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Aldéric JOULIN Université Paul Sabatier Examinateur
Matthias KELLER Universität Potsdam Examinateur
Han Cheng LIE Universität Potsdam Examinateur
Jan LORENZ Jacobs Universität Rapporteur
Sylvie ROELLY Universität Potsdam Directrice de Thèse
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From this hour I ordain myself loos’d of limits and imaginary lines,
Going where I list, my own master total and absolute,
Listening to others, considering well what they say,
Pausing, searching, receiving, contemplating,
Gently,but with undeniable will, divesting myself of the holds that would hold me.
I inhale great draughts of space,
The east and the west are mine, and the north and the south are mine.
I am larger, better than I thought,
I did not know I held so much goodness.
All seems beautiful to me,
I can repeat over to men and women
You have done such good to me
I would do the same to you,
I will recruit for myself and you as I go,
I will scatter myself among men and women as I go,
I will toss a new gladness and roughness among them,
Whoever denies me it shall not trouble me,
Whoever accepts me he or she shall be blessed and shall bless me.

Song of the Open Road, Stanza Five
By Walt Whitman, 1856
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Partir à l’étranger pour faire une thèse, cela implique toujours deux changements
principaux: apprendre une nouvelle langue et faire des rencontres. La langue se met
en place naturellement mais les rencontres peuvent boulverser la vie. Je dédie mon
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conjointe, ma chérie, mon âme soeur. Depuis mon arrivée en France elle fait partie de
ma vie, nous sommes entrelacés dans une aventure que je n’aurais jamais pu imaginer.
Je la remercie infiniment pour son soutien, de m’avoir supporté pendant les périodes où
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STOCHASTISCHE DYNAMIKEN IN KOLLEKTIVEM
VERHALTEN: KONSENS, GRUPPENBILDUNG,

AUSSTERBEN VON POPULATIONEN

Beziehungen und damit Interaktion sowie Diskussion, aber auch Konflikt und Opposi-
tion bilden die Grundbausteine einer jeden Gesellschaft. Häufig wird Kommunikation
als der übergreigende Begriff zur Beschreibung interner Strukturen einer Gesellschaft
identifiziert. Dabei muss es sich aber nicht um eine Gesellschaft im Sinne von Na-
tionen handeln, sondern kann auch schlicht eine Gruppe von Menschen umfassen, die
miteinander strukturiert interagieren, beispielsweise, eine Gruppe von Angestellten,
die an einem gemeinsamen Projekt arbeiten, oder die Mitglieder eines sozialen Netzw-
erks. In dieser Arbeit befassen wir uns mit der mathematischen Beschreibung solcher
Prozesse innerhalb von Gruppen und Gesellschaften und legen dabei unseren Fokus
auf die Bildung eines Konsens durch Interaktion aber auch die Konsequenzen von
Konflikt und das potentielle Aussterben einer Population. Dabei werden zwei Modelle
im Fokus des Interesses stehen: Das Echokammer Model sowie eine Erweiterung des
Geburts-Todes Prozesses, die die Möglichkeit eines radikalen Abfalls der Population-
sgröße miteinschließt. Wir beginnen mit einer Einführung in Part I und teilen die
verbleibende Arbeit in drei Teile auf, wobei sich die ersten beiden technischen Ab-
schnitte, Part II und III, mit einer ausführlichen Analyse der Bausteine des Echokam-
mer Models befassen und im dritten Abschnitt, in Part IV, der erweiterte Geburts-
Todes Prozess untersucht wird. Dieser wird im Folgenden als Geburts-Todes Prozess
mit teilweiser Katastrophe bezeichnet werden.

Das Echokammer Model beschreibt die Entwicklung von Gruppen in zunächst hetero-
genen sozialen Netzwerken. Unter einem heterogenen sozialen Netzwerk verstehen wir
dabei eine Menge von Individuen, von denen jedes exakt eine Meinungen vertritt. Mei-
nungen werden vereinfacht durch Werte in [0, 1] modelliert. Bestehende Beziehungen
unter den Individuen können dann durch einen Graphen dargestellt werden. Es han-
delt sich bei dem Echokammer Modell um ein zeit-diskretes Modell, das entsprechend,
ähnlich einem Brettspiel, in Zügen abläuft. In jedem Zug wird zufällig gleichverteilt
eine bestehende Beziehung aus dem Netzwerk ausgewählt und die beiden verbunde-
nen Individuen interagieren. Dabei kann es zu zwei verschiedenen Interaktionen kom-
men. Sind die Meinungen der betroffenen Individuen hinreichend ähnlich, so nähern
sie sich weiter in ihren Meinungen an, während sie im Fall von Meinungen, die zu weit
von einander liegen, ihre Beziehung auflösen und sich eines der Individuen eine neue
Beziehung sucht.
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In dieser Arbeit untersuchen wir theoretisch die Bausteine dieses Modells. Dabei
legen wir die Beobachtung zu Grunde, dass die Veränderungen der Beziehungsstruktur
im Netzwerk durch einen System von interagierenden Partikeln auf einem abstrak-
teren Raum beschrieben werden kann. Dies erlaubt es insbesondere graphentheoretis-
che Überlegungen in die Analyse einfließen zu lassen. Diese Überlegungen werden
ausührlich in Part II diskutiert und führen zur Definition eines neuen, abstrahierten
Graphens, der alle möglichen Beziehungskonfigurationen des sozialen Netzwerks um-
fasst. Dies erlaubt es uns einen Ähnlichkeitsbegriff für Beziehungskonfigurationen auf
Basis der benachbarten Knoten in besagtem Graphen zu definieren. Dies liefert uns das
notwendige geometrische Verständnis um in Part III die dynamischen Komponenten
des Echokammer models zu analysieren. Insbesondere fokusieren wir uns dabei auf die
Dynamik der Kanten, für die bisher in der Literatur noch keine Ergebnisse existieren.

Wir lassen zunächst in Abschnitt 7 die Meinungen der Individuen beiseite und
nehmen an, dass die Position der Kanten sich in jedem Zug wie zuvor beschrieben
ändert, um eine grundlegendes Verständnis der unterliegenden Dynamik zu erhalten.
Unter der Verwendung der Theorie von Markovketten finden wir obere Schranken an
die Konvergenzgeschwindigkeit einer assoziierten Markovkette gegen ihre eindeutige
stationäre Verteilung und zeigen, dass es Netzwerke gibt, die miteinander identifizier-
bar und unter der analysierten Dynamik daheingehend ununterscheinbar sind, dass die
stationäre Verteilung der assozierten Markovkette diesen Netzwerken dasselbe Gewicht
zuordnet. Anschließend beweisen wir eine Reihe von quantitativen Resultaten, die
sich insbesondere in Fällen, in denen die assozierte Markovkette reversibel ist, als
berechenbar herausstellen. Insbesondere die explizite Form der stationären Verteilung
sowie untere Schranken an die Cheeger Konstante zur Beschreibung der Konvergen-
zgeschwindigkeit stehen dabei im Fokus und werden ausführlich diskutiert.

Nach dieser vertieften Analyse des reduzierten Modells, fügen wir die Meinungen
unserer Betrachtung wieder hinzu. Das abschließende Result in Abschnitt 8, basierend
auf absorbierenden Markovketten, liefert dann, dass in einer reduzierte Version des
Echokammer Modells, in dem sich Individuen ähnlicher Meinung nicht annähern, eine
hierarchische Struktur der Anzahl der konfliktreichen Beziehung identifiziert werden
kann. Dies können wir ausnutzen, um eine obere Schranke an die erwartete Ab-
sorptionszeit, unter Zuhilfenahme einer quasi-stationären Verteilung, zu bestimmen.
Diese hierarchische Struktur bildet außerdem eine Brücke zu klassischen Theorien von
Geburts-Todes und, insbesondere, reinen Todes-Prozessen, für die eine reiche Liter-
atur existiert. Wir zeigen abschließend auf, wie künftige Forschung diese Verbindung
ausnutzen kann und diskutieren die Wichtigkeit der Ergbenisse als Bausteine eines
vollständigen theoretischen Verständnisses des Echokammer Modells.

Part IV stellt abschließend einen veröffentlichten Artikel vor, der sich dem Geburts-
Todes Prozess mit teilweiser Katastrophe widmet. Besagter Artikel steht dabei auf
zwei Säulen. Zum Einen der expliziten Berechnung des ersten Zeitpunkts einer Katas-
trophe, wenn die Population zu Beginn der Beobachtung von instabiler Größe ist.
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Dieser erste Teil basiert vollständig auf einer analytischen Herangehensweise an rekur-
siv definierte Folgen sowie der Bestimmung von Lösungen von Rekursionsgleichungen
zweiten Grades mit linearen Koeffizienten. Konvergenz gegen 0 der resultierenden
Folge sowie die Konvergenzgeschwindigkeit werden charakterisiert und bewiesen.
Zum Anderen der Bestimmung oberer Schranken des Erwartungswerts der Population-
sgröße sowie der Varianz selbiger und der Differenz zwischen der bestimmten oberen
Schranke und dem tatsächlichen Wert des Erwartungswerts. Dies erlaubt es uns Kon-
fidenzintervalle für die Populationsgröße zu jedem Zeitpunkt anzugeben, wenn wir sie
bei Beobachtungsbeginn exakt bestimmen. Wir verwenden für diese Resultate na-
hezu ausschließlich die Theorie gewöhnlicher nichtlinearer Differentialgleichungen und
bestimmen, insbesondere, Nullclinen für die Charakterisierung des Langzeitverhaltens
der betrachteten Größen. Wir schließen Part IV mit einem Ausblick, der ein verallge-
meinertes Modell vorstellt, das zur Modellierung von Katastrophen in einer Popula-
tion herangezogen werden kann. Es basiert auf der Idee endlicher selbstverstärkender
Prozesse und liefert eine größere Flexibilität als sie mit Geburts-Todes Prozessen mit
teilweiser Katastrophe erreichbar ist. Diese Flexibilität kommt mit analytischen Her-
ausforderungen, die wir uns für spätere Forschung vorbehalten.
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DYNAMIQUES ALÉATOIRES AU SEIN DE
COMPORTEMENTS COLLECTIFS : CONSENSUS,
CLUSTERING, EXTINCTION DE POPULATION

Les relations, et donc les interactions et les discussions, mais aussi les conflits et les
oppositions, constituent les éléments de base de toute société. En sociologie, la com-
munication est souvent identifiée comme le terme générique décrivant les structures
internes d’une société. Il ne s’agit pas nécessairement d’une société au sens de na-
tion, mais d’un simple groupe de personnes qui interagissent entre elles de manière
structurée, par exemple un groupe d’employés travaillant sur un projet commun ou les
membres d’un réseau social. Dans ce travail, nous nous intéressons à la description
mathématique de tels processus au sein de groupes et de sociétés, en mettant l’accent
sur la formation d’un consensus par l’interaction, mais aussi sur les conséquences du
conflit et l’extinction potentielle d’une population. Deux modèles seront étudiés: le
modèle des chambres d’écho et une extension du processus de naissance-mort qui inclut
la possibilité d’une chute radicale de la taille de la population. Nous commencerons
par une introduction dans la partie I et diviserons le reste du travail en trois parties, les
deux premières parties techniques, les parties II et III, étant consacrées à une analyse
détaillée des éléments constitutifs du modèle de la chambre d’écho et la troisième par-
tie, la partie IV, à l’étude de l’extension du processus de naissance-mort. Ce processus
sera appelé processus de naissance-mort avec catastrophe partielle.

Le modèle de la chambre d’écho décrit le développement de groupes dans des réseaux so-
ciaux hétérogènes. Par réseau social hétérogène, nous entendons un ensemble d’individus
dont chacun représente exactement une opinion. Les opinions sont modélisées de
manière simplifiée par des valeurs comprises dans l’intervalle [0, 1]. Les relations exis-
tantes entre les individus peuvent alors être représentées par un graphique. Le modèle
de la chambre d’écho est un modèle discret dans le temps qui, à l’instar d’un jeu de
société, se déroule par coups. A chaque tour, une relation existante est sélectionnée
de manière aléatoire et équidistante dans le réseau et les deux individus reliés in-
teragissent. Deux interactions différentes peuvent se produire. Si les opinions des
individus concernés sont suffisamment similaires, ils continuent à se rapprocher dans
leurs opinions, alors que dans le cas d’opinions trop éloignées, ils rompent leur relation
et un des individus cherche une nouvelle relation. Dans ce travail, nous examinons
théoriquement les éléments constitutifs de ce modèle. Nous partons de l’observation
que les changements de structure des relations dans le réseau peuvent être décrits par
un système de particules en interaction dans un espace plus abstrait. Cela permet
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notamment d’intégrer certaines techniques de la théorie des graphes dans l’analyse.
Ces réflexions sont discutées en détail dans la partie II et conduisent à la définition
d’un nouveau graphe abstrait qui englobe toutes les configurations relationnelles pos-
sibles du réseau social. Cela nous permet de définir un concept de similarité pour les
configurations de relations sur la base des nœuds voisins dans ce graphe. Cela nous
fournit la compréhension géométrique nécessaire pour analyser les composantes dy-
namiques du modèle de chambre d’écho dans la partie III. Nous nous concentrons en
particulier sur la dynamique des arêtes, pour laquelle il n’existe pas encore de résultats
dans la littérature. Dans un premier temps, dans la partie 7, nous laissons de côté
les opinions des inidividus et supposons que la position des arêtes change à chaque
coup comme décrit précédemment, afin d’obtenir une compréhension de base de la dy-
namique sous-jacente. En utilisant la théorie des châınes de Markov, nous trouvons des
limites supérieures à la vitesse de convergence d’une châıne de Markov associée vers
sa distribution stationnaire unique et montrons qu’il existe des réseaux identifiables
entre eux et non apparents dans la dynamique analysée, en ce sens que la distribution
stationnaire de la châıne de Markov associée attribue le même poids à ces réseaux.
Nous prouvons ensuite une série de résultats quantitatifs qui s’avèrent calculables, en
particulier dans les cas où la châıne de Markov associée est réversible. Nous nous
concentrons en particulier sur la forme explicite de la distribution stationnaire ainsi
que sur les limites inférieures de la constante de Cheeger pour décrire la vitesse de
convergence et nous en discutons en détail.

Après cette analyse approfondie du modèle réduit, nous incluons de nouveau les
opinions dans nos considérations. Le résultat final de la section 8, basé sur les châınes
de Markov absorbantes, montre que dans une version réduite du modèle de la cham-
bre d’écho, dans laquelle les individus d’opinions similaires ne se rapprochent pas,
une structure hiérarchique du nombre de relations conflictuelles peut être identifiée.
Nous pouvons utiliser cette structure pour déterminer une limite supérieure au temps
d’absorption attendu, à l’aide d’une distribution quasi-stationnaire. Cette hiérarchie
de la structure constitue également un pont vers les théories classiques des processus
de naissance-mort et, en particulier, vers les processus de mort purs, pour lesquels il
existe une littérature abondante. Nous concluons en montrant comment les recherches
futures peuvent exploiter ce lien et en discutant de l’importance des résultats comme
éléments constitutifs d’une compréhension théorique complète du modèle de la chambre
d’écho.

Enfin, la partie IV présente un article publié consacré au processus de naissance-
mort avec catastrophe partielle. L’article en question repose sur deux piliers. D’une
part, le calcul explicite du premier moment d’une catastrophe lorsque la population est
de taille instable au début de l’observation. Cette première partie est entièrement basée
sur une approche analytique des suites définies par récurrence et sur la détermination
des solutions des équations de récurrence du second degré à coefficients linéaires. La
convergence vers 0 de la suite résultante ainsi que la vitesse de convergence sont car-
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actérisées et prouvées. D’autre part, la détermination des limites supérieures de la
valeur attendue de la taille de la population ainsi que de la variance de celle-ci et
de la différence entre la limite supérieure déterminée et la valeur réelle de la valeur
attendue. Cela nous permet d’indiquer des intervalles de confiance pour la taille
de la population à tout moment, si nous la déterminons avec précision au début de
l’observation. Pour ces résultats, nous utilisons presque exclusivement la théorie des
équations différentielles non linéaires ordinaires et déterminons, en particulier, des null-
clines pour la caractérisation du comportement à long terme des grandeurs considérées.
Nous terminons la partie IV par une perspective qui présente un modèle généralisé pou-
vant être utilisé pour modéliser les catastrophes dans une population. Il est basé sur
l’idée de processus finis auto-amplificateurs et offre une plus grande flexibilité que les
processus de naissance-mort avec catastrophe partielle. Cette flexibilité s’accompagne
de défis analytiques que nous réservons pour des recherches ultérieures.
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PART I
INTRODUCTION

1 The Echo Chamber model

Models of complex interacting particle systems have been relevant in the scientific liter-
ature for several decades, in particular, for mathematicians and physicists in the light
of interacting particle systems. Recently, they have become also of central interest
for the social sciences and their applications. This is mostly due to the possibility to
simulate and analyze ever more complex models and interactions, thanks to increased
computing power. Examples for this research current, in particular linked to communi-
cation and conflict in population, are [BhBaRi08], [GrHiBi17], [Squa12] and [Eps12], to
name a few. One model which, while quite simple in its form, has intrigued researchers,
is the Echo Chamber Model. In [HolNew06] the authors propose the model which is
a expansion of the voter model of opinion forming, see [HoLi75] and [Ligg99] for more
on the subject. It consists of a set of individuals or agents, their personal opinions
and their relationships and relies on two main features. Either the agents influence the
opinions of their ”friends”, defined by the relationships, or change their relationships by
breaking some up and recreating others. In Figure 1, one can see multiple steps until
convergence of a simulation of the Echo Chamber Model with a discrete set of opin-
ions. The group forming becomes evident rather rapidly but complete separation of the
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groups and, therefore, convergence can take some time, depending on the willingness
to change their opinion. The authors call it ”open-mindedness” and it will be denoted
by θ in this work. The model has seen extensive interest from a statistical physics

Figure 1: Evolution of the Echo Chamber Model with discrete opinions. Even though
the initial network looks heterogenous, one can already discern groups in the sec-
ond image and finally the separated network into several groups of uniform opinion.
Screenshots taken from https://www.complexity-explorables.org/explorables/echo-
chambers/ .

perspective under various assumptions on the behavior of the agents, as for example
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in [HolNew06], [Vesp12] or [PaTraNo06], and reviewed for example in [CaFoLo09] and
[ThiBer07] to name some. At the time of composition of this work the cited articles
had several thousand citations, but almost all results and observations are based on
simulations and a complete theoretical analysis is lacking to this day. In this work we
present a qualitative link between the Echo Chamber Model and generalized exclusion
processes and attempt a quantitative approach under canonical assumptions on the
probability distributions involved in the model.

Throughout this work, when considering the Echo Chamber Model, we understand
it as the following discrete time, rule based process of graphs where in every time step
the following rules are applied to the current graph.

Denote by Gt = (V , Et) the graph representing the network of individuals and re-
lationships at some time t ∈ N and by O ∈ {[0, 1], { i

N
|i ∈ {1, . . . , N}}} for some

N ∈ N. Assume that the individual a ∈ V carries an opinion X t
a ∈ O at time t ∈ N.

Furthermore, there is a uniform tolerance threshold θ ∈ [0, 1] for all individuals as
well as a uniform willingness to change its opinion µ ∈

[
0, 1

2

)
. Then, the Echo

Chamber Model evolves as follows.

• Draw uniformly an edge 〈A,B〉 ∈ Et.

• If |X t
A −X t

B| < θ, then

– if O = [0, 1] set
∗ firstly, X t+1

A = X t+1
A + µ(X t+1

B −X t+1
A ) and,

∗ secondly, X t+1
B = X t+1

B + µ(X t+1
A −X t+1

B ).
– if O = { i

N
|i ∈ {1, . . . , N}} draw Z ∼ Ber(0.5) set

∗ set, firstly, X t+1
A = X t+1

A + Z(X t+1
B −X t+1

A ) and,
∗ secondly, X t+1

B = X t+1
B + (1−Z)(X t+1

A −X t+1
B ).

• If |X t
A −X t

B| >= θ, then

– Define N〈A,B〉 := {e = 〈c, d〉 6∈ Et\{〈A,B〉}|k ∈ {A,B} or l ∈ {A,B}}.
– draw uniformly E from N〈A,B〉,
– set Et+1 = (Et\{〈A,B〉}) ∪ {E}.

We make the distinction between the discrete opinion Echo Chamber Model if O =
{ i
N
|i ∈ {1, . . . , N}} and the continuous opinion Echo Chamber Model if O = [0, 1].

The dynamics implied by rules and the discrete time renders the totality of the time-
dependent opinions and the graph structure a Markov chain in discrete time. Note
that the first half of the rules can be considered as an independent process of the
relationships if we keep the opinions constant, i.e., θ = 0, and on the other hand
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the second half may be used to imply only a change of the opinions when keeping
the relationships fixed. To render the theoretical analysis more accessible, it seems
judicious to first reduce the complexity of the dynamics by splitting it up into its
essential parts before attacking the whole system.

Considering only the dynamics of the opinions under the assumptions that the edges
of the graph are constant, the continuous opinion Echo Chamber Model reduces to
the Deffuant model. We will review the Deffuant model in Subsection 5.2 and discuss
some alternative approaches in the context of non-complete interaction graphs.
The dynamics of the moving edges, under the assumption of constant opinions, isolated,
is analyzed in [HePraZha11] using population limits and a certain clustering of the
opinions, leaving the inherent finiteness of the system aside. Our approach is based
to a large part on combinatorics and graph theoretical techniques. Furthermore, we
make a different choice when it comes to the distribution of the edge E drawn from
N〈A,B〉, due to the following reasons.

Some sources, for example [HePraZha11], propose a two step process, drawing first
uniformly a vertex among {A,B} and then connecting the drawn vertex with one of its
neighbors to which it is not connected. The corresponding neighbor is drawn uniformly
among all available ones. This leads to a bias of recreating the old edge again. To
illustrate, denote by N c

A all vertices in G which are not neighbors of A. Then, the
probability to create any edge which is not 〈A,B〉 is either (2N c

A)−1 or (2N c
B)−1 while

the probability to recreate the old edge is (2N c
A)−1 + (2N c

B)−1 which satisfies

max{(2N c
A)−1, (2N c

B)−1} ≤ (2N c
A)−1 + (2N c

A)−1.

To remove this bias, we chose the uniform distribution among all possible edges for
the dynamics of the edges. This leads, in particular, to results which are coherent with
established theories of social systems, as discussed in [Luh84] and [Luh98]. We dedicate
the whole Section 8 to an analysis of the finite system and obtain upper bounds on
the time to convergence of the model under suitable assumptions. Section 8 can at the
same time be seen as a synthesis of all the results in the preceding sections.

2 Summary of this work

The central objective of this work is the characterization of the dynamics presented
hereinabove via a generalized version of a particle system which has been object to
research for a long time, the exclusion process in discrete time. For a complete analysis
we need first some preliminary results on a state space of said generalized exclusion
process, which will be a graph whose vertices consist of sets, before going on to a
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Markov chain theory based in-depth analysis of its behavior. Therefore, we split the
part of this work, dedicated to the Echo Chamber Model as defined above, into to
sub-parts, firstly, ”Graphs and Combinatorial Structures” and, secondly, ”Generalized
Exclusion Processes & Absorbing Environments and Social Network Dynamics”. The
remainder of this introduction is dedicated to an outline of these two sub-parts as well
as a short overview of the results obtained and their relevance in the greater context
of this work. In particular, we show the necessity of Part II for the rest of the work
and, therefore, its integration into the topic, even though in itself it can stand alone
for an audience interested in Graph Theory.

Part II: Graphs and Combinatorial Structures

The first part of this work forms the graph and set theoretical foundation. Geomet-
rically, most challenges in the approach, which we chose for the analysis of the Echo
Chamber Model, arise from an intricate structure implied by graphs defined on the sub-
graphs of regular connected graphs. This includes the necessity to use multi-sets in
some proofs. To avoid confusion or lacking notions, we introduce the basic definitions
from Graph and Set Theory in Section 3. We start with the fundamental definition of a
graph and obtain an important result on the existence of specific sub-graphs, relevant
for this work, in Theorem 3.14 supported by Lemma 3.8 and Lemma 3.12 which cover
additional cases, out of the scope of Theorem 3.14.

From this specific search of sub-graph geometries, we go on to the more general
theory of Matchings in Definition 3.15 and discuss some of the well established results
on the topic. Matchings will allows us to characterize dispersed communities via a
more general structure which is the central focus of Section 4. Building on the notion
of density of sub-graphs, we suggest a characterization of the boundary between the
graphs containing sub-graphs of large average density and all other graphs in Con-
jecture 4.25 where the definition for sub-graphs of large average density is given by
Definition 4.24. These will play an essential role later on in Section 6 in the context
of interacting particle systems.

After having done this work on graphs and sub-graphs we move on to sets and graphs
of sets in Subsection 3.2. We recall basic operations from set theory with an emphasis
on the symmetric difference. It will serve as the main tool for identifying possible
transitions between two particle configurations on a graph. Already, it is possible to
define a family of graphs, which have fixed size subsets of some set as vertices and two
subsets are adjacent if their symmetric difference satisfy a size condition. Examples,
known in the literature, are the Kneser and the Johnson graph which we recall for
the reader and show Proposition 3.33 that a generalized version of the Johnson graph
gives indeed rise to this family of graphs. We prove this result even though the author
is certain that it has been done elsewhere but wasn’t successful in finding a source to
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cite. Indeed, in Section 4 we come to the conclusion that generalized Johnson graphs
are a particular case of an even richer graph family which can serve as a state space
of particle processes of exclusion type, i.e., at most one particle can occupy a given
vertex.

Section 4 comprehends the central results of Part II obtained by the author. Every-
thing is based on the notion of the k-particle graph Lk, associated to some underlying
graph L which we define in Definition 4.1. Subsequently, we prove equivalencies for
connectedness and bipartiteness of L and Lk in Proposition 4.2 and Proposition 4.7,
respectively. Additionally, we obtain in Lemma 4.3 and Proposition 4.4 a link to the
Johnson graph as a special case of the pair (L,Lk). This gives us the general frame-
work in which we work but, nonetheless, we enter unconquered territory. It turns out
that the vertices of Lk have a natural link to sub-graphs of L, which we exploit in
Subsection 4.3 to characterize its degree sequence if the underlying graph is a regu-
lar graph. In Proposition 4.9 we obtain the size of the edge set and in Proposition
4.11 the average degree of each vertex, which will allow us to make estimates on the
flow speed of currents in said graph. A finer analysis reveals symmetries in Lk and
an characterization if its automorphism group is partially obtained in Proposition 4.8.
Throughout Section 4 we make links to sub-graphs of L and their properties as well
as importance for the structure of Lk. Finally, we add to the section a conjecture on
the vertex connectivity given by Conjecture 4.22 which the author managed to prove
partially but a complete proof was not achieved to this day in the general form. A
discussion of two special examples for L, the cycle and the almost complete graph, are
given and discussed in further detail, needed for Section 6, Section 7 and Section 8.
This discussion completes Part II of this work.

Part III: Absorbing Environments & Social Network Dynamics

Part III represents the main part of this work. It focuses on the building blocks of
the Echo Chamber Model and builds a link with a generalized version of a well known
process in statistical physics and the theory of interacting particle systems. This
allows us to introduce techniques from Markov chain theory as well as propose Markov
chain Monte Carlo methods for applications related to this topic. We assume that all
interacting particle systems are considered on some underlying finite graph L. Due to
the nested structure of Part III, the reader finds in Figure 2 the dependency structure
of the sections presented in this part. Note the central role of Part II, Section 4, The
k-particle Graph, as it lays the topological foundation of the state space.

Section 5 serves as a collection of multiple topics which are necessary for the analysis
of the Echo Chamber Model. Subsection 5.1 is dedicated to a review of classical
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Review: Markov chain theory

The Deffuant Model

Reduced
Echo Chamber Model

Dense Sub-graph Sampling

Exclusion processes in
random absorbing environments

Outlook: Echo Chamber Model Part II: The k-particle Graph

Figure 2: Dependencies of the Subsection of Part III.

Markov chain theory with its definitions and the results on convergence as well as the
convergence speed of a Markov chain. Evidently, this review cannot be exhaustive and
covers the topics which we need later on for the results obtained in this work. We, then,
go on to a discussion of the Deffuant model in Subsection 5.2, where the emphasis is,
at first, put on the evolution of the recursively defined opinion distributions over time
as well as its convergence which yields a link to differential geometry in Conjecture
5.24. We then discuss a notion of cluster forming called maximum confidence clusters
in the context of non-complete interaction graphs, see which gives rise to an invariant
structure under the Deffuant model in Definition 5.26. Finally, we obtain a result on
the convergence speed of the expected opinion profile after stabilization of the clusters
in Theorem 5.29. A short informal discussion on the convergence completes Subsection
5.2.
The proceeding Subsections 5.4 and 5.5 then treat a well known interacting particle
system, the exclusion process, as well as a generalization, which is necessary for this
work. In Subsection 5.4 we recall the exclusion process, which is classically considered
as a continuous-time process and build a bridge to a discrete time interpretation which
has also been considered in the literature but to a minor extend than its continuous-
time counterpart. This allows for a transition into the same framework as the Echo
Chamber Model, which is a discrete time process. It turns out that it is possible
to identify parts of the Echo Chamber Model with exclusion type processes but in a



24 2 SUMMARY OF THIS WORK

generalized form. Therefore, we discuss in Subsection 5.5 the necessary generalization
as well as geometric interpretations in terms of sub-graphs. This forms another building
block for the analysis done in Section 7 but is, likewise, indispensable for Section 6.

The first example of a generalized exclusion process is discussed in Section 6. It is
constructed in such a way that its stationary distribution gives distinct weights to
configurations which span sub-graphs with different densities in the underlying graph.
We discuss this property in Theorem 6.2, and it follows, in particular, from Proposition

Part II: Section 4

L,Lc connected

Theorem 6.2

Theorem 6.4

Algorithm 1

Figure 3: Dependency structure of the main parts of Section 6 whith the final goal of
obtaining an alogrithm for dense sub-graph sampling via MCMC.

4.14 and Proposition 6.1. Under conditions on the connectivity of the underlying graph
L and its complement we obtain Algorithm 1 for sampling of dense subgraphs of L. The
links between the main results of this section are show in Figure 3. Techniques from
Markov chain theory combined with results from Section 4 allow us to find bounds on
the convergence speed in Theorem 6.4, which turns out to be polynomial in all model
parameters and, therefore, sufficiently fast to yield a useful Markov chain Monte Carlo
approach for the problem of finding densest subgraphs, discussed in Subsection 6.1.
This section serves, aside from its mathematical contribution, as a first taste of the
power of possible applications of generalized exclusion processes, before going on to
the central one discussed in this work, which arises from the Echo Chamber Model.

Section 7 focuses on a generalized exclusion process associated to the Echo Chamber
Model. After having established a canonical Markov chain on the k-particle graph
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Lk, in Subsection 7.2 Theorem 7.1, which represents said exclusion process, we focus
completely on the behavior of this Markov chain. We obtain its transition matrix in
Lemma 7.2 and Theorem 7.3 and follow a classical analysis pattern for Markov chains,
where we establish basic properties as well as its convergence behavior. This will be
done throughout Subsection 7.3.2, starting with Theorem 7.4, which discusses irre-
ducibilty and aperiodicity of said Markov chain, and Theorem 7.5 yields the existence
of a unique limit. We can conclude this Subsection by characterizing the level sets of
said limit in Theorem 7.8 as well as the expected hitting times in Proposition 7.10.
The result is based on various geometrical observations as well as a natural reduction
of the state space. We lay out the dependencies in Figure 4 because it is one of the
more involved proof structures, as were, before, the dependencies of the Algorithm 1.
Both results are based on preliminary observations on the lumpability of the Markov

Part II: Section 4Lumpability; Definition 5.13

Proposition 7.6

Theorem 7.7

Lemma 7.9

Theorem 7.8 Proposition 7.10

Figure 4: Dependency structure of results leading to a natural reduction of the state
space Lk.

chain as well as the importance of isomorphic subgraphs and cycles in Lk.
From these qualitative observations, we move on to quantitative results in Subsec-

tion 7.3.4. Therein, we focus on the explicit form of the stationary distribution in
the cases where the Markov chain is reversible. We establish in Propositions 7.11 to
7.14 for some graphs and parameter choices this property but demonstrate in Theo-
rems 7.18 to 7.20 that this is, depending on the geometry of the underlying graph,
for almost no parameter choices the case. In Subsection 7.3.6 reversibility will give
us, in the few cases where the Markov chain exhibits this property, a possibility to
characterize the convergence speed via the Cheeger constant or bottleneck ratio, as
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reviewed in Subsection 5.1.3. This is mostly due to the implied geometry of the graph
Lk in these cases, which renders the necessary calculations accessible. Methods from
discrete optimization complete the necessary tool box. In the non-reversible cases, we
focus on characterizations of the convergence speed of Markov chains, which do only
depend on the structure of the path space of Lk. We give in Theorem 7.30 a result on
this topic which follows from Theorem 5.23 and only depends on the number of paths
between vertices in Lk, i.e., a geometrical property of Lk.

We complete this section by dedicating Subsection 7.5 to the comparison of the here
present Markov chain and the classical discrete time exclusion process as discussed in
[DiaSal93]. This reveals the inherent difference in the dynamics due to the transition
structure arising from the Echo Chamber Model as well as the qualitative difference
between the two associated Markov chains. This brings us, finally, back to the special
case of the Echo Chamber Model in Subsection 7.5 where we apply the in Section 7
obtained results to the special underlying structure of the state space under the model
assumptions and attempt an interpretation for dynamic social networks.

Part III is completed by a section which reintroduces the opinions, present in the Echo
Chamber Model, into the picture. Section 8 is the synthesis of the understanding of the
process underlying the movement of the edges in the Echo Chamber Model, obtained
in Sections 4 and 7. We work under the assumption that only the edges move and the
opinions are constant and, in particular, discrete. Noting that this implies that edges
between individuals who have similar opinions persists for all time, one rapidly realizes
that this leads to absorbing sites for the associated interacting particle system. We
find in Subsection 8.2 and, in particular, in Lemma 8.2 and Lemma 8.3 that absorbing
sites do not necessarily lead to the absorption of all particles over long time, even if
the number of absorbing sites exceeds largely the number of particles. We, therefore,
focus on natural geometric conditions of the random environment for absorption of
the whole process and search for upper bounds on the expected time to absorption.
One such natural condition is, effectively, defined by the implied dynamics of the Echo
Chamber Model, which we call cell-free environments. It represents that non-absorbed
particles cannot get stuck among absorbed ones.

The state space Lk has to be adjusted to this new situation and we find a canon-
ical extension in Definition 8.9. It consists of the same vertex set as Lk but its edge
set is a real subset of the edge set of Lk and is inherently defined by the position
of the absorbing sites. Considering the number of absorbing sites in each configura-
tion, we find a hierarchical structure in the transition graph of an associated Markov
chain and calculate the exact number of transitions between layers in Proposition 8.10.
This allows us, under assumption of the opinion distribution and using the notion of
quasi-stationary distribution, to find a general upper bound on the expected time to
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Figure 5: Dependency structure of the main results of Section 8.

absorption in Theorem 8.13. In Figure 5 we lay out the dependency of the results in
Section 8 which lead to the final result Theorem 8.13.
In Subsection 8.4 we propose a comparison with a pure death process and obtain a
conjecture on an upper bound of the expected time to absorption of all particles via
this death process in Conjecture 8.15. This shows, again, the necessity of being able
to compare Markov chains quantitatively and we leave this open for further research.

We close this final section of the second part with considerations on the opinion
distributions for the Echo Chamber Model and show, that, without the change in
opinions, the model does not converge with positive probability in Proposition 8.16.
This leads us to the conclusion, that both parts of the Echo Chamber Model can
be considered separately but their interaction gives rise to a new behavior. Finally,
we propose a possibility to integrate the analysis done in this work into a complete
theoretical perspective on the Echo Chamber Model but leave the development of this
path to further research.

Part IV: Random Population Dynamics under Catastrophic
Events

The third and last part of this work presents the article ”Random Population Dynam-
ics Under Catastrophic Events” published by the author of this work in collaboration
with Patrick Cattiaux, Sylvie Roelly and Samuel Sindayigaya. The article takes a
macroscopic perspective on population dynamics on the level of the population size in
contrast to the microscopic scale, which we used in Part III by considering interactions
between individuals. In the article we introduce a new kind of continuous time Markov
chain called BD+Cn, which is an extension of a birth-death process and includes the
possibility of an instantaneous reduction of the population size to a fixed size n. We
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pursue two goals in the article. Firstly, the characterization to the expected first time
the population size falls to the fixed size n if the population has a size larger than n
at the beginning of the observation. We obtain an identity for this time as a function
of the number of individuals by which the population exceeds initially the fixed size n.
Writing the initial population size as n + i for some i ∈ N, we achieve, furthermore,
a convergence result of said time to 0 as i → ∞ with a characterization of the con-
vergence speed as well. Using these results, we find positive recurrence of the Markov
chain and, therefore, existence and uniqueness of a stationary distribution using Lya-
punov functions.
The second goal consists in characterizing the expected population size as well as its
variance at any fixed time t. Using techniques for ordinary differential equations com-
bined with the master equation for moments of Markov chains, we obtain meaningful
upper bounds on both the expected population size and variance. We quantify the
difference between the actual solution for the expected value and the upper bound,
show convergence for t → ∞ to some finite limit and obtain an explicit upper bound
on said limit. The whole analysis is based around nullclines and the uniqueness of
positive zeros of an associated polynomial function. We finish Part IV with an outlook
on a process which models the same behavior but where the instantaneous reset is
replaced by a reduction in the population based on individuals.
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3 Graphs and sets: Definitions and Notations

Outline of this section: This section contains two major parts. In the first part,
we review definitions and results from graph theory as well as add and prove results
on sub-graphs of regular and strongly regular graphs. We start with the most basic
properties to set the scene before focusing on vertex induced sub-graphs and their
properties with a particular focus on regular and strongly regular graphs. A short
review of matchings and the implications of the existence of a matching in a graph
on vertex induced sub-graphs will be discussed shortly. We identify certain types of
sub-graphs in regular graphs and define a family of graphs which is particularly densely
packed. It can be shown that the set of d̄-regular graphs is separated by a particular
curve which converges nicely as the size of the vertex set converges to infinity. We
finish the section with a review of paths and their defining role in graphs.

In the second part of this section, we turn to sets and multi-sets as well as graphs
defined on subsets, where the neighbors are defined by some specified set operations.
In particular, intersections and symmetric differences will play a central role in this
context. We review and outline some of the properties of graphs defined on sub-sets
of some set, which are using the intersection to define neighborhoods of vertices. The
family of Johnson graphs and Kneser graphs will be discussed with a focus on their
link. We extend this link graphs on subsets where the symmetric difference defines the
neighborhood relationship. We show that this family of graphs is exactly given by the
family of Johnson graphs but both perspectives have their utility depending on the
context. The section will be finished by a short comment on generalizations of these
graphs.

3.1 Graphs and graph properties
Graphs are a discrete structure, which are, aside from the deep theoretical research
on their properties, often used to model social networks and other relationship based
interactions of particles or individuals. Furthermore, they may serve as discrete state
spaces for certain stochastic processes, most prominently random walks, dynamic par-
ticle systems like the Glauber dynamics of the Ising model, exclusion processes and
many more. In this section we are going to recall various definitions from graph theory,
lead the way towards the tools and structures we need in later sections and present
some new results and insights. All definitions and results for which no proof is pro-
vided are taken from the classical literature on graph theory, see for classical examples
[Wil96] or [Bol98], and for more recent ones [New10], [Bol12] or [PemSki09].

Definition 3.1. Let V be any set. The simple undirected graph L = (V,E) is the tuple
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of sets V,E where V are the vertices and E ⊂ {〈v, w〉|v, w ∈ V } are the edges. The
unordered tuple of elements 〈v, w〉 represents an undirected edge, i.e., 〈v, w〉 = 〈w, v〉.
The Matrix A = (av,w)v,w∈V with av,w = 1〈v,w〉∈E is called the adjacency matrix of L.

On graphs we may define paths, a distance as well as various forms of sub-graphs.
A prominent sub-graph class are vertex induced sub-graphs which are spanned by a
certain subset of the original vertex set and all edges included therein.

Definition 3.2. Let L = (V,E) be any simple graph and v ⊆ V . Then the graph
Lv = (v, Ev) with 〈v, w〉 ∈ Ev if and only if v, w ∈ v and 〈v, w〉 ∈ E is called the vertex
induced sub-graph of L on v.

While graphs may be of any form in general, finding certain properties or substruc-
tures may shed light on the behavior of stochastic processes, in particular, Markov
chains as for example random walks. While for random walks the degree sequence of
a graph, i.e., the ordered set of degrees of each vertex, yield interesting insights, we
might look for more subtle structures to analyze more complex processes. Two, for
this work important ones, shall be defined in Definitions 3.3, 3.11 and 3.13.

Definition 3.3. Consider a triangle τ = {τ1, τ2, τ3} and an supplementary vertex
set β = {β1, β2, β3}. We define a tri-star as a graph given by T = (VT = τ∪β,ET )
where for v, w ∈ VT we define an edge as 〈v, w〉 ∈ ET if and only if either v, w ∈ τ
or v = βi and w = τi.
Consider any graph G = (V,E) and assume there is a sub-graph Gs = (Vs, Es) with
Vs = {v1, v2, v3, w1, w2, w3} ⊂ V of G which is isomorphic to T by an isomorphism
Φ which preserves the neighborhood relationships of βi = Φ(vi) and τj = Φ(wj).
Then we say that G contains a tri-star T .

A tri-star is basically a triangle with beams at every vertex such that the end points
of the beams are only connected with the respective corner of the triangle. This can
be made clearer by the visualization seen in Figure 6. For certain classes of graphs a

τ2

β2 β3

τ3

τ1

β1

Figure 6: The tri-star T . Dashed lines represent possible edges in G, if G contains a
tri-star.

tri-star may never be found as a sub-graph while for others it is inevitable. To discuss
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these properties later on we recall the definitions of bipartite, regular as well as strongly
regular graphs. We start with regular graphs.

Definition 3.4. A graph L = (V,E) is called a d̄-regular graph on n̄ vertices if

• |V | = n̄,

• deg(v) = d̄ for all v ∈ V .

Evidently, due to the fact that the sum over all degrees in a graph is equal to twice
the number of edges, in a regular graph we are faced with the constraint that either d̄
or n̄ has to be even. When it is evident that a specific one of the two has to be even
due to additional conditions we do not necessarily recall this fact, in particular, when
we consider graphs with d̄ = n̄ − 2. Even though this seems like a strong restriction,
one can consider graphs which are even more constrained but which yield, nonetheless,
a rich structure.
The stronger form of regularity we will use in this work is strong regularity which
implies particularly nice results for the Markov chain we are going to discuss later on.

Definition 3.5. A graph L = (V,E) is called a (n̄, d̄, α, β) strongly regular graph on
n̄ vertices if

• |V | = n̄,

• deg(v) = d̄ for all v ∈ V ,

• α - number of common neighbors of two adjacent vertices,

• β - number of common neighbors of two nonadjacent vertices.

A common example of a strongly regular graph arises from the line graph of a
complete graph. We recall the definition of a line graph.

Definition 3.6. Let G = (V , E) be a simple graph. Its associated line graph is the
defined as the graph L with vertex set E and edge set E where for v, w ∈ E we have
〈v, w〉 ∈ E if and only if v and w are incident edges in G.

While it is a quite abstract definition it becomes rather intuitive when considering
an example. In Figure 7 we illustrate the construction of a line graph from the complete
graph on 4 vertices. It turns out that a line graph L of a complete graph Gc is a strongly
regular graph with parameters

(
n(n−1)

2 , 2(n− 2), n− 2, 4
)
, where n is the number of

vertices of Gc. So, while being a class of graphs with a very demanding structure,
strongly regular graphs arise naturally from other graphs. Indeed, their structure
allows the characterization of certain vertex induced sub-graphs. For vertex induced
sub-graphs of size 3 a complete characterization is possible.
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〈1, 2〉

〈2, 3〉

〈3, 4〉

〈2, 4〉

〈4, 1〉

〈1, 3〉

Figure 7: From complete graph on 4 vertices to its line graph.

Lemma 3.7. Let L be a strongly regular graph with parameters (n̄, d̄, α, β). Then
depending on the parameters on L, there are at most 4 distinct vertex induced
sub-graphs of size 3, a triangle t, a path p of length 2, the disjoint union b of an
edge and a vertex as well as a completely disconnected graph d. Additionally, L
contains

• n̄d̄α
6 copies of t,

• n̄(n̄−d̄−1)β
2 copies of p,

• n̄d̄(n̄−(2d̄−α))
2 copies of b as well as

• n̄(n̄−d̄−1)(n−2d̄+β−2)
6 copies of d.

Proof. The existence of the 4 different sub-graphs follows directly by construction,
since these are the only 4 possible distinct vertex induced sub-graphs on 3 vertices for
any connected simple graph. It remains, consequently, to prove the number of such
sub-graphs. We start with the number of triangles.

Each edge induces α triangles, since the end points of each edge have α common
neighbors. Since a triangle contains exactly 3 edges, Summing over all edges counts
every triangle 3 times. Therefore, there are 1

3
n̄d̄
6 α triangles, which proves the first claim.

Arguing along the same lines, any two non adjacent vertices have β common neigh-
bors and there are exactly (n̄− d̄− 1) non-adjacent vertices to any fixed vertex. Since
being non-adjacent is a symmetric property, we obtain by summing over all pairs of
non-adjacent vertices that there are 1

2 n̄(n̄− d̄− 1)β copies of p in L.
We note that the complement Lc is a strongly regular graph with parameters (n̄, (n̄−
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d̄−1), n̄−2d̄+β−2, n̄−2d̄+α). Additionally, any p′ in Lc induces a b in L. Consequently,
there are n̄d̄(n̄−(2d̄−α))

2 copies of b in L by applying the previous point to Lc.
Again, by the structure of Lc and the fact that any triangle t′ in Lc induces a d in

L, we obtain that there are n̄(n̄−d̄−1)(n−2d̄+β−2)
6 copies of d in L.

Having seen this example one can wonder about the general structure of a strongly
regular graph and it turns out that it is, in fact, inherently linked to the tri-star.

Lemma 3.8. Let L be a strongly regular graph with parameters (n̄, d̄, α, β) sat-
isfying d̄ ∈ {3, . . . , n̄ − 3} and α ≥ 1. Then, L contains a tri-star as defined in
Definition 3.3.

Proof. Let L as in the lemma. Then, there is a triangle τ = {τ1, τ2, τ3} due to α ≥ 1. It
remains to show that each τi has a neighbor βi which is not adjacent to the remaining
two corners of the triangle. Assuming that one pair τi, τj has only common neighbors.
Then α = d̄ − 1 since τi and τj are neighbors. By strong regularity each τi and τj
have, hence, α = d̄ − 1 neighbors with the remaining corner τk. This implies that
Nτ1\τ = Nτ2\τ = Nτ3\τ . Pick v ∈ Nτ1\τ . Then v is adjacent to τ1, τ2, τ3. Hence,
τv = {v, τ1, τ2} is a triangle and τ1, τ2 have only common neighbors by the previous
observation. Therefore, by the same arguments as before we obtain Nτ1\τv = Nτ2\τv =
Nv\τv. Since v was arbitrary, we obtain that there is a connected component of L of
size d̄ and as L is connected n̄ = d̄ + 1 ≤ n̄ − 2 which yields a contradiction to the
claim that there is one pair τi, τj which has only common neighbors.

Note that α ≥ 1 is always satisfied for the line graph of a complete graph with more
than two vertices, giving rise to the parameters

(
n(n−1)

2 , 2(n− 2), n− 2, 4
)
.

On the other hand, bipartite graphs never contain a tri-star.

Definition 3.9. Let L = (V,E) be a simple graph. L is called bipartite if there are
sets V1, V2 ⊂ V such that V = V1tV2 and 〈v, w〉 ∈ E if and only if v ∈ V1 and w ∈ V2.

A direct consequence of this definition is the following property.

Lemma 3.10. A graph L is bipartite if and only if all closed paths have even length.

This immediately rules out the existence of a tri-star since it contains a closed path
of length 3, the triangle {τ1, τ2, τ3}.

The tri-star can, obviously, be generalized to any circle of arbitrary length instead
of the triangle τ . It turns out that for our purposes the case of a cube is sufficient since
all other cases can then be discussed thanks to a way simpler structure. We start with
the definition of the generalization of the tri-star graph to a cube-star graph.
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Definition 3.11. Consider a cube α = {α1, α2, α3, α3} and a set of vertices β =
{β1, β2, β3, β4}. We define a cube-star as a graph given by C = (VC = α ∪ β,EC)
where for v, w ∈ VC we define an edge as 〈v, w〉 ∈ EC if and only if either v =
αi, w = α(imod4)+1 or v = βi and w = αi.
Consider any graph G = (V,E) and assume there is a sub-graph Gs = (Vs, Es)
with Vs = {v1, v2, v3, v4, w1, w2, w3, w4} ⊂ V of G which is isomorphic to C by an
isomorphism Φ which preserves the neighborhood relationships of βi = Φ(vi) and
αj = Φ(wj). Then we say that G contains a cube-star C.

Definition 3.11 supplements Definition 3.3 and to visualize we only exchange the
triangle in Figure 6 with a cycle of length 4. But it is indeed an addition which yields
an extension to of the tristar to the discrete torus which is considered in the context
of exclusion processes, see for example [Morris04] or [LaOlVa02]. Indeed, we find that
a cube-star graph is contained in any discrete torus (Z/aZ)m for a ≥ 5.

Lemma 3.12. Let m ∈ N, m ≥ 2 and a ∈ N, a ≥ 5. Then (Z/aZ)m contains a
cube-star graph in the sense of Definition 3.11.

Proof. We proof the claim inductively over m. Let for now m = 2. Figure 8 illustrates
that (Z/aZ)2 contains a cube-star graph for a = 5 and, therefore, also for all a ≥ 5. For

β1
α1

β2

α2 β3α3

β4

α4

Figure 8: The cube-star C in (Z/aZ)2. The dotted lines are identified with each other
due to the quotient, as are the dashed lines.

any m > 2 consider the m dimensional discrete hyper-cube of length a. Choose one
two dimensional slice. By the previous observations this slice contains a cube-star. The
identification of vertices due to the quotient Z/aZ does not change the neighborhood
relationship of any of the vertices present in C in the chosen slice. Consequently, the
cube-star C is also contained in (Z/aZ)m.

Obviously, generalizing T and C further using larger and larger cycles becomes
more and more restrictive on the class of d̄-regular graphs containing such structures.
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Indeed, for our purposes, it suffices to characterize a small sub-graph of 6 vertices,
which allows to separate neighborhoods of two vertices.

Definition 3.13. Consider two path graphs γ = {γ1, ξ, γ2} and γ′ = {γ′1, ξ′, γ′2} of
three vertices each. We define a double-pitchfork as a graph given by D = (VD =
γ ∪ γ′, ED) where for v, w ∈ VD an unordered pair satisfies 〈v, w〉 ∈ ED if and
only if 〈v, w〉 is either an edge in γ or γ′ or v = ξ, w = ξ′.
Consider any graph G = (V,E) and assume there is a sub-graph Gs = (Vs, Es) with
Vs = {v1, w, v2, v

′
1, w

′, v′2} ⊂ V of G which is isomorphic to D by an isomorphism
Φ which preserves the neighborhood relationships of γi = Φ(vi) and ξ′ = Φ(w′),
of γi = Φ(vi) and γ′j = Φ(v′j) with i 6= j as well as of γ′i = Φ(v′i) and ξ = Φ(w).
Then we say that G contains a double-pitchfork D.

We illustrate the double-pitchfork in Figure 9. Note that the double-pitchfork is

ξ

γ1

γ2

ξ′

γ′2

γ′1

Figure 9: The double-pitchfork D. Dashed lines represent possible edges in G, if G
contains a double-pitchfork.

a quite general object which might be found in a wide variety of regular graphs, for
example in Figure 8. From Figure 8 pick the vertices α1 to α4 as well as β1 and β2 and
set ξ := α1, ξ′ := α2, γ1 := β1, γ2 := α4, γ′1 := β2 and γ′2 := α3. The same observation

γ2
ξ

γ′2

ξ′
γ′1

γ1

Figure 10: The double pitchfork D embedded into the cube-star C in (Z/aZ)2. The
dotted and dashed lines are each identified with each other as before.

can then be made when considering objects similar to the cube-star or tri-star with
larger cycles. Nonetheless, both the cube-star and the tri-star are not covered by solely
considering the double pitchfork. In particular, the existence of D can only be assured
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if there is no cycle of length 4 in L which induces also as a vertex induced sub-graph a
cycle of length 4 to avoid γi and γ′j being connected for i 6= j. We show now that this
is sufficient for the existence of D.

Theorem 3.14. Let n̄ ∈ N and 3 ≤ d̄ ≤ n− 3. Assume that L does not contain
any vertex induced sub-graph of size 4 which is a cycle graph. Then, d̄-regular
graph L = (V,E) on n vertices contains a double-pitchfork in the sense of Defini-
tion 3.13.

Indeed, the claim of Theorem 3.14 is equivalent to the assertion that there is a
connected pair of vertices v, w in L which has at most d̄− 3 common neighbors. Note
that by regularity of L for each edge 〈v, w〉 ∈ E the neighborhood of |Nv\Nw| =
|Nw\Nv|. We are going to exploit this property, which is equivalent to |Nv4Nw| =
2|Nv\Nw| = 2|Nw\Nv|, in the proof of Theorem 3.14 ad noceam.

Proof. Assume that for all edges 〈v, w〉 ∈ E the vertices v, w have at least d̄−2 common
neighbors, i.e., there is at most one neighbor of v and one of w which are not neighbors
of w and v, respectively. Considering a first case where all vertices have d̄−1 neighbors
in common, the graph L is complete and, hence, n̄ = d̄ + 1 ≤ n̄ − 2 we arrive at a
contradiction.

So, assume there is an edge 〈v, w〉 such that v and w have exactly d̄ − 2 common
neighbors. Therefore, there are uv, uw ∈ V such that 〈uv, v〉 ∈ E, 〈uw, w〉 ∈ E,
〈uw, v〉 6∈ E and 〈uv, w〉 6∈ E. Then, since uv is a neighbor of v but not a neighbor of
w, uv has a neighbor u′v which is not a neighbor of v. The complete structure is shown
in Figure 11. We define the set Ṽ := {u′v, uv, v, w, uw} and arrive at the equality for

u′v

uv v

w

uw

Figure 11: Configuration of u′v, uv, v, w and uw where the dashed edge represents the
possibility to identify u′v and uw in some graphs.

the neighborhoods Nv, Nw and Nuv

Nv\{uv, w} = Nw\{uw, v}, Nv\{uv, w} = Nuv\{u′v, v}

which allows us to conclude Nw\{uw, v} = Nuv\{u′v, v}. Therefore, there is a set V̄ of
size d̄− 2 such that

V̄ = Nv\{uv, w} = Nw\{uw, v} = Nuv\{u′v, v}. (3.1)

In the case where u′v 6= uw it follows that any m ∈ V̄ and v have at most d̄−3 common
neighbors, since u′v and uw are neighbors of m but not of v and 〈m, v〉 ∈ E. Hence, we
arrive at a contradiction to the minimal number of common neighbors being d̄− 2.
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On the other hand, if u′v = uw, then for any m ∈ V̄ the vertex v has a neighbor vm
which is not a neighbor of m, since 〈m,uw〉 ∈ E, and vm ∈ V̄ . Using the assumption
on the minimal number of common neighbors, we arrive at the conclusion that vm is
unique given m. Therefore, in the vertex induced sub-graph LṼ ∪V̄ any vertex m ∈ V̄
satisfies

degLṼ ∪V̄ (m) = 4 + (d̄− 3)− 1 = d̄

where we us that |V̄ \{m}| = d̄ − 3 and there is exactly one vm ∈ V̄ which is not
neighbor of m. Additionally, for all x ∈ Ṽ we know

degLṼ ∪V̄ (x) = d̄

such that LṼ ∪V̄ forms a connected sub-graph of L where all vertices have degree d̄.
Therefore, there are no edges pointing outward of Ṽ ∪ V̄ such that V = Ṽ ∪ V̄ and,
therefore,

n̄ = |V | = |Ṽ ∪ V̄ | = d̄− 2 + 4 = d̄+ 2 ≤ n̄− 3 + 2 = n̄− 1. (3.2)

Finally, we arrive also in this case at a contradiction such that the assumption that for
all edges 〈v, w〉 ∈ E the vertices v, w have at least d̄−2 common neighbors is incorrect.
Combined with the absence of a vertex induced sub-graph which is isomorphic to a
cycle graph of length 4, we obtain the claim of the theorem.

Note that this result breaks down when we deal with non-regular graphs. To il-
lustrate this case, consider any regular graph which satisfies the conditions of the
theorem. Pick a pitchfork, which you find necessarily under the assumptions of the
theorem. Then, replace the edge 〈ξ, ξ′〉 by a path of length two, introducing a vertex
of degree 2 between the two vertices ξ and ξ′. Further analysis is possible by using
bounds on the degree sequence of a non-regular graph. While an interesting direction
to pursue for a closer understanding of local structures of graphs it is out of the scope
of this work and is left for later research.

Another important but, in contrast to D and T , well established class of sub-graphs
are matchings. A matching contains exclusively connected components of size 2, i.e.,
no two edges in a matching are incident to one another in L, see [LovPlu09]. We turn
to the formal definition.

Definition 3.15 ([LovPlu09]). Let L = (V,E) be a connected loop-free simple graph
and M⊂ E. The set M is called a matching if no two edges e1, e2 ∈M are adjacent
in L. A maximal matchingM is a matching which is not subset of any other matching
and a perfect matching contains for any v ∈ V an edge ev ∈M such that ev is incident
to v.

Since we focus mostly on regular and strongly regular graphs in the context on this
work, we can employ the following results, in particular setting the focus on bipartite
regular graphs.



3.1 Graphs and graph properties 39

Proposition 3.16 (Petersen’s theorem, [LovPlu09]). Let L a d̄ connected regular graph
with edge connectivity at least d̄− 1. Then L contains a perfect matching M.

The following corollary on regular bipartite graphs will be more important to us
since it also to vary the degree from d̄ = 2 up to d̄ = n̄− 1 where n̄ is the size of each
of the two vertex sets forming L.

Corollary 3.17 ([LovPlu09]). Let L a d̄ connected regular bipartite graph. Then L
contains a perfect matching M.

Corollary 3.17 allows us to start with some initial connected d̄-regular bipartite
graph L and then reduce, iteratively, the degree by 1 to d̄ − 1 by choosing a perfect
matching M in L and then defining the graph L′ = (V,E\M). The graph L′ is then
by definition of a perfect matching a d̄− 1-regular graph. We are going to employ this
property when discussing the impact of the density of a graph on movement of particle
systems of exclusion in later sections.

Another approach to the density of a graph is the calculation of the number of walks
from any vertex v to another vertex w. A walk in contrast to a path allows to visit
edges as well as vertices multiple times and is, thus, the corresponding graph theoretic
object to capture the trajectories of Markov chains.

Definition 3.18 (Walks and paths in graphs). Let L = (V,E) be a simple graph. A
walk from v ∈ V to w ∈ V of length n is a sequence v0, . . . , vn ∈ V with v0 = v and
vn = w. The walk is called closed, if v = w and open otherwise. A path is a walk where
any two vertices are distinct and a closed path is a path with v = w.

In general, if A is the adjacency matrix of the graph L, then the number of walks
from v to w of length n is the (v, w)-th entry of An. In general, it remains difficult
to give explicit expressions for the number of walks and the number of paths. Due
to their omnipresence in various graph problems, see for example [FePeKo01], it is an
important object in research which can be approached from a spectral theoretical or
combinatorial perspective to obtain at least meaningful upper and lower bounds.

