m2 = m, m1 6= m2.

When the hypersurface has at most two distinct principal curvatures everywhere,

the following rigidity results can be obtained.

Theorem 1.4.22. [10] Let ϕ : Mm → Sm+1 be a hypersurface. Assume that ϕ is

proper-biharmonic with at most two distinct principal curvatures everywhere. Then ϕ

is CMC.

Theorem 1.4.23. [10] Let ϕ : Mm → Sm+1 be a hypersurface. Assume that ϕ is

proper-biharmonic with at most two distinct principal curvatures everywhere. Then

ϕ(M) is either an open part of Sm(1/
√
2), or an open part of Sm1(1/

√
2)×Sm2(1/

√
2),

m1 +m2 = m, m1 6= m2. Moreover, if M is complete, then either ϕ(M) = Sm(1/
√
2)

and ϕ is an embedding, or ϕ(M) = Sm1(1/
√
2)× Sm2(1/

√
2), m1 +m2 = m, m1 6= m2

and ϕ is an embedding when m1 ≥ 2 and m2 ≥ 2.

Corollary 1.4.24. [15] Let ϕ :M2 → S3 be a proper-biharmonic surface. Then ϕ(M)

is an open part of S2(1/
√
2) ⊂ S3.
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Theorem 1.4.25. [77] If ϕ : M3 → S4 is a complete proper-biharmonic hypersurface,

then ϕ(M) = S3(1/
√
2) or ϕ(M) = S2(1/

√
2)× S1(1/

√
2).

Proposition 1.4.26. [8] Let ϕ :Mm → Sm+1 be a compact hypersurface. Assume that

ϕ is proper-biharmonic and |A|2 ≥ m. Then ϕ is CMC and |A|2 = m.

In the following we present J.-H. Chen’s lemma, with its proof (see also [77]), as it

plays an essential role in Chapter 2 on unique continuation.

Lemma 1.4.27. (J.-H. Chen [32]) Let ϕ :Mm → Sm+1 be a proper-biharmonic hyper-

surface. Then, at points where grad f 6= 0, we have

|A|2 ≥ m2(m+ 8)

4(m− 1)
f2. (1.4.6)

Proof. Let p ∈ M such that (grad f)(p) 6= 0, then e1 = (grad f)(p)/|(grad f)(p)| is a

principal direction for A with principal curvature λ1 = −m
2 f(p). By considering ek ∈

TpM , k = 2, . . . ,m, such that {ei}mi=1 is an orthonormal basis in TpM and A(ek) = λkek,

we get at p

|A|2 =
m∑

i=1

|A(ei)|2 = |A(e1)|2 +
m∑

k=2

|A(ek)|2 =
m2

4
f2 +

m∑

k=2

λ2k

≥ m2

4
f2 +

1

m− 1

( m∑

k=2

λk

)2
=
m2

4
f2 +

1

m− 1
(traceA− λ1)

2

≥ m2

4
f2 +

1

m− 1

(
mf +

m

2
f
)2

=
m2

4
f2 +

9m2

4(m− 1)
f2 =

m2(m+ 8)

4(m− 1)
f2,

thus Inequality (1.4.6) holds at p.

Remark 1.4.28. The equality case of Inequality (1.4.6), at a point p ∈ M where

(grad f)(p) 6= 0, holds if and only if the λi’s are equal for i = 2 . . . ,m. Thus we end

up having at most two distinct principal curvatures at p. Then, denoting by W the set

of all points of M where grad f does not vanish, due to Theorem 1.4.22 we have that

Inequality (1.4.6) is strict on an open dense subset of W .

Theorem 1.4.29. [32] Let ϕ : Mm → Sm+1 be a compact hypersurface in Sm+1. If ϕ

is proper-biharmonic and |A|2 ≤ m, then ϕ is CMC and |A|2 = m.

Proposition 1.4.30. [8] Let ϕ : Mm → Sm+1 be a compact hypersurface. If ϕ is

proper-biharmonic and |H|2 ≥ 4(m− 1)/(m(m+ 8)), then ϕ is CMC. Moreover,

1. if m ∈ {2, 3}, then ϕ(M) is a small hypersphere Sm(1/
√
2);

2. if m = 4, then ϕ(M) is a small hypersphere S4(1/
√
2) or a standard product of

spheres S3(1/
√
2)× S1(1/

√
2).
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For the non-compact case, we obtain the following.

Proposition 1.4.31. [8] Let ϕ : Mm → Sm+1, m > 2, be a non-compact hyper-

surface. Assume that M is complete and has non-negative Ricci curvature. If ϕ is

proper-biharmonic, |A|2 is constant and |A|2 ≥ m, then ϕ is CMC and |A|2 = m. In

this case |H|2 ≤ ((m− 2)/m)2.

Theorem 1.4.32. [32] Let ϕ :Mm → Sm+1 be a compact hypersurface. If ϕ is proper-

biharmonic, M has non-negative sectional curvature and m ≤ 10, then ϕ is CMC and

ϕ(M) is either Sm(1/
√
2), or Sm1(1/

√
2)× Sm2(1/

√
2), m1 +m2 = m, m1 6= m2.

Proposition 1.4.33. Let ϕ : Mm → Sm+1 be a compact proper-biharmonic hypersur-

face with constant scalar curvature. Then

m(m− 2) < ScalM ≤ 2m(m− 1).

Moreover, ScalM = 2m(m− 1) if and only if ϕ(M) = Sm(1/
√
2).

1.5 Biconservative submanifolds

The notion of biconservative submanifolds is a generalisation of biharmonic submani-

folds by only requiring the vanishing of the tangential part of the bitension field. Study-

ing biconservative submanifolds will reveal the influence of the tangential part, how

much we can rely on just one part of the biharmonic equation, and how many results

remain valid with this half condition. The notion of biconservative hypersurfaces in an

arbitrary manifold was first introduced in 2014 [16]. Since then, biconservative subman-

ifolds were studied in [16, 42, 68–70, 74, 88, 89, 93, 94], where many classification results

were obtained for such submanifolds in different ambient spaces. We mention that the

idea of studying biconservative submanifolds can be tracked back as far as [46] which

studied hypersurfaces in E4 with vanishing tangent part of the biharmonic equation.

Now fix a map ϕ and let the domain metric vary. We obtain a new functional on

the set G of all Riemannian metrics on Mm defined by

F2 : G → R, F2(g) = E2(ϕ).

Critical points of this functional are characterized by the vanishing of the stress-energy

tensor of the bienergy [62]. This tensor, denoted by S2, was introduced in [51] as

S2(X,Y ) =
1

2
|τ(ϕ)|2〈X,Y 〉+ 〈dϕ,∇τ(ϕ)〉〈X,Y 〉 − 〈dϕ(X),∇Y τ(ϕ)〉

−〈dϕ(Y ),∇Xτ(ϕ)〉,



28 Chapter 1. Introduction

and satisfies

divS2 = 〈τ2(ϕ), dϕ〉.

We note that, for isometric immersions, (divS2)♯ = −τ2(ϕ)⊤, where τ2(ϕ)⊤ is the

tangent part of the bitension field.

Definition 1.5.1. A submanifold ϕ : Mm → Nn of a Riemannian manifold Nn is

called biconservative if divS2 = 0.

Note that we cannot expect properties of biharmonic submanifolds (i.e. derived from

both the normal and tangent parts of the biharmonic equation) to hold for biconservative

submanifolds. Conversely, properties satisfied by biconservative submanifolds can either

simply fail for biharmonic submanifolds or, if they are satisfied, extra restrictions will

be imposed by the normal part of the equation. For example:

Proposition 1.5.2. Any biconservative surface M2 which is pseudo-umbilical in E3 is

either minimal or an open part of a Euclidean sphere.

Proof. Using Proposition 1.5.10 we have that M2 is CMC and then, it is either minimal

or umbilical (with H 6= 0). But a non-minimal umbilical surface has to be an open part

of the round sphere.

Now, for biharmonic submanifolds, Proposition 1.5.2 becomes:

Proposition 1.5.3. Any biharmonic surface M2 which is pseudo-umbilical in E3 is

minimal.

Proof. From the above result, we obtain that the surface M2 is either minimal or an

open part of a round sphere. But then, we can check that the second case cannot hold

because of the normal part of the biharmonic equation.

Remark 1.5.4. In fact, it was proved in [28, 52] that any biharmonic surface in E3 is

minimal. As there are many non-minimal biconservative surfaces in E3 and no proper-

biharmonic surface in E3, we can see that the normal part of the biharmonic equation

is not compatible with its tangent part.

In the following, we list some general properties of biconservative submanifolds.

Proposition 1.5.5. ([62,72]) Let Mm be a submanifold of a Riemannian manifold Nn.

Then the following properties are equivalent:

1. M is biconservative;

2. traceA∇⊥
(·)H

(·) + trace(∇AH)(·, ·) + trace(RN (·, H)·)⊤ = 0;
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3. 4 traceA∇⊥
(·)H

(·) +m grad(|H|2) + 4 trace(RN (·, H)·)⊤ = 0;

4. 4 trace(∇AH)(·, ·)−m grad(|H|2) = 0.

As an immediate consequence we get

Proposition 1.5.6. Let Mm be a PMC submanifold of a Riemannian manifold Nn.

Then Mm is biconservative if and only if

trace(RN (·, H)·)⊤ = 0.

When the ambient space is a space form, we have

Corollary 1.5.7. ([42]) Let Mm be a PMC submanifold of a real space form Nn. Then

Mm is biconservative.

Proposition 1.5.8. [16] A hypersurface Mm in a space form Nm+1(c) is biconservative

if and only if

A(grad f) = −m
2
f grad f.

Corollary 1.5.9. Any CMC hypersurface in Nm+1(c) is biconservative.

Proposition 1.5.10. [7] Let Mm be a pseudo-umbilical submanifold of a Riemannian

manifold Nn with m 6= 4. Then M is biconservative if and only if it is CMC.

Remark 1.5.11. Compare with Proposition 1.4.3 where the normal part of the bihar-

monic equation imposes an additional constraint.

Remark 1.5.12. When n = m+ 1 and Nn is a space form, the above result is trivial

as any pseudo-umbilical hypersurface is either minimal or umbilical, and therefore, in a

space form, it is CMC.

Corollary 1.5.13. [73] Let Mm be a biconservative hypersurface in Nm+1(c). Then

mf∆f − 3m |grad f |2 − 2 〈A,Hess f〉 = 0.

Theorem 1.5.14. [73] Let Mm be a biconservative hypersurface in Nm+1(c) with

grad f 6= 0 at any point of M . Then the distribution D, orthogonal to that determ-

ined by grad f , is completely integrable. Moreover, any integral manifold of maximal

dimension of D has flat normal connection as a submanifold in Nm+1(c).

We see that in the proof of Lemma 1.4.27 we only used the tangent part of the

biharmonic equation thus the result holds also for biconservative hypersurfaces, and for

the sake of completeness we state it again.
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Lemma 1.5.15. (J.-H. Chen [32]) Let ϕ : Mm → Sm+1 be a biconservative hypersur-

face. Then, at points where grad f 6= 0, we have

|A|2 ≥ m2(m+ 8)

4(m− 1)
f2.

In the special case of biconservative surfaces, we have some specific properties. First,

we recall the following general definition.

Definition 1.5.16. A symmetric (1, 1)-tensor field T is called a Codazzi tensor field if

(∇T )(X,Y ) = (∇T )(Y,X),

for all X,Y ∈ C(TM).

Theorem 1.5.17. [64,70,72] Let ϕ :M2 → Nn be a CMC surface. Then the following

properties are equivalent:

1. M is biconservative;

2. 〈AH (∂z) , ∂z〉 is holomorphic, where z = x + iy, ∂z = 1
2

(
∂
∂x − i ∂∂y

)
and ∂z =

1
2

(
∂
∂x + i ∂∂y

)
;

3. AH is a Codazzi tensor field.

Note that the above theorem follows from general properties of divergence-free sym-

metric (1, 1)-tensors defined on a Riemannian surface.

Remark 1.5.18. In the case of biharmonic surfaces, the fact that 〈AH (∂z) , ∂z〉 is

holomorphic if and only if M is CMC was proved in [64].

Remark 1.5.19. We can see 〈AH (∂z) , ∂z〉 as a generalization of the Hopf function,

as in 3-dimensional space forms we have the following: if M2 is a topological sphere in

N3(c), then it is CMC if and only if 〈AH (∂z) , ∂z〉 is holomorphic [70]. For any surface

in N3(c), 〈AH (∂z) , ∂z〉 is holomorphic when M is CMC, but, in general, the converse

does not hold. All non-CMC surfaces with holomorphic 〈AH (∂z) , ∂z〉 must necessarily

have curvature equal to c (though they are not umbilical). In [70], all surfaces in E3 with

〈AH (∂z) , ∂z〉 holomorphic while not CMC were found. They are locally parametrized

by

ϕα (u, v) = (u cos v, u sin v, αu) , (α ∈ R+).

In S3, these surfaces are parametrized by

ϕα (u, v) =

(
cosu

α
cos v,

sinu

α
cos v,

√
α2 − 1

α
cos v, sin v

)
,

(α > 1) [72].
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Remark 1.5.20. Let ϕ : M2 → Nn be a CMC biconservative surface. If M2 is not a

pseudo-umbilical surface, then the set of pseudo-umbilical points has no accumulation

point. Also, if M2 is a CMC biconservative surface and a topological sphere, then it

is pseudo-umbilical (see [70]); this should be compared with a classical result: a PMC

surface M2 of genus zero in a space form is pseudo-umbilical [47].

By using Theorem 1.5.17 and the CMC hypothesis, around non pseudo-umbilical

points, one can obtain an explicit form of the metric on the surface and of the shape

operator AH . It follows that CMC biconservative surfaces without pseudo-umbilical

points are globally conformally flat. Then, one can prove the following proposition.

Proposition 1.5.21. [72] Let ϕ :M2 → Nn be a CMC biconservative surface. Assume

that M is compact and does not have pseudo-umbilical points. Then M is a topological

torus and moreover, if K ≥ 0 or K ≤ 0, we have ∇AH = 0 and K = 0.

Another important property of biconservative surfaces is given by the following

result.

Theorem 1.5.22. [64,72] Let ϕ :M2 → Nn be a compact CMC biconservative surface.

If the Gaussian curvature K of the surface is non-negative, then ∇AH = 0 and M is

flat or pseudo-umbilical.

Since any PMC submanifold in a space form is biconservative, in codimension two

we have the following rigidity result.

Theorem 1.5.23. [70] Let c 6= 0 and ϕ : M2 → N4(c) a CMC biconservative surface.

Then M2 is PMC.

For the special case of biconservative surfaces in E4, the situation is a bit less rigid.

Proposition 1.5.24. [70] Let ϕ : M2 → E4 be a biconservative surface with constant

mean curvature different from zero, which is not PMC. Then, locally, the surface is

given by

ϕ (u, v) = (γ (u) , v + a) =
(
γ1 (u) , γ2 (u) , γ3 (u) , v + a

)
a ∈ R,

where γ : I → E3 is a curve in E3 parametrized by arc-length, with constant non-zero

curvature and non-zero torsion.
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Chapter 2

Unique Continuation Properties

The results of this chapter are extracted from the article:

H. Bibi, E. Loubeau, C. Oniciuc: Unique continuation property for biharmonic hyper-

surfaces in spheres. Ann. Glob. Anal. Geom. 60, 807–827 (2021).

2.1 Introduction

This chapter is a contribution to Conjecture C1 and gives rigidity results based on a

new unique continuation theorem (UCT). In [13], a similar approach was used to prove

that if a biharmonic map is harmonic on an open subset, then it must be harmonic

everywhere.

Inspired by this work of V. Branding and C. Oniciuc, and relying on the UCT of

N. Aronszajn [5], our objective in this chapter is not to show minimality, i.e. harmon-

icity, but rather to prove the weaker condition of CMC. Using a gradient inequality

between the norm of A and the mean curvature we show that, for proper-biharmonic

(i.e. non-minimal) hypersurfaces in a sphere, locally CMC implies globally CMC. As

an application, we extend results of J.-H. Chen [32] and S. Maeta and Y.-L. Ou [67] to

non-compact manifolds, with the hypothesis grad f = 0 on an open subset.

In Section 2.5, we exploit this UCT to prove new rigidity results and, in The-

orem 2.5.1, use an integral condition involving both the scalar and mean curvatures to

force biharmonic hypersurfaces to be CMC. This extends the main result of S. Maeta

and Y.-L. Ou [67] to non-constant scalar curvature, while relying on a different technique

of proof.

33
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2.2 A mini survey on unique continuation

Proving unique continuation theorems is a central theme in the study of elliptic partial

differential equations (PDEs). Here, the expression "unique continuation" refers to the

property that the existence of a zero of infinite order at some point forces a function

to vanish everywhere (strong version), and also to the property that the function which

vanishes on some open subset has to vanish everywhere (weak version). In turns, these

theorems have been used to prove uniqueness of solutions of systems of PDEs and

are at the origin of breakthroughs in many different fields of research, for example

solving inhomogeneous elliptic equations on non-compact sets or comparing eigenvalues

of nested domains.

Historically, unique continuation properties began with T. Carleman [18] in 1933,

and then with N. Aronszajn [5] in 1957. On Riemannian manifolds, they were exploited

by J. H. Sampson [86] in 1978 to obtain a unique continuation theorem for harmonic

maps. Some 40 years later V. Branding and C. Oniciuc [13] proved several unique

continuation results for biharmonic maps.

One of the most important properties of analytic functions is the unique continu-

ation property. It is well-known that harmonic functions on R2 are real analytic, so

they possess the unique continuation property. However, some elliptic partial differen-

tial equations admit non-analytic solutions, even though they still satisfy the unique

continuation property.

In [55] J. Kazdan says that "My personal belief was that unique continuation should

hold for the solutions of all elliptic equations which arise “naturally” in geometry."

In his 1957 paper [5] N. Aronszajn was among the first to establish a unique con-

tinuation theorem for solutions of a large class of elliptic partial differential equations

and inequalities of second-order.

Let D be an open connected subset of Rm. Consider a linear elliptic second-order

differential operator A which has its principal part aij ∂2

∂xi∂xj
with coefficients aij of

class C(2,1) (i.e. of class C2 and with second derivatives Lipschitz), all other coefficients

of A being uniformly bounded, and we suppose (because of ellipticity) that {aij} is a

positive definite matrix everywhere in D. Also, we consider the following regularity

conditions on u, where it has locally strong L2-derivatives of first and second order.

With these hypotheses, N. Aronszajn proved the following strong unique continuation

theorem (Theorem 2.2.1).

Theorem 2.2.1. [5] Assume that u is a solution of

|Au (x)|2 ≤ C

(
m∑

i=1

∣∣∣∣
∂u (x)

∂xi

∣∣∣∣
2

+ |u(x)|2
)
, ∀x ∈ D, (2.2.1)
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where C is a positive constant. If u has a zero of infinite order in the 1-mean at some

point x0 in D, then u vanishes identically.

Here, infinite order in the 1-mean is given by an integral condition (see [5]).

Remark 2.2.2.

1. If u vanishes on an open subset of D, then u has a zero of infinite order at any

point of that open subset. Thus, the conclusion in Theorem 2.2.1 holds, and so

we get the weak unique continuation version.

2. For the two dimension case, i.e. the case of a plane, Theorem 2.2.1 was proved by

T. Carleman [18], thus N. Aronszajn generalizes T. Carleman’s unique continu-

ation theorem to higher dimensions.

3. By [5], Theorem 2.2.1 allows to establish the uniqueness of elliptic solutions of the

Cauchy problem for general linear, quasi-linear, and for certain types of non-linear

partial differential equations of second order.

4. The validity of Theorem 2.2.1 for domains of Rm implies its validity for functions

on a Riemannian manifold.

Theorem 2.2.1 can be further extended in the sense that u is vector-valued. Befitting

our objectives, we will assume for simplicity’s sake that all coefficients are smooth and

the statement will be given in the weaker form, of smooth vector-valued functions u

vanishing on an open subset of D.

Theorem 2.2.3. [5] Let A be a linear elliptic second-order differential operator defined

on an open subset D of Rm. Let u = (u1, . . . , uq) be an Rq-valued function on D

satisfying the inequality

|Aua| ≤ C


∑

b,i

∣∣∣∣
∂ub

∂xi

∣∣∣∣+
∑

b

∣∣∣ub
∣∣∣


 , (2.2.2)

for some constant C > 0. If u = 0 in an open subset of D, then u = 0 on the whole set

D.

Later, Aronszajn-Carleman’s unique continuation theorems for elliptic equations

were used by J. H. Sampson [86] to obtain a unique continuation theorem for harmonic

maps between Riemannian manifolds. More precisely, the following result was proved.

Theorem 2.2.4. [86] Let ϕ1, ϕ2 :M → N be two harmonic maps. If they agree on an

open subset, then they are identical; and indeed the conclusion holds if ϕ1 and ϕ2 agree

to infinitely high order at some point. In particular, a harmonic map which is constant

on an open subset is a constant map.
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Remark 2.2.5. J. H. Sampson [86] observed that

1. If a harmonic map ϕ has rank 0 in an open set, i.e. ϕ is constant in an open set,

it must have rank 0 everywhere.

2. In the case of a harmonic map between analytic Riemannian manifolds, the map

is also analytic [36], and it follows that, if it has rank r in an open set, then it has

rank r in an open, dense set.

Also, J. H. Sampson established the following geometric unique continuation prop-

erty for harmonic maps.

Theorem 2.2.6. [86] Let ϕ : M → N be a harmonic map and let P be a regular,

closed, totally geodesic submanifold of N . If an open set of M is mapped into P , then

all of M is mapped into P .

But not all solutions of an elliptic partial differential equation possess the unique con-

tinuation property. One can construct explicit counterexamples of solutions of fourth-

order elliptic partial differential equations where the unique continuation property does

not hold [55].

Let P1 and P2 be two linear second-order elliptic operators having the same principal

part, which is of real coefficients. Let

P = P1 ◦ P2 +Q,

where Q is any differential operator of order ≤ 3.

Theorem 2.2.7. [3] The operator P has the strong unique continuation property.

Let P1, P2, . . . , Pr the linear second-order elliptic operators having the same principal

part which we assume to have real coefficients, and let

P = P1 ◦ P2 ◦ P3 ◦ . . . ◦ Pr +Q,

where Q is any differential operator of order ≤ 3r/2.

