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Résumé de these

Mots clé : géométrie complexe, oméga lisse, composite fibres longues, variabilité, incertitude, procédé
de fabrication, modélisation multi-échelle, probabiliste, éléments finis.

La these porte sur 1’étude des origines et des effets d’un certain nombre de variabilités, au sein
d’une structure composite carbone/Epoxy présentant des singularités géométriques. Le ler
chapitre est une étude bibliographique ou on montre que 1’étude des variabilités sur des piéces
composites reste un probleme ouvert qui peut étre abordé de plusieurs manieres et a plusieurs
échelles. Il est bien établi que les propriétés d'une structure composite dépendent a la fois du
choix des matiéres premieres comme de celui du procédé de fabrication. Ces propriétés sont
influencées par plusieurs types de variabilités comme la variation de la position des arréts de
pli, le désalignement des fibres et la présence de porosités. Ces trois questions sont abordées
dans le cadre de cette thése. Pour illustrer la méthodologie proposée, nous considérons comme
exemple de structure avec geométrie complexe, un prototype de lisse composite inspiré d'un
fuselage aéronautique. Elle constitue dans ce travail le réceptacle d’un certain nombre de
contraintes de fabrication comme la présence de rayons convexes et concaves, de parois
verticales, de changements d’épaisseur et d'association de plusieurs matériaux. Le 2éme
chapitre est dédié a la présentation du protocole expérimental utilisé et des observations de
variabilité pour I'analyse des arréts de plis, de la porosité et de désalignement des fibres. Les
observations sont réalisées tout au long du processus de fabrication, et font appel & un large
éventail de techniques de mesures comme les observations optiques, micrographigues,
tomographiques, etc. Chaque observation est dédiée au suivi d’un ou plusieurs types de
variabilité étudiée pour des phases différentes du processus de fabrication. Le 3eme chapitre
comporte 1’étude mathématique des résultats d’observation et la représentation des tendances
statistiques. Les données acquises sont triées en regard de leur position vis-a-vis des singularités
géométriques, et analysées afin d’en proposer des modélisations mathématiques pertinentes.
L’originalité du travail porte principalement sur la volonté de ne pas se limiter a des analyses
statistiques, en caractérisant des tendances d’évolutions spatiales réalistes pour chaque type de
variabilité observée, en lien avec la présence ou non d’une singularité géométrique a proximité.
Une fois les lois mathématiques représentatives identifiées, des analyses statistiques sont
menées sur les parametres qui pilotent ces lois, principalement sous la forme de moyennes et
d’écarts types. Le but du 4éme chapitre est de proposer une approche numérique pour évaluer
I'influence de ces variabilités sur les propriétés de la structure. On montre en quoi il est possible
de créer une famille de modéles numériques représentant des piéces virtuelles (non encore
fabriquées) de facon réaliste. Le réalisme recherché cible autant I'amplitude des variabilités
simulées que I'évolution spatiale de cette variabilité au sein de la piéce. Les simulations
numériques doivent permettre de proposer des gammes de variation des propriétés et du
comportement des structures en fonction de la variabilité étudiée. Le modéle fait appel a des
éléments coques 2D, pour étre en capacité de mener un grand nombre de simulations basées sur
des tirages aléatoires des parametres des lois mathématiques étudiées. Enfin une autre étude
numérique est proposée. Elle concerne I’effet des variabilités au sein d’une peau de fuselage
composée de plis UD a partir de résultats issus d'une thése précédente (voir Annexe 4). En
conclusion, ce travail a mis en place une approche permettant I'évaluation des effets
d'incertitude dans des calculs mécaniques appliqués aux structures en matériaux composites a
géométrie complexe. La question abordée est de s'assurer de la robustesse d'un résultat de
maniere plus physique qu'en ayant recours a des facteurs de sécurité. Les perspectives de ces
travaux sont ensuite présentées.



Thesis summary

Keywords: complex geometry, omega stringer, long fibre composite, variability, uncertainty,
manufacturing process, multiscale modelling, probabilistic, finite element.

The thesis focuses on the study of the origins and effects of a number of variabilities within a
carbon/Epoxy composite structure with geometric singularities. The first chapter is a
bibliographical study in which it is shown that the study of variabilities in composite parts
remains an open problem that can be approached in several ways and at several scales. For the
analysis and manufacture of composite structures, there are a large number of methods, multi-
scale or not, which allow the influence of variabilities to be taken into account in the study of
composite structures. It is well established that the properties of a composite structure depend
on both the choice of raw materials and the manufacturing process. These properties are
influenced by several types of variability such as variation in the position of ply stops, fibre
misalignment and the presence of porosities. These three issues are addressed in this thesis. To
illustrate the proposed methodology, we consider as an example of a structure with complex
geometry, a prototype of a composite stringer inspired by an aeronautical fuselage. In this work,
it constitutes the receptacle of a certain number of manufacturing constraints such as the
presence of convex and concave radii, vertical walls, changes in thickness and the association
of several materials. The second chapter is dedicated to the presentation of the experimental
protocol used and the observations of variability for the analysis of ply stops, porosity and fibre
misalignment. The observations are carried out throughout the manufacturing process, using a
wide range of measurement techniques such as optical, micrographic, tomographic
observations, etc. Each observation is dedicated to the monitoring of one or more types of
variability studied for different phases of the manufacturing process. The third chapter includes
the mathematical study of the observation results and the representation of statistical trends.
The acquired data are sorted according to their position with respect to geometric singularities,
and analysed in order to propose relevant mathematical models. The originality of the work lies
mainly in the desire to do not limit itself to statistical analyses, by characterising realistic spatial
evolution trends for each type of variability observed, in relation to the presence or absence of
a geometric singularity nearby. Once the representative mathematical laws have been identified,
statistical analyses are carried out on the parameters driving these laws, mainly in the form of
means and standard deviations. The aim of the 4th chapter is to propose a numerical approach
to evaluate the influence of these variabilities on the properties of the structure. It is shown how
it is possible to create a family of numerical models representing virtual parts (not yet
manufactured) in a realistic way. The realism sought targets both the amplitude of the simulated
variabilities and the spatial evolution of this variability within the part. The numerical
simulations must make it possible to propose ranges of variation of the properties and behaviour
of the structures according to the variability studied. The model uses 2D shell elements to be
able to carry out a large number of simulations based on random draws of the parameters of the
mathematical laws studied. Finally, another numerical study is proposed. It concerns the effect
of variabilities within a fuselage skin composed of UD plies, based on results from a previous
thesis (see Appendix 4). In conclusion, this work has set up an approach allowing the evaluation
of uncertainty effects in mechanical calculations applied to composite structures with complex
geometry. The question addressed is to ensure the robustness of a result in a more physical way
than by using safety factors. The perspectives of this work are then presented.
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General introduction

Composite materials have excellent mechanical properties, combining high strength and
stiffness with low density, allowing for low energy consumption (may be specifically low fuel
consumption in transportation industry). Other advantages, compared to conventional
materials, are the durability and the favourable fatigue properties. In addition, the design and
the manufacture of composite structures allow to obtain good mechanical performance with a
minimum of material. Composite structures are widely used in the aerospace, leisure and energy

industries.

However, the use of composites introduces difficulties. The cost of manufacturing is high.
Another major obstacle is the uncertain reliability. It is known that variability and uncertainties
exist in all manufacturing processes, but composite materials generate a higher level of
variability than conventional materials. The variability of macroscopic performance is directly
related to uncertain parameters, such as material, physical and geometric properties. While the
concepts of error and uncertainty have become established in the experimental field,
calculations generally provide only one result that is considered certain. However, small
variations affect the parameters from one part to another, and the real loading conditions are
rarely perfectly known. Ensuring the safety of design, or improving the identification of models

from tests, therefore implies integrating the notion of uncertainty in one way or another.

The quantification of their uncertainties and their consequences are important. Then, the
development of methods to propagate the variabilities on the uncertain parameters and
quantifying them is necessary. Considering that experimental tests are costly in time and
material, stochastic and mathematical mechanics and along with numerical methods are to be

combined.

Currently, many methods have been proposed and developed to study non-deterministic
problems. Among them, probabilistic approaches require knowledge of the probability law of
the input variables and allow the output variables to be expressed in terms of statistical
quantities such as the mean, standard deviation or distribution. These methods are generally
based on non-realistic input data, or data taken from non-industrial composite structures. Also,
few studies present continuous developments in surface or volume properties of parts, based on

real data.



In this context, this thesis proposes a methodology of variability study from raw material to
numerical representation, within a composite omega-shape structure that presents complex

geometry zones and is inspired from the composite fuselage Q-shape stringer.

The thesis is constituted by four chapters and ends up with a general conclusion and three

appendixes.

In the 1% chapter, the reader finds a complete description of the context of this work. In
particular, the interaction between composite materials and uncertainties is detailed, as well as
the way these uncertainties influence the design of the composite structures. These descriptions
are then used to guide the literature review on the transport of uncertainty, its forms, its sources
and the different methods used to represent it. It shows that the study of variabilities in
composite parts remains an open problem that can be approached in several ways and at several
scales. Indeed, there is no general methodology defining each step associated with the
establishment of the composite solution. The unique definition of variability remains subject to

interpretation by researchers or designers.

For the analysis and manufacture of composite structures, there are a large number of methods,
multi-scale or not, allowing the influence of variability to be taken into account in the study of
composite structures. But among all these methods, few concern the consideration of the
continuous variation of properties within a composite part, or the influence of the presence of
localised defects.

For the study of variability, the work in the literature focuses, on the one hand, on flat structures
without taking into account the situation corresponding to geometrical complexities, and on the
other hand, on data which are not necessarily derived from physical observation. It is well
established that the properties of a composite structure depend on both the choice of raw
materials and the manufacturing process. These properties are influenced by several types of
variability such as variation in the position of ply stops, fibre misalignment and the presence of
porosities. These three issues are addressed in this thesis.

It has been chosen to gather realistic input data to feed probabilistic models. Mathematical laws
adapted to the description of the spatial variations of the variability studied are proposed. The
studies are carried out on the basis of magnitudes derived from statistical investigations
concerning the identification of the parameters of the mathematical laws chosen beforehand

through physical observation.



To illustrate the proposed methodology, we consider as an example of a structure with complex
geometry, a prototype of a composite Q-shape stringer inspired by an aeronautical fuselage. In
this work, it constitutes the receptacle of a certain number of manufacturing constraints such as
the presence of convex and concave radii, vertical walls, changes in thickness and the
association of several materials. In this work, an omega-shaped structure is examined,
consisting of 20 plies from preforms with unidirectional and woven reinforcements. The
structure is manufactured using a dedicated mould, including a core for internal geometry

control, and cured in a single stage in an oven.

The 2" chapter is dedicated to the presentation of the experimental protocol used and the
variability observations for the analysis of ply stops, porosity and fibre misalignment. The
observations are carried out throughout the manufacturing process, using a wide range of
measurement techniques such as optical, micrographic, tomographic observations etc. Each
observation is dedicated to the monitoring of one or more types of variability studied for
different phases of the manufacturing process.

The different manufacturing and observation steps are explained starting with the observations
of the actual dimensions of the prepreg preforms, via an optical technique using a scanner. Then
during the draping phase, each laid ply is optically observed to determine the position and shape
of the ply ends. Local measurements of the actual orientation of the fibre strands before curing
are taken. The structure is then cured in an oven under a vacuum cover with a plateau at 120°C
for two hours. Once the structure is consolidated, it is scanned in 3D to identify its real
geometry, which is different from the theoretical geometry due to the presence of internal
stresses. The fabricated part is then cut out for observation. Microscopic and tomographic
analyses are performed to determine the variations of the studied parameters, mainly the
positions of the ply edges, the size and the extent of the porosities that appeared during the
consolidation phase.

The 3" chapter includes the mathematical study of the observation results and the representation
of statistical trends. The data acquired are sorted according to their position with respect to
geometric singularities and analysed in order to propose relevant mathematical models. The
originality of the work lies mainly in the desire not to limit itself to statistical analyses, by
characterising realistic spatial evolution trends for each type of variability observed, in relation
to the presence or absence of a geometric singularity nearby. Once the representative
mathematical laws have been identified, statistical analyses are carried out on the parameters

driving these laws, mainly in the form of means and standard deviations.



The spatial evolution of the position of the ply stops is modelled by polynomials of degree 5,
sufficient to describe the undulations observed over a Q-shape stringer length of about 400 mm.
The 6 parameters describing these polynomials are analysed from a statistical point of view, by
separating the measurements into four families of ply (categorised based on the manual lay-up
specifications for each ply), determined according to characteristics such as strand orientation
or position with respect to a geometrical feature. The modelling of the spatial evolution of the
fibre orientations is based on previous work and is represented by a finite sum of deformed
zones, using a Gaussian surface centred on the centre of the perturbations. The amplitudes of
the perturbations are statistically studied with an adaptation to the characteristics of the structure
studied from the observations made. Finally, the porosities appearing during the consolidation
phase are evaluated in terms of position and extent in the horizontal plane and represented by

statistical laws conducted according to their location in the cross-section of the studied stringer.

The aim of the 4™ chapter is to propose a numerical approach to evaluate the influence of these
variabilities on the properties of the structure. It is shown how it is possible to create a family
of numerical models representing numerical twins of fabricated structures and then virtual parts
(not yet manufactured) in a realistic way. The realism sought targets both the amplitude of the
simulated variabilities and the spatial evolution of this variability within the part. Indeed, a
realistic model cannot propose discontinuous evolutions of certain properties from one finished
element to another if the property studied cannot present this type of jump within the real

structure.

Among the objectives of the work, it is explained how the numerical model should not only
provide a numerical twin of the real manufactured and observed parts, but how it should also
allow to extrapolate the information, obtained from the observation of a finite number of real
structures, to extrapolate an infinite number of virtual composite structures. It is also a question
of extrapolating the results to lengths greater than those observed during the experimental part.
The numerical simulations should make it possible to propose ranges of variation in the

properties and behaviour of the structures according to the variability studied.

The set of mathematical models from chapter 3, proposed for the representation of the spatial
evolution within the part respectively of the ply stops, the fibre orientations and the porosity
rate, is used for the creation of a Finite Element model taking into account local variations of
properties. The model uses 2D shell elements, to be able to run a large number of simulations
based on random draws of the parameters of the mathematical laws studied. In this proposed
model, the values of the material and geometric parameters change not only from one mesh to

4



another, but also for the same mesh, for each of the 20 plies constituting the shell element of

the composite structure.

In general conclusion, it is shown that this work has set up an approach allowing the evaluation
of uncertainty effects in mechanical calculations applied to composite structures with complex
geometry. The question addressed is to ensure the robustness of a result in a more physical way

than by using safety factors. The perspectives of this work are then presented.
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Chapter 1: Bibliography
1. Introduction to the variability study in the literature from experimental
measurements to numerical validation
Today, the aerospace industry relies heavily on the use of advanced composite materials to

reduce structural weight and maintenance costs associated with corrosion and fatigue.

However, composite materials have a high variability in their mechanical properties compared
to conventional engineered materials. The variability of the semi-finished products, the
manufacturing conditions and the chosen geometries of the composite structure can be the

origin of the material variability.

The design of these aeronautical structures depends on structural performance prediction based
mainly on numerical finite element modelling. But the theoretical numerical model will differ
from the real structure because of the variabilities, which can affect its final properties. The
numerical consideration of the numerous variabilities of composite structures is a challenge to
enable the optimisation of this type of structure in the long term, while improving reliability
and air safety.

In order to model these variabilities, for example by inserting them in the form of statistical
mathematical laws, it is necessary to use appropriate numerical modelling. The elaboration of
these specific numerical models is based on the physical observation of the study structure in
order to determine the different existing sources of variability. Then, based on the literature, the
trends found are represented by statistical laws, in order to choose an appropriate numerical

method to represent the outputs of our system.
2. Variability in composites

The term composite designates a material composed of several components at different scales,
whose combination presents a significant advantage compared to a homogeneous situation.
Despite these widely proven advantages, mastering the perfect relative position of these
components, during all steps of the manufacturing process, is difficult or even impossible. This
is due to the nature of the composite material, and results in variabilities in composite structures
at different scales. Indeed, Composites are tailor-made materials whose rigidity or strength can
be adapted to the loads encountered. Faced with the diversity of fibre and matrix choices, fibre

ratio values and possible stacking for laminates, making relevant choices without a predictive
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model appears impossible. As a result, multi-scale modelling (cf. Fig. 1. 1) of composites has

become a very relevant topic in composite science [1].

matrix properties ply properties laminate behaviour
fibre properties interply properties component geometry

interface properties stacking sequence

spatial distribution

S s

> HHEE

PLY BEHAVIOUR LAMINATE BEHAVIOUR COMPONENT BEHAVIOUR

Fig. 1. 1. Strategy scheme for multi-scale modelling from microscale to macroscale [1]

For studies dealing with variabilities in composite materials, it is important to first refer to the
proper definitions of variability and uncertainty terms which are the vocabulary used by authors

of reviews dedicated to such issues related to the composite materials and structures [2] [3] [4].

The definition of these notions remains an open problem and differs from one author to another
[5]. This field of investigation regarding the definitions is clearly a mathematical issue in itself
whatever the associated mechanical applications. In chapter 1 of [5], an author proposes a
review providing clear definitions of uncertainty, involving variability, particularly in the field
of mechanics of materials and structures. This author in [5] provides two distinct definitions of
uncertainties; between the random and epistemic ones. Variabilities of material properties
belong to random uncertainties, which require probabilistic analysis but can also be considered

as epistemic uncertainties because of a lack of information.

This lack of knowledge could be caused by the constraint of the discrete observation along with
a composite structure. Indeed, continuous observations and measurements, addressing the
variable data from one point to another through the structure, is nearly impossible to be carried
out in a continuous manner perform, but in a discrete one. On one side hand, this leads to
uncertainty issues in identifying the evolution laws of the studied data due to the lack of
information. On the other side, the lack of information is due to the difference of property
variabilities from one structure to another one, despite having the same geometric
characteristics and the same manufacturing process. The author in [5] explains that uncertainty
problems are generally treated using probabilistic analysis with different mathematical methods

related to the type of uncertainty.
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The reviews in the literature underline the importance of studying variabilities, in order to take
them into account, including their influence in numerical modelling. These reviews point out
that numerical consideration can be achieved by studying the variabilities and sources
associated with all scales and at all steps of the manufacturing process in [2] and more
particularly for long fibre reinforced prepregs with a thermosetting matrix. The listed works
start from the different variability sources, including those caused by the manufacturing process
and their influence on structural behaviour, to the analysis of these uncertainties using statistical

and probabilistic tools [6].
3. Variability classification

Authors in literature classify variability in different kinds, according to their type, source, effect
on the structure’s behaviour etc... The first classification concerns different types of variability
such as fibre misalignment, thickness, material properties etc. The second one related to

variability sources.

Let’s start with porosities which is the subject of many works in the literature. For example, in
[7], authors study porosity variability using tomographic imaging methodologies for

composites and the different parameters that can be improved to obtain a better resolution.

They also give examples of tomographic observations (cf. Fig. 1. 2) to see plies, porosities and
cracks in a composite structure based on an imaging strategy (depending on the observation

objective). Void content decreases when the processing time increases.

10 100

I 80

Unprocessed (0 min): [ 60

16.9% (average)
40

Ave. Macro-Void Content [ %)
=
Temperature [°C)

0 30 60 90 120 150 180
Process Time [min)

©  Void Content — Temperature

(b) Processing time 60 mins

(¢) Processing time 180 mins

500 ym

Fig. 1. 2. Tomographic images showing the porosities in a CFRP laminate (5 plies) as a
function of the treatment procedure depending on the treatment time during the cure cycle [7]

9



Chapter 1

In order to evaluate porosity effect on the composite behaviour, another work [8] presents a
methodology that uses tomographic observations to develop a numerical model of the
composite according to the size of porosities (cf. Fig. 1. 3) (minimum porosities, medium
porosities and extended porosities). To validate the used method, mechanical loadings were
applied. Results show that there is a good corelation between numerical modelling and
mechanical results [8]. The specimens used in the experimental tests were CFRP specimens
made from EHKF 420-HTA unidirectional prepregs with a resin mass fraction of 35%. The
obtained numerical and experimental results show that when increasing porosity rates (size),

transverse stiffness and strength decrease.

/

(@) ! (b) ()

Fig. 1. 3. Schematic representation of objects with (a) Minimum porosity, (b) Average

porosity and (c) Extended porosity level [8]

In relation with the curing cycle, works in the literature investigate the effect of porosities on
the mechanical behaviour of composites as a function of curing cycle (autoclave) such as in [9].
The determination of porosities is realised using tomographic images (cf. Fig. 1. 4) on
composite specimens made from 16 and 32 ply prepreg unidirectional composite laminates
(unidirectional HTA 24 k carbon fibre and EHKF 420 epoxy resin). The dimensions of the
samples for tomographic observation are: 13.45 mm x 9.46 mm x 2.75 mm. Results show that
the presence of pores reduces all matrix-dominated material properties of UD CFRP material.
The reduction in strength is greater than the reduction in the elastic properties as at high low

load-levels the pores interact with damage mechanisms accelerating the fracture process [9].
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Fig. 1. 4. Obtained porosity images [9]

For fibre orientation variability, there are different methods of observation. Some papers use
X-ray tomography method to evaluate fibre orientation such as in [10]. The sample studied is
made from a 3D woven carbon/epoxy composite with a cross-sectional area of 2.7 mm? that
has been cut into a plate along the fibre direction. The composite is reinforced with Toho Tenax
carbon fibres and has a fibre volume fraction of 51.1%. From the X-ray images (cf. Fig. 1. 5),
an analysis was made of the degree of anisotropy and the orientation of the fibres. These results
were implemented in a numerical model. Results show that the uncertainty of the used
methodology depend on the voxel size and the size of integration. Also, gradual transition of
the orientation between orthogonal directions has been noticed, which can introduce a fraction

of non-physical orientations [10].

Fig. 1. 5. The micro-CT image slice (a) and the results of the voxel model segmentation with
different methods (b, ¢, d and e) [10]
11



Chapter 1

The authors in [11] measure fibre orientation through image analysis techniques of the
composite plies during the lay-up phase within a composite plate. Image analysis results show
that variations in the mean ply orientations are between -0.5 and 0.5° with standard deviations

ranging between 0.34 and 0.41°. The obtained set of data was used for numerical validation.

As for ply thickness variability, an example of paper in literature investigates variability within
two types of composites [12] based on the same composition but with different fibre thicknesses
(3K: A fabric has 3000 filaments per yarn and 12K: A fabric has 12000 filaments per yarn).
The material used in this work is made from HexPlyl M10.1 prepregs with T700S carbon
fibres. The prepregs, which are stored in a freezer at -18°C, are cut into 300 mm x 300 mm
(sheet). The polymerisation cycle lasts 2 hours with a maximum temperature of 120°C. The
samples for microscopic observations are prepared using an automatic polishing machine. The
measured parameters are thickness of the samples, size and shape of the fibres in a cross section,
volume fraction of the fibres, alignment defects, etc. in order to quantify their effect on the
behaviour of the two composite materials. From the results found by authors (cf. Fig. 1. 7.)
[12], mathematical distribution models are calculated to be used in a numerical model (cf. Fig.
1. 6). The variability of measured geometrical values is higher for 12K material than for 3K
material and there is a significant variation in the average fibre volume fraction among different

types using two different methods for the area measurement.

Axialthickness variation [nm] @)

Plate dimensions [mm]

Axial thickness variation [mm] o

e
&

g 60
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Fig. 1. 6. Variation in thickness for both types of composites with (a) 3K material and (b) 12K

material [12]
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|

Fig. 1. 7. llustration of the variation of fibre volume fraction for the same type of composite
[12]

There are other forms of variability in composite structures such as plies drop off, elastic

properties, etc. that have different sources, from structure design to curing conditions.
4. Variability sources during composite structures manufacturing process

There are more than 130 types of defects and more than 60 sources of variability for a composite
material in relation to its manufacturing process according to [3]. Sources are classified as
follows [3]:

- Variability in the prepreg upon receipt;

- Variability due to lay-up and stacking;

- Variability due to solidification and curing of the resin;

- Variability due to residual stresses and thermal distortion.

The sources of variability in mechanical systems composed of composite structures are diverse
and numerous. They can be classified also into two main categories respectively, those related
to all the steps of the manufacturing process, leading to inter variability and those related to the
environmental parameters and the intrinsic nature of the systems under study, leading to intra

variability. The overall variability includes both intra and inter variability.

For composite structures, the sources of variability can be associated with parametric
uncertainties, i.e., material properties (moduli of elasticity, Poisson's ratio, shear moduli,
densities, etc.) and physical parameters (thicknesses, fibre orientations, cross-sectional areas,

13
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loadings, etc.). These parametric uncertainties are intrinsic to the behaviour of the structure

studied and are therefore observed experimentally as well as numerically.

Starting with the manufacturing process as a main source of variability, in [2], a state of the art
on experimental methods and stochastic simulations and the influence of variabilities on the

main stages of composite manufacturing (draping, compaction, curing) is presented as:
- Variabilities in the prepreg (shape, fibre distribution, alignment ...);
- Variability during lay-up and shear caused by misalignment;

- Variability during consolidation (liquid composite moulding process): porosities, resin
pockets ... which can affect the anisotropy coefficient of the composite as well as the
fibre volume fraction and the porosity distribution;

- Curing cycle variability, cycle parameters and environmental conditions that can lead
to residual stresses, porosities and sometimes thermal degradation due to temperature

variability.

In [13], the author represents variability forms in relation with their sources. Variability sources
are different and due to each step of manufacturing process, including the initial state of
prepregs. The known sources are respectively, the variation in mass per unit area (unidirectional
prepreg), the fibre misalignment, ply thickness, autoclave polymerization, porosity rate. During
the autoclave polymerization of unidirectional prepregs, a number of parameters must be
studied, respectively, the variation of the mass per unit area of the prepregs, the difference in
orientation between the real and the theoretical case of the hand-placed plies in the lamination,
the differences between the lay-up conditions during the autoclave cure cycle, the thickness of

the plies and the total thickness of the cured plate [13].

In raw material, at the prepreg stage, the variability of fibre misalignment is addressed in two
ways in [12], by direct measurements of fibre misalignments in the as-delivered prepregs, and
by inference from measurements of the tensile load response of the cured prepreg. A significant
level of fibre misalignment is detectable in the as-delivered prepreg, mainly in the form of in-
plane wrinkles, although macroscopic out-of-plane wrinkles and more localised, small-scale

out-of-plane wrinkles can also be detected.

From structural design as a source itself [3], it was examined how choices made during
component design can influence the properties of composite materials. In [3], the aim was to

demonstrate that the micro and meso structural features directly attributable to design decisions
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must be rigorously identified. The influence of these features on composite properties must be

explicitly included in the determination of allowable properties.

Also, in [3], the author shows that variabilities are inherent in the prepreg upon receipt. He
estimates that variabilities in the prepreg can affect the local surface masses (~7%), on the resin
mass rates (~6%) and on fibre orientations (~4°). The fibre orientation variability is relatively

heigh due to packaging conditions for storage (generally large rolls) (cf. Fig. 1. 8.).
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Fig. 1. 8. Specification limits for mass properties of one prepreg [3]

Many authors have studied the mechanical properties of textile materials at the microscopic
(fibre/matrix delamination), mesoscale (fibre bundle transverse cracking or matrix cracking)
and macroscopic (fibre bundle boundary delamination) scales and numerically. The material
data introduced in the mathematical models must be reliable in order to obtain solutions as close
as possible to the real physical phenomenon. The importance of the internal geometry of the
structure is crucial when analysing the behaviour of the material under loading conditions. The
dispersion of the geometrical structure in textile composites can also lead to a dispersion of the
physical properties. Therefore, knowledge of the correlation between the source of variability
and the resulting behaviour is essential to control the manufacturing process and consequently

the final material properties.

Important characteristics such as mechanical elastic properties, formability, permeability, initial
failure and damage progression are very sensitive to the variability of the internal geometric
structure. Many authors [7-10] have found a direct relationship between fabric structure and
material permeability values. For example, authors in [14] identified layer nesting as the main
source of variation in permeability values for fabric-based composites. In relation to other
properties, authors in [15] have demonstrated significant variations in formability due to the

effect of yarn misalignment and local unit cell size in pre-impregnated woven textiles [12].
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Manual lay-up process has a significant effect the presence of variabilities in composite
structures. Hand draping is a source of uncertainty when placing the ply in the composite
laminate. There are deviations in ply placement from the theoretical designed orientation.

In [13], concerning the draping of medium-sized flat sheets (600 x 300 mm?) with quasi-
isotropic lamination, the values found for the deviations between the theoretical fibre direction
and the actual orientation measured during a manual draping operation indicate that this is a
random variability, with deviations varying between -1° and +1.5° (cf. Fig. 1.9.). This operation

remains highly dependent on the operator and the manufacturing conditions.
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Fig. 1.9. Deviation between the theoretical and actual orientation of the plies per plate with
(a) deviations for all plates (plates are ordered in relation to the chronological order of

draping) and (b) illustration of the deviation between the orientations of the base ply and any
ply [13]

The basic assumption in the design of composite components is that the properties of laminates
in measured current areas are a reasonable representation of the properties of the actual
components obtained. It is not clear that this is the case when considering complex components

with significant geometric singularities.

Authors in [6] analysed the orientation of the fibres in a corner, where they found that each
layer has a misalignment of the fibres, which increases when the point of observation is moved

from the outside to the inside of the structure (cf. Fig. 1. 10.).

Fig. 1. 10. shows the level of waviness developed when laying a set of strips (~ 1.5 mm) of UD
prepreg on the surface of a 100 mm diameter hemisphere and also illustrates the result of using

much wider strips of UD prepreg following the same procedure.
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Fig. 1. 10. Level of fibre misalignment generated by draping narrow and wide UD prepreg

strips over a 100 mm diameter hemisphere [6]

The manual procedure of positioning the layers in the mould introduces additional uncertainty,
as the accuracy is limited. Also, the thickness of the structure is not known precisely, especially

when the layers overlap [6].

Most processes do not have the ability to guarantee the precise position and orientation of the
fibre reinforcement. For some processes, the volume fraction of the fibres is also not constant
in the volume of the component [16]. The crimp factor is another geometric parameter that
determines the homogenised stiffness characteristics of a textile composite material. It is a
measure of the crimp of the yarn through the thickness of the panel. A general trend is that the

equivalent modulus of a woven composite increases as the crimp decreases [16].

The main factor that affects variability is the manual procedure of positioning the layers in the
mould according to in [17], where the thickness of the structure is not precisely known,
especially when layers overlap each other. For example, in [18], variability sources are analysed
at the prepreg scale where the forming/draping stage causes significant shear deformations. The
effect of variability on material parameters is also mentioned in [3] using a graph of dependency
of in-plane material parameters on the orientation of the major fibre axis. Fibre orientation
uncertainties after curing can cause significant variations in the outcome of the forming of
woven composites, with variation coefficients from one point to another and with an average
wrinkling strain in the range of 10-20 %. In [3], the author analyses the variation of the elastic
orthotropic stiffness constants for different orientations of a uniaxial reinforced glass fibre
composite lamina with respect to the applied uniaxial tensile load. The resulting graph exhibits
a significant decrease of stiffness with increasing misalignment of the fibre, the variation of
Young moduli for different alignments of the fibre orientations for the loading direction and
demonstrates that the equivalent material stiffness depends strongly on the fibre placement. The

heterogeneity of composites and the influence of the microstructure are manifested in different
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forms, for example with the effect of the realignment of the fibres. Indeed, at the time of
shaping, these fibres can be slightly wavy, and become taut when a tensile load is applied, thus
in turn leading to a non-linear behaviour in a domain where it should have been purely elastic.
As another example, the role of the interfaces (fibres/matrix, or between plies) is important
[19], its effects on the behaviour and the damage initiation are essential, and interfacial

properties are extremely sensitive to the elaboration conditions [20].

According to [17] and [19], variabilities during the polymerization cycle (cycle parameters and
environmental conditions) can cause residual stresses, porosities and sometimes, thermal
degradation due to temperature variability. While During curing, issues can cause the formation
of dry spots and voids, extended impregnation cycles, uneven impregnation and resin-rich
pockets can develop [21]. These variabilities can affect the Poisson’s ratio of the composite as
well as the volume fraction of the fibres and the distribution of porosities. In [22], it has been
proven also that the consolidation of a prepreg layup to a target thickness is critical to achieve
the required fibre volume fraction and dimensions of a composite part. Experiments on thick
composite plates presented in this paper show that different processing conditions lead to

different levels of compaction and variability in the thickness.

The thicknesses of the plate and the plies are the most affected during the polymerisation,
notably by the non-homogeneity of the resin flow. In [13], the dispersion of ply thickness is
quite significant despite the fact that the ideal case to limit variability was considered: flat plates
(therefore without geometric accidents), draped manually with great care, and cured in an
autoclave, with control according to core temperatures, and constant control of void values and
external pressure. In the case of ply thickness measurements, the coefficient of variation is 13%
for the four samples analysed. In addition, the coefficient of variation of the total plate thickness
is about 2%. This variation was illustrated through a micrographic image of the cross-section
of the sample, where the variation of the same ply is significant along the width of the sample
[13]. The manufacturing process also affects the total plate thickness, which in the ideal case is
taken as the sum of the ply thicknesses. In reality, the thickness of the plate or sample used is
not uniform, as explained in [13], where the variabilities in plate thickness for a common area
can be as high as £10%, i.e., well over one ply thickness for the 16 plies used.

5. Statistical and probabilistic studies after observations

After observing and classifying the sources of variability that can be found, and after obtaining

experimental results, the next step will be to process and analyse these experimental data, which
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will represent the uncertain input parameters of numerical models with variabilities. These
parameters are represented by variables or random fields and follow statistical laws that should
reflect observed data.

Let’s start with the statistical variability definition in the literature. This term has many
significations related to each field. The statistical variability (also called spread or dispersion)
definition is presented in the first section. It generally refers to the way in which a data set is
spread. Variability makes it possible to describe the variation in data sets and to use statistics
to compare the data to other data sets. The parameters adopted to describe variability are

generally, the range, the interquartile range, the variance and the standard deviation.

The range is the amount between the smallest and largest parameter in the set. The range can
be found by subtracting the smallest number from the largest. The interquartile range is almost
identical to the range. Only, instead of giving the range for the data set, it gives the amount for
the "half". This is sometimes more useful than the range because it shows where most of the
values are. The formula is IQR = Q3 - Q1, where Q3 is the third quartile and Q1 is the first
quartile. The variance of a data set gives an approximate idea of the fluctuation of the data.
When the variance is relatively small the data set is clustered and a large variance implies that
the values are more dispersed. The variance is rarely useful except for calculating the standard
deviation. The standard deviation indicates how clustered the data are around the mean. A small
standard deviation indicates that the data are clustered, so we will also have a higher curve; a

large standard deviation indicates that the data are more scattered.

Many studies represent variabilities from a statistical probabilistic point of view, in for plane
or complex composite structures. For example, in [21], an analysis of fuselage type composite
structure was carried out to simulate by calculation the uncertain behaviour of the composite
structures. In [17], an attempt is proposed to quantify the uncertainty of FRP composites
summarising the different stochastic modelling approaches proposed in the literature. The
sources of uncertainty inevitably lead to the presence of various defects in the fibres, matrix,
and fibre-matrix interfaces, and they result in dispersions and reductions in mechanical
properties. Manufacturing defects in composites and their influences on mechanical properties
of materials have been intensively studied, but quantitative studies for uncertainties arising from
manufacturing defects are still lacking. In [23], variabilities ware studied in composite plies
and fibre orientation for a carbon fibre composite plate, where this aspect was modelled using
mathematical models based on the observation of the material through the composite part. In
this same context in [23], a Finite Element-based model was performed to estimate stiffness
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properties of unidirectional composite laminas. This was done while accounting for geometric
and material property uncertainties at micro, meso and laminate scales, all within a probabilistic
framework. In [24], the available property estimation/homogenisation tools were presented by
dividing them into two categories respectively, analytical methods constrained by configuration

assumptions, and numerical homogenisation using Finite Element Analysis.

The study of the listed variability effects is represented by mathematical probabilistic
evaluations, as affirmed in [25], where they are often conducted by numerical modelling. In
[16] for example, probabilistic methods are used to describe scattering in properties where
probability distribution functions can be established for all uncertain parameters, taking into
account the correlation between different parameters such as in [17] The result of the analysis
can be interpreted in a statistical sense, and the probability of every output quantity depends on
the input probabilities and their correlations. It is important that all these inputs are based on
experimental observations to allow a statistical interpretation of the results (in [23]).
Unfortunately, this fact is often neglected by many scientists.

Various mathematical tools can be found in the literature to represent the effect of uncertainty
and variability on finite element models of mechanical systems. However, there is sometimes
a lack of practical data on the mechanical systems of real materials to generate reliable and
useful data. The author [16] proposes a reliable approach to real material variability modelling
by the collection of experimental data following specific experimental approaches in the first
step, then the second step is the stochastic multi-scale modelling of the architecture identified
experimentally in step 1 and finally by the construction of the virtual specimens in the numerical
modelling software. The method presented here is simple and efficient in the case of a plate

geometry, but in the presence of geometric singularities, it becomes complicated.

Many forms of statistical laws can be found in this context, of which we will mention the most

commonly used here after.

5.1. Gaussian law
The Gaussian distribution is the most commonly used to express the distribution of physical

parameters (Eq. 1.1). The probability density of the normal distribution is given by:

1 (x—p?
fX) = —= exp(- —) Eq. 1.1

where u is the mean and o is the standard deviation.
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This is the simplest and most commonly used form when an exponential distribution of

experimental data is available.

5.2. Log-normal law

The probability density of the lognormal distribution is represented by Eq. 1.2:

fX) = ——= exp (——(ln(x)_“)z) Eq. 1.2

Xo\2rm 202
where p and o are the mean and standard deviation of the variable X, respectively.

This form is generally used when the variable under study is the result of the multiplication of

a large number of small independent factors.

Statistical representations in the literature are different and numerous but they can be limited in
many cases (related to physical reality) especially when no experimental work is conducted.
The work in [26], for example, presents a comparison of the models obtained with the results
of the Monte Carlo simulation. Good agreement was obtained, especially in the case of small
strains. The proposed method is limited in the case of large deformations by making
comparisons with deterministic results. The use of these different forms depends on different
factors; boundary conditions, nature of loading, shape and type of specimen ... But these laws
may be insufficient to relate to physical realities, so other laws of spatial evolution must be
sought. There are some works in the literature such as those of [11], where the authors represent
the observed experimental data of the orientations of a ply with a mathematical model using
identification and optimisation. The study of reinforcement orientation variations uses meta-
models to identify and control a continuous variation across the composite ply by direct

measurement of angles through image analysis technics.
6. Stochastic numerical modelling

After studying the uncertain parameters by random variables or fields, probabilistic analysis
requires the choice of a stochastic method to propagate the uncertainties and thus evaluate the
response of the probabilistic mechanical model. There are many methods for introducing

variabilities into stochastic models in the literature. Some examples are given below.
6.1. Monte Carlo simulation

Monte Carlo simulation (MCS) is a simple and reliable stochastic method for studying the
variability of a model in probabilistic analysis [27], as it provides confidence intervals on the

calculated probability. It consists of evaluating the expectation (and variance) of a random
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variable by generating a large number of samples that follow the same probability distribution
as the random variable. The MSC method requires a large number of draws. The model
response is calculated for each draw and the population of results is then processed to evaluate
the statistical quantities. It is observed that convergence depends on the number of draws. In
order to obtain converged results, the number of draws must be quite large, usually more than
10000. The author in [27] has shown that for an accurate estimate to within 5% of a 10-k
probability, one requires about 4x10k+2 points in the sample for the classical Monte Carlo
method. In the literature, the Monte Carlo method is a basic method for studying stochastic
problems. For example, the CGSM (Certain Generalized Stresses Method) developed in [19],
where the Monte Carlo method is performed on a meta-model. The meta-model consists in
decreasing the number of input variables after a sensitivity study with a certain shift of the
physical reality [28]. For our study, we expect to have a few probabilistic variables per ply and
per mesh, i.e., several hundred variables on a single structure. Classical Monte Carlo methods

seem to us to be suitable.

6.2. Chaos polynomial method

Polynomial Chaos (PC), is a sampling-based method for determining the evolution of
uncertainty in a system when there is probabilistic uncertainty in the system parameters. The
Polynomial Chaos decomposition extends to the general case of independent random variables
with known probability densities [29]. The polynomial chaos is based on the following form
(cf. Eq. 1.3):

where {¥;, jeN} denotes a set of random variables forming the basis and {a;, jeN} are the

"coordinates" of the random variable Y in this database.

The polynomial Chaos method is widely used due to its simplicity of implementation, and it
allows to integrate a large number of random parameters [30]. For example, in [31], an analysis
of the random parameters within a mechanical component of a CNES launcher (cf. Fig. 1. 11.
) was carried out by considering that the data likely to have a random effect are: the thickness
of the folds of the composite (26 values), the deviation of the orientation of the folds (26 values),
the vertical misalignment of the rivets (52 values), and the coefficients of the stress-strain

relationship of the carbon.
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Fig. 1. 11. Studied structure scheme [31]

6.3. Perturbation method

The perturbation method [32] is a stochastic method based on the Taylor series development of
uncertain parameters. The perturbed quantity Y (cf. Eq. 1.4) (stiffness matrix, loading or
displacement...) can be expressed in terms of the uncertain parameters Xjwithi=1,2, ... n, :

n, 0Y
i=1 0X; X=

Y:Y0+Z

1 2%y
. (X; —Xo,l-)+52?;’ b
0

VEIEox 0K (Xi — Xo,) (X — Xo,1) + -

Eq. 1.4

where n,, is the number of variables and the subscript "0" indicates the nominal values. In this
expression, Y is the sum of the nominal value and the perturbed terms involving the increasing
order sensitivities [32]. This method is used when the random variables are considered
independent [33]. The perturbation method can be combined with the use of finite element
software, as long as the software has the capacity to calculate first order sensitivities. However,
when the level of input variability is high, or when the behaviour of the system is highly non-
linear (plasticity, impact), the first order perturbation method is no longer robust.

6.4. Spectral form

The stochastic field is represented as a sum of trigonometric functions with varying phase

angles and amplitudes as follows (cf. Eq. 1.5):
fO =3t Ay cos(Kyx+ ) Eq. 15
Ky

WithKn=nAK=nF; n=20,1,..,N.

A,, coefficients are defined by:
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A, =0,4, = /ZSfO(Kn)AK, n=12.,N—1

The spectral method is generally used when a small number of random variables are available,

but in the case of large variabilities.

6.5. Numerical analysis: processing the results

6.5.1. Numerical study

The work in [34] investigates numerical tools used to determine internal geometric
imperfections during the manufacture of composites, these imperfections are given in the form

of 4 categories: Fibre misalignment, Porosity, Delamination and Residual stress.

The authors gave examples of these tools (exploitation of tomographic images to develop a
numerical composite model to determine the effect of fibre misalignment (woven composite)
on the local elastic behaviour of the composite. The comparison of different numerical methods
conducts to conclude that every variability situation should be studied using specific numerical

model.

Another work [35] compares different numerical methods for simulating uncertainties during

the manufacture of unidirectional composites (cf. Fig 1.12).

These numerical methods predict the behaviour of the composite during manufacture using

characteristic functions of the composite.