Special classes of graphs allow for a description of their paths. We want to present
to examples, which we need later on in the context of connected regular graphs which
exhibit a connected complement graph. We start with the first in its general form and
present some properties for regular graphs.

Definition 3.19. Let L = (V,E) be a simple connected graph. If L contains an
Eulerian cycle, i.e., a path with same start and end point which only uses each edge
exactly once, we call L an Eulerian graph.

The central result which is much easier to verify then the property given in the
definition is the following which only focuses on the degree sequence of L.
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Proposition 3.20. Let L be a simple connected graph. Then, it is an Eulerian graph
if and only if it has no vertex of odd degree.

This statement has first been claimed to be true by Euler, who gave a partial proof,
a complete proof was found by Carl Hierholzer, as described in [BiLlWi86], and gives
immediately the existence of an Eulerian path in L by looking at each vertex and its
degree. Another graph property which is defined by paths and cycles are idem called
by the name of their inventor, the class of Hamilton graphs.

Definition 3.21 ([PemSki09]). Let L = (V,E) be a simple connected graph. If L
contains a Hamiltonian cycle, i.e., a path with same start and end point which visits
each vertex exactly once, we call L a Hamiltonian graph.

Like the Eulerian graphs, there is a characterization for Hamiltonian graphs using
the degrees of the graph.

Theorem 3.22 (Dirac’s Theorem). Let L = (V,E) be a simple connected graph with
|V | ≥ 3 and deg(v) ≥ |V |

2 for all v ∈ V . Then, L is a Hamiltonian graph.

Furthermore, for regular graphs both properties to be Eulerian or Hamilton have a
link and a fundamental importance when considering regulars graphs and their com-
plements, looking for connectivity in both of them.

Lemma 3.23. Let L = (V,E) be a d̄-regular connected graph and assume that Lc is
connected. Then

• L or Lc is Eulerian,

• L or Lc is Hamiltonian.

Proof. To proof the first point, we only have to check the degrees of L and Lc. If d̄
is even, then L is Eulerian by Proposition 3.20. On the other hand, note that Lc is a
|V | − d̄ − 1 regular graph and, hence, if d̄ is odd, then |V | is even by the properties
of regular graphs and |V | − d̄ − 1 is even. Consequently, by Proposition 3.20 the
complement graph Lc is Eulerian which concludes the first claim.
Now, assume that both L and Lc are not Hamiltonian. Consequently, using Dirac’s
Theorem both L and Lc satisfy d̄ < |V |

2 and |V |− d̄−1 < |V |
2 . Consequently, we obtain

|V | − 1 = d̄+ |V | − d̄− 1 ≤ |V |2 − 1 + |V |2 − 1 = |V | − 2

which leads to a contradiction. Consequently, L or Lc is a Hamiltonian graph.
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The property presented in Lemma 3.23 will, in fact, be limiting to results we obtain
in Section ?? and we will discuss it further in that context. A last definition we want
to add to this section will be later linked the identifiability of subsets in a graph and,
therefore, a possible reduction of the state space of some Markov chain. A natural way
is to use quotient graphs which are defined as follows.

Definition 3.24 ([San12]). Let G = (V , E) be a simple graph and ∼ be a equivalence
relation on V. Then, the graph G/∼ with vertex set V/∼ and edge set

Ẽ := {〈[v]∼, [u]∼〉|∃ṽ ∈ [v]∼, ũ ∈ [u]∼ : 〈ṽ, ũ〉 ∈ E} (3.3)

is called the quotient graph of G with respect to ∼.

Given a suitable equivalence relation ∼ one can reduce the graph to its ”essential”
components or combine sets of vertices which are identifiable in view of some applica-
tion. The question on how to find this identifiability will occupy us for some time in
Subsection 7.3.3 in light of a Markov chain arising from the Echo Chamber Model.

In the next steps we are going to consider more specific class of graphs where the
vertices consist of subsets of some other mathematical object which may bring its own
topology with it. This will influence the edge structure, in particular, in Section 4 when
the subsets, defining the vertices, will be sub-graphs of some other graph. This will
lead us to the definition of a neighborhood relationship of vertex induced sub-graphs
which has a direct interpretation using interacting particle systems.

3.2 Sets, multi-sets and graphs of sets
Central object to the analysis of exclusion processes presented in this work are sets,
especially subsets of the vertex set of some graph on which the particles move. In
the first part of this section we aim at recalling a few definitions from set theory
based on [Hein03], [Fer08] and [LeuChe92]. In particular, we consider the notion of
multi-sets and functions on such sets as well as elementary operations on multi-sets
like the intersection, union and difference. It turns out that these are the canonical
generalizations of the well known operations on sets. Furthermore, we are going to
recall one classic operation which might not be as omnipresent as others, namely the
symmetric difference.

Definition 3.25. Let A,B two sets. The symmetric difference of A and B is defined
by

A4B = (A\B) ∪ (B\A). (3.4)

The symmetric difference gives for two given sets the elements which belong exclu-
sively to one or the other. Hence, it serves well as representation of the way a process
of sets behaves when in each time step at most one element of the set may change.
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The symmetric difference captures the difference between the state of such a process
at one time step and the next and, moreover, clearly describes the element which has
changed. In particular, for dynamic particle system with a fixed number of particles
the symmetric difference will always be formed between sets with identical cardinality.
A simple result which we want to recall is on the cardinality of the symmetric difference
of two sets with identical cardinality.

Lemma 3.26. Let X be any set and A,B ⊂ X such that |A| = |B|. Then |A4B| is
even or equals zero.

Proof. By direct calculations the claim follows.

|A4B| = |(A\B) ∪ (B\A)| = |(A\B)|+ |(B\A)|
= |A| − |A ∩B|+ |B| − |A ∩B| = 2(|A| − |A ∩B|).

This operation will be the center point of various constructions and the perspective
of an exclusion process as a Markov chain on a graph of sets. Hence, it is worth it to
focus on a more involved and quite aesthetic graph theoretic problem namely several
possibilities to define graphs via sets. This leads to a blow up in the state space but
eventually will allow us access to Markov chain theory and the calculation of explicit
results.

Multi-sets are the direct generalization of sets which allows to contain multiple
times the same element. In contrast to a vector a multi-set remains without order.
This implies that an element of which appear multiple copies in the same multi-set
cannot be distinguished from the remaining copies.

Definition 3.27 (Multi-sets). Let A be a set and mA : A → Z+ a map. Then the
multi-set M with elements is defined by

M := {(a,mA(a))|a ∈ A}. (3.5)

Evidently, a multi-set M constructed from A = {a, b} and mA : A → Z+ with
m(a) = 1 and m(b) = 2 can be written as {(a, 1), (b, 2)} = {a, b, b} without ambiguity.
The set-operations on such multi-sets are then defined in a canonical way, applying the
operations the underlying sets and adapting the corresponding maps. For us the only
operations of interest are the union, intersection and difference, for which we recall the
definition in what follows.

Definition 3.28. Let A,B sets and mA : A → Z+, mB : B → Z+ two maps. Extend
the maps mA and mB to zero for elements in B\A and in A\B, respectively. Then the
set operations union, intersection, difference and symmetric difference of the multi-sets
MA,MB are defined as
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• MA ∪MB := {(x,max{mA(x),mB(x)})|x ∈ A ∪B},

• MA ∩MB := {(x,min{mA(x),mB(x)})|x ∈ A ∪B},

• MA\MB := {(x,max(mA(x)−mB(x), 0))|x ∈ A ∪B}.

where elements of the form (x, 0) are dropped for convenience.

Multi-sets will come in handy to show that exclusion processes in their Markov
chain representation are, in fact, irreducible under weak assumptions on the transition
probabilities linked to the symmetric difference. We are going to analyze this Markov
chain representation on a graph of sets which arises canonically from the underlying
graph L on which we consider the particle positions. Graphs defined via sets and set-
operations have a long history and one of the more prominent examples is the Kneser
graph, named after Martin Kneser. See [ReTsch21] for more information on Martin
Kneser and his work including the following definition.

Definition 3.29. Let A be any set with n̄ = |A| and consider some k ∈ N∗ with
k ≤ n̄. Set VA,k the set of subsets of A of size k. The Kneser graph K(n̄, k) = (VK, EK)
is defined as VK := VA,k and 〈v,w〉 ∈ EK if and only if v ∩w = ∅.

Note that the particular structure of A and the nature of its elements do not play
a substantial role in the definition but rather the parameters n̄ and k. Two sets with
identical cardinality give for fixed k rise to the same K(n̄, k). Simple examples of a
Kneser graph are K(n̄, 1) which corresponds to the complete graph or K(5, 2) which
is isomorphic to the Peterson graph, which is defined in [HolShe93] and the previously
stated result being stated in the same source. A representation of the Peterson graph
can be seen in Figure 12. Note the regular structure, every vertex having degree 3. A

Figure 12: The Peterson graph which corresponds to K(5, 2).

direct extension of the Kneser graph is the Johnson graph, see [HolShe93] for further
reading, which allows for more variability when it comes to the intersections of two
sets defining their neighborhood relationship. We present in definition 3.30 its most
general form to show afterwards its connection to another graph defined on sets by the
symmetric difference as set operation.
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Definition 3.30. Let A be any set with n̄ = |A| and let l, k ∈ N∗ with l ≤ k ≤ n̄.
Set VA,k the set of subsets of A of size k. The generalized Johnson graph J (n̄, k, l) =
(VJ , EJ ) is defined as VJ := VA,k and 〈v,w〉 ∈ EJ if and only if |v ∩w| = l.

The simple Johnson graph can be obtained by setting t = k − 1 in the previous
definition 3.30. We illustrate the Johnson graph J (5, 2, 1) in Figure 13. Having based

Figure 13: The generalized Johnson graph J (5, 2, 1).

the definition of the edges both in the Kneser and in the generalized Johnson graph
on the intersection of sets on can wonder which other sensible possibilities there are to
define graphs on subsets of some set V . We propose the symmetric difference which
generates a neighborhood relationship that can be interpreted as follows. Considering
two subsets of fixed size of some set V they are considered as adjacent if their symmetric
difference has a fixed size t. This implies that the number of elements in which the
two sets differ is fixed and, hence, forms the counter part to the generalized Johnson
graph. We proceed with the formal definition, a visualization and a couple of results.

Definition 3.31. Let n̄ ∈ N, k ∈ {1, . . . , n̄ − 1}, t ∈ {1, . . . , n̄ − 1} and V =
{v ⊂ {1, . . . , n}| |v| = k}. Define O(n̄, k, t) := (Vn̄;k;t, En̄;k;t) and (v,w) ∈ En̄;k;t iff
|v4w| = t.

In contrast to the Johnson graph, the graph O(n̄, k, t) measures similarity when t is
small since the symmetric difference is then small. On the other hand, if t is big, then
the symmetric difference of two neighbors is equally big and, consequently, neighbors
do not have many elements in common. Consequently, one might find a link between
the two. We first establish a link in a particular case between O(n̄, k, t) and the Kneser
graph. The link is due to the fact that one can rewrite the symmetric difference in
terms of intersections of the involved sets. We review this result in Proposition 3.32
and the result involving Johnson graphs in Proposition 3.33 with proofs but they are
not original in this work and the ideas can be find elsewhere.
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Figure 14: The graph O(6, 3, 2), a representative of the class O(n̄, k, t).

Proposition 3.32. Let n̄ ∈ N, k ∈ {1, . . . , n̄ − 1} and denote by K(n̄, k) =
(VK, EK) a Kneser graph. Then K(n̄, k) ∼= O(n̄, k, 2k). Therefore, the Kneser
graphs are a subclass of the previously defined graphs O.

Proof. Let X be any set of size n̄. First of all VK = Vn̄;k;t independently of t. Let
A,B ⊂ X be subsets of size k such that A∩B = ∅. Hence, (A,B) ∈ EK and using the
calculations in the proof of Lemma 3.26 we obtain

|A4B| = 2(|A| − |A ∩B|) = 2(k − 0) = 2k. (3.6)

Therefore, (A,B) ∈ En̄;k;2k. Evidently, the statement |A4B| = 2k is equivalent to
A ∩ B = ∅ for subsets A,B ⊂ X of size k. Hence (A,B) ∈ En̄;k;2k if and only if
(A,B) ∈ EK. Thus, the identity map of subsets of X provides an isomorphism.

The Kneser graph being related to the Johnson grah J (n̄, k, 0) by construction, one
can wonder about the implications of the result in Proposition 3.32 for the relationship
between J (n̄, k, l) and O(n̄, k, t). We establish it in what follows.

Proposition 3.33. Let n̄ ∈ N, k ∈ {1, . . . , n̄ − 1} and denote by J (n̄, k, l) =
(VJ , EJ ) a generalized Johnson graph. Then J (n̄, k, l) ∼= O(n̄, k, 2(k − l)).

Proof. Let X be any set of size n̄. As stated previously, VJ = Vn̄;k;t independently
of t. Furthermore, let A,B ⊂ X be subsets of size k such that |A ∩ B| = l. Hence,
(A,B) ∈ EJ and using the calculations in the proof of Lemma 3.26 we obtain

|A4B| = 2(|A| − |A ∩B|) = 2(k − l). (3.7)

Therefore, (A,B) ∈ En̄;k;2(k−l). Evidently, the statement |A4B| = 2(k−l) is equivalent
to |A ∩ B| = l for subsets A,B ⊂ X of size k. Hence (A,B) ∈ En̄;n−k;2k if and only if
(A,B) ∈ EK. Thus, the identity map of subsets of X provides an isomorphism.
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Finally, this allows us to make a well known link between the Kneser graph K(n̄, k)
and the Johnson graph J (n̄, k, 0).

Corollary 3.34. For any parameters n̄, k ∈ N with k ≤ n̄ one finds J (n̄, k, 0) ∼=
K(n̄, k).

Proof. Setting l = 0 in Proposition 3.33 and using Proposition 3.32 we obtain

J (n̄, k, 0) ∼= O(n̄, k, 2(k − 0)) ∼= K(n̄, k) (3.8)

Indeed, the class of O(n̄, k, t) graphs are exactly the Johnson graphs J (n̄, k, l) since
for any parameters n̄, k, t, l the equation 2(k− l) = t always has a unique solution when
fixing two of the three parameters involved.

While in itself interesting objects to analyze, the families J (n̄, k, l) and O(n̄, k, l)
are restrictive in the sense that they do not necessarily include the structure of the
space, their vertices are constructed from. In the following section we introduce the
central graph theoretical object of this work. It is constructed from some underlying
graph using the ideas underlying the construction of J (n̄, k, l) and it turns out that
we retrieve J (n̄, k, l) in a special case.
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4 k-Particle Graph (kPG) and its Properties

Outline of this section: This section is dedicated to the topology of graphs under-
lying exclusion processes with indistinguishable particles on a simple connected graph
L. We define a new graph Lk which represents the possible configurations of parti-
cles on the underlying simple graph. It turns out that the neighborhood relationship
in Lk defined by the symmetric difference of two configurations corresponds to the
natural transition behavior of exclusion processes with indistinguishable particles in
discrete or continuous time because at each time step or jump time at most one particle
may change its position. Consequently, in the case of a transition, the start and end
configuration differ by exactly one element. Hence, the symmetric difference of said
configurations has size two. The family O(n̄, k, 2) of graphs, presented in Subsection
3.2 Definition 3.31 is, therefore, a good candidate to look into. We are going to make
a short remark on the case of distinguishable particles and the arising complications
at the end of this section.
In this work we only consider next neighbor transitions for the particles on said graph
L additionally constrained by the structure of this underlying graph L which is not
taken into account by the construction of O(n̄, k, t). Hence, we have to add this con-
straint which solely amounts to restricting the existing edges. We present in what
follows the complete Definition 4.1. It will serve as the state space of Markov chains
associated to generalized exclusion processes and is part of our central contribution to
the understanding of these processes.

4.1 Definiton of kPG

We ant the k-particle graph induced by some graph L and a number k to capture the
properties we have mentioned in the introduction of this section, i.e., the displacement
of a particle creates an edge, every vertex is a configuration of particles on L and
no two particles may occupy the same vertex in L. We capture those properties by
defining the following graph Lk.

Definition 4.1. Consider a simple graph L = (V,E). Define Vk = {v ⊂ v| |v| =
k} and Ek = {〈v,w〉|v4w = {v, w}; 〈v, w〉 ∈ E}. We call Lk = (Vk,Ek) the
k-particle graph and denote by degk(v) the degree of v ∈ Vk in Lk.

To the best of our knowledge, this graph, based on some underlying graph L, has
not yet been considered in the literature. We discuss its rich structure and possible
implications of a deeper understanding of it on the analysis of vertex induced sub-
graphs of L throughout the remainder of this section. In Figure 15 we show how
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to construct Lk from an underlying graph L to illustrate its structure. Evidently,

1

2 3

4

{1, 2}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

{3, 4}

Figure 15: Construction of Lk from a 2-regular graph on 4 vertices for k = 2. Every
vertex on the right hand side corresponds to a possible configuration of 2 particles on
L and the edges represent possible transitions. Note that Lk is not regular.

the graph Lk captures all properties of L, i.e, we can reconstruct L from Lk up to
isomorphisms. To this end, recall that each vertex can be interpreted as a vertex
induced sub-graph of L and all edges incident to a specific vertex in Lk corresponds to
an edge which points outward of the induced sub-graph. Iterating through all vertices
in Lk we can reconstruct all neighborhood relationships in L and, therefore, L up to
isomorphisms. While being the foundation to our understanding of families of exclusion
processes in later sections, it is far from its sole purpose and it is, indeed, in itself an
interesting object.

The goal for the remainder of this section is to establish properties of Lk needed
later on for the analysis of a generalized exclusion process. In particular, we are going
to analyze the connectivity of Lk depending on L and the role of L being bipartite.
This will play a role in the proofs of irreducibility of Markov chains on Lk as well as
apperiodicity of said chains. The methods, which we employ, rely heavily on the notion
of multi-sets which we reviewed in Subsection 3.2.

4.2 General Properties of kPG

While we consider exclusively connected graphs L throughout this work, certain prop-
erties are difficult to derive while staying in this unconstrained setting. Nonetheless,
some important ones may be proven nonetheless, in particular those, which show the
distinction to the case of marked particles. We start with the connectivity of Lk.
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Proposition 4.2. Let L = (V,E) be any connected simple graph, n̄ := |V | and
k ∈ {1, . . . , n̄− 1}. Then, the associated graph Lk = (Vk,Ek) is connected.

Proof. For this proof we use the concept of multi-sets, i.e., sets which allow the ap-
pearance of the same element multiple times. E.g. {1, 1, 2} 6= {1, 2}. If a function
acts on a multi-set in such a way that it changes one specific element which appears
multiple times only one of them is altered. Assume for the rest of this proof that any
set is a multi-set and any function mapping from sets to sets maps from multi-sets to
multi-sets instead. In particular, any v ∈ Vk will be considered as a multi-set.

Since L is connected, there is for any pair v, w ∈ V a self-avoiding path φv,w between
v and w. Let v,w ∈ Vk. We are going to prove that there is path between v and w.
Define v̄ := v\w and w̄, analogously. Since |v| = k = |w| also |v̄| = |w̄|.
Fix v1 ∈ v̄ and w1 ∈ w̄. Then there exists a path φ1

v1,w1 in L. We want to construct
iteratively a sequence of maps (Φ1

i )
|φv1,w1 |
i=1 by

Φ1
1(u1

0) =
(
v\{φ1

v1,w1(0)}
)
∪ {φ1

v1,w1(1)} =: u1
1 (4.1)

with u1
0 = v. Furthermore, u1

i = Φ1
i−1(u1

i−1). With the same procedure for j = 2, . . . , |w̄|
and uj0 = uj−1

|φvj−1,wj−1 |
we obtain a sequence of maps

Ψ =
(

Φ1
1, . . . ,Φ1

|φv1,w1 |
,Φ2

1, . . . ,Φ
|w̄|
|φv|w̄|,w|w̄| |

)

which maps the v to w by
(

Φ|w̄||φv|w̄|,w|w̄| | ◦ . . . ◦ Φ2
1 ◦ Φ1

|φv1,w1 |
◦ . . . ◦ Φ1

1

)
(v) = w. Ele-

ments might appear twice in the same uji . Denote by τ the first entry in Ψ such that
(Ψτ ◦ . . . ◦Ψ1)(v) contains the same entry twice and by κ the largest number such that
(Ψτ+ι ◦ . . . ◦ Ψ1)(v) contains one entry twice for ι = 0, . . . , κ. Transform the vector
(Ψι′)τ+κ

ι′=1 into
(Ψ′ι′)τ+κ

ι′=1 := (Ψ1, . . . ,Ψτ+κ,Ψτ+κ−1, . . . ,Ψτ ). (4.2)

Then
(
Ψ′τ+ι ◦ . . . ◦Ψ′1

)
(v) contains all elements only once for ι = 0, . . . , κ. Iterate this

procedure until Ψ′ = (Ψ′ι′)
|Ψ|
ι′=1 such that for all ι′ ∈ {1, . . . , |Ψ|} we have (Ψ′ι′ ◦ . . . ◦

Ψ′1)(v) ∈ Vk and for ι′ ∈ {1, . . . , |Ψ| − 1}

(Ψ′ι′ ◦ . . . ◦Ψ′1)(v)4(Ψ′ι′+1 ◦ . . . ◦Ψ′1)(v) = {uji , u
j
i+1} (4.3)

with 〈uji , u
j
i+1〉 ∈ E and (Ψ′|Ψ| ◦ . . . ◦Ψ′1)(v) = w. Hence ((Ψ′ι′ ◦ . . . ◦Ψ′1)(v))|Ψ|ι′=0 defines

a path from v to w in Lk.

Having shown that Lk is connected if and only if L is connected, one can wonder
which other fundamental properties of L are inherited by Lk. To continue the dis-
cussion on the global structure of Lk for simple connected graphs L, we consider the
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complement of L denoted by Lc and the relationship between the induced graph Lck
and (Lk)c where the complement is taken with respect to the Johnson graph J(n̄, k).

Lemma 4.3. Let L = (V,E) be a simple connected graph on n̄ := |V | vertices
and k ∈ {1, . . . , n̄ − 1}. Denote by Lv = (v, Ev) the vertex induced sub-graph of
v in L and by Lcv = (v, Ec

v) the vertex induced sub-graph of v in Lc = (V,Ec).
Denote by Lk and Lck the k-particle graphs of L and Lc, respectively. Moreover,
denote by degk(v) the degree of v in Lk and by degck(v) the degree of v in Lck.
Then,

degk(v) + degck(v) = k(n̄− k).

Proof. For any subset v ⊂ V with |v| = k the size of the induced sub-graphs of L and
Lc satisfy

|Ev|+ |Ec
v| =

k(k − 1)
2 .

Additionally, we derive

degk(v) + degck(v) =
∑
v∈v

deg(v)− degLv(v) + (n̄− 1− deg(v))− degLcv(v)

= k(n̄− 1)− 2(|Ev|+ |Ec
v|) = k(n̄− 1)− k(k − 1) = k(n̄− k).

Hence, adding up the degrees of v ∈ Vk in Lk and Lck gives a constant which
corresponds to the degrees in J(n̄, k). We prove that this link between Lk and Lck is in
fact natural and the Johnson graph the natural overarching structure for the analysis
of the graph Lk. In fact, the symmetric difference, which we used to define edges in
Lk, allows for an even deeper identification, now for the graphs Lk and Ln̄−k being
practically identical as shall be shown in Proposition 4.4.

Proposition 4.4. Let L be a simple connected graph on n̄ vertices and k ∈
{1, . . . , n̄ − 1}. Using the notations from Lemma 4.3 the graphs Lck and (Lk)c
satisfy

Lck
∼= (Lk)c (4.4)

where the complement is taken with respect to the Johnson graph J(n̄, k). Fur-
thermore, the graph Lk satisfies Lk

∼= Ln̄−k.

Proof. Consider (Lk)c. Then an edge 〈v,w〉 in J(n̄, k) is an edge in (Lk)c if and only
if v4w = {v, w} and 〈v, w〉 6∈ E. Consequently, 〈v,w〉 is an edge in (Lk)c if and only
if v4w = {v, w} and 〈v, w〉 ∈ Ec. Therefore, 〈v,w〉 is an edge in Lck. Since the vertex
sets are identical and by Lemma 4.3 each edge in J(n̄, k) is either an edge in Lk or Lck,
we conclude Lck

∼= (Lk)c.
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We turn now to the second claim. By basic combinatorics of drawing without
repetition |Vk| =

(
n̄
k

)
= |Vn̄−k| holds true. Let v ∈ Vk and define vc := V \v ∈ Vn̄−k.

Define the map Φn̄−k
k (v) = vc which is bijective due to the preceding observations.

Let v,w ∈ Vk such that 〈v,w〉 ∈ Ek. Hence, v4w = {v, w} and 〈v, w〉 ∈ E and
vc4wc = {v, w} and 〈v, w〉 ∈ E. Therefore, also Φn̄−k

k (v) = vc ∼ wc = Φn̄−k
k (w). The

map Φn̄−k
k , therefore, defines an isomorphism between Lk and Ln̄−k and, consequently,

Lk
∼= Ln̄−k.

More properties can be inherited from L but some question are of special interest
for later part of this work. In particular, does a bipartite graph L render Lk also
bipartite? We are going to find the response to this question in Propositions 4.5 and
4.7.

Proposition 4.5. If L is bipartite so is Lk.

Proof. We again use the notion of multi-sets. Assume Lk is not bipartite and let
φ = (v1, v2, . . . , vl, v1) be a cycle of odd length, i.e, l is an odd positive integer. Let
vl+1 = v1 and define the multi-set Eφ of edges in L by

Eφ = {〈v, w〉 ∈ E|∃i ∈ {1, . . . , l}, vi4vi+1 = {v, w}}.

Since φ is a cycle we can construct, using the edges in Eφ, for any v ∈ v1 a cycle φv in
L such that the edges in all cycles φv combined correspond to Eφ. Since L is bipartite
|φw| is even for every w and |Eφ| = |φ| is odd but

|φ| = |Eφ| =
∑
v∈v1

|φv|

where the left hand side of the equation is odd and the right hand side is even which
leads to a contradiction.

Before we can continue with the proof of an equivalence for bipartite graphs we
need a preliminary lemma, which adds additional information about a lower bound on
the length of odd cycles in L if Lk is bipartite. This, in turn, yields a construction of a
odd cycle in Lk which will lead in Proposition 4.7 to the conclusion that Lk bipartite
implies also L bipartite.

Lemma 4.6. If Lk is bipartite then the shortest odd cycle in L is longer than
n̄− k + 1.

Proof. Let k ∈ {1, . . . , n̄− 1} and assume there is an odd cycle φ = (v1, v2, . . . , vl, v1)
in L with |φ| ≤ n̄ − k + 1. Then choose a set v ⊂ V \({φ2, . . . , φl}) and v1 ∈ v. Note
that |V \({φ2, . . . , φl})| ≥ k under the condition of the length of φ. Define the cycle
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Φ = (v1 = v, v2, . . . , vl, v1) by vi+1 = vi\{vi} ∪ {vi+1}. Then, Φ is an odd cycle which
is a contradiction to the fact that Lk is bipartite.

The goal is to show that the lower bound shown in Lemma 4.6 is rather conser-
vative, the length of a non-existing walk being defined as infinity. Nonetheless, the
intermediate step, deriving a lower bound on the length of odd cycles in L if Lk is
bipartite, allows us the construction of a cycle in Lk based on any odd cycle in L with
identical length. This yields the following result.

Proposition 4.7. If Lk is bipartite for some k ∈ {1, . . . , n̄− 1} then so is L.

Proof. Also for this proof we use the concept of multi-sets and consider all v as multi-
sets. Consider Lk as bipartite and assume k ≤ n̄

2 as well as L not bipartite. Then
there exists an odd cycle φ in L and by assumption as well as Lemma 4.6 we have
|φ| ≥ n̄− k + 1 ≥ n̄

2 + 1 ≥ |v| for all v ∈ Vk. Consider v ∈ Vk with φ1 ∈ v. We define

a sequence of maps (Ψi)|φ|i=1 on multi-sets by

Ψi(w) =
(w\{φi}) ∪ {φi+1}, if φi ∈ w

w, otherwise.

and define Ψ = (Ψ1, . . . ,Ψ|φ| ◦ . . . ◦ Ψ1). This way (Ψ|φ| ◦ . . . ◦ Ψ1)(v) = v and |(Ψi ◦
. . . ◦ Ψ1)(v)| = k for all i = 1, . . . , |φ|. Along the lines of the proof of Proposition 4.2
denote by τ the first entry in Ψ such that (Ψτ ◦ . . . ◦ Ψ1)(v) contains the same entry
twice and by κ the largest number such that (Ψτ+ι ◦ . . . ◦ Ψ1)(v) contains one entry
twice for ι = 0, . . . , κ. Remark that both τ and κ are well defined and finite due to
|φ| ≥ k. Transform the vector (Ψι′)τ+κ

ι′=1 into

(Ψ′ι′)τ+κ
ι′=1 := (Ψ1, . . . ,Ψτ+κ,Ψτ+κ−1, . . . ,Ψτ ). (4.5)

Then
(
Ψ′τ+ι ◦ . . . ◦Ψ′1

)
(v) contains all elements only once for ι = 0, . . . , κ. Iterate this

procedure until Ψ′ = (Ψ′ι′ ◦ . . .◦Ψ′1)|φ|ι′=1. Indeed, this leads to (Ψ′|φ|◦ . . .◦Ψ′1)(v) = v and
(Ψ′ι′ ◦ . . . ◦Ψ′1)(v) ∈ Vk for all ι′ = 1, . . . , |φ|. Hence, the vector ((Ψ′ι′ ◦ . . . ◦Ψ′1)(v))|φ|ι′=1
defines a cycle of length |φ| in Lk. But φ is an odd cycle which leads to a contradiction.
The claim follows since Lk

∼= Ln̄−k.

Actually, the kPG Lk carries all symmetries which are also present in L. This gives
us an insight into the automorphism group of Lk.

Proposition 4.8. Let L be a simple connected graph k ∈ {1, . . . , n̄ − 1}. Then,
the automorphism group Aut(L) of L induces a sub-group of the automorphism
group Aut(Lk) of Lk.



4.3 kPGs induced by regular graphs 53

Proof. We construct in what follows the explicit corresponding automorphism to any
automorphism φ ∈ Aut(L). Let φ ∈ Aut(L) and define the map Φ on Vk by Φ(v) =
{φ(v)|v ∈ v}. Then, if Φ(v)4Φ(w) = {u, ū} we have 〈Φ(v),Φ(w)〉 ∈ Ek if and only if
〈u, ū〉 ∈ E. Now assume that 〈v,w〉 ∈ Ek and v4w = {v, w}. Then, we obtain that
Φ(v)4Φ(w) = {u, ū} = {φ(v), φ(w)} and since φ is an isomorphism on L we arrive,
moreover, at 〈u, ū〉 ∈ E. Therefore, we can conclude 〈Φ(v),Φ(w)〉 ∈ Ek which implies
that any automorphism on L defines an automorphism on Lk.

Indeed, the automorphism group of Lk is larger then the sub-group induced by
Aut(L). To this end, we consider identifiable sub-graphs v,w ∈ Vk. Define for v,w ∈
Vk the equivalence relation v ∼ w if and only if Lv,vc

∼= Lw,wc . For fixed vi define
[vi] := {u ∈ Vk|u ∼ vi} the equivalence class of vi. We consider a fixed equivalence
class [vi] and define for v,w ∈ [vi] by Φw

v the isomorphism Lv,vc
∼= Lw,wc . We can

extend Φw
v to an automorphism of Lk which is not induced by an automorphism on L.

First, consider the neighborhood of v. Since all vertices in the neighborhood of v
consist of subsets of V of size k which differ from v by exactly one vertex in L and
Lv,vc represents all possible transitions to neighbors of v, we exploit Lv,vc

∼= Lw,wc to
obtain a mapping from the neighborhood of v to the neighborhood of w under which the
equivalence classes with respect to ∼ are invariant. Iteratively, by this construction we
obtain a map Φ̂w

v : Lk → Lk which preserves the neighborhood property. Consequently,
Φ̂w

v defines an automorphism of Lk. By changing v and w we obtain another such map
since Φ̂w

v (v) = w and, hence, Φ̂w′
v (v) = w′ for another w′ ∈ [vi] which implies that

Aut(Lk) is larger then the induced automorphism from L.

4.3 kPGs induced by regular graphs

In what follows we focus on regular graphs L. Hence, we assume for the reminder of this
section that L is a d̄-regular graph. While this may seem restrictive at first, regular
graphs having at first glance a rather forgiving structure, their role and the arising
problems are already important. Consider to this end the graph in Figure 16. One
can wonder about dense communities in such graphs, i.e., communities which have a
maximal amount of in-group relationships. This is already a non-trivial problem as can
be seen for example in [KhuSah09], [Chara15] and [FePeKo01]. We come back to the
applications and an approach how to find dense communities in Section 6, since they
play a defining role for various properties of the exclusion process, which we are going
to consider. A preliminary result will be shown in Proposition 4.17. In later sections it
will turn out that the relationship dynamics, discussed in this work, even give rise to
particle dynamics on strongly regular graphs such that the following results are even
in a more general form than what we actually need. This will allow us to analyze the
particle dynamics on more general graphs and, hence, implies a generalization beyond
the model motivated dynamics.
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Figure 16: An exemple of a highly clustered, 3-regular, non-bipartite graph. Interpret-
ing the edges as relationships or the possibility of communication, one can imagine
that such a network could represent a rather segregated community even though the
underlying graph is regular.

4.3.1 Combinatorial properties of kPGs

We start by calculating the size of the vertex and the edge set its size which follow from
purely combinatoric but, in the case of the edge set, technically involved considerations.

Proposition 4.9. Consider the graph Lk = (Vk,Ek) for k ∈ {1, . . . , n̄−1}. Then
|Vk| =

(
n̄
k

)
and

|Ek| =
1
2

(
d̄k

(
n̄

k

)
− n̄d̄

(
n̄− 2
k − 2

))
= k(n̄− k)

(
n̄

k

)
d̄

2(n̄− 1) . (4.6)

Proof. The first claim follows from drawing without replacement. For the edge set, by
the formula for the degree of a v ∈ Vk, we obtain

2|Ek| =
∑
v∈Vk

degk(v) =
∑
v∈Vk

kd̄−
∑
v∈Vk

∑
v∈v

degLv(v)

= kd̄

(
n̄

k

)
−
∑
v∈V

∑
v∈Vk

degLv(v)1v∈v.

Fixing a v ∈ V we obtain for sv = ∑
v∈Vk degLv(v)1v∈v that we have to redistribute

the k − 1 remaining particles among the d̄ neighbors and the n̄ − 1 − d̄ non-adjacent
vertices. Assuming that l particles are in the neighborhood of v and one in v, there
are

(
d̄
l

)(
n̄−1−d̄
k−1−l

)
ways to redistribute the particles in the aforementioned way and each

contributes l to to the sum sv. Furthermore, l ranges from 0 to min{d̄, k − 1} such
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that

sv =
min{d̄,k−1}∑

l=0

(
d̄

l

)(
n̄− 1− d̄
k − 1− l

)
l

independently of v. Consequently, we obtain the identity

|Ek| =
1
2

d̄k(n̄
k

)
− n̄

min{k−1,d̄}∑
l=1

(
d̄

l

)(
n̄− 1− d̄
k − 1− l

)
l

 . (4.7)

For the second term, we remark that
(
d̄
l

)
= 0 for l > d̄ and

(
n̄−1−d̄
k−1−l

)
= 0 for l > k − 1.

Consequently, in the sums all summands with l > min{k−1, d̄} are zero and, therefore,
k−1∑
l=1

(
d̄

l

)(
n̄− 1− d̄
k − 1− l

)
l =

min{k−1,d̄}∑
l=1

(
d̄

l

)(
n̄− 1− d̄
k − 1− l

)
l =

d̄∑
l=1

(
d̄

l

)(
n̄− 1− d̄
k − 1− l

)
l.

From this we can continue with a preliminary observation that
k−1∑
l=1

(
d̄

l

)(
n̄− 1− d̄
k − 1− l

)
l = d̄

k−1∑
l=1

(
d̄− 1
l − 1

)(
n̄− 1− d̄
k − 1− l

)
.

We omit d̄ in what follows and prove only equality of the remaining terms. Note first
that

k−1∑
l=1

(
d̄− 1
l − 1

)(
n̄− 1− d̄
k − 1− l

)
=

k−1∑
l=1

(
d̄− 1
l − 1

)(
n̄− 2− (d̄− 1)
k − 2− (l − 1)

)

=
k−2∑
l=0

(
d̄− 1
l

)(
n̄− 2− (d̄− 1)

k − 2− l

)

such that we can apply the Zhu–Vandermonde identity to obtain
k−1∑
l=1

(
d̄− 1
l − 1

)(
n̄− 1− d̄
k − 1− l

)
=
(
n̄− 2
k − 2

)

which finishes the proof.

Hence, we obtain an equality for the size of the vertex sets for k and n̄− k as well
as for the size of the edge sets in the two cases. Indeed, it is not obvious that the value
given in Equation (4.6) is an integer. When checking this property one arrives at the
following conclusion.

Corollary 4.10. Let L = (V,E) be a d̄-regular graph. Consider the graph Lk for
k ∈ {1, . . . , n̄− 1}. Then,

|Ek| =
(
n̄− 2
k − 1

)
|E|. (4.8)
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Proof. We employ Equation (4.6) to derive the claim.

|Ek| = k(n̄− k)
(
n̄

k

)
d̄

2(n̄− 1) = n̄
(n̄− 2)!

(k − 1)!(n̄− 2− (k − 1))!
d̄

2

=
(
n̄− 2
k − 1

)
n̄d̄

2 =
(
n̄− 2
k − 1

)
|E|.

On the other hand, comparing the result presented in Equation (4.6) with the size
of the edge set EJ of a J (n̄, k) Johnson graph, we obtain that

|Ek|
|EJ |

= d̄

n̄− 1

which is independent of k and only dependent on the underlying graph L through
the prescribed degree d̄. Based on this remark we can also make the following core
observation which will be central later on for estimating convergence speeds of some
Markov chains.

Proposition 4.11. Let L be a d̄-regular graph on n̄ vertices and k ∈ {1, . . . , n̄−1}.
Denote by avg deg(Lk) the average degree of Lk, i.e.,

avg deg(Lk) := 1
|Vk|

∑
v∈Vk

degk(v).

The average degree satisfies

avg deg(Lk)
k(n̄− k) = d̄

n̄− 1 ≤ 1. (4.9)

Proof. We start by recalling that the average degree of any graph is given by the
quotient of the size of its edge set times two and the size of its vertex set. Therefore,

avg deg(Lk)
k(n̄− k) = 2|Ek|

|Vk| k(n̄− k) = d̄

n̄− k
− d̄(

n̄−1
k−1

)
(
n̄−2
k−2

)
n̄− k

= d̄

n̄− k

(
1− k − 1

n̄− 1

)
= d̄

n̄− 1 .

The second claim follows from d̄ ≤ n̄ − 1 and equality if and only if L is a complete
graph.
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The average degree is not the only object, defined by the degree sequence, which
we are interested in. The isomorphism we found in Proposition 4.4 provides a tool to
analyze the difference of exclusion processes defined by different transition probabilities
of each particle. In particular, we can define a certain type of homogeneity based on
invariance of the transition probabilities of an associated Markov chain under the
isomorphism.

4.3.2 The degree sequence of kPGs

Indeed, for regular graphs we obtain a range of structural results on Lk which go
beyond connectedness and focus on the local properties of the vertices. In particular,
the degree of a vertex plays a central role defining in later sections the transition
probabilities and stationary distributions of Markov chains on Lk induced by a variety
of exclusion processes.

Proposition 4.12. Let k ∈ {1, . . . , n̄ − 1} and 〈v,w〉 ∈ Ek and write v4w =
{v, w}. Then degk(v) = degk(w) if and only if degLv(v) = degLw(w).
Moreover, any v,w ∈ Vk with 〈v,w〉 ∈ Ek and v4w = {v, w} satisfy

degLv(v) + degLV \w(v) = d̄− 1. (4.10)

Proof. First of all, note that v\{v} = w\{w} and, hence, degk−1(v\{v}) = degk−1(w\{w}).
Furthermore, removing v from v removes degLv(v) edges from the induced subgraph
Lv. Consequently, we obtain degk(v) = degk−1(v\{v}) + d̄ − 2 degLv(v). Equivalent
claims are satisfied by w and w. Hence, we can conclude

degk(v)− degk(w) = degk−1(v\{v})− 2 degLv(v)− (degk−1(w\{w})− 2 degLw(w))
= 2 (degLw(w)− degLv(v))

which is equivalent to the first claim.
Secondly, note that v\{v} = w\{w} and, hence, degk−1(v\{v}) = degk−1(w\{w}).
Again, removing v from v removes degLv(v) edges from the induced subgraph Lv.
Consequently, we obtain degk(v) = degk−1(v\{v}) + d̄− 2 degLv(v). Equivalent claims
are satisfied by w and w. Hence, we can conclude

degk(v)− degk(w) = degk−1(v\{v})− 2 degLv(v)− (degk−1(w\{w})− 2 degLw(w))
= 2 (degLw(w)− degLv(v))

which is equivalent to the claim.

Proposition 4.12 gives a perspective on the graph Lk that in fact the k vertex
induced sub-graphs of L are the defining objects. While their analysis is a classically
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difficult subject, see again for example [KhuSah09], [Chara15] and [FePeKo01], we
obtain nonetheless properties based on construction of Lk. Later on, we can make
even more conclusions due to the Markov chains on Lk.

Corollary 4.13. Let k ∈ {1, . . . , n̄−1} and v,w ∈ Vk. Then, degk(v)−degk(w)
is an even number.

Proof. Consider first 〈v,w〉 ∈ Ek. Then, by the proof of Proposition 4.12 we have
degk(v)−degk(w) = 2 (degLw(w)−degLv(v)). For arbitrary v,w ∈ Vk we can construct
a path from v to w by Proposition 4.2 and for any segment the difference of degrees is
even. Hence, by a bootstrap argument also degk(v)− degk(w) is even.

We investigate in what follows the link between the edges in vertex induced sub-
graphs and the degree of a vertex in Lk.

Proposition 4.14. Let L be a d̄-regular graph, v ∈ Lk and denote by Lv = (v, Ev)
the vertex induced sub-graph of L. Then

degk(v) = k · d̄− 2|Ev|. (4.11)

Additionally, denote by Lmin;k = (Vmin;k, Emin;k) a least dense vertex induced sub-
graph on k vertices of L and by Lmax;k = (Vmax;k, Emax;k) a densest vertex induced
sub-graph on k vertices. Then

min
v∈Vk

degk(v) = k · d̄− 2|Emax;k|,

max
v∈Vk

degk(v) = k · d̄− 2|Emin;k|.

Proof. For v ∈ Vk consider the vertex induced sub-graph Lv = (Vv, Ev) of L. Any
v ∈ V has d̄ neighbors. Hence, the degree of v in Lk has the form degrk(v) = k · d̄−m(v)
where m(v) is defined by the constrains given through the definition of Ek and remains
to be determined. Since v ∼ w if and only if v4w = {v, w} and 〈v, w〉 ∈ E any edge
in L between v, v′ ∈ v reduce the degree by two due to symmetry of the edge {v, v′}.
Consequently,

degk(v) = k · d̄− 2|Ev|.
By the first result we can use the identity

degk(v) = k · d̄− 2|Ev| (4.12)

for any v ∈ Vk. Therefore,

δ̃k;∗ := min
v∈Vk

degk(v) = k · d̄− 2 max
v∈Vk
|Ev| = k · d̄− 2|Emax;k|. (4.13)
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The same argumentation is valid for δ̃k;∗.

Having established the relation between the k vertex induced sub-graphs and in
particular the size of their edge sets with the degrees in Lk we can then come back to
the question about the degrees for varying k and the fact that the degrees seem to be
either all even or all odd. We show this property first before going on to the former.

Lemma 4.15. Let k ∈ {1, . . . , n̄− 1} and let v,w ∈ Vk. Then, Lv,vc
∼= Lw,wc

implies degk(v) = degk(w). Additionally, for any v ∈ Vk its degree degk(v) is
even if and only if kd̄ is even. Hence, if there is v ∈ Vk such that degk(v) is even
it is true that for all w ∈ Vk the number degk(w) is even.

Proof. The first claim follows immediately since degk(v) = |Ev,vc | and |Ev,vc | = |Ew,wc|.
Drawing from Proposition 4.14 we obtain that

degk(v) + 2|Ev| = k · d̄

which yields the first claim. The second claim follows by Corollary 4.13.

Indeed, the importance of the graph Lv,vc = ((v, vc), Ev,vc) does not only reduce to
the fact that it may be a minimizer as discussed in Lemma 4.15 but it does in fact
characterize both v and vc at the same time. Unfortunately, obtaining further identities
would amount to solving questions about sizes of sub-graphs of a d̄-regular graph L.
This is a well known problem in various fields but aside from approximations via
algorithmic approaches it remains out of reach of being solved. Nonetheless, further
qualitative claims can be made about Lk which are in particular symmetry based
observations.

4.3.3 Symmetries k-(n̄− k) and under complements

The first symmetry which is an immediate consequence of the previously established
isomorphism between Lk and Ln̄−k concerns the degree set which is an invariant under
isomorphisms.

Proposition 4.16. Let k ∈ {1, . . . , n̄ − 1} and Dk := {degrk(v)|v ∈ Vk}. Then
Dk = Dn̄−k.
Now, let k, k′ ∈

{
1, . . . ,

⌊
n̄

2

⌋}
, k′ ≤ k. Then |Dk′ | ≤ |Dk|. If in turn k, k′ ∈{⌈

n̄

2

⌉
, . . . , n̄− 1

}
, k ≤ k′ then |Dk| ≥ |Dk′|.
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Proof. The first result is a corollary of Proposition 4.4 because isomorphisms preserve
the set of degrees.

Now, let k ≤
⌊
n̄

2

⌋
. Then, for any v̂ ∈ Vk−1 we can define the set V̂k := {v ∈

Vk|v ∩ v̂ = v̂} and |V̂k| = n̄− (k − 1) ≥ 1. For any v ∈ V̂ the degree of v is given by
the proof of Proposition 4.12 by degk(v) = degk−1(v̂)+d̄−2 degLv(v) where {v} := v\v̂.
Hence, any degree d ∈ Dk−1 defines at least one degree d′ ∈ Dk. Consequently, we
obtain |Dk−1| ≤ |Dk| and by a bootstrap argument also |Dk′| ≤ |Dk| for any k′ ≤ k.

The second claim of the Lemma follows from Proposition 4.4.

Note that the inequalities in Proposition 4.16 do not have any implications on the
inclusion of the degree sets. Consider to this end the graphs depicted in Figure 17 and
Figure 18. In Figure 17 the underlying graph is the cycle graph on 8 vertices. Then,

Figure 17: From left to right the underlying cycle graph, the associated graphs L3
and L4. Indeed, due to the configurations of the vertex induced subgraphs, inclusion
D3 ⊂ D4 is given.

the degree sets for k = 3 and k = 4 satisfy

D3 = {2, 4, 6} ⊂ {2, 4, 6, 8} = D4.

But, already by considering a 3-regular graph, this property is no longer satisfied. We
consider one example in Figure 18. Inclusion of the vertex sets would imply that by
adding an additional vertex to the sub-graph we would not only increase the number of
possible configuration but can also construct from more vertices always configurations
in such a way that they have the same density as some configuration on less vertices. It
is intuitively understandable that this cannot be possible if the degree of the underlying
graph L is greater than 2 and sufficiently many vertices are used to span the sub-graph.
Indeed, in the case of Figure 18 we obtain for the degree sets

D3 = {3, 5, 7, 9} 6⊂ {4, 6, 8, 10} = D4 (4.14)

and even D3 ∩ D4 = ∅. Nonetheless, we can find implications of degrees in Lk for
any k exploiting the symmetry of the binomial coefficient and the construction via the
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Figure 18: From left to right the underlying 3-regular graph on 8 vertices, the associated
graphs L3 and L4. In this case we encounter D3 ∩D4 = ∅.

symmetric difference which yields, in particular, a symmetry for k and n̄ − k densest
sub-graphs.

Proposition 4.17. Let k ∈ {1, . . . , n̄− 1} and let v ∈ Vk such that Lv defines
a densest vertex induced sub-graph on k vertices in L. Then vc := V \v defines a
densest sub-graph in L on n̄− k vertices.
Moreover, let v ∈ Vk such that Lv defines a densest vertex induced sub-graph on
k vertices in L. Then, the bipartite sub-graph Lv,vc = ((v, vc), Ev,vc) satisfies

|Ev,vc | = min
w∈Vk

|Ew,wc|

Proof. The proof of the first claim follows by the previously observed structure of the
degrees of v in Lk and the property Dk = Dn̄−k.

(n̄− k)d̄− 2|Evc | = degn̄−k(vc) = degk(v) = min
w∈Vk

d̄k − 2|Ew|

= min
w̄∈Vn̄−k

(n̄− k)d̄− 2|Ew̄| = (n̄− k)d̄− 2 max
w̄∈Vn̄−k

|Ew̄|.

Turning to the second claim, we observe by symmetry of the densest sub-graphs shown
in the first claim, for v a densest sub-graph, that |Ev|+ |Evc| = maxw∈Vk(|Ew|+ |Ewc |)
and, consequently,

|Ev,vc| = |E| − (|Ev|+ |Evc |) = min
w∈Vk

(|E| − (|Ew|+ |Ewc|)) = min
w∈Vk

|Ew,wc|.

More symmetries of Lk and links to k induced sub-graphs of some underlying graph
can be deduced from the previous properties. In particular, a link between the number
of sub-graphs on k and n̄ − k vertices containing a fixed number of edges can be
established.
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Proposition 4.18. Let l ∈ Dk, VDk;l := {v ∈ Vk|degk(v) = l} and Lk;l′ for
l′ ∈ N the set of vertex induced sub-graphs of L on k vertices containing exactly
l′ edges. Then

|VDk;l| =
∣∣∣∣Lk; kd̄−l2

∣∣∣∣ . (4.15)

Furthermore, ∣∣∣∣Lk; kd̄−l2

∣∣∣∣ =
∣∣∣∣Ln̄−k; (n̄−k)d̄−l

2

∣∣∣∣ . (4.16)

Proof. Consider the identity given in Proposition 4.14 for v ∈ Vk and let l ∈ Dk. Then

|VDk;l| = |{v ∈ Vk|degk(v) = l}| =
∣∣∣∣∣
{
v ∈ Vk

∣∣∣∣∣ |Ev| =
kd̄− l

2

}∣∣∣∣∣ .
Moreover, the set Vk contains all subsets v ⊂ V of size k. Hence,

∣∣∣∣∣
{
v ∈ Vk

∣∣∣∣∣ |Ev| =
kd̄− l

2

}∣∣∣∣∣ = |L
k; kd̄−l2

|

and the first claim follows. The second claim follows by Lk
∼= Ln̄−k and the identity

given in Proposition 4.18.

While the preceding results give insights in the links between Lk and the extremal
properties of k-sub-graphs of some underlying d̄-regular graph, we are also interested
in the local combinatorial properties of vertices in a k-sub-graph. This will help us
quantify more properties of Lk as well as establish the bases for results on Markov
chains on Lk induced by certain types of exclusion processes. The following result
gives an identify for the average degree and the density of vertices in some sub-graph
Lv induced by a vertex v ∈ Vk as well as the term

∣∣∣|Ev| − |Ec
v|
∣∣∣ as a function of n̄, d̄

and k. It turns out that this is in fact a constant for d̄-regular graphs.

Lemma 4.19. Let L be a d̄-regular graph on n̄ vertices and k ∈ {1, . . . , n̄ − 1}.
Then, for any v ∈ Vk, we have

avg degn̄−k(Lvc) = d̄(n̄− 2k) + k avg degk(Lv)
n̄− k

(4.17)

and ∣∣∣|Ev| − |Evc|
∣∣∣ = d̄(n̄− 2k)

2 . (4.18)
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Proof. Using the isomorphism between Lk and Ln̄−k we obtain that for v ∈ Vk due to
the equality of the degrees of v and vc

k(d̄− avg degk(Lv)) = degk(v) = degn̄−k(vc) = (n̄− k)(d̄− avg degn̄−k(Lvc))

and, equivalently,

avg degn̄−k(Lvc) = d̄(n̄− 2k) + k avg degk(Lv)
n̄− k

.

For the second claim, we use that kavg degk(Lv) = 2|Ev| such that by the first claim

2(|Evc| − |Ev|) = (n̄− k) avg degn̄−k(Lvc)− k avg degk(Lv) = d̄(n̄− 2k)

which yields the second claim.

Indeed, some well-known results may be derived directly from the degree formula
obtained in Proposition 4.14. In particular, relationships between sub-graphs of L and
their complements with respect to L become easily accessible.

Lemma 4.20. Let L = (V,E) be a simple connected graph on n vertices. Assume that
v ⊂ V is a least dense k-sub-graph of L. Then v is a densest k-sub-graph of Lc.

Proof. Let v ⊂ V , |v| = k and assume that (v, Ev) is a least dense sub-graph in L.
Then,

|Ev| = min
w⊂V,|w|=k

|Ew| =
k(k − 1)

2 − max
w⊂V,|w|=k

|Ec
w|. (4.19)

The property |Ev|+ |Ec
v| =

k(k−1)
2 yields the claim.

While Lemma 4.20 gives a result on densest sub-graphs and their interpretation
in the complement graph one has to wonder about the structure of said complement.
This becomes particularly important when one tries to exploit the structure of Lc when
investigating sub-graphs of L using Monte Carlo simulation. To assure convergence
of such methods using Lc one should be at least in the presence of L connected and
Lc connected. This brings some constraints with it. As discussed in Lemma 3.23 this
brings a set of constraints with it which reduce the number of possible applications.

We turn now to geometric properties of Lk which are useful in various contexts later
on and are in themselves aesthetically nice results.
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4.3.4 Geometric Properties of Lk

Having established various arithmetic properties of Lk we turn to certain properties
which are, in particular, linked to moving particles which block each other from oc-
cupying states. The vertex connectivity of L, i.e., the minimal number of vertices
which have to be removed to render the graph disconnected, plays an important role
in that regard. It may be interpreted as the minimal number of particles needed to
block completely the transition of a particle from one ”half” of the graph to the other
”half” if the number of particles exceeds the connectivity of L. Additionally, still if
the number particles exceeds the connectivity, we can use it to obtain bounds on cover
times of L. This is based on a construction of easier sub-problems by conditioning on
configurations v which disconnect the graph L\v optimally in an almost fractal way.
Unfortunately, it turns out that the connectivity of L and Lk are not connected by a
function defined on the natural numbers but their link is more intricate. We are going
to explore this in what follows as preparation for further results in later sections.

To illustrate the difficulties, we first consider two 5 regular graphs on 8 vertices both
with connectivity 4. We call them L(1) and L(2), respectively. They are illustrated with
their corresponding k particle graphs L(i)

k with k = 4 in Figure 19. The two graphs L(1)

and L(2) depicted in Figure 19 are not isomorphic since then, also all the associated
graphs Lk were isomorphic for all k.

The connectivity of Lk and L is indeed linked by multiple properties. In particular,
constructing the graph Lk(L\Vσ) based on the disconnected graph L\Vσ, if Vσ is a
vertex cut of size σ of L is not the same as removing a vertex cut from Lk constructed
from L. For graphs with a simple structure we can make direct deductions on the
connectivity. To this end we consider first the example of a star graph to illustrate
how disconnecting L translates to disconnecting Lk.

Lemma 4.21. Let L be the star graph on n̄ + 1 vertices and n̄ beams. Let k ∈
{1, . . . , n̄}. The star graph L has vertex connectivity κ(L) = 1 and Lk satisfies

κ(Lk) =


k, k ≤ n̄+ 1

2 ,

n̄+ 1− k, k ≥ n̄+ 1
2 .

(4.20)

Proof. We only consider the case k ≤ n̄+1
2 . The second case follows by Proposition

4.4. We denote by α the center of the star and by β1, . . . , βn the vertices at the ends
of the beams. Let v ∈ Vk. We have to consider two cases, namely α ∈ v and α 6∈ v.
If α 6∈ v, i.e, v ⊆ {β1, . . . , βn}, then any path (v, u,w) from v to w ⊆ {β1, . . . , βn}
of length 2 has to include α in u. Consequently, any v ⊆ {β1, . . . , βn} has exactly
k neighbors and by the same argument any v containing α has exactly n + 1 − k
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Figure 19: First row: 5-regular graph on 8 vertices with connectivity 5. Corresponding
L4 has connectivity 10.
Second row: 5-regular graph on 8 vertices with connectivity 5. Corresponding L4 has
connectivity 8.

neighbors. Furthermore, for v,w ∈ Vk with v 6= w and α ∈ v as well as α ∈ w we
have 〈v,w〉 6∈ Ek. Consequently, an edge 〈v,w〉 ∈ Ek if and only if α ∈ v and α 6∈ w
or vice versa. Therefore, as long as v is connected to at least one other vertex w there
is a path to any other v′ ∈ Vk. We conclude that the vertex connectivity is given by
the minimal degree which is min{k, n̄+ 1− k}. This yields the claim.

We find that this property carries over to any Lk associated to an arbitrary d̄-regular
graph for any k ∈ {1, . . . , n̄ − 1}. Unfortunately, the proof remains incomplete, even
though the intuition from the proof for the star-graph remains valid. In combination
with the techniques using multisets from Proposition 4.2 and the impossibility to block
paths for configurations if not all neighboring configurations in Lk are blocked, should
yield the proof of the following conjecture. Special cases and a lack of time force us to
leave this problem open.
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Conjecture 4.22. Let L be a d̄-regular graph on n̄ vertices and let k ∈ {1, . . . , n̄−
1}. Then, κ(Lk) = minv∈Vk degk(v) and the corresponding vertex cut is the neigh-
borhood of v∗ ∈ Vk with degk(v∗) = minv∈Vk degk(v).

Conjecture 4.22 captures the high connectivity of Lk which is only implicitly linked
to the connectivity L. Already the star graph shows that the connectivity of Lk can
be much larger than the one of L. On the other hand, finding the vertex connectivity
of a graph is a well known problem, for which fast algorithms have been developed
over the years. Conjecture 4.22 links this topic to the topic of finding the density of
the densest k sub-graph of L. In [Henz00] the authors present an algorithm for finding
the connectivity of a graph which is asymptotical as O(nm) to the number of vertices
n and the number of edges m. This implies that there is an algorithm for finding

the densest k vertex induced subgraph which is asymptotical as O
((

n̄
k

)2
· d̄k(n̄− k)

2(n̄− 1)

)
.

Further research into this link might yield additional insights on upper bounds of the
complexity of finding dense sub-graphs of regular graphs.