As a generalisation of Theorem 2.2.7 it was proved that we have

Theorem 2.2.8. The operator P has the strong unique continuation property.

Remark 2.2.9. Let (M, g) be a Riemannian manifold. One of the interesting applica-

tions of the above theorem is the following:

P = ∆r, r ≥ 1.

Thus, the Laplace operator has the strong unique continuation property regardless of

its power.
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Next, in [13], V. Branding and C. Oniciuc proved several unique continuation results

for biharmonic maps between Riemannian manifolds.

When dealing with maps between Riemannian manifolds some difficulties appear,

compared to the case of functions or vector-valued functions. In general, as we aim

for a global result, we define a certain closed subset A and show that the boundary of

its interior is the empty set. For this, we assume that the boundary contains at least

a point p0, work around p0 on a certain domain D included in the domain of a local

chart of p0 and reach a contradiction. Working on D, we must estimate some terms

that contain geometric objects on the target manifold (like curvature terms) which are

valued at the map (maps) that is (are) involved, according to the problem. For this,

the mean value theorem and some specific tricks are required.

Theorem 2.2.10. [13, 14] Let ϕ : M → N be a biharmonic map. If ϕ is harmonic on

an open subset, then it is harmonic everywhere.

Since there is a large interest in biharmonic maps into spheres, V. Branding and C.

Oniciuc first established a unique continuation result for spherical targets.

Theorem 2.2.11. [13] Let ϕ1, ϕ2 :M → Sn be two biharmonic maps. If they agree on

an open subset, then they are identical.

Afterwards, V. Branding and C. Oniciuc proved a unique continuation theorem for

biharmonic maps to an arbitrary target manifold, which is a biharmonic version of J.

H. Sampson’s unique continuation theorem (see Theorem 2.2.4) to obtain

Theorem 2.2.12. [13] Let ϕ1, ϕ2 :M → N be two biharmonic maps. If they agree on

an open subset, then they are identical.

Finally, V. Branding and C. Oniciuc gave a geometric unique continuation property

for biharmonic maps generalizing Sampson’s result for harmonic maps (Theorem 2.2.6).

First, they proved the following version for a spherical target.

Theorem 2.2.13. [13] Let ϕ :M → Sn be a biharmonic map. If an open subset of M

is mapped into the equator Sn−1, then all of M is mapped into Sn−1.

In addition, V. Branding and C. Oniciuc also showed a corresponding version of the

above theorem for an arbitrary target.

Theorem 2.2.14. [13] Let ϕ : M → N be a biharmonic map and let P be a regular,

closed, totally geodesic submanifold of N . If an open subset of M is mapped into P ,

then all of M is mapped into P .
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Remark 2.2.15. 1. Theorems 2.2.11 and 2.2.14 were proved in [63] for the partic-

ular case of CMC biharmonic immersions into spheres. In the given reference,

the main idea was: A CMC biharmonic immersion into Sn composed with the

canonical inclusion of the sphere in the ambient Euclidean space En+1 gives an

immersion that can be written as a sum of two En+1-valued eigenmaps of the

Laplace operator on (Mm, g). These maps induce harmonic maps into Sn of

appropriate radius. The results in [63] simply follow from Sampson’s unique con-

tinuation for harmonic maps [86] and thus both Theorems 2.2.11 and 2.2.14 are

more general and proved with different techniques.

2. Theorem 2.2.10 was first proved in [14] by simply applying [92, Proposition 1.2.3],

but here, the proof is clearer and based on the classical result of Aronszajn [5].

3. In [4, Theorem 5.3], a unique continuation result for extrinsic biharmonic maps

from Ω ⊂ E4 to S4 was proved.

All the results presented in Theorems 2.2.10- 2.2.14 are on the unique continuation

properties for biharmonic maps. Applying these theorems to biharmonic submanifolds

the conclusion is that they must be minimal. However, we know some non-minimal

CMC examples. Thus a natural step will be, in Section 2.4, to introduce a unique

continuation theorem for proper-biharmonic hypersurfaces in spheres, proving CMC

rather than minimality.

2.3 Proper-biharmonic hypersurfaces in spheres

It is known that [13,14], for a proper-biharmonic map ϕ :M → N , the subset {p ∈M :

τ(ϕ)(p) 6= 0} is open and dense in M . Thus,

Ω = {p ∈M : f(p) 6= 0}

is open and dense in M . Note that this subset can have several connected components.

We recall in this Chapter the following result of J.-H. Chen

Lemma 2.3.1. (J.-H. Chen [32]) Let ϕ : Mm → Sm+1 be a proper-biharmonic hyper-

surface. Then, at points where grad f 6= 0, we have

|A|2 ≥ m2(m+ 8)

4(m− 1)
f2.

In low dimensions, since Conjecture C1 is settled for S3 and S4, Lemma 2.3.1 has

the following direct consequence.
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Proposition 2.3.2. Let ϕ :Mm → Sm+1 be a proper-biharmonic hypersurface. Assume

that m = 4 and ScalM > m(m− 1), then M has constant mean curvature.

Proof. Assume thatM does not have constant mean curvature, then there exists p0 ∈M

such that (grad f)(p0) 6= 0. Thus, Lemma 2.3.1 allows us to infer that

|A(p0)|2 ≥
m2(m+ 8)

4(m− 1)
f2(p0).

On the other hand, using Equation (1.3.6), for c = 1, we have on M :

|A|2 = m(m− 1) +m2f2 − ScalM ,

as ScalM > m(m− 1) we obtain, at p0,

m2(m+ 8)

4(m− 1)
f2(p0) ≤ |A(p0)|2 < m2f2(p0)

which forces m to be at least 5, which is a contradiction. Therefore, grad f = 0 on

M .

The conjecture states that any proper-biharmonic hypersurface in Sm+1 has constant

mean curvature. When M is compact, this conjecture was proved in several cases, under

additional hypotheses. When M is not compact, and the additional hypotheses are still

satisfied, we can only conclude that points where grad f 6= 0, if they exist, cannot form

a set with a simple structure. We present here only one result of this type.

Proposition 2.3.3. Let ϕ :Mm → Sm+1 be a proper-biharmonic hypersurface. Assume

that M does not have constant mean curvature. If |A|2 ≥ m, or |A|2 ≤ m, then

W = {p ∈ M : (grad f)(p) 6= 0} cannot have a connected component W0 with the

following properties:

1. W0
M

is compact;

2. the boundary of W0 in M is a regular (not necessarily connected) hypersurface of

M ;

3. there exists an open subset U of M such that W0
M ⊂ U and grad f = 0 on U\W0.

Proof. Assume that W has a connected component W0 with the above properties and

we argue by contradiction.

Since ∂W0 is a regular hypersurface of M , we have

int(U\W0) = U\W0
U
= U\W0

M
= U\(W0 ∪ ∂W0) 6= ∅,
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otherwise U =W0 ∪ ∂W0 is closed in M , so U =M , i.e. M =W0 ∪ ∂W0 is a manifold

with boundary; and

int(U\W0)
U
= U\W0.

On int(U\W0), that may have several connected components, we have grad f = 0, but

f cannot be zero on any of these connected components, so since ∆f = (m − |A|2)f ,

we get |A|2 = m.

Assume now that |A|2 ≤ m. It was proved in [32], see also [77, Inequality (1.74)]

that on M we have

1

2
∆(| grad f |2 + m2

8
f4 + f2) +

1

2
div(|A|2 grad f2) ≤ 8(m− 1)

m(m+ 8)
(|A|2 −m)|A|2f2.

Equivalently,

− divZ ≤ 8(m− 1)

m(m+ 8)
(|A|2 −m)|A|2f2 ≤ 0, (2.3.1)

where

Z =
1

2
grad(| grad f |2 + m2

8
f4 + f2)− 1

2
|A|2 grad f2.

Since Z = 0 on int(U\W0), it follows that Z = 0 on U\W0 and so on ∂W0. Integrating

Inequality (2.3.1) on W0
M

and using the Divergence Theorem, as Z = 0 on ∂W0, we

obtain (|A|2 −m)|A|2f2 = 0 on W0
M

.

As in [77], we obtain |A|2 = m on W0, and so on W0
M

. Indeed, assume that there

exists a point p ∈ W0 such that |A(p)|2 6= m. Therefore, there exists an open subset

W
′
0 containing p, W

′
0 ⊂ W0, such that |A|2 6= m at any point of W

′
0. Now, it is easy to

see that f = 0 at any point of W
′
0. Thus, grad f = 0 on W

′
0 which is a contradiction.

By the first equation of (1.4.5), |A|2 = m, implies ∆f = 0 on W0
M

.

Furthermore, we integrate ∆f2 on W0
M

, and since grad f2 = 0 on ∂W0, we obtain

grad f = 0 on W0
M

which is impossible.

The case |A|2 ≥ m is easy to prove as

1

2
∆f2 = (m− |A|2)f2 − | grad f |2 ≤ 0

on M , and integrating on W0
M

we obtain again grad f = 0 on W0
M

.

In the next section (see Corollary 2.4.4) we will see that under a stronger hypothesis,

i.e. |A|2 is constant, the points of a non-CMC proper-biharmonic hypersurface where

grad f 6= 0 form an open dense subset of M .

Before stating the last result of this section, we need to recall some well-known facts

about the smoothness of principal curvatures.
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Let ϕ : Mm → Sm+1 be a hypersurface with λ1 ≥ λ2 ≥ · · · ≥ λm its principal

curvatures, i.e. the eigenvalue functions of the shape operator A. The functions λi are

continuous on M for all i = 1, . . . ,m. The set of points where the numbers of distinct

principal curvatures is locally constant is a set MA that is open and dense in M . On a

non-empty connected component of MA, which is open in MA, and so in M , the number

of distinct principal curvatures is constant. Thus, the multiplicities of distinct principal

curvatures are constant, and so, on that connected component, the λi’s are smooth and

A is (smoothly) locally diagonalizable (see [12,75,84,85]).

Proposition 2.3.4. Let ϕ :Mm → Sm+1 be a proper-biharmonic hypersurface. Assume

that at any point of M the multiplicity of each distinct principal curvature is at least 2.

Then M has constant mean curvature.

Proof. Assume that M is not CMC and denote

W := {p ∈M : (grad f)(p) 6= 0}.

Clearly, W is a non-empty open subset of M . Since MA is dense, W∩MA 6= ∅, and so W

intersects a connected component of MA. On that intersection, the principal curvatures

λi are smooth, i = 1, . . . ,m, and A is smoothly diagonalizable, i.e. A(Ei) = λiEi,

i = 1, . . . ,m, where {Ei}mi=1 is a local orthonormal frame field on M and tangent to M .

Recall that, by the biharmonic equation (1.4.5), on W , −(m/2)f is an eigenvalue of

the shape operator A. From the hypothesis on the multiplicity of eigenvalues, we can

assume for simplicity that λ1 = λ2 = −m
2 f and E1 = grad f

| grad f | . Since 〈Ea, E1〉 = 0, we

have

Eaf = 〈grad f,Ea〉 = | grad f |〈E1, Ea〉 = 0, a = 2, . . . ,m. (2.3.2)

Now, we use the connection equations with respect to the frame field {Ei}mi=1,

∇EiEj = ωkj (Ei)Ek,

and we rewrite the Codazzi equation

(∇EiA)(Ej) = (∇EjA)(Ei)

as

(Eiλj)Ej +
m∑

k=1

(λj − λk)ω
k
j (Ei)Ek = (Ejλi)Ei +

m∑

k=1

(λi − λk)ω
k
i (Ej)Ek. (2.3.3)

For i = 1 and j = 2 we obtain

(E1λ2)E2 +
m∑

k=1

(λ2 − λk)ω
k
2 (E1)Ek = (E2λ1)E1 +

m∑

k=1

(λ1 − λk)ω
k
1 (E2)Ek

=
m∑

k=1

(λ1 − λk)ω
k
1 (E2)Ek. (2.3.4)
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Furthermore, we take the scalar product of the above relation with E2, and obtain

E1λ2 = E1λ1 = 0,

i.e. E1f = 0. Thus, from Equation (2.3.2) we conclude that grad f = 0 which is

impossible.

2.4 A unique continuation theorem

Analytical properties of biharmonic maps have been studied by several researchers (see

for example [95]). For the particular case of biharmonic submanifolds in Euclidean

spheres, not too many of such properties are known.

An essential tool in the analysis of PDE’s are unique continuation properties, which

we establish in Theorem 2.4.1 under a global condition on the gradients of the norm of

the shape operator and mean curvature.

The objective departs from [13] as the conclusion here is that the manifold has con-

stant mean curvature, instead of the stronger condition of minimality, but the method

is similar and based on Aronszajn’s unique continuation theorem of 1957 [5].

In Corollaries 2.4.4 and 2.4.5, the main hypothesis of Theorem 2.4.1 is replaced

by more geometrical constraints and allows known results to extend from compact to

non-compact cases.

Theorem 2.4.1. Let ϕ : Mm → Sm+1 be a proper-biharmonic hypersurface. Assume

that there exists a non-negative function h on M such that | grad |A|2| ≤ h | grad f | on

M. If grad f vanishes on a non-empty open connected subset of M, then M has constant

mean curvature.

Proof. Denote by V the non-empty open connected subset of M where grad f = 0.

Consider the subset

A0 := {p ∈M : (grad f)(p) = 0}.

It is clear that A0 is closed, intA0 6= ∅ and intA0 may have several connected compon-

ents. Indeed, A0 = (grad f)−1({0}) where {0} is closed in TM as the zero section, and

grad f : M → TM is continuous, thus A0 is closed, and since V is a non-empty open

subset of A0, intA0 is also non-empty.

Assume that ∂(intA0) = ∅. Then

∅ = ∂(intA0)

= (intA0)
M ∩ (M\ intA0)

M

= (intA0)
M ∩ (M\ intA0).
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Now, as ∅ = (intA0)
M ∩ (M\ intA0), we obtain (intA0)

M ⊂ intA0 which implies that

(intA0)
M

= intA0, thus intA0 is closed in M. But intA0 is non-empty open and M is

connected, we conclude that intA0 =M , so intA0 = A0 =M and grad f = 0 on M.

Assume now that ∂(intA0) 6= ∅, we will obtain a contradiction. Let p0 ∈ ∂(intA0),

∂(intA0) = (intA0)
M\ intA0, necessarily p0 /∈ intA0. Let U be an open subset con-

taining p0, then U ∩ intA0 6= ∅.
On the other hand, we have

p0 ∈ ∂(intA0) ⊂ ∂A0,

so

p0 ∈ ∂A0 = ∂(M\A0).

Since A0 is closed in M, then M\A0 is non-empty open in M, and so p0 /∈ M\A0. Of

course, p0 ∈ (M\A0)
M

implies that U ∩ (M\A0) 6= ∅.
In conclusion:

1. U ∩ intA0 is a non-empty open subset of intA0 that does not contain p0, so there

exists a non-empty open subset on which grad f = 0.

2. U ∩ (M\A0) is a non-empty open subset that does not contain p0, and is included

in M\A0, so there exists a non-empty open subset on which grad f 6= 0 at any

point.

Let (U, xi)i=1,...,m be a local chart on M around p0 ∈ ∂(intA0). Consider an open

connected subset D in M containing p0, such that D
M

is compact and D
M ⊂ U . Note

that D also contains a non-empty open subset where grad f = 0 everywhere, and a

non-empty open subset where grad f 6= 0 at any point.

As usual, we identify grad f ∈ C(TM) with dϕ(grad f) ∈ C(ϕ−1TSm+1), or

d(i ◦ ϕ)(grad f) ∈ C((i ◦ ϕ)−1TEm+2),

where i : Sm+1 → Em+2 is the canonical inclusion. Let us write grad f = uαeα, where

uα ∈ C∞(M), ∀α = 1, . . . ,m+ 2, and {eα}m+2
α=1 is the canonical basis in Em+2. For all

α = 1, . . . ,m+ 2, the function uα vanishes on V .

As ϕ is biharmonic, we have

∆f = (m− |A|2)f,

and taking its differential we obtain

d∆f = (m− |A|2)df − fd(|A|2), (2.4.1)
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hence, by the musical isomorphism:

(d∆f)♯ = [(m− |A|2)df − fd(|A|2)]♯.

Since (df)♯ = grad f and d∆Hodge = ∆Hodged, we can rewrite Equation (2.4.1) as

(
∆Hodge(df)

)♯
= (m− |A|2) grad f − f grad |A|2.

On the other hand, by the Weitzenböck formula (see Theorem 1.2.5), we have

(
∆Hodge(df)

)♯
= − trace ∇2 grad f +RicciM (grad f),

thus

− trace ∇2 grad f = −RicciM (grad f) + (m− |A|2) grad f − f grad |A|2. (2.4.2)

As RicciM (grad f) = RicciM (uαeα) and

grad f = uαeα = uα(e⊥α + e⊤α ) = uαe⊤α ,

where e⊥α and e⊤α are the normal and the tangential components (to M) of eα in Em+2.

Note that
∣∣e⊤α
∣∣ may vanish at some points. Since grad f is tangent to M , we have

uαe⊥α = 0, i.e.

uα
(
eα − e⊤α

)
= 0 (2.4.3)

and taking the covariant derivative of (2.4.3) we get

0 = ∇Em+2

∂

∂xi

uα
(
eα − e⊤α

)

=
∂uα

∂xi
e⊥α − uα∇Em+2

∂

∂xi

e⊤α

=
∂uα

∂xi
e⊥α − uα∇Sm+1

∂

∂xi

e⊤α + uα
〈
∂

∂xi
, e⊤α

〉
r

=
∂uα

∂xi
e⊥α − uα∇M

∂

∂xi

e⊤α − uαB

(
∂

∂xi
, e⊤α

)
+ uα

〈
∂

∂xi
, e⊤α

〉
r.

It follows that

uα∇M
∂

∂xi

e⊤α = 0

and
∂uα

∂xi
e⊥α − uαB

(
∂

∂xi
, e⊤α

)
+ uα

〈
∂

∂xi
, e⊤α

〉
r = 0,

where r is the position vector field on Em+2. Equivalently, the last relation can be

rewritten as

∂uα

∂xi
eα =

∂uα

∂xi
e⊤α + uαB

(
∂

∂xi
, e⊤α

)
− uα

〈
∂

∂xi
, e⊤α

〉
r = 0.
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We have

RicciM (grad f) = RicciM (uαe⊤α ) = uαRicciM (e⊤α ). (2.4.4)

On U , we combine the second fundamental forms of M in Sm+1 and of Sm+1 in Em+2

to compute

∇M
∂

∂xi

grad f = ∇Sm+1

∂

∂xi

grad f − B

(
∂

∂xi
, grad f

)

= ∇Em+2

∂

∂xi

grad f +

〈
∂

∂xi
, uαe⊤α

〉
r −B

(
∂

∂xi
, grad f

)

= ∇Em+2

∂

∂xi

(uαeα) +

〈
∂

∂xi
, uαe⊤α

〉
r −B

(
∂

∂xi
, uαe⊤α

)

=
∂uα

∂xi
eα + uα∇Em+2

∂

∂xi

eα + uα
〈
∂

∂xi
, e⊤α

〉
r − uαB

(
∂

∂xi
, e⊤α

)

=
∂uα

∂xi
eα + uα

〈
∂

∂xi
, e⊤α

〉
r − uαB

(
∂

∂xi
, e⊤α

)
.

On the other hand,

∇M
∂

∂xi

grad f =
∂uα

∂xi
e⊤α + uα∇M

∂

∂xi

e⊤α

=
∂uα

∂xi
e⊤α .

Put

Yi = ∇M
∂

∂xi

grad f,

thus, for Yi we have two equivalent expressions

Yi =
∂uα

∂xi
eα + uα

〈
∂

∂xi
, e⊤α

〉
r − uαB

(
∂

∂xi
, e⊤α

)

=
∂uα

∂xi
e⊤α .

For simplicity of notation, it is convenient to write Yi as

Yi =
∂uα

∂xi
eα + uαZα,i,

where

Zα,i =

〈
∂

∂xi
, e⊤α

〉
r −B

(
∂

∂xi
, e⊤α

)

is a vector field normal to M in Em+2.
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We repeat this process to obtain, on U , the second derivatives of grad f ,

∇M
∂

∂xi

∇M
∂

∂xj

grad f = ∇M
∂

∂xi

Yj

= ∇Em+2

∂

∂xi

Yj +

〈
∂

∂xi
, Yj

〉
r −B

(
∂

∂xi
, Yj

)

= ∇Em+2

∂

∂xi

{
∂uα

∂xj
eα + uαZα,j

}
+

〈
∂

∂xi
, Yj

〉
r −B

(
∂

∂xi
, Yj

)

=
∂2uα

∂xi∂xj
eα +

∂uα

∂xi
Zα,j + uα∇Em+2

∂

∂xi

Zα,j +

〈
∂

∂xi
, Yj

〉
r (2.4.5)

−B

(
∂

∂xi
, Yj

)
.

To compute ∇M
∇M

∂
∂xi

∂

∂xj

grad f, on U , we have

∇M
∇M

∂
∂xi

∂

∂xj

grad f = ∇Em+2

∇M
∂
∂xi

∂

∂xj

grad f +

〈
∇M

∂

∂xi

∂

∂xj
, grad f

〉
r −B

(
∇M

∂

∂xi

∂

∂xj
, grad f

)

=

[(
∇M

∂

∂xi

∂

∂xj

)
uα
]
eα + uα

〈
∇M

∂

∂xi

∂

∂xj
, e⊤α

〉
r − uαB

(
∇M

∂

∂xi

∂

∂xj
, e⊤α

)
.