—_— — —

» The modelling is based on the assignment of characteristic
PAM-FORM | curves for specific deformation mechanisms
Aniform « based on an implicit time integration scheme
— <
» Manufacturing simulation based on an explicit time
LS'Dyna integration scheme

Abaq us « Enable the creation of a single global material model

Fig. 1. 12. Scheme for comparison between different numerical methods [35]

Another work from literature [36] gives a classification for numerical methods used to represent
out-of-plane fibre misalignment variability. The authors affirm that since the manufacturing
processes of composite materials are very different, a variety of waviness types may occur.
Potential root causes are described and, based on that, a generic classification scheme was

developed to differentiate between types of waviness. Among others, process parameters (e.g.,

24



Chapter 1

temperature, pressure and deformation rate), the selection of the fibre and tooling material and
its properties, as well as the complexity of the geometry of the final component are the main
parameters that influence the occurrence of fibre waviness. A set of numerical methods is given

taking into account all these specifications.
6.5.2. Reliability study

Reliability methods are methods by which one seeks to calculate a probability of failure
associated with a criterion, represented by a limit state function whose arguments depend on
the result of a finite element calculation [31].

There are a large number of reliability methods in the literature, of which we will mention some
examples: direct Monte Carlo method, FORM/SORM methods, Kriging method.

The starting point of all methods is a performance function, which gives the relationship

between the chosen performance and the model inputs (cf. Eq. 1.6):

g=9x,x)=y—-y(kxx) Eq 16

where x is the vector of deterministic variables, x the vector of the stochastic variable, y the
performance variable and y the corresponding limit level. If a single element of x varies
stochastically, the performance variable y will vary in the same way, and g can be given as a

probability distribution function [37].

The above equation can only be expressed analytically for simple problems. In general, it is
given numerically, as in industrial applications, where the finite element method is widely used
in structural analysis. The performance function gives the state (failing/not failing) (cf. Fig. 1.
13.) of the structure, as the reliability can be defined as the area of the probability function of

y below the level y.

2(X) =10

Fig. 1. 13. Boundary state concept [37]
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The simplest and most intuitive method is the Monte Carlo method, which involves calculating
the equation for a large number of combinations of x. The combinations, called "trials", are
randomly sampled from the probability distribution of each x;, using the standard random
generator functions implemented on any modern computer. The method is useful because of its
ease of implementation and its accuracy depending mainly on the number of trials one can

afford, always considering the significant time consumed.

The FORM method (First Order Reliability Methods) can be represented geometrically on a
multidimensional Cartesian coordinate system as minimum distance search procedures. The
coordinate system consists of all stochastic variables x. In all FORM methods, it is assumed
that each stochastic variable is described by a normal linear probability function and is
statistically uncorrelated from all others. Under such assumptions, it becomes useful to
transform all stochastic variables into standard normal distributions [37]. The Second Order
Reliability Methods (SORM) assumes that each stochastic variable is described by a quadratic
probability function.

Engineering problems involve increasingly complex computer codes and the assessment of the
probability of failure can be very computationally intensive. Meta-models are used to reduce

these computation times.

Kriging is based on the idea that the probability function g(x) is seen as the realisation of a
stochastic field. The first step of Kriging is to define this stochastic field with its parameters
according to a design of experiments. Then, Kriging is a stochastic spatial interpolation method
that predicts the value of a natural phenomenon at unsampled sites by an unbiased, minimum

variance linear combination of observations of the phenomenon at neighbouring sites.

The Monte Carlo method has proven to be the simplest to implement and the most intuitive to
understand. The accuracy of the results depends mainly on the number of trials the designer can
afford. FORM/SORM methods are more interesting as they have a faster performance, and can
provide sensitivity information about the stochastic variability of the input variables [38].

The above stochastic methods have advantages and disadvantages. The direct MSC method is
robust but requires a large number of draws, which makes it difficult to use for large problems.
The perturbation method is more efficient in terms of computation time, but it is limited to
problems with low input variability, otherwise it is no longer robust. Furthermore, sensitivity
analysis on systems involving a large number of random variables can quickly become

computationally expensive. The spectral stochastic method is interesting when the variables are
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of Gaussian type but the computational cost increases exponentially with the number of random

variables.
7. Complex geometry structure studies with different types of manufacture

There are few examples in the literature that combine the study of complex structures at a
representative scale with the estimation of variabilities and their effects on the overall
behaviour. In [20], an example of studying more or less complex geometry parts in from a
probabilistic point of view is given, where random bending has been applied on a virtual hat-
shape composite structure in the context of a multiscale analysis. This example of composite
structure was considered numerically where the variations of the maximum bending value were
studied according to the values of the material properties. As another example in [39], a multi-
objective probabilistic design is presented for reliability and robustness analysis of composite
structures on a mono-omega-stringer stiffened panel. The studied approach uses a model of the
composite structure while accounting for uncertainties in material properties. The inputs of the
model are the omega-stringer geometry and the mechanical properties of the composite
material. The mono-stringer length and width as well as the skin and omega-stringer thickness
and lay-up are were kept fixed in this study. The stringer foot, the flange and the height were
considered as variables along with Young’s and shear moduli. No experimental work was
conducted. In [40], spring-in behaviour is analysed as a function of time on L-shaped
composites. A statistical investigation on manufactured composite samples was conducted for

27 designs of experiments concerning different autoclave cooling rates.

Moreover in [41], an analysis was carried out on the hat stringer-stiffened flat panels to assess
their buckling and post-buckling responses when exposed to axial compression. The variability
due to the manufacturing process and conditions was not taken into account. The results showed
that the hat-stringer flat-panel had a large load capacity after initial buckling in [41]. The overall
objective of the work in [41] was to develop cost-effective and robust methods to study the
variability of the static or dynamic response of finite element modelled composite structures.
The authors took into account uncertain material (moduli of elasticity, Poisson's ratio, density...)
and physical (thickness and orientation of fibres) properties on in two academic examples of an

ordinary composite plate [11].
8. Our objective and methodology

The objective of the present work is to propose a methodology to take into account, according

to a detailed manufacturing process, variabilities in mesoscale including type, dimensions and
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positions of plies, and to propose a numerical approach to evaluate the influence of these
variabilities on the properties of the structure. Our ambition is to create a family of numerical
models representing virtual but realistic parts, with similar complex geometry zones. This
realism is due to the amplitude of the simulated variabilities but also the spatial evolution of
this variability within the part. Indeed, a realistic model cannot propose discontinuous
evolutions of certain properties from one finite element to the next. For example, the rigidity
level of the prepreg prevents significant orientation variation over a small distance. Our model
must not only provide a numerical twin of real observed parts, but must also extrapolate the
information obtained by observing a finite number of real structures to provide an infinite
number of future composite structures and over lengths greater than those observed. The goal
of our numerical simulations of a large number of realistic parts is to be able to propose variation
ranges of the properties and behaviour of the structures according to the variability studied. One
of the consequences of such studies could be to refine the knockdown factors of the mechanical
properties used in the design of industrial composite structures. Another consequence of this
study could be the ability to demonstrate that it is possible, depending on the part, to tolerate a

certain amplitude of manufacturing variability without the need for blind knockdown factors.

To be able to gather these realistic input data for the probabilistic models, it is, therefore,
necessary to choose mathematical laws describing the spatial variations of the studied
variability. In addition to extrapolating parts to be realistic as concerns numerical twins of the
observed parts, it is necessary to carry out statistical studies from the analysed quantities, by
choosing to perform statistical investigations on the parameters of the mathematical laws
identified beforehand. The proposed approach has to be able to use results taken from a few
points and extrapolate them to predict variabilities in the entire studied structure, and allow
extending future structures with realistic uncertainties. For example, a fuselage contains a
family of stringers, which underlines the interest of the variability representation not only within
a single part but also for a family of parts. The difficulties that we wish to encounter by this
study are: small radii, plies drop-off, different materials, etc. We chose to study a complex
geometry structure inspired from aeronautical part that contains the difficulties to be faced in a
real industrial part. So, the studied part is not the aim of the study, but an object that contains
the difficulties that are themselves the aim of the study.

9. Studied complex geometry structure in this work

The studied part is a composite structure with geometric singularities, presented in Fig. 1. 14. .
It is a research Q-shape stringer of a composite fuselage for aircraft designed within the BLAST
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project [42]. It is a representative model inspired by a real composite aeronautical fuselage
stringer.

Bottom flange

23 mm

- »

Well

Top flange
a A
10 R 615..
12 — -
Bottom flange
‘eh 30
R5.1 X
— 23
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b

Fig. 1. 14. Presentation of the stringer with main areas of a stringer (2-shape) (a) and

dimensions (mm) of a part’s cross-section (b)

The stringer is taken from an inspired fuselage from a fuselage section manufactured during the
ANR Astrid Blast project (cf. Fig. 1. 15.), consisting of 20 stringers, 4 frames and a cylindrical
skin.

Fig. 1. 15. Manufactured prototype of composite fuselage from BLAST project [42] (scale 1/3)

A closer look at these components shows the presence of numerous geometric peculiarities such
as radius (concave and convex), thickness and material variations on the stringer, and for the
frame, changes in thickness, 90° angles, but above all a complex junction zone containing
double curvatures.

This studied structure involves industrial difficulties to be faced during the manufacturing
process. It is composed of 20 plies, respectively the UD and woven plies of carbon/Epoxy noted

above. These raw materials are not dedicated to aeronautical parts but for ground transportation,
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and were chosen because they are easier to cure (at 120°C) and cheaper for similar mechanical
properties. The stringer is composed mainly of three types of area. These are respectively, a top
flange which is the thickest zone, a web and a bottom flange (cf. Fig. 1. 14.). The web contains
mainly woven plies since it is under shear stress. The top flange is composed of UD and woven

plies since it is under flexural loads in the aeronautical fuselage.

The section of the stringer has the form of an “omega” (cf. Fig. 1. 14. ), with different
thicknesses in each zone. The top flange’s theoretical thickness is 4.8 mm while it is 3 mm on
the web. This thickness variation causes ply drops in the corner between the two areas. The
bottom flange has a variable thickness, which starts with 3 mm and ends with 1.2 mm. The
thickness at the end of the bottom flange needs to be small due to the form of the skin (circular
shape) and to reduce stress concentration in that area. The fabricated sample of stringer is 380
mm long, which is the length that can give enough information about variabilities in a
representative sample (chosen according to the required sample sizes). The total width of the
stringer’s section is 100 mm. Both the thickness and the nature of the plies is differed from one
zone to another. The 5.1 mm radius is the smallest radius allowing the correct lay-up of the

structure.

Theoretical dimensions could not be totaly obtained in the real manufactured object due to the
cut-out process, ply preparation (they can be relatively thin) and type of ply (UD or woven).
UD plies can take their places in the mould much more easily contrary to woven ones that can
be dilated due to hand force. There exists the possibility to drop some inclusions (such as hair,
dust, a small part of protector ply, etc.) and during the polymerisation cycle [6], plies can be
shifted from their initial position due to applied pressure and residual stress. Ply thicknesses
can also be affected by residual stresses that can change the geometric form of the stringer after

curing.

The exploded view of the lay-up (cf. Fig. 1. 16. ) shows the estimated locations of plies in the
stringer section where ply #1 is the first in the lay-up to take the mould’s shape. Plies #2 and
#19 are different from other plies because they have edges in more than one area of the stringer.
As shown in fig.3, ply #2 for example has an edge in the top flange, in the web and the bottom
flange. Also ply #5, ply #7, ply #14 and ply #16 have edges in more than one area in the web

and the bottom flange.
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Ply 1 (mold side)

Fig. 1. 16. Exploded view of the stacking sequence inside the £2-shape stringer designed in the
BLAST ANR Astrid project [42] supported by the French Ministry of Defence

In this study, the goal is to compare between the theoretical designed Q-shape stringer and the
real one obtained after the manufacturing process, due to its effect on the structural behaviour
detailed previously [16].

Previous descriptions have shown how complicated the stringer’s structure is. Our ambition is
to extrapolate the information obtained on a family of stringers to be able to use them in other
composite structures with similar types of singularities. To achieve this goal, different steps are
required during and after the manufacturing process, which are described in the sections here

after.

Conclusion

The literature review demonstrates that there is no common methodology for the study of
variabilities in composite structures regardless of the evidence that composite materials present
a dispersion in their properties. According to this, a methodology is chosen to represent different
forms of variability in a specific composite part with complex geometry. This methodology is
explained in the next chapter with different observations to be done in order to achieve the work

objective.
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Chapter 2: Experimental setups and protocols for variabilities observation within

complex geometries: from raw material to final structure

1. Introduction of the general flowchart for variability observation

The objectives of this study are to focus on the real ply stop, fibre orientation and porosity rates
variability within composite structures that present a certain number of implementation
difficulties related to the geometry of the part (presence of singularities) and a manufacturing
method that generates variability. The difficulties that we wish to address in this study for a
manufactured stringer concern the presence of simple concave and convex curvatures of
reduced radii, irregular ply stops, thickness variations, a juxtaposition of plies in the context of
manual manufacturing without external assistance to the operator as concerns the precise

positioning the prepregs inside the mould.

The manufacturing process of the stringers is close to an industrial one, which leads to problems
and variabilities presented in an industrial project. The steps described in this section are mainly
the same for the manufacture of each stringer. As mentioned in Fig. 2.1, every single step of
manufacture is preceded by a type of observation and analysis. Ply dimensions must be
measured after the cut-out process to obtain variabilities related to the cut-out process described
in detail after this section. After ply cut, and during the lay-up process using a mould, ply edge
locations and fibre misalignment are observed using a process presented hereafter. This process
was adopted in earlier works too on regular composite structures in [1]. When the stringer is
ready, it must be cured according to the polymerisation cycle, but in this step, object observation
is delicate, only temperature evolution was chosen to be retained. Finally, after the
polymerization process, two different types of analysis are considered respectively,
microscopic and tomographic. The tomographic analysis is not a destructive process as
microscopic analysis, but in our case, it provides central information about porosity distribution
along the stringer. A 3D scan is realised after curing in order to compare the real stringer to the
designed one.
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Fig. 2. 1. Step flowchart of experimental work along with observations during and after

manufacturing process

2. Stringer manufacture steps before and after curing

This section explains the manufacture steps of the stringers (see Appendix 1 for experimental
protocol). In total, four stringers have been manufactured in order to obtain sufficient data to

be used in the statistic representation and analysis (presented in the third chapter).

2.1. Ply cut

The first step of manufacture is manual plies cut-out using simple tools. Prepreg rolls types are
from Hexcel raw materials, respectively, M79/34%/UD300/CHS for UD and
M79/42%/285T2/CHS for woven. The omega shaped stringer with 20 plies laid up in the two

different reinforcements.

Table 2.1 presents the number of plies, their orientation, their dimensions and the type of
prepreg associated with every ply. The reference frame was chosen in the middle of the top
flange, where the x-axis is horizontal (tangent to the first ply) and the y-axis is the perpendicular
in direction of the layup (cf. Fig. 2. 2.).
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Ply number

16

18

20

Ply orientation Ply width (mm) Type of prepreg
0 26+2x13 ubD
+45 119 woven
0 26 uD
+45 2x27 woven
0 26 uD
+45 2x42 woven
0 26 uD
+45 90 woven
0 26 uD
0 26 uD
+45 90 woven
0 26 uD
+45 2x42 woven
0 26 ub
+45 2x29 woven
0 26 uD
+45 116 woven
0 26+2x13 ubD
+45 124 woven

Table 2.1. Definition of plies in the stringer by ply number, ply orientation, prepreg width and
prepreg type
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R 615
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12 o
Bottom flange

Top flange

Fig. 2. 2. Studied stringer with coordinate system (x,y at a given z) and different areas names

Prepreg rolls are stored in a cold storage room at -18 °C temperature and placed at room
temperature for 12 to 24 hours before cut process. Ply cut out is a manual process (to create
variabilities required for study) using simple tools (ruler, felt pens, square etc.) (cf. Fig. 2. 3.).
Rulers and squares can exhibit alignment and measurement variability due to their frequent use
and to the operator. The prepreg is cut first by marking the edges using a permanent pen
following a ruler. The marking on the roll depends on the user. The dimensions are therefore
not exact. There is always measurement variability due to the operator and even to the section
of the pen used. Manual cut can cause variability and eventually small undulations (x 2 mm).

During this work, 4 different operators participated in the manufacturing process.

Fig. 2. 3. Drawing and cutting tools of plies with (a) UD ply (with blue protective films) and

(b) woven ply (with red protective films)

After the cut-out of all plies, the mould and the counter mould (cf. Fig. 2. 4.) used for lay-up
and curing must be covered with a demoulding wax (Cirex Si 041WB) that aids in the
structure’s removal after curing. The counter mould is a core (see Appendix 2) used during

compacting and curing to insure our structure’s thickness in the top flange and web areas.
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Fig. 2. 4. Mould (right) and counter mould (left) used for lay-up
2.2. Lay-up process presentation, related issues and ply category definition

After cut-out, plies are draped according to their positions relative to the mould as in Table 2.2.
Positions of plies depend on the operator from which the variability arises. The compaction is
done after the installation of the 1t ply (to take the shape of the mould) then after every 4 plies
for about 20 minutes with a vacuum level of approximately 700 mbar. The workpiece is placed
under a vacuum bag, separated from the drainage felt by a Teflon separator and a layer of tear
cloth. The core is required during compaction and polymerization to obtain the desired
thickness. The core also provides the shape of the stringer, which was fixed using two wedges

in the stringer’s ends (cf. Fig. 2. 5.).

According to Table 2.2, each type of ply has edge location in different stringer’s areas. There
are plies in the top flange, other in the web and others in the bottom flange. The empty cases in
the table means that the considered ply has no edge location in the selected area. The refence
frame for measurements is considered in the centre of the stringer cross-section, on the tope

flange.
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Theoretical edge locations in the coordinate system (mm)
Ply number Top flange Web Bottom flange
X Y X Y X Y
1 49.7 26.5
- 12.2 26 | 192 | 231 33.6 26.6
3 44.4 26.7
- 122 | 331
5 12.2 3.3 24.7 26.7
- 12.1 37
7 12.1 3.7 39.9 27
- 12 4.21
9 30.1 274
11.9 4.9
12 30.5 27.5
- 11.9 5.9
14 12.01 6.2 40.5 27
- 12 6.24
16 12.01 6.2 27.6 28.3
- 11.9 6.6
18 43.7 27
11.9 7.3 29.37 | 28.6 21.9 23.3
20 47.6 26.8

Table 2.2. Ply number and their edge locations in the left half section of the stringer
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Fig. 2. 5. Wedges used for core fixing

The gap between theoretical and real ply stop locations is different from one ply to another due
to its reinforcement nature (UD or woven) on one hand and, on the other hand to its position in
the mould. This leads to different manual lay-up difficulties. So according to the difficulty faced
during lay-up, plies are divided into different categories for further analysis. This categorising
helps in plies stop locations variability analysis. The choice of categories numeration is a priori
considering variability difficulties to be found. This classification is not absurd and depends on
the chosen criterion.

The 1% category contains woven plies that cover all the stringer’s width. Their edges are located
in the stringer’s bottom flange. This type of plies is difficult to shape in the mould, due to its
large width and complex geometry, where it should be placed inside the concave shape and in

the right location, leading to two concave shapes and two convex shapes for each ply.

The 2" category groups woven plies that cover the zone between the web and bottom flange.
The placement of this type of plies is delicate because it’s situated on a vertical wall with ply

junctions on one side and drop off plies on the other side.

The 3" category includes UD plies that are situated in the stringer’s bottom flange. Their stops
are designed to be placed in the corner between the bottom flange and the web. These plies have
a small width (around 13 mm) and are located in convex zones without visual reference for the
operator. So, this category of ply is the most delicate to install, leading to the approximate
location. Besides, this category contains a small number of plies (2 plies per side over 20) in

each stringer, so it is mandatory for statistical analysis to manufacture several parts. In this
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study, four stringers are manufactured thanks to the compromise between statistical needs (see

paragraph 3) and the manufacturing cost.

UD plies located in the top flange belong to the 4" category, where their stops are between the
top flange and the web. Plies in this category are adjacent to plies from the 2" category, so
either voids or intersections of two plies can be obtained. This type of category shows a delicate
positioning of this type of plies, especially in corners. Also, their location in the bottom of the
mould makes its lay-up even more difficult. Although the visual symmetry is provided for the

operator, the difficulty remains to install plies in the bottom of the mould.

VAVEVENE

Fig. 2. 6. Comparison between difficulties in four ply categories with categories #1, #2, #3

and #4 successively along with the schematic representation on the stringer cross-section
right half

Fig. 2. 6. resumes and compares the four chosen categories and shows the difficulty of the
installation of each ply type in the mould. Table 2.3 also resumes each ply category with its
specifications. The notations of subscript are respectively, b.flange for “bottom flange” and
t.flange for “top flange”. For the 4™ category, there is no need to use subscript notation because
only the right half section is observed. We have to note that the stringers areas notations were
chosen according to the stringer placement in the fuselage, which is upside down the lay-up

direction.
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Category Ply number Ply orientation Ply characteristics
1 1,3,9, 12,18, 20 45 ° cover all the stringer’s width

—— o
—_— ',

in the web and the bottom
2 5,7, 614,16 45°
flange
3 2p.flange; 19b.flange 0° in the bottom flange

2t.f|ange, 4, 6, 8, 10, .
4 0° in the top flange
13, 15, 17, 19 fiange

Table 2.3. Representation of ply categories with (in red) woven plies and (in green) UD plies

(according to Table 2.2)
2.3. Vacuum bag preparation

After lay-up, a vacuum bag is needed for polymerisation. It is composed from a peel ply for
easy peeling on the inner side only. The peel ply would also have the function of promoting the
adhesion of the stringer to the skin, if the stringer were to be used later in the manufacture of a
fuselage. We have therefore chosen to keep it here to be representative. The vacuum bag also
contains a perforated release film designed to allow outgassing during the curing, a bleeder
fabric designed to allow airflow throughout the vacuum bagging process as well as bleed out

an excess resin in a composite part and a not perforated release film used as a parting film. All
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these are covered by the breather fabric, that serves to provide an air path from the laminate to

the vacuum connector.

=\ Release film (not perforated)

| Bleeder fabric

Core
Stringer | | T «~_LI Release film (perforated)
) [ Peel ply
Mold -

) | Breather fabric
~ Vacuum bagging film

" Release agent

Fig. 2. 7. Scheme of the vacuum bag products (not to scale) used during curing step

Materials used to cover the omega-shape structure while polymerization are chosen according
to the stringer’s complex geometry (cf. Fig. 2. 7.). As shown, the breather fabric that is
responsible for the application of void on all the structure is completely covering the mould.
This can reduce pressure on the web and top flange compared to the bottom flange. After the
vacuum port and thermocouples’ installation (cf. Fig. 2. 8.), the structure is ready to be cured.

Fig. 2. 8. Thermocouples installation for temperature tracking during curing
2.4. Polymerisation cycle

The structure was prepared for the polymerization process (cf. Fig. 2. 9.) using an oven (H529-
XXLO08). The polymerization cycle begins with an ambient temperature that increases to 120

°C and remains constant for approximately 3 hours. Eventually, the temperature begins to drop
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until it returns to room temperature of around 20 °C. The climb speed of temperature is about
2°C/min and the void pressure is up to 700 mbar along the cycle (cf. Fig. 2. 10.).

Fig. 2. 9. Structure covered with vacuum bag and prepared for polymerisation in the oven
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Fig. 2. 10. Theoretical programmed polymerisation cycle

3. Experimental protocol for variability observation for each manufacturing step

Previous descriptions have shown how complicated the stringer’s structure is. Our ambition is
to extrapolate the information obtained on a family of stringers to be able to use them in other
composite structures with similar types of singularities. To achieve this goal, different
observation steps are required during and after the manufacturing process, which are described

in the section hereafter.
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Observations are performed during each manufacturing step, including raw material dimension
observation before lay-up, observation during lay-up process, and after polymerisation. This

section explains these steps with their relation to variability analysis for each type.
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3.1. Prepreg measurement after cutting

Raw material observation [2] is required to identify gaps between theoretical and real width of

all prepreg types in different positions.

Therefore, each cut prepreg is scanned using a simple office scanning machine (Toshiba
e.studio 3518a with a resolution up to 600 x 600 dpi). Ply widths are calculated in each location
along the prepreg. We chose to use this type of scan due to its simplicity and to reduce the
processing time. In addition, by keeping the prepreg flat, this simple technique avoids
deformations of the plies during measurement that would distort the results. The measurements
are relatively simple, and are done directly in image analysis software (Imagej). The accuracy
of the measurements provided was verified by applying the same procedure to objects of known
dimensions, and the accuracy was thus assessed as less than 2/10 of a mm.

Fig. 2. 11. Example of width measurements for ply#3 (in mm) in different locations along
prepreg with 119 mm as theoretical width

An example of a scan of 3™ ply of the first stringer (cf. Fig. 2. 11.) is presented using the

scanning machine.

Fig. 2. 12. Example of difference between theoretical (red rectangle) and real prepreg

dimensions after cut process for ply#4
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Some cut prepregs present waves along the length, as example ply 4 in Fig. 2.12 UD prepregs
are easier to cut, but in our case, they present small width. Fig. 2. 13. shows an example of UD
prepreg cut for the 2" ply. As we can see, for the small part (13 mm as width) it is difficult to

obtain the exact dimensions.

|

Fig. 2. 13. Example of difference between theoretical (red rectangle) and real prepreg

dimensions after cut stage for ply#2

3.2. Orthogonal optical shooting for ply stops and fibre waviness measurements during
lay-up

During the layup process, we have used a grid as a tool that helps by providing reference
directions, offering known distances at as many points as possible to be able to correct
distortions, etc. for observation of each (cf. Fig. 2. 14) installed on the mould. This process was
used in [3] for fibre orientation measurements. The purpose of the grid is to illustrate the
measurements linked to the location of a ply extremity and fibre orientation. It allows each ply
to be identified in relation to its theoretical location and theoretical orientation. The distance
between a vertical axis and another is 2 cm (vertical location of the plies and orientation). The
horizontal axis indicates the edge of ply location. The squares in the corners indicate the 45 °
and - 45 ° orientations. The grid (29.7 cm x 42 cm) is printed on an A3 sheet (29.7 cm x 42 cm).
Dimensions are checked after printing, and considered accurate to +- 0.2 mm. The grid was

plasticized to protect it.

To install the grid on the mould, we need to cut out first the central part (the stringer’s area),
then we tried to glue the grid using double-sided tape. The first attempts to glue the grid in one
part to the mould were difficult, misplaced and distorted, so we cut the grid into four pieces to
facilitate the operation (cf. Fig. 2. 15.). Gluing and cutting by hand can still present
measurement and positioning errors (= 0.5 mm) which cause the presence of variability in the

reference grid compared to the theoretical state.
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v

Fig. 2. 14. Grid used in the vertical (y-direction) photographic measurement

i 40 n

L]
N

Fig. 2. 16. Camera installation for photo shooting in a clean room with (a) roof camera with
focal axis set vertically, (b) computer and (c) lay-up mould
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Photos were taken for each ply during layup (example 3" ply in Fig. 2. 17.) to determine its
location. The variabilities in location and orientation, coming from the draping operation, are
measured by taking the grid as a reference. A minimum number of 4 photos should be taken
after the draping of each ply (draped ply with protectors, ply without protectors, focus on the
top flange and focus on the bottom flange). A device (cf. Fig. 2. 16.) is installed in the lay-up
room to allow taking pictures of the stringer during lay-up. This device is made of a camera
(Canon EOS 550D with a 100 mm lens and 18-megapixel APS-C CMOS sensor and about 0.1
mm uncertainty) which is fixed above the workspace at a distance of 1.9 m by taking care of
the light and photo-taking conditions. The camera is placed perpendicularly over the draping
table while making the necessary adjustments to obtain better photos. The vertical camera axis
is ensured by observing the capture of the photo. The mould must keep a well-defined location
in relation to the camera by using schemes placed on the mould support table. The camera is
associated with a computer to make the necessary adjustments remotely and to save the photos

as well as prevent the camera from moving while making necessary settings.

A\

Theoretical
edge location
for 3" ply

Fig. 2. 17. Measurement of edge ply location before polymerization using the reference grid

through the example of 3™ ply while draping before taking off top ply protector

3.3. 3D laser scan for the geometry of the real external shape after curing

After polymerisation, and before the structure cut, we’ve scanned the stringer using 3D

scanning laser device presented in Fig. 2. 18.

3D scanning measurement may be used to observe model deformation defined as a change in
the shape of an analysed structure. Measurement scanners are used to capture the object shape
and to generate a virtual model. The irregularities in 3D data scans make it necessary to use
additional software for data processing. A 3D scanner measurement produces a set of 3D points

with high density from the object surfaces in the form of a range image. The depth is recovered
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by triangulation. Next, the data are transformed into a geometrical virtual model of the object.
The data from 3D scanning have huge density and are independent from the complex shapes of
the measured structures. Simplification algorithms of 3D scanner data processing are now being

widely developed [5].

Fig. 2. 18. Scanning device used for 3D scan, the hand-held on the left and the scanner on the

right

After devise installation (cf. Fig. 2. 18.), the scanning area is chosen according to the structure’s
dimensions and to the scanning plan installation. We start with structure first scan using the
hand-held until obtaining the complete shape (cf. Fig. 2. 19.). This step can be repeated several
times in order to obtain coherent complete scan. The second step is the plan definition which
will define the flat base for the 3D model. The process uncertainty is evaluated at about 0.1

mm.

Fig. 2. 19. 3D scan in progress on the scanning plan
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The obtained model is presented in Fig. 2. 20.

Taking two sections of the stringer at the two ends (cf. Fig. 2.21), with distance between them

about 200 mm, we notice a difference in displacement between them. The structure has been

twisted after polymerization process. This torsion corresponds to a delta displacement in the

vertical direction y of Ya-Yg = 0.5 mm.

Section 2

Fig. 2. 20. Example of obtained 3D image for the 3" manufactured stringer using 3D scan

Fig. 2. 21. Extracted sections with difference measure for Y displacement
3.4. Ply stops location observation by cross-section microscopy

3.4.1. Specimen preparation and microscopy observation protocol

Faces used in
microscopic
observations

Fig. 2. 22. Cut-out locations for each of four stringer samples
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Microscopic observation is a destructive process where the sample must be cut into observation

specimens.

As we can see in Fig. 2. 17., the hand lay-up process is not perfect. Manual draping can create
different types of variabilities (orientation, ply edge positions. dimensions etc.). In this study as
mentioned, our choice was to analyse ply stop location variability. The observation cannot be
continuous over the stringer’s length, that’s why the structure is investigated discretely.
Therefore, samples were cut into 4 sections for microscopic observations (cf. Fig. 2. 22.). This
choice allows to observe the chosen stringer’s length (380 mm), and to extrapolate observations
into statistical representation as explained in the sections after. The choice was to observe the
right half side of each section related to each sample. This choice minimises the number of
observations since assuming that variabilities on the left side are identified through overlapping
variabilities found on the left side with variabilities due to the cut-out process. Some 48

observations have been done (i.e. 16 samples, cut into 3 areas per sample).

Fig. 2. 23. View of samples with resin coating in preparation for microscopic observation

For microscopic observations, samples are prepared following a specific protocol. First,
samples are cut according to the cutting plane using a diamond-sawing machine with a 3 mm
blade. Then after deburring them, they are coated in resin (KMU powder and Catalyst) (cf. Fig.
2. 23.). To obtain clear views, samples coated in resin are polished using a METASERV 2000

polishing machine. Since the samples are large (=10 cm), the hand polishing machine was used.

Polishing was done in 6 steps, with abrasive papers ranging from 200 to 1200 and then a switch
to diamond solutions from 3 um to 1 um, with polishing times adapted to the particularity of

the samples, of 5 minutes per step.
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Fig. 2. 24. The microscope Olympus BX41M-LED used for visualisation

The used microscope is an “Olympus BX41M-LED” with the type of camera “Olympus SC50
U-CMAD?3” (cf. Fig. 2. 24.). The attached software is “Stream Olympus” which is used for
scanning the sample sections. The software’s interface is limited by 50000 pixels both in
image’s length and width (about 23 mm) and since the dimensions of the sample section are
large, it is impossible to visualize all of it in one image. Therefore, the section is divided into 3
areas with a first area that contains the top flange, the second area that contains the web and the
last area containing the bottom flange. For each part, a local frame is created by the interface
of microscope software (cf. Fig. 2. 25.). So, before being able to correctly analyse the positions
of each ply stop in a global frame linked to the stringer, it will be necessary to reassemble the
images and introduce a frame adapted to our study. The first step is to create the bond between
different frames in the global reference frame. The analysis method used is associated with the

three steps.

We have to note that This work corresponds to the lockdown period, which prohibited access
to the laboratory and therefore to correlation software that could have done this work

automatically. It was therefore necessary to devise a solution based on simple digital tools.

3.4.2. Image assembly and ply stop identification in the global reference

The first step is to identify two special points (easy to identify, special location) in the common
area between each image to obtain a transfer relation of the point coordinates from one image
to another (in Fig. 2. 25., the couples of points Al, A2 and B1, B2 for example). These points
are chosen to be distant from each other in the overlap area to limit the impact of repositioning
errors. To check that the different images have the same scale, it was necessary to check the

equidistance between each couple of points in the initial pictures. The following stage is the
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determination of the angle of rotation between image #2 and image #1 and the angle of rotation
between image #3 and image #2, by comparing the direction of the vector pairs on each image.
This method allows to obtain rotation angles with observation uncertainty of about 1°. The
definition of the global reference’s directions is necessary to obtain specific locations. The
assumption followed here was to define the x-direction of the global reference frame tangent to
the upper skin of the top flange, located against the mould during manufacturing. After that,
pictures are rotated in the horizontal position of the global coordinate system and images #2
and #3 are translated to rebuild the entire stringer’s section. The translation uncertainty is about
0.1 mm due to errors made while taking information. The aim is to obtain the coordinates of all
the nodes in images #2 and #3 in the frame of image #1.

0,X
g

"t Local frame image 1
X,
"!I Local frame image 2

X,
‘.’l_l:ocal frame image 3

Fig. 2. 25. Definition of local coordinate system related to each image

The following stage is therefore to identify the origin of the global coordinate system. Since the
exact location of the global frame origin is not known in microscopic images, tangent lines to
the top flange and the web are drawn for each section. Then, after the calculation of equations
of two tangent lines (thanks to the local references of the graphic interface), the coordinates of
their point of intersection 1 is identified (which is also known in the theoretical model). The
distance between this point and the chosen origin is given by the theoretical geometry of the
mould, which is here 11.5 mm (the real mould geometry was verified). This allows determining

the coordinates of the origin O (cf. Fig. 2. 26.).
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I Intersection
point

| Image 1 zne

containing | mage 2: zone
coordinate containing ply
system extremities

Image 1/image 2 separation §

a

Fig. 2. 26. Definition of a global coordinate system (reference frame) with (a) intersection

point definition and (b) coordinate system origin definition

At this stage, the image of the complete stringer’s section can finally be reconstructed in a
global reference frame that can be used for measurements (cf. Fig. 2. 27).

The last step is to determine the coordinates of ply stop locations in the global frame. We have
chosen not to work on the reconstructed global image as shown in Fig. 2. 27, but to identify the
ply stops in the local frame of each image, and to transfer these coordinates to the global frame
using a transfer function from the previous steps. This choice is linked to the fact that the global
image is too heavy to be easily manipulated. The transfer function is the sum of a rotation and
a translation. The parameters come from steps #1 and #2 of the process (see Eq 2.1). P1 is the
initial position of the studied point in the local frame of the image. P2 is the location of the
same point in the global frame of the stringer. R and T are respectively, the rotational matrix
from step #1 and the translation vector from the second step of the process.

Fig. 2. 27. Transformation of stringer cross-section after translation of images
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The transformation equation is a rotation plus a translation as in Eq 2.1.

where R and T are respectively, the rotation matrix and the translation vector along with P, the

final position and P; the initial position.

After these steps, the location of ply edges in the global reference system are identified, to
compare them with theoretical ones.

The obtained images from the microscope for observed zones introduce the presence of
porosities, ply edges in different parts of the stringer’s sections, different ply thicknesses etc...
From these observations, several types of variability could be studied, but the point of interest
is ply edge locations. A comparison between a lay-up theoretical model and the images obtained
is realised based on coordinates of each ply location in a global reference system. For example,
Fig. 2. 28. and Fig. 2. 29. show the gap between theoretical ply edge locations and obtained
ones after polymerization, in the corner between the top flange and web (for sample Al) and

the bottom flange for the same sample.

ply 14 theoretical edg ply 14 real edge;‘

1mm

oply2oply10

ply 5 o ply 14 .
o ply 6 0 ply 16 ply 19 real edge

ply 7 o ply 19

Fig. 2. 28. Comparison between theoretical (designed) and real (after polymerization)
locations of ply edges of sample Al (see Fig. 2. 22.) in the corner of top flange and web using

microscopic analysis
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Fig. 2. 29. Comparison between theoretical (designed) and real (after polymerization)
locations of ply edges of sample Al (see Fig. 2. 22.) in the corner of the bottom flange and

web using microscopic analysis

The measurement of ply edge’s locations is not 100 % certain because ply edge is not a single

point, so there is always an uncertainty evaluated to 0.04 mm for each location (cf. Fig. 2. 30.).

ply 14 cdge.

g -ply 14 dgc |
w005 mm

Location of the
19% ply edge for
further analysis ‘ ply 19 edge

Fig. 2. 30. Uncertainty of measurements on edge locations of plies with 100 pixels ~ 0.04 mm

These different steps are applied on a finite number of stringers. The utility of these
measurements is to create mathematical approaches that will be used in numerical models, to

represent ply stop variability and eventually porosity rates.

Microscopic observations of the four stringers show the difference between each structure

despite the fact that they were manufactured using the same process. Here after an example of
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comparison in the coin between the top flange and the web for the ply#5 stop location (cf. Fig.
2.31)).

Stringer 1

Stringer 4

Fig. 2. 31. Comparison of the ply#5 stop location in the four manufactured stringers in the

corner between the web and the top flange areas in the same location (z)

The distance between the reference frame origin and the ply #5 stop location is for each stringer
respectively, 5.94 mm for the first stringer, 4.14 mm for the second stringer, 7.52 mm for the

third stringer and 6.1 mm for the fourth stringer.

For conclusion, although the same manufacturing process used for all the structures, there is
differences between each one. One of our goals is to identify this difference and predict it for

the future structures.
3.5. 3D X-ray tomography for porosity observation and global cross-section view

The following sections outline the analytic methods used to measure porosity concentration

using various techniques.

Destructive methods for the measurement of porosity are commonly conducted in the literature,

however, non-destructive techniques were employed to gain further confidence in
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measurements [4]. Also, for us, we wanted an assessment that was as local as possible.

Destructive methods such as dissolution only provide an average value in the volume studied.

X-ray Computed Tomography, or CT, scans were conducted on pre-impact specimens. The
analytic method for calculating porosity from CT scans is identical to the method outlined in
equation here after. The Defect Analysis feature was used to create a threshold corresponding
to voxel intensity. All voxels with an intensity below a threshold were summed and divided by

the total number of voxels (cf. Eq. 2.2):

Y Voxel

In situations where destructive testing is not suitable for porosity determination, the
experimenter must turn to non-destructive testing to determine porosity concentration. X-ray
computed tomography uses scattered X-rays to reconstruct a 3-dimensional model of the
sample. Commercial software is available to calculate and perform defect analysis by

thresholding voxels [4].

As quality verification, porosity concentration was measured using X-ray computed
tomography (CT) scanning. This allows the experimenter to estimate porosity without

damaging and compromising the integrity of the material.

The X-ray output from the X-ray source is not mono-energetic. Different materials and
thicknesses of those materials were used to filter out lower energy spectrums to get more useful
X-rays and reduce scatter (lower energy X-rays that are not strong enough to penetrate the part
can only add scatter). Frame averaging is to reduce static noise; any imperfections in the
scintillator or the detector pixels can be averaged out by using frame averaging [4]. The number
of projections (samples) is the number of images taken through the 360-degree rotation. The
more projections, the more accurate the 3-dimensional representation. This number is generally
governed by the Nyquist sampling criteria, but under sampling can be used in some cases where
detectability is more important than accuracy and time is critical. Keeping the number of

projections high reduces artifacts, producing a more realistic 3-dimensional image.

The Defect Analysis Toolbox works by setting a threshold that distinguishes voids from the
material. All voxels below the threshold intensity were summed and divided by the total

number of voxels [4].
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For our case, the parameters used to visualise the studied structure are presented here after. X-
Ray 3D tomography images were taken using a Micro-Tomography EasyTom 130 machine,
manufactured by RX Solutions, France. The sample was glued on a wooden support and placed
on the plate of tomography and fixed with hot glue (cf. Fig. 2. 32.). The source has a voxel size
of 18 um. Each specimen was scanned through a 360° rotation using a Varian PaxScan 1313DX
imager to capture layer-by-layer 2D X-ray images used for full-scale 3D reconstruction. RX
Solutions X-Act 2.0 software was used for 3D reconstruction and post-processing. Due to the
samples size and dimensions, the maximum possible and workable resolution was 38,2 um. The
source-object distances (sod) and source-detector distances (sdd) were 208.85 mm and 692.87
mm respectively, which determine the magnification (sdd/sod) at 3,31. The X-ray voltage and
current were set to 80 kV and 110 mA respectively. Every sample was scanned for 4 hours with
shift x2 and 6 pass acquisition (and about 2 hours for reconstruction and post-processing). The

obtained images are presented in the next section.

Fig. 2. 32. Sample’s section preparation for tomographic visualisation with (a) sample inside
tomography and (b) sample glued on wooden support

We present here after examples of obtained images in a cross section of the composite stringer.

The image shows mainly porosity distribution all over the section.
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Fig. 2. 33. Example of obtained image for the stringer’s cross section (treated with Imagej)

3.6. Curing phase with temperature monitoring and resin flow analysis

During polymerization cycle, although the possibility to observe the evolution of the structure
(deformation, variabilities ...) along temperature using Bragg grating optical fibres for

example, our choice was to save only the temperature evolution along cycle time.

Temperature tracking along the polymerisation cycle gave the graph represented in the Fig. 2.
34. As we can see, the cycle is slightly different from programmed cycle due to environment

conditions and the oven itself. The chosen maximum temperature was attended.
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Fig. 2. 34. Real obtained polymerisation cycle recorded by the thermocouples installed

between the structure and the oven

It is possible also to quantify the resin flow by measuring the mass of the vacuum bag products

before and after curing.

The cure process involves the application of heat and pressure. The applied heat increases the

temperature in the composite, resulting in changes in the molecular structure of the resin and,
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correspondingly, in resin viscosity. When the resin viscosity has become sufficiently low, a
pressure is applied to the system squeezing resin from the composite into the bleeder [6].

The excess of resin is absorbed mostly by the bleeder fabric. The resin flow rate has an effect
on the presence of porosities in the structure. This effect is not considered in this study.