4.3.5 Special cases for d̄-regular graphs and fixed k

To begin with, we consider the cases k = 2 and k = n̄ − 2. In these cases due to the
isomorphism Lk

∼= Ln̄−k we only have to make claims about one or the other. It turns
out that the degree set Dk is given by Dk = {2d̄, 2(d̄ − 1)} since for k = 2 the two
particles can be neighbors and block, therefore, an adjacent vertex mutually, or not.
We define the level sets with respect to the degree as VDk;2l := {v ∈ Vk| degk(v) = 2l}
for l ∈ {d̄, d̄− 1}. Remark that |VDk;2(d̄−1)| = |E| = n̄d̄

2 . An important question to ask
is how large subsets of Vk can be chosen when taking into account weights given by
the degree sequence on said subset. We consider to this end for U ⊂ Vk the map

f(U) :=
d̄|VDk;2(d̄−1) ∩ U|+ (d̄+ 1)|VDk;2d̄ ∩ U|

n̄d̄2

2 + n̄(n̄−1−d̄)(d̄+1)
2

which represents the weighted sum of the vertices in U where each weight corresponds
to the quotient of the number of smaller and larger degrees then degk(v). As there
are only two sets VDk;2(d̄−1) and VDk;2d̄ which constitutes Vk and vertices in VDk;2(d̄−1)
have a smaller weight than vertices in VDk;2d̄, the size of |U| is maximal subject to
the constraint f(U) ≤ 2−1 if U contains as many states with small degree as possible.
Indeed, we find the size of the maximal U with respect to the condition f(U) ≤ 2−1 as

max
U⊆Vk,f(U)≤2−1

|U| =


d̄n̄

2 + y∗, 0 ≤ d̄ ≤ 1
2

(
n̄− 1 +

√
n̄− 1

√
n̄− 1 + 4

)
y∗, otherwise

(4.21)
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where we define

y∗ =
⌊
n̄(n̄− 1− d̄)

4 − d̄2n̄

4(d̄+ 1)

⌋
; y∗ =

⌊
d̄+ 1
d̄

n̄(n̄− 1− d̄)
4 + d̄n̄

4

⌋
.

We outline a proof in what follows. First assume that

d̄ ≤ 1
2
(
n̄− 1 +

√
n̄− 1

√
n̄− 1 + 4

)
.

Recall that Dk = {d ∈ N|∃v ∈ Vk : degk(v) = d} and for l ∈ Dk that VDk;l := {v ∈
Vk|degk(v) = l}. In the case k = 2, there are exactly two distinct degrees in Vk and,
hence, only two sets VDk;l, namely, VDk;2(d̄−1) and VDk;2d̄. Indeed, in the discussed
case, we can derive |U∗| := maxU⊆Vk,f(U)≤2−1 |U| explicitly, which becomes important
since |S| ≤ |U∗|. Considering the representation of sub-sets of size 2 of a vertex set as
an edge, we obtain that |VDk;2(d̄−1)| = n̄d̄

2 and, consequently, |VDk;2(d̄−1)| = n̄(n̄−1−d̄)
2 .

We can now consider the two cases for maxU⊆Vk,f(U)≤2−1 |U| which correspond to the
cases n̄d̄2

2 ≤
n̄(n̄−1−d̄)(d̄+1)

2 and n̄d̄2

2 ≥
n̄(n̄−1−d̄)(d̄+1)

2 , respectively.
Consequently, in the first case, the maximal set U satisfies |VDk;2(d̄−1)| ≤ |U| and

writing |U| = |VDk;2(d̄−1)|+ y = d̄n̄
2 + y for some non-negative integer y we obtain that

for all y ≤ y∗, for y∗ as in the claim, the inequality

f(U) =
n̄d̄2

2 + (d̄+ 1)y
n̄d̄2

2 + n̄(n̄−1−d̄)(d̄+1)
2

≤
n̄d̄2

2 + (d̄+ 1)
(
n̄(n̄−1−d̄)

4 − d̄2n̄
4(d̄+1)

)
n̄d̄2

2 + n̄(n̄−1−d̄)(d̄+1)
2

is satisfied where the last term is smaller or equal one half. Let Ay∗ ⊂ VDk;2d̄ be any
subset of size y∗. Then, choosing U = VDk;2(d̄−1) ∪ Ay∗ we obtain a subset U ⊂ Vk of
size d̄n̄

2 with f(U) ≤ 2−1 and any larger subset W gives f(W) > 2−1. We have therefore
found the size maximum of any subset U satisfying f(U) ≤ 2−1. In the second case, we
can choose U ⊂ VDk;2(d̄−1) and

f(U) =
n̄d̄y

2
n̄d̄2

2 + n̄(n̄−1−d̄)(d̄+1)
2

.

The remaining arguments can be made analogously to the first case.
We discuss now special cases d̄ ∈ {2, n̄ − 2}. In these cases explicit quantitative

statements can be made about the structure of Lk for any k ∈ {1, . . . , n̄− 1}. We lead
into this section with the case d̄ = 2 and analyze the structure of the graph Lk. This
means we are working with a kPG defined on a cycle graph as illustrated in Figure 20.
We assume that there are k ≤ n̄

2 particles since by symmetry Lk
∼= Ln̄−k we cover the

remaining cases as well. To find the degrees in Lk we can write any configuration v
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Figure 20: A particle configuration of 3 particles on a cycle graph of length 7.

of particles as a vector which contains as entries the size of a connected component of
Lv. Assume that there are c′v connected components of Lv and denote their respective
sizes by ki for i = 1, . . . , c′v. Each connected component contains exactly ki − 1 edges
due to the structure of the underlying cycle graph L. Therefore, we obtain that

degk(v) = 2k − 2
c′v∑
i=1

(ki − 1) = 2c′v.

Furthermore, since k ≤ n̄
2 we can construct for any l ∈ {1, . . . , k} a configuration v

satisfying c′v = l. This implies that Dk = {2l|l ∈ {1, . . . , k}}. The remaining task
consist in finding |VDk;d| for any d ∈ Dk which is equivalent to finding the number
of vertex induced k sub-graphs of L containing exactly d

2 edges. Figure 20 shows
that this problem is related to finding all unique configurations of two colored balls
on a necklace with a fixed number of each color. To explain this further, we recall
that any configuration v can be translated to a vector of length c′v where each entry
corresponds to the length of one connected component of Lv. We can, hence, iden-
tify the problem with finding all distinct colored necklaces of length c′v with colorings
{(xi, yi)c

′
v
i=1|

∑c′v
i=1(xi, yi) = (k, n̄ − k)}, a problem solved by Pòlya’s enumeration theo-

rem. The number of configurations induced by each distinct necklace is then given by
the size of its orbit under the symmetric group Sc′v . From this we can derive |VDk;2c′v|
which gives the first part of the puzzle.

Lemma 4.23. Let L be a cycle on n̄ vertices and k ∈
{

1, . . . ,
⌊
n̄
2

⌋}
. Then, for

l ∈ {0, . . . , k} the identity

|VDk;2l| =
(
k − 1
l − 1

)(
n̄− k − 1
l − 1

)
n̄

l
(4.22)

is satisfied.
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Proof. First, note that

(
k − 1
l − 1

)(
n̄− k − 1
l − 1

)
n̄

l
=
(
k − 1
l − 1

)(
n̄− k − 1
l − 1

)
n̄− k + k

l

=
(
k − 1
l − 1

)(
n̄− k − 1
l − 1

)
k

l
+
(
k − 1
l − 1

)(
n̄− k − 1
l − 1

)
n̄− k
l

=
(
k

l

)(
n̄− k − 1
l − 1

)
+
(
k − 1
l − 1

)(
n̄− k
l

)
.

This underlines the symmetry of the problem in k and n̄− k. Based on Figure 20 we
identify the problem with counting necklaces of two colors, which are fully defined by
the sets v ∈ Vk. The colors are assumed to be blue and red, where blue represents
an occupied site and red an unoccupied site. We want to calculate the number of
distinct blue-red colored necklaces respecting rotational symmetry, i.e., two necklaces
v,w ∈ Vk are considered identical if and only if v = w. By fixing one vertex of the
cycle, without loss of generality v1 ∈ V , we can consider necklaces starting with a blue
beat, continuing then counterclockwise.
Assume that v1 is occupied, i.e, carries a blue beat. Place k blue beats on a line of
length k and select l of them without replacement. There are

(
k
l

)
. Now, separate n̄−k

in l positive parts, i.e, create a vector (n1, . . . , nl) with ni ∈ N∗ and ∑l
i=1 ni = n̄ − k,

which is possible in
(
n̄−k−1
l−1

)
ways. Place ni red beats after the i-th drawn blue beat.

This construction gives, consequently, all necklaces starting with a blue beat and, thus,
there are

(
k
l

)(
n̄−k−1
l−1

)
such necklaces.

By symmetry there are
(
k−1
l−1

)(
n̄−k
l

)
necklaces starting with a red beat. Summing both

terms yields the claim.

We can exploit these results to make claims about densities of sub-graphs. In partic-
ular, we discuss the question when vertex induced sub-graphs become ”dense”. In what
follows we are going to consider only regular graphs since they arise naturally, later on
in this work, in the context of particle systems and graph theoretic considerations are
beyond the scope of this work. To this end, we define for d̄ ∈ N and k ∈ {1, . . . , n̄− 1}
the set Vk := {v ⊂ V | |v| = k} which will play an essential role later on and serves
now as the set of all possible vertex induced sub-graph configurations. We continue
now with the analysis of graphs with large average density as defined in Definition 4.24
which represent graphs where particles are ”forced” to interact a lot due to high edge
density.
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Figure 21: Grid over k and d̄ varying between their minimal and maximal val-
ues for a given n̄. Green blocks correspond to pairs (d̄, k) for which the condition
minv∈Vk avg degk(Lv) ≥ d̄− 1 is satisfied for all d̄-regular graphs L.

Definition 4.24. Denote by G(n̄, d̄) the set of all d̄-regular graphs on n̄ vertices
and and consider for L ∈ G(n̄, d̄) and k ∈ N the k-particle graph Lk. We define

Γ(k)
l :=

⋃
n̄,d̄∈N

{
L ∈ G(n̄, d̄)

∣∣∣min
v∈Vk

avg degk(Lv) ≥ d̄− 1.
}

(4.23)

and call L ∈ Γ(k)
l a graph of large average k-density.

Since the characterization of Γ(k)
l remains in the realm of k vertex induced sub-

graphs and their properties, it is hard to get precise results on avg degk(Lv) for ar-
bitrary v ∈ Vk but in what follows we are going to illustrate the implications for d̄
and k in the special case when n̄ = 14. We choose n̄ = 14 since it gives a quali-
tatively representative insight into the dependence between k and d̄ while being still
computationally approachable. In Figure 21 we show the functional dependence of

L ∈ Γ(14,k)
l := Γ(k)

l ∩
⋃
d̄∈N

G(14, d̄)

when varying d̄ and k. Green squares represent pairs (d̄, k) for which there is a graph
L on n̄ = 14 vertices which satisfies L ∈ Γ(14,k)

l while red squares imply that Γ(14,k)
l = ∅.

One property which is striking in Figure 21 is the monotonicity of k, i.e., the number
of particles necessary to have sub-graphs with high density, as the degree d̄ grows to
ensure that there is a graph L ∈ Γ(14,k)

l . Evidently, the complete graph is a element
of Γ(14,k)

l if and only if k = n̄ − 1 since every k-sub-graph of the complete graph has
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density k−1. But, Figure 21 shows also that for k = n̄−1 for any degree d̄ ∈ {2, . . . , k}
there is a d̄-regular graph L ∈ Γ(14,k)

l . Indeed, the boundary between the red and green
squares resembles a bounded growth behavior, starting from the k-sub-graphs with
minimal average density on a cycle and being bounded by n̄− 1.

Conjecture 4.25. For fixed (n̄, d̄, k) ∈ N3 we define a slice in Γ(k)
l as Γ(n̄,d̄,k)

l :=
Γ(k)
l ∩ G(n̄, d̄) and as well as

Γ(n̄,d̄,·)
l :=

⋃
k∈N

Γ(n̄,d̄,k)
l (4.24)

and the functions fn̄ :
[

2
n̄
, 1
]
→ [0, 1] for x ∈

[
i
n̄
, i+1
n̄

)
with i ∈ {2, . . . , n̄− 1} as

fn̄(x) := 1
n̄

min

k ∈ {1, . . . , n̄− 1}
∣∣∣∣∣ min
L∈Γ(n̄,i,·)

l
v∈Vk

avg degk(Lv) ≥ i− 1

 . (4.25)

Let n̄ = 2n̄′. Then, f2n̄′ converges pointwise for x ∈ [0, 1] and there is a
monotonous function g ∈ C(0, 1) with g(0) = 0, g(1) = 1 such that the limit
is given by

lim
n̄′→∞

f2n̄′(x) = g(x)
3 + 2

3 . (4.26)

This remains a conjecture, since pointwise convergence and the continuity of the
limit are out of reach for the time being but since they are central to the statement,
reducing the claim would not be of interest. We manage, nonetheless, to prove the
initial and finial value as well as the monotony using the following arguments.

Initial & final values: Let x ∈
[

2
n̄
, 3
n̄

)
. We, hence, focus on the case d̄ = 2 and we

find the minimal average degree in any Lv by considering maxv∈Vk degk(v). Since for
k ≤ n̄

2 the degree set of Lk is given by Dk = {2l|l ∈ {1, . . . , k}} if d̄ = 2 we obtain that

max
v∈Vk

degk(v) = 2k = kd̄− 0 (4.27)

such that we can deduce that
min

L∈Γ(n̄,i,·)
l

v∈Vk

avg deg(Lv) = 0 < d̄− 1. (4.28)

Consider, therefore, k ≥ n̄
2 from which we obtain by Lk

∼= Ln̄−k and the uniqueness of
the 2-regular connected graph, which is the cycle, that

2− min
L∈Γ(n̄,i,·)

l
v∈Vk

avg deg(Lv) = k−1 max
v∈Vk

degk(v) = k−1 max
v∈Vn̄−k

degn̄−k(v) = 2(n̄− k)k−1
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which is equivalent to

min
L∈Γ(n̄,i,·)

l
v∈Vk

avg deg(Lv) = 2− 2(n̄− k)
k

and 2 − 2(n̄−k)
k
≥ 1 if and only if k ≥ 2n̄

3 . Therefore, the minimal k is given by
⌈

2n̄
3

⌉
and, consequently, we obtain for x ∈

[
2
n̄
, 3
n̄

)
that

fn̄(x) = 1
n̄

⌈2n̄
3

⌉
→ 2

3 , n̄→∞. (4.29)

On the other hand, if d̄ = n̄− 1 every sub-graph on k vertices is a complete graph on
k vertices. Therefore, the average degree in all subgraphs is k − 1 such that

k − 1 min
L∈Γ(n̄,d̄,·)

l
v∈Vk

avg deg(Lv) ≥ d̄− 1

is equivalent to k ≥ d̄ and, therefore, k = d̄ = n̄−1. Hence, we conclude for x ∈
(
n̄−1
n̄
, 1
]

that fn̄(x) = 1− 1
n̄
→ 1 as n̄→∞. Consequently, we obtain that g(1) = 1.

Monotony of g: We are proving now the monotony of g. To that end, fix n̄ ∈ N
even and consider x, y ∈ [0, 1), x ≤ y such that dyn̄e = dxn̄e + 1. Let fn̄(y) = k̄n̄−1.
Then, all L ∈ Γ(n̄,dyn̄e,·)

l and v ∈ Vk̄ satisfy

1
k̄

∑
v∈v

degLv

dyn̄e(v) ≥ dyn̄e − 1.

Now consider L ∈ Γ(n̄,dxn̄e,·)
l and v ∈ Vk̄. Then, we have to consider two cases. First,

assume that there is a dyn̄e-regular graph L̄ = (V, Ē) which contains a perfect matching
M such that L ∼= (V, Ē\M). Then, we find

dyn̄e − 1 ≤ 1
k̄

∑
v∈v

degL̄v

dyn̄e(v) = 1
k̄

∑
v∈v

degLv

dxn̄e(v) + 1

and using dyn̄e = dxn̄e+ 1 we obtain

dxn̄e − 1 ≤ 1
k̄

∑
v∈v

degLv

dxn̄e(v).

Secondly, if there is no such L̄ we can construct by the Handshake Lemma and the
fact that n̄ is even a graph L̃ = (V, Ẽ) as described in the following construction.
Consider again v ∈ Vk̄ and note that if y ∈

[
1− 1

n̄
, 1
)

then fn̄(x) ≤ fn̄(y) since
n̄fn̄(x) ∈ {1, . . . , n̄ − 1}. Hence, we may assume n̄fn̄(y) ≤ n̄ − 2. Now, we add edges
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to L such that for all u ∈ V we have degL(u) ≤ degL̃(u) and there are exactly two
vertices v, w ∈ V \v such that all u ∈ V \{v, w} satisfy degL̃(u) = dxn̄e+ 1 = dyn̄e and
degL̃(v) = dxn̄e as well as degL̃(w) = dxn̄e+ 2. Now, pick a neighbor u of w which is
not a neighbor of v and remove the edge between u and w and add the edge between
u and v. Call the resulting graph L̄ which is a dyn̄e regular graph and observe

dyn̄e − 1 ≤ 1
k̄

∑
v∈v

degLv

dyn̄e(v) = 1
k̄

∑
v∈v

degL̃v(v) ≤ 1
k̄

∑
v∈v

degLv

dxn̄e(v) + 1.

Consequently, using k̄ the condition dxn̄e − 1 ≤ k̄−1∑
v∈v degLv

dxn̄e(v) is satisfied for all
L ∈ Γ(n̄,dxn̄e,·)

l and v ∈ Vk̄. Consequently, fn̄(x) ≤ k̄ = fn̄(y). Therefore, the function
fn̄ is monotonous for all n̄ and, therefore, the limit function g is also monotonous.

One may try to extend the result from Conjecture 4.25 by replacing the d̄− 1 with
any l ∈ {1, . . . , d̄}. To illustrate, consider Figure 22. Note, in particular, the symmetric

Figure 22: Change in the curve illustrated in Figure 21 using for illustrative reasons
n̄ = 10. One can see that the area where the vertices of k vertex induced subgraphs of
d̄-regular graphs have average degree greater or equal d̄− i is, naturally, decreasing as
i increases.

behavior in which this happens both on the k and d̄ axis, which might be an indicator
for regularities which might be exploited to obtain a deeper understanding of k vertex
sub-graphs of d̄-regular graphs. We leave this question open to move on to relevant
tools for the analysis of interacting particle systems, presented in this work.

It turns out that the case d̄ = n̄−2 is much more forgiving in terms of the difficulty
of deriving |VDk;d| for some fixed d ∈ Dk which in the previous case demanded the
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utilization of results from combinatorics. In what follows we can reduce the problem to
considerations on the graph complement of a d̄-regular graph with d̄ = n̄−2, following
the ideas in the proof of Proposition 7.14. For example in Figure 23 one can see the
translation from the graph L to its complement Lc in the sense that Lc contains exactly
the edges which are not contained in L while preserving the vertex set. This renders
Lc a disjoint union of paths of length 1, exhibiting n̄

2 connected components.

Figure 23: Translation from the 4-regular graph L on six vertices to the disjoint union
of three paths of length 1, which corresponds to the complement graph of L, denoted
by Lc.

Lemma 4.26. Let L be a n̄− 2 regular graph and k ∈
{

1, . . . , n̄2
}

. Then,

Dk =
{
k(n̄− 2)− k(k − 1) + 2l

∣∣∣∣∣ l ∈
{

0, . . . ,
⌊
k

2

⌋}}
(4.30)

and, consequently, any degree is even.

Proof. We employ the idea based on Figure 23 that it is sufficient to consider the graph
complement Lc. Let d ∈ Dk. Then there exists a v ∈ Vk such that degk(v) = d. Since
v ⊂ V it also spans a vertex induced sub-graph in Lc. Denote by l the number of paths
in Lc which are fully contained in v, i.e., both vertices of the path are elements of v.
Then, l ∈

{
0, . . . ,

⌊
k
2

⌋}
and

d = degk(v) = k(n̄− 2)− k(k − 1) + 2l. (4.31)

Since n̄ − 2 is even, k(k − 1) is even and so is 2l for any positive integer l we obtain
that all degrees are even.

Based on this correspondence between L and Lc we can also derive the size of each
VDk;d for d ∈ Dk.
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Lemma 4.27. Let L be a n̄ − 2 regular graph and k ∈
{

1, . . . ,
⌊
n̄
2

⌋}
. Then, for

jd ∈
{

0, . . . ,
⌊
k
2

⌋}
the set, corresponding to the degree d = k(n̄−2)−k(k−1)+2jd ∈

Dk, satisfies the identity

|VDk;d| =
k∑
l=0

(⌊
n̄
2

⌋
l

)(
l

jd

)( ⌊
n̄
2

⌋
− l

k − l − jd

)
. (4.32)

Proof. Fix jd ∈
{

0, . . . ,
⌊
k
2

⌋}
. We write the vertices v ∈ V in

⌊
n̄
2

⌋
columns and two

rows where two vertices connected by an edge in Lc belong to the same column. First,
place l particles in the first row. We have

(b n̄2 c
l

)
possibilities to do so. To obtain a

configuration v with degk(v) = k(n̄− 2)− k(k − 1) + 2jd we have to place precisely jd
of the remaining k − l particles in the second row among the neighbors of the already
occupied vertices. We have

(
l
jd

)
to obtain this. Finally, we distribute the remaining

k− l− jd particles on the remaining n̄
2 − l vertices in the second row which is possible

in
(b n̄2 c−l
k−l−jd

)
ways. To obtain the total, we sum over all possibilities for l ∈ {0, . . . , k}

which leads to the formula

|VDk;d| =
k∑
l=0

(⌊
n̄
2

⌋
l

)(
l

jd

)( ⌊
n̄
2

⌋
− l

k − l − jd

)
.

We could demonstrate that for certain special cases of k and d̄ it is possible to
obtain explicit results on the structure of Lk associated to the underlying graph L.
In particular, we exploited in the cases where we fixed d̄, that there is exactly one
regular graph with this degree. Deviating from these special cases immediately yields
non-uniqueness of the underlying graph L. For example, consider the case n̄ = 6 and
d̄ = 3. Then, there are already two graphs with vastly different properties, which
satisfy this condition. One of them even is bipartite, while the other is not, which has
by Proposition 4.5 important influences on the structure of the associated kPG. We
come back to this example in Subsection 7.3.4.

To end this section, we briefly review another possibility to consider particles on
graphs. In this case, the particles will be distinguishable such that the size of the state
space increases and even connectivity is no longer certain. The discussion will be based
on an example inspired by a puzzle which is discussed in [Wil74].

4.4 kPGs for marked particles
So far, we have analyzed the structure of Lk if we consider simply subsets of V of size
k. This can be seen as indistinguishable particles and we record the configurations of
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the particles as unordered sets in the graph Lk. The problem becomes more involved as
soon as we make the particles distinguishable. We can, then, differentiate the particles
by names or give them numbers from 1 to k. This leads to a natural vertex set,
which is no longer Vk but V k. The discussion in [Wil74] is the basis for what follows.
For v̄ ∈ V k with v̄ = (v̄1, . . . , v̄k) we can interpret the entry v̄i as the position of
particle i in L. Note that now configurations which are permutations of one another
are distinguishable. A relevant example, which shows a possible application of marked
particles on some finite graph, is the 15-puzzle. This puzzle consist of a quadratic box
which can fit 16 quadratic tiles of adequate size and 15 small enumerated quadratic
tiles which correspond to this size carrying numbers 1 to 15. The game then consists
in ordering the tiles row by row only by sliding one tile at the time using the remaining
free slot, the first row containing the numbers 1 to 4, the second one the numbers 5 to
8 and so on. One can wonder about the existence of a solution to this task depending
on the initial configuration of the tiles. Indeed, this example was already of interest for
the authors of [GreLov74] and it arises now naturally as a state space in the context
of interacting particles.

We consider a simple connected graph L = (V,E) as well as k occupied sites
{v1, . . . , vk} ⊂ V . For t ≥ 0 one of the occupied sides is chosen and the occupant
moves to an adjacent side uniformly chosen among the free sides. If no free sides are
available the configuration remains the same.

Consequently, we can associate the dynamics with exclusion process η = (ηt)t∈N on
L. We reformulate the exclusion process on L as a Markov chain on the a sub-graph
of the Hamming graph.

Consider the following sub-graph of the Hamming graph H(n̄, k) = (VH, EH) and
its vertex set

VH := {v = (v1, . . . , vk) ∈ Vk|∀i, j ∈ {1, . . . , k}, i 6= j : vi 6= vj}. (4.33)

Due to fact that no two entries of any vector may have the same value and, therefore,
any vertex in VH represents a subset of size k of V , we can conclude by the same
reasoning as for Vk that VH is the correct choice to capture the configurations of the
exclusion process. On the other hand, the edge set of H(n̄, k) is too large, since it does
not take into consideration the structure of L, or, it corresponds to the case where L
is the complete graph. Thus, we have to make the following restriction to the edge set
and arrive at

E
(m)
k := {〈v, w〉 ∈ EH|∃!i, 1 ≤ i ≤ k : vi 6= wi, vj = wj∀j 6= i, 〈vi, wi〉 ∈ E}.

We write V
(m)
k := VH and denote by L

(m)
k := (V(m)

k ,E
(m)
k ) the marked kPG associated

to L. The graph L
(m)
k can, hence, be understood as the state space of a particle

system where a transition to a different configuration corresponds to the displacement
of exactly one of the k particles, each particle having a distinguishable mark.
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To construct the graph representing the state space of a k-particle exclusion process
with marked particles we remove all nodes from H(n̄, k) for which two coordinates
coincide. Naturally all edges to which such a point is incident are also being removed.
For v ∈ V

(m)
k we denote by deg(m)

k (v) its degree in L
(m)
k .

Some properties of L(m)
k may be deduced from combinatorial considerations.

Lemma 4.28. The graph L
(m)
k has the following properties.

• The vertex set V(m)
k has size |V(m)

k | =
n̄!

(n̄− k)!

• For v ∈ V
(m)
k denote by Lv the vertex induced subgraph of v in L. Then, the

degree of v in L
(m)
k is given by deg(m)

k (v) = ∑k
i=1 deg(vi)− degLv(vi).

Proof. Since every vertex v ∈ V
(m)
k may be seen as a word of length k constructed from

an alphabet of length n̄ > k where each letter may be used at most once, the property

|V(m)
k | =

n̄!
(n̄− k)!

follows from basic combinatorial considerations on drawing without replacement.
To respect the geometry of L, two configurations can only be neighbors if the entries
which differ are connected by an edge in L. Hence, any v ∈ v contributes deg(v) to
the overall degree of deg(m)

k (v) when we do not take into account that at most one
particle may occupy any vertex in L. Therefore, all k-tuples v ∈ V k with multiple
identical entries are removed from V k to construct V

(m)
k and each vertex w ∈ V

(m)
k

loses all such neighbors v. Therefore, for any v ∈ v we obtain its final contribution to
deg(m)

k (v) given by deg(v) − degLv(v). By summing over all v ∈ v we obtain degLv =∑k
i=1 deg(vi)− degLv(vi).

Since marked particles are not the focus of this work, we only want to give a brief
insight into the differences to unmarked particles. In particular, we no longer have
connectedness of L(m)

k if L is connected. In fact, this has been shown in [Wil74] where
the author gives conditions on the graphs for which connectedness follows and we can
use this result due to an isomorphism which we establish in Proposition 4.29.

Proposition 4.29. Let k = n̄− 1. Then L
(m)
k

∼= puz(L), as defined in [Wil74], and is
therefore connected if and only if puz(L) is connected.

Proof. The existence of an isomorphism follows directly by the construction of the two
objects L

(m)
k and puz(L).
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We can, therefore, use the result found in [Wil74] to make claims about the connec-
tivity of not only L

(m)
k but also L

(m)
k′ for all k′ < n̄− 1.

Proposition 4.30. Let puz(L) be connected. For k ≤ n̄ − 1 the graph L
(m)
k is

connected. Otherwise, L(m)
k is the empty graph.

Proof. We start with the second case k ≥ n̄. Again the particle interpretation helps to
make the point. Assume k = n̄. Then, all sides of L are occupied by particles. Hence
any vertex in L

(m)
k is only a permutation of the set of all vertices in L. Moreover no

particle can move which implies that there are no edges between any vertices in L
(m)
k .

The graph L
(m)
k is therefore the empty graph.

If k > n̄ then we find by a direct combinatorial argument that any vertex in Vk
contains at least one entry twice. Hence by the deletion process in the construction of
V

(m)
k we obtain V

(m)
k = ∅.

Let k′ < n̄ be the number of particles on L. Denote by d′ := n̄ − 1 − k′. Then for
k := k′ + d′ the graph L

(m)
k is connected by Lemma 4.29. Let ν = (ν1, . . . , νk′) and

ν̃ = (ν̃1, . . . , ν̃k′) be some configurations. Draw d′ unoccupied vertices

µ1, . . . , µd′ ∈ V \{ν1, . . . , νk′}. (4.34)

and d′ vertices
µ̃1, . . . , µ̃d′ ∈ V \{ν̃1, . . . , ν̃k′}. (4.35)

Consider the configurations νd′ = (ν1, . . . , νk′ , µ1, . . . , µd′) and ν̃d′ = (ν̃1, . . . , ν̃k′ , µ̃1, . . . , µ̃d′).
Then there is a path φ in L

(m)
k connecting νd′ and ν̃d

′ , from which can be constructed
a path in Hr

k′ by projection on the first k′ components. Hence Hr
k′ is connected.

Hence, for marked particles one could use L
(m)
k and its structure to represent con-

figurations and their connections or characterize this family of graphs in itself com-
binatorically. We now turn to a probabilistic application of Lk for which L

(m)
k is not

suited since it enforces more constraints then necessary and desired. We consider the
family of processes generalized exclusion processes which describe dynamical changes
of configurations of unmarked particles which are mutually exclusive, i.e., a particle
cannot move to an already occupied vertex.

4.5 Outlook: The k-Particle Graph
In this first part, we reviewed a set definitions from graph and set theory as well as
established in the beginning some results, in particular with a focus on sub-graphs and
their role (in regular graphs). This allowed us to define the central graph theoretical
object of this work, the kPG Lk associated to an underlying graph L, as defined in
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Definition 4.1. We managed to formulate and proof several properties of Lk on connec-
tivtiy, the combinatorial properties, the degree sequence as well as the automorphism
group, always motivated and with the application in mind, which we will discuss at
length in Part III. Hence, instead of an extensive Outlook which cannot be complete
in any sens, we keep it short and let the graph theory proficient reader decide, which
of the immense number of open problems they want to tackle.

4.5.1 Future work

Evidently, the analysis we performed in this section is not complete in any regard.
Many graph theoretical questions remain open for later research. This ranges from the
diameter of Lk, which would, indeed, push the results in the later sections in terms of
their quantitative dimension, to the characterization of the Eigenvalues of the graph
Laplacian associated to Lk as well as its link to L. Even conjectures remain at this

↪→

Ψk Ψk

↪→

L C

Lk J (n̄, k)

Figure 24: Link between types of graphs presented in this work. We denote by Ψk the
construction of the kPG associated to L. Research questions on one may be considered
in the setting of another along the depicted arrows.

point out of reach. Considering the diameter, from the isometry Lk
∼= Ln̄−k we can,

nonetheless, look for a formula which is symmetric in k and n̄−k. On the other hand, it
will be constrained by the diameter of the underlying graph L. Employing the particle
view, any particle in a configuration v ∈ Vk has to move at most the diameter of L to
its new location in another configuration, if looking for the diameter of Lk. Therefore,
a natural upper bound for diam(Lk) is k diam(L). It turns out that this bound is a lot
bigger than the actual diameter of Lk in cases testable via simulations.
Further topics include, for example, the link between L and Lk as well as Lk and
J (n̄, k). Indeed, this gives the diagram represented in Figure 24. Sub-graph relation-
ships are preserved via the horizontal arrows, while the spanning of a kPG based on
some underlying graph L is given in the vertical direction via the map Ψk. The poten-
tial of jumping between these images has been shown throughout this section and will,
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so does the author hope, nourish the research on graph theoretic problems related to
sub-graphs.
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5 Markov chains: Definitions and Applications

Outline of this section: Markov chains will be omnipresent in this work. The particle
systems and opinion processes, which we consider, can be identified with Markov chains
on some associated state space, which is, in general, larger then the problem at hand.
The difficulty lies in finding a state space which is neither to large to be indescribable
nor too small to capture all necessary information. Markov chain theory can than
yield results on the long time behavior, convergence towards a limiting object, time
reversibility of the process and links to the geometric properties of the state space.
Throughout this work, we work with a finite but large state space.

The following section serves as a review of classical Markov chain theory as well
as modern results on the quantitative understanding of these random processes. An
example relevant to this work is given. We first recall the definition of a Markov chain,
then go on to the convergence to a limiting distribution as the time tends to infinity
and finish with quantitative results on the convergence speed towards the limiting
distribution when it is unique and the Markov chain converges towards this limit for
any initial distribution. Objects like the Cheeger constant, or bottleneck ratio, its
link to the geometry of the underlying state space as well as the convergence speed of
Markov chains will be discussed. A discussion of a path based result on the convergence
speed, known as Doeblin’s condition sheds a geometric light on this topic.

We close the section with a discussion of the Deffuant model, which represents
the dynamic change of the opinions in the Echo Chamber Model in the absence of
moving edges. Markov chain theory will serve as a useful tool for the analysis of the
limiting opinions depending on the graph structure. We obtain a conjecture for the
convergence of the model on non-complete graphs as well as bounds on the convergence
speed towards the final opinion structure.

5.1 Markov chains

We begin this section with a review of Markov chain theory on finite state spaces.
Evidently, we cannot review all directions of research which have been accomplished
on this subject, but concentrate on the central definitions and results. The selection of
the quantitative results is also highly influenced by the necessity for the results of the
model analysis in later sections because this remains the main task of this work with
less focus on pushing the general theoretical understanding on Markov chains.
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5.1.1 Finite Markov chains

Throughout this work we consider an underlying probability space (Ω,F ,P) on which
we define all random objects, in particular the random processes we want to consider.
Essentially, these are Markov chains, a sequence of random variables with a particular
dependence structure. We review the topic using a small part of the vast literature
which exists on the subject. In particular, the cited definitions and results can be
found in [Norris97], [Bre13] and [Gra14].

Definition 5.1 ([Bre13]). Consider a finite set S, a probability distribution ν on S and
a sequence X = (Xt)t∈N of random variables with values in S. We call X a Markov
chain on S with initial distribution ν if for all s ∈ S the equality P[X0 = s] = ν(s) holds
true and for all t ∈ N and vectors (s0, s1, . . . , st+1) ∈ St+2 the sequence X satisfies

P[Xt+1 = st+1|Xt = st, . . . , X0 = s0] = P[Xt+1 = st+1|Xt = st]. (5.1)

If P[Xt+1 = r|Xt = s] only depends on s, r ∈ S and not on t for all t ∈ N, then we call
X a homogeneous Markov chain. Otherwise, it is called inhomogeneous.

This is the infamous property of Markov chains that the future only depends on the
current situation.

Definition 5.2 ([Bre13]). Consider a finite set S and a matrix P = (ps,r)s,r∈S. We
call P stochastic if for all s ∈ S the equation∑

r∈S
ps,r = 1 (5.2)

is satisfied and doubly stochastic if and only if, additionally, for all r ∈ S∑
s∈S

ps,r = 1, (5.3)

i.e. the transposed matrix P T is stochastic as well.

Indeed, transition matrices are the building blocks of Markov chains, under the
condition that the transition probabilities only depend on the current state and not
on the time t. This makes the difference between homogeneous and inhomogeneous
Markov chains.

Theorem 5.3 ([Bre13]). Let S be a finite set and P a stochastic matrix on S. Then,
P defines a homogeneous Markov chain X on S by

P[Xt+1 = r|Xt = s] := ps,r (5.4)

for any t ∈ N. In turn, if X is a homogeneous Markov chain on S, then X defines a
stochastic matrix P on S by

ps,r := P[Xt+1 = r|Xt = s] (5.5)
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In view of the preceding theorem it becomes clear that we can speak of a homoge-
neous Markov chain X on S with initial distribution ν and transition matrix P . Indeed,
whenever we consider a Markov chain X with transition matrix P , we automatically
imply that X is homogeneous due to the independence of t. The transitions of X may
then fully described in terms of P and the initial distribution ν.
Theorem 5.4 ([Bre13]). Let S be a finite set and X a sequence of random variables
with values in S. Then, X is a homogeneous Markov chain with transition matrix
P and initial distribution ν if and only if for any t ∈ N and (s0, . . . , st) ∈ St+1 the
sequence X satisfies

P[Xt = st, . . . , X0 = s0] = ν(s0) · ps0,s1 · . . . · pst−1,st .

Additionally, in case of a homogeneous Markov chain we have access to a graphical
representation of X given by a directed graph.
Definition 5.5 ([Norris97]). Consider a finite set S and a Markov chain X on S
with transition matrix P . Then, the matrix A = (1ps,r>0)s,r∈S defines a directed graph,
which is called the transition graph of X.

Transition graphs give for small examples a visual tool to examine the behavior of
X even for its long term behavior, i.e, for t → ∞. To emphasize this property, we
consider the following example. Let S = {1, 2, 3} and

P =


0 1

3
2
3

2
3 0 1

3
1
3

2
3 0

 . (5.6)

Clearly, P is a stochastic matrix and, therefore, defines a Markov chain on S. While
it is a fairly small state space, to build an intuition it is useful to visualize the process
and possible transitions. We use the matrix A defined in Definition 5.5 to obtain
this intuition. In Figure 25 one can see a directed graph with vertex set S and edges
according to the possible transitions of X. The labels represent the corresponding
transition probabilities. From this Figure one can deduce that X can attain any state
s ∈ S in finite time almost surely. One can also see that a full cycle in mathematically
positive direction happens with greater probability, with probability p = 8

27 , than a
cycle in the inverse direction, q = 1

27 . We come back to this property in the context of
convergence of Markov chains. But first, we focus on the structure of the transitions
given by the well known Chapman-Kolmogorov equation.
Theorem 5.6 (Chapman-Kolmogorov Equation [Bre13]). Let S be a finite set and X
a Markov chain on S with transition matrix P . Denote for t ∈ N the t-th power of P
by P t = (p(t)

r,s)r,s∈S. The transition matrix satisfies for s, r ∈ S the equation

p(t1+t2)
s,r =

∑
z∈S

p(t1)
s,z p

(t2)
z,r (5.7)
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3

Figure 25: Transition graph of X on S = {1, 2, 3} with transition matrix P defined in
equation 5.6.

for any t1, t2 ∈ N.

The theorem implies that going along a path of length t1 + t2 from some state s
to some state r can be separated by introducing an intermediate state z and then
summing up over all these intermediate steps. This allows for lower bounds on the
transition probability p(t1+t2)

s,r when one is only able to characterize paths which visit
certain states. In what follows, we will drop the statement that S is finite but we only
consider this case, because it is the only relevant one for this work.

5.1.2 The Stationary distribution and reversibility

We have previously recalled the structure of a Markov chain X and its transition
behavior, which depends only on the current state of the chain. Given an initial
distribution ν on the state space S, one can then derived the distribution of X at any
time t ∈ N by powers P t of the associated transition matrix. This property is widely
known and we omit, hence, a complete discussion, which can, by the interested reader,
be found in one of the already mentioned sources [Bre13], [Norris97] or [Gra14], to
name a few. An exhaustive list would be almost endless.

Furthermore, one can ask the question whether the chain X ”forgets” at some point
its initial distribution, i.e., the transitions of the chain have mixed the initial distri-
bution sufficiently, that its initial form is unrecognizable. This leads to considerations
about the long time-behavior of the chain, which are inherently connected with its
underlying state space S, the possible sub-classes of S which might be defining for the
transitions of X and, finally, symmetries of the chain in time. Various intricacies may
arise when discussing the long time behavior of a Markov chain, depending also on
the answers one is looking for. A review is, therefore, in order and we dedicated the
following sub-sections to it.
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We start with a couple of definitions characterizing the behavior on a Markov chain
on its state space.

Definition 5.7 ([Bre13]). Let X be a Markov chain on some state space S with tran-
sition matrix P = (px,y)x,y∈S. Write for t ∈ N the t-th power of P as P t = (p(t)

x,y)x,y∈S.
A state y ∈ S is said to be accessible from x ∈ S if there is a t ∈ N such that p(t)

x,y > 0.
Two states x, y ∈ S communicate with one another if x is accessible from y and vice
versa.

Indeed, communication gives a structure on the state space by separating it into
classes.

Definition 5.8 ([Bre13]). Let X be a Markov chain on some state space S with tran-
sition matrix P = (px,y)x,y∈. A set C ⊂ S is called a communication class if for any
pair x, y ∈ C they, x and y, communicate. The Markov chain X is called irreducible
if S is a communication class.

Communication classes are important when discussing the long time behavior of
Markov chains since they tell us about the ”direction” of the chain. They work as
traps since the chain can never leave such a class after having it entered once. In the
applications, which we consider later on, the Markov chains will be irreducible.

Another important property of Markov chains is its periodicity which represents
the existence of cycles which bring the chain back routinely back to a already attained
probability distribution. For example, there are chains which jump between two distri-
butions ν1 and ν2 over S, for example, in the sense Xt ∼ ν1 for any even t and Xt ∼ ν2
for any odd t when starting with X0 ∼ ν1. To characterize this periodicity, we use the
following definition and come back to a related example afterwards.

Definition 5.9 ([Bre13]). Let X be a Markov chain on some state space S with tran-
sition matrix P = (px,y)x,y∈. A state x ∈ S has period Tx := gcd{t ∈ N|p(t)

x,x > 0}. If
Tx = 1, then x called aperiodic. If Tx = 1 for all x ∈ S then X is called aperiodic.

The previous properties showed that the transition matrix, which is a stochastic
matrix, is the central algebraic object to analyze Markov chains. Making use of its
Eigenvectors one can wonder about invariant objects of Markov chains. In particular,
due to the fact that for t ∈ N the random variable Xt is distributed as νP t when
X0 ∼ ν and that, by stochasticity of P , there is at least one left eigenvector π to the
eigenvalue 1 which is invariant in the sense π = πP . hence, starting with π as an initial
distribution of X its distribution never changes. This object can, therefore, be seen
as an equilibrium and the question about convergence to such an equilibrium arises
naturally. Such π are called stationary distributions.

Theorem 5.10 ([Bre13]). Let X be an irreducible and aperiodic Markov chain on
some state space S. Then there is a unique stationary distribution π of X and for any
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initial distribution ν the Markov chain X converges in law to π as t → ∞. In this
case, X is called ergodic.

In, both, the periodic and the reducible case one loses the independence of the ini-
tial distribution and the uniqueness of the stationary distribution. In the reducible
chain, this is due to the fact ”weight” given by an initial distribution to a closed com-
munication class can never be ”moved” to another communication class. On the other
hand, a periodic Markov chain may show a flipping behavior moving all probability
mass from one state to another. Consider as an example the Markov chain X induced
by a transition matrix P which is given by

P =
(

0 1
1 0

)
. (5.8)

Then the distribution π =
(

1
2 ,

1
2

)
is invariant under the action of P but if X0 = (0, 1)

or X0 = (1, 0), then the chain becomes deterministic and never converges in law to
π. While X is irreducible, it has period Tx = 2 and, therefore, falls not under the
condition of Theorem 5.10.

Having established a sense in which Markov chains can converge, one can wonder
about a way of identifying the limiting distribution. Since, in the most general setting
we have to solve an eigenvalue problem to determine the stationary distribution, this
can become complicated quickly depending on the structure of the transition matrix.

Definition 5.11 ([Norris97]). Let X be a Markov chain on some state space S with
transition matrix P . A probability distribution π on S is called reversible with respect
to X if for all x, y ∈ S the equality

πxpx,y = πypy,x (5.9)

is satisfied. If X is ergodic with stationary distribution µ, define the reversed chain X∗
with transition matrix P ∗ as

p∗x,y = µ(y)
µ(x)py,x. (5.10)

If X is ergodic and there is a reversible distribution π with respect to X, then X is
called reversible.

Definition 5.11 captures the idea that a Markov chain can be considered under time
reversal for the transport of the mass of a probability distribution. That any reversible
distribution is also a stationary one follows directly from Equation 5.9, which is known
as detailed balance equation. This explains that the reversibility of X is inherited
immediately from the existence of a reversible probability distribution if X is ergodic.
This gives a direct way to calculate the stationary distribution of an ergodic chain X
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thanks to Equation 5.9. The time reversed chain as defined by equation 5.10 is in this
case identical in distribution to X.

An important result, which exploits the structure of the underlying state space S and
the possible transitions made by the chain, establishes reversibility of an ergodic chain
X solely based on its transition matrix without the need of first finding a reversible
probability distribution.

Theorem 5.12 (Kolmogorov’s criterion, [Kelly11]). Let X be an ergodic Markov chain
with transition matrix P on a state space S. Then, the chain X is reversible if for all
finite sequences of states x1, . . . , xn ∈ S the equality

px1,x2 · px2,x3 · . . . · pxn−1,xn = pxn,xn−1 · pxn−1,xn−2 · . . . · px2,x1 (5.11)

is satisfied.

To illustrate Kolmogorov’s criterion, we consider the example shown in Figure 25 as
well as an adjusted version. Both are defined by the transition graphs shown in Figure
26 and we call the corresponding chains X and Y having the transition graph on the
left and on the right, respectively. One can see by Kolmogorov’s criterion, that any

1
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2
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3
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Figure 26: Two transition graphs on S = {1, 2, 3} with defining transition matrices
of Markov chains X and Y . It is easy to check that X is reversible while Y is not
reversible by Kolmogorov’s criterion, using the sequence 1, 2, 3 to show the lack of
equality in some cases.

path that X takes, occurs with a power of one half where the exponent corresponds
to the length of the path. Qualitatively, it is indistinguishable whether the process
moves in clockwise or counterclockwise direction in the triangle. It can, hence in a
qualitative understanding, be reversed in time. On the other hand, the process Y has
a tendency to turn counterclockwise. Choosing the sequence 1, 2, 3 as a possible finite
sequence for Kolmogorov’s criterion, one finds that the chain is in fact not reversible.1

1The example was inspired by example 1.9.4 in [Norris97]
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This makes reversibility to a desirable but not common property in Markov chains, if
for nothing else, at least for calculation purposes of the stationary distribution.

Reversibility answered the question whether the chain looks the same when reversing
it in time. This defines naturally a symmetry for the chain in the sense of time. On
the other hand, one might wonder, if there are any spatial symmetries, i.e., subsets
of the state space, on which the Markov chain behaves ”identically”. An established
notion of such a symmetry is lumpability of the state space, which gives a condition
for combining the states of a Markov chain while preserving its overall behavior.

Definition 5.13 ([KeSne65]). Let X be a Markov chain with transition matrix P on
a state space S and let {Si}Ni=1 a partition of S. Then, the chain X is called lumpable
with respect to the partition {Si}Ni=1 if for all i, j ∈ {1, . . . , N} and for all x, y ∈ Si the
equation ∑

z∈Sj
px,z =

∑
z∈Sj

py,z

and the lumped chain X̂ has the transition matrix P̂ = (p̂i,j)Ni,j=1 with

p̂i,j =
∑
z∈Sj

px,z

for an arbitrary x ∈ Si.

Indeed, it can be proven, that the lumped chain is a Markov chain. Lumpability
gives a criterion under which we can reduce the state space and possibly also facil-
itate the calculation of the stationary distribution. We will exploit this property in
Subsection 7.3.4.

Having found ways to reduce the size of the state space as well as to calculate the
stationary distribution explicitly under the assumption of reversibility and, hence, a
way to calculate the limit in distribution of the chain X, the question about the speed
at which the chain converges under suitable assumptions to its limit is a natural one
to ask. We review the existing literature briefly in what follows.

5.1.3 Convergence speed to equilibrium

To analyze the convergence speed of ergodic Markov chains, we want to present two
well known approaches. The first one is based on the eigenvalues of the associated
transition matrix, the so called mixing time as well as the bottleneck ratio, also known
as Cheeger constant. The second one uses the fact that powers of the transition matrix
can be interpreted as weighted walks on the associated transition graph. Under a so
called Doeblin condition one can then obtain upper bounds on the distance between the
marginal distribution of the Markov chain at any time t and the stationary distribution.
We start by reviewing a result which is deeply rooted in matrix theory.
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Theorem 5.14 (Perron-Frobenius for ergodic Markov chains, [Bre13] ). Let P the
transition matrix of an ergodic Markov chain with stationary distribution π on a state
space S. Denote by Π the |S| × |S| matrix which contains in every row the entries π.
Order the eigenvalues of P by 1 = λ1 > λ2 ≥ . . . ≥ λ|S| and consider the second largest
eigenvalue λ∗2 = max

{
|λ2|, |λ|S||

}
as well as its algebraic multiplicity m∗2. Then, for

t ∈ N the equation
P t = Π +O

(
tm
∗
2−1 (λ∗2)t

)
. (5.12)

The task of calculating the in absolute value second largest Eigenvalue λ∗2 is not an
easy one since there are in general two candidates, λ2 and λn. Furthermore, to make
claims about convergence speed in the case where |λ∗2| cannot be calculated explicitly
one needs to find a meaningful upper bound for |λ∗2|. Optimally, on obtains both
meaningful lower and upper bounds. For special cases, classical Eigenvalue theory
may help, nonetheless, in finding solutions.

Proposition 5.15 (Eigenvalues of symmetric matrices, Rayleigh-Ritz, [HorJoh90]).
Let M be a real symmetric matrix with Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and associated
Eigenvectors x1, . . . , xn. Then

λk = max
x⊥x1,...,xk−1
||x||2=1

xT M x.

Under additional assumptions like positive definiteness of P as well as being sym-
metric the problem reduces to

λ∗2 = λ2 = max
x⊥1n
||x||2=1

xT P x.

by Proposition 5.15. This can also be used to obtain bounds for said Eigenvalue.
We will discuss the hereinabove laid out approach in an example in Subsection 5.2.
Further established techniques to access the convergence speed of a Markov chain in a
meaningful way are based on the Cheeger constant or bottleneck ratio. We are going
to review briefly this approach which is discussed in detail in [LePeWi09].

Definition 5.16 (Bottleneck ratio, [LePeWi09]). Let P a transition matrix inducing
an ergodic Markov chain X with stationary distribution π on a state space S. Then,
define for x, y ∈ S and A,B ⊂ S

Qx,y = π(x)px,y, QA,B =
∑

x∈A,y∈B
Qx,y.

The bottleneck ratio Φ of a set A ⊂ S is defined as

Φ(A) := QA,Ac

π(A)
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and the bottleneck ratio Φ∗ of the whole chain X is

Φ∗ := min
A⊂S, 0<π(A)≤ 1

2

Φ(A). (5.13)

For Markov chains with a uniform distribution as stationary distribution the bot-
tleneck ratio is closely connected to the geometry of the underlying graph since

Φ∗ = min
A⊂S, 0<π(A)≤ 1

2

Φ(A) = min
A⊂S, 0<0π(A)≤ |A|2

∑
x∈A,y∈Ac px,y
|A|

= min
A⊂S, 0<0π(A)≤ |A|2

|∂A|
|A|

avg∂A(P )

where for the connected simple graph G = (S,E) as

E = {〈x, y〉 ∈ S2|px,y > 0 or py,x > 0}

the boundary of A is defined as

∂A := {〈x, y〉 ∈ E|x ∈ A, y ∈ Ac}.

See for example [Mohar89] for the definition of the boundary of a subset of a graph’s
vertex set and further comments thereon. Hence, if avg∂A(P ) is a constant or has tight
meaningful bounds independent of A, as for example in the case of a simple random
walk on a r-regular graph where px,y = r−1 is a constant independent of x, y ∈ S, we
find that the defining term for Φ∗ is min

A⊂S, 0<0π(A)≤ |A|2

|∂A|
|A| .

Definition 5.17 (Isoperimetric constant on graphs, [Mohar89]). Let G = (V , E) be
any simple connected graph. Then, the isoperimetric constant of G is the minimal
quotient

ι(G) := min
A⊂S, 0<|A|≤ |S|2

|∂A|
|A|

. (5.14)

The isoperimetric constant can be seen as the permeability of a graph with respect
to a flow along its edges. A large isoperimetric constant means, therefore, that all
vertices in the graph are ”easily” accessible and there are no large separated groups
in the graph. A lower bound for the isoperimetric constant, which is itself usually
hard to calculate, may, therefore, give valuable insights into what we can expect of the
minimal speed of a flow on the graph.

Lemma 5.18 (Lower bound of the isoperimetric number, [Mohar89]). Let G = (V , E)
be any simple connected graph with vertex connectivity κ(G). Then

ι(G) ≥ 2κ(G)
|V|

. (5.15)
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A corresponding result for the bottleneck ratio of ergodic Markov chains yields an
approach to the convergence speed towards the stationary distribution. The central
object for this approach are mixing times, which measure the time, from which on the
stationary distribution and any initial distribution, evolving under the action of the
transition matrix, are close in the total variation distance as defined in what follows.

Definition 5.19 (Total variation distance and mixing times, [LePeWi09]). For any
two probability distributions µ, ν on S, their variational distance is defined as

||µ− ν||TV = sup
A⊂S
|µ(A)− ν(A)|.

For an ergodic Markov chain with transition matrix P and stationary distribution π
set

d(t) := sup
x∈S
||P t(x, ·)− π||TV

and define for ε > 0 the mixing time τmix(ε) as

τmix(ε) := min{t ∈ N| d(t) < ε}. (5.16)

Mixing times yield, therefore, a measure for decay of the distance of the chain at
time t from its stationary distribution. Lower bounds are, therefore, important for
the understanding of the pessimistic view how long we have to wait at least before
approaching the stationary distribution while good upper bounds give the optimistic
perspective on how long one has to wait at most. They can be especially well charac-
terized in the case of a lazy Markov chain, i.e., where the probability to stay in place
is always larger or equal one half.

Theorem 5.20 (Cheeger Bound, [LePeWi09]). Consider the transition matrix P of
an lazy ergodic Markov chain, i.e, for all x ∈ S it holds true px,x ≥ 1

2 , with stationary
distribution π. Define

πmin := min
x∈S

π(x) > 0.

Suppose that λ 6= 1 is an eigenvalue of P . Then(
1

1− |λ| − 1
)

log
( 1

2ε

)
≤ τmix(ε) ≤

2
(Φ∗)2 log

( 1
πminε

)
.

Investigations into the behavior of τmix(ε), for variable ε and increasing size of S,
are an ongoing field of research which can yield further insights into the Markov chains’
behavior.

For Markov chains, which are not lazy, i.e., infx p(x, x) ≤ 2−1, other tools have to
be applied. We use in this work the theory of evolving sets associated to some Markov
chain as developed in [MorPer05] and used for example in [PePeSte20] in the context
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of random environments. For a Markov chain X with stationary distribution π on a
finite set V the evolving set process (Ut)t∈N on the subsets of V is defined in [MorPer05]
as follows. If for some t ∈ N the process Ut satisfies Ut = S where S ⊂ V , then for
U ∼ Unif([0, 1]) the next step Ut+1 is defined as

Ut+1 := {v ∈ V |Q(U, v) ≥ Uπ(v)} (5.17)

where Q is defined as in Definition 5.16. As mentioned in [MorPer05] and underlined
by Definition 5.16, the quotient Q(U, v)π(v)−1 is the probability that the time reversed
chain of X with transition matrix P is in v when starting in U . Therefore, Ut+1
represents the random set of vertices which are accessible for the time reversed process
of X from Ut with probability at least U . Note that ∅ and V are absorbing for (Ut)t∈N
and, additionally,

P[v ∈ Ut+1 |Ut = U ] = Q(U, v)
π(v) , and p(t)(v, w) = π(w)

π(v) Pv[w ∈ Ut]. (5.18)

See [MorPer05] for more details. They obtain the following result on the convergence
speed of X.

Theorem 5.21 ([MorPer05]). Consider a Markov chain X with transition matrix P
and stationary distribution π on some state space S. Define Φ(u) := inf{Φ(A) |π(A) ≤
u}. Suppose that for some 0 < γ ≤ 2−1 and p(x, x) ≥ γ for all x ∈ S. If for ε > 0

t ≥ 1 + (1− γ)2

γ2

∫ 4ε−1

4(π(x)∧π(y))

4
uΦ(u)2 du,

then, ∣∣∣∣∣p(t)(x, y)− π(y)
π(x)

∣∣∣∣∣ ≤ ε. (5.19)

For many cases deriving the previously discussed bounds for the convergence speed
is still a difficult task to resolve and a lot of research goes into finding bounds on the
spectral gap for specific models. Only for very restrictive cases meaningful upper and
lower bounds for Φ∗ may be obtained easily. We present on example in what follows.

Lemma 5.22. Let X be a irreducible, aperiodic, reversible Markov chain with station-
ary distribution π. We write L = (S, E) for the undirected version of the transition
graph of X. Moreover, denote by p∗ = minx,y∈S,x6=y

p(x,y)>0
p(x, y) and p∗ = maxx,y∈S,x6=y p(x, y).

Then, the Cheeger constant Φ∗ satisfies

Φ∗ ∈
[

minx∈S π(x)
maxx∈S π(x)

2κ(L)p∗
|S|

,

(
|S| − max

U⊂S,π(U)≤2−1
|U |

)
p∗
]
. (5.20)
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Proof. We show first the upper bound. By definition of the Cheeger constant, we have

Φ∗ = min
U⊂S,π(U)≤2−1

Q(U × U c)
π(U) = min

U⊂S,π(U)≤2−1

∑
x∈U,y∈Uc

π(x)p(x, y)
π(U)

≤ p∗ min
U⊂S,π(U)≤2−1

∑
x∈U

π(x)
π(U) |U

c| = p∗
(
|S| − max

U⊂S,π(U)≤2−1
|U |

)
.

The lower bound is somewhat more involved, but mostly relies on the fact that the set
Sl =

{
U ⊂ S

∣∣∣ π(U) ≤ 2−1, |U | ≤ 2−1|S|
}

is not empty. Using this, we pick a U ∈ Sl
and find by using the most naive positive lower bounds of each term in the fraction

Q(U,U c)
|U |

≥ p∗
minx∈S π(x)
maxx∈S π(x)

|∂U |
|U |
≥ p∗

minx∈S π(x)
maxx∈S π(x) ι(L).

Applying the minimum over all U ⊂ S with π(U) ≤ 2−1 and using Lemma 5.18 gives
the claim.

Evidently, the lower bound is only useful when the estimates are not too crude. In
particular, the quotient of the minimum and the maximum of the stationary distribu-
tion may become very small as a function of the parameters of the Markov chain. We
consider examples in Subsection 7.3.6 for which this bound yields in some cases a good
estimate while in others it does not, depending on the parameter choice. In all these
cases reversibility of the underlying Markov chain is assured.

While reversibility is not always given for the Markov chains investigated in this
work, the convergence speed towards the stationary distribution is of central interest
in any case. It turns out that an analysis based on combinatorial arguments as well as
arguments using the graph geometry allown for more precise estimates then the bound
given by Lemma 5.22. A tool, which comes in handy, is Doeblin’s criterion as given in
Theorem 5.23, which can be found in [Gra14]. Its direct link with the graph geometry
via the powers of the transition matrix, which may be translated into ensembles of
weighted paths in the graph, allows a complete description of the convergence speed
based on paths of Lk.

Theorem 5.23 (Doeblin’s criterion [Gra14]). Let P be a transition matrix V satisfying
the Doeblin condition: there exists k ≥ 1 and ε > 0 and a law π̂ on V such that

P k(x, y) ≥ επ̂(y), ∀x, y ∈ V

Then there exists a unique invariant law π of P which satisfies π(x) ≥ επ̂(x) for all
x ∈ V and

sup
x∈V

∑
y∈V
|P n(x, y)− π(y)| ≤ 2(1− ε)bnk c, n ≥ 1. (5.21)

The restriction of P to {y ∈ V |π(y) > 0} is irreducible and strongly reducible if
{y ∈ V |π(y) > 0} is finite.
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Indeed, this way we obtain results depending on the structure of the path space of
the underlying graph, which, therefore, might be extended and refined via the theory
of path spaces of graphs and C∗-algebras of graphs as introduced in [CunKri80] and
discussed further, for example, in [Web13] and [BroCaWhi17]. This goes beyond the
scope of this work but might yield the basis for future research, in particular, with
applications to generalized exclusion processes on finite graphs. We turn now to a
review of the second part of the Echo Chamber Model which is better known as the
Deffuant model before considering the underlying topology of the particle system of
interest of this work.