(2.4.6)

Replacing (2.4.5) and (2.4.6) in (2.4.2), and using (2.4.4), we obtain

(∆uα) eα − gij ∂uα

∂xi
Zα,j − gij

〈
∂
∂xi
, Yj
〉
r + gijB

(
∂
∂xi
, Yj
)
− gijuα∇Em+2

∂

∂xi

Zα,j

+gijuα
〈
∇M

∂

∂xi

∂
∂xj

, e⊤α

〉
r − gijuαB

(
∇M

∂

∂xi

∂
∂xj

, e⊤α

)

= −uαRicciM (e⊤α ) + (m− |A|2)uαe⊤α − f grad |A|2,

so

(∆uα) eα = gij
∂uα

∂xi
Zα,j + gij

〈
∂

∂xi
, Yj

〉
r − gijB

(
∂

∂xi
, Yj

)

+ gijuα∇Em+2

∂

∂xi

Zα,j − gijuα
〈
∇M

∂

∂xi

∂

∂xj
, e⊤α

〉
r

+ gijuαB

(
∇M

∂

∂xi

∂

∂xj
, e⊤α

)
− uαRicciM (e⊤α ) + (m− |A|2)uαe⊤α

− f grad |A|2. (2.4.7)

But

gij
〈
∂

∂xi
, Yj

〉
r = gij

∂uα

∂xj

〈
∂

∂xi
, e⊤α

〉
r, (2.4.8)

and

gij B

(
∂

∂xi
, Yj

)
= gij

∂uα

∂xj
B

(
∂

∂xi
, e⊤α

)
, (2.4.9)
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so replacing (2.4.8) and (2.4.9) in (2.4.7) we obtain

(∆uα) eα = gij
∂uα

∂xi
Zα,j + gij

∂uα

∂xj

〈
∂

∂xi
, e⊤α

〉
r − gij

∂uα

∂xj
B

(
∂

∂xi
, e⊤α

)
(2.4.10)

+ gijuα∇Em+2

∂

∂xi

Zα,j − gijuα
〈
∇M

∂

∂xi

∂

∂xj
, e⊤α

〉
r + gijuαB

(
∇M

∂

∂xi

∂

∂xj
, e⊤α

)

− uαRicciM (e⊤α ) + (m− |A|2)uαe⊤α − f grad |A|2.

Thus each term on the right-hand side of Equation (2.4.10), except for the very last

one, contains either ∂uα

∂xi
or uα.

By the well-known inequalities

|∆uα0 | ≤ |(∆uα)eα|,

and since all functions and vector fields are smooth on U , they are bounded on D
M

,

and so, on D. Using the hypothesis and the triangle inequality, we obtain

|∆uα0 | ≤ C


∑

α,i

∣∣∣∣
∂uα

∂xi

∣∣∣∣+
∑

α

|uα|




on D. Since uα is zero on a non-empty open subset of D, by Aronszajn’s unique

continuation principle we deduce that uα is equal to zero on D, and thus grad f vanishes

on D. This is impossible, hence the assumption ∂(intA0) 6= ∅ is false. In conclusion,

∂(intA0) = ∅, and so grad f vanishes on the whole of M .

Remark 2.4.2. Since ∇M
X grad f = (Xuα)e⊤α , for any X tangent to M , from (2.4.2)

we could directly obtain (∆uα)e⊤α , but this would not be enough to estimate ∆uα.

Theorem 2.4.1 can be rephrased as follows:

Corollary 2.4.3. Let ϕ : Mm → Sm+1 be a proper-biharmonic hypersurface. Assume

that there exists a non-negative function h on M such that | grad |A|2| ≤ h| grad f | on

M . Then, either M has constant mean curvature or the set of points where grad f 6= 0

is an open dense subset of M .

Proof. Assume that M is not CMC. Let

W := {p ∈M : (grad f)(p) 6= 0},

be a non-empty open subset in M . Assume that W
M
 M, then V = M \WM

is a

non-empty, open subset of M and grad f |V = 0, therefore f is constant on a connected

component V1 of V . As f is constant on V1 and | grad |A|2| ≤ h | grad f | over M , by

Theorem 2.4.1 we deduce that f is constant on M , which is a contradiction, therefore

W
M

=M.
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The hypothesis on the existence of the function h in Theorem 2.4.1 can be obtained

under natural conditions on |A|2 or the scalar curvature of M .

Corollary 2.4.4. Let ϕ : Mm → Sm+1 be a proper-biharmonic hypersurface with |A|2
constant. Then, either M has constant mean curvature, or the set of points where

grad f 6= 0 is an open dense subset of M .

Proof. As |A|2 is constant, the condition | grad |A|2| ≤ h | grad f | on M is automatically

satisfied, thus, by Corollary 2.4.3 we conclude.

Corollary 2.4.5. Let ϕ : Mm → Sm+1 be a proper-biharmonic hypersurface with con-

stant scalar curvature. Then, either M has constant mean curvature, or the set of points

where grad f 6= 0 is an open dense subset of M .

Proof. Using Equation (1.3.4) we have

|A|2 = m(m− 1) +m2f2 − ScalM ,

which implies

grad |A|2 = m2 grad f2

= 2m2f grad f,

thus

| grad |A|2| = 2m2|f | | grad f |.

Therefore, the condition

| grad |A|2| ≤ h| grad f |

holds on M and we apply Corollary 2.4.3 to conclude.

Remark 2.4.6.

1. Corollaries 2.4.4 and 2.4.5 are meaningful because M is not assumed to be com-

pact:

(a) A direct consequence of J.-H. Chen’s result (see lemma 2.3.1) is that if M

is compact and |A|2 is constant, then grad f vanishes on the whole manifold

M (see [77]).

(b) If M is compact and its scalar curvature is constant, Maeta and Ou show in

[67] that f is constant.

Therefore, Corollaries 2.4.4 and 2.4.5 can be seen as extensions of results in [67]

and [77], where it is shown that if f is constant on a non-empty open subset of

M then f is constant on M .
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2. Theorem 2.4.1 is meaningful even in the compact case.

3. Consider ϕ :Mm → Nm+1(c), (c ≤ 0) a proper-biharmonic hypersurface. Assume

that grad f vanishes on an open subset. Then, it follows that f is constant on an

open (connected) subset. But, as c ≤ 0, the constant has to be zero (see [79] for

a more general statement), so ϕ is harmonic on an open subset, therefore on the

whole manifold M .

As a direct application of Corollary 2.4.5 we can give the following result.

Proposition 2.4.7. Let ϕ : Mm → Sm+1 be a proper-biharmonic hypersurface with

constant scalar curvature. Assume that there exists a connected component of MA where

the number of distinct principal curvatures is at most six. Then M has constant mean

curvature.

Proof. Let U be a connected component of MA. The number of distinct principal

curvatures is constant and at most 6.

As ScalM is constant, by Theorem 1.1 of [44] we obtain that f is constant on U . On

the other hand, by Corollary 2.4.5, we deduce that f is constant on M .

Corollary 2.4.8. Let ϕ : Mm → Sm+1 be a proper-biharmonic hypersurface. Assume

that there exists a non-negative function h such that | grad |A|2| ≤ h| grad f |, and M is

not CMC. Denote by U a connected component of MA. Then, on U , we have:

1. −m
2 f is a principal curvature with multiplicity equal to 1;

2. grad f
| grad f | is a vector field defined on an open dense subset of U and its integral curves

are geodesics;

3. the number of distinct principal curvatures is at least 3 and |A|2 > m2(m+8)
4(m−1) f

2 on

an open dense subset of U(see [10]).

Proof. Since M does not have constant mean curvature, by Corollary 2.4.3 we deduce

that the points of U where grad f 6= 0 form an open dense subset of U . Now, by

continuity, we obtain −m
2 f = λi0 , for some i0, on U , and by Proposition 2.3.4 we obtain

that the multiplicity of λi0 is 1.

Furthermore, for simplicity, we consider i0 = 1, and work on an open connected

subset of U where grad f 6= 0 at any point.

Let E1 = grad f
| grad f | . Consider Equation (2.3.3) for i = 1 and j = a, a = 2, . . . ,m, and

taking the inner product with E1 we get

〈(E1λa)Ea +
m∑

k=1

(λa − λk)ω
k
a(E1)Ek, E1〉 = 〈(Eaλ1)E1 +

m∑

k=1

(λ1 − λk)ω
k
1 (Ea)Ek, E1〉.
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Therefore,

(λa − λ1)ω
1
a(E1) = 0.

As λ1 has multiplicity equal to 1, i.e. λa 6= λ1, we get

ωa1(E1) = 0,

and thus ∇E1E1 = 0, so the integral curves of E1 are geodesics.

If the number of distinct principal curvatures is at most 2 then U is CMC (see [10]).

As J.-H. Chen’s Inequality is based on the Cauchy-Schwarz Inequality applied to the

principal curvatures, we have a strict inequality. Indeed, since the number of distinct

principal curvatures on U must be at least 3, and since λ1 can only have multiplicity

equal to 1, there exists a 6= b such that λa 6= λb, a, b = 2, . . .m. Therefore,

|A|2 = λ21 +
m∑

k=2

λ2k >
m2

4
f2 +

1

(m− 1)

(
m∑

k=2

λk

)2

.

Then, the proof follows from Lemma 1.4.27.

Remark 2.4.9. We note that the distribution orthogonal to that determined by grad f
| grad f |

is completely integrable. The level hypersurfaces of the mean curvature f have flat

normal connection as submanifolds in Sm+1 of codimension 2 (see [73, Theorem 1.40]).

Corollary 2.4.3 allows the re-writing of some known results replacing their global

hypothesis with local variants.

Corollary 2.4.10. Let ϕ :Mm → Sm+1 be a proper-biharmonic hypersurface. Assume

that | grad |A|2| ≤ h | grad f | on M, where h is a non-negative function on M . If M is

not CMC, then J.-H. Chen’s Inequality

|A|2 ≥ m2(m+ 8)

4(m− 1)
f2 (2.4.11)

is valid everywhere on M.

Proof. Inequality (2.4.11) holds onW and, asW is dense, we conclude by continuity.

J.-H. Chen’s Inequality enables us to obtain a more geometric version of The-

orem 2.4.1.

Theorem 2.4.11. Let ϕ : Mm → Sm+1 be a proper-biharmonic hypersurface. Assume

that f2 > 4(m−1)
m(m+8) . If grad f vanishes on a non-empty open connected subset of M, then

M has constant mean curvature. Moreover, if m ∈ {2, 3, 4}, then ϕ(M) is an open

subset of the small hypersphere Sm
(

1√
2

)
.
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Proof. Let us denote

A0 := {p ∈M : (grad f)(p) = 0}.

In the proof of Theorem 2.4.1 we have shown that A0 is a closed subset of M , intA0 6= ∅,
and if ∂(intA0) = ∅ then grad f vanishes on M .

As in the proof of Theorem 2.4.1, assume that ∂(intA0) 6= ∅, to reach a contra-

diction. Let p0 ∈ ∂(intA0), it follows that there exists a sequence of points {p1n}n∈N∗

converging to p0, p1n 6= p0 and p1n ∈ intA0 for any n ∈ N∗, and there exists a sequence

of points {p2n}n∈N∗ , that converges to p0, p2n 6= p0 and (grad f)(p2n) 6= 0 for any n ∈ N∗.

From Lemma (2.3.1) we have

|A|2(p2n) ≥
m2(m+ 8)

4(m− 1)
f2(p2n), ∀n ∈ N∗. (2.4.12)

Now, each connected component of intA0 is open in intA0 and so in M. Thus, on each

connected component of intA0 the function f is constant. But the constant cannot be

zero as ϕ is not harmonic and so |A|2 = m. In conclusion, we have |A|2 = m on intA0

and

|A|2(p1n) = m, ∀n ∈ N∗. (2.4.13)

Passing to the limit in (2.4.12) and (2.4.13) we obtain

m = |A|2(p0) ≥
m2(m+ 8)

4(m− 1)
f2(p0),

thus

f2 ≤ 4(m− 1)

m(m+ 8)

which is impossible.

The last part of the theorem follows directly from [11].

Remark 2.4.12. Compare the above result with [77, Proposition 1.38 and Corollary

1.40], where the inequality involving f2 is not strict, and compactness or completeness

assumptions are needed.

2.5 Rigidity results for biharmonic hypersurfaces

The unique continuation properties of Section 2 can be exploited to obtain new rigidity

results. Theorem 2.5.1 relies essentially on the combination of the Bochner formula

applied to the vector field grad f and J.-H. Chen’s Inequality, made possible thanks to

Corollary 2.4.10. Theorem 2.5.2 is a more technical alternative which puts together a

bound on the Ricci curvature and an averaged version (i.e. an integral version) of the

condition which appears as a strict inequality in Theorem 2.4.11.
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Theorem 2.5.1. Let ϕ : Mm → Sm+1 be a compact proper-biharmonic hypersurface.

Assume that | grad |A|2| ≤ h | grad f | on M , where h is a non-negative function on M ,

ScalM ≥ 0 and
∫

M

[
m(m+ 8)f2 − 4(m− 1)

]
ScalM f2 dvg ≥ 0. (2.5.1)

Then M has constant mean curvature.

Proof. Assume that M does not have constant mean curvature, we will use Corollary

2.4.10 and we will argue by contradiction.

Starting with the Bochner Formula (see for example [83]), we have

−1

2
∆| grad f |2 = |∇df |2 − 〈grad∆f, grad f〉+RicciM (grad f, grad f).

Now, using Equation (1.3.5), with c = 1, we get

RicciM (grad f, grad f) =(m− 1)| grad f |2 − |A(grad f)|2

+mf〈A(grad f), grad f〉. (2.5.2)

Now, since M is a biharmonic submanifold of Sm+1,

A(grad f) = −m
2
f grad f,

and

|A(grad f)|2 = m2

4
f2| grad f |2.

Furthermore,

−mf〈A(grad f), grad f〉 = m2

2
f2| grad f |2,

and

RSm+1
(grad f, η, grad f, η) = 〈grad f, grad f〉 〈η, η〉 − 〈grad f, η〉 〈grad f, η〉

= |grad f |2 .

Then, replacing in Equation (2.5.2), we obtain

m| grad f |2 = RicciM (grad f, grad f) +
3

4
m2f2| grad f |2 + | grad f |2,

thus

RicciM (grad f, grad f) =

(
m− 1− 3m2

4
f2
)
| grad f |2.

For simplicity, we denote the scalar curvature ScalM by s. Recall that using (1.3.6),

with c = 1, we have

|A|2 = m(m− 1) +m2f2 − s.
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As ϕ is biharmonic, we have

∆f = (m− |A|2)f,

thus

grad∆f = grad[(m− |A|2)f ]
= m grad f − f grad |A|2 − |A|2 grad f
= m grad f − f grad(m(m− 1) +m2f2 − s)− |A|2 grad f
= m grad f − 2m2f2 grad f + f grad s− |A|2 grad f
= (m− 2m2f2 − |A|2) grad f + f grad s. (2.5.3)

On the other hand, for a local orthonormal frame field {Ei}mi=1,

|∇df |2 =
m∑

i,j=1

(∇df(Ei, Ej))2

≥
m∑

i=1

(∇df(Ei, Ei))2

≥ 1

m

(
m∑

i=1

∇df(Ei, Ei)
)2

≥ 1

m
(∆f)2.

Now

−1

2
∆| grad f |2 ≥ 1

m
(∆f)2 − 〈(m− 2m2f2 − |A|2) grad f + f grad s, grad f〉

+

(
m− 1− 3m2

4
f2
)
| grad f |2

≥ 1

m
(∆f)2 +

(
|A|2 + 5m2

4
f2 − 1

)
| grad f |2 − f〈grad s, grad f〉.

We have

1

m

∫

M
(∆f)2 dvg =

1

m

∫

M
(∆f)(∆f) dvg

= − 1

m

∫

M
(∆f) div(grad f) dvg,

and using the Divergence Theorem and (2.5.3) we obtain

1

m

∫

M
(∆f)2 dvg =

1

m

∫

M
〈grad∆f, grad f〉 dvg

= − 1

m

∫

M
(|A|2 + 2m2f2 −m)| grad f |2 dvg

+
1

m

∫

M
f〈grad s, grad f〉 dvg.
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Integrating the Bochner Formula over M and using the Divergence Theorem, we get

0 ≥ − 1

m

∫

M
(|A|2 + 2m2f2 −m)| grad f |2 dvg +

1

m

∫

M
f〈grad s, grad f〉 dvg

+

∫

M
(|A|2 + 5m2

4 f2 − 1)| grad f |2 dvg −
∫

M
f〈grad s, grad f〉 dvg

≥
∫

M

[(
1− 1

m

)
|A|2 +

(
− 2
m + 5

4

)
m2f2

]
| grad f |2 dvg (2.5.4)

+

(
1−m

m

)∫

M
f〈grad s, grad f〉 dvg.

To obtain a lower bound of the first term, we need Corollary 2.4.10 and apply it to

Equation (2.5.4) to obtain

0 ≥
∫

M

[(
m−1
m

) (m2(m+8)
4(m−1)

)
f2 +

(
5m−8
4m

)
m2f2

]
| grad f |2 dvg

+

(
1−m

2m

)∫

M
〈grad s, grad f2〉 dvg

≥
∫

M

[
m(m+8)

4 f2 + m(5m−8)
4 f2

]
| grad f |2 dvg +

(
1−m

2m

)∫

M
s∆f2 dvg

≥ 3m2

2

∫

M
f2| grad f |2 dvg +

(
1−m

2m

)∫

M
s∆f2 dvg.

Now, we have

∆f2 = 2
(
(m− |A|2)f2 − | grad f |2

)
,

thus

3m2

2

∫

M
f2| grad f |2 dvg +

(
1−m

2m

)∫

M
2s
[
(m− |A|2)f2 − | grad f |2

]
dvg

=
3m2

2

∫

M
f2| grad f |2 dvg +

(
1−m

m

)∫

M
s(m− |A|2)f2 dvg

+

(
m− 1

m

)∫

M
s| grad f |2 dvg.

Using Corollary 2.4.10 and the fact that s ≥ 0, we obtain

0 ≥ 3m2

2

∫

M
f2| grad f |2 dvg + (1−m)

∫

M
sf2 dvg

+
m(m+ 8)

4

∫

M
sf4 dvg +

(
m− 1

m

)∫

M
s| grad f |2 dvg. (2.5.5)

Now as s ≥ 0, we obtain

∫

M
s| grad f |2 dvg ≥ 0 (2.5.6)
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From Inequality (2.5.5) we have

0 ≥ 3m2

2

∫

M
f2| grad f |2 dvg + (1−m)

∫

M
sf2 dvg +

m(m+ 8)

4

∫

M
sf4 dvg. (2.5.7)

Multiplying Inequality (2.5.7) by 4, we obtain

0 ≥ 6m2

∫

M
f2| grad f |2 dvg +

∫

M

[
4(1−m) +m(m+ 8)f2

]
sf2 dvg.

Now as
∫
M [4(1−m) +m(m+ 8)f2]sf2 dvg ≥ 0 we obtain

0 ≥ 6m2

∫

M
f2| grad f |2 dvg +

∫

M

[
4(1−m) +m(m+ 8)f2

]
sf2 dvg ≥ 0,

by the sandwich rule we conclude that

6m2

∫

M
f2| grad f |2 dvg +

∫

M

[
4(1−m) +m(m+ 8)f2

]
sf2 dvg = 0.

Hence, at every point of M , f2| grad f |2 = 0 which implies that, at each point of M ,

f = 0 or grad f = 0.

Let p ∈ M be an arbitrary fixed point. If (grad f)(p) 6= 0, then f = 0 around p,

thus grad f = 0 at p, which is a contradiction. Therefore, grad f = 0 at each point p,

which implies that f is constant (on M), and contradicts our assumption.

A weaker version of Theorem 2.5.1 can be formulated, replacing the condition on

the scalar curvature by a combination of two lower bounds on the Ricci and scalar

curvature, and an inequality involving the average of the mean curvature.

Theorem 2.5.2. Let ϕ : Mm → Sm+1 be a compact proper-biharmonic hypersur-

face. Assume that there exist a non-negative function h on M such that | grad |A|2| ≤
h | grad f | on M , and a real number a > 0 such that:

1. RicciM (X,X) ≥ a > 0, for all X ∈ TpM, |X| = 1 and for all p ∈M ;

2.
∫
M [m2(m+ 8)af2 − 4(m− 1) ScalM ]f2 dvg ≥ 0.

Then M has constant mean curvature.

Proof. We assume that M does not have constant mean curvature, and will argue by

contradiction, as in the proof of Theorem 2.5.1.

First, we consider the Bochner Formula

−1

2
∆| grad f |2 = |∇df |2 − 〈grad∆f, grad f〉+RicciM (grad f, grad f).
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Second, take Equation (1.3.5), with c = 1, together with A(grad f) = −m
2 f grad f ,

which comes from the biharmonicity of M in Sm+1, to obtain an equation for the Ricci

curvature of M

RicciM (grad f, grad f) =

(
m− 1− 3m2

4
f2
)
| grad f |2.

Third, from Equation (1.3.6), with c = 1, we deduce a relationship between the

norm of the shape operator A and s = ScalM , the scalar curvature of M

|A|2 = m(m− 1) +m2f2 − s.

Then, we compute grad∆f and find a lower bound for |∇df |2, and obtain

grad∆f = (m− 2m2f2 − |A|2) grad f + f grad s and |∇df |2 ≥ 1

m
(∆f)2.

Furthermore, we rewrite the Bochner Formula, integrate it and use the Divergence

Theorem to obtain Inequality (2.5.4)

0 ≥
∫

M

[(
1− 1

m

)
|A|2 +

(
− 2
m + 5

4

)
m2f2

]
| grad f |2 dvg

+

(
1−m

m

)∫

M
f〈grad s, grad f〉 dvg.

Finally, we use Corollary 2.4.10 and the fact that s > 0, which comes from the

assumption that RicciM (X,X) ≥ a > 0, to obtain

0 ≥ 3m2

2

∫

M
f2| grad f |2 dvg + (1−m)

∫

M
sf2 dvg

+
m(m+ 8)

4

∫

M
sf4 dvg +

(
m− 1

m

)∫

M
s| grad f |2 dvg. (2.5.8)

Now, instead of using
∫
M s| grad f |2dvg as in Theorem 2.5.1, we will use Obata

Inequality on the first eigenvalue of the Laplacian operator to obtain a more precise

lower bound of
∫
M s| grad f |2dvg.

To obtain a lower bound of the L2-norm of grad f in terms of f , we use the spectrum

properties of the Laplacian operator. Consider an orthonormal basis {fi}∞i=0 of C∞(M)-

eigenfunctions of the Laplacian, i.e. ∆fi = λifi, where λ0 = 0 < λ1 ≤ λ2 ≤ · · · , and∫
M fifj dvg = δij .