Conclusion

The experimental protocol used and the variability observations for the analysis of ply stops,
porosity and fibre misalignment were presented in this chapter. The observations were carried
out throughout the manufacturing process, using a wide range of measurement techniques such
as optical, micrographic, tomographic observations, etc. after the structure’s polymerization, it
was scanned in 3D to identify its real geometry, which is different from the theoretical geometry
due to the presence of internal stresses. The fabricated part is then cut out for observation.
Microscopic and tomographic analyses were conducted to determine the variations of the
studied parameters, mainly the ply stop locations, the fibre misalignment and the size and the
extent of the porosities. All the observations done during every manufacturing step serve to
obtain a lot of data sets from raw material to complete structure analysis. In the lay-up phase
(see Appendix 3), a minimum number of 384 measure was taken using microscopic
observation. The observation and measurement time was up to 2 hours per cross-section.
Tomographic observation takes about 6 hours per sample. The objective for the next chapter is
how to illustrate these data sets by choosing an analysis strategy to put in place. Also, obtained
data are punctual with need for interpolation using mathematical tendencies related to each
variability type, plies stop locations, fibre misalignment and porosity rates.
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Chapter 3: Spatial evolution of variability within a complex geometry structure:

Mathematical laws and statistical trends

1. Introduction and problematic statement from experimental big data to

exploitation of variability into numerical modelling

Starting from different manufacture steps in the previous chapter, we can extrapolate many
forms of data related to each chosen type of variability to study, ply stop location, fibre
misalignment and porosity rates. The main source of these types of variability comes from
manufacturing process of the omega shaped stringer especially since it is chosen to be hand
made. In this third chapter, we are going to analyse the observations realised during the
manufacturing process to transform them into mathematical and statistical tendencies in order
to use them later to create our numerical modelling that takes into account different types of
variabilities. We are going to start with presenting analysis related to ply stop variability, then
those related to fibre orientation and finally porosity rate uncertainty. All the gathered data will
be transferred into mathematical tendencies, as polynomial for ply stop variability, based on a
model from literature for fibre misalignment and normal gaussian representation for void

distribution in the stringer’s section and length depending on the porosity shape.
2. Ply stops variability mathematical representation

Following from the manufacturing process presented earlier, various stringers were
manufactured. This is essential, due to a lack of information for statistical study if only one
single stringer was studied. For one stringer, considering ply stop variability analysis after
polymerisation process, statistical tendencies for each ply category are based on respectively, 6
measurements for the 1% category, 8 measurements for the 2" category, 4 measurements for
the 3 category and 10 measurements for the 4™ category, all per cross-section per stringer (see
previous chapter for categories definition). These measurements, especially those from the 2™
category, are not sufficient to have an adequate statistical representation for gaps. So, to enrich
statistical tendencies and to obtain more recurrent results related to a finite number of composite
structures, four stringers have been manufactured, which lead to obtaining from 16 sets of data
for the least populated category (3) up to 40 sets of data for the most populated one. This

choice is a compromise between statistical needs and manufacturing complexity.

In this section, the goal is to identify the difference between the theoretical positions of the end
of each ply and the real position obtained after the manufacturing process, due to its effect on

the structural behaviour detailed previously (cf. Fig. 3.1).
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— Theoretical ply location (ply 4)
= = = Real ply location (ply 4)
Theoretical ply edge location

*  Real ply edge location

Fig. 3. 1. Schematic representation of gap between theoretical and real ply stops in an Q-

shape stringer cross-section

For further analysis where for each stringer, where discrete measurements are taken, 4 essential
locations are considered according to Fig. 3. 2. This choice was due to its simplicity for
information saving and to statistical needs for variability representation. The origin is
considered in the structure’s centre and observation locations are symmetric according to this

origin.

Fig. 3. 2. Measurement locations along Q-shape stringer’s length z

2.1. Gaps between real and theoretical prepreg width generated by cut process

Cut defects are due to the imperfection of the equipment used (ruler set square not perfectly
straight), and to the prepreg nature itself (UD or woven), which causes millimetric deviations
from the theoretical width of each ply.
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Fig. 3. 3. The gap between theoretical and cut out width of different ply categories with (a) 1%
category woven and (b) 2" category UD

Fig. 3. 3. represents results obtained from Q-shape stringers to show differences of gaps
between each category of plies. The reference frame for measurements is considered in the
centre of the prepreg. According to these results, there is variability due to cut out in almost all
plies but with different levels (depending on reinforcement type, UD or woven, width and

cutting conditions).

Observations show waviness in the shape of the ply cut at long wavelengths (decimetre). To be
able to represent these undulations mathematically, as implemented in many works in the
literature [1] [2], the selected mathematical model is polynomial. Because the number of
measurement points along the stringer is 4, especially for micrographic observations, we have
oriented ourselves towards polynomials of degree 5, which allow both an interpolation of the
data between the 4 measurement points along the stringer, and extrapolation of the data for
longer stringers. Indeed, for long stringers, a repetition of the observed pattern over 380 mm is
foreseen, a length considered as representative of the observed variabilities. To guarantee the

derivability of the interpolated pattern, assumptions of horizontal tangents on the stringer’s
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extremities have been applied. This choice is a compromise between the accuracy of the

interpolation on a few mm preceding the extremities and the numerical displayed ambitions.

The mathematical model selected to represent the spatial evolution of the gaps C(z) along the

stringer compared to the expected nominal value is a polynomial represented in Eq.3.1:
C(z)=Y¥>,c;z5 Eq. 3.1

where (cq, ¢1, c2, €3, ¢, and cg) are identified from experimental analysis after cutting, co
being the average deviation at the centre (mm), c1 being the average inclination while ¢ (mm-
Y, ¢z (mm?), ca (mm3) and cs (mm™) define the inflection points. The coordinate z = 0
corresponds to the stringer geometric centre. The choice here was to divide plies into 2 different
categories for further analysis according to their nature, 1% category for woven plies and 2"
category for UD plies. Table 3.1 represents means and standard deviations for each polynomial

parameter after cut process for each ply category (Woven and UD).

Coefficient Cs Cs4 C3 C2 C1 Co
Standard

15t o 1.4E-11 1E-09 | 5.4E-07 | 3.9E-05 0.007 1.033
deviation

category
Mean -2.5E-12 | -3E-10 | 5.9E-08 | 1.3E-05 0.001 -0.197
Standard

ond o 1.0E-11 1E-09 | 3.5E-07 | 3.6E-05 0.004 0.58
deviation

category
Mean -8E-13 6E-10 | 2.7E-08 | -2.2E-05 | -5E-05 -0.58

Table 3.1. Standard deviation and mean for coefficients of polynomials after cut-out process

obtained from the 4-stringer analysis

Coefficients are identified through the 4 crossing points of polynomial representation plus two

tangent lines applied on the left and right sides of each gap.

For plies of the 1% category (Fig. 3. 3.), gaps are between -2 mm and 1 mm which is thus natural
since the cut is a manual process. But compared to the 2" category (between -1.6 and 3 mm),
gaps related to the 1% category are less important, due to the form of plies in each category (the
1% one corresponds to large woven plies and the 2" one to UD ones).

Taking co as variability indicator that represents the average deviation at the centre, observation
results show that woven plies represent less variation mean after cut-out step with co parameter

mean equal to -0.197 mm while being about 0.58 mm for UD plies, but standard deviation for
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woven prepregs is higher than the one associated to UD prepregs, which indicates larger

variation ranges. These results are due to prepreg specifications and dimensions.

2.2. Ply stops location obtained during lay-up process

Due to the manual process of draping, there is a gap between the real and theoretical location
of plies edges. This gap is different according to each category of ply. Here the obtained results
from stringer 1 are represented as an example (cf. Fig. 3. 4.). The reference frame for

measurements (z=0) is considered in the centre of the stringer length.

40 mm

2,57 mml

Fig. 3. 4. Example of gap measurement between real ply locations and theoretical locations

while draping using the reference grid at different locations (ply #3)

For this sample in this position, the gap of the real position of ply #3 (theoretical width 119
mm) compared to the theoretical one is due to several factors as the cutting gap of 29.5 % (0.5
mm), layup gap of 67.8 % (2.5 mm). The remaining gap (2.7 % ~ 0.07 mm) could be due to
slippage of the ply during curing or to measurement errors (see § 2.3). After measures were
made on different plies, the gap due to cutting was between 16 % and 30 % while the gap due
to lay up was between 20 % and 65 % depending on the nature of ply. The remaining gap,
which could be due to the curing process, is between 0 % and 15 % and is neglected compared

to other sources.

2.3. Ply stops location after polymerization phase

Obtained graphs after observation are represented in Fig. 3. 5. for each category.
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Fig. 3. 5. Gap between theoretical ply stop locations and after polymerization ply stop
locations of different categories using microscopic observations respectively with (a) 1°
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Following the same approach used after the cut-out process, 5" order polynomial trends were

identified as in Eq. 3.2, but this time, we have to consider 4 types of ply categories.
A(2) =Y ,a;z0 Eq. 3.2

where (aq, a;, a,, as, a,,as) are identified from experimental results after polymerisation,
ao being the average deviation at the centre (mm), a: being the average inclination while az

(mm1), a3 (mm?), as (mm3) and as (mm) define the inflection points.

After obtaining results from four manufactured Q-shape stringers, polynomial parameters were
assembled into one set of toolbox data used to feed numerical modelling, via the means and

standard deviations related to the four parts (Table 3.2).

Coefficient as a4 as a a1 ao
Standard

. 6E-12 | 2E-09 | 5E-07 8E-05 0.0158 0.62
Category 1 deviation

Mean 4E-12 8E-09 1E-07 -7E-05 -0.009 2.7
Standard

. 4E-11 | 2E-09 | 1E-06 | 9.2E-05 | 0.017 1.6
Category 2 deviation

Mean 2E-11 1E-09 | -9E-07 | -6.3E-05 0.007 1.69
Standard

. 1E-10 1E-09 | 3E-06 6E-05 0.046 2.92
Category 3 deviation

Mean 7E-11 4E-09 | -2E-06 | -0.0001 0.028 -0.48
Standard

. 2E-11 2E-09 | 7E-07 | 8.9E-05 0.008 0.8
Category 4 deviation

Mean 1E-11 1E-09 | -3E-07 | -5.4E-05 0.003 0.38

Table 3.2. Standard deviations and means for polynomial coefficients after polymerization

process obtained from 4 ©Q-shape stringers

If we consider ao as a variability indicator (average deviation’s mean), the maximum obtained
value from the stringers’ observation is about 2.7 mm corresponding to the 1 category of ply.
Prepregs belonging to this category are difficult to lay-up since they cover all the stringer’s
width passing by 4 corners (2 concave and 2 convex) and by the mould bottom. These

specifications conduct to obtain the maximum variability in the 4 types of categories. The 4™
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category has the minimum value of ao with 0.38 since the operator has a visual aid while lay-

up (symmetry as explained in the previous chapter).
We have to note the following remark concerning the section symmetry in paragraph 82.4.

2.4. Reconstruction of left side of cross section from right side variability measurement
and cut-out width

The analysis above was only performed on the right half of the stringer’s section, but the real
symmetry between the two sides is not perfect. The mould is considered geometrically perfect.
In the case of the perfect width of plies, the gap on the right side should be equal to the gap on
the left side of the stringer’s section because if a ply slides outwards to the right, it slides inwards
to the left by the same amount. However, here, since we have an imperfection in the cut-out
process of plies, the gap between the right side and left side plies edge is different (cf. Fig. 3.
6.). It is the sum of the gap due to the cut-out process and the gap in the polymerisation process.
The gap between the left and right sides of a stringer is not the same, due to the cut gap in the
first place and occasionally to the expansion of some plies while lay-up or polymerisation

process (cf. Fig. 3. 7.).

Theoretical ply location (ply 4) 1 X

Real ply location (ply 4) 7~ l - \
Theoretical ply edge location 4'. YE N\ Gap
+  Real ply edge location Left side | Right side
i

Fig. 3. 6. Schematic representation of symmetry gap on the right and left side of an 2-shape

stringer cross-section
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Fig. 3. 7. Gap of ply edge positions after polymerisation on the left and right side in an Q-

shape stringer cross-section for different plies, example of the stringer #1
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In conclusion, the gap between theoretical modelled ply locations and real ones can be
important for some plies. The global gap obtained after the manufacturing process is divided
into three different sources respectively, prepreg cut-out process which represents about 30 %
of the gap, lay-up process with 45 % of gap and polymerisation process with 15 % of gap. Note
that these percentages depend on the type of plies, their location and even environmental

conditions while manufacturing.
3. Fibre misalignment mathematical representation

For the past years, a large volume of analytical studies has been carried out by many researchers
to analyse the effect of waviness in the response of composite structures. Analytical procedures
were developed to capture local and overall mechanical behaviour of the laminate containing
fibre waviness, evaluating its effect on key structural properties such as stiffness and strength.
The development of those methods aims to present easy-to-implement solutions for the
waviness problem, with high computational efficiency and sufficient accuracy [3].

Variations in fibre orientation have an important impact on the composite structure performance
[4]. These variations are the result of several factors present during the different stages of the
structure manufacturing, resulting in global and local misalignments. A global misalignment
happens when the mean orientation of the ply or fibre bundles differs from the intended ply
orientation. Local misalignments are produced by the periodic undulations present in the
prepregs and dry preforms [2], as well as the preform manipulation to give shape to the
composite structure [5].

In the literature, fibre misalignment is presented using many forms depending on several factors

resumed in the table here after [6].

Number

Phase

Geometric
Position

4 a-nd . Through-Thickness Characteristics Vishility . . lfosnhon Phase Level of (Flat or
Example of  Distribution (Embedded, Dimensional (Centered, v - e
- nt Wave Form of the Wave st . Characteristics Influence Slightly
Fiber (Single, i Hump, Characteristics Outer Plies, = 2 %
S 5 : (Uniform vs. Form g (Microscopic, (Material, Curved
Waviness Stochastic Indention, (2D, 3D) Whole . <
Graded) (Iso-Phase, o & Macroscopic)  Structure) Areas,
or In-Phase Wave) Laminate)
aliiy Random-Phase) Complex
Distributed) .
Geometries)
—— Whole
Single Uniform Iso-phase Wave 2D ot Microscopic Structural Flat
o — laminate
e o g & . g Whole e "
e Single Graded Iso-phase Embedded 2D Microscopic Material Flat
=% - laminate
.. } 8 Stochastic Whole
Widaa vt Graded Random-phase Embedded 3D % Microscopic Material T-joint
distributed laminate
~= Whole
—_— Single Graded Iso-phase Hump 2D o Macroscopic Material Flat

laminate

Table 3.3. Examples for waviness classification [6]
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As explained, in this work, we measured fibre misalignment using the vertical device installed

during lay-up process in order to generate a mathematical representation related to the

structure’s complex geometry. We chose to observe the total misalignment obtained after cut

and lay-up process. Obtained images can show us the gap between the real and theoretical fibre

orientation for each draped ply. Here after (Fig. 3. 8.) an example of angle measurement in one

location for ply #3. The angle measurement was realised using Imagej software with uncertainty

evaluated at about 0.1°.

Fig. 3. 8. Example of angle measurement for ply#3 using image obtained from vertical device

during lay-up

The reference angle used for gap measure is based on the preinstalled grid (45°/-45° lines for

woven prepregs and 0° lines for UD prepregs).

Obtained results are presented here after starting with woven plies in the top and bottom flange,

then UD plies in the locations (z=-135, -45, 45, 135 mm) along the structure length. It was

technically difficult to obtain clear measures for the web area using the orthogonal photo taking.

Ply#1 Ply#3 Ply#7 | Ply#9 | Ply#14 | Ply#18 | Ply#20

Location | bottom | top | bottom | top | bottom | top top bottom | bottom
(mm) flange | flange | flange | flange | flange | flange | flange | flange | flange
-135 -3.33 0.64 0.78 -0.96 0.56 -2.49 0.43 -0.71 2.63
-45 -0.62 -0.6 -0.73 0.32 -1.03 -1.5 1.62 0.45 1.58
45 -194 | -1.43 | -1.49 2.57 35 -3.7 -1.79 1.88 2.77
135 -239 | -292 | -3.35 2.66 4.1 -2.78 0.76 2.6 0.73

Table 3.4. Example of angle gap measurements for different woven plies in different locations

(mean gap for 4 manufactured stringers) in z direction
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Starting from measurements from Table 3.4, we can obtain a range of variation of fibre

orientation. The mean of different gaps is then calculated to be used in the mathematical

representation. The chosen model is based on work from the literature [1] for UD and woven

plies.

Misalignment
gap
m4-6
m2-4
0-2
-2-0

-50

-10

10

Distance along stringer width (mm)

45

-45

25

o
f==]

135

-135

Distance along stringer length (mm)

Fig. 3. 9. Example of map for misalignment gap for ply#1 along the structure (mean gap for 4

manufactured Q-shape stringers)

Fig. 3. 9. presents a map for misalignment gaps for ply#1 chosen as examples in the stringer’s

length and width. As shown, gaps can be either positive or negative (the angle may be >45° or

<45°) depending on prepreg z location in the mould and on the operator himself. Ply#1 is a

woven ply passing by all the corners and the bottom in the mould, which make it more sensible

to fibre misalignment while lay-up. 3 peaks of misalignment gap are observed in the figure

(between 4° and 6°).

Results for UD plies are presented in the Table 3.5. UD plies are localised in the structures top

flange area.
Location (mm) | Ply#11 | Ply#13 | Ply#15 | Ply#17 | Ply#19
-135 2,27 0,56 0,27 0,33 1,12
-45 2,26 -0,29 0,68 0,32 1,09
45 1,14 -0,29 0,3 0 0,87
135 0,24 0,15 0,14 0,32 0,17

Table 3.5. Example of angle gap measurements in z direction for different UD plies in the top

flange area (mean gap for 4 manufactured ©2-shape stringers)
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Fig. 3. 10. Example of map for misalignment gap for ply#11 in the top flange (mean gap for 4

manufactured Q-shape stringers)

As noticed in the Fig. 3. 10., the fibre angle gap of ply#11 is less important than the gap of
woven prepregs (between 0° and 2.5° mostly for this ply). This difference is due to the difficulty
of woven plies installation in the mould and to the nature of woven plies, which are more

deformable. Woven prepregs are delicate and easily triable especially after protectors’ removal.

The aim here is to represent the fibre misalignment variability in the form of a geometric

mathematical tendency in order to use it later for numerical modelling.

Based on the literature [7], to model the in-ply fibre orientations observing a continuity in the
orientation values, the local variation of the misalignment can be described as a sum of i*"
pseudo-Gaussian surfaces (Eq. 3.3) having a central point with coordinates X; and Y, the length
and the width of each perturbation is described by the parameters o; and i, homologues to the
standard deviation in a normal distribution. The amplitude of this perturbation is controlled by
the parameter Bi (cf. Fig. 3. 11.). This set of equations allows the modelling of a continuous

change in the fibre orientation properties [7].
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Fig. 3. 11. Schematic description by a pseudo-Gaussian surface (on right) of a localized zone

of fibre orientation perturbation (on left) [8]

n —X;\2 =¥, 5
Opert(x,¥) = ZBi e_<<x“i ) +<yﬁi ) >
- Eg. 3.3

In a surface of 380 mm x100 mm (stringer’s surface), the number of present bosses is about 3
unlike the work in the literature that uses much larger composite structure. According to this,

the parameter n in the equation (Eq. 3.3) is equal to 3.

The values of Bi are obtained by the identification algorithm, depending on the mean of
variation related to each ply type (UD or Woven).

The continuous distribution of B; has a mean of 0.071° and a standard deviation of 1.47° for
woven prepregs and for UD prepregs 0.045 as mean and 0.35 as standard deviation. A normal

distribution is used to draw the amplitude values.

The amplitudes ai and Bi are generated independently, and are drawn from a uniform
distribution with its limits ranging from 30 to 210 mm based on the literature work. The data

are chosen from 20 different plies [8].

This distribution gives a continuous variation depending on geometric location of fibre

orientation in the structure’s surface.
4. Porosity distribution mathematical representation

Voids distribution in the structure is based essentially on data gathered from tomographic

observations. Microscopic observation can show us voids in the cross-section, but measure
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process is not able to obtain a global view. Tomography was able to provide a continuous
section view over a representative length up to 100 mm. This observed length is able to give us
valuable information about porosities shapes, location and size.

After reconstruction of images using the RX Solutions X-Act 2.0 software, they are transferred

to Imagej to be cleared. The scale is settled also using Image;j.

Tomographic observation can provide a complete view of stringer’s section plies. The obtained
images give a clear view of plies, inter-plies, and porosities in each position along the stringer.
The obtained images can’t provide enough information related to the calculation of ply stop
locations with the current adjustments (a different set of adjustments needs to be done on
stringer area to obtain small voxel size to be able to identify ply stops) (cf. Fig. 3. 12.) but they

provide the ability to measure porosities, their size, location, and fraction (cf. Fig. 3. 13.).

23 mm
X Ply 4 edge
My ke / Ply 17 edge

g e B

~

\

Fig. 3. 12. Tomographic observation of a stringer’s section for the first manufactured Q-

shape stringer

Obtained images for the 1% manufactured stringer (cf. Fig. 3. 12.) for example show the
presence of voids all over the section but especially in the top flange area. By focusing on the
voids shape and length, we can determine stop locations for some plies (here for example ply#4
and ply#7). We chose to focus on porosity analysis using tomographic obtained images (cf. Fig.

3. 13. for example), where they are exploited for example to determine porosity locations.
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Fig. 3. 13. Tomographic observation of the complete stringer’s section for the 2"

manufactured ©2-shape stringer

Fig. 3. 12. and Fig. 3. 13. correspond respectively to the first and the second manufactured
stringers. Very different macroscopic defects are found between the two observed stringers.
This difference is obvious especially in the top flange area, where for the first manufactured
stringer, there is a larger porosity rate than the second stringer, which has an effect even on the
area’s thickness. These images confirm our prediction that even using the same manufacturing

process under the same conditions, composite structures are different.

The assembly of different images obtained from tomography observation leads to obtain the
shape and the length of voids inside the structure using Scan 3D software. Fig. 3. 14. shows
porosities in a stringer’s length equal to 10 cm. We can observe that in the webs, there are
porosities that seem to be strongly linked to the crossing zones of the woven plies. In the top
flange area, which has many UD plies at 0°, there are linear porosities, in the form of needles,

in the direction of the length of the stringer.

IV

Fig. 3. 14. 3D representation of voids inside an Q-shape stringer’s length equal to 10 cm
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From the images obtained from tomography, we can measure the porosity rate in specific areas,
for example, the following position of a transverse cut of the top flange area of the first
manufactured stringer (cf. Fig. 3. 15.). We can see the presence of voids in different shapes

(large porosities in some areas, and small porosities in others).

Fig. 3. 15. Zoom for tomographic image for the 2-shape stringer’s top flange

On a distance of 21 mm on the top flange, it is noticed, according to the curve below (Fig. 3.
16.), that the middle of the straight section of the beam contains the highest percentage of

porosities.

10

Porosity percentage

X (mm)

Fig. 3. 16. Curve of porosity rate calculation (top) and example of porosity in the top flange
area (bottom)

This methodology of measurement is applied on the four manufactured stringers in the different
areas (bottom flanges, webs and top flange). The mean calculations for all the stringers are used
for results to be used for mathematical representation.
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Measurement method consists in transferring obtained tomographic results to Imagej to obtain
black and white images (black indicates porosity). The percentage of porosity is calculated
using 2 different methods respectively Python code or Image;.

The 1% method is Python code that consists in determining the percentage of dark areas in the
total surface compared to an envelope, the envelope is determined from the predefined function
"np.percentile” which allows determining the points (approximate) of the difference area
between the part and the external surface from the percentage of detection of the external
surface (parameter to be found according to the case of study). Using this envelope, the program
can define the areas of porosity (the dark areas) and give us at the end the approximate
percentage per image. The predefined "skimage.morphology" module of python is the most
used for image analysis. The "convex_hull_image™ function allows to determine the convex
hull image of a binary image. This method is automatic so its advantage is to reduce analysis
time, but it is not applicable for all image shapes since the edge’s definition is limited. For our

study, this method is used to determine porosity rates per different structure’s area.

The 2" method consists in importing the series of images in Imagej. This allows first to settle
the contrast (dark areas are porosities) then, determine the outer edges of the part in each image
using the find edges process. From the obtained results, we can determine the percentage of
porosities in each sequence. This method is simple but it needs manual processing that takes

time. In our work, voids rate in the total stringer’s section is analysed using this process.

Taking a stringer length about 36 mm for example, obtained results for void percentage are

represented in the Table 3.6, an image every 2 mm has been taken for the measure.

Using these data, composite material mechanical characteristics are recalculated with the

probabilistic normal law applied to the void’s volume fraction.
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Z location from origin (mm) Reference image Void percentage
10 Slice 00033 0,035
12 Slice 00083 0,037
14 Slice 00133 0,041
16 Slice 00183 0,047
18 Slice 00233 0,048
20 Slice 00283 0,053
22 Slice 00333 0,054
24 Slice 00383 0,056
26 Slice 00433 0,058
28 Slice 00483 0,054
30 Slice 00533 0,052
32 Slice 00583 0,054
34 Slice 00633 0,049
36 Slice 00683 0,050
38 Slice 00733 0,054
40 Slice 00783 0,071
42 Slice 00833 0,065
44 Slice 00883 0,066
Mean 0,05244444
Standard deviation 0,00933193

Table 3.6. Voids rates in different sections of a stringer’s length in the top flange area

Fig. 3. 17. Porosity shapes representation by tomographic images reconstruction in the

corner between web and top flange with (in red ellipse) long shaped porosity and (in yellow

circles) circular shaped porosity
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In addition to that, voids inside the structure have different shapes (cf. Fig. 3. 17. obtained by
tomographic images reconstruction). We can see long porosities that can cover all the stringer’s
length. The location of this type is generally next to ply stops. We can observe also circular
shaped voids all over the structure’s section. These porosities appear to be arbitrarily distributed

in the section.

The presented forms of voids distributed in the structure can be classified using several
methods. For our case, the choice is to adopt two forms of mathematical representation,
mathematical statistical representation for porosity rate in a chosen area, and void locations in
each area. This choice is due to the variety of observed results where porosity rate is different
from one area to another with different shapes that are localised all aver the structure. this
classification is not complicate to be introduced later in numerical modelling by affecting the
material properties. 3D porosities and their effect on the structure’s thickness is not taken into

account. This limits the results to be obtained.

First of all, we need to introduce different analytical methods for porosity calculation to be used
in our analysis. Voids in a structure impact essentially the material properties which are

determined in a composite material using mixture rules.

4.1. Analytical approach for composite mechanical properties without porosity

consideration

Several methods exist in the literature for void measurements. One of the simplest methods is

to use composite mixture laws that give the mechanical properties of a composite material.

Starting with presenting mixture laws in the case of a composite material without porosity rates

consideration, as follows,

The elastic constants of fibres E;; (cf. Eqg. 3.4) and 9;, (cf. Eq. 3.5) are evaluated according to

the rule of mixtures:
Eyy = ViEs + (1 - Vp)Ey, Eq. 3.4
1912 - 1913 == Vfﬁflz + Vm19m Eq 35

E;, and 9,, are respectively the longitudinal elastic modulus and the shear Poisson ratio. Ef;
and E,, are the elastic modulus respectively of fibre and matrix. V; and V;, are the volume

fractions of fibre and matrix respectively.
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the transverse shear modulus (cf. Eq. 3.6) can be obtained by the following empirical formula

(the most affected by porosity taking into account):

__ B
T 2(149,3)

Gos Eq. 3.6

4.2. Analytical approach for composite mechanical properties with porosity consideration

According to the theoretical study by MacKenzie in [9], the material stiffness of a solid which

containing spherical holes can be approximately expressed as follows in Eq. 3.7:
E,=E;(1-1V,)? Eq. 3.7

where the subscripts s and v represent the fully dense material and the porous material,

respectively

To generalise, the formula used in the literature studying the elastic modulus of fibre composite

containing voids is as follows in Eq. 3.8:
Ei—v - El(l - Vv)Z Eq 38

where E; represents the elastic constants under non-void conditions, and V, represents the void
contents. Notably, the elastic constants are the constants of the composite, instead of that of a

single fibre or matrix material.

Nevertheless, the fibre component in polymer matrix composite mainly provides strength and
stiffness, and the matrix component mainly supports and protects the fibre component. The
existence of voids only weakens the properties of the matrix and exerts no effect on the
performance of the fibre component. Hence, the properties of the matrix component should
only be reduced (cf. Eqg. 3.9):

Em— = En(l - Vm—v)z Eg. 3.9

where E,,,_,, represents the elastic moduli of the matrix after reduction. V,,_,, denotes the void

content in the matrix component and can be expressed as follows in Eq. 3.10:

£
Vm

Eqg. 3.10

Vv =

where V,, and V;,, are the void and matrix contents of the fibre material, respectively.

We assumed that the Poisson’s ratio of the matrix is not affected by the void, and 9,3 will

remain stable according to the above equations.
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This empirical calculation method is used in the literature and it’s available for most composite
structures with voids integration [9]. Nevertheless, there are several other methods, for example,
the one used by authors in [8]. This method consists in calculating void volume fraction
depending on the total thickness of the composite structure in a specific area. For the top flange
area for example, Fig. 3. 18. represents the evolution of porosity rate in the top flange area
depending on the thickness of the total area (16 plies in the top flange). The red dot in the curve
represents the perfect case, where the total thickness is 4.8 mm and there is no porosity. The
trend of the least square fit indicates that effectively the porosity varies with the plate thickness.
The equation here after (cf. Eq. 3.11) represents the evolution of voids volume fraction in
function of area thickness specified for the top flange:

_{0 if tareq < 4.8mm
Vp = { 4.75 tgreq — 23.17 if to > 48mm Eq. 3.11
where V, is the volume fraction of the porosity (%) and ;4. is the area thickness.

The coefficients 4.75 and -23.17 are obtained from a linear regression from the experimental
data (cf. Fig. 3. 18.).
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Fig. 3. 18. Curve of porosity volume fraction depending on the structure thickness in the top

flange area

The same type of representation is applied on the web and the bottom flange areas.

We need now to determine porosity rate mathematical statistical representation in order to be
able to calculate material properties. As mentioned earlier, porosities are not represented only

by their rate but also by their location in a section in relation with its shape.
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Voids rates are presented with a simple normal distribution based on the mean and standard
deviation (Eqg. 3.12) related to each area in different cross sections of the stringer. For this work,
we chose to represent rates every 2 mm in a length of a stringer of 10 cm:

fx) = . e_%(%>2 Eg. 3.12

oV21

where p is the mean and o is the standard deviation and x represents the location in the cross-

section.

For its locations related to shapes, long porosities for example, effect the material properties in
the same z location along the stringer’s length. That’s why it is necessary to identify (even
approbatively) the number of long shaped voids, their location in the section, length and
volume. For example, in Fig. 3. 19, we took an area between the web and the top flange for the
2" manufactured stringer. There is a long void with volume about 0.152 mm?. This form of
void exists in several locations in the stringer. Their locations are represented also by a normal
law related to each area where the mean is the mean location of long porosities in each area
calculated for the four manufactured stringers. For other forms of porosity, the mean value is
integrated per considered area in the stringer’s section. In the bottom flange for example, the
mean value is about 0.2 % while it is less important in the web area with only 0.12 %, where

voids number is the smallest compared to other areas.

A )

Fig. 3. 19. Porosities representation (bottom) in the corner between the web and the top

flange (the red circle in the top)

88



Chapter 3

Conclusion

The obtained data from observations are transformed into mathematical representations related
to each type of variability. Ply stop locations are represented by 5" degree polynomials
sufficient to describe the ply ends undulations observed over a stringer length of about 380 mm.
The 6 parameters describing these polynomials were analysed from a statistical point of view,
by separating the measurements into four families of plies, determined according to
characteristics such as strand orientation or position with respect to a geometrical feature. The
choice to manufacture 4 stringers was a compromise between statistical needs and
manufacturing complexity. A total number of 64 random draws has been realised for
polynomial parameters for 4 stringers. Fibre waviness was analysed using a continuous
mathematical representation based on literature work represented by a finite sum of deformed
zones, using a Gaussian surface centred on the centre of the perturbations. The amplitudes of
the perturbations are statistically studied with an adaptation to the characteristics of the structure
studied from the observations made. A total number of 10 random draws for 5 trend parameters
per material. The porosity rates were evaluated by normal laws in terms of position and extent
in the horizontal plane and represented by statistical laws conducted according to their location

in the cross-section of the studied stringer based on tomographic observations.

All the gathered sets of data from the four manufactured stringers related to ply stop locations,
fibre misalignment or porosity rates variabilities are to be assembled in global numerical
modelling taking into account the studied forms of variability. The challenge is to be able to
insert them in a simple shell model and to predict ranges of variability for further manufactured

structures.
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Chapter 4: Numerical analysis of variability and integration of different studied

variability forms in the numerical modelling

1. Introduction to insertion of variabilities in numerical modelling

In this chapter, our goal is to create a family of numerical models representing virtual but
realistic composite structures with similar complex geometry zones which include variabilities
within them. The term realistic in our case means the ability to take into account the influence
of manufacturing steps from raw material to the final part considering a sufficient amount of
information. The model proposes a continuous evolution of certain properties from one finite
element to the next. The created models are a numerical twin of real observed parts as a first
step, and as a second step extrapolate the information obtained by observation of a finite number
of real structures to provide information for an infinite number of future composite structures
and over lengths greater than those observed. The objective as mentioned earlier (see
introduction) is to propose variation ranges of the properties and behaviour of the structures
based on the studied variability. The ambition is to refine the knockdown factors and to reduce
a certain amplitude of manufacturing variability. A model for the stringer has been created using
Python/Abaqus. Python code (see appendix 5) was totally generated by our team allowing to
integrate the chosen mathematical representations in the numerical modelling. It was fed with
observation results, to obtain a toolbox able to estimate variability effects on the final behaviour
of the Q-shape stringer and predict variability distribution.

2. Model presentation (objectives and methodology)

2.1. Mesh creation adapted to the chosen model and to the objectives

The objective of the model consists of translating the variabilities found experimentally into a
numerical model of the Q-shape stringer to see the effects of these variabilities on its behaviour.
The chosen model is a composite shell model considering the hypothesis that the mould

geometry is perfect.

Shell model choice is based on two main objectives, in terms of ability to include the
variabilities in industrial type models, and to launch batches of several hundreds of calculations

of all different objects, fed by realistic variabilities, to evaluate the sensitivity.

Shell chosen elements are S4R type with 4-node general-purpose shell, reduced integration with
hourglass control, finite membrane strains. This choice is due to its simplicity and efficient
representation of the studied structure. This type of modelling can represent studied variabilities

and provide desired results.
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The Q-shape structure was created by programming each node spatial coordinates, with the

possibility to refine the mesh depending on the zone of interest. The objective here is to be able

to control the numbering of each node, then later, of each element, to be able to control the

mechanical properties associated with each finite element independently. 9 zones were created

to describe the Q-shape stringer (cf. Fig. 4. 1.) as explained in Table 4. 1. Experimental

observations show that ply stops are not necessarily in the theoretical zones mentioned in Table

4. 1.. This strategy allows mastering mechanical properties elementary mesh by elementary

mesh.

10101

10201

 Zone

10501

10601
=.10701

100101

Curvilinear
position
number

(X,Y)
110901

Depth Z Fone

number

101001

Fig. 4. 1. Numerical ©2-shape stringer cross-section with related zone numbers and symbol of

each node

Zone number

Zone location

Zone characteristics

Ply number with theoretical stop location

Standard zone with

land 9 Bottom flange 1,3,912, 18, 20,5,7,14, 16
ply stops
between convex radius with
2and 8 bottom flange IV Stons 2b flange, 19b.flange
and web ply stop
standard with ply
3and 7 Web stops in the upper 5,7,14,16
part
Between top . :
4 and 6 flange and Concave radius with 2tflange, 4, 6, 8, 10, 13, 15, 17, 19 flange
ply stops
web
5 Top flange Standard -

Table 4. 1. Zone definitions with specifications and theoretical ply stops included in each

cross-section area
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For this work, the elementary element is chosen to be a millimetre in the representation of
results, because the variability of the positions of the ply stops are on a millimetre scale (cf. Fig.
4. 2.). In total, 57000 elementary elements are chosen.

Fig. 4. 2. Mesh finesses in the 2-shape stringer’s numerical model

2.1.1. Material properties used by default in the numerical modelling without variability
effects

Table 4. 2. presents material properties used by default in numerical modelling. sit signifies
Tensile stress limit in fibre direction Xt. s1c is the Compressive stress limit in fibre direction
Xc. s2t represents the Tensile stress limit in the transverse direction Yt. s2c is the Compressive
stress limit in transverse direction Yc and s12 defines the Shear strength in the X-Y plane. These
data sets are takin from the constructor sheets. As defined in the previous chapter, these nominal

properties will be modified for each element by taking into account porosity rates.

Failure parameters are respectively, Tsai coef. cross prod. which indicates cross-product term
coefficient (-1<f<1) and used only for Tsai theory and ignored if sigma bia. x is given
(default=0) and biaxial stress limit coef. Tsai that defines Biaxial stress limit sigma bia. x. This
value is used for Tsai theory, if this entry is non zero, f is ignored. aii are the thermal expansion
coefficients. These parameters are insert in Abaqus model as initial material properties. They

will be changed when porosity rates are considered in the model.
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Prepreg characteristics ubD Woven
Thickness (mm) 0.297 0.297
Density (T/mm?) 1466e-12 1471e-12

El (MPa) 131650 61225
E2 (MPa) 6550 61225
E3 (MPa) 6550 11249.5
v12 0.27 0.22
v13 0.27 0.2
v23 0.14 0.2
G12 (MPa) 3260 2400
G13 (MPa) 3260 2475
G23 (MPa) 2280 2475
sit (MPa) 1814 1600
slc (MPa) -1325 -1168
s2t (MPa) 70 70
s2¢c (MPa) -300 -300
512 (MPa) 70 70
Tsai coef. cross prod. 1 1
Tsai biaxal stress limit coef. 1 1
a1l -0.0000056 -0.0000115
a22 0.00001434 -0.0000115
as3 0.00001434 -0.0000115

Table 4. 2. Material theorical properties and failure characteristics used in the numerical
models

2.1.2. Definition of boundary conditions according to the studied cases
Two cases of boundary conditions are studied here:

1% case illustrates the structure behaviour during cooling at the end of the curing. A
variation of temperature of - 100 °C is applied on all nodes while fixing the node located

in the geometric centre of the structure and blocking its 6 degrees of freedom. This phase
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represents the implementation of residual stresses within the structure during the cooling
phase that follows the polymerization;

- 2" case illustrates the structure behaviour during a cooling according to the first case,
followed by a tensile loading by imposing a displacement of 1 mm on every node of a
side of the structure and blocking the displacement of the nodes of another side (cf. Fig.
4.3).

Fig. 4. 3. Schematic representation for applied mechanical loading on one side of the Q-

shape stringer with boundary conditions on the other side

3. Ply stops variability integration

3.1. Integration of variabilities due to cut-out and lay-up process

The originality of the proposed model consists in the fact that the plies do not stop
systematically in the planned area, but can be located to the right or the left of the nominal
position. It was therefore necessary to devise a special algorithm to determine the presence or
not of each ply in each finite element of the model. The presence or absence of a ply depends
on two types of variabilities resulting respectively, from the cutting process and the ply
installation in the mould. As explained earlier, it has been chosen to define 2 categories related
to cutting variability of woven plies and UD plies and 4 categories related to lay-up issues
variabilities. To integrate variabilities, a random drawing, based on means and standard
deviations identified in the previous chapter per category is applied for each location along the
stringer’s length. In order to guarantee the physical continuity of the ply edges, there is a random
drawing of the presence or absence of a ply in each element. The evolution of the ply edge is
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described by a polynomial of degree 5 (cf. Eq. 4.1), to be continuous and derivable, and to
describe the physics. The random draw is done on the 6 parameters of the polynomial that
describes this spatial evolution, based on the results of the previous chapter:

A(2) =Y ,a;z0 Eq. 4.1

The difference in ply widths in the theoretical and real cases has an impact on model results.
We needed to identify it by defining the first theoretical edges of all 20 plies along with the
stinger, then add this gap (identified experimentally in the second chapter) to both edges of each
ply for each stringer. The integration of ply stop variability in a shell numerical model has been
done on every structure element, to attribute properties by finite element and to be able to
change these properties from one finite element to another depending on its geometric location.
Fig. 4. 4. shows the numerical integration of variabilities in numerical modelling. The random
draw is realised on each ply edge for variabilities due to the cut-out process and variabilities
obtained after the polymerization process. The new ply stop locations are then calculated in the
right and the left side of the stringer cross-section. The creation of each ply related location
matrix is based on the presence or not of this ply in the finite element. The aim is to create an
input file containing information related to each finite element of each ply along with the
geometric creation of the structure. For Abaqus, each finite element contains the associated

number of plies.
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Fig. 4. 4. Flowchart for the integration of ply stop variability in numerical modelling

Fig. 4.5 represents an example of ply edges outline after ply stop location variability
consideration in numerical modelling using input data for each finite element (total number of

57000 element). The yellow zone represents the ply area in the total surface (purple).

0
| —
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75 4
100

50 100 150 200 250 300 350
Z

o

Fig. 4. 5. Example of ply #12 edges after ply stop location variability integration in the

numerical modelling
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4. Fibre misalignment integration

In order to evaluate the effects of the variability of fibre orientation in a composite part, the
fibre misalignments are introduced into a finite element (FE) model as the sum of two different
outcomes. The first outcome is the theoretical ply lay-up angle defined in the structure’s
description. The second outcome is the local variability due to the deformation after lay-up

process of each ply depending on the structure’s geometry.

The local variability of fibre orientation is calculated based on the model proposed in the
previous chapter (cf. Eq. 4.2) for each finite element and for each ply. A random draw is
conducted on the equation parameters based on the realised measurements. Two categories are
chosen according to material nature, UD prepregs and woven prepregs. The coordinates of each
finite element are defined by the geometric coordinated of its central point. The orientations are
assumed to be unchanged during the curing phase of the composite material. However, this
hypothesis cannot be proven, since the determination of actual fibre orientation after curing

involves destructive technigues to measure the fibre in the composite cross-sections [1]:

x-X)\2 | (v-Y; >
- +
epert(x;Y) =i .Be <( i ) ( ki ) Eq. 4.2
The originality of the process lies on its continuity from one finite element to another, in order
to obtain more realistic model. The random draw of parameters allows to predict fibre

misalignment variability effect on future structures as well as variability ranges to be taken into
account in the designing phase.

5. Porosity integration

Porosity presence in a composite structure affects mainly its mechanical properties. So based
on models defined in the previous chapter, material properties are redefined in numerical

modelling.

First of all, two materials are defined per finite element respectively UD and Woven. Then,
according to porosity rates measured for each element, we realise random draws on the normal
distribution of voids rate per element. Fig. 4. 6. explains the adopted process and steps for

porosity integration in the model.
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h 4

Element (i,))

Material UD (default) (i,j) Material Woven (default) (i,j)
Il Element
Element (i,j) 3 porosity (+1+)
yes Mo
| Material (i,j) with porosity | | Material (i,j) (default) |
1 )

Fig. 4. 6. Flowchart for porosity integration in numerical modelling

The size and shape of voids is also taken into account by considering that the material properties
of finite elements that contains a continuous porosity are identical both in x or z direction of the

stringer. Random draws were conducted also on voids location in the stringer’s cross-section.

This strategy is applied for 5 areas of the stringer’s section shown in Fig. 4. 7. Area#l is the left
bottom flange with the left concave corner. This zone contains porosities especially at the plies
stop locations. Area#2 is the left web with the left convex corner that contains the least
porosities compared to other areas. Area#3 is the top flange. It presents the highest voids rate
compared to other areas. Area#4 and Area#5 are symmetric to respectively Area#2 and Area#l

and they have equivalent characteristics.

Fig. 4. 7. Schematic representation for different areas considered in porosity numerical study
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0 50 100 150 200 250 300 350

 ————— 4

Fig. 4. 8. Schematic representation for porosity concentration in the Q-shape stringer using

finite element number

Fig. 4. 8. shows porosity concentration in the structure by finite element in a case of random
draw (in this case we have 90 finite elements in z direction and 40 finite elements in x direction),
where the darker colour presents the higher porosity rate. There are small voids in an element
and long voids along z direction. The maximum void rates are in the top flange area. Fig. 4. 9.

indicates the effect of voids consideration on the mechanical properties of a composite structure.

E1 Woven

61200 -

61000 A

60800 -

60600 -

60400

60200 4

0 20 4 6 8 100 120 140

Fig. 4. 9. Elastic woven composite component along the transverse direction x with voids

consideration
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6. Results and discussion of taking into account each type of variability and the total
variability types
6.1. Hlustration of numerical results with ply stop variability

6.1.1. Twin models of the four manufactured stringers after cooling followed by tensile
loading

This section presents the explanation of the numerical twin realised on the available
manufactured Q-shape stringers (4) using the real ply stop locations determined experimentally.
The aim is to compare the behaviour of the different stringers to determine the variability effect
in a family of parts manufactured using the same process.