5.2 The Deffuant model
The Deffuant model is a well known model in opinion dynamics introduced in [Weis03]
and discussed in various settings, for example by [LanLi20] [Lor05] or [CheSu20] with-
out giving a complete list. We are going to recall the model structure as a complete
review of the quantitative results are out of the scope of this work. Afterwards, we
propose a new perspective on the convergence of the opinion distributions under as-
sumption of the existence of a density at time 0. We close this section with a comparison
of the Deffuant model on a complete graph with the non-complete graph case and show
how results, obtained in the first case, may be recovered in the second case.

Consider a graph G = (V , E) with |V| = n and |E| = m as well as two parameters
θ ∈ (0, 1) and µ ∈

[
0, 1

2

)
. Each vertex x ∈ V exhibits a label Xv ∼ L([0, 1]) i.i.d. with

L absolutely continuous with respect to the Lebesgue measure. The Deffuant model
model evolves as follows in time t ∈ N.

• If |X t
A −X t

B| < θ, then

– set, firstly, X t+1
A = X t+1

A + µ(X t+1
B −X t+1

A ) and,
– secondly, X t+1

B = X t+1
B + µ(X t+1

A −X t+1
B ).

It constitutes, therefore, the second part of the dynamics of the Echo Chamber Model.
Denote the joint initial distribution of the labels X by D0 and assume that exhibits a
density π0. At any time t ∈ N an edge 〈I, J〉 is drawn uniformly from all edges E and
we can rewrite the algorithmic step described hereinabove as a recurrence relation. To
this end, let Aθ = {x ∈ R2||x1 − x2| > θ}, Aθij = {x ∈ Rn|(xi, xj) ∈ Aθ} and define for
i, j ∈ {1, . . . , n} the function

Φµ
ij(x1, . . . , xd) = (x1, . . . , xi + µ(xj − xi), . . . , xj + µ(xi − xj), . . . , xn).

Then, the labels at time t+ 1 are constructed as

X t+1 = X t
1AθIJ

(X t) + Φµ
IJ(X t)1(AθIJ)

c(X t) (5.22)



5.2 The Deffuant model 97

Due to the dynamics, the density π0 evolves over time as follows. Denote by Et the edge
drawn during the t-th step and by πt the density of the joint distribution of the labels
at time t. Then, for t ∈ N, at time t+ 1 the process of labels X t+1 = (X t+1

1 , . . . , X t+1
d )

follows the following law. Let B ∈ B([0, 1]n),

P
[
X t+1 ∈ B

]
= 1

m

∑
<i,j>∈E

P
[
X t+1 ∈ B,X t ∈ Aθij|Et =< i, j >

]
+P

[
X t+1 ∈ B,X t ∈

(
Aθij

)c
|Et =< i, j >

]
= 1

m

∑
<i,j>∈E

P
[
X t ∈ B ∩ Aθij

]
+ P

[
X t ∈

(
Φµ
ij

)−1
(B) ∩

(
Aθij

)c]

= 1
m

∑
<i,j>∈E

∫
B
πt(x)1Aθij(x) +

πt
(
(Φµij)−1

(x)
)

1−2µ 1(Aθij)c
((

Φµ
ij

)−1
(x)
)
dx

=
∫
B

1
m

∑
<i,j>∈E

πt(x)1Aθij(x) +
πt
(
(Φµij)−1

(x)
)

1−2µ 1(Aθij)c
((

Φµ
ij

)−1
(x)
) dx.

Thus, the following equation holds

πt+1(x) = 1
m

∑
<i,j>∈E

πt(x)1Aθij(x) +
πt
(
(Φµij)−1

(x)
)

1−2µ 1(Aθij)c
((

Φµ
ij

)−1
(x)
) . (5.23)

One approach, to showing convergence of the model, would be to use the obtained
equation to show convergence of the sequence (πt)t∈N as a sequence in L1 ([0, 1]n). We
define the operator Tθ for f ∈ L1 ([0, 1]n) as

(Tθf) (x) := 1
m

∑
<i,j>∈E

f(x)1Aθij(x) +
f

(
(Φµij)−1

(x)
)

1−2µ 1(Aθij)c
((

Φµ
ij

)−1
(x)
) (5.24)

skipping the dependence on the underlying graph G in the notation of Tθ. Then, for
any initial density π0 ∈ L1 ([0, 1]n) the density πt is given by (Tθ)tπ0 and

||Tθf ||1 = 1
m

∑
<i,j>∈E

∫
[0,1]n

∣∣∣∣∣∣f(x)1Aθij(x)dx+
f

(
(Φµij)−1

(x)
)

1−2µ 1(Aθij)c
((

Φµ
ij

)−1
(x)
)∣∣∣∣∣∣ dx

≤ 1
m

∑
<i,j>∈E

∫
[0,1]n
|f(x)|1Aθij(x) +

∫
[0,1]n

∣∣∣f((Φµij)−1
(x)
)∣∣∣

1−2µ 1(Aθij)c
((

Φµ
ij

)−1
(x)
)
dx

= 1
m

∑
<i,j>∈E

∫
[0,1]n
|f(x)|1Aθij(x) + |f(x)|1(Aθij)c (x) dx

=
∫

[0,1]n
|f(x)|dx = ||f ||1.
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Considering the constant function 1(x) = 1 we obtain that ||Tθ|| = 1. Consequently,
the operator Tθ is linear and continuous but not a contraction in the sense of the
Banach fixpoint theorem since the distance ||Tθ1 − Tθ0||1 = ||1||1 = ||1 − 0||1 is not
decreasing. Additionally, this would imply that, independently of the initially chosen
density, (Tθ)n π0 would converge to the same limit which is the constant 0 and, there-
fore, not a probability density. As depicted in Figure 27 for the case n = 2 and a path
graph of length 1, this does not seem to be the case. Figure 27 shows that regions, in

Figure 27: Evolution of densities under Tθ with different initial densities on a path
graph of length 1 and population size n = 2. In the first row, we show a pair of random
variablesX, Y which are i.i.d. distributed according to a triangular distribution on [0, 1]
evolving over time t = 0, 5, 10. In the second row, we show a pair of random variables
X, Y which are i.i.d. distributed according to a distribution which is only supported
on [0, 0.1] and [0.9, 1], again evolving over 10 time steps. .

which the joint initial distribution is 0, will have probability 0 for all times, such that
the two cases cannot converge to the same limiting distribution. The plots suggest
that in the case of convergence the limiting distribution will in any case be supported
on a subset of the line s 7→ s

(
1, 1

)T
for s ∈ [0, 1].

We, consequently, focus subsequently on the more detailed structure of the densities
of probability distributions and not only their role as a subset of L1 ([0, 1]n).

5.2.1 The manifold of probability densities and opinion paths

We start this subsection by the observation that by equation (5.23) the set of densities
is invariant under Tθ, i.e., usin

∂B+
1 (0) := {f ∈ L1([0, 1]n)| ||f ||1 = 1, f ≥ 0}
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we have Tθ(∂B+
1 (0)) ⊆ ∂B+

1 (0). Consequently, we can consider only the restriction
of Tθ to ∂B+

1 (0). This opens the doors to Information Geometry for our analysis,
in particular the fact that ∂B+

1 (0) forms a Riemannian manifold M = (∂B+
1 (0), g)

equipped with some metric g, which is also called statistical manifold. See [Amari12]
for a more in depth discussion of the topic. Evidently, the dependence on the underlying
graph G has to be integrated. We, then, can define for any π ∈M a sequence of paths(
γ(i)
π

)∞
i=1

where γ(i)
π : [0, 1]→M as

γ(1)
π (t) = Ttθπ, γ(i)

π (t) = Ttθ
(
T i−1
θ π

)
, i ≥ 2. (5.25)

We call the associated paths opinion paths due to their representation of the process
of changing opinions within the Deffuant model. Define the length of a finite path
γ : [0, 1]→M in (M, g) as it is done on any Riemannian manifold with metric g, see
for example [Jost17] by

lM(γ) :=
∫ 1

0
||γ′(t)||dt :=

∫ 1

0

√√√√gγ(t)

(
dγ

dt
,
dγ

dt

)
dt. (5.26)

Intuitively, if the length lM
(
γ(i)
π

)
of each γ(i)

π is decreasing sufficiently rapidly in i,
such that ∑∞i=1 lM

(
γ(i)
π

)
< ∞, then the sequence (πi)i∈N defined in equation (5.23)

converges to some limit, which is attained after a final distance in the manifold M.
Using simulations we find the following connection, which remains unproven but forms
the basis for future research.

Conjecture 5.24. In the setting of the Deffuant model with n individuals and
m relationships, an initial probability density π of the individual opinions as well
as parameters θ and µ there are constants C(n,m, π), C ′(µ) > 0 such that any
sequence of opinion paths

(
γ(i)
π

)∞
i=1

as defined in equation 5.25 satisfies

lM(γ(i)
π ) ≤ C(n,m, π)θC′(µ) i. (5.27)

Furthermore, the Deffuant model converges for any initial π, for any structure of
G.

See Subsection 8.6 for the Outlook and the implications of this conjecture on pos-
sible approaches for the analysis of the complete Echo Chamber Model. Within the
framework of the Deffuant model, a second question arises. Not only the existence of
consensus and group formation but also the final pattern of the opinions, depending
on the groups. We focus on this topic in what follows.
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5.3 Maximum confidence clusters (MCC)
Since bubble formation is a motivation for this model one needs to define clusters
which may form over time under the given dynamics. We start with the definition of
Maximum Confidence Clusters as defined in [CheSu20].

Definition 5.25 ([CheSu20]). Consider a set of i.i.d. uniformly distributed random
variables X = {Xi}ni=1 and let θ ∈

[
0, 1

2

]
. Pick any i1 ∈ {1, . . . , n} and define Ci1(X)

as the set of j ∈ {1, . . . , n} such that |Xi − Xj| < θ or there are indices j1, . . . , jk
such that |Xi − Xj1 | < θ, . . . , |Xjk − Xj| < θ. Then, pick i2 ∈ {1, . . . , n}\Ci(X) and
construct Ci2(X) the same way. Continue until {1, . . . , n}\⋃Kl=1Cil(X) = ∅. The sets
Cil(X) are called maximum confidence clusters (MCCs) under X and the number of
clusters is denoted by R.

An implicit condition which enters into the definition is the possibility that every
individual may interact with every other individual. This implies that the underlying
graph is complete which is usually not the case and in particular not satisfied, if the
underlying graph is dynamic. Therefore, we adapt the definition of the maximum
confidence clusters as follows MCCs in the context of [CheSu20] have the advantage
that

• cluster Ci(X) and Cj(X) define disjoint intervals for any labels X,

• for each complete cluster Ci there is a yi such that Ci ⊂ B θ
2
(yi) and Cj∩B θ

2
(yi) =

∅ for all i 6= j.

Adjusting the definition of clusters for graphs, which are not complete, as follows,
yields difficulties which we are going to discuss in this subsection.

Definition 5.26. Consider a connected graph G = (V,E) with i.i.d. U [0, 1]
distributed labels X = {Xv}v∈V and let θ ∈

[
0, 1

2

]
. Pick any v1 ∈ V and de-

fine Cv1(X) as the set of w ∈ Nv1 such that |Xv1 − Xw| < θ or there is a
path (v1, w1, . . . , wk, w) in G such that |Xv1 − Xw1 | < θ, . . . , |Xwk − Xw| < θ.
Then, pick v2 ∈ V \Cv1(X) and construct Cv2(X) the same way. Continue un-
til V \⋃Kl=1Cvl(X) = ∅. The sets Cil(X) are called simple maximum confidence
clusters (SMCCs) under X and the number of clusters is denoted by K.

If G is complete the clusters define disjoint closed intervals in [0, 1]. In contrast to
this consider the path graph P = ({1, 2, 3, 4, 5}, Ep) depicted in Figure 28 where the
labels of each vertex are chosen according to their position on the scale between 0 and
1. This becomes even more problematic for the case of complete clusters which are just
SMCCs where the pairwise distance is smaller than θ

2 . In Figure 29 we show an example
that the clusters do not capture the idea of disjoint limiting opinions considering the
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0 1θ

Figure 28: A path opinion graph with intersecting intervals defined by the underlying
SMCCs.

idea that they converge towards a common mean but different from all the others.
We show in Proposition 5.29 that each complete cluster converges to the mean of the
opinions of its constituents at the time where all clusters become complete. In fact

0 1

< θ

< θ > θ

> θ

Figure 29: A path opinion graph which yields intersecting SMCCs.

assume that G = (V,E) is the graph with seven vertices depicted in Figure 29 and the
labels x1, x2, x3 (in blue) form a complete cluster. Then there is a sufficiently small ε
such that x4 = x1 +ε, x5 = x2− ε

2 , x6 = x3− ε
2 (in red) form also a complete cluster. In

particular, by the result given by Proposition 5.29 both clusters converge to the same
mean opinion. In general the probability of the event

{(X1, X2, X3) and (X4, X5, X6) form complete clusters} ∩
{X4 +X5 +X6 = X1 +X2 +X3 and min

i∈{1,...,6}
|Xi −X7| > θ}

is always positive. Hence there are initial conditions for which even convergence to-
wards the same opinion in different clusters are possible. We can, nonetheless, make
use of some observations from the restrictive case discussed in [CheSu20]. In fact, due
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to the changes of the labels, the structure within each cluster changes but no new
individuals may enter a cluster. Hence, a cluster may become stationary in time in the
sense that it does no longer split into sub-clusters. We use the following definition to
capture this case, which is inspired by [CheSu20].

Definition 5.27. We call a SMCC Cil(X) complete if for any pair of indices
(k, h) ∈ Cil(X)2 the condition |Xk −Xh| < θ holds.

We are mostly interested in the convergence of the process (X t)t∈N and hence the
first time all clusters are complete gives a lot of information on that subject.

Definition 5.28. Let t ∈ N and consider the set of maximum SMCCSs C(X t).
Define the first time where all clusters are complete by

TC := inf{t ∈ N|∀Ci(X t) ∈ C(X t) : Ci(X t) complete}. (5.28)

Using the notion of complete SMCCs, we can make claims about the final struc-
ture of the opinions. The same result is obtained in [Lor05] using algebraic methods
of matrix products, where we employ methods from Markov chain theory. We rely,
nonetheless, on the result in [Lor05] that TC , which is called t0 in [Lor05], is almost
surely finite independently of the initial distribution of the opinions. We obtain the
following result on the convergence speed of the opinions within the complete clusters.

Theorem 5.29. Consider the Deffuant model with parameters θ ∈ (0, 1), µ ∈[
0, 1

2

)
on a simple graph G = (V , E) and denote by {Cl}Kl=1 be the limiting set of

complete SMCCs of size (κl)Kl=1 := (|Cl|)Kl=1. Then, for any h ∈ {1, . . . , K} the
opinion X t∨TC

k for k ∈ Ch associated to cluster Ch satisfies for t → ∞ almost
surely

lim
t→∞

E
[
X t∨TC
k

∣∣∣ {Cl}Kl=1

]
= 1
κh

∑
j∈Ch

E
[
XTC

j

∣∣∣ {Cl}Kl=1

]
. (5.29)

Proof. Throughout the proof we consider conditional expectations of the form E[.| {Cl}Kl=1]
to improve readability we omit the condition on {Cl}Kl=1 when not essential.

Denote by Et = 〈It, Jt〉 the edge drawn at time t and by Φµ
ij the matrix

(Φµ
ij)k,l =


1 k = l, k, l 6∈ {i, j}
1− µ k = l, k, l ∈ {i, j}
µ (k, l) = (i, j) or (k, l) = (j, i)
0 else.
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First note that the labels X t+1 at time t+ 1 satisfy

X t+1 =
(

t∏
s=1

(
Φµ
IsJs

)
1|Xs

Is
−Xs

Js
|<θ

)
X0 (5.30)

and recall that TC is almost surely finite by the result in [Lor05]. Moreover, for t > TC

it holds

E[X t+1] = E
E

 t∏
s=TC

(
Φµ
IsJs

)
1|Xs

Is
−Xs

Js
|<θ
∣∣∣XTC

XTC


and by independence of the edges drawn the random matrices

{(
Φµ
IsJs

)
1|Xs

Is
−Xs

Js
|<θ
}t
s=TC

are independent given XTC for any t ≥ TC such that

E[X t+1] = E
 t∏
s=TC

E
[(

Φµ
IsJs

)
1|Xs

Is
−Xs

Js
|<θ
∣∣∣XTC

]
XTC

 . (5.31)

Since we are interested in the long time behavior we have to analyze limt→∞ E[X t].
Since all {X t

i}i∈V ⊂ [0, 1]n and all matrices are stochastic, we can employ dominated
convergence to examine the limit. Moreover the dependence in t is uniquely determined
by the sequence of random matrices within the product. There are only finitely many
different matrices to consider. Fix any pair 〈i, j〉 ∈ E . Let Akt denote the event that
Φµ
ij occurs at most k times in the first t draws. Then

P

⋂
t∈N

Akt

 = lim
t→∞

P(Akt) = 0

and hence

P

 ∞⋃
k=0

⋂
t∈N

Akt

 ≤ ∞∑
k=0
P

⋂
t∈N

Akt

 = 0.

Hence, the probability that Φµ
ij occurs only finitely many times is zero. It follows from

the finiteness of the set of all Φµ
ij that almost surely, all matrices in Φµ

ij occur infinitely
many times.

For t, t′ > TC , l 6= l′ and 〈i, j〉 ∈ C2
l , 〈i′, j′〉 ∈ C2

l′ the matrices
(
Φµ
ij

)1|Xt
i
−Xt

j
|<θ and(

Φµ
i′j′

)1
|Xt′
i′
−Xt′

j′
|<θ commute. This allows us to concentrate on one cluster at a time

by considering the subsequences
((

Φµ
ij

)1|Xt
i
−Xt

j
|<θ
)
i,j∈Cl and t>TC

. Moreover for t > TC ,

given XTC it holds 1|Xt
i−X

t
j |<θ = 1i,j∈Cl such that we can omit it. Additionally, since the

multiplication of elements of the sequence (Φµ
ij)i,j∈Cl only changes rows and columns

with indices in Cl, we consider its restriction of size κl × κl defined for p, q ∈ Cl by

(Φ̃µ
ij)p,q := (Φµ

ij)p,q.
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The matrix Φ̃µ
ij is doubly stochastic for any 〈i, j〉 ∈ C2

l . Denote by ml := |C2
l ∩ E|.

Since edges are drawn uniformly i.i.d. the probability to draw a fixed matrix Φ̃µ
ij is

m−1. Define
PCl := 1

m

∑
〈i,j〉∈C2

l
∩E

Φ̃µ
ij + m−ml

m
Idκl×κl ,

which is a doubly stochastic, aperiodic and irreducible transition matrix for some
Markov chain. Hence it exhibits a unique stationary distribution πCl = 1

κl
1κl and

P k
Cl →

1
κl
1κl×κl as k →∞. Recall that Et = 〈It, Jt〉 such that in particular for t > TC

the identity
E
[
Φ̃µ
ItJt

∣∣∣XTC
]

= PCl .

holds. Using the same argument for each cluster and denoting by K the random final
number of clusters, we obtain that ∏t

s=TC E
[(

Φµ
IsJs

)
1|Xt

Is
−Xt

Js
|<θ
∣∣∣XTC

]
converges to a

matrix Φ∞. In fact there is a random permutation of rows and columns p such that

Φ∞ = p





1
κ1
1κ1×κ1 0 . . . 0

0 . . . ...
... 0 1

κl
1κl×κl

...
... 0 . . . 0
0 . . . 0 1

κK
1κK×κK




.

Hence, by dominated convergence and since Φ∞ is measurable with respect to σ
(
{Cl}Kl=1

)
lim
t→∞

E
[
X t+1| {Cl}Kl=1

]
= E

[
Φ∞XTC

∣∣∣ {Cl}Kl=1

]
= Φ∞E

[
XTC | {Cl}Kl=1

]
.

Consequently, we obtain for k ∈ Ch the limit

lim
t→∞

E
[
X t
k

∣∣∣ {Cl}Kl=1

]
= 1
κh

∑
j∈Ch

E
[
XTC

j

∣∣∣ {Cl}Kl=1

]
.

We can consider the evolution of each complete SMCC separately from the remain-
ing once since they will never interact again but in expectation at any point in t all of
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them change. The diagonal elements of PCl are for q ∈ Cl given by

(PCl)q,q = 1
m

∑
〈i,j〉∈C2

l
∩E

(
Φ̃µ
ij

)
q,q

+ m−ml

m

= degCl(q)
m

(1− µ) + ml − degCl(q)
m

+ m−ml

m

= 1− degCl(q)
m

(1− (1− µ)) = 1− µdegCl(q)
m

> 1− degCl(q)
2m .

Consequently, we obtain that the induced Markov chain is always lazy when µ < 1
2 .

Moreover, by definition Φ̃µ
ij is symmetric and positive definite with spectrum σ

(
Φ̃µ
ij

)
=

{1, 1−2µ}, recalling µ ∈
[
0, 1

2

)
. Therefore, also PCl is positive definite, such that it has

a positive spectrum and by the Perron-Frobenius Theorem 5.14 its convergence speed
is governed by the second largest eigenvalue λCl2 satisfying 1 = λCl1 > λCl2 ≥ λCl3 ... > 0.
Using the formula for the diagonal elements of PCl , we can derive a lower bound of λCl2
via the trace tr (PCl) as follows. Obviously, we have by the eigenvalue decomposition
of PCl the estimate tr (PCl) ≤ 1 + λCl2 (|Cl| − 1) and, secondly, we obtain

tr (PCl) =
∑
q∈Cl

(
1− µdegCl(q)

m

)
= |Cl| − µ

2ml

m

which gives in combination with the first estimate

λCl2 ≥ 1− µ 2ml

m(|Cl| − 1) . (5.32)

Note that this gives a lower bound for the convergence speed which satisfies

1− µ 2ml

m(|Cl| − 1) > 1− ml

m(|Cl| − 1)
and, therefore, convergence is possibly fastest on small sets |Cl| containing relatively
many edges ml. In general, the term 1− µ 2ml

m(|Cl|−1) can be close to 1 and convergence
of the group opinions to the shared opinion in expectation is, therefore, slow. This
becomes particularly prevalent when there are many small groups with small internal
connectivity and many edges between groups. This depends on the parameter θ which
enters into the convergence speed as an implicit influence.

Using Theorem 5.20 we can make claims about the upper bound for the convergence
speed of the Markov chain induced by PCl . Note to this end that the bottleneck ratio
becomes because of the uniform stationary distribution

Φ∗Cl = min
S: πCl (S)≤ 1

2

Φ(S) = min
|S|≤ |Cl|2

∑
x∈S,y∈Sc

pCl(x, y)
|S|

= min
|S|≤ |Cl|2

µ

m

|∂S|
|S|

= µ

m
ι (GCl)
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Where ι (GCl) is the isoperimetric constant of the vertex induced sub-graph of G on
Cl. This depends both on the graph G as well as on the final cluster Cl and might be
as small, if for example the induced sub-graph resembles a dumbbell graph.

Being able to find an upper bound for the mixing time of the chains on each Cl one
can obtain an upper bound for the complete mixing time τmix(ε) as

τmix(ε) = max
l
τClmix(ε) ≤ max

l

m2

µ2ι (GCl)
2 log

(
|Cl|
ε

)

by Theorem 5.20 since all chains on each Cl move in each time step simultaneously.
Due to the randomness of the clusters involved it is not possible to obtain further
estimates, which are better then the most pessimistic ones.

Having found an upper bound on the mixing time which can be calculated algorith-
mically once the clusters are established, we leave the Deffuant model behind us and
turn now to the particle system of interest of this work.

5.4 Exclusion processes

The exclusion process is one of the classical examples for interacting particles systems
alongside spin systems like the voter model, [Ligg12]. Spitzer, [Spi70], is among the
first authors to consider interacting particle systems with exclusion, calling them ex-
clusion processes. Two possibilities are considered in [Spi70], in which exclusion may
be introduced in a system of interacting particles on a countable state space. First,
whenever a particle moved to an already occupied site, its movement is suppressed and
it stays in place. In the second case, the particle is forced to continue its movement
according to some underlying Markov chain on the state space until it arrives at an
empty site, possibly its original position. The latter is further discussed in [Ligg80].
While the second possibility yields interesting results and properties, like convergence
to the same stationary distribution as in the first case, many authors, as for example
in [Quas92] and [Law80], considered the first case for which the definition and some
results are laid out in [Ligg12], Chapter VIII.

We adhere the descriptions given in [Ligg12], Chapter VIII, as well as [DiaSal93]
for the discrete time case, allowing us to show the difference between the classical
exclusion process and the process discussed in this work, which will motivate the
intricate combinatorial analysis of sub-graphs and their relationships from Section 4.
Consequently, we consider a finite state space S and a discrete time Markov chain
defined by a transition Matrix P on S. The exclusion process behaves as follows, using
the description in [Ligg12], Chapter VIII. The name comes from the restriction that
at any time t at most one particle may occupy a site x ∈ S, constraining the possible
positions of any particle and the allowed transitions. The transitions are given by a
continuous time Markov chain. Each particle waits an exponential time with parameter
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one and then makes a transition according to p(x, y) from its current position x to y
if and only if y does not already contain a particle. If y is occupied then the particle
in x remains in place.

More formally, a configuration at any time t may be described as a vector η ∈ {0, 1}S
and the transition via a function ηxy, using the notation from [Ligg12], Chapter VIII,
which switches the entries of η(x) and η(y). It is given for u ∈ S by

ηxy(u) =


η(y), if u = x,

η(x), if u = y,

η(u), otherwise.

Since throughout this work we consider finite state spaces, we assume from now on
that S is finite. Additionally, this renders the discussion of particularities arising from
the domain D of the associated generator Q vain. The exclusion process is then given
by its generator Q which has for f ∈ D the form

(Qf)(η) =
∑

η(x)=1
η(y)=0

p(x, y)[f(ηxy)− f(η)]. (5.33)

Note that this definition implies explicitly the independence of the transition probabil-
ities of the current configuration η, conditioned on the event that a transition occurs.
The matrix P defines completely the occurring probabilities in this case.

Under assumptions on P or S various results have been obtained over the years
from the existence and form of a stationary distribution, bounds on the convergence
speed to equilibrium and mixing times, mostly in cases where the exclusion process
turns out to be reversible, as well as the Cut-Off phenomenon. The results have been
obtained both the discrete time and continuous time variants of the exclusion process
by the use of functional analytic methods and combinatorial approaches. In the spirit
of the latter, we are going to conduct in Section 7 an analysis of the central object of
this work which is a version of the exclusion process, arising from the Echo Chamber
Model. In spite of the progress made for exclusion processes, admitting a generator as
in equation (5.33), where P is independent of η, most results and techniques do not
apply to our case due to the fact that P is replaced by a family of transition matrices
(P η)η∈{0,1}S and a discrete time equivalent of the generator Q′ defined for f ∈ D by

(Q′f)(η) =
∑

η(x)=1
η(y)=0

pη(x, y)[f(ηxy)− f(η)] (5.34)

will govern the dynamics. Hence, we are faced with an example of a generalized
version of the exclusion process defined in [Ligg12], Chapter VIII. Whenever possible,
we are going make the link between the two models and show their differences as well
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as their similarities. Evidently, due to the generality of Equation 5.34 we can only
focus on examples of the family (P η)η∈{0,1}S , which will be motivated by two specific
applications.

5.5 Generalized exclusion processes (GEP) and Markov chains
We aim at establishing a link between a system of moving particles ηk on a graph
and a Markov chain in a higher dimensional space to have access to classical results
on the long time behavior of the process. Due to the constraints we are going to
impose on the movement of the particles the most natural choice is to associated them
with exclusion processes. In contrast to the classical view on exclusion processes as
discussed in [DiaMeh87] the process to be analyzed depends highly on the structure
of the underlying graph as well as the current particle configuration. This renders
it heterogeneous, a property arising immediately from the asymmetric structure of
interactions in a social network. Consequently, we are interested in a general form of
exclusion processes defined as follows.

Definition 5.30. Let L = (V,E) be a simple connected graph with |V | = n̄ ∈ N and
k ∈ {1, . . . , n̄ − 1}. Denote by (P (η))η∈{0,1}V , |η|=k a family of stochastic matrices. A
generalized exclusion process in discrete time ηk := (ηk;t)t∈N of k particles on L is a
Markov chain on the set of configurations

Sk = {η ∈ {0, 1}V | |η| = k}

defined by the transition matrix Q = (qη,µ)η,µ∈{0,1}V given for η, µ ∈ {0, 1}V by

qη,µ =


P (η)(v, w)1η(v)=1=µ(w),η(w)=0=µ(v)

η(u)=µ(v)∀u6∈{v,w}
, η 6= µ

1−∑µ6=η qη,µ, η = µ.

(5.35)

Indeed, there are various ways to approach generalized exclusion processes depend-
ing on the distributions which govern the transitions of individual particles. One way
is by defining a Markov chain based on a series of dynamic graphs, i.e., by interpreting
ηk as a Markov chain in a random environment given by the family (P η)η∈{0,1}V , |η|=k.
To this end define Nk;t = {v ∈ V |ηk;t(v) = 1} and the time dependent graph B = (Bt)
with Bt = ((Nk;t, V \Nk;t,Σk,t) with potential loops on vertices in Nk;t. The random
graph Bt might be disconnected but serves as a graph theoretical representation of
transitions of the generalized exclusion process ηk, i.e., the positive transition proba-
bilities of P η conditioned on η.

The central part is the change of Σk,t when going from time t to t+ 1. It captures
the possible particle movements induced by the distribution used in Definition 5.30.
To illustrate the construction, we consider a 3-regular graph on 6 vertices depicted in
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Figure 30: The underlying 3-regular graph on 6 vertices which we are going to use as
example for all constructions of exclusion processes.

Figure 30. It will be the reference for missing edges which will illustrate the distinctive
parts of each exclusion process. We consider two examples to illustrate the benefits
of this perspective. First, consider a discrete time example of an exclusion process
as discussed in [DiaSal93]. To any η ∈ {0, 1}V we can associate a vη ⊂ V with
vη = {v ∈ V |η(v) = 1} and in this sense we can write with a little abuse of notation
η = vη.

Assume that for some v ⊂ V , |v| = k at time t ∈ N the classical exclusion process
satisfies ηk;t = v. Set vc := V \v. Consider the possibly disconnected bipartite sub-
graph Lv,vc = ((v, vc), Ev,vc) of L. Then, add all edges to Lv,vc which are contained in the
vertex induced sub-graph Lv = (v, Ev) of L. We call the resulting graph Bt = (V,Σk,t)
with Σk,t = Ev,vctEv. Indeed, for a d̄-regular graph L we obtain |Σk,t| = d̄k. Figure 31
illustrates one possible situation based on a 3-regular graph on six vertices. Remark
that all edges incident to vertices in v are also present in Bt which preserves their
degree and makes it accessible to calculate the number of edges in Bt. The exclusion
process now consists of drawing one edge uniformly from Σk,t and exchanging the state
of the endpoints. Note that this might lead to exchanging two occupied sites which
renders P η independent of η. As an interpretation of the exclusion process in this case
one can see the exchange of states of two particles as their collision, both jumping back
to the state they came from.

One can imagine changing certain steps of the construction. This leads to our
second example. We keep the first step identical but do not consider, in what follows,
the vertex induced sub-graph Lv of L, but instead simply add loops to each site in v.
Assume that at time t the exclusion process satisfies ηk;t = v ⊂ V . Using the previously
introduced notation we consider the possibly disconnected bipartite sub-graph Lv,vc =
((v, vc), Ev,vc) of L. Then, add a loop ev,v to any v ∈ v. We call the resulting graph
B′t = (V,Σ′k,t) with Σ′k,t = Ev,vct{ev,v|v ∈ v}. Indeed, for a d̄-regular graph L we obtain
|Σk,t| = degk(v) + k. In Figure 32 we illustrate a possible example derived from the
same underlying graph L as in Figure 31 and identical configurations v. The presence of
loops and the absence of connections between vertices in Lv change the behavior of the
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Figure 31: For an underlying 3-regular graph we apply the construction based on the
classical exclusion process. The graph Bt constructed from occupied sites v containing
blue particles and its complement in V colored in pale blue. A particle displacement
happens by drawing uniformly one of the (possibly in two directions) directed edges
and exchanging the state of the vertices connected by said edge. Dashed edges cannot
be used by particles.

process, simply due to changes in the allowed transitions among particles. Furthermore,
the number of edges, taking also into account the loops, has changed from Bt to B′t. The

Figure 32: The graph B′t constructed from occupied sites v colored in blue and its
complement in V colored in pale blue. As in Figure 31 a particle displacement happens
by drawing uniformly one of the directed edges and exchanging the state of the vertices
connected by said edge. When drawing a loop, everything remains the same. Again,
as in Figure 31 dashed edges cannot be used by particles.

exclusion process still consists of drawing one edge uniformly from Σ′k,t and exchanging
the state of the endpoints. Note, that in changing the number of present edges also the
transition probabilities change due to the uniform distribution over Σ′k,t. This renders
the process, in particular, in-homogeneous because the transition probabilities now
depend on the current configuration v while for Bt only d̄ and k played a relevant role,
which are globally fixed parameters.

We reformulate the process ηk from Definition 5.30 on the set of configurations η
with |η| = k for a specific choice of (P η)η∈{0,1}V as a Markov chain on the kPG Lk.
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In contrast to the context in [DiaMeh87] we put our focus on the explicit structure
of the underlying graph which we have introduced previously. The group theoretic
representation of the quotient of suitable symmetric groups will again play a role when
we come back to convergence rates to equilibrium in the cases where said Markov chain
is reversible. We come back to the two given examples in Section 6 and Subsection
7.4.

Starting in Section 7, the focus of our analysis shifts on another type of exclusion
process arising from the Echo Chamber Model which incorporates a structure which
represents the ability of each particle to choose among the free sites adjacent to its
current site. This Markov chain will prove applicable in several contexts.
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6 A Monte-Carlo method to identify densest sub-
graphs

Outline of this section: Particle systems on finite graphs represent in a canonical
form vertex-induced sub-graphs. This section is dedicated to the discussion of a gener-
alized exclusion process which converges to a stationary distribution which assigns to
any particle configuration a weight which is inversely proportional to its density, defined
by its edge density as an induced sub-graph. We complete the chapter by proposing
an algorithmic approach to sampling densest sub-graphs from regular graphs using
MCMC techniques with an underlying Markov chain induced by a generalized exclu-
sion process. We quantify its convergence speed in terms of the geometrical properties
of the associated kPG and give an explicit form of the stationary distribution.

6.1 Problem of identifying densest sub-graphs
The first example of generalized exclusion processes we present in detail in this work
is motivated by the task of finding k-densest sub-graphs in a graph or network of
arbitrary size. This is in particular linked to the community detection problem which
has received wide attention in modern research, for example in [GiNew02] and [Fort10].
The density of any vertex induced sub-graph Lv = (v, Ev) of some graph L = (V,E) on
the subset v of the vertex set V is defined as ρ(v) = |Ev|

|v| , see for example [Mos00]. The
problem of finding the densest sub-graph becomes, then, the maximization problem
which aims at finding the subset v∗ ⊂ V such that ρ(v∗) = maxv∈P(V ), |v|≥1 ρ(v) where
P(V ) is the power set of V . In [Mos00] the author shows that this is an easy task in
the sense that one can find such a sub-graph ”quickly” in the sense of a notion which
exceeds the scope of this work.

Fixing the size of the sub-graph renders the problem vastly more complicated as
being discussed in, among many others, [CorPer84], [FePeKo01] and [KhuSah09]. In
particular, the work in [KhuSah09] and [FePeKo01] discuss the difficulty, and almost
impossibility, to find k-densest sub-graphs, i.e., sub-graphs on exactly k vertices, reli-
ably ”fast” in any graph. Hence, they focus on approximations of such objects using
combinatorial selection methods or related families of problems which, reliably, give
results which are close in density to the desired sub-graph.

We contribute to this discussion a stochastic approach using a generalized exclusion
process on k particles and Monte Carlo simulation. The process is constructed in such a
way that it converges most likely to a densest sub-graph and, even, gives monotonously
sub-graphs of lesser density, i.e., a second densest sub-graph is obtained with second
largest probability, a third densest with third larges probability and so on. We discuss
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the conditions on the underlying graph L and the results in what follows.

6.2 An appropriate GEP

To identify densest sub-graphs we want to construct a generalized exclusion process
ηMC
k using on definition 5.30 by choosing an adequate family of transition matrices

(P θ)θ∈{0,1}|V | . Considering the generalized exclusion process on some graph L illus-
trated in Figure 32 we can propose and quantify a Markov chain Monte Carlo ap-
proach to sampling densest sub-graphs. In what follows, in order to obtain meaningful
results we work under the assumption that both L and Lc are connected graphs. This
assumption may be removed, imposing the difficulty of initial condition dependencies
on disconnected graphs for particle systems. We leave this open to further research
and remain with the assumption on L and Lc.

Consider the generalized exclusion process ηMC
k . We call the associated Markov

chain SMC
k on Lk.

Proposition 6.1. Let k ∈ {1, . . . , n̄ − 1} and consider the Markov chain SMC
k

on Lk = (Vk,Ek). We call its transition matrix PMC
k . Then, it has the form

pMC
k;v,w =



1
degk(v) + k

, ∃〈x, y〉 ∈ E s.t. v4w = {x, y},

k

degk(v) + k
, v = w,

0, otherwise.

The form of the transition matrix follows directly from the construction of B′t in
Figure 32 and the uniform distribution over all edges in B′t as discussed in Subsection
5.5. The stationary distribution πMC

k of SMC
k can consequently be derived directly and

reversibility follows as well.

Theorem 6.2. Let k ∈ {1, . . . , n̄ − 1} and consider the Markov chain SMC
k on

Lk = (Vk,Ek). Then it is aperiodic, irreducible and, hence, ergodic. Furthermore,
it is a reversible chain and the stationary distribution πMC

k is given in terms of
v ∈ Vk by

πMC
k (v) = degk(v) + k

2|Ek|+ k
(
n̄
k

) (6.1)

Based on the transition matrix given by Proposition 6.1 and the stationary distri-
bution given by Theorem 6.2 one can identify SMC

k with a random walk on Lk where
any vertex in Lk has additionally to its incident edges k loops. Indeed, for almost all
cases of k, this is not sufficient to render SMC

k a lazy random walk. Indeed, we can
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quantify this transition.

Lemma 6.3. The random walk SMC
k is lazy if and only if

min
v∈Vk

avg degk(Lv) ≥ d̄− 1.

Proof. Recall that the Markov chain is called lazy if and only if

min
v,v

pMC
k;v,v ≥

1
2 . (6.2)

Therefore, using the expression derived in Proposition 6.1 we obtain that SMC
k is lazy

if and only if for all v ∈ Vk we have

degk(v)
k

+ 1 ≤ 2⇔ d̄− avg degk(Lv) ≤ 1

which proves the claim.

An obvious property is minv∈Vk avg degk(Lv) ≤ d̄ since Lv is a vertex induced sub-
graph and, therefore, the degree of any vertex in Lv is bounded by d̄ which implies
the same for the average. Geometrically, the condition given by Lemma 6.3 leaves,
consequently, only little room for the parameter triple (n̄, d̄, k). Due to the intermediate
position SMC

k takes between the simple random walk on Lk and the lazy random walk
on this state space, we can in general only use that

min
v∈Vk

pMC
k;v,v ≥ γ > 0

for some γ ∈
(
0, 1

2

)
with a phase transition, if for a parameter triple (n̄, d̄, k) we have

minv∈Vk avg degk(Lv) ≥ d̄− 1 which is a geometric condition on L. We use the theory
of evolving sets as well as the results which can be deduced by this perspective on the
evolution of Markov chains over the state space Lk which we presented in Section 4.
In particular, we make use of Theorem 5.21. Note that a tiny part of the calculations
is only true under the assumption, that Conjecture 4.22 is true, as well.
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Theorem 6.4. Let L be a d̄-regular graph on n̄ vertices and k ∈ {1, . . . , n̄ −
1}. Consider the Markov chain on SMC

k the k particle graph Lk and ε > 0.
Additionally, define

ρ(n̄, d̄, k) := 4(n̄− 1)2(n̄− k)2

d̄4

ξ(n̄, d̄, k) := log
((

n̄

k

))
+ log

(
k(n̄− k)
n̄− 1 + k

d̄

)
.

If L ∈
(
Γ(k)
l

)c
then for v,w ∈ Vk and

t ≥ 1 + ρ(n̄, d̄, k)
(

log
(4
ε

)
+ ξ(n̄, d̄, k)

)
(6.3)

the Markov chain SMC
k satisfies∣∣∣∣∣∣∣

(
pMC
k;v,w

)(t)
− πMC

k (w)
πMC
k (w)

∣∣∣∣∣∣∣ ≤ ε

and if L ∈ Γ(k)
l then its mixing time w.r.t. the total variation distance is bounded

by

τmix(ε) ≤ 2000 log2(ε−1)

 log
(3

4

)
(n̄− 1)2

min
v∈Vk

degk(v)2d̄2 + ξ(n̄, d̄, k)

 . (6.4)

Proof. Let γ :=
(
d̄+ 1−minv∈Vk avg degk(Lv)

)−1
and consider the following two

terms which we call the additive constant and the multiplicative, respectively, given
as, firstly,

4(1− γ)2

γ2

log
(

2|Ek|+ k|Vk|
4(min{degk(v), degk(w)}+ k)

)
(
ι(Lk) 2|Ek|+k|Vk|

maxv∈Vk degk(v)+k

)2 (6.5)

and, secondly,
4(1− γ)2

γ2

(
ι(Lk)

2|Ek|+ k|Vk|
maxv∈Vk degk(v) + k

)−2

. (6.6)

Recall that by [Mohar89], which we cited in Lemma 5.18, we can estimate the isoperi-
metric constant from below by a constant times the connectivity of Lk in the form
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ι(Lk) ≥
2
|Vk|

κ(Lk) (6.7)

and we have conjured in Conjecture 4.22 the value of κ(Lk) as κ(Lk) = minv∈Vk degk(v).
This gives us, consequently, a lower bound for

ι(Lk)
2|Ek|+ k|Vk|

maxv∈Vk degk(v) + k
≥ 2 min

v∈Vk
degk(v) avg deg(Lk) + k

maxv∈Vk degk(v) + k

≥ min
v∈Vk

degk(v) avg deg(Lk)
maxv∈Vk degk(v)

using for the last inequality that L ∈
(
Γ(k)
l

)c
. This in addition to maxv∈Vk degk(v) ≤

k(n̄ − k) and Conjecture 4.22 gives the following upper bound for the multiplicative
constant by

4(1− γ)2

γ2

(
ι(Lk)(2|Ek|+ k|Vk|)
maxv∈Vk degk(v) + k

)−2

≤ 4
k2

(
maxv∈Vk degk(v)

avg deg(Lk)

)4 ( avg deg(Lk)
minv∈Vk degk(v)

)2

≤ 4
k2

(
n̄− 1
d̄

)4 ( avg deg(Lk)
minv∈Vk degk(v)

)2

.

Employing the lower bound minv∈Vk degk(v) ≥ d̄, which can be derived easily by using
k ≤ n̄− 1 and the fact that there is at least one empty vertex in L with degree d̄, one
can obtain the following upper bound independent of the geometry of L given by

4
k2

(
n̄− 1
d̄

)4 ( avg deg(Lk)
minv∈Vk degk(v)

)2

≤ 4(n̄− 1)2(n̄− k)2

d̄4
.

Since the additive constant equals the multiplicative constant times a logarithmic term,
we are only going to focus on the logarithmic term in what follows. The average degree
of Lk as well as its relation to the minimal and maximal degree of Lk will play an
essential role and we obtain

log
(

2|Ek|+ k|Vk|
4(min{degk(v), degk(w)}+ k)

)
≤ log

(
2|Ek|+ k|Vk|

minv∈Vk degk(v) + k

)

= log
((

n̄

k

))
+ log

(
avg deg(Lk) + k

minv∈Vk degk(v) + k

)
.

For the second summand we can use the bound we used already above to obtain

log
(

avg deg(Lk) + k

minv∈Vk degk(v) + k

)
≤ log

(
k(n̄− k)
n̄− 1 + k

d̄

)
.
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Therefore, we obtain the upper bound on the additive constant

4(n̄− 1)2(n̄− k)2

d̄4

(
log

((
n̄

k

))
+ log

(
k(n̄− k)
n̄− 1 + k

d̄

))

We now employ some results based on evolving sets presented in [MorPer05]. To
this end, we will focus on lower bounds for Φk(u) := inf

{
∂(S,Sc)
πMC
k

(S)

∣∣∣ πMC
k (S) ≤ u

}
for

u ∈
[
minv∈Vk π

MC
k (v), 1

2

]
as defined in [MorPer05]. In particular, we use that Φ(u) ≥

Φ
(

1
2

)
. The first claim then follows by Theorem 5.21, the second one by [LovKan99].

To conclude the proof of the first claim using the previously derived bounds, note that

S :=
{
S ⊂ Vk

∣∣∣ |S| ≤ |Vk|
2

}
∩
{
S ⊂ Vk

∣∣∣ πMC
k (S) ≤ 1

2

}
6= ∅

and consider S̄ ∈ S. Then,

∂(S̄, S̄c)
πMC
k (S̄)

≥ ∂(S̄, S̄c)
|S̄|

2|Ek|+ k|Vk|
maxv∈Vk degk(v) + k

≥ ι(Lk)
2|Ek|+ k|Vk|

maxv∈Vk degk(v) + k

where we used S̄ ∈
{
S ⊂ Vk| |S| ≤ |Vk|

2

}
for the last estimate and the definition of

the isoperimetric constant of a graph given by Definition 5.17. Since, additionally,
S̄ ∈

{
S ⊂ Vk

∣∣∣ πMC
k (S) ≤ 1

2

}
, taking the infimum over all S ∈

{
S ⊂ Vk

∣∣∣ πMC
k (S) ≤ 1

2

}
we arrive at

Φk

(1
2

)
≥ ι(Lk)

2|Ek|+ k|Vk|
maxv∈Vk degk(v) + k

and, therefore, for all u ∈
[
minv∈Vk π

MC
k (v), 1

2

]
we obtain

Φk(u) ≥ ι(Lk)
2|Ek|+ k|Vk|

maxv∈Vk degk(v) + k
. (6.8)

The second step consists in finding a lower bound for minv∈Vk p
MC
k;v,v. We have already

found in the proof of Lemma 6.3 that

min
v∈Vk

pMC
k;v,v ≥

1
d̄+ 1−minv∈Vk avg degk(Lv)

= γ. (6.9)

Having found the necessary bounds we can apply Theorem 5.21, which is Theorem 5
of [MorPer05], we obtain after integration

∫ 4ε−1

4(πMC
k

(v)∧πMC
k

(w))

4 du
uΦ(u)2 ≤

(
log

(4
ε

)
− log

(
4(min{degk(v),degk(w)}+k)

2|Ek|+k|Vk|

))
(
ι(Lk) 2|Ek|+k|Vk|

maxv∈Vk degk(v)+k

)2 . (6.10)
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After this intermediate step, we can identify the terms in the right hand side of equation
6.10 with the additive constant and the multiplicative constant for which we have found
meaningful upper bounds at the beginning of this proof, such that we obtain the first
claim. The second claim follows by the same estimate for Φk(u) and Theorem 2.2 of
[LovKan99] as well as equation (5) of [MorPer05] using the bound of the additive term
by ξ(n̄, d̄, k) as defined in the theorem.

Note that the constants we used in Theorem 6.4, namely ρ(n̄, d̄, k) and ξ(n̄, d̄, k),
grow at most like a polynomial as n̄ → ∞ since log

((
n̄
k

))
grows at most like n̄ by

Stirling’s approximation and the remaining terms are polynomial in n̄. Consequently,
SMC
k mixes rapidly relative to the size of its actual state space, employing this term

as used in [Sinc92]. Its mixing is, therefore, polynomial fast in terms of the size of the
underlying graph L, which makes it a suitable process for sampling sub-graphs of L.
Surprisingly, the presence of the term depending on γ in the case L ∈

(
Γ(k)
l

)c
allows for

clearer cut constants in terms of the underlying graph L. In the second more precise
bound in terms of the convergence speed, we are stuck with the term minv∈Vk degk(v).
Finding a upper bound on τmix which only depends on the parameters on L without
using trivial estimates corresponds to a meaningful lower bound on minv∈Vk degk(v)
which in turn implies a meaningful upper bound on the density of densest k sub-graphs
of L which is out of the scope of this work and is to the best of our knowledge not an
available result which can be cited.

In the following subsection, we propose an algorithm and the idea behind sampling
densest sub-graphs of L with high probability using the Markov chain SMC

k introduced
in this section and exploiting its properties.

6.2.1 Sampling of densest k-sub-graphs

By the structure of the stationary distribution we obtain an ordering based on the
degree of the vertices, where the probability of drawing a densest sub-graph as t→∞
is smallest since degk(v) = kd̄ − 2|Ev|. On the other hand, this also implies that it is
most probable under πMC

k to draw a least dense sub-graph of L. Lemma 4.20 provides
a link between the densest k sub-graph in L and the least dense k sub-graph in Lc.
Using this, we propose a Markov chain Monte Carlo approach to finding densest k
sub-graphs in a d̄-regular graph with high probability. To this end consider a d̄-regular
simple connected graph L on n̄ vertices and assume that its graph complement Lc
is also connected. Then Lc is by Lemma 4.20 a n̄ − 1 − d̄ regular simple connected
graph. Let k ∈ {1, . . . , n̄− 1} and define SMC

k as the Markov chain associated to the
exclusion process on Lc. Then, by Theorem 6.2 the Markov chain SMC

k converges in
distribution to πMC

k and with maximal probability we obtain a v∗ ∈ Vc
k which induces

a least dense k-sub-graph Lv∗ of Lc. Using Lemma 4.20 we obtain that v∗ induces a
densest k-sub-graph in L.
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Unfortunately, note that by Lemma 3.23 certain restrictions apply to L due to the
assumption that both L and Lc are connected. After this informal discussion we now
give the concrete approach to this simulation.

6.2.2 A possible algorithm

We propose the following algorithm which only uses the local information of L and the
current configuration v of SMC

k . This for efficient simulations since it is not necessary to
construct the whole state space Lk with

(
n̄
k

)
vertices and the size of the edge set given by

Proposition 4.9. It only depends on the neighborhood of all v ∈ v. Exploiting the fact
that L is assumed to be d̄-regular, we can bound the number of states we have to access
in each turn by d̄ · k which is also a very crude upper bound for degk(v). We, again,
use multi-sets to describe the algorithm. This can be replaced in a implementation by
any mutable list-type object which allows multiple times the same entry. When we
define X = ∅ as a multi-set, then it is implied that all properties with respect to set
operations discussed in Subsection 3.2 are satisfied, e.g., (X∪ {v})∪ {v} = X∪ {v, v}.
We can conclude this section, therefore, with an algorithm which finds rapidly densest

Algorithm 1 Particle based algorithm to simulate SMC
k .

Require: Terminal time for simulation, e.g. tmix, number of trials m, graph L
initialize t = 0
Define X = ∅ as multi-set
while i ≤ m do

draw initial state v ∈ Vk

Set SMC
k,0 = v

while t ≤ tmix do
Construct bipartite graph B′(v) as in Figure 32
Draw uniformly an edge 〈v, w〉 from B′(v)
update SMC

k,t+1 = (v\{v}) ∪ {w}; t = t+ 1
end while
X = X ∪Sk,tmix

i = i+ 1; t = 0
end while
return X statistic of m final states after tmix simulation steps.

sub-graphs with high probability, contributing to the research on densest sub-graphs
from a probabilistic point of view. Furthermore, we had the opportunity to show the
importance of a detailed understanding of the underlying state space Lk as a graph on
subsets of the vertex set of some underlying graph. In particular, the geometric results
as well as knowledge about the structure of the vertex set allowed for the bounds in
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Theorem 6.4. Finally, the proposed algorithm benefits from the particle perspective in
that it only needs to consider at most kd̄ vertices in each step which is a huge reduction
from considering the whole vertex set Vk. We turn now to a particle system which
arises from a reduced version of the echo chamber model and demonstrate that with
increasing complexity of the Markov chain on Lk further knowledge of the structure of
Lk gives insights in possibly intuitive behavior of the Markov chain.
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7 The Echo Chamber Model: a related exclusion
process

Outline of this section: In this section we show a possibility to identify a reduced
version of the Echo Chamber Model, defined in Section 1, with a generalized exclusion
process on an appropriate state space. To this end, we consider first the hereinbelow
described process, in which we remove the labels from the setting. This allows us to
get an in depth understanding of local structures of the edges and the implications on
long time behavior of the process. The properties of the kPG Lk derived in Section 4
will be indispensable for our analysis, where the edges will take the role of the particles
on some more abstract state space, namely the line-graph of the underlying graph.

7.1 Modeling relationship dynamics

In this section we are going to analyze the underlying relationship dynamics of the
Echo Chamber Model interpreted as a particle system on a strongly regular graph. We
assume that edges move always as described by the dynamics in the introduction of
this section as well as hereinafter. The opinions will be reintroduced in Section 8 as a
random environment which renders certain states absorbing.

We, consequently, consider, henceforth, the following sequence of random graphs
(Gt)t∈N = ((V , Et))t∈N where the edge set undergo a transformation between two sub-
sequent graphs Gt and Gt+1 according to the hereinafter described procedure.

• Draw uniformly an edge 〈A,B〉 ∈ Et.

• Define N〈A,B〉 = {e = 〈c, d〉 6∈ Et\{〈A,B〉}|k ∈ {A,B} or l ∈ {A,B}}.

• draw uniformly E from N〈A,B〉,

• set Et+1 = (Et\{〈A,B〉}) ∪ {E}.

We illustrate the procedure in Figure 33. This reduced process will never stop moving
due to the randomness involved and the absence of absorbing states. The central
question concerning long-term behavior of this process focuses, consequently, on the
convergence in a probabilistic sense to some invariant distribution and the convergence
speed. In Subsection 7.2 we are going to develop a new perspective on this model,
translating it to a dynamic particle system on a related graph and we can deduce
various properties about its long-term behavior by identification with a Markov chain
and methods from Markov chain theory.
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1 2

34

1 2

34

1 2

34

Figure 33: Change of relationships from time step t to t+ 1 on a graph with 4 vertices
and 4 edges. The red edge is picked and moved according to the prescribed dynamics.
The number of edges is preserved by the process.

7.2 A GEP interpretation on strongly regular graphs

We consider a graph G = (V , E) with vertex set V and edge set E and the complete
graph Ĝ = (V , Ê) on the vertex set V . We can understand the edges in Ĝ as the
possible positions of each edge in G under the dynamics defined in the previous section.
The neighborhood relationship of edges and, hence, a direct interpretation of their
transitions remains ambiguous. To shed light on this problem we consider the line
graph L = (Ê , E) of Ĝ as defined in Definition 3.6. Each 〈v, w〉 ∈ Ê carries a label in
{0, 1} . Since Ĝ is a complete graph its corresponding line graph LĜ is strongly regular
with parameters srg

(
n(n−1)

2 , 2(n− 2), n− 2, 4
)
, see [Har71].

Consider the previously introduced process (Gt)t≥0 and the line graph L := LĜ of
the complete graph Ĝ induced by any Gt for any arbitrary t. A site e ∈ L is occupied
at time t if and only if e is an edge in Gt. We find that edges in Gt can be identified
with particles on the line graph of Ĝ as depicted in Figure 34. We first construct the
line graph L from Ĝ and then place the edges which exist in Gt as particles on the
corresponding vertices of L. Since the step from Gt to Gt+1 corresponds to changing
the place of one particular edge, we can interpret this step as a movement of one of the
particles on L. This movement is constrained by two factors. First, multiple edges are
not allowed in Gt for all t and, second, any edges can only be transformed to an edge
which shares at least one vertex with the original one. Therefore, at most one particle
can occupy a vertex in L and if a particle moves it moves to a neighboring vertex or
stays in place. Consequently, we can associate the original dynamics with a particle
system on a graph with state dependent transition probabilities. A possible transition
is illustrated in Figure 35. Additionally, since two particles may never occupy the
same site the new process corresponds to an exclusion process. Indeed, the drawing
procedure of edges, defined hereinabove, leads to the following generalized exclusion
process. Let L = (V,E) be a simple connected graph and k ∈ {1, . . . , |V |}. We consider
the special case η̂k of Definition 5.30 where the transitions at time t are defined by

1. draw uniformly Ut ∈ η̂k;t and Wt ∈ (NUt\η̂k;t) ∪ {Ut}
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1 2

34

line graph
particle
interpretation

〈1, 2〉

〈2, 3〉

〈3, 4〉

〈2, 4〉

〈4, 1〉

〈1, 3〉

〈1, 2〉

〈2, 3〉

〈3, 4〉

〈2, 4〉

〈4, 1〉

〈1, 3〉

Figure 34: Transformation of existing edges (blue) in G to particles (blue) occupying
vertices in the line graph L of Ĝ.

2. set η̂k;t+1 = (η̂k;t\{Ut}) ∪ {Wt}.

To visualize the newly defined process η̂k on L, we come back to the example used in
the previous subsection as well as in Figure 34.

〈1, 2〉

〈2, 3〉

〈3, 4〉

〈2, 4〉

〈4, 1〉

〈1, 3〉

〈1, 2〉

〈2, 3〉

〈3, 4〉

〈2, 4〉

〈4, 1〉

〈1, 3〉

〈1, 2〉

〈2, 3〉

〈3, 4〉

〈2, 4〉

〈4, 1〉

〈1, 3〉

Figure 35: A particle moving from one vertex to another adjacent one, induced by the
dynamics of η̂k.

7.3 Properties of the associated Markov chain
A basic but necessary result is the existence of a Markov chain on Lk which represents
the particle movement on L. We defined the kPG Lk by considering the entire parti-
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cle configuration at any time t and define its transitions by the deplacements of the
particles. Indeed, the edges in Lk are defined to capture the movement of the particles
from a perspective of configurations.

Theorem 7.1 (Canonical representation of η̂k). Let k ∈ {1, . . . , n̄ − 1}, L a
connected graph, ηk the k particle exclusion process on L and (Ω,F ,P). Then there
exist a probability space (Ω,F ′,P′) and a Markov chain Sk on it with transition
Matrix P4k and state space Lk such that for any w, v ∈ Vk and t ∈ N the equation

P[∀v ∈ v : ηk;t(v) = 1|∀w ∈ w : ηk;0(w) = 1] = P′[Sk;t = v|Sk;0 = w]

=
(
P4k

)t
w,v
.

is satisfied.

Proof. Let ω ∈ Ω and consider for t ≥ 0 the configurations η̂k;t(ω) and η̂k;t+1(ω). Then
there is at most one i ∈ {1, . . . , k} such that η̂ik;t(ω) 6= η̂ik;t+1(ω) and η̂ik;t(ω) ∼L η̂ik;t+1(ω)
where a site u ∈ L always satisfies u ∼L u. Since η̂k;t(ω) ∈ Vk for all t ≥ 0 we can
define Sk;0(ω) := η̂k;0(ω). Furthermore η̂k;1(ω) ∼ η̂k;0(ω) = Sk;0(ω) we can define one
step of Sk via Sk;1(ω) := η̂k;1(ω). Define inductively Sk;t(ω) for all ω ∈ Ω and t ≥ 0.
Then Sk is a Markov chain on Lk.

Having established the existence of the associated Markov chain, we can investigate
the form of its transition matrix. The explicit form of its transition probabilities are
given by Lemma 7.2 and Theorem 7.3.