Let f ∈ C∞(M), then f =
∑∞

i=0 µifi, where f0 = 1√
Vol(M)

and µ0 = 1√
Vol(M)

∫
M f dvg.

Then, by Parseval’s Identity (see for example [33])

∫

M
f2 dvg =

∞∑

i=0

µ2i .
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Also,

∆f = ∆

( ∞∑

i=0

µifi

)
=

∞∑

i=0

µi∆fi =

∞∑

i=0

µiλifi,

but as λ0 = 0, we obtain

∆f =
∞∑

i=1

µiλifi,

so again, using Parseval’s Identity [33], we have

∫

M
f∆f dvg =

∫

M

( ∞∑

i=1

µifi

)


∞∑

j=1

µjλjfj


 dvg =

∞∑

i=1

∞∑

j=1

µiµjλj

∫

M
fifj dvg =

∞∑

i=1

λiµ
2
i

≥ λ1

∞∑

i=1

µ2i = λ1

(∫

M
f2 dvg − µ20

)
.

But ∫

M
f∆f dvg =

∫

M
| grad f |2 dvg,

so
∫

M
| grad f |2 dvg ≥ λ1

[∫

M
f2 dvg −

1

Vol(M)

(∫

M
f dvg

)2
]
.

Now, by Obata [76], RicciM (X,X) ≥ a|X|2 > 0 implies that λ1 ≥ ma
m−1 . Since s ≥ ma,

we have∫

M
s| grad f |2 dvg ≥ ma

∫

M
| grad f |2 dvg

≥ m2a2

m− 1

[∫

M
f2 dvg −

1

Vol(M)

(∫

M
f dvg

)2
]
. (2.5.9)

Then from Inequality (2.5.8)

0 ≥ 3m2

2

∫

M
f2| grad f |2 dvg + (1−m)

∫

M
sf2 dvg +

m(m+ 8)

4

∫

M
sf4 dvg

+ ma2
∫

M
f2 dvg −

ma2

Vol(M)

(∫

M
f dvg

)2

, (2.5.10)

and multiplying Inequality (2.5.10) by 4, and using s ≥ ma we obtain

0 ≥ 6m2

∫

M
f2| grad f |2 dvg + 4(1−m)

∫

M
sf2 dvg +m2(m+ 8)a

∫

M
f4 dvg

+ 4ma2
∫

M
f2 dvg −

4ma2

Vol(M)

(∫

M
f dvg

)2

≥ 6m2

∫

M
f2| grad f |2 dvg + 4

∫

M

[
(1−m)s+ma2

]
f2 dvg

+ m2(m+ 8)a

∫

M
f4 dvg −

4ma2

Vol(M)

(∫

M
f dvg

)2

.
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Now, we recall the Cauchy-Schwarz Inequality

∫

M
fg dvg ≤

(∫

M
f2 dvg

) 1
2
(∫

M
g2 dvg

) 1
2

.

Taking g = 1, we get (∫

M
f dvg

)2

≤ Vol(M)

∫

M
f2 dvg.

As a result

0 ≥ 6m2

∫

M
f2| grad f |2 dvg

+

∫

M

[
4(1−m)s+ 4ma2 + m2(m+ 8)af2 − 4ma2

]
f2 dvg.

By Condition 2 we conclude that

6m2

∫

M
f2| grad f |2 dvg +

∫

M

[
4(1−m)s+ m2(m+ 8)af2

]
f2 dvg = 0.

Hence, at every point of M , f2| grad f |2 = 0 which implies that, at each point of M ,

f = 0 or grad f = 0.

Let p ∈ M be an arbitrary fixed point. If (grad f)(p) 6= 0, then f = 0 around p,

thus grad f = 0 at p, which is a contradiction. Therefore, grad f = 0 at each point p,

which implies that f is constant (on M), and contradicts our assumption.

Example 2.5.3. The hypotheses in Theorems 2.5.1 and 2.5.2 are satisfied by the 45th-

parallel Sm
(

1√
2

)
→ Sm+1, for m ≥ 2, as Ricci

Sm
(

1√
2

)

= 2(m − 1)g, Scal
Sm

(

1√
2

)

=

2m(m− 1), |A|2 = m and f2 = 1 (we choose a equal to 2(m− 1)).

Indeed, by Proposition (1.4.16) we know that the 45th-parallel is proper-biharmonic,

has |A|2 = m and f2 = 1. Also, it has Ricci
Sm

(

1√
2

)

= 2(m − 1)g and Scal
Sm

(

1√
2

)

=

2m(m− 1).

By direct computations, we can show that Inequality (2.5.1) of Theorem 2.5.1 is

verified for m ≥ 2.

As for Theorem 2.5.2, Condition 1 holds, and Condition 2 is satisfied if and only if

2m2(m+ 8)(m− 1)− 8m(m− 1)2 ≥ 0. which is true for all m ≥ 2.

Example 2.5.4. The generalized Clifford torus Sm1( 1√
2
) × Sm2( 1√

2
) → Sm+1, where

1 ≤ m1 < m2, and m ≥ 3, has Ricci
Sm1

(

1√
2

)

×Sm2

(

1√
2

)

= 2(m1 − 1)g1 + 2(m2 − 1)g2,

Scal
Sm1

(

1√
2

)

×Sm2

(

1√
2

)

= 2m1(m1 − 1) + 2m2(m2 − 1), |A|2 = m1 + m2 = m and

f2 =
(
m1−m2
m1+m2

)2
. Here g1 is the canonical metric on Sm1

(
1√
2

)
and g2 is the canonical

metric on Sm2

(
1√
2

)
.
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Concerning Inequality 2.5.1 in Theorem 2.5.1, by straightforward computations, we

can see that it is satisfied if and only if m1 ∈
[
1, m2 −

√
m(m−1)
m+8

]
, for m ≥ 4. Note that

this is not a very restrictive condition, as for m large enough, we have

m

3
<
m

2
−
√

m(m−1)
m+8 .

Indeed, by Proposition (1.4.17) we know that the Clifford torus has |A|2 = m and

f2 =
(
m1−m2
m1+m2

)2
. It also has Ricci

Sm1

(

1√
2

)

×Sm2

(

1√
2

)

= 2(m1 − 1)g1 + 2(m2 − 1)g2 and

Scal
Sm1

(

1√
2

)

×Sm2

(

1√
2

)

= 2m1(m1−1)+2m2(m2−1). Obviously, the first two conditions

in Theorem 2.5.1 are satisfied. Now, we verify Inequality 2.5.1, and it is enough to show

that

(m+ 8)(m1 −m2)
2 − 4m(m− 1) ≥ 0.

We have

(m+ 8)(m1 −m2)
2 − 4m(m− 1) = (m+ 8)(m1 −m+m1)

2 − 4m(m− 1)

= 4(m+ 8)m2
1 − 4m(m+ 8)m1 +m(m+ 2)2.

We consider the inequality

4(m+ 8)m2
1 − 4m(m+ 8)m1 +m(m+ 2)2 ≥ 0

as a second order inequality in m1. Clearly, we obtain m1 ∈ (0, x1] ∪ [x2,m), where x1
and x2 are the roots of this quadratic equation,

x1 =
m

2
−
√
m(m− 1)

m+ 8
and x2 =

m

2
+

√
m(m− 1)

m+ 8
.

It is clear that x1 ∈
(
0, m2

)
and x2 ∈

(
m
2 ,m

)
. Since m1 < m2, we get m1 <

m
2 and

therefore m1 ∈ (0, x1]. Thus, to have a solution m1, which must be a positive natural

number, we need to impose x1 ≥ 1, that is

m

2
−
√
m(m− 1)

m+ 8
≥ 1,

which is satisfied for any m ≥ 4.

As to the conditions of Theorem 2.5.2, they are more restrictive compared to The-

orem 2.5.1, but we still can construct many examples that satisfy them.

Indeed, condition | grad |A|2| ≤ h| grad f | in Theorem 2.5.2 is automatically satisfied.

Then, Condition 1 in Theorem 2.5.2 is satisfied since Ricci
Sm1 ( 1√

2
)×Sm2 ( 1√

2
)
= 2(m1 −

1)g1 + 2(m2 − 1)g2 and we can choose a = 2(m1 − 1).
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We have

Scal
Sm1

(

1√
2

)

×Sm2

(

1√
2

)

= 2m1(m1 − 1) + 2m2(m2 − 1)

= 2m1(m1 − 1) + 2(m−m1)(m−m1 − 1)

= 2(2m2
1 − 2mm1 +m2 −m).

Substituting Scal
Sm1

(

1√
2

)

×Sm2

(

1√
2

)

, f2 and a in Condition 2 we obtain
∫

M

[
2m2(m+ 8)(m1 − 1)

(m1 −m2

m1 +m2

)2
− 8(m− 1)(2m2

1 − 2mm1 +m2 −m)
]
f2 dvg ≥ 0

which is true if and only if

2m2(m+ 8)(m1 − 1)
(m1 −m2

m1 +m2

)2
− 8(m− 1)(2m2

1 − 2mm1 +m2 −m) ≥ 0.

We have

2m2(m+ 8)(m1 − 1)
(m1 −m2

m1 +m2

)2
− 8(m− 1)(2m2

1 − 2mm1 +m2 −m)

= 2m2(m+ 8)(m1 − 1)
(2m1 −m

m

)2
− 8(m− 1)(2m2

1 − 2mm1 +m2 −m)

= 8(m+ 8)m3
1 − 8(m2 + 11m+ 6)m2

1 + 2(m3 + 20m2 + 24m)m1 − 2(5m3 + 4m).

(2.5.11)

The first case to consider is m1 = 2, so Condition 2 is equivalent to

64(m+ 8)− 32(m2 + 11m+ 6) + 4(m3 + 20m2 + 24m)− 2(5m3 + 4m) ≥ 0. (2.5.12)

It is not difficult to check that Inequality (2.5.12) is never satisfied for m ≥ 5.

To obtain examples, it is convenient to think of m1 as a parameter and m as a

variable. So we define the function f : R→ R by

f(x) = (2m1 − 10)x3 + (40m1 − 8m2
1)x

2 + (8m3
1 − 88m2

1 + 48m1 − 8)x+ 64m3
1 − 48m2

1.

For any m1 ∈ {3, 4, 5}, one can see that f(x) is always negative after a certain value

of the variable x (depending on m1).

However, for m1 ≥ 6, beyond a certain x, an infinite number of Clifford tori with

f(x) ≥ 0, are obtained.

For instance, for m1 = 6, we have

f(x) = 2x3 − 48x2 − 1160x+ 12096

which is non-negative for x ≥ 36.

When m1 = 7

f(x) = 4x3 − 112x2 − 1240x+ 19600
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is non-negative for x ≥ 33.

Further, for m1 = 8, we have

f(x) = 6x3 − 192x2 − 1160x+ 29696

which is non-negative for x ≥ 34.

Also, for m1 = 9, we have

f(x) = 8x3 − 288x2 − 872x+ 42768

which is non-negative for x ≥ 35.
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Chapter 3

PMC biconservative surfaces

The results of this chapter are extracted from the article:

H. Bibi, B.-Y. Chen, D. Fetcu, C. Oniciuc: PMC Biconservative Surfaces in Complex

Space Forms, 2021. arXiv: 2107.11558v1

3.1 Introduction

This chapter starts with a proof that parallel mean curvature (PMC) surfaces in a

non-flat complex space form are biconservative if and only if totally real. Then we

develop a Simons type formula for a well-chosen vector field constructed from the mean

curvature vector field, to deduce that a complete PMC totally real surface with non-

negative Gaussian curvature in a complex space form must have parallel shape operator.

This surface must be either flat or pseudo-umbilical. Next, restricting ourselves to

complex space forms of complex dimension 2, we find optimal conditions so that a

CMC biconservative surface must then be PMC. Then, we use codimension-reduction

techniques used in [2,37,38] to improve results of [39,43], and show that a non pseudo-

umbilical PMC biconservative surface in a non-flat complex space form Nn(c) must lie

in some N4(c) ⊂ Nn(c). Then we find a particular case where we further reduce the

real codimension to 2. We conclude using the Segre embedding to construct examples

of CMC biconservative submanifolds M1+2q of the complex projective space CP 1+2q(4),

which are neither PMC nor totally real. Moreover, we discuss their biharmonicity. This

illustrates how CMC biconservative submanifolds are less rigid in higher dimensions.

A complex space form of complex dimension n and constant holomorphic sectional

curvature c will be denoted by Nn(c). Since a minimal submanifold is trivially biconser-

vative, we will always assume that the mean curvature vector field H does not vanish.

When dealing with a submanifold M of a complex space form N , i.e. we have an

isometric immersion ϕ :M → N , we will indicate the objects on the target manifold N

63
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by (·).

3.2 PMC and biconservative submanifolds

We will briefly recall some notions regarding Kähler manifolds and complex space forms.

Definition 3.2.1. A Hermition manifold is a complex manifold N endowed with a

Riemannian metric 〈., .〉, such that

〈
JX, JY

〉
=
〈
X,Y

〉
, ∀X,Y ∈ C(TN),

where J is the complex structure associated to the complex manifold N .

It is well-known that J ∈ C(T 1
1 (N)) and J2 = −1.

Definition 3.2.2. A Kähler manifold is a Hermition manifold (N, J, 〈., .〉) such that

dΦ = 0, where Φ is the 2-form defined by

Φ(X,Y ) =
〈
X, JY

〉
, ∀X,Y ∈ C(TN).

Theorem 3.2.3. A Hermition manifold (N, J, 〈., .〉) is Kähler if and only if ∇J = 0.

Definition 3.2.4. A complex space form N(c) is a Kähler manifold (N, J, 〈., .〉) with

constant holomorphic sectional curvature c, i.e. c = RiemN (α), where α is spanned by

X and JX, X being any non-zero tangent vector to N .

We recall that the curvature tensor field R of a complex space form Nn(c) of complex

dimension n is given by

R(X,Y )Z =
c

4

{
〈Y , Z〉X − 〈X,Z〉Y + 〈JY , Z〉JX − 〈JX,Z〉JY

+2〈JY ,X〉JZ
}
, (3.2.1)

where X, Y and Z are vector fields tangent to N .

Definition 3.2.5. A submanifold Mm of the complex manifold N equipped with the

complex structure J is said to be complex if JTMm lies in the tangent bundle of Mm.

Definition 3.2.6. A submanifold Mm of the complex manifold N equipped with the

complex structure J is said to be totally real if JTMm lies in the normal bundle of Mm.

Proposition 3.2.7. [40] Let Mm be a real submanifold of a complex space form Nn(c)

of dimension m such that JH is tangent to Mm. Then Mm is biharmonic if and only

if
{

∆⊥H + traceB(·, AH ·)− c
4(m+ 3)H = 0

2 traceA∇⊥
(·)H

(·) +m grad(|H|2) = 0,
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where A denotes the shape operator, B the second fundamental form, H the mean

curvature vector field, |H| the mean curvature function, ∇⊥ and ∆⊥ the connection

and the Laplacian in the normal bundle of Mm in Nn(c).

We denote JH = T +N , T being the tangential part of JH and N the normal part

of JH, i.e., T = (JH)⊤ and N = (JH)⊥.

Distinguishing between N the normal part of JH and by the same N the target

manifold should be clear from the context.

Theorem 3.2.8. Let Mm be a PMC submanifold of a complex space form Nn(c). If

c = 0, then Mm is biconservative, and if c 6= 0, then Mm is biconservative if and only

if JT ∈ C(NMm).

Proof. Clearly, from Equation (3.2.1) we have

m∑

i=1

R(Ei, H)Ei =
c

4

m∑

i=1

{
〈H,Ei〉Ei − 〈Ei, Ei〉H + 〈JH,Ei〉JEi

−〈JEi, Ei〉JH + 2〈JH,Ei〉JEi
}

=
c

4

m∑

i=1

{
−H + 3〈JH,Ei〉JEi

}
,

=
c

4

m∑

i=1

{−H + 3J (〈JH,Ei〉Ei)} ,

where {Ei}mi=1 is a local orthonormal frame field on Mm and tangent to Mm, thus

trace(R(·, H)·)T =
3

4
c(JT )⊤ = 0.

One can see that for a PMC submanifold Mm the biconservativity condition (see Pro-

position 1.5.6) holds if and only if either c = 0 or JT ∈ C(NMm).

Corollary 3.2.9. Let Mm be a PMC totally real submanifold of a complex space form

Nn(c). Then Mm is biconservative.

Proof. As Mm is totally real, JT ∈ C(NMm), so we obtain

trace(R(·, H)·)T =
3

4
c(JT )⊤ = 0.

Thus the biconservativity condition (see Proposition 1.5.6) holds.

Corollary 3.2.10. Any PMC real hypersurface M2n−1 of a complex space form Nn(c)

is biconservative.
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Proof. In view of Theorem 3.2.8, we may assume that c 6= 0. Since the mean curvature

vector H is normal to M2n−1 in Nn(c), and the codimension is one, we have JH = T ,

hence JT = −H is a normal vector field. Therefore, JT ∈ C(NM2n−1). Consequently,

the real hypersurface M2n−1 is always biconservative.

Alternative conditions for biconservativity are given by the following results.

Theorem 3.2.11. Let Mm be a PMC submanifold of a complex space form Nn(c) with

c 6= 0. If JH ∈ C(NMm), then Mm is biconservative.

Proof. If JH ∈ C(NMm), then T = JT = 0. Furthermore, as Mm is a PMC subman-

ifold, the biconservativity condition (see Proposition 1.5.6)

trace(R(·, H)·)T =
3

4
c(JT )⊤ = 0

holds. Therefore, Mm is biconservative.

Theorem 3.2.12. Let Mm be a PMC submanifold of a complex space form Nn(c) with

c 6= 0. If JH ∈ C(TMm), then Mm is biconservative.

Proof. If JH ∈ C(TMm), then T = JH and so JT = −H is normal. Furthermore, as

Mm is a PMC submanifold, the biconservativity condition (see Proposition 1.5.6)

trace(R(·, H)·)T =
3

4
c(JT )⊤ = 0

holds. Therefore, Mm is biconservative.

3.3 PMC biconservative surfaces in N
n(c)

In this section we study PMC biconservative surfaces in the complex space form Nn(c)

of complex dimension n. The first result shows that, when c 6= 0, such surfaces are

totally real. More precisely, we have the following.

Theorem 3.3.1. Let M2 be a PMC surface in a complex space form Nn(c). If c = 0,

then M2 is biconservative. If c 6= 0, then M2 is biconservative if and only if M2 is

totally real.

Proof. Since the case c = 0 was already proved in Therorem 3.2.8, we will only consider

the case c 6= 0.

First, we prove that a PMC biconservative surface M2 in Nn(c) is totally real. Since

M2 is PMC and biconservative, from Theorem 3.2.8 we have JT ∈ C(NMm), thus

(JT )⊤ = 0. (3.3.1)
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Taking η = H and ξ = V in the Ricci Equation (1.3.10), with V ∈ C(NM), since

M2 is PMC, we obtain

〈[AH , AV ]X,Y 〉 = −〈R(X,Y )H,V 〉.

Now, using (3.2.1)

〈R(X,Y )H, JT 〉 =
c

4

{
〈Y,H〉〈X, JT 〉 − 〈X,H〉〈Y, JT 〉+ 〈JY,H〉〈JX, JT 〉

−〈JX,H〉〈JY, JT 〉+ 2〈JY,X〉〈JH, JT 〉
}

=
c

4

{
〈JY,H〉〈JX, JT 〉 − 〈JX,H〉〈JY, JT 〉

+2〈JY,X〉〈JH, JT 〉
}

=
c

4

{
− 〈JH, Y 〉〈X,T 〉+ 〈JH,X〉〈Y, T 〉

−2〈JX, Y 〉〈H,T 〉
}

=
c

4

{
− 〈T, Y 〉〈X,T 〉+ 〈T,X〉〈Y, T 〉

}

= 0,

so

[AH , AJT ] = 0. (3.3.2)

From Equation (3.3.2) it follows that, at each point of M2, there exists a (positive)

orthonormal basis {e1, e2} tangent to M2 that diagonalizes both AH and AJT at that

point.

Moreover, the following equality holds on M2

traceAJT =
2∑

i=1

〈AJT ei, ei〉 =
2∑

i=1

〈B(ei, ei), JT 〉 = 〈traceB, JT 〉

= 2〈H, JT 〉 = −2〈JH, T 〉 = −2〈T, T 〉
= −2|T |2.

Further, as ∇⊥H = 0, we have

∇XJH = J∇XH = J(∇⊥
XH −AHX)

= −JAHX,

and

∇XJH = ∇X(T +N)

= ∇XT +B(X,T )−ANX +∇⊥
XN,
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thus

−JAHX = ∇XT +B(X,T )−ANX +∇⊥
XN. (3.3.3)

We fix a point p and then, for X = ei, take the inner product of (3.3.3) with ej , i 6= j,

and, at p, we obtain

−〈JAHei, ej〉 = 〈∇eiT, ej〉 − 〈ANei, ej〉+ 〈B(ei, T ), ej〉+ 〈∇⊥
eiN, ej〉

= 〈∇eiT, ej〉 − 〈ANei, ej〉.

With respect to the basis {e1, e2}, we have

AH =

(
λ1 0

0 λ2

)
, AJT =

(
µ1 0

0 µ2

)
.

Thus, at p,

−λi〈Jei, ej〉 = 〈∇eiT, ej〉 − 〈ANei, ej〉. (3.3.4)

One can see that

λ1 + λ2 = traceAH = 2|H|2

and

µ1 + µ2 = traceAJT = −2|T |2.

On the other hand, on M2,

∇XJT = −AJTX +∇⊥
XJT,

and

∇XJT = J∇XT = J∇XT + JB(X,T ).

For X = ei in the above relations, taking the inner product with ei, at the point p, we

get

−〈AJT ei, ei〉 = 〈J∇eiT, ei〉+ 〈JB(ei, T ), ei〉
= −〈∇eiT, Jei〉 − 〈B(ei, T ), Jei〉,

and therefore,

−〈µiei, ei〉 = −〈∇eiT, Jei〉 − 〈B(ei, T ), Jei〉,

which implies

µi =
2∑

j=1

〈∇eiT, ej〉〈Jei, ej〉+ 〈B(ei, T ), Jei〉.