U, u2
+2.845e+00
+2.303e+00
+1.760e+00
+1.218e+00
+6.760e-01
+1.337e-01
-4,085e-01
-9.508e-01
-1.493e+00
-2.035e+00
-2.578e+00
-3.120e+00
-3.662e+00

Stringer #1° Stringer #2°

Stringer #3 Stringer #4

Fig. 4. 10. Twin model results in the case of vertical displacement fields (Y direction), after

cooling followed by tensile loading for the 4 manufactured ©2-shape stringers

Fig. 4. 10. shows the results of the second case of boundary conditions applied to the twin
models of the 4 manufactured stringers, indeed representing the real ply stop locations
observed, without adding statistical random drawing for the parameters leading to the
polynomial representation of ply stop positions. Differences between the four manufactured
stringers are obvious in terms of displacement, with the unique representation of ply stop
locations, enhancing the fact that the selected variability in this paper seems to have a sensitive
effect on the behaviour of the structure. The following section is dedicated to gathering the

input data got from the 4 twin models to carry out probabilistic modelling.
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6.1.2. Numerical Results of stringers with random drawings after cooling

Secondly, the results obtained from observing the four of them are merged into a set of entry
parameters used in the general model with a sufficient statistical set of parameters. Starting
from results and observations obtained from these parts, the numerical model aims to predict
the behaviour of an infinite number of parts, by applying a random draw on the studied
variability (here ply stop locations). The random draw is realised on the polynomial parameters

describing the evolution of ply stop locations along the stringer.

0,8
0,7 ——With variability
06 \
0,5 Without variability
0,4
0,3
0,2
0,1
0

Y-axis displacement (mm)

&b
N

0 100 200 300 400
Distance along stringer (mm)

Fig. 4. 11. Curve of y-axis displacements of edge nodes along stringer length for the case of
models with and without ply stop variability after cooling
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_ 0,001 o
w
o 0.00098
£ 000096 N
»n -
0,00094
0.00092
0.0009
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Fig. 4. 12. Curve of Strain e11 of edge nodes along stringer length for the case of models with

and without ply stop variability after cooling

Fig. 4. 11. represents the evolution of the vertical displacement along a line of nodes, the line
located in the junction zone between the web of the stringer and the bottom flange after cooling.
The orange curve represents the evolution of the displacement that would have been obtained

for a stringer without any variability in the location of the ply stops, as foreseen at the time of
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the design. The blue curve represents the same evolution for a virtual stringer containing ply
stop variabilities, variabilities presenting realistic levels and evolutions concerning all the
observations made. As expected, the presence of variability generates some differences in the
magnitude illustrated compared to the design model, and the simplified model proposed seems
able to quantify this difference. Here the major difference encountered in the behaviour between
the designed part and the realistic virtual part leads to a deflection difference of less than a tenth
of mm at the centre of the structure.

Additionally, the proposed model allows observing differences in stress levels, deformations,
failure criteria, etc. For example, Fig. 4. 12. represents the evolution of the strain in the direction
of the element oriented towards the global x-direction, always for a line of nodes located at the
web/bottom flange junction, and along the stringer. This direction for result visualisation is
chosen because it shows the variability effect the most remarkable. On the example chosen here
for our illustration, the presence of variabilities generates spatial strain evolutions that are
significantly different from the evolution observed on a design model that does not include
variabilities, with in particular a loss of expected symmetry in the length. However, the order
of magnitude of the observed deformations remains very close under this load case, seeming to
demonstrate a low sensitivity of the observed magnitude to the selected variability extent (real

position of the ply stops) to the selected manual draping method.

The proposed modelling and variability insertion strategy thus seem to yield results that note a
variation in mechanical behaviour when inserting variabilities. The proposed tool, therefore,

seems suitable for studying the influence of the selected variability.

According to Fig. 4. 11., gaps in displacement are not so huge between theoretical and
numerical models. In Fig. 4. 12., the differences between theoretical and real models are
obvious concerning symmetry loss, non-constant values ... especially when we consider strain
analysis, where €11 strain is chosen as an example. €11 strain can be more or less large than the

theoretical one depending on gap and position, but this difference is low (about 3 %).

6.1.3. Numerical Results after cooling and tensile loading

The created model is capable of determining variability effects in different cases of applied
load. Fig. 4. 13. shows an example of mechanical behaviour under cooling followed by a tensile

loading. This case of loading can give us an idea about the influence of ply stop variability on
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a composite structure with complex geometry in mechanical cases, also, to conclude a range

that defines the maximum and minimum variability value in the case of ply stop.

In Fig. 4. 13., the differences between the model without variabilities and a random model are
presented qualitatively that including variabilities in the case of vertical displacement and shear

strain fields.

U, U2
+9.074e-01
+7.519e-01
+5.964e-01
+4.409e-01
+2.854e-01
+1.299e-01
-2.565e-02
-1.812e-01
-3.367e-01
-4.922e-01
-6.477e-01
-8.032e-01
-9.587e-01

E, E12

Multiple section points

(Avg: 75%)
+6.595e-03
+6.091e-03
+5.587e-03
+5.083e-03
+4.579e-03
+4.075e-03
+3.572e-03
+3.068e-03
+2.564e-03
+2.060e-03
+1.556e-03
+1.052e-03
+5.480e-04

Fig. 4. 13. Comparison between models without and with variability (random draw from input
data from the 4 stringers) in the case of (a) displacement in y-direction and (b) shear strain

fields after tension preceded by cooling

This example seems to show again that the numerical strategy is sensitive to the variability
studied, with a significant influence predicted oh the ply stop location on the shape of the Q-
shape stringer under this case of loading. The displacement U2 gap reaches almost 0.9 mm
between the designed structure and the virtual structure containing variable and realistic ply
positions concerning the selected manufacturing process. Similarly, the shear strain field of the
median ply shows significant variations, ranging for some elements in particular from + 6.6e-3
on the model without variabilities to 5.48e-4 for a random model (with variabilities) used in the

illustration.
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To have an order of magnitude of the gap variations, Monte-Carlo draw is conducted in the next
paragraph. A repetitive analysis of the created model allows observing the influence of ply edge
locations on the behavior for further structures.

6.1.4. Repetitive analysis for Monte-Carlo draws after cooling for ply stop variability

According to the previous results, the modelling strategy seems to fulfil the objective of
allowing the insertion of ply position variabilities and having a mechanical response sensitive
to this quantity. Moreover, this strategy leads to very short computation times, of the order of
360 seconds for a millimetre mesh and a 380 mm long structure, leading to about 57 000 finite
elements. This strategy, therefore, allows considering launching a large number of calculations
in which we can vary the position of the ply stops while being realistic about the extent and the

evolution of these positions.

Repetitive analysis of the created model allows observing the influence of ply edge locations
on the behavior for further structures. The gap between the theoretical designed model and the
manufactured piece can be important due to many factors explained in previous sections. This
influence is translated into output parameters such as strain analysis and Failure criterion (Tsai-

Hill in our case).

As an example of the capacity of the proposed numerical strategy to perform numerous calculi,
Fig. 4. 14. shows the maximal magnitude of the shear strain €1, all along with the structure
depending on the maximum ply position deviation in the model. The choice to show €12 is due
to the presence of woven plies at £45° which a priori affects more the shear modulus in this
case of loading. In Fig. 4. 14., the design Q-shape stringer without variability is the red dot and
twelve random stringers including ply stop variabilities are the blue dots. We can observe that
shear strain slightly increases when the maximum gap (between theoretical and real ply stop
locations) increases, which means when plies are more displaced from their theoretical position
(red point). In this particular case, it can be noted that for ply stop position gaps less than 2 mm,
the maximum value of shear strain seems to be less than the value obtained for the non-
variability calculus. On the contrary, from a certain value of position error realized by the
operator, the maximum value of shear deformation will exceed up to 60 % of the value predicted
in the case without variabilities. For maximum ply location gap equal to 6 mm and 6.2 mm, the
shear strain values are less than the value related to the case without variability consideration.
Maybe in this case, the maximum gap is associated to plies that don’t have much influence on

the shear strain value.
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Fig. 4. 14. Curve of maximum strain in function of maximum gap between real and theoretical
ply edge locations (red point indicates the value in theoretical case without variability) after

cooling
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Fig. 4. 15. Tsai-Hill criterion along the Q-shape stringer length (see complementary scheme)
in different calculations of variability (Var 1 to 6) after cooling

The proposed numerical strategy also allows displaying breakage or failure criteria. As an
example, Fig. 4. 15. represents the evolution of the Tsai-Hill failure criterion that takes into
account the interaction between the different stress components on a length of stringer of 270
mm (not 380 mm total length) to reduce calculation time. Its limit is that it does not directly
inform on the mode of failure modes including fibre failure, matrix failure, and fibre-matrix
interface failure. Fig. 4. 15. shows that the constructed numerical model can launch large scale
calculations, and to identify value intervals for the quantities of interest, here for example the
criterion of Tsai after cooling for the web bottom. The blue curve represents the model without
taking into account the variabilities. We can note on this example, that the variabilities of ply
stop locations tend to decrease very slightly the values of the residual stresses that are set up
after the cooling (8% increase and about 20% decrease).

106



Chapter 4

6.2. lllustration of numerical results with fibre misalignment variability
6.2.1. Twin models taking into account fibre misalignment variability in the case of

tensile loading after cooling

Twin numerical models are based on the actual variability levels found experimentally in order
to evaluate their behaviour under different loading forms. In this section, we will consider only
fibre misalignment variability into the numerical model without random draw. The goal here is
to compare the behaviour of the different stringers to determine the fibre orientation variability
effect in a family of parts manufactured using the same process. the case of loading chosen is
the tensile loading after cooling because this case allows to visualise the variability effect more

than the case after only cooling.

, Ul
+1.023e-02
-2.800e-02
-6.623e-02
-1.045e-01
-1.427e-01
-1.809e-01
-2.191e-01
-2.574e-01
-2.956e-01
-3.338e-01
-3.720e-01
-4.103e-01
-4.485e-01

Fig. 4. 16. Comparison between displacements in the horizontal direction for numerical
models without (left) and with (right) fibre misalignment consideration in the case of

mechanical loading after cooling

Fig. 4. 16. shows the difference between models with and without fibre misalignment
consideration in the case of tensile mechanical loading after cooling (imposed displacement of
1 mm explained earlier). Compared to the model without variability consideration, the model
containing fibre orientation uncertainty present important horizontal displacement in the x
direction. In the bottom flange areas, there is a difference in the displacement with about 0.38
mm. There is an obvious difference also in the web area with 0.19 mm in terms of displacement
along x direction. The symmetry between the left and right side of the section is also lost. This

aspect is clearer in the Fig. 4. 18. here after.
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Fig. 4. 17. Schematic representation for the path used for results analysis
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Fig. 4. 18. Curves for x-direction displacement U1 along the transverse direction for cases

with and without fibre misalignment variability consideration

In this case, z is fixed to the central position of the stringer’s length (cf. Fig. 4. 17.). We can see
that in the case without variability consideration, the transversal displacement is symmetric and
between -0.01 and 0.01 mm. When adding fibre orientation variation, transversal displacement
become more important especially in the bottom flange areas (about 0.08 mm). In the top flange
area (X € [—12,12] mm), the displacement increases by 0.01 mm. Symmetry loss is obvious
especially in the top flange area (x € [—12,12] mm) and bottom flange areas. The choice of this
type of results visualisation is more or less arbitrary. It lies on the fact that the objective here is
to show the effect of variabilities on the model no matter what we choose as output. The
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displacements Ul seem to show here the difference between models with and without

variability consideration.

Fibre misalignment has an effect on the behaviour of the structure in the case of imposed
displacement after cooling. But this effect is not important compared to ply stop variability
consideration. This is more noticeable in the case of Tsai-Hill criteria (cf. Fig. 4. 19.). There is
almost no difference between model response with and without variability. The maximum value

is about 0.7 situated in the stringer’s top flange and corners between webs and bottom flanges.

TSAIH
Multiple section points
(Avg: 75%)
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+1.070e+00
+9.729e-01
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+2.919e-01
+1.946e-01
+9.729e-02
+0.000e+00

Fig. 4. 19. Comparison between Tsai criteria for numerical models without (left) and with
(right) fibre misalignment consideration in the case of mechanical loading after cooling

6.2.2. Numerical repetitive results after thermal and/or mechanical loading

In order to be able to quantify a variation range related to porosity on the structure, a repetitive
calculus is performed on the numerical model that takes into account fibre misalignment

variability with different random draws of fibre angles in the structure.
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Fig. 4. 20. Repetitive calculation of horizontal displacement U1(z=0) with different random
draws (1 to 9) for fibre misalignment variability analysis in the case of mechanical loading
after cooling

Fig. 4. 20. shows that the displacement U1 along the distance in the transversal direction in the
location z=0 is between about -0.45 mm and 0.8 mm. The case without variability consideration
presents the smaller displacement U1. The case without variability is symmetric also along y=0
unlike other cases where the displacement symmetry is lost. The curve named Var 5 presents a
maximum gap between theoretical and variability fibre misalignment per ply about 6°. The
maximum displacement for this variability value is 0.8 mm in the bottom flange area. For the
curve named Var 9, the maximum angle gap is about 1.96°, which corresponds to the minimum
displacement gap for models with random draws. We can notice that in this particular location
and for this type of output, fibre misalignment can increase the displacement gap U1 when the

angle gap is important, while it can also decrease it when the angle gap become small.

It appears that this type of variability has its effect on the mechanical response of the structure
and on a family of stringers manufactured using the same process. When the angle gap between

the model without variability and with variability increases, the displacement increases.
6.3. lllustration of numerical results with porosity rates variability

In this section, we are considering only porosity rates variability in the analysis of the structures
response to the different chosen load types, thermal and mechanical. In the literature, porosity
was been studied in different levels, experimentally, numerically etc. For numerical analysis,

in [2] for example, multiscale 3D FE models are developed and periodical boundary conditions
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are applied to the representative volume element models to obtain elastic modulus of the
composite. The obtained results indicate that void defects exert significant influence on the
elastic moduli of fibres. The elastic moduli of 3D woven composites are more sensitive to the
voids in fibre tows than those in the matrix of woven composites [2]. Also, in [3], a numerical
methodology is developed for simulating the mechanical behaviour of porous CFRP
unidirectional (UD) laminates by exploiting data extracted from X-ray computed tomography
scans. The numerical results show a small decrease of transverse stiffness (2.3%) and a
significant decrease of transverse tensile strength (14%) with increasing the pore content (45%)

in the case of a composite laminate.

Our methodology examines porosities in a composite structure with complex geometry. The
originality lays in the numerical modelling using shell model to be able to lunch multiple

simulations in a short time.

U, U1
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-7.014e-03
-9.200e-03
-1.139e-02

-1.357e-02

Fig. 4. 21. Comparison between numerical modelling without (left) and with (right) porosity

variability consideration for mechanical response after cooling

Considering as an example the transverse displacement U1, the models with and without
variability in the case of porosity variability taking into account do not present significant
difference. This is more noticeable in Fig. 4. 22., where we trace the horizontal displacement

U1 along transversal direction x for z = 0 for mechanical response after cooling.
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Fig. 4. 22. Curves for displacement U1 along the transverse direction for cases with (orange
curve) and without (blue curve) porosity variability consideration for mechanical response

after cooling with results location scheme in the stringer length

04
0,35
0.3

0,25

Tsai-Hill
(=]
[3]

=
ry

—Without Var
—With Var

=

0,05

0 50 100 150 200 250 300 350 400
Distance along stringer length z (mm)

Fig. 4. 23. Curves for Tsai-Hill criterion along the transverse direction for cases with (orange
curve) (one random draw) and without (blue curve) porosity variability consideration for

mechanical response after cooling with results location scheme in the stringer length

Considering Tsai-Hill criterion in z direction along the stringer in the corner between the web
and the bottom flange as result (cf. Fig. 4.23), the difference between curves between model
without and with porosity variability consideration is not obvious in most of the structure. But
in the stringer’s edges there is a difference by about 0.1 on both sides. This direction is chosen
because it shows the most difference between the two models.
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Voids presence in a structure has an effect mainly on the mechanical properties of the

considered material. This fact is proven also in many works of the literature.
7. Numerical model results with three types of variability taken into account

After studying the chosen forms of variability in this study, one by one, we are representing the
effect of these variabilities on the global structure’s behaviour in this section. The aim is to
quantify ranges of variation of the structure’s response to variability consideration and to show

the difference between one structure and another manufactured using the same process.

We have to note that our overall objective is not to study all the forms of variability presented
in a composite structure, but to introduce a methodology that is able to handle various forms of
studied variability within a numerical model based on realistic data for structures presenting

complex geometry zones.
7.1. Numerical modelling results taking into account variabilities after cooling

Starting with the initial state of the structure, this section contains the analysis of numerical
modelling taking into account ply stop, fibre misalignment and porosity rate variabilities after

cooling after polymerisation process.

Fig. 4. 24. illustrate this difference by showing results in the case of horizontal displacement
along x axis for a case of one variability random draw. The symmetry loss is obvious especially
at the stringer’s edges. In the corner between the bottom flange and the web, there is a difference

in displacement with about 0.01 mm.
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Fig. 4. 24. Comparison between numerical modelling of horizontal displacement U1 without

(left) and with (right) total studied variabilities consideration after cooling
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This difference can be noticed also in Fig. 4. 25., where we represent the displacement U1 along

the transversal direction when z=0. The difference occurs mainly in the area between x= -50

mm and x=-20 mm (bottom flange area) with about 0.003 mm.

0,04

0,03 —With var
0,02 —Without var
0,01
0
-0,01
a.-0,02
-0,03

0,04
-50 -30 -10 10 30 50
Distance along x direction (mm)

Displacement Ul (mm)

Fig. 4. 25. Curves for displacement U1 along the transverse direction for cases with (orange
curve) and without (blue curve) variability consideration after cooling with scheme for result

location in the stringer length
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Fig. 4. 26. Comparison between numerical modelling of Tsai-Hill criterion without (left) and

with (right) total studied variabilities consideration after cooling

Fig. 4. 26. shows that the difference between models with and without variability after cooling
is not outstanding in terms of maximum values for Tsai-Hill criterion. But we can note that
variabilities increase Tsai-Hill failure values in the web area by about 0.01.
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Fig. 4. 27. Curves for Tsai-Hill criterion along the stringer length for cases with (orange
curve) and without (blue curve) variability consideration after cooling with scheme for results

location

Fig.4.27 shows that in the corner between the bottom flange and the web, Tsai-Hill criterion is
different in models with and without variability consideration after cooling especially in the
zone where z is between 0 and 70 mm (difference up to 0.06).

Although the initial state of the structure after cooling is affected slightly (9% for Tsai-Hill

criterion for example) by the presence of variabilities, this effect should not be ignored in the
design phase.

7.2. Numerical modelling results of influence of variabilities after mechanical loading
preceded by cooling

Fig. 4. 28. presents the difference between models with and without taking into account
variabilities for a type of displacement which is horizontal displacement U1. In the top flange
for example, this difference between models in term of displacement is about 0.04 mm and -

0.13 mm in the left bottom flange area for mechanical loading after cooling.
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Fig. 4. 28. Comparison between numerical modelling of horizontal displacement U1 without
(left) and with (right) total studied variabilities consideration for mechanical loading after

cooling

Considering a specific location with z = 0 (cf. Fig. 4.29), the effect of considered variabilities
is observable in the bottom flange areas where the symmetry is lost compared to the model
without variability consideration. The difference in terms of maximum displacement in this
location between the two models is about 0.2 mm in the bottom flange. It appears that
variabilities in this case trend to reduce (in absolute value) the displacement in the bottom flange
area. In the top flange area, the maximum value of displacement U1 is almost the same
considering or not variabilities. This is due the fact that this area contains the minimum amount
of variability (less ply stops, less fibre misalignment) although it contains the maximum values
of porosity rates. This proves that porosity rates effect is not huge compared to the other types

of variability taken into account.
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Fig. 4. 29. Curves for x-direction displacement U1 along the transverse direction for cases
with (orange curve) (one random draw) and without (blue curve) variabilities consideration

after mechanical loading after cooling with scheme for result location

As for Tsai-Hill criterion (cf. Fig. 4.30), the symmetry loss in the stringer section is clear
especially between the web areas for a random drawing. The criterion values increase mostly
in the web area but it remains almost the same in the top flange areas between models with and

without variability consideration.
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Fig. 4. 30. Comparison between numerical modelling of Tsai-Hill criterion without (left) and

with (right) total studied variabilities consideration for mechanical response after cooling

Considering the location z=0 in the stringer’s length, the Tsai-Hill criterion (cf. Fig. 4.31) with

variabilities taken into account (ply stop location, fibre misalignment and porosity rate)
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increases by 0.05 in the top flange area compared to the model without variability. There is a
small difference also in the corner between web and bottom flange areas (-35 mm < x < -22
mm) by about 0.04. The symmetry is also lost in the Q-shape stringer cross-section.
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Fig. 4. 31. Curves for Tsai-Hill criterion along the transverse direction for cases with (orange
curve) and without (blue curve) variabilities consideration for mechanical loading after

cooling

7.3. Numerical repetitive results after thermal and/or mechanical loading taking into
account all the studied variabilities

The goal of this section is to identify a variation range of selected outputs along random drawing
of variabilities based on numerical modelling.

For example, considering the variation of the displacement U1 (cf. Fig. 4.32) along x direction
(horizontal) when z=0 (see attached scheme in Fig. 4.32), after 5 different random draws,
variabilities seem to decrease the maximum value of displacement especially in the bottom
flange area. The curve named Var 5 corresponds to the minimum value of variability (maximum
angle gap = 1.25° and the maximum gap between theoretical and real ply stop location = 3.34
mm). The curve named Var 4 corresponds to variability values of 13.2 mm for ply stop location
gap and 6.9° for fibre angle gap. The maximum value of displacement is obtained in the case
of model without variability with -0.45 mm in the centre of the stringer (z=0).
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Fig. 4. 32. Repetitive calculation of horizontal displacement U1 (z=0) with different random
draws (Var from 1 to 5) for variabilities analysis in the case of mechanical loading after

cooling

Moving to Tsai-Hill criterion analysis, the repetitive calculi in the corner between the web and
the bottom flange give the curves here after (cf. Fig. 4.33). Variability influence tends to
decrease very slightly the values of the residual stresses that are set up after the mechanical
loading preceded by cooling. We can notice about 25% increase and about 60% decrease in the
borders of the stringer (z < 75 mm and z > 320 mm) while in the stringer’s centre area, the
decrease is about 16%. Variabilities trend to smooth Tsai-Hill criterion in the chosen particular
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Fig. 4. 33. Repetitive calculation of Tsai-Hill criterion along Q-shape stringer’s length with
different random draws (Var from 1 to 7) for variabilities analysis in the case of mechanical

loading after cooling
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Conclusion

This chapter studies the numerical modelling nourished using the statistical tendencies with the
chosen type of variability. Random draws of statistical parameters were made to obtain a
probabilistic model that can predict the shape and behaviour of stringers under thermal and/or
mechanical loadings. The set of mathematical models from chapter 3, proposed for the
representation of the spatial evolution within the part respectively of the ply stops, the fibre
orientations and the porosity rate, were expended for the creation of a Finite Element model
taking into account local variations of properties. The model was based on 2D shell elements,
to be able to run a large number of simulations based on random draws of the parameters of the
mathematical laws studied. In this proposed model, the values of the material and geometric
parameters change not only from one element to another, but also for the same element, for

each of the 20 plies constituting the shell element of the composite structure.

The modelling strategies have been designed to be light and allow for multiple calculations. It
was observed also that although the “bad chosen” manufacturing conditions, huge differences
were not found after numerical analysis. Results show that the chosen studied variabilities have
an effect on the final shape and the behaviour of the structure. A difference between the

numerical twins of the 4 manufactured stringers was observed after cooling.

Ply stops location variability is the most uncertainty that has an effect on the structure
behaviour. The presence or not of a ply has the most obvious influence. In some cases,
variabilities seem to decrease the strain or Tsai-Hill values. This might be due to the fact that
variabilities can overlap each other. For example, for ply stop location variability, a ply may
have an important gap compared to the theoretical case, but in the same location (X, z), another
ply may have the same gap but in the other direction, which causes a decrease in the total

variability.

All the found results prove that variabilities should be taken into account in composite structures
design especially in the aeronautic field, in order to minimise their effect that leads to reduce

the costs.
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General conclusions and future work

The objective of this thesis was to set up an approach allowing the evaluation of the effects of
variabilities in mechanical calculations applied to composite materials. As these materials are
more subject to uncertainty problems than others, in particular metallic ones, we had to find a
measurement methodology during and after manufacturing process to quantify the variabilities
in order to have a realistic input data set to be able to evaluate their effects on the behaviour of
the part. The choice was to work on a part inspired by an aeronautical composite fuselage,
which represents geometric singularities such as the presence of ply stops, varying thickness,

convex and concave shapes, and small radii.

The literature review, presented in chapter 1 entitled Bibliography, demonstrates that there is
no common methodology for the study of variabilities in composite structures regardless of the
evidence that composite materials present a dispersion in their properties. Usually during
research, the variability in composite structures is considered either as local defects or as
uncertainties in stochastic analysis. For the former consideration, dedicated models are created
in order to study the effects of localised defect on the composite structure. For the second
objective, a broader set of general approaches is employed such as probabilistic studies,
reliability-based approaches and stochastic finite element methods. The Monte Carlo simulation
is still the most common method due to the simplicity of its formulation. The model variables
include the material properties which are obtained from probability functions. The end of this
chapter is dedicated to the presentation of the working methodology and the associated object
of study.

A part inspired from a composite fuselage stringer was studied. In addition to composite
uncertainties, the chosen structure present geometric singularities (convex and concave shape,
small radii, thickness variations, the association of several materials etc.) that enhance
variability presence. The part considered had an omega-shaped structure consisting of 20 plies
from preforms with unidirectional and woven reinforcements. The prepregs are Hexcel
materials, respectively, M79/34%/UD300/CHS for the UD and M79/42%/285T2/CHS for the
woven. The structure was manufactured using a dedicated mould, including a core for internal

geometry control, and cured in a single stage in an oven.

The 2" chapter entitled Experimental setups and protocols for variabilities observation within

complex geometries: from raw material to final structure, details about the experimental
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protocol used and the variability observations for the analysis of ply stops, porosity and fibre
misalignment. The observations were carried out throughout the manufacturing process, using
a wide range of measurement techniques such as optical, micrographic, tomographic
observations, etc. Each observation was dedicated to the monitoring of one or more types of
variability studied for different phases of the manufacturing process. Once the structure is
consolidated, it was scanned in 3D to identify its real geometry, which, due to the presence of
internal stresses, is different from the theoretical geometry. The fabricated part is then cut out
for observation. Microscopic and tomographic analyses were performed to determine the
variations of the studied parameters, mainly the positions of the ply edges, the fibre
misalignment along the length and the size and the extent of the porosities that appeared during
the consolidation phase. All the observations done during every manufacturing step serve to
obtain a lot of data sets from raw material to complete structure analysis to feed a set of input
data for numerical modelling. For example, in the lay-up phase, a minimum number of 384
measure was taken using microscopic observation. The observation and measurement time was

up to 2 hours per cross-section. Tomographic observation takes about 6 hours per sample.

These observations are analysed in the 3" chapter intitled Spatial evolution of variability within
a complex geometry structure: Mathematical laws and statistical trends. First, the observed
spatial evolutions are represented in the form of a continuous mathematical law representative
of the observed evolutions. Here, polynomial evolutions have been selected to model ply stop
variability in both stages of cutting and the ply deposit in the mould. The polynomials were
chosen of degree 5, sufficient to describe the undulations observed over a stringer length of
about 400 mm. The six parameters describing these polynomials were analysed from a
statistical point of view, by separating the measurements into four families of plies, determined
according to characteristics such as strand orientation or position with respect to a geometrical
feature. The category 1 (6 plies and 1 measure/ply in a side) has 6 x 4 = 24 set of parameters
(curve number x manufactured stringer’s number). The category 2 (2 plies and 2 measures /ply
in two sides) has 4 x 4 = 16 set of parameters. The category 3 (10 plies et 1 measure /ply in one
side) has 10 x 4 = 40 set of parameters. The category 4 (4 plies et 2 measures /ply in two sides):
8 x 4 = 32 set of parameters. Fibre waviness was characterised using a continuous mathematical
representation based on literature work and was represented by a finite sum of deformed zones,
using a Gaussian surface centred on the centre of the perturbations. The amplitudes of the
perturbations are statistically studied with an adaptation to the characteristics of the structure
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studied from the observations made. From its side, the void content was evaluated by normal
laws in terms of position and extent in the horizontal plane and represented by statistical laws
conducted according to their location in the cross-section of the studied stringer based on
tomographic observations.

These statistical tendencies are used to nourish numerical modelling with the chosen type of
variability in the 4" chapter intitled Numerical analysis of variability and integration of different
studied variability forms in the numerical modelling. Random draws of statistical parameters
were made to obtain a probabilistic model that can predict the shape and behaviour of stringers
under thermal and/or mechanical loadings. The set of mathematical models from chapter 3,
proposed for the representation of the spatial evolution within the part respectively of the ply
stops, the fibre orientations and the porosity rate, were extended for the creation of a Finite
Element model taking into account local variations of properties. The model was based on 2D
shell elements, to be able to run a large number of simulations based on random draws of the
parameters of the mathematical laws studied. In this proposed model, the values of the material
and geometric parameters change not only from one mesh to another, but also for the same
mesh, for each of the 20 plies constituting the shell element of the composite structure.

The modelling strategies have been designed to be light and allow for multiple calculations.
This approach opens the door to insert other types of variabilities in the same numerical model,
such as ply thickness and mechanical properties for composite parts with complex geometry. It
was also observed that although the “bad chosen” manufacturing conditions, relatively small
differences were found after numerical analysis. Results show that the studied variabilities have
an effect on the final shape and the behaviour of the structure. A difference between the

numerical twins of the four manufactured stringers was observed after cooling

This proves that the variabilities should be taken into account in composite structures design
especially in the aeronautic field, in order to minimise their effect that leads to reduce the costs.

Among the load cases selected to highlight the operability of the strategy, we applied our
probabilistic approach to the case of a cooling at the end of the consolidation phase, when the
residual deformations are set up. Cooling phase may also be studied taking into account
physico-chemical effects. The long-term objective of this type of study is, after having
accumulated a certain number of variabilities or by treating the variabilities independently of

each other, to be able to redefine the amplitudes of admissible variabilities for a particular
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structure. For example, if it is demonstrated that the positional deviation of certain plies can be
increased without significantly degrading the performance of the composite structure, it is
possible to consider reductions in the manufacturing costs of certain parts. In the same way, the
numerical consideration of realistic variations between theoretical and manufactured quantities,
either in terms of amplitudes or spatial evolutions, can help to redefine the safety factors or the
allowances used during the validation of the structural behaviour of the composite part in the

design phase.

It was demonstrated by the proposed finite element model; we are able to highlight the influence
of variabilities on the mechanical responses of a composite structure. However, the FE model
continues to be a work in progress, therefore, efforts leading to its constant development must

be made.

The technical aspects of the FE model that should be addressed on the short-term deal with the
automation of the input files generation, analysis and post-processing. This step is mandatory
in order to be able to evaluate very large number of simulations needed for the probabilistic
analysis of composite structures. An optimisation of the input files is necessary to reduce their
size and computing time (loading, calculation and writing). The addition of damage analysis of
the composite structure could be envisaged using current criteria. To properly asses this
condition, failure criteria have to be updated in function of variations of geometry and fibre and

matrix volume fractions, thus, leading to an iterative calculation per finite element.

Finally, although the proposed approach seems to return adequate results, it is indispensable to
compare the proposed calculation methodology with a purely stochastic approach that a priori
can reduce processing time and cost. This work also can be projected on other composite

structures with complex geometry zones.
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Appendix 1: Experimental protocol

The different steps carried out are described below.
1. Cut-out (estimated time: 1/2 day / omega-shape stringer)
The list of equipment used is as following:

- Prepreg: 10 plies at 45° and 10 plies at 0° of type M10.1/UD300/CHS are required. The
total area of prepreg required to manufacture a 380 mm long stringer sample is equal to
481080 mm?;

- Rulers and squares: Rulers and squares can exhibit variability in alignment and
measurement due to their frequent use by the operator;

- Pens: The cutting of the prepreg is done firstly by marking the edges using a permanent
pen following a ruler, the marking on the roll depends on the user. The dimensions are
therefore not exact, there are always variations in measurements due to the operator and
even the section of the pen used;

- Cutters: hand cutting can cause variability and even small ripples (+- 2mm);

- Cutting table: the table is covered by a silicone layer which allows easy cutting of prepreg.
The process is described as following:

- Measurement and cutting: the cutting measurements are recorded in a detailed table to
allow the monitoring of the cutting operation of each ply and according to the desired
dimensions;

- Scanning the plies: The plies were scanned in order to compare their dimensions before
and after draping, which can create variability in the dimensions (width and length) after
draping and compaction (a reference must be put on the folds to differentiate the left and
right sides and this positioning must be respected during draping). The scan is carried out
with the ply protectors in place so as not to damage either the scanner or the plies.

2. Lay-up and photo taking (estimated time: 2 days / omega-shape stringer of 380 mm
length)

The list of equipment used is as following:
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- Release agent (demoulder);

- Omega shape stringer mould (allows for proper positioning of the creases and compaction
of the stringer);

- Digital camera;

- Computer.
The process is described as following:

- Preparation of the mould (application of release agent);
- Preparation and implementation of the reference grid;
- Plies lay-up and compacting;

- Photo shooting.

Plies are draped according to their position in relation to the mould. The positions of the plies
depend on the operator, hence the appearance of variability. The compaction is done after the
first ply (to take the shape of the mould) and then after every 4 plies for about 20 minutes.

Photos were taken for each ply during draping in order to determine its position and the
variability in position and orientation that are consecutive to the draping operation. Taking the
grid as a reference, a minimum number of 4 photos must be taken after the draping of each ply
(draped ply with protectors, ply without protectors, positioning of the top flange and the bottom
flange). A device is installed in the clean room to take pictures of the stringer during the
manufacturing process (draping). This device consists of a camera (Canon EOS 550D with a
100 mm lens) which is fixed above the work surface at a distance of 1.9 m. Taking into account
the brightness and the conditions of the photo shooting, the camera is placed vertically on the
draping table while making the necessary adjustments to obtain clearer photos. Verticality is
ensured by observing the photo being taken. The mould must be kept in a well-defined position
in relation to the camera by using wedges placed on the mould support table. The camera is
associated with a computer to make the necessary adjustments remotely and to record the
photos. The grid allows the draped pleats to be positioned after each drape with reference to
the horizontal lines. The squares in the corners help to identify the 45° and -45° orientation of
the plies with respect to the theoretical orientation. The measurement grid allows each ply to
be positioned in relation to its theoretical position. The distance between one vertical axis and
another is 2 cm (vertical position of the plies and orientation) which allows the positions of the

plies to be clearly identified in relation to the grid when analysing the images. The horizontal
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axes indicate the extremities of the ply positions. The squares in the corners indicate the 45°
and -45° orientations. The grid (29.7 cm x 42, cm) is printed on an A3 sheet (29.7 cm x 42,
cm) and is glued to the mould with double-sided tape.

3. Polymerisation step (estimated time: 1 day)
The list of equipment used is as following:

- Vacuum bag;
- Thermocouples ;

- Oven.
The process is described as following:

- Cutting and preparing the environmental products and measuring their mass (to quantify
the quantity of resin absorbed);

- Positioning the thermocouples on the stringer using adhesive tape that resists the high
temperature during the cycle (to monitor the evolution of the temperature during the
polymerisation cycle);

- Placement of environmental products;

- Preparation of the oven (polymerisation cycle, temperatures, etc.);

- Putting the part in the oven and connecting the thermocouples in the oven.

4. Analysis and observation of the part after polymerization

Three types of observation are performed respectively, Image analysis, Microscopy and

Tomography.
4.1. Sample preparation
Cross-sectional samples aim to:

- See and locate porosities and defects in relation to the part;

- Positioning the ply stops in relation to a chosen reference frame.
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Fig. 1. Cutting circular saw

The disc circular saw (cf. Fig. 1) has a thickness of about 3 mm. This thickness can cause
uncertainty in the dimensions of the samples. The cutting is done by hand, so it always depends
on the operator, which causes errors in the measurement and dimensions of the samples
compared to the theoretical ones. Sawing causes large burrs which can be toxic, so a mask,

protective gloves and an apron must be worn. 16 specimens have been prepared.
5. Microscopy
The list of equipment used is as following:

- Chemical material for resin coating;

- Polishing machine;

- Polishing discs of the type indicated in the description of the polishing process of the
samples;

- Microscope (Olympus);

- Protection equipment.
The process is described as following:
- Resin coating by mixing in a container 2 parts powder to 1 part liquid (by volume)

The coating hardens in 15 minutes (approximately) and the samples need about 200 ml of

coating resin (cf. Fig. 2)
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Fig. 2. Coating resin

The positioning of the samples is done by using special springs (cf. Fig. 3) that allow the

samples to be hooked into the mould.

Fig. 3. Springs for fixing the samples in the resin

- Samples polishing as following respectively, using disc No. 320 for about 2 minutes, then
clean with water, using disc No. 600 for about 2 minutes, then clean with water, using disc
No. 800 for about 2 minutes, then clean with water, using disc N°1200 for about 3 min then
clean with water + dry using a dryer (remove any type of residue that remains such as
limescale), using 9-micron solution for about 2 min then cleaning with distilled water +
drying and finally 3-micron solution for about 2 min then cleaning with distilled water +
drying. The total operation takes about 30 min / specimen.
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Fig. 4. Sample obtained after resin coating

The observation of the specimens (cf. Fig. 4) through a microscope (5x and possibly 10x
magnification) is realised as follows; first of all, the specimen is fixed on the microscope
bearing, then the horizontal and vertical position of the magnifying glass is checked in relation
to the specimen (the position must be adjusted until a clear and sharp image is obtained). The
brightness of the microscope is adjusted automatically. The microscope parameters must then
be checked on the software: position, magnifying glass, sharpness .... The scanning of the
sample is done by moving the bearing along the x and y directions. Although the microscope
is based on precise software, there can still be errors in the image taking caused by the bearing
not being perfectly fixed. The slightest destabilization of the microscope causes measurement
errors, which leads to more or less important measurement variabilities. Acquisition and

processing of results takes about 1 hour / section.
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Appendix 2: Mould design and manufacturing

In the thesis beginning, the work ambition was to study the different composite fuselage
components and the interaction between them (cf. ANR / Astrid Blast Project). So, a mould
(cf. Fig. 5) was designed to manufacture a prototype for a composite fuselage part to be used
in an innovative polymerisation process called “one shot”. This concept aims to polymerise all

the fuselage components in one phase and using the same polymerisation process.

The mould is composed of 4 main components (cf. Fig. 6), (1) is the base that holds all the
other components, (2) the frame mould, (3) the frame counter mould and (4) the stringers
counter mould (cf. Fig.2). This form allows to manufacture a fuselage part containing a part

from the skin with a frame and two stringers.

Fig. 5. One shot fuselage mould designed using Catia V5

Fig. 6. Exploded view for the fuselage mould
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The different mould components were than manufacturing using the 5-axis machine and
“AU4G (2017A)T451” material (cf. Fig. 7).

Fig. 7. Manufactured mould

The obtained fuselage part is presented in Fig. 8.

Fig. 8. Composite fuselage part obtained after curing

In this thesis, the stringer counter moulds were used as for the manufacturing of the Q-shape

4 stringers used in variability study.
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Appendix 3: Input sets after lay-up

The full data sets of gaps (mm) measured after polymerization process using microscopic

observation is presented here for each ply category respectively, for 1% category (cf. Table 1),

for 2" category (cf. Table 2), for 3" category (cf. Table 3) and for 4" category (cf. Table 4).

Category 1:
Location along z direction (mm)

Ply number -135 -45 45 135
Plyl -1,66 1,46 1,14 -0,31
Ply3 2,56 1,75 2,72 1,37
Ply9 1,95 2,43 2,41 1,1
Ply12 4,56 4,35 1,06 0,56
Ply18 1,82 3,34 3,5 2,15
Ply20 -1,42 2,16 1,75 0,41

Table 1. Gaps measured after polymerisation process for category 1 plies

Category 2:
Location along z direction (mm)
Ply number -135 -45 45 135
Ply5 1,9 0,95 -1,32 0,58
Ply7 0,53 1,39 2,52 0,36
Plyl4 0,49 1,71 2,32 -0,55
Ply16 -0,54 0,34 0,63 0,58

Table 2. Gaps measured after polymerisation process for category 2 plies
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Category 3:
Location along z direction (mm)
Ply number -135 -45 45 135
Ply2 (Web) -4,71 -5,01 3,7 2,69
Ply19 (Web) -4,91 -5,72 -1,49 -4,66
Ply2 (b.flange) -2,49 -1,50 -2,68 -3,02
Ply19 (b.flange) -1,68 -0,2 3,73 2,4

Table 3. Gaps measured after polymerisation process for category 3 plies

Category 4:
Location along z direction (mm)
Ply number -135 -45 45 135
Ply4 -0,97 -0,68 1,58 -0,69
Ply6 0,41 -0,43 -1,41 -1,06
Ply8 0,39 0,58 0,43 -0,84
Ply10 -0,61 -0,33 0,48 0,78
Ply11l 0,69 0,36 0,24 0,52
Ply13 -1,85 0,26 1,04 -1,73
Ply15 -0,67 0,29 0,62 -0,4
Ply17 -0,99 0,64 1,29 -0,67

Table 4. Gaps measured after polymerisation process for category 4 plies
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Appendix 4: Numerical study of a composite fuselage skin

Numerical modelling of the skin

In this section, we represent a numerical analysis related to another part of the composite
fuselage. The skin of fuselage has a cylindrical form. It covers the stringers and the frames (cf.
Fig. 9). Here we study ¥4 of the total skin surface (without stringer or frame) used as prototype

for ANR / Astrid Blast project presented in the first chapter.

Stringer

Fig. 9. Composite fuselage with different components, stringer, skin and frame (ANR/Astrid

Blast Project)

The skin is composed from 8 UD plies with stacking sequence [45, 90, -45, 0] s. The skin bearing
geometrical cylinder has a radius of 615 mm, the skin angle is 36° with a depth of about 2.48
mm (cf. Fig. 10).

R615

= 2,48

L.

- /
~_ /,
~— . 36° ///
e
L

Fig. 10. Skin part dimensions

The considered variability in this section is fibre misalignment and ply thickness. Mathematical

analysis is taken from work in [1].
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For fibre misalignment variability, the local variation of the misalignment was described as a
sum of i pseudo-Gaussian surfaces, having a central point with coordinates X; and Y;, the
length and the width of each perturbation is described by the parameters «; and S;, equivalent
to the standard deviation in a normal distribution. The amplitude of the perturbation is
controlled by B;. This set of equations (cf. Eq.1) allows a continuous modelling of fibre

orientation variability:

X—Xi 2 y—Yi 2>
- + -
Hpert(x;y) = Z?=1 B;e <( % ) ( bi ) Eq.1
The Eq.1 parameters are obtained by an optimisation algorithm.

The structure thickness variability is represented by the following model (cf. Eq.2):
() = T+ Sy Aisin (205 + 0ui) + Sbpiare ) Eq2

Where t, (x) is the evolution of the thickness of the k™ ply through x, £, is the mean thickness
of the k™ ply, 4; is the amplitude of the corresponding wavelength 3; of the i peak, Otpiate (X)
is the contribution of the thickness variation of the plate on the ply mean thickness (means the
desired plate profile divided by the number of plies). The parameters are taken from the

literature work because the skin is constituted by UD plies (as in the literature).