Lemma 7.2. Let k ∈ {1, . . . , n̄ − 1}, v ⊂ V , |v| = k denote by Lv the vertex
induced sub-graph of v in L and for v ∈ v write degLv(v) the degree of v in Lv.
Define the matrix P4k for v,w ∈ Vk by

p4k;v,w =



1
k

1
d̄− degLv(v) + 1

, v4w = {v, w} with v ∼L w,

∑
v∈v

1
k

1
d̄− degLv(v) + 1

, v = w,

0, otherwise.

(7.1)

Then, P4k is a stochastic matrix.

Proof. To verify that P4k =
(
p4k;v,w

)
v,w∈Vk

defines a stochastic matrix we calculate
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explicitly the row-sums.∑
w∈Vk

p4k;v,w =
∑
w∼v

p4k;v,w +
∑
v∈v

1
k

1
d̄− degLv(v) + 1

=
∑
v∈v

∑
w∼Lv
w 6∈v

1
k

1
d̄− degLv(v) + 1

+
∑
v∈v

1
k

1
d̄− degLv(v) + 1

=
∑
v∈v

d̄− degLv(v)
k

1
d̄− degLv(v) + 1

+
∑
v∈v

1
k

1
d̄− degLv(v) + 1

= 1.

We have, hence, shown that the previously defined matrix P4 is indeed a stochastic
matrix from which we can define a Markov chain on Lk. It turns out that this Markov
chain has a one to one correspondence with the generalized exclusion process defined
at the beginning of this section.

Theorem 7.3. Let L = (V,E) be d̄-regular graph with |V | = n̄ and k ∈ {1, . . . , n̄−
1}. The transition matrix of the Markov chain Sk associated to η̂k is given by
P4k .

Proof of Theorem 7.3. The structure of the transition matrix follows directly from con-
sidering the particle system on L and using the fact that all random variables are
uniformly distributed over their respective discrete state spaces. This change of per-
spective is justified by Theorem 7.1.
Let v,w ∈ Vk. Then the transition from v to w is only possible if v4w = {v, w} and
〈v, w〉 ∈ E. Hence, pk;v,w = 0 if this is not the case. Denote for v ∈ v by NL

v,v set of
all neighbors of v in L not being elements of v. Then |NL

v,v| = d̄ − degLv(v). Possible
transitions are drawn from the set NL

v,v ∪{v}. Assume there is at least one edge 〈v, w〉
in L for a given v. The chain Sk may only transition from v to w if v4w = {v, w}
and 〈v, w〉 ∈ E. Consequently, to transition from v to w draw first v with probability
k−1 and then w among all neighbors of v in L, which are not included in v. Since
drawing is done uniformly the probability to draw w is (d̄ − degLv(v) + 1)−1. Hence
for v,w ∈ Vk with v4w = {v, w} and 〈v, w〉 ∈ E we obtain

p4k;v,w = k−1(d̄− degLv(v) + 1)−1. (7.2)
Finally if v = w we are looking for the probability to stay in the same state. This
happens when drawing a v ∈ v and then again v from the set NL

v,v∪{v}. This happens
consequently with probability

p4k;v,v =
k∑
i=1

1
k

1
d̄− degLv(v) + 1

.



126 7 THE ECHO CHAMBER MODEL: A RELATED EXCLUSION PROCESS

7.3.1 Dynamic perspective on the transition probabilities

In fact, the transition probabilities can be understood as follows. Given a certain
configuration of particles v = {v1, . . . , vk}, construct the following set of graphs. For
any i ∈ {1, . . . , k} define L{vi},vc = ({vi}tvc, E{vi},vc) with 〈vi, w〉 ∈ E{vi},vc if and only
if w ∈ vc or w = vi. Then, at every time t ∈ N a transition occurs by first uniformly
drawing a graph {L{vi},vc |i = 1, . . . , k} and then uniformly an edge e ∈ E{vi},vc . We
visualize this procedure in Figure 36. In comparison with the constructions described

Figure 36: For an underlying 3-regular graph we apply the construction discribed in
this subsection. The set of graphs {L{vi},vc |i = 1, 2, 3} constructed from occupied
sites v is displayed in the three outer bubbles. In each case one particular particle
is allowed to move along the indicated directed edges. The corresponding bubble is
chosen uniformly out of the three possible ones.

in Subsection 5.5 and underlined by Figures 31 and 32 we see that the proposed
exclusion process has a stronger local dependence in its behavior than the classical
ones. In particular, the transition probabilities in the classical settings do not depend
directly on the situation of each particle but rather on the configuration of edges among
all particles once the graphs Bt or B′t are constructed. While still being challenging
in many aspects, the combinatorial obstacles are greatly reduced by this property as
we will analyze in more detail in Subsection 7.3.4. But first, we are going to develop
some results for the Markov chain Sk to obtain a clearer picture on its behavior and
the implications of the local dependence structure.
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7.3.2 Irreducibility, aperiodicity and ergodicity

In this section we are going to establish basic properties of Sk independent of the
graph structure as long as L is a connected simple graph. We base the results on the
properties of Lk proven in Section 4.

Theorem 7.4. The Markov chain Sk on Lk is irreducible and aperiodic.

Proof. Let v,w ∈ Vk such that p4k;v,w > 0. Then also p4k;w,v > 0 even though equality is
not necessarily satisfied. Furthermore every 〈w, v〉 ∈ Ek implies that p4k;v,w > 0. Since
Lk is connected by Proposition 4.2 we obtain that the chain is irreducible.
The aperiodicity of Sk follows directly from the fact that we can construct a state
v ∈ Vk such that p4k;v,v > 0.

By Theorem 5.10 on Markov chains on finite state spaces, we can conclude from
Theorem 7.4 that Sk is ergodic, i.e., there is a stationary distribution and the chain
converges independently of its initial distribution to said stationary distribution.

Theorem 7.5. Let L = (V,E) be a d̄-regular graph, n̄ := |V | and k ∈
{1, . . . , n̄ − 1}. Let Lk = (Vk,Ek) be defined as in Definition 4.1. Then there
exists a distribution π̃k on Vk such that the Markov chain Sk converges in distri-
bution to π̃k independently of its initial distribution ν0.

Having found an answer to this classical question we can wonder about the structure
of π̃k as a function of L and other properties of Sk which govern the long-time behavior,
like reversibility. While the classical exclusion process is always reversible, it turns out
the choice exclusion process implies a structure on the transition matrix of Sk which
is only reversible in rare cases. The Echo Chamber Model, therefore, gives rise to a
qualitatively different kind of exclusion process as has been investigated before.

7.3.3 Lumpability and isomorph bipartite sub-graphs

In this subsection we are going to develop the idea of lumping the state space in detail,
as defined in Definition 5.13. Due to the sensitivity of the Markov chain Sk with
respect to the number of particles as well as the geometry of the underlying graph, we
have to apply sensitive tools based on as much information as possible from each sub-
graph induced by a set of particles v ∈ Vk. It turns out that the bipartite sub-graphs
Lv,vc play an essential role. In fact, they provide a stronger form of lumpability for Sk

when lumping with respect to the degree of v in Lk is not possible, i.e., in almost all
non-reversible cases.
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Proposition 7.6. Let k ∈ {1, . . . , n̄− 1} and let v,w ∈ Vk. Consider the by de-
creasing size ordered vectors (p4k;v,u)u∈Vk , (p4k;w,u)u∈Vk , (p4k;u,v)u∈Vk and (p4k;u,w)u∈Vk .
Then, Lv,vc

∼= Lw,wc if and only if these vectors satisfy the identities

(p4k;v,u)u∈Vk = (p4k;w,u)u∈Vk
(p4k;u,v)u∈Vk = (p4k;u,w)u∈Vk .

Proof. The claim follows since the bipartite graphs are isomorphic and, hence, any
transition from or to v, defined by an edge from v to vc can be translated to a transition
from w to wc. In particular, assuming that v ∈ v makes the transition, the number
of neighbors is given by d̄ − degLv(v) again using the isomorphism between Lv,vc and
Lw,wc there is a unique w ∈ w with d̄ − degLv(v) neighbors. Consequently, for any
transition probability p4k;v,u we can construct a transition from w to some neighbor
such that p4k;v,u = p4k;v,u. Therefore, we obtain (p4k;v,u)u∈Vk = (p4k;w,u)u∈Vk .

Since Lv,vc defines the whole neighborhood of v in Lk the converse for (p4k;u,v)u∈Vk =
(p4k;u,w)u∈Vk is also true.

The inverse direction is true since the transition probabilities p4k;v,u uniquely define
the number of particles in the neighborhood of any particle v ∈ v and the inverse
direction p4k;u,v defines all neighbors of v which can be created by displacing a single
particle v. Consequently, the whole vectors (p4k;v,u)u∈Vk and (p4k;u,v)u∈Vk define all pos-
sible transitions and, hence, the bipartite graph Lv,vc . Consequently, if the vectors
coincide for v,w ∈ Vk, then, we obtain Lv,vc

∼= Lw,wc .

Hence, two configurations v,w which satisfy Lv,vc
∼= Lw,wc are seen as identical

when it comes to transitions for the Markov chain Sk. Additionally, by defining the
equivalence relation v ∼ w if and only if Lv,vc

∼= Lw,wc and using the statement as well
as the proof of Proposition 7.6 we find that for a fixed v ∈ Vk and w ∈ Vk such that
Lv,vc

∼= Lw,wc we have the identity |{u ∈ Vk|u ∼ v, 〈u, v〉 ∈ Ek}| = |{u′ ∈ Vk|u′ ∼
w, 〈u′,w〉 ∈ Ek}| and there is a bijection Φ : {u ∈ Vk|u ∼ v, 〈u, v〉 ∈ Ek} → {u′ ∈
Vk|u′ ∼ w, 〈u′,w〉 ∈ Ek} such that p4k;v,u = p4k;w,Φ(u). This leads us to the realization
that ∑u∼v p

4
k;v,u = ∑

u′∼w p
4
k;w,u′ which forms the basis for the following central result.

Theorem 7.7. Let L = (V,E) be a d̄-regular graph with n̄ = |V | and k ∈
{1, . . . , n̄− 1}. Denote by Lk = (Vk,Ek) the k-particle graph and define for
v,w ∈ Vk the equivalence relation v ∼ w if and only if Lv,vc

∼= Lw,wc. For
fixed v define [vi] := {u ∈ Vk|u ∼ vi} the equivalence class of vi and denote by l
the number of distinct equivalence classes. Then, the Markov chain Sk is strongly
lumpable with respect to the partition {[v1], . . . , [vl]}.
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Proof. We have to show that for any w1,w2 ∈ [vi]

∑
u∈[vj ]

p4k;w1,u =
∑

u∈u∈[vj ]
p4k;w2,u.

The equality follows directly by Proposition 7.6 and the following observation. For
w1,w2 ∈ [vi] and u1 ∈ [vj] with 〈w1, u1〉 ∈ Ek we have w14u1 = {w, u}. Let Φ be
the isomorphism between Lw1,wc1

and Lw2,wc2
. There is a unique edge in Lw2,wc2

, namely
〈Φ(w),Φ(u)〉, degLw1 (w) = degLw2 (Φ(w)) and for u2 := ({Φ(w1)|w1 ∈ w1}\Φ(w)) ∪
{Φ(u)} we have u1 ∼ u2 by construction. Consequently, for any summand in the first
sum, we find a corresponding summand in the second sum and vice versa such that
they are equal.

Lumpability gives rise to the possibility to consider the Markov chain on a smaller
state space and in an aggregated form. While, usually, this makes it impossible to
make local statements for example on the specific value of π̃k(v) for some v ∈ Vk

about Sk based on the lumped chain, the stronger form of lumpability implied by
Proposition 7.6 allows to formulate further deductions. A central one is the structure
of the stationary distribution π̃k of Sk.

Theorem 7.8. Let L = (V,E) be a d̄-regular graph with n̄ = |V | and k ∈
{1, . . . , n̄− 1}. Denote by π̃k the stationary distribution of Sk. Then, for all
equivalence classes [v] under the equivalence relation ∼ defined in Theorem 7.7
all v,w ∈ [v] satisfy the identity π̃k(v) = π̃k(w).

We are going to present, first, an intuitive approach, which is based on the idea that
by Proposition 7.6 two equivalent vertices v,w ∈ Vk are ”identical” when it comes to
their respective probability in- and out-”flow” and the approach that the equality of
the average |[v̄]|−1π̃k([v̄]) and π̃k(w) for an arbitrary w ∈ [v̄] gives the claim we are
looking for. The following calculations are only correct under the assumption that for
any v,w ∈ [v̄] we have for any equivalence class [ū] the identity

∑
u∈[ū]

π̃k(u)p4k;u,v =
∑
u∈[ū]

π̃k(u)p4k;u,w. (7.3)

While there are u, u′ ∈ [ū] such that the equality p4k;u,v = p4k;u′,w is satisfied we cannot
make a similar claim about π̃k(u)p4k;u,v and π̃k(u′)p4k;u′,w. This leads to a recursive
statement where the truth of the claim for one equivalence class [v̄] depends on the
truth of the claim for all neighboring equivalence classes [ū]. Assuming, then, 7.3 is
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satisfied we obtain for a fixed w ∈ [v̄]

π̃k([v̄]) =
∑

[ū]∈Vk�∼

π̃k([ū])p̂[ū],[v̄] =
∑

[ū]∈Vk�∼

∑
u∈[ū]

π̃k(u)
∑
v∈[v̄]

p4k,u,v

=
∑

[ū]∈Vk�∼

∑
u∈[ū]

∑
v∈[v̄]

π̃k(u)p4k,u,v =
∑

[ū]∈Vk�∼

∑
v∈[v̄]

∑
u∈[ū]

π̃k(u)p4k,u,v

7.3=
∑

[ū]∈Vk�∼

∑
v∈[v̄]

∑
u∈[ū]

π̃k(u)p4k,u,w = |[v̄]|
∑
u∈Vk

π̃k(u)p4k,u,w = |[v̄]|π̃k(w).

This would lead to the claim of Theorem 7.8 but the problem now lies in proving
7.3. This poses, again, a recursive problem in terms of the neighborhoods of each
v ∈ [v̄] which is due to the missing information on the local structure of Lk inacces-
sible. Indeed, we need a global perspective on Lk, which is based on cycles and their
identification for equivalent vertices v,w.

Lemma 7.9. Let L = (V,E) be a d̄-regular graph and v,w ∈ Vk and v,w ∈ [v̄]
for some [v̄] ∈ Vk�∼. Let l ∈ N. Then for any cycle of length l from v to v there
is a cycle from w to w of length l. Additionally, the number of distinct cycles
from v to v equals the number of distinct cycles from w to w.

Proof. The proof works constructively, based on the fact that for any neighbor u of v
we can find a neighbor û of w such that Lu,uc

∼= Lû,ûc . This allows us to iteratively
construct a cycle from w to w based on a cycle from v to v.

For l ∈ N denote by φv a cycle from v to v. As mentioned in the introduction, we
find to φv(2) a neighbor u of w such that Lφv(2),φv(2)c

∼= Lu,uc by replacing w ∈ w by
u ∈ wc where w is the image of v ∈ v and u the image of v′ ∈ vc under the isomorphism
given by Lv,vc

∼= Lw,wc and v4φv(2) = {v, v′}. We call φw(1) := w and φw(2) := u.
Restarting the same procedure for φv(2) and φv(3) in combination with φw(2) we obtain
iteratively a cycle from w to w and this cycle has length l since, otherwise, there is an
index l′ < l such that φw(l′) = w and applying the previous construction to φw(l′ − 1)
leads to φv(l′) = v which is a contradiction.

By the previous construction, there are at least as many cycles from w to w as are
from v to v. But by exchanging the roles of v and w, which is possible due to the
symmetry of the equivalence relation, we obtain also the inverse sense of the inequality
such that there are as many cycles from w to w as are from v to v.

Based on this geometric property of Lk we can analyze the stationary distribution
of Sk as discussed in Theorem 7.8 using first return times.

Proof of Theorem 7.8. Let v,w ∈ [v] and consider the expected first return time Ev[Tv].
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Then, by definition
Ev[Tv] =

∞∑
l=1

lP[Tv = l|Sk;0 = v]

and
P[Tv = l|Sk;0 = v] =

∑
φv cycle, |φv|=l
φv(1)=v=φv(l)

p4k;φv(1),φv(2) · . . . · p
4
k;φv(l−1),φv(l).

Using the construction from the proof of Lemma 7.9 and the property stated in Propo-
sition 7.6 iteratively along the constructed path φv we obtain that for any cycle φv the
associated cycle φw gives rise to the equality

p4k;φv(1),φv(2) · . . . · p
4
k;φv(l−1),φv(l) = p4k;φw(1),φw(2) · . . . · p

4
k;φw(l−1),φw(l)

and, moreover,

P[Tv = l|Sk;0 = v] =
∑

φv cycle, |φv|=l
φv(1)=v=φv(l)

p4k;φv(1),φv(2) · . . . · p
4
k;φv(l−1),φv(l)

=
∑

φw cycle, |φw|=l
φw(1)=w=φw(l)

p4k;φw(1),φw(2) · . . . · p
4
k;φw(l−1),φw(l)

= P[Tw = l|Sk;0 = w].

Consequently, we can conclude

Ev[Tv] =
∞∑
l=1

lP[Tv = l|Sk;0 = v] =
∞∑
l=1

lP[Tw = l|Sk;0 = w] = Ew[Tw] (7.4)

and by π̃k(v) = Ev[Tv]−1 we obtain the claim.

From Theorem 7.8 we can conclude that it is in fact not the internal structure of a
configuration, which is defining for the values of the stationary distribution but their
connection with the remainder of the graph. In particular, this separates the vertex
set of Lk more finely than can be done simply by the degree of each vertex. Since the
level sets, defined with respect to the stationary distribution, represent the elements
on which Sk acts interchangeably, we can conclude that the Markov chain, which we
defined, with its intricate transition probabilities, sees the difference between a config-
uration and its environment and not only the internal structure of the configuration.
This is a standing theory in systems theory, a sub-field of the social sciences. For exam-
ple, the work by Niklas Luhmann, see for example [Luh84] or [Luh98] for more details,
speaks exactly of this property in social systems. Luhmann focuses on communication
and, therefore, communication paths, i.e., relationships, as the central property which
forms a social system. He proposed in his work a paradigm shift from the consider-
ation of a constituent as part of a whole to the difference between the whole system
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and its environment as the defining feature of a social system. We find that our pro-
cess exhibits exactly this property. Two configurations are different if their respective
differences with their respective environments are not congruent. This underlines that
our choice for the process’ transition probabilities are not simply arbitrary but lead in
fact to results which are coherent with considerations in the social sciences, by which
the model is motivated.

After a short excursion into the social sciences and systems theory, we return to the
mathematical properties of Sk. Indeed, the technique used in the proof of Theorem
7.8 can be extended to characterizing hitting times of Sk in Lk.

Proposition 7.10. Let L = (V,E) be a d̄-regular graph and v,w ∈ Vk and
v,w ∈ [v̄] for some [v̄] ∈ Vk�∼. Then, for any u ∈ Vk there is a u′ ∈ [u] such
that

Ev[Tu] = Ew[Tu′ ]. (7.5)

Proof. The proof follows since the constructions made in the previous two proofs may
be extended to paths instead of cycles. To this end, take path φ as in the proof of
Lemma 7.9 from v to u and construct a corresponding path φ iteratively from w to some
u′ ∈ Vk. Indeed, one can observe that u ∼ u′ since φ(0) = v ∼ w = φ′(0) and by the
same argument as in the proof of Lemma 7.9 we obtain φ(1) ∼ φ′(1) and, inductively,
φ(i) ∼ φ′(i) for any i ∈ {1, . . . , |φ|}, which implies u ∼ u′. By the same argument as in
the proof of Theorem 7.8, writing the expected value as sum of transition probabilities
along paths an Proposition 7.6 we obtain the claim.

Since further properties of hitting times can be found when the Markov chain is
reversible, as for example discussed at length in [AldFi02], therefore, on the form of
the stationary distribution, we now turn to the analysis of the reversible cases of Sk.

7.3.4 Stationary distribution and reversibility

Being most interested in the long time behavior of Sk, we focus now on its limiting
behavior for t → ∞. Evidently, the previous section provides the necessary proper-
ties to show that indeed the convergence towards a stationary distribution is satisfied.
We proved this, nonetheless, briefly but rigorously recalling the classical results from
Markov chain theory in Theorem 7.5. Additionally, we obtained a geometric character-
ization of the stationary distribution but without the possibility of giving an explicit
expression due to the complicated structure implied by k sub-graphs. Under addi-
tional assumptions we can, nonetheless, find the desired explicit form and implications
on the geometry of the graph L. The identification of the aforementioned stationary
distribution in special cases will, subsequently, be our focus. To this end, we try to
establish reversibility but fail to do so on a large class of graphs and even show that, in
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contrast to the classical exclusion process discussed in [DiaSal93], our adapted version
is not always reversible. This task will keep us occupied until the end of this section
where we draw multiple conclusions and point towards implications for the initially
motivating social network model.

Additionally, for an explicit expression of the stationary distribution as well as
characterizations of the hitting times, reversibility of Sk may give an approach to the
analysis. It will turn out, that the reversibility Sk depends on the choice of k and d̄.
We are going to discuss in what follows a range of cases depending on d̄ and k for which
reversibility can be proven directly. This will, later in Subsection 7.3.6 be the starting
point for the analysis of convergence speeds in the reversible case, in particular, in the
sense of deriving bounds on the Cheeger constant of the process.

Proposition 7.11. Let k ∈ {1, 2} and recall that Dk
l := {v ∈ Vk|degrk(v) = l}.

Then Sk is reversible. The corresponding stationary distributions are given by

k = 1 : π̃k(v) = d̄+ 1
2|Ek|+ |Vk|

, (7.6)

k = 2 : π̃k(v) =



d̄+ 1
C d̄

2
, if degrk(v) = 2d̄,

d̄

C d̄
2
, if degrk(v) = 2(d̄− 1)

(7.7)

where C d̄
2 = |D2

2d̄|(d̄+ 1) + |D2
2(d̄−1)|d̄.

Proof. If k = 1 the process Sk corresponds to a random walk on a regular graph
with uniform probability to leave along any edge or stay at the current vertex. The
statement follows, hence, by classical Markov chain theory.
In the case k = 2 we check that the probability vector π̃k satisfies the detailed balance
equation. To this end, consider first the transition matrix P4. If k = 2 it takes for
v,w ∈ Vk with v ∼ w the form

p42;v,w =


1

2(d̄+ 1)
, if degrk(v) = 2d̄

1
2d̄
, if degrk(v) = 2(d̄− 1).

It is easy to check that these cases are exhaustive. Evidently, if degrk(v) = degrk(w)
detailed balanced equation is satisfied. Assume now degrk(v) 6= degrk(w) and without
loss of generality degrk(v) = 2d̄. Then

π̃k(v)p42;v,w = d̄+ 1
2C d̄

2

1
d̄+ 1

= 1
2C d̄

2
= d̄

2C d̄
2

1
d̄

= π̃k(w)p42;w,v.
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Hence, π̃k defines a reversible stationary measure which is unique by ergodicity of Sk.
The term C d̄

2 = |D2d̄|(d̄ + 1) + |D2(d̄−1)|d̄ indeed normalizes π̃k such that it is, in fact,
a stationary distribution.

Evidently, in this case we can exploit the structure of the set of degrees of Lk, since
there are only two distinct ones. This structure arises also when k = n̄− 2, which we
discuss in what follows.

Proposition 7.12. Let k ∈ {n̄−1, n̄−2} and recall that Dk
l = {v ∈ Vk|degrk(v) =

l}. Then Sk is reversible. The corresponding stationary distributions are given
by

k = n̄− 1 : π̃k(v) = d̄+ 1
2|Ek|+ |Vk|

, (7.8)

k = n̄− 2 : π̃k(v) =


3

C d̄
n̄−2

, if degrk(v) = 2d̄,

2
C d̄
n̄−2

, if degrk(v) = 2(d̄− 1)
(7.9)

where C d̄
n̄−2 := |Dk

2d̄|3 + |Dk
2(d̄−1)|2.

Proof. First, recall that Lk ∼= Ln̄−k by Proposition 4.4. Hence, we observe that Ln̄−1 is
a regular graph with degree d̄ and Sk a random walk. The formula for the stationary
distribution follows by classical theory.

In the case k = n̄ − 2 we distinguish again two cases based on the degrees of the
considered vertex v. For two vertices v,w ∈ Vk with degrk(v) = degrk(w) the detailed
balance equation is satisfied for the given π̃k. Assume now that degrk(v) 6= degrk(w)
and without loss of generality degrk(v) = 2d̄ and degrk(w) = 2(d̄− 1). Then

p4n̄−2;v,w = 1
n̄− 2

1
d̄− (d̄− 2) + 1

= 1
3(n̄− 2)

and
p4n̄−2;w,v = 1

n̄− 2
1

d̄− (d̄− 1) + 1
= 1

2(n̄− 2) .

Hence,
π̃k(v)p42;v,w = 1

C d̄
n̄−2(n̄− 2)

= π̃k(v)p4n̄−2;w,v. (7.10)

Consequently, π̃k is a reversible measure and normalized, hence, a reversible distribu-
tion and, therefore, the unique stationary distribution.
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Even though the transition probabilities for the cases k = 2 and k = n̄− 2 are not
identical, the structure of Lk provides, nonetheless, the symmetry to obtain reversibility
in both cases by similar arguments as can be seen in the corresponding proofs. The
idea remains to exploit that transition probabilities between states of same degree are
identical. Hence, only transitions between states of different degree are to be considered
to prove detailed balance.
This idea can be extended to any case where transition probabilities between states
of different degree only depend on the degree and not on the local structure of the
specific states. This yields the following results.

Proposition 7.13. Let k ∈ {1, . . . , n̄− 1} and consider the cycle Cn̄. For v ∈ Vk

define lv = |{degk(w)|degk(w) > degk(v)}| and dk = |{degk(w)|w ∈ Vk}|. The
stationary distribution π̃k of Sk on Lk induced by the k-particle exclusion process
on Cn̄ is given by

π̃k(v) = 2lv3dk−lv−1

C2
k

(7.11)

where C2
k is a normalization constant. Additionally, Sk is reversible.

See Lemma 4.23, Lemma 4.26 and Lemma 4.27 for explicit expressions of dk and lv.

Proof of Proposition 7.13. First of all, note that for 〈v,w〉 ∈ Ek we have p4k;v,w ∈
{(2k)−1, (3k)−1} and p4k;v,w 6= p4k;w,v if and only if degk(v) = degk(w)±2. Without loss of
generality, assume that p4k;v,w = (2k)−1 and p4k;w,v = (3k)−1, i.e., degk(v) = degk(w)−2.
Then, lv = lw − 1 and, hence, we obtain

π̃k(v)p4k;v,w = 2lv−13dk−lv−1

kC2
k

= 2lw3dk−lw−1

3kC2
k

= π̃k(w)p4k;w,v. (7.12)

Taking Proposition 7.13 as a departure point one can also wonder about the case
d̄ = n̄− 2. Indeed, the result still remains valid while its proof becomes more involved
due to combinatoric complications.

Proposition 7.14. Let k ∈ {1, . . . , n̄− 1} and d̄ = n̄− 2. For v ∈ Vk define lv =
|{degk(w)|degk(w) > degk(v)}| and dk = |{degk(w)|w ∈ Vk}|. The stationary
distribution π̃k of Sk on Lk induced by the k-particle exclusion process on L is
given by

π̃k(v) = (d̄− k + 2)lv(d̄− k + 3)dk−lv−1

C n̄−2
k

(7.13)

where C n̄−2
k is a normalization constant. Additionally, Sk is reversible.
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Proof of Proposition 7.14. First note that for v ∈ Vk with degk(v) = k(n̄− 2)− k(k−
1) + 2l we have

lv =
⌊
k

2

⌋
− l. (7.14)

Furthermore, since d̄ = n̄ − 2 for any v ∈ V there is a unique uv ∈ V such that
〈v, u〉 6∈ E. For v ∈ Vk and v ∈ v define the function ecv as

ecv(v) =
1, uv ∈ v,

0, uv 6∈ v.

Then, the degree of v ∈ Vk is given by degk(v) = kd̄−k(k−1)+∑v∈v e
c
v(v). Moreover,

for 〈v,w〉 ∈ Ek with v4w = {v, w} we have

p4k;v,w =


1
k

1
d̄− k + 3

, ecv(v) = 1

1
k

1
d̄− k + 2

, ecv(v) = 0.

Denote the distinct degrees in Lk by d1 < . . . < dl. If p4k;v,w > 0, degk(v) = di
and ecv(v) = 1 then degk(w) ∈ {di, di+1}. On the other hand, if ecv(v) = 0 then
degk(w) ∈ {di, di−1}. In case of a transition from v to w the degrees are preserved if and
only if ecv(v) = ecw(w). Therefore, the properties degk(v) = degk(w) and 〈v,w〉 ∈ Ek
are equivalent to p4k;v,w = p4k;w,v. We now apply the obtained steps to the detailed
balance equation. First of all by the preceding discussion and the form of equation
7.13 detailed balanced is satisfied for any v,w with same degree. Furthermore, we
only have to consider vertices with neighboring degrees since, otherwise, the transition
probabilities equal zero. Hence, consider 〈v,w〉 ∈ Ek and assume without loss of
generality that degk(v) = di and degk(w) = di+1. Then,

π̃k(v)p4k;v,w = (d̄− k + 2)lv−1(d̄− k + 3)dk−lv−1

kC n̄−2
k

= (d̄− k + 2)lw(d̄− k + 3)dk−lw−1

k(d̄− k + 3)C n̄−2
k

= π̃k(w)p4k;w,v.

Indeed, when comparing the results in Propositions 7.12 and 7.13 to one may realize
that the stationary distributions only depend on the degree of each state v and also the
transition probabilities only depend on the degrees. While in Propositions 7.11 and
7.12 their forms seam to differ substantially from the results in Propositions 7.13 and
7.14, they all can in fact be rewritten to obtain a consistent closed form in all proven
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reversible cases. Define to this end p∗ = minv,w∈Vk{p
4
k;v,w}, p∗ = maxv,w∈Vk{p

4
k;v,w} and

for v ∈ Vk define lv = |{degk(w)|degk(w) > degk(v)}| and dk = |{degk(w)|w ∈ Vk}|.
The stationary distribution π̃k takes in the proven reversible cases the form

π̃k(v) = (kp∗)lv(kp∗)dk−lv−1

C
(7.15)

where C is a normalization constant. While it is aesthetic to recover a closed form of
the stationary distribution, which also underlines the consistency of our results in the
cases where both d̄ ∈ {2, n̄−2} and k ∈ {2, n̄−2}, its interpretation based on equation
7.15 is all the while more interesting. We need a preliminary result to proceed in this
sense, which explains the behavior of the Markov chain Sk while moving between states
of same degree.

Lemma 7.15. Let k ∈ {1, . . . , n̄− 1} and consider the Markov chain Sk on Lk.
Then, for 〈v,w〉 ∈ Ek the assertions p4k;v,w = p4k;w,v and degk(v) = degk(w) are
equivalent.

Proof. Note that p4k;v,w = p4k;w,v is equivalent to degLv(v) = degLw(w) if v4w = {v, w}.
The equivalency then follows by Proposition ??.

A stronger implication can be found based on the bipartite graph Lv,vc which will
play an important role in the analysis of the non-reversible cases.

Lemma 7.16. Let k ∈ {1, . . . , n̄ − 1} and consider the Markov chain Sk on Lk
as well as v,w ∈ Vk with Lv,vc

∼= Lw,wc. Then, 〈v,w〉 ∈ Ek implies p4k;v,w = p4k;w,v.

Proof. The proof follows by Lemma 4.15 and Lemma 7.15.

Hence, transitions within the class of vertices of same degree happen with equal
probability and, if possible, increasing the degree of the current state happens with
identical probability for all v ∈ Vk and so does decreasing the degree, if possible.
Hence, the stationary distribution is fully defined by another chain on a reduced graph
where states are combined based on their degree in Lk. Evidently, this renders the
problem easier since we can write the stationary distribution as a function of one
variable which is the degree of each state. Indeed, this can be extended to more
complex graphs if k is arbitrary. We are going to focus on the complete bipartite
graph.
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Theorem 7.17. Let L = ((V1, V2), E) be a complete bipartite graph with n1 = |V1|
and n2 = |V2|. For v ∈ Vk we define v∗ = {u ∈ {v ∩ V1, v ∩ V2}

∣∣∣|u| = min{|v ∩
V1|, |v∩V2|}} and v∗ analogously replacing min with max. Furthermore, we define
V v
∗ = {V ′ ∈ {V1, V2}|v∗ ⊂ V ′} and analogously V ∗v . Then, the Markov chain Sk

is reversible and its stationary distribution is given by

π̃k(v) =
|v∗|∏
i=1

(|V ∗v | − (k − i) + 1)
|v∗|∏
j=1

(|V v
∗ | − (k − j) + 1). (7.16)

Proof. Let v ∈ Vk. First, we discuss the case that |v∗| ≥
⌈
k
2

⌉
+1. Consider 〈v,w〉 ∈ Ek

such that |w∗| ∈ {|v∗| ± 1}. Assume without loss of generality that |w∗| = |v∗| − 1.
Then

p4k;v,w = 1
k

1
|V v
∗ | − (k − |v∗|) + 1 , p

4
k;w,v = 1

k

1
|V ∗w | − (k − |w∗|) + 1 .

Therefore, we obtain

kπ̃k(v)p4k;v,w =
|v∗|∏
i=1

(|V ∗v | − (k − i) + 1)
|v∗|−1∏
j=1

(|V v
∗ | − (k − j) + 1)

= 1
|V ∗v | − (k − (|v∗|+ 1)) + 1

|v∗|+1∏
i=1

(|V ∗v | − (k − i) + 1)
|v∗|−1∏
j=1

(|V v
∗ | − (k − j) + 1)

= 1
|V ∗w | − (k − |w∗|) + 1

|w∗|∏
i=1

(|V ∗w | − (k − i) + 1)
|w∗|∏
j=1

(|V w
∗ | − (k − j) + 1)

= kπ̃k(w)p4k;w,v.

In the case of k even this shows the claim even if |v∗| = k
2 , since then |w∗| ≥ k

2 + 1 and
we can choose |V ∗v | = |V ∗w |. Hence, by symmetry of v∗ and v∗ we obtain the claim.
We turn to the case of k being odd. Assume |v∗| =

⌈
k
2

⌉
and |v∗| =

⌊
k
2

⌋
as well as

|w∗| =
⌈
k
2

⌉
and |w∗| =

⌊
k
2

⌋
with V ∗v 6= V ∗w . Then |v∗| + 1 = |w∗|, |v∗| − 1 = |w∗|,

V ∗v = V w
∗ and V v

∗ = V ∗w . Consequently, we arrive at the conclusion

kπ̃k(v)p4k;v,w =
|v∗|∏
i=1

(|V ∗v | − (k − i) + 1)
|v∗|−1∏
j=1

(|V v
∗ | − (k − j) + 1)

= 1
|V ∗v | − (k − (|v∗|+ 1)) + 1

|v∗|+1∏
i=1

(|V ∗v | − (k − i) + 1)
|v∗|−1∏
j=1

(|V v
∗ | − (k − j) + 1)

= 1
|V w
∗ | − (k − |w∗|) + 1

|w∗|∏
i=1

(|V w
∗ | − (k − i) + 1)

|w∗|∏
j=1

(|V ∗w | − (k − j) + 1)

= kπ̃k(w)p4k;w,v
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which completes the proof.

Regular bipartite graphs might, hence, be a subclass which could be considered sep-
arately, but we will see later on in this section, that examples can easily be constructed,
on which Sk is not reversible for the cases k ∈ {3, . . . , n̄− 3}.

Figure 37 compares for k = 4 and the cycle graph L = C8 the two graphs Lk and
its quotient graph Lk�∼ as defined in Definition 3.24 with respect to the equivalence
relation v ∼ w if and only if degk(v) = degk(w). We illustrate in Figure 38 the

Figure 37: On the left Lk constructed for k = 4 based on the cycle graph on 8 vertices.
On the right the quotient graph Lk�∼.

transition structure of a projected version of Sk from Lk to Lk�∼. Indeed, it turns out

4 82 6

(3k)−1

(2k)−1(2k)−1 (2k)−1

(3k)−1 (3k)−1

Figure 38: Transitions on the quotient graph of L4 based on the cycle graph with 8
vertices. The number on every vertex represents the corresponding degree.

that Sk is lumpable with respect to the map degk : Vk → N in the proven cases of
reversibility. In fact, the chain Sk is almost always non-reversible when considering as
underlying graph a regular graph L.

The preceding results rely heavily on the structure of the graph Lk and we will
employ Definitions 3.3, 3.11 and 3.13 to prove our results on lack of reversibility in
many other cases. While all proofs rely on Kolmogorov’s criterion, the details differ
and show the dependence on the underlying graph topology.
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Theorem 7.18. Let L be any simple connected d̄-regular graph on n̄ vertices
with d̄ ∈ {3, . . . , n̄ − 3}. Assume that L contains a tri-star T as defined in
Definition 3.3. Then, the Markov chain Sk is reversible on Lk if and only if
k ∈ {1, 2, n̄− 2, n̄− 1}.

Based on the tri-star we want to explain briefly and informally our way of pro-
ceeding. It yields a minimal counterexample for reversibility based on Kolmogorovs
theorem. Nonetheless, it is not artificial in a sense that the set of graphs which contain
such a structure in the sense of Definition 3.3 are rare or have to be constructed. In-
deed, drawing upon the social network motivation, a tri-graph can be seen as a cluster
of six individuals, three of whom know each other and any of these three also has a
friend who is not friends with the remaining two. The particles can then be seen as
presents that are given randomly to a friend if that friend does not have a present
already. This usually occurs in contexts like Secret Santa or thelike.

Before beginning with the proof we discuss the idea behind the counterexample,
represented in Figure 39. Under the transition probabilities shown in Theorem 7.3 the

τ2

γ2 γ′1

τ3

τ1

γ1

τ2

γ2 γ′1

τ3

τ1

γ1

τ2

γ2 γ′1

τ3

τ1

γ1

τ2

γ2 γ′1

τ3

τ1

γ1

Figure 39: A closed path of particle configurations in Lk, which shows the lack of
reversibility of Sk if a tri-star is present, shown in L.

probability to move a particle highly depends on his neighborhood in the current con-
figuration. Hence, moving first a particle from a dense cluster within the configuration
at time t, in this case the particle on vertex τ1, and secondly a particle from a less
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densely populated region of the cluster, in this case from τ2, does not commute in the
sense of the transition probabilities if there are more than two particles in the cluster.
We use this idea to prove Theorem 7.18.

Proof of Theorem 7.18. We have already shown in Propositions 7.11 and 7.12 that for
k ∈ {1, 2, n̄ − 2, n̄ − 1} the Markov chain Sk is reversible on Lk. Hence, we assume
k ∈ {3, . . . , n̄− 3} and show that Sk is not reversible.

Recall from Definition 3.3 that the vertex set of T is given by VT = {τ1, τ2, τ3, γ1, γ2, γ
′
1}.

We define the following cycle p in Lk. First denote by uk−3 ⊂ V \VT a subset of size
k − 3 and define the cycle φ as well as p as

φ := ({τ1, τ2, γ1}, {τ3, τ2, γ1}, {τ3, γ2, γ1}, {τ1, γ2, γ1}, {τ1, τ2, γ1}),
p := (p1, p2, p3, p4); pi := uk−3 ∪ φi, i = 1, . . . , 4.

The transition probability for Sk to go along p is given by

1
d̄− degLp1 (τ1) + 1

1
d̄− degLp2 (τ2) + 1

1
d̄− degLp3 (τ3) + 1

1
d̄− degLp4 (γ2) + 1

= 1
d̄− degLp1 (τ1) + 1

1
d̄− degLp1 (τ2) + 1

1
d̄− degLp3 (τ3) + 1

1
d̄− degLp4 (γ2) + 1

and for the reverse path

1
d̄− degLp1 (τ2) + 1

1
d̄− degLp4 (τ1) + 1

1
d̄− degLp3 (γ2) + 1

1
d̄− degLp2 (τ3) + 1

= 1
d̄− degLp1 (τ2) + 1

1
d̄− degLp1 (τ1) + 2

1
d̄− degLp4 (γ2) + 1

1
d̄− degLp3 (τ3)

.

By comparison we see that both terms are equal if and only if

(d̄− degLp1 (τ1) + 1)(d̄− degLp3 (τ3) + 1) = (d̄− degLp1 (τ1) + 2)(d̄− degLp3 (τ3))

which is equivalent to
degLp1 (τ1) = degLp3 (τ3) + 1. (7.17)

Since γ1 ∈ pi for i = 1, . . . , 4, degLVT ∩p1 (τ1) = 2 and degLVT ∩p3 (τ2) = 0 we can re-
distribute all particles in uk−3 on L equally in the neighborhoods of τ1 and τ2 in V
outside of T such that we obtain a contradiction to the equation 7.17. By Kolmogorov’s
criterion the claim follows.

If L does not contain a tri-star there is still no certainty that reversibility would
follow. In fact, for various other cases this is not the case.
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Theorem 7.19. Let L be any simple connected d̄-regular graph on n̄ vertices
with d̄ ∈ {3, . . . , n̄ − 3}. Assume that L contains a cube-star C as defined in
Definition 3.11. Then, the Markov chain Sk is reversible on Lk if and only if
k ∈ {1, 2, n̄− 2, n̄− 1}.

The method of constructing a suitable counterexample based on the assumed sub-
graph remains the main tool for the proof of Theorem 7.19. .

Proof of Theorem 7.19. We have already shown in Propositions 7.11 and 7.12 that for
k ∈ {1, 2, n̄ − 2, n̄ − 1} the Markov chain Sk is reversible on Lk. Hence, we assume
k ∈ {3, . . . , n̄− 3} and show that Sk is not reversible.

Using Definition 3.11 define the following cycle p in Lk. Again, we denote by
uk−3 ⊂ V \{α1, ξ

′, α3, α4, γ1, γ
′
2} a subset of size k − 3 and define

φ := ({α1, α4, γ1}, {ξ′, α4, γ1}, {ξ′, α3, γ1}, {α1, α3, γ1}, {α1, α4, γ1}),
p := (p1, p2, p3, p4); pi := uk−3 ∪ φi, i = 1, . . . , 4.

Since k ≤ n̄ − 3 it is possible to redistribute the remaining k − 3 particles in uk−3 on
V \{α1, ξ

′, α3, α4, γ1, γ
′
2} such that degp1(α1) > degp1(α4) and degp3(α3) ≥ degp3(ξ′).

The transition probability for Sk to go along p is proportional to

1
d̄− degLp1 (α1) + 1

1
d̄− degLp1 (α4) + 2

1
d̄− degLp3 (ξ′) + 1

1
d̄− degLp3 (α3) + 2

(7.18)

and for the reverse path

1
d̄− degLp1 (α4) + 1

1
d̄− degLp1 (α1) + 2

1
d̄− degLp3 (α3) + 1

1
d̄− degLp3 (ξ′) + 2

(7.19)

where we leave out the factor k−4 in each expression. We define

x := d̄− degLp1 (α1), y := d̄− degLp1 (α4),
p := d̄− degLp3 (α3), q := d̄− degLp3 (ξ′).

such that 7.18 equals 7.19 if and only if

pq(x− y) + xy(p− q) + 3(px− qy) + 2(x− y + p− q) = 0. (7.20)

Since by the assumed type of the configuration we have degp1(α1) > degp1(α4) and
degp3(α3) ≥ degp3(ξ′) which implies x < y and p ≤ q. Ergo, pq(x − y) + xy(p −
q) + 3(px − qy) + 2(x − y + p − q) < 0 such that equality in 7.20 is impossible. By
Kolmogorov’s criterion it follows that Sk is not reversible.
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A direct generalization of this method would include replacing the triangle or the
square by larger cycles. It turns out that this is not necessary since an even simpler
structure, the double-pitchfork, already yields the needed implication. Indeed, it covers
also generalized cases of the tri-star by cycles of length larger than 4.

Theorem 7.20. Let L be any simple connected d̄-regular graph on n̄ vertices
with d̄ ∈ {3, . . . , n̄ − 3}, which is not a complete bipartite graph. Assume that L
contains a double-pitchfork D as defined in Definition 3.13. Then, the Markov
chain Sk is reversible on Lk if and only if k ∈ {1, 2, n̄− 2, n̄− 1}.

Again, the main idea of the proof remains identical. But the construction becomes
in fact more simple since the particles which move now are only interacting in the
initial configuration p1 of the path.

Proof of Theorem 7.20. We have already shown in Propositions 7.11 and 7.12 that for
k ∈ {1, 2, n̄ − 2, n̄ − 1} the Markov chain Sk is reversible on Lk. Furthermore, in
Theorem 7.17 we have shown reversibility in the case of a complete bipartite graph,
which contains, nonetheless, by Theorem 3.14 a double pitchfork. Hence, we assume
k ∈ {3, . . . , n̄−3} as well as L not a complete bipartite graph and show that Sk is not
reversible.

Now employing Definition 3.13 we define the following cycle p in Lk. As before, we
denote by uk−3 ⊂ V \{γ1, ξ, γ2, γ

′
1, ξ
′, γ′2} a subset of size k − 3 and define

φ := ({ξ, ξ′, γ1}, {γ2, ξ
′, γ1}, {γ2, γ

′
1, γ1}, {ξ, γ′1, γ1}, {ξ, ξ′, γ1}),

p := (p1, p2, p3, p4); pi := uk−3 ∪ φi, i = 1, . . . , 4.

Since 〈γ2, γ
′
1〉 6∈ E, the transition probability for Sk to go along p is proportional to
1

d̄− degLp1 (ξ) + 1
1

d̄− degLp1 (ξ′) + 2
1

d̄− degLp3 (γ2) + 1
1

d̄− degLp3 (γ′1) + 1
(7.21)

and for the reverse path
1

d̄− degLp1 (ξ′) + 1
1

d̄− degLp1 (ξ) + 2
1

d̄− degLp3 (γ′1) + 1
1

d̄− degLp3 (γ2) + 1
(7.22)

where we, again, leave out the factor k−4 in each expression. We consider in this case
only the reduced set of parameters

a := d̄− degLp1 (ξ), b := d̄− degLp1 (ξ′).

such that 7.21 equals 7.22 if and only if

(a+ 1)(b+ 2) = (a+ 2)(b+ 1). (7.23)



144 7 THE ECHO CHAMBER MODEL: A RELATED EXCLUSION PROCESS

Therefore, only a = b implies reversibility. Again, using the same arguments as in the
previous proofs, we find always a configuration of particles such that a ≤ b− 1 and by
Kolmogorov’s criterion, it follows again that Sk is not reversible.

Indeed, if we do not exclude the edge 〈γ2, γ
′
1〉 from D, reversibility cannot be dis-

proved via the given structure. Assume, that 〈γ2, γ
′
1〉 ∈ E. Then, using the same

notation as in the proof of Theorem 7.20, the transition probability for Sk to go along
p is proportional to

1
d̄− degLp1 (ξ) + 1

1
d̄− degLp1 (ξ′) + 2

1
d̄− degLp3 (γ2) + 1

1
d̄− degLp3 (γ′1) + 2

(7.24)

and for the reverse path

1
d̄− degLp1 (ξ′) + 1

1
d̄− degLp1 (ξ) + 2

1
d̄− degLp3 (γ′1) + 1

1
d̄− degLp3 (γ2) + 2

(7.25)

where we leave out the factor k−4 in each expression. We define

a := d̄− degLp1 (ξ) + 1, b := d̄− degLp1 (ξ′) + 1,
c := d̄− degLp3 (γ2) + 1, d := d̄− degLp3 (γ′1) + 1,

such that 7.24 equals 7.25 if and only if

a(b+ 1)c(d+ 1) = (a+ 1)b(c+ 1)d. (7.26)

We discuss two cases of integer solutions to this equation and the corresponding im-
plications in a graph theoretical sense. Firstly, if a = d and b = c the equation is
satisfied. Since ξ has two empty neighbors in L with respect to p1 and γ′1 has at least
one empty neighbor in L with respect to p3, we can put in all adjacent vertices of γ′1
one of the remaining k − 3 particles except for ξ′ and possibly γ′2. Then, a = d if and
only if ξ and γ′1 share all neighbors. Arguing along the lines of the proof of Theorem
3.14, we find that this is only possible, if L is a complete bipartite graph. In turn, if L
is a complete bipartite graph, then ξ and γ′1 belong to the same independent set and
share all neighbors. This implies a = d and analogous remarks yield b = c. Therefore,
we have a = d and b = c, as was to be expected by Theorem 7.17.
Secondly, with a = b and c = d we find a solution to equation (7.26). Due to the fact
that γ1 always contains a particle, but γ′1 as well as γ′2 do not in p1, we obtain a ≤ b−1.
Using that L is a d̄-regular graph, we can redistribute the remaining particles such that
equality in (7.26) is impossible. By Kolmogorov’s criterion, it follows again that Sk is
not reversible. Other solutions to equation (7.26) might give additional insights into
reversibility. We find that equation (7.26) is equivalent to

−abc+ abd− acd− ac+ bcd+ bd = 0.



7.3 Properties of the associated Markov chain 145

From this we can conclude that with q(a, b, c, d) := a(b+d+1)
d(a+c+1) a quadruple (a, b, c, d) is a

solution to equation (7.26) if and only if

−q(a, b, c, d) · 1 + b
c

q(a, b, c, d) · 1 + b
c

= 0 ⇐⇒
2b
c

q(a, b, c, d) · 1 + b
c

= 1.

Therefore, we find the equivalence with a fixed point problem of a Möbius transform
A, see [Bear12] for the more details, for z ∈ C induced by the matrix following A with

A =
(

0 2bd(a+ c+ 1)
ac(b+ d+ 1) b.

)
, A : z 7→ 0 · z + 2bd(a+ c+ 1)

ac(b+ d+ 1)z + b
(7.27)

and A(1) = 1. Consequently, the problem of finding integer solutions to equation
(7.26) is equivalent to finding Möbius transforms with integer entries under certain
constraints which have 1 as fixed point. From this we can, in particular, define a
new notion of independence of two solutions (a, b, c, d) and (a′, b′, c′, d′) if their induced
Möbius transform A and B, respectively, do not define a new solution via A ◦ B.
Unfortunately, the scope of this work as well as the the author’s knowledge are not
sufficient to cover the whole analysis, the latter not being extendable on this subject in
a timely manner. Therefore, further solutions to (7.26) remain due to the complexity
out of reach for the moment and we leave this problem open.

In fact, the double pitchfork also exists in a wide variety of trees which do not
necessarily satisfy the regularity condition. Hence, we can also make claims about
reversibility for these trees along the lines of the proof of Theorem 7.20

Theorem 7.21. Let L be a tree on n̄ vertices where non-leave vertices have degree
at least 2. Assume that L contains a double-pitchfork D as defined in Definition
3.13. Then, the Markov chain Sk is reversible on Lk if and only if k ∈ {1, n̄− 1}
or k ∈ {2, n̄ − 2} and L is a d̄-ary tree, i.e., non-leave vertices have identical
degree d̄.

Proof. The proof works along the lines of the proof of Theorem 7.20. Since L is
not necessary regular in the case of a tree, we assume without loss of generality that
deg(ξ) ≤ deg(ξ′) to construct the counterexample. Symmetry of the double-pitchfork
assures that this is, in fact, not a restriction.
We obtain the identical equations as in the proof of Theorem 7.20 such that for

x = deg(ξ)− degLp1 (ξ), y = deg(ξ′)− degLp1 (ξ′).

we obtain the condition for reversibility

0 = (x+ 1)(y + 2)− (x+ 2)(y + 1) = x− y. (7.28)
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This is equivalent to

deg(ξ)− degLp1 (ξ) = deg(ξ′)− degLp1 (ξ′). (7.29)

Note that the left hand side corresponds to the number of neighbors of ξ in L which are
not occupied by a particle. An analogous observation can be made for the right hand
side. The neighborhood of ξ contains one vertex γ1 which is occupied by a particle
and one γ2 which is not and the neighborhood of ξ′ contains two vertices which are
not occupied by particles, namely γ′1 and γ′2. Furthermore, deg(ξ) ≤ deg(ξ′) such that
by putting the remaining k − 3 particles in Nξ\{γ1, γ2} before filling Nξ′\{γ′1, γ′2} we
obtain deg(ξ′)− degLp1 (ξ′) < deg(ξ′)− 1 if and only if deg(ξ)− degLp1 (ξ) = 1. In this
case,

deg(ξ)− degLp1 (ξ) = 1 < 2 ≤ deg(ξ′)− degLp1 (ξ′)
and, otherwise,

deg(ξ)− degLp1 (ξ) ≤ deg(ξ)− 2 < deg(ξ′)− 1 = deg(ξ′)− degLp1 (ξ′).

which contradicts in both cases equality in 7.29 and, hence, reversibility of Sk if
k ∈ {3, . . . , n̄− 3}.

The cases k = 1 and k = n̄− 1 are covered by classical theory on random walks on
graphs and reversibility is, therefore, given.

Let k = 2 and assume v = {v, w} for any non-leave vertices in V with 〈v, w〉 ∈ E.
Then, using the same construction as for cases k ∈ {3, . . . , n̄ − 3} by equation 7.29
we obtain that reversibility is given if and only if deg(v) = deg(w) implying the same
degree of all non-leave vertices due to the minimal degree of 2. Indeed, this implies
that the degree of non-leave vertices is at least 3 by the form of the double-pitchfork.
The case k = n̄− 2 can be proven analogously by symmetry of Lk ∼= Ln̄−k.

The preceding results yield a characterization for reversibility of the process Sk and
show the roles of both the degree in L and the number of particles. The region for
these parameters is depicted in Figure 40. Moreover, any strongly regular graph L
with parameters (n̄, d̄, α, β) satisfying α ≥ 1 and d̄ ≤ n̄ − 3 contains a tri-star, such
that Theorem 7.18 yields an equivalence for reversibility for any strongly regular graph
satisfying α ≥ 1.

7.3.5 Considerations for d̄ = 3 and k = 3

Indeed, the smallest case where we can see a divergence of the behavior of Sk based on
the geometry of the underlying graph L is for n̄ = 6, d̄ = 3 and k = 3. Note that for
n̄ = 6 and d̄ = 3 there are two non-isomorphic graphs. We present them in Figure 41.
One of them is in fact a complete bipartite graph while the other is not. We call them
L|| and L◦, respectively. This is a geometric difference between the two graphs which
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Figure 40: Parameter pairs (d̄, k) depicted in the cube of side length n̄ = 14. Green
pairs imply reversibility while red pairs imply the lack of reversibility.

we are going to translate in quantitative properties in terms of their diameter and
eigenvalues. Already, the Markov chain S3 has very different properties depending on
the underlying graph. On L|| it is reversible by Theorem 7.17 while it is not on L◦ by
Theorem 7.18. Additionally, L◦ is the smallest graph containing a tri-star. Comparing

Figure 41: Both 3̄-regular graphs on 6 vertices. The graph L◦ can be seen on the left
and the graph L|| on the right.

the degree sets, we find that D||3 = {5, 9} and D◦3 = {3, 5, 7}. Furthermore, for L◦ we
observe that for any v,w ∈ L◦k with p4;◦

k;v,w > 0 if either deg◦k(v) = 7 or deg◦k(w) = 7.
Since the stationary distribution and reversibility of S||k are shown in Theorem 7.17,
we are going to focus on S◦k. In what follows we are going to approach the stationary
distribution constructively.

Simulations show that for v,w ∈ Vk the stationary distribution π̃◦k satisfies

π̃◦k(v) = π̃◦k(w) ⇐⇒ deg◦k(v) = deg◦k(w). (7.30)

Figure 42 underlines the fact that Sk is, indeed, lumpable with respect to the degree.
Therefore, we obtain by Theorem 7.8 that the equivalence given by (7.30) is indeed
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satisfied. We can consider a similar reduction of the state space as shown in Figure 38.

3 7 5

3
k(d̄+ 1)

1
k(d̄+ 1)

+
1
kd̄

3
k(d̄− 1)

5
kd̄

+
1

k(d̄− 1)

Figure 42: Transitions on the quotient graph of L◦3 based on the non-bipartite 3 regular
graph on 6 vertices. The number on every vertex represents the corresponding degree.

Unfortunately, transitions do no longer only happen between vertices of next higher
or lower degree. This also leads to involved holding conditions implied by the local
structure of the sub-graphs induced by any v ∈ Vk.

To derive the transition probabilities depicted in Figure 42 we consider the graph L◦k
with the goal of deriving an explicit form of the equations π̃◦k(v) = ∑

w∈Vk π̃
◦
k(w)p4;◦

k;w,v.
Analyzing the neighborhood of each vertex in Figure 43, we obtain that the neighbor-
hoods of vertices of identical degree are identical. For example any vertex of degree 3
has exactly 3 neighbors with degree 7, while any vertex with degree 5 has 2 neighbors
with degree 7 and 3 neighbors with degree 5. This observation underlines also the
structure visualized in Figure 42. Hence, for any vertices v(3), v(5) and v(7) with degree

Figure 43: The graph L◦3 for the underlying non-binary 3-regular graph on 6 vertices.
The nodes with degree 3 are colored purple, those with degree 5 are colored pale blue
and those with degree 7 are colored yellow.
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3, degree 5 and degree 7, respectively, we obtain

π̃◦k(v(3)) = 3
k(d̄+ 1)

π̃◦k(v(7)) + 3
k(d̄− 1)

π̃◦k(v(3)),

π̃◦k(v(5)) =
(

1
k(d̄+ 1)

+ 1
kd̄

)
π̃◦k(v(7)) +

( 5
kd̄

+ 1
kd̄

)
π̃◦k(v(5)),

1 = |VDk;3|π̃◦k(v(3)) + |VDk;5|π̃◦k(v(5)) + |VDk;7|π̃◦k(v(7))

using the transition graph 42. We do not yet replace the parameters n̄, d̄ and k with
the actual values to facilitate the interpretation later on. It remains to derive |VDk;l|
for l ∈ {3, 5, 7}. First, |VDk;3| corresponds to the number of induced sub-graphs v(3)

with deg◦k = kd̄−2 ·3 and, hence, to the number of triangles in L. There are 2 triangles
in Lcirck such that |VDk;3| = 2. Secondly, |VDk;5| is defined by the number of paths of
length 2 in L, which do not induce a triangle as vertex induced sub-graph. Indeed,
there are n̄ paths of length 2 which induce a triangle, one for each vertex in V since each
vertex may be place in the middle of such a path. Therefore, |VDk;5| = n̄

((
n̄
2

)
− 1

)
.