= 〈∇eiT, ej〉〈Jei, ej〉+ 〈B(ei, T ), Jei〉, i 6= j. (3.3.5)
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Now, multiply Equation (3.3.4) by 〈Jei, ej〉, i 6= j, to obtain

−λi〈Jei, ej〉2 = 〈∇eiT, ej〉〈Jei, ej〉 − 〈ANei, ej〉〈Jei, ej〉. (3.3.6)

From Equations (3.3.5) and (3.3.6), we get

−λi〈Jei, ej〉2 = µi − 〈B(ei, T ), Jei〉 − 〈ANei, Jei〉.

Thus, summing up, we have

µ1 + µ2 = −(λ1 + λ2)〈Je1, e2〉2 +
2∑

i=1

〈B(ei, T ), Jei〉

+

2∑

i=1

〈ANei, Jei〉. (3.3.7)

Since

〈ANe1, Je1〉 = 〈ANe1, e2〉〈e2, Je1〉 = −〈e1, ANe2〉〈Je2, e1〉
= −〈ANe2, Je2〉,

then

µ1 + µ2 = −(λ1 + λ2)〈Je1, e2〉2 +
2∑

i=1

〈B(ei, T ), Jei〉,

equivalently,

2|T |2 = 2|H|2〈Je1, e2〉2 +
2∑

i=1

〈JB(ei, T ), ei〉,

i.e.

2|T |2 = 2|H|2〈Je1, e2〉2 + trace〈JB(·, T ), ·〉, (3.3.8)

which holds at any point p ∈M2.

We note that Equation (3.3.8) has a geometrical meaning, i.e. it does not depend

on the choice of the orthonormal basis {e1, e2}. Indeed, let {ẽ1, ẽ2} be an orthogonal

basis such that
(
ẽ1

ẽ2

)
=

(
cosϕ − sinϕ

sinϕ cosϕ

)(
e1

e2

)
, or

(
ẽ1

ẽ2

)
=

(
cosϕ sinϕ

sinϕ − cosϕ

)(
e1

e2

)
.

For the first case, we have

〈Jẽ1, ẽ2〉 = 〈cosϕ Je1 − sinϕ Je2, sinϕ e1 + cosϕ e2〉
= 〈Je1, e2〉.
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Similarly, for the second case, where ẽ1 = cosϕ e1+sinϕ e2 and ẽ2 = sinϕ e1−cosϕ e2,

we get

〈Jẽ1, ẽ2〉 = −〈Je1, e2〉.

Now, let p ∈M2 be an arbitrary point. If Tp 6= 0, we can consider the orthonormal

basis {X1, X2}, where X1 = Tp/|Tp|, tangent to M2. Then, since JT is normal, we have

〈JX2, X1〉 = 0, and it is easy to see that

J(TpM
2) ⊂ NpM

2.

Now assume that Tp = 0. From (3.3.8), it follows that

2|H|2〈Je1, e2〉2 = 0,

that is 〈Je1, e2〉 = 0, which shows that

J(TpM
2) ⊂ NpM

2.

Therefore, we conclude that M2 is totally real.

Conversely, if M2 is totally real, then (JT )⊤ = 0 and therefore, trace(R(·, H), ·)⊤ =

0. Since M2 is also PMC, from Proposition 1.5.6, it follows that M2 is biconservative.

We recall that

Theorem 3.3.2. [90] Let Mm be an m-dimensional pseudo-umbilical PMC submanifold

of a non-flat complex space form Nn(c) of complex dimensional n, with H 6= 0. Then

n > m and Mm is a totally real submanifold of Nn(c).

For the particular case m = 2 and n > 2, we can give an alternative proof of the

above result. Indeed, as a pseudo-umbilical PMC surface is biconservative, by Theorem

3.3.1 it follows that it is totally real.

For the sake of completeness, we present here a sketch of the proof of Theorem 3.3.2

which, in particular, says that in CP 2 there exists no pseudo-umbilical PMC surface.

Indeed, let Mm be a pseudo-umbilical PMC submanifold in Nn(c), c 6= 0. We directly

obtain R(X,Y )H = 0 for any X, Y vector fields tangent to Mm. Taking the inner

product of R(X,Y )H with JH in the above relation and using (3.2.1) we get that Mm

is totally real. Moreover, taking the inner product of R(X,Y )H, but now with JX, in

the same relation we get 〈JY,H〉 = 0, i.e., at any p ∈Mm, H (p) ⊥ J (TpM
m). Since

TpM
m ⊕ J (TpM

m)⊕ span {H(p)} ⊂ TpN,

We get 2m+ 1 < 2n and so m < n.

As an application of Theorem 3.3.1, we have
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Corollary 3.3.3. Let M2 be a PMC surface in a complex space form Nn(c). If JH ∈
C(NM2), then M2 is totally real and n > 2.

Proof. Since T = 0, formula (3.3.1) holds and therefore (3.3.8) becomes 〈Je1, e2〉 = 0,

thus M2 is totally real.

We can prove that M2 is totally real in a straightforward way as follows. Consider

{e1, e2} an orthonormal basis that diagonalizes AH at p ∈M2, then

AH =

(
λ1 0

0 λ2

)
.

Now, since 〈H, JH〉 = 0, then

traceAJH =
2∑

i=1

〈AJHei, ei〉 =
2∑

i=1

〈B(ei, ei), JH〉 = 2〈H, JH〉 = 0.

Thus

AJH =

(
a b

b −a

)
.

Let X ∈ C(TM2), on M2, we have

∇XJH = J∇XH,

and as M2 is PMC we obtain

∇XJH = −JAHX.

On the other hand,

∇XJH = −AJHX +∇⊥
XJH

then, on M2, we have

JAHX = AJHX −∇⊥
XJH. (3.3.9)

Taking the inner product of (3.3.9) with Y ∈ C(TM2), we obtain

〈JAHX,Y 〉 = 〈AJHX,Y 〉.

Thus, at p, we have the following

1. if X = e1, Y = e2, we get

λ1〈Je1, e2〉 = 〈ae1 + be2, e2〉 = b, (3.3.10)

and
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2. if X = e2, Y = e1, we get

λ2〈Je2, e1〉 = 〈be1 − ae2, e1〉 = b. (3.3.11)

From Equations (3.3.10), and (3.3.11) we obtain

λ1〈Je1, e2〉 = λ2〈Je2, e1〉,

hence 〈Je1, e2〉 = 0 or λ1 = −λ2 which is impossible as |H| 6= 0. Therefore, 〈Je1, e2〉 =
0, and so M2 is totally real.

Remark 3.3.4. For c = 0, every PMC submanifold of a complex n-dimensional

Euclidean space Cn is biconservative, but not necessarily totally real. For instance,

S2(1) ⊂ E3 ⊂ C2 is PMC and biconservative in C2 but not totally real, where E3 is the

real 3-dimensional Euclidean space, as we will see in the following example.

Example 3.3.5. Consider the following embeddings S2(1) ⊂ E3 ⊂ C2, where S2(1) is

a Euclidean sphere of radius 1 and E3 is the real 3-dimensional Euclidean space. The

sphere S2(1) is PMC and biconservative in C2 but not totally real.

Indeed, first we need to show that S2(1) is a PMC submanifold in C2, i.e. we need

to prove that 〈∇C2

X H, η〉 = 0, for all η, where η is a normal vector field of S2(1) in C2.

As E3 is totally geodesic in E4 and S2(1) is CMC in E3, we have

〈∇C2

X H, η〉 = 〈∇E4

X H, η〉
= 〈∇E3

X H, η〉
= −〈AHX, η〉
= 0.

Now to show that S2(1) is not totally real in C2, we proceed as follows. Let

(UN , (u, v)) be the stereographic projection from the north pole which is defined by

S(u, v) :=
( 2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
−1 + u2 + v2

1 + u2 + v2

)
.

Let X and Y be two tangent vector fields to S2(1) such that

X = X(u, v) =
( ∂
∂u

)
(u,v)

=
2

(u2 + v2 + 1)2
(v2 − u2 + 1,−2uv, 2u),

and

Y = Y (u, v) =
( ∂
∂v

)
(u,v)

=
2

(u2 + v2 + 1)2
(−2uv, u2 − v2 + 1, 2v).
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Clearly X and Y are orthogonal to each other, and we can write X and Y in E4 as

X = α(v2 − u2 + 1,−2uv, 2u, 0) and Y = α(−2uv, u2 − v2 + 1, 2v, 0),

where α = 2/(u2 + v2 + 1)2 is positive. We have

JX = α(2uv, v2 − u2 + 1, 0, 2u),

thus

〈JX, Y 〉 = α2(−4u2v2 + (u2 − v2 + 1)(−u2 + v2 + 1))

= α2(−2u2v2 − u4 − v4 + 1)

= α2(1− (u2 + v2)2).

Since 〈JX, Y 〉 6= 0, except when 1 = u2 + v2, for all u and v we conclude that S2(1) is

not totally real in C2.

Concerning slant surfaces (see [21]), we have the following non-existence result, a

direct application of Theorem 3.3.1.

Corollary 3.3.6. A PMC proper slant surface in a non-flat complex space form Nn(c)

cannot be biconservative.

Proof. Recall that a proper slant surface is neither complex nor totally real. Now, as

c 6= 0, and our surface is PMC by Theorem 3.3.1 we obtain that the surface is not

biconservative.

The proof of Theorem 3.3.1 also yields the following general result.

Theorem 3.3.7. Let M2 be a PMC surface in a complex space form Nn(c). Then

JT ∈ C(NM2) if and only if M2 is totally real.

Proof. We have seen in the proof of Theorem 3.3.1 that the relation (3.3.1) implies

(3.3.8) and further, it implies that M2 is totally real regardless of whether c = 0 or

not.

Now we recall the following result for surfaces.

Theorem 3.3.8. [72] Let M2 be a complete CMC biconservative surface in a Rieman-

nian manifold Nn, with Gaussian curvature K. Assume that K ≥ 0 and RiemN ≤ K0,

where K0 is a constant. Then ∇AH = 0 and M2 is either flat or pseudo-umbilical.

By Theorem 3.3.1, a PMC totally real surface in a complex space form Nn(c) is

biconservative. Moreover, a complex space form has sectional curvature bounded by

c/4 and c:
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Indeed, let X1, and X2 be two unit vectors tangent to Nn(c) such that X1 ⊥ X2.

We have

RiemN (X1, X2) = 〈R(X1, X2)X2, X1〉 =
c

4

{
〈X2, X2〉〈X1, X1〉 − 〈X1, X2〉〈X2, X1〉

+〈JX2, X2〉〈JX1, X1〉 − 〈JX1, X2〉〈JX2, X1〉
+2〈JX2, X1〉〈JX2, X1〉

}

=
c

4

{
1 + 3〈JX2, X1〉2

}
.

Using Cauchy-Schwartz Inequality we have

〈JX2, X1〉2 ≤ |JX2|2|X1|2 = 1,

and conclude.

Therefore, we get

Corollary 3.3.9. Let M2 be a complete PMC totally real surface with K ≥ 0 in a

complex space form Nn(c). Then ∇AH = 0, and M2 is either flat or pseudo-umbilical.

We recall that

Theorem 3.3.10. [31, Theorem 5.4] Let M2 be a compact totally real surface immersed

in Nn(c). If

1. the Gauss curvature does not change sign,

2. there exists a parallel umbilic-free isoperimetric unit normal vector field,

then M2 is flat.

We can see that our Corollary 3.3.9 is similar to [31, Theorem 5.4], but here M2 is

only complete and not necessarily compact, and the proof of Theorem 3.3.8 relies on a

different technique.

But, PMC totally real surfaces in complex space forms have even more specific

properties.

Theorem 3.3.11. Let M2 be a PMC totally real surface in the complex space form

Nn(c) with Gaussian curvature K. Then ∇T = AN and

−1

2
∆|T |2 = K|T |2 + |AN |2.

Proof. It is well-known that

−1

2
∆|T |2 = 〈trace∇2T, T 〉+ |∇T |2. (3.3.12)
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Now, since M2 is totally real, taking the inner product of (3.3.3) with Y , we obtain

−〈JAHX,Y 〉 = 〈∇XT, Y 〉+ 〈B(X,T ), Y 〉 − 〈ANX,Y 〉+ 〈∇⊥
XN,Y 〉.

Thus, it follows that

〈∇XT, Y 〉 = 〈ANX,Y 〉

for any vector fields X, Y tangent to M2, and then

∇XT = ANX,

that is ∇T = AN , and therefore

|∇T | = |AN |. (3.3.13)

Now, we compute the first term on the right-hand side of Equation (3.3.12), and

prove that

〈trace∇2T, T 〉 = K|T |2. (3.3.14)

To begin, we note that, from the decomposition of JH, we have

0 = 〈H, JH〉 = 〈H,T +N〉 = 〈H,N〉,

thus N ⊥ H. Then

traceAN =

2∑

i=1

〈ANEi, Ei〉

=
2∑

i=1

〈B(Ei, Ei), N〉

= 〈traceB,N〉
= 2〈H,N〉 = 0. (3.3.15)

Let {Ei}2i=1 be a local (positive) geodesic orthonormal frame field at p ∈M2. Then,

at p, we have

〈trace∇2T, T 〉 = 〈∇Ei∇EiT, T 〉
= 〈∇EiANEi, T 〉
= 〈(∇EiAN )Ei, T 〉
= 〈(∇EiAN )T,Ei〉, (3.3.16)
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where we used the fact that 〈(∇XAN )·, ·〉 is symmetric. Indeed, 〈(∇XAN )·, ·〉 is sym-

metric since

〈(∇XAN )Y, Z〉 = 〈∇XANY, Z〉 − 〈AN∇XY, Z〉
= X〈ANY, Z〉 − 〈ANY,∇XZ〉 − 〈∇XY,ANZ〉
= X〈Y,ANZ〉 − 〈ANY,∇XZ〉 − 〈∇XY,ANZ〉
= 〈Y,∇XANZ〉 − 〈ANY,∇XZ〉
= 〈Y,∇XANZ〉 − 〈Y,AN∇XZ〉
= 〈Y, (∇XAN )Z〉.

The Codazzi Equation (1.3.7) becomes

(∇⊥
XB)(Y, Z)− (∇⊥

YB)(X,Z) = (R(X,Y )Z)⊥ = 0, (3.3.17)

since M2 is totally real.

In (3.3.17), we take X = Ei, Y = Ej and Z = Ek. At p, we have

〈(∇⊥
EiB)(Ej , Ek), N〉 = 〈∇⊥

EiB(Ej , Ek), N〉
= Ei〈B(Ej , Ek), N〉 − 〈B(Ej , Ek),∇⊥

EiN〉
= Ei〈ANEj , Ek〉 − 〈B(Ej , Ek),∇⊥

EiN〉.

Then using Equation (3.3.3) we obtain

〈(∇⊥
EiB)(Ej , Ek), N〉 = 〈∇Ei(ANEj), Ek〉

− 〈B(Ej , Ek),−J(AHEi)−∇EiT −B(Ei, T ) +ANEi〉
= 〈(∇EiAN )Ej , Ek〉+ 〈B(Ej , Ek), J(AHEi)〉
+ 〈B(Ej , Ek), B(Ei, T )〉, (3.3.18)

and similarly

〈(∇⊥
EjB)(Ei, Ek), N〉 = 〈(∇EjAN )Ei, Ek〉+ 〈B(Ei, Ek), J(AHEj)〉

+〈B(Ei, Ek), B(Ej , T )〉. (3.3.19)

From Equations (3.3.17)−(3.3.19) we have

〈(∇EiAN )Ej , Ek〉 − 〈(∇EjAN )Ei, Ek〉 = 〈B(Ej , T ), B(Ei, Ek)〉
−〈B(Ei, T ), B(Ej , Ek)〉
+〈B(Ei, Ek), J(AHEj)〉
−〈B(Ej , Ek), J(AHEi)〉. (3.3.20)
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Further, using the fact that M2 is totally real, we deduce

〈B(Ei, Ek), J(AHEj)〉 = −〈JB(Ei, Ek), AHEj〉
= −〈J(∇EiEk), AHEj〉
= −〈∇EiJEk, AHEj〉
= 〈JEk,∇Ei(AHEj)〉
= −〈JEk,∇Ei∇EjH〉
= 〈Ek, J(∇Ei∇EjH)〉,

where we also used ∇⊥H = 0. Similarly,

〈B(Ej , Ek), J(AHEi)〉 = 〈Ek, J(∇Ej∇EiH)〉,

and, therefore,

(3.3.21)

〈B(Ei, Ek), J(AHEj)〉 − 〈B(Ej , Ek), J(AHEi)〉 = 〈Ek, J(R(Ei, Ej)H)〉.

The Gauss Equation (1.3.3) yields

〈B(Ei, Ek), B(Ej , T )〉 − 〈B(Ej , Ek), B(Ei, T )〉 (3.3.22)

= 〈R(Ei, Ej)Ek, T 〉 − 〈R(Ei, Ej)Ek, T 〉.

Now, we compute the first term on the right-hand side of (3.3.22) and the curvature

term in (3.3.21). We have

〈R(Ei, Ej)Ek, T 〉 =
c

4

{
〈Ej , Ek〉〈Ei, T 〉 − 〈Ei, Ek〉〈Ej , T 〉+ 〈JEj , Ek〉〈JEi, T 〉

−〈JEi, Ek〉〈JEj , T 〉+ 2〈JEj , Ei〉〈JEk, T 〉
}

=
c

4

{
〈Ej , Ek〉〈Ei, T 〉 − 〈Ei, Ek〉〈Ej , T 〉

}
,

and

R(Ei, Ej)H =
c

4

{
〈JEj , H〉JEi − 〈JEi, H〉JEj

}
,

which shows that

〈J(R(Ei, Ej)H), Ek〉 =
c

4

{
〈JEi, H〉〈Ej , Ek〉 − 〈JEj , H〉〈Ei, Ek〉

}

=
c

4

{
〈Ej , JH〉〈Ei, Ek〉 − 〈Ei, JH〉〈Ej , Ek〉

}

=
c

4

{
〈Ej , T 〉〈Ei, Ek〉 − 〈Ei, T 〉〈Ej , Ek〉

}
.

We note that

〈R(Ei, Ej)Ek, T 〉+ 〈J(R(Ei, Ej)H), Ek〉 = 0. (3.3.23)
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It easily follows from Equations (3.3.20)−(3.3.23) that

〈(∇EiAN )Ej , Ek〉 − 〈(∇EjAN )Ei, Ek〉 = 〈R(Ei, Ej)Ek, T 〉 − 〈R(Ei, Ej)Ek, T 〉
+〈Ek, JR(Ei, Ej)H〉.

= −〈R(Ei, Ej)Ek, T 〉.

In the above relation, because of its tensorial character, we can consider Ej = T .

Then taking k = i, summing up over i and using (3.3.15), we get

2∑

i=1

〈(∇EiAN )T,Ei〉 =
2∑

i=1

{
T 〈ANEi, Ei〉 − 〈R(Ei, T )Ei, T 〉

}

= T (traceAN )−
2∑

i=1

〈R(Ei, T )Ei, T 〉

= |T |2K. (3.3.24)

Thus, from Equations (3.3.16) and (3.3.24), we obtain Equation (3.3.14).

Finally, we use (3.3.13) and (3.3.14) to conclude.

Theorem 3.3.12. Let M2 be a complete PMC totally real surface with K ≥ 0 in a

complex space form Nn(c). Then ∇T = AN = 0 and either K = 0 or K > 0 at some

point and T = 0 on M2.

Proof. As |T |2 ≤ |JH|2 = |H|2 and M2 is CMC, we have that |T |2 is a bounded

function on M2. Further, since ∆|T |2 ≤ 0, |T |2 is a subharmonic function and it follows

that |T |2 is constant ([48]). Thus, K|T |2 + |AN |2 = 0 on M2, and so |AN |2 = 0 and

K|T |2 = 0. Therefore AN = ∇T = 0, and either K = 0 (everywhere) or K > 0 at some

point and T = 0.

From Corollary 3.3.9 and Theorem 3.3.12 we have the following direct result.

Corollary 3.3.13. Let M2 be a complete PMC totally real surface with K ≥ 0 in a

complex space form Nn(c). Then

∇AH = ∇T = AN = 0,

and either M2 is flat or pseudo-umbilical with T = 0. In the latter case, n > 2.

3.4 CMC biconservative surfaces in N
2(c)

Consider a CMC surface M2 in a complex space form N2(c) of complex dimension 2,

with c 6= 0. Let {E3 = H/|H|, E4} be the global orthonormal frame field in the normal
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bundle NM2, and {E1, E2} a local positive orthonormal frame field tangent to M2.

Then the frame field {E1, E2, E3, E4} along M2 can be extended to a local orthonormal

frame field defined on an open subset of N2(c) and tangent to N2(c).

Recall the following. Denote by ωBA the connection 1-forms corresponding to {E1, E2, E3, E4},
i.e. on the open subset of N2(c) containing M2, we have

∇·EA = ωBA (·)EB,

and by {ω1, ω2, ω3, ω4} the dual basis of {E1, E2, E3, E4}. It follows that on M2 the

following relations hold

∇⊥
E1
E3 = ω4

3(E1)E4, ∇⊥
E2
E3 = ω4

3(E2)E4. (3.4.1)

Proposition 3.4.1. There exists no pseudo-umbilical CMC surface M2 in a complex

space form N2(c).

Proof. First, we will prove that a pseudo-umbilical CMC surface M2 in a complex space

form N2(c) has to be PMC. But then, as we saw before, according to N. Sato [90] such

a surface cannot exist.

By definition of the curvature tensor field and the fact that M2 is pseudo-umbilical,

we get

R(X,Y )H = ∇X∇YH −∇Y∇XH −∇[X,Y ]H

= ∇X(∇⊥
YH −AHY )−∇Y (∇⊥

XH −AHX)−∇⊥
[X,Y ]H +AH [X,Y ]

= ∇X∇⊥
YH −∇X(|H|2Y )−∇Y∇⊥

XH +∇Y (|H|2X)−∇⊥
[X,Y ]H

+|H|2[X,Y ]

= |H|2(∇YX −∇XY + [X,Y ]) +∇X∇⊥
YH −∇Y∇⊥

XH −∇⊥
[X,Y ]H

= ∇⊥
X∇⊥

YH −A∇⊥
YH

X −∇⊥
Y∇⊥

XH +A∇⊥
XH

Y −∇⊥
[X,Y ]H

= A∇⊥
XH

Y −A∇⊥
YH

X +R⊥(X,Y )H, (3.4.2)

for any X, Y tangent to M2.