Results after cooling
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Fig. 11. Tsai-Hill criterion comparison between models without (left) and with (right)
variability consideration after cooling

Tsai-Hill criterion (cf. Fig. 11) seems to increase the maximum values areas in the skin after
cooling. A discontinuity also is observed especially in the centre. These results are different
from results obtained in the composite structure with complex geometry structure.
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Fig. 12. Comparison between skin model without (left) and with (right) variability
consideration in the case of displacement U3

The thickness and the fibre misalignment variabilities seem to influence the structure behaviour
after cooling process. The displacement U3 increases with about 50% in the centre area (cf. Fig.

12). In a specific location (y=0), Fig. 13 shows clearly this difference in terms of displacement.
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Fig. 13. Comparison between skin model without (blue curve) and with (orange curve)

variability consideration in the case of displacement U3 iny =0
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Appendix 5: Numerical methodology using python code

-*- coding: utf-8 -*-
Created on Fri Nov 21 10:56:55 2019
@author: khouloud
import numpy as np
import numpy as numpy
import matplotlib.pyplot as plt
import statistics
from random import random
from random import uniform
from random import gauss
# Programmation des coefficients des polynomes des écarts
#parametres aprés découpe
#
X=[-135,-45,45,135] # positions Z (largeur lisse)
#
#catégorie TISSE (plis 3,5, 5,7, 9,12, 14,14, 16, 18 et 20)
#
#
#Ply 3
#
YPc3=[0.2,0.0,-0.8,-0.6,0,0] #Ecarts

APc3= np.zeros ((6,6)) # matrice des Ecarts (entre position théorique et réelle)

for j in range (0,4):
for i in range (0,6):

APc3[j,i] = X[j]**(i)  # remplissage matrice partie polynome des écarts

for i in range (1,6):
APc3[4,i] =i * X[0]**(1-1) #remplissage matrice partie tangente gauche du pdlynome (choix pour continuité)

APc3[5,i] =i * X[3]**(1-1) #remplissage matrice partie tangente droite du polynome (choix pour continuité)

PPc3=np.linalg.solve(APc3,YPc3) #vecteur solutions (coefficients du polynéme des écarts)

SPc3 =np.zeros((270)) # initialisation matrice des résultats pour l'identification des coef. du polynéme

for i in range (-135,135):
SPc3 [i+135] =PPc3[0]+PPc3[1]*i+PPc3[2]*(i**2) + PPc3[3]*(i**3)+ PPc3[4]*(i**4)+PPc3[5]*(i**5) #remplissage matrice des

résultats pour I'identification des coef. du polynome

IPc3 = np.dot(APc3,PPc3)-YPc3  #vérification de la cohérence physique des coefficients du polynome sur la valeur des

écarts obtenus

plot5 = plt. figure(5)

plt.title("category Woven")

plt.plot (SPc3,label="Ply3" linestyle='--')
pltlegend()
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plt.xlabel('Distance along structure length (mm)')

plt.ylabel('Gap (mm)')

#

#Ply 5 (Gauche)

#

YP5Gce=[0.2,0.6,0.2,-0.4,0,0] #Ecarts

AP5Gc= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):
AP5Gclj,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP5Gc[4,i] =1* X[0]**(i-1) #remplissage matrice partie tangente gauche
AP5Gc[5,i] =1* X[3]**(i-1) #remplissage matrice partie tangente droite
PP5Gc=np.linalg.solve(AP5Gc,YP5Gc) #vecteur solutions (coefficients de polynome)

SP5Gc =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SP5Gc [i+135] =PP5Gc[0]+PP5Gc[1]*i+PP5Ge[2]#(i**2) + PP5Gc[3]*(i**3)+ PP5Gc[4]*(i**4)+PP5Gc[5]*(i**5) #remplissage

matrice des résultats

IP5Gc = np.dot(AP5Gc,PP5Gc)-YP5Ge  #vérification polynome

plt.plot (SP5Gc,label="Ply5")
pltlegend()

#

#Ply 7 (Gauche)

#

YP7Gc= [-1.6,-1.2,-1,-1,0,0] #Ecarts

AP7Gc= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP7Gclj,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP7Gc[4,i] =1i* X[0]**(i-1) #remplissage matrice partie tangente gauche

AP7Gc[5,i] =i* X[3]**(i-1) #remplissage matrice partie tangente droite

PP7Gc=np.linalg.solve(AP7Gc,YP7Gc) #vecteur solutions (coefficients de polynome)
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SP7Gc =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP7Gc [i+135] =PP7Gc[0]+PP7Gc[1]*1+PP7Gc[2]*(i**2) + PP7Gc[3]*(i**3)+ PP7Gc[4]*(i**4)+PP7Gc[5]*(i**5) #remplissage

matrice des résultats

IP7Gc = np.dot(AP7Gc,PP7Gc)-YP7Ge  #vérification polynome

plt.plot (SP7Gc,label="Ply7")
pltlegend ()

#Ply 9

YPc9=[0.4,0,1,1,0,0] #Ecarts

APc9= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

APc9[j,i] = X[j]**(i)  # remplissage matrice partie polynome

for i in range (1,6):
APc9[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
APc9[5,i] =i * X[3]**(1-1) #remplissage matrice partie tangente droite

PPc9=np.linalg.solve(APc9,YPc9) #vecteur solutions (coefficients de polynome)

SPc9 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SPc9 [i+135] =PPc9[0]+PPcO[1]*i+PPcO[2]*(i**2) + PPcO[3]*(i**3)+ PPcI[4]*(i**4)+PPcI[5]*(i**5) #remplissage matrice des

résultats

IPc9 = np.dot(APc9,PPc9)-YPc9  #vérification polynome

plt.plot (SPc9,label="Ply9")
pltlegend()

#

#Ply 12

#

YPc12=[-0.6,-0.7,-0.8,-0.6,0,0] #Ecarts

APc12= np.zeros ((6,6)) # matrice des Ecarts
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for j in range (0,4):
for i in range (0,6):
APc12[j,i] = X[j]**(Q)  # remplissage matrice partie polynome
for i in range (1,6):
APc12[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
APc12[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PPc12=np.linalg.solve(APc12,YPc12) #vecteur solutions (coefficients de polynome)

SPc12 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SPc12 [i+135] =PPc12[0]+PPc12[1]4+PPc12[2]*([**2) + PPc12[3]*(i**3)+ PPc12[4]*(i**4)+PPc12[5]*(i**5) #remplissage matrice

des résultats

IPc12 = np.dot(APc12,PPc12)-YPc12  #vérification polynome

plt.plot (SPc12,label="Ply12")
pltlegend|()

#
#Ply 14 (Gauche)
#

YP14Gc=[-1.0,-0.8,-0.6,0.0,0,0] #Ecarts
AP14Gc= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
AP14Gc[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP14Gc[4,i] =1 * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP14Gc[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP14Gc=np.linalg.solve(AP14Gc,YP14Gc) #vecteur solutions (coefficients de polynome)
SP14Gc =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):
SP14Ge [i+135] =PP14Gc[0]+PP14Gc[1]*i+PP14Gc[2]*(i**2) + PP14Gc[3]*(i**3)+ PP14Gc[4]*(i**4)+PP14Gc[5]*(i**5)

#remplissage matrice des résultats

IP14Gc = np.dot(AP14Gc,PP14Gc)-YP14Ge  #vérification polynome
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plt.plot (SP14Gc,label="Ply14")
pltlegend()

#
#Ply 16 (Gauche)
#

YP16Gc=[1,1.4,2,3,0,0] #Ecarts

AP16Gc= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP16Gc[j,i] = X[j]I**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP16Gc[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP16Gc[5,i] =1 * X[3]**(i-1) #remplissage matrice partie tangente droite
PP16Gc=np.linalg.solve(AP16Gc,YP16Gc) #vecteur solutions (coefficients de polynome)

SP16Gc =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP16Gc [i+135] =PP16Gc[0]+PP16Gc[1]*1+PP16Ge[2]*(i**2) + PP16Gc[3]*(i**3)+ PP16Gc[4]*(i**4)+PP16Gc[5]*(i**5)

#remplissage matrice des résultats

IP16Gc = np.dot(AP16Gc,PP16Gc)-YP16Ge  #vérification polynome

plt.plot (SP16Gc,label="Ply16")
pltlegend()

#
#Ply 18
#

YPc18= [-2,-2,-1.5,-1.4,0,0] #Ecarts
APc18= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):

for i in range (0,6):

APc18[j,i] = X[jI**(Q)  # remplissage matrice partie polynome

for i in range (1,6):
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APc18[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
APc18[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite

PPc18=np.linalg.solve(APc18,YPc18) #vecteur solutions (coefficients de polynome)

SPc18 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SPc18 [i+135] =PPc18[0]+PPc18[1]*i+PPc18[2]*(i**2) + PPc18[3]*(i**3)+ PPc18[4]*(i**4)+PPc18[5]*(i**5) #remplissage matrice

des résultats

[Pc18 = np.dot(APc18,PPc18)-YPc18  #vérification polynome

plt.plot (SPc18,label="Ply18")
pltlegend|()

#

#Ply 20

#

YPc20=[1.2,0.7,0.4,0.8,0,0] #Ecarts
APc20= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):

for i in range (0,6):

APc20[j,i] = X[j]**(Q)  # remplissage matrice partie polynome

for i in range (1,6):

APc20[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche

APc20[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PPc20=np.linalg.solve(APc20,YPc20) #vecteur solutions (coefficients de polynome)
SPc20 =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):

SPc20 [i+135] =PPc20[0]+PPc20[1]*i+PPc20[2]*(**2) + PPc20[3]*(i**3)+ PPc20[4]*(i**4)+PPc20[5]*(i**5) #remplissage matrice
des résultats

IPc20 = np.dot(APc20,PPc20)-YPc20  #vérification polynome

plt.plot (SPc20,label="Ply20")
pltlegend|()

plt.grid()

#

#détermination des moyennes et écart-types pour catégorie TISSE écart découpe
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#

ecartype_coeff_catTISSE =np.zeros((6))
moyenne_coeff_catTISSE =np.zeros((6))

coeff_catTISSEO=[PPc3[0],PP5Gc[0],PP7Gc[0], PPc9[0],PPc12[0],PP14Gc[0],PP16Gc[0],PPc18[0],PPc20[0]]
coeff_catTISSE1=[PPc3[1],PP5Gc[1],PP7Gc[1],PPc9[1],PPc12[1],PP14Gc[1],PP16Gc[1],PPc18[1],PPc20[1]]
coeff_catTISSE2=[PPc3[2],PP5Gc[2], PP7Ge[2],PPc9[2], PPc12[2], PP14Gc[2], PP16Ge[2], PPc18[2], PPc20[2]]
coeff_catTISSE3=[PPc3[3],PP5Gc[3],PP7Gc[3],PPc9[3], PPc12[3],PP14Gc[3], PP16Gc[3], PPc18[3],PPc20[3]]
coeff_catTISSE4=[PPc3[4],PP5Gc[4],PP7Gc[4] PPc9[4], PPc12[4],PP14Gc[4],PP16Gc[4],PPc18[4],PPc20[4]]
coeff_catTISSE5=[PPc3[5],PP5Gc[5],PP7Gc[5],PPc9[5],PPc12[5],PP14Gc[5],PP16Gc[5],PPc18[5],PPc20[5]]
ecartype_coeff_catTISSE[0]= statistics.stdev(coeff_catTISSEO)
coeff_catTISSEL)
coeff_catTISSE2)

(

ecartype_coeff_catTISSE[1]= statistics.stdev(

ecartype_coeff_catTISSE[2]= statistics.stdev(

ecartype_coeff_catTISSE[3]= statistics.stdev(coeff_catTISSE3)

ecartype_coeff_catTISSE[4]= statistics.stdev(coeff_catTISSE4)
[

ecartype_coeff_catTISSE[5]= statistics.stdev(coeff_catTISSE5)

moyenne_coeff_catTISSE[0]= statistics.mean(coeff_catTISSEQ)

moyenne_coeff_catTISSE[1]= statistics.mean(coeff_catTISSE1)

[

[

moyenne_coeff_catTISSE[2]= statistics.mean(coeff_catTISSE2)

moyenne_coeff_catTISSE[3]= statistics.mean(coeff_catTISSE3)

moyenne_coeff_catTISSE[4]= statistics.mean(coeff_catTISSE4)
[

moyenne_coeff_catTISSE[5]= statistics.mean(coeff_catTISSE5)

#

#catégorie UD (2,4, 6, 8,10,11, 13, 15,17 et 19)
#

#

#Ply 2 (Web) (ame de la lisse)

#

YP2Wc=[-0.4,0.2,0,-0.4,0,0] #Ecarts
AP2Wc= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
AP2Wc[ji] = X[jI**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP2Wcl[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP2Wc[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite

PP2Wc=np.linalg.solve(AP2Wc,YP2Wc) #vecteur solutions (coefficients de polynome)

SP2Wc =np.zeros((270)) # initialisation matrice des résultats
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for i in range (-135,135):
SP2Wec [i+135] =PP2Wc[0]+PP2Wc[1]*i+PP2Wc[2]*(i**2) + PP2Wc[3]*(i**3)+ PP2Wc[4]*(i**4)+PP2Wc[5]*(**5) #remplissage

matrice des résultats

IP2Wc = np.dot(AP2Wc,PP2Wc)-YP2Wc  #vérification polynome

plot6 = plt. figure(6)

plt.title("category UD")

plt.plot (SP2Wc,label="Ply2 Web" linestyle='--')
pltlegend ()

plt.xlabel('Distance along structure length (mm)')

plt.ylabel('Gap (mm)')

#

#Ply 2 (t.flange) (aile gauche de la lisse)
#
YP2Tc= [-0.4,0.2,0,-0.4,0,0] #Ecarts

AP2Tc= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP2Tc[j,i] = X[j]**(i)  # remplissage matrice partie polynome

for i in range (1,6):

AP2Tc[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche

AP2Tc[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP2Tc=np.linalg.solve(AP2Tc,YP2Tc) #vecteur solutions (coefficients de polynome)
SP2Tc =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):

SP2Tec [i+135] =PP2Tc[0]+PP2Tc[1]*1+PP2Tc[2]*(i**2) + PP2Tc[3]*(i**3)+ PP2Tc[4]*(i**4)+PP2Tc[5]*(i**5) #remplissage
matrice des résultats

IP2Tc = np.dot(AP2Tc,PP2Tc)-YP2Tc  #vérification polynome

plt.plot (SP2Tc,label="Ply2 top flange")
pltlegend)()

#
#Ply 2 (b.flange)
#

YP2Bc=[-0.4,0.2,0,-0.4,0,0] #Ecarts
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AP2Bc= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP2Bc[j,i] = X[j]**(i))  # remplissage matrice partie polynome

for i in range (1,6):
AP2Bc[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP2Bc[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite

PP2Bc=np.linalg.solve(AP2Bc,YP2Bc) #vecteur solutions (coefficients de polynome)

SP2Bc =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SP2Bc [i+135] =PP2Bc[0]+PP2Bc[1]*4i+PP2Bc[2]*(i**2) + PP2Bc[3]*(i**3)+ PP2Bc[4]*(i**4)+PP2Bc[5]*(**5) #remplissage

matrice des résultats

IP2Bc = np.dot(AP2Bc,PP2Bc)-YP2Bc  #vérification polynome

plt.plot (SP2Bc,label="Ply2 Bottom flange")
pltlegend ()

#

#Ply 4 (continu sur la largeur de la lisse)

#

YPc4=[0,-0.3,-0.3,-0.4,0,0] #Ecarts
APc4= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
APc4[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
APc4[4,i] =i* X[0]**(i-1) #remplissage matrice partie tangente gauche
APc4[5,i] =i * X[3]**(1-1) #remplissage matrice partie tangente droite
PPc4=np.linalg.solve(APc4,YPc4) #vecteur solutions (coefficients de polynome)

SPc4 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SPc4 [i+135] =PPc4[0]+PPc4[1]*i+PPc4[2]*(i**2) + PPc4[3]*(i**3)+ PPc4[4]*(i**4)+PPc4[5]*(i**5) #remplissage matrice des

résultats
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IPc4 = np.dot(APc4,PPc4)-YPc4  #vérification polynome

plt.plot (SPc4,label="Ply4")
pltlegend()
#

#Ply 6 (continu sur la largeur de la lisse)

#

YPc6= [-14,-1.6,1.4,-2,0,0] #Ecarts

APc6= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

APc6[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
APc6[4,i] =1 * X[0]**(1-1) #remplissage matrice partie tangente gauche
APc6[5,i] =i * X[3]**(1-1) #remplissage matrice partie tangente droite
PPc6=np.linalg.solve(APc6,YPc6) #vecteur solutions (coefficients de polynome)

SPc6 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SPc6 [i+135] =PPc6[0]+PPc6[1]*i+PPc6[2]*(i**2) + PPc6[3]*(i**3)+ PPco[4]*(i**4)+PPc6[5]*(i**5) #remplissage matrice des

résultats

IPc6 = np.dot(APc6,PPc6)-YPc6  #vérification polynome

plt.plot (SPc6,label="Ply6")

pltlegend()
#

#Ply 8 (continu sur la largeur de la lisse)

#

YPc8=[0,-0.3,-0.3,-0.4,0,0] #Ecarts
APc8= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):

for i in range (0,6):

APc8[j,i] = X[j]**(i)  # remplissage matrice partie polynome

for i in range (1,6):

APc8[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
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APc8[5,i] =i * X[3]**(1-1) #remplissage matrice partie tangente droite

PPc8=np.linalg.solve(APc8,YPc8) #vecteur solutions (coefficients de polynome)

SPc8 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SPc8 [i+135] =PPc8[0]+PPc8[1]*i+PPc8[2]*(i**2) + PPc8[3]*(i**3)+ PPc8[4]*(i**4)+PPc8[5]*(i**5) #remplissage matrice des

résultats

IPc8 = np.dot(APc8,PPc8)-YPc8  #vérification polynome

plt.plot (SPc8,label="Ply8")
plt.legend|()

#

#Ply 10 (continu sur la largeur de la lisse)

#

YPc10= [-0.2,-0.4,-1.2,-2,0,0] #Ecarts

APc10= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

APc10[j,i] = X[j]**(Q)  # remplissage matrice partie polynome

for i in range (1,6):
APc10[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
APc10[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PPc10=np.linalg.solve(APc10,YPc10) #vecteur solutions (coefficients de polynome)

SPc10 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SPc10 [i+135] =PPc10[0]+PPc10[1]*i+PPc10[2]*(i**2) + PPc10[3]*(i**3)+ PPc10[4]*(i**4)+PPc10[5]*(i**5) #remplissage matrice

des résultats
IPc10 = np.dot(APc10,PPc10)-YPc10  #vérification polynome

plt.plot (SPc10,label="Ply10")
pltlegend|()

#

#Ply11 (continu sur la largeur de la lisse)

#

150



Appendix

YPcl11= [-0.6,-0.8,-0.4,-0.4,0,0] #Ecarts
APcl11= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
APc11[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
APc11[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
APc11[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PPcl1=np.linalg.solve(APc11,YPc11) #vecteur solutions (coefficients de polynome)

SPc11 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SPcl11 [i+135] =PPc11[0]+PPc11[1]*1+PPc11[2]*(i**2) + PPc11[3]*(i**3)+ PPc11[4]*(i**4)+PPc11[5]*(i**5) #remplissage matrice

des résultats

IPc11 = np.dot(APc11,PPc11)-YPcll #vérification polynome

plt.plot (SPc11,label="Ply11")
pltlegend()

#

#Ply 13 (continu sur la largeur de la lisse)

#

YPc13= [-2,-1.6,-1.4,-0.8,0,0] #Ecarts
APc13= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
APc13[j,i] = X[j]**(Q)  # remplissage matrice partie polynome
for i in range (1,6):
APc13[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
APc13[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PPc13=np.linalg.solve(APc13,YPc13) #vecteur solutions (coefficients de polynome)

SPc13 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
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SPc13 [i+135] =PPc13[0]+PPc13[1]*i+PPc13[2]*(i**2) + PPc13[3]*(i**3)+ PPc13[4]*(i**4)+PPc13[5]*(i**5) #remplissage matrice

des résultats

[Pc13 = np.dot(APc13,PPc13)-YPc13  #vérification polynome

plt.plot (SPc13,label="Ply13")
pltlegend()

#

#Ply 15 (continu sur la largeur de la lisse)

#

YPc15= [-0.4,-0.8,-0.8,-0.6,0,0] #Ecarts
APc15= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):

for i in range (0,6):

APc15[j,i] = X[j]**(i)  # remplissage matrice partie polynome

for i in range (1,6):

APc15[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche

APc15[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PPc15=np.linalg.solve(APc15,YPc15) #vecteur solutions (coefficients de polynome)
SPc15 =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):

SPc15 [i+135] =PPc15[0]+PPc15[1]*1+PPc15[2]*(i**2) + PPc15[3]*(i**3)+ PPc15[4]*(i**4)+PPc15[5]*(i**5) #remplissage matrice
des résultats

IPc15 = np.dot(APc15,PPc15)-YPc15  #vérification polynome

plt.plot (SPc15,label="Ply15")
pltlegend ()

#

#Ply 17 (continu sur la largeur de la lisse)

#

YPcl17= [-1.4,-0.6,0,0,0,0] #Ecarts

APc17= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):

for i in range (0,6):
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APc17[j,i] = X[jI**(Q)  # remplissage matrice partie polynome
for i in range (1,6):
APc17[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
APc17[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PPc17=np.linalg.solve(APc17,YPc17) #vecteur solutions (coefficients de polynome)

SPc17 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SPc17 [i+135] =PPc17[0]+PPcl7[1]*+PPc17[2]*(**2) + PPc17[3]*(**3)+ PPc17[4]*(i**4)+PPc17[5]*(*5) #remplissage matrice

des résultats

IPc17 = np.dot(APc17,PPc17)-YPcl7  #vérification polynome

plt.plot (SPc17 label="Ply17")
pltlegend()

#
#Ply 19 (t.flange) (aile gauche)
#

YP19Tc= [-1.4,-1,-1,-1,0,0] #Ecarts
AP19Tc= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
AP19Tc[ji] = X[j]**(@) # remplissage matrice partie polynome
for i in range (1,6):
AP19Tc[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP19Tc[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP19Tc=np linalg.solve(AP19Tc,YP19Tc) #vecteur solutions (coefficients de polynome)
SP19Tc =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):
SP19Tc [i+135] =PP19Tc[0]+PP19Tc[1]*i+PP19Tc[2]*(i**2) + PP19Tc[3]*(i**3)+ PP19Tc[4]*(**4)+PP19Tc[5]*(i**5)
#remplissage matrice des résultats

IP19Tc = np.dot(AP19Tc,PP19Tc)-YP19Tc  #vérification polynome

plt.plot (SP19Tc,label="Ply19 Top flange")
pltlegend()
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#
#Ply 19 (Web) (ame de la lisse)
#

YP19We= [14,-1,1,-1,0,0] #Ecarts
AP19Wc= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):

for i in range (0,6):

AP19Wclj,i] = X[j]**(i)  # remplissage matrice partie polynome

for i in range (1,6):

AP19Wc[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche

AP19Wc[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP19Wc=np.linalg.solve(AP19Wc,YP19Wc) #vecteur solutions (coefficients de polynome)
SP19Wc =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):

SP19Wc [i+135] =PP19Wc[0]+PP19Wc[1]*1+PP19Wc[2]*(i**2) + PP19Wc[3]*(i**3)+ PP19Wc[4]*(i**4)+PP19Wc[5]*(i**5)
#remplissage matrice des résultats

IP19Wc = np.dot(AP19Wc,PP19Wc)-YP19Wc  #vérification polynome

plt.plot (SP19Wc,label="Ply19 Web")
pltlegend|()

#

#Ply 19 (b.flange) (aile gauche de la lisse)
#
YP19Bc= [-1.4,-1,-1,-1,0,0] #Ecarts

AP19Bc= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
AP19Bc[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP19Bc[4,i] =1 * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP19Bc[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP19Bc=np.linalg.solve(AP19Bc,YP19Bc) #vecteur solutions (coefficients de polynome)

SP19Bc =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
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SP19Bc [i+135] =PP19Bc[0]+PP19Bc[1]*i+PP19Bc[2]*(i**2) + PP19Bc[3]*(i**3)+ PP19Bc[4]*(i**4)+PP19Bc[5]*(i**5)

#remplissage matrice des résultats

IP19Bc = np.dot(AP19Bc,PP19Bc)-YP19Bc ~ #vérification polynome

plt.plot (SP19Bc,label="Ply19 Bottom flange")
pltlegend()

plt.grid()

##

#détermination des moyennes et écart-types pour catégorie UD écart découpe

#

ecartype_coeff_catUD =np.zeros((6))

moyenne_coeff_catUD =np.zeros((6))

coeff_catUDO0=[PP2Tc[0], PP2Wc[0], PP2Bc[0], PPc4[0], PPc6[0], PPc8[0], PPc10[0], PPc11[0], PPc13[0], PPc15[0], PPc17[0], PP19Tc[0],P
P19Wc[0],PP19Bc([0]]
coeff_catUD1=[PP2Tc[1],PP2Wc[1],PP2Bc[1],PPc4[1],PPc6[1],PPc8[1], PPc10[1],PPc11[1],PPc13[1], PPc15[1],PPc17[1],PP19Tc[1],P
P19Wc[1],PP19Bc[1]]
coeff_catUD2=[PP2Tc[2],PP2Wc[2],PP2Bc[2], PPc4[2], PPc6[2], PPc8[2], PPc10[2], PPc11[2], PPc13[2], PPc15[2], PPc17[2] PP19Tc[2],P
P19Wc[2],PP19Bc[2]]
coeff_catUD3=[PP2Tc[3],PP2Wc[3],PP2Bc[3],PPc4[3], PPc6[3], PPc8[3], PPc10[3], PPc11[3],PPc13[3],PPc15[3], PPc17[3], PP19Tc[3],P
P19Wc[3],PP19Bc[3]]
coeff_catUD4=[PP2Tc[4],PP2Wc[4] PP2Bc[4] PPc4[4], PPc6[4], PPc8[4], PPc10[4], PPc11[4], PPc13[4], PPc15[4], PPc17[4] PP19Tc[4],P
P19Wc[4],PP19Bc[4]]
coeff_catUD5=[PP2Tc[5],PP2Wc[5],PP2Bc[5],PPc4[5], PPc6[5], PPc8[5], PPc10[5], PPcl1[5], PPc13[5], PPc15[5], PPcl7[5], PP19Tc[5],P
P19Wc[5],PP19Bc[5]]

ecartype_coeff_catUD[0]= statistics.stdev(coeff_catUDO
ecartype_coeff_catUD[1]= statistics.stdev(coeff_catUD1
ecartype_coeff_catUD[2]= statistics.stdev(coeff_catUD2
ecartype_coeff_catUD[3]= statistics.stdev(coeff_catUD3

- £ L2 O =

(
ecartype_coeff_catUD[4]= statistics.stdev(coeff_catUD4
ecartype_coeff_catUD[5]= statistics.stdev(coeff_catUD5
moyenne_coeff_catUD[0]= statistics.mean(coeff_catUDO)
moyenne_coeff_catUD[1]= statistics.mean(coeff_catUD1)
coeff_catUD2)
coeff_catUD3)

moyenne_coeff_catUD[3]= statistics.mean

moyenne_coeff_catUD[4

=

=
moyenne_coeff_catUD[2]= statistics.mean

=

]= statistics.mean(coeff_catUD4)

=

(
(
(
(
(
(

moyenne_coeff_catUD[5]= statistics.mean(coeff_catUD5)

#parametres aprés polymérisation (deuxiéme source d’écarts) (cat1, 2, 3 et 4 : quatre catégories de pli liées a la
polymérisation)

#

#category 1 (plis 3,9, 12,18 et 20)

#
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#

#Ply 3

#

YP3=[2.37,1.68,2.71,1.35,0,0] #Ecarts

AP3= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP3[j,i] = X[j]**(i)  # remplissage matrice partie polynome

for i in range (1,6):
AP3[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP3[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite

PP3=np.linalg.solve(AP3,YP3) #vecteur solutions (coefficients de polynome)

SP3 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP3 [i+135] =PP3[0]+PP3[1]*1+PP3[2]*(i**2) + PP3[3]*(i**3)+ PP3[4]*(i**4)+PP3[5]*(i**5) #remplissage matrice des résultats

IP3 = np.dot(AP3,PP3)-YP3  #vérification polynome

plotl = plt. figure(1)

plt.title('category 1")

plt.plot (SP3,label="Ply3" linestyle='--)
pltlegend|()

plt.xlabel('Distance along structure length (mm)')

plt.ylabel('Gap (mm)")

#Ply 9

YP9= [1.8,2.42,2.41,1.07,0,0] #Ecarts

AP9= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP9[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP9[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche

AP9[5,i] =i* X[3]**(i-1) #remplissage matrice partie tangente droite

PP9=np.linalg.solve(AP9,YP9) #vecteur solutions (coefficients de polynome)
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SP9 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP9 [i+135] =PP9[0]+PPI[1]*1+PPI[2]*(i**2) + PPI[3]*(i**3)+ PP9[4]*(i**4)+PP9[5]*(i**5) #remplissage matrice des résultats

IP9 = np.dot(AP9,PP9)-YP9  #vérification polynome

plt.plot (SP9,label="Ply9")
pltlegend()

#

#Ply 12

#

X=[-135,-45,45,135] # positions Z

YP12=[4.46,4.32,1.01,-0.32,0,0] #Ecarts

AP12= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP12[ji] = X[jI**(@)  # remplissage matrice partie polynome
for i in range (1,6):
AP12[4,i] =1 * X[0]**(-1) #remplissage matrice partie tangente gauche
AP12[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP12=np.linalg.solve(AP12,YP12) #vecteur solutions (coefficients de polynome)

SP12 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP12 [i+135] =PP12[0]+PP12[1]*i+PP12[2]*(i**2) + PP12[3]*(i**3)+ PP12[4]*(i**4)+PP12[5]*({**5) #remplissage matrice des

résultats

IP12 = np.dot(AP12,PP12)-YP12  #vérification polynome

plt.plot (SP12,label="Ply12" linestyle='-.")
pltlegend ()

#
#Ply 18
#

X=[-135,-45,45,135] # positions Z
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YP18= [1.45,3.253.52.15,0,0] #Ecarts
AP18= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP18[ji] = X[j]**(i)  # remplissage matrice partie polynome

for i in range (1,6):
AP18[4,i] =1 * X[0]**(-1) #remplissage matrice partie tangente gauche
AP18[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite

PP18=np.linalg.solve(AP18,YP18) #vecteur solutions (coefficients de polynome)

SP18 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP18 [i+135] =PP18[0]+PP18[1]*i+PP18[2]*(i**2) + PP18[3]*(i**3)+ PP18[4]*(i**4)+PP18[5]*(i**5) #remplissage matrice des

résultats

IP18 = np.dot(AP18,PP18)-YP18  #vérification polynome

plt.plot (SP18,label="Ply18" linestyle="")
pltlegend ()

#

#Ply 20

#

X=[-135,-45,45,135] # positions Z
YP20=[0.93,2.06,1.75,0.39,0,0] #Ecarts
AP20= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
AP20[j,i] = X[jI**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP20[4,i] =1 * X[0]**(-1) #remplissage matrice partie tangente gauche
AP20[5,i] =1 * X[3]**(i-1) #remplissage matrice partie tangente droite
PP20=np.linalg.solve(AP20,YP20) #vecteur solutions (coefficients de polynome)

SP20 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
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SP20 [i+135] =PP20[0]+PP20[1]*i+PP20[2]*(i**2) + PP20[3]*(i*3)+ PP20[4]*(i**4)+PP20[5]*(i**5) #remplissage matrice des

résultats

IP20 = np.dot(AP20,PP20)-YP20  #vérification polynome

plt.plot (SP20,label="Ply20")
pltlegend()

plt.grid()

#

#détermination des moyennes et écart-types pour catégorie 1

#

ecartype_coeff_catl =np.zeros((6))

moyenne_coeff_catl =np.zeros((6))

coeff_cat10=[PP3[0],PP9[0],PP12[0], PP18[0],PP20[0]]
coeff_cat11=[PP3[1],PP9[1],PP12[1],PP18[1],PP20[1]]
coeff_cat12=[PP3[2], PP9[2],PP12[2], PP18[2],PP20[2]]
coeff_cat13=[PP3[3],PP9[3],PP12[3],PP18[3],PP20[3]]
coeff_cat14=[PP3[4] PP9[4],PP12[4], PP18[4],PP20[4]]
coeff_cat15=[PP3[5],PP9[5],PP12[5],PP18[5],PP20[5]]

ecartype_coeff_cat1[0]= statistics.stdev(coeff_cat10)
ecartype_coeff_catl[1]= statistics.stdev(coeff_cat11)
ecartype_coeff_catl[2]= statistics.stdev(coeff_cat12)
ecartype_coeff_catl[3]= statistics.stdev(coeff_cat13)
ecartype_coeff_catl[4]= statistics.stdev(coeff_cat14)
ecartype_coeff_catl[5]= statistics.stdev(coeff_cat15)

moyenne_coeff_cat1[0]= statistics.mean(coeff_cat10

moyenne_coeff_catl1[1]= statistics.mean(coeff_cat11

moyenne_coeff_catl1[2]= statistics.mean(coeff_cat12

coeff_cat13

moyenne_coeff_catl[4]= statistics.mean(coeff_cat14

] ( )
] ( )
] ( )
moyenne_coeff_cat1[3]= statistics.mean( )
| ( )
]= statistics.mean(coeff_cat15)

moyenne_coeff_catl1[5

#

# category 2 (plis 2 et 19)
#

#

#Ply 2 (Web)
#

X=[-135,-45,45,135] # positions Z

YP2W=[0.68,0.26,3.39,2.08,0,0] #Ecarts
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AP2W= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
AP2WIj,i] = X[jI**()  # remplissage matrice partie polynome
for i in range (1,6):
AP2W[4,i] =1 * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP2W[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP2W=np.linalg.solve(AP2W,YP2W) #vecteur solutions (coefficients de polynome)

SP2W =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SP2W [i+135] =PP2W[0]+PP2W/[1]*i+PP2W[2]*(i**2) + PP2W[3]*(i**3)+ PP2W[4]*(i**4)+PP2W[5]*(i**5) #remplissage matrice

des résultats

IP2W = np.dot(AP2W,PP2W)-YP2W  #vérification polynome
plot2 = plt. figure(2)

plt.title('category 2")

plt.plot (SP2W,label="Ply2 Web",color="red',linestyle="--")
pltlegend()

plt.xlabel('Distance along structure length (mm)')
plt.ylabel('Gap (mm)')

#

#Ply 19 (Web)

#

X=[-135,-45,45,135] # positions Z
YP19W= [-5.2,-5.8,-1.35,-4.6,0,0] #Ecarts
AP19W= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
AP19WIj,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP19W[4,i] =1 * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP19W[5,i] =1 * X[3]**(i-1) #remplissage matrice partie tangente droite

PP19W=np linalg.solve(AP19W,YP19W) #vecteur solutions (coefficients de polynome)

SP19W =np.zeros((270)) # initialisation matrice des résultats
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for i in range (-135,135):
SP19W [i+135] =PP19W[0]+PP19W[1]*i+PP19W[2]*(i**2) + PP19W[3]*(i**3)+ PP19W[4]*(i**4)+PP19W[5]*(i**5) #remplissage

matrice des résultats

IP19W = np.dot(AP19W,PP19W)-YPI9W  #vérification polynome

plt.plot (SP19W label="Ply19 Web",color='grey' linestyle='--)
pltlegend()

#
#Ply 2 (b.flange)
#

X=[-135,-45,45,135] # positions Z

YP2B=[-2.49,-1.5,-4.68,-6.02,0,0] #Ecarts

AP2B= np.zeros ((6,0)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP2B[ji] = X[j]**(Q)  # remplissage matrice partie polynome

for i in range (1,6):

AP2B[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche

AP2B[5,i] =1* X[3]**(i-1) #remplissage matrice partie tangente droite
PP2B=np linalg.solve(AP2B,YP2B) #vecteur solutions (coefficients de polynome)
SP2B =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):

SP2B [i+135] =PP2B[0]+PP2B[1]*i+PP2B[2]*(i**2) + PP2B[3]*(i**3)+ PP2B[4]*(i**4)+PP2B[5]*({**5) #remplissage matrice des
résultats

IP2B = np.dot(AP2B,PP2B)-YP2B  #vérification polynome

plt.plot (SP2B,label="Ply2 Bottom flange",color="red')
pltlegend()

#
#Ply 19 (b.flange)
#

X=[-135,-45,45,135] # positions Z
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YP19B=[-1.68,-0.2,3.73,2.4,0,0] #Ecarts

AP19B= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):

for i in range (0,6):

AP19BJj,i] = X[j]**(i)  # remplissage matrice partie polynome

for i in range (1,6):

AP19B[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP19B[5,i] =1 * X[3]**(i-1) #remplissage matrice partie tangente droite

PP19B=np linalg.solve(AP19B,YP19B) #vecteur solutions (coefficients de polynome)

SP19B =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SP19B [i+135] =PP19B[0]+PP19B[1]*i+PP19B[2]*({**2) + PP19B[3]*(i**3)+ PP19B[4]*(i**4)+PP19B[5]*({**5) #remplissage

matrice des résultats

IP19B = np.dot(AP19B,PP19B)-YP19B  #vérification polynome

plt.plot (SP19B,label="Ply19 Bottom flange",color='grey"')

pltlegend()
plt.grid()

##

#détermination des moyennes et écart-types pour catégorie 2 (plis 2 et 19)

#

ecartype_coeff_cat2 =np.zeros((6))

moyenne_coeff_cat2 =np.zeros((6))

coeff_cat20=[PP2W[0],PP19W[0], PP2B[0],PP19B[0]]
coeff_cat21=[PP2W[1],PP19W[1],PP2B[1],PP19B[1]]
coeff_cat22=[PP2W|2],PP19W|2],PP2B[2],PP19B|2]]
coeff_cat23=[PP2W|3],PP19W|3],PP2B[3],PP19B[3]]
coeff_cat24=[PP2W|[4],PP19W[4],PP2B[4],PP19B[4]]
coeff_cat25=[PP2W[5],PP19W[5],PP2B[5],PP19B[5]]
ecartype_coeff_cat2[0]= statistics.stdev(coeff_cat20
coeff_cat21

ecartype_coeff_cat2[1]= statistics.stdev

ecartype_coeff_cat2[2]= statistics.stdev(coeff_cat22

(
(
(
ecartype_coeff_cat2[3]= statistics.stdev(coeff_cat23

ecartype_coeff_cat2[4]= statistics.stdev(coeff_cat24

)
)
)
)
)
)

ecartype_coeff_cat2[5]= statistics.stdev(coeff_cat25
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moyenne_coeff_cat2[0]= statistics.mean(coeff_cat20

(
moyenne_coeff_cat2[1]= statistics.mean(coeff_cat21
(

moyenne_coeff_cat2[2]= statistics.mean(coeff_cat22

)
)
)
)

moyenne_coeff_cat2[3]= statistics.mean(coeff_cat23

moyenne_coeff_cat2[4]= statistics.mean(coeff_cat24)

]
]
]
]
]
moyenne_coeff_cat2[5]= statistics.mean(coeff_cat25)

#

#category 3 (plis UD 2, 4, 6, 8,10,11, 13, 15,17 et 19)
#

#

#Ply 2 (t.flange)

#

X=[-135,-45,45,135] # positions Z

YP2T=[1.63,1.5,2.38,2.02,0,0] #Ecarts

AP2T= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP2T[j,i] = X[j]**(i)  # remplissage matrice partie polynome

for i in range (1,6):
AP2T[4,i] =1 * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP2T[5,i] =1 * X[3]**(i-1) #remplissage matrice partie tangente droite

PP2T=np.linalg.solve(AP2T,YP2T) #vecteur solutions (coefficients de polynome)

SP2T =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP2T [i+135] =PP2T[0]+PP2T[1]*i+PP2T[2]*(i**2) + PP2T[3]*(i**3)+ PP2T[4]*(i**4)+PP2T[5]*(i**5) #remplissage matrice des

résultats

IP2T = np.dot(AP2T,PP2T)-YP2T  #vérification polynome

plot3 = plt. figure(3)

plt.title("category 3")

plt.plot (SP2T label="Ply2 Top flange")
pltlegend)()

plt.xlabel('Distance along structure length (mm)')
plt.ylabel('Gap (mm)')

#

#Ply 4

#
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YP4=[-0.89,-0.65,0.52,-0.69,0,0] #Ecarts

AP4= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP4[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP4[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP4[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP4=np linalg.solve(AP4,YP4) #vecteur solutions (coefficients de polynome)

SP4 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP4 [i+135] =PP4[0]+PP4[1]*1+PP4[2]*(i**2) + PP4[3]*(i**3)+ PP4[4]*(i**4)+PP4[5]*(i**5) #remplissage matrice des résultats

IP4 = np.dot(AP4,PP4)-YP4 #vérification polynome

plt.plot (SP4,label="Ply4")
pltlegend ()

#

#Ply 6

#

YP6= [0.006,-0.35,-1.32,-0.94,0,0] #Ecarts

AP6= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
AP6[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP6[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP6[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP6=np.linalg.solve(AP6,YP6) #vecteur solutions (coefficients de polynome)

SP6 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP6 [i+135] =PP6[0]+PP6[1]*1+PP6[2]*(i**2) + PP6[3]*(i**3)+ PP6[4]*(i**4)+PP6[5]*(i**5) #remplissage matrice des résultats
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IP6 = np.dot(AP6,PP6)-YP6  #vérification polynome

plt.plot (SP6,label="Ply6")
pltlegend()

#Ply 8

YP8=[0.11,0.064,-0.21,-0.68,0,0] #Ecarts
AP8= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
APS[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP8[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP8[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP8=np.linalg.solve(AP8,YP8) #vecteur solutions (coefficients de polynome)

SP8 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP8 [i+135] =PP8[0]+PP8[1]*1+PP8[2]*(i**2) + PP8[3]*(i**3)+ PP8[4]*(i**4)+PP8[5]*(i**5) #remplissage matrice des résultats

IP8 = np.dot(AP8,PP8)-YP8  #vérification polynome

plt.plot (SP8,label="Ply8")
pltlegend()

#
#Ply 10

#

YP10=[-0.29,-0.3,0.089,0.35,0,0] #Ecarts

AP10= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP10[j,i] = X[jI**(1)  # remplissage matrice partie polynome

for i in range (1,6):
AP10[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP10[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
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PP10=np.linalg.solve(AP10,YP10) #vecteur solutions (coefficients de polynome)

SP10 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP10 [i+135] =PP10[0]+PP10[1]*i+PP10[2]*(i**2) + PP10[3]*(i**3)+ PP10[4]*(i**4)+PP10[5]*(i**5) #remplissage matrice des

résultats

IP10 = np.dot(AP10,PP10)-YP10  #vérification polynome

plt.plot (SP10,label="Ply10")
pltlegend|()

#

#Ply11

#

YP11=[0.56,0.16,-0.14,0.31,0,0] #Ecarts

AP11= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP11[ji] = X[j]**()  # remplissage matrice partie polynome

for i in range (1,6):
AP11[4,i] =1 * X[0]**(-1) #remplissage matrice partie tangente gauche
AP11[5,i] =1 * X[3]**(-1) #remplissage matrice partie tangente droite

PP11=np.linalg.solve(AP11,YP11) #vecteur solutions (coefficients de polynome)
SP11 =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):
SP11 [i+135] =PP11[0]+PP11[1]*+PP11[2]*(i**2) + PP11[3]*(i**3)+ PP11[4]*({i**4)+PP11[5]*(i**5) #remplissage matrice des
résultats