Finally, this gives |VDk;7| =
(
n̄
k

)
− n̄

((
n̄
2

)
− 1

)
− 2. This results in the following values

for the stationary distribution

π̃◦k(v(3)) =
2d̄+1

k(d̄+1)d̄

1− 5
kd̄
− 1

k(d̄−1)
π̃◦k(v(7)), π̃◦k(v(5)) =

3
k(d̄+1)

1− 3
k(d̄−1)

π̃◦k(v(7)), (7.31)

π̃◦k(v(7)) =

(n̄
k

)
− n̄

(
n̄

2

)
+ n̄− 2 +

6
k(d̄+1)

1− 3
k(d̄−1)

+
n̄
((

d̄
2

)
− 1

)
2d̄+1

k(d̄+1)d̄

1− 5
kd̄
− 1

k(d̄−1)


−1

. (7.32)

We can now interpret the form of the stationary distribution in terms of the geometry
of L◦ where we are going to focus on π̃◦k(v(7)). We skip the first summands, which
are independent of k, and jump directly to the fraction 2

k(d̄+1)

(
1− 3

k(d̄−1)

)−1
. This is

the quotient of the probabilities to create a triangle from a disconnected sub-graph of
L◦ with 2 connected components divided by the probability not to remain a triangle
when the current configuration induces a triangle in L◦. A disconnected sub-graph
is represented in Figure 44. Consequently, this quotient describes the balance of the

Figure 44: The graph L◦ and a sub-graph which consists of two connected components.
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probabilities of going back and forth between sub-graph geometries. The factor 3 rep-
resents the number of such transitions. In the last summand, we find that paths of
length 2, which do not induce a triangle in L and are visualized in Figure 45, play the
central role. The quotient still describes the analogous balance times the number of
existing paths of length 2. The first summands

(
n̄
k

)
− n̄

(
n̄
2

)
+ n̄ is the balance of the

Figure 45: The graph L◦ with an induced sub-graph which is isomorphic to a path of
length 2.

probabilities to create a different sub-graph from a disconnected sub-graph with 2 con-
nected components in L◦ and the probability not to remain a disconnected sub-graph
with 2 connected components in L◦, which is simply 1.
Indeed, this analysis gives an approach to deriving stationary distributions in non-
reversible cases based on induced sub-graph geometries. These are much richer then
a simple reduction to the degree set Dk since multiple non-isomorphic induced sub-
graphs may give rise to the same degree. Indeed, for k = 3 we can extend the here-
inabove discussed analysis to any arbitrary graphs since there are at most 4 different
non-isomorphic vertex induced sub-graphs of size 3, the triangle, a path of length 2,
a disconnected graph with 2 connected components and a disconnected graph with 3
components. The latter does not exist in the previously discussed case and the tran-
sitions between these sub-graphs become more intricate than those depicted in Figure
42 for the special case n̄ = 6, d̄ = 3 and k = 3.

7.3.6 Convergence speed to equilibrium for reversible case

In what follows, we are going to discuss the cases where Sk is reversible as well as
the implications of this property both on the behavior of the process as well as the
geometry of the underlying graph. We have already seen that reversibility is in this
case a boolean function of k and d̄ and is, consequently, a structural property given by
not only the transition probabilities.

We are going to use reversibility and laziness to make conclusions about the con-
vergence speed of Sk in the rare cases where these are given. We denote the Cheeger
constant for Sk by Φd̄

k to highlight the dependence on the degree and the number of
particles. We recall the Cheeger bounds from 5.20 for the spectral gap of a reversible
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Markov chain given by

1− 2Φd̄
k ≤ λ2 ≤ 1− (Φd̄

k)2

2 . (7.33)

Our discussion will, hence, focus on conclusions based on the Propositions 7.11 to 7.14.
We ignore the cases k = 1 and k = n̄− 1 since they amount to classical random walks
on regular graphs and are, hence, covered by classical results, which can be found for
example in [LePeWi09]. Again, we need to employ Conjecture 4.22 and have to assume
that it is true.

Corollary 7.22. Let L = (V,E) be a d̄-regular connected simple graph and k = 2.
Then, the Cheeger constant of S2 satisfies

Φd̄
2 ≥

2(d̄− 1)
d̄+ 1

1
n̄(n̄− 1) . (7.34)

Proof. Let U ∈ {Ū ⊂ Vk | |Ū| ≤ 2−1|Vk|, π̃k(Ū) ≤ 2−1}. Note that π̃k(v)pk;v,w = 1
2C for

all neighbors v,w ∈ Vk. Therefore, we obtain

Φ(U) = 1
2

|∂S|
d̄ |VDk;2(d̄−1) ∩ U|+ (d̄+ 1)|VDk;2d̄ ∩ U|

∈
[

1
2(d̄+ 1)

|∂U|
|U|

,
1
2d̄
|∂U|
|U|

]
.

Applying Lemma 5.18 and Conjecture 4.22 we obtain that

Φd̄
2 ≥

1
2(d̄+ 1)

ι(L2) ≥ 2(d̄− 1)
d̄+ 1

1
n̄(n̄− 1)

which completes the proof.

In the sense discussed in [Sinc92] the chain S2 mixes rapidly as a Markovian particle
system on L since the Cheeger constant is bounded by a term which is an inverse
polynomial in the size of the state space.
We continue by considering the properties of Sn̄−2 and discuss afterwards the role of
the isomorphism Lk

∼= Ln̄−k in the quantitative behavior of Sk.

Corollary 7.23. Let L be a d̄-regular connected simple graph and k = n̄ − 2.
Then, the Cheeger constant of Sn̄−2 satisfies

Φd̄
n̄−2 ≥

2(d̄− 1)
3(n̄− 2)

1
n̄(n̄− 1) . (7.35)
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Proof. The proof follows analogously to the proof of Corollary 7.22 exploiting that for
all neighbors v,w we have

π̃k(v)pk;v,w = 1
C(n̄− 2) = π̃k(w)pk;w,v

By considering p∗ := minv∈Vk p
4
k;v,v in both cases, we find that for k = 2 it amounts

to d̄ ≤ 1 and for k = n̄ − 2 we arrive at n̄ < 0 as equivalent condition for p∗ ≥ 2−1.
Therefore, in both cases Sk is under no choice of parameters n̄, d̄ lazy. We want to
emphasize here the difference in the quantitative behavior of Sk and Sn̄−k which are
not identifiable in spite of the isomorphism between their respective state spaces and
the defining underlying structure of the dynamics.

Now we turn to the remaining reversible cases, i.e., we fix first d̄ = 2 and then
d̄ = n̄− 2. We have already seen that we can derive the stationary distributions of Sk

in these two cases explicitly. We obtain the following result which is based on Lemma
5.22.

Corollary 7.24. Let L a d̄-regular graph on n̄ vertices and k ∈ {1, . . . , n̄ − 1}.
Then, the Cheeger constant associated to Sk satisfies

Φd̄
k ≥


2
k

(2
3

)k+1 (n̄
k

)−1

, d̄ = 2

4
k

(n̄− k)k
(n̄− k + 1)k+1

(
n̄

k

)−1

, d̄ = n̄− 2.
(7.36)

Proof. The result follows from Propositions 7.13 and 7.14 using the form of the station-
ary distributions in each case as well as the minimum of the transition probabilities,
as well as Lemma 5.22. The latter combines the quantitative value obtained in Propo-
sitions 7.13 and 7.14 and yields the claim.

We see that the lower bounds we find in these two cases do not imply the rapid
mixing in the sense used in [Sinc92] in contrast to the previous cases k = 2 and
k = n̄ − 2. This is due to the crude nature of the estimate made to obtain Lemma
5.22 and exponential nature of the quotient of the minimum and the maximum of the
stationary distributions. There is, intuitively, no reason why we shouldn’t obtain a
bound on Φd̄

k which is polynomial as a function of n̄ and k. Methods from discrete
optimization, applied to results from Subsection 4.3 on the special forms of Lk in
these to cases, might yield further insights and improved bounds, exploiting further
the explicit form of the stationary distributions. Indeed, depending on the number of
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particles we can even deduce further properties which support the usefulness of the
Cheeger constant.

Theorem 7.25. Let L be a cycle on n̄ vertices and k ∈ {1, . . . , n̄ − 1}. Define
k̄ :=

⌈
2n̄
3

⌉
. Then, for k < k̄ the Markov chain Sk on Lk is not a lazy Markov

chain and for k ≥ k̄ the chain Sk is a lazy Markov chain.

Proof. First, let k ∈
{

1, . . . ,
⌊
n̄
2

⌋}
. Then, there exist a v ∈ Vk such that |Ev| = 0.

Consequently,

p4k;v,v =
∑
v∈v

1
k

1
2− 0 + 1 = 1

3 <
1
2

and, thus, Sk is not lazy.
Now, let k ∈

{⌈
n̄
2

⌉
, . . . , n̄− 1

}
. Consider v∗ ∈ Vk such that the vertex induced

sub-graph Lv has n̄ − k connected components, where x1 = (n̄ − k)
(⌊

k
n̄−k

⌋
+ 1

)
− k

components have size κ1 :=
⌊

k
n̄−k

⌋
and x2 = n̄ − k − x1 components have size κ2 :=⌊

k
n̄−k

⌋
+ 1. We are going to prove that

p4k;v∗,v∗ = min
w∈Vk

p4k;w,w (7.37)

such that p4k;v∗,v∗ can be used to derive k̄. Note that

min
w∈Vk

p4k;w,w = min
{a,b,c∈N,a+b+c=k}

a

k
+ b

2k + c

3k =: min
{a,b,c∈N,a+b+c=k}

Γ(a, b, c)

where the first summand represents all vertices with degree two inside a connected
component of Lv, the second one all vertices with degree one inside a connected com-
ponent of Lv and the third one the vertices who form their a connected component of
size one. Since we consider the case k ≥

⌈
n̄
2

⌉
, we obtain that by symmetry for any

configuration v with c ≥ 1 and a ≥ 1 we find another configuration v′ with c′ = c− 1,
a′ = a− 1 and b′ = b+ 2. In particular, Γ(a, b, c) > Γ(a′, b′, c′). Hence, the minimizing
triple satisfies (a, b, c) ∈ {(x, y, 0), (0, y′, z′)|x+ y = k = y′ + z′}.

In the first case with (a, b, c) = (x, y, 0) it follows that y = 2(n̄ − k) and we only
look for a configuration which minimizes x, i.e., the number of vertices with degree two
inside a connected component of said configuration. This can be obtained if the sizes of
all connected components are as balanced as possible, i.e., each connected component
has either size

⌊
k

n̄−k

⌋
or
⌊

k
n̄−k

⌋
+1. Furthermore, summing up the sizes of the connected
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components one has to obtain k, i.e.,

k = x1

⌊
k

n̄− k

⌋
+ (n̄− k − x1)

(⌊
k

n̄− k

⌋
+ 1

)

= (n̄− k)
(⌊

k

n̄− k

⌋
+ 1

)
− x1

which yields x1 = (n̄−k)
(⌊

k
n̄−k

⌋
+ 1

)
−k such that v∗ is the minimizer of minw∈Vk p

4
k;w,w.

The minimum follows analogously in the case (a, b, c) = (0, y′, z′).
It only remains to calculate p4k;v∗,v∗ by

p4k;v∗,v∗ = 2(n̄− k)
2k + x1(κ1 − 2)

k
+ x2(κ1 − 1)

k

= n̄− k
k

+ 3k − 2n̄)
k

= 2k − n̄
k

such that p4k;v∗,v∗ ≥ 2−1 if and only if k ≥ 2n̄
3 , which proves the claim.

So, while the state spaces are identifiable for parameters k and n̄− k the behaviors
of the corresponding Markov chains Sk and Sn̄−k differ in certain aspects.

We turn now also in this case to the lazyness of the Markov chain which makes the
bounds on the Cheeger constant all the while more useful in light of Theorem 5.20.

Theorem 7.26. Let L be a d̄-regular graph on n̄ ≥ 2 vertices with d̄ = n̄− 2 and
k ∈ {1, . . . , n̄− 1}. Then, the Markov chain Sk on Lk is a lazy Markov chain if
and only if k = n̄− 1.

Proof. We are going to proceed as in the proof of Theorem 7.25 calculating minw∈Vk p
4
k;w,w

but using the idea based on Figure 23. Furthermore, we exclude the case k = 1 and
since it is analogous to a random walk on a L such that it is covered by classical results.
Assume that v∗ ∈ Vk is the minimizer of p4k;w,w. Then,

p4k;v∗,v∗ = 1
k

(
1 · a+ b

n̄− k
+ c

n̄− k + 1

)
(7.38)

for some a, b, c ∈ N with a + b + c = k to be determined. The number a represents
the number of v ∈ v∗ which stay in place with probability 1 if they are drawn among
all vertices in v∗. The quantity b represents the number of particles containing d̄ − 1
particles in their neighborhood and c the number of particles containing d̄−2 particles
in their neighborhood. In what follows, we derive a, b and c which minimize equation
7.38. First of all, the case a > 0 implies that degv(v) = n̄− 2 since d̄ = n̄− 2 and all
neighbors of v have to be occupied. Consequently, k = n̄− 1. We are going to analyze
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this case first.
Assuming for now k = n̄ − 1, there can be at most one free site in the neighborhood
of any occupied vertex. Consequently, c = 0. Furthermore, since there is in any
configuration exactly one vertex which is not occupied we obtain that b = n̄ − 2 and
a = 1 where the vertex which implies a = 1 is given by the neighbor of the unoccupied
vertex in Lc. Consequently, we obtain

p4n̄−1;v∗,v∗ = 1
n̄− 1

(
1 + n̄− 2

n̄− 2− (n̄− 3) + 1

)
= 1

2 + 1
2(n̄− 1) >

1
2 .

Therefore, Sn̄−1 is lazy.
In the second case, if k < n̄− 1 whenever we consider a configuration v with a > 0 we
obtain due to the condition d̄ = n̄ − 2 that k = n̄ − 1 which is a contradiction to the
underlying assumption. Hence, in what follows, we can set a = 0 such that

p4k;v∗,v∗ = 1
k

(
b

n̄− k
+ c

n̄− k + 1

)
.

Obviously, by maximizing c and, in turn, minimizing b, we obtain the desired result.
Using Figure 23 and the fact that transitions of particles of type c are only possible if
there is another particle such that the pair of particles occupies both ends of an edge
in Lc. Consequently, c is even and the maximal number of pairs we can create from
k particles is

⌊
k
2

⌋
and, hence, c = 2

⌊
k
2

⌋
which implies b = kmod 2. To conclude these

calculations we obtain the minimal value for the probabilities to stay in place in the
form.

p4k;v∗,v∗ =


1
k

(
1

n̄− k
+ k − 1
n̄− k + 1

)
, if k is odd,

1
n̄− k + 1 , otherwise.

(7.39)

In the first case, we rewrite the transition probabilities using k = 2l + 1 for some
adequate l ∈ N to obtain

1
k

(
1

n̄− k
+ k − 1
n̄− k + 1

)
= 1

2l + 1

(
1

n̄− 2l − 1 + 2l
n̄− 2l

)
=: ql

Varying l between 1 and n̄− 4
2 is then equivalent to considering all possible odd k > 1.

Indeed, by considering the quotient

ql
ql−1

= 1 + 8(l − 1)l
(2l + 1)(4l − 1)((2l − 1)n̄− 4l2 + 4l) + 6(2l − 1)l

(2l + 1)(n̄− (2l + 1))(4l − 1)

+ 2(2l − 1)l
(2l + 1)(n̄− 2l) > 1
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we obtain that ql is growing in l such that p4k;v∗,v∗ > p4k′;v∗,v∗ for k, k′ odd with k > k′.
Additionally,

p4n̄−3;v∗,v∗ = 1
n̄− 3

(
1
4 + 1

12(n̄− 3)

)
<

1
2

which implies that Sk is not lazy for k = n̄− 3 and by the monotony of ql we obtain
that Sk is for k odd only lazy if k = n̄ − 1. In the second case, for k even, we arrive
at n̄− k + 1 ≤ 2 and, consequently, k = n̄− 1 which is never satisfied for k even since
n̄ is even.

To complete this discussion for particular cases, we are going to consider the com-
plete graph on n̄ vertices before going on to discussing the evolution of the properties
of Sk when varying d̄ in a way where we add edges to L while preserving the regular
graph property. We are going to employ perfect matchings to approach the arising
questions.

Proposition 7.27. Let L be the complete graph on n̄ vertices and k ∈ {1, . . . , n̄−
1}. The Markov chain Sk is a lazy Markov chain if and only if k = n̄− 1.

Proof. For the complete graph, we obtain

p4k,v,v = 1
k

k

n̄− k + 1 = 1
n̄− k + 1

which is greater or equal one half if and only if k ≥ n̄ − 1 and, therefore, only if
k = n̄− 1.

Hereinabove, we have established results on the convergence speed of Sk for specific
values of d̄ for which it was also possible to establish reversibility. Based on the results
in Theorem 7.25 and Theorem 7.26 one can intuitively guess that by increasing d̄
also the threshold k̄ for the number of particles, above which Sk becomes lazy, might
increase until attaining its maximal possible value k̄ = n̄− 1. Unfortunately, the idea
of increasing the degree d̄ is not necessarily well defined for a regular graph L if we
want to preserve the neighborhood relationships of the vertices in L which exist for
degree d̄ when going to d̄+ 1. In the inverse sense, we want to ensure that going from
a d̄+ 1-regular graph on n̄ vertices, we can generate a d̄-regular graph on n̄ vertices by
removing edges in a suitable way.
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Proposition 7.28. Let L = (V,E) be a d̄-regular graph on n̄ vertices. Consider
(Li)n̄−1−d̄

i=0 = ((V,Ei))n̄−1−d̄
i=0 a vector of regular graphs where L0 = L, Li is d̄i :=

d̄+i-regular and for any i ∈ {1, . . . , n̄−1−d̄} there is a perfect matchingMi in Li
such that Li−1 = (V,Ei\Mi). Denote by Ld̄ik = (Vk,E

d̄i
k ) the to Li corresponding

particle graph and by P4,d̄ik the transition matrix of Sd̄i
k on the graph Ld̄ik .

Then, for fixed k ∈ {1, . . . , n̄− 1} any configuration v ∈ Vk satisfies for i′ ≥ i

p
4,d̄i′
k;v,v ≤ p4,d̄ik;v,v (7.40)

and for fixed w ∈ Vk such that 〈v,w〉 ∈ Ed̄ik

p
4,d̄i′
k;v,w ≤ p4,d̄ik;v,w. (7.41)

Proof. We start the proof with the second claim. Since 〈v,w〉 ∈ Edik they satisfy
v4w = {v, w} for some v, w ∈ V , v 6= w which implies

p
4,d̄i+1
k;v,w − p4,d̄ik;v,w = 1

k

1
(d̄i + 1)− degv

di+1
(v) + 1

− 1
k

1
d̄i − degv

di
(v) + 1

= 1
k

degv
di+1

(v)− degv
di

(v)− 1
((d̄i + 1)− degv

di+1
(v) + 1)(d̄i − degv

di
(v) + 1)

(7.42)

and the numerator takes either the value 0 or −1 since the increase of the degree by 1
might connect v with another vertex in v but never disconnects from vertices in v due
to the edge difference being the matching Mi+1. Consequently, p4,d̄i+1

k;v,w ≤ p4,d̄ik;v,w and
by a bootstrap argument for i′ ≥ i we obtain p

4,d̄i′
k;v,w ≤ p4,d̄ik;v,w which proves the second

claim.
For the first claim, we emphasize that p4,d̄ik;v,v is the sum of all possible transition prob-
abilities for v ∈ v. Consequently, the conclusion made from equation 7.42 is valid for
each summand of p4,d̄ik;v,v and each summand is positive. Therefore, we conclude

p
4,d̄i′
k;v,v = 1

k

∑
v∈v

1
d̄′i − degv

di′
(v) + 1

≤ 1
k

∑
v∈v

1
d̄i − degv

di
(v) + 1

= p4,d̄ik;v,v (7.43)

and equality holds if and only if {v ∈ v|degv
di

(v) < degv
di′

(v)} = ∅. We have proven,
hence, the first claim.

Indeed, Proposition 7.28 applies by Corollary 3.17 applies to bipartite graphs, from
which vectors of d̄i-regular graphs can be constructed. This gives rise to the question
about the importance of bipartite graphs in the context of Markov chain Sk. We have
already seen, that Sk is reversible if the underlying graph L is a complete bipartite
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graph. This remains an open direction for further research on the behavior of Sk under
varying degrees d̄ of the underlying d̄-regular graph L.

7.3.7 Convergence Speed in Non-Reversible Cases

We have already seen that, up to some simple cases ,we can never exploit results on
convergence speeds of reversible Markov chains. Additionally, due to the inaccessible
form of the transition matrix P4k we encounter huge difficulties when trying to approach
this problem from a spectral theoretical perspective. In particular, the dependence
on induced sub-graphs and adjacency of induced sub-graphs based on the symmetric
difference renders a meaningful spectral theoretical result out of reach. On the other
hand, we have already shown in the previous sections that combinatorial approaches
are quite fruitful and there is, in particular, a back and forth when it comes to claims
about sub-graphs and Sk.
One result, which we can exploit from a combinatorial perspective is Doeblin’s criterion
on the convergence speed of Markov chains, which we presented in Theorem 5.23. It
transforms the problem into a uniform lower bound on the transition probabilities for
a fixed length paths between two states and some probability distribution on the state
space Lk. We need the following direct but necessary preliminary result.

Lemma 7.29. Let L be a d̄-regular graph on n̄ vertices and k ∈ {1, . . . , n̄−1} with
d̄+k+1 ≤ n̄. Then, for all v,w ∈ Vk we have p4k;v,w ≥ 1

2k(n̄−k) and p4k;v,v ≥ 1
2(n̄−k) .

Proof. The proof follows since under the condition d̄ + k + 1 ≤ n̄ we obtain for some
suitable v ∈ v that p4k;v,w = 1

k(d̄−degLv (v)+1) ≥
1

k(n̄−k+1) if and only if for all v ∈ v

the inequality degLv(v) < d̄ + k + 1 − n̄ ≤ 0 is satisfied, which is never the case,
and 1

k(n̄−k+1) ≥
1

2k(n̄−k) since k ≤ n̄ − 1. The second claim follows since p4k;v,v =∑
v∈v

1
k(d̄−degLv (v)+1) and by using the first part of the proof.

Using this bound on the transition probabilities, we obtain the following general
result which has only a simple condition on the parameter choices, which is almost
always satisfied in the applications.
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Theorem 7.30. Let L be a connected d̄-regular graph on n̄ vertices and k ∈
{1, . . . , n̄ − 1} with d̄ + k + 1 ≤ n̄. Consider the k-particle graph Lk of L, the
Markov chain Sk on Lk, its stationary distribution π as well as its transition
matrix P4k . Denote for v,w ∈ Vk and l ∈ N by ωLk

l (v,w) the number of walks of
length l from v to w along the edges in Lk. Let δ := diam(Lk),

conv(W ) := conv
({(

ωLk
ι (v,w)2

)δ
ι=0
|v,w ∈ Vk

})
the convex hull in Rδ+1 of all possible numbers of walks with maximal length δ
from any v to any w and for y ∈ Rδ+1

+ the function f be defined as

f(y) :=
δ∑
ι=0

√
yι

(2k(n̄− k))ι

(
ι

2(n̄− k)

)δ−ι
.

Define

C := miny∈conv(W ) f(y)
maxy∈conv(W ) f(y) , ε := C

2δ
δ∑
ι=0

(
d̄

n̄− 1

)ι (
ι

n̄− k

)δ−ι
.

Then, ε > 0 and the transition matrix P4k satisfies

sup
v∈Vk

∑
w∈Vk

|p4;(n)
k;v,w − π̃k(w)| ≤ 2(1− ε)b

n
δ c, n ≥ 1. (7.44)

In what follows, we present the idea of the central result in this subsection. We use
rarely satisfied conditions which render the steps more understandable before discussing
the details of the general result in the proof of the Theorem 7.30. To this end, recall
the following notations. For v,w ∈ Vk and l ∈ N we denote by ωLk

l (v,w) the number of
walks of length l from v to w along the edges in Lk. Note that Lk is an indirected graph
and, consequently, we have ωLk

l (v,w) = ωLk
l (w, v). Additionally, we define ωLk,◦

l (v,w)
as the number of walks from v,w ∈ Vk in the extended graph L◦k where a loop is added
to every vertex. The graph L◦k is the graph which includes all pairs of vertices in V2

k

as edges which show a positive transition probability under P4k . A important result
for us, which can be found in [FePeKo01], Lemma 4.2, states that for a fixed l there is
a pair v̄, w̄ ∈ Vk such that

ωLk
l (v̄, w̄) ≥ (avg deg(Lk))l

|Vk|
. (7.45)

Furthermore, drawing upon Proposition 7.28, we find that using k ≤ n̄−1 and Lemma
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7.29 that

p4k;v,w ≥
1

2k(n̄− k) , p4k;v,v ≥
1

2(n̄− k) .

Moreover, since at any point a transition from a vertex to any of its neighbors in Lk
is possible with positive probability the transition matrix satisfies for l ≥ diam(Lk)
the property (P4k )l > 0. Therefore, we can estimate (P4k )l for fixed l ≥ diam(Lk) and
v,w ∈ Vk with v 6= w by

p
4;(l)
k;v,w ≥

l∑
ι=0

wLk
ι (v,w)

(2k(n̄− k))ι
∑

l1+...+lι=l−ι

(
l − ι

l1, . . . , lι

)
1

(2(n̄− k))l−ι

where every summand represents a path with ι real steps and l− ι loops taken by Sk.
Under the illustrative assumption that for any ι ∈ N we have wLk

ι (v,w) > 0, which
is almost never true, we find that there is by continuity of the map x 7→ xι on R a
constant a > 0 for all ι ∈ N such that wLk

ι (v,w) ≥ aι

|Vk|
with a ≤ avg deg(Lk) by

equation 7.45. This gives

p
4;(l)
k;v,w ≥

l∑
ι=0

wLk
ι (v,w)

(2k(n̄− k))ι
∑

l1+...+lι=l−ι

(
l − ι

l1, . . . , lι

)
1

(2(n̄− k))l−ι

≥ 1
|Vk|

l∑
ι=1

aι

(2k(n̄− k))ι

(
ι

2(n̄− k)

)l−ι
≥ 1
|Vk|

l∑
ι=1

aι

(2k(n̄− k))ι

(
1

2(n̄− k)

)l−ι
.

By Proposition 4.11 we obtain that a
2k(n̄−k) ≤

1
2 and, consequently, for all l ∈ N

l∑
ι=1

aι

(2k(n̄− k))ι

(
1

2(n̄− k)

)l−ι
≤

l∑
ι=1

aι

(2k(n̄− k))ι ≤
l∑

ι=1
2−ι = 1− 2−l < 1.

Hence, using Doeblin’s criterion from Theorem 5.23 with

ε =
diam(Lk)∑
ι=1

aι

(2k(n̄− k))ι

(
1

2(n̄− k)

)l−ι
and δ = diam(Lk) as well as π̂(v) = |Vk|−1, the uniform distribution on Vk, we obtain
that

sup
v∈Vk

∑
w∈Vk

|p4;(n)
k;v,w − π̃k(w)| ≤ 2(1− ε)bnδ c, n ≥ 1

and, therefore, a quantitative description of the exponential convergence speed of Sk to
its stationary distribution. While these formal calculations convey the idea correctly,
already the assumption wLk

ι (v,w) > 0 is far from applicable. On the other hand, the
lower bound (2k(n̄ − k))−1 for the transition probabilities in Proposition 7.28 only
applies to cases which satisfy the conditions in Proposition 7.28 if we remove the
condition on n̄, k and d̄. To overcome this hurdle the proof of Theorem 7.30 demands
additional assumptions on n̄, k and d̄. We now present the complete proof.
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Proof of Theorem 7.30. We start the proof by finding a uniform lower bound for
l∑

ι=0

ωLk
ι (v,w)

(2k(n̄− k))ι

(
ι

(2(n̄− k)

)l−ι
(7.46)

before coming back to the heuristic arguments made hereinbefore which then become
mathematically rigorous thanks to this lower bound. To this end, we consider the
function f and conv(W ) as defined in Theorem 7.30. Note that f(y) > 0 for all
y ∈ conv(W ) and infy∈conv(W ) f(y) = miny∈conv(W ) f(y) > 0 since all ω ∈ conv(W )
have at least one positive entry which is bounded away from 0. In what follows we
denote for ι ∈ {1, . . . , δ} by αι the term

αι = 1
(2k(n̄− k))ι

(
ι

(2(n̄− k)

)δ−ι
. (7.47)

Leaning on the proof of Lemma 4.2. in [FePeKo01] we obtain that
δ∑
ι=0

αι
|Vk|

(avg deg(Lk))ι ≤
δ∑
ι=0

αι

√√√√∑v,w ω
Lk
ι (v,w)2

|Vk|2
.

Since ∑v,w
1
|Vk|2

= 1 we deduce

(ω̄ι)δι=0 :=
(

1
|Vk|2

∑
v,w

ωLk
ι (v,w)2

)δ
ι=0

∈ conv(W ) (7.48)

which allows us to conclude
δ∑
ι=0

αι

√√√√∑v,w ω
Lk
ι (v,w)2

|Vk|2
= f

(
(ω̄ι)δι=0

)
≤

maxy∈conv(W ) f(y)
miny∈conv(W ) f(y) min

y∈conv(W )
f(y)

≤ C−1 min
v,w∈Vk

f
(
(ωLk

ι (v,w)2)δι=0

)
.

Furthermore, under the condition d̄ + k + 1 ≤ n̄ we obtain by k ≤ n̄ − 1 the already
mentioned estimates

p4k;v,w ≥
1

2k(n̄− k) , p4k;v,v ≥
1

2(n̄− k) .

The estimates which we have given in the heuristic discussion hereinbefore and which
are in fact rigorous imply that

p
4;(l)
k;v,w ≥

l∑
ι=0

ωLk
ι (v,w)

(2k(n̄− k))ι
∑

l1+...+lι=l−ι

(
l − ι

l1, . . . , lι

)
1

(2(n̄− k))l−ι

=
l∑

ι=0

ωLk
ι (v,w)

(2k(n̄− k))ι

(
ι

2(n̄− k)

)l−ι

≥ min
v,w∈Vk

l∑
ι=0

ωLk
ι (v,w)

(2k(n̄− k))ι

(
ι

2(n̄− k)

)l−ι
= min

v,w∈Vk
f
(
(ωLk

ι (v,w)2)lι=0

)
.
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Using this in combination with the previously obtained lower bound we arrive at

p
4;(δ)
k;v,w ≥

C

|Vk|

δ∑
ι=0

αι(avg deg(Lk))ι. (7.49)

Applying Doeblin’s criterion, see Theorem 5.23, we obtain the claim using π̂(v) =
|Vk|−1 and ε as given in Theorem 7.30 by applying Proposition 4.11 to the right hand
side of equation 7.49.

Indeed, considering the constant C one can wonder about its quality depending on
the underlying graph L, the implied geometry of Lk and whether it can be improved,
which would automatically increase the value for the convergence speed of Sk. The
discussion in the proof of Theorem 7.30 focuses on one pillar when it comes to the
definition of C, the convex hull of the squares of the number of paths in combination
with f . It turns out that C is the best possible constant when using the general
arguments we employed, which do not take into account the difficult geometry of Lk,
but work in general for arbitrary underlying regular connected graphs L. Indeed,
assuming for illustrative purposes that Lk is the complete graph we find that conv(W )
becomes just one single point such that f is a constant function on conv(W ). This
leads us to the conclusion that C = 1 and in any other case C ≤ 1. Consequently, we
find a graph for which we have equality in the estimates concerning f , and C can, thus,
not be improved without more information on the geometry of Lk. An expression for
the diameter of Lk remains subject of active research on the authors site, but one for
the moment without a satisfying answer.

Within this section we have obtained structural and quantitative properties of Sk

as a function of the underlying graph L and the number of particles k. We have
seen that the methods we needed to apply vary greatly depending on k and L due
to the difficulties arising from k sub-graph problems and the multi-layer dependency
of the transition probabilities of Sk on both vertices from Lk and L. Combinatorial
approaches allowed us to derive, nonetheless, bounds which are explicit up to the
state of the art in the research of sub-graph problems, the number of walks in graphs
and discrete optimization. Advancements in these fields can, therefore, also push the
quality of our results and fill in gaps which need new results outside of the scope of
this work.

In the next subsection we compare the behavior of the chain Sk with an example of
a discrete time exlcusion processes which has been subject to research for some time.
It is one of the examples given in [DiaSal93] to underline the difference which may
arise depending on the local and global interaction of particles.
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7.4 Comparison to classical discrete time exclusion process
In [DiaSal93] the authors use a certain form of an exclusion process as an example to
show the possibility to apply their main result of the paper on the convergence speed of
reversible Markov chains. It is a discrete time model which captures the characteristics
of the exclusion process using the transition matrix for an associated Markov chain. We
recall some results on this model, which we described in Subsection 5.5 geometrically,
before going on to a comparison with Sk. Firstly, recall that we called the associated
Markov chain Sc

k on Lk and its transition matrix P c which has the form

pck;v,w =



1
k · d̄

, v4v = {x, y}, 〈x, y〉 ∈ E,∑
v∈v degLv(v)
k · d̄

, v = w,

0, otherwise.

Conditioned on a transition, the form of P c is given by the uniform distribution. The
stationary distribution πc

k of Sc
k can consequently be derived directly and reversibility

follows as well.

Corollary 7.31. Let L be a d̄-regular graph as well as k ∈ {1, . . . , n̄−1} and consider
the Markov chain Sc

k on Lk. Then it is aperiodic, irreducible and, hence, ergodic.
Furthermore, it is a reversible chain and the stationary distribution πc

k is given in
terms of subsets v ∈ Vk by

πc
k(v) = 1(

n̄
k

) . (7.50)

While further analysis is an interesting topic it has been subject to a variety of
approaches and the results are quite complete, see [DiaSal93] and [Fill91]. We are
going to recall some of them briefly here before going on to further properties we can
derive based on Lk.

Since Sc
k is reversible independently of the underlying graph, we are interested in

the cases where Sk is lazy as a function of k and the underlying graph L. To this end
we focus exclusively on minv∈Vk p

c
k;v,v and discuss the implications based on sub-graphs

of L.

Lemma 7.32. Let L be a d̄-regular graph on n̄ vertices and k ∈ {1, . . . , n̄− 1}. If

d̄

2 ≥ max
v∈Vk

degk(v)
k

(7.51)

then, Sc
k is lazy.

Proof. The result follows directly from Proposition 6.1 and the definition of degk(v).
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To compare with the generalized exclusion process we consider in what follows the
case of the cycle graph L on n̄ vertices, i.e., the regular graph with d̄ = 2. By the
discussion in the previous sections, we have for k ≤

⌊
n̄
2

⌋
the characterization of the

degree set of Lk
Dk = {2 l| l ∈ {1, . . . , k}}

and by symmetry Lk
∼= Ln̄−k we obtain for k ≥

⌈
n̄
2

⌉
Dk = {2 l| l ∈ {1, . . . , n̄− k}}.

Note that for k ≤
⌊
n̄
2

⌋
we have maxv∈Vk degk(v) = 2k and, therefore, Sc

k is not lazy.
On the other hand for k ≥

⌈
n̄
2

⌉
we obtain the condition 1 ≥ 2(n̄−k)

k
which is equivalent

to 3 ≥ 2n̄
k

and, therefore, k ≥ 2n̄
3 . Therefore, we obtain on the cycle graph that Sc

k

is a lazy Markov chain if and only if Sk is also a lazy Markov chain. Nonetheless,
the stationary distributions have nothing in common. When comparing to the second
explicit case of d̄ = n̄− 2 we see already that the previously observed property is more
of a coincidence for a particular graph.

By Lemma 4.26 we have Dk =
{
k(n̄− 2)− k(k − 1) + 2l

∣∣∣∣∣ l ∈ {0, . . . ,
⌊
k
2

⌋}}
and,

therefore, for k ≤ n̄
2 the equivalence

n̄− 2
2 ≥ maxv∈Vk degk(v)

k
⇔ n̄− 2

2 ≥ (n̄− 2)− (k − 1) + 2
k

⌊
k

2

⌋
. (7.52)

For k even this implies that

0 ≥ (n̄− 2)
2 − (k − 1) + 1 = (n̄− 2)

2 − k + 2

which is the case if and only if k ≥ n̄
2 + 1. On the other hand for k odd we have

0 ≥ (n̄− 2)
2 − (k − 1) + 1− 1

k
= n̄

2 + 1− k − 1
k

which amounts to
k ≤ 1

4(−
√

(n̄+ 2)2 − 16 + n̄+ 2) < 1

for n̄ > 2 or
k ≥ 1

4(
√

(n̄+ 2)2 − 16 + n̄+ 2) > n̄

2
for n̄ > 2. We conclude that the chain is never lazy if k ≤ n̄

2 . We, therefore, turn to
the case k > n̄

2 which leads to the equality

Dk =
{

(n̄− k)(n̄− 2)− (n̄− k)((n̄− k)− 1) + 2l
∣∣∣∣∣ l ∈

{
0, . . . ,

⌊
n̄− k

2

⌋}}
.
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Again, for k even this implies that

0 ≥
(

(n̄− k)− k

2

)
(n̄− 2)− (n̄− k)((n̄− k)− 1) + (n̄− k)

=
(
n̄− 3 k

2

)
(n̄− 2)− (n̄− k)((n̄− k)− 2) = k

(
n̄

2 − k + 1
)

which is satisfied for any k > n̄
2 . Hence, for d̄ = n̄− 2 we see a strong difference in the

characteristic properties of Sk and Sc
k. While Sk is according to Theorem 7.26 only

for k = n̄− 1 lazy, Sc
k is lazy for any k > n̄

2 .
We are going to explore the divergence in behavior of the two Markov chains further.
To this end, we turn to the behavior of the transition probabilities when varying the
degree d̄. In Figure 46 we illustrate the changes for growing d̄ for the minimal transition
probabilities. One can observe monotony for the resulting curves but while they are

Figure 46: For an underlying d̄ regular graph on 6 vertices we show the behavior
of the minimal transition probabilities when varying d̄ between 2 and 5. On the
righthandside, we consider the case when the start and end configuration are different.
On the lefthandside we consider identical ones, i.e., the probability to stay put. The
blue curve represents Sk and the red one Sc

k.

decreasing in both cases for Sk they show different monotony types for Sc
k. Evidently,

under the assumptions of Proposition 7.28 we can, again, make consistent quantitative
claims when varying d̄. Adapting the notation from Proposition 7.28 the transition
probabilities P c,d̄

k satisfy for any 〈v,w〉 ∈ Ed̄k independently of v and w

pc,d̄k;v,w = 1
kd̄

>
1

k(d̄+ 1)
= pc,d̄+1

k;v,w .

This is still in accordance with the property derived for Sd̄
k derived in Proposition 7.28.

We consider now the probability of Sc,d̄
k to stay put at any time step. We have seen
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that for Sd̄
k under variation of d̄ it satisfies p4,d̄+1

k;v,v ≤ p4,d̄k;v,v which is not true for Sc,d̄
k . To

this end consider the following derivations where v+ = {v ∈ v|degv
d̄(v) < degv

d̄+1(v)}.

pc,d̄k;v,v − p
c,d̄+1
k;v,v =

∑
v∈v

degv
d̄(v)
kd̄

−
degv

d̄+1(v)
k(d̄+ 1)

=
∑
v∈v+

degv
d̄(v)
kd̄

−
degv

d̄+1(v)
k(d̄+ 1)

=
∑
v∈v+

degv
d̄(v)(d̄+ 1)− (degv

d̄(v) + 1)d̄
k(d̄+ 1)d̄

=
∑
v∈v+

degv
d̄(v)− d̄

k(d̄+ 1)d̄
≤ 0.

Moreover, equality holds if for all v ∈ v the identity degv
d̄(v) = d̄ is satisfied, which

implies immediately k = n̄ and is, therefore, never possible. Consequently, pc,d̄k;v,v is
strictly increasing in d̄, which is the opposite of the behavior established in Proposition
7.28 for p4,d̄k;v,v. Hence, we can conclude that while for d̄ = 2 both chains have identical
thresholds for k beyond which they become lazy Markov chains afterwards they diverge
from one another as d̄ increases, the threshold for Sd̄

k increasing due to the decreasing
behavior p4,d̄k;v,v while the threshold for Sc,d̄

k decreases due to the increasing behavior
pc,d̄k;v,v.

To conclude, we can say that the choices we made for the transition probabilities
lead to a Markov chain which diverges hugely in its behavior from this classic example.
Hopes to compare them beyond the reversible cases, for which the tools developed in
would come in handy, if they were not analytically approachable, are, consequently,
in vain. This leaves us with the question of comparability of Markov chains to obtain
results on generalized exclusion processes as was done for multiple random walks by
comparing with single random walks, see [Abd12] and classical exclusion processes by
comparing also single particles, see for example [Oliv13].

In the next subsection we come back to the motivating example of this whole section,
the reduced Echo Chamber Model and the behavior of its edges over long time. We
discuss the results of this subsection in light of the Johnson graph as underlying graph
L and make further observations based on the strongly regular structure of this graph.

7.5 Interpretation for relationship dynamics

In this subsection we come back to the initially posed problem to analyze the exclusion
process which arises form the reduced version of the Echo Chamber Model. The
underlying graph L takes, therefore, a particular form, namely for some n ∈ N it
satisfies L = srg

(
n(n−1)

2 , 2(n− 2), n− 2, 4
)
. In particular, it is a strongly regular graph

with α ≥ 1 if n ≥ 3. With the idea in mind, that we want consider large but finite
populations in the context of the Echo Chamber Model, we can ignore the case n = 2,
which amounts L being a graph consisting of a single vertex. Theorem 7.18 gives the
following corollary.
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Corollary 7.33. Consider the particles process Sk and the Markov chain S =
(St)t induced by the reduced Echo Chamber Model

1. Let L be a strongly regular graph with parameters (n̄, d̄, α, β). Then process
Sk is reversible if and only if d̄ ∈ {2, n̄−2, n̄−1} or k ∈ {1, 2, n̄−2, n̄−1}.

2. Consider the process S = (St)t on a population of n individuals with k
relationships. Then the associated Markov chain Sk is reversible if and
only if n = 3 or k ∈ {1, 2, n(n−1)

2 − 2, n(n−1)
2 − 1}.

Proof. Both claims follow from Theorem 7.18, Theorem 7.20 and the fact that if α = 0,
L contains a double-pitchfork since no two vertices have common neighbors.

One would be tempted to make additional claims given that the problem is so much
more structured than the general problem on regular graphs which we considered
beforehand. Let us begin with the structure of the stationary distribution of Sk. By
Theorem 7.8 two configuration v,w ∈ Vk carry the same weight with respect to π̃k if
Lv,vc

∼= Lw,wc . Finding the number of distinct values of π̃k amounts, consequently, to a
more involved task than searching the number of non-isomorphic graphs on n vertices
and k edges. This task has been resolved and can be found in [Har71]. The whole
expression can also be found in [Weis22]. Therefore, we find the number of level sets of
π̃k using this identification of the problems in the form of a highly complicated formula.
Further results on the stationary distribution, in particular the explicit values are out
of reach for now.

Turning now to the convergence speed in the sense of Theorem 7.30, we want to
recall that the underlying graph is L = srg

(
n(n−1)

2 , 2(n− 2), n− 2, 4
)
. In this setting,

the condition d̄+ k + 1 ≤ n̄ is equivalent to

k ≤ n(n− 1)
2 − 2n− 3 = 1

2(n2 − 5n− 6) = 1
2

(
n− 5

2

)2
− 49

8 (7.53)

such that k can even be of the order of n2. Publications on the density of social
networks and the internet at large show that the degree of each vertex is distributed
like a power law distribution, see for example [MuPei13] and [Hub99]. This implies
that k is in these cases of order nα for some α ∈ (1, 2). Therefore, this restriction
is not really one, and we can assume that it is met, ignoring some theoretical corner
cases where the graph contains almost all its edges. Therefore, we can apply Theorem
7.30. Firstly, we find the trivial bound that δ = diam(Lk) ≤ k diag(L) = 2k since
the diameter of all strongly regular graphs with β > 0 is equal to 2 and k particles
have to be moved along the edges of L. Therefore, finding the convergence speed is
linked to the problem of characterizing the set of vectors which describe the number
of walks in Lk between any two configurations. In spite of the very clear structure
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of srg
(
n(n−1)

2 , 2(n− 2), n− 2, 4
)
, this turns out to be a computationally demanding

combinatorial problem and the author did not manage to find a satisfying description
of the convex hull of these vectors for a complete analysis of the constants involved in
Theorem 7.30. Indeed, this leads into the field of analyzing sub-graphs of the Johnson
graph J (n, 2) and the path space of the associate graph Lk which can be of interest in
itself and would also contribute graph theory aside from its application to this example
of the Markov chain Sk. This might be another fruitful connection between Sk and
the analysis of sub-graphs, which is, unfortunately, out of scope of this work.
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8 Exclusion processes in random absorbing envi-
ronments

Outline of this section: In the previous section, we have analyzed in detail the
behavior of Sk on Lk as a finite Markov chain. In this section, we constrain the
state space by introducing a random environment on L which is absorbing for the
particles of Sk. We discuss the link between the geometric properties of the absorbing
environment and the finiteness of the time to absorption for Sk as a whole particle
system. Additionally, we describe explicitly the resulting state space of the implied
Markov chain Sabs

k and find an upper bound on the expected time to absorption as a
function of its quasi-stationary distribution. Finally, we discuss the implications for
the Echo Chamber Model with continuous opinions with constant opinions and find
negative results for the time to convergence independent of the number k of particles.

8.1 From echo chambers to random absorbing environments
We consider a graph which changes randomly over time due to conflict between the
individuals. To this end, consider a probability space (Ω,F ,P) and a sequence of simple
but not necessarily connected graphs (Gt)t∈N = ((V , Et))t∈N with for t ∈ N a vertex set
V with |V| = n and an edge set Et with |Et| = k. Every a ∈ V carries a label given by a
random variable Xa ∼ L([0, 1]) on (Ω,F ,P) representing an individual’s own opinion.
The set {Xa|a ∈ V} is assumed to a set of i.i.d. random variables. Furthermore, let
θ ∈ [0, 1]. The value θ is the individual tolerance threshold, which we assume to be
identical for every vertex, i.e., individual in the population. The graph then evolves in
discrete time following the hereinafter described rule at each time step form t to t+ 1

• Draw uniformly an edge 〈A,B〉 ∈ Et.

• Define N〈A,B〉 = {e = 〈c, d〉 6∈ Et\{〈A,B〉}|k ∈ {A,B} or l ∈ {A,B}}.

• If |XA −XB| ≥ θ

– remove the edge with probability p ∈ [0, 1],
– draw uniformly E from N〈A,B〉,
– set Et+1 = (Et\{〈A,B〉}) ∪ {E}.

Choosing instead for some N ∈ N and Xa ∼ L
({

i
N
|i ∈ {1, . . . , N}

})
as well as θ <

N−1 one can transform the model into a discrete opinion one. In both cases, this
leads to a dynamic graph process which is governed by the vertex labels, which may
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be interpreted as the opinions of the corresponding individual within the network.
Due to the condition on the difference of opinions, some connections will always be
preserved once establish. This leads to the question if a network may separate into
homogeneous groups of identical opinions under this dynamic. In what follows we are
going to consider the dynamics again in the context of particles on the line graph of
the complete graph and make in particular distinctions between certain types of label
distributions.

Consider, therefore, the line graph L = (V,E) of the complete graph Ĝ on n vertices
with vertex labels Y = (Yv)v∈V with Yv = ||Xa − Xb||2 if v = 〈a, b〉 such that Yv ∼
L([0, 1]) with ||.||2 being the usual Euclidean norm. Define a new Markov chain based
on an appropriate transition matrix P4θ where P40 := P4. Consider Sk,θ as defining
the dynamics of the whole configuration on Lk. Given a fixed set of vertex labels
it becomes a Markov chain on Lk. Let v,w ∈ Vk. Then the transition between
confiurations, capturing the more involved dynamics induced by the labels is defined
by the transition probability

pθk;v,w := p4k;v,w1Yv≥θ1〈v,w〉∈Ek (8.1)

and pθk;v,v := 1−∑w 6=v p
θ
v,w.

Due to the introduced factor 1Yv≥θ in the transition probabilities, cases may arise
where pθk;v,v = 1. This renders the state v absorbing. This may happen for the following
two reasons.

• If for all v ∈ v the condition Yv < θ is satisfied.

• If for some subset v′ ⊂ v we have ∀v ∈ v′ : Yv < θ and for all w ∈ v\v′ the
identity degLv(w) = deg(w) is satisfied.

To illustrate this further, we consider again the case we touched upon in Figure 34.
Assume that there are 4 absorbing states as visualized in Figure 47. The red vertices
symbolize said absorbing sites and bright blue vertices represent empty sites. Assume

〈1, 2〉 〈2, 3〉 〈3, 4〉

〈2, 4〉 〈4, 1〉 〈1, 3〉

Figure 47: Four absorbing sites in the line graph of K4. These are represented as red
vertices. Particles behave as usual on blue vertices.

that k = 5, i.e., we consider a generalized exclusion process on k particles in the random
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environment induced by the labels and assume, furthermore, that for some t ∈ N we
have Sk,θ;t = v with v = {〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈2, 4〉, 〈1, 4〉} as shown in Figure 48. Then
{〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈1, 4〉} are absorbing states occupied by particles. Those particles
will, therefore, remain forever in their state. But also 〈2, 4〉 becomes an absorbing state
since all possibilities to leave are blocked for the particle occupying 〈2, 4〉 since all its
neighbors are absorbing states occupied by particles. Therefore, we can deduce, that,

〈1, 2〉 〈2, 3〉 〈3, 4〉

〈2, 4〉 〈4, 1〉 〈1, 3〉

Figure 48: Particle configuration of k = 5 particles on the line graph of K4. Four
particles are in absorbing states while the final one, which is not in an absorbing state,
is blocked by the others.

since some states are absorbing the process may stop to move at some point but this is
not necessarily enforced by the absorbing states in themselves but also their position
in the network. Figure 48 illustrates that the Markov chain Sk,θ may even converge
when k is larger than the actual number of absorbing vertices in L. This is in fact
a general property of multi-particle dynamics in random absorbing environments and
is equally fascinating in the context of the Echo Chamber Model and the underlying
assumptions on the opinions. We are going to discuss this in what follows.

8.2 Implied topology and finite time to absorption
We are going to consider the problem on the graph L = (V,E) in a rather general
form. To this end, consider random labels (Zv)v∈V with Zv ∈ {0, 1} almost surely. A
vertex v ∈ V is considered absorbing if Zv = 0. This corresponds to Zv = 1Yv≥θ in the
previously discussed setting of the Echo Chamber Model.
To include the case illustrated in Figure 48 in the setting of absorbing Markov chains
we need the following definitions and observations.

Definition 8.1. Consider a d̄-regular graph L = (V,E) with |V | = n̄ and let
k ∈ {1, . . . , n̄− 1}. We define the time to absorption of the Markov chain Sk,θ on
Lk by

T 0
k,θ := inf{t ≥ 0|∃v ∈ Vk : Sk,θ;t = v, pθk;v,v = 1}. (8.2)

We want to emphasize with Lemma 8.2 that this does neither mean that all particles
are in absorbing sites, i.e., for all v ∈ v we have Zv = 0, nor that all absorbing states
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are occupied even if the number of particles is larger then the number of absorbing
sites.

Lemma 8.2. Consider a d̄-regular graph L = (V,E) with n̄ := |V | and let k ∈
{1, . . . , n̄ − 1}. Assume the vertices of L carry labels (Zv)v∈V with Zv ∈ {0, 1}
such that v is absorbing if and only if Zv = 0. Denote by Z := {v ∈ V |Zv = 0}.
If k ≤ d̄ then either |Z| < k and T 0

k,θ =∞ or T 0
k,θ <∞ almost surely.

Proof. Assume first that |Z| < k. Then, for all v ∈ Vk we have |Z ∩ v| < k. Since
k ≤ d̄ the number of absorbing states is given by |Z| since no vertex v ∈ V may
have only absorbing neighbors all of them being occupied by particles. By assumption
|Z| < k such that there remains for all v ∈ Vk always at least one particle v ∈ v which
is not in an absorbing state such that for all v ∈ Vk we have pθk;v,v < 1 which implies
T 0
k,θ =∞.

On the other hand if |Z| < k then there exists a set v ∈ Vk such that for all v ∈ v we
have Zv = 0. Furthermore, since k ≤ d̄ the minimal number of accessible states v ∈ L,
i.e, states which satisfy that there is a w ∈ Nv such that w 6∈ Z, is greater or equal
k. Consequently, there is a state in Vk with positive probability to be entered and by
finiteness of the state space of Sk,θ we obtain T 0

k,θ <∞ almost surely.

Evidently, setting k = 1 we come back to the classical setting of a random walk on
a graph with random absorbing vertices. Hence, for k ≤ d̄ we can make a distinction
of the finiteness of T 0

k,θ only based on the size of the set Z. For an i.i.d. environment
we can make immediately the following claim.

Lemma 8.3. Consider a d̄-regular graph L = (V,E) with |V | = n̄ and let k ∈
{1, . . . , n̄ − 1}, k < d̄. Assume the vertices of L carry i.i.d. labels (Zv)v∈V with
Zv ∼ B(p) with p ∈ (0, 1) such that v is absorbing if and only if Zv = 0. Then

P[T 0
k,θ <∞] = 1−

k−1∑
j=0

(
n̄− 1
j

)
(1− p)jpn̄−j (8.3)

and, hence, it follows E[T 0
k,θ] =∞.

Proof. The result follows since ∑v∈V Zv ∼ Bin(n̄, p) and under the condition k < d̄ the
inequality T 0

k,θ <∞ is equivalent to ∑v∈V Zv = |Z| ≥ k.

It turns out that k < d̄ is not necessarily an interesting case. Consider for example
the Echo Chamber Model and, hence, L as the line graph of a complete graph on
n vertices. Then n̄ = n(n− 1)

2 and d̄ = 2(n − 2) such that d̄ grows as
√
n̄. In
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turn, recalling that k is the number of existing edges in the network at each time t,
applications, as already mentioned see for example [MuPei13] and [Hub99], motivate
rather a growth behavior of k in the order of n̄α with α ∈ (1, 2). Hence, we rather have
to focus on the case k > d̄. On the other hand, if k > d̄ the process may run into various
complications which we are going to discuss in what follows. In particular, we need
the following definition underlining the fact that Z may have profound implications
on the chain Sk,θ beyond the fact that it renders states absorbing.

Definition 8.4. Consider a d̄-regular graph L = (V,E) with |V | = n̄, labels Z =
(Zv)v∈V on the vertex set and let k ∈ {1, . . . , n̄− 1}. Recall Z = {v ∈ V |Zv = 0}.
We call a vertex v ∈ V inaccessible if Nv ⊆ Z, denote the set of all inaccessible
vertices of L with respect to Z by I and define Zι := Z ∩ I as the set of blocked
absorbing states.

We illustrate the notion of inaccessible vertices in Figure 49, showing the possibility
that both non-absorbing and absorbing states may be inaccessible. Drawing from

1 2 3

4 5 6

1 2 3

4 5 6

Figure 49: Inaccessible states may both be absorbing or not. All neighbors are absorb-
ing such that a particle cannot enter an inaccessible state. The vertex 4 shows the two
possibilities in the two graphs.

Figure 49 we see that, the non-absorbing accessible states may yield counter-intuitive
interpretations because they are in some sense absorbed while not being in an absorbing
state based on their label. The bigger problem arises nonetheless from the vertices in Zι
since they render the set of actual absorbing states more difficult to reach. To illustrate
this point assume that n̄−|Z| > k, and for some t ∈ N we have Sk,θ;t = v ⊂ V \Z and
|Z\Zι| < k. Then, Sk,θ can never be completely absorbed, since only the state Z\Zι
can be reached from V \Z. Hence, there will always be k − |Z\Zι| free particles such
that T 0

k,θ =∞ almost surely, conditioned on these assumptions.

8.3 Expected time to absorption in cell free environments
In the previous subsection we have discussed, based on Figure 49, that both non-
absorbing accessible states and the vertices in Zι may influence greatly the behavior
of the process. While these structures may theoretically arise with positive probabil-
ity based on the labels (Zv)v∈V they may not be ”natural” in the sense inspired by
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an underlying model. To this end, we consider the Echo Chamber Model on a net-
work with distinct colors presented in [HePraZha11]. Edges are only preserved if they
connect two individuals of identical opinion. Otherwise, they are terminated and recre-
ated according to the dynamics described in the beginning of this whole section. The
opinions are drawn independently for each individual and according to the same dis-
tribution. Assuming that there are N colors on the graph G = (V , E), we can translate
the dynamics in [HePraZha11] to our setting, by considering any probability measure
L({ i

N
|i = 1, . . . , N}) for the labels (Xv)v∈V and θ < 1

N
. Consequently, Assuming that

there is a path (v1, . . . , vl) from v ∈ V to w ∈ V of short edges, then Xv = Xw. This
idea forms the basis for the following preliminary result.

Proposition 8.5. Let Ĝ = (V , E) be the complete graph on n vertices with la-
bels (Xa)a∈V distributed i.i.d. as L({ i

N
|i = 1, . . . , N}) and let θ < 1

N
. Denote

by L = (V,E) the line-graph of the complete graph on n vertices and define
by (Y〈a,b〉)〈a,b〉∈V = (|Xa − Xb|)(a,b)∈V2, a 6=b the labels on the vertices of L and by
Z = (Z〈a,b〉)〈a,b〉∈V = (1Y〈a,b〉≥θ)〈a,b〉∈V . Then, the set I of inaccessible states of L
with respect to Z is almost surely empty or V .

Proof. Let v ∈ I ⊆ V . Then, by definition Nv ⊆ I and there is an edge 〈a, b〉 in G such
that v = 〈a, b〉. Since v ∈ I we obtain that all a′, b′ ∈ V\{a, b} satisfy |Xa −Xa′ | = 0
and |Xb −Xb′| = 0 such that for all a, b ∈ V we conclude Xa = Xb, i.e., all vertices in
G have the same color. Consequently, 1Y〈a,b〉≥θ = 0 for any 〈a, b〉 ∈ V such that I = V .
On the other hand, if not all vertices in G have the same color, we arrive at a contra-
diction such that I = ∅.

Hence, for the case of distinct colors, which represent the opinions, we can get rid of
such structures and, indeed, it turns out that under these conditions removing all v ∈ Z
from L we still have a connected graph L′. This gives us the following percolation-like
result.

Proposition 8.6. Let Ĝ = (V , E) be the complete graph on n vertices with la-
bels (Xa)a∈V distributed as L({ i

N
|i = 1, . . . , N}) and let θ < 1

N
. Denote by

L = (V,E) the line-graph of the complete graph on n vertices and define by
(Y〈a,b〉)〈a,b〉∈V = (|Xa − Xb|)(a,b)∈V2, a 6=b the labels on the vertices of L and by
Z = (Z〈a,b〉)〈a,b〉∈V = (1Y〈a,b〉≥θ)〈a,b〉∈V . Then, the vertex induced sub-graph LV \Z is
almost surely connected.

Proof. By Proposition 8.5 we have to consider the two cases I = V and I = ∅. In
the first case, LV \Z is the empty graph with no vertices and no edges. Discussing
connectedness of this graph is not center of this work and we assume that it is without
loss of generality connected.
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In the second case, I = ∅, we assume that LV \Z is disconnected, i.e., there are V1, V2 ⊆
V \Z such that V \Z = V1 t V2. Let v1 ∈ V1 and v2 ∈ V2. Then there is a path φ
of length l between v1 and v2 in L such that for some a i ∈ {1, . . . , l} the segment
φ(i) ∈ Z and φ(i− 1) ∈ V1 as well as φ(i+ 1) ∈ V2 or φ(i+ 1) ∈ Z and φ(i+ 2) ∈ V2
because I = ∅. We focus on the first case where φ(i + 1) ∈ V2 since the second case

〈aφ(i−1), aφ(i)〉 〈aφ(i), bφ(i)〉 〈bφ(i), bφ(i+1)〉

Figure 50: Neighborhood relationship of φ(i) = 〈aφ(i), bφ(i)〉, φ(i − 1) = 〈aφ(i−1), aφ(i)〉
and φ(i+ 1) = 〈bφ(i), bφ(i+1)〉.

follows using the same argument on φ(i+ 2) ∈ V2.
Rewriting φ(i± 1) and φ(i) as edges in G, we obtain links as depicted in Figure 50,

when writing φ(i) = 〈aφ(i), bφ(i)〉, φ(i−1) = 〈aφ(i−1), aφ(i)〉 and φ(i+ 1) = 〈bφ(i), bφ(i+1)〉.
Then, since Ĝ is the complete v = 〈aφ(i−1), bφ(i)〉 ∈ V and (φ(i − 1), v, φ(i + 1)) is a
path connecting φ(i − 1) and φ(i + 1) in L. Consequently, v ∈ Z. Considering the
labels X in G, we obtain that, based on the preceding discussion, Xaφ(i) = Xbφ(i) and
Xaφ(i−1) = Xbφ(i) = Xaφ(i) . Therefore, φ(i − 1) ∈ Z which is a contradiction and we
obtain that LV \Z is almost surely connected.