Now, the Ricci Equation (1.3.10) and M2 pseudo-umbilical imply

〈R⊥(X,Y )H,V 〉 = 〈[AH , AV ]X,Y 〉+ 〈R(X,Y )H,V 〉
= 〈R(X,Y )H,V 〉,

and, from (3.4.2), we have

A∇⊥
XH

Y = A∇⊥
YH

X, (3.4.3)

for any X and Y tangent to M2.
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From (3.4.1) for X = E1 and Y = E2, we obtain

A|H|∇⊥
E1
E3
E2 = |H|Aω4

3(E1)E4
E2

= |H|ω4
3(E1)A4E2

and

A|H|∇⊥
E2
E3
E1 = |H|Aω4

3(E2)E4
E1

= |H|ω4
3(E2)A4E1.

Then, by (3.4.3) we obtain

ω4
3(E1)A4E2 = ω4

3(E2)A4E1, (3.4.4)

where Ai = AEi , i ∈ {3, 4}.
Assume that ∇⊥H 6= 0. Then there exists an open subset of M2 where ∇⊥H 6= 0

at any point, i.e. ω4
3 6= 0 at any point (since ∇⊥H = |H|∇⊥E3 = |H|ω4

3(·)E4), and we

will work on that subset. For the sake of simplicity, we can assume that this subset is

the whole manifold M2.

Let

A4 =

(
µ1 µ0

µ0 µ2

)
,

with respect to {E1, E2}. Since

traceA4 =
2∑

i=1

〈A4Ei, Ei〉 =
2∑

i=1

〈B(Ei, Ei), E4〉 = 2〈H,E4〉 = 0,

we obtain µ2 = −µ1, and therefore

A4 =

(
µ1 µ0

µ0 −µ1

)
.

By Equation (3.4.4), we obtain

ω4
3(E1){µ0E1 − µ1E2} = ω4

3(E2){µ1E1 + µ0E2},

that is
{
ω4
3(E1)µ0 − ω4

3(E2)µ1 = 0

ω4
3(E2)µ0 + ω4

3(E1)µ1 = 0.

Since
∣∣∇⊥H

∣∣2 = |H|2
{
(ω4

3(E2))
2 + (ω4

3(E1))
2
}
= |H|2|ω4

3|2 > 0, we obtain µ0 = µ1 =

0, and then µ2 = 0. Thus, A4 = 0 on M2.
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Now, since M2 is pseudo-umbilical, i.e. AH = |H|2I then A3 = |H|I. We have on

M2:

B(E1, E1) = 〈A3E1, E1〉E3 + 〈A4E1, E1〉E4 = |H|E3.

Similarly, for B(E2, E2) and B(E1, E2), we obtain

B(E2, E2) = |H|E3 and B(E1, E2) = 0.

Since M2 is CMC and biconservative,

traceA∇⊥
· H

(·) + trace(R(·, H)·)⊤ = 0.

On the other hand, as A4 = 0, we get

traceA∇⊥
· H

(·) = |H|ω4
3(E1)A4E1 + |H|ω4

3(E2)A4E2 = 0.

Therefore, trace(R(·, H)·)⊤ = 0, which shows that, as c 6= 0, (JT )⊤ = 0.

Next, we will again use the Codazzi Equation. From Equation (3.2.1) we have

(R(X,Y )Z)⊥ =
c

4

{
〈Y, Z〉X − 〈X,Z〉Y + 〈JY, Z〉JX − 〈JX,Z〉JY

+2〈JY,X〉JZ
}⊥

,

=
c

4

{
〈JY, Z〉(JX)⊥ − 〈JX,Z〉(JY )⊥ + 2〈JY,X〉(JZ)⊥

}
,

and if

(i) X = Z = E1, Y = E2, we obtain

〈(R(E1, E2)E1)
⊥, E3〉 =

3c

4
〈JE2, E1〉〈JE1, E3〉 =

3c

4|H| 〈JE2, E1〉〈JE1, H〉

= − 3c

4|H| 〈JE2, E1〉〈E1, JH〉 = − 3c

4|H| 〈JE2, E1〉〈E1, T 〉

= − 3c

4|H| 〈JE2, T 〉 = − 3c

4|H| 〈E2, JT 〉

= 0

since JT is normal. The same way we obtain

〈(R(X,Y )Z)⊥, V 〉 = 0 (3.4.5)

in all the following cases:

(ii)X = Z = E1, Y = E2, V = E4,

(iii)X = E1, Y = Z = E2, V = E3,

(iv)X = E1, Y = Z = E2, V = E4.
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From the Codazzi Equation (1.3.7) and Equation (3.4.5), we get

(∇⊥
XB)(Y, Z) = (∇⊥

YB)(X,Z).

If X = Z = E1, Y = E2, we obtain

(∇⊥
E1
B)(E2, E1) = (∇⊥

E2
B)(E1, E1)

thus

∇⊥
E1
B(E2, E1)−B(∇E1E2, E1)−B(E2,∇E1E1) =

∇⊥
E2
B(E1, E1)−B(∇E2E1, E1)−B(E1,∇E2E1)

which implies

−B(ω1
2(E1)E1, E1)−B(E2, ω

2
1(E1)E2) =

|H|ω4
3(E1)E4 −B(ω2

1(E1)E2, E1)−B(E1, ω
2
1(E2)E2).

Then |H|ω4
3(E1) = 0.

Similarly, for X, Y , Z and V in any of the above cases, we get

|H|ω4
3(E2) = 0 and |H|ω4

3(E1) = 0,

that is ω4
3 = 0, which is a contradiction.

Proposition 3.4.2. Let M2 be a CMC biconservative surface with no pseudo-umbilical

points in a complex space form N2(c), with c 6= 0. If JT is normal, then M2 is PMC.

Proof. Let {λ1, λ2} be the smooth eigenvalue functions of A3 on M2 and consider

{E1, E2} such that

λ1 < λ2, A3E1 = λ1E1 and A3E2 = λ2E2.

We note that traceA4 = 0.

Assume that ∇⊥H 6= 0. We will work on an open subset of M2 such that at any

point ∇⊥H 6= 0. For the sake of simplicity, we assume this open subset to be the whole

of M2.

As M2 is CMC and JT is normal, the biconservativity condition

2 traceA∇⊥
· H

(·) + grad(|H|2) + 2 trace(R(·, H)·)⊤ = 0

reduces to

traceA∇⊥
· H

(·) = 0. (3.4.6)
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Since

traceA∇⊥
· E3

(·) = A∇⊥
E1
E3
E1 +A∇⊥

E2
E3
E2

= Aω4
3(E1)E4

E1 +Aω4
3(E2)E4

E2

= ω4
3(E1)A4E1 + ω4

3(E2)A4E2,

Equation (3.4.6) can be re-written as

{
ω4
3(E1)〈A4E1, E1〉+ ω4

3(E2)〈A4E2, E1〉 = 0

ω4
3(E1)〈A4E1, E2〉+ ω4

3(E2)〈A4E2, E2〉 = 0.
(3.4.7)

Since ∇⊥H 6= 0, i.e.

|∇⊥E3|2 = (ω4
3(E1))

2 + (ω4
3(E2))

2 > 0,

System (3.4.7) admits a non-trivial solution. Therefore, its determinant is zero, i.e.

0 = 〈A4E1, E1〉〈A4E2, E2〉 − (〈A4E1, E2〉)2

= −(〈A4E1, E1〉)2 − (〈A4E1, E2〉)2

= −|A4E1|2, (3.4.8)

where in the second equality we used traceA4 = 0. Moreover, since

|A4E1|2 = (〈A4E1, E1〉)2 + (〈A4E1, E2〉)2

= (〈A4E2, E2〉)2 + (〈E1, A4E2〉)2

= |A4E2|2,

from (3.4.8) we get

|A4|2 = |A4E1|2 + |A4E2|2 = 2|A4E1|2 = 0,

that is A4 = 0 on M2.

The second fundamental form B of M2 is given by

B(E1, E1) = λ1E3, B(E2, E2) = λ2E3 and B(E1, E2) = 0,

and therefore, 2H = (λ1 + λ2)E3 and λ1 + λ2 = 2|H| is a non-zero constant.

Next, we will use again the Codazzi Equation. From Equation (3.2.1) we have

(R(X,Y )Z)⊥ =
c

4
{〈JY, Z〉(JX)⊥ − 〈JX,Z〉(JY )⊥ + 2〈JY,X〉(JZ)⊥},
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and if

(i) X = Z = E1, Y = E2, we obtain

〈(R(E1, E2)E1)
⊥, E3〉 =

3c

4
〈JE2, E1〉〈JE1, E3〉 =

3c

4|H| 〈JE2, E1〉〈JE1, H〉

= − 3c

4|H| 〈JE2, E1〉〈E1, JH〉 = − 3c

4|H| 〈JE2, E1〉〈E1, T 〉

= − 3c

4|H| 〈JE2, T 〉 = − 3c

4|H| 〈E2, JT 〉

= 0

since JT is normal. Similarly,

〈(R(X,Y )Z)⊥, V 〉 = 0 (3.4.9)

for

(ii) X = E1, Y = Z = E2, V = E3,

(iii) X = Z = E1, Y = E2, V = E4,

(iv) X = E1, Y = Z = E2, V = E4.

If X = Z = E1, Y = E2 and V = E3 using the Codazzi Equation (1.3.7) we have

〈(∇⊥
E1
B)(E2, E1), E3〉 = 〈(∇⊥

E2
B)(E1, E1), E3〉

thus

〈∇⊥
E1
B(E2, E1), E3〉 − 〈B(∇E1E2, E1), E3〉 − 〈B(E2,∇E1E1), E3〉 =

〈∇⊥
E2
B(E1, E1), E3〉 − 〈B(∇E2E1, E1), E3〉 − 〈B(E1,∇E2E1), E3〉

which implies that

E1〈B(E2, E1), E3〉 − 〈B(E2, E1),∇⊥
E1
E3〉 − 〈B(∇E1E2, E1), E3〉

−〈B(E2,∇E1E1), E3〉 =
E2〈B(E1, E1), E3〉 − 〈B(E1, E1),∇⊥

E2
E3〉 − 〈B(∇E2E1, E1), E3〉

−〈B(E1,∇E2E1), E3〉.

Then

−〈B(∇E1E2, E1), E3〉 − 〈B(E2,∇E1E1), E3〉 = E2〈B(E1, E1), E3〉
−〈B(E1, E1),∇⊥

E2
E3〉

−2〈B(∇E2E1, E1), E3〉
−〈A3E1,∇E1E2〉 − 〈A3E2,∇E1E1〉 = E2〈λ1E3, E3〉

−〈λ1E3,∇⊥
E2
E3〉

−2〈A3E1,∇E2E1〉
−〈λ1E1, ω

1
2(E1)E1〉 − 〈λ2E2, ω

2
1(E1)E2〉 = E2(λ1)

(λ1 − λ2)ω
2
1(E1) = E2(λ1) (3.4.10)
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Hence, similarly, for X, Y , Z and V as above in the previous cases (ii), (iii) and (iv),

the Codazzi Equation (1.3.7) reads as follows:

(2) E1(λ2) = (λ1 − λ2)ω
2
1(E2),

(3) λ1ω4
3(E2) = 0,

(4) λ2ω4
3(E1) = 0.

Assume that ω4
3(E1) 6= 0 at some point p ∈M2, then ω4

3(E1) 6= 0 on a neighborhood

of p. On this neighborhood, by (3.4) we have λ2 = 0 and so λ1 = 2|H|, which is a

contradiction since λ1 < λ2 = 0.

If ω4
3(E2) 6= 0, we get λ1 = 0 on an open subset and so λ2 = 2|H|. From (3.4.10) and

(3.4), we obtain ω2
1(E1) = 0 and ω2

1(E2) = 0. We will use the same notation for ω2
1 and

its pull-back on M2. Therefore, on M2, ω2
1 = 0 and ∇EiEj = 0, for any i, j ∈ {1, 2}.

Since the curvature of M2 is given by dω2
1 = −Kω1 ∧ ω2, we conclude that M2 is flat.

Furthermore, from the Gauss Equation (1.3.3) with X =W = E1, Y = Z = E2 and

the fact that M2 is flat, we obtain

c

4
{1 + 3〈JE1, E2〉2} = −λ1λ2 = 0,

which is a contradiction, as c 6= 0.

Therefore ∇⊥H = 0.

From Propositions 3.4.1 and 3.4.2, we get the following theorem.

Theorem 3.4.3. Let M2 be a CMC biconservative surface in a complex space form

N2(c), with c 6= 0. If JT is normal, then M2 is PMC.

Proof. We know that, with standard notations,

〈AH∂z, ∂z〉

is holomorphic [72]. Since M2 cannot be pseudo-umbilical in N2(c), the set W of non

pseudo-umbilical points is a dense open subset of M2.

From Proposition 3.4.2, we get that W is PMC in N2(c), and then, by continuity,

M2 is PMC.

Remark 3.4.4. When the ambient space is a real space form of dimension 4, a similar

result to Theorem 3.4.3 was obtained in [70, Theorem 5.1], where it was shown that

if M2 is a CMC biconservative surface in a space form of dimension 4 with non-zero

constant sectional curvature, then M2 is PMC. Thus, Theorem 3.4.3 is almost the same

as [70, Theorem 5.1] except that in the case of complex space forms an extra condition

on JT was added to conclude that M2 is PMC.
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In the following, we want to check whether the above result extends to the case

c = 0, i.e. whether a CMC biconservative surface in C2 = E4 with JT normal is PMC.

Equivalently, we investigate a CMC biconservative surface which is not PMC can have

(JT ) not normal, i.e. (JT )⊤ 6= 0.

The parametric equations for CMC biconservative surfaces which are not PMC are

already known [70], but, for the sake of completeness, we include the proof.

Proposition 3.4.5. [70] Let M2 be a non-PMC biconservative surface with constant

mean curvature in E4. Then, locally, the surface is given by

X(u, v) = (γ1(u), γ2(u), γ3(u), v), (3.4.11)

where γ : I → E3 is a curve in E3 parametrized by arc-length, with constant non-zero

curvature, and non-zero torsion.

Proof. We use the local frame introduced at the beginning of this section. Since M2

is not pseudo-umbilical and 〈AH (∂z) , ∂z〉 is holomorphic, pseudo-umbilical points are

isolated. Without loss of generality, we can assume that M2 has no pseudo-umbilical

points. Further, since ∇⊥H 6= 0, for simplicity, we can assume that ∇⊥H 6= 0 at any

point of M2. As in the proof of Proposition 3.4.2 (since the ambient manifold is flat,

Equation (3.4.6) still holds) we get A4 = 0 and

B(E1, E1) = λ1E3, B(E2, E2) = λ2E3 and B(E1, E2) = 0.

We have ω4
3(E2) 6= 0, ω4

3(E1) = 0, λ1 = 0, λ2 = 2|H| which is a non-zero constant and

ω2
1 = 0.

Then

∇E4

E1
E1 = ∇E1E1 +B(E1, E1) = ω2

1(E1)E2 + λ1E3

= 0,

and

∇E4

E2
E1 = ∇E2E1 +B(E1, E2) = ω2

1(E2)E2

= 0,

thus

∇E4

E1
E1 = ∇E4

E2
E1 = 0.

Hence, E1 is the restriction to M2 of a constant vector field of E4, which up to an

isometry of E4, can be chosen as

E1 = (0, 0, 0, 1).
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Now, let σ be the integral curve of E1 parametrized by arc-length that is

σ(v) = (b1, b2, b3, b4 + v), b1, b2, b3, b4 ∈ R.

Further, let p0 = (b1, b2, b3, b4) ∈ M2 be an arbitrary point, and let γ = γ(u) =

(γ1(u), γ2(u), γ3(u), γ4(u)) be an integral curve of E2 with γ(0) = p0. Then let ϕ be

the flow of E1 and (U ;u, v) local coordinates around p0 given by

X(u, v) = ϕγ(u)(v) = ϕ(γ(u), v) = (γ1(u), γ2(u), γ3(u), γ4(u) + v).

We have

Xu(u, 0) = γ
′
(u) = E2(γ(u)),

and

Xv(u, v) = E1(u, v) = (0, 0, 0, 1).

Since Xu(u, 0) is orthogonal to Xv(u, 0), we obtain (γ4)
′
(u) = 0 for all u thus γ4 = b4,

where b4 is a constant. Therefore,

X(u, v) = (γ1(u), γ2(u), γ3(u), b4 + v).

We have




∇E4

E2
E2 = ∇E2E2 +B(E2, E2) = ω1

2(E2)E1 + λ2E3 = λ2E3

∇E4

E2
E3 = ∇⊥

E2
E3 −A3E2 = ω4

3(E2)E4 −A3E2 = ω4
3(E2)E4 − λ2E2

∇E4

E2
E4 = ∇⊥

E2
E4 −A4E2 = −ω4

3(E2)E3.

From the Ricci equation (1.3.10), we have

R⊥(E1, E2)E3 = 0,

which is equivalent to

E1(ω
4
3(E2))E4 − ω4

3(E2)ω
3
4(E1)E3 − E2(ω

4
3(E1))E4 − ω4

3(E1)ω
3
4(E2)E3 = 0.

Now, since ω4
3(E2) 6= 0 and ω4

3(E1) = 0 we obtain

E1(ω
4
3(E2)) = 0,

that is ω4
3(E2) depends only on u. Thus, {E2, E3, E4} is the Frenet frame field along

γ(u), its curvature is given by k = λ2 and the torsion is τ = τ(u) = ω4
3(E2). Moreover,

since

∇⊥
E2
H = |H|∇⊥

E2
E3 =

kτ

2
E4,

and the surface is not PMC, we conclude that τ 6= 0 at any point.

Replacing the variable b4 + v by v, we conclude.
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Now we will prove that any CMC biconservative surface in E4 which is not PMC

has (JT )⊤ 6= 0.

Proposition 3.4.6. Let M2 be a non-PMC biconservative surface with constant mean

curvature in E4. Then (JT )⊤ 6= 0.

Proof. Let X(u, v) = (γ1(u), γ2(u), γ3(u), v), where γ : I → E3 ≡ E3 × {0} ⊂ E4 is

a curve parametrized by arc-length, i.e. |γ′ | = 1, with a non-zero constant curvature

κ, and τ ∈ C∞(I) is a non-zero function (we can assume that τ > 0). We denote the

Frenet frame field along γ by

{γ′
(u),n(u),b(u)}, u ∈ I.

We have
{

Xu = (γ
′
, 0) = γ

′

Xv = e4.

It is clear that n and b are orthogonal to γ
′
and e4, thus {n,b} is an orthonormal frame

field in the normal bundle of M2 in E4.

Also, we have g11 = |Xu|2 = 1, g12 = 〈Xu, Xv〉 = 0 and g22 = |Xv|2 = 1.




∇E4

Xu
Xu = Xuu = γ

′′
= κn

∇E4

Xu
Xv = ∇E4

Xv
Xu = Xuv = Xvu = 0

∇E4

Xv
Xv = Xvv = 0,

then B(Xu, Xu) = κn, B(Xu, Xv) = 0 and B(Xv, Xv) = 0. We have

H =
1

2
traceB =

1

2
{B(Xu, Xu) +B(Xv, Xv)}

=
1

2
κn =

1

2
γ

′′
,

and, therefore,

JH =
1

2
Jγ

′′
.

Now, the tangential part of JH is given by

T = (JH)⊤ = 〈JH,Xu〉Xu + 〈JH,Xv〉Xv

=
1

2
{〈Jγ′′

, γ
′〉γ′

+ 〈Jγ′′
, e4〉e4}.

We will prove that JT is not normal. For this purpose, we will assume that JT is

normal and reach a contradiction.

Since JT is normal, we have

〈JT,Xu〉 = 0 and 〈JT,Xv〉 = 0.
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Thus

〈JT,Xu〉 = 0 ⇔ 〈Jγ′′
, γ

′〉〈Jγ′
, γ

′〉+ 〈Jγ′′
, e4〉〈Je4, γ

′〉 = 0

⇔ 〈Jγ′′
, e4〉〈Je4, γ

′〉 = 0,

and

〈JT,Xv〉 = 0 ⇔ 〈Jγ′′
, γ

′〉〈Jγ′
, e4〉+ 〈Jγ′′

, e4〉〈Je4, e4〉 = 0

⇔ 〈Jγ′′
, γ

′〉〈Jγ′
, e4〉 = 0.

Therefore, JT is normal if and only if

〈Jγ′
, e4〉 = 0

on I, or

〈Jγ′′
, e4〉 = 0 and 〈Jγ′′

, γ
′〉 = 0.

We have, Jγ
′
= (−(γ2)

′
, (γ1)

′
, 0, (γ3)

′
) and Jγ

′′
= (−(γ2)

′′
, (γ1)

′′
, 0, (γ3)

′′
), so

〈Jγ′′
, e4〉 = 0 ⇔ (γ3)

′′
= 0,

〈Jγ′
, e4〉 = 0 ⇔ (γ3)

′
= 0

and

〈Jγ′′
, γ

′〉 = 0 ⇔ −(γ1)
′
(γ2)

′′
+ (γ2)

′
(γ1)

′′
= 0.

Assume that 〈Jγ′
, e4〉 = 0, i.e. (γ3)

′
= 0. We obtain that γ3 is constant, so γ is a plane

curve, and therefore τ = 0 which is a contradiction. Hence we are only left with the

second case, i.e.

(γ3)
′′
= 0 and − (γ1)

′
(γ2)

′′
+ (γ2)

′
(γ1)

′′
= 0.

From (γ3)
′′
= 0, we get γ3(u) = au+ b, for any u ∈ I (or a smaller open interval), and

from |γ′ | = 1 we obtain ((γ1)
′
)2 + ((γ2)

′
)2 + a2 = 1. As τ 6= 0, a2 ∈ (0, 1). Then, there

exists a smooth function f such that

(γ1)
′
=
√

1− a2 cos f and (γ2)
′
=
√

1− a2 sin f

and
{

(γ1)
′′

= −
√
1− a2f

′
sin f

(γ2)
′′

=
√
1− a2f

′
cos f.