IP11 = np.dot(AP11,PP11)-YP11  #vérification polynome

plt.plot (SP11,label="Ply11")
pltlegend)()

#
#Ply 13

#

YP13= [-1.17,0.026,0.64,-1.37,0,0] #Ecarts
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AP13= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP13[ji] = X[jI**(@)  # remplissage matrice partie polynome

for i in range (1,6):
AP13[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP13[5,i] =i * X[3]**(-1) #remplissage matrice partie tangente droite

PP13=np.linalg.solve(AP13,YP13) #vecteur solutions (coefficients de polynome)

SP13 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP13 [i+135] =PP13[0]+PP13[1]*+PP13[2]*(i**2) + PP13[3]*(i**3)+ PP13[4]*(i**4)+PP13[5]*({**5) #remplissage matrice des

résultats

IP13 = np.dot(AP13,PP13)-YP13  #vérification polynome

plt.plot (SP13,label="Ply13")

pltlegend|()

#

#Ply 15

#

YP15= [-0.29,0.06,0.25,-0.34,0,0] #Ecarts

AP15= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):

for i in range (0,6):

AP15[ji] = X[jI**(@)  # remplissage matrice partie polynome

for i in range (1,6):

AP15[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche

AP15[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP15=np.linalg.solve(AP15,YP15) #vecteur solutions (coefficients de polynome)
SP15 =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):

SP15 [i+135] =PP15[0]+PP15[1]*+PP15[2]*(i**2) + PP15[3]*(i**3)+ PP15[4]*(i**4)+PP15[5]*(i**5) #remplissage matrice des

résultats

IP15 = np.dot(AP15,PP15)-YP15  #vérification polynome
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plt.plot (SP15,label="Ply15")
pltlegend()

#Ply 17

YP17=[-0.37,0.31,0.82,-0.43,0,0] #Ecarts

AP17= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP17[ji] = X[jI**(@)  # remplissage matrice partie polynome
for i in range (1,6):
AP17[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP17[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP17=np.linalg.solve(AP17,YP17) #vecteur solutions (coefficients de polynome)

SP17 =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP17 [i+135] =PP17[0]+PP17[1]*+PP17[2]*(i**2) + PP17[3]*(i**3)+ PP17[4]*(i**4)+PP17[5]*({**5) #remplissage matrice des

résultats

IP17 = np.dot(AP17,PP17)-YP17  #vérification polynome

plt.plot (SP17,label="Ply17")
pltlegend()

#
#Ply 19 (t.flange)
#

YP19T= [-0.55,0.72,1.021,0.71,0,0] #Ecarts

AP19T= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP19T[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP19T[4,i] =1 * X[0]**(-1) #remplissage matrice partie tangente gauche

API19T[5,i] =1 * X[3]**(i-1) #remplissage matrice partie tangente droite
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PP19T=np.linalg.solve(AP19T,YP19T) #vecteur solutions (coefficients de polynome)
SP19T =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):
SP19T [i+135] =PP19T[0]+PP19T[1]*i+PP19T[2]*(i**2) + PP19T[3]*(i**3)+ PP19T[4]*(i**4)+PP19T[5]*({**5) #remplissage
matrice des résultats

IP19T = np.dot(AP19T,PP19T)-YP19T  #vérification polynome

plt.plot (SP19T label="Ply19 Top flange")
plt.legend|()
plt.grid()

##

#détermination des moyennes et écart-types pour categorie 3

#

ecartype_coeff_cat3 =np.zeros((6))

moyenne_coeff_cat3 =np.zeros((6))

coeff_cat30=[PP2T[0],PP4[0],PP6[0],PP8[0],PP10[0],PP11[0], PP13[0], PP15[0], PP17[0],PP19T]0]]
coeff_cat31=[PP2T[1],PP4[1],PP6[1],PP8[1],PP10[1],PP11[1],PP13[1],PP15[1],PP17[1],PP19T[1]]
coeff_cat32=[PP2T[2],PP4[2],PP6[2],PP8[2],PP10[2],PP11[2], PP13[2], PP15[2], PP17[2], PP19T]2]]
coeff_cat33=[PP2T[3],PP4[3],PP6[3],PP8[3],PP10[3],PP11[3], PP13[3],PP15[3], PP17[3],PP19T[3]]
coeff_cat34=[PP2T[4], PP4[4] PP6[4], PP8[4] PP10[4], PP11[4], PP13[4], PP15[4], PP17[4], PP19T[4]]

, I |

coeff_cat35=[PP2T[5],PP4[5],PP6[5],PP8[5],PP10[5],PP11[5],PP13[5],PP15[5], PP17[5], PP19T[5]

ecartype_coeff_cat3[0]= statistics.stdev(coeff_cat30)
ecartype_coeff_cat3[1]= statistics.stdev(coeff_cat31)
ecartype_coeff_cat3[2]= statistics.stdev(coeff_cat32)
ecartype_coeff_cat3[3]= statistics.stdev(coeff_cat33)
ecartype_coeff_cat3[4]= statistics.stdev(coeff_cat34)
ecartype_coeff_cat3[5]= statistics.stdev(coeff_cat35)
moyenne_coeff_cat3[0]= statistics.mean(coeff_cat30
statistics.mean(coeff_cat31

moyenne_coeff_cat3[1

statistics.mean(coeff_cat33

=
=
moyenne_coeff_cat3[2]= statistics.mean(coeff_cat32
moyenne_coeff_cat3[3]=
=

(
(
(
(
(
(

moyenne_coeff_cat3[4]= statistics.mean(coeff_cat34

)
)
)
)
)
moyenne_coeff_cat3[5]= statistics.mean(coeff_cat35)

#

#categorie 4 (plis 5, 7, 14 et 16 drapés sur 1’dme, partie gauche et droite)
#
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#

#Ply 5 (Gauche)
#

X=[-135,-45,45,135] # positions Z

YP5G=[0.72,0.86,-1.3,-0.23,0,0] #Ecarts

AP5G= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):

for i in range (0,6):

AP5G]j,i] = X[jI**(i)  # remplissage matrice partie polynome

for i in range (1,6):

AP5G[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP5G[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite

PP5G=np .linalg.solve(AP5G,YP5G) #vecteur solutions (coefficients de polynome)

SP5G =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SP5G [i+135] =PP5G[0]+PP5G[1]*+PP5G[2]*(i**2) + PP5G[3]*(i**3)+ PP5G[4]*(i**4)+PP5G[5]*(i**5) #remplissage matrice des

résultats

IP5G = np.dot(AP5G,PP5G)-YP5G  #vérification polynome

plot4 = plt. figure(4)

plt.title("category 4")

plt.plot (SP5G,label="Ply5")

pltlegend()

plt.xlabel('Distance along structure length (mm)')
plt.ylabel('Gap (mm)')

#

#Ply 7 (Gauche)
#

X=[-135,-45,45,135] # positions Z

YP7G=[0.11,0.42,1.03,-0.11,0,0] #Ecarts

AP7G= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):

for i in range (0,6):
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AP7G[j,i] = X[jI**(@) # remplissage matrice partie polynome
for i in range (1,6):
AP7G[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP7G[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP7G=np linalg.solve(AP7G,YP7G) #vecteur solutions (coefficients de polynome)

SP7G =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP7G [i+135] =PP7G[0]+PP7G[1]*i+PP7G[2]*(i**2) + PP7G[3]*(i**3)+ PP7G[4]*(i**4)+PP7G[5]*({**5) #remplissage matrice des

résultats

IP7G = np.dot(AP7G,PP7G)-YP7G  #vérification polynome

plt.plot (SP7G,label="Ply7")
pltlegend()

#
#Ply 14 (Gauche)
#

X=[-135,-45,45,135] # positions Z
YP14G=[0.48,1.01,1.5,-0.25,0,0] #Ecarts
AP14G= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
AP14G]j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP14G[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP14G[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP14G=np linalg.solve(AP14G,YP14G) #vecteur solutions (coefficients de polynome)
SP14G =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):
SP14G [i+135] =PP14G[0]+PP14G[1]*i+PP14G[2]*(i**2) + PP14G[3]*(i**3)+ PP14G[4]*(i**4)+PP14G[5]*(i**5) #remplissage

matrice des résultats

IP14G = np.dot(AP14G,PP14G)-YP14G  #vérification polynome
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plt.plot (SP14G,label="Ply14")
pltlegend()
#

#Ply 16 (Gauche)
#

X=[-135,-45,45,135] # positions Z
YP16G= [-0.22,0.09,0.32,0.04,0,0] #Ecarts
AP16G= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):

for i in range (0,6):

AP16G[j,i] = X[j]**(i)  # remplissage matrice partie polynome

for i in range (1,6):

AP16G[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP16GI[5,i] =1 * X[3]**(1-1) #remplissage matrice partie tangente droite

PP16G=np.linalg.solve(AP16G,YP16G) #vecteur solutions (coefficients de polynome)

SP16G =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):

SP16G [i+135] =PP16G[0]+PP16G[1]*i+PP16G[2]*(i**2) + PP16G[3]*(i**3)+ PP16G[4]*(i**4)+PP16G[5]*({**5) #remplissage

matrice des résultats

IP16G = np.dot(AP16G,PP16G)-YP16G  #vérification polynome

plt.plot (SP16G,label="Ply16")
pltlegend()

plt.grid()

#

#Ply 5 (Droite)
#

X=[-135,-45,45,135] # positions Z

YP5D=[2.12,0.67,1.92,0.57,0,0] #Ecarts

AP5D= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):

for i in range (0,6):

AP5D[j,i] = X[jI**(i)  # remplissage matrice partie polynome
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for i in range (1,6):
AP5D[4,i] =1* X[0]**(i-1) #remplissage matrice partie tangente gauche
AP5D[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite

PP5D=np.linalg.solve(AP5D,YP5D) #vecteur solutions (coefficients de polynome)
SP5D =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):
SP5D [i+135] =PP5D[0]+PP5D[1]*i+PP5D[2]*(i**2) + PP5D[3]*(i**3)+ PP5D[4]*(i**4)+PP5D[5]*(i**5) #remplissage matrice
des résultats
IP5D = np.dot(AP5D,PP5D)-YP5D  #vérification polynome
#

#Ply 7 (Droite)
#

X=[-135,-45,45,135] # positions Z

YP7D=[4.2,3.31,4.79,4.44,0,0] #Ecarts

AP7D= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP7D[j,i] = X[jI**(i)  # remplissage matrice partie polynome

for i in range (1,6):
AP7D[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP7D[5,i] =1 * X[3]**(i-1) #remplissage matrice partie tangente droite

PP7D=np.linalg.solve(AP7D,YP7D) #vecteur solutions (coefficients de polynome)

SP7D =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP7D [i+135] =PP7D[0]+PP7D[1]*i+PP7D[2]*(i**2) + PP7D[3]*(i**3)+ PP7D[4]*(i**4)+PP7D[5]*(i**5) #remplissage matrice

des résultats

IP7D = np.dot(AP7D,PP7D)-YP7D  #vérification polynome
#

#Ply 14 (Droite)

#

X=[-135,-45,45,135] # positions Z
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YP14D= [2.95,3.81,3.82,2.48,0,0] #Ecarts

AP14D= np.zeros ((6,6)) # matrice des Ecarts

for j in range (0,4):
for i in range (0,6):

AP14D[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP14D[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP14D[5,i] =i * X[3]**(i-1) #remplissage matrice partie tangente droite
PP14D=np linalg.solve(AP14D,YP14D) #vecteur solutions (coefficients de polynome)

SP14D =np.zeros((270)) # initialisation matrice des résultats

for i in range (-135,135):
SP14D [i+135] =PP14D[0]+PP14D[1]*i+PP14D[2]*(i**2) + PP14D[3]*(i**3)+ PP14D[4]*(i**4)+PP14D[5]*(i**5) #remplissage

matrice des résultats
IP14D = np.dot(AP14D,PP14D)-YP14D  #vérification polynome
#

#Ply 16 (Droite)
#

X=[-135,-45,45,135] # positions Z
YP16D= [-0.63,0.36,2.61,1.27,0,0] #Ecarts
AP16D= np.zeros ((6,6)) # matrice des Ecarts
for j in range (0,4):
for i in range (0,6):
AP16D[j,i] = X[j]**(i)  # remplissage matrice partie polynome
for i in range (1,6):
AP16D[4,i] =i * X[0]**(i-1) #remplissage matrice partie tangente gauche
AP16DI[5,i] =i * X[3]**(1-1) #remplissage matrice partie tangente droite
PP16D=np.linalg.solve(AP16D,YP16D) #vecteur solutions (coefficients de polynome)
SP16D =np.zeros((270)) # initialisation matrice des résultats
for i in range (-135,135):

SP16D[i+135] =PP16D[0]+PP16D[1]*i+PP16D[2]*(i**2) + PP16D[3]*(i**3)+ PP16D[4]*(i**4)+PP16D[5]*({**5) #remplissage

matrice des résultats
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IP16D = np.dot(AP16D,PP16D)-YP16D  #vérification polynome

##

#détermination des moyennes et écart-types pour catégorie 4

#

ecartype_coeff_cat4d =np.zeros((6))

moyenne_coeff_cat4 =np.zeros((6))

coeff_cat40=[PP5G
coeff_catd1=[PP5G
coeff_cat42=[PP5G
coeff_cat43=[PP5G

—_ = =

3

coeff_catd4=[PP5G[4],PP7G[4],PP14G[4] PP16G[4], PP5D[4], PP7D[4], PP14D[4], PP16D[4]]
coeff_catd5=[PP5G[5],PP7G[5],PP14G[5],PP16G[5],PP5D[5],PP7D[5],PP14D[5],PP16D[5]]

ecartype_coeff_cat4[0]= statistics.stdev(coeff_cat40)
ecartype_coeff_cat4[1]= statistics.stdev(coeff_cat41)
ecartype_coeff_cat4[2]= statistics.stdev(coeff_cat42)
ecartype_coeff_cat4[3]= statistics.stdev(coeff_cat43)
ecartype_coeff_cat4[4]= statistics.stdev(coeff_cat44)
ecartype_coeff_cat4[5]= statistics.stdev(coeff_cat45)

moyenne_coeff_cat4[0]= statistics.mean(coeff_cat40)

moyenne_coeff_cat4[1]= statistics.mean(coeff_cat41)
moyenne_coeff_cat4[2]= statistics.mean(coeff_cat42)
statistics.mean(coeff_cat43)

(

(
moyenne_coeff_cat4[4 (coeff_cat44)
(

]
]
]

moyenne_coeff_cat4[3]=
]= statistics.mean
=

moyenne_coeff_cat4[5]= statistics.mean(coeff_cat45)

0],PP7G[0],PP14G[0],PP16G[0],PP5D[0],PP7D[0],PP14D[0],PP16D[0]]
1],PP7G[1],PP14G[1],PP16G[1],PP5D[1],PP7D[1],PP14D[1],PP16D[1]]
2],PP7G[2],PP14G[2] PP16G[2],PP5D[2],PP7D[2], PP14D|[2], PP16D[2]]
],PP7G[3],PP14G[3],PP16G[3], PP5D[3],PP7D[3],PP14D[3],PP16D[3]]
1 [
1 [

HEFHHHHHHHHHHHH AR H AR H R R R I R R R A R R R R R R R R

H#H###

from time import gmtime, strftime

date=strftime(" %d %b %Y %H_%M ", gmtime())

f = open('test generation lisse%s .INP'%(date),'w")

# Analyse stochastique

# Modeles stochastique : spectrale et chaos polynomial

# Forme spectrale pour 1'orientation :

# somme des fonctions trigonométriques avec amplitudes et phases aléatoires

import numpy as np

#definition des parametres géométriques de la lisse (rayon de courbure et longueur en mm)

R=51
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L=380

#programmation des différentes zones maillées (de 1 a 9) : nombres fixés a priori

N1=30 #nombre de maille sur zone 1
N2=5 #nombre de maille sur zone 2
N3=20 #nombre de maille sur zone 3
N4=5 #nombre de maille sur zone 4
N5=20 #nombre de maille sur zone 5
N6=5 #nombre de maille sur zone 6
N7=20 #nombre de maille sur zone 7
N8=5 #nombre de maille sur zone 8
N9=30 #nombre de maille sur zone 9

Nz=380 #nombre de maille sur z

# coordonnées des points de début des zones (a gauche)

coord100101=([-49.789472,3.59])
coord100201=([-26.860851,3.888326])
coord100301=([-22.303152,6.832566])
coord100401=([-12.873111,27.055353])
coord100501=([-8.250942,30])
#symeétrique (a droite)
coord100601=([8.250942,30])
coord100701=([12.873111,27.055353])
coord100801=([22.303152,6.832566])
coord100901=([26.860851,3.888326])

[
[
[
coord101001=([49.789472,3.59])

#programmation des différents arcs (de 1 a 4)

#C1 centre arc 1

coordC1=([-26.925322,8.987919]) #a vérifier

#C2 centre arc 2
coordC2=([-8.25,24.9])

#C3 centre arc 3
coordC4=([26.925322,8.987919])
#C4 centre arc 4
coordC3=([8.25,24.9])

# épaisseur des plis

ep = np.zeros((20))

ep =([0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3])

from math import cos
from math import sin

from math import acos

#noeudX=np.eye(2*Nx,2*Ny) (alternative de programmation non utilisée)

noeudX1=numpy.zeros((N1+1,Nz+1))
noeudY1=numpy.zeros((N1+1,Nz+1
N1+1,Nz+1
N2+1,Nz+1

noeudZ1=numpy.zeros

(( )
(( )
noeudX2=numpy.zeros(( )
( )

noeudY2=numpy.zeros((N2+1,Nz+1

#initialisation matrice des coordonnées en X
#initialisation matrice des coordonnées en'Y
#initialisation matrice des coordonnées en Z
#initialisation matrice des coordonnées en X

#initialisation matrice des coordonnées en Y
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N2+1,Nz+1
N3+1,Nz+1

noeudZ2=numpy.zeros(( )
noeudX3=numpy.zeros(( )
noeudY3=numpy.zeros((N3+1,Nz+1)
noeudZ3=numpy.zeros((N3+1,Nz+1)
noeudX4=numpy.zeros((N4+1,Nz+1)
noeudY4=numpy.zeros((N4+1,Nz+1)
noeudZ4=numpy.zeros((N4+1,Nz+1)
(N5+1,Nz+1)
noeudY5=numpy.zeros((N5+1,Nz+1)
noeudZ5=numpy.zeros((N5+1,Nz+1)
noeudX6=numpy.zeros((N6+1,Nz+1)
noeudY6=numpy.zeros((N6+1,Nz+1)
noeudZ6=numpy.zeros((N6+1,Nz+1)

)

)

(
(
(
(
(
(
(
noeudX5=numpy.zeros(
(
(
(
(
(
noeudX7=numpy.zeros(

(

)
)
)
)
)
)
)
)
)
)
)
)
( )
(N7+1,Nz+1))
noeudY7=numpy.zeros((N7+1,Nz+1))
noeudZ7=numpy.zeros((N7+1,Nz+1))
noeudX8=numpy.zeros((N8+1,Nz+1))
noeudY8=numpy.zeros((N8+1,Nz+1))
noeudZ8=numpy.zeros((N8+1,Nz+1))
noeudX9=numpy.zeros((N9+1,Nz+1))
noeudY9=numpy.zeros((N9+1,Nz+1))

noeudZ9=numpy.zeros((N9+1,Nz+1))

#initialisation matrice des coordonnées en Z
#initialisation matrice des coordonnées en X
#initialisation matrice des coordonnées en'Y
#initialisation matrice des coordonnées en Z
#initialisation matrice des coordonnées en X
#initialisation matrice des coordonnées en'’Y
#initialisation matrice des coordonnées en Z
#initialisation matrice des coordonnées en X
#initialisation matrice des coordonnées en'Y
#initialisation matrice des coordonnées en Z
#initialisation matrice des coordonnées en X
#initialisation matrice des coordonnées en'Y
#initialisation matrice des coordonnées en Z
#initialisation matrice des coordonnées en X
#initialisation matrice des coordonnées en' Y
#initialisation matrice des coordonnées en Z
#initialisation matrice des coordonnées en X
#initialisation matrice des coordonnées en'’Y
#initialisation matrice des coordonnées en Z
#initialisation matrice des coordonnées en X
#initialisation matrice des coordonnées en' Y

#initialisation matrice des coordonnées en Z

noeudN1=np.eye(N1+1,Nz+1)
noeudN2=np.eye(N2+1,Nz+1)
noeudN3=np.eye(N3+1,Nz+1)
noeudN4=np.eye(N4+1,Nz+1)
noeudN5=np.eye(N5+1,Nz+1)
noeudN6=np.eye(N6+1,Nz+1)
noeudN7=np.eye(N7+1,Nz+1)
noeudN8=np.eye(N8+1,Nz+1)
noeudN9=np.eye(N9+1,Nz+1)

#initialisation matrice des numéros des noeuds
#initialisation matrice des numéros des noeuds
#initialisation matrice des numéros des noeuds
#initialisation matrice des numéros des noeuds
#initialisation matrice des numéros des noeuds
#initialisation matrice des numéros des noeuds
#initialisation matrice des numéros des noeuds
#initialisation matrice des numéros des noeuds

#initialisation matrice des numéros des noeuds

Nx= N1+N2+N3+N4+N5+N6+N7+N8+N9 #nombre total des mailles en x et y

noeudXt= np.zeros ((Nx,Nz))
noeudYt= np.zeros ((Nx,Nz))
noeudZt= np.zeros ((Nx,Nz))
noeudNt= np.zeros ((Nx,Nz))

noeudNtot= np.zeros ((Nx+1,Nz+1))
noeudXtot= np.zeros ((Nx+1,Nz+1))

CIN=numpy.zeros([2,2]) #initialisation de l'arc de cercle C1

C1O0=numpy.zeros([2,2])

C2P=numpy.zeros([2,2]) #initialisation de I'arc de cercle C2

C2Q=numpy.zeros([2,2])

C3S=numpy.zeros([2,2]) #initialisation de l'arc de cercle C3

C3T=numpy.zeros([2,2])
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C4U=numpy.zeros([2,2]) #initialisation de I'arc de cercle C4

C4V=numpy.zeros([2,2])

f.write("*Heading\n')
f.write("** Job name: try Model name: Model-1\n')
f.write("** Generated by: Abaqus/CAE 2018\ n')

f.write("*Preprint, echo=NO, model=NO, history=NO, contact=NO\n')

(

(

(

(
f.write("*\n')
f.write("* PARTS\n')
f.write(**\n')
f.write(*Part, name=PART-1\n')
f.write(*Node\n')

#

# GENERATION DE LA GEOMETRIE De la lisse
#

#définition des noeuds et leurs numéros

# programmation zone 1 (ligne)

for i in range (1,N1+2):
for j in range (1,Nz+2):
#Numero de noeud
noeudNT1[i-1,j-1]= 100000%*j+100+i
sn=str(noeudN1[i-1,j-1].astype(int))
f.write(sn)

f.write(, ')

#noeudX[i-1,j-1]=-L/2 + (i-1)/Nx*L #équation des positions des noeuds en X (perpendiculaire a 1’axe de la lisse)
noeudX1[i-1,j-1]=coord100101[0]+((coord100201[0]-coord100101[0]) / N1*(i-1))

sx=str(round(noeudX1[i-1,j-1],5))

#noeudY[i-1,j-1]= R*sin(Theta/2*(-1+(j-1)*Theta/Ny))
noeudY1[i-1,j-1]=coord100101[1]+((coord100201[1]-coord100101[1])/ N1*(i-1))

sy=str(round(noeudY1[i-1,j-1],5))

noeudZ1[i-1,-1]= L/Nz*(j-1) #équation des positions des noeuds en Z (axe de la lisse)

sz=str(round(noeudZ1[i-1,j-1],5))
f.write(sx)
fwrite(, )

f.write(sy)

f.write(sz

(

(
f.write(, ')
(
f.write(\n'")
# programmation zone 2 (arc de cercle)
for i in range (1,N2+2):

for j in range (1,Nz+2):

#Numero de noeud

#équation des positions des noeuds en Y (hauteur de la lisse)
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noeudN2[i-1,j-1]= 100000%+200+i

sn=str(noeudN2[i-1,j-1].astype(int))

f.write(sn)

f.write(, ')

CIN][0,0]=(coord100201[0]-coordC1[0])/R #/norme 5.1 (rayon)
CIN[1,0]=(coord100201[1]-coordC1[1])/R
C10]0,0]=(coord100301[0]-coordC1[0])/R #/norme
C10I1,0]=(coord100301[1]-coordC1[1])/R
costhetal=C1N[0,0]*C10[0,0]+C1IN[1,0]*C10I1,0]
thetal=-acos(costhetal)

thetaN1=+acos(C1NJ0,0])

#noeudX[i-1,j-1]=-L/2 + (i-1)/Nx*L #équation des positions des noeuds en X
noeudX2[i-1,j-1]= coordC1[0]+R*cos(thetaN1+(thetal/N2)*(i-1))
sx=str(round(noeudX2[i-1,j-1],5))

#noeudY[i-1,j-1]= R*sin(Theta/2*(-1+(j-1)*Theta/Ny)) ~#équation des positions des noeuds en Y
noeudY2[i-1,j-1]=coordC1[1]-R*sin(thetaN1+(thetal /N2)*(i-1))
sy=str(round(noeudY2[i-1,-1],5))

noeudZ2[i-1,-1]= L/Nz*(j-1) #équation des positions des noeuds en Z
sz=str(round(noeudZ2[i-1,j-1],5))

f.write(sx)

fwrite(, ')

f.write(sy)

fwrite(, ')

f.write(sz)

f.write('\n')
# programmation zone 3 (ligne)

for i in range (1,N3+2):
for j in range (1,Nz+2):

#Numero de noeud
noeudN3[i-1,j-1]= 100000%+300+i
sn=str(noeudN?3[i-1,j-1].astype(int))
f.write(sn)
f.write(, ')
#noeudX[i-1,j-1]=-L/2 + (i-1)/Nx*L #équation des positions des noeuds en X
noeudX3[i-1,j-1]=coord100301[0]+((coord100401[0]-coord100301[0]) / N3*(i-1))
sx=str(round(noeudX3[i-1,j-1],5))
#noeudY[i-1,j-1]= R*sin(Theta/2*(-1+(j-1)*Theta/Ny))  #équation des positions des noeuds en Y
noeudY3[i-1,j-1]=coord100301[1]+((coord100401[1]-coord100301[1])/ N3*(i-1))
sy=str(round(noeudY3[i-1,j-1],5))
noeudZ3[i-1,-1]= L/Nz*(j-1) #équation des positions des noeuds en Z
sz=str(round(noeudZ3[i-1,j-1],5))
f.write(sx)
¢

f.write(sy)
¢

f.write

f.write
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f.write(sz)

f.write('\n')
# programmation zone 4 (arc de cercle)

for i in range (1,N4+2):
for j in range (1,Nz+2):

#Numero de noeud
noeudN4[i-1,j-1]= 100000*j+400+i #par exemple noeud1 : 1004001
sn=str(noeudN4[i-1,j-1].astype(int))
f.write(sn)
fwrite(, )
C2P[0,0]=(coord100401[0]-coordC2[0])/R #/norme 5.1 (rayon)
C2P[1,0]=(coord100401[1]-coordC2[1])/R
C2QJ0,0]=(coord100501[0]-coordC2[0])/R #/norme
C2Q|[1,0]=(coord100501[1]-coordC2[1])/R
costheta2=C2P[0,0]*C2Q[0,0]+C2P[1,0]*C2QJ[1,0]
theta2=-acos(costheta2)
thetaN2=acos(C2P[0,0])

—_— =

)
)

#noeudX[i-1,j-1]=-L/2 + (i-1)/Nx*L #équation des positions des noeuds en X
noeudX4[i-1,j-1]= coordC2[0]+R*cos(thetaN2+(theta2 /N4)*(i-1))
sx=str(round(noeudX4[i-1,j-1],5))
#noeudY[i-1,j-1]= R*sin(Theta/2*(-1+(j-1)*Theta/Ny)) #équation des positions des noeuds en Y
noeudY4[i-1,j-1]=coordC2[1]+R*sin(thetaN2+(theta2 /N4)*(i-1))
sy=str(round(noeudY4[i-1,-1],5))
noeudZ4[i-1,-1]= L/Nz*(j-1) #équation des positions des noeuds en Z
sz=str(round(noeudZ4[i-1,j-1],5))
f.write(sx)
f.write(, ')
f.write(sy)
fwrite(, )
f.write(sz)

(

f.write("\n'")

# programmation zone 5 (ligne)
for i in range (1,N5+2):
for j in range (1,Nz+2):

#Numero de noeud
noeudNb5[i-1,j-1]= 100000%j+500+i
sn=str(noeudN5[i-1,j-1].astype(int))
f.write(sn)
f.write(, ')
#noeudX[i-1,-1]=-L/2 + (i-1)/Nx*L #équation des positions des noeuds en X
noeudX5[i-1,j-1]=coord100501[0]+((coord100601[0]-coord100501[0]) / N5*(i-1))
sx=str(round(noeudX5[i-1,j-1],5))
#noeudY[i-1,j-1]= R*sin(Theta/2*(-1+(j-1)*Theta/Ny)) #équation des positions des noeuds en Y
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noeudY5[i-1,j-1]=coord100501[1]+((coord100601[1]-coord100501[1])/ N5*(i-1))
sy=str(round(noeudY5[i-1,-1],5))
noeudZ5[i-1,-1]= L/Nz*(j-1) #équation des positions des noeuds en Z
sz=str(round(noeudZ5[i-1,j-1],5))
f.write(sx)
fwrite(, )
f.write(sy)
fwrite(, )
f.write(sz)

(

f.write('\n')

# programmation zone 6 (arc de cercle)
for i in range (1,N6+2):
for j in range (1,Nz+2):
#Numero de noeud
noeudNG6[i-1,j-1]= 100000*j+600+i
sn=str(noeudN6[i-1,j-1].astype(int))
f.write(sn)
fwrite(, ')
C35[0,0]=(coord100601[0]-coordC3[0])/R #/norme 5.1 (rayon)
C35[1,0]=(coord100601[1]-coordC3[1])/R
C3T[0,0]=(coord100701[0]-coordC3[0])/R  #/norme
C3T[1,0]=(coord100701[1]-coordC3[1])/R
costheta3=(C35[0,0]*C3T[0,0])+(C3S[1,0]*C3T[1,0])
theta3=-acos(costheta3)
thetaN3=acos(C35[0,0])
#noeudX[i-1,j-1]=-L/2 + (i-1)/Nx*L #équation des positions des noeuds en X
noeudX6[i-1,j-1]= coordC3[0]+R*cos(thetaN3+(theta3/N6)*(i-1))
sx=str(round(noeudX6[i-1,j-1],5))
#noeudY[i-1,j-1]= R*sin(Theta/2*(-1+(j-1)*Theta/Ny)) ~#équation des positions des noeuds en Y
noeudY6[i-1,j-1]=coordC3[1]+R*sin(thetaN3+(theta3/N6)*(i-1))
sy=str(round(noeudY6[i-1,-1],5))
noeudZ6[i-1,-1]= L/Nz*(j-1) #équation des positions des noeuds en Z
sz=str(round(noeudZ6[i-1,j-1],5))
f.write(sx)
f.write(, ')
f.write(sy)
fwrite(, )
f.write(sz)
(

f.write("\n')
# programmation zone 7 (ligne)

for i in range (1,N7+2):
for j in range (1,Nz+2):
#Numero de noeud

noeudN7[i-1,j-1]= 100000%+700+i
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sn=str(noeudN7[i-1,j-1].astype(int))
f.write(sn)
f.write(, ')
#noeudX[i-1,j-1]=-L/2 + (i-1)/Nx*L #équation des positions des noeuds en X
noeudX7[i-1,j-1]=coord100701[0]+((coord100801[0]-coord100701[0]) / N7*(i-1))
sx=str(round(noeudX7[i-1,j-1],5))
#noeudY[i-1,j-1]= R*sin(Theta/2*(-1+(j-1)*Theta/Ny)) #équation des positions des noeuds en Y
noeudY7[i-1,j-1]=coord100701[1]+((coord100801[1]-coord100701[1]) / N7*(i-1))
sy=str(round(noeudY7[i-1,-1],5))
noeudZ7[i-1,-1]= L/Nz*(j-1) #équation des positions des noeuds en Z
sz=str(round(noeudZ7[i-1,j-1],5))
f.write(sx)
¢
f.write(sy)
()

f.write(sz)

f.write
f.write
f.write('\n')

# programmation zone 8 (arc de cercle)
for i in range (1,N8+2):
for j in range (1,Nz+2):
#Numero de noeud
noeudN8[i-1,j-1]= 100000*j+800+i #
sn=str(noeudNS8][i-1,j-1].astype(int))
f.write(sn)
f.write(, ')
C4UJ0,0]=(coord100801[0]-coordC4[0])/R #/norme 5.1 (rayon)
C4U[1,0]=(coord100801[1]-coordC4[1])/R
C4V[0,0]=(coord100901[0]-coordC4[0])/R #/norme
C4V([1,0]=(coord100901[1]-coordC4[1])/R
costhetad=C4U[0,0]*C4V[0,0]+C4U[1,0]*C4V[1,0]
thetad=-acos(costheta4)
thetaN4=acos(C4UJ0,0])
#noeudX[i-1,j-1]=-L/2 + (i-1)/Nx*L #équation des positions des noeuds en X
noeudX8[i-1,j-1]= coordC4[0]+R*cos(thetaN4+(theta4/N8)*(i-1))
sx=str(round(noeudX8][i-1,j-1],5))
#noeudY[i-1,j-1]= R*sin(Theta/2*(-1+(j-1)*Theta/Ny)) ~#équation des positions des noeuds en Y
noeudY8[i-1,j-1]=coordC4[1]-R*sin(thetaN4+(theta4/N8)*(i-1))
sy=str(round(noeudY8[i-1,-1],5))
noeudZ8[i-1,-1]= L/Nz*(j-1) #équation des positions des noeuds en Z
sz=str(round(noeudZ8[i-1,j-1],5))
f.write(sx)
f.write(, ')
f.write(sy)
f.write(, ')
f.write(sz)
(

f.write(\n')
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# programmation zone 9 (ligne)

for i in range (1,N9+2):
for j in range (1,Nz+2):

#Numero de noeud
noeudNO9Ji-1,j-1]= 100000%*j+900+i
sn=str(noeudN9[i-1,j-1].astype(int))
f.write(sn)
f.write(, ')
#noeudX[i-1,j-1]=-L/2 + (i-1)/Nx*L #équation des positions des noeuds en X
noeudX9[i-1,j-1]=coord100901[0]+((coord101001[0]-coord100901[0]) / N9*(i-1))
sx=str(round(noeudX9[i-1,j-1],5))
#noeudY[i-1,j-1]= R*sin(Theta/2*(-1+(j-1)*Theta/Ny)) ~#équation des positions des noeuds en Y
noeudY9[i-1,j-1]=coord100901[1]+((coord101001[1]-coord100901[1]) / N9*(i-1))
sy=str(round(noeudY9[i-1,-1],5))
noeudZ9[i-1-1]= L/Nz*(j-1) #équation des positions des noeuds en Z
sz=str(round(noeudZ9[i-1,j-1],5))
f.write(sx)
fwrite(, ')
f.write(sy)
fwrite(, ')
f.write(sz)

f.write('\n')

#Définition et numérotation des mailles zone 1
# chaque maille est définie par 4 noeuds

Ol=np.eye(N1,Nz)

N2,Nz
N3,Nz
N4,Nz
N5,Nz
N6,Nz
N7,Nz
N8,Nz
N9, Nz

O2=np.eye
O3=np.eye
O4=np.eye
O5=np.eye
O6=np.eye
O7=np.eye
O8=np.eye

—_ = = = =2 =2 = =

)
)
)
)
)
)
)
)

O9=np.eye

f.write("*Element, type=54\n')
for i in range (0,N1-1):
for j in range(0,Nz):

O1[i,j]=noeudN1[i,j]
OO1=str(O1[i,j].astype(int))
f.write(OO1)
f.write(, )
a=str(noeudN1[i,j].astype(int))
f.write(a)
f.write(, ')

b=str(noeudN1[i,j+1].astype(int))
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f.write(b)

fowrite(, ')
d=str(noeudN1[i+1,j+1].astype(int))
f.write(d)

fowrite(, ')
c=str(noeudN1[i+1,j].astype(int))
f.write(c)

f.write('\n')
noeudXt[i,j]=noeudX1[i,j]
noeudYt[i,j]=noeudY1[i,]
noeudZt[i,j]=noeudZ1[i,j]
noeudNt[i,j]J=noeudN1[i,;j]
noeudNtot[i,j]=noeudN1[i,]
noeudXtot[i,j]J=noeudX1[i,]

# jonction 1_2

for j in range(0,Nz):
O1[N1-1,j]J=noeudN1[N1-1,]
OO1=str(O1[N1-1,j].astype(int))
f.write(OOT1)
fowrite(, ')
a=str(noeudN1[N1-1,j].astype(int))
f.write(a)
f.write(, ')
b=str(noeudN1[N1-1,j+1].astype(int))
f.write(b)
fowrite(, ')
d=str(noeudN2[0,j+1].astype(int))
f.write(d)
fowrite(, ')
c=str(noeudN2[0,j].astype(int))
f.write(c)

f.write('\n')

noeudXt[N1-1,j]=noeudX1[N1-1,j]
noeudYt[N1-1,j]=noeudY1[N1-1,]
noeudZt[N1-1,j]=noeudZ1[N1-1,j]
noeudNt[N1-1,j]=noeudN1[N1-1,]
noeudNtot[N1-1,j]=noeudN1[N1-1,]
noeudXtot[N1-1,j]=noeudX1[N1-1,j]

for i in range (-1,N1):
for j in range (-1,Nz):
noeudNtot[i+1,j+1]=noeudN1[i+1,j+1]
noeudXtot[i+1,j+1]=noeudX1[i+1,j+1]
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#Définition et numérotation des mailles zone 2

for i in range (0,N2-1):
for j in range(0,Nz):

02[i,j]=noeudN2[i,]
002=str(O2[i,j].astype(int))
f.write(OO2)
fowrite(, ')
a=str(noeudN2[ij].astype(int))
f.write(a)
fowrite(, ')
b=str(noeudN2[i,j+1].astype(int))
f.write(b)

fwrite(, )

d=str(noeudN2[i+1,j+1].astype(int))

f.write(d)

f.write(, ')
c=str(noeudN2[i+1,j].astype(int))
f.write(c)

f.write("\n')

noeudXt[N1+i,j]=noeudX2[i,j]
noeudYt[N1+i,j]=noeudY2[i,]
noeudZt[N1+i,j]=noeudZ2[i,j]
noeudNt[N1+i,j]=noeudN2[i,]
noeudNtot[N1+i,j]=noeudN2[i,j]
noeudXtot[N1+i,j]=noeudX2[i,]

# jonction 2_3

for j in range(0,Nz):
O2[N2-1,j]=noeudN2[N2-1,j]
002=str(O2[N2-1,j].astype(int))
f.write(OO2)
fowrite(, ')
a=str(noeudN2[N2-1,j].astype(int))
f.write(a)

fowrite(, ')

b=str(noeudN2[N2-1,j+1].astype(int))

f.write(b)

fowrite(, ')
d=str(noeudN3[0,j+1].astype(int))
f.write(d)

f.write(, )
c=str(noeudN3[0,j].astype(int))
f.write(c)

f.write('\n')
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noeudXt[N1+N2-1,j]=noeudX2[N2-1,j]
noeudYt[N1+N2-1,j]=noeud Y2[N2-1,j]
noeudZt[N1+N2-1,j]=noeudZ2[N2-1,j]
noeudNt[N1+N2-1,j]=noeudN2[N2-1,]
noeudNtot[N1+N2-1,j]=noeudN2[N2-1,j]
noeudXtot[N1+N2-1,j]=noeudX2[N2-1,j]

for i in range (0,N2):
for j in range (0,Nz):
noeudNtot[N1+i+1j+1]=noeudN2[i+1,j+1]
noeudXtot[N1+i+1,j+1]=noeudX2[i+1,j+1]

#Définition et numérotation des mailles zone 3

# chaque maille est définie par 4 noeuds

for i in range (0,N3-1):
for j in range(0,Nz):

O3[[i,j]=noeudN3Ji,j]
O03=str(O3[i,j].astype(int))
f.write(OO3)
f.write(, ')
#p=str(i)
#f.write(p)
a=str(noeudN3[ij].astype(int))
f.write(a)
fowrite(, ')
b=str(noeudN3[i,j+1].astype(int))
f.write(b)
fowrite(, ')
d=str(noeudN3[i+1,j+1].astype(int))
f.write(d)
fowrite(, ')
c=str(noeudN3[i+1,j].astype(int))
f.write(c)
f.write('\n')
noeudXt[N1+N2+ij]=noeudX3[i,j]
noeudYt[N1+N2+ij]=noeudY3[i,j]
noeudZt[N1+N2+ij]=noeudZ3[i,j]
noeudNt[N1+N2+i,j]=noeudN3[i,j]
noeudNtot[N1+N2+i,j]=noeudN3[i,j]
noeudXtot[N1+N2+i,j]=noeudX3[i,j]

# jonction 3_4

for j in range(0,Nz):
O3[N3-1,j]J=noeudN3[N3-1,j]
O03=str(O3[N3-1,j].astype(int))
f.write(OO3)
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fowrite(, )
a=str(noeudN3[N3-1,j].astype(int))
f.write(a)

fowrite(, ')
b=str(noeudN3[N3-1,j+1].astype(int))
f.write(b)

fowrite(, )
d=str(noeudN4[0,j+1].astype(int))
f.write(d)

fowrite(, ')
c=str(noeudN4[0,j].astype(int))

f.write(c)

f.write('\n')
noeudXt[N1+N2+N3-1,j]=noeudX3[N3-1,j]
noeudYt[N1+N2+N3-1,j]=noeud Y3[N3-1,j]
noeudZt[N1+N2+N3-1,j]=noeudZ3[N3-1,j]
noeudNt[N1+N2+N3-1,j]=noeudN3[N3-1,j]
noeudNtot[N1+N2+N3-1,j]=noeudN3[N3-1,j]
noeudXtot[N1+N2+N3-1,j]=noeud X3[N3-1,j]

for i in range (0,N3):
for j in range (0,Nz):
noeudNtot[N1+N2+i+1,j+1]=noeudN3[i+1,j+1]
noeudXtot[N1+N2+i+1,j+1]=noeudX3[i+1,j+1]

#Définition et numérotation des mailles zone 4
for i in range (0,N4-1):
for j in range(0,Nz):

O4[i,j]=noeudN4[i,j]
OO04=str(O4][i,j].astype(int))
f.write(OO4)
fowrite(, ')
a=str(noeudN4[ij].astype(int))
f.write(a)
fowrite(, ')
b=str(noeudN4([i,j+1].astype(int))
f.write(b)
fowrite(, ')
d=str(noeudN4[i+1,j+1].astype(int))
f.write(d)
f.write(, )
c=str(noeudN4[i+1,j].astype(int))
f.write(c)
f.write('\n')
noeudXt[N1+N2+N3+i,j]=noeud X4[i,j]
noeudYt[N1+N2+N3+i,j]=noeud Y4[i,j]
noeudZt[N1+N2+N3+i j]=noeudZ4[i,j]
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noeudNt[N1+N2+N3+i,j]=noeudN4[i,j]
noeudNtot[N1+N2+N3+i,j]=noeudN4[i,j]
noeudXtot[N1+N2+N3+i,j]=noeudX4[i,j]