Indeed, the result presented in Proposition 8.6 ensures that any absorbing vertex in
L can be reached at any time no matter the particle configuration. Also, comparing
to the discussion in the previous subsection, we see that the implied topology of the
absorbing states due to the underlying graph G gives the intuitive properties we are
looking for while labeling only the graph L may lead to blockages in various ways.
In the interpretation of the Echo Chamber Model, this implies that the relationships
always stabilize over time and at some point only individuals with identical opinions
maintain relationships, as long as the total number of relationships is not too large.
We find a sufficient condition on the total number of edges in G for them to be not
”too many”.
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Proposition 8.7. Let Ĝ = (V , E) be the complete graph with n = |V|, N ∈ N,
N ≥ 1 and labels Xa ∼ L({ i

N
|i = 1, . . . , N}) for a ∈ V. Then, under the

assumption θ < N−1 the inequality∣∣∣∣∣ {〈a, b〉 ∈ E ∣∣∣ |Xa −Xb| < θ
} ∣∣∣∣∣ ≥ 1

2

(
N
⌊
n

N

⌋2
− n

)
(8.4)

is almost surely satisfied.

Proof. Fix the labels of the vertices V and call them (Xa)a∈V . Let ni := {a ∈ V|Xa =
i
N
} for i = 1, . . . , N . Hence, almost surely ∑N

i=1 ni = n. Therefore, the number of
short edges in G is given by

N∑
i=1

ni(ni − 1)
2 = 1

2

(
N∑
i=1

n2
i − n

)
.

The sum ∑N
i=1 n

2
i is minimized by the set {n∗i |i ∈ {1, . . . , N}} if the n∗i are as equal as

possible, i.e., |n∗i − n∗j | ∈ {0, 1} for all i, j, and in particular n∗i ≥
⌊
n

N

⌋
. We conclude

that ∣∣∣∣∣
{
〈a, b〉 ∈ E

∣∣∣∣∣ |Xu −Xv| < θ

} ∣∣∣∣∣ =
N∑
i=1

ni(ni − 1)
2 ≥ 1

2

(
N
⌊
n

N

⌋2
− n

)
.

Translating this condition to the line graph L and the k particle system, we ob-
tain that under the condition k ≤ 1

2

(
N
⌊
n
N

⌋2
− n

)
the number of absorbing sites Z

satisfies |Z| ≥ k. Combining Proposition 8.7 and Proposition 8.6 we obtain that T 0
k,θ

corresponds to the first time where all edges are short and, therefore, only individuals
of identical opinions are connected.

Corollary 8.8. Let G0 = (V , E0) be some initial graph with labels (Xa)a∈V . Fix
N ∈ N, N ≥ 1, let θ < N−1 and assume that the labels are distributed as Xa ∼
L({ i

N
|i = 1, . . . , N}) for a ∈ V. Then, if k < 1

2

(
N
⌊
n
N

⌋2
− n

)

T 0
k,θ = inf{t ≥ 0| ∃v ⊂ V : Sk,θ;t = v, v ⊂ Z} (8.5)

and T 0
k,θ <∞ almost surely.

Proof. The proof follows from Proposition 8.6, which implies that a the probability
that Sk,θ;t is not absorbed is dominated by a geometric distribution with t loosing
draws, and Proposition 8.7.
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Indeed, the structure defined by Proposition 8.6, i.e., LV \Z is connected, allows for a
natural, billiard like interpretation of the absorbing sites and the particles on the graph.
We use this notion to define for general exclusion processes cell-free-environments which
imply the natural interpretation of the time to absorption T 0

k,θ given by equation 8.5.
For the rest of the subsection we assume that θ < N−1 and write Sabs

k := Sk,θ as well
as T abs

k := T 0
k,θ.

Having established the preceding qualitative result in Corollary 8.8, the next ques-
tions concerns a quantitative description of the stopping time. In particular, the ex-
pected value is of interest. We are going to give an upper bound in Theorem 8.13 for
which we need some preliminary ideas. Firstly, we use that the line graph has diameter
2 such that any particle is at most at 2 steps from a free absorbing site. Secondly, we
note that any path in Lk can be dissected into multiple paths of multiple independent
Markov chain for each single particle in L.

Geometrically, assuming that the current configuration is given by some v ∈ Vk,
we consider for any v ∈ v the graph L̃(v)

Z,Zc = (Z\v∪V \Z, ẼZ,Zc) where 〈v, w〉 ∈ EZ,Zc
if and only if 〈v, w〉 ∈ E, v ∈ Z or w ∈ Z and {v, w} 6⊂ Z, or {v, w} ⊂ V \Z, i.e.,
L̃

(v)
Z,Zc represents all possible transition of each particle before being absorbed. Note

that L̃(v)
Z,Zc

∼= L̃
(w)
Z,Zc if and only if Z\v = Z\w. Figure 51 shows one possible case of

this construction for the line graph of the complete graph on 4 vertices.
Due to separating the particles into ”independent” graphs, we lose the information

〈1, 2〉 〈2, 3〉 〈3, 4〉

〈2, 4〉 〈1, 4〉 〈1, 3〉

〈2, 3〉 〈3, 4〉

〈2, 4〉

〈1, 4〉

〈1, 3〉

Figure 51: Two absorbing sites in the line graph of K4 represented as red and violet
vertices. We consider the case of k = 3 particles. The current particle positions are
depicted as blue dots on the vertices.

on the local structures and, hence, on the transition probabilities which are highly
dependent on the local structure of v, see 7.1. Nonetheless, using the same estimates
as in Theorem 7.30 for Sk we can bound the transition probabilities uniformly from
below. A final remark concerns the fact that after the absorption of any particle, the
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structure of choosing a particle changes, since the number of particles, which can still
move freely, is reduced by one. The construction described previously combined with
the preceding remark lead to the following definition which projects them both on the
transition graph of Sabs

k defined on Lk combined with the absorbing sites Z.

Definition 8.9. Let L = (V,E) a simple connected graph and Z ⊂ V the set of
designated vertices. We define the hierarchical particle graph

→
Lk= (Vk,

→
Ek) as a

directed graph with (v,w) ∈
→
Ek if and only if

〈v,w〉 ∈ Ek, v4w = {v, w} with v 6∈ Z.

Additionally, for i ∈ {1, . . . , k − 1}, with

V
(i)
k :=

{
v ∈ Vk

∣∣∣∣∣ |v ∩ Z| = i

}

we define
→
E

(i,i+1)
k =

{
(v,w) ∈

→
Ek

∣∣∣∣∣v ∈ V
(i)
k ,w ∈ V

(i+1)
k

}
.

Evidently, we are have in particular the case in mind, where L and Z arise as
follows, inspired by the Echo Chamber Model. Let G = (V , E) be the complete graph
on n vertices with i.i.d. labels (Xa)a∈V . Fix N ∈ N, N ≥ 1 and assume that the
labels are distributed as Xa ∼ L({ i

N
|i = 1, . . . , N}) = (p1, . . . , pN) for a ∈ V . Denote

by L = (V,E) the line graph associated to G with labels on vertex v = 〈a, b〉 given
Yv = 1Xa=Xb . Denote by Z = {v ∈ E|Yv = 0}. Note that the set Z represents the
set of absorbing sites for edges under the previously described absorbing dynamics
represented in L. Indeed, a mix between a local, particle based perspective and the
mesoscopic properties of E

(i,i+1)
k allows for precise calculations when it comes to the

probability of Sabs
k transitioning from Vi

k to Vi+1
k . In the previous section we have

seen the various symmetries of Lk and we can recover some of them in this context.
We illustrate in Figure 52 first using a hierarchical layout the layered structure of

→
Lk

and then its symmetries based on the spectral plot, using the two maximal eigenvalues
of the adjacency matrix. The second plot shows the graph in a layout defined by the
eigenvectors of its adjacency matrix which are hard to obtain explicitly in this setting.
But aside form its esthetic value it may reveal something about the behavior of Sabs

k ,
which leaves a possibility for future research.

Apart from the necessary estimates on the transition probabilities of Sabs
k due to

intricate local structures of vertex induced sub-graphs, we can avoid estimates on the
expected time to absorption thanks to the properties of

→
Lk, in particular, the properties

of
→
E

(i,i+1)
k .
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Figure 52: For an underlying complete graph on 4 vertices and 2 edges with 2 distinct
opinions. We compare the graph

→
Lk in two layouts. Note in the first one, that there are

only connections within the same level set V(i)
k or pointing from V

(i)
k to V

(i+1)
k . Second

one is layed out according to the eigenvectors associated to its to largest eigenvalues.
Note the symmetry which arises naturally from the eigenvector based layout.

Proposition 8.10. Let L = (V,E) a simple connected graph and Z ⊂ V the set
of designated vertices. Then, the sets V

(i)
k satisfy |V(i)

k | =
(
|Z|
i

)(
n̄−|Z|
k−i

)
and the

sets
→
E

(i,i+1)
k have size

∣∣∣∣→E(i,i+1)
k

∣∣∣∣ = 2
∣∣∣V(i+1)

k

∣∣∣ (i+ 1)
|Z|

(
1− k − (i+ 1)

n̄− |Z|

)
|EZ,Zc | .

In the case, where G = (V , E) is the complete graph on n vertices with i.i.d. labels
(Xa)a∈V we find the following relation. With n̄ = n(n−1)

2 and d̄ = 2(n− 2), fix N ∈ N,
N ≥ 1 and assume that the labels are distributed as Xa ∼ L({ i

N
|i = 1, . . . , N}) =

(p1, . . . , pN) for a ∈ V . Then, denoting by nα = |{a ∈ V|Xa = α}| we obtain

|EZ,Zc | = n|Z| −
N∑
α=1

n2
α(nα − 1)

2

giving us a explicit form for the state space underlying the Echo Chamber Model. We
turn now to the proof.

Proof. First, we start by considering the number of edges which point from V
(i+1)
k

into V
(i+1)
k to calculate

∣∣∣∣→E(i,i+1)
k

∣∣∣∣. To this end, we consider any absorbed w ∈ w for
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w ∈ V
(i+1)
k and count the number of v ∈ such that w ∩ v = w\{w}.

For any configuration w ∈ V
(i+1)
k there are i+ 1 particles in w which are absorbed,

i.e., we consider sites w ∈ w ∩ Z. Any one of them has deg(w) neighbors in L. To
any such w we can associate a color nYw induced by the connected components of LZ .
Therefore, the particle w has degLZ (w) neighbors which have the same color. None of
those sites is accessible from w since once being in w or one of those sites a particle
is blocked by definition. Hence, there are deg(w) − degLZ (w) neighbors of w from
which a blocked particle in w can come from. Additionally, any non-blocked neighbors
of w which is occupied by a particle in w cannot be the origin of the particle in w.
Therefore, we obtain the formula∣∣∣∣→E(i,i+1)

k

∣∣∣∣ =
∑

w∈V(i+1)
k

∑
w∈w∩Z

(deg(w)− degLZ (w)− degLw\Z (w)).

We can derive explicit expressions for each of the terms in the difference as functions
of the parameters. This leads to∑
w∈V(i+1)

k

∑
w∈w∩Z

(deg(w)− degLZ (w)) =
∑
w∈Z

∑
w∈V(i+1)

k
w∈w

(deg(w)− degLZ (w))

=
∑
w∈Z

(deg(w)− degLZ (w))
∑

w∈V(i+1)
k

1w∈w = i+ 1
|Z|

∣∣∣V(i+1)
k

∣∣∣ ∑
w∈Z

(deg(w)− degLZ (w))

= 2i+ 1
|Z|

∣∣∣V(i+1)
k

∣∣∣ |EZ,Zc |
as well as∑

w∈V(i+1)
k

∑
w∈w∩Z

degLw\Z (w) =
∑
w∈Z

∑
w∈V(i+1)

k
w∈w

degLw\Z (w)

=
∑
w∈Z

(
|Z|−1

i

) min{k−i,deg(w)−degLZ (w)}}∑
j=0

j

(
deg(w)−−degLZ (w)

j

)(
n̄−|Z|−(deg(w)−degLZ (w)})

k−(i+1)−j

)

=
(
|Z|−1

i

) ∑
w∈Z

min{k−i,deg(w)−degLZ (w)}∑
j=0

j

(
deg(w)−degLZ (w)

j

)(
n̄−|Z|−(deg(w)−degLZ (w))

k−(i+1)−j

)
.

Additionally, noting that for j > k − i, since k − (i + 1) − j ≤ 0, and for j >
deg(w)− degLZ (w) we have(

n̄−|Z|−(deg(w)−degLZ (w))

k−(i+1)−j

)
= 0 and

(
deg(w)−degLZ (w)

j

)
= 0,
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respectively. Consequently, using the notation

ιk,i := min{k − (i+ 1), deg(w)− degLZ (w)}
κn̄,Z := n̄− |Z| − (deg(w)− degLZ (w))

we can conclude
ιk,i∑
j=0

j

(
deg(w)− degLZ (w)

j

)(
κn̄,Z

k − (i+ 1)− j

)

=
deg(w)−degLZ (w)∑

j=0
j

(
deg(w)− degLZ (w)

j

)(
κn̄,Z

k − (i+ 1)− j

)
.

Now, realizing that the term on the right-hand-side equals
(
n̄−|Z|
k−(i+1)

)
E[χw] where χw is

hypergeometrically distributed with parameter Hyp(k−(i+1), deg(w)−degLZ (w), n̄−
|Z|) we find

deg(w)−degLZ (w)∑
j=0

j

(
deg(w)− degLZ (w)

j

)(
κn̄,Z

k − (i+ 1)− j

)

=
(

n̄− |Z|
k − (i+ 1)

)
(deg(w)− degLZ (w))(k − (i+ 1))

n̄− |Z|
.

Summing over w ∈ Z we find

∑
w∈Z

(
n̄− |Z|

k − (i+ 1)

)
(deg(w)− degLZ (w))(k − (i+ 1))

n̄− |Z|

= 2|EZ,Zc|
(

n̄− |Z|
k − (i+ 1)

)
k − (i+ 1)
n̄− |Z|

and combining all calculated terms, we obtain the claim.

Aside from the edge structure defining transitions between the level set, we can
make deeper geometrical observations about the connectivity of

→
Lk. Since each level

set is disconnected due to the fact that only non-absorbed particles may move around
and so any configuration of a fixed number j ∈ {0, . . . , k} of absorbed particles defines
an equivalence class which is not connected to any other equivalence class defined by
the same j. On the other hand, we find that variations in j may give paths which
define common neighbors of two equivalence classes at a deeper level. We formalize
this observation in the following Proposition.
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Proposition 8.11. Under the assumptions of Proposition 8.10 consider v,w ∈
V

(i)
k for some i, j ∈ {0, . . . , k} and j ≥ i. Then, there is a u ∈ V

(j)
k and paths

φv,u, φw,u in
→
Lk from, respectively, v and w to u if and only if

1
2 |(v ∩ Z)4(w ∩ Z)| ≤ j − i. (8.6)

Additionally, assume that k ≤ n̄−|Z|. Then, the transition matrix P4,abs of Sabs
k

takes, after ordering the states according to the number of absorbed vertices, the
form

P4,abs
k =



Q0 R0,1 0 0 ...
0 Q1 R1,2 0 ...
... 0 ... . . .

0 Qk−1 Rk−1,k
0 Ik



Proof. The claim follows since the labels define a cell-free environment on L and, con-
sequently, when the absorbed particles in two configurations v,w ∈ V

(i)
k differ by less

then j − i particles, putting first up to j − i non-absorbed particles in v in absorbing
sites, which are occupied in w, we obtain a path to some u ∈ V

(j)
k . Doing the same

for w and moving the remaining non-absorbed particles in the correct spots, we obtain
the claim.
Inversely, if there is such a u and the corresponding paths, we are able to reconstruct
the absorbed configuration v∩Z and w∩Z of v and w, respectively, by removing ab-
sorbed particles, since we cannot change the configuration of already existing absorbed
particles in another way. Consequently, the sets (v ∩ Z) and (w ∩ Z) may only differ
by at most j − i elements which implies

1
2 |(v ∩ Z)4(w ∩ Z)| ≤ j − i. (8.7)

For the second claim, note that k ≤ n̄−|Z| implies that all particles may be absorbed.
Additionally, since particles are absorbed one after another, either the chain remains
in a level set V(j)

k according to the transitions of a matrix Qj or transitions to the next
one V

(j+1)
k according to some matrix Rj,j+1. We may, therefore, write P4,abs as an

upper triangular matrix (or, equivalently, a lower triangular matrix.)

Note that by the form of P4,abs shown in Proposition 8.11 we can identify Sabs
k with

a quasi-death process as discussed in [DoPol07]. Satisfying the condition of a possibly
reducible state space in [DoPol07] and further discussed [DoPol08] the Markov chain
Sabs
k exhibits at least one quasi-stationary distribution πq satisfying

Pπq
[
Sabs
k;t = v|T abs

k > t
]

= πq(v).
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This allows us to make claims about the upper bound of the expected time to absorption
thanks to our detailed analysis of the state space

→
Lk. Combined with the following

Theorem 8.12, which is known as Variable Drift Theorem and discussed at length
in [RoSud14], [RoMiCa09] and [BaSte96] we can make quantitative statements about
the time to absorption. We employ the following formulation which can be found in
[Leng20].

Theorem 8.12 (Variable Drift Theorem [Leng20]). Let (Xt)t∈N a sequence of non-
negative random variables with a finite state space S ⊂ R+

0 with 0 ∈ S. Let smin :=
min(S\{0}) and T := inf{t ∈ N|Xt = 0} and for t ∈ N, s ∈ S let ∆t(s) := E[Xt −
Xt+1|Xt = s]. If there is a monotonously increasing function h : R+ → R+ such that
for all s ∈ S\{0} and all t ∈ N the lower bound ∆t(s) ≥ h(s) is satisfied, then

E[T ] ≤ smin
h(smin) + E

[∫ X0

smin

1
h(z)dz

]
. (8.8)

We obtain the following upper bound as a function of πq, which remains out of reach
of further analysis due to the intricate transition structure between vertex induced sub-
graphs with partially fixated vertices.

Theorem 8.13. Let G0 = (V , E0) be some initial graph with i.i.d. labels (Xa)a∈V .
Fix N ∈ N, N ≥ 1 and assume that the labels are distributed as Xa ∼ L({ i

N
|i =

1, . . . , N}) = (p1, . . . , pN) for a ∈ V. Let πq be a quasi-stationary distribution
of Sabs

k , i.e., Pπq
[
Sabs
k;t = v|T abs

k > t
]

= πq(v). Define rank(Sabs
k;t ) := |Sabs

k;t ∩ Z|.
Then, under the condition k < |Z|, the expected time to absorption satisfies

Eπq
[
T abs
k

]
≤1 + k(d̄+ 1)(n̄− |Z|)

2 |EZ,Zc |
sup
i

avgVi
k
πq

infv∈Vi
k
πq(v)

· Eπq
[∫ rank(Sabs

k;0 )

1

1
s(|Z| − (s− k))ds

]
.

Proof. Fix some random environment Z and condition on k < |Z|We drop the condi-
tion on the random environment in the conditional expectations and probabilities to
increase readability. First, note that for any t ∈ N and a quasi-stationary distribution
πq of Sabs

k the equation

πq(v) = Pπq
[
Sabs
k;t = v|T abs

k > t
]

= Pπq
[
Sabs
k;t = v|Sabs

k;t ∈ V
(i)
k , T

abs
k > t

]
Pπq

[
Sabs
k;t ∈ V

(i)
k |T abs

k > t
]

= Pπq
[
Sabs
k;t = v|Sabs

k;t ∈ V
(i)
k

]
Pπq

[
Sabs
k;t ∈ V

(i)
k |T abs

k > t
]



184 8 EXCLUSION PROCESSES IN RANDOM ABSORBING ENVIRONMENTS

is satisfied and, therefore, we obtain

Pπq
[
Sabs
k;t = v|Sabs

k;t ∈ V
(i)
k

]
= πq(v)∑

u∈V(i)
k

πq(u) .

Furthermore, we find that for any t ∈ N and i ∈ {0, . . . , k − 1} that

Eπq
[
rank(Sabs

k;t+1)− rank(Sabs
k;t )|rank(Sabs

k;t ) = i
]

= Pπq
[
rank(Sabs

k;t+1)− rank(Sabs
k;t ) = 1| rank(Sabs

k;t ) = i
]

=
∑

(v,w)∈
→
E

(i,i+1)
k

Pπq
[
Sabs
k;t+1 = w|Sabs

k;t = v
]
Pπq

[
Sabs
k;t = v|Sabs

k;t ∈ V
(i)
k

]

≥ 1
k(d̄+ 1)

∑
v∈V(i)

k

∑
w∈V(i+1)

k

πq(v)∑
u∈V(i)

k

πq(u)1(v,w)∈
→
E

(i,i+1)
k

≥ 1
k(d̄+ 1)

sup
i

avgVi
k
πq

infv∈Vi
k
πq(v)

−1
∣∣∣∣→E(i,i+1)

k

∣∣∣∣
|V(i)

k |

= 2
sup

i

avgVi
k
πq

infv∈Vi
k
πq(v)

−1
(i+ 1)
|Z|

(
1− k − (i+ 1)

n̄− |Z|

)
|EZ,Zc |

using the equality derived in Proposition 8.10 for the calculations in the last line.
Applying the Variable Drift Theorem 8.12 to the previous estimate we obtain for the
process (k − rank(Sabs

k;t ))t∈N that

Eπq
[
T abs
k

]
≤ 1+k(d̄+ 1)(n̄− |Z|)

2 |EZ,Zc|
sup
i

avgVi
k
πq

infv∈Vi
k
πq(v)Eπq

[∫ rank(Sabs
k;0 )

1

1
s(|Z| − (s− k))ds

]

which yields, consequently, the estimate under the condition on the fixed random
environment.

The hereinabove calculated upper bound is, while theoretically useful and aes-
thetically pleasing, out of reach for improvement or precise analysis since the quasi-
stationary distribution πq remains difficult to approach. While the authors of [DoPol07]
give somewhat specific conditions for various properties of πq, they are all based on
the spectrum of the Qj which form the transition matrix P4,abs. In particular, they
depend in the context, which we consider, on the explicit random environment Z
which has to be taken into account for the analysis. Due to these complications, we
propose another approach in what follows, which is based on the comparison of two
Markov chains based on their transition probabilities. Indeed, we propose to compare
a quasi-death process with a pure death process.
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8.4 Comparison to pure death process

In this subsection we are going to compare Sabs
k;t with a pure death process. To this

end, we analyze the macroscopic features of Sabs
k;t on the sets V

(i)
k and the transitions

from V
(i)
k to V

(i+1)
k . Recall that by Proposition 8.11 for k ≤ n̄ − |Z| the transition

matrix P4,abs
k of Sabs

k takes the form

P4,abs
k =



Q0 R0,1 0 0 ...
0 Q1 R1,2 0 ...
... 0 ... . . .

0 Qk−1 Rk−1,k
0 Ik

 .

Using this form of P4,abs
k we find that for v ∈ V

(i)
k and w ∈ V

(j)
k with j ≥ i, t ≥ 0 the

transition probability P[Sabs
k;t = w|Sabs

k;0 = v] satisfies

P[Sabs
k;t = w|Sabs

k;0 = v] = ev


∑

(t1,...,tj−i)∈Nj−i∑
l
tl=t−(j−i)

j−i∏
l=1

(
Qtl
i+l−1Ri+l−1,i+l

)
 ew.

While this seems straight forward, it turns out that the state space of Sabs
k;t is highly

disconnected and each of its level sets consists of an explicitly derivable amount of
connected components.

Lemma 8.14. The induced sub-graph
→
LV

(i)
k

has
(
|Z|
i

)
connected components and

each component contains
(
n̄−|Z|
k−i

)
vertices.

Proof. The claim follows since there are
(
|Z|
i

)
possibilities to draw i absorbed particles

from the absorbing vertices and each connected component is defined by a fixed set of
i absorbed particles. Furthermore, any connected component contains exactly

(
n̄−|Z|
k−i

)
vertices since each vertex in a connected component is defined by a fixed set of non-
absorbed particles of size k − i.

Therefore, any Qi has the form

Qi = diag
(
Q

(1)
i , . . . , Q

((|Z|i ))
i

)

where each Q
(j)
i is a matrix of size

(
n̄−|Z|
k−i

)
×
(
n̄−|Z|
k−i

)
. Note for any pair i, j the matrix

Q
(j)
i is not a stochastic matrix under the condition k <

1
2

(
N
⌊
n
N

⌋2
− n

)
.
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Combining the states in V
(i)
k to a single state i while preserving the Markov structure

of Sabs
k is not possible due to the dependence of the transition probabilities on the

current state. Assuming, it would be possible, we could reduce Sabs
k;t to a pure birth-

process with maximal population k, which is absorbing, since from any state i one can
only stay in i or transition to i+1. We use the following birth process as a comparison.

Let G = (V ,V0) be some graph with i.i.d. labels (Xa)a∈V . Fix N ∈ N, N ≥ 1 and
assume that the labels are distributed as Xa ∼ L({ i

N
|i = 1, . . . , N}) = (p1, . . . , pN)

for a ∈ V . Let n := |V| and define n̄ := n(n−1)
2 as well as d̄ := 2(n − 2) and C

as the discussion after Proposition 8.10. Furthermore, consider the set of absorbing
states Z of Sabs

k . Finally, we define a Markov chain RB on {0, . . . , k} with transition
probabilities given by

qi,i+1 := C

k(d̄− 1)
(k − i)(|Z| − i)

n̄− |Z|
,

qi,i := 1− qi,i+1.

Then, the expected time to absorption T abs
R of RB is given by

Ei[T abs
R ] =

k−1∑
j=i

k(d̄− 1)(n̄− |Z|)
k(d̄− 1)(n̄− |Z|)− (k − j)(|Z| − j)

. (8.9)

To make the link with RB more obvious, we define RD := k − RB, which is then a
pure death process, absorbing in 0 and can, therefore, be compared with the process
given at time t by |{v ∈ Sabs

k;t |Yv = 0}|. In Figure 53 one can see that RD respects the
symmetry given by the distribution of the opinions in the graph in the case when there
are 2 opinions, with a maximum in the time to absorption when both opinions are as
equally distributed as possible. We conjecture the following link between the expected
time to absorption which was out of scope to prove in the framework of this work.

Conjecture 8.15. Under the previously discussed conditions assume that πq is a
quasi-stationary distribution of Sabs

k . Then, the expected absorption times of RD

and Sabs
k satisfy

Eπq [T absk ] ≤ Eπq◦rank[T abs
R ]. (8.10)

In fact, one would assume that if there is an overwhelming group of individuals
with the same opinion, that for the Markov chain Sabs

k there are many traps from
which particles may not move on to a configuration with more absorbed particles. The
chain RD does not see these traps since it is constructed from averaging over all tran-
sition probabilities. As visualized in Figure 54, this is indeed false, the Markov chain
Sabs
k being always at least as fast absorbed in expectation as the pure death process

RD. A more in depth analysis of this estimate based on a quantitative comparison
of absorbing Markov chains seems to be in order. Aggregation approaches, for ex-
ample discussed in [LeRubSe94] could yield compatible Markov chains in some sense.
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Figure 53: For an underlying graph on 20 vertices, 20 edges, and 2 opinions, we illus-
trate the dependence of Ei[T abs

R ] on the structure of the opinions. Note the symmetry
around N = n

2 which maixmizes the number of non-absorbing sites. Each curve repre-
sents a specific initial value i ∈ {0, . . . , k − 1} of the chain.

Figure 54: For an underlying graph on 20 vertices, 20 edges, and 2 opinions, we illus-
trate the dependence of Ei[T abs

R ] on the structure of the opinions. Note the symmetry
around N = n

2 for both curves. For the plots the initial condition was fixed to be i = 1.
The estimate in the conjecture seems to be unaltered by this lack of precision.

Comparison methods for ergodic Markov chains are not useful due to the absorbing
setting. Lower bounds may be achieved by using techniques as discussed, for example,
in [ErmGom14].
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8.5 Considerations on the case of continuous opinions
We turn now to the setting of [HePraZha11] where the labels are not discrete but
continuous, taking values in [−1, 1]. Since the explicit choice of the interval is not
essential to the behavior of the model but only the fact that it remains a compact
interval, we use [0, 1] instead. This will allow us a short discussion of the limit of
the discrete N color case as N → ∞. In what follows we discuss properties of the
continuous color model, which arise in the finite population setting and which are
qualitatively different to the results obtained in [HePraZha11] for an idealized infinite
population.

Firstly, we can extend the result from Proposition 8.7 to the continuous color setting
for any arbitrary distribution L([0, 1]n) of the vertices of G. This gives rise to hopes
to prove T 0

k,θ < ∞ almost surely along the same lines as it was done in the previous
section.

Proposition 8.16. Let G = (V , E) be a graph with labels (Xa)a∈V ∼ L([0, 1]) and
let θ ∈ (0, 1]. Then, with N := dθ−1e the inequality∣∣∣∣∣ {〈a, b〉 ∈ E ∣∣∣ |Xa −Xb| < θ

} ∣∣∣∣∣ ≥ 1
2

(
N
⌊
n

N

⌋2
− n

)
(8.11)

is almost surely satisfied.

Proof. Let N := dθ−1e. There is a finite set Z := {zi|i = 1, . . . , N} ⊂ [0, 1] and a finite
set R ⊂ (0, 1) such that

[0, 1]\R =
N⊔
i=1

B θ
2
(zi). (8.12)

Note that P[{Xa|a ∈ V} ⊂ [0, 1]\R] = 1. Denote by

nKi := card
({
Xa|a ∈ V , Xa ∈ B θ

2
(zi)

})
and hence almost surely

N∑
i=1

nKi = n.

For an arbitrary vector
(
X̃a

)
a∈V
∈ [0, 1]n with

ni := card({X̃a|a ∈ V , X̃a ∈ B θ
2
(zi)}) (8.13)

the combined amount of edges within the complete graphs within each ball
N∑
i=1

ni(ni − 1)
2 = 1

2

(
N∑
i=1

n2
i − n

)
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is minimized by the set {n∗i |i ∈ {1, . . . , N}} if the n∗i are as equal as possible, i.e.,
|n∗i − n∗j | ∈ {0, 1}, and in particular n∗i ≥

⌊
n

N

⌋
. We conclude

N∑
i=1

nKi (nKi − 1)
2 ≥ 1

2

(
N
⌊
n

N

⌋2
− n

)
. (8.14)

Since we could conclude from Theorem 8.13 based on Proposition 8.7 that we have an
almost surely finite time to absorption, one might imagine that it is possible to deduce
a similar result from Proposition 8.16 for the case of continuous colors. Unfortunately,
even if the number of edges is linear in the number of vertices, such a claim does not
hold if θ ∈ (0, 1). To this end we consider the following example. Let θ ∈ (0, 1) and
fix some number of vertices n. Assume that two vertices v, w have labels Xv, Xw with
|Xv − Xw| ∈

(
θ, 3

2θ
)
, i.e., the intersection Bθ(Xv) ∩ Bθ(Xw) is not empty. Assume

that all remaining vertices u1, . . . , un−2 ∈ Bθ(Xv) ∩ Bθ(Xw). Then, all edges 〈ui, uj〉
in the complete graph on n vertices are short but it is sufficient to assume that some
initial graph G has 2(n − 2) + 1 edges to enforce absorbed configurations with at
least one long edge. This is in particular the case, where the initial graph contains
the edges {〈Xv, Xui〉|i = 1, . . . , n − 2〉} ∪ {〈Xw, Xui〉|i = 1, . . . , n − 2〉} ∪ {〈Xv, Xw〉}
which is for clarification depicted in Figure 55. Since all edges 〈Xv, Xui〉 and 〈Xw, Xui〉

1

2

3

4

5

0 1

Figure 55: Illustration of the problem of persistent long edges even if the number
of edges is very small, e.g., of the order of the number of vertices. Assume that
|X1 −X5| ∈

(
θ, 3

2θ
)

and X2, X3, X4 ∈ Bθ(X1) ∩Bθ(X5).

for i = 1, . . . , n − 2 are short, they will never change their position under the echo
chamber dynamics. On the other hand, 〈Xv, Xw〉 is a long edge but since all other
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possible edges incident to Xv or Xw already exist, deleting 〈Xv, Xw〉 only leads to
recreating it. Hence, the graph never changes and the edge 〈Xv, Xw〉 is preserved
for all times. Consequently, for any continuous opinion distribution supported on the
whole interval [0, 1], we encounter with positive probability blocked edges, such that
the corresponding random environment on L is not cell-free. This seems counter-
intuitive under the model motivation since it implies that an individual can not break
up a relationship with someone of opposing opinion if said individual has to many
like-minded friends.
Hence, the choice of continuous distributions which are supported by the whole interval
[0, 1] is a questionable one for a version of the model in which the opinions do not change
over time. On the other hand, it allows for a straightforward way of including opinions
which change over time due to interaction and exchange of individuals in a population
represented by the vertices of the graph G. One way of including this opinion change
is based on the Deffuant model, which we discussed and reviewed briefly in Subsection
5.2.
The combination of both models yields one possible complete Echo Chamber Model
which we will discuss further in the outlook section, demonstrating at the same time
possible while challenging but fruitful applications of the structures we introduced in
this work.

8.6 Outlook: The Echo Chamber Model

In Part III of this work we have extensively discussed parts of the Echo Chamber Model,
each on its on, leaving their interaction aside for the moment. This allowed us to get
deep insights into the behavior and the relevant structures for these processes without
being too much influenced by additional phenomena, which may occur. We have shown
the complexity which arises already from this reduced perspective, for example particle
configurations being only equivalent with respect to the process Sk if their situation
relative to the environment is identical, as seen in Theorem 7.8. Furthermore, we
have seen that the qualitative properties of Sk are dependent on the parameter choice
as well as the geometry of the underlying graph, inducing in the widest sense phase
transitions, as discussed at length in Theorems 7.18 to 7.20. Open problems in this
context were already mentioned before.

In the final section of Part III, we managed to obtain an upper bound for the
time to absorption in Theorem 8.13 of a reduced version of the Echo Chamber Model
in terms of a quasi-stationary distribution of the process Sabs

k . A fully quantitative
characterization is lacking in this work and will be a starting point for the outlook.
Again, we touched upon some subjects only superficially, giving possible directions for
future research, for example the comparison with a pure death process in Conjecture
8.15. This remains in the realm of the comparison of Markov chains which will also
play in Part IV a big role but for which there is still no general theory. This subject
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is, therefore, promising for further research both from a theoretical point of view on
Markov chains but also for the complexity reduction of applied problems when finding
an easier Markov chain which behaves almost as the one of interest.

8.6.1 Future work

Let us recall the definition as well as some of the results we have already obtained
on parts of the Echo Chamber Model. The Echo Chamber Model with continuous
opinions was defined as a process of opinions and relationships within a network. The
evolution of this network can be seen as the evolution of a labeled graph process (Gt)t∈N
with Gt = (V , Et) combined with an evolution of the labels (Xt)t∈N where the changes
per timestep are given by the following process

• Draw uniformly an edge 〈A,B〉 ∈ Et.

• If |X t
A −X t

B| >= θ, then

– Define N〈A,B〉 := {e = 〈c, d〉 6∈ Et\{〈A,B〉}|k ∈ {A,B} or l ∈ {A,B}}.
– draw uniformly E from N〈A,B〉,
– set Et+1 = (Et\{〈A,B〉}) ∪ {E}.

• If |X t
A −X t

B| < θ, then

– set, firstly, X t+1
A = X t+1

A + µ(X t+1
B −X t+1

A ) and,
– secondly, X t+1

B = X t+1
B + µ(X t+1

A −X t+1
B ).

In section, we have shown that the first half of the dynamics can be interpreted as the
evolution of the probability distributions of the opinions, which under the assumption
of the existence of a density π0 at time 0 leads to the recursion

πt+1(x) = 1
m

∑
<i,j>∈E

πt(x)1Aθij(x) +
πt
(
(Φµij)−1

(x)
)

1−2µ 1(Aθij)c
((

Φµ
ij

)−1
(x)
) .

which we have already derived in (5.23). The second half of the dynamics in itself
is then given by the process Sabs

k , which is a conditioned version of Sk. Combining
the two leads to the Echo Chamber Model but it turns out that the single vertex
perspective used in equation (5.23) combined with the particle perspective used in the
analysis of Sabs

k is not sufficient. Indeed, we have to consider every particle in its role
as an edge in G to capture the evolution of the whole process.

From this we obtain the following evolution equation of the joint distribution of the
two parts of the Echo Chamber Model. Fix w ∈ Vk and B a measurable subset of
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[0, 1]n. Recall that k is the number of edges and n the number of vertices in the model
as well as Aθi,j = {x ∈ [0, 1]n| |xi − xj| > θ}. Denoting by Pv,w[·] = P[·|Et = 〈v, w〉] we
obtain for t ∈ N

P[Sabs
k;t+1 = w, X t+1 ∈ B] =

∑
v∈Vk

P[Sabs
k;t+1 = w,Sabs

k;t = v, X t+1 ∈ B]

=
∑
v∈Vk

1
k

∑
〈v,w〉∈v

Pv,w[Sabs
k;t+1 = w,Sabs

k;t = v, X t ∈ Aθv,w ∩B]

+Pv,w
[
Sabs
k;t = v, X t ∈

(
Aθv,w

)c
∩
(
Φµ
ij

)−1
(B)

])
. (8.15)

The two resulting summands can be considered as a single step in the respective sub-
models, i.e., the Deffuant model and the Markov chain Sabs

k , conditioned on the other
one. This transfers both models in the setting of random dynamic environments where
the environment of one is always defined by the other part of the dynamics. Equation
8.15 illustrates this entanglement of the two processes.

Results on the convergence of the model as a function of the parameters θ, k and µ
might be approachable via similar ideas as proposed in Conjecture 5.24 by finding a
sufficiently rapid decay of a recursion formula towards a limit. Future work on quanti-
tative properties of the Echo Chamber Model could, therefore, be obtained by adapting
the results from Theorem 5.29 and Theorem 8.13 to the new situation of random en-
vironments. Difficulties will arise in finding meaningful bounds and estimates for the
objects involved to avoid worst case estimates.
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9 Random Population Dynamics under Catastro-
phes

In Part IV, we present a publication on a new model which extends the birth death
process and takes, therefore, a macroscopic perspective, only counting the number of
individuals in a population. This is in contrast to the micro- to mesoscopic perspec-
tive of population dynamics, meaning the consideration of individuals or structured
populations. Our model includes the occurrence of catastrophic events as soon as the
population exceeds a certain size. On the occurrence of such an event, the popula-
tion size resets to the predefined size. This can be seen as a level beyond which the
population becomes unstable or susceptible events which reduce the population size
instantaneously and drastically to a ”stable” level.

In the Outlook of this part we propose a model which combines a birth-death
process with a fast timescale process which is triggered by some initial event, replacing
the instantaneous reset. The idea is based on the class of self-exciting processes, also
known as Hawkes process, which have been most prominently used in earthquake
modeling. Recent to the publication of this work, a variation, adapted to modeling
infectious disease outbreaks in finite population, was presented by different authors,
including the possibility of endogenous shocks into the model. We expand on this in
the setting where only parts of the population are susceptible.
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RANDOM POPULATION DYNAMICS UNDER CATASTROPHIC
EVENTS.

PATRICK CATTIAUX ♠ , JENS FISCHER♠,♣ , SYLVIE RŒLLY ♣ ,
AND SAMUEL SINDAYIGAYA ♦

♠ Université de Toulouse
♣ Universität Potsdam

♦ Institut d’Enseignement Supérieur de Ruhengeri

Abstract. In this paper we introduce new Birth-and-Death processes with partial
catastrophe and study some of their properties. In particular we obtain some es-
timates for the mean catastrophe time, and the first and second moments of the
distribution of the process at a fixed time t. This is completed by some asymptotic
results.

Key words : Birth-and-Death process; Population Dynamics; Extinction Time; Birth,
Death and Catastrophe Process

MSC 2010 : 60J28, 60J80, 65Q30, 34D45, 35B40.

1. Introduction

The aim of this work is to propose a model for the evolution of the size of a population
submitted to exceptional conditions, like a genocide, see [Sind16]. To this end, we
introduce a new Birth-and-Death type process with partial catastrophe. Indeed, Birth-
and-Death processes (BD-processes for short) are the more standard stochastic models
for the description of the evolution of a population’s size.

A BD-process assigns arbitrary non-negative Birth-and-Death rate pairs to a birth
or a death of an individual in the population. Hence, whenever the population size
changes, it grows or decreases exactly by one individual. The BD-process is under
suitable assumptions a continuous time Markov chain (CTMC) on the discrete state
space N and jump size ±1. For a more in depth discussion on continuous time Markov
chains and BD-processes see the Textbooks [And91] or [Nor97].
BD-processes have a long history and were first discussed, amongst others, for arbitrary
Birth-and-Death rate by Feller [Fel39] and Kendall [Ken48]. Note that BD-processes
can also modelize immigration and emigration of individuals. Nonetheless, changes
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in the population size which concern not only individuals but groups cannot be con-
sidered. Brockwell and his coauthors pioneered in [BGR82], [Bro85] and [Bro86] an
extension of the BD-process including the possibility of a catastrophe captured by a
sudden and exceptionally large decrease in the population size. They were in particular
concerned with the probability of extinction as well as the time to extinction in such
population models.
Mathematically one can capture catastrophes by allowing the process to make larger
jumps downwards rather than the jump size of 1 in both directions in the classi-
cal framework of a BD-process. The classic Birth-and-Death rate pair is denoted by
(λi, µi) for a population of size i ∈ N. These are complemented by catastrophe rates
(γi)i∈N as well as corresponding law of the catastrophe sizes (di(j))j≤i where di(j) is
the probability that a catastrophe in a population of size i leads to j deaths. The in-
finitesimal generator of the process is described by Brockwell in [Bro85] under classical
assumptions on the coefficients as follows.

Definition 1.1 (BD-process with catastrophes, [Bro85]). A BD-process X = (Xt)t≥0

with general catastrophes is a Continuous Time Markov Chain with values in N asso-
ciated to an infinitesimal generator Q̃ = (q̃ij)i,j∈N, of the form

{
q̃ij = γi di(i− j)1[0,i)(j) + µi1i−1(j) + λi1i+1(j), j 6= i,

q̃ii = −(λi + µi + γi) + γidi(0),

with for any i ∈ N, λi, µi, γi, di(k) ∈ R+ and
∑i

k=0 di(k) = 1. Moreover λ0 = µ0 =

γ0 = 0 and
∞∑

i=1

1

λi
= +∞.

An important class of the BD-processes with general catastrophes considers exclusively
total catastrophes by setting di(j) = 1{j=i}, i.e., in case of a catastrophe, the process
jumps from its current state i to the state 0. Note that in Definition 1.1, sinceq̃00 = 0,
the state 0 is absorbing. Therefore a total catastrophe may happen at most once before
the population dies out. Moreover, without immigration (λ0 = 0), a catastrophe leads
to the extinction of the population. Note that the infinitesimal generator Q retains a
tridiagonal form, if one only considers the states i ≥ 1. Van Doorn and Zeifmann use
this fact in [vDZ04] and [vDZ05] to investigate the transition probabilities at any time
t and to extend the classical representation result of the transition probabilities of a
BD-process in terms of associated orthogonal polynomials by Karlin and McGregor in
[KM58]. Assuming constant catastrophe rates γi ≡ γ, Swift obtains in [Swi01] explicit
expressions for the transition probabilities in terms of their generating function.

In [BGR82] the authors introduce BD-processes with different types of catastrophes:
Geometric catastrophes, Uniform catastrophes and Binomial catastrophes; see also
[Dicetal08]. The binomial model, later studied in [Kapetal16], considers a binomial
redistribution of the population on the set of integers up to the current one. This
induces a new expected population size concentrated around a fixed proportion p ∈
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[0, 1] of the previous one, which does not seem to correspond to the data we want to
fit. The practical and statistical aspects of the problem will however not be discussed
here.

In the present paper, we extend the study of populations under total catastrophes by
considering populations which are subject to partial catastrophes. This means that,
with positive rate γi, the population size i can be drastically reduced to a distinguished
state n ≥ 1 - as soon as i exceeds n. Remark that, in contrast to a total catastrophe,
the population can not die out as a consequence of a partial catastrophe. Of course
this model is the simplest one in this spirit, and instead of only one catastrophic new
state n, we could consider a new distribution concentrated around n. Nevertheless, the
study of this simple mathematical model is the first necessary step.

We define in Section 2 the exact class of processes we will study and present our main

results. We are interested in the first hitting time T
(n)
X of the (catastrophic) population

size n. Under the assumption of linear birth, death and catastrophe rates, we will use
the tools introduced by Brockwell in [Bro86], in order to obtain explicit expressions for

the expected catastrophe time E[T
(n)
X |X0 = n0], n0 ≥ n. We also identify its limiting

behavior for large initial population i.e. when n0 →∞. Proofs are presented in Section
3. We then study the first two moments of the population size at a fixed time t. After
establishing positive recurrence of the BD-process with partial catastrophe in Section 4
we compute and discuss explicit upper bounds for the process’ first and second moment
in Section 5.

2. Birth-and-Death Process with Partial Catastrophe: our main
results

We fix a catastrophic state n ∈ N∗ and set di(j) = 1{j=i−n}, i ≥ n. We introduce a
positive rate ν to model a (minimal) immigration phenomenon when the population
vanishes, ensuring the irreducibility of the process. (γi)i∈N, (λi)i∈N, (µi)i∈N are respec-
tively the catastrophe, the birth and the death rates, where the index i represents the
size of the population. All rates are assumed to be linear in the population size with
proportionality coefficients respectively γ, λ, µ > 0, see (2.1). Finally, throughout all
this paper we assume that λ > µ, that is the individual birth rate exceeds the individ-
ual death rate. Hence, in the absence of catastrophic event, the basic Birth-and-Death
process with immigration would model a growing population.

We consider the CTMC on the state space N denoted by X = (Xt)t≥0 whose infinites-
imal generator Q = (qij)i,j∈N is given by

qij =





λ0 = ν,

λi = λ · i, j = i+ 1,

µi = µ · i, j = i− 1, i ≥ 1, i 6= n + 1,

γi = γ · i, j = n, i > n + 1,

µi + γi, j = n, i = n + 1,

−∑j 6=i qij, j = i.

(2.1)
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The choice of linear dependence with respect to the size of the population for the birth
and death rates is very natural. On the other hand, the linear rate of the partial
catastrophes means that the risk grows with the number of individuals. This situation
appears in a population where any individual carries a risk of γ which might lead to a
catastrophe, e.g., transmitting a deadly disease which once it happens kills on a very
fast time scale a huge part of the population. The cardinality n may be seen as the one
of the population of possible transmitters, so they contribute to the rate γi, but at the
same time individuals immune to the effects of the catastrophe, e.g., by vaccination or
natural resistance, such that they do not vanish when the catastrophe sets in.

Mathematically, these assumptions lead to explicitly derivable and particularly nice
results which were our main goal for this first analysis of this kind of population
models to emphasize their qualitative behavior.

Its transition graph is depicted in Figure 1.

. . . . . .0 i . . .n

λi

µi

ν

γi

Figure 1. Transition graph of X.

Definition 2.1. A Birth-and-Death process with partial catastrophe (BD+Cn process)
X is a CTMC with infinitesimal generator Q defined by the equations (2.1) and X0 =
n0 > n.

Its so-called catastrophe time T
(n)
X is defined as its hitting time of the catastrophic state

n:

T
(n)
X := inf{t ≥ 0|Xt = n}. (2.2)

Our results on the catastrophe time T
(n)
X are presented in the next three theorems. We

state in Theorem 2.2 its almost sure finiteness and go on to study in Theorems 2.3
and 2.4 its expectation and its asymptotic behavior as the initial size of the population
tends to ∞.

Theorem 2.2 (Finiteness of catastrophe time). Let X be a BD+Cn process whose

infinitesimal generator Q is given by (2.1). Then its catastrophe time T
(n)
X is almost

surely finite.
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Better, we can compute the first moment of T
(n)
X . Using the following notation

Ei[T (n)
X ] := E[T

(n)
X |X0 = i+ n], (2.3)

we find an explicit expression for Ei[T (n)
X ] and infer its asymptotic behavior for i→∞.

Theorem 2.3 (Explicit computation of the mean catastrophe time). Let X be a
BD+Cn process whose infinitesimal generator Q is given by (2.1). Denote by a

¯
< 1 < ā

the distinct real zeros of the polynomial x 7→ µx2− (λ+ µ+ γ)x + λ. The mean catas-
trophe time - defined in (2.3) - is given by

Ei[T (n)
X ] = c

( 1

a
¯

i
− 1

āi

) ∞∑

k=1

a
¯

k

k + n
+ c

i−1∑

k=1

1

k + n

(
1

āi−k
− 1

a
¯

i−k

)
, i ≥ 1 (2.4)

with c = (
√

(λ+ µ+ γ)2 − 4λµ)−1.

Moreover, we obtain an explicit decreasing rate of the mean catastrophe time for large
initial populations, which is in some sense counterintuitive.

Corollary 2.4. Let X be the above BD+Cn process. The asymptotic behavior of its
mean catastrophe time for large initial populations is:

Ei[T (n)
X ] = O(i−1).

Proofs of Theorems 2.2 - 2.3 and Corollary 2.4 are postponed to Section 3.

After establishing positive recurrence of the BD+Cn process in Section 4 we will present
in Section 5 the proofs of the following properties of - upper bounds for - the process’
first and second moment.

Theorem 2.5 (Upper bound for the mean). Consider (Xt)t≥0 the BD+Cn process
whose infinitesimal generator Q is given by (2.1). Then, the following upper bound
holds:

E[Xt] ≤ m̄(t), t ≥ 0, (2.5)

where the function m̄ is the solution to the differential equation
{
m̄(0) = n0,

m̄′(t) = −γ m̄(t)2 + (λ− µ+ γ n) m̄(t) + ν, t > 0.
(2.6)

We also obtain a similar result for the second moment.

Theorem 2.6 (Upper bound for the second moment). Let (Xt)t≥0 be the BD+Cn

process whose infinitesimal generator Q is given by (2.1). Consider the function m̄
solution to (2.6) and assume that the initial size of the population is larger than a
constant m̄e computed in (5.4). Then, the second moment admits the following upper
bound:

E[X2
t ] ≤ v̄(t), t ≥ 0, (2.7)
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the function v̄(t) being solution to the differential equation
{
v̄(0) = n2

0,

v̄′(t) = 2(λ− µ)v̄(t) + (λ+ µ+ γ n2)m̄(t)− γv̄(t)
3
2 + ν, t > 0.

Such a v̄ is bounded uniformly in time and so is, thus, E[X2
t ].

We close Section 5 with a discussion of the quality of the bounds m̄ and v̄ as defined
in the previous theorems with a focus on their long time behavior.

3. Expected Catastrophe Time

This section consists of three subsections which lead through the proofs of Theorem
2.2, Theorem 2.3 and Corollary 2.4.
The proofs are based on various lemmas and propositions, which shed light on re-
currence relations of order 2. In particular, we examine the limit behavior of their
solutions in Lemma 3.3, the speed of divergence in Lemma 3.4, the dependence on
the initial values in Lemma 3.5, Lemma 3.6 as well as possible explicit expressions for
the minimal solution in Lemma 3.7 and Lemma 3.9. A road-map for the whole proof
structure can be seen in Figure 2.

Lem. 3.3

Lem. 3.1

Prop. 3.2

Lem. 3.4

Lem. 3.5

Lem. 3.6

Lem. 3.7

Lem. 3.9

Lem. 3.8

Lem. 3.10

Thm 2.3Thm 2.2

Cor. 2.4

Figure 2. Dependencies and implications of results in Section 3.

3.1. Finiteness of Time of Catastrophe. We analyze the catastrophe time T
(n)
X

using the auxiliary process Y = (Yt)t≥0 defined by shifting the process X by n and

stopping it at catastrophe time T
(n)
X :

Yt := X
t∧T (n)

X
− n, t ≥ 0. (3.1)

We discuss its properties and their implications for T
(n)
X in the following straightforward

lemma.



201

Lemma 3.1. Let X be the BD+Cn process whose generator Q satisfies (2.1) with
initial condition X0 = n0 > n. Then Y is a BD-process with total catastrophe whose
birth, death and catastrophe rates are affine and given respectively by

λ̃i := λ (i+ n), µ̃i := µ (i+ n) and γ̃i := γ (i+ n), i ∈ N. (3.2)

The catastrophe time of X corresponds to the extinction time for the process Y .

While the proof of this lemma is evident, it yields a helpful tool for the further analysis.
That way we switch from characterizing the first hitting time of the state n for the
process X to the more classical study of the extinction time of the process Y . In
particular, the state 0 is absorbing for Y and is a boundary state. This gives us an

advantage compared to analyzing T
(n)
X directly, since X may leave the state n again

both to n + 1 or n− 1. We may thus directly use the tools developed by Brockwell to
analyze extinction times for Birth-and-Death processes with general catastrophes, see
[Bro86] Lemma 3.1. We recall this result in the following proposition.

Proposition 3.2 ([Bro86] Lemma 3.1). For fixed u ≥ 0 consider the sequence (αi(u))i∈N
defined per iteration by

α0(u) = 0, α1(u) = 1,
i+1∑

j=1

q̃ij αj(u) = uαi(u), i ∈ N∗.

Let α∞(0) := lim
i→∞

αi(0). Let (Zt)t≥0 be a BD-process with general catastrophes as

defined in Definition 1.1. Its time to extinction T 0
Z := inf{t ≥ 0|Zt = 0} verifies

(1) P[T 0
Z <∞|Z0 = i] = 1− αi(0)

α∞(0)
, i ∈ N,

(2) P[T 0
Z <∞|Z0 = i] = 1 ∀i ∈ N∗ ⇔ P[T 0

Z <∞|Z0 = 1] = 1⇔ α∞(0) =∞.

It is worth noticing that, while Brockwell studied in details the linear case λ̃i = λ i in
[Bro85], we have to consider here the shifted (affine) case λ̃i = λi+λn, so that we have
to perform all calculations when applying Proposition 3.2 to the process Y .

Using Proposition 3.2 to study T 0
Y we only have to analyze the behavior of the associ-

ated sequence (ai(0))i∈N. It is the aim of the following lemma.

Lemma 3.3. Using the notations (3.2) consider for u ≥ 0 and a > 0 the sequence
(ai(u))i∈N defined by the recurrence relation

{
(a0(u), a1(u)) = (0, a)

λ̃iai+1(u) = (u+ λ̃i + µ̃i + γ̃i) ai(u)− µ̃i ai−1(u), i ≥ 1.
(3.3)

Then (ai(u))i∈N is non-decreasing and a∞(0) =∞.

Proof. Fix u ≥ 0 and set ai := ai(u) to improve readability. Note that (3.3) is equiva-
lent to

λ̃i(ai+1 − ai) = uai + µ̃i(ai − ai−1) + γ̃i(ai − a0).
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First, a1 − a0 = a > 0 by assumption. Fix i ≥ 1 and suppose that for j ≤ i − 1 the
inequality aj+1 − aj ≥ 0 holds. Hence, in particular, ai ≥ 0. Moreover

λ̃i(ai+1 − ai) = uai + µ̃i(ai − ai−1) + γ̃i

i∑

j=1

(aj − aj−1) ≥ uai ≥ 0.

By induction (ai)i∈N is non-decreasing and, thus, ai ≥ 0 for all i ∈ N. Moreover, we

obtain λ̃iai+1 ≥ (λ̃i + γ̃i)ai. Hence, for all i ∈ N,

ai+1 ≥
λ̃i + γ̃i

λ̃i
ai =

(
1 +

γ

λ

)
ai ≥ . . . ≥

(
1 +

γ

λ

)i
a

and, thus, a∞(0) = lim
i→∞

ai =∞ with at least a geometric rate. �

Indeed, in the following lemma, we quantify the exact speed of divergence for the
sequence (ai(0))i∈N.

Lemma 3.4. Take u = 0 in (3.3). Then the sequence
( ai(0)

ai+1(0)

)
i∈N

converges to the

smaller real zero a
¯
∈ (0, 1) of the polynomial

x 7→ µx2 − (λ+ µ+ γ)x + λ.

Proof. Set ai := ai(0) to improve readability. It holds for i ≥ 2

ai−1a
−1
i =

λ̃i−1ai−1

(λ̃i−1 + γ̃i−1 + µ̃i−1)ai−1 − µ̃i−1ai−2

=
λai−1

(λ+ γ + µ)ai−1 − µ ai−2

.

Set zi = aia
−1
i+1 for i ≥ 1 we therefore have

z1 =
λ

λ+ γ + µ
, zi =

λ

λ+ γ + µ− µzi−1

.

Consider the map φ : [0, 1] → [0, 1] defined by φ(x) =
λ

λ+ γ + µ− µx . Since 0 <

φ(0) < φ(1) < 1 and φ is strictly increasing, φ has a unique fixed point a
¯
∈ (0, 1) given

by

a
¯

=
λ+ µ+ γ −

√
(λ+ µ+ γ)2 − 4λµ

2µ
.

Moreover limi→∞ zi = a
¯
. �

Applying Proposition 3.2 and Lemma 3.3 to the shifted process Y defined in Lemma 3.1
we obtain that the extinction time T 0

Y is almost surely finite. Hence, the catastrophe

time T
(n)
X associated to (Xt)t≥0 is almost surely finite. This completes the proof of

Theorem 2.2.



203

3.2. Explicit Computation of Mean Catastrophe Time. In this subsection we
prove Theorem 2.3. To that aim we first recall well a known result about the mean of
hitting times, see for example [Nor97]. If Y is an irreducible CTMC with infinitesimal
generator Q = (qij)ij, the sequence (E[T 0

Y |Y0 = i])i is the minimal positive solution of
the linear system 



xi = 0, i = 0

−
∑

j∈N
qijxj = 1, i 6= 0 . (3.4)

Hence, since T 0
Y = T

(n)
X a.s. the sequence (Ei[T (n)

X ])i≥0 satisfies the recurrence relation

λ̃ixi+1 = −1 + (γ̃i + λ̃i + µ̃i)xi − µ̃ixi−1, i ≥ 1, (3.5)

where x0 = 0 and the value of x1 has to be determined.
In what follows, we use Lemma 3.3 extensively, always fixing u = 0 and abbreviating
ai := ai(0). We focus firstly on the dependence of the solution of (3.5) with respect to
the value of x1 ∈ R.

Lemma 3.5. Let (xi)i∈N be a sequence solution to the recurrence relation (3.5) where
the coefficients are given by (3.2). Then there is at most one possible value for x1 such
that the sequence (xi)i∈N is bounded.

Proof. Consider two solutions (xi)i∈N and (x′i)i∈N of the recurrence relation (3.5) satis-
fying x1 = x resp. x′1 = x′ < x. The sequence (∆i := xi−x′i, i ∈ N) satisfies (3.3) with
∆1 = x− x′ and u = 0. By Lemma 3.3, (∆i)i∈N is a non-decreasing sequence tending
to ∞ as i→∞.
If there were two bounded sequences with different values x and x′ for i = 1 also their
difference would be bounded which is a contradiction. �

The following lemmas yield step by step the value of x1 for which the sequence solution
of (3.5) is uniformly bounded. As a first step we show in Lemma 3.6 a dichotomy of the
divergence behavior around a certain initial value x̂. This is going to provide a direct
argument for the convergence radius of an associate generating function in Lemma 3.8.