Then, the condition

−(γ1)
′
(γ2)

′′
+ (γ2)

′
(γ1)

′′
= 0
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is equivalent to

−(1− a2)f
′
cos2 f − (1− a2)f

′
sin2 f = 0

which means

f = constant. (3.4.12)

On the other hand,

κ2 = |γ′′ |2 = [(γ1)
′′
]2 + [(γ2)

′′
]2 = (1− a2)(f

′
)2.

As κ > 0 we obtain

(f
′
)2 > 0. (3.4.13)

From (3.4.12) and (3.4.13) we get a contradiction.

In conclusion, Theorem 3.4.3 extends to the case c = 0 and we can state the following

theorem.

Theorem 3.4.7. Let M2 be a CMC biconservative surface in a complex space form

N2(c). If JT is normal, then M2 is PMC and totally real.

Proof. If c 6= 0 and JT is normal, by Theorem 3.4.3, we get that M2 is PMC. Now, as

M2 is a PMC biconservative surface, by Theorem 3.3.1 we conclude that M2 is totally

real.

If c = 0 and JT is normal, by Proposition 3.4.6, we get that M2 is PMC. Since M2

is a PMC surface and JT is normal by Theorem 3.3.7 we conclude that M2 is totally

real.

Remark 3.4.8. The full classification of complete PMC surfaces in a complex space

form N2(c) was achieved in [56–59] and, when c > 0, they are totally real flat tori.

3.5 Codimension reduction for biconservative sur-

faces

We recall that if M2 is a PMC surface in a real Euclidean space En, then it is biconser-

vative, and it is either pseudo-umbilical (and lies as a minimal surface in a Euclidean

hypersphere of En), or lies as a CMC (possibly minimal) surface in a 3-dimensional

sphere (and this sphere lies in E4), or lies as a CMC surface in E3 [26, 27,96].

In this section we will assume that M2 is a PMC totally real surface in a complex

space form Nn(c) of complex dimension n, n large enough, c 6= 0, with H 6= 0, to



3.5. Codimension reduction for biconservative surfaces 91

obtain a reduction of the codimension. More precisely, we will reduce the complex

dimension of the ambient space for non pseudo-umbilical PMC totally real surfaces to

4 (see Theorem 3.5.8). For this purpose, we will follow [39], where it was proved that a

non pseudo-umbilical PMC surface in a complex space form Nn(c), c 6= 0, lies in N5(c).

The strategy for obtaining reduction results was initiated and developed in [2, 37, 38].

Our result extends [43] which required the stronger condition of biharmonicity. We

mention that a reduction of codimension for totally real submanifolds of complex space

forms, with parallel f-structure in the normal bundle, was obtained in [60].

We recall three results which play an essential role in the reduction of codimension

in Theorem 3.5.8.

Theorem 3.5.1. [37, Theorem 2] Let Nn be a manifold with complete connection ∇
with parallel torsion TN and curvature tensor RN . Let ϕ : Mm → Nn be a smooth

map such that the image of dϕ lies in a parallel subbundle L̃ ⊂ ϕ−1(TNn) which is

invariant under TN and RN . Then there is a totally geodesic submanifold N
′ ⊂ Nn

with ϕ(Mm) ⊂ N
′
.

Theorem 3.5.2. [38, Theorem 1] Let ϕ : M2 → Nn be an isometric immersion from

a Riemannian surface into a Riemannian symmetric space. If ϕ has parallel mean

curvature H 6= 0, one of the following conditions holds:

1. ϕ is pseudo-umbilical;

2. the dimension d of RNϕ(p)(O
2
p) is independant of p ∈ M2 and there exists an

embedded totally geodesic submanifold N
′ ⊂ Nn, with dimension d, such that

ϕ(M2) ⊂ N
′
, where RN is the curvature tensor field of Nn and Onp (ϕ) denotes

the n-th osculating space of ϕ at p ∈M2.

The most useful result for our work in this section is the following

Theorem 3.5.3. [38, Theorem 2] Let ϕ : Mm → Nn be an isometric immersion from

a Riemannian manifold into a Riemannian symmetric space. If there exists a parallel

fiber bundle L̃ over Mm such that RN (L̃) = L̃ and TMm ⊂ L̃, then there exists an

embedded totally geodesic submanifold N
′
of Nn with ϕ(Mm) ⊂ N

′
and L̃p = Tϕ(p)N

′

for any p ∈Mm.

Now, we introduce our work concerning this section.

Lemma 3.5.4. For any vector field V normal to M2 and orthogonal to JTM2, we have

[AH , AV ] = 0, i.e. AH commutes with AV .

Proof. Since M2 is a PMC surface, from the Ricci Equation (1.3.10) we have

〈R⊥(X,Y )H,V 〉 = 0,
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where X and Y are tangent to M2. As M2 is totally real and V is orthogonal to JTM2,

we obtain

〈R(X,Y )H,V 〉 =
c

4

{
〈Y,H〉〈X,V 〉 − 〈X,H〉〈Y, V 〉+ 〈JY,H〉〈JX, V 〉

−〈JX,H〉〈JY, V 〉+ 2〈JY,X〉〈JH, V 〉
}

= 0,

therefore [AH , AV ] = 0.

Corollary 3.5.5. At any point p ∈ M2, either H is an umbilical direction, or there

exists an orthonormal frame field {E1, E2} around p that diagonalizes simultaneously

AH and AV , for any vector field V normal to M2 and orthogonal to JTM2.

Proof. If at a point p ∈ M2 the mean curvature vector field H is not an umbilical

direction then, on an open subset containing p, H remains a non-umbilical direction,

i.e. AH 6= |H|2I at any point of that open subset. Therefore, we have two distinct

principal curvatures corresponding to AH , each of multiplicity one, and there exists an

orthonormal frame field {E1, E2} around p that diagonalizes AH . Working on that open

subset, as AHAV = AVAH , we get that {E1, E2} diagonalizes also AV .

Proposition 3.5.6. Assume that H is nowhere an umbilical direction. Then there

exists a parallel subbundle L of the normal bundle of real dimension less or equal to 6

that contains the image of the second fundamental form B.

Proof. We define a subbundle of the normal bundle of M2 in the complex space form

Nn(c) by

L = span{ImB ∪ (J ImB)⊥ ∪ JTM2},

where (J ImB)⊥ = {(JB(X,Y ))⊥ : X, Y tangent vector fields to M2}.
We prove that L is parallel by taking U a section in L and showing that, for any X,

∇⊥
XU is also a section in L. This translates as 〈∇⊥

XU, V 〉 = 0, for any V normal to M2

and orthogonal to L; equivalently, 〈U,∇⊥
XV 〉 = 0.

Let V be a normal vector field orthogonal to L, i.e.

〈V,B(X,Y )〉 = 〈V, JB(X,Y )〉 = 〈V, JX〉 = 0,

for any X, Y tangent to M2.

Consider {E1, E2} a local orthonormal frame field that diagonalizes simultaneously

AH and AV (see Corollary 3.5.5). We want to prove that ∇⊥
Ek
V is orthogonal to ImB,

(J ImB)⊥ and JTM2.
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To do this, we first prove that ∇⊥
Ek
V is orthogonal to JTM2:

〈JEj ,∇⊥
Ek
V 〉 = −〈∇⊥

Ek
JEj , V 〉

= −〈∇EkJEj , V 〉 − 〈AJEjEk, V 〉
= −〈J∇EkEj , V 〉
= −〈J∇EkEj , V 〉 − 〈JB(Ek, Ej), V 〉
= 0.

To prove that ∇⊥
Ek
V is orthogonal to ImB we set

Aijk = −〈B(Ei, Ej),∇⊥
Ek
V 〉 = 〈∇⊥

Ek
B(Ei, Ej), V 〉

and show that Aijk = 0. As B is symmetric, Aijk = Ajik.

Now, notice that

〈(∇⊥
Ek
B)(Ei, Ej), V 〉 = 〈∇⊥

Ek
B(Ei, Ej), V 〉 − 〈B(∇EkEi, Ej), V 〉

−〈B(Ei,∇EkEj), V 〉
= 〈∇⊥

Ek
B(Ei, Ej), V 〉

= Aijk.

Using Codazzi Equation (1.3.7) we have

Aijk = 〈(∇⊥
Ek
B)(Ei, Ej), V 〉

= 〈(∇⊥
EiB)(Ek, Ej) + (R(Ek, Ei)Ej)

⊥, V 〉
= 〈(∇⊥

EiB)(Ek, Ej), V 〉
= Akji,

hence Aijk = Akji = Ajki = Aikj .

Next, since the normal vector field ∇⊥
Ek
V is orthogonal to JTM2, by Corollary 3.5.5,

the basis {E1, E2} also diagonalizes A∇⊥
Ek
V , and for i 6= j

Aijk = −〈B(Ei, Ej),∇⊥
Ek
V 〉 = −〈(A∇⊥

Ek
V )Ei, Ej〉 = −〈λiEi, Ej〉

= 0.

Hence, Aijk = 0 whenever two indices differ.

Finally,

Aiii = −〈B(Ei, Ei),∇⊥
EiV 〉

= −〈2H,∇⊥
EiV 〉+ 〈B(Ej , Ej),∇⊥

EiV 〉 (j 6= i)

= 2〈∇⊥
EiH,V 〉 −Ajji

= 0.
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Thus Aijk = 0 for any i, j, k ∈ {1, 2}.
Now, if V is normal to M2 and orthogonal to L, JV must be normal and orthogonal

to L. Further

〈(JB(Ei, Ej))
⊥,∇⊥

Ek
V 〉 = −〈∇Ek(JB(Ei, Ej))

⊥, V 〉
= −〈∇EkJB(Ei, Ej), V 〉+ 〈∇Ek(JB(Ei, Ej))

⊤, V 〉
= 〈JAB(Ei,Ej)Ek, V 〉 − 〈J∇⊥

Ek
B(Ei, Ej), V 〉

+〈B(Ek, (JB(Ei, Ej))
⊤), V 〉

= 〈∇⊥
Ek
B(Ei, Ej), JV 〉

= 0.

Therefore, we conclude that L is parallel.

Finally, we need to prove that L has real dimension less or equal to 6. Indeed, since

JE1 and JE2 are unit and orthogonal, we can consider a local orthonormal frame field

{JE1, JE2, V1, . . . , V2n−4},

in NM2. We have,

B(E1, E2) = αJE1 + βJE2 + γ1V1 + · · ·+ γ2n−4V2n−4,

and then, for any i = 1, . . . , 2n− 4,

γi = 〈B(E1, E2), Vi〉 = 〈AViE1, E2〉
= 0.

Therefore, B(E1, E2) = αJE1 + βJE2 and JB(E1, E2) = −αE1 − βE2.

Let X,Y ∈ C(TM2), we have

B(X,Y ) = B(X1E1 +X2E2, Y
1E1 + Y 2E2)

= X1Y 1B(E1, E1) + (X1Y 2 + Y 1X2)B(E1, E2) +X2Y 2B(E2, E2).

Then:

1. As J and (·)⊥ are linear operators, we have

(JB(X,Y ))⊥ = X1Y 1(JB(E1, E1))
⊥ + (X1Y 2 +X2Y 1)(JB(E1, E2))

⊥

+X2Y 2(JB(E2, E2))
⊥

= X1Y 1(JB(E1, E1))
⊥ + (X1Y 2 +X2Y 1)(−αE1 − βE2)

⊥

+X2Y 2(JB(E2, E2))
⊥

= X1Y 1(JB(E1, E1))
⊥ +X2Y 2(JB(E2, E2))

⊥.

Thus, the real dimension of (J ImB)⊥ is at most 2.
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2. Consider the normal vector B(X,Y ) + JZ, we have

B(X,Y ) + JZ = X1Y 1B(E1, E1) + (X1Y 2 + Y 1X2)B(E1, E2) +X2Y 2B(E2, E2)

+J(Z1E1 + Z2E2)

= X1Y 1B(E1, E1) + (X1Y 2 + Y 1X2)(αJE1 + βJE2)

+X2Y 2B(E2, E2) + Z1JE1 + Z2JE2

= X1Y 1B(E1, E1) + (αX1Y 2 + αY 1X2 + Z1)JE1

+(βX1Y 2 + βY 1X2 + Z2)JE2 +X2Y 2B(E2, E2).

Then, span{ImB ∪ JTM2} has real dimension at most 4.

Therefore, the subbundle L has real dimension less or equal to 6.

Lemma 3.5.7. Assume that H is nowhere an umbilical direction. Let L̃ = L ⊕ TM2,

then L̃ is parallel with respect to the Levi-Civita connection of the complex space form

Nn(c) and is invariant by the curvature tensor R, i.e. R(u, v)w ∈ L̃, for all u, v, w ∈ L̃.

Proof. From Proposition 3.5.6, it is easy to see that L̃ is parallel with respect to the Levi-

Civita connection ∇ of the complex space form Nn(c). Indeed, if σ ∈ C(L) ⊂ C(L̃), we

have

∇Xσ = ∇⊥
Xσ −AσX

as ∇⊥
Xσ ∈ C(L) and AσX ∈ C(TM2), we obtain ∇Xσ ∈ C(L̃).

If Y ∈ C(TM2) ⊂ C(L̃), we have

∇XY = ∇XY +B(X,Y ),

and since ∇XY ∈ C(TM2) and B(X,Y ) ∈ C(L), we get ∇XY ∈ C(L̃).

In order to show that L̃ is invariant by the curvature tensor R, we first need to prove

that JL̃ ⊂ L̃, which implies, by reasons of dimension, JL̃ = L̃:

1. Let X ∈ TM2 ⊂ L̃. By the definition of L, we obtain JX ∈ L ⊂ L̃.

2. Let B(X,Y ) ∈ L ⊂ L̃, then

JB(X,Y ) = (JB(X,Y ))⊤ + (JB(X,Y ))⊥.

Since (JB(X,Y ))⊤ ∈ TM2 ⊂ L̃ and (JB(X,Y ))⊥ ∈ L ⊂ L̃, we get JB(X,Y ) ∈
L̃, for all X,Y ∈ TM2.

3. Let (JB(X,Y ))⊥ ∈ L ⊂ L̃, then

J((JB(X,Y ))⊥) = J(JB(X,Y )− (JB(X,Y ))⊤).



96 Chapter 3. PMC biconservative surfaces

Take Z = (JB(X,Y ))⊤, then

J((JB(X,Y ))⊥) = −B(X,Y )− JZ,

and since B(X,Y ) ∈ L ⊂ L̃ and JZ ∈ L ⊂ L̃, we obtain that J((JB(X,Y ))⊥) ∈
L̃, for all X,Y ∈ TM2.

4. Let JX ∈ L ⊂ L̃, then

J(JX) = −X,

thus J(JX) ∈ L̃, for all X ∈ TM2.

Therefore, JL̃ = L̃, and we conclude by inspecting the terms in (3.2.1), the formula of

the curvature tensor field R of Nn(c).

Now we can state the main result of this section:

Theorem 3.5.8. Let M2 be a non pseudo-umbilical PMC totally real surface in a

complex space form Nn(c), c 6= 0, n ≥ 4. Then there exists a totally geodesic complex

submanifold N4(c) ⊂ Nn(c) such that M2 ⊂ N4(c).

Proof. In the first case, we assume that M2 is nowhere pseudo-umbilical. We apply

Theorem 3.5.3 to the subbundle L̃ as defined in Lemma 3.5.7 and Proposition 3.5.6 to

conclude that there exists a totally geodesic submanifold N ′ of Nn(c) such that M ⊂ N ′

and L̃p = TpN
′ for all p ∈M2. Since JL̃ = L̃, N ′ is a complex space form N ′ = N4(c)

[29, 30].

For the second case, assume that M2 admits some pseudo-umbilical points and

denote by W the set of all non pseudo-umbilical points of M2. As M2\W admits no

accumulation point, the subset W is open, dense and connected.

In order to prove that W is connected, we show that W is path-connected. Indeed,

let p, q ∈ W , thus, p, q ∈ M2 and there exists a path γ in M2 that joins p and q. If

the path is already in W , we directly conclude. As W is dense assume that γ passes

through a finite number of pseudo-umbilical points, and denote by z one of these points.

Since pseudo-umbilical points are isolated, choose a neighborhood of z containing no

other pseudo-umbilical point. In this neighborhood, we smoothly modify the curve γ to

avoid the point z. This way, we obtain a new path that joins p and q and lies entirely

in W .

We apply the same argument as for the first case to W to conclude that W ⊂ N4(c).

By a standard argument, we conclude that the whole of M2 lies in that N4(c). More

precisely, let z ∈ M2\W . Since z is isolated, there exists a sequence {pn}n∈N∗ that

converges to z in M2, pn 6= z, and pn belongs to the neighborhood of z that isolates

z from the other points of M2\W . As {pn}n∈N∗ converges to z in M2, it follows that
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{pn}n∈N∗ is a Cauchy sequence in M2, or in W , and from here it follows that {pn}n∈N∗

is a Cauchy sequence also in N4(c). As N4(c) is complete, {pn}n∈N∗ converges to some

point z′ ∈ N4(c) in N4(c). However, as {pn}n∈N∗ converges to z in Nn(c) and {pn}n∈N∗

converges to z′ in Nn(c), we get z = z′, thus z ∈ N4(c).

Remark 3.5.9. When M2 is pseudo-umbilical and a topological sphere, then the situ-

ation is different. First, we recall that if M2 is a topological sphere, CMC and bicon-

servative in an arbitrary Riemannian manifold, then it is pseudo-umbilical (see [70, Co-

rollary 4.3]). Now, according to a result in [80], when M2 is a PMC totally real surface

in a complex space form Nn(c), c 6= 0, and M2 is a topological sphere, then there exists

a totally geodesic totally real submanifold N
′

such that M2 ⊂ N
′
. We note that the

technique used in [80] is a completely different one.

Under a slightly stronger assumption, we can further reduce the codimension that

takes us back to the case of surfaces in complex space forms of complex dimension 2,

as in Section 3.4.

Theorem 3.5.10. Let M2 be a non pseudo-umbilical PMC totally real surface in a

complex space form Nn(c), c 6= 0. If H ∈ C(JTM2), then there exists a totally geodesic

complex submanifold N2(c) ⊂ Nn(c) such that M2 ⊂ N2(c).

Proof. Assume M2 is nowhere pseudo-umbilical, otherwise we follow the argument of

the second part of the proof of Theorem 3.5.8. Consider {E1, E2} a local orthonormal

frame field that diagonalizes simultaneously AH and AV , where V is normal to M2 and

orthogonal to JTM2.

In the proof of Proposition 3.5.6, we have shown that B(E1, E2) ∈ C(JTM2). We

will prove that furthermore

B(E1, E1), B(E2, E2) ∈ C(JTM2),

implying

ImB ⊂ JTM2, J ImB ⊂ TM2

and so L = JTM2.

Indeed, let V be normal to M2 and orthogonal to JTM2. Then V ⊥ H. We

have 〈V, JEi〉 = 0, so 〈JV,Ei〉 = 0 and therefore JV is normal to M2. And since

〈JV, JEi〉 = 〈V,Ei〉 = 0, we also get JV ⊥ JTM2.

We have

∇EiJEj = −AJEjEi +∇⊥
EiJEj , (3.5.1)

while, on the other hand,

∇EiJEj = J∇EiEj = J∇EiEj + JB(Ei, Ej). (3.5.2)
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Taking inner products of Equations (3.5.1) and (3.5.2) with V , we obtain

〈JB(Ei, Ej), V 〉 = 〈∇⊥
EiJEj , V 〉, ∀i, j = 1, 2. (3.5.3)

As H ∈ JTM2, we obtain

H = 〈H, JE1〉JE1 + 〈H, JE2〉JE2,

and, since M2 is PMC, we get

0 = ∇⊥
XH = X(〈H, JE1〉)JE1 + 〈H, JE1〉∇⊥

XJE1

+X(〈H, JE2〉)JE2 + 〈H, JE2〉∇⊥
XJE2. (3.5.4)

Taking the inner product of Equation (3.5.4) with V , we obtain

〈H, JE1〉〈∇⊥
XJE1, V 〉+ 〈H, JE2〉〈∇⊥

XJE2, V 〉 = 0. (3.5.5)

Using Equation (3.5.3) and taking X = E1, as JB(E1, E2) is tangent, we have

〈H, JE1〉〈JB(E1, E1), V 〉 = −〈H, JE2〉〈∇⊥
E1
JE2, V 〉

= 〈H, JE2〉〈JB(E1, E2), V 〉
= 0.

Hence, 〈H, JE1〉 = 0 or 〈JB(E1, E1), V 〉 = 0.

Let p ∈M2. If, at the point p, we have 〈JB(E1, E1), V 〉 = 0, then 〈B(E1, E1), JV 〉 =
0, so 〈B(E1, E1), U〉 = 0 for all U normal to M2 and U ⊥ J(TpM

2). Therefore,

B(E1, E1) ∈ J(TpM
2) and, as H ∈ JTM2, we also get B(E2, E2) ∈ J(TpM

2).

Now, assume that, at p, 〈JB(E1, E1), V 〉 6= 0. Thus, 〈H, JE1〉 = 0 around p. Then

E2 = JH/|H| and so JE2 = −H/|H|, hence,

∇E2JE2 = −AJE2E2 +∇⊥
E2

(
−H
|H|

)
. (3.5.6)

On the other hand,

∇E2JE2 = J∇E2E2 = J∇E2E2 + JB(E2, E2). (3.5.7)

Taking the inner product of Equations (3.5.6) and (3.5.7) with V , we obtain

〈JB(E2, E2), V 〉 = 0,

for any V normal to M2 and orthogonal to JTM2. Thus, 〈B(E2, E2), JV 〉 = 0, then

〈B(E2, E2), U〉 = 0 for all U normal to M2 and orthogonal to JTM2.

Therefore, B(E2, E2) ∈ JTM2 and, as the mean curvature vector field H ∈ JTM2,

we conclude that B(E1, E1) ∈ JTM2.
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3.6 Higher dimensions

In this section, we construct examples with the Segre embedding (see for example

[22, 91]) to show that non-PMC CMC biconservative submanifolds of complex pro-

jective spaces do exist. This shows that the existence of biconservative submanifolds

of dimension greater than two is less rigid. One may find interesting new examples.