# jonction 4_5

for j in range(0,Nz):
O4[N4-1,j]=noeudN4[N4-1,j]
OO04=str(O4[N4-1,j].astype(int))
f.write(OO4)
fowrite(, ')
a=str(noeudN4[N4-1,j].astype(int))
f.write(a)
fowrite(, )
b=str(noeudN4[N4-1,j+1].astype(int))
f.write(b)
f.write(, ')
d=str(noeudN5[0,j+1].astype(int))
f.write(d)
fowrite(, ')
c=str(noeudN5[0,j].astype(int))
f.write(c)

f.write('\n')

noeudXt[N1+N2+N3+N4-1,j]=noeud X4[N4-1,j]
noeudYt[N1+N2+N3+N4-1,j]=noeud Y4[N4-1,j]
noeudZt[N1+N2+N3+N4-1,j]=noeud Z4[N4-1,j]
noeudNt[N1+N2+N3+N4-1,j]=noeudN4[N4-1,j]

noeudNtot[N1+N2+N3+N4-1,j]=noeudN4[N4-1,j]
noeudXtot[N1+N2+N3+N4-1,j]=noeud X4[N4-1,j]

for i in range (0,N4):
for j in range (0,Nz):

noeudNtot[N1+N2+N3+i+1,j+1]=noeudN4[i+1,j+1]
noeudXtot[N1+N2+N3+i+1,j+1]=noeudX4[i+1,j+1]

#Définition et numérotation des mailles zone 5
# chaque maille est définie par 4 noeuds

for i in range (0,N5-1):

for j in range(0,Nz):

O5[i,j]=noeudN5[i,j]
OO5=str(O5[i,j].astype(int))
f.write(OO5)
f.write(, )
#p=str(i)
#f.write(p)
a=str(noeudN5[ij].astype(int))

f.write(a)
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fowrite(, )
b=str(noeudNb5[i,j+1].astype(int))

f.write(b)

fowrite(, ')
d=str(noeudN5[i+1,j+1].astype(int))
f.write(d)

fowrite(, )
c=str(noeudN5[i+1,j].astype(int))

f.write(c)

f.write('\n')
noeudXt[N1+N2+N3+N4+ij]=noeudX5[i,j]
noeudYt[N1+N2+N3+N4+ij]=noeudY5[i,j]
noeudZt[N1+N2+N3+N4+ij]=noeudZ5[i,j]
noeudNt[N1+N2+N3+N4+i,jl=noeudN5|i,j]
noeudNtot[N1+N2+N3+N4+i,j]=noeudN5[i,j]
noeudXtot[N1+N2+N3+N4+i,j]=noeudX5[i,j]

# jonction 5_6

for j in range(0,Nz):
O5[N5-1,j]=noeudN5[N5-1,j]
OO5=str(O5[N5-1,j].astype(int))
f.write(OO5)
f.write(, ')
a=str(noeudN5[N5-1,j].astype(int))
f.write(a)
fowrite(, ')
b=str(noeudN5[N5-1,j+1].astype(int))
f.write(b)
fowrite(, ')
d=str(noeudN6[0,j+1].astype(int))
f.write(d)
fowrite(, ')
c=str(noeudN6[0,j].astype(int))
f.write(c)
f.write("\n')
noeudXt[N1+N2+N3+N4+N5-1,j]=noeud X5[N5-1,j]
noeudYt[N1+N2+N3+N4+N5-1,j]=noeud Y5[N5-1,j]
noeudZt[N1+N2+N3+N4+N5-1,j]=noeud Z5[N5-1,j]
noeudNt[N1+N2+N3+N4+N5-1,j]=noeudN5[N5-1,j]
noeudNtot[N1+N2+N3+N4+N5-1,j]=noeudN5[N5-1,j]
noeudXtot[N1+N2+N3+N4+N5-1,j]=noeud X5[N5-1,j]

for i in range (0,N5):

for j in range (0,Nz):

noeudNtot[N1+N2+N3+N4+i+1,j+1]=noeudN5[i+1,j+1]
noeudXtot[N1+N2+N3+N4+i+1,j+1]=noeudX5[i+1,j+1]
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#Définition et numérotation des mailles zone 6
for i in range (0,N6-1):
for j in range(0,Nz):

O6[i,j]=noeudN6[i,j]
0O06=str(O6[i,j].astype(int))
f.write(OO6)
fowrite(, )
a=str(noeudN6[ij].astype(int))
f.write(a)
fowrite(, ')
b=str(noeudNG6[i,j+1].astype(int))
f.write(b)
fowrite(, )
d=str(noeudN6[i+1,j+1].astype(int))
f.write(d)
f.write(, ')
c=str(noeudN6[i+1,j].astype(int))
f.write(c)
f.write('\n')
noeudXt[NT1+N2+N3+N4+N5+i,j]=noeudX6[i,j]
noeud Yt[NT+N2+N3+N4+N5+i,j]=noeudY6[i,j]
noeud Zt[N1+N2+N3+N4+N5+i,j]=noeudZ6[i,j]
noeudNt[N1+N2+N3+N4+N5+ij]=noeudN6[i,j]
noeudNtot[N1+N2+N3+N4+N5+i,j]=noeudN6[i,j]
noeudXtot[N1+N2+N3+N4+N5+i,j]=noeudX6[i,]

# jonction 6_7

for j in range(0,Nz):
O6[N6-1,j]J=noeudN6[N6-1,j]
O06=str(O6[N6-1,j].astype(int))
f.write(OO6)
fowrite(, ')
a=str(noeudN6[N6-1,j].astype(int))
f.write(a)
fowrite(, ')
b=str(noeudN6[N6-1,j+1].astype(int))
f.write(b)
fowrite(, ')
d=str(noeudN7[0,j+1].astype(int))
f.write(d)
fowrite(, ')
c=str(noeudN7[0,j].astype(int))
f.write(c)
f.write('\n')
noeudXt[N1+N2+N3+N4+N5+N6-1,j]=noeudX6[N6-1,j]
noeudYt[N1+N2+N3+N4+N5+N6-1,j]=noeud Y6[N6-1,j]
noeudZt[N1+N2+N3+N4+N5+N6-1,j]=noeudZ6[N6-1,j]
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noeudNt[N1+N2+N3+N4+N5+N6-1,j]=noeudN6[N6-1,j]
noeudNtot[N1+N2+N3+N4+N5+N6-1,j]=noeudN6[N6-1,j]
noeudXtot[N1+N2+N3+N4+N5+N6-1,j]=noeud X6[N6-1,j]

for i in range (0,N6):
for j in range (0,Nz):
noeudNtot[N1+N2+N3+N4+N5+i+1,j+1]=noeudN6[i+1,j+1]
noeudXtot[N1+N2+N3+N4+N5+i+1,j+1]=noeudX6[i+1,j+1]

#Définition et numérotation des mailles zone 7
for i in range (0,N7-1):
for j in range(0,Nz):

O7[i,j]=noeudN7[ij]
0O07=str(O7[i,j].astype(int))
f.write(OO7)
f.write(, ')
a=str(noeudN7[ij].astype(int))
f.write(a)
fowrite(, ')
b=str(noeudN?7[i,j+1].astype(int))
f.write(b)
fowrite(, ')
d=str(noeudN7[i+1,j+1].astype(int))
f.write(d)
f.write(, ')
c=str(noeudN7[i+1,j].astype(int))
f.write(c)
f.write('\n')
noeudXt[N1+N2+N3+N4+N5+N6+i,j]=noeudX7[i,j]
noeud Yt[N1+N2+N3+N4+N5+N6+i,j]=noeudY7[i,j]
noeudZt[N1+N2+N3+N4+N5+N6+i,j]=noeudZ7[i,j]
noeudNt[N1+N2+N3+N4+N5+N6+i,j]=noeudN7[i,j]
noeudNtot[N1+N2+N3+N4+N5+N6+i,j]=noeudN7[i,j]
noeudXtot[N1+N2+N3+N4+N5+N6+i,j]=noeudX7[i,j]

# jonction 7_8

for j in range(0,Nz):
O7[N7-1,j]=noeudN7[N7-1,j]
O07=str(O7[N7-1,j].astype(int))
f.write(OO7)
fowrite(, ')
a=str(noeudN7[N7-1,j].astype(int))
f.write(a)
f.write(, )
b=str(noeudN7[N7-1,j+1].astype(int))
f.write(b)
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fowrite(, )

d=str(noeudN8[0,j+1].astype(int))

f.write(d)

fowrite(, ')

c=str(noeudN8[0,j].astype(int))

f.write(c)

f.write('\n')
noeudXt[NT1+N2+N3+N4+N5+N6+N7-1,j]=noeudX7[N7-1,j]
noeud Yt[N1+N2+N3+N4+N5+N6+N7-1,j]=noeud Y7[N7-1,]
noeudZt[N1+N2+N3+N4+N5+N6+N7-1,j]=noeudZ7[N7-1,j]
noeudNt[N1+N2+N3+N4+N5+N6+N7-1,j]=noeudN7[N7-1,j]
noeudNtot[N1+N2+N3+N4+N5+N6+N7-1,j]=noeudN7[N7-1,j]
noeudXtot[N1+N2+N3+N4+N5+N6+N7-1,j]=noeudX7[N7-1,j]

for i in range (O,N7):

for j in range (0,Nz):
noeudNtot[N1+N2+N3+N4+N5+N6+i+1,j+1]=noeudN7[i+1,j+1]
noeudXtot[N1+N2+N3+N4+N5+N6+i+1,j+1]=noeudX7[i+1,j+1]

#Définition et numérotation des mailles zone 8

for i in range (0,N8-1):

for j in range(0,Nz):

O8[i,j]=noeudN8][i,]

OO08=str(O8[i,j].astype(int))

f.write(OO8)

f.write(, ')

a=str(noeudNS8][ij].astype(int))

f.write(a)

fowrite(, ')

b=str(noeudNS8[i+1,j].astype(int))

f.write(b)

fowrite(, ')

d=str(noeudN8[i+1,j+1].astype(int))

f.write(d)

fowrite(, ')

c=str(noeudN8[i j+1].astype(int))

f.write(c)

f.write("\n')
noeudXt[N1+N2+N3+N4+N5+N6+N7+i,j]=noeudX8][i,j]
noeudYt[N1+N2+N3+N4+N5+N6+N7+i,j]=noeudY8[i,j]
noeudZt[N1+N2+N3+N4+N5+N6+N7+i,j]=noeudZ8[i,j]
noeudNt[N1+N2+N3+N4+N5+N6+N7+i,j]=noeudN8][i,j]
noeudNtot[N1+N2+N3+N4+N5+N6+N7+ij]=noeudN8][i,j]
noeudXtot[N1+N2+N3+N4+N5+N6+N7+i,j]=noeudX8[i,j]
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# jonction 8_9

for j in range(0,Nz):
OB8[N8-1,j]=noeudN8[N8-1,j]
O08=str(O8[N8-1,j].astype(int))
f.write(OO8)
fowrite(, )
a=str(noeudN8[N8-1,j].astype(int))
f.write(a)
fowrite(, ')
b=str(noeudN8[N8-1,j+1].astype(int))
f.write(b)
fowrite(, )
d=str(noeudN9[0,j+1].astype(int))
f.write(d)
fowrite(, ')
c=str(noeudN9[0,j].astype(int))
f.write(c)
f.write('\n'")
noeudXt[NT1+N2+N3+N4+N5+N6+N7+N8-1,j]=noeudX8[N8-1,j]
noeud Yt[NT+N2+N3+N4+N5+N6+N7+N8-1,j]=noeud Y8[N8-1,j]
noeud Zt[N1+N2+N3+N4+N5+N6+N7+N8-1,j]=noeud Z8[N8-1,j]
noeudNt[N1+N2+N3+N4+N5+N6+N7+N8-1,j]=noeudN8[N8-1,j]
noeudNtot[N1+N2+N3+N4+N5+N6+N7+N8-1,j]=noeudN8[N8-1,j]
noeudXtot[N1+N2+N3+N4+N5+N6+N7+N8-1,j]=noeud X8[N8-1,j]

for i in range (0,N8):
for j in range (0,Nz):
noeudNtot[N1+N2+N3+N4+N5+N6+N7+i+1,j+1]=noeudN8[i+1,j+1]
noeudXtot[N1+N2+N3+N4+N5+N6+N7+i+1,j+1]=noeudX8[i+1,j+1]

#Définition et numérotation des mailles zone 9
for i in range (0,N9):
for j in range(0,Nz):
O9[i,j]=noeudN9[i,j]
0O09=str(O9]i,j].astype(int))
f.write(OO9)
fowrite(, ')
a=str(noeudN9[ij].astype(int))
f.write(a)
fowrite(, ')
b=str(noeudN9[i+1,j].astype(int))
f.write(b)
fowrite(, ')
d=str(noeudN9[i+1,j+1].astype(int))
f.write(d)
f.write(, ')

c=str(noeudN9J[i j+1].astype(int))
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f.write(c)

f.write('\n')

noeudXt[N1+N2+N3+N4+N5+N6+N7+N8+i j]=noeudX9[i,j]
noeud Yt[N1+N2+N3+N4+N5+N6+N7+N8+i j]=noeud Y9[i,j]
noeudZt[N1+N2+N3+N4+N5+N6+N7+N8+i j]=noeud Z9[ij]
noeudNt[N1+N2+N3+N4+N5+N6+N7+N8+i,j]=noeudN9J[i ]
noeudNtot[N1+N2+N3+N4+N5+N6+N7+N8+i,j]=noeudN9J[i,j]
noeudXtot[N1+N2+N3+N4+N5+N6+N7+N8+i,j]=noeudX9[i,j]

for j in range(0,Nz+1):
noeudXt[Nx-1,j-1]=noeudX9[N9-1,j-1]
noeudYt[Nx-1,j-1]=noeud Y9[N9-1,j-1]
noeudZt[Nx-1,j-1]=noeudZ9[N9-1,j-1]

for j in range(0,Nz+2):
noeudNtot[Nx-1,j-1]=noeudN9[N9-1,j-1]
noeudXtot[Nx-1,j-1]=noeudX9[N9-1,j-1]

for i in range (-1,N9):

for j in range (-1,Nz):

noeudNtot[N1+N2+N3+N4+N5+N6+N7+N8+i+1,j+1]=noeudN9[i+1,j+1]
noeudXtot[N1+N2+N3+N4+N5+N6+N7+N8+i+1,j+1]=noeudX9[i+1,j+1]

f.write(\n')

#

#matrice des coordonnées des noeuds au centre des mailles
#

noeudXt_cent= np.zeros((Nx,Nz))

for i in range (Nx):
for j in range (Nz):
noeudXt_cent [i,j]= (noeudXtot[i+1,j+1]+noeudXt[ij])/2
#

# définition de matériau composite UD

#

#Vv1=uniform(0.002,0.001)
E1UD=np.zeros((Nx,Nz))
E2UD=np.zeros((Nx,Nz))
E3UD=np.zeros((Nx,Nz))
G12UD=np.zeros((Nx,Nz))
G13UD=np.zeros((Nx,Nz)
G23UD=np.zeros((Nx,Nz)
E1UDs=131650
E2UDs=6550

E3UDs=6550
G12UDs=3260
G13UDs=3260
G23UDs=2280

)
)
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#zone 1
for i in range (0,N1+N2+1):
for j in range (0,Nz+1):

Vvl=gauss(0.0005,0.0001) #with void variability
#Vv1=0 #without void variability

E1UDJi-1,j-1]=round (E1UDs*(1-Vv1)*2,3)
E2UDJi-1,j-1]=round (E2UDs*(1-Vv1)**2,3)
E3UD[i-1,j-1]=round(E3UDs*(1-Vv1)**2,3)
G12UD[i-1,j-1]=round(G12UDs*(1-Vv1)**2,3)
G13UD[i-1,j-1]=round(G13UDs*(1-Vv1)**2,3)
G23UD[i-1,j-1]=round(G23UDs*(1-Vv1)**2,3)
#zone 2
for i in range (N1+N2,N1+N2+N3+N4+1):
for j in range (0,Nz+1):

Vv2=gauss(0.0004,0.0001)  #with void variability
#Vv1=0 #without void variability

E1UD[i-1j-1]=round(E1UDs*(1-Vv2)**2,3)
E2UDJi-1,j-1]=round (E2UDs*(1-Vv2)**2,3)
E3UD[i-1,j-1]=round(E3UDs*(1-Vv2)**2,3)
G12UDJi-1,j-1]=round (G12UDs*(1-Vv2)*2,3)
G13UD[i-1,j-1]=round(G13UDs*(1-Vv2)**2,3)
G23UD[i-1,j-1]=round(G23UDs*(1-Vv2)**2,3)

#zone 3

for i in range (N1+N2+N3+N4,N1+N2+N3+N4+N5+1):

for j in range (0,Nz+1):

Vv3=gauss(0.005,0.001) #with void variability
#Vv1=0 #without void variability

E1UDJi-1,j-1]=round (E1UDs*(1-Vv3)*2,3)
E2UD[i-1,j-1]=round(E2UDs*(1-Vv3)**2,3)
E3UD[i-1,j-1]=round(E3UDs*(1-Vv3)**2,3)
G12UD[i-1,j-1]=round(G12UDs*(1-Vv3)**2,3)
G13UD[i-1,j-1]=round(G13UDs*(1-Vv3)**2,3)
G23UD[i-1,j-1]=round(G23UDs*(1-Vv3)**2,3)

#zone 4

for i in range (N1+N2+N3+N4+N5,N1+N2+N3+N4+N5+N6+N7+1):

for j in range (0,Nz+1):

Vv4=gauss(0.0003,0.0001)  #with void variability
#Vv1=0 #without void variability

E1UD[i-1j-1]=round(E1UDs*(1-Vv4)**2,3)
E2UD[i-1j-1]=round(E2UDs*(1-Vv4)**2,3)
E3UD[i-1,j-1]=round(E3UDs*(1-Vv4)**2,3)
G12UD[i-1,j-1]=round(G12UDs*(1-Vv4)**2,3)
G13UD[i-1,j-1]=round(G13UDs*(1-Vv4)**2,3)
G23UD[i-1,j-1]=round(G23UDs*(1-Vv4)**2,3)

#zone 5

for i in range (N1+N2+N3+N4+N5+N6+N7,N1+N2+N3+N4+N5+N6+N7+N8+N9+1):

for j in range (0,Nz+1):
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Vv5=gauss(0.0005,0.0001)  #with void variability
#Vv1=0 #without void variability
E1UD[i-1,j-1]=round(E1UDs*(1-Vv5)**2,3)
E2UD[i-1,j-1]=round(E2UDs*(1-Vv5)**2,3)
E3UD[i-1,j-1]=round(E3UDs*(1-Vv5)**2,3)
G12UDJi-1,j-1]=round (G12UDs*(1-Vv5)*2,3)
G13UD[i-1,j-1]=round(G13UDs*(1-Vv5)**2,3)
G23UD[i-1,j-1]=round(G23UDs*(1-Vv5)**2,3)

from random import randint

pos_void=[[randint(round(Nx/7),round(Nx/5)),randint(round(Nx/5)+1,round(Nx/3)), randint(round (Nx/ 3),round (Nx/ 2))+ro
und(Nx/6),randint(round(Nx/2)+round(Nx/4),round (Nx))-1]]
Vvll=gauss(0.001,0.0001)
for j in range (0,Nz+1):
E1UDI[pos_void,j-1]=round(E1UDs*(1-Vv1l)**2,3) #Module élastique avec porosités
E2UD[pos_void,j-1]=round (E2UDs*(1-Vv1l)**2,3) #Module élastique avec porosités
E3UD[pos_void,j-1]=round (E3UDs*(1-Vv1l)**2,3) #Module élastique avec porosités
G12UDJ[pos_void j-1]=round(G12UDs*(1-Vv1l)**2,3) #Module de cisaillement avec porosités
G13UD[pos_void,j-1]=round(G13UDs*(1-Vv1l)**2,3) #Module de cisaillement avec porosités
G23UD[pos_void,j-1]=round(G23UDs*(1-Vv1l)**2,3) #Module de cisaillement avec porosités

Nul12UD=str(0.27)

Nul13UD=str(0.27)

Nu23UD=str(0.14)

#coefficients d'expansion composite UD
alpha_11UD=str(-0.0000056)
alpha_22UD=str(0.00001434)
alpha_33UD=str(0.00001434)

Ten1UD=str(1814.) #Tensile stress limit in fiber direction Xt

Com1UD=str(-1325.) #Compressive stress limit in fiber direction Xc

Ten2UD=str(70.) #Tensile stress limit in transverse direction Yt

Com2UD=str(-300.) #Compressive stress limit in transverse direction Yc

SUD-=str(70.) #Shear strength in the X-Y plane

CrossUD=str(1.) #cross product term coefficient (-1<f<1): used only for Tsai-Wu theory and ignored if sigma bia x is given
(default=0)

Stress_L=str(1200.) #Biaxial stress limit sigma bia x , this value is used for Tsai-Wu theory, if this entry is non zero, f is

ignored

#

# définition de matériau composite TISSE

#

#parametres densité

density_nom_TISSE=str(1482E-12) #densité nominale composite TISSE (T/mm3)
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#

#parameétres porosités avec variabilités

#Vvl=uniform(0.002,0.002) #fraction volumique des porosités

# Programmations des porosités longues/grandes

E1WOVEN=np.zeros((Nx,Nz))
E2WOVEN=np.zeros((Nx,Nz))
E3WOVEN=np.zeros((Nx,Nz))
G12WOVEN=np.zeros((Nx,Nz))
G13WOVEN=np.zeros((Nx,Nz))
G23WOVEN=np.zeros((Nx,Nz))

E1IWOVENs=61225 #Module élastique sans porosités
E2WOVENs=61225 #Module élastique sans porosités
E3WOVENs=11249.5 #Module élastique sans porosités
G12WOVENs=2400 #Module de cisaillement sans porosités
G13WOVENs=2475 #Module de cisaillement sans porosités
G23WOVENs=2475 #Module de cisaillement sans porosités

#zonel
for i in range (0,N1+N2+1):
for j in range (0,Nz+1):
Vv1=gauss(0.0005,0.0001) #with void variability
#Vvl=0 #without void variability

E1WOVEN([i-1j-1]=round(E1WOVENSs*(1-Vv1)**2,3) #Module élastique avec porosités
E2WOVEN([i-1,j-1]=round (E2WOVENs*(1-Vv1)**2,3) #Module élastique avec porosités
E3WOVEN([i-1,j-1]=round(E3SWOVENSs*(1-Vv1)**2,3) #Module élastique avec porosités
G12WOVEN]i-1,j-1]=round(G12WOVENSs*(1-Vv1)**2,3) #Module de cisaillement avec porosités
G13WOVEN(i-1,j-1]=round(G13WOVENSs*(1-Vv1)**2,3) #Module de cisaillement avec porosités
G23WOVEN(i-1,j-1]=round(G23WOVENSs*(1-Vv1)**2,3) #Module de cisaillement avec porosités

#zone2
for i in range (N1+N2,N1+N2+N3+N4+1):

for j in range (0,Nz+1):

Vv2=gauss(0.0004,0.0001) #with void variability

#Vv1=0 #without void variability

E1WOVEN([i-1,j-1]=round (E1WOVENs*(1-Vv2)**2,3) #Module élastique avec porosités
E2WOVEN([i-1,j-1]=round (E2WOVENs*(1-Vv2)**2,3) #Module élastique avec porosités
E3WOVEN]i-1,j-1]=round(E3WOVENs*(1-Vv2)**2,3) #Module élastique avec porosités
G12WOVEN][i-1,j-1]=round (G12WOVENs*(1-Vv2)**2,3) #Module de cisaillement avec porosités
G13WOVEN([i-1,j-1]=round (G13WOVENs*(1-Vv2)**2,3) #Module de cisaillement avec porosités
G23WOVEN][i-1,j-1]=round (G23WOVENs*(1-Vv2)**2,3) #Module de cisaillement avec porosités

#zone3
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for i in range (N1+N2+N3+N4,N1+N2+N3+N4+N5+1):
for j in range (0,Nz+1):

Vv3=gauss(0.005,0.001) #with void variability
#Vv1=0 #without void variability
E1WOVEN([i-1j-1]=round(E1WOVENSs*(1-Vv3)**2,3) #Module élastique avec porosités
E2WOVEN([i-1,j-1]=round (E2ZWOVENs*(1-Vv3)**2,3) #Module élastique avec porosités
E3WOVEN([i-1,j-1]=round (E3WOVENs*(1-Vv3)**2,3) #Module élastique avec porosités
G12WOVEN(i-1,j-1]=round(G12WOVENSs*(1-Vv3)**2,3) #Module de cisaillement avec porosités
G13WOVEN(i-1,j-1]=round(G13WOVENSs*(1-Vv3)**2,3) #Module de cisaillement avec porosités
G23WOVEN]i-1,j-1]=round (G23WOVENSs*(1-Vv3)**2,3) #Module de cisaillement avec porosités

#zone4
for i in range (N1+N2+N3+N4+N>5,N1+N2+N3+N4+N5+N6+N7+1):
for j in range (0,Nz+1):

Vv4=gauss(0.0003,0.0001) #with void variability
#Vv1=0 #without void variability
E1WOVEN([i-1j-1]=round(E1WOVENSs*(1-Vv4)**2,3) #Module élastique avec porosités
E2WOVEN([i-1,j-1]=round (E2WOVENSs*(1-Vv4)**2,3) #Module élastique avec porosités
E3WOVEN([i-1,j-1]=round (E3WOVENSs*(1-Vv4)**2,3) #Module élastique avec porosités
G12WOVEN(i-1,j-1]=round(G12WOVENSs*(1-Vv4)**2,3) #Module de cisaillement avec porosités
G13WOVEN(i-1,j-1]=round(G13WOVENSs*(1-Vv4)**2,3) #Module de cisaillement avec porosités
G23WOVEN(i-1,j-1]=round(G23WOVENSs*(1-Vv4)**2,3) #Module de cisaillement avec porosités

#zone5
for i in range (N1+N2+N3+N4+N5+N6+N7,N1+N2+N3+N4+N5+N6+N7+N8+N9+1):
for j in range (0,Nz+1):

Vvb=gauss(0.0005,0.0001) #with void variability
#Vvl=0 #without void variability
E1WOVEN([i-1,j-1]=round (E1WOVENs*(1-Vv5)**2,3) #Module élastique avec porosités
E2WOVEN([i-1,j-1]=round (E2WOVENSs*(1-Vv5)**2,3) #Module élastique avec porosités
E3WOVEN([i-1,j-1]=round(E3WOVENSs*(1-Vv5)**2,3) #Module élastique avec porosités
G12WOVEN]i-1,j-1]=round(G12WOVENSs*(1-Vv5)**2,3) #Module de cisaillement avec porosités
G13WOVEN(i-1,j-1]=round(G13WOVENSs*(1-Vv5)**2,3) #Module de cisaillement avec porosités
G23WOVEN(i-1,j-1]=round(G23WOVENSs*(1-Vv5)**2,3) #Module de cisaillement avec porosités

for j in range (0,Nz+1):
E1WOVEN][pos_void,j-1]=round(E1WOVENs*(1-Vv1l)**2,3) #Module élastique avec porosités
E2WOVEN][pos_void,j-1]=round(E2WOVENs*(1-Vv1l)**2,3) #Module élastique avec porosités
E3WOVEN][pos_void,j-1]=round(E3WOVENs*(1-Vv1l)**2,3) #Module élastique avec porosités
G12WOVEN][pos_void,j-1]=round(G12WOVENSs*(1-Vv11)**2,3) #Module de cisaillement avec porosités
G13WOVEN][pos_void,j-1]=round(G13WOVENSs*(1-Vv1l)**2,3) #Module de cisaillement avec porosités
G23WOVEN][pos_void,j-1]=round(G23WOVENSs*(1-Vv1l)**2,3) #Module de cisaillement avec porosités

Nul2WOVEN-=str(0.22)

Nul3WOVEN-=str(0.2)

Nu23WOVEN-=str(0.2)

#coefficents d'expansion composite tisse
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alpha_11WOVEN=str(-0.0000115)
alpha_22WOVEN=str(-0.0000115)
alpha_33WOVEN=str(0.00001434)

Ten1WOVEN=str(1600.) #Tensile stress limit in fiber direction Xt

Coml1WOVEN=str(-1168.) #Compressive stress limit in fiber direction Xc
Ten2WOVEN=str(70.) #Tensile stress limit in transverse direction Yt
Com2WOVEN=str(-300.) #Compressive stress limit in transverse direction Yc
SWOVENS=str(70.) #Shear strength in the X-Y plane

CrossWOVEN-=str(1.)#cross product term coefficient (-1<f<1): used only for Tsai-Wu theory

#materiau par pli

Material

=(['COMPOSITEWOVEN','COMPOSITEUD', COMPOSITEWOVEN','COMPOSITEUD',  COMPOSITEWOVEN','COMPOSITEU
D','COMPOSITEWOVEN','COMPOSITEUD','COMPOSITEWOVEN','COMPOSITEUD','COMPOSITEUD','  COMPOSITEWOVE
N','/COMPOSITEUD','COMPOSITEWOVEN','COMPOSITEUD','COMPOSITEWOVEN','COMPOSITEUD',  COMPOSITEWOVE
N','COMPOSITEUD', COMPOSITEWOVEN'])

#

# TIRAGE ALEATOIRE DES EXTREMITES DE PLIS

#

#initialisation des matrices utiles pour le tirage
Coeff_moyenne_categoriel=numpy.zeros((1,6))
Coeff_moyenne_categorie2=numpy.zeros((1,6))
Coeff_moyenne_categorie3=numpy.zeros((1,6))
Coeff_moyenne_categorie4=numpy.zeros((1,6))
Coeff_moyenne_categorieUD=numpy.zeros((1,6))
Coeff_moyenne_categorieTISSE=numpy.zeros((1,6))

%

Coeff_ecarttype_categoriel=numpy.zeros

Coeff_ecarttype_categorie3=numpy.zeros

%

(@
Coeff_ecarttype_categorie2=numpy.zeros((1
(@
Coeff_ecarttype_categorie4d=numpy.zeros((1,
Coeff_ecarttype_categorieUD=numpy.zeros((1,6))

Coeff_ecarttype_categorieTISSE=numpy.zeros((1,6))

coefficient_mat_plis_categoriel=numpy.zeros((6,6)) # plis 1391218 20

)
coefficient_mat_plis_categorie2=numpy.zeros((2,6)) # plis 219 semelle

coefficient_mat_plis_categorie3=numpy.zeros((10,6)) # plis 24 6 8 101113 1517 19 aile
coefficient_mat_plis_categorie4=numpy.zeros((4,6)) # plis 5714 16

coefficient_mat_plis_categorieUD=numpy.zeros((10,6)) # plis UD

coefficient_mat_plis_categorieTISSE=numpy.zeros((10,6)) # plis tissés

# parametres issus de I'analyse ecart aprés polym

Coeff_moyenne_categoriel=([moyenne_coeff_cat1[5],moyenne_coeff_catl[4], moyenne_coeff_cat1[3],moyenne_coeff_cat1[2],mo

yenne_coeff_catl[1],moyenne_coeff_cat1[0]]) #parametres a5 a4 a3 a2 al a0
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Coeff_moyenne_categorie2=([moyenne_coeff_cat2[5],moyenne_coeff_cat2[4], moyenne_coeff_cat2[3],moyenne_coeff_cat2[2],mo
yenne_coeff_cat2[1],moyenne_coeff_cat2[0]]) #parametres a5 a4 a3 a2 al a0
Coeff_moyenne_categorie3=([moyenne_coeff_cat3[5],moyenne_coeff_cat3[4], moyenne_coeff_cat3[3], moyenne_coeff_cat3[2],mo
yenne_coeff_cat3[1],moyenne_coeff_cat3[0]]) #parametres a5 a4 a3 a2 al a0
Coeff_moyenne_categorie4=([moyenne_coeff_cat4[5],moyenne_coeff_cat4[4] moyenne_coeff_cat4[3],moyenne_coeff_cat4[2],mo

yenne_coeff_cat4[1],moyenne_coeff_cat4[0]]) #parametres a5 a4 a3 a2 al a0

Coeff_ecarttype_categoriel=([ecartype_coeff catl[5]ecartype_coeff_catl[4]ecartype_coeff catl[3]ecartype_coeff catl[2]ecarty
pe_coeff_catl[1] ecartype_coeff_cat1[0]]) #parametres a5 a4 a3 a2 al a0
Coeff_ecarttype_categorie2=([ecartype_coeff_cat2[5]ecartype_coeff_cat2[4] ecartype_coeff_cat2[3] ecartype_coeff_cat2[2],ecarty
pe_coeff_cat2[1],ecartype_coeff_cat2[0]]) #parametres a5 a4 a3 a2 al a0
Coeff_ecarttype_categorie3=([ecartype_coeff_cat3[5],ecartype_coeff_cat3[4] ecartype_coeff_cat3[3] ecartype_coeff_cat3[2] ecarty
pe_coeff_cat3[1],ecartype_coeff_cat3[0]]) #parametres a5 a4 a3 a2 al a0
Coeff_ecarttype_categorie4=([ecartype_coeff cat4[5]ecartype_coeff_cat4[4]ecartype_coeff cat4[3]ecartype_coeff cat4[2]ecarty
pe_coeff_cat4[1],ecartype_coeff_cat4[0]]) #parametres a5 a4 a3 a2 al a0

# parametres issus de I'analyse ecart de découpe

Coeff_moyenne_categorieUD=([moyenne_coeff_catUD[5],moyenne_coeff_catUD[4] moyenne_coeff_catUD[3],moyenne_coeff_c
atUD[2],moyenne_coeff_catUD[1],moyenne_coeff_catUD|[0]]) #parameétres a5 a4 a3 a2 al a0
Coeff_moyenne_categorieTISSE=([moyenne_coeff_catTISSE[5],moyenne_coeff_catTISSE[4] moyenne_coeff_catTISSE[3],moyenn
e_coeff_catTISSE[2],moyenne_coeff_catTISSE[1],moyenne_coeff_catTISSE[0]]) #parameétres a5 a4 a3 a2 al a0

Coeff_ecarttype_categorieUD=([ecartype_coeff_catUD|[5],ecartype_coeff_catUD[4],ecartype_coeff_catUD[3],ecartype_coeff_cat
UDJ2],ecartype_coeff_catUD[1],ecartype_coeff_catUD|[0]]) #parametres a5 a4 a3 a2 al a0
Coeff_ecarttype_categorieTISSE=([ecartype_coeff_catTISSE[5],ecartype_coeff_catTISSE[4],ecartype_coeff_catTISSE[3] ecartype_
coeff_catTISSE[2],ecartype_coeff_catTISSE[1],ecartype_coeff catTISSE[0]]) #paramétres a5 a4 a3 a2 al a0

#

# parametres issus de I'analyse des ecarts des arrets des plis
#

for i in range (0,5):
for j in range (0,3):
coefficient_mat_plis_categoriel[ij]=gauss(Coeff_moyenne_categoriel[j],Coeff_ecarttype_categoriel[j])
for i in range (0,1):
for j in range (0,3):
coefficient_mat_plis_categorie2[ij|=gauss(Coeff_moyenne_categorie2[j],Coeff_ecarttype_categorie2[j])
for i in range (0,9):
for j in range (0,3):
coefficient_mat_plis_categorie3[ij]=gauss(Coeff_moyenne_categorie3[j],Coeff_ecarttype_categorie3[j])
for i in range (0,3):
for j in range (0,3):

coefficient_mat_plis_categorie4[i j]=gauss(Coeff_moyenne_categorie4[j],Coeff_ecarttype_categorie4[j])
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# parametres issus de l'analyse ecart de découpe

#

for i in range (0,9):

for j in range (0,3):

coefficient_mat_plis_categorieUD][ij]=gauss(Coeff_moyenne_categorieUD[j],Coeff_ecarttype_categorieUDj])

for i in range (0,9):

for j in range (0,3):

coefficient_mat_plis_categorieTISSE[i,j|=gauss(Coeff_moyenne_categorieTISSE[j],Coeff_ecarttype_categorieTISSE]j])

#

#cas sans variabilités (coefficients =0)

#

#for i in range (0,6):
#for j in range (0,4):
#coefficient_mat_plis_categoriel[i,j]=0
#for i in range (0,2):
#for j in range (0,4):

#coefficient_mat_plis_categorie2[i,j]=0

#for i in range (0,10):
#for j in range (0,4):

#coefficient_mat_plis_categorie3[i,j]=0

#for i in range (0,4):
#for j in range (0,4):
#coefficient_mat_plis_categorie4[i,j]=0
#for i in range (0,9):
#for j in range (0,3):
#coefficient_mat_plis_categorieUD[i,j]=0
#for i in range (0,9):
#for j in range (0,3):
#coefficient_mat_plis_categorieTISSE[i,j]=0
#

# Definition des positions des plis theoriques

#

# initialisation des matrices position
pos_theo_mat_pld = numpy.zeros([1,2])
pos_theo_mat_p2d = numpy.zeros([3,2])
pos_theo_mat_p3d = numpy.zeros([1,2])
pos_theo_mat_p4d = numpy.zeros([1,2])
pos_theo_mat_p5d = numpy.zeros([2,2])
pos_theo_mat_p6d = numpy.zeros([1,2])
pos_theo_mat_p7d = numpy.zeros([2,2])
pos_theo_mat_p8d = numpy.zeros([1,2])
pos_theo_mat_p9d = numpy.zeros([1,2])
pos_theo_mat_p10d = numpy.zeros([1,2])
pos_theo_mat_p11d = numpy.zeros([1,2])
pos_theo_mat_p12d = numpy.zeros([1,2])
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pos_theo_mat_p13d = numpy.zeros([1,2])
pos_theo_mat_p14d = numpy.zeros([2,2])
pos_theo_mat_p15d = numpy.zeros([1,2])
pos_theo_mat_p16d = numpy.zeros([2,2])
pos_theo_mat_p17d = numpy.zeros([1,2])
pos_theo_mat_p18d = numpy.zeros([1,2])
pos_theo_mat_p19d = numpy.zeros([3,2])
)

pos_theo_mat_p20d = numpy.zeros([1,2]
pos_theo_mat_plg = numpy.zeros([1,Nz])
[3,Nz])
[1,Nz])
[1,Nz])
[2,Nz])
[1,Nz])
[2,Nz])
[1,Nz])

pos_theo_mat_p2g = numpy.zeros
pos_theo_mat_p3g = numpy.zeros
pos_theo_mat_p4g = numpy.zeros
pos_theo_mat_p5g = numpy.zeros
pos_theo_mat_p6g = numpy.zeros

pos_theo_mat_p7g = numpy.zeros

L O A A A A A A A

pos_theo_mat_p8g = numpy.zeros
pos_theo_mat_p9g = numpy.zeros([1,Nz])
pos_theo_mat_p10g = numpy.zeros([1,Nz])
pos_theo_mat_pl1lg = numpy.zeros([1,Nz])
pos_theo_mat_p12g = numpy.zeros([1,Nz])
pos_theo_mat_p13g = numpy.zeros([1,Nz])
pos_theo_mat_pl4g = numpy.zeros([2,Nz])
pos_theo_mat_p15g = numpy.zeros([1,Nz])
pos_theo_mat_pl6g = numpy.zeros([2,Nz])
pos_theo_mat_p17g = numpy.zeros([1,Nz])
pos_theo_mat_p18g = numpy.zeros([1,Nz])
pos_theo_mat_p19g = numpy.zeros([3,Nz])
pos_theo_mat_p20g = numpy.zeros([1,Nz])
#

#matrices positions theoriques (droite)

#

pos_theo_mat_pld = np.array ([49.79,26.55])

pos_theo_mat_p2d = np.array([[12.22 ,2.66] , [19.24, 23.12] , [33.64 ,26.64]])

(
pos_theo_mat_p3d = np.array([44.45,26.77])
pos_theo_mat_p4d = np.array([12.22,3.31])
pos_theo_mat_p5d = np.array([[12.22,3.31],[24.76,26.74]])
pos_theo_mat_p6d = np.array([12.13,3.76])
pos_theo_mat_p7d = np.array([[12.13,3.76],[39.98,27]])
pos_theo_mat_p8d = np.array([12.02,4.21])
pos_theo_mat_p9d = np.array([30.1,27.47])
pos_theo_mat_p10d = np.array([11.91,4.98])
pos_theo_mat_plld = np.array([11.9,5.31])
pos_theo_mat_p12d = np.array([30.56,27.57])
pos_theo_mat_p13d = np.array([11.9,5.9])
pos_theo_mat_p14d = np.array([[12.01,6.24],[40.56,27.03]])
pos_theo_mat_p15d = np.array([12.01,6.24])
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pos_theo_mat_pl6d = np.array([[12.01,6.24],[27.68,28.31]])
pos_theo_mat_p17d = np.array([11.88,6.66])
pos_theo_mat_p18d = np.array([43.71,27.05])
pos_theo_mat_p19d = np.array([[11.87,7.33],[21.9,23.35],[29.37,28.62]])
pos_theo_mat_p20d = np.array([47.6,26.81])
posZt=np.zeros([Nx,Nz])
for i in range (0,Nx):

for j in range (0,Nz):

posZtl[i,j]=noeudZt[i,j]-(L/2)

#

#matrices positions apres ecart découpe (gauche)
#
#pos_theo_mat_plg = ([49.79,26.55])

#position gauche pli 2 (aile,s emelle)
for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p2g [1,j-1] = pos_theo_mat_p2d [2,0] -
((coefficient_mat_plis_categorieUD[0,5])+(coefficient_mat_plis_categorieUD[0,4]*posZt[i-1,-
1])+(coefficient_mat_plis_categorieUD[0,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[0,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[0,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUD|0,0]*(posZt[i-1,j-1]**5)) )
pos_theo_mat_p2g [0,j-1] = - pos_theo_mat_p2d [0,0] +
(coefficient_mat_plis_categorieUD[0,5])+(coefficient_mat_plis_categorieUD[0,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[0,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[0,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[0,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUDI[0,0]*(posZt[i-1,j-1]**5))
pos_theo_mat_p2g [2,j-1] = -pos_theo_mat_p2d [2,0] +
(coefficient_mat_plis_categorieUD[0,5])+(coefficient_mat_plis_categorieUD|[0,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[0,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[0,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[0,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUDI[0,0]*(posZt[i-1,j-1]**5))

#position gauche pli 3

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p3g [0,j-1] = - pos_theo_mat_p3d [0] +
(coefficient_mat_plis_categorieTISSE[0,5])+(coefficient_mat_plis_categorieTISSE[0,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[0,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[0,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[0,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[0,0]*(posZt[i-1,j-1]**5))

#position gauche pli 4

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p4g [0,j-1] = - pos_theo_mat_p4d [0] +
(coefficient_mat_plis_categorieUD[1,5])+(coefficient_mat_plis_categorieUD[1,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[1,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[1,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieUD[1,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUD[1,0]*(posZt[i-1,j-1]**5))
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#position gauche pli 5

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p5g [0,j-1] = pos_theo_mat_p5d [1][0] -
((coefficient_mat_plis_categorieTISSE[1,5])+(coefficient_mat_plis_categorieTISSE[1,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[1,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[1,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[1,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[1,0]*(posZt[i-1,j-1]**5)))
pos_theo_mat_p5g [1,j-1] = -pos_theo_mat_p5d [1][0] +
(coefficient_mat_plis_categorieTISSE[1,5])+(coefficient_mat_plis_categorieTISSE[1,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[1,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[1,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[1,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[1,0]*(posZt[i-1,j-1]**5))

#position gauche pli 6

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p6g [0,j-1] = - pos_theo_mat_p6d [0] +
(coefficient_mat_plis_categorieUD][2,5])+(coefficient_mat_plis_categorieUD|[24]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[2,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[2,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[2,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUD|[2,0]*(posZt[i-1,j-1]**5))