Lemma 3.6. There exists a unique value x̂ > 0 such that,

(1) if x1 < x̂, limi→∞ xi = −∞,
(2) if x1 > x̂, limi→∞ xi = +∞ .

Proof. Consider unbounded solutions (xi)i∈N to (3.5). As in the proof of Lemma 3.5
take two solutions (xi)i∈N and (x′i)i∈N of (3.5) with x′1 = x′ < x = x1. Since the
sequence (∆i = xi−x′i, i ∈ N) is non-decreasing by Lemma 3.3 we obtain that xi > x′i
for all i ≥ 1. Therefore solutions preserve for any i the order of their values for i = 1.

Consider the case where there is a i0 ∈ N such that xi0−1 ≥ 0 and xi0 < 0. Note that
if there is a k ∈ N such that xk < 0 such a pair (xi0−1, xi0) may always be found since
x0 = 0. Then, because γ̃i > 0 for all i ∈ N, we have

λ̃i0(xi0+1 − xi0) = −1 + γ̃i0xi0 + µ̃i0(xi0 − xi0−1) < 0. (3.6)
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Thus, xi0+1 < xi0 < 0 and

0 > γ̃i0xi0 > γ̃i0xi0+1 > γ̃i0+1xi0+1.

Hence, inductively we see that starting from i0 the sequence (xi)i≥i0 is decreasing and
negative. In particular, multiplying the recurrence relation (3.6) with −1 and using
Lemma 3.3 with u = 1, we obtain that (xi)i≥i0 diverges to −∞ as i→∞. In particular,
once the sequence (xi)i∈N becomes negative, it stays negative.

Secondly, consider a positive unbounded solution (x′i)i≥0 of (3.5). Then, for any level
C > 0, there is an index I ∈ N such that x′i < C for all i < I and x′I ≥ C. Let
C > 0 be sufficiently large such that Cγ̃I > 1 with I = inf{i : x′I ≥ C}. Then, by the
recurrence relation (3.5) we obtain

λ̃I(x
′
I+1 − x′I) = µ̃I(x

′
I − x′I−1) + γ̃Ix

′
I − 1 > Cγ̃I − 1 > 0.

Hence, x′I+1 > x′I and, thus, γ̃I+1x
′
I+1 > γ̃Ix

′
I > 1. Furthermore, there is a ε > 0 such

that x′I+1 ≥ C + ε and x′I < C + ε. Applying the same arguments to x′I+1 with a
new constant C ′ set to C + ε yields inductively that (x′i)i≥N is strictly increasing, by
assumption unbounded and, therefore, divergent to +∞.

Therefore, since two sequences solution of (3.5) preserve the order of their initial values,
using Lemma 3.5, there exists a critical value x̂ > 0 such that for x1 > x̂, the solution
to (3.5) tends to ∞, while for x1 < x̂ it tends to −∞. �

In fact, we will be able to compute the critical value x̂ employing generating functions
as tool.

Lemma 3.7. Denote by (xi)i∈N the sequence solution to the recurrence relation (3.5)
with x1 := x. Its generating function E(z) :=

∑∞
i=0 xiz

i satisfies

E(z) = z
λx−∑∞k=1

zk

k+n

µz2 − qz + λ
(3.7)

within its radius of convergence R ∈ [0,∞), where q := λ+ µ+ γ.

Proof. Set q̃i := q(i+ n) such that (3.5) becomes

q̃ixi = λ̃ixi+1 + µ̃ixi−1 + 1.
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By exploiting this formulation we obtain

E(z) =
∞∑

i=1

xiz
i =

∞∑

i=1

(
λ̃ixi+1 + µ̃ixi−1 + 1

) zi
q̃i

=
λ

q

∞∑

i=1

xi+1z
i +

µ

q

∞∑

i=1

xi−1z
i +

∞∑

i=1

zi

q̃i

=
λ

qz

∞∑

i=1

xi+1z
i+1 +

µ

q
z

∞∑

i=1

xiz
i +

∞∑

i=1

zi

q̃i

=
λ

qz
(E(z)− xz) +

µ

q
zE(z) +

∞∑

i=1

zi

q̃i

which leads to the result (3.7).

�

Based on the explicit generating function we derive an expression of the coefficients
by differentiating in 0. To justify this approach we have to establish that E converges
within a positive radius of convergence.

Lemma 3.8. The generating function E given by (3.7) has a positive radius of con-
vergence.

Proof. Let x̂ as in Lemma 3.6. Consider solutions (xi)i∈N and (x′i)i∈N to (3.5) with
x′1 = x′ < x̂ < x = x1. Since there is a i0 ∈ N such that x′i < 0 for all i ≥ i0 it follows
for ∆i := xi − x′i that

∆i ∈ [max{xi, |x′i|}, 2 max{xi, |x′i|}], i ≥ i0.

Additionally (∆i)i∈N satisfies (3.3) with u = 0; so according to Lemma 3.4 it grows
like a

¯

−i as i → ∞. By the upper and lower bound of ∆i for i ≥ i0 we obtain that

both (xi)i∈N and (x′i)i∈N grow asymptotically at most like a
¯

−i. Note that the solution

(x̂i)i∈N of (3.5) with x̂1 = x̂ cannot grow faster than a
¯

−i as i → ∞ by positiveness of

∆i for all i ≥ 1. Thus, the series

E(z) =
∞∑

i=1

xiz
i

converges for any initial value at least within the radius of convergence R := a
¯
> 0. �

We proceed with a direct calculation of the coefficients. Recall that a
¯
< ā are the

distinct real zeros of the polynomial x 7→ µx2 − (λ+ µ+ γ)x + λ.
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Lemma 3.9. Any solution (xi)i∈N to equation (3.5) with x1 = x > 0 has the form

xi = λ c x

(
1

a
¯

i
− 1

āi

)
− c

i−1∑

k=1

1

k + n

(
1

a
¯

i−k −
1

āi−k

)
, (3.8)

with c =
(√

(λ+ µ+ γ)2 − 4λµ
)−1

.

Proof. According to Lemma 3.7 and Lemma 3.8 the introduced generating function E
has a positive radius of convergence and the particular form

E(z) = z
f(z)

g(z)
with f(z) := λx−

∞∑

k=1

zk

k + n
and g(z) := µz2 − qz + λ.

Note first, that by that form we have

∂izE(z)

∣∣∣∣
z=0

= i ∂i−1
z

(
f(z)

g(z)

) ∣∣∣∣
z=0

= i

i−1∑

k=0

(
i− 1

k

)(
∂kz f(z)∂i−1−k

z (
1

g
)(z)

) ∣∣∣∣
z=0

.

Due to the form of g we have

1

g(z)
=

c

z − ā −
c

z − a
¯

,

and therefore any derivative of order n, namely,

∂iz
1

g(z)

∣∣∣∣
z=0

= i! c

(
1

a
¯

i+1
− 1

āi+1

)
. (3.9)

Considering the numerator f(z), we have

∂izf(z)

∣∣∣∣
z=0

= −
∞∑

k=i

zk−i

k + n
k · (k − 1) · . . . · (k − i+ 1)

∣∣∣∣
z=0

= − i!

i+ n
.

Hence,

∂izE(z)

∣∣∣∣
z=0

= i ∂i−1
z

(
f(z)

g(z)

) ∣∣∣∣
z=0

= i

(
λx (i− 1)!c

(
1

a
¯

i
− 1

āi

)

−
i−1∑

k=1

(
i− 1

k

)
k!

k + n
c(i− 1− k)!

(
− 1

āi−k
+

1

a
¯

i−k

))

= i!

(
λx c

(
1

a
¯

i
− 1

āi

)
−

i−1∑

k=1

c

k + n

(
1

a
¯

i−k −
1

āi−k

))
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Since xi = i!−1∂izE(z)

∣∣∣∣
z=0

, we find that for any i ≥ 1

xi = λ c x

(
1

a
¯

i
− 1

āi

)
− c

i−1∑

k=1

1

k + n

(
− 1

āi−k
+

1

a
¯

i−k

)
.

�

We can now proceed with the proof of Theorem 2.3 by combining as follows the pre-

viously presented results. The sequence of expected hitting times (Ei[T (n)
X ])i∈N is a

solution to (3.5). Lemma 3.9 shows that the expected value for i ≥ 0 is in fact given
by

Ei[T (n)
X ] = λE1[T

(n)
X ] c

(
1

a
¯

i
− 1

āi

)
− c

i−1∑

k=1

1

k + n

(
1

a
¯

i−k −
1

āi−k

)
,

with c =
(√

(λ+ µ+ γ)2 − 4λµ
)−1

where we followed the usual convention that an

empty sum equals 0. It remains to derive the value of E1[T
(n)
X ] to complete the proof

of Theorem 2.3.

To improve the readability in what continuous, we introduce the following notation:

Φn(z) :=
∞∑

k=0

zk

k + n
, |z| < 1, n ∈ N∗. (3.10)

Therefore

E(z) = z
λx1 − Φn(z) + n−1

µz2 − qz + λ

In fact, it turns out that the value x1 =
1

λ

(
Φn(a

¯
)− n−1

)
yields the minimal positive

solution of (3.5) which does not tend to +∞, as proved in the following lemma.

Lemma 3.10. The sequence (xi)i∈N satisfying (3.5) with x1 =
1

λ

(
Φn(a

¯
)− n−1

)
is the

minimal positive solution to (3.5). Moreover xi = O(i−1) as i→∞. Therefore

x̂ =
1

λ

(
Φn(a

¯
)− n−1

)
.
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Proof. By Lemma 3.9,

xi = λ c x1

(
1

a
¯

i
− 1

āi

)
− c

i−1∑

k=1

1

k + n

(
1

a
¯

i−k −
1

āi−k

)

= c

∞∑

k=1

a
¯

k

k + n

(
1

a
¯

i
− 1

āi

)
− c

i−1∑

k=1

1

k + n

(
1

a
¯

i−k −
1

āi−k

)

=
c

a
¯

i

∞∑

k=i

a
¯

k

k + n
− c

āi

∞∑

k=1

a
¯

k

k + n
+ c

i−1∑

k=1

1

k + n

1

āi−k
. (3.11)

Using the notation bi :=
∑i−1

k=1

āk

k + n
, then

∑i−1
k=1

1

k + n

1

āi−k
=
bi
āi

and

bi+1 − bi
āi+1 − āi =

1

(ā− 1)(i+ n)
→ 0, i→∞.

Using the fact that ā > 1 and applying Stolz-Césaro Theorem we obtain that

bi
āi

=
1

āi

i−1∑

k=1

āk

k + n
→ 0, as i→∞.

Thus, the asymptotic behavior of (xi)i≥0 is the same as of

c

a
¯

i

∞∑

k=i

a
¯

k

k + n
≥ c

i+ n
. (3.12)

Let us check an upper bound. Using the integral comparison,

∞∑

k=i

a
¯

k

k + n
≤

a
¯

i

i+ n
+

∫ ∞

i

a
¯

s

s+ n
ds

≤
a
¯

i

i+ n
+

a
¯

−n

i+ n

∫ ∞

i+n

exp(log a
¯
s)ds

=
a
¯

i

i+ n
+

a
¯

i

(i+ n)(− log a
¯
)

which implies that
1

a
¯

i

∑∞
k=i

a
¯

k

k + n
vanishes as i → ∞. Hence xi → 0 as i → ∞ which

implies in particular that the sequence is bounded.
Furthermore, the sequence (xi)i∈N is positive since otherwise it would diverge to −∞
by the same arguments used in the proof of Lemma 3.6. Moreover, the lower bound
(3.12) and the upper bound of order O(i−1) implies the convergence rate xi = O(i−1)
as i→∞.
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Finally, by Lemma 3.6, the sequence (xi)i≥0 with x1 =
1

λ

(
Φn(a

¯
)− n−1

)
is indeed the

minimal positive solution to (3.5), which determines uniquely the value of x̂. �

Note that the Lemma 3.10 completes the proof of Theorem 2.3 and we can proceed to

the proof of Corollary 2.4. The sequence of expected hitting times (Ei[T (n)
X ])i∈N is the

solution of {
x0 = 0, x1 = x̂,

λixi+1 = −1 + (γi + λi + µi)xi − µixi−1, i ≥ 1,
(3.13)

with x̂ =
1

λ

∞∑

k=1

a
¯

k

k + n
where from Lemma 3.10 follows the rate of convergence of Ei[T (n)

X ]

to 0 as i→∞.

4. Recurrence Property and Stationary Distribution

Based on the information we obtained on the expected hitting times of the catastrophe
state, we now prove the following theorem.

Theorem 4.1 (Positive Recurrence). Let X = (Xt)t≥0 be the BD+Cn process whose
infinitesimal generator Q is given by (2.1). Then X is positive recurrent, it exhibits a
unique non degenerated stationary distribution π and, for any initial distribution and
for large time, Xt converges in distribution to π.

Note that this is radically different from the behavior of a BD-process with immigration
satisfying λ > µ. In that case the population grows in expectation over time and
no stationary distribution exists, see e.g. [And91]. Hence, by introducing a partial
catastrophe to the model its behavior changes drastically, ensuring for any catastrophe
rate γ > 0 the existence of a unique stationary distribution.

To prove the theorem, we apply the existence of Lyapunov functions.

Proof of Theorem 4.1. Recall that a function V : N → R+ ∪ {+∞} is a Lyapunov
function associated to the CTMC X if V satisfies

QV (n) ≤ −1 + 1A(n)

where Q is the generator of X and A is some petite set, see e.g. [MLU93]. Take
here A = {0, . . . , n}. By the previous section, supi∈N E[TAX |X0 = i] < ∞ where TAX
is the first time the process X hits the set A. Hence, i 7→ 1 + E[TA|X0 = i] yields
a Lyapunov function. It follows directly by irreducibility of X that the process X
admits a stationary distribution π and that it is positive recurrent. The uniqueness of
π follows from the irreducibility of X and the limiting behavior follows from classical
results on non-explosive continuous time Markov chains, see e.g. [Nor97]. �
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5. Expected Population Size at Fixed Times

In this last section we analyse the first two moments of the BD+Cn process at a fixed
time t ≥ 0 and prove Theorem 2.5 and Theorem 2.6. Due to the asymmetric form
of the generator (2.1) we focus on upper bounds of the first and second moment of
(Xt)t≥0.
In contraposition to the last section, the parameter ν representing the immigration
rate in case of extinction of the population now plays an important role, making the
state 0 non-absorbing.

5.1. Associated Kolmogorov Equations. Let us consider the Kolmogorov equa-
tions associated to the BD+Cn process (Xt)t≥0 to analyze its behavior at fixed time.
With Pn(t) := P[Xt = n|X0 = n0], n0 > n, the following identities hold:




d

dt
P0(t) = µP1(t)− νP0(t)

d

dt
Pn(t) = λn−1Pn−1(t)− n(µ+ λ)Pn(t) + (n+ 1)µPn+1(t), 0 < n < n,

d

dt
Pn(t) = (n− 1)λPn−1(t)− n(µ+ λ)Pn(t) + (n + 1)µPn+1(t) + γ

∑∞
i=n+1 iPi(t),

d

dt
Pn(t) = (n− 1)λPn−1(t)− n(γ + µ+ λ)Pn(t) + (n+ 1)µPn+1(t), n > n,

(5.1)
with initial condition Pn(0) = δn0,n. Recall that λn = nλ if n ≥ 1 but λ0 = ν.

5.2. Upper bounds for First and Second Moment. We approach the first and
second moment by analyzing their corresponding ODEs.

Proof of Theorem 2.5. Using (5.1), we obtain

d

dt
E[Xt] = λ

∞∑

n=1

n(n− 1)Pn−1(t)− (µ+ λ)
∞∑

n=1

n2Pn(t)

+µ
∞∑

n=1

n(n+ 1)Pn+1(t)− γ
∞∑

n=n+1

(n− n)nPn(t) + νP0(t)

= (λ− µ)E[Xt] + γ

∞∑

n=n+1

(n− n)nPn(t) + νP0(t).

If we denote the first moment by m(t) := E[Xt] then it solves the ODE

m′(t) = (λ− µ)m(t)− γ
∞∑

n=n+1

(n− n)nPn(t) + νP0(t), m(0) = n0 (5.2)



211

In particular, by Jensen’s inequality,

m′(t) ≤ (λ− µ)m(t) + γ

∞∑

n=0

(n− n)nPn(t) + νP0(t)

≤ (λ− µ)m(t) + γ(n−m(t))m(t) + ν.

The solution m̄ to the ODE

m̄′(t) = (λ− µ)m̄(t) + γ(n− m̄(t)) m̄(t) + ν, m̄(0) = n0, (5.3)

is, therefore, a candidate for an upper bound of m. To that aim, we will show that the
difference m̄−m is a non-negative function on [0,∞).
We first prove that m̄ −m has a strict local minimum at t = 0. Note that solutions
of both ODEs (5.2) and (5.3) exist globally on (0,∞). Since both right hand sides are
continuous in t for t ≥ 0 we can extend definition of the derivative to the set [0,∞).
Note that if n0 > n then

lim
t→0+

m′(t) = (λ− µ)n0 + γ(n− n0)n0 = lim
t→0+

m̄′(t)− ν < lim
t→0+

m̄′(t)

and m̄(0) = m(0). Thus, during some time, m̄ dominates m:

∃t0 > 0 : m(t) ≤ m̄(t) ∀t ∈ [0, t0).

Assume that this domination only holds locally, or equivalently, that there is a t2 > t0
such that m̄(t2) < m(t2). By continuity there exists an interval Iδ := (t2 − δ, t2 + δ)
such that m̄(t) < m(t) for all t ∈ Iδ. Without loss of generality we may assume that
m̄(t) ≥ m(t) for all t ∈ [0, t2 − δ). Set t1 := t2 − δ. By continuity of m̄ and m,
m̄(t1) = m(t1). Additionally, since m̄ and m are C1-functions, m̄′(t1) < m′(t1). But,
on the other hand

m̄′(t1) = g(m̄(t1)) = g(m(t1)) ≥ m′(t1),

where g(x) := (λ − µ)x + γ(n − x)x + ν, which leads to a contradiction. Thus, m̄
dominates m globally.

�

Note that the ODE (5.3) is the same than (2.6), whose solution is a logistic growth
function. In particular m̄(t) converges for t large to its equilibrium value m̄e given by
the largest zero of the polynomial x 7→ γ x2 − (λ− µ+ γ n) x− ν,

m̄e :=
(λ− µ+ γ n) +

√
(λ− µ+ γ n)2 + 4γν

2γ
. (5.4)

Moreover t 7→ m̄(t) is decreasing whenever it is larger than its equilibrium m̄e.
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Proof of Theorem 2.6. The dynamics of the process’ second moment v(t) := E[X2
t ] can

be derived in the same way as the one for the first moment and it reads

v′(t) = 2(λ− µ)v(t) + (λ+ µ)m(t)− γ
∞∑

n=n+1

(n3 − n2n)Pn(t)

≤ 2(λ− µ)v(t) + (λ+ µ)m(t)− γ
∞∑

n=0

(n3 − n2n)Pn(t) + νP0(t)

≤ 2(λ− µ)v(t) + (λ+ µ+ γ n2)m̄(t)− γv(t)
3
2 + ν

The last inequality, due to Jensen’s inequality, is even strict for t > 0:

v′(t) < 2(λ− µ)v(t) + (λ+ µ+ γ n2)m̄(t)− γv(t)
3
2 + ν, t > 0.

Consider now the function v̄ being solution of the ODE

v̄′(t) = 2(λ− µ) v̄(t) + (λ+ µ+ γ n2) m̄(t)− γ v̄(t)
3
2 + ν, v̄(0) = n2

0. (5.5)

It is a candidate for an upper bound of v. Compare the right limits in 0 of the first
derivatives:

lim
t→0+

v′(t) < 2(λ− µ)n2
0 + (λ+ µ+ γ n2)n0 − γn3

0 + ν = lim
t→0+

v̄′(t). (5.6)

By the same argumentation as for the m, we obtain the domination of v by the function
v̄.

The positive function v̄ is indeed bounded, as we will prove now.
Assume conversely, that any large value can be taken by v̄. In particular choose any
c0 large enough such that

2(λ− µ)c0 + (λ+ µ+ γ n2)n0 − γc
3
2
0 + ν < 0 (5.7)

and suppose that there exists a time t0 such that v̄(t0) = c0. Since by assumption
n0 > m̄e, the function m̄ decreases from m̄(0) = n0. It follows that

v̄′(t0) = 2(λ− µ)v̄(t0) + (λ+ µ+ γ n2)m̄(t0)− γv̄(t0)
3
2 + ν

≤ 2(λ− µ)c0 + (λ+ µ+ γ n2)n0 − γc
3
2
0 + ν < 0.

Hence, whenever v̄ takes the value c0, it has a negative derivative. Thus, for t > t0,
v̄(t) is uniformly bounded by c0 which is contradictory. �

We also compare v̄ and m̄2 and obtain informations on the long time behavior of v̄.

Proposition 5.1. Let v̄ be solution of the ODE (5.5) with n0 > m̄e and λ + µ ≥ 2ν.
Then v̄(t) ≥ m̄2(t) for all t ≥ 0, where m̄ is solution of the ODE (5.3). Moreover, as
t→∞, v̄(t) tends to the solution v̄∞ of the following equation:

0 = 2(λ− µ)v̄∞ + (λ+ µ+ γ n2)m̄e − γv̄
3
2∞ + ν. (5.8)
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To prove these properties, we analyze the nullcline, i.e., the function v(t) solution of
the limit equation obtained from (5.5) with vanishing l.h.s.:

0 = 2(λ− µ)v(t) + (λ+ µ+ γ n2)m̄(t)− γ(v(t))
3
2 + ν. (5.9)

To prove the uniqueness of the solution of the equation (5.8) we use Descarts’ rule of
signs, which we now recall (see [HK91]):

Lemma 5.2. The number of positive roots counted with multiplicities of a polynomial
with real coefficients is equal to the number of changes of sign in the list of coefficients,
or is less than this number by a multiple of 2.

We also obtain the C1-regularity of the function v by the following lemma.

Lemma 5.3. Let t ≥ 0 and Pt : x 7→ a0(t) +
∑n

k=1 akx
k be a real polynomial with

a0 ∈ C1([0,∞),R) and a′0(t) < 0 for all t > 0. If for all t ≥ 0 the polynomial Pt has a
unique positive simple zero denoted by xt0 then t 7→ xt0 ∈ C1((0,∞),R).

Proof of Lemma 5.3. For any t > 0 and sufficiently small h > 0,

0 =
n∑

k=1

ak

(
(xt+h0 )k − (xt0)k

)
+ a0(t+ h)− a0(t)

=
(
xt+h0 − xt0

) n∑

k=1

ak

k−1∑

l=1

(
xt+h0

)l (
xt0
)k−1−l

+ a0(t+ h)− a0(t).

Note that
∑n

k=1 ak
∑k−1

l=1

(
xt+h0

)l
(xt0)

k−1−l 6= 0 and xt+h0 − xt0 6= 0, because a0 is de-
creasing by assumption. Thus,

xt+h0 − xt0
h

=
a0(t)− a0(t+ h)

h

(
n∑

k=1

ak

k−1∑

l=1

(
xt+h0

)l (
xt0
)k−1−l

)−1

(5.10)

and, hence, t 7→ xt0 ∈ C1((0,∞),R). �

Proof of Proposition 5.1. Define a positive function ψ by ψ(t)2 := v(t) where v(t)
solves the equation (5.9). Then ψ(t) is a positive zero of the polynomial

x 7→ −γx3 + 2(λ− µ)x2 + (λ+ µ+ γ n2)m̄(t) + ν.

By Lemma 5.2, for fixed t it exists, is simple and unique. Therefore the nullcline
is defined pointwise by v(t) :=

√
ψ(t), t ≥ 0. Since t 7→ m̄(t) is continuous, v is

also continuous. The function v is even continuously differentiable by positivity of ψ,
smoothness of m̄ and Lemma 5.3. Moreover, since m̄ converges to me as t → ∞, v
converges as t→∞ to the solution of the equation (5.8). Furthermore, differentiating
(5.9), one obtains

0 = 2(λ− µ)v′(t) + (λ+ µ+ γ n2)m̄′(t)− 3

2
γv′(t)v(t)

1
2 . (5.11)
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Since m̄′ tends to 0 as t→∞, therefore v′ converges to some value denoted by v′(∞),
which solves the equation

0 = 2(λ− µ)v′(∞)− 3

2
γv′(∞)v̄

1
2∞. (5.12)

Thus, either v′(∞) = 0 or v̄∞ =
(

4(λ−µ)
3γ

)2

. This later value cannot solve (5.8). Hence,

v′(∞) = 0. Note that if x > xt0, then

−γx3 + 2(λ− µ)x2 + (λ+ µ+ γ n2)m̄(t) + ν < 0

and vice versa. Thus, v̄ always tends towards the nullcline v. Since v̄ always tends
towards the nullcline v and v′ tends to 0, also v̄ converges to v̄∞, which proves the
claim. �

Note by the way that one deduces from equation (5.8) that v̄∞ ∼ O(n2) as n→∞.

About the comparison between v̄(t) and m̄2(t):

By assumption v̄(0) = n2
0 = m̄(0)2. Note that

m̄(t) ≥ m̄e > n⇒ (n− m̄(t))2 > 0⇒ 2m̄(t)(n− m̄(t)) < n2 − m̄2(t).

Therefore

(m̄2)′(t) = 2m̄(t)m̄′(t) = −2γm̄(t)3 + 2(λ− µ+ γ n)m̄2(t) + 2νm̄(t) (5.13)

< γ(n2 − m̄2(t))m̄(t) + 2(λ− µ)m̄2(t) + 2νm̄(t)

= −γ
(
m̄2(t)

) 3
2 + 2(λ− µ)m̄2(t) + (2ν + γ n2)m̄(t)

≤ −γ
(
m̄2(t)

) 3
2 + 2(λ− µ)m̄2(t) + (λ+ µ+ γ n2)m̄(t), (5.14)

where the assumption 2ν ≤ λ + µ is used for the last inequality. Now by (5.5) and
(5.13),

v̄′(0)− (m̄2)′(0) = 2(λ− µ) v̄(0) + (λ+ µ+ γ n2) m̄(0)− γ v̄(0)
3
2 + ν

−
(
− 2γm̄(0)3 + 2(λ− µ+ γ n)m̄2(0) + 2νm̄(0)

)

= (λ+ µ− 2ν)n0 + γn0(n0 − n)2 + ν > 0.

This inequality propagates for all t ≥ 0. This can be proved by the same argumentation
as in the proof of Theorem 2.5, using (5.14).

5.3. Accuracy of these upper bounds. Previously, we found an upper bound m̄
to the first moment m. We would like to quantify the sharpness of this bound by
estimating the non negative difference function D defined by

D(t) := m̄(t)−m(t) ≥ 0, D(0) = 0. (5.15)

Moreover, lim supt→∞D(t) ≤ m̄e which implies that D is a bounded function.
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Proposition 5.4 (Upper Bound for the difference function D). Let m, m̄, v and v̄
defined as above under the same assumptions. Then, the difference function D defined
in equation (5.15) is pointwise bounded from above by the solution D̄ of the non linear
ODE 




D̄′(t) = −γD̄(t)2 +
(
λ− µ+ γ(n + 2m̄(t))

)
D̄(t)

+γ
(
v̄(t)− m̄(t)2

)
+ γ

n2

4
+ ν, t > 0,

D̄(0) = 0.

(5.16)

Moreover, the function D̄ tends for large time to the positive solution D̄∞ of the equa-
tion

0 = −γD̄2
∞ +

(
λ− µ+ γ(n + 2m̄e)

)
D̄∞ + γ(v̄∞ − m̄2

e) + γ
n2

4
+ ν. (5.17)

Proof. By differentiating the function D defined in (5.15) one obtains

D′(t) ≤ (λ− µ)D(t) + nγm̄(t)− γm̄2(t) + γ
∑

n≥n+1

(n− n)nPn(t) + ν

≤ −γD(t)2 + (λ− µ+ γn)D(t)− 2γD(t)m(t) + 2γD(t)m̄(t)

+γ(v̄(t)− m̄2(t)) + γ

n∑

n=0

(n− n)nPn(t) + ν (5.18)

≤ −γD(t)2 +
(
λ− µ+ γ(n + 2m̄(t))

)
D(t) + γ(v̄(t)− m̄2(t)) + γ

n2

4
+ ν.

The function D̄, solving the ODE (5.16), is an upper bound for D since D(0) = D̄(0)
and

lim
t→0+

D′(t) = 0, lim
t→0+

D̄′(t) = γ
n2

4
+ ν > 0.

Thus, by similar arguments as for m̄ and v̄, it follows that D̄ is a global upper bound
of D.

To investigate the asymptotic behavior of D̄(t) we use the similar techniques as we
applied in the proof of Proposition 5.1. This time, the equation (5.16) induces the
positive nullcline D satisfying

0 = −γD(t)2 +
(
λ− µ+ γ(n + 2m̄(t))

)
D(t) + γ

(
v̄(t)− m̄2(t)

)
+ γ

n2

4
+ ν.

Applying again Lemma 5.2, one proves its existence and also the convergence of D̄
towards this nullcline. As in Proposition 5.1, since v̄ and m̄ converges for t large, D(t)
converges to D̄∞, which is the unique positive solution to

0 = −γD̄2
∞ +

(
λ− µ+ γ(n + 2m̄e)

)
D̄∞ + γ(v̄∞ − m̄2

e) + γ
n2

4
+ ν.

Therefore, analogously as precedently, the function D̄ converges to D̄∞ thanks the
positivity of λ− µ+ γ(n + 2m̄(t)) and the C1-regularity of D.
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Solving (5.17) explicitly, we obtain

D̄∞ =
(λ− µ+ γ(n + 2m̄e)) +

√
(λ− µ+ γ(n + 2m̄e))2 + γ2(4(v̄∞ − m̄2

e) + n2) + 4γν

2γ

and consequently D̄∞ ∼ O(n) as n→∞. Hence, for small n, the small size of D̄ leads
to sufficiently good estimates by considering m̄ instead of m. Instead, for large n, the
large values of D̄ do not allow to conclude if m̄ and m are close. Finer estimates would
be needed to paint a clearer picture of the sharpness of the upper bounds but they
seem to be currently out of reach.

�
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References

[And91] William J. Anderson. Continuous-time Markov chains. Springer-Verlag, 1991.
[BGR82] Peter J. Brockwell, Joseph. M. Gani, and Sidney. I. Resnick. Birth, immigration and catas-

trophe processes. Adv. in Appl. Prob., 14(4):709–731, 1982.
[Bro85] Peter J. Brockwell. The extinction time of a birth, death and catastrophe process and of a

related diffusion model. Adv. in Appl. Prob., 17(01):42–52, 1985.
[Bro86] Peter J. Brockwell. The extinction time of a general birth and death process with catastro-

phes. J. Appl. Prob., 23(4):851–858, 1986.
[Dicetal08] Antonio Di Crescenzo, Virginia Giorno, Amelia G. Nobile and Luigi M. Ricciardi. A note

on birth-death processes with catastrophes. Statist. Probab. Lett., 78(14):2248–2257, 2008.
[Fel39] Willy Feller. Die grundlagen der volterraschen theorie des kampfes ums dasein in wahrschein-

lichkeitstheoretischer behandlung. Acta Bioth. Ser. A., 5(1):11–40, 1939.
[HK91] Henry S. Hall and Samuel R. Knight. Higher algebra : a sequel to elementary algebra for

schools: Hall, H. S. (Henry Sinclair), 1848-1934 : Free Download, Borrow, and Streaming
: Internet Archive. St. Martin’s Press, London, New York, 1 edition, 1891.

[Kapetal16] Stella Kapodistria, Phung-Duc Tuan and Jacques Resing. Linear birth/immigration-
death process with binomial catastrophes. Probab. Engrg. Inform. Sci., 30(1):79–111, 2016.

[Ken48] David G. Kendall. On the generalized birth-and-death process. Ann. Math. Statistics.,
19(1):1–15, 1948.

[KM58] Samuel Karlin and James McGregor. Linear growth, birth and death processes. J. Math.
Mech., 7:643–662, 1958.

[MLU93] Sean Meyn and Richard L. Tweedie. A survey of Foster-Lyapunov
techniques for general state space Markov processes. available on
https://pdfs.semanticscholar.org/3aef/57c3c9a7209a013dce1e99dafc69db28e8a3.pdf

[Nor97] James R. Norris. Markov Chains. Cambridge University Press, Cambridge, 1997.



217

[Sind16] Samuel Sindayigaya. The population mean and its variance in the presence of genocide
for a simple Birth-Death-Immigration-Emigration process using the probability generating
function. Int. J. Stat. Anal., 6(1):1–8, 2016.

[Swi01] Randall J. Swift. Transient probabilities for a simple birth-death-immigration process under
the influence of total catastrophes. Int. J. Math. Math.l Sci., 25(10):689–692, 2001.

[vDZ04] Erik A. van Doorn and Alexander I. Zeifman. Birth-death processes with killing. Statist.
Probab. Lett., 72(1):33–42, 2005.

[vDZ05] Erik A. van Doorn and Alexander I. Zeifman. Extinction probability in a birth-death process
with killing. J. Appl. Probab., 42(1):185–198, 2005.
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218 9 RANDOM POPULATION DYNAMICS UNDER CATASTROPHES

9.1 Outlook: Populations under Catastrophic Events

The previously introduced process BD+Cn captures a reduction in the population size
of a population which exhibits a fixed level of stability n. Deaths due to catastrophes
are assumed to happen at the same time, capturing the extremely short time scale of
catastrophes relative to the regular time scales of births and deaths. This short time
scale is due to the acceleration of the endogenous effects which cause the catastrophes,
in particular conflicts or pandemics. In the beginning they start slowly, have then
a short phase with a high number of casualties before slowing down again in the
intensity. Processes who capture this behavior for exogenous shocks, for example in the
modeling of earthquakes and aftershocks, are Hawkes processes which are due to this
property also known as self-exciting processes, see [Oga98]. Self-exciting processes are
point processes which carry their name due to the recursive structure of the intensity
function associated to counting measure, see [HaOa74] for the ground laying work and
[JanOh21] for a review of the topic. With Hawkes process on the real line is a point
process T on the positive real line with associated counting measure N = (Nt)t≥0 with
intensity

λ(t) = µ+
∑
t′∈T
t′<t

h(t− t′) (9.1)

where µ > 0 and h is a non-negative real function. This leads to a clustering of
events after an initial event as illustrated in Figure 56. A priori, the cluster sizes are

Figure 56: An illustration of a Hawkes process with h(t) = αexp(−βt). One can see
the clustering of events which is associated to the increase in the intensity function.

unbounded but finite with probability one under certain conditions, which implies the
need of a reformulation to interpret the events of a Hawkes process as individuals of a
population being affected by a catastrophe because we only consider finite populations.
We propose in what follows such a model as an extension to the BD + Cn.
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9.1.1 Future work

In the Outlook of this part, we want to consider a variation of the Hawkes process
as a more flexible alternative to the BD + Cn process.A Hawkes process on the real
line is a point process T on the positive real line with associated counting measure
N = (Nt)t≥0 with intensity

λ(t) = µ+
∑
t′∈T
t′<t

h(t− t′).

where µ > 0 is a constant and h is a positive real function. Reviews and results on
Hawkes processes can be found here [Oga98], [JanOh21] to name just a small selection.
They are most known for the self-exciting nature, in the sense that the occurrence of
one jump of the counting measure N increases the probability of a second event shortly
afterwards in a cumulative fashion. This class of stochastic processes has seen a lot
of interest in the modeling of earthquakes, epidemics as well as shocks in the financial
markets and, therefore, systems undergoing exogenous shocks.

In what follows, we show a possibility of how the self-exciting nature of the Hawkes
process can be a sensible approach to endogenous shocks in a population, for example,
due to conflict. Unfortunately, Hawkes processes capture by their nature the impact of
exogenous shocks in form of a Poisson process with intensity µ and subsequent induced
effects on the population due to the kernels h which does not take in to account an
underlying population and its individuals which form the ”support” of the process.
In [RizMis18] the authors propose the HawkesN process to enable the use of the self-
exciting nature of Hawkes processes for population models with finite size of size n.
The adjustment in form of the intensity function is given by

λ̃n(t) =
(

1− Nt

n

)µ+
∑
t′∈T
t′<t

h(t− t′)

 . (9.2)

The factor
(
1− Nt

n

)
ensures that, as the number of events in the HawkesN process

increases, the rate of new events slows down. As soon as the process hits n events it
stops. The processes has been applied to real world cases in [UnRout21] allowing the
forecast of disease transmission.

We propose a model using a jump process Q = (Qt)t≥0 based on the HawkesN
process (NP

t )t≥0. It consists of a population which grows according to a birth-death
process (Pt)t≥0 with state dependent rates λi and µi, where λ is the individual birth
rate and µ the individual death rate where i is the current value of Qt. Additionally,
there is a susceptible sub-population of size Pt−n. The whole population then evolves
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Figure 57: Left: Intensity function of NH using an exponential kernel h(·) = exp(−α ·).
The resistent population is of size N = 5000 and Pt = 7000. Right: The decrease of the
population size from 7000 to approximately 5400. Note that the ”time” here is virtual
time and has no interpretative value since there was no fitting to any data involved.

like (Qt)t≥0 = (Pt −NH
t )t≥0 where NH is governed by the intensity function

λNH (t) = Φ(Pt, n, NH
t )

γ +
∑
t′∈T
t′<t

h(t− t′)

 . (9.3)

where γ > 0 is the risk factor of starting a catastrophic event, h is a positive real
function and the factor Φ is a positive function and satisfies Φ(Pt, n, 0) = 1 and
Φ(Pt, n, Pt − n) = 0. In what follows, we use the following form, which is inspired
by the kernel for modeling earthquakes via Hawkes processes. We fix Φ to be

Φ(Pt, n, NH
t ) =


1

1 +
(

NH
t (Pt−n)−1

1−NH
t (Pt−n)−1

)k , if NH
t < Pt − n,

0 , otherwise

for some k ∈ N. Assuming independence of the jump times of P and NH and choosing
the function h(·) = exp(−α ·), one obtains a behavior as shown in Figure 57. Note
the peak in the intensity function which shows the accumulation of events of NH

and the corresponding drop in the population size Q. We exploit the fact that the
adjusted process is by definition always finite such that the classical constrain on
Hawkes processes

m :=
∫ ∞

0
h(s)ds < 1 (9.4)

where h is the kernel of the process is no longer necessary since we enforce finite-
ness. Thus, we can use supercritical values m > 1 to model extreme events that are
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concentrated in time. This way, we can tackle the short coming of the BD + Cn pro-
cess, where instead of a fast time scale we introduced catastrophes as instantaneous
events. Furthermore, we add to the flexibility of the process since now the parameter
n and, therefore, Pt − n may easily be replaced in the definitions by another birth-
death process, which is independent of P . This might be, in particular, be interesting
for conflict models in populations, forecasting casualties and the comparison with an
evolution without conflict. In this sense, the BD + Cn is rigid, since it does not offer
direct generalizations without losing the insights we obtained. Rendering the model
in this way more realistic comes with the prize of a more complex process which is,
in particular, no longer a Markov chain. But similar processes have been tackled in
the literature, as for example in [SchoHo17] and [RizMis18] and some of the applied
methods may, after some first considerations by the author of this work, be applicable
to this form of the HawkesN process as well as generalizations, which, we think, add
to models on populations dynamics with endogenous shocks, as for example, due to
conflict within a population.



222 9 RANDOM POPULATION DYNAMICS UNDER CATASTROPHES

List of Symbols

Symbols Meaning

θ . . . . . . . . . . . Tolerance threshold in Echo Chamber model and Deffuant model

µ . . . Openmindedness parameter in Echo Chamber model and Deffuant model

G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simple undirected graph

V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Vertex set associated to a simple graph G

E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Edge set associated to a simple graph G

a, b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Vertices in V

〈a, b〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Undirected edge in G

(a, b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directed edge from a to b in a directed graph

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Size of vertex set of a graph G

(X t
a)a∈V;t∈N . . . . . . . . . . . . . . . . . . . . Opinions in the Echo Chamber or Deffuant model

Gc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complete graph

κ(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Vertex connectivity of G

diam(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diameter of G

ωGl (a, b) . . . . . . . . . the number of walks of length l from a to b along the edges in G

L . . . . . . . . . . Simple graph with interpretation generalized from line graph of Gc

V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vertex set associated to L

E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Edge set associated to L

v,w, u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Vertices in V

n̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Size of vertex set of a graph L

d̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vertex degree in a regular graph

α . . . . . . . . . . . Number of common neighbors of two neighbors in strongly graph

β . . . . . . . Number of common neighbors of two non-neighbors in strongly graph



9.1 Outlook: Populations under Catastrophic Events 223

deg(v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Degree of v ∈ V in L

M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perfect matching in some graph L or G

ι(L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isoperimetric constant of some graph L

k . . . . . . . . . . . . . . . . . . . . . . . Positive integer representing number of particles on L

Vk . . . . . . . . . . . . . .Subsets of V of size k representing particle configurations on L

Ek . . . . . . . . . . . . . . . . . . neighborhood relationships of particle configurations in Vk

Lk . . . . . . . . . . . . . . . . . . . . . . . . . . . kPG associated to L constructed from Vk and Ek

v,w, u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Particle configurations in Vk

Lv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vertex induced sub-graphs of L on v ⊂ V

degk(v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Degree of v as vertex in Lk

degLv(v) . . . . . . . . . . . . . . . . . . . Degree of v ∈ V in vertex induced sub-graphs Lv in L

Dk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set of different degrees of Lk

VDk;d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vertices in Lk with degree d
→
Lk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Random hierarchical kPG

V
(i)
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level set i of

→
Lk

→
E

(i,i+1)
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Edge set between V

(i)
k and V

(i+1)
k in

→
Lk

X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Markov chain on some state space

SMC
k . . . . . . . . . . . . . . . . . . . .Markov chain associated to sampling densest sub-graphs

PMC
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transition matrix associated to SMC

k

π̃MC
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stationary distribution of SMC

k

Sk . . . . . . . . . . . . . . . . . . . . . . . . . . . Markov chain associated to Echo Chamber model

P4k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Transition matrix associated to Sk

π̃k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stationary distribution of Sk

Φd̄
k . . . . . . . . . . . . . . . . . . . . . . .Cheeger constant associated to Sk on d̄-regular graph



224 9 RANDOM POPULATION DYNAMICS UNDER CATASTROPHES

Sc
k . . . . . . . . . . . . . . . . . . . . . . . Markov chain associated to classical exclusion process

P c
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Transition matrix associated to Sc

k

π̃c
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stationary distribution of Sc

k

Sk,θ . . . . . . . . . . . . . . . . Absorbing Markov chain associated to Echo Chamber model

P4k,θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transition matrix associated to Sk,θ

Z . . . . . . . . . . Set of absorbing vertices in L with random absorbing environment

T 0
k,θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Time to absorption of Sk,θ

Sabs
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Discrete opinion version of Sk,θ

T abs
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Time to absorption of Sabs

k

πq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Quasi-stationary distribution of Sabs
k

BD + Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Birth-death catastrophe process

Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infinitesimal generator of BD + Cn

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximal stable population size

ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Immigration rate of BD + Cn

λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Birth rate of BD + Cn

µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Death rate of BD + Cn

γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Catastrophe rate of BD + Cn

T
(n)
X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Catastrophe time of BD + Cn

m̄t . . . . . . . . . . . . . . . . Upper bound expected population size of BD + Cn at time t

v̄t . . . . . . . . . . . . . . . . .Upper bound population size variance of BD + Cn at time t

π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stationary distribution of BD + Cn

λ̃n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intensity function of HawkesN process

NH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HawkesN process counting process

Q . . . . . . . . . . . . Population size under influence of catastrophic HawkesN process



LIST OF FIGURES 225

List of Figures

Figure Page

1 Evolution of the Echo Chamber Model with discrete opinions. Even
though the initial network looks heterogenous, one can already discern
groups in the second image and finally the separated network into several
groups of uniform opinion. Screenshots taken from https://www.complexity-
explorables.org/explorables/echo-chambers/ . . . . . . . . . . . . . . . . 18

2 Dependencies of the Subsection of Part III. . . . . . . . . . . . . . . . . 23
3 Dependency structure of the main parts of Section 6 whith the final goal

of obtaining an alogrithm for dense sub-graph sampling via MCMC. . . 24
4 Dependency structure of results leading to a natural reduction of the

state space Lk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Dependency structure of the main results of Section 8. . . . . . . . . . 27

6 The tri-star T . Dashed lines represent possible edges in G, if G contains
a tri-star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 From complete graph on 4 vertices to its line graph. . . . . . . . . . . . 33
8 The cube-star C in (Z/aZ)2. The dotted lines are identified with each

other due to the quotient, as are the dashed lines. . . . . . . . . . . . . 35
9 The double-pitchfork D. Dashed lines represent possible edges in G, if

G contains a double-pitchfork. . . . . . . . . . . . . . . . . . . . . . . . 36
10 The double pitchfork D embedded into the cube-star C in (Z/aZ)2. The

dotted and dashed lines are each identified with each other as before. . 36
11 Configuration of u′v, uv, v, w and uw where the dashed edge represents

the possibility to identify u′v and uw in some graphs. . . . . . . . . . . . 37
12 The Peterson graph which corresponds to K(5, 2). . . . . . . . . . . . . 43
13 The generalized Johnson graph J (5, 2, 1). . . . . . . . . . . . . . . . . 44
14 The graph O(6, 3, 2), a representative of the class O(n̄, k, t). . . . . . . 45
15 Construction of Lk from a 2-regular graph on 4 vertices for k = 2. Every

vertex on the right hand side corresponds to a possible configuration of
2 particles on L and the edges represent possible transitions. Note that
Lk is not regular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

16 An exemple of a highly clustered, 3-regular, non-bipartite graph. Inter-
preting the edges as relationships or the possibility of communication,
one can imagine that such a network could represent a rather segregated
community even though the underlying graph is regular. . . . . . . . . 54



226 LIST OF FIGURES

17 From left to right the underlying cycle graph, the associated graphs
L3 and L4. Indeed, due to the configurations of the vertex induced
subgraphs, inclusion D3 ⊂ D4 is given. . . . . . . . . . . . . . . . . . . 60

18 From left to right the underlying 3-regular graph on 8 vertices, the
associated graphs L3 and L4. In this case we encounter D3 ∩D4 = ∅. . 61

19 First row: 5-regular graph on 8 vertices with connectivity 5. Corre-
sponding L4 has connectivity 10. Second row: 5-regular graph on 8
vertices with connectivity 5. Corresponding L4 has connectivity 8. . . 65

20 A particle configuration of 3 particles on a cycle graph of length 7. . . . 68
21 Grid over k and d̄ varying between their minimal and maximal values for

a given n̄. Green blocks correspond to pairs (d̄, k) for which the condition
minv∈Vk avg degk(Lv) ≥ d̄− 1 is satisfied for all d̄-regular graphs L. . . 70

22 Change in the curve illustrated in Figure 21 using for illustrative reasons
n̄ = 10. One can see that the area where the vertices of k vertex induced
subgraphs of d̄-regular graphs have average degree greater or equal d̄− i
is, naturally, decreasing as i increases. . . . . . . . . . . . . . . . . . . 73

23 Translation from the 4-regular graph L on six vertices to the disjoint
union of three paths of length 1, which corresponds to the complement
graph of L, denoted by Lc. . . . . . . . . . . . . . . . . . . . . . . . . 74

24 Link between types of graphs presented in this work. We denote by Ψk

the construction of the kPG associated to L. Research questions on one
may be considered in the setting of another along the depicted arrows. 79

25 Transition graph of X on S = {1, 2, 3} with transition matrix P defined
in equation 5.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

26 Two transition graphs on S = {1, 2, 3} with defining transition matrices
of Markov chains X and Y . It is easy to check that X is reversible while
Y is not reversible by Kolmogorov’s criterion, using the sequence 1, 2, 3
to show the lack of equality in some cases. . . . . . . . . . . . . . . . . 89

27 Evolution of densities under Tθ with different initial densities on a path
graph of length 1 and population size n = 2. In the first row, we show
a pair of random variables X, Y which are i.i.d. distributed according
to a triangular distribution on [0, 1] evolving over time t = 0, 5, 10. In
the second row, we show a pair of random variables X, Y which are
i.i.d. distributed according to a distribution which is only supported on
[0, 0.1] and [0.9, 1], again evolving over 10 time steps. . . . . . . . . . . 98

28 A path opinion graph with intersecting intervals defined by the under-
lying SMCCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

29 A path opinion graph which yields intersecting SMCCs. . . . . . . . . . 101



LIST OF FIGURES 227

30 The underlying 3-regular graph on 6 vertices which we are going to use
as example for all constructions of exclusion processes. . . . . . . . . . 109

31 For an underlying 3-regular graph we apply the construction based on
the classical exclusion process. The graph Bt constructed from occupied
sites v containing blue particles and its complement in V colored in pale
blue. A particle displacement happens by drawing uniformly one of the
(possibly in two directions) directed edges and exchanging the state of
the vertices connected by said edge. Dashed edges cannot be used by
particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

32 The graph B′t constructed from occupied sites v colored in blue and
its complement in V colored in pale blue. As in Figure 31 a particle
displacement happens by drawing uniformly one of the directed edges
and exchanging the state of the vertices connected by said edge. When
drawing a loop, everything remains the same. Again, as in Figure 31
dashed edges cannot be used by particles. . . . . . . . . . . . . . . . . 110

33 Change of relationships from time step t to t + 1 on a graph with 4
vertices and 4 edges. The red edge is picked and moved according to
the prescribed dynamics. The number of edges is preserved by the process.122

34 Transformation of existing edges (blue) in G to particles (blue) occupy-
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Code

This section contains the code used in this work to construct the graph Lk and simulate
the Markov chains Sk and Sabs

k .

import networkx as nx
import itertools
import numpy as np
from networkx.algorithms import isomorphism
from collections import Counter
from scipy.special import binom
from scipy.stats import randint
from random import choice, seed, sample

seed(42)

def relabel_graph(G, size, k):
def findsubsets(S,k):

return itertools.combinations(S, k)

items = set(range(size))
int_binomial = [int(value) for value in range(int(binom(size,k)))]
return nx.relabel_nodes(G, dict(zip(int_binomial,findsubsets(items, k))))

def edge_builder(G, size, H):
for node1,node2 in itertools.product(G.nodes(),G.nodes()):

sym_diff = list(set(node1).symmetric_difference(set(node2)))
if len(sym_diff) == 2 and (sym_diff[0],sym_diff[1]) in H.edges():

G.add_edge(node1,node2)
return G

def quotient_with_root(v,u,w):
v = set(v)
u = set(u)
w = set(w)
if u - v == w - v:

return True
else:

return False

def graph_set(size,k,deg=2,complete = False):
D = nx.complete_graph(size)
H = nx.line_graph(D)
size_H = len(list(H.nodes()))
H = nx.relabel_nodes(H, dict(zip(H.nodes(),range(size_H))))
G = nx.empty_graph(int(binom(size_H,k)))
G = relabel_graph(G, size_H, k)
G = edge_builder(G, size_H, H)
return H, G
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def graph_set_echo_with_label(size,k,N,deg=2,complete = False):
D = nx.complete_graph(size)

H = nx.line_graph(D)
label_D = [randint.rvs(0,N) for node in D.nodes()]
label_H = [np.abs(label_D[e[0]]-label_D[e[1]]) == 0 for e in H.nodes()]
size_H = len(list(H.nodes()))
H = nx.relabel_nodes(H, dict(zip(H.nodes(),range(size_H))))
G = nx.empty_graph(int(binom(size_H,k)))
G = relabel_graph(G, size_H, k)
G = edge_builder(G, size_H, H)
return H, G, label_H, label_D

def hirarchical_absorbing_graph(G, H, label_H):
G_hirach = G.copy()
for edge in G.edges():

v = set(list(edge[0]))
w = set(list(edge[1]))
vv = list(v-w)[0]
ww = list(w-v)[0]
if not ( (label_H[vv] != 0 and label_H[ww] == 0) \\

or (label_H[ww] != 0 and label_H[vv] == 0)):
G_hirach.remove_edge(edge[0],edge[1])

return G_hirach

def V_i_creator(G, label_H, k):
def number_short_i(v, label_H):

return sum([label_H[vv] for vv in v])

V = [[v for v in G.nodes() if number_short_i(v, label_H) == i] \\
for i in range(k+1)]

return V

def edges_i_ip1(G_hirach, V, i):
def test(edge):

a = ((edge[0] in V[i] and edge[1] in V[i+1])
b = (edge[0] in V[i+1] and edge[1] in V[i]))
return a or b

nn = [edge for edge in G_hirach.edges() if test(edge)]
return nn

def graph_set_from_graph(H,k):
size_H = len(list(H.nodes()))
H = nx.relabel_nodes(H, dict(zip(H.nodes(),range(size_H))))
G = nx.empty_graph(int(binom(size_H,k)))
G = relabel_graph(G, size_H, k)
G = edge_builder(G, size_H, H)
return H, G
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def graph_set_with_complement(size,deg, k):
# H = nx.complete_graph(size)
# H = nx.random_regular_graph(deg, size)
H = nx.star_graph(size)
H_c = nx.complement(H)
size_H = len(list(H.nodes()))
H = nx.relabel_nodes(H, dict(zip(H.nodes(),range(size_H))))
G = nx.empty_graph(int(binom(size_H,k)))
G = relabel_graph(G, size_H, k)
G = edge_builder(G, size_H, H)
size_H_c = len(list(H_c.nodes()))
H_c = nx.relabel_nodes(H_c, dict(zip(H_c.nodes(),range(size_H_c))))
G_c = nx.empty_graph(int(binom(size_H_c,k)))
G_c = relabel_graph(G_c, size_H_c, k)
G_c = edge_builder(G_c, size_H_c, H_c)
return H, G, H_c, G_c

def MC(G,H,v,w):
vv = list(set(v)-set(w))
H_sub = nx.subgraph(H,v)
if v == w:

x = sum([1/(H.degree(u)-int(nx.degree(H_sub, u))+1) for u in v])
return 1/len(v)*x

elif (v,w) in G.edges():
y = 1/(H.degree(vv[0])-nx.degree(H_sub, vv)[vv[0]]+1)

return 1/len(v)*y
else:

return 0

def MC_lazy(G,H,v,w):
vv = list(set(v)-set(w))
reg_deg = nx.degree(H,v[0])
H_sub = nx.subgraph(H,v)
x = sum([1/(reg_deg-int(nx.degree(H_sub, u))+1) for u in v])
c_vv = 1-1/len(v)*x
if v == w:

return 0
elif (v,w) in G.edges():

return 1/len(v)*1/(reg_deg-nx.degree(H_sub, vv)[vv[0]]+1)/c_vv
else:

return 0

def MC_classic(G,H,v,w):
reg_deg = nx.degree(H,v[0])
if v == w:

return (reg_deg*len(v)-G.degree(v))/(reg_deg*len(v))
elif (v,w) in G.edges():

return 1/(reg_deg*len(v))
else:

return 0
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def MC_holes(G,H,v,w):
w_hole = list(set(w)-set(v))
H_w_sub = nx.subgraph(H,w)
if v == w:# what is the probability to stay in place?

return MC(G,H,v,v)
elif (v,w) in G.edges() or (w,v) in G.edges():

return 1/len(v)*1/(nx.degree(H_w_sub, w_hole)[w_hole[0]]+2)
else:

return 0

def MC_abs(H,H_label,v):
vv = choice(v)
if H_label[vv] != 0:

N = [uu for uu in H.neighbors(vv) if uu not in v]
N.append(vv)
ww = choice(N)
w = [u for u in v if u != vv]
w.append(ww)
return tuple(w)

else:
return v

def quotient_with_similarity(v,w):
v = set(v)
w = set(w)
if len(v.intersection(w)) == 0:

return True
else:

return False

def pi_stationary(G,H,v):
# reg_deg = nx.degree(H,v[0])
H_sub = nx.subgraph(H,v)
value = np.prod([(H.degree(vv)-H_sub.degree[vv]+1) for vv in v])
return value

def psi_perturbation(G,H,v,w):
if (v,w) in G.edges() or (w,v) in G.edges():

deg = nx.degree(H,v[0])
v_bar = list(set(v)-set(w))[0]
w_bar = list(set(w)-set(v))[0]
H_sub_v = nx.subgraph(H,v)
H_sub_w = nx.subgraph(H,w)
H_sub_v_neigh = set(H_sub_v.neighbors(v_bar))
H_sub_w_neigh = set(H_sub_w.neighbors(w_bar))
elements = list(H_sub_v_neigh-H_sub_w_neigh)
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def inv_degree(v):
return deg-H_sub_v.degree[v] + 1

factors = [(inv_degree(v)+1)/inv_degree(v) for v in elements]
return np.prod(factors)

else:
return 0

def degree_sequence_subgraph(H,v):
H_sub = nx.subgraph(H,v)
return tuple(sorted(list(dict(nx.degree(H_sub)).values())))

def degree_sequence_subgraph_comp(H,v):
v_comp = list(set(H.nodes())-set(v))
H_sub = nx.subgraph(H,v_comp)
return tuple(sorted(list(dict(nx.degree(H_sub)).values())))

def MC_cont_generator(G,H,v,w):
# vv = list(set(v)-set(w))
reg_deg = nx.degree(H,v[0])
if v == w:

return - G.degree(v)*1/reg_deg
elif (v,w) in G.edges():

return 1/reg_deg
else:

return 0

def isomorphism_subgraph_and_compl(H,v,w):
v_c = list(set(H.nodes())-set(v))
w_c = list(set(H.nodes())-set(w))
H_sub_v = nx.subgraph(H,v)
H_sub_w = nx.subgraph(H,w)
H_sub_v_c = nx.subgraph(H,v_c)
H_sub_w_c = nx.subgraph(H,w_c)
deg_seq_v = sorted([H_sub_v.degree(vv) for vv in H_sub_v.nodes()])
deg_seq_v_c = sorted([H_sub_v_c.degree(vv) for vv in H_sub_v_c.nodes()])
deg_seq_w = sorted([H_sub_w.degree(vv) for vv in H_sub_w.nodes()])
deg_seq_w_c = sorted([H_sub_w_c.degree(vv) for vv in H_sub_w_c.nodes()])
con_comp_v_w = deg_seq_v == deg_seq_w
con_comp_v_c_w_c = deg_seq_v_c == deg_seq_w_c
return con_comp_v_w and con_comp_v_c_w_c

def quot_wrt_stat_dist(nodes,stat,v,w):
i_v = nodes.index(v)
i_w = nodes.index(w)
return stat[i_v] == stat[i_w]

def get_detailed_balance(tp_vw,tp_wv,nodes,stat,v,w):
i_v = nodes.index(v)
i_w = nodes.index(w)
print(stat[i_w]*tp_wv)
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print(stat[i_v]*tp_vw)
return np.round(stat[i_v]*tp_vw,8) == np.round(stat[i_w]*tp_wv,8)

def connectivity_stat_dist(H,v,w):
if nx.node_connectivity(H) > len(v):

H_sub_v = nx.subgraph(H,v)
H_sub_w = nx.subgraph(H,w)
return nx.is_isomorphic(H_sub_v, H_sub_w)

else:
return False

def create_bip_graph(H,v):
v_c = list(set(H.nodes())-set(v))
H_sub_v = nx.subgraph(H,v)
H_sub_v_c = nx.subgraph(H,v_c)
H_v_v_c = nx.difference(H,nx.compose(H_sub_v,H_sub_v_c))
return H_v_v_c

def bip_stat_test(H,nodes,v,w):
i_v = nodes.index(v)
i_w = nodes.index(w)
H_v_v_c = create_bip_graph(H,v)
H_w_w_c = create_bip_graph(H,w)
return nx.is_isomorphic(H_v_v_c, H_w_w_c)
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