Moreover, we compute when these examples are proper-biharmonic.

Recall that the Segre embedding (see [22])

Shq : CP
h(4)× CP q(4) → CP h+q+hq(4),

is defined by

Shq ([(z0, . . . , zh)] , [(ω0, . . . , ωq)]) =
[
(zjωt)0≤j≤h,0≤t≤q

]
,

where (z0, . . . , zh) and (ω0, . . . , ωq) are the homogeneous coordinates of CP h(4) and

CP q(4), respectively. This embedding was introduced by Segre in 1891 (see [91]).

Now, we introduce three properties of the Segre embedding that we will use later

[22,25,71]. First, it is well-known that CP h(4) and CP q(4) are both totally geodesic in

CP h+q+hq(4). Since CP h(4) and CP q(4) are totally geodesic in the product manifold

CP h(4)× CP q(4), we get

B(X1, X2) = 0,

for any vector fields X1, X2 on CP h(4) tangent to CP h(4) and similarly,

B(Y1, Y2) = 0,

for any vector fields Y1, Y2 on CP q(4) tangent to CP q(4), where B is the second fun-

damental form of Shq in CP h+q+hq.

Also, we have

0 = (∇⊥B)(X,Y, Z)

= (∇⊥
XB)(Y, Z)

= ∇⊥
X(B(Y, Z))−B(∇CPh×CP q

X Y, Z)−B(Y,∇CPh×CP q

X Z),

for all X, Y and Z in C(T (CP h × CP q)).
Now, let M1 be a totally real submanifold of CP h(4), of real dimension h. Con-

sider M = M1 × CP q(4) and we embed it in CP h+q+hq(4) via Shq. Then, M1 is a

totally real submanifold of CP h+q+hq(4) and CP q(4) is a totally geodesic submanifold

of CP h+q+hq(4).
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Moreover, denoting again by B the second fundamental form of the embedding of

M in CP h+q+hq(4), we have that

B(Xi, Yj), i = 1, . . . , h and j = 1, . . . , 2q

are orthonormal vector fields, where {Xi}hi=1 is a local orthonormal frame field on M1

and {Yj}2qj=1 is a local orthonormal frame field on CP q(4).

Now we state the following theorem.

Theorem 3.6.1. Let γ be a curve of nowhere vanishing curvature κ in the complex

projective space CP 1(4) of complex dimension 1. Then, we have:

1. via the Segre embedding of CP 1(4)×CP q(4) into CP 1+2q(4), the product M1+2q =

γ × CP q(4) is a biconservative submanifold of CP 1+2q(4) if and only if κ is con-

stant; in this case, M1+2q is CMC non-PMC, and moreover, it is not totally real;

2. M1+2q is a proper-biharmonic submanifold of CP 1+2q(4) if and only if κ2 = 4,

i.e., γ is proper-biharmonic in CP 1(4).

Proof. Let

γ : I → CP 1(4),

where γ is parametrized by arc-length, with nowhere vanishing curvature κ, and identify

CP 1(4) with the sphere S2 of curvature 4. The curve γ is a totally real submanifold of

CP 1(4).

Further, consider the following embeddings

i :M1+2q = γ × CP q(4) → CP 1(4)× CP q(4)

and

j : CP 1(4)× CP q(4) → CP 1+2q(4),

where, for simplicity, we denote by j the Segre embedding. Let ϕ = j ◦ i be the

composition map, we have

Bϕ(X,Y ) = Bi(X,Y ) +Bj(X,Y ),

for all X,Y ∈ C(TM1+2q). Indeed,

Bϕ(X,Y ) = ∇CP 1+2q

X Y −∇M
X Y

= Bj(X,Y ) +∇CP 1(4)×CP q(4)
X Y −∇M

X Y

= Bj(X,Y ) +Bi(X,Y ).
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Thus

Hϕ = H i +
1

1 + 2q

1+2q∑

k=1

Bj(Ek, Ek),

where E1 = γ
′
and {E2, . . . , E1+2q} is a local orthonormal frame field defined on CP q(4)

and tangent to CP q(4).

Recall that, since j is the Segre embedding, we have

Bj(Ek, Ek) = 0, ∀k = 1, . . . , 1 + 2q.

Since Bi(E1, El) = 0, for l = 2, . . . , 1 + 2q, we get

Bj(E1, El), l = 2, . . . , 1 + 2q

are orthonormal vector fields. Moreover, asBj(El, JE1) = JBj(El, E1), for l = 2, . . . , 1+

2q, we also obtain that

Bj(JE1, El), l = 2, . . . , 1 + 2q

are orthonormal vector fields.

In particular we obtain,

Hϕ = H i.

Now, we have

∇CP 1+2q

X Hϕ = ∇⊥ϕ
X Hϕ −AϕHϕX, (3.6.1)

and, on the other hand,

∇CP 1+2q

X Hϕ = ∇CP 1+2q

X H i

= ∇CP 1×CP q

X H i +Bj(X,H i). (3.6.2)

In order to compute H i, we consider {E1 = γ
′
= t,n} the Frenet frame field along

γ in CP 1(4). Since

Bi(E1, E1) = ∇CP 1×CP q

E1
E1 −∇M1+2q

E1
E1 = ∇CP 1

E1
E1

= κn

and

Bi(El, El) = ∇CP 1×CP q

El
El −∇M1+2q

El
El

= 0
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for l = 2, . . . , 1 + 2q, we obtain

H i =
1

1 + 2q
κn. (3.6.3)

Replacing (3.6.3) in (3.6.2), we get

∇CP 1+2q

X Hϕ =
κ

1 + 2q

{
∇CP 1×CP q

X n+Bj(X,n)
}
+

X(κ)

1 + 2q
n. (3.6.4)

To find the shape operator AϕHϕ and to prove that the immersion ϕ is not PMC, we

consider first X = E1 in Equation (3.6.4), and we obtain

∇CP 1+2q

E1
Hϕ =

κ

1 + 2q
{∇CP 1

E1
n+Bj(E1,n)}+

κ
′

1 + 2q
n

=
κ

1 + 2q
{−κt}+ κ

′

1 + 2q
n

= − κ2

1 + 2q
t+

κ
′

1 + 2q
n

= − κ2

1 + 2q
E1 +

κ
′

1 + 2q
n. (3.6.5)

From Equations (3.6.1) and (3.6.5), we conclude

∇⊥ϕ
E1
Hϕ =

κ
′

1 + 2q
n and AϕHϕE1 =

κ2

1 + 2q
E1. (3.6.6)

Second, if X = El, l = 2, . . . , 2q + 1, from Equation (3.6.4), we get

∇CP 1+2q

El
Hϕ =

κ

1 + 2q
{∇CP 1×CP q

El
n+Bj(El,n)}

=
κ

1 + 2q
Bj(El,n). (3.6.7)

Using Equations (3.6.1) and (3.6.7), we conclude

∇⊥ϕ
El
Hϕ =

κ

1 + 2q
Bj(El,n) and AϕHϕEl = 0. (3.6.8)

Since |Bj(E1, El)| = 1, for all l = 2, . . . , 1 + 2q, Bj(El,n) 6= 0. Therefore, ∇⊥ϕ
El
Hϕ 6= 0,

i.e. M1+2q is a non-PMC submanifold of CP 1+2q(4).

In the following, in order to study the biconservativity of ϕ, we compute the

curvature term in the biconservative equation. We have

RCP 1+2q
(X,Hϕ)X = 〈Hϕ, X〉X − 〈X,X〉Hϕ + 〈JHϕ, X〉JX

−〈JX,X〉JHϕ + 2〈JHϕ, X〉JX
= −Hϕ + 3〈JHϕ, X〉JX,
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for all X ∈ C(TM1+2q). Then

trace(RCP 1+2q
(·, Hϕ)·)⊤ϕ = 3 {trace〈T, ·〉J ·}⊤ϕ

= 3

{
1+2q∑

i=2

〈T,Ei〉JEi
}⊤ϕ

= 3

1+2q∑

i=2

〈T,Ei〉JEi

= 3

1+2q∑

i=2

〈JT, JEi〉JEi + 3 〈JT,E1〉E1

= 3 (JT )⊤
ϕ

,

where JHϕ = T +N with respect to ϕ.

In our case,

JHϕ = JH i =
κ

1 + 2q
(±t) ∈ C(TM1+2q),

so T = JHϕ and then JT = −Hϕ which implies (JT )⊤
ϕ
= 0. Therefore,

trace(RCP 1+2q
(·, Hϕ)·)⊤ϕ = 0.

Now, according to Proposition 1.5.5, to show that ϕ is biconservative, we must prove

4 traceAϕ
∇⊥ϕ

(·) H
ϕ
(·) + (1 + 2q) grad(|Hϕ|2) = 0. (3.6.9)

The second term on the left-hand side of (3.6.9) can be written as

(1 + 2q) grad(|Hϕ|2) =
2κκ

′

1 + 2q
E1. (3.6.10)

For the first term, by (3.6.6) we have

Aϕ
∇⊥ϕ
E1

Hϕ
E1 = Aϕ

κ
′

1+2q
n
E1 =

κ
′

κ
AϕHϕE1

=
κκ

′

1 + 2q
E1. (3.6.11)

Next, if l = 2, . . . , 1 + 2q and k = 1, . . . , 1 + 2q, we have
〈
Aϕ

∇⊥ϕ
El

Hϕ
El, Ek

〉
=

κ

1 + 2q

〈
Aϕ
Bj(El,n)

El, Ek

〉

=
κ

1 + 2q

〈
Bϕ(El, Ek), B

j(El,n)
〉

=
κ

1 + 2q

〈
Bi(El, Ek) +Bj(El, Ek), B

j(El,n)
〉

=
κ

1 + 2q

{〈
Bi(El, Ek), B

j(El,n)
〉
+
〈
Bj(El, Ek), B

j(El,n)
〉}

=
κ

1 + 2q

〈
Bj(El, Ek), B

j(El,n)
〉
.
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Further, from the Gauss Equation (1.3.3) for the immersion j we have

〈Bj(El, Ek), B
j(El,n)〉 = 〈Bj(n, Ek), B

j(El, El)〉 − 〈RCP 1+2q
(El,n)El, Ek〉

+〈RCP 1×CP q(El,n)El, Ek〉.

But

Bj(El, El) = 0

and

RCP 1+2q
(El,n)El = 〈n, El〉El − 〈El, El〉n + 〈Jn, El〉JEl

−〈JEl, El〉Jn + 2〈Jn, El〉JEl
= −n,

it follows that

〈RCP 1+2q
(El,n)El, Ek〉 = 0.

We also have

RCP 1×CP q(El,n)El = ∇CP 1×CP q

El
∇CP 1×CP q

n El −∇CP 1×CP q

n ∇CP 1×CP q

El
El

−∇CP 1×CP q

[El,n]
El

= 0,

therefore,

〈Bj(El, Ek), B
j(El,n)〉 = 0. (3.6.12)

Thus 〈Aϕ
∇⊥ϕ
El

Hϕ
El, Ek〉 = 0, i.e.

Aϕ
∇⊥ϕ
El

Hϕ
El = 0. (3.6.13)

Replacing (3.6.10), (3.6.11) and (3.6.13) in (3.6.9) we obtain

4 traceAϕ
∇⊥ϕ

(·) H
ϕ
(·) + (1 + 2q) grad(|Hϕ|2) =

4κκ
′

1 + 2q
E1 +

2κκ
′

1 + 2q
E1

=
6κκ

′

1 + 2q
E1.

In conclusion, ϕ is biconservative if and only if κ
′
= 0, i.e. κ is constant.

Now, we prove that M1+2q is a proper-biharmonic submanifold of CP 1+2q(4) if and

only if κ2 = 4.

Assume κ to be constant, then the tangential part of the biharmonic equation (1.4.1)

holds. Therefore, we only need to solve the normal part of the biharmonic equation. As
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JHϕ is tangent to M1+2q, using Proposition 3.2.7 the normal part of the biharmonic

equation becomes

−∆⊥ϕHϕ − traceBϕ(·, AϕHϕ(·)) + (m+ 3)Hϕ = 0 (3.6.14)

(see also [40]).

For the first term of Equation (3.6.14), we have

−∆⊥ϕHϕ = ∇⊥ϕ
E1

∇⊥ϕ
E1
Hϕ −∇⊥ϕ

∇ME1
E1
Hϕ +

1+2q∑

l=2

{
∇⊥ϕ
El

∇⊥ϕ
El
Hϕ −∇⊥ϕ

∇MElEl
Hϕ

}

=

1+2q∑

l=2

{
∇⊥ϕ
El

∇⊥ϕ
El
Hϕ −∇⊥ϕ

∇CPq

El
El
Hϕ

}

=
κ

1 + 2q

1+2q∑

l=2

{
∇⊥ϕ
El

∇⊥ϕ
El

n −∇⊥ϕ
∇CPq

El
El

n

}
. (3.6.15)

Using (3.6.8), we obtain

∇⊥ϕ
El

∇⊥ϕ
El

n = ∇⊥ϕ
El
Bj(El,n).

Next,

∇CP 1+2q

El
Bj(El,n) = ∇⊥ϕ

El
Bj(El,n)−Aϕ

Bj(El,n)
El. (3.6.16)

On the other hand,

∇CP 1+2q

El
Bj(El,n) = ∇⊥j

El
Bj(El,n)−Aj

Bj(El,n)
El. (3.6.17)

Using the Codazzi Equation (1.3.7), for the immersion j, we have

(∇⊥j

El
Bj)(n,El)− (∇⊥j

n B
j)(El, El) = (RCP 1+2q

(El, n)El)
⊥j ,

but

(∇⊥j
n B

j)(El, El) = ∇⊥j
n B

j(El, El)−Bj(∇CP 1×CP q

n El, El)

−Bj(El,∇CP 1×CP q

n El)

= 0.

Also, we have

RCP 1+2q
(El, n)El = 〈n,El〉El − 〈El, El〉n+ 〈Jn,El〉JEl

−〈JEl, El〉Jn+ 2〈Jn,El〉JEl
= −〈El, El〉n
= −n,
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where Jn = −E1, then (RCP 1+2q
(El, n)El)

⊥j = 0. Therefore, (∇⊥jBj)(El, n, El) =

(∇⊥j

El
Bj)(n,El) = 0. Now, as ∇⊥jBj = 0, Equation (3.6.17) becomes

∇CP 1+2q

El
Bj(El,n) = Bj(∇CP q

El
El,n) +Bj(El,∇CP 1×CP q

El
n)

−Aj

Bj(El,n)
El

= Bj(∇CP q

El
El,n)−Aj

Bj(El,n)
El. (3.6.18)

Thus, from Equations (3.6.16) and (3.6.18), and using (3.6.12), we obtain

∇⊥ϕ
El
Bj(El,n) = Bj(∇CP q

El
El,n)− 〈Aj

Bj(El,n)
El,n〉n.

Hence, using (3.6.8) and the above result we obtain

∇⊥ϕ
El

∇⊥ϕ
El

n = ∇⊥ϕ
El
Bj(El,n)

= Bj(∇CP q

El
El,n)− 〈Bj(El,n), B

j(El,n)〉n
= Bj(∇CP q

El
El,n)− n. (3.6.19)

Replacing (3.6.19) in (3.6.15), we get

−∆⊥ϕHϕ =
κ

1 + 2q

1+2q∑

l=2

{∇⊥ϕ
El

∇⊥ϕ
El

n −∇⊥ϕ
∇CPq

El
El

n}

=
κ

1 + 2q

1+2q∑

l=2

{Bj(∇CP q

El
El,n)− n −Bj(∇CP q

El
El,n)}

=
κ

1 + 2q

1+2q∑

l=2

{−n}

=
−2qκ

1 + 2q
n. (3.6.20)

Now, we compute traceBϕ(·, AϕHϕ(·)). From Equations (3.6.6) and (3.6.8) we recall

that

AϕHϕE1 =
κ2

1 + 2q
E1 and AϕHϕEl = 0.

It follows that

traceBϕ(·, AϕHϕ(·)) = Bϕ(E1, A
ϕ
HϕE1) =

κ2

1 + 2q
Bϕ(E1, E1)

=
κ2

1 + 2q
{Bi(E1, E1) +Bj(E1, E1)}

=
κ3

1 + 2q
n. (3.6.21)

From (3.6.14), (3.6.20) and (3.6.21) we obtain that M1+2q is biharmonic if and only

if

− 2qκ

1 + 2q
n − κ3

1 + 2q
n +

(m+ 3)κ

1 + 2q
n = 0,
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that is, as κ 6= 0, κ2 = 4.

Using the isometry of CP 1(4) with the sphere S2 of radius 1/2 and by a standard

argument, we get that a curve γ with constant curvature κ = 2 is a small circle of radius

(1/2)/
√
2 of the above sphere S2. Thus, it is proper-biharmonic in CP 1(4) [15, 17].

Indeed, first, in general, let us compute the second fundamental form of the sphere

of radius r in E3. In this particular example we place the radius in the brackets and

not the curvature as before. We have

S2(r) =
{
(x1, x2, x3) ∈ E3 : (x1)2 + (x2)2 + (x3)2 = r2

}
.

Let X ∈ C(TS2(r)), i.e. X(x) ∈ E3 and 〈x,X(x)〉 = 0, for any x ∈ S2(r). We have

∇E3

X Y = ∇S2(r)
X Y +B(X,Y )

= ∇S2(r)
X Y + b(X,Y )

x

r
. (3.6.22)

Taking the inner product of (3.6.22) with x we obtain

rb(X,Y ) = 〈∇E3

X Y, x〉 = −〈Y,∇E3

X x〉
= −〈Y,X〉

Then b(X,Y ) = −1
r 〈X,Y 〉 and thus B(X,Y ) = − 1

r2
〈X,Y 〉x.

Let γ be a curve with constant curvature κ = 2, we consider {γ′
= t,n} the Frenet

frame field along γ in S2(1/2). We have




∇S2(1/2)

γ′
γ

′
= κn = 2n

∇S2(1/2)

γ′
n = −κt = −2γ

′
.

Looking at γ in E3, we have

∇E3

γ′
γ

′
= ∇S2(1/2)

γ
′ γ

′
+B(γ

′
, γ

′
)

= ∇S2(1/2)

γ′
γ

′ − 4γ = 2n− 4γ

= K N,

where K = ||2n− 4γ|| =
√
8 and N = (2n− 4γ)/K. Also,

∇E3

γ′
N =

1

K
∇E3

γ′
(2n− 4γ)

=
1

K

{
2(∇S2(1/2)

γ
′ N +B(γ

′
, N))− 4γ

′
}

=
1

K

{
2(−2γ

′
)− 4γ

′
}

= −8γ
′

√
8
.
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Thus
{

∇E3

γ
′ γ

′
=

√
8 N

∇E3

γ
′ N = −

√
8 γ

′
.

Therefore, γ is a circle in E3 with radius equal to (1/2)/
√
2. By [17, Remark 4.1],

one sees that γ is a proper-biharmonic curve on the sphere of radius r if and only if

it is a small circle of radius r/
√
2. Hence, we conclude that γ is proper-biharmonic in

CP 1(4).
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Titre : Surfaces et Hypersurfaces Biharmoniques dans les Sphères et les Espaces Projectifs 
Complexes 

Mots clés : Sous-variétés Biharmoniques, Courbure Moyenne Constante, Continuation Unique, 
Surfaces Biconservatrices, Surfaces PMC, Espaces de Formes Complexes. 

Résumé : Dans cette thèse, nous commençons 
par démontrer un Théorème de Continuation 
Unique pour les hypersurfaces non-minimales 
biharmoniques dans les sphères. Sous les 
bonnes hypothèses, ce résultat montre que, 
pour ces immersions, CMC sur un sous-
ensemble ouvert implique globalement CMC. 
Après, nous déduisons des nouveaux 
théorèmes de rigidité pour soutenir la conjecture 
que sous-variétés biharmoniques dans les 
sphères Euclidiennes doit être de la courbure 
moyenne constante.  Nous considérons aussi 
les surfaces PMC dans les espaces de formes 
complexes, et nous étudions l'interaction entre 
les notions de PMC, totalement réel et 
biconservative.  Nous considérons d'abord les 
surfaces PMC dans une espace de forme 
complexe non-plate et prouvons qu'elles sont 
biconservatives si et seulement si totalement 
réelles.   
 

Ensuite, nous trouvons une formule de type  
Simons pour un champ de vecteur bien choisi 
construit à partir du champ de vecteur de la 
courbure moyenne et l'utilisons pour prouver un 
résultat de rigidité pour les surfaces 
biconservatives CMC dans les espaces de 
formes complexes de dimension 2. Nous 
prouvons ensuite un résultat d'une réduction  
de codimension pour les surfaces PMC 
biconservatives dans les espaces de formes  
complexes non-plates.  Enfin, nous concluons 
en construisant des exemples de sous-variétés 
biconservatives CMC non-PMC à partir du 
plongement de Segre, et discutons quand elles 
sont proprement biharmoniques. 

 

Title : Biharmonic Surfaces and Hypersurfaces in Spheres and Complex Projective Spaces 

Keywords : Biharmonic Submanifolds, Constant Mean Curvature, Unique Continuation,              
Biconservative Surfaces, PMC Surfaces, Complex Space Forms. 
 
Abstract : In this thesis, we start by proving a 
Unique Continuation Theorem for non-minimal 
biharmonic hypersurfaces of spheres. Under the 
right hypotheses, this result shows that, for 
these immersions, CMC on an open subset 
implies globally CMC. We then deduce new 
rigidity theorems to support the Conjecture that 
biharmonic submanifolds of Euclidean spheres 
must be of constant mean curvature. Also, we 
consider PMC surfaces in complex space forms, 
and study the interaction between the notions of 
PMC, totally real and biconservative. We first 
consider PMC surfaces in a non-flat complex 
space form and prove that they are 
biconservative if and only if totally real. 

Then, we find a Simons type formula for a well-
chosen vector field constructed from the mean 
curvature vector field and use it to prove a 
rigidity result for CMC biconservative surfaces 
in 2-dimensional complex space forms. We 
prove then a reduction codimension result for 
PMC biconservative surfaces in non-flat 
complex space forms. Finally, we conclude by 
constructing examples of CMC non-PMC 
biconservative submanifolds from the Segre 
embedding, and discuss when they are proper-
biharmonic. 
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