#position gauche pli 7

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p7g [0,j-1] = pos_theo_mat_p7d [1][0] -
((coefficient_mat_plis_categorieTISSE[2,5])+(coefficient_mat_plis_categorieTISSE[2,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[2,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[2,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[2,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[2,0]*(posZt[i-1,j-1]**5)))
pos_theo_mat_p7g [1,j-1] = -pos_theo_mat_p7d [1][0] +
(coefficient_mat_plis_categorieTISSE[2,5])+(coefficient_mat_plis_categorieTISSE[2,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[2,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[2,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[2,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[2,0]*(posZt[i-1,j-1]**5))

#position gauche pli 8

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p8g [0,j-1] = - pos_theo_mat_p8d [0] +
(coefficient_mat_plis_categorieUD[3,5])+(coefficient_mat_plis_categorieUD|[3,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[3,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[3,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieUD|3,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUD[3,0]*(posZt[i-1,j-1]**5))

#position gauche pli 9

for i in range (1,Nx+1):
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for j in range (1,Nz+1):
pos_theo_mat_p9g [0,j-1] = - pos_theo_mat_p9d [0] +
(coefficient_mat_plis_categorieTISSE[3,5])+(coefficient_mat_plis_categorieTISSE[3,4]|*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[3,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[3,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[3,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[3,0]*(posZt[i-1,j-1]**5))

#position gauche pli 10

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p10g [0,j-1] = - pos_theo_mat_p10d [0] +
(coefficient_mat_plis_categorieUD[4,5])+(coefficient_mat_plis_categorieUD[4,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[4,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[4,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[4,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUD[4,0]*(posZt[i-1,j-1]**5))

#position gauche pli 11

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p11g [0,j-1] = - pos_theo_mat_p11d [0] +
(coefficient_mat_plis_categorieUD[5,5])+(coefficient_mat_plis_categorieUD[54]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[5,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[5,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[5,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUDI5,0]*(posZt[i-1,j-1]**5))

#position gauche pli 12

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p12g [0,j-1] = - pos_theo_mat_p12d [0] +
(coefficient_mat_plis_categorieTISSE[4,5])+(coefficient_mat_plis_categorieTISSE[4,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[4,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[4,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[4,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[4,0]*(posZt[i-1,j-1]**5))

#position gauche pli 13

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p13g [0,j-1] = - pos_theo_mat_p13d [0] +
(coefficient_mat_plis_categorieUD[6,5])+(coefficient_mat_plis_categorieUD|[6,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[6,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[6,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[6,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUD|[6,0]*(posZt[i-1,j-1]**5))

#position gauche pli 14

for i in range (1,Nx+1):

for j in range (1,Nz+1):
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pos_theo_mat_pl4g [0,j-1] = pos_theo_mat_pl4d [1][0] -
((coefficient_mat_plis_categorieTISSE[5,5])+(coefficient_mat_plis_categorieTISSE[5,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[5,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[5,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[5,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[5,0]*(posZt[i-1,j-1]**5)))

pos_theo_mat_pl4g [1,j-1] = -pos_theo_mat_p14d [1][0] +
(coefficient_mat_plis_categorieTISSE[5,5])+(coefficient_mat_plis_categorieTISSE[5,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[5,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[5,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[5,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[5,0]*(posZt[i-1,j-1]**5))

#position gauche pli 15

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p15g [0,j-1] = - pos_theo_mat_p15d [0] +
(coefficient_mat_plis_categorieUD[7,5])+(coefficient_mat_plis_categorieUD|7 4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[7,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[7,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[7,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUD|7,0]*(posZt[i-1,j-1]**5))

#position gauche pli 16

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p16g [0,j-1] = pos_theo_mat_pléd [1][0] -
((coefficient_mat_plis_categorieTISSE[6,5])+(coefficient_mat_plis_categorieTISSE[6,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[6,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[6,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[6,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[6,0]*(posZt[i-1,j-1]**5)))
pos_theo_mat_p16g [1,j-1] = -pos_theo_mat_plé6d [1][0] +
(coefficient_mat_plis_categorieTISSE[6,5])+(coefficient_mat_plis_categorieTISSE[6,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[6,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[6,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[6,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[6,0]*(posZt[i-1,j-1]**5))

#position gauche pli 17

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p17g [0,j-1] = - pos_theo_mat_p17d [0] +
(coefficient_mat_plis_categorieUD[8,5])+(coefficient_mat_plis_categorieUD|8 4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[8,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[8,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[8,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUD|8,0]*(posZt[i-1,j-1]**5))

#position gauche pli 18
for i in range (1,Nx+1):
for j in range (1,Nz+1):

pos_theo_mat_p18g [0,j-1] = - pos_theo_mat_p18d [0] +
(coefficient_mat_plis_categorieTISSE[7,5])+(coefficient_mat_plis_categorieTISSE[7,4]*posZt[i-1,j-
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1])+(coefficient_mat_plis_categorieTISSE[7,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[7,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[7,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[7,0]*(posZt[i-1,j-1]**5))

#position gauche pli 19
for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p19g [1,j-1] = pos_theo_mat_p19d [2,0] -(
(coefficient_mat_plis_categorieUD[9,5])+(coefficient_mat_plis_categorieUD|[94]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[9,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[9,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[9,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUD[9,0]*(posZt[i-1,j-1]**5)))
pos_theo_mat_p19g [0,j-1] = - pos_theo_mat_p19d [0,0] +
(coefficient_mat_plis_categorieUD[9,5])+(coefficient_mat_plis_categorieUD[9,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[9,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[9,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[9,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUD[9,0]*(posZt[i-1,j-1]**5))
pos_theo_mat_p19g [2,j-1] = -pos_theo_mat_p19d [2,0] +
(coefficient_mat_plis_categorieUD[9,5])+(coefficient_mat_plis_categorieUD[9 4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieUD[9,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieUD[9,2]*posZt[i-1,-1]**3) +
(coefficient_mat_plis_categorieUD[9,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieUDI[9,0]*(posZt[i-1,j-1]**5))

#position gauche pli 20

for i in range (1,Nx+1):
for j in range (1,Nz+1):
pos_theo_mat_p20g [0,j-1] = - pos_theo_mat_p20d [0] +
(coefficient_mat_plis_categorieTISSE[8,5])+(coefficient_mat_plis_categorieTISSE[8,4]*posZt[i-1,j-
1])+(coefficient_mat_plis_categorieTISSE[8,3]*posZt[i-1,j-1]**2)+(coefficient_mat_plis_categorieTISSE[8,2]*posZt[i-1,j-1]**3) +
(coefficient_mat_plis_categorieTISSE[8,1]*(posZt[i-1,j-1]**4)) + (coefficient_mat_plis_categorieTISSE[8,0]*(posZt[i-1,j-1]**5))

#

#programmation des écarts

#

Mat_position_p1 =np.ones([Nx,Nz])
Mat_position_p2 =np.zeros([Nx,Nz])
Mat_position_p3 =np.zeros([Nx,Nz])
Mat_position_p4 =np.zeros([Nx,Nz])
[Nx,Nz])
[Nx,Nz])

(

(

Mat_position_p5 =np.zeros(

Mat_position_p6 =np.zeros(

Mat_position_p7 =np.zeros([Nx,Nz])
Mat_position_p8 =np.zeros([Nx,Nz])
Mat_position_p9 =np.zeros([Nx,Nz])
Mat_position_p10 =np.zeros([Nx,Nz])
Mat_position_p11 =np.zeros([Nx,Nz])
Mat_position_p12 =np.zeros([Nx,Nz])
Mat_position_p13 =np.zeros([Nx,Nz])
Mat_position_p14 =np.zeros([Nx,Nz])
Mat_position_p15 =np.zeros([Nx,Nz])
Mat_position_p16 =np.zeros([Nx,Nz])
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Mat_position_p17 =np.zeros([Nx,Nz])
[Nx,Nz])
[Nx,Nz])

(
Mat_position_p18 =np.zeros(
Mat_position_p19 =np.zeros(
Mat_position_p20 =np.zeros([Nx,Nz])
#delta_p1 = np.zeros([Nz,1])
delta_p21 = np.zeros([Nz,1])
delta_p22 = np.zeros([Nz,1])
delta_p23= np.zeros([Nz,1])
delta_p3 = np.zeros([Nz,1])
delta_p4 = np.zeros([Nz,1])
delta_p51 = np.zeros([Nz,1])
delta_p52 = np.zeros([Nz,1])
delta_p6 = np.zeros([Nz,1])
delta_p71 = np.zeros([Nz,1])
delta_p72 = np.zeros([Nz,1])
delta_p8 = np.zeros([Nz,1])
delta_p9 = np.zeros([Nz,1])
delta_p10 = np.zeros([Nz,1])
delta_p11 = np.zeros([Nz,1])
delta_p12 = np.zeros([Nz,1])
delta_p13 = np.zeros([Nz,1])
delta_p141 = np.zeros([Nz,1])
delta_p142 = np.zeros([Nz,1])
delta_p15 = np.zeros([Nz,1])
delta_p161 = np.zeros([Nz,1])
delta_p162 = np.zeros([Nz,1])
delta_p17 = np.zeros([Nz,1])
delta_p18 = np.zeros([Nz,1])
delta_p191 = np.zeros([Nz,1])
delta_p192 = np.zeros([Nz,1])
delta_p193 = np.zeros([Nz,1])
delta_p20 = np.zeros([Nz,1])
#

# extrémité pli1
#

#for i in range (1,Nx+1):
#for j in range (1,Nz+1):
#delta_p1[j-1,0]=coefficient_mat_plis_categoriel[0,3]+(coefficient_mat_plis_categoriel[0,2]*noeudZt[i-1,-1]) +
(coefficient_mat_plis_categoriel[0,1]*noeudZt[i-1,j-1]**2) + (coefficient_mat_plis_categoriel[0,0]*noeudZt[i-1,j-1]**3)
# if noeudXt [i-1,j-1] > (-pos_theo_mat_p1[0]-delta_p1[j-1,0]):
# if noeudXt [i-1,j-1] < (pos_theo_mat_p1[0]+delta_p1[j-1,0]):

# Mat_position_p1 [i-1,j-1]=1
#

# extrémité pli 2
#
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delta_max=0
for i in range (NXx):
for j in range (Nz):
delta_p21[j,0]=(coefficient_mat_plis_categorie2[0,5])+(coefficient_mat_plis_categorie2[0,4]*posZt[i j])+(coefficient_mat_plis_cate
gorie2[0,3]*posZi[i,j]**2)+(coefficient_mat_plis_categorie2[0,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie2[0,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie2[0,0]*(posZt[i,j]**5))
if (delta_max<=delta_p21[j,0]):
delta_max=delta_p21[j,0]
delta_p22[j,0]=(coefficient_mat_plis_categorie3[0,5])+(coefficient_mat_plis_categorie3[0,4]*posZt[i,j])+(coefficient_mat_plis_cate
gorie3[0,3]*posZi[i,j]**2)+(coefficient_mat_plis_categorie3[0,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie3[0,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie3[0,0]*(posZt[i,j]**5))
if (delta_max<=delta_p22[j,0]):
delta_max=delta_p22[j,0]
delta_p23[j,0]=(coefficient_mat_plis_categorie2[0,5])+(coefficient_mat_plis_categorie2[0,4]*posZt[i,j])+(coefficient_mat_plis_cate
gorie2[0,3]*posZi[i,j]**2)+(coefficient_mat_plis_categorie2[0,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie2[0,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie2[0,0]*(posZt[i,j]**5))
if (delta_max<=delta_p23[j,0]):
delta_max=delta_p23[j,0]
if noeudXt_cent [i] < (-pos_theo_mat_p2d[1,0]-delta_p21[j,0]):
if noeudXt_cent [i,j] > (pos_theo_mat_p2g[2,j]):
Mat_position_p2 [i,j]=1
if noeudXt_cent [ij] > (pos_theo_mat_p2g[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p2d[0,0]+delta_p22[j,0]):

Mat_position_p2 [i,j]=1

if noeudXt_cent [i,j] > (pos_theo_mat_p2d[1,0]+delta_p23[j,0]):
if noeudXt_cent [i,j] < (pos_theo_mat_p2g[1,j]):

Mat_position_p2 [i,j]=1
#

# extrémité pli 3
#

for i in range (Nx):

for j in range (Nz):

delta_p3[j,0]=(coefficient_mat_plis_categoriel[1,5])+(coefficient_mat_plis_categoriel[l,4]*posZt[i,j])+(coefficient_mat_plis_categ
oriel[1,3]*posZt[i,j]**2)+(coefficient_mat_plis_categoriel[1,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categoriel[1,1]*(posZt[ij]**4)) + (coefficient_mat_plis_categoriel[1,0]*(posZt[ij]**5))
if (delta_max<=delta_p3[j,0]):
delta_max=delta_p3][j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p3g [0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p3d[0]+delta_p3[j,0]):

Mat_position_p3 [i,j]=1

209



Appendix

#

# extrémité pli 4
#

for i in range (NXx):
for j in range (Nz):
delta_p4[j,0]=(coefficient_mat_plis_categorie3[1,5])+(coefficient_mat_plis_categorie3[1,4]*posZt[i j])+(coefficient_mat_plis_categ
orie3[1,3]*posZt[i,j]**2)+(coefficient_mat_plis_categorie3[1,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie3[1,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie3[1,0]*(posZt[i,j]**5))
if (delta_max<=delta_p4[j,0]):
delta_max=delta_p4[j,0]
if noeudXt_cent [ij] > (pos_theo_mat_p4g[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p4d[0]+delta_p4[j,0]):
Mat_position_p4 [i,j]=1
#

# extrémité pli 5
#

for i in range (Nx):

for j in range (Nz):

delta_p51[j,0]=(coefficient_mat_plis_categorie4[0,5])+(coefficient_mat_plis_categorie4[0,4]*posZt[i,j])+(coefficient_mat_plis_cate
gorie4[0,3]*posZi[i,j]**2)+(coefficient_mat_plis_categorie4[0,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie4[0,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie4[0,0]*(posZt[i,j]**5))
if (delta_max<=delta_p51[j,0]):
delta_max=delta_p51[j,0]
if noeudXt_cent [ij] > (pos_theo_mat_p5d[0][0]+delta_p51[j,0]):
if noeudXt_cent [i,j] < (pos_theo_mat_p5g[0,j]):

Mat_position_p5 [i,j]=1
delta_p52[j,0]=(coefficient_mat_plis_categorie4[0,5])+(coefficient_mat_plis_categorie4[0,4]*posZt[i j])+(coefficient_mat_plis_cate
gorie4[0,3]*posZi[i,j]**2)+(coefficient_mat_plis_categorie4[0,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie4[0,1]*(posZt[ij]**4)) + (coefficient_mat_plis_categorie4[0,0]*(posZt[i,j]**5))

if (delta_max<=delta_p52[j,0]):
delta_max=delta_p52[j,0]

if noeudXt_cent [i,j] < (-pos_theo_mat_p5d[0][0]-delta_p52[j,0]):
if noeudXt_cent [i,j] > (pos_theo_mat_p5g[1,j]):

Mat_position_p5 [i,j]=1
#

# extrémité pli 6
#

for i in range (Nx):

for j in range (Nz):

delta_p6[j,0]=(coefficient_mat_plis_categorie3[2,5])+(coefficient_mat_plis_categorie3[2,4]*posZt[i j])+(coefficient_mat_plis_categ
orie3[2,3]*posZt[i,j]**2)+(coefficient_mat_plis_categorie3[2,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie3[2,1]*(posZt[ij]**4)) + (coefficient_mat_plis_categorie3[2,0]*(posZt[i,j]**5))
if (delta_max<=delta_p6[j,0]):
delta_max=delta_p6][j,0]
if noeudXt_cent [ij] > (pos_theo_mat_p6gl[0,j]):
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if noeudXt_cent [i,j] < (pos_theo_mat_p6d[0]+delta_p6][j,0]):
Mat_position_p6 [i,j]=1
#

# extrémité pli 7
#

for i in range (NXx):

for j in range (Nz):

delta_p71[j,0]=(coefficient_mat_plis_categorie4[1,5])+(coefficient_mat_plis_categorie4[1,4]*posZt[i,j])+(coefficient_mat_plis_cate
gorie4[1,3]*posZi[i,j]**2)+(coefficient_mat_plis_categorie4[1,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie4[1,1]*(posZt[ij]**4)) + (coefficient_mat_plis_categorie4[1,0]*(posZt[i,j]**5))
if (delta_max<=delta_p71[j,0]):
delta_max=delta_p71[j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p7d[0][0]+delta_p71[j,0]):
if noeudXt_cent [i,j] < (pos_theo_mat_p7g[0,j]):
Mat_position_p7 [i,j]=1

delta_p72[j,0]=(coefficient_mat_plis_categorie4[1,5])+(coefficient_mat_plis_categorie4[1,4]*posZt[i j])+(coefficient_mat_plis_cate
gorie4[1,3]*posZit[i,j]**2)+(coefficient_mat_plis_categorie4[1,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie4[1,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie4[1,0]*(posZt[i,j]**5))
if (delta_max<=delta_p72[j,0]):
delta_max=delta_p72[j,0]
if noeudXt_cent [i,j] < (-pos_theo_mat_p7d[0][0]-delta_p72[j,0]):
if noeudXt_cent [i,j] > (pos_theo_mat_p7g[1,]):
Mat_position_p7 [i,j]=1
#

# extrémité pli 8
#

for i in range (Nx):

for j in range (Nz):

delta_p8][j,0]=(coefficient_mat_plis_categorie3[3,5])+(coefficient_mat_plis_categorie3[3,4]*posZt[i j])+(coefficient_mat_plis_categ
orie3[3,3]*posZt[i,j]**2)+(coefficient_mat_plis_categorie3[3,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie3[3,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie3[3,0]*(posZt[i,j]**5))
if (delta_max<=delta_p8][j,0]):
delta_max=delta_p8][j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p8gl[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p8d[0]+delta_p8[j,0]):
Mat_position_p8 [i,j]=1
#

# extrémité pli 9
#

for i in range (Nx):

for j in range (Nz):

delta_p9[j,0]=(coefficient_mat_plis_categoriel[2,5])+(coefficient_mat_plis_categoriel[2,4]*posZt[i j])+(coefficient_mat_plis_categ
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oriel[2,3]*posZt[i,j]**2)+(coefficient_mat_plis_categoriel[2,2]*posZt[ij]**3) +
(coefficient_mat_plis_categoriel[2,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categoriel[2,0]*(posZt[i,j]**5))
if (delta_max<=delta_p9[j,0]):
delta_max=delta_p9][j,0]
if noeudXt_cent [ij] > (pos_theo_mat_p9g[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p9d[0]+delta_p9[j,0]):
Mat_position_p9 [i,j]=1
#

# extrémité pli 10
#

for i in range (NXx):

for j in range (Nz):

delta_p10[j,0]=(coefficient_mat_plis_categorie3[4,5])+(coefficient_mat_plis_categorie3[4,4]*posZt[i j])+(coefficient_mat_plis_cate
gorie3[4,3]*posZi[i,j]**2)+(coefficient_mat_plis_categorie3[4,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie3[4,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie3[4,0]*(posZt[i,j]**5))
if (delta_max<=delta_p10[j,0]):
delta_max=delta_p10[j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p10g[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p10d[0]+delta_p10][j,0]):
Mat_position_p10 [i,j]=1
#

# extrémité pli 11
#

for i in range (Nx):
for j in range (Nz):
delta_p11[j,0]=(coefficient_mat_plis_categorie3[5,5])+(coefficient_mat_plis_categorie3[5,4]*posZt[i,j])+(coefficient_mat_plis_cate
gorie3[5,3]*posZi[i,j]**2)+(coefficient_mat_plis_categorie3[5,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie3[5,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie3[5,0]*(posZt[i,j]**5))
if (delta_max<=delta_p11[j,0]):
delta_max=delta_p11[j,0]
if noeudXt_cent [ij] > (pos_theo_mat_p11g[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p11d[0]+delta_p11[j,0]):
Mat_position_p11 [i,j]=1
#

# extrémité pli 12
#

for i in range (Nx):

for j in range (Nz):

delta_p12[j,0]=(coefficient_mat_plis_categoriel[3,5])+(coefficient_mat_plis_categoriel[3,4]*posZt[i j])+(coefficient_mat_plis_cate
goriel[3,3]*posZi[i,j]**2)+(coefficient_mat_plis_categoriel[3,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categoriel[3,1]*(posZt[ij]**4)) + (coefficient_mat_plis_categoriel[3,0]*(posZt[ij]**5))
if (delta_max<=delta_p12[j,0]):
delta_max=delta_p12[j,0]
if noeudXt_cent [ij] > (pos_theo_mat_p12g[0,]):
if noeudXt_cent [i,j] < (pos_theo_mat_p12d[0]+delta_p12[j,0]):
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Mat_position_p12 [i,j]=1
#
# extrémité pli 13
#

for i in range (NXx):
for j in range (Nz):
delta_p13[j,0]=(coefficient_mat_plis_categorie3[6,5])+(coefficient_mat_plis_categorie3[6,4]*posZt[i,j])+(coefficient_mat_plis_cate
gorie3[6,3]*posZi[i,j]**2)+(coefficient_mat_plis_categorie3[6,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie3[6,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie3[6,0]*(posZt[i,j]**5))
if (delta_max<=delta_p13[j,0]):
delta_max=delta_p13[j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p13g[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p13d[0]+delta_p13][j,0]):
Mat_position_p13 [i,j]=1
#

# extrémité pli 14
#

for i in range (Nx):

for j in range (Nz):

delta_p141][j,0]=(coefficient_mat_plis_categorie4[2,5])+(coefficient_mat_plis_categorie4[2,4]*posZt[i,j])+(coefficient_mat_plis_cat
egorie4|[2,3]*posZt[i,j]**2)+(coefficient_mat_plis_categorie4[2,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie4[2,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie4[2,0]*(posZt[i,j]**5))
if (delta_max<=delta_p141[j,0]):
delta_max=delta_p141[j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p14d[0][0]+delta_p141[j,0]):
if noeudXt_cent [i,j] < (pos_theo_mat_pl14g[0,]):
Mat_position_p14 [i,j]=1

delta_p142[j,0]=(coefficient_mat_plis_categorie4[2,5])+(coefficient_mat_plis_categorie4[2,4]*posZt[i,j])+(coefficient_mat_plis_cat
egorie4|[2,3]*posZt[i,j]**2)+(coefficient_mat_plis_categorie4[2,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie4[2,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie4[2,0]*(posZt[i,j]**5))
if (delta_max<=delta_p142[j,0]):
delta_max=delta_p142[j,0]
if noeudXt_cent [i,j] < (-pos_theo_mat_p14d[0][0]-delta_p142[j,0]):
if noeudXt_cent [i,j] > (pos_theo_mat_pl4g[1,]):
Mat_position_pl4 [i,j]=1

#

# extrémité pli 15
#

for i in range (Nx):

for j in range (Nz):

delta_p15[j,0]=(coefficient_mat_plis_categorie3[7,5])+(coefficient_mat_plis_categorie3[7 4]*posZt[i j])+(coefficient_mat_plis_cate
gorie3[7,3]*posZi[i,j]**2)+(coefficient_mat_plis_categorie3[7,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie3[7,1]*(posZt[ij]**4)) + (coefficient_mat_plis_categorie3[7,0]*(posZt[i,j]**5))
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if (delta_max<=delta_p15[j,0]):
delta_max=delta_p15[j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p15g[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p15d[0]+delta_p15[j,0]):
Mat_position_p15 [i,j]=1
#

# extrémité pli 16
#

for i in range (NXx):

for j in range (Nz):

delta_p161][j,0]=(coefficient_mat_plis_categorie4[3,5])+(coefficient_mat_plis_categorie4[3,4]*posZt[i,j])+(coefficient_mat_plis_cat
egorie4|3,3]*posZt[i,j]**2)+(coefficient_mat_plis_categorie4[3,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie4[3,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie4[3,0]*(posZt[i,j]**5))
if (delta_max<=delta_p161[j,0]):
delta_max=delta_p161[j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p16d[0][0]+delta_p161[j,0]):
if noeudXt_cent [i,j] < (pos_theo_mat_p16g[0,]):
Mat_position_p16 [i,j]=1

delta_p162[j,0]=(coefficient_mat_plis_categorie4[3,5])+(coefficient_mat_plis_categorie4[3,4]*posZt[i,j])+(coefficient_mat_plis_cat
egorie4[3,3]*posZt[i,j]**2)+(coefficient_mat_plis_categorie4[3,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie4[3,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie4[3,0]*(posZt[i,j]**5))
if (delta_max<=delta_p162[j,0]):
delta_max=delta_p162[j,0]
if noeudXt_cent [i] < (-pos_theo_mat_p16d[0][0]-delta_p162[j,0]):
if noeudXt_cent [i,j] > (pos_theo_mat_pl6g[1,]):
Mat_position_p16 [i,j]=1

#

# extrémité pli 17
#

for i in range (Nx):

for j in range (Nz):

delta_p17[j,0]=(coefficient_mat_plis_categorie3[8,5])+(coefficient_mat_plis_categorie3[8,4]*posZt[i j])+(coefficient_mat_plis_cate
gorie3[8,3]*posZit[i,j]**2)+(coefficient_mat_plis_categorie3[8,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie3[8,1]*(posZt[ij]**4)) + (coefficient_mat_plis_categorie3[8,0]*(posZt[i,j]**5))
if (delta_max<=delta_p17[j,0]):
delta_max=delta_p17[j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p17g[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p17d[0]+delta_p17[j,0]):
Mat_position_p17 [i,j]=1
#

# extrémité pli 18
#
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for i in range (Nx):

for j in range (Nz):

delta_p18[j,0]=(coefficient_mat_plis_categoriel[4,5])+(coefficient_mat_plis_categoriel[4,4]*posZt[i j])+(coefficient_mat_plis_cate
goriel[4,3]*posZi[i,j]**2)+(coefficient_mat_plis_categoriel[4,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categoriel[4,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categoriel[4,0]*(posZt[ij]**5))
if (delta_max<=delta_p18][j,0]):
delta_max=delta_p18]j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p18g[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p18d[0]+delta_p18][j,0]):
Mat_position_p18 [i,j]=1
#

# extrémité pli 19
#

for i in range (Nx):

for j in range (Nz):

delta_p191][j,0]=(coefficient_mat_plis_categorie2[1,5])+(coefficient_mat_plis_categorie2[1,4]*posZt[i,j])+(coefficient_mat_plis_cat
egorie2[1,3]*posZt[i,j]**2)+(coefficient_mat_plis_categorie2[1,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie2[1,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie2[1,0]*(posZt[i,j]**5))
if (delta_max<=delta_p191[j,0]):
delta_max=delta_p191[j,0]

delta_p192[j,0]=(coefficient_mat_plis_categorie3[9,5])+(coefficient_mat_plis_categorie3[9,4]*posZt[i,j])+(coefficient_mat_plis_cat
egorie3[9,3]*posZt[ij]**2)+(coefficient_mat_plis_categorie3[9,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie3[9,1]*(posZt[ij]**4)) + (coefficient_mat_plis_categorie3[9,0]*(posZt[i,j]**5))
if (delta_max<=delta_p192[j,0]):
delta_max=delta_p192[j,0]

delta_p193][j,0]=(coefficient_mat_plis_categorie2[1,5])+(coefficient_mat_plis_categorie2[1,4]*posZt[i,j])+(coefficient_mat_plis_cat
egorie2[1,3]*posZt[i,j]**2)+(coefficient_mat_plis_categorie2[1,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categorie2[1,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categorie2[1,0]*(posZt[ij]**5))
if (delta_max<=delta_p193[j,0]):
delta_max=delta_p193[j,0]
if noeudXt_cent [i,j] < (-pos_theo_mat_p19d[1,0]-delta_p191[j,0]):
if noeudXt_cent [i,j] > (pos_theo_mat_p19g[2,j]):
Mat_position_p19][i,j]=1

if noeudXt_cent [ij] > (pos_theo_mat_p19g[0,j]):
if noeudXt_cent [i,j] < (pos_theo_mat_p19d[0,0]+delta_p192[j,0]):
Mat_position_p19[i,j]=1

if noeudXt_cent [i,j] > (pos_theo_mat_p19d[1,0]+delta_p193[j,0]):
if noeudXt_cent [i,j] < (pos_theo_mat_p19g[1,]):
Mat_position_p19 [i,j]=1
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# extrémité pli 20

#

for i in range (NXx):

for j in range (Nz):

delta_p20[j,0]=(coefficient_mat_plis_categoriel[5,5])+(coefficient_mat_plis_categoriel[5,4]*posZt[i j])+(coefficient_mat_plis_cate

goriel[5,3]*posZi[i,j]**2)+(coefficient_mat_plis_categoriel[5,2]*posZt[i,j]**3) +
(coefficient_mat_plis_categoriel[5,1]*(posZt[i,j]**4)) + (coefficient_mat_plis_categoriel[5,0]*(posZt[i,j]**5))

if (delta_max<=delta_p20[j,0]):
delta_max=delta_p20[j,0]
if noeudXt_cent [i,j] > (pos_theo_mat_p20g[0,j]):

if noeudXt_cent [i,j] < (pos_theo_mat_p20d[0]+delta_p20[j,0]):

Mat_position_p20 [i,j]=1

Mat_position_total = np.zeros([Nx+1,Nz+1,20])

for i in range (0,Nx+1):

#

for j in range (0,Nz+1):

Mat_position_total[i-1,j-1,0]=Mat_position_p1 [i-1,j-1]
Mat_position_total[i-1,j-1,1]=Mat_position_p?2 [i-1,j-1]
Mat_position_total[i-1,j-1,2]=Mat_position_p3 [i-1,j-1]
Mat_position_total[i-1,j-1,3]=Mat_position_p4 [i-1,j-1]
Mat_position_total[i-1,j-1,4]=Mat_position_p5 [i-1,j-1]

]
]
]
]
]
Mat_position_total[i-1,j-1,5]=Mat_position_p6 [i-1,j-1]
Mat_position_total[i-1,j-1,6]=Mat_position_p?7 [i-1,j-1]
Mat_position_total[i-1,j-1,7]=Mat_position_p8 [i-1,j-1]
Mat_position_total[i-1,j-1,8]=Mat_position_p9 [i-1,j-1]
Mat_position_total[i-1,j-1,9]=Mat_position_p10 [i-1,j-1]
Mat_position_total[i-1,j-1,10]=Mat_position_p11 [i-1,j-1]
Mat_position_total[i-1,j-1,11]=Mat_position_p12 [i-1,j-1]
Mat_position_total[i-1,j-1,12]=Mat_position_p13 [i-1,j-1]
Mat_position_total[i-1,j-1,13]=Mat_position_p14 [i-1,j-1]
Mat_position_total[i-1,j-1,14]=Mat_position_p15 [i-1,j-1]

]
]
]
]
]
Mat_position_total[i-1,j-1,15]=Mat_position_p16 [i-1,j-1]
Mat_position_total[i-1,j-1,16]=Mat_position_p17 [i-1,j-1]
Mat_position_total[i-1,j-1,17]=Mat_position_p18 [i-1,j-1]
Mat_position_total[i-1,j-1,18]=Mat_position_p19 [i-1,j-1]
]

Mat_position_total[i-1,j-1,19]=Mat_position_p20 [i-1,j-1]

# exportation des matrices sur abaqus

#

for i in range (0,Nx):

for j in range (0,Nz):

Npart=str(noeudNt[ij].astype(int))
f.write("*Elset, elset=COMPOSITELAYUP-')
f.write(Npart)
f.write(-1\n')
f.write(Npart)

(

f.write(', \n')

#écriture des lignes de définition des plis (épaisseur et orientation)
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#

#orientation

#

orientation = np.zeros((20))

orientation = ([45,0,45,0,45,0,45,0,45,0,0,45,0,45,0,45,0,45,0,45])

teta=numpy.zeros((Nx+1,Nz+1,20))
Alpha=numpy.zeros((13,20))

Beta=numpy.zeros((13,20))

B=numpy.zeros((13,20))

X=numpy.zeros((13,20)) #Les coord des points de Gauss
Y=numpy.zeros((13,20)) #...

Alphai_lim=([0,200])

Betai_lim=([0,200])

#orientation without variability
tetan = np.zeros((20))
tetan = ([45,0,45,0,45,0,45,0,45,0,0,45,0,45,0,45,0,45,0,45])

for p in range (0,20):

# orientation with variability
pert=numpy.zeros((Nx,Nz,20))
#k=k+1
for b in range (0,12):

Alpha[b,p]=(Alphai_lim[0]+(Alphai_lim[1]-Alphai_lim[0])*random()) #parametres de 1'équation de I'orientation
Beta[b,p]=(Betai_lim[0]+(Betai_lim[1]-Betai_lim[0])*randomy())

B[b,p]=gauss(0.08,2.47)
X[b,p]=(-200+(200+200)*random())
Y [b,p]=(-200+(200+200)*random())

for i in range (0,Nx+1):

for j in range(0,Nz+1):

pert[i-1j-1,p]=pert[i-1,j-1,p]+B[b,p]*np.exp(-((noeudXt_cent[i-1,j-1]-X[b,p]) / Alpha[b,p])**2+((noeudZt[i-1,j-1]-

Y[b,p])/ Beta[b,p])**2))

teta[i-1j-1,p]=orientation[p]+pert[i-1,j-1,p] ~ #équation des orientations pour chaque maille et chaque pli

tetal0O=numpy.zeros((Nx,Nz+1))
for i in range (0,Nx):
for j in range(0,Nz+1):
tetal0[i-1,j-1]=teta[i-1,j-1,0]

cptn=1

for i in range (1,Nx+1): #écriture des lignes de définition des plis (épaisseur et orientation)

for j in range (1,Nz+1):
Npart=str(noeudNt[i-1,j-1].astype(int))
f.write("*Orientation, name=0ri-')

f.write(str(cptn))
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f.write(' \n')
f.write('1.,, 0., 0., 0,,1.,, 0.\n")
f.write('2, 0.\n")
f.write("** Region: (COMPOSITELAYUP-')
f.write(Npart)
# f.write(, ')
f.write('-1: Generated From Layup))
f.write(' \n')
f.write("*Elset, elset=COMPOSITELAYUP-')
f.write(Npart)
f.write('-1-1')
f.write('\n')
fwrite(' ')
f.write(Npart)
f.write(, \n')
f.write("* Section: COMPOSITELAYUP-')
f.write(Npart)
f.write(-1\n')
f.write("*Shell Section, elset=COMPOSITELAYUP-')
f.write(Npart)
f.write(-1, COMPOSITE, layup=COMPOSITELAYUP-')
f.write(Npart)
f.write('\n')
cptn=cptn+1
for p in range (0,20):
if Mat_position_total[i-1,j-1,p] == 1:
epai=str(ep[p])
f.write(epai)
f.write(', ")
f.write('3")
f.write(', ")
Mat=str(Material[p])
f.write(Mat) #matériau pour chaque pli
f.write(str(noeudNt[i-1,j-1].astype(int)))
f.write(', ')
angle=str(round(teta[i-1,j-1,p],5)) #angle d'orientation with variability
#angle=str(round(tetan[p],5))

f.write(angle)

(
f.write(, ')
f.write('PLY-")
Kk=str(p+1)
f.write(kk)
f.write('-')
f.write(str(noeudNt[i-1,j-1].astype(int)))
fwrite("\n')
f.write(\n')
f.write("*End Part\n')
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f.write("™* \n')
f.write("*\n')

f.write("* ASSEMBLY\n')
"\ ')

"*Assembly, name=Assembly\n')

(
(
(
f.write(
f.write(
f.write("™* \n')
f.write("*Instance, name=PART-1-1, part=PART-1\n')
f.write("End Instance\n')
f.write(™* \n')
#définition des set (points ou zones d'application des conditions aux limites et des chargements)
f.write("*Nset, nset=Set-1, instance=PART-1-1\n")
moyx=round(N5/2)
moyz=round(Nz/2)
f.write(str(noeudN5[moyx,moyz].astype(int)))
f.write(',\n')
f.write("*Nset, nset=Set-5, instance=PART-1-1\n') #point d'application de blockage x ety
pointx=round(N5/2)
f.write(str(noeudN5[0, pointx].astype(int)))
f.write(',\n')
f.write("*Nset, nset=temp, instance=PART-1-1\n")
cptnn =0
for i in range (0,Nx+1):
for j in range (0,Nz+1):
ipt=noeudNtot[i j].astype(int)
f.write(str(ipt))
f.write(',")
cptnn= cptnn+1
if cptnn>14:
f.write ("\n')
cptnn=0
f.write ('\n')
cptnnn =0
f.write (*Nset, nset=encastre, instance=PART-1-1\n')
for i in range (0,Nx+1):
ipt=noeudNtot[i,0].astype(int)
f.write(str(ipt))
f.write(',')
cptnnn= cptnnn+1
if cptnnn>14:
f.write (\n')
cptnnn=0
f.write ("\n')
cptnnnn =0
f.write (*Nset, nset=traction, instance=PART-1-1\n')
for i in range (0,Nx+1):
ipt=noeudNrtot[i,Nz].astype(int)
f.write(str(ipt))
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f.write(',")
cptnnnn= cptnnnn+1
if cptnnnn>14:
f.write ("\n')
cptnnnn=0
f.write ("\n')
f.write("End Assembly\n')
f.write("**\n')
f.write(**MATERIALS\n')
f.write(**\n')
#définition composite UD
for i in range (0,Nx+1):

for j in range (0,Nz+1):

f.write("*Material, name=COMPOSITEUD")
f.write(str(noeudNt[i-1,j-1].astype(int)))

f.write ("\n')
f.write("*Density\n')

f.write(density_nom_TISSE)

f.write(',\n')

f.write("*Elastic, type=ENGINEERING CONSTANTS\n')
#caractéristiques matériau UD

f.write(str(E1UD[i-1,j-1])

f.write(', ')

f.write(str(E2UD[i-1,j-1]))

f.write(', ')

f.write(str(E3UDIi-1,j-1]))

f.write(', ")
f.write(Nul2UD)
fwrite(', ')
f.write(Nul3UD)
f.write(', ')
f.write(Nu23UD)

f.write(', ')

f.write(str(G12UDJi-1,j-1]))

f.write(', ")

f.write(str(G13UDJi-1,j-1]))

f.write

')
f.write(', \n')
f.write("*Fail Stress\n')
f.write(Ten1UD)
f.write(',')
f.write(Com1UD)
f.write(', ')
f.write(Ten2UD)
f.write(', ")
f.write(Com2UD)

(
(
(
(
(
(
(
(
(
(\
f.write(str(G23UD[i-1,j-1]))
(s
(
(
(
(
(
(
(.
(
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f.write(', ")
f.write(SUD)
f.write(', ')
f.write(CrossUD)
f.write(', ')
f.write(Stress_L)
f.write('\n')
f.write("*Expansion, type=ORTHO\n')
f.write(alpha_11UD)
f.write(', ")
f.write(alpha_22UD)
f.write(', ")
f.write(alpha_33UD)
f.write('\n')

#définition composite tissé par maille

for i in range (0,Nx+1):

for j in range (0,Nz+1):

f.write("*Material, name=COMPOSITEWOVEN')
f.write(str(noeudNt[i-1,j-1].astype(int)))
f.write('\n')
f.write(*Density\n')
f.write(density_nom_TISSE)
f.write(',\n')
f.write("*Elastic, type=ENGINEERING CONSTANTS\n')

#caractéristiques matériau tissé
f.write(str(EIWOVEN[i-1,j-1]))
f.write(', ")
f.write(str(E2WOVEN[i-1,j-1]))
f.write(', ")
f.write(str(E3WOVEN]i-1,j-1]))
f.write(', ')
f.write(Nul2WOVEN)
f.write(', ")
f.write(Nul3WOVEN)
f.write(', ")

f.write(Nu23WOVEN)

f.write(str(G12WOVENTi-1,j-1]))
f.write(', ')
f.write(str(G1I3WOVENTi-1,j-1]))
f.write(, \n')
f.write(str(G23WOVEN]i-1,j-1]))
f.write(, \n')

f.write("*Fail Stress\n')
f.write(TenlWOVEN)
f.write(',")

(
(
(
(
(
(
(
(
(
(
f.write(', ')
(
(
(
(
(
(
(
(
(
(

f.write(Com1WOVEN)
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f.write(', ")
f.write(Ten2WOVEN)
f.write(', ')
f.write(Com2WOVEN)
f.write(', ')
f.write(SWOVEN)
f.write(', ')
f.write(CrossWOVEN)
f.write(', ')
f.write(Stress_L)
f.write('\n')
f.write("*Expansion, type=ORTHO\n')
f.write(alpha_11WOVEN)
f.write(', ')
f.write(alpha_22WOVEN)
f.write(', ")
f.write(alpha_33WOVEN)
f.write('\n')
f.write("*\n')
#définition des conditions aux limites
f.write("** \n')
fwrite("™* \n')
f.write("** STEP: temp\n')

f.write("™* \n')

f.write("*Step, name=temp, nlgeom=NO\n')
f.write("*Static\n')

f.write('1., 1., 1e-05, 1.\n')

fwrite("™* \n')

f.write("* PREDEFINED FIELDS\n')
f.write("**\n')

"** Name: Predefined Field-1 Type: Temperature\n')
f.write("*Temperature\n')

f.write('temp, -100.\n')

f.write
f.write("* OUTPUT REQUESTS\n')

fwrite("™* \n')

I** )

f.write("*Restart, write, frequency=0\n')

%% \n )
f.write("* FIELD OUTPUT: F-Output-3\n')

f.write

f.write("™* \n')

f.write("*Output, field\n')
f.write("*Contact Output\n')
f.write('CDISP, CSTRESS\n')

f.write("™* \n')

f.write("* FIELD OUTPUT: F-Output-1\n')
f.write("* \n')

(
(
(
ite(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

f.write("*Node Output\n')
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f.write('CF, RF, U\n')

f.write("™* \n')

f.write("* FIELD OUTPUT: F-Output-2\n')
f.write("™* \n')

f.write("*Element Output, directions=YES\n')
f.write('CFAILURE, LE, PE, PEEQ, PEMAG, S\n')

f.write("* \n')

f.write("™* \n')
f.write("*Output, history, variable=PRESELECT\n')
f.write("*End Step\n')

f.write("™*

f.write("* \n')

(

(

(

(

(

(

(

f.write("™* HISTORY OUTPUT: H-Output-1\n')

(

(

(

(

(

f.write("** STEP: traction \n')
(

f.write(™* \n')

f.write("*Step, name=traction, nlgeom=NO \n')
f.write("*Static \n')

f.write('1., 1., 1e-05, 1. \n')

f.write("™* \n')

f.write("* BOUNDARY CONDITIONS\n')

f.write("**\n')

f.write("* Name: BC-4 Type: Displacement/Rotation\n')

f.write("*Boundary\n')

f.write('encastre, 3, 3 \n')

f.write("** Name: BC-3 Type: Displacement/Rotation\n')

f.write("*Boundary\n')
f.write('Set-5, 1, 1\n')
f.write('Set-5, 2, 2\ n')

f.write("** Name: BC-5 Type: Displacement/Rotation\n')

(
f.write("*Boundary\n')
f.write('traction, 3, 3, 1. \n')
f.write("* \n')
f.write("**OUTPUT REQUESTS\n')
f.write("**\n')
f.write("*Restart, write, frequency=0\n')
fwrite("**\n')
f.write(**FIELD OUTPUT: F-Output-1\n')
f.write("**\n')
f.write("*Output, field\n')
f.write("*Node Output\n')
f.write('CF, RF, U\n')
f.write("*Element Output, directions=YES\n')
f.write(CFAILURE, LE, PE, PEEQ, PEMAG, S\n')
f.write("*Contact Output\n')
f.write('CDISP, CSTRESS\n')
f.write("*\n')
(

f.write("*HISTORY OUTPUT: H-Output-1\n')

\n)
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f.write("*\n')

f.write("*Output, history, variable=PRESELECT\n')
f.write("*End Step\n')

f.close()

print (""ecart max est : ", delta_max)
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